diff --git a/Disertationmainfile2.ipynb b/Disertationmainfile2.ipynb
deleted file mode 100644
index e354e0234fc03e90de5758b393cb08b753e5b02b..0000000000000000000000000000000000000000
--- a/Disertationmainfile2.ipynb
+++ /dev/null
@@ -1,21292 +0,0 @@
-{
-    "cells": [
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "from pyspark import SparkConf\n",
-                "from pyspark import SparkContext\n",
-                "from pyspark.sql import SparkSession\n",
-                "from pyspark.sql.functions import udf\n",
-                "from pyspark.sql.types import IntegerType\n",
-                "from pyspark.sql.types import LongType\n",
-                "from pyspark.sql.types import FloatType\n",
-                "from pyspark.rdd import RDD\n",
-                "from pyspark.sql.types import StringType\n",
-                "from pyspark.sql.functions import col\n",
-                "import pyspark.sql.functions as F\n",
-                "import csv\n",
-                "from datetime import datetime\n",
-                "from functools import reduce\n",
-                "import pandas as pd\n",
-                "import matplotlib.pyplot as plt"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "# local[*]: run Spark in local-mode(parallel computing) with as many working processors as logical cores on your machine\n",
-                "# If we want Spark to run locally with 'k' worker threads, we can specify as \"local[k]\".\n",
-                "master = \"local[*]\"\n",
-                "\n",
-                "# The `appName` field is a name to be shown on the Spark cluster UI page\n",
-                "app_name = \"Big data Analysis of Road Crash Data\"\n",
-                "\n",
-                "# Setup configuration parameters for Spark\n",
-                "spark_conf = SparkConf().setMaster(master).setAppName(app_name)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 3,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "21/12/20 19:06:56 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n",
-                        "Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties\n",
-                        "Setting default log level to \"WARN\".\n",
-                        "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n",
-                        "21/12/20 19:06:58 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.\n",
-                        "21/12/20 19:06:58 WARN Utils: Service 'SparkUI' could not bind on port 4041. Attempting port 4042.\n"
-                    ]
-                }
-            ],
-            "source": [
-                "# creating a SparkContext object \n",
-                "spark = SparkSession.builder.config(conf=spark_conf).getOrCreate()\n",
-                "sc = spark.sparkContext\n",
-                "sc.setLogLevel('ERROR')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 4,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+------+--------------+----+---------+------------------+---------+-------------+---------+------------------------------------+----------------------+-------+--------+-----------+-----------+--------------+-----------------+--------+----+-----------------+-------------------------------------------------+------------+--------------------------+--------------+-----------------+-----+-----------------+-----------------+-------------------------+----------------------------+-----------------------+-----------------------+--------+------------------+\n",
-                        "|id    |count_point_id|year|region_id|local_authority_id|road_name|road_category|road_type|start_junction_road_name            |end_junction_road_name|easting|northing|latitude   |longitude  |link_length_km|link_length_miles|sequence|ramp|estimation_method|estimation_method_detailed                       |pedal_cycles|two_wheeled_motor_vehicles|cars_and_taxis|buses_and_coaches|lgvs |hgvs_2_rigid_axle|hgvs_3_rigid_axle|hgvs_4_or_more_rigid_axle|hgvs_3_or_4_articulated_axle|hgvs_5_articulated_axle|hgvs_6_articulated_axle|all_hgvs|all_motor_vehicles|\n",
-                        "+------+--------------+----+---------+------------------+---------+-------------+---------+------------------------------------+----------------------+-------+--------+-----------+-----------+--------------+-----------------+--------+----+-----------------+-------------------------------------------------+------------+--------------------------+--------------+-----------------+-----+-----------------+-----------------+-------------------------+----------------------------+-----------------------+-----------------------+--------+------------------+\n",
-                        "|268766|73454         |2005|8        |100               |A166     |PA           |Major    |LA Boundary                         |LA Boundary           |470160 |455510  |53.99088109|-0.93140034|2.20          |1.37             |20      |null|Counted          |Dependent on a neighbouring counted link         |14          |229                       |8144          |108              |1243 |268              |72               |54                       |29                          |60                     |134                    |617     |10341             |\n",
-                        "|268755|73369         |2005|2        |2                 |M1       |TM           |Major    |LA Boundary                         |LA Boundary           |449490 |341000  |52.96409055|-1.26463301|5.10          |3.17             |410     |null|Estimated        |Estimated using previous year's AADF on this link|0           |316                       |95120         |397              |18473|4810             |681              |421                      |1568                        |6067                   |5779                   |19326   |133632            |\n",
-                        "|268765|73279         |2005|5        |207               |M56      |TM           |Major    |LA Boundary                         |LA Boundary           |355000 |379570  |53.31114576|-2.67684850|1.30          |0.81             |60      |null|Counted          |Dependent on a neighbouring counted link         |0           |386                       |68510         |394              |9709 |3057             |334              |317                      |884                         |4475                   |2788                   |11855   |90854             |\n",
-                        "|268705|75127         |2005|6        |118               |A5       |PA           |Major    |LA Boundary                         |LA Boundary           |521280 |189000  |51.58681409|-0.25082740|0.10          |0.06             |1100    |null|Estimated        |Estimated using previous year's AADF on this link|36          |194                       |19378         |385              |3984 |537              |64               |47                       |29                          |38                     |32                     |747     |24688             |\n",
-                        "|268748|73280         |2005|5        |156               |M56      |TM           |Major    |LA Boundary                         |11                    |356335 |380535  |53.31993131|-2.65694671|2.70          |1.68             |70      |null|Counted          |Dependent on a neighbouring counted link         |0           |386                       |68510         |394              |9709 |3057             |334              |317                      |884                         |4475                   |2788                   |11855   |90854             |\n",
-                        "|268758|73446         |2005|6        |147               |A4020    |PA           |Major    |LA Boundary                         |A3005                 |512400 |180450  |51.51180791|-0.38167391|1.10          |0.68             |70      |null|Counted          |Dependent on a neighbouring counted link         |210         |178                       |27500         |744              |2452 |916              |43               |43                       |60                          |78                     |66                     |1206    |32080             |\n",
-                        "|268762|73254         |2005|4        |23                |A478     |PA           |Major    |LA Boundary                         |A487                  |218000 |244370  |52.06771921|-4.65668291|1.70          |1.06             |120     |null|Estimated        |Estimated using previous year's AADF on this link|0           |48                        |2443          |39               |483  |109              |28               |15                       |5                           |18                     |20                     |195     |3208              |\n",
-                        "|268423|8451          |2005|7        |126               |A143     |PA           |Major    |LA Boundary                         |A144 Bungay           |633120 |290000  |52.45816059|1.42988186 |0.40          |0.25             |150     |null|Counted          |Dependent on a neighbouring counted link         |0           |54                        |6605          |91               |1361 |408              |47               |61                       |79                          |176                    |109                    |880     |8991              |\n",
-                        "|268704|75128         |2005|6        |57                |A5       |PA           |Major    |A5150                               |LA Boundary           |521110 |189250  |51.58909741|-0.25319379|0.50          |0.31             |1090    |null|Estimated        |Estimated using previous year's AADF on this link|36          |194                       |19378         |385              |3984 |537              |64               |47                       |29                          |38                     |32                     |747     |24688             |\n",
-                        "|268707|73574         |2005|9        |65                |A27      |PA           |Major    |Castle St roundabout                |LA Boundary           |462000 |105670  |50.84723939|-1.12070281|0.40          |0.25             |210     |null|Counted          |Dependent on a neighbouring counted link         |586         |830                       |30363         |109              |3244 |310              |64               |148                      |19                          |42                     |50                     |633     |35179             |\n",
-                        "|268723|75130         |2005|6        |57                |A5       |PA           |Major    |LA Boundary                         |LA Boundary           |520570 |189900  |51.59505477|-0.26076162|0.20          |0.12             |1060    |null|Counted          |Dependent on a neighbouring counted link         |80          |234                       |19896         |1156             |1229 |219              |53               |36                       |20                          |30                     |31                     |389     |22904             |\n",
-                        "|268756|73403         |2005|2        |2                 |A1       |TM           |Major    |A614 Bawtry Road/A1 Doncaster Bypass|LA Boundary           |461200 |390220  |53.40526123|-1.08090742|4.40          |2.73             |820     |null|Counted          |Dependent on a neighbouring counted link         |0           |205                       |32646         |196              |5667 |1718             |228              |224                      |775                         |3897                   |2937                   |9779    |48493             |\n",
-                        "|268757|73405         |2005|8        |79                |M180     |TM           |Major    |1                                   |LA Boundary           |470960 |409500  |53.57730815|-0.92977300|4.70          |2.92             |20      |null|Counted          |Dependent on a neighbouring counted link         |0           |38                        |21299         |121              |4906 |1243             |121              |223                      |466                         |4570                   |2884                   |9507    |35871             |\n",
-                        "|268759|73346         |2005|4        |20                |A541     |PA           |Major    |LA Boundary                         |B5121                 |314000 |371210  |53.23094014|-3.28980687|5.90          |3.67             |30      |null|Counted          |Dependent on a neighbouring counted link         |14          |70                        |3644          |51               |830  |139              |59               |56                       |30                          |37                     |49                     |370     |4965              |\n",
-                        "|268760|73978         |2005|7        |126               |A14      |TA           |Major    |LA Boundary                         |B1506                 |571500 |266890  |52.27341330|0.51220784 |2.10          |1.30             |340     |null|Counted          |Dependent on a neighbouring counted link         |1           |81                        |22121         |84               |3569 |1496             |143              |87                       |338                         |2450                   |1843                   |6357    |32212             |\n",
-                        "|268049|7678          |2005|10       |140               |A500     |TA           |Major    |LA Boundary                         |Handford  r/abt       |385992 |342459  |52.97929263|-2.21007299|0.90          |0.56             |160     |null|Estimated        |Estimated using previous year's AADF on this link|0           |167                       |33138         |160              |6479 |1956             |266              |165                      |571                         |1545                   |1435                   |5938    |45882             |\n",
-                        "|268771|73579         |2005|9        |65                |A2030    |PA           |Major    |LA Boundary                         |A3M                   |469230 |105930  |50.84875846|-1.01797198|0.90          |0.56             |60      |null|Counted          |Dependent on a neighbouring counted link         |152         |368                       |16392         |235              |3069 |665              |168              |109                      |39                          |87                     |142                    |1210    |21274             |\n",
-                        "|268670|73304         |2005|6        |103               |A201     |PA           |Major    |A3200                               |LA Boundary           |531650 |180450  |51.50765488|-0.10442680|0.20          |0.12             |50      |null|Counted          |Dependent on a neighbouring counted link         |5507        |5357                      |27510         |846              |5878 |1137             |121              |185                      |32                          |33                     |24                     |1532    |41123             |\n",
-                        "|268696|73274         |2005|5        |207               |M6       |TM           |Major    |M56                                 |LA Boundary           |366514 |384239  |53.35396781|-2.50454325|0.40          |0.25             |390     |null|Estimated        |Estimated using previous year's AADF on this link|0           |248                       |84049         |574              |12932|4702             |589              |551                      |1729                        |6498                   |4797                   |18866   |116669            |\n",
-                        "|268706|75131         |2005|6        |118               |A5       |PA           |Major    |LA Boundary                         |LA Boundary           |520640 |189800  |51.59414108|-0.25978590|0.20          |0.12             |1070    |null|Counted          |Dependent on a neighbouring counted link         |80          |234                       |19896         |1156             |1229 |219              |53               |36                       |20                          |30                     |31                     |389     |22904             |\n",
-                        "+------+--------------+----+---------+------------------+---------+-------------+---------+------------------------------------+----------------------+-------+--------+-----------+-----------+--------------+-----------------+--------+----+-----------------+-------------------------------------------------+------------+--------------------------+--------------+-----------------+-----+-----------------+-----------------+-------------------------+----------------------------+-----------------------+-----------------------+--------+------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Trafficvolume = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/dft_traffic_counts_aadf.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "Trafficvolume = Trafficvolume.withColumn('year',F.col('year').cast(IntegerType()))\n",
-                "Trafficvolume=Trafficvolume.filter(Trafficvolume.year>2004)\n",
-                "Trafficvolume=Trafficvolume.filter(Trafficvolume.year<2020)\n",
-                "Trafficvolume.sort(\"year\").show(truncate=False)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 5,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "TrafficvolumeGrouped=Trafficvolume.select(col(\"road_name\"),col(\"year\"),col(\"link_length_km\"),col(\"all_motor_vehicles\")).sort(\"year\")\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 6,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+--------------+------------------+\n",
-                        "|road_name|year|link_length_km|all_motor_vehicles|\n",
-                        "+---------+----+--------------+------------------+\n",
-                        "|     A166|2005|          2.20|             10341|\n",
-                        "|       M1|2005|          5.10|            133632|\n",
-                        "|      M56|2005|          1.30|             90854|\n",
-                        "|       A5|2005|          0.10|             24688|\n",
-                        "|      M56|2005|          2.70|             90854|\n",
-                        "|    A4020|2005|          1.10|             32080|\n",
-                        "|     A478|2005|          1.70|              3208|\n",
-                        "|     A143|2005|          0.40|              8991|\n",
-                        "|       A5|2005|          0.50|             24688|\n",
-                        "|      A27|2005|          0.40|             35179|\n",
-                        "|       A5|2005|          0.20|             22904|\n",
-                        "|       A1|2005|          4.40|             48493|\n",
-                        "|     M180|2005|          4.70|             35871|\n",
-                        "|     A541|2005|          5.90|              4965|\n",
-                        "|      A14|2005|          2.10|             32212|\n",
-                        "|     A500|2005|          0.90|             45882|\n",
-                        "|    A2030|2005|          0.90|             21274|\n",
-                        "|     A201|2005|          0.20|             41123|\n",
-                        "|       M6|2005|          0.40|            116669|\n",
-                        "|       A5|2005|          0.20|             22904|\n",
-                        "+---------+----+--------------+------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "TrafficvolumeGrouped=Trafficvolume.select(col(\"road_name\"),col(\"year\"),col(\"link_length_km\"),col(\"all_motor_vehicles\")).sort(\"year\")\n",
-                "\n",
-                "TrafficvolumeGrouped.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 7,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+--------------+------------------+------------------+\n",
-                        "|road_name|year|link_length_km|all_motor_vehicles|     Trafficvolume|\n",
-                        "+---------+----+--------------+------------------+------------------+\n",
-                        "|       M6|2012|         18.00|            122794|         2210292.0|\n",
-                        "|       M6|2016|         18.00|            118941|         2140938.0|\n",
-                        "|       M6|2015|         18.00|            116878|         2103804.0|\n",
-                        "|       M6|2014|         18.00|            115499|         2078982.0|\n",
-                        "|       M6|2019|         18.00|            114009|         2052162.0|\n",
-                        "|       M6|2009|         18.00|            112897|         2032146.0|\n",
-                        "|       M6|2018|         18.00|            112791|         2030238.0|\n",
-                        "|       M6|2017|         18.00|            112720|         2028960.0|\n",
-                        "|       M6|2011|         18.00|            112327|         2021886.0|\n",
-                        "|       M6|2013|         18.00|            111231|         2002158.0|\n",
-                        "|       M6|2008|         18.00|            109447|         1970046.0|\n",
-                        "|       M6|2007|         18.00|            107333|         1931994.0|\n",
-                        "|       M6|2005|         18.00|            107183|         1929294.0|\n",
-                        "|       M6|2006|         18.00|            106882|         1923876.0|\n",
-                        "|       M4|2019|         20.10|             94496|         1899369.6|\n",
-                        "|       M6|2010|         18.00|            105405|         1897290.0|\n",
-                        "|       M4|2016|         18.60|             97992|1822651.2000000002|\n",
-                        "|       M6|2007|         15.20|            119051|         1809575.2|\n",
-                        "|       M4|2016|         20.10|             89410|1797141.0000000002|\n",
-                        "|       M4|2015|         18.60|             96576|         1796313.6|\n",
-                        "+---------+----+--------------+------------------+------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "TrafficvolumeGrouped=TrafficvolumeGrouped.withColumn('Trafficvolume', TrafficvolumeGrouped[2]*TrafficvolumeGrouped[3])\n",
-                "TrafficvolumeGrouped.sort(col(\"Trafficvolume\").desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 8,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+--------------------+\n",
-                        "|road_name|year|       Total Traffic|\n",
-                        "+---------+----+--------------------+\n",
-                        "|       M1|2019| 3.759983630000002E7|\n",
-                        "|       M1|2018|        3.58825975E7|\n",
-                        "|       M1|2017|        3.53605408E7|\n",
-                        "|       M6|2019|        3.49644618E7|\n",
-                        "|       M6|2017|3.4761269599999994E7|\n",
-                        "|       M1|2016|        3.46624711E7|\n",
-                        "|       M6|2018|3.4315864300000004E7|\n",
-                        "|       M6|2015|3.4051751599999994E7|\n",
-                        "|       M1|2015|        3.40026975E7|\n",
-                        "|       M6|2016| 3.387005939999999E7|\n",
-                        "|       M1|2013| 3.383816730000001E7|\n",
-                        "|       M1|2014|3.3670756900000006E7|\n",
-                        "|       M6|2014|3.3649983999999985E7|\n",
-                        "|       M1|2005|3.3115787199999984E7|\n",
-                        "|       M1|2006|3.2958805600000005E7|\n",
-                        "|       M1|2012|3.2778523899999995E7|\n",
-                        "|       M6|2013| 3.272786269999999E7|\n",
-                        "|       M6|2012| 3.260182989999999E7|\n",
-                        "|       M6|2011| 3.259963829999999E7|\n",
-                        "|       M1|2007|        3.23985501E7|\n",
-                        "|       M6|2010|        3.23039107E7|\n",
-                        "|       M1|2010|        3.22645904E7|\n",
-                        "|       M1|2009| 3.214205829999999E7|\n",
-                        "|       M6|2009|3.1958943600000005E7|\n",
-                        "|       M1|2011|3.1921179799999997E7|\n",
-                        "|       M6|2008| 3.191743439999999E7|\n",
-                        "|       M1|2008|3.1776303799999997E7|\n",
-                        "|       M6|2007|3.1749823299999997E7|\n",
-                        "|       M6|2006|3.1649285199999996E7|\n",
-                        "|       M6|2005|3.0951662800000004E7|\n",
-                        "|       M4|2019|2.9217087200000003E7|\n",
-                        "|       M4|2016| 2.886710219999999E7|\n",
-                        "|       M4|2017|         2.8846477E7|\n",
-                        "|       M4|2015|2.8761252400000002E7|\n",
-                        "|       M4|2018| 2.853309669999999E7|\n",
-                        "|      M25|2019|2.7973121900000002E7|\n",
-                        "|      M25|2018|        2.79022441E7|\n",
-                        "|       M4|2014| 2.769156269999999E7|\n",
-                        "|      M25|2017|        2.76672401E7|\n",
-                        "|      M25|2016|        2.75703284E7|\n",
-                        "|      M25|2015|2.7559908200000003E7|\n",
-                        "|       M4|2007|2.7552358799999997E7|\n",
-                        "|       M4|2008| 2.714838889999999E7|\n",
-                        "|       M4|2006|2.7088995299999997E7|\n",
-                        "|       M4|2009|2.6788556899999995E7|\n",
-                        "|       M4|2005|2.6762650799999997E7|\n",
-                        "|       M4|2011|        2.66789808E7|\n",
-                        "|       M4|2013|        2.66469609E7|\n",
-                        "|       M4|2012|        2.65143099E7|\n",
-                        "|      M25|2014|2.6246896300000004E7|\n",
-                        "+---------+----+--------------------+\n",
-                        "only showing top 50 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "TrafficvolumeGroupedby = TrafficvolumeGrouped.groupby('road_name','year').agg(F.sum(TrafficvolumeGrouped['Trafficvolume']).alias('Total Traffic'))\n",
-                "TrafficvolumeGroupedby.sort(col(\"Total Traffic\").desc()).show(50)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 9,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+----------------------------+-----------------------------------+---------+---------------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+---------------------+----+----------+\n",
-                        "|Accident_Index|1st_Road_Class|1st_Road_Number|2nd_Road_Class|2nd_Road_Number|Accident_Severity|Carriageway_Hazards|Date      |Day_of_Week|Did_Police_Officer_Attend_Scene_of_Accident|Junction_Control            |Junction_Detail                    |Latitude |Light_Conditions           |Local_Authority_(District)|Local_Authority_(Highway)|Location_Easting_OSGR|Location_Northing_OSGR|Longitude|LSOA_of_Accident_Location|Number_of_Casualties|Number_of_Vehicles|Pedestrian_Crossing-Human_Control|Pedestrian_Crossing-Physical_Facilities|Police_Force       |Road_Surface_Conditions|Road_Type         |Special_Conditions_at_Site|Speed_limit|Time |Urban_or_Rural_Area|Weather_Conditions   |Year|InScotland|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+----------------------------+-----------------------------------+---------+---------------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+---------------------+----+----------+\n",
-                        "|200501BS00022 |A             |4              |Unclassified  |0              |Serious          |None               |2005-01-08|Saturday   |1                                          |Give way or uncontrolled    |T or staggered junction            |51.495498|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |526790               |178980                |-0.174925|E01002821                |1                   |1                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |03:00|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00014 |A             |3220           |A             |308            |Slight           |None               |2005-01-25|Tuesday    |1                                          |Auto traffic signal         |Crossroads                         |51.484044|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |526170               |177690                |-0.184312|E01002912                |1                   |2                 |0                                |5                                      |Metropolitan Police|Wet or damp            |Single carriageway|None                      |30         |20:48|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00021 |B             |302            |NA            |0              |Slight           |None               |2005-01-21|Friday     |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.486552|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |527810               |178010                |-0.16059 |E01002901                |1                   |2                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |21:16|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00007 |C             |0              |Unclassified  |0              |Slight           |None               |2005-01-13|Thursday   |1                                          |Give way or uncontrolled    |T or staggered junction            |51.512695|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |524220               |180830                |-0.211277|E01002875                |1                   |2                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |20:40|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00012 |A             |4              |B             |325            |Slight           |None               |2005-01-16|Sunday     |1                                          |Auto traffic signal         |Crossroads                         |51.494902|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |526240               |178900                |-0.182872|E01002835                |1                   |1                 |0                                |5                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |00:42|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00017 |A             |4              |NA            |0              |Slight           |None               |2005-01-18|Tuesday    |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.495429|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |526700               |178970                |-0.176224|E01002821                |2                   |1                 |0                                |0                                      |Metropolitan Police|Dry                    |Dual carriageway  |None                      |30         |11:15|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00020 |A             |3218           |A             |4              |Slight           |None               |2005-01-21|Friday     |1                                          |Give way or uncontrolled    |T or staggered junction            |51.495811|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |527000               |179020                |-0.171887|E01002821                |1                   |2                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |09:15|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00003 |C             |0              |NA            |0              |Slight           |None               |2005-01-06|Thursday   |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.525301|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |524520               |182240                |-0.206458|E01002857                |1                   |2                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |00:15|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00006 |Unclassified  |0              |NA            |0              |Slight           |None               |2005-01-11|Tuesday    |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.51554 |Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |524770               |181160                |-0.203238|E01002832                |1                   |2                 |0                                |0                                      |Metropolitan Police|Wet or damp            |Single carriageway|Oil or diesel             |30         |12:40|Urban              |Raining no high winds|2005|No        |\n",
-                        "|200501BS00010 |A             |3212           |B             |304            |Slight           |None               |2005-01-15|Saturday   |1                                          |Auto traffic signal         |Crossroads                         |51.48342 |Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |527350               |177650                |-0.167342|E01002900                |2                   |2                 |0                                |5                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |22:43|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00011 |B             |450            |C             |0              |Slight           |None               |2005-01-15|Saturday   |1                                          |Give way or uncontrolled    |T or staggered junction            |51.512443|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |524550               |180810                |-0.206531|E01002875                |5                   |2                 |0                                |8                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |16:00|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00015 |Unclassified  |0              |A             |3220           |Slight           |None               |2005-01-11|Tuesday    |1                                          |Give way or uncontrolled    |T or staggered junction            |51.491632|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |525590               |178520                |-0.192366|E01002849                |1                   |1                 |0                                |1                                      |Metropolitan Police|Wet or damp            |One way street    |None                      |30         |12:55|Urban              |Raining no high winds|2005|No        |\n",
-                        "|200501BS00016 |A             |3217           |A             |3216           |Slight           |None               |2005-01-18|Tuesday    |1                                          |Give way or uncontrolled    |T or staggered junction            |51.492622|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |527990               |178690                |-0.157753|E01002902                |1                   |2                 |0                                |0                                      |Metropolitan Police|Wet or damp            |One way street    |None                      |30         |05:01|Urban              |Raining no high winds|2005|No        |\n",
-                        "|200501BS00018 |A             |3217           |Unclassified  |0              |Slight           |None               |2005-01-18|Tuesday    |1                                          |Give way or uncontrolled    |T or staggered junction            |51.481912|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |526460               |177460                |-0.18022 |E01002840                |1                   |1                 |0                                |1                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |10:50|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00019 |Unclassified  |0              |Unclassified  |0              |Serious          |None               |2005-01-20|Thursday   |1                                          |Give way or uncontrolled    |T or staggered junction            |51.500191|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |524680               |179450                |-0.205139|E01002864                |1                   |2                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |00:15|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00001 |A             |3218           |NA            |0              |Serious          |None               |2005-01-04|Tuesday    |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.489096|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |525680               |178240                |-0.19117 |E01002849                |1                   |1                 |0                                |1                                      |Metropolitan Police|Wet or damp            |Single carriageway|None                      |30         |17:42|Urban              |Raining no high winds|2005|No        |\n",
-                        "|200501BS00002 |B             |450            |C             |0              |Slight           |None               |2005-01-05|Wednesday  |1                                          |Auto traffic signal         |Crossroads                         |51.520075|Darkness - lights lit      |Kensington and Chelsea    |Kensington and Chelsea   |524170               |181650                |-0.211708|E01002909                |1                   |1                 |0                                |5                                      |Metropolitan Police|Dry                    |Dual carriageway  |None                      |30         |17:36|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00004 |A             |3220           |NA            |0              |Slight           |None               |2005-01-07|Friday     |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.482442|Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |526900               |177530                |-0.173862|E01002840                |1                   |1                 |0                                |0                                      |Metropolitan Police|Dry                    |Single carriageway|None                      |30         |10:35|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00005 |Unclassified  |0              |NA            |0              |Slight           |None               |2005-01-10|Monday     |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.495752|Darkness - lighting unknown|Kensington and Chelsea    |Kensington and Chelsea   |528060               |179040                |-0.156618|E01002863                |1                   |1                 |0                                |0                                      |Metropolitan Police|Wet or damp            |Single carriageway|None                      |30         |21:13|Urban              |Fine no high winds   |2005|No        |\n",
-                        "|200501BS00009 |A             |315            |NA            |0              |Slight           |None               |2005-01-14|Friday     |1                                          |Data missing or out of range|Not at junction or within 20 metres|51.50226 |Daylight                   |Kensington and Chelsea    |Kensington and Chelsea   |525890               |179710                |-0.187623|E01002889                |2                   |1                 |0                                |0                                      |Metropolitan Police|Dry                    |Dual carriageway  |None                      |30         |17:35|Urban              |Fine no high winds   |2005|No        |\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+----------------------------+-----------------------------------+---------+---------------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+---------------------+----+----------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Accident_Information_df = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/archive/Accident_Information.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "Accident_Information_df = Accident_Information_df.withColumn('Year',F.col('Year').cast(IntegerType()))\n",
-                "#Accident_Information_df=Accident_Information_df.filter(Accident_Information_df.Year<2017)\n",
-                "Accident_Information_df.sort(\"Year\").show(truncate=False)\n",
-                "Accident_Information_df\n",
-                "A2019 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/Road Safety Data - Accidents 2019.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "A2019 = A2019.withColumn('Year',F.col('Year').cast(IntegerType()))\n",
-                "A2018 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/dftRoadSafetyData_Accidents_2018.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "A2018 = A2018.withColumn('Year',F.col('Year').cast(IntegerType())) \n",
-                "A2018 = A2018.union(A2019)\n"
-            ]
-        },
-        {
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# Vechile dataset loading"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 10,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "from pyspark.sql.functions import concat, col, lit\n",
-                "\n",
-                "C2017 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/Veh.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "C2017 = C2017.withColumn('Year',F.col('Year').cast(IntegerType()))\n",
-                "C2018 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/dftRoadSafetyData_Vehicles_2018.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "C2018 = C2018.withColumn('Year',F.col('Year').cast(IntegerType())) \n",
-                "C2019 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/Road Safety Data- Vehicles 2019.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "C2019 = C2019.withColumn('Year',F.col('Year').cast(IntegerType())) \n",
-                "C2016 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/archive/Veh-3.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "C2016 = C2016.withColumn('Year',F.col('Year').cast(IntegerType())) \n",
-                "C2015 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/archive/Vehicles_2015.csv')\n",
-                "# changing the type of column(\"Year'\") to interger type\n",
-                "C2015 = C2015.withColumn('Year',F.col('Year').cast(IntegerType())) \n",
-                "C2017 = C2017.union(C2018)\n",
-                "C2017 = C2017.union(C2019)\n",
-                "C2017 = C2017.union(C2016)\n",
-                "C2017 = C2017.union(C2015)\n",
-                "A20052014 = spark.read.format('csv')\\\n",
-                "            .option('header',True).option('escape','\"')\\\n",
-                "            .load('/Users/Asfandyar/Downloads/archive/Vehicles0514.csv')\n",
-                "A20052014=A20052014.withColumn('Year', concat(A20052014.Accident_Index.substr(1, 4)))\n",
-                "\n",
-                "#C2017aa = C2017.groupby('Vehicle_Type').agg(F.count(C2017.Accident_Index).alias('Total accidents'))\n",
-                "C2017 = C2017.withColumn('Vehicle_Type',F.col('Vehicle_Type').cast(IntegerType()))\n",
-                "#C2017aa.sort(\"Total accidents\").show(50)\n",
-                "#C2017.show()\n",
-                "C2017=C2017.drop(\"Vehicle_IMD_Decile\")\n",
-                "\n",
-                "V20052014 = A20052014.union(C2017)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 11,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "from pyspark.sql.functions import col, when\n",
-                "valueWhenTrue1 =\"Pedal cycle\"\n",
-                "valueWhenTrue2 =\"Motorcycle\"\n",
-                "valueWhenTrue3 = \"Motorcycle\"\n",
-                "valueWhenTrue4 = \"Motorcycle\"\n",
-                "valueWhenTrue5 = \"Motorcycle\"\n",
-                "valueWhenTrue8 = \"Car\"\n",
-                "valueWhenTrue9 =\"Car\"\n",
-                "valueWhenTrue10 =\"Bus\"\n",
-                "valueWhenTrue11 =\"Bus\"\n",
-                "valueWhenTrue16 =\"Ridden horse\"\n",
-                "valueWhenTrue17 =\"Agricultural vehicle\"\n",
-                "valueWhenTrue18 =\"Bus\"\n",
-                "valueWhenTrue19 =\"Goods\"\n",
-                "valueWhenTrue20 =\"Goods\"\n",
-                "valueWhenTrue21 =\"Goods\"\n",
-                "valueWhenTrue22 =\"Motorcycle\"\n",
-                "valueWhenTrue23 =\"Motorcycle\"\n",
-                "valueWhenTrue90 =\"Other vehicle\"\n",
-                "valueWhenTrue97 =\"Motorcycle\"\n",
-                "valueWhenTrue98 =\"Goods\"\n",
-                "valueWhenTrueo1 =\"Data missing or out of range\"\n",
-                "#C2017 = C2017df.withColumn(\"Vehicle_Type\", when(df.gender == \"M\",\"Male\")\n",
-                "#                                 .when(df.gender == \"F\",\"Female\")\n",
-                "#                                 .when(df.gender.isNull() ,\"\")\n",
-                "#                                 .otherwise(df.gender))\n",
-                "V20052014=V20052014.withColumn(\n",
-                "    \"Vehicle_Type\",\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 1,\n",
-                "        \"Pedal cycle\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 2,\n",
-                "        valueWhenTrue2\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 3,\n",
-                "        valueWhenTrue3\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 4,\n",
-                "        valueWhenTrue4\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 5,\n",
-                "        valueWhenTrue5\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 8,\n",
-                "        valueWhenTrue8\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 9,\n",
-                "        valueWhenTrue9\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 10,\n",
-                "        valueWhenTrue10\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 11,\n",
-                "        valueWhenTrue11\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 16,\n",
-                "        valueWhenTrue16\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 17,\n",
-                "        valueWhenTrue17\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 18,\n",
-                "        valueWhenTrue18\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 19,\n",
-                "        valueWhenTrue19\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 20,\n",
-                "        valueWhenTrue20\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 21,\n",
-                "        valueWhenTrue21\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 22,\n",
-                "        valueWhenTrue22\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 23,\n",
-                "        valueWhenTrue23\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 90,\n",
-                "        valueWhenTrue90\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 97,\n",
-                "        valueWhenTrue97\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == 98,\n",
-                "        valueWhenTrue98\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Vehicle_Type\") == -1,\n",
-                "        valueWhenTrueo1\n",
-                "    ).otherwise(col(\"Vehicle_Type\"))\n",
-                ")\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 12,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "\n",
-                "\n",
-                "V20052014=V20052014.withColumn(\n",
-                "    \"Age_Band_of_Driver\",\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 1,\n",
-                "        \"Upto 20Y\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 2,\n",
-                "        \"Upto 20Y\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 3,\n",
-                "        \"Upto 20Y\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 4,\n",
-                "        \"Upto 20Y\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 5,\n",
-                "        \"20Y to 40Y\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 6,\n",
-                "        \"20Y to 40Y\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Age_Band_of_Driver\") == 7,\n",
-                "        \"20Y to 40Y\"\n",
-                "    ).when(\n",
-                "        col(\"Age_Band_of_Driver\") == 8,\n",
-                "        \"40Y to 70Y\"\n",
-                "    ).when(\n",
-                "        col(\"Age_Band_of_Driver\") == 9,\n",
-                "        \"40Y to 70Y\"\n",
-                "    ).when(\n",
-                "        col(\"Age_Band_of_Driver\") == 10,\n",
-                "        \"40Y to 70Y\"\n",
-                "    ).when(\n",
-                "        col(\"Age_Band_of_Driver\") == 11,\n",
-                "        \"Over 70\"\n",
-                "    ).when(\n",
-                "        col(\"Age_Band_of_Driver\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Age_Band_of_Driver\")),\n",
-                ")\n",
-                "\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 13,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------------+---------------+\n",
-                        "|        Vehicle_Type|Total accidents|\n",
-                        "+--------------------+---------------+\n",
-                        "|        Ridden horse|           1748|\n",
-                        "|Data missing or o...|           1750|\n",
-                        "|Agricultural vehicle|           8759|\n",
-                        "|       Other vehicle|          31295|\n",
-                        "|                 Bus|         111647|\n",
-                        "|         Pedal cycle|         277086|\n",
-                        "|          Motorcycle|         317829|\n",
-                        "|               Goods|         319826|\n",
-                        "|                 Car|        3126546|\n",
-                        "+--------------------+---------------+\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "V20052014vech = V20052014.groupby('Vehicle_Type').agg(F.count(V20052014.Accident_Index).alias('Total accidents'))\n",
-                "V20052014vech.sort(\"Total accidents\").show(50)"
-            ]
-        },
-        {
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# Accidents dataset loading"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 10,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "|Accident_Index|1st_Road_Class|1st_Road_Number|2nd_Road_Class|2nd_Road_Number|Accident_Severity|Carriageway_Hazards|      Date|Day_of_Week|Did_Police_Officer_Attend_Scene_of_Accident|    Junction_Control|     Junction_Detail| Latitude|    Light_Conditions|Local_Authority_(District)|Local_Authority_(Highway)|Location_Easting_OSGR|Location_Northing_OSGR|Longitude|LSOA_of_Accident_Location|Number_of_Casualties|Number_of_Vehicles|Pedestrian_Crossing-Human_Control|Pedestrian_Crossing-Physical_Facilities|       Police_Force|Road_Surface_Conditions|         Road_Type|Special_Conditions_at_Site|Speed_limit| Time|Urban_or_Rural_Area|  Weather_Conditions|Year|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "| 200501BS00001|             A|           3218|            NA|              0|          Serious|               None|2005-01-04|    Tuesday|                                          1|Data missing or o...|Not at junction o...|51.489096|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               525680|                178240| -0.19117|                E01002849|                   1|                 1|                                0|                                      1|Metropolitan Police|            Wet or damp|Single carriageway|                      None|         30|17:42|              Urban|Raining no high w...|2005|\n",
-                        "| 200501BS00002|             B|            450|             C|              0|           Slight|               None|2005-01-05|  Wednesday|                                          1| Auto traffic signal|          Crossroads|51.520075|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               524170|                181650|-0.211708|                E01002909|                   1|                 1|                                0|                                      5|Metropolitan Police|                    Dry|  Dual carriageway|                      None|         30|17:36|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00003|             C|              0|            NA|              0|           Slight|               None|2005-01-06|   Thursday|                                          1|Data missing or o...|Not at junction o...|51.525301|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               524520|                182240|-0.206458|                E01002857|                   1|                 2|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|00:15|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00004|             A|           3220|            NA|              0|           Slight|               None|2005-01-07|     Friday|                                          1|Data missing or o...|Not at junction o...|51.482442|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               526900|                177530|-0.173862|                E01002840|                   1|                 1|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|10:35|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00005|             U|              0|            NA|              0|           Slight|               None|2005-01-10|     Monday|                                          1|Data missing or o...|Not at junction o...|51.495752|Darkness - lighti...|      Kensington and Ch...|     Kensington and Ch...|               528060|                179040|-0.156618|                E01002863|                   1|                 1|                                0|                                      0|Metropolitan Police|            Wet or damp|Single carriageway|                      None|         30|21:13|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00006|             U|              0|            NA|              0|           Slight|               None|2005-01-11|    Tuesday|                                          1|Data missing or o...|Not at junction o...| 51.51554|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               524770|                181160|-0.203238|                E01002832|                   1|                 2|                                0|                                      0|Metropolitan Police|            Wet or damp|Single carriageway|             Oil or diesel|         30|12:40|              Urban|Raining no high w...|2005|\n",
-                        "| 200501BS00007|             C|              0|  Unclassified|              0|           Slight|               None|2005-01-13|   Thursday|                                          1|Give way or uncon...|T or staggered ju...|51.512695|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               524220|                180830|-0.211277|                E01002875|                   1|                 2|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|20:40|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00009|             A|            315|            NA|              0|           Slight|               None|2005-01-14|     Friday|                                          1|Data missing or o...|Not at junction o...| 51.50226|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               525890|                179710|-0.187623|                E01002889|                   2|                 1|                                0|                                      0|Metropolitan Police|                    Dry|  Dual carriageway|                      None|         30|17:35|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00010|             A|           3212|             B|            304|           Slight|               None|2005-01-15|   Saturday|                                          1| Auto traffic signal|          Crossroads| 51.48342|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               527350|                177650|-0.167342|                E01002900|                   2|                 2|                                0|                                      5|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|22:43|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00011|             B|            450|             C|              0|           Slight|               None|2005-01-15|   Saturday|                                          1|Give way or uncon...|T or staggered ju...|51.512443|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               524550|                180810|-0.206531|                E01002875|                   5|                 2|                                0|                                      8|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|16:00|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00012|             A|              4|             B|            325|           Slight|               None|2005-01-16|     Sunday|                                          1| Auto traffic signal|          Crossroads|51.494902|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               526240|                178900|-0.182872|                E01002835|                   1|                 1|                                0|                                      5|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|00:42|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00014|             A|           3220|             A|            308|           Slight|               None|2005-01-25|    Tuesday|                                          1| Auto traffic signal|          Crossroads|51.484044|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               526170|                177690|-0.184312|                E01002912|                   1|                 2|                                0|                                      5|Metropolitan Police|            Wet or damp|Single carriageway|                      None|         30|20:48|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00015|             U|              0|             A|           3220|           Slight|               None|2005-01-11|    Tuesday|                                          1|Give way or uncon...|T or staggered ju...|51.491632|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               525590|                178520|-0.192366|                E01002849|                   1|                 1|                                0|                                      1|Metropolitan Police|            Wet or damp|    One way street|                      None|         30|12:55|              Urban|Raining no high w...|2005|\n",
-                        "| 200501BS00016|             A|           3217|             A|           3216|           Slight|               None|2005-01-18|    Tuesday|                                          1|Give way or uncon...|T or staggered ju...|51.492622|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               527990|                178690|-0.157753|                E01002902|                   1|                 2|                                0|                                      0|Metropolitan Police|            Wet or damp|    One way street|                      None|         30|05:01|              Urban|Raining no high w...|2005|\n",
-                        "| 200501BS00017|             A|              4|            NA|              0|           Slight|               None|2005-01-18|    Tuesday|                                          1|Data missing or o...|Not at junction o...|51.495429|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               526700|                178970|-0.176224|                E01002821|                   2|                 1|                                0|                                      0|Metropolitan Police|                    Dry|  Dual carriageway|                      None|         30|11:15|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00018|             A|           3217|  Unclassified|              0|           Slight|               None|2005-01-18|    Tuesday|                                          1|Give way or uncon...|T or staggered ju...|51.481912|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               526460|                177460| -0.18022|                E01002840|                   1|                 1|                                0|                                      1|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|10:50|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00019|             U|              0|  Unclassified|              0|          Serious|               None|2005-01-20|   Thursday|                                          1|Give way or uncon...|T or staggered ju...|51.500191|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               524680|                179450|-0.205139|                E01002864|                   1|                 2|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|00:15|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00020|             A|           3218|             A|              4|           Slight|               None|2005-01-21|     Friday|                                          1|Give way or uncon...|T or staggered ju...|51.495811|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               527000|                179020|-0.171887|                E01002821|                   1|                 2|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|09:15|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00021|             B|            302|            NA|              0|           Slight|               None|2005-01-21|     Friday|                                          1|Data missing or o...|Not at junction o...|51.486552|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               527810|                178010| -0.16059|                E01002901|                   1|                 2|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|21:16|              Urban|  Fine no high winds|2005|\n",
-                        "| 200501BS00022|             A|              4|  Unclassified|              0|          Serious|               None|2005-01-08|   Saturday|                                          1|Give way or uncon...|T or staggered ju...|51.495498|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               526790|                178980|-0.174925|                E01002821|                   1|                 1|                                0|                                      0|Metropolitan Police|                    Dry|Single carriageway|                      None|         30|03:00|              Urban|  Fine no high winds|2005|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "from pyspark.sql.functions import col, when\n",
-                "A2018=A2018.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 1,\n",
-                "        \"M\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\")),\n",
-                ")\n",
-                "A2018=A2018.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 2,\n",
-                "        \"A(M)\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\")),\n",
-                ")\n",
-                "A2018=A2018.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 3,\n",
-                "        \"A\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\")),\n",
-                ")\n",
-                "A2018=A2018.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 4,\n",
-                "        \"B\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\")),\n",
-                ")\n",
-                "A2018=A2018.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 5,\n",
-                "        \"C\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\")),\n",
-                ")\n",
-                "A2018=A2018.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 6,\n",
-                "        \"U\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\")),\n",
-                ")\n",
-                "Accident_Information_df=Accident_Information_df.withColumn(\n",
-                "    \"1st_Road_Class\",\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == \"Motorway\",\n",
-                "        \"M\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"1st_Road_Class\") == 'Unclassified',\n",
-                "        \"U\"\n",
-                "    ).otherwise(col(\"1st_Road_Class\"))\n",
-                ")\n",
-                "\n",
-                "Accident_Information_df=Accident_Information_df.drop(\"InScotland\")\n",
-                "Accident_Information20052019_df = Accident_Information_df.unionByName(A2018)\n",
-                "Accident_Information20052019_df.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 11,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+-----------------+--------------+---------------+----+\n",
-                        "|Accident_Index|Accident_Severity|1st_Road_Class|1st_Road_Number|Year|\n",
-                        "+--------------+-----------------+--------------+---------------+----+\n",
-                        "| 200501BS00001|          Serious|             A|           3218|2005|\n",
-                        "| 200501BS00002|           Slight|             B|            450|2005|\n",
-                        "| 200501BS00003|           Slight|             C|              0|2005|\n",
-                        "| 200501BS00004|           Slight|             A|           3220|2005|\n",
-                        "| 200501BS00005|           Slight|             U|              0|2005|\n",
-                        "| 200501BS00006|           Slight|             U|              0|2005|\n",
-                        "| 200501BS00007|           Slight|             C|              0|2005|\n",
-                        "| 200501BS00009|           Slight|             A|            315|2005|\n",
-                        "| 200501BS00010|           Slight|             A|           3212|2005|\n",
-                        "| 200501BS00011|           Slight|             B|            450|2005|\n",
-                        "| 200501BS00012|           Slight|             A|              4|2005|\n",
-                        "| 200501BS00014|           Slight|             A|           3220|2005|\n",
-                        "| 200501BS00015|           Slight|             U|              0|2005|\n",
-                        "| 200501BS00016|           Slight|             A|           3217|2005|\n",
-                        "| 200501BS00017|           Slight|             A|              4|2005|\n",
-                        "| 200501BS00018|           Slight|             A|           3217|2005|\n",
-                        "| 200501BS00019|          Serious|             U|              0|2005|\n",
-                        "| 200501BS00020|           Slight|             A|           3218|2005|\n",
-                        "| 200501BS00021|           Slight|             B|            302|2005|\n",
-                        "| 200501BS00022|          Serious|             A|              4|2005|\n",
-                        "+--------------+-----------------+--------------+---------------+----+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accident_Information20052019Grouped=Accident_Information20052019_df.select(col('Accident_Index'),col('Accident_Severity'),col(\"1st_Road_Class\"),col(\"1st_Road_Number\"),col(\"Year\")).sort(\"Year\")\n",
-                "Accident_Information20052019Grouped.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 12,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+--------------+-----------------+\n",
-                        "|road_name|Year|Accident_Index|Accident_Severity|\n",
-                        "+---------+----+--------------+-----------------+\n",
-                        "|A3218    |2005|200501BS00001 |Serious          |\n",
-                        "|B450     |2005|200501BS00002 |Slight           |\n",
-                        "|C0       |2005|200501BS00003 |Slight           |\n",
-                        "|A3220    |2005|200501BS00004 |Slight           |\n",
-                        "|U0       |2005|200501BS00005 |Slight           |\n",
-                        "|U0       |2005|200501BS00006 |Slight           |\n",
-                        "|C0       |2005|200501BS00007 |Slight           |\n",
-                        "|A315     |2005|200501BS00009 |Slight           |\n",
-                        "|A3212    |2005|200501BS00010 |Slight           |\n",
-                        "|B450     |2005|200501BS00011 |Slight           |\n",
-                        "|A4       |2005|200501BS00012 |Slight           |\n",
-                        "|A3220    |2005|200501BS00014 |Slight           |\n",
-                        "|U0       |2005|200501BS00015 |Slight           |\n",
-                        "|A3217    |2005|200501BS00016 |Slight           |\n",
-                        "|A4       |2005|200501BS00017 |Slight           |\n",
-                        "|A3217    |2005|200501BS00018 |Slight           |\n",
-                        "|U0       |2005|200501BS00019 |Serious          |\n",
-                        "|A3218    |2005|200501BS00020 |Slight           |\n",
-                        "|B302     |2005|200501BS00021 |Slight           |\n",
-                        "|A4       |2005|200501BS00022 |Serious          |\n",
-                        "+---------+----+--------------+-----------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "from pyspark.sql.functions import concat,col\n",
-                "Accident_Information20052019Groupedagain=Accident_Information20052019Grouped.select(concat(Accident_Information20052019Grouped['1st_Road_Class'],Accident_Information20052019Grouped['1st_Road_Number']).alias(\"road_name\"),\"Year\",'Accident_Index','Accident_Severity')\n",
-                "Accident_Information20052019Groupedagain.show(truncate=False)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 13,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+\n",
-                        "|road_name|year|Total_accidents|\n",
-                        "+---------+----+---------------+\n",
-                        "|        U|2005|          51989|\n",
-                        "|        U|2006|          47948|\n",
-                        "|        U|2007|          44979|\n",
-                        "|        U|2017|          43360|\n",
-                        "|        U|2018|          41537|\n",
-                        "|        U|2008|          40929|\n",
-                        "|        U|2016|          39963|\n",
-                        "|        U|2019|          38709|\n",
-                        "|        U|2009|          38472|\n",
-                        "|        U|2010|          36559|\n",
-                        "|        U|2015|          35420|\n",
-                        "|        U|2011|          34893|\n",
-                        "|        U|2014|          34533|\n",
-                        "|        U|2012|          33991|\n",
-                        "|        U|2013|          32589|\n",
-                        "|        C|2005|           5634|\n",
-                        "|        C|2007|           4995|\n",
-                        "|        C|2009|           4990|\n",
-                        "|        C|2006|           4904|\n",
-                        "|        C|2008|           4880|\n",
-                        "|        C|2017|           4623|\n",
-                        "|        C|2011|           4514|\n",
-                        "|        C|2018|           4370|\n",
-                        "|        C|2014|           4282|\n",
-                        "|        C|2016|           4280|\n",
-                        "|        C|2019|           4277|\n",
-                        "|        C|2010|           4223|\n",
-                        "|        C|2012|           4098|\n",
-                        "|        C|2015|           3985|\n",
-                        "|        C|2013|           3719|\n",
-                        "|       M1|2005|           1333|\n",
-                        "|      M25|2005|           1254|\n",
-                        "|      A38|2005|           1166|\n",
-                        "|       A6|2005|           1161|\n",
-                        "|       M1|2006|           1146|\n",
-                        "|       A6|2006|           1134|\n",
-                        "|       A1|2005|           1123|\n",
-                        "|       A6|2008|           1111|\n",
-                        "|      A38|2006|           1101|\n",
-                        "|      M25|2006|           1083|\n",
-                        "|      A38|2007|           1082|\n",
-                        "|       M1|2007|           1077|\n",
-                        "|       A6|2007|           1046|\n",
-                        "|       A6|2009|           1019|\n",
-                        "|       M6|2005|           1017|\n",
-                        "|       A1|2006|           1002|\n",
-                        "|       A4|2005|            962|\n",
-                        "|       M6|2006|            961|\n",
-                        "|      M25|2007|            931|\n",
-                        "|      A38|2009|            927|\n",
-                        "|       A4|2007|            921|\n",
-                        "|       A4|2006|            919|\n",
-                        "|      A38|2008|            919|\n",
-                        "|       M1|2008|            917|\n",
-                        "|       M6|2007|            916|\n",
-                        "|      A40|2005|            908|\n",
-                        "|       A1|2007|            907|\n",
-                        "|      A38|2012|            888|\n",
-                        "|      A41|2005|            881|\n",
-                        "|       A6|2010|            880|\n",
-                        "|      A38|2010|            878|\n",
-                        "|       A1|2010|            873|\n",
-                        "|       A6|2011|            871|\n",
-                        "|       A1|2009|            864|\n",
-                        "|      A38|2011|            864|\n",
-                        "|       M6|2008|            861|\n",
-                        "|      M25|2008|            858|\n",
-                        "|       A4|2011|            857|\n",
-                        "|      A40|2006|            857|\n",
-                        "|       M1|2010|            855|\n",
-                        "|       M4|2006|            844|\n",
-                        "|       M1|2009|            841|\n",
-                        "|       A1|2008|            837|\n",
-                        "|      A38|2014|            824|\n",
-                        "|      A41|2006|            816|\n",
-                        "|       A4|2010|            812|\n",
-                        "|      A40|2007|            807|\n",
-                        "|      A38|2013|            806|\n",
-                        "|       A4|2012|            801|\n",
-                        "|       A4|2008|            800|\n",
-                        "|       A1|2011|            798|\n",
-                        "|       A4|2009|            794|\n",
-                        "|       M6|2010|            793|\n",
-                        "|      M25|2010|            793|\n",
-                        "|      M25|2011|            790|\n",
-                        "|      A34|2005|            784|\n",
-                        "|      M25|2009|            783|\n",
-                        "|       M4|2007|            780|\n",
-                        "|       M4|2005|            772|\n",
-                        "|      A41|2007|            771|\n",
-                        "|      M25|2012|            765|\n",
-                        "|      A38|2015|            765|\n",
-                        "|       A4|2013|            759|\n",
-                        "|       A4|2015|            749|\n",
-                        "|      A34|2006|            748|\n",
-                        "|      A23|2014|            747|\n",
-                        "|      A23|2006|            746|\n",
-                        "|       A5|2005|            746|\n",
-                        "|      A38|2016|            745|\n",
-                        "|       A4|2014|            742|\n",
-                        "|      A40|2008|            742|\n",
-                        "|       A1|2012|            737|\n",
-                        "|       A1|2015|            737|\n",
-                        "|       A6|2012|            735|\n",
-                        "|      A34|2007|            730|\n",
-                        "|      A23|2016|            729|\n",
-                        "|      A40|2009|            729|\n",
-                        "|       M6|2009|            728|\n",
-                        "|       A1|2014|            728|\n",
-                        "|       A6|2014|            726|\n",
-                        "|       A6|2013|            723|\n",
-                        "|      M25|2016|            722|\n",
-                        "|      A41|2008|            719|\n",
-                        "|      A23|2009|            719|\n",
-                        "|      A23|2005|            719|\n",
-                        "|       A4|2016|            718|\n",
-                        "|      A23|2011|            717|\n",
-                        "|       M6|2014|            715|\n",
-                        "|       M1|2012|            706|\n",
-                        "|       A5|2006|            706|\n",
-                        "|       A4|2017|            705|\n",
-                        "|      A34|2008|            704|\n",
-                        "|       A3|2005|            701|\n",
-                        "|       A3|2006|            700|\n",
-                        "|      M25|2015|            699|\n",
-                        "|      A41|2009|            699|\n",
-                        "|       M6|2013|            696|\n",
-                        "|      A23|2015|            694|\n",
-                        "|       A5|2015|            692|\n",
-                        "|       A5|2007|            688|\n",
-                        "|       A1|2013|            687|\n",
-                        "|       M6|2015|            685|\n",
-                        "|      A40|2010|            680|\n",
-                        "|       A1|2016|            680|\n",
-                        "|       A3|2012|            679|\n",
-                        "|       A3|2011|            676|\n",
-                        "|      M25|2014|            676|\n",
-                        "|      A40|2012|            674|\n",
-                        "|      A38|2019|            672|\n",
-                        "|       M6|2011|            670|\n",
-                        "|      A40|2014|            670|\n",
-                        "|      A23|2017|            668|\n",
-                        "|       A5|2014|            667|\n",
-                        "|      A40|2015|            666|\n",
-                        "|       M1|2013|            665|\n",
-                        "|      A40|2013|            665|\n",
-                        "|      A40|2011|            663|\n",
-                        "|       M4|2008|            662|\n",
-                        "|       M1|2011|            659|\n",
-                        "|      A23|2007|            659|\n",
-                        "+---------+----+---------------+\n",
-                        "only showing top 150 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "roadaccidentsperroad = Accident_Information20052019Groupedagain.groupby('road_name','Year').agg(F.count(Accident_Information20052019Groupedagain['road_name']).alias('Total_accidents'))\n",
-                "roadaccidentsperroad = roadaccidentsperroad.withColumn('Total_accidents',F.col('Total_accidents').cast(IntegerType()))\n",
-                "roadaccidentsperroad = roadaccidentsperroad.withColumnRenamed(\"Year\", \"year\")\n",
-                "roadaccidentsperroad=roadaccidentsperroad.withColumn(\n",
-                "    \"road_name\",\n",
-                "    when(\n",
-                "        col(\"road_name\") == 'U0',\n",
-                "        \"U\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"road_name\") == 'C0',\n",
-                "        \"C\"\n",
-                "    ).otherwise(col(\"road_name\"))\n",
-                ")\n",
-                "\n",
-                "#roadaccidentsperroad.sort(\"year\",'road_name').show(150)\n",
-                "roadaccidentsperroad.sort(col('Total_accidents').desc()).show(150)\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 14,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+\n",
-                        "|road_name|year|Total_accidents|\n",
-                        "+---------+----+---------------+\n",
-                        "|     B551|2005|              2|\n",
-                        "|     B642|2005|              1|\n",
-                        "|    B6206|2005|              6|\n",
-                        "|    A5018|2005|              7|\n",
-                        "|     C314|2005|             12|\n",
-                        "|    B5083|2005|              1|\n",
-                        "|     U107|2005|              7|\n",
-                        "|    B1301|2005|              6|\n",
-                        "|     U345|2005|              8|\n",
-                        "|    B6316|2005|              2|\n",
-                        "|     C357|2005|              6|\n",
-                        "|    B6534|2005|              1|\n",
-                        "|      C70|2005|             43|\n",
-                        "|    B4120|2005|              3|\n",
-                        "|    B4102|2005|             62|\n",
-                        "|      U74|2005|              9|\n",
-                        "|      U10|2005|              6|\n",
-                        "|    B5018|2005|             21|\n",
-                        "|    U1978|2005|              1|\n",
-                        "|    B1359|2005|              8|\n",
-                        "+---------+----+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "#roadaccidentsperroad_KSI=roadaccidentsperroad.filter(roadaccidentsperroad.Accident_Severity.contains(\"KSI\"))\n",
-                "roadaccidentsperroad_KSI=roadaccidentsperroad\n",
-                "\n",
-                "roadaccidentsperroad_KSI.show()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 19,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+--------------------+\n",
-                        "|road_name|year|       Total Traffic|\n",
-                        "+---------+----+--------------------+\n",
-                        "|     A537|2005|            352283.8|\n",
-                        "|      A38|2005|1.2023983440000009E7|\n",
-                        "|     A302|2005|           131833.86|\n",
-                        "|      A46|2005|  6342971.8999999985|\n",
-                        "|    A6072|2005|            151274.1|\n",
-                        "|      M56|2005|   5516130.000000001|\n",
-                        "|     A663|2005|            238026.0|\n",
-                        "|     A557|2005|  474774.04999999993|\n",
-                        "|     A721|2005|  459871.00000000006|\n",
-                        "|     A369|2005|            227295.2|\n",
-                        "|    A1058|2005|            530693.1|\n",
-                        "|      A15|2005|  1805501.5000000002|\n",
-                        "|     A627|2005|            631866.0|\n",
-                        "|       A5|2005|   5864798.599999999|\n",
-                        "|     A232|2005|            705805.3|\n",
-                        "|     A380|2005|            853623.9|\n",
-                        "|      A18|2005|  1058450.1999999997|\n",
-                        "|     A432|2005|  274036.30000000005|\n",
-                        "|    A4017|2005|             68513.1|\n",
-                        "|     A930|2005|            148810.2|\n",
-                        "+---------+----+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "TrafficvolumeGroupedby.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 15,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|       Total Traffic|\n",
-                        "+---------+----+---------------+--------------------+\n",
-                        "|       M1|2019|            432| 3.759983630000002E7|\n",
-                        "|       M1|2018|            461|        3.58825975E7|\n",
-                        "|       M1|2017|            528|        3.53605408E7|\n",
-                        "|       M6|2019|            393|        3.49644618E7|\n",
-                        "|       M6|2017|            524|3.4761269599999994E7|\n",
-                        "|       M1|2016|            597|        3.46624711E7|\n",
-                        "|       M6|2018|            515|3.4315864300000004E7|\n",
-                        "|       M6|2015|            685|3.4051751599999994E7|\n",
-                        "|       M1|2015|            642|        3.40026975E7|\n",
-                        "|       M6|2016|            640| 3.387005939999999E7|\n",
-                        "|       M1|2013|            665| 3.383816730000001E7|\n",
-                        "|       M1|2014|            658|3.3670756900000006E7|\n",
-                        "|       M6|2014|            715|3.3649983999999985E7|\n",
-                        "|       M1|2005|           1333|3.3115787199999984E7|\n",
-                        "|       M1|2006|           1146|3.2958805600000005E7|\n",
-                        "|       M1|2012|            706|3.2778523899999995E7|\n",
-                        "|       M6|2013|            696| 3.272786269999999E7|\n",
-                        "|       M6|2012|            638| 3.260182989999999E7|\n",
-                        "|       M6|2011|            670| 3.259963829999999E7|\n",
-                        "|       M1|2007|           1077|        3.23985501E7|\n",
-                        "+---------+----+---------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "result=roadaccidentsperroad_KSI.join(TrafficvolumeGroupedby, on=['road_name','year'], how='left_outer')\n",
-                "result.sort(col('Total Traffic').desc()).show()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 37,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------------+\n",
-                        "|road_name|Total_accidents|\n",
-                        "+---------+---------------+\n",
-                        "|    A3044|            221|\n",
-                        "|    A1009|            326|\n",
-                        "|      A23|          10197|\n",
-                        "|    A2208|            279|\n",
-                        "|     C650|              8|\n",
-                        "|    A5137|             82|\n",
-                        "|    A6010|           1087|\n",
-                        "|    B5231|            121|\n",
-                        "|     A644|            757|\n",
-                        "|     C609|             74|\n",
-                        "|    B5157|             43|\n",
-                        "|     C201|            189|\n",
-                        "|     A197|            271|\n",
-                        "|     C513|             82|\n",
-                        "|    U5004|             28|\n",
-                        "|    U9510|              4|\n",
-                        "|    U9538|              2|\n",
-                        "|    B5404|            230|\n",
-                        "|    U6417|              2|\n",
-                        "|    U6920|              7|\n",
-                        "+---------+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+------------------+\n",
-                        "|road_name|     Total Traffic|\n",
-                        "+---------+------------------+\n",
-                        "|      A23|     4.748163056E7|\n",
-                        "|    A1009|1537137.7000000002|\n",
-                        "|    A6010|         4116740.8|\n",
-                        "|     A762|          176223.6|\n",
-                        "|     A736|         4886895.7|\n",
-                        "|     A287| 6149208.099999999|\n",
-                        "|     A644|         5081718.2|\n",
-                        "|    A3044|         2342855.4|\n",
-                        "|     A197|         2756324.8|\n",
-                        "|    A6089|          732976.4|\n",
-                        "|    A1421|367028.89999999997|\n",
-                        "|    A2208|          728328.8|\n",
-                        "|    A5137| 641596.6000000001|\n",
-                        "|    B5231|              null|\n",
-                        "|    B3191|              null|\n",
-                        "|    B1099|              null|\n",
-                        "|    B5157|              null|\n",
-                        "|    A1192|          237278.3|\n",
-                        "|    B4283|              null|\n",
-                        "|     A194| 6546694.500000002|\n",
-                        "+---------+------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "roadaccidentsperroadformostdan = Accident_Information20052019Groupedagain.groupby('road_name').agg(F.count(Accident_Information20052019Groupedagain['road_name']).alias('Total_accidents'))\n",
-                "roadaccidentsperroadformostdan.show()\n",
-                "\n",
-                "TrafficvolumeGroupedbydan = TrafficvolumeGroupedby.groupby('road_name').agg(F.sum(TrafficvolumeGroupedby['Total Traffic']).alias('Total Traffic'))\n",
-                "TrafficvolumeGroupedbydan.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 42,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------------+------------------+\n",
-                        "|road_name|Total_accidents|     Total Traffic|\n",
-                        "+---------+---------------+------------------+\n",
-                        "|    A3044|            221|         2342855.4|\n",
-                        "|    A1009|            326|1537137.7000000002|\n",
-                        "|      A23|          10197|     4.748163056E7|\n",
-                        "|    A2208|            279|          728328.8|\n",
-                        "|     C650|              8|              null|\n",
-                        "|    A5137|             82| 641596.6000000001|\n",
-                        "|    A6010|           1087|         4116740.8|\n",
-                        "|    B5231|            121|              null|\n",
-                        "|     A644|            757|         5081718.2|\n",
-                        "|     C609|             74|              null|\n",
-                        "|    B5157|             43|              null|\n",
-                        "|     C201|            189|              null|\n",
-                        "|     A197|            271|         2756324.8|\n",
-                        "|     C513|             82|              null|\n",
-                        "|    U5004|             28|              null|\n",
-                        "|    U9510|              4|              null|\n",
-                        "|    U9538|              2|              null|\n",
-                        "|    B5404|            230|              null|\n",
-                        "|    U6417|              2|              null|\n",
-                        "|    U6920|              7|              null|\n",
-                        "+---------+---------------+------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "resultfordan.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 44,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------------+--------------------+--------------------+\n",
-                        "|road_name|Total_accidents|       Total Traffic|        Accidentprob|\n",
-                        "+---------+---------------+--------------------+--------------------+\n",
-                        "|       M1|          11517|       5.043728665E8|2.283429733228918...|\n",
-                        "|       M6|          10752| 4.940737815999999E8|2.176193192276042...|\n",
-                        "|       M4|           8431|4.1326090849999994E8|2.040115536357342...|\n",
-                        "|      M25|          11856|       3.880408245E8|3.055348626082511...|\n",
-                        "|       M5|           4769|3.4073841099999994E8|1.399607395598261...|\n",
-                        "|       A1|          11814|3.1728353117999995E8|3.723483521525021E-5|\n",
-                        "|      M62|           4564|2.1581419744999996E8|2.114782092154707E-5|\n",
-                        "|      M40|           3387|       1.938403588E8|1.747314140856821E-5|\n",
-                        "|      A38|          12874|      1.8519718688E8|6.951509478565574E-5|\n",
-                        "|      A14|           4040|      1.5594199525E8| 2.59070688015966E-5|\n",
-                        "|       M3|           3083|       1.340327926E8|2.300183365723591E-5|\n",
-                        "|      A34|           8337|1.2939929240000004E8|6.442848214523929E-5|\n",
-                        "|      A12|           7193|1.2866733799999999E8|5.590385339284785E-5|\n",
-                        "|      A40|          10289|       1.217065655E8|8.453939980748204E-5|\n",
-                        "|      A30|           7119|1.1540759829999998E8|6.168571311478371E-5|\n",
-                        "|      M60|           2229|1.0544649910000001E8|2.113868188156850...|\n",
-                        "|      A46|           5552|1.0488178139999999E8|5.293579042889903E-5|\n",
-                        "|       A3|           9307|1.0151375120000002E8|9.168216019978975E-5|\n",
-                        "|      M42|           1345|       1.011674965E8|1.329478386370863...|\n",
-                        "|       M8|           2655|        9.86218374E7|2.692101536530488...|\n",
-                        "+---------+---------------+--------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "resultfordanprob=resultfordan.withColumn('Accidentprob', resultfordan[1]/resultfordan[2])\n",
-                "resultfordanprob.sort(col('Total Traffic').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 50,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------------+------------------+--------------------+\n",
-                        "|road_name|Total_accidents|     Total Traffic|        Accidentprob|\n",
-                        "+---------+---------------+------------------+--------------------+\n",
-                        "|     A401|           1008|          673431.8|0.001496810812913...|\n",
-                        "|    A5201|            966|          864248.0|0.001117734724292...|\n",
-                        "|     A107|           2299|         2221455.8|0.001034906929050...|\n",
-                        "|    A2217|            880|          851242.7|0.001033782727299...|\n",
-                        "|    A4201|            937| 933657.2499999999|0.001003580275309...|\n",
-                        "|    A4200|            834| 832632.6000000002|0.001001642260944...|\n",
-                        "|     A203|            713|          766339.4|9.303971582304133E-4|\n",
-                        "|     A304|            562| 608730.2000000001|9.232333142006096E-4|\n",
-                        "|     A900|            560|          622609.8|8.994397454071554E-4|\n",
-                        "|     A235|           1226|1426602.7999999998|8.593842658937723E-4|\n",
-                        "|     A202|           2690|         3152275.7|8.533517547338894E-4|\n",
-                        "|    A3218|            699|          839202.1| 8.32934045327103E-4|\n",
-                        "|     A400|           2156|         2635337.6|8.181115011602308E-4|\n",
-                        "|    A1010|           2115|         2686597.4|7.872411400383251E-4|\n",
-                        "|     A201|           1813|2323269.6000000006|7.803657397316263E-4|\n",
-                        "|    A2047|            916|         1205919.6|7.595862941443194E-4|\n",
-                        "|    A1006|            552|          734459.4|7.515731979194493E-4|\n",
-                        "|    A1202|            710| 946762.7000000001|7.499239249708506E-4|\n",
-                        "|     A503|           3794| 5105794.800000001|7.430772580206316E-4|\n",
-                        "|     A407|            893|1233251.7999999998|7.241019230622653E-4|\n",
-                        "+---------+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "resultfordan=roadaccidentsperroadformostdan.join(TrafficvolumeGroupedbydan, on=['road_name',], how='left_outer')\n",
-                "resultfordanprob=resultfordan.withColumn('Accidentprob', resultfordan[1]/resultfordan[2])\n",
-                "#Trafficvolume=Trafficvolume.filter(Trafficvolume.year>2004)\n",
-                "resultfordanprob.filter(resultfordanprob['Total Traffic']>500000).sort(col('Accidentprob').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 49,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "Text(0.5, 0, 'Year')"
-                        ]
-                    },
-                    "execution_count": 49,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEJCAYAAACzPdE9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABTJElEQVR4nO3dd3zV1fnA8c+TTQiZ7JmwCRsCgqAyZDmgbqiz1bpHa9WiP7Via4ejtm5tsVqroOIAFQeICpYgBGWHkYWEQBKSkIRA9vP7434TQ8j4JtyV5Lxfr/vKvd91n8yT73nOeY6oKoZhGIZxunw8HYBhGIbROpgGxTAMw3AK06AYhmEYTmEaFMMwDMMpTINiGIZhOIVpUAzDMAyncGmDIiKzRWSPiCSJyMI69geKyNvW/u9EJLrGvvut7XtEZFaN7a+KSJaI7Kh1rZEiEi8i20XkIxEJdeXnZhiGYZzMZQ2KiPgCzwNzgFhggYjE1jrseiBPVfsDTwN/tc6NBeYDQ4HZwAvW9QBes7bV9i9goaoOBz4A7nXqJ2QYhmE0yM+F1x4PJKlqCoCILAXmAbtqHDMPeMR6vgx4TkTE2r5UVUuAVBFJsq4Xr6pra97J1DAQWGs9XwV8DjzUUIAdO3bU6Oi6LmUYhmHUZ/PmzUdUtVPt7a5sUHoAB2q8TgfOqO8YVS0XkXwgytq+oda5PRp5v504GqIPgcuAXnUdJCI3AjcC9O7dm4SEBBufimEYhlFFRPbXtb01JeV/CdwqIpuBDkBpXQep6iuqGqeqcZ06ndLAGoZhGM3kyjuUg5x8l9DT2lbXMeki4geEATk2zz2Jqu4GZgKIyEDg/NMJ3jAMw2gaV96hbAIGiEiMiATgSLKvqHXMCuBa6/mlwBp1VKtcAcy3RoHFAAOAjQ29mYh0tj76AA8CLzntMzEMwzAa5bI7FCsncjuO5Lgv8Kqq7hSRR4EEVV0BLAbesJLuuTgaHazj3sGRwC8HblPVCgARWQJMATqKSDrwe1VdjGMU2W3W278P/Ls5cZeVlZGenk5xcXHzPnHDMDwuKCiInj174u/v7+lQ2hRpy+Xr4+LitHZSPjU1lQ4dOhAVFYVjwJlhGC2JqpKTk0NhYSExMTGeDqdVEpHNqhpXe3trSso7RXFxsWlMDKMFExGioqJML4MH1NvlJSKFQL23L6raameim8bEMFo28zvsGfU2KKraAUBE/gAcAt4ABLgS6OaW6AzDaJMqVckrKiU8OABfH9M4tBR2urzmquoLqlqoqgWq+iKOCYSGC3344YeICLt3727W+QkJCdx555117ouOjubIkSPNjmvXrl2NH9gMjzzyCE8++aTt49PS0hg2bFid+2644YbqOGt+vmeeeWb1uW+99dZpRtxyrVixgr/85S9A07/uX3/9NevXr3daLK+99hq33377SbHkFpVy8OgJjh6vczrZSUJCQpwWi3F67DQoRSJypYj4ioiPiFwJFLk6sLZuyZIlTJ48mSVLljTr/Li4OJ555hknR3X6DUp5ebkTo6nfv/71L2Jja5eOo/oPoScalIqKCre+X0Pmzp3LwoWn1Gu1paEGxRnf30pVsgpKADhe6j1fM6NxdhqUnwOXA5nW4zJrm+Eix44d49tvv2Xx4sUsXbq0entFRQX33HMPw4YNY8SIETz77LMAbNq0iTPPPJORI0cyfvx4CgsL+frrr7ngggsAyMnJYebMmQwdOpQbbriBmiP7/vvf/zJ+/HhGjRrFTTfdVP1HLyQkhP/7v/9j5MiRTJgwgczMTNavX8+KFSu49957GTVqFMnJySfFfd1113HzzTcTFxfHwIED+fjjjwHHf6Bz585l2rRpTJ8+ndzcXH72s58xYsQIJkyYwLZt26qvsXXrViZOnMiAAQP45z//Wf31mD59OmPGjGH48OEsX768+vjy8nKuvPJKhgwZwqWXXsrx48cBmDJlSp1ldar+m124cCHr1q1j1KhRPP3005x99tls2bKl+rjJkyezdevWk8597bXXmDdvHlOmTGHAgAEsWrTI1tfxt7/9LSNHjiQ+Pv6k623ZsoUJEyYwYsQILrroIvLy8qpj/93vfsf48eMZOHAg69atq/7+33vvvYwbN44RI0bw8ssvn/L5paWlMXjwYK677joGDhzIlVdeyerVq5k0aRJ9+/Xnwy++QVVPuiuoKTk5mdmzZzN27FjOOuusU+6Q09LSeOmll3j66acZNWoU69atq/6+n3HGGdx3331s3LiRiRMnMnr0aM4880z27NkDwIQJE9i5c2f1ter7HhWVlFNeWUlm+n5+fsncU2JJTU1l4sSJDB8+nAcffPCU8w3PaXQeiqqm0Ua7uBZ9tJNdGQVOvWZs91B+f+HQBo9Zvnw5s2fPZuDAgURFRbF582bGjh3LK6+8QlpaGlu2bMHPz4/c3FxKS0u54oorePvttxk3bhwFBQW0a9fu5M9j0SImT57Mww8/zCeffMLixYsBSExM5O233+Z///sf/v7+3Hrrrbz55ptcc801FBUVMWHCBB577DHuu+8+/vnPf/Lggw8yd+5cLrjgAi699NI6Y09LS2Pjxo0kJyczdepUkpKSAPj+++/Ztm0bkZGR3HHHHYwePZoPP/yQNWvWcM0111T/Md+2bRsbNmygqKiI0aNHc/7559O5c2c++OADQkNDOXLkCBMmTGDu3LkA7Nmzh8WLFzNp0iR++ctf8sILL3DPPfc0+n34y1/+wpNPPlnd6EVGRvLaa6/x97//nb1791JcXMzIkSNPOW/jxo3s2LGD4OBgxo0bx/nnn0/79u0b/DqeccYZPPXUU6dc65prruHZZ5/lnHPO4eGHH2bRokX8/e9/BxwN5caNG1m5ciWLFi1i9erVLF68mLCwMDZt2kRJSQmTJk1i5syZpwyNTUpK4t133+XVV19l3LhxvPXWW3z77be88PpSnnnqcc6eNLHer8uNN97ISy+9xIABA/juu++49dZbWbNmTfX+6Ohobr75ZkJCQqq/zosXLyY9PZ3169fj6+tLQUEB69atw8/Pj9WrV/PAAw/w3nvvccUVV/DOO++waNEiDh06xKFDh4iLi2PHjp9WoqioVE6UVBAeHMDtC3/NfX94ktlnjub7hE3Vsdx1113ccsstXHPNNTz//PONfq8N92m0QbHKmLwIdFHVYSIyAkde5Y8uj66NWrJkCXfddRcA8+fPZ8mSJYwdO5bVq1dz88034+fn+LZFRkayfft2unXrxrhx4wAIDT118N3atWt5//33ATj//POJiIgA4Msvv2Tz5s3V5544cYLOnTsDEBAQUH2HM3bsWFatWmUr9ssvvxwfHx8GDBhA3759q/+rnDFjBpGRkQB8++23vPfeewBMmzaNnJwcCgocDfe8efNo164d7dq1Y+rUqWzcuJHzzz+fBx54gLVr1+Lj48PBgwfJzMwEoFevXkyaNAmAq666imeeecZWg1LbZZddxh/+8AeeeOIJXn31Va677ro6j5sxYwZRUVEAXHzxxXz77bf4+fnV+3X09fXlkksuOeU6+fn5HD16lHPOOQeAa6+9lssuu6x6/8UXXww4vvZpaWkAfPHFF2zbto1ly5ZVX2Pfvn2nNCgxMTEMHz4cgKFDhzJ9+nTKK5WYAUPISP+Rw/nFVFZWnhLTsWPHWL9+/UlxlJSUNPyFs1x22WX4+vpWx3Xttdeyb98+RISysjLA8bMxc+ZMFi1axDvvvFPnPyVFJeVIgD8hPmVs+m4D9958HQ/4+uDrI9Wx/O9//6v++bn66qv53e9+ZytGw/XszJT/J461RV4GUNVtIvIW0OoblMbuJFwhNzeXNWvWsH37dkSEiooKRIQnnnjC6e+lqlx77bX8+c9/PmWfv79/9dBLX19f233jtYdrVr1u3759s89/8803yc7OZvPmzfj7+xMdHV09x6C+92uq4OBgZsyYwfLly3nnnXfYvHmz7fga+joGBQVV/6FtisDAQODkr72q8uyzzzJr1qyGTq0+F8DHx4fAwEDHH2ofH0QrKa+sJL/41O9nZWUl4eHhJ3X92VXz+/vQQw8xdepUPvjgA9LS0pgyZQoAPXr0ICoqim3btvH222/z0ksnV0c6UVbBibIKOoX44ucjhIeH8+4X39KxfQDdwk++6zbDgr2TnRxKsKrWrqPlnsxqG7Rs2TKuvvpq9u/fT1paGgcOHCAmJoZ169YxY8YMXn755eo/MLm5uQwaNIhDhw6xadMmAAoLC0/543/22WdXJ6A//fTT6r766dOns2zZMrKysqqvt39/nVWpq3Xo0IHCwsJ697/77rtUVlaSnJxMSkoKgwYNOuWYs846izfffBNwJHg7duxYfWe1fPlyiouLycnJ4euvv2bcuHHk5+fTuXNn/P39+eqrr06K8ccff6zOTbz11ltMnjy5wfgb+jxuuOEG7rzzTsaNG1d9F1fbqlWryM3N5cSJE3z44YdMmjSpWV/HsLAwIiIiqvMjb7zxRvXdSn1mzZrFiy++WP0f/969eykqsjc+pqi0Ah8BXx8hsn0ARcXllFeePM0sNDSUmJgY3n33XcDRgNXOI0HjPwP5+fn06OFYbeK11147ad8VV1zB448/Tn5+PiNGjDhp3+H8YkQgJNCvOpavP11BUWnFSbFMmjSpOrdY9XNkeAc7DcoREemHNclRRC7FMS/FcIElS5Zw0UUXnbTtkksuYcmSJdxwww307t2bESNGMHLkSN566y0CAgJ4++23ueOOOxg5ciQzZsw4ZYbw73//e9auXcvQoUN5//336d27NwCxsbH88Y9/ZObMmYwYMYIZM2Zw6FDD39r58+fzxBNPMHr06FOS8uBYY2b8+PHMmTOHl156iaCgoFOOeeSRR9i8eTMjRoxg4cKFvP7669X7RowYwdSpU5kwYQIPPfQQ3bt358orryQhIYHhw4fzn//8h8GDB1cfP2jQIJ5//nmGDBlCXl4et9xyS+NfZOt9fH19GTlyJE8//TTg6F4KDQ3lF7/4Rb3njR8/nksuuYQRI0ZwySWXEBcX16yvI8Drr7/Ovffey4gRI9iyZQsPP/xwg8ffcMMNxMbGMmbMGIYNG8ZNN91k+86xqKScdv6OO6UuoUGIwPGScmqXXnrzzTdZvHgxI0eOZOjQoScNgKhy4YUX8sEHH1Qn5Wu77777uP/++xk9evQp8V166aUsXbqUyy+//KTtZeWVFBaX0T7ADx9r3smbb77J+0v/w/lTJpwUyz/+8Q+ef/55hg8fzsGDDRYhN9ys0VpeItIXeAU4E8gDUoGrrGR9i1ZXLa/ExESGDBnioYhatuuuu67BhL23y8jIYMqUKezevRsfn1P/13rttddISEjgueee80B0zVdeWcmujAK6hAbRJdTRwGcXlnAo/wTRUe0JbefZAoqqSlLWMSoqlYFdOlQ3KAD5J8rYn1NEv04htA9sWi1b87vsOs2u5aWqKap6LtAJGKyqk1tDY2IYNf3nP//hjDPO4LHHHquzMWnJjpc4hjC3D/gplxMVEkCgny8Z+Seo9HCB2PwTZZwoq6BLWNBJjQn8FHNRqellbwnqvUMRkbsbOlFV/+aSiNzI3KEYbcGh/BMcOVbK0G6hJ/3BLiwuI/VIEV3Dgujc4dSuSXeoVGXv4UJ8fYT+nUPqTLbvOVxIoJ8P0R3tDeyoYn6XXae+O5SG7iE7uDAer6aqZhSJ0WoUlVTQzt/3lP/+OwT5ExrkT1ZBCRHtAvD3c/+dWc6xUkorKomJaF/v71xwgC+FxWVN+r1sy8tyeFJDxSEX1bevNQsKCiInJ8eUsDdahcpK5URZBR1DAurc3y08iL2ZxzhcUEyvyGC3xlZeUUlWYTEdgvzpEFR/Hqd9oC95x0spKa8kyL/xIdhV66HUNSDEcK2Gytc3WAhKVeuuPNjC9ezZk/T0dLKzsz0dimGctpKyCrKPlVIeEsDRev4YHz9RxuHicnI6BBLoxruU/BNlHCsup3NoIInZ9b9vWUUlmQUllB7xt52Yr1qx0XCvhr47dc/sauX8/f3NKm9Gq/HMl/t4evV+tjw0k7Dguu8CjpeWM+3Jb+jYIYDlt012S7n49LzjzHvqGy4c0Z2nLm94AnFlpXLNH1cxM7YLj19qciLerKEur9cBRGSMqn7vvpAMw3CWjam5DOrSod7GBCA4wI/7zxvMXUu38G7CAeaP7+3yuP72xV4AfjtzYKPH+vgIY3tHkLA/z9VhGafJzv3tUyKSKCJ/EJG6F58wDMPrlFdU8v2PeYyPiWz02LkjuzMuOoLHP99D/okyl8a142A+H2w5yC8nxdC9VkmV+oyNjiAlu4jcosbXRzE8x848lKnAVCAbeFlEtouIqRltGF5uZ0YBx0srGBfdeIMiIvz+wqHkHS/lH6v3uTSuv362m7B2/twypZ/tc+L6OD6HzeYuxavZysCp6mFVfQa4GdgCNFwjwiIis0Vkj4gkicgpq/mISKCIvG3t/05Eomvsu9/avkdEZtXY/qqIZInIjlrXGiUiG0Rki4gkiMh4OzEaRmu1KS0XwNYdCsCwHmEsGN+b1+PT2JdZf62u07F2bzbr9h3hjmkDCGvCDP0RPcPw9xXToHi5RhsUERkiIo+IyHbgWWA90OjwCRHxBZ4H5gCxwAIRqb2E3vVAnqr2B54G/mqdGwvMB4YCs4EXrOsBvGZtq+1xYJGqjsLR4D3eWIyG0Zp9l5pL78jg6nIrdtwzcxDtA3xZ9NEup8/lqKhU/vzpbnpFtuOqCU3L0wT5+zK0exib9+c6NSbDuezcobyKo4bXLFWdoqovqmqWjfPGA0lW6ZZSYCmnLtQ1D6iqDLgMmC6OyR/zgKWqWqKqqUCSdT1UdS1Q10+VAlWLgYQBGTZiNIxWqbJSSUjLtX13UiWyfQB3zxjIt0lH+GJXplNj+vCHgyQeKuDeWYMJ9Gt6Sf+4PhFsTc+npNwsC+yt7ORQJqrqP1S1qX+gewAHarxOt7bVeYyqlgP5QJTNc2v7NfCEiBwAngTur+sgEbnR6hJLMHNNjNYqOfsYecfLGG8jf1LbVRP6MLBLCH/8ZBfFZc75411cVsFTX+xhRM8wLhjerVnXiIuOoLS8kh0HnbuKquE8drq8BojIMhHZJSIpVQ93BNdEtwC/UdVewG+AxXUdpKqvqGqcqsZ16tTJrQEahrtstPIn45p4hwLg5+vD7y8cyoHcE/xrnXN+1V9bn0ZGfjEL5ww+pQSMXWP6ONaoMd1e3stOl9e/cSwBXI5jtNd/gP/aOO8g0KvG657WtjqPERE/HF1VOTbPre1a4H3r+btYXWSG0RZtSs2lY0gg0VHNK6cyqX9H5gzryvNfJXMo/8RpxZJXVMrzXyUxbXBnzuzXsdnX6dwhiN6RwSYx78XsNCjtVPVLHJWJ96vqI8D5Ns7bBAwQkRgRCcCRZF9R65gVOBoCgEuBNerIBK4A5lujwGKAAUDtVSNrywCqlrybBrh27KNheLGNqbmcERN5WvXoHjhvCJWq/Hnl7tOK5bmvkigqKed3swc3fnAj4vpEsHl/nin+6KXsNCglIuID7BOR20XkIiCksZOsnMjtwOdAIvCOqu4UkUdFZK512GIgSkSSgLuBhda5O4F3gF3AZ8BtqloBICJLgHhgkIiki8j11rV+hWMS5lbgT8CNNj43w2h10vOOk5FfzLjoupcxtqtXZDA3ndOPFVsz2JjavG6mA7nH+U98GpeN7cWgrqdfwHxsdARHjpWyP+f4aV/LcD47ldbuAoKBO4E/4Oj2urbBMyyquhJYWWvbwzWeFwOX1XPuY8BjdWxfUM/x3wJj7cRlGK3ZptPIn9R2yzn9WJZwgEdW7OSjO5pe5+uJz/fg6yP8ZkbjJVbsqJrgmLA/r8nroxiu1+AdijX34wpVPaaq6ar6C1W9RFU3uCk+wzCaaGNqHh0C/RjcNbTxgxvRLsCXB84fwq5DBSzd9GOTzt2WfpQVWzO4YXJfuoY5p5T8gM4hdAjyM4l5L9Vgg2J1M012UyyGYTjBxtQc4qIjnFY1+Pzh3TgjJpInP99D/nF7db5UlT+tTCSyfQA3ndPXKXGAo1DkmN4RJjHvpezkUH4QkRUicrWIXFz1cHlkhmE0Wc6xEpKzi5zS3VWlqs5X/okynl6919Y5X+/JZkNKLndNH9Dg4lnNEdcngr2Zx2w3bob72GlQgnAM5Z0GXGg9LnBlUIZhNM+mNMd/7s2Z0NiQ2O6hXHlGH97YsJ89hxuu8+UosZJIdFQwC1xQCn+sNdjg+x/NXYq3sdOg/MvKnVQ/qGfSoGEYnrUpLZcAPx+G9wxz+rXvnjGQkEA/Fn20s8Fhu+9tTmdv5jHumz2YABesADmqVzi+PkKCyaN4HTvf7WdtbjMMw8M2puYyuld4s2plNSaifQD3zBzI+uQcPttxuM5jTpRW8NSqPYzuHc6cYV2dHgM4FgSL7RZKQpq5Q/E29TYoIjJRRH4LdBKRu2s8HgGc/9NqGMZpOVZSzs6M/CYXhGyKBeN7M7hrB/74SWKddb5e/V8qmQUlPHDekNOaVNmYsX0i2Jp+lLKKSpe9h9F0Dd2hBOCYwOgHdKjxKMAxq90wDC/y/f48KhVbC2o1V1Wdr4NHT/DyNyfX+co5VsKLXyczM7aLS2MAR6HI4rJKdmWYQpHepKE15b8BvhGR11R1vxtjMgyjGTal5eIjPxVRdJWJ/aI4f3g3XvwmiUvjetLDWsb32TVJnCir4D4nlFhpTM0JjiN7hbv8/Qx77JSvN42JYbQAG1NzGdYjjJBAOwUwTs/95zkajT+tTAQg7UgR/92wn/njetG/c6OVmU5b17AgeoS3MxMcvYzzh2AYhuF2JeUV/HDgqMu7mqr0jAjm5nP68cm2Q2xIyeGJz/cQ4OfDXecOcMv7gyOPkpBmCkV6E9OgGEYrsD09n9LySrc1KAA3n9OPHuHtuPvtLXyy/RA3nt2Xzh2cU2LFjrjoCLIKS0jPO73y+obz2Flga6CIfCkiO6zXI0TkQdeHZhiGXdULap1mheGmCPL35cHzh5CRX0zHkEB+dZbzSqzYMbZ6wS0zfNhb2LlD+SeO5XTLAFR1G461TQzD8BKbUnPp16k9USGBbn3f2cO6cse0/jx1+UjauyF3U9PgrqGEBPqZCY5exM5PQLCqbqw1przcRfEYhtFEFZVKQloeF4zs7vb3FhF+O3OQ298XwNdHGN073Exw9CJ27lCOiEg/QAFE5FLgkEujMgzDtt2HCygsKWd8jPu6u7zFmN4R7MkspKDYFIr0BnYalNuAl4HBInIQ+DVwiyuDMgzDvk2pVfkT9yXkvUVcdASqsOXHo54OxcBGl5eqpgDnikh7wEdVGy41ahiGW21Ky6N7WBA9I4I9HYrbje4dgY84JjiePbCTp8Np8+ptUETk7nq2A6Cqf3NRTIZh2KSqfJeay+T+UZ4OxSNCrJUpzQRH79DQHUoHt0VhGEazpOUc58ixEqcuqNXSxEVHsGxzOuUVlfj5mql1ntRQLa9F7gzEMIymq8qfOHtBrZZkbJ8I/hO/n92HCxnWw/nrwBj2NVS+/j7r47Mi8kzth52Li8hsEdkjIkkisrCO/YEi8ra1/zsRia6x735r+x4RmVVj+6siklU10bLG9rdFZIv1SBORLXZiNIzT4enRRRvTcokI9ndL/SxvZSY4eo+G7g8TrY8JwOY6Hg0SEV/geWAOEAssEJHYWoddD+Span/gaeCv1rmxOCZPDgVmAy9Y1wN4zdp2ElW9QlVHqeoo4D3g/cZiNIzTkXqkiLg/rGbZ5nSPxbApLZdx0ZEuXXvE2/UIb0fX0CASTIPicQ11eX1kfXy9mdceDyRZo8QQkaXAPGBXjWPmAY9Yz5cBz4njN2MesFRVS4BUEUmyrhevqmtr3snUZp1/OTCtmXEbhi0f/HCQ0opK/r56L/NGdcffzf33mQXF7M85ztUT+rj1fb2NiDA2OoLNaSYx72l2annFicgHIvK9iGyreti4dg/gQI3X6da2Oo9R1XIgH4iyeW59zgIyVXVfXTtF5EYRSRCRhOzsbJuXNIyTqSorthykY0gA6Xkn+OCHg26PYWMbnn9SW1yfCDLyi8k4agpFepKdf6neBP4NXAJcWOPhrRYAS+rbqaqvqGqcqsZ16mTGrRvNsy09n7Sc49wzcxDDe4Tx/FdJlLt5OdpNabkEB/gytHuoW9/XG1XlUUy3l2fZaVCyVXWFqqaq6v6qh43zDgK9arzuaW2r8xgR8QPCgByb557CusbFwNs24jOMZlu+JYMAXx/mDO/GndMHsD/nOMu3ZLg1ho2puYztE2GGygJDuoXSzt+X702D4lF2fhJ/LyL/EpEFInJx1cPGeZuAASISIyIBOJLsK2odswK41np+KbBGHavlrADmW6PAYoABwEYb73kusFtVPZclNVq9ikrlo20ZTB3cibB2/pw7pDNDuoXy3FdJVFS6Z7Gn/ONl7MksNN1dFn9fH0b1CjeVhz3MToPyC2AUjpFVVd1dFzR2kpUTuR34HMeIsXdUdaeIPCoic63DFgNRVtL9bmChde5O4B0cCfzPgNtUtQJARJYA8cAgEUkXketrvO18GujuMgxniE/OIbuwhHmjHGk9EeGu6f1JPVLEx9vcc5eSsD8XVZM/qSkuOoLEQ4UUlZhi6J5ip3z9OFVtVn1qVV0JrKy17eEaz4uBy+o59zHgsTq2L2jg/a5rTpyG0RTLtxykQ6Af0wZ3rt42M7Yrg7p04Jkv93HBiO74+rh2GO/GtFz8fR3l2w2HMX0iqKhUthw4yqT+HT0dTptk5w5lfR3zRwyjTSouq+CzHYeZNawrQf6+1dt9fIQ7pw8gObuIldtdv7rDptRcRvQMPymGtm5M7whEMOujeJCdBmUCsMWasb5NRLbbHDZsGK3OV7uzKCwpZ96oUxezmjOsKwM6h/Dsmn1UujCXcqK0gu0H8013Vy1h7fwZ2LkDm380DYqn2GlQZuNIis/kp/yJNw8bNgyXWb4lg44hgUzse2p1Xx8f4fZp/dmbeYzPdh52WQw/HMijrELb5IJajRkbHcEP+/PcNjjCOFmjDUrNocJNHDZsGK1K/oky1uzJ4sKR3eodqnvBiO707dSeZ7503V3KptQ8RGBsH3OHUltcnwgKS8rZm2mWbfIEM4DdMGz6fMdhSssrq0d31cXXR7hjWn92Hy7ki12ZLoljU1oug7uGEtbO3yXXb8nMBEfPMg2KYdi0fOtB+kQFM7JnwyXSLxzRneioYJ75ch+OaVXOU1ZRyfc/5jE+2nR31aV3ZDAdQwJNXS8PsdWgiEgfETnXet5ORMziW0abklVQzPrkHOaN6tFoZV8/Xx9unzaAXYcK+DIxy6lx7Mwo4HhpRZteUKshIkJcnwiTmPcQO8Uhf4WjEvDL1qaewIcujMkwvM6KrRmowtyRp47uqsu8Ud3pHRnMP5x8l2IW1GpcXHQEB3JPkFVQ7OlQ2hw7dyi3AZOAAgCrim/nBs8wjFZmxdYMhvUItb2Qlb+vD7dN7cf2g/l8vcd5Va03puUSHRVM59Agp12ztTF5FM+x06CUqGpp1QurAKMZk2e0GSnZx9iWns+8kXZXUHC4eExPeoS3c9pdSmWlkmAtqGXUb2j3MAL9fMwERw+w06B8IyIPAO1EZAbwLvCRa8MyDO+xYmsGInChze6uKo67lP5sOXCUtfuOnHYcSdnHyDteZvInjQjw82Fkz3A2m0KRbmenQVkIZAPbgZtw1OZ60JVBGYa3UFWWb8lgQkwUXcOa3s106diedA8L4h+r9572XcpGkz+xbWx0BDszCjhRWuHpUNoUOxMbK1X1n6p6mapeaj03XV5Gm7D9YD6pR4rqLLViR4CfD7dM7c/3Px5lfXLOacWyKS2Xzh0C6RMVfFrXaQvi+kRQXqlsTT/q6VDaFDujvCaJyCoR2SsiKSKSKiIp7gjOMDyteiGtYd2afY3L43rSNTSIf6w+vVzKptRcxsVENjps2XAUigTYbBLzbmWny2sx8DdgMjAOiLM+GkarVlGpfLQ1gymDOhEW3PxZ6YF+vtx8Tl82puWyIaV5/frpecfJyC823V02RbQPoF+n9iSYCY5uZadByVfVT1U1S1Vzqh4uj8wwPGxDSg5ZNRbSOh3zx/emc4dAnvlyX7POr8qfmBFe9sX1iWTz/jyXVn42TmanQflKRJ4QkYkiMqbq4fLIDMPDlm85SEigH9OHnP60qyB/X246px/xKTnVjUNTbErLJTTIj0FdTZEKu8ZGR1BQXE5y9jFPh9Jm2GlQzsDRzfUn4Cnr8aQrgzIMTysuq+DTHYeZNbSr0xax+vn43nQMCWjWXcrG1FzioiNdvhJkaxJnJji6nZ1RXlPreExzR3CG4Slf78misLjuhbSaq12ALzee3Zdvk440aY7EkWMlJGcXme6uJorp2J7I9gFmgqMb2RnlFSYifxORBOvxlIg0XG7VMFo4x0JaAZzZ79SFtE7HVRP6ENk+gH98mWT7nKrEsllQq2lEhDG9I8wERzey0+X1KlAIXG49CoB/27m4iMy2lg5OEpGFdewPFJG3rf3fiUh0jX33W9v3iMisGttfFZEsEdlRx/XuEJHdIrJTRB63E6Nh1FZQXMaXu7O4YET3ehfSaq7gAD9+dVZf1u7N5gebFXE3puYR6OfD8B7hTo2lLYiLjiAt5zjZhSWeDqVNsPPb0k9Vf6+qKdZjEdC3sZNExBd4HpgDxAILRCS21mHXA3mq2h94GvirdW4sMB8YimMJ4hes6wG8Zm2r/X5TgXnASFUdisnzGM3000JazuvuqunqiX0ID/a3nUvZlJbL6N7hBPiZ5YuaqiqP8r0pZ+8Wdn5CT4jI5KoXIjIJOGHjvPFAktUIlQJLcfzBr2ke8Lr1fBkwXRyztuYBS1W1RFVTgSTreqjqWqCue9hbgL+oaol1nHMXojDajOVbMugdGcyoXuEuuX5IoOMu5as92WxrZCb3sZJydmbkm/knzTSsRxgBvj5mgqOb2GlQbgaeF5E0EUkDnsNR06sxPYADNV6nW9vqPEZVy4F8IMrmubUNBM6yus6+EREz+dJoMsdCWkeYN6q7S2ekXzOxD6FBfjzTSC5l8/48KhVTELKZgvx9GdYj1ExwdBM7o7y2qupIYAQwQlVHq+o214fWZH5AJDABuBd4R+r4iyAiN1YNMMjOdt46FUbr8PG2Q1QqLuvuqtIhyJ/rJ/dldWImOw7m13vcptRcfH2kupSI0XRx0ZHsOFhAcZkpFOlqtjtlVbVAVQuacO2DQK8ar3ta2+o8xlpnJQzIsXlubenA++qwEagEOtbxebyiqnGqGtepU6cmfDpGW7B8y0GGdg+lf2fXTyC8blI0HYL8eHZN/bmUjWm5DOseSvtAP5fH01qN7RNBaUUl2xtouA3ncGWWbxMwQERiRCQAR5J9Ra1jVgDXWs8vBdZYlYxXAPOtUWAxwABgYyPv9yEwFUBEBgIBwOkvQmG0GalHitianu/yu5MqYe38+cWkGD7fmUnioVP/Vyspr2DLgaNm/slpql7B0cxHcbkGGxQR8RGRM5tzYSsncjvwOZAIvKOqO0XkURGZax22GIgSkSTgbhxrr6CqO4F3gF3AZ8BtqlphxbQEiAcGiUi6iFxvXetVoK81nHgpcK0ps280xYotzVtI63T8clI0IYF136VsT8+ntLzS5E9OU8eQQGI6tjeJeTdo8D5aVStF5HlgdHMurqorcSzIVXPbwzWeFwOX1XPuY8BjdWxfUM/xpcBVzYnTMFSV5VsPckZMJN3C2rntfcODA7juzGie+yqJPYcLT6rV9Z0pCOk0Y3pH8NWeLFTVlP93ITtdXl+KyCV1JbgNo7XYcbCAlOwip1QWbqrrJ8cQHODLc1+dPOJrU1ouAzqHENk+wO0xtTZx0RHkFpWScqTI06G0anYalJtwrCNfKiIFIlIoIk1JzhuG11u+5SD+vsKcYV3d/t4R7QO4ZmI0H2/LICmrEHCsxbI5Lc90dzlJ1QTHzSaP4lJ2hg13UFUfVfVX1VDrdag7gjMMd6ioVD7alsGUQZ0JD/bM3cCvzoohyM+X59Y47lJ2Hy6gsKTcTGh0kn6dQghr50+CqevlUnaKQ4qIXCUiD1mve4nIeNeHZhju8V1KDpkFJW4b3VWXqJBArp7YhxVbM0jJPla9Zsp4c4fiFD4+wtg+ESYx72J2urxeACYCP7deH8NRo8swWoXlWzJoH+DL9MFdPBrHr87qS4CfD899lcSmtFx6hLeje7j7Bgi0dmP7RJCcXUReUamnQ2m1bC2wpaq3AcUAqpqHY46HYbR4JeUVrNxxiFlDu9IuwDkLaTVXpw6BXHlGH5ZvyWDdviPm7sTJquajmLsU17HToJRZlX4VQEQ64ZiFbhgt3td7sh0LaY12/+iuutx0dl98fYTC4nIzXNjJRvYMx89HzAqOLmSnQXkG+ADoIiKPAd/iWA7YMFq85VsOEtU+gElOXkiruTqHBvHz8b0Bkz9xtnYBvgztEWYW3HKhRgsEqeqbIrIZmG5t+pmqJro2LMNwvcLiMlYnZrFgXC+nL6R1Ou6bPYhzBnWif+cQT4fS6sT1ieCNDfv5aGsG5w/vho+PmV7nTHZ/i4IBX+t4kyU0WoXPd2Y6FtLyku6uKsEBfkwd1NnTYbRKV03oQ5/IYO5Y8gOz/7GWldsPUVlpKjQ5i51hww/jWAQrEkf13n+LyIOuDswwXG35loP0imzHaBctpGV4n5iO7fns12fzzILRVFQqt775Pec9s47PdhzGlP47fXZqYl+JY1ndYgAR+QuwBfijC+MyDJfKKizmf0lHuHVKf1PbqY3x9RHmjuzO+cO78dHWDJ75ch83/3czsd1C+fW5A5gR28X8TDSTnS6vDCCoxutAGl+bxDC82iduWkjL8F6+PsLPRvfgi9+czVOXjaSotJwb39jM3Of+x5eJmeaOpRns3KHkAztFZBWOocMzgI0i8gyAqt7pwvgMwyWWb8kgtlsoA7q4fiEtw7v5+fpwydiezBvVnQ9+OMgza/Zx/esJjOwZxq9nDGTKwE7mjsUmOw3KB9ajyteuCcUw3CPtSBFbDhzl/jmDPR2K4UX8fH24LK4XPxvdg/e/T+eZL5P4xb83Mbp3OL85dyBnDehoGpZG2Bk2/Lo7AjEMd1mxNQNw70JaRsvh7+vDFeN6c9HonizbnM5za/ZxzasbiesTwW9mDOTMflGmYamH9wy+Nww3UFU+3HKQ8TGRpk6W0aAAPx9+fkZvvrp3Cn/42TDS805w5b++44pXNrAhJcfT4Xkl06AYbcrODMdCWj/zwEJaRssU6OfL1RP68PW9U1g0dyhpR4qY/8oGFryyoboqtOFgZx7KcHcEYhju4MmFtIyWLcjfl2vPjGbtfVN5+IJY9mUd4/KX47nqX9+Zci4WW+XrRWSjiNwqImEuj8gwXKSiUlmxNYNzBnYiwiyrazRTkL8vv5wcw7r7pvLg+UNIPFTAJS/G8+hHuzwdmsfZWbHxLByTG3sBm0XkLRGZ4fLIDMPJNqbmWgtpme4u4/S1C/DlhrP6su53U5k9tCtLNv5IWYX3F2I/UVrBuwkHyDlW4vRr28qhqOo+4EHgd8A5wDMisltELm7oPBGZLSJ7RCRJRBbWsT9QRN629n8nItE19t1vbd8jIrNqbH9VRLJEZEetaz0iIgdFZIv1OM/O52a0Hcu3HCQ4wJdzh3h2IS2jdQkO8GPeqO6cKKtgW3q+p8NpVML+XO5dto1tB50fq50cyggReRpIBKYBF6rqEOv50w2c54tjZcc5QCywQERiax12PZCnqv2ta/3VOjcWmA8MBWbj6HarWv3oNWtbXZ5W1VHWY2Vjn5vRdpSUV7Byu3cspGW0PlVLDbSE0V/xyTn4+ohL1tuxc4fyLPA9jnpet6nq9wCqmoHjrqU+44EkVU1R1VJgKTCv1jHzcBSeBFgGTBfHAO95wFJVLVHVVCDJuh6quhYwGTCjSb7Zk01BcTlzTakVwwWiQgIZ1KVDy2hQUnIY0TOMkEA789qbxk6D8oGqvqGqJ6o2iMhdAKr6RgPn9QAO1Hidbm2r8xhVLcdR5iXK5rl1uV1EtlndYhF1HSAiN4pIgogkZGdn27ik0dJVVirvJKQT1T6Ayf07ejoco5Wa0DeShLQ8r86jHCspZ1t6PhP7umZBOTsNyjV1bLvOyXE4w4tAP2AUcAh4qq6DVPUVVY1T1bhOnTq5MTzDE3Zm5HPJS+tZnZjJ/PG98PeihbSM1mVC3yivz6NsSs2lolI5s59r/rGq955HRBYAPwdiRGRFjV0dsNfldBDHyLAqPTm1SnHVMeki4geEATk2zz2JqmbWiP2fwMc2YjRaqWMl5Ty9ai///l8qEcEB/O3ykVzkZQtpGa1LzTzK2D51dpB4XHxKDv6+4rL4GupEW4/jP/2OnPzffiGwzca1NwEDRCQGR2MwH0cDVdMK4FogHrgUWKOqajVgb4nI34DuwABgY0NvJiLdVPWQ9fIiYEdDxxutk6ry2Y7DLPpoF5mFxfx8fG/umzWYsGB/T4dmtHI18yi3Te3v6XDqFJ+cw+heES4bmFJvg6Kq+4H9wMTmXFhVy0XkduBzHMsHv6qqO0XkUSBBVVcAi4E3RCQJx13PfOvcnSLyDrALKAduU9UKABFZAkwBOopIOvB7VV0MPC4io3CU2E8DbmpO3EbL9WPOcR5esYOv92QT2y2UF68aw+je3vmfotE6TegbyTsJ6ZRVVHpd92r+iTJ2ZuRz+7QBLnuPhrq8vlXVySJSiOOPdPUuQFU1tLGLW0N3V9ba9nCN58XAZfWc+xjwWB3bF9Rz/NWNxWO0TiXlFfxzbQrPrknCz0d46IJYrp3YBz8v+4U2Wr8JfaN4PX4/29Lzva7ba2NqLpWKyxLy0PAdymTro1mByPBa65OP8OCHO0jJLuL84d146IJYuoYFNX6iYbiAN+dR4pNzCPDzYXTvcJe9R0N3KA3OelFVMxfE8JjswhL+tDKRD344SO/IYF77xTimDOrs6bCMNs6b8yjxKTmM7R1BkL/rJvY2lJTfjKOrq66VZBTo65KIDKMBlZXKWxt/5PHPdnOirII7p/Xn1qn9XfpLYhhN4Y15lLyiUhIPFXD3jIEufZ+GurxiXPrOhtFEOw7m838f7mDrgaOc2S+KP/xsGP06hXg6LMM4iTfmUapm8J/Zz3X5E2i4y2uwqu4WkTF17a8qwWIYrlZYXMbfVu3l9fVpRLYP4O9XjGLeqO5mGVbDK3ljHiU+JYd2/r6M6Bnu0vdpqMvrbuBG6p5xrjiKQxqGy6gqK7cf5tGPd5JVWMJVZ/ThnlmDCGtn5pQY3ssb8yjxyTnERUcQ4OfaLriGurxutD5OdWkEhlGH/TlFPLR8J2v3ZjO0eygvXx3HqF7hng7LMGzxpjxKdmEJ+7KOcdEY11eKaLTcpIgEAbcCk3HcmawDXrLmkBiGU5WUV/DyNyk891USAb4+/P7CWK6eYOaUGC2LN+VRqvInrpx/UsVO/eL/4Ci38qz1+ufAG9QzIdEwmktVufW/3/Pl7iwuGOGYU9Il1MwpMVoeb8qjxKfkEBLox/Aerl/B3U6DMkxVay6M9ZWImMWTXaCguIwAX582OwR28bepfLk7i4cviOWXk80gQ6Pl8qY8yobkHMZFR7jlLt/OO3wvIhOqXojIGUCC60Jqm1SVy16M575lduputj47Dubz1892MyO2C7+YFO3pcAzjtHnD+iiH84tJOVLERBcPF65Sb4MiIttFZBswFlgvImkikoqjMnCcW6JrQ5KyjrEns5DPdx6mqKTc0+G41bGScu5Y8gMdQwJ5/JIRZjiw0Sp4w/oo8SlHAFy2/kltDXV5XeCWCAwAViU6lnMpKa9kze4sLhzZdpaqfXj5DvbnFLHkVxOIaB/g6XAMwym8IY8Sn5xDaJAfQ7o1WsvXKeq9Q1HV/TUfwAkco7yqHoYTrd6VSWy3UDp1COTTHYcaP6GV+OCHdN7//iB3TBvAGW4YhWIY7uIN68zHp+RwRt8ofH3cc9ffaA5FROaKyD4gFfgGx1ojn7o4rjYlu7CEHw4cZdbQrswe2pU1u7M4Xtr6u73SjhTx4Ac7GB8dyR3TvGMCmGE4kyfzKOl5xzmQe8Itw4Wr2EnK/wGYAOy16ntNBza4NKo25qvdWajCubGdmTO8K8VllXy9J9vTYblUaXkldy79AT9fH/4+f5SZZ2K0Sp7Mo8QnW/NP3JSQB3sNSpmq5gA+IuKjql9hkvJOtSoxk+5hQcR2C+WMmCii2gfwyfbW3e315Bd72Jaez18vGUH38HaeDscwXKJmHsXd4lNyiAj2Z1AX9y1pZadBOSoiIThmyL8pIv8AilwbVttRXFbBun3ZnBvbBRHB10eYNawrX+3O4kRphafDc4mv92TxytoUrprQm9nDuno6HMNwGU/lUVSVDck5TOgbhY+b8idgr0GZhyMh/2vgMyAZuNCFMbUp/0s6QnFZJecO6VK97fzh3TheWsE3e7M8GJlrZBUWc8+7WxnctQMPnh/b+AmG0cJ5Io/yY+5xMvKL3drdBTYaFFUtAjoB5wG5wDtWF5jhBKsTMwkJ9OOMvj8tkHlGTCSR7QNYuf2wByNzvspK5bfvbOVYSTnPLhjdZisCGG2LJ/IoVfkTV69/UpudUV43ABuBi4FLgQ0i8ktXB9YWVFYqqxOzOGdgJwL9fvrj6ufrw6yhXfgyMZPistbT7fXKuhTW7TvCwxcMZYAb+3UNw5M8kUdZn5xDpw6Bbl+Azk6X173AaFW9TlWvxTFz/nd2Li4is0Vkj4gkicjCOvYHisjb1v7vRCS6xr77re17RGRWje2vikiWiOyo5z1/KyIqIu6ZGnoath3MJ7uwhHNjT10Lfc6wbhSVVrB2b+sY7fXDj3k8+fkezhvelQXje3k6HMNwG3fnUVSV+BRH/sTdVSfsNCg5OKoNVym0tjVIRHyB54E5QCywQERqd5pfD+Span/gaeCv1rmxwHxgKDAbeMG6HsBr1ra63rMXMBP40cbn5XGrd2Xi6yNMHXRqgzKxXxThwf6sbAWjvQqKy7hz6Q90CQ3izxeZ0ipG2+POPEpydhHZhSVunX9SpaFaXneLyN1AEvCdiDwiIr/HMQdlr41rjweSVDVFVUuBpTgS/DXNA163ni8Dpovjr808YKmqlqhqqhXDeABVXYsjl1OXp4H7aCEz+VcnZhLXJ4Lw4FPLjfj7+jAztgurE7MoKW+53V6qyoMf7CDjaDHPLBhFWLBZbdFoe9yZR4lPcf/8kyoN3aF0sB7JwIf89Ed6OY5Z843pARyo8Trd2lbnMapaDuQDUTbPPYmIzAMOqurWRo67UUQSRCQhO9tz3UkHco+z+3AhM2K71HvMecO7cayknHV7j7gxMud6d3M6K7Zm8JtzBzC2T2TjJxhGK+TOPMqG5By6hgYRHRXs8veqraElgBfVfG3NRUFVj7k6qKYSkWDgARzdXQ1S1VeAVwDi4uI8diez2ioGOX1I/Q3Kmf06Ehrkx8odhzi3gYbHWyVnH+P3y3cyoW8kt0wxpVWMtstd66OoKhtScjh7YCePdC3bGeU1TER+AHYCO0Vks4gMtXHtg0DN7GtPa1udx4iIHxCGIz9j59ya+gExwFYRSbOO/15EvHbW3OrETPp3DiGmY/t6jwnw82Hm0K6s2pXZ4rq9SsoruOOtHwjy9+HvV4x2W3E6w/BW7sij7M08Rk5RqUfyJ2AvKf8KcLeq9lHVPsBvgX/aOG8TMEBEYkQkAEeSfUWtY1YA11rPLwXWqKpa2+dbo8BigAE4hi7XSVW3q2pnVY1W1WgcXWRjVNUrJ3Lknyjju5TckyYz1ue84V0pLC5nfVLLmvrz55W72XWogCcvG0nXMLOMr2G4I48Sn+zoHvdE/gTsNSjtrfpdAKjq10D9/1b/dFw5cDvwOZCIY0LkThF5VETmWoctBqJEJAm4G1honbsTeAfYhWN2/m2qWgEgIktwLPI1SETSReR6W5+pF/lmbzbllcqMOoYL1zapf0c6BPm1qNpeq3dl8tr6NK47M7rBLj3DaEvckUdZn5xDz4h29Ip0f/4E7K0pnyIiDwFvWK+vAlLsXFxVVwIra217uMbzYuCyes59DHisju0LbLxvtJ34PGX1rkyi2gcwqlfji+4E+vkyY0gXvth5mNKLhhPg591VeQ/nF3Pvsq3Edgvl/vMGezocw/Aars6jVFYq36XmMtOD+VY7f51+iaP0yvvAe0BHa5vRDGUVlXy1J4tpgzvbziucN7wbBcXlrE/27tFeFZXKr9/+geKySp79+eiTZv8bhuHaPMquQwXknyjzWHcXNNKgWJMJ31fVO1V1jKqOVdVfq2qem+JrdTal5lJYXN6kUVuTB3QkJNCPT728tteLXyexISWXRfOGur3kg2G0BK7Mo2zw4PyTKg02KFbeolJEwtwUT6u3KjGTAD8fzhpgvzJMkL8v5w7pzOe7Dntk5Tc7Nu/P5enV+5g7sjuXje3p6XAMwytV5VG+S3V+HiU+OYfoqGC6hXlufSE7XV7HgO0islhEnql6uDqw1khVWZ2YyeT+HQkOsJO++sl5w7tx9HiZR9enrk/+8TLuXLKF7uFB/PGiYaa0imHU46c8Sn3FPpqnvKKSjam5Hr07AXsNyvvAQ8BaYHONh9FEezOPcSD3hK3hwrWdPbAT7QN8va62l6qy8P1tZBYU8+yCMYQGmdIqhtEQRx4l16m9DTszCigsKWeCh+afVLGzHsrrwBLgB+B7YIm1zWiin2bHNz5cuLYgf1+mD+nC5zszKfeibq8lGw/w6Y7D3DNrEKN6hXs6HMPwehP6RnG8tILtB52XR/Fk/a6a7MyUPw9HPa9ngOeAJBGZ4+rAWqNVuzIZ2TOMLqHNm+h33vCu5BaV8l2qc2+Xm2tvZiGLPtrJWQM6cuNZfT0djmG0CK6Yj7I+OYf+nUPo3MGzk4jtdHn9DZiqqlNU9RxgKo6qvkYTZBUWs+XA0WZ1d1WZMqgzwV7S7VVc5iit0iHIj6cuH+nWdasNoyVzdh6lrKKShLRcj5VbqclOg1Koqkk1Xqdw8voohg1rEh3rw59Okccgf1+mDu7M5zsPU1Hp2Qr9z3+VxJ7MQp68bKTH/ysyjJbGmXmUbelHOV5a4fHuLrDXoCSIyEoRuU5ErgU+AjaJyMUicrGL42s1Vidm0iO8HYO7nt7St+cP78aRY6Vs9GC3V3recV5Zm8Lckd2ZUsfiYIZhNMyZeZSq9eM9nZAHew1KEJAJnANMAbKBdsCFwAUui6wVOVFawbp9R5gR2+W0h9ROGdSJIH8fj3Z7/eXT3YjAwjmmtIphNIcz8yjxKTkM7tqByPanLtTnbo1OhlDVX7gjkNbs26QjlJRXnlb+pEpwgB/TBnfms52HeWTuULeXhd+UlsvH2w5x5/QBdA/33AQqw2jJauZRbp3S/OuUlFeQkJbHgvG9nRbb6fDuSoOtxOpdmXQI9Kv+r+R0zRnWjezCEhLS3NvtVVmpPPrRLrqGBnHzOWZUl2GcjjOckEfZ8uNRSsorvSJ/AqZBcbnKSuXL3ZmcM6iT0yoFTxvcmUA/Hz7d4d7aXu99n872g/ksnDO4yTP9DcM4mTPyKPEpOYjAhJgW0qBYC1w1us2o25b0oxw5Vtrg2vFN1T7QjymDOvHpjkNUumm0V1FJOY9/vodRvcKZO7K7W97TMFozZ+RR1ifnMLR7KGHB3lGhws6/zO/VsW2ZswNprVbvysTXR5gy0Lmjoc4b3o3MghK+/9E9hZ9f+DqJ7MISHr4w1sw5MQwn6BgSyMAuIc2ej1JcVsGWH496xfyTKvX2W4jIYGAoEFZreHAojpFfhg2rEzMZHx3p9P8gpg/pQoCfD59sP0RctHNyM/U5kHucf65L5WejujOmd+OLghmGYc+EvlEs25xOWUUl/r5N6xLfvD+P0grvyZ9Aw3cog3AMCw7HMUS46jEG+JXLI2sF9ucUsTfz2GlNZqxPSKAf5wzsxGc7Dru82+svn+7GR+B3ZpiwYTjV6eRR4pNz8PURxrn4H8qmqPcORVWXA8tFZKKqxrsxplZjddXs+GYUg7TjvOFdWbUrkx8OHGVsH9fcOXyXksMn2w/x63MHeHSdBcNojWrmUZp69x+fksOwHmF08KIK33busZJE5AEReUVEXq16uDyyVmD1rkwGdgmhT1R7l1x/+pAuBPj68KmLJjlWVCqPfryL7mFB3HR2P5e8h2G0Zc3NoxSVlLP1gHflT8Beg7IcCANWA5/UeBgNyD9exsa0XKdMZqxPaJA/Zw3oyKc7DqPq/G6v9zanszOjgN/NGUy7ALM+vGG4woS+UU2ej5KwP4/ySvWq/AnYa1CCVfV3qvqOqr5X9bBzcRGZLSJ7RCRJRBbWsT9QRN629n8nItE19t1vbd8jIrNqbH9VRLJEZEeta/1BRLaJyBYR+UJEPDq29eu9WVRUqkvyJzWdN7wbB4+eYKuT16g+Zg0THtPbDBM2DFdqTh4lPjkHPx9hXLR3DZKx06B8bK2J0iQi4gs8D8wBYoEFIhJb67DrgTxV7Y+jJP5frXNjgfk4RpnNBl6wrgfwmrWttidUdYSqjgI+Bh5uaszOtGpXJh1DAhjVM9yl73NubBf8fcXptb2e/yqJI8dKePjCoWZJX8NwoebMR4lPPsKoXuFeN8HYToNyF45GpVhECkSkUEQKbJw3HkhS1RRVLQWWAvNqHTMPqFr9cRkwXRx/veYBS1W1RFVTgSTreqjqWuCUDkdVrRlTe8Bj9d1Lyyv5Zk820wd3cfmcjbB2/kzu35GV2w85rdvrx5zjLF6XysWje5hVGA3DxZqaRykoLmP7wXyv6+4Ce0sAd1BVH1UNUtVQ63WojWv3AA7UeJ1ubavzGFUtB/KBKJvnnkJEHhORA8CV1HOHIiI3ikiCiCRkZ2fb+DSabmNqLoUl5S7v7qoyZ3g30vNOOG1J0T9/moivj3DfbDNM2DDcoSl5lE2puVQqXpeQB3ulV0RErhKRh6zXvURkvOtDazpV/T9V7QW8CdxezzGvqGqcqsZ16tTJJXGsTswk0M+Hyf07uuT6tc2M7YKfj7By++nX9tqQksOnOw5zy5R+dA0z81cNwx2akkeJT84hwNeHMS6aKnA67HR5vQBMBH5uvT6GIzfSmINArxqve1rb6jxGRPxwjCbLsXluQ94ELmnC8U6jqqzalclZAzq6bWRUeHAAZzqh26vCqibcI7wdN55tqgkbhrs0JY8Sn5LD6N7hBPl738hLOw3KGap6G1AMoKp5gJ2VXDYBA0QkRkQCcCTZV9Q6ZgVwrfX8UmCNOv4irgDmW6PAYoABwMaG3kxEBtR4OQ/YbSNGp9t9uJCDR0+4dLhwXc4f3pUfc4+zM8NOeqtu7yYcYNehAhbOGeyVP6yG0VrZzaMcPV7KrkMFXpk/AXsNSpk1wkoBRKQT0GhHn5UTuR34HEgE3lHVnSLyqIjMtQ5bDESJSBJwN7DQOncn8A6wC/gMuE1VK6z3XwLEA4NEJF1Erreu9RcR2SEi24CZOAYTuN3qXZkATHPR7Pj6zIjtiq9P80d7FRaX8eQXe4jrE8EFI7o5OTrDMBpjJ4/yXWou6qX5E7CxYiPwDPAB0FlEHsNxJ/GgnYur6kpgZa1tD9d4XgxcVs+5jwGP1bF9QT3He6SLq7bViZmM6hVO5w7uzT9Etg/gzH5RrNx+iHtnDWryUN/nvkriyLFSXr1unBkmbBgeMKFvFP+J38/2g/n1lmGJT84hyN+HUb3D3RucTXZGeb0J3Af8GTgE/ExV33V1YC1RZkExW9Pznbr2SVPMGdaNtJzjJB4qbNJ5+3OK+Pe3aVwypicjXDxvxjCMutnJo8Qn5xDXJ5JAP+/skq63QRGRyKoHkAUsAd4CMq1tRi1fVheD9EyDMmtoF3wEPt3RtG6vP61MxM9XuG/2IBdFZhhGYxrLo+QcK2FPZqHX5k+g4TuUzUCC9TEb2Avss55vdn1oLc/qxEx6RbZjYJcQj7x/VEggE/pG8UkTRnutTz7C5zszuXVKP7qEmmHChuFJDeVRqhqaCV6aP4EGGhRVjVHVvjiKQl6oqh1VNQrHGilfuCvAluJ4aTnfJh3h3CFdPJqDOG94N1KyHeuwNKbmMOEbzjLDhA3D0xqajxKfcoTgAF9G9AzzQGT22BnlNcFKrgOgqp8CZ7oupJZp3b4jlJZXMsND3V1VZg3tio/AJzZGe7296QC7DxfywHlDzDBhw/ACDeVR4pNzGBcd2eSVHd3JTmQZIvKgiERbj/8DMlwdWEuzelcmHYL8GBfj2fRSpw6BjI+JbHSNlILiMp76Yg/joyM5b3hXN0VnGEZD6sujZBUUk5xd5NX5E7DXoCwAOuEYOvwB0NnaZlgqKpU1u7OYOqizV/z3cP7wbuzLOsa+zPpHez23Jonc46U8dEGsGSZsGF6krjxKvHXH4q3zT6rYGTacq6p3qepo63GXqjZtebFWbsuBPHKKSt1WDLIxs4Z1RYR6a3ulHini3/9L5dIxPRnuxf2xhtEW1ZVH2ZCSQ4cgP4Z2t1OX13MaGjb8d+vjRyKyovbDbRG2AKt2ZeHnI5wz0DXFJpuqc4cgxkVH1jtr/k8rEwnw9eHeWWaYsGF4m7ryKPHJOZwRE4mfF/SANKShmfJvWB+fdEcgLdnqxEzO6BtJWDt/T4dS7bxhXXnko10kZR2jf+efhjH/L+kIq3Zlcu+sQXQ2w4QNw+vUzKPcOgUyjp4gLec4V03o4+nQGtXQsOGquSYJwDpV/UZVvwG+xVH40cDRfZSUdcxjkxnrM2e4ox5XzeR8eUUlj360i16R7bh+coynQjMMoxE18yjxyVb+xMsT8mAvKf8lEFzjdTscc1MM4MtERzFIb2tQuoQGEdcngpU7fsqjLN10gD2ZhTwwxwwTNgxvVjOPEp+SQ3iwP0O6enf+BOw1KEGqWj1Lznoe3MDxbcqqXZkM7tqBXpHe9yU5b3g3Eg8VkHqkiPwTZfxt1V7Gx0Qye5gZJmwY3qxmHqUqf+Lq5cSdwU6DUiQiY6peiMhY4ITrQmo58opKSdif53V3J1XmWPNLVm4/xLNf7iPveCkPm2HChuH1qvIo721O5+DRE14/XLiKnfL1vwbeFZEMQICuwBWuDKql+HpvFhWV6jXDhWvrFtaOMb3DWbLxRw7nF3P52F4M62GGCRtGS1BVzh5gYj/3LCd+uuzMQ9kEDAZuAW4GhtRI2Ldpq3dl0alDICO8+I/0ecO7kZ53giB/X+4xw4QNo8WoKgIZ1T7AYwVnm6rRBkVEbgPaq+oOVd0BhIjIra4PzbuVlFfwzd5szh3S2av7Ns8b3o0APx/umj6ATh0CPR2OYRg2VeVRJvSLajHd1Ha6vH6lqs9XvVDVPBH5FfCC68Lyft+l5HKspNxr8ydVuoe347v7pxMe7D1zZAzDaFzHkEAenTeUsX3qXr3RG9lpUHxFRNRaYMNaXz7AtWF5v9WJmQT5+zCpv/f3bUa0b/PfLsNoka6ZGO3pEJrEToPyGfC2iLxsvb7J2tZmqSqrd2Vy1oBOZj6HYRiGxc6w4d8Ba3Ak5W/BMdHxXlcG5e12HSogI7/Y42ufGIZheBM7o7wqVfUlVb1UVS8FdgHP2rm4iMwWkT0ikiQiC+vYHygib1v7vxOR6Br77re27xGRWTW2vyoiWSKyo9a1nhCR3SKyTUQ+EJFwOzE2x+pdWYjA1MGdXfUWhmEYLY6t0pUiMlpEHheRNOBRYLeNc3yB54E5QCywQERiax12PZCnqv2Bp4G/WufGAvOBocBs4AXregCvWdtqWwUMU9URwF7gfjufW3N0CwvisrE9zagpwzCMGhoqXz9QRH4vIrtx3JEcAERVp6qqnTuU8UCSqqaoaimwFJhX65h5wOvW82XAdHGMj5sHLFXVElVNBZKs66Gqa4FT1mNR1S9Utdx6uQHoaSPGZrl8XC8ev3Skqy5vGIbRIjV0h7IbmAZcoKqTrUakognX7oGjEaqSbm2r8xirMcgHomye25BfAp/WtUNEbhSRBBFJyM7ObsIlDcMwjIY01KBcDBwCvhKRf4rIdBylV7yateZ9OfBmXftV9RVVjVPVuE6dvGNBLMMwjNagofVQPlTV+TjKrnyFo6ZXZxF5UURm2rj2QaBXjdc9rW11HiMifkAYkGPz3FOIyHXABcCVVfNmDMMwDPewM8qrSFXfUtULcfxh/wHHUOLGbAIGiEiMiATgSLLXXjp4BXCt9fxSYI3VEKwA5lujwGKAAcDGht5MRGYD9wFzVfW4jfgMwzAMJ2rSAsWqmmd1GU23cWw5cDvwOZAIvKOqO0XkURGZax22GIgSkSTgbmChde5O4B0cQ5Q/A25T1QoAEVkCxAODRCRdRK63rvUc0AFYJSJbROSlpnxuhmEYxumRttwzFBcXpwkJCZ4OwzAMo0URkc2qGld7e5PuUAzDMAyjPqZBMQzDMJyiTXd5iUg2sN/TcdTSETji6SBsakmxQsuKtyXFCi0r3pYUK3hnvH1U9ZR5F226QfFGIpJQV9+kN2pJsULLirclxQotK96WFCu0rHhNl5dhGIbhFKZBMQzDMJzCNCje5xVPB9AELSlWaFnxtqRYoWXF25JihRYUr8mhGIZhGE5h7lAMwzAMpzANimEYhuEUpkFxMRHpJSJficguEdkpIndZ2yNFZJWI7LM+RljbRUSesZY/3iYiY2pcq7eIfCEiidb1or083setayRaxzh1+YNmxDpYROJFpERE7ql1rQaXq/aWWOu7jrfGW+N6viLyg4h87M2xiki4iCwTx3LiiSIy0cvj/Y11jR0iskREgpwdb5Ooqnm48AF0A8ZYzzvgWJ44FngcWGhtXwj81Xp+Ho7FwQSYAHxX41pfAzOs5yFAsLfGC5wJ/A/wtR7xwBQPx9oZGAc8BtxT4zq+QDLQFwgAtgKxXhprndfxgp+DOuOtcb27gbeAj705VhwryN5gPQ8Awr01XhyLDqYC7azX7wDXOTvepjzMHYqLqeohVf3eel6Io/JyD05e/vh14GfW83nAf9RhAxAuIt1EJBbwU9VV1rWOqQvK9DsrXkCBIBy/lIGAP5DpyVhVNUtVNwFltS5lZ7lqr4i1ges4lRO/tohIT+B84F/OjtOZsYpIGHA2jiroqGqpqh711ngtfkA7cawnFQxkODvepjANihtZXVSjge+ALqp6yNp1GOhiPa9v+eOBwFERed/qOnhCRHy9NV5VjcexMNsh6/G5qiZ6ONb6nO6S001ymrHWdx2XcUK8f8exVlGlK+Kr6TRjjQGygX9bv2P/EpH2LguW04tXVQ8CTwI/4vgdy1fVL1wXbeNMg+ImIhICvAf8WlULau5Tx/1qY+O3/YCzgHtw3P72Ba5zfqQOpxuviPQHhuBYlK0HME1EzvLGWN3JWbE2dB1ncsLPwQVAlqpudlWMNd7LGb9jY4AXVXU0UIS1RpMrOOFrG4HjriYG6A60F5GrXBSuLaZBcQMR8cfxg/Omqr5vbc60uoawPmZZ2+tb/jgd2GJ1y5QDH+L44ffWeC8CNlhdc8dw5FlckeBsSqz1adaS0x6Ktb7rOJ2T4p0EzBWRNBxdidNE5L9eGms6kK6qVXd8y/CO37H6nAukqmq2qpYB7+PIXXqMaVBcTEQER59soqr+rcaumssfXwssr7H9GnGYgOM29hCOJZXDRaSqwuc0HCtaemu8PwLniIif9ctzDo6+Yk/GWh87y1V7RawNXMepnBWvqt6vqj1VNRrH13WNqjr1v2gnxnoYOCAig6xN0/GO37H6/AhMEJFg65rTcfLvWJM1JYNvHs0a0TEZx63rNmCL9TgPiAK+BPYBq4FI63gBnscx6mg7EFfjWjOs62wHXgMCvDVeHCOnXsbxA74L+JsXxNoVx3+hBcBR63mote88HKNtkoH/89ZY67uOt8Zb65pTcM0oL2f+HIwCEqxrfQhEeHm8i4DdwA7gDSDQ2fE25WFKrxiGYRhOYbq8DMMwDKcwDYphGIbhFKZBMQzDMJzCNCiGYRiGU5gGxTAMw3AK06AYhhtZ83W+FZE5NbZdJiKfeTIuw3AGM2zYMNxMRIYB7+Ko4eQH/ADMVtXkZlzLTx2VEwzD40yDYhgeICKP46gV1d762AcYhqMq8yOqutwqHPiGdQzA7aq6XkSmAH8A8oDBqjrQvdEbRt1Mg2IYHmBVsf0eKAU+Bnaq6n9FJBzYiOPuRYFKVS0WkQHAElWNsxqUT4BhqprqifgNoy5+ng7AMNoiVS0SkbeBY8DlwIU1VuMLAnrjWNviOREZBVTgWMKgykbTmBjexjQohuE5ldZDgEtUdU/NnSLyCI5FyUbiGEBTXGN3kZtiNAzbzCgvw/C8z4E7rIqxiMhoa3sYcEhVK4GrcRTcNAyvZRoUw/C8P+BIxm8TkZ3Wa4AXgGtFZCswGHNXYng5k5Q3DMMwnMLcoRiGYRhOYRoUwzAMwylMg2IYhmE4hWlQDMMwDKcwDYphGIbhFKZBMQzDMJzCNCiGYRiGU/w/D44SqDusO0EAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "A107=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A401\").sort(col('year').desc())\n",
-                "A107 = A107.toPandas()\n",
-                "\n",
-                "A107\n",
-                "plt.plot(A107['year'],A107['Accidentprob'])\n",
-                "plt.legend(['Accident probability per one mile travlled'], loc='upper left')\n",
-                "plt.ylabel('Accident probability per one mile travlled')\n",
-                "plt.xlabel('Year')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 16,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|        Accidentprob|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|    A5051|2013|              2|482.20000000000005|0.004147656574035669|\n",
-                        "|    A5040|2005|              8|            2173.4|0.003680868685009662|\n",
-                        "|    A1138|2010|              3|             873.0|0.003436426116838488|\n",
-                        "|    A5037|2014|              3|             925.5|0.003241491085899...|\n",
-                        "|    A1138|2014|              1|             321.0|0.003115264797507788|\n",
-                        "|    A5037|2019|              3|             983.5|0.003050330452465684|\n",
-                        "|    A1138|2015|              1|             336.5|0.002971768202080...|\n",
-                        "|    A1138|2016|              1|             338.0|0.002958579881656...|\n",
-                        "|    A1138|2018|              1|             345.0|0.002898550724637681|\n",
-                        "|    A1138|2019|              1|             347.0|0.002881844380403458|\n",
-                        "|    A5153|2016|              2|             700.8|0.002853881278538813|\n",
-                        "|    A4205|2017|             13| 4657.799999999999|0.002791017218429302|\n",
-                        "|    A3008|2012|              3|            1085.1|0.002764722145424385|\n",
-                        "|    A3008|2014|              3|            1100.1|0.002727024815925825|\n",
-                        "|    A4205|2018|             11|            4641.0|0.002370178840767076|\n",
-                        "|    A4205|2019|             11|            4652.9|0.002364117002299641|\n",
-                        "|    A4205|2010|             15| 6420.700000000001|0.002336193872942...|\n",
-                        "|    A4205|2007|             15|            6634.1|0.002261045205830...|\n",
-                        "|    A5045|2010|              1|             444.6|0.002249212775528565|\n",
-                        "|    A5045|2018|              1|             447.8|0.002233139794551...|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accidentprobovermilestravlledbycar=result.withColumn('Accidentprob', result[2]/result[3])\n",
-                "Accidentprobovermilestravlledbycar.sort(col('Accidentprob').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 17,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|        Accidentprob|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|    A5051|2013|              2|482.20000000000005|0.004147656574035669|\n",
-                        "|    A5040|2005|              8|            2173.4|0.003680868685009662|\n",
-                        "|    A1138|2010|              3|             873.0|0.003436426116838488|\n",
-                        "|    A5037|2014|              3|             925.5|0.003241491085899...|\n",
-                        "|    A1138|2014|              1|             321.0|0.003115264797507788|\n",
-                        "|    A5037|2019|              3|             983.5|0.003050330452465684|\n",
-                        "|    A1138|2015|              1|             336.5|0.002971768202080...|\n",
-                        "|    A1138|2016|              1|             338.0|0.002958579881656...|\n",
-                        "|    A1138|2018|              1|             345.0|0.002898550724637681|\n",
-                        "|    A1138|2019|              1|             347.0|0.002881844380403458|\n",
-                        "|    A5153|2016|              2|             700.8|0.002853881278538813|\n",
-                        "|    A4205|2017|             13| 4657.799999999999|0.002791017218429302|\n",
-                        "|    A3008|2012|              3|            1085.1|0.002764722145424385|\n",
-                        "|    A3008|2014|              3|            1100.1|0.002727024815925825|\n",
-                        "|    A4205|2018|             11|            4641.0|0.002370178840767076|\n",
-                        "|    A4205|2019|             11|            4652.9|0.002364117002299641|\n",
-                        "|    A4205|2010|             15| 6420.700000000001|0.002336193872942...|\n",
-                        "|    A4205|2007|             15|            6634.1|0.002261045205830...|\n",
-                        "|    A5045|2010|              1|             444.6|0.002249212775528565|\n",
-                        "|    A5045|2018|              1|             447.8|0.002233139794551...|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accidentprobovermilestravlledbycar=result.withColumn('Accidentprob', result[2]/result[3])\n",
-                "Accidentprobovermilestravlledbycar.sort(col('Accidentprob').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 23,
-            "metadata": {},
-            "outputs": [
-                {
-                    "ename": "AnalysisException",
-                    "evalue": "cannot resolve '`Accident_Severity`' given input columns: [Total_accidents, road_name, year];\n'Project [road_name#2611, year#2607, Total_accidents#2603, CASE WHEN ('Accident_Severity = 1) THEN Fatal WHEN ('Accident_Severity = 2) THEN KSI WHEN ('Accident_Severity = 3) THEN Slight ELSE 'Accident_Severity END AS Accident_Severity#2615]\n+- Project [CASE WHEN (road_name#2347 = U0) THEN U WHEN (road_name#2347 = C0) THEN C ELSE road_name#2347 END AS road_name#2611, year#2607, Total_accidents#2603]\n   +- Project [road_name#2347, Year#455 AS year#2607, Total_accidents#2603]\n      +- Project [road_name#2347, Year#455, cast(Total_accidents#2599L as int) AS Total_accidents#2603]\n         +- Aggregate [road_name#2347, Year#455], [road_name#2347, Year#455, count(road_name#2347) AS Total_accidents#2599L]\n            +- Project [concat(1st_Road_Class#1935, 1st_Road_Number#389) AS road_name#2347, Year#455, Accident_Index#387, Accident_Severity#392]\n               +- Sort [Year#455 ASC NULLS FIRST], true\n                  +- Project [Accident_Index#387, Accident_Severity#392, 1st_Road_Class#1935, 1st_Road_Number#389, Year#455]\n                     +- Union false, false\n                        :- Project [Accident_Index#387, 1st_Road_Class#1935, 1st_Road_Number#389, 2nd_Road_Class#390, 2nd_Road_Number#391, Accident_Severity#392, Carriageway_Hazards#393, Date#394, Day_of_Week#395, Did_Police_Officer_Attend_Scene_of_Accident#396, Junction_Control#397, Junction_Detail#398, Latitude#399, Light_Conditions#400, Local_Authority_(District)#401, Local_Authority_(Highway)#402, Location_Easting_OSGR#403, Location_Northing_OSGR#404, Longitude#405, LSOA_of_Accident_Location#406, Number_of_Casualties#407, Number_of_Vehicles#408, Pedestrian_Crossing-Human_Control#409, Pedestrian_Crossing-Physical_Facilities#410, ... 9 more fields]\n                        :  +- Project [Accident_Index#387, CASE WHEN (1st_Road_Class#388 = Motorway) THEN M WHEN (1st_Road_Class#388 = Unclassified) THEN U ELSE 1st_Road_Class#388 END AS 1st_Road_Class#1935, 1st_Road_Number#389, 2nd_Road_Class#390, 2nd_Road_Number#391, Accident_Severity#392, Carriageway_Hazards#393, Date#394, Day_of_Week#395, Did_Police_Officer_Attend_Scene_of_Accident#396, Junction_Control#397, Junction_Detail#398, Latitude#399, Light_Conditions#400, Local_Authority_(District)#401, Local_Authority_(Highway)#402, Location_Easting_OSGR#403, Location_Northing_OSGR#404, Longitude#405, LSOA_of_Accident_Location#406, Number_of_Casualties#407, Number_of_Vehicles#408, Pedestrian_Crossing-Human_Control#409, Pedestrian_Crossing-Physical_Facilities#410, ... 10 more fields]\n                        :     +- Project [Accident_Index#387, 1st_Road_Class#388, 1st_Road_Number#389, 2nd_Road_Class#390, 2nd_Road_Number#391, Accident_Severity#392, Carriageway_Hazards#393, Date#394, Day_of_Week#395, Did_Police_Officer_Attend_Scene_of_Accident#396, Junction_Control#397, Junction_Detail#398, Latitude#399, Light_Conditions#400, Local_Authority_(District)#401, Local_Authority_(Highway)#402, Location_Easting_OSGR#403, Location_Northing_OSGR#404, Longitude#405, LSOA_of_Accident_Location#406, Number_of_Casualties#407, Number_of_Vehicles#408, Pedestrian_Crossing-Human_Control#409, Pedestrian_Crossing-Physical_Facilities#410, ... 10 more fields]\n                        :        +- Relation[Accident_Index#387,1st_Road_Class#388,1st_Road_Number#389,2nd_Road_Class#390,2nd_Road_Number#391,Accident_Severity#392,Carriageway_Hazards#393,Date#394,Day_of_Week#395,Did_Police_Officer_Attend_Scene_of_Accident#396,Junction_Control#397,Junction_Detail#398,Latitude#399,Light_Conditions#400,Local_Authority_(District)#401,Local_Authority_(Highway)#402,Location_Easting_OSGR#403,Location_Northing_OSGR#404,Longitude#405,LSOA_of_Accident_Location#406,Number_of_Casualties#407,Number_of_Vehicles#408,Pedestrian_Crossing-Human_Control#409,Pedestrian_Crossing-Physical_Facilities#410,... 10 more fields] csv\n                        +- Project [Accident_Index#793, 1st_Road_Class#1901, 1st_Road_Number#808, 2nd_Road_Class#813, 2nd_Road_Number#814, Accident_Severity#799, Carriageway_Hazards#821, Date#802, Day_of_Week#803, Did_Police_Officer_Attend_Scene_of_Accident#823, Junction_Control#812, Junction_Detail#811, Latitude#797, Light_Conditions#817, Local_Authority_(District)#805, Local_Authority_(Highway)#806, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, LSOA_of_Accident_Location#824, Number_of_Casualties#801, Number_of_Vehicles#800, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                           +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1867 as int) = 6) THEN U ELSE 1st_Road_Class#1867 END AS 1st_Road_Class#1901, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                              +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1833 as int) = 5) THEN C ELSE 1st_Road_Class#1833 END AS 1st_Road_Class#1867, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                 +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1799 as int) = 4) THEN B ELSE 1st_Road_Class#1799 END AS 1st_Road_Class#1833, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                    +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1765 as int) = 3) THEN A ELSE 1st_Road_Class#1765 END AS 1st_Road_Class#1799, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                       +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1731 as int) = 2) THEN A(M) ELSE 1st_Road_Class#1731 END AS 1st_Road_Class#1765, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                          +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#807 as int) = 1) THEN M ELSE 1st_Road_Class#807 END AS 1st_Road_Class#1731, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                             +- Union false, false\n                                                :- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, 1st_Road_Class#807, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                                :  +- Relation[Accident_Index#793,Location_Easting_OSGR#794,Location_Northing_OSGR#795,Longitude#796,Latitude#797,Police_Force#798,Accident_Severity#799,Number_of_Vehicles#800,Number_of_Casualties#801,Date#802,Day_of_Week#803,Time#804,Local_Authority_(District)#805,Local_Authority_(Highway)#806,1st_Road_Class#807,1st_Road_Number#808,Road_Type#809,Speed_limit#810,Junction_Detail#811,Junction_Control#812,2nd_Road_Class#813,2nd_Road_Number#814,Pedestrian_Crossing-Human_Control#815,Pedestrian_Crossing-Physical_Facilities#816,... 9 more fields] csv\n                                                +- Project [Accident_Index#677, Location_Easting_OSGR#678, Location_Northing_OSGR#679, Longitude#680, Latitude#681, Police_Force#682, Accident_Severity#683, Number_of_Vehicles#684, Number_of_Casualties#685, Date#686, Day_of_Week#687, Time#688, Local_Authority_(District)#689, Local_Authority_(Highway)#690, 1st_Road_Class#691, 1st_Road_Number#692, Road_Type#693, Speed_limit#694, Junction_Detail#695, Junction_Control#696, 2nd_Road_Class#697, 2nd_Road_Number#698, Pedestrian_Crossing-Human_Control#699, Pedestrian_Crossing-Physical_Facilities#700, ... 9 more fields]\n                                                   +- Relation[Accident_Index#677,Location_Easting_OSGR#678,Location_Northing_OSGR#679,Longitude#680,Latitude#681,Police_Force#682,Accident_Severity#683,Number_of_Vehicles#684,Number_of_Casualties#685,Date#686,Day_of_Week#687,Time#688,Local_Authority_(District)#689,Local_Authority_(Highway)#690,1st_Road_Class#691,1st_Road_Number#692,Road_Type#693,Speed_limit#694,Junction_Detail#695,Junction_Control#696,2nd_Road_Class#697,2nd_Road_Number#698,Pedestrian_Crossing-Human_Control#699,Pedestrian_Crossing-Physical_Facilities#700,... 9 more fields] csv\n",
-                    "output_type": "error",
-                    "traceback": [
-                        "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-                        "\u001b[0;31mAnalysisException\u001b[0m                         Traceback (most recent call last)",
-                        "\u001b[0;32m/var/folders/v0/jqv1xcw13pn37fh0ppsl8b_w0000gp/T/ipykernel_52862/2231260822.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     13\u001b[0m     ).otherwise(col(\"road_name\"))\n\u001b[1;32m     14\u001b[0m )\n\u001b[0;32m---> 15\u001b[0;31m roadaccidentsperroad=roadaccidentsperroad.withColumn(\n\u001b[0m\u001b[1;32m     16\u001b[0m     \u001b[0;34m\"Accident_Severity\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m     when(\n",
-                        "\u001b[0;32m/usr/local/Cellar/apache-spark/3.1.2/libexec/python/pyspark/sql/dataframe.py\u001b[0m in \u001b[0;36mwithColumn\u001b[0;34m(self, colName, col)\u001b[0m\n\u001b[1;32m   2453\u001b[0m         \"\"\"\n\u001b[1;32m   2454\u001b[0m         \u001b[0;32massert\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mColumn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"col should be Column\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2455\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwithColumn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolName\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcol\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msql_ctx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2456\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2457\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mwithColumnRenamed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexisting\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/py4j/java_gateway.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m   1302\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1303\u001b[0m         \u001b[0manswer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgateway_client\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend_command\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcommand\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1304\u001b[0;31m         return_value = get_return_value(\n\u001b[0m\u001b[1;32m   1305\u001b[0m             answer, self.gateway_client, self.target_id, self.name)\n\u001b[1;32m   1306\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/Cellar/apache-spark/3.1.2/libexec/python/pyspark/sql/utils.py\u001b[0m in \u001b[0;36mdeco\u001b[0;34m(*a, **kw)\u001b[0m\n\u001b[1;32m    115\u001b[0m                 \u001b[0;31m# Hide where the exception came from that shows a non-Pythonic\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    116\u001b[0m                 \u001b[0;31m# JVM exception message.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 117\u001b[0;31m                 \u001b[0;32mraise\u001b[0m \u001b[0mconverted\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    118\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    119\u001b[0m                 \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;31mAnalysisException\u001b[0m: cannot resolve '`Accident_Severity`' given input columns: [Total_accidents, road_name, year];\n'Project [road_name#2611, year#2607, Total_accidents#2603, CASE WHEN ('Accident_Severity = 1) THEN Fatal WHEN ('Accident_Severity = 2) THEN KSI WHEN ('Accident_Severity = 3) THEN Slight ELSE 'Accident_Severity END AS Accident_Severity#2615]\n+- Project [CASE WHEN (road_name#2347 = U0) THEN U WHEN (road_name#2347 = C0) THEN C ELSE road_name#2347 END AS road_name#2611, year#2607, Total_accidents#2603]\n   +- Project [road_name#2347, Year#455 AS year#2607, Total_accidents#2603]\n      +- Project [road_name#2347, Year#455, cast(Total_accidents#2599L as int) AS Total_accidents#2603]\n         +- Aggregate [road_name#2347, Year#455], [road_name#2347, Year#455, count(road_name#2347) AS Total_accidents#2599L]\n            +- Project [concat(1st_Road_Class#1935, 1st_Road_Number#389) AS road_name#2347, Year#455, Accident_Index#387, Accident_Severity#392]\n               +- Sort [Year#455 ASC NULLS FIRST], true\n                  +- Project [Accident_Index#387, Accident_Severity#392, 1st_Road_Class#1935, 1st_Road_Number#389, Year#455]\n                     +- Union false, false\n                        :- Project [Accident_Index#387, 1st_Road_Class#1935, 1st_Road_Number#389, 2nd_Road_Class#390, 2nd_Road_Number#391, Accident_Severity#392, Carriageway_Hazards#393, Date#394, Day_of_Week#395, Did_Police_Officer_Attend_Scene_of_Accident#396, Junction_Control#397, Junction_Detail#398, Latitude#399, Light_Conditions#400, Local_Authority_(District)#401, Local_Authority_(Highway)#402, Location_Easting_OSGR#403, Location_Northing_OSGR#404, Longitude#405, LSOA_of_Accident_Location#406, Number_of_Casualties#407, Number_of_Vehicles#408, Pedestrian_Crossing-Human_Control#409, Pedestrian_Crossing-Physical_Facilities#410, ... 9 more fields]\n                        :  +- Project [Accident_Index#387, CASE WHEN (1st_Road_Class#388 = Motorway) THEN M WHEN (1st_Road_Class#388 = Unclassified) THEN U ELSE 1st_Road_Class#388 END AS 1st_Road_Class#1935, 1st_Road_Number#389, 2nd_Road_Class#390, 2nd_Road_Number#391, Accident_Severity#392, Carriageway_Hazards#393, Date#394, Day_of_Week#395, Did_Police_Officer_Attend_Scene_of_Accident#396, Junction_Control#397, Junction_Detail#398, Latitude#399, Light_Conditions#400, Local_Authority_(District)#401, Local_Authority_(Highway)#402, Location_Easting_OSGR#403, Location_Northing_OSGR#404, Longitude#405, LSOA_of_Accident_Location#406, Number_of_Casualties#407, Number_of_Vehicles#408, Pedestrian_Crossing-Human_Control#409, Pedestrian_Crossing-Physical_Facilities#410, ... 10 more fields]\n                        :     +- Project [Accident_Index#387, 1st_Road_Class#388, 1st_Road_Number#389, 2nd_Road_Class#390, 2nd_Road_Number#391, Accident_Severity#392, Carriageway_Hazards#393, Date#394, Day_of_Week#395, Did_Police_Officer_Attend_Scene_of_Accident#396, Junction_Control#397, Junction_Detail#398, Latitude#399, Light_Conditions#400, Local_Authority_(District)#401, Local_Authority_(Highway)#402, Location_Easting_OSGR#403, Location_Northing_OSGR#404, Longitude#405, LSOA_of_Accident_Location#406, Number_of_Casualties#407, Number_of_Vehicles#408, Pedestrian_Crossing-Human_Control#409, Pedestrian_Crossing-Physical_Facilities#410, ... 10 more fields]\n                        :        +- Relation[Accident_Index#387,1st_Road_Class#388,1st_Road_Number#389,2nd_Road_Class#390,2nd_Road_Number#391,Accident_Severity#392,Carriageway_Hazards#393,Date#394,Day_of_Week#395,Did_Police_Officer_Attend_Scene_of_Accident#396,Junction_Control#397,Junction_Detail#398,Latitude#399,Light_Conditions#400,Local_Authority_(District)#401,Local_Authority_(Highway)#402,Location_Easting_OSGR#403,Location_Northing_OSGR#404,Longitude#405,LSOA_of_Accident_Location#406,Number_of_Casualties#407,Number_of_Vehicles#408,Pedestrian_Crossing-Human_Control#409,Pedestrian_Crossing-Physical_Facilities#410,... 10 more fields] csv\n                        +- Project [Accident_Index#793, 1st_Road_Class#1901, 1st_Road_Number#808, 2nd_Road_Class#813, 2nd_Road_Number#814, Accident_Severity#799, Carriageway_Hazards#821, Date#802, Day_of_Week#803, Did_Police_Officer_Attend_Scene_of_Accident#823, Junction_Control#812, Junction_Detail#811, Latitude#797, Light_Conditions#817, Local_Authority_(District)#805, Local_Authority_(Highway)#806, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, LSOA_of_Accident_Location#824, Number_of_Casualties#801, Number_of_Vehicles#800, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                           +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1867 as int) = 6) THEN U ELSE 1st_Road_Class#1867 END AS 1st_Road_Class#1901, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                              +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1833 as int) = 5) THEN C ELSE 1st_Road_Class#1833 END AS 1st_Road_Class#1867, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                 +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1799 as int) = 4) THEN B ELSE 1st_Road_Class#1799 END AS 1st_Road_Class#1833, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                    +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1765 as int) = 3) THEN A ELSE 1st_Road_Class#1765 END AS 1st_Road_Class#1799, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                       +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#1731 as int) = 2) THEN A(M) ELSE 1st_Road_Class#1731 END AS 1st_Road_Class#1765, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                          +- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, CASE WHEN (cast(1st_Road_Class#807 as int) = 1) THEN M ELSE 1st_Road_Class#807 END AS 1st_Road_Class#1731, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                             +- Union false, false\n                                                :- Project [Accident_Index#793, Location_Easting_OSGR#794, Location_Northing_OSGR#795, Longitude#796, Latitude#797, Police_Force#798, Accident_Severity#799, Number_of_Vehicles#800, Number_of_Casualties#801, Date#802, Day_of_Week#803, Time#804, Local_Authority_(District)#805, Local_Authority_(Highway)#806, 1st_Road_Class#807, 1st_Road_Number#808, Road_Type#809, Speed_limit#810, Junction_Detail#811, Junction_Control#812, 2nd_Road_Class#813, 2nd_Road_Number#814, Pedestrian_Crossing-Human_Control#815, Pedestrian_Crossing-Physical_Facilities#816, ... 9 more fields]\n                                                :  +- Relation[Accident_Index#793,Location_Easting_OSGR#794,Location_Northing_OSGR#795,Longitude#796,Latitude#797,Police_Force#798,Accident_Severity#799,Number_of_Vehicles#800,Number_of_Casualties#801,Date#802,Day_of_Week#803,Time#804,Local_Authority_(District)#805,Local_Authority_(Highway)#806,1st_Road_Class#807,1st_Road_Number#808,Road_Type#809,Speed_limit#810,Junction_Detail#811,Junction_Control#812,2nd_Road_Class#813,2nd_Road_Number#814,Pedestrian_Crossing-Human_Control#815,Pedestrian_Crossing-Physical_Facilities#816,... 9 more fields] csv\n                                                +- Project [Accident_Index#677, Location_Easting_OSGR#678, Location_Northing_OSGR#679, Longitude#680, Latitude#681, Police_Force#682, Accident_Severity#683, Number_of_Vehicles#684, Number_of_Casualties#685, Date#686, Day_of_Week#687, Time#688, Local_Authority_(District)#689, Local_Authority_(Highway)#690, 1st_Road_Class#691, 1st_Road_Number#692, Road_Type#693, Speed_limit#694, Junction_Detail#695, Junction_Control#696, 2nd_Road_Class#697, 2nd_Road_Number#698, Pedestrian_Crossing-Human_Control#699, Pedestrian_Crossing-Physical_Facilities#700, ... 9 more fields]\n                                                   +- Relation[Accident_Index#677,Location_Easting_OSGR#678,Location_Northing_OSGR#679,Longitude#680,Latitude#681,Police_Force#682,Accident_Severity#683,Number_of_Vehicles#684,Number_of_Casualties#685,Date#686,Day_of_Week#687,Time#688,Local_Authority_(District)#689,Local_Authority_(Highway)#690,1st_Road_Class#691,1st_Road_Number#692,Road_Type#693,Speed_limit#694,Junction_Detail#695,Junction_Control#696,2nd_Road_Class#697,2nd_Road_Number#698,Pedestrian_Crossing-Human_Control#699,Pedestrian_Crossing-Physical_Facilities#700,... 9 more fields] csv\n"
-                    ]
-                }
-            ],
-            "source": [
-                "roadaccidentsperroad = Accident_Information20052019Groupedagain.groupby('road_name','Year').agg(F.count(Accident_Information20052019Groupedagain['road_name']).alias('Total_accidents'))\n",
-                "roadaccidentsperroad = roadaccidentsperroad.withColumn('Total_accidents',F.col('Total_accidents').cast(IntegerType()))\n",
-                "roadaccidentsperroad = roadaccidentsperroad.withColumnRenamed(\"Year\", \"year\")\n",
-                "roadaccidentsperroad=roadaccidentsperroad.withColumn(\n",
-                "    \"road_name\",\n",
-                "    when(\n",
-                "        col(\"road_name\") == 'U0',\n",
-                "        \"U\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"road_name\") == 'C0',\n",
-                "        \"C\"\n",
-                "    ).otherwise(col(\"road_name\"))\n",
-                ")\n",
-                "roadaccidentsperroad=roadaccidentsperroad.withColumn(\n",
-                "    \"Accident_Severity\",\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 1,\n",
-                "        \"Fatal\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 2,\n",
-                "        \"KSI\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 3,\n",
-                "        \"Slight\"\n",
-                "    ).otherwise(col(\"Accident_Severity\"))\n",
-                ")\n",
-                "#roadaccidentsperroad.sort(\"year\",'road_name').show(150)\n",
-                "roadaccidentsperroad.sort(col('Total_accidents').desc()).show(150)\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 24,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "Accidentprobovermilestravlledbycar=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.Total_accidents>20)\n",
-                "#AG20=AG20.filter(AG20.road_name.contains(\"A401\"))\n",
-                "\n",
-                "#AG20.sort(col('Accidentprob').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 25,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|        Accidentprob|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|     A572|2017|             34|380337.30000000005|8.939433497582276E-5|\n",
-                        "|     A572|2008|             67|372530.39999999997|1.798510940315206...|\n",
-                        "|     A572|2013|             44|382937.20000000007|1.149013467482396...|\n",
-                        "|     A572|2019|             26|365854.80000000005|7.106644493935844E-5|\n",
-                        "|     A572|2009|             75|379499.00000000006|1.976289792594973...|\n",
-                        "|     A572|2005|            111|          374301.4|2.965524574580805...|\n",
-                        "|     A572|2006|             91|379778.10000000003|2.396136059451558...|\n",
-                        "|     A572|2014|             49|389561.50000000006|1.257824502678010...|\n",
-                        "|     A572|2011|             51|          384701.6|1.325702830453525...|\n",
-                        "|     A572|2007|             81|374758.70000000007|2.161390782922450...|\n",
-                        "|     A572|2015|             40|398446.99999999994|1.003897632558408...|\n",
-                        "|     A572|2012|             50|          381270.1|1.311406270777593...|\n",
-                        "|     A572|2018|             25|376103.99999999994|6.647097611299003E-5|\n",
-                        "|     A572|2016|             34|395540.30000000005|8.595837137201947E-5|\n",
-                        "|     A572|2010|             51|380112.30000000005|1.341708752913283...|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name.contains(\"A572\")).show()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 26,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|        Accidentprob|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|    A1199|2015|             26|           11887.2|0.002187226596675...|\n",
-                        "|    A2010|2017|             26|           12058.0|0.002156244816719...|\n",
-                        "|    A4206|2014|             38|18349.600000000002|0.002070889828661115|\n",
-                        "|    A1208|2015|             48|24933.800000000003|0.001925097658599...|\n",
-                        "|    A1209|2012|             42|           21873.6|0.001920122887864...|\n",
-                        "|    A1209|2019|             44|           22944.0|0.001917712691771...|\n",
-                        "|    A1209|2018|             43|           22841.6|0.001882530120481928|\n",
-                        "|     A401|2015|             74|           39574.9|0.001869872065374...|\n",
-                        "|     A401|2013|             76|           40830.4|0.001861358203691...|\n",
-                        "|    A1209|2016|             41|           22068.8|0.001857826433698...|\n",
-                        "|     A401|2014|             71|40891.100000000006|0.001736319150132...|\n",
-                        "|    A1208|2017|             43|24930.300000000003|0.001724808766841...|\n",
-                        "|     A401|2011|             72|           42253.6|0.001703996819205...|\n",
-                        "|    A5201|2014|             86|           50638.3|0.001698319256373...|\n",
-                        "|    A1209|2009|             39|           23065.6|0.001690829633740...|\n",
-                        "|    A4206|2015|             31|18772.600000000002|0.001651342914673...|\n",
-                        "|    A1209|2015|             36|           22209.6|0.001620920682947...|\n",
-                        "|     A401|2012|             64| 41132.00000000001|0.001555966157736069|\n",
-                        "|     A401|2016|             61|           39309.3|0.001551795631059...|\n",
-                        "|    A4206|2016|             29|           18781.8|0.001544047961324...|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accidentprobovermilestravlledbycar.sort(col('Accidentprob').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 27,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|        Accidentprob|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|      C70|2005|             43|              null|                null|\n",
-                        "|    B4102|2005|             62|              null|                null|\n",
-                        "|    B5018|2005|             21|              null|                null|\n",
-                        "|     A143|2005|            134|1169582.9500000002|1.145707536177745...|\n",
-                        "|     A256|2005|             57|          548337.6|1.039505589257421...|\n",
-                        "|      A87|2005|             36|360015.99999999994|9.999555575307765E-5|\n",
-                        "|     A106|2006|             34|133965.09999999998|2.537974442597363...|\n",
-                        "|      A34|2006|            748| 8586384.100000001|8.711466797764147E-5|\n",
-                        "|     C187|2006|             21|              null|                null|\n",
-                        "|    B6463|2006|             23|              null|                null|\n",
-                        "|    A1139|2006|             61|          728562.0|8.372657371644418E-5|\n",
-                        "|    B1101|2006|             21|              null|                null|\n",
-                        "|    A1124|2006|             29|255480.30000000005|1.135116875939162...|\n",
-                        "|    B2177|2006|             44|              null|                null|\n",
-                        "|    B3066|2006|             22|              null|                null|\n",
-                        "|    A2043|2007|             63|          174282.5|3.614820765137061...|\n",
-                        "|      C20|2007|             27|              null|                null|\n",
-                        "|      A41|2008|            719| 5196369.300000001|1.383658393948251...|\n",
-                        "|      A57|2008|            442|3050448.6999999997|1.448967163420909...|\n",
-                        "|    A1123|2008|             53|          327694.7|1.617359084538138...|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accidentprobovermilestravlledbycar.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 18,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|       Accidentprob1|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|    A5040|2005|              8|            2173.4|0.003680868685009662|\n",
-                        "|    A4205|2005|             12|            6641.8|0.001806739136980...|\n",
-                        "|    A3038|2005|             17|11510.400000000001|0.001476925215457...|\n",
-                        "|    A5010|2005|             13|10094.400000000001|0.001287842764304...|\n",
-                        "|     A401|2005|             64| 53084.00000000001|0.001205636349935...|\n",
-                        "|    A2010|2005|             24|           21112.0|0.001136794240242...|\n",
-                        "|     A900|2005|             56|51038.600000000006|0.001097208779237675|\n",
-                        "|    A4201|2005|             80|          73926.85|0.001082150801772...|\n",
-                        "|    A1208|2005|             29|           28422.9|0.001020304050607081|\n",
-                        "|    A1209|2005|             29|           28558.4|0.001015463051151325|\n",
-                        "|    A1207|2005|             11|           10839.0|0.001014853768797...|\n",
-                        "|    A2217|2005|             70|           69951.4|0.001000694768081...|\n",
-                        "|    A5048|2005|             14|           14004.4|9.996858130301906E-4|\n",
-                        "|    A4200|2005|             56|58041.700000000004|9.648235665047715E-4|\n",
-                        "|     A107|2005|            141|          155230.6|9.083260645774738E-4|\n",
-                        "|     A203|2005|             54|           59493.3| 9.07665232891771E-4|\n",
-                        "|    A1144|2005|             13|           14478.9|8.978582627133277E-4|\n",
-                        "|     A400|2005|            184|206830.09999999998|8.896190641497539E-4|\n",
-                        "|    A3039|2005|              7|            7869.9| 8.89464923315417E-4|\n",
-                        "|    A6181|2005|             55|           62160.0|8.848133848133849E-4|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "#Accidentprobovermilestravlledbycar\n",
-                "A2005=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.year.contains(\"2005\")).sort(col('Accidentprob').desc())\n",
-                "#A2005=A2005.filter(A2005.Total_accidents)\n",
-                "\n",
-                "A2005=A2005.withColumnRenamed('Accidentprob', 'Accidentprob1')\n",
-                "A2005.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 19,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|road_name|year|Total_accidents|     Total Traffic|       Accidentprob2|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "|    A5037|2019|              3|             983.5|0.003050330452465684|\n",
-                        "|    A1138|2019|              1|             347.0|0.002881844380403458|\n",
-                        "|    A4205|2019|             11|            4652.9|0.002364117002299641|\n",
-                        "|    A5051|2019|              1|             515.4|0.001940240589833...|\n",
-                        "|    A1209|2019|             44|           22944.0|0.001917712691771...|\n",
-                        "|     A300|2019|             19|10821.300000000001|0.001755796438505...|\n",
-                        "|    A5042|2019|              1|             642.2|0.001557147306135...|\n",
-                        "|     A401|2019|             61|           40403.8|0.001509758983065949|\n",
-                        "|    A2010|2019|             18|           11990.0|0.001501251042535...|\n",
-                        "|    A2198|2019|             16|11334.800000000001|0.001411582030560...|\n",
-                        "|    A5201|2019|             62|           47668.9|0.001300638361699...|\n",
-                        "|     A107|2019|            190|          151239.9|0.001256282237689...|\n",
-                        "|    A1208|2019|             31|25027.800000000003|0.001238622651611408|\n",
-                        "|    A2217|2019|             64|53586.399999999994|0.001194332890434...|\n",
-                        "|    A1202|2019|             60| 51054.00000000001|0.001175226231049...|\n",
-                        "|    A1059|2019|              4|3451.6000000000004|0.001158882836945...|\n",
-                        "|    A4201|2019|             65|           56670.2|0.001146987305497422|\n",
-                        "|    A2205|2019|              4|            3667.9|0.001090542272144824|\n",
-                        "|    A2204|2019|              1| 923.8000000000001|0.001082485386447...|\n",
-                        "|    A4200|2019|             56|           53350.0|0.001049671977507029|\n",
-                        "+---------+----+---------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "#Accidentprobovermilestravlledbycar\n",
-                "A2019=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.year.contains(\"2019\")).sort(col('Accidentprob').desc())\n",
-                "\n",
-                "A2019=A2019.withColumnRenamed('Accidentprob', 'Accidentprob2')\n",
-                "A2019.show()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 20,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>year</th>\n",
-                            "      <th>Total_accidents</th>\n",
-                            "      <th>Total Traffic</th>\n",
-                            "      <th>Accidentprob1</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A5040</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>8</td>\n",
-                            "      <td>2173.4</td>\n",
-                            "      <td>0.003681</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A4205</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>12</td>\n",
-                            "      <td>6641.8</td>\n",
-                            "      <td>0.001807</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A3038</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>17</td>\n",
-                            "      <td>11510.4</td>\n",
-                            "      <td>0.001477</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A5010</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>13</td>\n",
-                            "      <td>10094.4</td>\n",
-                            "      <td>0.001288</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A401</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>64</td>\n",
-                            "      <td>53084.0</td>\n",
-                            "      <td>0.001206</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8494</th>\n",
-                            "      <td>U5288</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8495</th>\n",
-                            "      <td>U8160</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8496</th>\n",
-                            "      <td>B4295</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8497</th>\n",
-                            "      <td>B9134</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8498</th>\n",
-                            "      <td>B705</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>8499 rows × 5 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     road_name  year  Total_accidents  Total Traffic  Accidentprob1\n",
-                            "0        A5040  2005                8         2173.4       0.003681\n",
-                            "1        A4205  2005               12         6641.8       0.001807\n",
-                            "2        A3038  2005               17        11510.4       0.001477\n",
-                            "3        A5010  2005               13        10094.4       0.001288\n",
-                            "4         A401  2005               64        53084.0       0.001206\n",
-                            "...        ...   ...              ...            ...            ...\n",
-                            "8494     U5288  2005                1            NaN            NaN\n",
-                            "8495     U8160  2005                1            NaN            NaN\n",
-                            "8496     B4295  2005               21            NaN            NaN\n",
-                            "8497     B9134  2005                3            NaN            NaN\n",
-                            "8498      B705  2005                2            NaN            NaN\n",
-                            "\n",
-                            "[8499 rows x 5 columns]"
-                        ]
-                    },
-                    "execution_count": 20,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A2019_df=A2019.toPandas()\n",
-                "A2005_df=A2005.toPandas()\n",
-                "A2005_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 21,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>year_x</th>\n",
-                            "      <th>Total_accidents_x</th>\n",
-                            "      <th>Total Traffic_x</th>\n",
-                            "      <th>Accidentprob1</th>\n",
-                            "      <th>year_y</th>\n",
-                            "      <th>Total_accidents_y</th>\n",
-                            "      <th>Total Traffic_y</th>\n",
-                            "      <th>Accidentprob2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A5040</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>8</td>\n",
-                            "      <td>2173.4</td>\n",
-                            "      <td>0.003681</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>4116.4</td>\n",
-                            "      <td>0.000243</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A4205</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>12</td>\n",
-                            "      <td>6641.8</td>\n",
-                            "      <td>0.001807</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>11</td>\n",
-                            "      <td>4652.9</td>\n",
-                            "      <td>0.002364</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A3038</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>17</td>\n",
-                            "      <td>11510.4</td>\n",
-                            "      <td>0.001477</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>21358.7</td>\n",
-                            "      <td>0.000281</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A5010</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>13</td>\n",
-                            "      <td>10094.4</td>\n",
-                            "      <td>0.001288</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>12818.0</td>\n",
-                            "      <td>0.000312</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A401</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>64</td>\n",
-                            "      <td>53084.0</td>\n",
-                            "      <td>0.001206</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>61</td>\n",
-                            "      <td>40403.8</td>\n",
-                            "      <td>0.001510</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4948</th>\n",
-                            "      <td>B4541</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4949</th>\n",
-                            "      <td>B3010</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4950</th>\n",
-                            "      <td>B4295</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4951</th>\n",
-                            "      <td>B9134</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4952</th>\n",
-                            "      <td>B705</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>4953 rows × 9 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     road_name  year_x  Total_accidents_x  Total Traffic_x  Accidentprob1  \\\n",
-                            "0        A5040    2005                  8           2173.4       0.003681   \n",
-                            "1        A4205    2005                 12           6641.8       0.001807   \n",
-                            "2        A3038    2005                 17          11510.4       0.001477   \n",
-                            "3        A5010    2005                 13          10094.4       0.001288   \n",
-                            "4         A401    2005                 64          53084.0       0.001206   \n",
-                            "...        ...     ...                ...              ...            ...   \n",
-                            "4948     B4541    2005                  4              NaN            NaN   \n",
-                            "4949     B3010    2005                  2              NaN            NaN   \n",
-                            "4950     B4295    2005                 21              NaN            NaN   \n",
-                            "4951     B9134    2005                  3              NaN            NaN   \n",
-                            "4952      B705    2005                  2              NaN            NaN   \n",
-                            "\n",
-                            "      year_y  Total_accidents_y  Total Traffic_y  Accidentprob2  \n",
-                            "0       2019                  1           4116.4       0.000243  \n",
-                            "1       2019                 11           4652.9       0.002364  \n",
-                            "2       2019                  6          21358.7       0.000281  \n",
-                            "3       2019                  4          12818.0       0.000312  \n",
-                            "4       2019                 61          40403.8       0.001510  \n",
-                            "...      ...                ...              ...            ...  \n",
-                            "4948    2019                  2              NaN            NaN  \n",
-                            "4949    2019                  1              NaN            NaN  \n",
-                            "4950    2019                  5              NaN            NaN  \n",
-                            "4951    2019                  1              NaN            NaN  \n",
-                            "4952    2019                  2              NaN            NaN  \n",
-                            "\n",
-                            "[4953 rows x 9 columns]"
-                        ]
-                    },
-                    "execution_count": 21,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A20052019_df=pd.merge(A2005_df, A2019_df, on=['road_name'])\n",
-                "A20052019_df\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 22,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+------+-----------------+------------------+--------------------+------+-----------------+------------------+--------------------+\n",
-                        "|road_name|year_x|Total_accidents_x|   Total Traffic_x|       Accidentprob1|year_y|Total_accidents_y|   Total Traffic_y|       Accidentprob2|\n",
-                        "+---------+------+-----------------+------------------+--------------------+------+-----------------+------------------+--------------------+\n",
-                        "|    A5040|  2005|                8|            2173.4|0.003680868685009662|  2019|                1| 4116.400000000001|2.429307161597512...|\n",
-                        "|    A4205|  2005|               12|            6641.8|0.001806739136980...|  2019|               11|            4652.9|0.002364117002299641|\n",
-                        "|    A3038|  2005|               17|11510.400000000001|0.001476925215457...|  2019|                6|21358.699999999997| 2.80915973350438E-4|\n",
-                        "|    A5010|  2005|               13|10094.400000000001|0.001287842764304...|  2019|                4|           12818.0|3.120611639881417E-4|\n",
-                        "|     A401|  2005|               64| 53084.00000000001|0.001205636349935...|  2019|               61|           40403.8|0.001509758983065949|\n",
-                        "|    A2010|  2005|               24|           21112.0|0.001136794240242...|  2019|               18|           11990.0|0.001501251042535...|\n",
-                        "|     A900|  2005|               56|51038.600000000006|0.001097208779237675|  2019|               22|40655.200000000004|5.411361892205671E-4|\n",
-                        "|    A4201|  2005|               80|          73926.85|0.001082150801772...|  2019|               65|           56670.2|0.001146987305497422|\n",
-                        "|    A1208|  2005|               29|           28422.9|0.001020304050607081|  2019|               31|25027.800000000003|0.001238622651611408|\n",
-                        "|    A1209|  2005|               29|           28558.4|0.001015463051151325|  2019|               44|           22944.0|0.001917712691771...|\n",
-                        "|    A1207|  2005|               11|           10839.0|0.001014853768797...|  2019|                5|           11614.0|4.305148958153952...|\n",
-                        "|    A2217|  2005|               70|           69951.4|0.001000694768081...|  2019|               64|53586.399999999994|0.001194332890434...|\n",
-                        "|    A5048|  2005|               14|           14004.4|9.996858130301906E-4|  2019|                3|           14368.1|2.087958741935259...|\n",
-                        "|    A4200|  2005|               56|58041.700000000004|9.648235665047715E-4|  2019|               56|           53350.0|0.001049671977507029|\n",
-                        "|     A107|  2005|              141|          155230.6|9.083260645774738E-4|  2019|              190|          151239.9|0.001256282237689...|\n",
-                        "|     A203|  2005|               54|           59493.3| 9.07665232891771E-4|  2019|               43|47062.100000000006|9.136863845854731E-4|\n",
-                        "|    A1144|  2005|               13|           14478.9|8.978582627133277E-4|  2019|                3|           12381.1|2.423048032888838...|\n",
-                        "|     A400|  2005|              184|206830.09999999998|8.896190641497539E-4|  2019|              132|132186.40000000002|9.985898700622755E-4|\n",
-                        "|    A3039|  2005|                7|            7869.9| 8.89464923315417E-4|  2019|                2| 4936.800000000001|4.051207259763408...|\n",
-                        "|    A6181|  2005|               55|           62160.0|8.848133848133849E-4|  2019|               12|           60865.3|1.971566721925300...|\n",
-                        "+---------+------+-----------------+------------------+--------------------+------+-----------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "A20052019_spark=spark.createDataFrame(A20052019_df)\n",
-                "A20052019_spark.show()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 52,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+------+-----------------+---------------+--------------------+------+-----------------+---------------+--------------------+\n",
-                        "|road_name|year_x|Total_accidents_x|Total Traffic_x|       Accidentprob1|year_y|Total_accidents_y|Total Traffic_y|       Accidentprob2|\n",
-                        "+---------+------+-----------------+---------------+--------------------+------+-----------------+---------------+--------------------+\n",
-                        "|      A51|  2005|              195|     1361920.91|1.431801204961307...|  2019|               46|      1417898.6|3.244237634482465...|\n",
-                        "+---------+------+-----------------+---------------+--------------------+------+-----------------+---------------+--------------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "A20052019_spark.filter(A20052019_spark.road_name==\"A51\").show()\n"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# Roads that have worsened"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 23,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+------+-----------------+------------------+------+-----------------+------------------+--------------------+\n",
-                        "|road_name|year_x|Total_accidents_x|   Total Traffic_x|year_y|Total_accidents_y|   Total Traffic_y|    Accidentprobdiff|\n",
-                        "+---------+------+-----------------+------------------+------+-----------------+------------------+--------------------+\n",
-                        "|    A5201|  2005|               61|           70569.4|  2019|               62|           47668.9|4.362410450151353...|\n",
-                        "|     A107|  2005|              141|          155230.6|  2019|              190|          151239.9|3.479561731124480...|\n",
-                        "|     A200|  2005|               76|184972.90000000002|  2019|              111|          146569.4|3.464494250935357...|\n",
-                        "|     A302|  2005|               67|         131833.86|  2019|               71|           85467.0|3.225145733737464...|\n",
-                        "|     A401|  2005|               64| 53084.00000000001|  2019|               61|           40403.8|3.041226331299987E-4|\n",
-                        "|    A1010|  2005|              128|          201602.9|  2019|              164|175955.29999999996|2.971434008112997...|\n",
-                        "|    A2217|  2005|               70|           69951.4|  2019|               64|53586.399999999994|1.936381223530468...|\n",
-                        "|    A1201|  2005|               59|           94666.1|  2019|               68| 84252.70000000001|1.838526290358478E-4|\n",
-                        "|    A3211|  2005|               68|          235586.0|  2019|               60|          127278.8|1.827641389504139...|\n",
-                        "|    A3212|  2005|               81|195004.90000000002|  2019|               81|136131.69999999998|1.796378583614623...|\n",
-                        "|    A4000|  2005|               61|          105840.9|  2019|               68| 91535.50000000001|1.665444303006302...|\n",
-                        "|     A202|  2005|              184|230879.09999999998|  2019|              181|194389.30000000002|1.341673052521284E-4|\n",
-                        "|     A400|  2005|              184|206830.09999999998|  2019|              132|132186.40000000002|1.089708059125216...|\n",
-                        "|     A215|  2005|              205|          325723.7|  2019|              193|          261788.8|1.078677380099292E-4|\n",
-                        "|     A105|  2005|              211|          338750.4|  2019|              213|294932.10000000003|9.932263345984761E-5|\n",
-                        "|    A3205|  2005|               85|          183578.2|  2019|               75|136013.19999999998|8.839912830473475E-5|\n",
-                        "|     A501|  2005|              192|          366603.6|  2019|              215|351296.89999999997|8.829148099321878E-5|\n",
-                        "|    A4200|  2005|               56|58041.700000000004|  2019|               56|           53350.0| 8.48484110022574E-5|\n",
-                        "|     A201|  2005|              108|          176423.3|  2019|               90|          130759.7|7.612141842418653E-5|\n",
-                        "|     A124|  2005|              208|          453632.0|  2019|              201|379668.80000000005|7.088734528168871E-5|\n",
-                        "+---------+------+-----------------+------------------+------+-----------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "#### For Bad roads\n",
-                "A20052019_sparkhighprobchange=A20052019_spark.withColumn('Accidentprobdiff', A20052019_spark[8]-A20052019_spark[4])\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accidentprob1\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accidentprob2\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accident_Severity_x\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accident_Severity_y\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.na.drop()\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.filter(A20052019_sparkhighprobchange.Total_accidents_x>50)\n",
-                "\n",
-                "A20052019_sparkhighprobchange.sort(col('Accidentprobdiff').desc()).show()"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# Roads that have improved"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 33,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+------+-----------------+------------------+------+-----------------+------------------+--------------------+\n",
-                        "|road_name|year_x|Total_accidents_x|   Total Traffic_x|year_y|Total_accidents_y|   Total Traffic_y|    Accidentprobdiff|\n",
-                        "+---------+------+-----------------+------------------+------+-----------------+------------------+--------------------+\n",
-                        "|     A900|  2005|               56|51038.600000000006|  2019|               22|40655.200000000004|5.560725900171079E-4|\n",
-                        "|     A579|  2005|              136|325022.39999999997|  2019|               28|          329036.3|3.333357049349358...|\n",
-                        "|    A3217|  2005|               61| 82273.20000000001|  2019|               30|           71598.0|3.224260864361426...|\n",
-                        "|     A665|  2005|              171| 345083.0999999999|  2019|               59|335789.39999999997|3.198274474296682E-4|\n",
-                        "|     A186|  2005|              139|          279226.8|  2019|               67|          335497.2|2.980996153780121...|\n",
-                        "|    A2216|  2005|               58|           93240.7|  2019|               29| 82176.20000000001|2.691457205820912E-4|\n",
-                        "|    A6010|  2005|              118|          274711.4|  2019|               48|272742.10000000003|2.535512615868446E-4|\n",
-                        "|     A306|  2005|               61|146696.69999999998|  2019|               23|          133641.8|2.437220991188871...|\n",
-                        "|    A5058|  2005|              118|          347062.6|  2019|               35|          334314.0|2.353043042319053...|\n",
-                        "|     A640|  2005|               70|          196794.2|  2019|               23|183212.19999999998|2.301640484854815E-4|\n",
-                        "|     A683|  2005|               59|          205603.6|  2019|               23|          395786.1|2.288477584817571E-4|\n",
-                        "|    A4018|  2005|               87|          222676.4|  2019|               41|250770.40000000002|2.272053141044688...|\n",
-                        "|     A572|  2005|              111|          374301.4|  2019|               26|365854.80000000005|2.254860125187221E-4|\n",
-                        "|     A126|  2005|               58|156869.10000000003|  2019|               26|179035.69999999998|2.245125878187197...|\n",
-                        "|     A676|  2005|              102|          267083.7|  2019|               40|249624.30000000002|2.216619419448742...|\n",
-                        "|     A660|  2005|              114|          325487.6|  2019|               41|          305825.5|2.161803780858577...|\n",
-                        "|     A562|  2005|              161|          536445.5|  2019|               54| 595977.4000000001|2.095162218802475...|\n",
-                        "|     A621|  2005|               77|191506.10000000003|  2019|               37|          185021.2|2.020988814970771E-4|\n",
-                        "|     A761|  2005|               86|          309188.8|  2019|               27|337113.79999999993|1.980555546853831...|\n",
-                        "|     A407|  2005|               73|           88636.2|  2019|               50|           79828.5|1.972485418551842...|\n",
-                        "+---------+------+-----------------+------------------+------+-----------------+------------------+--------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "#### For imporved roads\n",
-                "A20052019_sparkhighprobchange=A20052019_spark.withColumn('Accidentprobdiff', A20052019_spark[4]-A20052019_spark[8])\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accidentprob1\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accidentprob2\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accident_Severity_x\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.drop(\"Accident_Severity_y\")\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.na.drop()\n",
-                "A20052019_sparkhighprobchange=A20052019_sparkhighprobchange.filter(A20052019_sparkhighprobchange.Total_accidents_x>50)\n",
-                "\n",
-                "A20052019_sparkhighprobchange.sort(col('Accidentprobdiff').desc()).show()\n"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# Roads that have remained dangerous"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 34,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+------+-----------------+--------------------+------+-----------------+--------------------+--------------------+------------------------+\n",
-                        "|road_name|year_x|Total_accidents_x|     Total Traffic_x|year_y|Total_accidents_y|     Total Traffic_y|    Accidentprobdiff|higghestaccidentdecrease|\n",
-                        "+---------+------+-----------------+--------------------+------+-----------------+--------------------+--------------------+------------------------+\n",
-                        "|       M1|  2005|             1333|3.3115787199999984E7|  2019|              432| 3.759983630000002E7|2.876329288345748...|                     901|\n",
-                        "|      M25|  2005|             1254|2.3912574999999996E7|  2019|              574|2.7973121900000002E7|3.192132985019132...|                     680|\n",
-                        "|       A6|  2005|             1161|   6324949.089999994|  2019|              488|   6302732.200000003|1.061320508842597...|                     673|\n",
-                        "|       M6|  2005|             1017|3.0951662800000004E7|  2019|              393|        3.49644618E7|2.161770118421888...|                     624|\n",
-                        "|       A1|  2005|             1123|2.6100918930000007E7|  2019|              590|1.5863757899999997E7|5.833612946470432E-6|                     533|\n",
-                        "|      A38|  2005|             1166|1.2023983440000009E7|  2019|              672|1.3642213100000001E7|4.771398489731088...|                     494|\n",
-                        "|      A34|  2005|              784|           8484945.7|  2019|              365|   9232067.900000004|5.286283697403934E-5|                     419|\n",
-                        "|       M4|  2005|              772|2.6762650799999997E7|  2019|              362|2.9217087200000003E7|1.645616103632458...|                     410|\n",
-                        "|      A61|  2005|              634|  3050510.4499999983|  2019|              232|   3223233.299999998|1.358566544846601...|                     402|\n",
-                        "|      A57|  2005|              629|           3135685.0|  2019|              259|  3009250.5000000014|1.145261857240305...|                     370|\n",
-                        "|       A4|  2005|              962|   4803264.909999998|  2019|              601|   4739367.100000003|7.347025695182469E-5|                     361|\n",
-                        "|      A40|  2005|              908|           8027390.5|  2019|              550|           8607853.9|4.921758673408884...|                     358|\n",
-                        "|      A58|  2005|              520|  2404014.6999999997|  2019|              190|           2229167.2|1.310712092758518...|                     330|\n",
-                        "|      A41|  2005|              881|   5195014.999999999|  2019|              563|  5572147.6000000015|6.854740844110907E-5|                     318|\n",
-                        "|       M5|  2005|              493|        2.12312828E7|  2019|              191|2.4534950899999995E7|1.543563998577224E-5|                     302|\n",
-                        "|      A30|  2005|              644|   7227502.000000001|  2019|              367|   8930258.099999998|4.800785494079098E-5|                     277|\n",
-                        "|      A59|  2005|              474|   2867161.699999999|  2019|              203|           3007868.6|9.783063838972127E-5|                     271|\n",
-                        "|      A52|  2005|              534|  3739584.5999999996|  2019|              264|  3889359.0999999996|7.491910189437852E-5|                     270|\n",
-                        "|      M62|  2005|              444|1.3317369199999997E7|  2019|              182|1.6052617599999998E7|2.200220342634311...|                     262|\n",
-                        "|      A50|  2005|              380|           4221583.4|  2019|              127|   5072488.400000001|6.497659778319633E-5|                     253|\n",
-                        "+---------+------+-----------------+--------------------+------+-----------------+--------------------+--------------------+------------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "A20052019_sparkhighprobchangeacc=A20052019_sparkhighprobchange.withColumn('higghestaccidentdecrease', A20052019_sparkhighprobchange[2]-A20052019_sparkhighprobchange[5])\n",
-                "A20052019_sparkhighprobchangeacc.sort(col('higghestaccidentdecrease').desc()).show()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 35,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>year_x</th>\n",
-                            "      <th>Total_accidents_x</th>\n",
-                            "      <th>Total Traffic_x</th>\n",
-                            "      <th>year_y</th>\n",
-                            "      <th>Total_accidents_y</th>\n",
-                            "      <th>Total Traffic_y</th>\n",
-                            "      <th>Accidentprobdiff</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A401</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>64</td>\n",
-                            "      <td>53084.00</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>61</td>\n",
-                            "      <td>40403.8</td>\n",
-                            "      <td>-0.000304</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A900</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>56</td>\n",
-                            "      <td>51038.60</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>22</td>\n",
-                            "      <td>40655.2</td>\n",
-                            "      <td>0.000556</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A4201</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>80</td>\n",
-                            "      <td>73926.85</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>65</td>\n",
-                            "      <td>56670.2</td>\n",
-                            "      <td>-0.000065</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A2217</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>70</td>\n",
-                            "      <td>69951.40</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>64</td>\n",
-                            "      <td>53586.4</td>\n",
-                            "      <td>-0.000194</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A4200</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>56</td>\n",
-                            "      <td>58041.70</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>56</td>\n",
-                            "      <td>53350.0</td>\n",
-                            "      <td>-0.000085</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>453</th>\n",
-                            "      <td>M56</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>135</td>\n",
-                            "      <td>5516130.00</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>79</td>\n",
-                            "      <td>6127948.9</td>\n",
-                            "      <td>0.000012</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>454</th>\n",
-                            "      <td>M5</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>493</td>\n",
-                            "      <td>21231282.80</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>191</td>\n",
-                            "      <td>24534950.9</td>\n",
-                            "      <td>0.000015</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>455</th>\n",
-                            "      <td>M18</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>52</td>\n",
-                            "      <td>2594859.60</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>33</td>\n",
-                            "      <td>3328912.1</td>\n",
-                            "      <td>0.000010</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>456</th>\n",
-                            "      <td>M42</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>114</td>\n",
-                            "      <td>6498674.90</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>41</td>\n",
-                            "      <td>6785418.0</td>\n",
-                            "      <td>0.000011</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>457</th>\n",
-                            "      <td>M74</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>66</td>\n",
-                            "      <td>4278609.24</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>48</td>\n",
-                            "      <td>3582600.2</td>\n",
-                            "      <td>0.000002</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>458 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name  year_x  Total_accidents_x  Total Traffic_x  year_y  \\\n",
-                            "0        A401    2005                 64         53084.00    2019   \n",
-                            "1        A900    2005                 56         51038.60    2019   \n",
-                            "2       A4201    2005                 80         73926.85    2019   \n",
-                            "3       A2217    2005                 70         69951.40    2019   \n",
-                            "4       A4200    2005                 56         58041.70    2019   \n",
-                            "..        ...     ...                ...              ...     ...   \n",
-                            "453       M56    2005                135       5516130.00    2019   \n",
-                            "454        M5    2005                493      21231282.80    2019   \n",
-                            "455       M18    2005                 52       2594859.60    2019   \n",
-                            "456       M42    2005                114       6498674.90    2019   \n",
-                            "457       M74    2005                 66       4278609.24    2019   \n",
-                            "\n",
-                            "     Total_accidents_y  Total Traffic_y  Accidentprobdiff  \n",
-                            "0                   61          40403.8         -0.000304  \n",
-                            "1                   22          40655.2          0.000556  \n",
-                            "2                   65          56670.2         -0.000065  \n",
-                            "3                   64          53586.4         -0.000194  \n",
-                            "4                   56          53350.0         -0.000085  \n",
-                            "..                 ...              ...               ...  \n",
-                            "453                 79        6127948.9          0.000012  \n",
-                            "454                191       24534950.9          0.000015  \n",
-                            "455                 33        3328912.1          0.000010  \n",
-                            "456                 41        6785418.0          0.000011  \n",
-                            "457                 48        3582600.2          0.000002  \n",
-                            "\n",
-                            "[458 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 35,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A20052019_sparkhighprobchange_df=A20052019_sparkhighprobchange.toPandas()\n",
-                "A20052019_sparkhighprobchange_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 29,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "Text(0.5, 0, 'Year')"
-                        ]
-                    },
-                    "execution_count": 29,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEGCAYAAABCa2PoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABPfUlEQVR4nO3dd3iV5fnA8e+dTRghhCGQhLCRESAkyHIgolhRHCA4sa1V21ptbbVqq63tz+7W1lVHsY4qw4WIW9DKUCFhD4EwswQSSAgjIeP+/XHepDFkvAlnBe7PdZ0r57zjOfc5Sc5z3mfcj6gqxhhjzMkKCXQAxhhjTg1WoRhjjPEKq1CMMcZ4hVUoxhhjvMIqFGOMMV4RFugAAqljx46alJQU6DCMMaZFycjIyFfVTrW3n9YVSlJSEunp6YEOwxhjWhQR2V3Xdp82eYnIJBHZIiKZInJvHfsjRWSus/9LEUmqse8+Z/sWEbmoxvbnRGSfiGyoVdZvRWSdiKwRkQ9FpJsvX5sxxphv8lmFIiKhwBPAxcBA4BoRGVjrsO8CB1W1D/AI8Efn3IHADGAQMAl40ikP4HlnW21/VtVkVR0GLAQe9OoLMsYY0yBfXqGMBDJVdYeqHgfmAFNqHTMFeMG5/xowQUTE2T5HVUtVdSeQ6ZSHqn4GHKj9ZKp6qMbD1oClADDGGD/yZR9KdyCrxuNs4Kz6jlHVchEpAuKc7V/UOrd7Y08oIg8DNwJFwPh6jrkFuAUgMTHxhP1lZWVkZ2dTUlLS2NMZY4JUVFQU8fHxhIeHBzqU08op1Smvqr8AfiEi9wG3A7+q45hngGcAUlNTT7iKyc7Opm3btiQlJeG5WDLGtCSqSkFBAdnZ2fTs2TPQ4ZxWfNnklQMk1Hgc72yr8xgRCQNigAKX5zbkZeCqJsYLQElJCXFxcVaZGNNCiQhxcXHWyhAA9VYoIlIsIofqu7koeyXQV0R6ikgEnk72BbWOWQDMdO5PBRarJ/3xAmCGMwqsJ9AXWNHQk4lI3xoPpwBfuYixvrKae6oxJgjY/3Bg1NvkpaptwTMcF8gDXgIEuA7o2ljBTp/I7cAHQCjwnKpuFJHfAOmqugCYBbwkIpl4OtpnOOduFJF5wCagHPihqlY48cwGzgM6ikg28CtVnQX8QUT6A5XAbuC2pr4ZxhjTHKv3HOTY8QrG9OkY6FACyk2T12Wq+qSqFqvqIVX9JyeO1qqTqr6rqv1UtbeqPuxse9CpTFDVElWdpqp9VHWkqu6oce7Dznn9VfW9GtuvUdWuqhquqvFOZYKqXqWqg52hw5eqalOayILO/PnzERG++qp5F1rp6enccccdde5LSkoiPz+/2XFt2rSpWec25te//jV/+ctfXB+/a9cuBg8eXOe+m2++uTrOmq93zJgx1ee+8sorJxlxy7VgwQL+8Ic/AE1/3z/99FOWL1/utVief/55br/99mbFAtCmTRuvxdIcxSVlfO/FdG77TwZHj5cHNJZAc1OhHBGR60QkVERCROQ64IivAzvdzZ49m3HjxjF79uxmnZ+amsqjjz7q5ahOvkIpL/fPP9y//vUvBg6sPe2J6g/CQFQoFRUVfn2+hlx22WXce+8Jc41daahC8dfvN5g88cl28g8f51BJOfNX5wY6nIByU6FcC1wN7HVu05xtxkcOHz7M0qVLmTVrFnPmzKneXlFRwc9+9jMGDx5McnIyjz32GAArV65kzJgxDB06lJEjR1JcXMynn37K5MmTASgoKODCCy9k0KBB3HzzzdRcpfM///kPI0eOZNiwYdx6663VH3pt2rThF7/4BUOHDmXUqFHs3buX5cuXs2DBAu6++26GDRvG9u3bvxH3TTfdxG233UZqair9+vVj4cKFgOcb6GWXXcb555/PhAkTOHDgAJdffjnJycmMGjWKdevWVZexdu1aRo8eTd++fXn22Wer348JEyaQkpLCkCFDeOutt6qPLy8v57rrruPMM89k6tSpHD16FIDzzjuvzrQ6Vd9m7733XpYsWcKwYcN45JFHOOecc1izZk31cePGjWPt2rXfOPf5559nypQpnHfeefTt25eHHnrI1fv405/+lKFDh/L5559/o7w1a9YwatQokpOTueKKKzh48GB17D//+c8ZOXIk/fr1Y8mSJdW//7vvvpu0tDSSk5N5+umnT3h9u3btYsCAAdx0003069eP6667jo8//pixY8fSt29fVqxYUf1aqq4Katq+fTuTJk1ixIgRnH322SdcIe/atYunnnqKRx55hGHDhrFkyZLq3/tZZ53FPffcw4oVKxg9ejTDhw9nzJgxbNmyBYBRo0axcePG6rLq+x01FsvOnTsZPXo0Q4YM4Ze//GW95/vDnoKjPLd0J1cO787Aru14Yfmub/x/nW4aHTasqrtw2cR1qnno7Y1synUz/sC9gd3a8atLBzV4zFtvvcWkSZPo168fcXFxZGRkMGLECJ555hl27drFmjVrCAsL48CBAxw/fpzp06czd+5c0tLSOHToEK1atfrm63joIcaNG8eDDz7IO++8w6xZswDYvHkzc+fOZdmyZYSHh/ODH/yAl19+mRtvvJEjR44watQoHn74Ye655x6effZZfvnLX3LZZZcxefJkpk6dWmfsu3btYsWKFWzfvp3x48eTmZkJwKpVq1i3bh0dOnTgRz/6EcOHD2f+/PksXryYG2+8sfrDfN26dXzxxRccOXKE4cOHc8kll9C5c2fefPNN2rVrR35+PqNGjeKyyy4DYMuWLcyaNYuxY8fyne98hyeffJKf/exnjf4e/vCHP/CXv/ylutLr0KEDzz//PH//+9/ZunUrJSUlDB069ITzVqxYwYYNG4iOjiYtLY1LLrmE1q1bN/g+nnXWWfz1r389oawbb7yRxx57jHPPPZcHH3yQhx56iL///e+Ap6JcsWIF7777Lg899BAff/wxs2bNIiYmhpUrV1JaWsrYsWO58MILTxgam5mZyauvvspzzz1HWloar7zyCkuXLmXBggX87ne/Y/78+fW+L7fccgtPPfUUffv25csvv+QHP/gBixcvrt6flJTEbbfdRps2barf51mzZpGdnc3y5csJDQ3l0KFDLFmyhLCwMD7++GPuv/9+Xn/9daZPn868efN46KGHyMvLIy8vj9TUVDZs2NCkWO68806+//3vc+ONN/LEE080+Hv2tT+8v5nQEOGeSQP479Z9/Pz19Xyx4wCje8cFNK5AafQKRUT6iciiqtxZIpIsIoH9WnCKmz17NjNmzABgxowZ1c1eH3/8MbfeeithYZ7vAR06dGDLli107dqVtLQ0ANq1a1e9v8pnn33G9ddfD8All1xCbGwsAIsWLSIjI4O0tDSGDRvGokWL2LHD040VERFRfYUzYsQIdu3a5Sr2q6++mpCQEPr27UuvXr2qv1VOnDiRDh06ALB06VJuuOEGAM4//3wKCgo4dMhTcU+ZMoVWrVrRsWNHxo8fz4oVK1BV7r//fpKTk7ngggvIyclh7969ACQkJDB27FgArr/+epYuXer6fa5p2rRpLFy4kLKyMp577jluuummOo+bOHEicXFxtGrViiuvvJKlS5c2+D6GhoZy1VUnjmAvKiqisLCQc889F4CZM2fy2WefVe+/8sorgW++9x9++CEvvvgiw4YN46yzzqKgoIBt27adUHbPnj0ZMmQIISEhDBo0iAkTJiAiDBkypMHf4+HDh1m+fDnTpk2rvtLKy8tz8/Yxbdo0QkNDq1/btGnTGDx4MD/5yU+qr0quvvpqXnvtNQDmzZtX75eSxmJZtmwZ11xzDUD131EgfLmjgHfXf81t5/bmjJgopgzrTvvocF78fFfAYgo0NxMbnwXuBp4GUNV1IvIK8H++DCwYNHYl4QsHDhxg8eLFrF+/HhGhoqICEeHPf/6z159LVZk5cya///3vT9gXHh5ePfQyNDTUddt47eGaVY9bt27d7PNffvll9u/fT0ZGBuHh4SQlJVXPMajv+ZoqOjqaiRMn8tZbbzFv3jwyMjJcx9fQ+xgVFVX9QdsUkZGRwDffe1Xlscce46KLLmro1OpzAUJCQqofh4SENPh7rKyspH379t9o+nOr5u/3gQceYPz48bz55pvs2rWL8847D4Du3bsTFxfHunXrmDt3Lk899VSzYwn0sODKSuW372yia0wUt5zTC4Co8FCmpyXwryU7yS08Rrf2rRop5dTjpg8lWlVrzwE5/Xre/OS1117jhhtuYPfu3ezatYusrCx69uzJkiVLmDhxIk8//XT1h8KBAwfo378/eXl5rFy5EoDi4uITPjTOOeec6g7o9957r7qtfsKECbz22mvs27evurzdu+vMSl2tbdu2FBcX17v/1VdfpbKyku3bt7Njxw769+9/wjFnn302L7/8MuDp4O3YsSPt2rUDPM19JSUlFBQU8Omnn5KWlkZRURGdO3cmPDycTz755Bsx7tmzp7pv4pVXXmHcuHENxt/Q67j55pu54447SEtLq76Kq+2jjz7iwIEDHDt2jPnz5zN27NhmvY8xMTHExsZW94+89NJL1Vcr9bnooov45z//SVlZGQBbt27lyBHvjY9p164dPXv25NVXXwU8FVjtfiRo/G+gqKiI7t09mZKef/75b+ybPn06f/rTnygqKiI5OblZsYwdO7a6b7Hq78jfXl+VzYacQ9x78QBaRfzvC8P1Z/VAVXn5y4Z//4GUf7iUqf9czpqsQq+X7aZCyReR3jjJFkVkKp55KcYHZs+ezRVXXPGNbVdddRWzZ8/m5ptvJjExkeTkZIYOHcorr7xCREQEc+fO5Uc/+hFDhw5l4sSJJ8wQ/tWvfsVnn33GoEGDeOONN6pzmA0cOJD/+7//48ILLyQ5OZmJEyc22sQxY8YM/vznPzN8+PATOuXBkx9t5MiRXHzxxTz11FNERUWdcMyvf/1rMjIySE5O5t577+WFF16o3pecnMz48eMZNWoUDzzwAN26deO6664jPT2dIUOG8OKLLzJgwIDq4/v3788TTzzBmWeeycGDB/n+97/f+JvsPE9oaChDhw7lkUceATzNS+3atePb3/52veeNHDmSq666iuTkZK666ipSU1Ob9T4CvPDCC9x9990kJyezZs0aHnyw4QTZN998MwMHDiQlJYXBgwdz6623en1U1csvv8ysWbMYOnQogwYN+sYAiCqXXnopb775ZnWnfG333HMP9913H8OHDz8hvqlTpzJnzhyuvvrqZsfyj3/8gyeeeIIhQ4aQk+P/2QFHSsv50wdbGJ7YnsuGfnOVjIQO0Uw4swuzV2RRUhY8o/pq+teSnWTsOUibSB9k3lLVBm9AL+Bj4Cie9CdLgaTGzmsJtxEjRmhtmzZtOmGbcWfmzJn66quvBjqMZsvJydG+fftqRUVFnfv//e9/6w9/+EM/R2Way1f/y39+/yvt8fOFmrH7QJ37l2zdrz1+vlBfTc/yyfOfjAOHS3XgA+/p7a+sOqly8ExOP+EztdErFPWkn78A6AQMUNVx6hn5Zcwp48UXX+Sss87i4YcfJiTEp+vOmRYs++BRnlmygynDupGSWHez6Ng+cfTp3CYohxD/e9lOjhyv4PbxfXxSfr3XPCJyVz3bAVDVv/kkItNi1W4vb0luvPFGbrzxxgaPuemmm+od/WVOD398fwshAj+fNKDeY0SEmaN78MBbG1mdVVhvxeNvRcfK+PeyXUwadAb9z2jrk+do6KtY20Zup6xg+1ZhzKmuUpXSsgqKS8ooOFxKXtExsg8epbS8ef0Qvvgfzth9gLfX5nLLOb0bHcF1RUo8bSLDeHH5Lq/H0VwvLN9FcWk5t5/vm6sTaDg55EP17TuVRUVFUVBQYCnsjfEiVaWiUjleXsnxikrPz/JKSisqKXO21SQiCHCktII+nVsT2oRmSHXWQ6lrQEhzVVYqv3l7E13aRXLbub0aPb5NZBhTR8Tz8pe7uf+SM+nc1nuxNMfh0nKeW7aTC87szODuMT57noaavBpMBKWqdWcebOHi4+PJzs5m//79gQ7FnKaOl1dyrKyCdlFhLepLTVWlUe7cKiqV8orK6m2VtS4aQkOEsBCp/hkWKoSGhBAWIoSIcLyigq+Lj7MvK4S41pE05a2oWrHRW95am8Pa7CL+Om0o0RHuRkfdOLoHzy/fxewvs7jzgr6Nn+BDL32+m8KjZfzofN/G0dA7U/fMrlNceHi4rfJmAmbfoRIufXwpew+V8vi1w5mc3K3xkwLsN29v4v0NeeQdKqFmS1NkWAiJHaJJ7BBNgvMzsUM0iXHRxMe2cvXB/PKXu/nF6xu45Zxe3P+tM334Kup39Hg5f3xvC8nxMVwxvNGVyKv16tSGc/p14uUvd/OD8b0JDw3MYI+jx8t5dskOzunXiaEJ7X36XA01eb0AICIpqrrKp1EYYygtr+C2/2Rw6Fg5HdtEMHdlVtBXKBtyinhu2U7G9enItNSE6gojsUM0ndpEEhJycldY153Vgy1fF/PMZzvo16UtU0d476rDraf/u4OvD5Xw2LXDm/x6bhrTg+88n877G77m0qGB+V2+8uUeDhw5zh0+7Dup4uba7a8icgbwGjBXVevO5GaMaTZV5VdvbWTVnkKeuDaFLXuLeWzxNrIPHiU+NjrQ4dVr7sosIsJCeOLaFGKiw33yHA9MHkjmvsPc/8Z6enZszYge/hs1lVd0jKc/284lyV1JS+rQ5PPP69eZxA7RvLB8V0AqlJKyCp7+bAdjeseR2oz4m8rNPJTxwHhgP/C0iKy35JDGeNd/vtzDnJVZ/OC83lyS3JVpzjfx1zKyAxxZ/Y4dr2D+mhy+NfgMn1UmAOGhITx5XQpd20dx60sZ5BYe89lz1fan97dQqXBvA8OEGxISItw4ugfpuw+yIafIy9E1bu7KLPYXl/q876SKq0Y9Vf1aVR/Fs6zuGqDhHBHGGNdW7DzAQws2Mr5/J356oSf3WUKHaMb16cir6dlU1O7NDhLvrM+juKScGSMTff5c7aMj+NeNqZSUVXDLS+kcO+77tCZrsgp5c3UO3zu7Jwkdmn+VOG1EAq3CQ/2ehbi0vIJ/frqdtKRYRvXy/dUJuEtff6aI/FpE1gOPAcsBVw2ZIjJJRLaISKaInLA8nIhEishcZ/+XIpJUY999zvYtInJRje3Pici+qnT6Nbb/WUS+EpF1IvKmiLR3E6MxgZRbeIwfvJxBYodo/j5jOKE12uivTk0gp/AYyzKbt1yzr81ZsYdeHVtzVk//fFj17dKWx64ZzsbcQ/zs1bU+nS+mqvzm7Y10ahvJ9887ub6HmOhwLh/enbfW5HLwyHEvRdi41zKy+fpQCT86v6/fRgu6uUJ5DjgIXKSq56nqP1V1X2MniUgo8ARwMTAQuEZEaq/J+l3goKr2AR4B/uicOxCYAQwCJgFPOuUBPO9sq+0jYLCqJgNbgftcvDZjAqakrIJbX8qgpKySZ24cQUyrbzYbXTioC+2jw5mbnhWgCOu3bW8x6bsPMj0twa9Dm8cP6My9kwbwzvo8Hl2U6bPneXtdHqv2FHL3hf29kkRx5pgelJZX+u13WVZRyT8/3c6whPac3bejX54T3PWhjFbVf6hqUxdLHglkOrnAjgNzOHHlxylAVarZ14AJ4vnrnALMUdVSVd0JZDrloaqfAQfqiPNDVa1KbfoFLq+ijAkEVeW+N9azPqeIR6YPo0/nE5NPRIaFcvmw7ny0ca9fv9m6MWdlFuGhwlUBGHV1yzm9uHJ4dx75eCvvrfd+4vOSsgr+8O5mBnVr57XXN+CMdozq1YGXPt/tlybMN1fnkH3wGHdM6OPXCt9Nk1dfEXlNRDaJyI6qm4uyuwM1q+NsZ1udxziVQREQ5/LchnwHeK+uHSJyi4iki0i6TV40gTJr6U7eXJ3DXRP7MXFgl3qPm56WwPGKSt5c7f807fUpLa/gjVXZTBzYhY5tIhs/wctEhN9dOYThie25a95aNuZ6t7P7X0t2kFtUwgOTB36jCfJkzRydRE7hMRZt3uu1MutSXlHJE59kMrh7O8b37+zT56rNTZPXv4F/4llUazzwIvAfXwZ1MkTkF3hirXPlHVV9RlVTVTW1U6dO/g3OGGDptnx+9+5mLhrUpdGsr2d2bcfQ+BjmrswKmhxzH27cy8GjZcxI831nfH2iwkN5+oYRtI8O55YXM8g/XOqVcvceKuHJT7czadAZjOrl3XXhJw7sQreYKF7wcef82+ty2V1wlNvH+6/vpIqbCqWVqi4CRFV3q+qvgUtcnJcDJNR4HO9sq/MYEQkDYoACl+eeQERuAiYD12mw/PcZU8OegqPcPnsVfTq34a9XD3M1Ue7qtAS27C1mbbb/h53WZc7KPXRv34pxffzXNl+Xzm2jePbGVAqOlHLbSxnNTiRZ058/2EJ5hXLft5o3TLghYaEhXDeqB8syC9i2t/4VL09GRaXy+OJMBpzRlgsbuPL1FTcVSqmIhADbROR2EbkCaOPivJVAXxHpKSIReDrZF9Q6ZgEw07k/FVjsVAQLgBnOKLCeQF+g9jLE3yAik4B7gMtU9aiL+Izxq6PHy7nlpXQqK5Vnbkh13dl76dBuRIWHMHdl4DvndxccYVlmAdPTEk56Frw3DO4ew1+mDSV990EemL/hpK7i1mcX8VpGNt8el0SPuNZejPJ/ZqQlEBEWwouf+2aJ4Pc25LF9/xFuP79PQH4/biqUO4Fo4A5gBHA9/6sE6uX0idwOfABsBuap6kYR+Y2IXOYcNguIE5FM4C7gXufcjcA8YBPwPvBDVa0AEJHZwOdAfxHJFpHvOmU9jiet/kciskZEnnLx2ozxC1Xl7lfXsXVvMY9dm0JSR/cfWO2iwvnWkK68vTaXo8e9u+RvU81dmUWIwLTU4BnzMjm5G3ec34d56dk8t2xXs8pQVX67cBMd20T4bPEpgLg2kVya3I3XV2VzqKTMq2VXViqPLcqkd6fWXDy4q1fLdqvBr0jOUN3pqvoz4DBQ/2LbdVDVd4F3a217sMb9EmBaPec+DDxcx/Zr6jne94lqjGmmJz/dzjvr87jv4gGc26/pfXcz0hJ5Y1UO767/OiD5rMAzFPXVjGzG9+9M15iG1wPxtx9f0I8te4t5+J1N9Oncpsnv8XsbvmbFrgP87oohtI3y3ax/8Awhfn1VNq9nZPPtsd5LRPvhpr1s2VvMI9OHenUwQVM0eIXiXBWM81MsxpySFn+1l798uIXLhnbjlnMaX0ujLmlJsfTq2Jq5K/d4OTr3Fn+1j/3FpX6ZGd9UISHC364eRr8ubbn9lVVs33/Y9bklZRX87t3NDDijLdPTEho/4SQlx7dneGJ7Xvx8N5VeGkKsqjy2eBtJcdFcGsCEom6avFaLyAIRuUFErqy6+TwyY04B2/cf5s7ZaxjYtR1/vCq52aNuRIRpqQms3HWwSR+W3jRnxR66tItkfP/gHB3ZOjKMf81MJSI0hJtfSKfoqLsmpX8v20X2wWM86OVhwg25aUwSO/OP8Nk270xd+GTLPjbmHuIH4/sQFqA0+eCuQonCM/LqfOBS5zbZl0EZcyooLinjlhfTCQ8L4ekbRtAqIrTxkxpw1YjuhIYI8wIwcz638Bj/3bqfaSMSAvqB1Zj42GieumEE2Qc9o+nKa60EWdu+4hKe+CSTiQO7MMaPo9YuHtyVjm0ivdI5r6r8Y1Em8bGtmrReiy+4+cv4l6p+u+YNT2e6MaYelZXKT+auYVfBUZ64NsUrKeg7t41ifP/OvJ6RQ1kjH5Te9mp6NpWKX5qETlZaUgf+7/LBLNmWz8Pvbm7w2L99uJXS8gq/L94VERbCtWcl8smWfewuOHJSZS3Zls/arEK+f17gFvGq4ubZH3O5zRjj+PuibXy8eR8PTh7I6N7emyA3Iy2B/MOlfPJVo+n0vKaiUpmXnsXZfTueVNZdf5qelsi3xybx72W76u132phbxNz0LGaOTqJnE0bdect1ZyUSKnJSVylVfSddY6ICNlijpnorFBEZLSI/BTqJyF01br8GTu7a3ZhT2Psb8nh00TamjYjnxtE9vFr2ef070bltpF/npCzZtp+cwmMBnRnfHL/41pmc3bcjv5y/gRU7v5n+r2qYcPtW4fxoQmDWe+/SLopJg89gXnpWs4eDf7HjACt3HeS2c3sTGRb4j+WGrlAi8ExgDMMzv6PqdgjPJERjTC1bvi7mrnlrGZbQnt9ePtjrqS/CQkO4akQ8n2zZx95DJV4tuz5zVmTRoXUEFwz0b16okxUWGsLj16SQEBvNbf/JIOvA/+Y7f7hpL1/sOMBdE/udkOXZn24ak0RxSXmzc7U9umgbndpGBk1TZL0Viqr+V1UfAkap6kM1bn9T1W1+jNGYFqHw6HFueSmd1pFhPH3DCKLCffON8erUBCrVP6s57i8u5ePNe7kqpXtQfANuqpjocJ6dmUpZRSXfezGdI6XllJZ7hgn37dyGawI8BHpEj1gGdm3Hi8t3N3mWf/quA3y+o4Bbz+nls7+1pnKTvt43OQKMOYVUVCo/mr2a3MJjPHX9CLq0i/LZc/Xs2JqRPTvwarrvE0a+lpFNeaUyvYU1d9XUu1MbHr82ha17i/nJ3DU8v2wXuwuO8sDkgQEfsSYi3DQmiS17i/lixwmrcjTo0cWZxLWO4Nqzgud3E7zj/4xpQf70/lcs2ZbPb6cMZkSPWJ8/34y0BHYVHOXLnU37EGoKVWXuyj2MTOpAn85u0vcFr3P7deIXlwzkw017+cP7X3H+gM6c04yMBb5w2bButI8O54Xlu1yfsyarkM+27ufms3sRHXHyC4B5i1Uoxpykt9bk8PRnO7hhVA+/zSK/eHBX2kaG+bRz/osdB9hVcJQZI4Ojff5kfWdskic5Y2iI34cJNyQqPJTpaQl8uOlrcgqPuTrnsUXbaB8dzg1eHvRxstwssNVPRBZVreEuIski8kvfh2ZM8NuQU8TPX1/HyKQOPDC59grXvtMqIpTLhnXj3fV5FB3zbpLBKnNW7qFdVBjfGhKYRIPeJiL8/sohrLj/gqC74rphlKdiePmLxnsYNuQUseirfXxnbE+vLE/sTW6uUJ7Fsz57GYCqrsOTit6Y09qR0nJufSmD2OgInrw+hYgw/17wT09LoLS8kgVrm7o6d+MKjx7nvQ1fc8Xw7kHT4esNIkJMdOBGddUnPjaaC87swpyVWZSUNbyuy+OLM2kbFcbMMUn+Ca4J3PwHRKtq7bVIAptD25ggUNVE8ZdpQwOyFO6Q7jEMOKMt83zQ7PXGqhyOl1cGZSLIU9XMMUkcOHKchevy6j1my9fFvL/xa749Jimgw53r46ZCyReR3oACiMhUoP5XbMxp4u21eXSLiWK0l5eKdUtEmJGWwPqcIq+uq66qzFm5h6HxMZzZtZ3XyjUNG9M7jj6d2/DC8l31jt57bPE2WkeE8p1x3kt7701uKpQfAk8DA0QkB/gx8H1fBmVMsCs8epwl2/ZzSXLXgK5cePnw7kSEhXj1KmXVnkK27j1sVyd+JiLMHN2D9TlFrM4qPGF/5r7DvLM+jxtGJ9E+OsL/AbrgZh7KDlW9AOgEDFDVcaq6y+eRGRPEPtj4NWUVyqVDA7f2BED76AguGnQG89fkNtr27tacFXuIjggN+Gs7HV2ZEk/byLA6hxA/+UkmUWGh3Hx2cF6dQAMrNorIXfVsB0BV/+ajmIwJegvX5ZHYIZoh3WMCHQrTUxN4e20uH2z8minDTi59eXFJGQvX5TFlWLegG0F0OmgdGcbU1Hj+88VufnHJmXRu65kguyv/CG+tzeXbY5IC0l/nVkNXKG0buTVKRCaJyBYRyRSRe+vYHykic539X4pIUo199znbt4jIRTW2Pyci+6qGMdfYPk1ENopIpYikuonPmObIP1zKssx8Lh3a1eu5uppjTO844mNbeWWdlAVrczlWVmHNXQF0w6gelFUos7/83+/zyU8zCQ2RZq/46S/1fgVx8ng1m7Me/RPARCAbWCkiC1R1U43DvgscVNU+IjID+CMwXUQG4hmaPAjoBnwsIv2cJYmfBx4HXqz1lBuAK/H09xjjM+9t+JpKhckBXGq1ppAQ4erUBP720VayDhw9qRTzc1ZkMeCMtgyND/yV1+mqV6c2nNuvEy9/uZvvn9ebvYdKeGNVDtedlUhnH6b08YaG0tff4/x8TEQerX1zUfZIINPpgzkOzAGm1DpmCvCCc/81YIJ4vvJNAeaoaqmq7gQynfJQ1c+AE/JNqOpmVd3iIi5jTsrba3Pp07kNA85wdaHuF1NHxCPCSV2lbMgpYn1OEdeMTAyKK6/T2U1jkthXXMr7G7/mqf9uJ0SE287rHeiwGtVQk1fVUmfpQEYdt8Z0B2r+dWc72+o8RlXLgSIgzuW5zSIit4hIuoik79/vnfWczenj66ISVu46wOTk4GjuqtKtfSvO6duJ1zKyqahsXsLIOSv3EBkWwuUn2Q9jTt65/TrRIy6aJxZn8mp6NlNT4+ka0yrQYTWqofT1bzs/X6jr5r8QvUtVn1HVVFVN7dQpOJLDmZbjnfV5aBA1d9U0PS2BvKISPtvW9C9KR4+X89bqXC4Z0jUoZ5KfbkJChBtG9WDL3mIqVfn+ucF/dQLucnmlisibIrJKRNZV3VyUnQPUzCoX72yr8xgRCQNigAKX5xrjdwvX5XJm13ZBlwsK4IIzu9ChdUSz5qS8sy6P4tLyoFmoycC01ATaRoYxdUR8i1l62c24wJeBu4H1QGUTyl4J9BWRnngqgxnAtbWOWQDMBD7HswrkYlVVEVkAvCIif8PTKd8XqJ3+xRi/yjpwlNV7CrlnUv9Ah1KniLAQrhzenRc+30X+4dImDS+dszKLXp0866yY4BDTKpyP7jqX9i3oitHNTPn9qrpAVXeq6u6qW2MnOX0itwMf4OmPmaeqG0XkNyJymXPYLCBORDKBu4B7nXM3AvOATcD7wA+dEV6IyGw8FVB/EckWke86268QkWxgNPCOiHzg+l0wxoV31nsyDk0eEnzNXVWmpyVQVqG8ucr9Bf22vcVk7D7IjLSEoOoXMnBGTFSLSs7p5grlVyLyL2ARUFq1UVXfaOxEVX0XeLfWtgdr3C8BptVz7sPAw3Vsv6ae498E3mwsJmOaa+G6XIYmtCcxLnibH/p2acvwxPbMTc/i5rN7uqog5qzMIjxUuCol3g8RmlOZmyuUbwPDgEnApc5tsg9jMibo7Mw/woacQ1yaHPxrg0xPTSBz32FW7Sls9NjS8greWJXNhQPPIC6IZ2CblsHNFUqaqgZno7ExfrLQWXPkkhZQoUwe2o3fLNzEvJVZjS5H/MHGvRw8WnbKrMpoAsvNFcpyZ+a6Maett9flkpYU2yLmArSJDGNyclfeXpfL4dKGly6as2IPCR1aMbZ3Rz9FZ05lbiqUUcAaJ6fWOhFZ73LYsDGnhC1fF7N17+EWlX13eloCR49X8M66+ldz3F1whOXbC5iemhDQFPzm1OGmyWuSz6MwJogtXJdLiMDFg4O/uatKSmIsvTu1Zu7KLKan1Z3occ7KLEIEpo6w5i7jHW7WQ9ld180fwRkTaKrKwnV5jO4dR6e2LafTWkSYnpbAqj2FZO4rPmF/WUUlr6Znc/6AzpwRE9wJB03L4abJy5jT1sbcQ+zMPxKUqVYac2VKPGEhwtw6Zs4v/mof+YdLmVHP1YsxzWEVijENeHtdLmEhwqRBZwQ6lCbr2CaSC87swuurcjhe/s0kF3NW7KFLu0jO62/57Iz3uKpQRKSHiFzg3G8lIsGTt9sYH1FVFq7NY1zfjsS2Ds41vBszPS2BA0eOs2jz3uptuYXH+O/W/VydmkBYqH2nNN7jJjnk9/CsVVK1cFU8MN+HMRkTFFZnFZJTeKxFNndVOadfJ85oF8XcGuukzEvPQoGrU60z3niXm68nPwTGAocAVHUb0NmXQRkTDN5em0tEaAgXDuoS6FCaLTREmDoins+27iev6BgVlcq8lVmM69OxxWSwNS2Hmwql1FlxEahOM9+8FXyMaSEqK5V31+dxbv9OtItqOdle63J1agKVCq+lZ/PZtv3kFpVwja0Zb3zAzTyU/4rI/UArEZkI/AB427dhGRNYK3cdYO+h0hY1mbE+iXHRjOkdx9z0LNbnFBHXOoILzmy5V10meLm5QrkX2I9nPZRb8WQP/qUvgzIm0N5el0tUeAgTBpwarbvT0xLIPniMDzft5aoR8USEWWe88b5Gr1BUtRJ41rkZc8orr6jkvfVfM+HMLrSOdHMRH/wuGnQG7aLCOFRiqzIa32n0v0VExgK/Bno4xwugqtrLt6EZExif7yig4MjxFpGq3q2o8FBuP78PO/OP0LtT8C1fbE4Nbr5+zQJ+AmQAFb4Nx5jAW7g2jzaRYZzX/9Ro7qpyyzm9Ax2COcW5qVCKVPU9n0diTBA4Xl7JexvymDiwS4taetWYYOCmZ+4TEfmziIwWkZSqm5vCRWSSk/Y+U0TurWN/pIjMdfZ/KSJJNfbd52zfIiIX1dj+nIjsE5ENtcrqICIficg252fDKwsZU4elmfs5VFLOpUNPneYuY/zFTYVyFpAK/A74q3P7S2MniUgo8ARwMTAQuKaOhbq+CxxU1T7AI8AfnXMHAjOAQXjS5z/plAfwPHWn1L8XWKSqfYFFzmNjmuTttXnEtApnXB/LcWVMU7kZ5TW+mWWPBDJVdQeAiMwBpgCbahwzBU+HP3jSuzwuIuJsn6OqpcBOEcl0yvtcVT+reSVTq6zznPsvAJ8CP29m7OY0VFJWwUeb9nLJkK42rNaYZnCTyytGRP4mIunO7a8iEuOi7O5AzbzZ2c62Oo9R1XKgCIhzeW5tXVQ1z7n/NVDnzC0RuaXqtezfv9/FyzCni0+37ONwaTmTrbnLmGZx8zXsOaAYuNq5HQL+7cugTpaqKvWkh1HVZ1Q1VVVTO3WyZg3zP2+vyyOudQSje8UFOhRjWiQ3o7x6q+pVNR4/JCJrXJyXA9ScQRXvbKvrmGwnR1gMUODy3Nr2ikhXVc0Tka7APhcxGgPAkdJyFm3ey9QR8ZbS3ZhmcvOfc0xExlU9cCY6HnNx3kqgr4j0FJEIPJ3sC2odswCY6dyfCix2ri4WADOcUWA9gb7Aikaer2ZZM4G3XMRoDACLvtpHSVkll7bgVPXGBJqbK5TbgBdr9Jsc5H8f3PVS1XIRuR34AAgFnlPVjSLyGyBdVRfgmTT5ktPpfgBPpYNz3Dw8HfjlwA9VtQJARGbj6XzvKCLZwK9UdRbwB2CeiHwX2I2nec4YVxauzaVLu0jSkjoEOhRjWizxXBC4OFCkHYCqHvJpRH6Umpqq6enpgQ7DBNihkjJSf/sx14/qwYOX1h7ZboypTUQyVDW19nbXme9OpYrEmJo+2riX4xWVNrrLmJNkvY/mtPf2uly6t2/F8IT2gQ7FmBatwQpFREJEZIy/gjHG3w4eOc7SbflMHtoVz5xaY0xzNVihOGuhPOGnWIzxu/c3fk15pdroLmO8wE2T1yIRuUrs65s5BS1cl0vPjq0Z1K1doEMxpsVzU6HcCrwKHBeRQyJSLCLWQX+a+3TLPib9/TN+/+5mNue1zD+H/cWlfL69gMnJ1txljDe4SQ7Z1h+BmJZjT8FR7pi9moiwEGYt3cnTn+2gf5e2XD68O1OGdaNb+1aBDtGV9zbkUalw6VBr7jLGG9wsASzAdUBPVf2tiCQAXVW1sZnr5hRUUlbBbf/JAOCN74+lTVQY76zL5c3VOfzx/a/40wdfcVbPDlwxvDuTBnclplV4gCOu39trc+nXpQ39uth3JmO8wc08lCeBSuB84LfAYTwd9Wk+jMsEIVXll/M3sCnvELNmppIYFw3ADaOTuGF0ErsLjjB/dS7z1+Tw89fX88BbG7ngzM5MGdad8/p3IjIseFZAzCs6xspdB/npxH6BDsWYU4abCuUsVU0RkdUAqnrQyc1lTjOzV2TxWkY2d5zfhwlnnrg6QI+41tx5QV/umNCHddlFvLk6h7fX5vLu+q+JaRXOJclduWJ4d0YkxhISEtg+i3fWeVY6mGzNXcZ4jZsKpcxZLVEBRKQTnisWcxpZm1XIrxds5Oy+Hbnzgoa/1YsIQxPaMzShPb+45EyWZuYzf3UOb6zK5pUv9xAf24rLh3Xn8uHd6NM5MM1Nb6/LY3D3dvTs2Dogz2/MqchNhfIo8CbQRUQexpMV+Jc+jcoElQNHjvODl1fRqW0kj84YTmgTri7CQ0MY378z4/t35nBpOR9u/Jr5a3J58tNMHv8kkyHdY5gyrBuXDe1G53ZRPnwV/7On4Chrswq59+IBfnk+Y04XbkZ5vSwiGcAEZ9PlqrrZt2GZYFFRqdw5ZzX7i0t59bbRxLZufmtnm8gwrkyJ58qUePYVl/D22jzmr87h/97ZzO/e3czYPh25Ynh3Lhp0Bq0jXaeZa7KF63MBuGSI5e4yxpvc/tdG40lBr0DLGBNqvOIfH29lybZ8fnfFEIZ6MddV57ZRfHdcT747rieZ+4qZv9ozUuyueWtpHbGBK1K6c/2oHgw4w/sTDheuzWN4YnsSOkR7vWxjTmdu1pR/EHgB6AB0BP4tItbkdRpY/NVeHl2cydQR8VwzMqHxE5qpT+e2/Oyi/iy5Zzzzbh3NpMFdmZeezaS/L2HaU8t5a00OpeUVXnmu7fsPsynvkKVaMcYHGl0PRUS2AENVtcR53ApYo6r9/RCfT9l6KPXbU3CUyY8tIT42mjd+MIaocP8O+T145DivZWTzny93s7vgKHGtI7g6LYFrRyae1JXFPz7ext8XbeWL+ybQxU99Nsacak5mPZRcIAoocR5H0vj67qYFqzl58anrR/i9MgGIbR3B987pxXfH9WRpZj4vfbGbp/+7naf+u53x/Ttz/ahEzu3XuUkDBFSVt9flMjKpg1UmxviAmwqlCNgoIh/h6UOZCKwQkUcBVPUOH8YXtFT1lMz/pKo8UMfkxUAJCRHO6deJc/p1IrfwGLNX7GH2iiy+83w68bGtuPasRK5OTaBjm8hGy9qyt5jMfYeZeflgP0RuzOnHTXLIN4H7gU+AT4FfAG8BGc6tXiIySUS2iEimiNxbx/5IEZnr7P9SRJJq7LvP2b5FRC5qrEwROV9EVonIBhF5QUR8Nkzobx9u4dLHl/qq+ICaszKLVzOy+VE9kxcDqVv7Vvz0wv4sv/d8Hr92OPGxrfjT+1sY8/vF3DlnNem7DtBQE+7ba3MJDREuHnyGH6M25vThZtjwC80p2JkM+QSeK5psYKWILFDVTTUO+y5wUFX7iMgM4I/AdBEZCMwABgHdgI9FpGo23QllAl/hGTgwQVW3ishvgJnArObE3phWEWFsyDnEgSPH6XASw2iDzdqsQn71lmfy4o8bmbwYSBFhIUxO7sbk5G5s21vMy1/u4fWMbN5ak8uAM9py/ageXD68O21qDD1WVRauy2NM7zhXVzPGmKbz5RLAI4FMVd2hqseBOcCUWsdMwVMRALwGTHCSUU4B5qhqqaruBDKd8uorMw44rqpbnbI+Aq7y1Qsb0SMWgNV7DvrqKfyu5uTFfzRx8mIg9e3Sll9fNogv7p/A768cQogIv5y/gVG/W8QD8zew5etiANbnFLG74KiN7jLGh3w3ewy6A1k1HmcDZ9V3jKqWi0gRnsqhO/BFrXO7O/frKjMfCBORVFVNxzObv85xriJyC3ALQGJiYtNfFZAcH0NYiLBqz8GgaxZqjtqTF1viVVfryDCuGZnIjLQEVmcV8p8vdjM3PYuXvthNWlIs0RFhhIcKFw2y5i5jfMXNPJQh/gjkZKin4XwG8IiIrACKgTonLqjqM6qaqqqpnTp1atbzRYWHMrBbOzJ2nxpXKFWTF3992SCvTl4MBBEhJTGWv109jC/um8D93xrA3kOl/Hfrfs7p24mY6OBNp29MS+cqfb2IRALPAy+rapHLsnP45lVCPCcON646JtvpRI8BCho5t87tqvo5cDaAiFwI+LQTICUxlrkrsyivqCQs1Jcth77lr8mLgdChdQS3nNObm8f1YuWuA5YI0hgfa/STUFXPxrPAVgKQISKviMhEF2WvBPqKSE8n3f0MYEGtYxbg6TwHTzPVYudqYwEwwxkF1hPoC6xoqEwR6ez8jAR+DjzlIsZmS+kRy7GyCr5y2uhboj0FR/nxnDUM7NqO/7t88Ck5DBo8Q4/P6hXnt+STxpyuXPWhqOo2J91KOp7sw8OdzvP7VfWNes4pF5HbgQ/w5AF7TlU3OiOw0lV1AZ5RWC+JSCZwAE8FgXPcPGATUA78UFUrAOoq03nKu0VkMp5K8p+qurjJ70YTpCS2B2DVnoMM7h7jy6fyiWCYvGiMObW4Sb2SDHwbuATP6KlZqrpKRLoBn6tqD9+H6Rsnk3pFVRn1+0WM7hXH32cM93JkvqWq3PPaOl7NyGbWzNRTYmCBMcZ/Tib1ymPAv/BcjRyr2qiquadzksiqzt+MFjh0OJgnLxpjWi5XM+VV9aWalYmI3Amgqi/5LLIWICUxlqwDx9hfXBroUFxbl90yJi8aY1oeNxXKjXVsu8nLcbRIKc4Ex1Ut5Crl4JHjfP8/LW/yojGmZai3yUtErgGuBXo66U2qtMXTgX7aG9y9HRGhIazafTDoJ8xVVCp3zl3ToicvGmOCW0N9KMuBPDyLav21xvZiYJ0vg2opIsNCGdS9XYu4QvnHx1v5bOt+Hr5icIufvGiMCU71ViiquhvYDYz2Xzgtz4jEWF76YjfHyyuJCAvOCY5VkxevSonn2pHNSzdjjDGNqfcTUESWOj+LReRQjVuxiBzyX4jBLaVHLKXllWzKC863pLikjJ/MXcuZp/jkRWNM4NVboajqOOdnW1VtV+PWVlXb+S/E4FaVeXhVkOb1Wr69gKJjZTw4eSCtImzyojHGdxq6QunQ0M2fQQazLu2i6N6+VdD2oyzLzKdVeGh1xWeMMb7SUKd8Bp4lf+tqI1Ggl08iaoGGJ7YP2iuUZZn5jOzZIWj7d4wxp46GOuV7+jOQlmxEj1gWrssjr+gYXWNaBTqcanlFx9i+/wgz0qwj3hjjew3NQxmgql+JSEpd+1V1le/CallSEqv6UQq5JDl4KpRlmQUAjO3TMcCRGGNOBw01ed2FZ2XDv9axT4HzfRJRC3Rm13ZEhoWwas9BLknuGuhwqi3LzCeudQQDzmgb6FCMMaeBhpq8bnF+jvdfOC1TRFgIQ+PbB1XHvKqyNDOf0b3jCLEUK8YYP3CzBHCUiNwlIm+IyOsi8mMRsZWKahneoz0bcoooKatz5WG/y9x3mP3FpYyz5i5jjJ+4GfrzIjAITxr7x537p3WW4bqkJMZSVqFszHW7QrJvLc3MB6z/xBjjP27WQxmsqgNrPP5ERDb5KqCWqmbH/IgegZ+msywznx5x0SR0iA50KMaY04SbK5RVIjKq6oGInIVnKWBTQ6e2kSR2iCYjCOajlFVU8sWOA3Z1Yozxq4Zmyq8XkXXACGC5iOwSkZ3A58AJSz/WU8YkEdkiIpkicm8d+yNFZK6z/0sRSaqx7z5n+xYRuaixMkVkgoisEpE1IrJURPq4ege8KCXR0zHf2LLKvrYuu5DDpeWM7W0VijHGfxpq8pp8MgWLSCjwBDARyAZWisgCVa3ZXPZd4KCq9hGRGcAfgekiMhCYgae/phvwsYhULS9YX5n/BKao6mYR+QHwS/y8ENiIHrHMX5NLTuEx4mMD19S0LLMAERjdOy5gMRhjTj8NJYfcXfMGHMMz/6Tq1piRQKaq7lDV48AcYEqtY6YALzj3XwMmiCcd7hRgjqqWqupOINMpr6EyFahKWhkD5LqI0auGO/0ogW72WpqZz6Bu7WwRLWOMX7kZNnyZiGwDdgL/BXYB77kouzuQVeNxtrOtzmNUtRwoAuIaOLehMm8G3hWRbOAG4A/1vJ5bRCRdRNL379/v4mW4N+CMtkRHhLJ6T6FXy22KI6XlrN5z0PpPjDF+56ZT/rfAKGCrk99rAvCFT6Nqnp8A31LVeODfwN/qOkhVn1HVVFVN7dSpk1cDCAsN/ATHFbsOUFahNv/EGON3biqUMlUtAEJEJERVP8Fdp3wOkFDjcbyzrc5jRCQMT1NVQQPn1rldRDoBQ1X1S2f7XGCMixi9LqVHezblHuLY8cBMcFyemU9EaAipQTB02RhzenFToRSKSBtgCfCyiPwDOOLivJVAXxHpKSIReDrZF9Q6ZgEw07k/FVisniFSC4AZziiwnkBfYEUDZR4EYmp03E8ENruI0etSEmMpr1TWZRcG4ulZmlnAiB6xtpiWMcbv3FQoU/B0yP8YeB/YDlza2ElOn8jtwAd4PtznqepGEfmNiFzmHDYLiBORTDzJKO91zt0IzAM2Oc/5Q1WtqK9MZ/v3gNdFZC2ePpS7Xbw2r6vumA9As1f+4VI25x1iXF9r7jLG+F+jM+VV9YiInIFnhNUB4AOnCaxRqvou8G6tbQ/WuF8CTKvn3IeBh92U6Wx/E3jTTVy+1KF1BL06tmbV7kK/P/fy7Zau3hgTOG5Ged2Mp7npSjzNUl+IyHd8HVhLNjwxltUBmOC4bFs+baPCGNI9xq/Pa4wx4K7J625guKrepKoz8cyc/7lvw2rZRvSIpeDIcXYXHPXbc1anq+8VR6ilqzfGBICbCqUAKK7xuNjZZuqR0qM9gF+HD+85cJScwmPWf2KMCZiGlgC+y7mbCXwpIm/hmY0+BVjnh9harL6d29I2MoxVew5yZUq8X57T0tUbYwKtoU75qnVjtzu3Km/5LpxTQ2iIMCyxPRl+7JhflplP15goenVs7bfnNMaYmhpaAvihmo+duSio6mFfB3UqGJ4Yy+OLt3G4tJw2kW6WnWm+ykpl+fYCLjizC55UaMYY439uRnkNFpHVwEZgo4hkiMgg34fWso3oEUulwrqsQp8/16a8QxQeLWNsH8subIwJHDed8s8Ad6lqD1XtAfwUeNa3YbV8wxLaA/7JPFzdf2LrnxhjAshNhdLayd8FgKp+ClhDfSNiWoXTt3Mbv4z0WpaZT78ubejcLsrnz2WMMfVxU6HsEJEHRCTJuf0S2OHrwE4FI3rEsjqrkMpK301wLCmrYMVOW+7XGBN4biqU7wCdgDeA14GOzjbTiJTEWAqPlrEj300uzeZZtecgpeWVlq7eGBNwDQ4/cpbxfUNVx/spnlNKzQmOfTq38clzLMvMJzREGNnT0tUbYwKrwSsUVa0AKkXEkkM1Q6+ObYhpFc4qH3bML80sYFhCe9pGhfvsOYwxxg03EyQOA+tF5CNqrIOiqnf4LKpTREiIMDzRdys4Fh0tY312Ibef39cn5RtjTFO4qVDecG6mGVISY/nv1v0UHSsjppV3ryI+31FApWL9J8aYoOBmPZQXnNURB+DJ5bVFVY/7PLJTxIgesajCmqxCzu3n3TXsl2/PJzoitHrOizHGBJKbmfLfwpPL61HgcSBTRC72dWCniqEJ7QkRfNKPsjQzn5E9OxAR5mawnjHG+JabJq+/AeNVNRNARHoD7wDv+TKwU0WbyDD6dWnr9X6U3MJj7Nh/hGtHJnq1XGOMaS43X22LqyoTxw6+uT5KvURkkohsEZFMEbm3jv2RIjLX2f+liCTV2Hefs32LiFzUWJkiskRE1ji3XBGZ7yZGfxjRI5Y1e7w7wXGZpas3xgQZNxVKuoi8KyI3ichM4G1gpYhcKSJX1neSM4flCeBiYCBwjYgMrHXYd4GDqtoHeAT4o3PuQGAGMAiYBDwpIqENlamqZ6vqMFUdBnxOEA0kSEmMpbi0nG37vJeoeVlmPh3bRNC/S9vGDzbGGD9wU6FEAXuBc4HzgP1AK+BSYHID540EMlV1h9OJPwfP4lw1TQFecO6/BkwQT/71KcAcVS1V1Z14Fvka6aZMEWkHnA/Md/Ha/CKlRyzgvRUcVZVl2wsY3bsjIbbcrzEmSLgZ5fXtZpbdHciq8TgbOKu+Y1S1XESKgDhn+xe1zu3u3G+szMuBRap6qK6gROQW4BaAxET/9D8kxUXToXUEGbsPco0X+jy27TvM/uJSxlm6emNMEDkVhwddA8yub6eqPqOqqaqa2qmTd4fx1kdESPHiBMel26z/xBgTfHxZoeQACTUexzvb6jxGRMKAGKCggXMbLFNEOuJpFnvHK6/Ai1J6xLJj/xEOHjn5KTzLMvNJiosmPjbaC5EZY4x3uJmH0tPNtjqsBPqKSE9nYuQMYEGtYxYAM537U4HFqqrO9hnOKLCeQF9ghYsypwILVbXERXx+lZLo6UdZnXVyVyllFZV8aenqjTFByM0Vyut1bHutsZNUtRy4HfgA2AzMU9WNIvIbEbnMOWwWECcimcBdwL3OuRuBecAm4H3gh6paUV+ZNZ52Bg00dwVScnwMoSHCqt2FJ1XOuuxCDpeWW4VijAk69XbKi8gAPMN2Y2oND26HZ+RXo1T1XeDdWtserHG/BJhWz7kPAw+7KbPGvvPcxBUI0RFhDOza7qSXBF66rQARGN3LOuSNMcGloVFe/fEMC26PZ4hwlWLgez6M6ZSVktieVzOyKa+oJCy0ed1XyzLzGdwthtjWEV6OzhhjTk69FYqqvgW8JSKjVfVzP8Z0ykrpEcsLn+9my95iBnVr+hIzR0rLWbXnIDef3csH0RljzMlxk8srU0TuB5JqHq+qtgxwE1V1zK/afbBZFcqKXQcor1RLV2+MCUpuKpS3gCXAx0CFb8M5tcXHtqJT20hW7SnkhtFNP3/ZtnwiwkJITYr1fnDGGHOS3FQo0ar6c59Hcho42QmOSzPzSe0RS1R4qJcjM8aYk+emZ3ihsyaK8YIRPWLZXXCU/MOlTTpvf3EpX31dbMOFjTFBy02FcieeSqVERA6JSLGI1JknyzSuZj9KUyzf7km3Yv0nxphg1WiFoqptVTVEVaNUtZ3zuJ0/gjsVDe4eQ3iosGpPYZPOW55ZQLuoMAZ3b3pnvjHG+IOb1CsiIteLyAPO4wQRGen70E5NUeGhDOoW06QrFFVlaWY+o3vHEWrp6o0xQcpNk9eTwGjgWufxYTyLXJlmSkmMZW12IWUVla6O311wlJzCY9bcZYwJam4qlLNU9YdACYCqHgRsmvZJSOnRntLySjbluuuKWmrL/RpjWgA3FUqZs/SuAohIJ8DdV2tTpxFNXMFx+fZ8usVE0bNja1+GZYwxJ8VNhfIo8CbQWUQeBpYCv/NpVKe4rjGt6BoT5apjvqJSWb69gLF9OuJZHdkYY4KTmyWAXxaRDGACIMDlqrrZ55Gd4lISY111zG/KPUTh0TJr7jLGBL16r1BEpEPVDdiHZ52RV4C9zjZzElJ6xJJTeIy9hxpeC6yq/2SMrR9vjAlyDTV5ZQDpzs/9wFZgm3M/w/ehndpSEtsDjU9wXJaZT/8ubenc1tUSNMYYEzD1Viiq2lNVe+FJCnmpqnZU1Tg8a6R86K8AT1WDusUQERbS4IJbJWUVrNxly/0aY1oGN53yo5xVEgFQ1feAMb4L6fQQERZCcveYBkd6rdp9kNLySsb1teYuY0zwc1Oh5IrIL0Ukybn9Ash1U7iITBKRLSKSKSL31rE/UkTmOvu/FJGkGvvuc7ZvEZGLGivTmdH/sIhsFZHNInKHmxgDKaVHLBtyDlFaXveqAEsz8wkLEUb2tArFGBP83FQo1wCd8AwdfhPo7GxrkDN35QngYmAgcI2IDKx12HeBg6raB3gE+KNz7kBgBp417ScBT4pIaCNl3gQkAANU9UxgjovXFlApibEcr6hkQ07dExyXZeYzLKE9bSLdrDJgjDGB5SY55AFVvVNVhzu3O1X1gIuyRwKZqrpDVY/j+YCfUuuYKcALzv3XgAnimWwxBZijqqWquhPIdMprqMzvA79R1Uon7n0uYgyolB7tAVhdR7NX0dEy1ucUWf+JMabFqPerr4j8XVV/LCJv48ySr0lVL2uk7O5AVo3H2cBZ9R2jquUiUgTEOdu/qHVud+d+fWX2BqaLyBV4RqLdoarb6nhdtwC3ACQmJjbyEnyrc9so4mNb1dmP8vmOAioVxvW1CsUY0zI01JbykvPzL/4IxAsigRJVTRWRK4HngLNrH6SqzwDPAKSmpp5QUfrbiB6xfLGjAFX9xkz4ZZn5tI4IZVhC+8AFZ4wxTVBvhaKqVXNN0oFjVU1JTj9GpIuyc/D0aVSJd7bVdUy2iIQBMUBBI+fWtz0beMO5/ybwbxcxBlxKYixvrcklt6iE7u1bVW9flpnPyJ4dCA91081ljDGB5+bTahEQXeNxKzxzUxqzEugrIj1FJAJPJ/uCWscsAGY696cCi1VVne0znFFgPYG+wIpGypwPjHfun4tnImbQq1rBseZ8lNzCY+zIP2L9J8aYFsVNhRKlqoerHjj3oxs4vuq4cuB24ANgMzBPVTeKyG9EpKr/ZRYQJyKZwF3Avc65G4F5wCbgfeCHqlpRX5lOWX8ArhKR9cDvgZtdvLaAG9C1La3CQ78xY36Zk27F+k+MMS2Jm/GoR0QkRVVXAYjICOCYm8KdCZHv1tr2YI37JcC0es59GHjYTZnO9kLgEjdxBZPw0BCS42O+MdJrWWY+HdtE0L9L2wBGZowxTeOmQvkx8KqI5OLJNnwGMN2XQZ1uUnrE8uxnOygpqyAyLISlmZau3hjT8rhJX79SRAYA/Z1NW1S1zLdhnV5GJMbyz0plXXYRMa3CyT9cytje1txljGlZGu1DEZEfAq1VdYOqbgDaiMgPfB/a6WN4VebhPQf/t9yv9Z8YY1oYN53y33P6J4DqNeW/57OITkNxbSJJiosmY/dBlmfm07Nj628MITbGmJbATR9KqIiIM5y3ah5KhG/DOv2k9Ijlv1v2U1JWwRUp3Rs/wRhjgoybK5T3gbkiMkFEJuBZufF934Z1+klJjKXgyHGOHK+w/hNjTIvk5grl53hyX33fefwR8KzPIjpNVU1wFIHRvS1dvTGm5XGTbbhSVZ9S1amqOhXPZMPHfB/a6aX/GW1pHRHKkO4xtI+2FkVjTMvjaqENERmOZw2Uq4Gd/C9nlvGS0BDhwUsH0qWdrR1vjGmZGkpf3w9PJXINkA/MBURVx9d3jjk509MCm07fGGNORkNXKF8BS4DJqpoJICI/8UtUxhhjWpyG+lCuBPKAT0TkWWeEl+UCMcYYU6d6KxRVna+qM4ABwCd4cnp1FpF/isiFforPGGNMC+FmlNcRVX1FVS/Fs6DVajxDiY0xxphqTVoOUFUPquozqjrBVwEZY4xpmWx9WWOMMV5hFYoxxhivsArFGGOMV4iTRPi0JCL7gd2BjqOWjngmkrYELSlWaFnxtqRYoWXF25JiheCMt4eqdqq98bSuUIKRiKSramqg43CjJcUKLSvelhQrtKx4W1Ks0LLitSYvY4wxXmEVijHGGK+wCiX4PBPoAJqgJcUKLSvelhQrtKx4W1Ks0ILitT4UY4wxXmFXKMYYY7zCKhRjjDFeYRWKj4lIgoh8IiKbRGSjiNzpbO8gIh+JyDbnZ6yzXUTkURHJFJF1IpJSo6xEEflQRDY75SUFebx/csrY7Bzj1eUPmhHrABH5XERKReRntcqaJCJbnNdxrzfj9Gas9ZUTrPHWKC9URFaLyMJgjlVE2ovIayLylfN3OzrI4/2JU8YGEZktIoFd8lVV7ebDG9AVSHHutwW2AgOBPwH3OtvvBf7o3P8W8B6etWdGAV/WKOtTYKJzvw0QHazxAmOAZUCoc/scOC/AsXYG0oCHgZ/VKCcU2A70AiKAtcDAII21znKC4O+gznhrlHcX8AqwMJhjBV4AbnbuRwDtgzVeoDueJdlbOY/nATd5O96m3OwKxcdUNU9VVzn3i4HNeP4QpuD548X5eblzfwrwonp8AbQXka4iMhAIU9WPnLIOq+rRYI0XUCAKzz9lJBAO7A1krKq6T1VXAmW1ihoJZKrqDlU9Dsxxygi6WBsox6u8+N4iIvHAJcC/vB2nN2MVkRjgHGCWc9xxVS0M1ngdYUArEQkDooFcb8fbFFah+JHTRDUc+BLooqp5zq6vgS7O/e5AVo3Tsp1t/YBCEXnDaTr4s4iEBmu8qvo5noXZ8pzbB6q6OcCx1qe+99wnTjLW+srxGS/E+3fgHqDSF/HVdJKx9gT2A/92/sf+JSKtfRYsJxevquYAfwH24PkfK1LVD30XbeOsQvETEWkDvA78WFUP1dynnuvVxsZvhwFnAz/Dc/nbC7jJ+5F6nGy8ItIHOBPPomzdgfNF5OxgjNWfvBVrQ+V4kxf+DiYD+1Q1w1cx1ngub/yPpQD/VNXhwBE8TU8+4YX3NhbPVU1PoBvQWkSu91G4rliF4gciEo7nD+dlVX3D2bzXaRrC+bnP2Z4DJNQ4Pd7Zlg2scZplyoH5eP74gzXeK4AvnKa5w3j6WXzRwdmUWOtT32sIxljrK8frvBTvWOAyEdmFpynxfBH5T5DGmg1kq2rVFd9rBMf/WH0uAHaq6n5VLQPewNN3GTBWofiYiAieNtnNqvq3GrsWADOd+zOBt2psv1E8RuG5jM0DVuLpn6jK8Hk+sCmI490DnCsiYc4/z7l42ooDGWt9VgJ9RaSniEQAM5wygi7WBsrxKm/Fq6r3qWq8qibheV8Xq6pXv0V7MdavgSwR6e9smkBw/I/VZw8wSkSinTIn4OX/sSZrSg++3Zo1omMcnkvXdcAa5/YtIA5YBGwDPgY6OMcL8ASeUUfrgdQaZU10ylkPPA9EBGu8eEZOPY3nD3wT8LcgiPUMPN9CDwGFzv12zr5v4Rltsx34RbDGWl85wRpvrTLPwzejvLz5dzAMSHfKmg/EBnm8DwFfARuAl4BIb8fblJulXjHGGOMV1uRljDHGK6xCMcYY4xVWoRhjjPEKq1CMMcZ4hVUoxhhjvMIqFGP8yJmvs1RELq6xbZqIvB/IuIzxBhs2bIyfichg4FU8OZzCgNXAJFXd3oyywtSTOcGYgLMKxZgAEJE/4ckV1dr52QMYjCcr869V9S0nceBLzjEAt6vqchE5D/gtcBAYoKr9/Bu9MXWzCsWYAHCy2K4CjgMLgY2q+h8RaQ+swHP1okClqpaISF9gtqqmOhXKO8BgVd0ZiPiNqUtYoAMw5nSkqkdEZC5wGLgauLTGanxRQCKetS0eF5FhQAWeJQyqrLDKxAQbq1CMCZxK5ybAVaq6peZOEfk1nkXJhuIZQFNSY/cRP8VojGs2ysuYwPsA+JGTMRYRGe5sjwHyVLUSuAFPwk1jgpZVKMYE3m/xdMavE5GNzmOAJ4GZIrIWGIBdlZggZ53yxhhjvMKuUIwxxniFVSjGGGO8wioUY4wxXmEVijHGGK+wCsUYY4xXWIVijDHGK6xCMcYY4xX/D2LF49TVNntFAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "A5201=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A107\").sort(col('year').desc())\n",
-                "A5201 = A5201.toPandas()\n",
-                "\n",
-                "A5201\n",
-                "plt.plot(A5201['year'],A5201['Accidentprob'])\n",
-                "plt.legend(['Accident probability per one mile travlled'], loc='upper left')\n",
-                "plt.ylabel('Accident probability per one mile travlled')\n",
-                "plt.xlabel('Year')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 37,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "[<matplotlib.lines.Line2D at 0x11b0881f0>]"
-                        ]
-                    },
-                    "execution_count": 37,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEDCAYAAAAlRP8qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkxklEQVR4nO3deXiU9d3v8fc3+0pCIEAggYABUVYhIIKKYn3qClbqUkXEpbjVaq3H2lNPF5/zPK1d1EerCGUpWreK1FqPuygqmwRkB5F9hwBJWEJCEn7njxkoxgQmYSb3zOTzuq655p6ZO/f90Sv58Msv92LOOUREJPLFeB1ARESCQ4UuIhIlVOgiIlFChS4iEiVU6CIiUUKFLiISJTwtdDObbGa7zGxZkLZXY2aL/I83g7FNEZFIYV4eh25m5wMHgOedcz2DsL0Dzrm0U08mIhJ5PB2hO+c+BfYe/56ZnWZm75rZAjP7zMy6exRPRCSihOMc+gTgXudcf+BB4NkGfG2SmRWZ2Vwzuyok6UREwlSc1wGOZ2ZpwGDgNTM7+nai/7OrgUfr+LKtzrnv+pc7Oee2mlkXYIaZLXXOrQ11bhGRcBBWhY7vN4ZS51zf2h8456YD00/0xc65rf7ndWb2CXAWoEIXkWYhrKZcnHP7gPVmdg2A+fQJ5GvNrKWZHR3NtwaGACtCFlZEJMx4fdjiy8Ac4HQz22JmtwE3AreZ2WJgOTAiwM2dART5v+5j4HfOORW6iDQbnh62KCIiwRNWUy4iItJ4nv1RtHXr1i4/P9+r3YuIRKQFCxbsds5l1/WZZ4Wen59PUVGRV7sXEYlIZraxvs805SIiEiVU6CIiUUKFLiISJVToIiJRQoUuIhIlVOgiIlFChS4iEiUirtDXFh/gN/9aTlXNEa+jiIiElYgr9I17DjJl1gbeXrrd6ygiImEl4gr9gm5t6JKdyqTP16MLi4mI/FvEFXpMjHHrkM4s2VJG0cYSr+OIiISNiCt0gJH9cslMiWfSZ+u9jiIiEjYistCTE2K5YWBH3l+xg817y72OIyISFiKy0AFGn5NPjBlTZm3wOoqISFiI2EJvl5HEFb1z+HvRZvZXVHkdR0TEcxFb6AC3nduFA5XVvDp/s9dRREQ8F9GF3is3g4H5Wfx19gaqdaKRiDRzEV3oALee25ktJYd4f8VOr6OIiHgq4gv94jPb0jErhUmf6xBGEWneIr7QY2OMMYPzWbCxhEWbS72OIyLimYAK3cw2mNlSM1tkZt+6s7P5PGVma8xsiZn1C37U+l07II/0xDiN0kWkWWvICP1C51xf51xhHZ9dCnT1P8YC44IRLlBpiXFcNyCPt5duZ1vpoabctYhI2AjWlMsI4HnnMxfINLOcIG07IGOG5OOcY+qcDU25WxGRsBFooTvgfTNbYGZj6/i8A3D8weBb/O99g5mNNbMiMysqLi5ueNoTyG2ZwqU9c3h53iYOVlYHddsiIpEg0EI/1znXD9/Uyj1mdn5jduacm+CcK3TOFWZnZzdmEyd067md2VdRzesLtwR92yIi4S6gQnfObfU/7wL+AQystcpWIO+417n+95pU/04t6ZuXyZRZGzhyRNdKF5Hm5aSFbmapZpZ+dBn4D2BZrdXeBEb7j3YZBJQ55zy5pdBt53Zm/e6DzFi1y4vdi4h4JpARelvgczNbDHwB/D/n3LtmdqeZ3elf521gHbAG+Atwd0jSBuDSnu1on5GkQxhFpNmJO9kKzrl1QJ863n/uuGUH3BPcaI0TFxvDzYPz+e07q1i+rYwe7TO8jiQi0iQi/kzRulw/sCMpCbFM/nyD11FERJpMVBZ6RnI81/TP5c3FW9m1r8LrOCIiTSIqCx3gliGdqT7ieGHuRq+jiIg0iagt9PzWqVzUvS0vzttERVWN13FEREIuagsdfIcw7j14mH982eSHxIuINLmoLvRBXbI4M6cFkz9fj+9AHBGR6BXVhW5m3H5eZ77edYBPv97tdRwRkZCK6kIHuKJ3e9qkJ+pEIxGJelFf6AlxMYw+pxOfri7m6537vY4jIhIyUV/oADec3YnEuBgmz9IoXUSiV7Mo9KzUBK7ul8v0hVvZe/Cw13FEREKiWRQ6wG3n5lNZfYQXdaKRiESpZlPoBW3SGdotm+fnbqSyWicaiUj0aTaFDr4TjYr3V/LWYk8u1S4iElLNqtDP69qabm3TmKgTjUQkCjWrQjczbh3SmZXb9zFn3R6v44iIBFWzKnSAq87qQFZqApN1opGIRJlmV+hJ8bGMOrsjH63axfrdB72OIyISNM2u0AFGndOJ+JgYpuhEIxGJIs2y0NukJzG8b3teK9pCWXmV13FERIKiWRY6wK1DOnOoqoaX52/yOoqISFA020I/s30LBp/WiqmzN1BVc8TrOCIipyzgQjezWDP70szequOzMWZWbGaL/I/bgxszNG47tzPbyyp4Z9kOr6OIiJyyhozQ7wNWnuDzV51zff2PiaeYq0lceHoburROZZJONBKRKBBQoZtZLnA5EBFFHaiYGOOWIfks3lzKwk0lXscRETklgY7QnwQeAk402TzSzJaY2TQzy6trBTMba2ZFZlZUXFzcwKihMbJ/LhnJ8bqjkYhEvJMWupldAexyzi04wWr/AvKdc72BD4Cpda3knJvgnCt0zhVmZ2c3KnCwpSTE8YOBHXl32Q427y33Oo6ISKMFMkIfAgw3sw3AK8AwM/vb8Ss45/Y45yr9LycC/YOaMsRuHtyJGDP+OnuD11FERBrtpIXunPu5cy7XOZcPXA/McM6NOn4dM8s57uVwTvzH07CTk5HM5b1zeOWLTZTojkYiEqEafRy6mT1qZsP9L39sZsvNbDHwY2BMMMI1pbsvKKC8qoaJn6/zOoqISKOYV4frFRYWuqKiIk/2XZ97XlrIJ6t28dnPhpGVmuB1HBGRbzGzBc65wro+a7Znitbl/ou6Ul5Vw18+0yhdRCKPCv04Xdumc0Xv9kydvYG9mksXkQijQq/lvosKOFRVw4RPNUoXkciiQq+loE06w/u05/k5G9hzoPLkXyAiEiZU6HW4d1hXKjRKF5EIo0KvQ0GbNP8ofSO7NUoXkQihQq/Hjy/qSmW1RukiEjlU6PXokp3GVX078PycDRTv1yhdRMKfCv0E7r2oK4erjzB+5lqvo4iInJQK/QQ6t07lqrM68Ld5G9m1v8LrOCIiJ6RCP4kfD+tKVY1j/EzNpYtIeFOhn0R+61S+d1YH/jZ3I7v2aZQuIuFLhR6Ae4cVUH3EMU5z6SISxlToAejUKpWrz+rAi/M2sVOjdBEJUyr0AN07rCtHjjjGfaJRuoiEJxV6gDq2SmFkv1xe+mITO8o0SheR8KNCb4AfDSvwj9LXeB1FRORbVOgNkJeVwjWFubz8xWa2lx3yOo6IyDeo0Bvo7gsKOOIcz36suXQRCS8q9AbyjdLzeHX+ZraVapQuIuFDhd4IPxpWgMPxrObSRSSMqNAboUNmMtf6R+lbNUoXkTARcKGbWayZfWlmb9XxWaKZvWpma8xsnpnlBzVlGLrnwgIAnvlYo3QRCQ8NGaHfB6ys57PbgBLnXAHwBPDYqQYLd+0zk7luQB6vFW1mS0m513FERAIrdDPLBS4HJtazyghgqn95GnCRmdmpxwtv91xYgGE8oyNeRCQMBDpCfxJ4CDhSz+cdgM0AzrlqoAxoVXslMxtrZkVmVlRcXNzwtGEmJyOZ6wf6Rumb92qULiLeOmmhm9kVwC7n3IJT3ZlzboJzrtA5V5idnX2qmwsLd19QQIyZ5tJFxHOBjNCHAMPNbAPwCjDMzP5Wa52tQB6AmcUBGcCeIOYMW+0ykvjBwDymLdiiUbqIeOqkhe6c+7lzLtc5lw9cD8xwzo2qtdqbwM3+5e/713FBTRrG7r6wgJgY488zNEoXEe80+jh0M3vUzIb7X04CWpnZGuAB4OFghIsUbVskccPAjkxbuIVNezRKFxFvNKjQnXOfOOeu8C//0jn3pn+5wjl3jXOuwDk30DnX7G7AefcFpxEXYzw942uvo4hIM6UzRYOkTYskbjy7E9O/3MqG3Qe9jiMizZAKPYjuHNqFuBjjzzriRUQ8oEIPojYtkhg1qBP/0ChdRDygQg+yO4eeRnys8ZTm0kWkianQgyw7PZGbBnXijS+3sq74gNdxRKQZUaGHwB1DTyMhLkbHpYtIk1Khh0DrtERGn5PPG4u2slajdBFpIir0EBl7fhcS42J5+iPNpYtI01Chh0jrtERGD+7Em4u3sWaXRukiEnoq9BAae14XkuJjeWjaYkrLD3sdR0SinAo9hFqlJfLHa/qwbOs+vv/cHN3ZSERCSoUeYpf1yuH52waya18F33t2Nsu3lXkdSUSilAq9CQzq0oppdw0mPsa49rk5fPZ15N+tSUTCjwq9iXRrm870u4eQl5XCLVPm8/qCLV5HEpEoo0JvQu0ykvj7nedwdpcsfvraYp75eA3N6D4gIhJiKvQm1iIpniljBnJV3/b84b2veOSNZVTX1HfvbRGRwMV5HaA5SoiL4fFr+5KTmcy4T9ayc18FT/+gH8kJsV5HE5EIphG6R2JijJ9d0p1HR/Tgo1W7+MFf5rLnQKXXsUQkgqnQPTb6nHyeG9Wfldv3MXLcbDbu0XXURaRxVOhh4Ls92vHSD8+m9FAVVz87m8WbS72OJCIRSIUeJvp3yuL1uwaTkhjL9RPmMmPVTq8jiUiEUaGHkdOy03j9rsEUtEnj9qlFvPzFJq8jiUgEOWmhm1mSmX1hZovNbLmZ/aaOdcaYWbGZLfI/bg9N3OjXJj2JV8YO4ryu2fx8+lIef/8rHasuIgEJZIReCQxzzvUB+gKXmNmgOtZ71TnX1/+YGMyQzU1qYhwTby7k2sJcnpqxhv81bQlVOlZdRE7ipMehO9/w8OgFveP9Dw0ZQyw+NobHRvamfWYyT374Nbv2V/Lsjf1IS9SpAyJSt4Dm0M0s1swWAbuAD5xz8+pYbaSZLTGzaWaWV892xppZkZkVFRfrAlUnY2bc/51uPDayF7PW7Ob6CXPYtb/C61giEqYCKnTnXI1zri+QCww0s561VvkXkO+c6w18AEytZzsTnHOFzrnC7OzsU4jdvFw3oCMTRxeydtdBrn52tu5TKiJ1atBRLs65UuBj4JJa7+9xzh09zXEi0D8o6eSYC7u34dU7BlFRVcPIcbMp2rDX60giEmYCOcol28wy/cvJwMXAqlrr5Bz3cjiwMogZxa93bibT7xpCy5QEbpw4j3eXbfc6koiEkUBG6DnAx2a2BJiPbw79LTN71MyG+9f5sf+QxsXAj4ExoYkrHVul8PpdgzmzfQvuenEhkz9f73UkEQkT5tUxzoWFha6oqMiTfUeDQ4druP/VL3lv+U5uHdKZRy4/g5gY8zqWiISYmS1wzhXW9ZnOFI1QyQmxPHtjf8YMzmfyrPXc89JCKqpqvI4lIh5SoUew2Bjj18N78MjlZ/DOsh3cOHEeJQcPex1LRDyiQo8Ct5/XhWdu6MfSrWWMHDebTXvKvY4kIh5QoUeJy3vn8OLtZ7O3/DDfe3YWi3QJXpFmR4UeRQbkH38J3jl8uEKX4BVpTlToUea07DSm3zWEbm3TGftCES/M3eh1JBFpIir0KJSdnsgrYwdx4elt+D9vLOO376zkyBFdT00k2qnQo1RKQhzjb+rPqEEdGT9zHfe9uojKah3WKBLNdC3WKBYXG8N/juhJh8wUHnt3Fbv2VTDhpkIyUuK9jiYiIaBCj3Jmxl0XnEb7zCQefG0xI5+bzV9vGUBuy5SQ77vsUBUfrtjJO8t2sK30ELktk+mYlUJeVor/OZnclikkxceGPItIc6BCbyZG9O1Am/Qkxr5QxPeenc2UMQPo2SEj6PspOXiYD1bs5O1l25m1ZjdVNY6cjCS6tU1n3e6DzFxdTGX1N+++1LZFInktfSWfe7TsWybTsVUKbdOTdEkDkQDpWi7NzOqd+7llynxKyg/zzI39uPD0Nqe8zd0HKnlv+Q7eWbqDOev2UHPEkdsymct65XBpz3b0yc08VsrOOYr3V7K5pJxNe8vZvPcQm/f6lreUHGJb2SGO/5ZMiI0ht2Wyv+iTjxV/nv+RkazpI2leTnQtFxV6M7RzXwW3TJnPVzv3819X9eT6gR0btY33lu/g7aXb+WL9Xo44yG+V4i/xHHp2aIFZw0fWh6uPsK30kK/s/aW/Ze+/X5eWV31j/UFdsvj18B50b9eiwfsSiUQqdPmWA5XV3P3iQj5dXcy9wwp44OJuJy3gbaWHeGfZDt5Zup0Fm0pwDrq2SePSnu24tFcO3dulN6rEG2JfRRWb95azeW85q3ceYPKs9eyvqOamQZ34ycXdNGKXqKdClzpV1RzhkX8s49WizVx9Vgd+N7I3CXHfPJJ1895y3lm2nbeX7jh2OYHu7dKPTad0bZvuQfJ/Ky0/zJ/eX82L8zbSMiWBn13Sne/3z9W8u0QtFbrUyznH0zPW8PgHqxlS0Ipxo/qze3+lbyS+bDvLtu4DoFeHDC7t1Y5Le+bQuXWqx6m/bfm2Mn71z+UUbSyhT14mvxneg755mV7HEgk6Fbqc1LQFW3j49SUkxcdyoLIagL55mVzmL/G8rNAf5niqnHO8sWgr//32Kor3V3JdYR4PXXI6rdISvY4mEjQqdAnIrDW7eWneJvp3asklPdvRPjPZ60iNsr+iiqdnrGHy5+tJSYjlgYu7MWpQJ+JidWK0RD4VujRLa3Yd4Df/Ws5nX++me7t0fj28B4O6tPI6lsgp0S3opFkqaJPG87cO5LlR/dlfUc31E+Zy78tfsr3skNfRREJChS5Rzcy4pGc7PvrpUO67qCvvL9/BRX+aybOfrNHFyiTqqNClWUiKj+UnF3fjwweGcm5Ba37/7ldc8uRnfPzVLq+jiQTNSQvdzJLM7AszW2xmy83sN3Wsk2hmr5rZGjObZ2b5IUkrcoryslKYMLqQqbcOxIBbpszn9qlFug+rRIVARuiVwDDnXB+gL3CJmQ2qtc5tQIlzrgB4AngsqClFgmxot2zevf98fn5pd+as3c13npjJ4+9/xaHDmoaRyHXSQnc+B/wv4/2P2ofGjACm+penARdZqM8BFzlFCXEx3DH0NGY8eAGX9WzHUzPW8J3HZ/L20u14dfSXyKkIaA7dzGLNbBGwC/jAOTev1iodgM0AzrlqoAz41vFhZjbWzIrMrKi4uPiUgosES9sWSTx5/Vn8/Y5zaJEcz90vLuSpj9Z4HUukwQIqdOdcjXOuL5ALDDSzno3ZmXNugnOu0DlXmJ2d3ZhNiITMwM5Z/OtHQ7i6Xwee+HA1/1q8zetIIg3SoKNcnHOlwMfAJbU+2grkAZhZHJAB7AlCPpEmFRcbw2+v7sWA/JY8+NpivtxU4nUkkYAFcpRLtpll+peTgYuBVbVWexO42b/8fWCG0ySkRKjEuFjG31RImxaJ/PD5BWwt1YlIEhkCGaHnAB+b2RJgPr459LfM7FEzG+5fZxLQyszWAA8AD4cmrkjTyEpNYPLNA6isquH2qUUc9F+wTCSc6VouIicwc3Uxt0z5gmHd2zL+pv7E6jrr4jFdy0WkkYZ2y+ZXV/bgw5U7eezd2jONIuElzusAIuHu5sH5rC0+wIRP13FadirXDWj4PVhFmoJG6CIB+OUVZ3Je19b84h/LmLNWB3BJeFKhiwQgLjaGP9/Qj06tUrjrxQVs2H3Q60gi36JCFwlQRnI8k8cMwIBbp86nrLzK60gi36BCF2mATq1SGX9TIZv3lnP3SwuoqjnidSSRY1ToIg00sHMW//29Xsxas4dfv7lcF/KSsKGjXEQa4ZrCPNYWH+S5mWspaJPGLUM6ex1JRIUu0lgPffd01hUf4D/fWkF+61QuPL2N15GkmdOUi0gjxcQYT1zXl+7tWnDvS1/y1Y79XkeSZk6FLnIKUhPjmDSmkJSEWG6bOp/dByq9jiTNmApd5BTlZCTzl9GFFO+v5I4XFlBRpdvYiTdU6CJB0Ccvk8ev7cuCjSX8fPpSHfkinlChiwTJ5b1z+OnF3fjHl1t55mPdwk6ano5yEQmiHw0rYG3xAf74/mq6ZKdxWa8cryNJM6IRukgQmRm/G9mbfh0zeeDvi1iypdTrSNKMqNBFgiwpPpYJowtplZrI7VOL2F6mW9hJ01Chi4RA67REJo0p5GBlNbdPLaL8cPO8hV1FVQ3zN+zl2U/WcOtf5zPsj5/w5uJtXseKWppDFwmR7u1a8PQNZ3H71CJ+8uoixt3Yn5gov4VdaflhFmwsYf6GEoo27GXJljIO+y9gVtAmjfjYGO575UtKyw8z+px8b8NGIRW6SAgN696WX1x+Jv/51gp+9eZyzu+WDcDRWjf797MdffebT5jZt9f3v2MGKQmx5GQkk52e2KT3PHXOsbX0EEUbSpi/YS9FG0r4aqfvbNn4WKNnhwzGDMlnQH4W/Tu1JCs1gYqqGn700kJ++c/l7D14mPsu6opZdP8j15RU6CIhduuQfNYVH+CFuRt5Ye7GkO0nLsZo2yKJdhlJ5Bx7JNM+M4l2Gcm0z0iidVpio39LqDni+GrHfoo27j02At9eVgFAemIc/Tq15Mo+ORTmZ9EnN5PkhNhvbSMpPpbnRvXnZ68v5ckPv6bk4GF+dWWPqP/Npamo0EVCzMz4v1f15ObB+Ryu9k0/HD3vyOGOvT56KtLRk5LccetR53q+5wOVVWwrrWBHWQXbyg6xvbSC5dv28cGKnVRWf/N67UdL//iSb/eN4k+idaqv9Cuqali8uZT5G3wFvnBjCfsrfX8LaNsikQH5Wccep7dLD/i3g7jYGP7w/d60TIln4ufrKSmv4k/X9iE+Vn/SO1UnLXQzywOeB9ri+16a4Jz7n1rrXAD8E1jvf2u6c+7RoCYViWBmRre26U26T+ccJeVVbPeX/PayQ2wvq2B7WQXbSg+xZEsp7y2vOPaPzFHxsUab9CR27a+gqsb3r0bXNmlc2bc9A/JbUtgpi9yWyac0VRITY/zi8jNomZrAH977in0VVYy7sX+do3oJXCAj9Grgp865hWaWDiwwsw+ccytqrfeZc+6K4EcUkcYwM7JSE8hKTaBH+4w613HOsefgYd/ovvTfhb+j7BBtM5IY0Mk3/90yNSEk+e65sICWKQn84o2ljJo0j8k3DyAjJT7o+2ouTlrozrntwHb/8n4zWwl0AGoXuohEGDOjdVoirdMS6dmh7tIPtRvO7khmSjz3v7KIa8fP4YXbBtKmRZInWSJdgyatzCwfOAuYV8fH55jZYjN7x8x61PP1Y82syMyKiouLG55WRKLSZb1ymDxmAJtLyhn53Gw27jnodaSIFHChm1ka8Dpwv3NuX62PFwKdnHN9gKeBN+rahnNugnOu0DlXmJ2d3cjIIhKNzu3ampd+OIgDFdWMHDeHFdtq14ycTECFbmbx+Mr8Refc9NqfO+f2OecO+JffBuLNrHVQk4pI1Oubl8lrd55DfKxx3YQ5fLF+r9eRIspJC918f8qeBKx0zj1ezzrt/OthZgP9290TzKAi0jwUtEln2l2DyU5P5KZJ8/ho5U6vI0WMQEboQ4CbgGFmtsj/uMzM7jSzO/3rfB9YZmaLgaeA652u8C8ijdQhM5nX7jiHbm3TGfvCAqYv3OJ1pIhgXvVuYWGhKyoq8mTfIhIZDlRW88OpRcxZt4dfXnEmt57b2etInjOzBc65wro+06lZIhK20hLjmHLLAL7boy2PvrWCP73/lW7vdwIqdBEJa0nxsTxzQz+uK8zj6RlreOSNZdQcUanXRddyEZGwFxcbw+9G9qJlagLPzVxL6aEqnri2LwlxGpMeT4UuIhHBzHj40u60TInnt++sYt+hKp4b1Z/URNXYUfrnTUQiyh1DT+P3I3sza81ubpw4j5KDh72OFDZU6CISca4dkMe4Uf1ZsX0f146fww7/ddmbOx22KCIRa/ba3Yx9fgEArdMSSIqPJTE+lqS4GJLiY0mKjyExzvfse+37LPHocnwMSXG+5cTjvuboc4fMlLC7pO+JDlvU5JOIRKzBp7Xm1TsG8cKcjRw8XENFle9RWX2E0vLDVFQdoaL66PtHjn0WqNZpCTw6oieX9coJ4X9F8GiELiLNinOOyuojVNZR9kcLv6KqhoOHq5n0+XqWbd3HpT3b8eiInmSnJ3odXyN0EZGjzOzY9EsGJ76ZxpW92zP+03X8z4dfM2fdTH59ZQ9G9G0ftje21h9FRUTqERcbwz0XFvD2fefSuXUq97+6iB8+XxS2f4RVoYuInERBm3Sm3TmYRy4/g8++3s3FT8zk70Wbw+4yBCp0EZEAxMYYt5/XhXfvP58zclrw0LQljJ78BVtLD3kd7RgVuohIA3RuncorPxzEoyN6sGBjCf/x+Ez+NncjR8Lg+jIqdBGRBoqJMUafk89795/PWR1b8sgby7hx4jw27Sn3NpenexcRiWB5WSm8cNtAfnd1L5ZtLeO7T37K5M/XezZaV6GLiJwCM+P6gR157yfnc3aXLB59awXXjp/D2uIDTZ5FhS4iEgTtM5OZMmYAf7qmD6t37uey//mM8TPXUl0T+Jmpp0qFLiISJGbGyP65fPjAUIZ2y+a376xi5LjZrN65v0n2r0IXEQmyNi2SGH9Tf57+wVlsLjnE5U99xtMffU1ViEfrKnQRkRAwM67s054PfnI+3+3Rjj99sJoRf57F8m1lIdunCl1EJIRapSXy5xv68dyo/uzaX8mIP89i0ufrQ7Kvkxa6meWZ2cdmtsLMlpvZfXWsY2b2lJmtMbMlZtYvJGlFRCLUJT3b8eED5zO8T3vyW6WEZB+BXG2xGvipc26hmaUDC8zsA+fciuPWuRTo6n+cDYzzP4uIiF9mSgKPX9c3ZNs/6QjdObfdObfQv7wfWAl0qLXaCOB55zMXyDSzyLgivIhIlGjQHLqZ5QNnAfNqfdQB2Hzc6y18u/Qxs7FmVmRmRcXFxQ2MKiIiJxJwoZtZGvA6cL9zbl9jduacm+CcK3TOFWZnZzdmEyIiUo+ACt3M4vGV+YvOuel1rLIVyDvuda7/PRERaSKBHOViwCRgpXPu8XpWexMY7T/aZRBQ5pzbHsScIiJyEoEc5TIEuAlYamaL/O/9b6AjgHPuOeBt4DJgDVAO3BL0pCIickInLXTn3OfACe+I6nz3YbonWKFERKThdKaoiEiUMK9ucmpmxcBGT3Zev9bAbq9DNEAk5Y2krBBZeSMpK0RW3nDM2sk5V+dhgp4VejgysyLnXKHXOQIVSXkjKStEVt5IygqRlTeSsoKmXEREooYKXUQkSqjQv2mC1wEaKJLyRlJWiKy8kZQVIitvJGXVHLqISLTQCF1EJEqo0EVEokRUF3p9d1sysywz+8DMvvY/t/S/X++dl8yso5m9b2Yr/dvLD/O8v/dvY6V/nROe7dsEWbub2RwzqzSzB2tt6xIz+8r/3/FwMHMGO28gd/AKl6zHbS/WzL40s7eCnTXYec0s08ymmdkq//fuOWGc9Sf+bSwzs5fNLCmYWRvFORe1DyAH6OdfTgdWA2cCvwce9r//MPCYf/ky4B18lzoYBMw7blufABf7l9OAlHDNCwwGZgGx/scc4AKPs7YBBgD/BTx43HZigbVAFyABWAycGQb/b+vLW+d2wjHrcdt7AHgJeCtMfs7qzQtMBW73LycAmeGYFd/9HtYDyf7XfwfGhOL/b0MeUT1Cd/XfbWkEvm8c/M9X+ZfrvPOSmZ0JxDnnPvBv64Bzrjxc8wIOSML3A5EIxAM7vczqnNvlnJsPVNXa1EBgjXNunXPuMPCKfxtBFay8J9hO2GUFMLNc4HJgYjAzhiKvmWUA5+O7uivOucPOudJwzOoXBySbWRyQAmwLZtbGiOpCP559825Lbd2/L++7A2jrX67vzkvdgFIzm+7/1fUPZhYbrnmdc3OAj4Ht/sd7zrmVHmetT0B3uwqmU8xb33ZCIghZnwQeAo6EIl9tp5i3M1AMTPH/nE00s9RwzOqc2wr8EdiE72eszDn3fqiyBqpZFLqd4G5Lzvf70smO3YwDzgMexPfrVxdgTPCT+pxqXjMrAM7Ad6ORDsAwMzsvHLM2tWDlPdF2giUI3wdXALuccwtCka+O/QXj56wfMM45dxZwEN/0R9hl9c+xj8D3j1B7INXMRoUia0NEfaFb3Xdb2umfmsD/vMv/fn13XtoCLPJPC1QDb+D7xgvXvN8D5vqnhg7gm2cP6h+XGpG1Pk12t6sg5Q3kDl7hknUIMNzMNuCbyhpmZn8L47xbgC3OuaO/8UwjBD9nQcr6HWC9c67YOVcFTMf3tytPRXWhm9V7t6U3gZv9yzcD/zzu/bruvDQf3/z00SucDQNWhHHeTcBQM4vzf/MOxTdX6GXW+swHuppZZzNLAK73byOogpX3BNsJu6zOuZ8753Kdc/n4/r/OcM4FfRQZxLw7gM1mdrr/rYsI8s9ZEL9vNwGDzCzFv82LCPLPWKM05C+okfYAzsX3q9MSYJH/cRnQCvgI+Br4EMjyr2/AM/iOulgKFB63rYv921kK/BVICNe8+I4cGY/vG2wF8HgYZG2HbwS2Dyj1L7fwf3YZvqMN1gK/CJPvhTrz1redcMxaa5sXELqjXIL5vdAXKPJv6w2gZRhn/Q2wClgGvAAkhuL/b0MeOvVfRCRKRPWUi4hIc6JCFxGJEip0EZEooUIXEYkSKnQRkSihQhcRiRIqdBGRKPH/AcTWhYxpGw1dAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "\n",
-                "M25=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"M25\").sort(col('year').desc())\n",
-                "M25 = M25.toPandas()\n",
-                "M25\n",
-                "plt.plot(M25['year'],M25['Accidentprob'])\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 30,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEGCAYAAACzYDhlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0OklEQVR4nO3deXwV5fX48c/JvdkJAUKAAELCDoEgEBBwF1E2we1b0Wqxat2X1tpWqlWxtdZvv9VW665Vq7L9ECWIu4grAgFUSFiMrGFfQiCB7Of3xx0wxCwXuJN7k5z363VfmTvzzJlzQ8LJPPPMM6KqGGOMMW4KC3YCxhhjGj8rNsYYY1xnxcYYY4zrrNgYY4xxnRUbY4wxrvMGO4FQ1Lp1a01OTg52GsYY06AsXbp0t6omVrfNik01kpOTyczMDHYaxhjToIjIxpq2WTeaMcYY11mxMcYY4zorNsYYY1xn12z8VFpaSm5uLkVFRcFOpVGIioqiY8eOhIeHBzsVY0w9sGLjp9zcXOLi4khOTkZEgp1Og6aq7Nmzh9zcXFJSUoKdjjGmHlg3mp+KiopISEiwQhMAIkJCQoKdJRrThFixOQZWaALHvpfGNC1WbExAqSp5hSWUV1QEOxVjTAixYtPAvPXWW4gIq1evPuZ9MzMzuf3226vdlpyczO7du487p+zsbFSVLfsOsTnvILsOFB9XLGNM42TFpoGZNm0ap512GtOmTTvmfdPT03n88ccDntPhYrNjfzF7C0vwiJB/qAx7MJ8x5jArNg1IQUEBX3zxBS+++CLTp08HoLy8nLvuuou+ffuSlpbGE088AcCSJUsYPnw4/fv3Z8iQIRw4cIAFCxYwbtw4APbs2cN5551Hamoq11133VGF4bXXXmPIkCGcfPLJ3HDDDZSXlwPQrFkz7rnnHvr378/QoUPZsWMHX331FRkZGfz2rrs4a/hg9u/MJWPqi4w5YzBpaWlMnDixnr9LxphQZEOfj8OUuVlkb90f0Jh92jfn/gtSa20zZ84cRo0aRY8ePUhISGDp0qUsXryYDRs28M033+D1etm7dy8lJSVcdtllzJgxg8GDB7N//36io6OP/gxTpnDaaadx3333MW/ePF588UUAVq1axYwZM/jyyy8JDw/n5ptv5vXXX+cXv/gFhYWFDB06lIceeojf//73PP/889x7772MGjOOQaeP4JJLLqVzQgw/G3cecz//hvat44hW604zxlixaVCmTZvGHXfcAcDEiROZNm0a69ev58Ybb8Tr9f1TtmrVihUrVpCUlMTgwYMBaN68+U9iffbZZ8yePRuAsWPH0rJlSwA+/vhjli5demTfQ4cO0aZNGwAiIiKOnBkNGjSIDz/8kIKiUgpLyoj0eujUKgYRIS0tjXt/fT1nnz+WmybZmY0xxorNcanrDMQNe/fuZf78+axYsQIRoby8HBE5UhQCRVWZNGkSDz/88E+2hYeHHxmy7PF4KC4pYeOeg3hESIyLICzMt23evHm8/f5HzHozg8GDH2XlyhVHiqExpmmyazYNxKxZs7jqqqvYuHEjGzZsYPPmzaSkpNC/f3+effZZysrKAF9R6tmzJ9u2bWPJkiUAHDhw4Mj2w8444wymTp0KwLvvvkteXh4AI0aMYNasWezcufNIvI0bfzpreFl5BQeKywkLE9q1bsnBwkIAKioq2Lx5M2PPH8lv/jiFffn7KCgocOebYoxpMKzYNBDTpk3joosuOmrdJZdcwrZt2+jUqRNpaWn079+fqVOnEhERwYwZM7jtttvo378/I0eO/Mnd+vfffz+fffYZqampzJ49m06dOgHQp08f/vKXv3DeeeeRlpbGyJEj2bZt21H7lpZXsONAEaiS0jqWn19xOX//+98ZMGAA33//PVdeeSUDTu7P5WPO4Oe/vIH4+Hh3vznGmJAnNjz1p9LT07Xqw9NWrVpF7969g5RR6CivUNbtLqC4tIKU1rHERtbcPba3sITcvIN0a9OMmIiftrPvqTGNi4gsVdX06rbZmY3xW4UqG/cUUlRSQadWMbUWGoDmUV5EhPxDpfWUoTEmVFmxCaCSsgr2HSzhYEkZZY1suhZVJTfvEAXFZXRoGU3z6LofDeD1hBEX6SX/YKnd4GlME2dDhI6BqtY6gWRhSRmb9x488t4bFkakN4wIr++rb9lDhDcMT1jDmYhSVdmWX8S+gyW0i4+iVWyE3/vGR4ezv6iUgyXlR50JWfExpmmxYuOnqKgo9uzZU+tjBuKjw4luG0dxWQXFZeWUlFVQXFZBQXEZeQePPtMJ91QtRL4iFOENIyzEZkTeXVDM7oJiWjeLJLFZ5DHtGxftRfb5utIOF5vDz7OJiopyI11jTAiyYuOnjh07kpuby65du45rf48qZeVKeYVSVlHBgcPL5RWUV/ojXwBPmOD1CN4wwesJwxsmhHuCczZ0sKSMvYWlxER48MZEkL+t7n2qyi8oZne5sq95FIfr6OEndRpjmgZXi42IjAL+BXiAF1T1b1W2RwL/BQYBe4DLVHWDs20ycC1QDtyuqu/XFlNEbgV+DXQFElV1d5VjDQYWAhNVddaxfpbw8HDXniqZf7CU9XsKWb+7gPW7D7J+dyEbdhewYXchB4p998d4woSx/ZK47vQU0jq2cCWPqj5Zs5PrZmQytEsr/nP1YCK9nuOK8+byXH7zxre8cdMwBnVuFeAsjTENgWvFRkQ8wJPASCAXWCIiGaqaXanZtUCeqnYTkYnAI8BlItIHmAikAu2Bj0Skh7NPTTG/BN4GFtSQyyPAB4H/pCcuPiack2NacPJJLY5ar6rsLihh/e5CPszezrTFm8n4ditDUlpx3WkpnNu77ZG79gNt+aY8bn5tGb2T4njmykHHXWgAzu3dlghvGG9/t82KjTFNlJuj0YYAOaq6TlVLgOnAhCptJgCvOMuzgBHiuyAyAZiuqsWquh7IceLVGFNVlx8+K6rGbcAbwM6Afbp6ICIkxkUyJKUV94ztw8LJ53Dv2N5syTvE9a8u5Zx/LODVhRs4WFJWd7Bj8MOuAq55eQltmkfy0tVDiIuqe+RZbeKiwjmrRyLvrNhGRYUNDDCmKXKz2HQANld6n+usq7aNqpYB+UBCLfv6E/MoItIBuAh4uo5214tIpohkHu91GbfFRYVz3eld+PR3Z/HvKwYQHxPBn+ZkMfxv8/n7+6vZsb+o7iB12J5fxC9eXIwnTPjvNUNIjDu2AQE1GZuWxI79xWRuzAtIPGNMw9IU7rP5J/AHVa31xhdVfU5V01U1PTExsX4yO05eTxjj0trz1s3DmXXjMIamJPDUgh847ZH53Dnzm+N+/EH+oVIm/Wcx+w6W8PIvh9A5ITZgOY/o3ZZIbxjzvtsasJjGmIbDzQECW4CTKr3v6Kyrrk2uiHiBeHwDBWrbt66YVaUD053hyq2BMSJSpqpv+f1JQpSIkJ7civTkVmzcU8hLX25gZuZmZi/bwqndErjutC6c2SPRr+s6RaXl/Oq/mazbXcDLvxxC3w6Bnc+sWaSXs3u24Z2V27nvgtQGdZ+RMebEuXlmswToLiIpIhKB74J/RpU2GcAkZ/lSYL767vbLACaKSKSIpADdgcV+xjyKqqaoarKqJuO7LnRzYyg0VXVOiOWB8aksvHsEfxjVi5ydBfzy5SWc98/PmLZ4E0Wl5TXuW16h3DF9OUs27OXRn53Mqd1au5Lj2LQkdh0oZsmGva7EN8aELteKjXMN5lbgfWAVMFNVs0TkQREZ7zR7EUgQkRzgTuBuZ98sYCaQDbwH3KKq5TXFBBCR20UkF9/Zznci8oJbny2UxceEc9NZXfn89+fwz8tOJtIbxuTZKzj1b/N57MO17C44+smZqsqf5qzk/awd3D+uDxf0b+9abuf0akNUeBjzvjuOm3WMMQ2azfpcjepmfW6oVJWv1+3lxS/W8dGqnUR4w7h4QAeuPS2F7m3j+OdHa/nnR99z81ld+f2oXq7nc8vry1i0fg+L/niudaUZ08jUNuuzzSDQyIkIw7omMKxrAj/sKuA/X6xn1tJcpi/ZzIBOLVi+aR8/S+/I787vWS/5jE1LYt6KbSxav4fhXd3prjPGhJ6mMBrNOLomNuOhi/qxcPIIfjuyB7l5hzivT1v+elG/WicYDaSze7YhOtxjXWnGNDF2ZtMEtYqN4LYR3bn1nG4A9VZoAKIjPIzo3Yb3Vm5nyvhUvB77e8eYpsB+05swEanXQnPYuLQk9hSW8PU6G5VmTFNhxcbUu7N6tiEmwsO8FXaDpzFNhRUbU++iwj2c27st763cTml543qiqTGmelZsTFCMTUsi72ApC3/YE+xUjDH1wIqNCYozeyTSLNJro9KMaSKs2JigiAr3MLJPW97Lsq40Y5oCKzYmaMb2SyL/UClf5uyuu7ExpkGzYmOC5vQerYmL9PK2daUZ0+hZsTFBE+n1MDK1Le9nbaekzLrSjGnMrNiYoBqXlsSBojK+yAnNp6MaYwLDio0JqtO6JdI8yrrSjGnsrNiYoIrwhnF+ajs+zNpBcVnND3gzxjRsVmxM0I1NS+JAcRmfr7VRacY0VlZsTNCd2q018dHhzFthXWnGNFZWbEzQhXvCGJXajg+zd1BUal1pxjRGVmxMSBiblkRBcRmfrrVRacY0RlZsTEgY1jWBljHhNleaMY2UFRsTEsI9YYzq246PVllXmjGNkRUbEzLGpbXnYEk5C9bsDHYqxpgAs2JjQsYpKa1IiI2o1xs8F6zZyRtLc+vteMY0Vd5gJ2DMYV6nK232si0cKiknOsLj2rFUlRc+X89f312FKnROiCE9uZVrxzOmqXP1zEZERonIGhHJEZG7q9keKSIznO2LRCS50rbJzvo1InJ+XTFF5FZnnYpI60rrfy4i34nIChH5SkT6u/iRzQkam5bEodJyPnGxK62svIJ731rJQ++sYlRqOzq0iGby7BU2GagxLnKt2IiIB3gSGA30AS4XkT5Vml0L5KlqN+Ax4BFn3z7ARCAVGAU8JSKeOmJ+CZwLbKxyjPXAmaraD/gz8FxAP6gJqFNSEmjdLIK3v9vqSvwDRaVc+0omry/axI1nduXJKwby5wtT+X5nAc9++oMrxzTGuHtmMwTIUdV1qloCTAcmVGkzAXjFWZ4FjBARcdZPV9ViVV0P5DjxaoypqstVdUPVJFT1K1XNc95+DXQM5Ic0geUJE0b3TWL+6p0UFpcFNPbWfYf4n2cW8kXObh6+uB93j+5FWJhwTq+2jO2XxBOf5LBuV0FAj2mM8XGz2HQANld6n+usq7aNqpYB+UBCLfv6E7M21wLvVrdBRK4XkUwRydy1y24sDKaxaUkUlVYwf3XgutJWbsnnwie/JDfvEC9dPZjLh3Q6avv9F/Qh0hvGPW+uRFUDdlxjjE+TGY0mImfjKzZ/qG67qj6nqumqmp6YmFi/yZmjDE5uRWJcZMBu8Pwoewf/88xCwj1hvHHTcM7o8dN/3zbNo7h7dC8WrtvDG8u2BOS4xpgfuVlstgAnVXrf0VlXbRsR8QLxwJ5a9vUn5k+ISBrwAjBBVfcc06cw9c4TJoztl8Qna3ZScIJdaS99uZ7rX82kW5tmvHnzcHq2i6ux7eWDO5HeuSUPzctmb2HJCR3XGHM0N4vNEqC7iKSISAS+C/4ZVdpkAJOc5UuB+errw8gAJjqj1VKA7sBiP2MeRUQ6AbOBq1R1bYA+m3HZ2LQkissq+HjVjuPav7xCeSAjiylzsxnRuy0zbhhKm+ZRte4TFib89eJ+FBSX8Zd52cd1XGNM9VwrNs41mFuB94FVwExVzRKRB0VkvNPsRSBBRHKAO4G7nX2zgJlANvAecIuqltcUE0BEbheRXHxnO9+JyAvOMe7Ddx3oKRH5RkQy3frMJnAGdWpJ2+bH15VWWFzGDa9m8vJXG7jutBSeuXIQMRH+3VLWo20cN5zRldnLtvDF9/Z8HWMCRexi6E+lp6drZqbVpGCbMjeL1xdtYum95xIXFe7XPjv2F3HNy0tYtW0/U8anctWw5GM+blFpOaP/9TkVqrz/6zOICnfv5lJjGhMRWaqq6dVtazIDBEzDMy4tiZKyCj7ysytt1bb9XPjkl2zYXciLkwYfV6EBiAr38NCFfdm45yBPzP/+uGIYY45mxcaErAEntSQpPsqvrrQFa3Zy6dNfoQozbxzG2b3anNCxh3drzSUDO/Lsp+tYs/3ACcUyxlixMSEsLEwY0y+Jz9buJv9QaY3tXvt6I9e+kknnhFjevGU4qe3jA3L8e8b2Ji7Kyx/fXEFFhXU3G3MirNiYkDYuLYmS8go+yv5pV1pFhfLQvGzufWslZ/ZIZOaNw0iKjw7YsVvFRnDv2D4s3ZjH1MWbAhbXmKbIio0JaSef1IIOLaKZt+LorrRDJeXc9PpSnv98Pb8Y1pnnrhpEs8jAT2J+8cAOnNotgUfeXc2O/UUBj29MU2HFxoQ0EWFsWhKff7+L/IO+rrSdB4qY+NxCPsjewX3j+jBlfCpejzs/yiLCQxf2o6S8gilzs1w5hjFNgRUbE/LG9kuitFz5IHs7a3cc4KInv2LtjgKevXIQ15yWgm/uVvckt47l9hHdeWfF9uO+ydSYps4enmZCXlrHeDq2jOa5z9axfX8RUeEeZt4wjH4dAzMQwB+/Or0Lc77Zwn1zshjaJYFYF7rsjGnM7MzGhLzDXWnf7yygfXw0b91yar0WGoAIbxgPX9yPLfsO8eiHNuuRMcfK/jwzDcKvTu9CXKSXScOT/Z5NINAGdW7Fz0/pxEtfrufCkzvUe8EzpiHz68xGRNqJyHgRuUBE2rmdlDFVtW4Wya3ndA9aoTns96N60bpZJHfP/o6ycnuMtDH+qrPYiMh1+GZcvhjfzMxfi8g1bidmTCiKjw7ngfGpZG3dz8tfbQh2OsY0GP50o/0OGHD4OTAikgB8BfzHzcSMCVWj+7ZjRK82/OODtYzq246OLWOCnZIxIc+fbrQ9QOXJoQ4464xpkkSEBy/siwjcNyfLHiNtjB9qPLMRkTudxRxgkYjMARSYAHxXD7kZE7I6tIjmzpE9+Mu8VbyzYjtj05KCnZIxIa22M5s45/UD8Ba+QgMwB1jvblrGhL6rhyfTr0M8D8zNqnWiUGNMLWc2qjql8nsRaeasL3A7KWMaAq/Hd+/N+H9/wSPvreavF/ULdkrGhCx/RqP1FZHlQBaQJSJLRSTV/dSMCX19O8RzzakpTF20icwNe4OdjjEhy58BAs8Bd6pqZ1XtDPwWeN7dtIxpOH4zsgcdWkQzefYKSsrs3htjquNPsYlV1U8Ov1HVBUCsaxkZ08DERnr584WpfL+zgOc++yHY6RgTkvwpNutE5E8ikuy87gXWuZ2YMQ3JOb3aMjYticfn57B+d2Gw0zEm5PhzU+c1wBRgNr4RaZ8764wxldx/QR8+W7uLe95cwevXneL6ow/8UVxWTv6hUvYfKnO+lpJfzSs63MPtI7qTGBcZ7JRNI1VrsRERDzBbVc+up3yMabDaxEVx9+he3PPmSt5YtoVLB3U84Zil5RUUFJVRUPzjK//g0YVif1FpjYWkqLT2a0gxER7io8PZU1jCe1nbeeLyAQztknDCeRtTVa3FRlXLRaRCROJVNb++kjKmobp8cCfeXLaFh+Zlc/JJvlmhC4rLnYJRygGncBQWl3GguOxIISksLjuyrfL7Yj8GHDSL9BIfHU7z6HDio72ktI4lPjr8yKt5la9H1keFE+H19aSv2rafW15fxhXPf82dI3tw81ndCAsL/pmZaTykrqk2nJkDBgAfAkc6o1X1dndTC5709HTNzMwMdhqmgVq74wBjH/+c0vLaf7civGHERXppFuUlNsL3NS7SS2zkj8vNqryPPaqwhNM8yhuwR2IXFJcxefYK5n67lTN6JPLYz/qT0My61Yz/RGSpqqZXu82PYjOpuvWq+oofBx4F/AvwAC+o6t+qbI8E/gsMwjff2mWqusHZNhm4FigHblfV92uLKSK3Ar8GugKJqrrbWS9O+zHAQeBqVV1WW95WbMyJWrYpjzXbDxAb6T2qoMRF/VhADp9VhBJV5fVFm3jw7WxaxUTwxBUDGJzcKthpmQbihIqNEyAC6IVvgMAaVS3xYx8PsBYYCeQCS4DLVTW7UpubgTRVvVFEJgIXqeplItIHmAYMAdoDHwE9nN2qjSkiA4A8YAGQXqnYjAFuw1dsTgH+paqn1Ja7FRvT1K3cks8tU5eRm3eI353fk+tP72LdaqZOtRUbf2YQGINvfrTHgX8DOSIy2o/jDgFyVHWdU5ym45vEs7IJwOEzpFnACOdMZAIwXVWLVXU9vslAh9QWU1WXHz4rquYY/1Wfr4EWImKzJhpTi74d4pl722mcn9qWv727muv+m0leYZ1/YxpTI3/O4x8FzlbVs1T1TOBs4DE/9usAbK70PtdZV20bVS0D8oGEWvb1J+bx5IGIXC8imSKSuWvXrjpCGtP4NY8K58krBjJlfCqff7+LsY9/zrJNecFOyzRQ/hSbA6qaU+n9Oo5+vk2joKrPqWq6qqYnJiYGOx1jQoKIMGl4Mm/cNByPR/jZMwt54fN19gwfc8z8KTaZIvKOiFztDBaYCywRkYtF5OJa9tsCnFTpfUdnXbVtRMQLxOMbKFDTvv7EPJ48jDG1SOvYgrdvO51zerXhL/NWcf2rS8k/aI9VMP7zp9hEATuAM4GzgF1ANHABMK6W/ZYA3UUkxRlgMBHIqNImAzg82u1SYL76/mTKACaKSKSIpADdgcV+xqwqA/iF+AwF8lV1mx+f2xhTSXx0OM9eNYg/jevDJ6t3MvaJz/l2875gp2UaiDqnq1HVXx5PYFUtc4Yjv49vmPJ/VDVLRB4EMlU1A3gReFVEcoC9+IoHTruZQDZQBtyiquVwZIjzUTGd9bcDvwfaAd+JyDuqeh3wDr6RaDn4hj4f1+cxxvi61a49LYWBnVpw69TlXPrMV9wzpjeThieHxPQ8JnT5NfS5qbGhz8bUbd/BEn4781s+Xr2T0X3b8cilaTSPCg92WiaITmjoszHGVKdFTATP/yKdyaN78UH2Di544gtWbrFZrUz1/LnPJsWfdcaYpicsTLjhzK7MuH4oxaUVXPzUV7z69UYbrWZ+wp8zmzeqWTcr0IkYYxqu9ORWvHPH6QzrmsCf3lrJbdOWU1BcFuy0TAipcYCAiPQCUoH4KkOcm+MboWaMMUe0io3gpasH8/SnP/CPD9aQtXU/T/18IL2Tmgc7NRMCajuz6YlvaHMLfMOcD78GAr9yPTNjTIMTFibccnY3pv1qKIXFZVz27ELW7mh094Cb4+DPrM/DVHVhPeUTEmw0mjEnLjfvIBc/9RXeMGH2zafSLt46RBq7Ex2NliMifxSR50TkP4dfAc7RGNPIdGwZw0u/HMz+ojKufmkx+4tsxoGmzJ9iMwffNDIfAfMqvYwxplap7eN5+sqB5Ows4KbXllLix5NHTePkT7GJUdU/qOpMVX3j8Mv1zIwxjcLp3RN55JI0vszZwx/e+M6GRTdR/hSbt51n2hhjzHG5ZFBHfnd+T95cvoX/fX9NsNMxQVDn3GjAHcAfRaQEKAEEUFW18YzGGL/dfFZXtuw7xNMLfqB9fBRXDUsOdkqmHvkzEWdcfSRijGncRIQHx6eyc38R92dk0bZ5FOeltgt2Wqae+DNdjYjIlSLyJ+f9SSIyxP3UjDGNjdcTxuOXD6BfxxbcNm05Szfakz+bCn+u2TwFDAOucN4XAE+6lpExplGLifDyn0npJMVHcd0rS1i3qyDYKZl64E+xOUVVbwGKAFQ1D4hwNStjTKOW0CySV64ZQpgIk15azK4DxcFOybjMn2JTKiIeQAFEJBGwwfLGmBPSOSGWF68ezO4DJVzz8hIKbeLORs2fYvM48CbQRkQeAr4A/upqVsaYJuHkk1rw7ysGkLU1n1unLqOs3P6ObazqLDaq+jq+xy0/DGwDLlTV/+d2YsaYpmFE77b85cJ+fLJmF/e+tdJu+mykanvEQKtKb3cC0ypvU9W9biZmjGk6rjilE9vyD/HE/ByS4qO549zuwU7JBFht99ksxXedRoBOQJ6z3ALYBNjTOo0xAXPnyB5s3VfEYx+tJSk+ip8NPinYKZkAqrEbTVVTVLULvgk4L1DV1qqagO8ZNx/UV4LGmKZBRPjbJf04vXtrJr+5ggVrdgY7JRNA/gwQGKqq7xx+o6rvAsPdS8kY01SFe8J4+spB9Gwbx82vL2NFbn6wUzIB4k+x2Soi94pIsvO6B9jqdmLGmKapWaSXl385mJYxEfzy5SVs3nsw2CmZAPCn2FwOJOIb/vwm0MZZZ4wxrmjTPIpXrhlMaXkFk15aTF5hSbBTMifIn6HPe1X1DlUd4LzusJFoxhi3dWsTxwuT0snNO8S1ryyhqLQ82CmZE1BjsRGRfzpf54pIRtWXP8FFZJSIrBGRHBG5u5rtkSIyw9m+SESSK22b7KxfIyLn1xVTRFKcGDlOzAhnfScR+URElovId/ZsHmMajsHJrfjXZSezfPM+7pi+nPKKE78Hp6y8go17ClmwZicvf7meBzKymPSfxYz51+es3GLXiNwiNd1AJSKDVHWpiJxZ3XZV/bTWwL4pbtYCI4FcYAlwuapmV2pzM5CmqjeKyETgIlW9TET64LuvZwjQHt+IuB7ObtXGFJGZwGxVnS4izwDfqurTIvIcsNxZ7gO8o6rJteWenp6umZmZtTUxxtSjl75cz5S52Uwa1pkHxqciIrW2L69Qtu47xIY9hWzYXcj63QePLG/OO0hp+Y//78VEeEhOiGXLvkMkJ8Tw5s2nEhZWe3xTPRFZqqrp1W2r8T4bVV3qLGYCh1S1wgnmASL9OO4QIEdV1zn7TQcmANmV2kwAHnCWZwH/Ft9P0QRguqoWA+tFJMeJR3UxRWQVcA4/zkz9ihP3aXz3Ch1+0Fs8NrjBmAbnl6emsHXfIZ7/fD1JLaK58cyuVFQoOw4UsX53IRucYuJbLmTj3oOUlP049U1UeBjJCbH0aBvHeantSGkdQ3JCLCmtY0mMi0REmL0slztnfsuspbl2j48L/HlS58fAufgeLQAQje8+m7qGP3cANld6nwucUlMbVS0TkXwgwVn/dZV9OzjL1cVMAPapalk17R8APhCR24BY57P8hIhcD1wP0KlTpzo+mjGmvk0e3Ztt+UX87d3VzF6Wy6a9Bykq/bGgRHjD6NwqhuTWsZzdqw3JCbEkt44hpXUsbeOi6jxbuWhAB6Yu2sQj763m/NR2xMeEu/2RmhR/ik2Uqh554ISqFohIjIs5BdrlwMuq+g8RGQa8KiJ9D5+pHaaqzwHPga8bLQh5GmNqERYm/ONn/YmLCmfn/iJO755IcutYUpyi0j4++oS6v0SEB8ancsG/v+Cxj9bywPjUAGZv/Ck2hSIyUFWXge9aDnDIj/22AJXPRTs666prkysiXnzdXHvq2Le69XuAFiLidc5uKre/FhgFoKoLRSQKaI1vvjdjTAMS6fXw8MX9XIvft0M8Pz+lE/9duIHLBp9E76Tmde9k/OLPfTa/Bv6fiHwuIl8AM4Bb/dhvCdDdGSUWAUwEqo5iywAmOcuXAvPVN2IhA5jojFZLAboDi2uK6ezziRMDJ+YcZ3kTMAJARHoDUcAuP/I3xjRBd53Xk/jocO7PyLIZqAPIn/tslgC9gJuAG4HelQYP1LZfGb6i9D6wCpipqlki8qCIjHeavQgkOAMA7gTudvbNAmbiG0zwHnCLqpbXFNOJ9QfgTidWghMb4LfAr0TkW3wj3K5W+wkyxtSgRUwEd53fk8Xr95LxrY0nCpQahz4faSByC/C6qu5z3rfEN9z4KffTCw4b+mxM01ZeoUx48gt2HShm/m/PIjbSnysOprahz/50o/3qcKEBUNU84FcBys0YY0KOJ0yYMr4vO/YX88T8nGCn0yj4U2w8UukOKuc+mwj3UjLGmOAb1LkllwzsyItfrOOHXQV172Bq5U+xeQ+YISIjRGQEvuse77mbljHGBN8fRvckyuthytxsGyxwgvwpNn8A5uMbIHATvps8f+dmUsYYEwraxEXx65E9+GztLj7M3hHsdBo0f0ajVajqM6p6qapeim+E2BPup2aMMcH3i2Gd6d6mGQ++nW0zT58Af85sEJEBIvK/IrIBeBBY7WpWxhgTIsI9YUwZn0pu3iGe/XRdsNNpsGp7xEAPEblfRFbjO5PZjG+o9Nmqamc2xpgmY3i31oxNS+KpBTn25NDjVNuZzWp8MymPU9XTnAJj55DGmCbpnjG9CRPhL/Oy625sfqK2YnMxsA34RESed0ai2UMejDFNUvsW0dx6Tjfez9rBZ2ttxqtjVWOxUdW3VHUivqlqPsE3R1obEXlaRM6rp/yMMSZkXHd6CskJMTwwN+uo5+WYuvkzGq1QVaeq6gX4ZlNejm84tDHGNCmRXg/3XdCHdbsKeenL9cFOp0HxazTaYaqap6rPqeoItxIyxphQdk6vtozo1YbHP/6eHfuLgp1Og3FMxcYYYwzcd0EfSsuVh99ZFexUGgwrNsYYc4w6J8Ryw5ldeOubrSxatyfY6TQIVmyMMeY43HxWN9rHR3F/RhZl5TZYoC5WbIwx5jhER3i4d1wfVm8/wNTFm4KdTsizYmOMMcdpdN92nNotgf97fw17CoqDnU5Is2JjjDHHSUR44IJUDpaU8/f31wQ7nZBmxcYYY05A97ZxXD08mRmZm/l2875gpxOyrNgYY8wJuuPc7iTERnJfRhYVFfaQtepYsTHGmBMUFxXO5NG9+HbzPmYtzQ12OiHJio0xxgTARQM6MKhzSx55bzX5h0qDnU7IsWJjjDEBEBYmTBmfyt6DJTz24dpgpxNyrNgYY0yA9O0QzxVDOvHq1xtZvX1/sNMJKa4WGxEZJSJrRCRHRO6uZnukiMxwti8SkeRK2yY769eIyPl1xRSRFCdGjhMzotK2n4lItohkichUFz+yMaaJu+u8nsRFebl/ThaqNljgMNeKjYh4gCeB0UAf4HIR6VOl2bVAnqp2Ax4DHnH27QNMBFKBUcBTIuKpI+YjwGNOrDwnNiLSHZgMnKqqqfiey2OMMa5oGRvB787vyaL1e5n73bZgpxMy3DyzGQLkqOo6VS0BpgMTqrSZALziLM8CRoiIOOunq2qxqq4Hcpx41cZ09jnHiYET80Jn+VfAk6qaB6CqOwP/UY0x5kcTB3eib4fmPDQvm8LismCnExLcLDYdgM2V3uc666pto6plQD6QUMu+Na1PAPY5MaoeqwfQQ0S+FJGvRWRUdcmKyPUikikimbt22SNfjTHHz+MMFtixv5gn5ucEO52Q0BQGCHiB7sBZwOXA8yLSomoj56Fw6aqanpiYWL8ZGmManUGdW3HJwI488+kPXPzUl7y+aCP5B5vukGg3i80W4KRK7zs666ptIyJeIB7YU8u+Na3fA7RwYlQ9Vi6QoaqlTpfcWnzFxxhjXPXnC1O5e3QvDhSVcc+bKxn814+45fVlfLxqB6VN7LEE3rqbHLclQHcRScH3H/9E4IoqbTKAScBC4FJgvqqqiGQAU0XkUaA9vuKwGJDqYjr7fOLEmO7EnOMc4y18ZzQviUhrfN1q69z5yMYY86OYCC83ntmVG87owsot+3ljWS5zvtnCvBXbaN0sgvH9O3DJoA6kto8PdqquEzeH5onIGOCfgAf4j6o+JCIPApmqmiEiUcCrwABgLzBRVdc5+94DXAOUAb9W1Xdriums74Kv0LQClgNXqmqxM3jgH/hGtZUDD6nq9NryTk9P18zMzMB9I4wxxlFSVsGCNTuZvWwLH6/eQWm50qtdHJcM7MiEAe1pExcV7BSPm4gsVdX0arfZOPCfsmJjjKkPeYUlzP1uK28s28K3m/cRJnBGj0QuGdiRkX3aEhXuCXaKx8SKzTGyYmOMqW85Ow8we9kW3ly+hW35RcRFeRmXlsTFAzuS3rklvk6a0GbF5hhZsTHGBEt5hfL1uj28sTSXd1du51BpOZ1axXDxwA5cMrAjJ7WKCXaKNbJic4ys2BhjQkFhcRnvrtzO7GW5LFy3B1UYktyKSwZ1YGxae5pFujnG69hZsTlGVmyMMaFmy75DvLV8C28szWXd7kJ6JzVn7q2n4vWEzu2StRWb0MnSGGNMjTq0iOaWs7vx8W/P5B//059V2/bz2tcbg52W36zYGGNMAyIiXDywA6d2S+DRD9eyt7Ak2Cn5xYqNMcY0MCLC/RekUlhSzv99sCbY6fjFio0xxjRAPdrGcdXQzkxbvImsrfnBTqdOVmyMMaaB+s25PWgRHc6UjOyQf1CbFRtjjGmg4mPCuev8nizesJe3Q/xBbVZsjDGmAZs4uBN9kprz8DurOFgSug9qs2JjjDENmCdMeGB8Klvzi3hmwQ/BTqdGVmyMMaaBG5LSigv6t+fZz9axee/BYKdTLSs2xhjTCEwe3QsR+Os7q4KdSrWs2BhjTCPQvkU0N5/VjXdXbuerH3YHO52fsGJjjDGNxPVndKFjy2imZGRTFmKPnbZiY4wxjURUuId7x/ZmzY4DvL5oU7DTOYoVG2OMaUTOT23H8K6+edPyQmjeNCs2xhjTiByeN62guIx/fBg686ZZsTHGmEamZ7s4rjylE1MXbSJ76/5gpwNYsTHGmEbpNyN7EB8dzpS5WSExb5oVG2OMaYRaxETw2/N6smj9XuatCP68aVZsjDGmkbp8SCd6JzXnr/NWcaikPKi5WLExxphGyhMmPHBBH9+8aZ8Gd940KzbGGNOIndIlgbFpSTzz6Q/k5gVv3jRXi42IjBKRNSKSIyJ3V7M9UkRmONsXiUhypW2TnfVrROT8umKKSIoTI8eJGVHlWJeIiIpIuksf1xhjQtIfx/RGBB5+Z3XQcnCt2IiIB3gSGA30AS4XkT5Vml0L5KlqN+Ax4BFn3z7ARCAVGAU8JSKeOmI+AjzmxMpzYh/OJQ64A1jkxmc1xphQ1qFFNDed2Y15K7YFbd40N89shgA5qrpOVUuA6cCEKm0mAK84y7OAESIizvrpqlqsquuBHCdetTGdfc5xYuDEvLDScf6MrxgVBfgzGmNMg3DDmV3o0CKaB+cGZ940N4tNB2Bzpfe5zrpq26hqGZAPJNSyb03rE4B9ToyjjiUiA4GTVHVebcmKyPUikikimbt27fL3MxpjTIMQFe7hnrG9Wb39ANMW1/+8aY16gICIhAGPAr+tq62qPqeq6aqanpiY6H5yxhhTz0b3bcewLgn848O17DtYv/OmuVlstgAnVXrf0VlXbRsR8QLxwJ5a9q1p/R6ghROj8vo4oC+wQEQ2AEOBDBskYIxpikSE+8f3Yf+hUh79cG29HtvNYrME6O6MEovAd8E/o0qbDGCSs3wpMF998ypkABOd0WopQHdgcU0xnX0+cWLgxJyjqvmq2lpVk1U1GfgaGK+qmW59aGOMCWW92jXnyqGdee3rjazaVn/zprlWbJzrJ7cC7wOrgJmqmiUiD4rIeKfZi0CCiOQAdwJ3O/tmATOBbOA94BZVLa8pphPrD8CdTqwEJ7Yxxpgq7hzZg+b1PG+ahMIEbaEmPT1dMzPt5McY03i9unADf5qTxVM/H8iYfkkBiSkiS1W12ssUjXqAgDHGmOpdPqQTvdrF8dC8VRSVuj9vmhUbY4xpgryeMB4Yn8qWfYd49tN1rh/Pio0xxjRRQ7skMLZfEk9/msOWfYdcPZYVG2OMacImj+mFKvz1nVWuHseKjTHGNGEdW8Zw01ldmffdNr5et8e141ixMcaYJu6GM7rSoUU0U+ZmU17hzghlKzbGGNPERUd4+OOY3qzatt+1edOs2BhjjGFMv3aM79+eljERdTc+Dt66mxhjjGnsRITHLx/gWnw7szHGGOM6KzbGGGNcZ8XGGGOM66zYGGOMcZ0VG2OMMa6zYmOMMcZ1VmyMMca4zoqNMcYY19mTOqshIruAjcHOo4rWwO5gJ3EMGlK+DSlXaFj5NqRcoWHlG4q5dlbVxOo2WLFpIEQks6bHrYaihpRvQ8oVGla+DSlXaFj5NqRcwbrRjDHG1AMrNsYYY1xnxabheC7YCRyjhpRvQ8oVGla+DSlXaFj5NqRc7ZqNMcYY99mZjTHGGNdZsTHGGOM6KzZBIiInicgnIpItIlkicoezvpWIfCgi3ztfWzrrRUQeF5EcEflORAZWitVJRD4QkVVOvOQQz/d/nRirnDYS5Fx7ichCESkWkbuqxBolImucz3F3IPMMdL41xQnFXCvF84jIchF5O9C5BjpfEWkhIrNEZLXzszsshHP9jRNjpYhME5GoQOZ6XFTVXkF4AUnAQGc5DlgL9AH+F7jbWX838IizPAZ4FxBgKLCoUqwFwEhnuRkQE6r5AsOBLwGP81oInBXkXNsAg4GHgLsqxfEAPwBdgAjgW6BPCHxva8q32jihmGuleHcCU4G3Q+T3rMZ8gVeA65zlCKBFKOYKdADWA9HO+5nA1W58f4/lZWc2QaKq21R1mbN8AFiF74dkAr4fapyvFzrLE4D/qs/XQAsRSRKRPoBXVT90YhWo6sFQzRdQIArfL2skEA7sCGauqrpTVZcApVVCDQFyVHWdqpYA050YARWofGuJE3K5AohIR2As8EIgc3QjXxGJB84AXnTalajqvlDM1eEFokXEC8QAWwOZ6/GwYhMCnG6vAcAioK2qbnM2bQfaOssdgM2Vdst11vUA9onIbKc74u8i4gnVfFV1IfAJsM15va+qq4Kca01q+p675gTzrSmOKwKQ6z+B3wMVbuRX1QnmmwLsAl5yfs9eEJHYUMxVVbcA/wdswvc7lq+qH7iVq7+s2ASZiDQD3gB+rar7K29T3zlwXWPTvcDpwF34Tqm7AFcHPlOfE81XRLoBvYGO+P7jPkdETg/FXOtboPKtLU6gBODnYBywU1WXupFfNccLxO/ZQOBpVR0AFOLr0gq5XJ1rOhPwFcj2QKyIXOlGrsfCik0QiUg4vh+q11V1trN6h9PdhPN1p7N+C3BSpd07OutygW+crp4y4C18vxShmu9FwNdOd18Bvus6Ab3Qehy51qSmzxBwAcq3pjihmOupwHgR2YCve/IcEXkthPPNBXJV9fCZ4ixc+D0LUK7nAutVdZeqlgKz8V0rDSorNkEiIoKv/3eVqj5aaVMGMMlZngTMqbT+F+IzFN+p8TZgCb7rIYdnWj0HyA7hfDcBZ4qI1/nFOhNf33Qwc63JEqC7iKSISAQw0YkRUIHKt5Y4IZerqk5W1Y6qmozv+zpfVQP+13cA890ObBaRns6qEQT49yyAP7ebgKEiEuPEHEGAf8eOy7GMJrBXQEeenIbvdPg74BvnNQZIAD4Gvgc+Alo57QV4Et/oqBVAeqVYI504K4CXgYhQzRffCK9n8f3wZwOPhkCu7fD95bof2OcsN3e2jcE3KugH4J4Q+VmoNt+a4oRirlVinoV7o9EC+bNwMpDpxHoLaBnCuU4BVgMrgVeBSDe+v8fysulqjDHGuM660YwxxrjOio0xxhjXWbExxhjjOis2xhhjXGfFxhhjjOus2BgTApz7kb4QkdGV1v2PiLwXzLyMCRQb+mxMiBCRvsD/wzcnlhdYDoxS1R+OI5ZXfTNKGBMSrNgYE0JE5H/xzbsV63ztDPTFNzv2A6o6x5mk8VWnDcCtqvqViJwF/BnIA3qpao/6zd6YmlmxMSaEODMJLwNKgLeBLFV9TURaAIvxnfUoUKGqRSLSHZimqulOsZkH9FXV9cHI35iaeIOdgDHmR6paKCIzgALgZ8AFlZ7CGAV0wvdskn+LyMlAOb7HTBy22AqNCUVWbIwJPRXOS4BLVHVN5Y0i8gC+B871xzfIp6jS5sJ6ytGYY2Kj0YwJXe8Dtzkz9yIiA5z18cA2Va0ArsI3uakxIc2KjTGh68/4BgZ8JyJZznuAp4BJIvIt0As7mzENgA0QMMYY4zo7szHGGOM6KzbGGGNcZ8XGGGOM66zYGGOMcZ0VG2OMMa6zYmOMMcZ1VmyMMca47v8DrcPnuesqzFQAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "import matplotlib.pyplot as plt\n",
-                "\n",
-                "y_ans_val = A51['Accidentprob']\n",
-                "x_ts = A51['year']\n",
-                "\n",
-                "plt.plot(x_ts, y_ans_val)\n",
-                "\n",
-                "plt.ylabel('Accident prob')\n",
-                "plt.xlabel('Year')\n",
-                "#plt.title('ASN values for time')\n",
-                "plt.legend(['Accidents'], loc='upper left')\n",
-                "\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 109,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "[<matplotlib.lines.Line2D at 0x1219ba9d0>]"
-                        ]
-                    },
-                    "execution_count": 109,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEDCAYAAAAcI05xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhCklEQVR4nO3deXxV9Z3/8dfnZiULgUDIAoRFdkICGMGFohUXVBSr0/4EnbYz09HOz6q17XScR9uZrjOdbo+pVVv9VafTVmjdKoIV6OC+gUEIJGyyBgIJgRCWhJDlfn9/3BsnIssl3Jt77r3v5+NxH7m5y/e+iTdvT77fc8415xwiIuJdvmgHEBGRM1NRi4h4nIpaRMTjVNQiIh6nohYR8TgVtYiIx0WsqM3sCTPbb2ZVYRqv08zWBi8vhGNMEZFYYJHaj9rMZgLHgN8650rCMN4x51zW+ScTEYktEduids69DjR2v83MLjCzpWa22szeMLNxkXp9EZF40dtz1I8B9zjnLgS+BjxyDs9NN7MKM3vXzG6OSDoREQ9K7q0XMrMs4FLgaTPrujkteN8twHdP8bRa59y1wevDnHO1ZjYSeNnM1jvntkU6t4hItPVaURPYem9yzk0++Q7n3HPAc2d6snOuNvh1u5m9CkwBVNQiEvd6berDOXcE2GFmnwawgLJQnmtm/c2sa+t7IHAZsCFiYUVEPCSSu+ctBN4BxprZHjP7O+B24O/MrBKoBuaGONx4oCL4vFeAHzrnVNQikhAitnueiIiEh45MFBHxuIgsJg4cONANHz48EkOLiMSl1atXH3DO5Z3qvogU9fDhw6moqIjE0CIiccnMdp3uPk19iIh4nIpaRMTjQipqM7vPzKrMrNrMvhzhTCIi0s1Zi9rMSoC/B6YBZcAcMxsV6WAiIhIQyhb1eGClc67FOdcBvAbcEtlYIiLSJZSirgI+YWYDzCwDuB4YGtlYIiLS5ay75znnNprZfwDLgWZgLdB58uPM7E7gToDi4uLwphQRSWAhLSY65x53zl3onJsJHAK2nOIxjznnyp1z5Xl5p9xn+6weXPEBVbWHe/RcEZF4FepeH4OCX4sJzE8vCHeQQ81t/GFVDZ/+1Tssq64L9/AiIjEr1P2onzWzDcBi4G7nXFO4g/TPTOX5L13G2IJs7vrdah55dSs6YZSISOhTH59wzk1wzpU551ZEKsyg7HT+cOfF3FRWxI+WbuarT1VyouNj0+EiIgmlNz/hJSTpKUn8/LbJjB6UxU//soVdjS08+tcXMjArLdrRRESiwpOHkJsZ98wazSO3T6V672HmPvQWm+qORDuWiEhUeLKou1w/qZCn7rqEDr+fWx95mxUb66MdSUSk13m6qAFKh/Rj0d0zGJmXxRd+W8Gv39iuRUYRSSieL2qAgpx0nrrrEq4rKeD7L27kgWfX09bhj3YsEZFeERNFDdAnNYmH5k3l3itH8ceK3dzx+Eoam9uiHUtEJOJipqgBfD7jK9eM5ee3TWbt7iZufvgtPqg/Gu1YIiIRFVNF3WXu5MH88c6LaWnr5JZH3ubVzfujHUlEJGJisqgBphT3Z9GXLmNIbgZ/+5v3+M1bO7TIKCJxKWaLGmBwvz4888VLmDU+n28v3sA3n6+ivVOLjCISX2K6qAEy05J59I4L+YcrLuDJlTV87olVNLVokVFE4kfMFzUEFhn/afY4fvrpMip2HuJTj7zN9oZj0Y4lIhIWcVHUXW69cAhP/v10Dh9v5+aH3+KtrQeiHUlE5LzFVVEDXDQ8l0V3X0ZBTjqffWIVT67cFe1IIiLnJe6KGmBobgbP/sOlzBw9kG/8qYpvv1BNS1tHtGOJiPRIXBY1QHZ6Cr/+3EV8YcYIfvP2Tqb/YAXfer6Kjft0Fj4RiS0WiX2Py8vLXUVFRdjH7anVuxp58t0alqzfR1uHnynF/Zg/rZg5pUX0SU2KdjwREcxstXOu/JT3JUJRdznU3MZza2pZsHIX2xqayU5P5tapQ5g/vZgx+dnRjiciCUxFfRLnHKt2NLJgVQ0vra+jrdNP+bD+zJ9ezPWTCklP0Va2iPQuFfUZNDa38czq3SxctZsdB5rJ6ZPy4Vb2qEFZ0Y4nIglCRR0C5xzvbDvIk6tqWF5dR3unY9qIXG6fXszskgLSkrWVLSKRc6ai9tyH20aLmXHpqIFcOmogB46d4JnVe1i4qob7/rCW/hkp/NWFQ5g3rZiRedrKFpHepS3qM/D7HW9vO8iCVbtYXl1Ph99xycgBzJ9ezLUTC0hNjtu9G0Wkl2nqIwz2H23l6YrAVvaeQ8cZkJnKNRMLyExNIinJSPYZSWYk+XwkJxk+C952ikvySdd9ZiQnBZ6bZMbYgmzystOi/U8WkV6kog4jv9/xxtYDLFi5i3e3N9LR6afD7+j0Ozr84flZji/sy5/vnYGZhWU8EfE+zVGHkc9nXD4mj8vH5J3yfn+wsDv9jk7n6Ox0dPj9get+R0dnt/uC3/td13P8vLblAA+u+ID3a5q4cFj/Xv7XiYgXqajDzOczUn093xIeW9CXx9/YzsJVNSpqEQHi+FwfsSorLZmbJg9mybq9HD7eHu04IuIBKmoPun16Ma3tfhatrY12FBHxABW1B5UMzmHS4BwWrKzRB/aKiIraq+ZNK2ZT3VHW7G6KdhQRiTIVtUfdNLmIzNQkFq6siXYUEYkyFbVHdS0qLtaiokjCC6mozex+M6s2syozW2hm6ZEOJjB/mhYVRSSEojazwcC9QLlzrgRIAm6LdDCBSUNyKBncV4uKIgku1KmPZKCPmSUDGcDeyEWS7roWFddqUVEkYZ21qJ1ztcBPgBpgH3DYObf85MeZ2Z1mVmFmFQ0NDeFPmqDmTh5MRmoSC7SoKJKwQpn66A/MBUYARUCmmd1x8uOcc48558qdc+V5eac+D4acu6y0ZOZOLmLxur0cadWiokgiCmXq4ypgh3OuwTnXDjwHXBrZWNLdvK5FxTVaVBRJRKEUdQ1wsZllWOC8m7OAjZGNJd1NGpzDxKK+PKlFRZGEFMoc9UrgGeB9YH3wOY9FOJd0Y2bMn65FRZFEFdJeH865f3XOjXPOlTjn/to5dyLSweSjbiorIiM1iYWrtKgokmh0ZGKMyE5P4aayIhZX7tOiokiCUVHHkPnTizne3smitdqNXSSRqKhjSNeioo5UFEksKuoYYmbMm1bMxn1HqNxzONpxRKSXqKhjzNzJwUVFHakokjBU1DGma1Hxhcq9HNWiokhCUFHHoHnTAouKz2tRUSQhqKhjUOmQHCYUalFRJFGoqGOQmTFvemBRcZ0WFUXinoo6Rt08uYg+KTr9qUgiUFHHKC0qiiQOFXUMm6cjFUUSgoo6hpUNyWG8FhVF4p6KOoZ1nf50gxYVReKaijrGzQ0uKur0pyLxS0Ud4/qmp3BjWaEWFUXimIo6DsyfPoyWtk5eqNSiokg8UlHHAS0qisQ3FXUcMDPmTxtK9d4jrK/VoqJIvFFRx4m5UwZrUVEkTqmo40TXouKitXs5dqIj2nFEJIxU1HFk3rRiWto6WbS2NtpRRCSMVNRxZPLQfowryNb0h0icUVHHka4jFatqj7BeRyqKxA0VdZy5ecpg0lN8LNBWtUjcUFHHmb7pKdxYWsQLa2u1qCgSJ1TUcWje9GKa2zp5Qac/FYkLKuo4NEWLiiJxRUUdh7oWFdfXHtaiokgcUFHHqbmTtagoEi9U1HEqp08Kc7SoKBIXVNRxbH5wUXGxTn8qEtPOWtRmNtbM1na7HDGzL/dCNjlPXYuKC1Zq+kMklp21qJ1zm51zk51zk4ELgRbgT5EOJufPzJg3TYuKIrHuXKc+ZgHbnHO7IhFGwq/rSMWF72mrWiRWnWtR3wYsPNUdZnanmVWYWUVDQ8P5J5Ow6FpUXLSmlmYtKorEpJCL2sxSgZuAp091v3PuMedcuXOuPC8vL1z5JAzmTQssKv73OzujHUVEeuBctqivA953ztVHKoxExtTiflw9IZ8fLd3M79/VrJVIrDmXop7HaaY9xNvMjIfmT2HWuEF88/kqfqcta5GYElJRm1kmcDXwXGTjSKSkJSfxyB1TuWp8Pt9aVM1vVdYiMSOkonbONTvnBjjntI9XDEtLTuKR26dy9YR8/mVRNb95a0e0I4lICHRkYoJJTfbx8PypXDMhn28v3sATb6qsRbxORZ2AUpN9PHz7VK6dmM93l2zgcZW1iKepqBNUSpKPh+ZP5bqSAr63ZAO/fmN7tCN9qNPvONraHu0YIp6hok5gKUk+Hpw3hesnFfD9Fzfy/16PfllX7m7ihgffoOw7y/nSgvd16LsIkBztABJdKUk+fn7bFIy1/ODPG/E7x12XX9DrOVraOvjp8i3811s7yMtOY/70Yhat2cuSdfu4bNQA7pp5AZ8YPRAz6/VsItGmopZgWU/GDP79pU044Iu9WNavbWngG39az55Dx7nj4mK+PnscfdNT+PrscSxYWcMTb+7gs0+sYkJhX+66fCQ3TCokOUl/DEriMOdc2ActLy93FRUVYR9XIquj08/9T1WyuHIvX589lv97xaiIvt6h5ja+t2QDz62pZWReJj+8pZRpI3I/9rgTHZ0sWrOXR1/fxraGZob078MXZozgMxcNJSNV2xoSH8xstXOu/JT3qailu45OP199upJFa/fyj9eO5e5Phr+snXO8ULmX7y7ewOHj7fzDFRdw9ydHkZ6SdMbn+f2OFZv28+hr26jYdYh+GSl89pLhfO6SYQzISgt7TpHedKai1uaIfERyko+ffroMA368bDPOOb505eiwjV/bdJxv/mk9r2xuoGxoP568dRLjCvqG9Fyfz7h6Qj5XT8inYmcjj76+nQdXfMBjr2/jM+VD+cKMkRQPyAhbVhGvUFHLxyQn+fjpZyZjZvxk+Rb8Du6ddX5l3el3/O6dnfxo2WYA/mXOBD536XCSfD1bHCwfnkv58Fy27j/KY69vZ+GqGn7/7i6un1TIFy+/gJLBOeeVV8RLNPUhp9Xpd/zj05U8t6aWL181mi9fNaZH42ypP8o/PbuONTVNzByTxw9uLmFobni3fOuPtPLEWztY8G4NR090MGPUQO66fCQzRmlPEYkNmqOWHuv0O77+zDqefX8P980azf1Xh17WJzo6efiVbfzy1a1kpSXzrzdOZO7koogW55HWdhaurOHxN3ew/+gJ7SkiMUNFLeel0+944Nl1PL16D/fOGs39V40+a9mu3tXIPz27nq37j/GpKYP55g3je3XB70RHJ4vW7uXR1z66p8iNZUXkZqZqK1s8R0Ut583vdzzw3DqeqtjDPVeO4itXjzll2R1tbefHyzbzu3d3UZTThx98qoQrxg6KQuIAv9/x8qb9/Cq4pwhAWrKPwpx0CnLSKczpE/yaTkHfdIr6Bb7PzUjF18P5c5Ge0F4fct58PuOHt5TiM+MXL2/FOfjqNR8t6xUb6/nm81XUHWnlby4dwVevGUNmWnTfYj6fcdWEfK6akM/7NYdYW9NE3ZFW9h1upe7wcd7b2Uj9kVbaOz+6wZKa5CM/J43Cvt2KPFjshcHvB2Sl9XgxVORcqKglZD6f8W+fmoQZPPTKVvzO8Y/XjuXAsTa+s7iaJev2MTY/m0dun8qU4v7RjvsxU4v7M/UUufx+x8HmNuoOt7L38HHqDv9vke873ErlniaWVrfS1uH/yPOSfUZ+30CBTxuRy+yJBZQOyfHktEpreydvbT3A0qo6dh5sZkj/DIpzMxg2IHApzs1kYJamhLxKUx9yzvx+xzeer2LhqhpumFTIm1sPcLytk3tnjeLOmReQmhx/i3bOOQ61tLMvWOR7uxX57sYW1tQ00eF3FOakc+3EAq6dWMBFw/tHdQGz+UQHr25uYGl1Ha9s2s+xEx1kpyczriCb2kPH2Xekle6//hmpSRTn/m+BFw/IZFjwelG/PqRoMTaiNEctYef3O761qIonV9YwbXgu/3bLJEYNyop2rKhpamljxcb9LKuu47UtDZzo8JObmcpV4wcxu6SAy0YNJC35zEdehsPhlnZWbKrnpao6Xg/mGJCZyjUT87l2YgGXXjDww/+RtrZ3sufQcWoam9l1sIWaxhZqDrawqzFwvftfEEk+o6hfOsNyMykekPFhgRcHv8+K8hRXPFBRS0Q459iw7wjjC/pq4a2blrYOXgtuyb68cT9HT3SQlZbMFWPzmF1SwBVjB4W12A4cO8Hy6nqWVtfx9tYDdPgdBX3TmV1SwOySAi4annvOc+l+v6P+aGugwIMlvquxhZqDzexqbKGp5aPnCx+QmcrnLx3OPed5YFQiU1GLRElbh5+3tx1gWXUdy6vrOdjcRmqyj5mjB3LtxAKuGp9P/8zUcx53b9NxllbVsbS6joqdjfgdDBuQweySAq4rKaR0cE5E/+d5+Hh7twJv5p1tB3njgwP86o4LmV1SELHXjWcqahEP6PQ7KnY2sqy6nmXVddQ2HSfJZ0wfkcvskgKumVBAQU76aZ+/40BzoJyr9lEZ/ECFsfnZH245jyvIjtpiYFuHn0//6m12HGjmxXs/EfYjTxOBilrEY5xzVNUeYWn1PpZV17N1/zEAJg/tx+ySwGLk8AEZbK4/ykvr61hWXcemuqMAlA3J4dqSAmZPLGBknnfWBXY3tnD9g28wMi+Lp++6JC4XlSNJRS3icVv3H2VZdT1Lq+pYXxvYWs7NTKWxuQ0zuGh4YPe/a0sKGNyvT5TTnt7Sqn188ffv83czRvCtOROiHSem6IAXEY8bNSibUYOyufuTo9hzqIXl1fVU7mli+ogBXD0hn7zs2Djf9uySQj5/6XAef3MH00fkcs1EzVeHg4paxGOG9M/gb2eMiHaMHvvn68exetchvvZ0JX8u6suQ/pqvPl+aRBKRsEpLTuKh+VNwDu5ZuIb2Tv/ZnyRnpKIWkbAbNiCTH95aypqaJn4c/LAI6TkVtYhExA2lhfz1xcN47PXtrNhYH+04MU1FLSIR840bxjOhsC9ffbqS2qbj0Y4Ts1TUIhIx6SlJPHz7VNo7/Nyz4H3NV/eQilpEImrEwEz+/dZS3q9p4ifLNV/dEypqEYm4m8qKmD+9mEdf284rm/ZHO07MCamozayfmT1jZpvMbKOZXRLpYCISX/5lzgTGFWTzlafWsu+w5qvPRahb1D8HljrnxgFlwMbIRRKReNQ1X93W4efehWvo0Hx1yM5a1GaWA8wEHgdwzrU555oinEtE4tAFeVn82y2TeG/nIX72ly3RjhMzQtmiHgE0AP9lZmvM7Ndmlnnyg8zsTjOrMLOKhoaGsAcVkfgwd/JgbrtoKI+8uo1XN2u+OhShFHUyMBX4pXNuCtAMPHDyg5xzjznnyp1z5Xl5eWGOKSLx5Ns3TQzOV1dSd7g12nE8L5Si3gPscc6tDH7/DIHiFhHpkfSUJB6aP5XW9k7NV4fgrEXtnKsDdpvZ2OBNs4ANEU0lInFv1KAsvn9zCat2NvKf//NBtON4WqinOb0HeNLMUoHtwN9ELpKIJIpbpg7h3e0HefjVrUwbkcvMMZo2PZWQds9zzq0Nzj+XOududs4dinQwEUkM37mphNGDsrj/j2upP6L56lPRkYkiElV9UpN4eP5UWto6ue8Pa+j0h//jAWOdilpEom50fjbfu7mEd7c38vMVmq8+mYpaRDzhry4cwq1Th/CLlz/gzQ8ORDuOp6ioRcQzvnfzRC7Iy+LLf1zL/qOar+6iohYRz8hITebh+VM5dqKd+xau1Xx1kIpaRDxlbEE2372phHe2H+QXL2u+GkLfj1pEpNd8unwI72w/yM9XfMDbWw/i84HPDJ8ZZl3XCX7/v9d9PoLfd7//44/vl5HC/VeNITU5NrZVVdQi4jlmxvdvLsGA2qbj+P3Q4fz4ncPvwAW/dv/effh99+uc9L2jo9NxsLmN0sE5XDepMNr/1JCoqEXEkzLTkvnZ/5kc9nE7Ov1c/O8rWLJuX8wUdWxs94uIhElyko/rSgpZsame5hMd0Y4TEhW1iCScG8uKaG338z8b66MdJSQqahFJOOXD+lPQN50l6/ZFO0pIVNQiknB8PuP6SYW8trmBI63t0Y5zVipqEUlIc8oKaev085dq709/qKhFJCFNGdqPwf36sHjd3mhHOSsVtYgkJDNjTlkhb35wgEPNbdGOc0YqahFJWDeWFtHhdyyrrot2lDNSUYtIwppY1JcRAzM9P/2hohaRhGVmzCkt5J1tB2k4eiLacU5LRS0iCW1OaRF+B0urvLtPtYpaRBLa2IJsRg/KYnGlilpExLNuLCvivV2N1B325qfKqKhFJOHNKS3EOXhxvTe3qlXUIpLwRuZlMaGwL4srvbn3h4paRITA9Mfa3U3sbmyJdpSPUVGLiBCY/gBvTn+oqEVEgKG5GZQN7ccSDx78oqIWEQm6sbSQqtoj7DjQHO0oH6GiFhEJuiE4/bHEY4uKKmoRkaDCnD5cNLy/5z75RUUtItLNnNIiNtcfZUv90WhH+ZCKWkSkm+smFeAzb01/hFTUZrbTzNab2Vozq4h0KBGRaBmUnc7FIwewZN0+nHPRjgOc2xb1J51zk51z5RFLIyLiAXNKi9h+oJnqvUeiHQXQ1IeIyMfMLikgyWeeWVQMtagdsNzMVpvZnad6gJndaWYVZlbR0NAQvoQiIr0sNzOVGaMGsmTdXk9Mf4Ra1DOcc1OB64C7zWzmyQ9wzj3mnCt3zpXn5eWFNaSISG+bU1rInkPHqdxzONpRQitq51xt8Ot+4E/AtEiGEhGJtmsmFpCa5PPEGfXOWtRmlmlm2V3XgWuAqkgHExGJppw+Kcwck8eL6/bh90d3+iOULep84E0zqwRWAS8655ZGNpaISPTdWFZI3ZFWVtccimqO5LM9wDm3HSjrhSwiIp4ya3w+acmB6Y+LhudGLYd2zxMROY2stGSuHDeIP6+vozOK0x8qahGRM7ixrIgDx06wcvvBqGVQUYuInMEnxw4iIzWJxVH8QAEVtYjIGfRJTeKq8fm8VFVHe6c/KhlU1CIiZ3FjWRFNLe28tfVAVF5fRS0ichYzxwwkOz05auf+UFGLiJxFWnIS10woYFl1HSc6Onv99VXUIiIhmFNWyNHWDl7f0vvTHypqEZEQzBg1kH4ZKSyJwt4fKmoRkRCkJPm4rqSAv2yo53hb705/qKhFREI0p7SIlrZOXtm8v1dfV0UtIhKii0cOYGBWWq9Pf6ioRURClOQzrp9UwIqN+zl2oqPXXldFLSJyDuaUFnGiw8+KjfW99poqahGRc1A+rD8FfdNZXNl7B7+oqEVEzoHPZ9xQWshrW/Zz+Hh777xmr7yKiEgcmVNaSHunY3l1Xa+8nopaROQcTR7ajyH9+/TauT9U1CIi58jMmFNaxFtbD9DY3Bbx11NRi4j0wJzSQjr8jqVVkZ/+UFGLiPTAxKK+jBiY2SsHv6ioRUR6wMy4sbSQd7cfZP/R1oi+lopaRKSH5pQV4Xfw0vrITn+oqEVEemhMfjZj8rMiPv2hohYROQ9zSot4b+ch9h0+HrHXUFGLiJyHOaWFALwYwX2qVdQiIudhZF4WE4v6slhFLSLiXXNKi6jc3cTuxpaIjK+iFhE5T13TH5E6pFxFLSJynobmZjB5aD8WV0Zm7w8VtYhIGMyfVsyU4n60d/rDPnZy2EcUEUlAn7loKJ+5aGhExtYWtYiIx4Vc1GaWZGZrzGxJJAOJiMhHncsW9X3AxkgFERGRUwupqM1sCHAD8OvIxhERkZOFukX9n8DXgdMuZ5rZnWZWYWYVDQ0N4cgmIiKEUNRmNgfY75xbfabHOecec86VO+fK8/LywhZQRCTRhbJFfRlwk5ntBP4AXGlmv49oKhER+dBZi9o598/OuSHOueHAbcDLzrk7Ip5MRESACB3wsnr16gNmtisSY5+HgcCBaIcIkbJGTizljaWsEFt5vZh12OnuMOdcbwaJGjOrcM6VRztHKJQ1cmIpbyxlhdjKG0tZQUcmioh4nopaRMTjEqmoH4t2gHOgrJETS3ljKSvEVt5Yypo4c9QiIrEqkbaoRURikopaRMTjYraozWyomb1iZhvMrNrM7gvenmtmfzGzD4Jf+wdvNzN70My2mtk6M5vabaxiM1tuZhuD4w33cNYfBcfYGHyMhTNrD/OOM7N3zOyEmX3tpLFmm9nm4L/lAa9mPd04Xs3bbbyInX44zO+Dfmb2jJltCr53L/F43vuDY1SZ2UIzSw933nPinIvJC1AITA1ezwa2ABOAHwEPBG9/APiP4PXrgZcAAy4GVnYb61Xg6uD1LCDDi1mBS4G3gKTg5R3gCg/8bAcBFwE/AL7WbZwkYBswEkgFKoEJHs16ynG8+rPtNt5XgAXAEi9nBf4b+ELweirQz6t5gcHADqBP8PungM+HO++5XGJ2i9o5t885937w+lEC58oeDMwl8KYg+PXm4PW5wG9dwLtAPzMrNLMJQLJz7i/BsY4558L6me/hygo4IJ3AGz0NSAHqw5m1J3mdc/udc+8B7ScNNQ3Y6pzb7pxrI3CumLlezHqGccIqjD/biJ9+OFxZzSwHmAk8Hnxcm3Ouyat5g5KBPmaWDGQAkfnU2hDFbFF3F5yqmAKsBPKdc12f2V4H5AevDwZ2d3vanuBtY4AmM3su+Cfkj80syYtZnXPvAK8A+4KXZc65iH6YQ4h5T+d0P/OIOM+spxsnYsKQ9z85y+mHw+U8s44AGoD/Cv6O/drMMiMWlvPL65yrBX4C1BD4PTvsnFseubRnF/NFbWZZwLPAl51zR7rf5wJ/t5xt/8Nk4BPA1wj8GTQS+Hz4k55/VjMbBYwHhhAovCvN7BORyBp8vfP92faacGU90zjhFIb3QkinHw6HMP2OTQV+6ZybAjQTmIKIiDD8bPsT2AofARQBmWYW1RPRxXRRm1kKgf8gTzrnngveXB+cJiD4dX/w9lqg+0cEDwnetgdYG/zzvAN4nsCbyotZPwW8G5yeOUZgHjvsizI9yHs6p/t3eDHr6cYJuzDl7ZXTD4cp6x5gj3Ou6y+UZ4jA71gY814F7HDONTjn2oHnCKwPRU3MFrWZGYE5r43OuZ91u+sF4HPB658DFnW7/bMWcDGBP2f2Ae8RmAPu+rSDK4ENHs1aA1xuZsnBN+TlROBzLHuQ93TeA0ab2QgzSyVwmtwXvJj1DOOEVbjyul44/XAYs9YBu81sbPCmWYT5dwzC+r6tAS42s4zgmLOI9ufFnsvKo5cuwAwCf8KsA9YGL9cDA4AVwAfA/wC5wccb8DCBvRDWA+Xdxro6OM564DdAqhezEtiL4lECb5oNwM888rMtILDVdARoCl7vG7zvegKr79uAb3g16+nG8Wrek8a8gsjs9RHO98FkoCI41vNAf4/n/Q6wCagCfgekReJ3LdSLDiEXEfG4mJ36EBFJFCpqERGPU1GLiHicilpExONU1CIiHqeiFhHxOBW1iIjH/X+vN+t75PUdLgAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "#A47\n",
-                "A47=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A47\").sort(col('year').desc())\n",
-                "A47 = A47.toPandas()\n",
-                "A47\n",
-                "plt.plot(A47['year'],A47['Accidentprob'])\n",
-                "#https://www.gov.uk/government/news/biggest-upgrade-to-roads-in-a-generation"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 33,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "Text(0, 0.5, 'Accident Probability')"
-                        ]
-                    },
-                    "execution_count": 33,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEGCAYAAACzYDhlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAt+0lEQVR4nO3dd5hU5fnG8e+znbIsbem9CUtTXKqxRY1YMVYwGo01sUVNYkz5xZJijN3E3mMUBGyo2DWKisCi0qt0BKXJAkvZ8vz+mLNmQ7bMwpyd2d37c11zzcwp79yz1y4P55z3fY+5OyIiImFKincAERGp+1RsREQkdCo2IiISOhUbEREJnYqNiIiELiXeARJRy5YtvUuXLvGOISJSq8ycOXOju2eXt07FphxdunQhLy8v3jFERGoVM1tZ0TqdRhMRkdCp2IiISOhCLTZmNtLMFpnZUjO7vpz16Wb2XLB+mpl1KbPuN8HyRWZ2bFVtmtljZjbLzGab2UQza1zVZ4iISM0IrdiYWTJwH3AckAOMMbOcvTa7ENji7j2Au4Bbg31zgNFAX2AkcL+ZJVfR5jXuPtDdBwCrgCsq+wwREak5YR7ZDAGWuvsyd98DjANG7bXNKOCp4PVE4Cgzs2D5OHff7e7LgaVBexW26e75AMH+DQCv4jNERKSGhFls2gOry7xfEywrdxt3LwK2Ai0q2bfSNs3sCWA90Bv4exWf8V/M7BIzyzOzvA0bNlTne4qISBXqVAcBd/8J0A5YAJxVzX0fdvdcd8/Nzi63m7iIiOyjMIvNWqBjmfcdgmXlbmNmKUAWsKmSfats092LiZxeO62Kz4i5ZRu2c9Mr8ygsLgmjeRGRWivMYjMD6GlmXc0sjcgF/0l7bTMJOC94fTrwnkdusDMJGB30JOsK9ASmV9SmRfSA767ZnAwsrOIzYm7lpgKe+HgFk+esC6N5EZFaK7QZBNy9yMyuAN4EkoHH3X2emd0M5Ln7JOAx4GkzWwpsJlI8CLYbD8wHioDLgyMWKmgzCXjKzJoABswCfhZEKfczwnB4r2y6ZzfikSnLOHlgO9QPQUQkwnSnzv+Vm5vr+zpdzTPTVvK7F+fy3CXDGNrtf/ohiIjUWWY2091zy1tXpzoIJIJTD+pAs4apPPrR8nhHERFJGCo2MdYgLZlzhnXmnQVfs2LjjnjHERFJCCo2ITh3eGdSk5J44mMd3YiIgIpNKFplZnDSwHaMz1vD1oLCeMcREYk7FZuQXPi9ruwsLObZ6aviHUVEJO5UbEKS064Jh/RowVOfrNAgTxGp91RsQnTR97qxPn+XBnmKSL2nYhOiw3tl0y0Y5KnxTCJSn6nYhCgpybjwe12Zuzaf6cs3xzuOiEjcqNiErHSQ52Ma5Cki9ZiKTchKB3m+rUGeIlKPqdjUgHOHdSYlyTTIU0TqLRWbGtCqSQYnD2yvQZ4iUm+p2NSQ0kGeY2dokKeI1D8qNjWkdJDnkx9rkKeI1D8qNjXowu911SBPEamXVGxq0BG9WmmQp4jUSyo2NUiDPEWkvlKxqWEa5Cki9ZGKTQ1rkJbMj4ZqkKeI1C8qNnHw4+Ea5Cki9YuKTRxokKeI1DcqNnGiQZ4iUp+o2MSJBnmKSH2iYhNHGuQpIvWFik0clQ7yfHTKcg3yFJE6TcUmjkoHec5Zu5UZK7bEO46ISGhUbOKsdJDno1OWxTuKiEhoVGziTIM8RaQ+ULFJABrkKSJ1nYpNAigd5DlhpgZ5ikjdpGKTIC78XlcK9miQp4jUTSo2CSKnXRNGdNcgTxGpm1RsEshFh2qQp4jUTaEWGzMbaWaLzGypmV1fzvp0M3suWD/NzLqUWfebYPkiMzu2qjbN7Jlg+Vwze9zMUoPlR5jZVjP7Inj8IczvvD9KB3k+9pEGeYpI3RJasTGzZOA+4DggBxhjZjl7bXYhsMXdewB3AbcG++YAo4G+wEjgfjNLrqLNZ4DeQH+gAXBRmc+Z4u4HBo+bY/9tY6N0kOfsNRrkKSJ1S5hHNkOApe6+zN33AOOAUXttMwp4Kng9ETjKzCxYPs7dd7v7cmBp0F6Fbbr7ZA8A04EOIX630Jx6UAeaapCniNQxYRab9sDqMu/XBMvK3cbdi4CtQItK9q2yzeD02bnAG2UWDzezWWb2upn1LS+smV1iZnlmlrdhw4bovmEIGqQlc44GeYpIHVMXOwjcD3zo7lOC958Bnd19IPB34KXydnL3h909191zs7OzayZpBUoHeT75yYq45hARiZUwi81aoGOZ9x2CZeVuY2YpQBawqZJ9K23TzG4AsoFrS5e5e767bw9eTwZSzazl/nyxsP3nTp6rNchTROqEMIvNDKCnmXU1szQiF/wn7bXNJOC84PXpwHvBNZdJwOigt1pXoCeR6zAVtmlmFwHHAmPc/buBKmbWJrgOhJkNIfKdN4XyjWNIgzxFpC4JrdgE12CuAN4EFgDj3X2emd1sZicHmz0GtDCzpUSORq4P9p0HjAfmE7n2crm7F1fUZtDWg0BrYOpeXZxPB+aa2SzgXmC014J+xRrkKSJ1idWCf3drXG5urufl5cU7Bu8t/JoLnszjntEHMurAvftWiIgkFjOb6e655a2rix0E6gwN8hSRukLFJoElJRkXHKJBniJS+6nYJLjTBkUGeT7w76U6uhGRWkvFJsE1SEvmp4d35/1FG/j187MpUmcBEamFUuIdQKp26WHdKNhTzL3vLiF/ZxH3jDmQ9JTkeMcSEYmajmxqATPj2mN68YcTc3hj3noueHIG23cXxTuWiEjUqiw2ZjbTzC43s2Y1EUgqdsH3unLHGQP5dNlmfvToNLbs2BPvSCIiUYnmyOYsoB0ww8zGmdmxpSPypeaddnAHHjznYBasy+fMh6ayfuuueEcSEalSlcXG3Ze6+++AXsCzwOPASjO7ycyahx1Q/tcxOa156idDWLd1F6c98AnLNTu0iCS4qK7ZmNkA4A7gNuB54AwgH3gvvGhSmeHdWzD24mHsLCzmjAc/Yd5XW+MdSUSkQlFdsyFyF80ZwAB3v8rdp7n7HYDu8BVH/TtkMf7S4aQlJzH64U+ZsWJzvCOJiJQrmiObM9z9KHd/1t13AwQzMePup4aaTqrUo1VjJvxsBNmZ6Zz72DTeX/hNvCOJiPyPaIrNxCiXSZy0b9qACZcOp0erxlz8zzxe/mLv2waJiMRXhYM6zaw30BfIMrOyRzBNgIywg0n1tGicztiLh3HRU3lc/dwX5O8s5NzhXeIdS0QEqHwGgQOAE4GmwElllm8DLg4xk+yjzIxUnrpgCFc8+zn/9/I8vi0o5Irv90A91UUk3iosNu7+MvCymQ1396k1mEn2Q0ZqMg+eM4jrnp/NHW8vZktBIb8/oQ9JSSo4IhI/lZ1Gu87d/wacbWZj9l7v7leFmkz2WUpyErefPpAmGak8/vFytu4s5NbT+pOSrNmJRCQ+KjuNtiB4jv8tK6XakpKMG07KoVnDNO56ZzH5uwr5+5iDyEjVBJ4iUvMqO432SvD8VM3FkVgyM35+dE+aNkzlhknz+MkTM3j4xweTmZEa72giUs9UdhrtFaDCu3W5+8mhJJKYO29EF7IapPKLCbM4+5FpPPmTwbRonB7vWCJSj1R2Gu32GkshoTvloPZkZqRw2TOfceZDU3n6wqG0a9og3rFEpJ4w3Wr4f+Xm5npeXt28VDVt2SYueiqPzIwUnr5oKN2zG8c7kojUEWY2091zy1tXYfckMxsfPM8xs9llHnPMbHZYYSVcQ7u1YOwlw9hdVMKZD05l7lpN4Cki4avwyMbM2rr7OjPrXN56d18ZarI4qstHNqWWbdjOOY9Ow8x4/epDaaJOAyKyn/bpyMbd1wXPK4HdwEBgALC7Lhea+qJbdmP+8aNBrNu6kxsnzYt3HBGp46K5xcBFwHTgVOB04FMzuyDsYBK+QZ2accWRPXjhs7VMnrMu3nFEpA6rrDdaqV8BB7n7JgAzawF8QuSOnVLLXXlUT/69eAO/fXEOB3duRusmmmNVRGIvmvlLNhGZfLPUtmCZ1AGpyUncddaB7Cos5lcTZ6PeiSIShsp6o11rZtcCS4FpZnajmd0AfAosrqmAEr7u2Y353fF9+HDxBp7+VJfjRCT2KjuyyQweXwIv8Z/ZBF4GlocbS2raOcM6c3ivbP4yeQFLv9ke7zgiUsdoUGc56kPX5/J8k7+LH9z9IZ2aN+T5n40gVbNEi0g17FPX5zI7Z5vZbWY22czeK33EPqbEW6smGdzyw/7MXrOVe99dEu84IlKHRPNf12eAhUBX4CZgBTAjxEwSR8f1b8tpgzpw3/tLmblyS7zjiEgdEU2xaeHujwGF7v6Bu18AfD/kXBJHN5ycQ9usBlw7/gt27C6KdxwRqQOiKTaFwfM6MzvBzA4CmkfTuJmNNLNFZrbUzK4vZ326mT0XrJ9mZl3KrPtNsHyRmR1bVZtm9kywfK6ZPW5mqcFyM7N7g+1nm9mgaLLXZ00yUrnzzIGs2lzAn16bH+84IlIHRFNs/mRmWcAvgF8CjwLXVLWTmSUD9wHHATnAGDPL2WuzC4Et7t4DuAu4Ndg3BxgN9AVGAvebWXIVbT4D9Ab6Aw2Ai4LlxwE9g8clwANRfOd6b2i3FlxyWDfGTl/N2/O/jnccEanlqiw27v6qu29197nufqS7H+zuk6Joewiw1N2XufseYBwwaq9tRgGldwKdCBxlZhYsH+fuu919OZGxPkMqa9PdJ3uAyPQ6Hcp8xj+DVZ8CTc2sbRT5671rj+lFn7ZNuP752WzcvjvecUSkFoumN1o3M3vFzDaa2Tdm9rKZdYui7fbA6jLv1wTLyt3G3YuArUCLSvatss3g9Nm5wBvVyIGZXWJmeWaWt2HDhii+Xt2XnpLM3WcdyLbdRVz/vGYXEJF9F81ptGeB8UAboB0wARgbZqj9dD/wobtPqc5O7v6wu+e6e252dnZI0WqfA9pkct2xB/DOgm94bsbqqncIyerNBYyfsZqSEhU8kdoommLT0N2fdvei4PEvIJrZGtcCHcu87xAsK3cbM0sBsojMu1bRvpW2GUynkw1cW80cUokLDunKiO4tuPnV+azYuKNGP9vdeeGzNRx3zxSue342HyzWUadIbVTZ3GjNzaw58LqZXW9mXcyss5ldB0yOou0ZQE8z62pmaUQu+O99rWcScF7w+nTgveCayyRgdNBbrSuRi/vTK2szuBXCscAYdy/Z6zN+HPRKGwZsLb1Xj0QnKcm4/YyBpCQZ147/gqLikqp3ioFvC/ZwxdjPuXb8LHLaNqFl43Senb6qRj5bRGKrslsMzCQyH5oF7y8ts86B31TWsLsXmdkVwJtAMvC4u88zs5uBvKCTwWPA02a2FNhMpHgQbDcemA8UAZe7ezFAeW0GH/kgsBKYGuljwAvufjORwng8kU4GBcBPKv+RSHnaNW3AH0/px8/HfcED//6SK4/qGernfbRkI7+cMItNO3bz65G9ueSwbtzx1iIe+nAZ67fuok2WboUgUptobrRy1Ne50aJx5djPeX3OOl64bAQDOjSNefu7Cou57c1FPPbRcrpnN+Ke0QfRr30WAKs2FXDYbe/zi2N6hV7sRKT69ndutFQzu8rMJgaPK0oHTEr986dR/WjZOJ2rn/uCnXuKY9r2gnX5jPrHxzz20XLOG96ZV6889LtCA9CpRUMO7dmScTNWU6yOAiK1SjQdBB4ADibSy+v+4LUGRtZTWQ1TuePMgSzbsIO/vr4gJm2WlDiPTlnGqH98zOaCPTzxk8HcNKofDdKS/2fbMUM6sfbbnUxZoo4CIrVJNLeFHuzuA8u8f8/MZoUVSBLfIT1acsEhXXn84+V8v09rDu+1713Fv/p2J7+cMItPvtzED3Jac8up/WnROL3C7Y/u05qWjdN4dtoqjjig1T5/rojUrGiObIrNrHvpm2BAZ2zPn0itc93IA+jZqjG/mjCLLTv27FMbr8z6ipF3f8gXq7/l1tP689C5B1daaADSUpI4/eCOvLvwG77O37VPnysiNS+aYvNL4H0z+7eZfQC8R2SeNKnHMlKTueusA9lSsIffvTSnWrML5O8q5JrnvuDKsZ/TvVVjXv/5oZw1uBNBL8IqjR7ckeISZ0Je/AaZikj1VFpsgokvBxIZ53IVcCVwgLu/XwPZJMH1a5/FNcf0YvKc9bz4eXTjZKct28Rxd09h0qyvuOboXky4dDidWzSq1ud2admIQ3q0YOx0zSggUltUWmyCsS1jggkxZwcPzcgo37n0sO4M7tKMG16ex5otBRVut6eohL++vpDRj3xKarIx8afD+fnRPUnZx1tPf9dRYOnGfY0uIjUomr/0j83sH2Z2qJkNKn2EnkxqheQk484zD8SBa8fPKrdL8pKvt/HD+z/mwQ++ZPTgjrx21aEc1KnZfn3uD3La0KJRGmOnaUYBkdogmt5oBwbPN5dZ5uhunRLo2LwhN5yUw68mzubRKcu49PBIfxJ3559TV/KXyQtolJ7Cw+cezA/6tonJZ0Y6CnTgsY+W803+Llo10YwCIoksmmJzhrvrXIVU6vSDO/DOgq+5/a1FHNozm5aN0/jVxMjEmUcekM2tpw+gVWZsC8LoIZ146MNlTJi5hsuP7BHTtkUktiqbiPMkM9sAzDazNWY2ogZzSS1jZtxy6gCyGqRx2TMzOfbuD5m2fBN/PKUfj58/OOaFBqBry0aM6N6CcTNWqaOASIKr7JrNn4FD3b0dcBpwS81EktqqeaM0bjt9ACs2FdC+WQNevfJQzh3WOeouzftizJBOrN68k4+/1MG3SCKr7DRakbsvBHD3aWaWWUOZpBY7sncr3v/lEXRo1oDUfexpVh0/6Nua5o3SGDt9FYf21E3vRBJVZcWmlZldW9F7d78zvFhSm3VtWb1xM/sjPSWZ0w/uwOMfLeebbbtCOV0nIvuvsv96PgJklnns/V4kIYwe3JGiEmfizDXxjiIiFajwyMbdb6rJICL7qlt2Y4Z1a8646av56WHdSUoK7xqRiOyb8E+qi9SAMUM6sWpzAZ98uSneUUSkHCo2Uicc27cNzRqmMna6ZhQQSUTR3KmzazTLROIpIzWZ0wZ14M1569mwTdP3iSSaaI5sni9n2cRYBxHZX6OHdKKoxHn+M3UUEEk0FXYQMLPeQF8gy8xOLbOqCaD+pZJwerRqzJCuzRk3fRWXHNpNHQVEEkhlRzYHACcCTYGTyjwGAReHnkxkH5w9pBMrNhXw6TJ1FBBJJJV1fX4ZeNnMhrv71BrMJLLPRvZrQ9akVJ6dvooRPVrGO46IBKKZ9Xmpmf0W6FJ2e3e/IKxQIvuqtKPA05+uYNP23bRonB7vSCJCdB0EXgaygHeA18o8RBLS2UM7UlisGQVEEkk0RzYN3f3XoScRiZEerTIZ0qU5Y6ev4pLDuoU667SIRCeaI5tXzez40JOIxNCYoR1ZsamAqeooIJIQoik2PydScHaZWb6ZbTOz/LCDieyP4/q1JatBKmOnr453FBEhimLj7pnunuTuGe7eJHjfpCbCieyrjNRkTh3UnjfnrmfTds0oIBJv0UxXY2Z2jpn9X/C+o5kNCT+ayP4ZM6QTe4pLeOGztfGOIlLvRXMa7X5gOHB28H47cF9oiURipFfrTHI7N2Ps9FW4e7zjiNRr0RSboe5+ObALwN23AGmhphKJkTFDOrFs4w6mLd8c7ygi9Vo0xabQzJIBBzCzbKAk1FQiMXLCgLY0yUjRrQdE4iyaYnMv8CLQysz+DHwE/CXUVCIxEuko0IHX56xny4498Y4jUm9F0xvtGeA64BZgHXCKu0+IpnEzG2lmi8xsqZldX876dDN7Llg/zcy6lFn3m2D5IjM7tqo2zeyKYJmbWcsyy48ws61m9kXw+EM02aXuGD2kI3uKS3TrAZE4qrDYmFnz0gfwDTAWeBb4OlhWqeDU233AcUAOMMbMcvba7EJgi7v3AO4Cbg32zQFGE7nFwUjgfjNLrqLNj4GjgZXlxJni7gcGj5uryi51S+82TRjUqSnPqqOASNxUdmQzE8gLnjcAi4ElweuZUbQ9BFjq7svcfQ8wDhi11zajgKeC1xOBoywyt8goYJy773b35cDSoL0K23T3z919RRS5pB4aM6QTyzbsYLo6CojERYXFxt27uns3IhNwnuTuLd29BZF73LwVRdvtgbLDt9cEy8rdxt2LgK1Ai0r2jabN8gw3s1lm9rqZ9S1vAzO7xMzyzCxvw4YNUTQptcmJA9qRqY4CInETTQeBYe4+ufSNu78OjAgvUsx9BnR294HA34GXytvI3R9291x3z83Ozq7JfFIDGqQl88OD2jN5rjoKiMRDNMXmKzP7vZl1CR6/A76KYr+1QMcy7zsEy8rdxsxSiNzKYFMl+0bT5n9x93x33x68ngyklu1AIPXHmCGd2FNUwgufa0YBkZoWTbEZA2QT6f78ItAqWFaVGUBPM+tqZmlELvhP2mubScB5wevTgfc8cgV3EjA66K3WFegJTI+yzf9iZm2C60AE0+wkESloUs/0aduEgzo11YwCInFQ5f1s3H0zkZmfq8Xdi8zsCuBNIBl43N3nmdnNQJ67TwIeA542s6XAZiLFg2C78cB8oAi43N2LIdLFee82g+VXEemi3QaYbWaT3f0iIkXsZ2ZWBOwERrv+pam3xgzpxHUTZ5O3cguDu1TZqVJEYsQq+nfXzO5296vN7BWC2QPKcveTww4XL7m5uZ6XlxfvGBKCgj1FDP3zuxyT05o7zzow3nFE6hQzm+nuueWtq+zI5ung+fbYRxKJj4ZpKZxyUHuey1vNH07KoWlDTfMnUhMq6/pcOpYmj8igyA/c/QMi09XMqIlwImEo7SjwojoKiNSYaDoIvAs0LPO+AZGxNyK1Uk67Jgzs2JRnp6mjgEhNiabYZJR2HQYIXjesZHuRhHf2kI4s+WY7M1duiXcUkXohmmKzw8wGlb4xs4OJ9OoSqbVOHNCOxukpPKsZBURqRDTF5mpggplNMbOPgOeAK0JNJRKyRukpjDqwHa/NXsfWgsJ4xxGp86K5xcAMoDfwM+CnQJ8ynQdEaq0xQzqxu6iEFz/XrQdEwlbloE4zuxx4xt3nBu+bmdkYd78/9HQiIerXPosBHbL442sL+Pt7S2nSIDXyyEgJnlNp0iCFrO9e//e6rAaR9ekpyfH+KiIJr8piA1zs7veVvnH3LWZ2MaBiI7XeLaf259XZ68jfWUj+rqLguZC13+4kf2fk/Z7iyu+Cnp6S9F0hyvquYKWSmZFC44wUmmSk0jg9JfI+PYXM0nWlyzJUsKTui6bYJJuZlU7xEtzATCPhpE7o2y6Lvu2yKt1mV2Ex+bsKyd9ZxNagGP1XcfpuWRH5uwrZsmMPKzbuYNuuIrbtLmJPUeXFCiAtJYnMMsUnMz01eC6zLCOVZg1TGdmvLVkNUmP1IxCpEdEUmzeA58zsoeD9pcEykXohIzWZjNRkWmXu2/67i4rZvquIbbuK2L47UpDKvt+2q5Btu4v+Z9nqzQX/9b4kGBJ0x1uLuXlUP0b2axO7LykSsmiKza+BS4h0EAB4G3gktEQidUx6SjLpjZNp0Th9n9twd3YWFrNg3TZ+/9JcfvqvmYzs24abR/WlVZOMGKYVCUeFE3FWuIPZoURmTr48nEjxp4k4JZEVFpfwyJRl3P3OEtJTkvjd8X04a3BHgjtpiMRNZRNxRjPOBjM7yMz+ZmYrgJuBhTHMJyLVkJqcxGVH9ODNqw8jp20Trn9hDmMe+ZTlG3fEO5pIhSosNmbWy8xuMLOFRG6nvJrIkdCR7v73GksoIuXq2rIRYy8exl9P7c+8r/IZefeHPPDvLymsovdcTZj/VT6/eWE2//fS3ITII/FX2TWbhcAU4ER3XwpgZtfUSCoRiUpSkjF6SCeO7N2KG16ex61vLOSVWV9x62kD6N+h8l52sVZUXMI7C77miY9XMG35ZtJTkthdVMLmHXu4e/SBpCZHdSJF6qjKis2pRO6c+b6ZvQGMA3RSWCQBtW6SwYPnHswbc9fxh5fnMeq+j7jo0G5cc3QvGqSFO4bn24I9jJuxmqenrmTttztp37QBvz2+N2fldmLCzNX86bUFANwz+kBSVHDqrQqLjbu/BLxkZo2AUUTmSGtlZg8AL7r7WzWSUESiNrJfW4Z3b8lfX1/Awx8u442567nl1P4c0qNlzD9r4fp8nvpkBS9+vpZdhSUM79aCP5yUw9F9WpOcFPl/6UWHdsMd/jx5ARjcc5YKTn1Vrd5oZtYMOAM4y92PCi1VnKk3mtQFU7/cxG9fnMPyjTs44+AO/O6EPvt9Z9LiEuedBV/z5McrmLpsE+kpSZw6qD3njehC7zZNKtzv4Q+/5C+TF3LigLbcrYJTZ1XWG63aXZ/rAxUbqSt2FRZz77tLeOjDZTRrmMZNJ/fl+P5tqt1NemtBIePzVvPU1BWs2bKTdlkZ/HhEF87K7UizRtEVsNKCc9LAdtx15kAVnDqosmITzaBOEamlMlKTuW5kb04Y0Jbrn5/D5c9+xtF9WvPHU/rSNqtBlfsv+XobT36yghc+W8vOwmKGdm3O70/ow9F9Wle7WFxyWHfc4ZbXF2LAnSo49YqKjUg90LddFi9eNoInPl7BHW8v4pg7P+TXx/XmR0M6kZT030c5xSXO+wu/4clPVvDR0o2kpSRxyoHtOH9EV3LaVXyqLBqXHt4dB/76+kLM4I4zVHDqCxUbkXoiJTmJiw/rxrF92/DbF+fwfy/NZdIXa7nl1AH0aNWYrTsLmZC3mn9OXcmqzQW0aZLBr449gDFDOtE8ylNl0fjp4ZEjnFvfiIwNV8GpH1RsROqZTi0a8vSFQ5g4cw1/em0Bx98zhaP6tOKDxRso2FPM4C7N+PXI3vygb+vQxsb87IjuOM7f3lgEwJ1nHvhdDzapm1RsROohM+OM3I4cfkA2N70yn/cXfsPx/dty/ogu9GtfM4NBLzuiB+5w25uLMOAOFZw6TcVGpB5rlZnBfWcPitvnX35kDyAoOGbcfsZAFZw6SsVGROLq8iN74O7c/tZiDLhNBadOUrERkbi74vs9cYc73l4MBredroJT16jYiEhCuPKonjhw59uLMYy/nT5ABacOUbERkYRx1VGRI5y73lmMGdx6mgpOXaFiIyIJ5edH98Rx7n5nCUak4Ow98FRqHxUbEUk4Vx/dC3e4590lgApOXaBiIyIJ6ZpjegGRgmMGfz1VBac2U7ERkYR1zTG9cODed5dgGLec2l8Fp5YKdUIiMxtpZovMbKmZXV/O+nQzey5YP83MupRZ95tg+SIzO7aqNs3simCZm1nLMsvNzO4N1s02s/iNYBORarvm6J5c9f0ePJe3mt+8MIeSEt0WpTYK7cjGzJKB+4BjgDXADDOb5O7zy2x2IbDF3XuY2WjgVuAsM8shckvqvkA74B0z6xXsU1GbHwOvAv/eK8pxQM/gMRR4IHgWkVrAzL47wvn7e0sxg7/8UEc4tU2Yp9GGAEvdfRmAmY0jcnvpssVmFHBj8Hoi8A+L3NVpFDDO3XcDy81sadAeFbXp7p8Hy/bOMQr4p0fuEvepmTU1s7buvi6m31ZEQmNmXHtMpNPAP95fyvr8XfzfiTl0z24c72gSpTBPo7UHVpd5vyZYVu427l4EbAVaVLJvNG3uSw7M7BIzyzOzvA0bNlTRpIjUNDPjFz/oxY0n5TBzxRaOvetDbn5lPlsLCuMdTaKgm0gE3P1hd89199zs7Ox4xxGRcpgZ5x/Slfd/dQRnDu7Ik58s5/Db3+efU1dQVFwS73hSiTCLzVqgY5n3HYJl5W5jZilAFrCpkn2jaXNfcohILdKycTp/+WF/XrvqUHLaNuEPL8/juHum8MFinZVIVGEWmxlATzPramZpRC74T9prm0nAecHr04H3gmsrk4DRQW+1rkQu7k+Pss29TQJ+HPRKGwZs1fUakbqhT9smPHPRUB75cS6FxSWc9/h0fvLEdJZ+sz3e0WQvoRWb4BrMFcCbwAJgvLvPM7ObzezkYLPHgBZBB4BrgeuDfecB44l0JngDuNzdiytqE8DMrjKzNUSOXGab2aPBZ0wGlgFLgUeAy8L6ziJS88yMY3Ja89Y1h/P7E/qQt3ILx979ITdOmse3BXviHU8CFjmQkLJyc3M9Ly8v3jFEZB9s2r6bu95ZzLPTVpGZkco1R/fkR8M6h3aLa/kPM5vp7rnlrdNPX0TqlBaN0/nTKf15/eeH0b99Fje+Mp+Rd3/I+4u+iXe0ek3FRkTqpAPaZPL0hUN47Lxc3OEnT8zgvMens+TrbfGOVi/pNFo5dBpNpG7ZU1TC05+u5J53FrNjTzHnDO3E1Uf3olmjtJh/1u6iYlZv3smqzTtYuamAlOQkxgzuSEo9OI1X2Wk0FZtyqNiI1E2bd+zh7ncW88y0VTRKS+bqo3tx7vDqX8/5tmAPKzcVsHJzAas3F7ByU6SwrNpcwPr8Xez9z+rRfVrzj7MPIiM1OYbfJvGo2FSTio1I3bb462388dX5TFmykW7Zjfj9CX048oBW3013VVzirNu6k1WbC1gVFJVVQTFZuWkH+buK/qu97Mx0OjdvSKcWDencvBGdWjSgU/NGdG7RkMlz1nHDpHnkdm7Goz8eTFbD1Hh85RqhYlNNKjYidZ+78+9FG/jja/NZtmEHQ7o2p2FaMqs2FbBmy072lJmRIDXZ6NCsIZ2aRx6dW5Q+N6Jj8wY0TKt8msnXZq/jmue+oEvLhvzzgqG0ycoI++vFhYpNNanYiNQfhcUl/OvTlTzx8QoyM1KCQhI5KuncvCEdmzekXdMGJO/nLNOfLN3IJU/PJKtBKk9dMIQerereJKIqNtWkYiMiYZi7divnPzGDopISnjh/MAd1ahbvSDGlcTYiIgmgX/ssnv/ZcLIapHL2I9Pq1dgfFRsRkRrUuUUjJv50BN1bNeKip/J4fuaaeEeqESo2IiI1LDsznXGXDGdYt+b8YsIsHv7wy3hHCp2KjYhIHDROT+Hx8wdz4oC2/GXyQv706nxKSuruNfQwbwstIiKVSE9J5t7RB9GycTqPfrScjdt387fTB5KWUveOA1RsRETiKCnJuOGkHLIz07ntzUVsLijkgR8NolF63frnue6VTxGRWsbMuPzIHtx6Wn8+WrKBsx/5lE3bd8c7Vkyp2IiIJIizBnfioXNzWbh+G2c8OJXVmwviHSlmVGxERBLIMTmteeaioWzcvpvTHviEBevy4x0pJlRsREQSTG6X5kz82QiSzDjzoalMW7Yp3pH2m4qNiEgC6tU6k+cvG0GrzHTOfXw6b8xdH/PP2FVYzJw1Wxk/YzU3vTKP0Q9P5elPV8b8c0C90UREElb7pg2Y+NMRXPDUDC57ZiZ/OqU/Zw/tVO123J31+btYsC6fBeu2sWBdPgvXb2PZhu2UDu1pmJbMAW0ySQ/pJm8qNiIiCaxZozSeuWgoVzz7Ob99cQ4btu3mqqN6fHfvnb3tKixm8dfbWLhuG/PX5bNwfaSwfFtQ+N02HZs3oHebJhzfvy192mTSp20TOjVvSNJ+zmxdGRUbEZEE1zAthYfOPZjrn5/DXe8sZuP23dx4cl++Do5WFq4PCsu6fJZv3PE/Rytli8oBbTLJzKj5G7ip2IiI1AKpyUncfsYAsjPTefCDL5kwczW7Cv9zg7eOzRvQp00TThjQjpy2mfRuE/7RSnWo2IiI1BJmxvXH9aZ7diNmrfmWA9o0oU+bzLgdrVSHio2ISC1zRm5HzsjtGO8Y1aKuzyIiEjoVGxERCZ2KjYiIhE7FRkREQqdiIyIioVOxERGR0KnYiIhI6FRsREQkdObu8c6QcMxsAxDOPNv7riWwMd4hqqE25a1NWaF25a1NWaF25U3ErJ3dPbu8FSo2tYSZ5bl7brxzRKs25a1NWaF25a1NWaF25a1NWUGn0UREpAao2IiISOhUbGqPh+MdoJpqU97alBVqV97alBVqV97alFXXbEREJHw6shERkdCp2IiISOhUbOLEzDqa2ftmNt/M5pnZz4Plzc3sbTNbEjw3C5abmd1rZkvNbLaZDSrTVicze8vMFgTtdUnwvH8L2lgQbBPT+9buQ9beZjbVzHab2S/3amukmS0Kvsf1scwZ67wVtZOIWcu0l2xmn5vZq7HOGuu8ZtbUzCaa2cLgd3d4Ame9JmhjrpmNNbOMWGbdJ+6uRxweQFtgUPA6E1gM5AB/A64Pll8P3Bq8Ph54HTBgGDCtTFv/Bo4JXjcGGiZqXmAE8DGQHDymAkfEOWsrYDDwZ+CXZdpJBr4EugFpwCwgJwF+thXlLbedRMxapr1rgWeBVxPk76zCvMBTwEXB6zSgaSJmBdoDy4EGwfvxwPlh/Hyr89CRTZy4+zp3/yx4vQ1YQOSXZBSRX2qC51OC16OAf3rEp0BTM2trZjlAiru/HbS13d0LEjUv4EAGkT/WdCAV+DqeWd39G3efARTu1dQQYKm7L3P3PcC4oI2YilXeStpJuKwAZtYBOAF4NJYZw8hrZlnAYcBjwXZ73P3bRMwaSAEamFkK0BD4KpZZ94WKTQIITnsdBEwDWrv7umDVeqB18Lo9sLrMbmuCZb2Ab83sheB0xG1mlpyoed19KvA+sC54vOnuC+KctSIV/cxDs595K2onFDHIejdwHVASRr697WfersAG4Ing7+xRM2uUiFndfS1wO7CKyN/YVnd/K6ys0VKxiTMzaww8D1zt7vll13nkGLiqvukpwKHAL4kcUncDzo990oj9zWtmPYA+QAci/3B/38wOTcSsNS1WeStrJ1Zi8HtwIvCNu88MI185nxeLv7NBwAPufhCwg8gprYTLGlzTGUWkQLYDGpnZOWFkrQ4Vmzgys1Qiv1TPuPsLweKvg9NNBM/fBMvXAh3L7N4hWLYG+CI41VMEvETkjyJR8/4Q+DQ43bedyHWdmF5o3YesFanoO8RcjPJW1E4iZj0EONnMVhA5Pfl9M/tXAuddA6xx99IjxYmE8HcWo6xHA8vdfYO7FwIvELlWGlcqNnFiZkbk/O8Cd7+zzKpJwHnB6/OAl8ss/7FFDCNyaLwOmEHkekjpTKvfB+YncN5VwOFmlhL8YR1O5Nx0PLNWZAbQ08y6mlkaMDpoI6ZilbeSdhIuq7v/xt07uHsXIj/X99w95v/7jmHe9cBqMzsgWHQUMf47i+Hv7SpgmJk1DNo8ihj/je2T6vQm0COmPU++R+RweDbwRfA4HmgBvAssAd4BmgfbG3Afkd5Rc4DcMm0dE7QzB3gSSEvUvER6eD1E5Jd/PnBnAmRtQ+R/rvnAt8HrJsG644n0CvoS+F2C/C6Um7eidhIx615tHkF4vdFi+btwIJAXtPUS0CyBs94ELATmAk8D6WH8fKvz0HQ1IiISOp1GExGR0KnYiIhI6FRsREQkdCo2IiISOhUbEREJnYqNSAIIxiN9ZGbHlVl2hpm9Ec9cIrGirs8iCcLM+gETiMyJlQJ8Dox09y/3oa0Uj8woIZIQVGxEEoiZ/Y3IvFuNgufOQD8is2Pf6O4vB5M0Ph1sA3CFu39iZkcAfwS2AL3dvVfNphepmIqNSAIJZhL+DNgDvArMc/d/mVlTYDqRox4HStx9l5n1BMa6e25QbF4D+rn78njkF6lISrwDiMh/uPsOM3sO2A6cCZxU5i6MGUAnIvcm+YeZHQgUE7nNRKnpKjSSiFRsRBJPSfAw4DR3X1R2pZndSOSGcwOJdPLZVWb1jhrKKFIt6o0mkrjeBK4MZu7FzA4KlmcB69y9BDiXyOSmIglNxUYkcf2RSMeA2WY2L3gPcD9wnpnNAnqjoxmpBdRBQEREQqcjGxERCZ2KjYiIhE7FRkREQqdiIyIioVOxERGR0KnYiIhI6FRsREQkdP8PBXp4lxbbR20AAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "A14=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A572\").sort(col('year').desc())\n",
-                "A14 = A14.toPandas()\n",
-                "A14\n",
-                "plt.plot(A14['year'],A14['Accidentprob'])\n",
-                "plt.xlabel(\"Year\")\n",
-                "plt.ylabel(\"Accident Probability\")\n",
-                "\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 126,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "[<matplotlib.lines.Line2D at 0x11966d2b0>]"
-                        ]
-                    },
-                    "execution_count": 126,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD4CAYAAADo30HgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA32ElEQVR4nO3deXyV9ZX48c/JTkJIQhK27OwEZAkBBXfRioqiVgWtlk7tOF2cdups2sWZsWNbO/3Vmbba1qm21joC7oC4tKJVUCFh34xctqyEJCQhkD05vz/ugw0xy01yt5Dzfr3y4smzfO95SHLPfb6rqCrGGGPMGSGBDsAYY0xwscRgjDHmLJYYjDHGnMUSgzHGmLNYYjDGGHOWsEAH4A1JSUmamZkZ6DCMMWZQ2bp1a6WqJnfef04khszMTPLz8wMdhjHGDCoicrSr/R5VJYnIYhEpEBGXiNzfxfFIEVnlHN8sIpkdjj3g7C8Qkas77H9KRI6LyJ5OZf1ARHaJyA4ReUtExnl8l8YYYwas18QgIqHAY8A1QDZwu4hkdzrtbqBaVScCjwKPONdmA8uB6cBi4HGnPIDfO/s6+y9Vnamqs4F1wIN9vCdjjDED4MkTw3zApaqHVLUZWAks7XTOUuBpZ/sFYJGIiLN/pao2qephwOWUh6q+B5zo/GKqerLDtzGADc02xhg/8iQxpABFHb4vdvZ1eY6qtgK1QKKH136GiDwsIkXAF+jmiUFE7hGRfBHJr6io8OA2jDHGeCIou6uq6ndVNQ14Fri3m3OeUNVcVc1NTv5Mo7oxxph+8iQxlABpHb5PdfZ1eY6IhAFxQJWH1/bkWeDzfTjfGGPMAHmSGPKASSKSJSIRuBuT13Q6Zw2wwtm+Bdig7mlb1wDLnV5LWcAkYEtPLyYikzp8uxT42IMYjTHGeEmv4xhUtVVE7gXeBEKBp1R1r4g8BOSr6hrgSeAZEXHhblBe7ly7V0RWA/uAVuAbqtoGICLPAZcBSSJSDPybqj4J/FhEpgDtwFHgq169Y2OM6cb2wmoamttYODEp0KEElJwL6zHk5uaqDXAzxgxEXWMLl//0XZpb2/noO4uIjjgnxv/2SES2qmpu5/1B2fhsjDH+9tg7B6k81czJxlZe2V4a6HACyhKDMWbIK6yq56mNh7l5TgrZY0fw9AdHOBdqU/rLEoMxZsj78Rv7CQ0R/mXxVFYszKCgvI6PDn1m/O2QYYnBGDOkbT5Uxfrdx/jqpRMYExfF0tkpxEeH84cPjwQ6tICxxGCMGbLa25UfvLaPsXFR3HPJeACiwkNZNi+Nt/aVU1rTEOAIA8MSgzFmyHpxWzF7Sk5y/zVTGRYR+un+O8/PQFV5dnOXs1IHhcpTTdzyqw/YUVTj9bItMRhjhqTTTa385M0C5qTHc8Oss2f3TxsZzaJpo3luSxGNLW0BirBnv33/MFsLqxke6f1utZYYjDFD0q/ePUhFXRPfX5KNezLos61YkMmJ082s21UWgOh6Vn26mWc+PMKSmeOYOGq418u3xGCMGXKKq+t54v1DLJ09jpz0hC7PuXBiIhNHDQ/Krqu/23SY081t3Hv5RJ+Ub4nBGDPkPPJGASEC/7p4arfniAgrFmSwu6SW7T6ox++v2oYWfrfpCIunj2HKmFifvMa5P+bbGOM3za3tlNQ0UHiinsIT9RSdqOdkQwtfv2wi6YnRgQ4PgK1HT7B2ZynfXDSJcfHDejz3ppxUHnmjgD98cKTbJwt/e/qDI9Q1tXLvFb55WgBLDMaYPlBVTpxuPuuN/6/bDZTWNtCx1iUiLAQB8o9W89LXFzIiKjxgsYO7e+pDa/cxekQkX710fK/nD48M45a5qTy7+SjfuW4ao2Kj/BBl9041tfLUpsNcOW0UM1LifPY6lhiM8ZE9JbW8sr2Ef148hciw0N4vCBJNrW2UVDd85o2/8EQDRSfqOdXUetb5ybGRpI+MZn7WSNJGRpPufGUkRpM8PJItR05w5283883ntvPkinmEhny2oddfXt1Zws7iWv7frbM8niTviwsy+P0HR3hucxHfunJS7xf40DMfHqWmvoW/v8K3cVhiMMYHjp9s5O6n8yg/2cTs9HiWzBzX+0UB9tDafbyxp4yyk41nfeqPDAv59M3+/KyRn26nJ0aTmjCs1zfYC8Yn8h9Lp/Pdl/fwyBsf851rp/n4TrpW39zKI68XMDM1jpvm9LrC8KfGJw/nksnJPLv5KF+/fALhoYFpmq1vbuV/3z/EJZOTmZUW79PXssRgjJc1tbbx1T9u5WRDK0nDI1iVVxT0iWFPSS1PbTrMRROTuDU37dM3/vSR7k/9IQP8lP+F8zMoOFbHE+8dYvLoWG6Zm+qlyD33m78c4tjJRn5xx5w+38+XFmbw5d/n88aeY1w/KzA/y//bXMiJ081804dtC2dYYjDGi1SVf3t1L9sKa3jsjhwKyuv4xYYDFFfXk5oQHI2vXVmVV0REWAiP3ZFDXLRv2gG+vyQb1/FTfOel3WQlxTA3w3+NuWW1DfzmvYNcN3Ms8zJH9vn6yyaPIn1kNE9/cCQgiaGxpY3fvHeIhRMSye1H/H1l3VWN8aI/bi5kZV4RX79sAtfNHMutzifjF7YWBziy7jU0t/HKjhKunTHGZ0kBIDw0hMe/kMPY+Cj+7pmtfp2H6CdvFNCucH8P3VN7EhIifHFBBvlHq9lTUuvl6Hq3Kq+Iiromn7ctnGGJwRgv2XL4BP+xZi+XT0nmHz83BXBPrXDRxCSezy+mrT24Bkmd8druMuoaW1k+P93nrxUfHcFvv5hLY0sb9zyTT0Oz76eb2FFUw8vbS/jbi7NIG9n/p7Zb56YxLDzU77OuNrW28at3DzIvM4ELxvv+aQE8TAwislhECkTEJSL3d3E8UkRWOcc3i0hmh2MPOPsLROTqDvufEpHjIrKnU1n/JSIfi8guEXlZROL7f3vG+EdpTQNff3Yr6SOj+e/lc87qeXNbbholNQ1sclUGMMLurdxSyPikGM7P8s+bzqTRsfzi9jnsLT3JPz2/06ejilWVh9buJTk2kq9dNrC6+bjocG6ck8KrO0qpPt3spQh798LWYo6dbOTvr5jU5dQdvtBrYhCRUOAx4BogG7hdRLI7nXY3UK2qE4FHgUeca7OB5cB0YDHwuFMewO+dfZ39CZihqjOBT4AH+nhPxvhVY0sbf/fMVhpb2nnii3OJG3Z2dcznpo8mPjqcVflFAYqwewfK68g/Ws2yeWl+e9MBuHzqKO5fPJXXdpfx87ddPnudtbvK2FZYwz9/bopXJptbsTCDptZ2v/0sW9ra+dW7B5mdFs/Fk5L88prg2RPDfMClqodUtRlYCSztdM5S4Gln+wVgkbh/y5YCK1W1SVUPAy6nPFT1PeAzSySp6luqeqaj9EeA/7svGOMhVeWBl3azu6SWR5fNZuKoz05REBkWyo2zU/jT3nK/ftL0xMq8IsJDhc8HoJfQPZeM5+Y5KTz65094fbf3J6prbGnjx+v3M33cCK/d39QxI7hg/Eie+fCoX6oGX95eQnF1A99cNNGviduTxJACdEyPxc6+Ls9x3tRrgUQPr+3Jl4HXuzogIveISL6I5FdUVPShSGO858mNh3l5ewn3XTWZq7JHd3vesnlpNLe18/L2Ej9G17Om1jZe2lbMVdmjSRoe6ffXFxF+ePN5zEmP577VO9lb6t1G3d++f4jS2ka+vyTbq4PqVizIpKSmgbf3l3utzK60trXz2DsuZqSM4PIpo3z6Wp0FbeOziHwXaAWe7eq4qj6hqrmqmpucnOzf4IwBNh6o5Ifr93P19NG9znI5bewIZqXGsSqvKGhm6nxrbznV9S0sn+f7RufuRIWH8pu75hIfHc49f9hK5akmr5RbfrKRx989yOLpY7hgfKJXyjzjquzRjIuL4mkfN0Kv3VXK0ap67r3cf20LZ3iSGEqAtA7fpzr7ujxHRMKAOKDKw2s/Q0S+BCwBvqDB8ldkTAeFVfXc+9w2Jo4azv+7bbZHA6Zum5dGQXkdO4v9392xKyvzCkmJH8ZFE/1Xd92VUbFR/O8Xc6k63cRXn9lKU+vAeyr915sFtLYpD1zbv+6pPQkLDeELF2SwyVXFgfI6r5cP0Nau/HKDi6ljYvlcD0+ivuJJYsgDJolIlohE4G5MXtPpnDXACmf7FmCD84a+Blju9FrKAiYBW3p6MRFZDPwLcIOq1nt+K8b4R31zK/c8k097u/LEXbkeN2peP2scUeEhrMoLfCP00arTbHJVsWxe2oBHNXvDjJQ4fnrrLPKPVvP9V/YM6Klqd3EtL2wt5m8uyiQjMcaLUf7V8nlpRISF8IcPfbP05+t7yjhYcZp7r5gYkJ9Pr4nBaTO4F3gT2A+sVtW9IvKQiNzgnPYkkCgiLuA+4H7n2r3AamAf8AbwDVVtAxCR54APgSkiUiwidztl/RKIBf4kIjtE5NdeuldjBkxV+efnd/FJeR2/uCOHzCTP33hGRIVz7XljWbuzlPrm1t4v8KFVeUWECNyaGzx9O5bMHMc3r5jI6vxintp0pF9lqCo/WLePpOERPlvEBiBxeCTXzxzHi9uKOdnY4tWy29uVX7ztYkJyDNfMGOvVsj3l0UcdVV0PrO+078EO243Ard1c+zDwcBf7b+/mfN9PBGJMPz3+7kFe213GA9dM5dLJfW/bWj4vnZe2lbB+97GAzBcE7i6Qz28t5vIpoxgb1/N6BP72D1dOpqC8jodf28fEUcP7/H/8+p5jbDlygh/edB6xPp7ie8XCDF7cVsyLW4v5mwuzvFbuW/vKKSiv49FlswI2E23QNj4bE2w2fFzOT98q4IZZ47jnkt7n8u/KvMwExifFsCqv0MvReW7Dx8epqGvyy0jnvgoJEX5222wmj47l3v/bxsGKUx5f29jSxg/X72fqmFiWzUvr/YIBmpkaz5z0eP7w4VHavdR1VVX5xYYDZCZGc30AJ160xGCMBw5WnOJbz+0ge+wIHvn8zH73EhERbs1NI+9IdZ/e9Lxp5ZZCRo+I5PIpwdmbLyYyjN+uyCUiNISvPJ1Pbb1nVTW/23SE4uoGHvRy99SefGlhJocrT/PeAe90mX+n4Dh7S0/y9csnEhag6b3BEoMxvaprbOGeP+QTHhbCb+6ay7CIgS268/m5KYSGCKsDMBK6tKaBv3xSwa1z0wL6xtOb1IRofn3XXIqr3b2/Wtvaezz/eF0jj73j4qrs0Sz0Yy+ra2aMJWl4pFcaoVWV/3nbRWrCsD6tF+ELwfubYUwQaG9Xvr1qB0eq6nnsjhyvTJ09KjaKy6eM4sWtJbT08obnbc/nF9Ou+KWqZaDmZY7kP2+cwfsHKnl4/f4ez/3ZW5/Q1Nrm90WAIsJCuOP8dN4pOM7RqtMDKuv9A5XsLKrha5cFbjGgMywxGNOD/377AH/ef5wHl2SzYIL3Bkotn5dG5akm3vn4uNfK7E1bu7I6v4iLJyUNaJZRf1o2L52/uTCT32060m27zN7SWlblF7FiQSZZfegl5i1fOD+dUJEBPTWcaVsYGxcVsE4JHVliMKYbb+wp4+dvH+DWual8cUGGV8u+bEoyo2Ij/Tqm4f0DFZTUNAR0pHN/fPfaaVw8KYnvvbKHLYfPnl7tTPfU+GHh/P2iwKzHPHpEFItnjGF1flG/uyF/dOgEeUeq+eqlE4JifXBLDMZ0oeBYHfet3snstHh+cOMMr09JEBYawufnpvJOwXHKTzZ6tezurNxSxMiYCK7M9u+8OwMVFhrCL2/PIS0hmq/+cStFJ/467vWtfeV8dOgE9101+TOz2vrTlxZmUtfY2u+5sH7+9gGSYyODporPEoMxndTUN3PPM/nERIbxm7vmEhXum09wt+Wm0a7+Wd2toq6JP+8v5/M5KUHxibSv4qLD+d8VubS0tfO3f8jndFMrTa3u7qmTRg3n9gB3vZ2bkUD22BH84YOjfR61nX/kBB8equLvLhnvs9+1vrLEYEwHbe3K3z+3ndKaBn5951xGj4jy2WtlJcUwP2skz+f7fmK9F7YW09quLBtk1UgdTUgezi/vyOGT8jq+vWoHv990hKNV9Xx/SXbAe1iJCF9amElBeR0fHfrMagI9+vkGF4kxEdxxfvD8bCwxGNPBT974mPcPVPKDpTP8slj98nlpHKmqZ/Phvr2Z9IWqsiqvkPmZI5k4arjPXscfLp2czHevy+atfeX8+I2PuWLqKC7pxwh0X7hh9jjio8N5+oMjHl+zo6iG9z6p4CsXjyc6YuALCXmLJQZjHK/uKOE37x3irgsy/DYq+JoZY4mNDPNpI/RHh05wpKqe5fODo/56oL58YaZ7ErvQEL93T+1JVHgoy+al8da+Y5TUNHh0zS/ePkB8dDh3eblzw0BZYjAG2FNSy7++uIv5mSP5/pLOK9f6zrCIUG6YPY71u8uobfDuZGxnrMwrZERUGNeeF5gJ2bxNRPjRzeex5TtXBt0T0F0XuN/gn/2o966re0pqefvj43z5wiyvLDvqTZYYzJB3uqmVv3tmKwnRETx+Zw4RYf79s1g2L42m1nbW7Cz1etk19c28vucYN81JCZqGTW8QEeKiA9cLqTupCdFcOW00K/OKaGzpeV2JX25wERsVxoqFmf4Jrg8sMZgh78yj/09vnRWQJS7PS4lj6phYVvugOumlbSU0t7YH5YR556oVCzM5cbqZdbu6X8e64Fgdb+w9xt8szAxoN9vuWGIwQ97anWWMi4tigZeXgPSUiLB8Xhq7S2q9uu6xqrIyr5BZqXFMGzvCa+Wani2ckMjEUcN5+oMj3fY2+8WGA8REhPLli7w3Xbc3WWIwQ1pNfTPvH6jgupljA7qS2Y1zUogIC/HqU8O2who+KT9lTwt+JiKsWJDB7pJathfVfOa46/gpXttdxl0LMomPjvB/gB6wxGCGtDf3HqOlTbl+VuDmvgeIj47g6uljeGVHaa91055auaWQ6IjQgN/bUHRzTiqxkWFddl19/B0XUWGhfOXi4HxaAEsMZohbt6uM9JHRnJcSF+hQWJabRm1DC2/uPTbgsuoaW1i3q4wbZo0Luh4vQ0FMZBi35KayfncZx+v+OuXJkcrTvLqzlC+cnx6Q9ixPeZQYRGSxiBSIiEtE7u/ieKSIrHKObxaRzA7HHnD2F4jI1R32PyUix0VkT6eybhWRvSLSLiK5A7g3Y3pUeaqJTa5Krp811utzIfXHwgmJpCYM88o6DWt2ltLQ0mbVSAF01wUZtLQpz23+68/z8XddhIZIv1cA9JdeE4OIhAKPAdcA2cDtItK5o/fdQLWzXvOjwCPOtdnAcmA6sBh43CkP4PfOvs72ADcD7/X1Zozpi9f3HKNd3YvQB4OQEOG23DQ2uarOmiiuP1ZuKWLqmFhmpQb+SWioGp/sXrP62c1HaW5tp+hEPS9tK+H2eWmM8uFUK97gyRPDfMClqodUtRlYCSztdM5S4Gln+wVgkbg/gi0FVqpqk6oeBlxOeajqe8Bn5gFQ1f2qWtCvuzGmD9buLGXiqOFMHRMb6FA+dcvcVEQY0FPDnpJadpfUcvv89KB4EhrKvrQwk+N1Tbyx9xi//stBQkT46mUTAh1WrzxJDClAx9/SYmdfl+eoaitQCyR6eG2/iMg9IpIvIvkVFd5Zb9UMHcdqG8k7coIlM4OjGumMcfHDuGRSMi9sLaatnwvMr8wrJDIshBtnB3Z5SOOe2ykjMZrHNrh4Pr+YW3JTGRs3LNBh9WrQNj6r6hOqmququcnJwTGJlhk8XttdhgZRNVJHy+alUVbb2K8F5uubW3l1eynXnTc2KEcGDzUhIcJdF2RQUF5HuypfuzT4nxbAs8RQAnScfSvV2dflOSISBsQBVR5ea4zfrdtVyrSxI4Jurh2AK6eNZmRMRL/GNLy2q4y6ptagWfDFwK25acRGhnHL3NRBs6SqJ4khD5gkIlkiEoG7MXlNp3PWACuc7VuADeoe8rcGWO70WsoCJgFbvBO6Mf1TdKKe7YU1XD8rOCeViwgL4eY5Kfx5fzmVp5r6dO3KvCLGJ7vXeTDBIW5YOH+671L+/YbpgQ7FY70mBqfN4F7gTWA/sFpV94rIQyJyg3Pak0CiiLiA+4D7nWv3AquBfcAbwDdUtQ1ARJ4DPgSmiEixiNzt7L9JRIqBBcBrIvKm927XGHc1EsCS84KvGumMZfPSaGlTXt7m+QP2gfI6th6tZvm8tKBqNzEwJi5qUE1i6NHIF1VdD6zvtO/BDtuNwK3dXPsw8HAX+2/v5vyXgZc9icuY/li3q5RZafGkJwbvY/2k0bHMSY9nVX4RX7k4y6M3+pV5RYSHCp/PSfVDhOZcNmgbn43pj8OVp9lTcpLrZwZnNVJHy3LTcB0/xbbCml7PbWpt46VtxXwuewyJQTyi1gwOlhjMkLLOWfPgukGQGJbMGkd0RKhHjdBv7i2nur7lnFmlzQSWJQYzpKzdVcq8zIRB0Zd8eGQYS2aOZe2uUk41tfZ47sothaSNHMaFE5L8FJ05l1liMENGwbE6Pik/NahmG102L4365jZe29X96m5Hq07zwcEqluWmBXTqcHPusMRghox1u0oJEbhmRvBXI52Rk57AhOQYVvVQnbQyr4gQgVvmWjWS8Q5LDGZIUFXW7SpjwYREkmMHT+OsiLBsXhrbCmtwHa/7zPGWtnaezy/miqmjGBMX3BOzmcHDEoMZEvaWnuRw5emgnAKjNzfnpBIWIl0+NWz4+DiVp5pYPs+m1zbeY4nBDAlrd5USFiIsnj4m0KH0WdLwSK6cNpoXt5XQ3Np+1rGVWwoZPSKSy6bYfGHGeywxmHOeqrJuZxkXTUoiISY419jtzbJ5aZw43czb+8s/3Vda08BfPqngttw0wkLtT9l4j/02mXPe9qIaSmoaBmU10hmXTE5mzIgoVnVYp2F1fhEK3JZrjc7GuywxmHPe2p2lRISG8LnpowMdSr+Fhgi3zE3lvU8qKKttoK1dWZ1XxEUTkwbNjJ1m8LDEYM5p7e3K+t1lXDolmRFRg3t9gtty02hXeCG/mPcOVFBa28jttqaz8QGPJtEzZrDKO3KC8pNNg2pQW3fSE6NZOCGRVflF7C6pJTEmgiunDd6nIBO87InBnNPW7iolKjyERVNHBToUr1g2L43i6gbe2lfO5+emEhFmf8LG++y3ypyzWtvaeX33MRZNG01M5LnxcHz19DGMiHLfi63SZnzl3PhrMaYLHx6qoup086CYYttTUeGh3HvFRA5XnmZCcvAtS2rODZYYzDlr3c4yhkeGcdmUc6Ma6Yx7LhkcC8qbwcuqksw5qbm1ndf3lHFV9uhBtaSiMcHAo8QgIotFpEBEXCJyfxfHI0VklXN8s4hkdjj2gLO/QESu7rD/KRE5LiJ7OpU1UkT+JCIHnH8TBnB/Zoja6KrgZGMr1886d6qRjPGXXhODiIQCjwHXANnA7SKS3em0u4FqVZ0IPAo84lybDSwHpgOLgced8gB+7+zr7H7gbVWdBLztfG9Mn6zdWUbcsHAummhzCBnTV548McwHXKp6SFWbgZXA0k7nLAWedrZfABaJe/XypcBKVW1S1cOAyykPVX0PONHF63Us62ngRs9vxxhobGnjT/vKWTx9jHXnNKYfPPmrSQE6zvdb7Ozr8hxVbQVqgUQPr+1stKqWOdvHgC5H8IjIPSKSLyL5FRUVHtyGGSreLTjOqaZWllg1kjH9EtQfp1RVAe3m2BOqmququcnJVl1g/mrtrjISYyJYMD4x0KEYMyh5khhKgI4jaVKdfV2eIyJhQBxQ5eG1nZWLyFinrLHAcQ9iNAaA002tvL2/nGvOG2NTURvTT5785eQBk0QkS0QicDcmr+l0zhpghbN9C7DB+bS/Blju9FrKAiYBW3p5vY5lrQBe9SBGYwB4++PjNLa0c/0gnmLbmEDrNTE4bQb3Am8C+4HVqrpXRB4SkRuc054EEkXEBdyH05NIVfcCq4F9wBvAN1S1DUBEngM+BKaISLGI3O2U9WPgKhE5AFzpfG+MR9btLGX0iEjmZY4MdCjGDFri/mA/uOXm5mp+fn6gwzABdrKxhdwf/Jk7L8jgwes796g2xnQmIltVNbfzfquENeeMP+0tp7mt3XojGTNAlhjMOWPtrlJS4ocxJy0+0KEYM6hZYjDnhOrTzWw8UMmSWWNxj600xvSXJQZzTnhj7zFa29V6IxnjBZYYzDlh3a5SspJimD5uRKBDMWbQs8QwxL1bcJzF//0eP1q/n/1lJwMdTr9U1DXx4cEqlsy0aiRjvMEW6hnCCqvq+eZz24kIC+HJjYf5zXuHmDI6lhvnpLB09jjGxQ8LdIgeeX1PGe0K18+yaiRjvMESwxDV2NLGV/+4FYCXvnYhw6PCeG1XKS9vL+GRNz7mJ29+zPlZI7lpTgqLZ4wlblh4gCPu3tqdpUwePZzJo2MDHYox5wRLDEOQqvK9V/awr+wkT67IJT0xGoC7FmRy14JMjlad5pXtpbyyo4R/fXE33391L1dOG8XS2SlcNiWZyLDgWRGtrLaBvCPV/ONVkwMdijHnDEsMQ9BzW4p4YWsx37xiIoumfXZW84zEGL515SS+uWgiu4preXl7CWt3lrJ+9zHihoVz3cyx3DQnhbnpCYSEBLZO/7Vd7hnal1g1kjFeY4lhiNlZVMO/r9nLxZOS+NaVPX/KFhFmpcUzKy2e7143jY2uSl7ZXsJL24r5v82FpCYM48bZKdw4ZxwTRwWmGmftrjJmpIwgKykmIK9vzLnIEsMQcuJ0M19/dhvJsZH8fPkcQvvwaT88NITLp4zi8imjONXUylt7j/HKjlIef9fFL99xcV5KHEtnj+OGWeMYNSLKh3fxV4VV9ewsquH+a6b65fWMGSosMQwRbe3Kt1Zup6Kuiee/uoCEmIh+lzU8Moybc1K5OSeV43WNrN1ZxivbS/jP1/bzw/X7uXBiEjfNSeHq6WOIifTdr9i63aUAXHeezY1kjDdZYhgi/ufPn/D+gUp+eNN5zPLiXEKjYqO4+6Is7r4oC9fxOl7Z7u7ZdN/qncRE7OGmnBTuvCCDqWO8P/Bs3c4y5qTHkzYy2utlGzOUWWIYAjZ8XM7PN7i4ZW4qt89P6/2Cfpo4KpZ/unoK9101mfyj1azKK2J1fjF//KiQeZkJ3HlBBotnjPFKr6aDFafYV3aSB5fY9NrGeJslhnNcYVU9/7ByB9ljR/CfN87wy8jgkBBhftZI5meN5HvXTeOFrcX8cfNRvrVyB4kxEdw2L4075qcP6JP+up1liMB1M60ayRhvs8RwDus4iO3Xd84lKtz/4w8SYiL420vGc/dFWWx0VfLMR0f5zV8O8uu/HOTyKaO484J0Lp08qk8N4arK2l2lzM8cyWg/NXQbM5QM+cSgqufk/Dqqyve7GMQWKCEhwiWTk7lkcjKlNQ08t6WQ57YU8eXf55OaMIw7zk/nttw0koZH9lpWQXkdruOnWHHjDD9EbszQ49EkeiKyWEQKRMQlIvd3cTxSRFY5xzeLSGaHYw84+wtE5OreyhSRK0Rkm4jsEZGnRcRnyetnbxVw/S83+qr4gFqZV8TzW4v5+24GsQXSuPhh/OPnpvDB/VfwyzvmkJowjJ+8UcDCH23gWyu3k3/kBD0tObt2ZymhIcI1M8b4MWpjho5e33RFJBR4DLgKKAbyRGSNqu7rcNrdQLWqThSR5cAjwDIRyQaWA9OBccCfReTMqKrPlAl8DDwNLFLVT0TkIWAF8KQX7vUzhkWEsafkJCdONzNyAN03g83Oohr+7VX3ILZ/6GUQWyBFhIWwZOY4lswcx4HyOp7dXMiLW4t5dUcpU8fEcucFGdw4J4XhHbq8qirrdpWxcEKiR08Xxpi+8+SJYT7gUtVDqtoMrASWdjpnKe43dIAXgEXirp9ZCqxU1SZVPQy4nPK6KzMRaFbVT5yy/gR8vv+317O5GQkAbC+s9tVL+F3HQWz/08dBbIE0aXQs/37DdD76ziJ+dPN5hIjwvVf2cMEP3+b7r+yh4FgdALtLajlaVW8L8hjjQ55U06QARR2+LwbO7+4cVW0VkVrcb/IpwEedrk1xtrsqsxIIE5FcVc0HbgG67F8pIvcA9wCkp6d7cBufNTM1jrAQYVthddBVt/RH50Fsg/EpKCYyjNvnp7N8Xhrbi2r440dHWZVfxDMfHWVeZgLREWGEhwpXT7dqJGN8Jagan1VVnaqoR0UkEngLaOvm3CeAJwByc3O7r5DuQVR4KNnjRrD16LnxxOCrQWyBICLkpCeQk57A967L5oWtRfzxo0IKT1SzaOoo4qKDdxpwYwY7TxJDCWd/ak919nV1TrHTWBwHVPVybZf7VfVD4GIAEfkc4NNK8pz0BFblFdHa1k5Y6OBd0M5fg9gCYWRMBPdcMoGvXDSevCMnbMI8Y3zMk3fCPGCSiGSJSATuxuQ1nc5Zg7uRGNzVPxvU3a1kDbDc6bWUBUwCtvRUpoiMcv6NBP4V+PVAbrA3ORkJNLS08bFThz0YBWIQWyCEhAjnj0/02yR9xgxVvT4xOG0G9wJvAqHAU6q61+kxlK+qa3D3GnpGRFzACdxv9DjnrQb2Aa3AN1S1DaCrMp2X/GcRWYI7af1KVTd48X4/Iyc9HoBthdXMSInz5Uv5RDAMYjPGnFukp/7ig0Vubq7m5+f361pV5YIfvc2C8Yn89/I5Xo7Mt1SVf3lhF89vLebJFbnnRAO6McZ/RGSrquZ23j94K9W95Ewj59ZB2GU1mAexGWMGryGfGMDdAF10ooGKuqZAh+KxXcWDYxCbMWbwscSAuwEa3O0Mg0H16Wa+9sfBN4jNGDM4WGIAZqSMICI0hG2DYDxDW7vyrVU7qKhr4vEv5AzKQWzGmOBmiQGIDAtlesqIQfHE8D9//oT3Pqng327IHvSD2IwxwckSg2NuegK7imtpbm0PdCjdOjOI7fM5qdwxv3/TgBhjTG8sMThyMhJoam1nX9nJQIfSpbrGFr69aifTzvFBbMaYwLPE4Dgz02qwtjN8cLCK2oYWHlySzbAIG8RmjPEdSwyO0SOiSIkfFrTtDJtclQwLD/00gRljjK9YYuhgTnp80D4xbHJVMj9rJBFh9iMzxviWvct0MDcjgdLaRspqGwIdylnKahs4WHGaiyYmBToUY8wQYImhg5z0M+0MNYENpJNNrioALrTEYIzxA0sMHUwbO4LIsJCga2fY5KokMSaCqWNiAx2KMWYIsMTQQURYCLNS44MqMagqG12VLJiQSIhNfWGM8QNLDJ3MyYhnT0ktjS1drijqd67jp6ioa7L2BWOM31hi6CQnPYGWNmVvaW2gQwFgo6sSsPYFY4z/WGLoJNgaoDe5KslIjCZtZHSgQzHGDBGWGDpJjo0kfWQ0W4NgPENLWzsfHTphTwvGGL/yKDGIyGIRKRARl4jc38XxSBFZ5RzfLCKZHY494OwvEJGreytTRBaJyDYR2SEiG0Vk4gDvsc9y0t0N0IFe9nRXcQ2nmlq5cIIlBmOM//SaGEQkFHgMuAbIBm4XkexOp90NVKvqROBR4BHn2mxgOTAdWAw8LiKhvZT5K+ALqjob+D/gewO6w36Ym5HA8bomSmoCO9Btk6sKEVgwITGgcRhjhhZPnhjmAy5VPaSqzcBKYGmnc5YCTzvbLwCLxD3951Jgpao2qephwOWU11OZCoxwtuOA0v7dWv/NcdoZAl2dtNFVyfRxI2wxHmOMX3mSGFKAog7fFzv7ujxHVVuBWiCxh2t7KvMrwHoRKQbuAn7cVVAico+I5ItIfkVFhQe34bmpY2KJjghle2GNV8vti9NNrWwvrLb2BWOM3wVj4/O3gWtVNRX4HfCzrk5S1SdUNVdVc5OTk70aQFho4Ae6bTlygpY2tfELxhi/8yQxlABpHb5PdfZ1eY6IhOGuAqrq4dou94tIMjBLVTc7+1cBCz26Ey/LyYhnX+lJGpoDM9DtA1clEaEh5GaMDMjrG2OGLk8SQx4wSUSyRCQCd2Pymk7nrAFWONu3ABvU3aVnDbDc6bWUBUwCtvRQZjUQJyKTnbKuAvb3//b6Lyc9gdZ2ZVdxTSBeno2uKuZmJNiiPMYYvwvr7QRVbRWRe4E3gVDgKVXdKyIPAfmqugZ4EnhGRFzACdxv9DjnrQb2Aa3AN1S1DaCrMp39fwu8KCLtuBPFl716xx76tAG6sJrzx/u3V1DlqSb2l53kn6+e4tfXNcYY8CAxAKjqemB9p30PdthuBG7t5tqHgYc9KdPZ/zLwsidx+dLImAjGJ8UEZAT0Bwdtmm1jTOAEY+Nz0JiTnsD2AAx023SgktioMM5LifPr6xpjDFhi6NHcjASqTjdztKreb6/56TTb4xMJtWm2jTEBYImhBzkZ8QB+7bZaeKKekpoGLppk1UjGmMCwxNCDSaNiiY0M82tisGm2jTGBZomhB6Ehwuz0eLb6sQF6k6uSsXFRjE+K8dtrGmNMR5YYejEnPYGCYyc51dTq89dqb1c+OFjFhROTcE81ZYwx/meJoRdzMxJoV9hVVOPz19pXdpKa+hYunGizqRpjAscSQy9mp8UD/plp9dP2BVt/wRgTQJYYehE3LJxJo4b7pQF6k6uSyaOHM2pElM9fyxhjumOJwQNzMxLYXlRDe7vvBro1trSx5bAt42mMCTxLDB7ISU+gpr6FQ5WnffYa2wqraWptt2m2jTEBZ4nBA/4Y6LbJVUloiDA/y6bZNsYEliUGD4xPGk7csHC2+bABeqOritlp8cRGhfvsNYwxxhOWGDwQEiLMSffdim619S3sLq6x9gVjTFCwxOChnPQEDhw/RW1Di9fL/vBQFe2KtS8YY4KCJQYPzc1IQBV2+GCg2wcHK4mOCP10zIQxxgSSJQYPzUqLJ0TwSTvDRlcl87NGEhFmPw5jTODZO5GHhkeGMXl0rNfbGUprGjhUcdqqkYwxQcOjxCAii0WkQERcInJ/F8cjRWSVc3yziGR2OPaAs79ARK7urUwReV9EdjhfpSLyysBu0XvmZiSwo9C7A9022TTbxpgg02tiEJFQ4DHgGiAbuF1EsjuddjdQraoTgUeBR5xrs4HlwHRgMfC4iIT2VKaqXqyqs1V1NvAh8NKA79JLctITqGtq5cDxU14rc5OrkqThEUwZHeu1Mo0xZiA8eWKYD7hU9ZCqNgMrgaWdzlkKPO1svwAsEve80UuBlarapKqHAZdTXq9lisgI4ArglX7dmQ/kZCQA3hvopqpsOljFgglJhNgynsaYIOFJYkgBijp8X+zs6/IcVW0FaoHEHq71pMwbgbdV9WRXQYnIPSKSLyL5FRUVHtzGwGUmRjMyJsJrM60eOH6KiromLrJpto0xQSSYG59vB57r7qCqPqGquaqam5yc7JeARIQcLw5023jA2heMMcHHk8RQAqR1+D7V2dflOSISBsQBVT1c22OZIpKEu7rpNU9uwp9yMhI4VHGa6tPNAy5rk6uSzMRoUhOivRCZMcZ4hyeJIQ+YJCJZIhKBuzF5Tadz1gArnO1bgA2qqs7+5U6vpSxgErDFgzJvAdapamN/b8xXctLd7Qzbiwb21NDS1s5mm2bbGBOEek0MTpvBvcCbwH5gtaruFZGHROQG57QngUQRcQH3Afc71+4FVgP7gDeAb6hqW3dldnjZ5fRQjRRIM1PjCA0Rth2tGVA5u4prONXUaonBGBN0wjw5SVXXA+s77Xuww3YjcGs31z4MPOxJmR2OXeZJXIEQHRFG9tgRA26A3nigChFYMN4ano0xwSWYG5+DVk56PDuLa2hta+93GZtclcwYF0dCTIQXIzPGmIGzxNAPORkJ1De3UVBe16/rTze1sq2w2qqRjDFByRJDP5xpgO7vhHpbjpygtV1tfiRjTFCyxNAPqQnDSI6NZFthTb+u33SgkoiwEHIzE7wbmDHGeIElhn4Y6EC3ja5KcjMSiAoP9XJkxhgzcJYY+mluRgJHq+qpPNXUp+sq6pr4+FidtS8YY4KWJYZ+6m87wwcH3dNgWPuCMSZYWWLopxkpcYSHSp/bGT5wVTEiKowZKXG+CcwYYwbIEkM/RYWHMn1cXJ+eGFSVja5KFkxIJNSm2TbGBClLDAOQk57AzuIaWjwc6Ha0qp6SmgarRjLGBDVLDAOQkxFPU2s7+0q7XDLiMzbaMp7GmEHAEsMAzO3jim4fHKxkXFwUWUkxvgzLGGMGxBLDAIyNG8bYuCiPGqDb2pUPDlZx4cQk3KueGmNMcLLEMEA56QkeNUDvKz1JTX2LVSMZY4KeJYYByslIoKSmgfKTPa8pdKZ9YaGt72yMCXKWGAYoJz0e6H2g2yZXJVNGxzIqNsoPURljTP9ZYhig6ePiiAgL6XHhnsaWNvKO2DKexpjBwRLDAEWEhTAzJa7HnknbjlbT1NrORZOsGskYE/w8SgwislhECkTEJSL3d3E8UkRWOcc3i0hmh2MPOPsLROTq3soUt4dF5BMR2S8i3xzgPfpcTkYCe0pO0tTa1uXxja5KwkKE+VmWGIwxwa/XxCAiocBjwDVANnC7iGR3Ou1uoFpVJwKPAo8412YDy4HpwGLgcREJ7aXMLwFpwFRVnQasHNAd+kFOegLNbe3sKel6oNsmVyWz0+IZHunREtvGGBNQnjwxzAdcqnpIVZtxv1Ev7XTOUuBpZ/sFYJG4O+svBVaqapOqHgZcTnk9lfk14CFVbQdQ1eP9vz3/yMmIB2B7F9VJtfUt7C6ptfYFY8yg4UliSAGKOnxf7Ozr8hxVbQVqgcQeru2pzAnAMhHJF5HXRWRSV0GJyD3OOfkVFRUe3IbvjIqNIjVhWJftDB8eqqJd4aJJlhiMMYNDMDY+RwKNqpoL/C/wVFcnqeoTqpqrqrnJycl+DbArczMS2Hq0GlU9a/8mVyUxEaHMTosPTGDGGNNHniSGEtx1/mekOvu6PEdEwoA4oKqHa3sqsxh4ydl+GZjpQYwBl5OeQPnJJkprzx7otslVyfyskYSHBmMONsaYz/Lk3SoPmCQiWSISgbsxeU2nc9YAK5ztW4AN6v7ovAZY7vRaygImAVt6KfMV4HJn+1Lgk37dmZ+dWdGt43iG0poGDlWetvYFY8yg0ms3GVVtFZF7gTeBUOApVd0rIg8B+aq6BngSeEZEXMAJ3G/0OOetBvYBrcA3VLUNoKsynZf8MfCsiHwbOAV8xXu36ztTx8YyLDyUbUeruWHWOMD9tADWvmCMGVw86j+pquuB9Z32PdhhuxG4tZtrHwYe9qRMZ38NcJ0ncQWT8NAQZqbGndUzaZOrkqThEUwZHRvAyIwxpm+s4tuLcjIS2Ft6ksaWNmcZT5tm2xgz+Fhi8KK56Qm0tiu7imv5pPwUlaeauHCCVSMZYwYXG4rrRXPOzLRaWP1pL6QLrX3BGDPIWGLwosThkWQmRrP1aDXt7UpWUgwp8cMCHZYxxvSJJQYvy8lI4C8FFTS2tHFTTucB4sYYE/ysjcHLctITqDrdzOnmNmtfMMYMSpYYvOzMQDcRWDDBptk2xgw+VpXkZVPGxBITEcqEUcOJj44IdDjGGNNnlhi8LDREePD6bEaPsLWdjTGDkyUGH1g2Lz3QIRhjTL9ZG4MxxpizWGIwxhhzFksMxhhjzmKJwRhjzFksMRhjjDmLJQZjjDFnscRgjDHmLJYYjDHGnEVUNdAxDJiIVABHAx1HJ0lAZaCD8NBgihUGV7yDKVYYXPEOplghOOPNUNXkzjvPicQQjEQkX1VzAx2HJwZTrDC44h1MscLgincwxQqDK16rSjLGGHMWSwzGGGPOYonBd54IdAB9MJhihcEV72CKFQZXvIMpVhhE8VobgzHGmLPYE4MxxpizWGIwxhhzFksMHhKRNBF5R0T2icheEfmWs3+kiPxJRA44/yY4+0VEfi4iLhHZJSI5HcpKF5G3RGS/U15mkMf7E6eM/c45EuBYp4rIhyLSJCL/1KmsxSJS4NzH/d6M05uxdldOsMbbobxQEdkuIuuCOVYRiReRF0TkY+f3dkGQx/ttp4w9IvKciAR2CUhVtS8PvoCxQI6zHQt8AmQDPwHud/bfDzzibF8LvA4IcAGwuUNZ7wJXOdvDgehgjRdYCGwCQp2vD4HLAhzrKGAe8DDwTx3KCQUOAuOBCGAnkB2ksXZZThD8HnQZb4fy7gP+D1gXzLECTwNfcbYjgPhgjRdIAQ4Dw5zvVwNf8na8ffmyJwYPqWqZqm5ztuuA/bh/oEtx/xLi/Hujs70U+IO6fQTEi8hYEckGwlT1T05Zp1S1PljjBRSIwv3HFQmEA+WBjFVVj6tqHtDSqaj5gEtVD6lqM7DSKSPoYu2hHK/y4v8tIpIKXAf81ttxejNWEYkDLgGedM5rVtWaYI3XEQYME5EwIBoo9Xa8fWGJoR+cqp85wGZgtKqWOYeOAaOd7RSgqMNlxc6+yUCNiLzkPJL/l4iEBmu8qvoh8A5Q5ny9qar7Axxrd7r7P/eJAcbaXTk+44V4/xv4F6DdF/F1NMBYs4AK4HfO39hvRSTGZ8EysHhVtQT4KVCI+2+sVlXf8l20vbPE0EciMhx4EfgHVT3Z8Zi6nwN76/8bBlwM/BPux8rxwJe8H6nbQOMVkYnANCAV95vsFSJycTDG6k/eirWncrzJC78HS4DjqrrVVzF2eC1v/I3lAL9S1TnAadxVOj7hhf/bBNxPGVnAOCBGRO70UbgescTQByISjvsX4FlVfcnZXe5UueD8e9zZXwKkdbg81dlXDOxwqjtagVdw/xIHa7w3AR85VV6ncLdD+KIhry+xdqe7ewjGWLsrx+u8FO+FwA0icgR3Fd0VIvLHII21GChW1TNPYC8QHH9j3bkSOKyqFaraAryEu20vYCwxeEhEBHed5X5V/VmHQ2uAFc72CuDVDvu/KG4X4H48LAPycNffn5nR8ApgXxDHWwhcKiJhzh/BpbjrUgMZa3fygEkikiUiEcByp4ygi7WHcrzKW/Gq6gOqmqqqmbj/Xzeoqlc/1Xox1mNAkYhMcXYtIjj+xrpTCFwgItFOmYvw8t9Yn/WlpXoofwEX4X4k3AXscL6uBRKBt4EDwJ+Bkc75AjyGu5fMbiC3Q1lXOeXsBn4PRARrvLh7+vwG9y/qPuBnQRDrGNyfCk8CNc72COfYtbh7hxwEvhussXZXTrDG26nMy/BNryRv/h7MBvKdsl4BEoI83v8APgb2AM8Akd6Oty9fNiWGMcaYs1hVkjHGmLNYYjDGGHMWSwzGGGPOYonBGGPMWSwxGGOMOYslBmOMMWexxGCMMeYs/x9q0BZCh/39CgAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "A107=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A107\").sort(col('year').desc())\n",
-                "A107 = A107.toPandas()\n",
-                "A107\n",
-                "plt.plot(A107['year'],A107['Accidentprob'])\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 145,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Text(0, 0.5, 'Accident Probability')"
-                        ]
-                    },
-                    "execution_count": 145,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEGCAYAAACzYDhlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyhUlEQVR4nO3dd3wUdf7H8dcnvRAChAAhlIROAigQUMAKFjqKnqJXsPdy5xXh9BT0vDvvd+qdnvX07IocooCgWLBLC6BAQjEQSkLvEEj//P7YQUNMNgvsZDfJ5/l4zGN3p3znvTHh48x85zuiqhhjjDFuCgl0AGOMMfWfFRtjjDGus2JjjDHGdVZsjDHGuM6KjTHGGNeFBTpAMGrevLmmpKQEOoYxxtQpS5Ys2aWqiVUts2JThZSUFDIzMwMdwxhj6hQR2VjdMjuNZowxxnVWbIwxxrjOio0xxhjXWbExxhjjOis2xhhjXGfFxhhjjOus2BhjjHGdFRvjV6Vl5by9JI+DhSWBjmKMCSJWbIzfqCr3vruS3/7vO575fF2g4xhjgogVG+M3j360limLN9MoMow5K7ZhD+Yzxhxlxcb4xSvzN/DEvBzG9WvLH4d3J3dXAVlbDgQ6ljEmSFixMSdt9vKt3D8zi/O6t+TPF/VgaI9WhIYIs1dsDXQ0Y0yQsGJjTso363bxm7e+JaN9U/59ZW/CQkNoFhvBwI4JzF6+1U6lGWMAKzbmJGRt2c8NrywhpXkMz/+qH1HhoT8sG9kriU17DrMy306lGWOs2JgTtHnPYa56cTGNo8J4+Zr+xMeEH7P8grRWhIUI763YEqCExphgYsXGHLddh4r45QsLKSkr55Vr+5MUH/2TdZrGRjCoU3M7lWaMAazYmONUUFTKNS8tZtuBQl4Y349OLeKqXXdkryTy9h5hed7+WkxojAlGVmyMz4pLy7nptSVkbTnAk1f2oW/7pl7XvyCtFeGh1ivNGGPFxq+27DvCjG/z+W7zPvYfqV/DtZSXK7+f9h1ffr+Lv47tyZDuLWvcJj4mnDM7J9qpNGMMYYEOUJ8szN3Nb9767ofPCbERpDaPJaV5LKnOlJIQS0rzGGIi6s6PXlV5aM4qZny7hT8M7cplGW193nZEzyTmrd7Bss376NPO+5GQMab+qjv/4tUBw3smkd46ntxdBeTuKmCD8/rF2p1MW5J3zLqtGkdVKEQxpDZvRGrzGNo2iyEyLLSaPQTGc1+s54WvcrlqYAo3n93xuLY9L60lEaEhzF6+1YqNMQ2YFRs/igwLpUvLOLq0/OlF80NFpWzYVcCG3Z4itN4pRh+s3Mrewz+ecgsRSG4aTUpCLB0qHBWltW5Mi7io2vw6ALy9JI+/vr+akb2SuG9kGiJyXNvHR4dzVpfmzFmxlXuGdyck5Pi2N8bUD64WGxEZCvwLCAWeV9W/VVoeCbwC9AV2A5er6gZn2UTgWqAMuENV53prU0RuA34NdAQSVXVXpX31A+YD41R1mhvf15tGkWH0SI6nR3L8T5btP1xC7u4CcncdInfX4R+OiqYvzedgUSkAoSHCiJ5JXHdmKr3aNKmVzJ+u2cEf3l7OoE4JPHLZKSdcKEb0SuLjVTtYtnkvfds383NKY0xd4FqxEZFQ4EngfCAPWCwiM1U1u8Jq1wJ7VbWTiIwDHgYuF5E0YByQDrQGPhaRLs421bX5NfAe8Fk1WR4GPvT/Nz158THhnBrThFPbNjlmvqqy61AxubsK+Ch7G28u2szM77bQP7UZ152RynndW7p2pLBs015ueW0p3ZPieOYXfU/q1N553VsSERbCe8u3WrExpoFyszdafyBHVderajEwBRhTaZ0xwMvO+2nAEPGcpxkDTFHVIlXNBXKc9qptU1WXHT0qqsLtwNvADr99u1ogIiTGRdI/tRn3jEhj/sTB3DuiO/l7j3DDq0sY/MhnvDp/A4eLS/2633U7D3HNS4tp0TiSF6/qT1xUeM0beREXFc45XRKZs2Ir5eXWK82YhsjNYpMMbK7wOc+ZV+U6qloK7AcSvGzrS5vHEJFk4GLg6RrWu0FEMkUkc+fOnd5WDZi4qHCuO7MDn//+HP59ZW/iYyL404wsBv5tHv83dzXbDxSe9D627S/kVy8sIjREeOWa/iTGRfohuedU2vYDRWRu3OuX9owxdUtDuM/mn8DdqlrubSVVfU5VM1Q1IzExsXaSnaCw0BBG9mrNu7cMZNpNAzg9NYGnPlvHGQ/P466p35J9gs+R2X+khPH/XcS+w8W8dHV/2ifE+i3zkO4tiQwLYfZyGyvNmIbIzQ4C+UDFGzLaOPOqWidPRMKAeDwdBbxtW1OblWUAU5xeVM2B4SJSqqrv+vxNgpSIkJHSjIyUZmzcXcCLX29gauZmpi/NZ1CnBK47owNnd0n06bpOYUkZ17+Syfpdh3jp6v5VdmQ4GY0iwzi3awvmrNzGfaPSCbVeacY0KG4e2SwGOotIqohE4LngP7PSOjOB8c77S4F56rnVfCYwTkQiRSQV6Aws8rHNY6hqqqqmqGoKnutCt9SHQlNZ+4RYJo1OZ/6EIdw9tBs5Ow5x9UuLueCfX/Dmok0UlpRVu21ZuXLnlGUs3rCHRy87lUGdmruScUSvJHYeLGLxhj2utG+MCV6uFRvnGsxtwFxgFTBVVbNE5AERGe2s9gKQICI5wF3ABGfbLGAqkA18ANyqqmXVtQkgIneISB6eo53lIvK8W98tmMXHhHPzOR358g+D+eflpxIZFsLE6SsY9Ld5PPbRWnYdKjpmfVXlTzNWMjdrO/ePTGPUKa1dyza4Wwuiwj03eBpjGhaxMat+KiMjQzMzMwMdwy9UlQXr9/DCV+v5eNUOIsJCGNs7mWvPSKVzyzj++fFa/vnx99xyTkf+MLSb63lufX0pC3N3s/CP59mpNGPqGRFZoqoZVS2zEQTqORFhQMcEBnRMYN3OQ/z3q1ymLcljyuLN9G7XhGWb9nFZRht+f2HXWskzolcSs1dsZWHubgZ2dOd0nTEm+DSE3mjG0TGxEQ9d3JP5E4fw2/O7kLf3CBekteQvF/c87mFoTtS5XVsQHR5qp9KMaWDsyKYBahYbwe1DOnPb4E4AtVZoAKIjQhnSvQUfrNzG5NHphIXa/+8Y0xDYX3oDJiK1WmiOGtkrid0FxSxYb73SjGkorNiYWndO1xbERIQye4Xd4GlMQ2HFxtS6qPBQzuvekg9WbqOkzOvADsaYesKKjQmIEb2S2Hu4hPnrdgc6ijGmFlixMQFxdpdEGkWGWa80YxoIKzYmIKLCQzk/rSUfZNmpNGMaAis2JmBG9Exi/5ESvs7ZVfPKxpg6zYqNCZgzuzQnLjKM9+xUmjH1nhUbEzCRYaGcn96SuVnbKC61U2nG1GdWbExAjeyVxMHCUr7KCc6noxpj/MOKjQmoMzol0jjKTqUZU99ZsTEBFREWwoXprfgoaztFpdU/4M0YU7dZsTEBN6JXEgeLSvlyrfVKM6a+smJjAm5Qp+bER4cze4WdSjOmvrJiYwIuPDSEoemt+Ch7O4UldirNmPrIio0JCiN6JXGoqJTP11qvNGPqIys2JigM6JhA05hwGyvNmHrKio0JCuGhIQzt0YqPV9mpNGPqIys2JmiM7NWaw8VlfLZmR6CjGGP8zIqNCRqnpTYjITaiVm/w/GzNDt5ekldr+zOmoQoLdABjjgpzTqVNX5rPkeIyoiNCXduXqvL8l7n85f1VqEL7hBgyUpq5tj9jGjpXj2xEZKiIrBGRHBGZUMXySBF5y1m+UERSKiyb6MxfIyIX1tSmiNzmzFMRaV5h/s9FZLmIrBCRb0TkFBe/sjlJI3olcaSkjE9dPJVWWlbOve+u5KE5qxia3orkJtFMnL7CBgM1xkWuFRsRCQWeBIYBacAVIpJWabVrgb2q2gl4DHjY2TYNGAekA0OBp0QktIY2vwbOAzZW2kcucLaq9gQeBJ7z6xc1fnVaagLNG0Xw3vItrrR/sLCEa1/O5PWFm7jp7I48eWUfHrwone93HOLZz9e5sk9jjLtHNv2BHFVdr6rFwBRgTKV1xgAvO++nAUNERJz5U1S1SFVzgRynvWrbVNVlqrqhcghV/UZV9zofFwBt/PkljX+FhgjDeiQxb/UOCopK/dr2ln1H+Nkz8/kqZxd/HduTCcO6ERIiDO7WkhE9k3ji0xzW7zzk130aYzzcLDbJwOYKn/OceVWuo6qlwH4gwcu2vrTpzbXA+1UtEJEbRCRTRDJ37rQbCwNpRK8kCkvKmbfaf6fSVubv56InvyZv7xFevKofV/Rvd8zy+0elERkWwj3vrERV/bZfY4xHg+mNJiLn4ik2d1e1XFWfU9UMVc1ITEys3XDmGP1SmpEYF+m3Gzw/zt7Oz56ZT3hoCG/fPJCzuvz0v2+LxlFMGNaN+et38/bSfL/s1xjzoxqLjYgsEZFbRaTpcbadD7St8LmNM6/KdUQkDIgHdnvZ1pc2q/oOvYDngTGquvu4voWpdaEhwoieSXy6ZgeHTvJU2otf53LDq5l0atGId24ZSNdWcdWue0W/dmS0b8pDs7PZU1B8Uvs1xhzLlyOby4HWwGIRmSIiFzrXVWqyGOgsIqkiEoHngv/MSuvMBMY77y8F5qnnHMZMYJzTWy0V6Aws8rHNY4hIO2A68EtVXetDbhMERvRKoqi0nE9WbT+h7cvKlUkzs5g8K5sh3Vvy1o2n06JxlNdtQkKEv4ztyaGiUv48O/uE9muMqVqNxUZVc1T1HqAL8AbwX2CjiEwWkWpvTHCuwdwGzAVWAVNVNUtEHhCR0c5qLwAJIpID3AVMcLbNAqYC2cAHwK2qWlZdmwAicoeI5OE52lkuIs87+7gPz3Wgp0TkWxHJ9PmnYwKmb7umtGx8YqfSCopKufHVTF76ZgPXnZHKM7/oS0yEb7eUdWkZx41ndWT60ny++t6er2OMv4gvF0Od01BXA8Px/EP/OnAGnqOFU90MGAgZGRmamWk1KdAmz8ri9YWbWHLvecRFhfu0zfYDhVzz0mJWbT3A5NHp/HJAynHvt7CkjGH/+pJyVeb++iyiwt27udSY+kRElqhqRlXLfLpmg+cemMVAL1W9Q1UXquojwHr/RjXmRyN7JVFcWs7HPp5KW7X1ABc9+TUbdhXwwvh+J1RoAKLCQ3nooh5s3H2YJ+Z9f0JtGGOO5cs1m5+p6hBVfUNViwCc6yio6lhX05kGrXfbpiTFR/l0Ku2zNTu49OlvUIWpNw3g3G4tTmrfAzs155I+bXj28/Ws2XbwpNoyxvhWbKb5OM8YvwoJEYb3TOKLtbvYf6Sk2vVeW7CRa1/OpH1CLO/cOpD01vF+2f89I7oTFxXGH99ZQXm53XtjzMmottiISDcRuQSIF5GxFaarAO/deozxk5G9kiguK+fj7J+eSisvVx6anc29767k7C6JTL1pAEnx0X7bd7PYCO4dkcaSjXt5Y9Emv7VrTEPk7cimKzASaAKMqjD1Aa53PZkxwKltm5DcJJrZK449lXakuIybX1/Cf77M5VcD2vPcL/vSKNL/g5iP7ZPMoE4JPPz+arYfKPR7+8Y0FNUWG1WdoapXAyNV9eoK0x2q+k0tZjQNmIgwolcSX36/k/2HPafSdhwsZNxz8/kwezv3jUxj8uh0wkLdGQxDRHjoop4Ul5UzeVaWK/swpiHwdhrtD87bK0Xk8cpTLeUzhhE9kygpUz7M3sba7Qe5+MlvWLv9EM/+oi/XnJGKb/cYn7iU5rHcMaQzc1ZsO+GbTI1p6Lydd1jlvNoNJyagerWJp03TaJ77Yj3bDhQSFR7K1BsH0LONfzoC+OL6Mzsw49t87puRxekdEoh14ZSdMfWZt9Nos5zXl6uaai+iaeiOnkr7fschWsdH8+6tg2q10ABEhIXw17E9yd93hEc/slGPjDle1f7vmYjMAqrt76mqo6tbZoy/XX9mB+Iiwxg/MMXn0QT8rW/7Zvz8tHa8+HUuF52aXOsFz5i6rNrhakTkbG8bqurnriQKAjZcjanO/iMlnP/o5yTGRTLj1kGudUwwpi7yNlxNtUc29bmYGHOi4qPDmTQ6nVteX+oZ6PPMDoGOZEyd4K032lTndYWILK8wrRCR5bUX0ZjgMqxHK4Z0a8EjH64lb+/hQMcxpk7wdg7gTud1JMfe1Hn0szENkojwwEU9EIH7ZmTZY6SN8YG33mhbndeNQBFwCtALKHLmGdNgJTeJ5q7zuzBv9Q7mrNgW6DjGBD1fHjFwHZ6nZI7F8zTNBSJyjdvBjAl2Vw1MoWdyPJNmZXkdKNQY49uoz78HeqvqVao6HugL3O1uLGOCX1io596b3YeKePiD1YGOY0xQ86XY7AYqPtDjoDPPmAavR3I81wxK5Y2Fm8jcsCfQcYwJWt56o90lIncBOcBCEZkkIvcDCwC7hdoYx2/O70Jyk2gmTl9BcWl5oOMYE5S8HdnEOdM64F1+HE1gBpDrbixj6o7YyDAevCid73cc4rkv1gU6jjFBydtNnZNrM4gxddngbi0Z0SuJx+flMKJXa1KbxwY6kjFBpcaha0UkEfgDkE6FJ3Sq6mAXcxlT59w/Ko0v1u7knndW8Pp1p7n+6ANfFJWWsf9ICQeOlDqvJeyvYooOD+WOIZ1JjIsMdGRTT/kyTvrrwFt4bua8CRgP7HQzlDF1UYu4KCYM68Y976zk7aX5XNq3zUm3WVJWzqHCUg4V/TjtP3xsoThQWFJtISks8X4NKSYilPjocHYXFPNB1jaeuKI3p3dIOOncxlTmS7FJUNUXROROZ7y0z0VksdvBjKmLrujXjneW5vPQ7GxObesZFfpQUZlTMEo46BSOgqJSDhaV/lBICopKf1hW8XORDx0OGkWGER8dTuPocOKjw0htHkt8dPgPU+NKrz/MjwonIsxz2XbV1gPc+vpSrvzPAu46vwu3nNOJkJDAH5mZ+qPaUZ9/WEFkgaqeLiJzgceBLcA0Ve1YGwEDwUZ9Nidj7faDjHj8S0rKvP9tRYSFEBcZRqOoMGIjPK9xkWHERv74vlGlz7HHFJZwGkeF+W3k6UNFpUycvoJZ323hrC6JPHbZKSQ0stNqxnfeRn32pdiMBL4E2gJPAI2Byao604cdDwX+BYQCz6vq3yotjwRewXOj6G7gclXd4CybCFwLlAF3qOpcb22KyG3Ar4GOQKKq7nLmi7P+cOAwcJWqLvWW24qNOVlLN+1lzbaDxEaGHVNQ4qJ+LCBHjyqCiary+sJNPPBeNs1iInjiyt70S2kW6FimjjipYnMSOw3Fcz/O+UAesBi4QlWzK6xzC9BLVW8SkXHAxap6uYikAW8C/YHWwMdAF2ezKtsUkd7AXuAzIKNCsRkO3I6n2JwG/EtVT/OW3YqNaehW5u/n1jeWkrf3CL+/sCs3nNnBTquZGnkrNr6MjdZBRGaJyC4R2SEiM0TEl4d49AdyVHW9qhYDU4AxldYZAxx9xPQ0YIhzJDIGmKKqRaqai+fG0v7e2lTVZUePiqrYxyvqsQBoIiJJPuQ3psHqkRzPrNvP4ML0lvzt/dVc90omewuKAx3L1GG+HMe/AUwFWuE5yvgfnqOOmiQDmyt8znPmVbmOqpYC+4EEL9v60uaJ5EBEbhCRTBHJ3LnTOtsZ0zgqnCev7MPk0el8+f1ORjz+JUs37Q10LFNH+VJsYlT1VVUtdabXqHC/TX2hqs+paoaqZiQmJgY6jjFBQUQYPzCFt28eSGiocNkz83n+y/X2DB9z3LyNjdZMRJoB74vIBBFJEZH2IvIHYI4Pbefj6VRwVBtnXpXriEgYEI+no0B12/rS5onkMMZ40atNE967/UwGd2vBn2ev4oZXl7D/sD1WwfjO25HNEiATuAy4EfgUz8X3m4HLfWh7MdBZRFJFJAIYB1TuwTYTz02i4HlWzjz1/C/TTGCciESKSCrQGc8zdXxps7KZwK/E43Rg/9EHwxljfBcfHc6zv+zLn0am8enqHYx44ku+27wv0LFMHeHtSZ2pqtrBea081dhBwLkGcxswF1gFTFXVLBF5QERGO6u9ACSISA5wFzDB2TYLz3WibOAD4FZVLauuTQARuUNE8vAcuSwXkeedfcwB1uPpZPAf4Jbj+PkYYyoQEa49I5X/3TQAVbj0mW946etcO61mauTLfTbheI5mznJmfQY8q6r19hjauj4bU7N9h4v57dTv+GT1Dob1aMXDl/aicVR4oGOZADqprs/A03huunzKmfo684wxDViTmAj+86sMJg7rxofZ2xn1xFeszN8f6FgmSPlSbPqp6nhVnedMVwP93A5mjAl+ISHCjWd35K0bTqeopJyxT33Dqws22mk18xO+FJsyEflhHDTnhs4y9yIZY+qajJRmzLnzTAZ0TOBP767k9jeXcaioNNCxTBDxZdTn3wGfish6QID2wNWupjLG1DnNYiN48ap+PP35Oh75cA1ZWw7w1M/70D2pcaCjmSDg9cjGGd/sFDxdj+/AM8ZYV1X9tBayGWPqmJAQ4dZzO/Hm9adTUFTK5c/OZ+32g4GOZYKA12KjqmV4BrosUtXlzlRUS9mMMXXUaR0SmH7LQKLCQ7nqv4vYtr8w0JFMgPlyzeZrEfm3iJwpIn2OTq4nM8bUaW2axvDi1f04UFjKVS8u4kBhvb1bwvjAl2JzKpAOPAA84kz/cDGTMaaeSG8dz9O/6EPOjkPc/NoSin148qipn3wpNj9T1XMrTYNdT2aMqRfO7JzIw5f04uuc3dz99nLrFt1AeRuIc5SI7MQz9EueiAysxVzGmHrkkr5t+P2FXXlnWT5/n7sm0HFMAHjr+vwQcKaqrhaR04C/A2fXTixjTH1zyzkdyd93hKc/W0fr+Ch+OSAl0JFMLfJWbEpVdTWAqi4UkbhaymSMqYdEhAdGp7PjQCH3z8yiZeMoLkhvFehYppZ4u2bTQkTuOjpV8dkYY45LWGgIj1/Rm55tmnD7m8tYstGe/NlQeCs2/wHiKkyVPxtjzHGLiQjjv+MzSIqP4rqXF7N+56FARzK1oMZHDDRE9ogBY9y3cXcBY5/6hpjIUKbfPIjEuMhARzIn6WQfMWCMMX7XPiGWF67qx66DxVzz0mIKbODOes2KjTEmYE5t24R/X9mbrC37ue2NpZSW2U2f9VWNxUZEUn2ZZ4wxJ2JI95b8+aKefLpmJ/e+u9Ju+qynfDmyebuKedP8HcQY03BdeVo7bh/ciSmLN/P4JzmBjmNcUO19NiLSDc+YaPEiMrbCosZAlNvBjDENy13nd2HLvkIe+3gtSfFRXNavbaAjGT/ydlNnV2Ak0AQYVWH+QeB6FzMZYxogEeFvl/Rkx8FCJr6zghaNIzmna4tAxzJ+UmPXZxEZoKrzaylPULCuz8YEzqGiUi57Zj4bdhfw1g0D6NkmPtCRjI9Otutzjoj8UUSeE5H/Hp38nNEYYwBoFBnGS1f3o2lMBFe/tJjNew4HOpLxA1+KzQwgHvgYmF1hMsYYV7RoHMXL1/SjpKyc8S8uYm9BcaAjmZPkS7GJUdW7VXWqqr59dHI9mTGmQevUIo7nx2eQt/cI1768mMKSskBHMifBl2LznogMP5HGRWSoiKwRkRwRmVDF8kgRectZvlBEUiosm+jMXyMiF9bUpoikOm3kOG1GOPPbicinIrJMRJaf6HcxxtS+finN+Nflp7Js8z7unLKMsvKTvwentKycjbsL+GzNDl76OpdJM7MY/99FDP/Xl6zM3++H1KYqvnQQOAjEAsXOJICqauMatgsF1gLnA3nAYuAKVc2usM4tQC9VvUlExgEXq+rlIpIGvAn0B1rjOYXXxdmsyjZFZCowXVWniMgzwHeq+rSIPAcsc96nAXNUNcVbdusgYExwefHrXCbPymb8gPZMGp2OiHhdv6xc2bLvCBt2F7BhVwG5uw7/8H7z3sOUlP34715MRCgpCbHk7ztCSkIM79wyiJAQ7+2bqnnrIOCt6zMAqnqiIzz3B3JUdb0TYgowBsiusM4YYJLzfhrwb/H8Fo0BpqhqEZArIjlOe1TVpoisAgYDVzrrvOy0+zSgeO4NAs+1py0n+H2MMQFy9aBUtuw7wn++zCWpSTQ3nd2R8nJl+8FCcncVsMEpJp73BWzcc5ji0h+HvokKDyElIZYuLeO4IL0Vqc1jSEmIJbV5LIlxkYgI05fmcdfU75i2JM/u8XFBjcXG+cf/50Cqqj4oIm2BJFVdVMOmycDmCp/zgNOqW0dVS0VkP5DgzF9Qadtk531VbSYA+1S1tIr1JwEfisjteI7Qzqvme94A3ADQrl27Gr6aMaa2TRzWna37C/nb+6uZvjSPTXsOU1jyY0GJCAuhfbMYUprHcm63FqQkxJLSPIbU5rG0jIuq8Wjl4t7JvLFwEw9/sJoL01sRHxPu9ldqUGosNsBTQDmeI4cHgUPAk0A/F3P50xXAS6r6iIgMAF4VkR6qesyIf6r6HPAceE6jBSCnMcaLkBDhkctOIS4qnB0HCjmzcyIpzWNJdYpK6/jokzr9JSJMGp3OqH9/xWMfr2XS6HQ/pje+FJvTVLWPiCwDUNW9Ry++1yAfqHgs2saZV9U6eSIShuc01+4atq1q/m6giYiEOUc3Fde/FhjqZJ8vIlFAc2CHD9/BGBNEIsNC+evYnq613yM5np+f1o5X5m/g8n5t6Z7k9dK0OQ6+9EYrcS72K4CIJOI50qnJYqCz00ssAhgHzKy0zkxgvPP+UmCeenoszATGOb3VUoHOwKLq2nS2+dRpA6fNGc77TcAQJ3t3POO67fQhvzGmAfrdBV2Jjw7n/plZNgK1H/lSbB4H3gFaiMhDwFfAX2rayDnCuA2YC6wCpqpqlog8ICKjndVeABKcDgB3AROcbbOAqXg6E3wA3KqqZdW16bR1N3CX01aC0zbAb4HrReQ7PD3crlL7DTLGVKNJTAS/u7Ari3L3MPM760/kLz49FtoZAXoInm7Pn6jqKreDBZJ1fTamYSsrV8Y8+RU7DxYx77fnEBvpyxUHc0Jjo4lIs6MTnusbbwJvANudecYYUy+FhgiTR/dg+4Einphnz9fxB2+n0ZYAmc7rTjw3U37vvF/ifjRjjAmcvu2bckmfNrzw1XrW7TwU6Dh1XrXFRlVTVbUDnrv3R6lqc1VNwPOMmw9rK6AxxgTK3cO6EhUWyuRZ2dZZ4CT50kHgdFWdc/SDqr4PDHQvkjHGBIcWcVH8+vwufLF2Jx9lbw90nDrNl2KzRUTuFZEUZ7oHG/LFGNNA/GpAezq3aMQD72XbyNMnwZdicwWQiKf78ztAC2eeMcbUe+GhIUwenU7e3iM8+/n6QMeps3wZiHMPcGctZDHGmKA0sFNzRvRK4qnPchjbJ5m2zWICHanO8db1+Z/O6ywRmVl5qrWExhgTBO4Z3p0QEf48O7vmlc1PeDuyedV5/UdtBDHGmGDWukk0tw3uxP/NXcMXa3dyVpfEQEeqU7x1fT56L00m8KWqfq6qn+MZrmZxbYQzxphgct2ZqaQkxDBpVtYxz8sxNfOlg8AnQMUTlNF47r0xxpgGJTIslPtGpbF+ZwEvfp0b6Dh1ii/FJkpVf7h91nlvV8eMMQ3S4G4tGdKtBY9/8j3bDxQGOk6d4UuxKRCRPkc/iEhf4Ih7kYwxJrjdNyqNkjLlr3Pq9ZjEfuVLsfk18D8R+VJEvgLewjPMvzHGNEjtE2K58ewOvPvtFhau3x3oOHVCjcVGVRcD3YCbgZuA7hU6DxhjTIN0yzmdaB0fxf0zsygts84CNamx2IjIrUCsqq5U1ZVAIxG5xf1oxhgTvKIjQrl3ZBqrtx3kjUWbAh0n6PlyGu16Vd139IOq7gWudy2RMcbUEcN6tGJQpwT+MXcNuw8VBTpOUPOl2ISKiBz9ICKhQIR7kYwxpm4QESaNSudwcRn/N3dNoOMENV+KzQfAWyIyRESG4Hli5wfuxjLGmLqhc8s4rhqYwluZm/lu875AxwlavhSbu4F5eDoI3IznJs/fuxnKGGPqkjvP60xCbCT3zcyivNweslYVX3qjlavqM6p6qapeCmQDT7gfzRhj6oa4qHAmDuvGd5v3MW1JXqDjBCVfjmwQkd4i8ncR2QA8AKx2NZUxxtQxF/dOpm/7pjz8wWr2HykJdJyg4+0RA11E5H4RWY3nSGYzIKp6rqrakY0xxlQQEiJMHp3OnsPFPPbR2kDHCTrejmxWA4OBkap6hlNg7JmoxhhTjR7J8VzZvx2vLtjI6m0HAh0nqHgrNmOBrcCnIvIfpyeaeFn/J0RkqIisEZEcEZlQxfJIEXnLWb5QRFIqLJvozF8jIhfW1KaIpDpt5DhtRlRYdpmIZItIloi8cTzfwRhjjsfvLuhKXFQY98/IQtU6Cxzl7Xk276rqODxD1XyKZ4y0FiLytIhcUFPDzv04TwLDgDTgChFJq7TatcBeVe0EPAY87GybBowD0oGhwFMiElpDmw8Djzlt7XXaRkQ6AxOBQaqa7nwPY4xxRdPYCH5/YVcW5u5h1vKtgY4TNHzpjVagqm+o6iigDbAMT3fomvQHclR1vaoWA1OAMZXWGQO87LyfBgxxbiAdA0xR1SJVzQVynPaqbNPZZrDTBk6bFznvrweedEY+QFV3+JDdGGNO2Lh+7eiR3JiHZmdTUFQa6DhBwafeaEep6l5VfU5Vh/iwejKeTgVH5TnzqlxHVUuB/UCCl22rm58A7HPaqLyvLkAXEflaRBaIyNCqworIDSKSKSKZO3fu9OHrGWNM1UKdzgLbDxTxxLycQMcJCsdVbOqoMKAzcA5wBfAfEWlSeSWniGaoakZioj1b3Bhzcvq2b8YlfdrwzOfrGPvU17y+cCP7DzfcLtFuFpt8oG2Fz22ceVWuIyJhQDyw28u21c3fDTRx2qi8rzxgpqqWOKfk1uIpPsYY46oHL0pnwrBuHCws5Z53VtLvLx9z6+tL+WTVdkoa2GMJwmpe5YQtBjqLSCqef/jHAVdWWmcmMB6YD1wKzFNVFZGZwBsi8ijQGk9xWISnN9xP2nS2+dRpY4rT5gxnH+/iOaJ5UUSa4zmttt6dr2yMMT+KiQjjprM7cuNZHViZf4C3l+Yx49t8Zq/YSvNGEYw+JZlL+iaT3jo+0FFdJ252zROR4cA/gVDgv6r6kIg8AGSq6kwRiQJeBXoDe4Bxqrre2fYe4BqgFPi1qr5fXZvO/A54Ck0zPJ0YfqGqRU7ngUfw9GorAx5S1SnecmdkZGhmZqb/fhDGGOMoLi3nszU7mL40n09Wb6ekTOnWKo5L+rRhTO/WtIiLCnTEEyYiS1Q1o8pl1g/8p6zYGGNqw96CYmYt38LbS/P5bvM+QgTO6pLIJX3acH5aS6LCQwMd8bhYsTlOVmyMMbUtZ8dBpi/N551l+WzdX0hcVBgjeyUxtk8bMto3pcJjxYKWFZvjZMXGGBMoZeXKgvW7eXtJHu+v3MaRkjLaNYthbJ9kLunThrbNYgIdsVpWbI6TFRtjTDAoKCrl/ZXbmL40j/nrd6MK/VOacUnfZEb0ak2jSDf7eB0/KzbHyYqNMSbY5O87wrvL8nl7SR7rdxXQPakxs24bRFho8Nwu6a3YBE9KY4wx1UpuEs2t53bik9+ezSM/O4VVWw/w2oKNgY7lMys2xhhTh4gIY/skM6hTAo9+tJY9BcWBjuQTKzbGGFPHiAj3j0qnoLiMf3y4JtBxfGLFxhhj6qAuLeP45enteXPRJrK27A90nBpZsTHGmDrqN+d1oUl0OJNnZgf9g9qs2BhjTB0VHxPO7y7syqINe3gvyB/UZsXGGGPqsHH92pGW1Ji/zlnF4eLgfVCbFRtjjKnDQkOESaPT2bK/kGc+WxfoONWyYmOMMXVc/9RmjDqlNc9+sZ7New4HOk6VrNgYY0w9MHFYN0TgL3NWBTpKlazYGGNMPdC6STS3nNOJ91du45t1uwId5yes2BhjTD1xw1kdaNM0mskzsykNssdOW7Exxph6Iio8lHtHdGfN9oO8vnBToOMcw4qNMcbUIxemt2JgR8+4aXuDaNw0KzbGGFOPHB037VBRKY98FDzjplmxMcaYeqZrqzh+cVo73li4iewtBwIdB7BiY4wx9dJvzu9CfHQ4k2dlBcW4aVZsjDGmHmoSE8FvL+jKwtw9zF4R+HHTrNgYY0w9dUX/dnRPasxfZq/iSHFZQLNYsTHGmHoqNESYNCrNM27a54EdN82KjTHG1GOndUhgRK8knvl8HXl7AzdumqvFRkSGisgaEckRkQlVLI8Ukbec5QtFJKXCsonO/DUicmFNbYpIqtNGjtNmRKV9XSIiKiIZLn1dY4wJSn8c3h0R+Ouc1QHL4FqxEZFQ4ElgGJAGXCEiaZVWuxbYq6qdgMeAh51t04BxQDowFHhKREJraPNh4DGnrb1O20ezxAF3Agvd+K7GGBPMkptEc/PZnZi9YmvAxk1z88imP5CjqutVtRiYAoyptM4Y4GXn/TRgiIiIM3+Kqhapai6Q47RXZZvONoOdNnDavKjCfh7EU4wK/fwdjTGmTrjx7A4kN4nmgVmBGTfNzWKTDGyu8DnPmVflOqpaCuwHErxsW938BGCf08Yx+xKRPkBbVZ3tLayI3CAimSKSuXPnTl+/ozHG1AlR4aHcM6I7q7cd5M1FtT9uWr3uICAiIcCjwG9rWldVn1PVDFXNSExMdD+cMcbUsmE9WjGgQwKPfLSWfYdrd9w0N4tNPtC2wuc2zrwq1xGRMCAe2O1l2+rm7waaOG1UnB8H9AA+E5ENwOnATOskYIxpiESE+0enceBICY9+tLZW9+1msVkMdHZ6iUXgueA/s9I6M4HxzvtLgXnqGVdhJjDO6a2WCnQGFlXXprPNp04bOG3OUNX9qtpcVVNUNQVYAIxW1Uy3vrQxxgSzbq0a84vT2/Pago2s2lp746a5Vmyc6ye3AXOBVcBUVc0SkQdEZLSz2gtAgojkAHcBE5xts4CpQDbwAXCrqpZV16bT1t3AXU5bCU7bxhhjKrnr/C40ruVx0yQYBmgLNhkZGZqZaQc/xpj669X5G/jTjCye+nkfhvdM8kubIrJEVau8TFGvOwgYY4yp2hX929GtVRwPzV5FYYn746ZZsTHGmAYoLDSESaPTyd93hGc/X+/6/qzYGGNMA3V6hwRG9Ezi6c9zyN93xNV9WbExxpgGbOLwbqjCX+ascnU/VmyMMaYBa9M0hpvP6cjs5VtZsH63a/uxYmOMMQ3cjWd1JLlJNJNnZVNW7k4PZSs2xhjTwEVHhPLH4d1ZtfWAa+OmWbExxhjD8J6tGH1Ka5rGRNS88gkIq3kVY4wx9Z2I8PgVvV1r345sjDHGuM6KjTHGGNdZsTHGGOM6KzbGGGNcZ8XGGGOM66zYGGOMcZ0VG2OMMa6zYmOMMcZ19qTOKojITmBjoHNU0hzYFegQx6Eu5a1LWaFu5a1LWaFu5Q3GrO1VNbGqBVZs6ggRyazucavBqC7lrUtZoW7lrUtZoW7lrUtZwU6jGWOMqQVWbIwxxrjOik3d8VygAxynupS3LmWFupW3LmWFupW3LmW1azbGGGPcZ0c2xhhjXGfFxhhjjOus2ASIiLQVkU9FJFtEskTkTmd+MxH5SES+d16bOvNFRB4XkRwRWS4ifSq01U5EPhSRVU57KUGe9+9OG6ucdSTAWbuJyHwRKRKR31Vqa6iIrHG+xwR/5vR33uraCcasFdoLFZFlIvKev7P6O6+INBGRaSKy2vndHRDEWX/jtLFSRN4UkSh/Zj0hqmpTACYgCejjvI8D1gJpwN+BCc78CcDDzvvhwPuAAKcDCyu09RlwvvO+ERATrHmBgcDXQKgzzQfOCXDWFkA/4CHgdxXaCQXWAR2ACOA7IC0IfrbV5a2ynWDMWqG9u4A3gPeC5O+s2rzAy8B1zvsIoEkwZgWSgVwg2vk8FbjKjZ/v8Ux2ZBMgqrpVVZc67w8Cq/D8kozB80uN83qR834M8Ip6LACaiEiSiKQBYar6kdPWIVU9HKx5AQWi8PyxRgLhwPZAZlXVHaq6GCip1FR/IEdV16tqMTDFacOv/JXXSztBlxVARNoAI4Dn/ZnRjbwiEg+cBbzgrFesqvuCMasjDIgWkTAgBtjiz6wnwopNEHBOe/UGFgItVXWrs2gb0NJ5nwxsrrBZnjOvC7BPRKY7pyP+T0RCgzWvqs4HPgW2OtNcVV0V4KzVqe5n7pqTzFtdO67wQ9Z/An8Ayt3IV9lJ5k0FdgIvOn9nz4tIbDBmVdV84B/AJjx/Y/tV9UO3svrKik2AiUgj4G3g16p6oOIy9RwD19Q3PQw4E/gdnkPqDsBV/k/qcbJ5RaQT0B1og+cf7sEicmYwZq1t/srrrR1/8cPvwUhgh6oucSNfFfvzx99ZH+BpVe0NFOA5pRV0WZ1rOmPwFMjWQKyI/MKNrMfDik0AiUg4nl+q11V1ujN7u3O6Ced1hzM/H2hbYfM2zrw84FvnVE8p8C6eP4pgzXsxsMA53XcIz3Udv15oPYGs1anuO/idn/JW104wZh0EjBaRDXhOTw4WkdeCOG8ekKeqR48Up+HC35mfsp4H5KrqTlUtAabjuVYaUFZsAkREBM/531Wq+miFRTOB8c778cCMCvN/JR6n4zk03gosxnM95OhIq4OB7CDOuwk4W0TCnD+ss/Gcmw5k1uosBjqLSKqIRADjnDb8yl95vbQTdFlVdaKqtlHVFDw/13mq6vf/+/Zj3m3AZhHp6swagp//zvz4e7sJOF1EYpw2h+Dnv7ETcjy9CWzya8+TM/AcDi8HvnWm4UAC8AnwPfAx0MxZX4An8fSOWgFkVGjrfKedFcBLQESw5sXTw+tZPL/82cCjQZC1FZ7/cz0A7HPeN3aWDcfTK2gdcE+Q/C5Umbe6doIxa6U2z8G93mj+/F04Fch02noXaBrEWScDq4GVwKtApBs/3+OZbLgaY4wxrrPTaMYYY1xnxcYYY4zrrNgYY4xxnRUbY4wxrrNiY4wxxnVWbIwJAs79SF+JyLAK834mIh8EMpcx/mJdn40JEiLSA/gfnjGxwoBlwFBVXXcCbYWpZ0QJY4KCFRtjgoiI/B3PuFuxzmt7oAee0bEnqeoMZ5DGV511AG5T1W9E5BzgQWAv0E1Vu9RuemOqZ8XGmCDijCS8FCgG3gOyVPU1EWkCLMJz1KNAuaoWikhn4E1VzXCKzWygh6rmBiK/MdUJC3QAY8yPVLVARN4CDgGXAaMqPIUxCmiH59kk/xaRU4EyPI+ZOGqRFRoTjKzYGBN8yp1JgEtUdU3FhSIyCc8D507B08mnsMLiglrKaMxxsd5oxgSvucDtzsi9iEhvZ348sFVVy4Ff4hnc1JigZsXGmOD1IJ6OActFJMv5DPAUMF5EvgO6YUczpg6wDgLGGGNcZ0c2xhhjXGfFxhhjjOus2BhjjHGdFRtjjDGus2JjjDHGdVZsjDHGuM6KjTHGGNf9PxNndpX+s6xdAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "Exception in thread \"serve-DataFrame\" java.net.SocketTimeoutException: Accept timed out\n",
-                        "\tat java.net.PlainSocketImpl.socketAccept(Native Method)\n",
-                        "\tat java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535)\n",
-                        "\tat java.net.ServerSocket.implAccept(ServerSocket.java:545)\n",
-                        "\tat java.net.ServerSocket.accept(ServerSocket.java:513)\n",
-                        "\tat org.apache.spark.security.SocketAuthServer$$anon$1.run(SocketAuthServer.scala:64)\n"
-                    ]
-                }
-            ],
-            "source": [
-                "A51=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A51\").sort(col('year').desc())\n",
-                "A51 = A51.toPandas()\n",
-                "A51\n",
-                "plt.plot(A51['year'],A51['Accidentprob'])\n",
-                "plt.xlabel(\"Year\")\n",
-                "plt.ylabel(\"Accident Probability\")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 34,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "[<matplotlib.lines.Line2D at 0x11947a370>]"
-                        ]
-                    },
-                    "execution_count": 34,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD4CAYAAAAQP7oXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAArmUlEQVR4nO3deXhU9dn/8fedfSEECAFCWBJ2EkCBgIprwYVFwe1RtLZYtWrVbnaDalVsbevTR21rXat1q4r8FBUF1+IuWwAFEhYjQUjYtwCB7N/fH3O0IWYZyCQzST6v68rFzDnfc5/7hEk+OcucMeccIiIi/ggLdgMiItJyKDRERMRvCg0REfGbQkNERPym0BAREb9FBLuBptS5c2eXlpYW7DZERFqUZcuW7XLOJdc2r1WHRlpaGtnZ2cFuQ0SkRTGzr+qap8NTIiLiN4WGiIj4TaEhIiJ+U2iIiIjfFBoiIuI3hYaIiPhNoSEiIn5TaEitKiqreGlZAQdKyoPdioiEEIWGfItzjltfWc0v/t/nPPzBl8FuR0RCiEJDvuXed9Yza+lm2kVHMH/VNvRBXSLyNYWGHOHphRu5f0EeU0f15LcTB5O/q5icLfuD3ZaIhAiFhnxj3sqt3D43hzMHd+UP5w9h/JBuhIcZ81ZtDXZrIhIiFBoCwKdf7uLnL3xGVu+O/OPy4USEh9EpPooxfZOYt3KrDlGJCKDQECBnSxHXPr2MtM5xPPb9UcREhn8z79xhKWzac4jVhTpEJSIKjTZv855DXPnEUtrHRPDUVaNJjIs8Yv7ZGd2ICDNeX7UlSB2KSChRaLRhuw6W8r3HF1NeWcXTV48mJTH2W2M6xkdxcr/OOkQlIoBCo80qLq3gqieXsm1/CY9PG0W/Lgl1jj13WAoFew+zsqCoGTsUkVCk0GiDyiqquP7fy8jZsp8HLh/ByN4d6x1/dkY3IsN1FZWIKDRqtWXfYV79rJDPN++j6HDruo1GVZXjVy9+zkdf7OJPFw5l3OCuDS6TGBfJqf2TdYhKRFr3Z4Qfq8X5u/n5C59/8zwpPor0zvGkdY4n3ftKS4onrXMccVEt51vonOOu+Wt49bMt/Hr8QC7J6un3spOGprBg7Q5WbN7HiF7175mISOvVcn7jNaOJQ1PI7J5I/q5i8ncVs9H798P1O3lxWcERY7u1j6kWKHGkd25Heuc4enaKIzoivI41BMejH27g8Y/zuXJMGj86ve9RLXtmRleiwsOYt3KrQkOkDVNo1CI6IpwBXRMY0PXbJ4cPllawcVcxG3f7wmSDFypvrt7K3kP/PZQVZpDaMZa0pHj6VNtLyejeni4JMc25OQC8tKyAP72xlnOHpXDbuRmY2VEtnxgbyWkDOjN/1VZumTiYsLCjW15EWge/QsPMxgN/A8KBx5xzf64xPxp4GhgJ7AYudc5t9ObNAK4GKoGfOOfeqq+mmd0E/AzoCyQ753bVWNcoYCEw1Tn34tFvcuO0i45gSGoiQ1ITvzWv6FA5+buLyd91kPxdh77ZS5mzvJADpRUAhIcZk4amcM2p6Qzr0aFZen5v3Q5+/dJKTu6XxD2XHHfMv/AnDUvh3TU7WLF5LyN7dwpwlyLSEjQYGmYWDjwAnAUUAEvNbK5zLrfasKuBvc65fmY2FbgbuNTMMoCpQCbQHXjXzAZ4y9RV8xPgdeD9Onq5G3j7WDa2qSXGRXJ8XAeO79nhiOnOOXYdLCN/VzHv5G7j+SWbmfv5Fkand+KaU9I5c3DXJvvLfcWmvdzw7+UMTkng4StGNuqQ2ZmDuxIVEcbrK7cqNETaKH+unhoN5DnnNjjnyoBZwJQaY6YAT3mPXwTGme/4xxRglnOu1DmXD+R59eqs6Zxb8fVeSi1+DLwE7PB3A0OBmZGcEM3o9E7cMimDhTPGcuukwRTuPcy1zyxj7D3v88zCjRwqqwjoer/ceZCrnlxKl/bRPHHlaBJiIhteqB4JMZGcMSCZ+au2UlWlq6hE2iJ/QiMV2FzteYE3rdYxzrkKoAhIqmdZf2oewcxSgQuAhxoYd62ZZZtZ9s6dO+sbGjQJMZFcc2ofPvjVGfzj8uEkxkXxu1dzGPPnBfzlrbVs31/S6HVsKyrh+48vITzMePqq0SQnRAegc98hqu37S8n+am9A6olIy9KS3qfxV+A3zrmq+gY55x51zmU557KSk5Obp7NjFBEexrnDuvPKDWN48fqTODE9iQff/5JT7l7AzbM/I/cYP8ei6HA50/61hH2HynjyB6PpnRQfsJ7HDe5KdEQY81bqXlQibZE/J8ILgeoX9PfwptU2psDMIoBEfCfE61u2oZo1ZQGzvKt+OgMTzazCOfeKH9sQ0syMrLROZKV14qvdxTzxyUZmZ29mzvJCTu6XxDWn9OH0Acl+nfcoKa/kh09ns2HXQZ78wehaT9g3RrvoCL4zsAvzV2/jtvMyCddVVCJtij97GkuB/maWbmZR+E5sz60xZi4wzXt8MbDA+d46PBeYambRZpYO9AeW+FnzCM65dOdcmnMuDd95kxtaQ2DU1DspnjsmZ7Jw+jh+M34QeTsO8oMnl3L2Xz/k+SWbKCmvrHPZyirHT2etYOnGPdx7yfGc3K9zk/Q4aVgKOw+UsnTjniapLyKhq8HQ8M5R3AS8BawBZjvncszsTjOb7A17HEgyszzgZmC6t2wOMBvIBd4EbnTOVdZVE8DMfmJmBfj2Plaa2WOB29yWIzEukh+d0ZePfj2Wv156PNERYcyYs4qT/7yA+95Zz66DpUeMd87xu1dX81bOdm4/N4PzjuveZL2NHdSFmEjfG/1EpG2x1nwvoaysLJednR3sNgLCOceiDXt4/OMNvLtmB1ERYVw4PJWrT0mnf9cE/vruev767hfccEZffj1+UJP3c+Ozy1mcv5vFvz1Th6hEWhkzW+acy6ptnt4R3kKYGSf1TeKkvkl8ufMg//o4nxeXFTBr6WaG9+rAik37uCSrB786Z2Cz9DNpWArzVm1lcf5uxvRtmsNgIhJ6WtLVU+Lpm9yOuy4YysIZ4/jFWQMo2HuYszO68scLhh717UGO1XcGdiE2MlyHqETaGO1ptGCd4qP48bj+3DS2H0CzBQZAbFQ44wZ34c3V25g5OZOIcP39IdIW6Ce9FTCzZg2Mr507LIXdxWUs2qCrqETaCoWGHLMzBnYhLiqceav0Rj+RtkKhIccsJjKcMwd35c3V2yivrPeN+iLSSig0pFEmDUth76FyFn65O9itiEgzUGhIo5w+IJl20RG6ikqkjVBoSKPERIZzVkZX3szRISqRtkChIY02aWgKRYfL+SRvV8ODRaRFU2hIo506oDMJ0RG8rkNUIq2eQkMaLToinLMyu/JWzjbKKnSISqQ1U2hIQJw7LIUDJRV8nBean5YoIoGh0JCAOKVfMu1jdIhKpLVTaEhAREWEcU5mN97J2U5pRd0fFCUiLZtCQwJm0rAUDpRW8NF6XUUl0lopNCRgTu7XmcTYSOat0iEqkdZKoSEBExkexvjMbryTu73ezzIXkZZLoSEBNWlYCgdLK/hgva6iEmmNFBoSUCf1TaJjXKTuRSXSSik0JKAiw8MYP6Qb767RISqR1kihIQF37rDuHCqr5P11O4LdiogEmEJDAu6E9E4kxUc16xv93l+3g5eWFTTb+kTaqohgNyCtT4R3iGrO8kIOl1USGxXeZOtyzvHYR/n88Y01OAe9k+LISuvUZOsTaev82tMws/Fmts7M8sxsei3zo83sBW/+YjNLqzZvhjd9nZmd01BNM7vJm+bMrHO16d81s5VmtsrMPjWz4455q6XJTRqWwuHySt5rwkNUFZVV3PrKau6av4bxmd1I7RDLjDmrdNNEkSbUYGiYWTjwADAByAAuM7OMGsOuBvY65/oB9wF3e8tmAFOBTGA88KCZhTdQ8xPgTOCrGuvIB053zg0Ffg88epTbKs3ohPQkOreL4vWVW5qk/oGScq5+KptnF2/i+tP78sDlI/j9+Zl8seMgj3zwZZOsU0T829MYDeQ55zY458qAWcCUGmOmAE95j18ExpmZedNnOedKnXP5QJ5Xr86azrkVzrmNNZtwzn3qnNvrPV0E9DiK7ZRmFh5mTBiSwoK1OygurQho7S37DvM/Dy/k47xd/OnCoUyfMIiwMGPsoK5MGprC/e/lsWHnwYCuU0R8/AmNVGBztecF3rRaxzjnKoAiIKmeZf2pWZ+rgTdqm2Fm15pZtpll79ypN5gF06RhKZSUV7FgbeAOUa0uLOL8Bz6hYO9hnrhyFJeN7nXE/NvPyyA6IoxbXl6Ncy5g6xURnxZ39ZSZfQdfaPymtvnOuUedc1nOuazk5OTmbU6OMCqtE8kJ0QF7o9+7udv5n4cXEhkexks/GsNpA779/9ulfQzTJwxi4YbdvLS8MCDrFZH/8ic0CoGe1Z738KbVOsbMIoBEYHc9y/pT81vMbBjwGDDFObfbj94liMLDjElDU3hv3Q4ONvIQ1ROf5HPtM9n069KOl28Yw8BuCXWOvWxUL7J6d+SuebnsKS5r1HpF5Ej+hMZSoL+ZpZtZFL4T23NrjJkLTPMeXwwscL5jA3OBqd7VVelAf2CJnzWPYGa9gDnA95xz6/3bPAm2ScNSKK2o4j9rth/T8pVVjjvm5jDztVzGDe7KC9edSJf2MfUuExZm/PHCoRwsreAP83KPab0iUrsGQ8M7R3ET8BawBpjtnMsxszvNbLI37HEgyczygJuB6d6yOcBsIBd4E7jROVdZV00AM/uJmRXg2/tYaWaPeeu4Dd95kgfN7DMzyw7A9ksTG9mrI13bH9shquLSCq57JpsnP93INaek8/AVI4mL8u+tRQO6JnDdaX2Zs7yQj7/Q53uIBIq15pOFWVlZLjtb2RJsM1/L4dnFm1h265kkxET6tcz2/SVc9eRS1mzdz8zJmXzvpLSjXm9JeSUT/vYRVc7x1s9OIyay6d5kKNKamNky51xWbfNa3IlwaXnOHZZCWUUV7/p5iGrN1v2c/8AnbNxVzOPTRh1TYADERIZz1/lD+Gr3Ie5f8MUx1RCRIyk0pMkN79mRlMQYvw5Rvb9uBxc/9CnOwezrT+I7g7o0at1j+nXmohE9eOSDDazbdqBRtUREoSHNICzMmDg0hQ/X76LocHmd4/696Cuufiqb3knxvHzjGDK7JwZk/bdMGkxCTAS/fXkVVVWt93CsSHNQaEizOHdYCmWVVbyb++1DVFVVjrvm5XLrK6s5fUAys68/iZTE2ICtu1N8FLdOymDZV3t5bsmmgNUVaYsUGtIsju/ZgdQOscxbdeQhqsNllfzo2WX886N8vn9Sbx793kjaRQf+5ssXjkjl5H5J3P3GWrbvLwl4fZG2QqEhzcLMmDQshY++2EnRId8hqh0HSpj66ELezt3ObedmMHNyJhHhTfOSNDPuOn8oZZVVzHwtp0nWIdIWKDSk2UwamkJ5pePt3G2s336ACx74lPXbD/LIFSO56pR0fPe4bDppneP5ybj+zF+17ZjfbCjS1ulDmKTZDOuRSI+OsTz64Qa27S8hJjKc2dedxNAegTnh7Y8fntqHVz8r5LZXczixTxLxTXAoTKQ1056GNJuvD1F9seMg3RNjeeXGk5s1MACiIsL404VDKdx3mHvf0d1oRI6W/sySZvXDU/uQEB3BtDFpfr87PNBG9u7Ed0/oxROf5HP+8anNHlwiLZn2NKRZdW4XzU1j+wctML726/GD6NwumulzVlJRqY+HFfGXQkPapMTYSO6YnEnOlv08+enGYLcj0mIoNKTNmjCkG+MGdeGet9dTsPdQsNsRaREUGtJmmRl3nj8EM7jt1Rx9PKyIHxQa0qaldojl5rMGsGDtDuav2hbsdkRCnkJD2rwrx6QxNDWRO17LqfeGiiKi0BAhItz33o3dB0u5+821wW5HJKQpNESAIamJXHVyOs8t3kT2xj3BbkckZCk0RDw/P2sAqR1imTFnFWUVeu+GSG0UGiKe+OgIfn9+Jl/sOMijH34Z7HZEQpJCQ6SasYO6MmlYCn9fkEf+ruJgtyMScnTvKZEabj8vgw/X7+SWl1fx7DUnNPkt2/1RWlFJ0eFy9h+u8P4tp6iWr9jIcH4yrj/JCdHBbllaKYWGSA1dEmKYPmEQt7y8mpeWF3LxyB6NrlleWcXBkgoOlv73q+jQkb/w95eU1xkIJeX1n2OJiwonMTaS3cVlvJmzjfsvG86JfZIa3bdITQoNkVpcNqoXLy8v5K55uRzf03cX3IOlld4v/nIOeAFQXFrBgdKKbwKhuLTim3nVn5f6cWK9XXQEibGRtI+NJDE2gvTO8STGRn7z1b7Gv99Mj4kkKsJ3pHnN1v3c+OxyLv/nIm4+awA3nNGPsLDg7ylJ62Gt+dYJWVlZLjs7O9htSAu1fvsBJv39I8or6/8ZiYoIIyE6gnYxEcRH+f5NiI4gPvq/j9vVeB5/REBE0j4mImAfdXuwtIIZc1bx2udbOG1AMvddchxJ7XS4SvxnZsucc1m1zvMnNMxsPPA3IBx4zDn35xrzo4GngZHAbuBS59xGb94M4GqgEviJc+6t+mqa2U3Az4C+QLJzbpc33bzxE4FDwJXOueX19a3QkMZavmkv67YdID464ohgSIj5bxB8/Vd+KHHO8eziTdz5ei6d4qK4//LhjErrFOy2pIVoVGiYWTiwHjgLKACWApc553KrjbkBGOacu97MpgIXOOcuNbMM4HlgNNAdeBcY4C1Wa00zGw7sBd4HsqqFxkTgx/hC4wTgb865E+rrXaEhbd3qwiJufG45BXsP86tzBnLtqX10uEoaVF9o+PMn0mggzzm3wTlXBswCptQYMwV4ynv8IjDO2zOYAsxyzpU65/KBPK9enTWdcyu+3kupZR1PO59FQAczS/Gjf5E2a0hqIq/9+BTOyezKn99YyzVPZ7O3uCzYbUkL5k9opAKbqz0v8KbVOsY5VwEUAUn1LOtPzWPpAzO71syyzSx7586dDZQUaf3ax0TywOUjmDk5k4++2Mmkv3/E8k17g92WtFChdzC2kZxzjzrnspxzWcnJycFuRyQkmBnTxqTx0o/GEB5uXPLwQh77aIM+Q0SOmj+hUQj0rPa8hzet1jFmFgEk4jshXtey/tQ8lj5EpB7DenTg9R+fythBXfjDvDVc+8wyig7pdvDiP39CYynQ38zSzSwKmArMrTFmLjDNe3wxsMD5/oSZC0w1s2gzSwf6A0v8rFnTXOD75nMiUOSc2+pH/yJSTWJsJI98byS/OzeD99buYNL9H/H55n3BbktaiAZDwztHcRPwFrAGmO2cyzGzO81ssjfscSDJzPKAm4Hp3rI5wGwgF3gTuNE5V1lXTQAz+4mZFeDbk1hpZo9565gPbMB3Mv2fwA2N3nqRNsrMuPqUdP7f9SfhHFz88Kc8+Um+DldJg/TmPpE2bt+hMn4x+3P+s3YHE4Z04+6Lh9E+JjLYbUkQNfaSWxFpxTrERfHP72cxY8Ig3s7dznn3f8zqwqJgtyUhSqEhIoSFGded3pcXrj2R0vIqLnzwU55Z9JUOV8m3KDRE5BtZaZ2Y/9NTOalvEr97ZTU/fn4FB0srgt2WhBCFhogcoVN8FE9cOYpfnTOQ+au2ct79H7Nm6/5gtyUhQqEhIt8SFmbc+J1+PP/DEykureDSRxayfvuBYLclIUChISJ1OqFPEnNuGENMZDhX/msJ24pKgt2SBJlCQ0Tq1aNjHE/8YBT7Syq48okl7C/RO8jbMoWGiDQos3siD10xgrwdB/nRv5dR5scnEUrrpNAQEb+c2j+Zuy8axid5u/nNSyt1OW4bpc8IFxG/XTSyB9v2l/CXt9bRLTGG34wfFOyWpJkpNETkqNxwRl8K9x3mofe/pHtiDN87KS3YLUkzUmiIyFExM+6cnMmO/SXcPjeHru1jODuzW7DbkmaicxoictQiwsP4+2XDGdqjAz9+fgXLvtInAbYVCg0ROSZxURH8a1oWKYkxXPPUUjbsPBjslqQZKDRE5JgltYvmqatGE2bGtCeWsPNAabBbkiam0BCRRumdFM/jV45i14EyrnpyKcW6wWGrptAQkUY7vmcH/nH5cHK2FHHTc8upqNSb/1orhYaIBMS4wV35w/lDeW/dTm59ZbXe/NdK6ZJbEQmYy0/oxdaiw9y/II+UxFh+emb/YLckAabQEJGAuvmsAWzZV8J9764nJTGGS0b1DHZLEkAKDREJKDPjzxcNZceBEma8vIou7aM5Y2CXYLclAaJzGiIScJHhYTx0xUgGdk3ghmeXs6qgKNgtSYAoNESkSbSLjuDJH4yiY1wUP3hyKZv3HAp2SxIACg0RaTJd2sfw1FWjKK+sYtoTS9hbXBbslqSRFBoi0qT6dUngsWlZFOw9zNVPLaWkvDLYLUkj+BUaZjbezNaZWZ6ZTa9lfrSZveDNX2xmadXmzfCmrzOzcxqqaWbpXo08r2aUN72Xmb1nZivMbKWZTWzUlotIsxmV1om/XXo8Kzbv46ezVlBZ1fj3cFRUVvHV7mLeX7eDJz/J5465OUz71xIm/u0jVhfqHEpTsYbegGNm4cB64CygAFgKXOacy6025gZgmHPuejObClzgnLvUzDKA54HRQHfgXWCAt1itNc1sNjDHOTfLzB4GPnfOPWRmjwIrvMcZwHznXFp9vWdlZbns7Oyj+oaISNN54pN8Zr6Wy7STenPH5EzMrN7xlVWOLfsOs3F3MRt3FZO/69A3jzfvPUR55X9/f8VFhZOWFE/hvsOkJcXx8g0nExZWf32pnZktc85l1TbPn0tuRwN5zrkNXrFZwBQgt9qYKcAd3uMXgX+Y79UwBZjlnCsF8s0sz6tHbTXNbA0wFrjcG/OUV/chwAHtvemJwBY/eheREPKDk9PZsu8w//won5QOsVx/el+qqhzbD5SQv6uYjV4o+B4X89WeQ0d8HnlMZBhpSfEM6JrA2ZndSO8cR1pSPOmd40lOiMbMmLO8gJtnf86Lywr0HpEm4E9opAKbqz0vAE6oa4xzrsLMioAkb/qiGsumeo9rq5kE7HPOVdQy/g7gbTP7MRAPnFlbs2Z2LXAtQK9evfzYPBFpTjMmDGZrUQl/fmMtc5YXsGnPIUrK/xsMURFh9O4UR1rneL4zqAtpSfGkdY4jvXM8XRNiGtx7uGB4Ks8t3sTdb67lnMxuJMZFNvUmtSkt6c19lwFPOufuMbOTgGfMbIhz7og7oznnHgUeBd/hqSD0KSL1CAsz7rnkOBJiItmxv4RT+yeT1jmedC8cuifGNuqwkplxx+RMzvvHx9z37nrumJwZwO7Fn9AoBKrv4/XwptU2psDMIvAdPtrdwLK1Td8NdDCzCG9vo/r4q4HxAM65hWYWA3QGdvixDSISQqIjwvnThUObrP6Q1ES+e0Ivnl64kUtH9WRwSvuGFxK/+HP11FKgv3dVUxQwFZhbY8xcYJr3+GJggfOdYZ8LTPWurkoH+gNL6qrpLfOeVwOv5qve403AOAAzGwzEADuPdoNFpG345dkDSYyN5Pa5ObrjbgA1GBreX/w3AW8Ba4DZzrkcM7vTzCZ7wx4HkrwT3TcD071lc4DZ+E6avwnc6JyrrKumV+s3wM1erSSvNsAvgB+a2ef4rsi60umVICJ16BAXxS/PGciS/D3M/VzXzQRKg5fctmS65Fakbausckx54GN2HihlwS/OID66JZ3GDZ76LrnVO8JFpNUKDzNmTh7C9v2l3L8gL9jttAoKDRFp1Ub27shFI3rw+Mcb+HLnwWC30+IpNESk1fvNhIHERIQz87VcnRRvJIWGiLR6XRJi+NlZA/hw/U7eyd0e7HZaNIWGiLQJ3z+pN/27tOPO13N1p91GUGiISJsQGR7GzMmZFOw9zCMfbAh2Oy2WQkNE2owx/TozaVgKD76fp08SPEYKDRFpU26ZOJgwM/4wL7fhwfItCg0RaVO6d4jlprH9eCtnOx+u152IjpZCQ0TanGtOTSctKY47Xss54vM6pGEKDRFpc6IjwrntvAw27CzmiU/yg91Oi6LQEJE2aeygrowb1IW//+cLtu8vCXY7LYZCQ0TarNvOy6C80vGn+WuC3UqLodAQkTard1I8153eh1c+28LiDbuD3U6LoNAQkTbthjP60T0xhtvn5lBRqZPiDVFoiEibFhsVzq3nZrB22wGeW7Ip2O2EPIWGiLR5E4Z04+R+SfzfW+vYfbA02O2ENIWGiLR5ZsYd52VyqKySv7y1LtjthDSFhogI0L9rAleOSeOF7M18vnlfsNsJWQoNERHPT8/sT1J8NLfNzaGqSh/WVBuFhoiIJyEmkhkTBvH55n28uKwg2O2EJIWGiEg1FwxPZWTvjtz95lqKDpcHu52Qo9AQEakmLMyYOTmTPYfKuO+d9cFuJ+QoNEREahiSmsjlo3vxzKKvWLttf7DbCSl+hYaZjTezdWaWZ2bTa5kfbWYvePMXm1latXkzvOnrzOychmqaWbpXI8+rGVVt3iVmlmtmOWb23DFvtYhIA3559kASYiK4/dUcnNNJ8a81GBpmFg48AEwAMoDLzCyjxrCrgb3OuX7AfcDd3rIZwFQgExgPPGhm4Q3UvBu4z6u116uNmfUHZgAnO+cygZ8d60aLiDSkY3wUvzpnIIvz9/Dayq3Bbidk+LOnMRrIc85tcM6VAbOAKTXGTAGe8h6/CIwzM/Omz3LOlTrn8oE8r16tNb1lxno18Gqe7z3+IfCAc24vgHNux1FvrYjIUZg6qhdDUttz17xciksrgt1OSPAnNFKBzdWeF3jTah3jnKsAioCkepata3oSsM+rUXNdA4ABZvaJmS0ys/G1NWtm15pZtpll79ypj3IUkWMX7p0U376/lPsX5AW7nZDQkk6ERwD9gTOAy4B/mlmHmoOcc48657Kcc1nJycnN26GItDoje3fiohE9ePiDL7nwwU94dvFXFB1qu5fi+hMahUDPas97eNNqHWNmEUAisLueZeuavhvo4NWoua4CYK5zrtw71LUeX4iIiDSp35+fyfQJgzhQUsEtL69m1B/f5cZnl/OfNdspb2O3U49oeAhLgf5mlo7vF/hU4PIaY+YC04CFwMXAAuecM7O5wHNmdi/QHd8v+SWA1VbTW+Y9r8Ysr+ar3jpewbeH8YSZdcZ3uGrDMW21iMhRiIuK4PrT+3LdaX1YXbifl5YX8OpnhcxbtZXO7aKYfFwqF41MJbN7YrBbbXLmz6VkZjYR+CsQDvzLOXeXmd0JZDvn5ppZDPAMMBzYA0x1zm3wlr0FuAqoAH7mnHujrpre9D74AqMTsAK4wjlX6p0kvwffVViVwF3OuVn19Z2VleWys7OP4tshIuKfsooq3l+3gznLC/nP2u2UVzoGdUvgohE9mDK8O10SYoLd4jEzs2XOuaxa57Xm648VGiLSHPYWl/Hayi28tLyQzzfvI8zgtAHJXDSiB2dldCUmMjzYLR4VhYaISDPJ23GAOcsLeXlFIVuLSkiIieDcYSlcOKIHWb074jtoEtoUGiIizayyyrFow25eWlbAG6u3cbi8kl6d4rhwRCoXjehBz05xwW6xTgoNEZEgKi6t4I3V25izvICFG3bjHIxO68RFI1OZNKw77aL9uSap+Sg0RERCROG+w7yyopCXlhWwYVcxg1Pa89pNJxMRHjpvm6svNEKnSxGRNiC1Qyw3fqcf//nF6dzzP8exZut+/r3oq2C35TeFhohIEJgZF45I5eR+Sdz7znr2FJcFuyW/KDRERILEzLj9vEyKyyr5v7fXBbsdvyg0RESCaEDXBL53Ym+eX7KJnC1FwW6nQQoNEZEg+/mZA+gQG8nMubkh/4FPCg0RkSBLjIvkl+cMZMnGPbwe4h/4pNAQEQkBU0f1IiOlPX+av4ZDZaH7gU8KDRGREBAeZtwxOZMtRSU8/P6XwW6nTgoNEZEQMTq9E+cd151HPtzA5j2Hgt1OrRQaIiIhZMaEQZjBH+evCXYrtVJoiIiEkO4dYrnhjH68sXobn365K9jtfItCQ0QkxFx7Wh96dIxl5txcKkLs42QVGiIiISYmMpxbJw1m3fYDPLt4U7DbOYJCQ0QkBJ2T2Y0xfX33pdobQvelUmiIiISgr+9LdbC0gnveCZ37Uik0RERC1MBuCVxxQi+eW7yJ3C37g90OoNAQEQlpPz9rAImxkcx8LSck7kul0BARCWEd4qL4xdkDWZy/h3mrgn9fKoWGiEiIu2x0LwantOeP89ZwuKwyqL0oNEREQlx4mHHHeRm++1J9ENz7Uik0RERagBP6JDFpWAoPf/AlBXuDd18qv0LDzMab2TozyzOz6bXMjzazF7z5i80srdq8Gd70dWZ2TkM1zSzdq5Hn1Yyqsa6LzMyZWdYxbbGISAv124mDMYM/zV8btB4aDA0zCwceACYAGcBlZpZRY9jVwF7nXD/gPuBub9kMYCqQCYwHHjSz8AZq3g3c59Xa69X+upcE4KfA4mPbXBGRliu1Qyw/Or0f81ZtDdp9qfzZ0xgN5DnnNjjnyoBZwJQaY6YAT3mPXwTGmZl502c550qdc/lAnlev1preMmO9Gng1z6+2nt/jC5WSo9tMEZHW4brT+5DaIZY7XwvOfan8CY1UYHO15wXetFrHOOcqgCIgqZ5l65qeBOzzahyxLjMbAfR0zs2rr1kzu9bMss0se+fOnX5snohIyxETGc4tkwazdtsBnl/S/PelahEnws0sDLgX+EVDY51zjzrnspxzWcnJyU3fnIhIM5swpBsn9UninnfWs+9Q896Xyp/QKAR6Vnvew5tW6xgziwASgd31LFvX9N1AB69G9ekJwBDgfTPbCJwIzNXJcBFpi8yM2ydnsP9wOfe+s75Z1+1PaCwF+ntXNUXhO7E9t8aYucA07/HFwALne7/7XGCqd3VVOtAfWFJXTW+Z97waeDVfdc4VOec6O+fSnHNpwCJgsnMu+xi3W0SkRRvUrT1XnNibfy/6ijVbm+++VA2Ghnd+4SbgLWANMNs5l2Nmd5rZZG/Y40CSmeUBNwPTvWVzgNlALvAmcKNzrrKuml6t3wA3e7WSvNoiIlLDzWcNoH0z35fKQuEGWE0lKyvLZWdrZ0REWq9nFm7kd6/m8OB3RzBxaEpAaprZMudcrYf/W8SJcBERqd1lo3sxqFsCd81bQ0l509+XSqEhItKCRYSHccfkTAr3HeaRDzY0+foUGiIiLdyJfZKYNDSFhz7Io3Df4SZdl0JDRKQVmDFxEM7BH+evadL1KDRERFqBHh3j+NEZfZm3ciuLNuxusvUoNEREWonrTutLaodYZr6WS2VV01wZq9AQEWklYqPC+e3EwazZur/J7kul0BARaUUmDu3G5OO60zEuquHBxyCi4SEiItJSmBl/v2x4k9XXnoaIiPhNoSEiIn5TaIiIiN8UGiIi4jeFhoiI+E2hISIiflNoiIiI3xQaIiLit1b9yX1mthP4Kth91NAZ2BXsJo5CS+q3JfUKLavfltQrtKx+Q7HX3s655NpmtOrQCEVmll3XxyiGopbUb0vqFVpWvy2pV2hZ/bakXkGHp0RE5CgoNERExG8Kjeb3aLAbOEotqd+W1Cu0rH5bUq/QsvptSb3qnIaIiPhPexoiIuI3hYaIiPhNodFIZtbTzN4zs1wzyzGzn3rTO5nZO2b2hfdvR2+6mdnfzSzPzFaa2YhqtXqZ2dtmtsarlxbi/f6vV2ONN8aC3OsgM1toZqVm9ssatcab2TpvO6YHss9A91tXnVDstVq9cDNbYWavB7rXQPdrZh3M7EUzW+u9dk8K4V5/7tVYbWbPm1lMIHs9Js45fTXiC0gBRniPE4D1QAbwv8B0b/p04G7v8UTgDcCAE4HF1Wq9D5zlPW4HxIVqv8AY4BMg3PtaCJwR5F67AKOAu4BfVqsTDnwJ9AGigM+BjBD43tbVb611QrHXavVuBp4DXg+Rn7M6+wWeAq7xHkcBHUKxVyAVyAdiveezgSub4vt7NF/a02gk59xW59xy7/EBYA2+/+wp+F6ceP+e7z2eAjztfBYBHcwsxcwygAjn3DterYPOuUOh2i/ggBh8P3TRQCSwPZi9Oud2OOeWAuU1So0G8pxzG5xzZcAsr0ZABarfeuqEXK8AZtYDmAQ8Fsgem6JfM0sETgMe98aVOef2hWKvnggg1swigDhgSyB7PRYKjQDyDicNBxYDXZ1zW71Z24Cu3uNUYHO1xQq8aQOAfWY2x9vN/4uZhYdqv865hcB7wFbv6y3n3Jog91qXur7nTaaR/dZVp0kEoNe/Ar8Gqpqiv5oa2W86sBN4wvs5e8zM4kOxV+dcIfB/wCZ8P2NFzrm3m6pXfyk0AsTM2gEvAT9zzu2vPs/59i0burY5AjgV+CW+XdU+wJWB79Snsf2aWT9gMNAD3y/gsWZ2aij22twC1W99dQIlAK+Dc4EdzrllTdFfLesLxM/ZCOAh59xwoBjfoaKQ69U75zEFX9B1B+LN7Iqm6PVoKDQCwMwi8b04nnXOzfEmb/cO4+D9u8ObXgj0rLZ4D29aAfCZdwilAngF34s7VPu9AFjkHUY7iO+8R0BPKB5Dr3WpaxsCLkD91lUnFHs9GZhsZhvxHfYba2b/DuF+C4AC59zXe24v0gQ/ZwHq9Uwg3zm30zlXDszBdy4xqBQajWRmhu/46Brn3L3VZs0FpnmPpwGvVpv+ffM5Ed8u51ZgKb7zBV/fWXIskBvC/W4CTjezCO8H5HR8x26D2WtdlgL9zSzdzKKAqV6NgApUv/XUCblenXMznHM9nHNp+L6vC5xzAf9rOID9bgM2m9lAb9I4AvxzFsDX7SbgRDOL82qOI8A/Y8fkaM6a66vWKyVOwbebuRL4zPuaCCQB/wG+AN4FOnnjDXgA39U8q4CsarXO8uqsAp4EokK1X3xXJD2C70WcC9wbAr12w/eX5H5gn/e4vTdvIr6rWL4EbgmR10Kt/dZVJxR7rVHzDJru6qlAvhaOB7K9Wq8AHUO415nAWmA18AwQ3RTf36P50m1ERETEbzo8JSIiflNoiIiI3xQaIiLiN4WGiIj4TaEhIiJ+U2iIiIjfFBoiIuK3/w/ysjkxzO+odAAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "A51=Accidentprobovermilestravlledbycar.filter(Accidentprobovermilestravlledbycar.road_name==\"A51\").sort(col('year').desc())\n",
-                "A51 = A51.toPandas()\n",
-                "A51\n",
-                "plt.plot(A51['year'],A51['Accidentprob'])\n",
-                "\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 107,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "1.1499668593178183e-05\n",
-                        "0.0002254860125187221\n",
-                        "2.3364146240456768e-05\n"
-                    ]
-                }
-            ],
-            "source": [
-                "print((M42['Accidentprob'][14])-M42['Accidentprob'][0])\n",
-                "print((A572['Accidentprob'][14])-A572['Accidentprob'][0])\n",
-                "print((A14['Accidentprob'][14])-A14['Accidentprob'][0])\n",
-                "\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "## A51"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 31,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---+--------------+----+---------+------------------+---------+-------------+---------+------------------------+----------------------+-------+--------+-----------+-----------+--------------+-----------------+--------+----+-----------------+--------------------------+------------+--------------------------+--------------+-----------------+-----+-----------------+-----------------+-------------------------+----------------------------+-----------------------+-----------------------+--------+------------------+\n",
-                        "| id|count_point_id|year|region_id|local_authority_id|road_name|road_category|road_type|start_junction_road_name|end_junction_road_name|easting|northing|   latitude|  longitude|link_length_km|link_length_miles|sequence|ramp|estimation_method|estimation_method_detailed|pedal_cycles|two_wheeled_motor_vehicles|cars_and_taxis|buses_and_coaches| lgvs|hgvs_2_rigid_axle|hgvs_3_rigid_axle|hgvs_4_or_more_rigid_axle|hgvs_3_or_4_articulated_axle|hgvs_5_articulated_axle|hgvs_6_articulated_axle|all_hgvs|all_motor_vehicles|\n",
-                        "+---+--------------+----+---------+------------------+---------+-------------+---------+------------------------+----------------------+-------+--------+-----------+-----------+--------------+-----------------+--------+----+-----------------+--------------------------+------------+--------------------------+--------------+-----------------+-----+-----------------+-----------------+-------------------------+----------------------------+-----------------------+-----------------------+--------+------------------+\n",
-                        "|  1|         27294|2019|        5|                85|     A560|           PA|    Major|             LA Boundary|                   M56| 380000|  389400|53.40104100|-2.30226770|          2.80|             1.74|      40|   0|        Estimated|      Estimated using p...|         214|                        91|         22425|              391| 2768|              158|               54|                       24|                           7|                      2|                      8|     253|             25927|\n",
-                        "|  2|          1153|2019|        3|                30|     A905|           PA|    Major|                      M9|               M9 slip| 292310|  680000|56.00081400|-3.72835390|          1.10|             0.68|      30|   0|          Counted|              Manual count|           2|                        23|         10119|               35| 1787|              192|               99|                       72|                          25|                    391|                    216|     996|             12959|\n",
-                        "|  3|          8024|2019|        9|                80|      M20|           TM|    Major|                       2|                     2| 561000|  159600|51.31273900| 0.30868761|          2.10|             1.30|      40|   0|        Estimated|      Estimated using p...|           0|                       455|         38163|              149| 9592|             1167|              192|                      269|                         403|                   3799|                   1788|    7619|             55977|\n",
-                        "|  4|         20505|2019|        4|                 6|   A48(M)|           TM|    Major|             LA Boundary|                   29A| 325000|  183640|51.54664900|-3.08297440|          2.80|             1.74|    3360|   0|        Estimated|      Estimated using p...|           0|                       184|         37918|              276| 5603|             1052|              140|                      230|                         106|                    508|                   1186|    3222|             47203|\n",
-                        "|  5|         46628|2019|        5|               162|      A62|           PA|    Major|    A62 Manchester St...|          A627 King St| 392080|  404710|53.53897600|-2.12097510|          0.50|             0.31|     130|   0|          Counted|              Manual count|           0|                       159|         46216|              186| 7242|              629|              152|                      152|                          37|                    120|                    196|    1285|             55089|\n",
-                        "|  6|         56238|2019|        8|               100|      A19|           PA|    Major|                     A19|                 A1041| 461300|  432350|53.78387400|-1.07113780|          0.40|             0.25|      65|   0|        Estimated|      Estimated using p...|         178|                        81|          8129|              161| 1004|               58|                4|                        2|                           8|                      4|                      4|      81|              9456|\n",
-                        "|  7|         26304|2019|        9|               133|      A27|           TA|    Major|                A26 West|              A26 East| 543854|  108567|50.85872900| 0.04254812|          2.30|             1.43|     550|   0|          Counted|              Manual count|          17|                       214|         27874|              153| 6573|              856|              221|                      225|                         103|                    249|                    267|    1921|             36734|\n",
-                        "|  8|         46292|2019|        9|               133|      A26|           PA|    Major|    B2157 Eridge Rd, ...|           LA Boundary| 555000|  135040|51.09372800| 0.21206939|          7.70|             4.78|      76|   0|        Estimated|      Estimated using p...|           8|                       119|         11828|               75| 2024|              208|               49|                       54|                          52|                     70|                     82|     515|             14561|\n",
-                        "|  9|         47481|2019|        8|               100|     A684|           PA|    Major|    Mowbray Rd, North...|                   A19| 440000|  496670|54.36398700|-1.38591140|          8.50|             5.28|     100|   0|        Estimated|      Estimated using p...|           1|                        45|          7427|               58| 1508|              199|               30|                       29|                          17|                     23|                     28|     327|              9365|\n",
-                        "| 10|         38639|2019|        7|               128|     A126|           PA|    Major|                   A1013|                  B189| 561663|  178075|51.47853500| 0.32660027|          0.20|             0.12|      40|   0|          Counted|              Manual count|          62|                        75|          6950|              402|  746|               28|                7|                        3|                           1|                      0|                      1|      40|              8213|\n",
-                        "| 11|         47563|2019|        7|                97|    A1134|           PA|    Major|                   A1307|                 A1303| 547100|  256000|52.18264000| 0.15014701|          4.20|             2.61|      60|   0|        Estimated|      Estimated using p...|        1827|                       139|         12064|               41| 1535|              125|               16|                        8|                           4|                     16|                     11|     180|             13959|\n",
-                        "| 12|         28136|2019|        9|                80|    A2033|           PA|    Major|                   A2034|      A2033 Grace Hill| 622757|  136111|51.08105400| 1.17896770|          0.20|             0.12|      20|   0|        Estimated|      Estimated using p...|         136|                       175|         11316|              150| 1272|               87|                7|                        4|                           5|                      8|                      7|     119|             13032|\n",
-                        "| 13|         27385|2019|        5|               162|     A627|           PA|    Major|                    A627|                  A627| 392178|  405330|53.54455000|-2.11951220|          0.40|             0.25|      10|   0|        Estimated|      Estimated using p...|          79|                        56|         10515|              279|  943|               80|               14|                        2|                           5|                      9|                      3|     113|             11905|\n",
-                        "| 14|         28204|2019|       10|                69|    A4189|           PA|    Major|                   B4497|           LA Boundary| 407374|  266856|52.29978000|-1.89328750|          1.80|             1.12|      20|   0|          Counted|              Manual count|           2|                        67|         11055|               11| 1537|              153|               29|                       28|                          21|                     58|                     33|     322|             12992|\n",
-                        "| 15|         73745|2019|        2|                60|       M1|           TM|    Major|                      M6|                M6/A14| 456090|  278850|52.40479300|-1.17694900|          1.10|             0.68|     290|   0|          Counted|         Automatic counter|           0|                       232|         55247|              237|11404|             1833|              370|                      434|                         317|                   2006|                   2906|    7867|             74986|\n",
-                        "| 16|          1045|2019|        3|                47|      A92|           PA|    Major|                    A972|                  B978| 345000|  731940|56.47635100|-2.89446810|          2.30|             1.43|     200|   0|        Estimated|      Estimated using p...|          47|                       107|         17841|              122| 3450|              395|              133|                      120|                          73|                    140|                    175|    1036|             22556|\n",
-                        "| 17|          6963|2019|        1|               210|     A354|           PA|    Major|    A350 Blandford By...|  B3081 Handley Cro...| 391860|  110170|50.89095500|-2.11710060|         14.90|             9.26|     100|   0|        Estimated|      Estimated using p...|           3|                        64|          5923|               46| 1397|               99|               56|                       27|                          13|                     40|                     37|     272|              7703|\n",
-                        "| 18|          7931|2019|        9|                80|     A260|           PA|    Major|                   A2033|           Wear Bay Rd| 623443|  137081|51.08949600| 1.18934500|          0.60|             0.37|      42|   0|          Counted|              Manual count|          41|                        84|          7883|               96| 1197|               59|               27|                        6|                           5|                     10|                      5|     112|              9373|\n",
-                        "| 19|          8297|2019|        9|                80|      A28|           PA|    Major|                A28/A292|                   A28| 601000|  143721|51.15742700| 0.87301757|          1.40|             0.87|     325|   0|        Estimated|      Estimated using p...|           3|                        95|         11838|               53| 1042|              111|               31|                       40|                          10|                     29|                     43|     264|             13292|\n",
-                        "| 20|         74862|2019|        9|               133|      A26|           TA|    Major|         A259 Drove Road|                 B2109| 544900|  101850|50.79810500| 0.05474748|          1.00|             0.62|      11|   0|        Estimated|      Estimated using p...|          89|                        64|          6072|               99| 2863|              303|               75|                      105|                          22|                    101|                    121|     727|              9825|\n",
-                        "+---+--------------+----+---------+------------------+---------+-------------+---------+------------------------+----------------------+-------+--------+-----------+-----------+--------------+-----------------+--------+----+-----------------+--------------------------+------------+--------------------------+--------------+-----------------+-----+-----------------+-----------------+-------------------------+----------------------------+-----------------------+-----------------------+--------+------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Trafficvolume.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 38,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>number of times</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>16510</td>\n",
-                            "      <td>-2.547661</td>\n",
-                            "      <td>53.082885</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>47</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>16510</td>\n",
-                            "      <td>-2.538893</td>\n",
-                            "      <td>53.082450</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>78</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>16511</td>\n",
-                            "      <td>-2.400546</td>\n",
-                            "      <td>52.974677</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>79</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>16511</td>\n",
-                            "      <td>-2.400546</td>\n",
-                            "      <td>52.974675</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>71</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>16512</td>\n",
-                            "      <td>-2.084631</td>\n",
-                            "      <td>52.867198</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>54</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>8661</td>\n",
-                            "      <td>-2.846251</td>\n",
-                            "      <td>53.194824</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>22</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99700</td>\n",
-                            "      <td>-1.690332</td>\n",
-                            "      <td>52.629617</td>\n",
-                            "      <td>1</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>55</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99700</td>\n",
-                            "      <td>-1.690332</td>\n",
-                            "      <td>52.629618</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>40</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627989</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627988</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>94 rows × 5 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   road_name count_point_id  longitude   latitude  number of times\n",
-                            "4        A51          16510  -2.547661  53.082885                2\n",
-                            "47       A51          16510  -2.538893  53.082450               13\n",
-                            "78       A51          16511  -2.400546  52.974677               13\n",
-                            "79       A51          16511  -2.400546  52.974675                2\n",
-                            "71       A51          16512  -2.084631  52.867198                2\n",
-                            "..       ...            ...        ...        ...              ...\n",
-                            "54       A51           8661  -2.846251  53.194824               13\n",
-                            "22       A51          99700  -1.690332  52.629617                1\n",
-                            "55       A51          99700  -1.690332  52.629618               13\n",
-                            "40       A51          99805  -1.703596  52.627989               13\n",
-                            "6        A51          99805  -1.703596  52.627988                2\n",
-                            "\n",
-                            "[94 rows x 5 columns]"
-                        ]
-                    },
-                    "execution_count": 38,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Trafficvolumepoints=Trafficvolume.select(col(\"road_name\"),col(\"count_point_id\"),col(\"longitude\"),col(\"latitude\"),col(\"count_point_id\"))\n",
-                "Trafficvolumepoints = Trafficvolumepoints.groupby('road_name','count_point_id','longitude','latitude').agg(F.count(Trafficvolumepoints.road_name).alias('number of times'))\n",
-                "Trafficvolumepoints=Trafficvolumepoints.filter(Trafficvolumepoints.road_name==\"A51\")\n",
-                "Trafficvolumepoints.sort(col('count_point_id').desc())\n",
-                "Trafficvolumepoints=Trafficvolumepoints.toPandas()\n",
-                "Trafficvolumepoints['longitude'] = Trafficvolumepoints['longitude'].astype(float)\n",
-                "Trafficvolumepoints['latitude'] = Trafficvolumepoints['latitude'].astype(float)\n",
-                "Trafficvolumepoints\n",
-                "Trafficvolumepoints.sort_values(by=['count_point_id'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 39,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>36559</td>\n",
-                            "      <td>-1.685082</td>\n",
-                            "      <td>52.597375</td>\n",
-                            "      <td>(-1.6850822, 52.597375)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>56509</td>\n",
-                            "      <td>-2.802337</td>\n",
-                            "      <td>53.199801</td>\n",
-                            "      <td>(-2.8023369, 53.199801)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>48213</td>\n",
-                            "      <td>-2.388517</td>\n",
-                            "      <td>52.961888</td>\n",
-                            "      <td>(-2.3885175, 52.961888)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>16510</td>\n",
-                            "      <td>-2.547661</td>\n",
-                            "      <td>53.082885</td>\n",
-                            "      <td>(-2.5476615, 53.082885)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>89</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>77377</td>\n",
-                            "      <td>-1.816577</td>\n",
-                            "      <td>52.672445</td>\n",
-                            "      <td>(-1.8165771, 52.672445)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>90</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>6533</td>\n",
-                            "      <td>-1.957664</td>\n",
-                            "      <td>52.777353</td>\n",
-                            "      <td>(-1.9576641, 52.777353)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>91</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>7259</td>\n",
-                            "      <td>-2.877035</td>\n",
-                            "      <td>53.192353</td>\n",
-                            "      <td>(-2.877035, 53.192353)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>92</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>80750</td>\n",
-                            "      <td>-2.445225</td>\n",
-                            "      <td>53.032948</td>\n",
-                            "      <td>(-2.44522481, 53.03294801)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>93</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>94 rows × 5 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   road_name count_point_id  longitude   latitude                 coordinates\n",
-                            "0        A51          70287  -1.913450  52.744293     (-1.9134495, 52.744293)\n",
-                            "1        A51          36559  -1.685082  52.597375     (-1.6850822, 52.597375)\n",
-                            "2        A51          56509  -2.802337  53.199801     (-2.8023369, 53.199801)\n",
-                            "3        A51          48213  -2.388517  52.961888     (-2.3885175, 52.961888)\n",
-                            "4        A51          16510  -2.547661  53.082885     (-2.5476615, 53.082885)\n",
-                            "..       ...            ...        ...        ...                         ...\n",
-                            "89       A51          77377  -1.816577  52.672445     (-1.8165771, 52.672445)\n",
-                            "90       A51           6533  -1.957664  52.777353     (-1.9576641, 52.777353)\n",
-                            "91       A51           7259  -2.877035  53.192353      (-2.877035, 53.192353)\n",
-                            "92       A51          80750  -2.445225  53.032948  (-2.44522481, 53.03294801)\n",
-                            "93       A51          46549  -1.927364  52.750291    (-1.9273638, 52.7502906)\n",
-                            "\n",
-                            "[94 rows x 5 columns]"
-                        ]
-                    },
-                    "execution_count": 39,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Trafficvolumepoints=Trafficvolumepoints.drop(columns=['number of times'])\n",
-                "Trafficvolumepoints\n",
-                "Trafficvolumepoints[\"coordinates\"] = list(zip(Trafficvolumepoints[\"longitude\"] , Trafficvolumepoints[\"latitude\"]))\n",
-                "Trafficvolumepoints\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 40,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------+----+---------+\n",
-                        "|Longitude| Latitude|Year|road_name|\n",
-                        "+---------+---------+----+---------+\n",
-                        "|-2.801612|53.199793|2005|      A51|\n",
-                        "|-2.775292|53.193045|2005|      A51|\n",
-                        "|-2.516732| 53.12532|2005|      A51|\n",
-                        "|-2.517753|53.073447|2005|      A51|\n",
-                        "|-2.834771|53.195969|2005|      A51|\n",
-                        "|-2.514425|53.069776|2005|      A51|\n",
-                        "|-2.551753|53.082643|2005|      A51|\n",
-                        "|-2.843584|53.195008|2005|      A51|\n",
-                        "|-2.410551|52.991523|2005|      A51|\n",
-                        "|-2.515478|53.070401|2005|      A51|\n",
-                        "|-2.516089|53.071567|2005|      A51|\n",
-                        "|-2.875715|53.192439|2005|      A51|\n",
-                        "|-2.611763| 53.12433|2005|      A51|\n",
-                        "|-2.732526|53.177944|2005|      A51|\n",
-                        "|-2.514727|53.070044|2005|      A51|\n",
-                        "|-2.709482|53.168825|2005|      A51|\n",
-                        "|-2.649655|53.139771|2005|      A51|\n",
-                        "|-2.873913|53.192183|2005|      A51|\n",
-                        "|-2.473493|53.039112|2005|      A51|\n",
-                        "|-2.845371|53.194546|2005|      A51|\n",
-                        "+---------+---------+----+---------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accident_Information20052019points=Accident_Information20052019_df.select(col(\"1st_Road_Class\"),col(\"1st_Road_Number\"),col(\"Longitude\"),col(\"Latitude\"),col(\"Year\")).sort(\"Year\")\n",
-                "Accident_Information20052019points=Accident_Information20052019points.select(col(\"Longitude\"),col(\"Latitude\"),col(\"Year\"),concat(Accident_Information20052019points['1st_Road_Class'],Accident_Information20052019points['1st_Road_Number']).alias(\"road_name\"))\n",
-                "Accident_Information20052019points=Accident_Information20052019points.filter(Accident_Information20052019points.road_name==\"A51\")\n",
-                "Accident_Information20052019points.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 41,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>road_name</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-2.709482</td>\n",
-                            "      <td>53.168825</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-2.649655</td>\n",
-                            "      <td>53.139771</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-2.843584</td>\n",
-                            "      <td>53.195008</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-2.873913</td>\n",
-                            "      <td>53.192183</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-2.473493</td>\n",
-                            "      <td>53.039112</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1973</th>\n",
-                            "      <td>-1.704722</td>\n",
-                            "      <td>52.626533</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1974</th>\n",
-                            "      <td>-1.980809</td>\n",
-                            "      <td>52.787444</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1975</th>\n",
-                            "      <td>-2.333195</td>\n",
-                            "      <td>52.946403</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1976</th>\n",
-                            "      <td>-1.680807</td>\n",
-                            "      <td>52.558724</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1977</th>\n",
-                            "      <td>-1.689966</td>\n",
-                            "      <td>52.580045</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>1978 rows × 4 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude  Year road_name\n",
-                            "0     -2.709482  53.168825  2005       A51\n",
-                            "1     -2.649655  53.139771  2005       A51\n",
-                            "2     -2.843584  53.195008  2005       A51\n",
-                            "3     -2.873913  53.192183  2005       A51\n",
-                            "4     -2.473493  53.039112  2005       A51\n",
-                            "...         ...        ...   ...       ...\n",
-                            "1973  -1.704722  52.626533  2019       A51\n",
-                            "1974  -1.980809  52.787444  2019       A51\n",
-                            "1975  -2.333195  52.946403  2019       A51\n",
-                            "1976  -1.680807  52.558724  2019       A51\n",
-                            "1977  -1.689966  52.580045  2019       A51\n",
-                            "\n",
-                            "[1978 rows x 4 columns]"
-                        ]
-                    },
-                    "execution_count": 41,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Accident_Information20052019points_df= Accident_Information20052019points.toPandas()\n",
-                "Accident_Information20052019points_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 42,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>road_name</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-2.709482</td>\n",
-                            "      <td>53.168825</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-2.649655</td>\n",
-                            "      <td>53.139771</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-2.843584</td>\n",
-                            "      <td>53.195008</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-2.873913</td>\n",
-                            "      <td>53.192183</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-2.473493</td>\n",
-                            "      <td>53.039112</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1973</th>\n",
-                            "      <td>-1.704722</td>\n",
-                            "      <td>52.626533</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1974</th>\n",
-                            "      <td>-1.980809</td>\n",
-                            "      <td>52.787444</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1975</th>\n",
-                            "      <td>-2.333195</td>\n",
-                            "      <td>52.946403</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1976</th>\n",
-                            "      <td>-1.680807</td>\n",
-                            "      <td>52.558724</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1977</th>\n",
-                            "      <td>-1.689966</td>\n",
-                            "      <td>52.580045</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A51</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>1978 rows × 4 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude  Year road_name\n",
-                            "0     -2.709482  53.168825  2005       A51\n",
-                            "1     -2.649655  53.139771  2005       A51\n",
-                            "2     -2.843584  53.195008  2005       A51\n",
-                            "3     -2.873913  53.192183  2005       A51\n",
-                            "4     -2.473493  53.039112  2005       A51\n",
-                            "...         ...        ...   ...       ...\n",
-                            "1973  -1.704722  52.626533  2019       A51\n",
-                            "1974  -1.980809  52.787444  2019       A51\n",
-                            "1975  -2.333195  52.946403  2019       A51\n",
-                            "1976  -1.680807  52.558724  2019       A51\n",
-                            "1977  -1.689966  52.580045  2019       A51\n",
-                            "\n",
-                            "[1978 rows x 4 columns]"
-                        ]
-                    },
-                    "execution_count": 42,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#A2572019=Accident_Information20052019points.filter(Accident_Information20052019points.Year==\"2019\")\n",
-                "A2572019=Accident_Information20052019points_df\n",
-                "#A2572019=A2572019.toPandas()\n",
-                "A2572019['Longitude'] = A2572019['Longitude'].astype(float)\n",
-                "A2572019['Latitude'] = A2572019['Latitude'].astype(float)\n",
-                "A2572019"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 43,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "0       (-2.709482, 53.168825)\n",
-                            "1       (-2.649655, 53.139771)\n",
-                            "2       (-2.843584, 53.195008)\n",
-                            "3       (-2.873913, 53.192183)\n",
-                            "4       (-2.473493, 53.039112)\n",
-                            "                 ...          \n",
-                            "1973    (-1.704722, 52.626533)\n",
-                            "1974    (-1.980809, 52.787444)\n",
-                            "1975    (-2.333195, 52.946403)\n",
-                            "1976    (-1.680807, 52.558724)\n",
-                            "1977    (-1.689966, 52.580045)\n",
-                            "Name: Accident_coord, Length: 1978, dtype: object"
-                        ]
-                    },
-                    "execution_count": 43,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A2572019['Accident_coord'] = list(zip(A2572019.Longitude, A2572019.Latitude))\n",
-                "#Year=A2572019['Year'] \n",
-                "Year=A2572019['Accident_coord']\n",
-                "Year"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 44,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "float"
-                        ]
-                    },
-                    "execution_count": 44,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(A2572019[\"Accident_coord\"][0][0])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 45,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "([(-2.7519462, 53.186017),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.87703503, 53.19235426),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.5110385, 53.078958),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.49745013, 53.06177603),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.4974501, 53.061774),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.50882302, 53.06451456),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.52166322, 53.07740332),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.85087776, 53.19416204),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.49745013, 53.06177603),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-2.3403962, 52.946052),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-2.3403962, 52.946052),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.9576641, 52.777353),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.82414824, 52.67630609),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.82414824, 52.67630609),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.8165771, 52.672445),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.8165771, 52.672445),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.8531407, 52.6972),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.84524338, 52.68759052),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.81657709, 52.67244706),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.81657709, 52.67244706),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-1.6823895, 52.561381),\n",
-                            "  (-1.68238952, 52.56138264),\n",
-                            "  (-1.6823895, 52.561381),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.87703503, 53.19235426),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.52166322, 53.07740332),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.51421209, 53.06592965),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-2.08463079, 52.86719919),\n",
-                            "  (-2.3777111, 52.958686),\n",
-                            "  (-2.3777111, 52.958686),\n",
-                            "  (-2.3777111, 52.958686),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-2.3403962, 52.946052),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-2.03582717, 52.84272798),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.9576641, 52.777353),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.9134495, 52.744293),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.72803081, 52.64243132),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.8531407, 52.6972),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.8165771, 52.672445),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-1.8531407, 52.6972),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.7280308, 52.64243),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7280308, 52.64243),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-1.6823895, 52.561381),\n",
-                            "  (-1.6823895, 52.561381),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.49745013, 53.06177603),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.49745013, 53.06177603),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.52166322, 53.07740332),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.85087776, 53.19416204),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.85460495, 53.19341622),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.85460495, 53.19341622),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.52166322, 53.07740332),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.4974501, 53.061774),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.8165771, 52.672445),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.7280308, 52.64243),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.3403962, 52.946052),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.9576641, 52.777353),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-1.8531407, 52.6972),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.72803081, 52.64243132),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-2.03582717, 52.84272798),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.8452434, 52.687589),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.8165771, 52.672445),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-2.4034553, 52.978486),\n",
-                            "  (-1.68238952, 52.56138264),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-1.6823895, 52.561381),\n",
-                            "  (-2.52166322, 53.07740332),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.51421209, 53.06592965),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8508777, 53.19416),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.49745013, 53.06177603),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.53889263, 53.08245033),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.50882302, 53.06451456),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.7280308, 52.64243),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-2.3403962, 52.946052),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-2.03582717, 52.84272798),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.8241483, 52.676304),\n",
-                            "  (-1.81657709, 52.67244706),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.9263797, 52.76286636),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.82414824, 52.67630609),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.9576641, 52.777353),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.84524338, 52.68759052),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-1.68238952, 52.56138264),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-1.6823895, 52.561381),\n",
-                            "  (-1.68238952, 52.56138264),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.8546049, 53.193415),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.50882302, 53.06451456),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.44522481, 53.03294801),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.03582717, 52.84272798),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-1.9263797, 52.76286636),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.81657709, 52.67244706),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.93493886, 52.75719895),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-1.9273638, 52.7502906),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-1.84524338, 52.68759052),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.8531407, 52.6972),\n",
-                            "  (-1.779668, 52.659959),\n",
-                            "  (-2.34039617, 52.94605398),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-1.84524338, 52.68759052),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.7382844, 52.642902),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.70549226, 52.6315898),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.6850822, 52.59737616),\n",
-                            "  (-1.94290165, 52.76408901),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-2.00199063, 52.81624161),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.9263797, 52.76286636),\n",
-                            "  (-2.0019906, 52.81624),\n",
-                            "  (-1.82414824, 52.67630609),\n",
-                            "  (-1.9576641, 52.777353),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.81657709, 52.67244706),\n",
-                            "  (-2.4005456, 52.974675),\n",
-                            "  (-2.40345528, 52.97848761),\n",
-                            "  (-1.68238952, 52.56138264),\n",
-                            "  (-1.6850822, 52.597375),\n",
-                            "  (-2.75194622, 53.18601837),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.80233693, 53.19980248),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.5110385, 53.078958),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.52166322, 53.07740332),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.7519462, 53.186017),\n",
-                            "  (-2.40461587, 52.97996689),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.51333813, 53.06773126),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.51743205, 53.07310701),\n",
-                            "  (-2.58632552, 53.11233965),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.6589408, 53.14422),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.5476615, 53.082885),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.65894082, 53.14422172),\n",
-                            "  (-2.4909186, 53.062152),\n",
-                            "  (-2.8462507, 53.19482424),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.5863255, 53.112338),\n",
-                            "  (-2.4452248, 53.032946),\n",
-                            "  (-2.877035, 53.192353),\n",
-                            "  (-2.8023369, 53.199801),\n",
-                            "  (-2.8247424, 53.19722239),\n",
-                            "  (-2.8462507, 53.194823),\n",
-                            "  (-2.2247979, 52.92680438),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.9004828, 52.733585),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-2.0358272, 52.842726),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.85314069, 52.69720148),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.91700921, 52.74186961),\n",
-                            "  (-2.2991234, 52.951764),\n",
-                            "  (-1.72803081, 52.64243132),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.8289018, 52.678577),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.8531407, 52.6972),\n",
-                            "  (-1.6903323, 52.629617),\n",
-                            "  (-1.69033225, 52.62961838),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.84524338, 52.68759052),\n",
-                            "  (-1.7035958, 52.627988),\n",
-                            "  (-1.7050012, 52.629915),\n",
-                            "  (-1.90048279, 52.73358653),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.70359582, 52.62798917),\n",
-                            "  (-1.77966799, 52.65996053),\n",
-                            "  (-2.2247979, 52.926803),\n",
-                            "  (-2.1292563, 52.887671),\n",
-                            "  (-1.82890177, 52.67857844),\n",
-                            "  (-1.82414824, 52.67630609),\n",
-                            "  (-1.7404447, 52.64245913),\n",
-                            "  (-2.0846308, 52.867198),\n",
-                            "  (-1.95766414, 52.7773547),\n",
-                            "  (-2.3403962, 52.946052),\n",
-                            "  ...],\n",
-                            " [(-2.709482, 53.168825),\n",
-                            "  (-2.649655, 53.139771),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.873913, 53.192183),\n",
-                            "  (-2.473493, 53.039112),\n",
-                            "  (-2.410551, 52.991523),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.845371, 53.194546),\n",
-                            "  (-2.515478, 53.070401),\n",
-                            "  (-2.516089, 53.071567),\n",
-                            "  (-2.834771, 53.195969),\n",
-                            "  (-2.775292, 53.193045),\n",
-                            "  (-2.875715, 53.192439),\n",
-                            "  (-2.611763, 53.12433),\n",
-                            "  (-2.514425, 53.069776),\n",
-                            "  (-2.732526, 53.177944),\n",
-                            "  (-2.514727, 53.070044),\n",
-                            "  (-2.551753, 53.082643),\n",
-                            "  (-2.516732, 53.12532),\n",
-                            "  (-2.801612, 53.199793),\n",
-                            "  (-2.832231, 53.196167),\n",
-                            "  (-2.61422, 53.128902),\n",
-                            "  (-2.513797, 53.067172),\n",
-                            "  (-2.439824, 53.028095),\n",
-                            "  (-2.614223, 53.129172),\n",
-                            "  (-2.556222, 53.081903),\n",
-                            "  (-2.496737, 53.063109),\n",
-                            "  (-2.452141, 53.036768),\n",
-                            "  (-2.498931, 53.059235),\n",
-                            "  (-2.839999, 53.195393),\n",
-                            "  (-2.735237, 53.179006),\n",
-                            "  (-2.711451, 53.170251),\n",
-                            "  (-2.452291, 53.036768),\n",
-                            "  (-2.504354, 53.063616),\n",
-                            "  (-2.878405, 53.19224),\n",
-                            "  (-2.857471, 53.193291),\n",
-                            "  (-2.519872, 53.075865),\n",
-                            "  (-2.711451, 53.170251),\n",
-                            "  (-2.602735, 53.119882),\n",
-                            "  (-2.563613, 53.087712),\n",
-                            "  (-2.777268, 53.19474),\n",
-                            "  (-2.777268, 53.19474),\n",
-                            "  (-2.582727, 53.109913),\n",
-                            "  (-2.85717, 53.193203),\n",
-                            "  (-2.818643, 53.197969),\n",
-                            "  (-2.625171, 53.131722),\n",
-                            "  (-2.84522, 53.194457),\n",
-                            "  (-2.55743, 53.082976),\n",
-                            "  (-2.597612, 53.116851),\n",
-                            "  (-2.848812, 53.194432),\n",
-                            "  (-2.513212, 53.068163),\n",
-                            "  (-2.883641, 53.192111),\n",
-                            "  (-2.805347, 53.199408),\n",
-                            "  (-2.743968, 53.182008),\n",
-                            "  (-2.871364, 53.191932),\n",
-                            "  (-2.866432, 53.192327),\n",
-                            "  (-2.837161, 53.195683),\n",
-                            "  (-2.870462, 53.191759),\n",
-                            "  (-2.638843, 53.136503),\n",
-                            "  (-2.470358, 53.038765),\n",
-                            "  (-2.857469, 53.193201),\n",
-                            "  (-2.776663, 53.194385),\n",
-                            "  (-2.424208, 53.017005),\n",
-                            "  (-2.670031, 53.161862),\n",
-                            "  (-2.758602, 53.188748),\n",
-                            "  (-2.612528, 53.125585),\n",
-                            "  (-2.533819, 53.081107),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.582125, 53.109646),\n",
-                            "  (-2.881694, 53.192036),\n",
-                            "  (-2.420263, 53.009827),\n",
-                            "  (-2.501964, 53.063447),\n",
-                            "  (-2.417238, 53.005253),\n",
-                            "  (-2.802658, 53.199696),\n",
-                            "  (-2.516542, 53.072014),\n",
-                            "  (-2.452592, 53.037036),\n",
-                            "  (-2.326335, 52.946387),\n",
-                            "  (-2.337792, 52.945995),\n",
-                            "  (-2.330801, 52.946465),\n",
-                            "  (-2.305824, 52.950037),\n",
-                            "  (-2.351355, 52.948473),\n",
-                            "  (-2.342852, 52.946071),\n",
-                            "  (-1.932403, 52.753899),\n",
-                            "  (-2.291529, 52.949084),\n",
-                            "  (-1.94232, 52.761906),\n",
-                            "  (-2.102488, 52.875774),\n",
-                            "  (-1.94158, 52.760916),\n",
-                            "  (-2.000709, 52.807677),\n",
-                            "  (-2.225332, 52.926845),\n",
-                            "  (-1.969871, 52.779895),\n",
-                            "  (-1.94158, 52.761006),\n",
-                            "  (-2.252419, 52.929217),\n",
-                            "  (-2.078094, 52.861229),\n",
-                            "  (-2.235604, 52.928263),\n",
-                            "  (-1.970761, 52.780075),\n",
-                            "  (-2.098322, 52.87335),\n",
-                            "  (-2.035153, 52.841563),\n",
-                            "  (-2.191683, 52.919982),\n",
-                            "  (-2.000709, 52.807677),\n",
-                            "  (-2.06308, 52.852159),\n",
-                            "  (-1.949272, 52.773236),\n",
-                            "  (-2.021488, 52.828351),\n",
-                            "  (-2.251825, 52.929308),\n",
-                            "  (-2.025794, 52.831497),\n",
-                            "  (-2.09267, 52.870478),\n",
-                            "  (-2.266461, 52.938626),\n",
-                            "  (-1.922048, 52.744903),\n",
-                            "  (-1.923674, 52.746792),\n",
-                            "  (-2.097727, 52.872991),\n",
-                            "  (-2.235753, 52.928353),\n",
-                            "  (-1.924857, 52.748321),\n",
-                            "  (-2.192129, 52.920071),\n",
-                            "  (-2.251528, 52.929489),\n",
-                            "  (-1.94232, 52.761816),\n",
-                            "  (-2.021636, 52.828351),\n",
-                            "  (-2.032032, 52.837878),\n",
-                            "  (-1.835043, 52.679548),\n",
-                            "  (-1.704041, 52.628321),\n",
-                            "  (-1.705187, 52.633628),\n",
-                            "  (-1.744887, 52.641721),\n",
-                            "  (-1.683608, 52.613974),\n",
-                            "  (-1.689852, 52.629094),\n",
-                            "  (-1.698428, 52.628127),\n",
-                            "  (-1.684917, 52.616764),\n",
-                            "  (-1.824846, 52.677106),\n",
-                            "  (-1.70418, 52.62958),\n",
-                            "  (-1.825582, 52.678007),\n",
-                            "  (-1.690271, 52.632511),\n",
-                            "  (-1.691916, 52.629728),\n",
-                            "  (-1.872795, 52.71879),\n",
-                            "  (-1.69695, 52.628213),\n",
-                            "  (-1.703004, 52.628768),\n",
-                            "  (-1.683173, 52.612804),\n",
-                            "  (-1.751383, 52.642903),\n",
-                            "  (-1.835043, 52.679548),\n",
-                            "  (-1.799581, 52.671313),\n",
-                            "  (-1.822496, 52.673147),\n",
-                            "  (-1.704187, 52.628501),\n",
-                            "  (-1.872353, 52.717981),\n",
-                            "  (-1.744739, 52.641811),\n",
-                            "  (-1.800024, 52.671493),\n",
-                            "  (-1.694435, 52.628656),\n",
-                            "  (-1.682904, 52.609207),\n",
-                            "  (-1.849198, 52.692423),\n",
-                            "  (-1.704041, 52.628321),\n",
-                            "  (-1.68924, 52.632059),\n",
-                            "  (-1.704188, 52.628411),\n",
-                            "  (-1.711974, 52.635083),\n",
-                            "  (-1.792055, 52.667884),\n",
-                            "  (-1.690962, 52.618309),\n",
-                            "  (-1.690816, 52.618039),\n",
-                            "  (-1.85332, 52.698721),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-1.705626, 52.634258),\n",
-                            "  (-1.696802, 52.628213),\n",
-                            "  (-1.687776, 52.630167),\n",
-                            "  (-1.705065, 52.629852),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-1.714622, 52.636887),\n",
-                            "  (-1.83416, 52.678199),\n",
-                            "  (-1.68401, 52.599232),\n",
-                            "  (-1.835193, 52.678829),\n",
-                            "  (-1.683027, 52.612624),\n",
-                            "  (-1.787343, 52.66383),\n",
-                            "  (-1.689684, 52.63197),\n",
-                            "  (-1.776875, 52.657877),\n",
-                            "  (-1.70563, 52.633719),\n",
-                            "  (-1.704918, 52.629672),\n",
-                            "  (-1.774518, 52.656255),\n",
-                            "  (-1.848903, 52.692332),\n",
-                            "  (-1.704792, 52.626525),\n",
-                            "  (-1.704792, 52.626435),\n",
-                            "  (-1.69015, 52.628735),\n",
-                            "  (-1.682756, 52.609297),\n",
-                            "  (-1.691914, 52.629998),\n",
-                            "  (-1.805638, 52.672761),\n",
-                            "  (-1.69828, 52.628127),\n",
-                            "  (-1.714622, 52.636887),\n",
-                            "  (-1.689851, 52.629184),\n",
-                            "  (-1.836962, 52.68063),\n",
-                            "  (-1.826613, 52.679177),\n",
-                            "  (-1.835339, 52.679549),\n",
-                            "  (-1.868373, 52.712313),\n",
-                            "  (-1.702854, 52.629037),\n",
-                            "  (-1.830023, 52.677204),\n",
-                            "  (-1.806229, 52.672762),\n",
-                            "  (-1.687776, 52.630167),\n",
-                            "  (-1.685359, 52.616945),\n",
-                            "  (-2.408712, 52.986135),\n",
-                            "  (-2.408862, 52.986225),\n",
-                            "  (-1.680614, 52.558587),\n",
-                            "  (-1.681293, 52.56668),\n",
-                            "  (-1.681209, 52.55787),\n",
-                            "  (-1.688391, 52.585129),\n",
-                            "  (-1.233865, 52.66541),\n",
-                            "  (-2.454081, 53.036851),\n",
-                            "  (-2.45903, 53.039439),\n",
-                            "  (-2.61192, 53.124869),\n",
-                            "  (-2.865241, 53.192606),\n",
-                            "  (-2.879155, 53.192324),\n",
-                            "  (-2.425557, 53.017719),\n",
-                            "  (-2.84404, 53.195365),\n",
-                            "  (-2.798322, 53.199995),\n",
-                            "  (-2.568467, 53.093442),\n",
-                            "  (-2.533369, 53.080929),\n",
-                            "  (-2.58318, 53.110271),\n",
-                            "  (-2.717775, 53.17273),\n",
-                            "  (-2.603182, 53.119789),\n",
-                            "  (-2.602584, 53.119792),\n",
-                            "  (-2.529322, 53.079599),\n",
-                            "  (-2.857619, 53.1932),\n",
-                            "  (-2.585287, 53.111429),\n",
-                            "  (-2.657171, 53.142516),\n",
-                            "  (-2.452589, 53.036767),\n",
-                            "  (-2.797873, 53.199998),\n",
-                            "  (-2.564972, 53.088874),\n",
-                            "  (-2.861649, 53.192632),\n",
-                            "  (-2.881845, 53.192124),\n",
-                            "  (-2.881544, 53.192037),\n",
-                            "  (-2.798623, 53.200082),\n",
-                            "  (-2.857319, 53.193202),\n",
-                            "  (-2.768665, 53.190751),\n",
-                            "  (-2.865688, 53.192512),\n",
-                            "  (-2.514875, 53.069954),\n",
-                            "  (-2.86688, 53.192234),\n",
-                            "  (-2.536367, 53.081905),\n",
-                            "  (-2.555471, 53.081547),\n",
-                            "  (-2.815951, 53.198077),\n",
-                            "  (-2.514277, 53.069867),\n",
-                            "  (-2.818492, 53.19788),\n",
-                            "  (-2.777117, 53.194651),\n",
-                            "  (-2.709783, 53.168913),\n",
-                            "  (-2.554427, 53.081642),\n",
-                            "  (-2.845674, 53.194724),\n",
-                            "  (-2.514238, 53.066541),\n",
-                            "  (-2.819687, 53.197782),\n",
-                            "  (-2.629068, 53.13251),\n",
-                            "  (-2.554282, 53.081912),\n",
-                            "  (-2.492254, 53.049464),\n",
-                            "  (-2.727711, 53.176355),\n",
-                            "  (-2.518056, 53.073805),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.678303, 53.164781),\n",
-                            "  (-2.41476, 52.995464),\n",
-                            "  (-2.452291, 53.036768),\n",
-                            "  (-2.415366, 52.99654),\n",
-                            "  (-2.652956, 53.140562),\n",
-                            "  (-2.643949, 53.138094),\n",
-                            "  (-2.448093, 53.034626),\n",
-                            "  (-2.845828, 53.194902),\n",
-                            "  (-2.871515, 53.192021),\n",
-                            "  (-2.857617, 53.19311),\n",
-                            "  (-2.555472, 53.081637),\n",
-                            "  (-2.411882, 52.990529),\n",
-                            "  (-2.798922, 53.20008),\n",
-                            "  (-2.536365, 53.081815),\n",
-                            "  (-2.827601, 53.196738),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.693913, 53.177366),\n",
-                            "  (-2.555172, 53.081459),\n",
-                            "  (-1.703893, 52.62832),\n",
-                            "  (-2.000709, 52.807587),\n",
-                            "  (-1.712709, 52.635714),\n",
-                            "  (-1.703753, 52.627241),\n",
-                            "  (-1.688071, 52.630258),\n",
-                            "  (-1.921013, 52.743914),\n",
-                            "  (-1.830022, 52.677294),\n",
-                            "  (-1.935361, 52.757407),\n",
-                            "  (-1.704919, 52.629492),\n",
-                            "  (-2.327824, 52.946473),\n",
-                            "  (-1.901777, 52.73437),\n",
-                            "  (-1.687923, 52.630347),\n",
-                            "  (-1.745035, 52.641811),\n",
-                            "  (-2.092224, 52.870299),\n",
-                            "  (-1.872795, 52.71879),\n",
-                            "  (-1.736603, 52.643051),\n",
-                            "  (-1.703902, 52.626972),\n",
-                            "  (-2.092075, 52.870119),\n",
-                            "  (-1.703902, 52.626972),\n",
-                            "  (-1.68552, 52.594471),\n",
-                            "  (-1.83534, 52.679279),\n",
-                            "  (-1.689535, 52.632149),\n",
-                            "  (-1.83519, 52.679638),\n",
-                            "  (-2.334222, 52.946275),\n",
-                            "  (-1.979783, 53.146126),\n",
-                            "  (-2.375691, 52.957388),\n",
-                            "  (-2.365092, 52.953825),\n",
-                            "  (-2.360165, 52.951953),\n",
-                            "  (-2.344939, 52.946424),\n",
-                            "  (-2.274691, 52.945888),\n",
-                            "  (-2.338536, 52.945993),\n",
-                            "  (-2.351355, 52.948473),\n",
-                            "  (-1.917757, 52.741934),\n",
-                            "  (-2.206426, 52.923912),\n",
-                            "  (-1.937287, 52.758307),\n",
-                            "  (-2.119302, 52.884928),\n",
-                            "  (-1.921013, 52.743824),\n",
-                            "  (-1.932551, 52.754259),\n",
-                            "  (-2.000709, 52.807767),\n",
-                            "  (-2.224587, 52.926666),\n",
-                            "  (-1.990326, 52.798867),\n",
-                            "  (-1.934917, 52.757137),\n",
-                            "  (-2.02817, 52.833294),\n",
-                            "  (-2.060405, 52.850992),\n",
-                            "  (-2.177548, 52.918745),\n",
-                            "  (-1.970464, 52.780075),\n",
-                            "  (-2.013768, 52.823678),\n",
-                            "  (-2.235901, 52.928262),\n",
-                            "  (-1.970761, 52.780075),\n",
-                            "  (-1.952086, 52.775664),\n",
-                            "  (-1.969427, 52.779805),\n",
-                            "  (-1.913612, 52.740852),\n",
-                            "  (-2.122131, 52.886723),\n",
-                            "  (-1.937879, 52.758397),\n",
-                            "  (-2.224587, 52.926666),\n",
-                            "  (-1.919534, 52.742654),\n",
-                            "  (-1.93477, 52.756867),\n",
-                            "  (-1.93699, 52.758307),\n",
-                            "  (-1.943352, 52.766311),\n",
-                            "  (-1.921013, 52.743914),\n",
-                            "  (-2.211932, 52.924532),\n",
-                            "  (-2.206425, 52.923823),\n",
-                            "  (-2.177101, 52.918566),\n",
-                            "  (-1.933142, 52.755158),\n",
-                            "  (-1.930628, 52.75228),\n",
-                            "  (-1.936102, 52.757947),\n",
-                            "  (-2.235901, 52.928262),\n",
-                            "  (-2.111115, 52.879722),\n",
-                            "  (-1.729651, 52.644114),\n",
-                            "  (-1.822645, 52.672968),\n",
-                            "  (-1.687925, 52.629988),\n",
-                            "  (-1.70489, 52.633897),\n",
-                            "  (-1.704919, 52.629492),\n",
-                            "  (-1.831359, 52.675857),\n",
-                            "  (-1.703902, 52.626972),\n",
-                            "  (-1.705632, 52.633359),\n",
-                            "  (-1.754628, 52.644079),\n",
-                            "  (-1.703892, 52.62841),\n",
-                            "  (-1.772752, 52.654723),\n",
-                            "  (-1.68924, 52.632059),\n",
-                            "  (-1.703885, 52.629579),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-1.701823, 52.628585),\n",
-                            "  (-1.7033, 52.628679),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-1.696211, 52.628301),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-1.704188, 52.628411),\n",
-                            "  (-1.769366, 52.65193),\n",
-                            "  (-1.705212, 52.629942),\n",
-                            "  (-1.769366, 52.65193),\n",
-                            "  (-1.830617, 52.676575),\n",
-                            "  (-1.705642, 52.631921),\n",
-                            "  (-1.684336, 52.615504),\n",
-                            "  (-1.705484, 52.633359),\n",
-                            "  (-1.853178, 52.697012),\n",
-                            "  (-1.703893, 52.62832),\n",
-                            "  (-1.744887, 52.641811),\n",
-                            "  (-1.826318, 52.678907),\n",
-                            "  (-1.682892, 52.610826),\n",
-                            "  (-1.747252, 52.641726),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-1.772604, 52.654633),\n",
-                            "  (-1.835339, 52.679549),\n",
-                            "  (-1.703001, 52.629217),\n",
-                            "  (-1.800172, 52.671494),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-1.683752, 52.614514),\n",
-                            "  (-1.822645, 52.672968),\n",
-                            "  (-1.851556, 52.695302),\n",
-                            "  (-1.737639, 52.642874),\n",
-                            "  (-1.692658, 52.629281),\n",
-                            "  (-1.725089, 52.640957),\n",
-                            "  (-1.715801, 52.637519),\n",
-                            "  (-1.704921, 52.629312),\n",
-                            "  (-1.689556, 52.629183),\n",
-                            "  (-1.703899, 52.627511),\n",
-                            "  (-1.683411, 52.600309),\n",
-                            "  (-1.831063, 52.675947),\n",
-                            "  (-1.705494, 52.63192),\n",
-                            "  (-1.727742, 52.642042),\n",
-                            "  (-1.885204, 52.728872),\n",
-                            "  (-1.70991, 52.634449),\n",
-                            "  (-1.705776, 52.633899),\n",
-                            "  (-2.408862, 52.986225),\n",
-                            "  (-2.40885, 52.984966),\n",
-                            "  (-1.682513, 52.56111),\n",
-                            "  (-1.681057, 52.558499),\n",
-                            "  (-2.603334, 53.119968),\n",
-                            "  (-2.880947, 53.192131),\n",
-                            "  (-2.55532, 53.081368),\n",
-                            "  (-2.610714, 53.124066),\n",
-                            "  (-2.868967, 53.191859),\n",
-                            "  (-2.513214, 53.068343),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.563764, 53.087801),\n",
-                            "  (-2.62547, 53.13172),\n",
-                            "  (-2.493002, 53.062675),\n",
-                            "  (-2.554431, 53.081912),\n",
-                            "  (-2.632826, 53.133929),\n",
-                            "  (-2.743969, 53.182098),\n",
-                            "  (-2.495095, 53.063026),\n",
-                            "  (-2.780415, 53.194899),\n",
-                            "  (-2.769817, 53.196586),\n",
-                            "  (-2.879003, 53.192235),\n",
-                            "  (-2.497027, 53.062389),\n",
-                            "  (-2.649804, 53.13977),\n",
-                            "  (-2.684589, 53.165015),\n",
-                            "  (-2.570316, 53.097748),\n",
-                            "  (-2.880348, 53.192135),\n",
-                            "  (-2.513225, 53.069242),\n",
-                            "  (-2.516843, 53.072283),\n",
-                            "  (-2.627416, 53.13198),\n",
-                            "  (-2.486837, 53.045351),\n",
-                            "  (-2.492404, 53.062588),\n",
-                            "  (-2.634029, 53.134462),\n",
-                            "  (-2.827601, 53.196738),\n",
-                            "  (-2.523487, 53.078546),\n",
-                            "  (-2.781915, 53.195069),\n",
-                            "  (-2.849257, 53.194249),\n",
-                            "  (-2.584234, 53.110895),\n",
-                            "  (-2.597599, 53.115862),\n",
-                            "  (-2.576085, 53.104822),\n",
-                            "  (-2.799072, 53.200079),\n",
-                            "  (-2.417392, 53.005792),\n",
-                            "  (-2.858968, 53.19328),\n",
-                            "  (-2.777421, 53.194919),\n",
-                            "  (-2.410665, 52.987927),\n",
-                            "  (-2.853439, 53.193769),\n",
-                            "  (-2.625169, 53.131632),\n",
-                            "  (-2.845826, 53.194813),\n",
-                            "  (-2.835657, 53.195334),\n",
-                            "  (-2.845673, 53.194634),\n",
-                            "  (-2.697915, 53.165837),\n",
-                            "  (-2.845521, 53.194545),\n",
-                            "  (-2.813113, 53.198456),\n",
-                            "  (-2.513798, 53.067262),\n",
-                            "  (-2.727561, 53.176356),\n",
-                            "  (-2.523183, 53.078098),\n",
-                            "  (-2.432327, 53.023897),\n",
-                            "  (-2.558924, 53.083059),\n",
-                            "  (-2.616779, 53.130237),\n",
-                            "  (-2.499541, 53.060401),\n",
-                            "  (-2.873466, 53.192276),\n",
-                            "  (-2.747599, 53.184323),\n",
-                            "  (-1.705478, 52.634348),\n",
-                            "  (-1.94158, 52.761006),\n",
-                            "  (-1.704041, 52.628321),\n",
-                            "  (-1.698132, 52.628216),\n",
-                            "  (-1.934917, 52.757227),\n",
-                            "  (-2.020003, 52.827542),\n",
-                            "  (-1.73823, 52.642875),\n",
-                            "  (-1.814809, 52.672327),\n",
-                            "  (-1.854205, 52.699441),\n",
-                            "  (-1.885646, 52.729681),\n",
-                            "  (-1.685507, 52.616946),\n",
-                            "  (-1.725236, 52.641048),\n",
-                            "  (-1.699128, 52.633792),\n",
-                            "  (-1.85701, 52.701692),\n",
-                            "  (-1.703004, 52.628768),\n",
-                            "  (-1.704623, 52.629581),\n",
-                            "  (-1.936991, 52.758037),\n",
-                            "  (-2.009464, 52.820981),\n",
-                            "  (-1.684337, 52.615324),\n",
-                            "  (-1.936102, 52.757947),\n",
-                            "  (-1.736603, 52.643051),\n",
-                            "  (-1.689853, 52.628914),\n",
-                            "  (-2.125849, 52.887708),\n",
-                            "  (-1.704041, 52.628321),\n",
-                            "  (-2.235901, 52.928262),\n",
-                            "  (-1.703004, 52.628678),\n",
-                            "  (-1.703004, 52.628768),\n",
-                            "  (-2.342852, 52.946071),\n",
-                            "  (-1.94158, 52.760916),\n",
-                            "  (-1.953419, 52.776294),\n",
-                            "  (-1.974909, 52.784481),\n",
-                            "  (-1.822645, 52.672968),\n",
-                            "  (-1.850082, 52.693503),\n",
-                            "  (-1.944382, 52.771525),\n",
-                            "  (-1.93699, 52.758217),\n",
-                            "  (-1.79397, 52.669415),\n",
-                            "  (-1.935066, 52.757137),\n",
-                            "  (-1.703893, 52.62832),\n",
-                            "  (-1.731868, 52.64403),\n",
-                            "  (-1.834599, 52.679638),\n",
-                            "  (-1.827054, 52.679807),\n",
-                            "  (-1.703904, 52.626702),\n",
-                            "  (-2.33452, 52.946274),\n",
-                            "  (-1.973872, 52.784121),\n",
-                            "  (-1.934769, 52.756957),\n",
-                            "  (-1.703903, 52.626792),\n",
-                            "  (-1.854059, 52.698901),\n",
-                            "  (-2.060851, 52.851351),\n",
-                            "  (-1.703903, 52.626882),\n",
-                            "  (-1.933882, 52.756148),\n",
-                            "  (-1.902221, 52.734461),\n",
-                            "  (-1.703902, 52.626972),\n",
-                            "  (-1.826171, 52.678637),\n",
-                            "  (-1.823231, 52.674317),\n",
-                            "  (-2.067239, 52.853145),\n",
-                            "  (-1.690475, 52.62451),\n",
-                            "  (-1.684772, 52.616494),\n",
-                            "  (-1.936102, 52.757857),\n",
-                            "  (-1.703004, 52.628768),\n",
-                            "  (-1.687776, 52.630167),\n",
-                            "  (-1.710058, 52.634449),\n",
-                            "  (-1.854059, 52.699081),\n",
-                            "  (-1.682766, 52.607948),\n",
-                            "  (-1.7105, 52.63454),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-1.970761, 52.780075),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-1.689851, 52.629184),\n",
-                            "  (-1.942161, 52.770266),\n",
-                            "  (-1.941866, 52.769187),\n",
-                            "  (-1.853171, 52.69908),\n",
-                            "  (-1.704922, 52.629132),\n",
-                            "  (-1.687776, 52.630167),\n",
-                            "  (-2.077797, 52.86114),\n",
-                            "  (-1.703596, 52.628589),\n",
-                            "  (-1.703893, 52.62832),\n",
-                            "  (-2.125404, 52.887708),\n",
-                            "  (-1.845664, 52.687564),\n",
-                            "  (-1.853468, 52.698541),\n",
-                            "  (-1.697689, 52.628215),\n",
-                            "  (-1.690475, 52.6246),\n",
-                            "  (-1.914204, 52.741392),\n",
-                            "  (-1.857157, 52.701782),\n",
-                            "  (-1.773486, 52.655624),\n",
-                            "  (-2.111413, 52.879721),\n",
-                            "  (-1.684756, 52.598065),\n",
-                            "  (-1.814365, 52.672416),\n",
-                            "  (-2.025794, 52.831497),\n",
-                            "  (-1.958162, 52.777374),\n",
-                            "  (-1.683262, 52.600488),\n",
-                            "  (-1.704345, 52.627063),\n",
-                            "  (-2.016292, 52.824666),\n",
-                            "  (-1.765391, 52.648955),\n",
-                            "  (-1.68924, 52.632059),\n",
-                            "  (-2.235306, 52.928264),\n",
-                            "  (-1.82824, 52.679089),\n",
-                            "  (-1.794118, 52.669506),\n",
-                            "  (-1.939212, 52.759117),\n",
-                            "  (-1.834308, 52.678289),\n",
-                            "  (-1.94232, 52.761906),\n",
-                            "  (-1.919682, 52.742654),\n",
-                            "  (-1.697541, 52.628215),\n",
-                            "  (-1.928704, 52.750751),\n",
-                            "  (-1.94232, 52.761906),\n",
-                            "  (-1.691766, 52.629998),\n",
-                            "  (-1.773487, 52.655444),\n",
-                            "  (-1.833564, 52.679456),\n",
-                            "  (-1.793822, 52.669415),\n",
-                            "  (-1.745035, 52.641721),\n",
-                            "  (-2.067239, 52.853055),\n",
-                            "  (-2.402971, 52.977525),\n",
-                            "  (-1.681149, 52.566141),\n",
-                            "  (-1.688836, 52.58486),\n",
-                            "  (-1.681057, 52.558589),\n",
-                            "  (-2.519724, 53.075956),\n",
-                            "  (-2.792769, 53.199223),\n",
-                            "  (-2.565271, 53.088872),\n",
-                            "  (-2.6807, 53.165037),\n",
-                            "  (-2.815653, 53.198169),\n",
-                            "  (-2.856573, 53.193298),\n",
-                            "  (-2.848365, 53.194525),\n",
-                            "  (-2.866135, 53.192419),\n",
-                            "  (-2.538611, 53.082344),\n",
-                            "  (-2.767614, 53.190578),\n",
-                            "  (-2.741547, 53.180495),\n",
-                            "  (-2.55727, 53.082078),\n",
-                            "  (-2.870305, 53.1914),\n",
-                            "  (-2.831186, 53.196354),\n",
-                            "  (-2.838207, 53.195586),\n",
-                            "  (-2.612983, 53.126032),\n",
-                            "  (-2.843734, 53.195007),\n",
-                            "  (-2.658081, 53.14332),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.492406, 53.049733),\n",
-                            "  (-2.565424, 53.089141),\n",
-                            "  (-2.857321, 53.193292),\n",
-                            "  (-2.869254, 53.191228),\n",
-                            "  (-2.533818, 53.081017),\n",
-                            "  (-2.857469, 53.193201),\n",
-                            "  (-2.469911, 53.038857),\n",
-                            "  (-2.489993, 53.047406),\n",
-                            "  (-2.452291, 53.036858),\n",
-                            "  (-2.848365, 53.194525),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.784926, 53.196038),\n",
-                            "  (-2.845371, 53.194546),\n",
-                            "  (-2.471111, 53.039481),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.452291, 53.036858),\n",
-                            "  (-2.859858, 53.192914),\n",
-                            "  (-2.55443, 53.081822),\n",
-                            "  (-2.798472, 53.199994),\n",
-                            "  (-2.55727, 53.082078),\n",
-                            "  (-2.66051, 53.145734),\n",
-                            "  (-2.452291, 53.036858),\n",
-                            "  (-2.514234, 53.066271),\n",
-                            "  (-2.614064, 53.128453),\n",
-                            "  (-2.873612, 53.192095),\n",
-                            "  (-2.852096, 53.193959),\n",
-                            "  (-2.428427, 53.021574),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.879602, 53.192231),\n",
-                            "  (-2.47111, 53.039392),\n",
-                            "  (-2.469314, 53.038769),\n",
-                            "  (-2.815503, 53.19817),\n",
-                            "  (-2.514876, 53.070044),\n",
-                            "  (-2.513213, 53.068253),\n",
-                            "  (-2.856872, 53.193295),\n",
-                            "  (-2.497186, 53.063197),\n",
-                            "  (-2.750765, 53.185651),\n",
-                            "  (-2.557121, 53.082169),\n",
-                            "  (-2.549813, 53.082742),\n",
-                            "  (-2.609812, 53.123711),\n",
-                            "  (-2.5173, 53.073),\n",
-                            "  (-2.83238, 53.196166),\n",
-                            "  (-2.543094, 53.082683),\n",
-                            "  (-2.876012, 53.192347),\n",
-                            "  (-2.53037, 53.079864),\n",
-                            "  (-2.746843, 53.183878),\n",
-                            "  (-2.504503, 53.063616),\n",
-                            "  (-2.543692, 53.08268),\n",
-                            "  (-1.970613, 52.780075),\n",
-                            "  (-1.695176, 52.628388),\n",
-                            "  (-1.773487, 52.655534),\n",
-                            "  (-1.702856, 52.628767),\n",
-                            "  (-1.702856, 52.628767),\n",
-                            "  (-1.704789, 52.626884),\n",
-                            "  (-1.970464, 52.779985),\n",
-                            "  (-1.704623, 52.629671),\n",
-                            "  (-2.010652, 52.82197),\n",
-                            "  (-1.718895, 52.638965),\n",
-                            "  (-1.707548, 52.634173),\n",
-                            "  (-1.705774, 52.634169),\n",
-                            "  (-1.683413, 52.600039),\n",
-                            "  (-1.85391, 52.699261),\n",
-                            "  (-1.682749, 52.610196),\n",
-                            "  (-1.682766, 52.607859),\n",
-                            "  (-1.702855, 52.628857),\n",
-                            "  (-1.682964, 52.600847),\n",
-                            "  (-1.793969, 52.669595),\n",
-                            "  (-2.000709, 52.807947),\n",
-                            "  (-1.703892, 52.62841),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-1.691766, 52.629998),\n",
-                            "  (-2.28377, 52.946047),\n",
-                            "  (-1.77231, 52.654363),\n",
-                            "  (-1.703754, 52.626972),\n",
-                            "  (-1.941569, 52.769636),\n",
-                            "  (-1.750498, 52.642632),\n",
-                            "  (-2.077946, 52.861229),\n",
-                            "  (-1.70535, 52.631381),\n",
-                            "  (-2.121983, 52.886813),\n",
-                            "  (-1.703001, 52.629217),\n",
-                            "  (-1.685213, 52.616765),\n",
-                            "  (-2.342704, 52.946071),\n",
-                            "  (-2.021488, 52.828441),\n",
-                            "  (-1.704493, 52.626973),\n",
-                            "  (-1.704623, 52.629671),\n",
-                            "  (-1.69065, 52.620645),\n",
-                            "  (-2.225183, 52.926845),\n",
-                            "  (-1.906961, 52.733925),\n",
-                            "  (-2.125255, 52.887708),\n",
-                            "  (-1.682738, 52.611724),\n",
-                            "  (-1.703892, 52.62841),\n",
-                            "  (-1.885057, 52.728692),\n",
-                            "  (-1.942615, 52.762895),\n",
-                            "  (-1.999819, 52.805879),\n",
-                            "  (-1.750203, 52.642541),\n",
-                            "  (-1.823083, 52.674317),\n",
-                            "  (-1.887421, 52.730402),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-1.690327, 52.6246),\n",
-                            "  (-1.875449, 52.722389),\n",
-                            "  (-2.050156, 52.848839),\n",
-                            "  (-1.96913, 52.779805),\n",
-                            "  (-1.900298, 52.73338),\n",
-                            "  (-1.736455, 52.643141),\n",
-                            "  (-1.704623, 52.629581),\n",
-                            "  (-1.703906, 52.626433),\n",
-                            "  (-2.002341, 52.816397),\n",
-                            "  (-1.835191, 52.679549),\n",
-                            "  (-1.774959, 52.656615),\n",
-                            "  (-1.833273, 52.678107),\n",
-                            "  (-1.705486, 52.633089),\n",
-                            "  (-1.705629, 52.633899),\n",
-                            "  (-1.68416, 52.598872),\n",
-                            "  (-1.831062, 52.676127),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-2.273799, 52.94616),\n",
-                            "  (-1.94158, 52.761276),\n",
-                            "  (-1.684336, 52.615504),\n",
-                            "  (-1.68419, 52.615144),\n",
-                            "  (-1.980542, 52.787269),\n",
-                            "  (-1.689702, 52.629363),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-2.108737, 52.879184),\n",
-                            "  (-1.907702, 52.733926),\n",
-                            "  (-1.706809, 52.634171),\n",
-                            "  (-1.831359, 52.675857),\n",
-                            "  (-1.695914, 52.62848),\n",
-                            "  (-2.224588, 52.926756),\n",
-                            "  (-1.703755, 52.626882),\n",
-                            "  (-1.703004, 52.628768),\n",
-                            "  (-2.021488, 52.828441),\n",
-                            "  (-1.702708, 52.628767),\n",
-                            "  (-2.006941, 52.818195),\n",
-                            "  (-1.823377, 52.674767),\n",
-                            "  (-1.802534, 52.672397),\n",
-                            "  (-1.827054, 52.679807),\n",
-                            "  (-1.969871, 52.779895),\n",
-                            "  (-1.683463, 52.613614),\n",
-                            "  (-1.703884, 52.629669),\n",
-                            "  (-1.932676, 52.769452),\n",
-                            "  (-1.834747, 52.679548),\n",
-                            "  (-1.824552, 52.676836),\n",
-                            "  (-1.919386, 52.742564),\n",
-                            "  (-1.691174, 52.630176),\n",
-                            "  (-1.835042, 52.679638),\n",
-                            "  (-1.950752, 52.775484),\n",
-                            "  (-1.938323, 52.758577),\n",
-                            "  (-1.925004, 52.748591),\n",
-                            "  (-2.235753, 52.928353),\n",
-                            "  (-1.705774, 52.634169),\n",
-                            "  (-1.83519, 52.679728),\n",
-                            "  (-1.848754, 52.692512),\n",
-                            "  (-1.695767, 52.62839),\n",
-                            "  (-1.684273, 52.603637),\n",
-                            "  (-1.853614, 52.699171),\n",
-                            "  (-1.858635, 52.702503),\n",
-                            "  (-1.736603, 52.643141),\n",
-                            "  (-1.782032, 52.661393),\n",
-                            "  (-2.125255, 52.887708),\n",
-                            "  (-1.970612, 52.780255),\n",
-                            "  (-1.703754, 52.626972),\n",
-                            "  (-2.000709, 52.815049),\n",
-                            "  (-1.942615, 52.762625),\n",
-                            "  (-1.714622, 52.636977),\n",
-                            "  (-1.971057, 52.780974),\n",
-                            "  (-1.9145, 52.741482),\n",
-                            "  (-1.703892, 52.62841),\n",
-                            "  (-1.689905, 52.579739),\n",
-                            "  (-1.682053, 52.563536),\n",
-                            "  (-1.685848, 52.589977),\n",
-                            "  (-1.689905, 52.579739),\n",
-                            "  (-1.680614, 52.558587),\n",
-                            "  (-1.685541, 52.571007),\n",
-                            "  (-1.689432, 52.584143),\n",
-                            "  (-2.554282, 53.081912),\n",
-                            "  (-2.418298, 53.007047),\n",
-                            "  (-2.801164, 53.199886),\n",
-                            "  (-2.792621, 53.199313),\n",
-                            "  (-2.683692, 53.16502),\n",
-                            "  (-2.603031, 53.1197),\n",
-                            "  (-2.566785, 53.090483),\n",
-                            "  (-2.857321, 53.193292),\n",
-                            "  (-2.770166, 53.191011),\n",
-                            "  (-2.791718, 53.19905),\n",
-                            "  (-2.847616, 53.19453),\n",
-                            "  (-2.819687, 53.197782),\n",
-                            "  (-2.811918, 53.198554),\n",
-                            "  (-2.55742, 53.082167),\n",
-                            "  (-2.603032, 53.11979),\n",
-                            "  (-2.554431, 53.081912),\n",
-                            "  (-2.845523, 53.194635),\n",
-                            "  (-2.856872, 53.193295),\n",
-                            "  (-2.514727, 53.070044),\n",
-                            "  (-2.845528, 53.194905),\n",
-                            "  (-2.515027, 53.070133),\n",
-                            "  (-2.507644, 53.064232),\n",
-                            "  (-2.817146, 53.197979),\n",
-                            "  (-2.55443, 53.081822),\n",
-                            "  (-2.792619, 53.199224),\n",
-                            "  (-2.47126, 53.039481),\n",
-                            "  (-2.55443, 53.081822),\n",
-                            "  (-2.555173, 53.081549),\n",
-                            "  (-2.411727, 52.989901),\n",
-                            "  (-2.743968, 53.182008),\n",
-                            "  (-2.514877, 53.070134),\n",
-                            "  (-2.55443, 53.081822),\n",
-                            "  (-2.55443, 53.081822),\n",
-                            "  (-2.777867, 53.194736),\n",
-                            "  (-2.549366, 53.082744),\n",
-                            "  (-2.819388, 53.197784),\n",
-                            "  (-2.555172, 53.081459),\n",
-                            "  (-2.871366, 53.192022),\n",
-                            "  (-2.865837, 53.192511),\n",
-                            "  (-2.469612, 53.038768),\n",
-                            "  (-2.869104, 53.191229),\n",
-                            "  (-2.554431, 53.081912),\n",
-                            "  (-2.75875, 53.188657),\n",
-                            "  (-2.452291, 53.036858),\n",
-                            "  (-2.632674, 53.13375),\n",
-                            "  (-2.875713, 53.192349),\n",
-                            "  (-2.847761, 53.194259),\n",
-                            "  (-2.557722, 53.082436),\n",
-                            "  (-2.798172, 53.199996),\n",
-                            "  (-2.489994, 53.047496),\n",
-                            "  (-2.452141, 53.036768),\n",
-                            "  (-2.492254, 53.049464),\n",
-                            "  (-2.801314, 53.199885),\n",
-                            "  (-2.66051, 53.145734),\n",
-                            "  (-2.315917, 52.946235),\n",
-                            "  (-1.698723, 52.628218),\n",
-                            "  (-2.061742, 52.85153),\n",
-                            "  (-1.706661, 52.634171),\n",
-                            "  (-1.836519, 52.680449),\n",
-                            "  (-1.702855, 52.628857),\n",
-                            "  (-1.919534, 52.742654),\n",
-                            "  (-1.709762, 52.634448),\n",
-                            "  (-2.135507, 52.886708),\n",
-                            "  (-2.284813, 52.946314),\n",
-                            "  (-1.933437, 52.756058),\n",
-                            "  (-2.114685, 52.880887),\n",
-                            "  (-2.078095, 52.861409),\n",
-                            "  (-1.94158, 52.761096),\n",
-                            "  (-1.690565, 52.632691),\n",
-                            "  (-1.93699, 52.758307),\n",
-                            "  (-1.830023, 52.677204),\n",
-                            "  (-2.238581, 52.928617),\n",
-                            "  (-1.93048, 52.7521),\n",
-                            "  (-1.745922, 52.641723),\n",
-                            "  (-1.971797, 52.782323),\n",
-                            "  (-1.922639, 52.745893),\n",
-                            "  (-1.931346, 52.766844),\n",
-                            "  (-1.773487, 52.655534),\n",
-                            "  (-1.936227, 52.773589),\n",
-                            "  (-1.703754, 52.626972),\n",
-                            "  (-1.772456, 52.654633),\n",
-                            "  (-1.970612, 52.780255),\n",
-                            "  (-1.93699, 52.758307),\n",
-                            "  (-1.970613, 52.780075),\n",
-                            "  (-1.690337, 52.623251),\n",
-                            "  (-1.886238, 52.730041),\n",
-                            "  (-1.698427, 52.628217),\n",
-                            "  (-1.704476, 52.629581),\n",
-                            "  (-2.181123, 52.920088),\n",
-                            "  (-1.93699, 52.758307),\n",
-                            "  (-1.68386, 52.599501),\n",
-                            "  (-1.814365, 52.672506),\n",
-                            "  (-1.751088, 52.642813),\n",
-                            "  (-2.20583, 52.923734),\n",
-                            "  (-1.704475, 52.62967),\n",
-                            "  (-1.937583, 52.758397),\n",
-                            "  (-1.703737, 52.629579),\n",
-                            "  (-1.920105, 52.754072),\n",
-                            "  (-1.744887, 52.641811),\n",
-                            "  (-1.928408, 52.750841),\n",
-                            "  (-2.125849, 52.887708),\n",
-                            "  (-1.704197, 52.627063),\n",
-                            "  (-2.172932, 52.917314),\n",
-                            "  (-1.848755, 52.692242),\n",
-                            "  (-1.831802, 52.676128),\n",
-                            "  (-2.285112, 52.946403),\n",
-                            "  (-2.125255, 52.887708),\n",
-                            "  (-1.853912, 52.698721),\n",
-                            "  (-1.691471, 52.629997),\n",
-                            "  (-1.712268, 52.635353),\n",
-                            "  (-2.077946, 52.861229),\n",
-                            "  (-1.702792, 52.638117),\n",
-                            "  (-1.7036, 52.62796),\n",
-                            "  (-1.849197, 52.692692),\n",
-                            "  (-1.776285, 52.657607),\n",
-                            "  (-2.350609, 52.948296),\n",
-                            "  (-1.712562, 52.635624),\n",
-                            "  (-1.848755, 52.692332),\n",
-                            "  (-1.684335, 52.615594),\n",
-                            "  (-1.703892, 52.62841),\n",
-                            "  (-1.831211, 52.675947),\n",
-                            "  (-1.990771, 52.799226),\n",
-                            "  (-1.737491, 52.642963),\n",
-                            "  (-1.827055, 52.679627),\n",
-                            "  (-1.707547, 52.634263),\n",
-                            "  (-2.00056, 52.807587),\n",
-                            "  (-1.689556, 52.629183),\n",
-                            "  (-1.682749, 52.610286),\n",
-                            "  (-1.936523, 52.773679),\n",
-                            "  (-2.273948, 52.94607),\n",
-                            "  (-2.007386, 52.819453),\n",
-                            "  (-1.703152, 52.628678),\n",
-                            "  (-1.835042, 52.679638),\n",
-                            "  (-1.932823, 52.769991),\n",
-                            "  (-2.000709, 52.807677),\n",
-                            "  (-1.824257, 52.676566),\n",
-                            "  (-1.950604, 52.775214),\n",
-                            "  (-1.907702, 52.733926),\n",
-                            "  (-1.687773, 52.630616),\n",
-                            "  (-1.814217, 52.672505),\n",
-                            "  (-2.396186, 52.968379),\n",
-                            "  (-2.403729, 52.978871),\n",
-                            "  (-1.689337, 52.576681),\n",
-                            "  (-1.690193, 52.580818),\n",
-                            "  (-2.757247, 53.188307),\n",
-                            "  (-2.411888, 52.991159),\n",
-                            "  (-2.518207, 53.073985),\n",
-                            "  (-2.585136, 53.11134),\n",
-                            "  (-2.798922, 53.20008),\n",
-                            "  (-2.588598, 53.11321),\n",
-                            "  (-2.5173, 53.073),\n",
-                            "  (-2.802061, 53.19979),\n",
-                            "  (-2.603031, 53.1197),\n",
-                            "  (-2.711602, 53.17034),\n",
-                            "  (-2.711451, 53.170251),\n",
-                            "  (-2.608458, 53.123089),\n",
-                            "  (-2.813563, 53.198453),\n",
-                            "  (-2.845828, 53.194902),\n",
-                            "  (-2.833727, 53.196156),\n",
-                            "  (-2.509457, 53.078787),\n",
-                            "  (-2.875862, 53.192348),\n",
-                            "  (-2.875713, 53.192349),\n",
-                            "  (-2.872561, 53.191923),\n",
-                            "  (-2.625171, 53.131722),\n",
-                            "  (-2.845222, 53.194547),\n",
-                            "  (-2.871364, 53.191932),\n",
-                            "  (-2.521229, 53.077028),\n",
-                            "  (-2.582125, 53.109646),\n",
-                            "  (-2.625171, 53.131722),\n",
-                            "  (-2.868818, 53.19186),\n",
-                            "  (-2.549366, 53.082744),\n",
-                            "  (-2.602579, 53.119433),\n",
-                            "  (-2.84553, 53.194994),\n",
-                            "  (-2.561649, 53.085923),\n",
-                            "  (-2.831336, 53.196353),\n",
-                            "  (-2.712363, 53.171145),\n",
-                            "  (-2.710843, 53.169715),\n",
-                            "  (-2.880799, 53.192222),\n",
-                            "  (-2.735087, 53.179007),\n",
-                            "  (-2.417646, 53.001207),\n",
-                            "  (-2.815503, 53.19817),\n",
-                            "  (-2.516089, 53.071567),\n",
-                            "  (-2.514727, 53.070044),\n",
-                            "  (-2.875563, 53.19235),\n",
-                            "  (-2.517753, 53.073447),\n",
-                            "  (-2.60876, 53.123267),\n",
-                            "  (-2.868818, 53.19186),\n",
-                            "  (-2.625021, 53.131723),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.558173, 53.082703),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.565122, 53.088873),\n",
-                            "  (-2.442235, 53.030603),\n",
-                            "  (-2.66051, 53.145734),\n",
-                            "  (-2.684591, 53.165105),\n",
-                            "  (-2.701519, 53.166714),\n",
-                            "  (-2.492851, 53.062586),\n",
-                            "  (-2.843584, 53.195008),\n",
-                            "  (-2.803854, 53.199598),\n",
-                            "  (-2.578964, 53.107864),\n",
-                            "  (-2.440424, 53.028452),\n",
-                            "  (-2.882142, 53.192032),\n",
-                            "  (-2.778017, 53.194735),\n",
-                            "  (-2.81416, 53.198359),\n",
-                            "  (-2.847761, 53.194259),\n",
-                            "  (-2.210962, 53.061352),\n",
-                            "  (-1.969278, 52.779715),\n",
-                            "  (-1.909182, 52.734376),\n",
-                            "  (-2.125255, 52.887708),\n",
-                            "  (-1.879147, 52.723921),\n",
-                            "  (-1.787785, 52.6641),\n",
-                            "  (-2.026982, 52.832575),\n",
-                            "  (-1.70404, 52.628411),\n",
-                            "  (-2.283024, 52.945869),\n",
-                            "  (-1.857452, 52.702052),\n",
-                            "  (-1.704623, 52.629581),\n",
-                            "  (-1.703893, 52.62832),\n",
-                            "  (-1.913908, 52.741122),\n",
-                            "  (-2.26452, 52.937551),\n",
-                            "  (-1.728478, 52.642583),\n",
-                            "  (-1.703755, 52.626882),\n",
-                            "  (-1.703754, 52.626972),\n",
-                            "  (-1.689704, 52.629183),\n",
-                            "  (-1.831654, 52.676127),\n",
-                            "  (-1.684336, 52.615504),\n",
-                            "  (-1.702856, 52.628767),\n",
-                            "  (-1.704327, 52.62967),\n",
-                            "  (-1.704327, 52.62967),\n",
-                            "  (-1.704049, 52.627152),\n",
-                            "  (-1.851703, 52.695392),\n",
-                            "  (-1.690522, 52.617948),\n",
-                            "  (-1.689239, 52.632149),\n",
-                            "  (-1.698574, 52.628307),\n",
-                            "  (-1.848607, 52.692242),\n",
-                            "  (-1.703906, 52.626433),\n",
-                            "  (-1.704475, 52.62967),\n",
-                            "  (-1.907702, 52.734015),\n",
-                            "  (-2.07482, 52.857636),\n",
-                            "  (-1.703004, 52.628768),\n",
-                            "  (-1.793969, 52.669595),\n",
-                            "  (-2.224438, 52.926667),\n",
-                            "  (-2.108885, 52.879274),\n",
-                            "  (-1.827054, 52.679807),\n",
-                            "  (-1.824258, 52.676386),\n",
-                            "  (-1.753596, 52.643717),\n",
-                            "  (-2.078243, 52.861319),\n",
-                            "  (-1.969575, 52.779625),\n",
-                            "  (-2.342852, 52.945981),\n",
-                            "  ...])"
-                        ]
-                    },
-                    "execution_count": 45,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "def SED(X, Y):\n",
-                "    #Squared Eucliden distance is computed between the x and y.\n",
-                "    return sum((i-j)**2 for i, j in zip(X, Y))\n",
-                "    \n",
-                "def nearest_neighbor_bf(*, query_points,reference_points):\n",
-                "    #Nearest neighbor are found to the nearest coordinate\n",
-                "    for query_p in query_points['Accident_coord']:\n",
-                "        datad2.append(query_p)\n",
-                "        datad.append( min(\n",
-                "            reference_points,\n",
-                "            key=lambda X: SED(X, query_p))\n",
-                "        )\n",
-                "    return datad,datad2\n",
-                "datad=[]\n",
-                "datad2=[]\n",
-                "reference_points =Trafficvolumepoints[\"coordinates\"]\n",
-                "query_points = A2572019\n",
-                "count_point_id = Trafficvolumepoints[\"count_point_id\"]\n",
-                "\n",
-                "points=nearest_neighbor_bf(\n",
-                "    query_points = query_points,reference_points=reference_points\n",
-                ")\n",
-                "points"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 46,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>(-2.7519462, 53.186017)</td>\n",
-                            "      <td>(-2.709482, 53.168825)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>(-2.6589408, 53.14422)</td>\n",
-                            "      <td>(-2.649655, 53.139771)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>(-2.8462507, 53.19482424)</td>\n",
-                            "      <td>(-2.843584, 53.195008)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>(-2.877035, 53.192353)</td>\n",
-                            "      <td>(-2.873913, 53.192183)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>(-2.4909186, 53.062152)</td>\n",
-                            "      <td>(-2.473493, 53.039112)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1973</th>\n",
-                            "      <td>(-1.7035958, 52.627988)</td>\n",
-                            "      <td>(-1.704722, 52.626533)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1974</th>\n",
-                            "      <td>(-1.95766414, 52.7773547)</td>\n",
-                            "      <td>(-1.980809, 52.787444)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1975</th>\n",
-                            "      <td>(-2.34039617, 52.94605398)</td>\n",
-                            "      <td>(-2.333195, 52.946403)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1976</th>\n",
-                            "      <td>(-1.6823895, 52.561381)</td>\n",
-                            "      <td>(-1.680807, 52.558724)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1977</th>\n",
-                            "      <td>(-1.6850822, 52.597375)</td>\n",
-                            "      <td>(-1.689966, 52.580045)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>1978 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                     coordinates          Accident_coord\n",
-                            "0        (-2.7519462, 53.186017)  (-2.709482, 53.168825)\n",
-                            "1         (-2.6589408, 53.14422)  (-2.649655, 53.139771)\n",
-                            "2      (-2.8462507, 53.19482424)  (-2.843584, 53.195008)\n",
-                            "3         (-2.877035, 53.192353)  (-2.873913, 53.192183)\n",
-                            "4        (-2.4909186, 53.062152)  (-2.473493, 53.039112)\n",
-                            "...                          ...                     ...\n",
-                            "1973     (-1.7035958, 52.627988)  (-1.704722, 52.626533)\n",
-                            "1974   (-1.95766414, 52.7773547)  (-1.980809, 52.787444)\n",
-                            "1975  (-2.34039617, 52.94605398)  (-2.333195, 52.946403)\n",
-                            "1976     (-1.6823895, 52.561381)  (-1.680807, 52.558724)\n",
-                            "1977     (-1.6850822, 52.597375)  (-1.689966, 52.580045)\n",
-                            "\n",
-                            "[1978 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 46,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DataframforA51= pd.DataFrame(list(zip(points[0], points[1])),columns =['coordinates','Accident_coord'])\n",
-                "#DataframforA257 = pd.DataFrame(points[0])\n",
-                "DataframforA51"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 47,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.series.Series"
-                        ]
-                    },
-                    "execution_count": 47,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DataframforA51['coordinates'] = DataframforA51['coordinates'].astype(str)\n",
-                "Trafficvolumepoints['coordinates'] = Trafficvolumepoints['coordinates'].astype(str)\n",
-                "\n",
-                "type(DataframforA51['coordinates'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 48,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.913612, 52.740852)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.91206, 52.739557)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.913879, 52.741123)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.912874, 52.740255)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.912963, 52.740372)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2022</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.93048, 52.7521)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2023</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.922639, 52.745893)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2024</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.920105, 52.754072)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2025</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.928408, 52.750841)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2026</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.920847, 52.754509)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2027 rows × 6 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     road_name count_point_id  longitude   latitude               coordinates  \\\n",
-                            "0          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "1          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "2          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "3          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "4          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "...        ...            ...        ...        ...                       ...   \n",
-                            "2022       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2023       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2024       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2025       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2026       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "\n",
-                            "              Accident_coord  \n",
-                            "0     (-1.913612, 52.740852)  \n",
-                            "1      (-1.91206, 52.739557)  \n",
-                            "2     (-1.913879, 52.741123)  \n",
-                            "3     (-1.912874, 52.740255)  \n",
-                            "4     (-1.912963, 52.740372)  \n",
-                            "...                      ...  \n",
-                            "2022     (-1.93048, 52.7521)  \n",
-                            "2023  (-1.922639, 52.745893)  \n",
-                            "2024  (-1.920105, 52.754072)  \n",
-                            "2025  (-1.928408, 52.750841)  \n",
-                            "2026  (-1.920847, 52.754509)  \n",
-                            "\n",
-                            "[2027 rows x 6 columns]"
-                        ]
-                    },
-                    "execution_count": 48,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "\n",
-                "A51accidentoncountpoint=pd.merge(Trafficvolumepoints, DataframforA51, on='coordinates',how='inner')\n",
-                "A51accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 49,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.913612, 52.740852)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.91206, 52.739557)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.913879, 52.741123)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.912874, 52.740255)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.912963, 52.740372)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2022</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.93048, 52.7521)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2023</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.922639, 52.745893)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2024</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.920105, 52.754072)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2025</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.928408, 52.750841)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2026</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.920847, 52.754509)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2027 rows × 6 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     road_name count_point_id  longitude   latitude               coordinates  \\\n",
-                            "0          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "1          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "2          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "3          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "4          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "...        ...            ...        ...        ...                       ...   \n",
-                            "2022       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2023       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2024       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2025       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2026       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "\n",
-                            "              Accident_coord  \n",
-                            "0     (-1.913612, 52.740852)  \n",
-                            "1      (-1.91206, 52.739557)  \n",
-                            "2     (-1.913879, 52.741123)  \n",
-                            "3     (-1.912874, 52.740255)  \n",
-                            "4     (-1.912963, 52.740372)  \n",
-                            "...                      ...  \n",
-                            "2022     (-1.93048, 52.7521)  \n",
-                            "2023  (-1.922639, 52.745893)  \n",
-                            "2024  (-1.920105, 52.754072)  \n",
-                            "2025  (-1.928408, 52.750841)  \n",
-                            "2026  (-1.920847, 52.754509)  \n",
-                            "\n",
-                            "[2027 rows x 6 columns]"
-                        ]
-                    },
-                    "execution_count": 49,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A51accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 50,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------------------+\n",
-                        "|count_point_id|Total_Accident_onthatpoint|\n",
-                        "+--------------+--------------------------+\n",
-                        "|         99805|                       137|\n",
-                        "|         56509|                       122|\n",
-                        "|         99700|                       110|\n",
-                        "|         27905|                        94|\n",
-                        "|         36559|                        86|\n",
-                        "|         57148|                        83|\n",
-                        "|         16510|                        79|\n",
-                        "|          7259|                        79|\n",
-                        "|         81264|                        69|\n",
-                        "|         81265|                        68|\n",
-                        "|          8661|                        65|\n",
-                        "|          6530|                        62|\n",
-                        "|         80750|                        54|\n",
-                        "|          6532|                        49|\n",
-                        "|         36553|                        49|\n",
-                        "|          6533|                        48|\n",
-                        "|         18420|                        48|\n",
-                        "|         36552|                        47|\n",
-                        "|         16514|                        39|\n",
-                        "|          8522|                        38|\n",
-                        "+--------------+--------------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "A51accidentoncountpointsparkDF=spark.createDataFrame(A51accidentoncountpoint)\n",
-                "#A572accidentoncountpointsparkDF.show()\n",
-                "A51accidentoncountpointsparkDF_countgroup = A51accidentoncountpointsparkDF.groupby('count_point_id').agg(F.count(A51accidentoncountpointsparkDF.road_name).alias('Total_Accident_onthatpoint'))\n",
-                "A51accidentoncountpointsparkDF_countgroup.sort(col('Total_Accident_onthatpoint').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 51,
-            "metadata": {},
-            "outputs": [
-                {
-                    "ename": "TypeError",
-                    "evalue": "dtype '<class 'tuple'>' not understood",
-                    "output_type": "error",
-                    "traceback": [
-                        "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-                        "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
-                        "\u001b[0;32m/var/folders/v0/jqv1xcw13pn37fh0ppsl8b_w0000gp/T/ipykernel_52862/338562213.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA51accidentoncountpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'coordinates'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mA51accidentoncountpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'coordinates'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;31m#type(M25accidentoncountpoint['coordinates'][0])\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m   5804\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5805\u001b[0m             \u001b[0;31m# else, only a single dtype is given\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5806\u001b[0;31m             \u001b[0mnew_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   5807\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5808\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m    412\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    413\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 414\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    415\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    416\u001b[0m     def convert(\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, align_keys, ignore_failures, **kwargs)\u001b[0m\n\u001b[1;32m    325\u001b[0m                     \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    326\u001b[0m                 \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 327\u001b[0;31m                     \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    328\u001b[0m             \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    329\u001b[0m                 \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mignore_failures\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m    590\u001b[0m         \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    591\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 592\u001b[0;31m         \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array_safe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    593\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    594\u001b[0m         \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmaybe_coerce_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/dtypes/cast.py\u001b[0m in \u001b[0;36mastype_array_safe\u001b[0;34m(values, dtype, copy, errors)\u001b[0m\n\u001b[1;32m   1295\u001b[0m         \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1296\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1297\u001b[0;31m     \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpandas_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1298\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1299\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/dtypes/common.py\u001b[0m in \u001b[0;36mpandas_dtype\u001b[0;34m(dtype)\u001b[0m\n\u001b[1;32m   1789\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mnpdtype\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1790\u001b[0m     \u001b[0;32melif\u001b[0m \u001b[0mnpdtype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"O\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1791\u001b[0;31m         \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"dtype '{dtype}' not understood\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1792\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1793\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mnpdtype\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;31mTypeError\u001b[0m: dtype '<class 'tuple'>' not understood"
-                    ]
-                }
-            ],
-            "source": [
-                "A51accidentoncountpoint['coordinates'] = A51accidentoncountpoint['coordinates'].astype(tuple)\n",
-                "#type(M25accidentoncountpoint['coordinates'][0])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 52,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.913612, 52.740852)</td>\n",
-                            "      <td>-1.913612</td>\n",
-                            "      <td>52.740852</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.91206, 52.739557)</td>\n",
-                            "      <td>-1.912060</td>\n",
-                            "      <td>52.739557</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.913879, 52.741123)</td>\n",
-                            "      <td>-1.913879</td>\n",
-                            "      <td>52.741123</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.912874, 52.740255)</td>\n",
-                            "      <td>-1.912874</td>\n",
-                            "      <td>52.740255</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>70287</td>\n",
-                            "      <td>-1.913450</td>\n",
-                            "      <td>52.744293</td>\n",
-                            "      <td>(-1.9134495, 52.744293)</td>\n",
-                            "      <td>(-1.912963, 52.740372)</td>\n",
-                            "      <td>-1.912963</td>\n",
-                            "      <td>52.740372</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2022</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.93048, 52.7521)</td>\n",
-                            "      <td>-1.930480</td>\n",
-                            "      <td>52.752100</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2023</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.922639, 52.745893)</td>\n",
-                            "      <td>-1.922639</td>\n",
-                            "      <td>52.745893</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2024</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.920105, 52.754072)</td>\n",
-                            "      <td>-1.920105</td>\n",
-                            "      <td>52.754072</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2025</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.928408, 52.750841)</td>\n",
-                            "      <td>-1.928408</td>\n",
-                            "      <td>52.750841</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2026</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>46549</td>\n",
-                            "      <td>-1.927364</td>\n",
-                            "      <td>52.750291</td>\n",
-                            "      <td>(-1.9273638, 52.7502906)</td>\n",
-                            "      <td>(-1.920847, 52.754509)</td>\n",
-                            "      <td>-1.920847</td>\n",
-                            "      <td>52.754509</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2027 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     road_name count_point_id  longitude   latitude               coordinates  \\\n",
-                            "0          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "1          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "2          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "3          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "4          A51          70287  -1.913450  52.744293   (-1.9134495, 52.744293)   \n",
-                            "...        ...            ...        ...        ...                       ...   \n",
-                            "2022       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2023       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2024       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2025       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "2026       A51          46549  -1.927364  52.750291  (-1.9273638, 52.7502906)   \n",
-                            "\n",
-                            "              Accident_coord        b1         b2  \n",
-                            "0     (-1.913612, 52.740852) -1.913612  52.740852  \n",
-                            "1      (-1.91206, 52.739557) -1.912060  52.739557  \n",
-                            "2     (-1.913879, 52.741123) -1.913879  52.741123  \n",
-                            "3     (-1.912874, 52.740255) -1.912874  52.740255  \n",
-                            "4     (-1.912963, 52.740372) -1.912963  52.740372  \n",
-                            "...                      ...       ...        ...  \n",
-                            "2022     (-1.93048, 52.7521) -1.930480  52.752100  \n",
-                            "2023  (-1.922639, 52.745893) -1.922639  52.745893  \n",
-                            "2024  (-1.920105, 52.754072) -1.920105  52.754072  \n",
-                            "2025  (-1.928408, 52.750841) -1.928408  52.750841  \n",
-                            "2026  (-1.920847, 52.754509) -1.920847  52.754509  \n",
-                            "\n",
-                            "[2027 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 52,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A51accidentoncountpoint[['b1', 'b2']]=pd.DataFrame(A51accidentoncountpoint['Accident_coord'].tolist(),index=A51accidentoncountpoint.index)\n",
-                "A51accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 53,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>191</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627988</td>\n",
-                            "      <td>(-1.7035958, 52.627988)</td>\n",
-                            "      <td>(-1.704792, 52.626525)</td>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626525</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>192</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627988</td>\n",
-                            "      <td>(-1.7035958, 52.627988)</td>\n",
-                            "      <td>(-1.704792, 52.626435)</td>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626435</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>193</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627988</td>\n",
-                            "      <td>(-1.7035958, 52.627988)</td>\n",
-                            "      <td>(-1.703753, 52.627241)</td>\n",
-                            "      <td>-1.703753</td>\n",
-                            "      <td>52.627241</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>194</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627988</td>\n",
-                            "      <td>(-1.7035958, 52.627988)</td>\n",
-                            "      <td>(-1.703902, 52.626972)</td>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>195</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627988</td>\n",
-                            "      <td>(-1.7035958, 52.627988)</td>\n",
-                            "      <td>(-1.703902, 52.626972)</td>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1064</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627989</td>\n",
-                            "      <td>(-1.70359582, 52.62798917)</td>\n",
-                            "      <td>(-1.70405, 52.628537)</td>\n",
-                            "      <td>-1.704050</td>\n",
-                            "      <td>52.628537</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1065</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627989</td>\n",
-                            "      <td>(-1.70359582, 52.62798917)</td>\n",
-                            "      <td>(-1.697571, 52.628215)</td>\n",
-                            "      <td>-1.697571</td>\n",
-                            "      <td>52.628215</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1066</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627989</td>\n",
-                            "      <td>(-1.70359582, 52.62798917)</td>\n",
-                            "      <td>(-1.698753, 52.628236)</td>\n",
-                            "      <td>-1.698753</td>\n",
-                            "      <td>52.628236</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1067</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627989</td>\n",
-                            "      <td>(-1.70359582, 52.62798917)</td>\n",
-                            "      <td>(-1.704084, 52.628492)</td>\n",
-                            "      <td>-1.704084</td>\n",
-                            "      <td>52.628492</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1068</th>\n",
-                            "      <td>A51</td>\n",
-                            "      <td>99805</td>\n",
-                            "      <td>-1.703596</td>\n",
-                            "      <td>52.627989</td>\n",
-                            "      <td>(-1.70359582, 52.62798917)</td>\n",
-                            "      <td>(-1.697323, 52.628303)</td>\n",
-                            "      <td>-1.697323</td>\n",
-                            "      <td>52.628303</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>137 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     road_name count_point_id  longitude   latitude  \\\n",
-                            "191        A51          99805  -1.703596  52.627988   \n",
-                            "192        A51          99805  -1.703596  52.627988   \n",
-                            "193        A51          99805  -1.703596  52.627988   \n",
-                            "194        A51          99805  -1.703596  52.627988   \n",
-                            "195        A51          99805  -1.703596  52.627988   \n",
-                            "...        ...            ...        ...        ...   \n",
-                            "1064       A51          99805  -1.703596  52.627989   \n",
-                            "1065       A51          99805  -1.703596  52.627989   \n",
-                            "1066       A51          99805  -1.703596  52.627989   \n",
-                            "1067       A51          99805  -1.703596  52.627989   \n",
-                            "1068       A51          99805  -1.703596  52.627989   \n",
-                            "\n",
-                            "                     coordinates          Accident_coord        b1         b2  \n",
-                            "191      (-1.7035958, 52.627988)  (-1.704792, 52.626525) -1.704792  52.626525  \n",
-                            "192      (-1.7035958, 52.627988)  (-1.704792, 52.626435) -1.704792  52.626435  \n",
-                            "193      (-1.7035958, 52.627988)  (-1.703753, 52.627241) -1.703753  52.627241  \n",
-                            "194      (-1.7035958, 52.627988)  (-1.703902, 52.626972) -1.703902  52.626972  \n",
-                            "195      (-1.7035958, 52.627988)  (-1.703902, 52.626972) -1.703902  52.626972  \n",
-                            "...                          ...                     ...       ...        ...  \n",
-                            "1064  (-1.70359582, 52.62798917)   (-1.70405, 52.628537) -1.704050  52.628537  \n",
-                            "1065  (-1.70359582, 52.62798917)  (-1.697571, 52.628215) -1.697571  52.628215  \n",
-                            "1066  (-1.70359582, 52.62798917)  (-1.698753, 52.628236) -1.698753  52.628236  \n",
-                            "1067  (-1.70359582, 52.62798917)  (-1.704084, 52.628492) -1.704084  52.628492  \n",
-                            "1068  (-1.70359582, 52.62798917)  (-1.697323, 52.628303) -1.697323  52.628303  \n",
-                            "\n",
-                            "[137 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 53,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "above_A51 = A51accidentoncountpoint[A51accidentoncountpoint[\"count_point_id\"] == \"99805\"]\n",
-                "above_A51"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 54,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(52.626335, 52.629263, -1.70482, -1.69695)"
-                        ]
-                    },
-                    "execution_count": 54,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "BBBox = (above_A51.b2.min(), above_A51.b2.max(),above_A51.b1.min(), above_A51.b1.max())\n",
-                "BBBox\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 55,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.image.AxesImage at 0x11025e1c0>"
-                        ]
-                    },
-                    "execution_count": 55,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAOiCAYAAAB3ubyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRty37Xh31+1cw5V7O709/+3deip9ZIgEBWE4kAEgISGwcIiU2TMMhIGEmGCSOJIcbBMSN2YAzZ8QgQbGQDdhwyZNkGCwdLtEIwkEAOemoe0nv3vduee0+7915rzaaqfvmjaq619j77dPec2+je/Ttjn732XHPWrFmz6le/3/fXiapyTud0Tud0Th8fMh90B87pnM7pnM7p/aVzxn9O53RO5/Qxo3PGf07ndE7n9DGjc8Z/Tud0Tuf0MaNzxn9O53RO5/Qxo3PGf07ndE7n9DGjc8Z/Tu87icjfEpH/2VNs78+IyB97Wu19UCQiPyIi/8ojnvuKiPz697pP5/TRpHPGf07vCRXGtBKRYxG5LiI/KCLzx2zjEyKiIuK2jv0eEfl72+ep6h9U1T/xtPp+qg+/X0R+XkSOynP81yKy8xTa/eMi8pe2j6nq96rqf/QU2v5BEelLn49E5GdE5E+KyN5jtHG+sXyE6Zzxn9N7Sb9FVefArwS+BfijH3B/HotE5DuBfwv4Xaq6A3wN8J99sL16ZPq3S58vA78X+Fbgx0Vk9sF265w+DHTO+M/pPSdVfR34EeDrTn8nIkZE/qiIfEVE3haR/3hLMv075fedojn8WuDPAL+2/H2ntPGDIvJvls/fJSKvici/Wtp7U0R+79b9LorIfyUihyLyj0Tk3zytQWzRrwJ+QlX/SXmOW6r6H6nq0dZ9/4yI/I0iWf9tEXlp614/ICKvlnv9lIh8ezn+m4D/I/A7ynP8d+X4GgITkU+JyI+JyE0RuSEif1lE9t/F2Leq+o+A3wpcJG8CD2xfRP4i8CLwX5X+/ZFy/K+IyFsicldE/o6IfO3j9uecPhx0zvjP6T0nEXkB+D7gn5zx9e8pP/894JPAHPi/l+++o/zeV9W5qv4E8AfJzHiuqvv3ueU1YA94Dvj9wL8vIgflu38fWJRz/pXycz/6h8BvFJF/Q0S+TUTqM8753cCfAC4BPw385a3v/hHwTcAF4D8B/oqINKr618maxH9WnuMbz2hXgD8JPEvWNF4A/vgD+vpAKpvV3wC+/WHtq+r/FPgqRWNT1X+7XPMjwGeAK8A/PvWs5/TLiM4Z/zm9l/TDRSr/e8DfJjO70/S7gT+tql9S1WPg/wD8zm1c/13QAPyfVXVQ1f8aOAY+JyIW+BeBf11Vl6r6s8B9MXVV/bvAv0CGqv4acFNE/nRpZ6S/pqp/R1U74F8jayMvlOv/kqreVNWgqn8KqIHPPcoDqOovqurfUNVOVd8B/jTwnY85DqfpDfIm9K7aV9X/UFWPyrP+ceAbH8ducE4fHnqSxXVO5/Qw+h+o6n/7kHOeBb6y9fdXyPPy6hPc96aqhq2/l2RN4nJp+9Wt77Y/30Oq+iPAj4iIIWslfwX4BeDPnr5eVY9F5Bb5mV4VkT9M1jieBRTYJWsGDyURuQr8AFlC3yELabcf5doH0HPArXfTftns/i/Av0Qex1S+ugTcfcJ+ndP7TOcS/zl90PQG8NLW3y8CAbhOZpan6UnSyb5T2n5+69gLj3KhqiZV/VHgxzhpq1hfX7yWLgBvFDz/jwD/I+CgwFJ3yRALPPw5/q1yzter6i7wP9m69rGp9O3XA3/3Eds/3b//MfDbSht7wCfGpt9tn87pg6Nzxn9OHzT9p8D/VkReLsxpxL4DmVEnMvY/0nXgeRGpHvdGqhqBHwL+uIhMReRXAP/y/c4Xkd8mIr9TRA4k068mwyH/YOu07xORf770508A/0BVXyVL0eMzOBH5P5El/u3n+ETRJM6iHTJEdVdEngP+d4/7vOUZahH5ZuCHyRL9X3jE9q9zctx3gA64CUw5G7Y7p18mdM74z+mDpv8Q+ItkD54vAy3whwBUdUmGF35cRO6IyLeSJe4vAG+JyI13cb//FVlifavc9z8lM7Sz6DbwPwf+GXAI/CXg31HVbaPmfwL862QI5ZvJkjPAfwP8deCLZPiq5SSs9FfK75si8o/PuPe/QbYt3CXbF37okZ8w0x8RkSMyo/6PgZ8Cfp2qLh6x/T8J/NEy7n+4tPEV4HXgZzm5+Z3TLzOS80Is5/RxJhH5vwLXVPWRImZPXfuDwGuq+ssqPuGczulc4j+njxWJyK8QkW/Ygm5+P/Cff9D9Oqdzej/p3KvnnD5utEOGd54l49h/CvgvPtAendM5vc90DvWc0zmd0zl9zOgc6jmnczqnc/qY0TnjP6dzOqdz+pjRRwrjv3Tpkr700icAUFXeeec6QQO+8aAlzuSXbbjJAyA53XooGc+VzSUnwnLG74Sk+c8R7TuN+kk5tji6w7zxTGrH0x7Ath84XgWmu5vI/8Pbc5bHk/Xf0/mK3YPjR25THjlGqowFisjJn+0hlHF8ZOvp12MrCJLP6QNYAWdRdD3UomASaEyoN/nSdaO8uyG936Pdp62UlJTSPcdlfAbJF2rSTdOqT/S689xK63EwYpAyhsaYfM8nePaUlKQnn0lEctvke+Z3k1+kGiVD20pMum5HhNIXWV/3ntLW3LlnjLXMs+21uz0Xty43KqjA8nDF1avXaJrpiYb+8T/+xzdU9fJZXfhIMf6XXvoE//Af/CSqyhB6fvDP/j9YVT0vfs0nMAo6rsJfttx/q99rZp8Yp4KIQe/LEfJxTYahV2KAEISUBE1yavOQcrdIiMLP//Q/5HNXGj710lWiNdinYRZSQSXx1tu3+ckvXufzv/o7cSYBjp/+yWv8P3/gW+h7R1UFfu//4if5pm9561EbRiXm/qsFNeWdp80jqgAGUcGYgLMJ5yLWBKwEhEiSrA5vFhmkMn0ECGJwIhjjEOPxEThcMlRCqi1JE0okSMJiqJeJcNRiL84ZjKKSyhhL3iREM4O6D21vZXrPNxvmIWe8G0GIQ2Sx6ohKYTZlpgiYwiwBUkw8DbufqjIMA6qKMUJKiojgqgpnDdNJg7XyrlZi2aoZQqTvh8IQ8zM4Z7DWYErD1lTUeBChTR1RAiQlhrIJCAiKGIMxcs99nhptMfNt5j2SovgEwYCoMFjBplTONtiywSl5XhoM0RoM8GM//Lf4A3/wf8NnP//1eRMrm0dVma9wH3oixi8i/xI5WdPXAL9aVX/yPuftA3+eHOquwO9T1Z8QkW8kp9mdA68Av1tVD0Xkd3MykvAbgF+pqj/9aP3Kw9U0Ez739V/LP/drf+V6srx7EevDRGP/DZnxbzOR8VNAMCgGVYuuJXyHpizhaZaHNpJPaXVc9yJKRPje7/529vQu85kBYxC9l/28u/4rfa9818LhLzyDNYAKv/X74Vf/KvjbPxr5zu+B3/Sbv/kxms5MNDcvnMURRcGIYiQhssQQMAKytYkmAVeEwlAWkwUGUUQNViwmJOwqoJVHvQMivSRUFKsKRKIoYGmSy4xdYJBAIpXRHxk/j8z4EUgn5L/N7D6rDQGSQoha7sqG8d+zHnTd1pOQamasMkrfCDElEIsV8NasZ+u7vkdpd/sJZOsbAIPFtZC8IdhIlJhZqY559sZ3fvqJnzKfkM1o3+crlDzvvIKKgCYiAmJxqrik9MZgxOBiJIYBYxw/8/d/HoMp+/+j9flJJf6fIWcv/LMPOe8HgL+uqr+9hLaPOsmfB/6wqv5tEfl9ZGb/x0pk5F8GEJGvB374UZn+NgXTc7u/yfX2zTz5pSwQlUceoPeWHn3iK7rRVnQzzctyR0j5kxhUBUikaOg6iIOja5WujcRguXcK3qcfYohR+Uc/9iNc0Rv89t/4q/Decr8FsdY2im4/wgdnNo2iCL/41bf5wb/2k3znv/h72d3fhSLZXPsc/I6Sx/Knf/Hh47Pdcp7WsUjVZXw0j5SRiHc9db2iqlsqq6WfG3hnnB3jggx5TeESJDF4qahNhbx6k+HV69hPX4Nr+3ShY9CAaMIUZqyAiKWxU6yv0RhY9YckiQWGeJCWNj7P9piNx9I9Rzby4ElSgW4I3Lx1lxDHKxImCZtXtMEWkjzOzDyburYlxshkOs1Chiqr5YrYB/b35jz7zBWsebdrcBsHOYthb76vgkN+6QZybY9u35E0lGU0jlO6BxFVHZXep8n479XWMk8Cm/Ln1ipVlPIWJb9JY/FUiAix7/HVBFNPMF96nfjqdXj+CsPQkuHK8vyP0O0nYvyq+nPAgxd4Ttv6HeSc66hqD/Tl68+yKbbxN8hh7qdrp/4u4P/1GH0q0JkQSUQTCTaQIYAN4//lQFpk8vt9O24E24xc1BGD0nc1Q6esVonQKzEIYMv2AIXDlbuYrb/ZzE4tEERdcXzzDiYd41M59wGUUkJEEHN/DjJOeictqj2rvqPCbC3Id0+iBiTB+FyaF5K3AeM6fLPE10uMbUlqWGtOZrM0RSGZcYgyg4lGcFLh+oC1kSAt7pIn7Sltuk2UzPQRZTCAZlUctQRjqDB0diC4FVEHIEueWUPRM2GaUfbelo4VwSjEpAwx4KzF2fwMekqOHgWewQSCWTBs4/z21JsszE6fwvro6UgS8WKKdglBVrS6okEZzJxk89PA2RDVWXS6a+Na3hzfxu4tLhjq41tosgTjQUPB0bc2zcIXthGup80hpAhpp9+NFuxwrX0X2C0Zh42KazuMj9RY2teuI5cvIrUjaYv1gVQlokRUIkpktFM8bDjfD4z/ZXKiqr9QoJ2fAv7XJWfIF8gZ/36YnO71rEyJv6Oc80g07kFSVGdRKVLwyPDL4v6Q8n5dS8tw0pqYsT4oxrI1spmVd01CDIYULO0qsTy2BcMnc1hGo2Laau/U71OzRURRlOl8h8OvthmeENmSiM7ufzaQli6i9wgGqptHqyxURum7FQYlPQVHM5VhDaOIKsYkvBtofEvdLPFuiZWISUV7KYxXRxWbDSNRBYvBYLDGUQePee0W7mCX+PxFNO6yMj1RI0rCssHPRZSkksdRE+7OguhBqo2kuoalkHuYGoxvWdkAM/k9Daqsup7VakXTNMym9RqnH/stsgVYRIV0Ego4E7DT0+DJuyMnQhcjGiLGWlJKaFKmsxmT6RTMqPOdZtyPR/dep2vhIQv2HmZTtHZ5GYwTb0uiX+tMcqKVp0uqSNHSELO2FakajAjJWupkEFEq47Gmxtw+htfvEC7vYaZT5PYS3dshaoAXLxCfnRLEEYzmzVoMa7b/AGEcHoHxi8h/S65WdJr+NVX9Lx7hkR05GdQfUtV/KCI/APzvyZL97wP+XRH5Y8B/yUYTGO/9a4Clqv7MA/r3B4A/APDiiy8WlCEvFFkv3ntf44PV6w+A1mutTMYt1GQNRRAK816L5KTkSMETemG1VPrWEgYIKUtuo6SxfZtTNyzr4F6Pj2wYhWayx2uLjpgEtGC29zEAyhp62hy5Z0MZ+6QJbwzOGIZ+ABWMnNGPR6TxnhuTGFgbqKqWpumo/RJreowMRSiwqASUbUhI1uzIJQhGMryDw/sGv4wMt5eE3TmDhSEmYlHVoxm9VjQrD2QjrgKqkf7N2yRrsC/O0XGOrr3NHjQfy8Y0vqkEy7ZjsegYgpIYcL5iUrlxey/jXkAdhTAoqby/sc2zeGa+NPFErE/BOoP2Stu3eO8Jw0DSxMRNs31EBcP99dl3T4XpF4HPVhPcy8+xahST2jWwMzLe94vS6FygxQMMU6RzSx2EZDw1Dr19jJ0JdlbT3ngL3j7E7MwZLte4r3uRWAlhWNJrR7QRUoSQALueS48CZD+U8avqr3/CZ36NnMjqH5a//z9kxo+q/jzwGwBE5LPAbz517e8kh9c/qH9/DvhzAN/0Td+kh3dvIQJhGGi7FVglSSzbqzkhPX2oyJSFega2qFuTVYtHCpqx/HZlWC5h6IQwOFK0qBowfZlohpz59/4K4P3GQzEkoJrMWS57NKVi2JUHShQPETbylqNZ8a2cxTtL2/UkMQjxwRc/pN3SA6wEKj9kpl+1ON9ipC9LwqIC0Q6cNO6ZrUYUU5hHnQxNAHEGnTvS55+hraCPK6KEDJaNXhflNZot7VIlkXQgxg5ZRYzOy2vWrbdy/zlZAMoiIcLx8YKjVccwBEDo2p7WWWpn2Qj9m/YSwpACCd2SkFOGxE7fW57C+hAwTqhqT9e1dH2LMYammeCsFEO6Mm6x7+Zup6fYaQgFso5rrCMd1MS4RAZlFAs24tBZQtGT0r2MN3vcbbRHYxzGOVwXsO8codMpOKX/8ttUz19G5zPMc/uYi1PirGLhOqJNEAdsVIIkTFKMKjCwWNzl7p2b2IIWxIew/vcc6lHVt0rB6c+p6i8A30NO64qIXFHVt0tO8j9K9vChfGfIRSy+/ax2z6J33n6b/+DP/RkUJcbAV17/JT79bdlCuOWazfu71z+ItmCNonfnPpp7tJQUIQ6WGCAGSNGQotD1wtALKZnM8AWQhKjdmn4nDV730tkYg5AQSdRNRdREFwZU/CMskAfdq5wh2XjlnOAdxGGFEHmQVeNRSAS8DDSTFZN6gbctzgwYYhGAs9S8NpZrhns27CfbNRKg1uCNYXKzo3/zDs1LzxAv7tDvedKwRFMgScrPErOULwhpjR8bjGZdKomgOxPMnRUUzFvXjHjLE+nUMMqWDK/Aqu9559YtlqtujcU3TY13hrpyTBq/9knPF+W1EIaBk/NgdCmVkzd8CjBPeRNUvkbEkFLCiMF7jxpFLBtNaASzHhnk3xZhNpDZ2Pv1d6KjwloQx1SARN2M/Ymr8pmP3I/79m/00yqcpghyFofD440j9RHrK6x69M3XiV+6jrx4jeqZS8gzl9DdCYMOxKmgjSVIFhpICUUJJttyEhlGRAL/5Q//v5nv7WdNSoRuCA/s5pO6c/4PgX+PXIrtr4nIT6vqbxSRZ4E/r6rfV079Q8BfLh49XwJ+bzn+u0Tkf1k+/xCbIhGQDcKvquqXHrU/XejppGNwEa0GPvHNn+LCtUsINr/aEsgho6S1dvfbBgneT8pYnKpBFWJUYkjEwZBSmZAqxKSkKMRQEaOSItn/XvPxUX4a2xQ2DG290Medb6RHWNsiEaMG7x1aNSyWPboz5WGxEA9jHWv2o4J1holThr5j7YC8xl5169jJbq8hLzWIZk3B2gHveub1IVUVcLbLsM6Ja0eJL0NhUQw+5piCZCI2wWCyVmBNg08W3r6NP2rp7ECKx6TYEzVgVLFFR1GRE/cpiGPGlYEkChd20dkO4hwpZkZcpiTmPiOmW4wpJOV4sWLZrjBiEVs2LRFCjCxWLc47vDOMnlUhKstVzxDSZirImUDPVu+fEIJZ30eofbM+oALWCFVVkZn96fs+At2LHN57a91I83L7CA2ReNERJPvKD1a3YlG25paOUN9GM0qStTebhCSj260SjWJSRhCiKLbcOwm4ZMEoRhxWPAbFLiNiDE6h+8pN7IU95NoB2jTotQPYq+lrJTw7ZTCJFBdoys4C2csqbW1PBpMMaiIqgW/4NZ/jn/3sq6zCbQShYcaX3/y5Bw7jk3r1/OeckdJWVd8Avm/r758GvuWM836A7Op5Vtt/C/jWx+lPM6n5nu//HpY+oNIz2Zsw25+tmUlSRSOoWmLMxryRcWayD2j9vaAM14yMPEWIMREGKYw/Qzq5r7L16keSM6Chco5sS3fb5z4irf28LdY6/GTG8XGLXOWBxt18p4djPaOEba3FW1j0gW3gY91Z3fp8emMu0pVhwPuOpm6pqxUTtyySUB5D3fJZz668m546zRJ7NFqYpaFKHoejOQq4pmLYneLnNau5YUirsiGN7sFFb9t65M0GkDUHpMAO05qqqVDpabd3MJGz99It6TMptG3H4eEhRhzT6fSkMReh6wPHyxWzSUNdeYYQWa46FquOENPWbLjfG3pKmvCJZsaRz7+dsdTOYx6GBz4BjZulJCHcOYKuRy5cBCRLxKMDxdkdLlJ/fiduK/xaAJvycyQV1KQS32FwSUAsaizOWiyJ5Cq8VtRv3yV99R3C5V3shV1siqCBREAvzpGDhmSUnpaBkL3iRtVGxh4K2dVZc2CiCBSt/vPf/HmuvvQMKQTAsmeexfz9B0OmH6nIXesczz7/Ine0IxFRA31bXlKClLJUnYIjxuwdE8PGsPe+py5SWxh+Zuw6in+jCq4baT4zm3RK5H1/SKzFNw2L5fLp3HaLvztnscYw9D0n5nph+NnLJnsvZTLr84wo1gx4t2LStDR1hzN90XjyT3biGA1qoyYxUlH6SzCbwWFwNHaCPR7g1VuYTzboixdZhpYhdo8FBWwihTOwkFJCbxxidhxSGZIKVk8CMGe2o9B1Pbdu36HtOryvNykPtiilxGrVoVFJE6UfAovVihAiT42pPwGJgPceMeahwsOT3kcK5KG1xxiDSaNWJbjExnsL7pExhOzZK6MhVpTe5u3EpzxXfBrvZbDqkIxfIclSicO9fYc0t7DriIuOeLTAXJihjcW9fIlYWYbUogQiMafKkEQqNqdtDXIkLYJpXguZyZM8trZcfu4iRiKoZ988w/4Xz8zUsKaPFONPCdrec/u4I5LVYE0QE4zGUF0b3ex6tY2ww/tPBWksM+5k5O2232/xAEHQInG8hwLTFgmQECN4P+FosRoF1KfTtEqW+J1h6LrsaTF6MJ1IVlJWmW5iXY0JeLukrgfqqqX2HVaGcYtcY+ebNtY3PbHQkygmgVWLxeJtA9UEjQOdRrCJpfQMMqylvUfhoWc564QYCNdvYtjFXLBruGXs773Nlu8Vjo4XHB0dYazDe1+Oj3Nhc16MyqrtGUJAFUJI6zn/oHib95qEbNStKo+1hjO9yJ7i3QCsWKrL+xATremheGlt4nj01O/8vswWDJSMro9lbdGgksOrjDjUOqxxNMsBbt5Fa49Md2hfvUl1KSG7c+K1PexexTD3rOyA1olAICYwhCzL6OizNcLQ2zvjKBpYKFYKWceMZLsYMrprZ9gS8zGS+FPKOHjbepJakLQeRNX8svIQRjbKJ3wgYnS5rawhGB23gQIRKGJkHZC2dgG7p8/vPVnrqCYzjpZ3t9xLn5zGTaTxjtj12QhoHWfLwFLCsQLOdVR1x6ReUbkBY9qcY6fg/TrGEWyN0fYWMI4pSMZKxWBxzHqDDZHgoNqdwWeeZVEFdAi4pKh5vPlRwDoAYmF0blKDtRgxRM2wQpTRCfbU9QVmiCnDNJPpLEuY1t5znsimhaTKMMQ8ilt4++a8D4IUa0wONHvC5G9nt77ZZLW82/HfUBtiymJULHNj8ypPREgAQrC5ESkedGrAqWCLr7wXjzWeapVItUdtxXD9JvoLX6F69iLmcwe4l69ipg0DgeAT0QrBDDlXEpphG8nzIsM6si2TnE0SgVCWx5jyImHUFT/+rBWIWiQ1DxyvjxTjH0lHO5Zusfe1GgUjoHA2W3g/6RS2uF4QhV3o1nEkG60+gIUrxuCbGYvl22xwmqfQD8lPOqkr0mIgxYiYEb+UExueACIrat8xnayoqiXepOL3HwqckjZu6mcoymtNYq1hUfLueLyp0DduEO606OdfoJ95VhMlpAHRmIOxZHPdQx9tS5uUkkURA9WzF0mVo5UlpBwdvD7/VMNjxOs4X511aynwtLSfP5982rPog2T+3nu8d1ub79PvxxaKiCTovvIWXNtBmuxyq+tztlWszfpXRlQgu0EnASMWIxafBNPGEswnpC+8gr96EXnpGsPuDvLJF9BLMwYbaC94kg4QBgaJiERchGgy/Og0z8N4Sph4sNG9fCtCnujjVpW1AVWPmF2Szui6jxnjFxJISdHAdl6Z99tj53HoNHyz7SGypY28r+t1XEKKWIOrGo5vdg+YmI9PWrD7pnKIRlKM2FoL05d1kI0QcdVAU6+o/ZLadVgzrPU3XUclj5rCWX7UcGKci9ruxFOZhqpXhlvHuLoimcQyrhh0wGgkmqw5prWk+GhjcFKwEBJK3Guy5jmskOKZZdlk/3xwg9tM/uzPm/uVcXjgee8fCYKzNoervC9rUdCQcNfvIrs1NDk1xijyjQbcET5kvakbvIIVhzEuvxvx2e/++m2GL19HL+5hX7hK2qnRiSWZRL/nYbpH8KDaEiSSYyWK26oog8l5kGyJYRk9hmCb4Z+BPqwDs0zpe9YWsiXQosaT0pyur+j7Bj+ZsBoezNo/cow/D1zeDbcCwsvfm519c3y85mEmtveCTr/ske7Xlw9i4SpiLK6asGwzHPPuk2tlOjm1lUlTZZ/4OCBk9z/RiJGEt0pd9fh6QV11WOnz200WTM8G+5ST+v79H4ec1NZixVN3gq6W2MmEdHWfYa8imcCQhsKgxqyXPPbw581ig91GEkMMVENO2z86lpqH7OnrfPGPffcPDxmT3YI3KVXem/7JGhvPnnEpJqwVgirJ5A12O7lsNvxLzm5pLE4sVVSSWFw06Gs3qOa7yJV9YlB8UlJl6SvoXr4M1iBhmXMv2UCKkWByXMcYq+AjqJiccrn0M5HdQ88WJPTUx/J90RxVDWIqoGEYLEOYMoQZXZ/oe9ipYHhIHORHlPGPJpL7hZ6/3wz+fnS/yf9h0U7KhihC1Uw5DsoQAt75p3qXpnLEcExMEVQxRKwL1L6jqXsa32FNh5hQVq0tzj2brDIbrX3s81nPMkpOFmsqKlsj79xFbx4TPjsjvnBAnzqCFniH/CZsygtuncPtMXjWqJNYlezvverh7WPcZc/gstp/Ooxqc3HZNLby5T8afbiYPmTvLe89Y+2R95KyDih465FnLtDPapA+R2JrDrAzmgvDWGyW7MUixmCPOszbd5H5FLs7Z3V7gdgalUS8PMHOrhHmFdH0qE0kDaSYU6NHSWsJIQsL2U04GINR1h5cguQEgHoqanlLKz15cNwtLSI1MXrCMCGkCV0nrFpDVAsaMQasSUyrB7umf+QY/2nEbEPb7OF+0vT7XYkybvXlrMW6rRF8sJtVVdeoWLq+Z9o8YSWutcExf/CVI4UOkwK1BWMTlR+Y1C3OH+Okz4um5NFRyYEraJ2loCw/rbeBtJb+881Gb6nRXmDF4sRjbYUkcHXFIEofB3oiSXLuc4MwyChIaCnm85jPmdEETCq5M1c94c1byPwCspvfayxawf2CuIw8OMX12fTBz5ltxxTnLDYXXLj3WU4YZTe0ZY45ceLaZqLlzawfVdbXiYCvKuyLV+nqAdP3mAKVRCNYyV5cFkNqA9ZZfFMRb98hfukd3DMXkb15SZ8wIWhArNJPDR09GgVhQAWCUVzKm0qU7HcTzAgqZYo5TSs2ybrP93CjtbyS3QLGTULEoWpJyZPSDn1fs1ha+miJKiABMQlvDc4kKheYTd7DyN0PI63dxM6UzB62ED4ISftBxpyRPrgFbApb9ZWh1YZV33PA9OEXPhJlO0w9bWh0wUEVuTw9JFV3MDZXw8o8fAxeG0lAPSdlZVOM92sUd63vWc0Lz6uhSo6qBRM6uNzQP79PGjoiSwIDaKm8JTkid4Rr4PHfwmZxZynTqtK5QJNSzg6sFiHgNdE7SrbQs0aJ9Sb26BvuB8j0tzi+KlgLdWUxjxgDMZ6VSwvmjTEHXuXjoiYz23XG3ZyhNhiQpDjNDL734HyNDz3BgmiNMZYqJvxKMbbGAN0XX6fam8Mnr8HenOHzz2H2pgxVor/oiKzQuMjzawzR1Q0ga8cXrSO7johuhCMpFeFQs6XhRaKJOHXrxICjLQARjPp8vjYk3SEMM45XsBqK92Jx5TROqVWZVQOTaaByKyqbULnxwDH+yDH+e0nO+PRhoQ9fj+6lzEirqiHESNv2D73isVpXZVJV1MawN50wmzrasqQMlPxD6aRhE9gCacvHIi5pkcwlR1mOboxWLcbVNEtFv/gGIha7N6N3iaRx7fG1vo3I1r3ezYPd8yH30TvS5T2krnJFLzKDc1HuvdmDFNQPO22lF/fOUXnPfUd0RDL0xJ9ZU6JU8mJk/AktSRcFi4pBcYgGIBFNhj0qqal6izcVyczwSZhoRbIe3r4Bv/BlhosHNJ94DjnYgZ0demNgZrGuoXdKn7ribpnQ7dq+W+/2xNMIOapWK5Ah/6iBVGe2Php8EdAakyyJcmy046iBZMHMUGoWrWXVekIUQhQSCSOKl0TtldnE4esjjK4QM9qlpveqT6foY8D4z+lJaJQxna8IEbruwSrk47SbFVqY1RUmBCpRKpvoY57AoqMafwZT3D5wQhkYk3BtFaQQy4QKLw2mXzGEiL+2R6+BMOS8O2ktlZ19i3f1gKWJMf2QKqgz2GcvobWgusrazFMoPvOhoq0EcSJCU1c49wDMeWvMMzaePwejVDELAMnkFBlZczJUIWtxOa9OAjVYNYjkgKoaj3nrDpEl/tKU8MoNXD2Bl64wGIvMZ7gLuwxTi16Z0hplFY9zfqpKCQwlT2wq/Xk091NdM3hK9lMpf6/1g6zJkNGJ0btI8RimwJSuNyx7R4yOfrAMcdQEEt4Ks4lQu4iTBd72YJeo5jWjySAaHjp1zxn/OT0CCb6qSMbSDU8n/H8jkCiTuiJ2K3ToMVLnBXGPx9VDW9zAO6LYBEazp4YRT3WrR2LEzBt4+TLHBw2DdGgccmDWCen66eDjYysjSqOlHrDxjhADYjM0kQSiCPYp3PPDRCJC5T2Tpim5eR7wfFtfbzD7PAuSZDk5b4+ZmdqCpzsVnArYCp88xths2D1qcV99h1TPkL0pcVDiNGXtcadm+emrMK1JpsPUiagDfUynPKx0bZB95HB1yVDPmGerJMVmY0NM68R8WSOaAjUheJZ9TYgT2t7QhgTJ5jgTk6hroa4GnF1R+YBzLegCtCMlk+e6FB3kTCPxSTpn/Od0NhUGqJJD1qu6IRlL32dpZjtt9LtxzdtW+31liClL30IDBZ5Zp114WDbQrWAmKeCrFEm6sg0+eeztY5JGwuUZaTKjpyelgCnA8bqN9wh+G59AVYl3j9FVh71SEUzGr+NDbvtBgIJnFTAaaTsS+N7UEVo8kYSm9nhvsyFfz36P63QkwqlUBRm3H+MbTDJYTWCFZD1NMphBsabCqMG+eQeZTODyHtqviE2NubBDqD3pmX2GqaFnwFYK3jCkFvpELGm4bfEGQhUtZUNH99AHsdETz6+wnexxPc/XkbUJxCMyISbP0M6JqaIbLKse+giqqWyaSuMDlW2pq4G66oEFqj2aQtEkxw1my07AQ5Gec8Z/Tg+ikRlmqCeJpe2fDtSzsfPl1BSuMqy6Dk2GnFI6L5JHKQoiW9CCUQERksl++g6Pl5o4q0kuMtAz6IAykKO5s3i5TprwHgndUuwPihL7Hj1cYi5XUHy57Zlw1okWeL/Z/8jUU0qEELKtxFqc27CNsyKIR3LO0NTVejO+X/+3N4+86RcbjVogUamg4hBnsiZXIq2roxW8cZuwO8Fd3GG4cRt7oIRr+5h5g/nkVeLcEmVF3M2VymIUAj0uajG65rTHOR9P7l8qfciCz2MUitHxLWVIJ3uhGShpIkQ8qg0hNMQ0JUTH8QqGQUjJZxOQVVyteNNT15FJPWBkAbpCNZa2R+ioaBEjTCmjZezhc+Wc8Z/TQyhPe+sctq5Ztj2axoksD5QKH97uxqrXNA2r1Sp7MpANuqPN9qEtlT5kXw5BxTIZhPpuizGKudLQP7NLSEtC7HO5xXWJx1NS6COoyY/zhCftD3kzk1mFM56l96h2ZXt7mjHRT49Ula7r6LoOVcV7T9M0OOfuK/WLZEG0qSr8uEnI+r8zadx4VcFgMyPGIijVkBDvsDjk7hJbVci8Zrhzk/TVN7HXLiKX9+CFy8hkQtCO5AfEBGJaZS1LOpCGKlRECfR2NLSOliZZv6/t93a6QvWZfZdTF5USqSoWxAOWlCo0TYhpymppaTshRBhMvn/lwEmgqQdmE/D2iEQLtKU9PcHUc3lPpTgJsw0snkv85/TkJKO6a6gnU5bLHGjl7IMDRB6FsmKdZe6m9nTLVUmhW8pSj1LXQxixlNw+OdWDxdmGyY0F/RdepX7uMuHyjJXpIQVUYmEqsmG364U7NrhtX3iXdJ9LVZQ0r6l2pojtMb0hlEyKHzbGr6qEEBiGgaZpMMbQdR1932OtLUy+gBlycofz1tLUNWYrWvX0Hru5UY6czRG0gsHijAXnka7D3FqSJko1cRx/8Q3qq/vI/gS9PMdUL8HuDitn6PdrhEDsO6IEjMnJkHJFNAs6Z9VO8I3D2ENIY8KzDPJEyR48675yH7+CBw6aAWlAIKlF2CGlKau2YrVSYiIn3Us5F5CXQFUlZo3S+BaRBYYW0YSRQGLYwF+yKaaTBaQRmLSF04+x4GXNPoDOGf85PZDWLFCEyWxO190kxoSz9t1L+4XPjjnpDFC7iuXRcUYqi/CyxtsfDPFv3P2MwYpjohWqK8zujOHqjFVaIjEQJWSf8NIJkx1Gt7v1SNDSk5CqEr1FcNQpETAEEi7JY2f/fD9oGAacc1RVta4B0LYtMZ7MCbC9CeT6uvU6IVtBuc58jSJSJHuT0yWIZ1j1OGcxVUV86ybm51+HF66QPrvH5PmryO6EPiVCY1BfEWwgpZChmxSJknBRiUaINnvlGBHMyvL67Y5nrzTM64sEjmjjssy5nigZohlr+Iwy9ANQqkzrE8afBmFK6CtWK0eInj4JIW2qDFsfmTbCvIpYWWHsCmN60B7VSJCxZLrdKKG6fcsyW0WLF8/GavYooOA54/8Y0Qax32T6zwUdDGNkytr+JtkzwSSHIVH5BQd7juO3F4Sk1Fuq5db28Fg9KdXjUQzTxrJYrZBUYdQj9OvJzSibqyk++kqQHAUZbE6sNUkebzzxrZuoDMjBlGF6mX5u0dQRTGJM07veT05tXO8H21WUqAEO7yDOQiUYNQSTxiX+RK1nGjNMJkSKVrOt+28ls7v3nW04jCCkGPFNjdj8LqyzpJS4uzgGK7hoaHxFM2sQA8YaXOWZNhVOMvP1EUSUlctlCauYGZqzDnUO6ZX65l2oa0wzwX3xFcyVffSFF9CdXcInnsFcbOicMjzjEAZSOCJpAgZi6sl5bBK5qh0kLGgiVz2oMEnoJXLcCasOVivHzr4Hiag6hIghgmaWmD1vdJOYL5VEgCZmAy2CTb7k41EMDZg5be+y3716wlAz9ILSAblS16RRmrrH2CXWddSuR9OAEsrzjK9lrNUhbBwOttfaZrbmPmxXY3u4+HLO+D92lHHBzaL3rCeUjPKIkKdGxJqeie+pJgv29zw3Xk8ltzk8GTgha0RFRJhNa24MA6IOc6IE5ujdkzMbjtLPmH7eKlSmorLTHMV5J5B2elI1I9U1KXUYTSSjOD3lsyNnfX4fAJcYGW7cIVU15qorBukz5eF3fYvRBmNMxs3TVvzRg5jCKBaMZEpyHRkzpqI4speOGIMxgq8cTV1RVY7aWqxzeGcJRouIkWvN7kTBGA/OoG3Eq6NyDfrOTdIvvQHPXEae34NZQ5xMsgF+38P8ItH09KFnkLSVAK1Uq1JbIngzlxbREnAlONNAmmOxJCvYGDm6C0l75vsFI5cEuPXmcbo8tUoWjgS3tkGgLueOMg2aZnTthD7UdNHSdpFQKsAZctRyXSWcaan8QO07RFZEbUmag9FOG8lPTsd7mb2cOHJ6Az837p7TFuWpsK0vjhV9cirrkRGbpBgLlRuoqpZJvcD6lp1dx2vLVOoBj209OaMUhNlkwus3l4BuGcvK9+scPaViFiUNgwiNOprWIJVDxVHvXSDswEp7+jhkyWkr3P/DQBIT6bgFGTBXDgCwW7n5n6Dl9SdVLe6UFarQdh0pjRqdnHHF5shazxLFWEvqA2or1Fr6occ4y950Sl1XmMrkPDfO0XiPK+m0M7gvVMmRrIWYaO60OO+R2tK/eivXn60mOTnftEabiuQTfOoKUTwxHhLTkE2waUCpShcNiMWY/G5J40bnQRRnaxAhxkDXH3DzekAMXDlokHSXd24kXnjRgwZEHZsSSI4cS72BA1UFFV/gyaw1WhrQCavgCNoQhgl9C22fiJpr4ooBbxOTuqP2gaoJWLtEU5+DrTStc1XBaRvJe0/njP9jR+MEG61ueaJn7dJgRXFVh/cdk7rH+xZnOpIMTGfCsl1u8F1lyxD6ZNQ0FcvFYZHmSx+3SirlkP2c/TCVtMoOR71S7PW7xIuCu7BLvDqlSwta7UEStuxN5rGtdO8dqShu2hCHhIhFCTztzuVUCZbZdJphMsnF2uPadvmgiIUcv5EAU3m6xZIh9HgjOAe+mbAzndBMasTbjNCLWeP8IoJPDtdFvPWEukEPj5BX7pAu7FBd3IN2QIfAIIn07AXk8g7BQmJJKwFSh9VAMjkNgxKxOmDUINaSwoy+Vao6YU0LolhtSNQsj2pAaaaJ6+8oN28sWIXEpJ6z7IW3brd8+rM1qn2x3ipIKEqvRcZ03JrZfELyZoMjJU9MU1Kcctw1rNqUE6WlDI1a45i4iqAdk8mKnfkhoktSCmgKiG605VQU7w+iTMI54/+YkG7A+zXGK2OeELIJydie2vdMJy3OL3AyIGbI6WyB+U7Nql8S4xYW+RRIRJk0NW27LIbaLbxyyzfaaGb6Ig4vNbV6zNs3CF+9SdytUSxLuyLKsAazTsYM3Rts9EGQkuDKLikoag0aS5GX0+etbRAbKA69/zPo5kKMgbquqHx2crWznFivbfsC1QljYnrdbmvtGps1L+sddjZBBCa1YT6b01Qea0zuu1jqZDBicEmwQ4La49QT37lF3DGYyRQ9bNFFR7o0p9vxyK94hmiUgZZIItkh56GJAyI5XQPJoppLH+beRYw4Utzl5g3L0Z2Oq1d2OLg4Z0gQBks3OH7x598mqfLZz13l7p1bfPoTl3jjbsvxcuC4g9UQODpUJlMHsipjUTZC1TXspuLILFJysrS0S9s3LFbKECBpQFOGu6wVnFgmdcXezpS7xz3OLUDvYjQUl9cNoqeAmG3M/v2lc8b/caOCGRaHyeI+F6n9QFUvaeoVzpYatshavU0qNJOaLsIQ4imQ590w0U0LIjCd1LTLRfELNwXeKca6IrFm10tLJQ27Zo4kGEyNf+Eay70JXViRdCCZMcGbliRe776XT5ukMNuwM8FGITJgyhZ832t4xI2qwDhJc3nApq5KqgTw3rE7n2HEsFy1xFQM5gXDX/vjA0ZyqgIjIN5TzWZMKo91gjibXW41p7f20eKNR7zH31wQvnqTdDBDL+yRbi/x1kNS9Noe7Hq6iaU3HfgAKRFCwqii0qNYoiR88gih1CkWTFJEcjAXYrjxtnL9+pLKVbz51hF1fYmvvHpIZcFWU/Yu7KAq3Lw1EFrH3tRztOwhBHamjvlsh5s3Vly8PEXsotgw7IbpiyWpR2kQaRj6GcsldIMlqmUoY+cB63omE5jVlplrmFQNQ1SOUo+zXanAZcbtteTm0a04EvNA3eu9onPG/zGhcVGP/2eGH3A+MKkH6mqFcwus6TE6ZhC0OQgFze5wzuHqhuWqW7ulPWGv1p+ayhP6jhQUUzmy/BtL4Q4hacoJuFxNnRq43SHOUM/mdHsVUgUYEmoE0aEUTdGCm29tUR+gpA+ZNwdJxJRwt1b4uafzZ0NRGwPeYwR3Fd/72td4N/oJ6Rb00+SgrL4nxFiwZrPRIoxkfNo4mrrGNTXeWmrjwAhiDFWSXM8gGbh+F2aKXmwYlj3xsMXtzzG1x79wkVRbBu0J1QDOEIloGJCUysaTA/VyDYSawSSGEYiShKjFqGKYkCRv5MMAzWzK3s6U2zdvsFwEbt1u+fQnLnF70XPhIoDh5tuRRM7WGXul9jD1cLA/Y9kfk6LFmhqlZayxqziQKSk1tJ2l7y39MGEIStJcO9ei1LVlVivOrzB2SSUT5tWMma+5PSyobC4eBLHYp7QkbVsDq08wi56czhn/x4Q28ECWPyoLle+om2N8tcSZHtGc5VBGrxqJxQCsoAYjgcms4XjVPg4reigJ5HwuKF3bU88dEoukXnykrToqqXB2ileHpEi6dZd03CM7V3GLiERBdqcksnSnmogFIspZE59al989SSmw3QfS9Tugu+jFDaT14EvlJCxz+nuhpFcYcG6GWUMJG5uJ95b5bII1wqrrCTGQUio++gbnLFVTUTtPVVVUztOU2sQYh7+9IF6/Azsz3P4e/e0FYjMcw+4E+4lL9AcNuMBwweV3oKvsZ1+qmgmZHY7GbMVgpaLmAkZaenMMmmMdrNSIDDjZJ5JQFqgISR2LRU/d7KA4XA27+4Gbxz3GOFLKxlNfwytv3mFx1PHyJy5ga2F/btmxFc72RRr3GDsjxRldb+kHS4gVfW8JQYgERBLeGSa1ofIdzt2l8gNiV8QAfdsQxCIenF9RTY6IsjqDyQs5gdt4LH4g8/Kc8X9MSEpUlJVAXQ9Mmw5vV3jXYugZ1egxIjC7fEbWlSc0YQzM5hOOjhcFhJEnN0yV640IdV3Rdj0N1RprBrBYGnWYhVKpghfYqdGwoF8l6hBI79zG3T3CvHwVvTAHjSQdiCbgYiKUsPcPA9mkeUOqXa7ZKmuLxH2vMSVS9uFBc4qmRFX5LX6iJ6phVZVFpME6R4yJvutBhLqqqXzF1NdU3kPxwdebx/ipQfammOM7xOt3SdaSLu6RDiYwtZAG0o4lzWZEAiHlwiUmkRm1icUAm7WLsfRghj8MjoY7h5bJtGJa1Rg7RdUSgkFty+GxxVlDPctz887dIyzCznyGimE6b/B+AAl0S0eMSlPDwX7N27eO2dlxzOeByU6P1RZvso0rxDl9MHSxIoQpq0HoukjSHNstRpl6pfYRa1uaOlL5FSkdoklRjWjcpQ8TAp4u9YTUgTsuyNG4u41raty+n45H3Lulc8b/SHT/QB+571k85KytxGCn/XRHKXvtw1tYlpoTXjTbFWc3Oa622dvoK69Yk3A25Tq2kyW1X2Cky8nB1JJzExa/aFK5t2QvBC1sXoR60nB4vCph5CWv4tq75zEmcunXyJCMMThnaNsWkUnG5kUwIlgc5lZLurWA5yakSujqFnOpgoMJgy0o+d1jzGKXdLCHLlZI11FdnmE1FqtGyvAPibTWBDYh7hlt0ZK0S9bpc0fjdjr1eNulAR/1yXMyMEW9wT13Ga0sRo+Ia8tfafDUPHHOZZ/8mMg1W/K4j7ENohBF85gZQ+X82rqt+e2RNOXvVfDO4m2FitD7AWcMdTPBGMvkeCDdOUYmNXU94eidQ+wFi9nfIU0cXJ1jLk0Z6gTP7jBoQvsVA5FgAlXSTSHxsbxmHPHtRCoR01Zz8FoyCZ/g+u0VFzAc2Cm37ub3HhNM5jU3biw52PfUU80QkAwcHOxx6+ZddncMYhRrDLPac3inxzrh8tWaC/OArz3zicPIMUhOkTwMgibLMOyxHByLviWmiCYLUlF5wdoe51pmtdD4AZW7oC0xciKyNybBmAZXTbi7OqLrB1Jd3DoRGL221oFzo61ndBx9xNlzFoORTZjjekKg9zl5Q+eM/5HoLGlsg8Bu6EHMz2zOkdFd7N4W7r2nlDkzupSNPsenk4xt+iNsGLITxdmOuloyaTpqd7z2H5ZSCi7nANHNPYV1NGCVAqglGoPBUM0q7hz1GI0YGTPtbE3uR6LRV7yUxdaEsUJTKcOyxWtFMoLVCc56Khz2tbdouoH4vKGLHcdyCzGSIQKpsS9eZLg8o24m2RvlzdvE2wtmewdwvMSmRNppiN4y0AMDNkYGycZDo0o0iklKMDnPu5IjT03IYxldytkhEYJsFs99i6WfQSowGMmb0Xye3+mwQAnIKSagJXrTp1yz1jkLQ6C3IEmoVAlCLkCCkkyWsOuqojGOpNlQm8j5j9RkGM+QXYisOjCe2WRKdTRgXE2cNrg719Evvka8dkD61AuYSUWaCqKB4WLDsHsBjJLiERlMs2R3SMGkSCSX1BQs0YQ8t5IjmbGAvcVrdr53VLnyldQl/3zF7cOKn/+ltwDH3t6MZ8XRDkJVd6gmjLFcvjDjuWemHN5uiQrWdagIFy8I3VLZ3YWdvSVDWrK3mxP/dUlIqQGdsRomLJaRLgpRlSQeZ5TaRLyNTBtomhYxd0hptQU7puKVk7dTpMbqlNrWWInc7I7xcpTLQhJYB0hKTvy8PQ+ejIpjBFoKyOeC77kq2eb7+9E5438oyanfG6lM1sdH90hz4twNQ88Siqoh43slLJxQziopE3TMENiV9kuu7aIB5AjC8c523fbokjkabcdcN8YE6qplMlngXYc120+zAZXzPaX4LY+PY1ERBpsQzWHqYmF/ssfxW6+S7pNb/WH0V3/sWX70x6/yPb/uOt//3W+si25YY5hNJqQhYaVirlMm0SC9Q6qKeOUa02bOYlahcoTvJwTTkQobtyqYxjBIxGrAXt0h7VYYlPjlt+D2XeqvfZnh+QtUPUiv9M6TTE80SijpIHrJwVRKLriuKMlo9vwgp322moOtRoH2EdbZmkTBKUQiogmJ2YvJphFi25pvstEqPELtPIEeHzeL3iXJdV5V8UlwCZhUGJf96U1yiBiize+2Uodxjiooros5ihZheOU65toBVVPTNQau7mCv7hJroXrmgMEm+qH4o5MyXLMWGLIgolhESvEQGWdpQxxtLOpytK9UoA4jAQ1z2pWjmk4RFgzBcrzoubR/iTt3DzHRc3QIMXp8I2WDFGKoODpSvDXs11MWriVyhJ8OvPTJXawRZFB6HGIalAn94FguDX3vCWpzsBWJSvImWFeG6WzAukPgMD9XMmVdn+V3NSDimFU7NG5KGiLa98i0QKfAvYLZk9K2Vijk2tNjXE0D0qMqbLtEn0XnjP+hdBrYGRl+Wh/RrXNPs3xGvFxHF8rNeWkt4ZXv1lx3a5ORyJh/e/SiGSNbR3U/py+IGJNwrmD5RHy1oqqXeNdjJYFuY4z3IzOCR5ikJCOI2swAXaS50HD9CytYt/LoG8Bf/bFn+T3/6reybB1/8Yde5gf/bz/B933PWyCZ8YuFW+0hXh0H7lnk1jss33yV+ae+lvTMpxAHtViQBtzbpLRgE40wPlnCBkWnQpjUUCXq5/bxlYBzODWkt45hsaL69DV8ytWwVi5DXGIiNgaCMUgSfKIk79ICB5Xwnm27qZx+3/enfLqAUcJygbndYi95goy78rbmlt9Ekgzh+cqTnEECuKT0Vtbwk6qAWNQ66olHbdk1jKXWCiuWKkDyFTiPef0dwpdehysH2JevIROPNo5oFNmfkJqLrCqLxhVaxeyNk4qgss4jU+bj9nxSizVzDLOSMmKg4xCRiDEzKtkhqaPtemxV86W3Em++dYdPPpOFnBANh0fHkAIX9qY0Ndw9XuVMlyaStAd1vPnmHRbHFS8+d4FLB4FdmZA4BiLihixcac0Q91guHENfE5MQUljXuTUiNN4yb8DbJWJbsB1iVoj2Gy14u3rY9usVgAmzapfae46OFjjTYky7Ob9Yw7aCEZ6QJPME3U67YtbCGtog1qGncclTdM74H0rbGbnv3QROo2m6tSGMR8YgkA32NuLwsvV/Pm62JISx9RFDFxQjYGx2g7MG0Ii1CWMHjAlYG4vnzoC1A9aGLFluBQOd1lm29U5dP2/5XvOkdSQ8jr3ZHstVTxrB7cegH/3xqyzbPOWWreNH//41vu+73wLAGKHylu7ubdLbt/AHO2g1o5ruYCsP9YykiSqByB69WWD0uHh6RLQk70lk46ZRJVpDry3tZY+f7VM1NZgM64SQcAHiqzfxbY996SpxPiWmDjUDSUDXCblyy6ZI38Fs9LTNO3608RhTTxiU1LbYN27hdi7RTk5mCt1uVsvG4pwBa0gxEUxOWTHKCgaDEcvUO2b1BG9rLBY7CMZ5zKCYf3YdubyPXDsgGoudNpidCaESzLN7xNrS9kvUBIaJkIhISgQTEdLaQWAM/lK2eGKBI0UMXev58msr4hD57CemzOb7SDQMg2HZe157c8Gibfnk83ssDhfM6xltW8qaJ2i7noO9Cc89v4cOLa+9veLC/gQpTggH+zWf+mRD3UT2LyxQOcTgieoQuUg/zGh7iIOjixXDoDnoULIWZa1jXkeqKmDsAu9brHSoZvfLvJsWAcgEMg5/WoIWVGv6rkEbh60NropMtCWaYcv4s2UIeqDA9aikW1LHllZRUopaPJo8r/3i3gNb+Vgw/ncbraknfOxOL+571bc8/82Js/OLgrWGIJuiG0I81YqWFLI5D4kxCWNCkZYUawKmSPZiIkZyjh1jIsbmv2V9nwClqo/IyPjPruq6kTGL/aF4j5iS1mEwSqOWaaqZ2YuEAF0fqJ0/o5X70/d823X+4g+9zLJ1TJvA9/y6LO2rCtYIU+/pFgPLwyUTF/AXLtPU+1B5iKFsiwGbLJVMWeFRus3i0jy+iBLIlaNUs5+4NIZkBlJQ6oMaJibDAauOePsIf/kCbmcHPerpVLA7FclGeh1IJUlZThmRx2lM3Vt4YBmz8g4fMM9yviHBxGJIbzsIShIp7o4yPghATkhmirFUoBLDShKDmGIcBWcNlauY1A2zpmbSTHHG4N86RF67SX9lH7m0QxgCQsKSSAcNcXoRmdSQesJUCDowpB6rSjBxDRta1bVhFsaAuDLTT0yovB0uF4nVncD+wQQjjrdvwN1bLcY7rl2q0WjolsIQlOu3j7my59nZ2eHW3Q5jEpUTpjsNxgSaiSOqYWcWcloENUwmPS+8MEGJRFq62DCEmiHU9KFmiBPaIdIPZKFHFOegrgTnA84EJq7DuB6VY5SWqLk6xOgMsRbDSi4fka2HLYJSjFP6foZOYIhKNCuMX2RDPY4Rhn0crfiBtM7HX6KJx7Ve+IsxFm/maF9z401//3b4mDD+R6ctFqybjUK3/t/QVrrDjLsU97Rtya1g71tJx2SUH4xkJi4J1Yi1EWtyOTgjgjUJYyJiM7O3NmFNAE3F/W/8KVgwqUwAU4y2jvWEU48SGVMtyxmb1vo5KKHlZQOrtaFiymQZsO8cMVsknG9ou57dWbV51keY29//3W/wg3/qH/CjP36V7/62gvGXi6wI3hoWCXTnEpVLaDXjzRsJFnD5Ug7mSjhEoWaCk4aQAkos9gkp1ZZyQWuTWG+EAxnqkpBTIcvEIyZgnzkgTBtkUue8PrePcX2Lm14jLju8RsJ8Qm8TJkYSxVgpSpScLM4w+tc/+PnXozx6dNQWLu6Sap/x7qLZqY42Bcnhs2VsjTFMrGcQpRaHE4e3Fpci03rGpJngbh7h92rc7gRdDnB4jL8wJzpDeukCw04F2iJ1pPOWREBiItg8nxST2buu0/dhtbAYWTvel7m8XSRH1jthDHBh3/O5X3GJYWh585U7LFY9Q0q88GzD5ctTjIOqVtq+p2kMly833DrqqJ1wsLvL4eEKz8CLz+zhvWNnbiFa1CQiK2yyhKGm04qQGvrg6VZKH7LWmkgYa2icxdtcnLypByrfg7YkzbEokkDwrMsXMla6KhvciUptm0muagjBYWSCqRyHq5YuHpJsxyaV8rjun4akv02yxZ8ynm8NiE5wZgc1wqXnDx/YwseC8Z+UwB70EsqC1K1FvHbJGkW8UYI3m78BOZGxMmUXRUkla2CGacSktcRubC61ljMMDjinWJeKFN8ia5ZYppBkL4FtcKhkVCn7Tt5whFE6M5yUNlyGbcZUhmePVJFsLdZ4rKmYMqNhjtx9h8WrN5nYiqae0rYFA31MQeb7v/sNfvOa4et6kRgreGdo22MmF2b4umERlF98bcWbb3m+65+fcWl3WQxXCaHCmQkSV7mq1hY8ZpUM/UiOCB293FQiLiWiQlJDCAG76zD7B2AcyoA4hV5JMcH1Q+yypfnks3T7M2JcETUPY9CUjcJkT5/1u3+E8bAUyb/xuBcuoxOPTQviNpTC6D2UC8YYBGMtkwYIhso3+HpCc9zhb96lugjqIb11AzCk3Snhyg5p90XYnaA2onPDwEAILVJcWhPZ3mBSLBJ8IprswqqlnzqO7Ino4lNraoQLRYlYjjVx67hFe4NRy6/45DP8wivX6YNye7liuutxVrnQOJ67egAp5OLitVJfqvny67dxbo9uSDgbqZsaNRVRHWGoMDqn7yYcd4nVkA3NRUfFW3BWca5n2ihV1YEcQ+ogljViFNHslykqWVgiz5GTtI2lj4w8z1mrjqZqSAh3F8cYv8DY7bEp1zwVbL+8DCT3SUKBfz1Gao4PG269NeNTn4JpFXjh5XOM/2y6Zy/YxKJuNgoFRqZSmGjR8UX9+m9TCooYEsYMZLUr4SwFshkQ2+Jd9rRBwhrm2dbst60GGyS+VNkpx0c1+4R76Nb/2Qd/NCiNrzeQGb8j+zGfpPFaUYOjwtFQy4SmNVRuip3M6acLZi9/gtZUuJ+csFy1nDB6vQvaQmgwIlTe0x0eoa5lAaCWCzszfuLvvc3bn664tJtTECSJiPR49RjsiepOSvYPj2tZP2EKJDLYMRmakjRgFAI57a9JFoenvrKD54BUolH7VQvLnnp3h/4oZjfECzOGvsenRG8VNRvD+SYT1/2feRy1KIKpK3xIWCPENRZMznapJfmZQjUYxHkmdc38ULH1DDubkd48JL1xA608cnEPeflZmE/opWeYJkIjBNPhYtEQtfjTF7uPLbmMbOHdYwESo0Issk1CTs02Tsj6+W9ZQ4UxCbduBKpwl529C4gYphOHrRxhcCzu3uHqSwdYZ/C15/W3jjmYOvZ3G+pmga0CXzOf4E3FO+90zOoGlYYhGdrQsFpC6CERiWpQNbgCjVZuYNoITRUx5piUVgixZM+kaL6prI1x8Y1Vj8eCRIHsULGN7W8ZMxDEWObVjLqqGAbo0pKZ7VAdMy+F9blPC+nZbCRldmuFpl2cm/P2a5Gf+yfKs88IE98i5t51vk0fP8Z/gqlTctiU0n1bzHb8LjPh7FVj3Yghg5At9yKKtSAasZLwvsuYusT1T/bdSblC0VoK35oNMm4643fZVVMYa8+OkNPW7FkzlzHPbs6tT/GLzxTZSCsRzNZkPDEmAAZnPBUNE9mllin9F/8p/d5Fpp+9jLvwDH7nAvaoxVhP2/VPYUJvuKCRXHc3DomhhyCHaIRnnpny23/bAZcuw+LYYaxSTSI2zvC2xYodt9ACR+StetQocmBTlp7Xkrkqasi4roKJuVBL1MSRM1i1eK2ont1nenkPnc/QpKTrR0jX4ScT4lFHhVBfnNG6mPPGr5nL/Rn/Ou9Ogf/620doCHClyu+uSAOCwTnPxHrMMqA3FshEMd7RvnYbd03wO7volX2YCnF/h8FD2K0IpoMhESThIpgUGUwgWXBxrM+a+zDqSWkthZRSPGUzdQqhFHNZzzk5KYJsJNGS2V4TSuBgbw+pI0oghUTX96yWStsJh3c6Lj9jePnFHY6WLfsHDX4SSLQkXeGYQOqJTLl6eZfj40TbCS0NKQaSOtRGrEnUTtmtDZVPiD1CdIUtazQXZYmlt9lFWUUxOq4FW7y08hlma/OVe5j2ZrIbcew0e9Su4sZRyPWTzYqIz0KapKJhF8j1XWjHZ9M4iSs07HPzzZr9A+WlT1XsH3h8fZukc5SPGeNPCJ4WYzZs3JhciWgD1eTPIglrBdUAGqiMFhizMOwCzYwBV0ZGPB3WzFtYZ0AUySkRympgm8GPzHtbZtqWlsfsfZkhpK0zN2qjbJ15D53AKEt0KBZRmw2HRIIkbLJF28ibXTBCFMdM9mh0wuSdJTHcxTw7hYvXsLv7mVlZRzKCbwfqyZxVGwoDEAypMNdHJ1lLWLnPCaH2hpg6ur6nTXd4q32Lynom+zM68zxf+Kk5+weGr//aXBjb0uDNhCEt12OdtuC3US1HisI+HhZZR5Vuj3Ei5ZqtBBKBUAumsVjTYWVAn5vh+lkOhHrzNtxZYL/uE1RX9pEhoJJIEgmppTUDlOLhY5SwYHLNX424ZMAkZLWC4xa9eoU6ZXdMh6G+0xJmFpoa88ZNwpffwL7wDPalK+hL+4SdCUjLMIc4nZJsJKUjMHFTwg+IZhReDCblQRkT32V7QnkXYwGVMtNi8T7MkcGnxnPUfEmo+iIwjcxOcDZweb9m/3LHctXR9oFX315igKO+R0yGOL307F84YrYbsL4jkEA8KV2iHzzdUIPzrJLQ9hDUoNLi1dC4gWai1FWHNcc5Ct0kkAHVkNnjtsujsK7KhW7P1JOrrOifJ+aqUmI7JBQbk6Xr9jCmxtpE4xfM0lEu4Wg6xkh4yqx6dCpavUIO/CqSvRTp3hyBNjitMLLDP/vFKX/vRz2//vtWfPKzEVffJMVIlOqhi/EjxfiNJJzr2Z13BHRtBDVG1t4e26CAoBibJQI054QZGX/2i9/IjvfSFoM5dfzk+Rup/t7rzzhvxH3OvN/JM4ESFCanJm6m3kIdI06zJ4lTAwyo+LxBJpilmsofMDU7mNt3WP3iK1R7F6ieneGv1lDZXCFJISn4KhfeXq6O2WxqWYJ+VNRnI0AVaKR8rrxDRAlhIGjgqPj0r9pj0tSB/QQiBkOFSoulxpsaSbb4Zm/6IFv/3Suw3XtsPH/jRBuJKkRNJI1EsdiZJc4cURR/eSeDybXHkeArb6LWkT5xGReFaWqILkNAZkvaq6AwVYezFeZSg58MJK3QO0c4D67ypC+/TXVtD31hhs5rzPMXsieOB3txRjJCG9oMd0hEUzohkW+eSddPLNvfbR54MyKnPp84pdQCKEBUmXfjZlukWzUIHoNjMlFsvaJONXVlGULHJ587YGcq7M6mzCaGqB1CoPYepWIIllVnGUJDiJ4h5vum0JES1LamroXKL7F2wLkupz6WFk0lF9N6Pp0EojbPfGIi3PvXfaTyNRQkEKOjGxxpIoQI2B5rh5wyY2sePVzC3+rjWmsqx6Ur0CxoyoFZ6BTLFGdrnMyxxvLcyy2z/UCfVmjqMEyxNExk/4F3/mgxfqPU7pj59JhBYsbcATQV7XbDrIUtYLjQJm/G6HI5hgU9cU28R6cHxXKf8dVaKb0HDso5dowmkihJDDZlnyIhgmmozZxmcPjOUe9NUdMh811iM6UdEk1d5yIZmg2mokrlHM55lqtuffcnDz/PVPmsJocwIF7wznOhvkA/LDlur3Ptxee5uDMFUWwyJBWMeMYUzvqU39UIy8SSQjgAakLGxa/OsBenSFXhgsBgCDExbRPmS2+jJjG8dIU4ncKdY5Iodj7FvXNE6DrS5QNkp8IMK/wystsdEV95lfTMJYbnLzPMcu4XTREuzwgXPFGyRqQENKYyk9M6x/uGntILOWNENncoIpFE1gIAGdqw1uHrADpQebh2pUZM4OKBwdmB6XwA1cxA45y+q9BU0QfLqlX6VOpAqMdKoqkstQt4e0RVDxiffe5VW5S4wfhO0FMcg7U7a3bRHGKF0QlqPYerji4dkUwohuHHZanbTGgDta2DNhUwA6jHUHF8t4FhypVnLM8+r1x5ztHMj4mppzKeicxpdMZMdx94148U48+se8BohytGTCm79LaxdE0y7rJCtpT3+fM9RbnTPZe+t/Rgif8kFd/9LYy26LX4lOGeIGzgGKmoxODkgJkc4Ba30ONbpOk+sTnAvtzQdStSt8BV8+wdoxTPB3DWUlWe5dGwzgWzlSbq8Z90dJnVXCyEFAghILXgjOPy/lVWy5a3j17B77zF3oWXAQMp98eKz8E7o8fTKIk+wbo/oVGN7FVG/DpCNCxFEG+otCcZcC8c5DQWmljdPSS1Lf7qZezMY95eZnvCp3bpbxzDnUP8dEbamZNuHdHdPIYLDa0zyMQhE4t86hLBkitUaZ/dLlMpnC4xOxQwjvqozZ7u/dOkbah0hC8SG9tS1pIMPZNphRsUSQm05eIFi0gkxYF2cPTqSVKR0oS28xyvAjEKqtn+YEzA+oSXFd4Hpk2irnpggaYVpFS2nbE84knXhzNUvCciw3buM4vGhsbnrKB3j49RfxdbbaVf0fSEtxbQeu2fD4IxFVamvPPVXWJccuVaZGe3YxgikizeXqSynsbsYGKFyIMFoI8Y498o8WOWRX0YxqbjfyPDL9DJGg8+0fh7T2vN5NHo5ITfSA8CJKNoygZfq4KaiilT5q3BtDnFbbvoSW1CVpHjticaoZlMoc+pepWcIRPN2DgGJtMpt29GhhCovd3c+l3QOrgOoa4qUhzo+47JjifFRCU10519joc7LFZvslhdI7YXONjpERW8qfG2IsQV8HTKw6xpG+bIvcUoJXdRjmztUmKVVvgarKkZvKf6lZ/B3F7CvMkbRsjSmwqEnQacwfsaNwh6sIvMZqSrc/QzV0hxIHZLAj1oIJR4DKuJhGQsnrTWXTceaO/H5KTYBMZ75URs2WYWsyZJy87OBDQRQgQ8Q4ikZBF26dOEwxUcdxFVskaKxRiLMwYrkcYnZjNDXR+jLAhxSRzTjYhiNeRNAlu0jrQ2zr5nz02uVGfSlMbO2W8auj7QxxX1ZCiJD+Xx5J8teEc3b3R9R6RkCYoV7dGM3fkei7sdF65GhiHhBCZSUZt9ajcr0GmuEfyQjA0fPcafx1JKCP9Zb2ELS7sH7bHrvzYM/30T8+9Lm8jje7+TcfIXj6DRQylLTz1Wc0FvZxqm9hI7w4zhl36W7vZd/Oe/Fn/1WRZHK7o+Mp3PCA5S36LGoLrJF6myyQlaNw1tnwhDpPYWeRrsVnIGSo0D/TDQ4LPverJ4U7E/vcL126/wzq27fPG/c3zHd1jmVQleoUQpSirWyPeGCa5FivXmnH35wZCSkNJAHAKDAb8PlQ1ZC/jkQQ4OMxF/dYcgiR6FsGTYye6nId4lxRzqH0wqiHLWXoxmo3UwWaDJyeNknbPpHqb/Hjz+dvT7GOCXfwZygkFAcj3kYRhIKiC7JKYM0bFsDaveEkhotBANxoJYqEg0PjCdCN6uMCww0kPIKRSspLLVZUeLtWF6/S+Wx36vINlxQCOeGXvTfabWcHPVYmyLmL4omTlO5vFWwlqVAHRdc0EERD3ChJuv7fBLX/B863dFvvFbHEqFTTD1e3ip8QiSclS+Svn9cUvSVky2qFo2+epPnzQmTNr4x2fa2m1PqI3vjzT17khO/SpsWAwWhzczGmqmweGrXUw09N4zuXiNVmuGVcDPZ1TGY71HLUjfk3ScOhuJcmR4TTMlqGGIWeV+KlujKt5ZYugI/YAxtiBWmQHO6z3u+hlHq7u8/toOr7865XOfBqMGb2pMtESN7xXPL30sJlLN2lTOOV88sCRvfiblcRocRG1JAVKVNQUbB6IHJKKaWWY2h0LQiI9ZK8g1g3NSuDFjapKTbpYn6SQ49V7Q2tlZxwjfWLRBBTyqHqgwOiPGmravWA4DITqSOvqoG1sRYCw0VWJWCbVfgllgzIAxA6oDoKTkGb2Hcp4kB2nMYJvgRLDVe7tGRQ2qEEONrz3O5MAyX7XkEpGjHhS3IORHbn3jxquU2BRL7ea0R1P+6Y9PcKZiUi+ZTyzoLqIGbybZGTXZovGMwY1jzq/700eO8ZdpVX5ybpLN8c3OvRmXxFjI+14toWB2nDr0KF14t6T3fhxDs8/8bty8dDTr5kLYmIrGNNTuEs2Nnv6rr+M/v4/WE8LBFbpkMNMGaxymqnDGgihOlZBy+MlZ3RKFyXTGEIUQ0tbW+u4fepQi1xh/X3LTCyTNsQiNqWiqKYftIdeeMyyPijuk5uLrFk/McvR7SGMNhXGBCjZlbSsaippoGExeej4O5bWlTdaWUuDFqGDJHlFRlCSRzqVS9CXDjqpjMoicfiJH/Ob8+msYqvTr/RBOxuhwZHRVNCgNyJyYHF1nGPqKlBx9qOjiRmvEJLxT5s5TOQVZYd2S2ka86UnaowRUc7K2HPoeCoRUipoUD7ZN1PcoLxdf+fcI7hldrWOcMgyGPYWQwJgW61rSmE696NuP/zq2bIgFwrK6i2XCvGn4xm+aMp9N2KkdXgQRDySk1K7ULShyzMsl96zgk/SRY/zZRz3/bNKhjTSqq6cl/I1BdK15nWD4j/EW7zv5HnFSCuXll4/3yXs/HjFkxjlm0rR4vG9oBo+5eUg1MziZMEhFv0oMw4CZ7JOs4psKcTVJLCmF4m8uBW5YJ5Rd9z4zO9jZ2SWpMITRo+PJaHzGuvYYI4RhzG6oOfumGTBqqP0EcTf5zOc79v0O2biY67VayQXan1qczFkkFNfFDAmaMUZCYcxWaVVxKUvEiMnJ8WRTKcsmGLN7OM17RSLhU7FJFclPZfSaGe0KpzLBji9kDfecNmy+F6SgHisTVBv6wdIPjhinBBX6EOl7UwqLdyCG2ufShc7mdMnOHjIxEWRBkBVJEr3ajXCzVepzjciqy2NhcsT7JiJ9dGV+HF/5d/HUokhShjhFqVDjuLtcEcwhSEuuXZHjOHLf7ucCfk/Lmx8FsBg8mipe+fkJzzxT8/zzDd/wK2OOwdAposN6AwRF1RWvH3MCNEoPYe0fMcafUxbkl5Alxbw+1l7MOcBnxIFFcHhEDMkollyMg1SwNoGkKQfhSB5YU3K0GHzGGwsDyMOdi0QkyVGiyYz313zuWmi3ZWPaFD+Rcl4asT0tpQehVLrKsEZ+riz9mDG7p2RGJGqwpsLZGvvWO4Qv3cC9uMNwcRe5doXBeEJQmqahqit8EtCEMmDWiw4QKfGMWVqlMKCMA0EIFTdv9vTDwEbDGni8EK4NrSV+53AGui5kRiBCKkVgjDomvsEay3znkL1mjz5KloDUYakyc5TRrfPpc0CleHeQcfk8OoKaEgHMJkrYqDLYUihFN+8+l01MRCMk3fijJLKkZzQvW9GY4SRMgXk2m0KOLh2Dk7Yl3dP5dDY2n5Mw5vh73GlkDamMx7eZiwiIccRUE0JFSlNinNL1hlUfCdGU58upoSuvNLYvUn5g6ge8HVDTkvSYtK78VtyQJZR5bzMMW+ailLHIBYhG3dYiUjRCHfNTjbj608D4twWZkwhADBWzOnu63W5bfH0EfoyOHy8pWqGWwjSkgiaErIkzpswwJY5UGFNICDXWTUldzd0351zdm+HVQ7SItPl1pWqdm0olggyMObi0IBeplC19EH3EGP+I7+e0VloWhZTyenlTFbzUucKsdVShxi56pHLYyS72aIHeuAPTGnuwS3/nLs545NJFtF3BjZsMtVDtX0CXh4Dgdy+hYSDcfhOMQy5cwC57+tDhDw4QVcKNd0gacBcuwGAJ3RFmbxcrjnTnEB0G7O4ctQaOA262R6w8/miJdB1pbw9nKsLxbcxkB1vN0KPb6OoYZnNc3TDcvYtrapjNWS6/QlDD0igpKtE2aOOZ2AYzMhIzahOyxpAhl/Ab4YxRERpSR1KD85Y+TLhxQxlCzHCE5mLaVh9/4Y1eKSJgRam9pet6JOXKVFqkegQaU+OtY9nepb39HILjE8+DFYs3EySZ7Pb4Hom9OTHXaEwZi++l8cuRZeZRFNnKfzMWtxn/s9nYy/pA+RU3bLm4461HVLalSN36tenPGu7TwiRL0OKoBckWkx/7WtTKYlCU8ShiHGhFSp4YLUmnDHHCqhPaXgglCjgqGJuorOBMxLmWSQUTn+tDJF2g0hHHjLLCOhFaHo8xzcjmOU+SOaGXZ3InDjzMkPnIdKIPm7tlTdfT2IaDekrsB1bSgukzXCchS/qjd5Nm20QUwZV3lExCogCuJBoc8rxQwajDyoTV8ZxuccClg5rPfla4dqWGkBC6jVJg4lZXsyutyrbGkzdt0bMqhm3oI8X4szxQPkneXW0yiAGxBsVS0VAlYbLsCHWFlYbw2m3mzRxe2mG4c4v+i6/BlUvsTK+hX30TU1fML+7QHi1Y/Nwb1NMdmm94nuErR6DK7OufZ2gD7RfewlSe3W+4yurtu8idW+x+/RWGKBz9wnVM1zP/xkto27G8foudz14j1sLqlRuEoyPkc5+iNlPar76K++wcX9WEV9+kvX6LyWc/jdmZEr/8Ou75Z9GLnvat68SvvoY8/yzTS1c4/OKX2Lt6meqlHcxzL+HmlzkWwZmK+e40pxowsvbQOEknpcYRZkgJhtCzWAWW3UAzt1x8pmHngqEf+rJ4I7JVT/RJ3mBd17RdW0o7juhbSQ9sGhrvWSyXHL0x0C0iLzxjMM7gbI1JlqQZ/3xvIY8PmkYta4vhFS0gY7uFWSpZshw13/HaMZVE0ZAgYLBIakArohqQhqgT+lCzWClDUDRBUsnxG0YwBmoUb3tmM0PlO0SOUV2RM1zlLJJaksMB763x/amQnNpQydq12eHifIeJtdxeHGP1GCuK0SzV5812zPCZA67E9EhyoBaROjNvycZfoxETKqypcdJg0g6/8E9mrG4rz3/PLi9+ImJdtnvkDMHjBnhq7SqlD2MS+JyJ0OjHKh+/IHi8TIklOVpla7COJoCzc2qzT3/rVfqfeRO5sMvOZy6yqHaRakpIBrt/heazDt2dkaZz/EsvYF1FkBozP2Dy0su4agLNHH/1GikmeuNJ9ZT62eeojEf9DL+rOOcZXEOwBnPlKnYIxMmc4AboB9ROiUTsfBexHvyMpA06mRIwaFSoKsx0mqstxYQaS0qQhgHrPDqdINMJ0RnqixeI04ZbqxWrXqmnu8zqBqwFY7Bkf4yzC4VsTSgxoEKIkW4VOFosEDvhnes1k3ALWwX8tGXVDyPYgajjnkn5Lqhpatp2iabRXJZzQyoGEaUxOxzpkmsv9cjqEtZ2QA7kclIR9MFGrY8GbWHDJ2Ac2Czpbal1hDlLsJ+OXkIGI46UKpJOEGakVLPqHG2nDMmSsPQpR8daMRhRnA00tdDUhsa1pLjIQVcSsiTLUMpVjpLouEmdhE4+nHQvLKbqSHHOrPI4EaCn9i2W7H2Unyoz9HFL1uLpM1Zc29bAjAguTTF2Sl3NaexlDm9M+MWfPeaf+5Yp1Y5gzZaFcu3KlbW6e8msc1QpiWQiyfQPfMqPFOMXMdQyZ2qqYukOOKkBQ3jjDfw8UF1pMEwxs4tU+xdwzQ72quWwXWH7gKaKML8IMbG6fUSH4IaIvXGLXiNMd3LmvztHxUoncONuNkZNZqysg9Uy4/XNDA5XAKTdPdDEsuuzRDWZslwdZxRjZw+dzbPUJQoXLhMTxFXA7l6AZkacNkTjSM9co6tqpAfZ3YOmRicNvbPo5csE61HjmNUOZ/NPLgyeyqQxZ1Qk28Z98wLtQ6S/cxtCw8H+ZdykZhmPOAod/fJtTD2wWHW5rdGj5Sl4VUwnDXe7VQ7uWcv6xUVOE42tiBKY7t3i4tU9fGVIIetyTmqEQ8YyjB9ZEtjg8RvSskFuoKACoxT5e11oQsa8OhVGZgyxZtVVdIMjJktIEMNATh+uOAzOWCaNUFcBMSusWeHckPNZmZ5shocN4FXsaOu+fNgZfqZ7tiYVktYMfYWphWjB+oCPK8bCRlnKH7F+i2q1tktQUmAbsuBldYY3EybVHkoNQ4WXHfbmlu/4DZHLzyjilkgci7zLqZ97xzFJthPoiAeNnx9AHynGb8TipGFazaBt6d55A7URf/GA7rClqiuS65G9XcznPGk6obOW5CvCEDC+xhrwpibFSNJIYwSbypQ2DVJNMaP65aus4okBVcyOZ/AGtYLzko2uKRt23fwgMzEBkyqkrslvyUI1yXOEnObZ1dO1bULmU4SIWgVxyGQCpXAErsLM93KADwpTg9sKjIGx3AaMZlrOkPjHkoH5s9IPgVXbMZ/P2dndY747ZTEsUf82XX+DLhxTTxsOj3PyLCNF3X0KVFeW7nBZMGdTHCGzRCUItatRBkJMNFVmS0kWGHU4Ku5NpfvRI9Vi/CzG2+2NWyXdAwkY1WIncYhMi0eOcNRWjMnRugBDYi1lGjE0HiaV4kyfM5S6LnvnSIdqj2gkpmyHEdkOXJJirNwyGP+yeB9bcGeZd4IQYg2pQsVy2K1ILFEZ8khpKVog2S6mCmpzgjWrYNUgOJxpaGQX0h4pVTR2xttvJn76p1Z867crBxcGPvM1PcQKSaEsYFOM9WMu3dGGs+5m7rVEWCcnN0iymPRx8uoZDW8W4uEduldfwV24il67gL9yCTubIIOgdY00VY4BCcqy7aiqKZWfQTXgU2QwNYKl1oLcqTApu+lgikyzlVlyVMV88bO2W3M9J0jLTH8QySl5JUuyymZn15KGdXQTREqNLbXF62GMDaSkFl5nnS/yQMz2DBFC8TQZPQdM8YAYeeI2zj9uBCEEFosVIUR2dnc4OLiAc46bd29z4+g17i4PGdKSJMpsvsvxYijtOKDnyb0qlOmkYnX9KI+vSMkMaovLqsHLNEeHxsBiYbj5Nly85qi9FqO9JzwkF/lHgzbZMcfNXIrr0La0J0YwmiGcITiGUBPThKF3HA2aldYyd61RKi/ULn92tqOpe6xpgY6kudh5dprISfJETzH9omWcDK7iHmb1YSVdj2dePJIcIXh26oYBw53VEd4fom406msx1pqMt2evCYQZjalwMscYS2MdhD3+yU9XfPWVwHd8x7hXCFFLpHOqkVL790TeIdk26LIW/Ivente05BxB2VX94evwo8X4Q0C6HvwcwSO7e1QH+7mE4OVnMtYWJONhkg3kMUb6GKinOyUKUVCxjJVpVZRY3EEtkexq59Y7PGxsQaLFip9crsrEQBKLTZYxp79Th8lJo1GyVDRa5ceavcFGJLmiRIYSFZoli7WnzXj/UkR99BwIkjcOqxajpX5Y2YTi2nNnw+y1eHS0bUvXdcSYmO/M2d2d0YeWN2+9yds3b7CIbxGkJxIRMeztX2Dx1nXSenN58tcnArOmZnH0Bj/6N3b4sb/7tXznd7X8y/9CWtsQTNHIQupYrTq+8P8TvkYcLzwfcDLBmo8+zp/f3HYMhUFTdinONSEa0JoQHXEwrHRKSDWrPtF1kBKoJqJErDFU1lLZiLcdtQ801YDYgZRWQF8M7aORuHAdiSRhLeCceP+qqBldfcvP00rh+l7SVhdVswuxoaKWhmlTcdQNdHGJqVo2HjwJwSHJY43Fi8XHiwxaMaumLI/nvPIKfPYzBu8SN95q+eorR9z+WuHa5SVf//lD0lHg9hLEJESmWKu5Apt4rPN587YOMRVqPcZsDPuqWiRBS5I+a2wyIaTlAx/1I8X4NUYYAjFZ3MUrTA/mGW4JUpDiVAxcAFkqbrucHkCcIUlcpy42SfMVkqXrtHbxstiU3R9NcV+MBd8TDIGII+XwMRmVr5gd9SRXQ0qiJTiqbC7oOppTixuqIUvsUUxh3NnHP23lbxmjjUfJP2AY64faNN4bTsqAZayKxB9CYBgCbZsril26dImq8qzaY9648RY3j79Mp20uYG6W2QqgDbPZlBvLNqu2Ep/awp40np/5wmf5d37gE7St5a/9UOTi9A6/5XtLmloJVN4TYkTqnsXK8847gRee1xLIVYM+eNL/sifZNvKZktOlQjGEBCIzQpgyDBWrNtKFvOkntaCKtYozkYZI5SKTuqdpOkQOSXGRpcYxHaWknJFUiseIgoyBcmt3ym0b0Sh1wiYJmWz6/SEX+cc8QFmQs3gzYzbdp66EdxY9xvSoSRjNqL0RwdBgdUplayrjuXl9n7evB158znD7zg1+8seOOKhqLl/q+frPHPHJ5w+ZhCU3XrlOf3yL0B5hrUd8BNnDOsEai4jH+QbnLM42iKvBVxgxIJl7qCqaAsSKJC3JCPsXP8XdG1964HN+pBi/VB4zqUEjnelJxmLUIDqUQtbFvyCn7SQKhL5naj0VBomZucZilzI6Bk3lDYPkAEsyIePqJrc5+mTH4nsdbQ4wEfVYTUSz5WJnclGPHKxVUq5qDhwbg4NcciQZiBhUfdkIwlojyFKGlCx8FquRaBKKow6GZCLRjHjtJh/RZgQ20M7x8THDENjb22NnZ46IcOfwDtfffoO7/S06WRBs7qukHXLNXqWuK44Xx2gak2Q9HV/q2XTCa69/hrbN7qHtyvI3f2zCb/3eoyLNTPHOs+jvYP3A1ed3sC4BIWs60rDGaBXWdctE15/fezpZ2Ws8tk0Zbjt5yqamAmsRekwRsWlhNJ7arN4nC1qDNsRUsxxqVq1maR8hqsGUEpPOCNYq01qoK6EyK5AFmAXCsE5DkaMJSnCgSt5UNOfGkS0gQlXXQWXrwCvJGmSGO7adB97b6NqzsKQTkBdkexycGtvx3FObVPlspGJeNUTJwpyzEbGCDRYZanxVQawJy4ZmMqeLgf/vf3PIL37hmO/7viOeefaQb/i6QxY3b3Lnq2+wPHwNkyKxmmDrmno6ZzobMBoYBkuIb5CWmov/RGWIHTFmTTzGnBY8hEBGjgUxBpEOdIJaRe2Er/vm38Jbv/STDxytjxTjRwzRZkavY5IxSesIWCjCUmGwGhMxgp34ElKfOf4mTYGUeSA5VwgwBtlsMmJuWKqMVaAK3gepaAplEaiikpn8uFuXBtha34z6AIBIhpc2czjfMxWPCUMon8GmVDYAPWFP0/JcYxtJE33fc3R0hHOWq1cvUTcz+m7g5o23aHXFkbvJMt5ASWtfehjWUcipUe4uVgQSE3XFqPhkzF+Ai7tT/vu/5gv8zM9/F6uVpWki3/Xdq/XCFFEmTLkV3yFJyzd8fcCJx0gkaI0rm/VaC1NbjF8JnkqswQPoBO/ZYK26ZkEZilkHUp36tmT/KZ8jKgOibsuOk1V81VxXAd2l62csO08XMiQZFDTmexhJeAnUVpg2Dl/1WLsAOUZsnxm4lpTRRYM8vTducrLm/m2bkk/tWltXFW3hHj3zfab1xjr235OfKIIoLrpcJwAhSEW0h7jYkOOoI50KfT9jp+6xacJefUjoEmaoWXYNi9ct8+aQm28v+Qd/c86v+rU/y+WD1/iaK4nnq4GdOGBvR56ZB6q6wc0u4565krdtazHWZiinpP1ICppi4Qu5AFLShKZUINn8O2laP5uUbVhKxLbahtnBVV54/tMPHJqPFuMHxmo5m337XilvXGgxRlQTzvs8aJwMbt9Em8jI/zd/yb3nbe60lokodjPWi0A3PVh715z8tX6hGxpB9FPH1uxET7RLaXsTjbmBdlJKRcofmM1mzOdz5vMJi2XHzZs3ESNYI4Su29getvugxZhlha5fMgwB6gY18YyRfnyqvOU3fNvPcShv8iM/us+3f/d1ftP3NiBVGb9E5aqc3XKI7O04ht4yJIfQ4dnDyG0SwylI5L2U9rfvIetNV9apsjfS5MaDapPpU9bzpWguSJHkPWLyYkccxsxIcUboLcdBCNEwhJwldYykNShGEpPaUlWCs4oxS5wZcC4i0pNSj2rM73d70p34dNZ43bsxnDmqj37wPaW8/27HD4y2NINRIYrN6VfUYHXADrsk24PW+T0Nl5ChhiYw6A3i8pDDG/+MoV3yC//0k/R3PV/7ddeZV0d87jM1e9PAbuXZ/YxHk0dY4QFrLK72eOdxbsNyt+Gyh9G25902v1jPPM3/RSpiM2d378ID2/sIMv4Rotseli3aOpyKp4219qnLJtsuk2dHyp48fnZQ1fpbTi+cE4tz1BTOYPTbv7uuY7VaYYxhZ2eHvb09Ukq07UC7WhJCz+7eDsvVbYbYssnzcurGmqM2kZ6u7ZCdHZ4K1FMUk5/46W/iP/gLz7BqLa9/teF7vv0uv/V7xwAZwVmPFUPbHzGEjp/7wsB0bvn0yx4vVQ7kSi1Zan6/Gf/4e/sN6VogHnOpsIbgWEtvGfgbbVAGYzxqamJ09F1FCBUheYYBVqEiprLZlsCsSW2ZuISxAWtbKh8wNleuStqRVEsxObvJ5f/+8+P3lTYiWNEYtzbjZOJmCWlCJJScWIo3DTEosnybdw7fIfYHOLtkMqyYpI5r07voxHJ1Z8Xe3PLiFcWYhtpOc9qVHD6a05ioWwfPbTsCwpZcwkZYO9H/dUoTLW68W7riPVN7G676mOXj3yy5B7NyBYwxiAgpRcQ+HRjgfkz+Xt95vefvBzP/R7tvjJEYRxwwEWMkpVSeU7HWsre3R9M0LBYLFosFk8kUEahrj1g4Xt0hpAdF/gnOKRcvzfLmueYgT7Z9jq381M98ntWI8beOv/ljFb/le1drrcvbito1tENL0sDhEbS9gZcmGJvzlPdpQcpVcnmS0pCPRqehjdMzsNQyOJE6NOeuEUaxT0sA3wzVCSE5YjSEuEtQT9cluj4WLypBCThrqBx4B8Z0NFUuaGJMT4xLcgKvobgbylYyz4R+5Dj+/Z7ndPTwmEzCIfTZmUOzrSyz6gZJwuKdwOtfusszB29h0m0cLzKfKzs7B3gTePaikExHrRVWq1ztjoBVJWmJP1kz7ezyui1E3RtEyfrvs3mInLlZ5ANbv2UDBz6IPnKMXykY/now7j8CxmbGH0PA2ezxsA2V5MvPCng6e1felq5P/2wfP+ucp0HjpNlm+OPfIobZbMrBwT4pKYeHhxweHhJjxLuKuvZkz7BEKIUwzqKROfvK8OKLV3C2wD/3ogCP3//yDN/2zb/EX/3bv5a2ddRN4Du/c0kOYsmSs7Oexk1Zdi2Rjk9/dofQK8a2JDF4Jpj/P3t/FmtZkqVnYt8ysz2d8Y4+u4fHmJERmRk5jzUxi1XFrqoW2YT4oG4IaPGhX4SGIEgCBKgbkp7UDyIkShAgNQg00YSgltBNSo1ik0XWlFXMyppyqJgyIjMiMkaf73DGPZqZHmzvc8+9ft3DPSKyWBXVBly/18/Zo+1ty5b961//wuAkZBZ3+vY/LVvn/VH84XjcZy3Iuzp/0EoP00RbhkUicAZrI6zLsH5AWWuWpcXa9l0B8BqtNVorIlkQx540diRJBW6O9xV4j3N1iA2tkIGQ0evXqlaFeMPHzfgftfWSnrRMOZE6PAcfobEhNuZTtIrRGKq54vC2YqCnLPdvM3nH8egg59LOANFzRAymDXCHZ6kQCfEkLypAdB6EhrquKWvHMMtOXZG/n005bZujz9f2O/aHX/2836P92Bl+6LD6E2uqE00IhcOVCM7aFc66bjxdl7F7wmCv/14dT+SehncdX++OCV2MwR87z13XeU8P4Ph3Sim01sRxTBRFpGlKkiREURSgrPY6mqbm8PCQPC8YDAbtNYJSJgwS8bguSH1PKMATGcWZsxtAfdTXH9KydnGPX/rG60j2r/njH3+Oz3zlPX75VzaBPh0ubsSQRT0mxZSyXnB2dxslEaJmIWZDjBJzwgP4abfuWRzHYVergbV4iRCBj7Auxvke4vtYF1GUQlE6GhdoAtZrNBVaKbQISlmSpCZLwUiOkIPkiA8rG6FjhnXkgK6UqMXTsFoytRPVyWoVH8fmEPAKURaoCLkzCYglIrDAtI3QVnPzrSUv/skBT1y+wyOXKi59ZZuNJCJV0jL4Ap3Y+xikQbwJefHthOrQICF2sn8449r1fT776afa/B8fqOX3aA8CDd+7+RN/v39g/WNp+I/d9GnGdG3pr0RW0fJ1z70oCuo6sIM6Aw2BAtkZ0c5giwhKKYwxaK1xzqGUWv1orY/9Xv+8mzBOPvh1oy7dbK467/Lu1l3D+hKy+7E2eCDL5YL5fI4xMaPRiDiOKYoC316vcx7rG6xvMzHvZRUERCmS2FBVc7qp9qNoIkJkYn7miz/kl//H29zO7+D9uOsZgv+qyOIeIo6yWWJSEGUpXYZQYIjbOrz3UDT8iNuxe5cAHYjvUuyDZqwnaM2HoiIjHBFVbSgKRVWptnSQw9pAmNTKYlRDYhS9VIiiCq2X4JcoaUDVbXUyi3Oy8uqPdPpPrHDu9ffHtHU0DY8NMIsHJSkQIRJjVJ/E9SimCdXyLfKDt9n/ieLKuYynr47Z7JdgNFrVrSJpAmpJqINsEd/m6fiOpeewQltnQXFrf8HzL73Gpz/1JPoh8xc+8ErsIXb72Bl+AbDrJQHvbqsFuHc4a1F6PdLuWS6XFEVBHMcrL7oz1p2BPWms1z9f98K770776b7rmjGGqqpWuHkX9e9COh1v2vvu52j1kSQJWmsODg7apKx6dSyljuIZSZKQphlRFB9NdNIafhxFXdLY+1fW8niUGLQ2lNXio/UbRYiTmGayDH2Jw9qmPW+7iRdSk6KVY1HNsC5nNo3Zn3sunVMoZdBiEK/aoNpPO8DbPgcEXIclG5AmVELyGZ4+tkmoKqGoQ3H2xiuaJtSiDRx5iDUkkSVLLJEpAw6tHFrVga9NgceGZKwWKvLiW1GwkEh3VKuri78EhtAxb/CnVKbwL0/rgrnSZrHHGNVDyRau6ZPZBbfe2uNbv2X5zCff5fFzS4aPbRBnms1BTexTGmmVovQS3z5XvzoyIDUOg7UeLQGDr60ir2uWlWN/kreh+riN7/yUcxnWLu79nu7HyvA766iKkiLPj3R07tG65KZ8WdAbaxKCAc3znLIsGY1GpGl6zENfN+6rc7awjvehslVVVeR5voJ11lcM3Wfd56traQ337u4ut27doq5buVdpDfbJi2/VJzvj75xjOBwyGAyYTCZEUdDiDniwIEowWqGNIY6SUMh87dxBEA68c5TV8ogtcs8mCIbIJDTNAWFAuI/IrCoiE9FUc/Dg2v47eX6jDKnuUdmGytfsHxpeeLlkZ5jQHyiMjtoqUu0suQqi/hRaxwxp8WR8jCLB+oy6VpS1prEx1sXUjae2odi6SAsQaEcvMSTGoXWBUkviqEaLw5PjsKv6BKy0WDpwsu13L2sMpu6iAszDKc9mpfT7MfT+QwxdEFFoUhK1RapStBhefRn+5N8c8NSld7i0e8iVs33Obxq2hn18bFA+1Pl1zoV8exehfISSBu81vquFrJsQBC5LDg5ztoZ9+lnMzet7/O53vsetvQVFWVG7kkQl/HQ7ujv2uuX/a8bq8aHqyiqIdS+EPwhNgUnTkH1HMOJ5vqTf6zMajVgsF9hmLUjaudrcjcM559jd3WW5zJlMDtvJ4Qjb72CYVUIGfvVwvPfUdc3W1hZFkYP4YJx9YOJ0npugoFtFALQa9c4FyYUsy7DWMhwMMSbCUlK7ojUIFkvD0lfoxpCYHqrdv41I4bynthWO+p4+cvd/pSPS/hi3t7cGp3z4l1vEoSTG+ZLf+1cb/Mvf2+ZXvun59/9ux8kIxS+UMvSiTfbyWxRNidYpd24ophPHYCDEZIgofKfb0yZO+bVB4sXSlb5cBWE7SH4VpO2YOMGPVl6teVPhO/GCSAw+w7qUqlY0DTSMqRuoqobGepAQfBUUSQRJDFrXQEEae1LTgCqwPsd7F5QvxQVPcaUNFSAjaQ26EvC+hXk8bQBXWs8fQh3XUAN4Vc93DZz6i8tm5mjsrB7BUSyuSx5bVxvVq1hEp2m/Frz0gI9BQk1moUFchKCDvo4eEGlBmj57t4c4XWG4ycFbh+S3a/TOnLPjnCtfb0ilhxJNE6pg4FHMC8u77+0xr5Y8ceUSw5HDObizd4C1ETu7PfKl5Y+++zxvXz/k/Pkdvv7ZJ/nTF17ixs1D6gbmeRnKk0YdDKdWzkiXRHqEP6zpb4pbSxhddd59+rV7g2Xt//dvHyvDr7QmSjKiJGs/uVdnHe+YIyzcIgLD0Yj5fMlkNgmZdI5VFl0Y6y3W3Hr/WmvKsmRjY4OyDPBKWC3I2orBoFT3gNbNajjvZDIJxzKG/qCHUe3k5V2r/BMMUdNeh0LITA9BkeedjHE4XxRH4D2zYp9ZdafVDApLTe81iQzYHZ1HkQbj6KAt0YL1tq0gdHpgtHtJlQKvE5xtMwo/gjhqV39Vq5g//O7T/O//4WPkheY3/5llnE75H/xqGQp8OI0gZHGPZlFQNgs2twY8+phCxeEyIvpoiWi6wLkNQWHR4FwFBNrdmslnNQiFto5y6JXwuI/SsMIOGkjxLsZaTWNNW54wiKFVjcO29RrEa7R44ljQyqGkIjGWXupQOg9eva/DuVw76YgPAcRuFXGMl30yQ1xYlVNcPYP16SnILByfzT+aifph25HuZJdY1Tk10s2jx9rxvGY4kl0AJAS1lUvQPsXQJ9YaJKGYZtCUUDe88me3uLR9i+3hdS6NGh79WzEXtlN6SR+vBFqZdS01noj96Yw/+f5PuHntFtPlgmWR87nnPsG1d27zwis/pCoiPvPcVbbGA2bTCfky53svvMajZ7f50VvX+cZXnsE2mn/1+39KVQiSJThVnUAh1uHobmUaFqVHxM9u+5Mrubs6tZ1U12oxvA+U97Ey/F1bZ9g8yLYhWAvWOpIkxTnP4eEhSRqTpnGLFK7LnbUDeg06CIY7eKxxHNPr9XDeteXnaA14t1IIP1pFKFHHgsShLF4U1CerGZaKxllcIFpiXY11lsinJBuXiFSGUmoFJ3X33qiKvJ4zWRyuDR2PcgprPAzOtauHCO/rIM/bmoiuePO9Oy3IPhR1ifg2T+AjMCKdLIHSij99/hNHXP5c8zu/G/Hv/mpLM211d+IoQytYVgs2xp4vfDkjSwEp8E5jfErZGOoGvE9xUVvapSmDsJ3QKrV6lLS+pXSB9S6y0lUYC8/RAd4ZrE3x9HE2oagNy7IJWipi274UYhRGCyIVxjT0MkUUO1CHOFsR5DAcvss3OEb5vF9/3pXXfWycn9zT0Vbcag2rcu2dySkb/1SbtCuTo3crVFazrVFsPeJ2JdzoDqYKHr5q8xF8+ykCMRmR64ETIp9hKjg4jHnt5ZJ+8h7jbEqzb4mGOcPEcvbSABVrjJLVJCK+CdLn3uARbtzZ57/7nT/gmccfQUnM9/78x1x95DJ/+icvcG1ygC0VeVXxd/6dr/KFL36Orbdv8O0/fYGbtw9pSseVi7vUlWJ73MdWJeIHRzIdx7Lhg25YcJr06s7woVbempfxPv267kx28Zu/pob/QY3+enPWYyJDWRZEUUSWZWjVDbJQbCXYgyMtnePnbKEIpRCByhYs6zmhAHi7rPMdvi9spGdITO/YNQclEcusPOTm4ds0lC1PQyGttLN4T6aGWFdjVHoPVpAmjnoMsi51O3hXyjti1Ue6AuDtErordWh0jBbdMkZO7TXw0HhL05REtqGxNYbkffv7fZuAQ6OM8LXP/oj/7ne/Sl5o0rThZ35+hscEuKZlSRglxHrIsp7hnGeYaWYLRS+1eGVJ9QZLW1AWEdr0KJ1nUTSIHxFpUMojCrRW7XP2QchMCU5sa/Qd+CZMDCI03lDXiryAqqabjrFOI17QArFqENUwSEqyTNCqwvkFIjUiNZ4So1jp568gpru8tNMHfAt2rG21DmDdPeSP+42yJqP9IZdoD92C8TtaXbV/+ejoSoRW0pwwCQiEDOzAllEYNIKxDu0iMt1DGsP00FFVN6nnN3jl5Yhr78R87nNLzowsZ76WMYiGxEmD0h7vYhzVCsKT1mMO060lNYbd3U2+9OVPYivF7//R97l9e49pUfGzP/MVNJZ//Xt/xq29KT9+6zovPP8i71zfY/r0E8FMOEMURSjxVNWR9Antfa9udbVEC6txfCh5KsoeW4c+WDv+5N9vz4+l4e/ag9CijqiT0mLxEc41GKPQrQFfLUGlVSaUleTbKRNMoHshlmV5wK3pNRpK1vX78aHCUaZHxDpbXetqNSC+LZgkKNGh1imBqaKVQqPIzAC9FjQ6nggmGB+zke4ySEctliot/mvRPkKrUJRcpAkTSgsTpVGPSCXU9t5JXN1NWPE03uKcvV+e3AM38R2EZvi5L/85/6f/7Af8wQ8e4dnPvcYv/NIQz9nVBCoeIonpmSGHxW0av6Qpe/zRv6n47JdSooEnMW0xjEEI1N+ZzpjWcyxC3QQqrVchyK+knRhbdoZvWTDB+LfDRASHwTtHY0MRExGNSE0kJXGk6fc0sSlBFggFWoc+1r4K74Vnhb9Le8yVf/+A8hLrRr6DeI4lBZ/Yfd0BbAGhFQz8F+nwH93dSQijBT0kZDOrFRspBhcKFUm73DJoetKjyXOW+3MW9XWWM8ubryZcOF9y5eIBz31yl2eehM1xzCBrULpEuwQnahX4DVBejZewynBYaueIJWZrMKZnEsq8pqwsSRwjjVCjODPuMxoIVV3x+us/4fW3r/PVr3we/2cvIUoxSAe8c2Of4WDE/mRGUbvA7MKu3feqIwgV8oKHLxK8/VOlUu7bZO2H+w/btn1sDf9JkbL32w7A41BKqLt4YPiQo1e1/bcFtE8eOgR/5dj2It0KwKy+w9Ny+vXqGsJxwwPXTjGKNog2guqlasEmUao1QkIkEVpC6ccjuKqDesKyOFYJkZg1H2tVhqX9zCGqXV4CSglx3CfRPXK7WIOITvRZAEzwWrDeYV1D/D7P48FaCHwqZfj9P32G7/94g1/4tYonP3+DojHY1GF8YBCBwpCQRQl7RUNuJxjpcTgV3r1dsCmOs6OIcW+A0waHYF0DqtVpaStJqTZu0xCeaSdkfayUpJdVME6o6BQ0tXKkmdCLPVpq8HPiqMboCqiwPvSt90f6O3RerPftROxWK5iHUTdV3rVesF+N+c6on3zjxR+lNIo8kF34yNtRJm3r2HTermcF5ay8XAkJh+JzlI2JXIpqHMvpHvlyyrIWqiJh/waMRw07W470UWE4Shj3t4g3AKmRNm4lPqWhRqSrQVyg6PS5QrB+tpzz3t4+T165Sr83IEl6fOvfvMjNO7d45pmn6Q8yGldRFRXJeITCMJnOKaqG7c1t6nxBrITzu9v81u/9MaN+H63aGEYbi+gcRVmx8nz73Fpqrm/C9l3sSXgg5OKY0aezP3/NWD2w9pI9IH3vyHBalNH4utVEaQ3REbzT4pDtDL2+r1IBCuoeqmDoJZvsmFAZSa26WlYef2Kyu64BH+oARFGfxPTbPYKp8uJaT7SFfU65zy53IBgUOA5JqRNmIdyLd004L0IkCf10xKw5oHHvU8JQGxwEg/qRtOCa/otvXeE/+QdfoShj/ulvOP63/8fL/PLfWuB8Az5elTlVONI4RSnNsmwY9oTHn4HBICJLIowRjNLM6pLJLMfbgo2hRVQd5JqtwvuQ3epFgq/pBes8qpPFdYEwGbTQPbER4giMrhFyoqgiiRwiNc6VQN0+FmnloFuID1lJ54JfedwfqH6NeGw3RckRa78z+ndBPSu4srP66+pFfzE+/zqU2TlTXYGhUKpRwoqv+9o63GzOfDLBLUsiF+pJa2dJYkeqt4k2U0bDiDNboHbDOBWXon1gcFnV1sF1jjuHU8bDEUnUGVSLRVGUjizW3Dlc8MILr/PkpYvoRLF1dsirP3mP7Y0R+/t75E2FlpLX3nyXPN8kjhWbu2d44fVb/MG3v89wMGZrZ8gjV8+wLOf00oRzZ59md2sTtaqz0J27C9Zb8AolllBDOWT+Ssscu5/jet8Jwb//U/1YGv4HxfiPNx/E2sSAag35Wvc1vsZ6S6ySlpJ17Ou1c7aeojekZkgU98P864/87tXMv2aU1yWanXKoDvNbm8nF61Xg6ygh5O5EMu9DkZijWX8dQugCsdJanQiojpLOvKafjtALc5/ate3xtKFxYJv6IzQfnt/5zjmKMqwh8lzxvT88y8/+jRepbUGi4xUr3UmDSJBsXpQ5biA89Yk01N6NI7wrqKVksiyYV4fEpiDt1xhVhrrGdYwjwklHGdQ4D9Y5pKXSWhem7WD4IdaKOGkwpsS7BfiydRragLAItoUsaAvndBBO++TXnoWsWX7P3Rj/vXoIrAp0R9Vl9HUJgaccwstaQa3294OBSh9tW5k/EWgnXHEWpxrEO+xySTU9pJ5OafKc2MaIK9G2Io4z+ukWaTJs4bQ+K20kMe24qFvvmjbHJcBEVb3ku3/+Gl987kl2tzcoqobZYo71Ca/86A0++6knmcwKbl6fITbIWl85v8mL/Zhf/6Wf4Q//+Hm+/+c/4uzmLq+/fY0bN2/x+NVzPP3EFQ4Pp1TLBV/67Ke5cuEM21t9djZHGG0Y9vpEIm2RpZapheBFhWtry6QGMcEwCUgHeXWTxZpzd7pN88d+ZBUrun+y2MfK8HfJUSeDnQ/aQr+GrMvglKj2Q0fRLFgWCzb628RyxLE9mYgVHkCnvCgYr08E0trl+GqJfnSdzjkkRBHDw1srsuxbbDhkeB55kcev369+r7P9Q/GZDhv3R9CCHMUwVls7RWoyjImobLF23auz0AmOKR0FQ7nK9P2wZiRAKt/8xk3+yX9zlbyMyFLLz/78jNrV1E0BarTymi2KsjF4Z6iY46VimG5R154ir6lsTpY1eLfA9GdonYeYhG1WFc+O1DFbMEYkCBxKMKzRahl9tI1A0HeSEMT1Xq0xctb6iUA7PeK6riuZru54bfsHbL7luJcNrrRo3/Hc1zSqTl4KgBEkNmDUUVXEv6AWHB3aXAqF8wpb1dh8TlkcUuczZLmA6Qw/n6KqmmTrHFtbZ+n3NojiFLRHVGCeKepQs0BMWFnJEnEJYHBtER7VkiGsV7z0o7d4/NHz9PoDXnz1DW7eOSBJ+nz/By/Q72XhXdARTmmMCBd2dokMnN0Z87UvfoY//JPv8Y2vfgEVvYstS7702We4fGbAmV/+Et554khjJEEBu6MxHo9ug7SudQJa4AfbeBpbo1RDY4XJxBAljl5W422E1i5AhyeeZUcaWVcI8G3Wt3cNHo3zLT3E3n+1/rEy/CFLtqFpmhBV113lq/b747XWVm0dcxNRLPOCumnIshjVJsrk5ZL9yR79ZEASZbRrthNL6xVPgaPSddCBNcfaKYOuw/jFR4g7KoLnJUARtIbK+9aA+FBA5i52knNozSpYKrhg8LuMzxW+3Gm9BP0hUYHTL1qh7iUotYIKBLTGi8K5ezGAHrYFs/Vrv/ge//g/+xb/n38Z8ZWvzfibv7jNzRzKKsdFjtoGqQ2tDY1XGBPjbBGgKV/z9o2C5bJgtFHTjw19M8frQ5AGT6hL7ACnuv5uJ8X2Bo9onsFQdRg5hLKcSIgPBGpiiLmINHRRVO8N0gl5rR2Zjp9/DN/pvn1/XPaolwRTOeppCcsKbzvDf3pTPpzFRwo1TFCDBGu6OMfRUY8GSvf/7tf7TUqyghdWY6ydT9edVNc02Loirz2LSpgfLpjcucHixtvkB3sM05Snr1zg0Uc/ySBL0TrFmKh9F9WaNo7gdB3svq/QXuOJ255pqc9K4StwvkCiCK8Ns6XjvRu3+d1/84NA8RXHzvYOf/78D7n86EW8cVSmxmDY3hiTZhHLMufpT5wl6X2BM9ubPPHEOcQpeplCK8iSuA0QW/ABjlVesL6hqmsa62ls01a4d1gvVJWibixRAnkNP/nxgP7YsnO24PCWQURxfqdEa09Z1iglRFFr9EVQOuRvNE0dkktb5pn3CieaQXyOyXTvvk/sY2X4tTY43zA5XDAY9IizFCMRGk0QUWpw4lA+umtfDzRtvdDDMuLaJKM3VKikodcEnL5Qs+ApqjCDa+/RTtG0htkqC9Jlwx5NAcCaoZeTH6wSr44wvVB0ZF2Q7fgSvtMAOvqwyy7ujhOWueEKTqQesRqoEv7upi8RvUoWc2128cn5qRvcYfBpChy+qXAcFQ38MK2bLH/9V+7w1S/e4I03f0x963OowQ6TeklmK6Z5TEHOlX7M9mCIqPO8e3jIopyRxQNefl7hmpRv/kKKkQKlweoKbbtAd8sNPwa13OVfHX0uawDNSjJhfa+jPl719Npq7Qh0bb891qmn+uj3bR5wtaVXRQzG5zAmrEsa6c7f1kD2ipAFGu41LxdMlvvUQ40XfUQzXEvvD9OPrK6rU5/sArDHr7lLZVyHMdvKXhhwHm8bvK1wdUk9O6C5c4e39oR/Pf8U8+ZpYrlE6T5JESlipenFCz41siRRgxWDdg7Xis8pF9GoBY4Y3TLVIq/xNMHL9wl1A6KExlqu3bjDsik5d+YCm/0eB4eH3LwBu+c2uXLuMr/z+9/m0c8+xfMvvEb11j4Se2KrEB1qU3zmE5dRypKmMZ+4ep5IDNqEbGorFtcovLdtkRsbKNDO4RpLWS5Z5lOKesl8OaeuijYRNEbHI7LBDpneRKU7bF7ZQseehVT8/p8PubUv/L1fvU6vt+TNtyKSuGT3/IzDw5JqfsggOaApFuTFjMYVYdIhQ2uLlQHP9B7h+o0f3fcd+lgZfhFIk4xoJ2U6m7LMlwz6fdI0a3nrBtUGkE5q6Aue1Bu0d2QxvHvDEruGzbFmo6fxOupIV4iLAU/dMmKsckQWpIkQOSpg4rnbG79f6wy3W1ML9WveZnuX97h3OfZ71SH36qv297r2kFJdn7gQSD0VvukCiB3TyASP5qNoK5sYDMrGxhab401uvv0jkkc0hY65MZuAGrKV9jFxDzEKoyK8FWaLGZvZDuNhxLW3K/ARgiKSMdrdJmS8rk2Cp2r0y9q/p9z+Pb+Xk5uctvNH0gLU5IhMQpYd5WQYkTb+1GrG+45a3JpnBbPiAOtoYwMtZHmsHzrPv0Fwq+2OTEU7XvzRpOFVwLC9BxqFWMFR4MuCYv82+Z3rLO7cwNc5/eEODY9we75Fkgh/9/EKLzG/eaNHiuelaZ+/wR49FwqjKO+xCvJKaErPorL0Y8d4YPCisNTgE8qyZrYsuH3zFps7m9y6NeF3vvVdrFvyhc9/luGwx8FkSrn0vP7GTW5cm7CzMebxq5dZLEr+7Ls/5OrV81jRaMBEji999ln68ZDYm6BxJ47G1njraKqKvJpRljnFck6ZLymLBUVRtBIiEVE8IElHRPEZku0xUW+DrL9BnA7R0QAdpWidsXkuCxAjBX/rV/vMK3jkyibKG27sVxjdMNhQ/PbvLMjznL/9dw2bGyXzSYG4iH6/pmwc4g06cgy2L3PpsV8Dfuee79DHyvAHAyQMhwOMiciXc5bFgmW5pD8YkegMjcZJcxc277ygJUZLYBIfFMJ333b0E82jZ+CJqw4tFcHfaxAvNGgaZYEEMbMWOgntQQ3++nUcVco6Csw8yHFOBn4eNLC9nukLa4wgf7xuwClnDD+iUFFM1TQhAUx9WEN3FHIUCUJr589fYvLjV5hef4U0ioiTS2yNegzMAKvA1RV5XqK8oWpKnG14/LGEJAr1TUUqIhWhraFZFSdZF757WH/7337rQkZK6ZBHsKosxRoHvsv87GTcFEbHiGiU67D2Na2c1RzvQyASFfRiOmxa1tnlR1Fi7Wu8bfuwrikO9lke7lEdvEudl/SijL6OGQ92SaOIdLRLWV3g0ToBKfjcdgWi+ZfXFHtVxNXdgkgB3gUtKYTFsuJb33mBH//4bdJ+wjd/7rOMeueoiobGF0jU48++9wrff/lNysWUn/uZ57j23h3GG2OM2uCHP3qTK5fOc+3WHTb6GXmR87lPPcrjl89xdnvMZz79JH/y3RcwotGuFWMUxe7ONsrZAAt6TV3N2bv9Lnu336NYziBOMVEGKkZ0hhluMtzuMYxTorhHnAyJ4iFR0idKBkRJjyjtoVRMF6lw4jBiUURELuOppzWNAiTIgTz26ZBnMxxqPvU1x+GkYvvqBoNBzcuvzRGX8qWnYt58cQZW8eynFCYTRmceue879LEy/NY25OWSPF8wGm2yvblLNI+Z5QvmszmVrujFGV4fBUFXOvvOU6qSWizKeJ57PMIWmtrAbh+MFyyaxnu8tmg0iXU4FYacjSL0mjf5IDkE92rrQdoHNfzrfz8so2k9ByBICHRxhHtsD0cQsEmobUVIw/8I6u6urglAMeiPuXT2PC+88yLzO31Go0fo6yvMqhrb5GzEhlhFDNIBy2pB4wvObPfp9yOiOMJLjlI1kQuidf7YKuavntGHDm6T4w+CADgFKYN1aO84ZMhqBenb4DZrmaUdOaH7n2pRwS6xyq9NL4JzUC8WlJM98ukezWxC7BzGwaBqEJ2wMdxmNNqi1xuSRDGNxLy3n3B1mDOxGqHBolgWhptFxrPjO/RVDbiV9MV8WfL8Sz9CxHNxc4deHPOTt27zvRdfI6+WfPkLnw06SBHszwuauuat9+4QxTHKO+ZlQS+LmEznPP3EOeIX4dErFxAPb7z+Nk88+QiPP36ZfpqiPag2V8M5jRNLVc7Z27vJ/v416qbBqj7R5gWiwYg0GxKlI+JkTJyMyAYbmGSAUrqNuyi8ErQLgFWgDXfPwQUEQgR8J7XdIFaDeLSUnD0X2H2C42vfqMlnmmF/ifOGXj9gEA1wc09xcNNz9fGEYVbz3jv3f4c+Vobfi2NRLzi8c5tluWBjuE1/MCDrD9jf26OqCnLXhKCkP25gnfcYY1Hi2Igs5zcGvHPH0YuFiztQO4sliJ9hY95bGDZSS4zirX2IpM/ZES2jgNVxHzaXoNvvQY9xL6/9YSadda0g50JC0T0nj1X8ohU/0xG1re47UXyQFq4/ZFru7p7j4vQGP7n1E6ajixzEu+RNj0gcJh6wMejj9ZhpcciymjEabNPLDNfesZy/FCMoYkko3by9t+PB1Z8WJPPTaoHltQrStHfQqYm2lbcCzrjaY119yXUB29P04X1YQYQ4QdVOA6YNYjt8kVMvpjSLGU2+wFcNtljiFlOkLBhubLG1s8Ogv0Mcx21mc3g/HQ6rLF4sGoUlJmTPJiGHxJdE0pIavG5XGeA8RCbmZ3/m83zm6ccxyvPCSz/m5uEB12/ssbN1hl/4+ifZ3BzyO99+iXNndjnMf0g9n3Bu3OeTn3yUrc2YvJhz8fwuZ7bO8P3n30C859Er28Qezm7uYCKwpkaJC4Ko1jFbztm79Tqz+YSClI2zz7Bz6TP0xpfASDDcjcUVFa6qYV5hlwdh7d9CaN6DFcGJCkqd0hbbEUFpwakMqxoUCq3D9Gq8AuVQts19EIsGhn2DUoGx89wXEwjZCDz5pOZaWmOiQA2dL+5PuPhYGX4lCq8alm5GOV1yuNznzOZ5Noc77O7sUpUF8+UUfxqXTRSDJMVITF0uefknFT+4tmBsEiKVcWlHCPmfNY0TXr/pyLKYYaJ58Y2Sp89ZdkfNQ3v5Jw1+Z7gfth332v0DTTrHKGGsVf3qsITTzrP2r3hAR9TNAj5iw786hwjGxFy98AkOXv0jpjdeIe6fZzh4io3+kEgCtt2LMiKjmJVzdnoNxdLz4veWjDdjeoMUI0nIg5CGjictrMlo/BVqR7V9Ox9faOqKm7evY5vuHQxGZzgcMx5vsVJulNbDV8eZZtLlHHjBCih0YAPVFbYqsFWBzxe4fEEz3ac63MMu5wyGO5zZPMPG7iWiOEUbg2iDQoMKE7eXIAgXJK01HtNyohqElu4sgpOIrhC8rCrDe+JI0etl5EXFZDLDRMLFizv8/PBL/Ml3X+Yn713j5/0zTPem9BPDzuaIrXHKcLzD3/y5L4fVY7XEeMMwTfn6lz/L977/51w4t82nPv0Yk/mSO/tTnnn2Mk4ceVFSFyXWC5NlxY2JMBh/gkevPkc8OIeKUprGQ+0R53BlTjGZ0BQ5vglwc9ubaAHxQd7Da41Ok5ahJ0RaI4nFy5jGN4goolhCOVgVIaJa6C7CS6jT7JQgzuBVBV6jA1+Ly9sp5zcT0miBtxGXrvw1onNqZYhMhIoVhVtgbc21vZLp9ICz2xcYDEZspNsr12fd6DoBo2I8npvzHJGK/+BnNjhcwps3Gi5tj9De45XHx5YzGzF//ErNoii4vKM4uyNBNE3ilVLmgxjxkwkandLmB20nYwQPs59Iyw5SD+AFt8ZTRxn14s4HSJg79aBrfx+HHLLBJo9feIoX33qJYvPH7G4/Qi8eIi4wdBKTkUUZRbWk9gVap6Q9mE0bemOHamIUEc43gXL4V8/en2jHKajT6SG//Vu/iavmKBVovsoYnnn6U3zuC18DFd+1u8eABNmKMJc4vLNom+MbB1WDXS5YTA6oDm5SHt6m3x+yOd5mfPkp4jgj1Sk60ogWUBrxJmRFqyA/0CmRiw+soGDcIw6bhNo1iNMYBUo1RDriRplQ+4rUl+hWEyuLNcZonn/pDW69d5NHLp/hymOXeOON1/nJG29SWyhLz5vv3uLq5bMoE/Ho+bP8+M1r3Lx2m3yRc/HsDlcvXURJw6efvchjV7fJIk3WN3zve6+xXE64tPtp6sNDbh68y/48Z7TzJOMLz3Jh53M0VrEko1hU4ArEWcTXOOtaqRZQSQ/iNtGylX8J9F1LbJsgD9I+NWsdvnG4qkLw1EWBazSVqtGAVa2EugJ8L+wlZYDnPCAW7w1KPGjBGUFkwDIS0u0dTJnf9+35WBl+JZpe1OfcziX257fJ8xnLekrja8rbBf3pmH4ybFkQx1k93luSOGE07DPPPf1BxOVhwaiv+cl7FofFKY/yPZoyYyOL0FHDbOq4ejEmUzOU06xzGh8Wo++Cu+tG9OG89oeDeI63YOwDgqAQUeu29/g5W9xYUCTZELfvaQHZn04TQAnb25e5uH+Nd998mcXOVXbSHk76KO8xEjGIh9yqFuT1gnHS43Nfjsh6BiUOozK0TbGU4Dt2D3/FJ4AuQBuCkdZazp+9xObmLoggStjZvsDRSxlYP9opcArtHDiLuArxFlvVlLMZ9vAOi+kBvsrpRQkb6ZDe5nnMmUeIo4QoSojjFK1bD11YKX4KDlmDO1dMViTAFVIgGF65ExOZmDt1Dkoz6HnGac6f3874ubNzMh0h3uFESOMIExu++yc/4Gufe4InnzzHK6+8xv6NO/zcV7/Ev/iDP2SyWPL2u3e48shF3rtxhyeeuMrrb7/Lb/7Lb/GFzzzDzrOP8Qs//znGwwgdKZJ0jHaCuJpHLp1jPNA0+XW+//pPKGLhzKXPcuaRL5AOLnAwmTFKUoyOoZVw8TjEu6M8BWnzDCBAVc7jnQvSE02NtRZbN9RN08qAeJqmwboMweOVRiK9Wil4AVGKNIpJ4ggRj3YJ4j26zcdpPFhfg/OIFOCWVLUgdQWLv0aGHyAiYTM5Q6p6HKa3OFzsU1RLyqqgqktc40ij/sobXzFZnGO5yEl7KXGsWRxGHFjFvARLjsbjdMS1A/jOD2fMC+G9qSJfer7150v008KV7ZD190GM76l0zIdoJ9lBH+TcXQslG/W9s75baQJBMxhuBNHpj9TunziY+DBIk5Rzlx9n+sPnufP699geXGQ07rdl1TX9eADiWZSHbCTbbGyEWslVHaF8Rhr1aewC29amPfVcf2WarP1A1uvxyCOPkiYJTz/7HCIhuBhHGV6FYS5eWuw6wEXucE4+OyCf79OUCzSefpLSd4pBNiYebZMmGUmcESc9dNTWppCO0+9a+erAhumux4lroaPQzW5l+gOHaBw39NKavXnK//uNGCeOg7klVp7HdxpS5XEqQBviNVpHDId9rl69yte//jnO727y6mvfpz/u0x+k2Mrx+jvv8aO3r9GommeefJSvfekz/Mrf+DIH0wVXz+0wGEUMVQ/jwupD2YrGaqrikPnsJ0wO3qWOI/Tlc+xsXWI8fIKYBNk7RJUlSX+ESQZYWVPSXM/18F2cDDyheJNvAxRdTozzjtiG+EFZFBSLBSZLSeOUusqpqpKqavDWIUqhlEN7Q+4KALRTGO3pm5QkAuNBuRjvGzQJ2lmUFjAxafrXSLIBQFAY0QziDUwUEes+08UB83xC7qa4pmCcbDNKzxJLihGFE2hcQ74oaZywNYZXr1v+2z8K9TcfOxsHiplLiLKGC+c0y8pw6XxE5CrSxNLvKRpdEKneB7vuFqIxxjx0cHf994OyetaDwh2bB0KBlZiISFIKFqddKStjKZ44G1K7oxf/xFnW9nmA1nIKnQjKN0iLBUODJ8EpS39jm8vnH+Xlaz/k2ts/oPeJTUzUJxRgHxApmBcTyn5JKjFNI/z5CznjkeXC1QHaL6lthUjTQh3NirYIXUYzrR/9gJTctb+OdFkD8fdog26N7tuaAp1Il2ktcQ2urWkgDayEANuVGLDy3KUG6WqyhThFnGQ89fSncNYxHG8HAyQe3xX16DzVumDyxg0ES2wliJ6VNX0d08sSemlGEvWIoogoTsLKr0vg4giqCAFiCVi+94TcAWm5P+upfEd9Ejj/njOp5e9c3mdvGVNqsOJ5arTEKM8XtxakCmrlA8OmjRGM+j0uXdji6qPn6YkhTnp8//kfcm3vgCefvMBwEPFLv/A50kRx5eJZBoOMra1HseKJXCtz4h1WgfUNzeyAmzevs3dwnUJVuM0+ye4VNi5cIUu3yMoezd4B6rBBbW0iorCq8/RpJTr8akWzelc8CCaM2dZ91/hV6UhBKPKcRmC0tcVoY0hsUpqmpm5q6triW+mZpilplhXL3NLUDqM1iSgaZ1FFjfiQNunFk5qELApV/7xSSJze95392Bn+ECcKHZxJnzhLyHSPNEqZFfvk9RxfOEzUI+tlGG9ClF0UVVkRKcVm3/H4WcvLb5f0Mnj6UobWJcY7zmaWR58d8MY+nN/UZJFGnKKqlvgqYJ0Pg3evy0ev//6g7WFXDEGqYW0f8RhJSKOMWXXv/VpCILUNlctWsg8fGGpauyaCHDVOcKo1LgjGgVKG3TNXODe9zvWf/AnbG1c4c+nTGBxGRfSSLfYWt7izuM2FfoJg2L9V88YrijNn+mRZD+8WND7HofGt999RHP3q7j7oxYfjHNfJbD3zte/8SpSrPavXLZNG8J38KCC+FSDr4BMfJL6dr6HVWgqBUsW5c+coiyVFPidJYpQx7XwT6i1478E16PmUyMCgNyJN+yjZJE4SkiQYLLXGejrKDj9aXdxFjTjBLpJ7dKEA4ixDAz97LkJ8hRNPrYLMtCDEXqPEom2XdRymvXG/D+U1mtKi+zFPP3Ge69ffZnd7k8888yTndzd57qknQ0EdBVqB0KCdDhLMrqHMZ8xmB0znB0wWeyyqijqK6J1/hPGlxzCDMUqExgvaG/RyiSwWqLO77fTqV9dzpHd1r3flBMGilXepqpI8z4nimO2dbXq9zlFM71q1V1VFURQkyz51XYP3+KZhuZhTFxZjFHFsiLSmBOq6QoAkSVjWf808/mPNB9y/nwyJk5g07zGZ7zMvpuxPr5FFKcN4C+XBOI0h5uaBcHuu0VHMZ57sBaEnW4MO6dmlLYmahrffqxhq2NwIwcfaL/GNQpL1QfPwBqSTXHjQ/U/WHXjYkpPQLsFd95dgTEQSp8hCVqbw+M5HXm1VlzgRaluxqnT8ASeADhbwPlDfVHD3cGKC8+QivHhMZnjk4meZ/ejbvPf6H9Pf2GE0uIgmYpztMi1m7C2v0dOKneQKTz2W8ae3HU1pGPV2wNcsPNCKG4d7Cfe/Pgk8qP1fbXaCLRaE+NpA+Xq8fFVk3CM0wbCjUW2Re2mLcYRjd950JzMRITbBu6KN7x7Fh+7cuc7bb73KcpEzHGxw7vwlzp1/JHDKWyngyMRcOH+JXhqFmhByVCNAFMFAfQST92ktrBJ0i/WXaBfKDWbO46UCH4fvvSd2jtJ4nApaNDtbAy6e3cTg0KJ56tFLXL6wi9GGVEVoDSt6qoSYU13XlPkhRZmzzOfkxYLFYsp8MafIMsaXH2X70qOY3hitTDshq6CO62OM5GglaL+2glnlTzzYGIOj1XhVVSyXS6IoYnd3lzRNT90eAtyaZRlpmjIej3HOUZQly8UCUZo4rVAiaBOchyLPsXWNVgqj1D11dbv28Tb8AF5QYojRbKahYtPt+XUmi+scLm6TRH0ySRCncSri1bcXvHJDU4lgRFBSc3XH8tnHezjxFNQMpQalefmaYG0GUc1YW5zMSOXhSxCuvyDrTKCHzQP4IPtBKFJfVRXOd4vWUPmro9Od1rpPG9cgcUxdHy0PPozhCNWwgncbNPeD52TXZabFMxyPeOLqJ3j5Jz/i1pv/BnX158j65xlHGXW6zXuLt7m2fIMk3uTc5TE/M4hJ+x7lU1K9SWNrCj+jUyQ6muAervZR1xnr/n34rKNLuhXS01WYCttGISDXSW2LW2Hh4AM/nJBFKypC+zjcvXP4JoeqausEh8I0dVXy/A++y49+9BLTwwPiKOWpT3yKn/v5ARsbZ1aTjhJNlvaIo07XZ00ryPn2kR9/5h/VRNDWOkO8JaJuF0CCtgqnu4I1AY6plWqJqiEofOH8NuPhgF4vAqkwRjM0PfAOJRaPx1pHXVXUTUFdFcznM2bzG0xmh0yWBaY/JNveYvD4Vc5uXUL1RhBlYZVDEFlT3mCcJnURuj8EHwURNk76AXd/ctf9rjlwdV2zXC7RWrO7u0uSPJid6KBYpRR9bUizlM3NLZy15EXOcrlgMV9gxWD6EVEc4+OUqDe473E/5oa/e60Di0eh0SZie2SpmxmT5QFZOibOzqAFGlWzvZ3whAka2QkGEc14aDDao7zFOIh8oGP97vOWb2c1w4HjVz+hOb953Gg/aOtYOR8E4vmwbJ7AkzcsZlMQHV7IjqZxj8vpsMrAJneI0dTNaT7GQ16TlzYntGZRa/KiyyC2OBU84VB8xNFLHJs7V3kkX/D6D7/DYjHj8Wd+nmF2hd3eLnNXc6e4wbXFW1wcPc722Zh8GXP9QDhzZkBfVVR1YGvJWhWs9Ylu/XHcryDGutFfTSCi6IrnhON2nrVffeYxLSzSrjzaxB7lEzQhOuisQ5EQKY1xhmK+IF/uwbxgON5ZrSSWixn5fMnf+uW/w80b77BYzCkLy5tvvsFzz23DmtqqFr1SJG1Pu/buHZ/CPkrvv6t2pogQbMDMRWg0IBGNEmLn2voIYJy08RChF0ekGylK1TgJ8uLONXhnqZoa60ryfMad/VscTO4wmx/ixZNsXSC7/BSXt7bR/QEqisNP3NaqbhletrUPUSNkTUIPjd3cQQ1C3dyElm1zpG1x33YStumM/pkzZ0iS5AM5aiKgxYQLiQwmjsj6PTa3drC2ZrnMyZdLGudYFuV9j/WxNvy+lcAVCKPYhxe5p/ts9i+Ql29xML/FIB7RE01kPZc2MraHUNka046BKBGMblBiglKgcTx1JSZOMpSqiSPYHlUB//sQnve6uuYHaetsnoc5d2Qi4jhQ1dIk4cgXPM32+2N/O2/xoqjrklUg8gPCBUII5lUOfviTm/zgxTeY5SWNV6RaYWuF1560r3juE4/y3JMXOX/+cZREvHXjNV5aHPLUs7/CcOspdgfnKW3NdHmbTI84O7zAwW3hT/4w51f/vT5pOmIQNSxqS0NOCCB3Hq/jGC/3fVqIK3WDveufcIwjvLz9znuc6NbmxqhWG8ajQk1ZUcQuIZaIusyZT/dZzqcIc2xRUUwcg0FDEpvVxOLx5EVOEidcvvQ4IsI7777F5SvnePudt3HeoVpjeVSA9+540odllr1fC7RFi/UJHo2XUIDFq5CpqwErDvEa4z2eBq+EkJ0KSofqaDQO5yryfMpkcpuDyS0ms0Nq22D6Q8zGJttXr2KyPrq3gUn7qCxDtAl1DLy0ouk2xBEsKB+hncE0EUmV0jTQiMPWDXld0Qf0am68W7X2fq0sS6y1p8I7zjnKslw5YOtZ+KfVFVnXctVKoVSMROCJiZOE/qBPVVWMxxv3vaaPteEP7kwbiYcVNq29YRjvMOofcrjcI2+WZEmGB24fNNxYRrxxQ5iXgafw6G7Dlz+Z4JW0gTTH+SEkYrGVoLSllwh13UrxPqThXn/QD4vxd+1IjvnhAssASiuyLMMjaLP2Spxu+VkFKiWwgLw2K4//Q2kUAVYU09zy1nt7bGyO2ZvfZrZsuPLEOV5/4xZxL+L82R1u3lwyvTDjzEafi+c/gTYZ7+29ySt//htceOwbnL/0Gc4Ptnlnusf+/Br9KGMw2OHKpYQoApEePSVIDMtmSuUWONqCMuIeFMZtjWe724l6DyFLVa0Ga3AMFMYF7fhIFEZijOrhraPKD6iWU+rSsqgsrp5zuKco5o4z52rGWYMbR/R7EY0cCbOJBI32PF8yme0znU9R2rC9s8trb7y5NiEdrUtab+inZuRPa67NKHY4SokR22rrqyasIG1MpJq2rrLgVJsc1dajbeqC2WzC/PAWB7M7zIsJRAYVZ+gz54n7Y+LhiHi4RTTchChBJBTdEa/xToXVhISrUM6gnMEXgi8E5wylaxV8oxg1meLLkvH5C2vjYi1mA6c6/ychnjzPGQ6Ha4Hctj+cYzKZcHh4uBo3WmuiKDhiSZKQpmmgVtPG0P0RFLkuqiqiiKOI2ETgPP1+xv3ax9zwr7VVgQgPXhHrjFFvk8nyDpXNg762cijdkCWKcaYwIeucUeoDM8J7lG1wVvP6Tc933/BYb0iN8HNPx2Tm4NhA+iAMm9N+3+84p7GBHn4we0wUAozHJ477nLczZ+JxSlNV5Ydm9QR0SbMoCsqy5Ge+/CzDNOXW3pyf/eJVRDX0soSvPneF7/zZWyzzEtnoE8URFy5eIe4p3n37bW69+tv4+W12H/8KW71L3Dq8zt78XS5sGD79hQ2iSChyQz4fMtgBMRG6MeE98HWAlWQNtnmfFhLaIFQk8Ki2ZGao+RqMjiHF6BSjNJGDqqhx9ZKmPGSxmDPdq0jjCcoX1HNh0F+SGAfpFtZk7IyF4bBGeYOIY543NGuLiV5/CKL43W/9KyIT8eynPkOaZZw9d+E4a+vfehMmVvOdmwm3FhEKT62EuHG4CL66LTwxKhDVoJqa5WLJdH7AbHqbZTHDek+DBJhoc5d4tEO2sUuysY3p9VsapVoF6f0Ksgx0VO3BWY8qYnyt0WREKgMTZNvxEUo7XNRHz6b4pmY4HNPVvRPpahC8f+sgHmMMo9FoZcC77w4PD5lMJlhrV3TuQONsKIoiBN+VQusAwWZpRpokwSiFW1ojDBx/V99PNeBjbfiPMdG6HpKjkFZqeiQmoS6X+DTU8Lm85biaCOeHMCnASc12BrHq6mA2lChevWm5uW9RcUWshUme0B+4DxfYXHHqH0xrZ711+6zr6z988yuY+35HkBV7pSXwKU2VL9p7+ICnpvOILZ4GJZAoiCOFMYbIGDARZeOpC0fpLOIN3iucClDA7uZF+tEm77z1IvvvfJ+mKRle/ALDqMes3OPWvM9WPyF2hjt3HN//U8eXvm7Y3d3GGEPu5xS2pXpK9eCBdUJlJHybGSsxWkWtPr7H1g00QVfF24LFrODOzZLhcIH2U/JDYblf0dvW9PsGl2Zsb2SkaVCEDen/bakb8XRVxI6aIu0NeeqpZ3j+pe8x3j7LpYuPEMcJjz/+ZGDucHcVuAc1YB9VE++xSnG9jPmNd/rcKjKe3ZzjlOLaJEWiilml6Nu3UMUe5WLKtKhZVDWVW1KJJd3YJtu8wNbGWdLhFs5onLGr+Ei4Lx9kh/yKhIlrBGkUqU4xROD7WC8YFZNmfUzawiw+wmnAK6LtLZqqF6p5tVCxf4Be68ZwB/Hs7Oy0UGpo656+UorNzc1jBI+maajrejUBAOR5Tp7kRK3ceBzHxHFMFEXH31Pf2oL3cVo+1oY/NN8asmCsvHRJMRajYhKTUVaLVm9D0TQVhR7w4jsVb9z2VCrik2cUX3myF3R6sOA8BvjG0ynOuFD7tWxQveMiaQ/TTsYGTn52z7tb2zaUXDyePOM76uDa+tBLl0QUwrSNK6mqHJCA9+seoo7X41270vBvB2yroAlTN2V7RgicZWmZhicLydynDwgB9DRRiFK8/ON3+OGbNzmcN7z0Usy7b96mdo6eE5bLnDQyLYNSoW14ldOh4vEnP8vNG+/y9nvfoyxz1JnLFL7gZvMWhV2wm50lz7f50WuKS48ozu70iJVFxRrVaEofqqo1rg7P27egyiojtYVZRKFEBazVRfg2GIsXRClYJIgvcEXB7GBJU5dEpmA2qbj9nqH/VMPmWLGxPeCRczYIdKnwHmqJEFUSeUCadlJJ8KtarJ0hDz9GGy5feQSlPWXlePed99jYGLO5dQaRtiZwNwa4n9d6epDXd591DKYuVuCPxN+OHWMtF+Ho+TrwMUUh1FXEWdPw9x6Z0tgF/1V1BoXhR7emvF28jq6mTIoSnw4ZbJ/l3MVzRKMhLs5wESgx1GI63g8ewdJVv/PgLSIe72Iil6KaBKlS0mSDJOujsqaluBpETEv/sKAcTgxaefT2DgpPeeo4OOqnk3GSzngvl0sGgwGDweCYYV8sFuzv76O1ZjAYrMZs5+x1Br37rIsDFGXJZDZDiZBlKWmaksQJJoqIjMFog9ZqtSq5X/tYG/6gJ95Wh/IhMaXWNbFVVEqhXEqseszcPjU5WvXxruLmoef1mwGzl6xhWacYXwUmgRistvQGimHfcGueY2vBRZ5KHS/0/qBe+7rxfugErpZyqZRaBXd9m0l5vIZrRyWMsOLRLihVzq1hsniPebmHd55Rb8D57NNoHYfCKpawdF7rVd9mLDpRaA/WRJRuxkqTX2gNguOf/84Ffvvb5/jFb9zk17957X1vx6EZ9RIundvgz55/m/15gXOeP3zpXcqyBC+8/NZ1PvOpRxiPk1Xij5WQOarQqGTA2YtXSQcDXn/jVebvPk+0tUu5cZ795W0W6Q3GvSf5pX/3AptxRlVZqqZPP4sZqh6ZjLDesnB7NHKI85oGh1clkc1C6U5XozxoiYkBbfssprCcHmLUAXk9Z3LL0utdx3vNjfcuIkQ89VTMpUuapy864iRB67ZilsjacsmDr1Y9Qssj9+277NvPxQu2W1U0JT95+1W+/8ff4fadfaIo5vHHn+JrX/8b7Jw5C8qt1RZ+0Mm4s3gBZ/d0GletMmgbiO2YSuJVa/O77cNKTHwLe6kaKkPTVDw5OiCvFTJ9nTyfc22+y6Ie8lX9EjbaZfOxT5MNzoCGOFXoBNDhjVYE+mv7srdXupZZ3DGovCWtxvSjbaL+AHqBpacUiOi1yWw92Um3GbGCV0EjR1wTnMeTBnWtC9cdPu/9CqoZj8fHYJeqqtjb28MYw2AwOPbdvWDiDu5J0/TYRDCdTKnrGmMM/X6fXq9HkiRYa3HNXyNZ5pNNpEY5IfcRc9egLKRNH2UCm0AhRFGCL4SmcSjt8bWiyIXLW5BJTG/c5739isZpnGics4yc5tmtiCht+P4biuuHJb/0nEI1H0xSeX2i+KCMnnVVznAc3RoT345dDWKwOGpX4SgRYvb3ZxzMPOPNHayrmOULNpI74IKUgZcaoSut2DGkaAe6oEgweoy4BGtrjD56pf7571zgP/xffJVlYfgn//RR/vE/+KP3Mf4hWhVpxbNPXObczlmsJwzM1rDjFUZ5xiNDGum7du/w3MjEbG3uEH3CcHC4x53D28xe+z5FkpGfOYs9U/HozpDhIOPdmwVvv+742tdTstQgdkgsDUYPcUypmZHXBd71Mb6H8tAUh5SLBctijq9m1FXJWz9JmR4oPvHJnM2+Z6uv2No4F7jb4wQRGPU1iTZrMYSTzoGs/ZKj3yduMkj7BvhEAdPZhB+98iqf/PQX+Mb2DnWd89prP+blHz3PN3Z/AcXdvPHTTb+c8jsUDBEanASqhPIa5aK2ml2o1qW62JQNSVrBqOpgiFyD9RWzvObOQclkqigr4Z3iTfTwAqpKsSi2Hv8UyU5Nf5RCz2Kp8Sp44siRKNpRveSuP9xqjlJYxMUoN6afbJOYAUra5DCgE6GSY30N+E7kOtSU9s0cZT0SZ5zclFOMdGf8q6qiLMu7+PrWWg4PD3HOMRwOHwqWVUodI350uH9Xa7uua27fvo33ntFoxHw+v+/xPtaGP7yqwqt7NX/47iF5YXnqzICvPzJkQ0JFHK0NoHGuQSKPKxtMUpGlEClPURcsK0vTpvdbMTiBjQ2HEc1XPmGYLhRXNz0+74SqQnsYrP0DB4VPwELdy7QqNtKllvvwWekW3Dp8F9tUbIzOUDYxyzwU2UDX1DLl5vRtsN1EcqQ+s2KniMd5hUZI9JAoidDSC95HHCRkAX7722dZFuEVWxaG3/722fsa/mCzFUoso8wwzmK66k9HBlC3afNVMJxycrJdWQa0ihiPdkizIaPRJrubOxzOD9nbv8nhjevcvHiL6ImfJdOPon1DUyc0kfDuO5bhhmdjqFGNoZ7X2OUBdTll/xDm04bhOGc5jSmWcPlSwzBTJFeE+pxjZzshi3XIN4iCRHK/F/R1tOfomj+wNMc6Xu/BO4rFjDiKefqTzzEcjbG2ABFe+fGPcf742u9+7UipaB0MkhVttPO5Xav2pvxRcpNvPX+HRdfhyRV1znRym+nBHWazPWa15466Spw9C70+F5+4jJgxLGJ8IfQ3NxjvTnC6AVUFz749d8smaCGjI+gqXHgLv3kQGxGzQc/skpj+CuqSNSrradOeJ2jqqNbZWN6+hq4d+tIT9++ztTHYNA2LxYLhcHgM4gFYLpfMZjP6/f6Kuvkg7SRxw3uP1hrTMo06iDeKIqy1aK3D6vg+7WNt+K0o9kv4gzdn/PG7JVXjeWc+4Uxf84VzCeItIgFP9t5jRFNbw7mxQrxiVmj+9BXL5lgjymKcAQyv33Z87114fBs+86igz5Q469gr7AcObj4sPPS++64STVpvBE/jSg6XNzlc3KSxUPmKqtlmUdUUlWVzq6ZhyWEuxGi8b1gZW0IiFatCGYbIJGwMzmGloIj71HVFb40y+IvfuMk/+aePsiwMvbThF79x8/73sRacE+kC3La1j6qFmDwhW9WELe+VWewJxkE0SWxIoh7j8TnGiwm7h9eZH94mn73HjVf+BTq9wvnx0+jmAst5zPe+o5nNLT/7C3fIVMXB7T0G2TWMrdB5ytgoxkYzGHqaVLM9SMlSxdlxSDALpiVCpALqADNK8H6Df+qOXXcHI3zQ1uUQeOeITEjOMmJITEYk8QPHWNqjwdoz7Jpr3yXlFcpDUHb2beH2UCoRb7DWMV8cMJvsM50dMFvcwWtFrTZxvcfojy+ww3n26ivMfESzu0FRK2pzB4/G6z1MvMBKGxNo4wdHUuDr1xmuLPwvxB98rYjVFn1zhlT3AdP2r4dVv7eT24luOV6YzeP2J4j1mIv++HenPoPgKOV5jtaajY2NY/G2qqo4ODhYUTWPTnPvfIr1bdY/P/m9UuquY67//7T2sTb8xjuuzeHlmwuuDGArSfnx3pJXrk957uyZgFhK4Fk7V6PxVFHMdh+iZsk86fHmpvCJcxGJeBSeBs+rN4Rbe4qmdFzYNpwb1eBajJOjB/VBjPhJQ/Z+x1incx6XY7YEelrw3rw01H7BNN9HmR6u0RR1KB6zP1+wOcyIYkdeeSopcT4IiQmKUIdXWk9VUJKQRGOSeMCgdxalcvZ6Qxpb0QW7RDy/9s1r/ON/8J0Hx/g79UpaZRppEd0VvtTGFggyzAH+uXe/rP0Pj8eIsNnfYDwYUJ2/zHx/ymRyizp/j2xsqA73KG3KgBFF7tDzCdo4Ep8ziCBLe4yGKb0sCiUCpQAXh2IY0hyh59IgzmNbVUuk+xycP+Lef7jiNZ0BC3GRtD+ktjV/8Ae/yWi4RV1WTKdTzl+41LJ6TvRPd5RjnmT3DLiL2SWtUF5IegpQiDQxFscyX5DP95nNpyyWC5q6ItcVU5tSyVnObD3C7u4TZOPLbGxfprpTc+v52zS+4bAoaKRkHOeMBpa3bwvPntf0dZfhzImV0bqn31UhC/E7ZRNi3Xr6ut8WlA99FRg+3Vg6ff0TjkPbpw7xMWK689ydX7M+Nju4paoqtre3T2Xx1HXNaDS6J8TT1eNY3emJd+ReUhqnkUG64PC92sfb8DtYlJaChl94coOrGz3+yfcrbiwsjYdIB+0S8O3SWLFwGjsTpG7YnzcMMsOo7wGNiKUuPE3j+flPa16/7pgsHBdGOhS28Gr1sD6M0X/YIO/J7UU60wnetz6oWPJ6QeMarN8mX1pckqAjw/5kj34vQ4gwJFS+wHUD39tWvEsjEmNMD1FDErUFKsbZHqMsZi9OaJo1Oc92wfFr37zGr3/z+sP1Qzuww/lDkDgYS+j0blaSEie6WGRt+b+2tPfKYfEYqxEMUdRjvNtjY/MMde1YlAc085JEp3z98zNEJYzSADPsbCm0DNFdbENCdSkAr4WusIuTEPgWQKumNZamvf4uOQw6w/NhaLfiw0QYzqboDza4cvUxXnrxB1yTm9iqZnd3l0cff+x9efzH3h1/BCOt1orikbbQjlNQ1QVlMadazinKnMVizryYMKnmlA6Gw7MkW59kOHyU/uAyl0Y7jPoJXsHSNiyt451JRe0ML990SFLilCPpCdOlxjuHVhbbUWRX/SbtJNAZ7vBsFRrjUmLG9OOzGElbZwe6yaFbQQbIZ31Vs9YPHGWri1LIzm5wOpSctvmx/utYPP1+n+FweMwodxBPmqYreObkvkVRrGCaXq/3vquAk8d42PaxNvxOwFlLogwXNzLOjw0bo5g8MBcJ5jxQuax31N7w7m2P0sLZrZTvvFozmSxpbMrPPisghqbUxFoxGhrM7ZpZoZjYFKOWeGk+ULHzrq1PGA/DCFrP+F1l8HaBQ4LWiRXNsnJobbhxu8KVnoODhjPnNlEIh5MFze4o5DXYAieh8INIOJY2CVrGxPEmXkZUuaaqoE/JcODJG0etyvbeWYOaHuL+29+rSk5rnwf8v5PDDSe5v2b+cbhCfNCKb0QwHsRKYBzGliTSRMkG3msUMSIWJx4lTYAbpKtzpVf4shfBS9D6CTWROlaLBqmwgPKao9mpNSnHk0s+cJO1P7yHKIp57rNf5LHHnmQ6nVEWS7a3t9jY2uFB5CfWXzXxXWn2UDyksSFr1tUFZVUwXUyYzvfDT7nApBnZ5lnG28/SG19iY3Se2u6ydBHbo03GcYQoy6ypuTUvoFnwyE7DrUnDKzcneCWo2mG15pOP5vSMbYO13Sqja6cZaxAXEcsGg2gHrSJWAnldbWLfQTsBLvJHr9Dx5rsYR/gyOrdD7D0Np3vV3d8dywZgY2PjmHGv65qDgwOUCtnx6/t1xyyKguVyGYoGVSF/5DTj/1G2j7Xhr0IkjdgnxEQYhMQZls614kxB9EhEU7deYeE0/UyxKBKg5ptfG/Pia0toPE4UufIc1p6fXGu4ceCYlRDFcGUjGJKuPazXf/JleJh9u326CH/wBFvYqQ2Als5Quh5Gj8nLgkcvbPDu9SWNtexu9UnTmIODgrPn45DG7hwhJSbC6B5pto3zPcpSY70GF+IepZuRW0tlG8qyWGNdrO7sge7h6GZO+Y9Iy7ZoueHvO6ncPViUD1orVqBWIAS5AHwK0qB11u4V4COvchp3JO+H061HH+I/yh+xP5yAQ6FpUDQ4r7BKrRQ2wyUFI+YJq4gPZ/Y5xuoRHM7WlHmOxjDsD3jrjR9TFgXD0RnSLLovJLbCvQW8szhb4JzFupq6rpgt58zmB8ym+0ynh1ggHW/TP/sYo90zxIMx6C1qztLYHibZYjvOgsi01hTe4pzlcLlgUS84O5zzK59b0tQhbqS8YNqV6UbPIQK1CjpH0r1Qd70XXSzLIC7F6BFa9cLKSmg5+nbtHjvEaF3P6kRftHuIBIE43wTpax+lx8blyf6r65qiKNja2jqmxdNBPGVZriCek1580zQ0TcPu7i69Xo/ZbMbh4eHpyVkfYftQhl9E/h7wvwM+CXzZe/9n99huA/hHwKcIT+3ve++/IyLPAf93YAC8CfwH3vupiETt9p9vr/G/9N7/Hx76+rxBfA1SI9TBk5FQH0gFnwwlgdVjvSN2DivCrGiYlp5Lu3Bl2/LCj32LMxsi7TEWXnm7YF56DgqFzRXjpyKG8b0xt/u1zsifFrx5mImjS/cOg6TlKUsolvLq6+9yY/+Qx6/sgjjiuCYbhvT1zXHCeCPFVQpPgerMnUnI0i2QLaoypfFRKBItHjGeLFVYf8je7JCqKWlU3d7LA13y3fewFpD2LXTS9Y/qBvsqyhY86N/43Qv89rfPrsUQTseDnbDyADvGSjDdUfteNHgfgZSIN0QuGPPgpAsdu0Th8N60pw/XoFpd/1X1Lq8wLgiABb0eQaTVMkJ/aKPf9U/XB+I9h/t3+Oe/8d+Q5wuMUVy//i6D/oi6tHzxK18HfXyorxuy4DA4rGsoigXz+R6z2YTp7IDFcoZXEPWH6OEGGxcvhYIl6RCT9tHpiCzZpSgGFGXEoN8nSwZIW1hsf16wbHL6sUU4IMlm9HxNFhWYVNEgaCmxPkWkamsRGIxz+DaGI2vvxNHE3/WEwag+semBqNbgu5YU0I2pMDbqumrlwz1a382qEe+wbcWxxGmam+9Qo3Dnr2Bdw8nW7b9cLsmy7BjE030+n8/p9UJFs9NW851cw2AwIIoilFKUZclisWA0Gt0zoPth24f1+F8E/i7w/3if7f4h8C+99/9DEYmBTq3oHwH/S+/9t0Tk7wP/K+A/Bf4ekHjvPy0iPeBlEfl/ee/ffJiLEy/USgfuuhcWpFgOcMDSR/SdJRfwXuP8AhD6ifD7L5dob/ilL0bgSzQOJwl4GCrL559wTHODB4xzGA2bA0XlPNbZj+Qh3cvzP2nWEIvxilKDiOf2/oQ4c6AtRhRTF7E/mTLLl0gCdyYlIo7CxihVExkhTSCNS2qTU9scpQxJOsKzRWV7eNejahQOi9KWQWRxzLD1lMYtcM2cyti2kLTDaLV2nQ8P+Zz02JeLQ7R4smyMtDEZxPEbv3PxlDyB9+55vO5KVIuPhImxbu2Ib3F4A62HL+uFPVZaTy0tUNaP2plg3WFS60+I9bQfWZt4Tr/OrkTL6nTHcO6jVPwOygtaSaIMi2rJcNjj8qWreAej8TbbZ860+7WTkxe8CzGK0nry+YzlbI/5/A7T5T6FqxEVo7IN/MY2yfnL6DTG9BLi3iZZfwMd93A+ZuljqqrHMN5hK+kxjDRxojEmiF3fmc+Z5Tna5NR+CtGMCId3gR3kvALRwS8XjSNGi21XMX41yftjPSQB5vMOcZqIjMwMMcqcuhIMnr5lsVhQlmWbMAfNiQQn30WzO/xfQnzGicKWObW19yReKKXuCfGIyH0LrnTH6PaNoojxeMzNmzcpy3K17wfX4Tq9fSjD773/4ftdjIiMgZ8D/sN2nwroooBPAb/f/v2vgd8kGH4P9EXEAFm7/fRhr0/7CuNrysrxx+9M6N+puHFgWdSOb72+JBJLg2NDOS5shGX8mYHjkW1NrB0Xhw2Rj3jirKC1B0oMwmM7CqcIxQ+8CzH/uuFgYbBNCNB0sMuDPKjTgrMPju0JzofA86jfZ7r0aEqWzZxFE/PunUOa2hFFmt1+yv6+I9YJ774zx1vPxUuaJHVU1RQnBTrqEdsR+AHWZ1S1B29R0pAmDu8XeLfEuUPKehYgIbF4E9FUDdY7DOoUAPVBbuUEQNT2wWy6x97eLR555BMMh9sBevGe3/72uQfOEzgK+XaB37XoQBdw7TT5ZS2WsHYEuesa11cf3UQM67j+0dYn6u+u/To2UfhucgqG3bX4oVpRGdtpo3tX2rXrYDjk81/6Kneu3+SRq4/jrGV75wKPXH2cMIyC7LRtCt678zrlYp+immFtgAUrJVTpEJ31ibM+2XiLZGNI1N/E65gObHNiUCrFFhlVOSDTPRI9ZBhHNOKZlw0HE0svq6n9IcQLjCnxUuC8RYng1FE/q1VyYPe7rVlwX2chFGwRF2P0kFT3Ayy51vcdfOW9ZzabtUlTgxV8ctr4Wj0FASMQZz28eEqtcZ4TrLlu2yCx0OH3EIz0dBqyavv9/vsKpnWrro7+2ev1GAwGLJdL4jj+UHHDe7W/CIz/UeA28F+00M53gf+Z934BvAT8beD/S/DyL7f7/Nft59cJq4P/ufd+/2FP7IlwNExKz++9sUBLxayExjf881cmWBES7/mZq57dcYzzJRuR45c+tU3j5vT0EqU2ePaSJ5ISxNM4izQVUSRoX+C8IohnNcQ+XqVQN01DHMcPNVOfDO6e1k4eRXmFVSFOUTnP7dmcoigY7Qo378xoypw0GuLw9CLPRMNomLF/O8eYCK1n1M0CpwXYArbx9CjKQEdU4kgii6LAyJLGzliWM7yUBDaLxnuNmISqsTjbgPloXquuH6Ioxa8GnodWBfMXv/5weQJ/eVoX9D3N+HSwRnB4lQv/822Q3cmaz9/KF+s2uPvM05/mBwvLm2+9xf7hbc6eu4jREXjdwiYOaytu3rhJMT9Ee8gGm6RnzpDtbmG2t9BZD5RqmbuhToAXgziFdRGNj0mjMVqnYPoMezG92IB45suSvcWSpinBlOh4RswM5RvCxNcVfv/gLawEQj1m5VKSaBPx6dGKrNtOBGsty+US5xzj8Zgsy6iq6lSH7Cj/pe138ZhIh9C9d0HH/5TWBW1PQjyTyYQkSd7XBnROYp7nDAaD1THH4zF5nlMUxSrQ+1G29x2hIvJbwLlTvvrfeO//fw94js8D/7H3/o9F5B8C/2uCZ//3gf+LiPynwH/L0Urgy4Q4ywVgE/gDEfkt7/0bp1zffwT8RwA7OzvHvrNiGGSKT2xHq2DlTi8kJSksXiDGkcUOvMX7BnzDQM/JfUVZa3ppRRY5fANeIipRLLXC1xk9U6GcPwr6qbDEi+OY5XL5AF1z7D6O4Xn3fFnushUaJ2F18eMbU966fo3Z0vHp/g7v3J7w5MUeVZVTVhZvDVrlDAaKQT9FsNRugvUZJtrCNn2WOUGXXjyxdmhdE5sC20xYLvaBgpCA1Kbko1B4dGSomlARqbvOFQz+Adr64NzaPMPGeBttWm5yq1nz67/4Hv/4H/zRCYz/r0LzHDf8ax6/dABO+1t1gsDdJi3iLY6gN9NWLRNFvzfiM5/5HH/2Z9/h1q07PPPJFrbAtcxWjfI9NkdPkGzFDNJtkrSPbPWYjRx5WuOVD8lTPhQnwYeYmHUpi6qPYUhqNkh7EdLX1OIo6gaNZrZcUNlDTFpQugVOt7G17jI+Ctvlw+hVNiHTm4GvT6h2tgLfWg96uVxSliWbm5tkWcZ0Or3vuOzWaL6d9LIowuIpq3o1r5w2YWxtba2MNsBisaCqKobD4Wqbezlyxhi01sxmM7IsW3n9SZIwHA6PBXo/CEX8Xu19Db/3/m9+yHO8C7zrvf/j9v//NcHw471/BfhlABF5Cvi1dpt/nxATqIFbIvJt4IvAXYbfe/+fA/85wOOPP36sdxU1n9w2nP/aJRplwSs0dQjitQJSnpJJvo928wCZaENlwSqN8iEA3ChBnKAkwBqN97x9y3Nl1zA2dUt51GAc1np6vd5KK+NhYJv7wUOriaALcLY4c+MdtVtQlw039vd44rEt3nhvhtCQJjEiIJEjXzTMlgZ8Q+P2aewMELQeo9UZloVuPWqF1iCqph9VWDtjudzDuQJHzaqoTTdMpK2VahSVszhbr1n8B4Wr7m7rk6DWMUoDrAeOgyX59W9e+0tv8I9N4uLp2CZ35SW1gVpZqb+31braZy5ocIK1DU1TgOkmWR8C0UozHI947rnPs5jt472QL+dkvX6b9qAw0ZDLl5+jH4/xRjBoytiSq2VgIbkm1DmWoPfknWB0hnNDbJ0wTAf04phIC7l1HCwLqmLJsKcwyQFZPEVUg1M53guKqH1Ubf7FA4tH3Kc5jfZDsmijhcS6cXO0ai7LkqIo2NzcpN/vr7Tv143r6nCtDn7nrHT/VHWg9co6LHiiVVXFZDIhjmO0DvUsutKKdV2jtT4G5Z78DZCmKbPZjOVyeWyyGI1GLBaLVTZwB/l8FHj/Tx3q8d7fEJF3ROQT3vtXgV8EXgYQkTPe+1siooD/hMDwAXgb+CbwT0SkD3wV+D8/7Lm1g552ZP0maLZ7jfYefNMumQ1WoKozlvUcJw2YPntzOKxTNkYWg8fQgGiConqBco5b04oo7ZNsCk6ExAcGQtMmYdg2GPQwD2c9oHtfWmdXIQpofMX+7BreapZViZceyrhQVSuGpnYkQ4+eNNy6c8jFS30ad0jjHEm6i212qWrdZpQ6IuNIYkvj9smXhzif0/icADQIK876KpMzXImOEirb1kH9EAb/1H6hG9TdByGjl5a691elHafyrf5iFSmWI8vjuhWBczhvsbbBeUvdlCyWC+a5ZfvchbWgbzigEhgOh3zmM5/hxvXbvPrqq3z6uc8iWgc2lnJkvR5ax1glKBvyGkxXUU08yoVAa90M8bVmONyiZ/qMEkMUabxy1B5uz0oOljPSZEHup4gUaLEgtmXXrFWLahlSJyGZD9SPDuI4Q6nOgJ8gAyyX5Hl+zOjPZjOGwyFxHN81nu5yzNZ9lvfxX6y1zGYz9vf3McasBNg2NzeZTCYope5bWL0L7MZxzMHBAWmarrJuu0Dv3t7eCkn4SxHcFZF/D/i/ArvAPxeRH3jvf0VELgD/yHv/q+2m/zHw/2wZPW8A/5P28/+RiPxP27//KfBftH//3wgxgZcIXf9feO+ff9jrU97ToPAqiDdpFwpBiNRBaRNPEAULBM9QAKSisIofvhFRVPCFZyIe2clIfImWhMpXQTPdGL77yoLJOY1JNI9vWyJl6NAqpRR1Xd9VWPk+fbma0e8fDOoCYw6HIy+nTPIJeIMXw6vvHDKb5URekWYxTdOQqAXndw22GWDiOY0X4uQMdTOkaSKcA2M8cWyxzW3KaoKzJY0tW/33lg+NXuOcrAc2DagEi28ZI7J2rR++dd0nR+7YR3bsv8h2lKsha96+tHTRUDfCeRuolT6UHbTVjNn0gMPJHrP5AYvFFETQ46tsnXNhtemDwRZnKYqct99+gx98/w/BRXz6s19dQUK0evNe+SDTjKZdR2C8RjuN04JDUzdDiuWQzPRI1Jie0VgnzCrLpMnpJx6nZsTpASYqcVIgdJTVMDFL5y4cj6J/+H5UntJOiVRKqsarAiwQcP2qqtjY2KDX63F4eMhisaDX65Gm6f3H1hGRCOVPvGH3uHStNVmWsVwuVxCTc47RaLQSbOvgnNNW/13SZZqmzOdzptMpW1tbq3el3++vJjJjzPsGih+0fVhWzz8D/tkpn18DfnXt/z8gQDUnt/uHBKrnyc/nhGDvh2q2ZQ8Y19HAQmDJigp69MqiHKTAwnmsc8RU9I3i8UsbvH5N8b0fC6+9V/OlxwwqSqBZAI7YwMEEfmSh17OcHVm2MoNzIfU6SRKqqnrgWXo9gevUKH4Xe2q9Jo/D+oa8aVAmpqwWDJMek9xzdWfE4ayhP8io8prMFmhTYqIMh8HIeawdUtca7y1xBFovsHafpjmkaXLwTdDKaT00WUE3YWkdPG45+tERXimsrdtp4SN0xVcevmu94latkftl7v7lakfPd+2zDqZooYq6qVjOJyzmhyzmhyzzOVVd0wClCJUomt42UZrS74/D82lZQs5bDm5e44UXnufatbeZTm7yhc9/g4sXLq/iAh4JfekNrg20BpllUE6jXUKjFbXv0dQRg2zIOBmQqRgBpssFe8slTs1QqiBScyRZrt7Hdu2HE9XCpEDIfEDEtq/SgxexP615AOVo7JxFrbBi6cXjVnZZqKoKpRT9fn8Fn6RpugrAPrAMAiHzv1uEnXQz1uGW7tid0Z/P5xhjGI/HNE2zWm2clGtYP1bn9U8mE3q93ool1B2no3eus4c+TPtYZ+5aaYsUe4dVag2CkLCcFQdolI6p8Vjv0BLTjyzPPi7k4vjXf7QkThTWax67lBFLBM5xeUMjT8c0HrLI0UuEWDtyAu6XpulKe/skpni/1uGBp+P9R8HAylYsyiW3DwqSLMZywOZ4iPfCYxc3eOHHd+j1PcSBW55XS5IoRdQWnk3KKhjOOC4x6hDb7FFW05UREnWkb35k5CEY/fW/fWB/eI+OYuqqAu9XYYiPpnW4eMd4eZACeH+52pGhaKE8LHk+Z7mckudz8nzBMl9QVCWlayiso/Yea9KQPNUfofojkmyImIioanBi2sWXMJse8Gd/9C0m8zmj4YBBL+Kpp55mtDFsJZXV0fPw7QQgUCtFHcVUKmJexywbRdP0UY2wO+qTRYaiXKKNZ94cUsmMJFpQ+UUw5m3BFREPPiYokdadGlF4Ui0U1dbq+vB9iQftqO0UZyuoLKneRKuEuq7JsoymaZhOp2RZRq/XO5Y1e5JH37VucjwKiYfnpU656JOOWmeQvfcrzz2KIjY2Ntjb21vp+KzbgpMkjiRJKMuSw8NDkiRZOYBZltHv91ksFsRxfM8J5GHax9rwax8YN1YF7yOk1wvKW1SbOu8UoFUYCw6IE2rf8NabBe/eNuxuDzi/I9w+LNk8zDizmeDFMUqFxBRU1iASJJ0NIbDT4YtdSvapanzHkk38apkI4SVw3h3FcEVoqMjLOYqYKFJM5nNqV3Jrf8r5bUOjLCZVlNZye75EtCPrWYyvWJQWE2+h9DnqekhlHUpBZGygc5Y3qeslXiq6AhreRydgHbVmbk8Y/nZwqzimqot2wuq2PWXU+LVfcqT5L221KS9C4GorxIcMTlbequJIg//DmZGVG9B6zcBKd57WUIU6Nj5k/tKuMdYSi0IZyxOTUAvZt3Mi3juqKpS3rOqSulxSVjnzfMayWJCXOcsip3IOnQ1Qw23UaIt0uIFEaSiu3SqVIiGrOjDJAAnhzarMee/622zv7nLhwnn2bt9GlA7349fgMvzK7tdKkzvN0kXMvGKvblhY0E5IxbAsHFUxp2kOyXoNEuVkUYmWHK9sW5AFPEEfJ0hU1G2OQVc1rHvY6p5Pyx97z+6KeB9vLdznvQLd4GVBXgnKpCStHn0cxywWC6IoWhl9eLBg6DEg8QH4CaexfAaDAdPplP39fXZ3d9nc3GRvb488z1fUzJOrD+/9Mdgoz3P6/f7qmKfRO0+Djh40BvCxNvwhXhUw6BXRpH3BGkUoG+cdRiKUD8kkKoZqlvH86w0mtfw7z8Wc2YbX3ouZLU0ov+gtr960/Nb3PdOyZpQpxl/VDM+Fly7PcwDiOKYsy1Ww5i7oxh9ZiLoqsK5BG4VUQb7XisJ4j/XCQXPI4fw9YMwgjrk5c4x7igoV+EnWgV5QlTHv3lqwveGx9YSyOcSrASY6z6JKcM5gVENiSrSZsCyu0dhlaxmCYT0ya92FQqeQ6Y99t1Y2Dk+TZhTlEgcYwmrK05wCx/h2D6GoLXcOcsoahAqIA0asKnAx41SxuRWHpLD2Oj46X781OdLJ8cqR/Vk3AdLKMUjLq++qmgFISG0KPG+Hcw21raiaCl+V2KamrHKWxZz5ckpeLJguZiyqCh9n6P6IaPMsMtgk6Y3ROgKlgzqkEjpp7XAuv7pqaQ2tay95czzm2S99hVeff4HlKy8iHqazA0ZbuygVESAlhRVhoRKsiZmqmMMG5pXFOkfdPpVEBB2VzIoaa5ekaYl3OahFIEdIl23gWhipmzThJGvnripX92zdau7o39N29CufPLxfTlkwBU4sdV2jlCKKIg4ODuj3++9rCO8y3Gt/6JND4AGO060A+v0+0+mUg4MDtre3GY/HHB4erkoodvucXNV3EHHn9XfefUfvPDg4WMUMuqpc97qX+7WPteF/0KZE4XE0zrKsIypvePrRmI0eZKpErOLKlrCfCku7ZF4pbhxYnr4U0U8cZSNtUEyhVJi5F4sFg8GAW7duEUXRXWnbnUwAEnS854ucXtYniVMWixniFNp7RBpmC8e1OwWD/pBFbrl5q6Kwgi0tqukBJZ4mUMmMZzTwbG5YinqGNmOUnKNYZngPWtUkcQX+gGW+R2MbTiuMfa/Webur+1j912OiHsXy1pqXdDogE8IFHpzn3etLfu9PXuX23pKitGQ9j2saauvoD1KeuHiWn/nSk+yOzMpr/ahgnm7t4lusG4KUgDi1wnitBIjEONrasSGxzWPBOag81jeUrsI1NWW5ZLaYMp1NmMz2mC/mFLZGpz1MPMBkI5oLlxn1+hAlOBNDlCJao6X1ZCUkZnnvQ+KVuLWrldZhCIXGlQ/PL1ZjPv/MN3js3GO89MIPeOnFF/nhS68wGO6ws32mDe56SiVMEKaFp/YVpResV0ReSEUwxtPvF8Sxw7saZ0uMKfCU4ewnlzYfxXNwnappW11rdey768YKHYbY9ok3aAbEukexDBBrKPXoHqrK1Ufdupq60+mU6XTKxsZGGOfz+apwynruzrr8Q5ZlzGYz5vM5Gxsbq2OOx2MWi8VqNdOVX+wCxw91fR/lzf5VbAKBFmaF2sb86WsNP7rlWFrHUCukLnjyguFrTyWI90wPl1T1AvQGlzY8jTdkVjHLS7qXMUmSFSd3PB4znU5Xnsh6876hKCtm8wW9rMd4vMlisWSxLBhnQxQW54V5WXPnYMFomHLz9pxJrtjeGrE3WVBVRxAFqubq1W3E5zg3I4q2qN02VZPivBCJJ00r6uYOdX0Ha5dt4PQB1rR39Rq04cJVi6IhRfl24KL7zp8+fX8vQuMa3njrXS5e2GS80eOlH77Hpz/5GAf7E969NeWLn3uS5XTG9Rt32BldDDDFR5jE0pXvW48cOHGgPL5d+SgA73E+VLhyTYiBNE3JbHHAfHnIcnHIYjFjtlzSeFBxgo5jisEQ2TpDL+1DlOGjCKKIWPdQxuBFo0QHDj4+JMXJulaPnDIptzCauBV2jwQ2TtLrcSa5RJz12Dl/gZ+8+SY//NHLfPWr24jWKOfC6rGCpSRBRlygpzzjWEhih9VLxMxRugGxeG0RqQMk18lMH1sRffgmzmNEtfECdZ/3pj2vM1i1XBVLUT5FEdM0gbe/WCxWDJ6P9H15wNadM4oiBoMB8/l8VXi90+3vvPaT+wGrKl2Hh4dkWbaig2qt2draWhV1KYpilSj2sLj/X3vDD6EYixcPqmGjl3BxQ1GUlsQYKhvTyzxa1cQmTBJ1VbCVWMZJxPfeAVtUPHW5rfkpjiiKWCwWzOdzhsMhVVUxn89XgRnvg5df1xWIMBqOGA6H1HXF9PCAOE6ITYzH04ij9DXL0tI4TeUztGrY7At36oiD+ZSrrYCcc3N8tIfyCtQW1m1R132cd8SmIDHB6FfVBGeXAc+XNQ7bQ7VOz8avPMEk3aBqGnA+rJPvayCE2gmT2YwvPvdJbFNzeGfCF588x7W9Ac5pPvPYGd54GxbLIhjDD5kUdtcdyNHRVHe5XnBtwMf5wKEvq5zlYs5yMaWc77NczMjLnFrAGUMdxbi4h8s2IE6xSQ+XpETRAB2n6CjCq8DN9231qi5UHRIJ/Vp/htwEaT1+OQadrAUlOcrnlTZeBR6lIza3d+kPh4w2tlpvUK08fu+gcQ6jhUGkGUaKvlhSChozZxbNgQp8EyAdCVLS3croIzWiLbxm3IBevLXi5Xu5z5rOg8eycDdxLFBek5h0VcSkqzf7UbFfHrat908XsHXOMZvNVsHe27dvr7D69X3W912nd+7s7Ky+6/V6aK1Xcs6Hh4ereMDDUD3/e8MPbWk6h1BydcdzaWSxZQ1xycLDMDUocSidkPZGuLrk6hlHL4JBZsmbmnPjDFx9Fy+3e9gHBwdYa7H2SCM8TRKSNGMwHLU1Oe+glaffTwFNoxSzYo5tJaSLUjEvPMMoYqOXYL3jJ9cszjvwCmsbKlUQRZt4zlDWCu9CQpYxi9boH+BWVLtOH15OGJjT2yqQ1Br8I7xVUCiG/W3mJm6D1Oae64iu0AqicKrTJIfCO+rGUVjPvCiYThYczguyuE0WW8fWP1Q7EvHSq1Sp1jB6z2I2YXJwnWI5p8hzCldR0VB6R+UdDZo6GaCzISbtIdkQk/UxcYJEMY4QoJaWgura6lviBfFmJTd9dDNh8g15jGtlAoEjSKPr93D9yhs6zXlPV+m3W6Mo4njA1atPgfcohKZVn9RKGPcMifaMaBgKZN6Ba5g2FURVqFWxCvIHpv9HnZS3unsPRgZkaruNRfijlYy/+50UAS8VhT+kcWHFGpuEcl7R6/Wo6/qhmXQ/zdZBN9ZaDg4O2NnZYTAYMJvNVjBN19YZPsaYVUZvv98/NkmchI3v3LlDkiTvW25xvf33hp8w4LRENM7w+m24dWhonCHEfhvOj4WNRzWx12xEF7hVlJwdOkZJw5ce9dyZxWwOVFAe9GGIdFjj4eEhOzs77OzsUBTFiuUTRRFpnOC8Zz6bBd1z78mGAypnqdwhd2aKd6/t0+tHxLHC1Yoyn3Pp7ACnGrYGMcNBWBkoYkzUQ6ItGgaUpUahSJMapQ5omj2qaoanpAus3iuAds+ekiN6XtgrFCXRaPrJgHGyQ5MOca4BCTVHT3fewgtulLCzvcELP7rGZFrx9q0Zv//9n3AwX/DWtT3+8LuaBs3nP/3IRwgssDL6Ih1JVPCNY3/vJgcH77HIDzgoa4q6orIO4hjdy1BZH7Id4t6AJO0hyqymPaEr3u3balzQqGCUxYcEwW4BtCqRs+obh0gw5CLueDC8g6MkeNwAWgtxpLC+Cp+pCCsSAs++6R5WmGhE6EpD2qYmFWFoYKgqVFMR1a4tSAORMqEIj2rwK0dAtX97VjLVH2ETEbTSqz4M89tJgsHa9j6o0eIV4jWR9FAkNLZiEEWrAO+9Eqb+Itu6J98VWZlOp2xubq4YOv1+/y4ph6517KRO0/+0NhgMVrIOXYLXg8Bbf00Nf+eL+hUrQSlN3TTsHS5564amRCNOE2OJSot7JEKLx7ht7hzmbCUlA6M5NzCUdcLhwjKKj4pqa62PRfZHoxHGGKIodLm1jmVeUORLZvMpJooYjjewwN7sACHntXcKrt2c8NjlbWJjqBvHqGcQA3uTOZc3x4yyGK0FZJPIbJM3A2ob7ik2NUYfUlU3qZpJMBK+exnbAuorpcgHbB5o0+8VmljFDNMRG/0N+tJjlgywrrmbHHPyEAKx8jx55QJ/eOs18mXFhc0xB5M5uIrJ/jf4L7/3SX72S9f527/o6QpwfFRQQ2eknQhlvmBy5wbvvPsGN6Z3oJcSbV5CDYekgwEqytAYBINXgqiOrupXCpludV1HXqpyrdfc5kH4rhCMD8+/sQ1KCdroANW0iVDtFQbj1sItWqeIxIhEKAwSw7Kumc6mxFrj0RgnWNWsVgptGXKUJ6xSqiWJ9wzqmp6vcBJKSdp2DBjnMc5RqTX+p+8CqR9963osFEXRR4yy1crmtPP6FawlXpOaEUpShIZOH6fDu/9tGv311nnwnYZXVVUrKYZ1AbaudX93xdfvB+EYY9jY2Dim378u+XLP/T6aW/sr1tax4tYKKRG0qvnaMylff9owqRSThSVLYvoqJ6HCKSiscFDAvF7g0GjRHC4qyrLmynaQi4W7aV03btwgiiKiSOOcpywrrHXEkWE0GmLiDKci7hxOePv2hM1BzGzp2NgekmQG62saV7M9THjvrRnnd3s04xotQqwH2HhInsc01qCVw+gKY/bJy+vYpsLhQGogaZkTck+v6p7d1gWtJEYrQ6RiBvGI3fEZelEfV5VEpkdj69VhhTUj0jUJE6QWy4WdPn/rb3wqQGAenBh++/fO809/42fJC8N3X/z/s/ensZZlV34n9tvTGe743osXQ0Ymk0xOVWSRVSwWq4rFUkkslsuSuti2bKnlbn8wDAs2YMOwJAg2YMOAGjCM/mAIkNGAvzQMCG5/aDQsuQRXqRvqKlbXPA+kRIosMskkmcyM8U13OsMe/GHvc+69b47ISDIZ7EVGxov7zj1nn332WXut/1rrvywf+5Hf47OfucfaSt7AUZ/i8XeQjg+Odn7Cgwev89XvfI1mUDL4yMdhcAMtFChFkBqk6YOOQTRIr2LX8Q5+EpEfPohEY9xz72uEcLE+Auis5xBgVTc0bRuDq8MBRncpihFaUTJHYCLOLg15voNSE0QY0LSCma1w7pjl4QHa1xAkORqrPYKW4BtcaKPyDxCEIcsEt8obGCGJRStpixCggkALgQxJ2fZxn40Mmmfmd3VpqalrshQxWH3G0r9obUazQniFFHk8T2oo32XzdPK9yuo5LSGEXskfHx9z69YtiqLok0BOF3Z1fXy11kwmk0vP3XX/6uII14G5fiAV/+mlIBAxfxpBrizaeP7dPcWffKVmUjp++oOanVKhsxb8EGs9VdvibA3ZgNZJvFUJbU3nTAuuI1qK+L7FOZui9jlSa5QAYzRSZzw8WfGVr32bY+cZDUpOZivGO5rhyOBcy3LleeluzmTfMM40x0uHVDlaDphXnsaDlI7SOER4xKq6j/PzNdzQbXhC0nMH9O771Ri/EAKtNON8yrAYMS4nFGJAqYboYGiEw+gC522vTM5316My8QgyqdgdAEIifeSN/+O/eBer1GBlVWk+93sv8NnPvLnlur/VlE7nHCezQ771jc9zf3ECd95FduNF5GAXIQxOROQ8Nt8KhNQoRAZDEOCkSEyaIrULJOHpMX4hWOfYEyInTkTJAk3bEHzLsMwj02a1QpcDEAopNMYMyLMxmRnhw4C2FbQ1NMQNyHmoZQ5mj0bFdF6nA2OlMdpDWNE2JyybE1ywBOFRGnaHGVYanNVIAUE4VIg9HeL6yEBmBNxGzMduKOO3R4mGFNheRyouX5MBwAsyU5CpnGBjm8tOYT5NeuN3SwaDAcfHxywWi95S7+ApoF/jbdtS1zX7+/tkWdZ/3znXezXdBielZDKZsFwut4LGl8kPpOLfUkYioIRgv3iRIDNEgEfHOd/4juXuzYzGr/i3b0pujRwTpRgqj20FKyuZt4pMag4XMM1i31Z61srOZRNkOsdrcKFC+AG1VHzj/mNujAfcmgw5mDsWywPKoWF6M2Nxr6bMIj67f3NMaSQ2F1R1SxOWKDOjDgXDyYvcyjTzILBWYAQMihWte5OmPcC6ZsO26toInrp/RG/ddVk6a0kWWLoPgWaUT3lp/DJZNiQXOVJELvRGtUgLrsip3RLtA04qgrDnNrEQfZwhBj1DV9kZJL/wqXv85//iPVsNVrZ6FZA8iY1x9s81RJS9U2pd7r0XAuklAkvTVLx5/zVef+PLHJgh5uUPk09vQT5MVrvtFV+Ev8OZaRMh8QalQiLRp136pMiS85cw+ghTRYjCe4vWijzPsM4wmy+hFhg5QGQTlL5J7TIqLyHkeC/wzqZ7jplYBZDliswUIDy1O2buKoRzgMWJBqvjOJRUFAODLkpoDcLF/tMhBKwALxxWWRa6ScFcYBNyelaSvOsg1h6nxCWnaf0Mu3Vx0WbjbEC2GZnJENpgQ+T87xT/edDIedDHdTaH63zvujTJEbJTPd6/ScWwmd7ZNWYpy5LRcM3zH0LgZHbMw4cPGY0G3Lx1G61MhHWzjJ2dnT7Qe5X8wCl+sfGfzpKRQjLJxyAkStYcrCSTMuNDL0HVZvzFNxwhKIKAfGApZM6XvrHDqnX42vGdey2v/JhGuYTVdcHPvjgjZuVooam84SuvvUnjHC/t7HBwuOLr9484ns14/3v2mJQ5h9mKTDvyDJoq8ODNJTduj3DikGV1DNKRm11qWyKkpKoajAJjlrTuEXV9jHN1RCLWkdhzJiL+sK2XN2CU0GX9RKw4lzk3RrcYl1MEOioPAjJE616iyc0QZWOxzxmGw/7EYuNK3aayvv5nf+GNSxusnH29tqEBgYWgsUKAsMgQUotMx2x+wrdf/wr3jx+yyvfIb75EuXMTr3K86IjgiCmpp64geiqJ9EnoYiT0nlNIG3/wkjVJQeJ/SXi9UUMkinGxx7JqadSKLBshKEAOsH6EdRIvHNLHzUQKT5aJ1NzMEdwMQqRqDr7CtjNaWycllHokyIBSktFgQFEalJR4F2iVJQhohaVVniAitUktW5xsTk3yMw2rp780CBuNEZcj0CBTAPvMgjn9gUAJRWlGaJ0jkHhPT4tyWvFfl5TtIrnqO0+i9DvpKvq7dO/OUu8CvW3b4pxjOp3G+E+SyONzjJSC5WrJYr5gOtmJ77kQ/SbizukPfFp+4BT/pvRzIyRGZwgfk/ucF0xLy/6gYdFIYjN2ifUtRhvef1fwO18e829fc+ADL+95bu9apBe4U8U20FnSsYtP1bbce3TMh99/l3GZ8ZcPj7EErMg4mi/RoqYcCIyG2zdzlqsFbZHhOEHrGTZkSDXFhj2WCwCP0QKl57jwgLp+vObED9dd7GnxnpfPn5SCRjIpdtgtbiBCt2wSn5CPAUSnDVm5h1wuaGUsx3latXF1g5XNM28ExtL8Sx+xdycheIVvLY8Ov8W33nyVx8sVdnyH7M570cMStxFSBZmgnfgCWmtTUN5sXU901nxqa9hvGCn9MaL9DiUMJhsiZUlA44OMTJtVy2JZ0LY5ebaLNiO8zGM2kI0eTW4URjnwDT5UCCJEhLAos0ClKWibBmerjZc9Bp+1UgwHJcOiQGkiZ5C2LKkR3tPImkZ7nIzPyeNwsmuT+DZAJSkdN/ZMTs2N3Ail1wRncHrNnrauYy1NocaQYgTBr+sdNvvinkeB/LQQ0OZ3N8f5pOfrrP6yLHu66Mlk0lM0CCFYLpeMRqOtWgTvPScnJ3jn2d2JWUFHh0eUxaC38LtA73w+p23bS8fxA634oUvBi3ZckCC8YTwwfPX1it//5pDGQj6oEKwILuKIH7yjqGzgq98+ohhpPvGBfYa6xrvz3NNAVx0bhEdmkGWG2zd3WNmKhbO8dHtKkdXU9TEz5wlCUdeC27dKDo6OGJWwqI4JXqP1Ptbv0jQKL1py5TGmovX3qesDvKtj1gniHOvpOtJxKHZZT/FFLXTJjdFNSjFEBokXni5fxctYiStVRplN8Sff6Z112RnGb4tsBiA3P4uwmwoB4SSrZsGDh9/mO29+g0d1Q373vRT7L4PJcRtj63B61zqsa2ltS9u2KSjftb5L1wgdZh8zpWK2vEQpg1YZQihEyAhBI9QIqccQcoIXhNDQigWrVYP3AWMCwQcKo1DSIUIDtGjh0KomiIamXdI0cwItxgiKzFDmBQiwJsc6S2jWHdKMMQzKnEFZopOnEkSglS1ex2fbyhar4uYtw/qYM6Rzz0j6qo/gwSsyMSLTexhVnFGql49AIMh77zqS0Kme6Kw/6gKl/CTwzea/N/90cpov5yrZrM5VSnF8fMzu7i7GGJbLZX++6XS6NablcslsNusLuIqi4ORkxvHxCfv7N/oxFEVBXdfUdX3pOH6gFX90Lbsc6QjlKBy3xjlaS/78K0uMcvzCJ0oMC5x1GJNT4Pjo3cD+ZMHKrdhVGcLlOOli7jSdN9FBGqkRRvBo6WnrwIPHK6S0NB50CMjQ0tSBRQMOz4FaUE5rBoMmtTMcYvJ9qjajsSCEJ9OOzMypm4e07RGxU6XAu4D3rn8RTjP5XW6lpDTFLujrBbks2Cv3mRQ7SJ+asQjRZ915EUnZpFA0whAai/JEa/ttCghuj7cPqad/RoI7vKeaHXH/8Wu8+uarLMyIwSs/hprugxLJUtd9zECIgLOOVVXhfNtzpHcBte38cJFS7RRS5rE/rciQsiQzQ5QqsRTUjWPVeGgVBBX5TEOOUaALjbMr2naOEzX50JJnHiUavF3RtAvauoXU41jKmP45KArKLEcKQHiMEQzKjNiUxaOkpCxyiiJHio31KGJtgY0R675xu/QitU25mEHz2TyqBJUFh/RjBtltjBwSfMBxNTyRThJvJKgUU7F479BaY21M6bTWro++ILXxOimP5x2/2RkP6Is1O6jpSaCfrg9wl9758OFDQgjs7+9vNXDqKKY7bp4QYjJKWQ6Yz2cMh4OeyVNKea2GLT/Qin9TaUS2Q0XAI73nEz804P3vsnivePcNjagWWO+xaAwtmVKMtGK+fMBCg8nfE7NVguqVXZ8KjQUCwhsUULeWz3/xa7z3xX2CE8wWgfmyJvjAIJPoUjGaOFb2CC8MRRG7Zc1XEo9ECMh0g1ELqup1rFsSEr1ACAHXCqp6hbUto9Hoyoq+LYhHRJijQ96lV+wUN7g1eoFM5gTf5ZoLgpB4EVDBYaoaXwZ8rmhEixfg0+bw9qn+7iXsXrT4J+CwrWO5eMw3XvsS944fkd1+kfH+u2EwJgidQIL0XDr+6xCwtsH5tk+969LqOsqN4XCQ8H6JlCVFPiUzU4Qo8UGxqgKLShGEwQmVaCYiLYOQbeprW9M2JwgqCu0YF57l8oCmOkbiMYUmH0iK4AlinZPeNrYn+FJCApYu2DsYqFhUFlQKdMY2jHEz6OYmQWEiVhLLkPpVkIKrolu5b89D6yM7XpPLHVSY0FYN3rcg5Lr3bfd0z1WiG3ECYraVc46i2Okr47t+17DuY92dr6ucP8963xrrKeqFTrF3FnmnWFerFSGEHp+/cg42CrWMMeR5ztHREbdu3WI4HOK9ZzQabXlA8/mc1WrFZDLZ6isQYwWx5+8mk6eUsu/de5H8gCt+UiFOtKCFh4crePVBQ4uLlZFtxnzZcmc6YDeTQN0rvDwfgNAcNAcM3F0GYhT79nY2ZEheRQpkqaBBOsqJYTqesHczo3q05M37jwnKcms/Iy8als2M2i1RZogQuyztAGtzggchHUXmERzT1G/g3BzvIwRhbUtdN9hWIGVcAJsL/4qZWOPjQqGEQQvFIBtxZ+dFhmYcg7nC42WAZCUKCSxrDr72DQYv3Y3kZdUx+/42GnrI59nLNrwTetglYNsFj+6/zte+9VVmRpG9+8OInbuQD0FEjNyjEEEnr2WdzaS0Qia+F2stSqm+fF51fRVSQVWe3SSEKYuqiB4jAucTd7+IXpzAI4UjM4LMKMCyWL5J0zwiyyJE1tqWVXVCVkwoyyk68z1ctwazBDJ5G1I6hF9veiCRQiJlUvDdmt6aKbFh56TnHLrArkitGGO70rcPmguIrlG63mE5r2ibFSbXgDyzTk8zV27/Mj4zAWRZTlkWfee77rub3m732aby7mSzX8ZF3sHpc3Q/V1XF0dFRbyhsjvsiOc3J03UK293dJYSwZag1bcvJycmWYu82j3WsYM58Pt+Ch67K7PmBV/ydRGpemK0Kvnnf0liFkxnCO6wPfKcUfPI9kkEZG4QoLIU2jPIxR/UDlu0JeR7d7Rgs6KzPkEr2NVYEaltTlAKpGhb2kKLUNCvY2R2S5XMqdxjJqtQurdvD+gHWecCRaYnJapx7RNs+xtmTVOYfUxCbxuKdIMskxsTMgdVq1ZNWZVl2ySbQKT9JoQbsT24xMCWZLBlnk0j8liCCiPQElHNoIumXEAqpNc1qxaI+xnmHFvrtNPd7iYs94H3DajXjW9/8Cm8ePGRVDpF33ovYuUNQBgJ4YRC4qODSZtdbosQq0qIQ2Lbtc6k7yCeKQcuSvLiJdxPadoDtevSlOdQK8kyhRcTqbbvAuyWNtwQsrT3CMWNRObRTSCFAwXBUkOUamQrcImq1Hp0SIVnwmz3ITIJyUlGW8Os9sVMwiYhP9IA4KS4BnX8XcX66q749zwmBcIZS38BZiXcVuzf2NhTm+shrnU90wd4It5xXvHWar35T+cO2ou88gvO8hM1Mma5pUpeaWdc1y+VyyyK/dkOUDU6eyWSyxcPjg+f45JjWWqaTyRkvJG4Sui8K22Ty/O+gnutKiFwhk6HgQy9IvLd46XDBslgq7h/D0aLmxt4QKS0iCDQlu+UN5u4BR4t7OLdimu+TmSK51xBdao0XnhN3wOH8AC081bJhVj5Ch5zh7gCTBVp7gsUQGBPClLot8cGhBJSZBY4I7pi2PsK6Kq78/jIaKQyOBu9d7zJfl7eky+GXSEZmwq3hC5S6jJtYiCmfQoDwAoPAqQCrBc18idodMXzXXRgOCMcWb2ts8KDCmqTzbZN4du8tBwf3eO3bX+NRtcRN98luvwc9voHresCKeIfR0o9c931NG2Ljb9tDAh1FbgclZXpIlt0iuF2a1uBCTLHMTMpJpwZfIbwFanxocG5J61Z438SLBUFRaNomYK3DBhgPB4yHA1Q3jrB+Jv0MpoKx030t46cd5UOalQ0l0WXGC7oSqZgF4yTRiOk2QcDLtzEqEyRalGgKqlXDaBSx6eWqInjHxo51yUm633X8phH67FIgO7ioW/+n4ZzzvIrNzza74J0+/iJahfF4zKNHj3rKhCeVPM+Zz+f9mutktaqYz+fkRUfmtp6fzc2lixWcnJxw48aNa13zOVT8nTVEtHJEWAdaezf37MLqOoLujlfsDmLgyCMRzjCfr/jWrsHgsN6iFYQQg5yDbEihRxzPD1nUc+zAMxntxHxpa/FYBrpEZwWHqwccLh5S5LdpZQzY1c0xOrdUNuB9BnqXxmW0rUYER5ZVaFEjxIzGPqBpVtGy65MlW2ImjiYzhhAiXWtV1YTgGQwGZJnZulNSqmcH74g0L0FE/p2BGVLIEuk1BI+XHkds1uGkj8yQdc3sW99EWxju7yJ2BwQHmdAYFMK52K2ph73C+vL9SDaV0/YIr/GY43MWsYJ2tTrmG6+/xhurBerOexjtv0jQJTFs7/rWicrH8fh+LYTUtDxaxN611E2d0vijRZWZDJAYU5KZfQg7VHVOALK8QYQFEoeWliJzBL/A2hWN81R1jU3cRd0dS+EpjCbTiqZpcN4xGuVolWakw7Y3g+z9t1OgfmvGQsrmCZxX7So6zD5sfRI3jNB5FR3Ud77Nv6mSN6+91bYy/dh5Kv2xaa5FEGSyoK0tQijG0zGz+Qnz2bKHXLffz4tWQoybdIofolHSKe3TFvvWfVwAJ21COJdBQZvHtdYym51QFrcYDkfMFjNMplDS9Ne6zPLfxPtPt2d1znFyfAwByrSZdNDx6e92kE9XFHadNNPnTvFvu+7dw9pQ/hdUJHa9VoWViVIgIETkOtHS88rUotSAZrWi0GW0rqynbiq8gyqsELbCLSxLZnjnWdVLLA3Tcoepu8tydYJlxqDcR2uLDZ6gNDAgqB2sGFI1ErzCKI+WK7Rc4HnMoj4geLf9IhFJwuI9OpQWmBAXXdu6FIA83ZotzYFIlmM3H8mKNCJjmI9i6FN6jBMo7wkyIJ3EGfBKoBcef3RAfvMFgjDYRFcQdI6VOS642KZSrNV7t1iDEOe+0k8EMoiNp+kdjw++zYNlRf6+H0GNbuPkRlrfJlYuYF2EJTYw/rh2WtciJJSDEt9a2rpBBI0yBqWntH6ftlUgwOgKIw+p6wcs6iVlrhkMhmgpMGgyB8432KrjuumAFdlNCFmeo41iNBr2jyQGj9NNsr6PCwvtgF4BnjtV6yrk/ggRG2Mi6DdBceEZNqRHipL677O7NhR9epJi655jLwCcwraOnZ1d2rZlMZ+RmQKtE8eRSB3hzrnPS4eVFPomrv+0efbX+X0AMh+YHR8wn58wmuyxWMX+yaPSPBHc0427aWIHMSHEVoGXFOf3DD5dFNY0MdA7Ho9/8Aq4hFcIuXaLtgzNsFaa2zZmOmZDCcR/pyQ3GYN2o2HJ/fkRzhm887im5WR+zKJeQNo4arvCzmIxjQ/RDjt2x6yWDbU/xFFh/SFSGgIZpthDin2qRmBdbNIhZUuWNWg5Z7V6jHNLvA9b7v1piV2hLFVVpaYUhrIs0Xp7LtaWVQwskrjWI8ysGRcThsUwbhoBPFnq6utwSmCsQhuBLwrK974bvXeDVkmkt4BAqsQ+6t163jfGGOd1w3TZnP+LH+vZ+03fUEGwrJa88eAN9I0XyUd7vdK/8sXrKm871kyiMyXJMAK80lSupQoC5UqszSkHkXfHZCuMPqJaPcS5CkRAa5UCwLEaXApBnmesmibC71vujuj/KouCfMMre2fyzIQ1FIZIVd2iV+rdv6SPxzrp0usmIp1FkAivaGpPmReUZcnjxw/SOh0ipE+xMcMWBcdTyKZ1fuVdXaIgL7XWib0NRoMhs8WcwWjKdLLH4ePHWGOfiBu/y/A5OTnpg8RdSurpNNGLpIs3dIHgHzDFH5tfxKDPOu1w2/aIx53/7dOTFb+lpMTaNv0sIrXqcolWmtF4wGMnwUHA42l7Tv54bUXrE9aLJ4SCxrZkuqDI3kNlNZWTeKeQCHIdMHlF0zxiYR9HpbLhTp8Z8wYW2bYtShmKIgacnHMp0yMk62fTqt523kEy0CNujG6SqYIAaBdfYJu4VaTw+KNHhMEERiP0nTs0QhOCQIfkNMiYF++dvXCc6Yct5f/kqi6ax8E7Hj56nePWY27exauiV7DXy6nenJTIqNrWjmBlzBIppuxM30/TDnDeIIQiMw1SHlHX93Bu0deCSJkszJQaCgJjNFpJ2gQ/iFP3rJViUOZxw3hKRffdkPO2aRGiivYirD2VpOhFsOlvhQgGESSaEucVo9GY1aqiaVrG4wlSd75G8m5CKiIU51/5PLkoG6cf7QVr4LLCrfO+368pYtFbZnK0aTk6OmT/xi2WedFz4z/JBp5lGcfHx7z55psMh0Om0yl5nlNV1aXn2lxTXaDYObdVy3CePFeKP2bmNLjg8cIRHBiZEd3l5C71Oc1nJ7JjCQwbR4gAUoJtW7yzGKNZLedMxyO00VhtUVIj3IZTmyp1BRCCSy33FAQd0wCLHbwds6rG2BCj90pCkVtwR9TVAdbNcb6ipwIANlPezi5Y8H5N/eqcS5WAUbF3Ef/T2DBppJnK2RvuMy12IoZPwEuPpCEIgcYg5ktW33wN965X0KMhyAyRSl9jGrgAGXPXg09wUrfdhugFKKm6j9+SdHHPf/6vd/n//Kuf5cM/9Qo/+9Fot4vrFuYI6Bt6p3VhtMK2LYtFg8l2GI3fhWeKkBlKQGYqEAc0zQOcXRBC7OAlhYx9EfAbzyhgtKLMc5yr2EhRB2KefZnnZEpteKNXY8PfE+mI/NYfgEixgh5Hk0ivY02ANwQ03kq0yCmzAXk+ZFa1aG0ShbBGa5U6zFlk0Be8mVfLVVW6153T6857ACyOIBRFUTKfHVOtZkwmAx6mQO9mEdZlYwP6/rxt2/bN1CeTCY8fP8bayz2I7t6EEL3iXywWl47/uVL83juWdsbx4oA21OiQc2v3Lpkse8gn5jN07ulaQh8o8qxx7wDBU1cVq+UCOx6RZxlNrSgHA6SKLliel4hW0SkRkYKFsbOST58ryvwGhCHLRWBRrTBZQaZzSiORco63j7D2CGsXcVGIzTFdrsw6TLgLbIXgUUoma4F1mhldhk6A4JI3pBhlY/aG+2SiSAVNsfJWehXT/GyD0AK5t4sYZAjnkI7EQuliGX6QSJUjlO4VYvca2+D49uuvc/vmTQbloJ/frn2jSLl5Ed++hotO4Fc/d4f/5f/xk1R1xn/92y365u/yk5/+VsSdudyN786x3vyiYSClJC8zBDtofRfYx1qQ0pLnAcIj2uYh1s4AGTd0HFrLvsmO2FDgSgrKsqBpLU1rUwFcUvpFznBQ9Jvz06m8764EsZE8QUfaEZvAZF5jWoOyisYb8tEYrxSKDKPzaCBxDARiJXIqgmrmWFczLhSqJ717697Pdaton1SEEPjgWboZQmQUuqTICmazY27cvMlgMGC5XPa0DJeNYzNIW5YlxhhWqxUnJyfcvHlzi7P/vOrg07UOHWVFVVWX3sNzpfidt6zsnEcn92lYMs32I9wTtQAd5LHOH9i2fkXwiVEy0NY1dV3hncUHMJmitTEfXqlI5iYQKKmZlFNmqyNWzieFF68ZcU+NMTlSjmnqAttKlpVj2VbsFjVFDjLMCP4xdX2YthyfEIjO/kmt77h8ERujaZpILBaCoyyL7aKSHjIKPa4vAhSqYG94g9KMIh6bRHkNQhMOHtI+fkzxnpdRL7+byIbgN+ayi/iB1BlK6Wjx0817LET5whe+wAc+8AE+9MEfQgjB8ewEHwLTySTlkJ8f9D0tcQODf/07N6jqmF9f14Y/+4M7fPLT3+5QlqsDdf3VApFdUyJEzrC4gdQvYO0Q2xikFOT5jBAeYpsDrI1ZKGvvUKCkRKmO5yidP53eaMVoUNJa1+fgSyEo8gyj9RmI5x1n7ScJCRbrssBiD2GFChJjbH/oagABAABJREFUJQOXUzQG0UpORM7I7BGkJviu1qRrMdgZMjG2sqiOqZoFw2yClqnvcD+zTy9v1zx2uf0PF/cwMufW5C5lUXIya5jN50wmE6qq2mr6fpHS7/7uFLfWmrIsOT4+7msDHjx4cCXP/ukNYbOe4Tx5rhQ/SRFneUZjFxijYkTcJ/xeOLyztCkA2qOSSQMGYZFBIbzEWYt3LS54inLA0AxZ1XUqhVY472OVJyq1HtzDzi2trwBLCKBkidZjlBpT15qTkxoI5PkQaSC4A+rGEtpjEKl/qoh4e+g9jw6mOj8gvSnGRL4S51xyo9eVfml6euw57iwBiWGcT5mWu+jEutllRgmhke2S1be+Tqgs2UvvQmYaHxxOpiyKjsVYRE5KIWO9rg8uRQ5imuDx8TFf/su/pG0d73vl/WS55tuvv87R0RGf+MQnKEy24YVdx+KHT/34X/L/+v++n6bJyQvLj3/yjSeCkKJTpeg49KXIybIbaL1DbYc4K1HKYXQN4TF1dY/gGgTRo4nUwjGgm2cmUSScvY6SMCjzlCIaFZ+giwmES2M47zSJOl+gvEJ5SW4NWTAYq8h8RuY1tqNJDgofNry5MymbcTNoXEXVLlNT+v4q72gJwVPXSxb+mEFesJPdoijHkTunHDGZTDg+PsYYg9b6WlDTptXeFXWVZclkMum7a61rSi4WIcRW85bz5LlS/FpphmbCzV1Lc7AizwqkSLzxrqZpl7SuZTE/wNquHV5suxhkLF7JKFAhJ88KRtMxSkdelxBgtoiBPKUUTduSGYNCUsqSvdE+i3pOU68QwZDpAUrvYLIbNI3iZHaMC5qyyCjLgLVzjmevs5jXlEVOlhXJynEpyNW5/53lc7VGi+5i0cdNT/OS99mciRaXIMnNgJ3hPqUa9vz6CB8rdSVgLW3wZC/eohnkBDwq9SbouF26nA4ICBlfdu86qy7O3b3793nzwQNAcnR8wt6NKa+99hpf/8Y3+OEPfYhiN0vzfHkB0SZ88+mf/CL/4H/zbb70nV/kY5/6Dj/96TdY//pJgoICpUoyvYsxt6nqHOsESkJmFiAe0dSPABublxEQqB7KKfKMssj7fXXTq9yEnGSylNdDC08y1O+pxL3JI4JEOUXmFJk3lE1U/Dro2JISQRCxbiHV/qWmNckDFus57+Junljvsk43fVqk/7snSmkmxS73T17ncPmQgZlgsiGqEhwfH7O3t9dz7IxGoysraftU57RWyrKkaRpmsxk7OztUVcVqtUIpdWlrxU06h8vkuVL8UiiMKDGiBKcwqkCiEF6wXC44Or4fg76TJUKJvuCjSzw0omSQlZRyihQGqWVangLvwWhNXVXkRclqeUzwHoVCCM3AlBhlkEqixZAyv0XwU6rUBzfLPY09oPWH1K2lWt2j0BaVlQQlsLJBIRE+Yx3Q7YLEnXdy3uJZqxixAW90i+iss7zGtJU0jAe7TAa7iXUTvEwVoD4gg0UMx0x++CO4TCGsSJi2wASPF7EQKu4B8TpSaYSUeL+23rx3vHnvHvP5ggfiEfcePKAoM9544w2+9a1v8frrr7O3s5MU40WynWHhvcfWlp/4ma/ymfdOsFoCEi99Xzx00Tk2Z0UIjxQZRbaD1vtUVY51RexlbOb48AjXPsYYj5AmKrQQ8E7gncZowWhQJu8qbtRh+7HQUUqsN6UNjDx8F6CdU9fd4uTb/HX32UbVef+jWP9OB0XmMgqfkwWN9grVtfYUkTYiiOhH9d16+xBGRxfe+Xadt702cqI3Kp4Jzv92iRSS3fIWs+aAk9UR4+yI/UHBYFBwcjKnquq+obq1LcZEC3wT1jktpz/r+nUXRcHu7i4PHjzYgo9Of+c6aZ+dPFeKP4qjtjVCOowsEEHiQs2seYSfzHCmxUmJbS2rqsb5dRAyNwvIGrRRlOwjN2AMicXkkmW1YufGhJO5i65pt6KDQomCgb6BzG6ybMa03hBEjVINUxOBm9n8McvVEXW9ZDScIFXXmLt7gKlkfBN/Tp9cJl1wtw9YitDnTyMCQUZCrowcLXNAkqmCG6Nb5EIjg8ULDSjy1rG691XCcI9i/w5uOAAX4ZBIS7MO24boxZN422KbRVUSQoUEnAhUTcvseEZe5JTDnOVyxqPHB3zn/n0OZzO+/o1v8CMf+hBCq2uhujFR17FyK4QusDL2B1BebiiL8za8LsIvQEgQHi0MWX4XJ29SNQXeK5SZMcwq2vYh1h1S5pphWaBUIKBium6INAFKSnKjeo9s09o//xld/SyftfSKF/q4ROTd3x7rhgmxsSEEnADjDYMmo7QZhc0xXiNQyN642FDeqf4lINBhs8Nb/CEaXNEjjBlf0TqVXsbmXMH133+nSa+4EZRyxO7wBVZHX+N48YiRmZJnOXmZcXJywu1bdxgUBavVEq1VghWvlvPYO2/fvs1oNOohn64/xObxm+O7Sp47xR8I1O0KJTVGRQKr1rV4YZG5wElBtaxYrSpa61JhFEAk5lIBMoZkxSB2TQqJ4USAkZpVa5FotFR4F7BasUQwqwG1R/A7VI3G2sifUmhNZjx1fcB8/oBldQIEynKCNufgdeeu9eu+AJsPvCMgixuJCppMFUyKPfaKHbRQKKEZ62lsIE5I1MES0Xjaxyt0HrFMH/ruu2eG03vnG5eWSsfsIh8QUmC04WM/9jEa21KWOS+//C4ePnjEfL7gzYNf4j/7L/8DrMr5u589vPIOe5eYQN02KD3YGtC5XcS2Rrv9smTZFCl3qK3GO4dRAWMsTXNIY2co5RkMCjKT8uzFOqXWqEjGJ05h+/2cnLn290Z8uvxW/CRBfd0n6wbn8R1yqbjPOMnQCzJnyFweMf2E7/cB2A6ZuYbCiZkpZz8PW2sofC+n60rpEiWEglExZVzsMV8ccbJ6yL55kbIYMDues1zMmUwnPHj4kLpuKQp17bTSzUyf2WzG8fEx0+mUqqr6oO9b8RSfP8UfPFWzQKscoyLHSlWvQFmC8FR1y2KxTJkvvZ2GIOCcZ7GqOTHHZDpjpG4ipUF7iRMSLTVKeGwdKLKSprY0IuNB1bBsAsEPqK3COosSgUJ7lJjj2kPmyzdZ1XNU4vkxKsIJMcMhytM9yPMt2zWFskehGaoxNyd3GBd7jM0wwSoCETQhSJwMKF/ByQzUkOLmXdRwFBV474JfbzzaZPjWdwg/mZa875X38PjgId577ty8CR7U4H/F733xf0drS/74i5Zh8fv80mfeuOJS6Zc+UDc1ajK5SNOe8721oup0lNQT2rbEWYExLZm0OHtA3RwSQoMxAq1TB7Vk23abz5N0XvpeSldcJRMfkex2AjpHM277svcKPDIojDMMWsOo1cnC1ygvUX6jIPJac9+P5ByL9B2s4S+ROKeeQhTsDm6zqk84XN5nkO8wzneTwj6hHNxkOJown8+30juv4vABeqy+LEuWyyVlWfYNWzpCuKet+fj+WLlPID4ErKvIdRnJkkKgaVd42dK6lqOjE5ZVhU9KX4i+zhMQtC4wr2fM2wPqMCNg8cSXRiqFVgJrK4qsYNlYlm2LtY5hXqKlxnuL0Y4sW4F8ROO+w7J6g7o+JssEg0GBUpLlasFiuWC1Wp1h5Xt6WSeA9hTKCDJVsj+8xe3hHSbZGIGKJAwiNi3REOmn791j9dprtMajX7qN7BbWlkV99SiUzrBdamvoiMlijMSlLkkv3LnD49kv0tqIV64qza//3p1LzroO+HUFYFXTIlP2wtpgvMri34TQBEFkOK8xWmLUAufu09T3CCxBuEiZnGAJkQroTudRv1PTLzvpKmzF1p+AwCFwPU+VF/Eutc8YNRm7Vc60LsjdAO0LjNOpWZGMx4onSqJ6DkUgg2ScTZiOblC7iqPlQ2yoyfJoUx+fzBgNRyipqKrqiRR1t7byPO+pl7XWfYP2rjr3urj+pjyHit/hgyWTBVKolL3o8LJlUS1ZLJbUVXNOM+IAIeAJVLZJ/XCPcX6FF11QLIDy1M0KpXXcEKTgxnDIzcmYQaYoVEuuT5DyPqvmdVb2EM8274aUAedWtG0d2RmfmeLv74Ro9StyUbJX7nNjfAsjC2SQqCBQQSKDRCIRMlA4h3/zEaFa4oTD4emiH0+ysIIAKU3sAZvSFrtvmyzDh5i+KAX81Z98nczE3qCDwvILn7p3Lgxw/j0GatsiTb6+8DXjIbDundt5fcZ4nD+kaR8SWBIS+6NSegvx/n4UGcQG175LdNQeJz1WxrWngsA4RWE1k2bApCkZtQW5M6mfxNrr6bqr+c199FrSWbLfhYD22y0xUAIEtNTslLcosilH9SPmzSFBe4pUyGVtw3g8pGmahDSErT/nnv7U78uyxDnHbDbrs4SWy+VTKX14DqEeF6JCz3SsQHXOEoTFhpaqacmyAl9HnhCtzbaiEdGys06ybFqUOCYzilFWICkIMhCkYLGoGE8EmdHkKkNnJZVt8aGlMAuW9UNqd0QIiX9dSKQ0tG2s4m1bSzkoyExBhB7e+kuwFeBJgK4hZ7fY59b4BQo9SAU3XWNtsClwJ5RH2wDTMeO9MagM50JPZXx9rsRoRUtpaH3cSGN+PCCix9TallQYzC/+3Gv8r//D/5RZ9e/xNz59wC/9/Bt9Kurl9wrBOaz3aL0uZY+JIElJnznHOmNkzT4fs7UIARFavFviQ9MfJ4XEaLNxqtDP7feVpFqBIAMbSbbRh/EK4zSFMxRWk3lNbsvYXS1l38ROvLFksWflhHWx3xPOh9/iLTqtuL4/NtjebxSxsn6gpuwMb/Pm8dc4mN8nz4dk2QjT5JycHHHjxg2Wy4yqqrZSMq+ruDvIZz6fMxgM2NnZ4dGjRzRN0zdfeZJN4DlU/BaQ5KZEILC2wfoKGyyti0ybWZaxXK5oW4vWihB8tMZlxMe9FywWNbau0SNFafZxZEgvaB0sKosDjFL41rIIDY9mJ1i3onGPaO0JgbgBdYyfWaZZLlc0TZ043kuUuph752lkE5ZRImOc73Jn8iJDPQYvsXhUT6gVC65kHRu6+MEI85734CXgNU76DVT7yUTpjHViY/q+iAVmbdv2kIwxmo/90O/wN//6LpPR+DqxwfTNQNvWsWYgsWGKEDN7rjfalIkvFN7LZL259EcRRMzSkTJu7h3B3bUH+A6TCOl3212cK4Ukb2P+vbGKwmdkLqZmaq9jS8Y+XhTn1RMzgdaB/if0hAS9su9Scs+e4/vFu4qbYadCFYJJsctJtcOyWkSK5VwmZX3Iqlr1+Pwm/fJFsvm7bpPM85ymaTg8POx79C4WC7TWPR11d/xV8twpfu8dQhiylNHjfIsNDXXb4rxECN/vtovFIgXoPFmWxfzYxKzonKcOsPIwbwNN3TAuMgbDEU0jaFMB12JZ0fpArhWTwZDjZU7T+OR5RB4cAKUEZZnjfUBKhZKx+nOzcOOtKP/e2g8SISSTbJdbkzuUZoStA61bgYK80EgJGkXeWI6/9nXkYMjwAx9EmQKcoxWiz2bqpEu9vtriB6VM36pu85a0MjGTJAAi9PxB3Tq9fh5yoLUNUhuC7Dr7Qtdi8Mq5SsdLqfE+0lI7X6dAu0x34ZEKpAzEgje+/yz9TgQQIpWy9hLjY7B21BRoL2MVLjqxaQq8WDNXdbK+/c2JeHIFffYZp4D709zX91L6KQj9vOQqY394h+PwGC1MBMe0IssKjg6PeeGFu4zHYxaLBVmWXSs54HTKZmf1n5ycMJlMqOt6i87hujrk+VL8CVowukDJWFATgsd7S20bvJeoQJ9J00XZoat0S9ZIRO8BQ20NjxeOzEvGw4w8zxgNHNWyYmdnxPFiRqGySDClBJm8RQgNjxceG9awRrye6sAQSHwlm0rvWYiQkjIfcHN8h1E2YTlf0TYOrTW2clSrmslkhDGx0EooRVZkOOsI+BToS006Tk9vd40LLx4PUkpvZOZFW1EgyLOCzGRdbgxSqj5raJNh8HKJWfxNUyOkJPQvz1W1zdujD8RxOhHH4EONDy2xcjpa+FkmkWpD0YV3dprhhZI8Qe0luc0obU7uDJnTfbyHIFJwN4BwaW9OLPtdI5CNquoO4n4imL/LGkoYv/f+afaOd4R0W6PAAoqQKEumZodsnKe2pT6x+2rqJhIvTqdT5vM5bdte2RB9U7oN0xhDURTM53OKomA6nXJ4eIjW+onO91wp/u4VLXSEeYKD1jW0wbJYrUAOQAScjTBMWQ4jsZZw9F2ZQlR7UhgmxS7DbBdCxrgckJscIaChYblcsntjFyEEhQzkKgZ/VT7B+ReYLVe0YUbsKAQdqhrH6VM20fW1yCahXEdtgCAVUwmE0CihKc2AG6N9JvkOq0WDd4HBcESe51hrWa1q7HxBszpA7kzR734RkWX42C0ARIhKP3S8mWxc92oRADqLsAnErJHUEPzGeIdX3v0yXnq8CGgtECrNB2CFQ2BiWmFwfb506AjUNkr9m7bCaoVGps0zEex13DfnKJTTVApSZARpUEIR+ZUsPVlbgqKUlBvnum7w+Lsjp/yxfn76tFMCTsRspJiamTFoc3KfIX3K8wldBv9Gt4qwhoXosf5w5qrr6RD95nLdEa83eIEKCuXNxrSeKix7hnDos5bOjIhTJNDCMMxNXLfEZJOqqhkOBiil+sbwVVVtKeqL7vG8ytwO8ul67HYMnsaYa6cYP2eKPy7hgS4QQuGDZ9XOqGlpW0cIy9jrNpGYSdX1nA2EVIKqkKBycrPLdHCXvcEtEBlKa5q6wWmJDR4vfNy1TYG1jizThEjgwMgMKU3GqvZdCC2N8K0u3LX1Kbo0QwFaZozLXUpVMtAjJsUO9arFtp69vX0mk0lcEMGzrFYsvvFV2u/cpxjk6N0dulKCiN12tLhPpvRjO8WE7GsTg+o+FrHFILFlOCoYtHf48y8/wLZQNxX3T3L+9MsHDLMVIWt51/4ed/Ym/F//04/wq5+7yy/9/Jv843/4hX4UnaXVtjVWa/70N9/Nn/3xy/z4J9/gU3/tO1gZIjHcxou0htE6OKz70RArrhVKQJM4+UWvONf02skquMZMfDdkYwPqMbhtsv+1WhUYZyjagmxlUK2J7PfCX6io1VbgtTvvqZ20+6eM0JgUInnKp/sBb8tmhWn3TEb5GCPX0Ec4N+j7zpJe4adqXAEgRO8FdV7scrkiBMfu7l7fHGk4HLJarbDW9gRu15Ge80lKBoMBs9msL+bquHyGw+G1zvWcKf7YBMXoDBEEdTun8XM8Dq0MVV3j24A2GXmmkbKNL7bXdBWYSpUIPcVk+/gwJddjrIfjZcVqOWNvkDPNBsjMUaWiitnxIWWZJ8UpUFJRZANkrXDhbOelp5F1A5nug+4/mkE+4e7OiwzNELyiqix13bC3e5PpdLq2AoRikBXYfEA9HEFeIBLrhH8Wib0psVspk6gwYs9dUr740gf+3Wv3+cqX3+DhQcXKWyZFyed+92toE7i5V7J8z5z/x+/+bf7v/88PA4IvfnUHgH/8D//txoU8TV3xx3/yY/zTf/rz1JXh1/7l+/lH/5f/lp/49DfRQq2VSD/3HRVGN9bOUxKQNv/0CyBWMEshNzbAd4rSX4sIa9ueINeOjvA4YsbOoDWUNkM0ksWiYumTBxoucIuIgcpLA49AF7yRG4ofH/0Ek2Wgrm4c0rZt7DAlC2SW0VQWyyoe07P8fP+K9566rrlx4wZKKe7fv4/3ntu3b1OWJVVVMRwOtzbD60hH51CWZc/l07GBZll2JSUzPG+KPwSEUBiZITzMqwPQFa61aJMx0JLgFciYS0/wfTBQCoVSGUXxAs7vsVopjAs0I0tV1RzMZgxygVaeQmpcpmmamvFohPU+phim3V4pw7gc82hu8ME+w/W7Rlh72gCZs1PeYGymGGdYVTXVsmFnZ29b6XeiNcWdOzRa0SSK186OflailMH7OEYvBDJ4lFfM5xWPHj3mkx9/H3/56j3uHc34a594P3/8b75JMTZ84kfez9e+/k3+q8/d3bhXwa/+xl3+8T/8tyltOiqstm35wr/5EHUVFUxdaf7kd2/xoU98iTzLKcvy1It0KiApYnPv2DbxbKObnl8/dM1hnuEEPSMRF/4rtj/MXca4KRlYQ1W1PJhXoFM/Vms3Nrsnv9oaXhLJ8Qh465DOs793A8riwjOFENBas1qtYi46aX5D1fNAdfAevDMhnuuIEIK9vT2KouDg4KBP4lgulwyHQx49eoS1lizLrmX1n56Hoihomoajo5guWlUVi8WCyWRy5bmeO8UvhUbLLEIBYUnQHltFTF/FNI0ISwSXIBiFkBnajMiym1hb0lhN8ILGNczbQ4JsmQwF0yKnkAJBi1GSqnaEEHPJm6ZJ1LwCGQSFLin1gLat8Slg+Izusuc1lyiGesBOsYtyGfWyZbGs2dm7wc7OFKW6x7t2nQVAllNrjfIBLdkKQL81idazVBnBJ4sySKAFIbFtpAJ45aWbrOoGlWe88vIebzw6QWWKOzdHfOP1gk//zLf4y2/s9eP+pZ9/I915uoZ3tG3Dxz7xGp/79Z+krjRZ3vLxn75HWZa0jaVpmt7ykTKSt21AyJCUfggghU9xnvVcxe5lqsev31Gy0QYxjtZHeCREaAevKKxh3BYMbEHmJI3zCCSyyCP46N35VdhdgLf7x7lewQbunAbhARUcbrFKfQcuFiEE4/EYY0xK6VQpRtBBS2tit1jwKL9vlb9Sivl8TlVVjEYjnHPM53OGwyHGRL1hjHni++uO77h8FosFOzs7PHz48FoFoc+X4iemCCqhWDQznGzwAlzwfdAOfGKtDMTCqoK8vElgQtuOsC66aMZ4lG44mN9HiJbd4S6FMqjEWa+VBO/6HbtuI68+RGy4MAMmgymL45Nk9b/1hRtS8LXDZrQ07A13GegBTd0yX60YTSdMp9OtwiZYY90EUF4iXCA4j0q1C+FyTuQnEIFSWXz5Q4gc7QIcEqTD4nm4OOHx8ZzZbM7hSc3RbIG1gTfuHTA7WfD3/96fsTM2/OrnXuKXfv4N/uN/8KWtOKJ1LS44fvpnX+N//5/8Dn/2+3f44Y99g0/9wiOEyrCtZ7lc9c3PB4MBSm8zIwohCYlTP4iWEOw6YE7suSA7mKd/du+kDSBi6R0jZheI1V5hrGHcFIxtgfKRLjkQFahWMQNFho7E4dxTX082piNOkSfU7aUn6LD9rtNUVPxdh7nuXjbiMRsbwPejnJyccHJy0rdV1FpT1zV1aur0+PFjyrLsPfPTnbQuku6YLg19E/Jp2/ZK5f98Kf4Qw6shOGo3B+NpGk/X9zv4GAQTeITQGDNCmxsEdrG2iIyaQlAUIMIhtbvPql4ghSc3nqkZY0KBFAGkRyuFcy4q/tUy5egDAYww7Ax3ebR4QNs3fXkL0gUXk4mlhGaUT9kd7OJrx3xZU4yHTPd2Nnq/bi+cmIIXlVsQAiR9zvZblrD+SypDVEwelfwdLwLDgWA8Kvj9P/oy37q3pFqtcL8D37p/CK2nqWr2pgXjcc4//gf/lv/4738x3biit29DwLoWS0Bow09/+nV+8q9+k/liifcDZNLvsTpy/TKdvkchJFJorAMpYiOQaN/GNaDkxnfeWck850j0MqWXZE4zbgtGbYnxOoawZMfDw9lG9M/CIEmniKmflxBcCPo0ztVqxeHhYc8306diCQhEOvFuI3g75e3eUDr90BVsdYVY8/mc/f19jDF9Hv6TjGVzg9jM8tnd3WW5XFLX9aXff64UP8QgU1UvaZmD9jTLJob1QnzZAaRUGLOLUjcITKjryJKplUCbFsmC1j6itQcI7xESjlZHlOqYm8UQldrJmcxQVxXj8YQgwHpHJpPSDdHq1/LZTbGARJEsKeSA/dFtpM9YLCpMUbB7Yy/12D1/AXXJEi0B5z1GxKBurMZ8q7IOfkqpY9DPu2hNC4UkMC4EP/zuF/nSSiBfnICwaOCDr7yA9p4sE3zoA7eZDDIIGkjplRtFWSIIrHM4KUDGfrVSgNKSpmkINuagDwZDlNoMmm0rECEUUpo+FdS7tp9jIYgwD/RBYPrfvsMk5eEbGytuS5cxbHMyrwkbKnjd6KS3pd/6tdPpz7ZAuEhZxwOcc1RVxWw2SzBO2Dqms/iv03XuWcjbqfzzPD+j1PM8763+4XDI8fExRVH0haVPEuTt4iWDwYD5fE5ZxqZAP1AWfzSKPatqgc8aGlfT2DqtQwUBtB6g9Q5a36B1I9o2Zp0Y7TGqQsgTVsv7eF/1DdVD8CyqJY/DQ4Z6xFBHKmBtDMvlAjWN5dKtsxgjYwUkEhlSz99nISltTwqBkRnTcpehmrBaWlRWcHP/1kZxVD8bZ84hQmwgErxHC0m7diKe0SDjnEklY0pnF0cJAdcKltWS/dslP/7CDVZVy+0bI7TRqBAbuWilMApE8EnfS0TPjhnvznkXLf7kXkkCWZbRtC1t26KVwVqLUmZtGfVxjM6NlgipkhUWcL6zPDfV4lpRvpNAnjgXcXVG+mRNaVOTFJ+jguwtfFijg5ASr0T0Dt5qh6tNfb+xxVxcPB22aZnLsmQ0Gp0ThA+cnvW3SzlvZtw9i+y786SrUO/OLaXEGMN8Pu9bNF7VmP0yCSGu/zzPe97+zS5d58lzpfgRguA9ra0IpWW1qrC2BVRsnmI0eb4DvEBVq0ThINDKkWeWtn1AUx8R/KqPAYQUuArBsVgdcagfku8WKFLVr1hnKTgfi6AkpPZ/AiligLCv0N14AbeGHj+NS707ttPGgpheiERIuW7uXnmkzLlx8yZ5lm+fuGMUPfVuex9YzhcYpaPVTGRm9CJcC1u8cOo3fg4IhJSRtoFUQS1qHhwu+P/969/hZLnkP/gbP8vrbx6z99MfZDwsU/8AFznjgwdREzfrDMQ2k6q1La1zWxlLSkqyPEdYT9PYuAHocep8JNZzuzlWEQu1pKRvFRlDEwHnLJBtfOPtVf1h47/bV0wb0ea6EfSpnDJIMmcoXc7A5hhnaJXHibghBiJVg9xU/M8w0SCOTaQxXXG4WFupXdBWdmmzG/fa1w5s1F58v8v25kKvpLu8/pOTE/I87zeJze9c59whhD7Q27ZtT+FwkTxXtMxKaByOdjCL1bVNC0GRYcjVmLJ8hSa8wKLJsd4gCBRmRWbuUVX/jrp5gHcVPnQvR7RgFbF5RUXF4/qAVbtEBoESnjyTLJYLimJE2zjwMubzp76juRlgRLGBMwsiH8z5jmyHwW9a7lIaBtmYqdnnZv4St8v3QG1ASPZv3qDI8/4lWb8r4YzSDyGwWM1YrU7IB1lXq4yTKcf9LVk7nQUpkSIgzQAceGEBh3WSV7/xbaSA4WSI0wWLVct8aVEh9vn1co3zRptEEDlERQrIi5jm1zZYBK3OIEZsaJuW5eqkz+aRqe9vxxkUs4tSkD95ZIHIzRRDAV3VbnzqrYu13FFRfjft/bD1ZxsEiTGOIBweRdbm7KyG7FYjBm3MKPPSE7sPd99J0Zak8HtY7xn2s13z8nfr5+pzd8q+o0/xfStIFwnihP+uzvrbL+tewwGHUoYsy2KzlmSdr+MdTyabG2lZloQQrjzXc2XxC2KgTunAqrF4K5AyI8t3EfImdVNinQQfMNqSZy3OHlJVhzjX4DuaAbFW0ZsSQmSFbGwLJh5hjGG1ijj/8bHHh9R5Sgi00OyPbxLwHC4f07glQUSed7E16o176FL1RExrU2jG2YQ7ey9gyMEpbB3TVvdu7FOkfPWt0m5SJfKpsa9WKw4eH5BlGUab1GRk/fu37uaubUmlY6peZHbUOK9ZLBp+6JX38uDRQ5SrcO0c6xwBifIBiQexzjYR6T/byg+scwgp+nRN7wN1VfUutNaGxWLZk/ANh8OYhdWfQRBJy87SCqc9M1EHdx8+MyzsStks1OuUdme7g42U2rZAtppQC4TXqBA5dzahtivH+4wg/nOdoUs0dmxU7/qfIVKpexySPHkObx2GesdJ4jnyIuBpQUBR5MxmM7z3DAYD6romy85px3qJnKZ0MMb0vP2XyXOl+GPjjwaEo208WhaY/AaWXZwtsTbi70XWItUcax/Ttic4WyHEdZgyAz54fLDxdRQx7c+Hhq4VX9u2mDwWr6igmGQ7qLFCBMHD5RvYUAMhrWt56h0R/e9CcosLNeDW8AV2s5sEHzhZLFDCsLN7g+FwtOVCQuf2nR15VVU8evQAgqfMS9Tp+9vAXrt7XY/pCUVEAjbr2uiJBIkUgryUHC6OaazltdcfMJ/PKLKs96765t/nXjIq3yCIVcFCbqXAKaWw1qYGOzFgqLXZoKsNp84mY79lAM5aR85Fb0FpyXV6BLxViY7eZildmpM+OBvtf+Uy3CLDtpGXqW5BO482Giku1bnvCOkqfYVcGyuz6pDKLtkf3kVh6NI713QRz4PEJ2Od5XD5kEyVTIo9pFR9Xv9isXjLvESd5X9VQdhzBfUEAkFC6ySICcbcIYSbNM2I2iqkDJS5RYlHOHufun6Ic3MiQdc1GCJFtL9cz90SsWUpoKmrtGs3cRx0jIiasZlyY3iToRqjgkEGlaCL9cjXf0QMDKPJ1ICdco+dch+/EswPligMO9M9JuPrN1terVY8fvwIZ1tGgwFG6378IQSCjzTU1rr1cJ5i9vvCIiFAGpxL3PsioGXgzu1bfP1b9/mdP3uV3/7DL7O7u8/OeAjCYyU4IRNPyznn7mYoBJzvSMSSZZxS5LLUhrGuK5xzFEVBURTnElcJoaLnQIBwVvF77595Z7Qnk/V6gMhiKV2BW2ZIWzId3WW6+yLZ5AYrIWkg0WO8kzHxs0ophMCyPuFoeYBjHWB/3gz+XvF7y8nygHl1DALyLOvhyaftprUpneK/iqnzubL4EZKWgrqdEqTB2ilNG/HCXAuMWiLEEVX9AOtWkPjXe//+qnkPAYfF+oYQPIHICaOUjAVc5YDVYoEPHikFnakokYzyMTdHdyibAbWt4h9X4XC9WostLiRaGIpswKTcZae4QVs7bN0ShGZ//xaDwfBCpX968dR1zcHBI5q6YjIek2U6FaOuMyzqqqZpWkIIjEYjlFbR3kyW7pNbIQKlc3yYR8heWoKE27f3eeVddzk4XPLCzQkf/9EPMCwNnWUr+8D0VY8hQlmbh3XNKJxz1HWN9+sNvGP5JGHkQgikMLQOhPB4fzrnebsl3nereGgb1Y8WryB6i8IqQpWj/YTJeJfp5CZeSsiGzKsK21Rksg/nflfGe6FcY742s60sFidsf++pNO3tHuV3VXrqOhmwosES15xSmvYUHv8s1ttVfD3PleIPCBo/ZFUHaivxPlrjua7J9BLnHrFsDgihheBYVwh2QcWzEx4SBNGlLYTgqZolNjiyxMyntMS2LXIQq4at8xgpI/NnMtqMyLg1eYE9f5N5PWPWnHBcPWZRL/DB0mUAKWUYmwk75R6jbAffwqqpyLKCW3s3ew6a7aFuwz2d1HXN8dEh1WrJaDTCZDrpvnhcVVWpkUNNax0ywSej8ehceOTyud/Q1yIGpIP1UZmnPgkEx/tevsWPffgVbu/fYGcSi+ECxJ6woWv3eM7C3xhOr8PTx5svSrcBkD7vf7eF08fq4tZLwEYj4NTFQjibEfV2SuiMD0iofhqHF9AqRF2g3ZC9nRcoyzG2bWm8J8sUWmt8tV3v8E6WzeYiMVgdeyysG0MGIoXG8wNIBLGO2ITU4L5bjqdRhmdBQ33Vd58rxe89tFbTNnlUJqpGK0ehK6r6Daw7iml7IdIZCOHTPvwkCi6wqpcx3c9kECA3hrpexGpQZWhbizF5PLrn1ZFIMjJZoIuMshxR5BkPjx6yapYYpcl1QVEM2Sn3yCio5xZnPdO9HcbTSd+jl86Z6AZ1zjNu25ajw0Nms2PG4yFlkSXHJuC9o6krHj9+zMnJnJ29G+RFbOa8qGp0nlHk2VpNXmcBCjascIHSGbZuCCmHX+A5eDjjv/pXv8V7P/hBfvSjAh9ucGOaYbSIMMUFBn+v4NP4N1tMnjuU9CJdFq+RykArUELiXHUmArA1ircQ7ri29JdMAJaXCC8JTuJWOQOxy82bd1C6oGotwUc6kiAkPinMrmr2eynXfZPW8JvY+LMBAT3bYb0DpHsz1v59vOP1JrjpoT4L2Ocyea4UP0SmRSkqhPTkeYNzRyyrI5xdxowb0WU+XFe21A5BBNqUAdQh8h2Lo/MeoWWsHQjpAXaPuEeSAkYYpJDo4iZmmjNbzSnzgkE+QAhNaCXz2YrCDLh5Z49iUCT4RVyo7TcXirWWw8NDTmbHjIYDijzvRo+zLYv5nIcPHtA2TXwBUztIKRRN2zCfxz6eRj25xRUNa4FUWSrgiktdIrh9a4+/8ulP8YWvfoN/9l/8Cu9+8QX+o//Rp7l7c0RA4STocxm+klIQ20mDZ47ayBG/fJACKTQIiVQe6+3GTvrdy+A5I+nS0kuEywitwq0E09FtdkZ3EEJQtzXOR+9TGgMh0DYNA5XSVWNWwPdo+NeAS898J8rZ6MTzY+1HWSv+WOPT9XqOv/Xen8nQeTvluVL8QoBRDWW+oPEVrplj7YzGL+igHIFiXRAUMfU4+9cP5PUZxmF9XaU1VbUiyw3zZhFTxuW6y1YAvIgsnTJIdFAoSlRhKPUIozXSKxbzFXXdMB5NmUwmDDb5ujffK3G+inLOcXh4yGw2Y1CWsU+AgBA8TV3z+NEjFvMZwnuKPNLBtk1DVsZNRStDa2uWyyXj0TAWoz3FIlRaU9sWQUdQJxiODI+PP82ff+F/wGjw23z5L/9LHh5+grv705iOuMGQ+Sufu8uv/+5tfuFn7/PvfebN9VwjYlesSzTMxdbShnoRCoJEyY4T5ntrK3dqAQ94ia1A2oxbk7uMxzdwSOq2TQrCk+kMJTTLoyNkYym0QobvryyYiPHH7DgRQsps6syytJE9J5I4ABJXkoTQwZHx/fLeb/WQiL97sjW5CaFd5TE8V4ofLMHPse4B1le4dhkLRHq8OqSA5eaLvpk9cZ50yiLhcmik2vIBAEmR5yyWS24M9zmxIT3IhOt1lpxIzcW7JhNBYIRBGU1V18wWc4RQTKY7TKZTsrzjy+8s3o1hdQ+Z7kHHfx0fHzGfHVNkmtGw7IOzJ0eHHB0dUK9qpFTkRYnWiqZpaNuaEFqEMgghUWiWqxXGGAZFQRfs3OxidVY6lsW01akC5ywChwwaJ+Bf/cYL/G//z59iVWmM/gj/0b9v2dkZ4JEI6YlplZpf+dxd/uf/6JMsK81//i9e4Z/9kz9I1MwxnVOKrhm836pX2Bre6XUfRPIYUrps0AThEbJmnT7YPe+LmoA8CeazOYAN/JYupiHTRu4IMcCB8hJsjl0qjBizs7PP3vgWCMVqscD5SFORZRnSBxaPH+FOZgyJzVO+l1ZyB5mKEGs3LlI7m/BbCOueu6IPfybY6om88u8HCbE6no1ITg81n7X4r3O+NVCUdISQSU04fHs5Sdtz5U/5YLGuoqqPaNoFLtgYYAW6jJmo9BXrW7/Y2dz6PAUdRRBoaU5x8Ai0VOBthEyU7jtQhaSwhSBVTcr1+WTMSZ/PFyyWK1CK6e4uN27eIC/yjcAknWlwZnGEELh37x5/8Ref5+RkxsnJMcYoRsMSJQNtXfH44SMeP3rIarnAmEiHq40hIJBKgXd4a/vNREkNUrJYrGjadiPIebUfH7qh6iKStG1APf/6N2+zqqKt0dqCqv3v8+L+TnwaISpDAvz6795mmY5bVppf/93baRrSuUTsdRbCWeXQU3yluVrP15r0SwqJ813LvCbRRYSNM4TTJ32mDoHos5d8nCskImh8a7ALTSFusD99if29F8iKvFeIWkkGeU5wjvnhAc3JMQWeQseCp7PtZN5u2Xg3NuIT11Eq/fOBHgrdtO+/WwRt3y0Rp36KacQBnzbBSE+9tvKfxtqPKirCnW11OmFhW54rxd8jMKHLDHhGJ01VtAKBCoKBGaFltvGQQMpYRNS2baRJbdf8MmeUUyqyquuW2XzBqqoxJuf2rdtMpxOkVNd68IeHh7z66qvcv3+fP/iD3+PevTd77g+A2cmMxw8f8ujhA2zrGA1H5HmxFTySUhGCx9s2BWElQki0ymitZbGs8D1D5XUnVKCUxrmIOQcJBMcnP/46RkdLpCxa/tZfP0bjEcFF1zfkgOAXfvY+gyKmuA0Kyy/87L21tQ6JtwierLJqHR8QQuNccodDyibZTN889Z2nk82g5canIW6CQXiccDGLyRrCqiCshhRqj1s3XmJv9yZaZRAkUmtMnpNnGtqa6tFj7NERI60YZDp2k+tiIN9rM/lMxtnpX28rtpCyenwfou4qt7/XN/JsJRLlRfNTdEypQRL8WvE/mbLvttiNvgrB4Zua0NSIHyTKhrWbH1+CZ7N0uocUuwRJAQMzilbx5qWT4q+qiqIoOT5aEgZJyaahbWJwTdOyWFWxN+7eHtOdXbQ2Wy8EXLzzW2v5/Oc/z5/8yZ/w2c9+FiEE9+/f5+V3vYRzjtVywYMHb9JUNUURm0DExiTrvb5X/kJim4as7O44Vt4qnVE3Da0tyI25JhKevAaleysmBFhWFf+9n/sG/6e//4DPf/GDfPLj3+a97/oaj09usDMdENsfRsDis595g3/2T/6gx/i3O3DFjJA4n7637jeexKUji8F4EwOkBJxvCWfiO5fBfm9dRFqfAYFwmlAbQpUxyPa4c+tFBuVw/ZxEZCwtsoxmOef43j1k3bBnDEbKSHPxRBDU2yti47+XyWZRXQdaJBCM6Flf6zTfRyLSvtyhDrHZfVdwtYnxPxFlA11eQsC2Fcv5goHJKPTFPY/heVP8wKal/2zXTmfJeKQ43yLXWlG3LePRCB8C3oPW2znh3nlWdcN8MUebnBfuvpi449WZ88HFgcr5fM4XvvAFvv71r3NwcMB0OmU+nyOk5OjwmPnRI9qmZjgcRMvxgono6A7atiF4h1CK2J0qoJWicZbWWrLMIMIGw+WF1c3dOSOUhPCIoPnm6484nq24mX+NFyb/GX/25xV/8acN/7P/8LP8zE9+mExZRLB0XD2f/cwbfPYzSeGHjrEmBclk5PcPzoG6ptW/AeVIabA+Zkl53xCCS6fYSLN4G8WL6OEIr3ArBZVhd3SbvZ1bZFk0Fnp2VcBZx+r4mKP79yi8Y5Rp8hQQXYc43gHK8sqp2z5gC0Ls89yfM33fS7qz3iPqjEB6xf9UZ+0C4s5yfPCYxcmM0Qt3r1Tsz5fiD2y5u8/IPutPHQMyRBxt4/y95awUvq7x3qfsmBadFHogYFvLfLmkrhum0x1G4+m5lAKnrf7zpOuw83M/93N85StfYblcMp1OyfOcxewErQ3ONmil0kJLxSPnVKRqrViu6shNo9Z3m+4uUhdcWx/GmYlwlcR5j5YCoQRFqXjllTtMb+8xLAqGpeb9r9xBJ87giwp3Bev5J70oitRS84kkWVQyg6CQAry3gO8D8Jux4WeeS53WpycgrMYtFMoN2N+9y2gwxQfPql6BLOJzA2xjOXz0kNXBASWBgdHolKywZvLpkHKx1gTvYDntoYkgUytIWAfWny+MP+qOTtknY5BYUyNlhrX2qbLnhAjgA/PZCQePHxKcJ3h/JeXF86X43wbpS5LSC6tljla6f7c28XKtEhWwdWRZTtPWFHlij2wb5vM5Shn29m4wnkzJsm0+jdMP/rJCDpmyO27evMmv/dqvMZ/P+fjHP85gMOREH+FxUHcNIDhz3q1/S4kQYNsGnRdrleIdrm1wNvKIiI6G4jqzlvoQeC8IKvDCzV0WdUPtWn7ih97LremE3BDJ4oIgdtzqUzzOlZAC5CKlYPaxnGtpus40iim9ApnqL3yaIxmx/jSAdabUM5JOH4dYykdjyMOYG6kSNwRBbeuYtRNAB2iqiscPH9DMZpQERlqjZVIYodulRDr3O1zbA+c/J4ERGUYUMdOp87q+5+7Ls5WuMlsAihxJRudhPk1AtwvmCgLVasHBo4dIIZCp+9ZVS/c5VPzPerGEpHE8EsEgmzA05zc5kDL2eXXOYoyhbla01rFaVTRtS5YVTCY7jMfj1D3qCUcSQrLKFePxmLt37/J7v/d7vPbaa3zsYx+jbVu++tWvcmN3l8Y7SBa37FGk8+cmENBa0TY1RXAIIXBNzWI2p25qtBKE8QjEZa3htkOisbWhigyYMrAzGuF9zf2Hc27vZxgzABw+4fTr//jzRylA+ORNKIVC0Hj/5I87QGRFlUgZ8M7HWMEGHfTmvDxLESFmhSmXYduCvckdhsMdWtvG7CkBWkiEF6yWc2aPH2PnxwykYJQZVEh54EJcwM7w/WElnzZmhvkOWhmMTI1vnj+Gth5EVMKwM7yJEvFeu6Cu9/5Kfp1NiY/fY5uGo4NH2LamLAuCF/gQaP0PUOtFIFmP4pnp/6jE4k9GZewOb1HKwRmDpLPOM6Opm4bRcIRznpPZnBACeV6yd+MGeZ5vKc7LrPrNz733LBYLlsslw+GQ4XDIRz/6UV599VU+8YlP8KlPfYovfOELWGv51Cd/Jubwy8hAqbueJufFAEPC5GXsWeuahsa22NWKplrhvKNaLgnewwVxiDMzlqxyqSTOtwgfG6ZoJbCrFV/88l9i6xcJ3jMaFuzfHMcUzaCukWZ22uJP17zOA++xpE7Jr4PDIVyejfJWpctTUUGRrQoyMWI4mFA1Dda3SAmZNmitWM1PWB48xi5mTI0m1xIZfKrJYO0Yic2f/amrvXPlNJQ5yMcM8hJJHi3+no//edoARLL2DbvDfQgGkYyODuN/IqhHCLx1HB0eMDs5piwylNIEKUEqls0PWLP1XjZeiutUwm2WQmx/ts41yFTBtNxFobYw4M3zGmOYzSvkRCGVoqlrbuzfZDKZbu3o57HNXLQBNE3Dcrng8PCQ1WqFtZbBYMDLL7/M3/t7f4+6rnn48CFvvPEGu7u7vPr1r/PRj/xITKm0VT8RMVmzgzA2uEJCzOzxrmU+O6G1LcJayiKnsS1t2+A7PP2iOdwYesxWkAihCMEiiJTLeWEojeE3f/+P+eZ33iQTGT/03rvc2H0/mY4RcJ/qFTalx93TM41YtoewtmrCOneqH8NpWXsWm/dx/qaxGZB/miY1gW6sIdkhsc+t8QZVG/LpGOcDNrQICUYrtBI0qyUnjx4h6xXjXFMKiUxB9WjsywRXhY05DxvY/rNQ+uvA4zrw8SSsnxcr7PNoz2VQ/eZ7tmXo2ZjU2yGn3+XT7+J59TPXka3vhej1qZAR+/o1QOrpkRT/pay7fQV/JItczE44Ongc105n3UlJkIJV01w6rudQ8ccOP9a76NDLJ+hcLzyxlPpUIwjhkBgm+gaZKLAyxHxc1tZ6CAHvA9YFmrZBSMHNm7fpuOLPBHAvGPuaVlektM+Go8MDjo+PyDLNYFCwWq1oGktRGPI84/XXX0cIwf7+Pj/6oz/Ka6+9BkIglcY20VtQKqZAiuDxASJ1BSBTJbGEgGUxWzIYDMiGRYSugsc1bUz3zPL+hTwTNyA2S5chWmxOgRM5wVZ4OcUjsKGhcpZVU/P48SN2JvuIxEHkUXhlEUGfmZs1Q2pACI9QBkVAuQb64qtue76o6rbrYhVH29EbBNEVqJ0NKnrfVXqf+7CuIQqBjRQfQTNsSgZtwcJrZD7Ah4AMAW1iR7Tl7IjZ/fsMQ2BkNKZrT3jOjJwVcervp5S0DwYiVIjXBBGr1lW4wuN7Aiu963Xgtnon2/Q+rTvhbTcYutqAu3R4V3zvsg3+oo3gou9skgSmMwCpzWkAKTxOgHPXt/TXJo3HVgsOHr6JFJa8GMVn1Tu0AisvP+fzpfgF+BBYVRWVXWG0Is+La2Fn0YrURAVg0yep+xKCTBfsjKZo0RUPrb0E7z3ee6q64WS+QiR64yzLthT+1Q94/fI652LXrIcPsbZhOChxzrJYrXAOlssleT6lrmv+8A//kB//8R/He8+LL75IXdfkRYF3zZZnEojKrGlbpFRkxqQrxkUT8/2zlPMvU1qmJoSGarWiHI64bpsnKSRCKoKXCB/QwQOGn/qxj/De97wfqQJCGXZHJVJJQIO/oOVej9xFxaxFhIR6RcA51banpXsBpUjpoRuf0Sn3bQhOyq769+r7PV9ikE17Tdnm5C5DOAVCoo3GJaVhlGL2+DHLw8eUUjJQEn2O9SfO/HDhB29BQvq/jMaD8BD8MwsebyrDEALz+XzbE95QpOcp+qetbAU2urFtK/KLFPdlm8BV7/V54+wg477lZOoHfVEq93nnA49rGx49fJiaqhepuU0/OkDEZkuXyPOl+AN4F4OTRVFA8NR1nZqlXDG5QRAV4AYnOLFpiRKG6WCfcTlBQSzxT0c476jqhsVigZCK6XRKWQ6eSOlv4/xR6R8fH3N0eIiUgiwzVNUK19p4TiVYLOZMpyO01mit+epXv8pqtWI0GvHhD3+Y4XCItw2rucBam9pCWuqqxoVY/p8Zk9zreGWtzVYRGaxflqqqksd/lQkc3fUI9Ui8j5Wqy6rhzYczHh2dcLJomK9OOJodc3Nnyt7P/Bg6S5QNuCv1mBCxArLLbNi08S9U/92LCAS/5ja6CpZ4WhEEYg2DIrcZ46agbHOsFQitMVmOb9rYecla6uNjxkJQaoURnTv/9sIbl40+8olEOu1YhCiufC7r717Psp5MJrFV5jmxp+hBr+MW5zGvnj7msusBl3ZUuw6x2enjY1/ms137NpscXXbObgM5r0PceSJCILiW48MDFvN5Mmo7ivntlSyv0HfPl+IHECI2LDbgnMUuV73i2z7sPPe5WxjrnGKJYpRN2R/dJhNZRIPSkU1TM18sAciLAWU5YDKZYEz21MOvViuOjo6oqlXM0Q2epmqZz2ZUqxWjyYRiOGa1ivUAeZ7zwQ9+kF/91V9ld3eX5XLJV77yFbIs472vvEyWF9TLRd9aMc8HCAWr5QIfXEy7TIHNrQYZG3Oktaapa7yzSG0ueK1FZyzGGZQKpIyFbARev3eP//o3/4w3Hh2xXLbcuDFlvjrhlZdepg2C7b63lyiOENtdCiFiwDl9GIjOwtV6UuI7/F64Lat/624EW83on1Q6H0sFxcDmDNoc7WMjbJEbTGaQUhNwLA4P0c4yynR8Ifuigu++0g+pRoVW0h5WeBkwOzlBXacS/vrjlVIynU6jMk5U3OGU4r8MZ+9+/ySFT6dbPp4+55Ocq1P6m+frz9XBZZvezTp8sSWd4XbueLcHjwiexeyYo8ODbcONJ18qz5Xi32qAjkPJOKldQBRicKwo8rOKP5VRhxD5LwQgJYyzETfHtxibKSIoPFA3LctqFcuslaIsh+zs7GBMdqWFdpEF4L1nPp9zfHxM00TrWglYLhfMZzPwgeA9dbViMBrTOs9yuaAsS97//vfzoQ99iJ2dHX77t3+br3/960ymU4yW3N7fY+HmCAl5UTIa74B0NE2N9wEt13RYpzOMup+VVLS2jTxEl5SCr88UECik1LS+xQtQRjHZGfLmwRHDQvHjH3ovq7ZmdlTFOG0iLLuYPmqNv0sp4xPaTHG5QkJSpvH5qBS9WdMdnMaSI1wn+hf46SxvSe4MhcvRIdU1CFBZhlIKpQTOCdpqRaEkWhBf8M7CXkezv4sSPQ172PDmHz9E5ZrbP7GP3pFXD6P3UK4ecBe/Wq1WacNOq+eCr3bUBqc/O+99ugym6eS8c130nQ727I7bvIdNT0Qks1uw3sREtCA2bpw+k2xzHOfqhTQhInXrqldLDh8/BO8oUie+0J/r9CZ56e0/X4ofus22s5bSS+09tm0jZiklcLYRcZzjDg4IyKAZZkNu7dxhr9hHk9G2LVVT0bQO7zxlWbKzu0uex0DoOgniyd7Uuq5ZLBbMTk5o2prMaJxtOT4+wdqW4F3ka8lLatsSnEMbxWw+Z7qzw97eHn/rb/0tvvjFL/Jrv/ZrfPzjH0cbzddefZVbN2+QFQXDwYByMCQITQgWnWUp1XNbkZ8JooVoldRNTVVV5OX5NQzJyFn/V2qk0nhvEQFevvsC/+NfusNv/vZfYJTgr33qR5lVln/5y7+Obx2QbWRWscXH/9nPfGfrWh0zangK/nmZFFPovr+ZJnnqOCnlhR7B1RIrUguXkXudvERHKwOmKBIgImJEqa4Zysi6s1ac3wuIJ4r0gcUbK+7/yQIKweSVCZOdjKs4HaMSklcqXSFE3yyoqipiItfZe95UhpvK9/S5Th/bHX+VXAW/nnft8xR0B9n0mwPbaljIDQUdQr9BdpvZzs7OmfN1saWuSNE2DYePH9JUq57iJZ7zzMivvG94DhU/IZZBI2PKk/ee8XiIMQbnIhZwUQFSx/GuhGRghtwc3WW3vIl0mqpuWNUVVVtRFANu3rxBkRfIjYBRit1c+50NwVNVNUdHRxwfH5IZTW40i9kJbdvQ1DXBOwZFgdFReTS2pWlq8mJEU9dUqxXj8QRjDN/61rf40Ic+xC/90i/x4MEDfuM3fgMfYDCakBdFzPFFgFAYk1O3i61Ml7Pj66zP6LLWdbP1+anp24B6osWMUAhXxzpZKSmVxCjNfLnkaLXi8LjmZLGI7J9Bg7AQ4Fd+4zQf/+/z2c/co59eIVBSQSpNv8pa3B5mtKZDgODtue69ECCVTEHnpxMRQDtDbjXSCYIQeAIVnp2y7CfMOweuRUnZGx9dZub3BN0PgA9UswaWGd55fJ3gmCtjkOLU3+ccsWG5e++ZTqconZSq3/7uaSV7GV5+Gnq5NHU7hEvx/vOOP93k5LS34VJs8bzvbSZXbNwdIZD00/jcAHb/PWeZnxwxOz5iUBRI1WWoPf0Kea4Uf5de2bQtUgicbRECdnZ2sNZS1TFv9qJvJ8Z+CjXg5vgOu8U+oTXMFxWrRUVWFty+c5cyj2yXbyXwFrN2ljx8+JCmaSjLgnq1ZDmvcE1DVa3IM0NWFCilIw6PR0lo6ppyMAYEi8WC0WiM9zGQ/fLLLzMajfj2t79NXdcU5RDnHB5QQqblItE6owoLvHdnAt/rhedjnMQ6rLWxx8ClsMdmMqqMXlD3QgqBDIJykPOHn/8iNZ579x7hhEebDWyU8/j47/DZn7+3xoBFrN59kmCc6BSqiE85WvyOENapg5sipUjewdPCPJB5TWa7ZxeVqhWSrGuFGaCuKyRRp3a89GJzMr4HIoRETxXsWkwJZni1Fd/5uU8y6hACWmsi0W0AVD9Xm8dcZm2fPt/bKeelll73O2tZvw/ew+zk5ByYcWMTwLOYzzl4eJ88M+jMQFq/byUE9FwpfoiL1lpL09RoJRmNRpRlSV3XNG2L92cfhhCdHQi5GbA7vMWk2MUuLMtqRZYX3Lxzk6wcUBRl5Jd5C9K2LcfHxxwfxawdrRTLxRzXNizmM7QQlEWOMXqjzWAsBJJSYluL99G9nM8X7O42KBUzih48eMC9e/f4gz/4A6SU3Lixz2w2Y7lcIpVOFmVAmxwhZFTMp9zodeDMUVUrQggMx2OkipXAxlxC+ZrefqkUQkqcC3gZNy0ZPB945SavvX6LV//ymwwGA/7aX/kpBqVA4Agi8Kufe5HXXh+SGUfTqsjH/6n7mw9rnQIXH+Y5ee6XDE901NTp5d2w5LaVW+cZPr0y0U6hEvmYDNGhEXmeakviFlytKpQQp4zpsBEJ/G7b/gInA6OXB7znZ26ick+xn8U18jZcLYRAay3OWYp8kDbm9e82sfWriqiumx1zVXHWs5LTm1aEbjzW2kjPYfSF1+7GuFouefTwAZJAnpT+sxjvc6f4pYIi18jgyZVhMhiQa4lAsaoEzruo8JJ1hYgt0WSQDOSEm4MXKBiyPLJobZjs7DAcjhiU5YUpUmdcswusgRACVbXi8eNHNG2NEAHXtnhnWc1OCM6Sa5XSKk8tihS20ErTtg3O1mhTsqwqVqsVk8mE973vffzxH/8xX/jCFzDG8Df/5t9ktVrRtm3M9fUhshWECGUorXGuQatNTgcP3tM0FXXrUCajLAfkxQDnPa1zMUf4VCxABHqmjJj6p3HC4HwDwhJ8hkit9t7/vpf4wMsvUI5HvP/dd1FKIH3glz/3Iv+Lf/QzLCtNljn++l99g7/3P/k6n/35DuNPg08bi2wrnIhWESE+00ucERAegQKpY3GfCDTBcla5iz6wtj5h2P795r9CqjgOAhkcQQi0zxjYHJU6fXkRWIWAyouYrZXOaeuKLKTNl+2NZ33U9eTiPiydD7E+o0++2bkVzlJQTDT6YyVCgipTrONtUZCex8t7NK7ipex9KKHWN3xFvOztKuS6TE7DSVfBS+taEyDEft0Plq8TROD24N2czv7pYUsE3q44fnQPW68oByVInebDJ1ha0Js9PkPICi8EToAXP0iNWAAhNINyxDiX5EaSZzryoBhDnhe0tgZiVW8XfhdoynzEWOwirEHpnKLMGYwGjMbjpBi78z/dovHec3JyzMnJMXVd4YNDIVgtF9TVCknMsMnzHCFVv6jWUfsoUioEAW9bdD5AKcXJyQmTyYR3vetd/MRP/ARf/epX+cAHPkCe5/zyL/8yH//4x9nf349WxzrdgCzPqeZVOnOcD+8CVVXhvCPLC8rhmLwYEhDYpkqZhmuX9Owml4ghUvZM8B4Z4qdBCO49OGBVtfyVH/8IMtNoH60gHwKf+90XeoinaRTveWnRc/LDWqkFERu9yKbp8fBriQAhYmW2FF0t2kYge+MeQvAEH2LBFx3D6UW46hri6pSVdhrjNF3DxwBU3lKUZewZjMA7h2/baO2LzdaDa+jrSe39C0yOdI/047n4+2lDkAIz0el714c2nkQ6Jbdq51R2uTG9b83TejvlTFHdNQPEa88SFs1x3KUH529sAvDBc3x4wHIxi5X/Sq/XGKfXRADZpM9lJAP0l6eUP1eKXwiBVpLxsEQWAqUFqu92I8lNRqM8Smu0is2uXSMQvqRkwqjYQ5MxGk5S0En1LuZbWfg2Zeh0qZpKKbyD+ewIvCN4h8mzFDe42LDqlG0sxmrIEkYaKRwayrLkF3/xF/nZn/1ZvvKVr/Bbv/VbLBYLhsMhWZZRVdUazw9gsoy5c/jggNgvoG0doMmLQYR3TEYIMlE3y9RO8SIrp3thU+9VKQleQJAIERtwS53xzW9/k9u7UwajAt9abt+cMiqH/MJfeZP/9794D8tKp5aLGxDPehYAETfjUHMxRcN5X01qVHTNqVOg7oK5jllDp+/vPElNUAgxXdNLMqdSP7H4LRfiSI0xNK2NzKBti2vb/rjzz3x96TaY01+SHYlpemwidIWK51zvlCf3pIVNTyO9OvtuIlrfE4nvx2XT2WXxrObHHB08ThX2GV3Q/9SpeoNB0CKCQeKRQaLOp2/t5TlT/KA1lKUhaLtODgweSaAwCjkq0KqgyAp8A5XzGD3EqAHTwQ12pjsYbRJeeDl0c5W0bUNVVdR1zcHBIQBGG5qmQQhwbY2WkuFgsBVgDUmJXCRaa9omdo5SUmFDLH3P8xzvPa+++iq//uu/Ttu2/O2//bfZ3d2lruutjAREgkuUpmljELxpPQjNZLJDlpexkKDHFGNzlaZu8IMiWq3nBHpF6DJvIiy1htEjVLC3t8cbbzzgVw9n7O0OyaTg5z/5UYblkH//57/NP/sn8Ou/eyelcb5x9ubTNaRUeOciNxBPwObYeSLJir8oJNml05FgrMuSKDpLrGu0Ib2icCZVIscveUJkNxWS5WqF0hphHTiLkpGueRtVuhhaOn317hhx+qPTXxcbR19QI3BRoPHtVv4RwutiG8/xDnDBfG6+R661HD16QHCWYjC8AG4kvWwBfIOrT1CqgLyMm4T8AYJ6YvmzQkmND54gQmpwbJBIMpMx0BIVBkgyGhtd253RLnu7N8izHKU7YqzL8UW4+GWw1tK2LbPZCUdHhzRNS1kOaOsGpKTIiz5AmRuNlutrdsv+IhdSCBFbPDYN3lm00SilUnbPiC996Uv883/+z5lOp/zdv/t3efHFF/n93/996rrmfe9738aLDUJKTF6wnJ8AMBiOGY4nSJURUy1CPy7SeNumih1+tN7eSDbmrAMTpFK44PrAFgGaaklTr7h/MGMxK3n5pbtImRPQiGBTy8U3T9/1eiyd1SokwW8s7i2Y4CJJKbtBImQs0NtUM5tKTyYPpwseXy9nJR6rnSKzGpmUa0BgfUCmTDBrLQgFbY1wjiAVbrNr0ga2HeTV14330DXmODsHof/tFnx+7lxtByPfHojnrJw2sN6ZMM9bl7SSxKbTnN6VjX67bdtQLebkRRaLCNOOvcUc3O/ZAT97k8WDL5CVt8he+DGcdPjwg8TVQ1I8QSCTAy1RKHIyNUCLAd4KqmXLqvZMxru8sLdLURRovW5RmP6/9SJe5wXwPkbsj4+POTo6AjxZlvWEa3mWoaRKpEoBo/QWbLK+iYuVfgdNCBHTOpXJUUpR1zVvvvkmv/Irv8KLL77I3/gbf4P3vOc9KKWYTCb8+Z//Oe9973txzkV+mBDx7jwvaJuG4WhEnpcIrQHZW68RIth8ITuK4MuRYgAlDW2IzVYSGQF3bu3yP/27/0NmsyWjUpEPSnYnJUE4YgmvvFR3d89IKxM56oMHdN/h6GpJXswGJHXePKsnzOHvaOKklzGN0+sU24gzZkNAZXkiiQMhBW3TIpxl5W269/X5ZAr2pkLyK29NqUhcJ89x8YMQtD5twBsh3qvk6SuWn0y+exvM91LOg7PWG97mRquUJsuyVGOybvO6EUmiLwbzgcWDf8fsa/8taniHGzuvEOlPLp/P50rxd5aylgYpTFT2skB4Q3CGamFpas+gnLJ3c8BgUMSc6q6zFBB6zPj8IM5FlXvee2azGYeHh6kDl8J7QVXVSKnQWqG07qtOBZDlOXW1xHTXu+47JiJfTVNXlMNxv5EopfjUpz7FnTt3ePnll3sOkHe961381m/9Vt+nd5MbxBQFY6nIshwh5ZqrZcP/WG84XUra1QohEKLnsAHBCKDMDVoF/vLLX+aHP/AKzjse2ZYXyyFXVwitd2KlEpPq6eexbdKeM3Xds/VbrxScxrdPb0AXv0i91xBEbLTidEzjDCIC7EHggkCYrM/hJoCtK0Lb8qhaxKyg7YHS9dD13l2KC3djj2nJ50vrHO4Kqt7T53tqeQod/hyDOxfI+XpECIE2htF0h8ODR4kWZtuf25ytEDzt/B5i9hDnLcLOUSGgaC+9+nOl+KVQ5IwwOvZ8NWJAcIr5fEFTNxiTM50MGI8mDAYZyBjUjOGRaFaJDRx0O5f6fOk6Yx0fH0daCDxGR9fdWY8UsUmC0qnpeo9VgMlzFvMZPu8e63Ww3DgaLRVV20TYRUWGP+ccP/zDP8yXv/xlXnzxRfb29gAYj8csl0ustRRFEReTTLS7SpMXJmaZEDa0WLrS5r9F6qW7oYW2N4EObweCQPQYf7J7g6C2LX/0J3/OF199nWww4dbNCfeqx9x98c413v7Q/6W1QRKu36VPbP8jiEDgbPXm5gYfs3o2rnv+yZJHGJ+f9orcx56+nbXWrTCdGZyP/ECSSNUggcY7RF6c8vTSxAdP8Ffb6d32dd5REnA+Upavz/3fyfdMAudu5Jv8PcPJLkfHRzRtQ6HK01/vwzNCgC4mLEyJyadImSO9hB8kqEeg0GGI0lmEdFYNdb0kBEFRlEynU4bD0UYpvuq/CWvHfx34ujjQFIJnuVwym81icVjTkGUZWmratsU2LUIkzvtkkcO2VSmlBqlw1qGN3hjJ5eKcT81eNB0xndaapmkwxvD5z3+eV155pVf8s9mMxWJBlsXMoV7xd/d9Oh95Mwq48SmdMuv070X1CulwqQwEEUvxRSAIwfFixf3Hc+7cvYMNDpNJ3njjMSFYggxc0Ez21FAiEV/wHcnahtXO5WrNhxB79wZ/4ZEdgVjTKMqi6wPb3dl541sbCNorTMrd76bRpziBNAaXegyHEPDWkUmBzDL0oLxw44/HXx3CuMwnaasVTVXHeKBkI5vpB8/W/p7LVYtUCEwxYLKzy/HjB3iXIZQiiHWkqXtqUgjK2x+hXpxQTG5DOSUEgxWXQ5XPleIHwAfqZUNTO6yzCCmYTnYYTyYopVPucGfhb1q0of93b12F/j+9RM6amuVizmIxp6oqsjxjNBpEWojVEus8WZajZDe9pyv4oqKVSmGMidWwmU4wAGzSJG84dbGJcmuxtsUHKMsyBjlPpVdmWcbXv/513v3ud9O2LX/0R3+EUord3d1U7TvfuKNkTSZoIZ5r04LnzL/P5yvpagQSGhmi4g/Ivh4hAHVjGQzG3L65T1PPqZc1Qhq8MDgR6yuuVkWps5pz/RwFEatjwwUvVSDgnKeyFdJUiSbAp7FusywCsXdB01Lkm9QcF4wsCLqkOhUUMig2uVR8CASpUNpgbeTl8c4ive+/Hqsfupc1Yrk95NZlGG08hc1bPK0MTo/S4+G0IngH6PvOE+yg1TXEKPoY0/MjYeuv81zVLUNKSqY7uyyOj7DW9unn68jw2ljNpq9w4wNDVJ7j8zIacuoHCOoJAaxvmS0aQgjs7OwwmUwiH8gWe94GlnwqDXDbiO0mN/7Uti1VtWI+O2F+MiPLDLvTCS5EiuST42OKrCAvhwih4z7S5a9vBmVIVrU0mDyjWpwQQmxI3gVw1ovAJ5zX01hL3TqkNgynE7I8NlTvziulpK5r3vve9/Knf/qnjEYjFosFv/3bv81HP/pR9vf3qZYrZiezbYgmbIyrS785hW93621zL9xaqCIgvEp7Z2zTJ4SkxSdIJaZFjsqCEBq+/cabLFcVDx7P+eB7X0jfc1xOy5z+Fj6yf1qbHlhSs17hVbMx22vx3tGsWjwrhD1ikOeI7PwgWLTSwfoQucmuMrU38NfSGpTT0XshIAM4BF6bGDfAoWRBs5hRCnCbCmADYgtnPzznaud89Rzp0kq7fVle+Y2nE9Hl/F956vUdCCJE2zfNDBC5aOxz5ZF0yQfCy7jRh229AxtoQHoFtSkZT29w8PgB2kQKFPqqjw7rSWSI47sgBTKRHUr/A2Txdy0QJ5MJ4/F4q8nB5cGqzho/+5sucNs0DcfHR5ycHGO0Zro7RUpBcI7jgwPm8xnLxRw53aMYjrbOfVmtpFYG72PFbMwkiQtiXbkbO3KtqhrrPMPRmMFojNJZzEfsxx56nP9HfuRH+Iu/+Av+6T/9p3jv+Zmf+Rk+85nPkGcZUsSqzK6583VkizOFzQDoxbBHECRa5oSVJyBjOCjZ253yy//qNzk5bvjxj3yQz/7CJxiEBmkVdn1Ll4wnZrGEEBJdVQeDbENFm+N0NpJjjUYjalfQ1CuarO5ZGk/zvARObWyXjyieI4i+GUxvkwmw3qMLEy1/H5Aa2rpioCSu5ew++30rT3cXIf3Pb/RHkEFcC/X7/pK1byYQqbr9bEZTLC6MPw9HI46PDrDWkWVn07u6Riz9+r3mkn2uFL8QEcsfDkdnuG4uzkRZW/WnZy2mZ7YcHR1ycnKCSsVWWZahlGC1WjE7PmJxcoKzLYOswNsW7x1CyTU9wjkvRHz8Em0KpDR4H1ByPZoIp0QvY1XVaJMxnY7JswJlYjA2bBT9dBa/c47xeMzf+Tt/hx/7sR8jyzI++MEPcufOHYSUaGPIsoymafqisSfK4BDrFnZXZfcolUWMf8Ol10rwsR/9CHmeY63jfe95gdu3dhK/yFXgZ3evoJVCBPjD33o3f/bn7+VjP/MGn/qrp/P/1+J8TJMzWYZrMparQ05mx6yqOcZoBoOzfQa6Z3BhKfXGnIQAKsjeuhYpC8ojaEMgG5RxXaSX2jUNUrAuFLs4nPT9IWG9Zq9xMNswYmdUhM6hS3j28wP3iJDgK+GRCPwWzLwtm/w+psgZjsfMjw8TctG9c52Hvv2d666h50rxKxUJzi5lj7xUOnw6pHz8IxbzSJuaZzG3NssygvfMZifMZycsZjMUMChKlBRUjcW1baxaTSbfRTHiQCxyUkon2oR1xozznqpqcAGKwYiiHJAVAzp+ky4PqC+OYq3Am6bhAx/4AC+99BJa69h/eENGoxEPHz7c+s71Z0hc3KJObP4QUKrboNYtEgmBb379Vdqm4iMf/gAvvbCHSYErj0IGe+na7e5XSMkfff4n+L/9Z79IXRt+7V++n//Df/I7/NSnv3nud6QQseWiF1jbpl7GGh/yVCRz9jbOc8cvGBUgUL5T/MmmC5HCwQLjQUlLZGLFe4Szqfq5u+jzouSe/D4UBi2KuCk+f2Z+LyEFoARyIw50vnQEbEjFeDplfnyMbSwmN1sewdOumudK8V+HMOkq9905x2w2Y56aoUCgLAvK1K6xaVpmJyfMjg+pqwotZdwQjI5ZJsHT1hU6pedtRwk2B7T+PCty6uU8Bp1DoG4bmsYilGEwGFAORyidlGh/P/H728HYuPlVVYVzjtFo1Adiu3uvqgprbeQL8r6HTK7My9+Yt07xb3lUbCLTKUNeJe7wsNETl0Dwjle/eZ9vvX7AB979Ah//kfdz984eAn+lxSI2Npe/+NJHqeu4ydeV5s/+4A4/9elvnZ1rQCmJbVoWixWVXTDIc/Jcg8wvfHv6LJsu9/7i2Ynem480zJtPxCMISqOzLFp6TmLrCk3qyCfSvHy/W/xPLYJxMaUwOUqY+ChEhH42A0rXKfI6j7b59Ht/0Xne7iKyzdpvhTkvb6QfRxe36rDCvBgwmkw5OTyIWL+S63s7fY4fRKink6cpPon5+HOWyyV1VdG2sTnKoCyiRRgC1WrFfD7j+OgY10Senbwo+jZoSInWirZtKRLcc7GslaQ2GQvvaG0bm544j9SG0XhKXkQ61nDBfW01bdgI8NZ1Hb2TEHj06BHf/OY3efPNN3n8+DHT6ZQf/dEfxbnYhOWq+Tr9Upz/gvR2cq/EYlbPphsaM1c++pEPY0PGF770l/zuH/0blsuKv/VLP0euLX221SXz1b1GP/nRL/Hf/O7PU9eGvLB8/JNv0KeinjqFVJI8zwlBAxZrJXVTb9VtnMemeB3pspmMX/Pvdy9u6z0qi53aorWvOZnP0d6vy/Ghp7T+vpWnfueWKGNQQtOsWhrRxiJH4eNT3shG6ovUxLqoMNK0XNK39tyhbrPLbic2bMt5x533+yslACJm5ozLHVywiMSDdYYI71TmjpAqZvjMTmitJVNnefw7uPC6ddnPpeJ/EvHeU1dVzNaZn7BaVQwHJaOdKUrJ2MnLxYYkJ0dHzOczrG3JlKLIC0RSnFHBxeYKq6ohOIfoee4vWhgJIkjW/KqOGSlZMWA8nqC0AameRAf1C2K5XDIajWjbli9/+cv83u/9Hq+//jqvvvoqP/VTP8XHPvYxmqa5IlB73gWuesHWjVFiHn/M8kGInkhzb3eHn/74h8jLIf/qv/kt3jx4QOvt/5+9Pwu2LTnvO7Hfl5lrrb3PPufcsapQVawJYAEEOAAEAVIEQYqULClCFsVQq+WQQ1IowhHuJ3UoHA6H22H3q9/8ID85FLblBzn6oSU3JWpqsilKlBpsAQQnAMLIASiggBrudIa99xoyPz9k5lprj+ece28VoIv+Km6dc/ZeK1dmrswvv+//TUS/pkuPlJ/92Of43/+f/jt+/4s/xkf/1Lf5yZ9/DXSVUYzxUmMNZTGjVkfb1MCcyWTHQZPhMy4u3A2R+btgo1Ey3R6AxgdcWUUGJQaM0rUtVmNw38g0/X1Ag+aZ3Y6XyyW2yx4rUcPOQXO5XkC+Pv+DVeadtdaVJ625OI9p3Ma64LTt5/jaIQZns1j7+nNXvs++fWK5NruJSkDawdNwo4jMyIVYgWIy5fDaNU7u36Uotb/konxiu+j7ivGvS63ZPfPB/XssFnNm0ym3blzHOdvjvl3bcXZ+xv3792jrJV3TMJ1UlGVJdKUag22SjLqxOHJVVOyy4AzmLEGMo5xMqRcLjo9vUEymyfAaxdGrajDOOc7Pz3svp+VyyTPPPMOrr77KbDbjp37qp7h27Rp37twB1RWpahcNaRt2R5GujlQRsQRSbntVVGKt0MViyde+/i0+/Znf43BS8nOf+CgTF5OnjSbnoh5hjeHjP/VlfvovLzBYgsA2R34RofOBdlHTNgs0TJjNDpnPPV23yjzGPvvWXq7aUdZBjMZ/sR9xlroQmCTGL0DnPb5rqSTaAL6/SHovOWstt2/fpm1bQvL6yjWyh59REs7OBPmzDDV67zc+W9/juxh7/n2cFTdrzONrM607QmT38PXDY8/IUQKGgDcxTblv2uTxNlCvYUDKdJv+NpbD42ucPrhH13WUZRIqdzz6Iu3niWT8K77Ea4wzL6Smabh79w7n52dMqorr165RFjZCHwhBA23bcv/BCfOzcxaLOaLKwcGUwtm+cLnoOHtj5DvOOerFkvJgFv3s974DQbAcHl3j4GBG4SawLsFslcpHA4QVqchaS9M0sebuZMLHP/5xXn31VX7zN3+TZ599lh/+4R/uIR7vA86NIIeLVFcZ+tM/XsZ/9BchxqJBY1qJhKmoKl/+ylf5//2rT/GD73uBT378k7z07C2cDNGulyERsMaiwY+euHl7HkvXeXzoODo6xPojiqKhvd/StnETzWazjXE765CR4XecJGuDVDBhqESmogQVMEJRFv19XdfR1g2FyZ7r7z5998wJw7oxxsTEcr2kK4CPnmoJ4s4Rxtuw+r7FPQxu/X2OD4nc7vjf+ve7Dp/1w2Zc6H39Z+5HrLpW4AS8WKDDBMFV+4s8Sc7QJ0I1mXJ0dMSDBw9wzmDE9hr4+p3fd4x/4EHD8s6TEAuSL7l3L0r41gpHh1OqMnoCmeQV7kNgvlxwcnJCPT9jeX6OKwqqshziAnLz2YCbJ18N1gl1s0R9hyR1ftdGyy5s1pbR/RH6w+oy/vL76Pz8nIODA65fv86Xv/xlvvKVr/DhD3+Yz33uc4QQeP/734/Y7FlyMVaZmbdnzd6ZxZMIqEQ9RoVgQLAEPBIgYKNbZeH4mY99kA+89xWefuY6KjGJmXcdRVgvQbhl5Em7ss7F9AsS6LDYYPAmJCPy6mFvjSEYx6LuaMI5pe2whaEsozdWvq6fAwEx4xD5yI3i72sMRZRpsJShIojBaSAIeFVCUWHLsm/Fdw3SLJCiSBK/jsCxd45UWXEOePzMP3Hr/vf95L3n7t27zOfz1BGTtpP02vbY/pR/Hws39NebFawfWPlsHU4ZM/u+92uHwPizdRx+H5PfOjOqvQaohFgqOsTke1VV9o4WK+0JZHEmszIxjoNrN7l/ekbXdlSFELLAlIrriCpehK5t9vbpiWP8uvGXJFin4f79+8znczR4ysIxqUqqqsRI3HpBIfhY1X6+mHN2ekpoasqySL77EX7ZyiBHTDAuNqVtayq3C7mW1fu2wUFXgHi24ZHz+byXVH7/93+fL3zhC8xms2jATvn5RYRYK+pyXg27GMaKLpITwgiItfgQk+G1XcedO2/ju0DtLb/7hT/k3v90xlPXJ/zZT3yE6zeOd7S+/oTYC5cZf75iT/etNZhJSVEeUJ+nIufGMJlUqy1nzSmPY0cP1vtmVTCaw8li/0JQpIwePfnTruuQ3h323ZG7B2hu0OweN20CbPsphJjryhiTcmf1CYejOShJ1jBo6etS9D6Da/4uZ67dR/ma8cEyPjTWIZ3xIZOvWb92417oGb+mpLJBo3NF13Z9v/PY+kll/MaEyXTG7OiI5cl9SutABqEhJAFCvcfucrlO9MQx/oHiVDdNw9nZKYvFnLqO9WUPp9O04bPBJhof265jfn7O+ekZ8/Mz1HcUzjKZTLZgeds3kIhAKuLR1DXV9JAr8O/HRtm7p2kaqqri5Zdf5ud+7ueYTqd84xvf4OWXX+b69eucn59f6NlwZer3WUyfnA+ftqn51rde57yBb73xFu1ySdPC0dRhAOct3lzs0pn7aa0jdC221752Xx+hhYrpwTGtV6y2qFSr3e4ZhI7e9x54Z+gNNpi+2HlUoGK2UzFD9DiqNIsldjc0+87Su2FSSNrYdlrdQ9baFGFvVq5RJUZ868D4x9BLpvHBMI4tGUvOXddtle77p11g3F3fD9mTaN+140Nko53x/BiYVBVVtboOd5FC7+GzOHlA2/noKZaaVIHQdRACh8X+Np9Yxu+9Z34eJff5+RkheA5nM6qqwvYW+qhyqULd1pwv5pzcf0DX1PiuZZIkfUYW/csyRmNNNFx5HyWad5H7C7Em7aJdsFwumUwm/PzP/zw/9VM/xac+9Slef/11/sJf+As89dRThBBYLBaUZfl4mP5aT4wrCMEnIzJMpgdMjg/4EWs4Lh3T6UFMWV1O6KzSuy/voPGmtcYSfK7ClRD4LdLdIEFFe0rhHLPqGFlMCFpvMALnHJPKUbqsRmt///ZOCS6Y3hE1CEiATsGlQjwhMb16MefA2l6Tz/UB3kncvT+4BHI2qHfiKZsg2I4r1+bRpFKYfelKMakg/eVtILu0gYvckNf39fohMz5EsgAzvm58bW5r3YYADG7NyhDFC1RVye3bt7ceHJt9jUvxYBr9+s9PTnBlEZk+ivcdXV3jgFn5fcj4Y9nDU+7de5vgOw4PD5lUFdYMqp8mg4kGZVnXPDg5YTE/o2kaQtdxMKkoXM7mGekixjjGyp11NG2DbxtMcuu8suvkFWh9UecnzOdzjo+PKcuS119/nc985jO8+uqriAh//Md/zOHh4YZHxMP3b6SbZl5pC7xfAspkOuHFl1/hO2+f8PTNm/zAM8ecnC74yh++xuHRAYezCnPJSCaRmNxLtB49UlfGPqY+P2gqaZXV76G94f2UZcnh4ZTCRkYp5EIY20VmUYP1spKiQ4mMv5pMWNaxxnLlSkJdU5qLCs48Zuq1ofH8jOGfVdrnCrmV9PLKxHiNjZkifZo27Q/aHKG6i2E/yt+7+jUuarT+3UX3bvu8Z+YMTD8HqHmvzOfnG/ft6mv/9sRydHy9TxVjSgch0C2XFCoUttiIRl+nJ47xR6PRHe7fv8/BtGJ6fEThLDYz/BVV0bNY1Nx/cD/CIvMFxgizg2mvQvXK/6Wl/cggjInsom1qymoaA3Tkcjj6o1D/DBFKVzA/n/f46J/8yZ9wcHBAVVX8w3/4D3HO8Uu/9Es89dRTvQr76P3TlR/GlgQ/R4nmuwcnZ/zqr/4PnM09f/oXfpI/+ZM3+da3vsUPf/AVXDKA7eP7g1QUyy+q7waWvBdCGVJDx4sCmdGsq+1ZsusZZB9dtb11q4YCNzLzKIqhVTgoCpq2jUKHBwkeY+3IzPoukQ68f9Ud92KmeiHJGsa/Z2jb7WP5ZFq347Dy2cMIJI9yzz4IdJeQtPPz/H+FQIuIwcn2qPm9vEYAFarplOnhIYvTEybO4BuPaTpuX7sZBYsLhn21wqLrfRD5ayLyBREJIvKxPdddF5F/JCJfEpEvishPp88/LCK/JSKfE5FfEZHj9HkpIv8gff77IvLzl+3Tcrnk7OyU46MZh7MDqsKlnCiDuh6Injunp6c8eHCPermgnp9TWst0UuFSJK6K9DDPZRbQ+tItnGO5WJD92NPYLjuUK1Hu49g4aa2l8x1N02CM4QMf+AAf+tCH+J3f+R3e//7386M/+qN87nOfA1V8569wuF26V4h1+BCSZ4Ly1T/8I84XS2aHR/yTX/m3fO0rf8zP/NSPc/P4GLmCd2PG+PHN6lnTc/ft5ENI2t72QiwRF25pmyaP4MJN5MKQnA2NEaceRZ3FWEvQWDpxuVzEwK2N576zh0AUeFLtgUs860qHv679IfvWuG5tu9OWVpveZypupAHzu+z+exTa9ox9dq9dfdrbVwUfWs7bc+qw4Eqq0spDoiZ9fO06ILR1jV8suT454LiaRkjogvl6JMYPfB74z4DfvOC6vwf8K1X9IeDDwBfT5/9P4L9S1R8F/jvg/5A+/98CpM//HPB/k0tEGUXJ1jM7mDKdTmIGx/WXp0rbtNy/dy9675yd0dVLqqKgqspe0heRC5nIOsXLB3XfOYvvWnzXveMLd5cbmjGG+XyOiPD000/TNA3PP/88f+7P/Tl+6qd+irOzM9q2izg8V9z0O/tCj19bV/aVsoIPnJye89JLr/ATH3k/Jigf/ZFX+PD7n6MsSkKKWbvsOJ11sOLHv5tJx0gLk4KFNOHHm2i3SIxtaNsORfoaxLpnOViNbSeuh2iscStFEZ+iARVo6iUuXUlq751dFQP1a4IsyJD+ydZ/l2t09HMElax7Qw20vd15c8rJ4i5Bu+TDL1fdet/zlOe9CTX3Tt/mbHnKVUeYz0OSkDE5mHFwMKM5m3NUllybzWLtCL34eH8kxq+qX1TVL+/trMg14OeA/1e6p1HV++nr9zMcGr8G/NX0+4eAf52ufxO4D+zUKDKFEHDWMp1MUvGMsR8uaID5+YLTByecn51zdnIKwVNYEyst2UEWE0351S85F9vHHt0Il/XiXYF4tm1YZ20fxWut5fT0lB/6oR/ihRde4OjoKFYQK1Nqhcck8Y9bsK7Ed0mU1wj43L51ixeff4rnX3yWF977Yiww08SSLVeZpSGAK2tz7HHpFERSDeAeR17X0QbKEZXxsgukpwDjrJICtD7gUn1jFIwRfNsRY+WGDKsD83932JwypE/OmsBD/2PQIqK2FQP15AJ8OQskEPtwtrzPg/O38CH7nu9+L//JUnq9XjvOmzPqbknQqAk/1J4Tg7GWyWTKYVFxc3ZEVbi+2M5FyV7fDYz/FeAt4B+IyIeBzwJ/V1XPgS8AvwT8MvDXgBfSPb8P/GUR+W/SZz+Rfn56/6Mitp6TquUNq6Q0x4sFZ2fRVdN30dOkLAsKFzGxlEpmrUVW9qQkY1PSI4avRqppxlNFDNaamBdGA4gdScO7jWv7xqcJLY/3hRFoHU+2ehkX1HRygJhYBatrW5qmZjKZcv36dR48eMC3v/1tfvd3fzcVrrnGgwf3o2Se8NbsdTDOlbL78Bp/PmJmEusKNz6q8SpC13X8zh98gde//W2+8LU/4cGi5vmbMz75pz7Me1+4feFsjDeJMQb1Pkk4KYp6TwNGLNqL7r7v+bZbhvc62Eyyap4dPJOdDpfy8GsavSq0wKSaxHTbknLOdG3/5nSUWuIys5rXlCbDoKghhwkPnweEHQFwqnRtQ31+1qfO2P3k7IfOyuxsm1uT1p+iqO9wPhAuOMTGmgZAG2rq7jytr/0H8uMgXfst19iOP+K8xvQKDlUPooPhXtZX+xX6qSAYVDyoT1ttz1yNvuoreDGEEoa2xXrPU8fXmBQFkmZe9eLZu5Dxi8j/ALxny1f/Z1X9Jxfdn57xUeC/VNX/ICJ/D/ivgP8a+N8A/3cR+a+Bf0rM0gTw/wY+CPw28HXgU8SA0W39+y+A/wLg1q2b6dM4YyFx7a5tmZ8vePDgASG0+Ca68E2no8yaZGY9mjLJksyIp2sqsBGS2mzsWOYZJjwZBK2zNG1L6BpsOYEcgv3QlCXRGAbeu5D5lmYxZ35+goZAWRY4azHG0nUt8/mcajLlve99L//6X/9rfv3Xf52vfe1r/OiP/iiuiAVK2rrB7jAMbTD9fACuzFfuXmIECMZWSGgRAmItx7NDvv6t3+Wb33mb85M5f1J/k/r0kI9++P2xotglcX4FxNgYJxwUtcQYYYneNZtDUMQIPqSDTWsG8OZy9pv83Py3Bwo1lKGgCAPjB8FbhysKOvVxXJ0iTY0zkUnLvhNqPEgGhpsZVI6SVkJkHsGC+Jj4S7cr8WKEQhXXtQQVvIQdmkaErca+6mvdWb161MfgfQyqW084ttb+ylpKpUljxLWJBVhyQfp3UupXic+WfHiBR7m7hO+ctnTqeWpmeHYmGAnRBXPLXF2aYuIdjFqiwLZNzEyX7tEAsjciIdCcnlF1LbOqwErkCdmJ5CK6kPGr6v/iwlb20zeBb6rqf0h//yMi40dVvwT8eQAReT/wv0yfd8D/LjcgIp8CvrKjf38f+PsAr7zyiq5IhETc/+T+Pe7fP8F3Hd63FNYynU63Lu51Gm+OfGnXedq6xjpHUVapjUEUUCKGqsSC6qFuIlPtk7Y9BGXJPnXC5B0XOnzbsZifMz8/TQsgELoW3KQ39C4Wc67rDd773vfy5S9/md/+7d/mQx/6ED/8wz/MF77wBZ599tlREMwmM9wm8V84dwK2KGMBFI3JG374A68wOTzg2qzi6OiIqqqorHD9cILrktR1SdVXxERvrXxa7MltLEjMbZLGF8J+ufQyklwU2AY3znyHR7HOYYwldAGxBt+2EALWXR5dHYQI7Quyi9pkSE7SnWQeZmP2z7GUMiJrDJPZIU9fuxFLfUpAwjbWKv0/TVBE0IDJ580a5ecHQEOgMIZSLPXOUW038L77pKNKnfGYmXvl06/P+bdfPaNulY+80vCL7zvi1sSk6nADyVgCeAy0uZe2CSQZwwl083O60zOOqjJCa5p1gcvROw71qOp3ROQ1EflAsgf8WeA/AojI06r6ZjLc/l+A/0f6/AAQVT0XkT8HdKr6Hx/i6dTLBXfffhvfeoqioKoqXFFspkG9RFsxjFxZLGq6rqbQQJECJVZUQR0EV4PBGUvb1pR6MGCb9JdfkmT1Oapo6PBtHYvGNA2T0uGspalrmrqhqDxITDxXL2u6tmM6nfILv/AL/NiP/RiLxYLf/M3f5A/+4A/4W3/rb/H07acIGhBZLVY+XpQZ8bicoCxYW9ElJisozz51jes3jnAu2mOckZ557sv8uY2MMVgjfdqG/ZqzYIwFHzWlEHKh9m1X7jh7elNCLiwjqdxiZpZRy2lCwExcr5JbIcI8GuGDq5z9OaxBx5OuNsEPWdeMEI8JBjVbFWM0BJwYJrZIipVi7P4XmCHNobvbJyXbK0CjsBXC4+KH7xjlozonhAti+fbJgk/90QO+c+YxGD7zJyd84Mjyp1486K+H/ejMQ/VF1nPyp06lQ2kV8hNCV9M8eMDMCK5P9ne1Tj2qO+dfEZFvAj8N/HMR+e/T58+JyL8YXfpfAv9fEfkD4CPA/zV9/r8Wka8AXwJeB/5B+vxp4HdE5IvA/xH4Ww/bx7peEnzLdFoxqUrKEdO/lItmxlY10HUd5/MFrqg4PL4BYvuo1H4DJA+W8eqwxlLXy+G72DJXExfGgJ8n+Jqz0wfcu/sWwTdMJkVMNucczhXUdXQjFcBaR9t2LJcxZcVsNqOua375l3+Zr3/967z3ve/l85//PIj0eUP2zAg9lJMiEddAzxWm6YoKHwJ5ARdOOJo4ymKCMQ5FCKJ4gU6uUGBb6Q+oGL27W3XOsycScxLZPZulx/P7QYwR4fE7i5+bYDBhiMRVEdqg2KJMh2RE3X3bxENqt1Kytdd9NGsO/JGAiscLKBbBJMiiY5c/bI7VdcZiAItQsN2bZ/zPmGioNcZE+MbK6r/0nTUGa6IB+zJR6t9tgV/Wf5MYoPftk443zz1/+tUZv/gj19Fg+cM7DduLgT7eo+1SWlAC8NvzM2xbc1BYHjYU8JEkflX974humOufvw78xdHfv8cWrxxV/XtEV8/1z/8E+MCj9A1SgNZygbGWsigS9jjIlOsY9diI2f9Mn9d1Q9t1VJMps9kR1hUx1a8P2LSbNURXUetsTEMAoDEx1zhnyGV8wzdIUmOqNPWC87MTuqbGGhPxfBdLEAYE4xx+sYiGTxNfsTGW+XxOWZZ8+tOf5p/8k39C27b8pb/0l3j++ef5tV/7NRaLOZNq0s8FDIfjRjRnL4luwiLDtZIKyYf+fEgWigEmSXMRRFHxl8O+ybxZYi3d4NNRtM9+IojkJHugwe+RkUZ5LHvvH7JQ3/8ixKpbTu3KfHQCtiiI9RoiY6ybmok1q+1dQJokfVGTIj49IUn0AYMEmzSCKGisGv5Xxz7+KBra6aGi3bTKIrdCPX0bcb941YeQP99dGpJWSP+3AotGKJ3lT/3AlNuTCb/z7Tn3a0HVIGMTowx1pB/O72+Q7Hc5TmT5Q8cfAF29pDs746iwvRPL+jl7mbl/wiJ3V4fsE8MWI6nAKX2djl3BF/lnfhGxkElNQCknBxweHeOKiph+ucQ3C3AmVumqG9q6ZTKpsE7QAMtlg6pwMDtMEZsPJynk4yr4jvOzE9p6QVUWlGXFeoiDSMwb0zY1pog2CGcti8WCe/fu8ZnPfIazszM+/vGP87M/+7Nxrryn8z56yoSA2VLVCEbyrm5j+ZtXW1tEiVwTO80SLF28O8EkMaPn1QAwkVjO0F+QibBvUyxgMBKit8aWZ8nqbltrIzPtgW04dVjNAQhKCEInhklZUbiCoIIz4JsmwlpXZInDLKd/Gg9MIwIkjyG1SRNY1UnWG1IT2wtJs9rHzDca2W46GN0w0Pc6zDPQGm4ZDFMnXK8cx4VwlBLrSvKeExk03ZVl8pCUFWZY5T3o4L2Troyabehozk+pVKlKlw4weSjo6Qlj/KukYbUwuCbms00T3XXy1k2DD57p7IiDwyPERngCMZRlxdnyjLpRmq5FMZSTKV3oME0XA6MS058eHibG86iDIlXgifYK2RIHKkZwVmJ20FliHSZmHz0/P+fll1/m5Zdfpm2jt88f//Efc3JywrVr13DG0nVdPKS2TVTSbJQdxZ5Z1RKMK6LdYGUxC9Cl6MIooUaIZR032j8ROT1uCB4zkuN2k+nn50K5NI9dRt0aNy9ASFDPyJMmqOIRymms82Cso6sXMYtoWVxybOPHjKAlBdeVLO/WIIHJzYJgA2AQdeiOaOSBa/dGiqgb7Bj++NJRC1tbHh802R5xVRDzu0HZFTf9laBAxWDAGNQEyiCYmGcDTYnkkj93vuMhHjzsgBxIt0n5QEo/FUQD7fkclgumhcOMXJdXxzIWS3bTE8X41wVUI4KRGK0ZfIhQT3zDe9sZM662bZgezDg8OkbFQfKBFlWKsgDVWLTbFFy7dgPrLPfuvEVdtwTg+PoNJtNDMHZ47kOKCqpgbUFZlGho6KNF1xo0gLOG1ncxEMkMEZsvvPACH/rQh/j617/Or/7qr/Ibv/EbfOUrX+HW7dscHx/TLGvatt0bzDUOALpI6jcmQmwafMyc2bsi5nSyGVJh5K54ufkQYzBG+ipcuaHtC3+QmnPxm3Gsx/ql/adZWNj2fMBoNKoGSW6+CmKje6yIwTmYn9ZrAMwlNZreLVUJJroU+vvwxu/dx4jw7MduITd7pGd/0zlql+hKOkLrLk0bsFBSDd71vEOPldKRJhrTbGAIGFoTcf+A0InF5AJDeX0pPUx5+eek2IUEjeXgPmCrdp1JiC7p7dkpMwEnw3tcDQJcuWkvPVGMHwZmFP+AqqzoFvPoY2yierRrw3vv8dkXOX0f/fwFsGBs3NgCKtEroqhKgrccHd/EFRVBlKKa4JuG69duYCfTHmJQsho3lp8uu3Kk96gpy4rlvCasMefMJLI07FtP27VU5aQ/H5qmYTKZ8PLLL/P000/zL//lv+QHX32Vn/mZn+Gb3/wmR7PDFQ+Dbcx/yP2yffmsHBpiEuMPUWUGYj4bB3hUBtPZoL1cfk6yvrwu9cR+0H8YN+sYptl/wGz1LtLNP3K5xWheiIzfOBcNyOlwqRfLaNhdaeByzDJu7oAaj2jBg++c8+3P3cFgmb1wwLVbkzSfyWC916U1Tkf2K4sBx5uCw4rEP1I4tmkIQSJzlFHU0A6zOds7lt7Hnum4TJ6rK7mIytqvSaULRmlUOT1r6HzBXD2+q7h33lFJhwFmVUlpzSCkXJaysmWkh4y6rsM5t1JLYLOTktbQAvGeSWGjfStETzhvhn5c5fh94hj/ilxloJxMOTs/J6gCPuLhO2aobWvm8zmz2VFMY4DirKVtmrhNUkg6kHTlgunx7bgpCtfLmrPjWwQNWFf0Prbks3kMK6529wLSvp2imnJ2doLm6L8NDEIwtkSac7RbQlmhIhgrLBYL6rpmOp3yZ//sn+VDH/oQIQS++MUv8ulPf5q//Jf/Mi+9+NIK814x7CapJee8WVmg20jiPPnQEmSK9K6IXWptgEmuLjdqBK7xKXApe/b0nLhv1QCdr+hEmbDAE/KnsOYbEX3X010SElOK78+L4EL0Qpr4ijJYvA2xyDqWpXqqatrrCKpKt5hzKPFY88n+MlJ06G0da1OoMoIU1GKC4M87/P34jrt5QEKu/KV4EzBqd7yJJB2KkDNMrF43PurSKdojQ5L6ssmgBZ/cSlM3kQQ5gdXITIexhg0GLRgMFqslmJBKaUos17nVUL2f9keYp2vS11FLE4y66KGkngfnZ/w3X66wtuGbd+eIqfn//J6ACVRW+c8+CC9ej3PpgttwRtj1bAFUAp20iI/OAMtmzuHsGm3b9rDlkBUgacaaghrn5xw5iY4kOa4jndBGxwwlroV7fj+s/EQx/hw0lReLMYYiefOEnCFz5zpSfNvirMP7DnB0bUddN7hq2iNEIwEIVSiKcmghvXRXFKO/t0hgchFAsmVso3ZyCUjvPcZsweKTVmIk1t6McE8uwt72jP+ZZ56hqir+8T/+x3z605/mpZde4itf+QrPPfccVi1lWW548wyw6Mgmsh7cMjJURbdAR+czo08T198iKz+uMiP9b6NDdFczxliCCkEV1eRhtefBw7BXX/pwzEWGa/uDK9oYvCoH00k/J77rCL6LxX/Gb13i+gjJ1XXbehjrcplxlMcF5ppiRCkPXWTIVzSK94PpnyqDs1GCMOJrTVHRK33Y0sxIw9Ze/dp+kG+T2is3QUuNjD4FQ44FtEu5Xa/EmlxiHoL2h1vmmwZH25Z84ztzQOi6mPvma/UZmI5DoyxfOsLNSoxqsq9s9mM785d+zzhTEHy0B1XlhPn8fLVm8JoWH7oWCZ6i2EyjEVOECNE64YFACBPeev37ivHLBqOy1ibYo91/b7q+KB1d55nPl4QQKKoJB4dHUX1INH7Gtpe8Cx9/XKmZxQhFWdL5hmKPvdA6R13XzA59v6lEhPPzc46Pj7HW8q1vfYsvfelLFEXBz/3cz/E7v/M7nJ6ecnx8vPrMcZ/1Cqq1xMApH8bxAVdUk69MsvZDYiF7NYgqwXcpxmFPuNiKFDWQyWe5CjZITOSXmF+GTqrJpL++bRvwfjR/q5BHyMFOO5dEFO0EIZjAwTMVz3/0aYwIs6cnID4xsFUj864p2TpUABF8qkaXDwOCxoNyh9eUDvx+cNmVGMDVOrsxe7u6MJscMykOMMYNV10SStlwM74MJSluDPcJyiu3pvzij0hW96L+mLqhJlCK5fZBksdld9W07XsfwFBIxfH0Br4LOFvGJI7LJdPpdO3eYb00yyXOjHXj9bFE914bBGMDuMBs8n1VgWtTzDDJlbGuc3KrTQk132usS2K90nae6WTK7OgYV03QLWrnegzAmPYxxkfOgimGyWTK2cly9zOImTmXyyW+i5qMKjjnOD8/j547xnD//n1u377Ns88+y4MHD1ikRHbXr1/H+1gMelvOlnHq5ws6izGO4K+QbP8x0cA6UjwBuTZDGzXAh2jTqBKS9O7UJh/7iDj5oIi1GFf0K6Wto2HXJBW979jqL2ta0Ob3Qgx0c9eF5z7yFIjijsDTpdw/ICElbtvySjJEt5UUlm3LvO3Auv7Rqoom5t9L9kJ0khh5dKmOiiQqBI2QUtM0qJgeDlEZ6j7kf13XURSTKMCoIbDqH9/rG3sEqfHfl99X+YDRJIkrr9wqePGGYRuLDaIoFbOwRKQjOidkOGZzJW30I2n5joJrBzc4P58znRzEspwhRGRizE/y6EPAN0umxEDAreNQRUzqk3NI6XnmPd9HxdZX8Hey1ig4V7DCInWQ9FZy+1hHCEo1qVCEo6MjjCt67H79Odty12yV6vNlSbUXY1YW9tUOgXhthJMidGFlTZtIiyzDQG3b4KoJEOvJtm2Ee6qqYjabcXx8zKuvvspv/dZv8eDBA65fv05VVdR1jXNu65gunVpBDGIKfO95805K+rCCy4wMKSIFEINeRLrkx79LZhu3lq9JMQgamYALBhtsz1AVaLzHTmdR6tWAEYNv6lh8RdzQu4wbjudiG2NLEqmokrNwBuex1xPmLsTEZmiKg9gzFllnRiPGLVB7z0IVV5bUXRvXqQiaoo3H0JfYUbHxUd+zX7kSo8XniwWqA8SlEjWDDGuICHVdI03Ct6Xp34bZoWFvDGu0FzO0uI9yXq1otwi9q24uuhTx89Tf1KYRQcSjeBqi23Z+e1shuq3vMr97jUWZvTCZRJjHOTfg+ys8hJjcMXQpBmT77jEaY4Y6o9w7nVKUlsLuj8B/ohg/xMUXVLEmTqC1tmde68L++gkrxtB1HTcPj8A4xFpy1pHLMud9vu+x4EncUNH28BBSf3r7xto+etiW63jewPAKZ6mXC6azQxAH6aA5PT3l6OiIp556iqqquHbtGh/84Ac5PT3lueee64uwbxrj0hMuCfVEuK2KUM/DQNGPTIlpYwGLFeIm1sBo926/LdEgSUoyqkWj9DhwSxG6oNiqou08XQixuEzTYJMn1whGHzW+v/djpi5qCRIIrkPRePCE6HOeg7f2zcGuISpA4ZgeH1AeXaN5cEJhTL9vNqZJLn6V8XOzwRwVjfEnIhwcHKQa10rnO4L6HhLUBDvBsNb2JQnsmfSOHFxj4cUYmxhtctbI7RM9ZSLKNLhAG4lGfqjxxuMBUY/FrWhS2/B9GR2KJLOCD12yPzoWiwUHBwebkxfVarrlEtO1FFEl2jnbRi2NtXz+C8KHPgr47TmbMj1RjD8HFIUQYnphoiFUjE0aXSAW4xhNYF4QaYHHvC8kpiwJC9zzvEtS0zaEEDg4OIieNU3NZDLZrSXsoAG6sDHtb7NM0qsZLbL4fxETk7Z1LSF0GBcxVJsgoK7rePrpp/mJn/gJrl+/zo0bN/Dec3p62h9QuYDLQ5MYjC2SwXzli4dv8yqPT/9Xtcl1MSB0bGNd+T0YY1JkbNYa1gQEjYFbLqTgMwJBwUs09jfeo02sJuXbhsnaAX/VkWcoB83Kfj60RtIru6INLkcBIszjCqwtODo6YjabRexed6cFkPEfY9ou/6DQS/wZTswghkqI6TckH1R7jrKRpJ+1iBBCXy95pa8j9+R1b7V+76VRBcJIu0nfh/itDRLzSYUIGQezCaeo6kYf+meKIgGcLTg8PqJp6kEI3ICGBO082jSUQv+Gt5GamPrbS8npqccKBL/fpvlEMX7IE68UNrq1ZYzaGBNxZje+1vcnq6rS1Eua5ZLT0wfYomJ6eIxwceHiy/XJ89RTTzGbzTg/P+ftt9++MlMdlqiCGIqipE3VvURWGVR6cPQnTwnmChtbccnou1wuOTo64gd/8AdpmoZ/9+/+Hc888wwhBF5//XV+7Md+bEcfdftm30YS8XU0L8SL4ZXHRVnGjg6UkTFYUVTaodDMjq4YO0iOq9dEY65Nxt3eVVHjQWuco/UBCYG2a/FNQ2HWWfJY7t8zF5ojO7WH76LbamICo2YeJv9Tjn2QhHNH9hIbtdbQtg0nJ6ep/fF7G0GlO9bBNtRpzPittT2DNGIwI/gownEDHLSZPG7wgMmf5fa2+8Rvtwf0nRqNw8ugafTgSiqd6ULMw2RCDJ7yG/DZ6mGypROIKGIcRVHw9ttv4ZxdgXlGF4P3+LqmskOOsY28WCnBoZcJxlV85CMwmYDoftb+RDH+4SQPK+ejSDRq+pD9iOPi6LqOtmnoUs1Z37V4H1jOzzFFx+Rghtir+xKvU4accv75oig4PT2l67qHlKajNBRdSTUx59XF0yPTqZJS17aUVYaX4zXz+ZyjoyOm0ylf+9rX+LVf+zU+/vGP8/73v587d+4AbAS0xfFcHuPP7pwr+XTeZcgnGiMN3ivGeDSMJP6c9XK0WY0xFCMD7ail+L0KVqUvzRnhxRi4JdYRNOCMifUf2hZbJffelVYu0W8gxymoZI+b9J9mnF9XC89cek6jF1KO/7EqpCBvcoDefF6zWJz3CQDXH7HvCB8H1K0Ukkm/Z0ldkmYlkozkyf4xaK3D9buMt1VV8dRTT/H222/3GWhX+rv1dE+9l0GLE9ayw8bzNqaxFoNV6GzAaCDXvbUJNtpFw4E1aGvT2SEBWC7rPiniZh81+vfrgF5s1+mENkz58h85blxreP55T2cNwveRcRcAEYIfG81AbIRFmsWctlnSJeNV13U0ddsz5qIoKSuDLSytb0E9gttgcbLlt4soG3AgaiFlWdImF9PLBJ0MNBgqrCvIkmxOBjpIgP10YCRKb0FDL10YY1gsFnRdhGC+/vWvc/PmTc7Ozvr+xOL1myry6DFrf21blgLOEZa5uJoZlXV8PLSaNyXi4SqDfCRiECmjBE03gp02s3lmidI5u2LUzJJ3btVqgVXTf+IVgksZYFuPdZZusSA7KG70cdT7i0Y3aHlZ07razAmwTSEcKRNoDxYlY7UG2tDhCsfBZEqQgNmSBHjX3sjMFOiDxcZrPEvmK7E1Ifqkk+x0A+wzuj5pm5qKyWjwNG3NjZs3ODm5jyJYyelRMvPbsi4TVDYqozGcBWtOIgioWDpVtNN4OBIT/W03KKcZXTE4x8XU+RbrCrwP0ZunLOJBl6Dm4WAEv5xTycibR7KuFwhaxuR8tubbdwy/89stP/szoG0NZkYwi40xj+mJY/wihi6l3M2vwzmHsQVt29J1i8TsIwOODL+grCqKsoy5X1Tpzhf0vtw6vNyVghhXoDETzarpRakRNsaWfmp2RTQWW5T4rkZdlJoyGmgyRipxnHXbEHyDSNU/v65jXh7nHF3X8dGPfpTXX3+dP/7jP46lGpNnz7h/efSXHb+IQZ1DfU7NkBX+xwX5DJkSV/0eBoYpWMTGhHZGOurQDrJTPiDW5l80M6H1AWny4Y+58GPpPqET0BzMpwFjSnxbU5kIOfaZMy9dcIDR9IyCv0bYyvDZxU1td30EiFAgIoRURjRrlBhD4UrKYoK3LSY8hiSDF/TxQrfNxLBNEDob0K7l9OwsOnQUluOj6xQ2HvJqEry4L77hMv3K+u3IGzAePqEXklZje9Jdo4tFwPuAX0QNej4/pyiKXuMfYKXoVaTeo82SsvfmiWkx+lKREgMiMRMWjeNg2nH7NuAtBId+P0E9ENX0LvkKk0rRFbn4ihi6Nka7Oueoqkn8Lvuqp+vz2gu+wyU4ZVXyuxqJSJ+PP1NZlv2ieRSf/moy5ezBIkkCw6bNzFmIOH9YLgldh3UxsCMbwxaLBcfHx9y6dYsvfelLvPbaa3z1q1/l1Vdf5dq1a9y9e3enP//lxm4wphgZvIaj4/HQqMbB+LmZeakS66CZpP0wKoizfTwaAj4oLkWPSo8HZMlQcGv4vgeKUaSzCHR1zbS3FcjVmP5jJg26nplilUaSbkb6JeUFEAyiD/f+r0JX8ZwTE71tlBhLgaZ33NvkpP/9su3uTrcgbNXKE9Pevodz+pBB+l8uo3u0TSnSc9BWegiDsV7pmgZJSMQKxhAcEBBpol3ETnn6tuFnfnbCrDpBNCDSoWHKPnq0o/B7kIyJufETIIoAReGwzjI9mDGZHHDt+g2Ojq9RTSpsEYtDixnlytdoYGrqmq6pY8h0/4T8Mq9G69b+qqr6zx+WRISyiEnDh3Y0qYQpFVxmTiH0Hkt5oVprOT09RUR4+eWX+frXv87nP/95mqbhp3/6p5nNZo/m0RN72cdHvFOUvTn6KehfT+bWlkD28sqfj38OlLHnZV1HZinD+45G0MhgijAKp1Gh9QFXxhTUJK3RN3VK1TBqf+tTv7sUx7zZs6Hs4xU1lYd4/vq/8eernQLQWLQH0qGU/e4lvi9RxCRN7wp7dZsheT1mZ9t345/xX4YXR/i+GNq2ZTqd0rZtH7TVDyn9osnQ4ZdLLIy8yyDCpIKKRymopaQVw83jjqdvzXE0mFTt2Ov3mR//uuo1+OGaKJH5BuuyQSZP+ZCbJGc5tMZy+uABJycnTA9mXL/5FGJsf/3D9Ktpmt5ntyzLC+7Y3xbExWisxRbZnz+/zpQiGAje0yxrfNiUcDPcE0LgPe95D3/zb/5N3n77bW7evMlLL73U2wK2uchdvq8WayuWOi7k/uiU36/3gfP5OcV0zuHh0aYcLwJqUZ8kL2l7w/Q2BzkRIWigblo6X1HIaJ2kPSiaXTnpK1nlAuuNDylFSIcJIXkHyXeX219JuNDR/yHQEqQmVy97p2ksOW8PhFICHYEOQzXawZkRBzwBUYNhm4H+4fq0SzPfrk2sfabS2xQPDg44OTmhqqrBKKyMjMoR5qFtKMxarK6EaFtA8Mby9TemTArhxWdaCB0mCGoi0Nvq7nL38ARK/CIGu+LBk2R0Mb0xNDL6VJhltCdUk/FMo7XeOUvhDG1Tx5zvD2FYyxQTpDX939lVbeXZD0OpIEyXtRzyGAK+bTmbzwliuHbjFkU1Wbk1G3qzkfnFF1/kgx/8INevX+f111/nm9/8Zn/NQ5NEiT8m+8qSMzwqExnPnRGT3neAXmoc3q0xJV0HqEe1ZZ/ED/G+EPzIoDhcrQhWbcqIGfvQouAKjLFoUKwYuqbBaQ5h2lBF3mXa8dz1tZ+uzXW8VJTz9pTT+l7UZN6p3q1J0BfRvJ1zb36HzjdEVhgI6kEDQTvOlw+YN6fRFvYYDtxdAWS7byDaGDRpLQhN3fb++nVd99L+6m2x/dC20LaUZnA+yHYsFIxUdOGA3/tdz8lpi29qJMSypaox60Dt98/lEynxV2VF1/k40clpwFiL923KzhihnJX71v6IBuE48Yvl+PR8uJVkjKGu6xVLf1EM2PfD4ecCWFxRsZyfxkpXYgkh0CzndAGqasJkOmNycIhKzC+yjlfO53N+7dd+jS9/+ct9Dp+yLHnf+97HJz7xiUdj/AjWFPQpeR+T8JsPaWMMVVmxDIGzs3OcEyaT6aByY7C2omljHhvvl2T8dT3N1jhEP2Kxm3KRAC4YRE3MQ4/SKhTTSTRkA9YITdvgEr6sa0fHu34A7OH7vcQs+X8kOAGUwOnyPktvOKiOefjS3o+XFs059+d3OKyuY6VIhe2iLhC042R+H2sds/LalaCeXXT1vZmwetG07qFuao6OZjRNg6T1tboPk0YRAqFpcOr7+Y5QW4oTkRpliqssL7zYcftah9GaoBH7hwlqApj91d6eQIlfqKpqJF1HnLYoB7fMrYwsnxBpA0hKY2xW3Ml6a96VuFdm9LmyVf6sLMtHglEyOReN1z7FJcznc4IK1fSAw+MbTA9mCftcxStzP5bLJb/+67/Ov/gX/4JvfetblGXJjRs3uHnz5kqgzMOSmOj22AfXPAYjYTTGx9/HMvXGq5WUmROLMUrnl73pu7951GaGzw4mk5HHxfh6wfmYCVPSA2vvmUxnWFtQWIsVITRtCuiPLXz3pP3LkgwODCONbNktmDdn37VebZLShZpldx6lfEilNPMhG6i7Ocv2nMCj762H6V+W3ZWAiqfzNV3oKMuyl/Z7TVpGt6FICHTLBaUxSO/2nBd6hHnuzQ1n846PfqTj9jWfIotjnQvFE/C4yfdRWmaIL98V0U82B4OIKLZIxYlHp+zWaLnesk6ayHiN9x67coheXXLLRsjMTKuq4uTkZEdfLkeKYKzFWEu9XEY1XYTp0TWmB4fI2DgbJySqjSMO6Zzjwx/+MLdu3eL9738/L774Ii+99BLPPfccZ2dnnJ+fP3T/hJxwKxkQ3eOVeDUE2rbBHBhmsxnZdBM9ceLGMqkCmrWGtml7j6fhHa4ehEVRUJbFyp4UBtmg8IOHjih0xKprReGiqq2e0GaXUU34rSBB+/iC7zatjjp9lgynGS5M3Y6ZKb83uh1Jog9//0eCVnKVuyDfDYY/IlEgELRlsTyjbjzORZteXdcruXn6tZUcNILvCG2LczGFeGqQ/MbOltf47H90PPec5YcnnhBqVIthGohODtUarLtOT5zED6lQycgaLgg2YerGmoT9jZf9KuarozsRwRjpg36iMKRX2gSZaYYQVoK2qqoa5UJ5NIm6KErariNo4PDwEGMLmtZTLxuauqapa9p2Sdc1MZhrVKe2LEv+xt/4G/zSL/0S9+7d4zd+4zf41Kc+xR/90R9tQFHrANllYCBjbJTK3gGcOKji/ZDxkZ55jfooNkE+0fg3/q5/5zoE3JRlEVNdjPDVPHCDUCRvkb4Iu7HYBA1NqgnBe9R32Jzv6XuGY67SuFfj6NJYTDEz/6wlfq+MYTiOpe/f2CBMFNjknbNJ7KMs6edgrbfvv8XZ+QMm04qui0kanRtSXw93xZ9tU69480QtJnnoieXuqeP3vyh0BmhrIKTMoi3ZdokaCjfb288nTuIHMMbFVMBdwJYplUH29XYlvp4n48qatL+qdyVVzCJi6JolzA4Bh6bCy5elDPWMDakw5BF6FH/+nKOnPDjmUJV7b79JuN+SgM/evpGjB52NWGA5mTE5vJEYt3Ljxk0+8pGP8OKLL/LVr36Vf/pP/ymf/exn+Tt/5+/0c9Ez/zG2clH/gGArOgzSNWjpRsz54ZnJAJkZqqqiOphETDW79I0MqiGUscye1MRSi5lZ5KyLA5ylhHSwD8E549EU3mJDEUtZqqdWRcsKKRyxNKeJRTZ8E6My+1Fmyf/dl7XimMJqPnchGsLH+o+Q0kCMDee5wMx3WYpeI4OJkbvSJmnXR+0uGd0H+827rKokzQOE0+6E+90drrv3cDA54OTBaR+/k20/cd6VgGCCIcyXTEzAaQHSoTh8ljzKloDwEx885+Wbjpg5woA0kAoCNRrwRrDF/nX2RDJ+51zMzeM9qsl/OyWGss7SLgecfSDpf4zkh+TSyKgKUdYKLm82GjPNdcafiy3vy/dxcfux5kBZVhRlwTRl/cz9H3tsoErXtajUTA/pI5UhQk8HBwe89dZb3Llzh4997GNUVbWR/2QwWF7sraJowvgzs378mzDbDvoyhiOLpRGL95pgrm3MKx1m+aZ0OKuWsH4QS4yVNaOsmD4EXFniXNQyVaFrmqFsz3g9yRD09d2glcRzrAFda/EG6YWN/3hX+ngZ6gPqki1C+wK0I9gnn2Tv8jmbD5w2tJzPT9DOcHA4wybnjqOjo1UBigTXCmjXoV2HE0mR3oIEwUkH4hBzxFPvMRxfO2RankJItaaTJBbrHUSbpiu+zyJ3YUjF4EPTT3I+DLrW0mz4tO9mRtm5zYeQMGMd3XF5Jpb7kXPj5M/yAfWwjF/7xR+l37IoqapJ/7x118aoPsZCIRHJihBUCIGvf/3r/Kt/9a94++23+Yt/8S/yEz/xE0wmk03Gb0zf5rp31DYyxiFi3hGXQJOM5uHsDIjzOT2Y9owspoSOSce8bxlqRa0ysnHEbdPUMfJxzeUWBQkywl6hUzCuGBJphUBbL3GPwYD9OCnHqQwfwCoMJaPPhz8lGoS+t8Cq9c7oSP/OaUsehx/nQ5PSas18eUJBxfWjWyyXdcoB5UaCYDqoEuP2TY1JtsQgIdZ7EI8NlmANgUMOpi0Te45kyBiDqiDiCSq0GnDWXMiankiMP0elhjBIu0Yk4bYR5d2bPnVLeyEEgvebEPIl788ve5w6NidrezTPnuwemtILpMpFMU4hqp05xa0xFmtcwhizRgBt2/G5z32OX/mVX+E73/kOP/ADP8AHPvABIB5U2yGoy0qBqRIYdmRXeHxspOdTIhuxEQDWVoCJGRZ9O0rXsLu/vWNAfsZIY3JqsCn3S8zBH+sf5+f64GmXS8pHjnh+B2jLsGX8ZfYs6f9L8/o9xfUHTWrHN0PfvyvHVYwrOG9PaLols/KI2WTGfL7sC9Cs9FhiPzUE2uUCi+L6Cn3RUO0NnHaGP/qm0sxBuuUob1JOpC10GoFM64pNbXWNnkjGDyTGv2bEzafsBna7SZsJ1HSUFkB5GIEi5+zJjD9W4SlWvIyuciClVnuf9izdZ7hjI/w89pwxB4h2h4ZPfepT/PIv/zLL5ZLlcslnPvMZPvOZz3B+fo6RtQjCnklwqb6KiTBIGLuvPSZSVcqyZHZ4yOHhIdPptB8rCEZKEBe9fbRh3ZDf93HAh6IXkAzt99cgOHVYot0oAB1CUVVk3TB4T2jrzajL7zat2kD7jzJwuZEIDRi/rgGq+16h6CMfDydN9pWs2mbbxcPVVX40EgJdDHoLcO3wOqqBrttMbx5HkWwrweObJaXNTgM54aLB25YHS+GLXzqjWTYYJcaRjCFXhU4ViiLWDr+AnljG71ws8D3OERMXiekPhcuSMVGazvc8rAeOMTFfx1jC7y38D00DIxtAKNl7MGVYCAZtZDKZ8Nxzz3FycsI3vvENTk5OVoLNhkdFeWo4ZC4mYyxG3AhmeXQa50fJftHjA66/jhJSgjbVLnkWrR9/q21aa/sxxjaiSm6C4LyNtl8RPEqwlqKs4qEGdG2DCckr5nuJ9q0HSIfyEG0KWWhM+Pn3GNMf9mPKzqoh/iRrdNl19t2npluwqE+xZsrR0RHLekGGIVcoG9PR6P7rOwqbaigTErRoEUpUhclkQVE00SgvYUDrUmNNCBTTgwTF7h/7E4nxQ3RRDGhy3YxMztmYE98mg+om5smGVBTxb48PniGV7YWa1Ar1cFMy8Kwz/u0VeK5CWTQb2NnetlIUYJaKnXP8lb/yV/jzf/7P9zCZc7FKUNu23Ltzd7AERjwpMopLGmsj/i0D1PMYbbx94e6Nb7KIG334jfGQwvrzOMZHxOr8b7JtIaZfdsGiGFCN1ZqsRayhaRqKomS5WFCK/CciUcl+wE6lz9D5PePOqQnXBlYsbcqg0ZPz27/7YI+iLOoF7bLleHqTqphw/+59iqLaSH8yZjntYkHZ26KFWCLUYFHUFDx9a8q1n5hQ2FPwQ8bXLEwpQhuU2cEseiG232elFzPlXBhJkEEVXMrEmSXvfrOvrfzxy6nrhqZZ4ooJ1rpkSLoak17PybPO+Mc2gIdj/oO6l//eMOatXD2uoRqfe+PGDW7cuLFx7f379/sn9GxRIhO/zDwogLFRqgyhb+exbEhd/XVoc/gthKz9BKJXz+5TZ4i3GK4Zrw+jBuejCi7ExGymKmnbjq5pIUC9WDB5BA+td5PGyz46xciKBBkhw5SW+V3v3S6Kh7mITYbc5GhAPNNJZTa/W2CGAl3XYn3J8eQGBkvbeo6Piw3hLkNt6gO+bpgZE+vlKtEmJgEDLNWyrC3H1RJtBHDx7STeFiEuQwBsWSIIy/l8bz//01ihD0G9ZK8ZnhlgleiOuE6jF7LGqA8OZly7dg1XFOhDsq2xvWCcuiFL/FeBntZa7n8LmuW3i1TczTHszEUuEqtK9e3mFLiXh3qixJ+9ekbulo9KO9sZMW1MTBCnIeHA49w5m5QVmWwrGbcYM7zb3pzWeE9RxcAc7z1d52MATq8ZPY5BvkM0WgKa7EHbXoxzJWVRfZcMpdvJ2ZKD6RHWxKSLgztn/L0sK6pyAmov3gqPmwSmkynHkxvcOLxBvWhxpsC5bfMXQ7O6pkW6QCFmxWMsCARx/OFrls/+XkPTNhhtEQlAPBTG6bI1ZSFW4Pz8fG83n1iJH6BwBW3rqcqkqufAHuOytSpdOZi5MvV5W4zBFRXF5JDQF2oJEGLh5ATirAS97NskGe7JlBm/934lYOiykn/vtpmZ23hE/ZBCb/mPBq9RznPo8emcUsLaoY5oPpRUc/StDoa+UbTr/k4WBLHR75hVa8TjoBVcP5XTEwJWpiBljEPVBartAFlsPDxrW0pRSBQmidHGwSi2s33VrYgkK00wHFdTmtAhRgjaYboWFxQMhFRGsGeoI5vBSvB3MkquHEhjB4SssrImlPS/rHG39fcxRgLXPlMJEHLOeMh5pjVdcFTcoCgtVlx61KNx0g3j5p71vutZB8URzjoqO2FckN6YOK83J0+DpP2+PhW6uc93PffhUpQIhZkyq5RJOeXO3buUVayZQRI4JRugBVSF0Cwp1ePE9ri9EqFFbxxf+rLFGYPqst8/MuZZ2Z3VxMA1VYnZevfQE8v4RYSyqjg7PRnwHjIMaBPzCkll3N1OzLTYMtHMYKI7pm/qnoEfHB7Hw+QS68SYiAePoZ1c+jB/dlWvnky5yPz4u1yqrW0bWh8QAp0P2CJl6iRLuMrp6Sn/4T/8ByaTCR/60Ie4detWkvilPyxEJGZv1FU+srt3CqZAcajG1Na5DOFjo60dCbG4jlRED4kWH9r+0pWNk5vRWFh7OilTuoV4nRLLLbokQYoqXgJBLMYUBF/jxBB8hwWciQxH+uekJ8noqRmeyMwA1tbPGMcalZccHdj5nh5yy+cEqwyuH3OP1ZEk5KFqmzJoQmMvNuMLCp3QNh2NtlvhyOxKS3ruekzKONHfLqa6b82vXztxUyqdpLFpD+0bielVjsrr/XgfxXb2sIdcVysH00OCBrzvODiYkjO3rq65CCt29ZKZGfczQjdGPOosB7OOH3i6xKbDY2WtZKGNgZ+oKpOD/RW4nljGDzFR0YN7d+n1WtGNNAkXUbYHCIGuaenams63dE1LWy9pvWc6nWFMwWpB7YHWs2Fmxp//LstyJUjqUfL2mJGBi1Fv6rrBE1MOKwbnipFmEvvSdR1f/vKXuXfvHq+99hovv/wyzz333ErRGF0L5rlY2h9qD6xEEL9jOviItYtBTIEYxQi0GwFkY3gv/jTGUBYOi/RmM5vEMJuyOSDQBcW6MvHPgDEW37SRfRoTN+KAGa246QaJxuGA0gVP17aoXdKbhGV9XsfQ1ejTLV5MpLYvQMF2Um7NpEj35XJJXdcr7y8bKcdreFfqkfFBcBVmvz7O9fvz83KBk9zecrncgE33wajr47iUe3LWsndcW9c1Tz31FPP5vHc+0JHwmVoBBPVtTMq2FvdhkiuqOMOP/EjBcbHEURA99Vlrh5W9JQKHh4d7x/BEMv78Aq11PZRhkxpYliXLRVrIIeyvQ0qMTA0hoMGzOD9lcX5KCB1lUTGpSqjrKOkV2aC6vT9De6b35c9pf3OyNnhENVNSIFdsafiRfp3NDnFFhapSlFXfWU3xDtevX+cXf/EX+a3f+i3+/b//9/zqr/4qn/zkJ/nxH/9xnnnmmd4T6mosO6ZssDZJ/Lwb0Hceu0XVIaIpNcVFwVuKszZK+4nBC/SeLYU3/ZHV+oCblb3YbURom4a6XnJuTAqf99FSl8jn1BKk0owamDc19bJGuq6vwrQejDZmuOkKBLMhaQPReWEN4giqhK6LRuvtskkcZ5acU4Tp9evXmUwmKykx+sMrRXvnZ4+T3I0/j7EvunH/uM8r/d+y7nc5PfRps9P3xhjm8/lKdPy6M8X6MzZifUa0z+616zMRYTqd4pxjuVz2xVeGdzmsQFWFpsYGj3M59a9EP3061JSog/fcNrhlGytz7dg8fU8Fgg/Ua9H26/REMv5MJjGcEHwqqhFr1PbSyejabSphvCbCGiFEw11VOFxRIeKiFNm2dG2LqyJOMOBv+ym6/8WXXRRFvwAfpeLVxn2ZSyXmVJYTXHWAElKh6iFFc64B+vzzz/PJT36Sqqr4Z//sn/Fv/+2/5Stf+Qp/+2//bY6Pj0fS0z4T6bhTiU1Zl6CWCJtchfuvS2SXOxSTxwcWocUwMP1tQTT5jqoqY8h7D4FEqEzEUqjDJE2gDVBUE3zIh5ngm5p79+5yqgEVg2fwYrLZsYB4kGjCeLsQMM6yHh4bQshYxVbmhZoNBhY0loZBVl48ilJoIEwP2Esj5pXjI9YPn4uk3XXaBl/uen/rmsJ6MGPeI2NmndufTCYYY1YLmK+1OdY8ViTxEW2L/h73ad84M1lr6bqOtm05ODgY2kt7IafmlhDo5gsK0uvPAD+KisWbCee14dAtsCHCi7s2jqS+B++Zzxf8we///s6+wvcB43eFo+263m0yF1ZRGQxYmbYyFTEgMeLW2Gh1j95BBiVgnaHtWiqBy8AXuf2maZjNYurUbRvsqrS6ucbVZNMGEkZF5ZOUGO9c2UTn5+d89rOf5dOf/jSf/OQn+cEf/EF++7d/m9dff53r16+PNuTl+hWhEIMxMSdRrxbtkDwvHttFF0cVJ47R0nVKzMCZXDkzJr7l4WIMhbV991Ri6t/YWjTuotnbwmAK10vxoPg2YeBVhbUFfVZmQEbRz2Oga6hku6UCsJCgosQAdf3LgZTda0dRtK535oMag4Kq2jOt8/NzHjx4sMIwbZ/plQ0IZ/26/Pu+f/m+bZ+vQ7LrB0H+LNvJcuW4XYfMtt/X19a2OcyHzb6/1787Pz/v4bK+n+sQpw9os2Ti7JDxNq29QMXp+YQvfK3mJz/cYbXbul/6DJ/Ee+/ev8/9Ow947bVvbl48oieW8efFVxQlbb1gmuoSJOEXa2zM3bIDnhlThGc8hXM0dZsMYZKMSSaplpmTXczNMs4/bj+nbniULJ2x8f5/qz0a64KSF6usVBjz3vPrv/7rfO5zn+PDH/4wn/jEJ3j22WcBWC6XWyShS3r1IFhXoE1cqGZkSLwMxUV9ufiJfhuIwUhJHRQjHTldQ89LZdiEuUVjBoaVDXGR+RtsiFW3EMWrxhq7hSOgUXtSxbcNReEwkxLr9hXC0Fg0KfXVjN/N1WZly++bFFTxWzLAbr1LBxinaZoe9gE24MishWxjyGM7wC6tIbc5dnTYpxmsf5evL4qCmzdvUtd1H3G+fs9lYZtt120TPHKft+3XPO6cPmStNTL+2tVLCiGl94hrNrVAsHDvpOPumw7tNCEPupVXDYe+cPLghGW95Ed/9Ee3jjfTE8v4gSQJFCwX5ytqrEnpmetmOSy6XSqUgDMG37U4a1JBliHi0RhD6EKUDK+wb8c4ZJZU8mHwMJ4IvYvmYOMZvtOMLQ6LbnyBjlTnsiz5yEc+ws/93M9x/fp1Qgi8+uqrPHjw4ELJaHffotuqNunZV0N6yI6OkgZz0dzEwy7W2g1tQCTQdYu+td2q/LCBEAaXS4FKHUajfN5pQI3FOIc2bYQT2wbxIZZdTBBh1OjH85TV+PR7grwGNG73uHqmud5W+n2/xngFLVJWpeHZbNYb98dMehcMs97ndWl9fQ1tw+/3Sfh9N0fMOGvP8/mceo9mc1nah+GP/97H+K21TFJ69GjYZeU1iEbGPxHBrrjzprVnhdlR4JX3gmFJIGbq3NHhGCOTPBCNMbw/JVncRU8+4x+pWgBiUpHz2l7C2JeQYlGWi3NCYRkSHcQdKxqv0RCiL+Al+5UNvFnNLcuSxWLRS5xXpsy0BoSn/137NAXDxdJLnHFF3r17l29/+9v9PP3Gb/wGdV3zvve9j1deeYVr166tBJ7lR1xuwCSM31/pwMjkO8+ffOPrvPTCixSXym0kICaWu2ujJO/b+sIeh+Cj627lEBmiGxWhVNNrKoEAxmGswxhPYRx1e4ZDMKoJVJIVpr8CMzDkj8zdvSytjmB0eCtbmWj/5fBja5tjoWG9nSy9P/Ta7Luxeehu0wi20S64T1U5Ozvr2zk6OqKqqkfq57b+PIyzxWob440Jwefc+ySmT/awjetMK27cLLlxbYGtO1Rc9BLbaoeMZCRm/23qhm9+8/sU6snkXEzTEHzAOYsxEiGbVBwkrXp27T4legR53yGEmFo1fSdZ0lIleI9NubYvwo7Gbmi5Is/Dpmde30xmfWFAgqVSgM466xBB1fCd73yH3/zN3+Qb3/gGd+/exRjDnTt3+MQnPsHt27cBtm/8S20IQcTSdZnx73J83U5t1/HZ3/kdnn7qKYqj440xbH0egkgBojgrdHW38v2YdPRL26byeGKTFpcEhg5icFjMjlJUFWVRgCrOOM7qhsKaXkvon5CZyPrTk9CwfkCsU9ZAJEN0o5aEHBAUGxzJ//unRzdnsK+VsHaAaJZEV/nWpQy269DOuvF2/fPVNlIns8GF9PuoZrEQ6ziP+yJprUd4sH9Yf81lGHhua5/msMsLaefno/8D+LaF4GNJ2Fw+MV9rhDt3ANvy1PWACSXeNKvCwogG1h/XSdu2fO5zn9s7xieW8ecX4IoCVOiCxxGDlgzJpQ5LzOFiehhkY1rFYpzh+Hg13UMueagSjbxdV2PLy0kaOVI3M354+CydKxswZLwpb4xMI8xi5ZthQxdFwQ/8wA8wn8+5desWv/ALv8C3vvUt7t+/3xeKuZKRdehhLHvpDhPclHCnq0i5qtR13UcYX0QBKBQ6nWLUUJiaRjxr3GDr8dF2HW3QGNydGH3VWWxwsXxjEBpvqQ4qSusoJo4meLp6wYGlN2ZvMdWOBpR+DCWYts+HpjZSNLLih6yMalKsgWI1Mg9vQoKjds/LuAt92xpdS3uHB4Z8RNELpYuWGZXengH7peCL1sl2Zr/RCjH4TkEtSMCzBLUojlIy7GpTH6MxPvgQPWBEsWIvPggfI41hsBUtL51jms4urRsKX2NNiVFLl9IwCIalEf6nzxsmhefPfqxDxUdXEtmS/E+jxTGKjI5nbt2KnmlVsX7lCj2xuXoyZW+eWJQlfiYiIDEiNSbkuniR5jQG2wxVklSsy1K+fnxPrhrW9+8haD3Z8Fjq3IQIhmeEEHj22Wd7XP/P/Jk/w0c/+lE++tGP4pyjTbjhQ3kcJWnUWMtF83wRXXZW4kY3o3e7IW/vbM/70HsfiSQJEsEmSC8QjaXVJObgFyMQPKHzK9qWJNE/z/TwT5LkuvbFrgHL6p+2KXD3J7jTAtONfbcsoo5djSmy4omy7WGDpSvLpxHYavySELorlY1c99B5WIqHUQDxBOmY1yecNG9z1t6NRnY1kN1Y00F43j7g3vwN7s/fovMxS+VV1u5l+r3vml3fZVui+lSsx7mkxTFoitLSLSvm9z3XZgn/zwfgjkO9P1Cs4fYzT/P888/ziZ/66b39f2Il/kG1MxHqGQXSmBTkEsszehyOddY4pm0q7fhUHx8gQwDV/r5lL5pxn3KdgH2+xHvbzUxl1M/U2b1M03tPVVVMp9PeHzq79Z2dnW30/UoHQMYtbYEGjVrJQ0DFmwDWBdeLi7V2UdBuh3y/2W7ULloOyiLWYlfBqsWoGaQ2ExOBQVRemmU9uGWKDFDO5bq6k1bR4Zifvb0beP1338IWynMfu4lcG02mpqNp/ZkyJNbbSTKSwkcfd6Hh3t03ODq4wfXp7Yc7/B+SNHteiaJ4Qmi4++AtzsIDSnfAwfX3U0h8D5K4X7DKaX2Pu+dv4kzJrDimsFGrftRD6JHGAv2hqt6jbUNRGsCjYgGLaIdISWkrPvCDU97z9Fny+Ip3GuL1GyQpSE+gTLUhbt64ubc/TyzjzyQiFEVJ19ZkV0KXpGtrC0KzHF7KFdbFsIgSSBRyyt/96PUYaxynhnbOYa3tpeuHIUWHOIUVoxnA9qyYY9XUGMN73vMe/uW//Jd8/vOf5zvf+Q63b9/eSNlwVRJiXdqYynn86WXGdFWK829tRRtibqIQxpW3Lr47vpeAYvsc/FYNRqHTgCurqJ0lwb2en+NkVZd4XPBCXk05puD0jTnf+b17FFPHtfcecng8BfHpe7f7qRd0p1//mp8af3ah4WwZ88kzfYiD/5FpDFhG8azu5nS+6V1ijUi/xkGpw5KlP+XQ3kiQbLr/IbzlHh8l8E+hXS4oREbyT4Sbo9h/QDHpePX9CyacI94SrCL7HFE073Ht3+FF2tkTD/VAPAVz2URFsdYMEnaP/+xvY6fbWZrrEHyUaLdM+NiVbWw4GufsycVP1r0crrTJdkLnm/6/21zrjDH80A/9ELPZjG984xuEEPjxH/9xJpPJ9n4oecXt7ROAcWVMYXDJ4fQufWTIIfOkTbfAdRLA2gmx8lbA++ahmJUmqMcGE0vdAW1QiumUobax0i6XWI22o9X5eMwMUoX6rKF7oHQPhHrepbS8iopnFcUf3xePj72H0cb6jidZkICaLrXPxpp55/6NmZeAWqwUHB/d4mByjMmJ/iSAyWw1jtOIULqS64e3cHY/1v3uUlzF7XJBZaP8btSmue1ixYgiIKXhcNZQmCiwRNtOfypvkCCYZH9Jq+HClffES/wQc+HcSzlDciGWiPGbC/kW7FYRJb0MI0LrPUEDdg3H2GYIywEydV2vQDsrUX5XlUw0embYS4p86xGRmV566SX++l//6/zRH/0RR0dHPP/88ysxBysS32W6mAIcjCuThwj0nhp7+VCvGKd6ACZh43LBYROxXmMr8BZrwfuanUxx4+7o7jukUDApYjcaWNsQOEj+2QDBe+g6HBHXv9hi9AgkymRWURwbbKkUlSV7uYjm4iNbni6bTH8DDdr4PY8lECREWwar6/idl56zcdsgqZLa0cENTpp7dHWdpNZVSTieAxYnE46q6zhTxPfyXa4g1rtdaoAQojuJAtiYGlsUlYLzBuanjqdmggmGYDwRgnTk9OoblBw6xvbGt++8vbc/3xeMvygcGrKEriPpJko1WU267EJeYeaag7g6gvcYW8AWxu29X0l2tR4FGfu5Kp081o11SSwrhMDJyQnz+Zw333yTN998kw9+8IOP2BdBXDny49feFrGV0vtQoG5qXvvmt3hwcsI3v/k6xcsFh9P9KWcjORTBWWgvNLyv2nDKqkRSUj9RoQjRyyUQ8Ai2mpAN5m3bol2LM9D7Y6+1+SiUZynnNzp+zyG3fugI4wKzm2UyDMY0HDm18taZNZePlu7RHs3rU/oxKYFxDvx3jDT/UKJ9wwwCQ5AIa2UXGYDk8eJDQLBokFhl0w3Q6ruKUG1Q1rpWfQglA9BqwVjefKPkrTcbbn4oupEH0agVADGAa81AJkJHqrdrIjvvuo4vf+Ure3vzfcH4QQYDr41TPuQcEVQ9Io4LxdA1ygdJPGU7CLngSaTM4FVjkq22bQkhMJ1OuXHjBsfHxytunEO5yMePRV4WdX7jjTf4+3//7/PVr36V6XTKBz7wAd73vvdt9+G/zEZK8FPM1dMx4owXTHVkdG/fucM//ZV/xle+9jXOTk/5X/21/5z3vfLKXqk/GjKjBCziEQlocpW7iKwVnDVJfQarhiJEw25HQFwBxtC2HdYa2rZGO49zhljMfSfe9ogU66u6G/DKzz4HBOxRwIsOdXHNdqY/sg9eirJmliumZWlZJa/L1bl/J/hpdpceFkxARanbcxb1CdaWIKNkepoE3xAwRujwLLozDopDjNh3jelfHPQliWck4aePn7AIcPogpv0QzogQnmCCRMiN7a9xqZ5aYHZwkDLhWs5OT/f284lm/BmWyCkR2ralKiIDc65Ikr/B+4C1l2P66xhn8B1t09C13YBPQu+n36aix5PJhOvXr1NVFUVR9P/Gi2Nd4r8y7VncWcHZRVkj+da3vsULL7zAs88+y+3bt2mahrOzM65du7bW3tXy7Rjr0iFIbxTdT7Htg+mUoixYLJaINSmx3facJZBkU4nVr1QzDr1DRd54XgykK1xMxmYULIJLmTA77zFFRQDm8wWTSUnXdqABIw4fLoOuXp5WDXRxBL5q0duyIuHHb8eH25bRXkmmSUhxbxuwhECqEqdrV71zFJVUIXqyeDrvuX/6FnU45+bxc4ixURNgWNwiirFCR8vds7eYyhEH1WGyybzbhuntNHYCUASVJjllGF5+35SAwZqAqkuFlLpUsGdT+AohMG8bDm7cZnI4Yz5fgCqvvPLK3j48UYx//aWOIZnJZMr87CQWyADKwmFEEGv6qEVdQyDG9/cRpxpiiua2pW19PDRcwfTwiCCwrGvatsVaS1VVHB0dUZYlZVn2ebr32wxGhs0t9oHt92W5qEPM5uER0GTY3nxeHldIXknee1566SWMNTz77HN887XXePDgQc/4+z6N7CP7+inEbJbOVBE6yHlJ5CINJH5/NDvkxRdf4D9++Yu88MIPcO36tQtwdMFKSectXgXRBaI++02s9HeYgziJRsA6m2CeQGeUaZPSV6tSo4SiJARl6VucN4R6SZHCAVVy4JNuWBRk7ec69faPrUNK6XhzOucR5ALRALuPs0tat6qy+6reppJa0hiwhfEEGh40b9JoTY4gzu/ajAIGhz7sMkLS93n9i/6ODMsQUxdYk9IYK3S+48H8HtPiiOuTpxCylh6GB4hwWN7k+mTB6fxt3jr/Drfc0zhbjaChgAm7fIq39f0K6lK61OJiTWCBID5q3CFCNl5igF8QUAmIxiJOagzHR0JnFpjTuO5sUEJK8xrNZXFubAgEEc6Cx08OuHnrNl3X8c//+T/j1Vd/kNdf/9bebj7RjD+TiFC4YsidLhJDpSUmWVIfekhivZ2xMbPrOup6CShiHEVZIUFBDOIKVKEoC2azGUVRMJlM+t8vQ3VdPyTMk9XdkGSfEfY5fD0WjDbmJ0t3169f5w//8A85vnbM7/3e7/Lg/oM+ZcPKPYNx5GLqGYWO7tkjgkqG0aAsCl5+6UXe88zTvPzyS1TFZuWwdbI2lnoEQUMN6nt+tG1+x26vXdfhQzSSq5AMuzEdt0ewRREFhTRnbb2k7A3BSerUgf3tjg8ZY8/xmvV0G1snZiz1jRlmnhXdrnVIL8FHGs/+Ji/OaRqS1hSE+eKU5WI+tCfpAEiHZpzcodGdB9wF7y6j3jkgy4zgnCigGZ6ePc+BO0w5bTTBmBboUISpO+TW4dN03ZwHy7foZIElrxsF0QQF7gTG1jo1Sqg8nFAr66ifWokVII7K61w7eApLgcGNFkUalypGFfAR3xdFveGrX4bDGxPec9AgEpM/Zn1VSHiW5HmCRoXp8XXKaspyuUwV0xpOTk52vIFITzTjH0vQ1lmybTd7ORgRjFi8rpczG90/arLrAm0bsM5ijcNVEyZFGZN1Wcd0esBsNuPg4GCvZL+t34vFgvv376/0+6oHwD423Buzd3yXjc3PPPMMzz//PDdu3OAP/uBzWGN4+umne++jcQTvZVMooBC6NjKISw5p/O5eeO55PvT+D/DKiy9hkuSz71nGlAQxSADVZFSXDPtof8AWRYG1WWqMz2yalnrZUkwqLAanDqMmaUwGl/K9C3Evd8sls1GO+jjLOXE3O15KZCNZxu6n5CFQiPF07oOZrtZ01gIBtRy46zR+mRjViL8rqUrNtn5tPlEZHTI6vrY/tobPRKIL4+gQRWBazTie3sSJQ0JMc6A6zjVkMOo4LI/pjp7lOyd/wsn8bmpneEaQzdlKANdqh2Nntk/TVorGWA6F49kNRAuMmvg8gZwsxmgs6elxBDFJa+v43FeUF3/A8vSr0T1YZBCWEtjXn7FdEIJxHBweJTi74md+5mcxRnjhhRf39vKJY/zbpP7sKhkjdQNWBmnfGIPXHIU7XJ/bAwghboK2C1TTGdPptE/LO5sdcnx8zGQyxZiYBO4yDDuEQNu2NE3TF72Yz+crwVIPRVufrciWnCXrMQMAN2/e5BOf+AQAp6ennJ+fc+3atZWawP39IWlKZvd4s/9C2y6xxqTow4tp3Lfrx9f46I99hNvXb17q3BBxIA4rIOIJOnj1NE3TM/4QApOJwZhB4vddYLmsOagqHOCCw6jEalricIWj01TBzHtC12HKwSivIcQSeSmP62AQ3Q/vwfYAu+2T09+9IvXvvj27+l2yfeI7NcZC6ziubvUaWN+FsUvvWru73H3XD+ycDjwy9eHioaBLSNK/Iaf1K2yFX8KcBaIR8louGxrfoCFJzxgQj9MJU3MNr6aHkPpOrWh+qfVRLEPfmx6SHIQWyf0dTXyudR0/cpR2RghCkA5BCMRYEEluyUHAJ/tFwEZBXgKNj1qnEgUryetiNP0qcVYar1BNKKspIDhneemlF7hz5w43btxYf6Ur9MQx/l1kjcGIwXcetTFHRpTK+5v7xTd4NcTF4FVpu46AMDk45OjaNQ6Pr/XpDcZVifZRzsjpvadpGk5PTzk7O6Npmj5/99h75lG8e9btFcMXbG7IMdyQytepKh//+Mf5zGc+w2uvvcbTTz+9ptrqhkvq1r4KMfd4u8BYu/eQWO9TpsI53vvyyxSpQPyK5LjlgZo2vxHFGN9DB6oaDfxV1RcSj/aYLAg4VGL6DY/2UbsQPXqCFDG9dNtibSy1aDUWcs9M33eebrlETEcuq5TjRgYaDr8sgFz5LY/KV64KpmPwZ/je+w69VDCTpjVtOJhNkbkCEyDnukpSf+/IMFoTo893QznDxT5pYxvvM0P2OcVHZrIidEs4lfPIuFFUAsumpu4iBDtxM+pFkw5Ej+OIIzONxcsFwKAqWLO2t5IAY3PUfEaFkgPIMIBUvGjFu2m4L2ophsKWtHWgo0FNQMRgcYhCC8xFaBSMNqAGDR1GHE8/pRxdg9rr8D5HSlVfl5nAUhXb84zYF2st3nvu3r278w3DE8b4YTfzN9ZibSr/R5zUsiqQ8+QPkVVBlZj3IuX2KaoCW1iwHTeOrvHU009TFEVf6u0y/ckeM/P5vPeR9973Wsh0Ol0p0/bIc7DxSa/KrPQr/8xQz7ptYzqdcnZ2Rtd1Pc4/PiC83+1iNjwobpDQ1fGAHPfnonGMDpTe1TU1uRftUYtHEPEoLdnUmtvL784Yw/n5OSJxPIeHR5jkC60oViUZL5XOKDhHxvaNxBw9TqLht++bBuplC2JT9s3ICFdhsc11E1GwKwAyuspwSbzIjtdkYtQqAt5zeHh0cbMKIrHqVllVHFSTJOGG1WyiWUrWLVW9dH1VjISqlY9zG/HPdRQo50ZaVyvEKNmbx2vLW3e+zbfevId1BTdv3+Dmtdv0RuhRZHM8lLJ7ana1TgdP9sjKY9P4LoNqjMhn4AlIzADaO4WEEdIQokDk244OnyCZDvCYIHSq+K6lSa7fQS2iAdUW5wIvfEAoisDbdZvSwETByZjIm6JTRMAZoTOG46pinKoaIvN/7bXX9r3m7w/Gr5rqehqJLzGf5taCMQSNofiGmM4hqGJdwcHBAQeHM4LC+fmCm7ducZDq5MaNOqiNMFLFktTTdR3z+ZyzszOWy2WflC0zspzxc4ybvxORkaqjRb1VKBfGSewGiCsk76W2H1Pu66VztkiU3Hy36CXry9LKtWteJ3vvUUtAKIih8PHGQY0faypRyxqgv9yGoNhgMSGyuEYVW1U9A3fGsKhrpsb0RkORmAb8wE0QO2ytfv7Hk7JBF41sY6T9fZlJrXyaNJAYf6AbUM3OVtMcee9ZLBYs5ueJ6ZiVnPHxWrPCktc1wjgn8bOY20g2hj4YZzezeQbjN4QrIUa0RorSezY4SJoAMdpDL9akBIyScivJEOHcayfK8H5WtJr0+brHlY40mx6GGWs6KciNWBcgBIVkqPUIXgIuHY4eg1WFIBgTcEVJMOCbYzTkoM84tuCTBhQCgkeNYXY4i+9Acp9jkaevfOWre97yE8b411Xd1e9SOLPSG3m7ztN2nsYHWl8zOzxidnwt5c0pos99VdK2XcT3UxGWvDZWDUHxr5zRMpeBy+mXs3E0M/x1bP2dDH8fPA5YYf5DwjjQUbBZ13Wcn59zcnLC66+/zs2bN3ccqKsawvZnJ4m5XSZIY4RPPOSQd92mCsYKIhbvFWc8QdsevwXpIZ58iE2nk2SXyS1HRmQRXHDYFDHaeKgm04i7JueA0HU4Y3oEGgTrHHaaGP+IiYwx4lWMphcX2LV2983CWNjomR8jKVSVIIqv696WcRFlLXV+HtewcwZNxevXr1PtNjWVNacIEnwUt+fqYuzPI9lcQ0E2E20IjGoUWxRlsagpbYWI4+zkHJ+K7ohYREyU6nNBHRLevwUr3OVUMT6Q1mHd/F1/jRBdNImuqCISeykGY2ys9W2yz5kQxKb0DUWMJXJCUMFMsqY1ZHsNwQ8TojFHkS1K+rWg8ZApywk/+ZM/zb/5N7+xMcZMTxjjl9GpO345eb0JbdNwdhJovMcHpawOuDU5iCoaynQ2Y3YwW28ZGFf5WaWmaTg/P6dOPvxN09A0DV3X4ZzroaF1iWhdwsmf57E8VlozMK62H20fr732Gv/m3/ybvvhKCIHXXnuNn//5n1/r3+qhtf+5URPt2iZKX484rl1ne2TuYMREuMZHqc77hPdqHHNVVf3hFj18GiaTqscVshHUqmBDgUm+7wFDUVT40PUl7gb32YFtD2x8OEy2j1jWVPSr5ktc0yGE8UJHzMAgDQHpuivMfZKGg1JVE4qyGAY5el6MTL8iPLm2ZvbFLxg1Kb6EPjtpj2nRgXgIFisl149vRyjEG0KIEnCEcUI0IkfQH6WLjH/rE3vdpWe6ENM2aTqkjEhvp9JU/WvFfpPfuZA0pQTziWBTcF0Qj2kbnLGo2sjLxVOYirvNFH+u3LpZo4T4vLToFQVj0MS2XWG4du16cgjJWqdgTcFHPvzRva/hiWL8kVaNUGNIwhpL52PSI58W9Y0bM2azQwTljTffpG09QXXkUy3xlPaB5WLJpKqAQN22NHVN03TUdc35/JymrlGNEbhVVfXFlsf9GPfnnZb2e9NbYoiyfoD1fYuzdf/+fb74xS/y4MEDDpO30nvf+15efvnlvs1xwNMl856hCKFbRmhLpK8t+uiUvL5zNbQ0GDGpZq5R2nZw1e3XQbKltG3LYrGgLAuckfG+R5Jh1yC0QUEc1ll812HE0LVtdMnbkgMne6FfJkhtdFO8TyUm7Vob5faxr07jmKeuPn8sZedfd0E/q7BUUcTgwxhoJP0VMpqsbc2Me9xrlWx/5JroQz6pTZLONfc3QzBYkMjAVS3G2BhF3Xm8V2YHE6JNQobbsuCjSkyIdoUFmJj3uNh8z9BTd3N6FiGuHU2zpICEeMhnj68u1HQPTjhwDqMh5hGTJZ1c4zvfgftvNEx+9BTpvdHSuEUJBlRiHiqxhrKo4vsZCaU+dHzxS1/cO6QnjvHvE0InB1Nm/pjZ7IDJ5KBX26IKrNy4cZ17d+5m8XA48U205D84OcHYmJdnfnrC2ekpdRcwrqQsHAfTCYpZkeS3Yfb7GP3jPgR6ECJluBwk0fw8+kIy73vf+/i7f/fvUpZlb3/IBuhsLMpM38jmAbKrBx4D7RnWlYlVC3KVjbdOPRMx0TCWPoxGXAcyjRWzrCfUXcRHTQdeendOay1lWdK0HV3Xgkbjv9joCCDqKHyUwusQsOUEWwglDrAslgvK4HEm+miPoQNJwMjVaIAiFA8yBpB2tyY7fh+3qToGgS4iIad90BTl2qs1oyvGz8hF6JEhmdv49eblMb5v1f6bD5vxTYEwcvrPMAqQjOk29csnTN8g0oENSIIU1QRQ2xt4gT69scglpRYASU7IZvOIH8/KyscyjEoYHUCqtL6iOZ9zs3SoEQovICWdg+eO4168fTil8ksCLo4xniCQgcUAZ52na5aoXusP1jjXni99+fN7h/TEMf4xrTOkg4OD3pVv0yNHKFL1mhxdF0JAg49GMgMnd+5x/97btE1N8B0icHR8g2IyiRCD7MyN+F2mAYjo1UZdnZ+cPO7o6Ghjbtq23dAOLku5EHjb1FTJwJ4SEDw69d4y4wM1J2cDY6LXRhJ/UdXedTYfbnXbMp/PscYwOzyksI7COayY5NETDf/lZBKLq7sCVeH8QReNcuta/tpvlx4K0V+9tU3MERTsIPl/15aU4ulodAEKpu/OqpaTDbRjHK7RLYeVrDH3/ikkz6cw+jrgaSGtlkJKpmaGlSImppNYcjHbkPpDIQVIiQqqBtQPRtjRUSrhKpOaolFWXzer1fZ0uDJpF0YT5ERI2VGjB5jVKHBaEYx4xJR4o1iUF24bnnrmkMqcE3OuxjUtyaMna1giYAO0KZNAf6xqhKCeun1r74ieaMa/7gefPWjWKcMv3msymishdCzqBfXinNB1zBdL2maJAM5EOCEyRE0udIn5kE/e750DQDWxQ8kbJbPegWHGBFyydX7yNdGYR68xXyohmSiEgG9bzNQO0s9jmB7VEOuu5g2YJEEfslSXVOV8yEmE4ZqmYbFYxCR5CJPpAc4Oa8NITMxmU9bLTpWDqsKY2P+2bfFNQ2VMX6xFZDvkcWmSyPiCRAmaxzRHD0UjL7VFe07dzAlEAWhFd5AYMev9ak581bBSILCHNonutfkRMX/Q6poak2BQEzW6Qiqemr2H69ObGJlEqV978DL9XyPjzwcRgVqXMYZhnRdsO5j2T0fsk+z/XBP0WEhJaSd9fp1h0On6BCqYBGWpRFN14ZZ4jtMaiBXkIKTAtNUD1xlo6iW+63CjtDBG5MJA0CeO8Wc3q6sw3ozPnTy4j+9aTk8fsFwuovdHaLES3UBLZ+MpbeKiCr6NrlX5JL6MsfPdptRfIaSFlKRL6avE9nO2K0cRMDoQUjDUlo26i4JvCb6LOXSEtEseba5EQUOHJ3o2DNWXCtouYayaSy5mN016jS+7qfqgyfieCt0TGblThyO69nprsGXZQxW+6wh1jUuurck5sDdUSm7oKqQCQSiaCmxHMCGp9vuhnkvN1ZW6k5ioAqKcN2c8WL6FEvDSkYwRvXyLRKeInqH1rQysf2D8m5H14zxFg8YW158NJUECwXiWYUGnLcsw59b0OSbuIM5LGOwOuUsqEAgsu3PeOHuNuln2h7+uXn2JmVuFc8bvdmxLHJPBcG1yk1tHz+BM1dsaJKsNOvQVicGkRi2iylw7/t1vn/DJjwamIlll7tdeD+lodCmmbakXC2xR9HNvrB1SWOygJ4zxy9UYv0b3y/lizunpCXfffgsDhHaZqmP56JJlTSy0kdDMHr1TTWkLYn3W7wZtZ775w8idvfcslnWMVTAWVxRMZ0dIxkn7tnTr7/nv9aRUeQ72sxUlhBa0w5jqqsPb264GT6dgXQkJKrGmouui5Of9cmXv5tQdxsQApVj6MtpwhjQDEc91wWCCoVUF57BFQTZq+q4ltM2KlLXas4EpXFYAkSDM32w4/+OG4xcmlM/lrfmYwEMhuaGOOrnW5/xLhkZUlTY0NP6caXFEZScr7Zlk3xj3UZL3iqjZsAtEaGRgOVlgisw0/zT9Zy4YkIAXz6KbczJ/wNsnb+AoccfvwVH20bjRd16J8QZQ64I7ize4e/4GIXQrNph4xl4B478SCVYdlatQCTEzbuIbksac3YFB8EjC8GO0+aKz/O4XAh/7EWFSJZdgiZCXoinXW1zUzgimaVmcnTI9PIx2PIkBiq+89717e/mEMf5I25K1jT9r24bFfDHkyZmfc3ZyQrM4ZzqdEEQpraDW9ox+OHMhS70GkltfBv8yxPDdh3l6fifRmwltqZeLuAGtpZrOWA8U7rqOqtpkztmvO7uk5uFuR2w3SX2HEGLulzEk+4jTFHxHEzwTW/TpNQo3pe4MxgS6LucXWmWeGdKKtYRXDc3WJB9+b6JgoIq4ImZiTYJF19S4XtIf9ScdhlcW9lURL9z74glvfvaEpz50xHtu3MIdSl9561Epw1HDX7Dt7WXf/8yoAgFbWm4dvoeJORzaS+tKR6lIM2MzYmKFrLV9sJIrR0apD8aa5op2E/3hUWXZnVPJm9w7v8P987eYHRwxcymaO4HbcU05Wloe1He5e/YmhRxweHSE9Dj5ZaX9h6W4Lg7L6xi1g+F746r4//h6xzxGmFaS4LMhU6mOrskkCpUI89MT6uNjprOjeMBbwwsv/MDeXj55jF83GX//lWpMhnZ+ynw+p2lqIHp6CIHCCaWL0sMIAR+4VN9s/MaY6N4Xa7zp+hp+V2kcmdk7+iWmURYlzrlo9vKe8zrVoB32ICLCYrFIhU5WaVwUPl/fy0uXYEret4BPmTCvlixsG+W+dL6l1cDEuCTRGkRKEKGwQtM2W/u4CmFlFhiLmDjncMZi22gk7qRDnEtQUNQmm3pJaUx/YOREdKun2UWunKvku8D9186ov9Nx//CEp+Y3KGZutOnfRUr2kHweGrEcTa4zNcfxg5E3V844GT/vG4iS+waitykqDEbhTfJGkeRSOy2OuHUUy1/ePX2DZT1nZo8B20+9avSxnzdn3D15kxCUZw6f48bx7ZQc8OEw/quQElAJMR8/McFfSHstr5MskEUtJ2A03ocaptbz4R8yuCLDUgMn6t1TE4kolXMsmoazO2/jigJXTWjbli984Qt7+/lEMf48rTkkfyMSMATeeOMNfFczOzjgeHYDBO7cu0cdWrTNXi85z/e4ZYaXlzeEczTJ7393kfN3nob9tU2Cy+mnh9QCgzI9tGCMWckhlCmEwNnZWV8Q/sqkGguSa4SZLkSGLmxurLnVYAxINnwZUIeiWCto6xlmZ9dDh9B7EaEsCpyxOI0ZEztVnBtqAAQCTV1z1CfGkm1Q8NVJQArAKrluelbtH4fEf3VK0ESqBxtzyqeumvWdkRKUjSdBcuAVvd87Y4kfIlS6dqxtBDRKIKTUB6Wbcnxwg/uLt5KmnXKgjtpWlPPlPer6jGtHT3Hj8AaVlCmnUBLlZLD7PG7K/vtJCdl+aCdNJ8YLKaKGYAIqhsrBx37ikMLWmGZBLnuZBYCc4CJ7SDmEQ2d58OABD8qSa7ef5uz0lN/6H39rbz/fmdF/F2lspNwG+QAcHR1yeHBAUbpewpNkcFy5P941tD36KUif5nkMkL7bKM8Ql6I7tY3ePCR50Y9zlERyzrFYLDg7O1vJZbNYLDg9Pd2ZQO4ysqj3Laoh5Wt5FOl1JGlqoG2amB9fRtKR5kyX69LlnueOGFqRErhZjTmcOlWmkwkh0AfxtE2DG2SB1ZZ7/PbyJCIYZ7j1yk2Onjvk5ks3cAcuBexsYtF6xX/AKBfTJfqWXXdTAwaLYEeuwDEqdj2CbyV1Qb5XyRgYBEWSzVqikoyka/I/6a9RXOewKS9PPIAKnExSlt0UUNbb2QAMKtG246xw7eAWpZswSM25/GKMnn0n/kUX3Cj1BxPwRteSCiZtyphoFB85bWrKIDqdtRRFQEyC3LKKME4zkRVMlMoYptby4O5dzk5PaZqGj//Ex/a+4idK4h8Y4O5NboyhKgqszcYnxRUxEk5VIIQUFj3GQdexyvS5KqI+RtipjlKmvttkgDbioytSxhrerPQSg0CfPRIGr5033ngD7z0HBwc0TcOdO3fw3q9h/wMT2TVHPYlA22C1iRG1anrD2kMJxqMDet4ukOIQ8BgcTksW6uN7lDkxQdsGa16TKgds1VooSkfVFklFV1osppgwX8yhEIwPTNoWUv4aq1kOIyXPSgfrGP25zLgsXP/ghPIZmByVmJLBILmlkascn5K01BxTkVvYnJn0MI0lFVtjUNOBDwRpUS17e1mfa6p/92stSdYCLtPv7bOUNfgYZBz74mVJEI3ePhITK6q0qImZMHNFMBFDaWwv6cdejuDNLc9cmZ5HoY3XtsY/MGhh8V1DITE3v2qBTWNdeoN0hkIcooKhjeUaTY2EoXBQHoVBOXBCvWhol0uCwlPPPLW3i08W4ycy/iyxrlMfpTuSkoGVlL9Bo39OjvBbuX+jvSglBu/ZUur2XaUIGa7mdR/4W/5lXSvQ/rrovBI9Xd5++22stb1RNxeFf1ijdfAxxexl0lhfhqL9UWm6BuMOiBGjAWssbYgXeN+gF4aKrW4gaw3WGGwbjaoeYrI1Y6ibGiMWqVucpDlLS6T/OTpyY/Wkq41rclQxPar6Loc9bPIqTW+0IqTo112HddJ4hSjcZDiLYc9sW0cXPPUqPQTy+Id3GNRzen5C1zVo6clePFAkqdn3nkMqDs9Qu3dzqJtjzwfNI5NugaxgZDMxGFfQNUuwo0A9VXwX+MZ3zjk5KfnIDwaMKJ0ERDtMsFv2dOyzEShMKr8qhvP5nH30xEE9XCDxW2uTsD5cM+TWTyUIL7Vjk6QskvLBXEGVfow01nDGYe0PgznlAvEhhL5IybYEc5u0n7n6EIN2jLUXXn05ilu0aZYYV0TZVWKtXTTm6fGhZVvCvs3eDU2WRRGTs2nUALqguKqM7CfEsPl6uWTsIRMGVGMFWrnyGIWYEsAk3Fuy9rCj01fCetZhr4t6mLQYVSRIwvh3S+XvzL/B5ZE830GpF0u0C5FxCZAgoOgOqYnxCW3oOJnf75PxXYQE9OMZwVWP8u+Ch2Ccow6KpnrOEAsGaRDqc8Prb8T0DMHEouyWgNH9cro1yYcoBD7725/de+0TJvEnRfsCxj82/ma11ViD5Lz4vSp78fYVEdquZbqfv7xj1EfUXoLlaMYKV/UCYFDds5vjuP1HpZAYvzXJTvDQc5WZQNzEy2aJuIqYLtgj1mGCi0JgaEFXI0r3UaxZWqQ6uzFCt/GecjrFq0dM0gLqmgr6dA66NqD8/6sOsU8mIMmFL2ucjwN6eKg2FA0wKaaUtkASq1hZD4+jbxdR/7ioeRxMjsAqB9VxBiwZ5j+uDWvAdwtOzr7DreopSveI5UyvQLvsipL+F89hwRYVrY1lPEsxaQiCIfDs0weoa8E4tAOnHaIaU1VsfWrauyJ0IVBV5YVy3xPG+C8mEdNLoD3Tl+iyFqX+tAF33D9I1/GqWOpse7H2x0m7FlT/+7pk13s6bLQ0GpxsvfTyGURH6uaeoDnvG2B3OoiHIdVYDtOWE7yk1G8SGZQxioZuNGebsN16/501FMbiEuNHhVaVg7Ki8xk/VkLXxoLvQp+FMdcbH48+vo4rxHTkOV+Z9+337oMjxu9uZY1crhfDMzRGq1d2hinAtx6luWIrj4GyW5OCSmA2OeZgcoyTgq7tQDt8qIGYodJ3AQkFpUwRb+najta0l3/cY/TOWE+BMthFwJUlUlY0TUMhqUiNBkQarh/XTA4nRJm/wwRDMD5pgTueRYxB8W3L8Y3b/NW/+p/z3/63/2hn3544xh9hyd0bwxiDb4fvc0GOsnDMEVT9znthJGGnzW5EaLuEN/YM5vEsnq0beLSxRxcmTYe9z445ecYpmvsG+vu2B91sbyvfuleFDmFUhCVvgl2M+GLK0xy0ow2BoihT903MZKgWY1uCXuYwHtwli8JijWC8YIJFEYKxSLJ1CETvka7DmHTQRV/FOHPpzO1D8x9ifHvBl70H8Fo7W9ZI1iJWdZPRNWlis11EkhTqa0WNcFbPt/ZPR/9/RymB5DENk0VYJjtKhBLFHKEE6kWLNVOuV89jgqGpPb496wWT8TyuG6oflelnXpLr3uY62uN0J/1zjMGUFfViztTGcNA49x4JLfV8wpsnludvxYIuMQPsLmEO0JgzzHcdxhiOjvaX2XziGP94CW5nmNqrXGb04ovCYYwldG36bDcDH5jeIJ0FDYg+pK/7DuolhC2LdkyR6Y9gDen/t3rdTga9ee2+cfT5VfqSkbtxTdWA72qKUSnCRzkXIwISs32qsYQUDSwqhOSCaQlkP/K9B3HSkpxzTKoqYqStYIOl8wGKAjEW7RqctWjnMcFjncETM4NmdhkNoCnYSoe0zFfJ37R+HK4HN60yqM12s9G7nyeG9QmMqmBteXZ/gKX9UJbcvHkzxkoQNWXdkv9llwH6sdCo6Tji/EHSzDWnZzFMp4cYKbFmiRKYySGSbDV9HqU9WvM65fxdl+5qantcu7qua1R1LSgyZ+k3uOmU5dkDPB2FmHS2WfCO03nL//iZwJ//uYKnZ3VCgvbJ+7Hd4LtLaZpPHOOHTYaZf4foz7z+mTEmFmN3jrZN6vYavxgz3X4BjZhtCAHnHh/T30U7mX9f8PkKjKaHRh++39GYtidPUYgeNkWK2n1U6TBqWhoZki1QYxACRnI1IwUd1doFdjJ+iTpIWRaUpYvqMharhloD4ooVTynfdlgfUAtn9QKCBRMFCCuGJvionntPz5yuNLhxV2WAf0ZjX5uIzbHJtmtjHpuh9OLu96CaxmMth4cHBF+xXsNhuHY9/OodpKzNRtWLAaaMQkdZlFhTUJUF0RMo7gXF9gfiVYSydYPwNp6y7Z5MxhiapuHBgwdJ+o9umOMwFusKTDmhbc8pRNI+jJDPbNZw50HJaa08cxBjKaKRdzfFxIVh6yG3Tk8k499HGkLaAKuLPwdk1WFzwtaTl4WgMbNjVxO8R4oJcPWsoBf2de25+d+2YKoV427G+7f0RSR6LnWdx7mdl12CJGk6g1S5beyqga6tmbjHudSiR49Ylxi/4kwB4qIUrj4ZlC9mStZZprngeoiV1wSL1w5blvRKYsJPC4mFeO6fnxI0bkYj0WUwBM98uUDrGiejPDaXoMwQhmCfuEZjjqNttpGIH4sRxq8eTYVkVmaLGJ+yh/omkkoQQsfp6Tn1ou779M6LNet9CpAgp0FTEXK6kRyT4qzlxo2b1PWS8/PTdO+Q52aj3Wzb25Gm/SLa57mT2y7LksPDQ05OTui6bm3PDlqym0xpF3MwZfq8AxquTUo+9mHL0VEgOEG8YMgCxZY+5TZh5WDcRd8XjH+FgSasMwq6q6e4SAyj7n35kzopxLzjbdtFQ1+IGfeMcVhXUk4O4mbrV+fDbZGhmzlcPjHVEKjrJW3ToCiHR9di+oP0mF6OW1mMu2EqEVguzjksqwhl6GqeIZGLWObo0FTYd3VQT2hrXGL8u8KG9lHv8ZLyr6tC09QEY4cIWikQiZtHQzfUah31GFbHKCJUZUFVuZ7xWu9AY+YeV8aMnAaDEUtTL5maeHA2XQfO4lOHTIJ+xMaUEVHzCFwgeG2ONS2f/sBR7Yvn5kIlSoRYjETGP0RhK4TAQVltMDRH1EpW5nN1kuPnScvouo4HJw/wbazTEHYw0ccp6GzSkPJunfELEr1cNLL4yXTC+dkZ88U50QPJ9BXEhne/KqTkOdousGwiA5ku47IpIty6fZPp9IDFYpECIMdrP861LStacbRBKfoYI48l8PEfMdipoo2Fzq+Ui9wEe2PblpyC5H+W+FdINaQNsBrMZHJVLjFJhQ10PtbI1BAx/K7zEUN2jnIyY3ow68s35g3zMBth3I9BGQ/4rqVta3wbM2s2ywVqDAcHU4yZrrQhSSolMbRdvDVKIwXNco6fTigmsyhVXYUZZzgBkoSd/9oceyBgugY7K/uCFA9TsmS1dUPbLvDWUUBKDVxF5m/ASGT8unb/ugG+cIZJVWIlxEyKapj4CUE9XiyTyhFS9K8ATTPHmiQ8W4ubTnDGjdgTVI8B+sjzqRp9snNW0DF+PMafx9pgt1xw6Aqmo5TRAlgxTFI2y/5g6WdmrPalLwJgDTcOj6OxUrR3Yf2uksS1btXQWg8+MD8/xwclEJjNDinLMpZtlDCkO0iU52nM1C+CRa5mH1BUhbquOT29z9HsJmenZ3Rdg3O5KHoSPIhwTz2pWNQLCjvknFJtqcoGrKGzDiMtqXTvxvPi/w2Ip4QkmP7PjH+Fgg9QbkIlhXNYa3CpSIeq0ngfmb2PeWYmB0dMpwdYa1ATizxnLPbRSHujpWp0GVTfsVwumM/PCF1HVZXMZjOarqNrG1wx5aqYebZPOFfQdp75fM6hK2N0Kjn5k3ARQqEp97kQ4nyyayNEZtW1C6w5hhGDvCqt3CexhKK4ApKHUny+wYjBWtDGb52d3E1rYDqZJJ/neJVVi021boMIk2pC7YFC0NAhIWCK8drJATu5TsPjKcazMpVm04VPdS2xGYNUWqtyNJsxKyeojDFlwWVPll3Pze3n9jRi1TYZ0LeBDI9jvFcmEUjJB+P82NxpRGLtZJtz9F+ggT8M9n+JDmKMYbk8Q44MZVWxrGsO1+IJVAETi/y0yzlBwaWxRaBqydn8kHphuOmWSHDsq1VtiHOSi77voyeO8a/mHU+fjYxkIVWhWnd5s8b0Rq3zszkiDdYVTKYzJtMDTGL0Jkn4usbwHxXfj7V9PV1Tc356EguCmwhFuEmJiEkBGj76L29b0JfcgxHiKFkslywX5xRFVEONSW58+bqdDUQIjFSEZpeXSW5DaXBu0he9FmRFbb2wv0lqGwN2TdNiZ8cRqgJiTd08vkEajk/Uftz5kC3LgoPpJFbRImoHRiPOrxprMZTlBBNij8/u36Ecz8pI3R/WkW6sq0cm2WS3UVpcDdnL7yobmp0IOTVyVP2lPyDGQUUKGxlAswYrmtfD7vz97yzUs40iY0SyJhT7amwUAKzk3DwZmroAtLyiK+dlrlOFqipZLg1NXXN4OOP+/TuEEPpUKLGtOJ7y4IDF/BQfNFbVkoCkkpbf+BPPN7/R8Kd/EiqzVeQfP3lFCNhHTxjj1wHq2HPJmIagCkWMUE6mIIayLDHWYVyJdUXaDBClOvoN9Th8gAVo2oaTe3cIXYs1sfqOtRZnXW+MVqIPfvAe0ZwULrG2yzAbHbawtZbCWeZnpwR9EL1zkBUGsIusWIxxuLJgdjBdYSwb5D1dN8faVCWr34tXma/RAStA19H5ForkcaJRPQ4+wRZ4MpSXX1uWYkXAOcvhwZTCDbAPCNZbJEBQwVQTxFgKa/CqNIsF5cjDZxxsJclA8jj9wS9uZ2DkPcw40qgEtvK8/JbWRKPhp+ajWUgh0GhfUWvAyFfufheZf/ZcU2mBnENqkMGSU2M6uAy9p8y72O8YWQ5FUTFfzLlx4zrGGNq2XbG99IKKc1CUdE0ThQuJMSLSFUyrgmpSEswZsRLXnueSlKELyi7CE8f4udDwspdBGosrK4pqirWxhqWOVlVGzqJxeFO6e5SF5LuOZrlgWhUURRlzwJt4yKyo9RLzxvRBRQybcdWIvYu1JqlBoSji6w9hjNPvJ0kAcfANTR1SAe7V540lYLTFd8sB31QPRAPqZXl/rkGU+BIhdDGziS2S5G0QKehClPZVm36MK30XwRiYJIinvyCdFy7EbIhNUFw1yaMFFN/UHKwdbsqq0+bj8uq6Shvjw0ZVR371QxuStaXRfKzqC+P3lX6mj9UoKj5lubx6/94J8rQErXFiQFN8geaMr0KQkAQMQy5GBO9sv8drXvGYJDyenJym7LYTmqahLMtRP+KuCQLFdEqzXDIxI41FA0/dqqkOJ5iJJTRtyuuzOR5JY5cskFywlZ84xg/bX3AfcbtnRqx1NG2gsLGK0/jKJIMxHAH5hH0MiymdLc45ptMJSPKA0fET4/+NibnIQ/CIzQXTU1KttYWwnQZp0lqDtSWq21OL7pIaVZWm7Wg6f6ERybcLjKbkeGPl+0rTtuoL1HUtnQC2ICKbFmMKtJNYctEv6cX9MUCkCmIoXJYUB8YvCIW3iEITArNJ1R/4oesQ78mWkG303WaGmXr2Mxp6L/Ouwzn9PVl4GKTQfBrWfgEKU3d8tVf2TpEoi+UZZ81dbs2ew1H1AllEgQLLdk5AOXI33rU+9/xFlGU7p7AF1k1xznJ+fs7R0RFvvvlmX8J0oLgmbVnRGEcTlNJIrOKlNbNCqQ4tb9+Dm5OKgjox/1UhL/KjoR7IRQjAk5edM9E2yX//ZEhMz9zjA/lf/naVV8nq3D8yGYm2gxC0P1CG/g9Pj9Gyga5rV57fq/CyqSWMLlpjuBm/tQhu4x+4eAiN/+HIrnD5WVsflfreLE8pXTkKHsps/PIU/cjz0Qu+a6l9RxeU5WJJCIpxkVFbCXS+IesJm40NdZJ7l0ni8eE0unW2IpSj+gPdso6G3XHlqdHa+J6kfKYJbHPGyRpigLVxJFhRQAmcLk+4f37nkikw3h06r0+5e/p2hPt6igNVPKeLezw4u4OyP/3K46Ss7bVdy93Tt5k3p4BSVRXL5RJjbJ/2vO9xgqmMgrEOqpI6eIYs+4Lxil8qv/+7JWdL09s0Ro2s/C1JLQ5b4pHG9MQx/swwN6CPS2DghbPk8O4EKgxqU2YSyqBOsSIiPTxpdCe11qFbX9hwpouAhhDLGY5EcpOMRl13+Q2amV/Evy/5j3gwan+IJIa8RQVVVRaLE6piSrYgKtsZ0QXTk54Rf3ZdR6tK07bM53Pa1sdMhkhyt2whFdUeAxo5eG1ZL+m8T/2Rvm0XTDxEyhJnXX9vW9cYDZjvZUafaF1UWIemVGONBe89fuQeSrLvZGQkgg2BeX3K6fIBKu8eE91H0ePK4yW/4+xPZfr1uWjOmTensdbtu9Gn0dpvu5aTxT1OFycEPEURBaXlYslsNqOu694tN/9H0kTNZEILBB9rDUe3TqVrA3/4tY433vJx7+1Qmcc2novSTTxxjH8fRVx8dTv0hjQUK4JoQEgbIqdkGHE+DWFIj5BKyvUGp3TYjF7p6Lf9ZK0bUkZnhtofQBno0b73wadDKY2lLApcUaTC6Nmdaz1HyS41RVmtiZf+me3/FNIcrJ176QQZ7AXKcn5GVU57D4Zh7q9wYK6t8eA9nYZYNrNweB9oO08ImTn7Le0ndqbQtR3LZZMOsSFEyKhEVXwywZqhglTXNKD79JTHc/gzek2ZiT1MSgTZ8ntuxauyaBrqtqVuWtquw/vQY8TrN3rt6LR5qH68M5S0Eclway5QLHiN9RwDHZ4O3bneH3OPRhK3dQZTCPPlGV3oMNZQFgXz+ZzJZIK1lq7rkp0wr7w4+66qCCZGhguKSkdAMK7j+VcqTk8cYmwv4Wf+stqX+M1FBt4nC+NPDGcF4hl4I6p+C9yRvhPI2f9ioLzHN8ssZ8drwlpKKo3pVY2NkYKQZVrIJc3H0vpOEhBjEeNQ3/aXr96V3NewMX1AV/dlIgGwBdPDa5zce5u2qWOk4AWi9aqRaW0+9nU2aUODFSTbGdJvQmSUCv789ThHOCJDtsgVVXCjuhL85bsWsQ57eIz4iPl2d+5G7P6gAfExj86Yk45++gB10zFVcBKlq7IrMAqLYLGTCjWCUaUNnrZpKILGtLhqQQwOC6kI+OOk8TvPgfdXVTTW+9Qbx4kBd2cKOjskdDEOI6hSldndNgkN2kcmRMhEzdU78g5QBEGSl5EC5LKnbaq9a9N+TfvlXULk8l6qzJQjd4077evM2xOmMqUoKx6c3sP7I8qypK5rynK9RoBijYOiYt7UlErc63RMg+GTHz3HWwNliV02dBKTNmcYwmoqBSoGq57uAon/yWL8wPg1r2O82RNm50IYCdhd1/LgztuxAEdm/GPwXATvA0fHxxzMDlP5tPVnX3bVRcZprKFrkqE2vVSFFRtlNMq6vrKQYbigKCum0xnL+SkuJZ2L8NAYANj1/Is+yTTyBxFh81hLf0lMcV0vzrl543jAIR96F6ZJUOh8R912MRlaMFTlIdXkCMERmCcNRwZ1ZAUSjX+0XRdjASZxC9h0UHuBwjrqtsFJjFjtmppp9raQ8WHH5V/xJWmwZazrpo/U6NC6gnEFxdFRVGgT7OCKcoQPjaXRx9WJx0RZuINBBkk07HcZrn2X+y4iTKtDWAjL5hytiHvRWpbLJdPplOVy2adthiyfxY5ODmY0dY1PglV8JYHrRxVUFg0WzAE2LEE7RFPakLxuNmJLttMTxfgjk1wz6o5+DSHi0yvGkRUatlrwMVCqqtzQxNpO9KFjfnaKb5sRuhYNg5ODQ2KCqcszPOsczQgqWXf76q+zlrqpGbtERpu0YXowo23q6DNs7Z6xPiwNmRoHd9Y1dTN5NwTf0LbNFunmqk8cGKKitL4liCV0HdpZrl+7TlEdE3xJ8ENytt3BVILvPMvFkqo8QMXh1ESTTgrSW9Y1hbGIgdC2OJNK5L1jjCQfotEVUUKS5x7D84Zlm+bFGMqygjwmUpqAbBd5R8f5iJShjN67IgtjkuSNHJ387sA827o3KQ+xpmTR/P/Z+7NgyY40zw/7fe5+loi4W+5I7GsVgNqrqwqo6mWW7umZaorqmeGQJpkeJJnMqAfK9CrKZCbTI98kmUwmE0dmMvJBTVHUkBTJnsWme5qcZndXVQNVhVpQKAAFJJBIINe7xXYWd9eD+zlxIm7EXTIvClmJ+tIibyzn+PHjx/3z7/t/24jKVRhl6GX9ECm/ttZm7uz15tOueIQky5gooRZHisS15MBVGDTXbjl6iWEr8yinOvUfOh2ABQz2ID1QjB8C82t3UuY9O3w00C2f0/ObhQikiaHf680d38p7XmFUYMDFZEx3aVlbk+V9DstWvEgeMEnSLrzFhGuzj/E3H1w6le8+eUEnKb3BOqO9barakiSnb8aZ2TLaHWDOuBt6AlUxRIk/ULP3OBGVK6/tHGVdIibFI5gkJcvWsF6jJFT7Ok5shQfKqsZZh2hBO4V3YLVCaUNpbcjUWdaIsyGI72PNPn+wZTmB0HAYSZcJSmM/CNuBF4khDzOm32jG8xe/XzD+hmKPI+ebG6IoQZ+G38XdUGoy8nRAUY0o3QSjQ/6gyWRCWZYMBgP29/fp9Xqt1gzhmTjR6DynmA5JxYRo/Vhs3ZY1125oiqnia19UJL5GLbplxcY+ZcZdf1Di7/7qZpLzalWoI0K7aCRso/+k/YdAkiT0ej16eY9enofcL6mhyX8O4EVafPoo0jrknukaZhb72RXGbD1zZ2sTxRGij9Msp67rpcm8ToNaz4I5f3Bmm4GHejokUeG+7unaHYTNe0tRlniTokTRy3PSPEfEo/Wsvu/RJKFdF1I1GKewTmLxlVhgRgRbliQdfe60+V/XIQBAOwM+VFzyp+0zzIzhN3Ol+wxb8aGjFUtnOdwvNNuKOvDGIvP/xDYqQaHo52vUtmBaD2nshEmStAzfex9zgnXHHbxSJL0+hfMh0VzMSCveomzFIINiqnAqJ5QaBS9uTsMRwNvD7WgPFuP3S6CeDlV1gAFkSf6T+XZ8509YIA0D9xLVYgSUoI1BJyb8NRptQkKrgPmfbPKJkmC1X3rePBPQUV086G0hiDLk/TU8iqqqZ1LcqcE+MUxeqQZyPdhnEarpHiIepc2xN7+V14vvvHNUdUm+tonWCWVVUNclVT0FVROMfavamR/DRgwQH9I11F4Qk8TbCYy/mkxJJJj7P17yUHrsnkcKjReJKcZO65kt0Sg6PzX+360Jo3XZuv8kfpHG0NzR7OaP+OV2aIEEoZcOAGFa74f8YAJpmlJVFc458jxnOp0ym5NNEJqgkhSfZJTW46PHknhQtuLpRyzf+I0ezqd43yQY7D6bsM5t/Sli/A3GD8s3AFvXhPD+wybGnLWolWLnX50DGiOYilJHG9gz8+85PilMkmBjxstlEnKjd2itqRqcf+6A0B+TZmS9fnTXs52fP75F0YFaA5RSDDFKBU0GmE+jcDf9CG5qpa2QNMMYQ1FM2dnZY3d3l7IcIxyv1u7snWC8Cml+AZ2mrZYkCPW0INXdWsEf0/g5YfTRlOs/us3kZt3W0ji9qx0JcM4HJUYtdzZd7hPQv5GQfUw10nwv8z5mn2R/RSDTOXnSZzwdYqMWaoyZM/LWdY11DbTWsRJqjWQ5hYfZTARwpHqXtf5trrzrubWvqUTjaaDt2fp2nyaJ33t/aEWdqqoP2HaXFmEQ5tTfA6+Ohiyy0IYHbxdx0mMw/9hYkqSRUR88ZxZLFs2AK3C8wIA1eX+ASdI2zfTpptCd31gP2Je8py7HGC3BTe0emWbTc+ccRTnFK4OtLUmaMeifYW2wFfOgLB+7+Zaa7Tz8014hTlF5SLMsxgPEBVTXsdjLxyPxtgu1hI9ev8PV79zkxs/uYAt7VC2NU6AZ7t8lNWcgvR+pYZMH7Uozweu05/vxySMkktFPN6jKktoF5w+RAPeMx2OyLENrQ1VVXX023ogiyfqU3lN1y7uicVbjSsvbb1e8+lOhIIm2jthCvGfrPkWMH1ZDPc45rK3Rnfzt88fNL4JG7WrhgLlXI/fPq1nNVjELFJtVCDqM2gkqYEwSGbqf+70ttFHXjMdjJpMJWs9cPhcGAS+CNgn9fj+WWqznr3WX1JzfRPAe+J1oHnGOqhiTaB3hq/bX5dDQoTR7KN45pmVBWVmcqxn01kjMgCQdxHQW9pj7i0ckPCftgk+4U4okSXE+lDus6xrdaDDy8bJBX8LoWkV9TRh/WOArj2rsSadC87amA5tKgJNnuDmN4irLHvMnSKFnYWNeXpLyqESNHyeFSFxBS0IvWyfL+oQU0mENpGkQ7KqqotfLKYsyVFZjxlfEg04zvFZYbId/hPgFqWouXRSu3dA4l6K7lbma+XoE1PNAefXMCd5NRG4McW7C1NPErA7qiEJEF9k8+fSRhf+7rR16SsDydHAf9c7H2CwfIlOrKqQZEEFpQ5ZmZL3BUubbbTjN+yRFQVlMQ1ShOrgNtd4jC1LUQTR8Js37WA5V4u9NkFBzpHMFVTEhT9I2mvBu8eJmqxEUzoccPSrLSVJDlq3hJcc7wbvpETllFu6zYWoeag+YUIXNeY/WCjeZ0ClRQ8eP6dRJJD4bkWjk17gQt3lKV/BzBXYW3UTn05s0qTU82qcYn+Oxx/OWWnHM/Hr0c78vS5e8FOaMD6tn1jnXe5hUhwyqLqrCIVGhI6UfQgRb7Gq+r0dd/1TIwyDdQIsmVXlw2JCYDj1JGA6HbG5usr8/xFqLEtORb3ywH/b7FKM9eqr53obMAh4++3SJiCHJNLgEXzuQEheN9taXq/vGA8f4Dy6SVvWxFmtrTG+5T/mMRTco+mFy+opJz0xiauVDObwl4tVmUn8o+OKcayV1a21gOcpgkoRef4BJ0yhJq5XMyEsw9PYG65RlyWg8wXQCimf++POZMwUQFbSJmc1k1lsFbV3iGTMREEuInHS4eoqvC5KYr79N6Carx++QAWrPqOoCrxN6a+uoRKNVgpMEUT4y/qOigmeQk1aR2TqovA8h83GBiijcdILGAk3yvo9P5le5cOa5NbQfc/bZASaTGCl8DMHh2HSc/kvc0QXnLZlZw2QJHreUeR96tc7xh0ngx5HOu7a7QbpBz6yhTFgnPhakb+otbGRn6ZmNto7FUdfsbgCn6QCR6z5ZLJEqnWo3WZYxGo0QCWVQp9MCs5bMaXcigukNKIf7uLAPxIpqoULcRlrzG58TJFdQq5BE0KlQG9npI6fqA8b4ZW6CwDzj996HoKb7mJQSlDFMy2AQstaCKPr9Ab3+WojGlVgbGDgOU0iSlF5/wN7eNtZ20dEgpwfNIsjrDUyltGKWrWaW+K5RJa11mLQZ7w4+FuExW9c4OyVNz5zOwPjAe6uqQMVaBYIKqS4QjFYoCekHjtUYQfpSSuEFKuvIo5udxLJ+tq5I6GyQB9o4xY0gcVz+4hkuPLFOtmFwiUX8J7E8Q0lNQRAnJBgSk1AVDusnwGydHYf5r0qRvvj94rpd9XvzvlvJKvQ6aCp4oZf36TETBJf185eF/y+7f2MMSikmkwlra2vs7Ows2XQ82mjEJJSuJtMSRby4gXhQqqQqc25vJ5ztCz0HRiw1oYzoYXTPM0tE/m3g/wC8AHzDe//XS475LPD/7nz1NPC/997/n0TkbPztSeBd4N/x3m9LGIX/M/AHwBj4n3nvXz2iLyt/s3UNQmu0u19JlAKVMJ6O6PX6bGxtkmVZkMqVabmQ57DF5xc+Cb3BGlmet1KF993i3cFbxjtPbWdFXkKQmJvZGJwLSc5cHYrWJAnK6BbuofPO2wpbjUjMpfZ6dy1NtffoKcoCSVJUTLHgnQIVcuuHIizH2w5FCOX6ompce0eS52iTYFyUtOsa09bTZQ7oaQKWT2M2tZvqmkcPwIlFMNBWvfrlGikFj9GaXtantjVYoapqrC3m58McPLQKmjnI6LtpvYG594ubilKqddhofuu252icHIIAUlU22GxCrzhpXqjTpFVzvhm74XDIhQsXUEpRFAV5ngMd7VppdK/HdG+XVKsQrBnXmcdj7YjJRPjOX3u++fWUrFfh0HhVI+bjz9XzY+AfAv/3VQd4798AvhxuSjTwAfCfx5//feBPvPf/gYj8+/Hz/wb4NvBcfL0E/N/i3xNTCJYoSSJ+3vhozx90Ny2fHs0kaqG/vk6ShyIOofSiimYfdQCCWsZL5xhxs6CUCUWzO6xKN7gotEFjqY8gVWOUjsFF7cKO54SiE020cdQEfON7DrYqcPWENMlPRX0WCe57VV2i0l6AsVB4rwiZrB3S1GE9xsMUohDgI2ylNSoxJCZFiVCVIQe/0TJ3Tru9RT/30xIjVHy+XoP3CuU0Ie3wx2dXWEbee5y3GKO5cP48ztF6+HThnlXUfdYzwYK5DaPrjbbs+yZ1dPP7rH7CrK3usVprtAoR+7tRep5Bess3zmW2iI9TC1i0bTT9v3DhAr1er/X0acfPexCFSnMK2aN2nqyxzzVL0dYkOlTSq7HUWmiQTqMOv5d7Zvze+9ebmzkm/S7wtvf+Svz8h8DfjO//I+DPCIz/D4H/2IfR+isR2RKRy977D1c1vMyYFN6HHOxJsrzS1GpasPT+kkibDG0yunOgMcbNGPUJOjYD8xe+j8i+n6nFnRFkqUgbZ167mTbVhBaCfWw1Bl/Hkov3Tk3zRTFF0ixAEaLwYrDOo1SNd4cbtLqktSJNTHNDKKURUXGzVZSTMd7a6Io6u7cZTNbeKu0P93SDoLyAN9Gd2IJY2rTDvwRq149onPMMxyO882jdGB59K4EvSt+NVL4oobe312Hc3b9HvV88vvnrnGuZqdaaNE05f/4sRTHo2JSEpsraYQbdVXzjuGN2mGR/FF/MsgylFMNhMPIGHjWbbypN8SalchWzlRRmoSAkuuJLn0/ZXDNYnaJcgfKK5AiY8JMAEf9HwB91Pl/qMPOPgEvx/SPA+53jrsbvVjL+LnV3WO89VVnSW+sfik3ejd3xNOmgIbX5Yf6jb489jOuc4EaWHLoSMImSvY+ixSxuIvY9gK2U011Skyw1uN8teYLEL4N1QCGiEUlw1qPF4pklaDusDYn9NrpJ4QtNEqdgsohzxLn5EfgYhQCrom3BQ3CZiqLbLymv8IzpAyKUVcXu7i5aq2g4nR3XZWjN5+a7kxhKl0FBWusDcM7iBtNg/N33Wqs2J5QsLOTjGo9Popl2N7970RSajTJJEuq67uS1iitQGUyvR7Ff0mtw/jglxGlQUx4+K+zsGt7fEZ54JEF5R3LEpDkW4xeRfwk8tOSn/533/r887k2KSAr8D4H/7bLfvfde5GSuEyLy7wL/LgS1aRlZa0NCM6UOx2U7jhutfHd/mwRW0Kkgzyu+jzBZuxjbb2njG7ynmOySZr3lWNTddsUHiZ+tlMbzRkmTScfhbHkkyBPqkioSY6Jra1xgvvPMZ9/SaD5NMrOPi0KCLmHm/KFDTYFPAONHQgCQtZZeL0ekRbYADuD8i/DNMhvAgUsc4lWzyPi71A3QbH43xnD23Dl2d3aoqvlcTYvtLPZ11XFHUdcu0bR7EuraMAaDAXmeM5lMyPO81ebDXPAkeY/J3g5B/4uxReJDbQhfga0ZDw1//aohHyguPdKNA15Ox2L83vvfO9FdraZvA6967693vrveQDgichm4Eb//AHisc9yj8bvFvv2HwH8I8Nxzzy0d/aosO5OpYys8gu4nnr+8L4f18AAocQrXiwwgGoO1VgtnBMbvnWM62WU969/19ReuGlp3jrIq8MpESV2hlCGk4fDHS9AmwXMqRPnGydDZWFqIq8NvZya1j49UvKSTWZW4IOz/cjH+xpFZEIwx9HqHa8lH0XFsAt3NYxncs+z75nNd1xRFwcbGBvv7+0Bnc2igzE5fFq9zN7S4QazaTI6i5ryyLDlz5gz7+/s454LHEoL4kA1WJQkqzShthdEBevStDU7hfEl/0GNaeW7vwoVHTawvsZp+2VDP/5h5mAfg/wf8T4H/IP79Lzvf/69E5D8hGHV3D8P3l1NgRkVZYnRgFoc+cFmlFvrO//FQ37TPJ7dD+Mjcj7z+4j0fo8MrhqkxnjrrQq2CRt2NtgLiplBM9zk/6J+OxB/J2pBttIkEDtcO75WC+ohycw3MkyYJWZY2N9Qaabv8v4MAz778GNm/9h5wsahGU1mpiu/vHi47qQnCe7/w7FWE69zSR7mInd8tNVj9srYPHkx7Q9ZaRqNR+Epp1gYDjOkUOFlYHjP8/+6Mu6uw/LulsiyZTqeIhI22ruvoYjzD8VGKrD+g2L5FT+mgcLeCnQZKBv2Cr3x1jY01g4hDH5Gz6jTcOf8B8H8BLgD/jYj8wHv/d0XkYeD/4b3/g3jcAPg7wP9yoYn/APhPReR/AVwB/p34/R8TXDnfIrhz/s/vto9FUWASE+qixFmzcppKiHBUspBmoPOJuRaawiltAzQpl1TM337EFe+BDptwHxM8IIAPdUHTpFOrwAePGiuCo4LxHfKzz4I44B5jJzw4FLaeBIhJJXjlAUVNDwUkqmACs819xXArhDxLCUlUG68ZiRGPISmWap6WNDCQzO8KcRxO84m6BVw6fLr3mJN736oO30xPw2OraWeRGS9tO+Ac4TGII3gtKkJaBB9tEnrupk+06R2zr8vOO2wsPJYmmZryDiHBSUUqCdPplKqqyLKM6XRKmiYIvp2TyoNPMgoVvHeMEsQp8AqvLMoLQsnnnpigM4VVfSpzClDPYeS9/8+ZuWZ2v79GYNzN5xFwbslxtwmePovfe+DfO4X+hYhdrTo7+5IDg1VvwWgKREiha+7sqv4Hm+pKjx+zKnDs5u+iHytO6S4Opbt46wwHrqtQASxN0/jDyS8/35XQmbIqcUq1WoQQvE8E6JqGVt2tAEprjNEzmGfVsccdstPSaGTZjLl/wMZTVNwOucbRFwlPzAaJOGrdoc7G/Fz8uK5/t+cJsUawhILwPhZQ0UrHLLPBj380GmGtxRhFt1ayMQaTZhTVBKN0lL8aLDIcl2iPNoraGZwfHNqfBy5JW0PNmrbWBpe0mDv+0E290eoXJPiQvUohXqLnRcze0kBD0uTpn0mRs0a6IMKDRYp5qay5/6oYoUSCi+QpXUskRO06pWLJQEGkSWHtQo6epgbCanVu4e9BmjdK+qMOj8/5l2x8PQE9cDNPPE4sTuzceu0GJt6X5BWNadaJw4ptIZs0TZlOp23a5rq2C0zII1ph8jwWaGmQi8b+E5JmeVfibc1kXHPr1uH2rgeW8Qdqqtw4tFJHW3WX/rz6nJZJeB+SJ3W0gl+KiPQJUcBjVahB0H7ZbHGeYrxHmhiU1sc2pB/jqpR1hdNJYPwotMoJNjWLrUua5XAYOedCsrslPN05x2Q6oSgL5mx19ykvWUWLM+9BmYlhvTlGxR574228tzPk7R7dKj9uaiE37yntlHG93/Y3SZI2SK1x62zRyo7JRaUZtdIxYNHjxAdp30vkQXWo/209k8nHH7l7X1Kjydex6pbWqpXSjyY/97/v4JyzPI3gfUj13J1wzjqsu38n4L1SiDq0bb6R+R8DLN714T8VphMNsLaucCZBtEaJYHROYRUiltqWNHj0Ybi2d8ETxPmY/bQ12oZo0TJGePtDWvGxP8sMvnfDfJa5Bd4Ldj6bvR+PZemTJOcd+5NtSluznm2E1B2nbG/5WEgc3iu8F/bGO0zrknzjEYykrWF3PB7T7/fZ2d7BLzgxQCgSpNKcqioI9usIBkXNQeFx3pFmms0zvdV94YGX+KGubcB2lTp6dggLwSoAMW97fM2KO3ucrSnLkqqqqKo6vKxDKd0qYQ8i0OOcC4y/G5wVbSR4TzXZJUmSQ4vinIQaRlZVJU6bkM/IK0SlgGCM4Fx1LMHcRy8va+2Ct8e8f3p7W+1/s/MXe9alOT90AhzWfTXzofm9kQIXnQhmn93BV1PTeeElh3ft2HS/Ss6N/a2yUyo7BVwb5Sxzx9x/5AnYvkMxKcbsT24xsWOQ4GXUFGNP0zTYJd1MK22fhxKSfp/CgZ8LjIybvBdwDp041jY+ZuPu/UrNArZ11S6y41DA7OOScx67GL0Zl6vgKcsK5zxZ3qPNBA/iQYwAAQAASURBVCgKbZL7Pgvo3ZL3wU9/mdeFB8R7iukea4lpXS1P6crUVRl8+NsNJQRvKe0JtXZXm9xnJKFk3yHw/WKu+iVdieNgY26Ujo/XnMS+vB/eL0j5qzpyCLUBZ3PG8871upF1Dxh5sTiZuSv+Ktxi4wYtIuRZn53JdfaLHQbJOroj8VtryfIsuKAnyYE1ppKUKULtIF189DFOSajwbnhofx5Yxg+xClRVkZhYwPwY4e8iQoPUWGsppgWNt09ToKJhLlVlyXs9BmsboGZMTlRIndwYO2nP+dWnwGdmEmrDxNoAG2epihFpP4nM596XZUBUXMidk2YQi917HzJ0zhwxTwBvNBrKQv8OZfqd36ytmY5GyJINfpauYBXOOts027w2jXHygOS/mlSrWcyYfFVW963EfmokkYn6prjE/Q9qNcWOvMBab4NsP2N/ssO53kOomH5Ca81kMqHf63Nn+w79fgiAnDH/UIRJ8pzpdEyWhNz8DdQTLuBDqpEjAsoeWMYfsOjA+Ae97Hjn0DAxi1JCr9cL8I6fpe/txlEqnZD3BqgkA9ERa/QtQ+oyyAeF8TeM/iC+H2GeqsTVBYkZIKLwp5AW1xOKR3trUTrBA0oUtvbR+NXAIMcH1g4GKt1Fp9pLubnvvXOHmpm7eWxsN3UB4dyDUaAH22rScgu0EI8HOKLI9q8+hfFyPobj+ZCsTx2Se/9+IEHjsQiOTPVY621ya3yDaTkh64VEbWmaUhYlgxgtXdd1cIlu2vA+VOZKM+rREK8FOtljfZvvQ6E4PCHlA8n4Z9JnrLOre8xW6QoJvA0JD7+J0vQ3ztFEdXYLGgcjZrAMapPgRbe4v29ERuluEb/6TL8bMi9AosPUaWVmHyaerUYoV6KSrfjdrN7o3ZIAtbXUVYVXBoVC65TKx8XgRnjqtiNR6z3kZrrVxqQV8wNUFV6+w0yb9dQgSUKIB8jSDDGaWf3lBm6Pn1fxoBV9EyQwft/pwOpbCOd0DvOAmxYdmOlXf94tkiAhR010ulBo8A53RBriT55mfEdLwlq2xe3RDfbK26xnZwKrTg2jvTGWkKWziYVZTIqn84zSJJTOkuhGtFT4UH8LAfQRUs0DyfgbstaCd7EEW0OHLAgfUhG0GfOaJGMxL0ZZTsG7mP87CV65EuoVtW0f4DgP1uLz3qOUhCCoDlTSTLO6HCGuQiVZ+PUU0B4h5DSp6hp0Ap7A+F3og7NTvLeHB+gdeoGTZ8RRSqHSFGVmqZ1jU6HHn4Tk6T2FmzGY9s/9zhNPSE0tqvbevG+Dme5X4y4RkoEA++RJnzzpsz+9Q9kr6CV9jNYgiqouybKMyWSCc52ykoT1Z9KEMkkpy0m0cjUrcQZfHlWA5oFm/GVVoJu8HRzNgj0Bu02ShIadtzm9nWMyHAac2ehgwBVBmYQka3LS3K+T7hQpSrOtl1QHFBegLgu8r0l0emoZhcPwOyrvEB1gO60MtdcoBc7Nu9Tezdpffs5BC/A8ljxjsosM55NhQKeT0O3+ZZ6BfPuftEGV9zvGP7/3ConJWOttcWvvQ4bFbfI0ATRJkjIeTdna3GI4HLaMP5w2w/HTXkZZjOk5RRNAH936j0UPLOP33lMWxSy/d/vL8pFplHXnHd7Z8BfwMUWAt5ZqOsXZGmsr6rgD9wbrnDmfoTAr236QyLdyRVeqjd94wVZTwJLoLC7Q0xkTay0lFkmzsKGICZKfCptyC7Y0vPrQyy6IwL4rK62muTabjb5z0qriHsehU9EQFqI973U+3rcbQGvUaKIt1H3P+GcU+q4wrOdb3Nm/wbDcYcufwTDApCnDvQnJ+eAOXVVVm7yuySsFgs4yRt6yhqKJjz/JCDywjB9gWhRkaTByHE/iD6t4Z3ubvZ3bGK0xWUae99AiCI61QR+tY0FxaymqUKsWPVu8p7VgjqoadNrXOy5pHQ3ZTb+IiJhzFNMhSgiVtwROJ4Qr5FsqvcekWVRiQxlJ7yu8r0POHuUbt6Nw1rLxWcJg5745VobGjrLjD86ru3kep/U858pk3m0bfnUbJ+njvWyEq9qJdzjb5cWFedbxa78vDbwLfvfiFblZZ5CvM5zsMi3GrGVr6EQwWjEajRgMBoxGo7ZKl59NbJQxZOvrTIYjkuyosisH6YEN4LLWYuvgnTM/6Q6DZJpJ7Vnr91hfG5BqhS0LJqNhwJGVb6s1BcijyfF/D8XEf4XIWUdq4mbqm7zgxM8WV41IkzR6Qd2j50yHrC2xCtDRsOcVtbXs7d1mZ/c202nRps84ippn1hiCmz42tVsPeCz5JR+k69o7M7zd7RzoMqu7zn0fx/s05mG3KMpRRVVWUdcg2bR5nCIth/aLdpVG866LRs37fP35zoblPUHmT1jLz+C9YjydRDuVJ0k00+mUXq8X0zfEMSPODQGnBJVl1AQPpy4dZxQeWIm/rmvAo1pJ6qjhkI5HBiTGkKZpKOxsPU7F3DRKtY6D3vlYq7XTyilOvqNw409ionvvSdu6oHM/4FxNXeySZ4OOyfcUmBCO2paISUAF9z1nDdPpFKQmTTXTaU1dexKTEjaGFeMjod5uG13bgXm00mTGkGiNK8uDm5afoejHKeh+EjqNZ9kaPJl7c0/U3QDg5P08NFXxCg128dzmt/C8BIUJAIcEKdh5N7ff368bQAtHNYZoNINsk43ekDTJAdDiSVLDeBIEmSRJKMuSPM/n4WoRdJJiTUppq5CLrDEBcPT8fGAZfxmrboUSacwW8Upe1JEW4yRTIogxBGQjDUpmI8kCDo/ShlCsYnXR5QeFfJRatDkoEQtBKi/Gd9hcX6dTQ/AUrhsyc+qkjxfQKsF5Q1FOWe8rEp1SVZrxeILWFUIoYh0KV8+TCG2eoa62ArEyV56jESZzJy2+9S28/6BTl+l/XBDKMga/TCtoBLjcDFAOlNfYJj/TQpWu+28dxvUgRKEk1FjOVI9z65dIdR68D13gKdaOqeuaPM8Zj8fkeQ6N16APy8uYlDJNqCYFeUA+j00PNONXKgR2hAV+9KjUVdW6TIkK0aHOz+x3QeKAoGaCc4SdVsmpqdiLtGyxfRKTelmhjHaBRbykthXT8Q69i5c4LMnZicmHYjpaZ3gfPHqUyoF9PBXWlXFzb2CEzqkHmIBgdJNnaMHlTQSt1ILkvLQ7nwqy1lIUxV3Pt2WMu7uJHFbNalW2Te/B+ATRPcpJTekKnHXgQ3/H4/Gp5Yg6XeqW1AwyufhY5FIMRVVT+xHKe6zS1HXdwj37+/sxR3/wzvetgUlI8h52sh+SDv6a8RNLmM2Kgc+o64ly8JyGiUkMyoJYlclHX6km+EfAekcaQ+Z9xIyX29dnxbulmcwtML68/23YmI+RnI2qq5qCDvMubC3e3PTDdz/PX+Zky3iegavozdKVrgDEe+pihLcFadprr3Ma7N/7UDdZqR7WC4JBJEVrQ1UW1ExiYfB+K+UvMo7mnZLmsTYL8S6w6/neHfjmkyJ/4NNhtqzm92X37xGJaSmmExaf5LJ9oJ3W7a7pWwl9vr7B4WO1aFs4CCkGoUuLoZwWVL7C6KRNeVAUxULczv1CkX+g8LFuRJiGwSfHKo94j3FCFTeuqqrY2NhAa0VdVzF2Bpp1LV5I8pyJ0tTOkrbpP2b/r6IHkvE753DOotsJ0B2E5ZPPA7WLcI+rwJjgw4+bl0xafI7wmwIIhUG81Evb7pyM4PC2jN4XcYJHZjpvHAySpy2nTCZj8AGK0FojSsVNrcH1NDrNaTAtOZZN4wia2x9De85ZkkS11+kcEHD4/Q/JjEJShfbBBa1Wdfv+bkm8p5qOMfk63mk8GiGl11unLq4zHk7RxiMqAxUC1lfBEkYpUhNqyM76HhNv+8NHrbVb+PDMGtvA/cP6G1q898iIAS+NQ+5yaboRNIwxDAaDJbi7WsH4ZxJ8gFdl7rfZ+c1cX937AylBZMbKwnWauwoM0BiDSRQXLpwPQZt3Qd4v39B+GTS/aTbfeUy0M2ZZFjPHMlvjEKFnTZUPKCcjMq9abeIoceaBZPzW2lATNhYDn9VgPXyJztLyhgneUBBiuk8FZG5wZ5vBoRSNx6PhkKIsUKLRxgT3QAkSSzA8KlAaJVBMxkxGww60Musn8TulDOcuXUabjLkY/lOkpoRlnubotvi2RAksbJjD/R16vX6EURqv43tfTc57qqqAjQSvwKNwAloL2aBPXaVU9YTRcMhgvU+iZ5hxlwRIEoMxzbRf0L6OQa2i1t0k7i+uv4Q68zPiw9IkujtwrMJ5i9YJZ8+eP8BCjvU8DxzSqJ0+aqrNxxVzVbobw2zT6t5Dt2kRwVpIsx4+1n6+X+goFnxoXyXMfRGNdXWHe82nJcnznHq4B9q0Q33UCDyQjL+uK5y1mBjl2c1udxjN3KZ866t9+LFHtzmjOIGdDRI8DsTi6gKIDzhKQtaFkt/eO1xdkiYJaZbSuIM1vtreB6NWWVuatHCrbvPES2HhBJFQ21TpRstYbNExGd1hI+/FtMmNq+S9LcLwPBxlXaF6OZbgA+2sxdmSwo3CpqBCn7z1oOchhhDAFyTSYNiV1iYQLnLM8Wkwvuak9sv7m2Y9FZQnVmwK38x1X0ApTVmOuX379pyXW9tWC7/MxqEFclzHILswTJ3wivb7IMC0PnKz/izYaFwoUNsyyRlwSnuub0+fF8mONzjh5AN9vBvyC8z+qAZjn1ddO6SWt2xsbHSgye6RHq01lV+tyS2jB5LxO2tjqLO+Owu/72wWS0+d+a+fyJAUxRXvLHmWBptwXCyNL24wLEfopKoopxN6WUpiOo8q7kpNTng3Lj5mNXUmQauOxNZl6s5WFKM75BfWkSY8RI4pIba0nJk6a7Heo7I8SoyGyjqKyT4iE0yiMSalKCyTyYSyUuRZvuDVI2ityDrZDu+FPiYHl4+FfMSDw/sIVSEgs3Kh4UdIE0WeJRTTcatVdg/wkVEKS+oxNL7qsa2WJARYHdTAFphYM7e6yrXMoEtZqs1258xdPBTfgXlOYw35u5gbsggzdTZVB2mekKUxGaDvAoxhfdm6DjXFpbUcfDol/lBdqRtYNJP8ms/L3ndQySOvESQVRVts5BgQS0euwRgdmWgnzqDtQMiyV5UFxWQ8m5SiOrM0ur01s0Y6d9yVshbu/eQ0GyelJNbZjRJ10y2gLsb4ekKWXYQ2UyCowHXu8tqBinICOsGaBERhdE5ZgVae2pade2yk+4PPFjzGaJJkfsrPWI+0n7u/tW8OV/8+OYC4Q7LkXfOp+1vwUViW1yeUKO33Q+BQgPKWPLvGvrHI+A9cuXNKxP1l4fgD/V8yjq2+vmKMF1n/J/8k7p1W38fBb21lydS8q8JRS+6BY/zee+q6xjqP9Q4tMx/7o6X/MNHnFv+qNd1KIV2Jf+W0P/CLRJCuZdzQcGr8YkC1KHzMR+I7sFVgWjZ+p2gdxhptoOMTfa8UGL9Cq3lDbRgFx3S8gxaL0SmnkRa46wkymYwgybBaxVq7GVIrBv2c/ZGnKCusszgr9PvBf38xilYQ0rai0TJmFh5pURTBRbeFAFbdh1/4+8nTqp7Mp25uHG09LKbLjreptULrw/O5nwadbHbIyhNkxftfZTpsxgng27S3HldXMaXM8emBY/wigkkSvPeMJwW9Xs5ivNGygJRQ/MJHY0qHYawYTU8M/VexuteCXLV49GIkQVs1Z/EC0WA6wzyl83d27dn78Htr7PGeYHhtG7wHab9znSjxGx2rHs0J8o7peJtEK4wJaZPD/Z2U+S8/djwe4pIMpwRBo2KB6ixNqWyGqD7FtIjBXUtSLhDGJjGm4855kKyzVJOCxJg29kNWMpzZBvyrwW1maYGpK+rxGK8+fub+azpN6kJjM2i4moxjkGkwVh1HFHngGD/AYLDG2XPnuHP7Ft47Bv1eyHV9CNloF/DezxcRX0XeISiUOn7IXPtAZOHvwkFNMcFoXaO1KSxAUjPJLfpneI93Nd7WiNaxLOC9SN4z6dg5h9YSfKTnonLDtYvJLkZpjJ4lxVOt1Hzy64Z7Dc9jMhnisx5OKTSKIKl6JBppE2NQAw1OYXQXtJ1RuzG2IGyzUc8waWttqLFsbXvIytETVu8gnyitgEMkiB8Kj6oqRjdvhsTjB7RBaUTK+HGV5HP/aDqfGmrmL53V5z11MUWt9WMWgfj9EVPzgWP8npBsa2NjE/Bs37kN3rM26B/wL+6+d85hY9m7EABy+MiFilwHDVbHo6POCQxp3meZuCnMDhGa2NMZ85+OR4z2d+mtb5L3eu1kuGep3/sIa0nLV328prM1xWSfPA1BVX52C3edk7/hK9bWlHWJXtuiVgEac91ZHQ3xWiTaW+p4/owxNVh169a7FMjvXPgYTO3oGfLJ0FIf+44UaJSwlufUXtDS1Ck+0Epz5qqrHPve/aHtHPf87pU/zbR492F0qmQNY2Z2x+PQA8f4GwORMQkbG1s4B7s7O3gmrK/1EfHB4EgjBUr0UXc45/G2av3QHSFFg4hrW2+KG/sGb2+1gy4evAqhk9lbltsPGsx8FuGrOwe5xZaipA+g8M5RVwXOlkz271BPU3qDNdKsB0oHuElmwU2rwud9912XgaqZxtEUeVPeh3Dz6W2yvBexcne0yLFqhLzEco2CVUI1qbBVDekArwTjDKUzeHF4P4w2ER/uv7MzLmNNy3rUsriONHXcvs4ztfuEJfn5t7P6CRA0KchNE4R3cJS6e94nqdAc9STuk9H+5VIrUTE3AA6P8rP1c5zReeAYP8yEOmMStrbOAMJkNGQ4GjMY9FooZz5Sjhi1aCOOzQzS6PpuyyzdsDQXa/n5PBRzkBpWcdi07mJ4MYKxDWiRQ4VR7yy2rsnzDO8sdVkwrC1JOqW3to5Js9DLA8buoyeKJ3jFHBSZoa4K6nKfbOtS+KIZt1OAv8uioKiqWHJRSHTK1ALeY10x35cjLtbUsp23h8you65W030Mccx1bf5G5koRtZvcks3xPuGo90k37i9aps1FrTs4hBx/bt6P2YxOlYwxnDlzBlEaay2j0Zh6SVh3w/6cswE7jnjojBvElxfEh+AqaVyo5jDjIyCio2AEaTSJrqAfYQrfmBvjZjS3u3ucs9R1KB2ZZz16eQ9vLZPxiOHeLqP9PWxVIt61AWohbcTysWgYY5PnPjXJDPf2IdmUE6Eux9hySi/vd/p4ryTgHWUxYurBm8D4dZLRmF2dreY20UaGXaVvuVip67SS3N2fzGl2//crHPVr+uTpgZT4F8k5x9WrHzAY5Kyt9cGPGQwGIRNjK637Ft9tl058P5ON4qd4nFLNLnt3y2u5m+j8vq068MrCYbGLEbbxHltXMcglLHmtQ76VqqqYTCcU0wnO1uR5nyRNQTVBIUfdQgANmvrFDXPxEQ6rp/uIq0ibfEFLIKzjUaMRtXkMKYsxvpdDmqFQiAq+/IlIMGQ3Hkz+8JsQQGR1PbCTdlfuW7Y6L1jcjz38NX3y9Klh/G+88Qbg+YNv/z1293cRpen3Q0lFmC0Q5z21tYgPRVyUBCMucxhwzEt/HO+fSBJFZee7gWXdNg9Koq6J6nUO7xwz/8mZlD7TIBx1VWJ0LFAhjX0C0jTFGENVlUxGe5TFlMHaOkmao2NQ1Dy2Ow8pzTt4BOVSe3ASwrSK8TZ5kkTf74NQ0Mkp3JyzFePJENVfwxtNiDgNtgqjhdpZZpsFHO4+KrFYxfGw/182nVYO+Tn7zAnv7GAytdOl48aTnOa1VxV3+bTTp4LxG2N49LFH+f73v89gbR2TJty5fRsg+PmLhPw4InivGI4mIEJiVKi7q3Vb8LgNjnKgzTGHrzEVEJiommurc5ifMfbms/dCWVUxHbNvPZOav8660J6HYjohMbq9ZGOEEDxKQZoalIG6duztbqNNysbGJjpNEWVaw6/vuOIEYdqh9fJNzvua8f4NelnOYqzCSUlm+yoQvIVGkxHu7MUAfXmwPmhZSixgwzZ0DH4STBmrN4WTeCceyGFz90rfqTH80I372P5wAjpNZn0gPfeKB31YBbAHkR5Yxt99kNZa7ty5w+bmJmmWoY2hKivGkxHOOQa9Hs6GyjdbZ89irQuRoHWFrUqmZYG1DgFUjB6traMnqoU2juhN55hoYGzcC+eMbjOIqeFEWR48cqyP0Ia1WGvbe/MIWW/QagVambaNNsq32QBEkagEpRxKWaq6ZvvOTdK8x9rGJkanQbvBtwbtkBDOdQy7tEK9IOBqpsNbXFxfX1god8EN46baAEnW1oyKAvJ+8FxAYa0i5OyqEZmBQkdf7vBNKdg8ZHZfJ+n0PTB9EHAHc9TcDTXWlVaR7Ey74zT9cTO647S/vPjKvTHkoyqILVYA+zTQA8v4G3LOsb+/z5tvvslv//Zvo5Tiww8/5M03f85nnvsM3ln2R2Mqa9HaYGISL+tcYPx1RW0rXGT8zjmstWhqlNbzEMmx+uMpyxLvbcitL4EhtzVgmxfBbbQ3WMMkWSgn7QLDd94H6AdAhDTJqOoaETpJ1BrGHTYHJcQwb4fWBqU0SlnKsqSeTtitK/K8T3+wjsRykkSNJBQ5yToCc5N5U+GqKcVkm97FJwiSs18tWB+HOjhYXdcU3qPzAdaDKE3tVITMKry3s5NiHvK7QesbUs3Yt9k7P14YqK1eNnMzuqf2PLPMso33mfOto+vJ+nXca56QUf4ypehF6Oo4136QpfwuPVCMf1GlK8uSN954g3feeYeqqnjuuefw3vP666/z9ttv8/zzLzAaT8jznLKYkOVZqKnrBdEaow0mzcg6xl5b19R1hbc12qRwQjcqrRVZluN93Ur93tv5vrtgB3DAwCRkvT6+tTM0B82/Ge5tt0XEW5l1wb0vsJawWQk+pFjINVVVUJYFhbO4uibNe2R5H2JeHu99sB10Lx9F1HIyxLuCJBuEqxy88IkpQDeOyXSKmASV5DgEpRIgBa+oXY11NsZCtHLuIY2ylIt3v9Jak2pFog3Tqprx5HuAcg6joN3EXFKnCNPMFMk5J84T9evjortpe1FruZfN5jTtDPfzpncUPVCM38XI2+aBOOe4cuUKf/zHf8znPvc5NjY2GI1G/PznP+fy5ctcuXKFn7/xBl/5yldDMYPathJ4U2AkFKwIzF0EVKLIkhTxFq/0iZer0oaNrTPYusL5AM/YTr+dc7g6SLJGa1Q0vhIz7rfUrgIH3mFj3xtJb17uj+8WGZgEfDlNU5LEUJQV08mIsiqpq5K0N8AkabjvpqxbvOHGC2oy2iEzGnUaSb0iwiSE9L+j4S6S5jjC89DK4CRBO8H7CueOV23JH/iw/KkppUjSBC2KYjKenXCaC7YZP/F48ZQ7JePdMYOtPtl6ilMx9/wMbTsR9GSdZW88oiyKeYTxGH1ayphaQ1QXNiRqQ3FsZHGuLSdp2lu4uMRKdDSaLj4U2onuym3cjJKYplnNny8SUxgecu1lPsvz3VhA7WYOFKvubr7J5Q1K45rNvD1veRvLr3MU+c6zaQDgo577A8f4i6JgMglSfJZlPPLII4xGI3q9Hu+//z63b9/mxo0bfPOb3+RP/uRPuHLlCtY5XnrpJYwxlGVFms4gl7CJzGCVNuWvxFQIx1laXWhcGVRmkPRoLDNcUkIE8UpJWuNsBbZGa8F1jptF8XmQ4BU074YY38d0z2lmMElNURQM927TKyfkaxsgOtband2QVWBsTTm+Ti/JwXRV6btllKGvgqcWxWR8G5dvBg8lEZTSODKM8mgpKSmPeU3fpgVuVmC40sHN1BjTgmSLkNlSheuEFNpReCpsDfs/t9z8yR4XPydkX8jxveCpJF7HCOaj7q3buKesK25UJUrpFT1f1qPuUbLicOmMX9iYrC0QpdHazM6W5hkuV6/apxU1Eu9D1OkM7rSR8SsSq3AqaMCusujMYJXDeDO3gYsIWq3S+rr9WuzLTNuydYVqoNdwt+2cV7697fkmOnOvuW8fNyi8xXnQyrRxQbPki0Re0mird6fxdSM2mvh1J5o0z5nU5aHnPlCMXylFXdfcvn2b8+fPkWU5vV6Pv/k3/yZnzpzhP/vP/jOuXbvGE088gdaaa9eu8e1vf5t3332X1157jd/93d/lzp07VFV1ILXv8dI6H5+WYY6rGP9hKqXHUtclztaoJAvMfg4v7p67uu8z+4IhzxXGGIppwbi8w5nzF2Z5jnxgzMorhIrJ/g6DLMeoe6urCzMJF8B7x3g8QT10GUeUlryKnrUeUSfHX45z9MeujAs471BeqEeO22/tsPPGFJ961p/rk+RNig6Jz/JkzSutybI8BNvRaFCcaKfyTa1q39kUOnUVvBPwjsnYoY0hy3rx8KMu0oEzW+EkuAXPNAiDeIVymsrUOPHUOCpbMcDgvaLyC3Pbe7ylHavjePGohv8SNpbJZEKap7MN08d2l93Bqmfim/sIgaBVVZEm6ZxG5JvjDgzJSRn/Eg1DwKF5KMu5s7d76NkPFOMXERKjmUxGXL/+EZcuPsSjjz7Kv/Fv/BtUVYVSips3b/LVr36VN954g2effZZvfOMbKKV44403GAwGiAjb29tLmf9p01FeBqs+z5PD2QB7qMgw2gl7qCq6qi9Bsk7TUGpxNC3JkiT4wLftWMQbXF1STfZI+/02HuLeqNWnqKop1nnI+3HDESBUVAsMqD5+s56YxI125a5aZh8TnD9/DRFwoKzHFSVUDl8GuE98o0kCXuHbPFHHaJegxSidhAjnu7mRVQOwMGDeeygm0QYzY24r26Rh9h2Da/vO4URwaIwTBEularykKA+mrKhMjc57BKcDv9B4TFzQesXNX/yApN5sMlEC9y6UOFV5jjHprF/xRCfMXXOJeBYVycD4lYeqLnCAWVtvIawuTnYI4nhi6lYy86IhTTC9/qHnPFCMHzxaC4N+j8lkzM2bNzh/4SIPPXSJurZ885vfZDAY8Nhjj/HKK6/w8ssvs7m5yWg0Ymtri9FoxDvvvEO/32cwGFCWJUmSzPDtU9wADpP2T6RZeCjLKhSfsQ6lVVQhF01iJ+2PQqvwCkFhsY/RE0U8FMUYX49I8gt3JZ0evBWJyek80/GQShQuLsSg+ehQgtHXeF8du12RUPGsicVgKYOIP3XfybLv75VmEJJKE/KLA9zZgt7FNZLMtNpa2J9OFhkxg1EaJthscCf1tFoO09D2LPZRIkyoYpGgBrRYca0DXzdR5xA1OQHRiFcYUTgRNJ5aXHgc0dvMN3O7w4wVjXBwHJoJRuIJ3mHaoJIEZdKuaI40bS9MmQNr1Hf2TAFVglQ1OstAZPkEWthkpfP/Me+g1TACHB3HT5tgGzyEHjDGD+Dp9XJEYDQac+vWDS6cv0je63Hx4kVefvllbt68ydbWFk8//TSj0Yi3336br371q/zpn/4pV65cYWtri5dffpnBYMBkMiFJkrZ+6yropfv9cYJBTs1zQoQ0zShNyng6JUkSskSHldTFFFf0Y5G6/bLOYRLTZuXstBIMk8UQ7JQkzTgd1thg7yEHf2USUAkOQiU1b4JBXCqcOxzD7N6PqFhVSilEupDdamS1wXljt+Zv7172OB8qEnvx0IPzn1sjOQObD6+hUx2wWnGou0ijNQNmoltn92buoqV56uLQzUYym+/ALKPsCcmKQTlH4i1WeSoxKG/Q1kc5Q7VSt7TMPTyUNqr8RFfsanzx4UZpfdaab48Ll+6y5eac7rFNa83aX5xbsy28nX8yP9InG73ZHYduzDTy42gTDxzjb7SyXhb88UejEXfu3GLrzFn6/T7r6+tMJhNefvllLly4wE9+8hOqqkJrzWuvvcYzzzzD7du3uXr1Ki+++GKb7mA6naK1PhT+WQwUWfy86vvud4vfH02avLcWMdcxZVVi65IkzUiSdOmGcxjznwt8c44s789lM/VR0hMs1XQffEWS5ZwuQCKUxQSb5RiTUMd+icqgFhCLdceHegQiDOaO3c8D8MCS7+6GWhlcBK8964/lbDyc4pUnOC+F311MTX3SWOi5wjzchZa66vBo25lzN2ohhpAHvokhmNOaDr1W+D2RlCwxiHKUrqayFrE1XnQYp8YQ6h3QMXj7u511vsXxm9xbTcXqdrw643YwMvygINR9J4DyHuVDofjGNjaT6Wcc/9TEpY6C3/ThMHrgGH+gMNi9LEUh7O7thZQM/jy9fp/z58+HjJ0iXLlyhUcffZRbt25x/vx5/vAP/5BXXnmFq1evsrW1xXg85sKFC/R6vTY2QETaDeDQXiww+lXY/SyKl6XHHUYCoDS9/hpp3mO4v0cxHuKrCu/BGBUNVsfyP4rXbwrTeNIs5vNZvKqvqYrdAAUdoVYe/16aDccynU7wWRNLoBBRaJWBKJRyVNXxoB6RwPTN0vQaM8Y6L0e2YAZzPzI76N42AQdoBA1KCN6JPkI7ByDq091T75YOjMHiCCzKrsfvdIJDdm5hhzuYfh/dX0clCZVy1HVgoCaaOmoFZgnDd5wA6WEmIIa9awbpzDF5mf09SjKXzo/iG2EjRvnE4fg4HqNvxqLZyY45MR9Ixt/lm1mWsLW5wc7ePndu3+K8ukiW5yRJQlEU5HnO5cuXeeONN3j88cc5c+YMzjmm0ynvvPMO3/3ud3nuuef4+3//75NlGdvb29R1faCua+P1clxvnfn+3v2UaA1mSqOUZn3zLP3+gNFwl8l0SlIr0jTBqCT4QXO41N+oqdZaROngrpd0pokPrNLZmmJ0hyxJ0XLvHj3N3YBQWUtRl6jBmbnaxEoSBIU2UBVHGz19s6CVmmP8K/3VITzbuSX6cXBeFZmDxWMjB1LgdbzX8FzlLqyzHVn/dLvdSpRdibjDGee2rGNqVXEeWiq2f/IDhn/1F2w8cpn8xS/Qf/hx+r2EMskZtZxXtQDWvW28svD2pFrVEdeXmbm1RYNOIHjdXWdi3HZr/zj8tAeO8ccNfE7lTJOEzfV1dveH3LxxkwuXLpJlGUmS8M1vfhOAd999lyRJGI1GvPfee5w7d46/8Tf+Bp/5zGf4r//r/5of/vCH/P7v/z7r6+tMp1NGoxGj0YiiKJAoURpj2jQMbX+OgH0aWrVpLB5zoM1WbAHvFaI0SarY2FT08gmj4R7j8Zg0yUjTLKYj6NggWjiz0UrC19bWmCQJDLdx1ewY41xdMxnusJX3WZ3s+GTULI2qqoNXVdqjEk/j2BL87lVraO6u2YaJ+Bnba3F83SbZm41V96oNOeuYliMSY4KHzWFK812v4nkNI9y1QbxGsDE4ybW4sj+IM6ygrq4/Y/4rn8xRzS49cWFD9IvfyYnabeahTwznL15gOt6n/PFHbP/sNZL+Or3PfZ0Lv/mbuF5GpQW8YFz0dFqihaljDlUDhjXdaSvqLWBHvvNmGbizTCRogC8vATzyzbM4ZInc0+pp4KpOJ714VluvAj1wjL9V2f08A8iyhE0GjMZjrn/4ERcvXiTv9zhz5gzWWh566CG+//3vA/D+++/zta99jYceeoitrS3eeust3nrrLf7e3/t7JEnCRx99xO3bt1vjcGP4LcuSoiham0FVVbiYU8cYg4gEhhIZvNYa5wJs4X3IvJkkCcaYOY3iUI0gMm3fmaVeFCrJSXTCwGSUxYTRcMh0NGSQZpg0GGxjjGh0JJGI8QiCw7qaJB2glAqpqduFErLwe1thx9dJLz+K8opKW7Q/uUFy7la8CteuJuz5MSrfQDmNlRr8OhUJSI2mjJN71aJpfokSkPag7IpxDAFEDqitpbIVXizO1sw2imUawsqLn4AEER0xilhWs1vm89hMP9IcBv5LoAZeuEtqNmtde8o7e/S+8hXWnn2e3tV32PvOn8PN93GuxtNHeY/GMtUe4xcC7+6m222/u4LYySX/lW1Hbt9oq600+nFQRwIS5Fia4gPH+GFBFZPZgGTR4Lu7N+ajjz7i0uWH6PV6aK357Gc/y9WrV3nzzTd54YUXeOaZZxAR8jzn8ccf580336Sua7TWvP/+++zv7/PCCy/wne98h+eff57z589z7do1Hn30Ufb29tjZ2WFra4u1tTW89+zu7jKZTLhw4QJZluG959atW5w9ezaouzHjpnOOsiwZj8d4H6TVLMvajWCZ51ALD8TJFWwGIMqQZhqTJCilKYsp08kUqpJeL2Qp7TjhhRxFhAAjTwgGatxDW4kiXqOqJpTFmF4+OOUnJ1TVlBpFZkzI0SMhsKysbeirq2N/DzFgxsmvBFLRaN/JLto9jMb9MOC7yoM4v6inHzznbr2ylqJMpwwCHMfoeVIetEy0XXrh4zc802ArhtvbDB5/mv7nvk76+FOo/hmKD97DmCwYSYFaFNoFze3AZU54P+3hy5TAxWNO0vYBA81q7eBUqKtB+ePbOR740otdCkbZIE2PxmNu3rzJZDIB4KGHHuJb3/oWX/7yl/kbf+NvsLm52Z5nrW0xfO89H330EUVR4JzjBz/4AePxmOl0yg9/+EPKsuTVV1/le9/7Hq+99hq9Xo/JZML3vvc9vve97/H++++3G8JPf/pT0jRFKcUrr7zCn//5n/PTn/6Uuq7Z2Nig3++3HkVlWbbaAhyEig5mIlTRQ03QKqG/tsHG5hnywRqiDdOiophMcZWLwqZHsCAWZy1CsBkY3cgG0s4q74VyugNAlmaniF2GzKPT6QhJ+q2Xi3iF1knISOorimLMZDqmKKYr2mlwPkGhSJOMkCaBgy9pNJ8GNZMIt3yMEtqvaY7Ee7wtcdMR1tbodJ0zX/waZmMTN55ETSZEpSqnDwOw7gsKXjt+aW6e+4UeSIl/keZ8062jjgXJR6NRy9B7vR5PPfUUjz/++BxOX9c1169fZ2trq4V09vb2eOyxxwCYTCb0ej22t7e5evUqP/vZz/jxj3/MI488wquvvsozzzzDz3/+c95//33yPOc73/kOn/3sZ9Fa84Mf/ICXXnqJH/3oR/zlX/4lWZbhnGN9fZ1nnnkGay3j8ZidnZ2QorgoWlvCfC6hVXBQgHGcjyzQpKxtnSEv+0yG+9RlQVlUaO0wqW5T8VtnUSppk5YdaNVDMbpNlqUoMQEluqsw0QPdxTvHaLiD6W21iczEa4zOmBQ11k4pq13KYorznjRJ557XLPYXUKASjU4TnHIoDhqExamYscfPNoJF29+v6WMlJ0K+sUbxxuuYx54ivfgEvp+i6oLxrVv4s+s4IHGOWtNqqfcjBcn+Pub4kT4VEn/XaFpVVQilThKyLGN/f59bt24xmUxaN829vT2uXbtGWZbcvn2bt956i8cffxwIm8h4PG4je51zJEnC7u4uWZbx1ltv8ZnPfIZ/69/6t7h06RI///nPuXLlCr/1W7/FP/gH/4DJZMKdO3fQOhR/n06nvPLKK3zuc5/jH/7Df4j3ntu3b9NkzRwMBlhr23QSNhZi0Vq3NoHWSNYajmfeOTMjrhDCIzVJmrO+dYbBxiZOhKKqKIqSuq7x3uGdj4m3IGk2me6AeheqbvX7SNwt1Ckw/gAzWfbH+0i2gZMAqyivQBKmxZS6GlPVIVBNCBtzYyOZp2Bmy4wOSd1ifpyDL9oQfi+uLSA/jwAfRp5PUrRb6gp8f/LEA9T0vVKa/jOfZbo/ZOe//ROKn/2Q+uc/objxEV5C0rqwOVu8VAfOX/x8YhjulMfr/mf7nwLG304CH4qgjMeTNnS/wc/39/e5efMm0+kU7z2/+MUv+Gf/7J/xk5/8hL/6q7/i1q1bfP7zn29x9ul0irWWDz74oHXtvH37Nmtra4zHY86ePcuZM2fY2Njg1q1bWGs5d+4cFy5coKqq9jrW2liUxfPkk0/yxBNP0O/36ff77WY1Go34p//0nyIiXL58mSRJqOua6XTKzZs3GY/HwQA7517aABmu875DohCTkPYHbJw/R399g7KqGU+mlFVN7TwmDaHmLbQ0N6gVk/2bDPprAVKS08km770PdXbLKSrv00VHndWURUmaQpob0jRpN+HxeNwa0Vu3LsAoYZAlpK1/vDrwajxgLDNPiJCNcRU36Prj3F8cdvYU7q9+HUYigvIG89DjXPrN32b60ft89J/8R7z/R/8x42mJuXQesQ7xUKuTB7Qdqw/AabLrrrfZ/UoPPNQzw8QJUq216E7wldaaNE0Zj8fcuHGDS5cucfnyZf76r/+af/yP/zEAf+fv/B0efvjhts319XV+8IMfkCQJN27cYDgccvXqVXq9XiuBNq/GMNt8bqCl3d1dRqMRWZZx9uxZfvazn3Hx4kWGw2Fr8AW4evUqZVmSpinT6ZQ7d+7wyCOP8E/+yT/hrbfe4vz58/zBH/wBFy9ebKUdaaNUgQVmMEtVIKA0WinyNUOSJEwmIybjMR7BpFmAfhYmsEdw1YR6uk9+7uGIgzvkhAVpVtF0MqIUITEhDUTDsFEpaWqx1ZCiHKK0RUSR53mr/TRlG5vtIjEJSZZjVfQAWiIJeq+Y+b7HYCHgeAkhYMGV4Nd0AmrmeIqjunaD5LGnuPyP/ifYn72BrWoGz36G6sx5ZDrFCTgxMXf/8ky5H1cyxZPQJ9+D49EDz/ghSJK1tYzGowAdLOSeCTnYhfF4zLVr19jY2OC3f/u3eeyxx0jTlC9+8YvkeQ6EYKBvfOMbLSa/trbGH/3RH7Upnnu9Hu+99x5vvvkm165d41vf+hbD4ZB33nkHa0PhEOccr776Knfu3EGpwLxeeeUV3nzzTd588002NjZa+OYXv/gF58+fb4+5ceMGWZa1NQXquubdd9/l0qVLCzECwupEbY2ME1NrKUXSM4gxJEnWFp5XSuaObGg62UN5S2rygMFzmGvlyWg03MWnGU4rBI14iyiFc4osT0hVRmkVRTkF70nTdD7+IY6BQkglISXD2WAr0P5g4ZbEGRKrcT7GCOBPHpdwHzCcX0WaxV5YRr/4Gb3HL2Oe+jz2zEWMr/C9dWqv8X6KF49yglMK721HoDvMxnVC+hQ9xgee8bfukaNJ8OBRisRDcAmbGQSN0VinmUwmOOdYW1vj5ZdfZn19/UDU54svvogxhizLePLJJ7l69SqXLl3i2WefRWvNP/tn/4x/8S/+BVtbWzz//POICN/5znd48803eeqpp7h9+zbvvPMOn/nMZ9pgsK985StMJhM++OCDdpMpioIPP/yQp59+Gq01r7/+OhcvXuTNN9/k6tWrfPGLX+Rzn/sc0+m09TJqDJ2+dUWcseRZQcfgoRMz8MTfwCQ5aZJhnaWo6papzgqgAyJMJ3sYgURneE7X0DYd7yNpBkZB9OsXo7A28PSymOJsjdaGRKs5pu9j/LonuHBumQFb0wwVPXqWm78dUieUkfFbcdiTMpGP00f7RP046O31q0AOAeWZXr/GuUefx+YDHBVjPGLjDPOAWIx3OIEkCd5wjZ3t3uk+eH6/RHqgGb+1IfVCMZ2yv7/HtCyCl0tlyXu9kMRMqRhvIaRZSMhWFEVkplPG41HE3QekWYoQPIC+8IUvAPDss89SFAXj8Zher0eSJHzta1/jnXfe4Ytf/CKXLl2i1+tx584dRqMR3/jGNxgOh7zwwgucPXsWay07Ozt8+9vfpqkF0HgPNW6i586dYzQacfPmTT7/+c/z3e9+l42NDd555x22trZ46aWX2N/fZzgcUtd1TCVtCMbdhic1QSRhbJZP8wB5hEjdOgaSEccnGHC9WIrJDonRseZw2DibpGLHo64mMnvvvWNcjJF+H0RHjx5BK01pYVqMUfUQjws1A7KZx1HXluMVaKXY1D02yx7axyjKJSYtpypqp6iQdsM8GRv51WO0p0b3eOvNhq2UIju7yc5bb5Du3UCfu4x1oOsaR43gUHGOebEYn2O8g+kYneb40mPFop3BGI1zFdap4Ml1qL3mV5z8gTfRM41ZbYIV9MAx/sakWVYV00nBaDSkLgqqYoqrCrQSpmWJqyZkvQFp3kPptD1ZKUWv18M5S1kW3LkzZjQasb5e0Ov3ybOMNE3aNAZNHpher9dO5Jdffpmvf/3rbRTu2bNn+Tf/zX8TH6GJpjawUorr16+T5zmvvfYa3vvWXRNoA7quX7/O9vY2RVGQZcEN9e/+3b9LXde8/vrrfP7zn6eqKowxVFUVDc6udftsbm4ugHAhaKhzVFTBg/1D8DjRiA8Rod5XlOPb6MQgSYrgAqdVNfiT5uyZaSDeQ2ULJlWJy89jxFCLBa/RKsVbBb6gv5ZQ1zmjccG0KDDRUN9mTQXwgtEh8Mu4FCcuwjcHo5CUTbAenPYoI+ReY4xmeti68cva+jXdLQkaby329Z9SlDX9r75McvYMrJ2hzgRfT8FrEmeYpKBqhZQV05/+lPSpZ5DBJiKORCehBKny1NL1tjrkWbU5h351n+fMhbRjpj5iU37AGL/gvVCUFcPhkPH+PniYjMeIdwz6/WAEtI7JtGA6LVjb2CTv9UMGSjHt81fKkGWKNMmp65pbt26htWZ9fZ319bUoVevWsNiWJgTSNJ3vVYwAbqgtCAJcvHiRF154gT/5kz+hrmueeuqplvH3+33Onj3La6+9xp07dzhz5kwo55amfOELX2B7e5s33niDa9eu8fbbb/P1r3+dtbU19vf3KYqiTQPRXO+41cScczHrpp6bQJ4QzFZN9xikvbmI07v3458tvKqYUjqHmF7nshJiBbzEtNgG54I3TjGdUMbUF+0mF5m/SZK2Zqo0nV/VxXgxrRRZL0W0UIwOYxb3t5T/q8bCnLVMK6icYvv732P/2gecefI50hdfpP/kZylUimeIcY68MlhtqWth+NFNevsTet/6FsqmJNvXGN26Sf74M+g8RdeCbbOfrqZufqdfKZLGZy+8aeQ57cEcAfk9YIwf6tqxvb2NrcswocYh6Vaa9mIhDsAo+j2hqi2jvR2m4xHrG5uYrIdWBt8WftYgoEShtMF7x2g4YndnGyT40Pd6PfI81Pbt9Xpz9gBr7VL8cRGH/da3vsWzzz7LtWvXWF9fbzeJLMv4vd/7PV599VX+9E//lMcee4zbt29TliVbW1t89NFHaK25ffs27733Hl/+8pd58803efHFF6nrmt3d3RY20lof2xDmnMNoIdEqMsyQN8Z7oS5Lquke+eYGIv4EGe5XU9BCQg7+ClBJnyY7ZViUJua0gbIoqOoavKM/GMRnKjN3Vu9BBZvNzOB7dA8FEFEkaYr3J7mrX3v13CtZcZz94pc498ijjN99k+13fs7Nt36Kf/8XPPoHOTx8CSuOWgUbltc+pCJ/4Qm2//yvGDzxELW1vP+v/jlkAy4+/CTiFbWuZ9ldj0W/cqy/Zfjz/x8tmzxQjN85i60rXFUxHg3xriZNzCy6U0nEq0OR6JCATAKTvHOLrL/G2voG2qTRzzuWwlAKE8FupQStFS56JEwmwWi8vb3N2bNnOX/+fGsQ3d7eZnd3d6GPrvVmaFIwpGnKmTNnOHPmDHmeo5RqoaDLly/zwgsv8Morr/DII4+0OYP29vZ4++23SdOUvb09siyjLEt+8IMf8JWvfIWzZ0PhmeFwyO7uLr1e74AmsoyCS6hDKTNL3taRym05xRVDevnlOV+eeym92IS4l+WEQoQkyaHxFhKP98FmkSYpk+mYspqQplkwPjdtLHr1yAlCVALXn2n9x7iRuc37fjDs/iqTSjBphnq4R2/rHMkzL6D3t6n2d9Bnz+ARtE9wOiNTCr2/y/raJtVjT2Mv/YKbf/xfUE2HJFsX2frat2Atx1FRi0L547D9X93n17L7aL9zEsBTe8T0f6AYv3ceV1dMxiNwltRosiwN0aUxUMe3zAxEadJMobWCsqQsxuzairw3IO8PEGU6SmBgbNoEAxKEsW6k+iYzZ+ui5j2j0YjpdDqXq39ZpGVRFBRFgdbBq2h/f59er8fm5uZcts4nn3ySNE3Z39/nj/7oj7hx4wa/+Zu/ybVr17h8+TLXr1/HOdcy+Q8++KCNExgOh0wmk7mEb8315zWQgI0mSRKlhsYvPoS42mKIrSZkWS+6ccoppGwQvLdMiwm1MSQ6weFoATGvg89+liNkIClp0mxMB5qa/Tm2IC6dv0dJ8J2Y3iMxpE+O7s9ezairfRrnGV15CzfeoffIkwwefZJKP4EaTymtRYpdEBuW4O3b3P7j/4Lh1hb9J5+kf+E8o9fGmGzApd/6Nv7p55hSoipBtwVuju90cKJ6158gzSVrdMEm54iMX46e+g8W4/cupNN1ll6WBgYd13JbKBxaT+2mLqkyCbnSVFVJWZeMR46yLOivrZNmWesNMu+xHoa2yfXe4OldBm+tPVCvd3m/fRvg1aRjaDyLGp/+z372s1y6dIlLly4B8N3vfpdnn32WJ598kldffZWvf/3rfP/73+fpp58myzLG4zGvvvoqX/nKV3j66adJkoT9/X2m0ynGmDlXzYaCFhI+Z0nS4RzRfOQc5eQORilMkgZ3y4VjTvjEooDusa4KHj35gCYozAMowXnBeUi1QvVSkGbTWb5Im6fcbgzH6NbdLvXQ/fvEnbND91dvDifBMvnwKsMffAeztkHvoafQj1wmv/QEZm0N5QmpssVCqlHaMbnyc8r33sJkOXY0hrUtzGBApcPqrmwTynccH61fPahupuES0ox0NjjF0bUJHjDGHxZ7r5cT6jY09u6Z0Q+YE+qa8VFKkWUpSZowmU6Zjod4Z7G9PlneQ3QSNIcQAgpI9JJZPsLdwiqrSi/O+ixzMEyzEezt7VGWJcYYXnrppRYG+vrXv85jjz1Gv99nd3eXNE3Z2trixz/+MS+++CK7u7vs7e3x4Ycf8vLLL5OmKRcuXCBNU7a3t9u0EUmSzBmavfd451DSGKAbXwGH9wK+ZjK6Ra/Xj0qTIiQ7OCmj6XgfRG3B2pr96Rh19nI8RCMuZAn1XoVU0fEV3YtWM3WZjfWvEfj7k7proVKQnr9IvnGJ8voHDN99H50Zyhc/x/o3/xY+yRBnEOeoNzdY/4O/j3v3PYqrb1Nd/QBlDPb6Fa7/y/8vvS99jeTFz+OVwbvlvlxLevMx3unHQHFCKwnij1HBxlU7hw2K+ZG5sx4oxt8UN5FYbUl8I583ODQ0cns8Y8YURPBeIeLp5TmJCflw6rLEVhVZr49Jc2aFM2beAMtomSH1OGpk1zOoiSkoioIzZ84wmUzI85w0TXnkkUcQEW7fvs2XvvQl9vf3uX37Nq+//jp/8Rd/QVmGpGvnz58HAiPf2tqi3+9z584ddnd3KcuyhZKa6zrnyNK09f0PvvQeQYG3jPdvsdXfABXSFwdZQ9rN8KTkm5F0NeOiwPTWmcktDhEDMQALQhK3BoY/lYygv6ZPnGpf03/iSc4/+hTcvsH2T77H3nf+gvInP6D3uS/C+Yfw4jDOYcsCvX6Wta88jPr8i5STIXtvv8nkzZ8x+fBDytd+xIXHniNZ6+Go2mJDx6Pjeb3dDyQQXZkFU9e4ssKkCU2icnfEbTxQjJ/ozhcw41neFmgYcfuJRhac4e4QcrY7lChSk2D6oYrWcG+X6bRgffMMJs1DcFTjLXCI1H8ULTuvu2EELSTDWsudO3cYDoecP3+ewWBAkiStbeHLX/4yP/zhD/nCF77As88+y5/92Z/x4Ycf8tJLL7G1tdW23aSHuHjxIoPBoE1Ml2VZp0KYJcsHcVyEtu4hYF3NZLzNww9dBPF416SFWD3LuonDpPu5NQYHh7SyLCitJU370dgbNDUtOjB/LxHKs9HjZ3XM8L0t3UOeZaOinOysYx95L4FGi1OpUUybcoKLbbcujL77VJoN/N76Mt+vrmNu/K77RjzaapzXDI1CX7xE//zfIT3zKJOrV+hdeITCAmgsBitgxKLtmOLKFbLHn2L9Cy+z+eJXkfGEajREDQaMtUNZFtb/arg1/LbqJpo/XYM+0XxwD8+se21mQtD8twfPEEI5VGcdRmvs7pDb169z/qnH0VmGk1CU/jB6oLJzSvf/zpgdZLDLHpafY1JEF06TZfQHfcQ79m7fZLx3C1vvQ5P3ZeWE6pS9Fh8YZAMVtZBFzIImocNegp7WbUophUkMaczV/+GHH/LRRx8xmUwoioL33nsP5xxXr17lmWee4Xd+53f4R//oH3HmzBk+85nPtO6lXcjJGMP6+joPP/wwZ8+epaqqmCU0lO7Tzf6pQg1YFT2hmI7w0z2ytI9yCi91tJLYlQX/PAdZ3dxm4BOE4IVVJglOmxgF7EBZUApvMkIo2Rjn4riLYmnlqjn3Nn+MWKuOcEDYWJxvMn0uZ9Lt8osbQXOP3Zdb8t3sdfDfaVCr3crx2LbDgZfOHaiAox/jOs20PRbNwW4eF92Aw/U8NlWYDHJXgfd4yVEvPAX9nHrnDkriaHpHpac4PK4oGL/1BuXudSqt2e0JxeYa9uFHGKYJpnY4cUdKvvNPZkX3nW43yGXseckZC20fdul5S+xsfszPpfDyOBwu8pHivXepbn7Ezg9fpfrJT9l//x1EC9p7nNSH9vDBkvgXSZo/cvDL7jey+nclCpUkaNFUdUUxnTApJmxsXiLLe6G231IGseqBe5ybJZkSVGvg7KZAnu+RhALg0RtnPB7z4YcfsrGxwfPPP98mi3vqqac4e/Ysjz76KL1ery0fuexelVL0+/02+Gl7e5uqrNDaoPS8POAlSGbT8R5GKbQ2c30Njq6HSFIHRnVB+vQwHg9J8l6AlBobgBcEDeioAUWD7qHj2xhcZ5c5TCfpfu+sY1yO0U0sxuLYdduXKEk3uNNCd1bvN4fsRPcsZHdgxaOa88FFEmpCeWGFUh7tkyiAHOMqx5F222NiteZa8KJIVGDmyimS2lP87HXKmzfRTz/CxsWnMXqLsp4w3b4Nm2fiPSl6VRJyL5k8FAvaHpKcU5SlpkBQAqZw6ErwqT4yeOs45JQFcWHuuWgTU5Z7lZsX57F03snCZgC0rqkehxah2NmhPxxCWbB28Rx6UmG8ohZNYg9n7Q8241+kw7SoQ88RtIn1ZysYjcfUtibjeDCP77AM7yy7t2+htGawtk6SZMFI3DCEzopdzEColCJNU+q6pixLdnd36ff7JEnCV7/6VS5evAjAjRs3WF9fbz8vowbiatw967rm9q1bbG6uoZSO0JdEyTUcOx7dJkvTuWCwZixXM9ZF5ikRggCJtX2dwGi0j1lbB1EBYopaF7GwtgBazRTirnJ88JoLPMmvPrZLta2pixrD8mIei8zUQ4QUV0Mjy5X1j4n8Mu3hEBhOPK5w3P7ZmGrsuPD8gPTM0bEeJ6EWzUOwU8/+u0NEDBtPZKisERtAdrYpXvke1WvfoTz/MGZjjeGVt1l/9GksoLzHKkG7kJpZp5pkkDF648ecufQwg7NnqWtHbUuqYcX2bk3/XErS1+G53Qsko0KNZ1Ubql0HCtINdSqbyuwizCC5JUJEOETjJJZIRZGK5tYrP6b/7BNkD12mGE9xIhiv0O7wzn16GP8cPnv85TfLShmYSZqklLpEK8VyR/LlrYTLeuqqYDIeoY3G2YoszUPKiCSFGDTWTIJF3tPANY1BtigKdnd3qaqKhx9+uC3svr29zXPPPUev11s9HJ3GjTFsbm6yvR0qf6nOfQU5LaQrngxvkqUpSs9Pm8OWlCwd83lV2Logaav84pyEGI5QLRwh0nXNWzXugtKxMM0JuayPrqzeNRDRwTubU/S9R9TM1nBcvW+WK+8wPWjxnPmWDmNkh5gi5q7lsUy3a258d5diuyZf05zZihHrh20YtArP8aR+QLwwvj3lw+/sYpRCrZ1h8EgvNJIkDD77LFUxwV15h/GHV5FrE+zmedJz5xl5IqxnsSowP+MK7HiP4SvfgUlB/sLnSS89THL2DLeu1dz44Q7nX9zg7IsDlLk3VUq8ICiqO57rP9xGtOfSl8+QbOlT0NIOUhf96eqHjZAEUGvD+mOPsn/lA7KnniRd28SOhsGHXxxeDndj/dQw/sXqRALHMvg0BqimlKFzwfgbShPOFuPhkn8jK3rqsiRPDdoYimJCXUyp65I065FmOdok+MYWgMy8axYCvxpDbRPFm+c56+vreO+5cOECjzzyyFz6iAPl+RYoy1IG/cGSeRzxRltRjG+zkWaIqANtrPRY8p7u6Me7CvnVfZA6i6qkdDUuyQPQIwHZ9PH0wI8dHsuRapuA0SYE5R0Ocx7s50JzDcY693Wj3TiHryu8xKAZL4tw7UIXuzqBHPh9EV057NgD7KC5aEykF+Zrp68rSDnFZKdmeqOi3vaM79SccwInzbV3GEUc23sY3ynYfqckUYqtW1N6j/ZIvCdzjqw3IPvt32bt5W8yeucK9uZHJJcvkVy4jEymOOXQ3qOwVAosgu+fQ86eY/cXbzG58RH5pcv0PvMFJu+dZ/dHBYkZs/VsH2WOqk19ODUY/97VfT76zh1IPBuP9Em2+qc6TOFNI3CF/7v1ewWH8j6klFGabHODx//Wb6LOnUMmFQaYYqm1xalPM8a/QBL1zlmhkhNMgriIrHUYE/3fZV4sP5r5e6qqIDGaJElIE4Wta8aTYUjrPFijH6V/pQ2iDq7AxejfkLgs1A+GsCE0NQDmyzEebKfbb600vV5OVRXxd+hyj7qaUBd7ZINNRNQJJNAZRwuK/YIq4z2TyQirDT7JOthALJfoBWcbU2nztzOkSy6rjW6zp56I5mWDtg+LpBCUc9STKUTG39UM57Ym6WhwcfOfH6p5OO+gYbbD5OcYefNsI7wjQl1V4Brmf4zbFY9JFSbTuMySpGrmbHUIdds/8jIdVUgAZX1b9F58gO9MVXDjtdfIHn0E9+gjpM89R/6Z5zAoJmiI6blDvQSL9gKmx8Xf/jtc+NKLbL/7NpM3fsbee+8y2i+R/DdxXrBlhbOngcWHZzAdlvg9hTOWqjjaCH6Mhtsl1k695vlHKaJl/RKwfcSj0KRlzfbP36J3ZgvTyymufIirLWqrj/arZu6MPlWM38dFcaLqPTLbgYP06UMRCK2Dqn8g5cGqiwMuRBYbEUQFw6UkQl9p6tpSjEdMRkP6g3X6a2voJINOzpnFQLBuqcVu9s/j5OQ5cJsxi2dVhs42ArBEsKcqhogtSbPZdZp7r+s65D5aGZkMPqbMcD7YwyMLBIHpeI9aJ4hJIo9sGL8gyhCOdjhfLW3/4AWP2oSP18aBu4lfJEqz2RtguxuFC9pgN2udb/oCUW1pgCJ3QDVweNwSrSNoe7P7WQ4dRa3M2VBe8pjT0StP/1zCxmf6FLs1a49kjUnlVBGMEAsCvTMZ648GiKl/LsdEjba4eYPigytkg4z84kNYSahUQvX+e7hBH/oJyquIcYPGoQltusFZ1l44w8ZzX8CMhpT7BVffMJjNHfILKTrV9zwXnIScUemGRm8JJtGo3imNUGT6M1tRINsVEOLaEQ/KQaI1erTP3k9fZ9TLyS5eYHj1Ov0nH2MgQlZplPu1cbdNPGZjzdsGoz6OxN8sN4lM1jmPStLAvY6xPKTzt455fVRiGrYWcpUYjdYGrQ11XVNMR0ynE7bOXyBJV+P0zb2ladqmhVh1zOH+yzJLHtcRjto++ppqug++Jknzzqh4JmXB1asf8MRjT5ClS6ZTlHStVzjr0SqajFux0VEWI1ySo3XCvISrUGKoaxDlsLZinqsJy7hcWVVU1UlwnqXdXgnaG63YWluPUlm4F1my2fiOcjMPtR1oMsytVstactllmNMClXXN9ngYNuAV2lD3bHEGs+Z56OUtXOnpnzMob6B9PofQiXipBwX9czmP/e2H8d4zOJchCNrC3k9+zPB7f4m/dZtBAYOnn0b319l+53XUpUfQTzwe5qIXUquojWCrMR99989RxZj1p54je+Jx/EPryNmadV3xaD9h7fEcSTqg2V0aeEMGAM/WI2tUL1nQsHaxx5GDfEwKS0FC0ZgIjSoV4T9pk5fgRHAiaBVKo1rr8Xf2UGJINwb0H384epmrT1fKhsPIWctkMg6MNg3Rrw0UcqihTFqhH+8czntMkkRJ7pDRbQDqcAXAU9eBcYkKYpVvoSKPEiE1CqM0VT1lNG3Udh+l5OXqal3XbG5uroR1nHMURYExZuXm0BR8qesarWLpxubeXLiZcjpCvCPJsnauW+e5cuUKP/7xT7h86aGljL+R9re397lx8xYPXTzPma0Byjs8Bmst5XQE6QY04xIXuYhC6QRfBze91of/MPK0Xk8uaTCG40nBi+2smhUaITMG5UNRR9dg6pFE5MSXa655xBfdi4DvzECBoq7ZLyZBEz3qUtFYKlrRvxjTmqCCHaULXa3squc4ysUMwgLdEwZP90O/jccKeO8YPP4oxeYG5YfvU/zZPnuv9FFbm1Q3PmLr3DnENYh3jVMe5QxKJ+hyj1t/9WfsvvYdehcukj3yBL3PvMDg4iP49TV0KjGmcwaP3hXGH9dvtmU4/6U1UEIy0Mz5XN4NdeZY8wTEO3xtMW4WGaMArwSSlEoJtbcUvR4XXvo6fevwvRyVp5Rntygt1NpT6cPXyoPN+JuJKT5gfaIweQ9bFoyriizLSNKkw59VVLmaalUxVUFgv3gXAl50khzEcZnfQHzn1bxztkZ88Jrx4gjeMtHWENV8pRUJCcaAUkJVTJiMx/T6fdKsh2+mSJRCnHP0+/2VE7qua27cuNGmbBgMBkuPa4K4Bv2cpnYtXvDKIdZRTrdJTFPSMdzS/nDId195havvX+Vv/+3fXWpAFmB3r+BP//L7XLnyPi/9xpf40uefYZAajLFUZcVkOoFzlzryUwMECVr1Aq4pgrVlZ3zDGBy86wCZWFvjlWtV5LkNfNbLuNhmG7QTiXEJi4va4yLw5aJE7cOsCHujdI9cDcvAcn6xWn/0C++jP7yVUDkMTyKCWRJP0u53K6AbpxzaRQk/zlGvHHJMP8XuGB0LThGPmBjyJ8FFs1KQPP8i+c7vUd25QeIV9sMPGd94n6R/lt75iwybjUw8hfZkVtBotBYGZ89gegPGH7zD5M03cEXB5m+dJ+snVOI69oF7oJgFwGtHerZhmc2kuodmo8KqHSAO5zWT969w8/vfRe0XhHTU4XmnZ89z/nf/FmmWU3uhSIStp59k7/uvMX77Z/QvP4LZWsOi8VJj1eGw6APO+GM0rA8ug3l/ncHWGYrhHuPRiLKqcN6RJAatTLtKGiNw2wyAxGybJgWl56SiRpJQqmv0bPbwuFi9xdd1lNxjHhoc0kjyDS7sgz+50hqtNJPRPqO9O3hb4K0j7Q06CIdHazUnyS8abauqYn9/H6At4LK+vj53jveO4f4+3jkS3ZnYzYZna6aj2wzyQWtzsM7x1tu/4Ac/+hFKFOPJmLObG0sfw82bd3jjF9cYjyZcv73DL979gIfOb3H50ia1rZjUNZL1ohTraN1kRRDJ8BKiiStftYx8hsXMrzwvjc+/QgieV8oLVizS5PxpcNV4n15mUdY+wi3NccS0Fd57Ji5IY37OX/5uJci7IJm9CRkZFdZ7cmdZz9O26EizER0mkAqC9rodzFk+q2MYxTvz78hDF4Ijmy3FxPOdB1t7zn7+qyRaYTbOUHx4g70P34LeBpx7CFeM2gemPSCOuiwodids/Obv03/sGXbf/Qn7f/GvseMhtSis6Mg07ZJ+nIy65552/V4vDqsUGkc9Ktj77/+SyT//b7DFFOdNFG4s+aNPsfE73yTL89AL76hubHPzZ29QVSPGw4pLFy6QXrwIXpHW2aHXfbAZP5F1RWy+n+eI0vTWNjFpznB/l7Iq8M5itMXEuq0hR02AYoIPb1j4tXUM1nO6TlbHNRw576nqCmNibQCvZjD3XH/BOd8y5rKqyLKUoiio7Q5reNK8j1IaayEx6VyGzYYa1XY8Hrd1fJs0D2VZsra2RhqrTRXFlOFwj17M/tmuawkMwVrLdHyHC+vrbXerquL9999ntD8kz3P2dnbhoYcOGLu9KPaHu1w+f56NJy7zyENneePnV0gELl3cpK5Kps6hsjwGbi3g5PFZKA0c07aLN2iVIqKDuyVgxVKrao7xQ/DIsSi8hOyr4u2cv0wTXOe8ZVLW2Jhmw811s8HUF5nCcrzIyb35Syql0MojymDrCikr1qL2+EnQvdrRHQYzWMPfucPO9AZmfcDGhZdw4hg6cNNmHAXjQGHxVQGTKfrcearNc2x+7hsM0j7j69dQiUF70LWiNv44Bdg+IfIwGrL/9nukvqZWmp2/fgW/P4HNPsnmBarrV/BVibMl2oEThXhPYoXR9Y849+xTnP3S82y/9nPKmzv0Lz2Kxxy5gT/YjL+BArzHi5BEH3SvNSbTbJqEcjpmuLdNWY7JXUaSpIjWDQgQmoEWzzRp1qBxc5c61EPIBxtDVZWkrfdNABSWteEBoxTW1jhrQ7UpgWlRsL97h43I/J0TkixZie977xkOh21aBq1D0rlbt26xt7cX/f4dw+E+eZaQ5+kc7/IEX/u6Ligm2/QuPdzeuQAb6+ucP38eV9uY62cJB/AOlKcoa3args9+9mnu7L1LkuaIKIpiQmUMaZrNJPkucB0leFF+gcMs5zaNi6DSQikVk6QEPIUqsVK3TGAmrwvKpzifo5XGqJDmtpJmBAI5L3il6Z270AneO4KjLP1ZQq6VuyDvu3uLRURRTcf4+g6fCHdbkQ7kpOSVsH/tHXb/5F9Sa9h48gm2nvkCeisIaBAMm9Dkmdd4Y3CM8Tev4h96HKdS9KNPUb33LvVwG9lYp0xCJt27tLj8Umh6/Tof/OP/J2SeC7/1m9TXP8Dpms3PfZ7zf/v3+eD/+n+k2nFYSSNkNVPlnKvondlkmg/Qgx5VaakVJNR4VRx63Qeb8Uf90FoXPEaUnjFtUaEAS38QpOHxkOl4hHWeNMtQiuieKG0bSpvgH75MiotlFGEmbTckeLy1eG+D/ZJVeSUD7OKcxxhDVZXgHcakgNDLhXJasLdzm/UNh0p6eLe6lm6D23cLwSStVuPZ2dnB2hqlPNnGGkqrAwYw8UJV7IOdkGQ9mptP05Snn36Kq9c+4NzZM5w5s9leY/7ehV7e59r1q+zslJx/9FGG4zH9fo63ntF4B5/18Dqo5q7DkvEK75tcRh1x/zD+ImASkMRTSMGuclgFla5nWlqHERgnZLUgzseiOgajPdPJeHZ0nAZeayTLWyP0UZ1Zzgc9+h4ZkQe8hKAi0THgr/nhl0jH2PoOpWauZXbC7o++T/HBFVxquPHWz9j57/4S/fwLXPqdv4XqZTgJAXI2Sv4q6ZFeuszNV/6aC+uX6D36CNNySrE7JJ2WyKbgnOok9L4/ScqS7M6H1D2BckxWVhRpHzl7CffII/jNc6j9AmMdSE1jayoVKJOxf+0m5y88yv6tIWajh/bhGH9EFN6DzfjF452nqmqy/lqLT894i4R6n7mmb0Ldz+l4wmg8IU9ieb8oTde1xSR5wPdb1X7G6Lz3c5GyzrnZZuA9tiqDB6h3wKxy1aJB1NrAlrTWTPb3Y5lHAULdX0mhKAuG+7votKDPZlvQfVHiLoqibbf52zD/GYP3pEkoUXlQZw++0sX4DrmJm160koZ2DGe2NvnSF7/IhbPnlhq5CwvGZHz+hWf5l3/+Gv/dX3yXb33lOc5uDRDvGE12UP0NAm7ZgUZiJGxdO/AGabMNrsbWm3tKEo0kUPkSqy21BM8b3dZRoKNZCIk4TJwOSZZ0rjGzBjdGdQluInNjtIpWGnfvkRkFDbS7+cy7Ehw3jcK90j3HSkRS1uN3Cza/8nXyZ56nunmd6ZUrlKMJdjxG5RnRqBZTFjicSlh7/itM33uHD/+r/5Q75zdbSCjJU6xrqjjc34xfIRQKFCaIBEnO2T/4fc5+7WWS9TUu/9v/iFv//I9xO0M8oAjGd/FCevkyozfe5Z3/z/+LfOsM55//FqX3GCF6ba2mB5rxN/PSOY82SSi2HlD0wLtbDmBQRpP1NUonFJMJ1XSMrSvSLENrHQy7vdlG0C00Hq7lW2kaQi3ervRsrcXWNpZWnOH70lH7g1ulbbWBqqro52m0KYTvQt58mJYFZTECpanKso3cbcg5x2g0apl9l5rPob+eNDXoA8xC4l16xsPr9LNB29cAOYRC88YYzp8/T55mS1X9cVHwyg9+woULl/jDb/829XTIb3zhOQa9FF8V7I/3UVsPx/Foils2bng64v7g/aIPf2M0PzjBnQ/QjFNC42evOlqWNKdHDL7x+Al96GZGPIjZS3y1e4IcBSUs++3eGfPMTzsyN7n/mdwqqrRGbW6QXzrP4IUvMnq2QD/3ERu7+6itc+AdKs4L5QVRYAz0H36SC7/zd9n7zl8yunUNrXPWv/RlZH0TnMarxmh/n4L8XhCvY0Ejg8NgTUL/S58jf+YZvFFsfeXr7P7oh0x33w4ohQ/egN553JlNzv/GZxl/mJFdegJ34RyUPs6NT3OuHgkpFkRUlMa7ElIHrY4GPNGGrDcgTVPGWlFOJ0yLEqWI8EvaNnGATYrMGVnruqapw4sIJklJsh7TskaJI01Cvp5FXumcQxtDWYbraj2TWxrveqU1eZ7jx2PK6ZTh/pBeTLHcUFmWjEajtg7wYYOUJksifSNj9N4y2bvOZr6BKGk92Kx17O8NMSYhTdKV19DimJQ1r7/xDt/+3a/x9KOfA50g+NajR2VrcZuZA/jRSuNikKt15dL2m7GuYnBemqaUpaUsLEmWIhBD2JcbWoEl3i+y8K6V98P71n++Ca9v/1vS+MGv/D2mEAi34gF3z67k90ynwVONJn/0EsUH18n3dpFBn+TiWbh0mdop/N42yod71aIwyuM+usre3pDe5Sc59+0/JP3gXazRrD3yFGOd43xJ4ixWnVYnPwaSUDAlaLMa5QSpK8Z/9t+jKkP62WcY/tlfMv3FFcSDFYeoEL1bq7BV2KLC2gRvDdoKxgnGasQdHr3/QBViWSRPkLSDYdPQmE6b9AEiYQGJ91EtDBuB6ITB+haDzbOoJMVaH7DfxHTW+GwyOefQWs8ZWW2M0m2ggaw/YH3zLCrJqR0UVcm0mFLX1ZxNIBRoT0NRdK07gVsexIVoUFGIBHfPxCTs7u2yv7+PtcF1rSxL7ty5EwKylnj8QBeL9yTpwcAuIUQZWFdTjLfJ80HM0Rkwb2sd+/tD1tbWQlzCCrV/kOf85stfpSwn/OX3fsSt7T1UnHbj6QinEzB5MIDPEDS8F7QJ461EcHWxYDsIQ9IEqDX2jKoK+VlCpS4XMxX6WTK1zsu3LakZU29HexmzCMcGxr2I86uFlxzyOgn5Q16NTfdu274HOsUNR7zgnLDzxhvs/fB7yM3rSFHjvKVyriO7etCC3Nlm/8//jJt/+t9w+8//OV47Bi+8SPbc89RJgq8LnKoDGn5KcNTHRU4k1NnwoPHUbsr2n/85e9/9K9T2Njf/6X/F5Bc/xxG8zZyEkN5EQG1vs/2919n/wRvsvfrX+Fs3sYnGijoSTnywJX4CQ01Mgmg9Y9oR227yYwQQV1pV33sQpUmyPluJoZqOcI7IiJZjy8EwOGOybQqEufZytkyCrUr297cpimnUJJqNI7hOIgprLWnEm2XewZAmF4CznjRPcdZx8+ZNnHMkScJoNGJnZwdjTIwtmI3HogG61Uo4aBwGKIox3pZkab/lLd5DZWuGwyFPXngyKE2d1JSzfdHjHFw6O+Clr32Of/LP/5q1M7/gf/A7WySJMBztI2kOKkEIWcZ1nLJKBK0TxAYmat1iZs5wjUaz6vf7IQq4LMmMQqs1UL6T1k2WSDnLlkc34Ocg1OPjOM2dJ8tY7rz2Mtc+95bgy0uzMYWXX8L4pfPMZ/05JWo0qNNqzjqKj64j7/+cO7ev0Hv/Jdae/wL9Rx/Cb2xRSJz3AijP+OevU735c7KtTXZe+2vMhUfIv/oSRV0T8nYKOE2hE4yr7ld5Hwhp3vsXH8VnCTLIUIminpaUt28y+sW76OEuzpYBNahDAXkrnp4Tqg8/In3mMpe++PcYvvYjJh/dJHnoIpUpcJ/WAC7vHRI9ZCTmuo9xlxx0fess5DbEPAZySYrph2FapaIHKT2ZY6p1Xc95uPiYgkBiXp41k1FXEybDPcajMVli0IkJEnVdo/BRS+n2VUUs2lLboMamvQylM4qy5IOrVwFwypOneTTiduGtxTGyZKkJrGPBxdDHtA315DaZOJTJQCzKh0L2rq6Yjoec2Vifw8Rbo5IXLJ6r1+9w9aPb3NjZZaMv/PRHb/KbX3+eC+mA8XiXKt8g1x6HRqSC6H/sxSEMwrYnRcA027TMTc0vHzfdBGNSRCzTyaSFfcQrlkf3dp88hPjXBsqRTkDXTMNp0xmsGMuT0WmwoigANOMQoZ9Q2rCbu/Pj0QNOq00HAaL5xsskOmX089cY//TH7P30L1h/+DNs/OE/RK9tMlVNMKHF3/yQwbf+Fv0vfxnznb+mfvOHTL/2ZcR5EEulNMZq8GUb1Ha/kjzyMA/9e/9rbAJmfx959DnsOz+l/PFrfPTOm7jhHvgUR8I0LUjFopzGanDVlOzyWdxmijq3RTmZkDpDahXu05uPPyQec96RxGyV3YLrXSbdpkJd2oy0smIrES8c3Hj0NBK/c46qqpZ4ucz+JkmC0SHTXt0bUEzGDMcjtDFUdYHWupUspZUooyHRg3ceYxKMSUBrUskwSmNtRWVLtMQ8cq1s5tu+Nv1xtiYbrK3MqomH6XgXreZtJE2aibNnz7K5uUmbejhey/vgjVNUFf/6L37A62+9z2Az59yZTZ68dImN1CDOMS7GqP4ZRKmY2rjpZ9OfIO1rpajnI6ZmcqyEAvHW2jZL6NragCRp7CfHWfTCUSbag2fcLX18TGhp/+9fnkdr4KorkrU1+t/4Jptf+Dzlzg7lO+8yHg3R1qCcRztP6hTUjmlVsXn5ItnGGrzwPLf+xTucG1lqLXivUTE40rhQ0/d+HgOdJqSPXw5ixdYGZ7/5De7cuoUbD6knDpP2wCtSk9GvaeFZ5RNcsg7XS7KHHaPdMZkKKR6sKIz9FEfuWhfkuK6bZYAfDoc3unRU6ubm9wZWab5r8PXDzhNlQj70JEOZBJVk4B3lZJ887wVWtJD/p6Gqrsj7fZSE7OZaK4wkFOOC6d4+tizZ2NhEmzQErbVnztL8WucwK/sY7B7T8U4MAOt42ODJ85wXX3yRXq8302qaDcV53nn3PUza48mnL3P2whYbgzW21je4eHaLPEupy4JpWaC28pkBNTrMh/1qBl8oLYgNG95s7w3SrtaGqqoZjUYAMRAtR6lO8Q3ak1ZT/M1ai27wLFYDNvcl+c6G+Mu64D1Q00eLwYllMt0nOX+W9NHHSB55iny6jWxcwBVjwvyAWhQ1QqENPZ2Rn7mAFtDTMfXaerANOUeowtOkorg/Ob94j3ZQJoJxCpWvsfnSN8j6A+qyiDpo0OCytXNUgzNRmLM4FPmls2z/yfe48tPX0OsZZ7/1MjWeNNoDD6MHlPGHXdFaR5pkreRcVRVVVc0CR6KrJhy+ARwnInHRh79rWF2VFdDH4hIoIe0NSLKcYjSiHO+1UnjXtT1o98Hd0FlHVZbYukIlKjJdR1VM8XVFNbUMvWdtfQOdhSjZrp2r0VJWZf3Eg6trysk2eZqhYjRzm1hKay5dujQ3Pr7T9nRaMNqd8M57H3Fmc5PHHjrHI5c2SUyCV0JRTqm8hTQGhQmIm+XSaczL4V3IaxSuMa+daa1J04yyLLHWorQiTU1Y7nNG5yNYuAjeOabTKWnrCBB/+pXh/L88Fresuu/dkADGK8r332T3X/0J2cOPsvm3fg+1uYU2FXUvoy5HVNpTS8iNb6Yjdv7Vf4u9fp1sbYvaTsFXpFlKVTc5nSzaWe53Fqe9hFQMPtTnMJceZu3SBbTTaB/wfCchlsXqBHFFmJDGkz10ljMvPsnuRzfpPXwB/dAFKlehvQ2aziF0f4/KXdEM0qitY22QE3KtBCm8SU9cVRVFUZCmKcaYOcl+ZpQ9/tTuGna7Ev8yaq8RGV7I8ggKTRN2Yp1FlEI6xtluf5IkoSxKRnv79NdAZynW1lRVQb+fg8C0GDPE0/OeJO/RrZzlnCNNVuf5ERFsVVBNd9jszyJ2G84c4tLmx6nZALQSHr58iWu39rhxa4d33rvB1fc/4rmnLvLyb3yR9X6PsphQiaDSnJmPCrMsmiK41jLrCP747VGz/sQzVUxx0QSWNcfMYKjV1Fy/do6iLCBx4BdsA78CzH8+3cb9KucG6gpDminTN3+G39lhOp3Q+8xnGDy1yfj1t9FPPUNwegkTQylF7/GnmH7ve4y+96+Z6oTqxlXGP/we2TPPoy9cxOcDXJ3gCHWa799xkODOGXxLqBSEvKOC08HNzceIZfAkrsYq0JJgJhXjnR3Wn34CtZ4jMTW496Ex96mL3J2JnQQsPQURbG1RSvHwww+T5znD4ZCbN2+2GkAIjDoZs+/m+O5mu+x69MByjaEtzx1XaHOESUKu8WlZkSEY0ymh6GkDhtI0RWlFMZngnaO/uR5wbmfJsgwV7RaTYop1noH3pFmOqGBAds6ilGkji5dFe9pqgi32yc5eip2M5aVa+3fn/jrcW4lnc2udUS18+/de5p0rV/neqz/j9u42L7z4PGuDHkU1ocSQJFk0wDWsKlxDRFPbBnGx7bUXkXhrLUUxDZHVRpFl2ZLoWljFuRubhPceZ93sb3xK/uAec9/SL617p4R/tYIDHjutOffbv0u1f5vyg/dYe/JFRjev0husYR66QBqS96O0ovetv0ny8MOM3n6Hyfvv4pOc2698l/6VKww+9wL5l75GQT/USeD+3gAb12LlG1YtKCdU2uGVtO6oTkLVMSuCMgn1O++y/eOfMt7cYPzR+2gvnP39NTh7kVgc9NDrPniMPzK82ll0U7c2ulTmeU6/30cpxebmJmmacvPmzRYfbpj/YQx7kRp3yC7jr6pq7vfjtNVsBEmasnn2PDs7O4zGU/p9IVksaygxelESJBfGk3FISaBVqHClggdTkiaIVkynJXu722ysb5L2+jHXjI/pIA7eT7MB2nqEKyfBlbM94PC7gJA7v65LXv/Zz3n0wnn+5je+wm984UX29nc4s5XgfMW0GOGSHqKDlhOknhmuLtJoP4J3NT6UFmoXctMNa4NhN8tSksS0kc0nX+zzWHBrhj9aYfjU0Wmlamglfp9isx4Vhv6lR9l+6w08NV6X2Mk+ngshj5OAtxVDpTFPfoaNx15ky0+pP/qQ3V/8jNHbv6B48z0uPfM57GYfZaOgcj9zfmZz2jhHraAwgnFhbWoXJX4VDNxGFAZheOU90tQz+sUv2Hjx88i0pnj/Fvm5i7HU5acU6qmrGpP2Ym3c8EvX2Coi9Ho9Ll68yM7ODnfu3Am+87Ey13EzDS7m6fHeU5blSpinPa/bfPSLDtKPQqc5G1tnGe/vMZmM8FlCliSICgnZWilGQCeCrgTvLLWtSJMkSrshvbTWkOcZZVGyt3OHNe9J8xwlxM1q1QTxTKc7KGejD7/rGFeXyFGdKlehj4rhuGC/qMn7OWu9nIfWexjtqGzFqBgh+VpUIKLdQjXZVEM+fR+1C2drvKvnGH5z9SZ+oigK6rqi38s5QMdc+Pdv+t4Hj5r1pUSwWsjOn2Hy+o/oPfcMfjxFTUaY3TH6XIhStSoELxkXcvhXorAGlMqRx56if+khznz5pYCLr29grVATXI/v18fapAxvNrVaBQO28sGu1di7nAjKhzGw2pE5S6Yy8ucfJ0+uIZfPo4uK6f4IlMIqh8jh2TkfuMhdIartzgVXx47xsoFg2mMj8z937hwXL15s8880eXaOkmzayavUXNRuURTH9hpqOw0xKldADEmas7axwdraGnVZMp1OYhBTc0KQZByxkIh4cB6jTIjw6wQhGa3I0oTEaEb7+1RliQjBo2dFl7z3jIbb5Ekayh8ekLUXjmdWlNqLoigtV69e5/U33mJ7b5fCVpBkWDGUzjOaDEnytXjfjb7j2rvTSiMqGJSdj8/twKVDmoxeL6fX66GUwvllJQG7VoSDY9+JPfs1/ZKo0ZR7vT6SKvqPP4sr97j6r/8Vkyu/4Naf/SnDazdRW2tAE2wZnCGcEPBvV+DLaaxj3aM+e57p+XNMDFipDsCC9yMpT8g/5BVWAqZvnLTryYqnVhCSFoa6vNaVlAmk/QGsZQysJ/j21XTz/xxGD6TE712oG6o60q9Sislkwng8Zm2wNicFpmnKmTNn0Fqzu7vLZDIhSZIgETcg7xJjZkMNRAThmKqsWkcyCCkinDi0J4Snx88C8QHJHKTQJI/TSUa+JnhRTMcj/GRK3suDwZdmgwsSkIaQQK6JFG4weQ+g0UZj8JSTAm9rsmRAk52ztTUgwRjmNM6VjLffY21tPTLlo9JdxQhjr/C+IBFYWx/ww5+9zZ2dfT7/uWd5+avPc3Ytp3AF42KKGqy1QVYtfh+lHxGDkjT+VuL8ontaY2jwbaF6YxRZomNg9nK7xSLNuXkvPFdp7BmNGnJMLfAwajUWb3ExQbNCQCrAtIJL91qrrjpXNSw23m7PnT36kG1vSZuHXNN3fpGopTbzvBPN3PThoJXFo9ws35PxivrDK7iyZu3hx3Hf/B22/+y/o/zgHfZff4Xs2RfR5y9QOxtyYTmotZ3VOvaaWgiGf+fw1kfMPIjNJrpzL86cA/coTe+WpzZbfi/zfw8/1i2dO7NYx1jx2Es7xE30kNBUHQu8Q5yAlOzdvs74Zz+l2LvFnd5ZahI2Pv8cia/D5nBEzYcHj/H7WJRbQmK0Zg01ft23bt0C5xmsrcVsnYGMMZw5c4Y0Tbl9+zbj8RjnHFmahlw0TfMdo22jFSwWMbdxojYdUkGUDzsxLjxQr1j0tZUDbxTKpPTWNxFtKIe7wd0wTTFJCKiqa4sWjXcOrU2UYAN00qAvTfKzRgtSSpOlaZh4ys/4PsQEZEJdDJns3eDyow9HvXDGoJdRY3a9vTfk/Q8+4uHzF3npq59HpQkfXf2QN996hy985gnO9XvY6YQahU7TmLenYfzNVgmCxnuDUiDKzi2IQG52TsS9sjSl18uWBKQdwbAj51wmIbbR3pyOViA+aERjq9gpLGDZNDm97G4ySTa1aLsxC4sdXdGmP+JKB7jXrJ0wm3znE53vD+vt7KzADh31tWsMf/Qq/qXfYv3Fr2DyTXbfegs0rD3/IjZbx092ZtOvqYHdCE6xNSdhHARiHEaTwvmI+2ys+ytu+yhafvzBUZhFhq8++eCsDXO7yTPXbrTasP7wY0ymNckg1IcwJP9/9v4s1rYkve/Efl/EGvZ8hjvnUJlZVax5YlGURFIjKbXUklrdtmHJ/WDYgIH2m2HDD2qjAcOAXmTADRgwYKNlA1ZDDTe6H6SWWm7AkkhJkCiS4iRSJIs1V8557z33jHtaQ8Tnh4i19tr77DPcoaoyb96v6ubZZ5+1YkXEivjiG/8f2Uv3qBFSVhDkF9Fzx/gVcB7EpsHO3jHHZFnGYj7ngfPsu5rReLwWfy8ijEYj0jTl4cOHTKdTlsuCLE0jkuYKe7/NfvWeLMvWfm9A21anvI//DTVORWpEY0LUxaJVu5mNMQyHQxKU6fSUoixRAj5QA8kcfkZEvnObNHxXO0+S9jDWRogJVuKiaMwrCGg5i9OHqKsY9Ee0tWovIYlxmMfTM37lt77F3vg+L9/d40/+1Ffhj3yFd955myTLcUAxnUIaymBqVx7tPESjphZqGV/GUlYTaOO4Gg3qaWirRPeMLAdVrbw38zycVqAlt/qWlxJL324IFtdpbHOgkaGLSvvzcY+Ti2l9Vlb5zitVI7617V0lSLdeGh3Sk0/2OTmbc/zP/xm2qOl/7vPc+9SnqWploZa6XmC8xzUtbxGYLqLrjlna/z3OPVfQ2su76ki8HqkoxnvQlNs/9dPoV38qHKSmBDx1lrOohQyD8Zf38Dll/EreW8Wedxlo3utRFAX3Hzygdo7JZEKWrUOYZlnGnTt3gvR/cEBdhyIgNrEddhqoYfwNNdeu9UkAPColSCc65Xo7O/wzQj4cgbGcnR5TlhXWuhjBEiJpbKveNYyj2WCKU496xSQpaZZirLQ2gXZZioIaPDVnB28xyLNY/etqZ5DGzT8Z9Ngd5vyTf/Gr9HsJf+wnv8wnP/kqn3z9dfYmQ1RqZrND6A3wYqL2E7UOkeCr0Ggyir8HTJ5NHre5TUOUkjUXHabXnOpOez8UE7HAtHIczgqMtyCGg0XJsJfRH6yX47xqGO2R2TH1NO8ySP7SMuNn0e/1B29MTruYL3uatJIrsXZs/uor3Pn3/gPu//N/wsE/+x+45Rb4z32BKu/jyxqjZQuDreJaf9BTj6rtvnB+LT3O/ZdRp+1ncPqGOQhAjlMB325KizOCrVzYv0Zx5vIOPnfOXVRjeF8ef+1sJAm2/uZvH3zwAQcHByyXy3PXpWnK/v4+L7/0MkmSUBQFrnYtVkZDDSJmQ00o58ocRLBJqiG4YhNUe7EY8vVXQtAOErL+gN29G5gkYz5fkiQJdQSJW7u+HUsoYRFQPwWbpqHub6O90N3D0cxTF0yP3mE8HGJtAHq7ytEdEk0MN8Zj/szP/hRf+OJn2L99mz/83pv87f/qv+W3f+f3Mb5G1DEtZtCPFdEaELWuGUlDMfrwF7+SKjnPb8J3oSh6liZXaAePQf58G8+CgSrCog75Fq9MMl7d66MCi8rToGxeK7Bgg8/6mOLdwDQ3MnFjQHqivqp2/q0Omo5RKZZ9FFoTzCX9b8yPVkNBFbxygqF67XVu/9X/kPTll3nvF/8pi9/6HfrzgkTq0H50WKg4TATK2/aMbn8vH8uantnt4fXn5IIWttETHCsXtBPm14lSU6Ja4GSBqkc82Lom8Q7byXS/iJ4rib/70kM4Zcf+2MnIbcw+IsLx8TFFUXD79u02MqShJEkYjUfYJOHw8JCz09M207cRrjcjepqEsKY/EA97EayANt52qWOkwsVnbzciKGy8YMJI8pwROxFyAc7OTkls0rGgdhdk+ByyljOsTdrKWx3DeUfyV8r5EVocMdq/F+LpZTvD3ehtsLonFiVhNFB+4ed+Fq/KL/2bf0eW97Ei+FqZlRXSH9E4BBt0SUHWsnadQmIa3JXuuNa3UZN7YS8oOn89EqyxGBNgH9pnPKtd25CC94bUGnb6irHKg8Tg3fXZc+TtNGB5XdNQcCeFKK8ua2qdvR2BRC4w9HeHvObPaswt0gj9cq7Ny+cqml1VEA/OGNSBNw72brLzZ/4y6W/+KtNf/xX0+IjJn/hTLPo7eJ0Tai5bTATX3TZb10nAbM21NCqktu1dBEKx7duVYLXx/VW+k6cg0U7NCrWEjPZWJIowDT6glH6cbPwapf00TdsSiWuFwzcSsxopuSgKPvjgA27cuMFkMllj5MZahqMhxgaEytOTE+q6Ju/lKJwDYtuU+IMtxmKSPDDbcBWuuvrlrFEjDBMwPdK8R5IkeO8oqpr5ckEfyFKDiAmMoS1bWId56Q1IEtvW8W2CenTtMZ5i+hB1CwaDyYZL6pKdrYIRj8czXy4RhU/c22PcT3lwNIVlibGG+dmCCh9s/Cv2sta2wWAkoY59V99l/LJxfawpIAZjzRMmbwUy1pCbnMQYih/a7o09NxZrBSuCNXTk8pV/4iKMp4bWjUJdjSgwgODslDWzYhMWGXSp8+asjtWovb79W9v2eUm7Rbjt2p422tZ4GJn46rwER2QqgFiy23fp/eyfIEsTpt/4dxxVJcM/8xcRazAVqCaoCWu0OeouZPTrizr8WIuUWheOLl83nTHHUzfI3mbjmvYs2dKJZ0ch/FMAS6KNVufxxuDFomLx5mME2SAhfIdefxCLom+nbjZtnufUdU1ZFBwcHFAUBfv7++dMJ/1+PzB5IyHkc77AJgl5Lz+HyrleKcpQS85337d8cBKcpC/tCZ+8lYJfcn11UTubEcC0DuzheAf1yrIoUIU8S+MdBvFB2hdjsDah18uxxqxpBira1nD1vmJ+/A5pmpBlvdCO0jm0LupfqH8g1PT6wtGjM/7tN37Alz55j+nhITcnE1SUZXGGTwRJ0pYpxQZo6u0iBpEE78BLjZea9Y3XfFj1qcuTOkLoY5ExJkBmKGvH3bMkRfEmrAtREzOU6wgv0D2Jr7MuVuad9kj0iquqKPXRMqruimxrGl84xhX775ospcMdRTX+i+/9kroPbP5FFI9iJSUzNZzNWc7mVNNjzGzOcj5j/sG78O679L/8ZbhxE+ND0EElntR3R9Pp9dpLX2nbrWLjfWdtaKvGqnpUIzDUubBh1vZKuL7ZN9sK6oRVrboytj0rHaA5wI0q3gQJ33oFmrodBvGC8WEdXEbPFeNHDDbNSHuKYlsrxoWXR7UvsRbT67MslhweHuK9Z3d3l36/v3Z9lmXcunWLNE05PjxiuVwyGo/WGH9bbrHzjOOF8M33a06LjMQI436CZz0c7VrDaxaRrOL4wZDlhsmuMDs7oSqWoI4szyPyZtCCkjQlSVN6sQ7tyswTD0GC5ODrgvnJu4xGu+3hed6pen5RaTQXqQ+Z0uPhmF/9zW/wne++y3wx46uf+xRqYFbMcCYnsRmiTYSHrJg+kSkai7pw4HhfN+kYHQbTPjmYHnxAY306CuYe/MUmkGdBAY43QPN5TQn2cd/Gt4dnXfNprXoQ8gEShaoowdQr89y597f6vOVNrn3aMKq17FS9x5UlpQjeVe0Nl/XaC20cvxpPZvpUR+9z+tu/g54e4Ys5WnuSckkymWB3blKLUi2WuLLGzk+ojaf2jea+Ma5raXvrEV/NPvKuplwuMaY8d10j78u5h257WuhECPJ4xhJ/3HrB3BMEQRezelUUnKdeLPCjEa6YX9rUc8X4RUKMKxKwuNsT/SLbXWdnGBOwfKqq4vDwkKqq2N/fZzAcIGLaV2ytZW9vjzzLeXRwQL/Xaxl9qLPbxPBHpmqEw5OKYT/nS59WBmbJbiYkWuEa0LNrUzMe6TBuUDWkWc5kZ5fZ2QmL+QwRQ5oE04dq8FfkWU5iO8igay0H01NZzFlOH/HyJz4VKrloo8pf1bOQmFZUnrfePeDrX/8S//b3v8n337nPV778aV5++SaoslgWeDNCbBpnfn1kQPTDhPBZI4qLOD0rSfj8XV2L9jPIs7pwlO2nK8wwl5FRRX3NrA4s39WeSh2zZRUqrxklSyw2ZmxuPidMw+rAbjiCNYZh3oO6xKPh9XXtPPHaxlm79QBHV45hjVJxe9Y3B3Q4vPLUBmm/rltF5TIbu6BYL3gjwVGbJHD/CP3uH5L1UuzODnbnFsn+bdK9McneHcrJiGo6o7ZgygUZIcO1M/jVMFqN5Px7WecB0QTW3q/kxkJdt8JHu8Viu53Vde6A2ZxKBbxb+fqeHf+P4Q4iGG8IGLQG0Rqsx7uaYj7F6T61lpe29FSMX0T+p8D/Cfg88EdV9Te2XPNZ4L/pfPVJ4P+oqv9XEdmPf3sd+AHw11T1SEQ+B/y/ga8D/5mq/l+u0x9jDGjAyskyxZokSCGyZihh+8KgjeYxxnB2dkZVVdy6dYvhcLiGvWOMYTgakmbpmo0/VILyMVTSYkyBSI/CJtycwN3Rkh6QKixRvDisPs4r6Kz0jSGoGEh6DHYspDmL02O8aqjjq0qepuTDHtsCuawqDotITXHyFrZeMhhOOjOzOVPbSME4irLgrXfe5ctf/hx//a/+ceqiJO+NyPsJWpdURYEb9PAmOnKjSixRO1EI/hnTR9SFYjBadBjcZh8kMkfPM9thK5VoY7msyj0+ORk8wqxWvncKia+YVR48LI+DFphLzSs3Mka2jHbkLWbLKFeIhuLvHk9iDbujETtP1b8VXTnOC7KjLzsUu6vPGIP7+k+x+4Uvkvf74b2rRjjyUB8BhRu94aXd2ETDXesLwZTjz5k+Vln4TQb8hQe5EKFA/HqQQ6MRbEQSicJSDId1U/px+zw9KUl8SNg5LiSqqUHFMOhlDNMB90Z7l7bxtBL/7wH/Y+C/uOgCVf0m8DUACQbNd4G/H//8nwK/qKp/S0T+0/j73wAOgf8N8B89TmdEIM8ysjQJeDSpYGKS0AqeYKVMr3eUNkKi+VeWJe+99x63b99mPB6v2f0b/0CXvAdXG2waHGeZ7XO6CFWBHjxcMs7HjAYwySv66qieiOlvObZWyg3GJAwGQzIRTk+PqYuaNMvI0ozEJjTZjd2btfmv9xwfvMtgMAngdnTX6+UL16gBJ1hfUc6WlGdLdl9+CRkJXkI1r6IqWZRLkt29tsm13kQDbFOgRkRChE0LdrrZh0blDxqMkadP3DpnyrrATPKk0j6Ed2SoqIoar6EOg/eOhS5DmKMo3hvQHhcXZl/10xgBF8ZvrFkx5Gd0AGwNXbng79sNgaz9PTQR9qS1toXSVmJYKkEEEGPDQWDtWptr7TdM97L3oefhmXVjji6zxGsT/dM+/KoDEWxZcDJ1z8w8CHGvbCg1bU+iRtYIovaH6dxV1W/AY22CXwC+q6pvxt//Q+DPxM//JfDPgb+hqg+AByLylx+vRyFUczweM59PWSyWZFmOsQ1yZufKjS5vFhRpFmRVVTx8+JD5fM6tW7fWsnQ3KUj8U1KbomIpNOfXvl3y7QeG2TThDw8dgww+d8/zx9+w4Aq2SnNPQG2fFKxJMP0hI4T5bEqaZ+RZcOpuW+Ea4/PqasnZ0Tvc29mP0M6P8fwof9w/OeNf/ds/4N3DGaPRPi+/vEueeQRDXRcsXIHNVzDP61JlY4IIGZqCiREvV/VEMdZirWn35ZPz5Y7kdv6rkJdhnnw7C54bPUfvVo6L8LnaSPUStCALDKwPfgC5YjAi4b6opbQO8wuY/tMcWGvP3EJNfPxltPa2O33s3rsywG43H20+3VwQxtveJ+fNZd1rriy/eulfz1+t2gFAvOxEeca0dvxe8cwftY3/fwb8153f76jq+/HzB8Cdp2s+WOLyPMWaIYKwLEokYtRcZ9F3Qz6beP+yLJlOpzjnuHHjBsPhcGtbaZYzHO0xPTsGWzKwGa/cyuiNQvhkhSeTmlvjgEFTu2cbO7LaIAasoTcYBbx79W1xlq33EdZJMXuEVqcMhy8FrecxFm2I0/AMRxlf/yNf4Qc/eIf/zz/4R3zty2/w537uJxn3hlTVgoWrsdngXNvOOaqyovYOMxoHdFHZBrG1nRJrA/zGsxByu5zn3ATotZjFRSTAKBGGSYbDxzEGBx34iC8jQdKPzvtLW2vNDc3PJ+/bdWkz2XHb5+u20c0TaNthJYhdGs7ayZfZWuyoq/VsJnttaecyOtf+Bbe0y7p7qF3Z+o+ermT8IvJPgbtb/vSfqeo/uO6DRCQD/irwf9j2d1VVuSpmcHu7/wnwnwDcvHkTIUhRaZIwGg1BYLksqSoly1ammW2LdzMBpDH5NJL/bDbDe09VVezs7JyTNLIk4db+TUQ8J9MF1WzK51+CR2WfQWaYpAVeLD/4oEIjaNtFuA0Xba4r5qL5FDU/Q5JmiIYyiyuFdcPYo4Fxz0/eJ7WePO9fQ8re6K8YvAi7/R6/8NNf4fu3d/nGt77H8ckRztWo9yyWM6okwSYriItmPquqwjuHi34S58NBglRXmg+gm0j3pNssCA1e/Qar7b4HVr7ODrM5J5FeEXvvxAa4GWPw4oOzF0ElmCXDG2rqMV1WOnD1LgN66fXrSDwNPYtnbOJebT0ANrTwJ+vH9mu2nunPgLqmrKv68MMjvXIbXMn4VfXPPaPe/PvAb6nq/c5390Xknqq+LyL3gAeP26iq/m3gbwN86lOfjIaCMO4kSRiPR4jMmC+WVFVJmqSXqn7nIijiC0ySBGMM8/mcqqpw23B+RMkHlrvZbRL7iNPTBccL5d98Txn2El7Z8czqhLc/KLm9W2ClSdN/tqTasATBe6WfZ8E8cSEHVdSXzI/fp5flJFkWwb2u3ztVmC6U3/qtb/P2B4d89Yuf5Otf+iyH0ylpmqLqODk7QfpjMOtFa8oyRCBkWUZV15RlieoUmw4gL6+0VQsEpNXY2SdlTN4r9bIgbWGvCfNlmjbDBF62dq6WHuO8So1gEFw8phN8NNSEp/srD9+VNbz73RYUyA8pXSyl067TpzlkWmZw0fOfuOXLbl5pGa1AyZV8+Om6ca7xq0f2ozT1/Mesm3kA/iHwvwD+Vvx5bQ3iOiSEGP3RKETlTKdz6pqItPl4tvXG7t/v9wPI2/37bbz/GkibGGyacOvWDfqDknceed65X1Gz5OHYsiiX3N5JMRpzzy94R08vVYUoBOcdWb6CoN7eruLLGYvT+9wYN5rM1XbCtf6iHDx8xL/41d/mB+8f0huk3Lm9w/7eLlmW46qCo+kJ9sarHbFoBWqXZTlpkuKcpyprymJOf5RQu4LLto2qIobWjPXk8xbAr4qqxCfJhv258zyvK+dpc2dHer3yKRoOZINHfQwkAESbYho+SP3NOcMlmE7BJrLxxXNAz3AYF72RH9ZMrXSwH9O7uOb6f9pwzv8R8H8DbgH/XxH5t6r6F0TkJeD/pap/KV43BP488L/eaOJvAf+tiPyvgDeBvxavvwv8BjABvIj8b4EvqOrpdfql3TNWlcQYBoOAw3N6OsWVSpqunEKXMYtNKa4BeauqigcPHlDXNfv7+23JxjT2QBPLeDji1UT5zL05Z/OKmxNHLxE+ccdgfILbAqb0JCaeZtSrG0MJN+drEmtIEnupyoxAPT+hXB4zuvepqAZrdxVfSV6VD+7f53OfeY0bd25y69Yef/i9t9kd9rjxhU+xrJcsygI72MV0dIksyyiKguVyiUs83sN4vAOyhyQW56ornhy6aC+pJnatBgS8c3j1eOdX3F46e6n9SvCNqSd6k68n7cdmRHHiEB9DWMWjGBo0eY3/C0W4L3sF3ToRjz3qjwX9ONhvo4n9uF7Kdcb8tFE9f59VaGb3+/eAv9T5fQbc2HLdI0Kkz+b3HwCvPFGf2k/rarlF6Oc5MhHOZkvquo5gZVeo01tsjk3IlEgAeZvP59y+fZvhaISViFAoBmNhMBBefymjrh2j5BArKaN0FlK6n7k9tjHwAISEjsFgcCV4mVdldvIIg6c/GHVauj55DGeLkADTyy3DXsa777zPpHcHVWE6P0OtwWSDNdW3eQdV5airGvWQ532cz8AK3tWXdkai1CtPFWnTrBaN5tHmkDx/rXMOkTooay3jJwK7Xf+JLeBZY9iJqKINDktAsVwdPpv9hTgtl5gtP+504aw8CT9+kin+cbyXax42z1XmbkPRVRadcevSer+XgxHm8zlluSBNc4xp1OmV5NbE/Uv0AnUdUUHTN2RZEqS/uuTBB4dMbk7Zn9zCJgErJ/xfsKamTFJu3NqhOD6mKGqS1GCMIj4NkMahJdCauihJ0gysjXDHgcE0JoF2nG3Jwo5Tt1F0YsJKliYx4m+V2xqQ/SqC6zADN+X00fcYDoYYm9HKLAKb9uKV81FaJydRMt0bj/kn/+q3uH1zh6Ko+eDgkC996ScQdZxND3GDXdLEdsAqQuhbWdURTwj6+YgsHTMvhdwaKudxUmO2hL02FhcB0ph3cKFm04nXbiNlJJjbpK2QFo9MiVqjxjpfKhiBpCpZPLrfxpwLxHdnmOzfxOQ9GsdaW9/m/PKM/vzOeNTQzQ29mtqjCYO0hU0+Svb9jw1Js0/jL11Stn/P9gP/ohXS7ibfqYp2xaHzXDL+RqQMjGFTXJLg7BSYy4KiKLFJirWrurlXRRB0JzfLU9QJy8JzfHiMK2B//0ab3CXAsJfwe98uySpQ6TOUgokoYkN/AgMNbddVycnRAb1en+EklFzU4F28gi+s2yOcD5pJYPydhdem4bdGZLRacnL8Pp+4tdtxYkJT3vCiJ7WkMF8uGU8GTEZDfv+b73J6VPDp1/a5tb8bMPhnp0hv3NYLbvoZonkgsQlea5LEYkwKAlY8ZXPibRl7czi3ET0XXLfq9Ub0jQYJ2/gOu5TuLAZbe6hmpfSMgQhPEP8KAnMveOcC7DZXvKf2QJDmBGA145ecFpc1+CS3fZzphzlR29apBmHi4sdeXwXZ2oY0gQiNxno1PZ+M/zLScCrmWYYxFu+nVHXdqUfbVdmvMgNZVGqwll4voyhrjo+Occ6zt7fHYNBHxDDILQ+O4PQspz8e8tn9klH/CJwnSeJJLYG5lIsFdblgqTWKpz8Yk+b98E5ldZJvC8uEwAxD+UfHYNDDGLPi860YGhh6kA9LFmeH+GrOaPhqXERNotdF8gUraT/So5MT/uA73+eP/uQXyNMUdfDVr3yGYT+nLE5ZlAVm9y5tIYN4f1VV5HmPNE1ZLGcslnOSsxmLUsh30ogAeX6cndwcbIRjvvRdRc1tBS0cxpB4QxKrfbXH43qYTDuvvTSjn3TGH/uhVR3qMj+ufewZUPu4Fzb+DwUJtNo58XMj3G2/+DHb3qBWi1+77urF8LFj/K0phxB3vzMZM51NWS5LnBMg6dhNLxI1FdQBKSom1gF19LKcyhlOTk5wrmZ/b4/+cEya1HzmpYpZachsyXjUJ0mF5bwKpQ1VERz4mrJYMhjkiBiK+QzvlKEqWd7HY1oGtmJirL31VXSJkvfyzhhWJetUQok2FcF4x+nhuwzzhDzvrzW41UzR/nfDLKbwve+/w6c/9Qb/87/2ZxnnI9K+RSwUyxmLukazAU1VrW7rxjQwGRbnLbNZRemW+LFvj6ftFJ7dONbZpuGtLu30PDJ+FVKXkHhLFbWv7ePt/tKd9LDDFX3Bd1/QBfTDlwQ2jbHrP7fTc8n4L8MG37QBp4lhMh5hzZyz2TKGbSad60M7XSYXDnGN8LomOvpCXHYSi7LPZlPKouDWbdgZD/jipyccnRqGmeeVW0J9bChQVB3lco4xBlGHryt6/cDIjCQsiiXTU89kIpg8R6QpUH7xwaTqyVJLYjsJTe1lwQCtkYmpKzk7fo/hoI+1obhMF59/O62HLqoKd2/d5qe/8mX+xa/9Dm+8ept7nwphoV5rZvMzCpUA1SBNcZAAM2CMUJahjoC6hJ2dT2DMHZxCmi5Y1i6cs+ctdgBYY8izNIRzXlkzILL9tiqJJfGR8Rthyzm69lmJKrtuWN66trrHdos/AXUesWG8+uE+9wVdSQqsrH3Sfn6cVbEtOmwrAN1GtvPqSVfn3zyfjD/+vEoKa8s0GsNwGIq3TKfT1uxzcay/oFgMDlHbFgpRcQgJ1lp6eZ+qKvnggw/ojW7wr/5gwO+/WbI3hv/JnxixY8KB4V3N6ekR3jlSazCiiCQgBpsofWMoipKj40dMdvZJejnEcogXKX91XTHaGV0Ysw8GxSOq1IsZ5eyA2zcncbyO1g28FfxKWVuXIjgfAOp+4ide5vvvvs8v/rN/y+0bN3jl5hBqz+nsBO0NkDQLz230BjFkWcp8MacsPYPBHdL8HnWdkacOzxFOqwvfo2qw71vbqd17JTUcUxBvSX2K1Y6pKNpvmhKQnTsQWBVp0a6znM48/SiZb6O/xG2/7XW9oB8tRVmsEawCXeDc7dD1QoHXNt56CHGbbdj59RJ6roqtr2rcXqx6d8Pfup9tjPiZjEegnjIWNJGNe+MDUE3DB/EgJqTba4SVFcEmlizLsEnKWx9U1FXJz/9Uj8+/nvPdN2cslzVGoCoXqKuxBqqqCHgzkhDS70PVrBA95Dk5PmQxm6Lexeie9VE2pSeNEdIkuRCbp/nW4Clmh1DPGfQnaGuL9NEPsG2O4wRI8Dl4LPNlye9841t883s/IE0cb73zNr/3ne+wVMV5x9lyjhnuhAOrpeB7SJKEfn/IaHSDyfglnAt+kTSpKMszPO5SbiZNVu0VCz0G2cbXF0DgMp+S+iRqiNpw8I7ksEXy6n7WH9cGWncHN59eMP0PBynBb9eYBtt3pBf/23x1svGvvTZ+CBW+fGx/i9DzcYrq0QaroJF8rrkTmpMzRJQEO/dsFsM9s16Adt6Whi2CmhRveggV4kuQlRlEjCVLUo4Lw53dks/eOKFiwK/9gcPdM1gjFGVFllrSNKOuE5IY194NKU1imcKiqJifnuKdYzjeCYVSOrZ7kYB9k6UpiT3fZ11bYIJqzfz0A1IL+WAUinS3k3nZ3IW/1U6p6ppHR2f8u9/9BrOlUqMMJv1wgCHUVcHpYoq98/pKHW3CFwXAkKY5vfwuRnZxtZKmBb46pK7PUHWBMW/pjkg4sK1czfRa3k4wBSbeMKgzUp/G8NLV2LvwD5vUmnri5xf0gtaoY/ITVWgq8jVyxeblnTW0zcO0+i5mczd7WjfkElWI5SPPi4Tn6bli/ABVVbKsavqD3rlC6FeRIWz6Qb+PEWE2n1NVJdamG20pQoWKoSLn4BHc2rPkxOII0tH3RMhy4WSecVxYFvWAQs/AKtRQlSWZTbA2IbFp1FZcx04IICHiSAyL5ZLFbEqvP8DmEfOGxswcnbp5RlPYZJOafAFRi69rTo/eYdTvI0kSjAbaMNELtIU4B16FR4eHvPPuA2w64Nbtu7yUpGAz8tzy+TdeIQVOFmeU3pHmQ4yCb5GhY2SRQpIOsHaHYpkhpgbOqKtDRJft+Lcv5YCgupa8daFWrc1pjSBkPqFfp1hvAga8BO1DjCGxQimXx0boBZ9/9PTi9PlwkYRINK9URRFQZuka5Nap8QlsbUdWn7df0XwIn1xVY5IoDMrluuhzxfhFgvmgKAu8OobDYZQ8WXPMtqSrBC06fzMC/V6PxBpOz+bULtjwbSxkEma8xmuKw/Lewzm9nmU8sXiVgC7p6uBE9HBjorx1X/m2qymqgtsjS9+UFHWFQcgHYxITZc4I3KZ1javryCQNKj7ARWQpi6LqqH1BLgjCRTDPpEkSLRYXMYUw1rpYMD35gJsv3UCQEO/fiiAXMFslhLEaT1VXnE1nzMopC+/5xKs3+eTLLzHMc5KkQsRzOj2EaN9fGT9X7RprydMd6rqHx5AmC7w7Rf0MxLfvtAnD9J3DtxuI05j3ukln3dFHBRmrQuotuU/JXIJRaY7rkPeQ5dDRATZNO2u/x3abPgTBbsP8tnpN6zd2vj+3Lq+ijujYwjvQpG+9iDB6cnr8mdtmooEAEz5I0oCa2siAFz2xXQfdP3TEvshzmhwRXd0Z72/APoQ8zcAIlxdefO4Yv5BmPQTl5OiIPMtaxt+l4JCLqlGMcGlYaDgDQqZmlmXs7ViOT04p6zLCNSRgDILF4shMxZmM+PUfJHzmFegnwt3BHCNnOAWjlhvjmslwwB+8U3BzZ8FPvjFAtaYolth0h/fKOxgt8aQojsQK++kpiRzjAOst3tSIGJx60jQjSfKNZRoOmzSx2MRu9fQJGkM5M6CkmD6AcsZg/OnWadku0EsiZIyGqlr3bu+zN9rjH//yb/Arv/k7vP/uAbOvzfj8Z9/g5iTHqedkfogb30CNiX6DDKTCeIsTSNMxojepqxxJl6Qcs3QnOKkBE5NfFKuByTkJ2aomjrk1dinR39KYkuKY11JohdRZhlWfUdXHqo1zQrszE2tbth8Wi8QoIF3DGGqikmgglVvbK6i6aHaMzreOA07pRER57T5mK10sz/voq1C0qiLkQ9dgdTldpEM9Ka09VTe/uAZ9GE6rZ6A8NRJ8P8957ebtK6/f5klrws3PF7YJ68z7lRczLHtFMGEt9FJqSfneu71Ln/tcMX4I0jFqAtpjRM3c5jFXVYrFAoAkTTHWBugGXdn8IUiBOzs7TGczpvMFIFgRjE9IxDHXmvk84Te+U/G73xL2Ro6/+kf73BpViPdgYVENuHWzx1+4kzDIhUleIIWhLCtO3YB/9o0Zizq8ChFhMqz4E5+zvJJYaq1RqUicwYninKfXH3YyYFfj8d7R7w+xF5h5ghoa6rOKCieH79IfDsjTfMu120lFUbvAOMvJac3JdMFPfumLfOLle/zLX/sd/v4/+hdIkvPHv/5JtISzaUH60mClesad4cVjTY/M3qIsEzA1qamp3RTnl5HFrtTVYEKDBCFzlr5JwFr6mpPVGYIPYGfi8RuO6QYiIdGEXp3Rq1MSHxFIu9c12lxQ1AJ0g4Twz0ay6qrmvrW3KlQ1frnEecW7Gq8BgE+9DzVhY11Y9Qq1C98730JetC6Pc29sO3WVs1Q9eZ6R+PMax9UtPT2t2alXJu7L3UQfRnoWHZZobhfTli+9jJorWv8X4X6/xUQd/FMr7bYhlQo0C6bULGGxVL7xm8Wlz33uGL+qUpRlqDjVycJdReTEFCLvOXj4kOViQa/fZ2dnh/5gEEv42ZWSb4RELMPRAIxhNpsD4JIgsWbG8uc+3+NzrwnWJKSpcrs/xeExpkJMhZ+m/O43D5hWYz7zMnz1FUeShmLwo0z4yc8O8WKxxpDYip7NuDn0yDzADav4YF7xDq9K2stXFhNpmL7HGkOWJsAFhacFjDd4o0hVcXb4NruTCUauV52sIW9gXhT89//i1/nXv/Lb/Mmf+Tp/+c9+nZ2dn+Od9+5z5+YYwbBYHFHgsXmfgD7ZiawRyNNbqN+h0oTUOhKZsqhPgXo1uPYFhsWeeGHXDLiRjRmZPlYNLKGUkjpVKqmpTCzgHt+iELSmXp3Sr1N6LsV6S/DqrA6JzeIZjaTfIPPI2vZc9S5DmR8e4I2hhVkWMKKhDq73a7DR1jcwE7adi4sY/0W8yHhiLdgwitTGdbL16h8i0994wtW8c8u6fKyrr0/tGbTZyAVz/SS0zZUEYMRcK0Rzdb8CplFMo+l1wxQU9blN+30IMiEW9IFeZvj6Tw/4L//Bxc997hi/q2uqsmC0u9OqS5tMTURwrqZYLhGUslhw8LAgSTMGwyGTyaRNxJKITZ/ahOGgjwDzxRJfO5LUgBjSrMf8fsUrt/uM+kLiFzTMS13KKDd85ZMD3jwU/uDtJUUBf+pzGcPRgMViwav99+jt7HKyzKlr6NmSzCjOSoisVIMTwZU1JkkxSbrS1RurgXf0e3mLxHlx2ToBUar5CfXigOHNVy/JV9hCKliX8OjRnLfff8TXvvpFfvDO+xyfllgjjAcJd3aHJKrMZ8fUSYbN+gT2VLdM1CRDjLlFUeYYUdKkoi4P8LoMtv3OnglDDbs1Nym30h32zIhc8mjq8PSweOdx4nFmdadA3OiC9QmZNyTOIpiLo3I0xOs3wniQslZ+g00r2CCxGIKmIYTtKyYcFCauobCRoynRNObE9W2/jQVebAIy0d7bnBp6YVn2HwWd92xs1zgfp8GnDZVdmfvO/813L3gSuqB/jaDRRt9c3Uxc4M2chfdpdLXe6Aita/kBq1ePSIkQTJeptbzy2uVw5s8V4/fOgdb0ejlJsjKFbENsrKsKY4Q87eG9p6hKlosZVVmwXCxI0pThcMhgOMBai2JIrWXUMv8F5cKjvZTfu1/zB29apCekU7iRJ9weOFBwRtG0JM1yThcFdS0MUkLSUJpj5nOMK3n7/m1++62c0hsm/Tl/6rMpAwt4g/WAeApXkw0boLOVh1CjvyLL0pibsN28BcF0IarMz+5jtaCfD1un4HXJ+YT33nvIrZ0hf+kXfpr/53/zP/Bf/Xf/hMQKn371Ll/89BuId8znZ/hsgE16LWMTUYSEPLlN7fvUasnTJfhHVPUZ4OO6brZVp18KqSSMkgF9l4PGegpIkLCctr83m11iRRMVjaGY0sHl2Rxz4w9osotX89wUQNzM71UCVtAg+lxEW1bcjqEb7x9w9lfXdJ2xbWYxHYaxsgStMZEVPmfslTbXXHKarY9y7RuRhlddxLC3zVUnBPZc6/EZ2vCt80+9ii46Pi6mRqtaPXvtr50umMfrysbFG/PRvpz1N2S4YldFRr72zgTOeYK7A4mHxOpdK6IJ6jNQH4UKh5VOZcAt9FwxflVP7SrU13itsUR4ZIAu5IIqZVG2CVzWWgZJH+89ZVUxn80AKIuCxXxOlucMBgOyLCexhvFwQIpwUlQsK8vhobIzcOSm4vBMSDXj9rBEcRixvH9m+Je/ryxry9c/bfnqSzOgCFJH7bA24wcP4XRek/SEaZmzXM7ZzaCKi0NdgSJkWY+QCBV2lKjgfB2TtsL3F2qYGvJmjXPMTt6hn+dkaW+7SHQRCdR4vvu979NPE3qpxYpnsay4dWPCnXs3sb2Myi2ZlifQ3wWbtvtCvZBmY4zeYFmDtY7ETCmLR3gqVixytUu7nxIsqQ8S+0pODkqwjwzdascEER8sqiQKTsBFxtsw6S0ThQPOqhJVE3u0jiraMrOOZhUYf8PMBR81nG6UkYi0UnwDsa2dv602dXNNI7CspEGQ5syLr65hMBex/RULNRGDasXoL6ewR7ZdqJ3nb5os1r5YSbNbzo7WpBGBCpEV3HdAMG1uXcUsrSVh0ox/gxFvdKH5fkNRvnLs0AhRm6010C0rU92WwW19H6s3Kc0SYsXGt3V8dV9z5UrwbwyoQaDxklJ5x7LYnoDZ0HPF+CHAGh8fHeLrgqzXJ897JEmoi9V12hbFsl1o8Y+IMeS5JctCwY2qLFnM56RpSjkakfd6ZHlOL+8xGgzQrKI6q0gx9Hd61BWUC4+MFWcdWlsStfjaYqqSV/czRsOUQnJSHN4tqcoaOx7gTcFPfiYlS3OqSikKBykYqXBkVLXHJglJ2gCvBVLCgdfLMpLoTLqwJixhA2m1YHbyHruDCUmSPqZUFQDlXF3z7sMT/vWvfxO3KPmP/+q/z2uv3iBPMoxRlssFJ2WJubEb5tYHG6Yxfazdp6xSUEOaTvHukLpeouIJ7tvt29OoIcW2OEI+oowaFcSvHGXO+HaKuvK36opBNLE458iHA9XkGdrLWbQMKDL5c72CrtIv8frgnPOo+rXgKmOCHVfQaG/oQD8gbU5By/hlndH5xkdlQn9Ml1uIxMSeLeOKDZquffgSO0SrJdPRRLa0u2bu0O2fVS+uFRB8IbGimdKCt6pXjO8wr47mEOYkxFg9zuJt8ly0c3BuXEFXcNrUHM5tq6ghbWpaq3Py8tDaZm6FTV2BNRNfOGAkmnUaO39XSyjCXtAMpaBajDg4nF3y5OeM8QcHp0Wd48GDB2Rpxs7eHoPhiDQNtvEAW+yo6prmtAQ6CyhIIEmSYK0hS0Md2OOjI7x3DEdDdnd3sb0RiU3ZGSf0+sqbxxXHS0VLx2czBW8Qb1Fb8dpNx898Zcwvf6PmG782509/RfjpV3KW1Sk1BYk1DHsp+33PB8c1lSsZ9pXKGMSH9OzaG/JejhEbWVaTABUWf54H1e4yH20zxGJxSjF9xOCVV7l0928lQYzlKz/1Wd7+pd/gv/snv0wijuliiroJ/axPRU1VLpnXhqS/Q4N9o5KQZbt4dqhUSIzHcsqyOmqLyqx6uWKHzW8GITcpiUZsHl0rQdNl8RujXoXsBkm/+cu6+cGrpyhLTGIYjcak6avt5jSRkfsN5hcgsFdb1zTMQEIfUV1F7rRd8jGUc9XbsNm3y4eNwOJjhFA7pkb6XWfPNGGjdA+BzlBV1wJWu2+2ZdK0IYMr4WitrnBsz2v3+3i9Nu8jlpfp/H1zKtZeQeezN576MpVEYrv+Msl2fUVox7BvL7gtvL7V/K31cePCbllM3RqYuV0H667RNoy6uV5X67U7jC5cDGwcuCJ4SRBvEVMgqiyqyz0+zxXjbySjNMtIraFyNQcPH2CPjtjd22c02cFai6tDxac26ieaCFo7rDZqMWAM1lisCQdGWRS8//57JEnK7t4ew927fO7lPt94x/HOQckf+4zl9rAEFUQ8qEXxDEc1N/YN9w+FB4eO8tUlRTVH/ZKkNrx+q89kqPybb9WcLuD1L5kQlu5zxM8INvy81S2ls/BDNE/EDqIjoWwwtuaP0+khVAXD4U6H4V5MmyiAqQqfe/019v+jPX7vW2/xT3/pV/m7f++X+Mt/4af58z/9eRIsxWwBxiOpXc1tkpEkQ5ZlH28gzwpcOcX5Iux7tawwglaMpJXTVMhthjUSsUo6fhxDCFMFbOO1lRVz9xLMPDZuWBXBia5NTV3VuCqUVUxMMCeFIjiGNE+j36ijbWnIFC/LKiCaSkfaM5Y8y7HdyB0C8y7LMvqjuoxNMMauIKbbrzU+p8I5R7R7IGrCM62QJMnaPQ2jresa53zr92me0wg2XRKCNlHXdcxF6LxzEZJkexa8V4+r3fqhABhjN+6J77JzULQJ7p32TMdHtXZ8+/OHwAoapTl4V9do6Ny5e7pj2ibAN3kX5w7FyFvOHZiqUQvbsoc6BoWNWzqHStBOnXMtvo+ItM7dpiFF8erbg7nJVAkmsbAWrLdglcJZXn3j7oVjh+eQ8SNhA0nQITHGUDvH0eEBpydHTMYT0iRF6xrpLP6GB6h4Gtt5I4EJYJMEQ4I4i3EOnGM+XSD5nBu7KX/pp+DQeW71wNgaX1fBiZgY3jyx/PrvF/R7wp/9yZQ3dhUVT9bP8fMJpa9Ibc1u5vhjny9wVcbt3hJcQS0GrQ0kJSbLCQF7q+KFri4YjwaYjZqz6791pDTnmR29yXAYip+IZjizwOr1loLGyRpkCa/dvcHeqMerN0d8+7tvY1xF7QXjDMdnD9DBHs6EJDa1hp69jXe7VOoY2Ar0iNKdtP1r4JI7SnN8NxpekCiJWtCEGO60dnW7GeT8DHTV6c65EM044U71Nc7X4B2lWUdAFeOxaT/CP4cuBw0h1G8WWIuqETGIFfppvzsSUCirIkjujUBNYAbGWNI0wSYJqxxcpaorinKBb4C/tDnUQ/WwNE1XGepxLsuyoKzKmE9gWoYlEvZElkfToKzOn6JYUtWrnM+ovIRkdUnp9/urSmexz4vFnMpVG4dYmBubBJ9Ud85Ulfl8QV1XawdJ4wTu9XpkTf5N05b3LJbLmMmua9KuiKGXhrXcZf7eO2aLBb52GwKQYK0h7/WxG3H2zjmWiyVe3fqi0cBTer0QIt4Ns6xrR1EsoyDSWVUScoACfMr6WmyFhWbOVBCxSBKSRtNkJcQ1VNcVyypE6pjwIgGPUciyXkg8jOtV5jP6Ox8jyIZADdZ7eFkBttdSVRV1VXF8fNRgGZFl+cqBEzNixKcgsaC2xljvDkOyEVcHVU7LAe/dF6ZOODjOKejzKFmQvewYpRoQOp3lRmr5/CuO8cjwiZsZk6SmnAs2zUkmNyhQ3vnAsdcveH3sMH5BWc2QOjC70gtJPokHWhhlIzkZgTRN1sZ/gWYaEkPcktPD97k32Yuxxv6COy6a3q7NACajAV/8/E/w8r27TIsFaZLi1XFydkJ691MR8VNJ7BBjxiyrFIuS2JKiOMVrN+ysy8i3S1BtTm5zlnUkWbZ8PPdV97JOG+pddLyGg2BTWgz1TLsmlfAf7xT1m9s06im1rjZps8cV1OmaBNsyOHV47+J3KzuDOm2l6s0RqRqc86Rp823UcJyG4vWAaNNmoMQm4fm2McsEcrWnvsBEIBFNtTm8msG42uO23hPMrnm2Of5Qda2u67WrG8ZvbUKaBmbZQGSogluW1LVDBLrZCmIMmqTQhDh3xl+VQUvaXN/GGZI0W6u7AeCcpyiKALOwNmOhzkaaZm197rAGwliKojz3bhqtqvnXba8sa5bLgvX13mghQpY2WFsrqqoldRlCxBsYcI2franJk7QV/ipCYOdl9Bwy/i6FjWqtiQibQc2uqoosz9bBvdo7fDTNmnOTD7T2Vk0SrO0jdU69LFkUHuMsOlTSNMOppypKkjRnmKRU9PnDdzzfeqfm9Ruez94V1AjpMCMhZ+YNf/iO8PqOkqaeJM2xBKD72jkGvV1EbKsiiwiurtuFtYbNfcE8AJTzI6rFEcOXPhU0Gxy63dMFcL7NjqcrRHsYDMr+/oQdJqTqOJsdsygqTH+EV4sVS5bsUfk+ziX0sgLnT6jqs1C6kiZ88rL32Gh0jeQKV6zta1JIrvJVBc6T5328V0xn3CpBqm48j6spsOR5n6o6HzNtjCFLc9gIxDdiybMetVsxy8a8YI2cY0ahrYTU5uvmlLh2rbXrZpv458RYUpt0IlIaVqUk6bppqCFrIlDgmmVQ27/JumU5ClcJxqwfSmF9GkJ+yIbmJQZjunWgtWX6oU+rjOrGL+PF4K0NGs8GiQg1hrTL3pXg/2k1o/bqzs/zi6cJiW3NeR27envowcb8EPsVtdYY4hN8ieuMvXu/9w1OWGedaYBV996vaSON2S5oL22X2p+udutHiBrEf+wk/vMUFlZYUHnejyGMHRthy0WC+SDEb0dzAtFJtRZLK6DCOFuwO8x5eV956XaGLx1ZlrM7EVyRMp8vWbqC989K/vCdmsXSYG3Jbt9QiwUNuDBZ0iPtpfz2m8rD+YjRUPnSnSWpXeKWJanxa1J9W3fAB3NRqKu7JWGrAzVAHOH05D16piaNZRBFfLStX8x2m7Y3D5fwuXEUuhgbrcymR/gkg7SHJSVJJii7VHWCSTzGnLIsHoGUrKSeS/SOuEEEueyqJyYrYL1ncXJKb7Kzsv+zksJqp/h5k1FM299gY+1iL65E+6quqFwdkuo63TZisNIwC6GB8jYmmCjK0neceYL6wOAbEL52uUqoYKbqqarwt46lnzRNcA0scGsjCvZ6CEymu2ZsYsjyNDKvZhgeVcjyDGPPz33IHTln6UGEEFDR2t/j3AghSCHiSWmjOsW5TrOu5K5xvoQ8yyPUePcsVYwYkixp72mEArGGLM+3HhbB/3Ce9Vlr6fVCXo+2/Q1mXxsz+lcUrkjTlF6vt9qTSjT7COm5AzaMKUlS8lzb/bOaM4lzdv6ATdMsrLjG/9B5FTZL1ry9IXXlBeNfo2D773xuvo+FDbzYaEWMdvSGaXaZnoJ4geUcXMqZmfDBcZ9ZWTPOKiY9ZWw9415KUcDDs4pP30v52us5mTUkUuELwKXUNmAr9q0wGcHRAmr1LPYKerKkruf0+n3E9GgkCQj2SETJsvM2xHXqBNL5munRu4wHPZI0C+o7ddd4sXW+vF8xok3mL91NqEFun02PYThCkhTRhCTZp6z7qCh5OqOuH+L8AqVRwzflmIvHs7r62R0ABqFvLadHh5TLBdI5ZNecpqwL8EJXaDhPzWis3cAF2uCSraNROmsyBhw0D1wLpmm1rfh5ra14JAmtOanJPm8k/gphEQ+0cKCb9vqLQiSXdUFVJGxqgI0TdnMFCcH/VCzW50Y7AlczsNX9QuHK9p61mW3CGNkANhMo5xUlIRKmMVxKNzJnrRSr4NWznLstry0435FG74jzJsEUuFzM1wUPWR38zbyrKK5WxCiooyi694Sf3jehxOtO4SaPo1guz+1pQZEG0lwavrTSgMuyiGvD4HDUft2UtknPNePvJmBsSsTnmaUADTJjiP4IEvMKLGy9oIkDhKUm/M6b8NbbM7SfsNdbcicpKPUBu3u3GA3HjHuepTMBLtqUZFJhVAOWjxis9Xzidp+ffF2onXC2NLjFGWU5R9Vi8jFqOjKlKt6HqKSL0EeBNkEojE6pijPmJx/w8mSCsYJqI0FfLu1vRoxs/r0rnTpfM5vP0OFOKKJuDCJjKm/JkpLEnDCtj9A4fyu6JCwvrvaWqT1TCiaBXAy7WUpRF9TVAtNxiPpOyKDfqhlJ5+xaWedNE6ffkbi9XhT412GejXYVn73NgndZqtZaWw3zizZh7V61YYZqQzK3DlFCG7pq5UlIuwfVpQJLMxfnOrLxZWCeRgSHp1KlcdavtMlug+Era2w7jq7zt5sRbU3w5dHAoHBB9E7TrJENvhI1ufj+mwN2ffqk/dHNsWiWTLe6nMY+IJBgSJr2jKVx9Jo0wWQZy9nZhf2E55zxN7QNq+fcNRpD90xNUs6wVYWmGS45j1wpgIrDm5DFqlj+5FdSer2a1PTYkynl1PPg4IDJXsmdvbv84u/WfPcgoWfhMzdTPnPbU5spwphlnfDdt5fsfyYlTyreOiuwBSRYvKakdkhgjKvEf1fXDMej7eUVpTmcohQCEMssuuKUfv/1tQXYNVR0qYkdB86pn0VRBFTTdlOELVEUcxZVjQ5CzV+xlsoFNM7EFhTLA5wPWsbjsnBrbAj3a8b4mPefG1/8KUAiirVCoiYkX3WBfOz2Quzb2mpItn1JFELWhMYuY5LVu4vj83ZlQmjGTftuz/ehG1uy2eeWcbS0wWiaM2LLSaPtRecP/6emC97l46wRBaZlxXIxJ+31Q1QePiCsNtd0+u07muv6eFZ7wdWOqqzI+/0rD7tNa76PuRplUZJmYZ80mbrrN0btRpoR0+5XNgWdjtY3ynoMo0PbAWhg/LbXw0zG6PJyRP6PBeO/DgUETINUjsX9b1A8+j6Du18gu/VZmkSZztVhUWoIL+ylhr2J58awBhWkEFyekhQ1y9mUh65kukjYtylJHeyERhTxOSYxvPme8K+/UfLumQt1cJcVP/upHqPBrYCxb4RaQ7RRw4yNEfKsCfu6bHvExeYrZqcPMFqR9cerBXXJ7Rc5jOu65t/9/u/zxiffYH93l/aIEVgupyy9YvMJXiFJBngHFgc6w9Ub6nJXeV/Dzt/Sn4bhaZPg8nQMaFtSTCpBKlUbxtQFUBDYiK++itbZxebz1vqyXQhfb61z30Vx6JvXr8sFunFd9/hY1w639LC9drOVx6NmDjZY6VMrckpdQuIdqWnS+cy5DNjVL+cXfjOuZvylqyldSWoH1+rgevuCGqVY1CQmi36VZv60c8/2dmUVv7bWZtNC38DQBJNfU9bBSMCXAkuq6aV9fcH4GxIfcK2XU2bv/ibz+79DDdzYfwOS/tqlKsFMYlXJjEON5x//tmcycIyymq+82mdg5/Qyg6rl+Ey5ty988U5Fai2SL1i6AusTVD15pvT7Qpp6cjHcnaTs7Rl6MsRRxA3fMTe4AERnk0tQNdvkpCBCqqs4O3rAeNDDZr1YPLap0bk9pmYbuB0iTOcz3n3vXV559ZU1duGpWSzOKI0hS/o4YzB2gqstqYCrQ/H0EDkbHGAbneYihiLtz2dt6oF1VmZaibr73G2/PQ5dBXt9nuF3AzqbNjavuOqZ26/aagbpzP1FRqQuQumT00psXZl8tl/pO5e3tEVoDs16rAQ7eOD5gfmbi7STC95HkxEvIiTWdjCwrosV2hEVFBbGkCWWJE1oe74hRF7QzPavBUQ9WWLJk2bfBoZv1FCKpahgS6DZGj2HjL9RaLv2u4skmO5tAqJ4f0o1ex9ZHLCYfoBqgdDfuDbKqWIwUrKsCs6WE3y+QHyT+JWgtiaxPcYjpVwu2Zso42HO0ldUy4LKVWS2x0s3C/7813a4vecQrRjkGdY4/EIQSaklQWWB0Zym4EqeDWOW48XbUDrVo+qqZH7yLq/c3G8hg4nRB+emIv5XNUAEpGkEWYtmiuOTU5IkoZevzGBC6NfZ4gyf5ahNQQVXV6hWpFlKVZYxKqNrdFh/TxIe04byKdpELpJLSh6X7LZj44lJVtJ0w9rWwzlXM7OqqXydZi/IDr3i9mYO2s+sHxzREr/1vu7Pbdpacxh0o2nC9ytD8uVHL89w4i8hvYDV6vbRN/MaCuis6VmP99AI/hdCO+OzrlKq16grRCltjGhXu+p0L1gTOu87fj6P4NPlakBE2ZVOG6BUVclMM6bz+aW9fA4Z/6aC3qXLLLUS1bMeNt+lTsekvQlizk9RuNvhJKHUBO9S/sJXHZN9peeEgV+wWIZFI96QJyk/eJCxrISbvYxbN/vc6wmLck5RzejJkFs7CW8fpBS1ZZwYPnGrJjcmRmbEnAINoXuNFHJ18ZQmOsmxnE/R4j6D0U+GEoK6CvMzF20kPM7XpKQN90FRjk9P6fd79PO8Lc6ueHztOJ5NYecWNsmx3lNWBygulJXUAudqKq0xEgrIrxkaIjxBA1UblHVB8Hgx9LTHgDQWHHmWoZ2yxsvbcozxt80ZfbonXY+HXHqgP3UbcvHZ9aNg6tehC/txwehb002zMuLvjzWeZkUF7tsy3+tOeLePjRM8QjLE7bPlyiZwpPPdBc8SlXhAmFVUDxAOGIuKD9GJajFXIO4+p4x/Jc029vlNJfbc3MZarYm9weDOV/HGMLn9RUQG522n8UUmsbRiL7VYW8JCqahwfob4CtUcTA11TT0zfGPmySj5cp3z+c+NyFCOF1NKhN96a8bvf79igGF3VLDby7g7Bic1ohbxBk+w72dpRrIl0afTQ0A7FZk8Z0fvhvjhLI9x2pes5GgcVq+rSIPI9OvacXh4yKA/WEuTF6CoS2aLJfm9XW6aMQWOR1SoPqJaKrXW1K6mWBQYMWTjkKHYlWK8cYhKiFDQAG7sZCXhd7bjY0piL+gFPeekhl6e4gcpO6PhpZc+f4xfNeKTsKZCQWRPGo6D8zp4AEbS1DJ85asMb38ak+2GUKktzMV4C+Loi6AV/Nq3cm7t1PT6hi/fmmC0wnkFs+TWfslf/Jk+yypHfcX+wCFpTc+m7CQjzmZKuVjwF//YDjt9JZGMnbRAaxdldkXFxvqtLmLyy3YbfEutkQDvPdOjNxmPJpgtGsz69MU2VSnLkjzvrb4XWBZLpmdT7t6+hcQaxRD6slhOqTHsDPe5m+wySyxnVU1dPSJ1S2ojZElGnlrmvggSvjTRC7G3alv1tTYhFFIFrFoSbIwDp3X0vqAX9HEnlUZDiZqy6Dnsrk167hi/955isSRNLcbaNg5W2lPgkgkRF1T83j6S77c25q2WWlGcCbjoeWZYes/BGYwclDcShmrBOxCLUcPDM8c792scwhs3HbeGSi83DPo5KgkDI9zLHaOex5DEZJqVlKsY1NcYoRPNcxmt7IHVcs7y9ANu373RAtg1qeVbp0HCPNZ1TZ7HuRMoq5qTkzMWiyV7e3vr86HK6ekjZNBnkO0wkj4lGfiMQZKxY6dUxSMGWcYkzXmkszaZR7p5Al5br55TH8NlIfeWnk3Co4QWk/8FvaCPNwUTteBBPFWlLBeexccunNN7losFdRWq3OdZFtAOtUmKWdn51yVmJcjWDdqVxsj57QeFoFhncL7kjZccu3uGnJRentDP5ui8wqjHasZ7x5bffSfn9NRgDewOHcv5ERkZ0kvI+ylkCb/8zRl39jIGeckre8rQKl5DHU3RmtJV9HpZKAZ/Qahl6Fvz34DFszh7hFQz+r3XAELi1hWWHucD1ECLTaTKt771bX7vm3+Ic47xeNwepE2a+tnpIWa0w9AMsZJS0cN5Q5aN6aeerDxkL5lw24zZ9zstzCxNWr8q3npQpRaY+SVTV+BwDE3GxPa5+Lh6QS8Iuprux4O6AaFCWXvm3nE6+5gx/qaU4mRngqtriqIIyUZJQpqmoX5uB35gRU0cmMOoYNTgTAN+tOnSExwWI5A4j9qSdz4Y8YVPJPRtzaISUpNgtEaM5dFCGaUVe/s1N0ZQOM9itiDxBYN8H2MNw6HynYNQkHHSE25NUkZpAT4iaGqNqqeXrxBFL3TeNeYXDEZLZkfvk6WWLO9Fs8rV2kKxXGAkIYBtBeb/znvv8uu/8evcunGTd955l5/41Kfi4QBlXbKoFiTD1xhJn8oIc03AVKTGUNclmffsyICJDrFEX0nX3SCKSgAvcwJzVzKXkkocmRiGtofxBr9y3b2gF/SCcKHubjTzOA/F5Xz/OWT8xpDmGXs39lFVTk5OWC4WAXK1LAPMQQseZdqMOTBREi4jsp90wiHPU8CZr6ikz/c+SPnu20v2hn1EHTcGCXf6FsGhSYa3CS9Ngn26PzDcf39J6WuOTuekoxFZz/LpmymJ9MlxjDIllZKicqHoiEDtIEksaZJcL6KDGNpWL1kcv0O/PyKx2ZX3Nky+KkvyPGK8t5lAwtHxCcViyYMH9/n0G2+EsHdV5vNTlgq9fJeB5JTWMquCzpEnCYt5Qa4JA3KsSnA8y4b0roSIBEIxlRTLxORUNlyb+FhaMjgDIvN/wf5f0IqeBk7iI0sxMEUU0hT6NqHXvzyB62mj0z60VJQF+WDIrTv3uPvSK4wnu4ix1M5T1xVVVeF9vXL+hnJXGA1If94ELBnZBlmskDol9Z4aw3whfP6NlH4Ppt7gnJJQIqZCTMruUNjpBe3hW+96Ei+kGRRlyfz0FPElk1FCnllevdvj1ZcNqa2onQ/FJ9ThvCfPM4w111rcAThKKZczyvn9MP4G5emyuxScC9pFY1IKfxFsmpCkKXfu3OHevXsRJyjUlJ3NTyltSt+OSE2Ok4SlD3mERkuWfkE/GZKToCE+CTSEn7X/0IgjLtGpKyCWRBMyn8R3cV7/ekEv6GNNaoOAKjWJgeEw4ebueaiZLj1Xe6hJ7fCqLJZLVAxiE/L+gBu3bvHSK6+yf+MGELBmyrKkriu8d6g6kBo0lukzweTQQDI34FRNUoeKpzQpHoO1So3leFmxXDqMpnh6uLTPrMq4OfR88iXP3X1hWQqf2LWIhzTxTE8OKBbwzfeEf/jrJd9+qHznvuVk3qOX55T1HFeWGEeIe79m8lCQfTzz+RmuPGUwGnNxDHT7HwCqsmwTtxoQNkXp9/vcunWLn/3Zn+HVV1+lARPz3jGfn0E+YJiOsWKpVai8x4jH1SdUzOmnecC+N4qQbPlncKJ4CUk4TY8SbzDeRCe3NMW4XtALupQuSnR7vkhQEhAHUobfpCRLi0vver5MParU3mGShNFo0p5qjd3f9PvYNGUwGjOfzTg6esRyuSCN9n8xBsRFxmJjOGiASujkcQY7uQYnaW4Kslz5jW9aNFtyuw9/5O6MpIZKDN87ShiOHW/YKbcyy7/3eUOeOVw9Q9Kcelnw8GzGe48mfP0TSt7zVKXlRPp8elSCHVKcTiGHXra7Hp966VwYVB3F0fdJU2GQjHDGYdRsMY80DrFQ19a5JaqujbZpnMg74yF/5Ktf5itf+CIDm1CJYNXhC+WkOMQOXmFiJwjCCcFV3k+UM07okzGih1WLFxeTTdb7sc1uL6wyMRsfvH9h3XlB26jNkn2mjT7rBp8xKUIZBaJ+8JmpsLjirueK8asGfPpbt+/Q7/fXsdIjqFVTnzRNE7IspSwKpmcnzBeLWCMz1tVsYv5bYC2NoYSBGXoF4z3WwufvJdSLktMFfPIlxyAvqOoSLwnLqbCY5wxqC8aFJCqvDHSXUqfU6YJiMcVVJ+zu7WG8Mqtr9nJHYvuMewl9n6GJbq2adOFcCOBKTg7fZTzaj+iAF1wbbxDAa02xXJCmGdCFhFDu3r3L3t4ee3v7oSJlZNVFvWS2LMhvTsiSDDUJZawLnpjgWxmanFyS5tyM72S9H7L55ba/d25+wf9f0AsSIMAyN5p7XRnuv5NdetdzxfiNtaFYcXo+zn29eIiQpCnj8Rg/HJLlGfPZjOViwXy+xIohz/NYcWc9gNBoMKIUywXUJWk+ZLoUPv86lEvHzqDEVAVKjSdlWie8+cDy7nEWir9LyaduO75wu4/RJYkZ4H2GRfnd784ZZQnjPnzqCwalpGeAUY7DXRrCuUmKUi/OmE/v89KrnwoH1gU4J61SLIL3FdPZGXfuvMom593d2UGMwSJ4IlaIwqKesqiFW/0dUptQ24SiCOil3s9RVzG0EzKCLbJFuHzBuV/Qs6Rrm0GvSx92aT9SU0FPgt/Me7j/3iX1LXjOGL+1FmM7KHgbnGUN6EpDBJARYTzZYTAYMZ9NOTs9pSwKirJAELIsOFS7xRq8c1RuRpoMqJaetx4t+exQee3GjLpMkFqp1eK9JTHKsF8xHgWbeyIlqXU4LcF6EskY5Sn3blS8c2QpXMLrOwm3dj1oqEdbSwBpvTxTd50UZXbyAYaCfm8cCmDE7L5zkrQEs1Wo7VkGKOg0X7tMEKyx7eYKoaIhDv90fohPBwzyHRIsC7WU3mCkwrkzElVGZoD1Bh9r1z8WuvELekFXkFwk0zxdq8+6wR8OrdUvVozxTHY/RowfmhD2kAzUrQ7Vrca19nv8bBNhNNlhMByymM85OTmhWC4pqxLjhCRJQu1UBOcq+oMx48ktTufCtM74re/0eGU3J0/glZ0aywJBGGYFX/tkwus3FoguQ+SKF7RY4gC1GZVNeXm/oPdZkCTlzt0cKyE214uGwiDYWB7ygnF3xhU0Ps/Zo7cY5DlJmqAiGL0I0zI6cBUWi2kwkxm7yhyObZvunMW15r3j9OSQdLjLOBmRSsKhQqmKmJraT5lIysCsCo+/YPov6JmTnBf4Px7LTAEXN1XYsTatePVTHyNTT3PiX1RRCs5Ly+0BEBmmSYLzN+/3WS4WHB0+olguUPW4WAHKOceNm/eYTMb4nsW8Zfit71V8I624NXaMv9JjL1mg1ExGJZN0SVJMwYU6nw7B47CaMCv7HJz2uDOeMTGP2B/fZTqzHJYpL00UqKNT8zponCty5ZL58XvsD3axNmYsXyVqq2c2O2M83kFkhfW/9twGMiH+WmvFdDql99JrDEwfI5aFQqU1VmcYLRiZMUksLG/UrxLorj2aF/SCrqbH2R/PF8WMFjURPcVTX15y9zlj/I3p+ElVvmhDF2NIbYZNLFmeURYLjo+PmU1nCNDr98kHPTKxjPo9vvrZnNdfWZLRI7WOG4Mz/LzEyoBP3bLY0lGXDo8HXcFGiNRMK+HRzHJvZEhQFmeHPKwm2B68tFuDh8RZvNhgw7uw693EbagWJ7jyhNHNVwP2zhV6cAPTIGLp5aNrcOUAjbws5hRO2Rnu0yfDiaVUA1IBc6z3jLIBNoaEipdQA+ZaL+QFvaAfJ30UbPxrqe+AoN7y7g8uv+v5YvzPgFpLvoKIJe/1SdKUNO0x2SmYz+b0ej3yLMeL5cGJ5c33znh5z3E3n+P9KbLwGKfBwVudYOoAYmZM1Co8GBRnPc57nEKiHiGjqh2HpWdiBHwPpQiood3OXUGKMj+7j/EF/cGYgDjkQRtYii3jFiiWC3p5jzTtty1tXh/LwqKiqBpmp0f4rEcvG5OYlALL0hPyIljSwzCQHiYWcQlRUc+0jMoLekFttNizXVUflTXamHk8QoKqYXpy+R3PHeNvXv7jntUNzG+byBslaK+KmACklvcG5PmAxFoshhkJ/+a7joeHlsMTy+iNip5XalVSNQg1ZaV4FUyakff7uLKmLpY4FNWUvjFMlzBjwqRv8D7h0RHcHHpELSoGLx5vHUYvKbUIrU/De8/s9APy1JJkOYHx1ygZwdC0eV8Yee0q0jTHmgxPzUVgV6KCNx40YXZ6ggyG9NMBxqQUGJaVx/sKZcko6ZFKhqhr4/blBdDOC3rWtC1q4WNBHa+2eBSDiJIPLk/geq4yd69LzVQFVMnwzzcGmJiN2mTrSoxlF8Jh0Ov1SLKU2iizZcLRmfDKjYKzBdGda/FGArKnOhINyUqVMTycWxZ1AiLURvHUjLOKoqr4rXcSvnfa57ce5RwcVozSOc4vQ/6tmI1yct3BxDJ66trB+XrJ7OhtRqMdjLHoFcdh8IUHSIks73cgIbZvpKbEjauXTIs5aW+HXpJjsRQmpfQOrzOMViGap3kIQRtZFUq/6N/Ge7r8dT5zap/Z6cCPqy8v6AU9Hikijnv3Lo/q+VgyfuhI9m1CURMNs4qOCXVI/UqYiP/CAWFxsyU3RyVffK3kRq8gxTPoGfox/N+JBU0w3oBLeftRwskyCYUSImdJk5LX9uHBkeUP3hrz1vsDbo6UzJ2wXMwRfASM2/6qouU8mF4I0nu1PKaaPWS8sw9oBJoziPitoc6qinM1YALjF3cxl4shPaJCWc6Y1QVZvsvQ9hAvLBC81oicMRChT06IDzJrTfyo6EkZ9rZ7XjD9jwA905f0UXjjKwOXxj1m8NzYuxyk7bkz9TweBam+WC4x1pBmK2AjjVjz2wMFQuJSqZaTIuV7D/v84KQgud/jdD/npf4pRo6pY8XYRCtAyZIEk3hAsc6iklCj/MSdCgy898jxiYHh9VcVpoecHZX08ptYyYLEvLUvnbh6FCcwPX4XvDLoj7i++iskdgXDfNmiD1nNlsV8TuFq9voTcvrURpjXNaolRguGSU7fRERQbe/sHAEbfdtQNJ6V4n6h/rI5xM0LZHXZR4EFvKBnTR9F01HYYeaKCKePOeOH5XLBwwf36fV7jEZjsizDptmVoWGK4pOc9x/O+dZ3HQdlyjsHC+7slvyVr2XcTgRRHyVxj5WSl/ZrcimQskYlwXiPlxpTP+TTt/q8fndIWgecfmcM87Mpi0lOMsww2sTzb/YjFJb2GEQV9SXHD77LaDjC2rStQHbVGlaFfn+4DnOxjd0JISNXDdPZES7NGQ/2ycgorWVeOJSCVGpGMiIj6dhNOjb+yyd363OvvOaC6y8f+vlDTracFE/iN3pBH3X6KL3x9ZDrq7r+MWb8AetxuZhTLOYUxYKToyNGkx3292+Q5T3kgrqVokKicHen4q//fB9XQq1CeVbTM5adYYlbGgSH9Rrs/r6mn80wbolXxYkhNRWCx3tLVi7pmSW1mhC1aXpgphyfHJL1d8jsdlNPYKeR/YuhmD1kfvQOr929gzERv/4a8a3OeZIkaeqsNyO9cO5cVXN4fJ9kuM+v/ctP8v/4lXv8sT9d8vLPTlHOyEWZ2GGEZ1gv/fJEctTlbocLr79OjvO2j9L5vRss91h9eEEfcfoIvegomWjMZCuKjxM653UpQhd470OlKSNYm1C7mtnZKd55bt6+TZYH08926d+T2yWv7yeIN4Bymh0zOz7Glz1UFasKmuIEPB5TFgHdTQxeHLWX4A5WF+ASfEDB8QjeQpoa5rMFZ/OC3Z1QtercUKL5RNTjMcwP38K4JaPRLohtwTwvLNYVndhpel3I53DUFMUZh4sTfu97f5W/+Tc/z2Jp+Tt/z/M3/s+On/5TM/ompU8WnM8CEbONxky2/qjzx4J0OP1Fl0r3u05Uh659uugRXQmpmaTu9WEDtcmAsdFWeeHjnDD04aMfjmz+UZL4A7VW2iswvT5+jL/DCKu6olguSWxCmqWkPqGsaxaLOY8OHnLz5i3SPD8H8KYCTgTxFvEW1IYonqzPoj6Cako/ifjyxoG15MmQxAqiCWiFLY+pJEVVsCxxYqklIfMVagKXsQI4C/4y2SPodRalqBecPfwu49EwOGl187rtragSkT+32VPWvxPCIXZ0/D5V2ud3f+ezLJbhSFouDb/1Kzk/86eXjO0eCRY1Slk7psslpQvphAZIk04mckeaXyGQCib+LkjLk8Wa9j4DGDEdp4G2/z13WJwT23Xtb2s6SRtvqjFLWc4fJC/oQ0U/nCP4o3Owb2TbkFxgIWjo48f4iVtaoapq6romz3NAEGPIMktVVcynU46NYe/GTZLsPO6FYLCqGBZtezZT6tGA44MDVAwuNaipUdPn+4cjHk0tNRn3JkteG9eIW6IIXrMAokYI3UQrLAZXOQb9PqOBxUgNbPHUNw9XKGYPmB69yyfu3Q1gdS08w+UMS6SJYup+e1H4KLi64uHh+2STu/y5n1vwD/+hY7609Hqer/3xA1KUsQwxMSy2qCuOpmfUsX0jkNQJwbm+epaIYMSsRVcZYzZCz1b9bEJst46pabV7aDeDbcfdMPTgOO+2ZcW03xsEi9DPMpLOwfOCXtCHjTQi8JoLzNQNfSwZfyBluVwEgc+YRqFHRILZA+Xk+IjBaNQy/i42veAAgxODYoKUrgn9XcP0bE5ZlSSJxdDjqBjw7+4LZ3MBK5jU8PJuDvW8jXMRaixVlDANdanUKuzu7ZDmKW3K7JZxADgV5odvo7pgPL7R4dubNo7zDF3EbHx/8UGhIhSLKWfFgvG9V/iZP18wSd/i//ev9/j0z8z58p94h1xShuQgHq+wrCtqo0i+ipqqAe81FJIP4P7RRhm+Ux+zD7xbe75zPvxdrukkXtPWVvPQ1Fo2sjIlSSdyyiBgGjNagOO+MdlhbC8vafeCfnz0say3u5W0LSB1ET2XjH+NhW2xdQX7vjKfz7EdGOcmcUsAawzW2gvx70VDsL6XJkbdI5qSpcpkb8zDBw+RGqzNOD41DPt9fvoLFZksGYuSVXMqPD6i24PiNcGq4vDUdU02HDLYmYCkiA9+gTVmJ9qaKGpXc/TgB+zuTMiyfou2GYFKrz93banF9hHh+xi7ryinxwc4mzIe3yYzGf/Bz0/5E3/O8YdVxaxa0ktyeiTh2R6WZYnNckwei7vEXptzb6vbkZXFpXtFd8HKtnt108yzvX31sYymtkad4I+I36k26EYKHnxZRlNV/qFnL5eGrX5MlJVrBLI9JxRXqTZJpvG7jx3jl8BGpcGfbxggUZqM3g/vKqplQZquXKZKkGhpYvitIc1XZp4VzHO0+ErjWo07y1QIMBzvMp8tmM3mpL0+zlhuTSpumRnqPZlTKlfjRGPIJyA2hEmKp65K1Ap7e/vkJgU8XoKGsUZNsplCPXuL+dH3ePm1z4IBDV6HZko6I9xGV8dGelOT1jlLd8bB8Xu44R32s9vkHpzJObXKsjihpyW7fh9JwrzX3rGoamQ4JNTVDaUUZdNpe/6R7Y8nYbTdqJxNUkC2eMo3D3lRH2O/Ys1lWZcpP4z89MPSjx8bPfMJ+LDmuCot02+LG2nkCZaL6+0Fev4YfwRDQzVKux2HX6eM4mIeoJZF0rV72wLi6jHGxGpe69QNCukYCqK0KNgkZXd3j8WywNUVe2PDt98v+WCQ00tqRj2hb3K08OuNESKNqqpmZ2+/Uz6y44jckGUkxgEdPXyb1Fr6g3FrxlhddvFuOA9T3czFyrmJglWDA6rlnOPFgsmtzzFMM9AAJ1GrwfsSK0Lf9gnGI6WqazxKaldO29amf81d+sR7+YIbL2rvfM0GE7UTxcRiOF1Mpx8Fk73oGZdu682bNn7/MB5Yz4w+7OrYM6NGAN024Kvf6nPF+F1d42qHoBEGGM6ZcQScc0zPzqLUuXLWNVOoqjjvSbIUI9dz5gVzcjRiCPQGA0bjEWfTBRXKt97L+c6jjDyr+PzLFV+9lbR2+5WkqRRlSZrn7O7uYWxXLI2MUzR2VGhMTGW14OThD9ib7JJkPYKNzzxVJbrmVk84DE1tcEY5PTlkQcLtnZfoSYpXoRbPwhnwS3Jj6EuOUcWhLMsSYx+vlsCHhRq/T3PeBnevcP7I+tFzm5Xe+WS9eF5NIS/s/Nej54rxew21cA+nZwwHfYbjESbCEDTM1dUVJ0fHLBcLkiRptYK2UldUobz35L0+j8M9G5agKFjDeDJhUdRk9Zwvvr5HUXusGG6lkDio4ondPKGqK1Bld3d/BR8RVJXVQzbWtSgspgcU0w/YffW16Ki+3L73OONpnKgGwbuCg8MHJOMbjPMbpGoRhEoM87IEKenbjCxmHChQ1DU2TQkzu51tfpip0XgaF3xgmD9+9vKkJrDu/c8l/bhfzEeEnivGLwSp//TkhHIxZ1kWDEcj+v0BRgze1ZydnHJ89CiYZMyGobeRvCPiZb8/uPR552zC8b/Nt3mvx2Q8JilLemPP8VzAGXaGKRriWtq71CtVVTEcDhlNxjRFYbazych+FLyvmT36Pqk4hsOd8Dd9Npj3SvCTgOIFquWU4/kJo9feYGzGiCaIKrVYSj9F8AzNkERjroP3lN5Blq3MbvJRYvvQepej4zf4J5o/dQ/kCzjONu/65nebwsVVWXeEuWyl9o4J00CH+XXubwQcVitKr3mAfeS0tedVnWne1jXGdtV7fb4Yv4TauP1+j7pYcvDgPuqVQX8QmP7pKY8ODhCBLFvh8awv7FWt3jRLL9x8bfSLBu1AADEWomkEQIxhOBpz9qji99+0fDC1WGreuOP58s2A/unjG6rqCmtTdvf2W4ydJib33JtuI3aUqlpw8sE3mYx3SNKQKevFPPW61yjuNyzCi+Po6D6lMdwZ3w3hmhgUZSmCY0kmwtD0Ee/xJJR1QS1KYhojSRsr9JS9++FSN7FMO5FFLTx3c128pgmnaH0Dna+3Hgib313ic2+teluuWfnsmzUnrC4/f4Ns+7yxvjdrUr+gjx5duO469FwxfgBEsNYiWYbznl6e4euas+mUh/fvhyIFWS/Yz9sNo2vz5L3HJhZjVqGeXepK+qrKYjZDUAbDIWITGkgIENIs49Ey4dG04NX9nKGtuNlzGC80ZTGdq6ldzd7+DXr9wSpB6dzmayT9hiE7itkBxen7vPYTX0TFxu+fRYWrxosZGHalFQfHByTDfXZ7N8kweMAbw9R5VBf0xNDTPDJCpahr1IQDcV0yjY/4kPIWhVWmcGShHqi9xzl3rszlitGvfAKrkNhNLacj7V/IXFffdyX4zqrbaELaE0rb5re03elH1/8VfBjauWzTyf0hfVEb9NHo5dNQ97083WifK8bfWbrxiyBtzqZTDg8OsNaQJUmUzNnYeHHrSmD8ed5DzPZQLulId3VVcXDwELzjzp079EZjmlDFgJNvqNRx70bNZ/fn5FbJ1FO5JV7AqKeqSnq9HpOdHTCWzZfaMJDmMAmte9CakwffZZDnDAcjVAyivrVEPw2tjAFhDor5nKPFnOG9zzOyk7Y/lc04q5aoLhlKSqo2hsQ6Sl/F+1eM6aOyO1tBPv5ee8fZco7zPkr+Ya0YpP09/D/8DBnHK42yZdBr72aLVB61ufb3+J/1ads0DTX3Np83zGlxuTT9kybSbQtDl44Z6qPC8FuSjZ/PKT2L9/JcMX5gFd2qiqsd9z/4IGw1Y0jTpEWs3HJH5yu9EJlz/bKA7lkuA2zDwcOH3EzScGhE6UpF6PdS5NST9XLynpD4Ap0uUAdVVQGws7tLkmZt3zdfblvrtt3YSlHMOXrwPW7v3SKxBkcCUobAn2cg8CNNOKcyPTllCdzZuUcu/ZjQpZRiWPgK1ZqBGZIGBB3UlZR1jTGXF4T4sJISsnWbamG1c8x8TdHlykpbUGdrUN1aEk2Q0p1zYYbslkSCyOWl87M5WKA5QMLn9sCRUGpTRLDGkEjEYpf1AwkIIamtGXBVVW6t3diOMeYjJfH/+N3tPxoK71me+p08V4y/67jCWPJ+n7quERHyLAuAXhfc2UjonnBIuLoO2ZsbTFjj/0QEdZ7p6SmJNSQ2oSiWHB4ccOP2bfIsQxBqPAut+TffFb75bkLeq/j03YSv3EhRnVNXNaPJDoPROKri26X1wMwVLxbjFRFlefqAcvmI8UufJSSAuYuRHZr+b1HpL744PNi5kkfH75PlO+wMb4U0LA/OKEsUrzWp1AykjxUJmcceytphBr12dj9KFK1cNNqKopBmaJrRHYtrHb+ROtm/QoOOqjFgQFkUBSKGfppFibsr/Xfxkrrfx3iojpPZKAH0SJWyKBAjpEkW9Kuuv6E176zb16I1bjXeKOgbYKc/YDIaNrpas+LbuVi7YVN5aaUTucSUtUFxjkK/41rZVhThEmpyLBqpp6lKt8YTPvIU5ihhgK8qJF99/7j0XDH+QGHRGWPI8py0i7OzdSGu22sVMNawXBY4V5OkadvmJpXFgmK5ILEJNklIRFnMzjh+VHHj5svYLMXUsGMcr920lMua1CipFaxJmVeOJEmY7O4GULUL+ONqb63yBLyrOXn4PQZZSq8/aBn/yuTwlCQEX4IqRbXg0ekh45e/wsgOMShGbWD86vGuoGcTcpsj3oOBovbUXkmNaQ/KLVP+oaTWKgMts0UMSZqR5r3VdRu28PPtdEAl1ActFMUYS3842mD85ylAZntaY592fjZL0nt8VYaw5SwPkUfxkOm01B5O575vvvPxGuewIoxHo9WBoeFACvOyfow0n9uRnG/++qTtCo+H2+MslACyuArLFjz6YV9qj0VKSCKsCs98uWAvGzyxZv8cMv5Aq4St689MAxDmnMN7z/agmig/eM9sOsN7Txax7JMkZLLOjs9IzTHD/Tss5467w4q//jMGr47a9Dg7s0jxCO8cuzdurmfoXtBdlcCEDTVeDGUx5+Tg+9ya7JOm59FDt7bxGNK+xgIqop6z0yOWmnB776WAsR+lKRVYeo/XGT3bJzWWhk8t6wqeCyTLLQb39S+2j/Gc/1Y689+9b/v8NGtXtmFLAI3RXlSxNsHahGwLiuzGCLZTZ13URYGrKoqypNa4j+La7JqdVmNrvosmJDm3YR6TnoxZN1u1CVlFg0L0fFG0N2i9oRE9/kCfQ8Z/XiLpqr4XU/i7d466rhkMh4Ghbqiyza91XbOYzzDWIMbGSA5I0hw8nBweUkuf7x6NqMyE3UEGxrNwluP7Z3zxVkHWy5ns7EJMMLuMSTbbKWTEOmanH1DPH7H38pcQTAxQerYrXQH1jsOD+yQ7txj3bpNr2s5CBcx8CbKkL/skKq3zcFGV2Gju+sgzf+lI2R261AZ+4T2bnx9PLF5BeARmG0rcNBrtRk2F+DEke593rq/1unX4hmS8w9kUEyV9lVgbgcZ0FE1S8bOJ0BamcWLL+XFfTc0NEbpPPPIY4qwiLOoK71cPfkxr0YefIh/LByk7gwSVJ9dpnkPGH6hRS69m+IGCtOAplksGgwE3b90KCV5bBBgFiuWc5XJBnvdiIEVj/1QkT0lwnBw/4Lv3U377TYeVEqvgBF7eq/jcnYT9nQk2Sdbixq+yiyqC+pKjB99m1MsY9Ies24YvmZNrzEf7dxFEhUU14/TshN4nvsoknQS7NQLiWahl4aYY4xmZPjb6IdR5SnUYmz03ew54bAaydiBER3GwOIYPq0if89TNE9n699Yr1dizm3Y6ecXdQ6aT26Gdq2TjWSqwUAcxi7zbTJPMtzqvtDXHe1Wcq0EVu81xfQV5H6rQWZvEuWryvK9HouDU46xh0PoILrCdflQpHuBltcQlduV3eSHxb6frMH+REHGBKnv7+2S93lYmHKRgz/RsGkL2mpDP+AyjBoxDspTM93l1z3PvjjDOBavC3CccPaqZ7IzoD/tRSlv3k23tX3y2E0O1nHF68F1e278Jxl7LpPVYTl2avjhOTg+YC9we36VP2koYXqCwCaWbkpqEkckwLrCToqpwEBO3PvrUzlZ7Jj7+RmtmXztSbCPxb2tve3Lheo/W2XKrs55rI9zRef9X9FPShHTQC1fGAwsNUVy6cXHj9lVV3HKJc458MHjsOSqiiak3HMU98XiwI6KCqSvqsmjt3tL572NTO/+s0n1+zNQc9cFTJAT2/WQH23PP+B9nAYZQKYu1CWJknRm34pJSVxXzRcDyl4Zxx/8IiqHCS0KSwE/chDQvyPQRAIUT5sMxk/4oQkY0qvpVvVNCpmzN/OgDTDVjNH4NmuSoa1BXsruwclUj+aniXcnR4UP8aI+bvVsk0iSPKTXC1Hs8C/rSI/MhqsKzsu+fMz181OkphtIJj+9893Rzs5L11tt5rHZbm7gPyKOqWDEkJl0JJdFmstX0IlELUKVyHowLGFdNcZ1rdUGpfZDQs7wRhq6QhM41ApSCVGXUwGP3HqOJ8xT9XB+aJdxoQSuH/5PS8yGSPQNSBSMWYwzz+TxCKZyfXEGZzaZ450kS2zJJiX9r7G7BFlqQ2ZK6qJlPHadnNWdHR+z0K1Jjg5J+zVXVhnm6JUcffJtRv0fWC2aeq8e2HhVyXSqrOcezKf2de+wko6DN4EE8tcmY1gWKY2wGJHG+lMD45TEOpI8KPauwwGfh85C1z09iU99GTdWz9fZEJTL9zr/Wm2og/l0aC0tzQOj1/jXttxnH3Z/X/Kdt72mdu+2/p5iPq6APftQka59C7NKT0HMv8T8eCSKG5WKBV4+V9enRKO1Pp6dYGxKV1mL8BVCLqsVEe2hRnIJUWDGIePAl87NTRr2EtNcDvWbkiwqIo56fsjh+m3v7e7Gu7vUkoybJBy5nPN3DYXZ2xFnt+MTkZRKTIj4B41A8FQmLegEi7JgeJiLwOw32fS6Au/hIkzwr1v+UtHLDtPTE/er4lzRG8DT/VvrEhmN4zRfV2oI6PdlaG+0Kak+NFe9/rLulbeKZJDCuevUho8bM1wwwli59zBXwHDL+js1z00G2tlE2JypmShpDWVXUdYVNk2jCaS20FMsFRVGQxQIt5xK8xMX4YwGpMGrB53gJ4AW91LKYHnKSCru37pBGR9haycOoQYQQzubJgmrN7PgB4uZMdl5dNzPF/4YtqHGEsibtdzM0N6esyVANKfvg1PHo6CHSH7HXv4GIwSi4RqpXpdaCNEnJ1cb9LtRVTaUhVv1DwiafGT3VaFrJtPkfbMvQ/qFQ1/ax+YfWJxxsUa2wLWzYyjvOViG8XxG8c2DAmgSbVjhfrtp7jA425qRmHT02abPiO800f1BZM1e1n5/wjW5mCW8eNNdut9nbawdqo6bEFxBLnjbPPX+kPtkYnitTz6aba9sVl6V2KyF5y9UV9XJJ9xULoC7E7osq1mw/M1c+AQWJUq+sbHKSWbJswNnxMcVsvtX80jjpPASNQEOWrNYFpw9/j14vJc/3EDRa+7oxGoCsCpRvpvtfbu4Jqq2qpXBL7p8+YLL/GsNkQqIQcnJBSXnEnJITJpKSmxSV4Biva0/lFSsBqdRfWRH9w0/PZgQNK/I/Jk/hNhvJBddpWFEhb2Q7a0mykMwmNkFshknyAFXSGF0ey0Si4FeGmpUgc/02TBT3fXs2de1ABocCARzRb2m3cxyH35tQ3Qt73FwbTS3aNbo83opRgtyumDhvjXgVgBCNN4gKzjSVNqQzvquKLG6n54rxr7+klZS+knTl3FWb94oxoMpisURbwLNAdV0zn83aAi6bErQ0Mkf7GKFJeWwyH0XAWovznsVisZURh1j4Jks3snY1VItTjg7eY2/vRsBj0UbJa5J5LPgMfH9tnCEZLS7kbREkdFLyY23B2fEjCmfYHd8iNxkGg49z6IyldCXqa/rSIxEQDQuwqCtMsqq49ZGX+p9p94Mx+jomt0vp4mV8+fXb/m25dO2PCg08d1AKg4BRVzVHR0fYJMF5z5tvvUVVVZ08g8sfe9luvO59l+/oda3FIIQ6FRsrcu18We3FriJ0EYkapGlTpcVtelwKh6wP5mG1oElk9qE9b3xUBp7dYnwOTT2g3rc4Hav3INeStASwSRLs/M5hkybcUpnPZjjnSNPsMUO8VipyU/7RWEuSJuejbFqNt6n35IO91XtOH72D6ILJeJ8mSSacL42s4UB8SH6JrTRtG3OZL6HRFkLUkNeK44P7mN4uo/4+qaYIgpewbZYYSl+SCPTJSHzQdZ13LKsSk1oae/hHX95/tvRRmA9pV0/DVsP6aAsDiUGM4fT0jPl8wel0SpokEfXhyUf4wxARQo9jvQy1HW2iEXdWJpWOznxFP5u9GnwhTW05UcE/Rjtte0q714Msbmk1CVEUh2iC0SeT7rfRcyXxQ8i8nc1mlEWxknQb7AWNp+Yls6cEibwoltRVQMxvEBBn0xi7/xSFTkQE5zzWJvT7w5YZr/wQzdKUjros+DpE8+yMhqRpLzB7I0HiiCUQER/MPNHU04Zler/2+7k+sSoUr0BVTDmaHjHYeYlxtoNVG0I1Y1LNHGXpFmQ2YSR5m9jjVCmdwySNb6Qdzgvq0Ectk7krVRsxpGlGL++xs7vPex/cZzZfcO/eS6uclifaHY8lST1GqxGsTQGRTsDRmrflEp5wQZ9UQgSfKL415T5l/yVK99L4PIJ9v+UIz1Dif64Yv0aJI4/JV4vlgqIscN51LmquXWeCLYuNi8/VjrIsoslTWS4XLIslSfI00Sox3rmqIoBcujWmXqVx4wiN5bOYP2Jx+i77OzcxJkXxYdkqKAbVJKqJFjqwCtdJ3Ars3IMEGKjF9JgzX7Oz8xIDO2il/dB/YS6e0i/ITMpAEogRPaV31KIgZmXbekEfQWqciOGf0oQsC8Za5vM5b739NsfHxxw8esTpyRnT6XRtLT/ued/iYj1Tkqg5E3NMPF48xhuMDz4ojdqyaNc1HO7dprys+Ibipe6g5kbh6nEW/QbeTtAWPODwxqHiA2wGz34vPWeMX0mzjLt377G7u0fe62GMCYBTzgGKGD13T2N+AcU5R1XVpFkWsPsFVF2sssVTSjWhLVVlMBq3kRGwyZRXTlEVg6rj9NEPsFIwHO6xktEFnyjO+CgpeFbOptX4rL3oOc2lK2eRd46j4wNcbxQgmNWs+iOhvu7MLxFxDMyAxHsa5/K8KMDa6H948jl6vqm72T98FK057etbc40JcT8VHB4ecnxyzGQywVrDyclxxOq5nkl146nPeBSdZuNAgr0/aP1+KtRHCnUTjdYMer3frfV14wQIZh2DrS3MDMYlUVh7TMbfdjI4dhWD9RZTGIxPaCJ6xNtwKMiTxexvo+fKxi8iJGlGliXkecp4Z8JsNuPgwUOqqiJJQrnFBiOl6/AMJpEo5Yuwv3+TwWCIAFVVM5/PVwz0MRf2yncUzC7GWoax7XNjaC6VaKJSQasZpwffZzzok+XDGOYplM7xzgcHzGZz7t6+wa29EWJ8LABiWjPPVdgpoRJYeGZdFRycHjO8+RqTdKeNzw+s3bBMEmbFAqOOcTLE1qvShIuyQBLbOUbWUmpeEKw5dz+M1Ib/xt8bP1kD26Dq2dvbo9cfUjchyN6TJRati7adD8MYzzt+FS0Mx985o5hW3PzCDslN09r6z13bWF+7ARxRqFGnLN+vWDysGL7aJ73ZSOXtDr52P5vzSZyhfFSzfFDSu9Mju2E2nLrPwJwU6bmS+G1iMYkFMRhrsWnGaDzh5q1biICva9S71iTUDXH03lMUS1SVGzdvMdnZQWxgnov5nLIosMa0rq4nk1GCmWcwGGAbO/j5S9ZseQalnD9iefwe+/t3UBPT2bE8PDjl7//3/5z/+3/xX/Prv/mHOJegukos8953NJTL+9XA6i5mxxwXJTd3P0FfetH846P933AKFG5BhmFIhtHgPPMKtXpI7Erb+PHv/Q8dfVhdHiuGH0x1xlisTTEmwSYpNmqndV23NamXyyWDXs6g3yNJLMUy7J8PTzWsGBwRGaZRWB4uefPXP+DNX3mf47emUMe4/q3S9AXjUKEqa97+jQd8+xff5sE3jggFtNejAK/VPZr7PBTw7r99wB/+4zd58HtHaC1otPnDuXikp6LnivE3IZsaHUWKYJOE4XCEMYaqqijL4pyz03vPcrkksZa7d+8ymUwwUbr33jM9O4tl657MftmQ9+GwGY/HF9bzhcYBHaVs7zh+9C4pBePRDbQxVXnhrXfeY7x/gy9+5cuUVc1iWeJdjF6I49qWtPWPfukl/nd/8yf5R7/0UhiPRA3BKYeH97GDEZPeDTJsK2MYBFXDSV1Ta8Ugzcg0jEFwlFWIPjLGtAtUecH8z9OPKGnrCUni27Y2lBDtDYbkvQGDwRBrLaqe2jm8KtPplKquSKyJ5QDZkHo/DBQdpRrMM/WZxx0YOEgoD2vESbyGtW6f9/7F3+IBWVc1szdr9P2M2btFwCjXxzX0hIeKeASHm9dM3ylx72TM3yqpFzVOHN40jt1nN6/PlamnS74JdUQwScJgNOLw4CAWZyjJ81CtyHkfMnHznL39GwwiU240gboqKJZzkmQFWvW4099GvThHmvXI+4NLWmkWogcv+HrO6fvfZmdnFPqgocJS7YXT6Yz93T7znuHVV/b4zX/3e3zhJz7FzRsD1NV470iSdC309B/90kv8L//3f5z5MuHv/r03+Dv/+a/yl//se4BS+CkHp0f0br7BJNlDxKA4GsdTnWQs6jNUF+yYfQZOUCyCp6hnOBEyMW2SyTMLPotmqIDRbkANXlxoXy2Ii/HUBpWaWIjv2Tz7GVKLRYN5ygCWrkq1CgB4+vDZYMox1lJUjt/5/d9lsVggRvjcZ3+C3fEInEPUkSYZ0+kZf/CNI3YmO/TyjJ1hD608jZnkcYsgrcb2bN7dKvO4iewRbGaoxwt8YUj6AhLKlfoY8ml1ZRZttJdzPRJFDJhUkUQwSXOFJcAXPs64YzCoAHjU1FRJSWltkMpVMD7BS42XOpheuwivhGJJjZO5dcZf8dznSuIPtG6jBBBj2NnZZf/mLXb29vHe4dVTu5qiWJL3cvZv3mA02QngYi2qpDKbnqEaVFs6G+xxrfw+MuzhaIS16SW+Ao11cw1qhPnpQ2anH7CzeweRFDQggnqj1C7hnbcOmM9L9vZu8YffepOyqtsogBC7v74Bf/GX7zBfhvN+vkz4xV++sxrr2QnzumZnco8syWkSd5r5XAiUfolFyUlbUFivULoaTJi3RtJvE9qemmT1QhtAsOiMa+KnG/vbh8XIcCF1QnSfnlbjbtfmE54oTXCDEtbNyekpy7KiitXo5vNF2BdRoDIiDAcDVGFZFFR1HQrIP2ly2rkQmmcl4cb1ISFqrb/X594Xb3HvazeZvDKAVBAfnapXqKcrWBUlyRNufn7C+DM5Nz41Qa5XBG9L7xrnrpD0EvZf22H3UwNuvD7B5g3sSXOwbPoPZO3Hmhf+CnruJP7GSS+sL74s73Hrdk5VliznM4qiQIG83+fGzejINWYtysdVFWdn01AcglV+65P0yruQEzAYDGOkUOs5WruyfaXe4CTU1e1lMBrciCasYDK6f3CfvN/jzbc+4MbNXX7/D74PPmE46CHRBpnFkoyrqCX4hZ+7z9/9e28wXyYMejW/8HP3gVAI4+TRIa43YH9wN0RosEpKESwz7yjqBblJySSJ+HBC7T2FqzE2bQ+dZ8uCo/PNr6Qd64OvIxSFaeCDn606/MOiZ2fq6Uh28oxk5dhIWZR84tVXMQbSNKUql6vnxLX76iuvcveeA4U0TdAqXPO441tpQs/62G4OxtAfL45knPDKl+7iXEV6I0TLBKYf1o+a6/UhSS03vjpmcKfH+NUBpB7xj6tphmcZDVqy9ITbn91jtD9kdK+PpBG2XWoEg2gSfm/nKmTsKyb0/TGe/NwxflhNyxowWVyMSZoxHI15dHjEcDjk5q1b5L0eDaBZi0fvlfliTl1XLQN90v2qKLWr6Q+GZHmsSnUJbk5w3cKynHNy8G12dybBZCMViAXv+ea33qSWnE984jYHDw75vT/4Bl//ypfo91LUVbiqRrLeuU34V37+Pf7Of/6r/OIv3+EXfu4+f+Xn30OBql5yfHpIb+9lxukONoZxNmnjkDDVmtovGduUvknDmozmstI5bBYLkT9j8LFGTRc1MWxOV6rtOQH6w8/4nxkJgWs+0yy58O6yPCPr5ZydnlAs5udwnrz3OKcBdsRDr5eRmdAp1VU7j/PcZ/3qpKMJQXCU+qQi3bdYA842mbK6plRe2ssO4GN6w9Kb5Pg0INa2Kqc8ziG2usdbT3rbsrs/gIQWqkHFRa3WdkI621ig+Gkdr+uqqXwuGf82akM3jaE3GLLjlb29fbI8j7bs9etUPfPZFFjF7j9O8fb1UFGP857ReBJzAy4BS4smElXP4vgDitn7TG5/IR46CaoWoaKuU779/e/zp/70T/PWd94mSeHrX/s0WWZwxYI8z9Y2a7fff+Xn3wsMX2PImijz+Skn5Zw7e6/SMzkmZiY2oZklwlwroKbPkCzaQhWl8p4aSJrEradI2986l6yQIX0DSeFNtGlGyV8CnpFpIIKfERN5xkMJ77frRPxRIXRekxqNd3d3F4zl8OAhDx884NVXXqGtISyB8X/3u9/j+2++BSrs7+/wtS99vt0rj1cAqfn5bOehMfq2JkcfpH5Jm++bjHeHkxCufFlO/uZ+MmqQJIDuBWnc4+X6vq3WB6GBfXtxaKqQAkhINOtYGhoU0BWkRsPoVwl3HdStS+m5ZfzbkCib6ekPBuS9HkkaMlwbxqKd+6qyYBYxSJ6Gi4RM3Tqkufdifd5LuYkgHrzWTA++Qy+xjIb7YWGoBbFIUvKZz73BH3z7B0xPjvmTP/M1TAK7w4DPX5YVeS87DwdxAXmvHB/fp8r77A7vktMUUYkZxCLMBZbVAivKOOljG6hYhUVdgrFgrl/j+HFIYk+iqoQxFo9H8diY0+BaiUuesQTc9OBZMKWwUa/7Xi7vD6s2rkCSvHbvIl83Ruj1eiRZzquvfoLdnR12JpMAwYwiEqDLsyzj05/+FKPhmPlsGrRrVnvo+kLSU3b8IpIuuq62WDdBY7RYNQhBkPDRzr7m9Gz8Y7oSJFq+ogTIddxKG8XxuBRMlcGxbIBQmtNErLGwnlWSyJuCmac9sDpjY43h+ysn9Tl07na0/42FFypegUkSkjTjvENM2400m81Q54OEHq953DKOzSJxzjEaj+NBs/rbxeUPPa6ccXbwLfZ2bmOTLLA1cdSuYLaoGO+MeOONV/nOt76PkZrd8ZBEDN47xOYYk1zJWJo+OFdzcPSAwe5LjJIxiUqQrKO93mOYG6V0c3IxjJN+RCIMzHe2XGKSVRnKZ05RildR8qTHKN+llw5JJGPU36GXNTVet+GVPx3Js4aeaFJjn01jNFLesyQFDg4OODk5Ic8zdnd3Mca0YdAQDpw8y7ixv89oPMRaE2pW8zQH2g+JYmZu0AhNxL9ZpRkGZE0bK8xtu3+Dj0R7uheNGbWNf70JZrju+11FZLX98AnG2xadMwTqNFptmP8kyUlsxop969rPRli7jJ47ib8bR3KuEAsgjSQiGwu0Y5ZzzjE7m5IkAX7gSZZx07b3HsQwHI6C87ijoG2/Mdw7O3mHavqIvZd+EsRTlErpKk6Oj/nH//RX6e/sYtOEd95/xPffepuvjceIEVzlCAk4ISPxIsmrO/bp9JjTsubu3ifo2x7qhIAbHyCqvTUsxOP8kp79/7P3pzGWLFmeH/Y7Zu5+99hzz3xb7f1q66reu6f3mZ5pNreBRIkUBBEgQX7QFxIiuIiASOiLCEikCBESQIIfuEIABQ0x1JDD4Uwv05zq7pleqruqq6ur6r16a26RGXvczd3Njj6YuV+/N24smRlZlZWvTyIib/h1Nzc3Nzt21v9JaWlMZBNwXpl6R2I6YRifg9miCsdDhMS3OX4wpb/eJTVtpvslTktsJ6EMTofLpxeMj52gy2S0qhgxqHp2dnYYvPoqvaxFWRZMvcO7AHyYpin9fh+bpnz3nXco8ylb6ytYAfBPLAQ8F5NXjEprhnVWSuHMV6QodoZ82ezCmYp5MM2Ej74OLDD6hEXi55zaM4jnIPVXgdHht4rHiFAWnsPjMb3VzpxdP6ZaomLw58j0LxXjV+9jtqqtVc5Fcs5RwRSfRpPxmDzPaWXBFPQ0IYlNab/TbpNlrahK64IAsaSP6tnb/jbdrEO7HRjq9s4Bj3YO6Xc7TBzs3n+EAtuPj7i3fcAXfkjxPqcsSrKWhabj85w+7u0+RDprrHevkpLhhGjjDzJJKcJxMUGkoJN0SUKFmGDfd0XA57lQhvDTURVZlNiEfN/x/p/e48ar15AEdrf32bg+oN22IB7VEOlwuXTCg/zMLb2YNAMuFBHeefddjo6OyJKUGzeu0WtlVHwtyzI2212c97RaLQa9LjOH49PRZede1K2pztnGZwi4MXGLKOicLZKdbL829/ioIRuM13Ol7eb1DXl/5h+QKndGotQf+6lVvL/BL3RXMSFHWSyK4D5KEr9XpSxL8umUNEtI07Rm20pg+qPRCIBupxuwe4j2Y6XO1B0Nhzx5VELDoRvv6H1w6vb6fYxN5rUPnXnkK6+N0RB5kE+GHO5+wM31qxFnRyi15Hg4ZHfvkDe/+ElEDXc/fECWtbl29WoIP/UlznmStEL9XGTG0Zuh0XyhoYbw/vEe7ZXbDForsSuCwdSuohLLuBwjeLo2w+pMC5rkRdAMTlkwlU+jlmukOjqLCYdKXdZZ2crqnYqPLjdBrFDmjuOdMY/sLioO55W0naGUYcxlGe7K01NI4jmh7S88Y2NjUKntxk+USNbgl7rgo1jWxkxjezJGu3j2jDnORk0JEn230+Xg4IAksayvr9Jrheg2YyzTPKcoxqysDPjExz8G3jE6Pgj9kmVa7ZNunpe02VZzvWESC/EMEn0AEmdjBbcwj2t1ltnKqAkhxpXndTahL9zvwNQbPpsItFgVeKmEr8qQ6RWyNKFnu/EKX3mO8CjvH0ywps23H4/OvO9LxfiNsTiF46Nj2u0W7ZbHWoNNEkpXMplMGY8nocybQq/Xw9iZiiequCIPmbo2YP6ct+hPJVW8CwBp3X6/ngembkyinFExCsE6Q2lzxvvvosUh/dXbGLGot9y4vk5qO/w3f/N/Iu12+Pkf/QKf//kvISK0s5TEeKa5EABFT3NIx+WoIcNV8IxHRxwUE66t3KBLD5ESfIY3LoyHyRhimZgjMrX0va3nuUcYly6YsMxyFtfY3hBMyKgWV9s2w5oMamzFtEFjTDShuLsEp5dTR6vfYuPmGu1+C1FP50qX9tUWk+kU48HJc8jZvSiTVeKCnUltJ96DniUVz9T+GdbjxTSpJ8uSnd1t7kDVP1W2tjYZrK4FDUogS1KKySi8T5tw9/0Ay/zqnTtsbm5QFAXldEyr1cJHyXTJdsWyo+dpwE9NcaKGtzDr0OxzFcMTBZEzmjl5LJqLbVCB6pZiklv97uPYLn090jRD0QBICaihpnEeRPlQlcKN0Awq+PUQ0eYpS/g79+FOJvzBztmO5pfKuRuQKBP6KyuUzrOzu8v+wSHj8YSjw2NGwxH9Xp/BykrcBMY476nCvZQAyDadTmusnqe3OwqlKxkMBgFqYQmF11yZJgK8MoXj4OG7dNKUbncQGICUGFKOj4748R/9ER4/OuDv/tbvsLt7TLfdJcsyVAPIXLvVAmT5RGs4iYyCUzg4eERJynp/CyM2RChItTkEdfPIl2g5pWNbtE1aY7KUzuG8x9jTq3vVi65m9BKrCVVhb2FlGJ9gfUJdHiNGZFiX1WYnCqXTtbz2+du89uZ17rx5g7W1VaxLsGox3pK49FILVswicDiVJ4kajJdQOk9cQE91nbgJXIwqN21oL4QKGrXnPksViXNRksbP0k4E1Zfh8TF3797lww8/4L333ufw8LC+Li8Kdvf2Gayucvf+PUrn8V7xfhZ4u9j+WdtdFZhUTaEX2xz2ZHTZbvegqPs5TSSMd0mO5/3DHOvhs+vtM1t6qRi/iFAWjtFoTJK1WFldI00zjo+HmCRhsLZO1u6Qtdr0BiuMxhPGozHqPaIBi/74+BiJ6ISnVaw66/6V47gq/tLpdjHm5AZSLQTBBTVbg53QjY853nmX9f4VrJnBRAyHY776J9/g+lqP/8Vf+ymMSflbf+932D8Kxd+dK0PEUo29v0zeisclYHuUrmB3f5vuylV66Spodb8YDaxCKcKhz8HldGjR1hlCaekchXchD+KUcZKKY1YJYQCaBBUZgxdQExRuEyXmKlHLi8brQsFpVZhQ8PjBITuPRpQT5e43H3B8OMSZkBldJsUJU8mz0kz6Ps2cFU1V4nGmwBmHP8P8tZSi9DdD4G3+cYHLn+xWpzL/KnIxz3PGwxHHh0MePnjIcDiM89tQ5AWrq6u8+uprKDF3w5i5+hKnyck/aPTsDudLnIsSpf46XDM4p0UFJxYHdLKEzXbKID3bmPNSmXqstWTtFqV3jMcTRJROp007SWi1Wo3qWULaMrTKkvF4gjGGTrtFUUwZj0ak6XIJ/TxqMr+iLGl3OjF2fwnLkMrWCFVgmcMx3P8Qn++zvvIxEPAkiCrTac6o9GQty6u3b+Ek4f72bq1NjCehXoCJm0VTgprrI1BlpU8mx+yNjrl664fpmh6hWlGUJmIW5sgLQz/GitCTDKszOb3wAaXxbLz/qNcIiCiijipOOdiVTTTzuHD/iMXjrMObslbFRRXjDSUl3dWUB3/6kA9HOas3V0hbllwVNe7SQ/irmO0Ko+Wsp9QaxE/B5Kg+mdlp3uKhT8T4L5O897Q7GTdv3EBVOTg6xJUxhlyE0jmyrBXWiQSdtd3pUk7Hp2sTFxmJFyiRDTjzfV+ULtPwWBlMw+9Kew/r2ce12zEJ7VRjzP/p9FIxfu89SZKwsbHBcDhkMh4zGedYa2m1LRpx6jXaTjvdPgDj0RiDMhweofi57MOniUmuIJG7vR7Gnj3EgolSlgGm7D/6Nr1ui1a3i1OL0wTRKe+/f58/+867fOnLX+SmbfHmJ2/xxq0Neu0E70ucc7Q6rbrVpZJGowC9Aw72t/FZi/XBdVJS6nJ7DfzvkTHkfkjXWAYmQwIHx+GZFAXeGOyZC7YCbVNCiChACVIiaoPdn6YTK2TgigesBuavIX9RnKLq6G4k5HtDtu/tceOzV0lbCUUuqHHYMkWNvxCfuSya1UUVEmcRQr+Vi0v9zSp8VahhMCNHM+SSDOxAWtuhakf6ona5MIeXaZ/S+EsE2u02/UGA/EizjEfb23Pt3bt3l52dHbYfbZPnORtrK9zY2qB2+zckj/mw6dkxWWLbqTXhBUfEec/wotNlhqsaY7EmCW5dCQKRkWrMqkLtxZltvHSMP89zVJWNjU2KPGd/f5/ReESe53Q6nXoXVxHEGLq9HkMfon2ODg/rghNnlSo8japzy4hU2Ol06mSP00iZbTLFcJfD3Xd45dp1sMLh0ZBvfefb3Hn1KkrCaFTyld/9E64N2ty8ukrWC3a8yTQPm14DlO2UEUIxIRbYFezubtNZvUE/XaVZYibgjhgchjEgfkRmWnRIwrgR4vfHRY5JqizC0wzgM3eliZmSzjgUDdm/GvDIq3hkb6osRgG1UUMJpqI8LUhpM3qgtLdWuLXeJT8oKSYFmijGWZwtouZyuZKW6hnS2yzTBkMSM4ktT6x+VIlq1cdKtT9L+LjALZ6U4RhjGY5G7O09wHvP4fFRROIMps9Ou8XqYIU8z7mytYkYg3ehpKgx85Hps1yaqNnqyRoR5/Vu9vzPwXH/A0SVzzghwWgSIcg1wkpXCmIZ/HOcDRf6TDZ+Eflfisg3RMSLyI+ccs6nROSPGz+HIvKvxO82ROTvish34v/r8fj/RkS+JiJfF5HfEZEvXLA/FEXBzs4O3gfmsrq2Sr/fpyiKGdZIY/qIGLrdHtM8ZzqZRnPQ01G1MMqypNvrRcz/0xZew90lAQf9eOc9KEf0+usolvF4yB/9yZ/wlX/4NdbWNvjVn/8pPnz/fX7zd/6Y7d0RjiRAIhfT4JeQatNS5BSmUy3K0eSQo2nOYOU2bdON31UQDeHzxBiOygmGnIHpkKmJkyuUes/LEpMkleX+lDGpHlGwPkVcGrQGbdVRCYKSeEgKg3VJyIjEY1yC9TZEEAl4o1gxTCeOG5+5zif/0scQK0gpWLEYZ58Pa9DF3It5CljpLvazoExKnHDmuCyl+M4M0bnrzWyKnBJo0BSMheVzrZ73p2witVuBmPBnDHle8ODhQ+7evctwOGR1bSXOb0+30+Fzn3uTH/nSF/mxH/kyP/LDP8ynPvmJ6HRcvhdV0Nk1CGKjH5VgcHome3h2o/NY9B81qiKJ/FSZHuX1cS9QVRobeceoEETPMr8+u8T/p8BfB/7j005Q1W8BXwQQEQvcBf7b+PW/Cfy6qv57IvJvxr//DeAd4OdUdU9E/hrwnwA/fl5njDEkSVInTj1+/JhWq0VZlgsShjbZLohQlg5rDNaYhq1xQd+8AIVMXaXf70d8+tNp1qrH+SkH22+x0hmQpR0Qw+bGOp/+zKf4b/67v8vB/pif+4kv0Oln/OZvf5VPfvw2W+s9UCWfjBmsrNGsI3DaHcO3noP9BxS2zXr/BimWik35WrcWxiZhND1EtKRngn3fRzNE6UKYZfWMVVz0yTsaUId4ixsLIgm0FREb92AHXnD7UOyWJCsZZhO8dXUhCo16bOIsSSpcebWPnRiknXDj09cQcYzKAicliUtx5jll8J5KAkNDcQTJAHy3wlS5eCfq8no+QgqU0beQycwpc9q1sQun924e1f1Us0NsSIxhbXWNz37+c2hZkrZaJImN4ZxKPp1AUdQFhlQM6h3j8Zh+r4fIbMOftTubmcvMVWcqNXq6Y/2jRKIBNrocOY7HYzZWBqiGXJcExWKY5iU7k4Ld6fTMtp6J8avqN+GJVMlfAt5W1ffi3/8k8PPx838O/Bbwb6jq7zSu+T3g9kVvICJkWUZZlpRFQZ4HM8jq6mqUHCqpp3YbkhcFo/GIdpoGRnOG9EG8qv4UZnI9050raLdatNvtuXOazWmjiQrOdTg8YHR4n9c2r5OYFE9BZlu8+torXL1xk7/z239IYQp++ae+zF//tZ/jzo1VrCh5kVOWZdzwTgnjJBoQorRUuJyD/W3ag6v0OxshWSuK1WpmxafHQO6mJEbpSoLxBq8lCuRFHiOIzsIzpOY2xTjn8XtH2CRl89UBtpUDPpSVyzM+/OZj7v7xI258YoM7P3Md7bk6skfFY30AqCtVKHanfOsr3+W1L7xCtiJoOydpgTcOF6t0XaqpR/V0iVsVKS273xmy/Z0Drr25yvonWiQi+CcK7Jkl3/tS2dveByes3uhjWzN02Cd5rFmyILUJNM3SCB0Svqhj2uPNRcIa2t3do9Pr02plTPMp+/tD1ga9cE2wPzXs+R6vUWSI/Ws6w1WVYlqg6klaySzL+8SzLLH5x7H3TinzaayrLdGvEjQxXdbUS0gRcggtlHJSRGGr4mOWFvD6WgsS4RsHZ9v4v9fhnP9r4P/d+Puaqt6Pnx8A15Zc8y8Af/uiN6hwRIo8xxhDr9djZWVlPlJHoMLFMJSMj/cRddgkfQJNcqY1NO2ZZVnS6fZDWw0l+uTVsRtiEF8wevwtbDGis7qONxarCpQ8vH+PT9y+yT/713+Wx/d3+Z9+4/e4stlmc2WAE8/R+CCGjCYLvWlSnBwSsvymk2P2hiP6a7cY0I52eAkOVx9YZm7gsPQ4c8hA+nQ1DVmFMdtxmBeQNhBAzXKMEgHEJxy/N2bnN4559Nu7HD0eBTukxDKKY2H47hT/jmX0fkE5DrZL0Tp2oWoJCsvR9jHdrS5YpRxOKYc5ITQ0MP7L5AL1GzwjtNdN4PE3Dhl9bcLBN4e4wlMkrmZ8FyI1GB/w1sePc7Z/45j7f++I8YMScWaeGdLcALT+rcyYfbOvbqrs/KMR279+RPEobIwn3lZsz1gLGB48fMSDB9vs7O3z4d17HB7EOH6TkGQd0lYH2+5gW21su0vW7pG2OzG0NxidNSYm6tjz+A/HPPqtIe4xMeGo6rqPtupZH6J3DfFBEy2kIH/gefSPhhy/X2DKJjhZpXU8oT/lIvRMTSoB32Jp8cana1GC9laaoBGHzc9AXNc28fy1m8oXe46fu/aMWD0i8veA60u++rdV9W9etNMikgH/BPBvLfteVVUWDNMi8gsExv8zZ7T7LwH/EsDW1haqGiR+57BJUkve81C4DSOLcwyPj0gTW9fabbR+/nM1PnvnQqZurwtmJoqcCcumUBYT9h58m8Fgk1a7FQ8rpaTcffCIq5tr/PiPfJpep8/f+63fZWf/kDvXrqEup5jm9FZ6DWlrUceu7ht7ocrBwQ6FydjsX0eMrfRvaoVaobQhLR8t6CSrJGLrCVx6T6keMWm89vQV4o2CMxw9mnL04RTpevKjMvQrptOLQOGnOJNTSkhGq+QYIDh/pTLXOcpywtX1DZLUMj4qMQLWC+IyHKCXbeo5M9s2fD/aH+EOYXKQo4WQuOQJmdEMTmO0O+bg/SFuAsO9Lv2brXNFtGUaTmVPH+9O2f76Pvl+SXYr5cpWQhPNQ3UW7VVdc3Cwz/7BAZ1OiOy5c/MG6hVjLXt7+zx4+AinrjYPdtstrm6uzzTA6PAWZxg9HvLw67u4XUd2M2HzSi/MNwHjU0Qr4JnqWSK7lJjcOIWn2bQEAAEAAElEQVTdtw65/wc7rO336F27SmoTYgHt2PfnwPifloI9bU4Mu7TpqNDtt2mlAxq7J0IYjmv9jKKd8cp678xmzmX8qvrLl9Ff4K8Bf6SqDxvHHorIDVW9LyI3gDpmTEQ+D/ynwF9T1Z0z+vefEHwAfOxjH9Na4i+KU9XzyjIjwGg0Ip9OabVa9aS/mOkqLrVGyKcrCzr9HlmrXS+iOuVziVobzC/K/u49pgcPeOVjb8a+eVQsHsu4UJJxSSezfOHzn+GrX/827W4fEc90PEHUkCQZnMDlqfT3mbRsAKcFj3ce0F65ylq2Fbqm1IiA1fmFWHKGJB46kjW2D6Eo85DxbM4fJyclRoQkSfCJkCSGliRUoaUKSAYbr64y2ZsyuN0hbYUC7jXcLZVqLzhb4mzJ9t1HpIctytxw/RMDPGWjOtH3lmwCnfWUvDeltdrG2gTrDC5xFxYag9buwUkM0Qi4RWEuaO24bRalgQV+d8K4HrXQI0+5o5RHwvigQL1GjdKcmJfqPeo9N65fQ8WQpSntVouN9TXK6QSxJtZyjhpYwwxmbRCemg8laiiPPMVjh9uD8UEwUQR8Go/4qpzggslYQtEUqwaZWIb3JhR3PaMsJ89Lku6s9OcLTZe6H4W63a22odfpRjOxj7kvUdZUxaBYf/aNv5fhnP8s82YegP8O+N8B/178/28CiMgrwN8A/req+u2nuVmFwgkztVcqHJcYNud9ydHhAaBYa+bU5LOZ/xJbbwxn6/UHC5rD4sqqTDzhD1cU7N7/U/qdNr3uSgyX9LgS7j26R6uV8e233uXmjQGYjM31ATevbSLqmUyGpGkaGD8abfwNg+2CFIUK4/ERh6Nj1q5/gZbtRQzyyigVSxuKMPTK1A9pG0OXbCZwqiEvyyCtxYpbZwWsGsBIyeqtDpuf7WFbSmfN1gxMVJFUufqpDZLMsnqzT9JO8DrLwA3QByba7i2rK+scvvWA6TRndXOV7krK1IzxxqEKVp/HtF62eUdmnCpbb65iu8dsfrKPtJTCVslnF2NM9VmidNfbrLzWw+dKf7MXNtiItlpBVFcQIycaWJi3IkLWSbErIci13W8hCyGXUhnKCetG1fPKK69wPBpT5jkoFHkRIMrVs7m5xfrGFoV3qA+4SwYop6NZq5WzXzxpNyUdGKR0tHtJY1xCopH4U5y7sZNGDDYzaOqxma1lnPkw4hdI4m/SZe5LEcYk92N8amv8uRr3SgMWmKieCw/9TCtERP5p4D8CrgD/vYj8sar+iojcBP5TVf3VeF4P+MvAv7zQxL8H/Dci8i8A7wH/TDz+fwI2gf9XZKClqi4NF12kynHkvT8lA3c2UVxRMB2Pg9pYDd5FpP05KStcWZQlSZrS6faASgtYkEe08Z8Gu+Tk6DHDR2/z2s1bJDbYR40Ko+KYr//xN7l59Qpvf+e7/Mb//FVWeh1u3linYxVfFuTFlN5ghcpZPOv64jOETQGUg71tyrTFZv8W1ti6VGG9GMXhbMqxV6ZuxEBMkPhjf1EovQs3iyrtWbGOxqVASfdmxis/exVjDdlmRNH0YYP0xpFtJlwfbKGpBxPt0JF3GBUQj1hIUsOVV1dJTMJoNObqrVXK3gRXQOItaIyffy6C4CmNWsPWJ9fZfH0Vk4FaT2k9SQSaq00pZ7Uc1Rs1js61jFs/fgXnHd2tdlzwUdKvsoGbDZ7C8ypBprWZsPbZDtMjx8qNACGiC+fNz1NlOp3w7jvvkE9CZvtrr7zC6soAryVlWaAYRuMR4+EQFSFLLN1WOreJQCjo09pKWX2zgzsqWb3Rqso8gAje5Ki6kw+h1YYP0oL+ax3aewesvNGh1c7mx+QFZfqLr+gypqRgcJQ4VVQSqrrCM99kBczyHCV+Vf1vmYVmNo/fA3618feQwMgXz9shRPosHv8XgX/xKfozJ+VXoZ2n0WQ8oihyetGO+WRmwtmEU1VKV7CxtjUHv3z6i46RCr7g8OG3aDGlv7LRsM5Y9oZTPry/y5e+9DnWf/Xn+crvfh0rji9+/jOk1lKMJ8GR3I4x+MsyOmnyZcW5nL39R6SDK6y2NgGHkkQDT6i4pQJTMQzVoxS0JaUVMcfR8FxelQs7wTUJz5U5WtctUCVZNcfR4dICSRxVPd3mMpGYP5BmLRJt4Zynf63HSr6KyRylzTGlxbqgGTh7dkTDk9K5lcwAWoq0gukugLY96VKP8xZFW47ea62QG5DQKBqyrL3GJnfKJmy6wu0fuwpOsEEuCSn+MpujlYtYVTHWsPN4hzRNuXn9OtZa+r0e0WPL8fEx07zg0e4ue7u7KLDS7/Handu0slAmMJgQg3ZiesKdH7+OOI/thcpVBk+FErvMRCeVeU88mnk2PrlK71qXrJ9gUmbX1JLt82P+ek4ex1l0mfJHcN4H4UzDxKi/qMa88iycNxovVeYuzCR+59wZhZ8DINvBwR422iyf3DfUiJrwHmMTur3+xTN+vaMYH3Dw8Jusr2/Ryjp4IaJmer713Xs82h8h1vLxO9fY6HVwKFe2rqLGMconrPTXsZKeKXFXJCjj8RF7o2NWtz5DZtoRcX/+eRRhLJZhOcGI0rFprPAZgdtEqfJsLyJseeOQCApnTWBgvvIlzGkoAeagMsM1l4wiqIF8qLzzJ+9yvD1FvMXnDu0IH/+pG6SrRHC0Miojl7fkzpsaamItWk3DZ1VsBboqJ23Xp96lIcqbTIKJZ85Wu2jGaX5z0sTTbDsZhM29wpyvMrCXUWW829zaYnVlpXYdlGWJoHS7HdbWN1hd32B6J8SLW2OgnDLD44+Z2nFS20Hok68njQdN8ZKGz5wdimx6SqeTxJyG56LOLb3vs11/wuXybKTVZkjN6U+u4Ejn8ISXivE3JX7vT6aGA/XiUpTJZEIav36itPZqo9Ug4RVFQbvTIc2ys9uRmfSg6jl+/C7T0Tbrtz+HweAlSkEG0jThwfYuf/gn3+Qv/8wXuXltvU7Ndi4UIBn0+8ycus34gRnzrFRvpeToaJepJGwNbpMYi9HAhquaAGFcLGMSpj6wZyt21haCxy8wbDlbj5UiSqs2bjSuGvC6zxLbqP6vL402LCHEiSep5dYb1yhuKDoR7n7zIcNpQSvtoAzDQqsx/S+Rzlm9KrPi1j5GWtg5+zPn7h71thtzEASi5nOSAZ36jKdlvlZFR0QbUNGnd0hMgBsZT6ckaYI1Bq+h9Kf6EI+PKnk+5f79+3WVuSvrK8wiJ2rjYfQ9VU9hYq2oqm8hpFdO2K+op5cJv4IvWivNqDbOcvYEfAaKnXxWjJ0nS+U7r6W54OaGuDbDi7pIxvhLxfgrKoriTMRIVTBGWF0dcLy3Q17kJFk7DOYTvGQRcC6omv3BABvhHpaBUkn9p4A6imLK7offpDcY0O2uxrcYXqtTxxu3bvIjX3yT3//jb7CxtsqPfuFTZFawkpNPR2RJitQOnmWLOE6PKB44V7Cz/5hOb4NBezMwek0RKWsIYVVB1XJcKg6hhcSkkZnDzouP67op7p8+ZlbDMvdiUYoajXSewZt6QYdhiBJ0HWUUkoW8lHRvDEizNg++/Yh0Xfj4zWsk3ZJcK2exfK8Ewln/fQLiY50DpcIYqp4n0DmcPw6JifhFKqcv38XInppnnuZvkSDrB4iM0II959W50vH222/zaPshaZpw6+YtVvodSqe4smTkR9y9d5fHjx9jjKXodrm2uTbj+yoQK5HV26AKdWy7hFKZBsXrvNA2G60Y7x+jj1R9bfar53YNavT9iei6MF3anNSZchgmTP3ZaAgKu8gNX1rGfx7mjjGW9Y0ruCJneHyMYmhlWb0+mzHYy/brSnIP4GgpnW437LSL4XTM+GaoMBUY8ujwIcODD3nt9dcwkgZJWC1H4yG/90ffYHjo+Mxn3mBcHvEP//Cb3L69xStXryDqUVfSbnXqguonejczsgZ7qkI+mbJzuMvWKz9GK2mRqGmwj7hJCBRiGBY+LFD1WDELQlx1TVh0gf03JPcTfQnXexFmwejCzKAwo3lggUYTEsP/nMDY8vDdXR59d5/1qz22XutxzAGlKsYE3BL7BAVQziSdfThLHjAVoxePiSGMrhFjXbdy8tByClxy9h6JYyPz49xIzD37MWLKZ53tis5MBo0Wa4lRlXanzcbGJt6XeF9tvvFsgWk+pSwK1tfX6XZ7FHlOo8Dm3L1Vm1WqAtfyEMJXNerfjWetxyAer4ai6Tie83cs0xaelrT5IW4/p+ynZ11fN3PZQkil7encXZ4YxfulYvyVpF0UBVl2CjqdztRPk7ZZv3qTwt9jMjzGiJAmFXBYxahPY/pVMXVPf6VPkkbkygXJpfkpMGEHpbB37+u0W4bVXpCSEHDe8P79bf7B73+T7YcH/GN/9Wf5Kz/3Y/zu7/4J0+kYweG8QZIWNs3iBFg2K6uF7UJkjIejgwMKI6ys3CETG2zk4mOfPVUnRqllUoARDxF4TLTaXqqY4Zh8E5/rTOk04syEMhFNaXyBXVVQxHOjNtNaxAvWWEaPJmy/9Zj+Vp8bn7pGYaYYn2G0QLyQ+JDJeKkLruKwsjwVL9j4IdQWCKaf5bc/w7xCxdzDedIYK5l9mP97sc1TnlmqwoC1VCyc4JuN9tR7Njc2aXW6GGPodruUxZRyMqZSTURCkaFup4OqMB6NgqadNTLIRRBsPT0Dbw9/mOq3UGfu1uumfnSpbRrV31qHcladrzjtZRrTY29FZyHgT35147OydOI8IcUVGASmqOyIhloXJ5j+OcmDLxXjr6iCYD6LwkIQslabq9eu8+DuB0ymY0QgSdIoqcupW72qD4BswGAwIODPcYqq7VE1WB8k18lwl/3t73Jz4xpZ2onSvuB8yTvfvc/n3/wEjzcPsH7KymDAr/ziT7O2EnBSKqe1OQMALti6w1OKgtOSRzt3aQ+uMWivBAZVLc5K0oobyMgppQrWCNZftrjytKQhZ6BM+O4338fmLbb6G4x2HZpAd6XP1A/xPsTOu+fW7dMdkC8TKcpoPOatt75Lu93mzp07TEZD+p2Q5IhAmmT0+33SJOGDD+9SFnlI/qoEkadixB+BwX1B6KUqvdik07J2ZypctZsbWu0O127cIm21GU5GlK6I2rZZunFW4ZFFUdBqt8myWADllMleleazQYjm8PFbWHfMxvpVKpOMkuDwHB5NyLKM1GTcvHGFd7/7IfiSdkLUMMq5Gr5Ln7EyFUTZcDw+ZH+0x8raq3TT3hJpstJwLIceSg+JKMu8JN+PpemNx1uPGsWmlsloxHf//G2+84dv887X32d8kINAmeQUyeTScVsuoxITPAehNNLsDV5SeyLs7OwwnU5BYTwec3B4SF1iUyHLMm7dvMXGxgZpmsTa0k8vR1YAii8URd/Dc3pt31d66SR+7/2Z0nClSs84nwCWVqfH1tXrbD98wHA8otfpkpjl5iJVYnFpT6/fDyiVc2aM5aSi+MmYvQdfZ3N1NRZGBzTBe2E6dYi1/M7vfZ1PvfFxvG3x9nvv8sqdqyC+xgIyJzCFFh+xkucNop7R4WMKm7DWv0FGFhxkVXROozxggWGMASNkwR52JkN5TrEUJ8h4C16wCXz8C7dxEwnFXMQjCdieUnqP8fF9PbcErmegKClfdrdUZybOS2kPEGOY5jlra2ukNsCflEXIjaij5lSZTKZYI7z++uscHx7GeUlMFnwaegGZ/0tKL5XEX9ndK8Z43oKoEBeDdprQ7a2yeeUqadpiPJngNVa4WUA8DMlXAQSu0+nW6u+p98EgGhytB3vvMj28y9bmjZiKHxD2hqNjvva1P6fX7/HgwS73dx/x1a/9OUVR0Ot3cQTkz1BT9xyKdnkweFeyt/8I091itbuF1aTBzLVWDrwIQ4WxgyQxdKXSijhhml4c1boA1XMiUYt4Q+lzzKojveZJrintK4b2ulDaKaWUEcL5vJzFZ6GzcePPvlSpAaIum86Zf+fRSZk2YCsdHx8zHA7ZefQ4nBcfPklT1Ht2d3exxjAYDDg6Psa5ytfxFH14Xqb6Z6SntfF/v+iivX2pJH5rLRVI20XCMufOUcCk9AdrqCq7jx4wGo/otLvYRgZw9X/pHN3+gDTLLuDyD5VlizJn58HXGbTbtLvrIDaEUAp4k/POux+weuUaP/njn+X+9i5HBzv89Je/QK/VpXQTnHOnO61P3BFQz2h8zO7BISuvfJKe7c5Niyb7d0YYkVAUSjvxdIwyJkRdn5YV/L0ib/I6MsXnMYNYFOdDfLgTR4hgEgQX8Ycub7nO+PXTt9mMEbtcutx3EepTt1k3CQ8ePmJ/d49er8vrr7+Kj6HLxhgePHjId95+lwf31xFrmE7GbKz0AfsMPXrxWOx5Qt2LRhc1TL1UjH9R4j/jzBNH6ugoSegP1vBlye7OIyb5lE7DmVoVUnfeM+gPwvHFYJQljQue6fE2R7tv87Grr4BNgxAoguJod1psXbnC3YeP+dmf+RLvvHuPlW7KZz/1GgmOPC8D+uEJFM4lt6uca+p4tPeAsbS5s/YKKVXERVPmD/12GIZiQUu64kkj5O7y4iNwWRGTF6MYjeITiHV7RTWETErYVo2PPhliEtVlL9Zog34WU8Rz2y4vUUy2NmE6zUmyFnfu3OHRg4esra0wGAxwRfB9aVXbGmU8HoMRrmxt4ivnLk83/GF8f4C47AtKFxnBl4rxVxPvSZl+/U3E/xaTsbp2BcSws/2APA8O1xkcREHWymi3OwSLevV7+T1EwLuS/YffJFVHd7BZw/WrwniSoxg+/elP8s1v/12KSc5f+vE3SSWllYLXHMGTpq2GCev0+4VgHUORH/Pg0V1aW3dYaW9gF8qaVLudF3AIR14xCCuJYvOy7vtcDYNoHvteCv1SFSmJRSe8uPp48FFUnXlejrjLbfVFZW3VutnZ3WNalmxtXeGHfuiHsFbI8ynVBuy84/at22xdvU5iE3r9XjApPn7I03h+arnpL5j+pdBCiP9Seqls/GUZmFUFznYxNqCAR8Sj6uJ1gpiUlZV1Nre2yPOc6XQaNxZPWZasDFaDCWiuJa2TdLTi6gqoZzIesXf/m2ytXiHrdFF1HBzuM8lzPvzwAd/40++SF1MGqwO+8WdvkRqhnYGKoXSKmEnEFDqZ4ajx3yznJDz53v5jRtMRgyu36CShMIOKn8EdV21IiA8elSWJCD1rYnGM5REji76T571cVSTa712I+RZFNAk5BVRvEJwozjynakwwe69PetmSpL7LdMheFlVJif1+n52dXb7+9T/lwcMH5Pm0FhdUFe9CLQbnQ3bv8XDI0dFRAxvrybfgZZXD/oKens4b/5dK4rfWkiSxpucTcaMZzkWgEPFikpT+2lVKb9h9dA/wJDYhSQIg28zzWV0320eDa9Wh2sGZI8a771COdtm8/QUSYOQLfucPvsYrr7zOBx884jd/56u4pMNaX7n30PCLBxOyq12cdxwf79EfdM98gnA/wXjIE48vcu7t3MWv3WSjc5OON5QGrNoQth+LYIjxOJTHklF6yyAtGRQ5j8RRAqlPgllHPYLF41AT7lWNmdQ9eI5UM/PKtOZjrkKIG39WG/yZdAmPVvlcLl8nqexP1c+zUZ7nrPUT3vzMpzg4GvLe++/z3Xff5Yc+/SkG3Q6+DNE9RVHy4MFDRpMxRVGw83iH9ZXeLOTzSZ8iWidfJKG/Cvx4mvC1JTERz40CnEnTt+XQsyIbeckkfhGZD+W80MhXMq3UscSzdSTYJGFtfZ219U2KomQ8HtPpdOrY/Tr+uE4njzcVh2JBSrSYcv/DP6PfX6XVHaBYMkm4fe01jg5GqHp++ee/zI999hO0TBfxJaXLEQ8un+LKEivZQm5CUxavWK/HxxDN8dEee8dH9Nevs5KsoGKoSpBX6d3ehBo+RZJxUDoUTy8xZKpzya+Lw7h0HTzHFStL/lX8roq6WPy55A7M//+kl8+Nzbz+dBnmjWd95jkNMpry+r0+V69epdfrsb+3x2g0wpjAzgQiJr+ythaCIabTabPBZ+jNi0Pa+H1hii/jezoCenIG1Amlp9BLJfFX1Ez9voTGSNKMjc0roJ7j4yN6gwHGzqCcK/NL0wAjKB6LIWe0e5/jvXf51GsfA5vh1aA+5fU37vDWd9/mW2+9x0/91Jf4wmeu896dK0zzKYNBF6Oe44NdRAzGLCsqE7tYRQZJgF5Q59nduUdhU64NbtClSylCoh4wWIVSAta5F8tQU46dIzFKH0+i/swQzWqT/ChRvcU+42M/t1F75obDy7Y2IWu12dnZ5f72Nuo8n/z4J1gZDNBGjQEjAj4ACh4dHTGdTmeZu/CSMP8fBLPTzPc2s/XKudEXLyXjv3QSIc3arG9cRRHanW6NULlUrZUAuKaiaFlwcP/P6WcJK4M1BBhNRvz+n7zF0XjEa69cJet2+Pu/8wd0fv4n+fxn38AagxWlGB8wPNxl/epNRBLq6JY5ilE6jeIo+fiY+7sPya7cYb19hVQyZqBf1IZqFU9pWhz4hNx7+qnSx6G4Gvbg9ACZl2FhX4xm7/hFfuZLkXIwRtjd2+fhw0eUZcn6+ho3blzHGsEVQapXQpGjVivj/Q8+ZHd3l421tY+cMPDiUGVYms1Tfw5Y6Utl6nleFIbT4D10ewF+uVmYfVGVV0A04NhPh3sc7rzNlfVrpEmGesc7H9zjN3/39/mtr3yVhw/3+Ss/9+MYB//gK3/E7s4BCSWKcny8R1lMaLU6nC59SOOTAfUcHj7gQJXu+k1WzACEWHw5YPSoEFEkYWwsh2WwDa4Z6GoJwZIfQz1l7tYK+Ait+5Gi6E94Ft/j83Bc1gFWz9D2LDEx/BqNRrRaKZ/61Ce4c+cWoo4yn84FTKRpxo3rN1hZWSHLMm7cuB5LnerMYP9RJ1368TnR/KZburM5/18w/guSAuPJJIC/NZj+ybMEYqlCcY79R29T5Mesrm0hYhhOCr76jXd49c5tfvjzn+bb3/4ut65u8o//lZ9nMh3y+PEjBIe6kp3dh9g0IclaEaN+eb8qNEhRgyumPHj0AaxdZdC5EurlxgpYFXy5j4xfSTjCcOhKEiusJYbElcGUE/0VRszSyJ4XW/q9ZLqEVVsxzMVA3EujS3gdVbnQV1+9w8c+9jrWQDGd4F1RQyuHhCZDURSICF/84hf50pe+RJamoQoXvCQywWU8xPc27Dne8UJz4S8Y/7kUXp53saSetZzlvQkL3CLi8JMhj+//Gaura2TdDgo82j/inQ/2+IkvfpYvfvI1DocFd/eOyfptfuWv/gKv3LmDCEyG++zuPWKwuo6IPTVEcVZ7J8QaHu4/YncyprV+kxW7RiImbCRSFbWIMK7AVFJ2c0ehno71dFyOicUurGoF5tsciY84PQuWzCz/4rK3zMuJaArXF0XBdDyizKd4V6I+wJY0376xCW9/97v8wR/+Ibu7u+zu7PDWW29RlkXteP/BFwwuqf/fo2FYnAM2OfvGL5WN/2S0NDzryFeR4pPpmDSzWHt6pm4odhUWideS0f77TI/u89rH3kRsMBUd7B+xvf2Ag4MjvCv4+p9+i3c+fMTGSpd/4ld+kk+/ehPvc3YfvUdZlvT6m7GAxvLnUAKevseE6/a2cZ1VVvtXWLH94BhWP8PxriJ6BIYmZVgoqcBmamnHUL1QmVWfFQLmL6hBTYPc5XP+y8CTmcXRO+eC8zY0Pme1URHKsmQymXDt2jW+853vAPDandt459Ak4S9mzTxdXunF06jJkAK/svaj5NyNTK3+4zKWQ0zEKospWZqEkLYzAODCXT1l6Xl4/+sM2i1WuyuICk4MNzav8LnP3OHv/YM/RMXyUz/xZTY3+iSScn1rFSOeyXjCowffZWVwhbSCUdbluQlCMNt4gXE+ZO/wMa3rH6OX9ulKFvtkCPJ7SRWB74xwoMpEhb4V1vCkPhRLcRjKugjNXyxiuJywy9DOpTTToKfMKjuDRIOJb1YZd5bxDcJkOqU3GHDnlVd59HiHGzeus7G+zvHBbqhitwzZ7yNKz3/1VFFUgM78jWLOHv+XytQj0gxBfLIhP832KhLq1XrvSbMQUqkRtavK1BUfRGglxEAKhunRNseP3+bqxg3EWtAw2Ne2VvnFn/ky7ZbwzW+/x+c/+0n++q/+NL/2l3+E129eR8VztP+A/cNdNjZvYEzA1zntaWbBOo7j412OnSdZucKq6cXSjEFbMDjAYTQU3B6bhD0v4D2ridL1RdTQg2nIx6tOLuHlfTltmmlkTEoRGJSXpuv4B4Mapoun5bEzmawh+z/tLrAwWes/n9KBIHJyg6/q+i4CGYpI1AgMzgX8qM31DbwqxiaxTObTvtsXbU48fVj44qt4nk8mjTsGOJUEZblPsKKXivHP0yVJqxqKS4tEOFqCuguR8VfhlDSiJcuS/Yd/TkbBYGUTbyWq44oYx2u3b/FXf+5H+fhrV/jGn32LRzuHtNIUMeDKnEcP3kPSjP7KFaQKqD9lMQmKN4J6x8HOI+iukWQ9BtLBEKQ3IcAYOBPi/R2GYxKmKrQEBtaR+DImf4GhRNBQ+LsxjqeN5lmTOjB+S4goCg7o8696QShG8lQes2dR2GXhr8tJ3KqkfWlI2c86rtV8qwQbRaQSH8Kmb0Q4Ojzg/ffeYzQc8uEHH/D48WOSrNWI6HmaHegZu34ZFKIkGn+86BQiNrTSzyRE7+XF2X1/iRn/k9Gp24SCK0Px9ip0M0DVR/MLAuIakTVCMd1jf/st1tevkXVaiLdzN7LG8PGPvcGv/vJPsv3gIe++9y6eUGFqfHTE9qMHbG7ciCBwZ5usvCilCNO8YPdwn2Rtk47t0TYdjApWY/1dtaApToShCBNgJUlpJ4Z2xYSqyJ/ZNGJOlWw8xEX5VuCdBjRFo8lA9KNqB/4B2Owqnq0NQ18dKhKiAlqtFlmWMRoeM+h1mU7HjIbHoB5TZVI/zcb2Ag7PD0ZuQuBDAZ1WgQJXts684uWy8T8LLdnkVRX1jnwyZWV1UEt8snCy1rgxoVTj4d675KNHbN7+PGosxhvAUUmPgqeVGb7w6TdQ70mNR8VResPjhx8yzSesrl5tlFg832Z6NNznGE9rsM4g6ZOQRUYeXLUGAW8ojedYwCUpV7urPD7co+WGdaKWNn5OvbfML4izexfqTWrUOn6g7b/PyAOeZ2j7ZbKn2kW4IHMooRB7u9XmM5/+1Ox7BV/mjMdDNLlAoaAfFLrE9/X8t49KeFMQR5p+lJy7l0ELk927aOax9sSXNQuLjhUw+HzIzr1vsLHSp9Ppsyx12kiQqbuthM995g2c88EvMBnzYPtdWu0Wa2vXI97G2bMv0QCTe7z7EOn0Sdo9+pKSRkdPtPwhIe4HUUNuBZu1sVbAF9hYpBwIhWEg2PiXRovIEy4IA+IgQl5XjsIfJIm/+bjPLgG++M9db/zLgglEKcu8rgQX3qRSFjnTSYQvPwcn5i/ockmrtVUHZIBJJmde89Iy/mbUzSK0gvf+RMZt81N9rsJkPMPin2dXs798tP8aVY72P2S0/yG3X3kNY5KoNfu5NRSSYYK9fdBuhRfnlb2du0zKEYPBGv3e+sJdlpNHKPIxw+M97OpVkJSxn1LaKYmk0f4nEdIYjA/1gltJwqTMMV5JKkG88WRI0xE5w+D3Xim9A5Jqrp3ZT1Ebv1SMLwP/t2l9drOc5YtL59V4eAJ6Do8pz1ohZq6x2k3YOKbzu596vPNRgwlflGWB+jCPqSJKLtinoF1cXJo4a21XPbqM0Wgm3T1Ne3Nr/pL6dJKqbbqyPhgUS16cfdVLy/gXEQcrmkwmDIdDAAaDwdJShnVBaecoyoJ2rzP/1mpRP8o7sfKTugk7979JN7F0exuE0EmHb6RChaZj+6JYHxhzXozYffwhKob1zWskaevEfZZRaZSj/JjCKavrt5nS5nF5hFFlNV2hJx2s2jghQjOtNKWTpBxMh7REI2rnzJYfEBpjpqZWnZ7Z/H3M8Kx9n2fM6Mr5bRR0fJ9yOoH+K0ja/UEQfi+FqoxYuPzkrUsjmX2Y7SMy2wDm5iK1DyA4cz3EOVPBPlTRXBe/fTSjnrJZXHRjONVX9yz0lLWS5zTFS+vMMqpeTrD1qxr2Hp1t4/9IOHe994zHYw4PD5lOp7WjNs/zBvRC/ImMLzh1S0SpC65Uk1LrhKqKAZpQU3e8y+HOO2ysX8EmLeat38qJaRklYbzh8Gib0WiINS3W169BjWse2zht3qtnenhElmxyc/Aaa2aNaa7cLY544A450CGllBg1GG/wSUK/26eTWlIDXRPMQE3LfgXNuzyKRZ7MWC0u2PjzIw4+/AMef/e3mR68BzqrlvZiS/uXQ3WRnheV9WvjgxKYec28Zz81Rn29ATQb0MXGLnxrPWNTXMb0m/PmZGGiy6HzNqMXgxa3usCb7t8vz7zqpZX4q9q40+mUoihwLsS19no9BoMBx8fHTCYNO9jiu1WlLApsarHRYdWEX/Z1QlSwz6M5u4/fwbohq2tvYIwlxNIazJzEEF6Uaohx8YDXCTt722BaDDptur216EAl+ggcp7lQpSg52ttDOjdpywYrxuAzy8hP2BtNKTNHmZasSo+WZExEsDYhEWElTbEWjGuqijNJ3pxmQniidSAgnmK0w+EHX6M83CZbuU1r4+MRcfQHgC5BT6830ReWhwSGrqq4MseLnWd4MY07zN4QLgAB8E8W2K00bYAXuvUMeIRaEGuac07v7+I5z0Xif+Gp8p0F2HVFUfMRZPzOOYqioCgKJpMJqsrq6iorKytAxCOZTheKsjdVWEHVUTbCOAGaSJXz0rAynQ55ePfbbPa7tNrdIBkZj2iK4OZNpKEBjCoOYTjZ5fDgCJt2WOmkZGk7nteUoMKPaLUoQqKME4FOh2TzNabSIemmbGbrrE2m7I22OSz2KfwUl3pW7YChN5iyJPUliXMk6mq7bjP5rVLjT5X650hPOQ6iCZ4SX0yw0yGmGGHy4yhRvqBUT4VKr5tpP7qM29TXLbFtn6MdLdqr69sv3mdJ2+dKyI0w3ZPnztrX2okfonbK6ZSAN1Ux+8DIFWlI2lGAiZtBWZR47ymKHIxjOYT4cvJlifMlZVEgxtcPN1/HunrgJXMs/vbezdBKK+nlGajp53gCD0SzU3VfzjKHsjAHzpkxZ/ztQAxihBu3e2e28tIxfu89o9GI4XBIkiSsra3R7/eBsCEcHh5ydHREkiT1RnCSBO9KXDml31+Nh2TxjFo59QqjvQfo4VtsfPzLEaVQo7Tul7zIENXjRMGV7D58gJoU0Yz2yiqHE0dZTjFSUBrBujbeHiFYupLS7RosKV4cbuUGb/zkT2A6m1hpYYyEfCkHq8N1PnjwHsfjHT5kj8OkwPmr9IE0h+PhkCvOU0iAfbCA9cIUxQl0NEHFIZpQFTrXahOqNkGpzETLZ7bREi8W0x5geteYkFCubIB58eWy2jinJm6yHqONiJU55tzc/hpOwYbwOiuUNO+QnFlLZk5krZl2MLfMj3A8T0GkKrc3b5aoa9hy2psJ32qjLwJkYlk1Cb7y82g1W8HF0pGVKVQ15HsoincO6xz58UGj/YaPIHZmWV+8eoxzTI8P5jYbkapmXBR7hPr72S3CRmQ01NxW9TgtqYIaQgTxTFiaG5F6f1yyLarHRxOoV2X5RjZvYpp1KYybJwhmniDkLbu6csw30X5l8W4L80y04ikzczOUYZ2KYMVy/crxkv7O6KVi/EHiKFBVrly5QqvVIk1TnHPs7u4yGo3IsozBYECShNq5Jyi+hLIsQYhonPOWmmriS5WeXk7YvvsN+r1Vut3erHZo9f9cVuVMWhJgNB2zu/+Y7uor5If3OM6v89u//R1294YUhcNkIGVCqY5OZnjlxgo/8SOf4EovRbRLN71Ca+UG2A6Vwy1GlpKspCRJwv1HLXb3HnIwzCnSB/R1wHFhGZUF1ikZSmkqRnFSWV603NYSXy2Jnq5gOxMYQ9beYO31n6LMx3TXPouR9NJssc+NateKIt5jnF/ylLWsPHPc10JfGJs6r9tX13ua4yXNdnR+ScvcObFTddtNjUFPRrgsRrssUdSasxIRsixjdTCYMUOdSb5N236zOLpEBq+qGJH6POFkxM0yqm38Vf81MFutzBbxPkp1POph2vA5CBQWymlOMRzPaQdVeVStNwHq47VGE5+fhplKyqCp+yKfvYG5fWfRRdrY5gRwDuMclCVza6TRhqtuy2x9zXrOwhexb6pg/dzXqgHaJeTMgJGPWAJXmqb0ej1arRbT6ZTHjx/X2OGhVm5GlmUndvnatRQn3jRi74s56XycD31UJgf3GO29w51rN+siLSdpxvyrnEjjhb3DbUqT0E7bJFa592hKK7GsDlK+9fYuP/SpOwxHY+49OObjn32FXAvuPjhk82MpYhOSdh9sWqvrtWSkYI1ltbeBlYQs6fDw8T2K4pDtw3ukaZ8Vb7ARwK1+nqZV4TRZUcyM+Z9DXiSYp5I+2fXPkXpPkqxFs8G5l3//qLJhxFVXjKeID/hF0NzQZ/8vSqNNs4gAvihQ5yin01i/tjo/SLfVn9V2UTOv5jhV2oNGCBA8ggfvawFjDg8oPkrFs+eMcrXiNpv71hhaNsVa22BjQaJe/rq0uXOwcIcL0kyLiH/NtApmG0Po4kxy19jnSh4vnCMTG2HHZxty3U0Npqx4Wd3duVoJlT9OwZQO9YpjPOvq3GMtPGOjLQiCqCkdxXCIN3aRcaAo7hST2DKMtUbsHYMVA0lWC2pBQyzwPiPPLePR0mZreqkYvzGGNE3x3rOzs0Oe52HwjamZPixX7WYU7ZyuZKXVWz59tZp4grqS/YffJNUJq6sbtZRzXrSKqOCLnL39+3TXX6WcHNDpr7N7f8SbH7+DSeFoOOXHP/9x9o8PSVF+5guv8vb9xxztHYNewad9pDVAxQR1UqrpPmMWgjDor5IkGalNebB3j73hPrZ1QJsuI7NC22RYnUmhlWRY2fybyzkOERdd2MaH85wYaK1g8DFUtDJRvPhkBLpZRjdtLY0ZD4xHa+mxloa9i5xVUPVYFzOoiyIYERo5DHMMTeeZXXWfBfEDIeBIuaJgIoczBl5JsfXesbAh1d9FED8RrIA6h/HawHg6/w3poumlqZtcUKU7kYcQAx/MjGc3/B/NjWV+k/Eo7SShbNQd9Npg6xrMSpXkrxWj1krgiRtOdUW7HTeCs4MfFzXi+rj30O4ulejr56oYf20mWDhXmYVWI1QJkC27mCQXzsmnhqO8ZDQ8O5D/pWL8AHmeMxwOyfOcVqvFYDDA2lmEwglJf8nszPMpaWKjVLaMwjVehGJ0zO7Db7K1tkWWtepJqnFzmFcxtd4UFOV4uMt4MuHqtVvsvfsVBnfeBD7AJoJNDGKFxIK1BqeeaV7iHHgHkEC2iiQDBFuhdYR7KsE2j6knU6fd5vrVWyS2Rbr7AbuTbfbMAe1MuWHXYqx/gFWoUUcb6vL8J5377yxKVAJOoInlHgm1AC6mL3z/qXJorvX6rPV6wa5dM4hwRhUNE0wRFTOZnaMI3nvKVoDtEDHBnOFrj0m8PrbnZ++geY+5flUmliRFbYIRw8zoMq+tVbxs5qSudnQX+haZvFGlZWeYVPVpBLZy0lSk83Og6Zdo/n3eGDfPjxNPNcyT2Qgsu8/ss2hgia00ZZmR4zTmvOy8k+z3PIfr4n2qN7C4SZ0cj2W2f6Cued2kpr/D1M1W4dgCJEjiMKJk2UeI8Vc2fmMMa2trWGsxZrZbnyaBz0X2qFIUU5I0QcxZO72COg53PqCc7rF+50uIkdhEeOXOOayJanzzSvWodzzavUerewNxnkSUXm+NzbUdvvP+faa5496jfb725+9xNJry3vYB/+jP7jHJJ3zyznUQj1eY5iW+CMUzvC8jw4G0ndBpdxrp80KWplzbukYrTUgepeyOHrGbH7OedsnoUG8dqnj1yIkSAE/Oqj0eFYOoRAkuASzI2eFmLwLN9DrBGkPWgCmYk9AqO8oSxqiN5b9cWq3+bjS18GnuSN2ELJw3Y7q17ZumyWS2oXhmm5Kvzw1SfrbEVHk605N5K7fOjp9z4Yl2ZudLrVAuv3zOlrbwzYL5UJvfLW9i7tQTr/Di832+r5XeLSeOnaDTeNJ5N5T57cSoQcXQ7mdoauh1zx78l4rxA2RZRqvVqhn+spTuiubq5kbPvSsK1JUkrc65JiGfD3l89+us9tfodAfUmXOE+ryPdx5zZWuDzkKxdAHGk2MeH+xx4+M/zPDx2/RWtminCa+/coPf+r1v8Xj3GCsZ3377Q7xPMNLiu999yO1bK9y+tUpRHnPw6BF2sooDijynKCao9xixdPorbF29Rrvbw1TVeDSUZFtdv0Ir65I+SDkcPmRUevomLmINKrPH1zkLTXpS1u9io0YDEF1tQFguAL04VDn4Fg+ZmVQ6Pz9OcP3Gop6ZKWZnVZFfy+5dfX/ad822ZlJg+HPh7/pRZrLo7Dsf/25IzXOx+7OTpW7n+dJiv59oijzDfDrt0hNmzku+9fz7mLV1bntx/VQ5FaIhkOJw2CNdMRjOxkt6qRi/Mab+mYs6OIOBz3B5POoKRsNjVD2tLD312op5Tfc/ZHLwHnde+zhiBaKkPxyN+Oa3/pz33nuXn/+5n6XT7sQrq+iCUEjdtDdp99fZfW+brVuvkxi4eWWFv/qzbzLNq7jpEvEJzvhoa7as9zN2Hn6Xh/v3uPPGKh3bpm8SSJP4TDAZjXj8wfusX79Bd2U1JKFJcAcmBnq9Lrdvvcr9u8J0NMS3qsLq0Uwhp49bMDModYRBfLal59Zyj49mJB+3xhfYxi+N/5pWrUq1vpAJY7noOdvvtLa1XwY1+0q1YddtK5Wzuom/BCaab2Lk0bJXuahYLJBfPP8S6SxmvEjnMuen7OPz3uvqedU8dsqGd9pKCyEHSu6FP/yjKZ/7cgf1HyHGv0jnLdBKG/DeM52MmQyPSBNLv9erQdlOY/6lU3bufpN+29Dvr8WChsJkMuZrX/8av/X3/37ME5AF6UzIp1P29ndYv/ElptNjwNHr9RAR2qlyY6uLSoj6cdZhnUWNwyNYD855dh/vstq+ycCmpDbBSjITy7yQUTJ0Bbvb95gUE9Y2NkmSrLbdqoFOt8/VzRs8GL1L4UqSJK2ZkZ42frX02JReT2f+VmOoHwbxSbBHijvt9BeCFtX+pn14WaSTLrCHKga/YWRs/J4JG3M28+ZiX7CUPIkxoPIaLMbzz0z2UROJiYpS7UQNM03TwTnLK1h6uyd7hU/BRat8xeZ9TksNmyU3Ln5x8Xs9qSK67I6nvbcllsD5DXuxjcUNoWpH5++hUoC2yF3Cd77t+KEvKspHLHO3yYxmyvp8Akw9QVQp8wDapt6RZSntdousNYv+qbz+tdNMLc6UuONtdnfe4vbWFjZpxaiOnJ3dHf7R7/8+33n7bb70pR8msZZQHweMWpSS4+EBEyfc2HyV3Xt/TLvTJUuDjV1xKLbWHvDVBiQEaAhlMjlgOp7wyq1P0Eo7QT2f405KK7GIsUg+5njnAZSOwdUtWkmnZkMG6PUH2F6L0WRMizQAtqmJIaHCbGoLgseL4rxiVZll3wbnkq9bnjGZIFBWSf0+TlqJ0T0zplJdedLAslz1nTlDmycGM0zznsupOR9O52jV9qYC3gRQvZkT/XRqIpYqMmcjCeaLCp5g/gFPY2gX5ZdVlaxw0RJTVdVWzdgXdph4xtzIzeUVnHLfJ2CssMxkND/PFs+vBZEz+jD/DAtfLGOscvLwMtPSWQpPo3vzJqol41GZ27xoLJgC887fE71ecj+td0IB1Cd4k6MmR32H0luSlsEmQqkfMcZfT51GFlxzYKtcKu8c4+ExrswR9bQ7LTrd7gKMQ81HCVmrNkirvmD/wTdRN2F1ZWu2QWAw1uB8yGfMshbWmAqHLd63ZOfxfXobd2i1Ogz3H3Jjcy3W1o1MsGZeBEudzDOqo6MdEtum099o7maNQQiRPZlY0jTDu4LR4RFT8WysXaHb6VJV4rVJSrvXpZiOQy5AiDMEr4itIJ0r0LZgFS4JbYPECJ0GK9QmozbV4NWaBJW5wUdpMka41O9nTpM4nZaCSej852be6DIm37zTsra8hPliNOTLVFFJJ08+XSaXJYxnKfPSZ0dMnMnpy3syf4Y05lSzBWFZT87afE5Y+05w1OZhT7UXNnm10Iwkm29uSVML96/EjPO3yErLXzp/zph4583Ji8zZ+d6F1fREzl2ttuWqDGaVnZwiRmm3HV/6sqHdDtFlZ9FLx/hnFCd73GkDww8hdMV0SpFPyacT0sSysrIaMnTNTD2uwz/VojIrXOzFURxs8/D+19hc26TTXmlIWRmDlRWuXLnCnTt32NzYiNnBIapF8UxGQ46GR9z62C/gJoe4YsjqyivU6rcut81Vu73XgoODHfr9myRJ1hSXT5wv8TkGWYdD22IynLLrd/Arjt6gg0oI92y3uuy5x5RJQSIGpYrnjtrSwiTyXsnzArFVIfgo24ac+pC9ybwkJHXSV2Q+VYZn5SgNAxh/X0zGPS2Co3loMQmpurDq31kOSwOIB/XBxGZV6rrEsclwn6XcaBlTbXw6EZFyGRTB05Y2tlxePnHkVMl5ySFdaFXnTz15XBEsi69N1INUmc9zsvPyflTXzk3Mi82ZZq2NCz3jC0XV+jCIFFQwDaIetY5eu8/nP60443Bn11p/iRl/taFWLMV7yrKkLHLGo2O8d6yurpJmKdZUstnJySNRPSPitWhZsPPB1/GTHa6/8iWM2MhEguljf28PUH7uZ3+WrfXA+BXBqMFrwe7efdLeFqvrr/Lg7d+l20pot7qz+0V8n8UJKBF7ZDIdMhmN2Lr5Cta2Tp3uGsMoLSGnwKcZq90u+0cHPN7eptW+SZolqECWtpmgHDNFTMLEF9GsIeFHAA2FZhKEDNDpGCLjV68zrUQMGp3rqjpzHhqJkVYxlDA6mkN0TFUrVGcx/k0F5hSzzSLTnmlqUv+31LzQiFaShfOb51SHnHi8gGtUOIqDHM9ZLmv7Sstpnlz15USkmeCfMZVZdLmGsXj/i9EpO+niPTmdVy7j43PnRgk/DMdJrfw8LjyXqwCn7OJLenjGUDzpKF2cJGbXVwbRk/rWxVqZiVqCqwXF3HiMKimKUyjOCcF6eRm/QpUV553DO8doeEQ+nTJYGZC1slBOsVIK4u8T8AyV/VqCyWa8f5ftD/+EG1du0G2vxLJnYfCdn/DOu++yubHJl77ww7RbLdIkQUUxXsnzETu7D9n4+C8ikrD/+F2ura1hJIm5MBHieSkJ4BiO9lGX0OttEtjwEoVdZiqhAgWGQ+dopS2Sbp/J48dMJlOStIMKpFmL3CqP3ZCJGA51SoGPtg6NcHSBi2Y25cqgT+GCmqrexzR4xZuZpJcXDt/UN+sERQ+E7EnvtXFOEB99rWktPvvJRVI9H4QwxKocYG1xqBjNnIOyivWWGq6ggl8QZLZRNBi/9yVqwnDYBsM+y4wU7xChARqGulPXozwz1wl3uAzU02cVe09JPqu0b2aPGrZMAzoTvGR26pPcMeBmnfJtY1Zw1vM9L4FfUawBe54t60xaVDeVUO/CcjBuMzkQbqyX+BTOKcD18jJ+UQXvUPWMhkMm4xGdTofuepDyL5LYVX/vBW8U8gmP3vt9MuvY2riNSIbKGNSCGvYOD3j8eIdPf+pTrK6sYE3oh5cQL3148AifdBlsfYLR0Tbl5IDVwSeRqDUEJMzT+6G+4OjoMd32VVqdPqep77HXVNjcuUIhhhxhOC0Rr0ynBf1BOCuNZq698THHxjM1YQvKnWfkPSKKtUKKwWHotLu0VRuLNcogOltUvj2r1LXwFPUCnxX1AIlGX5XK8TUv0S17Q55q49A6o7Y5HIriXWCEjvnEpSqaq8I5rPzUVZtS9VQV6z1JtA27yrBX/1qQ9xv3N8tMKxo3pAU+L3pa4ZuLU2B+55+3xGKzwFKiRjbne4HKeT7HehoXanN8fYVqqfVQVd/PaYMiqCR4H4WC2Jlwva/nx0mzTgNVtBZ0JGoVywehmag5i1vQWjAIUBGzugAX9lqfRk2TsXesdjskUUt++i1GY78twTJQopLy/nvCw/s5Gz9XQNbCmI8YSBsQJqf3TCejUNXKWrq9bpDA03QG73qRpqKpQ9VztPcdDh99mzs3XqXV7gXTj0TMFCfcvfcIEeHGjRsxESZMHlFP7qbs7z6mv/Upur017t37Gt3MkLV6zDBWKuYJy5ZnWU45PDzg5tZnsGlWO6mWkYnitxfBKaSxzm3pPF1ryPOcSvoyYujajBEGJ4Y0zWgBKh2manE+OKVDvV6/RBqvlx3zEknTLCKVjYMo49UM04hgxWAMpNEMIyIk1tYJRcs2xKBnVJtHlZnaXMdxY5AG49AZc3Te4yOui4ubQAW/IBpwXWrmpcKkcDgq/JcZkyucp3RNSTs6Kpu7QWRIDVY4F3IpMbv5Wao9zVlHKoZcceeZ/aTZS+bnWcV1G20sk5R1/kplYT0tMt+qycqZT6V9hef2IoSw81nSJVC/m4qMGDS+E9WQra7ek6RpNLkG7c2YAOcsIkQ3Vp09X+f6xPssyM+VGLAwLk9JMxZAeXRUz9Pq+WVunC/WoEYYdKGq5w2SpqyvBh+WkSleW2TJRy2OP0IujI9HKCVJYul0OrTbbWosmydu0+HHB9x793fpZhnr69cRE+AI0CAjTKcF731wl5s3bzLo9YO0F1+0AYajfY7GOa/+0GfBTzjee5+1/go26dTTzM+t2oUuoEwmQ4qJsrp6ixCHXZmZ5he0NGK0VRSTJAyyNqIhg7ZjwOXTxhWGQdZnYvtkvS7tzgBBaUmHRBOozDkuMH3xS0ZwqaViUTWFann5BiZLqYGhoqEwjHehaLdoGSRF9TG0dJ6q6gCV6eak3fxkb+ouxOeWWFZTUSRGYCkBXrjSCT1KKQZnDJVfotpwVJWx5iSdbt3XeiNauH8tSdZazgzQz1iL81Xt2mVXL6ems9IYgxFbV5tbWjSmaaqa+z4wVu9n/qV58LQwS+sxrJPEBGttwMKvxjhmNS9WcBMjYGL96YbmIzYw4gqMrIqsMzozywUAxiQy/Ljlz+XYBDykSlDXxjjq4rOi4DRomZG8j5t8hZrKXNefmqxN6HW7mKJAi+mCdvUUOp7G7bH2k3XwSYtbt3OubRYhb0YdadI+s5mXjvGXrmAyHOFcTrvTptubD9GsTQsXbE8F1JfsPfgzRjv3+PirnyRJszidfHSueMoyVA967dVXsbaSZyOb88ru4wdkK7ford1kenyfcrjD4ParqLGgEVCNKkhraU/Y39um375Cq72CSDLDWFlydnCSBqdk2klptTKmODItybRk6pPAUAkwtq2sQ0t7DNJNBp11vAmW/cRDItQJZctkxJpOKCk1h2ucMGNUEIrYeFcGO7p3AV7YBeavUSJXf5rJaNZsM9vxpGy7vHtizAyITwSizwdiZoKY2QYgDSky/qiEam5ZUbKxtQkaGEhT0F4cKVVtwPFH7cYExl+WAcRthhI5P4xzfa/3udm51loMhrIsgsP9xN3nx8BTaZgShfHolI8Qz0tnYtSWq2+MtVhjKEvX6LPWzH/x4hPzVYQkCQCBZVnG8TAV6639L8aYECGn4H0oRWqswRpDUZZ4F+dKpaVFbc+rr81GRC1OvcdbnR9Y70F9mBOypJ9PQZWAP5nkUTyTprvniduf9TaIiYohL1t8+1slH3/V0k8g9zHrPs3ObOulYvzee1wZ6uCura1hExukjIY4elqa/IxxaCN5KUjMk/EB9z74Kpu9dQarW2A0hHlWtXBVSKzhk598nbW1tXAX1QhZq0wmYw4O9rn+Qz+KtQk7+9uI5nR6g5larEqo2NVUOqsEMqEsSw4P97i6/jmMzeKcFULg/fwDqWhdfdOJoElCmlhKX9BNhDT35L7EOYexFhUhydqItxhNsZoGkDYJ9ooqXrgaOm2YbOrFrIvyizbCwZvLaDbrVYMZLeQwVABoppaK5/nmcn1i+V869/+crLfw7utNou7ekkU/8/gutAYlkBhLq9WhKEqUsj6l6aafg+lOqkcKd7KJpZVl5NMpzlVF6Gc9XCZ5Nje6ahPJshQx1HDk1X0XnrTRp9mDV5DmRVHUDvcTENS6eL3UBY2m0+kJ08xZ1NQcWlmwR09jmdTZOId1G5IfBZOX+Kgleu9IjCW1GcW0BK9YMTWwokTNTKQxL6vNNuwuM/u7CMaEjc57nRuXJ32exVk6HA55/PjxSXz9iyl0y2+kUVsRy4NHU37/9z23Nrv0uyMQj6cNWX5mMy8V40c9WZbQaq1gbHQSLnrRTqXIcKRESWJMOng3Zu/eV9HjB9z42OdJkwyHw+KjBBhU404n443br2ESi4rBqA+l2LVkb+cuvr3BYOvjqJ9y9Pgd+v010qwbYphD5yOjCMw26MIWkRJIGI/2KPOS7sptaCBuRtZz8mnUY1SYmBbD0tBRUDwDAynCpCwpi5IkzUhR0laG1yBJOFNiZJYmEu60TFWSk4c4+f2p3zaNnE1JaOk7e5KFePqWIIsftOYHS6XiumMnLqz+CiaGPA9Ff4Lv5CTZBn76IpxCp9Nhc3OTxzsnr19MKGxeV31ftdnv9+l0Ouzu7kZzyPz9FqkZ4JCmKevr6xwcHFIUISZkkZEvAzvs9/t0u112d3fr6y5KVb82NjYwxrD9aDv4kCrbuyiJh6kasgRW9neYdjJGtktRlvT7fa5cucL9B/dQ1bmxqmz5IlI/Z/W3RPNU83iapnQ6HSbT8YIJ6fS+CzOIcetDZncoPDQ7Ly+mIUfRzTajaq0/KTx5MO5qzL9xICnvPrCsDjy9pMRJETP9Dek5NQReKsZvTHiZ1poQ1VO9vIuMbJ2kJRhPBBQryQ8ece+db3B98xrdwQYqHqOVVNG4XIQkzYKkj6OUYAIq8im7e4/ZuP0l2p11yukhRwd3eePa9Ri/Xt/2BEuJMG2oOo6O9knTFTrd1XheLGaidsnzhenkDUyAUekoFYajnFZZBturDzVKK7JJhfUTG9P5WdkUgpay+6V9eAKShVafVc++8H2Xfpw/4by+xAghVZ2r47yskPr8ZcFBOZlMKMuggaXpyYizE3V0G6ag6ruyLBmPxxhjmE7zusrcotmoSRVjDxtXzmAw4Pj4uC5JutjnxU2oLEsmk0mtKTTrXlyEjDFMJpP6Wucc3e4sp8VYg0FoK6RAufsWdm2Nwa1rwbzT0Gp6Fb5WfBfVOPmmA9+5E2NYnZOmKVtbW2xvbweT0xnPUZWHVKidtBJ9Fr4xXUIVPMOgP8CNSpoaqMx9uBgJPsA9+BYYC23ltVs97tyENDsMxZ08gPmIRfU0GFMNx3zBiSgoKsFmb1QoxeHKEQ/e+UPaOuXa1dfQJEFRbAM5ar6KUvVCFRdxXY6PDpl6uH3t06hkTIdH4I5Z6a+f/s41JHtoDHH0bsrR4R79/iukSTc6NCsbZQzrmrseCGg4jFVx1pIrjIYTNnwRJY9QvampchsxDUn7pGngL2iempXWqs9Zls0x7uq806gsy1rKr8qDWmtP3TSWtaWq5HleO3WTJAllQ89h/IubRnVup9Opn2GxH82+TKfTWAfCY62du+4iJBJMmFWVvErqnn0PYDBakGjCCCWVBGm1QaZMp9Na0m+320ufd/Fzk/FX/zvnavNYtYnYExWuONHOXN5HZOIx9SUeC31rZS3Go6Pq6nppPbFsowLGgeSISfFJys0bDudHGJ8jmuA1mJ+tTc9s6uVi/BXpnOvvgjSzK1Y27OHuh+w//AavXrtOp7MS0/UrRls5xWaTLZgoqpngccWEncfbdDdfo71yE/BMh3t00pQkzZjz9DQ7j0TmH+J88umY8XjMtau3EBOLlJ+GRNh4EsXjIzPKy2C7tXU/F66oFoLQcDB/r8TuH1xqMn9YLtmf9d2ilFyZJi4EJc5MwPHe14y/MmWcVf5z0ZxRMbrKbt80IZ12f2vtnNR90cJHzXaa92maZ4iM1Ufm79XQuraF7a7hzLwWVD3nRTbcxesqxl89R7X5VFrP6Z2P/zWEzdpUWJdm1cbS0jnwPlm45iIUis97MCW5aVNqRrdV4PIx4gTxJualeMyyor0NelZcqBeOZhmXp0QlnELh3SSA4AT8dMj2u39MJ4WNzS1ELPhZJPaye6pGtHkB8crw+DFHw2M2bn4ek3RBSvLxAVnSRs1Z6JHVEyioZzQ6xkibfv9qrV4GSV84PVMzHG8lCb00pSgmJOqxGksHxgUenj32xLtoIrvwsNXPfZZUu3jesp8fRFrG0JtRP+fRovTZvP4y+nUROk8buMzvnuyaKmgghtJag715A7OxTrOi3Xl9Wfw5797L3snyxpmtk5gNJjBLVamPBO08RNA1OP9TUBDKFJWEt95t8fZbUBZTxPkI6RLDTYwJvscz6KWT+OejAuDiXCy8PI3Dt//w24x23ubV26+StHqIKFYNStkoXtG4Opp6NErxrsjZfnCX1uoNVjZfC9EFqpTFIdamAQLizK2pyh717O3tsrpygywbRNO7UmEHIctgHqLR0ST02x1sknA0cXSMx7jgDvZiSNJKHRS8cwub2pObehbtzidGeMFW/TLQWWaYZ2XgF7nnsu/Oew/nfXfR+yyjizhGL9qHCr6bGGxhOwMUC8U5CGRPcO9nFT5m2jU1qq5KCIktphN8USLqkaKk8ujpwvUXJx+CSpI229vQbnn0ptbteClxKqSScp5M/9Ix/oqelO2HC8KuXIx2efDeH7DWa7O+cRUvbdAcQwlqUSkB4W/9xk1+/SvX+KWffsiv/eI9QugjqDfsH2xzOCy5/YUfCWUcY5ROXhzTTi1VXPiJbtQ2w/AERTHl8OiIj73+Q8Gup4tgwksmbPQcFZIiNiG1hm4rw08E8ULpPZoY0mxmB8wnY2y9hVx8EZxmcz4rEuUs88Fp37+M9Dye82UZuxDVE+UXFSyKDCeQZhf22134Xkuc5edvSoHmsrPVh5BUQi5KfjzEjScYVdqJxWYRrqH2Bz4ZlwryZoIkCa+85lltWxKfIhSxrKmj1IzMJqAfRRv/U/klo2nFT9j94OuM9+/yxiffxNoEVQExKAX4FBXD//AbN/nn/w8/wWiS8F/+jdf5z/793+Mf+8W7oFDkRzx4eJfB1U+xeuUTIUlIFY+hyHMGWcVil3dS0VppOTzcRzF0u1dCL6vYsNrEc9qkEY5dcNwZH2L924SohlLBplkNaoYqk/GYROYHbqkLYvEuz7gIXybp/2noMp7/ZdSkqMwaCEYdCuT37iKra+jaxnO55UU0pWVU2wnKgv1HD0m8IxGhl2WknVYA9jMBkFoWTLNPFtgjTLXFdNjm+s2SVjnCFEXwJ4riVHAYxDbhC5fTS2fjh6czoUkoL87x0SMeffDH3Ny8Qre/ESXzAq/BuUKM/Pn1r1xnNAn75miS8OtfuRYqV3nY3XuXshSuvPYFkqwdHcKhX3lRkto0oJKftlCjxC7A0eE+3W6PNA2lGaUuBnI241c1DL1hagzjsuDoeIiJafWF92TdTi05qfcUkymJTWoM/otS07FY/VQhdM2fRZv+acerNn/Q7f9PQpf1jN+vsXo+70ljXJqAOLxR/OEO5eiQpzaSn0HPJsDEDUOVDGEzTVlPU7pGaJlQCjsxFdRCdcOZdn/hu4jy6CDld/7RFFcKUKKmJKRqWlSTAHJoHMjZ5rCXTuKvHSynkUabXIWtrhHTxuRoXrL7wVeRco8rV7+MSVLAIWLjDhmk9P/+N27w7oc9ssyR55Zuu+SXf+ohpSmZDg+4v73Nyq0fpbv6avTEx+QsX6LFELGbiPjaH3DiCTRG8KuQ58d0Wm8gdbauMtuvqwig2dVVoZBcDMfGsJa0mZYwmUxx4jBYCgyDTqe+c1HkSFGQxJ4qxHDR86MyAMbjMZPJ5ESERvV5WQRGc6FV4YDN71R1FiWiYRsMMdMB1tk3NsGLJtxclJrhmefRk2SrnnW/Jj2JnbzZxsti5oEqMibM50QFjOKuXkN6vTlTz/drs6sjdIJRH9UA3902SidJwxyqNgQq3Cziuo7rVzxOQpGf0FbA1/dShGcmwUk1xxOmyYRvvSXs7ZUkZY7F46OoFhLdwGQWxDYEw+X00jF+ONvSU8XG15IzipoAdjbcf4fHd7/DrSs36XT79Wtr/v5bv3mTf/5fCyaeLHX8ys/e41/4Z77Lr/3SPXLvePzoLs6scvXOm9ikXYd0oYpzBUYdckaMbR0oECN2vCtJky4izbC/WZ9OiclAUawRMpswnE7AeawNSJ2SpKTZDMtjmk+x6rAyMyAF5n9qN2sqyzLg1WRZLcUvOs7qsW+EvTbVamsteZ7PJc5U3xtjSNIkVk4rCFj+fi5D0jlXY7k0mXYzRHFZdEfzs7V2FuX0hMzkWZjP82DY30tm+Lw3GwGcGBKE9pUbiDVMz73qe0xxIXoX1lAV8bPowwtOYJkLIwmV7gwuCoFGDUILr1mQ5lNALVaUVFbwvuCN13skso94AyZAzyvBd5dkKbPM/tPppWT855FKVSw8xAmrlPhxyfZ7f0Rqcq5svkJ4gwF9s/n+fv0r12oTT15YXrt9xK/90oc4VSYHhzza22XrjZ+h3b8OVFabGJ/jckRCNt+pfWuEU1aM1CbphR1a1WZmxbDWadES5aCc0EFJvDB2jla/T9LYfIrJGEsAJvQLLZ1HeR6yRNfW1uYyI6tnWWa+qZ8zUpIkeO+ZTmdLurmJJJkF77EKLoJwmaoiGjMm30w6WrzfeVEoIkKr1aLVan3PJefLjgb6XkvBz2e8QmSaqMEZRdXip6OghWfRdHqJJqYnSTw7jbz3JOc6xWaBGyAkasCnYEPACHiwFm8mqLEUrsM3/zxjYx1euSN8/I2StdWEAGuXIBrMt16E3HuydhsjZqZVnEIfScZPdLLUqpdXDh+9zcH2t3nj9m2yrBNwa2pTzGxy/dJPP+S//BuvM5okdNolv/yT20CQfLcffEDSucLWrU8jSYc6vlcDno8rJhGU7CSUct2zynKjivMBUiGJWPpLz9dZBET1n4pg0pR+r01qoCfQjWB1hfe0Ol2MrZikp5xOMZVDmSeDrfbe0263SZKEoijmzBSLyU3zzzmTvtvtNmVZ0mq16u8qMsZg1WEAJzZI+hIko4gMV5+/6DNo+hEWPy9uDHmeMxqNaqiDJ6HLYHyXJfm/NOae+BiVc1dQJvc/JFldhc2rc6d+3/1AlVJfupkR9hRzndTmWgChlBKxFk3AIHgsu+M2334nY3PDsrVV8M4Hx+Suze3bljs3BNFDpNA6wTO0KJQKvSxD/oLxL6GIVa84PAYwuNEx2x/+PqvdFuvrV8FocOpqlbA1o1/7xXv8Z/+33+PXf+c6v/Qzd/m1n99GvXB4sMPO4SGvfv6v0eptgHp8LCxdvX9XThAqif8cmzQV/KzB2uSM88PGVG9RMY9hYlOcQMcY1tKUzAgOKBRaaVoHbnqvaFlGCWK+1YuQMQHDfTQa8eDBg3Btw5Qzl43JbJFWZhVjDFeuXGE0GjEajepjFSNMbULLlYg1jNNQojKN1TVEBBvT9SFsvotMYBGgq7kgm2aesiy5f/9+DR/wNHb2p6WXwbl76W0CwSAipN4Ft9beI1yqmM0qwu1y3s+zaQ4Vei2o87MaBIvtVYKZBoNPuNKgiVCKsDcc0E4sK33l/vvw//sfcr70WcOv/BXDX/rJFp2OwWiO+BGURfQFlIgaDEoZI4dMUmF3nT02Hz3GT6VQmeAYcQUH228z2n+PT73+aZKkh4+OEalUr4VB/LVfvMev/eL9YCLCUOY59+6/S+/KqwyufRKRFhalROfqtPpyjKpDzpD4m1Z+50oUwdrsCeK+hFKF3anDTkuydgtXlFgtcHWUxKwhV5ZoWZAYKMqGx+qCa0okoFMWRUGapvR6vZrBViBwi0lOTTt/BVA2HA5D6Kkxc4VESmtx3oERjsfgixJ1JWVccAbh6tWrTKdTdnZ2TtyvqcI30RqbEAHdbrfu9/fbzPOs1HSOP09qmtCe35jp3DwUY2KYxOXfrxqzpx632sZvTlnaGh3WcVMQAIsxfSY+5Xf/0ZArWy1+4kcsN64k/K/+6YQbW46undLrTFHjcKUncYr1FZRFwOQXQtEZY5MIo6GxUtfp9JFj/JUEr2JAPfnxNnff+YdsrazQ72+hJgGKGG+7fJJVPFjUUkrJ4727TAp4/dUvYdqriCbBvBPd9ZXVyJdT7Dk2fpgZl5wv8U4DXv2piytK6lo5jAzOCGO1rIjlcJrjpiN6OKzX4Lsws7aKssAXBYkxFEuw/Z+ErLU1SJmqkqbLndjV4qo2jGrBtWJpzLk2BawNb21QgKYO1ZJSgv9lMp7UIaTtdrs2F1W0LLO2MveICM45jo+Pa3C05nk/aNR8vh90k0/de1VKsVhJSW++gukNKF+YZ6ukd6n/msE0nNFHCfxHJeHwOINUuHWjw9aWweqE9V5J/7UxqVWUHOszjPfkxhJQ4H2MDgoCpAKlKibLIuOfIYGeRh85xh8oRPGIO+bx3T/BTR5z5dabiE3xOEKqRaiGtDR2RkBVEBz5eMz97XusX3+Tla03KiN7hGQIL0BjyJUrg/NS5vD0FyjeKjClElWiqecMEq0xQrxAoUohhsym7IxGZGXw/FsNBSeajN87H1RUa06qp09By6Tt0xZBZVapKEkSshhtpFrVAw5x0CAhwUxD2JuXENaqXmvpvdPp1KiUi7ToZK7CMJvIlM1nuAjz/95IvRenF6EPl0bVOiAUEzJiSa/eDBXrFpKgvu/PXSvpWkf0nHdySKQU/uTPc25ftXzyTk6nXcJUQEsyVbQEZwEDVk0QKHGEgGYwGFQcBSGUU5IWNkkoipLzBLiPHuOv+Lh6xof32P7wT7i2eYVufz1W1lKMChCxcFgu86s48Mrjhx/itMOVV7+ISQegHjUFDksS48+dGMDjyikieiEbPwQbv7GWxKZ1GNhJ0vr/qtCDM0EtTgSKomSgIcwxh2gXryQFwXkf52qF1FPN3AvbluZ7c0EGehZEQ3BWB5VYgOnuAVkrw7U6eDEhomehrcVooiY1zR+VNrIMRfJpYSNepMzZF2UTenaKYyo+VK+yDpNkgeUX5xeIeeq7LgQmXIRqf20dmXHaWQ3tU4SyVL7zbslKy/La9SLUAXEe7CQEWyAYl1GIxRvB6jT4BWLQiaij9J5j55mU0Ot0ERNwjZbVqG7SS5m5W1OUzANHi1EcEEoTFiMevP+npDri6pXbqE1AKy95GNjaDaMaGDqxvRBAxWh4yKPdB1y99Vl6q7dDNE2USCsbW1X4vLLZWwn1Vanvs7zjiuJ90D5scnb9zJkrLJiUrE3od0N0ivGOroZJlONRMbEmMNEuWUZwqRhlQ9PLcPEFdR7+zqk9X4jrn6nP4Ue9Y/zwAe5gP0Q+R8eVl1n/moz9tJj9Raa+yCDPikA6rd/Nz5fJfJ62rRdh47lcCuJI4hW0xB3ukefDuTMu45mX5ZYsfr88k3x+tUAIq0QXZrEGG7xW/2LEhxhYXTUM1kqQYwSHSKgNXEoXrylWcxJyEg05QJWsr8DUlRwXJblY0sEK3X5/mX1iKb3UEr9WoYkqIK6ROec53nmLvXvf4PVrN2m3+tGFG5l0uCiGV81MNl4tVcEWLTzbD97Bd9bYePWLiG3hKfHGYDQNOb4S2gpYIw7nClIRvLHYM95O2Jw8eAc+AdPiNAm8wiy3KJ6Qn2DTjI1eApowMI6en6I2WAZ9kgbTkUiodJ7nJOJn1R4rB/AFmX6TiT4JFjvM29rnn756F2BcCaN9tGVDDQpThcTN/BEXids/rz/L8gvOo2abL4eU/Wz0tNrGsjGv5LVKaDKlUr73HnptC1m/NnfdZec9NDXD6pma4cCzE2PBeoKA5ZxjJGEN+cjojQg2Li6RUMhdYpmuLHF8+U3h6maCkQyjJZ4klm4twAiOtA7Z1qoutQ/ReYfeMM0yVreusLqyFhIYIQi8p8K1B3qpGX+I9S7igCUYHN4LxfFjPnjrd+i3M9a37kAs8bZs+kiEB0DDNqDiEZdwdLjN9uEBtz71y3R66yglJjpbFhuqdn1X5qQ2CX7a8/iLgnMlIpa//ffX+fXfXeWXf3rIP/6LRyfOMzqTMkpjGSF0jQWvDLIUiWVcxQcHrK1gEDRU4bLG1s7jy2Bfz7QQKxiGGBbnRXBZlyLrYKzBicd6Q+IMzVDly5C6n7Tfy6XA7z99P/rzLO986Yah4I2JG4An88okz8lGBbo2z/AvI/lqkZpaQFWhq6qUVvmfvFaBFSHXIC9LHLHqXSxYb63BGkiQAKlsTKikYULRl+s31xBGjHLBuvCdnTPEzGuqXpUc5agoMN0e169ep31OxbBl9FIz/hmeRoknw3jBjXb54Nu/zWT/Hq997LOkWS8y7TjxZLENpTTBOWs1JH35vODu/fdor73GxvU3UZMFe5wGoLclPUG9Q10esnDPXZeBi7uy5B989bP82/+P1xlNDP/F/3eD/+I/+GCO+atIlceEF2GKsFeUZE7RMsc6B6KoCsYLYi1SL5SAKJiYF0VaDb6VSldTwCQJvRvXMZ0+Po5x2BkMqrNErGeRvp/l2stksickyqek78dm9CyMf9kGKkCrVJwBJ4KzhuzmVdLOCsvL2V8+VUz/6OiIoijmAgfmzYkWg9LvdbCAmoQkTRAT0HhdmeOKkrLSGpzDeyURJUtGTKdjxtMSUypda+iJJTMxBkODpTkscCgRjooC6fVYv3aTdreHPMX6fakZvxOwWEQ9ilJOj/jwO/8zhw/+lNs3XmGwshWq3XNWxfuQNh7Q7hw4w97efQ4nY1771I+RdFdBBa8Wgzs17NL7MoRzRqiEs5ZlJU0URcE//PonGE0Cox5NDL/+lf484yd4BKow1Rwhx+LUcjwe0h+P6US7oMQz62tV8c6H2GMuz1xxUcfYueeoIkboDPo426LQmVbmZXYvOFkI/KL9vMix0+h7FTP/pPS97s/zSUBTEBdFAYuKpbO2QZm0LmqFfCJaZhpUVabTKSLC1tZWXdd38TyREEtfWYlFLCaCDgbE2hLvAtSI1xAUojG02lhHy/XoFJtoWZIfHbJ3fEQbT7vVwohQOofzDq8wdR6XpWxtXaEdc0+ehl5Cxj/LtVVRnILVDCmHPHjvD9j58I+4sbHBtWu3kdSjHkSzyNiX2dEFozOLWTkZcf/RB6xc/RirV14HsaHsmfiYCbyc1DtcMUHaSQM99Iw4HVXKsuCnf/h9/rvf/BKjiaHb9vzSTx/PnysanbMKKpR4jE1wajnKczrOIaZyPIWSi5UDWzU4T833wT693Jmmdb3jahMWrxQHh5huD9orUeoHwc2K1jxDJMtiJu9idu9Z/V/2+ftNL1JfLkpLAwMEchvClI33iCp6MMT3DRpzPZ5HNE/1uZL2i6JgdXWVtbW1pxhbIUksSbJghtH6a6AAkjDjvWfUaTNqdyhHQ46LIhReEoNJU0ySkNqEQb9Hb7AS+yMLjV6MXkLGHwYKZkGJZTlm54M/5uE7v8vGao+btz5FkmSoFKgkSF1Ll6X2eRPB2pwqj3c/JCfhjdd+DNtqISrBdyDgNUGWGnsEryXeTUjS1fl3tdQyFKIAyrLkF37iPf7zf/99fuMrfX7pZ5bY+Kvol9iUGEPbJngPpXpMYoIzScEbTqiF3nnkkkykl8N0Ku0lpsI7z/DxI7obCu2VYPtXDQ6LSwxKexom8jwZzw8SPZ/+CuID5IlRRX3B6N49uHEV2bh66fddFEIqaV1E6Pf7p95rMWpsfkkvOI0rhhQxdsIMT2ahlwZ6gz7tbp/J6JjRaBQ0chvKpNo0I81aZGka8nGgtmfX4twF5+RLyPgDqWpAc/QFO4++zt23f4NB6rlz61PYVjcYPVwrJIeYMoRhLmtIAPWIGsajIQ93H7F564t0115hhrPtEE3ODH9U58DlJElWY3Mvm0pV5JGqUpQFSSvh137xkH/yF49PhcfXyAsxhqSTsdLpgCgtlKS6j4A3zcibyF69/74E9TZt80sXVXMokwQSi8R3CgEK48y6C0/Zn6elF4VZvyxx/KJg6zUVsrXz0RHJpM+TuTEvTs05UEn8aZrWuFKnXDXLe5RKgIwZ+zpjyEBdEL3O7q2YdeN1eQxqod0f0O71Z1+IhHBxaASiaEPkezJ6ORl/5ZF3E0Y77/Hhn/82KWNef+0LtDtrEYvHgLdItN3radNJgwPVuQk7j+7j7Spbd76IpK0giUjACw8O1tMZh1eHr5y7tWV+uU8hPgKlK7E2PXNDEQiOThG8CpJYOllK6Rxr1tByVXvxfgsSf4hQ+N5z/uVmlaC6ajghHEoSetdvQNZBMSHkTQT0LLyji9NlwBu8DIz2RaRgmgzmHlGBdguzkMV+WVrXsndYluUJaX95smAMLY4iveKD3T9G4UBk1nLyPpUAqNG2QPVbZM4Eu6A7NGN9nuZxX1LGT4iQOD56yHe/8RukkwPe+NjnyHqbEE0xHsUYh9WA0unEYHBR7WowZoFShePjxzx+dJebn/nLZL0bYef2QYr2pCQyRTQ9lRWpd5Rlga2KfVDt+ItXSDT1BInDWIvzniQiUi5SkCLCT4kyynNWvcdKycAKqbpZuyybJt9fprUYlVOpvSoBLUlEyPqrFCbFl1BBZafO4MzyWOUnYeYvi4Rc0cvzLIpKWeNcGZPRvX0b0xtQXPadGqGbi3hOTewoVWU4HNZwH977KHP74LB1YTW5WFEujXUmQLCJDciZxmBNqLmdFwWpNRijIII1lQmnGRLeXLdNXiGBH0SBMxR8uvi7f+kYv4rHOpiO7vPhN/4WjB7yyqufZDDYjGYUrRmu6oz9GnWxxmdCiORJ8aI4M0KnjkcP7pKsvsLg+udQY0I0UHxJFoX4+5RehRCuaOoJUkylbSxECRDM1x5PoSB2APmUsmMjyPM8VSUIjXpGYjkuEzrAcFSyVuS1tRxxMcFr3hlUjcnTbgDPKnEtRnIEHB7B+kr6d4j6WCSmpKpxUNqCy7JRPW1kzmUw2dMynp/FWf0yUOXpEfU4SRFjSa5cpxSLRNTXy6ZlY948Nh6PuXv3bp2sGKymQegSVXQ8JPMObEz+MiHD1vvAlBWLeqW0Dpus8tU/a/HarZKt1THGeAZrm3RW15DEkmJijV6NykTQKEKw8/xI1YJqzCsQ7+uot9Po5WP8JJSTXd7/9u8w2t/mtVuvsrZxLUIhz+JFKrt3RSE7zsziSaQEAeOF3f1t9oZjXn3zL9HqroaXEHfcWRPmTN7pyzzYLRsx9Kc8QPhPg1SRtHoh9OuUxiUmkziBqRHUZqgKx+MJK2VZh3AKPmCBxHaRmvVTuYe+l9R0ptVgbvF3ZbsX8RhXMNl5hBlsoJ32nM202dbTMspmzdymY+9JnuNFkrJfpL48E0lITLQqTK3HYGlVxYSe523PGL8KLrzVaoUa0dHE48UgXpkOj8hUSb2Car3WPIp6wWuITipUcfmU7W87rnc8SacACo63tzk6OGBlc510ZR3MTMuvHcCLvsGKkYVb4lwRQkiLszfHl4zxC64Yc+/t3+PgwZ9x4+oNrlx9BWPT2v42j0YzI20MoBdFYpGDclxw/+GHdDdfYfXqp1FjZ/V6L7zGPGUxirHmcK6kKoL6MmwU7R6Y0wDagrxhFHKBCYpNU1zpKYs8lFNUcIDVIEWXlURYBzGd3vZ5VC2Spy043mSatfbVqIXscSRlweT+h3RsCp1eOC6KYE/snU8bmfMiZt8+C70sz2IgRs2V4A1u9yH0ViE9D7vq6anpe1qEE1FV2u02/X4/CitR0hZBnEOPLB2xdObC5BqeP/GICs4IhRM+cbPNjZWC9QzwyigvGU9zRsUUXzrWNrdAouQ/HwM661P8pQrDwwOO9nZptVoc7e6d+ZwvF0ibevLju2zf/So3Nja5deM1jEnCQhBPCLXUuFOf/FFm56gKeGVn5z7j3HDj9S9j2mtByn/SdaWKKyakSRJscrUf4XRysSiJZB1K5zgtpKeKezcIiU3otDIKV5KoDynijdsI80xBkODsfUrO/3wSdyJV+7N36HQKrqhHLJgAZhvWop3+aTJ3v9+S+8vma3h20mhqDXk0Tj2j+w8pjo8vDaOnSYva3lnCwCxj19Rav+qsREwE90VNXJ8Sw49FEeMQKclayg99wXJ1A1IcmcCglbDeyTDTCYePHjGejKo7NsMeFoYpHB2Njtl/eJ/x7i6+yHGj0clzG/RSMX7vppTDHTZW+ty6+XoInRRFagQyqX9k2Q8gMVjKkDAdj7m/fZeN65+ht/5x1ETM+idlLCjORZyeeGQuDGyBlDiRxCBJQlE6WFInFiIaIGDE0uv06LdSRBx9G7wOIWqgYc/X+Z1ALiGIfzGW+UlosT9QSTGhYpGaFPoDfNqiiu8PAHj+xDK4qOaxCOb2sjHcl0PilwDVIMF/FkwkRLPn5dIygL4mJMPiedXn2d8xEZIAs6ASEj6VmQ9NMahafNSxTZKyvilkbUUJsCqCkhjot1qkZcFwby+WX9Xakn/y/oovHfuPttHJmM1uhyyx9LOztaKXytRT5BNaaZc7tz9F0kqpMGq8A+8kbMExamaRwhEfsN5FEevYfnyXMuly9dUvBKx9ygiI6iNDvRjDUEKi1IU3DFXSJA0lB8VRqserxy4JOQ2+CcEZS5KktAw4K6Goe7Au1mANThqTtTIZ1o7NZ4ceeFpky9nfGjOghUSDg0yzFr1XXkNbfarlJGoi7PWzb1rLcH6+39L/s9IPct8XSQCPpSVgbt7CdHu1jf+yN7jFqB7gBOM/bWzVxwreqjPcr7mniKzbJyAm8COpInIi/5Hgr0uM0LeW/b09JoMV+oPVcA+WK+eT0Yji8JDVLIxTqZ70o4TOKQJZu0cifdAA5eS95fgoZzQs8b6yHyybMDGOVkuSBGx2yIOdh1x742forN5A8RgN3ntvHDxRGokgJg01aKW619nmHmsD0FOZH5HZ9lzIWXPyVZPsSD2ToqTlPYkIqYSIiArELcQJnehVsFWeDC56KroMhhMWALVWpkYx3R7etkBjDV+iDHSJ/K2pTT0PtMcnoWcdx5dB4g8JXBDEGgNWyVb7OJvUQE3Pc4M7z9Ffa7nxb42wEmYJYFpI2FTARciUhINDOJ7k3NzKa19GxREEpWUM7bLkeGeHTrcX8hdOiQA7Pjqga4S2Eawqjog2cAa9VIw/SVJMKkih4AL0cFnAdGJpdzYxNqkTQk5SYPwKuHzC/uEO6eAGWzc/CzZDpAS1s4ieJyExZO0+eVngFcQECAhZpnnE/lmb0mq1mBzvkLVeCeog6UlJWQN64bH3OA/TwrF3PGLLVRE9VbWqyla60DVpxPV8nyTFGaOKrmadMXbxjuPth2Srm9Bph/MJJrnL5m8vg6T8MpmujIIzgvWeQj3l48ewugpZtz7neW5yi20vk/grOc47F8zA0YNYs4jaMmxAPF5yRBPuP1LuP5hwfd1jNc7nWUwhRpSutewfHzM8OmSwtlGlsJzo02Q0ZJ0q1DMILR+pcE5TRdzEpCZEKUuP2Da9wSaSJEDJsiLqVTK1Nx43nnA02uLWnc/Q6m/F86tkDQG1TxjVI7TaPRQonYsVsM6+WExCp9NmdLzDavd1SudIk5MTTwnQtVMPmWlRYNgvStakKr8WC7WoYJVZKFwjqkf1cqTnS4lrb0T1qHiYTikf3qOVZfhOt3aeiZpLEfibmhQ83TO8SMz2RenHZZCvFpmUaKkU9+/RtgluvfPc7/2kG4r3PkTRNQQpgCDHBL9iqA+iYDxZxzJYDQJlda+qtFBl9mkZQ1J6xqMh/dXI2hder3MO7xwpUguBijkFHn5GL5Vzt3LOGl8xao/XUKtTkpDi783M4RJDbMJxCI4kVZI0o9XbYH3j9gwt0sPf/tsp/9q/3uNv/Y8ZRhUi3HOICfI4cSg+wCOoCf4FQhlGm3WQtEU+HiFq8Ub5d/7DN/nRf+Kv8O/+398EGpNNwBihlbXJJ/v8y//GJ3jjZ3+Yf+5fuVOHblUO4BAgFAAnPIJJMrrdNjZLo6hhQnJJuEP4XN1GBGwAn6volLIEZ9JZdtEnvbY+XskuFlr9PkmSoiL1Iqr89BU1/S1PKwU+iZO62e8nYvzR46coUmdVG8ARQVRrGADFRU3v4v3/XjH+EwLIM0jey65VocZjcqKId+h4DHkjuus5m7SW9qu5VupfxKieGQxLBYBeS/BV9KCmqML1G5Y3PmkRU/GPcGJV57sq8ZqK4EsXhbOT/fE+RCEGf0FFcu4CfqkkfgA1QsDxDiUEq1eh4hFfFfloSM5a1eEFBKyLwZ5lzvDBBzi5i5TwP/3WBv/7f+dzjKcJ//V/5fD/zxH/1D8VK3dpgAj28fXaijtLUL2MCjbpYtqrTMf7MNji//wffob/63/8GUD4xneC8+bf/Ve/ESdWcF62sw7/x//LL/Obv7cOCH/j76T8c/8K/Ff/4V2iHAFAokJPYHc6xPe6XO+2wDimkwkJGmClJTBLvAvSiY1X24RiXkap6SIspCktP+1CXB7OKVgPPmuTvPYGatv1BLfeUkoxx+yflt0tVd+fkHkuwk6cc3b8Pwon9fwL87WqPIYqKha5IOO/SBji86Dne69q/RrEeGQwQNvt2bdPkXC3jM7y6zSPn/2ONWJ3CbXJsn6K8L2XwKS9WkwJ/aSYfS+zjSKIcBbFYQHnBa8VNsDJ+xsRnFGSmuHrWe7DcM3ZX//gUeUh91RhmrPC4oECvp3GfVhrvDsTMlsllvQbjXnwR3/Cw9/+LR785v/I//A3jhhPwz45nlj+zt88Znj/fSbHh5QOVFNQG6Q2cSAFQigTaLwhSVq0sgHHkwNEpvztX7/J7CUKf+s3bjQSRoJhMMva/OHX35g77zd/r898PG+QBLoCWT7G5SNaSYuJzdiRlApAREVJvEW9D4icBOkwsfbSbeVPQqdL2RLwk0xC1u6iSYDPBocTR+rNqfkUTxPH/7T9rujCSWwCSEl4vqCVhegrQ1nFC0TQPfEZoheXzb5XTH8xHPZ53VOieRU1mKRN784r2JXVE5E2l5lPshjm29SinvU+xmckXnCl8N67hoNHKcaHpM6Z8TfwpepjtWnIKc5aY8zM36XUmfzn9uWZnuSFJYOoxaiNkTjxcPBkBlwe7xBfYtQh8e9KVVOUVB3dfMpGK+Pqxjp/9csP6GQhUqid5ryZ/W3e/h//P+x/66v44QFogUqAZQjxumncVBQ1BSQJWWeTybTEo/zqL9yjERPAz//E25RlZe8LJc/TtMWPfO6tufN+4SeOgxoZDIH1ntBWZcMqbQk6R45lx1tGUmEIGax41JV1bLAI2DSNCIJBS5EnnNyXZV6YtaG1CcdJgMxISx/zDYIEGEI5nyXn+OS9v7eRMIJKjFDSYOaxarDOY9VHxu8xMuVc0e37SItx7U9Ly+dQYHa16UMsdn0dzU7a959HItdlb6Kh1QQvysQbvvbWhAfHDj11FkfRVAxaljXY2yJZa/Ea4Zwrab/OIjidXjpTj2ioYu8Ljy88bupjjdmgSDnnePc7f87bb70VKt5HZt8dDPj0577I2tpmcMQkls0bVzCJQY3ln7oxpLXx9/mtr97iZ77wAX/1cyWTowE7v/8PuP97f5/B7Te4+snP0739OqadIWmCl2AKAsFIQru/xe4Dx2hS8u/8q18DUf7737jFr/zs+/zCD/+n3Lv3MV599VUqF0+Wdfj3//X/mn/rP1rnH/7RLX7my7v8V//BPcDU0oFGJ2eKp0dJno84JqWTZJh2m92Jpy0Rhcg4UF9LpyKCiUVbgO8pj1lkGrPF35DmRHGTCQf37pJevw6dQUiCFKVY8HNdNN56WT+e1VT1JBSWswWKUANCYaQJu3nKkUtpeU87ieU+KUEsL5p81hzbqk7wszDf08e9sbmrR2JeS/O6y2DQp5nqlkX1PC2FWkguzN1SOD6e0ulkcIokX90psYIri4C9swSqQkQYrK0z2X5IZmcBD+cJRS8X41fAgR+XlKP/P3t/GmzZkt33Yb+VmXs44x1qHt78uhvdQE9AE2iAEIgmAJFNiqIleVJIIUfYshT+YMkK26QcloJSSBEiHeFwOBwOO2h+kGRTCsumKVEiIRGgGgRECBCGnofX7/Xwhpqrbt3pDHvIXP6Quc9w696qW8N7aFT3enFf3XvOHnLnzlzz+q85oQ00tUCfyCWSINy5e5vr773D+XPn4nkCWe7wIdDV73pjCGWOGGJRF/Dnfu4Gf/7nbqSA7nl65YRzzlAfTKh3bnP3934D891vsfHSawxefBkz3EAlupIQoZ+PY0pliInz/9a/+jX+yr/6Naqq4rd+K7C7u8tLL75El7clxuCs46/+7/8LXnrtl5jeuUvdFpRZDl2gcyWGYUML0yn3a8PWeIPxoMekbfHB40KdMspCRAtMC8PYziJY8Q8CCzzcJ3kNp2AERzWrjulr5+rSEKuu2xp/7w7lxoi2N8ImoedFF8HQlRufanxHTfdO4+/8uacNUj85IxBEHYbABPja3Ybr37tO00z5mVfHfOxioFAhiEse7kfT6px/UNbL0zLdh81zB0omSMTl14b67m0Yb0FWnnjek9JprvWAeys65091fS8RON2q0Cstn/jxTS5uVDFonWI6R8ehRP+9Nk2y0tfH273zYjTk8M5t5gEKJ4sEgofRc8f4QxMIB3OofMx+add9XkYsvdEmJu9z9aXXGPQHBJS8LOn1eywbIiTff5dCs8IHBSFTxeYl9tJlemc80909pnv38Te+x/7uXQ7e/i75lRcYvvAS5fYZDBnlYJNMHFrP0OEojTlid49GIw4ODhbrKHYEE3pln/vzXSQzuP6AyeSQIstTswZA4xi9RP+eazy1n7I3z9ge9HHDHr5SZNYgkoEPi0UU162gxjyo7D/Gnnoaje/4Td9dOEBo8b5GtE2ZzpaYxXRMxsUTjSD6SY8Ccj0Jneb8zpWmOJSW9yYNv32t5bu39zEWKqk5t9HwQg986uf8g0gdE1wgq74P2UQxMQKQQAgN1a1bFC6DjXLNPfQs7t2tgUfRk94r5uorQQz9UvnxHxOKzBPm8hC/fNLbg0f9g2ibHfPPy5JiNOJg/z5YixOTFM6T6bli/KqKtkqoPc7LEs+aBe/GGMOVl15jf1Jx5eXX2NzcjCdLrAPojhZVbBDEKmqSVp3+32VhoAYbLMYp2ZktBltbNJNDDu7e5vCdbzG/e5361jUGFy5SXryMGQ8hH+LrWQy6auzSY61lPB7zzjvv0DQNWZ5hUspfbzDm7s0bBGry0Yi9gwPqpqbI8mVez+IfIQMG4pnMp7h+yWY/Yxoy7MzETIEwT/jgcVLEmMVzL3N7Hl9zFolVwI9b+bq+kbrQPKnCURCXkZ3dhqJI2OwxYG9Du8Ap+kGg0zOE7mUFGhW+fafh2oHl5Us51XzKG7dmvL1bcrWXp7RkTmV5fZCpnKuab0ScfT+Y/vq/gmCs5fgG0esuwveTVoXN4ygaNlVU1c6QhRp3cBs2Roi1qPfHx9ZSTYuBRfzvgbmWaLVvnDnLrWrOft0w6AUmTf3Q8TxXjD/GNSTmwKZsnuWELk2z4XjMRz/24/T7/VQKnc5NPsUOoRN0jRkuplwUn9wrogbVHLUNuIbcDtke9hjPKw537nP43TeYv/0m5ZWXKa5eQieeaXbAlg+RURKF0WAwoKoqqqrC5TlGY6OX3mBEM/s2VTVjMNom7/eY1xV5liGShJDqCoQtbCZXCaFFnGWKocKxLRo7BXVGjEQmLalxBKwyfx4SeErfP2OXQidYo1dOYrOassfg6suQF6nSORCXrTzTvX7UbfEkKZ2nPyfiDClwe79mmBX893/yAjfu3OA//cqUe5MYoBeN1Z6PM4Y/KpyhZ+5eSm7HLjFBTM7w0mXCYET9ftzvfSYv0WUMQjWF3Rs7nMn6uGEeq+lDV/m7ToJiDcxnM8YnPLOgFIMBWxcusXP7Fo0R6kesgeeP8dP5ilmbyEVDchSCZ9DvYY2we3+HqqoYjsb0B6NF71wVxRvFSpcW2hlemhwOMdmsg3s2waEUcaNaxfQyti7kbJzZYnZwyMG1G9x96w1aO2f24Q38QumO7LUsS4wxTGdT+qPh4l7W5bG71vSA/qalPxozvX2T1rc4sdHyELABwIIoQ9VYHRxa6pCDK7hvHCOdxElInF8hwTLHJhEf6Ks6JnAmyV0VsU1iqm2LoFmJMRmqbZxfhdZ0Yfn3czynZ6CnZUSaIHolxEbiTWg4Vxg+sWXJDw1l7mjbmOMfTItR25WEpLCLLDJdTswHeZ+Z4rHuuWcubJLiJUmJM5YwGOJdkeI/q8kA76+gOy74/7g+/tYKeRtrU3Z8Rju6gBYlxhqC7xSvkPbl0s6B2LzpYDbFh7BmTS+sj/T7YDym7JVMqynbFy88dDw/WOkCz4IkYEJiCtK9nBC1RwUfWu7v3GUynTI5POS3fv1X+dv/8b/PN7/8+7TNnCAKGvP8lww/0rKnvbAopEuVX/GbFtUAnesjK7C9Eb0zZ9l65QoXX36BjeE25qBEWkus840l1mXZJ6DcvHuH6eEkFnsoWCx5b4v5zncJzNDRBqHsM6sbRENquyipqjV1AJVAv56yfzjj3rxllGdYl3HH5VgBaeaLdFBjBDU2+rg1aqJyinSwE6f/lAzg2OMURA1BbCqF80h1gL7zFn6+m1oy2hVrbCUjaMVqeRxahWx4pgVoJ1BUZB0qHqctDRkhM5AJ1gRsBllQQirPV+kge9MTq8U/Yoo/CI3/WWa8HEdCF+eK6bvi5zQ33qVpdo+OhNOkLz4L6jKYFmNUTRXkXYzs5DG41J/XY3n3huXOfBPplbS+Qnd3gIZgA0YtjW0XrmkFeuLIqpppNTn22pKsX2sMeVHgbE6WFQ99lueP8XfUafeLdLD4q/ct777zDvfv3eXevbvM5hUf+vBHuHXrFru79x/QomT1l1XlIorZRRbQ4h9ZfkfagM5m9IZDRmfOcO7yFbY2zuEnDTKPlcIaPI2v2d3b47/+r3+Dr3z1q4sMI2OEzc0Ndu+8QzPdxxihHG3QVHPasGytqGkMQieQAlLXzA72aYDNQZ+yGBCynEYDHZq9NdFvGp4RzvnjMoCjTNebJcCUQQhtYLY/QSqfBFz6LgXEnlb7XNXsV/99ElfP6Q/u/jFYNbig2ADOW0SX9ZkmFNHxaCLKqlHB4HEPMc7+qFwgz17YpM5WmAiP0jTUt+9hDud/JBbNCUMETnmsGjBgBc6dc1w430O80Dae/Xffob5+Dyuxf0jmXWQfxKBwAeReme8fHjOE1UKztHZPMZznl/EfRwreB/b395lPD5lNDrlw6So/9dM/S38wZH9/n2etOSzSFBVwGeVog+FgA522tLs1/qAh1J7vfe/7fPut7/DNN97i9u17iZnHsWxtbqL1Pnu3vgsacIMB4oR5VSWvzYpxqB2cLfTVk9UzJvOKYekYlyOaPKcKIRVtxYC2tTYJjvc/q+W44xeMX7pMtKjRi4JkOYPtbQpXwsqcPAtsnqPnrqZzvp/MZdFPSQBp8KalRgg4BE9rPHMRas1ptFzGrQBvfOoFcbpn+qDoSdtvnkgai5I61ysaYNZiqw/WJXmU1hMXlr6ARzqcBAItYpRz5yzbm9HyNqK44ZhmPgURNMsxkuxdiT9I7EbWNssA79MK2ufLx/8oSnMVvOdg7z7WZow2t+iPNhhvbES8fE72nT7VrcXgE9syKhEmswk0bUC90sxqDg8mKMJ4PF5aFAK9Xp/N0YD9m29w5urHcW5EPt6k3t2jV/pY3ZdiGJ3Gryh9PCMxHNRzbH+IWstMzGIBdeMS45KL65k/9inmZZlDL0St1ndiTwTb61FcvkQwxQriYAdg+/RumtUN9IG4SOgylqKbDjXsTAK/9b0D7t2uOKhbvrdb8Y/enWBDTeGET53PGDgS3pJJ6LPvt2f78ej9g21Iy9I58jPbmF7/EWc8Pj1OBfKC6R457tHxJiVicCm79+dsDUF9hbFC7/IV6uqANnjCwQFukGFxeE1owSEwNzDs99eqzB+2Xh+1lp9a4xeR/4GIfF1Egoh85oRjPiIiX1r52ReR/1X6bltEfk1E3kz/bqXP/6KIfCUd//si8vNPO1YSg3Eu48a1a1y/dg2MxSs0TZs03/XMlmdDimpYCRALC3jJFsIk8NK5F/nQS6/T7/XY3t5K2m9E7hOTsbV5nvnBNSZ711ABO94G42iaOvmNk4dflqmQjsBQYITSqNCK0qqhaZYZBGIETASBWuYtyRMJgcetgH0AF4VorRi6AK8QnKUpM5rMLmochUfjjT8Nvd+pkR3kRhCHJ+P6gfC3vrLDr7/juTXN+fJ1+NtfnfG3vr7Lr715h4MGIv6rYILENOOVKT463x9kVs+zzKU/jjpBqXlO/tIVwmj0zO910ro96T7ROpVFskjX2TXu7OPPkWARdcwaxze+BgeTGLincVjrKLe3UR9ob1xHmxbrsliqGCB4RcQyHoxO/SyPomfh6vka8E8Dv/mQwbyhqp9S1U8BPwVMgb+dvv7XgX+gqh8C/kH6m/T7J9M5/1PgbzzVKNP7sNZx4eIlxBjqpmY0GgJKlmcMBoP3RYvqEBdNFxAGggFvYmtI2zg2sg1+8mOf5NLZs4yGw4WmE10wltHoDJmFnRvfRH2NFn2y0ZiqnqNBFy+yY4hdSmqBMgoN03lDawKD/hD1mhh/V5NgCCk/eiV09T7MxMqcnLDJlgDS6XMf0HmFeL8yJ8eP7nG0ztXN/rRWw+NQtMi6gKTnXN9zoZzQsw2lqXlx6DlXBEr1ZFJT0GAWGVe60Bd+0OhZdy1b7RVNUmN0PMSnXrLPGpztOBTOo4x/zZ21dms94fMlxYJL5XBS8J23cuZziM8V8AraeJwYyAsUIeQZkhnECvOgZP0BLstX/PkPXwSPmpundvWo6jfhsST+LwHfUdW3099/EfjF9Pt/APwG8JdVdTWSMeAJdNB/9z/4NL/6uy/wj//CDv/2v34IqVjqpVde4dL5c6gGev0Bf+83Nvn7v/ln+eWfn/JP/fn3z4fY+QF90uYRXSCIZmS8evll7u3eZbM/xnYdc1W4+rN/gZ29go3RP83f+ev/Jhdf/hmKjavY0Yhq/x51U1HkJX/3CyN+/bdH/PLPHfJP/um9CO6qgbyeM6mVSkuGvTHN4QGswDZY51KPgqejx8puWSk5X5wvXeO0zpwOMJsxv3Gd/tnL2H4PH3HveJaeqQ+01eIi6QBK9fziyyNeH8DFS2e5fecuZb+gsDlgCBJwYtnsRTeBJRAk4BcIUOva9h+33PZHU7IIVTBBsd5jXGwherTS+v2yODom+8DcCsnllgSQRjz+k/QlpQUR5lVNf2DJsvSZaWhMTu4jim7v6gtIPydoQNoKUZgK9Dc3EPfgOn3S2pM/Ch///xj4j1f+vqCqN9LvN4FFAqqI/FPAvwecB/7849zk3/0PP8X/6T/5OCB86/+5hevd4q/8q7cQEcqyR1kUhKbmb/+9nP/Fv/URqjrjb/1XLXnvHf6Jz+0+1QOeRFG7jr9HnJm0YVO63qgY8qkPfYKeKZFWMI4F0wdh76DHX/if/9v8t7/2n3N1dBbKAtPrM5nN+Pv/zVn+hf/Ni0znhv/wb23xH/4flT//S4cYVWzwlLTsH1b0Mx9TONOYBHDOLQo+pBuoLLyrD6VV7eO0GDeL+Vhh/Kqd9ZGaqZMaxtcVzZ27yMY2Qgka59Dos3PIHbux3zdKBWpi8Ehk6iPlxc2c/lQYDDOyzCbLMCOIEkxLCBGawyb//okM5jlj/oue0W1LfeM6XDiP5r21YrWnFdwnrddHatVdVo+G6Mp9yPEx3dpwZkv5uX/MMO5rNPuxZKEGzaKAcwZvHHp4yP3vf4fheIv87CXK1H3uWdGpZkxEfl1EvnbMz198nJuJSA78k8D/57jvVbWz5Lu//7aq/hjw3wP+nROu+S+lGMDv70+mi8//y9+9ynJ3CP/lF8bxmig+KNOq5dtvvsn/6/97QFVnAMwrx2/89vh92zyrWrXRpa9WJRaMWSxnh2eRxtDOGiSwYPrdc+wfDti5/k2q6S4YS7GxhUf5tf9mwHQeX+d0bvj13x6tOU1GEhAPs3oOIgkoLlJRxHuEZ8RKH3f+lscrJoBJ7Yg8AQ0N0lbUNAsBiT46lPZ+jvc4On1WS9cHOWHu02JoYgaHAcHgRWisEFaKlLpgt6hLSI/HXPkDFWDvL4mSgt9xf9Shwt++jTbTtcBqN+/vx3MfZeQnuZfi5w9n/EEExDDqGV6+4ulbg5GYxpB5k+pXfIRvqCqMETJaDu/eoSjKCMz4iAbqjzMHp2L8qvrLqvoTx/z8Z6e+U6TPA3+oqrdWPrslIpcA0r+3j7n/bwKvisjZY77766r6GVX9zHjQT0GWwJ/57Dsst4fy+c/t4SXQSmDn3h1+/7/9R3znW9/k6vbvkmcR16JXen7xT+53BjQqGkNqqZo0tjD0hNQns0MQUIUggVZ8avi4Kr1YLwJbXRsLsz/eJ2bxGGigmbRoBdsbq5jsytZ4hlY7HN59BwmKGfQw/R4//5m79Mu4MPpl4Jf+5OHiOUSEksCWBKx6nDHUdZ3c/EqWO1qBoMtsGji+hPwonTbL4Mg7O3aRLgJjXWWqAL0ecvkS2h+imEVPXm90pU3ds9v0T5O/f5pzY0vBhMGigUwVFxRHQPAITapX9og0oMk6lDqtFIs3DzIAEegU3+eF+auQOtzFAj3Z3ABn14/5I3jWtYpZiEy/9ZiFuXzMOckthE3P5AMqPvIYcYsUZq8KbQ1WGFy8gj9zhnw4xHZ4WmnvhPSvAlVd0zYNXYQswCNxrD5oV88/y7qbB+DvAP8T4K+mf/8zABF5nRgLUBH5SWIdw72HXz76rRXh3/wXvoKo8Pd+9wV+5Rd2+Cv/ygGBWBB07bvf5Yv/3X/Lx3/io/yFXzrgQx/7dd6+81P80s9N+Mf/9B7i4xQaVdQYPLbrXQ9qYnsV6e6WtDEVxCjdnlww+MVxifkngLRghNBEt0vXZKTT0EVB60Bz2PDOP/g7vPhL/yQ7ewXbGxXv/qP/lLe+22fn2rfYvvgxKEvKjU1++U9e59//axlf+N0zfO7n9/kLf/ogMlKJ17Ua2JCKvdZRqTBvakbduKzBG5v6kCXz+knebvfIT+BvjX7SVasoCduix+DKCwTXIwSh60G7aETDcjM8juBZ/fdZ0Wnuv+wAEefZi6U1Nn6jQhCDxcZaDFVi60UBYnc3oT2mgGtl7bzPGUlH6X1jvNJVp8Sd51yGvfoiWjiO1ho+LrzGibdcyVDy/nQtLxVJjL+NGXIn7Byjghe4s5sjFrbdDE3dt9R0+XQ28QtBW8X3NrDjs+SD4eLzLgWiYywRieAexgfKssAWJd4Hqqp66LifmvEnP/z/BTgH/F0R+ZKq/hkRuQz8DVX9c+m4AfArwL985BJ/FfhPROR/BrwN/A/T5/8M8C+ISAPMgP+RPmKV3d3b5Fd/Y5NfedWQe+Wv/PNf5l/7576Cbl9AuYDzBlsbfAhsntmm7Pe5e/sO/9gnv8P/8k+cRV2eXiQQAtXeAVDjQxuDNzYjK0e4vA/OI2hyj8RUC9tagmGR3rVoGM0ym6cjDYGd3fvUTcO5c+fInIuWhcTUSrzSzBpaDbz7G/85poiY3qqOM5uXeOvtt5nsv8Ow+ChZb4N6eMAv/9w1/sKvNIj4teUXXZGCVYWq5kAzTNUAAcRgxGFcjpf5ytJ6/5jH0SyahcVA5/oigdSB9YqtGmrrCBIhmVXABRNrD56SjsYZftAoNhuPKLBBPEFiWX/XnHtBD3P8/zElIaR3bDBJ6IsW78tTriUZdNr0adfDqSxeT8Dy1rdzyvGcjZc1rXezYA4Lr0C6ZuU9FCU2c2vfL2xjieBt03v30GrOLM/I+wPy/oD53v2HDvlZZPX8bZapmaufXwf+3MrfE+DMMcfdI2b6HP38rwF/7XHGsj8Z8i/9r1/mr//ld/jzP/02IOCT91rAo5jM8eFPfpxy2OObX/xDrr39DqPRmL39PYYb21gTMVLqtuXundtIdQBtA0ExLmO4uUl/vEFRlFDmeGcxGGyIWntrwlra5lHrb5XJ3Lp7l++//Taf+uQnuHjuPM7aaNonqwUPOg+0riXDoaUBE9gcn6OXfY+7N77BYOs1MCVuvMF8ukPWzilcnrKG1ufHqZJ5zywIZRNb/nXdPl1ZMj/Yx+lq0+gPjhEuSs67vzVpxHXD7MYt3JULaJmKdxZNOp4+m6PDX3kWBWDPnqIF4IXYNlOECA/o0/paDdFHheUHUXg9KQlLDBxtldmNa/QuvgBF+Ygzn56OUwiOtSw06d8imIftGQmEAIeTCVnZJpelPKgRJgpExp/3+nRQ1AsXdFLLVJX5dEIRWob9HkED1WyGOAez2UOf77mr3J3NLb/xB5f4/J94G20qfBPI1aPS4o1BrDJwQ157/cOc2driO996g2+/+SYths/+7D/GeGMzvrrMkV09i3OXcfmYPM9pD/fZf/d77Hz324yGW2yeP0feL7E2Q2yGF4NLlrnSBajSwNJ6Wc0RvnTpMjdv3eYrX/kK2ad/krPbZwghYI3F2NigAQ/tpCH4gJMCKTzGOc6du8h7d75LPbtDb3AV2x+g5ZB6fkAx2OIobnlnhOYCNnjUB4JvMc4hIuRFyYH3lMEnH6MjOS3fNzrqH+8i+woJiVJp25bpZMqoDcsMD6A1SwfH09LTMu9n5WZ44DqiKC1GHUYD3ihGA4ElUN3KwTxXGr8KiiMCN3hC08CtW7B9Di3K992ldVy20In3U41YV+5hypLgrONTP9kjlxlOWzxHmMMKBVW8MZTD0RpEx6pt0LYN1WRCT4TCAGpwRlAjlEdiIUfpuWP8vdLzi5++hh5OuXf7Nvs+8MK5K+nbqM2KWopen/NXrtIfjDhz4SKHhxO89wvoAskdvdevEPqWkPWoXQ+qbYaXRrS3b1Lf2OH6u+9SiDA+t025tUWWFRh1qOlwWGTRHrALzHQkImyOxnzsIx/h69/4Gl/5+tf4+Mc/wf7ePufPnWFjNIoasBL9ffMWmzmcFYKFja0L3Lx7l91b36L36gXEOoqNczQ336ZpK2xeRm/yihmqgBNlbKIV1DYe52JgsChzgirzg32q2YxiY5Ni9GSVgo/jcz26ubrYiBLdPbbM6V86jyl6BLWo+AUkRadpPQ0DeBbnw9Np2quur6PXMUTtsJWMGsdIZjSpe1e6MdG3/+CY/rjQyXMXhZkgBFWM92t89Vl1/zppvT7WdVUXbspjv8YiUjAYK0WokfmDHbUW41CYtx7bH5Llqyib6769tqnxsxmFMZjYwQIVQytgf8CCu+8rjQeH/F//vbf42c0vcv3dGzR5j/65i6hxiBqMmvUuTgqbG1v0x2P2Dw4o8h5BkvPDCu1Gj3YASMAwxxQGO97GXBpgz2/Q3LrL7PYO9e497N27DDc2GW2fI+935lmHtn88WSNcOH+Otvkw33jjDX7/D7/I7t4+n/z4xxh++EO4VPELIF7xkxoRhx1DVvTZGm2yd+vbnLn6KVx5hqw/oCkHTKspwwTLupp1oyJYYDs3TKyhbQL04nfGGLIsI5dAaGt8XYGOTqVEPg1A14OMUxZjNapInpGdP4NKjviU4ohiNSR31JPd86Hm+2OO/VnQscxPBdGcYBzfu+u5fs/zJ1521BgGRYTPFtHTJF/9wNODcxl71MbMOrBFgVy8hCl6fxTDeyQ9aiUowsFEePuW50MvQd8EJMReC6snB43P2wDFcIhz6yx6cagq1WSC9R6XuYX7p4NofpSb9rlC5zwzus8v/okb7Owe0G5vUn78dQYfeZnWWowaDIZgLJboxQgmQhUY49jY3CIflAleAVBoLag4THCxKTI1DTVtaTEvn6f/Ux8i/8yHCa9dYj4u2J0fcuedd7n39jtU93aQpkHFE1j2uF0scFXQgBXh8uVLvPraa9y8eZtvfuvbfOe736dp/SLA2gWHtfbUB552FnBkbG+cozq4zeH9d5HUbSvbOEPlA8H7hca/hEOIhU89GxlNVXcZI7F9W54X9LOMfuaQU8I0i8iiivJJGOHJcAkxiGtEYnDLLt08Smo88xwwvIdRTM3L2JlnfO0afOM9z915xls3A0275Bgxq+yP52QcDaquf9fSYRRJlpG/8CKUz57xn5ybf5qg7QozfthhouzuK1/9qjBvHB4B7Vx2q8cJXhVvY6B2PVS3/C2EwOxgnyIpqsnuW+yJR+3E50rjb0OLN4K9cpHtD79MONNjtjujqD2qHlJSvYmu86jdJ3eMBAgmvmzvffQni2A1mmSxyApIueRBPJlzmAvnyM5tEXYPqN67zd73b7B/uMOwOmRwOKAYDSmHI7Kst/6Kl6Ibay1nz5zFWcfhwYS337nG7t4+F8+eWbcdBbQNtHuCCS2DwZheWbLz3rfYPPshgi3JhkOa3pCqqrBdW8nudAVDYO49cw/9tl1cWIzD5QU6q7FxWKeiY/PxHzOtcnVKOnNZVAhGoQ3I9BDT79Mah00aUZuqj58WZ+eDTn98LJK47u7uNUxnjl4vY47h3Xs1r59Xchf1h6VYf74oNkNK/SIMuHIQs5ke9JI8+3s/wXrqoi7HrSYVoa5hclCTC6mfclg/Q2LgtvEtUo7Iyl4y+B+8alVXNPM5I2sW119AWJ+CnivGD0J+YZuz53+MWQGt9UimVFozme+RSXzchq41o1mRlpomzTBv56hL2iyKmrgAjQIaUGkwCI0BjMGGHHtmk3yzT+/VC/j37jJ/6wYHt28znBwwGM8ph2OKosTleQqaChAWyAg+aeibG1tMDifcvnWHC2fOrGgTJiaPSkArS61zsu2Mc+cu8fbbb3N4cJ/y7EWssZTjDWY3blIUBda5ReYBKTfeI9Stp/EtvgsmG4tzWWzv9pRxwtO4T06GeUhpboAXwc/mNNdukV25SBgMsCH6s1sTXUFPev/VY3+QSSQQfGBY5mir1FWg8h4lZoAtE0miADyKYfPHmQIWqxZQgrZo3aJ5qnn4AKqUT8TpSaQnsvn47WpIVhHK0nL5olIaj/GCGr9g2B0ASUCpQ6AcDrEpyy+austsHhQmk0OsKs6AyDL5ejUr7mH0XDF+6RW0fcsktHjToiqYAtp+w63d93Btp1XGFMZ1SkzRKG0B9mwPyXQBcbx4NUnrX77WZAmIwdgCzQroDymvXCS/vcv0vRvce+c641s3ObOxTf/cWbLxMLmZoGgjuFO/X/Lpn/wkZ69c5P6dO7Rtg/ceY12yNiLaZnyhLaGBdi/Q759l6G6yc+2rXNm4gFohjEp0v2RaHzK2mzE4JkKwFbVa2rJkkDvaxqNti+axE5eUGfW+IUeiCfTQhZ3mfEVjPtqa7mH0oFnf9ZJVrLex33FQpJlQ716nPLdB2x/ixUa4C/UPnP849CQVxx84KYChnxl2Zi3VRKg0BxfIXceUkrtHhM5z+wP7PI9JRhVvPELA1RXtu2+jVy+De3TSwbOgh2Lv6NGUvbg/k7nK0X0jopy/6PmFzQDWoEEJSZmzcYdi1DILMC37XN7cXAnQxhTzRUabKvXBIYMQIDO0oimdPDZsEbWPRHB9vhh/l01DyvoQhVxwW33oJ4AvVfSEyEYgSt/MgJQ2mZopY+IYR97Rjxbpm5lDNke4XkF+ZsjgxYv4W/vce+cuB+9d4/xLL9Dr9RGxeIkt5oo85/WXX+LqxUtM6zmDsowSX+INjvb/FSDMQVTZ7l/gztvvEl7axY3OY21GtjEm3LqDz2skd5iQ0YYeO8GCZIxHPSb7+7RBcdG5E60DkUV3rsee/6d2m8S5aGwUdFYNiqN1Ja3N4lNLoINu+KOGJ151MT3zDlREZgEtZ8clFwbKf3djTu1n/NJPjChc9QA+TPfr88D4l2CGEmNzjVLtTOidg+CeLij/wL2OudZxa3ntuIfe+sEvrQpl5uhlEGYzRBpEcwSbivKEFph6z2h7izxfJmesjAAFqtkMP5+T2Ri3VH38tfdcMf4u/7sDG5P0t/Qc9GIHrCABe0xzZk1asQlmGfGW9TS5R9Oyoq4VkDLDlmPyzSH+3Bbh3Cbtt97j3nvXuHLlCrY/pE2mnsNgi5xhkeNNBIqTlefolAnogpyKhoBU0DNbZPtvMnv3O+Q/dhZjHNlgQJ0fMKvn9F2J4tjzlvu2ZCvvU1rDYWgjNkhSUJzLoj/Ve56E9T+p6b1euWtQExCNxWXaG9C/8gL0Bmkm/CIGsHBgHdHcH4chrJ77pOet/v1MScFIS+Vbzp0t+JXNEaVreOlsIDkhVw7+48/sj6OoSxs0L8jPnY0W9QdAq0y+S2DoftekDB7/xk96D0IbDA7FpHijUVLWUnTizEOgziybo/GxrtAuhlDNppi2webuOOPiVPRcZfXA0leGdg25I7CalxY1HkxIeDCy9hNTBD0iHpWAl5Dw8B9vQ3cQDSZoChoLwVjYGOE+fBX3iZeZ5nDr5g2qaopI13UK1BIBuEJYMP3F3TsciM6SEY0aYRCsZIwGI/6dv3qGn/n5Mf/Ovzsgszluc4t52yINVM6yYwU3yCjznOADNii+aRbalcsy1EgqLDndajquuvFx6GhwVjSic7oQfw9lTu/sNibL0xkr1/8Bcc8/icA55ZWBnN1JTL392VcDn3lJKfttZBVyZL5/QObjWVHXcyEImCyjf+kcpoiM/2kC+g+95xO4LR9GXbZNBbzxHWX3oI0JfWQxHTfm9xBUmIVANhhSlCe3l/TeM58cULDCvJ9gmM+Vxp8SmtbTm6Rr0K0L4KvAcVVtsSpy1WJgqVSejlb2vUHoknRVolvCqyJXz2CqF7n7xbeQ27fYvngRil7UYEMMWmadu0rieFchCroxRUmfFqkJ/J//iz/LX/+7PwkI33wjNm38N/53Cns9DrzD90oyLONBTuMbJrMZNkCYz9DREBGTGL+l1YZHMf7jfPTdv49igMchWi5rDTRZXxHAyjUNeniADC2Y2KAkxmj0xCE+bnD3aQKF7x/Tj6/diyAG3r1e08uEzZ6jX7Rs91ctnsVo0t/LYrA/rm6fRVhUQAjYxsNshjU5jXlw/z7Nsz4qnfNp5jJaLFB7yze+6dkYtYyHXSwmxqmMCpXCXISt0Rhjj38+gKapqaeHjJ1Z8oLHHtVzqPF3JERoUk+Hhb1MdDJJw179gYiUGJKwIDHdJ902KhGBs7Wy6CplFMRailcukn/0Be7Odtm7d4fQ1tHVorHZ+PIiJFskaeBJKKmkOIWASZWsv/b7r7AaAfh7/1UB1iKjLe7YjLbscW40xqqwc7DPZDIB72mrOZJwvo21GOdOXRh13EZ4HE3sAQEgifGL4I1BFcx0yuTGDULVYY906WvvT6e00479qIB7fzJMlCCeXt9yd9LyW98x/N73PG/fNhGp9CgzWknleD9iDh8o6fIXIeCbGYfvXaNu4jp4lmm4J63j4xq8LO97esUCwIpja8PQzy0ddljoejKoMPMe1+szWPTVPS7GANODA4xvsQlOpatgf1x6bhk/pGYnmmATdNUK8MRM/uVPNLuSlz4d/8TLKmnkwjLgK6qLxhrOZfQ//CL5h69wa+8u050daBsiFPTKotJu4SRBREAiNm8aYkigvRl/5meusdwtyuf/7AwPHOYFs7LESkaB4XBaU03nbAJ9Dcyq+QLmVkTIypIgyxz5k+hhWTGn2ZBHtey1IKVG4SwSEUnb0BK6ANYxEd1nhZXzQdNphIUNUIbACxfgXE8pqBebfuVKyfj74HoHfxDUhXFEwbct7b1dfNusH/OMM7NWLThjzJpF+kTzKtGVXBbKZz9bsDUIyQXdxu5qGFqFuSqDzc0YZzuBgm+Z7+/RNwa7ZBFPxKieM1fPigZGZLarJqMiyZVwzJnKAlenO75rZvAkSyr6+buxaNLWJZruGChLej/2MtIq1968wYvO0dvYREyWzFtZ+nCNULWeee1pReP5SR54Aauef+2f/xIEz9/97Yv8qZ96m3/jXxkzacbs1Z7RaEDmcpRApp4zxrAVPKjnoFWCQsyWFlxe0IaAo3MhnLzYVzfF42hg65koD1o4ACYEVCyhP2Bw5SpSDtJ4Airr6bgnuZ1OQ0/LJN9PJivEZi0bhedTr/bZ3Q8U+QZnxxXGeNCjwvP9Hc8HSV1fBkPalxot8jwYGpY9d1fRVZ+18H7aWoGY8plQewNY2yChjnAk+JhiopapekzZoz9cQqTIMXG2yeEBOp/RS/n9T/O0zxnjXyjrceGk6NCazz/6E449z5uw0NSfyMlzJM6momtfSvqitcmlMx5SfOwl2tmcm+9d47Kx5JubpAhBJBHa4Pnezdt86fu3OaxmBI1N40PwiCjDXs7r58/zl/+5mv/tP3PA3Wu32X/nF+H1jzHqjdnoWyb1jKppGLcTDJ6MhkCL8xm+8WQ2LoWsKPBBMSEQQnusuSlinmpTHM2YWDxqej/eBNCAqAPXw22epZUcaT1I3DBmBcd8NePiaehxz39W2vWJQlPjqpkaw9ffrvnGd2eUec3nPgXj851i0IV69OHX+mNGnbUcXbAG0+vjXr2KlBGSeTU286yY/qOq0B/rXXd8ROM13r0W2Dn0fPz1kkymyRNhaUWZq9Ifj8myPK7tY5i+956D/X2yAJlN6pEKkrCMHvfpn2tXT2cGLXqULqTp8T+dwAhP4+NJyVmxjmApfCTh3sviTqmFy8aI7CdeYX5uwO3r7zE73I3ZLKntI0A1D3zn7j0GuaFuG24fHrBd5uzP5tyfz9ns97h5f5+d+ZxiMCIbWvbf+gqunrDdz2ka4fbuhN29uxSTCXlX/CQx9FRV88UTZHkG1tDOZszu3GZy+xaHt29zePsWk9s3mNy+zvT+ztpKE46VpQ+fqeMCaguPpSz8nw5FUnViQPEYItTcMp3x6LUelxmfFNw7zTknuasej05q/BETA25OPfen8MrVMRfGOW/dF2ofhcL6PVOs5imbj/8gUJrdGOMSoS1K5PJlmsT4T7Qan+ReTyDAFy5YQINf5oFITKyICQqABCosX3rDc+8u0bOsAjiCCcxVaa2jHI8w0tm7Ud8PuuyCXc/ntIf79KwsU8xP8F6chv74r5A1Wuj0QMdm038iy+9O4Pxm5fjOrf5YS0oAWXkxnfmxuGlkbmblY0Eozp1h+BOvMRtl3Lt5g2o6wcYWvAiBw7ZlVjV85vUX+YkXr/DS2W3+5Ede58cuX+RDl87zk6+9jHGWg6rCkbO1cZ529x7+3e9iqNmZzBEfyOuGap6YvAgGixNo69imzQA2y+lvjFDvMfMZdj7Dzae4+Qw7nyOzGc0sNryWrkHEY66+4wpjlrn8GpvQY6IYqGc0O/egnqcpNEkTfjYujZOhI05HzwLlM13p2E8NhnpPuDA0/OOfyvjFTxjCTGia5f2P8qznReOPSltMi7Zi6GU5biWj51k+52ky0Y4TzKDgI9jiQrFUA2qS1SIoOaqWi+cMmZnRgS8EArM2UPQH5Km5zAqXWrqpVZns7eF8S5a8nItGS084Bc8Z4/+jpc6dpClAGxmjSfr9SsGNLgVMSALHXTpD+cnXmOC5f/s6flZhQ+d0igGi3Fl6ztI3kOeG0kLReEyr4D2qQmsyit4Gg/6Iw299ler+HUQbLgxyNvtDZu2c0MZG60YMhUJTzeKiVjDGMtjYwOU5w7LHVq/PmbLPdtlnqzdgXPYjVOwzZL6LDSXdwlcMAUMgzKbM37sG8xnRbgogPmr9Kk/t2njaNM6noeU1jt/Bcd0YjOTUtaFqZsybBtp1qO/jxvLHnvkv/PoeGxRb18j9e9i6eeSpj0vHAf09zO2z/l2Hj8QiEG00sW9tMaZHbjM+8dGSF640qNSoeCDgW4tHGG5sJCvtmPcIVPM5s/1detZijnGxPsmb/hHjf6YkhKA0raduPE0b8DE95hi1OCZRehO/F2dxV8/R//FXuF8dsnPvNnU9Q4HSWJzN+MbNHd68dY/3did85fptvnt3lzdv7fDld65zOJnRs44gLSFTNrY2qPbuMH3zW1zIhXE/w477hDynmc8RjQ3iDdBWM9qVbIm818cVZUQJRHEEcg04XY0+PFuN+4E0uRRYVt/C4ST690kQGis+0Gfh034aP/3q/Z85sxVQaegNK/ZnDV96R/jy24ZyGMiyaDf+sWfwJ1JaC5JSH6uKw+vX8dWypeD7+exHLbjjEhiin10JbdslGcf/S+z4p2LxueB6wisvBMa9WVL3ojOo9uD6A8r+YOEEXh+EoEE53N/D1DW9Z2jtPHfB3feLjnMFHPdZ4z2Twyk+KNY6siyjyB3WRP5vFvUEugj+RsPPoEWO/dBVhkG5/eU3QVq2zl+hKAuubo75g++/x97BjDrAH7z5Xaa1p1Xl69fe4WNXXuTsoIeRhv/yd67yhT+4zGde/gafyb7C+MXLtBevYvKMYrxNdecORVtDVmKdJdQ11XRKNo7VsXle0huPmdye4DSidTogAreFqG2LPDXvP94/rov/R5ebIRQ5waTGNrK0gZ6V8Hka6pjBE8H4nqBhrs2LKmeHwsVtxx9+e8q47/iFT5ZktqVzNTzs3j/wQHQnUBczssHEeJcG5vMa8wS4NO8XdVayer/wz8fMQYCAl4K9Wc7ACH2aiIEVHKC0CjMNjDY3ManZygNonwJtXccUTmtwT+HTP0o/YvynpFP5ABGaxjOvakJQRFrmVcXMWqw19MqSssgwptP3hSxm5dEmIWDKHPv6ZYp6xr2vvUPmSsbnzvORS9tsj3v4kMDkJLp2kAwRz3Z/QJk7/u7vvsC//Nf+FLPK8TfzD/Pv/bMTfuXs73L+T23g+hvY0QbV3n3msym9LMMYS9Yos8N9+sMRxkaswOHmJtPDfQ7nM1wWg6nL7BFdBrNI5e1H5uI0jOa4RucxKG6SKDRk/QG9F17A9PoRawkTMdrxUSGUYwqZnoAeZeY/7jWeGUlG2ygvns24fHYDbMC24ANYsy78Vm//xz+tM+2HYFETMHnO4OJlJM9ZxWUViRluz/zup04RVoJvsbJMsUYNIoHaC//wN2Z85jM5L23VEGy0tAnMfED7BeVwACdcOxDhl5nPKTIbFUR5Nk6aHzH+J6CTALpUlappaIOiIXpoCdC2ASOC9wHvC3q9DGslYfQIXliguRoFHZRkH3mZZt5w7zs3yCyMz5xho7edXJ9Jt1AFDMGE1Foy8A//4AqzKr7WWZ3xpfc+zp9+7//N7pe+yLlP/TTSG5Btjqhv3aVoG1xmGBnH7sEBzZmKwkackCzP2ThzjnvXrjFpPENnY+FJWt/eB6w1i7S1xw3wrs7b2medp0dSrMTlZFubBOsggEqCbJAlrMTTlNYf9e8+CcN8UqFz0nmrwswauHOQMa8CH31JmdXCH7xRcXag9ApYyR5AVf/4V+yukGhUAtCAcRnZ1hbBZdF9unrc+2TNrGZHneTzV4CgGNMFd2N8CjJUC/pFRmEa1MdMHyMtPhhmqpTjETbLFsV3C2Uq3attW6b7e5SS+rg/w+f8kY//FHRcRP+4HOK2bTk4mHCwf0hV1fG45KsMClXdMJnOmEwrmiZaCF4UVMlCBGvrqmbtaET2idfwVza4fvcm88NDFLPQhhWLil3AK4jGyuPPffoavSK2KOoVLb/yM/cYbI6YfPtb7HzlD7GTPcrRAC1L5vMqZvsYQZqaycH+mlAbjMaMt88wV2GvamgwaHLzdEbnwghged5psXq66si1ee3+TQJFm4bZ3h4hdQuLwi6wnj8a6FIZnyZY+0HXAaycyUkhuso7/uBNz9/7wyn/0W82/P9+q+L6TlhI2qNafvfzQQuAZ21hdHktodMofEszPUTCB9B+qxvDypo4bk67ZR95wOIsUENwPWzZ55OfaNjqN0k+e4J4quDxzjEYj5eWgurqNgJVqumUdnJI6WJk7bgpfhKFC36k8Z+KjqtQPeoaEBGapmE2nR+TYrfcpHXTxobKAbSXkWcuppEmRtcaECxGA+V4RPjURzj43W9w99ZNLhYDXBFx6UUNIh6PxQSLAF4Cf+Zn3+Wv/+Xf5B/+4WU+9+lr/NnP3qBtL+KvX2f/jS9hJLDx458gG28yv32bIrQYZ+hZy3R3j8F4kyKllhlrGJ87i0eZ7e+x17aI94QsBp06rDtDjF10c/E4ZIxZR0JMpk/MY/JoNaO+foMs70M/RxaGfpcUu74hHpeBPw3sxEnXenw6+V5eDaoNjSoHU0OG59WrOXnWclIPwmeZ4/4oetrq1pNIFynVHkTR+Zzm2nvIK69AeTKswVPd8wnrQdaqbAW8FNw5LJi3LS+dbaFq0KSYBIVpq/S2x5R5eeI1fQjMdnfJg+JcShE/qVjmCab/uWT8i3lYKbJYfLoqmU9zrSSGm9avVYh2P9bGKtagynwe8+GHw1H6flUbULqmgm0bmEwrWm3YHg4x1iTohe6esR+nQTBbZxj/xIeZ/DdfYu/ePbYunsMYl7C8WaBZkmIMRpV/4qff5S/89DuxyQuG3BRsXTqP3LjGrW98hSovOPvKR7BFybyuKTNLbgyTqmJvd48z53KsiVq9cY6t8+cp+n0Odu5RTSYE75nNZoSgoCE1blm2/jvJOlqdu5M2VWfuimra+Eoplq5DaTT/A6hdfdHAyQz/ONfcaayS0zK1J63gPemcpRCEvm34uR/P+Ng859WR46CeU4w1tsdci7ToIuZxVFOF45MSHjWm4zJbTjrnuHqGpyqk0+juM+qjhdnW6O4ewT86nXP1mY++x4etkW79tm1LVVX0+8fAI68ZZ7r+O4YgLfOQ8+VvVPTKnJc2AkJLbB4ElTd449jY2MSsxgXiIBa3qas5zeGEkbPIKYO6uvbbw9f3c8f4RQMPlnGlRbmYmsfxAYP3cDCpqOoGBIwRbAoqFUWOdZH5z5saY2TJ6BeM/OjGgxA89VyZ5Z5BLyL2BSE1GAmp2lgwVjCXt/E//gK7X/o+/fGAQW8Li6bewdHtodKtyS7fZekCCgLG9RlffBm9dZ3JH/4ms9BQXvgQ08NdysKQ2z59MUzu7VANhpTD3qKgzRjLcDSmHAw4PDxk7949ptMpbdtijV2kpIYQqKoqtow84sI5LoOnbdvF59572mYdIsIawfcGtC+/ii17aGii3tS5ezDpfLMIeh1nkh+32Y9Lzzt5DTzIOI4ye+/9seeejgLHdVFSlBbPIHeIWBoJfP0dOH9VGW6CW8mE0pREfhohdBIjPE0F82nm66jAOK0AXb+2xq5zWEQ9wQqaD6O8PzL2EMIDCsdJ2vtxsZzFu1OlqaOLtq7rWMUuXRVtp4h0vEVZ9MCVuBbRDCRw2BS88YbhT/18hbSpYl/mKAUHAezGgDzvLd20a08NqoHDgz1caChcXNcdLMODsx9HFNJvS/7xQ8T4Vdd/hKOSUngC3k8IgaZpaJoWSBAC6VqHhxOyLGMwGACGojiuZdr6LbuvuutqmUcsJ7ruWgJ0kt5jnGXrlRc5uHaXw5075JdHeBfZsg12Idh+9Xeu8oUvXuZzn77O5z/73mJ5duSynNGFS3hRbn3pi2x9XMk3tqgPLcVGn8IpVT1n995tzudXMVmWVptgRMiNYXM8ZlD0qNuG2WxGNZtT5CXOWZxzzOfzxSbsGPDRzdb59r33DIdDAObzOd57rLULhmyM0MsysrzAh5gtFQHalE7DqqoqFpSl+azr+li3zXGZH0e1U+89bdseywxPYnht21IUxYLheu8fy71ylGEdFZpGPXfuC7uTDOMc37tdUTUFr/24Im6lYU8AI/YBZngcHZeUsPr5cYLzqBbdHXfS/U5rKXjv167XdrEcETS59SyKzUsGV67Q2IK6rmmahiyLLp+qqhARvF9a5asZY6tjOy4GIiI457DO4UMgAy5cuMCgP1js2dBG+HNrTLJGVwWAAS1AAoYhTjyf+JjhykWPSoUEi1BSh4jQOx6Ncd16XBhtS+utqRvmBwcMjFkWbMnDWNZSgHS9Bf0jQjzPFeMPIdD6lllVk5UWI10Hrk4XPuL2OSUpoIuFAxqi06auG9q2oVcKdbNPNa/I8vxY7fbY6yrxGt6TR0CaFbkkSXopagQZ98k//Cr7v/MG/cmEfGtIFjRluESm/y/+H34hpnH+2uv8jb/0m3z+s++tjUMV8qzH1rkLWL3Fzje/yPDyK8j5F8h7PfLc0nfC4f4u923OxvkLZLlL44lkxWB6JTkFRVnQDlqss7jMcfbs2YUW/7BMmdXNORqN8N4fu2mDD7RWwXvqpmE2r46YsxCCUpYlWZYhIkyn05X51YU2d1Kgzlq7EEL7+/sYY47VWDthdbTgrG1bhsMhqsp0OqVpHq+ytHv2br729vbWGH9hCw5nNXdnBfMq59UrffZ3Wvb3D8ldEzk+gmrABw8Jzv3w8HBN2K0+Q/d3R23brs39dDp9pPASEeq6Xig6dV1zcHDwgNZ9nPBf/Wnbll6vh4gwm82ok8ZtUt2GFyFD6Pf69IdDprOGaTXFGLMQ+N176ASRc24x/u6drb6/o0kFxhh6vR55ntMf9LHGkuc51thFFzDftgQfludp5C0hCLGCvEFNgNwxznp86mNCr6xQ7xEEj2GuDa6Mz7HuIkrrMvH+6eEBzGYUWR7vI50m/2jqXlv7CAv0uWL8CjReOZxMsY2QZ4Y8y+Pmli4E82S+2OjH7nw3KfToOyw9oW08s3nFPGkfWZZRlicHb7qN0PqWpm7IXZkEf3LUaHTXqMb8XYzBX3gFPXPI3t07nBnk4BySAKG+8MXLyzTOyvGFL16OWv8R89mop8gHDC+eJ7x3jcm736OZT+lbYbh9kb61qLTs790nGMP22bO43LFYnJ12IXFu85WWiL1e79Tz2f10jNY5t6aldUzDps2aB0/Z9w8IEYBer0eWZWxvby80xo5OaqHX3SPPc4qiYGtr61TjX72eahQ6ZVmuMdTHDS4bY8jznI2NDWaz2dr3xpbkVcG1dzzGBH76Q5YvTqIbIroBYkWzKlgrC+ujG89JWv9RBp3ncZ+UZfnAHHbruWP2xhiMMYvji6JYm7ujc7Aad1j1u3c0Go1wznH+/PkjsaCoIVu12CInc45h01C2DdZa+v3+mjW3ytS7519l9keZ/1EXlHNuIciWcxN1+qquI1cVSc1TYjp1NT3AhFjhHkyPYApyY8kHE0IdU1GRQKvKLMDm5hY2iwkai92UdDwUfNMw2V2mcK4ctTjnKD3gKgKa8EPE+NGoAVZVgzaeyhmKQinyLBZOCejSG3a6S+pqwHIFgC3dcF2rlbQ2TiudI8TDvG4oywKb4gOrsYj4m8M3JY1ssf1hw/T3/j66u4+eOUssBLP84qev8zd/7XVmlaNXtHzu09fXniHeT0ECqobC9dm6dJlw4zrTa9/nLpAVA/LhJnme0W9bZjv32GkqyvGIwWiMddni+RfXPNWTPvjcRxnD0Q33JDQej5/43M3NzWM/X3VDHNVWOw0zy7IHmN+jaNX6sDa6yTY3Nxeur8X9EZrcceN+zaAnXNgwvHxZ2N4eU7ou1tFpt0KW5WRZRq/XOzbecZwg9N7jnFsIz07rXh3rUcbfjb8sy4XV1F139fujjPbo56t0/vz5BxSVLj4W25ODS4x49bg8z3kSOlXwWWLNynReYbNsUUOjQJjOaSb3GVjFSMlBNeCNb8EnPubJqRFvEBMLLqe+wfRGlKPR2uWXQ4i/zCcT2umUTRc9FqpdPe9DPAfH/B0e8WzPF+MHIrOMefPTWc3h4Zw8d5zZ3qDfy3mgedEjKFoRnqAR2yZqCdGT5pxlPp8zn88IIZDnGWVZnDpgCPHFN01D03ps7pYBYSxIQCSA79NWQ3puk42XN/G33uLwnXfIxmeQLG64z//Mu/w//tJv8hsrPv6j94IEUS0BG4QiH3D20iXu+mvsXXsbV/Q495FPYHsjRtZgCBzev0tbzWiqirw/pN8f4FxMH9U1BeTBTJLHodMGAD9o6p7pUdWh1tqFz/lJyTm3cF90pOrpzZSPXs14+byjcC2ffLHHsJdhzDpuURoxxpjFWB5nTkXkAcFzlGIsa/2cbuynyZY66b6r50qyzlWXiRkLCDPRE5ngSUH8044hqffLIkLAB8/e/gFNUzMeDyPkokaY5OZgn9y3DPIMTMH+DL7zpuejr3lsHshM5Ea1Gubq2NjawiVtf6lArYzVeya79ylMDNx3Xx1VA09Dj+on8twx/m5CfQhU85qmbamqmHaZZ1u4bBX49BSk4Nuln7j7t9PUrLXUdYW1ljwvHt/UJwqWumkocrfo/9uBNwsWx4ggY7ZGPZzJcS//OHtvv0O5v8vg7PZiZXz+Z97lz60w/GNmBzQKlCAR+tgVA7avvohcu8bOd79JXvbZeunDuDKjby1ZWTCrK/Zu3sD1B/itbQbDIVlZ0kEks1jExy/M02SR/CAy/ZPoSZjbSfSweFDU54W7u57rO4GPXHZkGbFpjjnC7jtNVNc/O2msR++77mJ5vHMedd6jrnWqjJ+FEyP+9ahrPi6tWbAasfDbtmEyOWRvZ4fMWKRtaesKCYFqMiHzc0ZZH5OAEV2pfOgjJZk9QDXEfhpqmPoW0xukDlsrUoVl7A2gnk3xsykDIywKgVf3y4lPzhEvkJyY8t/Rc8f4u0ls2xYlMBgMaJqGg4MJZZGzuTHC2tPju0SpH1hkCq2cIiKUZUme52sBo9MGdyGacBqUpkttXBwe0JAhjBgW59gsBlgj3D+ccjAY0Fze5P7N6/Q2h1hXnGrRd0u7a+je2AiCVeQDtq9cwV1/l5tf/yJiDVtXX8GVfYzEIFphHdNqzs577zDZ2OTMhQtgXCw8M+YB8/vo869qdcf5eZeMY5kOGz9f7V7wg0MPY4LP8toxU8xxczLnW3cazhaOooCtPotMsM7H/6Rz9KixnybN81HfP84crTHhow7sR+yn4xIKjgaWjxvj2u8h4Juaw4MDdnd2KIucwhjm93doqzniPWWeMcgNmVpUDNOmR3/g+LEPT3EacXlAqTX20x1vbiRtf/EgdPU33T0nB/tIW1Pk2XJvaMfT9ZgJWV5tfY/IcaGANXruGH+kFBi0BucMIhkHB3Pu3tslc47RsBd96cdooQ9cKcUNVq/dndMF0Y7LBInnPmL2O/+dQJsKxKxN9oi0+Da6eMSV9AvD/mHD3eqAbODpfeg8s+tvM9s7ZLB9eh9n5KlRXcy8ohJbHWZFj82LV0Cucf0bX8J7w9Yrr+HyghyDM5BljtIadmcz3v7+9yLjp8szXmeEq8G17qcLxB0NwnW/W+swxmIMGAFr42eL+f6AmP/D1sPR705iaM9MEEgAgW+/U/GHbx2yZXM+8qrjL36mR1ksq5fTXdfGdNJzPEoZeZyxn5S59ajPjs7bsfdUCCb2rk4GDcFIgu1Ypy5ls4thdJlSqxlTXbpud78uk6zL/PLBx70eArQttC3qW9q2oXGOzAj9PMOqIzMGh2JRJl745huB8xdaXrrQInWsrPfSMg8e0xsz2Bg+dN7rOkKmjJzFaUgWf1KaEk9/AL2T5Z+68v9Hcn2eQ8afpoqY4tW9w5gbbaxlVjeUbUGeRYkM3T/rEXNNEz2vW5q2C5A9Wos53aZJZqssJbP3nrptcTZjUbdrlDwrUTIaDczbKZncp8juEy5sEl7Y5vDOLQabGxgT4V49xNiAPhjAXlGkUR4EarK9AeMLV2hv3uTWm18iaM3FV18j5ANEcwoC1kFTK5o5bG8Qg20SaGUl5az7R4gdiMKSOSxz/LtwnaQgd8xOErEQorWm4uhRYaeHtIMxMzWxVkYNwfi1Z1z1g3YpeEh6j2kclpiRERDUAKLYEGJeVsrYWAgjjUVhYmI9gYpiRLA2i6kBIogxiES4CpOyPTzgNRA0kIXUKJwYW+mEoyWmKRoVbBBqPK0oLkjXPBGris8CjoyiEP70Rwvuzxyla9ncMkyrKU0dok8aocsGW67jVPwn61GAtVRGSe2AZGlxaXxRyzWzsNhi3YgPfgGSptrGd67H1SPE8USmGj9fZbLd36tB8vVagGhi+xChSQorFPM5s35JVR1fHb5Kq1lNq24oVcXYiDclRrBiEWMiyJpGV5mvZsisZuQsZDE11ErAWUsucZ8hMZOnEbi1k/HFbxj+3LkaDfPUdUupESZI1PbtunKmXetVjXl5B3v3yaqaXmYJ4tcNncW2OkZwaIrzGBb7AoTWPhzT6Llj/N3Cdc7R1A3T6RRVpShitkOT0i6tLRO65INSUuIl8EGZV1VK21xuqFU6TgM8HS1dIHGDBNrWQ5lHl1KSCw2wczhl3PMEs0+WTzG0aJYzeOEKB9e+znY1p+gNVsXWA+M8ctsUnF2IycXnWa/PmYsX8devsfPWNzDGcPaVH0MyixdN7Rob+r0e+XgDFwBCvNZqtDddL2jEUo+uspUimrCeEbXY8NEtitcIyyDzhtntu+SXe9i8RKUDvuiY3eIJVu693CLdu+x6oYLgkKhFogRsYpyRgbWtpmwKHxlbYv5KQEPAyJyuxqITLrL63jWa7aKKtzaObYVHKaApTdGojV3WJKCmxapGoYTFBaExsQlJ3utx7swmeuD40LkMbT2z6YzDerZM+5Uu0Jv6Fizcauuv/zhLYNX9Fr9/8BySSy8+Q3cPv5jfo+mRulgL61p9tGrtgtEfHVPHqI3pkF9Tvvx0zuz6NeSlq0B+4jPA0spc/e6BTCMjC8gEESIceXKlVIcGqopxnhEkwbSkLRXlqyGQxbFlgg+OzS1lPG4j3r60BJR5G3C9PoNRp+3L6oJceG6aqma2v09fom//uIrek914UYEIGpU9o4oJDhceniX33DH+bjKNGPI8i6mdqknrbzHGMJ3NcdbQ7xWIWW7YjlTiwq3qhqqq1yoUn+Eo10gh4QEJRhSrAQ3C3qyhqaYonqI4QOwU1chQ8jNnORwNmezvkvX6qJi4JfXxQFeP6E5kvR7nL13i9rVr3H/zDTIs49deg6xEAnjfUB8eELAIBqNxM6l0rqvEcCQyJFb+hph2aCQxxe54s3RbBAOqHkuGmxrq6YxyvEVb9vDio0AgEKTryrUSK0AW5eqiXR/lqG17CYu2eFaXjL9DRNUkgBWNUBeh26CGrkCqS5OLgissWFtILtjF84iCpEKi7rvFREerJAiQKdGGyAii8TzABYMJhtYEJlPHV9+dcue+cmlgubXneeWsYMUhHVZTuq52IHcL+Ib1dx3SuB9YAyvC97gAfJfJZoyNFcJKFFhp3jpm3r0FYwQwsffEkeDx+rGkNbFeUBXXU3xHNkC4f5/5bMYw79MfPpi2+zgZRd27iIJ7qdDpwmBavjOzyCzq4ihJKyOuX2MztrcyPvOJlrJsEO9RhEZhHpTxxuZ6tlfSFhZiUQPT/X2oKnK3FD6PQ5r6UwcBoyYpAQ9n7c8d41/ogBIxZpxTvG9pmhrVQJZleB/L/8syxx4TCFGN7qHZLGr773+qYdQgm6al8SEtgLiQvQaqAId1wBUt0KDkCIoOcvIr59n/xjsMz57FuXJZTv4Qpf9hw4CoQWb9AedeeJGdt99h582vIk4YXnkVKXo4LHY2B3+Pxgiqhvhf2txmmaftEUgalkjMNjBiIsPtNMnEDJSAGghiEDwtBrWW/OwZalHq6SGKR7FxqYvS9S/uNiqQMpZ08V7TYUlTXX3OFSaQ/GAxb1oRCYvrolFrd9KBP7OwFLuOYLrKdNKuLgmIiejsdO6U1EjG0BJMm8ItFsGSIWAC3gSMGrJg6Ilh517G3f1A3TpqCt67P+e1C4bhIKcr4Fp7qMVDpw9k5fu1g1aPX07IWmZQd5gssWmMRmEb1qXZEVqF1linx0l3jjEOizhHPhog1h27H0/KKnpkokV6f8s5TO81mm5xHyarKiYaeBAPtASXYbKCjbEwzFvwUftujTBtPLbfpz8ec7R5ymIUGrGBprv36QGZdON90FI7iVRiQ/rV0QfT0rj6oec9d4y/W73ee6pqTtM0KdUyT+6UQDBgm5bWx8rQ7tUnfWeh7ddNe6zWdOqRPCRl7rjffRuo6xYbeSVilF4J81qZtzlNKHHGEV0rgdYF8stnmH7ze9SzKfmwTPjlhsfJ+V0s9853mzZtVpZsv/wie9eucfOrf8AVheGV1+jlPYo8BwkE9bTBE7zHdu4av9xkNeCRI7JIaImVz6u+YRHFqEbGri3BOvxoSHDCdHpAezDFhBa/6Pyri/EvNq4qnadcO7N5wdmPcPzF70cEBdCatJl03exe1a+XlJjESkAOElR1Ql4NolgTg9eqoBKiZWcsSAYpBkHmaE0coMXhjGFWCdvDEi0Cra/Q+Rxtoa1bpGP8ejTasTaUJ6bVVRS6qdTUCSrLMSbVdBxJlFiu/RVr7AjDflTaqKAQ4vyZQZ/ipRcIvfKh5x6lY4UBS0FPspg0WYBGSdZaUlKiPZPOS753jbGdSZ0zrwrODGtyneGDRTFUvmamyubWNtat+/bjXlsKl8nBHmE2pZ9nsYFLFys7teKmgMelFpUQ41PmEfv/OWT8cbaatlkAaHXFJfP5lLY9IM8znLPUdUueuZUNE3/zISx8+906fVxXz+MEfbtr+6Ds7e3TlDmDYZ/M1fTzGfMsY1pnzNoBG3aKykHUjhFkY4A5N2a2u8uwvxnf6BP04FjqOiu/i8UVJaMrFwnXbvLe177MZVVGL76OFAVgKRQwijfRPbbc3PEqeYK0WMxD+jcIqFvJSkmSxyCQNGJvLDhLJkpuHRQFJpjFRlw0I1l5CFVdvk9Z+uFJ10VXHCMCSsyaMTF9KzEbTTj4GidTA2iCiwhAF58QFoFBaw1qBEwGxiY3RfTR+xDHZRGkbQlhjscBBkOLSEOtijeCVi6a7RogCK21tOEsk8pQH1refHdG4w9o9msOwxTRNq6DtVD901qnx631VcwrRY2h3NqmN4i56adKjT6lOyYGmTXBIjiCBDQvoDhLkAxa/4CgeRIKbQsasXQ68R5QaJvkxovxn9gAKYB4BAshQ8Tw9ns571yr+KWf82TMseJogUnjKUYb9Edjjqrui/UPNE3F/s49Bs6SsbqWV3fjoykebVDxaetbcn14pt9zyPgjOetobURvDCGsYYtYGzd1VTf0e0XyRy4ppn35x/IbHkfLczs/6fKzk8zSuvXU1YzDqmJj2LDZy+gXPaZNxmRmGGVDsJPk2rBIbrFXzzL9g+/T+hqxBR1+95N5err/R61DRSjKARsXr9Leusn1b/4eV0QZvfQ6wQ2J7MwvtRU65Xrl2Y8yaFgEy1ZH2blM4lcGIwapa9q9XcqNzegWMZH5GIVWbDo9+a2lY0tmocGLhsTQAW2THyPBL0AsskGRoPi6oalrQtMiswlNPaf1DU09p67n+LomzKc0CR2yW0/laJty4wzlaEw+2sAUBepSgx0Tu6ZhYjxERaM5l+IUKh4VIVclmKhomKCR2VkDorxUtLx1p8cfvAvn7gq//OMDzmQN0hhEXAqkvr8UWbFJQiZQqeKrGhmccPyziIkJUbtONqhRi9XYfuap9qWCqHKwc59QzZJ2nMLIomjTUKasMkjQ590xqmA86sBkjs0tjwmajlXmKnibMd7awiSYi6Mug+gAUw729jB1RemyZFnwRDJbsbRisFpjDARpF42RTqLnlvFbZynLHk0TNf+maRIIU0bnf2zbNvaONTFQ0816l4nyNLRq8kZmldwPsNAvjiOT/OLVvGbP71PajKIYk88y6kaY1BmDXg/DHFIgx5zfos7fpppN6GURHnbN7/sIOlFIiEdwqBrKvuPMhW3uXZ9y69tfxwfYfPHDkBV4ic/bOWAiiN2DHpW1Sx/n+yWmPwZia0GjgkwnHN66SVaWaJkTSO6g7v0EouDRsGD2ikAIhLqhbRpC3VA3E3w7pZ3PCXVNWzW0dUNoK5q6ij1RvU+ZOwaDBwLGRpbXfe7EYA2URdzUElqqnZvM7t0kYFBjcXlOfzDEbZ6lN9qgNxzh+n3UuIWV0IihwUaXiXZFdTGjpowtzajEYYHz5pCfurpBPsgZ4vjI+T0GKCZzLNFnV2f52QuC2CTcxOYoeEzrmb7P7R27NFVRhXlN2N+FrW14Fs3VVaGpyduWIhUgqiTkI2sokgsrOf4Ai2jM2PFGUZtz4RKcO1NjCQQcXmEWalxvSG8wjNW3D5jRkdpqznx3j54ITjphcNJuOZlEl8kNojkzHK3A7BFz9NwyfkFwmcNaS9u2sbHCSnRdNUKX1k1DnjrYr5z87MYhQp5liImYPOFop+gjx2IMvoGmafF14KA3YbOY0C961JOMw9pR5n0yUxGkBQxmOCScGTA92KM32kZWPCinpaPMX1NwWYISxBPw9HtDuPwyO9fe5fZb38BXU/LtM+SDTfL+CHUuarfdQk7qf9dWMj3l0vfe3WvFH2wRrEYtOCgEbQmhQrUFzWL6qPe0bUVbzWmqGdpUtPMp7XxGW9eRuYeW0PropgkxI0fFo22LhPRZ20YXj/eIjdjnCLjMoVmBtRkuc4h1WGOxWQ55GX83cc00bUsz3aeZHlLPa9q6op0fMDnYgd077DuHzQpMXmCLHr1BHzMc86Y7z7cnBY03OPUojlYMF/uBn7s4YEvquDkVgsnxocE0UzSz1MZDSGmXuuqofBI775TU+cQXdztdV6gnvl3y0al4RJUwn6I3rsG4D/YEM+OUpAJqYmvRQZnTM2axXtczr1LXPBFELV3Do6od8N61nKtXlUEPaCoEpVGhUWFzcwvjspVrre0sVAOz/QNkXtN3BiMxKyweuYRbOK3aFjO44O3K8Yd3Zrz0Uo8v3aweetZzy/gBUBaAVR1G99FUtaZtCcoSvE3WTo/ugqfYSyJQljlZ5pjPK+q6om015bUvr90xv6ZpYqev1NRnOq8oqwOKfAM3z6najKbpkRV7ILEjlctzsvPbTG++w2bT4kzn7liMYvk8nLyg1tmGoMGCtFg8AUtrHL3Sce7KVW6/9x53vv8G2d0httwgL4dkZUHW65P1BmT9PnnZQ1zBIpum02sUFvnm0WeVNl7ynbc1bdVSe0F8BZlhunuP6XQO1Qxft1TtHJopvpojocXXFb6q8E2LttXCB+8yhzUGm5W4rMTmBTazGOcwzmJdiVgXGbwxC0Np0RAnuaM6BhDRc5ZzZLOconcWts7G5wuBtq2ZTiaE6QH1dMp8f5c2KIhlWpa0/U3+YVbw29VZ8uk+Z9hnrxgSihFbpXJh1OOTYyGjJhjLTp3xxXeVa7t9cjxDazl/ThDviWmF0Qcd/eKyZMkLZp188ym+0c3141iFy8woXfweZHn144SAwJov/mRB0dUgrJ7cpU/6WL0rYJzDm2RLHl3MuvJHt6dOuONSbIX0Zv3iPSeA57QyOw2qc3EpguHGTeErX2u4sO0xeQ0SCyenvsb1zjNYQeCUlft1v7d1w3Rvl0IUlwrHYlD3xAk6eeZSnGrmA7+30/IP3jvgL17cZKd5uDX2XDP+RUbYA8Gnpc+9blraEMjtUk3uWg7Kg8vx8cdgwFmhX2QUzjKfw6xqmFXtQltbpaZpyBO0blXNmUxmGLPD2e0egzJjb1Iyr4b08n4sMhKPisFdPM/sq9+hqSa4fHja/RzHeNJn0vUbWGbRBKO43oCzL7zIwc496smE6b177M5nZM5RjsZkw03y0QbFcIwrB7i8xBY5Ji+QPI/afhsIbQO+QX2Db1t820Jb4+cVbdPE1NZ+H6MtB++9xf3r79FMDvBtg1hweUmW5eRFEfsu9DeiECz6uGwF7yRp8t2CWMMP6pjiQ2Iv63P0oAkt6ePo/7U4lzHMe7B5NrYC1UBoW+azGdVshk73uTVXyrzlo/V3+EV9m9+xL3Iz/zA39uDOm9/g8NIgWqL9kpvNJojln/6MsLsnvHHf8akzAwqtIuvqLCtZH5OkeEaQmG1kkuUVFqmZpwUnT1dcOKGTynzSRD32pukcg0c+EXBBqB24/gh58VVMlsVY+3IkJ17xYWR0+dM5YkPKzzcLC9ShUiMS6zfEWKw4rt92NBacm+PTCqoCTCRj68wwFoOtzMeqsRQUpvv76GxCL08VxEcE1uPpmQJk7FYt701aLo4GvJDnvHbuh6yA6/FIaNvY6zV3xWLCRToe8bSmc0zXy1zMHHLW0uv1MC6jqg9iHjQsgsixiEbJsojP3raWyeSQEAL9YsigfwZrciaVp98fktsJViNztuM+7dkxh7t79IbDZDIuvZTPjNI187LH9vkLqG8heHwbaGplPpsw2z/g4OZNmroCI/THGww2YgC0GG2gxjGvDmhmE3Re0U6m1NMZ9WxGOz/EhxZX5JTjMeNz57BFiWpgtLVJcfYMZVmANVGqSioG6wB+RDDGLTTMhzKApNkrJzP8J6VFpagmoZk58jynHW8wbwPj3Yzz2ZRNN+ZFtvn6bMjvzDcZzr6L3PwC175nKPubFBcuMdkecM46ztspw2Gfd+8VNFi8KUArgoBVg/UGb80iKB8zmAwmhXy8SZYLLJnbEz52zJLt4iqyvE4nHLp5RR7N0NQe/62ASojFbA5ckeElo5YOG2tFAEgSdLJ+AdHVPbwC0qZCbHJkUF0iTpmQUnIlQk0YFUyI7phWhNYVnDnnOH8BCieIj3Un07ahHI0ZDgYPXUu+aTjcvU9hYrzoaVddXL9KJYZPbFteHpaUPeGdmz9kkA2PQ6qKD8psXpFnDmeXWp8xhq7n59OQsxZnHV1w3xoTW7otKgbXyZjYRs4YQ9u2C/TPupkz5JA8L5jODYfTki1XYjiMwdU8I3/pEof/3ffZ9hew7hkEwE6iJBklyzF5Ho1iBeuVfNRjsD0mNBXqW6qmpa5qZoe77N29FTNBALEZ1hny3GEyR2+YMdjcwtnzkWlag2QZpigQYymKDBn0E+aSS/n5aTwrjEdhkbHDowrvOt73jJj+WkD/yL0VQVLFamYDzioj15INRgxGZ7B7BYd7OS9ubPD6pdcYzveZV3OmezeQ8i63DjK+babs+xkH84vcCpasGDCazclUCVbwVhBtiJXGhi4V0RJ4MM/riVTzeF7npwwBbX2yDDm+8OuY0x+g1RqLtWOjP1zICH7G7N4dsrMXUJtx1JGjx99tkdkspKrlkIDZQovXhmBtrE+gExwxTRrx6XImVag3EZvJOV58ucE1NVZjkV/lPbWzbG9tRZcywklupvlkQqjmlM6uB36fmOLeu1AEChMF1EyVXvnw3hA/1IwfAIWqqjkQYTSITcOtNbHlHxyzYU5/YRFi0xJhkV/eaWKrtIqmmGUZ83lMFzQmwj475/C+oap3KPMx87pg3uQ07YDCTVOmhZCd26LJv8/s8JDB1pEWck86P8c92cI9LMltYGKlq1Fs5rBkwBAUyjbEgGdd4asZbVNHX7Mr4jw7G89xsZWkZgU2BZU7r+rCl5KeI4hZlM8n1+za860x3c7Fs6IMvr9V2Mt7rAuCDudGEAk4FZwq1ih5llNKTta2lD3D4Nx5ek2fvK6pxXHYG/Ht90a8sT+kwtIg3L5f8QtXDvmQeZfBYIQdjjFGYtW0KKyWuaUHN7razekpuI2AhkB1eEhQWcxvCJ5O6TZGeKDt42PeMq6sgEhB0Uzg+nVahLmYY2Anjkdv7Zy1qhFkr7MDRZSCkNobdhp/8vwbiP5/IeZtBgISUyYFBoWPCQKtp0WY+kCxtUkv4e0/LOzdtjVOYqMVw1Hx9QQkoOIpVPjOnvDbNyf8zI/1uXUwfehpP9SMv9uYrQ/M5xW9MiNLBV3W2WNLwx9GR4+1RiiyLHkglm4XWfj1Hry2cxl5rqkdXmz0ohqBCmbNIVu9KWWWMa8c83pAlu8BLUYDdlDSnhkw2d9jsLm9whCfpRtjaWJ3N5CO+9IBa3WZPIJaxfYKil4JbC3OUxO1xi7jp2PyrQmo+oX/feG/7rbwQog++Hd6CctZ7bjQA3HDZ+vWOY6O3mMpiGJleFBHjSeTGBwklKgYmlAg3hDKHkXeozAlF0YFn/3QgEntMSiNqcirmmK+y+6tr7FTT8n6Y4ZbF+mdu8RwvIFYFwVkyrISXffpd4B1q3NzuuKqOK3OGgpjsG21WMsdCqsA+PTZqbbPEsHz6M2ECB1uZ4cwO0TaOWVy9axdWyQ+a5zs5fOoJsshphN0DU5ELJm1OI0IpqIKGovwRFO3vSUICZ4BX/2GYWvL8NKVgG0bUOFQA3NjOLex9cgubVHohliZn1j+0zqTu03QkvH1XcMf7tf8KQfnN37IsHqejDo42uVfeZYhMufYBfmoqyU3jnOWLEswrmmTnXS1JXKgUBT5A5+rBOrG0za7DMsBVe2YVRmDssTaSUy/zHPM5W3md97D1zU2L9YEzrPTc1fbP3eO1g6uIC5nFU3FUZ3eeYTJdOZ9+rjLlXEeYpYKCwjlNa+YJqRy1QUY6MKbv0iTkrViuQ+aHorYKtHXPg85t2fKJ/oNiqfJG17o3efQF3y/KfixrEmz15K7hpfPHFJrhG7ulQ1nZQ+5d485LQfTQ2Z7u+i9exzeepf94Sa9rbPkG2cpxtvYLPrQYxZOYv4JfOxJ5kgEMmsZ9x1WluwRWLGsHtRlT75T1mkP66Qkd2uOmgHt9iZZ2V9eZ/WUNSmgq1su/Ru/X4Sk1S7G2STMftGI2mpshlED4iO8sS3wmnHzjqXotaifI9LQBMukbSm2ztDrDYilbalN5NHn6YSQWZRqPbP9KAknqw41g8xwqa98+vzDU15/xPhXaBkMFLLMYa050oTl4bSG+W2EMs8j9HN39UWWycOZ0kn4Ij7AfL7LcLhJbgvqVmjbHpmZ4w0gBnNhm8q9Sz2bMMjzI8mH7w9JYr6J5aeNJikvugs2ajowmeiLrJClDiraoQuyeBlG1o9azkbS+jW2yavqmjIvV3TapXvtqfJxnzGJRhgHZ1remgwZOMNvHghv1z0GGdyvanZDwNIQGSIcVoZv7LXsNn2qCl4ZwZmtmqw9YOvCeQbnrjCfTJnv3mG6c5u9W9cpRzGg3h9vko22yUab5KMhJi9I4BF0FcxwCiEpnbBfWsEOSX7ux9gjx3ymR311i1sKSKx49sMRpsgxJoemietsxX0X+zAkfH/tkEmV4EP8WxL6qHbpxJ1CJfgQFr0SRCC3JT2XIRk0oeTefo/RRsNrrxoubleYELH25xrwzrG9vR0x/rurnijEQExKv9VnsywXsCMKSksWLCZk5Pwoq+dUdMRqxIjgrKVpnizA66ylKIrkV+wqadP14UQufJxrKRaQRA1t3tT09BDnxlRtRhv6KHvE4hKD3dhAt4dMDg4SMuBT+nMfHA2rzBq6xRf19uR0TFq54CUQjC4sg04QLDwz3ZWEZCXo2p06lW3pm05/d/4mEZqm5Xvfe5vt7W02N7co8mwxb0vsng+WdO05liMwqpQqvD484J3acaOq+K/mBRocrQReyWpez2oIqSpXoQwTLkifgYWbwLQSjLYoDd45nEJvo08xusJ2c5lmPuVw7z6Ht9/m7ve/ie1vML5wha2Llyk3zmB7I0zRQ1Pm0RKH/xQzlRhWtwoWLr2HPHM3H1Gen3SPB9d9AFR9+rZAygGhavFtFbF0VBcKgiQpEDRERp7A/9o62p2kpIll+8XUoMVYjDUx8O4MTdsyaybQyzFuxDu3R3zjzZpf+DnDa1ctto2ZPF6USYD+1ha9Xn9h7Ebr9DiunpBNE+NfzMlTcv+FEFOb4h6CaIt3DxfGP2L8q5Q4jWqEDo5t/yK86ZIf61G+t/byOojhoiiiuyjp3GtZZau5u6cdmgqIxwdHG6YUOUznUHmhl4K7BFCXUVw6y/6N73GmvYDJl3AUnTXz4JJM/18rGVxfOJLUcJVVP/HRK3XnL0PiEfFQHsCT6a7eZTaYtIDD6lyuHLSc/gik1YYQwdJQdvb3+cJv/haj8Zif+qmf4tUXr1KWvXjqWrBNjr661VE/9POj3x399Nj3mSqd1vy4Ihg1/PR4lw8XdXTvrwjT0rZsuRrjHcG0oC059/jYGJSc+2dHfGWnoPItQ7WoOlTamEhgDd6BKxwb/T6jsxeo65pq/x7TW9/lO+98l3LrAlsvvcr44mVcf4xz2bJX9Mo8Led/Beiue4cd81cFzCItuVNr9QHNJvrM4+WSZZgyg+IdOyycdfJB0dDgRbAEjHH4Zsb8YC9CcSQNPt5BEOvAxP1nbUyJ1o1BrCHJHOWiD0C3TtM+7PK3BcQr1f4+B4c7BL/BP/r9KU1rcJpjOEDMAeILtDEEZ9nY3MKI6XSQbiTHLhMRlr0IFqmnT+3lBwQ1HqeeQB4VLfejdM5TUnz5kelHJlfmltksuljW6cGXFXvECrmz5EVOUeQYs2S2q8fHjaTHXudkDaBjvAqhocyniBkxq4Stfh8jc1oTGai/tMWs+A7NwSH5mSK28RNSo4YHr6xJSwiNxFRJqxhp8V0do8akQIhY3xKOy7t+kH12Wvoq0z8JT+yoIDju6SHi+EymM/YOD5jM5szrhjt37nH9zg7+xm32J1P053+Wj37kxxbvcSGsnwGY2YOX0LVGMI84OJ2hnFPlfDZdMlchYdwLigUJizhH7oaEfo+ajLzNmTaeOkRAMUNYYOMHAgYTeyEXDpsLth+L4MqNM/RnUyYHh9z65u9z/zsF2y98hK3LL+CGY7AZ6rrmJ9EVFNGJFZWwEE4CSZAr3igutEhI7SyBYAKegDviIvUhICEgTdTIG+9pgqdVFrUg2lWwEveBEwGTQxFB7HRe05zbQnsXcXK0KFMWhZqx90O0ZgqbWitaixgFLCIe1EWBpQUiM2IsqgXfI3MZMtigrRp+/CMTxkVDKT1s2xJEqKyw2yjl5jZZrx/v3i21k5j4QtYIrUR3VAfJ8TR8X9N7tyFawVEIuzUX73H0I8afKLp3zEJaR+lscM4SVtw9qt3yl7UXZq1hOOyRO4u1MT6wVC8ffAlPHtjpTMYWayI+SNAMK0LECxeyQZ/8zJjDnQPObJ9ZBPWOY/qLqzY1h3d36I1H2OEI4x2x9ZEBsXiJS8l6t1jfJy8tOfHPB8451aJfHlTVNV/+8pe5ffcuYi0uL5jPG6wxzOqaIssYDYdLrYqly+dpqXNtwOr7e5igPu5bSdryqnW14BpIinV0P2RwQ8/wO2+e4/4sp2o953sNxVYbkUcXFs0KWBfLawtCVpTkRUF/OKLfHzA93Gc+nXH/nW+x+953KDbOMLh0leHZS5S9IcY0gKEVk3oDG2yIrSi9Km2I/Y41KJV6Wg00bYjjDT7iIq0q8akJD8YQbGxzqM6iNsNZF62glQ5cEN9ZsKnmxVnc4YzmcIfepSu0vTIVyJkjHhVZezdxVlNePpZoW0Vk1IVbUlJWkraolmBbDg8KfOvY3sp4/ccy6r07HB7us9ErMJmjalokzxlvbKy1dDzNWl6Hrli+9yenlH2UYkex/sBjHtRW1+hHjD+RyIMGmnOOQb+PmVdUdU01ryOoW57jXOdHjscaYyjLgiwt4IUL+uhVlWj+PzYjSlq0dsiUNWWu1DNDXWfYnsXQgKZuRee3mVy/xmbbIsnnbQOLblBrz05MxZvs3OJg5yZnX3qdvLcNqb+tBlm2qHwmi/XJyYih3+9zdnubrMgpewNCUG7fuMELly/yM5/5DJcuXEza6qpj54hlxRM8hR65ytMbEOuXl6PixBBsn75xDEpH4wwjcj4yOqD0U0xIWZMSEI0NOI4blyZrVlxGf7zJYDSmms84vHeXg/1dDm7scXjvJvub5xifvUS+eQ7yhPyqFki9Z23CqA/gUq67Ssxv91ZioaJmGBHaVQaXGLtYgyTFSKxDnMNmDjFuUdy2jIJG60fU443BMsHPJ5i8l/prHPeM6feF+2dlNlVgke5p01yHJGAdmiylurV89Ys1W1sZ587n9DcN6gvag5bdgwlFUTIXoX/mLEVRrN3vcTqLraUkPw2l+IaKUjrLvGp4dy78/rUfuXpOpNUXZmS9QTMaq2z7vQKXNH/ftkymTSq0ylOAaeWFd2XkqznGIg9uxEWA6bFGC8n8jv7CmiIPyCymdZa9HJgltdRgNgY0NraddGQYfRijU8RlYA2Te7vY/DbmosGORwmpxyNqCaJ400Ym86y53gn0q79zlS988TKf+/R1Pv/Z98izjE98/OMLEDYRw3xeU00mbG1t8dprr5Jnbhn4e0hw+7hPH/VUS2bW/X28Zv8ksyPJ5bMIhUpOyLYYlS2/9PptdnTE7WqLV6TC3q0xKO0iTz+51U6KRGhy6QmIWFx/wHbZY3j+PAe7O0zu7TC9+X3m965j+mfIt89SXriIG43A+giDYXoEm+xd0/XTzXFZrL62eYYxkbH3VoTYIhaU3G2SLFDtfOuL8cX3qQlHwyiI2liKNh6S967SFAVGQ3rg4xnnehcwk5h+tGKAiG+FBWkQNSgZwRiaUFP7CHiX93NaAmILBmfP0BYl03s77DUNZrxBf2Nz0Xz+cSgGd9cG+9jXOEoqQjDCxzYs0+kcUc+8bR56zg81418lY2TRhnFZ9Bm73heFI8tiEMz7wLyqqao6Vp4uwN2WGvkqHacNhBAi0JSe/r13AbNl5WGDsxXW5LQ+J2iJZZ8uGCe9klBYmqYiK3uYsNJO8Dg2ZXJsb8DowoiZybh79wabovSHw+Q79OnITpvSJIDePwHwq79zlX/x//ALzCrH3/y11/kbf+k3+bM/8y4uFbV1ZnNZ5vzEx3+cXlniurS6tc3P4rOHaWfHHRunPV1rccoqU0v8bOW1P/GcpKYjKhqB1VzBTtikrXPOsMubd4e8tVdRnu/xiriIGamQMsfRNYCC9bGsQNQkJ4cQrJKZgo1zlxieOc9sf4+DOzeZ3fs+0kzp90rcaIQbjyhH2+DKGHBGEWxknsgC5rizUlRIldcrbu9uomRVUHbuuOX+WRXTMRsuS7DVUTM3i5NPO8edWzakjDKJPn4MhB5IjYqycx9uXs948RXlp//kCLGT9P4dwVrMaEgvc8zu3WfjzBYuJQ+svb4TMvLW/rYRSmOtd/NTZ/ZEAfrps/Dh7RF2LHzutQ3+g4ec8/gi6zmkzuzqGpyvfENXCG6NMOj3GA76aPBMJoc0Td0dRkoyefS9iE3Vn9TVAyTLtcWYOZkJtMHQ+gKRjOQlRoqckBmo66V2+pD11fmC7fZZLv3kTzMVx96771JPJrQSQGJ1MCH2h43zJU9ovZyOvvDFy8yqqJvMKscXvnh57fuOMRsjDIeDBL29Yuofw+QfRGpdp9Xvl3xeozXXrYfFF0sU16P3eVySRc/cLkgntMby1l7GwWHGrN3kjVsZOYY37lkqk9IxARMSnEUKCD9Imtb2krlGMknAZEhe0t86y/lXPsyVj3yUshB2vvGH3PiNf8Dul7/O9MY12skO0nqMKVCb4zMHLraezIBcISNgNBAkgpp56ZAvV0P+SXlZwCLrIrFmZUIIEiFBUE+YHtLeuIHU89PPKV2gWJNfv3t4B0nrV8nxWL72Zc9vf+Eu831DUTQ4FzVnoYneJ2OZKchgwGhz65Edrk4iE82kxUw8LQlgg2JVGZiarawmM4a+fThWzw81419kARzjjll8tvhRrIHRaMD21ibj0ZA87ypsYwl52/qIXZI0sLXrd6TQtu1jv/WFJpT8uKoBaxryrMUHT91koPlSsSoLKBza1BGiS5YZPb/6O1f5S/+3n+ZXf+fqyvMqRZGj3tO7cIUrP/0LaG/AzWvXaA8Psa3GZhTJSHys3O8npM99+jq9Ivoqe0XL5z59/YH7dXGUDtRhLZd81QXH8hUfJ6i6Ofl7v3MVTWmC3TNqUIL30HpoW2hapI0/xsemLidd9/Eo+aKTFo0IVSu0WcH3DvucHQo/efWAykMjefKBrxRWnQjovq5Vd6spRLQaRAOlbyM+fJnjNrfYvHSV8y+/zHCz5ODdr/O9X//PeO8f/n323/omfu8eVDNcW2M0wS2klN1F+8zFvknxhZV4i0r6WYwpmQxrP7HjVbSADMxmtHdvEsLpGX+8nQCxV65Ki5oIY66aMZ9bguZoyKlr5TM/t8nmpke8Yn0Zq3dVMGoJbWBeN2xsbpNnxWIvHbf+67p+EKeom/mYRbJ0fz0LktTPoJs3FJEfBXdPRUe1wpVvlq9IoMgdG+MBSCz26NiJD4HpdIaq0isKrOma4q1uNpJ1sKgTfKKxLrI4pCbPGkQy6iYnFBli5vHa1mIGPZrJnFIXyCz86u+88ID75POffQ8VsEWBOThEVei99GFMCNz60u9x951rnL/6Iq6fY6VdMphnlC1zEn3+s+/xN/7Sb675+Dtaa6izCAh2vCY5xDqm2PGWE8a66lL6j379df7v/9p/za985vsE72M7Rg0pZzy1j1HFB4+xNjIB55DMLfo6Pwl1fm0wiZlHodNzylu7jsNJy6fOTrmQVXxTet1J0detHpBlcPcBkgd+67RvpwGrIaVsGkSFDEX7PUyvhxv26U96zA+mzHfucev3fovb3/oy4xdeY/PlD1FsbaA2w5sMkS4NNCxcPHJkGGtphunlrHdoW44vYBACQSKUQlDPI/jZA9eQJBBVDUFzQjvAOM/uvTm/+1s7/Imf3+bsBfiJT+ZsbFqyfJZSprMVC0SpqgpnMkbD8YqN9yC1bcve3h7j8XgR/F2nVRXk6UlRvEnxGyKEtGhAzcMLT3/E+BOd+CoWfDua+0aEIs9wrqZtmwUDV4V5HRu7ex/olTm5M6xxnpXLwZO49lKwCohWRtT4jQ3UjSUEh+36+xpBRiXzmweM24BYiwJf+OKlB9wnn/+ZdyMQVj6gnd+iaSaU2QX6r36UMyrc/dLvcePdd9g8u81gYxObFYt0yWeVKnkSff6z760xfFhx4aS/l5p8mqJU/xt8bK+oPjZDEWdxWbYor+9o3aWU8Q+/fJXP//TbaCpOUjXRAogpFPFaXjDGYpxdtm1MY3siK6grelMi49dACC2Xh/DGex7CnIu9CX7m6WcZVtvUbSu64YSMZbbKOukxjD/qnNFV2RpDkDgnJvVwVQKWhBy6eZ7eqGF2sMdsf496f5fJt77C5N3vUV64zMbVl+hfuAJFPzWVXwkorD/k0u+/GEtnpx2zhiQ+o1HF9PuYi1ewtnwssPSuub2q5e4t+NbXJlx9VRiPLIPRCJsJRuZcuSQp7mYRaejSZFUiM59VNdvbZxdW/hF1bkGTyYSdnR36/f6xjF+PO+kpKC612PMXYizES7YErDuBfkgZ/xr7jdZoxBhYeaHHv52YjtwFgjswsHhNVaialhBmoAE36GGssNodKd6rq5R8nDWwYiovzg5YU2NFqRrwWmKxQBvl/6BHlYpjrMmpTeAXP32Dv/lrH2JWuYX7JF5dsTYnAM1kn0HwBFcyevWjgHL/K7/H4d499vbuUJgeeVniyhJT5GS9Hs5lSCoiERSrHi+B2KQ69qcNJmA1lrtLp6EuGp226ZlcwuyJTxlMZOOGlUIwUYJ6aGLXrrZp8HVN09T4piUkQWecIytLXJ4jYo7pnRXpc5++zt/8tdcXc/JLn7lFludrxyxbD67DbyyDh0+5m3X1l3gt4xsulbt8aBtKaehxQE3OyxtKEerl0UnWn1QUeNL9BPDGxLIvjWugm+uImaQ0lqTwGAZbm/Q3t2lmcw537jG9d4tqf5e7N66Tnb9A/8oL9C/GTCCjGUIHny2EFH8walYAC9J/KfOqG3VIriDnl8B/MhiSFzkhy9JZUfWPQea4fgQXn0tjbQC2Zt6AFYMRw93bgffebrhw1TIeG37ys4b+YBb7CgSDUkdZFaU9mLinJ/M5NssYDIeLOVeiEriq9LRty/1795hPDllG+48RaQtX2DNQmDprSQBJCg4B9whl7IeU8cPaBpEIqtYxVFntKLTi51lotyIYa2i9x1oXJ1u6bCBD6wNN08Z2bbouQrrm61NTJRjb0zKMbqxhqUmJIkwpsy3qRqjbHrnLQKIf1AwHtL7Faxt9kgKf/+y7D7hPIhuOxV/OZvi9PUJX7OJyxq9+lGI4YufNrzO/9n2aeY1tWtxkijNC5mLPWpfnUPQwWUZpHFq4qG0Fg6HBSIv1OcFGDzOwaKgiaqO7QcAGoQngfYP6Gm3a+NO2aNvQhhaPRxuPrxvq+YxqNkWDT/7kjKzXoxgNKXolRa/Eumwxh0c18uNcSnok/LVUXt+fsFiHCB+ZQZcZU5NV1/kTozmWCplP6RUFm2WLHM6iZi1ChzQZpF0GMdeufdwNY4WwUdbQNSWNobOpOl+2yjI4mvV7bJaXGZ4/T7W/y97duxzcvU59412qqy9QXLhEvnWe3sY25GVSjlbwaRC6oSO6gOuI36eZUImpnCZBnriMzJZUUiMtqOSI1MnqdMkHF/tChNDiNaOtenzjay1XXsw4cxYGfeHjn3a88KKllwVKt3g4kK42uXsPAVWhbRuaquXM2fMLN15k+DwQp5tMDqmrGcVq9/QFn5FlrMmsgjI//XrSJLghplxHJeXhLscfUsbfmeUAqb2aMSeX3q+emVwc1lq8b1fyctfPzZLP97gr5nmGNSYyqicZ/RrjChRFi04z5lVgUOZ0C60Y9DgQCG1LyFg831H3iSwWoFKWJdPdHTZCwBoPYtCspLj4Cpc3LxI+PmV2cJ/pzj2qu7dp7t3h8P49CDWuiBhFWVHgbUmW9dECNDPkBpzr4Y3FJA0r+BrVhtC2EBzaBghzagKND/imRRpP3TTM6zltXVFPJ7SHh4SqIst7WJfFzA9j6Y0GjDY2GGxtUfYHYC1qHVi3mLeTgtLHuZT+qKjTIkMIhPmEcu4JTmM64/yAMJ8RgmcJ/tflxjx9K79HURQMgrE2xjS2z9IbbeBnMw7u7XL/y1/F5G/Se+FFtl95Bbt9lny4hc36MagZDWCCxP0mKhjaaGtITGe1ISYiBGkWyQz4Ft+0mMIgpiUGbGOnsflUY0Za7tnbK3nvncB4Ewa9jLe+tsvGqM+F8yUvvJTRhjalA8c898QC1tdDF44LMJvNyfOCwSNaKjZNw97eLsPhgMa5B7T8zgWnmnL51SzgOp7lS1vWDz38uB9Sxg8LExIQI7jHaVUoEba5LIuU0LE6yxGHv8jziMx5zAuwRnDW0LaPz/hjksRScBk8xk4w0qNtDapF8jdLDDj2cpqqIvT0AQ1llbrKx7zM2T/YTZkqFtDIWJ3DDoaY3oByY5P8wmVo5tDMCfWM+eGU5t4e9d2bHO7d5t6da1B7XOko+j3KXo/B6AxmlGOlpp3OqA730WpONZ9Rt56qaiL6Ig02sxS9EWawgfR75KM+pVjq2YzZvdtM793GZ5b+5gbjrS364w1MUWJchnUuutNWirdiRub7F4t4WlrLt5HYvapt29iU3kHIN/GuwCF4rbHNDEkWY0pqRR+J0PLktLbCF4UuERjNWIvNMzbLnPH5TQ739jl4+w2+851vMrr0Amdf+zD9qy/AYITJBwQjC9woGxQvZgHOt8D5FEXFY4LBi4PJPfzuHnL1JfbnfSaHhtE44Izhre8ccumy5cwF4Y03Wv7Of3KPP/1nNvj5P2X45T+3wWDUQpiluhsS008Md5VTrsTzVKFpW+rac/bsmUcG7Q8O9mmbhuF4TFPXKw7ZToosG+EYE3v9RmPgMaLVp6FlnsND6YeU8Semn0rEjcjixZ42MGdMhHSo6xZNPnwhIAJFnqUGLEeCfWmtWWMo8/8/e38ebVlynfeBvxjOcMc3v5dTZY1ZE4YCCkMVCBJEARRRVaAokZrc1pIpyRp6eam92rINyaJkaS21JVluudXdXi01SQ0WRapli6YoiwA4ARRJEPNQQAGoObOycs433fGMEdF/RJx778t8mZUFFEi6wKiV9d679wxx4kTs2Pvbe387piiqm8nim/R93hwGKQviyFFVmspoEqkAg5US2WtTjDLMSgAvDpkVHtv1vCdREmO3r+KqChenHirFIkKVJCFBSo3SGtodP9Ec6NrgtjJcNqKqJtR5TjWaUo0G1MM9xpMdyuEekZWQRJjRiDwr0HEbubZK3GrRbrWRSY8oTSHR3tyeThm/cpbB+bPYPKObxiz3+2xsbqDaKVGcEMUpKk4RUgWeRxEofd0MRg2G2mt6x78bbQYMCIHWGiUtdXeNnfQol8YR1sJ6u+IEF3B1BjNxYl8XyPhW2gzydA4ZatQ6KZHtFsol9JOYVrdFnmXkkz3Of+FTiG90WTp5J/07TtFaXkbEsbfElEI4D1U44a0W07h9CECIkNjcUGzvk27dxqd/u+Qzn8x57MOaNz0U88KLU9qdmPUtzfGTkg//0S1uv7MiiipW121YdwaovPOWeRTMYc0B1jmyPCdN27RfRdsvy4LxaEiSxCgtZ1bNAshz4P9KSQzG8yCJVxfSt9KuX9Y3v+p3qeA/2Bbj7Re1mWsJQQ7+1YTu1Qe+VUqSJjFSiuvOmE03AVpLhPSRBK+5vwcu6VCyJo4NRaEpSr+pWJd7rbebUl7d8xrIzagxw0RVWiOqknoyRrV7LMaEOKGwbu6Gs+F6TgqIpY+Q6LeICUk7dUk9mcK4oBxvU1++gEu7xEe3MHlNqzLoOEalCTKJ0XGCiBOE0hSDfUYvPcf07POIyYClJCLpdknSNnE7IWrHiDiFxukrBMIGKi7JQtbtgrvm97DAv7YJ4QMIXBRxRa3xG+e2eHlXomXBW44YNjpXcEVJrBOkFj4aB1/b99Usm9djHObXCElYToX5JdGJQsdt4n5NPB0TD8fUeUX+4jcZv/wsyfIa7SO30Tl2B8naut8AhJzTiogGulI4BMoYdssu43qDk05z8vYI8x7NsaOCVlzwwJtSVte8Jr+1adnYAK0CbbfzwQKIplCKoCFsO2wsmlDpqq6oa8P6xhJa31hMOueYjEcYU9Pt9huTfD7/5qtnJg6EAOtCKLhTN1T+XtN7Es0t3OweN2vfpYL/mqgeuRBmtpD044/y8fomwDINRmwcsySNWUakEKRxRBzpUDnqsNH3E0sphZIK+y3i/ItdFc4S6xwpu1RGYW0CIveZnUttiupScOCFqljX9UjMruekJBKScrhHunE0OL4C5S7Sh306yzxHwWvVnsfHCx1lFUhQiSDSMXopob6omV7eQy1vkN5+HxUOYd3MuWgBa2qmO5cYnz1Nee5l2N8lMRVJv0treZWk3cXJkPIuCWGPC/vZbDwWAxgPvuv/Q7UApYyrDuNag4440jMUpabuRLPqblVZ4uoaHUcHQm2vn8uvb3PBN3QABhJgpGdx9Yy1S/Q6PfKiZDzYpxwMqS5dZLizz+DMadLVNdpHTtLZOkK81Mdqj30rJzBOY6Wfb/smJU+3QMG9pzJO3SNRJAjg/lMJTlbgLNqpkF1e40QNosTNqJgFXuQdrm01hVFqY8iynCRt+SIrHA7Zgtf2R6MhaeI5vZpyljbkMsyc4801wnsp8wJaEUI3kUuvz9yc+ZxfRfJ/lwr+g01KBQtxr8ZYqtp455qDsqyoqpomlrshYTMH1HWHVsrzm6gbeerFbHI1fOGvqR2iyXkRVxNHOUp3qCpFbRKiYHLqfodSWGxVI+PG8Xt9vwRhYSiF1hH1cI956AWBF8Zcd2fhf0U64dP/JVgZIYREZjXllSuwukJlS0QaoXtdsAopcqwQGCGhqMh3rjC6eI7s4mmKq5ehnNJbXaG/fgIVpd4aC1zFwgl/jQA/NaPSFASRDXz72kb3d7XdWEWwWBtx52rJ8RXDXWuCFy9ZnIp8zQcjqU01qzhl6pq6rpFSBgqLawCA19XqmWegzhMVPeTkZA3OBp0d4jRhOT2C2DhKOR4x3tthvH2O8fbLlJfOkq1skG5sotc2SNc20Z0+ShhqAVYo0q6iFStqVSKNAheF+gMOZxUuEK557rbcZ+kSQ6OgzCKHDIgaOKymhFfsqqqmqi2ra0sLpVMPeXZnGQ6H1HVNv9uZhXcKKbHGHsBfmkwFIQRCKSpjGI9L0lYr5AbMq6F9W++osSp+H+o5rB3UAp1zVGWFiDyUkecleVF4CgbriyZA49RqRErQoJ3X+D2ZW0Qc++LqB9g5w1n+VH9ObQzmBmndN2/iwG7ue1GjZYGWhryIsDZFoqiwkEQQKWxRBMF/+DWFL+eAkBKlY8rRPtZZxEK0kwwIehP4ZplTC0gkkbW4LMM4iNptbDahuHwBOjHy2BHSzVVcFGNlgTQSWxbkgx2qqxeZvPwSo3NnSEzF8uYGnZXjyDgBrRFhgdch9E1iUK4CoWjqHS1qVwff8P/BtPxrWo0m0oZlochMzQuXYkZV7t9NI1STBBHHPtmoqqmqalaFylrP2X+AN/51bAHso8khUE6gLCAMTgjMLMDBF2UX0pH2WiTto6yYLSbjKaP9qwxe+BqT023StSPkJ24j2tyk21tCLC0h0y6ba12ksVhR4ZzDyqmnUxa1jxDCByM4Yb39KLTn2plVDQtKjzictXLO72SZZjmtVido+41Ff72dXBQl49GIdqu1QNbowz2taQoSzNd/M09FFEGrRZZNsVmOtZYoSmbVuV4LzfMhT3JL536XCn5YfCllVTGaWNI4pjaWoigxxh5CuraYsNHAI/51SilnNXYXj78WaXA4rHUUZXVDPo/r+9mc7xfwAfpoAR5nLVHa4nKNMdpvMBJkrJFJRFXknmL3EDfQjBlcgBASHSdMpiOMrVAq9rH2romS8ecvOt9EgF4qU1FfvICtHfLO23G9Np3b78D1l3E6wcoEaaEqplTjCeXl8+w/9zVG58+QRor1zXXS/gqRjn12rZC+nKTQGEAHYeeEwCjtOeIJuRKNRneIK6OxSuYfXA99NALCHTh4/ryzkXJidoz//eCVRHORQMHQJLQt+lEWx6/55cDn4VwhfFT58WREu5eymyl+/bmYBzdKdNNPATRUxkAURTMBYoyZaf8iig7VJg+Wprz2SQ55ttkgeWI16XwylU+0EyH7wysnJvz0kJzvqw1wolAaYR39KKHb7VCbimwyYTzYYfuLZ4hUxOD2e2nfcYr+5lHy2JK2u0Q6EK85ECKQHYo6CPbSJ3+5JMB9TbirBdkQKkqEjXHi+iLx1hqyLKOuDRuby/OSlG5u0TSco9Z6bR8BabqYoRvstEDZPpsrC1aH0BG602V5ZYVy5wrD0YhO25LECTqKZu7Fgxnqh8O017ZbtXK/iwX/fAitcRTWUFWF1ybswd36wFnX7aSe9dBTN3vzUYTkj8XFM0tcQVAZQ1GUCxbEq7UZOw+xliTRPLTMywgJ1HTimqmsKY2mRqIocVFCtdSmHkxxDUxy3UMZQKOtoJbOF8coCkSWo1RCJW2oK+qzbyNfvRorBRAhsgwbl8jBiOLlsyQrq77PcQJryyAUwhhcVWCnI6aXXmH89S+ye/ES7TTl6JEjJJ0OutVC6XghOqUBSOcUvw5mkl0eeJZXG8fmfYR3K2zgcFHe/2EThKixgFEGbfHCRNTBaSZBNHUJwAlHUmtqUWNlhXTab46BShgKfzehEK5GInFOUEYl0rSIrQQMNiQOVdKhbRQEv8EhqJMOWbqF1C3aOHqp40cfqenrgnQvQ7oQatv4YYSPbZeBtlpqSaT0bGystddp/jNNN1huhDlphYf3PIQXKLlnXEANr32Jxcek4+apSM0mJHFBgl3zFsLGgRA4KRBpgiamk6QkvT79siDPJlRXz7F97jkud+7i5fqdnHrbCnfebbGqi1AStPI+W2GYBy/IYG0QAhFCiKuTC8RxXuhLY6GqMKaiMiVlPmGwP6B/9A6SIMyNsMFxTljT3rrJ8z1G+5dpt9ooCwpJqSxGgVRQO4MJyWlGeNGvg+COkD5PvZ1CcoR41GVydZcyz+l126hYI0U0g9F8ToO/zmE11JvjmkgiJwXO/T5XzyHteiFhrSfimi+KWzWzfBGXOE5CcXY396stKI7NDu4cFEVJbcwNtpYb91cIRxxHvkTkdSc6XxiD+VoTznkCsSSmqEZ0neNGmYKL7lCtNS4rKMuMiCWUkzMKBZz0Gp3T3hGcj8ifeQa9tIQ6cpz0nlOobgerIp8LICTOVNhswviVM+w//yzV1ctoZVlfX6Pb69Hq9kDrEMs99yscfPprxuKQb5qPDhtTJwwz/wDCp/W7JmvVF5tBlEg0sm4EfpAUYeFbIUE4tLUYKTCy8klVVuAzqjVQhX8KI7w27IiohEY5SCvPElkribaGWmgiq4lNiW0S5pAgJFq3eH7Y48VJD6M0KQqrOpxsVRyJ4sAyCXJWDzIgyQ3OG6gK/GbJggbrlRsVNgE/KwJsCQgX9HYbI0UZKDcClbHwer0X9qkH/l5NEz30S3HND59LE6mYdtqm02pTpFPSImdqHZ2rLzF5ap9zL4xob91GurpOvLpB0ltGqBgpQtYXkoYSwWvIYnb98CpxzuJqQ5mNGV96hfGZl6gvX8JWNa0Td7F29HZklYPy78yzafq5bJGIumJ4+jT5hbPEvT7F8grp8iqJThFCU6EwtUVZENIFUon5IMz8BkKQRCn0FZFUVKMRu6MR3TShlSqcUqiwCV8LZV43kgcNU+bC5/D2XSr4r28HSqK9Fmyt0ZBswPXlzbj7oA6FXKx13Jrknxl6aK2IoyjAA4edeL2IFFIi2wmVG4DxHDY3ag3wpLWCuqauijmVjnC+kDeKerqPHYyJto7ipKbqRKh2G9fpEacKKSS1FdTGwWTE+JXTDF96AbNzGVGXdNKIzvIanW4PFUWNDn4rg/FtNW9pB0HeaHEIRIgdd0IhnAtRSwJHjQ/XDZm/ztNlSATW+ugQDycEC0/UIAq/KRIjAje9sCpQU5QQNECvwemAgxuaoD4XeOiFFURSY4ViWrS5OnasdUsys09cW9xG4q0JfHSUAy8Zwnw8wDZLsDivnePBt6Uin4Q1oxQgMGYKuxA1NQeEXLAAPLzS4Pvf5rtZWA4SgdYpYjnmk58+ya998SjvvP8y9993ATPYo5wMyM4oiFsQpUTtDtHSCqq7TBTHSBUhlERphU1aCO3hLx1plFLk4xHjF7/J4MIF3HAfXedErkboiJ4oMRdOk+1v+2Qd5WlLlBQ4pTE6Qo7HjL/2VertcwykYCeKibaOsnnfm+msHkEK6f13rqmodnDJSimxzsNQykmMjlHLS5D63IZikmEmE9JuFyU9UaDA+04OI2AVCziiCLUybhC4NGu/L/gPaa9F+Du8SZllBThIk4g49qUJZ7jgzHEEeVFS1fWMvOq1tCSOieKbF1hY7Fez5GUnpcLgagNSX6dRz/Ui36QUCFNDHXBRD+YirKUyjvqFl6iKKdH6KjbtEN1+F1JHOJv7kE5jqff2yC68THn+ZfLdy1TjAWka0z+6QdxbRgmvmdULGt+MAOU74YR0cgGfByes19IbIjFhsUKFhCE782s4VBCofoNAGOoQEuhNcIuVFmGDtYcGF+GEd0gboRCq9gyTzld+8hmrIESJMp7v3YnGhS2CFu0w1ZTbW/vUyy1aMubNq/sMjWa/jqhDf1TDhx8shaqqUUKiZ45CPw0Oje4JVbKEg6ookCIISymCk7TC2tQfMCtTuACZ3cBR+ppbswnLkP8RpsDHPnuSP/8/eLrsf/WJU/zEf2X54EPPUoyG5FOfHFjVV7BaUlxKkXEHqTw/FAikErgowgnhkzTDBldmU8zVi7iqIk1SOuurtPo9RBSDVOS7l5E7l4EA3egEKbVPiFQxZFOSYoBTFmdqxGBENRpxYTRi/b4HaW2epJTSw3D4ud1k3DfwbmNAG/+2sVKhWh2SjZQ82iff30UWBbrVCvO3Wc23Mp54xfIm7fcFf2iLnvTXktrfHF9VNdYYrInRqo1SC/Zv85KtI8+L4Dx2IbtXHLjWYl8WP5dSkCSRp1121zJEhuMO+cMBspN6NpTaoG4U2ANz7URInKlxtZlpfDbLcKMM2l1cXiC6Sxgl0VjiqA3OYcop071t6u0rFBfPMb14hmo4otPrsHr7UaJOBylilNNBs53f05NtXfcUr0ubVVgLOLBbJIB3DQZskc7zyVt8BrAImaRNr5xTeGelwInaFzp3CbgqKL0RhlASkZDr4KSPIRfWF/1ABqGagPBBhbXQSOogWF2AqwymnLDa0lzorLOlNA+uDRlVPT51RVOZmuZVGmMYjEfsDgYM9gfcdcdJlvp9GszxsPnkww4FOonDu7M+F8MakMydjLOJIRZ+Km/piDqMj7yuNvJrfkciQKEhvdwBn/zSQQrxX3/qGE++52XSpEVPOKyzfPgjT/LUixu8+fYL/Ou//E+pyxxjjA/JthZhav5fH/sQ/+GZN/G++77Gf/YD/x6lNb21Nfpra6jEC3vppPdnWL+Zu/BkyoAweYBb/HxwztDa7NExPf9JbZjsjbhy/hWG4zHl3UPU8dvhyIkDCuBhzUqv8MgQoGCjiHh1BYeh3B2QxLF31kPYSK5fHzPfl3+5IJhFIt6ofVcI/luqhSmuF8Cv6R5AbS1V7Vk5rwVUHIIszxmNp2R5QVnWdLvthSpe1/dv3m9HpDWRUtxsz79mec9+qFZCJXyC1Ks14QRIERxzzXUc9WhCfvYiKw/cR/KW+7C6RR1pz0SaT3GjPbLtywzPfJP87BlEbWmtbbB6aoskSVFa0TA0WlHTxAM1HT+4OF5f4S8gCNu5g11Y8FWZgnQT0seEC4eRLhT6nvdThHBFj7Uar12rGmkN0hmUi3HCYGQTZ+6drcoqBBonK4zw2rl0FlwRONRLjHJYB5FxzDNhHcIaZDEmURW7WY9nplvsZAlZbVCYcB3HcDzmq19/lmeee57h/oDlH/lD9Hv9oOnPtc4DY3LNHI/TBOcc0+kEYa33W0iL1NMQ0jvPMPVgV7BMOLw28msR/jOFA+d9SQGy+MDbLvKzCxTiH3j7BZRwWO2F8pP/5Yf5/LNbgOBLL97Gn/x//0X+/d/79/6aQRz+3Z9+J//0Nx4GBC9eOU5/c5Mf/4+/gNQRWioknszBFzOxwdfj4RWcQNiGu7QRzs47T1XkR8EJXOxIN2KOt2O2L1zi0lOfZwOJuOs+hI7C2fM5LsQiHNxQlDM7wmpFvNSnHk4oi4JWO8UFZeQwD52D4FBvnDTiYOTfIe27QvD/jjUHxjYw6+LCEtS1ZX8wZDyeoHSM1nrmUL72JTUhoj4/wGv7aRITaRk041cXjAGd8BNMSq9/Nt67G3UewoKWQbP1U9FIQZQkuF4PG2tM3KJyDlEW2L0Jo/MvsPf8V8ivbNNKY1Y3N2l1+kRRiogjj5PaBnbw2u+MQ+fbh4dvsQmsDEU9rPW1AwCswyqvParA+GiwlLUmUhJrFaXxFACxtNTUTKsOkSqxVpMXCVpKOspQC8ekSGhLixYWIyKEBil8BNIYxbBuY3A+gQ2FcAmqStnUU1yATjxOqxBOoOua49GIL2Zd/pevRggX8dhdEFP5b8st9wAA9wpJREFUYi0OdnZ2+NrXnublcxdoJynbOzv0ex3SNEbHmkhHqJvR9DZJekLQarUQzpFlOWVdEKVLKKlJIoNQDYOmDVw9/rzDaiO/VsHvazDMMWrrBE+85xw/9ZHf4hNfPsoH3n6eDz36ChZJLT3e/dQL68wntOCpFzaIdMpMBxaCX/7CnQeO+ZUv3Mnf/LNPe4sz6DbNsnAhBFU6vN9EWFzgM5dWzGoJCxxxLTCh8rtAIZVCdAXrJyXx7j7l1UuQTyBJWdx2Z/Wcg8Kh7Bx+bJpEQJQQry6TX75KHEe4SN4i96r380Q3oZmA7xLBfy188x3jbGmgmgXt1TmvZ06yjDwvSNIUrWPyPGc6zSiKgtYse8+fTXDEaaXQWtNupaRxhAyUCLfig5ihJk7MFXcxcwPd4CQHNhCc0YRQ+t9kp0d6so1NUnwUXE599gzbX/oc9c5FWp2I1a0tWq0uqtOGWKFdc35wcjXhdo3Qv77Hr2ub86WEe9fgbI2zhqJ25JUlkoJcxEzLFt14SDeKGY4sVweWtY2K6VRwdTtmZUWwtlIwyWNeuaI4siaxleOZFxWra45Tt2dkVcpLZ2OOb4xZatcUVYt+X9DTBbXQfKns84ndHkUtScjAKUopWFGCH9kouUfXob+BDEOAAdpRzmP3wakiwdLlnuQyYr/0RwnJxuYG9957iguXLyOU4Omvf50Xnn+Wzc0Njh4/zomjR+n3ev7Kh8ybRX4qqb1VGdNG2pi9Qcp4mHPkKCSJAmKUqtGiCk5seV0hm6a4z62/KP8/h6B2gqx2VAKMK/meh0/z3odPI51jXEGCIoo8nPHQPTt87plNGqv0oXt2OFDc0Vkef+Qc33h5ZXbM44+c884E4TxUh4cYlXNgJY4kKE0WF2p9+TwFEeLy/fqUzherMaF2sLIOITWq3WNJaSqVYPcuo9IY4jaeGWCu4HlaB4cK8E1D8huS07FCorptxCAmK3K6URRyIW68TsLqwhlDmWc3HfLvCsE/d67OSwV+p4R/459cbLWpybKMsqqxdvZ6iOPIMzAGR1zTlJSkaUqSxGgliSMdQqwXL9zc6AbP4Roj0jd5k5i72VWc1zYq1wQF+MQg6RxChZq+zkE+ZPrsV9j/2pfQxYjVpS7Ryhppp4uSPjoE56iVDPjlInNkQ8B1sDuvN9Aze+eAsxZnLeVkwnQypCxrbNRBtpbRSczXX+7xjefbvOuhhPtOVtRthbAa2bUoHSEK0MsKvWSIOi3aukW6kuFqSb/u0lutaB/JUCQsRy1a7X2s3WV8tYBhhY4zMtnm2ZHm69kSd0YV9y0ZzmctztuI3crw7HSfu3o6hGaGvguDU5qBSGlpy6mk5LfO7bHSNiwL8Kywgl6vx1vf9CB7e3uMpxMefOB+6rIgywpefPEM4+GIt775TbSCo/DatlingABDJFqihaTb8VnZVVUwGDjyTLGxqel1a6Twm/jjj1xf3Oe1tCa5yQjB9njKl188w9UsxxhIEBhpwCriRHFbf5mH7tiilSR8/B/8Eo//lx/iqRfWeOjUDh/7Bx+fEQc2sMeP/9hXcMDHP3uCxx85N/sbB2p29wBaCYt0FVY0Mf8irAkZoq98wpoAaunrAHsArGHZVQgUOukgpSI7/zJlVZMeuQ3V6fvENdH47IIS1yhjc6Mk9E8idES03KO4uo0pS2R0WA3fxbXr0MLnCEwGw5uO+Rte8DcCoChK6rpGKUUcxz7m/TtgCbiQsefnsnfC1rXFWIfWEVVlKMsCY2ra7TZpml6nxWut6XbaxJEK+QCNLbrYz2tE5yHpqos5mbOkmUPagnfD611BcDfap3RQCxBVhb16kezCSwy/8WXiMmNp6yjt/jJOaQSeW0UIibQ+zLCptnQwW/bGG5ZwIaImbGxWOqSVvhSgkzhZh0IeDX7uvABcTNd33sFqCsN0sks2nlKVOSJqIXp9xNoS+5M1XjjX4W2PdlhOlznWUvTvNagjE3rC0KkVaRzRNZrOHQWttiKJNDHQNpo0MVgnSe/UJLGjHQtaUhDfponMMqZYRa9NcGVJlQ+opxV5CUfZ5i5b8H31Dl+sV9ipthDO0ZU2ODgbQ82BqLFSsl922B+0iYTk5V2LrGtOdBO0cLgAT22sr/GOd72Z4SDnvlOnsNayv7/L9s42SSgKdCCAIWy/0oFF+ygkJ6hFjbYCh7coOl1BtwWTrGavknzzTMrORHPvHRlpkqGVJFKSxx89yxOPngYhqISfb8p5fNy7rCVWGO9Ad40tKbGyAuFQRmOt46UrO0ymBdNiyitXp9y7scygLtge57z5+DEujYesDnrcs9FCUvNL//eP02QON87nGYGgAzD8jR/7wkzgS2eppUHZJl/Cj58Vcl74pQmFWoCeZtTrCwqMFQ4V3leTgyJcgICcwQz3qKsaWxWkR04QLa/jZOwxfamohM/BUM4hrOetks5hlE8UFEIRdfsUwwlZUXgqdNFU2/L3a6AnXyfZbyhKgjbloeuraW94wQ9Q14aqqkPiSo2U4oBT9fXU/hukfLHZAPd4ugWHMXam6V9/fwFCoGQwAN3C99ced+CuB7/zk7wBbETDAnBoawR8g8Y0YM8v/8YKv/2Pezz2WMnjT5bo8YDp6W+QXbmAFLBx8naiOMWqhvtT+YSXoG3N7A0hWPjrhn1oIKEmyQrh/AZC0H5DYo5wEm0DP0tjyVhPmpWVOW68Rz2ZUleOWikq3SaPlhjZDZaXT3DXW0/CtubF3NE/mXLXSou3GYNSDp9xWwc4wId6tmHG1xIjaC+Y3C3mwlQAfQdCJOC69DYdpjbU4yF6NCStJQ/ICpPHVKmlzCUvVW02RMZxM6YqnKckEL54u3AKZRNyp5kUkJkxD61r9iaC0nXoCL/ZCufQQnPbsduo1ivSWCJlRKd1jGNbxwCDlOq6eW6ECER3/vmU9bFIVoToJRw4jRKCVqvN2oql3c4pasukWubplwQn1sYc3ciJhUPpDlbVxNYGPURSS8BVaKuYEaMJB1ikVb7QijSAwDjDpf1dHjhxglpVlOYsjz5wJ1fHBd88f4nvO3UPL+1dYmcw4tTGKlYJsCJo5IbpJGM0HLO5sYHQwW/hhC/f6ALQ4iQS618vwofwGuWhGuXrQ187MR2NnTpfZjOXr/D00U3zpY9DwRVrfX2KiyWiLBB5iV7fAhmSMGuL0KE4vViY8y4kPjqBUDHJ0jLZ5cvEZUGStjwNyGwxu9nqn2X6Au3vZoy/GZuqKpEBPinLgrKc74YNmVXTvt1N4CDvydzsrOuaIiRu+dBM7+A9zOJw1oYEj9dQFewW2mt5sl9/+gE+8i/vJ8sVP/0zLf7J/3SR9596FrOzRytN6fc6noU0hKO9LtYSAicEOsSLOycC3mqwskLgNTUfk6+oZY2pK0wxxmYGU07Js4qizqkM1ElCtHYna3ffx6Dc5NmvSZxOkP0ljncqHt+MaHULhKhmEIuHL5TPioUgAAkbGQvP2jy3DFw0cw4fv+/5sZFJhI4lreUOnZ2Kjk4ZZ7tsnlxm7cwU9xIIoVHEZMUYk1coZ1FRjIoTROIQsePSCAoT89gdEU+NK6T1G6BPHKtw0qJlm0QakBUe6479+wnE1wfJv7woq4UN0UcWK/yGaoTDOU8poZ1BAFpELLUND987pTQVRi5xen+VzlqPZXWZ6bAg0VPixKBIUZEKuQwK6Xwim6UprO4FvQt5FMp6C8cIi7EVaStBEtFVkl4rpagtqXQoCRGOwhhG4zE7+9tEMqaVxohYsX1lm2eeeY63v+1tHD26RSQVxkmGo4qro0sUCISLwlgopDBoqVntdthIFdLo4Mz91pufAh4i9RQpFlnk1JcvMp3mJFWO6C1jx/uIVgrpMiCpBSjX1JzWcwNeCNJOm6rtC9skUYwN0HATAtpQZIjFf6+yHt/Qgn8GGDiHUt7cVUqTZVPq2lsArVbrOoz922qOILQP9qQsK7TWRFFMURRz8ixxPfGat0yaRRouOnui73ALZu5vP3eKLPcbT5YJfunfl7z58a9wpLuBSlOEdLOooderVzJAZDZUdfIRRcHZ7TxLp3OGus4xdYmrDHk+YTKeko9z6jqntdQjufNBNk8+SNla47mXFGtrbSYXK8rIsXG8D6pGCEWnM/FCYBYvIQK/i8LObLewGQd+dTFTtWYMKUHrC9aVDM505zw8JSxCKBQKZMkXPpfw9G/fxsoftSzdN8GcHqO6Ecv33ofYfZnh1Qu40ZhUadIkRadTllqXmIxSVpZapElJr1sRRQUUQTMEEFXItNUhWkgGjbZk0aE+f8+gA4xRSce4MuzlZciesj58UxiUdSgp6MQxnThiaSVmvJezP3qe7/2et3HkrjuJxApf/ewOk5f3uWN9h5XlXVJiIilRqo2QUEuLlb6UohUOXwzch9iqwKetnaIXd3hle0hua66Mc565vM1wXHBhMOHrF64wmI44e/ad/PQv3Mlq9HEeOfVFlpaWSdoJuzt7fOmpr5EVJe9/33vZWFmjAJ67sMtTp5/nSlZhakU/kUxLh1SGY50WJ287yjvvPkr3VUIgb7kJ459ROmQQBc4ZqnFFfXpM0l2h2t9j3G2x2nsLTsZhoQeoaMY2Gs5VitbyEtMsp64qz8UU9PzD1p47zNF4TXtDC/6mSSkxpsYYTV3XxHFMHMczoQtcow19e82Yg4LfWos1ljhO0FpjjGE6Hc8sj3a7PeuP70sjfxccVTfBxW/Ubozqv1pzvPf+F/m3n3sXWa5opZa3HfkCqTBE3dhX3BJe8Dv7ejrKfXx2Q26lnJvTORiJsTlVmTEZjpkO9ymGE2wsaG2cZOnOB2ltHKcUR1FLbeLNNrs78OxLU267N+KOuztsbJUs9QqEK7C0gqMN5mXQhId48ER7AMKZmb/DMV9QLsSbz53IIkBRYu68w0NVCEEhJF/+dIef/ttrVIXk87/s+Mv/N0uc7mOkolzaYGtzld5d9+EmY7JLF9g/9wrVpcvovuEDd6+SLkusTthaS4nKhFoIBCXKKYRpKIprnGjmdO21Qcc1rLF+bihnEQgKAy9d2uVLz59mLy8onKIvJRPny26utdvcdXyDh+88QjuCTr8DtmTn7Kco22O6px6iXN3kU5/dw/UvE9sz7Fwe00lz+l2HjiSoBOFaeC78hvrCoK3wdRlwpCju2jrK5555ngujEcMSvvT8GUwtGNSGL710his77+Vf/PyPkpcRafQ2jh39l/R6v83Fi5d45dwFBsMh33j2GVZX+nzfI9/DhIqXh9s8eNfdpJeusjfJeeTOE3zl3DmipMPDJzZ5eWeP3WlFt3e48/S1zmHhjDe0GvI859EtZWqYjjF5jt7bZef5PfpL6+hjt3mSvzC/fMgsjfGIFQLVaqO7HbLJhE4UI6Sci/4F1MCLjVdfj98Vgj+KIrIsYzweI4QgTWOiaE598FqzdW/WvLZugrN2dgeEENS1x1qNMURRPKvLe6NCzi7g5aJx+n2L8vU1xcqHm3zgrc/wj//O8/zW08d514mv8Ej/C/RWj2M0sxJ5tzrJbqU1OQYmOBxxYAi0zNZispzB9kX29/cRrQ7p2lFW79qktboBnU3i1S5XRx1+6aOO1U3Bh/+wZLXteM+72vQ6hjge0loWSGcwlcWJnIZVkpBY1ZDoeaXXv0NnwZga5yzWGGTTH+M3BGsslTFYFxx8UpKmLZaWlnCxQOBL/zlp+cbnO1SFF8pZJvjsb0nu/iOCQWl4+mrJxqlVou4Ssl+h+yvER49SjzPK0mA7BWf3S77yTcfxtYqTaQGVRSqDC9CXE54AzhPQueC4DNbIwhxoggOMdOAk07zm7NUdjq8fodrbIR+Puef4Bs9cHoBy3HV8i93xmN1JQbffAq3o9ldRlWPvua9QlFPuueO9tP74cVZX16jHx3nulVc41btEvb+NKCd0Om3a3WVsLFBCI9B+nxXeOe8kIB1HVzu884E7mFQVFoV2niSukprIGf7Rv3k7eenXbl7FvHj1nfzxD+4xyibUxnLx8mVarYQkSbylkQO1476tDbAFV/bg3hNr7OYjUF1ObC5xbn+PvK688/nbhVeFCIylYia4Z24NPEeTdRXdOGIyzdh7+musraygk2VAYKWHhxpscWZJKkW83Gc0HpMWJXGaYiQLjt7X1t7Qgt8Fx2gTyVNVNdY6yrJECO/gfT01fd8E1+8hLmw+BVXlk3RarZQo0teHls6ET6PhS5yz37LQD1265dZwiQgh+MHH9nj88TGXPvnrLMVd4qTnZaVtLnszB/Nr7GIIa7NSerpcZ7HCkE0zxttXySYjonaX/l0PkG4dIVk7Qry2QVX3ePrLOceAuqpY0pa11FBc3UbVNVupw16smVLjbIqQk2BXCE8zPKNJsAG299EmpVYBJvTvQgrA+kIjOF+cRzSadCAAk5E32a0x7O3ukHQiWt0VtJCkxvGu99Z8/mMWU0qixKLu2GenCsG9ecl4+worqz2kVkRLS+jlJWqh2blo+Mw3p5zf7tDtWzaji4x2zuEmI3QUEceGuBUBKQKIbFAW8GGpjvoa3xMhMipYI6YiqwreedcpOu2Il69c5p13HsE5RSkMbz2+wWdfzJgUNQjtk+DimPbmMuZyzeC5p0ltwVvf9n2o3gZ7e12iC31ad95GvzpPfvkSk50rjHafReuITn+NVn8VmfgNUQayNyOhnUruObIeKLc9v5FAUAvvK/hD79nhf//NepYz8IPv3mZzc4MVs8Kly5cRAm677QR33naCKNJE0xonLHlVklUlmamYVjV5WVHbCdtZnyKviI1COvVto6mNhi6tnxs+YMH7N0QIf3VCoNoJva01ds6dIXnpGEv3vQWhYryr2M18XM26cAJEmhL1e2R7Y+I4CQheU9LxtfXzDS34Zwt5Qbg652b4ehRF36GQzoNvQQA60uiqxhhLFEVorQ7kFTT3dvjEjrKs/MQNPB3fjsZvreVWFYNZqKgDU08Zv3wRWU5pH72NCE1pG9oHMZts347Ib55dNvHM1vtIyuGAyd4e0yLDxjHx0eO0T97N0sn7SPqrCCLKOmewP+DyOcvGqmJ5ueJ731vSTTL0uAJTQe3AOHAVRZWR2wzn5syaDk3Dx4MEqQQqjrG6g9Q+LV8LgZDeYStEw33t34eWGh1rVBQjowiEIM8zpqMR5aigzq/S6vVpxyn/yR915OVFvvbZDifetM9D77WQ9FiOBQ+uGYwZMdjfpdVqk7aXcDLi7BXNZ88YKtkjacFDdxW8ZTlmcvEI1bhHlVXU9ZTppGLvqiZOEk6sV+ikxIoIZb1/1ywEGjRTQTbJfc7gHa412BqcwhJhnaQsa6aFpSxNEEYOJ63nJJJtljaP4EzN/gsvYl2HrTc/wkavx5vfmrC6dhxRb/DV05cZDy5xz5ElRLbLYDhkuH+ZuJWSdldodfuoSOLw3FXNhux59vU8akVInnj0HD/5kf/Ar3/pGO9/+CJPPnoWECgBJ08c587bb2dtbY048mGP7TQiacV89oUznNnbZ1iUqG+c5vTVXZxxFCanp2KWkhRBU/35W2/COaIwzD5C6iAM0+SwIKC9ssR0NGb/6a8Rra7S2TqBdtr7B2gcxcwXl1SkS0tMxlOmRU5LtWZXfa0r8A0t+JuNsKoqiqJYKHEmMcZQFAVKqQOwz+vRvNY4T59y+MXXaqXzeOCFTQnmG04D6+RFAThaSUocK74dv5M1Cxj2LfTdOk9hkF86x+TlM6ysrCDTNs54nvYDV3Izq/ZbEv6zwuAAdU0xHjIZjynykrJ2xMtHWbnnFEu33Y/q9qiV5Nwlzd7elGOrBYnIeeC+mK3Vik5sMNpgbYSmjW4ZnDQ4G4OYYqcGI7c8/bKoQo3eeb4CQiAjbx3quEUUBb+LaB61iUo58ADhbDlLxknaijhpUQ5GTCZ7GCEwScXtnQ5/6/8cY/7TMfuXd+iubNFKUqxIiFRNVSZMd3exVYGpp0SdNttjwTMXLA/daUjaEa20jV47yuryKrbIyXZ3KIcj8lHG6GqFLiWrdU1VOKa1Zb1naGnHYRFiDUdMW2tacYunXj7LuZ0B2+Mpn33xHKcv7ZBXFbGUlFVBP44RyOAAD/H5saB9YgsuDRk9/2n2Xc7Kmx7l2JE1hDZMRzGXphvs2y7vftdbEINXGJx5jnrnNMVkyrQYkA7HtNMI3V4mSn2RdiubCllN5Sk3C69/4tFzPPHo+RmUIvBJj8e3jvpQWCmCM14QJyn3rm/w1JkL9NMO3bTNpK7YWFpCuBrhLCePrtLq+voK8tpwztc8oT0UOCkNZ3f2GNUmONobm0ugFKy0E44v91ndXOPymQvsP/1VWu0esrc6yz1uInSanUIgEHGKXu4z3dkjrSOE1t/S2ntDC/6mGePx2jj22H5dVxSFZ/FL0xS9EPP6+mj8XC8JRXPtWazRob6FRrOvaoM1GVVV0+2kpEnsY7tFg4c3k+NWbTz3qpOjwewFYKqa/RdfoGVr2ktHwSlqucgKOtf45+eHXQAWZ+yCA2oOdn7sM7fxyS8d47GHL/CD7zxDkWeU0zH53lVGWU2ydZz1+95M97Y7Ee0UoftYIcmnOV/67ZKrV3P+4AcdRzb6rN5RIl2JdjVaxLjIx+ILF+Gs9tEtJFhd01ldRyWRT5QRnmXSF5kJIaQh4FsEZ+1s5GbetrnmvFjo40AchZAoKUiWV9DdhOH+PpO9XbpVQdTpIKqaZZGQtmKkBk/xbNBxQry+wXgwZDDcpW8zTi6tcmqjx8uXa2pVstErqY1CRQqpu3TSmM7mcWpb0z6ZUQ+2UaOKqxdTLl81xLqillO0gjRRM4uugQ+kc3TihBObx/jiCy+wX1mIY164ukshLEJrzg6GvOW2ddY6EVb4yscqVGtzSJTs0ttIiEXFheefIhOCtbe+m9byGknX8b1/YImXXxLE7S472XGyE6vc+e7voTz/HKMXv8748nnyfUfULWh1FWnSQaUJKm15X0DzFsTibG/mkpwLfyVmWkhDSS2V456tJY6tLhEbX+nMCb8WvDqkaUtF1DiWDjhDwpqYmctzfv3ZIeE7F/5wQKUEL+4N+PyLp7k8yplmNb12m6quMFXN1lKXYysdWvelbHZarG+ucOXlM+wfPUH/gSWEiObr+gAU7Hzxo36XajCgzHOSbmfW2cNLaB7evisEfxRFGGPIcy/sAZIkIU3T7wB1w4yDb/aJdxI2f9uDQvHQ+weoxQlsabAuw6HoJPK6rb2xLJrEcy+a/ZRusgmlg5pZCsoNmwvXk9SQTyknOVv33YeMopBRC1YyC1Fr2pv/1I9ycbfD0bUJT/+Lf+vHQPjC2MqGpB0Ej/zFH+bFC322Vqfsj9PA5ng3/9Nf3OMdtz3NpMz43OXH+fKFt/OBDwk+fJ/12bYIplMwhaEYj5lua9751pqNFYs0FU3CmUWCMjOrpCkZGOJzPA9KJBChUpoIzs1mNftezjcu1zjnFgRC87qca4JAgxB1FmPszEntnEUiESqht7xBXebsDfYgL4mEIum20VKFzWYeUiqjmO7KCnErYbS/j5aX+aE3w5lhi099s+abpwVHNxX3r3nSMKESUKDR9OME1jo4dwx1u8E+/woFU85fjKmnCXcfyVnuFGhpsMqGHAkBGu7b7HB86UFqbCjs4sNn/ayJaKeGWHnaaucIPDcNXGQRWtJaP8qG0Fz5xlPEdUX89kfRK+tsrUxYfiuo1HD1pYRXXhbc+WCbbvsd1Bv30zIXqM5dZPLyMwwunCZ2S3Q2e/S3NkidxsoYJaW33qRFWh2cwm428/0WcFDTEjgiC6WK6ChBbLwzudCO1FiMEOB8XogVDUlJINSeqduhGlkzVg18I3xGuZ8MAoTCiQonamojeOXiDvce3eT2lZKnzlzmPfce5/JgwtndEe+/707ODwa8sr/HevcYemWF/mTM+BtfYenoCVhbC30SIevZKyhGhozeKCXtrTC5ehXVrpB6sZhRM+Nvvgl8Vwh+rTWtVosoiqiqiqqqZpr+6xXN0zSBO1Ba7RBP74Ihd8j5Yn5UAwVVtfNkbpG+LixvwSAEMee0XzQ4rjE8btJ33wHroHKOpbU12r0enmAqEBrbgye8KQh9EFzc6fDmP/WH+fpP/2uE1SjXwqoKi+M9f+EP8fz5pdlxTU+yMuJjn9/k0Ufu4pmz38Nf+8mHyHLF//pRy//cnvDDTxbkleZLnx4x3Rvz/d8f8/3vlyx3NdpVOGNmWZRzK2TOwtK0+VJwQdNlHu10g0FZFPKH1UpoShg65wMGJpMJVVWhtKauK7TSxHHs4bokYXl1lSLPqfKCOE0RIQZ/VjkxXFcpRavVRglBPplQjHY50e3yoXf0eOWKYveqpepbYuWViGbDEkrwi7/c5ZOfjHj/99f8wPe2UDbDLk34rY/vMJxkPHxfQVtKFF1kXKKExLmaNFK0ohjhFEbWOKcQGIQA6xKEzBEm3Gm2N85H2AWYrL+6gnOWnTMvYEzN1jveR9TfpJVorLPcc7fgts0OHWXZqVK+/HTFW+47xeYDR8hP3k012CW/cJFyeJXhIGFkpmi3T9pK6SQtz1+vDIRNaKZ0rE74+k//b9dMdl/o52OfuY1f/5LnEXrykXPEBoyLQoZtjXAFlPCLn7mNTz51jPe95RWeePdZhPTPWgp/LeUkygl0cOrbyPnCQ8KhbIGwAkQMdU2Wlzx4x21UVc0r2xPu3lwnTSPGVc3a+jr7FZhpiXQWp2M6a1sML5xncPo5VvqPgPbKiVfeLMo6bKgXIQDV61CMB+RZTqft6R3mRvirK7NveMHfwCkNRYIKjJdRFB1wrr4+mr9DaUkax76KFQuIT6ho8lruMxc2lqIsKeuYVC3E+wOLpu68F0FvPQAJ3bzfNEc5n1zTWVqmv7KKiCNfCjBkp8prEJ5G6DfnX9ztIGgyFytwAuUML17oHziuGZk0rvjBJzRrb/8+Pv2JexaSxiS/8omID31wQpEN6SSwdiympWq6G6DMBGfUDRzeh2x5h2zAM+fmLbySawU+eN/RZDKhLit0FNFpt33pP6mwIeTTmJrxdEKkFb1uB6k1SZKi4/iAH2gmwcP1hVSkrXbgXqko811WogHLx49TuhitGyf7/N394sdi/uyf65Nlgp/+Gcc//SnJDz0ZczTp8egHV4ncGkpe4oXnBkyHLd58tyFNBELECJqqcMYTkblQTMaBwODsjcZ63iwCGcUsra/jhGX8yktcRbH6ru8hXlpHCstqv0YseZJCIRxXdw2f/6riAx9YobW1SnvtKO31o2RZRl063PYZsue/yt7Fc+goQbdbLK+s0Vnq86Yf+2NzpWO3w5v+1I964b8wMh/97An+wn/vawX8bKgV8EPvPkclJcL5JM48q/iFT6zyf/0nj5FXMT/7q/fyd//oP+P9D3zVb4yRL+yuVYxUiv/nR3+QT3z1Pp545GX+xp/9BlJJZivdgcIQScs0mzKtDHlVMZpOmY4nTMYjrgz32Z8MWG+lMxVNtrv0Oy0Gp59l6fb7Eesb3tUsJDhfpOdv/+0eH/94xBOPF/y3P26Jlpcor27TqmriSGNmUNSCMniD9oYW/D5iIeh5QbhHUTQT+s3nr1eTQpImCXE8L7oOgRZCSMwNKmfdsP8NvICgDlpEFPkqXI3PcQZFALgQSuoWipzcyn3CTwGBH0SztL5B3GrjgrG5ePCiADi6OlkQ/o6jqxNqEeHpFQzSeU6Yu47u8cKF1dlxW8sjfvC9l/mBx+FH/sRJ0Akf/GDFz/wrR5YJ0tTR7Qx45psVd52suPekppNKlM0RtUYIO6uKNNtMD2jO7uD0n2mpB9D419yMMWSZp9P2meCKpJuQJgndbpcoSWZZ19Yaqsq/s8lkwmA4pt1ukbbasySr617AwkdOKOK0hYpa2ImhmmZE5gpLvQjluuFIDxMh4BOfjMiyYEllgl/7pOLxJ6HdEbz57T2sa1EMWqTFgEsvZgzzXSYmo51E9JRCCkElwZeH9FxFngDMBu76GytIzZhbBGhNf3MLaSWDV57jsqhZf/h7aS+vgVSBJkLRa1U89KaUca4wNuLzn8vor2juvW+LthFcuGDZuqeNjiPklbPUwzHZ1QsUSYvOUu9QpePa9utfOlgr4BNfPsYTj76CpMZQM97ZYf/yFT759NvJK8/flVcJX9j9Xj50t7foZF1h6wprLf/w59/LT378vYDguZ/fwtSWv/Xnv+k17lCyUkQRaxsbfPXsWXbHJa/sT/nEsy8zynK2RznRN56nncTce2TLJ2tZH3rVW1ll+Mo59l74BmtLj+CiyEcZS8ff/Dsd/sH/2AIEX/+GxgJ/469W2OGYoiiIVYxUzDLOv6sFfwNdXCvkhbi55n1YqbpXO86Hc0vaqS/MvChcPK++wpT2W9xovEDPy5K0Smgl0YIpYb1TKTgyGwNchNj/a6fBjSMA5t9IrYnbPV8UWjSWi7vev+AcT/+Ln+PN/8kfmWH8X/vpnwuEWAJjBeV4SDYc8gv/1f/Ih//uf87LV9e58/iI3/7lF+isbWJ1AlLiqPjwhw3/9Cf2+dVfSzh5LEPUe9S5okOEatW+glioNu1rwVbXvQcW/CezT4NaL11w/tGQ1wV49iYj31w7z/NZprVzDiklrVaLXq9HmqYopXDWMhqNmEymIXsX4jim3++TJAm7e3tMsgxjLEmaesqOa8Z/cbN3+IUslKDb71EmLaZ7E8aDKbqsaXfaPhdE+Od57LGSf/kzLbJM0Go5fuCxwhPeCUElDE44ktUud7+1S2t1Hz02PPvMgGI74h33XKLfqnFpEkjP8D4TfFy5QHCYyn/AqkV4uNEFSuetIyAEg5deYqA08s3vIF4/HrKea6SsuP/+Fk4oauvYn1bQauFExGCn5kufhSd+6Bidty7Rz99M9tKLXNi9TBT7utGHKR0H+uYcH3j7BX72mloBRoDIcwbbl5mMxsilFd7/A5Z/9wVLlktaLcsP/ckjHP3gk9R1BXmJyXPqPOM3//5DsLDZfPzzd/CX/+Cv0d7YJIpTlIFICO7YWmcw3kHg6HbX0RjacZ+N/ipdCjY3V9lc7uKQobaWgVaLfn+Z3Ze+Tue222gfv4OmCthHP54cvO/HE/7mX4+Il5bIr1wmqSoipefT/Vov9DXtDS34m/atwDhzOGVRQ7wxLi+FoJXOtf3Fe0aRJo40ZVUdep35YvcXc8y8igeuUxtDUVakcewXGF6D9WGGMWXlHW1KLjqQxSwy4KbDEFaw3ywkqMWIBjiImB98gqf/xc/5SAnhuUlcWZFPJ2T5hGxaUmUFotXhl//5J+jdfR+tpTVsdDu1CjVpASk1g6HmjpOGH/8vdrhwtsJZzYN3WU8x6wovkFxw54VSiQdMkEOU+YZX3QXnXGOUv8q6ONCKomA6nWKtJUkSlpeXSRJfqlApFShBDJPJhJ2dHYqi9Ni49Rna/X6fTqfHxsYme3u7ZEXuKQqSNFRKOsT6DNaMY14PNkoEvY1VsuGYbLyPM452u0XU8vV7n3yy5J/+1JBPfjLmA48VfPiJAl/8HUxT/B1FlCacvCeiLraoLm7z/DMZt905hmqXhAmtKEFISS09DbC11lN132j+N2O98JdwDqUE3bWjSBQ7zz+DsIaVt7wbvXEUJTxebVQOQpGoiHe/O8UqgZOOV65Izl7OqESEjDTO9alMhYgUnW4PhOBrP/1zvOVP/ZGDGP81PfvwI+f4qY/8Bp/48lHe/7DH+F1eMb56hf3dEa3b7ubYOx7ljpVVlu/e5xO/nvKBD5R86MnKB1dEmqjVJnY+kfLDP2x45v/RjIXjA+86x3BviKkruqsbtNpdYhxb3YT3v+l+nA1z1fpyneAZVV0kaSkPqc0IQaSit7rK8Ozz7D//TZK1I8i0g0Px+BMF3/iGnt33iccLT9LW68JoyCQv6SfqUFqmw9p3heB/Le06LHeWTHGItrMQZqW1otWaa3GLfgOBII4jZJ6HyI+5kG+u02wwUvgELmZ8KwuORYvPPnYOJcJ3gH/bKUUlAUukS2TDf+/8eU0W8w3l3U0k4UH75bDnD81Y8umEfDRif2+PvKhIjhxn/aFH6B47jmp3kEkXJ1IUFksV+H4ErpJcfGXMb/zyhD/0pOSt9yqcsaTUvv+znckhKPFJRwHSahA014y2p16zDowLvyMoLcTu8Lqlhw5JcN5Op1PSNGV1ddU/pjGUZUlZlt55224zmYzZvrpNHEe0Wj208tTGVVWzt7dHnhesrK6wvr7GcDRib3cPW5tZ0EHzbq73NzWbnUYKEMrQ66fU0Qr7+3sURUHfLRElMUIrnniy5IknSo/P+6eY1Qj2FMUahC+oHrUk73nsCMdPDliNT2H3Xmb7/BU2ejWttkAhqaXPT7iVsOHZahCB8tk5RALtjQ2cEuw+9xyuVqy/493I1U0QCk8IZ5AGltsSqwNzpy158EFBHBUoV2HLkuG5Z+l3l5BJPIP4nr5O2C+8P3wNrScePccPvuesZwDNa7Iru2wPBiy96Z2svvkdqP4SSHjiwyU/+OEpBkNmCoo6x2JoRR0iFSOc4L/5GwMs8Esfb/H441N+/C+l7H/trex986sUxUWWj2yRdnoIAW2VYHQo5YjFSushNCcx0m+OEutpsPEp8SqOWF9d48orZyjv2yY+1sIh+Rt/PUM6x0c/nvLE4yV/68enCCewWpGuLjM5d5mirIlSPVsnN2u/L/hDuxa2AU+fTBCwTejYYU0ISJJoVhPXcY1QFI4k9r4FYwsWiZXcTBt3KCHRWlOZGlMffHHN3eu69pEjSRQuLXBoahNR1QqtLZHOIfCsLzzgoQ7O0MGF+3Dg98Oe+NrPZs7OvODy2XPkpqZ78m6W7zhFunGUuNtFpgnCaU+BICqQFoNgup9isoyWHrPVE/zQE12OruSkYoKRCovP3pQB1rJESJsA1oeoupBU5ebbs3dLQmEMeVUHwgJB6aBlQyF1bk3rbyg2lpeXAV/f9tKlS7TbbTY3N0mShPFozPb2VZIkJokjppMRnVYbnaTIJGF5WZHnOZcvXWJtbY2lXp80Ttjd3WU4HNLr9ebCv8mcnj2JL0bjrS+BQiGlQLY1S0qRTcbs7uzQ7XTp9LuIKPiXQi0BgQ/rdcJhhUVYn7wmrAJR024L7nwwRXE79d4Gz595hnp8nk2V006CghG20lvlYRV4R2+lBNKViCims7qBRHL15RdwzrDxru9Fr6z7fAoZmCydQBkH1nLf3RJ7B6TOQK0ZXz1NvneVpfVjc/+IvTa2/9qOzOE8XxbAMtjb58reHqtvehfrb3kTLLepMAhqSjslryfUrsJSY1yNw2LqoX83zmcV/6WPXOA//6sKqVKE6LHy9neh19e49NQXKV4+x9qJLXrdDqgWPlHDB0l7q8ngpLdWfUgq+Cp3oQCMhFZviWh7QH7xFZKtLZzyVBx/68cn/PW/noc15wfaOoFotYh6PbLxAB3Ht/SWfl/whzZbcIJgvnuGxYZNsywrrLl+ignhoZw0TWbXuE4Tdj7Es9VKMdZirSf/ciEFUghCbd0WWmtGkwnWVNfmkgBgrPWU0kk0TwgTEWWtqI0kSSxKF42bbb4oBIdL8WuuPzfYmwU1/7uB+d3BEwC/IQ2yEnHkBMfvuItk4xjx8joiFLwR1hc79xq7BafYHzp+8ef2aKspf/BDmrU2rLUnKCMwtcSKJnKlBuvjma2wGAeVtUxNTVnXoT+BFRPhM3KlAq1RnQ5KeUw4BVQc0YTEzYrTHOK7AE91UZYl3W4X5xznzp3jhRdeYHd3l/e97320223G4zH7+wPSJKWVJlRFxt7ODhO9T29ljW5viSSOkVKSZRm7u7sURcHKygrr6+sMBgMGgwHtdod2uxXmVBhz5wE2I3x0hwrWSym1Bw1aLTpKEmlFPs2oypLecp8ojcNbaqLSBcJqrCpRIR7XQ/81woVIMWVwSytMOrczcJBWr0Bd0ukmIDQE7vwD43TI/JlZGQQYzyWedExBurrMqssZXTrNxc9att71XuK1LYQIvEjSEyYoYWl1/N+uVtS1YfzKGVKnSDreJ9TMRdGgmTeY002Mv6gM2c4e+3t7bNx3N/0H3obudchdwbgeY12OoaCmxBIYRKU/2za+ISFm0CFCEtUpQljS3grtex7gZNJm/5tPsX3+LGapy9LWMaRwCGnBRUjn56ZzoJwfJSt9eqFwarbByiil3e0weOU0/fseRHZS7+8RCgmzoAYAJcBoTWupz3Q8IssydLfP4SMyb29Awb8wI16jH9UBWgp63RZKCqSQPn3cWnIlyfKCujazy0oh0VrRaSUkkU+yEOJwIEEA7SRCi3YI9bOUVY0xBikFrZavsSsEZLmipFpwps1nt3OWsjK0rfUJSEiciZkWnvK2o0qcmCCcmTnnnKvRztPfHqbF30xDuPZ4nxjpQuUknwSEhVGdoTaPs3Lb7SytHcHFMUIYcCWO2LMOWoGQlmlVUQ9KipGlJ2puOxIRS4d0Ga5WVNZQGkNhKkyoCiURHhpQYcorhWu3EVIF2CxsTk3oqZSoKEInyazuQSMMucnUWLT86tq/n3a7zWAw4PTp03zuc59jZWWFbrfLdDplOBz6TbvbQWEZbA+hrqip2d++TDkds7KyRpK2kJ0O0yz3oYp1zfLyCqurq0RaMRqPqeqKbqeD1j5Kx+cbhFR9G8RYsA79i5GoOKGlI5yKKbIpg919Ot02nW7XP2qwFpryfsIZjBQY4dAOBDWCGgwoLTj1UB/t7mb/uZjL289zZ1TTTwRCGrAxRtVATWQUlfJEdcLNs2vn/3z5TUugKxCWSCn6axuA4N/+aofP/XPBEz864of/RA/pNJWSHqAS4DA4K0FY7HiH/NwZ+t0eQi+URmTxPfr7WjTS1YGOQ/mNwdWMd7cZXB3SvfMU3be9DbnUZmBH5PWAwo5xwtuFdrabzFeHL7YDs+g24fHTmiljV1HVFZ1omfadd2HbXewzS4xf+gZVdY7lEyeJEq/ENNFXnvPIa/0N/YUPnghrHEGr32N44TJ1nhF1fFlMo3ztgma+N9TgCIFspUTLK4z39ugbc8P53bRvW/ALIf4Y8LeAB4B3O+e+cMgx9wH/euGju4D/1jn3D4UQq+G7O4AzwB93zu0tnPsu4NPAf+Sc+ze30KPXKu+B+UtVStFOkxAy2eCuoJXnEMmLirKqEEKQxDFpHJEkUaBTaCb9QVHaWABKClqp14B90k+NsRbPFOqv75wj1po8JFLNsO3ZgoDa+EItDZuztW3KSiFlTRLVQIh2wffJFiWxBXED+ueDoycWfp//f/5r6IcUKDwnymg4pO62Wds4QrK6gYg7OFGDjUFUOGIcikjUFLnhi5+K6UVjbr/D8X2PwvIyFFlJIUpmxQC1xkZtL8hpClLPtS6lI1Sr7Yuh38BrfZASY8HkuQVb2DlHlmW0236jPn/+PF/96lc5c+YMy8vLDIdDrPUlNDudro+AqiuKLCPWGhkrqrJkMhpgTU27t0Snt0y32ybPJNNpxu7uHr1eh+WVFZTWjEZjRqORVwLSBDEr6tLoACF554BckjgpaPV6xElMNthnOsmoK0On30FF3toxovYiWCxeI0SBhHklheX22xOES5lcbfHpT2uK/CIPn5oQ4TOFMZZaJlhAGg2iPDCc1yoJjcXRlCUXKua3XnoHf+1nHyMrI37+NyqEPM8f/uP+XWvrN7uZh8IZsotnMdMJrfXVmXAU19xMLP6cKQGANUx3t9nb2yc9eTfrDz2MWFllbMZkZo+aibcsg7CXh5rGwTI/8GwOKzwVTGGHQUgs0z56hG67zU4s2H/2Wbh4ibXjR3z2OwSBH86fwWdytraa9RenLbA11WRMtNa8eQNCzfvRKHIOnJQkS32yqsIaL1du1l4Pjf9p4EeB/++NDnDOPQu8zfdVKOA88PPh678K/Jpz7u8JIf5q+PuvLBz73wO//Fo65MfwANBxS2eJgOsvhns2NMVaqaCNlRRlKOUYJ0RRqJmJ5xW/WeTM4jWllMRJPNsnmuLQQgi0VgiJ918eaA5rYZoV9LspkY6wRJRVijWWNHFIXQQs0mfxSgd2knvrRb4OpRzDojPCEllDkWfs7e2ydtf9SGOwVy4hbuvg+WcUjhija4pphTEVriyZXLEsbVnWehGiXTDJMzKrIPGQCNLHr6dpGuqgNrzj0EQ9ec1MXSPcr+nqQvjurbbm2KIoMMbQ6XQYjUYeo798mbIsMcYwGo1YWlqi3W77UE7nYaG6rogjhZASmbYwtWE8HlMUFXVd0+n2aKVtIq0ZjSfs7Q8w1tJpd4iimL29PaYTH/LZarVm8/FGz7L47DqO6a6uMB2NmE6mGOevkXRaWCFmpHTSCZSDGYvILEgAREjgWj3RonPsOHVHUMUXESJDiQpVK6SNADsrlLMgiVgAA69/HwIQkl//ygmyhlO/jPjl/z3nwz/sEK1OgOGCE1Q46qJk/8wLxK0WKk1v7KYCrJDIZtE4gTAl070dtnd20Bu3sfaOd+NWlynrCYUZULsMK+fH3xI4PmuNxeEwVBR2jC1rbNQj7bRZfvi9IBOG3/gy090B3bV1z9TYWKS4BT79a8dpbrHmVy/RPn4PVjmUvZ6yRbj5RyKJ6K2tYCpzoLzsYe3bFvzOuW/Ca1pcHwRedM69HP7+Q8D7w+//M/DrBMEP/F+AnwPedSsXbpyyh+IZr3bu7OdC1uuszRddGkckcTT7+/qEoFu7ceMsvib3CIFAKRlqv/oIB8QcraxqQ11ayqpNmsQ41yIrInCCVmywYjLjYRSAsxY5KVBCoZR+rcNySAsalzAYZxjv7uKilPbWCcT2NtWFS6Rbt+ESjVUWY2OunK955YWa249O2FiCD7w/QgmQVeaLqVtH0usQLXdCuULwPMgNX0lTnyCM1cJDvH5Z13Mh6pwjz3Pa7TYA0+mUlZUVjh07xmAwACBNU9ptn1nblLrLp9O5sx6vv6nguymKnN2rlzBVQbe/Spy2WFrqM51m7OzsUZYVy0vLbG5usb+7S5ZlCAdJmqACieBhz3ld5rnWtPtLRLHn+vElRiFKE0R0o43/4Jw30rG8VfL4n+iSFHcix5qLL2foeof1dETMFIn01A4oxHXMnzd4H44QW3+Rn/2Ve31sfVzx8JHPk1+6nd7J+7AS6sChJDGUOzsUVy+ytbnpazU4d+jlHd75OgtqsIZsuM/O1R3k5jGOvPt7UGurTMyYid3FMMHJmrmwCOD7rU6l2YJ1OGEwrgBnGNYFmVymk26w9ta3Y/MBe6fPECcpSb/rKacbRbG5ziH3FFLR7nUoLl/EWU9RIeHQLTWQAlAjEGmCFBVV/Z3X+F9r+4+Af7Xw95Zz7mL4/RKwBSCEOA78CPAYtyz4RYj+gJtpHje9xsK1mjavpuWYxc8LD3PMGTdfwz0WrYmFkM/mM6W876Cqr43MwfP0q8hXhbLg6FAagRKKJC4QokTYuQJjjEGMCx/u12R0fYtyclakBZCuJp9OGQ9HbLz9e1H9Pgma8WCCrRwkmrKWmDLn85+Y8uLXc277k4q2VjgqnMiRtfaEcNQIJRGqhXf8Ekx6t+CAvVbT9VbS4li+XhuAp1owdLtdxuPx7Prr6+ucOnWK48eP0+l0Zr4DT8JnKYscKUGEAuezmaF8RrexhuFgn8kkY2Nzi7Tdod1OiaKI0WhEVVasr6+xurZGlk3ZvrpNVftELb0g/G+o/QdIRUhJkrbRa5rpZMzezi7dbodOv4uMIpx0nmStgaxpXAYeezZYlISVvkO7lKJ9G09/eoDdTXnvAy8RxWOMFD66pilk0xDd3ewVhO8+/Mh5fvIj/4FPfuUo3/+Ws7zjyLPsPzOgt3ES12ljA1Tj6orxyy+SCkjbLQi1aA9PKQhzRTqEVVT5iEsXLyPWj3HHO74Pt7ZFISZkdpuSDCFK/9RikaRvntj3aq3Z2P3IWZxw1BgEFZWzqEoTt5fpv/VhRnu77Fw+z2Z6B1HUwgY1v1FyDrujE4K0lbK/s0ddTNBxAjfK/A/L2gVZJLUm7lyfxbzYbknwCyF+FThyyFc/7pz7hVu5RrhODPww8N8c9r1zzol5Net/CPwV55y92YIWQvwF4C8ArKwtLTjxXpvmf7BU4kFBctj9rz3+VtutZA8rKfxCF+V873LgnMBZR9yO0FoiZcw0jzAGOqlEqxxHDQHLxVlcWeFGU6JkCTjcufvam8DWhvHOLtHqFp0770EoQb3Sp33/A8h2xCQTnD1TstLd4Z7b+9x/V8zGyhjqHGk856N0ImSI+qgRQYFPcOEai+uQHohmTL4Vj87Nriuw1s4SsyaTCUmSsLOzQ1mWvPOd7+To0aMkia/POosAqkuKLPNQ1YzUblZpG6kUQvnyiKaquHLpPN3+MssrqyRRjOh1yPKCS5cusry8TKfTYfPIFvv7++zv79Pr9Wb3XGzXP3/YCKVEJQltKdFKMxkNqcqSpZUlVBLhVIMtN5pus6FYX2re+ZBZI2tUu8fGnZpvXnZcGMTEK45Uy5ArsuDwPBQfX+hrA9EheOLR8zz+nnM4Z8mHm2xfOMfw8it07rwPn3/oKEdDsvMv0ev1kYFQ0XJ4ToHAQyQgsc4x3t8h6q2w8c73oDc2GdspY3OVUoy8gBcL3Q69e61akSSsyWYdC/+M0mXkbCNdRHflCJtveQcXPvVJ8tGQaDWe+VRUCFy4/pb+gziKEaam3L+C6q3gDulfKAg3O6thEdXd9k37fkuC3zn3A7dy3C20J4AvOecuL3x2WQhx1Dl3UQhxFLgSPn8n8P8LwnEdeFIIUTvn/u01ffsJ4CcAbr/rhJNyAWd/DRJuHooZ0uhv4jD8VibJwfNf9aiF2y86J32Cl1aeVtqRUNYRDkjiAinLhaiIoJsXFXZSoPqLKd/fWpuVR3SWapwzmRasvflBxNKyp2hQEWKlQ717hStnLS8/6zj+Ls09d01JYod2JdimiLknKXPCV3YStilW0SwEN1uUPpT0Bn1/nbT8pjUV2uI4npXoNMawt7dHHMdsbm6ytrbmBfzsHENVFpi6Ik7jMDvEjLaZoIl56EeiBZRlyWh/lyLPWFldo9XpQSulKAqGwwFZnrO6usrq6iqj0YjxeDwLLZ1HKR2cTwdzdvy7knFMrCUoQTmZsru9S7vbotXvIX2QfoAcGuem9dw8+FBaS4WQigceVKz0N+m4AePtfUwm6LRFiCyD+Zrw9z6syTC+HpZpSPIUrXaXltYMX3qG1rE7iJMI62ryK5dw4z3S224HKUINBQ99XnsH4RxWegbNsi6YTKcs3/8g7a3jTETGxGxTMQnkgU0fxYI79bWw2S+OMjQ0Is2Yg6EWUyZuQEe06R27h87trzB85QytpT5SRbgmxfZG0xqIdITQiuLyedon7uKjH2vxiU/GfOCxiiefnGP4zfM0r8LzJd3cn/dt1HX6ltr/iYMwD8C/A34s/P5jwC8AOOfudM7d4Zy7A/g3wH92rdA/rAkhgqn9rbTgSLslAfn6Cpz5ZRf4Ghe0kWAnkCYxrSRG64TatCkKgRaOKBrjKBEuJLI25uu0RNQGlcQHHEHfSmuwbGtLBleH6K1jdE7e5bVZIpQBa2rc/ogOU04c03QiSS9yRAaU0QEaUF47E54sWYgaUGBTFgWIu4m8/042Y8xM8EdRRFmWXL16lbW1tRkvz4HmHHmW+bGVTdiswAiJFQrXMKgGs15KRZKmaCWp8oz97avs72yjBXQ7PpM3z3N2drYBWFlZodfrYYxhMBhQluUsqfD6Nlf/ZiOpNEm3R2dpmShJyKYFg509TOEjciTM/BJeePkMcGUF0kY4SvpLhvvfLDl+zxH0+im+enqJ3aHPx/DCU7Iojj/2mRN85B+9m4995sTsM+lAL4QjNj+0UPSWVyjPv0y2c9FvPFXO+OxpkiRCpykuhIXeuIXsd+uYjgaYqEX3znuotSMze5TsU0sTCqFDU4dBHLzEa2ruwGYRRs/5YutGgLUjxnYP10pYPfUglYwYD4cBMQ5Ff26YYesQUhN3WuSXLvCL/1vNn/lzS/zET7X5M3+uz0c/Gh98+oXLzHINbtK+bcEvhPgRIcQ54D3ALwohfil8fkwI8dGF4zrAHwCuzbH+e8AfEEI8D/xA+PtbblL6CJxvBd8HX3Lw1c8VC/9e3zbXcq/5XPiIo06nTa/bRoiIqkopa0WiLVrlgKdv9aanxTmLHU6JlUZF0Wwz+Haac45yOGRqDCv3v5Xj993N0soG60eXuXzB8tTn9xA6YfNIxJvuw/fLVLztydtov+l+3vrhU75Ii/SlJYVNQp99kY2DY3twjJuN4Du9GTSC3ztGHcPhkDzPWVlZObR4j3OWbDomagq047VSKzQGFVLpREjR91m1SEmcJqRpQlWVDHZ32Nu+QplldNotep0OVVmxt7dHlmUsLy+zvLyMEILxeEyWZTd9hgNQpRUgFCpN6a6uErXblJVhNBiQj8c+kdDOtXVH42CvAnyggBrnKqKkR/fE/ezFt3FxKpnkJdYIfvEzJ/jIP3qEj33mNj72mRP8ub//Pn7q39/Pn/v775sJf4sI/PIAIXMVMBKSXp9YWEYvfgNTlpS7u9SXL9BaXUEoASisYJZ1fd3zihAGamqyvV3aR25HrqyRuRElk1lRHmC2RS0GZjhuVeFr7ueC4J594v+JJhBVgquYuF0mYki6tUH3xEmm+0Os8Zuqvbai0cIb8OMiaXe7uNGIX/m4O8C8+olPNpn7zlNjsLDRw6uKsG9b8Dvnft45d8I5lzjntpxzHwqfX3DOPblw3MQ5t+acG1xz/o5z7oPOuVPOuR9wzu0eco8/fWsx/E1SlZ47/WBBO1r8d3iz12hSrzeG/Grt+ru52X9SSdrthFhrsJqi8BwfcWwCPt7w1wSz2jrKwYg0TuH6qbFwC3/9j37mBP/1/+fdfLTR0lxja1ga7nhbV4x39+geP8rd3/t95IXHs4tC8uDbVnn6ywYb90ElqGqMcIaHPnw3z73UwlrBcy8lPPTkvRBqm4om7FbUOFHRKEGL/w4bmWbhuQMjNP9v/qrd7Pnm37mZf+Ba5taGn0cpNcvcvXLlCq1Wi3a7fQBnb86vq4qqrJDKi5TCOM4Ncp6/MubcICc3wbLB0yZYBFivJSupSNMEqQSDvT12t68yGQ5QSrDU7+GsY3d3j9FoTJqmbGxs+CzgPGMynVKHZJ0DzyfmENBMF3feGeu0pr20RH9lhbo2jIYjstEYW1XMV0wjEpV/704grfbF14Uj6se86XuOoDdPsJ1r/vWvHeEvLAj6f/6xU9dQIR/F4akZfuzvvY+7/8Qf50//nfeFd2ipFchY015dZvrKaSY7V9g/+zJRXRJ3ezMM24oZCnjd+rACpBUURYYpK5Zvu5tKCbJ6QEmNEQrpQDkbipkvTrCbQ1Q3bgvQZLBgnbBIfGJjLS3OFUzsLlVsWbnjLkxlqMpyNtaHAkyz7kjSJKWdxrzjzm/QavmNotVyfOCxeWb/wQ3Mt1cT7G+8zF0hSSLFpBCY5p0ciPW+OTZvjaGuLUpeHzP7O9IaX1vA+RfjDOIoJk00Qjic7ZFVGiUykrTCyXJmPgo8dCKtxe3sEyc9tI2oVI106prH8pP/Y5+5jT//90PBil+9m5/8yG/y5CPn/ffUQISzgny4TWFh4/43URSLvP+Cqpa868Ga2I5RxoToC8sLZ9IDx71wJpnh30YZXO05UHB6dtgB7iSaMWnw8ptt3WIm6OeGvAvYcjCxG4fsNRt8I/Sbqlo20GMYY1hZWZmFb/rj5xtpNh0incMpH+VyehzxS+cll8eWrbbmQydrHuhalBOYyKCsRRtFrYzPepUVsiNolTFFNqbIJ6yub9Lu9uh02uRFye7uLmVZsLyyzNbRTfb3BgxHI5yzpEmK0p5Pv3mkA+R+BwAJr/3rtE1/QzMdDhnsDeiWJa1eGxl8FDI8nwCsNBgnZpuwFhV33qMoTt7Hlz61wf/6W0sHBL0TllZSkRURraTi/Q9fxArJf/p33su/+63bAcG/+9Qd/Jn/TvDP/tp/ILIWhCJeWiHaGzH+xufJ9vfoLK8QiRhfxN6E+X3jl++A6XCAWj6K3DxBxoBcDBHC11V2s8m0OLO+nXadXX6gN8L5DOncjpjaiHR9Hbm8Sjkckmy2/Ry4gdY/eyIhaa2s8f13fZF//NfX+K0XH+CDHyz48ONNSVEbCiX5M+bBojd/tjeg4PeEaTqTWFtziBvo0NOa7cAYS21qYjS8jiGCr6UJfOHoSOvA1Ok/bKcJWmkcirKMsdaRRITQNBMEpITAoI4xmKwgWd1swIYb3vOTBwpWRHzyS0d5/NFzKCdwQiMcVLZkuDMkPXk3nSMnSBK7IPwdcWy58y4gVDbCpUDFPXfkPPfS3Oq45448CKBFYJKZhdFEPM20cIJu5JhBEl4TXTRt5583GOecx8WHW1pjA1OpF/KVqcHNyyc2jl2t9WwDAHjwwQcZj8e0Wq0Fp2rQjK1lmmU44emTM+N46uqUy7sxVkZc3hM8FWnuvAN0ZNEm1COWDiM9GYW2kd/QlCNNEipj2N3ZYZJlrKytkyYxke4xmUy5dPESq+vrrCyvkiYtdnd3KPKCfr+P1vqA0/nAhJr9EDOLwImYbn+JNE4YDQZMy4Ll1RXiOEYo6R2pBKiIBdhYNOUhNbffeZStIyPiqKasNK2k4scef4k//fiLfPJLx/jgw+f50CMXwEp+8yvH5p1B8JtPHcHH6PgkyJaMWOovc+HFF4mkon3H6jXrr8ngvv7hpIOyzsnGU/oP3o9OJUU99bNnwQJaGI4DA/NaV/mN5MoB/0VjeDpHVuW0ki7p2hrT86fpG4vV8vA1eY3zWmtNp9vh7a1P8wf/WIpa38CGYjlmltvQ5GLcWv/fcIJf4AufpEmEMY32tvjtjZvDUyLXtZ1ZCr/jLbzEJEnQOp6b70CsYxTgREpW+HC7NHFImXOApjighHaSoQ3IOAoy93DR74D3P3yRn/mVe8jLiDSueOzhiwjh+OhnbuOTXzrGYw+f59G7voiVLfqn3gZxn+2LI9aO9ChLSRJb9r75EpgSYSIP3VAhcHztoy/ylifv5oUzKffckfO1j7544P6CoMnhZsIWmAlfD79ZnA3fB+FfG5+cZK3FWAMOrDPBTxN4/pWkoX1QUiKFj3NvKJV0pD0cIuVMaDY4vjEeF15dXZ2V7bx25OqqpCqKUAzcMS0lr4wkxzopDxyBb17NOTMVZA4S6d2mTclHJwh8R5GHUoRBaYmQmtrUFFnO5YvnWV5ept9bptNuUZQ121e26ff79Pt9NjYUo9GQvb09Op1OyPaVtzZ3hUREMbHU9IRiOhmze3WXXrdNe6nnie6EuE44LdaP2DgB/8VfafHou1/mS58p+OBbzvH4Oy+Bdjz57vMgaw8VOXjfQ5f4hU/dTqMAvO+hS+GKEqiRQKvXo33BolVMlCTzDV8sCNbDHsU5yukYEyWkt5+kEBkVQfD/bjXBjG+/dhW5nKLWVzFnX8DVFhcFS/fVLiOE54a6fJXhyy+ysrSMjeOFyKjXvnG94QQ/OKSAdppS14a8KLn1YfFaZm1M4ML53cB6ms1Lomf391qsr3srMbQp6xgpS+KoRIoCF4TdXOWwmOGYSCgIlXkOF/t+o3jsbc/zl3/4m3zl9IP80R8oeOKRy3z8095JlxWan/mVu/l7f/I8P/wjmnTzqGcTNBm/9SvbjC7EPPKQQdUlzuqZg1nM2DXVdcJ+8e4uQDFZljEJCVON1j/TsKX0fEgBAvO+nGiGqyN8MRxm2dTBxhFB8AsxE4j+p99g1YHP5htAXdczq6OqKtI0vT4N3jnKPMNVlihWVNJSEFFXEac2Le9dq6iM5XOXNHWgg24gAIdAWa/9u+B4FCGmXgrhQ/lETVkVDPd2KLKcldV12i0vDIfDIVVVsbq6yvLyKkIoptMJdV3T6/VeVfh7TVQES0MQtztIpcgmmmmZkW9XLPU9zz+CkGgU4J8FayxJLG95U8K999b86IfOMnnhEvl4RKuX4JSPWfe1F+Cf/Pgn4b97jN946gjve+gS/+yv/ca8M01f04jPX/gefuObd/GD7x3wxKPnWaSUuOHzWEO2NyTaOIpaWWLMAOsK5vkFv3tNCIejZmLGpCs9vxGUJarVupWTEUAURSz3O4zPvkT7xEmirRMB1v0WzBXekILf67tJ7FPl69pQVTUIyQHceDF71n8w+84arzWq61LRv/PtgEk6wzIaDcshiCjLlMo4kligdQ6uCovRC/wQyYsdjGkrX/yb2RUazHw+FhbY3tnlnrUv8sd+YJ+TJ04ghDgI/5QRn37pPv7jezUu0WSDMdLmHF+vaW9KlCzAGAQaRBUiQcwtTUqBT5rK85xkgU2zqWm7KJDF7DuBRl13jJAS6+wsm9ZaT2VtnXdQN8yozhicNRQL2H4D90gpWVpaotPpMJ1OyfOcpaWlWRYvYfyEs5Rl7sm2hArancOh6bUMLW3pJRKJxgaaA+msD/PEc69IzIy5cRZQGeZAFEVoKSnKgslwiDGWbq9Pp+sFe55nXL16lX6/560S7bX2wWBAp9MhjuPDxztkcC8SbzsBOk3pxBox1RTjMaP9Ia12SqvbQQQCQd81H30lhPeZWCGI0g5q9R6e3lbcKZ7hSL5Lsr6CjiKMkLOom5mwP/D+Lc4Jaun46OdO8pd+6n1kRcT/8qman/zIb/DEI68c+hwzP4ZzVOWUPK9ZuesUpazJ7RTEdWRXv/NtNv8Ntaig14E4pSpztE3nwvsGbXGdpp025fAygxefZX1lAxEnGBH4fl6j8H9DCn7w45AmMXWdMrZTTIAHDiP1EsEpJoSvmxtFnm3zd7MdSEJzQdtHYojJC42jJokMUviwyLlbxyLwcIgbZejIC/65g28uXIy17O3vg5ScOfsy6+vrbG5szPrw2MOX+JlfvYesiEijkg98oEKu3c4rZzXnn8l56AHHSkci6hzIQcQ4DIga4SLfH/fqTnKHj0CyWFY3NoijyAtj53zpOs9NgWkEurNUtaOe1Sxws/eHgNoZsPhwVuuvYZ3DhXR/Yy1YO7t24+RthH/Ter0e+/v75CGZSggRfAARAoc1hmw6QWnp+fKtQzlLrbwWb6QLcd0EDhqP8QtnAju08sVEcCzyb80yNJ23dJI4RcmabDKiqktqU9HpLhFHbcbjCfv7Nd2+YWmpT5rE7O/vM51Oqet6Bv1cN7+a+dA4TEXIIlWKdqdPrGNGgz1G4zG1qWh3u6g4YaaEiOArET6izKFwSRe7dAe2VTPa+yzllSssb25AlCKdDMr3Ic5MYWnCNX/ji8c89xTeUfzrXz7Gk4+eO3TOzLF0x2gwQC2vkWxuMbETLEWDbv7eaMLinKGOLHpllWznKu3VlWsdFteftvC9VpJ0pcvg/Dnyk+fpHL8DKdS3ZNW8IQV/k12rpKDdSiiriqwor9OoFn8XwkNESRzTSpMZ+dbvCs5/bQvCHxSVbZEXgYI5rhAE+KHBChsroba40RQddf3kuAYJ9LTQJU9/45tUtWE6mfDudz5MkiSzzfHJR17hJ/7rT/BLv7nKO958nh/9U/dRVhFPfW7K7oWahx+QKFNinUX6nM/ZIhazzehG1FLzLgkBQvqQw+l4Qh7G3mvnZiaQjTVYa3DOBi2+2RxCNvDsXYYntaEYjfW1caNIo6KEOIqQIkBHC9ZF08qyZDqd0u12WVpaYj+QnS0mdeGgrjxNQ5pGOOFQrqnuZVCUJNYRW09BIW2CdBXe9yADZ7yP5/dwjzgIeTTj4zwsFUURSiuKqmTn6hXqqqa/tESv1ybPS3Z3tjF1Ra/bY3Nzk52dHaaBNO7apLMb8ksJEfxAAp2m9KMN8vGQyXCENY6k62sOL5acEGiU8c+w1DO85/uXiLif0deHDJ7/PBFX6K5vIuIE12TFHzINmuaLo586UBz9xs1r+7YuGY0zlh54AJdEFG6CpwN/vShKXp8msNSiIjqyTn7hLNYYT8Z4yx0URJ0uyXCH4QvfpLW6gWp1MPJ6P8yrtTek4HdNJAzzWrhlXVNX9jpB3mh4UgiSOKLf9YUwggX5e6PN1BZNbbrURhFrQxRNEdQL4VsNNCSxeY6oanQ7moWFLs4wIQRVbXjuhZe4ePEi733ve1heXjkwfRyOD775WR5cvszqIx9ApFsUA18W8fve26OTjnE2JI0hZ5qHCDH6Xtt/lYS4EM0jhSSN4xmcsoi7i0BNHCnlU/cFKCFwQZjN4vabJ7SGuigo8wxbVbhQok/alFbaQsXxzO/R3GsR+kvThjphyPLyMuPxmLquSZKEyWQymxdZliHxfbEQONYlwsKw0lwsJYNKYV3NXhGjpS+DmErJsrIe+xWB08c1wljMnsVrtY348ltGEicoIRnt7VBkU1ZW10hbHXQUMRwMybOcjY0NNjY2GI1G7O/vY60lTdNZfsuic9a/Lw6GSQofRqi0pt1bItEJw/198nKPpeVloiQOjKEOaQVG1mirENSsLEfk5RJZ/1207zJcfea3EVLS2dpACA2Hwqf+5tI5fujd5/ipj/wmn/zSUR57+AJP3EjbD78JHPl04hliT5ygEhUVRVA3bqJ0/E43JxEYLDVybZkKMKZG6uiWL2GFRDtJd6XHlcsXmF44S//O+xDytYvxN5zg95Z/E8/uN4Akjom0xtTVwWObBSA8FXK75fn1g7sxKF+/uzpDM229rhSRFQqHIok1guk1Aj0sZSepiwpRW6I4CVER1193mvtiIIPRmMl4Ojum2TgrUzPd3qO1uUHryO28cm6fJeV49OGUpWSEokA4jXCCWooQ+93ACMZrscJyPW3vwdY4eOMk9vkTHBTGCKhrg61K6iLHVXVwdB8eA62kQAvoAFGShGR/QYVgOhgSW0fS7Xqu/+DQv5bxst1uM5lMsNaytLSEtdZr+nhISODIphlKqzBPJFY4rHLUteLLVwVnJrA/FQxKxa9dyGlLgZHw4ErBo+uayFWeNrvMsTrC6fgaxSRg8I1jX/gxjnSCAqq65MrlS/SWVugvr9LrdplmGRcvXmRtbY1ut4vWmr29PYbDId1u14dqBpNoliftOJDV7YSH1iTeIhFtzZJUVNmU/b09klZKt99HRxqwVFIhRIFzKQjLZFTxH75Q84F3voXVB6bsvvAMaadP1Dvc5+Bnt6cgN0Lwofec5ge/52WkvXGpx9lnxjAejuisHyVeWmbsRiC9z+D3iMgPTeJEjXAWk8boVotiOiFKbsHBO2teNqkkopfE7D3/TaIjJ4i7K9yY+uHw9oYT/NZYKkdgR/GqjJYQa00hylmpswYXF8KX8Gy1ItI0Cot4Uf35nW4OnMURB6FpmaWT2y5lJVHS0E7GCJH7eqDCl9arBUQWrHCIyRRZ1Mg4wsoSZRWVMoErxS+M6XhIWRXoVoy0Nc5U2DglchmVgGK8zdgUrN/3MJd2+3zhM1M+8L6MrZ6E2uBsSC4XLpQIdPNnEM0YHrJpLoTXOuHpravRHrLMMIdk00o8QZcGEixSenNM2sX7zS+vCGUzpQz0HV4jj5xD1YZ8tM+0ymmtrCDkvAavnzG+uLmOI1ShGQwGrK2tMZlO0FGEEBJT10hXU1c5Sgo8I6qfaxZBTM6FQnG50DgDtYMXR3qWtLaWVP6OVuL2X2H8yqcQK2t0jn0vTvdwog7MpQYf4+4tgQbXFsKTr2mjoKzIhvuU+ZjltXV6nR55kbOzs0On02F5ZZk1ucZoNJo5fWchn7CAD1/j92LBShQC3WohtKZWkiKbUu3ssLzUJ0oSX9az2V5dTavtSBPNhWGbdz7wMMPty0z39+h1I4RoYYVDW+/UrEKR9cbScRCS+Q5XtubUyQKBwRhLVZR0bzuFTRSVbRzwjbXZPM3vbnNYpNMYaRFxBavrFLs7tFdXECHPtnkVVnjf0LXwTVPARUpFu98jv7rP+OVvsHr/w1idBhI7ibASRHVIL+btDSX4rfWhd+N8Sq+X+OkRNKg4jlC5whozhwWCkI/jiFYr9aF9s6v9Lk0W56d0cDfO4SYRUdaa2kCqIVIFOEsT7uVgVhHJOYsbTdBIYhl7mlsXExuf5YfzWbV7wxEbK6u89cRR7jt1D7FKEU5hXQtKy+hqRXvrAbobW4x2xtx9zNCPEjAZ3sye45PXj9at4I7h3WiNNRXUJZE5LI1d+BBHJYmUmlsFYawWcZ4mCEo2mDlzzTYWnu5a1LUPHTWGpL9EnLa9MAndlWEzTZOE8WhEXVW00hY6jpDSC/6yyqmqEp34zQAnkM6wLCXfd1Sz5zwb6VzJCK9XwIm+RDtfum+y/Tz7L38JOT1OvPImdK/rqYfdnCX22pC95hmV1igpqcuCMssY7O2yvtXzdQQmE+/gNTUrobavUoo8z6mqim63SxSc6Ne+pmvv19hxKo7pqj5KScpsymB/SNpK6fR6gajPv7lWW/HuRxOErmivHmf9rgfZ/spv0c4kuh28PqFq+IyyI9zT3+twX8BBA9yf53M9HO31DSoqrKsCPPZ7TOMXzm/0woF26OU+xcULOGMQ6taYc5zwSYtWCGQrodtusXf6NJ2jd5CuHvMjEjYNd4Pa3017Qwl+5yy1sWRZQasdEan54omiCK0V9TWVaYSAOIqIokbb/91uQfsRXosMZU9wLiYrJc4K4rhGyAqL8JZNMGu1E1QSKGvszj5p3EIIiUVipEBbiZOGOvgv0m6btz/8Nk7ddZKl5TU0EkSGIKEaDShFhOney2jqOLpScMdSjDQlC2bTt9QWlTnhHIlSHr9HoPR8V24Os4g53BEKtTRa8HzM3Ezx95vfoh7rj1bOj2cnilG1YTLNqZyvLRB3OkihZ8lGDkesI+IoZjgcsr65jhLCO3iL3PfLQZaXtOIUoXxPexreczIGZ0AGUbgoXJ1EBQqBUtRUk4vYbA87amOrkT+EkAfhPI5+rRkvgurfBB9EcQxCUOQl1lqkVHS7XbIsI8sydnZ26Pf7rK6uMhwOGY1GjEajA9xDNyrucvDFOYRUdDo90iRhOBiQjTNsbWl3ffioTw1w3H23L6xjRUH/9nu4/NzTTAf7LLXWPZWBZ7fwc/KQZ7xhm3UvqEbW4pQiSiKGdeZhqt9bIn/WGsHtBKh+QiXBlBUqjQ70+GZkilYEz4YUvmrd5W1Gp0/T6q7iotjXRRYC527uO/idpmX+jjYXFkReFOS5j3Zx+EltzMFQvQVA2x8VIIbfaVK2w1pgSJmxOYKgNilZ6TXOKMpB5EGrcTMR2IBC1DVmb0S73ccKqCV+IxElgtITSQnHqWPHePtb3sTKag8tIs+OKSpsnTHKJlzlHr58eo3RyJEIjXQ5guLWF+lNn5GZAFd4DUQ1AiCodvOsZS8oZdgIZzIUu/Bv/t8cGmkgAT8uLgDaQjhSrVhptdBFSbU/oByNqKswZ5q9V4qZozfPMqQUtNstqromabXo9vo4ISnLCmMyX1RGSJTOiVVOJGoiYYikJQ7/EmFJnPEmP6CjNjJKSJIEpeKw6CWN4/LVxtDNktZ80lcURzS0F+12m36/T13X7O3tMR6P6Xa7M6K36XRKlmW+StuiT+Vm9wMQEqljllfWaLU7ZNPMk71NpwjrwBkkGQrDaCq4mq3Tu/1uxqPLmLwI8F6zLX8rgnoO4xpjIEoQscBS4Zgrdq/DNH3dmhf4IQRDWNxSjI0UJi9ofJENr77gRtayf27pvKUkQjBKefY0093LM5hskbvnRu0NJfjBc+1MJlPG02wm0611ZHlOXfmEjkUiK4f3ri8ust8Lwn+m1WERIqKuW5SVJlKOOCqAimbyg0/iqJTHwkVeYiY5cdpjZ5Lxyt6ACzsDTu+POLuTcXYn55XdKZPMIGWAKjBYIbEuIs8zqnSFlwYnuXQF+kmMqx01la+W9boGR4fN1jXCuanKtSjIHQIzE/LzeE2vXQbZ5//GI/r+n5v9Dp7B0ae3+f9r4ViOI3oCyr1dqtGQqsowWK9ZCYGOY6I4ZjgYYWofHeNvJFnfPMLG5hZWOooqw1QVzjiEEeAa68FbENJ69kjhmCVwRS4mWT9FfPQttI88iE7Xwjbv++dEzaFx74uj51zITXDESToLT21aFEUsLy8TRRHb29vs7e0hpWRzc5M4RFE18I+7Rvm59mfT7P+fvX8L1i277vuw37ys63fd99N9uhtooAEQEEkRoCmCNkkZFGUSkqVK/JQ350EpV6qSKqccKy8uP7j8EMt2SuW8xIqqElXJSWxXkkosiWRkERIdUaAoAqBIQgAI9P30Ofvs63dftzlHHuZa6/v2Ppc+3UAL0FHmqX323t/+vrXmmpcxx/iPMf4DAp2DichHY6YHB1R1zeXFBcV60z5zg/iah6ee3/8Dz/ilz6HiKevZDI9rk9kEUfWHlNBhpFxTY7McpxxOtXuC7VHyI2HEt60DoLwS/MDikpimrFrI9tmvYgQiFyymeJIT1Stmb/wxri7a+g+qLWn65PZcQT0AKEjSHO+hrBsia1muN6xWa1r5Qo9athvE+44P5IfW61uti4UHELwkVHWCoImjEsWGLQXzrktVUCK42ZJEFIvG84/f+C6vn1+zKhuUtaRi2DSQp4o7w5QvfObTvHowCgJSNLUzXBYp0Z0XOf3mC3zrWwe8enLN/+jPXNKo28ye8B/+1WP+9m+O+PO/tOA/+ncf8qxtC9N2CURBwOlbMkB2nrCzb7awxI5zd+d64RXVv9Q5KmW3wGlLzWu0IlcarSOWywXrsiSbTjFp2tI9aNJswOz6mtVqzWg86uP5B3nGYDTBRhGzyzPW8zlR7IijNg+kB623UJS0xbm1GLQY4oOPczgaB1gkmtAxSQb+InfLxnnyaIoX8jx/bIKi1po8zzHGsFqtKIoQ8nlwcECWZX1ZycFgcIPobbfK12OVIQViDdZk7BnNanbNfD4nHaRAhPeGNF1jIoUM9hm++inm3/l98v0RKo7RogMnvTw9e3W3hfXQ12rD1TUmn1BKRUPFTeY+dRNm+6G27RpACS5WRPtTinuXjLwPB+kzXMG3j2QlcOZ6qxlNRzx8513Ku++Qvvwa2sconq4wPFeCvzNxI2txXiiKio2UnF9c0jhPluWtSbv9jKLFCX9ovb7VOn5w0W2fYpzPKUqFUY4sDSUWpVvUobRHSLkXEO8p7p8zSge8O58hGH7s7sf5ve+9xcuTA6bDhG+88S4fv/MKg8Tw5uk5r0zG6Ai0CMslfPOtuzx48zP8b//qS2wKzf/r1zP+5n9W8ed+qUTR9Ar/f/hXj/lP/g9HgOIPvxM04WcR/rv7sKs/yo6g3n1HZ5KKtLAGHfu49Fio70/tLfnZrsZn6OpDqdbxS2/2+dZiyJTBoFg1NcXFOXY8Jh0MUdpiTOBFn88XDIYD8jzn4uIiEOkZS5aPsMQkScbl9UNcKaRJjDZtdaqubsANzVbhtKD1EIkHIIHawEgZ4mMk1Od9mtTqIS8JNkzcWSPd33dyE7TWPflcWZacnp4ymUwYj8cYY5jNZjdq+z5O6O9aEv1RrEApjUli4jTFr9ftoRXW5d404U/+VIQdCLzyOeo3vkM5uyY5GqLRKLGP7L3/+G/8FL/+Oy/xqz/7Lv/Bv/2NJzx9mP+mqbH5AIfrHbvdOviRkPc7rV/brdIRHx2wefM0+GV60PYprd0DTRtToQSMAhkMGcwuufyj3+d4MMBO7vJ+YM5zJfiBDq6nqR3zxQpjguZljN3BMTsTVvVKQS8ofiQ8vF0fFagBmyKhaiCNHZFZg9R0BZ57JVcUxgvUDjmfkw0mXF2s2Z9M+OTJC9y/uuQnXjzgYC/hwfUpP/7CAcpavvHGmzgEi8G7kmXpWNSH/N4/O2RThMWzLjT/n98e8eU/UyA7lsbf/s0Ruw7Wv/2bow+k9d982laIP2b4u4LWXilCsagQydFFdDQ+kOr51inrdJeJq1DekcURuY0wrT8hKIXdGEvLIyMkJmTzmrpms5izqSqy8RRtY5I0Yj4vWC6XDAYDFst5OAgGA5IkIc1GmDgCaylnK8rlCp144iRGZAc/lxCVEc4sj/E71LxqZ11CIMJr/R1PGjcQGuexcRyqrD1m/XbCuxP+1lrW6zXz+Zyqqtjb2+tr+65Wgeitqz3wJKdvZ0X1dpgEKowojtu16UBVpHZAeiC8+WbD1fkLHL/wY8ze+j0OpiXaZi275FYr/4//xk/xv/tvfgJQfPOtPYBHhX+7NYRQBCfLMpx2fQb3DeX6R2I/t61XXoKyYff3WGlo6pAVrvoZDe0xM9lq/YJrjUnlAzXzaDqmvD7nwTd+l6/PTvi//bc/DexPntSV5wrj75Jx1us1xaYITjcvJGlGkqatt/smPCDS0vo2Tfv7D9nB29UWVD5oBi6nKCygyZIGo9Z0blzVUSMIGAlCs7peEK0qsnyE0gYngqfEKc/GOBoxlA4Wmw2LzRrXYugIlM6TTof8xE+n/MqfmZOnYSPlqeeX/7UVotvY4HZF/vlfWrBdptL+/gyPuPPVFUHSsjV2breNc1yUJRdlyXXTMBdhpaGIYqo0xeVD1GSKPTggOjgiOTgkPjgi2T9Ej6asxXBZlqzqipqOwq4NGhXd880DWK0YxjG5eFiv2Vxf0ZQF1hiSJGaxWCAi7O/vE8UR6/Wa5WZFQ4OxKdO945BNOxrinKdYF6EGAMERIao7fIL/oSsnqPEYH+A23yaDgTwW/r5dftI5R5JlKGMei8vfJieMoojRKEBWm82G8/Pz/pkGgwFVVfXsn91nZFc72pnIbu7Ee+q6Js7Stu5wRzu3wUvFegm/+/UaP/kxShVTL2Yo5UIUzs6z/PrvvMSuMhF+321b8A6BpqkwaRp4nDrCsx8Zgp6brVc5RYX9mqZEec5qvd4Z293d8WjTHozvjtut38DmKePJmL/39yb8O/+LE/7Ob3wa+PgnntSX507j79j60II2u6ayAvwNjb97q/PCpihBBGst1pie9Ouj4+vZmdgbCzXAN4hHVETVxDROYyykcY3Sza3Dy4MKNAEinvL+BalooiRhbzjijffu8/uzOQ8eXiHe824y5sFFydfkbQZ5wsFojFKwKhwbn3D4sZd5eZrx45+bkfxn8Hf/Uc6/8XML/s0vbfAirWkeNLROu//gGP9tAgn6YB6vtptaUJTesXSOJoqDVmst2hqMNRgbtzz5NhDrtQlWHayuBOqyYn51wXoxZ9NU1FVFohWpDZXMQiIRreM3jKtWMIwirHPMN2s24olGI+I4YrXacHV1xWg05PDgkMvLS4qqAO/I0iHKGuLJgHFu0OewWS4pyxU2si1lAihRmLYWr1OC2al21ddUUK61TB6jm8nOt5bTKE6SkIn4OCh+B/LZfa3L5F0sFu0zjXpH8Hw+Z71eE8cxaZoGTpnu9rvXab/ESwiLjeM2N0CBN4SwZMXhsZBmBS4/ZPTSq6ze+x7JaNJm/wqdKPqVn3231fTDmPzqzz5K2bAdAME1DSaJqX15k6byRymk53YLogiJFOnhIcW778LhIb0yshVRt1rYJEa6fQJeBwVCtCEZDvnG659lU/RsvE9U7J87wW+MYTAY4HTTp4FsDajdQ2CnwpMoluuKsnKkScwgz4iMDqyQ/1xaj9Z2dggahZcR6zKj8cIorYjMoqUXDtBEH/siIWRTrUui9y7JBkOMtby8N+HB2QVvnl+RDlKWZU1RXjEdpax8QyoZnz4+orKGh2eKZH9KPhpiJFT0+gu/fM1f+OVZ30uNQW55X/+jf/fhB4Z3OmGx++jdk/ehmAoqJ8w8yHDE0dExaZrfoHHonDUtqIMotVN1OBzYSZqyf+eEwf6UxfWM1fV14G1qHHHHyd9CZVrRY9NKIDMGCyzKNYWrScYTrDUs5nOaumEyHbN/uMdsNme5XCKyIksztLUk8ZD4OGadLbi6uKCqK0QabGTxqvM4qBB3rV27OoPg7kJ4tzw9j8Is3Zh579FKE0cpaueQeBLkc7vFccxkMmGxWHBxccF0Ou3hq/Pz8xtEbyHb91Z1NNXSU5dlyCjuoAzpsGyNEmG6p/nSlyx5ljBIf4z773yPclGg96agizZnYQvrPAnjD/K8hZjEhX2SJTi9ae/3o4ftA/TaSLtnvTIY7TBHL1B/99shsMf4kHj1hIJJqABLetE41ealSJuUiUIpwy/97Dn/9W+5Vvg/WYA9d4IfQOsuc+3pp/4NZ5WXAA01DVop7DDblS0fYds93qUDoNEqom5S1qVHa0iTOoS+9XmoWxpmLeHk97Ml9fWK0d2PoZRnlBn+1I99kp+qO6Hq+bv/5BX+4T+7y8//5Dv82Z+6x2FkWFUVRal4+egEraLWAumShz6CR75tiit6TUeJIB4qYNY0qCzn8PiENM9R6lbkw+4ub4fO7rhHAsYLRlmy1JAcpUzGe6yur1lcXrBsGnIDqTXYFoIx0hVF1yDBahxog2oaiosr4vGU8XDIpqp48PAhB3v77E32SKOUy8sLvPPkeU4UWbSJGI7HJEnC1cU5i8WcWCAy4bodZ460Av/RsX7/wffisdYSJ/GzfuSRZq1lPB5TVRVXV1dUVcVkMuHOnTvMZjNmsxnee7Is61k+ldqJJhNFsdmEZDCtWuK5MCnd98hoXnxhD6UhTu+QvPAS67N7pKMxJrrJ4fMf/NvfeIpTd3tV5xzKWrS1P6LS/v1bGsespUUWeHr8vfImrBfl0Ai6rVMtfd1e4Vd/7h5/7T99g//z33iPv/dP3nz9Sdd6rjD+bWurN32AT/QFuL1QlhXO+Y+YoXNH71U3fw3CP6EqcxqviSNPajd0sfuqF/zhywDeN1T3zkjEkKQ5ToFoYZgZDsaWo7HlH//RJ/lf/+//DP+X3/hx/r3/4pf5R3/4CZTVVHXN8Qv7DEYJHZtmF/v+0bUben/AvwGvPA5Y1A6XZuydvECWDR4V+jvX6fBzxRYyCqdI50wLFoExhjTLGB8ecfSxj5MfHbPEcLapWDaeSsC1j6xbiM8oiLVibC0TrWkWc9x6RZ7GJHHM5eUls6sZWZpxfHSCUorZbEZV1UGWG0uSZhwcHXNwdIzzUGw2uKamqzMg0iWbyc6w3F4Uu633kIRKcVGEMR9ehwskhYYkSRiNRpRlycOHD6nrmslkwtHRUc9W2uH+XQ97p7x3JHFL6X2jzxIOUDxWgVZCkwyZfPJzbKo19WZ2Y5Mpnv7k3R8U4OoKZeMW4voXT/ILPlCVaN1qmDtazOOaChBPYJqFEAp9K/JLKb78SzP+Z//jvwNczh5/oedW8EufnPWBPtX6r+q6pml+WNV7FApN4wesy+Dpz1KH0muEZkcoAEibwi2w3tC8c8ZkMsXoCCUGKzqUXVceh+MrX3/hRkH1v/+1FylcKBY+3h8QFC8PyoUD4CPaS4+4rtoXBGhEsWwaXBwzPT4hGw7CxujeeuP5W7gDCZE+vcMr+DvE+1tCJQhWGxkGowF7Bwcc3H2J0dEJpbFcbQqWTUOFxkvQvpQXtHisFtJIM9QKXRWU8xmJ1mRtEtT5xSXaWvb3D8nznMV8wXpd4hx4ZbBJyni6z8HxHbJ8SFGUVFUombk9rD5Aa+EWL5BkWRuj+uxXeVyiVif8B4MBxhjOzs56aofDw0OiKGI2m/XZvkFLDfsF8UTR48VJZzWv1xXnDxsqFZGffJz48GVWl3PeJ+T80eu1313TQByjrP0XSuHvrCART7VZo9uIw9s557ebKAFpkCYw3joNTrsdf8ajMOiT2nMn+He1vQ+yGLYOsMDBUlU1/oOeHB+6dZIvpGJrYjZ1TlFpYu1JozVCucMcCl0Oavik4N+7wC4rhuNJm7JtUF6hXfgyYvnS5++TJSF6KUsavvRT71GvligPg+EoLBZpSVTEfHRaVHtYCT7AkK0AEYFl7SlNxPDwiNF43GYVb0cJaT/pPFVdUxYbiuWCxfyaq+srlsWaxjfMLi+4evCAcrNpq29t/SfBkvNYqxlPxkyPjxgfHZHu77PRlvNNyaKuqIXgH5OWF0dDHhsGWhFXFW65IFJClsWUdcH5xRlePHv7ewyHg1ZLXtA4h6AxNmY0mbJ3dMJwsoeToP2Ld3SUIbvUIU+MMLsFUaZZ3g3qB56z27UItNbEcdwL/+Vy2ecs7O/vk+d5iGRaLgNdggh1VSDet1BFSCIMY9Z9he6dn5V88/crykKjsozxa59jVawoNuv+gH7fiDrZeoN83UCcoG3EBy1E8kNp/fx04+2pN0t0FPWW6VOlljhcuWazWNCItPH8gaJ8e4Nna88dxi+P/PDsrc/kFaGoKnKXYJ+ROe/7a7JdEKLwkrKpEhyecdxg9YrdhKXQOkgGfFXRvPWQcTrAJClet7CBtI7PNqPpy198l7/+v/kKv/m1l/jS5x/wq3/qDa7fu2K4/yJJlrcuZXY20Ufl3JbWKdg5MUMW4rp2lMowODhgvLffRpK0WryH5WJOuVmFspJeAtWGd4jz1F6oteLwzgnrTcX84hxVN9RFQTQcMBiNSZK0F5qrdcG3/9k3me7tc/fuXSb7BxRpyv2qRkcxa1dSVCUDbcijqN2PHiWOTGtsZFnUJc3KofIBeRqz2hRcXl0wHo3Y29tDmyXzxYL5Yskgz0jiGKUNcT5iP4qws4j1Yk5RFIFEMI5ABYoHz/tEk0mgIFfaYqO4PbSffQYeicu/FfnT4f4dn8/5+Tmj0YiDgwNms1kv/IfDAcYEqGI2n5MPBsR5xlav3eH9NxHKaLR3+EgYvvQK1weHzK+vSbMscP8/Q99b1y6uqTHjKcr+86+N/cFb58TpnFCCiKPZLEmM3Trxn+KdFqBerrk8PecotkSDrD1o9a3z/v1H8bkT/D+o1jQNVd1gzZOKR/yg2u5uVaAMTTOkbHn3s7RAqWKnQpIiwDGtee6F+moBZ3PGhy+CtUF7asnIOiWjiw/51Z+9x6/+7H1A48uGalWy98n9nkpgu4KEj9Ig7CyzEImj2DhPoRTZ3gGj/QPULrwjnvViwfXpA6rVCiWhnoBRQoRGaUMtgh2NibXl6uIBtq5IlWY5u2azWtAUBclwQpJlLeVCzetvvI16800ePjzl7ksvEUURb967xyc/8RpZPmZ9ecWyqJDGkVmDUcFBrhFiFKM4ZuUaNosZ8XDMKE1YVxWz6xnihdFoQBxHXFxehKIuzoXsWW2wccrewRFJHBy/dVPjq8AIGlwWT06e6l53zpEkIYroB+WLul2WNM9z4jju8f3JZMJkMiGOY87Pz6mqkjxJqbOMzWqFEyFrHHGSYOMYpfulysFxTDrS5GmBIOjBiNGrn+P8a79NWWxI88Eznl1BqRHXYNJQJ+BfvBasuXq1YGC7kNZ+kz/2ABAUZVlTlSWLy0v29SEqTR8x8n7tNyf8zf/3XwD+2uRJd/8XccQ+otYDASgUzgt17SD952VCdtpARFFluEZIE4eN1kDDjdp4/Y8a5Rrce+ckokkGQ0TpkAzlg54laqshKUBLSPryCFI3uEaRTPZaCuGuWpZv8cQPXsvzmZoEq0IpFeAOLyy9J9vbZ+/oELtTjk48lOs1s7OHmLLgKEtDPJMKYY9KFKUXKucYjUe4qqGZL5hoTaIVURpTibC+OGdxdcVob5/BZEKaJPzMz/wMf/BPf5+vf+1rvHvvHtPplN/+h79NsSn4hV/8BUavTLh6+JDl7BrlFJkOBV5avxpGwcBYIuVZXl9jhiMGeU7lPBcX5zjnGI/GnJyccHb2kNVqBQqSJEErjdIR+WhKlGZcnp2yWa1ABGt0W9rwKYyZ4vEuRNoE5yA73Pbfx9TsHDbdV0f0tlqtuLi4wHvPdDqlqqrgp1CGwXiPNB+yWsy5urpimGXkwxE2jVAtPXUcg9KhkIgXAaMZvfQyV98ZsJjNSNIMzDNo713UhQg6ClbUY1O+f1RbJ9vFURcroni6Y7A9eQ4FofGe4Z07rMVjr5YMDzQmTvr3/PpXX+Lf+U8+zqb4JE9L4HruMP4fRAvOQVps9jbuuEsX/EEuuPvD9qt/uXPriGZVBHGbxoAuCMdRgHZE7d5dU5cV5btnjEbj4OhqLygq0LNuqYnbSAgliGoQVbMqFkSjIaQDRCwito2nNgHj/0EI/c590X51eL5qMYDGeZZlRTweMz46RreFzNunYFOUnJ0+xJcFw9iSKQlfCDGCVkItDSaLibOU2eyaBEi1IkJINAyUZj+OmVpFcXXGe2++zuXZA/amI37u577IL//ynyWJE373d36XN15/g6/+f/8h7719Dxsl7N25Q7K3x7qpqX2wgnxnmIsQIeRKM44TpChYLxZYaxgOB8xn15ydPUQBJ8cnjEajlr542fJDadARNsk4OL7D8fER3nuKoqBpmi3Gv4v57w6rCEnLv/NB5+q2H+F2ctfu+7qon8FgwGAw4PLykrIsu3eH0GkTYeKU8XjK/v4BVbHm/OwBdRnWrwbq0nF6b0NRCdpbvEREwwOOPvYpFvMFVVXRRVg8yx5TIihjbgXDyHbNfdB9+lE26ZhmQws+LcFVFVFkex8H/QHwaNMiNM6RvfIKRz/xkywLx+rqGt/U/Yf+/tfuPFMC1/Ml+FXYliHxxX8fkx6mp/EO5x+Hc38/i6lDPT3QVQNThKLpEUWzR+U0kYYsXqClRHrCtoB5OxXoGoxzyP0z7KJkONlHobE+JHM9Fp0X0OLxxOA91dWM7PAltNGAD4tBddFMPxgNarsnt9aDqCA6C624cIIeTZkeHhPFto+8EYG6KLg+fQezmTExkKJDlqt0BSmgFk+pLDqZsJotYXHJoPPVECJztILIaHJlyL2wh2AXMy7fe5tis+Lkzglf+MLneemll0Ar7p895Otf+3qITY9i9o6OsPuHnHvHuqWFthLqAzgFooTECEMjDJqS6uoChZAPBzTe8eDBKU1RM51M2T84YF1WzOZzGtcSSCiNjTPS8QEHd+6SDEasi4K6KkAcSHfUtKtHKbwLZTV1lPSjLG2Cz/fbnuRUNsa0BYva/dE0aG1allQXDvQoxgyGxHsHmMZRnp5iqxKPMFtVfP3rmvlCEWoyg7eW6JOfQg2nbK4vQeq27OSTiRO1B69b+NIH1lWvHkdD/CMi9IE+zbAd10YpVONQVYOJolsVsx4P7XkUdVPC9JDBS59l8oUvcN0oFpeX6GaDFs+XfuohWdrt4ScncD1fgr/FpYN+8UE11k4z3nFteo9zP0AHp6igSYsFiQj151oNG4CYsozBQ5p6rC0JuMhOiUNpuV0EfF2zfueUYT4gSlMUCt+a/J0OuNUFd7Q4QBpHXVYMJtOQkanYhhK3P/8gktd6Y6f9qSuLUgGLssRkGXtHR6RpHtgaWxFXNzVXZw9plitybYh16+hV9BEQHkXpBJNkGGMplwviVsjfeBiCs3RdbbiYX1HXFTGQOo8sl8xOHyB1RZ6nvPbaJ/nJn/xJjl+4gzGB2z6OUyYH+8SDIcuyovQ+JHj1llRg/0yMITeGzHua+Qy/2ZDHMVorzi7PWSwXgeph7wCtFPPZrNdyg1YdMRhN2D84Yrp3gPNsC6V0K1PC6vbOESUxJrItdPbh2i6k86Tfd5tr/RQiQtM02B5f37EYtMZoQ2ItUpZsZnOUD2Grs+uCug7PE4oDQTI64OCVjzNbLnFVdUNJeGQ99S+HE90VBdzYoz9Kwn639V6tML6i8EUF3rf+LHXjvbcPcBEJJVSdI0lzbDZk72Ovcvipz7KshYvrGeIcv/Kvvstf+8/f4Fd+9reBJydwPWcYv2qF/jbk64O37cIJjI+BG//2fT5Ytzrs4oZNGq4bio+idExTJxQbi9GQJAUim3An2Qo7LQpDyCptZnPU6Zzh4Qs9T4vTYP0OenS726JQeOqyRNmYeDBocf2Ppu0AWhCelEYU87rGxzHTw0Py4bCNQ2/f4xpml2cU8xlDpcmNRUlXhmWbqFV7KDHYLMP7Ct2UZMb2h8eubwOERblm7Rvq9ZI9L0wGA0SE1XrFRikmecoXfvInuPvSK7zwyktEXTYsijTN2D864qKpmW02qCQmaSNwVDs/SoRYaYzV6Lpi02xoREjzjKKsWSwWOOeYjidYbbi+vma5XJKmCXk+ADRKGbLBkDhOMMaynM/ZFCVJHIqqGBWSpbwTsjhBPwOP+yNzsoPjP1PJxZ33Nk1gknQuFDqPItvCFhByC8IvUlXEWhPFMcvrGaNsyCgZ8olPpmRZsHpVC/thYiavforLN75FuS7Q6eSp5QdbNgiUNkjrfDdW06jd3JsPDn99lK0PshDpC/TU6xJNp6Q8uXVjL86hPMRxSqM15EP2PvVZGmlYfO/b6MtL0hPDr37pivTq7/Abv/PkBK7nTPC3TXUwyi6i9sGbiOC93JqY78PdqWAL8wiIQbU0DJ4xZZVSOxikHmtXoMpg03Yf3nHgOWmo3zll5AxZPqQLxfQKIukSux7taUin95SbDVE2xKRJu5M+7EM9vXVT0Jm4DsW6bqhsxN7RMYPxuBf6QqiGtrg4p7i4YKBgYC1G2i6q7fu8F9ZOUPkQ0YZ6OWOghFi1ZTp6YRzu3zhHVdUkwwFN45htVijvGQ9ypllC5jz6zh1qbUhHAyxho6FNO/+abDhkenKHywcPmNclY2NI6SqG0fLLCxYYxhbTCIvVggZPmuU4D4vFArwwGo84ODzk8uqSoigQgSwbYHRQXrRNmB4eE8cJ15eXuLrCuYI4CuRyKE2SpGHaPoRpVlUVZVkSRVFfdzdc6snXChawYzgcUpYl1ra0E53Q797nHLSCP0sSysaxubpkdJLyJ35yxHDogZKOSVOUQ00PGewfUi2u+cpX7/IPvnbCl75wny9/8TEkbe0++M0/+DG+8s3X+LOrjC/+eQOqvvm27oT4kWitKrLbpaIislE/f08a+e5wbpoaZSOUjYLXT0eobMTBj/044hvW3/0u/mLO5BVHc7ui0a32nAn+3qtzQ+t7XKzbszBuBr+a3/n9+2HqbKVXWzk2OLwEaPAYvBtQViloT5qUGFOE+qX9YdE9XyhC2Kw3yL1LJqMpNkp2IBVuFCJ5tAXNtC5KdDZGRRHBovmINohsa956pdg4R6E0o8NjhtN90GYrMHyIjlmcPSQXYWhtKFDRmj27DJ6FF0oTDr2qLNFlSR53FcJUz6zaXbuqapyoUNc20ngKLjZLnHKMs5w0SjkZDNmIZ7lacF1sUE4Y7R+irWkxUUU+HCMncP7eu6wah7G2HT1pY+/7YSazGm0SZusVdd2QjsboPGOxWlK5hulkj8PDQ66vrluSN8iyNPDhKADLYDQhTlKuLs5ZLQI0pDVoHZEmKSEgoFuXsr35k6ajxe83m02fP+C9b2v+mhtr/LbDt8vWjeOY2WwWKn5t39H/L02NL0vixGLEM8wyrlZrmtWCvYMhSlnEBe6p0GsFUUY8mvB3/v4+/97/6efZlJb/6r//FH/9L//Wo8Jf4Ne++jL/y//yF9hUEf+P33b853bJL3z5nT6bmFv9+qG3HYHfaf5SNsQmegodSfvRzqfiGiRNEBsi85QHlIFkyOFnfpzLGq7eepNBVePl6aUXnzOMv02zF91Lv+8rHLGPRvn+hGK4hup/DhEzbbgeMcKYqhmyqQzGBpgHqRBaoahcYJyVEJXjxSOnV6j5hnQ6hY7kC0ELOKV2MgFvP5Ig3lFXFdFgjIoerYD0g2y67RMoGmAjsk3Q2oEpxHs2iznz01MSgUFk27j5bWxG8G0EqGjhHNFoiCho1itGRgctfefw75oHVnWFWIvSFqUsNk0xg5yrYsPZYk5R12g8A604SGJGSnF9+oDl/BrXVWiTUOAlH43ZO7lDoVSgjG6P8r5aWAszaIREwV6ckDaO9dUVWhzD4YC6qXnw8JSyrNnb22dvb4/NZsVyuQwRPWHIwBiiNOXg+JiDkxO8UpR1gzIWY6NH5u79VnsnwL33nJyckOc5y+Wyv28/HzsHwC7M0x0U3vtwUDxyV8FXNbalQBcgspZBmrCez6nWNd6VCA4RC7qNbkJj8yH/wzdf3aEVsXzl6y8++gzAV772ApsqhP1uNoZ/+Fv7z/D0P7zWKS2dguaV4MoycCz1e3VXfbvVRGiaGuIEjEUpj8GhxAMWlU+Z/vifJP/kazS10KzXT+3PcyX4tbIoHU5QxZZkbddhteu4enoLeKVrfJt2/v2Ix45QTYJDSzegHJ4UL8fU9SGLlUY8ZAlovWwntNtYQdvt8hr1ekP1nXfJ0yEqTVoYBFCt0/cpj6cAV7f47HB8g2f9o2pB09FUDryNGEz3eqdgUOY9xWrB9YP7ZN6RR4ZAQdtVVOoOslA6fdM4JE5IBkOaYk3S1KR66xjuLtzBII13bFyDiyyo1oWsDTZKibMBGy/cn10yrwpEPCkwNIYc4fr0AZv5NexEd2mtA/XCnTusRVjXbW3crrA6rfJBsKUSpRhay0ArNleXuGLNME2II8vDhw9ZLJYMh8M2nNNxfX1NXVWBb0iCbaijmMF4wsmLLzGc7jMYjVAtw2cYw/ct3Ndr+3VdE0URg8GAvb09jo6OaJqmT9Ly3j8i9EWEsizJ85zNZhPqH+gtPt3TJXtHvVmTtklJohRKadI4JlKKt799zYN3PeINSETgn3IYEUw25Oc++zpZEiCbLGn40uffu7mW2mf90hfuk8Xt+1LHL/zpZfv3H03h33kcdiu/+aIIUI9+tj0oTUMUp0F5wQdKbxWi8WplkMGUo09/lnj/gOV889RrPVdQj6AxZkAcTyhrQah3cP4PF53TOB+Evg7FUT586zaSRjCgYpxM2KwGbCpLUQvWNORxQYh58dtFLCGqR0SIGsfy9ffQ5wtGdz8eTv9bjrAnYoUAhEglLxANJ+3J+H081vs2aYucQOWFZDTExununynXa65PQ7ZtbgymFWbSPYt011HUImycJz88xGpNs1owtR0PfIvv72D7glC7hso5TJax1aqkDaNMEaWpyoLT+TVNPmSa5RglDCKLNDWzBw/QSjMYTXpBa4xlONmjaRyLs4foxjM0BqN2deBtEGakVaB3dp5yvQrFzccTNDBfXFNWG/b3gxBeLJbM53PyPCfLcrQO9oSxMdkwwkQhAWxbUH4X5nmf2RDBuVAwpSgKiqJgPB6jtWY+n3N9fc1wOOzr83ZfnZWQJAmLxYI4fkJGu3ikqYmM6gWdQmG0Jo0Tru6XvPvOkjvH++ikZCsOHSod8Kd//Dv8tf/Vf8/f/8NX+dLn33s8xg/86s+9w//x3/8H/K3fGvDL/2bEL39Zs/StgtB7m3cX0Q+3hW4EvEdJG9ZZVFidtjKBR/raA3edf6xusHmGNnEv14IvrzuoNdFwjNSO/M7dp/bn+RL8Lc+NNUdonVM2D3FUgCBt9MwHu17g6C+KijxPvg+nbrtFxaIkRfyQsopZ1xGbTUztPUor8tSTmhkhxrljlgyhqb4VKPXFnOrb73A4GAZitQAY9rU8EfUUMy44dpu6QRtDMhyhW5/BR9VCMXOF89CIMB2N2nq4oa/FpuDy4RlSFAysxmjBtHTFqC48NYxCg7BuGkyWkY+nzM/PicSF8E2kd3Bvc2FUz7uktMIqjcLvMHwGwWzjGKUUdVlwsV5ResdhnhOZiJGxzIqSq4cPwYTErM5QNjZivH9II8Li4gLV1OSxRtFypbcltGmLlUTAyFhs07CpSorZjHg0QpuYsiw5Oztnf3+fvb19tNasV2ua2jEcDfsawiDESTjAvFK3hP77S7kOshmPxyyXS1arFXVdM51OOTg4YD6fs9lsqOu6J2oDKMtyJ5rH9a93AbpdH+qyaAOU1fbv7VxGGu6+aDlblIjfoHAgtsVBPCYfIl7xq//K6/z5nz+/VZx+5xlUEHh//ov3+Nm734WXP4P2nws92fGxbH17P3zJ382M0MIQzqHKGqPzHUv1yfOnCGykcZoiJgpKrrSjr3xbmIlggUUpg7sfe2p/niuoB6DxCtcMEX2EsUek6TFJsoe1nZbZZuPu/PN4PK4NF9yJu1GKxjlmszlVWdNj6V0a6u7PbF9TeELiTbcdApYPI4pqj9Vmn/lqwHKlcQ6SSDPKhSxdocwyCIuuCHUL9nolqLJk/d13Sdae6eExWgc/ATccezyxdm2XAeqqApsOsEnSJof9AHIVZOfr5o8g0AhIFBOnW4dgVZdcn5/RLBcMjMZu0xV6Yjlha7Q5EUo0g70Dmrqiml+RaY1RO4bdrS55EVZ1hbZ2S3/cXZet89fYiCTLcdZyWWw4XywoqpJIwTiJoVhzdfaA1Wq5+2TYKGJycEg8mbJA2DShHrK0zKm7JR3D/YXcWgbWoquCejnHSMNgkFI3DRcXIcrnYG+f4WiI847FYkFdt5Tcqsscvl2am90l2H7vXpAWClIBx1chNLSDbDabDRcXF1RVxf7+PsPhEO89i8WijTgK8FCWZT0fv+mpFdps8ja6py6KUFSyVbw7CDLoo8IrL3k+/WlHWS0QtzNxCnSa4gkRWE+qB7HVgsPPWT6iODvDOI8iCitZ2v3zhHXxw2lbHF9Q6NqHGH5rdp7ytuXertJu/bsGlaagTUvx0EK/N0xjhVcKkw+e2pvnSuNXrcSrnKVGEasT4tigVAFyjVarULPW1zRuhfdNqyV2wk/68LQgbwP976LcYGPDQTTFaIVSvsdwtwKu896E1RZiuwWlYrxPaJohlRswX2nKxuOBOLIk2pGlJVm6QekFrss8bq+vFODDkeTuneHfOuVg/xibDbdmHjsJL+rR7fJrX32Jr3z9Rb70+ff4lT/1FuVmSTK522LnmlDg5aPTAbRoSueIphNM1PHwKFarBeX8kn1tSDR45VASatEqveUmBwmae+1Rwwl2MGT28D1SV5GYBNV5P9ROxkD7Q9k0FM6hu+pQbJPbtvusk1KGJMupqorrzYZG4CCHQZwwjQxXyznXymK0JU3z9mNCEkXsHx1z7hvW8wWmERK7zdJU6HY9hINAI6RaYeOIRVVQuop4OGE0yFitN1xfXiLOMZ6MieKIq8sr1usliU9JkmQH12/5mFCUxRq8I04ztGlpfkXob9xiCXXTEMUxvvVZDIdDnHMsl0uurq4QEUajEUmScHl52Wv/zrn+kLDWthZIC0PoQGWunEc1DVF7wm7XZKcNaIx3RC7l29+BF16uOTwybYF5j0oioiymLmuS4ZO03+7Zw/6K0hH+/gOYLzHThJpNsLOkVZZ+BLR92Dp2gyDXqCrkHIhpI+p2lMRt68YgZGrjPZKk6FDdHq9aX1i3/1VAPay49z3wni/Bj8doj9WexlkaDGsHEKM4II6PiCODuGvK6hqnVoDDuxrv6065DqyWrRYvWmOiQLmb5zWDLKTIdyGG3Z17iasC304o4BojzZC6GbJYa6pKcB6MdiQW8lTI8watroBlq6lotHL9lHsEq8DM18y+8w65iRnt76G0CbHj72Pd/9pXX+Iv/ZVfDOFxf/c1/st//yt8/vA7DMcTdCtWteinXuMZB/+JvzYIlQjjfNg7k70XysWSVGsi0zrjRfeanOq3QRDmlUChFIPREFesccsVwyjG6Md0vLc6hHVVIkr1guqpj9Di2Ukc44FFsUZWoSBNGieMbMxsPmNmNOr4JNA8t6IlTRKOjk64dEFDR1lSrfp0Qt9pvW21La3AKMUwTlGuYX11TTqeMsgzqrrh/PKCqfeMRkNOTk54eHrKehmc/nEcgw6OaoUC51lfXUNTI5MJcZajW6pmQbUKCOChriqm0ynr9RprbVus3vSvnZ2dMR6PGY8Dudz19TXz+bwP9yzLsj98urEWEbQCV9f4uiKOnlYtraJqEv7wG7DcFEzHESZN8NqhlSWZHFBdn4VCOI+Z2l5vVgFO0nEEIizevUc0eQUjbd1lJS31w/tO+z+X1q3j0D/BVxXGQdRF9bRRVE8At/DeIUpj41b+dNcN0SsfuD/PFdQj4lAUpMmK2K7RqmMCNzgJdAjLtWVTjomiVxgNPsMgf4U4nmJtRmRSrI7QSmOUagkEDFbHIIZiUyE+1LlEuoITrQkvne4VtB3PCOdeZD6fcjVLWFcxTmKMMgwSOJzWDAZnaHWKkqKNBhGMalqObegm2PmG5vX7qIcLTo5O0HHcCsded31i+8rXX7wRHvf3v/ZCSGSaTNFdWW/5CJeBqEBxEBniNlFIgKoqaFYrUjokXHrFcPeRVItUbDxIluPxLC/OSL0QaRPG4Ba0FQ6zAA2tqhJtLc/C9N5FryilMFFMPBywdDWXixlKhIHSTKOIzdUll2enN8oQIhBnGZOTO0iesawbXDuPnfXX9QvCfTrCjpGOmEQx1XxOuVgQR5bhYMjsesbFxSVaa+688AJ5ljGfzaiLEu+DT0NE4ZuG2DmGGqrZjGJ2jVQl4oNl2eEtXkIYZufYjVvfBoRIpTzPe+z/4cOHOOfY29vj+PiYyWSC974P6bzB59NiS9LUGAHL1rl+szmUd+SJZzK2LC6hmF2CW7SHkyGZHlKXZQufPvlQbycMYsNwmLN5+13UatV/RjrV6UdE8nvVru+uKt66IHYa3ZbMfHyk4fY18R7RBpOk7ZPtrOjHnxZPbc+V4AcQv6aq3sXohwzzhsEA4ljQqkFUiEyovWVTRyyKmHU5QtRd0vw1hqO7ZIMT4uQAE00xdorWQasri4qqdCAGJRYtCUoSDBEai8GisWhJEX/Cen3ExTxhURkq36BUTZoo9qbCcLjA6gs0M5SsUeJANCI6+Bm2yhQKob6YUX7nXY4GewzyQL0ckhKFJ+ywvn3p8+/dqLr1pz/3JjaKibIcaK2bHwQpzxObohKPzXOinUiQsizQriHRweGMCow34Ti76TCoBUplsNmQpqqQzZrcmkA0IbfFg/T6UO0chXcoY3mWpb4N9VWI1sEv0OY5BPUBMg0DYyiur7k+e0hTN91jolDE+YDx8R1clLBqGrzQ0jpse7nbX91adLnWTCKDqQo2V5dECKNBRl2VPHjwgMY5Jnt77O0dsFwtWSxmuDrE+9ebDSnCyBjG1mCqkuX5OW6zRnnXQk5CUZZEUYB5nHdYa/uD7nbdXa01Dx8GKuk8zxkMBjdgHtU7llsfk3c05YbEaJ6ktyoUxmck1Hz+Tyr+xKeH6KagnF+jnEMpTbx/SN1U4JrHLu2Oebr7m9KKfDJCXc+pTx8Guud2HeyATT/01td/UyrQoT+4wDQqsNHCljrjxqe2v3nn8Fpj2oi4/ik/5AM+V1CP1orICnFSUtQ1ZVUTHjEmTQZok+M9rEtN41qaYwzaxLhGY9UA72u8lD2GYtUGcQvyzDPIJ3ifY7TuGSZDxI4AId5/vc4oqphNo6ldBSjSSDHMG6xdENkKTYGw6RwJBEbMzl6I8Mq1IlCQsqb89jvEpWfv5UOIol4Zaq33py7uL3/xXf76X/6tHuP/069+k1UzRNuoXTQewT5xs36Ytpvz4ERRociGg8CbLoFrplgusYBVvXelf44OrwdNI7BqGtRggNaGenZN3kaI9O99TPMKiqahoTWnP9SDhEI3eZL28ewWGEYGqT3ry0tQmunxUbiHgFKafDjG7ZcsHr5HgpC1h5mn1fzolOQOnQ1Z3KkJToCNc5TXV0SjIVmWsikrzs5CBazheIw2msViwWx+zXAwpKlKUgWJEow2WO+hrimur4jqinQ0QrSmbmoG2aA9rIKg383S7aGuFtbZbDbM53PKsmQ4HPaHQN+2wDXiPU1V9hFWjx9OQdFgneLFwxqsxlcZ1/MFcVKgMoMdDfGRwdcl2r5fEaSQN2HzlEESs3rrHvblKT613fT9yAh+xZZRVmZLyrdOmQyPbhQceloLGr9FJ12Qyu6TffCnfK4Ev1IKaxWDPIJNzWbzkKpxrdY+AjIgIo4irBnhfRJwd+eonVCLbSci7p2LSEpZG/I8p5GM5cYEXLl1JCvlUSqILu9htUmoW7rdJDKkiSc1BXlcgJkhbJDeBO0cxN0htH0ORFBeqO+do948Y+/gGJtnNGqrQfZUJO8z71/+4rt8+YvvIiLM3tqQTA+ITBQcjeJ7YfSDbkopGg9Oa7LBkM6h6qqacrlgYlqMeufZuybSUTM4Sh00UVdsMFVFaruoBh6VMe14NM6xqgq0MSj9GI/3U1o/D85jGiEbBIjK6XAQWGBkDFLVLK/OUbFmb7qP0VEAz7RmMJ2yXs9ZLlfEURysk84R11opbSRu6xoKwj/TmkjBoqqplnNMPmCY5iw3JbPZnLpu2JtOsNZwPbtmMbvG1CXKBMDMiCfVCpPELKuKerlgXVfEoxGIEMcJxWZNZEybH7Cdq93vXYJWR+3Q8e/v0jIHBSTsg6YqMd6hTQe1PLosvQrvt15jpMRaTakGmFVDcXnN4E6CSmPUaErjPPYJorvTckUJ2guN1Qz2Jiwe3kceXiGvHPKjpO33TYFqGjZv3CetFIMXp73P6/2SSr13YAw6TvoDVz1m3zxre64EP4TBiKwlzwWlUtS6oHIFZRkoEJTSJHGGMWsUGZGxxCYFlVB7wbmW4Mu1ppkoigqUAeeDZh9ap3K2IZ6qCw11RNqQxYosKcjSJYYl+Bq86x0C0tJG9xG8aqu7K6+IBOrFis2332HPZAz39hBjgrBvu+B1hxm/fxMRxHuKumKSj4P2/RFtjRvZnl4weU4cbYnAymKDqkpsErfsp7cStsJFQh1eJ5hhiGMvV3NGCiJt8OJ6WCa8f+f+oqhEWJUl0U7912dv4SB0TUNsDGlbEUzYCh2LMIojXFOxODsjVprxZK+FlRRRHDPaP+S6KFl7R27MroK8vdOOtzLIRSFSinESs2gqiuUC7YVRlrNpHKvVEhHHdDzm8PCQs7Mz6rpk40Lx+KglqYuAURyzqWvWqxVr71FphrGGsihJ0pjH+QV3rbUO94+iiPV6TZqmaK0f5QYSaDYFsepYn9QThlzj0W1OSk3TxLz1dgRNynS0oJjN8LEmOXkZ48qA+9+6wm0oRLX3i0ZDsjPD8vV3Se9MkDgB8Z35+LTJ/ufUFNYJ5eU1zZunTPb2Q43l97VLWhnhPRjbVtvahj98WKvmuRP8YRg01upAdasiZLMJvOc0iCjKAqqyBAU2iknjKVoNUU1M4z0oi1K61ypdolFSk9gMpULZON+CLM73paTRChIrpFHDeFii9RXIJrgutQPlUT0Pf8Mu+Zrqiq13sTZ1Tfnmfcz5gukLL2OilBA5F5BwF8yRnWd+/+bF46KYaDhtydFCkpH6AWfvdr3yIpTOkY+21BBePJvlikwpTO/A22rB2wsoKueolCZPclxZYHxFEie3Doib9+7EUdnUOKSFYB4j4Z7SwsHlcU1DmiQB02abiBQgGk+kFJPIMitr5mfnGBuRjyatL1UxGE4op2uWF2cYFaqCBU1f3cCpO3S3R/4IZB1DGxE5x3J+jXhHOhhiTcZiucQ1jr29CScnd5hFF2yursAJAwORDmNrgTyKiEzE2XpNPBgg4qnrhtFo+FSduDu8Qz2C+EYI5/Y9ofPiHFLXxEqHWgHqBnlG37QIqK6sJ0gF996uiGPhzlHC6nqOH2VMXvks6fqC5uxdutyTrk8IPZlsiJYKcI/REcO9KbMH91EXS+SFtL3Xj4rmr1FNTf3GPQYVDF7cC+HFz7L1JGD8JkpCfeV+B+zW9Ppg7bkT/AFGCSepMo5sYFA6RnDUdWAXFF0gYkAUdV3i6g0oi9YR1qQYk6G1wWiNUhFJ5GnqmvF4gNaapmnwKsA1Ve1CHQgJkUDDrMZGC7Sao6TCo3Hhzyjp4mgCiW9IJguRQ10dAYUgTlheXbP+43d4cTAiGo/QEhIzukgir9WTQzk7gbLjHVME+Tc42Ccf77fCR23/1u6orQLaiaNnW1hdVI5sr4YXQRlLPhhsGQabhmK9Yk+b/om39/A91u9FKBtHNt0HZajWGwaRDQzOXS3g/jm7TrR3F2FVFIFVs+X5kfZwlV1pu2ssSP8ToiQ4QMUTJXFIRhJBK4Vv8bWgnXtipZjECdd1zcX5GTZJ2zBPMFoz2t9ns5qx2WxIogSt2nFhO/ahd8Gr08FuWiBC0Eajk4T5Zk1RNwymUybjEYvVhtPTM46ODpnuH5JECdcPH0BVM4gitArXDcltitgY8ixjs9kg3uGdQ+ub49j/oLb+hw5M6DN1O21fpBfArmnQXoi03o7lY5aNQrDO4HXHTCt87BOCJycdOFbLDWXZcOdjn0bOFe7iPjRb53nw+nQ0fNu50qIwXhFNRqTXDyjunxMfHyC27Yx0a2SbX9P+9rQl/eFaB911ljyqPyBX8znNWw85nhwERt0n3n77WWBLkDca9bw+N4f4cbbk09tzJvhbnhYcXSlBrSBPIhTCar0JGrqERexbbcJLDVLjXYHzK1SjUR321kI6kdEYs2zjnvvbkUadNhLep3UT+tETITTtRjFt4YkWElKA0hjflolU4RDwXjBXlzS/+23GKxh94gRvI5zsCH31/hBPvxRaJ4DxsFKKaPoidjzBGQU+CEOnaoRtyKMWoVHhcPogW6PbkKq9xsyDjIbBpG37Xa5W2LrAalq466b2FgSHsKwdPs2Z7O2xuDonloKshUt8i4d3kTK7m8AroRDYuBIdhbBX1zrPrVc45duxCwevV205x+5CtIK/qRgoTa4DeOF7weOhyzdQ4TCO8EyNYrZasTw/J7rzQigariCJUyb7L3B+720i7xhrFQ4QOlI3oTHglcd41QXY9mOqUWQarNFsmorV+QOyvX2GgwGb1ZLzd+9xcHhIOhkzThJmp6esN2v2o4hch7XlAW8iknTI8sF7qPWMQlXEkyNMFLU8Ry1w0DrVO3O3o0G4IYp2Ime8UjTVBuMrrG7rJT9hcQrgWzbOgGxW3D3QuNizaoaUw4LJ/gFxnlHt79O8lxMtZig0TjmUaJx2O+HHW7vCaSHSCZPBIeffO0VefQEzHdFojWnLsHqlyBoo7Ued2BWSIrdue4GmxP7xA6LCkL540FpUj/900G08XmKsb/BS02w8vDzuh9e362R7DHyw9pwJ/tC6WHqAQKWryJIEa2wYsFa7816o6jowEkrI0nXe4X2IepA2iUShyNMMrQOZw64jRinaaIjOJN2hP2iFbhfjv6tn6DaNPrBphgVsnMdfLZj/3ncw1xsOT14kTjNw4f1eb7FTtfP/49pWidsRjs4TxwlNtSZKUryOkEYjytBFl/hWZdOiP1So2FZ3D2BWkmUYbXststis0d738cu7vQ2cPELhhUIphtM9EKFerxlpQ9QKS+lHcQfs2ln7UpbQKHSa4NEYF9aDVx4d1EC88sTO0mi1dZr0DyD4xhEZ2yaX0RO/BfEo/brosnOt1sRGWM1nJMMR+WQCBO14OBpT7u2zvjwLLJX91Gy1Zt2jUdsJ7uLFFIHaWHQohFLMZpjMY5sa5xpmZw/J6pLRwQHxnTvMz8+Yzec4q0kiTSGCSRLEO6QsGEaWpqpZX5yRjsdEeR6CGkShRff8SP2Q7GjMj8y290jdYMNGCPPxDMCzasc5MoqqifnGP3Z8+mcOmUwPUFYTZWPi4QTfJq0FC2sL2SluZqR/+YvvojAMxhNO55fU756hJzkKva2SphW1kVDY53GP8wNq3ax1dr14j1wtWdw75eW9gxbbf/+raATR4BuhrkoG44OW0K1bI+0u+BDP8dzF8d9sqhfM2miSJCZLErIkJksiBlnMKM8YDwfhazQkS7ts0CDElRLS1JKmURu901b3wqFU+AKHSNO+3mpO7f27/3cFIoARMLKtlKW8Qi82rP/wu8T3l5xMDxnsTaGDQj7I5PY3DD8oCTW+fLFBG0354Jz12+/ifdNGothW+wzPFywK/Qjr51Nv2QuKEOZaI3htyLNBv1l901CtVy0kcPOZFBIwf4G190iek4yGLK+viRpHpjTGb+sN3zZ0uyYCq7oErTHKosTQl87so2pMKwxMqz22QksFoS7OQ9OQxjG7SXLd/0VdsWlqPNL3RyFk1mKamvnlOa6uen3URIbJ/gGSZCyabflIUdIm9oRSfE9srZIQacPQxuSikPUSWS8ZWUUmjur6iuvT+2ijmB4fkR4csFSa803FVdEQD0fU5YZIHMPIMtSWpK6oZ9dsFjO8C2JKdugldmh02mfcWVvdAekafFUSa0NfN+HGenj8YunrJnhPWQqnp5o4HRNnMSjQUU66dwcfpcAOhUkLR3YZ6X/9b/0Yf+mv/CK/9tWXEMCmCePRGPf6KVJU6D4ZEiK/Dan8KFtgiAVa+003jvL190grGEzGLTpwYyAfvYYolASqlmqzocKT7h0T6m8r3i8K6P3acy/4g+YudERqSiQsBoI8slaTJpY8jRlkKcNBziDPiCNDZDVZFjMapm0aeqs63P6iq7/ktwta3eyD2tk4vaGsgskmSlCLFYs//C7yzjkHB0dMjo6RNp270UL9AWbqJgoamvM1m9mMRkMcRTSLNdI4SCLoooVQ/ab/4LRtuwJSKEUwO3g3QF0VuKIgMV3G7Y7wblXFSoRKaQb7B1RlRT2fk2vVOga3MFn3hCGhZ/ustReWrsElKtAA4EDVKBq0eERXaGlCZq/2Pef/rjDwLmDWWRz3lbc657sT4Xq14nw+Z1kUPZWYAiLxjCJLvVyyvL5C/PaqcZox2j+kUJqiJXKjF5U88ZDtXg0Fuj0xMLQRAyBXkGnFOI4YaMHNZ1w/PKWqGybHx6R7B6h8RLq3z2AyoaoqlPdYIDOacRKR+AaWK4rra1xVclssPuk86nkJXQN1Q6R08KU8VR5t2URVuxe99zSy4RM/njAYx9v9oRV2/wg9mOA7Z1ZvcqlHMtK/8vUXQWm8MeyN97CzDe70Gu3DemlM6wT2ITDio0roFdVloYcndUrwsyXurTMOB9NgefH0+3eFfBSByG01u8YcHBMPJ/16+X7bcy74Q+t5xXtF/IaO2L+klJDEluEgYzjIyfOMUZ6RxFH/9+053Wn2nfDfud6tSe0mulWSQvUdFerPgkLWKzbfeRP3x/c5HOwxOj7C25Z5k0cu90xtt0eKwOxXrlZgLNGLJ0R3jsBGOAuiHOjQH9U6vb3aCqUb6fnv15TgBQrviQdDTFtwxYuEpC3vsTdVfWg1JKcUay+oOCONU1ZXF+Q4Ug1KB6+Jb6NCupjw28/cNDW+rtFRTGOCcPfKUJPSqBQhHAiioNEhm/vmmAnSOPIoIjbbkNcOpmsax7IsmFcF58s5s82auq3TYMSTtMJ4eXHBerXebnKtGE6nRIMhS+8Cn8z7DKnaWVqdsxW6aB3LKEsJhTM9mTGM4gg/XzB/eMpquWS8f8DRSy9x5+5dkjRD24gaReNDEQ+jhGEcMVQgixnl/Ipqs+il+o4as1VWBLpqcoiEg1xvqcCfAeXZeUCFF/C64nNfyBiOLaorWqQEnY1IDo7DXuhSdtur385I/9c//15bqjTUIh6mOfVbp/imbi25oEDdthY/iiYdxEs4GIu3H5AWwmgyAa36aMHHLOHtNWgVsKJkvS4YfPy1EMPf/f2D7MnHtOcS439s25HHu3N/G6+H4EjLs7R/bfuW3QVzc/E8zfLaEnSFA8O3mpFxCl8VNK+/R/2ttzka7bF/8iLKxG1iT7iobdVK/yGO6Q67b+pQIHAQDfDKkh2fQJogVYm7vMJMx0gUQROsF906RD9Mqwmurb3hsL+Ed47NfE62U792+4QBDy1FWGvNYDiiWq3xqyWZAaMCPCJKt5qiCwJCbYGYAMyFbF2PJpIY8QolTY/JI8HBK9q311N9Sct+Kwr4qmI4HPeu7f4ABIqqQowmTjPW6w3Ncs6hgnGSEimFIZSNbMqK+eUlSZphorDNbGSZHu1ztlmyqetQrJwAjj2Oa253DjsHaxeVord/DL4RpUhVyB+4rmuu79+HY8/k4ABjwruHkz2K+ZzFZomJAwAWqpEpVBqx3Cwpqg1qotBpjLK2FUC6tapkp0/hMK/XKwbG9L6O7Wx0Pz+5eaB0DptkDEZxcDJ3WYnK46OI+OCI4nyE1C0ddnv52xnpv/rFdzvjO0SS7U25fHhKdTEjunOIbgW/kkCU9pFR+MhWyRMEdb2keP0+++MJusspaYenM2AevYYgWiEONrMZkg7J774cckRuJdp92PYvhcbfNXnM1+3WbXWtQvheN77vO8xPu+itpgWsE3RZ4954QPH173GUjBi/cAdJAvuebk1Fr7YHxwdtQZ4FzaAqKuLBkMgmRLUGrxAfyr9d3bsfkqqs6TWSXW3zWctVdhZNgHky4mSbcl8XBVKVJDtx1artn0eolWLlPSQZIprl1RURoLSmFqgc1D5omxrVYrfdzglXdCIsigIf5WzEcr4xvLfJuV9EnBaOs41wWsSc1xHiNdpbkO0xhFKIcxgUyY1ol9B8S/qmrEXHMclwiDOah7NrFkVBLSEH24owsIZ6uWA1u0Ja5yRAlufk+/usvVAJdIP9LNBad7j12jcd+2YrDESIgYk1DLVicX5G08I3CoiTmOnJHWobsfZ+++waIg3jyDLwwuLijHoxhzpg5NInQrGD6Am+qdHOhQgrHYT2zRF7fOuO/AbFRoRsNCayCRAiocLlw43MeEoyOW7X5c3sgC9/8V3+yv/8H9+o0qVQoDXJaEjmDe7th4Grv/UP7VreH1ULAl1QztG8fp9k1ZAf7uPNLrb/5C4E9FJo6prrxZLxxz5FOpnc2M/w/Wn9//Jo/J11+ixv7VPSd8offr+3lu1vxglR1bC694D1N/6Y43jE+M4doiTDqxDdb0X19XOdgg/CnLyNeOk0JKFel6STKRIZGtNqzSXoKGZy90WiJEPVBcYLjQl5BR/kyTvTVVAUzpPvj0MhaUIm9Hq5JBJCXHkPnITvXmlK76mUJslCIfKy2JDEhjWCc56yqtHaMIwNmQ6UvLtBeYJQNg1VXUM+4JtLz+++u2FTxW1ytWBwaAVHI8u/8aJlPy7oavkGTSxstiyK+sSvoPGG+9RNzcY3qDgGNNpo4kzRqIKz5ZzKOaaDIZFRpFpRe8/i/Iwky0gHwzAzSjPe26derViuV0x0KCr/OJt/V2/unzN08/F6dQg1ait9aZqqptysSdIUVNDyssGAav+Q1cMHpDZQQyOBVtlojQlxthTzOZuqIp9MUXESToednimEqtgEK0eHoFGN7mqg3OxX37/uW9C4K+dpjCUdDVoVtDvagkNeAWIT0skR5buvh/Bj9bgLh7XURR6JgLYR08keD98+x75WwF6wPr2SNtD7o5H8fWSWgJqvad465Xi8j0lSENXTXHRjsDMsN5oWz+r6mjrNmX7yMyhjt4pYf68PL5v+pdL4YbuJtoqL3PzqWqfxPvZEfYxqf+Oit/4kfan1kKLUNKzun7H+/W8z0obRyQvYbAQSQg9bVAJRu1EsH2Ch3niM8K9cl6TDkAAScgZqlKtRoon399HGsjp9yOK9e+Ab6Ip5POstO0jHC04r0nzQh+w1TcNmtcaqzkm700nZZvjGWU5kLMvlkk1ZMC83LD3USUY03cNnGYumoRRobmh/0sIwJUSauQh/eOG5X0YcTBM+eZzx8eMJHzvOOToYcllprmuHM7d8BOLxriFPUkyXpbpLP1FXOAQdBSxao9HaYpIEHxmuNysuF3OapkEjDIyCqmB2eYVrtr6EOE4YHR5SG03ZOHqK79tNbddBtx776Jqd9/TfWiVB4YnEk2jFcj6jdq59j2C0ZjiZQjJk7QK7pxawPuSEG2MYGsXA6MDyeXVJXaxDKGiXQdvuC1fXWLXFrIOe8WS6v06sd9undp54OCJKs/YdPkB4rf0TotEUm1K4urwgFJ55vFmtRHAtbhfgTc1wNCYtPeXr99GlY1sY58OCmO/fOpEhjbB++wHJuma0t4dRBitbSHgbIvuYayiFq2rWlxeMX3kVPZ0gXoFv8D4wDIv3/3+Nf9tC5EMYfgcSsU1v9v2JH0ojRggtEZSA0y7ErrPdZSGSdjs7XeSJ0yFbUHez3F5XCBmE2yIt0vKSKEIci8euKzbfe5fl6+8y2ij2775INBi0cfMh7nsr6Hei1dvHeFYktdWlARXoe5uaaBioE0L2ZVvg2TtEa9CgjWWxvCYqa8x0iKocqg7PJTpsW6cF48y2Z52zlRD7XzmBNCHqufcVVV3RlAVWh3wHh+vHthZY1DUuTRhORihvyfOcPEuIIoONY0wch/yDsmJ2dsa8XDOOFcl2+PHes6lKxFqWDQwi4RdONHcnmrfmJbNqg/aGCo1yAVqptCYSj24T+sQ5jPcknUOacAONohHPqqkQG6GU2W44Fah1I22oKZhVJX7p2R8MSK1laC3z2TXrbMDwYD9QDBA0781oyvLqilggVtIT0+lW0m8zr2/OsHrsq92ctwtFQaw169WC5dUl04PDlnoiHDzD/T3mD1ZkBCHQPY5XHkNwHlsvLOuaen6Nr0rS4RixNmStNw2qqbHtQuyUhJt1B9pd0FvbW59O40Pk13gy3qGCuC2Shdo5zi/PuHpwyp49QYYjOlfythBRmw+xm7MioKKY8d4+F9+5hzOG9LMvoTJDo3woPiTd8wblyCnd1krurt4dMiG0uUuW6iLLtJhH9np4t0YvC8rX77M/nGKyFKc8xltESUhC86rNK2krAN4S4PPFjCqKmB4cUM2uaEqHLwt82eCNJp2MSKdTVBLjMBgJ9w2iQlNrx9PacyX4w7IRnFJt3K9rBb1BCSwuC2aXG/JxxGg/5eLeFeKE6Z0J3jVcna5IhxkHJ0NQDiFUhpJuL3V7fWdRd8K4mzang/ahVJeIHzahuIb69JLmjVPqdx4yroWjFz9OPpi0vQ5C2vdb4/aTbe/5bNpKhwcoXFURRREmG7QY5y6nsYAL9YHzvT0cGmNjjNU4McEsblptT4FxN3MFQ0JVyHfwCBWKOBtgW2IzRKhWKyLfkFqLEocoRS1CUTfUyuLilNHBQYBDvCbJYiIb4cRT1yWNa9isVuRZzuTwmKsH77GqC6yxwQ9DoIKomgbilLGHP3UAh2nEt69rTuceURvwMdo0fHwSc5hGJI1G0+A6d3NTkyhNGtketlKtsKq9Y1XV6DTrKQu2Hn2F0sHhW9cls2KDQjgeTUhMRNo0LK8uiIYZUZqhAGsM4/1DztYFq3qNtbvUFe0aUzuEFo+FN27+EKZz+8bIKHIRVhfnRHHCcDIJAlEpBpMBi6uUpqmIDYh00J7v+W8SrdBJxKouqZYNRUu4Z7MMV9fopiaKbLBmZRe6uL16t+pXZxEUzqGShDTLdrj9Tf8JJaHc5mI+Z1MViI5YzBcMhyO2ao/acaSyzYVop4fWulmu1hTffpfCN+jPvIAd5u2+9X0GrZLgmA+RQTf739kJrqd66IZcbhxwpjuw6wr3rbcYLBzZKweolrW1s+BDopwJgQa749TRmlQlmwcP8EQUb7+NvHMP19T4poaqwWtFPchYD4bYfIAeHzAYT5HpJFBZO0P8Pt7r50rwC+CUximD9aBU2W5bBxj++I/e4qu/+R1+4qdf5Qv/Ws5X/rt/RFUbfukv/gzlouA3/tbv8qnPvsKf/Ys/jTKqVZzCAgvF12l5QeiTb3y7aLUPESdONz3WCRrtFW69pjp9SPGde7h7l+yPpxy/dEKUjfq+P7ns2s3WI0q3LIDbb+rSxZVAXW6I0xQbp497dxB7HrzWDI4P0VGEqjzN1QI3SNFWYxrVPk8XIrnth/UGUUItQqOE4WjYUv6GZKhmuSTFo/BUHtYNFEqolSbKMvYOjhiMRjjv2bgNvq6o1kvquqYqC1xZUtcV9WTC5OCY8eEh89MHrBvPIA7FRIq6xnmwJmZkLIsV/NG14fcvGnQ05uVR3voXKqxWfHcGJ7HlpaFrI34EXzdkcRJw726whRbmqWnEtyGej58XdIiqUU1NsSnwgzGRgSy2XBcblleX7J3cgZYZNclSRntTFqdrEh/CQIE+t0D1nshnb7uKgRbITUxVN8zPz0jSlLjNq7AmIhsMKC/WpNqyq3PvXswqxSBKsM6zXCxomhppGqgqrEiLxO+sybZ56IMEgg7i2zWrqVCsxZOPJ0Q2fuJzNs4zv56hs5z8Y59gs5qRE2FxdPy2NwvP78xHezibJOHopbvM759y8UdvY8URv3aXZpqhlMY2tNFiGu09XtUgIZGtTUWjLY/UyoCOaiPUiO44u1S716Wuqd96h/qP3+B4+iJmmAYF0IcaHggoH4ouKdGgXNivO4eNeE+MQFOyvPcWxlqSyGJiG2ivvac6v2b25gZjYuK9A9zhPmb/EJ2PSA5eQS03T10nz5fgV2GqrIAoh1cWxNBx9zTO4etQ8E5TUzQO3WQYL1Te48tgvmmaYD62PBui6KtiQVij23hg1SZrhO+RNy0RHEjtcNdrqrfeY/OtN8kqOHzxFYaTPSSOEG1uxGm/L4PkM6r7nUkt7aKtiw06GWBt1h8YN97fY7Mhv8AAUpSs7r1H9OIx8cEh2jlEHE77NjpiB4ZozePaN/goIssHbV8VVVOzWq8YGcVKGjZesXEKlSXsHRyQ5Dmg8U4oNwUPHryDLzbBAa5DEl2uFcpoFrMr5sYw2TvCu2PWD+9jGiHSsKprsDaYu0rx1XPhDx+uSZSjouCfnjuMMyFaShRKeb5wp+HfGmkiBPEOnGeQZb1bW7Xj4vGsiwLVFi7Z0hLTvy+sP0XnfUyTNBCbiSfSmswoVldX5IMh+WgCLTY+nE5ZL2eslkuiyGBUBxvQwxEfSPh3xgiB4VOLYmQiLpdLlrMrpocnaK3R2pBmOQsR+sLst5daGzYaEUjatFKsioL1ZkOEYhybHaEr/ScfJ8g1AcpsRFh7T2Mj0uEY9Rih3V4F5xxGaZK9Q9LJELucI5cXUFwFa6jVzkURhO7tda2gUZrEJuzdOcGeGe7/0zeRxhN/7mPocd5HbnkVhLvTt/c0LVwr7doJffO9ctXdX2BT09w/p/za64yTnMHhFEvIiQmhx1tsQHQFaLpIKKBfVzZJ2H/tU8EYN4HbKdA3aFAmVLb3wr4TGucp1jOWb3+LzbcaJB5w9xd+mdnDt566TJ4rwa+9YHzIzHXat4KvNQGVIooNNpOQwKOFODf4wiHaY2OIBg5s1SdgSBs7gmy94J2xF05+wfamXldQ2yDiUOsSHlyy/KPv4R9cczTeZ3rnEDMcgomwopCd8lnv56F/3KKGJ8sE1QpenMeVFen0TijA/QTMQDoHY9201N+a9M4BpDG6DhTSolv50JKLdVLJtfKpcJ5oMkB3TI7Aar2mcA6co0FIx3scTY8xkcEYRbFZcXl+yXR6QGQspqqZxglRi60b3WLQClCW+dUVWkeMJvv4pmZxeUGihVVdobMAo2hfcbVOGWn4tz6jeW+l+H9+z7OqE4wEMjynDZtGQHw42JsG2xZ+39p54SkaL5RNjU2TR4aun4wO8vMe8Y4kS3sYyognM5qqblicXwQorC3paCLL+OCIi82GjXcMVVhzHzbOvIOFdkv5JUoxsJrV9TWDyZQ4CQqANhavNR61C7LcuhB9pnuqNTqOKJ3H1TWRsqAER3dIdhfxLbl4m38gwZcT8iwcC+eIpvvE2VNqJSiI4pgX7pwEjVhDVG4o7esU95YoV3aDD/J4a7nLnq0NKB0zPjrEG8V7336HpqwZ/clPUe1lbV2LtkKG7IpE32LyQdgb3wVphMNSWuoPnMMuN1TfeZf1N99gz+ZMX7iLiVOMt6B063QP/Q1rVHq/4G4LCqBGpSM6irfdwzRYlrCNjIM0MuTDnMZBLQqlGpb37z15kfCcCX5f1viqxogg1iDaowgUyk4pXv7MKwynh4ynGVGe8Iv/+s/gvWbvZMS0rvmzf/GLDMY5HX1LB+JrpKuO2BOqORXiyQOnvO9TtWkUslyz+dabuD++xwDF+OQF0ukeJsvQrZu3C9XsaoQ+TfB3+HoQRuqGdfC4TymCRq5E4VyNc45oOArawhMApW4Jxh68OLzR2PE+OlIU9+7hNxvSj70CJsXRBOIsCSLSa08jmgqYjEb0xWlE2GwKjE3Ih0OiPCPKUrIkZ7VacX36kGa9Au8o4ohoukeiDalSJHoXQgiOz0wFc3l5cY42hnz/AOcc1+cPKRRk1uCV0KDQjWGgPa+OA3+S8SnaWxQOr0NBHN9q50IQZOO20Eg3+d3mWlcltQh2R+O/rfV3Yyg+WERpHIpihyhFT6QNA2tYrBYsZtdMDw566yAfjlhP91hdnJOpUIGrgxc7aO9ZWmd5dAXWRUI+ihEhN5Z1XVOVJXGSgQqHDjbC+VD8pX2Ifun7FuoMGetB+0+0wiiDa7N1d52S3WG5S63t0NRAUTdsmhqxlsHeIePDw5bqecdyvNWMVpgs2Y6FjbBHJ8j5PVg3eOX6Tz4OLeqdyiqQz6kkZnSwz13g7O0HLF3F6AufpR5lGGVC4IPuspUFp3w4xHzYs6JCrohSAt6jnMY5h7qYM/uD76EfXnMwHDE4uEOUj0D5VgEN6017hyiNY0tJ/iSLLuzfbdLcTQe5bN+DgjhF65hUCESGccQ4Hzx1rTxXgp/GIafXLM/fIHvtBJ1FoJoA+SDsT3MOx0NEC854XvzEcZgA7VAYPj5qQxCVgxbu8YQoi1C9rxMGiqjPuAkUzIggZUn9zgXlt94huSoYxDmjgz2Gkz2UDqUORUImbt2u+WeJlt91FD8TJNR3zeNcgxfV8ny017v1Ni07kQoEGMuJx0qC1xBFmtX9a9x0j+RoTIVHuUAdoCVs8MY3ECfESbpVFr0wGoTSgXma47WibAqapmS9mFEvFgxVCI9clmuU2UNHEb7pSgnS9wlCVbKB0bi6YXVxhrJhIxdVAb7CiWB00DQbLVRG41UwyxttcNrhsXgMxpeBBEupAPN4TxJHO3z5oTkR1mUB2qC0eazAp43mQCSQu9mY2NpegOrWOoyVJlGO5dUF2SAnyfIg2Fve/nK1ZLUpmcSBRvzDJu4ptsLft/i6UQrjPb6u+/cZYzFxjCsLOtJ4tXON1rgLgly6GgSCUQqtA8Ju2jGEwOba0RMJwXm/ahyNNtg0J5/uYbOU4WBI0odwdjvqEbG9g6EF7R1tMJMp0fSQstigxbchmk/2jykB67bPYeOE8dEhioarB3NWX/0m0ckBMhnD8RgZtBFrSrdIgdkmU3qPxqPqmmq1xp3OKO5fYM+WZJUiG+0zPj4kijOU9zSeIH9oEEzw92lFo0Iw8FaFb/var6tQQrPrP6qbmU5RaZXFNoFR2rEyHlAa0YY/euungY+//KQ18lwJfqM1bBrKb7+Fe3gfn0eYPILBAJOknF5tuHex4O6Lhxy9dodv/cHr0Hhe/fSL1HXN9779gIPDMa995iVUm+bX6EC0tCs0O5hDnKNZrXFXc+rzGc3Vgvh6TbKsGE33Gd45IY5SlLQs6yJ99uCHgG5BQlap64X/E64gnQYkSN3gdEw8HG+NmMe8v1M+nGpzBzwIFb5WqOkethGIYyQSos6Mb7bRGrVzxKMpNor7+yilyPOcsiiYza8pq5KyLjg4OkCJkGjNODI4JSxaamyJI5q67EPjaDWtLlQvEmEYGVxdsTx/SHxyzN7REderJV4cjfMtzh+YZiIvpK4kEkelHMqH5KsuQU6LBJhHaRIbsauzCkLtHZumRrcZ1U9ughKPrxuG+bB1JO8IYQL1RGYNRblmcXUZDsk2lDFJMoZ7+yyLB8ReSG2IStuZ/Q/UdgxWOtFoUTRlFRITlcZYGw7azQb0drxvrpPW+lEd19U256BPVmoFbyOK2jnKuqFRAjbGDEIkUzYakw4Dd9MN93h/jUf7j2yPol7LjTPiwzuUlxdIUT51ZAI9wy4jZ9CztY2ZHL2I1hkXZ2eY64IivkczSTBZHAofjUdE+xN0nuJcTbVc4S7nyNUSN18hZYXelAznNQkRgxdOyPb3MSrM27yo+KN75yyrEiUah2o1dE2iFSejnFfvHJM8rgJqZ3UpUKLbQ5x+/GF7kHV+zeB70Hhl+fXfPOCv/tf/E+C/OH7S2DxXgl8ZSzoeMklz1m+8F/hP8ghSS50mvHFvztcfFHz+43Oi+Yx/+g++hbcDxlpRrCt+5x/8Mz7z2Y/x2qt30ZFGlMX6ZucOgmxKmutViDpZrFDzAnO9QV8tScqGwWjE6NVXiQcDIhUFoa86Ey1sokYHlsDQ6Wd8uFabXK83JMMhPCG6ZHvNcOG6LNBphk0y6M3EWxBFe4hoaYW/7qwAh20MzsQkL95FR5ZGPMyuMHEKNqHxEko6AnGWY3Rb5AahWK8o53OKdRgvmvC+ZjwiThM2tAKIYAX5yqHjBLdctBEP4TlUm0HbYbEWYRzFXG1WXJ89JB6OyNIhVoeiIEXToHwb0iudpZXixbWcOJ5GKRodYB5fOwZxFOii5Sb/YVGV1OKIreWpZfwU+MahvJDuHH47AZmEerrCwGgW1zPSwYjRZBz+phTDyR6b1YrlYon1hBj57VS+b+v9PtIJgv4vgCIyhrooA+201YGjx9gebuwO2C7jW/fXUH2Ag5atKIZwNNVeKF1DJeC1wUcxJDH5cMRwNCLqDrhOWZFOmw+WwmMfT7b36B8KhVKGaO+AeDzBlXPouJgedxW1VWQg9N/4NgrIxORHh8RZRjmfIcsZcnUeeHyG15TDhHpviBqkUJbIckNzvYJlgSoa8iglngwYv3yHZDCCLr+DwFP1nYsLvvPgjIt5weVyzfF0xKIpqYqCVw+PuFpvGI2G3J3kj53LYKkGqd4dXKaFlPvhab+3JaeC4EfxN/6bA6o6fux1u/ZcCX4AqywnJ3fxB4c0jafcbGiKK8pVQTwvMHVEfb1m/Y/fgwuH3tunevM9lkWNLjWyrrh+902ixKJsjFGCcgonoVydm62oTi9J3rvArQsiEzEYTRidvEA6HCJRSqxMKGgB7YYRtA8YadOxcW0h1f7Xm1NK/xclgnMNy/NzFosldwc5iq6W7M7FuHlNL46y2JCOTgj4/uNrkPp2w2tp6SHotInguDNNi2kCqvFc339Atn9IdpTTOI9zHrGWqHN+SoirP3t4ip/NyaxmL7JEkWJROaSs0cMk+F4kcCLF2lJtSuIspRYQ31WZk7ZfAXajFT4RMIosD2fXnF3PGI/32Z9O2RQryuUV4LDSxuTo4Oz3XrXwgAel0NKELGXnSLOsdcZuRbZvs3XROnw9zUxr6R4G1mK17lW2XS06qLAe4wXX1FxdXpENcqwNap+NIkYHB1ytNxRNzdBqujqzvTuvv//j7TfZiRLZYsHhp0gbNlWNF9/DZ8baNiSyu0cHI8Au9PM4J2TtHBVC6X1w+BpLNhww2dsnygYYrdFtIZsbfdqxoOkOl0fGdfeFbkW2ryc52cEhm8sHuKZp8fBbb4f+sPJK9YqWa5Wu4P9TpMMBUZ4y9Eco51k3JZvFgvX1jPLdc3xdgYYoTRkOh+THJwwGo5Cnoi3ealDBgpQO9qoM9x5e8dmXX6QsPf/kze/wC5/7OA+vFrz38Jx/9U/8GG9fnHJ++ZC744+xTRrdPnlnRymv0FoQ5XutXiE9/NTLDBUoxn/9d+7yW/9oxPu150rwK0CMRqIIazQmgSjLED9ENYqj8h3S8gGTyZQfO/wYf7D6Jg0r9hZDpFwz8jXxwzPqX3sdQWHyAXVqUBVIVePqBm0Mw+GQ0eiI9IUhNkkwJm4dZWDEIKJCpHFrr6p2ZXt4X0wSYMvpHQqWaFdzNTvj6nt/jJ0MQ/asaDQOp+TRIh5CwCh9w6pccXj3ECOaSgfT93HjRtvfm5tU9a8LDpoSrSE9OMBECQ6PcTWN99Rx0hZCD1q8XxWwXnCQapI2xFIjpAbWdUGqxnhrQmx868ydFSsG0ylLo2kUJB68DokzQTdsoxswSJth6qsS54XN8poyi8mHA/a1wqQr1vOCt0vNWampjIPG0GiNdRaPx+BovCMGBlEcQvc6uk6BCmFR1dgka8eg4256VPoHx27DMMmJUW1JnjBHGo/3mgJhg7BwGh9FKBRFWTG0eW+J5fmIcv+A2el7AORYOg7PLWizq3PvTujuwbVdS11FLaMEV5ch7R+PEYWJYtZGM0RhRWh0cGbSr1+/hdp80GYrhEo8m6ZmLZYoHTA+nDAaj7BRhDahXnXnN+h713FPPO70vPXyo+/S2yvpCA5foDl9F3VZERI1fWslSkiMUlAawfhtCGZHndIOTHs2K7TV/U1zUpJ0yGj/GGmaQLWhwwGpjWm/tsywnd294/LDU9NUwsnegLry7J8OeWWSY9FcLwuOc8X1PGXtajqm1U6HE0B0yEcKmH1bt0BDYzpcP+j2ECKOvNJoMShR/IOvvUhVPwUNaNtzJfgfaaoJtV1NjLKKn/jYy7x49CKDXDNNIv7c53+SAjiJFR+rHSd3auLYcAcBV+FqoaKC1BMpgzUGG8XYNMFGCTqxwenXLjjfLc0OomBn2d9U9G9t1xudRokmkganQxJLMZtx/eAhziZMhhNMe+pLj/vdfu5wB/GOpnbk4xHbOOInvP1W/x73oniPF0U62cPbiPrhOeXVJfbuXdJBjunKFIqwLtbEXkLiCYquRqi1lqaqUFqjbYQrC5Ru45SbJsQsGxPghzZ++rYQ6J6ibmrqpibJMkQcs+tLRCviaMDRtOHNRcX//bsVvtDEjSXTZbiWqfFaYXRE3VRBS2+17i5jFqCqa3wLkWzZlh7XBO8cFk0aJ4Gpku3x3qBYe8+irpHIMD0+JssHiDYkSULnUQDQWjHZ24OqYHl1gY00sdatg5iWC1/1Gvujmr/cnsRW+G2pFHzVYNrIniRJWAiID0RtgQuozR/30InKBqgENnVF0TiIY/LxHnvjKTZOiJMYG7XZ2jciznbhmvY/eXQfhHWzfWWbQ6duphioACPaZES+f4f1/BJTd1Bg+N7oYL3GzY6VtLuU1dYGu3nYBCoTa8M6VUmC+MA8ugutdMEWXf92ryOEEqmRtVxcLSkqYbFwPLxacX++4N5qyTsPZ5xfzTneH7Q7Q/XZy6pl4dOqJuQLBBinYxdVBAum0i23kgNL02P+f/oLp/xf/+5rbApDsJsf355rwV8ZQ+Rp64g2DAaGLI2xKJT1nBxM0B4SAu4+2qsRZRi6mEoV1M7hXWAEtFpjtEFp3fOSdDw8Clrt/NFxfhIy8LjXe31IFHgDNBSLGfP3zhi8+BKFuSIdjNEqsIs8vei6UJcVWluiLAsZxh+S0OnGVUUQbUAZdGypljP89YT8xVdbat4QEbTeLBkp/QjBnEEhTQ1KYaKIpiza10H7hqquiNKMerUgM/oxAiKMkpcQZukRosggXuOamsV8hkQ1P/9Sxmv7Q6qqZHF1zU+4kly3iXUtLcGLKUR1ST4c7EAqYfy9SJu0pdt6tDtjdysLThRI44gJG77j+OnExapxzD1kB0ekgwH5YBCYM4s1iEPlWXtotlh8HDM+OKJuPPPFFaM4IqHje9pNebqtQT86v50w6aADo6ApSxiMAoQRx3Shn0rpnu66EzqNhBoH66ahbtlTJ8MRNk2I04wkTUMY5I2TuRvI26tcdvr7yLGwO6LtJVrH/m5Wq4Rj0keGaP8Ye3oPV1+2WfWhwI7TIboo9uoGjfWztD7/oR0TzA6Pjtod+S7C7tFrRMbwwvER33r7DU6Xax5sGv7ed77LshKuNiX/w3deZ28y5MenL7RHeJj5rk6HEkUsbUQaCuU7J3VIsNRegjNeNe0Qt4JfKX7l597ir/2nd/mbf/OM3/idN19/0nM+14I/8mAkhFo6DW88nPPdBzM+tj/h48dj/snrb1MT8SfvHrN2Fd98911Opnt8/oU7eKtRkSYOpB+tMABUyMTbzdzt9NKbuXlPFvpPa11sfKOhWMxZnD7AHN9h8tpnqRa/10aX3DwkHp/sI5TrFWk+QscRonQbU/74xfq+/eovG6KZEIMaDkhfuIOPY9I0JsADGt8EQqlE3+T1Cc8XwkCrqsImKW61QlqBZLxQFQVxmlHMZ3ije2HYP7OEg1i8sK5KTGQDsZ1pOXvKDX614WQw5FN3JthkwGzhWcwuUJXHxIGQTkSwVQ0rRxZFO/cJ96q9Y1NXEEW3NNhHMQkRj1Q1gyTFKE2XE6EQHIrCCcn+AaPDY5TzXF+ch2pozrEyGp2kjPf2GI5G/R3iPGdyfMK1r5mvFkzihFTpWyusR3hv9Or29O6GhRqtKMqCYbtetTboKMJVFa7X9YXCNaybikopSBLMYEieJAyGQ/J8iLbmVi+etT0LNcnNJ7hBYCbddHgYjjF7BzTrK3ANuk18EB34umr9/lXObty1E/Y3b/7U9z/ac4VR8OrRAfVmyf604DUSrDQBvhGPM3B3MuFklPcWXBjFrbelxG59O+Iom+CLqhuHiSxJGoVPqdYP0BJLKIQv/9I18fy/4zd+53L2pL4/14LfupAmjvIoLPfPVvyjP36A/7Tw4kHG1954l9IOeOVwxHK15Le//ZA/8YmIn3zRoUW1VLVuhzitNbP7nRYMPieepmmIrG05asJEdvbAY2O/d9ru31ueQIrVnNn9U9z4kP2f+dmQni4eYttqBQHbf/KyFKqiJB3toWyEbxN5vp/Wk9Th8VJjMNjjF6iSFG0ttMhjXZVY8aAVXZWrTkQpAmtkudmQDXJWdIlGYTG6uiIbjVhIQBpsO9S9/0GFHyrXUDYOk+c9diyESBinGtarOVo1jPZOGI/GGGlYzReIasCDRahdQ25jEm3aPm7FZ+kctUjIblU3mVgfmbM2M3mYpIFUeMe6ajx4Y5lMp1RFwfryimp1TSQhaaopPeVqxaxpiKOYOE3bkYI0zxkfn3B137EsS0wUESugj52/PeO7kMm2+Q7mE8EqYVMWPTUHKsS2V3UI8yybEJ0jSuOTBJUk5KMRg9GYOEpuMWnedvk+Xhh247X7915vuv0AnT3TGzHhc96HUNmqrnG+ofE1UlasL87Q15cMBkNEB24q02e+qf4Qfpb2iNBX2/317NcArYTDNGL6qdfwusG6AHY6pVBUVDomEo32jroscXUVrGDnkKbGNQ11a9mEg4xA19BCcijFxoPVBpOlmMEYG9mw+9rsU/c+HX6uBb9r09EjqQO1rhLWETQmxHKXyiLKYAjVgCpt8NoQibSJKLrPDuz1PfHbmpkCHs/Di3MWyyWvvPwSxms2ZcFqtUIBB/v7RB1T5U67vci2vwtNsWR5ekoTDTj8/M+T3XmF6+99EyMNJgrZqZpt9u8jm08APE1Vkg/HaG1Dfd9byuqHayEhykiD8poNCr03hPYZg9ZdEuvw2w0MF4KAV4r1Zs14MqEmhAQqwutVXQW/SRTR8aPebh5hU9WB62inLm7QgDw+1livaDYlM+Zkw5zRcEAUxRSbJcV6g9Q14iuyJMco3YuxAA0Im7pqHX9mq1HfkEj0GplvGrIoIjH2xhh7FJvGEQ9HKPHMTt9DbQrGsSEzBoPHi6UUYbFaMbu4ZP/4CBtF/UGXDcf4Y8/svXusmgaswWrdC/KuN50HosOLb8xY6yA0QCSKTd2069iAUkRZyuz6ikgrGqVpoog0y9ibTIJ2bwxK6Zu1WHYE6lOCXB+zzrefbfOPCNWmQtScSMsz7z3i6yDoRPCNo2lq6qrE1WWoxlZsWL33Dur0Pvr4BeLxEK2DFWxle/1nXfOPZmJ/iKaC5m4QxGiUFrRq8MpgvMYoFfIpXBEih8oqwLY+JAt6Qk0L8Q2okDRodAyiUVmGGeT4oqCczdF1jZENpimw2hArjUpztH86JTM854IfVaFbjMwDRjWkbo13Du0jhqIomzXeOywRKQXaFXgJbJMe6bXrrUeqTWBRBhGYzRf8k699g9lijjEG8Z7ZbMb5+TlpkvDTn/888WME/6OakaC8p6pKrk5PKYk5/tlfYPDCq6ChWcyIlLRp7iGyQz9JkCuFr13IEh6E4iuPI2f70MPaRhQ1ylGXMFQx0qbwKwFTlaQqhGluN34n+gPUQ1MH7dFanG9Cej4KX1cIYJKEulgTG30T40VwEgSzimyfANULIVHEPjj4RDvWxYz1ZombjhmOh6RJzEV9znK5QeGDQ1LrHY0UGudYbdZ9ofjeN9JHqaie0RPxoUbvYBQYXXu7UNEIlKIYjca4ssBWBZPEEmmF6YSDCpm93sDs8pw4Moz3D1oLKmh3g/EEGsfV/ffwzhF7hSVUzzJKtWGoQcr5dr3exs6VdAaLRhqHKyuiltsoSTNqo1E2Yry3z2A4wURtFEtfDFj6b7eOlQ+4rkI/nWvwTYNzjqap2Gw21GUVwjO9p6kbfF3iXYA/tG6FptbECANtsEnE/iuf4J2Lh5zff8ChukMyzGhLmt04dH7tqy/19Xl3SzU+rXWz/UFb8DO066klMBQFzgjaKTw11fyKh6f3sEcvk032iLMhJhtgs5w4H6CzECwhTYMrSsr5EmxEPB6jrQLlqFcLlvcfUN57k+XFVTjYhyX7ZUFdLJ7ax+da8IcQLk2tA6fOz7/2cf6VT34SYxSxbvif/pmfRZQntQ7lIj71wi8hRqFwzOsSV3d8321BFhGMClpoGmvqsuIP//CbfP0b/xStDfWmwiBM9qccHx3y8ksvkSaPp0Lu+9inwjtcVXN5esqyUrzwp/5VspdfQ8cWqgX1fBHqwGKgTQp72oZrygpU4MbvYn/h6Z958jhumyLE0TdaUzoPkSFOov4Q8q7BzWckqxV6MOphsvBhBd4HrV8CP06cZfjVEqwlUga1KfAi2DihXi8QY3Zw3eDAqpuGsqlRLbd994bO5xF4KUO0Q6JKvDdcX18iUjMZHTIYDVkXFdZrvLXUQE9fJxJob6syOFx3ojp8C+/sHkPeOYxAbG3/WpcEVYvgI4tJUtaXZzc4iIKQDtc1KHKjcL5h9vAUG8UMJtOgLaJQWjOYTHDiuDo7Y1GWRAixtSTWEhHSoDoi4XC87hRk9+24KSiVxnnBNdvExCTPufuxj2ONxUYxRttdd0cPWT4u+e+DNBHBOYc0DZvlgtXsms1qhZawJozSWK37PAgd3yw3qLtoHQk4vgHU5ISXPvd53v6jr3P67j1OXjwhGY/wJgrXQPFrX32Jv/RXfpFNafmv/u5r/PW//FsfSPh/8Ka2B3BLWW5cEywsNPWm4Px0SfrKZ/m9q1/mt74y5Uu/WPLn/lyNUjZYsQpoaqr5NevFAuMcEbA6f0iUpaR7eyT7J8TjQ+TVz+DLknpxxeziAbXSXF5cPLWHz7Xg7xZrcKo4YiNY8RgaGjQjG9QXwYBx7GmPJ2JRlHz9jbd56+GKTVOhdNB8vGuIjWE6GvLTr5xQzK75gz/4I+bzJYN8wMt3X+HuC8cMRsP/X3vnHWzJcZ333+mecPMLu2/zIi4SSZHIWEEMCBQIgGawpLIpl0qUaJUtuayiKEskZblsSiqLlkpyUFmmTJEiFUhKYJBMM4gECDBYJsCABQEwg2l3seGFfemGid3+o/ved9/D7mJJYgHv7nxV8969M3NnpsOc7nP6nO/QajdoNRoEWrM+aYfDOHuiNSXpoM/8kaMYC1uu3Evrgj3YWkxBCfmAYrVLK64RWI1ByJUZs0lvVFFdMJEKA6K4MWZnP0GE45NgNGf3s1yrDCWRS+nXDFE1Pzu1kOYpycI86ewR2hddRFBruN8Mr+Nf8NC41H2NVguVJegwREtAlOcURek4ZFhPlTFEmucuBeJY9LK1Q79zwagSZRllPNIiGAqyfpfFLKBgwPTWrdRF6M0fRZmMIAhdsB7Og6vdarM8GGBEEUbxiDto4wMVRUEt1ISBdlrl2JPmxhC22xilSPoDpnWAwkUDGBGGthNnhjE0AygKmD96FKs1zVYL5SWfCkNaU9PouI7Jc/JsQDoYsNzvY7OcQAn1IKCptY9OdmYD5ddEcmtZzDISowma7ZGmBI6zp9nqjLX3Gj3c+t6l1r58H1NhYwzGGJJkwMryMkl3lcALspZSaOsJ2bz2ory2ON5XR8Y8Mc5+bTViS0wQUJ/ZxXnPKpj7xpeZ3X+QTbt2UJuaQikn3u7bt4NB6j4P0oD79u04ZcH//UIAjMIo+Nj9O7nvwZ286JpDvOyG74K1ZEmfhYP7MbU2D8/dwi++/kIGA8W732t5R32ZO+9IsWVBsbpKb2GBMC+YDEKCRgMRqOcFaVnSO3oUozT1yQmiyWlEB+jNm1HbtkHUYeaS5wLvPuFznlWCf0iN4ObkmbOBWmfzHDIxGm2xPtjBCKPECkaVGCsEpeXxlS4rqzmdZsS3Dy2wvdWgU2vy6OEFrtiylTAUvj2/xIWdFuefv4usLOivdjnvwp3sOf8CN0MUi7Z4kxGIkRE1gmCwqnBqX1myPDfLyvwSTEwycflldC69AtVoUIgLRy+znKw/h9681UWgeiW0HMWdrE/cYTDkRQZxA6k1MGLARliVIfZ4DJ0bBg+/2Dru/mnH3B0tgjKQCYSNFoEO3ZBiDFm3i45jrArIkgTdmYA8RxXO/GKkRhkmztVOGeoS0l1aojYziYk0NR3SzwbU4phChZ54za8PGBdJnOQ5NtCjZC/DIji5790oxTGyGtEosQRoSmNJk2XSMiVudWhMz0AgdI8tkKUZE1FEpEqUskw2mwSiWB0kFGWJrsfYYOjPL97MYylNTi2oESo9qntBKAwkFlqtBll3iSBP0XFIKoa8FGxpCbX1s1s3LGpRNEOFzRKWjx7Cqm20mi5dpgBBENKecBHbRd4mTVLSdECR5xRZRpJlDJIck2coDKFWhFohOmCQl1Br0el0iBtNQr+IPO6iOBzZLMozcm7oKqP2t6O/4mZOI/6p4eA41J6KIqe7vEyvu0qZJoRlQVyWLmjPx0840o41SpNhj1Qb1wd8PxTfN62AUQaJQtrbzscScPSxrzB76DCby5zGzDRKCTdfdZB33b2HQRpQjwtuuurAuknT8FoWRrkm7BMKjz+XUYClNkNznMWO0SkIAX9//y7+xVDLuOdi3vqGklue+3WW9n+Pot5g849cy2fesY3BwL3Eg4Fw770Rd75oleXlwwS9AbEJ0VGTuB6jY0WhIAaCJEX3M4qypFhZoFhdRsUNapMTNCemySSkseM8ToazSvADDGMWnJwaZtABUGjrkzfYsfAX37bKaLBu4XS+22Oq02bP9s0spRmXbZth1/Qki0nGlRdeQK2meORbB5i+4AKuv+5atm/fxbGjs0xPTvgZn8XaYaYul7HK+WkqlC1QGAqj6PWW6c7OUWQW2bqdicufzabz9kCtBda5o1qEopcTpDlRUPP2dTwXjS+zf3PF915rLTbJiFqbCFXkkjPbIf/OCWb8Gy1Bdu1FVkPvBm/jFgRjDTmGVqPlkmwAhTF0V1bptNuEO3Zi6jEqilwQigYlJaqAfH4Jk2TouI1u1yAIsb48GsgHPdrtNn2lMbZwdep90UtrnH0/WnOzXPfcY9+sGvoZuZwM1gpKSqQoWZ2bpREETExNE6iA3tw8q+mATqiIA0U9UERNTYCwlAxI+33CZh2lwjXRZAyqNNSbNYYD+pAjp7RgdJ0wbrB47BDkJQulwQQCOiDQmn6eUxNoRqFna8T56wcBS4Mey/NzBDqiUW+slWpIVhdEhK2IVquFsZYsTUmThEE/ocwzKAswJVlZOCrheoOpma00Om62L+tqau3LaO1oRP3ghaA9nhhc32+G1zLG0Ov36Xe7lGlCmSYUSUJoDe1AE0bRyHt9GMnOE57IjiZnGx5wXU7qEWGijmlv340EwtzXHmVxdgEDtDfPcOfex3nb6z/Nvft2cNPVhxA0r3/L9dx81WHuvOHg2v18K370/t3c9+AObr76ELfvPegmEnZ9X3N+82uD1NoAKIDhUw9uG9MyQu77wg5uvPQrlK3tbHrWFXT2PIdbbjH85bstg4FQrxua4Sqv+9WQ51/b4OU359Qm224dqyhQVghzSOfnESloTE5jwjplr0faX6EoegyKEhv1qE1NU544dgs42wS/tU5NMsbJfy2OZ9wahiHfRo5PCuX85w0lBmNytIqo6YiWFZpK0dCKprWo3C1KWpsjGqY3TTMxtYlyzx5UzfF5jzoGMmKVFClR1vHD5mnBYHGZ1dUlUqVoXXwx01c8l3B6G1ZHozdKW6G0kCwtEttwLTKWtQHLlXvtpREstnTBW53tk352NFz8W0u3cXI4G3U3LxCEehj6OZllSFuQ2RIJQ2qeXtcCaZaSpQNn95+axEQxpigolpeQRouwFmCzBHtkyfGYb+lhp6eJZraSDhLqA+MStmQZiMJoTVGUhNap/UYgzUvy0qB1MHrWU4VYS4izMwdpymBuDl0amhMT6C2bWVlYYDVJKKxQ185dbqLlfNbnu6uYfoqKFYTOpZbS0JCQOAzdPNk/Z2Ghn2fEU5uwhJSESL1NqRQSaWpRhApD+v0u3X6fPC1oakUt0I6EThQTYY1jqwOW1Rx6ZgtxfUhj7AbBtQ6gUGKp+WCq9oTz+y7LkjzLSJOEIstoNFs020OhvxZ5+sQ6emJfcP3Z8/iMFndlKHtd+xtLmWek/T7ZIGHQ75L0eqjSEeA1otitlAlrQp+TuSM7l8Rh1x73x9+4dD3SP5SmuWUHNR1x4NGHWTm6CHlEa2aKl+zdz+179/PR+88b2fvfffcl3t5/YPRefeSBsfWAe9x6wJ03HFxv4fMPNUyl6CaSrl6d44fh1iuP8K67L3VaRpTzY5fvR3SLzddexcSObWRxwEvuLHjHWxe5+x5FqzbgT965hUGiec8HZ2j/18O87OZ5ytk58n6Kmd6KRCHJ3FFI+tTRhNtaiI6JGm0KDKuDlKSXEEQ1kuXlE9YsnGWCP81yvvjFh8jn5hGb02zGXLZ7B7UQhiqsm7k+cd47NMlghYl6k+8dXeLRQ0fYv7xKEcCxJOXA8grBgcfpNCLCUFDaoDSI0sTNmFKVQAlWuYQgWlAjTljBmIKsl9JdXGFp+Rjx5Fa2X3kl8e4LCOI2IgGlsmMJJoSiLFldPEBUCzFqqMlsWGTzOVqHBF3GZCR5xlRnwnN54J9Lry34nQQWKKxlKc1c6Lpo6lo5848XPIOyIJqcHNnZBUuyukrsNZVSDJRg8oTB/m8Tbd1CuG0XpQ5gok09jkgUJGmGrTdYXV7xNl5D6AnPJK6RZykNGZqwhN7Im0ePNLdTgQvHd8FnqsyZarUIxLI0f5TMFrSmp2nv2M7S7BxJtw/WEAeKQBSdWh1BWFhdoUgSkBgVaEye04xqLhJcXEa1rHR8PGkQMD3RIlAwNdVxPvpR5ExEpaUQqE9M0l1eZHVhnrwoaAOxdkGDsSgmwpDF5WVWRDExM0MQx2sEl67S1zx4vMnG9Y8QpQOCMKbWaIE1zlw0DKgb/eZU6441OgUZk8biaKuzLKNIE/J+n+7SEmWS0BDYFMcEEhJYt5iPQDHSHtbWveyJ4lHWrIujgWrtvDV+Hcd3494JKzHB9DZ2Pldz4CuPsDx3GKNSWjNTRDriUw9uX2fvv3ffdu7Ye4AhKeG9+7ZvWA/Yzh17D/pJo/V8UaPiM7Qxrj2nIGhuv+Fx3vq6j/OJz23h2su+ywt+bIlIN2lMTVKGIZBRZANefGOX51+xwG+++WJPswD9RPOJz9R56fUDVvcfxBaGuNFGtyYpJusUCxkqS4myPsn8IR4/MsdCkmLCkMxYZP9BvvHIV07apmeV4B9kOe/9yCdQifMOj8oBv/hPXsnumY5XXUfzZf+L8c/OJqwRdkzO8L0jy3zpW9+mWxi+O3+Mo8eWSAn47uIS00WTF1x+ATWl0D7zhDOzKK85DLlRhu6gQpkbBt1VlmeP0ith+keuYfqSZxN2prBRbbQAHZrSZwzzHSztk8w9TqtZB1F+nXjowTIsxZiabF3ScGstcavjjlqLSy4TOM6c477wa2qrRcisRTebRGGN1W4XBGrauREaK6RimWy1Rq6Wxtv3GzhXRVsC5AQqIIhCyiIHo1BxTLhzG7qALC/ozR1jYscOigDSIqWBy8CVJQlRvU6+vAg+grewln6aoqJwrC1PDUOmRpsVBCLUtHKJ00VYPbZAkeVMbtnK5m3bOTY7x9LiAi2gESoCsXRqMYGaZLa7wqDfJYgiKHPidsetIRlIjaFfGlKtaW/ZQtysgTG0GjWXrMbT8iZJSl4YOpNTTE5totVqs3j0CMdWl2mrkLYSAkoiNBOBZuXYPMYWNKan0VGEUppQtKPAfkJbDk004mW0IBuH+5NU3UZNYO1q/q8Fawxl6bSKpL/K8uIx0m6XSIRmEBDVa0TWOC8cAWuNm3xYnwZ1pCY4nv/RRMyO39fNZ9bGGDsyRa2tPXlhP+q77h0staCnNrHzyqtY+DrMfe87aFOgNk/zoqsP8lf3XDKy99981eGRWUuAm68+xLvvvmRsPeDwSEyMz/bXP64dbe7dhzzvc+OeA1zRniM+7wImLr4GvvM4amke2w6hN8DOL5Eur1Jr1HnprYa7PlQySDX1KOf5z5sjDUOyLZuI4pCyE5FkAxZrEZy3haLeRExC2l/mw3d/nG/MLiD1ukscJYp+r3f8BvY4qwT/th07+cVffSOBgaIs+OT//lsWVhJ2zkwD1iWvXsens95uF1oAw1Rdce1lu7j8vBkKXLq+0Fgy5UL7a1qxqdNC22EGTjWivoUhN4pBrEvgnaU5y3NHWF5cpLnzfHZd8Tzi7bvQrQ4Ms5N6quASjTIu8AMM+cIxgv6AaHLz2vvCUNV030Y2bXGCP0sz4noLHboFvFGe0BO88WLXriXWCcisKIjbU8SNJmhhZXkZJSFKFKkxEEUukYgX/GmaUOQZobjE1QJYk1KqGvWLL8eKVz2KwTA9FIFAnvQpyoJas0lxbACBIsDSH/RpbZ4hGQ6gCEmeUZgSreJxl/pTh3Xul40wJFYuEX1TCxpNb3WVpSxnavsOpjZvohdqVhbmMUVJS7t0iM0oZKbTYaXXZaXbpR7X0IEit9DPC1bLkvrkJJumNxHUaqRZTrKyQn9llTRLXF5XY9HKUqJZSBK27dpNrVFjets2Vmoxq4vzaAvtwE0E6iJIoOgtLzG7soQNAuqNJs1mm0az5fz9PW300KVzowAFRhHP1tfDSKA+WZWNGfdN6bxz0qTP6tIivV6XqMhHAj8QXIyC+Nm8MIqFAe8KO7LPD6/vj214mI3mTOuj5K0PXtzYj4fuk9onr7FaE7cm2Xzp87jnwcu554NNbnreAX7itm/yp7+m+ORDO7npau/Tbx0Fy4cf2M0n9+3gl17xFVb6ETdd5Wz8djS4DDUUvMVtOOlbG3iUCIUpOHL4CP1Bwszzrmfi4suJJqcx/YJ80KNYWWVwZIGGQKcziQoUt9+2wtt+d5l774t40Y3L3PjilO/0+qwWPQZ5QtE7RIgmataRWFH2F4kyIaxZ5kPNy//Zz3DeBRd5WeS0k7/+8EdO2K5nleCvN5pcec11fsTNeeQL95OaxBvwrU84YY7f2/1MxAqIgplOna3tlldHDdo6qlS3mm8x4oN+Riv6ssYLbkBsicoSlhdXWFiYR8c1pp9zHc0LL6O+dZszV/iBw5lqBGOVo1hV4gYBW9A/cogYTTDik4H1L86Y2coPOGm/RzQxiQSRJ3JTDH2BNgoGYLQgCcNUis4CG4QREoSErTZlWbLS7UIYkVpLWG+ssTECaZKgypJACyhBGW9rtgZVqyFpgjU5YkrC0joGRW0JSuh1e7Rbk6zOL1Lg6t8WOUoJEoYUWAIR0iIHJWukaXIyG/GGMuJMLFIYms06gQR+lmepa5der5emLBw+RGdmhsb0NKI1vYU5TJ7TDkMiEVphRNhoE1mFCkNyY+nnCdQatCcnaLYn0EqzODtH2ltFFSWBtYTWpSkMcSkkl0xBFoaoQFhaPEYQhExMbUKMIV06RsMKAc6tsR5oKIWgKLBZAcUqK70By2oeCQPiRpN6q0mtVidQPoJavGbos22Nus3QHnTiimJk1Rn2MGPJi5yV5RUG3VVMmqBMSR1DDSFSikCrdQu2JWrMB3+4HuDn1cIG/p2NHdL9M2qsX+KGBzeQjNFjj2IrhrqJD/iyCm1C7nngIl77P3YzSDQffDAjT9/FK2/9EnfceAirFcY6YroPf3bnyLZfjwve9vpPA/CGt1zHLVcd5o69BxhGSlvx5GmOQQ6rNUY0ogJ0s0ne7ULU4qFjt/P5uy7jx39ccccdKWzdhFnuI0lBO64TxhpZXeX9H1F84stTXLP3GK/55S+TxcLBXBM1YuJW7MxMxnD/fTv5wue2c8MLZrnx5kPYUlGoGrZV55IrnsNlVzwbEZ+e/UlG9LNK8INX/ASnPtqCwBZok1MOu4oYT4z0RLjZjcLNAQEb4Gi21Bjjoo+addJ9TMm0I65si0KKksXDR1hZ6VHbvI32RZfS2nMFujUxWih1XgtrA4b4ro3/brIBg9lD1Gouik9tWKkfvkvDF8yIoIyhGAxobrsYJT74yY5E/vgwMV5pIxunWMhLi9UhOnAeLCoMqXU6pMayOkjIsXQaTQLvJ22M45sJrdNfSqN8HVuszbG9hGT2EHZqGyqMiKVAWUOIoima1W4X6Uxi6i0GeZco0JSFz38QxyTJgAhDN02xOhi5xY4cQk4FFihdIvQ4rGFxnPli3Sy5HmiUsqykKd3ZWaJNm+lMTaFEGCwusJwmtKKISIQwqlFD0csyCiOEE1PUJieJG00G3S7J0jJ5v09QptS0pqYDQhUwZNJPSpccZmrzJvI0pTs7hxJFe2YLnckpFlZWyIwLWHJOAm7htxZELqq1LAnygqy0WJVRDnK6y6t0gwAbR4RRSOh5f2q1eH2qw1OpJ4+yLEgHfborq2SDBJtmkOfEGBqBpqYjp5kKa8l2GZIGroV7qbFrW69eDo0jYq2PmRuNEk6QizjN0ee+FbPGLWSldP1y+BNjGWbyGjJagnu37vlse2Q7T/KI//ONS3nRlR+CmR1s2bHbrU8M+nzi4d3rbPt//tFL+Mwj20eLwG9//Sd56fX7ET8BFK1RUZOw0UA1WlBrQhQT1Jr0Zue4/8FLeN3v/oj30Tf88R/s5x/dnNNsTGIiIW41KeePcdcHUv7lf7uJJAu56yO7+A9vHnDDTQcgVkRthYoUsQR86sNbedMbriRNAj70/gv49d/+NNe/YD9hIFAU3iXd1b02x8+7MY6zTvCPSE5wXPbzS0vMHmtDXEMHNaJAoYJo5N0wbtVUFE7Y+0WcEu0rchi4YkczTSMWq4SRAzDeb0gspTjCstmBwdQnuOTaFxBv3w2hU8EKqx3/vIj3xQ/QWOduKWvZdQbdASv9VaLONEngXAbXwd9aeQloRLBlRpeIic4UVgUU2mKN85Bw86UnLogOvTxc0g4hKQvyMKQ29F6xgg5j6pOTrNhjmLKk1miMZpBZkZENBjQDRaFdlHMpCmMLF2yVF+RpQWgsSWmpG0NLhyDKJbbKUrI8Iep0GMx1R8nJy9ISxA363VVMoMkKQxEoFI6f/kmnNes7hssLHIZIGJIjGK9wKQSsQbSiGdTpJSndhXkwhnZnEq1DugvzrGQJda0pbEkmgm22qXUmmJieJisLlo8tkiyvYJMBjSigHte9eWNI2G0prGHRWMLOBLV6i4XZWcgLLLC4MMvWnbvRjRa93qofeNdMJBbceocW6laoiWOMzcqSJElIjcGEyi1864BNM1td5PhYNZ1sZWQ4C8/SlH6vT5YOyAcJ6aCH5AWNQBPXAkIRhtEgxVpINcMeZoyh9MLZ4lJzDn3/TWkw1hHkZVlGkRdkmUvm44qnCMKQQGtUoAiDgFiFdOIGCkVaZKTkiAhatOsLCFpZz4yqR5ObUlte+Pwe7/jAFINEUa+V3HRTjpneSdrZSrhzD7ooKQZ9bnuJ8J6PlQwSTT0uKFWwbiC4e99ufuzK/SRJgtERWy/YRbRpO2GjSdBoQa0OoUt3aHL4v1+dGvPRV3zyvog7bzTIdA1jElJc2939yG6SzGlpSRLw8MPn8fJ/2qcUl3XDWMtgucu9H+mQJu550iRg32d3sveGQ5S5cclixBNQjwbVk0v+s0/wi7fHWUFqTbbtfi5br3wWEkTORq0sovQa/8tI7R1OnYdCvgDEuWcaPRL8TtaNucMN/Z0tflAwWJ/msHPJs0BHRFu3Q1T36vPQqqmx4rI/ifFBQWIYT6cYIFzxopsIa20kGFlwGd5uVGS/wyrBFgXtPVcQT28hCJuE2oJRzq1VCo7rCTOaOTuTk7aKehigA7+IOgryaVBrNrGmJI5rWOO0K600m7dsIRK3VmGtworGYgiNodQReuduJIjIlBAUpcsnq4XIQmQMxDHSDGnHAVpKGlZQcQOaDYqGm7U2ZrY4hsMgGFPtTxUWUxaEIoReU/H2kGHjMTQdNHFutEY5vprm5ASNZoNy4Ph9rHKDrI5qozoKraVTrzMZxz4C2Izqzq37OBOBxjIDBHEDRLFpeho9NYFYQyGgw5Dprduw6QQBzhPJ9ZthLIVZa3Sv8jW89jMshbHu7lG9gXjhMdL1xq2Fsr4fWa+xChCHAZGuo+p1RKZ8eczaIqef5IzMOP75tH+QYUCTFSjxvFeYEQleaA1xaTClpbRuMBi2p1IKpRwpnBZNhCbWsWtzUyCSMzTujKgqxJnrxCq3+br6yZ9WRBM97rkv5MU3Z9x+6yXY8iKoN7GNFkpp4gnDT/18TrR5wN33aG594QBbhnz2EUN/oGjUDXe+ssH987dwz6db3PzCPj95eR2pOx6sUoYZuRw/0MTmKe68M+Su91r6faFRN7z8FQ2mz78IiTVB0gcVI50JXvbTlvd/yjAYKOoNwx0vrbFt+iLfbq4f2lrBy15e5+Mf8ufVDa96VZsbrtmLscL9H/vSSFsfzkXPSXbO4TuRFyVfOzRLHtUwWUaZpZRZQpHnIxumKIXSyplStBsQRClENKJcHlSljiMsj4u1pSoByiKnt9yjfcF5xO0p4Dh83ye6UmnoHdlP0V2l2Z4ANebicBIk/QGmNExs24kOoielhN6IAktWGoJGcx0lAjjBkGUZYRhSr9dG5Rn0uph0QKQ0pTHkFgoUKtDUajXiOF73DHme0+/1MWWG043c+fVOh3TQR+cZIlCqgFqrTV7kpP0egTEUZUFaFCPhcKptY63BlCWtyEfZPtn5WPLSkhiDjmPqjQYiQpqmBEFAGIaUZUmWpmT9AVqMi0Qdia8108ew7gpcftqo0SIIA/qrK0QWl+QdS24sudbUW2363RVCYwhPEHdyPBjrUiLmIjSabSKfuwGG9v71fW9IpWCMochzsizB5AXaQhC4+IDSOg74wpSUPo+aYTibN+Q+bqYsDXmeu4nLmOfOeLuLj7oFQSlFEAToQBOEetSOReGSH1l/TWNKlCi21CcJw4Bj2TKLKyusjykAHQfUooi6imiGdSIVojzz7q6t8HOvcm3wyCOQZSlJaQhbLZqdjtcU4Pw9wi/s8YOfVfz27yzyD5/UXLHrUfZ9Ef7w7XeQZiF/8b6CQyvf5uZbDjyxDYyl1+uybWvJb/ybFg/um+FHr1tm9/Z59u0DU+YkxxaJ2i2CdofOzCK//m+38tC+rVxz3Szbth7hc/cb8rwgGeTkeU6z1WD3+TFv/Pfb+OLnZ7jmulm27jjCvn1grbCytOJMtcM6hyeVFXKqguhMgIjMAd97mm+7GZh/mu/5dOJsLl9VtjMTz0DZLtgNm7asfV+Yhe8+UfI/NXiqyne+tXbmeAfOKsH/TEBEvmCtvfaZfo7ThbO5fFXZzkyczWWDp6d8px76WKFChQoVzgpUgr9ChQoVzjFUgv+Hx1uf6Qc4zTiby1eV7czE2Vw2eBrKV9n4K1SoUOEcQzXjr1ChQoVzDJXgB0TkdhH5uog8JiJvPM7xWET+xh9/QEQuGDv2G37/10XkJWP7Xysij4rIl0XkV8b2T4vI3SLyTf9/6gws2+t8uR4VkfeISM3vf6eIfEdEHvLblWdR2S7013jMXzM6k8omIpeNtctDIrIy7Jci8iYReXzs2J2ns2zPQPnOhnduUkTeJyJfE5GvisiP+v0/WNtZa8/pDUcB8i3gIlzO7S8Bz9pwzr8C/sR/fhXwN/7zs/z5MXChv44GngM8CjRwQXL3AHv8b34feKP//Ebg986wsu0EvgPU/Xl3AT/nP78T+KkzuN1OVra7gFf5z38C/NKZVLbjXP8Izs8b4E3Ar53J79yTlO+Mfuf8sT8HfsF/joDJH6btqhk/XA88Zq39trU2A/4aeMWGc16Bq3iA9wG3ioj4/X9trU2ttd8BHvPXuwJ4wFrbt9YWwKeAnzjOtf4ceOXpKRZwesoGbjCri0iAG9wOncYynAhPW9n8b27x14Azt92GuBX4lrX26Q52HOLpLt8Z/c6JyATwQuDtANbazFq79MM8ZCX43SxvPALvoN933HO8IF8GNp3kt48CLxCRTSLSAO4EdvtztlprD/vPR4CtT11RnoCnvGzW2seBPwD2A4eBZWvtx8fO+48i8rCI/BcRiTl9eDrLtglY8tc40b2eSpyOPjmOVwHv2bDvX/t2+7PTbQrh6S/fGf3O4Wb/c8A7RGSfiLxNRJpj533fbVcJ/tMAa+1Xgd8DPg78PfAQ+AwR688b8mqdMfAd6xW4zrgDaIrIz/jDvwFcDlwHTANveEYe8gfEk5TtrIBfm3g58N6x3W8BLgauxA14f/j0P9lTgxOUb4Qz8Z3DaaFXA2+x1l4F9HAmK/gB264S/PA4a7NxgF1+33HP8SaACWDhZL+11r7dWnuNtfaFwCLwDX/OURHZ7q+1HZh9Sktzgufe+HzHO+cUy/Zi4DvW2jlrbQ58ALgRwFp72DqkwDt4ogr+VOLpLNsCMOmvcaJ7PZU4LX3S4w7gQWvt0eEOa+1Ra21prTXAn3J6223ds5/gGded88OWjzP/nTsIHLTWPuD3vw83EPzAbVcJfvg8cIn32ohwauIHN5zzQeDV/vNPAff6mcMHgVf5VfoLgUuAzwGIyBb//zycff/dx7nWq4H/dVpK5XA6yrYf2CsiDW+XvBX4KoxeKvz+V+JMXmd82fxv7vPXgDOz3Yb4aTaYeYbt5vGPOb3tBk9z+TjD3zlr7RHggIhc5n9zK/AV+CHa7qle1T4TN5wN/hu4VfTf9Pt+G3i5/1zDqY6P4TrZRWO//U3/u68Dd4zt/4xvnC8Bt47t3wR8Avgmzttn+gws228BX/Od7C+B2O+/F3jE7/8roHUWle0if43H/DXjM7BsTdzMcmLDvf7St9vDOOGz/Qx9505UvrPhnbsS+IJvo78Dpn6YtqsidytUqFDhHENl6qlQoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QocIzjlMhGxOR3SJyn4h8RRyR3ms3HP9lT2L2ZRH5fb/vx0XkiyLyiP9/y9j51/j9j4nIH3kX3hOSuonDH/nzHxaRq8eu9Wp//jdF5NWn4x4nqbs/E5FZETl1N9zT7bZVbdVWbdU2vgE3Ae/csO9NPAnZGLAduNp/buNcJp/lv9+Mc9Ucut9u8f+vAnb4z88BHh+73ueAvYAAH8W7T3ICUjecm+ZH/fl7cXxc4KLUv+3/T/nPU0/lPZ6kXl6IC+h69FTboJrxV6hQ4YyAdZHhD/rPq7jAwSEPzi8B/8m6qHGstbP+/z5r7ZBE8Ms4Ar7YBz51rLX3Wyc9/4I18rYTkbq9AvgL63A/Lpp7O/AS4G5r7TFr7SJwN3D7U3wPROTXReTzXhP4rbF6+TRw7Pupy0rwV6hQ4f8XnDLZmDgO+6uAIY3BpThixAdE5FMict1xfvaTODqHFDdgHBw7Nk6mdiJStxORqJ1s/1NyDxG5DRfJez0umOsaEXnhccp4Sgie/JQKFSpU+OEhIg/guOZbwLSIPOQPvQFHNvY7OAK138GRjb3mBNdpAe8HfsVau+J3BzhTy14cSeBdInKRn2kjIs/GESfe9v08s7XWishpjXI9xXvc5rd9/nsLNxB8+ge5ZyX4K1So8LTAWnsDgIjchEtw83PHO09E/hT40AmOhTih/y5r7QfGDh0EPuAF/edExACbgTkR2QX8LfCz1tpv+fMfx5GgDTFOpnZURLZbaw/LelK3E5GoPY5btxjf/8mn+B4CvNla+z+PVy/fLypTT4UKFZ5xnArZmPeIeTuOOO8/bzj8d7gFXkTkUlyWqnkRmQQ+jFtI/Yfhyd7MsiIie/11f5Y18rYTkbp9EPhZ73mzF5ev4TDwMeA2EZnyJqrbgI+dhnu8xms7iMhO8USQPxCe6RX+aqu2aju3No7v1XNcsjFcXoSP+M/Px5mCHsbluHgIuNMfi3DEgI8CDwK3+P3/Dsdf/9DYNvT4udaf/y3gv8OIu+y4pG64Wfcf+/MfAa4de/7X4EjXHgN+fmz/U3mP1/p9jwCfBS72+9+D4+LPcZrPP3+yNqhI2ipUqFDhHENl6qlQoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwz/D4F7tBa4XVDVAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 1440x1152 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "#ruh_m = plt.imread('/Users/Asfandyar/Downloads/map (13) 2.jpg')\n",
-                "ruh_m = plt.imread('/Users/Asfandyar/Downloads/12.jpg')\n",
-                "fig, ax = plt.subplots(figsize = (20,16))\n",
-                "ax.scatter(above_A51.b2, above_A51.b1, zorder=1, alpha= 1, c='b', s=10)\n",
-                "#ax.scatter(\"-0.43923212\", \"51.34009127\", zorder=1, alpha= 1, c='r', s=1000)\n",
-                "ax.set_title('Plotting Spatial Data ')\n",
-                "ax.set_xlim(BBBox[1],BBBox[0])\n",
-                "ax.set_ylim(BBBox[2],BBBox[3])\n",
-                "ax.imshow(ruh_m, zorder=0, extent = BBBox, aspect= 'equal')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 169,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.image.AxesImage at 0x12ae029d0>"
-                        ]
-                    },
-                    "execution_count": 169,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAOiCAYAAAB3ubyBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRty37Xh31+1cw5V7O709/+3deip9ZIgEBWE4kAEgISGwcIiU2TMMhIGEmGCSOJIcbBMSN2YAzZ8QgQbGQDdhwyZNkGCwdLtEIwkEAOemoe0nv3vduee0+7915rzaaqfvmjaq619j77dPec2+je/Ttjn732XHPWrFmz6le/3/fXiapyTud0Tud0Th8fMh90B87pnM7pnM7p/aVzxn9O53RO5/Qxo3PGf07ndE7n9DGjc8Z/Tud0Tuf0MaNzxn9O53RO5/Qxo3PGf07ndE7n9DGjc8Z/Tu87icjfEpH/2VNs78+IyB97Wu19UCQiPyIi/8ojnvuKiPz697pP5/TRpHPGf07vCRXGtBKRYxG5LiI/KCLzx2zjEyKiIuK2jv0eEfl72+ep6h9U1T/xtPp+qg+/X0R+XkSOynP81yKy8xTa/eMi8pe2j6nq96rqf/QU2v5BEelLn49E5GdE5E+KyN5jtHG+sXyE6Zzxn9N7Sb9FVefArwS+BfijH3B/HotE5DuBfwv4Xaq6A3wN8J99sL16ZPq3S58vA78X+Fbgx0Vk9sF265w+DHTO+M/pPSdVfR34EeDrTn8nIkZE/qiIfEVE3haR/3hLMv075fedojn8WuDPAL+2/H2ntPGDIvJvls/fJSKvici/Wtp7U0R+79b9LorIfyUihyLyj0Tk3zytQWzRrwJ+QlX/SXmOW6r6H6nq0dZ9/4yI/I0iWf9tEXlp614/ICKvlnv9lIh8ezn+m4D/I/A7ynP8d+X4GgITkU+JyI+JyE0RuSEif1lE9t/F2Leq+o+A3wpcJG8CD2xfRP4i8CLwX5X+/ZFy/K+IyFsicldE/o6IfO3j9uecPhx0zvjP6T0nEXkB+D7gn5zx9e8pP/894JPAHPi/l+++o/zeV9W5qv4E8AfJzHiuqvv3ueU1YA94Dvj9wL8vIgflu38fWJRz/pXycz/6h8BvFJF/Q0S+TUTqM8753cCfAC4BPw385a3v/hHwTcAF4D8B/oqINKr618maxH9WnuMbz2hXgD8JPEvWNF4A/vgD+vpAKpvV3wC+/WHtq+r/FPgqRWNT1X+7XPMjwGeAK8A/PvWs5/TLiM4Z/zm9l/TDRSr/e8DfJjO70/S7gT+tql9S1WPg/wD8zm1c/13QAPyfVXVQ1f8aOAY+JyIW+BeBf11Vl6r6s8B9MXVV/bvAv0CGqv4acFNE/nRpZ6S/pqp/R1U74F8jayMvlOv/kqreVNWgqn8KqIHPPcoDqOovqurfUNVOVd8B/jTwnY85DqfpDfIm9K7aV9X/UFWPyrP+ceAbH8ducE4fHnqSxXVO5/Qw+h+o6n/7kHOeBb6y9fdXyPPy6hPc96aqhq2/l2RN4nJp+9Wt77Y/30Oq+iPAj4iIIWslfwX4BeDPnr5eVY9F5Bb5mV4VkT9M1jieBRTYJWsGDyURuQr8AFlC3yELabcf5doH0HPArXfTftns/i/Av0Qex1S+ugTcfcJ+ndP7TOcS/zl90PQG8NLW3y8CAbhOZpan6UnSyb5T2n5+69gLj3KhqiZV/VHgxzhpq1hfX7yWLgBvFDz/jwD/I+CgwFJ3yRALPPw5/q1yzter6i7wP9m69rGp9O3XA3/3Eds/3b//MfDbSht7wCfGpt9tn87pg6Nzxn9OHzT9p8D/VkReLsxpxL4DmVEnMvY/0nXgeRGpHvdGqhqBHwL+uIhMReRXAP/y/c4Xkd8mIr9TRA4k068mwyH/YOu07xORf770508A/0BVXyVL0eMzOBH5P5El/u3n+ETRJM6iHTJEdVdEngP+d4/7vOUZahH5ZuCHyRL9X3jE9q9zctx3gA64CUw5G7Y7p18mdM74z+mDpv8Q+ItkD54vAy3whwBUdUmGF35cRO6IyLeSJe4vAG+JyI13cb//FVlifavc9z8lM7Sz6DbwPwf+GXAI/CXg31HVbaPmfwL862QI5ZvJkjPAfwP8deCLZPiq5SSs9FfK75si8o/PuPe/QbYt3CXbF37okZ8w0x8RkSMyo/6PgZ8Cfp2qLh6x/T8J/NEy7n+4tPEV4HXgZzm5+Z3TLzOS80Is5/RxJhH5vwLXVPWRImZPXfuDwGuq+ssqPuGczulc4j+njxWJyK8QkW/Ygm5+P/Cff9D9Oqdzej/p3KvnnD5utEOGd54l49h/CvgvPtAendM5vc90DvWc0zmd0zl9zOgc6jmnczqnc/qY0TnjP6dzOqdz+pjRRwrjv3Tpkr700icAUFXeeec6QQO+8aAlzuSXbbjJAyA53XooGc+VzSUnwnLG74Sk+c8R7TuN+kk5tji6w7zxTGrH0x7Ath84XgWmu5vI/8Pbc5bHk/Xf0/mK3YPjR25THjlGqowFisjJn+0hlHF8ZOvp12MrCJLP6QNYAWdRdD3UomASaEyoN/nSdaO8uyG936Pdp62UlJTSPcdlfAbJF2rSTdOqT/S689xK63EwYpAyhsaYfM8nePaUlKQnn0lEctvke+Z3k1+kGiVD20pMum5HhNIXWV/3ntLW3LlnjLXMs+21uz0Xty43KqjA8nDF1avXaJrpiYb+8T/+xzdU9fJZXfhIMf6XXvoE//Af/CSqyhB6fvDP/j9YVT0vfs0nMAo6rsJfttx/q99rZp8Yp4KIQe/LEfJxTYahV2KAEISUBE1yavOQcrdIiMLP//Q/5HNXGj710lWiNdinYRZSQSXx1tu3+ckvXufzv/o7cSYBjp/+yWv8P3/gW+h7R1UFfu//4if5pm9561EbRiXm/qsFNeWdp80jqgAGUcGYgLMJ5yLWBKwEhEiSrA5vFhmkMn0ECGJwIhjjEOPxEThcMlRCqi1JE0okSMJiqJeJcNRiL84ZjKKSyhhL3iREM4O6D21vZXrPNxvmIWe8G0GIQ2Sx6ohKYTZlpgiYwiwBUkw8DbufqjIMA6qKMUJKiojgqgpnDdNJg7XyrlZi2aoZQqTvh8IQ8zM4Z7DWYErD1lTUeBChTR1RAiQlhrIJCAiKGIMxcs99nhptMfNt5j2SovgEwYCoMFjBplTONtiywSl5XhoM0RoM8GM//Lf4A3/wf8NnP//1eRMrm0dVma9wH3oixi8i/xI5WdPXAL9aVX/yPuftA3+eHOquwO9T1Z8QkW8kp9mdA68Av1tVD0Xkd3MykvAbgF+pqj/9aP3Kw9U0Ez739V/LP/drf+V6srx7EevDRGP/DZnxbzOR8VNAMCgGVYuuJXyHpizhaZaHNpJPaXVc9yJKRPje7/529vQu85kBYxC9l/28u/4rfa9818LhLzyDNYAKv/X74Vf/KvjbPxr5zu+B3/Sbv/kxms5MNDcvnMURRcGIYiQhssQQMAKytYkmAVeEwlAWkwUGUUQNViwmJOwqoJVHvQMivSRUFKsKRKIoYGmSy4xdYJBAIpXRHxk/j8z4EUgn5L/N7D6rDQGSQoha7sqG8d+zHnTd1pOQamasMkrfCDElEIsV8NasZ+u7vkdpd/sJZOsbAIPFtZC8IdhIlJhZqY559sZ3fvqJnzKfkM1o3+crlDzvvIKKgCYiAmJxqrik9MZgxOBiJIYBYxw/8/d/HoMp+/+j9flJJf6fIWcv/LMPOe8HgL+uqr+9hLaPOsmfB/6wqv5tEfl9ZGb/x0pk5F8GEJGvB374UZn+NgXTc7u/yfX2zTz5pSwQlUceoPeWHn3iK7rRVnQzzctyR0j5kxhUBUikaOg6iIOja5WujcRguXcK3qcfYohR+Uc/9iNc0Rv89t/4q/Decr8FsdY2im4/wgdnNo2iCL/41bf5wb/2k3znv/h72d3fhSLZXPsc/I6Sx/Knf/Hh47Pdcp7WsUjVZXw0j5SRiHc9db2iqlsqq6WfG3hnnB3jggx5TeESJDF4qahNhbx6k+HV69hPX4Nr+3ShY9CAaMIUZqyAiKWxU6yv0RhY9YckiQWGeJCWNj7P9piNx9I9Rzby4ElSgW4I3Lx1lxDHKxImCZtXtMEWkjzOzDyburYlxshkOs1Chiqr5YrYB/b35jz7zBWsebdrcBsHOYthb76vgkN+6QZybY9u35E0lGU0jlO6BxFVHZXep8n479XWMk8Cm/Ln1ipVlPIWJb9JY/FUiAix7/HVBFNPMF96nfjqdXj+CsPQkuHK8vyP0O0nYvyq+nPAgxd4Ttv6HeSc66hqD/Tl68+yKbbxN8hh7qdrp/4u4P/1GH0q0JkQSUQTCTaQIYAN4//lQFpk8vt9O24E24xc1BGD0nc1Q6esVonQKzEIYMv2AIXDlbuYrb/ZzE4tEERdcXzzDiYd41M59wGUUkJEEHN/DjJOeictqj2rvqPCbC3Id0+iBiTB+FyaF5K3AeM6fLPE10uMbUlqWGtOZrM0RSGZcYgyg4lGcFLh+oC1kSAt7pIn7Sltuk2UzPQRZTCAZlUctQRjqDB0diC4FVEHIEueWUPRM2GaUfbelo4VwSjEpAwx4KzF2fwMekqOHgWewQSCWTBs4/z21JsszE6fwvro6UgS8WKKdglBVrS6okEZzJxk89PA2RDVWXS6a+Na3hzfxu4tLhjq41tosgTjQUPB0bc2zcIXthGup80hpAhpp9+NFuxwrX0X2C0Zh42KazuMj9RY2teuI5cvIrUjaYv1gVQlokRUIkpktFM8bDjfD4z/ZXKiqr9QoJ2fAv7XJWfIF8gZ/36YnO71rEyJv6Oc80g07kFSVGdRKVLwyPDL4v6Q8n5dS8tw0pqYsT4oxrI1spmVd01CDIYULO0qsTy2BcMnc1hGo2Laau/U71OzRURRlOl8h8OvthmeENmSiM7ufzaQli6i9wgGqptHqyxURum7FQYlPQVHM5VhDaOIKsYkvBtofEvdLPFuiZWISUV7KYxXRxWbDSNRBYvBYLDGUQePee0W7mCX+PxFNO6yMj1RI0rCssHPRZSkksdRE+7OguhBqo2kuoalkHuYGoxvWdkAM/k9Daqsup7VakXTNMym9RqnH/stsgVYRIV0Ego4E7DT0+DJuyMnQhcjGiLGWlJKaFKmsxmT6RTMqPOdZtyPR/dep2vhIQv2HmZTtHZ5GYwTb0uiX+tMcqKVp0uqSNHSELO2FakajAjJWupkEFEq47Gmxtw+htfvEC7vYaZT5PYS3dshaoAXLxCfnRLEEYzmzVoMa7b/AGEcHoHxi8h/S65WdJr+NVX9Lx7hkR05GdQfUtV/KCI/APzvyZL97wP+XRH5Y8B/yUYTGO/9a4Clqv7MA/r3B4A/APDiiy8WlCEvFFkv3ntf44PV6w+A1mutTMYt1GQNRRAK816L5KTkSMETemG1VPrWEgYIKUtuo6SxfZtTNyzr4F6Pj2wYhWayx2uLjpgEtGC29zEAyhp62hy5Z0MZ+6QJbwzOGIZ+ABWMnNGPR6TxnhuTGFgbqKqWpumo/RJreowMRSiwqASUbUhI1uzIJQhGMryDw/sGv4wMt5eE3TmDhSEmYlHVoxm9VjQrD2QjrgKqkf7N2yRrsC/O0XGOrr3NHjQfy8Y0vqkEy7ZjsegYgpIYcL5iUrlxey/jXkAdhTAoqby/sc2zeGa+NPFErE/BOoP2Stu3eO8Jw0DSxMRNs31EBcP99dl3T4XpF4HPVhPcy8+xahST2jWwMzLe94vS6FygxQMMU6RzSx2EZDw1Dr19jJ0JdlbT3ngL3j7E7MwZLte4r3uRWAlhWNJrR7QRUoSQALueS48CZD+U8avqr3/CZ36NnMjqH5a//z9kxo+q/jzwGwBE5LPAbz517e8kh9c/qH9/DvhzAN/0Td+kh3dvIQJhGGi7FVglSSzbqzkhPX2oyJSFega2qFuTVYtHCpqx/HZlWC5h6IQwOFK0qBowfZlohpz59/4K4P3GQzEkoJrMWS57NKVi2JUHShQPETbylqNZ8a2cxTtL2/UkMQjxwRc/pN3SA6wEKj9kpl+1ON9ipC9LwqIC0Q6cNO6ZrUYUU5hHnQxNAHEGnTvS55+hraCPK6KEDJaNXhflNZot7VIlkXQgxg5ZRYzOy2vWrbdy/zlZAMoiIcLx8YKjVccwBEDo2p7WWWpn2Qj9m/YSwpACCd2SkFOGxE7fW57C+hAwTqhqT9e1dH2LMYammeCsFEO6Mm6x7+Zup6fYaQgFso5rrCMd1MS4RAZlFAs24tBZQtGT0r2MN3vcbbRHYxzGOVwXsO8codMpOKX/8ttUz19G5zPMc/uYi1PirGLhOqJNEAdsVIIkTFKMKjCwWNzl7p2b2IIWxIew/vcc6lHVt0rB6c+p6i8A30NO64qIXFHVt0tO8j9K9vChfGfIRSy+/ax2z6J33n6b/+DP/RkUJcbAV17/JT79bdlCuOWazfu71z+ItmCNonfnPpp7tJQUIQ6WGCAGSNGQotD1wtALKZnM8AWQhKjdmn4nDV730tkYg5AQSdRNRdREFwZU/CMskAfdq5wh2XjlnOAdxGGFEHmQVeNRSAS8DDSTFZN6gbctzgwYYhGAs9S8NpZrhns27CfbNRKg1uCNYXKzo3/zDs1LzxAv7tDvedKwRFMgScrPErOULwhpjR8bjGZdKomgOxPMnRUUzFvXjHjLE+nUMMqWDK/Aqu9559YtlqtujcU3TY13hrpyTBq/9knPF+W1EIaBk/NgdCmVkzd8CjBPeRNUvkbEkFLCiMF7jxpFLBtNaASzHhnk3xZhNpDZ2Pv1d6KjwloQx1SARN2M/Ymr8pmP3I/79m/00yqcpghyFofD440j9RHrK6x69M3XiV+6jrx4jeqZS8gzl9DdCYMOxKmgjSVIFhpICUUJJttyEhlGRAL/5Q//v5nv7WdNSoRuCA/s5pO6c/4PgX+PXIrtr4nIT6vqbxSRZ4E/r6rfV079Q8BfLh49XwJ+bzn+u0Tkf1k+/xCbIhGQDcKvquqXHrU/XejppGNwEa0GPvHNn+LCtUsINr/aEsgho6S1dvfbBgneT8pYnKpBFWJUYkjEwZBSmZAqxKSkKMRQEaOSItn/XvPxUX4a2xQ2DG290Medb6RHWNsiEaMG7x1aNSyWPboz5WGxEA9jHWv2o4J1holThr5j7YC8xl5169jJbq8hLzWIZk3B2gHveub1IVUVcLbLsM6Ja0eJL0NhUQw+5piCZCI2wWCyVmBNg08W3r6NP2rp7ECKx6TYEzVgVLFFR1GRE/cpiGPGlYEkChd20dkO4hwpZkZcpiTmPiOmW4wpJOV4sWLZrjBiEVs2LRFCjCxWLc47vDOMnlUhKstVzxDSZirImUDPVu+fEIJZ30eofbM+oALWCFVVkZn96fs+At2LHN57a91I83L7CA2ReNERJPvKD1a3YlG25paOUN9GM0qStTebhCSj260SjWJSRhCiKLbcOwm4ZMEoRhxWPAbFLiNiDE6h+8pN7IU95NoB2jTotQPYq+lrJTw7ZTCJFBdoys4C2csqbW1PBpMMaiIqgW/4NZ/jn/3sq6zCbQShYcaX3/y5Bw7jk3r1/OeckdJWVd8Avm/r758GvuWM836A7Op5Vtt/C/jWx+lPM6n5nu//HpY+oNIz2Zsw25+tmUlSRSOoWmLMxryRcWayD2j9vaAM14yMPEWIMREGKYw/Qzq5r7L16keSM6Chco5sS3fb5z4irf28LdY6/GTG8XGLXOWBxt18p4djPaOEba3FW1j0gW3gY91Z3fp8emMu0pVhwPuOpm6pqxUTtyySUB5D3fJZz668m546zRJ7NFqYpaFKHoejOQq4pmLYneLnNau5YUirsiGN7sFFb9t65M0GkDUHpMAO05qqqVDpabd3MJGz99It6TMptG3H4eEhRhzT6fSkMReh6wPHyxWzSUNdeYYQWa46FquOENPWbLjfG3pKmvCJZsaRz7+dsdTOYx6GBz4BjZulJCHcOYKuRy5cBCRLxKMDxdkdLlJ/fiduK/xaAJvycyQV1KQS32FwSUAsaizOWiyJ5Cq8VtRv3yV99R3C5V3shV1siqCBREAvzpGDhmSUnpaBkL3iRtVGxh4K2dVZc2CiCBSt/vPf/HmuvvQMKQTAsmeexfz9B0OmH6nIXesczz7/Ine0IxFRA31bXlKClLJUnYIjxuwdE8PGsPe+py5SWxh+Zuw6in+jCq4baT4zm3RK5H1/SKzFNw2L5fLp3HaLvztnscYw9D0n5nph+NnLJnsvZTLr84wo1gx4t2LStDR1hzN90XjyT3biGA1qoyYxUlH6SzCbwWFwNHaCPR7g1VuYTzboixdZhpYhdo8FBWwihTOwkFJCbxxidhxSGZIKVk8CMGe2o9B1Pbdu36HtOryvNykPtiilxGrVoVFJE6UfAovVihAiT42pPwGJgPceMeahwsOT3kcK5KG1xxiDSaNWJbjExnsL7pExhOzZK6MhVpTe5u3EpzxXfBrvZbDqkIxfIclSicO9fYc0t7DriIuOeLTAXJihjcW9fIlYWYbUogQiMafKkEQqNqdtDXIkLYJpXguZyZM8trZcfu4iRiKoZ988w/4Xz8zUsKaPFONPCdrec/u4I5LVYE0QE4zGUF0b3ex6tY2ww/tPBWksM+5k5O2232/xAEHQInG8hwLTFgmQECN4P+FosRoF1KfTtEqW+J1h6LrsaTF6MJ1IVlJWmW5iXY0JeLukrgfqqqX2HVaGcYtcY+ebNtY3PbHQkygmgVWLxeJtA9UEjQOdRrCJpfQMMqylvUfhoWc564QYCNdvYtjFXLBruGXs773Nlu8Vjo4XHB0dYazDe1+Oj3Nhc16MyqrtGUJAFUJI6zn/oHib95qEbNStKo+1hjO9yJ7i3QCsWKrL+xATremheGlt4nj01O/8vswWDJSMro9lbdGgksOrjDjUOqxxNMsBbt5Fa49Md2hfvUl1KSG7c+K1PexexTD3rOyA1olAICYwhCzL6OizNcLQ2zvjKBpYKFYKWceMZLsYMrprZ9gS8zGS+FPKOHjbepJakLQeRNX8svIQRjbKJ3wgYnS5rawhGB23gQIRKGJkHZC2dgG7p8/vPVnrqCYzjpZ3t9xLn5zGTaTxjtj12QhoHWfLwFLCsQLOdVR1x6ReUbkBY9qcY6fg/TrGEWyN0fYWMI4pSMZKxWBxzHqDDZHgoNqdwWeeZVEFdAi4pKh5vPlRwDoAYmF0blKDtRgxRM2wQpTRCfbU9QVmiCnDNJPpLEuY1t5znsimhaTKMMQ8ilt4++a8D4IUa0wONHvC5G9nt77ZZLW82/HfUBtiymJULHNj8ypPREgAQrC5ESkedGrAqWCLr7wXjzWeapVItUdtxXD9JvoLX6F69iLmcwe4l69ipg0DgeAT0QrBDDlXEpphG8nzIsM6si2TnE0SgVCWx5jyImHUFT/+rBWIWiQ1DxyvjxTjH0lHO5Zusfe1GgUjoHA2W3g/6RS2uF4QhV3o1nEkG60+gIUrxuCbGYvl22xwmqfQD8lPOqkr0mIgxYiYEb+UExueACIrat8xnayoqiXepOL3HwqckjZu6mcoymtNYq1hUfLueLyp0DduEO606OdfoJ95VhMlpAHRmIOxZHPdQx9tS5uUkkURA9WzF0mVo5UlpBwdvD7/VMNjxOs4X511aynwtLSfP5982rPog2T+3nu8d1ub79PvxxaKiCTovvIWXNtBmuxyq+tztlWszfpXRlQgu0EnASMWIxafBNPGEswnpC+8gr96EXnpGsPuDvLJF9BLMwYbaC94kg4QBgaJiERchGgy/Og0z8N4Sph4sNG9fCtCnujjVpW1AVWPmF2Szui6jxnjFxJISdHAdl6Z99tj53HoNHyz7SGypY28r+t1XEKKWIOrGo5vdg+YmI9PWrD7pnKIRlKM2FoL05d1kI0QcdVAU6+o/ZLadVgzrPU3XUclj5rCWX7UcGKci9ruxFOZhqpXhlvHuLoimcQyrhh0wGgkmqw5prWk+GhjcFKwEBJK3Guy5jmskOKZZdlk/3xwg9tM/uzPm/uVcXjgee8fCYKzNoervC9rUdCQcNfvIrs1NDk1xijyjQbcET5kvakbvIIVhzEuvxvx2e/++m2GL19HL+5hX7hK2qnRiSWZRL/nYbpH8KDaEiSSYyWK26oog8l5kGyJYRk9hmCb4Z+BPqwDs0zpe9YWsiXQosaT0pyur+j7Bj+ZsBoezNo/cow/D1zeDbcCwsvfm519c3y85mEmtveCTr/ske7Xlw9i4SpiLK6asGwzHPPuk2tlOjm1lUlTZZ/4OCBk9z/RiJGEt0pd9fh6QV11WOnz200WTM8G+5ST+v79H4ec1NZixVN3gq6W2MmEdHWfYa8imcCQhsKgxqyXPPbw581ig91GEkMMVENO2z86lpqH7OnrfPGPffcPDxmT3YI3KVXem/7JGhvPnnEpJqwVgirJ5A12O7lsNvxLzm5pLE4sVVSSWFw06Gs3qOa7yJV9YlB8UlJl6SvoXr4M1iBhmXMv2UCKkWByXMcYq+AjqJiccrn0M5HdQ88WJPTUx/J90RxVDWIqoGEYLEOYMoQZXZ/oe9ipYHhIHORHlPGPJpL7hZ6/3wz+fnS/yf9h0U7KhihC1Uw5DsoQAt75p3qXpnLEcExMEVQxRKwL1L6jqXsa32FNh5hQVq0tzj2brDIbrX3s81nPMkpOFmsqKlsj79xFbx4TPjsjvnBAnzqCFniH/CZsygtuncPtMXjWqJNYlezvverh7WPcZc/gstp/Ooxqc3HZNLby5T8afbiYPmTvLe89Y+2R95KyDih465FnLtDPapA+R2JrDrAzmgvDWGyW7MUixmCPOszbd5H5FLs7Z3V7gdgalUS8PMHOrhHmFdH0qE0kDaSYU6NHSWsJIQsL2U04GINR1h5cguQEgHoqanlLKz15cNwtLSI1MXrCMCGkCV0nrFpDVAsaMQasSUyrB7umf+QY/2nEbEPb7OF+0vT7XYkybvXlrMW6rRF8sJtVVdeoWLq+Z9o8YSWutcExf/CVI4UOkwK1BWMTlR+Y1C3OH+Okz4um5NFRyYEraJ2loCw/rbeBtJb+881Gb6nRXmDF4sRjbYUkcHXFIEofB3oiSXLuc4MwyChIaCnm85jPmdEETCq5M1c94c1byPwCspvfayxawf2CuIw8OMX12fTBz5ltxxTnLDYXXLj3WU4YZTe0ZY45ceLaZqLlzawfVdbXiYCvKuyLV+nqAdP3mAKVRCNYyV5cFkNqA9ZZfFMRb98hfukd3DMXkb15SZ8wIWhArNJPDR09GgVhQAWCUVzKm0qU7HcTzAgqZYo5TSs2ybrP93CjtbyS3QLGTULEoWpJyZPSDn1fs1ha+miJKiABMQlvDc4kKheYTd7DyN0PI63dxM6UzB62ED4ISftBxpyRPrgFbApb9ZWh1YZV33PA9OEXPhJlO0w9bWh0wUEVuTw9JFV3MDZXw8o8fAxeG0lAPSdlZVOM92sUd63vWc0Lz6uhSo6qBRM6uNzQP79PGjoiSwIDaKm8JTkid4Rr4PHfwmZxZynTqtK5QJNSzg6sFiHgNdE7SrbQs0aJ9Sb26BvuB8j0tzi+KlgLdWUxjxgDMZ6VSwvmjTEHXuXjoiYz23XG3ZyhNhiQpDjNDL734HyNDz3BgmiNMZYqJvxKMbbGAN0XX6fam8Mnr8HenOHzz2H2pgxVor/oiKzQuMjzawzR1Q0ga8cXrSO7johuhCMpFeFQs6XhRaKJOHXrxICjLQARjPp8vjYk3SEMM45XsBqK92Jx5TROqVWZVQOTaaByKyqbULnxwDH+yDH+e0nO+PRhoQ9fj+6lzEirqiHESNv2D73isVpXZVJV1MawN50wmzrasqQMlPxD6aRhE9gCacvHIi5pkcwlR1mOboxWLcbVNEtFv/gGIha7N6N3iaRx7fG1vo3I1r3ezYPd8yH30TvS5T2krnJFLzKDc1HuvdmDFNQPO22lF/fOUXnPfUd0RDL0xJ9ZU6JU8mJk/AktSRcFi4pBcYgGIBFNhj0qqal6izcVyczwSZhoRbIe3r4Bv/BlhosHNJ94DjnYgZ0demNgZrGuoXdKn7ribpnQ7dq+W+/2xNMIOapWK5Ah/6iBVGe2Php8EdAakyyJcmy046iBZMHMUGoWrWXVekIUQhQSCSOKl0TtldnE4esjjK4QM9qlpveqT6foY8D4z+lJaJQxna8IEbruwSrk47SbFVqY1RUmBCpRKpvoY57AoqMafwZT3D5wQhkYk3BtFaQQy4QKLw2mXzGEiL+2R6+BMOS8O2ktlZ19i3f1gKWJMf2QKqgz2GcvobWgusrazFMoPvOhoq0EcSJCU1c49wDMeWvMMzaePwejVDELAMnkFBlZczJUIWtxOa9OAjVYNYjkgKoaj3nrDpEl/tKU8MoNXD2Bl64wGIvMZ7gLuwxTi16Z0hplFY9zfqpKCQwlT2wq/Xk091NdM3hK9lMpf6/1g6zJkNGJ0btI8RimwJSuNyx7R4yOfrAMcdQEEt4Ks4lQu4iTBd72YJeo5jWjySAaHjp1zxn/OT0CCb6qSMbSDU8n/H8jkCiTuiJ2K3ToMVLnBXGPx9VDW9zAO6LYBEazp4YRT3WrR2LEzBt4+TLHBw2DdGgccmDWCen66eDjYysjSqOlHrDxjhADYjM0kQSiCPYp3PPDRCJC5T2Tpim5eR7wfFtfbzD7PAuSZDk5b4+ZmdqCpzsVnArYCp88xths2D1qcV99h1TPkL0pcVDiNGXtcadm+emrMK1JpsPUiagDfUynPKx0bZB95HB1yVDPmGerJMVmY0NM68R8WSOaAjUheJZ9TYgT2t7QhgTJ5jgTk6hroa4GnF1R+YBzLegCtCMlk+e6FB3kTCPxSTpn/Od0NhUGqJJD1qu6IRlL32dpZjtt9LtxzdtW+31liClL30IDBZ5Zp114WDbQrWAmKeCrFEm6sg0+eeztY5JGwuUZaTKjpyelgCnA8bqN9wh+G59AVYl3j9FVh71SEUzGr+NDbvtBgIJnFTAaaTsS+N7UEVo8kYSm9nhvsyFfz36P63QkwqlUBRm3H+MbTDJYTWCFZD1NMphBsabCqMG+eQeZTODyHtqviE2NubBDqD3pmX2GqaFnwFYK3jCkFvpELGm4bfEGQhUtZUNH99AHsdETz6+wnexxPc/XkbUJxCMyISbP0M6JqaIbLKse+giqqWyaSuMDlW2pq4G66oEFqj2aQtEkxw1my07AQ5Gec8Z/Tg+ikRlmqCeJpe2fDtSzsfPl1BSuMqy6Dk2GnFI6L5JHKQoiW9CCUQERksl++g6Pl5o4q0kuMtAz6IAykKO5s3i5TprwHgndUuwPihL7Hj1cYi5XUHy57Zlw1okWeL/Z/8jUU0qEELKtxFqc27CNsyKIR3LO0NTVejO+X/+3N4+86RcbjVogUamg4hBnsiZXIq2roxW8cZuwO8Fd3GG4cRt7oIRr+5h5g/nkVeLcEmVF3M2VymIUAj0uajG65rTHOR9P7l8qfciCz2MUitHxLWVIJ3uhGShpIkQ8qg0hNMQ0JUTH8QqGQUjJZxOQVVyteNNT15FJPWBkAbpCNZa2R+ioaBEjTCmjZezhc+Wc8Z/TQyhPe+sctq5Ztj2axoksD5QKH97uxqrXNA2r1Sp7MpANuqPN9qEtlT5kXw5BxTIZhPpuizGKudLQP7NLSEtC7HO5xXWJx1NS6COoyY/zhCftD3kzk1mFM56l96h2ZXt7mjHRT49Ula7r6LoOVcV7T9M0OOfuK/WLZEG0qSr8uEnI+r8zadx4VcFgMyPGIijVkBDvsDjk7hJbVci8Zrhzk/TVN7HXLiKX9+CFy8hkQtCO5AfEBGJaZS1LOpCGKlRECfR2NLSOliZZv6/t93a6QvWZfZdTF5USqSoWxAOWlCo0TYhpymppaTshRBhMvn/lwEmgqQdmE/D2iEQLtKU9PcHUc3lPpTgJsw0snkv85/TkJKO6a6gnU5bLHGjl7IMDRB6FsmKdZe6m9nTLVUmhW8pSj1LXQxixlNw+OdWDxdmGyY0F/RdepX7uMuHyjJXpIQVUYmEqsmG364U7NrhtX3iXdJ9LVZQ0r6l2pojtMb0hlEyKHzbGr6qEEBiGgaZpMMbQdR1932OtLUy+gBlycofz1tLUNWYrWvX0Hru5UY6czRG0gsHijAXnka7D3FqSJko1cRx/8Q3qq/vI/gS9PMdUL8HuDitn6PdrhEDsO6IEjMnJkHJFNAs6Z9VO8I3D2ENIY8KzDPJEyR48675yH7+CBw6aAWlAIKlF2CGlKau2YrVSYiIn3Us5F5CXQFUlZo3S+BaRBYYW0YSRQGLYwF+yKaaTBaQRmLSF04+x4GXNPoDOGf85PZDWLFCEyWxO190kxoSz9t1L+4XPjjnpDFC7iuXRcUYqi/CyxtsfDPFv3P2MwYpjohWqK8zujOHqjFVaIjEQJWSf8NIJkx1Gt7v1SNDSk5CqEr1FcNQpETAEEi7JY2f/fD9oGAacc1RVta4B0LYtMZ7MCbC9CeT6uvU6IVtBuc58jSJSJHuT0yWIZ1j1OGcxVUV86ybm51+HF66QPrvH5PmryO6EPiVCY1BfEWwgpZChmxSJknBRiUaINnvlGBHMyvL67Y5nrzTM64sEjmjjssy5nigZohlr+Iwy9ANQqkzrE8afBmFK6CtWK0eInj4JIW2qDFsfmTbCvIpYWWHsCmN60B7VSJCxZLrdKKG6fcsyW0WLF8/GavYooOA54/8Y0Qax32T6zwUdDGNkytr+JtkzwSSHIVH5BQd7juO3F4Sk1Fuq5db28Fg9KdXjUQzTxrJYrZBUYdQj9OvJzSibqyk++kqQHAUZbE6sNUkebzzxrZuoDMjBlGF6mX5u0dQRTGJM07veT05tXO8H21WUqAEO7yDOQiUYNQSTxiX+RK1nGjNMJkSKVrOt+28ls7v3nW04jCCkGPFNjdj8LqyzpJS4uzgGK7hoaHxFM2sQA8YaXOWZNhVOMvP1EUSUlctlCauYGZqzDnUO6ZX65l2oa0wzwX3xFcyVffSFF9CdXcInnsFcbOicMjzjEAZSOCJpAgZi6sl5bBK5qh0kLGgiVz2oMEnoJXLcCasOVivHzr4Hiag6hIghgmaWmD1vdJOYL5VEgCZmAy2CTb7k41EMDZg5be+y3716wlAz9ILSAblS16RRmrrH2CXWddSuR9OAEsrzjK9lrNUhbBwOttfaZrbmPmxXY3u4+HLO+D92lHHBzaL3rCeUjPKIkKdGxJqeie+pJgv29zw3Xk8ltzk8GTgha0RFRJhNa24MA6IOc6IE5ujdkzMbjtLPmH7eKlSmorLTHMV5J5B2elI1I9U1KXUYTSSjOD3lsyNnfX4fAJcYGW7cIVU15qorBukz5eF3fYvRBmNMxs3TVvzRg5jCKBaMZEpyHRkzpqI4speOGIMxgq8cTV1RVY7aWqxzeGcJRouIkWvN7kTBGA/OoG3Eq6NyDfrOTdIvvQHPXEae34NZQ5xMsgF+38P8ItH09KFnkLSVAK1Uq1JbIngzlxbREnAlONNAmmOxJCvYGDm6C0l75vsFI5cEuPXmcbo8tUoWjgS3tkGgLueOMg2aZnTthD7UdNHSdpFQKsAZctRyXSWcaan8QO07RFZEbUmag9FOG8lPTsd7mb2cOHJ6Az837p7TFuWpsK0vjhV9cirrkRGbpBgLlRuoqpZJvcD6lp1dx2vLVOoBj209OaMUhNlkwus3l4BuGcvK9+scPaViFiUNgwiNOprWIJVDxVHvXSDswEp7+jhkyWkr3P/DQBIT6bgFGTBXDgCwW7n5n6Dl9SdVLe6UFarQdh0pjRqdnHHF5shazxLFWEvqA2or1Fr6occ4y950Sl1XmMrkPDfO0XiPK+m0M7gvVMmRrIWYaO60OO+R2tK/eivXn60mOTnftEabiuQTfOoKUTwxHhLTkE2waUCpShcNiMWY/G5J40bnQRRnaxAhxkDXH3DzekAMXDlokHSXd24kXnjRgwZEHZsSSI4cS72BA1UFFV/gyaw1WhrQCavgCNoQhgl9C22fiJpr4ooBbxOTuqP2gaoJWLtEU5+DrTStc1XBaRvJe0/njP9jR+MEG61ueaJn7dJgRXFVh/cdk7rH+xZnOpIMTGfCsl1u8F1lyxD6ZNQ0FcvFYZHmSx+3SirlkP2c/TCVtMoOR71S7PW7xIuCu7BLvDqlSwta7UEStuxN5rGtdO8dqShu2hCHhIhFCTztzuVUCZbZdJphMsnF2uPadvmgiIUcv5EAU3m6xZIh9HgjOAe+mbAzndBMasTbjNCLWeP8IoJPDtdFvPWEukEPj5BX7pAu7FBd3IN2QIfAIIn07AXk8g7BQmJJKwFSh9VAMjkNgxKxOmDUINaSwoy+Vao6YU0LolhtSNQsj2pAaaaJ6+8oN28sWIXEpJ6z7IW3brd8+rM1qn2x3ipIKEqvRcZ03JrZfELyZoMjJU9MU1Kcctw1rNqUE6WlDI1a45i4iqAdk8mKnfkhoktSCmgKiG605VQU7w+iTMI54/+YkG7A+zXGK2OeELIJydie2vdMJy3OL3AyIGbI6WyB+U7Nql8S4xYW+RRIRJk0NW27LIbaLbxyyzfaaGb6Ig4vNbV6zNs3CF+9SdytUSxLuyLKsAazTsYM3Rts9EGQkuDKLikoag0aS5GX0+etbRAbKA69/zPo5kKMgbquqHx2crWznFivbfsC1QljYnrdbmvtGps1L+sddjZBBCa1YT6b01Qea0zuu1jqZDBicEmwQ4La49QT37lF3DGYyRQ9bNFFR7o0p9vxyK94hmiUgZZIItkh56GJAyI5XQPJoppLH+beRYw4Utzl5g3L0Z2Oq1d2OLg4Z0gQBks3OH7x598mqfLZz13l7p1bfPoTl3jjbsvxcuC4g9UQODpUJlMHsipjUTZC1TXspuLILFJysrS0S9s3LFbKECBpQFOGu6wVnFgmdcXezpS7xz3OLUDvYjQUl9cNoqeAmG3M/v2lc8b/caOCGRaHyeI+F6n9QFUvaeoVzpYatshavU0qNJOaLsIQ4imQ590w0U0LIjCd1LTLRfELNwXeKca6IrFm10tLJQ27Zo4kGEyNf+Eay70JXViRdCCZMcGbliRe776XT5ukMNuwM8FGITJgyhZ832t4xI2qwDhJc3nApq5KqgTw3rE7n2HEsFy1xFQM5gXDX/vjA0ZyqgIjIN5TzWZMKo91gjibXW41p7f20eKNR7zH31wQvnqTdDBDL+yRbi/x1kNS9Noe7Hq6iaU3HfgAKRFCwqii0qNYoiR88gih1CkWTFJEcjAXYrjxtnL9+pLKVbz51hF1fYmvvHpIZcFWU/Yu7KAq3Lw1EFrH3tRztOwhBHamjvlsh5s3Vly8PEXsotgw7IbpiyWpR2kQaRj6GcsldIMlqmUoY+cB63omE5jVlplrmFQNQ1SOUo+zXanAZcbtteTm0a04EvNA3eu9onPG/zGhcVGP/2eGH3A+MKkH6mqFcwus6TE6ZhC0OQgFze5wzuHqhuWqW7ulPWGv1p+ayhP6jhQUUzmy/BtL4Q4hacoJuFxNnRq43SHOUM/mdHsVUgUYEmoE0aEUTdGCm29tUR+gpA+ZNwdJxJRwt1b4uafzZ0NRGwPeYwR3Fd/72td4N/oJ6Rb00+SgrL4nxFiwZrPRIoxkfNo4mrrGNTXeWmrjwAhiDFWSXM8gGbh+F2aKXmwYlj3xsMXtzzG1x79wkVRbBu0J1QDOEIloGJCUysaTA/VyDYSawSSGEYiShKjFqGKYkCRv5MMAzWzK3s6U2zdvsFwEbt1u+fQnLnF70XPhIoDh5tuRRM7WGXul9jD1cLA/Y9kfk6LFmhqlZayxqziQKSk1tJ2l7y39MGEIStJcO9ei1LVlVivOrzB2SSUT5tWMma+5PSyobC4eBLHYp7QkbVsDq08wi56czhn/x4Q28ECWPyoLle+om2N8tcSZHtGc5VBGrxqJxQCsoAYjgcms4XjVPg4reigJ5HwuKF3bU88dEoukXnykrToqqXB2ileHpEi6dZd03CM7V3GLiERBdqcksnSnmogFIspZE59al989SSmw3QfS9Tugu+jFDaT14EvlJCxz+nuhpFcYcG6GWUMJG5uJ95b5bII1wqrrCTGQUio++gbnLFVTUTtPVVVUztOU2sQYh7+9IF6/Azsz3P4e/e0FYjMcw+4E+4lL9AcNuMBwweV3oKvsZ1+qmgmZHY7GbMVgpaLmAkZaenMMmmMdrNSIDDjZJ5JQFqgISR2LRU/d7KA4XA27+4Gbxz3GOFLKxlNfwytv3mFx1PHyJy5ga2F/btmxFc72RRr3GDsjxRldb+kHS4gVfW8JQYgERBLeGSa1ofIdzt2l8gNiV8QAfdsQxCIenF9RTY6IsjqDyQs5gdt4LH4g8/Kc8X9MSEpUlJVAXQ9Mmw5vV3jXYugZ1egxIjC7fEbWlSc0YQzM5hOOjhcFhJEnN0yV640IdV3Rdj0N1RprBrBYGnWYhVKpghfYqdGwoF8l6hBI79zG3T3CvHwVvTAHjSQdiCbgYiKUsPcPA9mkeUOqXa7ZKmuLxH2vMSVS9uFBc4qmRFX5LX6iJ6phVZVFpME6R4yJvutBhLqqqXzF1NdU3kPxwdebx/ipQfammOM7xOt3SdaSLu6RDiYwtZAG0o4lzWZEAiHlwiUmkRm1icUAm7WLsfRghj8MjoY7h5bJtGJa1Rg7RdUSgkFty+GxxVlDPctz887dIyzCznyGimE6b/B+AAl0S0eMSlPDwX7N27eO2dlxzOeByU6P1RZvso0rxDl9MHSxIoQpq0HoukjSHNstRpl6pfYRa1uaOlL5FSkdoklRjWjcpQ8TAp4u9YTUgTsuyNG4u41raty+n45H3Lulc8b/SHT/QB+571k85KytxGCn/XRHKXvtw1tYlpoTXjTbFWc3Oa622dvoK69Yk3A25Tq2kyW1X2Cky8nB1JJzExa/aFK5t2QvBC1sXoR60nB4vCph5CWv4tq75zEmcunXyJCMMThnaNsWkUnG5kUwIlgc5lZLurWA5yakSujqFnOpgoMJgy0o+d1jzGKXdLCHLlZI11FdnmE1FqtGyvAPibTWBDYh7hlt0ZK0S9bpc0fjdjr1eNulAR/1yXMyMEW9wT13Ga0sRo+Ia8tfafDUPHHOZZ/8mMg1W/K4j7ENohBF85gZQ+X82rqt+e2RNOXvVfDO4m2FitD7AWcMdTPBGMvkeCDdOUYmNXU94eidQ+wFi9nfIU0cXJ1jLk0Z6gTP7jBoQvsVA5FgAlXSTSHxsbxmHPHtRCoR01Zz8FoyCZ/g+u0VFzAc2Cm37ub3HhNM5jU3biw52PfUU80QkAwcHOxx6+ZddncMYhRrDLPac3inxzrh8tWaC/OArz3zicPIMUhOkTwMgibLMOyxHByLviWmiCYLUlF5wdoe51pmtdD4AZW7oC0xciKyNybBmAZXTbi7OqLrB1Jd3DoRGL221oFzo61ndBx9xNlzFoORTZjjekKg9zl5Q+eM/5HoLGlsg8Bu6EHMz2zOkdFd7N4W7r2nlDkzupSNPsenk4xt+iNsGLITxdmOuloyaTpqd7z2H5ZSCi7nANHNPYV1NGCVAqglGoPBUM0q7hz1GI0YGTPtbE3uR6LRV7yUxdaEsUJTKcOyxWtFMoLVCc56Khz2tbdouoH4vKGLHcdyCzGSIQKpsS9eZLg8o24m2RvlzdvE2wtmewdwvMSmRNppiN4y0AMDNkYGycZDo0o0iklKMDnPu5IjT03IYxldytkhEYJsFs99i6WfQSowGMmb0Xye3+mwQAnIKSagJXrTp1yz1jkLQ6C3IEmoVAlCLkCCkkyWsOuqojGOpNlQm8j5j9RkGM+QXYisOjCe2WRKdTRgXE2cNrg719Evvka8dkD61AuYSUWaCqKB4WLDsHsBjJLiERlMs2R3SMGkSCSX1BQs0YQ8t5IjmbGAvcVrdr53VLnyldQl/3zF7cOKn/+ltwDH3t6MZ8XRDkJVd6gmjLFcvjDjuWemHN5uiQrWdagIFy8I3VLZ3YWdvSVDWrK3mxP/dUlIqQGdsRomLJaRLgpRlSQeZ5TaRLyNTBtomhYxd0hptQU7puKVk7dTpMbqlNrWWInc7I7xcpTLQhJYB0hKTvy8PQ+ejIpjBFoKyOeC77kq2eb7+9E5438oyanfG6lM1sdH90hz4twNQ88Siqoh43slLJxQziopE3TMENiV9kuu7aIB5AjC8c523fbokjkabcdcN8YE6qplMlngXYc120+zAZXzPaX4LY+PY1ERBpsQzWHqYmF/ssfxW6+S7pNb/WH0V3/sWX70x6/yPb/uOt//3W+si25YY5hNJqQhYaVirlMm0SC9Q6qKeOUa02bOYlahcoTvJwTTkQobtyqYxjBIxGrAXt0h7VYYlPjlt+D2XeqvfZnh+QtUPUiv9M6TTE80SijpIHrJwVRKLriuKMlo9vwgp322moOtRoH2EdbZmkTBKUQiogmJ2YvJphFi25pvstEqPELtPIEeHzeL3iXJdV5V8UlwCZhUGJf96U1yiBiize+2Uodxjiooros5ihZheOU65toBVVPTNQau7mCv7hJroXrmgMEm+qH4o5MyXLMWGLIgolhESvEQGWdpQxxtLOpytK9UoA4jAQ1z2pWjmk4RFgzBcrzoubR/iTt3DzHRc3QIMXp8I2WDFGKoODpSvDXs11MWriVyhJ8OvPTJXawRZFB6HGIalAn94FguDX3vCWpzsBWJSvImWFeG6WzAukPgMD9XMmVdn+V3NSDimFU7NG5KGiLa98i0QKfAvYLZk9K2Vijk2tNjXE0D0qMqbLtEn0XnjP+hdBrYGRl+Wh/RrXNPs3xGvFxHF8rNeWkt4ZXv1lx3a5ORyJh/e/SiGSNbR3U/py+IGJNwrmD5RHy1oqqXeNdjJYFuY4z3IzOCR5ikJCOI2swAXaS50HD9CytYt/LoG8Bf/bFn+T3/6reybB1/8Yde5gf/bz/B933PWyCZ8YuFW+0hXh0H7lnk1jss33yV+ae+lvTMpxAHtViQBtzbpLRgE40wPlnCBkWnQpjUUCXq5/bxlYBzODWkt45hsaL69DV8ytWwVi5DXGIiNgaCMUgSfKIk79ICB5Xwnm27qZx+3/enfLqAUcJygbndYi95goy78rbmlt9Ekgzh+cqTnEECuKT0Vtbwk6qAWNQ66olHbdk1jKXWCiuWKkDyFTiPef0dwpdehysH2JevIROPNo5oFNmfkJqLrCqLxhVaxeyNk4qgss4jU+bj9nxSizVzDLOSMmKg4xCRiDEzKtkhqaPtemxV86W3Em++dYdPPpOFnBANh0fHkAIX9qY0Ndw9XuVMlyaStAd1vPnmHRbHFS8+d4FLB4FdmZA4BiLihixcac0Q91guHENfE5MQUljXuTUiNN4yb8DbJWJbsB1iVoj2Gy14u3rY9usVgAmzapfae46OFjjTYky7Ob9Yw7aCEZ6QJPME3U67YtbCGtog1qGncclTdM74H0rbGbnv3QROo2m6tSGMR8YgkA32NuLwsvV/Pm62JISx9RFDFxQjYGx2g7MG0Ii1CWMHjAlYG4vnzoC1A9aGLFluBQOd1lm29U5dP2/5XvOkdSQ8jr3ZHstVTxrB7cegH/3xqyzbPOWWreNH//41vu+73wLAGKHylu7ubdLbt/AHO2g1o5ruYCsP9YykiSqByB69WWD0uHh6RLQk70lk46ZRJVpDry3tZY+f7VM1NZgM64SQcAHiqzfxbY996SpxPiWmDjUDSUDXCblyy6ZI38Fs9LTNO3608RhTTxiU1LbYN27hdi7RTk5mCt1uVsvG4pwBa0gxEUxOWTHKCgaDEcvUO2b1BG9rLBY7CMZ5zKCYf3YdubyPXDsgGoudNpidCaESzLN7xNrS9kvUBIaJkIhISgQTEdLaQWAM/lK2eGKBI0UMXev58msr4hD57CemzOb7SDQMg2HZe157c8Gibfnk83ssDhfM6xltW8qaJ2i7noO9Cc89v4cOLa+9veLC/gQpTggH+zWf+mRD3UT2LyxQOcTgieoQuUg/zGh7iIOjixXDoDnoULIWZa1jXkeqKmDsAu9brHSoZvfLvJsWAcgEMg5/WoIWVGv6rkEbh60NropMtCWaYcv4s2UIeqDA9aikW1LHllZRUopaPJo8r/3i3gNb+Vgw/ncbraknfOxOL+571bc8/82Js/OLgrWGIJuiG0I81YqWFLI5D4kxCWNCkZYUawKmSPZiIkZyjh1jIsbmv2V9nwClqo/IyPjPruq6kTGL/aF4j5iS1mEwSqOWaaqZ2YuEAF0fqJ0/o5X70/d823X+4g+9zLJ1TJvA9/y6LO2rCtYIU+/pFgPLwyUTF/AXLtPU+1B5iKFsiwGbLJVMWeFRus3i0jy+iBLIlaNUs5+4NIZkBlJQ6oMaJibDAauOePsIf/kCbmcHPerpVLA7FclGeh1IJUlZThmRx2lM3Vt4YBmz8g4fMM9yviHBxGJIbzsIShIp7o4yPghATkhmirFUoBLDShKDmGIcBWcNlauY1A2zpmbSTHHG4N86RF67SX9lH7m0QxgCQsKSSAcNcXoRmdSQesJUCDowpB6rSjBxDRta1bVhFsaAuDLTT0yovB0uF4nVncD+wQQjjrdvwN1bLcY7rl2q0WjolsIQlOu3j7my59nZ2eHW3Q5jEpUTpjsNxgSaiSOqYWcWcloENUwmPS+8MEGJRFq62DCEmiHU9KFmiBPaIdIPZKFHFOegrgTnA84EJq7DuB6VY5SWqLk6xOgMsRbDSi4fka2HLYJSjFP6foZOYIhKNCuMX2RDPY4Rhn0crfiBtM7HX6KJx7Ve+IsxFm/maF9z401//3b4mDD+R6ctFqybjUK3/t/QVrrDjLsU97Rtya1g71tJx2SUH4xkJi4J1Yi1EWtyOTgjgjUJYyJiM7O3NmFNAE3F/W/8KVgwqUwAU4y2jvWEU48SGVMtyxmb1vo5KKHlZQOrtaFiymQZsO8cMVsknG9ou57dWbV51keY29//3W/wg3/qH/CjP36V7/62gvGXi6wI3hoWCXTnEpVLaDXjzRsJFnD5Ug7mSjhEoWaCk4aQAkos9gkp1ZZyQWuTWG+EAxnqkpBTIcvEIyZgnzkgTBtkUue8PrePcX2Lm14jLju8RsJ8Qm8TJkYSxVgpSpScLM4w+tc/+PnXozx6dNQWLu6Sap/x7qLZqY42Bcnhs2VsjTFMrGcQpRaHE4e3Fpci03rGpJngbh7h92rc7gRdDnB4jL8wJzpDeukCw04F2iJ1pPOWREBiItg8nxST2buu0/dhtbAYWTvel7m8XSRH1jthDHBh3/O5X3GJYWh585U7LFY9Q0q88GzD5ctTjIOqVtq+p2kMly833DrqqJ1wsLvL4eEKz8CLz+zhvWNnbiFa1CQiK2yyhKGm04qQGvrg6VZKH7LWmkgYa2icxdtcnLypByrfg7YkzbEokkDwrMsXMla6KhvciUptm0muagjBYWSCqRyHq5YuHpJsxyaV8rjun4akv02yxZ8ynm8NiE5wZgc1wqXnDx/YwseC8Z+UwB70EsqC1K1FvHbJGkW8UYI3m78BOZGxMmUXRUkla2CGacSktcRubC61ljMMDjinWJeKFN8ia5ZYppBkL4FtcKhkVCn7Tt5whFE6M5yUNlyGbcZUhmePVJFsLdZ4rKmYMqNhjtx9h8WrN5nYiqae0rYFA31MQeb7v/sNfvOa4et6kRgreGdo22MmF2b4umERlF98bcWbb3m+65+fcWl3WQxXCaHCmQkSV7mq1hY8ZpUM/UiOCB293FQiLiWiQlJDCAG76zD7B2AcyoA4hV5JMcH1Q+yypfnks3T7M2JcETUPY9CUjcJkT5/1u3+E8bAUyb/xuBcuoxOPTQviNpTC6D2UC8YYBGMtkwYIhso3+HpCc9zhb96lugjqIb11AzCk3Snhyg5p90XYnaA2onPDwEAILVJcWhPZ3mBSLBJ8IprswqqlnzqO7Ino4lNraoQLRYlYjjVx67hFe4NRy6/45DP8wivX6YNye7liuutxVrnQOJ67egAp5OLitVJfqvny67dxbo9uSDgbqZsaNRVRHWGoMDqn7yYcd4nVkA3NRUfFW3BWca5n2ihV1YEcQ+ogljViFNHslykqWVgiz5GTtI2lj4w8z1mrjqZqSAh3F8cYv8DY7bEp1zwVbL+8DCT3SUKBfz1Gao4PG269NeNTn4JpFXjh5XOM/2y6Zy/YxKJuNgoFRqZSmGjR8UX9+m9TCooYEsYMZLUr4SwFshkQ2+Jd9rRBwhrm2dbst60GGyS+VNkpx0c1+4R76Nb/2Qd/NCiNrzeQGb8j+zGfpPFaUYOjwtFQy4SmNVRuip3M6acLZi9/gtZUuJ+csFy1nDB6vQvaQmgwIlTe0x0eoa5lAaCWCzszfuLvvc3bn664tJtTECSJiPR49RjsiepOSvYPj2tZP2EKJDLYMRmakjRgFAI57a9JFoenvrKD54BUolH7VQvLnnp3h/4oZjfECzOGvsenRG8VNRvD+SYT1/2feRy1KIKpK3xIWCPENRZMznapJfmZQjUYxHkmdc38ULH1DDubkd48JL1xA608cnEPeflZmE/opWeYJkIjBNPhYtEQtfjTF7uPLbmMbOHdYwESo0Issk1CTs02Tsj6+W9ZQ4UxCbduBKpwl529C4gYphOHrRxhcCzu3uHqSwdYZ/C15/W3jjmYOvZ3G+pmga0CXzOf4E3FO+90zOoGlYYhGdrQsFpC6CERiWpQNbgCjVZuYNoITRUx5piUVgixZM+kaL6prI1x8Y1Vj8eCRIHsULGN7W8ZMxDEWObVjLqqGAbo0pKZ7VAdMy+F9blPC+nZbCRldmuFpl2cm/P2a5Gf+yfKs88IE98i5t51vk0fP8Z/gqlTctiU0n1bzHb8LjPh7FVj3Yghg5At9yKKtSAasZLwvsuYusT1T/bdSblC0VoK35oNMm4643fZVVMYa8+OkNPW7FkzlzHPbs6tT/GLzxTZSCsRzNZkPDEmAAZnPBUNE9mllin9F/8p/d5Fpp+9jLvwDH7nAvaoxVhP2/VPYUJvuKCRXHc3DomhhyCHaIRnnpny23/bAZcuw+LYYaxSTSI2zvC2xYodt9ACR+StetQocmBTlp7Xkrkqasi4roKJuVBL1MSRM1i1eK2ont1nenkPnc/QpKTrR0jX4ScT4lFHhVBfnNG6mPPGr5nL/Rn/Ou9Ogf/620doCHClyu+uSAOCwTnPxHrMMqA3FshEMd7RvnYbd03wO7volX2YCnF/h8FD2K0IpoMhESThIpgUGUwgWXBxrM+a+zDqSWkthZRSPGUzdQqhFHNZzzk5KYJsJNGS2V4TSuBgbw+pI0oghUTX96yWStsJh3c6Lj9jePnFHY6WLfsHDX4SSLQkXeGYQOqJTLl6eZfj40TbCS0NKQaSOtRGrEnUTtmtDZVPiD1CdIUtazQXZYmlt9lFWUUxOq4FW7y08hlma/OVe5j2ZrIbcew0e9Su4sZRyPWTzYqIz0KapKJhF8j1XWjHZ9M4iSs07HPzzZr9A+WlT1XsH3h8fZukc5SPGeNPCJ4WYzZs3JhciWgD1eTPIglrBdUAGqiMFhizMOwCzYwBV0ZGPB3WzFtYZ0AUySkRympgm8GPzHtbZtqWlsfsfZkhpK0zN2qjbJ15D53AKEt0KBZRmw2HRIIkbLJF28ibXTBCFMdM9mh0wuSdJTHcxTw7hYvXsLv7mVlZRzKCbwfqyZxVGwoDEAypMNdHJ1lLWLnPCaH2hpg6ur6nTXd4q32Lynom+zM68zxf+Kk5+weGr//aXBjb0uDNhCEt12OdtuC3US1HisI+HhZZR5Vuj3Ei5ZqtBBKBUAumsVjTYWVAn5vh+lkOhHrzNtxZYL/uE1RX9pEhoJJIEgmppTUDlOLhY5SwYHLNX424ZMAkZLWC4xa9eoU6ZXdMh6G+0xJmFpoa88ZNwpffwL7wDPalK+hL+4SdCUjLMIc4nZJsJKUjMHFTwg+IZhReDCblQRkT32V7QnkXYwGVMtNi8T7MkcGnxnPUfEmo+iIwjcxOcDZweb9m/3LHctXR9oFX315igKO+R0yGOL307F84YrYbsL4jkEA8KV2iHzzdUIPzrJLQ9hDUoNLi1dC4gWai1FWHNcc5Ct0kkAHVkNnjtsujsK7KhW7P1JOrrOifJ+aqUmI7JBQbk6Xr9jCmxtpE4xfM0lEu4Wg6xkh4yqx6dCpavUIO/CqSvRTp3hyBNjitMLLDP/vFKX/vRz2//vtWfPKzEVffJMVIlOqhi/EjxfiNJJzr2Z13BHRtBDVG1t4e26CAoBibJQI054QZGX/2i9/IjvfSFoM5dfzk+Rup/t7rzzhvxH3OvN/JM4ESFCanJm6m3kIdI06zJ4lTAwyo+LxBJpilmsofMDU7mNt3WP3iK1R7F6ieneGv1lDZXCFJISn4KhfeXq6O2WxqWYJ+VNRnI0AVaKR8rrxDRAlhIGjgqPj0r9pj0tSB/QQiBkOFSoulxpsaSbb4Zm/6IFv/3Suw3XtsPH/jRBuJKkRNJI1EsdiZJc4cURR/eSeDybXHkeArb6LWkT5xGReFaWqILkNAZkvaq6AwVYezFeZSg58MJK3QO0c4D67ypC+/TXVtD31hhs5rzPMXsieOB3txRjJCG9oMd0hEUzohkW+eSddPLNvfbR54MyKnPp84pdQCKEBUmXfjZlukWzUIHoNjMlFsvaJONXVlGULHJ587YGcq7M6mzCaGqB1CoPYepWIIllVnGUJDiJ4h5vum0JES1LamroXKL7F2wLkupz6WFk0lF9N6Pp0EojbPfGIi3PvXfaTyNRQkEKOjGxxpIoQI2B5rh5wyY2sePVzC3+rjWmsqx6Ur0CxoyoFZ6BTLFGdrnMyxxvLcyy2z/UCfVmjqMEyxNExk/4F3/mgxfqPU7pj59JhBYsbcATQV7XbDrIUtYLjQJm/G6HI5hgU9cU28R6cHxXKf8dVaKb0HDso5dowmkihJDDZlnyIhgmmozZxmcPjOUe9NUdMh811iM6UdEk1d5yIZmg2mokrlHM55lqtuffcnDz/PVPmsJocwIF7wznOhvkA/LDlur3Ptxee5uDMFUWwyJBWMeMYUzvqU39UIy8SSQjgAakLGxa/OsBenSFXhgsBgCDExbRPmS2+jJjG8dIU4ncKdY5Iodj7FvXNE6DrS5QNkp8IMK/wystsdEV95lfTMJYbnLzPMcu4XTREuzwgXPFGyRqQENKYyk9M6x/uGntILOWNENncoIpFE1gIAGdqw1uHrADpQebh2pUZM4OKBwdmB6XwA1cxA45y+q9BU0QfLqlX6VOpAqMdKoqkstQt4e0RVDxiffe5VW5S4wfhO0FMcg7U7a3bRHGKF0QlqPYerji4dkUwohuHHZanbTGgDta2DNhUwA6jHUHF8t4FhypVnLM8+r1x5ztHMj4mppzKeicxpdMZMdx94148U48+se8BohytGTCm79LaxdE0y7rJCtpT3+fM9RbnTPZe+t/Rgif8kFd/9LYy26LX4lOGeIGzgGKmoxODkgJkc4Ba30ONbpOk+sTnAvtzQdStSt8BV8+wdoxTPB3DWUlWe5dGwzgWzlSbq8Z90dJnVXCyEFAghILXgjOPy/lVWy5a3j17B77zF3oWXAQMp98eKz8E7o8fTKIk+wbo/oVGN7FVG/DpCNCxFEG+otCcZcC8c5DQWmljdPSS1Lf7qZezMY95eZnvCp3bpbxzDnUP8dEbamZNuHdHdPIYLDa0zyMQhE4t86hLBkitUaZ/dLlMpnC4xOxQwjvqozZ7u/dOkbah0hC8SG9tS1pIMPZNphRsUSQm05eIFi0gkxYF2cPTqSVKR0oS28xyvAjEKqtn+YEzA+oSXFd4Hpk2irnpggaYVpFS2nbE84knXhzNUvCciw3buM4vGhsbnrKB3j49RfxdbbaVf0fSEtxbQeu2fD4IxFVamvPPVXWJccuVaZGe3YxgikizeXqSynsbsYGKFyIMFoI8Y498o8WOWRX0YxqbjfyPDL9DJGg8+0fh7T2vN5NHo5ITfSA8CJKNoygZfq4KaiilT5q3BtDnFbbvoSW1CVpHjticaoZlMoc+pepWcIRPN2DgGJtMpt29GhhCovd3c+l3QOrgOoa4qUhzo+47JjifFRCU10519joc7LFZvslhdI7YXONjpERW8qfG2IsQV8HTKw6xpG+bIvcUoJXdRjmztUmKVVvgarKkZvKf6lZ/B3F7CvMkbRsjSmwqEnQacwfsaNwh6sIvMZqSrc/QzV0hxIHZLAj1oIJR4DKuJhGQsnrTWXTceaO/H5KTYBMZ75URs2WYWsyZJy87OBDQRQgQ8Q4ikZBF26dOEwxUcdxFVskaKxRiLMwYrkcYnZjNDXR+jLAhxSRzTjYhiNeRNAlu0jrQ2zr5nz02uVGfSlMbO2W8auj7QxxX1ZCiJD+Xx5J8teEc3b3R9R6RkCYoV7dGM3fkei7sdF65GhiHhBCZSUZt9ajcr0GmuEfyQjA0fPcafx1JKCP9Zb2ELS7sH7bHrvzYM/30T8+9Lm8jje7+TcfIXj6DRQylLTz1Wc0FvZxqm9hI7w4zhl36W7vZd/Oe/Fn/1WRZHK7o+Mp3PCA5S36LGoLrJF6myyQlaNw1tnwhDpPYWeRrsVnIGSo0D/TDQ4LPverJ4U7E/vcL126/wzq27fPG/c3zHd1jmVQleoUQpSirWyPeGCa5FivXmnH35wZCSkNJAHAKDAb8PlQ1ZC/jkQQ4OMxF/dYcgiR6FsGTYye6nId4lxRzqH0wqiHLWXoxmo3UwWaDJyeNknbPpHqb/Hjz+dvT7GOCXfwZygkFAcj3kYRhIKiC7JKYM0bFsDaveEkhotBANxoJYqEg0PjCdCN6uMCww0kPIKRSspLLVZUeLtWF6/S+Wx36vINlxQCOeGXvTfabWcHPVYmyLmL4omTlO5vFWwlqVAHRdc0EERD3ChJuv7fBLX/B863dFvvFbHEqFTTD1e3ip8QiSclS+Svn9cUvSVky2qFo2+epPnzQmTNr4x2fa2m1PqI3vjzT17khO/SpsWAwWhzczGmqmweGrXUw09N4zuXiNVmuGVcDPZ1TGY71HLUjfk3ScOhuJcmR4TTMlqGGIWeV+KlujKt5ZYugI/YAxtiBWmQHO6z3u+hlHq7u8/toOr7865XOfBqMGb2pMtESN7xXPL30sJlLN2lTOOV88sCRvfiblcRocRG1JAVKVNQUbB6IHJKKaWWY2h0LQiI9ZK8g1g3NSuDFjapKTbpYn6SQ49V7Q2tlZxwjfWLRBBTyqHqgwOiPGmravWA4DITqSOvqoG1sRYCw0VWJWCbVfgllgzIAxA6oDoKTkGb2Hcp4kB2nMYJvgRLDVe7tGRQ2qEEONrz3O5MAyX7XkEpGjHhS3IORHbn3jxquU2BRL7ea0R1P+6Y9PcKZiUi+ZTyzoLqIGbybZGTXZovGMwY1jzq/700eO8ZdpVX5ybpLN8c3OvRmXxFjI+14toWB2nDr0KF14t6T3fhxDs8/8bty8dDTr5kLYmIrGNNTuEs2Nnv6rr+M/v4/WE8LBFbpkMNMGaxymqnDGgihOlZBy+MlZ3RKFyXTGEIUQ0tbW+u4fepQi1xh/X3LTCyTNsQiNqWiqKYftIdeeMyyPijuk5uLrFk/McvR7SGMNhXGBCjZlbSsaippoGExeej4O5bWlTdaWUuDFqGDJHlFRlCSRzqVS9CXDjqpjMoicfiJH/Ob8+msYqvTr/RBOxuhwZHRVNCgNyJyYHF1nGPqKlBx9qOjiRmvEJLxT5s5TOQVZYd2S2ka86UnaowRUc7K2HPoeCoRUipoUD7ZN1PcoLxdf+fcI7hldrWOcMgyGPYWQwJgW61rSmE696NuP/zq2bIgFwrK6i2XCvGn4xm+aMp9N2KkdXgQRDySk1K7ULShyzMsl96zgk/SRY/zZRz3/bNKhjTSqq6cl/I1BdK15nWD4j/EW7zv5HnFSCuXll4/3yXs/HjFkxjlm0rR4vG9oBo+5eUg1MziZMEhFv0oMw4CZ7JOs4psKcTVJLCmF4m8uBW5YJ5Rd9z4zO9jZ2SWpMITRo+PJaHzGuvYYI4RhzG6oOfumGTBqqP0EcTf5zOc79v0O2biY67VayQXan1qczFkkFNfFDAmaMUZCYcxWaVVxKUvEiMnJ8WRTKcsmGLN7OM17RSLhU7FJFclPZfSaGe0KpzLBji9kDfecNmy+F6SgHisTVBv6wdIPjhinBBX6EOl7UwqLdyCG2ufShc7mdMnOHjIxEWRBkBVJEr3ajXCzVepzjciqy2NhcsT7JiJ9dGV+HF/5d/HUokhShjhFqVDjuLtcEcwhSEuuXZHjOHLf7ucCfk/Lmx8FsBg8mipe+fkJzzxT8/zzDd/wK2OOwdAposN6AwRF1RWvH3MCNEoPYe0fMcafUxbkl5Alxbw+1l7MOcBnxIFFcHhEDMkollyMg1SwNoGkKQfhSB5YU3K0GHzGGwsDyMOdi0QkyVGiyYz313zuWmi3ZWPaFD+Rcl4asT0tpQehVLrKsEZ+riz9mDG7p2RGJGqwpsLZGvvWO4Qv3cC9uMNwcRe5doXBeEJQmqahqit8EtCEMmDWiw4QKfGMWVqlMKCMA0EIFTdv9vTDwEbDGni8EK4NrSV+53AGui5kRiBCKkVgjDomvsEay3znkL1mjz5KloDUYakyc5TRrfPpc0CleHeQcfk8OoKaEgHMJkrYqDLYUihFN+8+l01MRCMk3fijJLKkZzQvW9GY4SRMgXk2m0KOLh2Dk7Yl3dP5dDY2n5Mw5vh73GlkDamMx7eZiwiIccRUE0JFSlNinNL1hlUfCdGU58upoSuvNLYvUn5g6ge8HVDTkvSYtK78VtyQJZR5bzMMW+ailLHIBYhG3dYiUjRCHfNTjbj608D4twWZkwhADBWzOnu63W5bfH0EfoyOHy8pWqGWwjSkgiaErIkzpswwJY5UGFNICDXWTUldzd0351zdm+HVQ7SItPl1pWqdm0olggyMObi0IBeplC19EH3EGP+I7+e0VloWhZTyenlTFbzUucKsdVShxi56pHLYyS72aIHeuAPTGnuwS3/nLs545NJFtF3BjZsMtVDtX0CXh4Dgdy+hYSDcfhOMQy5cwC57+tDhDw4QVcKNd0gacBcuwGAJ3RFmbxcrjnTnEB0G7O4ctQaOA262R6w8/miJdB1pbw9nKsLxbcxkB1vN0KPb6OoYZnNc3TDcvYtrapjNWS6/QlDD0igpKtE2aOOZ2AYzMhIzahOyxpAhl/Ab4YxRERpSR1KD85Y+TLhxQxlCzHCE5mLaVh9/4Y1eKSJgRam9pet6JOXKVFqkegQaU+OtY9nepb39HILjE8+DFYs3EySZ7Pb4Hom9OTHXaEwZi++l8cuRZeZRFNnKfzMWtxn/s9nYy/pA+RU3bLm4461HVLalSN36tenPGu7TwiRL0OKoBckWkx/7WtTKYlCU8ShiHGhFSp4YLUmnDHHCqhPaXgglCjgqGJuorOBMxLmWSQUTn+tDJF2g0hHHjLLCOhFaHo8xzcjmOU+SOaGXZ3InDjzMkPnIdKIPm7tlTdfT2IaDekrsB1bSgukzXCchS/qjd5Nm20QUwZV3lExCogCuJBoc8rxQwajDyoTV8ZxuccClg5rPfla4dqWGkBC6jVJg4lZXsyutyrbGkzdt0bMqhm3oI8X4szxQPkneXW0yiAGxBsVS0VAlYbLsCHWFlYbw2m3mzRxe2mG4c4v+i6/BlUvsTK+hX30TU1fML+7QHi1Y/Nwb1NMdmm94nuErR6DK7OufZ2gD7RfewlSe3W+4yurtu8idW+x+/RWGKBz9wnVM1zP/xkto27G8foudz14j1sLqlRuEoyPkc5+iNlPar76K++wcX9WEV9+kvX6LyWc/jdmZEr/8Ou75Z9GLnvat68SvvoY8/yzTS1c4/OKX2Lt6meqlHcxzL+HmlzkWwZmK+e40pxowsvbQOEknpcYRZkgJhtCzWAWW3UAzt1x8pmHngqEf+rJ4I7JVT/RJ3mBd17RdW0o7juhbSQ9sGhrvWSyXHL0x0C0iLzxjMM7gbI1JlqQZ/3xvIY8PmkYta4vhFS0gY7uFWSpZshw13/HaMZVE0ZAgYLBIakArohqQhqgT+lCzWClDUDRBUsnxG0YwBmoUb3tmM0PlO0SOUV2RM1zlLJJaksMB763x/amQnNpQydq12eHifIeJtdxeHGP1GCuK0SzV5812zPCZA67E9EhyoBaROjNvycZfoxETKqypcdJg0g6/8E9mrG4rz3/PLi9+ImJdtnvkDMHjBnhq7SqlD2MS+JyJ0OjHKh+/IHi8TIklOVpla7COJoCzc2qzT3/rVfqfeRO5sMvOZy6yqHaRakpIBrt/heazDt2dkaZz/EsvYF1FkBozP2Dy0su4agLNHH/1GikmeuNJ9ZT62eeojEf9DL+rOOcZXEOwBnPlKnYIxMmc4AboB9ROiUTsfBexHvyMpA06mRIwaFSoKsx0mqstxYQaS0qQhgHrPDqdINMJ0RnqixeI04ZbqxWrXqmnu8zqBqwFY7Bkf4yzC4VsTSgxoEKIkW4VOFosEDvhnes1k3ALWwX8tGXVDyPYgajjnkn5Lqhpatp2iabRXJZzQyoGEaUxOxzpkmsv9cjqEtZ2QA7kclIR9MFGrY8GbWHDJ2Ac2Czpbal1hDlLsJ+OXkIGI46UKpJOEGakVLPqHG2nDMmSsPQpR8daMRhRnA00tdDUhsa1pLjIQVcSsiTLUMpVjpLouEmdhE4+nHQvLKbqSHHOrPI4EaCn9i2W7H2Unyoz9HFL1uLpM1Zc29bAjAguTTF2Sl3NaexlDm9M+MWfPeaf+5Yp1Y5gzZaFcu3KlbW6e8msc1QpiWQiyfQPfMqPFOMXMdQyZ2qqYukOOKkBQ3jjDfw8UF1pMEwxs4tU+xdwzQ72quWwXWH7gKaKML8IMbG6fUSH4IaIvXGLXiNMd3LmvztHxUoncONuNkZNZqysg9Uy4/XNDA5XAKTdPdDEsuuzRDWZslwdZxRjZw+dzbPUJQoXLhMTxFXA7l6AZkacNkTjSM9co6tqpAfZ3YOmRicNvbPo5csE61HjmNUOZ/NPLgyeyqQxZ1Qk28Z98wLtQ6S/cxtCw8H+ZdykZhmPOAod/fJtTD2wWHW5rdGj5Sl4VUwnDXe7VQ7uWcv6xUVOE42tiBKY7t3i4tU9fGVIIetyTmqEQ8YyjB9ZEtjg8RvSskFuoKACoxT5e11oQsa8OhVGZgyxZtVVdIMjJktIEMNATh+uOAzOWCaNUFcBMSusWeHckPNZmZ5shocN4FXsaOu+fNgZfqZ7tiYVktYMfYWphWjB+oCPK8bCRlnKH7F+i2q1tktQUmAbsuBldYY3EybVHkoNQ4WXHfbmlu/4DZHLzyjilkgci7zLqZ97xzFJthPoiAeNnx9AHynGb8TipGFazaBt6d55A7URf/GA7rClqiuS65G9XcznPGk6obOW5CvCEDC+xhrwpibFSNJIYwSbypQ2DVJNMaP65aus4okBVcyOZ/AGtYLzko2uKRt23fwgMzEBkyqkrslvyUI1yXOEnObZ1dO1bULmU4SIWgVxyGQCpXAErsLM93KADwpTg9sKjIGx3AaMZlrOkPjHkoH5s9IPgVXbMZ/P2dndY747ZTEsUf82XX+DLhxTTxsOj3PyLCNF3X0KVFeW7nBZMGdTHCGzRCUItatRBkJMNFVmS0kWGHU4Ku5NpfvRI9Vi/CzG2+2NWyXdAwkY1WIncYhMi0eOcNRWjMnRugBDYi1lGjE0HiaV4kyfM5S6LnvnSIdqj2gkpmyHEdkOXJJirNwyGP+yeB9bcGeZd4IQYg2pQsVy2K1ILFEZ8khpKVog2S6mCmpzgjWrYNUgOJxpaGQX0h4pVTR2xttvJn76p1Z867crBxcGPvM1PcQKSaEsYFOM9WMu3dGGs+5m7rVEWCcnN0iymPRx8uoZDW8W4uEduldfwV24il67gL9yCTubIIOgdY00VY4BCcqy7aiqKZWfQTXgU2QwNYKl1oLcqTApu+lgikyzlVlyVMV88bO2W3M9J0jLTH8QySl5JUuyymZn15KGdXQTREqNLbXF62GMDaSkFl5nnS/yQMz2DBFC8TQZPQdM8YAYeeI2zj9uBCEEFosVIUR2dnc4OLiAc46bd29z4+g17i4PGdKSJMpsvsvxYijtOKDnyb0qlOmkYnX9KI+vSMkMaovLqsHLNEeHxsBiYbj5Nly85qi9FqO9JzwkF/lHgzbZMcfNXIrr0La0J0YwmiGcITiGUBPThKF3HA2aldYyd61RKi/ULn92tqOpe6xpgY6kudh5dprISfJETzH9omWcDK7iHmb1YSVdj2dePJIcIXh26oYBw53VEd4fom406msx1pqMt2evCYQZjalwMscYS2MdhD3+yU9XfPWVwHd8x7hXCFFLpHOqkVL790TeIdk26LIW/Ivente05BxB2VX94evwo8X4Q0C6HvwcwSO7e1QH+7mE4OVnMtYWJONhkg3kMUb6GKinOyUKUVCxjJVpVZRY3EEtkexq59Y7PGxsQaLFip9crsrEQBKLTZYxp79Th8lJo1GyVDRa5ceavcFGJLmiRIYSFZoli7WnzXj/UkR99BwIkjcOqxajpX5Y2YTi2nNnw+y1eHS0bUvXdcSYmO/M2d2d0YeWN2+9yds3b7CIbxGkJxIRMeztX2Dx1nXSenN58tcnArOmZnH0Bj/6N3b4sb/7tXznd7X8y/9CWtsQTNHIQupYrTq+8P8TvkYcLzwfcDLBmo8+zp/f3HYMhUFTdinONSEa0JoQHXEwrHRKSDWrPtF1kBKoJqJErDFU1lLZiLcdtQ801YDYgZRWQF8M7aORuHAdiSRhLeCceP+qqBldfcvP00rh+l7SVhdVswuxoaKWhmlTcdQNdHGJqVo2HjwJwSHJY43Fi8XHiwxaMaumLI/nvPIKfPYzBu8SN95q+eorR9z+WuHa5SVf//lD0lHg9hLEJESmWKu5Apt4rPN587YOMRVqPcZsDPuqWiRBS5I+a2wyIaTlAx/1I8X4NUYYAjFZ3MUrTA/mGW4JUpDiVAxcAFkqbrucHkCcIUlcpy42SfMVkqXrtHbxstiU3R9NcV+MBd8TDIGII+XwMRmVr5gd9SRXQ0qiJTiqbC7oOppTixuqIUvsUUxh3NnHP23lbxmjjUfJP2AY64faNN4bTsqAZayKxB9CYBgCbZsril26dImq8qzaY9648RY3j79Mp20uYG6W2QqgDbPZlBvLNqu2Ep/awp40np/5wmf5d37gE7St5a/9UOTi9A6/5XtLmloJVN4TYkTqnsXK8847gRee1xLIVYM+eNL/sifZNvKZktOlQjGEBCIzQpgyDBWrNtKFvOkntaCKtYozkYZI5SKTuqdpOkQOSXGRpcYxHaWknJFUiseIgoyBcmt3ym0b0Sh1wiYJmWz6/SEX+cc8QFmQs3gzYzbdp66EdxY9xvSoSRjNqL0RwdBgdUplayrjuXl9n7evB158znD7zg1+8seOOKhqLl/q+frPHPHJ5w+ZhCU3XrlOf3yL0B5hrUd8BNnDOsEai4jH+QbnLM42iKvBVxgxIJl7qCqaAsSKJC3JCPsXP8XdG1964HN+pBi/VB4zqUEjnelJxmLUIDqUQtbFvyCn7SQKhL5naj0VBomZucZilzI6Bk3lDYPkAEsyIePqJrc5+mTH4nsdbQ4wEfVYTUSz5WJnclGPHKxVUq5qDhwbg4NcciQZiBhUfdkIwlojyFKGlCx8FquRaBKKow6GZCLRjHjtJh/RZgQ20M7x8THDENjb22NnZ46IcOfwDtfffoO7/S06WRBs7qukHXLNXqWuK44Xx2gak2Q9HV/q2XTCa69/hrbN7qHtyvI3f2zCb/3eoyLNTPHOs+jvYP3A1ed3sC4BIWs60rDGaBXWdctE15/fezpZ2Ws8tk0Zbjt5yqamAmsRekwRsWlhNJ7arN4nC1qDNsRUsxxqVq1maR8hqsGUEpPOCNYq01qoK6EyK5AFmAXCsE5DkaMJSnCgSt5UNOfGkS0gQlXXQWXrwCvJGmSGO7adB97b6NqzsKQTkBdkexycGtvx3FObVPlspGJeNUTJwpyzEbGCDRYZanxVQawJy4ZmMqeLgf/vf3PIL37hmO/7viOeefaQb/i6QxY3b3Lnq2+wPHwNkyKxmmDrmno6ZzobMBoYBkuIb5CWmov/RGWIHTFmTTzGnBY8hEBGjgUxBpEOdIJaRe2Er/vm38Jbv/STDxytjxTjRwzRZkavY5IxSesIWCjCUmGwGhMxgp34ElKfOf4mTYGUeSA5VwgwBtlsMmJuWKqMVaAK3gepaAplEaiikpn8uFuXBtha34z6AIBIhpc2czjfMxWPCUMon8GmVDYAPWFP0/JcYxtJE33fc3R0hHOWq1cvUTcz+m7g5o23aHXFkbvJMt5ASWtfehjWUcipUe4uVgQSE3XFqPhkzF+Ai7tT/vu/5gv8zM9/F6uVpWki3/Xdq/XCFFEmTLkV3yFJyzd8fcCJx0gkaI0rm/VaC1NbjF8JnkqswQPoBO/ZYK26ZkEZilkHUp36tmT/KZ8jKgOibsuOk1V81VxXAd2l62csO08XMiQZFDTmexhJeAnUVpg2Dl/1WLsAOUZsnxm4lpTRRYM8vTducrLm/m2bkk/tWltXFW3hHj3zfab1xjr235OfKIIoLrpcJwAhSEW0h7jYkOOoI50KfT9jp+6xacJefUjoEmaoWXYNi9ct8+aQm28v+Qd/c86v+rU/y+WD1/iaK4nnq4GdOGBvR56ZB6q6wc0u4565krdtazHWZiinpP1ICppi4Qu5AFLShKZUINn8O2laP5uUbVhKxLbahtnBVV54/tMPHJqPFuMHxmo5m337XilvXGgxRlQTzvs8aJwMbt9Em8jI/zd/yb3nbe60lokodjPWi0A3PVh715z8tX6hGxpB9FPH1uxET7RLaXsTjbmBdlJKRcofmM1mzOdz5vMJi2XHzZs3ESNYI4Su29getvugxZhlha5fMgwB6gY18YyRfnyqvOU3fNvPcShv8iM/us+3f/d1ftP3NiBVGb9E5aqc3XKI7O04ht4yJIfQ4dnDyG0SwylI5L2U9rfvIetNV9apsjfS5MaDapPpU9bzpWguSJHkPWLyYkccxsxIcUboLcdBCNEwhJwldYykNShGEpPaUlWCs4oxS5wZcC4i0pNSj2rM73d70p34dNZ43bsxnDmqj37wPaW8/27HD4y2NINRIYrN6VfUYHXADrsk24PW+T0Nl5ChhiYw6A3i8pDDG/+MoV3yC//0k/R3PV/7ddeZV0d87jM1e9PAbuXZ/YxHk0dY4QFrLK72eOdxbsNyt+Gyh9G25902v1jPPM3/RSpiM2d378ID2/sIMv4Rotseli3aOpyKp4219qnLJtsuk2dHyp48fnZQ1fpbTi+cE4tz1BTOYPTbv7uuY7VaYYxhZ2eHvb09Ukq07UC7WhJCz+7eDsvVbYbYssnzcurGmqM2kZ6u7ZCdHZ4K1FMUk5/46W/iP/gLz7BqLa9/teF7vv0uv/V7xwAZwVmPFUPbHzGEjp/7wsB0bvn0yx4vVQ7kSi1Zan6/Gf/4e/sN6VogHnOpsIbgWEtvGfgbbVAGYzxqamJ09F1FCBUheYYBVqEiprLZlsCsSW2ZuISxAWtbKh8wNleuStqRVEsxObvJ5f/+8+P3lTYiWNEYtzbjZOJmCWlCJJScWIo3DTEosnybdw7fIfYHOLtkMqyYpI5r07voxHJ1Z8Xe3PLiFcWYhtpOc9qVHD6a05ioWwfPbTsCwpZcwkZYO9H/dUoTLW68W7riPVN7G676mOXj3yy5B7NyBYwxiAgpRcQ+HRjgfkz+Xt95vefvBzP/R7tvjJEYRxwwEWMkpVSeU7HWsre3R9M0LBYLFosFk8kUEahrj1g4Xt0hpAdF/gnOKRcvzfLmueYgT7Z9jq381M98ntWI8beOv/ljFb/le1drrcvbito1tENL0sDhEbS9gZcmGJvzlPdpQcpVcnmS0pCPRqehjdMzsNQyOJE6NOeuEUaxT0sA3wzVCSE5YjSEuEtQT9cluj4WLypBCThrqBx4B8Z0NFUuaGJMT4xLcgKvobgbylYyz4R+5Dj+/Z7ndPTwmEzCIfTZmUOzrSyz6gZJwuKdwOtfusszB29h0m0cLzKfKzs7B3gTePaikExHrRVWq1ztjoBVJWmJP1kz7ezyui1E3RtEyfrvs3mInLlZ5ANbv2UDBz6IPnKMXykY/now7j8CxmbGH0PA2ezxsA2V5MvPCng6e1felq5P/2wfP+ucp0HjpNlm+OPfIobZbMrBwT4pKYeHhxweHhJjxLuKuvZkz7BEKIUwzqKROfvK8OKLV3C2wD/3ogCP3//yDN/2zb/EX/3bv5a2ddRN4Du/c0kOYsmSs7Oexk1Zdi2Rjk9/dofQK8a2JDF4Jpj/P3t/FmtZkqVnYt8ysz2d8Y4+u4fHmJERmRk5jzUxi1XFrqoW2YT4oG4IaPGhX4SGIEgCBKgbkp7UDyIkShAgNQg00YSgltBNSo1ik0XWlFXMyppyqJgyIjMiMkaf73DGPZqZHmzvc8+9ft3DPSKyWBXVBly/18/Zo+1ty5b961//wuAkZBZ3+vY/LVvn/VH84XjcZy3Iuzp/0EoP00RbhkUicAZrI6zLsH5AWWuWpcXa9l0B8BqtNVorIlkQx540diRJBW6O9xV4j3N1iA2tkIGQ0evXqlaFeMPHzfgftfWSnrRMOZE6PAcfobEhNuZTtIrRGKq54vC2YqCnLPdvM3nH8egg59LOANFzRAymDXCHZ6kQCfEkLypAdB6EhrquKWvHMMtOXZG/n005bZujz9f2O/aHX/2836P92Bl+6LD6E2uqE00IhcOVCM7aFc66bjxdl7F7wmCv/14dT+SehncdX++OCV2MwR87z13XeU8P4Ph3Sim01sRxTBRFpGlKkiREURSgrPY6mqbm8PCQPC8YDAbtNYJSJgwS8bguSH1PKMATGcWZsxtAfdTXH9KydnGPX/rG60j2r/njH3+Oz3zlPX75VzaBPh0ubsSQRT0mxZSyXnB2dxslEaJmIWZDjBJzwgP4abfuWRzHYVergbV4iRCBj7Auxvke4vtYF1GUQlE6GhdoAtZrNBVaKbQISlmSpCZLwUiOkIPkiA8rG6FjhnXkgK6UqMXTsFoytRPVyWoVH8fmEPAKURaoCLkzCYglIrDAtI3QVnPzrSUv/skBT1y+wyOXKi59ZZuNJCJV0jL4Ap3Y+xikQbwJefHthOrQICF2sn8449r1fT776afa/B8fqOX3aA8CDd+7+RN/v39g/WNp+I/d9GnGdG3pr0RW0fJ1z70oCuo6sIM6Aw2BAtkZ0c5giwhKKYwxaK1xzqGUWv1orY/9Xv+8mzBOPvh1oy7dbK467/Lu1l3D+hKy+7E2eCDL5YL5fI4xMaPRiDiOKYoC316vcx7rG6xvMzHvZRUERCmS2FBVc7qp9qNoIkJkYn7miz/kl//H29zO7+D9uOsZgv+qyOIeIo6yWWJSEGUpXYZQYIjbOrz3UDT8iNuxe5cAHYjvUuyDZqwnaM2HoiIjHBFVbSgKRVWptnSQw9pAmNTKYlRDYhS9VIiiCq2X4JcoaUDVbXUyi3Oy8uqPdPpPrHDu9ffHtHU0DY8NMIsHJSkQIRJjVJ/E9SimCdXyLfKDt9n/ieLKuYynr47Z7JdgNFrVrSJpAmpJqINsEd/m6fiOpeewQltnQXFrf8HzL73Gpz/1JPoh8xc+8ErsIXb72Bl+AbDrJQHvbqsFuHc4a1F6PdLuWS6XFEVBHMcrL7oz1p2BPWms1z9f98K770776b7rmjGGqqpWuHkX9e9COh1v2vvu52j1kSQJWmsODg7apKx6dSyljuIZSZKQphlRFB9NdNIafhxFXdLY+1fW8niUGLQ2lNXio/UbRYiTmGayDH2Jw9qmPW+7iRdSk6KVY1HNsC5nNo3Zn3sunVMoZdBiEK/aoNpPO8DbPgcEXIclG5AmVELyGZ4+tkmoKqGoQ3H2xiuaJtSiDRx5iDUkkSVLLJEpAw6tHFrVga9NgceGZKwWKvLiW1GwkEh3VKuri78EhtAxb/CnVKbwL0/rgrnSZrHHGNVDyRau6ZPZBbfe2uNbv2X5zCff5fFzS4aPbRBnms1BTexTGmmVovQS3z5XvzoyIDUOg7UeLQGDr60ir2uWlWN/kreh+riN7/yUcxnWLu79nu7HyvA766iKkiLPj3R07tG65KZ8WdAbaxKCAc3znLIsGY1GpGl6zENfN+6rc7awjvehslVVVeR5voJ11lcM3Wfd56traQ337u4ut27doq5buVdpDfbJi2/VJzvj75xjOBwyGAyYTCZEUdDiDniwIEowWqGNIY6SUMh87dxBEA68c5TV8ogtcs8mCIbIJDTNAWFAuI/IrCoiE9FUc/Dg2v47eX6jDKnuUdmGytfsHxpeeLlkZ5jQHyiMjtoqUu0suQqi/hRaxwxp8WR8jCLB+oy6VpS1prEx1sXUjae2odi6SAsQaEcvMSTGoXWBUkviqEaLw5PjsKv6BKy0WDpwsu13L2sMpu6iAszDKc9mpfT7MfT+QwxdEFFoUhK1RapStBhefRn+5N8c8NSld7i0e8iVs33Obxq2hn18bFA+1Pl1zoV8exehfISSBu81vquFrJsQBC5LDg5ztoZ9+lnMzet7/O53vsetvQVFWVG7kkQl/HQ7ujv2uuX/a8bq8aHqyiqIdS+EPwhNgUnTkH1HMOJ5vqTf6zMajVgsF9hmLUjaudrcjcM559jd3WW5zJlMDtvJ4Qjb72CYVUIGfvVwvPfUdc3W1hZFkYP4YJx9YOJ0npugoFtFALQa9c4FyYUsy7DWMhwMMSbCUlK7ojUIFkvD0lfoxpCYHqrdv41I4bynthWO+p4+cvd/pSPS/hi3t7cGp3z4l1vEoSTG+ZLf+1cb/Mvf2+ZXvun59/9ux8kIxS+UMvSiTfbyWxRNidYpd24ophPHYCDEZIgofKfb0yZO+bVB4sXSlb5cBWE7SH4VpO2YOMGPVl6teVPhO/GCSAw+w7qUqlY0DTSMqRuoqobGepAQfBUUSQRJDFrXQEEae1LTgCqwPsd7F5QvxQVPcaUNFSAjaQ26EvC+hXk8bQBXWs8fQh3XUAN4Vc93DZz6i8tm5mjsrB7BUSyuSx5bVxvVq1hEp2m/Frz0gI9BQk1moUFchKCDvo4eEGlBmj57t4c4XWG4ycFbh+S3a/TOnLPjnCtfb0ilhxJNE6pg4FHMC8u77+0xr5Y8ceUSw5HDObizd4C1ETu7PfKl5Y+++zxvXz/k/Pkdvv7ZJ/nTF17ixs1D6gbmeRnKk0YdDKdWzkiXRHqEP6zpb4pbSxhddd59+rV7g2Xt//dvHyvDr7QmSjKiJGs/uVdnHe+YIyzcIgLD0Yj5fMlkNgmZdI5VFl0Y6y3W3Hr/WmvKsmRjY4OyDPBKWC3I2orBoFT3gNbNajjvZDIJxzKG/qCHUe3k5V2r/BMMUdNeh0LITA9BkeedjHE4XxRH4D2zYp9ZdafVDApLTe81iQzYHZ1HkQbj6KAt0YL1tq0gdHpgtHtJlQKvE5xtMwo/gjhqV39Vq5g//O7T/O//4WPkheY3/5llnE75H/xqGQp8OI0gZHGPZlFQNgs2twY8+phCxeEyIvpoiWi6wLkNQWHR4FwFBNrdmslnNQiFto5y6JXwuI/SsMIOGkjxLsZaTWNNW54wiKFVjcO29RrEa7R44ljQyqGkIjGWXupQOg9eva/DuVw76YgPAcRuFXGMl30yQ1xYlVNcPYP16SnILByfzT+aifph25HuZJdY1Tk10s2jx9rxvGY4kl0AJAS1lUvQPsXQJ9YaJKGYZtCUUDe88me3uLR9i+3hdS6NGh79WzEXtlN6SR+vBFqZdS01noj96Yw/+f5PuHntFtPlgmWR87nnPsG1d27zwis/pCoiPvPcVbbGA2bTCfky53svvMajZ7f50VvX+cZXnsE2mn/1+39KVQiSJThVnUAh1uHobmUaFqVHxM9u+5Mrubs6tZ1U12oxvA+U97Ey/F1bZ9g8yLYhWAvWOpIkxTnP4eEhSRqTpnGLFK7LnbUDeg06CIY7eKxxHNPr9XDeteXnaA14t1IIP1pFKFHHgsShLF4U1CerGZaKxllcIFpiXY11lsinJBuXiFSGUmoFJ3X33qiKvJ4zWRyuDR2PcgprPAzOtauHCO/rIM/bmoiuePO9Oy3IPhR1ifg2T+AjMCKdLIHSij99/hNHXP5c8zu/G/Hv/mpLM211d+IoQytYVgs2xp4vfDkjSwEp8E5jfErZGOoGvE9xUVvapSmDsJ3QKrV6lLS+pXSB9S6y0lUYC8/RAd4ZrE3x9HE2oagNy7IJWipi274UYhRGCyIVxjT0MkUUO1CHOFsR5DAcvss3OEb5vF9/3pXXfWycn9zT0Vbcag2rcu2dySkb/1SbtCuTo3crVFazrVFsPeJ2JdzoDqYKHr5q8xF8+ykCMRmR64ETIp9hKjg4jHnt5ZJ+8h7jbEqzb4mGOcPEcvbSABVrjJLVJCK+CdLn3uARbtzZ57/7nT/gmccfQUnM9/78x1x95DJ/+icvcG1ygC0VeVXxd/6dr/KFL36Orbdv8O0/fYGbtw9pSseVi7vUlWJ73MdWJeIHRzIdx7Lhg25YcJr06s7woVbempfxPv267kx28Zu/pob/QY3+enPWYyJDWRZEUUSWZWjVDbJQbCXYgyMtnePnbKEIpRCByhYs6zmhAHi7rPMdvi9spGdITO/YNQclEcusPOTm4ds0lC1PQyGttLN4T6aGWFdjVHoPVpAmjnoMsi51O3hXyjti1Ue6AuDtErordWh0jBbdMkZO7TXw0HhL05REtqGxNYbkffv7fZuAQ6OM8LXP/oj/7ne/Sl5o0rThZ35+hscEuKZlSRglxHrIsp7hnGeYaWYLRS+1eGVJ9QZLW1AWEdr0KJ1nUTSIHxFpUMojCrRW7XP2QchMCU5sa/Qd+CZMDCI03lDXiryAqqabjrFOI17QArFqENUwSEqyTNCqwvkFIjUiNZ4So1jp568gpru8tNMHfAt2rG21DmDdPeSP+42yJqP9IZdoD92C8TtaXbV/+ejoSoRW0pwwCQiEDOzAllEYNIKxDu0iMt1DGsP00FFVN6nnN3jl5Yhr78R87nNLzowsZ76WMYiGxEmD0h7vYhzVCsKT1mMO060lNYbd3U2+9OVPYivF7//R97l9e49pUfGzP/MVNJZ//Xt/xq29KT9+6zovPP8i71zfY/r0E8FMOEMURSjxVNWR9Antfa9udbVEC6txfCh5KsoeW4c+WDv+5N9vz4+l4e/ag9CijqiT0mLxEc41GKPQrQFfLUGlVSaUleTbKRNMoHshlmV5wK3pNRpK1vX78aHCUaZHxDpbXetqNSC+LZgkKNGh1imBqaKVQqPIzAC9FjQ6nggmGB+zke4ySEctliot/mvRPkKrUJRcpAkTSgsTpVGPSCXU9t5JXN1NWPE03uKcvV+e3AM38R2EZvi5L/85/6f/7Af8wQ8e4dnPvcYv/NIQz9nVBCoeIonpmSGHxW0av6Qpe/zRv6n47JdSooEnMW0xjEEI1N+ZzpjWcyxC3QQqrVchyK+knRhbdoZvWTDB+LfDRASHwTtHY0MRExGNSE0kJXGk6fc0sSlBFggFWoc+1r4K74Vnhb9Le8yVf/+A8hLrRr6DeI4lBZ/Yfd0BbAGhFQz8F+nwH93dSQijBT0kZDOrFRspBhcKFUm73DJoetKjyXOW+3MW9XWWM8ubryZcOF9y5eIBz31yl2eehM1xzCBrULpEuwQnahX4DVBejZewynBYaueIJWZrMKZnEsq8pqwsSRwjjVCjODPuMxoIVV3x+us/4fW3r/PVr3we/2cvIUoxSAe8c2Of4WDE/mRGUbvA7MKu3feqIwgV8oKHLxK8/VOlUu7bZO2H+w/btn1sDf9JkbL32w7A41BKqLt4YPiQo1e1/bcFtE8eOgR/5dj2It0KwKy+w9Ny+vXqGsJxwwPXTjGKNog2guqlasEmUao1QkIkEVpC6ccjuKqDesKyOFYJkZg1H2tVhqX9zCGqXV4CSglx3CfRPXK7WIOITvRZAEzwWrDeYV1D/D7P48FaCHwqZfj9P32G7/94g1/4tYonP3+DojHY1GF8YBCBwpCQRQl7RUNuJxjpcTgV3r1dsCmOs6OIcW+A0waHYF0DqtVpaStJqTZu0xCeaSdkfayUpJdVME6o6BQ0tXKkmdCLPVpq8HPiqMboCqiwPvSt90f6O3RerPftROxWK5iHUTdV3rVesF+N+c6on3zjxR+lNIo8kF34yNtRJm3r2HTermcF5ay8XAkJh+JzlI2JXIpqHMvpHvlyyrIWqiJh/waMRw07W470UWE4Shj3t4g3AKmRNm4lPqWhRqSrQVyg6PS5QrB+tpzz3t4+T165Sr83IEl6fOvfvMjNO7d45pmn6Q8yGldRFRXJeITCMJnOKaqG7c1t6nxBrITzu9v81u/9MaN+H63aGEYbi+gcRVmx8nz73Fpqrm/C9l3sSXgg5OKY0aezP3/NWD2w9pI9IH3vyHBalNH4utVEaQ3REbzT4pDtDL2+r1IBCuoeqmDoJZvsmFAZSa26WlYef2Kyu64BH+oARFGfxPTbPYKp8uJaT7SFfU65zy53IBgUOA5JqRNmIdyLd004L0IkCf10xKw5oHHvU8JQGxwEg/qRtOCa/otvXeE/+QdfoShj/ulvOP63/8fL/PLfWuB8Az5elTlVONI4RSnNsmwY9oTHn4HBICJLIowRjNLM6pLJLMfbgo2hRVQd5JqtwvuQ3epFgq/pBes8qpPFdYEwGbTQPbER4giMrhFyoqgiiRwiNc6VQN0+FmnloFuID1lJ54JfedwfqH6NeGw3RckRa78z+ndBPSu4srP66+pFfzE+/zqU2TlTXYGhUKpRwoqv+9o63GzOfDLBLUsiF+pJa2dJYkeqt4k2U0bDiDNboHbDOBWXon1gcFnV1sF1jjuHU8bDEUnUGVSLRVGUjizW3Dlc8MILr/PkpYvoRLF1dsirP3mP7Y0R+/t75E2FlpLX3nyXPN8kjhWbu2d44fVb/MG3v89wMGZrZ8gjV8+wLOf00oRzZ59md2sTtaqz0J27C9Zb8AolllBDOWT+Ssscu5/jet8Jwb//U/1YGv4HxfiPNx/E2sSAag35Wvc1vsZ6S6ySlpJ17Ou1c7aeojekZkgU98P864/87tXMv2aU1yWanXKoDvNbm8nF61Xg6ygh5O5EMu9DkZijWX8dQugCsdJanQiojpLOvKafjtALc5/ate3xtKFxYJv6IzQfnt/5zjmKMqwh8lzxvT88y8/+jRepbUGi4xUr3UmDSJBsXpQ5biA89Yk01N6NI7wrqKVksiyYV4fEpiDt1xhVhrrGdYwjwklHGdQ4D9Y5pKXSWhem7WD4IdaKOGkwpsS7BfiydRragLAItoUsaAvndBBO++TXnoWsWX7P3Rj/vXoIrAp0R9Vl9HUJgaccwstaQa3294OBSh9tW5k/EWgnXHEWpxrEO+xySTU9pJ5OafKc2MaIK9G2Io4z+ukWaTJs4bQ+K20kMe24qFvvmjbHJcBEVb3ku3/+Gl987kl2tzcoqobZYo71Ca/86A0++6knmcwKbl6fITbIWl85v8mL/Zhf/6Wf4Q//+Hm+/+c/4uzmLq+/fY0bN2/x+NVzPP3EFQ4Pp1TLBV/67Ke5cuEM21t9djZHGG0Y9vpEIm2RpZapheBFhWtry6QGMcEwCUgHeXWTxZpzd7pN88d+ZBUrun+y2MfK8HfJUSeDnQ/aQr+GrMvglKj2Q0fRLFgWCzb628RyxLE9mYgVHkCnvCgYr08E0trl+GqJfnSdzjkkRBHDw1srsuxbbDhkeB55kcev369+r7P9Q/GZDhv3R9CCHMUwVls7RWoyjImobLF23auz0AmOKR0FQ7nK9P2wZiRAKt/8xk3+yX9zlbyMyFLLz/78jNrV1E0BarTymi2KsjF4Z6iY46VimG5R154ir6lsTpY1eLfA9GdonYeYhG1WFc+O1DFbMEYkCBxKMKzRahl9tI1A0HeSEMT1Xq0xctb6iUA7PeK6riuZru54bfsHbL7luJcNrrRo3/Hc1zSqTl4KgBEkNmDUUVXEv6AWHB3aXAqF8wpb1dh8TlkcUuczZLmA6Qw/n6KqmmTrHFtbZ+n3NojiFLRHVGCeKepQs0BMWFnJEnEJYHBtER7VkiGsV7z0o7d4/NHz9PoDXnz1DW7eOSBJ+nz/By/Q72XhXdARTmmMCBd2dokMnN0Z87UvfoY//JPv8Y2vfgEVvYstS7702We4fGbAmV/+Et554khjJEEBu6MxHo9ug7SudQJa4AfbeBpbo1RDY4XJxBAljl5W422E1i5AhyeeZUcaWVcI8G3Wt3cNHo3zLT3E3n+1/rEy/CFLtqFpmhBV113lq/b747XWVm0dcxNRLPOCumnIshjVJsrk5ZL9yR79ZEASZbRrthNL6xVPgaPSddCBNcfaKYOuw/jFR4g7KoLnJUARtIbK+9aA+FBA5i52knNozSpYKrhg8LuMzxW+3Gm9BP0hUYHTL1qh7iUotYIKBLTGi8K5ezGAHrYFs/Vrv/ge//g/+xb/n38Z8ZWvzfibv7jNzRzKKsdFjtoGqQ2tDY1XGBPjbBGgKV/z9o2C5bJgtFHTjw19M8frQ5AGT6hL7ACnuv5uJ8X2Bo9onsFQdRg5hLKcSIgPBGpiiLmINHRRVO8N0gl5rR2Zjp9/DN/pvn1/XPaolwRTOeppCcsKbzvDf3pTPpzFRwo1TFCDBGu6OMfRUY8GSvf/7tf7TUqyghdWY6ydT9edVNc02Loirz2LSpgfLpjcucHixtvkB3sM05Snr1zg0Uc/ySBL0TrFmKh9F9WaNo7gdB3svq/QXuOJ255pqc9K4StwvkCiCK8Ns6XjvRu3+d1/84NA8RXHzvYOf/78D7n86EW8cVSmxmDY3hiTZhHLMufpT5wl6X2BM9ubPPHEOcQpeplCK8iSuA0QW/ABjlVesL6hqmsa62ls01a4d1gvVJWibixRAnkNP/nxgP7YsnO24PCWQURxfqdEa09Z1iglRFFr9EVQOuRvNE0dkktb5pn3CieaQXyOyXTvvk/sY2X4tTY43zA5XDAY9IizFCMRGk0QUWpw4lA+umtfDzRtvdDDMuLaJKM3VKikodcEnL5Qs+ApqjCDa+/RTtG0htkqC9Jlwx5NAcCaoZeTH6wSr44wvVB0ZF2Q7fgSvtMAOvqwyy7ujhOWueEKTqQesRqoEv7upi8RvUoWc2128cn5qRvcYfBpChy+qXAcFQ38MK2bLH/9V+7w1S/e4I03f0x963OowQ6TeklmK6Z5TEHOlX7M9mCIqPO8e3jIopyRxQNefl7hmpRv/kKKkQKlweoKbbtAd8sNPwa13OVfHX0uawDNSjJhfa+jPl719Npq7Qh0bb891qmn+uj3bR5wtaVXRQzG5zAmrEsa6c7f1kD2ipAFGu41LxdMlvvUQ40XfUQzXEvvD9OPrK6rU5/sArDHr7lLZVyHMdvKXhhwHm8bvK1wdUk9O6C5c4e39oR/Pf8U8+ZpYrlE6T5JESlipenFCz41siRRgxWDdg7Xis8pF9GoBY4Y3TLVIq/xNMHL9wl1A6KExlqu3bjDsik5d+YCm/0eB4eH3LwBu+c2uXLuMr/z+9/m0c8+xfMvvEb11j4Se2KrEB1qU3zmE5dRypKmMZ+4ep5IDNqEbGorFtcovLdtkRsbKNDO4RpLWS5Z5lOKesl8OaeuijYRNEbHI7LBDpneRKU7bF7ZQseehVT8/p8PubUv/L1fvU6vt+TNtyKSuGT3/IzDw5JqfsggOaApFuTFjMYVYdIhQ2uLlQHP9B7h+o0f3fcd+lgZfhFIk4xoJ2U6m7LMlwz6fdI0a3nrBtUGkE5q6Aue1Bu0d2QxvHvDEruGzbFmo6fxOupIV4iLAU/dMmKsckQWpIkQOSpg4rnbG79f6wy3W1ML9WveZnuX97h3OfZ71SH36qv297r2kFJdn7gQSD0VvukCiB3TyASP5qNoK5sYDMrGxhab401uvv0jkkc0hY65MZuAGrKV9jFxDzEKoyK8FWaLGZvZDuNhxLW3K/ARgiKSMdrdJmS8rk2Cp2r0y9q/p9z+Pb+Xk5uctvNH0gLU5IhMQpYd5WQYkTb+1GrG+45a3JpnBbPiAOtoYwMtZHmsHzrPv0Fwq+2OTEU7XvzRpOFVwLC9BxqFWMFR4MuCYv82+Z3rLO7cwNc5/eEODY9we75Fkgh/9/EKLzG/eaNHiuelaZ+/wR49FwqjKO+xCvJKaErPorL0Y8d4YPCisNTgE8qyZrYsuH3zFps7m9y6NeF3vvVdrFvyhc9/luGwx8FkSrn0vP7GTW5cm7CzMebxq5dZLEr+7Ls/5OrV81jRaMBEji999ln68ZDYm6BxJ47G1njraKqKvJpRljnFck6ZLymLBUVRtBIiEVE8IElHRPEZku0xUW+DrL9BnA7R0QAdpWidsXkuCxAjBX/rV/vMK3jkyibKG27sVxjdMNhQ/PbvLMjznL/9dw2bGyXzSYG4iH6/pmwc4g06cgy2L3PpsV8Dfuee79DHyvAHAyQMhwOMiciXc5bFgmW5pD8YkegMjcZJcxc277ygJUZLYBIfFMJ333b0E82jZ+CJqw4tFcHfaxAvNGgaZYEEMbMWOgntQQ3++nUcVco6Csw8yHFOBn4eNLC9nukLa4wgf7xuwClnDD+iUFFM1TQhAUx9WEN3FHIUCUJr589fYvLjV5hef4U0ioiTS2yNegzMAKvA1RV5XqK8oWpKnG14/LGEJAr1TUUqIhWhraFZFSdZF757WH/7337rQkZK6ZBHsKosxRoHvsv87GTcFEbHiGiU67D2Na2c1RzvQyASFfRiOmxa1tnlR1Fi7Wu8bfuwrikO9lke7lEdvEudl/SijL6OGQ92SaOIdLRLWV3g0ToBKfjcdgWi+ZfXFHtVxNXdgkgB3gUtKYTFsuJb33mBH//4bdJ+wjd/7rOMeueoiobGF0jU48++9wrff/lNysWUn/uZ57j23h3GG2OM2uCHP3qTK5fOc+3WHTb6GXmR87lPPcrjl89xdnvMZz79JH/y3RcwotGuFWMUxe7ONsrZAAt6TV3N2bv9Lnu336NYziBOMVEGKkZ0hhluMtzuMYxTorhHnAyJ4iFR0idKBkRJjyjtoVRMF6lw4jBiUURELuOppzWNAiTIgTz26ZBnMxxqPvU1x+GkYvvqBoNBzcuvzRGX8qWnYt58cQZW8eynFCYTRmceue879LEy/NY25OWSPF8wGm2yvblLNI+Z5QvmszmVrujFGV4fBUFXOvvOU6qSWizKeJ57PMIWmtrAbh+MFyyaxnu8tmg0iXU4FYacjSL0mjf5IDkE92rrQdoHNfzrfz8so2k9ByBICHRxhHtsD0cQsEmobUVIw/8I6u6urglAMeiPuXT2PC+88yLzO31Go0fo6yvMqhrb5GzEhlhFDNIBy2pB4wvObPfp9yOiOMJLjlI1kQuidf7YKuavntGHDm6T4w+CADgFKYN1aO84ZMhqBenb4DZrmaUdOaH7n2pRwS6xyq9NL4JzUC8WlJM98ukezWxC7BzGwaBqEJ2wMdxmNNqi1xuSRDGNxLy3n3B1mDOxGqHBolgWhptFxrPjO/RVDbiV9MV8WfL8Sz9CxHNxc4deHPOTt27zvRdfI6+WfPkLnw06SBHszwuauuat9+4QxTHKO+ZlQS+LmEznPP3EOeIX4dErFxAPb7z+Nk88+QiPP36ZfpqiPag2V8M5jRNLVc7Z27vJ/v416qbBqj7R5gWiwYg0GxKlI+JkTJyMyAYbmGSAUrqNuyi8ErQLgFWgDXfPwQUEQgR8J7XdIFaDeLSUnD0X2H2C42vfqMlnmmF/ifOGXj9gEA1wc09xcNNz9fGEYVbz3jv3f4c+Vobfi2NRLzi8c5tluWBjuE1/MCDrD9jf26OqCnLXhKCkP25gnfcYY1Hi2Igs5zcGvHPH0YuFiztQO4sliJ9hY95bGDZSS4zirX2IpM/ZES2jgNVxHzaXoNvvQY9xL6/9YSadda0g50JC0T0nj1X8ohU/0xG1re47UXyQFq4/ZFru7p7j4vQGP7n1E6ajixzEu+RNj0gcJh6wMejj9ZhpcciymjEabNPLDNfesZy/FCMoYkko3by9t+PB1Z8WJPPTaoHltQrStHfQqYm2lbcCzrjaY119yXUB29P04X1YQYQ4QdVOA6YNYjt8kVMvpjSLGU2+wFcNtljiFlOkLBhubLG1s8Ogv0Mcx21mc3g/HQ6rLF4sGoUlJmTPJiGHxJdE0pIavG5XGeA8RCbmZ3/m83zm6ccxyvPCSz/m5uEB12/ssbN1hl/4+ifZ3BzyO99+iXNndjnMf0g9n3Bu3OeTn3yUrc2YvJhz8fwuZ7bO8P3n30C859Er28Qezm7uYCKwpkaJC4Ko1jFbztm79Tqz+YSClI2zz7Bz6TP0xpfASDDcjcUVFa6qYV5hlwdh7d9CaN6DFcGJCkqd0hbbEUFpwakMqxoUCq3D9Gq8AuVQts19EIsGhn2DUoGx89wXEwjZCDz5pOZaWmOiQA2dL+5PuPhYGX4lCq8alm5GOV1yuNznzOZ5Noc77O7sUpUF8+UUfxqXTRSDJMVITF0uefknFT+4tmBsEiKVcWlHCPmfNY0TXr/pyLKYYaJ58Y2Sp89ZdkfNQ3v5Jw1+Z7gfth332v0DTTrHKGGsVf3qsITTzrP2r3hAR9TNAj5iw786hwjGxFy98AkOXv0jpjdeIe6fZzh4io3+kEgCtt2LMiKjmJVzdnoNxdLz4veWjDdjeoMUI0nIg5CGjictrMlo/BVqR7V9Ox9faOqKm7evY5vuHQxGZzgcMx5vsVJulNbDV8eZZtLlHHjBCih0YAPVFbYqsFWBzxe4fEEz3ac63MMu5wyGO5zZPMPG7iWiOEUbg2iDQoMKE7eXIAgXJK01HtNyohqElu4sgpOIrhC8rCrDe+JI0etl5EXFZDLDRMLFizv8/PBL/Ml3X+Yn713j5/0zTPem9BPDzuaIrXHKcLzD3/y5L4fVY7XEeMMwTfn6lz/L977/51w4t82nPv0Yk/mSO/tTnnn2Mk4ceVFSFyXWC5NlxY2JMBh/gkevPkc8OIeKUprGQ+0R53BlTjGZ0BQ5vglwc9ubaAHxQd7Da41Ok5ahJ0RaI4nFy5jGN4goolhCOVgVIaJa6C7CS6jT7JQgzuBVBV6jA1+Ly9sp5zcT0miBtxGXrvw1onNqZYhMhIoVhVtgbc21vZLp9ICz2xcYDEZspNsr12fd6DoBo2I8npvzHJGK/+BnNjhcwps3Gi5tj9De45XHx5YzGzF//ErNoii4vKM4uyNBNE3ilVLmgxjxkwkandLmB20nYwQPs59Iyw5SD+AFt8ZTRxn14s4HSJg79aBrfx+HHLLBJo9feIoX33qJYvPH7G4/Qi8eIi4wdBKTkUUZRbWk9gVap6Q9mE0bemOHamIUEc43gXL4V8/en2jHKajT6SG//Vu/iavmKBVovsoYnnn6U3zuC18DFd+1u8eABNmKMJc4vLNom+MbB1WDXS5YTA6oDm5SHt6m3x+yOd5mfPkp4jgj1Sk60ogWUBrxJmRFqyA/0CmRiw+soGDcIw6bhNo1iNMYBUo1RDriRplQ+4rUl+hWEyuLNcZonn/pDW69d5NHLp/hymOXeOON1/nJG29SWyhLz5vv3uLq5bMoE/Ho+bP8+M1r3Lx2m3yRc/HsDlcvXURJw6efvchjV7fJIk3WN3zve6+xXE64tPtp6sNDbh68y/48Z7TzJOMLz3Jh53M0VrEko1hU4ArEWcTXOOtaqRZQSQ/iNtGylX8J9F1LbJsgD9I+NWsdvnG4qkLw1EWBazSVqtGAVa2EugJ8L+wlZYDnPCAW7w1KPGjBGUFkwDIS0u0dTJnf9+35WBl+JZpe1OfcziX257fJ8xnLekrja8rbBf3pmH4ybFkQx1k93luSOGE07DPPPf1BxOVhwaiv+cl7FofFKY/yPZoyYyOL0FHDbOq4ejEmUzOU06xzGh8Wo++Cu+tG9OG89oeDeI63YOwDgqAQUeu29/g5W9xYUCTZELfvaQHZn04TQAnb25e5uH+Nd998mcXOVXbSHk76KO8xEjGIh9yqFuT1gnHS43Nfjsh6BiUOozK0TbGU4Dt2D3/FJ4AuQBuCkdZazp+9xObmLoggStjZvsDRSxlYP9opcArtHDiLuArxFlvVlLMZ9vAOi+kBvsrpRQkb6ZDe5nnMmUeIo4QoSojjFK1bD11YKX4KDlmDO1dMViTAFVIgGF65ExOZmDt1Dkoz6HnGac6f3874ubNzMh0h3uFESOMIExu++yc/4Gufe4InnzzHK6+8xv6NO/zcV7/Ev/iDP2SyWPL2u3e48shF3rtxhyeeuMrrb7/Lb/7Lb/GFzzzDzrOP8Qs//znGwwgdKZJ0jHaCuJpHLp1jPNA0+XW+//pPKGLhzKXPcuaRL5AOLnAwmTFKUoyOoZVw8TjEu6M8BWnzDCBAVc7jnQvSE02NtRZbN9RN08qAeJqmwboMweOVRiK9Wil4AVGKNIpJ4ggRj3YJ4j26zcdpPFhfg/OIFOCWVLUgdQWLv0aGHyAiYTM5Q6p6HKa3OFzsU1RLyqqgqktc40ij/sobXzFZnGO5yEl7KXGsWRxGHFjFvARLjsbjdMS1A/jOD2fMC+G9qSJfer7150v008KV7ZD190GM76l0zIdoJ9lBH+TcXQslG/W9s75baQJBMxhuBNHpj9TunziY+DBIk5Rzlx9n+sPnufP699geXGQ07rdl1TX9eADiWZSHbCTbbGyEWslVHaF8Rhr1aewC29amPfVcf2WarP1A1uvxyCOPkiYJTz/7HCIhuBhHGV6FYS5eWuw6wEXucE4+OyCf79OUCzSefpLSd4pBNiYebZMmGUmcESc9dNTWppCO0+9a+erAhumux4lroaPQzW5l+gOHaBw39NKavXnK//uNGCeOg7klVp7HdxpS5XEqQBviNVpHDId9rl69yte//jnO727y6mvfpz/u0x+k2Mrx+jvv8aO3r9GommeefJSvfekz/Mrf+DIH0wVXz+0wGEUMVQ/jwupD2YrGaqrikPnsJ0wO3qWOI/Tlc+xsXWI8fIKYBNk7RJUlSX+ESQZYWVPSXM/18F2cDDyheJNvAxRdTozzjtiG+EFZFBSLBSZLSeOUusqpqpKqavDWIUqhlEN7Q+4KALRTGO3pm5QkAuNBuRjvGzQJ2lmUFjAxafrXSLIBQFAY0QziDUwUEes+08UB83xC7qa4pmCcbDNKzxJLihGFE2hcQ74oaZywNYZXr1v+2z8K9TcfOxsHiplLiLKGC+c0y8pw6XxE5CrSxNLvKRpdEKneB7vuFqIxxjx0cHf994OyetaDwh2bB0KBlZiISFIKFqddKStjKZ44G1K7oxf/xFnW9nmA1nIKnQjKN0iLBUODJ8EpS39jm8vnH+Xlaz/k2ts/oPeJTUzUJxRgHxApmBcTyn5JKjFNI/z5CznjkeXC1QHaL6lthUjTQh3NirYIXUYzrR/9gJTctb+OdFkD8fdog26N7tuaAp1Il2ktcQ2urWkgDayEANuVGLDy3KUG6WqyhThFnGQ89fSncNYxHG8HAyQe3xX16DzVumDyxg0ES2wliJ6VNX0d08sSemlGEvWIoogoTsLKr0vg4giqCAFiCVi+94TcAWm5P+upfEd9Ejj/njOp5e9c3mdvGVNqsOJ5arTEKM8XtxakCmrlA8OmjRGM+j0uXdji6qPn6YkhTnp8//kfcm3vgCefvMBwEPFLv/A50kRx5eJZBoOMra1HseKJXCtz4h1WgfUNzeyAmzevs3dwnUJVuM0+ye4VNi5cIUu3yMoezd4B6rBBbW0iorCq8/RpJTr8akWzelc8CCaM2dZ91/hV6UhBKPKcRmC0tcVoY0hsUpqmpm5q6triW+mZpilplhXL3NLUDqM1iSgaZ1FFjfiQNunFk5qELApV/7xSSJze95392Bn+ECcKHZxJnzhLyHSPNEqZFfvk9RxfOEzUI+tlGG9ClF0UVVkRKcVm3/H4WcvLb5f0Mnj6UobWJcY7zmaWR58d8MY+nN/UZJFGnKKqlvgqYJ0Pg3evy0ev//6g7WFXDEGqYW0f8RhJSKOMWXXv/VpCILUNlctWsg8fGGpauyaCHDVOcKo1LgjGgVKG3TNXODe9zvWf/AnbG1c4c+nTGBxGRfSSLfYWt7izuM2FfoJg2L9V88YrijNn+mRZD+8WND7HofGt999RHP3q7j7oxYfjHNfJbD3zte/8SpSrPavXLZNG8J38KCC+FSDr4BMfJL6dr6HVWgqBUsW5c+coiyVFPidJYpQx7XwT6i1478E16PmUyMCgNyJN+yjZJE4SkiQYLLXGejrKDj9aXdxFjTjBLpJ7dKEA4ixDAz97LkJ8hRNPrYLMtCDEXqPEom2XdRymvXG/D+U1mtKi+zFPP3Ge69ffZnd7k8888yTndzd57qknQ0EdBVqB0KCdDhLMrqHMZ8xmB0znB0wWeyyqijqK6J1/hPGlxzCDMUqExgvaG/RyiSwWqLO77fTqV9dzpHd1r3flBMGilXepqpI8z4nimO2dbXq9zlFM71q1V1VFURQkyz51XYP3+KZhuZhTFxZjFHFsiLSmBOq6QoAkSVjWf808/mPNB9y/nwyJk5g07zGZ7zMvpuxPr5FFKcN4C+XBOI0h5uaBcHuu0VHMZ57sBaEnW4MO6dmlLYmahrffqxhq2NwIwcfaL/GNQpL1QfPwBqSTXHjQ/U/WHXjYkpPQLsFd95dgTEQSp8hCVqbw+M5HXm1VlzgRaluxqnT8ASeADhbwPlDfVHD3cGKC8+QivHhMZnjk4meZ/ejbvPf6H9Pf2GE0uIgmYpztMi1m7C2v0dOKneQKTz2W8ae3HU1pGPV2wNcsPNCKG4d7Cfe/Pgk8qP1fbXaCLRaE+NpA+Xq8fFVk3CM0wbCjUW2Re2mLcYRjd950JzMRITbBu6KN7x7Fh+7cuc7bb73KcpEzHGxw7vwlzp1/JHDKWyngyMRcOH+JXhqFmhByVCNAFMFAfQST92ktrBJ0i/WXaBfKDWbO46UCH4fvvSd2jtJ4nApaNDtbAy6e3cTg0KJ56tFLXL6wi9GGVEVoDSt6qoSYU13XlPkhRZmzzOfkxYLFYsp8MafIMsaXH2X70qOY3hitTDshq6CO62OM5GglaL+2glnlTzzYGIOj1XhVVSyXS6IoYnd3lzRNT90eAtyaZRlpmjIej3HOUZQly8UCUZo4rVAiaBOchyLPsXWNVgqj1D11dbv28Tb8AF5QYojRbKahYtPt+XUmi+scLm6TRH0ySRCncSri1bcXvHJDU4lgRFBSc3XH8tnHezjxFNQMpQalefmaYG0GUc1YW5zMSOXhSxCuvyDrTKCHzQP4IPtBKFJfVRXOd4vWUPmro9Od1rpPG9cgcUxdHy0PPozhCNWwgncbNPeD52TXZabFMxyPeOLqJ3j5Jz/i1pv/BnX158j65xlHGXW6zXuLt7m2fIMk3uTc5TE/M4hJ+x7lU1K9SWNrCj+jUyQ6muAervZR1xnr/n34rKNLuhXS01WYCttGISDXSW2LW2Hh4AM/nJBFKypC+zjcvXP4JoeqausEh8I0dVXy/A++y49+9BLTwwPiKOWpT3yKn/v5ARsbZ1aTjhJNlvaIo07XZ00ryPn2kR9/5h/VRNDWOkO8JaJuF0CCtgqnu4I1AY6plWqJqiEofOH8NuPhgF4vAqkwRjM0PfAOJRaPx1pHXVXUTUFdFcznM2bzG0xmh0yWBaY/JNveYvD4Vc5uXUL1RhBlYZVDEFlT3mCcJnURuj8EHwURNk76AXd/ctf9rjlwdV2zXC7RWrO7u0uSPJid6KBYpRR9bUizlM3NLZy15EXOcrlgMV9gxWD6EVEc4+OUqDe473E/5oa/e60Di0eh0SZie2SpmxmT5QFZOibOzqAFGlWzvZ3whAka2QkGEc14aDDao7zFOIh8oGP97vOWb2c1w4HjVz+hOb953Gg/aOtYOR8E4vmwbJ7AkzcsZlMQHV7IjqZxj8vpsMrAJneI0dTNaT7GQ16TlzYntGZRa/KiyyC2OBU84VB8xNFLHJs7V3kkX/D6D7/DYjHj8Wd+nmF2hd3eLnNXc6e4wbXFW1wcPc722Zh8GXP9QDhzZkBfVVR1YGvJWhWs9Ylu/XHcryDGutFfTSCi6IrnhON2nrVffeYxLSzSrjzaxB7lEzQhOuisQ5EQKY1xhmK+IF/uwbxgON5ZrSSWixn5fMnf+uW/w80b77BYzCkLy5tvvsFzz23DmtqqFr1SJG1Pu/buHZ/CPkrvv6t2pogQbMDMRWg0IBGNEmLn2voIYJy08RChF0ekGylK1TgJ8uLONXhnqZoa60ryfMad/VscTO4wmx/ixZNsXSC7/BSXt7bR/QEqisNP3NaqbhletrUPUSNkTUIPjd3cQQ1C3dyElm1zpG1x33YStumM/pkzZ0iS5AM5aiKgxYQLiQwmjsj6PTa3drC2ZrnMyZdLGudYFuV9j/WxNvy+lcAVCKPYhxe5p/ts9i+Ql29xML/FIB7RE01kPZc2MraHUNka046BKBGMblBiglKgcTx1JSZOMpSqiSPYHlUB//sQnve6uuYHaetsnoc5d2Qi4jhQ1dIk4cgXPM32+2N/O2/xoqjrklUg8gPCBUII5lUOfviTm/zgxTeY5SWNV6RaYWuF1560r3juE4/y3JMXOX/+cZREvHXjNV5aHPLUs7/CcOspdgfnKW3NdHmbTI84O7zAwW3hT/4w51f/vT5pOmIQNSxqS0NOCCB3Hq/jGC/3fVqIK3WDveufcIwjvLz9znuc6NbmxqhWG8ajQk1ZUcQuIZaIusyZT/dZzqcIc2xRUUwcg0FDEpvVxOLx5EVOEidcvvQ4IsI7777F5SvnePudt3HeoVpjeVSA9+540odllr1fC7RFi/UJHo2XUIDFq5CpqwErDvEa4z2eBq+EkJ0KSofqaDQO5yryfMpkcpuDyS0ms0Nq22D6Q8zGJttXr2KyPrq3gUn7qCxDtAl1DLy0ouk2xBEsKB+hncE0EUmV0jTQiMPWDXld0Qf0am68W7X2fq0sS6y1p8I7zjnKslw5YOtZ+KfVFVnXctVKoVSMROCJiZOE/qBPVVWMxxv3vaaPteEP7kwbiYcVNq29YRjvMOofcrjcI2+WZEmGB24fNNxYRrxxQ5iXgafw6G7Dlz+Z4JW0gTTH+SEkYrGVoLSllwh13UrxPqThXn/QD4vxd+1IjvnhAssASiuyLMMjaLP2Spxu+VkFKiWwgLw2K4//Q2kUAVYU09zy1nt7bGyO2ZvfZrZsuPLEOV5/4xZxL+L82R1u3lwyvTDjzEafi+c/gTYZ7+29ySt//htceOwbnL/0Gc4Ptnlnusf+/Br9KGMw2OHKpYQoApEePSVIDMtmSuUWONqCMuIeFMZtjWe724l6DyFLVa0Ga3AMFMYF7fhIFEZijOrhraPKD6iWU+rSsqgsrp5zuKco5o4z52rGWYMbR/R7EY0cCbOJBI32PF8yme0znU9R2rC9s8trb7y5NiEdrUtab+inZuRPa67NKHY4SokR22rrqyasIG1MpJq2rrLgVJsc1dajbeqC2WzC/PAWB7M7zIsJRAYVZ+gz54n7Y+LhiHi4RTTchChBJBTdEa/xToXVhISrUM6gnMEXgi8E5wylaxV8oxg1meLLkvH5C2vjYi1mA6c6/ychnjzPGQ6Ha4Hctj+cYzKZcHh4uBo3WmuiKDhiSZKQpmmgVtPG0P0RFLkuqiqiiKOI2ETgPP1+xv3ax9zwr7VVgQgPXhHrjFFvk8nyDpXNg762cijdkCWKcaYwIeucUeoDM8J7lG1wVvP6Tc933/BYb0iN8HNPx2Tm4NhA+iAMm9N+3+84p7GBHn4we0wUAozHJ477nLczZ+JxSlNV5Ydm9QR0SbMoCsqy5Ge+/CzDNOXW3pyf/eJVRDX0soSvPneF7/zZWyzzEtnoE8URFy5eIe4p3n37bW69+tv4+W12H/8KW71L3Dq8zt78XS5sGD79hQ2iSChyQz4fMtgBMRG6MeE98HWAlWQNtnmfFhLaIFQk8Ki2ZGao+RqMjiHF6BSjNJGDqqhx9ZKmPGSxmDPdq0jjCcoX1HNh0F+SGAfpFtZk7IyF4bBGeYOIY543NGuLiV5/CKL43W/9KyIT8eynPkOaZZw9d+E4a+vfehMmVvOdmwm3FhEKT62EuHG4CL66LTwxKhDVoJqa5WLJdH7AbHqbZTHDek+DBJhoc5d4tEO2sUuysY3p9VsapVoF6f0Ksgx0VO3BWY8qYnyt0WREKgMTZNvxEUo7XNRHz6b4pmY4HNPVvRPpahC8f+sgHmMMo9FoZcC77w4PD5lMJlhrV3TuQONsKIoiBN+VQusAwWZpRpokwSiFW1ojDBx/V99PNeBjbfiPMdG6HpKjkFZqeiQmoS6X+DTU8Lm85biaCOeHMCnASc12BrHq6mA2lChevWm5uW9RcUWshUme0B+4DxfYXHHqH0xrZ711+6zr6z988yuY+35HkBV7pSXwKU2VL9p7+ICnpvOILZ4GJZAoiCOFMYbIGDARZeOpC0fpLOIN3iucClDA7uZF+tEm77z1IvvvfJ+mKRle/ALDqMes3OPWvM9WPyF2hjt3HN//U8eXvm7Y3d3GGEPu5xS2pXpK9eCBdUJlJHybGSsxWkWtPr7H1g00QVfF24LFrODOzZLhcIH2U/JDYblf0dvW9PsGl2Zsb2SkaVCEDen/bakb8XRVxI6aIu0NeeqpZ3j+pe8x3j7LpYuPEMcJjz/+ZGDucHcVuAc1YB9VE++xSnG9jPmNd/rcKjKe3ZzjlOLaJEWiilml6Nu3UMUe5WLKtKhZVDWVW1KJJd3YJtu8wNbGWdLhFs5onLGr+Ei4Lx9kh/yKhIlrBGkUqU4xROD7WC8YFZNmfUzawiw+wmnAK6LtLZqqF6p5tVCxf4Be68ZwB/Hs7Oy0UGpo656+UorNzc1jBI+maajrejUBAOR5Tp7kRK3ceBzHxHFMFEXH31Pf2oL3cVo+1oY/NN8asmCsvHRJMRajYhKTUVaLVm9D0TQVhR7w4jsVb9z2VCrik2cUX3myF3R6sOA8BvjG0ynOuFD7tWxQveMiaQ/TTsYGTn52z7tb2zaUXDyePOM76uDa+tBLl0QUwrSNK6mqHJCA9+seoo7X41270vBvB2yroAlTN2V7RgicZWmZhicLydynDwgB9DRRiFK8/ON3+OGbNzmcN7z0Usy7b96mdo6eE5bLnDQyLYNSoW14ldOh4vEnP8vNG+/y9nvfoyxz1JnLFL7gZvMWhV2wm50lz7f50WuKS48ozu70iJVFxRrVaEofqqo1rg7P27egyiojtYVZRKFEBazVRfg2GIsXRClYJIgvcEXB7GBJU5dEpmA2qbj9nqH/VMPmWLGxPeCRczYIdKnwHmqJEFUSeUCadlJJ8KtarJ0hDz9GGy5feQSlPWXlePed99jYGLO5dQaRtiZwNwa4n9d6epDXd591DKYuVuCPxN+OHWMtF+Ho+TrwMUUh1FXEWdPw9x6Z0tgF/1V1BoXhR7emvF28jq6mTIoSnw4ZbJ/l3MVzRKMhLs5wESgx1GI63g8ewdJVv/PgLSIe72Iil6KaBKlS0mSDJOujsqaluBpETEv/sKAcTgxaefT2DgpPeeo4OOqnk3GSzngvl0sGgwGDweCYYV8sFuzv76O1ZjAYrMZs5+x1Br37rIsDFGXJZDZDiZBlKWmaksQJJoqIjMFog9ZqtSq5X/tYG/6gJ95Wh/IhMaXWNbFVVEqhXEqseszcPjU5WvXxruLmoef1mwGzl6xhWacYXwUmgRistvQGimHfcGueY2vBRZ5KHS/0/qBe+7rxfugErpZyqZRaBXd9m0l5vIZrRyWMsOLRLihVzq1hsniPebmHd55Rb8D57NNoHYfCKpawdF7rVd9mLDpRaA/WRJRuxkqTX2gNguOf/84Ffvvb5/jFb9zk17957X1vx6EZ9RIundvgz55/m/15gXOeP3zpXcqyBC+8/NZ1PvOpRxiPk1Xij5WQOarQqGTA2YtXSQcDXn/jVebvPk+0tUu5cZ795W0W6Q3GvSf5pX/3AptxRlVZqqZPP4sZqh6ZjLDesnB7NHKI85oGh1clkc1C6U5XozxoiYkBbfssprCcHmLUAXk9Z3LL0utdx3vNjfcuIkQ89VTMpUuapy864iRB67ZilsjacsmDr1Y9Qssj9+277NvPxQu2W1U0JT95+1W+/8ff4fadfaIo5vHHn+JrX/8b7Jw5C8qt1RZ+0Mm4s3gBZ/d0GletMmgbiO2YSuJVa/O77cNKTHwLe6kaKkPTVDw5OiCvFTJ9nTyfc22+y6Ie8lX9EjbaZfOxT5MNzoCGOFXoBNDhjVYE+mv7srdXupZZ3DGovCWtxvSjbaL+AHqBpacUiOi1yWw92Um3GbGCV0EjR1wTnMeTBnWtC9cdPu/9CqoZj8fHYJeqqtjb28MYw2AwOPbdvWDiDu5J0/TYRDCdTKnrGmMM/X6fXq9HkiRYa3HNXyNZ5pNNpEY5IfcRc9egLKRNH2UCm0AhRFGCL4SmcSjt8bWiyIXLW5BJTG/c5739isZpnGics4yc5tmtiCht+P4biuuHJb/0nEI1H0xSeX2i+KCMnnVVznAc3RoT345dDWKwOGpX4SgRYvb3ZxzMPOPNHayrmOULNpI74IKUgZcaoSut2DGkaAe6oEgweoy4BGtrjD56pf7571zgP/xffJVlYfgn//RR/vE/+KP3Mf4hWhVpxbNPXObczlmsJwzM1rDjFUZ5xiNDGum7du/w3MjEbG3uEH3CcHC4x53D28xe+z5FkpGfOYs9U/HozpDhIOPdmwVvv+742tdTstQgdkgsDUYPcUypmZHXBd71Mb6H8tAUh5SLBctijq9m1FXJWz9JmR4oPvHJnM2+Z6uv2No4F7jb4wQRGPU1iTZrMYSTzoGs/ZKj3yduMkj7BvhEAdPZhB+98iqf/PQX+Mb2DnWd89prP+blHz3PN3Z/AcXdvPHTTb+c8jsUDBEanASqhPIa5aK2ml2o1qW62JQNSVrBqOpgiFyD9RWzvObOQclkqigr4Z3iTfTwAqpKsSi2Hv8UyU5Nf5RCz2Kp8Sp44siRKNpRveSuP9xqjlJYxMUoN6afbJOYAUra5DCgE6GSY30N+E7kOtSU9s0cZT0SZ5zclFOMdGf8q6qiLMu7+PrWWg4PD3HOMRwOHwqWVUodI350uH9Xa7uua27fvo33ntFoxHw+v+/xPtaGP7yqwqt7NX/47iF5YXnqzICvPzJkQ0JFHK0NoHGuQSKPKxtMUpGlEClPURcsK0vTpvdbMTiBjQ2HEc1XPmGYLhRXNz0+74SqQnsYrP0DB4VPwELdy7QqNtKllvvwWekW3Dp8F9tUbIzOUDYxyzwU2UDX1DLl5vRtsN1EcqQ+s2KniMd5hUZI9JAoidDSC95HHCRkAX7722dZFuEVWxaG3/722fsa/mCzFUoso8wwzmK66k9HBlC3afNVMJxycrJdWQa0ihiPdkizIaPRJrubOxzOD9nbv8nhjevcvHiL6ImfJdOPon1DUyc0kfDuO5bhhmdjqFGNoZ7X2OUBdTll/xDm04bhOGc5jSmWcPlSwzBTJFeE+pxjZzshi3XIN4iCRHK/F/R1tOfomj+wNMc6Xu/BO4rFjDiKefqTzzEcjbG2ABFe+fGPcf742u9+7UipaB0MkhVttPO5Xav2pvxRcpNvPX+HRdfhyRV1znRym+nBHWazPWa15466Spw9C70+F5+4jJgxLGJ8IfQ3NxjvTnC6AVUFz749d8smaCGjI+gqXHgLv3kQGxGzQc/skpj+CuqSNSrradOeJ2jqqNbZWN6+hq4d+tIT9++ztTHYNA2LxYLhcHgM4gFYLpfMZjP6/f6Kuvkg7SRxw3uP1hrTMo06iDeKIqy1aK3D6vg+7WNt+K0o9kv4gzdn/PG7JVXjeWc+4Uxf84VzCeItIgFP9t5jRFNbw7mxQrxiVmj+9BXL5lgjymKcAQyv33Z87114fBs+86igz5Q469gr7AcObj4sPPS++64STVpvBE/jSg6XNzlc3KSxUPmKqtlmUdUUlWVzq6ZhyWEuxGi8b1gZW0IiFatCGYbIJGwMzmGloIj71HVFb40y+IvfuMk/+aePsiwMvbThF79x8/73sRacE+kC3La1j6qFmDwhW9WELe+VWewJxkE0SWxIoh7j8TnGiwm7h9eZH94mn73HjVf+BTq9wvnx0+jmAst5zPe+o5nNLT/7C3fIVMXB7T0G2TWMrdB5ytgoxkYzGHqaVLM9SMlSxdlxSDALpiVCpALqADNK8H6Df+qOXXcHI3zQ1uUQeOeITEjOMmJITEYk8QPHWNqjwdoz7Jpr3yXlFcpDUHb2beH2UCoRb7DWMV8cMJvsM50dMFvcwWtFrTZxvcfojy+ww3n26ivMfESzu0FRK2pzB4/G6z1MvMBKGxNo4wdHUuDr1xmuLPwvxB98rYjVFn1zhlT3AdP2r4dVv7eT24luOV6YzeP2J4j1mIv++HenPoPgKOV5jtaajY2NY/G2qqo4ODhYUTWPTnPvfIr1bdY/P/m9UuquY67//7T2sTb8xjuuzeHlmwuuDGArSfnx3pJXrk957uyZgFhK4Fk7V6PxVFHMdh+iZsk86fHmpvCJcxGJeBSeBs+rN4Rbe4qmdFzYNpwb1eBajJOjB/VBjPhJQ/Z+x1incx6XY7YEelrw3rw01H7BNN9HmR6u0RR1KB6zP1+wOcyIYkdeeSopcT4IiQmKUIdXWk9VUJKQRGOSeMCgdxalcvZ6Qxpb0QW7RDy/9s1r/ON/8J0Hx/g79UpaZRppEd0VvtTGFggyzAH+uXe/rP0Pj8eIsNnfYDwYUJ2/zHx/ymRyizp/j2xsqA73KG3KgBFF7tDzCdo4Ep8ziCBLe4yGKb0sCiUCpQAXh2IY0hyh59IgzmNbVUuk+xycP+Lef7jiNZ0BC3GRtD+ktjV/8Ae/yWi4RV1WTKdTzl+41LJ6TvRPd5RjnmT3DLiL2SWtUF5IegpQiDQxFscyX5DP95nNpyyWC5q6ItcVU5tSyVnObD3C7u4TZOPLbGxfprpTc+v52zS+4bAoaKRkHOeMBpa3bwvPntf0dZfhzImV0bqn31UhC/E7ZRNi3Xr6ut8WlA99FRg+3Vg6ff0TjkPbpw7xMWK689ydX7M+Nju4paoqtre3T2Xx1HXNaDS6J8TT1eNY3emJd+ReUhqnkUG64PC92sfb8DtYlJaChl94coOrGz3+yfcrbiwsjYdIB+0S8O3SWLFwGjsTpG7YnzcMMsOo7wGNiKUuPE3j+flPa16/7pgsHBdGOhS28Gr1sD6M0X/YIO/J7UU60wnetz6oWPJ6QeMarN8mX1pckqAjw/5kj34vQ4gwJFS+wHUD39tWvEsjEmNMD1FDErUFKsbZHqMsZi9OaJo1Oc92wfFr37zGr3/z+sP1Qzuww/lDkDgYS+j0blaSEie6WGRt+b+2tPfKYfEYqxEMUdRjvNtjY/MMde1YlAc085JEp3z98zNEJYzSADPsbCm0DNFdbENCdSkAr4WusIuTEPgWQKumNZamvf4uOQw6w/NhaLfiw0QYzqboDza4cvUxXnrxB1yTm9iqZnd3l0cff+x9efzH3h1/BCOt1orikbbQjlNQ1QVlMadazinKnMVizryYMKnmlA6Gw7MkW59kOHyU/uAyl0Y7jPoJXsHSNiyt451JRe0ML990SFLilCPpCdOlxjuHVhbbUWRX/SbtJNAZ7vBsFRrjUmLG9OOzGElbZwe6yaFbQQbIZ31Vs9YPHGWri1LIzm5wOpSctvmx/utYPP1+n+FweMwodxBPmqYreObkvkVRrGCaXq/3vquAk8d42PaxNvxOwFlLogwXNzLOjw0bo5g8MBcJ5jxQuax31N7w7m2P0sLZrZTvvFozmSxpbMrPPisghqbUxFoxGhrM7ZpZoZjYFKOWeGk+ULHzrq1PGA/DCFrP+F1l8HaBQ4LWiRXNsnJobbhxu8KVnoODhjPnNlEIh5MFze4o5DXYAieh8INIOJY2CVrGxPEmXkZUuaaqoE/JcODJG0etyvbeWYOaHuL+29+rSk5rnwf8v5PDDSe5v2b+cbhCfNCKb0QwHsRKYBzGliTSRMkG3msUMSIWJx4lTYAbpKtzpVf4shfBS9D6CTWROlaLBqmwgPKao9mpNSnHk0s+cJO1P7yHKIp57rNf5LHHnmQ6nVEWS7a3t9jY2uFB5CfWXzXxXWn2UDyksSFr1tUFZVUwXUyYzvfDT7nApBnZ5lnG28/SG19iY3Se2u6ydBHbo03GcYQoy6ypuTUvoFnwyE7DrUnDKzcneCWo2mG15pOP5vSMbYO13Sqja6cZaxAXEcsGg2gHrSJWAnldbWLfQTsBLvJHr9Dx5rsYR/gyOrdD7D0Np3vV3d8dywZgY2PjmHGv65qDgwOUCtnx6/t1xyyKguVyGYoGVSF/5DTj/1G2j7Xhr0IkjdgnxEQYhMQZls614kxB9EhEU7deYeE0/UyxKBKg5ptfG/Pia0toPE4UufIc1p6fXGu4ceCYlRDFcGUjGJKuPazXf/JleJh9u326CH/wBFvYqQ2Als5Quh5Gj8nLgkcvbPDu9SWNtexu9UnTmIODgrPn45DG7hwhJSbC6B5pto3zPcpSY70GF+IepZuRW0tlG8qyWGNdrO7sge7h6GZO+Y9Iy7ZoueHvO6ncPViUD1orVqBWIAS5AHwK0qB11u4V4COvchp3JO+H061HH+I/yh+xP5yAQ6FpUDQ4r7BKrRQ2wyUFI+YJq4gPZ/Y5xuoRHM7WlHmOxjDsD3jrjR9TFgXD0RnSLLovJLbCvQW8szhb4JzFupq6rpgt58zmB8ym+0ynh1ggHW/TP/sYo90zxIMx6C1qztLYHibZYjvOgsi01hTe4pzlcLlgUS84O5zzK59b0tQhbqS8YNqV6UbPIQK1CjpH0r1Qd70XXSzLIC7F6BFa9cLKSmg5+nbtHjvEaF3P6kRftHuIBIE43wTpax+lx8blyf6r65qiKNja2jqmxdNBPGVZriCek1580zQ0TcPu7i69Xo/ZbMbh4eHpyVkfYftQhl9E/h7wvwM+CXzZe/9n99huA/hHwKcIT+3ve++/IyLPAf93YAC8CfwH3vupiETt9p9vr/G/9N7/Hx76+rxBfA1SI9TBk5FQH0gFnwwlgdVjvSN2DivCrGiYlp5Lu3Bl2/LCj32LMxsi7TEWXnm7YF56DgqFzRXjpyKG8b0xt/u1zsifFrx5mImjS/cOg6TlKUsolvLq6+9yY/+Qx6/sgjjiuCYbhvT1zXHCeCPFVQpPgerMnUnI0i2QLaoypfFRKBItHjGeLFVYf8je7JCqKWlU3d7LA13y3fewFpD2LXTS9Y/qBvsqyhY86N/43Qv89rfPrsUQTseDnbDyADvGSjDdUfteNHgfgZSIN0QuGPPgpAsdu0Th8N60pw/XoFpd/1X1Lq8wLgiABb0eQaTVMkJ/aKPf9U/XB+I9h/t3+Oe/8d+Q5wuMUVy//i6D/oi6tHzxK18HfXyorxuy4DA4rGsoigXz+R6z2YTp7IDFcoZXEPWH6OEGGxcvhYIl6RCT9tHpiCzZpSgGFGXEoN8nSwZIW1hsf16wbHL6sUU4IMlm9HxNFhWYVNEgaCmxPkWkamsRGIxz+DaGI2vvxNHE3/WEwag+semBqNbgu5YU0I2pMDbqumrlwz1a382qEe+wbcWxxGmam+9Qo3Dnr2Bdw8nW7b9cLsmy7BjE030+n8/p9UJFs9NW851cw2AwIIoilFKUZclisWA0Gt0zoPth24f1+F8E/i7w/3if7f4h8C+99/9DEYmBTq3oHwH/S+/9t0Tk7wP/K+A/Bf4ekHjvPy0iPeBlEfl/ee/ffJiLEy/USgfuuhcWpFgOcMDSR/SdJRfwXuP8AhD6ifD7L5dob/ilL0bgSzQOJwl4GCrL559wTHODB4xzGA2bA0XlPNbZj+Qh3cvzP2nWEIvxilKDiOf2/oQ4c6AtRhRTF7E/mTLLl0gCdyYlIo7CxihVExkhTSCNS2qTU9scpQxJOsKzRWV7eNejahQOi9KWQWRxzLD1lMYtcM2cyti2kLTDaLV2nQ8P+Zz02JeLQ7R4smyMtDEZxPEbv3PxlDyB9+55vO5KVIuPhImxbu2Ib3F4A62HL+uFPVZaTy0tUNaP2plg3WFS60+I9bQfWZt4Tr/OrkTL6nTHcO6jVPwOygtaSaIMi2rJcNjj8qWreAej8TbbZ860+7WTkxe8CzGK0nry+YzlbI/5/A7T5T6FqxEVo7IN/MY2yfnL6DTG9BLi3iZZfwMd93A+ZuljqqrHMN5hK+kxjDRxojEmiF3fmc+Z5Tna5NR+CtGMCId3gR3kvALRwS8XjSNGi21XMX41yftjPSQB5vMOcZqIjMwMMcqcuhIMnr5lsVhQlmWbMAfNiQQn30WzO/xfQnzGicKWObW19yReKKXuCfGIyH0LrnTH6PaNoojxeMzNmzcpy3K17wfX4Tq9fSjD773/4ftdjIiMgZ8D/sN2nwroooBPAb/f/v2vgd8kGH4P9EXEAFm7/fRhr0/7CuNrysrxx+9M6N+puHFgWdSOb72+JBJLg2NDOS5shGX8mYHjkW1NrB0Xhw2Rj3jirKC1B0oMwmM7CqcIxQ+8CzH/uuFgYbBNCNB0sMuDPKjTgrMPju0JzofA86jfZ7r0aEqWzZxFE/PunUOa2hFFmt1+yv6+I9YJ774zx1vPxUuaJHVU1RQnBTrqEdsR+AHWZ1S1B29R0pAmDu8XeLfEuUPKehYgIbF4E9FUDdY7DOoUAPVBbuUEQNT2wWy6x97eLR555BMMh9sBevGe3/72uQfOEzgK+XaB37XoQBdw7TT5ZS2WsHYEuesa11cf3UQM67j+0dYn6u+u/To2UfhucgqG3bX4oVpRGdtpo3tX2rXrYDjk81/6Kneu3+SRq4/jrGV75wKPXH2cMIyC7LRtCt678zrlYp+immFtgAUrJVTpEJ31ibM+2XiLZGNI1N/E65gObHNiUCrFFhlVOSDTPRI9ZBhHNOKZlw0HE0svq6n9IcQLjCnxUuC8RYng1FE/q1VyYPe7rVlwX2chFGwRF2P0kFT3Ayy51vcdfOW9ZzabtUlTgxV8ctr4Wj0FASMQZz28eEqtcZ4TrLlu2yCx0OH3EIz0dBqyavv9/vsKpnWrro7+2ev1GAwGLJdL4jj+UHHDe7W/CIz/UeA28F+00M53gf+Z934BvAT8beD/S/DyL7f7/Nft59cJq4P/ufd+/2FP7IlwNExKz++9sUBLxayExjf881cmWBES7/mZq57dcYzzJRuR45c+tU3j5vT0EqU2ePaSJ5ISxNM4izQVUSRoX+C8IohnNcQ+XqVQN01DHMcPNVOfDO6e1k4eRXmFVSFOUTnP7dmcoigY7Qo378xoypw0GuLw9CLPRMNomLF/O8eYCK1n1M0CpwXYArbx9CjKQEdU4kgii6LAyJLGzliWM7yUBDaLxnuNmISqsTjbgPloXquuH6Ioxa8GnodWBfMXv/5weQJ/eVoX9D3N+HSwRnB4lQv/822Q3cmaz9/KF+s2uPvM05/mBwvLm2+9xf7hbc6eu4jREXjdwiYOaytu3rhJMT9Ee8gGm6RnzpDtbmG2t9BZD5RqmbuhToAXgziFdRGNj0mjMVqnYPoMezG92IB45suSvcWSpinBlOh4RswM5RvCxNcVfv/gLawEQj1m5VKSaBPx6dGKrNtOBGsty+US5xzj8Zgsy6iq6lSH7Cj/pe138ZhIh9C9d0HH/5TWBW1PQjyTyYQkSd7XBnROYp7nDAaD1THH4zF5nlMUxSrQ+1G29x2hIvJbwLlTvvrfeO//fw94js8D/7H3/o9F5B8C/2uCZ//3gf+LiPynwH/L0Urgy4Q4ywVgE/gDEfkt7/0bp1zffwT8RwA7OzvHvrNiGGSKT2xHq2DlTi8kJSksXiDGkcUOvMX7BnzDQM/JfUVZa3ppRRY5fANeIipRLLXC1xk9U6GcPwr6qbDEi+OY5XL5AF1z7D6O4Xn3fFnushUaJ2F18eMbU966fo3Z0vHp/g7v3J7w5MUeVZVTVhZvDVrlDAaKQT9FsNRugvUZJtrCNn2WOUGXXjyxdmhdE5sC20xYLvaBgpCA1Kbko1B4dGSomlARqbvOFQz+Adr64NzaPMPGeBttWm5yq1nz67/4Hv/4H/zRCYz/r0LzHDf8ax6/dABO+1t1gsDdJi3iLY6gN9NWLRNFvzfiM5/5HH/2Z9/h1q07PPPJFrbAtcxWjfI9NkdPkGzFDNJtkrSPbPWYjRx5WuOVD8lTPhQnwYeYmHUpi6qPYUhqNkh7EdLX1OIo6gaNZrZcUNlDTFpQugVOt7G17jI+Ctvlw+hVNiHTm4GvT6h2tgLfWg96uVxSliWbm5tkWcZ0Or3vuOzWaL6d9LIowuIpq3o1r5w2YWxtba2MNsBisaCqKobD4Wqbezlyxhi01sxmM7IsW3n9SZIwHA6PBXo/CEX8Xu19Db/3/m9+yHO8C7zrvf/j9v//NcHw471/BfhlABF5Cvi1dpt/nxATqIFbIvJt4IvAXYbfe/+fA/85wOOPP36sdxU1n9w2nP/aJRplwSs0dQjitQJSnpJJvo928wCZaENlwSqN8iEA3ChBnKAkwBqN97x9y3Nl1zA2dUt51GAc1np6vd5KK+NhYJv7wUOriaALcLY4c+MdtVtQlw039vd44rEt3nhvhtCQJjEiIJEjXzTMlgZ8Q+P2aewMELQeo9UZloVuPWqF1iCqph9VWDtjudzDuQJHzaqoTTdMpK2VahSVszhbr1n8B4Wr7m7rk6DWMUoDrAeOgyX59W9e+0tv8I9N4uLp2CZ35SW1gVpZqb+31braZy5ocIK1DU1TgOkmWR8C0UozHI947rnPs5jt472QL+dkvX6b9qAw0ZDLl5+jH4/xRjBoytiSq2VgIbkm1DmWoPfknWB0hnNDbJ0wTAf04phIC7l1HCwLqmLJsKcwyQFZPEVUg1M53guKqH1Ubf7FA4tH3Kc5jfZDsmijhcS6cXO0ai7LkqIo2NzcpN/vr7Tv143r6nCtDn7nrHT/VHWg9co6LHiiVVXFZDIhjmO0DvUsutKKdV2jtT4G5Z78DZCmKbPZjOVyeWyyGI1GLBaLVTZwB/l8FHj/Tx3q8d7fEJF3ROQT3vtXgV8EXgYQkTPe+1siooD/hMDwAXgb+CbwT0SkD3wV+D8/7Lm1g552ZP0maLZ7jfYefNMumQ1WoKozlvUcJw2YPntzOKxTNkYWg8fQgGiConqBco5b04oo7ZNsCk6ExAcGQtMmYdg2GPQwD2c9oHtfWmdXIQpofMX+7BreapZViZceyrhQVSuGpnYkQ4+eNNy6c8jFS30ad0jjHEm6i212qWrdZpQ6IuNIYkvj9smXhzif0/icADQIK876KpMzXImOEirb1kH9EAb/1H6hG9TdByGjl5a691elHafyrf5iFSmWI8vjuhWBczhvsbbBeUvdlCyWC+a5ZfvchbWgbzigEhgOh3zmM5/hxvXbvPrqq3z6uc8iWgc2lnJkvR5ax1glKBvyGkxXUU08yoVAa90M8bVmONyiZ/qMEkMUabxy1B5uz0oOljPSZEHup4gUaLEgtmXXrFWLahlSJyGZD9SPDuI4Q6nOgJ8gAyyX5Hl+zOjPZjOGwyFxHN81nu5yzNZ9lvfxX6y1zGYz9vf3McasBNg2NzeZTCYope5bWL0L7MZxzMHBAWmarrJuu0Dv3t7eCkn4SxHcFZF/D/i/ArvAPxeRH3jvf0VELgD/yHv/q+2m/zHw/2wZPW8A/5P28/+RiPxP27//KfBftH//3wgxgZcIXf9feO+ff9jrU97ToPAqiDdpFwpBiNRBaRNPEAULBM9QAKSisIofvhFRVPCFZyIe2clIfImWhMpXQTPdGL77yoLJOY1JNI9vWyJl6NAqpRR1Xd9VWPk+fbma0e8fDOoCYw6HIy+nTPIJeIMXw6vvHDKb5URekWYxTdOQqAXndw22GWDiOY0X4uQMdTOkaSKcA2M8cWyxzW3KaoKzJY0tW/33lg+NXuOcrAc2DagEi28ZI7J2rR++dd0nR+7YR3bsv8h2lKsha96+tHTRUDfCeRuolT6UHbTVjNn0gMPJHrP5AYvFFETQ46tsnXNhtemDwRZnKYqct99+gx98/w/BRXz6s19dQUK0evNe+SDTjKZdR2C8RjuN04JDUzdDiuWQzPRI1Jie0VgnzCrLpMnpJx6nZsTpASYqcVIgdJTVMDFL5y4cj6J/+H5UntJOiVRKqsarAiwQcP2qqtjY2KDX63F4eMhisaDX65Gm6f3H1hGRCOVPvGH3uHStNVmWsVwuVxCTc47RaLQSbOvgnNNW/13SZZqmzOdzptMpW1tbq3el3++vJjJjzPsGih+0fVhWzz8D/tkpn18DfnXt/z8gQDUnt/uHBKrnyc/nhGDvh2q2ZQ8Y19HAQmDJigp69MqiHKTAwnmsc8RU9I3i8UsbvH5N8b0fC6+9V/OlxwwqSqBZAI7YwMEEfmSh17OcHVm2MoNzIfU6SRKqqnrgWXo9gevUKH4Xe2q9Jo/D+oa8aVAmpqwWDJMek9xzdWfE4ayhP8io8prMFmhTYqIMh8HIeawdUtca7y1xBFovsHafpjmkaXLwTdDKaT00WUE3YWkdPG45+tERXimsrdtp4SN0xVcevmu94latkftl7v7lakfPd+2zDqZooYq6qVjOJyzmhyzmhyzzOVVd0wClCJUomt42UZrS74/D82lZQs5bDm5e44UXnufatbeZTm7yhc9/g4sXLq/iAh4JfekNrg20BpllUE6jXUKjFbXv0dQRg2zIOBmQqRgBpssFe8slTs1QqiBScyRZrt7Hdu2HE9XCpEDIfEDEtq/SgxexP615AOVo7JxFrbBi6cXjVnZZqKoKpRT9fn8Fn6RpugrAPrAMAiHzv1uEnXQz1uGW7tid0Z/P5xhjGI/HNE2zWm2clGtYP1bn9U8mE3q93ool1B2no3eus4c+TPtYZ+5aaYsUe4dVag2CkLCcFQdolI6p8Vjv0BLTjyzPPi7k4vjXf7QkThTWax67lBFLBM5xeUMjT8c0HrLI0UuEWDtyAu6XpulKe/skpni/1uGBp+P9R8HAylYsyiW3DwqSLMZywOZ4iPfCYxc3eOHHd+j1PcSBW55XS5IoRdQWnk3KKhjOOC4x6hDb7FFW05UREnWkb35k5CEY/fW/fWB/eI+OYuqqAu9XYYiPpnW4eMd4eZACeH+52pGhaKE8LHk+Z7mckudz8nzBMl9QVCWlayiso/Yea9KQPNUfofojkmyImIioanBi2sWXMJse8Gd/9C0m8zmj4YBBL+Kpp55mtDFsJZXV0fPw7QQgUCtFHcVUKmJexywbRdP0UY2wO+qTRYaiXKKNZ94cUsmMJFpQ+UUw5m3BFREPPiYokdadGlF4Ui0U1dbq+vB9iQftqO0UZyuoLKneRKuEuq7JsoymaZhOp2RZRq/XO5Y1e5JH37VucjwKiYfnpU656JOOWmeQvfcrzz2KIjY2Ntjb21vp+KzbgpMkjiRJKMuSw8NDkiRZOYBZltHv91ksFsRxfM8J5GHax9rwax8YN1YF7yOk1wvKW1SbOu8UoFUYCw6IE2rf8NabBe/eNuxuDzi/I9w+LNk8zDizmeDFMUqFxBRU1iASJJ0NIbDT4YtdSvapanzHkk38apkI4SVw3h3FcEVoqMjLOYqYKFJM5nNqV3Jrf8r5bUOjLCZVlNZye75EtCPrWYyvWJQWE2+h9DnqekhlHUpBZGygc5Y3qeslXiq6AhreRydgHbVmbk8Y/nZwqzimqot2wuq2PWXU+LVfcqT5L221KS9C4GorxIcMTlbequJIg//DmZGVG9B6zcBKd57WUIU6Nj5k/tKuMdYSi0IZyxOTUAvZt3Mi3juqKpS3rOqSulxSVjnzfMayWJCXOcsip3IOnQ1Qw23UaIt0uIFEaSiu3SqVIiGrOjDJAAnhzarMee/622zv7nLhwnn2bt9GlA7349fgMvzK7tdKkzvN0kXMvGKvblhY0E5IxbAsHFUxp2kOyXoNEuVkUYmWHK9sW5AFPEEfJ0hU1G2OQVc1rHvY6p5Pyx97z+6KeB9vLdznvQLd4GVBXgnKpCStHn0cxywWC6IoWhl9eLBg6DEg8QH4CaexfAaDAdPplP39fXZ3d9nc3GRvb488z1fUzJOrD+/9Mdgoz3P6/f7qmKfRO0+Djh40BvCxNvwhXhUw6BXRpH3BGkUoG+cdRiKUD8kkKoZqlvH86w0mtfw7z8Wc2YbX3ouZLU0ov+gtr960/Nb3PdOyZpQpxl/VDM+Fly7PcwDiOKYsy1Ww5i7oxh9ZiLoqsK5BG4VUQb7XisJ4j/XCQXPI4fw9YMwgjrk5c4x7igoV+EnWgV5QlTHv3lqwveGx9YSyOcSrASY6z6JKcM5gVENiSrSZsCyu0dhlaxmCYT0ya92FQqeQ6Y99t1Y2Dk+TZhTlEgcYwmrK05wCx/h2D6GoLXcOcsoahAqIA0asKnAx41SxuRWHpLD2Oj46X781OdLJ8cqR/Vk3AdLKMUjLq++qmgFISG0KPG+Hcw21raiaCl+V2KamrHKWxZz5ckpeLJguZiyqCh9n6P6IaPMsMtgk6Y3ROgKlgzqkEjpp7XAuv7pqaQ2tay95czzm2S99hVeff4HlKy8iHqazA0ZbuygVESAlhRVhoRKsiZmqmMMG5pXFOkfdPpVEBB2VzIoaa5ekaYl3OahFIEdIl23gWhipmzThJGvnripX92zdau7o39N29CufPLxfTlkwBU4sdV2jlCKKIg4ODuj3++9rCO8y3Gt/6JND4AGO060A+v0+0+mUg4MDtre3GY/HHB4erkoodvucXNV3EHHn9XfefUfvPDg4WMUMuqpc97qX+7WPteF/0KZE4XE0zrKsIypvePrRmI0eZKpErOLKlrCfCku7ZF4pbhxYnr4U0U8cZSNtUEyhVJi5F4sFg8GAW7duEUXRXWnbnUwAEnS854ucXtYniVMWixniFNp7RBpmC8e1OwWD/pBFbrl5q6Kwgi0tqukBJZ4mUMmMZzTwbG5YinqGNmOUnKNYZngPWtUkcQX+gGW+R2MbTiuMfa/Webur+1j912OiHsXy1pqXdDogE8IFHpzn3etLfu9PXuX23pKitGQ9j2saauvoD1KeuHiWn/nSk+yOzMpr/ahgnm7t4lusG4KUgDi1wnitBIjEONrasSGxzWPBOag81jeUrsI1NWW5ZLaYMp1NmMz2mC/mFLZGpz1MPMBkI5oLlxn1+hAlOBNDlCJao6X1ZCUkZnnvQ+KVuLWrldZhCIXGlQ/PL1ZjPv/MN3js3GO89MIPeOnFF/nhS68wGO6ws32mDe56SiVMEKaFp/YVpResV0ReSEUwxtPvF8Sxw7saZ0uMKfCU4ewnlzYfxXNwnappW11rdey768YKHYbY9ok3aAbEukexDBBrKPXoHqrK1Ufdupq60+mU6XTKxsZGGOfz+apwynruzrr8Q5ZlzGYz5vM5Gxsbq2OOx2MWi8VqNdOVX+wCxw91fR/lzf5VbAKBFmaF2sb86WsNP7rlWFrHUCukLnjyguFrTyWI90wPl1T1AvQGlzY8jTdkVjHLS7qXMUmSFSd3PB4znU5Xnsh6876hKCtm8wW9rMd4vMlisWSxLBhnQxQW54V5WXPnYMFomHLz9pxJrtjeGrE3WVBVRxAFqubq1W3E5zg3I4q2qN02VZPivBCJJ00r6uYOdX0Ha5dt4PQB1rR39Rq04cJVi6IhRfl24KL7zp8+fX8vQuMa3njrXS5e2GS80eOlH77Hpz/5GAf7E969NeWLn3uS5XTG9Rt32BldDDDFR5jE0pXvW48cOHGgPL5d+SgA73E+VLhyTYiBNE3JbHHAfHnIcnHIYjFjtlzSeFBxgo5jisEQ2TpDL+1DlOGjCKKIWPdQxuBFo0QHDj4+JMXJulaPnDIptzCauBV2jwQ2TtLrcSa5RJz12Dl/gZ+8+SY//NHLfPWr24jWKOfC6rGCpSRBRlygpzzjWEhih9VLxMxRugGxeG0RqQMk18lMH1sRffgmzmNEtfECdZ/3pj2vM1i1XBVLUT5FEdM0gbe/WCxWDJ6P9H15wNadM4oiBoMB8/l8VXi90+3vvPaT+wGrKl2Hh4dkWbaig2qt2draWhV1KYpilSj2sLj/X3vDD6EYixcPqmGjl3BxQ1GUlsQYKhvTyzxa1cQmTBJ1VbCVWMZJxPfeAVtUPHW5rfkpjiiKWCwWzOdzhsMhVVUxn89XgRnvg5df1xWIMBqOGA6H1HXF9PCAOE6ITYzH04ij9DXL0tI4TeUztGrY7At36oiD+ZSrrYCcc3N8tIfyCtQW1m1R132cd8SmIDHB6FfVBGeXAc+XNQ7bQ7VOz8avPMEk3aBqGnA+rJPvayCE2gmT2YwvPvdJbFNzeGfCF588x7W9Ac5pPvPYGd54GxbLIhjDD5kUdtcdyNHRVHe5XnBtwMf5wKEvq5zlYs5yMaWc77NczMjLnFrAGUMdxbi4h8s2IE6xSQ+XpETRAB2n6CjCq8DN9231qi5UHRIJ/Vp/htwEaT1+OQadrAUlOcrnlTZeBR6lIza3d+kPh4w2tlpvUK08fu+gcQ6jhUGkGUaKvlhSChozZxbNgQp8EyAdCVLS3croIzWiLbxm3IBevLXi5Xu5z5rOg8eycDdxLFBek5h0VcSkqzf7UbFfHrat908XsHXOMZvNVsHe27dvr7D69X3W912nd+7s7Ky+6/V6aK1Xcs6Hh4ereMDDUD3/e8MPbWk6h1BydcdzaWSxZQ1xycLDMDUocSidkPZGuLrk6hlHL4JBZsmbmnPjDFx9Fy+3e9gHBwdYa7H2SCM8TRKSNGMwHLU1Oe+glaffTwFNoxSzYo5tJaSLUjEvPMMoYqOXYL3jJ9cszjvwCmsbKlUQRZt4zlDWCu9CQpYxi9boH+BWVLtOH15OGJjT2yqQ1Br8I7xVUCiG/W3mJm6D1Oae64iu0AqicKrTJIfCO+rGUVjPvCiYThYczguyuE0WW8fWP1Q7EvHSq1Sp1jB6z2I2YXJwnWI5p8hzCldR0VB6R+UdDZo6GaCzISbtIdkQk/UxcYJEMY4QoJaWgura6lviBfFmJTd9dDNh8g15jGtlAoEjSKPr93D9yhs6zXlPV+m3W6Mo4njA1atPgfcohKZVn9RKGPcMifaMaBgKZN6Ba5g2FURVqFWxCvIHpv9HnZS3unsPRgZkaruNRfijlYy/+50UAS8VhT+kcWHFGpuEcl7R6/Wo6/qhmXQ/zdZBN9ZaDg4O2NnZYTAYMJvNVjBN19YZPsaYVUZvv98/NkmchI3v3LlDkiTvW25xvf33hp8w4LRENM7w+m24dWhonCHEfhvOj4WNRzWx12xEF7hVlJwdOkZJw5ce9dyZxWwOVFAe9GGIdFjj4eEhOzs77OzsUBTFiuUTRRFpnOC8Zz6bBd1z78mGAypnqdwhd2aKd6/t0+tHxLHC1Yoyn3Pp7ACnGrYGMcNBWBkoYkzUQ6ItGgaUpUahSJMapQ5omj2qaoanpAus3iuAds+ekiN6XtgrFCXRaPrJgHGyQ5MOca4BCTVHT3fewgtulLCzvcELP7rGZFrx9q0Zv//9n3AwX/DWtT3+8LuaBs3nP/3IRwgssDL6Ih1JVPCNY3/vJgcH77HIDzgoa4q6orIO4hjdy1BZH7Id4t6AJO0hyqymPaEr3u3balzQqGCUxYcEwW4BtCqRs+obh0gw5CLueDC8g6MkeNwAWgtxpLC+Cp+pCCsSAs++6R5WmGhE6EpD2qYmFWFoYKgqVFMR1a4tSAORMqEIj2rwK0dAtX97VjLVH2ETEbTSqz4M89tJgsHa9j6o0eIV4jWR9FAkNLZiEEWrAO+9Eqb+Itu6J98VWZlOp2xubq4YOv1+/y4ph6517KRO0/+0NhgMVrIOXYLXg8Bbf00Nf+eL+hUrQSlN3TTsHS5564amRCNOE2OJSot7JEKLx7ht7hzmbCUlA6M5NzCUdcLhwjKKj4pqa62PRfZHoxHGGKIodLm1jmVeUORLZvMpJooYjjewwN7sACHntXcKrt2c8NjlbWJjqBvHqGcQA3uTOZc3x4yyGK0FZJPIbJM3A2ob7ik2NUYfUlU3qZpJMBK+exnbAuorpcgHbB5o0+8VmljFDNMRG/0N+tJjlgywrrmbHHPyEAKx8jx55QJ/eOs18mXFhc0xB5M5uIrJ/jf4L7/3SX72S9f527/o6QpwfFRQQ2eknQhlvmBy5wbvvPsGN6Z3oJcSbV5CDYekgwEqytAYBINXgqiOrupXCpludV1HXqpyrdfc5kH4rhCMD8+/sQ1KCdroANW0iVDtFQbj1sItWqeIxIhEKAwSw7Kumc6mxFrj0RgnWNWsVgptGXKUJ6xSqiWJ9wzqmp6vcBJKSdp2DBjnMc5RqTX+p+8CqR9963osFEXRR4yy1crmtPP6FawlXpOaEUpShIZOH6fDu/9tGv311nnwnYZXVVUrKYZ1AbaudX93xdfvB+EYY9jY2Dim378u+XLP/T6aW/sr1tax4tYKKRG0qvnaMylff9owqRSThSVLYvoqJ6HCKSiscFDAvF7g0GjRHC4qyrLmynaQi4W7aV03btwgiiKiSOOcpywrrHXEkWE0GmLiDKci7hxOePv2hM1BzGzp2NgekmQG62saV7M9THjvrRnnd3s04xotQqwH2HhInsc01qCVw+gKY/bJy+vYpsLhQGogaZkTck+v6p7d1gWtJEYrQ6RiBvGI3fEZelEfV5VEpkdj69VhhTUj0jUJE6QWy4WdPn/rb3wqQGAenBh++/fO809/42fJC8N3X/z/s/ensZZlV34n9tvTGe743osXQ0Ymk0xOVWSRVSwWq4rFUkkslsuSuti2bKnlbn8wDAs2YMOwJAg2YMOAGjCM/mAIkNGAvzQMCG5/aDQsuQRXqRvqKlbXPA+kRIosMskkmcyM8U13OsMe/GHvc+69b47ISDIZ7EVGxov7zj1nn332WXut/1rrvywf+5Hf47OfucfaSt7AUZ/i8XeQjg+Odn7Cgwev89XvfI1mUDL4yMdhcAMtFChFkBqk6YOOQTRIr2LX8Q5+EpEfPohEY9xz72uEcLE+Auis5xBgVTc0bRuDq8MBRncpihFaUTJHYCLOLg15voNSE0QY0LSCma1w7pjl4QHa1xAkORqrPYKW4BtcaKPyDxCEIcsEt8obGCGJRStpixCggkALgQxJ2fZxn40Mmmfmd3VpqalrshQxWH3G0r9obUazQniFFHk8T2oo32XzdPK9yuo5LSGEXskfHx9z69YtiqLok0BOF3Z1fXy11kwmk0vP3XX/6uII14G5fiAV/+mlIBAxfxpBrizaeP7dPcWffKVmUjp++oOanVKhsxb8EGs9VdvibA3ZgNZJvFUJbU3nTAuuI1qK+L7FOZui9jlSa5QAYzRSZzw8WfGVr32bY+cZDUpOZivGO5rhyOBcy3LleeluzmTfMM40x0uHVDlaDphXnsaDlI7SOER4xKq6j/PzNdzQbXhC0nMH9O771Ri/EAKtNON8yrAYMS4nFGJAqYboYGiEw+gC522vTM5316My8QgyqdgdAEIifeSN/+O/eBer1GBlVWk+93sv8NnPvLnlur/VlE7nHCezQ771jc9zf3ECd95FduNF5GAXIQxOROQ8Nt8KhNQoRAZDEOCkSEyaIrULJOHpMX4hWOfYEyInTkTJAk3bEHzLsMwj02a1QpcDEAopNMYMyLMxmRnhw4C2FbQ1NMQNyHmoZQ5mj0bFdF6nA2OlMdpDWNE2JyybE1ywBOFRGnaHGVYanNVIAUE4VIg9HeL6yEBmBNxGzMduKOO3R4mGFNheRyouX5MBwAsyU5CpnGBjm8tOYT5NeuN3SwaDAcfHxywWi95S7+ApoF/jbdtS1zX7+/tkWdZ/3znXezXdBielZDKZsFwut4LGl8kPpOLfUkYioIRgv3iRIDNEgEfHOd/4juXuzYzGr/i3b0pujRwTpRgqj20FKyuZt4pMag4XMM1i31Z61srOZRNkOsdrcKFC+AG1VHzj/mNujAfcmgw5mDsWywPKoWF6M2Nxr6bMIj67f3NMaSQ2F1R1SxOWKDOjDgXDyYvcyjTzILBWYAQMihWte5OmPcC6ZsO26toInrp/RG/ddVk6a0kWWLoPgWaUT3lp/DJZNiQXOVJELvRGtUgLrsip3RLtA04qgrDnNrEQfZwhBj1DV9kZJL/wqXv85//iPVsNVrZ6FZA8iY1x9s81RJS9U2pd7r0XAuklAkvTVLx5/zVef+PLHJgh5uUPk09vQT5MVrvtFV+Ev8OZaRMh8QalQiLRp136pMiS85cw+ghTRYjCe4vWijzPsM4wmy+hFhg5QGQTlL5J7TIqLyHkeC/wzqZ7jplYBZDliswUIDy1O2buKoRzgMWJBqvjOJRUFAODLkpoDcLF/tMhBKwALxxWWRa6ScFcYBNyelaSvOsg1h6nxCWnaf0Mu3Vx0WbjbEC2GZnJENpgQ+T87xT/edDIedDHdTaH63zvujTJEbJTPd6/ScWwmd7ZNWYpy5LRcM3zH0LgZHbMw4cPGY0G3Lx1G61MhHWzjJ2dnT7Qe5X8wCl+sfGfzpKRQjLJxyAkStYcrCSTMuNDL0HVZvzFNxwhKIKAfGApZM6XvrHDqnX42vGdey2v/JhGuYTVdcHPvjgjZuVooam84SuvvUnjHC/t7HBwuOLr9484ns14/3v2mJQ5h9mKTDvyDJoq8ODNJTduj3DikGV1DNKRm11qWyKkpKoajAJjlrTuEXV9jHN1RCLWkdhzJiL+sK2XN2CU0GX9RKw4lzk3RrcYl1MEOioPAjJE616iyc0QZWOxzxmGw/7EYuNK3aayvv5nf+GNSxusnH29tqEBgYWgsUKAsMgQUotMx2x+wrdf/wr3jx+yyvfIb75EuXMTr3K86IjgiCmpp64geiqJ9EnoYiT0nlNIG3/wkjVJQeJ/SXi9UUMkinGxx7JqadSKLBshKEAOsH6EdRIvHNLHzUQKT5aJ1NzMEdwMQqRqDr7CtjNaWycllHokyIBSktFgQFEalJR4F2iVJQhohaVVniAitUktW5xsTk3yMw2rp780CBuNEZcj0CBTAPvMgjn9gUAJRWlGaJ0jkHhPT4tyWvFfl5TtIrnqO0+i9DvpKvq7dO/OUu8CvW3b4pxjOp3G+E+SyONzjJSC5WrJYr5gOtmJ77kQ/SbizukPfFp+4BT/pvRzIyRGZwgfk/ucF0xLy/6gYdFIYjN2ifUtRhvef1fwO18e829fc+ADL+95bu9apBe4U8U20FnSsYtP1bbce3TMh99/l3GZ8ZcPj7EErMg4mi/RoqYcCIyG2zdzlqsFbZHhOEHrGTZkSDXFhj2WCwCP0QKl57jwgLp+vObED9dd7GnxnpfPn5SCRjIpdtgtbiBCt2wSn5CPAUSnDVm5h1wuaGUsx3latXF1g5XNM28ExtL8Sx+xdycheIVvLY8Ov8W33nyVx8sVdnyH7M570cMStxFSBZmgnfgCWmtTUN5sXU901nxqa9hvGCn9MaL9DiUMJhsiZUlA44OMTJtVy2JZ0LY5ebaLNiO8zGM2kI0eTW4URjnwDT5UCCJEhLAos0ClKWibBmerjZc9Bp+1UgwHJcOiQGkiZ5C2LKkR3tPImkZ7nIzPyeNwsmuT+DZAJSkdN/ZMTs2N3Ail1wRncHrNnrauYy1NocaQYgTBr+sdNvvinkeB/LQQ0OZ3N8f5pOfrrP6yLHu66Mlk0lM0CCFYLpeMRqOtWgTvPScnJ3jn2d2JWUFHh0eUxaC38LtA73w+p23bS8fxA634oUvBi3ZckCC8YTwwfPX1it//5pDGQj6oEKwILuKIH7yjqGzgq98+ohhpPvGBfYa6xrvz3NNAVx0bhEdmkGWG2zd3WNmKhbO8dHtKkdXU9TEz5wlCUdeC27dKDo6OGJWwqI4JXqP1Ptbv0jQKL1py5TGmovX3qesDvKtj1gniHOvpOtJxKHZZT/FFLXTJjdFNSjFEBokXni5fxctYiStVRplN8Sff6Z112RnGb4tsBiA3P4uwmwoB4SSrZsGDh9/mO29+g0d1Q373vRT7L4PJcRtj63B61zqsa2ltS9u2KSjftb5L1wgdZh8zpWK2vEQpg1YZQihEyAhBI9QIqccQcoIXhNDQigWrVYP3AWMCwQcKo1DSIUIDtGjh0KomiIamXdI0cwItxgiKzFDmBQiwJsc6S2jWHdKMMQzKnEFZopOnEkSglS1ex2fbyhar4uYtw/qYM6Rzz0j6qo/gwSsyMSLTexhVnFGql49AIMh77zqS0Kme6Kw/6gKl/CTwzea/N/90cpov5yrZrM5VSnF8fMzu7i7GGJbLZX++6XS6NablcslsNusLuIqi4ORkxvHxCfv7N/oxFEVBXdfUdX3pOH6gFX90Lbsc6QjlKBy3xjlaS/78K0uMcvzCJ0oMC5x1GJNT4Pjo3cD+ZMHKrdhVGcLlOOli7jSdN9FBGqkRRvBo6WnrwIPHK6S0NB50CMjQ0tSBRQMOz4FaUE5rBoMmtTMcYvJ9qjajsSCEJ9OOzMypm4e07RGxU6XAu4D3rn8RTjP5XW6lpDTFLujrBbks2Cv3mRQ7SJ+asQjRZ915EUnZpFA0whAai/JEa/ttCghuj7cPqad/RoI7vKeaHXH/8Wu8+uarLMyIwSs/hprugxLJUtd9zECIgLOOVVXhfNtzpHcBte38cJFS7RRS5rE/rciQsiQzQ5QqsRTUjWPVeGgVBBX5TEOOUaALjbMr2naOEzX50JJnHiUavF3RtAvauoXU41jKmP45KArKLEcKQHiMEQzKjNiUxaOkpCxyiiJHio31KGJtgY0R675xu/QitU25mEHz2TyqBJUFh/RjBtltjBwSfMBxNTyRThJvJKgUU7F479BaY21M6bTWro++ILXxOimP5x2/2RkP6Is1O6jpSaCfrg9wl9758OFDQgjs7+9vNXDqKKY7bp4QYjJKWQ6Yz2cMh4OeyVNKea2GLT/Qin9TaUS2Q0XAI73nEz804P3vsnivePcNjagWWO+xaAwtmVKMtGK+fMBCg8nfE7NVguqVXZ8KjQUCwhsUULeWz3/xa7z3xX2CE8wWgfmyJvjAIJPoUjGaOFb2CC8MRRG7Zc1XEo9ECMh0g1ELqup1rFsSEr1ACAHXCqp6hbUto9Hoyoq+LYhHRJijQ96lV+wUN7g1eoFM5gTf5ZoLgpB4EVDBYaoaXwZ8rmhEixfg0+bw9qn+7iXsXrT4J+CwrWO5eMw3XvsS944fkd1+kfH+u2EwJgidQIL0XDr+6xCwtsH5tk+969LqOsqN4XCQ8H6JlCVFPiUzU4Qo8UGxqgKLShGEwQmVaCYiLYOQbeprW9M2JwgqCu0YF57l8oCmOkbiMYUmH0iK4AlinZPeNrYn+FJCApYu2DsYqFhUFlQKdMY2jHEz6OYmQWEiVhLLkPpVkIKrolu5b89D6yM7XpPLHVSY0FYN3rcg5Lr3bfd0z1WiG3ECYraVc46i2Okr47t+17DuY92dr6ucP8963xrrKeqFTrF3FnmnWFerFSGEHp+/cg42CrWMMeR5ztHREbdu3WI4HOK9ZzQabXlA8/mc1WrFZDLZ6isQYwWx5+8mk6eUsu/de5H8gCt+UiFOtKCFh4crePVBQ4uLlZFtxnzZcmc6YDeTQN0rvDwfgNAcNAcM3F0GYhT79nY2ZEheRQpkqaBBOsqJYTqesHczo3q05M37jwnKcms/Iy8als2M2i1RZogQuyztAGtzggchHUXmERzT1G/g3BzvIwRhbUtdN9hWIGVcAJsL/4qZWOPjQqGEQQvFIBtxZ+dFhmYcg7nC42WAZCUKCSxrDr72DQYv3Y3kZdUx+/42GnrI59nLNrwTetglYNsFj+6/zte+9VVmRpG9+8OInbuQD0FEjNyjEEEnr2WdzaS0Qia+F2stSqm+fF51fRVSQVWe3SSEKYuqiB4jAucTd7+IXpzAI4UjM4LMKMCyWL5J0zwiyyJE1tqWVXVCVkwoyyk68z1ctwazBDJ5G1I6hF9veiCRQiJlUvDdmt6aKbFh56TnHLrArkitGGO70rcPmguIrlG63mE5r2ibFSbXgDyzTk8zV27/Mj4zAWRZTlkWfee77rub3m732aby7mSzX8ZF3sHpc3Q/V1XF0dFRbyhsjvsiOc3J03UK293dJYSwZag1bcvJycmWYu82j3WsYM58Pt+Ch67K7PmBV/ydRGpemK0Kvnnf0liFkxnCO6wPfKcUfPI9kkEZG4QoLIU2jPIxR/UDlu0JeR7d7Rgs6KzPkEr2NVYEaltTlAKpGhb2kKLUNCvY2R2S5XMqdxjJqtQurdvD+gHWecCRaYnJapx7RNs+xtmTVOYfUxCbxuKdIMskxsTMgdVq1ZNWZVl2ySbQKT9JoQbsT24xMCWZLBlnk0j8liCCiPQElHNoIumXEAqpNc1qxaI+xnmHFvrtNPd7iYs94H3DajXjW9/8Cm8ePGRVDpF33ovYuUNQBgJ4YRC4qODSZtdbosQq0qIQ2Lbtc6k7yCeKQcuSvLiJdxPadoDtevSlOdQK8kyhRcTqbbvAuyWNtwQsrT3CMWNRObRTSCFAwXBUkOUamQrcImq1Hp0SIVnwmz3ITIJyUlGW8Os9sVMwiYhP9IA4KS4BnX8XcX66q749zwmBcIZS38BZiXcVuzf2NhTm+shrnU90wd4It5xXvHWar35T+cO2ou88gvO8hM1Mma5pUpeaWdc1y+VyyyK/dkOUDU6eyWSyxcPjg+f45JjWWqaTyRkvJG4Sui8K22Ty/O+gnutKiFwhk6HgQy9IvLd46XDBslgq7h/D0aLmxt4QKS0iCDQlu+UN5u4BR4t7OLdimu+TmSK51xBdao0XnhN3wOH8AC081bJhVj5Ch5zh7gCTBVp7gsUQGBPClLot8cGhBJSZBY4I7pi2PsK6Kq78/jIaKQyOBu9d7zJfl7eky+GXSEZmwq3hC5S6jJtYiCmfQoDwAoPAqQCrBc18idodMXzXXRgOCMcWb2ts8KDCmqTzbZN4du8tBwf3eO3bX+NRtcRN98luvwc9voHresCKeIfR0o9c931NG2Ljb9tDAh1FbgclZXpIlt0iuF2a1uBCTLHMTMpJpwZfIbwFanxocG5J61Z438SLBUFRaNomYK3DBhgPB4yHA1Q3jrB+Jv0MpoKx030t46cd5UOalQ0l0WXGC7oSqZgF4yTRiOk2QcDLtzEqEyRalGgKqlXDaBSx6eWqInjHxo51yUm633X8phH67FIgO7ioW/+n4ZzzvIrNzza74J0+/iJahfF4zKNHj3rKhCeVPM+Zz+f9mutktaqYz+fkRUfmtp6fzc2lixWcnJxw48aNa13zOVT8nTVEtHJEWAdaezf37MLqOoLujlfsDmLgyCMRzjCfr/jWrsHgsN6iFYQQg5yDbEihRxzPD1nUc+zAMxntxHxpa/FYBrpEZwWHqwccLh5S5LdpZQzY1c0xOrdUNuB9BnqXxmW0rUYER5ZVaFEjxIzGPqBpVtGy65MlW2ImjiYzhhAiXWtV1YTgGQwGZJnZulNSqmcH74g0L0FE/p2BGVLIEuk1BI+XHkds1uGkj8yQdc3sW99EWxju7yJ2BwQHmdAYFMK52K2ph73C+vL9SDaV0/YIr/GY43MWsYJ2tTrmG6+/xhurBerOexjtv0jQJTFs7/rWicrH8fh+LYTUtDxaxN611E2d0vijRZWZDJAYU5KZfQg7VHVOALK8QYQFEoeWliJzBL/A2hWN81R1jU3cRd0dS+EpjCbTiqZpcN4xGuVolWakw7Y3g+z9t1OgfmvGQsrmCZxX7So6zD5sfRI3jNB5FR3Ud77Nv6mSN6+91bYy/dh5Kv2xaa5FEGSyoK0tQijG0zGz+Qnz2bKHXLffz4tWQoybdIofolHSKe3TFvvWfVwAJ21COJdBQZvHtdYym51QFrcYDkfMFjNMplDS9Ne6zPLfxPtPt2d1znFyfAwByrSZdNDx6e92kE9XFHadNNPnTvFvu+7dw9pQ/hdUJHa9VoWViVIgIETkOtHS88rUotSAZrWi0GW0rqynbiq8gyqsELbCLSxLZnjnWdVLLA3Tcoepu8tydYJlxqDcR2uLDZ6gNDAgqB2sGFI1ErzCKI+WK7Rc4HnMoj4geLf9IhFJwuI9OpQWmBAXXdu6FIA83ZotzYFIlmM3H8mKNCJjmI9i6FN6jBMo7wkyIJ3EGfBKoBcef3RAfvMFgjDYRFcQdI6VOS642KZSrNV7t1iDEOe+0k8EMoiNp+kdjw++zYNlRf6+H0GNbuPkRlrfJlYuYF2EJTYw/rh2WtciJJSDEt9a2rpBBI0yBqWntH6ftlUgwOgKIw+p6wcs6iVlrhkMhmgpMGgyB8432KrjuumAFdlNCFmeo41iNBr2jyQGj9NNsr6PCwvtgF4BnjtV6yrk/ggRG2Mi6DdBceEZNqRHipL677O7NhR9epJi655jLwCcwraOnZ1d2rZlMZ+RmQKtE8eRSB3hzrnPS4eVFPomrv+0efbX+X0AMh+YHR8wn58wmuyxWMX+yaPSPBHc0427aWIHMSHEVoGXFOf3DD5dFNY0MdA7Ho9/8Aq4hFcIuXaLtgzNsFaa2zZmOmZDCcR/pyQ3GYN2o2HJ/fkRzhm887im5WR+zKJeQNo4arvCzmIxjQ/RDjt2x6yWDbU/xFFh/SFSGgIZpthDin2qRmBdbNIhZUuWNWg5Z7V6jHNLvA9b7v1piV2hLFVVpaYUhrIs0Xp7LtaWVQwskrjWI8ysGRcThsUwbhoBPFnq6utwSmCsQhuBLwrK974bvXeDVkmkt4BAqsQ+6t163jfGGOd1w3TZnP+LH+vZ+03fUEGwrJa88eAN9I0XyUd7vdK/8sXrKm871kyiMyXJMAK80lSupQoC5UqszSkHkXfHZCuMPqJaPcS5CkRAa5UCwLEaXApBnmesmibC71vujuj/KouCfMMre2fyzIQ1FIZIVd2iV+rdv6SPxzrp0usmIp1FkAivaGpPmReUZcnjxw/SOh0ipE+xMcMWBcdTyKZ1fuVdXaIgL7XWib0NRoMhs8WcwWjKdLLH4ePHWGOfiBu/y/A5OTnpg8RdSurpNNGLpIs3dIHgHzDFH5tfxKDPOu1w2/aIx53/7dOTFb+lpMTaNv0sIrXqcolWmtF4wGMnwUHA42l7Tv54bUXrE9aLJ4SCxrZkuqDI3kNlNZWTeKeQCHIdMHlF0zxiYR9HpbLhTp8Z8wYW2bYtShmKIgacnHMp0yMk62fTqt523kEy0CNujG6SqYIAaBdfYJu4VaTw+KNHhMEERiP0nTs0QhOCQIfkNMiYF++dvXCc6Yct5f/kqi6ax8E7Hj56nePWY27exauiV7DXy6nenJTIqNrWjmBlzBIppuxM30/TDnDeIIQiMw1SHlHX93Bu0deCSJkszJQaCgJjNFpJ2gQ/iFP3rJViUOZxw3hKRffdkPO2aRGiivYirD2VpOhFsOlvhQgGESSaEucVo9GY1aqiaVrG4wlSd75G8m5CKiIU51/5PLkoG6cf7QVr4LLCrfO+368pYtFbZnK0aTk6OmT/xi2WedFz4z/JBp5lGcfHx7z55psMh0Om0yl5nlNV1aXn2lxTXaDYObdVy3CePFeKP2bmNLjg8cIRHBiZEd3l5C71Oc1nJ7JjCQwbR4gAUoJtW7yzGKNZLedMxyO00VhtUVIj3IZTmyp1BRCCSy33FAQd0wCLHbwds6rG2BCj90pCkVtwR9TVAdbNcb6ipwIANlPezi5Y8H5N/eqcS5WAUbF3Ef/T2DBppJnK2RvuMy12IoZPwEuPpCEIgcYg5ktW33wN965X0KMhyAyRSl9jGrgAGXPXg09wUrfdhugFKKm6j9+SdHHPf/6vd/n//Kuf5cM/9Qo/+9Fot4vrFuYI6Bt6p3VhtMK2LYtFg8l2GI3fhWeKkBlKQGYqEAc0zQOcXRBC7OAlhYx9EfAbzyhgtKLMc5yr2EhRB2KefZnnZEpteKNXY8PfE+mI/NYfgEixgh5Hk0ivY02ANwQ03kq0yCmzAXk+ZFa1aG0ShbBGa5U6zFlk0Be8mVfLVVW6153T6857ACyOIBRFUTKfHVOtZkwmAx6mQO9mEdZlYwP6/rxt2/bN1CeTCY8fP8bayz2I7t6EEL3iXywWl47/uVL83juWdsbx4oA21OiQc2v3Lpkse8gn5jN07ulaQh8o8qxx7wDBU1cVq+UCOx6RZxlNrSgHA6SKLliel4hW0SkRkYKFsbOST58ryvwGhCHLRWBRrTBZQaZzSiORco63j7D2CGsXcVGIzTFdrsw6TLgLbIXgUUoma4F1mhldhk6A4JI3pBhlY/aG+2SiSAVNsfJWehXT/GyD0AK5t4sYZAjnkI7EQuliGX6QSJUjlO4VYvca2+D49uuvc/vmTQbloJ/frn2jSLl5Ed++hotO4Fc/d4f/5f/xk1R1xn/92y365u/yk5/+VsSdudyN786x3vyiYSClJC8zBDtofRfYx1qQ0pLnAcIj2uYh1s4AGTd0HFrLvsmO2FDgSgrKsqBpLU1rUwFcUvpFznBQ9Jvz06m8764EsZE8QUfaEZvAZF5jWoOyisYb8tEYrxSKDKPzaCBxDARiJXIqgmrmWFczLhSqJ717697Pdaton1SEEPjgWboZQmQUuqTICmazY27cvMlgMGC5XPa0DJeNYzNIW5YlxhhWqxUnJyfcvHlzi7P/vOrg07UOHWVFVVWX3sNzpfidt6zsnEcn92lYMs32I9wTtQAd5LHOH9i2fkXwiVEy0NY1dV3hncUHMJmitTEfXqlI5iYQKKmZlFNmqyNWzieFF68ZcU+NMTlSjmnqAttKlpVj2VbsFjVFDjLMCP4xdX2YthyfEIjO/kmt77h8ERujaZpILBaCoyyL7aKSHjIKPa4vAhSqYG94g9KMIh6bRHkNQhMOHtI+fkzxnpdRL7+byIbgN+ayi/iB1BlK6Wjx0817LET5whe+wAc+8AE+9MEfQgjB8ewEHwLTySTlkJ8f9D0tcQODf/07N6jqmF9f14Y/+4M7fPLT3+5QlqsDdf3VApFdUyJEzrC4gdQvYO0Q2xikFOT5jBAeYpsDrI1ZKGvvUKCkRKmO5yidP53eaMVoUNJa1+fgSyEo8gyj9RmI5x1n7ScJCRbrssBiD2GFChJjbH/oagABAABJREFUJQOXUzQG0UpORM7I7BGkJviu1qRrMdgZMjG2sqiOqZoFw2yClqnvcD+zTy9v1zx2uf0PF/cwMufW5C5lUXIya5jN50wmE6qq2mr6fpHS7/7uFLfWmrIsOT4+7msDHjx4cCXP/ukNYbOe4Tx5rhQ/SRFneUZjFxijYkTcJ/xeOLyztCkA2qOSSQMGYZFBIbzEWYt3LS54inLA0AxZ1XUqhVY472OVJyq1HtzDzi2trwBLCKBkidZjlBpT15qTkxoI5PkQaSC4A+rGEtpjEKl/qoh4e+g9jw6mOj8gvSnGRL4S51xyo9eVfml6euw57iwBiWGcT5mWu+jEutllRgmhke2S1be+Tqgs2UvvQmYaHxxOpiyKjsVYRE5KIWO9rg8uRQ5imuDx8TFf/su/pG0d73vl/WS55tuvv87R0RGf+MQnKEy24YVdx+KHT/34X/L/+v++n6bJyQvLj3/yjSeCkKJTpeg49KXIybIbaL1DbYc4K1HKYXQN4TF1dY/gGgTRo4nUwjGgm2cmUSScvY6SMCjzlCIaFZ+giwmES2M47zSJOl+gvEJ5SW4NWTAYq8h8RuY1tqNJDgofNry5MymbcTNoXEXVLlNT+v4q72gJwVPXSxb+mEFesJPdoijHkTunHDGZTDg+PsYYg9b6WlDTptXeFXWVZclkMum7a61rSi4WIcRW85bz5LlS/FpphmbCzV1Lc7AizwqkSLzxrqZpl7SuZTE/wNquHV5suxhkLF7JKFAhJ88KRtMxSkdelxBgtoiBPKUUTduSGYNCUsqSvdE+i3pOU68QwZDpAUrvYLIbNI3iZHaMC5qyyCjLgLVzjmevs5jXlEVOlhXJynEpyNW5/53lc7VGi+5i0cdNT/OS99mciRaXIMnNgJ3hPqUa9vz6CB8rdSVgLW3wZC/eohnkBDwq9SbouF26nA4ICBlfdu86qy7O3b3793nzwQNAcnR8wt6NKa+99hpf/8Y3+OEPfYhiN0vzfHkB0SZ88+mf/CL/4H/zbb70nV/kY5/6Dj/96TdY//pJgoICpUoyvYsxt6nqHOsESkJmFiAe0dSPABublxEQqB7KKfKMssj7fXXTq9yEnGSylNdDC08y1O+pxL3JI4JEOUXmFJk3lE1U/Dro2JISQRCxbiHV/qWmNckDFus57+Junljvsk43fVqk/7snSmkmxS73T17ncPmQgZlgsiGqEhwfH7O3t9dz7IxGoysraftU57RWyrKkaRpmsxk7OztUVcVqtUIpdWlrxU06h8vkuVL8UiiMKDGiBKcwqkCiEF6wXC44Or4fg76TJUKJvuCjSzw0omSQlZRyihQGqWVangLvwWhNXVXkRclqeUzwHoVCCM3AlBhlkEqixZAyv0XwU6rUBzfLPY09oPWH1K2lWt2j0BaVlQQlsLJBIRE+Yx3Q7YLEnXdy3uJZqxixAW90i+iss7zGtJU0jAe7TAa7iXUTvEwVoD4gg0UMx0x++CO4TCGsSJi2wASPF7EQKu4B8TpSaYSUeL+23rx3vHnvHvP5ggfiEfcePKAoM9544w2+9a1v8frrr7O3s5MU40WynWHhvcfWlp/4ma/ymfdOsFoCEi99Xzx00Tk2Z0UIjxQZRbaD1vtUVY51RexlbOb48AjXPsYYj5AmKrQQ8E7gncZowWhQJu8qbtRh+7HQUUqsN6UNjDx8F6CdU9fd4uTb/HX32UbVef+jWP9OB0XmMgqfkwWN9grVtfYUkTYiiOhH9d16+xBGRxfe+Xadt702cqI3Kp4Jzv92iRSS3fIWs+aAk9UR4+yI/UHBYFBwcjKnquq+obq1LcZEC3wT1jktpz/r+nUXRcHu7i4PHjzYgo9Of+c6aZ+dPFeKP4qjtjVCOowsEEHiQs2seYSfzHCmxUmJbS2rqsb5dRAyNwvIGrRRlOwjN2AMicXkkmW1YufGhJO5i65pt6KDQomCgb6BzG6ybMa03hBEjVINUxOBm9n8McvVEXW9ZDScIFXXmLt7gKlkfBN/Tp9cJl1wtw9YitDnTyMCQUZCrowcLXNAkqmCG6Nb5EIjg8ULDSjy1rG691XCcI9i/w5uOAAX4ZBIS7MO24boxZN422KbRVUSQoUEnAhUTcvseEZe5JTDnOVyxqPHB3zn/n0OZzO+/o1v8CMf+hBCq2uhujFR17FyK4QusDL2B1BebiiL8za8LsIvQEgQHi0MWX4XJ29SNQXeK5SZMcwq2vYh1h1S5pphWaBUIKBium6INAFKSnKjeo9s09o//xld/SyftfSKF/q4ROTd3x7rhgmxsSEEnADjDYMmo7QZhc0xXiNQyN642FDeqf4lINBhs8Nb/CEaXNEjjBlf0TqVXsbmXMH133+nSa+4EZRyxO7wBVZHX+N48YiRmZJnOXmZcXJywu1bdxgUBavVEq1VghWvlvPYO2/fvs1oNOohn64/xObxm+O7Sp47xR8I1O0KJTVGRQKr1rV4YZG5wElBtaxYrSpa61JhFEAk5lIBMoZkxSB2TQqJ4USAkZpVa5FotFR4F7BasUQwqwG1R/A7VI3G2sifUmhNZjx1fcB8/oBldQIEynKCNufgdeeu9eu+AJsPvCMgixuJCppMFUyKPfaKHbRQKKEZ62lsIE5I1MES0Xjaxyt0HrFMH/ruu2eG03vnG5eWSsfsIh8QUmC04WM/9jEa21KWOS+//C4ePnjEfL7gzYNf4j/7L/8DrMr5u589vPIOe5eYQN02KD3YGtC5XcS2Rrv9smTZFCl3qK3GO4dRAWMsTXNIY2co5RkMCjKT8uzFOqXWqEjGJ05h+/2cnLn290Z8uvxW/CRBfd0n6wbn8R1yqbjPOMnQCzJnyFweMf2E7/cB2A6ZuYbCiZkpZz8PW2sofC+n60rpEiWEglExZVzsMV8ccbJ6yL55kbIYMDues1zMmUwnPHj4kLpuKQp17bTSzUyf2WzG8fEx0+mUqqr6oO9b8RSfP8UfPFWzQKscoyLHSlWvQFmC8FR1y2KxTJkvvZ2GIOCcZ7GqOTHHZDpjpG4ipUF7iRMSLTVKeGwdKLKSprY0IuNB1bBsAsEPqK3COosSgUJ7lJjj2kPmyzdZ1XNU4vkxKsIJMcMhytM9yPMt2zWFskehGaoxNyd3GBd7jM0wwSoCETQhSJwMKF/ByQzUkOLmXdRwFBV474JfbzzaZPjWdwg/mZa875X38PjgId577ty8CR7U4H/F733xf0drS/74i5Zh8fv80mfeuOJS6Zc+UDc1ajK5SNOe8721oup0lNQT2rbEWYExLZm0OHtA3RwSQoMxAq1TB7Vk23abz5N0XvpeSldcJRMfkex2AjpHM277svcKPDIojDMMWsOo1cnC1ygvUX6jIPJac9+P5ByL9B2s4S+ROKeeQhTsDm6zqk84XN5nkO8wzneTwj6hHNxkOJown8+30juv4vABeqy+LEuWyyVlWfYNWzpCuKet+fj+WLlPID4ErKvIdRnJkkKgaVd42dK6lqOjE5ZVhU9KX4i+zhMQtC4wr2fM2wPqMCNg8cSXRiqFVgJrK4qsYNlYlm2LtY5hXqKlxnuL0Y4sW4F8ROO+w7J6g7o+JssEg0GBUpLlasFiuWC1Wp1h5Xt6WSeA9hTKCDJVsj+8xe3hHSbZGIGKJAwiNi3REOmn791j9dprtMajX7qN7BbWlkV99SiUzrBdamvoiMlijMSlLkkv3LnD49kv0tqIV64qza//3p1LzroO+HUFYFXTIlP2wtpgvMri34TQBEFkOK8xWmLUAufu09T3CCxBuEiZnGAJkQroTudRv1PTLzvpKmzF1p+AwCFwPU+VF/Eutc8YNRm7Vc60LsjdAO0LjNOpWZGMx4onSqJ6DkUgg2ScTZiOblC7iqPlQ2yoyfJoUx+fzBgNRyipqKrqiRR1t7byPO+pl7XWfYP2rjr3urj+pjyHit/hgyWTBVKolL3o8LJlUS1ZLJbUVXNOM+IAIeAJVLZJ/XCPcX6FF11QLIDy1M0KpXXcEKTgxnDIzcmYQaYoVEuuT5DyPqvmdVb2EM8274aUAedWtG0d2RmfmeLv74Ro9StyUbJX7nNjfAsjC2SQqCBQQSKDRCIRMlA4h3/zEaFa4oTD4emiH0+ysIIAKU3sAZvSFrtvmyzDh5i+KAX81Z98nczE3qCDwvILn7p3Lgxw/j0GatsiTb6+8DXjIbDundt5fcZ4nD+kaR8SWBIS+6NSegvx/n4UGcQG175LdNQeJz1WxrWngsA4RWE1k2bApCkZtQW5M6mfxNrr6bqr+c199FrSWbLfhYD22y0xUAIEtNTslLcosilH9SPmzSFBe4pUyGVtw3g8pGmahDSErT/nnv7U78uyxDnHbDbrs4SWy+VTKX14DqEeF6JCz3SsQHXOEoTFhpaqacmyAl9HnhCtzbaiEdGys06ybFqUOCYzilFWICkIMhCkYLGoGE8EmdHkKkNnJZVt8aGlMAuW9UNqd0QIiX9dSKQ0tG2s4m1bSzkoyExBhB7e+kuwFeBJgK4hZ7fY59b4BQo9SAU3XWNtsClwJ5RH2wDTMeO9MagM50JPZXx9rsRoRUtpaH3cSGN+PCCix9TallQYzC/+3Gv8r//D/5RZ9e/xNz59wC/9/Bt9Kurl9wrBOaz3aL0uZY+JIElJnznHOmNkzT4fs7UIARFavFviQ9MfJ4XEaLNxqtDP7feVpFqBIAMbSbbRh/EK4zSFMxRWk3lNbsvYXS1l38ROvLFksWflhHWx3xPOh9/iLTqtuL4/NtjebxSxsn6gpuwMb/Pm8dc4mN8nz4dk2QjT5JycHHHjxg2Wy4yqqrZSMq+ruDvIZz6fMxgM2NnZ4dGjRzRN0zdfeZJN4DlU/BaQ5KZEILC2wfoKGyyti0ybWZaxXK5oW4vWihB8tMZlxMe9FywWNbau0SNFafZxZEgvaB0sKosDjFL41rIIDY9mJ1i3onGPaO0JgbgBdYyfWaZZLlc0TZ043kuUuph752lkE5ZRImOc73Jn8iJDPQYvsXhUT6gVC65kHRu6+MEI85734CXgNU76DVT7yUTpjHViY/q+iAVmbdv2kIwxmo/90O/wN//6LpPR+DqxwfTNQNvWsWYgsWGKEDN7rjfalIkvFN7LZL259EcRRMzSkTJu7h3B3bUH+A6TCOl3212cK4Ukb2P+vbGKwmdkLqZmaq9jS8Y+XhTn1RMzgdaB/if0hAS9su9Scs+e4/vFu4qbYadCFYJJsctJtcOyWkSK5VwmZX3Iqlr1+Pwm/fJFsvm7bpPM85ymaTg8POx79C4WC7TWPR11d/xV8twpfu8dQhiylNHjfIsNDXXb4rxECN/vtovFIgXoPFmWxfzYxKzonKcOsPIwbwNN3TAuMgbDEU0jaFMB12JZ0fpArhWTwZDjZU7T+OR5RB4cAKUEZZnjfUBKhZKx+nOzcOOtKP/e2g8SISSTbJdbkzuUZoStA61bgYK80EgJGkXeWI6/9nXkYMjwAx9EmQKcoxWiz2bqpEu9vtriB6VM36pu85a0MjGTJAAi9PxB3Tq9fh5yoLUNUhuC7Dr7Qtdi8Mq5SsdLqfE+0lI7X6dAu0x34ZEKpAzEgje+/yz9TgQQIpWy9hLjY7B21BRoL2MVLjqxaQq8WDNXdbK+/c2JeHIFffYZp4D709zX91L6KQj9vOQqY394h+PwGC1MBMe0IssKjg6PeeGFu4zHYxaLBVmWXSs54HTKZmf1n5ycMJlMqOt6i87hujrk+VL8CVowukDJWFATgsd7S20bvJeoQJ9J00XZoat0S9ZIRO8BQ20NjxeOzEvGw4w8zxgNHNWyYmdnxPFiRqGySDClBJm8RQgNjxceG9awRrye6sAQSHwlm0rvWYiQkjIfcHN8h1E2YTlf0TYOrTW2clSrmslkhDGx0EooRVZkOOsI+BToS006Tk9vd40LLx4PUkpvZOZFW1EgyLOCzGRdbgxSqj5raJNh8HKJWfxNUyOkJPQvz1W1zdujD8RxOhHH4EONDy2xcjpa+FkmkWpD0YV3dprhhZI8Qe0luc0obU7uDJnTfbyHIFJwN4BwaW9OLPtdI5CNquoO4n4imL/LGkoYv/f+afaOd4R0W6PAAoqQKEumZodsnKe2pT6x+2rqJhIvTqdT5vM5bdte2RB9U7oN0xhDURTM53OKomA6nXJ4eIjW+onO91wp/u4VLXSEeYKD1jW0wbJYrUAOQAScjTBMWQ4jsZZw9F2ZQlR7UhgmxS7DbBdCxrgckJscIaChYblcsntjFyEEhQzkKgZ/VT7B+ReYLVe0YUbsKAQdqhrH6VM20fW1yCahXEdtgCAVUwmE0CihKc2AG6N9JvkOq0WDd4HBcESe51hrWa1q7HxBszpA7kzR734RkWX42C0ARIhKP3S8mWxc92oRADqLsAnErJHUEPzGeIdX3v0yXnq8CGgtECrNB2CFQ2BiWmFwfb506AjUNkr9m7bCaoVGps0zEex13DfnKJTTVApSZARpUEIR+ZUsPVlbgqKUlBvnum7w+Lsjp/yxfn76tFMCTsRspJiamTFoc3KfIX3K8wldBv9Gt4qwhoXosf5w5qrr6RD95nLdEa83eIEKCuXNxrSeKix7hnDos5bOjIhTJNDCMMxNXLfEZJOqqhkOBiil+sbwVVVtKeqL7vG8ytwO8ul67HYMnsaYa6cYP2eKPy7hgS4QQuGDZ9XOqGlpW0cIy9jrNpGYSdX1nA2EVIKqkKBycrPLdHCXvcEtEBlKa5q6wWmJDR4vfNy1TYG1jizThEjgwMgMKU3GqvZdCC2N8K0u3LX1Kbo0QwFaZozLXUpVMtAjJsUO9arFtp69vX0mk0lcEMGzrFYsvvFV2u/cpxjk6N0dulKCiN12tLhPpvRjO8WE7GsTg+o+FrHFILFlOCoYtHf48y8/wLZQNxX3T3L+9MsHDLMVIWt51/4ed/Ym/F//04/wq5+7yy/9/Jv843/4hX4UnaXVtjVWa/70N9/Nn/3xy/z4J9/gU3/tO1gZIjHcxou0htE6OKz70RArrhVKQJM4+UWvONf02skquMZMfDdkYwPqMbhtsv+1WhUYZyjagmxlUK2J7PfCX6io1VbgtTvvqZ20+6eM0JgUInnKp/sBb8tmhWn3TEb5GCPX0Ec4N+j7zpJe4adqXAEgRO8FdV7scrkiBMfu7l7fHGk4HLJarbDW9gRu15Ge80lKBoMBs9msL+bquHyGw+G1zvWcKf7YBMXoDBEEdTun8XM8Dq0MVV3j24A2GXmmkbKNL7bXdBWYSpUIPcVk+/gwJddjrIfjZcVqOWNvkDPNBsjMUaWiitnxIWWZJ8UpUFJRZANkrXDhbOelp5F1A5nug+4/mkE+4e7OiwzNELyiqix13bC3e5PpdLq2AoRikBXYfEA9HEFeIBLrhH8Wib0psVspk6gwYs9dUr740gf+3Wv3+cqX3+DhQcXKWyZFyed+92toE7i5V7J8z5z/x+/+bf7v/88PA4IvfnUHgH/8D//txoU8TV3xx3/yY/zTf/rz1JXh1/7l+/lH/5f/lp/49DfRQq2VSD/3HRVGN9bOUxKQNv/0CyBWMEshNzbAd4rSX4sIa9ueINeOjvA4YsbOoDWUNkM0ksWiYumTBxoucIuIgcpLA49AF7yRG4ofH/0Ek2Wgrm4c0rZt7DAlC2SW0VQWyyoe07P8fP+K9566rrlx4wZKKe7fv4/3ntu3b1OWJVVVMRwOtzbD60hH51CWZc/l07GBZll2JSUzPG+KPwSEUBiZITzMqwPQFa61aJMx0JLgFciYS0/wfTBQCoVSGUXxAs7vsVopjAs0I0tV1RzMZgxygVaeQmpcpmmamvFohPU+phim3V4pw7gc82hu8ME+w/W7Rlh72gCZs1PeYGymGGdYVTXVsmFnZ29b6XeiNcWdOzRa0SSK186OflailMH7OEYvBDJ4lFfM5xWPHj3mkx9/H3/56j3uHc34a594P3/8b75JMTZ84kfez9e+/k3+q8/d3bhXwa/+xl3+8T/8tyltOiqstm35wr/5EHUVFUxdaf7kd2/xoU98iTzLKcvy1It0KiApYnPv2DbxbKObnl8/dM1hnuEEPSMRF/4rtj/MXca4KRlYQ1W1PJhXoFM/Vms3Nrsnv9oaXhLJ8Qh465DOs793A8riwjOFENBas1qtYi46aX5D1fNAdfAevDMhnuuIEIK9vT2KouDg4KBP4lgulwyHQx49eoS1lizLrmX1n56Hoihomoajo5guWlUVi8WCyWRy5bmeO8UvhUbLLEIBYUnQHltFTF/FNI0ISwSXIBiFkBnajMiym1hb0lhN8ILGNczbQ4JsmQwF0yKnkAJBi1GSqnaEEHPJm6ZJ1LwCGQSFLin1gLat8Slg+Izusuc1lyiGesBOsYtyGfWyZbGs2dm7wc7OFKW6x7t2nQVAllNrjfIBLdkKQL81idazVBnBJ4sySKAFIbFtpAJ45aWbrOoGlWe88vIebzw6QWWKOzdHfOP1gk//zLf4y2/s9eP+pZ9/I915uoZ3tG3Dxz7xGp/79Z+krjRZ3vLxn75HWZa0jaVpmt7ykTKSt21AyJCUfggghU9xnvVcxe5lqsev31Gy0QYxjtZHeCREaAevKKxh3BYMbEHmJI3zCCSyyCP46N35VdhdgLf7x7lewQbunAbhARUcbrFKfQcuFiEE4/EYY0xK6VQpRtBBS2tit1jwKL9vlb9Sivl8TlVVjEYjnHPM53OGwyHGRL1hjHni++uO77h8FosFOzs7PHz48FoFoc+X4iemCCqhWDQznGzwAlzwfdAOfGKtDMTCqoK8vElgQtuOsC66aMZ4lG44mN9HiJbd4S6FMqjEWa+VBO/6HbtuI68+RGy4MAMmgymL45Nk9b/1hRtS8LXDZrQ07A13GegBTd0yX60YTSdMp9OtwiZYY90EUF4iXCA4j0q1C+FyTuQnEIFSWXz5Q4gc7QIcEqTD4nm4OOHx8ZzZbM7hSc3RbIG1gTfuHTA7WfD3/96fsTM2/OrnXuKXfv4N/uN/8KWtOKJ1LS44fvpnX+N//5/8Dn/2+3f44Y99g0/9wiOEyrCtZ7lc9c3PB4MBSm8zIwohCYlTP4iWEOw6YE7suSA7mKd/du+kDSBi6R0jZheI1V5hrGHcFIxtgfKRLjkQFahWMQNFho7E4dxTX082piNOkSfU7aUn6LD9rtNUVPxdh7nuXjbiMRsbwPejnJyccHJy0rdV1FpT1zV1aur0+PFjyrLsPfPTnbQuku6YLg19E/Jp2/ZK5f98Kf4Qw6shOGo3B+NpGk/X9zv4GAQTeITQGDNCmxsEdrG2iIyaQlAUIMIhtbvPql4ghSc3nqkZY0KBFAGkRyuFcy4q/tUy5egDAYww7Ax3ebR4QNs3fXkL0gUXk4mlhGaUT9kd7OJrx3xZU4yHTPd2Nnq/bi+cmIIXlVsQAiR9zvZblrD+SypDVEwelfwdLwLDgWA8Kvj9P/oy37q3pFqtcL8D37p/CK2nqWr2pgXjcc4//gf/lv/4738x3biit29DwLoWS0Bow09/+nV+8q9+k/liifcDZNLvsTpy/TKdvkchJFJorAMpYiOQaN/GNaDkxnfeWck850j0MqWXZE4zbgtGbYnxOoawZMfDw9lG9M/CIEmniKmflxBcCPo0ztVqxeHhYc8306diCQhEOvFuI3g75e3eUDr90BVsdYVY8/mc/f19jDF9Hv6TjGVzg9jM8tnd3WW5XFLX9aXff64UP8QgU1UvaZmD9jTLJob1QnzZAaRUGLOLUjcITKjryJKplUCbFsmC1j6itQcI7xESjlZHlOqYm8UQldrJmcxQVxXj8YQgwHpHJpPSDdHq1/LZTbGARJEsKeSA/dFtpM9YLCpMUbB7Yy/12D1/AXXJEi0B5z1GxKBurMZ8q7IOfkqpY9DPu2hNC4UkMC4EP/zuF/nSSiBfnICwaOCDr7yA9p4sE3zoA7eZDDIIGkjplRtFWSIIrHM4KUDGfrVSgNKSpmkINuagDwZDlNoMmm0rECEUUpo+FdS7tp9jIYgwD/RBYPrfvsMk5eEbGytuS5cxbHMyrwkbKnjd6KS3pd/6tdPpz7ZAuEhZxwOcc1RVxWw2SzBO2Dqms/iv03XuWcjbqfzzPD+j1PM8763+4XDI8fExRVH0haVPEuTt4iWDwYD5fE5ZxqZAP1AWfzSKPatqgc8aGlfT2DqtQwUBtB6g9Q5a36B1I9o2Zp0Y7TGqQsgTVsv7eF/1DdVD8CyqJY/DQ4Z6xFBHKmBtDMvlAjWN5dKtsxgjYwUkEhlSz99nISltTwqBkRnTcpehmrBaWlRWcHP/1kZxVD8bZ84hQmwgErxHC0m7diKe0SDjnEklY0pnF0cJAdcKltWS/dslP/7CDVZVy+0bI7TRqBAbuWilMApE8EnfS0TPjhnvznkXLf7kXkkCWZbRtC1t26KVwVqLUmZtGfVxjM6NlgipkhUWcL6zPDfV4lpRvpNAnjgXcXVG+mRNaVOTFJ+jguwtfFijg5ASr0T0Dt5qh6tNfb+xxVxcPB22aZnLsmQ0Gp0ThA+cnvW3SzlvZtw9i+y786SrUO/OLaXEGMN8Pu9bNF7VmP0yCSGu/zzPe97+zS5d58lzpfgRguA9ra0IpWW1qrC2BVRsnmI0eb4DvEBVq0ThINDKkWeWtn1AUx8R/KqPAYQUuArBsVgdcagfku8WKFLVr1hnKTgfi6AkpPZ/AiligLCv0N14AbeGHj+NS707ttPGgpheiERIuW7uXnmkzLlx8yZ5lm+fuGMUPfVuex9YzhcYpaPVTGRm9CJcC1u8cOo3fg4IhJSRtoFUQS1qHhwu+P/969/hZLnkP/gbP8vrbx6z99MfZDwsU/8AFznjgwdREzfrDMQ2k6q1La1zWxlLSkqyPEdYT9PYuAHocep8JNZzuzlWEQu1pKRvFRlDEwHnLJBtfOPtVf1h47/bV0wb0ea6EfSpnDJIMmcoXc7A5hhnaJXHibghBiJVg9xU/M8w0SCOTaQxXXG4WFupXdBWdmmzG/fa1w5s1F58v8v25kKvpLu8/pOTE/I87zeJze9c59whhD7Q27ZtT+FwkTxXtMxKaByOdjCL1bVNC0GRYcjVmLJ8hSa8wKLJsd4gCBRmRWbuUVX/jrp5gHcVPnQvR7RgFbF5RUXF4/qAVbtEBoESnjyTLJYLimJE2zjwMubzp76juRlgRLGBMwsiH8z5jmyHwW9a7lIaBtmYqdnnZv4St8v3QG1ASPZv3qDI8/4lWb8r4YzSDyGwWM1YrU7IB1lXq4yTKcf9LVk7nQUpkSIgzQAceGEBh3WSV7/xbaSA4WSI0wWLVct8aVEh9vn1co3zRptEEDlERQrIi5jm1zZYBK3OIEZsaJuW5eqkz+aRqe9vxxkUs4tSkD95ZIHIzRRDAV3VbnzqrYu13FFRfjft/bD1ZxsEiTGOIBweRdbm7KyG7FYjBm3MKPPSE7sPd99J0Zak8HtY7xn2s13z8nfr5+pzd8q+o0/xfStIFwnihP+uzvrbL+tewwGHUoYsy2KzlmSdr+MdTyabG2lZloQQrjzXc2XxC2KgTunAqrF4K5AyI8t3EfImdVNinQQfMNqSZy3OHlJVhzjX4DuaAbFW0ZsSQmSFbGwLJh5hjGG1ijj/8bHHh9R5Sgi00OyPbxLwHC4f07glQUSed7E16o176FL1RExrU2jG2YQ7ey9gyMEpbB3TVvdu7FOkfPWt0m5SJfKpsa9WKw4eH5BlGUab1GRk/fu37uaubUmlY6peZHbUOK9ZLBp+6JX38uDRQ5SrcO0c6xwBifIBiQexzjYR6T/byg+scwgp+nRN7wN1VfUutNaGxWLZk/ANh8OYhdWfQRBJy87SCqc9M1EHdx8+MyzsStks1OuUdme7g42U2rZAtppQC4TXqBA5dzahtivH+4wg/nOdoUs0dmxU7/qfIVKpexySPHkObx2GesdJ4jnyIuBpQUBR5MxmM7z3DAYD6romy85px3qJnKZ0MMb0vP2XyXOl+GPjjwaEo208WhaY/AaWXZwtsTbi70XWItUcax/Ttic4WyHEdZgyAz54fLDxdRQx7c+Hhq4VX9u2mDwWr6igmGQ7qLFCBMHD5RvYUAMhrWt56h0R/e9CcosLNeDW8AV2s5sEHzhZLFDCsLN7g+FwtOVCQuf2nR15VVU8evQAgqfMS9Tp+9vAXrt7XY/pCUVEAjbr2uiJBIkUgryUHC6OaazltdcfMJ/PKLKs96765t/nXjIq3yCIVcFCbqXAKaWw1qYGOzFgqLXZoKsNp84mY79lAM5aR85Fb0FpyXV6BLxViY7eZildmpM+OBvtf+Uy3CLDtpGXqW5BO482Giku1bnvCOkqfYVcGyuz6pDKLtkf3kVh6NI713QRz4PEJ2Od5XD5kEyVTIo9pFR9Xv9isXjLvESd5X9VQdhzBfUEAkFC6ySICcbcIYSbNM2I2iqkDJS5RYlHOHufun6Ic3MiQdc1GCJFtL9cz90SsWUpoKmrtGs3cRx0jIiasZlyY3iToRqjgkEGlaCL9cjXf0QMDKPJ1ICdco+dch+/EswPligMO9M9JuPrN1terVY8fvwIZ1tGgwFG6378IQSCjzTU1rr1cJ5i9vvCIiFAGpxL3PsioGXgzu1bfP1b9/mdP3uV3/7DL7O7u8/OeAjCYyU4IRNPyznn7mYoBJzvSMSSZZxS5LLUhrGuK5xzFEVBURTnElcJoaLnQIBwVvF77595Z7Qnk/V6gMhiKV2BW2ZIWzId3WW6+yLZ5AYrIWkg0WO8kzHxs0ophMCyPuFoeYBjHWB/3gz+XvF7y8nygHl1DALyLOvhyaftprUpneK/iqnzubL4EZKWgrqdEqTB2ilNG/HCXAuMWiLEEVX9AOtWkPjXe//+qnkPAYfF+oYQPIHICaOUjAVc5YDVYoEPHikFnakokYzyMTdHdyibAbWt4h9X4XC9WostLiRaGIpswKTcZae4QVs7bN0ShGZ//xaDwfBCpX968dR1zcHBI5q6YjIek2U6FaOuMyzqqqZpWkIIjEYjlFbR3kyW7pNbIQKlc3yYR8heWoKE27f3eeVddzk4XPLCzQkf/9EPMCwNnWUr+8D0VY8hQlmbh3XNKJxz1HWN9+sNvGP5JGHkQgikMLQOhPB4fzrnebsl3nereGgb1Y8WryB6i8IqQpWj/YTJeJfp5CZeSsiGzKsK21Rksg/nflfGe6FcY742s60sFidsf++pNO3tHuV3VXrqOhmwosES15xSmvYUHv8s1ttVfD3PleIPCBo/ZFUHaivxPlrjua7J9BLnHrFsDgihheBYVwh2QcWzEx4SBNGlLYTgqZolNjiyxMyntMS2LXIQq4at8xgpI/NnMtqMyLg1eYE9f5N5PWPWnHBcPWZRL/DB0mUAKWUYmwk75R6jbAffwqqpyLKCW3s3ew6a7aFuwz2d1HXN8dEh1WrJaDTCZDrpvnhcVVWpkUNNax0ywSej8ehceOTyud/Q1yIGpIP1UZmnPgkEx/tevsWPffgVbu/fYGcSi+ECxJ6woWv3eM7C3xhOr8PTx5svSrcBkD7vf7eF08fq4tZLwEYj4NTFQjibEfV2SuiMD0iofhqHF9AqRF2g3ZC9nRcoyzG2bWm8J8sUWmt8tV3v8E6WzeYiMVgdeyysG0MGIoXG8wNIBLGO2ITU4L5bjqdRhmdBQ33Vd58rxe89tFbTNnlUJqpGK0ehK6r6Daw7iml7IdIZCOHTPvwkCi6wqpcx3c9kECA3hrpexGpQZWhbizF5PLrn1ZFIMjJZoIuMshxR5BkPjx6yapYYpcl1QVEM2Sn3yCio5xZnPdO9HcbTSd+jl86Z6AZ1zjNu25ajw0Nms2PG4yFlkSXHJuC9o6krHj9+zMnJnJ29G+RFbOa8qGp0nlHk2VpNXmcBCjascIHSGbZuCCmHX+A5eDjjv/pXv8V7P/hBfvSjAh9ucGOaYbSIMMUFBn+v4NP4N1tMnjuU9CJdFq+RykArUELiXHUmArA1ircQ7ri29JdMAJaXCC8JTuJWOQOxy82bd1C6oGotwUc6kiAkPinMrmr2eynXfZPW8JvY+LMBAT3bYb0DpHsz1v59vOP1JrjpoT4L2Ocyea4UP0SmRSkqhPTkeYNzRyyrI5xdxowb0WU+XFe21A5BBNqUAdQh8h2Lo/MeoWWsHQjpAXaPuEeSAkYYpJDo4iZmmjNbzSnzgkE+QAhNaCXz2YrCDLh5Z49iUCT4RVyo7TcXirWWw8NDTmbHjIYDijzvRo+zLYv5nIcPHtA2TXwBUztIKRRN2zCfxz6eRj25xRUNa4FUWSrgiktdIrh9a4+/8ulP8YWvfoN/9l/8Cu9+8QX+o//Rp7l7c0RA4STocxm+klIQ20mDZ47ayBG/fJACKTQIiVQe6+3GTvrdy+A5I+nS0kuEywitwq0E09FtdkZ3EEJQtzXOR+9TGgMh0DYNA5XSVWNWwPdo+NeAS898J8rZ6MTzY+1HWSv+WOPT9XqOv/Xen8nQeTvluVL8QoBRDWW+oPEVrplj7YzGL+igHIFiXRAUMfU4+9cP5PUZxmF9XaU1VbUiyw3zZhFTxuW6y1YAvIgsnTJIdFAoSlRhKPUIozXSKxbzFXXdMB5NmUwmDDb5ujffK3G+inLOcXh4yGw2Y1CWsU+AgBA8TV3z+NEjFvMZwnuKPNLBtk1DVsZNRStDa2uWyyXj0TAWoz3FIlRaU9sWQUdQJxiODI+PP82ff+F/wGjw23z5L/9LHh5+grv705iOuMGQ+Sufu8uv/+5tfuFn7/PvfebN9VwjYlesSzTMxdbShnoRCoJEyY4T5ntrK3dqAQ94ia1A2oxbk7uMxzdwSOq2TQrCk+kMJTTLoyNkYym0QobvryyYiPHH7DgRQsps6syytJE9J5I4ABJXkoTQwZHx/fLeb/WQiL97sjW5CaFd5TE8V4ofLMHPse4B1le4dhkLRHq8OqSA5eaLvpk9cZ50yiLhcmik2vIBAEmR5yyWS24M9zmxIT3IhOt1lpxIzcW7JhNBYIRBGU1V18wWc4RQTKY7TKZTsrzjy+8s3o1hdQ+Z7kHHfx0fHzGfHVNkmtGw7IOzJ0eHHB0dUK9qpFTkRYnWiqZpaNuaEFqEMgghUWiWqxXGGAZFQRfs3OxidVY6lsW01akC5ywChwwaJ+Bf/cYL/G//z59iVWmM/gj/0b9v2dkZ4JEI6YlplZpf+dxd/uf/6JMsK81//i9e4Z/9kz9I1MwxnVOKrhm836pX2Bre6XUfRPIYUrps0AThEbJmnT7YPe+LmoA8CeazOYAN/JYupiHTRu4IMcCB8hJsjl0qjBizs7PP3vgWCMVqscD5SFORZRnSBxaPH+FOZgyJzVO+l1ZyB5mKEGs3LlI7m/BbCOueu6IPfybY6om88u8HCbE6no1ITg81n7X4r3O+NVCUdISQSU04fHs5Sdtz5U/5YLGuoqqPaNoFLtgYYAW6jJmo9BXrW7/Y2dz6PAUdRRBoaU5x8Ai0VOBthEyU7jtQhaSwhSBVTcr1+WTMSZ/PFyyWK1CK6e4uN27eIC/yjcAknWlwZnGEELh37x5/8Ref5+RkxsnJMcYoRsMSJQNtXfH44SMeP3rIarnAmEiHq40hIJBKgXd4a/vNREkNUrJYrGjadiPIebUfH7qh6iKStG1APf/6N2+zqqKt0dqCqv3v8+L+TnwaISpDAvz6795mmY5bVppf/93baRrSuUTsdRbCWeXQU3yluVrP15r0SwqJ813LvCbRRYSNM4TTJ32mDoHos5d8nCskImh8a7ALTSFusD99if29F8iKvFeIWkkGeU5wjvnhAc3JMQWeQseCp7PtZN5u2Xg3NuIT11Eq/fOBHgrdtO+/WwRt3y0Rp36KacQBnzbBSE+9tvKfxtqPKirCnW11OmFhW54rxd8jMKHLDHhGJ01VtAKBCoKBGaFltvGQQMpYRNS2baRJbdf8MmeUUyqyquuW2XzBqqoxJuf2rdtMpxOkVNd68IeHh7z66qvcv3+fP/iD3+PevTd77g+A2cmMxw8f8ujhA2zrGA1H5HmxFTySUhGCx9s2BWElQki0ymitZbGs8D1D5XUnVKCUxrmIOQcJBMcnP/46RkdLpCxa/tZfP0bjEcFF1zfkgOAXfvY+gyKmuA0Kyy/87L21tQ6JtwierLJqHR8QQuNccodDyibZTN889Z2nk82g5canIW6CQXiccDGLyRrCqiCshhRqj1s3XmJv9yZaZRAkUmtMnpNnGtqa6tFj7NERI60YZDp2k+tiIN9rM/lMxtnpX28rtpCyenwfou4qt7/XN/JsJRLlRfNTdEypQRL8WvE/mbLvttiNvgrB4Zua0NSIHyTKhrWbH1+CZ7N0uocUuwRJAQMzilbx5qWT4q+qiqIoOT5aEgZJyaahbWJwTdOyWFWxN+7eHtOdXbQ2Wy8EXLzzW2v5/Oc/z5/8yZ/w2c9+FiEE9+/f5+V3vYRzjtVywYMHb9JUNUURm0DExiTrvb5X/kJim4as7O44Vt4qnVE3Da0tyI25JhKevAaleysmBFhWFf+9n/sG/6e//4DPf/GDfPLj3+a97/oaj09usDMdENsfRsDis595g3/2T/6gx/i3O3DFjJA4n7637jeexKUji8F4EwOkBJxvCWfiO5fBfm9dRFqfAYFwmlAbQpUxyPa4c+tFBuVw/ZxEZCwtsoxmOef43j1k3bBnDEbKSHPxRBDU2yti47+XyWZRXQdaJBCM6Flf6zTfRyLSvtyhDrHZfVdwtYnxPxFlA11eQsC2Fcv5goHJKPTFPY/heVP8wKal/2zXTmfJeKQ43yLXWlG3LePRCB8C3oPW2znh3nlWdcN8MUebnBfuvpi449WZ88HFgcr5fM4XvvAFvv71r3NwcMB0OmU+nyOk5OjwmPnRI9qmZjgcRMvxgono6A7atiF4h1CK2J0qoJWicZbWWrLMIMIGw+WF1c3dOSOUhPCIoPnm6484nq24mX+NFyb/GX/25xV/8acN/7P/8LP8zE9+mExZRLB0XD2f/cwbfPYzSeGHjrEmBclk5PcPzoG6ptW/AeVIabA+Zkl53xCCS6fYSLN4G8WL6OEIr3ArBZVhd3SbvZ1bZFk0Fnp2VcBZx+r4mKP79yi8Y5Rp8hQQXYc43gHK8sqp2z5gC0Ls89yfM33fS7qz3iPqjEB6xf9UZ+0C4s5yfPCYxcmM0Qt3r1Tsz5fiD2y5u8/IPutPHQMyRBxt4/y95awUvq7x3qfsmBadFHogYFvLfLmkrhum0x1G4+m5lAKnrf7zpOuw83M/93N85StfYblcMp1OyfOcxewErQ3ONmil0kJLxSPnVKRqrViu6shNo9Z3m+4uUhdcWx/GmYlwlcR5j5YCoQRFqXjllTtMb+8xLAqGpeb9r9xBJ87giwp3Bev5J70oitRS84kkWVQyg6CQAry3gO8D8Jux4WeeS53WpycgrMYtFMoN2N+9y2gwxQfPql6BLOJzA2xjOXz0kNXBASWBgdHolKywZvLpkHKx1gTvYDntoYkgUytIWAfWny+MP+qOTtknY5BYUyNlhrX2qbLnhAjgA/PZCQePHxKcJ3h/JeXF86X43wbpS5LSC6tljla6f7c28XKtEhWwdWRZTtPWFHlij2wb5vM5Shn29m4wnkzJsm0+jdMP/rJCDpmyO27evMmv/dqvMZ/P+fjHP85gMOREH+FxUHcNIDhz3q1/S4kQYNsGnRdrleIdrm1wNvKIiI6G4jqzlvoQeC8IKvDCzV0WdUPtWn7ih97LremE3BDJ4oIgdtzqUzzOlZAC5CKlYPaxnGtpus40iim9ApnqL3yaIxmx/jSAdabUM5JOH4dYykdjyMOYG6kSNwRBbeuYtRNAB2iqiscPH9DMZpQERlqjZVIYodulRDr3O1zbA+c/J4ERGUYUMdOp87q+5+7Ls5WuMlsAihxJRudhPk1AtwvmCgLVasHBo4dIIZCp+9ZVS/c5VPzPerGEpHE8EsEgmzA05zc5kDL2eXXOYoyhbla01rFaVTRtS5YVTCY7jMfj1D3qCUcSQrLKFePxmLt37/J7v/d7vPbaa3zsYx+jbVu++tWvcmN3l8Y7SBa37FGk8+cmENBa0TY1RXAIIXBNzWI2p25qtBKE8QjEZa3htkOisbWhigyYMrAzGuF9zf2Hc27vZxgzABw+4fTr//jzRylA+ORNKIVC0Hj/5I87QGRFlUgZ8M7HWMEGHfTmvDxLESFmhSmXYduCvckdhsMdWtvG7CkBWkiEF6yWc2aPH2PnxwykYJQZVEh54EJcwM7w/WElnzZmhvkOWhmMTI1vnj+Gth5EVMKwM7yJEvFeu6Cu9/5Kfp1NiY/fY5uGo4NH2LamLAuCF/gQaP0PUOtFIFmP4pnp/6jE4k9GZewOb1HKwRmDpLPOM6Opm4bRcIRznpPZnBACeV6yd+MGeZ5vKc7LrPrNz733LBYLlsslw+GQ4XDIRz/6UV599VU+8YlP8KlPfYovfOELWGv51Cd/Jubwy8hAqbueJufFAEPC5GXsWeuahsa22NWKplrhvKNaLgnewwVxiDMzlqxyqSTOtwgfG6ZoJbCrFV/88l9i6xcJ3jMaFuzfHMcUzaCukWZ22uJP17zOA++xpE7Jr4PDIVyejfJWpctTUUGRrQoyMWI4mFA1Dda3SAmZNmitWM1PWB48xi5mTI0m1xIZfKrJYO0Yic2f/amrvXPlNJQ5yMcM8hJJHi3+no//edoARLL2DbvDfQgGkYyODuN/IqhHCLx1HB0eMDs5piwylNIEKUEqls0PWLP1XjZeiutUwm2WQmx/ts41yFTBtNxFobYw4M3zGmOYzSvkRCGVoqlrbuzfZDKZbu3o57HNXLQBNE3Dcrng8PCQ1WqFtZbBYMDLL7/M3/t7f4+6rnn48CFvvPEGu7u7vPr1r/PRj/xITKm0VT8RMVmzgzA2uEJCzOzxrmU+O6G1LcJayiKnsS1t2+A7PP2iOdwYesxWkAihCMEiiJTLeWEojeE3f/+P+eZ33iQTGT/03rvc2H0/mY4RcJ/qFTalx93TM41YtoewtmrCOneqH8NpWXsWm/dx/qaxGZB/miY1gW6sIdkhsc+t8QZVG/LpGOcDNrQICUYrtBI0qyUnjx4h6xXjXFMKiUxB9WjsywRXhY05DxvY/rNQ+uvA4zrw8SSsnxcr7PNoz2VQ/eZ7tmXo2ZjU2yGn3+XT7+J59TPXka3vhej1qZAR+/o1QOrpkRT/pay7fQV/JItczE44Ongc105n3UlJkIJV01w6rudQ8ccOP9a76NDLJ+hcLzyxlPpUIwjhkBgm+gaZKLAyxHxc1tZ6CAHvA9YFmrZBSMHNm7fpuOLPBHAvGPuaVlektM+Go8MDjo+PyDLNYFCwWq1oGktRGPI84/XXX0cIwf7+Pj/6oz/Ka6+9BkIglcY20VtQKqZAiuDxASJ1BSBTJbGEgGUxWzIYDMiGRYSugsc1bUz3zPL+hTwTNyA2S5chWmxOgRM5wVZ4OcUjsKGhcpZVU/P48SN2JvuIxEHkUXhlEUGfmZs1Q2pACI9QBkVAuQb64qtue76o6rbrYhVH29EbBNEVqJ0NKnrfVXqf+7CuIQqBjRQfQTNsSgZtwcJrZD7Ah4AMAW1iR7Tl7IjZ/fsMQ2BkNKZrT3jOjJwVcervp5S0DwYiVIjXBBGr1lW4wuN7Aiu963Xgtnon2/Q+rTvhbTcYutqAu3R4V3zvsg3+oo3gou9skgSmMwCpzWkAKTxOgHPXt/TXJo3HVgsOHr6JFJa8GMVn1Tu0AisvP+fzpfgF+BBYVRWVXWG0Is+La2Fn0YrURAVg0yep+xKCTBfsjKZo0RUPrb0E7z3ee6q64WS+QiR64yzLthT+1Q94/fI652LXrIcPsbZhOChxzrJYrXAOlssleT6lrmv+8A//kB//8R/He8+LL75IXdfkRYF3zZZnEojKrGlbpFRkxqQrxkUT8/2zlPMvU1qmJoSGarWiHI64bpsnKSRCKoKXCB/QwQOGn/qxj/De97wfqQJCGXZHJVJJQIO/oOVej9xFxaxFhIR6RcA51banpXsBpUjpoRuf0Sn3bQhOyq769+r7PV9ikE17Tdnm5C5DOAVCoo3GJaVhlGL2+DHLw8eUUjJQEn2O9SfO/HDhB29BQvq/jMaD8BD8MwsebyrDEALz+XzbE95QpOcp+qetbAU2urFtK/KLFPdlm8BV7/V54+wg477lZOoHfVEq93nnA49rGx49fJiaqhepuU0/OkDEZkuXyPOl+AN4F4OTRVFA8NR1nZqlXDG5QRAV4AYnOLFpiRKG6WCfcTlBQSzxT0c476jqhsVigZCK6XRKWQ6eSOlv4/xR6R8fH3N0eIiUgiwzVNUK19p4TiVYLOZMpyO01mit+epXv8pqtWI0GvHhD3+Y4XCItw2rucBam9pCWuqqxoVY/p8Zk9zreGWtzVYRGaxflqqqksd/lQkc3fUI9Ui8j5Wqy6rhzYczHh2dcLJomK9OOJodc3Nnyt7P/Bg6S5QNuCv1mBCxArLLbNi08S9U/92LCAS/5ja6CpZ4WhEEYg2DIrcZ46agbHOsFQitMVmOb9rYecla6uNjxkJQaoURnTv/9sIbl40+8olEOu1YhCiufC7r717Psp5MJrFV5jmxp+hBr+MW5zGvnj7msusBl3ZUuw6x2enjY1/ms137NpscXXbObgM5r0PceSJCILiW48MDFvN5Mmo7ivntlSyv0HfPl+IHECI2LDbgnMUuV73i2z7sPPe5WxjrnGKJYpRN2R/dJhNZRIPSkU1TM18sAciLAWU5YDKZYEz21MOvViuOjo6oqlXM0Q2epmqZz2ZUqxWjyYRiOGa1ivUAeZ7zwQ9+kF/91V9ld3eX5XLJV77yFbIs472vvEyWF9TLRd9aMc8HCAWr5QIfXEy7TIHNrQYZG3Oktaapa7yzSG0ueK1FZyzGGZQKpIyFbARev3eP//o3/4w3Hh2xXLbcuDFlvjrhlZdepg2C7b63lyiOENtdCiFiwDl9GIjOwtV6UuI7/F64Lat/624EW83on1Q6H0sFxcDmDNoc7WMjbJEbTGaQUhNwLA4P0c4yynR8Ifuigu++0g+pRoVW0h5WeBkwOzlBXacS/vrjlVIynU6jMk5U3OGU4r8MZ+9+/ySFT6dbPp4+55Ocq1P6m+frz9XBZZvezTp8sSWd4XbueLcHjwiexeyYo8ODbcONJ18qz5Xi32qAjkPJOKldQBRicKwo8rOKP5VRhxD5LwQgJYyzETfHtxibKSIoPFA3LctqFcuslaIsh+zs7GBMdqWFdpEF4L1nPp9zfHxM00TrWglYLhfMZzPwgeA9dbViMBrTOs9yuaAsS97//vfzoQ99iJ2dHX77t3+br3/960ymU4yW3N7fY+HmCAl5UTIa74B0NE2N9wEt13RYpzOMup+VVLS2jTxEl5SCr88UECik1LS+xQtQRjHZGfLmwRHDQvHjH3ovq7ZmdlTFOG0iLLuYPmqNv0sp4xPaTHG5QkJSpvH5qBS9WdMdnMaSI1wn+hf46SxvSe4MhcvRIdU1CFBZhlIKpQTOCdpqRaEkWhBf8M7CXkezv4sSPQ172PDmHz9E5ZrbP7GP3pFXD6P3UK4ecBe/Wq1WacNOq+eCr3bUBqc/O+99ugym6eS8c130nQ727I7bvIdNT0Qks1uw3sREtCA2bpw+k2xzHOfqhTQhInXrqldLDh8/BO8oUie+0J/r9CZ56e0/X4ofus22s5bSS+09tm0jZiklcLYRcZzjDg4IyKAZZkNu7dxhr9hHk9G2LVVT0bQO7zxlWbKzu0uex0DoOgniyd7Uuq5ZLBbMTk5o2prMaJxtOT4+wdqW4F3ka8lLatsSnEMbxWw+Z7qzw97eHn/rb/0tvvjFL/Jrv/ZrfPzjH0cbzddefZVbN2+QFQXDwYByMCQITQgWnWUp1XNbkZ8JooVoldRNTVVV5OX5NQzJyFn/V2qk0nhvEQFevvsC/+NfusNv/vZfYJTgr33qR5lVln/5y7+Obx2QbWRWscXH/9nPfGfrWh0zangK/nmZFFPovr+ZJnnqOCnlhR7B1RIrUguXkXudvERHKwOmKBIgImJEqa4Zysi6s1ac3wuIJ4r0gcUbK+7/yQIKweSVCZOdjKs4HaMSklcqXSFE3yyoqipiItfZe95UhpvK9/S5Th/bHX+VXAW/nnft8xR0B9n0mwPbaljIDQUdQr9BdpvZzs7OmfN1saWuSNE2DYePH9JUq57iJZ7zzMivvG94DhU/IZZBI2PKk/ee8XiIMQbnIhZwUQFSx/GuhGRghtwc3WW3vIl0mqpuWNUVVVtRFANu3rxBkRfIjYBRit1c+50NwVNVNUdHRxwfH5IZTW40i9kJbdvQ1DXBOwZFgdFReTS2pWlq8mJEU9dUqxXj8QRjDN/61rf40Ic+xC/90i/x4MEDfuM3fgMfYDCakBdFzPFFgFAYk1O3i61Ml7Pj66zP6LLWdbP1+anp24B6osWMUAhXxzpZKSmVxCjNfLnkaLXi8LjmZLGI7J9Bg7AQ4Fd+4zQf/+/z2c/co59eIVBSQSpNv8pa3B5mtKZDgODtue69ECCVTEHnpxMRQDtDbjXSCYIQeAIVnp2y7CfMOweuRUnZGx9dZub3BN0PgA9UswaWGd55fJ3gmCtjkOLU3+ccsWG5e++ZTqconZSq3/7uaSV7GV5+Gnq5NHU7hEvx/vOOP93k5LS34VJs8bzvbSZXbNwdIZD00/jcAHb/PWeZnxwxOz5iUBRI1WWoPf0Kea4Uf5de2bQtUgicbRECdnZ2sNZS1TFv9qJvJ8Z+CjXg5vgOu8U+oTXMFxWrRUVWFty+c5cyj2yXbyXwFrN2ljx8+JCmaSjLgnq1ZDmvcE1DVa3IM0NWFCilIw6PR0lo6ppyMAYEi8WC0WiM9zGQ/fLLLzMajfj2t79NXdcU5RDnHB5QQqblItE6owoLvHdnAt/rhedjnMQ6rLWxx8ClsMdmMqqMXlD3QgqBDIJykPOHn/8iNZ579x7hhEebDWyU8/j47/DZn7+3xoBFrN59kmCc6BSqiE85WvyOENapg5sipUjewdPCPJB5TWa7ZxeVqhWSrGuFGaCuKyRRp3a89GJzMr4HIoRETxXsWkwJZni1Fd/5uU8y6hACWmsi0W0AVD9Xm8dcZm2fPt/bKeelll73O2tZvw/ew+zk5ByYcWMTwLOYzzl4eJ88M+jMQFq/byUE9FwpfoiL1lpL09RoJRmNRpRlSV3XNG2L92cfhhCdHQi5GbA7vMWk2MUuLMtqRZYX3Lxzk6wcUBRl5Jd5C9K2LcfHxxwfxawdrRTLxRzXNizmM7QQlEWOMXqjzWAsBJJSYluL99G9nM8X7O42KBUzih48eMC9e/f4gz/4A6SU3Lixz2w2Y7lcIpVOFmVAmxwhZFTMp9zodeDMUVUrQggMx2OkipXAxlxC+ZrefqkUQkqcC3gZNy0ZPB945SavvX6LV//ymwwGA/7aX/kpBqVA4Agi8Kufe5HXXh+SGUfTqsjH/6n7mw9rnQIXH+Y5ee6XDE901NTp5d2w5LaVW+cZPr0y0U6hEvmYDNGhEXmeakviFlytKpQQp4zpsBEJ/G7b/gInA6OXB7znZ26ick+xn8U18jZcLYRAay3OWYp8kDbm9e82sfWriqiumx1zVXHWs5LTm1aEbjzW2kjPYfSF1+7GuFouefTwAZJAnpT+sxjvc6f4pYIi18jgyZVhMhiQa4lAsaoEzruo8JJ1hYgt0WSQDOSEm4MXKBiyPLJobZjs7DAcjhiU5YUpUmdcswusgRACVbXi8eNHNG2NEAHXtnhnWc1OCM6Sa5XSKk8tihS20ErTtg3O1mhTsqwqVqsVk8mE973vffzxH/8xX/jCFzDG8Df/5t9ktVrRtm3M9fUhshWECGUorXGuQatNTgcP3tM0FXXrUCajLAfkxQDnPa1zMUf4VCxABHqmjJj6p3HC4HwDwhJ8hkit9t7/vpf4wMsvUI5HvP/dd1FKIH3glz/3Iv+Lf/QzLCtNljn++l99g7/3P/k6n/35DuNPg08bi2wrnIhWESE+00ucERAegQKpY3GfCDTBcla5iz6wtj5h2P795r9CqjgOAhkcQQi0zxjYHJU6fXkRWIWAyouYrZXOaeuKLKTNl+2NZ33U9eTiPiydD7E+o0++2bkVzlJQTDT6YyVCgipTrONtUZCex8t7NK7ipex9KKHWN3xFvOztKuS6TE7DSVfBS+taEyDEft0Plq8TROD24N2czv7pYUsE3q44fnQPW68oByVInebDJ1ha0Js9PkPICi8EToAXP0iNWAAhNINyxDiX5EaSZzryoBhDnhe0tgZiVW8XfhdoynzEWOwirEHpnKLMGYwGjMbjpBi78z/dovHec3JyzMnJMXVd4YNDIVgtF9TVCknMsMnzHCFVv6jWUfsoUioEAW9bdD5AKcXJyQmTyYR3vetd/MRP/ARf/epX+cAHPkCe5/zyL/8yH//4x9nf349WxzrdgCzPqeZVOnOcD+8CVVXhvCPLC8rhmLwYEhDYpkqZhmuX9Owml4ghUvZM8B4Z4qdBCO49OGBVtfyVH/8IMtNoH60gHwKf+90XeoinaRTveWnRc/LDWqkFERu9yKbp8fBriQAhYmW2FF0t2kYge+MeQvAEH2LBFx3D6UW46hri6pSVdhrjNF3DxwBU3lKUZewZjMA7h2/baO2LzdaDa+jrSe39C0yOdI/047n4+2lDkAIz0el714c2nkQ6Jbdq51R2uTG9b83TejvlTFHdNQPEa88SFs1x3KUH529sAvDBc3x4wHIxi5X/Sq/XGKfXRADZpM9lJAP0l6eUP1eKXwiBVpLxsEQWAqUFqu92I8lNRqM8Smu0is2uXSMQvqRkwqjYQ5MxGk5S0En1LuZbWfg2Zeh0qZpKKbyD+ewIvCN4h8mzFDe42LDqlG0sxmrIEkYaKRwayrLkF3/xF/nZn/1ZvvKVr/Bbv/VbLBYLhsMhWZZRVdUazw9gsoy5c/jggNgvoG0doMmLQYR3TEYIMlE3y9RO8SIrp3thU+9VKQleQJAIERtwS53xzW9/k9u7UwajAt9abt+cMiqH/MJfeZP/9794D8tKp5aLGxDPehYAETfjUHMxRcN5X01qVHTNqVOg7oK5jllDp+/vPElNUAgxXdNLMqdSP7H4LRfiSI0xNK2NzKBti2vb/rjzz3x96TaY01+SHYlpemwidIWK51zvlCf3pIVNTyO9OvtuIlrfE4nvx2XT2WXxrObHHB08ThX2GV3Q/9SpeoNB0CKCQeKRQaLOp2/t5TlT/KA1lKUhaLtODgweSaAwCjkq0KqgyAp8A5XzGD3EqAHTwQ12pjsYbRJeeDl0c5W0bUNVVdR1zcHBIQBGG5qmQQhwbY2WkuFgsBVgDUmJXCRaa9omdo5SUmFDLH3P8xzvPa+++iq//uu/Ttu2/O2//bfZ3d2lruutjAREgkuUpmljELxpPQjNZLJDlpexkKDHFGNzlaZu8IMiWq3nBHpF6DJvIiy1htEjVLC3t8cbbzzgVw9n7O0OyaTg5z/5UYblkH//57/NP/sn8Ou/eyelcb5x9ubTNaRUeOciNxBPwObYeSLJir8oJNml05FgrMuSKDpLrGu0Ib2icCZVIscveUJkNxWS5WqF0hphHTiLkpGueRtVuhhaOn317hhx+qPTXxcbR19QI3BRoPHtVv4RwutiG8/xDnDBfG6+R661HD16QHCWYjC8AG4kvWwBfIOrT1CqgLyMm4T8AYJ6YvmzQkmND54gQmpwbJBIMpMx0BIVBkgyGhtd253RLnu7N8izHKU7YqzL8UW4+GWw1tK2LbPZCUdHhzRNS1kOaOsGpKTIiz5AmRuNlutrdsv+IhdSCBFbPDYN3lm00SilUnbPiC996Uv883/+z5lOp/zdv/t3efHFF/n93/996rrmfe9738aLDUJKTF6wnJ8AMBiOGY4nSJURUy1CPy7SeNumih1+tN7eSDbmrAMTpFK44PrAFgGaaklTr7h/MGMxK3n5pbtImRPQiGBTy8U3T9/1eiyd1SokwW8s7i2Y4CJJKbtBImQs0NtUM5tKTyYPpwseXy9nJR6rnSKzGpmUa0BgfUCmTDBrLQgFbY1wjiAVbrNr0ga2HeTV14330DXmODsHof/tFnx+7lxtByPfHojnrJw2sN6ZMM9bl7SSxKbTnN6VjX67bdtQLebkRRaLCNOOvcUc3O/ZAT97k8WDL5CVt8he+DGcdPjwg8TVQ1I8QSCTAy1RKHIyNUCLAd4KqmXLqvZMxru8sLdLURRovW5RmP6/9SJe5wXwPkbsj4+POTo6AjxZlvWEa3mWoaRKpEoBo/QWbLK+iYuVfgdNCBHTOpXJUUpR1zVvvvkmv/Irv8KLL77I3/gbf4P3vOc9KKWYTCb8+Z//Oe9973txzkV+mBDx7jwvaJuG4WhEnpcIrQHZW68RIth8ITuK4MuRYgAlDW2IzVYSGQF3bu3yP/27/0NmsyWjUpEPSnYnJUE4YgmvvFR3d89IKxM56oMHdN/h6GpJXswGJHXePKsnzOHvaOKklzGN0+sU24gzZkNAZXkiiQMhBW3TIpxl5W269/X5ZAr2pkLyK29NqUhcJ89x8YMQtD5twBsh3qvk6SuWn0y+exvM91LOg7PWG97mRquUJsuyVGOybvO6EUmiLwbzgcWDf8fsa/8taniHGzuvEOlPLp/P50rxd5aylgYpTFT2skB4Q3CGamFpas+gnLJ3c8BgUMSc6q6zFBB6zPj8IM5FlXvee2azGYeHh6kDl8J7QVXVSKnQWqG07qtOBZDlOXW1xHTXu+47JiJfTVNXlMNxv5EopfjUpz7FnTt3ePnll3sOkHe961381m/9Vt+nd5MbxBQFY6nIshwh5ZqrZcP/WG84XUra1QohEKLnsAHBCKDMDVoF/vLLX+aHP/AKzjse2ZYXyyFXVwitd2KlEpPq6eexbdKeM3Xds/VbrxScxrdPb0AXv0i91xBEbLTidEzjDCIC7EHggkCYrM/hJoCtK0Lb8qhaxKyg7YHS9dD13l2KC3djj2nJ50vrHO4Kqt7T53tqeQod/hyDOxfI+XpECIE2htF0h8ODR4kWZtuf25ytEDzt/B5i9hDnLcLOUSGgaC+9+nOl+KVQ5IwwOvZ8NWJAcIr5fEFTNxiTM50MGI8mDAYZyBjUjOGRaFaJDRx0O5f6fOk6Yx0fH0daCDxGR9fdWY8UsUmC0qnpeo9VgMlzFvMZPu8e63Ww3DgaLRVV20TYRUWGP+ccP/zDP8yXv/xlXnzxRfb29gAYj8csl0ustRRFEReTTLS7SpMXJmaZEDa0WLrS5r9F6qW7oYW2N4EObweCQPQYf7J7g6C2LX/0J3/OF199nWww4dbNCfeqx9x98c413v7Q/6W1QRKu36VPbP8jiEDgbPXm5gYfs3o2rnv+yZJHGJ+f9orcx56+nbXWrTCdGZyP/ECSSNUggcY7RF6c8vTSxAdP8Ffb6d32dd5REnA+Upavz/3fyfdMAudu5Jv8PcPJLkfHRzRtQ6HK01/vwzNCgC4mLEyJyadImSO9hB8kqEeg0GGI0lmEdFYNdb0kBEFRlEynU4bD0UYpvuq/CWvHfx34ujjQFIJnuVwym81icVjTkGUZWmratsU2LUIkzvtkkcO2VSmlBqlw1qGN3hjJ5eKcT81eNB0xndaapmkwxvD5z3+eV155pVf8s9mMxWJBlsXMoV7xd/d9Oh95Mwq48SmdMuv070X1CulwqQwEEUvxRSAIwfFixf3Hc+7cvYMNDpNJ3njjMSFYggxc0Ez21FAiEV/wHcnahtXO5WrNhxB79wZ/4ZEdgVjTKMqi6wPb3dl541sbCNorTMrd76bRpziBNAaXegyHEPDWkUmBzDL0oLxw44/HXx3CuMwnaasVTVXHeKBkI5vpB8/W/p7LVYtUCEwxYLKzy/HjB3iXIZQiiHWkqXtqUgjK2x+hXpxQTG5DOSUEgxWXQ5XPleIHwAfqZUNTO6yzCCmYTnYYTyYopVPucGfhb1q0of93b12F/j+9RM6amuVizmIxp6oqsjxjNBpEWojVEus8WZajZDe9pyv4oqKVSmGMidWwmU4wAGzSJG84dbGJcmuxtsUHKMsyBjlPpVdmWcbXv/513v3ud9O2LX/0R3+EUord3d1U7TvfuKNkTSZoIZ5r04LnzL/P5yvpagQSGhmi4g/Ivh4hAHVjGQzG3L65T1PPqZc1Qhq8MDgR6yuuVkWps5pz/RwFEatjwwUvVSDgnKeyFdJUiSbAp7FusywCsXdB01Lkm9QcF4wsCLqkOhUUMig2uVR8CASpUNpgbeTl8c4ive+/Hqsfupc1Yrk95NZlGG08hc1bPK0MTo/S4+G0IngH6PvOE+yg1TXEKPoY0/MjYeuv81zVLUNKSqY7uyyOj7DW9unn68jw2ljNpq9w4wNDVJ7j8zIacuoHCOoJAaxvmS0aQgjs7OwwmUwiH8gWe94GlnwqDXDbiO0mN/7Uti1VtWI+O2F+MiPLDLvTCS5EiuST42OKrCAvhwih4z7S5a9vBmVIVrU0mDyjWpwQQmxI3gVw1ovAJ5zX01hL3TqkNgynE7I8NlTvziulpK5r3vve9/Knf/qnjEYjFosFv/3bv81HP/pR9vf3qZYrZiezbYgmbIyrS785hW93621zL9xaqCIgvEp7Z2zTJ4SkxSdIJaZFjsqCEBq+/cabLFcVDx7P+eB7X0jfc1xOy5z+Fj6yf1qbHlhSs17hVbMx22vx3tGsWjwrhD1ikOeI7PwgWLTSwfoQucmuMrU38NfSGpTT0XshIAM4BF6bGDfAoWRBs5hRCnCbCmADYgtnPzznaud89Rzp0kq7fVle+Y2nE9Hl/F956vUdCCJE2zfNDBC5aOxz5ZF0yQfCy7jRh229AxtoQHoFtSkZT29w8PgB2kQKFPqqjw7rSWSI47sgBTKRHUr/A2Txdy0QJ5MJ4/F4q8nB5cGqzho/+5sucNs0DcfHR5ycHGO0Zro7RUpBcI7jgwPm8xnLxRw53aMYjrbOfVmtpFYG72PFbMwkiQtiXbkbO3KtqhrrPMPRmMFojNJZzEfsxx56nP9HfuRH+Iu/+Av+6T/9p3jv+Zmf+Rk+85nPkGcZUsSqzK6583VkizOFzQDoxbBHECRa5oSVJyBjOCjZ253yy//qNzk5bvjxj3yQz/7CJxiEBmkVdn1Ll4wnZrGEEBJdVQeDbENFm+N0NpJjjUYjalfQ1CuarO5ZGk/zvARObWyXjyieI4i+GUxvkwmw3qMLEy1/H5Aa2rpioCSu5ew++30rT3cXIf3Pb/RHkEFcC/X7/pK1byYQqbr9bEZTLC6MPw9HI46PDrDWkWVn07u6Riz9+r3mkn2uFL8QEcsfDkdnuG4uzkRZW/WnZy2mZ7YcHR1ycnKCSsVWWZahlGC1WjE7PmJxcoKzLYOswNsW7x1CyTU9wjkvRHz8Em0KpDR4H1ByPZoIp0QvY1XVaJMxnY7JswJlYjA2bBT9dBa/c47xeMzf+Tt/hx/7sR8jyzI++MEPcufOHYSUaGPIsoymafqisSfK4BDrFnZXZfcolUWMf8Ol10rwsR/9CHmeY63jfe95gdu3dhK/yFXgZ3evoJVCBPjD33o3f/bn7+VjP/MGn/qrp/P/1+J8TJMzWYZrMparQ05mx6yqOcZoBoOzfQa6Z3BhKfXGnIQAKsjeuhYpC8ojaEMgG5RxXaSX2jUNUrAuFLs4nPT9IWG9Zq9xMNswYmdUhM6hS3j28wP3iJDgK+GRCPwWzLwtm/w+psgZjsfMjw8TctG9c52Hvv2d666h50rxKxUJzi5lj7xUOnw6pHz8IxbzSJuaZzG3NssygvfMZifMZycsZjMUMChKlBRUjcW1baxaTSbfRTHiQCxyUkon2oR1xozznqpqcAGKwYiiHJAVAzp+ky4PqC+OYq3Am6bhAx/4AC+99BJa69h/eENGoxEPHz7c+s71Z0hc3KJObP4QUKrboNYtEgmBb379Vdqm4iMf/gAvvbCHSYErj0IGe+na7e5XSMkfff4n+L/9Z79IXRt+7V++n//Df/I7/NSnv3nud6QQseWiF1jbpl7GGh/yVCRz9jbOc8cvGBUgUL5T/MmmC5HCwQLjQUlLZGLFe4Szqfq5u+jzouSe/D4UBi2KuCk+f2Z+LyEFoARyIw50vnQEbEjFeDplfnyMbSwmN1sewdOumudK8V+HMOkq9905x2w2Y56aoUCgLAvK1K6xaVpmJyfMjg+pqwotZdwQjI5ZJsHT1hU6pedtRwk2B7T+PCty6uU8Bp1DoG4bmsYilGEwGFAORyidlGh/P/H728HYuPlVVYVzjtFo1Adiu3uvqgprbeQL8r6HTK7My9+Yt07xb3lUbCLTKUNeJe7wsNETl0Dwjle/eZ9vvX7AB979Ah//kfdz984eAn+lxSI2Npe/+NJHqeu4ydeV5s/+4A4/9elvnZ1rQCmJbVoWixWVXTDIc/Jcg8wvfHv6LJsu9/7i2Ynem480zJtPxCMISqOzLFp6TmLrCk3qyCfSvHy/W/xPLYJxMaUwOUqY+ChEhH42A0rXKfI6j7b59Ht/0Xne7iKyzdpvhTkvb6QfRxe36rDCvBgwmkw5OTyIWL+S63s7fY4fRKink6cpPon5+HOWyyV1VdG2sTnKoCyiRRgC1WrFfD7j+OgY10Senbwo+jZoSInWirZtKRLcc7GslaQ2GQvvaG0bm544j9SG0XhKXkQ61nDBfW01bdgI8NZ1Hb2TEHj06BHf/OY3efPNN3n8+DHT6ZQf/dEfxbnYhOWq+Tr9Upz/gvR2cq/EYlbPphsaM1c++pEPY0PGF770l/zuH/0blsuKv/VLP0euLX221SXz1b1GP/nRL/Hf/O7PU9eGvLB8/JNv0KeinjqFVJI8zwlBAxZrJXVTb9VtnMemeB3pspmMX/Pvdy9u6z0qi53aorWvOZnP0d6vy/Ghp7T+vpWnfueWKGNQQtOsWhrRxiJH4eNT3shG6ovUxLqoMNK0XNK39tyhbrPLbic2bMt5x533+yslACJm5ozLHVywiMSDdYYI71TmjpAqZvjMTmitJVNnefw7uPC6ddnPpeJ/EvHeU1dVzNaZn7BaVQwHJaOdKUrJ2MnLxYYkJ0dHzOczrG3JlKLIC0RSnFHBxeYKq6ohOIfoee4vWhgJIkjW/KqOGSlZMWA8nqC0AameRAf1C2K5XDIajWjbli9/+cv83u/9Hq+//jqvvvoqP/VTP8XHPvYxmqa5IlB73gWuesHWjVFiHn/M8kGInkhzb3eHn/74h8jLIf/qv/kt3jx4QOvt/5+9Pwu2LTnvO7Hfl5lrrb3PPufcsapQVawJYAEEOAAEAVIEQYqULClCFsVQq+WQQ1IowhHuJ3UoHA6H22H3q9/8ID85FLblBzn6oSU3JWpqsilKlBpsAQQnAMLIASiggBrudIa99xoyPz9k5lprj+ece28VoIv+Km6dc/ZeK1dmrswvv+//TUS/pkuPlJ/92Of43/+f/jt+/4s/xkf/1Lf5yZ9/DXSVUYzxUmMNZTGjVkfb1MCcyWTHQZPhMy4u3A2R+btgo1Ey3R6AxgdcWUUGJQaM0rUtVmNw38g0/X1Ag+aZ3Y6XyyW2yx4rUcPOQXO5XkC+Pv+DVeadtdaVJ625OI9p3Ma64LTt5/jaIQZns1j7+nNXvs++fWK5NruJSkDawdNwo4jMyIVYgWIy5fDaNU7u36Uotb/konxiu+j7ivGvS63ZPfPB/XssFnNm0ym3blzHOdvjvl3bcXZ+xv3792jrJV3TMJ1UlGVJdKUag22SjLqxOHJVVOyy4AzmLEGMo5xMqRcLjo9vUEymyfAaxdGrajDOOc7Pz3svp+VyyTPPPMOrr77KbDbjp37qp7h27Rp37twB1RWpahcNaRt2R5GujlQRsQRSbntVVGKt0MViyde+/i0+/Znf43BS8nOf+CgTF5OnjSbnoh5hjeHjP/VlfvovLzBYgsA2R34RofOBdlHTNgs0TJjNDpnPPV23yjzGPvvWXq7aUdZBjMZ/sR9xlroQmCTGL0DnPb5rqSTaAL6/SHovOWstt2/fpm1bQvL6yjWyh59REs7OBPmzDDV67zc+W9/juxh7/n2cFTdrzONrM607QmT38PXDY8/IUQKGgDcxTblv2uTxNlCvYUDKdJv+NpbD42ucPrhH13WUZRIqdzz6Iu3niWT8K77Ea4wzL6Smabh79w7n52dMqorr165RFjZCHwhBA23bcv/BCfOzcxaLOaLKwcGUwtm+cLnoOHtj5DvOOerFkvJgFv3s974DQbAcHl3j4GBG4SawLsFslcpHA4QVqchaS9M0sebuZMLHP/5xXn31VX7zN3+TZ599lh/+4R/uIR7vA86NIIeLVFcZ+tM/XsZ/9BchxqJBY1qJhKmoKl/+ylf5//2rT/GD73uBT378k7z07C2cDNGulyERsMaiwY+euHl7HkvXeXzoODo6xPojiqKhvd/StnETzWazjXE765CR4XecJGuDVDBhqESmogQVMEJRFv19XdfR1g2FyZ7r7z5998wJw7oxxsTEcr2kK4CPnmoJ4s4Rxtuw+r7FPQxu/X2OD4nc7vjf+ve7Dp/1w2Zc6H39Z+5HrLpW4AS8WKDDBMFV+4s8Sc7QJ0I1mXJ0dMSDBw9wzmDE9hr4+p3fd4x/4EHD8s6TEAuSL7l3L0r41gpHh1OqMnoCmeQV7kNgvlxwcnJCPT9jeX6OKwqqshziAnLz2YCbJ18N1gl1s0R9hyR1ftdGyy5s1pbR/RH6w+oy/vL76Pz8nIODA65fv86Xv/xlvvKVr/DhD3+Yz33uc4QQeP/734/Y7FlyMVaZmbdnzd6ZxZMIqEQ9RoVgQLAEPBIgYKNbZeH4mY99kA+89xWefuY6KjGJmXcdRVgvQbhl5Em7ss7F9AsS6LDYYPAmJCPy6mFvjSEYx6LuaMI5pe2whaEsozdWvq6fAwEx4xD5yI3i72sMRZRpsJShIojBaSAIeFVCUWHLsm/Fdw3SLJCiSBK/jsCxd45UWXEOePzMP3Hr/vf95L3n7t27zOfz1BGTtpP02vbY/pR/Hws39NebFawfWPlsHU4ZM/u+92uHwPizdRx+H5PfOjOqvQaohFgqOsTke1VV9o4WK+0JZHEmszIxjoNrN7l/ekbXdlSFELLAlIrriCpehK5t9vbpiWP8uvGXJFin4f79+8znczR4ysIxqUqqqsRI3HpBIfhY1X6+mHN2ekpoasqySL77EX7ZyiBHTDAuNqVtayq3C7mW1fu2wUFXgHi24ZHz+byXVH7/93+fL3zhC8xms2jATvn5RYRYK+pyXg27GMaKLpITwgiItfgQk+G1XcedO2/ju0DtLb/7hT/k3v90xlPXJ/zZT3yE6zeOd7S+/oTYC5cZf75iT/etNZhJSVEeUJ+nIufGMJlUqy1nzSmPY0cP1vtmVTCaw8li/0JQpIwePfnTruuQ3h323ZG7B2hu0OweN20CbPsphJjryhiTcmf1CYejOShJ1jBo6etS9D6Da/4uZ67dR/ma8cEyPjTWIZ3xIZOvWb92417oGb+mpLJBo3NF13Z9v/PY+kll/MaEyXTG7OiI5cl9SutABqEhJAFCvcfucrlO9MQx/oHiVDdNw9nZKYvFnLqO9WUPp9O04bPBJhof265jfn7O+ekZ8/Mz1HcUzjKZTLZgeds3kIhAKuLR1DXV9JAr8O/HRtm7p2kaqqri5Zdf5ud+7ueYTqd84xvf4OWXX+b69eucn59f6NlwZer3WUyfnA+ftqn51rde57yBb73xFu1ySdPC0dRhAOct3lzs0pn7aa0jdC221752Xx+hhYrpwTGtV6y2qFSr3e4ZhI7e9x54Z+gNNpi+2HlUoGK2UzFD9DiqNIsldjc0+87Su2FSSNrYdlrdQ9baFGFvVq5RJUZ868D4x9BLpvHBMI4tGUvOXddtle77p11g3F3fD9mTaN+140Nko53x/BiYVBVVtboOd5FC7+GzOHlA2/noKZaaVIHQdRACh8X+Np9Yxu+9Z34eJff5+RkheA5nM6qqwvYW+qhyqULd1pwv5pzcf0DX1PiuZZIkfUYW/csyRmNNNFx5HyWad5H7C7Em7aJdsFwumUwm/PzP/zw/9VM/xac+9Slef/11/sJf+As89dRThBBYLBaUZfl4mP5aT4wrCMEnIzJMpgdMjg/4EWs4Lh3T6UFMWV1O6KzSuy/voPGmtcYSfK7ClRD4LdLdIEFFe0rhHLPqGFlMCFpvMALnHJPKUbqsRmt///ZOCS6Y3hE1CEiATsGlQjwhMb16MefA2l6Tz/UB3kncvT+4BHI2qHfiKZsg2I4r1+bRpFKYfelKMakg/eVtILu0gYvckNf39fohMz5EsgAzvm58bW5r3YYADG7NyhDFC1RVye3bt7ceHJt9jUvxYBr9+s9PTnBlEZk+ivcdXV3jgFn5fcj4Y9nDU+7de5vgOw4PD5lUFdYMqp8mg4kGZVnXPDg5YTE/o2kaQtdxMKkoXM7mGekixjjGyp11NG2DbxtMcuu8suvkFWh9UecnzOdzjo+PKcuS119/nc985jO8+uqriAh//Md/zOHh4YZHxMP3b6SbZl5pC7xfAspkOuHFl1/hO2+f8PTNm/zAM8ecnC74yh++xuHRAYezCnPJSCaRmNxLtB49UlfGPqY+P2gqaZXV76G94f2UZcnh4ZTCRkYp5EIY20VmUYP1spKiQ4mMv5pMWNaxxnLlSkJdU5qLCs48Zuq1ofH8jOGfVdrnCrmV9PLKxHiNjZkifZo27Q/aHKG6i2E/yt+7+jUuarT+3UX3bvu8Z+YMTD8HqHmvzOfnG/ft6mv/9sRydHy9TxVjSgch0C2XFCoUttiIRl+nJ47xR6PRHe7fv8/BtGJ6fEThLDYz/BVV0bNY1Nx/cD/CIvMFxgizg2mvQvXK/6Wl/cggjInsom1qymoaA3Tkcjj6o1D/DBFKVzA/n/f46J/8yZ9wcHBAVVX8w3/4D3HO8Uu/9Es89dRTvQr76P3TlR/GlgQ/R4nmuwcnZ/zqr/4PnM09f/oXfpI/+ZM3+da3vsUPf/AVXDKA7eP7g1QUyy+q7waWvBdCGVJDx4sCmdGsq+1ZsusZZB9dtb11q4YCNzLzKIqhVTgoCpq2jUKHBwkeY+3IzPoukQ68f9Ud92KmeiHJGsa/Z2jb7WP5ZFq347Dy2cMIJI9yzz4IdJeQtPPz/H+FQIuIwcn2qPm9vEYAFarplOnhIYvTEybO4BuPaTpuX7sZBYsLhn21wqLrfRD5ayLyBREJIvKxPdddF5F/JCJfEpEvishPp88/LCK/JSKfE5FfEZHj9HkpIv8gff77IvLzl+3Tcrnk7OyU46MZh7MDqsKlnCiDuh6Injunp6c8eHCPermgnp9TWst0UuFSJK6K9DDPZRbQ+tItnGO5WJD92NPYLjuUK1Hu49g4aa2l8x1N02CM4QMf+AAf+tCH+J3f+R3e//7386M/+qN87nOfA1V8569wuF26V4h1+BCSZ4Ly1T/8I84XS2aHR/yTX/m3fO0rf8zP/NSPc/P4GLmCd2PG+PHN6lnTc/ft5ENI2t72QiwRF25pmyaP4MJN5MKQnA2NEaceRZ3FWEvQWDpxuVzEwK2N576zh0AUeFLtgUs860qHv679IfvWuG5tu9OWVpveZypupAHzu+z+exTa9ox9dq9dfdrbVwUfWs7bc+qw4Eqq0spDoiZ9fO06ILR1jV8suT454LiaRkjogvl6JMYPfB74z4DfvOC6vwf8K1X9IeDDwBfT5/9P4L9S1R8F/jvg/5A+/98CpM//HPB/k0tEGUXJ1jM7mDKdTmIGx/WXp0rbtNy/dy9675yd0dVLqqKgqspe0heRC5nIOsXLB3XfOYvvWnzXveMLd5cbmjGG+XyOiPD000/TNA3PP/88f+7P/Tl+6qd+irOzM9q2izg8V9z0O/tCj19bV/aVsoIPnJye89JLr/ATH3k/Jigf/ZFX+PD7n6MsSkKKWbvsOJ11sOLHv5tJx0gLk4KFNOHHm2i3SIxtaNsORfoaxLpnOViNbSeuh2iscStFEZ+iARVo6iUuXUlq751dFQP1a4IsyJD+ydZ/l2t09HMElax7Qw20vd15c8rJ4i5Bu+TDL1fdet/zlOe9CTX3Tt/mbHnKVUeYz0OSkDE5mHFwMKM5m3NUllybzWLtCL34eH8kxq+qX1TVL+/trMg14OeA/1e6p1HV++nr9zMcGr8G/NX0+4eAf52ufxO4D+zUKDKFEHDWMp1MUvGMsR8uaID5+YLTByecn51zdnIKwVNYEyst2UEWE0351S85F9vHHt0Il/XiXYF4tm1YZ20fxWut5fT0lB/6oR/ihRde4OjoKFYQK1Nqhcck8Y9bsK7Ed0mU1wj43L51ixeff4rnX3yWF977Yiww08SSLVeZpSGAK2tz7HHpFERSDeAeR17X0QbKEZXxsgukpwDjrJICtD7gUn1jFIwRfNsRY+WGDKsD83932JwypE/OmsBD/2PQIqK2FQP15AJ8OQskEPtwtrzPg/O38CH7nu9+L//JUnq9XjvOmzPqbknQqAk/1J4Tg7GWyWTKYVFxc3ZEVbi+2M5FyV7fDYz/FeAt4B+IyIeBzwJ/V1XPgS8AvwT8MvDXgBfSPb8P/GUR+W/SZz+Rfn56/6Mitp6TquUNq6Q0x4sFZ2fRVdN30dOkLAsKFzGxlEpmrUVW9qQkY1PSI4avRqppxlNFDNaamBdGA4gdScO7jWv7xqcJLY/3hRFoHU+2ehkX1HRygJhYBatrW5qmZjKZcv36dR48eMC3v/1tfvd3fzcVrrnGgwf3o2Se8NbsdTDOlbL78Bp/PmJmEusKNz6q8SpC13X8zh98gde//W2+8LU/4cGi5vmbMz75pz7Me1+4feFsjDeJMQb1Pkk4KYp6TwNGLNqL7r7v+bZbhvc62Eyyap4dPJOdDpfy8GsavSq0wKSaxHTbknLOdG3/5nSUWuIys5rXlCbDoKghhwkPnweEHQFwqnRtQ31+1qfO2P3k7IfOyuxsm1uT1p+iqO9wPhAuOMTGmgZAG2rq7jytr/0H8uMgXfst19iOP+K8xvQKDlUPooPhXtZX+xX6qSAYVDyoT1ttz1yNvuoreDGEEoa2xXrPU8fXmBQFkmZe9eLZu5Dxi8j/ALxny1f/Z1X9Jxfdn57xUeC/VNX/ICJ/D/ivgP8a+N8A/3cR+a+Bf0rM0gTw/wY+CPw28HXgU8SA0W39+y+A/wLg1q2b6dM4YyFx7a5tmZ8vePDgASG0+Ca68E2no8yaZGY9mjLJksyIp2sqsBGS2mzsWOYZJjwZBK2zNG1L6BpsOYEcgv3QlCXRGAbeu5D5lmYxZ35+goZAWRY4azHG0nUt8/mcajLlve99L//6X/9rfv3Xf52vfe1r/OiP/iiuiAVK2rrB7jAMbTD9fACuzFfuXmIECMZWSGgRAmItx7NDvv6t3+Wb33mb85M5f1J/k/r0kI9++P2xotglcX4FxNgYJxwUtcQYYYneNZtDUMQIPqSDTWsG8OZy9pv83Py3Bwo1lKGgCAPjB8FbhysKOvVxXJ0iTY0zkUnLvhNqPEgGhpsZVI6SVkJkHsGC+Jj4S7cr8WKEQhXXtQQVvIQdmkaErca+6mvdWb161MfgfQyqW084ttb+ylpKpUljxLWJBVhyQfp3UupXic+WfHiBR7m7hO+ctnTqeWpmeHYmGAnRBXPLXF2aYuIdjFqiwLZNzEyX7tEAsjciIdCcnlF1LbOqwErkCdmJ5CK6kPGr6v/iwlb20zeBb6rqf0h//yMi40dVvwT8eQAReT/wv0yfd8D/LjcgIp8CvrKjf38f+PsAr7zyiq5IhETc/+T+Pe7fP8F3Hd63FNYynU63Lu51Gm+OfGnXedq6xjpHUVapjUEUUCKGqsSC6qFuIlPtk7Y9BGXJPnXC5B0XOnzbsZifMz8/TQsgELoW3KQ39C4Wc67rDd773vfy5S9/md/+7d/mQx/6ED/8wz/MF77wBZ599tlREMwmM9wm8V84dwK2KGMBFI3JG374A68wOTzg2qzi6OiIqqqorHD9cILrktR1SdVXxERvrXxa7MltLEjMbZLGF8J+ufQyklwU2AY3znyHR7HOYYwldAGxBt+2EALWXR5dHYQI7Quyi9pkSE7SnWQeZmP2z7GUMiJrDJPZIU9fuxFLfUpAwjbWKv0/TVBE0IDJ580a5ecHQEOgMIZSLPXOUW038L77pKNKnfGYmXvl06/P+bdfPaNulY+80vCL7zvi1sSk6nADyVgCeAy0uZe2CSQZwwl083O60zOOqjJCa5p1gcvROw71qOp3ROQ1EflAsgf8WeA/AojI06r6ZjLc/l+A/0f6/AAQVT0XkT8HdKr6Hx/i6dTLBXfffhvfeoqioKoqXFFspkG9RFsxjFxZLGq6rqbQQJECJVZUQR0EV4PBGUvb1pR6MGCb9JdfkmT1Oapo6PBtHYvGNA2T0uGspalrmrqhqDxITDxXL2u6tmM6nfILv/AL/NiP/RiLxYLf/M3f5A/+4A/4W3/rb/H07acIGhBZLVY+XpQZ8bicoCxYW9ElJisozz51jes3jnAu2mOckZ557sv8uY2MMVgjfdqG/ZqzYIwFHzWlEHKh9m1X7jh7elNCLiwjqdxiZpZRy2lCwExcr5JbIcI8GuGDq5z9OaxBx5OuNsEPWdeMEI8JBjVbFWM0BJwYJrZIipVi7P4XmCHNobvbJyXbK0CjsBXC4+KH7xjlozonhAti+fbJgk/90QO+c+YxGD7zJyd84Mjyp1486K+H/ejMQ/VF1nPyp06lQ2kV8hNCV9M8eMDMCK5P9ne1Tj2qO+dfEZFvAj8N/HMR+e/T58+JyL8YXfpfAv9fEfkD4CPA/zV9/r8Wka8AXwJeB/5B+vxp4HdE5IvA/xH4Ww/bx7peEnzLdFoxqUrKEdO/lItmxlY10HUd5/MFrqg4PL4BYvuo1H4DJA+W8eqwxlLXy+G72DJXExfGgJ8n+Jqz0wfcu/sWwTdMJkVMNucczhXUdXQjFcBaR9t2LJcxZcVsNqOua375l3+Zr3/967z3ve/l85//PIj0eUP2zAg9lJMiEddAzxWm6YoKHwJ5ARdOOJo4ymKCMQ5FCKJ4gU6uUGBb6Q+oGL27W3XOsycScxLZPZulx/P7QYwR4fE7i5+bYDBhiMRVEdqg2KJMh2RE3X3bxENqt1Kytdd9NGsO/JGAiscLKBbBJMiiY5c/bI7VdcZiAItQsN2bZ/zPmGioNcZE+MbK6r/0nTUGa6IB+zJR6t9tgV/Wf5MYoPftk443zz1/+tUZv/gj19Fg+cM7DduLgT7eo+1SWlAC8NvzM2xbc1BYHjYU8JEkflX974humOufvw78xdHfv8cWrxxV/XtEV8/1z/8E+MCj9A1SgNZygbGWsigS9jjIlOsY9diI2f9Mn9d1Q9t1VJMps9kR1hUx1a8P2LSbNURXUetsTEMAoDEx1zhnyGV8wzdIUmOqNPWC87MTuqbGGhPxfBdLEAYE4xx+sYiGTxNfsTGW+XxOWZZ8+tOf5p/8k39C27b8pb/0l3j++ef5tV/7NRaLOZNq0s8FDIfjRjRnL4luwiLDtZIKyYf+fEgWigEmSXMRRFHxl8O+ybxZYi3d4NNRtM9+IojkJHugwe+RkUZ5LHvvH7JQ3/8ixKpbTu3KfHQCtiiI9RoiY6ybmok1q+1dQJokfVGTIj49IUn0AYMEmzSCKGisGv5Xxz7+KBra6aGi3bTKIrdCPX0bcb941YeQP99dGpJWSP+3AotGKJ3lT/3AlNuTCb/z7Tn3a0HVIGMTowx1pB/O72+Q7Hc5TmT5Q8cfAF29pDs746iwvRPL+jl7mbl/wiJ3V4fsE8MWI6nAKX2djl3BF/lnfhGxkElNQCknBxweHeOKiph+ucQ3C3AmVumqG9q6ZTKpsE7QAMtlg6pwMDtMEZsPJynk4yr4jvOzE9p6QVUWlGXFeoiDSMwb0zY1pog2CGcti8WCe/fu8ZnPfIazszM+/vGP87M/+7Nxrryn8z56yoSA2VLVCEbyrm5j+ZtXW1tEiVwTO80SLF28O8EkMaPn1QAwkVjO0F+QibBvUyxgMBKit8aWZ8nqbltrIzPtgW04dVjNAQhKCEInhklZUbiCoIIz4JsmwlpXZInDLKd/Gg9MIwIkjyG1SRNY1UnWG1IT2wtJs9rHzDca2W46GN0w0Pc6zDPQGm4ZDFMnXK8cx4VwlBLrSvKeExk03ZVl8pCUFWZY5T3o4L2Troyabehozk+pVKlKlw4weSjo6Qlj/KukYbUwuCbms00T3XXy1k2DD57p7IiDwyPERngCMZRlxdnyjLpRmq5FMZSTKV3oME0XA6MS058eHibG86iDIlXgifYK2RIHKkZwVmJ20FliHSZmHz0/P+fll1/m5Zdfpm2jt88f//Efc3JywrVr13DG0nVdPKS2TVTSbJQdxZ5Z1RKMK6LdYGUxC9Cl6MIooUaIZR032j8ROT1uCB4zkuN2k+nn50K5NI9dRt0aNy9ASFDPyJMmqOIRymms82Cso6sXMYtoWVxybOPHjKAlBdeVLO/WIIHJzYJgA2AQdeiOaOSBa/dGiqgb7Bj++NJRC1tbHh802R5xVRDzu0HZFTf9laBAxWDAGNQEyiCYmGcDTYnkkj93vuMhHjzsgBxIt0n5QEo/FUQD7fkclgumhcOMXJdXxzIWS3bTE8X41wVUI4KRGK0ZfIhQT3zDe9sZM662bZgezDg8OkbFQfKBFlWKsgDVWLTbFFy7dgPrLPfuvEVdtwTg+PoNJtNDMHZ47kOKCqpgbUFZlGho6KNF1xo0gLOG1ncxEMkMEZsvvPACH/rQh/j617/Or/7qr/Ibv/EbfOUrX+HW7dscHx/TLGvatt0bzDUOALpI6jcmQmwafMyc2bsi5nSyGVJh5K54ufkQYzBG+ipcuaHtC3+QmnPxm3Gsx/ql/adZWNj2fMBoNKoGSW6+CmKje6yIwTmYn9ZrAMwlNZreLVUJJroU+vvwxu/dx4jw7MduITd7pGd/0zlql+hKOkLrLk0bsFBSDd71vEOPldKRJhrTbGAIGFoTcf+A0InF5AJDeX0pPUx5+eek2IUEjeXgPmCrdp1JiC7p7dkpMwEnw3tcDQJcuWkvPVGMHwZmFP+AqqzoFvPoY2yierRrw3vv8dkXOX0f/fwFsGBs3NgCKtEroqhKgrccHd/EFRVBlKKa4JuG69duYCfTHmJQsho3lp8uu3Kk96gpy4rlvCasMefMJLI07FtP27VU5aQ/H5qmYTKZ8PLLL/P000/zL//lv+QHX32Vn/mZn+Gb3/wmR7PDFQ+Dbcx/yP2yffmsHBpiEuMPUWUGYj4bB3hUBtPZoL1cfk6yvrwu9cR+0H8YN+sYptl/wGz1LtLNP3K5xWheiIzfOBcNyOlwqRfLaNhdaeByzDJu7oAaj2jBg++c8+3P3cFgmb1wwLVbkzSfyWC916U1Tkf2K4sBx5uCw4rEP1I4tmkIQSJzlFHU0A6zOds7lt7Hnum4TJ6rK7mIytqvSaULRmlUOT1r6HzBXD2+q7h33lFJhwFmVUlpzSCkXJaysmWkh4y6rsM5t1JLYLOTktbQAvGeSWGjfStETzhvhn5c5fh94hj/ilxloJxMOTs/J6gCPuLhO2aobWvm8zmz2VFMY4DirKVtmrhNUkg6kHTlgunx7bgpCtfLmrPjWwQNWFf0Prbks3kMK6529wLSvp2imnJ2doLm6L8NDEIwtkSac7RbQlmhIhgrLBYL6rpmOp3yZ//sn+VDH/oQIQS++MUv8ulPf5q//Jf/Mi+9+NIK814x7CapJee8WVmg20jiPPnQEmSK9K6IXWptgEmuLjdqBK7xKXApe/b0nLhv1QCdr+hEmbDAE/KnsOYbEX3X010SElOK78+L4EL0Qpr4ijJYvA2xyDqWpXqqatrrCKpKt5hzKPFY88n+MlJ06G0da1OoMoIU1GKC4M87/P34jrt5QEKu/KV4EzBqd7yJJB2KkDNMrF43PurSKdojQ5L6ssmgBZ/cSlM3kQQ5gdXITIexhg0GLRgMFqslmJBKaUos17nVUL2f9keYp2vS11FLE4y66KGkngfnZ/w3X66wtuGbd+eIqfn//J6ACVRW+c8+CC9ej3PpgttwRtj1bAFUAp20iI/OAMtmzuHsGm3b9rDlkBUgacaaghrn5xw5iY4kOa4jndBGxwwlroV7fj+s/EQx/hw0lReLMYYiefOEnCFz5zpSfNvirMP7DnB0bUddN7hq2iNEIwEIVSiKcmghvXRXFKO/t0hgchFAsmVso3ZyCUjvPcZsweKTVmIk1t6McE8uwt72jP+ZZ56hqir+8T/+x3z605/mpZde4itf+QrPPfccVi1lWW548wyw6Mgmsh7cMjJURbdAR+czo08T198iKz+uMiP9b6NDdFczxliCCkEV1eRhtefBw7BXX/pwzEWGa/uDK9oYvCoH00k/J77rCL6LxX/Gb13i+gjJ1XXbehjrcplxlMcF5ppiRCkPXWTIVzSK94PpnyqDs1GCMOJrTVHRK33Y0sxIw9Ze/dp+kG+T2is3QUuNjD4FQ44FtEu5Xa/EmlxiHoL2h1vmmwZH25Z84ztzQOi6mPvma/UZmI5DoyxfOsLNSoxqsq9s9mM785d+zzhTEHy0B1XlhPn8fLVm8JoWH7oWCZ6i2EyjEVOECNE64YFACBPeev37ivHLBqOy1ibYo91/b7q+KB1d55nPl4QQKKoJB4dHUX1INH7Gtpe8Cx9/XKmZxQhFWdL5hmKPvdA6R13XzA59v6lEhPPzc46Pj7HW8q1vfYsvfelLFEXBz/3cz/E7v/M7nJ6ecnx8vPrMcZ/1Cqq1xMApH8bxAVdUk69MsvZDYiF7NYgqwXcpxmFPuNiKFDWQyWe5CjZITOSXmF+GTqrJpL++bRvwfjR/q5BHyMFOO5dEFO0EIZjAwTMVz3/0aYwIs6cnID4xsFUj864p2TpUABF8qkaXDwOCxoNyh9eUDvx+cNmVGMDVOrsxe7u6MJscMykOMMYNV10SStlwM74MJSluDPcJyiu3pvzij0hW96L+mLqhJlCK5fZBksdld9W07XsfwFBIxfH0Br4LOFvGJI7LJdPpdO3eYb00yyXOjHXj9bFE914bBGMDuMBs8n1VgWtTzDDJlbGuc3KrTQk132usS2K90nae6WTK7OgYV03QLWrnegzAmPYxxkfOgimGyWTK2cly9zOImTmXyyW+i5qMKjjnOD8/j547xnD//n1u377Ns88+y4MHD1ikRHbXr1/H+1gMelvOlnHq5ws6izGO4K+QbP8x0cA6UjwBuTZDGzXAh2jTqBKS9O7UJh/7iDj5oIi1GFf0K6Wto2HXJBW979jqL2ta0Ob3Qgx0c9eF5z7yFIjijsDTpdw/ICElbtvySjJEt5UUlm3LvO3Auv7Rqoom5t9L9kJ0khh5dKmOiiQqBI2QUtM0qJgeDlEZ6j7kf13XURSTKMCoIbDqH9/rG3sEqfHfl99X+YDRJIkrr9wqePGGYRuLDaIoFbOwRKQjOidkOGZzJW30I2n5joJrBzc4P58znRzEspwhRGRizE/y6EPAN0umxEDAreNQRUzqk3NI6XnmPd9HxdZX8Hey1ig4V7DCInWQ9FZy+1hHCEo1qVCEo6MjjCt67H79Odty12yV6vNlSbUXY1YW9tUOgXhthJMidGFlTZtIiyzDQG3b4KoJEOvJtm2Ee6qqYjabcXx8zKuvvspv/dZv8eDBA65fv05VVdR1jXNu65gunVpBDGIKfO95805K+rCCy4wMKSIFEINeRLrkx79LZhu3lq9JMQgamYALBhtsz1AVaLzHTmdR6tWAEYNv6lh8RdzQu4wbjudiG2NLEqmokrNwBuex1xPmLsTEZmiKg9gzFllnRiPGLVB7z0IVV5bUXRvXqQiaoo3H0JfYUbHxUd+zX7kSo8XniwWqA8SlEjWDDGuICHVdI03Ct6Xp34bZoWFvDGu0FzO0uI9yXq1otwi9q24uuhTx89Tf1KYRQcSjeBqi23Z+e1shuq3vMr97jUWZvTCZRJjHOTfg+ys8hJjcMXQpBmT77jEaY4Y6o9w7nVKUlsLuj8B/ohg/xMUXVLEmTqC1tmde68L++gkrxtB1HTcPj8A4xFpy1pHLMud9vu+x4EncUNH28BBSf3r7xto+etiW63jewPAKZ6mXC6azQxAH6aA5PT3l6OiIp556iqqquHbtGh/84Ac5PT3lueee64uwbxrj0hMuCfVEuK2KUM/DQNGPTIlpYwGLFeIm1sBo926/LdEgSUoyqkWj9DhwSxG6oNiqou08XQixuEzTYJMn1whGHzW+v/djpi5qCRIIrkPRePCE6HOeg7f2zcGuISpA4ZgeH1AeXaN5cEJhTL9vNqZJLn6V8XOzwRwVjfEnIhwcHKQa10rnO4L6HhLUBDvBsNb2JQnsmfSOHFxj4cUYmxhtctbI7RM9ZSLKNLhAG4lGfqjxxuMBUY/FrWhS2/B9GR2KJLOCD12yPzoWiwUHBwebkxfVarrlEtO1FFEl2jnbRi2NtXz+C8KHPgr47TmbMj1RjD8HFIUQYnphoiFUjE0aXSAW4xhNYF4QaYHHvC8kpiwJC9zzvEtS0zaEEDg4OIieNU3NZDLZrSXsoAG6sDHtb7NM0qsZLbL4fxETk7Z1LSF0GBcxVJsgoK7rePrpp/mJn/gJrl+/zo0bN/Dec3p62h9QuYDLQ5MYjC2SwXzli4dv8yqPT/9Xtcl1MSB0bGNd+T0YY1JkbNYa1gQEjYFbLqTgMwJBwUs09jfeo02sJuXbhsnaAX/VkWcoB83Kfj60RtIru6INLkcBIszjCqwtODo6YjabRexed6cFkPEfY9ou/6DQS/wZTswghkqI6TckH1R7jrKRpJ+1iBBCXy95pa8j9+R1b7V+76VRBcJIu0nfh/itDRLzSYUIGQezCaeo6kYf+meKIgGcLTg8PqJp6kEI3ICGBO082jSUQv+Gt5GamPrbS8npqccKBL/fpvlEMX7IE68UNrq1ZYzaGBNxZje+1vcnq6rS1Eua5ZLT0wfYomJ6eIxwceHiy/XJ89RTTzGbzTg/P+ftt9++MlMdlqiCGIqipE3VvURWGVR6cPQnTwnmChtbccnou1wuOTo64gd/8AdpmoZ/9+/+Hc888wwhBF5//XV+7Md+bEcfdftm30YS8XU0L8SL4ZXHRVnGjg6UkTFYUVTaodDMjq4YO0iOq9dEY65Nxt3eVVHjQWuco/UBCYG2a/FNQ2HWWfJY7t8zF5ojO7WH76LbamICo2YeJv9Tjn2QhHNH9hIbtdbQtg0nJ6ep/fF7G0GlO9bBNtRpzPittT2DNGIwI/gownEDHLSZPG7wgMmf5fa2+8Rvtwf0nRqNw8ugafTgSiqd6ULMw2RCDJ7yG/DZ6mGypROIKGIcRVHw9ttv4ZxdgXlGF4P3+LqmskOOsY28WCnBoZcJxlV85CMwmYDoftb+RDH+4SQPK+ejSDRq+pD9iOPi6LqOtmnoUs1Z37V4H1jOzzFFx+Rghtir+xKvU4accv75oig4PT2l67qHlKajNBRdSTUx59XF0yPTqZJS17aUVYaX4zXz+ZyjoyOm0ylf+9rX+LVf+zU+/vGP8/73v587d+4AbAS0xfFcHuPP7pwr+XTeZcgnGiMN3ivGeDSMJP6c9XK0WY0xFCMD7ail+L0KVqUvzRnhxRi4JdYRNOCMifUf2hZbJffelVYu0W8gxymoZI+b9J9mnF9XC89cek6jF1KO/7EqpCBvcoDefF6zWJz3CQDXH7HvCB8H1K0Ukkm/Z0ldkmYlkozkyf4xaK3D9buMt1VV8dRTT/H222/3GWhX+rv1dE+9l0GLE9ayw8bzNqaxFoNV6GzAaCDXvbUJNtpFw4E1aGvT2SEBWC7rPiniZh81+vfrgF5s1+mENkz58h85blxreP55T2cNwveRcRcAEYIfG81AbIRFmsWctlnSJeNV13U0ddsz5qIoKSuDLSytb0E9gttgcbLlt4soG3AgaiFlWdImF9PLBJ0MNBgqrCvIkmxOBjpIgP10YCRKb0FDL10YY1gsFnRdhGC+/vWvc/PmTc7Ozvr+xOL1myry6DFrf21blgLOEZa5uJoZlXV8PLSaNyXi4SqDfCRiECmjBE03gp02s3lmidI5u2LUzJJ3btVqgVXTf+IVgksZYFuPdZZusSA7KG70cdT7i0Y3aHlZ07razAmwTSEcKRNoDxYlY7UG2tDhCsfBZEqQgNmSBHjX3sjMFOiDxcZrPEvmK7E1Ifqkk+x0A+wzuj5pm5qKyWjwNG3NjZs3ODm5jyJYyelRMvPbsi4TVDYqozGcBWtOIgioWDpVtNN4OBIT/W03KKcZXTE4x8XU+RbrCrwP0ZunLOJBl6Dm4WAEv5xTycibR7KuFwhaxuR8tubbdwy/89stP/szoG0NZkYwi40xj+mJY/wihi6l3M2vwzmHsQVt29J1i8TsIwOODL+grCqKsoy5X1Tpzhf0vtw6vNyVghhXoDETzarpRakRNsaWfmp2RTQWW5T4rkZdlJoyGmgyRipxnHXbEHyDSNU/v65jXh7nHF3X8dGPfpTXX3+dP/7jP46lGpNnz7h/efSXHb+IQZ1DfU7NkBX+xwX5DJkSV/0eBoYpWMTGhHZGOurQDrJTPiDW5l80M6H1AWny4Y+58GPpPqET0BzMpwFjSnxbU5kIOfaZMy9dcIDR9IyCv0bYyvDZxU1td30EiFAgIoRURjRrlBhD4UrKYoK3LSY8hiSDF/TxQrfNxLBNEDob0K7l9OwsOnQUluOj6xQ2HvJqEry4L77hMv3K+u3IGzAePqEXklZje9Jdo4tFwPuAX0QNej4/pyiKXuMfYKXoVaTeo82SsvfmiWkx+lKREgMiMRMWjeNg2nH7NuAtBId+P0E9ENX0LvkKk0rRFbn4ihi6Nka7Oueoqkn8Lvuqp+vz2gu+wyU4ZVXyuxqJSJ+PP1NZlv2ieRSf/moy5ezBIkkCw6bNzFmIOH9YLgldh3UxsCMbwxaLBcfHx9y6dYsvfelLvPbaa3z1q1/l1Vdf5dq1a9y9e3enP//lxm4wphgZvIaj4/HQqMbB+LmZeakS66CZpP0wKoizfTwaAj4oLkWPSo8HZMlQcGv4vgeKUaSzCHR1zbS3FcjVmP5jJg26nplilUaSbkb6JeUFEAyiD/f+r0JX8ZwTE71tlBhLgaZ33NvkpP/9su3uTrcgbNXKE9Pevodz+pBB+l8uo3u0TSnSc9BWegiDsV7pmgZJSMQKxhAcEBBpol3ETnn6tuFnfnbCrDpBNCDSoWHKPnq0o/B7kIyJufETIIoAReGwzjI9mDGZHHDt+g2Ojq9RTSpsEYtDixnlytdoYGrqmq6pY8h0/4T8Mq9G69b+qqr6zx+WRISyiEnDh3Y0qYQpFVxmTiH0Hkt5oVprOT09RUR4+eWX+frXv87nP/95mqbhp3/6p5nNZo/m0RN72cdHvFOUvTn6KehfT+bWlkD28sqfj38OlLHnZV1HZinD+45G0MhgijAKp1Gh9QFXxhTUJK3RN3VK1TBqf+tTv7sUx7zZs6Hs4xU1lYd4/vq/8eernQLQWLQH0qGU/e4lvi9RxCRN7wp7dZsheT1mZ9t345/xX4YXR/i+GNq2ZTqd0rZtH7TVDyn9osnQ4ZdLLIy8yyDCpIKKRymopaQVw83jjqdvzXE0mFTt2Ov3mR//uuo1+OGaKJH5BuuyQSZP+ZCbJGc5tMZy+uABJycnTA9mXL/5FGJsf/3D9Ktpmt5ntyzLC+7Y3xbExWisxRbZnz+/zpQiGAje0yxrfNiUcDPcE0LgPe95D3/zb/5N3n77bW7evMlLL73U2wK2uchdvq8WayuWOi7k/uiU36/3gfP5OcV0zuHh0aYcLwJqUZ8kL2l7w/Q2BzkRIWigblo6X1HIaJ2kPSiaXTnpK1nlAuuNDylFSIcJIXkHyXeX219JuNDR/yHQEqQmVy97p2ksOW8PhFICHYEOQzXawZkRBzwBUYNhm4H+4fq0SzPfrk2sfabS2xQPDg44OTmhqqrBKKyMjMoR5qFtKMxarK6EaFtA8Mby9TemTArhxWdaCB0mCGoi0Nvq7nL38ARK/CIGu+LBk2R0Mb0xNDL6VJhltCdUk/FMo7XeOUvhDG1Tx5zvD2FYyxQTpDX939lVbeXZD0OpIEyXtRzyGAK+bTmbzwliuHbjFkU1Wbk1G3qzkfnFF1/kgx/8INevX+f111/nm9/8Zn/NQ5NEiT8m+8qSMzwqExnPnRGT3neAXmoc3q0xJV0HqEe1ZZ/ED/G+EPzIoDhcrQhWbcqIGfvQouAKjLFoUKwYuqbBaQ5h2lBF3mXa8dz1tZ+uzXW8VJTz9pTT+l7UZN6p3q1J0BfRvJ1zb36HzjdEVhgI6kEDQTvOlw+YN6fRFvYYDtxdAWS7byDaGDRpLQhN3fb++nVd99L+6m2x/dC20LaUZnA+yHYsFIxUdOGA3/tdz8lpi29qJMSypaox60Dt98/lEynxV2VF1/k40clpwFiL923KzhihnJX71v6IBuE48Yvl+PR8uJVkjKGu6xVLf1EM2PfD4ecCWFxRsZyfxkpXYgkh0CzndAGqasJkOmNycIhKzC+yjlfO53N+7dd+jS9/+ct9Dp+yLHnf+97HJz7xiUdj/AjWFPQpeR+T8JsPaWMMVVmxDIGzs3OcEyaT6aByY7C2omljHhvvl2T8dT3N1jhEP2Kxm3KRAC4YRE3MQ4/SKhTTSTRkA9YITdvgEr6sa0fHu34A7OH7vcQs+X8kOAGUwOnyPktvOKiOefjS3o+XFs059+d3OKyuY6VIhe2iLhC042R+H2sds/LalaCeXXT1vZmwetG07qFuao6OZjRNg6T1tboPk0YRAqFpcOr7+Y5QW4oTkRpliqssL7zYcftah9GaoBH7hwlqApj91d6eQIlfqKpqJF1HnLYoB7fMrYwsnxBpA0hKY2xW3Ml6a96VuFdm9LmyVf6sLMtHglEyOReN1z7FJcznc4IK1fSAw+MbTA9mCftcxStzP5bLJb/+67/Ov/gX/4JvfetblGXJjRs3uHnz5kqgzMOSmOj22AfXPAYjYTTGx9/HMvXGq5WUmROLMUrnl73pu7951GaGzw4mk5HHxfh6wfmYCVPSA2vvmUxnWFtQWIsVITRtCuiPLXz3pP3LkgwODCONbNktmDdn37VebZLShZpldx6lfEilNPMhG6i7Ocv2nMCj762H6V+W3ZWAiqfzNV3oKMuyl/Z7TVpGt6FICHTLBaUxSO/2nBd6hHnuzQ1n846PfqTj9jWfIotjnQvFE/C4yfdRWmaIL98V0U82B4OIKLZIxYlHp+zWaLnesk6ayHiN9x67coheXXLLRsjMTKuq4uTkZEdfLkeKYKzFWEu9XEY1XYTp0TWmB4fI2DgbJySqjSMO6Zzjwx/+MLdu3eL9738/L774Ii+99BLPPfccZ2dnnJ+fP3T/hJxwKxkQ3eOVeDUE2rbBHBhmsxnZdBM9ceLGMqkCmrWGtml7j6fhHa4ehEVRUJbFyp4UBtmg8IOHjih0xKprReGiqq2e0GaXUU34rSBB+/iC7zatjjp9lgynGS5M3Y6ZKb83uh1Jog9//0eCVnKVuyDfDYY/IlEgELRlsTyjbjzORZteXdcruXn6tZUcNILvCG2LczGFeGqQ/MbOltf47H90PPec5YcnnhBqVIthGohODtUarLtOT5zED6lQycgaLgg2YerGmoT9jZf9KuarozsRwRjpg36iMKRX2gSZaYYQVoK2qqoa5UJ5NIm6KErariNo4PDwEGMLmtZTLxuauqapa9p2Sdc1MZhrVKe2LEv+xt/4G/zSL/0S9+7d4zd+4zf41Kc+xR/90R9tQFHrANllYCBjbJTK3gGcOKji/ZDxkZ55jfooNkE+0fg3/q5/5zoE3JRlEVNdjPDVPHCDUCRvkb4Iu7HYBA1NqgnBe9R32Jzv6XuGY67SuFfj6NJYTDEz/6wlfq+MYTiOpe/f2CBMFNjknbNJ7KMs6edgrbfvv8XZ+QMm04qui0kanRtSXw93xZ9tU69480QtJnnoieXuqeP3vyh0BmhrIKTMoi3ZdokaCjfb288nTuIHMMbFVMBdwJYplUH29XYlvp4n48qatL+qdyVVzCJi6JolzA4Bh6bCy5elDPWMDakw5BF6FH/+nKOnPDjmUJV7b79JuN+SgM/evpGjB52NWGA5mTE5vJEYt3Ljxk0+8pGP8OKLL/LVr36Vf/pP/ymf/exn+Tt/5+/0c9Ez/zG2clH/gGArOgzSNWjpRsz54ZnJAJkZqqqiOphETDW79I0MqiGUscye1MRSi5lZ5KyLA5ylhHSwD8E549EU3mJDEUtZqqdWRcsKKRyxNKeJRTZ8E6My+1Fmyf/dl7XimMJqPnchGsLH+o+Q0kCMDee5wMx3WYpeI4OJkbvSJmnXR+0uGd0H+827rKokzQOE0+6E+90drrv3cDA54OTBaR+/k20/cd6VgGCCIcyXTEzAaQHSoTh8ljzKloDwEx885+Wbjpg5woA0kAoCNRrwRrDF/nX2RDJ+51zMzeM9qsl/OyWGss7SLgecfSDpf4zkh+TSyKgKUdYKLm82GjPNdcafiy3vy/dxcfux5kBZVhRlwTRl/cz9H3tsoErXtajUTA/pI5UhQk8HBwe89dZb3Llzh4997GNUVbWR/2QwWF7sraJowvgzs378mzDbDvoyhiOLpRGL95pgrm3MKx1m+aZ0OKuWsH4QS4yVNaOsmD4EXFniXNQyVaFrmqFsz3g9yRD09d2glcRzrAFda/EG6YWN/3hX+ngZ6gPqki1C+wK0I9gnn2Tv8jmbD5w2tJzPT9DOcHA4wybnjqOjo1UBigTXCmjXoV2HE0mR3oIEwUkH4hBzxFPvMRxfO2RankJItaaTJBbrHUSbpiu+zyJ3YUjF4EPTT3I+DLrW0mz4tO9mRtm5zYeQMGMd3XF5Jpb7kXPj5M/yAfWwjF/7xR+l37IoqapJ/7x118aoPsZCIRHJihBUCIGvf/3r/Kt/9a94++23+Yt/8S/yEz/xE0wmk03Gb0zf5rp31DYyxiFi3hGXQJOM5uHsDIjzOT2Y9owspoSOSce8bxlqRa0ysnHEbdPUMfJxzeUWBQkywl6hUzCuGBJphUBbL3GPwYD9OCnHqQwfwCoMJaPPhz8lGoS+t8Cq9c7oSP/OaUsehx/nQ5PSas18eUJBxfWjWyyXdcoB5UaCYDqoEuP2TY1JtsQgIdZ7EI8NlmANgUMOpi0Te45kyBiDqiDiCSq0GnDWXMiankiMP0elhjBIu0Yk4bYR5d2bPnVLeyEEgvebEPIl788ve5w6NidrezTPnuwemtILpMpFMU4hqp05xa0xFmtcwhizRgBt2/G5z32OX/mVX+E73/kOP/ADP8AHPvABIB5U2yGoy0qBqRIYdmRXeHxspOdTIhuxEQDWVoCJGRZ9O0rXsLu/vWNAfsZIY3JqsCn3S8zBH+sf5+f64GmXS8pHjnh+B2jLsGX8ZfYs6f9L8/o9xfUHTWrHN0PfvyvHVYwrOG9PaLols/KI2WTGfL7sC9Cs9FhiPzUE2uUCi+L6Cn3RUO0NnHaGP/qm0sxBuuUob1JOpC10GoFM64pNbXWNnkjGDyTGv2bEzafsBna7SZsJ1HSUFkB5GIEi5+zJjD9W4SlWvIyuciClVnuf9izdZ7hjI/w89pwxB4h2h4ZPfepT/PIv/zLL5ZLlcslnPvMZPvOZz3B+fo6RtQjCnklwqb6KiTBIGLuvPSZSVcqyZHZ4yOHhIdPptB8rCEZKEBe9fbRh3ZDf93HAh6IXkAzt99cgOHVYot0oAB1CUVVk3TB4T2jrzajL7zat2kD7jzJwuZEIDRi/rgGq+16h6CMfDydN9pWs2mbbxcPVVX40EgJdDHoLcO3wOqqBrttMbx5HkWwrweObJaXNTgM54aLB25YHS+GLXzqjWTYYJcaRjCFXhU4ViiLWDr+AnljG71ws8D3OERMXiekPhcuSMVGazvc8rAeOMTFfx1jC7y38D00DIxtAKNl7MGVYCAZtZDKZ8Nxzz3FycsI3vvENTk5OVoLNhkdFeWo4ZC4mYyxG3AhmeXQa50fJftHjA66/jhJSgjbVLnkWrR9/q21aa/sxxjaiSm6C4LyNtl8RPEqwlqKs4qEGdG2DCckr5nuJ9q0HSIfyEG0KWWhM+Pn3GNMf9mPKzqoh/iRrdNl19t2npluwqE+xZsrR0RHLekGGIVcoG9PR6P7rOwqbaigTErRoEUpUhclkQVE00SgvYUDrUmNNCBTTgwTF7h/7E4nxQ3RRDGhy3YxMztmYE98mg+om5smGVBTxb48PniGV7YWa1Ar1cFMy8Kwz/u0VeK5CWTQb2NnetlIUYJaKnXP8lb/yV/jzf/7P9zCZc7FKUNu23Ltzd7AERjwpMopLGmsj/i0D1PMYbbx94e6Nb7KIG334jfGQwvrzOMZHxOr8b7JtIaZfdsGiGFCN1ZqsRayhaRqKomS5WFCK/CciUcl+wE6lz9D5PePOqQnXBlYsbcqg0ZPz27/7YI+iLOoF7bLleHqTqphw/+59iqLaSH8yZjntYkHZ26KFWCLUYFHUFDx9a8q1n5hQ2FPwQ8bXLEwpQhuU2cEseiG232elFzPlXBhJkEEVXMrEmSXvfrOvrfzxy6nrhqZZ4ooJ1rpkSLoak17PybPO+Mc2gIdj/oO6l//eMOatXD2uoRqfe+PGDW7cuLFx7f379/sn9GxRIhO/zDwogLFRqgyhb+exbEhd/XVoc/gthKz9BKJXz+5TZ4i3GK4Zrw+jBuejCi7ExGymKmnbjq5pIUC9WDB5BA+td5PGyz46xciKBBkhw5SW+V3v3S6Kh7mITYbc5GhAPNNJZTa/W2CGAl3XYn3J8eQGBkvbeo6Piw3hLkNt6gO+bpgZE+vlKtEmJgEDLNWyrC3H1RJtBHDx7STeFiEuQwBsWSIIy/l8bz//01ihD0G9ZK8ZnhlgleiOuE6jF7LGqA8OZly7dg1XFOhDsq2xvWCcuiFL/FeBntZa7n8LmuW3i1TczTHszEUuEqtK9e3mFLiXh3qixJ+9ekbulo9KO9sZMW1MTBCnIeHA49w5m5QVmWwrGbcYM7zb3pzWeE9RxcAc7z1d52MATq8ZPY5BvkM0WgKa7EHbXoxzJWVRfZcMpdvJ2ZKD6RHWxKSLgztn/L0sK6pyAmov3gqPmwSmkynHkxvcOLxBvWhxpsC5bfMXQ7O6pkW6QCFmxWMsCARx/OFrls/+XkPTNhhtEQlAPBTG6bI1ZSFW4Pz8fG83n1iJH6BwBW3rqcqkqufAHuOytSpdOZi5MvV5W4zBFRXF5JDQF2oJEGLh5ATirAS97NskGe7JlBm/934lYOiykn/vtpmZ23hE/ZBCb/mPBq9RznPo8emcUsLaoY5oPpRUc/StDoa+UbTr/k4WBLHR75hVa8TjoBVcP5XTEwJWpiBljEPVBartAFlsPDxrW0pRSBQmidHGwSi2s33VrYgkK00wHFdTmtAhRgjaYboWFxQMhFRGsGeoI5vBSvB3MkquHEhjB4SssrImlPS/rHG39fcxRgLXPlMJEHLOeMh5pjVdcFTcoCgtVlx61KNx0g3j5p71vutZB8URzjoqO2FckN6YOK83J0+DpP2+PhW6uc93PffhUpQIhZkyq5RJOeXO3buUVayZQRI4JRugBVSF0Cwp1ePE9ri9EqFFbxxf+rLFGYPqst8/MuZZ2Z3VxMA1VYnZevfQE8v4RYSyqjg7PRnwHjIMaBPzCkll3N1OzLTYMtHMYKI7pm/qnoEfHB7Hw+QS68SYiAePoZ1c+jB/dlWvnky5yPz4u1yqrW0bWh8QAp0P2CJl6iRLuMrp6Sn/4T/8ByaTCR/60Ie4detWkvilPyxEJGZv1FU+srt3CqZAcajG1Na5DOFjo60dCbG4jlRED4kWH9r+0pWNk5vRWFh7OilTuoV4nRLLLbokQYoqXgJBLMYUBF/jxBB8hwWciQxH+uekJ8noqRmeyMwA1tbPGMcalZccHdj5nh5yy+cEqwyuH3OP1ZEk5KFqmzJoQmMvNuMLCp3QNh2NtlvhyOxKS3ruekzKONHfLqa6b82vXztxUyqdpLFpD+0bielVjsrr/XgfxXb2sIdcVysH00OCBrzvODiYkjO3rq65CCt29ZKZGfczQjdGPOosB7OOH3i6xKbDY2WtZKGNgZ+oKpOD/RW4nljGDzFR0YN7d+n1WtGNNAkXUbYHCIGuaenams63dE1LWy9pvWc6nWFMwWpB7YHWs2Fmxp//LstyJUjqUfL2mJGBi1Fv6rrBE1MOKwbnipFmEvvSdR1f/vKXuXfvHq+99hovv/wyzz333ErRGF0L5rlY2h9qD6xEEL9jOviItYtBTIEYxQi0GwFkY3gv/jTGUBYOi/RmM5vEMJuyOSDQBcW6MvHPgDEW37SRfRoTN+KAGa246QaJxuGA0gVP17aoXdKbhGV9XsfQ1ejTLV5MpLYvQMF2Um7NpEj35XJJXdcr7y8bKcdreFfqkfFBcBVmvz7O9fvz83KBk9zecrncgE33wajr47iUe3LWsndcW9c1Tz31FPP5vHc+0JHwmVoBBPVtTMq2FvdhkiuqOMOP/EjBcbHEURA99Vlrh5W9JQKHh4d7x/BEMv78Aq11PZRhkxpYliXLRVrIIeyvQ0qMTA0hoMGzOD9lcX5KCB1lUTGpSqjrKOkV2aC6vT9De6b35c9pf3OyNnhENVNSIFdsafiRfp3NDnFFhapSlFXfWU3xDtevX+cXf/EX+a3f+i3+/b//9/zqr/4qn/zkJ/nxH/9xnnnmmd4T6mosO6ZssDZJ/Lwb0Hceu0XVIaIpNcVFwVuKszZK+4nBC/SeLYU3/ZHV+oCblb3YbURom4a6XnJuTAqf99FSl8jn1BKk0owamDc19bJGuq6vwrQejDZmuOkKBLMhaQPReWEN4giqhK6LRuvtskkcZ5acU4Tp9evXmUwmKykx+sMrRXvnZ4+T3I0/j7EvunH/uM8r/d+y7nc5PfRps9P3xhjm8/lKdPy6M8X6MzZifUa0z+616zMRYTqd4pxjuVz2xVeGdzmsQFWFpsYGj3M59a9EP3061JSog/fcNrhlGytz7dg8fU8Fgg/Ua9H26/REMv5MJjGcEHwqqhFr1PbSyejabSphvCbCGiFEw11VOFxRIeKiFNm2dG2LqyJOMOBv+ym6/8WXXRRFvwAfpeLVxn2ZSyXmVJYTXHWAElKh6iFFc64B+vzzz/PJT36Sqqr4Z//sn/Fv/+2/5Stf+Qp/+2//bY6Pj0fS0z4T6bhTiU1Zl6CWCJtchfuvS2SXOxSTxwcWocUwMP1tQTT5jqoqY8h7D4FEqEzEUqjDJE2gDVBUE3zIh5ngm5p79+5yqgEVg2fwYrLZsYB4kGjCeLsQMM6yHh4bQshYxVbmhZoNBhY0loZBVl48ilJoIEwP2Esj5pXjI9YPn4uk3XXaBl/uen/rmsJ6MGPeI2NmndufTCYYY1YLmK+1OdY8ViTxEW2L/h73ad84M1lr6bqOtm05ODgY2kt7IafmlhDo5gsK0uvPAD+KisWbCee14dAtsCHCi7s2jqS+B++Zzxf8we///s6+wvcB43eFo+263m0yF1ZRGQxYmbYyFTEgMeLW2Gh1j95BBiVgnaHtWiqBy8AXuf2maZjNYurUbRvsqrS6ucbVZNMGEkZF5ZOUGO9c2UTn5+d89rOf5dOf/jSf/OQn+cEf/EF++7d/m9dff53r16+PNuTl+hWhEIMxMSdRrxbtkDwvHttFF0cVJ47R0nVKzMCZXDkzJr7l4WIMhbV991Ri6t/YWjTuotnbwmAK10vxoPg2YeBVhbUFfVZmQEbRz2Oga6hku6UCsJCgosQAdf3LgZTda0dRtK535oMag4Kq2jOt8/NzHjx4sMIwbZ/plQ0IZ/26/Pu+f/m+bZ+vQ7LrB0H+LNvJcuW4XYfMtt/X19a2OcyHzb6/1787Pz/v4bK+n+sQpw9os2Ti7JDxNq29QMXp+YQvfK3mJz/cYbXbul/6DJ/Ee+/ev8/9Ow947bVvbl48oieW8efFVxQlbb1gmuoSJOEXa2zM3bIDnhlThGc8hXM0dZsMYZKMSSaplpmTXczNMs4/bj+nbniULJ2x8f5/qz0a64KSF6usVBjz3vPrv/7rfO5zn+PDH/4wn/jEJ3j22WcBWC6XWyShS3r1IFhXoE1cqGZkSLwMxUV9ufiJfhuIwUhJHRQjHTldQ89LZdiEuUVjBoaVDXGR+RtsiFW3EMWrxhq7hSOgUXtSxbcNReEwkxLr9hXC0Fg0KfXVjN/N1WZly++bFFTxWzLAbr1LBxinaZoe9gE24MishWxjyGM7wC6tIbc5dnTYpxmsf5evL4qCmzdvUtd1H3G+fs9lYZtt120TPHKft+3XPO6cPmStNTL+2tVLCiGl94hrNrVAsHDvpOPumw7tNCEPupVXDYe+cPLghGW95Ed/9Ee3jjfTE8v4gSQJFCwX5ytqrEnpmetmOSy6XSqUgDMG37U4a1JBliHi0RhD6EKUDK+wb8c4ZJZU8mHwMJ4IvYvmYOMZvtOMLQ6LbnyBjlTnsiz5yEc+ws/93M9x/fp1Qgi8+uqrPHjw4ELJaHffotuqNunZV0N6yI6OkgZz0dzEwy7W2g1tQCTQdYu+td2q/LCBEAaXS4FKHUajfN5pQI3FOIc2bYQT2wbxIZZdTBBh1OjH85TV+PR7grwGNG73uHqmud5W+n2/xngFLVJWpeHZbNYb98dMehcMs97ndWl9fQ1tw+/3Sfh9N0fMOGvP8/mceo9mc1nah+GP/97H+K21TFJ69GjYZeU1iEbGPxHBrrjzprVnhdlR4JX3gmFJIGbq3NHhGCOTPBCNMbw/JVncRU8+4x+pWgBiUpHz2l7C2JeQYlGWi3NCYRkSHcQdKxqv0RCiL+Al+5UNvFnNLcuSxWLRS5xXpsy0BoSn/137NAXDxdJLnHFF3r17l29/+9v9PP3Gb/wGdV3zvve9j1deeYVr166tBJ7lR1xuwCSM31/pwMjkO8+ffOPrvPTCixSXym0kICaWu2ujJO/b+sIeh+Cj627lEBmiGxWhVNNrKoEAxmGswxhPYRx1e4ZDMKoJVJIVpr8CMzDkj8zdvSytjmB0eCtbmWj/5fBja5tjoWG9nSy9P/Ta7Luxeehu0wi20S64T1U5Ozvr2zk6OqKqqkfq57b+PIyzxWob440Jwefc+ySmT/awjetMK27cLLlxbYGtO1Rc9BLbaoeMZCRm/23qhm9+8/sU6snkXEzTEHzAOYsxEiGbVBwkrXp27T4legR53yGEmFo1fSdZ0lIleI9NubYvwo7Gbmi5Is/Dpmde30xmfWFAgqVSgM466xBB1fCd73yH3/zN3+Qb3/gGd+/exRjDnTt3+MQnPsHt27cBtm/8S20IQcTSdZnx73J83U5t1/HZ3/kdnn7qKYqj440xbH0egkgBojgrdHW38v2YdPRL26byeGKTFpcEhg5icFjMjlJUFWVRgCrOOM7qhsKaXkvon5CZyPrTk9CwfkCsU9ZAJEN0o5aEHBAUGxzJ//unRzdnsK+VsHaAaJZEV/nWpQy269DOuvF2/fPVNlIns8GF9PuoZrEQ6ziP+yJprUd4sH9Yf81lGHhua5/msMsLaefno/8D+LaF4GNJ2Fw+MV9rhDt3ANvy1PWACSXeNKvCwogG1h/XSdu2fO5zn9s7xieW8ecX4IoCVOiCxxGDlgzJpQ5LzOFiehhkY1rFYpzh+Hg13UMueagSjbxdV2PLy0kaOVI3M354+CydKxswZLwpb4xMI8xi5ZthQxdFwQ/8wA8wn8+5desWv/ALv8C3vvUt7t+/3xeKuZKRdehhLHvpDhPclHCnq0i5qtR13UcYX0QBKBQ6nWLUUJiaRjxr3GDr8dF2HW3QGNydGH3VWWxwsXxjEBpvqQ4qSusoJo4meLp6wYGlN2ZvMdWOBpR+DCWYts+HpjZSNLLih6yMalKsgWI1Mg9vQoKjds/LuAt92xpdS3uHB4Z8RNELpYuWGZXengH7peCL1sl2Zr/RCjH4TkEtSMCzBLUojlIy7GpTH6MxPvgQPWBEsWIvPggfI41hsBUtL51jms4urRsKX2NNiVFLl9IwCIalEf6nzxsmhefPfqxDxUdXEtmS/E+jxTGKjI5nbt2KnmlVsX7lCj2xuXoyZW+eWJQlfiYiIDEiNSbkuniR5jQG2wxVklSsy1K+fnxPrhrW9+8haD3Z8Fjq3IQIhmeEEHj22Wd7XP/P/Jk/w0c/+lE++tGP4pyjTbjhQ3kcJWnUWMtF83wRXXZW4kY3o3e7IW/vbM/70HsfiSQJEsEmSC8QjaXVJObgFyMQPKHzK9qWJNE/z/TwT5LkuvbFrgHL6p+2KXD3J7jTAtONfbcsoo5djSmy4omy7WGDpSvLpxHYavySELorlY1c99B5WIqHUQDxBOmY1yecNG9z1t6NRnY1kN1Y00F43j7g3vwN7s/fovMxS+VV1u5l+r3vml3fZVui+lSsx7mkxTFoitLSLSvm9z3XZgn/zwfgjkO9P1Cs4fYzT/P888/ziZ/66b39f2Il/kG1MxHqGQXSmBTkEsszehyOddY4pm0q7fhUHx8gQwDV/r5lL5pxn3KdgH2+xHvbzUxl1M/U2b1M03tPVVVMp9PeHzq79Z2dnW30/UoHQMYtbYEGjVrJQ0DFmwDWBdeLi7V2UdBuh3y/2W7ULloOyiLWYlfBqsWoGaQ2ExOBQVRemmU9uGWKDFDO5bq6k1bR4Zifvb0beP1338IWynMfu4lcG02mpqNp/ZkyJNbbSTKSwkcfd6Hh3t03ODq4wfXp7Yc7/B+SNHteiaJ4Qmi4++AtzsIDSnfAwfX3U0h8D5K4X7DKaX2Pu+dv4kzJrDimsFGrftRD6JHGAv2hqt6jbUNRGsCjYgGLaIdISWkrPvCDU97z9Fny+Ip3GuL1GyQpSE+gTLUhbt64ubc/TyzjzyQiFEVJ19ZkV0KXpGtrC0KzHF7KFdbFsIgSSBRyyt/96PUYaxynhnbOYa3tpeuHIUWHOIUVoxnA9qyYY9XUGMN73vMe/uW//Jd8/vOf5zvf+Q63b9/eSNlwVRJiXdqYynn86WXGdFWK829tRRtibqIQxpW3Lr47vpeAYvsc/FYNRqHTgCurqJ0lwb2en+NkVZd4XPBCXk05puD0jTnf+b17FFPHtfcecng8BfHpe7f7qRd0p1//mp8af3ah4WwZ88kzfYiD/5FpDFhG8azu5nS+6V1ijUi/xkGpw5KlP+XQ3kiQbLr/IbzlHh8l8E+hXS4oREbyT4Sbo9h/QDHpePX9CyacI94SrCL7HFE073Ht3+FF2tkTD/VAPAVz2URFsdYMEnaP/+xvY6fbWZrrEHyUaLdM+NiVbWw4GufsycVP1r0crrTJdkLnm/6/21zrjDH80A/9ELPZjG984xuEEPjxH/9xJpPJ9n4oecXt7ROAcWVMYXDJ4fQufWTIIfOkTbfAdRLA2gmx8lbA++ahmJUmqMcGE0vdAW1QiumUobax0i6XWI22o9X5eMwMUoX6rKF7oHQPhHrepbS8iopnFcUf3xePj72H0cb6jidZkICaLrXPxpp55/6NmZeAWqwUHB/d4mByjMmJ/iSAyWw1jtOIULqS64e3cHY/1v3uUlzF7XJBZaP8btSmue1ixYgiIKXhcNZQmCiwRNtOfypvkCCYZH9Jq+HClffES/wQc+HcSzlDciGWiPGbC/kW7FYRJb0MI0LrPUEDdg3H2GYIywEydV2vQDsrUX5XlUw0embYS4p86xGRmV566SX++l//6/zRH/0RR0dHPP/88ysxBysS32W6mAIcjCuThwj0nhp7+VCvGKd6ACZh43LBYROxXmMr8BZrwfuanUxx4+7o7jukUDApYjcaWNsQOEj+2QDBe+g6HBHXv9hi9AgkymRWURwbbKkUlSV7uYjm4iNbni6bTH8DDdr4PY8lECREWwar6/idl56zcdsgqZLa0cENTpp7dHWdpNZVSTieAxYnE46q6zhTxPfyXa4g1rtdaoAQojuJAtiYGlsUlYLzBuanjqdmggmGYDwRgnTk9OoblBw6xvbGt++8vbc/3xeMvygcGrKEriPpJko1WU267EJeYeaag7g6gvcYW8AWxu29X0l2tR4FGfu5Kp081o11SSwrhMDJyQnz+Zw333yTN998kw9+8IOP2BdBXDny49feFrGV0vtQoG5qXvvmt3hwcsI3v/k6xcsFh9P9KWcjORTBWWgvNLyv2nDKqkRSUj9RoQjRyyUQ8Ai2mpAN5m3bol2LM9D7Y6+1+SiUZynnNzp+zyG3fugI4wKzm2UyDMY0HDm18taZNZePlu7RHs3rU/oxKYFxDvx3jDT/UKJ9wwwCQ5AIa2UXGYDk8eJDQLBokFhl0w3Q6ruKUG1Q1rpWfQglA9BqwVjefKPkrTcbbn4oupEH0agVADGAa81AJkJHqrdrIjvvuo4vf+Ure3vzfcH4QQYDr41TPuQcEVQ9Io4LxdA1ygdJPGU7CLngSaTM4FVjkq22bQkhMJ1OuXHjBsfHxytunEO5yMePRV4WdX7jjTf4+3//7/PVr36V6XTKBz7wAd73vvdt9+G/zEZK8FPM1dMx4owXTHVkdG/fucM//ZV/xle+9jXOTk/5X/21/5z3vfLKXqk/GjKjBCziEQlocpW7iKwVnDVJfQarhiJEw25HQFwBxtC2HdYa2rZGO49zhljMfSfe9ogU66u6G/DKzz4HBOxRwIsOdXHNdqY/sg9eirJmliumZWlZJa/L1bl/J/hpdpceFkxARanbcxb1CdaWIKNkepoE3xAwRujwLLozDopDjNh3jelfHPQliWck4aePn7AIcPogpv0QzogQnmCCRMiN7a9xqZ5aYHZwkDLhWs5OT/f284lm/BmWyCkR2ralKiIDc65Ikr/B+4C1l2P66xhn8B1t09C13YBPQu+n36aix5PJhOvXr1NVFUVR9P/Gi2Nd4r8y7VncWcHZRVkj+da3vsULL7zAs88+y+3bt2mahrOzM65du7bW3tXy7Rjr0iFIbxTdT7Htg+mUoixYLJaINSmx3facJZBkU4nVr1QzDr1DRd54XgykK1xMxmYULIJLmTA77zFFRQDm8wWTSUnXdqABIw4fLoOuXp5WDXRxBL5q0duyIuHHb8eH25bRXkmmSUhxbxuwhECqEqdrV71zFJVUIXqyeDrvuX/6FnU45+bxc4ixURNgWNwiirFCR8vds7eYyhEH1WGyybzbhuntNHYCUASVJjllGF5+35SAwZqAqkuFlLpUsGdT+AohMG8bDm7cZnI4Yz5fgCqvvPLK3j48UYx//aWOIZnJZMr87CQWyADKwmFEEGv6qEVdQyDG9/cRpxpiiua2pW19PDRcwfTwiCCwrGvatsVaS1VVHB0dUZYlZVn2ebr32wxGhs0t9oHt92W5qEPM5uER0GTY3nxeHldIXknee1566SWMNTz77HN887XXePDgQc/4+z6N7CP7+inEbJbOVBE6yHlJ5CINJH5/NDvkxRdf4D9++Yu88MIPcO36tQtwdMFKSectXgXRBaI++02s9HeYgziJRsA6m2CeQGeUaZPSV6tSo4SiJARl6VucN4R6SZHCAVVy4JNuWBRk7ec69faPrUNK6XhzOucR5ALRALuPs0tat6qy+6reppJa0hiwhfEEGh40b9JoTY4gzu/ajAIGhz7sMkLS93n9i/6ODMsQUxdYk9IYK3S+48H8HtPiiOuTpxCylh6GB4hwWN7k+mTB6fxt3jr/Drfc0zhbjaChgAm7fIq39f0K6lK61OJiTWCBID5q3CFCNl5igF8QUAmIxiJOagzHR0JnFpjTuO5sUEJK8xrNZXFubAgEEc6Cx08OuHnrNl3X8c//+T/j1Vd/kNdf/9bebj7RjD+TiFC4YsidLhJDpSUmWVIfekhivZ2xMbPrOup6CShiHEVZIUFBDOIKVKEoC2azGUVRMJlM+t8vQ3VdPyTMk9XdkGSfEfY5fD0WjDbmJ0t3169f5w//8A85vnbM7/3e7/Lg/oM+ZcPKPYNx5GLqGYWO7tkjgkqG0aAsCl5+6UXe88zTvPzyS1TFZuWwdbI2lnoEQUMN6nt+tG1+x26vXdfhQzSSq5AMuzEdt0ewRREFhTRnbb2k7A3BSerUgf3tjg8ZY8/xmvV0G1snZiz1jRlmnhXdrnVIL8FHGs/+Ji/OaRqS1hSE+eKU5WI+tCfpAEiHZpzcodGdB9wF7y6j3jkgy4zgnCigGZ6ePc+BO0w5bTTBmBboUISpO+TW4dN03ZwHy7foZIElrxsF0QQF7gTG1jo1Sqg8nFAr66ifWokVII7K61w7eApLgcGNFkUalypGFfAR3xdFveGrX4bDGxPec9AgEpM/Zn1VSHiW5HmCRoXp8XXKaspyuUwV0xpOTk52vIFITzTjH0vQ1lmybTd7ORgRjFi8rpczG90/arLrAm0bsM5ijcNVEyZFGZN1Wcd0esBsNuPg4GCvZL+t34vFgvv376/0+6oHwD423Buzd3yXjc3PPPMMzz//PDdu3OAP/uBzWGN4+umne++jcQTvZVMooBC6NjKISw5p/O5eeO55PvT+D/DKiy9hkuSz71nGlAQxSADVZFSXDPtof8AWRYG1WWqMz2yalnrZUkwqLAanDqMmaUwGl/K9C3Evd8sls1GO+jjLOXE3O15KZCNZxu6n5CFQiPF07oOZrtZ01gIBtRy46zR+mRjViL8rqUrNtn5tPlEZHTI6vrY/tobPRKIL4+gQRWBazTie3sSJQ0JMc6A6zjVkMOo4LI/pjp7lOyd/wsn8bmpneEaQzdlKANdqh2Nntk/TVorGWA6F49kNRAuMmvg8gZwsxmgs6elxBDFJa+v43FeUF3/A8vSr0T1YZBCWEtjXn7FdEIJxHBweJTi74md+5mcxRnjhhRf39vKJY/zbpP7sKhkjdQNWBmnfGIPXHIU7XJ/bAwghboK2C1TTGdPptE/LO5sdcnx8zGQyxZiYBO4yDDuEQNu2NE3TF72Yz+crwVIPRVufrciWnCXrMQMAN2/e5BOf+AQAp6ennJ+fc+3atZWawP39IWlKZvd4s/9C2y6xxqTow4tp3Lfrx9f46I99hNvXb17q3BBxIA4rIOIJOnj1NE3TM/4QApOJwZhB4vddYLmsOagqHOCCw6jEalricIWj01TBzHtC12HKwSivIcQSeSmP62AQ3Q/vwfYAu+2T09+9IvXvvj27+l2yfeI7NcZC6ziubvUaWN+FsUvvWru73H3XD+ycDjwy9eHioaBLSNK/Iaf1K2yFX8KcBaIR8louGxrfoCFJzxgQj9MJU3MNr6aHkPpOrWh+qfVRLEPfmx6SHIQWyf0dTXyudR0/cpR2RghCkA5BCMRYEEluyUHAJ/tFwEZBXgKNj1qnEgUryetiNP0qcVYar1BNKKspIDhneemlF7hz5w43btxYf6Ur9MQx/l1kjcGIwXcetTFHRpTK+5v7xTd4NcTF4FVpu46AMDk45OjaNQ6Pr/XpDcZVifZRzsjpvadpGk5PTzk7O6Npmj5/99h75lG8e9btFcMXbG7IMdyQytepKh//+Mf5zGc+w2uvvcbTTz+9ptrqhkvq1r4KMfd4u8BYu/eQWO9TpsI53vvyyxSpQPyK5LjlgZo2vxHFGN9DB6oaDfxV1RcSj/aYLAg4VGL6DY/2UbsQPXqCFDG9dNtibSy1aDUWcs9M33eebrlETEcuq5TjRgYaDr8sgFz5LY/KV64KpmPwZ/je+w69VDCTpjVtOJhNkbkCEyDnukpSf+/IMFoTo893QznDxT5pYxvvM0P2OcVHZrIidEs4lfPIuFFUAsumpu4iBDtxM+pFkw5Ej+OIIzONxcsFwKAqWLO2t5IAY3PUfEaFkgPIMIBUvGjFu2m4L2ophsKWtHWgo0FNQMRgcYhCC8xFaBSMNqAGDR1GHE8/pRxdg9rr8D5HSlVfl5nAUhXb84zYF2st3nvu3r278w3DE8b4YTfzN9ZibSr/R5zUsiqQ8+QPkVVBlZj3IuX2KaoCW1iwHTeOrvHU009TFEVf6u0y/ckeM/P5vPeR9973Wsh0Ol0p0/bIc7DxSa/KrPQr/8xQz7ptYzqdcnZ2Rtd1Pc4/PiC83+1iNjwobpDQ1fGAHPfnonGMDpTe1TU1uRftUYtHEPEoLdnUmtvL784Yw/n5OSJxPIeHR5jkC60oViUZL5XOKDhHxvaNxBw9TqLht++bBuplC2JT9s3ICFdhsc11E1GwKwAyuspwSbzIjtdkYtQqAt5zeHh0cbMKIrHqVllVHFSTJOGG1WyiWUrWLVW9dH1VjISqlY9zG/HPdRQo50ZaVyvEKNmbx2vLW3e+zbfevId1BTdv3+Dmtdv0RuhRZHM8lLJ7ana1TgdP9sjKY9P4LoNqjMhn4AlIzADaO4WEEdIQokDk244OnyCZDvCYIHSq+K6lSa7fQS2iAdUW5wIvfEAoisDbdZvSwETByZjIm6JTRMAZoTOG46pinKoaIvN/7bXX9r3m7w/Gr5rqehqJLzGf5taCMQSNofiGmM4hqGJdwcHBAQeHM4LC+fmCm7ducZDq5MaNOqiNMFLFktTTdR3z+ZyzszOWy2WflC0zspzxc4ybvxORkaqjRb1VKBfGSewGiCsk76W2H1Pu66VztkiU3Hy36CXry9LKtWteJ3vvUUtAKIih8PHGQY0faypRyxqgv9yGoNhgMSGyuEYVW1U9A3fGsKhrpsb0RkORmAb8wE0QO2ytfv7Hk7JBF41sY6T9fZlJrXyaNJAYf6AbUM3OVtMcee9ZLBYs5ueJ6ZiVnPHxWrPCktc1wjgn8bOY20g2hj4YZzezeQbjN4QrIUa0RorSezY4SJoAMdpDL9akBIyScivJEOHcayfK8H5WtJr0+brHlY40mx6GGWs6KciNWBcgBIVkqPUIXgIuHY4eg1WFIBgTcEVJMOCbYzTkoM84tuCTBhQCgkeNYXY4i+9Acp9jkaevfOWre97yE8b411Xd1e9SOLPSG3m7ztN2nsYHWl8zOzxidnwt5c0pos99VdK2XcT3UxGWvDZWDUHxr5zRMpeBy+mXs3E0M/x1bP2dDH8fPA5YYf5DwjjQUbBZ13Wcn59zcnLC66+/zs2bN3ccqKsawvZnJ4m5XSZIY4RPPOSQd92mCsYKIhbvFWc8QdsevwXpIZ58iE2nk2SXyS1HRmQRXHDYFDHaeKgm04i7JueA0HU4Y3oEGgTrHHaaGP+IiYwx4lWMphcX2LV2983CWNjomR8jKVSVIIqv696WcRFlLXV+HtewcwZNxevXr1PtNjWVNacIEnwUt+fqYuzPI9lcQ0E2E20IjGoUWxRlsagpbYWI4+zkHJ+K7ohYREyU6nNBHRLevwUr3OVUMT6Q1mHd/F1/jRBdNImuqCISeykGY2ys9W2yz5kQxKb0DUWMJXJCUMFMsqY1ZHsNwQ8TojFHkS1K+rWg8ZApywk/+ZM/zb/5N7+xMcZMTxjjl9GpO345eb0JbdNwdhJovMcHpawOuDU5iCoaynQ2Y3YwW28ZGFf5WaWmaTg/P6dOPvxN09A0DV3X4ZzroaF1iWhdwsmf57E8VlozMK62H20fr732Gv/m3/ybvvhKCIHXXnuNn//5n1/r3+qhtf+5URPt2iZKX484rl1ne2TuYMREuMZHqc77hPdqHHNVVf3hFj18GiaTqscVshHUqmBDgUm+7wFDUVT40PUl7gb32YFtD2x8OEy2j1jWVPSr5ktc0yGE8UJHzMAgDQHpuivMfZKGg1JVE4qyGAY5el6MTL8iPLm2ZvbFLxg1Kb6EPjtpj2nRgXgIFisl149vRyjEG0KIEnCEcUI0IkfQH6WLjH/rE3vdpWe6ENM2aTqkjEhvp9JU/WvFfpPfuZA0pQTziWBTcF0Qj2kbnLGo2sjLxVOYirvNFH+u3LpZo4T4vLToFQVj0MS2XWG4du16cgjJWqdgTcFHPvzRva/hiWL8kVaNUGNIwhpL52PSI58W9Y0bM2azQwTljTffpG09QXXkUy3xlPaB5WLJpKqAQN22NHVN03TUdc35/JymrlGNEbhVVfXFlsf9GPfnnZb2e9NbYoiyfoD1fYuzdf/+fb74xS/y4MEDDpO30nvf+15efvnlvs1xwNMl856hCKFbRmhLpK8t+uiUvL5zNbQ0GDGpZq5R2nZw1e3XQbKltG3LYrGgLAuckfG+R5Jh1yC0QUEc1ll812HE0LVtdMnbkgMne6FfJkhtdFO8TyUm7Vob5faxr07jmKeuPn8sZedfd0E/q7BUUcTgwxhoJP0VMpqsbc2Me9xrlWx/5JroQz6pTZLONfc3QzBYkMjAVS3G2BhF3Xm8V2YHE6JNQobbsuCjSkyIdoUFmJj3uNh8z9BTd3N6FiGuHU2zpICEeMhnj68u1HQPTjhwDqMh5hGTJZ1c4zvfgftvNEx+9BTpvdHSuEUJBlRiHiqxhrKo4vsZCaU+dHzxS1/cO6QnjvHvE0InB1Nm/pjZ7IDJ5KBX26IKrNy4cZ17d+5m8XA48U205D84OcHYmJdnfnrC2ekpdRcwrqQsHAfTCYpZkeS3Yfb7GP3jPgR6ECJluBwk0fw8+kIy73vf+/i7f/fvUpZlb3/IBuhsLMpM38jmAbKrBx4D7RnWlYlVC3KVjbdOPRMx0TCWPoxGXAcyjRWzrCfUXcRHTQdeendOay1lWdK0HV3Xgkbjv9joCCDqKHyUwusQsOUEWwglDrAslgvK4HEm+miPoQNJwMjVaIAiFA8yBpB2tyY7fh+3qToGgS4iIad90BTl2qs1oyvGz8hF6JEhmdv49eblMb5v1f6bD5vxTYEwcvrPMAqQjOk29csnTN8g0oENSIIU1QRQ2xt4gT69scglpRYASU7IZvOIH8/KyscyjEoYHUCqtL6iOZ9zs3SoEQovICWdg+eO4168fTil8ksCLo4xniCQgcUAZ52na5aoXusP1jjXni99+fN7h/TEMf4xrTOkg4OD3pVv0yNHKFL1mhxdF0JAg49GMgMnd+5x/97btE1N8B0icHR8g2IyiRCD7MyN+F2mAYjo1UZdnZ+cPO7o6Ghjbtq23dAOLku5EHjb1FTJwJ4SEDw69d4y4wM1J2cDY6LXRhJ/UdXedTYfbnXbMp/PscYwOzyksI7COayY5NETDf/lZBKLq7sCVeH8QReNcuta/tpvlx4K0V+9tU3MERTsIPl/15aU4ulodAEKpu/OqpaTDbRjHK7RLYeVrDH3/ikkz6cw+jrgaSGtlkJKpmaGlSImppNYcjHbkPpDIQVIiQqqBtQPRtjRUSrhKpOaolFWXzer1fZ0uDJpF0YT5ERI2VGjB5jVKHBaEYx4xJR4o1iUF24bnnrmkMqcE3OuxjUtyaMna1giYAO0KZNAf6xqhKCeun1r74ieaMa/7gefPWjWKcMv3msymishdCzqBfXinNB1zBdL2maJAM5EOCEyRE0udIn5kE/e750DQDWxQ8kbJbPegWHGBFyydX7yNdGYR68xXyohmSiEgG9bzNQO0s9jmB7VEOuu5g2YJEEfslSXVOV8yEmE4ZqmYbFYxCR5CJPpAc4Oa8NITMxmU9bLTpWDqsKY2P+2bfFNQ2VMX6xFZDvkcWmSyPiCRAmaxzRHD0UjL7VFe07dzAlEAWhFd5AYMev9ak581bBSILCHNonutfkRMX/Q6poak2BQEzW6Qiqemr2H69ObGJlEqV978DL9XyPjzwcRgVqXMYZhnRdsO5j2T0fsk+z/XBP0WEhJaSd9fp1h0On6BCqYBGWpRFN14ZZ4jtMaiBXkIKTAtNUD1xlo6iW+63CjtDBG5MJA0CeO8Wc3q6sw3ozPnTy4j+9aTk8fsFwuovdHaLES3UBLZ+MpbeKiCr6NrlX5JL6MsfPdptRfIaSFlKRL6avE9nO2K0cRMDoQUjDUlo26i4JvCb6LOXSEtEseba5EQUOHJ3o2DNWXCtouYayaSy5mN016jS+7qfqgyfieCt0TGblThyO69nprsGXZQxW+6wh1jUuurck5sDdUSm7oKqQCQSiaCmxHMCGp9vuhnkvN1ZW6k5ioAqKcN2c8WL6FEvDSkYwRvXyLRKeInqH1rQysf2D8m5H14zxFg8YW158NJUECwXiWYUGnLcsw59b0OSbuIM5LGOwOuUsqEAgsu3PeOHuNuln2h7+uXn2JmVuFc8bvdmxLHJPBcG1yk1tHz+BM1dsaJKsNOvQVicGkRi2iylw7/t1vn/DJjwamIlll7tdeD+lodCmmbakXC2xR9HNvrB1SWOygJ4zxy9UYv0b3y/lizunpCXfffgsDhHaZqmP56JJlTSy0kdDMHr1TTWkLYn3W7wZtZ775w8idvfcslnWMVTAWVxRMZ0dIxkn7tnTr7/nv9aRUeQ72sxUlhBa0w5jqqsPb264GT6dgXQkJKrGmouui5Of9cmXv5tQdxsQApVj6MtpwhjQDEc91wWCCoVUF57BFQTZq+q4ltM2KlLXas4EpXFYAkSDM32w4/+OG4xcmlM/lrfmYwEMhuaGOOrnW5/xLhkZUlTY0NP6caXFEZScr7Zlk3xj3UZL3iqjZsAtEaGRgOVlgisw0/zT9Zy4YkIAXz6KbczJ/wNsnb+AoccfvwVH20bjRd16J8QZQ64I7ize4e/4GIXQrNph4xl4B478SCVYdlatQCTEzbuIbksac3YFB8EjC8GO0+aKz/O4XAh/7EWFSJZdgiZCXoinXW1zUzgimaVmcnTI9PIx2PIkBiq+89717e/mEMf5I25K1jT9r24bFfDHkyZmfc3ZyQrM4ZzqdEEQpraDW9ox+OHMhS70GkltfBv8yxPDdh3l6fifRmwltqZeLuAGtpZrOWA8U7rqOqtpkztmvO7uk5uFuR2w3SX2HEGLulzEk+4jTFHxHEzwTW/TpNQo3pe4MxgS6LucXWmWeGdKKtYRXDc3WJB9+b6JgoIq4ImZiTYJF19S4XtIf9ScdhlcW9lURL9z74glvfvaEpz50xHtu3MIdSl9561Epw1HDX7Dt7WXf/8yoAgFbWm4dvoeJORzaS+tKR6lIM2MzYmKFrLV9sJIrR0apD8aa5op2E/3hUWXZnVPJm9w7v8P987eYHRwxcymaO4HbcU05Wloe1He5e/YmhRxweHSE9Dj5ZaX9h6W4Lg7L6xi1g+F746r4//h6xzxGmFaS4LMhU6mOrskkCpUI89MT6uNjprOjeMBbwwsv/MDeXj55jF83GX//lWpMhnZ+ynw+p2lqIHp6CIHCCaWL0sMIAR+4VN9s/MaY6N4Xa7zp+hp+V2kcmdk7+iWmURYlzrlo9vKe8zrVoB32ICLCYrFIhU5WaVwUPl/fy0uXYEret4BPmTCvlixsG+W+dL6l1cDEuCTRGkRKEKGwQtM2W/u4CmFlFhiLmDjncMZi22gk7qRDnEtQUNQmm3pJaUx/YOREdKun2UWunKvku8D9186ov9Nx//CEp+Y3KGZutOnfRUr2kHweGrEcTa4zNcfxg5E3V844GT/vG4iS+waitykqDEbhTfJGkeRSOy2OuHUUy1/ePX2DZT1nZo8B20+9avSxnzdn3D15kxCUZw6f48bx7ZQc8OEw/quQElAJMR8/McFfSHstr5MskEUtJ2A03ocaptbz4R8yuCLDUgMn6t1TE4kolXMsmoazO2/jigJXTWjbli984Qt7+/lEMf48rTkkfyMSMATeeOMNfFczOzjgeHYDBO7cu0cdWrTNXi85z/e4ZYaXlzeEczTJ7393kfN3nob9tU2Cy+mnh9QCgzI9tGCMWckhlCmEwNnZWV8Q/sqkGguSa4SZLkSGLmxurLnVYAxINnwZUIeiWCto6xlmZ9dDh9B7EaEsCpyxOI0ZEztVnBtqAAQCTV1z1CfGkm1Q8NVJQArAKrluelbtH4fEf3VK0ESqBxtzyqeumvWdkRKUjSdBcuAVvd87Y4kfIlS6dqxtBDRKIKTUB6Wbcnxwg/uLt5KmnXKgjtpWlPPlPer6jGtHT3Hj8AaVlCmnUBLlZLD7PG7K/vtJCdl+aCdNJ8YLKaKGYAIqhsrBx37ikMLWmGZBLnuZBYCc4CJ7SDmEQ2d58OABD8qSa7ef5uz0lN/6H39rbz/fmdF/F2lspNwG+QAcHR1yeHBAUbpewpNkcFy5P941tD36KUif5nkMkL7bKM8Ql6I7tY3ePCR50Y9zlERyzrFYLDg7O1vJZbNYLDg9Pd2ZQO4ysqj3Laoh5Wt5FOl1JGlqoG2amB9fRtKR5kyX69LlnueOGFqRErhZjTmcOlWmkwkh0AfxtE2DG2SB1ZZ7/PbyJCIYZ7j1yk2Onjvk5ks3cAcuBexsYtF6xX/AKBfTJfqWXXdTAwaLYEeuwDEqdj2CbyV1Qb5XyRgYBEWSzVqikoyka/I/6a9RXOewKS9PPIAKnExSlt0UUNbb2QAMKtG246xw7eAWpZswSM25/GKMnn0n/kUX3Cj1BxPwRteSCiZtyphoFB85bWrKIDqdtRRFQEyC3LKKME4zkRVMlMoYptby4O5dzk5PaZqGj//Ex/a+4idK4h8Y4O5NboyhKgqszcYnxRUxEk5VIIQUFj3GQdexyvS5KqI+RtipjlKmvttkgDbioytSxhrerPQSg0CfPRIGr5033ngD7z0HBwc0TcOdO3fw3q9h/wMT2TVHPYlA22C1iRG1anrD2kMJxqMDet4ukOIQ8BgcTksW6uN7lDkxQdsGa16TKgds1VooSkfVFklFV1osppgwX8yhEIwPTNoWUv4aq1kOIyXPSgfrGP25zLgsXP/ghPIZmByVmJLBILmlkascn5K01BxTkVvYnJn0MI0lFVtjUNOBDwRpUS17e1mfa6p/92stSdYCLtPv7bOUNfgYZBz74mVJEI3ePhITK6q0qImZMHNFMBFDaWwv6cdejuDNLc9cmZ5HoY3XtsY/MGhh8V1DITE3v2qBTWNdeoN0hkIcooKhjeUaTY2EoXBQHoVBOXBCvWhol0uCwlPPPLW3i08W4ycy/iyxrlMfpTuSkoGVlL9Bo39OjvBbuX+jvSglBu/ZUur2XaUIGa7mdR/4W/5lXSvQ/rrovBI9Xd5++22stb1RNxeFf1ijdfAxxexl0lhfhqL9UWm6BuMOiBGjAWssbYgXeN+gF4aKrW4gaw3WGGwbjaoeYrI1Y6ibGiMWqVucpDlLS6T/OTpyY/Wkq41rclQxPar6Loc9bPIqTW+0IqTo112HddJ4hSjcZDiLYc9sW0cXPPUqPQTy+Id3GNRzen5C1zVo6clePFAkqdn3nkMqDs9Qu3dzqJtjzwfNI5NugaxgZDMxGFfQNUuwo0A9VXwX+MZ3zjk5KfnIDwaMKJ0ERDtMsFv2dOyzEShMKr8qhvP5nH30xEE9XCDxW2uTsD5cM+TWTyUIL7Vjk6QskvLBXEGVfow01nDGYe0PgznlAvEhhL5IybYEc5u0n7n6EIN2jLUXXn05ilu0aZYYV0TZVWKtXTTm6fGhZVvCvs3eDU2WRRGTs2nUALqguKqM7CfEsPl6uWTsIRMGVGMFWrnyGIWYEsAk3Fuy9rCj01fCetZhr4t6mLQYVSRIwvh3S+XvzL/B5ZE830GpF0u0C5FxCZAgoOgOqYnxCW3oOJnf75PxXYQE9OMZwVWP8u+Ch2Ccow6KpnrOEAsGaRDqc8Prb8T0DMHEouyWgNH9cro1yYcoBD7725/de+0TJvEnRfsCxj82/ma11ViD5Lz4vSp78fYVEdquZbqfv7xj1EfUXoLlaMYKV/UCYFDds5vjuP1HpZAYvzXJTvDQc5WZQNzEy2aJuIqYLtgj1mGCi0JgaEFXI0r3UaxZWqQ6uzFCt/GecjrFq0dM0gLqmgr6dA66NqD8/6sOsU8mIMmFL2ucjwN6eKg2FA0wKaaUtkASq1hZD4+jbxdR/7ioeRxMjsAqB9VxBiwZ5j+uDWvAdwtOzr7DreopSveI5UyvQLvsipL+F89hwRYVrY1lPEsxaQiCIfDs0weoa8E4tAOnHaIaU1VsfWrauyJ0IVBV5YVy3xPG+C8mEdNLoD3Tl+iyFqX+tAF33D9I1/GqWOpse7H2x0m7FlT/+7pk13s6bLQ0GpxsvfTyGURH6uaeoDnvG2B3OoiHIdVYDtOWE7yk1G8SGZQxioZuNGebsN16/501FMbiEuNHhVaVg7Ki8xk/VkLXxoLvQp+FMdcbH48+vo4rxHTkOV+Z9+337oMjxu9uZY1crhfDMzRGq1d2hinAtx6luWIrj4GyW5OCSmA2OeZgcoyTgq7tQDt8qIGYodJ3AQkFpUwRb+najta0l3/cY/TOWE+BMthFwJUlUlY0TUMhqUiNBkQarh/XTA4nRJm/wwRDMD5pgTueRYxB8W3L8Y3b/NW/+p/z3/63/2hn3544xh9hyd0bwxiDb4fvc0GOsnDMEVT9znthJGGnzW5EaLuEN/YM5vEsnq0beLSxRxcmTYe9z445ecYpmvsG+vu2B91sbyvfuleFDmFUhCVvgl2M+GLK0xy0ow2BoihT903MZKgWY1uCXuYwHtwli8JijWC8YIJFEYKxSLJ1CETvka7DmHTQRV/FOHPpzO1D8x9ifHvBl70H8Fo7W9ZI1iJWdZPRNWlis11EkhTqa0WNcFbPt/ZPR/9/RymB5DENk0VYJjtKhBLFHKEE6kWLNVOuV89jgqGpPb496wWT8TyuG6oflelnXpLr3uY62uN0J/1zjMGUFfViztTGcNA49x4JLfV8wpsnludvxYIuMQPsLmEO0JgzzHcdxhiOjvaX2XziGP94CW5nmNqrXGb04ovCYYwldG36bDcDH5jeIJ0FDYg+pK/7DuolhC2LdkyR6Y9gDen/t3rdTga9ee2+cfT5VfqSkbtxTdWA72qKUSnCRzkXIwISs32qsYQUDSwqhOSCaQlkP/K9B3HSkpxzTKoqYqStYIOl8wGKAjEW7RqctWjnMcFjncETM4NmdhkNoCnYSoe0zFfJ37R+HK4HN60yqM12s9G7nyeG9QmMqmBteXZ/gKX9UJbcvHkzxkoQNWXdkv9llwH6sdCo6Tji/EHSzDWnZzFMp4cYKbFmiRKYySGSbDV9HqU9WvM65fxdl+5qantcu7qua1R1LSgyZ+k3uOmU5dkDPB2FmHS2WfCO03nL//iZwJ//uYKnZ3VCgvbJ+7Hd4LtLaZpPHOOHTYaZf4foz7z+mTEmFmN3jrZN6vYavxgz3X4BjZhtCAHnHh/T30U7mX9f8PkKjKaHRh++39GYtidPUYgeNkWK2n1U6TBqWhoZki1QYxACRnI1IwUd1doFdjJ+iTpIWRaUpYvqMharhloD4ooVTynfdlgfUAtn9QKCBRMFCCuGJvionntPz5yuNLhxV2WAf0ZjX5uIzbHJtmtjHpuh9OLu96CaxmMth4cHBF+xXsNhuHY9/OodpKzNRtWLAaaMQkdZlFhTUJUF0RMo7gXF9gfiVYSydYPwNp6y7Z5MxhiapuHBgwdJ+o9umOMwFusKTDmhbc8pRNI+jJDPbNZw50HJaa08cxBjKaKRdzfFxIVh6yG3Tk8k499HGkLaAKuLPwdk1WFzwtaTl4WgMbNjVxO8R4oJcPWsoBf2de25+d+2YKoV427G+7f0RSR6LnWdx7mdl12CJGk6g1S5beyqga6tmbjHudSiR49Ylxi/4kwB4qIUrj4ZlC9mStZZprngeoiV1wSL1w5blvRKYsJPC4mFeO6fnxI0bkYj0WUwBM98uUDrGiejPDaXoMwQhmCfuEZjjqNttpGIH4sRxq8eTYVkVmaLGJ+yh/omkkoQQsfp6Tn1ou779M6LNet9CpAgp0FTEXK6kRyT4qzlxo2b1PWS8/PTdO+Q52aj3Wzb25Gm/SLa57mT2y7LksPDQ05OTui6bm3PDlqym0xpF3MwZfq8AxquTUo+9mHL0VEgOEG8YMgCxZY+5TZh5WDcRd8XjH+FgSasMwq6q6e4SAyj7n35kzopxLzjbdtFQ1+IGfeMcVhXUk4O4mbrV+fDbZGhmzlcPjHVEKjrJW3ToCiHR9di+oP0mF6OW1mMu2EqEVguzjksqwhl6GqeIZGLWObo0FTYd3VQT2hrXGL8u8KG9lHv8ZLyr6tC09QEY4cIWikQiZtHQzfUah31GFbHKCJUZUFVuZ7xWu9AY+YeV8aMnAaDEUtTL5maeHA2XQfO4lOHTIJ+xMaUEVHzCFwgeG2ONS2f/sBR7Yvn5kIlSoRYjETGP0RhK4TAQVltMDRH1EpW5nN1kuPnScvouo4HJw/wbazTEHYw0ccp6GzSkPJunfELEr1cNLL4yXTC+dkZ88U50QPJ9BXEhne/KqTkOdousGwiA5ku47IpIty6fZPp9IDFYpECIMdrP861LStacbRBKfoYI48l8PEfMdipoo2Fzq+Ui9wEe2PblpyC5H+W+FdINaQNsBrMZHJVLjFJhQ10PtbI1BAx/K7zEUN2jnIyY3ow68s35g3zMBth3I9BGQ/4rqVta3wbM2s2ywVqDAcHU4yZrrQhSSolMbRdvDVKIwXNco6fTigmsyhVXYUZZzgBkoSd/9oceyBgugY7K/uCFA9TsmS1dUPbLvDWUUBKDVxF5m/ASGT8unb/ugG+cIZJVWIlxEyKapj4CUE9XiyTyhFS9K8ATTPHmiQ8W4ubTnDGjdgTVI8B+sjzqRp9snNW0DF+PMafx9pgt1xw6Aqmo5TRAlgxTFI2y/5g6WdmrPalLwJgDTcOj6OxUrR3Yf2uksS1btXQWg8+MD8/xwclEJjNDinLMpZtlDCkO0iU52nM1C+CRa5mH1BUhbquOT29z9HsJmenZ3Rdg3O5KHoSPIhwTz2pWNQLCjvknFJtqcoGrKGzDiMtqXTvxvPi/w2Ip4QkmP7PjH+Fgg9QbkIlhXNYa3CpSIeq0ngfmb2PeWYmB0dMpwdYa1ATizxnLPbRSHujpWp0GVTfsVwumM/PCF1HVZXMZjOarqNrG1wx5aqYebZPOFfQdp75fM6hK2N0Kjn5k3ARQqEp97kQ4nyyayNEZtW1C6w5hhGDvCqt3CexhKK4ApKHUny+wYjBWtDGb52d3E1rYDqZJJ/neJVVi021boMIk2pC7YFC0NAhIWCK8drJATu5TsPjKcazMpVm04VPdS2xGYNUWqtyNJsxKyeojDFlwWVPll3Pze3n9jRi1TYZ0LeBDI9jvFcmEUjJB+P82NxpRGLtZJtz9F+ggT8M9n+JDmKMYbk8Q44MZVWxrGsO1+IJVAETi/y0yzlBwaWxRaBqydn8kHphuOmWSHDsq1VtiHOSi77voyeO8a/mHU+fjYxkIVWhWnd5s8b0Rq3zszkiDdYVTKYzJtMDTGL0Jkn4usbwHxXfj7V9PV1Tc356EguCmwhFuEmJiEkBGj76L29b0JfcgxHiKFkslywX5xRFVEONSW58+bqdDUQIjFSEZpeXSW5DaXBu0he9FmRFbb2wv0lqGwN2TdNiZ8cRqgJiTd08vkEajk/Uftz5kC3LgoPpJFbRImoHRiPOrxprMZTlBBNij8/u36Ecz8pI3R/WkW6sq0cm2WS3UVpcDdnL7yobmp0IOTVyVP2lPyDGQUUKGxlAswYrmtfD7vz97yzUs40iY0SyJhT7amwUAKzk3DwZmroAtLyiK+dlrlOFqipZLg1NXXN4OOP+/TuEEPpUKLGtOJ7y4IDF/BQfNFbVkoCkkpbf+BPPN7/R8Kd/EiqzVeQfP3lFCNhHTxjj1wHq2HPJmIagCkWMUE6mIIayLDHWYVyJdUXaDBClOvoN9Th8gAVo2oaTe3cIXYs1sfqOtRZnXW+MVqIPfvAe0ZwULrG2yzAbHbawtZbCWeZnpwR9EL1zkBUGsIusWIxxuLJgdjBdYSwb5D1dN8faVCWr34tXma/RAStA19H5ForkcaJRPQ4+wRZ4MpSXX1uWYkXAOcvhwZTCDbAPCNZbJEBQwVQTxFgKa/CqNIsF5cjDZxxsJclA8jj9wS9uZ2DkPcw40qgEtvK8/JbWRKPhp+ajWUgh0GhfUWvAyFfufheZf/ZcU2mBnENqkMGSU2M6uAy9p8y72O8YWQ5FUTFfzLlx4zrGGNq2XbG99IKKc1CUdE0ThQuJMSLSFUyrgmpSEswZsRLXnueSlKELyi7CE8f4udDwspdBGosrK4pqirWxhqWOVlVGzqJxeFO6e5SF5LuOZrlgWhUURRlzwJt4yKyo9RLzxvRBRQybcdWIvYu1JqlBoSji6w9hjNPvJ0kAcfANTR1SAe7V540lYLTFd8sB31QPRAPqZXl/rkGU+BIhdDGziS2S5G0QKehClPZVm36MK30XwRiYJIinvyCdFy7EbIhNUFw1yaMFFN/UHKwdbsqq0+bj8uq6Shvjw0ZVR371QxuStaXRfKzqC+P3lX6mj9UoKj5lubx6/94J8rQErXFiQFN8geaMr0KQkAQMQy5GBO9sv8drXvGYJDyenJym7LYTmqahLMtRP+KuCQLFdEqzXDIxI41FA0/dqqkOJ5iJJTRtyuuzOR5JY5cskFywlZ84xg/bX3AfcbtnRqx1NG2gsLGK0/jKJIMxHAH5hH0MiymdLc45ptMJSPKA0fET4/+NibnIQ/CIzQXTU1KttYWwnQZp0lqDtSWq21OL7pIaVZWm7Wg6f6ERybcLjKbkeGPl+0rTtuoL1HUtnQC2ICKbFmMKtJNYctEv6cX9MUCkCmIoXJYUB8YvCIW3iEITArNJ1R/4oesQ78mWkG303WaGmXr2Mxp6L/Ouwzn9PVl4GKTQfBrWfgEKU3d8tVf2TpEoi+UZZ81dbs2ew1H1AllEgQLLdk5AOXI33rU+9/xFlGU7p7AF1k1xznJ+fs7R0RFvvvlmX8J0oLgmbVnRGEcTlNJIrOKlNbNCqQ4tb9+Dm5OKgjox/1UhL/KjoR7IRQjAk5edM9E2yX//ZEhMz9zjA/lf/naVV8nq3D8yGYm2gxC0P1CG/g9Pj9Gyga5rV57fq/CyqSWMLlpjuBm/tQhu4x+4eAiN/+HIrnD5WVsflfreLE8pXTkKHsps/PIU/cjz0Qu+a6l9RxeU5WJJCIpxkVFbCXS+IesJm40NdZJ7l0ni8eE0unW2IpSj+gPdso6G3XHlqdHa+J6kfKYJbHPGyRpigLVxJFhRQAmcLk+4f37nkikw3h06r0+5e/p2hPt6igNVPKeLezw4u4OyP/3K46Ss7bVdy93Tt5k3p4BSVRXL5RJjbJ/2vO9xgqmMgrEOqpI6eIYs+4Lxil8qv/+7JWdL09s0Ro2s/C1JLQ5b4pHG9MQx/swwN6CPS2DghbPk8O4EKgxqU2YSyqBOsSIiPTxpdCe11qFbX9hwpouAhhDLGY5EcpOMRl13+Q2amV/Evy/5j3gwan+IJIa8RQVVVRaLE6piSrYgKtsZ0QXTk54Rf3ZdR6tK07bM53Pa1sdMhkhyt2whFdUeAxo5eG1ZL+m8T/2Rvm0XTDxEyhJnXX9vW9cYDZjvZUafaF1UWIemVGONBe89fuQeSrLvZGQkgg2BeX3K6fIBKu8eE91H0ePK4yW/4+xPZfr1uWjOmTensdbtu9Gn0dpvu5aTxT1OFycEPEURBaXlYslsNqOu694tN/9H0kTNZEILBB9rDUe3TqVrA3/4tY433vJx7+1Qmcc2novSTTxxjH8fRVx8dTv0hjQUK4JoQEgbIqdkGHE+DWFIj5BKyvUGp3TYjF7p6Lf9ZK0bUkZnhtofQBno0b73wadDKY2lLApcUaTC6Nmdaz1HyS41RVmtiZf+me3/FNIcrJ176QQZ7AXKcn5GVU57D4Zh7q9wYK6t8eA9nYZYNrNweB9oO08ImTn7Le0ndqbQtR3LZZMOsSFEyKhEVXwywZqhglTXNKD79JTHc/gzek2ZiT1MSgTZ8ntuxauyaBrqtqVuWtquw/vQY8TrN3rt6LR5qH68M5S0Eclway5QLHiN9RwDHZ4O3bneH3OPRhK3dQZTCPPlGV3oMNZQFgXz+ZzJZIK1lq7rkp0wr7w4+66qCCZGhguKSkdAMK7j+VcqTk8cYmwv4Wf+stqX+M1FBt4nC+NPDGcF4hl4I6p+C9yRvhPI2f9ioLzHN8ssZ8drwlpKKo3pVY2NkYKQZVrIJc3H0vpOEhBjEeNQ3/aXr96V3NewMX1AV/dlIgGwBdPDa5zce5u2qWOk4AWi9aqRaW0+9nU2aUODFSTbGdJvQmSUCv789ThHOCJDtsgVVXCjuhL85bsWsQ57eIz4iPl2d+5G7P6gAfExj86Yk45++gB10zFVcBKlq7IrMAqLYLGTCjWCUaUNnrZpKILGtLhqQQwOC6kI+OOk8TvPgfdXVTTW+9Qbx4kBd2cKOjskdDEOI6hSldndNgkN2kcmRMhEzdU78g5QBEGSl5EC5LKnbaq9a9N+TfvlXULk8l6qzJQjd4077evM2xOmMqUoKx6c3sP7I8qypK5rynK9RoBijYOiYt7UlErc63RMg+GTHz3HWwNliV02dBKTNmcYwmoqBSoGq57uAon/yWL8wPg1r2O82RNm50IYCdhd1/LgztuxAEdm/GPwXATvA0fHxxzMDlP5tPVnX3bVRcZprKFrkqE2vVSFFRtlNMq6vrKQYbigKCum0xnL+SkuJZ2L8NAYANj1/Is+yTTyBxFh81hLf0lMcV0vzrl543jAIR96F6ZJUOh8R912MRlaMFTlIdXkCMERmCcNRwZ1ZAUSjX+0XRdjASZxC9h0UHuBwjrqtsFJjFjtmppp9raQ8WHH5V/xJWmwZazrpo/U6NC6gnEFxdFRVGgT7OCKcoQPjaXRx9WJx0RZuINBBkk07HcZrn2X+y4iTKtDWAjL5hytiHvRWpbLJdPplOVy2adthiyfxY5ODmY0dY1PglV8JYHrRxVUFg0WzAE2LEE7RFPakLxuNmJLttMTxfgjk1wz6o5+DSHi0yvGkRUatlrwMVCqqtzQxNpO9KFjfnaKb5sRuhYNg5ODQ2KCqcszPOsczQgqWXf76q+zlrqpGbtERpu0YXowo23q6DNs7Z6xPiwNmRoHd9Y1dTN5NwTf0LbNFunmqk8cGKKitL4liCV0HdpZrl+7TlEdE3xJ8ENytt3BVILvPMvFkqo8QMXh1ESTTgrSW9Y1hbGIgdC2OJNK5L1jjCQfotEVUUKS5x7D84Zlm+bFGMqygjwmUpqAbBd5R8f5iJShjN67IgtjkuSNHJ387sA827o3KQ+xpmTR/P/Z+7NgyY40zw/7fe5+loi4W+5I7GsVgNqrqwqo6mWW7umZaorqmeGQJpkeJJnMqAfK9CrKZCbTI98kmUwmE0dmMvJBTVHUkBTJnsWme5qcZndXVQNVhVpQKAAFJJBIINe7xXYWd9eD+zlxIm7EXTIvClmJ+tIibyzn+PHjx/3z7/t/24jKVRhl6GX9ECm/ttZm7uz15tOueIQky5gooRZHisS15MBVGDTXbjl6iWEr8yinOvUfOh2ABQz2ID1QjB8C82t3UuY9O3w00C2f0/ObhQikiaHf680d38p7XmFUYMDFZEx3aVlbk+V9DstWvEgeMEnSLrzFhGuzj/E3H1w6le8+eUEnKb3BOqO9barakiSnb8aZ2TLaHWDOuBt6AlUxRIk/ULP3OBGVK6/tHGVdIibFI5gkJcvWsF6jJFT7Ok5shQfKqsZZh2hBO4V3YLVCaUNpbcjUWdaIsyGI72PNPn+wZTmB0HAYSZcJSmM/CNuBF4khDzOm32jG8xe/XzD+hmKPI+ebG6IoQZ+G38XdUGoy8nRAUY0o3QSjQ/6gyWRCWZYMBgP29/fp9Xqt1gzhmTjR6DynmA5JxYRo/Vhs3ZY1125oiqnia19UJL5GLbplxcY+ZcZdf1Di7/7qZpLzalWoI0K7aCRso/+k/YdAkiT0ej16eY9enofcL6mhyX8O4EVafPoo0jrknukaZhb72RXGbD1zZ2sTxRGij9Msp67rpcm8ToNaz4I5f3Bmm4GHejokUeG+7unaHYTNe0tRlniTokTRy3PSPEfEo/Wsvu/RJKFdF1I1GKewTmLxlVhgRgRbliQdfe60+V/XIQBAOwM+VFzyp+0zzIzhN3Ol+wxb8aGjFUtnOdwvNNuKOvDGIvP/xDYqQaHo52vUtmBaD2nshEmStAzfex9zgnXHHbxSJL0+hfMh0VzMSCveomzFIINiqnAqJ5QaBS9uTsMRwNvD7WgPFuP3S6CeDlV1gAFkSf6T+XZ8509YIA0D9xLVYgSUoI1BJyb8NRptQkKrgPmfbPKJkmC1X3rePBPQUV086G0hiDLk/TU8iqqqZ1LcqcE+MUxeqQZyPdhnEarpHiIepc2xN7+V14vvvHNUdUm+tonWCWVVUNclVT0FVROMfavamR/DRgwQH9I11F4Qk8TbCYy/mkxJJJj7P17yUHrsnkcKjReJKcZO65kt0Sg6PzX+360Jo3XZuv8kfpHG0NzR7OaP+OV2aIEEoZcOAGFa74f8YAJpmlJVFc458jxnOp0ym5NNEJqgkhSfZJTW46PHknhQtuLpRyzf+I0ezqd43yQY7D6bsM5t/Sli/A3GD8s3AFvXhPD+wybGnLWolWLnX50DGiOYilJHG9gz8+85PilMkmBjxstlEnKjd2itqRqcf+6A0B+TZmS9fnTXs52fP75F0YFaA5RSDDFKBU0GmE+jcDf9CG5qpa2QNMMYQ1FM2dnZY3d3l7IcIxyv1u7snWC8Cml+AZ2mrZYkCPW0INXdWsEf0/g5YfTRlOs/us3kZt3W0ji9qx0JcM4HJUYtdzZd7hPQv5GQfUw10nwv8z5mn2R/RSDTOXnSZzwdYqMWaoyZM/LWdY11DbTWsRJqjWQ5hYfZTARwpHqXtf5trrzrubWvqUTjaaDt2fp2nyaJ33t/aEWdqqoP2HaXFmEQ5tTfA6+Ohiyy0IYHbxdx0mMw/9hYkqSRUR88ZxZLFs2AK3C8wIA1eX+ASdI2zfTpptCd31gP2Je8py7HGC3BTe0emWbTc+ccRTnFK4OtLUmaMeifYW2wFfOgLB+7+Zaa7Tz8014hTlF5SLMsxgPEBVTXsdjLxyPxtgu1hI9ev8PV79zkxs/uYAt7VC2NU6AZ7t8lNWcgvR+pYZMH7Uozweu05/vxySMkktFPN6jKktoF5w+RAPeMx2OyLENrQ1VVXX023ogiyfqU3lN1y7uicVbjSsvbb1e8+lOhIIm2jthCvGfrPkWMH1ZDPc45rK3Rnfzt88fNL4JG7WrhgLlXI/fPq1nNVjELFJtVCDqM2gkqYEwSGbqf+70ttFHXjMdjJpMJWs9cPhcGAS+CNgn9fj+WWqznr3WX1JzfRPAe+J1oHnGOqhiTaB3hq/bX5dDQoTR7KN45pmVBWVmcqxn01kjMgCQdxHQW9pj7i0ckPCftgk+4U4okSXE+lDus6xrdaDDy8bJBX8LoWkV9TRh/WOArj2rsSadC87amA5tKgJNnuDmN4irLHvMnSKFnYWNeXpLyqESNHyeFSFxBS0IvWyfL+oQU0mENpGkQ7KqqotfLKYsyVFZjxlfEg04zvFZYbId/hPgFqWouXRSu3dA4l6K7lbma+XoE1PNAefXMCd5NRG4McW7C1NPErA7qiEJEF9k8+fSRhf+7rR16SsDydHAf9c7H2CwfIlOrKqQZEEFpQ5ZmZL3BUubbbTjN+yRFQVlMQ1ShOrgNtd4jC1LUQTR8Js37WA5V4u9NkFBzpHMFVTEhT9I2mvBu8eJmqxEUzoccPSrLSVJDlq3hJcc7wbvpETllFu6zYWoeag+YUIXNeY/WCjeZ0ClRQ8eP6dRJJD4bkWjk17gQt3lKV/BzBXYW3UTn05s0qTU82qcYn+Oxx/OWWnHM/Hr0c78vS5e8FOaMD6tn1jnXe5hUhwyqLqrCIVGhI6UfQgRb7Gq+r0dd/1TIwyDdQIsmVXlw2JCYDj1JGA6HbG5usr8/xFqLEtORb3ywH/b7FKM9eqr53obMAh4++3SJiCHJNLgEXzuQEheN9taXq/vGA8f4Dy6SVvWxFmtrTG+5T/mMRTco+mFy+opJz0xiauVDObwl4tVmUn8o+OKcayV1a21gOcpgkoRef4BJ0yhJq5XMyEsw9PYG65RlyWg8wXQCimf++POZMwUQFbSJmc1k1lsFbV3iGTMREEuInHS4eoqvC5KYr79N6Carx++QAWrPqOoCrxN6a+uoRKNVgpMEUT4y/qOigmeQk1aR2TqovA8h83GBiijcdILGAk3yvo9P5le5cOa5NbQfc/bZASaTGCl8DMHh2HSc/kvc0QXnLZlZw2QJHreUeR96tc7xh0ngx5HOu7a7QbpBz6yhTFgnPhakb+otbGRn6ZmNto7FUdfsbgCn6QCR6z5ZLJEqnWo3WZYxGo0QCWVQp9MCs5bMaXcigukNKIf7uLAPxIpqoULcRlrzG58TJFdQq5BE0KlQG9npI6fqA8b4ZW6CwDzj996HoKb7mJQSlDFMy2AQstaCKPr9Ab3+WojGlVgbGDgOU0iSlF5/wN7eNtZ20dEgpwfNIsjrDUyltGKWrWaW+K5RJa11mLQZ7w4+FuExW9c4OyVNz5zOwPjAe6uqQMVaBYIKqS4QjFYoCekHjtUYQfpSSuEFKuvIo5udxLJ+tq5I6GyQB9o4xY0gcVz+4hkuPLFOtmFwiUX8J7E8Q0lNQRAnJBgSk1AVDusnwGydHYf5r0qRvvj94rpd9XvzvlvJKvQ6aCp4oZf36TETBJf185eF/y+7f2MMSikmkwlra2vs7Ows2XQ82mjEJJSuJtMSRby4gXhQqqQqc25vJ5ztCz0HRiw1oYzoYXTPM0tE/m3g/wC8AHzDe//XS475LPD/7nz1NPC/997/n0TkbPztSeBd4N/x3m9LGIX/M/AHwBj4n3nvXz2iLyt/s3UNQmu0u19JlAKVMJ6O6PX6bGxtkmVZkMqVabmQ57DF5xc+Cb3BGlmet1KF993i3cFbxjtPbWdFXkKQmJvZGJwLSc5cHYrWJAnK6BbuofPO2wpbjUjMpfZ6dy1NtffoKcoCSVJUTLHgnQIVcuuHIizH2w5FCOX6ompce0eS52iTYFyUtOsa09bTZQ7oaQKWT2M2tZvqmkcPwIlFMNBWvfrlGikFj9GaXtantjVYoapqrC3m58McPLQKmjnI6LtpvYG594ubilKqddhofuu252icHIIAUlU22GxCrzhpXqjTpFVzvhm74XDIhQsXUEpRFAV5ngMd7VppdK/HdG+XVKsQrBnXmcdj7YjJRPjOX3u++fWUrFfh0HhVI+bjz9XzY+AfAv/3VQd4798AvhxuSjTwAfCfx5//feBPvPf/gYj8+/Hz/wb4NvBcfL0E/N/i3xNTCJYoSSJ+3vhozx90Ny2fHs0kaqG/vk6ShyIOofSiimYfdQCCWsZL5xhxs6CUCUWzO6xKN7gotEFjqY8gVWOUjsFF7cKO54SiE020cdQEfON7DrYqcPWENMlPRX0WCe57VV2i0l6AsVB4rwiZrB3S1GE9xsMUohDgI2ylNSoxJCZFiVCVIQe/0TJ3Tru9RT/30xIjVHy+XoP3CuU0Ie3wx2dXWEbee5y3GKO5cP48ztF6+HThnlXUfdYzwYK5DaPrjbbs+yZ1dPP7rH7CrK3usVprtAoR+7tRep5Bess3zmW2iI9TC1i0bTT9v3DhAr1er/X0acfPexCFSnMK2aN2nqyxzzVL0dYkOlTSq7HUWmiQTqMOv5d7Zvze+9ebmzkm/S7wtvf+Svz8h8DfjO//I+DPCIz/D4H/2IfR+isR2RKRy977D1c1vMyYFN6HHOxJsrzS1GpasPT+kkibDG0yunOgMcbNGPUJOjYD8xe+j8i+n6nFnRFkqUgbZ167mTbVhBaCfWw1Bl/Hkov3Tk3zRTFF0ixAEaLwYrDOo1SNd4cbtLqktSJNTHNDKKURUXGzVZSTMd7a6Io6u7cZTNbeKu0P93SDoLyAN9Gd2IJY2rTDvwRq149onPMMxyO882jdGB59K4EvSt+NVL4oobe312Hc3b9HvV88vvnrnGuZqdaaNE05f/4sRTHo2JSEpsraYQbdVXzjuGN2mGR/FF/MsgylFMNhMPIGHjWbbypN8SalchWzlRRmoSAkuuJLn0/ZXDNYnaJcgfKK5AiY8JMAEf9HwB91Pl/qMPOPgEvx/SPA+53jrsbvVjL+LnV3WO89VVnSW+sfik3ejd3xNOmgIbX5Yf6jb489jOuc4EaWHLoSMImSvY+ixSxuIvY9gK2U011Skyw1uN8teYLEL4N1QCGiEUlw1qPF4pklaDusDYn9NrpJ4QtNEqdgsohzxLn5EfgYhQCrom3BQ3CZiqLbLymv8IzpAyKUVcXu7i5aq2g4nR3XZWjN5+a7kxhKl0FBWusDcM7iBtNg/N33Wqs2J5QsLOTjGo9Popl2N7970RSajTJJEuq67uS1iitQGUyvR7Ff0mtw/jglxGlQUx4+K+zsGt7fEZ54JEF5R3LEpDkW4xeRfwk8tOSn/533/r887k2KSAr8D4H/7bLfvfde5GSuEyLy7wL/LgS1aRlZa0NCM6UOx2U7jhutfHd/mwRW0Kkgzyu+jzBZuxjbb2njG7ynmOySZr3lWNTddsUHiZ+tlMbzRkmTScfhbHkkyBPqkioSY6Jra1xgvvPMZ9/SaD5NMrOPi0KCLmHm/KFDTYFPAONHQgCQtZZeL0ekRbYADuD8i/DNMhvAgUsc4lWzyPi71A3QbH43xnD23Dl2d3aoqvlcTYvtLPZ11XFHUdcu0bR7EuraMAaDAXmeM5lMyPO81ebDXPAkeY/J3g5B/4uxReJDbQhfga0ZDw1//aohHyguPdKNA15Ox2L83vvfO9FdraZvA6967693vrveQDgichm4Eb//AHisc9yj8bvFvv2HwH8I8Nxzzy0d/aosO5OpYys8gu4nnr+8L4f18AAocQrXiwwgGoO1VgtnBMbvnWM62WU969/19ReuGlp3jrIq8MpESV2hlCGk4fDHS9AmwXMqRPnGydDZWFqIq8NvZya1j49UvKSTWZW4IOz/cjH+xpFZEIwx9HqHa8lH0XFsAt3NYxncs+z75nNd1xRFwcbGBvv7+0Bnc2igzE5fFq9zN7S4QazaTI6i5ryyLDlz5gz7+/s454LHEoL4kA1WJQkqzShthdEBevStDU7hfEl/0GNaeW7vwoVHTawvsZp+2VDP/5h5mAfg/wf8T4H/IP79Lzvf/69E5D8hGHV3D8P3l1NgRkVZYnRgFoc+cFmlFvrO//FQ37TPJ7dD+Mjcj7z+4j0fo8MrhqkxnjrrQq2CRt2NtgLiplBM9zk/6J+OxB/J2pBttIkEDtcO75WC+ohycw3MkyYJWZY2N9Qaabv8v4MAz778GNm/9h5wsahGU1mpiu/vHi47qQnCe7/w7FWE69zSR7mInd8tNVj9srYPHkx7Q9ZaRqNR+Epp1gYDjOkUOFlYHjP8/+6Mu6uw/LulsiyZTqeIhI22ruvoYjzD8VGKrD+g2L5FT+mgcLeCnQZKBv2Cr3x1jY01g4hDH5Gz6jTcOf8B8H8BLgD/jYj8wHv/d0XkYeD/4b3/g3jcAPg7wP9yoYn/APhPReR/AVwB/p34/R8TXDnfIrhz/s/vto9FUWASE+qixFmzcppKiHBUspBmoPOJuRaawiltAzQpl1TM337EFe+BDptwHxM8IIAPdUHTpFOrwAePGiuCo4LxHfKzz4I44B5jJzw4FLaeBIhJJXjlAUVNDwUkqmACs819xXArhDxLCUlUG68ZiRGPISmWap6WNDCQzO8KcRxO84m6BVw6fLr3mJN736oO30xPw2OraWeRGS9tO+Ac4TGII3gtKkJaBB9tEnrupk+06R2zr8vOO2wsPJYmmZryDiHBSUUqCdPplKqqyLKM6XRKmiYIvp2TyoNPMgoVvHeMEsQp8AqvLMoLQsnnnpigM4VVfSpzClDPYeS9/8+ZuWZ2v79GYNzN5xFwbslxtwmePovfe+DfO4X+hYhdrTo7+5IDg1VvwWgKREiha+7sqv4Hm+pKjx+zKnDs5u+iHytO6S4Opbt46wwHrqtQASxN0/jDyS8/35XQmbIqcUq1WoQQvE8E6JqGVt2tAEprjNEzmGfVsccdstPSaGTZjLl/wMZTVNwOucbRFwlPzAaJOGrdoc7G/Fz8uK5/t+cJsUawhILwPhZQ0UrHLLPBj380GmGtxRhFt1ayMQaTZhTVBKN0lL8aLDIcl2iPNoraGZwfHNqfBy5JW0PNmrbWBpe0mDv+0E290eoXJPiQvUohXqLnRcze0kBD0uTpn0mRs0a6IMKDRYp5qay5/6oYoUSCi+QpXUskRO06pWLJQEGkSWHtQo6epgbCanVu4e9BmjdK+qMOj8/5l2x8PQE9cDNPPE4sTuzceu0GJt6X5BWNadaJw4ptIZs0TZlOp23a5rq2C0zII1ph8jwWaGmQi8b+E5JmeVfibc1kXHPr1uH2rgeW8Qdqqtw4tFJHW3WX/rz6nJZJeB+SJ3W0gl+KiPQJUcBjVahB0H7ZbHGeYrxHmhiU1sc2pB/jqpR1hdNJYPwotMoJNjWLrUua5XAYOedCsrslPN05x2Q6oSgL5mx19ykvWUWLM+9BmYlhvTlGxR574228tzPk7R7dKj9uaiE37yntlHG93/Y3SZI2SK1x62zRyo7JRaUZtdIxYNHjxAdp30vkQXWo/209k8nHH7l7X1Kjydex6pbWqpXSjyY/97/v4JyzPI3gfUj13J1wzjqsu38n4L1SiDq0bb6R+R8DLN714T8VphMNsLaucCZBtEaJYHROYRUiltqWNHj0Ybi2d8ETxPmY/bQ12oZo0TJGePtDWvGxP8sMvnfDfJa5Bd4Ldj6bvR+PZemTJOcd+5NtSluznm2E1B2nbG/5WEgc3iu8F/bGO0zrknzjEYykrWF3PB7T7/fZ2d7BLzgxQCgSpNKcqioI9usIBkXNQeFx3pFmms0zvdV94YGX+KGubcB2lTp6dggLwSoAMW97fM2KO3ucrSnLkqqqqKo6vKxDKd0qYQ8i0OOcC4y/G5wVbSR4TzXZJUmSQ4vinIQaRlZVJU6bkM/IK0SlgGCM4Fx1LMHcRy8va+2Ct8e8f3p7W+1/s/MXe9alOT90AhzWfTXzofm9kQIXnQhmn93BV1PTeeElh3ft2HS/Ss6N/a2yUyo7BVwb5Sxzx9x/5AnYvkMxKcbsT24xsWOQ4GXUFGNP0zTYJd1MK22fhxKSfp/CgZ8LjIybvBdwDp041jY+ZuPu/UrNArZ11S6y41DA7OOScx67GL0Zl6vgKcsK5zxZ3qPNBA/iQYwAAQAASURBVCgKbZL7Pgvo3ZL3wU9/mdeFB8R7iukea4lpXS1P6crUVRl8+NsNJQRvKe0JtXZXm9xnJKFk3yHw/WKu+iVdieNgY26Ujo/XnMS+vB/eL0j5qzpyCLUBZ3PG8871upF1Dxh5sTiZuSv+Ktxi4wYtIuRZn53JdfaLHQbJOroj8VtryfIsuKAnyYE1ppKUKULtIF189DFOSajwbnhofx5Yxg+xClRVkZhYwPwY4e8iQoPUWGsppgWNt09ToKJhLlVlyXs9BmsboGZMTlRIndwYO2nP+dWnwGdmEmrDxNoAG2epihFpP4nM596XZUBUXMidk2YQi917HzJ0zhwxTwBvNBrKQv8OZfqd36ytmY5GyJINfpauYBXOOts027w2jXHygOS/mlSrWcyYfFVW963EfmokkYn6prjE/Q9qNcWOvMBab4NsP2N/ssO53kOomH5Ca81kMqHf63Nn+w79fgiAnDH/UIRJ8pzpdEyWhNz8DdQTLuBDqpEjAsoeWMYfsOjA+Ae97Hjn0DAxi1JCr9cL8I6fpe/txlEqnZD3BqgkA9ERa/QtQ+oyyAeF8TeM/iC+H2GeqsTVBYkZIKLwp5AW1xOKR3trUTrBA0oUtvbR+NXAIMcH1g4GKt1Fp9pLubnvvXOHmpm7eWxsN3UB4dyDUaAH22rScgu0EI8HOKLI9q8+hfFyPobj+ZCsTx2Se/9+IEHjsQiOTPVY621ya3yDaTkh64VEbWmaUhYlgxgtXdd1cIlu2vA+VOZKM+rREK8FOtljfZvvQ6E4PCHlA8n4Z9JnrLOre8xW6QoJvA0JD7+J0vQ3ztFEdXYLGgcjZrAMapPgRbe4v29ERuluEb/6TL8bMi9AosPUaWVmHyaerUYoV6KSrfjdrN7o3ZIAtbXUVYVXBoVC65TKx8XgRnjqtiNR6z3kZrrVxqQV8wNUFV6+w0yb9dQgSUKIB8jSDDGaWf3lBm6Pn1fxoBV9EyQwft/pwOpbCOd0DvOAmxYdmOlXf94tkiAhR010ulBo8A53RBriT55mfEdLwlq2xe3RDfbK26xnZwKrTg2jvTGWkKWziYVZTIqn84zSJJTOkuhGtFT4UH8LAfQRUs0DyfgbstaCd7EEW0OHLAgfUhG0GfOaJGMxL0ZZTsG7mP87CV65EuoVtW0f4DgP1uLz3qOUhCCoDlTSTLO6HCGuQiVZ+PUU0B4h5DSp6hp0Ap7A+F3og7NTvLeHB+gdeoGTZ8RRSqHSFGVmqZ1jU6HHn4Tk6T2FmzGY9s/9zhNPSE0tqvbevG+Dme5X4y4RkoEA++RJnzzpsz+9Q9kr6CV9jNYgiqouybKMyWSCc52ykoT1Z9KEMkkpy0m0cjUrcQZfHlWA5oFm/GVVoJu8HRzNgj0Bu02ShIadtzm9nWMyHAac2ehgwBVBmYQka3LS3K+T7hQpSrOtl1QHFBegLgu8r0l0emoZhcPwOyrvEB1gO60MtdcoBc7Nu9Tezdpffs5BC/A8ljxjsosM55NhQKeT0O3+ZZ6BfPuftEGV9zvGP7/3ConJWOttcWvvQ4bFbfI0ATRJkjIeTdna3GI4HLaMP5w2w/HTXkZZjOk5RRNAH936j0UPLOP33lMWxSy/d/vL8pFplHXnHd7Z8BfwMUWAt5ZqOsXZGmsr6rgD9wbrnDmfoTAr236QyLdyRVeqjd94wVZTwJLoLC7Q0xkTay0lFkmzsKGICZKfCptyC7Y0vPrQyy6IwL4rK62muTabjb5z0qriHsehU9EQFqI973U+3rcbQGvUaKIt1H3P+GcU+q4wrOdb3Nm/wbDcYcufwTDApCnDvQnJ+eAOXVVVm7yuySsFgs4yRt6yhqKJjz/JCDywjB9gWhRkaTByHE/iD6t4Z3ubvZ3bGK0xWUae99AiCI61QR+tY0FxaymqUKsWPVu8p7VgjqoadNrXOy5pHQ3ZTb+IiJhzFNMhSgiVtwROJ4Qr5FsqvcekWVRiQxlJ7yu8r0POHuUbt6Nw1rLxWcJg5745VobGjrLjD86ru3kep/U858pk3m0bfnUbJ+njvWyEq9qJdzjb5cWFedbxa78vDbwLfvfiFblZZ5CvM5zsMi3GrGVr6EQwWjEajRgMBoxGo7ZKl59NbJQxZOvrTIYjkuyosisH6YEN4LLWYuvgnTM/6Q6DZJpJ7Vnr91hfG5BqhS0LJqNhwJGVb6s1BcijyfF/D8XEf4XIWUdq4mbqm7zgxM8WV41IkzR6Qd2j50yHrC2xCtDRsOcVtbXs7d1mZ/c202nRps84ippn1hiCmz42tVsPeCz5JR+k69o7M7zd7RzoMqu7zn0fx/s05mG3KMpRRVVWUdcg2bR5nCIth/aLdpVG866LRs37fP35zoblPUHmT1jLz+C9YjydRDuVJ0k00+mUXq8X0zfEMSPODQGnBJVl1AQPpy4dZxQeWIm/rmvAo1pJ6qjhkI5HBiTGkKZpKOxsPU7F3DRKtY6D3vlYq7XTyilOvqNw409ionvvSdu6oHM/4FxNXeySZ4OOyfcUmBCO2paISUAF9z1nDdPpFKQmTTXTaU1dexKTEjaGFeMjod5uG13bgXm00mTGkGiNK8uDm5afoejHKeh+EjqNZ9kaPJl7c0/U3QDg5P08NFXxCg128dzmt/C8BIUJAIcEKdh5N7ff368bQAtHNYZoNINsk43ekDTJAdDiSVLDeBIEmSRJKMuSPM/n4WoRdJJiTUppq5CLrDEBcPT8fGAZfxmrboUSacwW8Upe1JEW4yRTIogxBGQjDUpmI8kCDo/ShlCsYnXR5QeFfJRatDkoEQtBKi/Gd9hcX6dTQ/AUrhsyc+qkjxfQKsF5Q1FOWe8rEp1SVZrxeILWFUIoYh0KV8+TCG2eoa62ArEyV56jESZzJy2+9S28/6BTl+l/XBDKMga/TCtoBLjcDFAOlNfYJj/TQpWu+28dxvUgRKEk1FjOVI9z65dIdR68D13gKdaOqeuaPM8Zj8fkeQ6N16APy8uYlDJNqCYFeUA+j00PNONXKgR2hAV+9KjUVdW6TIkK0aHOz+x3QeKAoGaCc4SdVsmpqdiLtGyxfRKTelmhjHaBRbykthXT8Q69i5c4LMnZicmHYjpaZ3gfPHqUyoF9PBXWlXFzb2CEzqkHmIBgdJNnaMHlTQSt1ILkvLQ7nwqy1lIUxV3Pt2WMu7uJHFbNalW2Te/B+ATRPcpJTekKnHXgQ3/H4/Gp5Yg6XeqW1AwyufhY5FIMRVVT+xHKe6zS1HXdwj37+/sxR3/wzvetgUlI8h52sh+SDv6a8RNLmM2Kgc+o64ly8JyGiUkMyoJYlclHX6km+EfAekcaQ+Z9xIyX29dnxbulmcwtML68/23YmI+RnI2qq5qCDvMubC3e3PTDdz/PX+Zky3iegavozdKVrgDEe+pihLcFadprr3Ma7N/7UDdZqR7WC4JBJEVrQ1UW1ExiYfB+K+UvMo7mnZLmsTYL8S6w6/neHfjmkyJ/4NNhtqzm92X37xGJaSmmExaf5LJ9oJ3W7a7pWwl9vr7B4WO1aFs4CCkGoUuLoZwWVL7C6KRNeVAUxULczv1CkX+g8LFuRJiGwSfHKo94j3FCFTeuqqrY2NhAa0VdVzF2Bpp1LV5I8pyJ0tTOkrbpP2b/r6IHkvE753DOotsJ0B2E5ZPPA7WLcI+rwJjgw4+bl0xafI7wmwIIhUG81Evb7pyM4PC2jN4XcYJHZjpvHAySpy2nTCZj8AGK0FojSsVNrcH1NDrNaTAtOZZN4wia2x9De85ZkkS11+kcEHD4/Q/JjEJShfbBBa1Wdfv+bkm8p5qOMfk63mk8GiGl11unLq4zHk7RxiMqAxUC1lfBEkYpUhNqyM76HhNv+8NHrbVb+PDMGtvA/cP6G1q898iIAS+NQ+5yaboRNIwxDAaDJbi7WsH4ZxJ8gFdl7rfZ+c1cX937AylBZMbKwnWauwoM0BiDSRQXLpwPQZt3Qd4v39B+GTS/aTbfeUy0M2ZZFjPHMlvjEKFnTZUPKCcjMq9abeIoceaBZPzW2lATNhYDn9VgPXyJztLyhgneUBBiuk8FZG5wZ5vBoRSNx6PhkKIsUKLRxgT3QAkSSzA8KlAaJVBMxkxGww60Musn8TulDOcuXUabjLkY/lOkpoRlnubotvi2RAksbJjD/R16vX6EURqv43tfTc57qqqAjQSvwKNwAloL2aBPXaVU9YTRcMhgvU+iZ5hxlwRIEoMxzbRf0L6OQa2i1t0k7i+uv4Q68zPiw9IkujtwrMJ5i9YJZ8+eP8BCjvU8DxzSqJ0+aqrNxxVzVbobw2zT6t5Dt2kRwVpIsx4+1n6+X+goFnxoXyXMfRGNdXWHe82nJcnznHq4B9q0Q33UCDyQjL+uK5y1mBjl2c1udxjN3KZ866t9+LFHtzmjOIGdDRI8DsTi6gKIDzhKQtaFkt/eO1xdkiYJaZbSuIM1vtreB6NWWVuatHCrbvPES2HhBJFQ21TpRstYbNExGd1hI+/FtMmNq+S9LcLwPBxlXaF6OZbgA+2sxdmSwo3CpqBCn7z1oOchhhDAFyTSYNiV1iYQLnLM8Wkwvuak9sv7m2Y9FZQnVmwK38x1X0ApTVmOuX379pyXW9tWC7/MxqEFclzHILswTJ3wivb7IMC0PnKz/izYaFwoUNsyyRlwSnuub0+fF8mONzjh5AN9vBvyC8z+qAZjn1ddO6SWt2xsbHSgye6RHq01lV+tyS2jB5LxO2tjqLO+Owu/72wWS0+d+a+fyJAUxRXvLHmWBptwXCyNL24wLEfopKoopxN6WUpiOo8q7kpNTng3Lj5mNXUmQauOxNZl6s5WFKM75BfWkSY8RI4pIba0nJk6a7Heo7I8SoyGyjqKyT4iE0yiMSalKCyTyYSyUuRZvuDVI2ityDrZDu+FPiYHl4+FfMSDw/sIVSEgs3Kh4UdIE0WeJRTTcatVdg/wkVEKS+oxNL7qsa2WJARYHdTAFphYM7e6yrXMoEtZqs1258xdPBTfgXlOYw35u5gbsggzdTZVB2mekKUxGaDvAoxhfdm6DjXFpbUcfDol/lBdqRtYNJP8ms/L3ndQySOvESQVRVts5BgQS0euwRgdmWgnzqDtQMiyV5UFxWQ8m5SiOrM0ur01s0Y6d9yVshbu/eQ0GyelJNbZjRJ10y2gLsb4ekKWXYQ2UyCowHXu8tqBinICOsGaBERhdE5ZgVae2pade2yk+4PPFjzGaJJkfsrPWI+0n7u/tW8OV/8+OYC4Q7LkXfOp+1vwUViW1yeUKO33Q+BQgPKWPLvGvrHI+A9cuXNKxP1l4fgD/V8yjq2+vmKMF1n/J/8k7p1W38fBb21lydS8q8JRS+6BY/zee+q6xjqP9Q4tMx/7o6X/MNHnFv+qNd1KIV2Jf+W0P/CLRJCuZdzQcGr8YkC1KHzMR+I7sFVgWjZ+p2gdxhptoOMTfa8UGL9Cq3lDbRgFx3S8gxaL0SmnkRa46wkymYwgybBaxVq7GVIrBv2c/ZGnKCusszgr9PvBf38xilYQ0rai0TJmFh5pURTBRbeFAFbdh1/4+8nTqp7Mp25uHG09LKbLjreptULrw/O5nwadbHbIyhNkxftfZTpsxgng27S3HldXMaXM8emBY/wigkkSvPeMJwW9Xs5ivNGygJRQ/MJHY0qHYawYTU8M/VexuteCXLV49GIkQVs1Z/EC0WA6wzyl83d27dn78Htr7PGeYHhtG7wHab9znSjxGx2rHs0J8o7peJtEK4wJaZPD/Z2U+S8/djwe4pIMpwRBo2KB6ixNqWyGqD7FtIjBXUtSLhDGJjGm4855kKyzVJOCxJg29kNWMpzZBvyrwW1maYGpK+rxGK8+fub+azpN6kJjM2i4moxjkGkwVh1HFHngGD/AYLDG2XPnuHP7Ft47Bv1eyHV9CNloF/DezxcRX0XeISiUOn7IXPtAZOHvwkFNMcFoXaO1KSxAUjPJLfpneI93Nd7WiNaxLOC9SN4z6dg5h9YSfKTnonLDtYvJLkZpjJ4lxVOt1Hzy64Z7Dc9jMhnisx5OKTSKIKl6JBppE2NQAw1OYXQXtJ1RuzG2IGyzUc8waWttqLFsbXvIytETVu8gnyitgEMkiB8Kj6oqRjdvhsTjB7RBaUTK+HGV5HP/aDqfGmrmL53V5z11MUWt9WMWgfj9EVPzgWP8npBsa2NjE/Bs37kN3rM26B/wL+6+d85hY9m7EABy+MiFilwHDVbHo6POCQxp3meZuCnMDhGa2NMZ85+OR4z2d+mtb5L3eu1kuGep3/sIa0nLV328prM1xWSfPA1BVX52C3edk7/hK9bWlHWJXtuiVgEac91ZHQ3xWiTaW+p4/owxNVh169a7FMjvXPgYTO3oGfLJ0FIf+44UaJSwlufUXtDS1Ck+0Epz5qqrHPve/aHtHPf87pU/zbR492F0qmQNY2Z2x+PQA8f4GwORMQkbG1s4B7s7O3gmrK/1EfHB4EgjBUr0UXc45/G2av3QHSFFg4hrW2+KG/sGb2+1gy4evAqhk9lbltsPGsx8FuGrOwe5xZaipA+g8M5RVwXOlkz271BPU3qDNdKsB0oHuElmwU2rwud9912XgaqZxtEUeVPeh3Dz6W2yvBexcne0yLFqhLzEco2CVUI1qbBVDekArwTjDKUzeHF4P4w2ER/uv7MzLmNNy3rUsriONHXcvs4ztfuEJfn5t7P6CRA0KchNE4R3cJS6e94nqdAc9STuk9H+5VIrUTE3AA6P8rP1c5zReeAYP8yEOmMStrbOAMJkNGQ4GjMY9FooZz5Sjhi1aCOOzQzS6PpuyyzdsDQXa/n5PBRzkBpWcdi07mJ4MYKxDWiRQ4VR7yy2rsnzDO8sdVkwrC1JOqW3to5Js9DLA8buoyeKJ3jFHBSZoa4K6nKfbOtS+KIZt1OAv8uioKiqWHJRSHTK1ALeY10x35cjLtbUsp23h8you65W030Mccx1bf5G5koRtZvcks3xPuGo90k37i9aps1FrTs4hBx/bt6P2YxOlYwxnDlzBlEaay2j0Zh6SVh3w/6cswE7jnjojBvElxfEh+AqaVyo5jDjIyCio2AEaTSJrqAfYQrfmBvjZjS3u3ucs9R1KB2ZZz16eQ9vLZPxiOHeLqP9PWxVIt61AWohbcTysWgYY5PnPjXJDPf2IdmUE6Eux9hySi/vd/p4ryTgHWUxYurBm8D4dZLRmF2dreY20UaGXaVvuVip67SS3N2fzGl2//crHPVr+uTpgZT4F8k5x9WrHzAY5Kyt9cGPGQwGIRNjK637Ft9tl058P5ON4qd4nFLNLnt3y2u5m+j8vq068MrCYbGLEbbxHltXMcglLHmtQ76VqqqYTCcU0wnO1uR5nyRNQTVBIUfdQgANmvrFDXPxEQ6rp/uIq0ibfEFLIKzjUaMRtXkMKYsxvpdDmqFQiAq+/IlIMGQ3Hkz+8JsQQGR1PbCTdlfuW7Y6L1jcjz38NX3y9Klh/G+88Qbg+YNv/z1293cRpen3Q0lFmC0Q5z21tYgPRVyUBCMucxhwzEt/HO+fSBJFZee7gWXdNg9Koq6J6nUO7xwz/8mZlD7TIBx1VWJ0LFAhjX0C0jTFGENVlUxGe5TFlMHaOkmao2NQ1Dy2Ow8pzTt4BOVSe3ASwrSK8TZ5kkTf74NQ0Mkp3JyzFePJENVfwxtNiDgNtgqjhdpZZpsFHO4+KrFYxfGw/182nVYO+Tn7zAnv7GAytdOl48aTnOa1VxV3+bTTp4LxG2N49LFH+f73v89gbR2TJty5fRsg+PmLhPw4InivGI4mIEJiVKi7q3Vb8LgNjnKgzTGHrzEVEJiommurc5ifMfbms/dCWVUxHbNvPZOav8660J6HYjohMbq9ZGOEEDxKQZoalIG6duztbqNNysbGJjpNEWVaw6/vuOIEYdqh9fJNzvua8f4NelnOYqzCSUlm+yoQvIVGkxHu7MUAfXmwPmhZSixgwzZ0DH4STBmrN4WTeCceyGFz90rfqTH80I372P5wAjpNZn0gPfeKB31YBbAHkR5Yxt99kNZa7ty5w+bmJmmWoY2hKivGkxHOOQa9Hs6GyjdbZ89irQuRoHWFrUqmZYG1DgFUjB6traMnqoU2juhN55hoYGzcC+eMbjOIqeFEWR48cqyP0Ia1WGvbe/MIWW/QagVambaNNsq32QBEkagEpRxKWaq6ZvvOTdK8x9rGJkanQbvBtwbtkBDOdQy7tEK9IOBqpsNbXFxfX1god8EN46baAEnW1oyKAvJ+8FxAYa0i5OyqEZmBQkdf7vBNKdg8ZHZfJ+n0PTB9EHAHc9TcDTXWlVaR7Ey74zT9cTO647S/vPjKvTHkoyqILVYA+zTQA8v4G3LOsb+/z5tvvslv//Zvo5Tiww8/5M03f85nnvsM3ln2R2Mqa9HaYGISL+tcYPx1RW0rXGT8zjmstWhqlNbzEMmx+uMpyxLvbcitL4EhtzVgmxfBbbQ3WMMkWSgn7QLDd94H6AdAhDTJqOoaETpJ1BrGHTYHJcQwb4fWBqU0SlnKsqSeTtitK/K8T3+wjsRykkSNJBQ5yToCc5N5U+GqKcVkm97FJwiSs18tWB+HOjhYXdcU3qPzAdaDKE3tVITMKry3s5NiHvK7QesbUs3Yt9k7P14YqK1eNnMzuqf2PLPMso33mfOto+vJ+nXca56QUf4ypehF6Oo4136QpfwuPVCMf1GlK8uSN954g3feeYeqqnjuuefw3vP666/z9ttv8/zzLzAaT8jznLKYkOVZqKnrBdEaow0mzcg6xl5b19R1hbc12qRwQjcqrRVZluN93Ur93tv5vrtgB3DAwCRkvT6+tTM0B82/Ge5tt0XEW5l1wb0vsJawWQk+pFjINVVVUJYFhbO4uibNe2R5H2JeHu99sB10Lx9F1HIyxLuCJBuEqxy88IkpQDeOyXSKmASV5DgEpRIgBa+oXY11NsZCtHLuIY2ylIt3v9Jak2pFog3Tqprx5HuAcg6joN3EXFKnCNPMFMk5J84T9evjortpe1FruZfN5jTtDPfzpncUPVCM38XI2+aBOOe4cuUKf/zHf8znPvc5NjY2GI1G/PznP+fy5ctcuXKFn7/xBl/5yldDMYPathJ4U2AkFKwIzF0EVKLIkhTxFq/0iZer0oaNrTPYusL5AM/YTr+dc7g6SLJGa1Q0vhIz7rfUrgIH3mFj3xtJb17uj+8WGZgEfDlNU5LEUJQV08mIsiqpq5K0N8AkabjvpqxbvOHGC2oy2iEzGnUaSb0iwiSE9L+j4S6S5jjC89DK4CRBO8H7CueOV23JH/iw/KkppUjSBC2KYjKenXCaC7YZP/F48ZQ7JePdMYOtPtl6ilMx9/wMbTsR9GSdZW88oiyKeYTxGH1ayphaQ1QXNiRqQ3FsZHGuLSdp2lu4uMRKdDSaLj4U2onuym3cjJKYplnNny8SUxgecu1lPsvz3VhA7WYOFKvubr7J5Q1K45rNvD1veRvLr3MU+c6zaQDgo577A8f4i6JgMglSfJZlPPLII4xGI3q9Hu+//z63b9/mxo0bfPOb3+RP/uRPuHLlCtY5XnrpJYwxlGVFms4gl7CJzGCVNuWvxFQIx1laXWhcGVRmkPRoLDNcUkIE8UpJWuNsBbZGa8F1jptF8XmQ4BU074YY38d0z2lmMElNURQM927TKyfkaxsgOtband2QVWBsTTm+Ti/JwXRV6btllKGvgqcWxWR8G5dvBg8lEZTSODKM8mgpKSmPeU3fpgVuVmC40sHN1BjTgmSLkNlSheuEFNpReCpsDfs/t9z8yR4XPydkX8jxveCpJF7HCOaj7q3buKesK25UJUrpFT1f1qPuUbLicOmMX9iYrC0QpdHazM6W5hkuV6/apxU1Eu9D1OkM7rSR8SsSq3AqaMCusujMYJXDeDO3gYsIWq3S+rr9WuzLTNuydYVqoNdwt+2cV7697fkmOnOvuW8fNyi8xXnQyrRxQbPki0Re0mird6fxdSM2mvh1J5o0z5nU5aHnPlCMXylFXdfcvn2b8+fPkWU5vV6Pv/k3/yZnzpzhP/vP/jOuXbvGE088gdaaa9eu8e1vf5t3332X1157jd/93d/lzp07VFV1ILXv8dI6H5+WYY6rGP9hKqXHUtclztaoJAvMfg4v7p67uu8z+4IhzxXGGIppwbi8w5nzF2Z5jnxgzMorhIrJ/g6DLMeoe6urCzMJF8B7x3g8QT10GUeUlryKnrUeUSfHX45z9MeujAs471BeqEeO22/tsPPGFJ961p/rk+RNig6Jz/JkzSutybI8BNvRaFCcaKfyTa1q39kUOnUVvBPwjsnYoY0hy3rx8KMu0oEzW+EkuAXPNAiDeIVymsrUOPHUOCpbMcDgvaLyC3Pbe7ylHavjePGohv8SNpbJZEKap7MN08d2l93Bqmfim/sIgaBVVZEm6ZxG5JvjDgzJSRn/Eg1DwKF5KMu5s7d76NkPFOMXERKjmUxGXL/+EZcuPsSjjz7Kv/Fv/BtUVYVSips3b/LVr36VN954g2effZZvfOMbKKV44403GAwGiAjb29tLmf9p01FeBqs+z5PD2QB7qMgw2gl7qCq6qi9Bsk7TUGpxNC3JkiT4wLftWMQbXF1STfZI+/02HuLeqNWnqKop1nnI+3HDESBUVAsMqD5+s56YxI125a5aZh8TnD9/DRFwoKzHFSVUDl8GuE98o0kCXuHbPFHHaJegxSidhAjnu7mRVQOwMGDeeygm0QYzY24r26Rh9h2Da/vO4URwaIwTBEularykKA+mrKhMjc57BKcDv9B4TFzQesXNX/yApN5sMlEC9y6UOFV5jjHprF/xRCfMXXOJeBYVycD4lYeqLnCAWVtvIawuTnYI4nhi6lYy86IhTTC9/qHnPFCMHzxaC4N+j8lkzM2bNzh/4SIPPXSJurZ885vfZDAY8Nhjj/HKK6/w8ssvs7m5yWg0Ymtri9FoxDvvvEO/32cwGFCWJUmSzPDtU9wADpP2T6RZeCjLKhSfsQ6lVVQhF01iJ+2PQqvwCkFhsY/RE0U8FMUYX49I8gt3JZ0evBWJyek80/GQShQuLsSg+ehQgtHXeF8du12RUPGsicVgKYOIP3XfybLv75VmEJJKE/KLA9zZgt7FNZLMtNpa2J9OFhkxg1EaJthscCf1tFoO09D2LPZRIkyoYpGgBrRYca0DXzdR5xA1OQHRiFcYUTgRNJ5aXHgc0dvMN3O7w4wVjXBwHJoJRuIJ3mHaoJIEZdKuaI40bS9MmQNr1Hf2TAFVglQ1OstAZPkEWthkpfP/Me+g1TACHB3HT5tgGzyEHjDGD+Dp9XJEYDQac+vWDS6cv0je63Hx4kVefvllbt68ydbWFk8//TSj0Yi3336br371q/zpn/4pV65cYWtri5dffpnBYMBkMiFJkrZ+6yropfv9cYJBTs1zQoQ0zShNyng6JUkSskSHldTFFFf0Y5G6/bLOYRLTZuXstBIMk8UQ7JQkzTgd1thg7yEHf2USUAkOQiU1b4JBXCqcOxzD7N6PqFhVSilEupDdamS1wXljt+Zv7172OB8qEnvx0IPzn1sjOQObD6+hUx2wWnGou0ijNQNmoltn92buoqV56uLQzUYym+/ALKPsCcmKQTlH4i1WeSoxKG/Q1kc5Q7VSt7TMPTyUNqr8RFfsanzx4UZpfdaab48Ll+6y5eac7rFNa83aX5xbsy28nX8yP9InG73ZHYduzDTy42gTDxzjb7SyXhb88UejEXfu3GLrzFn6/T7r6+tMJhNefvllLly4wE9+8hOqqkJrzWuvvcYzzzzD7du3uXr1Ki+++GKb7mA6naK1PhT+WQwUWfy86vvud4vfH02avLcWMdcxZVVi65IkzUiSdOmGcxjznwt8c44s789lM/VR0hMs1XQffEWS5ZwuQCKUxQSb5RiTUMd+icqgFhCLdceHegQiDOaO3c8D8MCS7+6GWhlcBK8964/lbDyc4pUnOC+F311MTX3SWOi5wjzchZa66vBo25lzN2ohhpAHvokhmNOaDr1W+D2RlCwxiHKUrqayFrE1XnQYp8YQ6h3QMXj7u511vsXxm9xbTcXqdrw643YwMvygINR9J4DyHuVDofjGNjaT6Wcc/9TEpY6C3/ThMHrgGH+gMNi9LEUh7O7thZQM/jy9fp/z58+HjJ0iXLlyhUcffZRbt25x/vx5/vAP/5BXXnmFq1evsrW1xXg85sKFC/R6vTY2QETaDeDQXiww+lXY/SyKl6XHHUYCoDS9/hpp3mO4v0cxHuKrCu/BGBUNVsfyP4rXbwrTeNIs5vNZvKqvqYrdAAUdoVYe/16aDccynU7wWRNLoBBRaJWBKJRyVNXxoB6RwPTN0vQaM8Y6L0e2YAZzPzI76N42AQdoBA1KCN6JPkI7ByDq091T75YOjMHiCCzKrsfvdIJDdm5hhzuYfh/dX0clCZVy1HVgoCaaOmoFZgnDd5wA6WEmIIa9awbpzDF5mf09SjKXzo/iG2EjRvnE4fg4HqNvxqLZyY45MR9Ixt/lm1mWsLW5wc7ePndu3+K8ukiW5yRJQlEU5HnO5cuXeeONN3j88cc5c+YMzjmm0ynvvPMO3/3ud3nuuef4+3//75NlGdvb29R1faCua+P1clxvnfn+3v2UaA1mSqOUZn3zLP3+gNFwl8l0SlIr0jTBqCT4QXO41N+oqdZaROngrpd0pokPrNLZmmJ0hyxJ0XLvHj3N3YBQWUtRl6jBmbnaxEoSBIU2UBVHGz19s6CVmmP8K/3VITzbuSX6cXBeFZmDxWMjB1LgdbzX8FzlLqyzHVn/dLvdSpRdibjDGee2rGNqVXEeWiq2f/IDhn/1F2w8cpn8xS/Qf/hx+r2EMskZtZxXtQDWvW28svD2pFrVEdeXmbm1RYNOIHjdXWdi3HZr/zj8tAeO8ccNfE7lTJOEzfV1dveH3LxxkwuXLpJlGUmS8M1vfhOAd999lyRJGI1GvPfee5w7d46/8Tf+Bp/5zGf4r//r/5of/vCH/P7v/z7r6+tMp1NGoxGj0YiiKJAoURpj2jQMbX+OgH0aWrVpLB5zoM1WbAHvFaI0SarY2FT08gmj4R7j8Zg0yUjTLKYj6NggWjiz0UrC19bWmCQJDLdx1ewY41xdMxnusJX3WZ3s+GTULI2qqoNXVdqjEk/j2BL87lVraO6u2YaJ+Bnba3F83SbZm41V96oNOeuYliMSY4KHzWFK812v4nkNI9y1QbxGsDE4ybW4sj+IM6ygrq4/Y/4rn8xRzS49cWFD9IvfyYnabeahTwznL15gOt6n/PFHbP/sNZL+Or3PfZ0Lv/mbuF5GpQW8YFz0dFqihaljDlUDhjXdaSvqLWBHvvNmGbizTCRogC8vATzyzbM4ZInc0+pp4KpOJ714VluvAj1wjL9V2f08A8iyhE0GjMZjrn/4ERcvXiTv9zhz5gzWWh566CG+//3vA/D+++/zta99jYceeoitrS3eeust3nrrLf7e3/t7JEnCRx99xO3bt1vjcGP4LcuSoiham0FVVbiYU8cYg4gEhhIZvNYa5wJs4X3IvJkkCcaYOY3iUI0gMm3fmaVeFCrJSXTCwGSUxYTRcMh0NGSQZpg0GGxjjGh0JJGI8QiCw7qaJB2glAqpqduFErLwe1thx9dJLz+K8opKW7Q/uUFy7la8CteuJuz5MSrfQDmNlRr8OhUJSI2mjJN71aJpfokSkPag7IpxDAFEDqitpbIVXizO1sw2imUawsqLn4AEER0xilhWs1vm89hMP9IcBv5LoAZeuEtqNmtde8o7e/S+8hXWnn2e3tV32PvOn8PN93GuxtNHeY/GMtUe4xcC7+6m222/u4LYySX/lW1Hbt9oq600+nFQRwIS5Fia4gPH+GFBFZPZgGTR4Lu7N+ajjz7i0uWH6PV6aK357Gc/y9WrV3nzzTd54YUXeOaZZxAR8jzn8ccf580336Sua7TWvP/+++zv7/PCCy/wne98h+eff57z589z7do1Hn30Ufb29tjZ2WFra4u1tTW89+zu7jKZTLhw4QJZluG959atW5w9ezaouzHjpnOOsiwZj8d4H6TVLMvajWCZ51ALD8TJFWwGIMqQZhqTJCilKYsp08kUqpJeL2Qp7TjhhRxFhAAjTwgGatxDW4kiXqOqJpTFmF4+OOUnJ1TVlBpFZkzI0SMhsKysbeirq2N/DzFgxsmvBFLRaN/JLto9jMb9MOC7yoM4v6inHzznbr2ylqJMpwwCHMfoeVIetEy0XXrh4zc802ArhtvbDB5/mv7nvk76+FOo/hmKD97DmCwYSYFaFNoFze3AZU54P+3hy5TAxWNO0vYBA81q7eBUqKtB+ePbOR740otdCkbZIE2PxmNu3rzJZDIB4KGHHuJb3/oWX/7yl/kbf+NvsLm52Z5nrW0xfO89H330EUVR4JzjBz/4AePxmOl0yg9/+EPKsuTVV1/le9/7Hq+99hq9Xo/JZML3vvc9vve97/H++++3G8JPf/pT0jRFKcUrr7zCn//5n/PTn/6Uuq7Z2Nig3++3HkVlWbbaAhyEig5mIlTRQ03QKqG/tsHG5hnywRqiDdOiophMcZWLwqZHsCAWZy1CsBkY3cgG0s4q74VyugNAlmaniF2GzKPT6QhJ+q2Xi3iF1knISOorimLMZDqmKKYr2mlwPkGhSJOMkCaBgy9pNJ8GNZMIt3yMEtqvaY7Ee7wtcdMR1tbodJ0zX/waZmMTN55ETSZEpSqnDwOw7gsKXjt+aW6e+4UeSIl/keZ8062jjgXJR6NRy9B7vR5PPfUUjz/++BxOX9c1169fZ2trq4V09vb2eOyxxwCYTCb0ej22t7e5evUqP/vZz/jxj3/MI488wquvvsozzzzDz3/+c95//33yPOc73/kOn/3sZ9Fa84Mf/ICXXnqJH/3oR/zlX/4lWZbhnGN9fZ1nnnkGay3j8ZidnZ2QorgoWlvCfC6hVXBQgHGcjyzQpKxtnSEv+0yG+9RlQVlUaO0wqW5T8VtnUSppk5YdaNVDMbpNlqUoMQEluqsw0QPdxTvHaLiD6W21iczEa4zOmBQ11k4pq13KYorznjRJ557XLPYXUKASjU4TnHIoDhqExamYscfPNoJF29+v6WMlJ0K+sUbxxuuYx54ivfgEvp+i6oLxrVv4s+s4IHGOWtNqqfcjBcn+Pub4kT4VEn/XaFpVVQilThKyLGN/f59bt24xmUxaN829vT2uXbtGWZbcvn2bt956i8cffxwIm8h4PG4je51zJEnC7u4uWZbx1ltv8ZnPfIZ/69/6t7h06RI///nPuXLlCr/1W7/FP/gH/4DJZMKdO3fQOhR/n06nvPLKK3zuc5/jH/7Df4j3ntu3b9NkzRwMBlhr23QSNhZi0Vq3NoHWSNYajmfeOTMjrhDCIzVJmrO+dYbBxiZOhKKqKIqSuq7x3uGdj4m3IGk2me6AeheqbvX7SNwt1Ckw/gAzWfbH+0i2gZMAqyivQBKmxZS6GlPVIVBNCBtzYyOZp2Bmy4wOSd1ifpyDL9oQfi+uLSA/jwAfRp5PUrRb6gp8f/LEA9T0vVKa/jOfZbo/ZOe//ROKn/2Q+uc/objxEV5C0rqwOVu8VAfOX/x8YhjulMfr/mf7nwLG304CH4qgjMeTNnS/wc/39/e5efMm0+kU7z2/+MUv+Gf/7J/xk5/8hL/6q7/i1q1bfP7zn29x9ul0irWWDz74oHXtvH37Nmtra4zHY86ePcuZM2fY2Njg1q1bWGs5d+4cFy5coKqq9jrW2liUxfPkk0/yxBNP0O/36ff77WY1Go34p//0nyIiXL58mSRJqOua6XTKzZs3GY/HwQA7517aABmu875DohCTkPYHbJw/R399g7KqGU+mlFVN7TwmDaHmLbQ0N6gVk/2bDPprAVKS08km770PdXbLKSrv00VHndWURUmaQpob0jRpN+HxeNwa0Vu3LsAoYZAlpK1/vDrwajxgLDNPiJCNcRU36Prj3F8cdvYU7q9+HUYigvIG89DjXPrN32b60ft89J/8R7z/R/8x42mJuXQesQ7xUKuTB7Qdqw/AabLrrrfZ/UoPPNQzw8QJUq216E7wldaaNE0Zj8fcuHGDS5cucfnyZf76r/+af/yP/zEAf+fv/B0efvjhts319XV+8IMfkCQJN27cYDgccvXqVXq9XiuBNq/GMNt8bqCl3d1dRqMRWZZx9uxZfvazn3Hx4kWGw2Fr8AW4evUqZVmSpinT6ZQ7d+7wyCOP8E/+yT/hrbfe4vz58/zBH/wBFy9ebKUdaaNUgQVmMEtVIKA0WinyNUOSJEwmIybjMR7BpFmAfhYmsEdw1YR6uk9+7uGIgzvkhAVpVtF0MqIUITEhDUTDsFEpaWqx1ZCiHKK0RUSR53mr/TRlG5vtIjEJSZZjVfQAWiIJeq+Y+b7HYCHgeAkhYMGV4Nd0AmrmeIqjunaD5LGnuPyP/ifYn72BrWoGz36G6sx5ZDrFCTgxMXf/8ky5H1cyxZPQJ9+D49EDz/ghSJK1tYzGowAdLOSeCTnYhfF4zLVr19jY2OC3f/u3eeyxx0jTlC9+8YvkeQ6EYKBvfOMbLSa/trbGH/3RH7Upnnu9Hu+99x5vvvkm165d41vf+hbD4ZB33nkHa0PhEOccr776Knfu3EGpwLxeeeUV3nzzTd588002NjZa+OYXv/gF58+fb4+5ceMGWZa1NQXquubdd9/l0qVLCzECwupEbY2ME1NrKUXSM4gxJEnWFp5XSuaObGg62UN5S2rygMFzmGvlyWg03MWnGU4rBI14iyiFc4osT0hVRmkVRTkF70nTdD7+IY6BQkglISXD2WAr0P5g4ZbEGRKrcT7GCOBPHpdwHzCcX0WaxV5YRr/4Gb3HL2Oe+jz2zEWMr/C9dWqv8X6KF49yglMK721HoDvMxnVC+hQ9xgee8bfukaNJ8OBRisRDcAmbGQSN0VinmUwmOOdYW1vj5ZdfZn19/UDU54svvogxhizLePLJJ7l69SqXLl3i2WefRWvNP/tn/4x/8S/+BVtbWzz//POICN/5znd48803eeqpp7h9+zbvvPMOn/nMZ9pgsK985StMJhM++OCDdpMpioIPP/yQp59+Gq01r7/+OhcvXuTNN9/k6tWrfPGLX+Rzn/sc0+m09TJqDJ2+dUWcseRZQcfgoRMz8MTfwCQ5aZJhnaWo6papzgqgAyJMJ3sYgURneE7X0DYd7yNpBkZB9OsXo7A28PSymOJsjdaGRKs5pu9j/LonuHBumQFb0wwVPXqWm78dUieUkfFbcdiTMpGP00f7RP046O31q0AOAeWZXr/GuUefx+YDHBVjPGLjDPOAWIx3OIEkCd5wjZ3t3uk+eH6/RHqgGb+1IfVCMZ2yv7/HtCyCl0tlyXu9kMRMqRhvIaRZSMhWFEVkplPG41HE3QekWYoQPIC+8IUvAPDss89SFAXj8Zher0eSJHzta1/jnXfe4Ytf/CKXLl2i1+tx584dRqMR3/jGNxgOh7zwwgucPXsWay07Ozt8+9vfpqkF0HgPNW6i586dYzQacfPmTT7/+c/z3e9+l42NDd555x22trZ46aWX2N/fZzgcUtd1TCVtCMbdhic1QSRhbJZP8wB5hEjdOgaSEccnGHC9WIrJDonRseZw2DibpGLHo64mMnvvvWNcjJF+H0RHjx5BK01pYVqMUfUQjws1A7KZx1HXluMVaKXY1D02yx7axyjKJSYtpypqp6iQdsM8GRv51WO0p0b3eOvNhq2UIju7yc5bb5Du3UCfu4x1oOsaR43gUHGOebEYn2O8g+kYneb40mPFop3BGI1zFdap4Ml1qL3mV5z8gTfRM41ZbYIV9MAx/sakWVYV00nBaDSkLgqqYoqrCrQSpmWJqyZkvQFp3kPptD1ZKUWv18M5S1kW3LkzZjQasb5e0Ov3ybOMNE3aNAZNHpher9dO5Jdffpmvf/3rbRTu2bNn+Tf/zX8TH6GJpjawUorr16+T5zmvvfYa3vvWXRNoA7quX7/O9vY2RVGQZcEN9e/+3b9LXde8/vrrfP7zn6eqKowxVFUVDc6udftsbm4ugHAhaKhzVFTBg/1D8DjRiA8Rod5XlOPb6MQgSYrgAqdVNfiT5uyZaSDeQ2ULJlWJy89jxFCLBa/RKsVbBb6gv5ZQ1zmjccG0KDDRUN9mTQXwgtEh8Mu4FCcuwjcHo5CUTbAenPYoI+ReY4xmeti68cva+jXdLQkaby329Z9SlDX9r75McvYMrJ2hzgRfT8FrEmeYpKBqhZQV05/+lPSpZ5DBJiKORCehBKny1NL1tjrkWbU5h351n+fMhbRjpj5iU37AGL/gvVCUFcPhkPH+PniYjMeIdwz6/WAEtI7JtGA6LVjb2CTv9UMGSjHt81fKkGWKNMmp65pbt26htWZ9fZ319bUoVevWsNiWJgTSNJ3vVYwAbqgtCAJcvHiRF154gT/5kz+hrmueeuqplvH3+33Onj3La6+9xp07dzhz5kwo55amfOELX2B7e5s33niDa9eu8fbbb/P1r3+dtbU19vf3KYqiTQPRXO+41cScczHrpp6bQJ4QzFZN9xikvbmI07v3458tvKqYUjqHmF7nshJiBbzEtNgG54I3TjGdUMbUF+0mF5m/SZK2Zqo0nV/VxXgxrRRZL0W0UIwOYxb3t5T/q8bCnLVMK6icYvv732P/2gecefI50hdfpP/kZylUimeIcY68MlhtqWth+NFNevsTet/6FsqmJNvXGN26Sf74M+g8RdeCbbOfrqZufqdfKZLGZy+8aeQ57cEcAfk9YIwf6tqxvb2NrcswocYh6Vaa9mIhDsAo+j2hqi2jvR2m4xHrG5uYrIdWBt8WftYgoEShtMF7x2g4YndnGyT40Pd6PfI81Pbt9Xpz9gBr7VL8cRGH/da3vsWzzz7LtWvXWF9fbzeJLMv4vd/7PV599VX+9E//lMcee4zbt29TliVbW1t89NFHaK25ffs27733Hl/+8pd58803efHFF6nrmt3d3RY20lof2xDmnMNoIdEqMsyQN8Z7oS5Lquke+eYGIv4EGe5XU9BCQg7+ClBJnyY7ZViUJua0gbIoqOoavKM/GMRnKjN3Vu9BBZvNzOB7dA8FEFEkaYr3J7mrX3v13CtZcZz94pc498ijjN99k+13fs7Nt36Kf/8XPPoHOTx8CSuOWgUbltc+pCJ/4Qm2//yvGDzxELW1vP+v/jlkAy4+/CTiFbWuZ9ldj0W/cqy/Zfjz/x8tmzxQjN85i60rXFUxHg3xriZNzCy6U0nEq0OR6JCATAKTvHOLrL/G2voG2qTRzzuWwlAKE8FupQStFS56JEwmwWi8vb3N2bNnOX/+fGsQ3d7eZnd3d6GPrvVmaFIwpGnKmTNnOHPmDHmeo5RqoaDLly/zwgsv8Morr/DII4+0OYP29vZ4++23SdOUvb09siyjLEt+8IMf8JWvfIWzZ0PhmeFwyO7uLr1e74AmsoyCS6hDKTNL3taRym05xRVDevnlOV+eeym92IS4l+WEQoQkyaHxFhKP98FmkSYpk+mYspqQplkwPjdtLHr1yAlCVALXn2n9x7iRuc37fjDs/iqTSjBphnq4R2/rHMkzL6D3t6n2d9Bnz+ARtE9wOiNTCr2/y/raJtVjT2Mv/YKbf/xfUE2HJFsX2frat2Atx1FRi0L547D9X93n17L7aL9zEsBTe8T0f6AYv3ceV1dMxiNwltRosiwN0aUxUMe3zAxEadJMobWCsqQsxuzairw3IO8PEGU6SmBgbNoEAxKEsW6k+iYzZ+ui5j2j0YjpdDqXq39ZpGVRFBRFgdbBq2h/f59er8fm5uZcts4nn3ySNE3Z39/nj/7oj7hx4wa/+Zu/ybVr17h8+TLXr1/HOdcy+Q8++KCNExgOh0wmk7mEb8315zWQgI0mSRKlhsYvPoS42mKIrSZkWS+6ccoppGwQvLdMiwm1MSQ6weFoATGvg89+liNkIClp0mxMB5qa/Tm2IC6dv0dJ8J2Y3iMxpE+O7s9ezairfRrnGV15CzfeoffIkwwefZJKP4EaTymtRYpdEBuW4O3b3P7j/4Lh1hb9J5+kf+E8o9fGmGzApd/6Nv7p55hSoipBtwVuju90cKJ6158gzSVrdMEm54iMX46e+g8W4/cupNN1ll6WBgYd13JbKBxaT+2mLqkyCbnSVFVJWZeMR46yLOivrZNmWesNMu+xHoa2yfXe4OldBm+tPVCvd3m/fRvg1aRjaDyLGp/+z372s1y6dIlLly4B8N3vfpdnn32WJ598kldffZWvf/3rfP/73+fpp58myzLG4zGvvvoqX/nKV3j66adJkoT9/X2m0ynGmDlXzYaCFhI+Z0nS4RzRfOQc5eQORilMkgZ3y4VjTvjEooDusa4KHj35gCYozAMowXnBeUi1QvVSkGbTWb5Im6fcbgzH6NbdLvXQ/fvEnbND91dvDifBMvnwKsMffAeztkHvoafQj1wmv/QEZm0N5QmpssVCqlHaMbnyc8r33sJkOXY0hrUtzGBApcPqrmwTynccH61fPahupuES0ox0NjjF0bUJHjDGHxZ7r5cT6jY09u6Z0Q+YE+qa8VFKkWUpSZowmU6Zjod4Z7G9PlneQ3QSNIcQAgpI9JJZPsLdwiqrSi/O+ixzMEyzEezt7VGWJcYYXnrppRYG+vrXv85jjz1Gv99nd3eXNE3Z2trixz/+MS+++CK7u7vs7e3x4Ycf8vLLL5OmKRcuXCBNU7a3t9u0EUmSzBmavfd451DSGKAbXwGH9wK+ZjK6Ra/Xj0qTIiQ7OCmj6XgfRG3B2pr96Rh19nI8RCMuZAn1XoVU0fEV3YtWM3WZjfWvEfj7k7proVKQnr9IvnGJ8voHDN99H50Zyhc/x/o3/xY+yRBnEOeoNzdY/4O/j3v3PYqrb1Nd/QBlDPb6Fa7/y/8vvS99jeTFz+OVwbvlvlxLevMx3unHQHFCKwnij1HBxlU7hw2K+ZG5sx4oxt8UN5FYbUl8I583ODQ0cns8Y8YURPBeIeLp5TmJCflw6rLEVhVZr49Jc2aFM2beAMtomSH1OGpk1zOoiSkoioIzZ84wmUzI85w0TXnkkUcQEW7fvs2XvvQl9vf3uX37Nq+//jp/8Rd/QVmGpGvnz58HAiPf2tqi3+9z584ddnd3KcuyhZKa6zrnyNK09f0PvvQeQYG3jPdvsdXfABXSFwdZQ9rN8KTkm5F0NeOiwPTWmcktDhEDMQALQhK3BoY/lYygv6ZPnGpf03/iSc4/+hTcvsH2T77H3nf+gvInP6D3uS/C+Yfw4jDOYcsCvX6Wta88jPr8i5STIXtvv8nkzZ8x+fBDytd+xIXHniNZ6+Go2mJDx6Pjeb3dDyQQXZkFU9e4ssKkCU2icnfEbTxQjJ/ozhcw41neFmgYcfuJRhac4e4QcrY7lChSk2D6oYrWcG+X6bRgffMMJs1DcFTjLXCI1H8ULTuvu2EELSTDWsudO3cYDoecP3+ewWBAkiStbeHLX/4yP/zhD/nCF77As88+y5/92Z/x4Ycf8tJLL7G1tdW23aSHuHjxIoPBoE1Ml2VZp0KYJcsHcVyEtu4hYF3NZLzNww9dBPF416SFWD3LuonDpPu5NQYHh7SyLCitJU370dgbNDUtOjB/LxHKs9HjZ3XM8L0t3UOeZaOinOysYx95L4FGi1OpUUybcoKLbbcujL77VJoN/N76Mt+vrmNu/K77RjzaapzXDI1CX7xE//zfIT3zKJOrV+hdeITCAmgsBitgxKLtmOLKFbLHn2L9Cy+z+eJXkfGEajREDQaMtUNZFtb/arg1/LbqJpo/XYM+0XxwD8+se21mQtD8twfPEEI5VGcdRmvs7pDb169z/qnH0VmGk1CU/jB6oLJzSvf/zpgdZLDLHpafY1JEF06TZfQHfcQ79m7fZLx3C1vvQ5P3ZeWE6pS9Fh8YZAMVtZBFzIImocNegp7WbUophUkMaczV/+GHH/LRRx8xmUwoioL33nsP5xxXr17lmWee4Xd+53f4R//oH3HmzBk+85nPtO6lXcjJGMP6+joPP/wwZ8+epaqqmCU0lO7Tzf6pQg1YFT2hmI7w0z2ytI9yCi91tJLYlQX/PAdZ3dxm4BOE4IVVJglOmxgF7EBZUApvMkIo2Rjn4riLYmnlqjn3Nn+MWKuOcEDYWJxvMn0uZ9Lt8osbQXOP3Zdb8t3sdfDfaVCr3crx2LbDgZfOHaiAox/jOs20PRbNwW4eF92Aw/U8NlWYDHJXgfd4yVEvPAX9nHrnDkriaHpHpac4PK4oGL/1BuXudSqt2e0JxeYa9uFHGKYJpnY4cUdKvvNPZkX3nW43yGXseckZC20fdul5S+xsfszPpfDyOBwu8pHivXepbn7Ezg9fpfrJT9l//x1EC9p7nNSH9vDBkvgXSZo/cvDL7jey+nclCpUkaNFUdUUxnTApJmxsXiLLe6G231IGseqBe5ybJZkSVGvg7KZAnu+RhALg0RtnPB7z4YcfsrGxwfPPP98mi3vqqac4e/Ysjz76KL1ery0fuexelVL0+/02+Gl7e5uqrNDaoPS8POAlSGbT8R5GKbQ2c30Njq6HSFIHRnVB+vQwHg9J8l6AlBobgBcEDeioAUWD7qHj2xhcZ5c5TCfpfu+sY1yO0U0sxuLYdduXKEk3uNNCd1bvN4fsRPcsZHdgxaOa88FFEmpCeWGFUh7tkyiAHOMqx5F222NiteZa8KJIVGDmyimS2lP87HXKmzfRTz/CxsWnMXqLsp4w3b4Nm2fiPSl6VRJyL5k8FAvaHpKcU5SlpkBQAqZw6ErwqT4yeOs45JQFcWHuuWgTU5Z7lZsX57F03snCZgC0rqkehxah2NmhPxxCWbB28Rx6UmG8ohZNYg9n7Q8241+kw7SoQ88RtIn1ZysYjcfUtibjeDCP77AM7yy7t2+htGawtk6SZMFI3DCEzopdzEColCJNU+q6pixLdnd36ff7JEnCV7/6VS5evAjAjRs3WF9fbz8vowbiatw967rm9q1bbG6uoZSO0JdEyTUcOx7dJkvTuWCwZixXM9ZF5ikRggCJtX2dwGi0j1lbB1EBYopaF7GwtgBazRTirnJ88JoLPMmvPrZLta2pixrD8mIei8zUQ4QUV0Mjy5X1j4n8Mu3hEBhOPK5w3P7ZmGrsuPD8gPTM0bEeJ6EWzUOwU8/+u0NEDBtPZKisERtAdrYpXvke1WvfoTz/MGZjjeGVt1l/9GksoLzHKkG7kJpZp5pkkDF648ecufQwg7NnqWtHbUuqYcX2bk3/XErS1+G53Qsko0KNZ1Ubql0HCtINdSqbyuwizCC5JUJEOETjJJZIRZGK5tYrP6b/7BNkD12mGE9xIhiv0O7wzn16GP8cPnv85TfLShmYSZqklLpEK8VyR/LlrYTLeuqqYDIeoY3G2YoszUPKiCSFGDTWTIJF3tPANY1BtigKdnd3qaqKhx9+uC3svr29zXPPPUev11s9HJ3GjTFsbm6yvR0qf6nOfQU5LaQrngxvkqUpSs9Pm8OWlCwd83lV2Logaav84pyEGI5QLRwh0nXNWzXugtKxMM0JuayPrqzeNRDRwTubU/S9R9TM1nBcvW+WK+8wPWjxnPmWDmNkh5gi5q7lsUy3a258d5diuyZf05zZihHrh20YtArP8aR+QLwwvj3lw+/sYpRCrZ1h8EgvNJIkDD77LFUxwV15h/GHV5FrE+zmedJz5xl5IqxnsSowP+MK7HiP4SvfgUlB/sLnSS89THL2DLeu1dz44Q7nX9zg7IsDlLk3VUq8ICiqO57rP9xGtOfSl8+QbOlT0NIOUhf96eqHjZAEUGvD+mOPsn/lA7KnniRd28SOhsGHXxxeDndj/dQw/sXqRALHMvg0BqimlKFzwfgbShPOFuPhkn8jK3rqsiRPDdoYimJCXUyp65I065FmOdok+MYWgMy8axYCvxpDbRPFm+c56+vreO+5cOECjzzyyFz6iAPl+RYoy1IG/cGSeRzxRltRjG+zkWaIqANtrPRY8p7u6Me7CvnVfZA6i6qkdDUuyQPQIwHZ9PH0wI8dHsuRapuA0SYE5R0Ocx7s50JzDcY693Wj3TiHryu8xKAZL4tw7UIXuzqBHPh9EV057NgD7KC5aEykF+Zrp68rSDnFZKdmeqOi3vaM79SccwInzbV3GEUc23sY3ynYfqckUYqtW1N6j/ZIvCdzjqw3IPvt32bt5W8yeucK9uZHJJcvkVy4jEymOOXQ3qOwVAosgu+fQ86eY/cXbzG58RH5pcv0PvMFJu+dZ/dHBYkZs/VsH2WOqk19ODUY/97VfT76zh1IPBuP9Em2+qc6TOFNI3CF/7v1ewWH8j6klFGabHODx//Wb6LOnUMmFQaYYqm1xalPM8a/QBL1zlmhkhNMgriIrHUYE/3fZV4sP5r5e6qqIDGaJElIE4Wta8aTYUjrPFijH6V/pQ2iDq7AxejfkLgs1A+GsCE0NQDmyzEebKfbb600vV5OVRXxd+hyj7qaUBd7ZINNRNQJJNAZRwuK/YIq4z2TyQirDT7JOthALJfoBWcbU2nztzOkSy6rjW6zp56I5mWDtg+LpBCUc9STKUTG39UM57Ym6WhwcfOfH6p5OO+gYbbD5OcYefNsI7wjQl1V4Brmf4zbFY9JFSbTuMySpGrmbHUIdds/8jIdVUgAZX1b9F58gO9MVXDjtdfIHn0E9+gjpM89R/6Z5zAoJmiI6blDvQSL9gKmx8Xf/jtc+NKLbL/7NpM3fsbee+8y2i+R/DdxXrBlhbOngcWHZzAdlvg9hTOWqjjaCH6Mhtsl1k695vlHKaJl/RKwfcSj0KRlzfbP36J3ZgvTyymufIirLWqrj/arZu6MPlWM38dFcaLqPTLbgYP06UMRCK2Dqn8g5cGqiwMuRBYbEUQFw6UkQl9p6tpSjEdMRkP6g3X6a2voJINOzpnFQLBuqcVu9s/j5OQ5cJsxi2dVhs42ArBEsKcqhogtSbPZdZp7r+s65D5aGZkMPqbMcD7YwyMLBIHpeI9aJ4hJIo9sGL8gyhCOdjhfLW3/4AWP2oSP18aBu4lfJEqz2RtguxuFC9pgN2udb/oCUW1pgCJ3QDVweNwSrSNoe7P7WQ4dRa3M2VBe8pjT0StP/1zCxmf6FLs1a49kjUnlVBGMEAsCvTMZ648GiKl/LsdEjba4eYPigytkg4z84kNYSahUQvX+e7hBH/oJyquIcYPGoQltusFZ1l44w8ZzX8CMhpT7BVffMJjNHfILKTrV9zwXnIScUemGRm8JJtGo3imNUGT6M1tRINsVEOLaEQ/KQaI1erTP3k9fZ9TLyS5eYHj1Ov0nH2MgQlZplPu1cbdNPGZjzdsGoz6OxN8sN4lM1jmPStLAvY6xPKTzt455fVRiGrYWcpUYjdYGrQ11XVNMR0ynE7bOXyBJV+P0zb2ladqmhVh1zOH+yzJLHtcRjto++ppqug++Jknzzqh4JmXB1asf8MRjT5ClS6ZTlHStVzjr0SqajFux0VEWI1ySo3XCvISrUGKoaxDlsLZinqsJy7hcWVVU1UlwnqXdXgnaG63YWluPUlm4F1my2fiOcjMPtR1oMsytVstactllmNMClXXN9ngYNuAV2lD3bHEGs+Z56OUtXOnpnzMob6B9PofQiXipBwX9czmP/e2H8d4zOJchCNrC3k9+zPB7f4m/dZtBAYOnn0b319l+53XUpUfQTzwe5qIXUquojWCrMR99989RxZj1p54je+Jx/EPryNmadV3xaD9h7fEcSTqg2V0aeEMGAM/WI2tUL1nQsHaxx5GDfEwKS0FC0ZgIjSoV4T9pk5fgRHAiaBVKo1rr8Xf2UGJINwb0H384epmrT1fKhsPIWctkMg6MNg3Rrw0UcqihTFqhH+8czntMkkRJ7pDRbQDqcAXAU9eBcYkKYpVvoSKPEiE1CqM0VT1lNG3Udh+l5OXqal3XbG5uroR1nHMURYExZuXm0BR8qesarWLpxubeXLiZcjpCvCPJsnauW+e5cuUKP/7xT7h86aGljL+R9re397lx8xYPXTzPma0Byjs8Bmst5XQE6QY04xIXuYhC6QRfBze91of/MPK0Xk8uaTCG40nBi+2smhUaITMG5UNRR9dg6pFE5MSXa655xBfdi4DvzECBoq7ZLyZBEz3qUtFYKlrRvxjTmqCCHaULXa3squc4ysUMwgLdEwZP90O/jccKeO8YPP4oxeYG5YfvU/zZPnuv9FFbm1Q3PmLr3DnENYh3jVMe5QxKJ+hyj1t/9WfsvvYdehcukj3yBL3PvMDg4iP49TV0KjGmcwaP3hXGH9dvtmU4/6U1UEIy0Mz5XN4NdeZY8wTEO3xtMW4WGaMArwSSlEoJtbcUvR4XXvo6fevwvRyVp5Rntygt1NpT6cPXyoPN+JuJKT5gfaIweQ9bFoyriizLSNKkw59VVLmaalUxVUFgv3gXAl50khzEcZnfQHzn1bxztkZ88Jrx4gjeMtHWENV8pRUJCcaAUkJVTJiMx/T6fdKsh2+mSJRCnHP0+/2VE7qua27cuNGmbBgMBkuPa4K4Bv2cpnYtXvDKIdZRTrdJTFPSMdzS/nDId195havvX+Vv/+3fXWpAFmB3r+BP//L7XLnyPi/9xpf40uefYZAajLFUZcVkOoFzlzryUwMECVr1Aq4pgrVlZ3zDGBy86wCZWFvjlWtV5LkNfNbLuNhmG7QTiXEJi4va4yLw5aJE7cOsCHujdI9cDcvAcn6xWn/0C++jP7yVUDkMTyKCWRJP0u53K6AbpxzaRQk/zlGvHHJMP8XuGB0LThGPmBjyJ8FFs1KQPP8i+c7vUd25QeIV9sMPGd94n6R/lt75iwybjUw8hfZkVtBotBYGZ89gegPGH7zD5M03cEXB5m+dJ+snVOI69oF7oJgFwGtHerZhmc2kuodmo8KqHSAO5zWT969w8/vfRe0XhHTU4XmnZ89z/nf/FmmWU3uhSIStp59k7/uvMX77Z/QvP4LZWsOi8VJj1eGw6APO+GM0rA8ug3l/ncHWGYrhHuPRiLKqcN6RJAatTLtKGiNw2wyAxGybJgWl56SiRpJQqmv0bPbwuFi9xdd1lNxjHhoc0kjyDS7sgz+50hqtNJPRPqO9O3hb4K0j7Q06CIdHazUnyS8abauqYn9/H6At4LK+vj53jveO4f4+3jkS3ZnYzYZna6aj2wzyQWtzsM7x1tu/4Ac/+hFKFOPJmLObG0sfw82bd3jjF9cYjyZcv73DL979gIfOb3H50ia1rZjUNZL1ohTraN1kRRDJ8BKiiStftYx8hsXMrzwvjc+/QgieV8oLVizS5PxpcNV4n15mUdY+wi3NccS0Fd57Ji5IY37OX/5uJci7IJm9CRkZFdZ7cmdZz9O26EizER0mkAqC9rodzFk+q2MYxTvz78hDF4Ijmy3FxPOdB1t7zn7+qyRaYTbOUHx4g70P34LeBpx7CFeM2gemPSCOuiwodids/Obv03/sGXbf/Qn7f/GvseMhtSis6Mg07ZJ+nIy65552/V4vDqsUGkc9Ktj77/+SyT//b7DFFOdNFG4s+aNPsfE73yTL89AL76hubHPzZ29QVSPGw4pLFy6QXrwIXpHW2aHXfbAZP5F1RWy+n+eI0vTWNjFpznB/l7Iq8M5itMXEuq0hR02AYoIPb1j4tXUM1nO6TlbHNRw576nqCmNibQCvZjD3XH/BOd8y5rKqyLKUoiio7Q5reNK8j1IaayEx6VyGzYYa1XY8Hrd1fJs0D2VZsra2RhqrTRXFlOFwj17M/tmuawkMwVrLdHyHC+vrbXerquL9999ntD8kz3P2dnbhoYcOGLu9KPaHu1w+f56NJy7zyENneePnV0gELl3cpK5Kps6hsjwGbi3g5PFZKA0c07aLN2iVIqKDuyVgxVKrao7xQ/DIsSi8hOyr4u2cv0wTXOe8ZVLW2Jhmw811s8HUF5nCcrzIyb35Syql0MojymDrCikr1qL2+EnQvdrRHQYzWMPfucPO9AZmfcDGhZdw4hg6cNNmHAXjQGHxVQGTKfrcearNc2x+7hsM0j7j69dQiUF70LWiNv44Bdg+IfIwGrL/9nukvqZWmp2/fgW/P4HNPsnmBarrV/BVibMl2oEThXhPYoXR9Y849+xTnP3S82y/9nPKmzv0Lz2Kxxy5gT/YjL+BArzHi5BEH3SvNSbTbJqEcjpmuLdNWY7JXUaSpIjWDQgQmoEWzzRp1qBxc5c61EPIBxtDVZWkrfdNABSWteEBoxTW1jhrQ7UpgWlRsL97h43I/J0TkixZie977xkOh21aBq1D0rlbt26xt7cX/f4dw+E+eZaQ5+kc7/IEX/u6Ligm2/QuPdzeuQAb6+ucP38eV9uY62cJB/AOlKcoa3args9+9mnu7L1LkuaIKIpiQmUMaZrNJPkucB0leFF+gcMs5zaNi6DSQikVk6QEPIUqsVK3TGAmrwvKpzifo5XGqJDmtpJmBAI5L3il6Z270AneO4KjLP1ZQq6VuyDvu3uLRURRTcf4+g6fCHdbkQ7kpOSVsH/tHXb/5F9Sa9h48gm2nvkCeisIaBAMm9Dkmdd4Y3CM8Tev4h96HKdS9KNPUb33LvVwG9lYp0xCJt27tLj8Umh6/Tof/OP/J2SeC7/1m9TXP8Dpms3PfZ7zf/v3+eD/+n+k2nFYSSNkNVPlnKvondlkmg/Qgx5VaakVJNR4VRx63Qeb8Uf90FoXPEaUnjFtUaEAS38QpOHxkOl4hHWeNMtQiuieKG0bSpvgH75MiotlFGEmbTckeLy1eG+D/ZJVeSUD7OKcxxhDVZXgHcakgNDLhXJasLdzm/UNh0p6eLe6lm6D23cLwSStVuPZ2dnB2hqlPNnGGkqrAwYw8UJV7IOdkGQ9mptP05Snn36Kq9c+4NzZM5w5s9leY/7ehV7e59r1q+zslJx/9FGG4zH9fo63ntF4B5/18Dqo5q7DkvEK75tcRh1x/zD+ImASkMRTSMGuclgFla5nWlqHERgnZLUgzseiOgajPdPJeHZ0nAZeayTLWyP0UZ1Zzgc9+h4ZkQe8hKAi0THgr/nhl0jH2PoOpWauZXbC7o++T/HBFVxquPHWz9j57/4S/fwLXPqdv4XqZTgJAXI2Sv4q6ZFeuszNV/6aC+uX6D36CNNySrE7JJ2WyKbgnOok9L4/ScqS7M6H1D2BckxWVhRpHzl7CffII/jNc6j9AmMdSE1jayoVKJOxf+0m5y88yv6tIWajh/bhGH9EFN6DzfjF452nqmqy/lqLT894i4R6n7mmb0Ldz+l4wmg8IU9ieb8oTde1xSR5wPdb1X7G6Lz3c5GyzrnZZuA9tiqDB6h3wKxy1aJB1NrAlrTWTPb3Y5lHAULdX0mhKAuG+7votKDPZlvQfVHiLoqibbf52zD/GYP3pEkoUXlQZw++0sX4DrmJm160koZ2DGe2NvnSF7/IhbPnlhq5CwvGZHz+hWf5l3/+Gv/dX3yXb33lOc5uDRDvGE12UP0NAm7ZgUZiJGxdO/AGabMNrsbWm3tKEo0kUPkSqy21BM8b3dZRoKNZCIk4TJwOSZZ0rjGzBjdGdQluInNjtIpWGnfvkRkFDbS7+cy7Ehw3jcK90j3HSkRS1uN3Cza/8nXyZ56nunmd6ZUrlKMJdjxG5RnRqBZTFjicSlh7/itM33uHD/+r/5Q75zdbSCjJU6xrqjjc34xfIRQKFCaIBEnO2T/4fc5+7WWS9TUu/9v/iFv//I9xO0M8oAjGd/FCevkyozfe5Z3/z/+LfOsM55//FqX3GCF6ba2mB5rxN/PSOY82SSi2HlD0wLtbDmBQRpP1NUonFJMJ1XSMrSvSLENrHQy7vdlG0C00Hq7lW2kaQi3ervRsrcXWNpZWnOH70lH7g1ulbbWBqqro52m0KYTvQt58mJYFZTECpanKso3cbcg5x2g0apl9l5rPob+eNDXoA8xC4l16xsPr9LNB29cAOYRC88YYzp8/T55mS1X9cVHwyg9+woULl/jDb/829XTIb3zhOQa9FF8V7I/3UVsPx/Foils2bng64v7g/aIPf2M0PzjBnQ/QjFNC42evOlqWNKdHDL7x+Al96GZGPIjZS3y1e4IcBSUs++3eGfPMTzsyN7n/mdwqqrRGbW6QXzrP4IUvMnq2QD/3ERu7+6itc+AdKs4L5QVRYAz0H36SC7/zd9n7zl8yunUNrXPWv/RlZH0TnMarxmh/n4L8XhCvY0Ejg8NgTUL/S58jf+YZvFFsfeXr7P7oh0x33w4ohQ/egN553JlNzv/GZxl/mJFdegJ34RyUPs6NT3OuHgkpFkRUlMa7ElIHrY4GPNGGrDcgTVPGWlFOJ0yLEqWI8EvaNnGATYrMGVnruqapw4sIJklJsh7TskaJI01Cvp5FXumcQxtDWYbraj2TWxrveqU1eZ7jx2PK6ZTh/pBeTLHcUFmWjEajtg7wYYOUJksifSNj9N4y2bvOZr6BKGk92Kx17O8NMSYhTdKV19DimJQ1r7/xDt/+3a/x9KOfA50g+NajR2VrcZuZA/jRSuNikKt15dL2m7GuYnBemqaUpaUsLEmWIhBD2JcbWoEl3i+y8K6V98P71n++Ca9v/1vS+MGv/D2mEAi34gF3z67k90ynwVONJn/0EsUH18n3dpFBn+TiWbh0mdop/N42yod71aIwyuM+usre3pDe5Sc59+0/JP3gXazRrD3yFGOd43xJ4ixWnVYnPwaSUDAlaLMa5QSpK8Z/9t+jKkP62WcY/tlfMv3FFcSDFYeoEL1bq7BV2KLC2gRvDdoKxgnGasQdHr3/QBViWSRPkLSDYdPQmE6b9AEiYQGJ91EtDBuB6ITB+haDzbOoJMVaH7DfxHTW+GwyOefQWs8ZWW2M0m2ggaw/YH3zLCrJqR0UVcm0mFLX1ZxNIBRoT0NRdK07gVsexIVoUFGIBHfPxCTs7u2yv7+PtcF1rSxL7ty5EwKylnj8QBeL9yTpwcAuIUQZWFdTjLfJ80HM0Rkwb2sd+/tD1tbWQlzCCrV/kOf85stfpSwn/OX3fsSt7T1UnHbj6QinEzB5MIDPEDS8F7QJ461EcHWxYDsIQ9IEqDX2jKoK+VlCpS4XMxX6WTK1zsu3LakZU29HexmzCMcGxr2I86uFlxzyOgn5Q16NTfdu274HOsUNR7zgnLDzxhvs/fB7yM3rSFHjvKVyriO7etCC3Nlm/8//jJt/+t9w+8//OV47Bi+8SPbc89RJgq8LnKoDGn5KcNTHRU4k1NnwoPHUbsr2n/85e9/9K9T2Njf/6X/F5Bc/xxG8zZyEkN5EQG1vs/2919n/wRvsvfrX+Fs3sYnGijoSTnywJX4CQ01Mgmg9Y9oR227yYwQQV1pV33sQpUmyPluJoZqOcI7IiJZjy8EwOGOybQqEufZytkyCrUr297cpimnUJJqNI7hOIgprLWnEm2XewZAmF4CznjRPcdZx8+ZNnHMkScJoNGJnZwdjTIwtmI3HogG61Uo4aBwGKIox3pZkab/lLd5DZWuGwyFPXngyKE2d1JSzfdHjHFw6O+Clr32Of/LP/5q1M7/gf/A7WySJMBztI2kOKkEIWcZ1nLJKBK0TxAYmat1iZs5wjUaz6vf7IQq4LMmMQqs1UL6T1k2WSDnLlkc34Ocg1OPjOM2dJ8tY7rz2Mtc+95bgy0uzMYWXX8L4pfPMZ/05JWo0qNNqzjqKj64j7/+cO7ev0Hv/Jdae/wL9Rx/Cb2xRSJz3AijP+OevU735c7KtTXZe+2vMhUfIv/oSRV0T8nYKOE2hE4yr7ld5Hwhp3vsXH8VnCTLIUIminpaUt28y+sW76OEuzpYBNahDAXkrnp4Tqg8/In3mMpe++PcYvvYjJh/dJHnoIpUpcJ/WAC7vHRI9ZCTmuo9xlxx0fess5DbEPAZySYrph2FapaIHKT2ZY6p1Xc95uPiYgkBiXp41k1FXEybDPcajMVli0IkJEnVdo/BRS+n2VUUs2lLboMamvQylM4qy5IOrVwFwypOneTTiduGtxTGyZKkJrGPBxdDHtA315DaZOJTJQCzKh0L2rq6Yjoec2Vifw8Rbo5IXLJ6r1+9w9aPb3NjZZaMv/PRHb/KbX3+eC+mA8XiXKt8g1x6HRqSC6H/sxSEMwrYnRcA027TMTc0vHzfdBGNSRCzTyaSFfcQrlkf3dp88hPjXBsqRTkDXTMNp0xmsGMuT0WmwoigANOMQoZ9Q2rCbu/Pj0QNOq00HAaL5xsskOmX089cY//TH7P30L1h/+DNs/OE/RK9tMlVNMKHF3/yQwbf+Fv0vfxnznb+mfvOHTL/2ZcR5EEulNMZq8GUb1Ha/kjzyMA/9e/9rbAJmfx959DnsOz+l/PFrfPTOm7jhHvgUR8I0LUjFopzGanDVlOzyWdxmijq3RTmZkDpDahXu05uPPyQec96RxGyV3YLrXSbdpkJd2oy0smIrES8c3Hj0NBK/c46qqpZ4ucz+JkmC0SHTXt0bUEzGDMcjtDFUdYHWupUspZUooyHRg3ceYxKMSUBrUskwSmNtRWVLtMQ8cq1s5tu+Nv1xtiYbrK3MqomH6XgXreZtJE2aibNnz7K5uUmbejhey/vgjVNUFf/6L37A62+9z2Az59yZTZ68dImN1CDOMS7GqP4ZRKmY2rjpZ9OfIO1rpajnI6ZmcqyEAvHW2jZL6NragCRp7CfHWfTCUSbag2fcLX18TGhp/+9fnkdr4KorkrU1+t/4Jptf+Dzlzg7lO+8yHg3R1qCcRztP6hTUjmlVsXn5ItnGGrzwPLf+xTucG1lqLXivUTE40rhQ0/d+HgOdJqSPXw5ixdYGZ7/5De7cuoUbD6knDpP2wCtSk9GvaeFZ5RNcsg7XS7KHHaPdMZkKKR6sKIz9FEfuWhfkuK6bZYAfDoc3unRU6ubm9wZWab5r8PXDzhNlQj70JEOZBJVk4B3lZJ887wVWtJD/p6Gqrsj7fZSE7OZaK4wkFOOC6d4+tizZ2NhEmzQErbVnztL8WucwK/sY7B7T8U4MAOt42ODJ85wXX3yRXq8302qaDcV53nn3PUza48mnL3P2whYbgzW21je4eHaLPEupy4JpWaC28pkBNTrMh/1qBl8oLYgNG95s7w3SrtaGqqoZjUYAMRAtR6lO8Q3ak1ZT/M1ai27wLFYDNvcl+c6G+Mu64D1Q00eLwYllMt0nOX+W9NHHSB55iny6jWxcwBVjwvyAWhQ1QqENPZ2Rn7mAFtDTMfXaerANOUeowtOkorg/Ob94j3ZQJoJxCpWvsfnSN8j6A+qyiDpo0OCytXNUgzNRmLM4FPmls2z/yfe48tPX0OsZZ7/1MjWeNNoDD6MHlPGHXdFaR5pkreRcVRVVVc0CR6KrJhy+ARwnInHRh79rWF2VFdDH4hIoIe0NSLKcYjSiHO+1UnjXtT1o98Hd0FlHVZbYukIlKjJdR1VM8XVFNbUMvWdtfQOdhSjZrp2r0VJWZf3Eg6trysk2eZqhYjRzm1hKay5dujQ3Pr7T9nRaMNqd8M57H3Fmc5PHHjrHI5c2SUyCV0JRTqm8hTQGhQmIm+XSaczL4V3IaxSuMa+daa1J04yyLLHWorQiTU1Y7nNG5yNYuAjeOabTKWnrCBB/+pXh/L88Fresuu/dkADGK8r332T3X/0J2cOPsvm3fg+1uYU2FXUvoy5HVNpTS8iNb6Yjdv7Vf4u9fp1sbYvaTsFXpFlKVTc5nSzaWe53Fqe9hFQMPtTnMJceZu3SBbTTaB/wfCchlsXqBHFFmJDGkz10ljMvPsnuRzfpPXwB/dAFKlehvQ2aziF0f4/KXdEM0qitY22QE3KtBCm8SU9cVRVFUZCmKcaYOcl+ZpQ9/tTuGna7Ev8yaq8RGV7I8ggKTRN2Yp1FlEI6xtluf5IkoSxKRnv79NdAZynW1lRVQb+fg8C0GDPE0/OeJO/RrZzlnCNNVuf5ERFsVVBNd9jszyJ2G84c4tLmx6nZALQSHr58iWu39rhxa4d33rvB1fc/4rmnLvLyb3yR9X6PsphQiaDSnJmPCrMsmiK41jLrCP747VGz/sQzVUxx0QSWNcfMYKjV1Fy/do6iLCBx4BdsA78CzH8+3cb9KucG6gpDminTN3+G39lhOp3Q+8xnGDy1yfj1t9FPPUNwegkTQylF7/GnmH7ve4y+96+Z6oTqxlXGP/we2TPPoy9cxOcDXJ3gCHWa799xkODOGXxLqBSEvKOC08HNzceIZfAkrsYq0JJgJhXjnR3Wn34CtZ4jMTW496Ex96mL3J2JnQQsPQURbG1RSvHwww+T5znD4ZCbN2+2GkAIjDoZs+/m+O5mu+x69MByjaEtzx1XaHOESUKu8WlZkSEY0ymh6GkDhtI0RWlFMZngnaO/uR5wbmfJsgwV7RaTYop1noH3pFmOqGBAds6ilGkji5dFe9pqgi32yc5eip2M5aVa+3fn/jrcW4lnc2udUS18+/de5p0rV/neqz/j9u42L7z4PGuDHkU1ocSQJFk0wDWsKlxDRFPbBnGx7bUXkXhrLUUxDZHVRpFl2ZLoWljFuRubhPceZ93sb3xK/uAec9/SL617p4R/tYIDHjutOffbv0u1f5vyg/dYe/JFRjev0husYR66QBqS96O0ovetv0ny8MOM3n6Hyfvv4pOc2698l/6VKww+9wL5l75GQT/USeD+3gAb12LlG1YtKCdU2uGVtO6oTkLVMSuCMgn1O++y/eOfMt7cYPzR+2gvnP39NTh7kVgc9NDrPniMPzK82ll0U7c2ulTmeU6/30cpxebmJmmacvPmzRYfbpj/YQx7kRp3yC7jr6pq7vfjtNVsBEmasnn2PDs7O4zGU/p9IVksaygxelESJBfGk3FISaBVqHClggdTkiaIVkynJXu722ysb5L2+jHXjI/pIA7eT7MB2nqEKyfBlbM94PC7gJA7v65LXv/Zz3n0wnn+5je+wm984UX29nc4s5XgfMW0GOGSHqKDlhOknhmuLtJoP4J3NT6UFmoXctMNa4NhN8tSksS0kc0nX+zzWHBrhj9aYfjU0Wmlamglfp9isx4Vhv6lR9l+6w08NV6X2Mk+ngshj5OAtxVDpTFPfoaNx15ky0+pP/qQ3V/8jNHbv6B48z0uPfM57GYfZaOgcj9zfmZz2jhHraAwgnFhbWoXJX4VDNxGFAZheOU90tQz+sUv2Hjx88i0pnj/Fvm5i7HU5acU6qmrGpP2Ym3c8EvX2Coi9Ho9Ll68yM7ODnfu3Am+87Ey13EzDS7m6fHeU5blSpinPa/bfPSLDtKPQqc5G1tnGe/vMZmM8FlCliSICgnZWilGQCeCrgTvLLWtSJMkSrshvbTWkOcZZVGyt3OHNe9J8xwlxM1q1QTxTKc7KGejD7/rGFeXyFGdKlehj4rhuGC/qMn7OWu9nIfWexjtqGzFqBgh+VpUIKLdQjXZVEM+fR+1C2drvKvnGH5z9SZ+oigK6rqi38s5QMdc+Pdv+t4Hj5r1pUSwWsjOn2Hy+o/oPfcMfjxFTUaY3TH6XIhStSoELxkXcvhXorAGlMqRx56if+khznz5pYCLr29grVATXI/v18fapAxvNrVaBQO28sGu1di7nAjKhzGw2pE5S6Yy8ucfJ0+uIZfPo4uK6f4IlMIqh8jh2TkfuMhdIartzgVXx47xsoFg2mMj8z937hwXL15s8880eXaOkmzayavUXNRuURTH9hpqOw0xKldADEmas7axwdraGnVZMp1OYhBTc0KQZByxkIh4cB6jTIjw6wQhGa3I0oTEaEb7+1RliQjBo2dFl7z3jIbb5Ekayh8ekLUXjmdWlNqLoigtV69e5/U33mJ7b5fCVpBkWDGUzjOaDEnytXjfjb7j2rvTSiMqGJSdj8/twKVDmoxeL6fX66GUwvllJQG7VoSDY9+JPfs1/ZKo0ZR7vT6SKvqPP4sr97j6r/8Vkyu/4Naf/SnDazdRW2tAE2wZnCGcEPBvV+DLaaxj3aM+e57p+XNMDFipDsCC9yMpT8g/5BVWAqZvnLTryYqnVhCSFoa6vNaVlAmk/QGsZQysJ/j21XTz/xxGD6TE712oG6o60q9Sislkwng8Zm2wNicFpmnKmTNn0Fqzu7vLZDIhSZIgETcg7xJjZkMNRAThmKqsWkcyCCkinDi0J4Snx88C8QHJHKTQJI/TSUa+JnhRTMcj/GRK3suDwZdmgwsSkIaQQK6JFG4weQ+g0UZj8JSTAm9rsmRAk52ztTUgwRjmNM6VjLffY21tPTLlo9JdxQhjr/C+IBFYWx/ww5+9zZ2dfT7/uWd5+avPc3Ytp3AF42KKGqy1QVYtfh+lHxGDkjT+VuL8ontaY2jwbaF6YxRZomNg9nK7xSLNuXkvPFdp7BmNGnJMLfAwajUWb3ExQbNCQCrAtIJL91qrrjpXNSw23m7PnT36kG1vSZuHXNN3fpGopTbzvBPN3PThoJXFo9ws35PxivrDK7iyZu3hx3Hf/B22/+y/o/zgHfZff4Xs2RfR5y9QOxtyYTmotZ3VOvaaWgiGf+fw1kfMPIjNJrpzL86cA/coTe+WpzZbfi/zfw8/1i2dO7NYx1jx2Es7xE30kNBUHQu8Q5yAlOzdvs74Zz+l2LvFnd5ZahI2Pv8cia/D5nBEzYcHj/H7WJRbQmK0Zg01ft23bt0C5xmsrcVsnYGMMZw5c4Y0Tbl9+zbj8RjnHFmahlw0TfMdo22jFSwWMbdxojYdUkGUDzsxLjxQr1j0tZUDbxTKpPTWNxFtKIe7wd0wTTFJCKiqa4sWjXcOrU2UYAN00qAvTfKzRgtSSpOlaZh4ys/4PsQEZEJdDJns3eDyow9HvXDGoJdRY3a9vTfk/Q8+4uHzF3npq59HpQkfXf2QN996hy985gnO9XvY6YQahU7TmLenYfzNVgmCxnuDUiDKzi2IQG52TsS9sjSl18uWBKQdwbAj51wmIbbR3pyOViA+aERjq9gpLGDZNDm97G4ySTa1aLsxC4sdXdGmP+JKB7jXrJ0wm3znE53vD+vt7KzADh31tWsMf/Qq/qXfYv3Fr2DyTXbfegs0rD3/IjZbx092ZtOvqYHdCE6xNSdhHARiHEaTwvmI+2ys+ytu+yhafvzBUZhFhq8++eCsDXO7yTPXbrTasP7wY0ymNckg1IcwJP9/9v4s1rYkve/Efl/EGvZ8hjvnUJlZVax5YlGURFIjKbXUklrdtmHJ/WDYgIH2m2HDD2qjAcOAXmTADRgwYKNlA1ZDDTe6H6SWWm7AkkhJkCiS4iRSJIs1V8557z33jHtaQ8Tnh4i19tr77DPcoaoyb96v6ubZZ5+1YkXEivjiG/8f2Uv3qBFSVhDkF9Fzx/gVcB7EpsHO3jHHZFnGYj7ngfPsu5rReLwWfy8ijEYj0jTl4cOHTKdTlsuCLE0jkuYKe7/NfvWeLMvWfm9A21anvI//DTVORWpEY0LUxaJVu5mNMQyHQxKU6fSUoixRAj5QA8kcfkZEvnObNHxXO0+S9jDWRogJVuKiaMwrCGg5i9OHqKsY9Ee0tWovIYlxmMfTM37lt77F3vg+L9/d40/+1Ffhj3yFd955myTLcUAxnUIaymBqVx7tPESjphZqGV/GUlYTaOO4Gg3qaWirRPeMLAdVrbw38zycVqAlt/qWlxJL324IFtdpbHOgkaGLSvvzcY+Ti2l9Vlb5zitVI7617V0lSLdeGh3Sk0/2OTmbc/zP/xm2qOl/7vPc+9SnqWploZa6XmC8xzUtbxGYLqLrjlna/z3OPVfQ2su76ki8HqkoxnvQlNs/9dPoV38qHKSmBDx1lrOohQyD8Zf38Dll/EreW8Wedxlo3utRFAX3Hzygdo7JZEKWrUOYZlnGnTt3gvR/cEBdhyIgNrEddhqoYfwNNdeu9UkAPColSCc65Xo7O/wzQj4cgbGcnR5TlhXWuhjBEiJpbKveNYyj2WCKU496xSQpaZZirLQ2gXZZioIaPDVnB28xyLNY/etqZ5DGzT8Z9Ngd5vyTf/Gr9HsJf+wnv8wnP/kqn3z9dfYmQ1RqZrND6A3wYqL2E7UOkeCr0Ggyir8HTJ5NHre5TUOUkjUXHabXnOpOez8UE7HAtHIczgqMtyCGg0XJsJfRH6yX47xqGO2R2TH1NO8ySP7SMuNn0e/1B29MTruYL3uatJIrsXZs/uor3Pn3/gPu//N/wsE/+x+45Rb4z32BKu/jyxqjZQuDreJaf9BTj6rtvnB+LT3O/ZdRp+1ncPqGOQhAjlMB325KizOCrVzYv0Zx5vIOPnfOXVRjeF8ef+1sJAm2/uZvH3zwAQcHByyXy3PXpWnK/v4+L7/0MkmSUBQFrnYtVkZDDSJmQ00o58ocRLBJqiG4YhNUe7EY8vVXQtAOErL+gN29G5gkYz5fkiQJdQSJW7u+HUsoYRFQPwWbpqHub6O90N3D0cxTF0yP3mE8HGJtAHq7ytEdEk0MN8Zj/szP/hRf+OJn2L99mz/83pv87f/qv+W3f+f3Mb5G1DEtZtCPFdEaELWuGUlDMfrwF7+SKjnPb8J3oSh6liZXaAePQf58G8+CgSrCog75Fq9MMl7d66MCi8rToGxeK7Bgg8/6mOLdwDQ3MnFjQHqivqp2/q0Omo5RKZZ9FFoTzCX9b8yPVkNBFbxygqF67XVu/9X/kPTll3nvF/8pi9/6HfrzgkTq0H50WKg4TATK2/aMbn8vH8uantnt4fXn5IIWttETHCsXtBPm14lSU6Ja4GSBqkc82Lom8Q7byXS/iJ4rib/70kM4Zcf+2MnIbcw+IsLx8TFFUXD79u02MqShJEkYjUfYJOHw8JCz09M207cRrjcjepqEsKY/EA97EayANt52qWOkwsVnbzciKGy8YMJI8pwROxFyAc7OTkls0rGgdhdk+ByyljOsTdrKWx3DeUfyV8r5EVocMdq/F+LpZTvD3ehtsLonFiVhNFB+4ed+Fq/KL/2bf0eW97Ei+FqZlRXSH9E4BBt0SUHWsnadQmIa3JXuuNa3UZN7YS8oOn89EqyxGBNgH9pnPKtd25CC94bUGnb6irHKg8Tg3fXZc+TtNGB5XdNQcCeFKK8ua2qdvR2BRC4w9HeHvObPaswt0gj9cq7Ny+cqml1VEA/OGNSBNw72brLzZ/4y6W/+KtNf/xX0+IjJn/hTLPo7eJ0Tai5bTATX3TZb10nAbM21NCqktu1dBEKx7duVYLXx/VW+k6cg0U7NCrWEjPZWJIowDT6glH6cbPwapf00TdsSiWuFwzcSsxopuSgKPvjgA27cuMFkMllj5MZahqMhxgaEytOTE+q6Ju/lKJwDYtuU+IMtxmKSPDDbcBWuuvrlrFEjDBMwPdK8R5IkeO8oqpr5ckEfyFKDiAmMoS1bWId56Q1IEtvW8W2CenTtMZ5i+hB1CwaDyYZL6pKdrYIRj8czXy4RhU/c22PcT3lwNIVlibGG+dmCCh9s/Cv2sta2wWAkoY59V99l/LJxfawpIAZjzRMmbwUy1pCbnMQYih/a7o09NxZrBSuCNXTk8pV/4iKMp4bWjUJdjSgwgODslDWzYhMWGXSp8+asjtWovb79W9v2eUm7Rbjt2p422tZ4GJn46rwER2QqgFiy23fp/eyfIEsTpt/4dxxVJcM/8xcRazAVqCaoCWu0OeouZPTrizr8WIuUWheOLl83nTHHUzfI3mbjmvYs2dKJZ0ch/FMAS6KNVufxxuDFomLx5mME2SAhfIdefxCLom+nbjZtnufUdU1ZFBwcHFAUBfv7++dMJ/1+PzB5IyHkc77AJgl5Lz+HyrleKcpQS85337d8cBKcpC/tCZ+8lYJfcn11UTubEcC0DuzheAf1yrIoUIU8S+MdBvFB2hdjsDah18uxxqxpBira1nD1vmJ+/A5pmpBlvdCO0jm0LupfqH8g1PT6wtGjM/7tN37Alz55j+nhITcnE1SUZXGGTwRJ0pYpxQZo6u0iBpEE78BLjZea9Y3XfFj1qcuTOkLoY5ExJkBmKGvH3bMkRfEmrAtREzOU6wgv0D2Jr7MuVuad9kj0iquqKPXRMqruimxrGl84xhX775ospcMdRTX+i+/9kroPbP5FFI9iJSUzNZzNWc7mVNNjzGzOcj5j/sG78O679L/8ZbhxE+ND0EElntR3R9Pp9dpLX2nbrWLjfWdtaKvGqnpUIzDUubBh1vZKuL7ZN9sK6oRVrboytj0rHaA5wI0q3gQJ33oFmrodBvGC8WEdXEbPFeNHDDbNSHuKYlsrxoWXR7UvsRbT67MslhweHuK9Z3d3l36/v3Z9lmXcunWLNE05PjxiuVwyGo/WGH9bbrHzjOOF8M33a06LjMQI436CZz0c7VrDaxaRrOL4wZDlhsmuMDs7oSqWoI4szyPyZtCCkjQlSVN6sQ7tyswTD0GC5ODrgvnJu4xGu+3hed6pen5RaTQXqQ+Z0uPhmF/9zW/wne++y3wx46uf+xRqYFbMcCYnsRmiTYSHrJg+kSkai7pw4HhfN+kYHQbTPjmYHnxAY306CuYe/MUmkGdBAY43QPN5TQn2cd/Gt4dnXfNprXoQ8gEShaoowdQr89y597f6vOVNrn3aMKq17FS9x5UlpQjeVe0Nl/XaC20cvxpPZvpUR+9z+tu/g54e4Ys5WnuSckkymWB3blKLUi2WuLLGzk+ojaf2jea+Ma5raXvrEV/NPvKuplwuMaY8d10j78u5h257WuhECPJ4xhJ/3HrB3BMEQRezelUUnKdeLPCjEa6YX9rUc8X4RUKMKxKwuNsT/SLbXWdnGBOwfKqq4vDwkKqq2N/fZzAcIGLaV2ytZW9vjzzLeXRwQL/Xaxl9qLPbxPBHpmqEw5OKYT/nS59WBmbJbiYkWuEa0LNrUzMe6TBuUDWkWc5kZ5fZ2QmL+QwRQ5oE04dq8FfkWU5iO8igay0H01NZzFlOH/HyJz4VKrloo8pf1bOQmFZUnrfePeDrX/8S//b3v8n337nPV778aV5++SaoslgWeDNCbBpnfn1kQPTDhPBZI4qLOD0rSfj8XV2L9jPIs7pwlO2nK8wwl5FRRX3NrA4s39WeSh2zZRUqrxklSyw2ZmxuPidMw+rAbjiCNYZh3oO6xKPh9XXtPPHaxlm79QBHV45hjVJxe9Y3B3Q4vPLUBmm/rltF5TIbu6BYL3gjwVGbJHD/CP3uH5L1UuzODnbnFsn+bdK9McneHcrJiGo6o7ZgygUZIcO1M/jVMFqN5Px7WecB0QTW3q/kxkJdt8JHu8Viu53Vde6A2ZxKBbxb+fqeHf+P4Q4iGG8IGLQG0Rqsx7uaYj7F6T61lpe29FSMX0T+p8D/Cfg88EdV9Te2XPNZ4L/pfPVJ4P+oqv9XEdmPf3sd+AHw11T1SEQ+B/y/ga8D/5mq/l+u0x9jDGjAyskyxZokSCGyZihh+8KgjeYxxnB2dkZVVdy6dYvhcLiGvWOMYTgakmbpmo0/VILyMVTSYkyBSI/CJtycwN3Rkh6QKixRvDisPs4r6Kz0jSGoGEh6DHYspDmL02O8aqjjq0qepuTDHtsCuawqDotITXHyFrZeMhhOOjOzOVPbSME4irLgrXfe5ctf/hx//a/+ceqiJO+NyPsJWpdURYEb9PAmOnKjSixRO1EI/hnTR9SFYjBadBjcZh8kMkfPM9thK5VoY7msyj0+ORk8wqxWvncKia+YVR48LI+DFphLzSs3Mka2jHbkLWbLKFeIhuLvHk9iDbujETtP1b8VXTnOC7KjLzsUu6vPGIP7+k+x+4Uvkvf74b2rRjjyUB8BhRu94aXd2ETDXesLwZTjz5k+Vln4TQb8hQe5EKFA/HqQQ6MRbEQSicJSDId1U/px+zw9KUl8SNg5LiSqqUHFMOhlDNMB90Z7l7bxtBL/7wH/Y+C/uOgCVf0m8DUACQbNd4G/H//8nwK/qKp/S0T+0/j73wAOgf8N8B89TmdEIM8ysjQJeDSpYGKS0AqeYKVMr3eUNkKi+VeWJe+99x63b99mPB6v2f0b/0CXvAdXG2waHGeZ7XO6CFWBHjxcMs7HjAYwySv66qieiOlvObZWyg3GJAwGQzIRTk+PqYuaNMvI0ozEJjTZjd2btfmv9xwfvMtgMAngdnTX6+UL16gBJ1hfUc6WlGdLdl9+CRkJXkI1r6IqWZRLkt29tsm13kQDbFOgRkRChE0LdrrZh0blDxqMkadP3DpnyrrATPKk0j6Ed2SoqIoar6EOg/eOhS5DmKMo3hvQHhcXZl/10xgBF8ZvrFkx5Gd0AGwNXbng79sNgaz9PTQR9qS1toXSVmJYKkEEEGPDQWDtWptr7TdM97L3oefhmXVjji6zxGsT/dM+/KoDEWxZcDJ1z8w8CHGvbCg1bU+iRtYIovaH6dxV1W/AY22CXwC+q6pvxt//Q+DPxM//JfDPgb+hqg+AByLylx+vRyFUczweM59PWSyWZFmOsQ1yZufKjS5vFhRpFmRVVTx8+JD5fM6tW7fWsnQ3KUj8U1KbomIpNOfXvl3y7QeG2TThDw8dgww+d8/zx9+w4Aq2SnNPQG2fFKxJMP0hI4T5bEqaZ+RZcOpuW+Ea4/PqasnZ0Tvc29mP0M6P8fwof9w/OeNf/ds/4N3DGaPRPi+/vEueeQRDXRcsXIHNVzDP61JlY4IIGZqCiREvV/VEMdZirWn35ZPz5Y7kdv6rkJdhnnw7C54bPUfvVo6L8LnaSPUStCALDKwPfgC5YjAi4b6opbQO8wuY/tMcWGvP3EJNfPxltPa2O33s3rsywG43H20+3VwQxtveJ+fNZd1rriy/eulfz1+t2gFAvOxEeca0dvxe8cwftY3/fwb8153f76jq+/HzB8Cdp2s+WOLyPMWaIYKwLEokYtRcZ9F3Qz6beP+yLJlOpzjnuHHjBsPhcGtbaZYzHO0xPTsGWzKwGa/cyuiNQvhkhSeTmlvjgEFTu2cbO7LaIAasoTcYBbx79W1xlq33EdZJMXuEVqcMhy8FrecxFm2I0/AMRxlf/yNf4Qc/eIf/zz/4R3zty2/w537uJxn3hlTVgoWrsdngXNvOOaqyovYOMxoHdFHZBrG1nRJrA/zGsxByu5zn3ATotZjFRSTAKBGGSYbDxzEGBx34iC8jQdKPzvtLW2vNDc3PJ+/bdWkz2XHb5+u20c0TaNthJYhdGs7ayZfZWuyoq/VsJnttaecyOtf+Bbe0y7p7qF3Z+o+ermT8IvJPgbtb/vSfqeo/uO6DRCQD/irwf9j2d1VVuSpmcHu7/wnwnwDcvHkTIUhRaZIwGg1BYLksqSoly1ammW2LdzMBpDH5NJL/bDbDe09VVezs7JyTNLIk4db+TUQ8J9MF1WzK51+CR2WfQWaYpAVeLD/4oEIjaNtFuA0Xba4r5qL5FDU/Q5JmiIYyiyuFdcPYo4Fxz0/eJ7WePO9fQ8re6K8YvAi7/R6/8NNf4fu3d/nGt77H8ckRztWo9yyWM6okwSYriItmPquqwjuHi34S58NBglRXmg+gm0j3pNssCA1e/Qar7b4HVr7ODrM5J5FeEXvvxAa4GWPw4oOzF0ElmCXDG2rqMV1WOnD1LgN66fXrSDwNPYtnbOJebT0ANrTwJ+vH9mu2nunPgLqmrKv68MMjvXIbXMn4VfXPPaPe/PvAb6nq/c5390Xknqq+LyL3gAeP26iq/m3gbwN86lOfjIaCMO4kSRiPR4jMmC+WVFVJmqSXqn7nIijiC0ySBGMM8/mcqqpw23B+RMkHlrvZbRL7iNPTBccL5d98Txn2El7Z8czqhLc/KLm9W2ClSdN/tqTasATBe6WfZ8E8cSEHVdSXzI/fp5flJFkWwb2u3ztVmC6U3/qtb/P2B4d89Yuf5Otf+iyH0ylpmqLqODk7QfpjMOtFa8oyRCBkWUZV15RlieoUmw4gL6+0VQsEpNXY2SdlTN4r9bIgbWGvCfNlmjbDBF62dq6WHuO8So1gEFw8phN8NNSEp/srD9+VNbz73RYUyA8pXSyl067TpzlkWmZw0fOfuOXLbl5pGa1AyZV8+Om6ca7xq0f2ozT1/Mesm3kA/iHwvwD+Vvx5bQ3iOiSEGP3RKETlTKdz6pqItPl4tvXG7t/v9wPI2/37bbz/GkibGGyacOvWDfqDknceed65X1Gz5OHYsiiX3N5JMRpzzy94R08vVYUoBOcdWb6CoN7eruLLGYvT+9wYN5rM1XbCtf6iHDx8xL/41d/mB+8f0huk3Lm9w/7eLlmW46qCo+kJ9sarHbFoBWqXZTlpkuKcpyprymJOf5RQu4LLto2qIobWjPXk8xbAr4qqxCfJhv258zyvK+dpc2dHer3yKRoOZINHfQwkAESbYho+SP3NOcMlmE7BJrLxxXNAz3AYF72RH9ZMrXSwH9O7uOb6f9pwzv8R8H8DbgH/XxH5t6r6F0TkJeD/pap/KV43BP488L/eaOJvAf+tiPyvgDeBvxavvwv8BjABvIj8b4EvqOrpdfql3TNWlcQYBoOAw3N6OsWVSpqunEKXMYtNKa4BeauqigcPHlDXNfv7+23JxjT2QBPLeDji1UT5zL05Z/OKmxNHLxE+ccdgfILbAqb0JCaeZtSrG0MJN+drEmtIEnupyoxAPT+hXB4zuvepqAZrdxVfSV6VD+7f53OfeY0bd25y69Yef/i9t9kd9rjxhU+xrJcsygI72MV0dIksyyiKguVyiUs83sN4vAOyhyQW56ornhy6aC+pJnatBgS8c3j1eOdX3F46e6n9SvCNqSd6k68n7cdmRHHiEB9DWMWjGBo0eY3/C0W4L3sF3ToRjz3qjwX9ONhvo4n9uF7Kdcb8tFE9f59VaGb3+/eAv9T5fQbc2HLdI0Kkz+b3HwCvPFGf2k/rarlF6Oc5MhHOZkvquo5gZVeo01tsjk3IlEgAeZvP59y+fZvhaISViFAoBmNhMBBefymjrh2j5BArKaN0FlK6n7k9tjHwAISEjsFgcCV4mVdldvIIg6c/GHVauj55DGeLkADTyy3DXsa777zPpHcHVWE6P0OtwWSDNdW3eQdV5airGvWQ532cz8AK3tWXdkai1CtPFWnTrBaN5tHmkDx/rXMOkTooay3jJwK7Xf+JLeBZY9iJqKINDktAsVwdPpv9hTgtl5gtP+504aw8CT9+kin+cbyXax42z1XmbkPRVRadcevSer+XgxHm8zlluSBNc4xp1OmV5NbE/Uv0AnUdUUHTN2RZEqS/uuTBB4dMbk7Zn9zCJgErJ/xfsKamTFJu3NqhOD6mKGqS1GCMIj4NkMahJdCauihJ0gysjXDHgcE0JoF2nG3Jwo5Tt1F0YsJKliYx4m+V2xqQ/SqC6zADN+X00fcYDoYYm9HKLAKb9uKV81FaJydRMt0bj/kn/+q3uH1zh6Ko+eDgkC996ScQdZxND3GDXdLEdsAqQuhbWdURTwj6+YgsHTMvhdwaKudxUmO2hL02FhcB0ph3cKFm04nXbiNlJJjbpK2QFo9MiVqjxjpfKhiBpCpZPLrfxpwLxHdnmOzfxOQ9GsdaW9/m/PKM/vzOeNTQzQ29mtqjCYO0hU0+Svb9jw1Js0/jL11Stn/P9gP/ohXS7ibfqYp2xaHzXDL+RqQMjGFTXJLg7BSYy4KiKLFJirWrurlXRRB0JzfLU9QJy8JzfHiMK2B//0ab3CXAsJfwe98uySpQ6TOUgokoYkN/AgMNbddVycnRAb1en+EklFzU4F28gi+s2yOcD5pJYPydhdem4bdGZLRacnL8Pp+4tdtxYkJT3vCiJ7WkMF8uGU8GTEZDfv+b73J6VPDp1/a5tb8bMPhnp0hv3NYLbvoZonkgsQlea5LEYkwKAlY8ZXPibRl7czi3ET0XXLfq9Ub0jQYJ2/gOu5TuLAZbe6hmpfSMgQhPEP8KAnMveOcC7DZXvKf2QJDmBGA145ecFpc1+CS3fZzphzlR29apBmHi4sdeXwXZ2oY0gQiNxno1PZ+M/zLScCrmWYYxFu+nVHXdqUfbVdmvMgNZVGqwll4voyhrjo+Occ6zt7fHYNBHxDDILQ+O4PQspz8e8tn9klH/CJwnSeJJLYG5lIsFdblgqTWKpz8Yk+b98E5ldZJvC8uEwAxD+UfHYNDDGLPi860YGhh6kA9LFmeH+GrOaPhqXERNotdF8gUraT/So5MT/uA73+eP/uQXyNMUdfDVr3yGYT+nLE5ZlAVm9y5tIYN4f1VV5HmPNE1ZLGcslnOSsxmLUsh30ogAeX6cndwcbIRjvvRdRc1tBS0cxpB4QxKrfbXH43qYTDuvvTSjn3TGH/uhVR3qMj+ufewZUPu4Fzb+DwUJtNo58XMj3G2/+DHb3qBWi1+77urF8LFj/K0phxB3vzMZM51NWS5LnBMg6dhNLxI1FdQBKSom1gF19LKcyhlOTk5wrmZ/b4/+cEya1HzmpYpZachsyXjUJ0mF5bwKpQ1VERz4mrJYMhjkiBiK+QzvlKEqWd7HY1oGtmJirL31VXSJkvfyzhhWJetUQok2FcF4x+nhuwzzhDzvrzW41UzR/nfDLKbwve+/w6c/9Qb/87/2ZxnnI9K+RSwUyxmLukazAU1VrW7rxjQwGRbnLbNZRemW+LFvj6ftFJ7dONbZpuGtLu30PDJ+FVKXkHhLFbWv7ePt/tKd9LDDFX3Bd1/QBfTDlwQ2jbHrP7fTc8n4L8MG37QBp4lhMh5hzZyz2TKGbSad60M7XSYXDnGN8LomOvpCXHYSi7LPZlPKouDWbdgZD/jipyccnRqGmeeVW0J9bChQVB3lco4xBlGHryt6/cDIjCQsiiXTU89kIpg8R6QpUH7xwaTqyVJLYjsJTe1lwQCtkYmpKzk7fo/hoI+1obhMF59/O62HLqoKd2/d5qe/8mX+xa/9Dm+8ept7nwphoV5rZvMzCpUA1SBNcZAAM2CMUJahjoC6hJ2dT2DMHZxCmi5Y1i6cs+ctdgBYY8izNIRzXlkzILL9tiqJJfGR8Rthyzm69lmJKrtuWN66trrHdos/AXUesWG8+uE+9wVdSQqsrH3Sfn6cVbEtOmwrAN1GtvPqSVfn3zyfjD/+vEoKa8s0GsNwGIq3TKfT1uxzcay/oFgMDlHbFgpRcQgJ1lp6eZ+qKvnggw/ojW7wr/5gwO+/WbI3hv/JnxixY8KB4V3N6ekR3jlSazCiiCQgBpsofWMoipKj40dMdvZJejnEcogXKX91XTHaGV0Ysw8GxSOq1IsZ5eyA2zcncbyO1g28FfxKWVuXIjgfAOp+4ide5vvvvs8v/rN/y+0bN3jl5hBqz+nsBO0NkDQLz230BjFkWcp8MacsPYPBHdL8HnWdkacOzxFOqwvfo2qw71vbqd17JTUcUxBvSX2K1Y6pKNpvmhKQnTsQWBVp0a6znM48/SiZb6O/xG2/7XW9oB8tRVmsEawCXeDc7dD1QoHXNt56CHGbbdj59RJ6roqtr2rcXqx6d8Pfup9tjPiZjEegnjIWNJGNe+MDUE3DB/EgJqTba4SVFcEmlizLsEnKWx9U1FXJz/9Uj8+/nvPdN2cslzVGoCoXqKuxBqqqCHgzkhDS70PVrBA95Dk5PmQxm6Lexeie9VE2pSeNEdIkuRCbp/nW4Clmh1DPGfQnaGuL9NEPsG2O4wRI8Dl4LPNlye9841t883s/IE0cb73zNr/3ne+wVMV5x9lyjhnuhAOrpeB7SJKEfn/IaHSDyfglnAt+kTSpKMszPO5SbiZNVu0VCz0G2cbXF0DgMp+S+iRqiNpw8I7ksEXy6n7WH9cGWncHN59eMP0PBynBb9eYBtt3pBf/23x1svGvvTZ+CBW+fGx/i9DzcYrq0QaroJF8rrkTmpMzRJQEO/dsFsM9s16Adt6Whi2CmhRveggV4kuQlRlEjCVLUo4Lw53dks/eOKFiwK/9gcPdM1gjFGVFllrSNKOuE5IY194NKU1imcKiqJifnuKdYzjeCYVSOrZ7kYB9k6UpiT3fZ11bYIJqzfz0A1IL+WAUinS3k3nZ3IW/1U6p6ppHR2f8u9/9BrOlUqMMJv1wgCHUVcHpYoq98/pKHW3CFwXAkKY5vfwuRnZxtZKmBb46pK7PUHWBMW/pjkg4sK1czfRa3k4wBSbeMKgzUp/G8NLV2LvwD5vUmnri5xf0gtaoY/ITVWgq8jVyxeblnTW0zcO0+i5mczd7WjfkElWI5SPPi4Tn6bli/ABVVbKsavqD3rlC6FeRIWz6Qb+PEWE2n1NVJdamG20pQoWKoSLn4BHc2rPkxOII0tH3RMhy4WSecVxYFvWAQs/AKtRQlSWZTbA2IbFp1FZcx04IICHiSAyL5ZLFbEqvP8DmEfOGxswcnbp5RlPYZJOafAFRi69rTo/eYdTvI0kSjAbaMNELtIU4B16FR4eHvPPuA2w64Nbtu7yUpGAz8tzy+TdeIQVOFmeU3pHmQ4yCb5GhY2SRQpIOsHaHYpkhpgbOqKtDRJft+Lcv5YCgupa8daFWrc1pjSBkPqFfp1hvAga8BO1DjCGxQimXx0boBZ9/9PTi9PlwkYRINK9URRFQZuka5Nap8QlsbUdWn7df0XwIn1xVY5IoDMrluuhzxfhFgvmgKAu8OobDYZQ8WXPMtqSrBC06fzMC/V6PxBpOz+bULtjwbSxkEma8xmuKw/Lewzm9nmU8sXiVgC7p6uBE9HBjorx1X/m2qymqgtsjS9+UFHWFQcgHYxITZc4I3KZ1javryCQNKj7ARWQpi6LqqH1BLgjCRTDPpEkSLRYXMYUw1rpYMD35gJsv3UCQEO/fiiAXMFslhLEaT1VXnE1nzMopC+/5xKs3+eTLLzHMc5KkQsRzOj2EaN9fGT9X7RprydMd6rqHx5AmC7w7Rf0MxLfvtAnD9J3DtxuI05j3ukln3dFHBRmrQuotuU/JXIJRaY7rkPeQ5dDRATZNO2u/x3abPgTBbsP8tnpN6zd2vj+3Lq+ijujYwjvQpG+9iDB6cnr8mdtmooEAEz5I0oCa2siAFz2xXQfdP3TEvshzmhwRXd0Z72/APoQ8zcAIlxdefO4Yv5BmPQTl5OiIPMtaxt+l4JCLqlGMcGlYaDgDQqZmlmXs7ViOT04p6zLCNSRgDILF4shMxZmM+PUfJHzmFegnwt3BHCNnOAWjlhvjmslwwB+8U3BzZ8FPvjFAtaYolth0h/fKOxgt8aQojsQK++kpiRzjAOst3tSIGJx60jQjSfKNZRoOmzSx2MRu9fQJGkM5M6CkmD6AcsZg/OnWadku0EsiZIyGqlr3bu+zN9rjH//yb/Arv/k7vP/uAbOvzfj8Z9/g5iTHqedkfogb30CNiX6DDKTCeIsTSNMxojepqxxJl6Qcs3QnOKkBE5NfFKuByTkJ2aomjrk1dinR39KYkuKY11JohdRZhlWfUdXHqo1zQrszE2tbth8Wi8QoIF3DGGqikmgglVvbK6i6aHaMzreOA07pRER57T5mK10sz/voq1C0qiLkQ9dgdTldpEM9Ka09VTe/uAZ9GE6rZ6A8NRJ8P8957ebtK6/f5klrws3PF7YJ68z7lRczLHtFMGEt9FJqSfneu71Ln/tcMX4I0jFqAtpjRM3c5jFXVYrFAoAkTTHWBugGXdn8IUiBOzs7TGczpvMFIFgRjE9IxDHXmvk84Te+U/G73xL2Ro6/+kf73BpViPdgYVENuHWzx1+4kzDIhUleIIWhLCtO3YB/9o0Zizq8ChFhMqz4E5+zvJJYaq1RqUicwYninKfXH3YyYFfj8d7R7w+xF5h5ghoa6rOKCieH79IfDsjTfMu120lFUbvAOMvJac3JdMFPfumLfOLle/zLX/sd/v4/+hdIkvPHv/5JtISzaUH60mClesad4cVjTY/M3qIsEzA1qamp3RTnl5HFrtTVYEKDBCFzlr5JwFr6mpPVGYIPYGfi8RuO6QYiIdGEXp3Rq1MSHxFIu9c12lxQ1AJ0g4Twz0ay6qrmvrW3KlQ1frnEecW7Gq8BgE+9DzVhY11Y9Qq1C98730JetC6Pc29sO3WVs1Q9eZ6R+PMax9UtPT2t2alXJu7L3UQfRnoWHZZobhfTli+9jJorWv8X4X6/xUQd/FMr7bYhlQo0C6bULGGxVL7xm8Wlz33uGL+qUpRlqDjVycJdReTEFCLvOXj4kOViQa/fZ2dnh/5gEEv42ZWSb4RELMPRAIxhNpsD4JIgsWbG8uc+3+NzrwnWJKSpcrs/xeExpkJMhZ+m/O43D5hWYz7zMnz1FUeShmLwo0z4yc8O8WKxxpDYip7NuDn0yDzADav4YF7xDq9K2stXFhNpmL7HGkOWJsAFhacFjDd4o0hVcXb4NruTCUauV52sIW9gXhT89//i1/nXv/Lb/Mmf+Tp/+c9+nZ2dn+Od9+5z5+YYwbBYHFHgsXmfgD7ZiawRyNNbqN+h0oTUOhKZsqhPgXo1uPYFhsWeeGHXDLiRjRmZPlYNLKGUkjpVKqmpTCzgHt+iELSmXp3Sr1N6LsV6S/DqrA6JzeIZjaTfIPPI2vZc9S5DmR8e4I2hhVkWMKKhDq73a7DR1jcwE7adi4sY/0W8yHhiLdgwitTGdbL16h8i0994wtW8c8u6fKyrr0/tGbTZyAVz/SS0zZUEYMRcK0Rzdb8CplFMo+l1wxQU9blN+30IMiEW9IFeZvj6Tw/4L//Bxc997hi/q2uqsmC0u9OqS5tMTURwrqZYLhGUslhw8LAgSTMGwyGTyaRNxJKITZ/ahOGgjwDzxRJfO5LUgBjSrMf8fsUrt/uM+kLiFzTMS13KKDd85ZMD3jwU/uDtJUUBf+pzGcPRgMViwav99+jt7HKyzKlr6NmSzCjOSoisVIMTwZU1JkkxSbrS1RurgXf0e3mLxHlx2ToBUar5CfXigOHNVy/JV9hCKliX8OjRnLfff8TXvvpFfvDO+xyfllgjjAcJd3aHJKrMZ8fUSYbN+gT2VLdM1CRDjLlFUeYYUdKkoi4P8LoMtv3OnglDDbs1Nym30h32zIhc8mjq8PSweOdx4nFmdadA3OiC9QmZNyTOIpiLo3I0xOs3wniQslZ+g00r2CCxGIKmIYTtKyYcFCauobCRoynRNObE9W2/jQVebAIy0d7bnBp6YVn2HwWd92xs1zgfp8GnDZVdmfvO/813L3gSuqB/jaDRRt9c3Uxc4M2chfdpdLXe6Aita/kBq1ePSIkQTJeptbzy2uVw5s8V4/fOgdb0ejlJsjKFbENsrKsKY4Q87eG9p6hKlosZVVmwXCxI0pThcMhgOMBai2JIrWXUMv8F5cKjvZTfu1/zB29apCekU7iRJ9weOFBwRtG0JM1yThcFdS0MUkLSUJpj5nOMK3n7/m1++62c0hsm/Tl/6rMpAwt4g/WAeApXkw0boLOVh1CjvyLL0pibsN28BcF0IarMz+5jtaCfD1un4HXJ+YT33nvIrZ0hf+kXfpr/53/zP/Bf/Xf/hMQKn371Ll/89BuId8znZ/hsgE16LWMTUYSEPLlN7fvUasnTJfhHVPUZ4OO6brZVp18KqSSMkgF9l4PGegpIkLCctr83m11iRRMVjaGY0sHl2Rxz4w9osotX89wUQNzM71UCVtAg+lxEW1bcjqEb7x9w9lfXdJ2xbWYxHYaxsgStMZEVPmfslTbXXHKarY9y7RuRhlddxLC3zVUnBPZc6/EZ2vCt80+9ii46Pi6mRqtaPXvtr50umMfrysbFG/PRvpz1N2S4YldFRr72zgTOeYK7A4mHxOpdK6IJ6jNQH4UKh5VOZcAt9FwxflVP7SrU13itsUR4ZIAu5IIqZVG2CVzWWgZJH+89ZVUxn80AKIuCxXxOlucMBgOyLCexhvFwQIpwUlQsK8vhobIzcOSm4vBMSDXj9rBEcRixvH9m+Je/ryxry9c/bfnqSzOgCFJH7bA24wcP4XRek/SEaZmzXM7ZzaCKi0NdgSJkWY+QCBV2lKjgfB2TtsL3F2qYGvJmjXPMTt6hn+dkaW+7SHQRCdR4vvu979NPE3qpxYpnsay4dWPCnXs3sb2Myi2ZlifQ3wWbtvtCvZBmY4zeYFmDtY7ETCmLR3gqVixytUu7nxIsqQ8S+0pODkqwjwzdascEER8sqiQKTsBFxtsw6S0ThQPOqhJVE3u0jiraMrOOZhUYf8PMBR81nG6UkYi0UnwDsa2dv602dXNNI7CspEGQ5syLr65hMBex/RULNRGDasXoL6ewR7ZdqJ3nb5os1r5YSbNbzo7WpBGBCpEV3HdAMG1uXcUsrSVh0ox/gxFvdKH5fkNRvnLs0AhRm6010C0rU92WwW19H6s3Kc0SYsXGt3V8dV9z5UrwbwyoQaDxklJ5x7LYnoDZ0HPF+CHAGh8fHeLrgqzXJ897JEmoi9V12hbFsl1o8Y+IMeS5JctCwY2qLFnM56RpSjkakfd6ZHlOL+8xGgzQrKI6q0gx9Hd61BWUC4+MFWcdWlsStfjaYqqSV/czRsOUQnJSHN4tqcoaOx7gTcFPfiYlS3OqSikKBykYqXBkVLXHJglJ2gCvBVLCgdfLMpLoTLqwJixhA2m1YHbyHruDCUmSPqZUFQDlXF3z7sMT/vWvfxO3KPmP/+q/z2uv3iBPMoxRlssFJ2WJubEb5tYHG6Yxfazdp6xSUEOaTvHukLpeouIJ7tvt29OoIcW2OEI+oowaFcSvHGXO+HaKuvK36opBNLE458iHA9XkGdrLWbQMKDL5c72CrtIv8frgnPOo+rXgKmOCHVfQaG/oQD8gbU5By/hlndH5xkdlQn9Ml1uIxMSeLeOKDZquffgSO0SrJdPRRLa0u2bu0O2fVS+uFRB8IbGimdKCt6pXjO8wr47mEOYkxFg9zuJt8ly0c3BuXEFXcNrUHM5tq6ghbWpaq3Py8tDaZm6FTV2BNRNfOGAkmnUaO39XSyjCXtAMpaBajDg4nF3y5OeM8QcHp0Wd48GDB2Rpxs7eHoPhiDQNtvEAW+yo6prmtAQ6CyhIIEmSYK0hS0Md2OOjI7x3DEdDdnd3sb0RiU3ZGSf0+sqbxxXHS0VLx2czBW8Qb1Fb8dpNx898Zcwvf6PmG782509/RfjpV3KW1Sk1BYk1DHsp+33PB8c1lSsZ9pXKGMSH9OzaG/JejhEbWVaTABUWf54H1e4yH20zxGJxSjF9xOCVV7l0928lQYzlKz/1Wd7+pd/gv/snv0wijuliiroJ/axPRU1VLpnXhqS/Q4N9o5KQZbt4dqhUSIzHcsqyOmqLyqx6uWKHzW8GITcpiUZsHl0rQdNl8RujXoXsBkm/+cu6+cGrpyhLTGIYjcak6avt5jSRkfsN5hcgsFdb1zTMQEIfUV1F7rRd8jGUc9XbsNm3y4eNwOJjhFA7pkb6XWfPNGGjdA+BzlBV1wJWu2+2ZdK0IYMr4WitrnBsz2v3+3i9Nu8jlpfp/H1zKtZeQeezN576MpVEYrv+Msl2fUVox7BvL7gtvL7V/K31cePCbllM3RqYuV0H667RNoy6uV5X67U7jC5cDGwcuCJ4SRBvEVMgqiyqyz0+zxXjbySjNMtIraFyNQcPH2CPjtjd22c02cFai6tDxac26ieaCFo7rDZqMWAM1lisCQdGWRS8//57JEnK7t4ew927fO7lPt94x/HOQckf+4zl9rAEFUQ8qEXxDEc1N/YN9w+FB4eO8tUlRTVH/ZKkNrx+q89kqPybb9WcLuD1L5kQlu5zxM8INvy81S2ls/BDNE/EDqIjoWwwtuaP0+khVAXD4U6H4V5MmyiAqQqfe/019v+jPX7vW2/xT3/pV/m7f++X+Mt/4af58z/9eRIsxWwBxiOpXc1tkpEkQ5ZlH28gzwpcOcX5Iux7tawwglaMpJXTVMhthjUSsUo6fhxDCFMFbOO1lRVz9xLMPDZuWBXBia5NTV3VuCqUVUxMMCeFIjiGNE+j36ijbWnIFC/LKiCaSkfaM5Y8y7HdyB0C8y7LMvqjuoxNMMauIKbbrzU+p8I5R7R7IGrCM62QJMnaPQ2jresa53zr92me0wg2XRKCNlHXdcxF6LxzEZJkexa8V4+r3fqhABhjN+6J77JzULQJ7p32TMdHtXZ8+/OHwAoapTl4V9do6Ny5e7pj2ibAN3kX5w7FyFvOHZiqUQvbsoc6BoWNWzqHStBOnXMtvo+ItM7dpiFF8erbg7nJVAkmsbAWrLdglcJZXn3j7oVjh+eQ8SNhA0nQITHGUDvH0eEBpydHTMYT0iRF6xrpLP6GB6h4Gtt5I4EJYJMEQ4I4i3EOnGM+XSD5nBu7KX/pp+DQeW71wNgaX1fBiZgY3jyx/PrvF/R7wp/9yZQ3dhUVT9bP8fMJpa9Ibc1u5vhjny9wVcbt3hJcQS0GrQ0kJSbLCQF7q+KFri4YjwaYjZqz6791pDTnmR29yXAYip+IZjizwOr1loLGyRpkCa/dvcHeqMerN0d8+7tvY1xF7QXjDMdnD9DBHs6EJDa1hp69jXe7VOoY2Ar0iNKdtP1r4JI7SnN8NxpekCiJWtCEGO60dnW7GeT8DHTV6c65EM044U71Nc7X4B2lWUdAFeOxaT/CP4cuBw0h1G8WWIuqETGIFfppvzsSUCirIkjujUBNYAbGWNI0wSYJqxxcpaorinKBb4C/tDnUQ/WwNE1XGepxLsuyoKzKmE9gWoYlEvZElkfToKzOn6JYUtWrnM+ovIRkdUnp9/urSmexz4vFnMpVG4dYmBubBJ9Ud85Ulfl8QV1XawdJ4wTu9XpkTf5N05b3LJbLmMmua9KuiKGXhrXcZf7eO2aLBb52GwKQYK0h7/WxG3H2zjmWiyVe3fqi0cBTer0QIt4Ns6xrR1EsoyDSWVUScoACfMr6WmyFhWbOVBCxSBKSRtNkJcQ1VNcVyypE6pjwIgGPUciyXkg8jOtV5jP6Ox8jyIZADdZ7eFkBttdSVRV1VXF8fNRgGZFl+cqBEzNixKcgsaC2xljvDkOyEVcHVU7LAe/dF6ZOODjOKejzKFmQvewYpRoQOp3lRmr5/CuO8cjwiZsZk6SmnAs2zUkmNyhQ3vnAsdcveH3sMH5BWc2QOjC70gtJPokHWhhlIzkZgTRN1sZ/gWYaEkPcktPD97k32Yuxxv6COy6a3q7NACajAV/8/E/w8r27TIsFaZLi1XFydkJ691MR8VNJ7BBjxiyrFIuS2JKiOMVrN+ysy8i3S1BtTm5zlnUkWbZ8PPdV97JOG+pddLyGg2BTWgz1TLsmlfAf7xT1m9s06im1rjZps8cV1OmaBNsyOHV47+J3KzuDOm2l6s0RqRqc86Rp823UcJyG4vWAaNNmoMQm4fm2McsEcrWnvsBEIBFNtTm8msG42uO23hPMrnm2Of5Qda2u67WrG8ZvbUKaBmbZQGSogluW1LVDBLrZCmIMmqTQhDh3xl+VQUvaXN/GGZI0W6u7AeCcpyiKALOwNmOhzkaaZm197rAGwliKojz3bhqtqvnXba8sa5bLgvX13mghQpY2WFsrqqoldRlCxBsYcI2franJk7QV/ipCYOdl9Bwy/i6FjWqtiQibQc2uqoosz9bBvdo7fDTNmnOTD7T2Vk0SrO0jdU69LFkUHuMsOlTSNMOppypKkjRnmKRU9PnDdzzfeqfm9Ruez94V1AjpMCMhZ+YNf/iO8PqOkqaeJM2xBKD72jkGvV1EbKsiiwiurtuFtYbNfcE8AJTzI6rFEcOXPhU0Gxy63dMFcL7NjqcrRHsYDMr+/oQdJqTqOJsdsygqTH+EV4sVS5bsUfk+ziX0sgLnT6jqs1C6kiZ88rL32Gh0jeQKV6zta1JIrvJVBc6T5328V0xn3CpBqm48j6spsOR5n6o6HzNtjCFLc9gIxDdiybMetVsxy8a8YI2cY0ahrYTU5uvmlLh2rbXrZpv458RYUpt0IlIaVqUk6bppqCFrIlDgmmVQ27/JumU5ClcJxqwfSmF9GkJ+yIbmJQZjunWgtWX6oU+rjOrGL+PF4K0NGs8GiQg1hrTL3pXg/2k1o/bqzs/zi6cJiW3NeR27envowcb8EPsVtdYY4hN8ieuMvXu/9w1OWGedaYBV996vaSON2S5oL22X2p+udutHiBrEf+wk/vMUFlZYUHnejyGMHRthy0WC+SDEb0dzAtFJtRZLK6DCOFuwO8x5eV956XaGLx1ZlrM7EVyRMp8vWbqC989K/vCdmsXSYG3Jbt9QiwUNuDBZ0iPtpfz2m8rD+YjRUPnSnSWpXeKWJanxa1J9W3fAB3NRqKu7JWGrAzVAHOH05D16piaNZRBFfLStX8x2m7Y3D5fwuXEUuhgbrcymR/gkg7SHJSVJJii7VHWCSTzGnLIsHoGUrKSeS/SOuEEEueyqJyYrYL1ncXJKb7Kzsv+zksJqp/h5k1FM299gY+1iL65E+6quqFwdkuo63TZisNIwC6GB8jYmmCjK0neceYL6wOAbEL52uUqoYKbqqarwt46lnzRNcA0scGsjCvZ6CEymu2ZsYsjyNDKvZhgeVcjyDGPPz33IHTln6UGEEFDR2t/j3AghSCHiSWmjOsW5TrOu5K5xvoQ8yyPUePcsVYwYkixp72mEArGGLM+3HhbB/3Ce9Vlr6fVCXo+2/Q1mXxsz+lcUrkjTlF6vt9qTSjT7COm5AzaMKUlS8lzb/bOaM4lzdv6ATdMsrLjG/9B5FTZL1ry9IXXlBeNfo2D773xuvo+FDbzYaEWMdvSGaXaZnoJ4geUcXMqZmfDBcZ9ZWTPOKiY9ZWw9415KUcDDs4pP30v52us5mTUkUuELwKXUNmAr9q0wGcHRAmr1LPYKerKkruf0+n3E9GgkCQj2SETJsvM2xHXqBNL5munRu4wHPZI0C+o7ddd4sXW+vF8xok3mL91NqEFun02PYThCkhTRhCTZp6z7qCh5OqOuH+L8AqVRwzflmIvHs7r62R0ABqFvLadHh5TLBdI5ZNecpqwL8EJXaDhPzWis3cAF2uCSraNROmsyBhw0D1wLpmm1rfh5ra14JAmtOanJPm8k/gphEQ+0cKCb9vqLQiSXdUFVJGxqgI0TdnMFCcH/VCzW50Y7AlczsNX9QuHK9p61mW3CGNkANhMo5xUlIRKmMVxKNzJnrRSr4NWznLstry0435FG74jzJsEUuFzM1wUPWR38zbyrKK5WxCiooyi694Sf3jehxOtO4SaPo1guz+1pQZEG0lwavrTSgMuyiGvD4HDUft2UtknPNePvJmBsSsTnmaUADTJjiP4IEvMKLGy9oIkDhKUm/M6b8NbbM7SfsNdbcicpKPUBu3u3GA3HjHuepTMBLtqUZFJhVAOWjxis9Xzidp+ffF2onXC2NLjFGWU5R9Vi8jFqOjKlKt6HqKSL0EeBNkEojE6pijPmJx/w8mSCsYJqI0FfLu1vRoxs/r0rnTpfM5vP0OFOKKJuDCJjKm/JkpLEnDCtj9A4fyu6JCwvrvaWqT1TCiaBXAy7WUpRF9TVAtNxiPpOyKDfqhlJ5+xaWedNE6ffkbi9XhT412GejXYVn73NgndZqtZaWw3zizZh7V61YYZqQzK3DlFCG7pq5UlIuwfVpQJLMxfnOrLxZWCeRgSHp1KlcdavtMlug+Era2w7jq7zt5sRbU3w5dHAoHBB9E7TrJENvhI1ufj+mwN2ffqk/dHNsWiWTLe6nMY+IJBgSJr2jKVx9Jo0wWQZy9nZhf2E55zxN7QNq+fcNRpD90xNUs6wVYWmGS45j1wpgIrDm5DFqlj+5FdSer2a1PTYkynl1PPg4IDJXsmdvbv84u/WfPcgoWfhMzdTPnPbU5spwphlnfDdt5fsfyYlTyreOiuwBSRYvKakdkhgjKvEf1fXDMej7eUVpTmcohQCEMssuuKUfv/1tQXYNVR0qYkdB86pn0VRBFTTdlOELVEUcxZVjQ5CzV+xlsoFNM7EFhTLA5wPWsbjsnBrbAj3a8b4mPefG1/8KUAiirVCoiYkX3WBfOz2Quzb2mpItn1JFELWhMYuY5LVu4vj83ZlQmjGTftuz/ehG1uy2eeWcbS0wWiaM2LLSaPtRecP/6emC97l46wRBaZlxXIxJ+31Q1QePiCsNtd0+u07muv6eFZ7wdWOqqzI+/0rD7tNa76PuRplUZJmYZ80mbrrN0btRpoR0+5XNgWdjtY3ynoMo0PbAWhg/LbXw0zG6PJyRP6PBeO/DgUETINUjsX9b1A8+j6Du18gu/VZmkSZztVhUWoIL+ylhr2J58awBhWkEFyekhQ1y9mUh65kukjYtylJHeyERhTxOSYxvPme8K+/UfLumQt1cJcVP/upHqPBrYCxb4RaQ7RRw4yNEfKsCfu6bHvExeYrZqcPMFqR9cerBXXJ7Rc5jOu65t/9/u/zxiffYH93l/aIEVgupyy9YvMJXiFJBngHFgc6w9Ub6nJXeV/Dzt/Sn4bhaZPg8nQMaFtSTCpBKlUbxtQFUBDYiK++itbZxebz1vqyXQhfb61z30Vx6JvXr8sFunFd9/hY1w639LC9drOVx6NmDjZY6VMrckpdQuIdqWnS+cy5DNjVL+cXfjOuZvylqyldSWoH1+rgevuCGqVY1CQmi36VZv60c8/2dmUVv7bWZtNC38DQBJNfU9bBSMCXAkuq6aV9fcH4GxIfcK2XU2bv/ibz+79DDdzYfwOS/tqlKsFMYlXJjEON5x//tmcycIyymq+82mdg5/Qyg6rl+Ey5ty988U5Fai2SL1i6AusTVD15pvT7Qpp6cjHcnaTs7Rl6MsRRxA3fMTe4AERnk0tQNdvkpCBCqqs4O3rAeNDDZr1YPLap0bk9pmYbuB0iTOcz3n3vXV559ZU1duGpWSzOKI0hS/o4YzB2gqstqYCrQ/H0EDkbHGAbneYihiLtz2dt6oF1VmZaibr73G2/PQ5dBXt9nuF3AzqbNjavuOqZ26/aagbpzP1FRqQuQumT00psXZl8tl/pO5e3tEVoDs16rAQ7eOD5gfmbi7STC95HkxEvIiTWdjCwrosV2hEVFBbGkCWWJE1oe74hRF7QzPavBUQ9WWLJk2bfBoZv1FCKpahgS6DZGj2HjL9RaLv2u4skmO5tAqJ4f0o1ex9ZHLCYfoBqgdDfuDbKqWIwUrKsCs6WE3y+QHyT+JWgtiaxPcYjpVwu2Zso42HO0ldUy4LKVWS2x0s3C/7813a4vecQrRjkGdY4/EIQSaklQWWB0Zym4EqeDWOW48XbUDrVo+qqZH7yLq/c3G8hg4nRB+emIv5XNUAEpGkEWYtmiuOTU5IkoZevzGBC6NfZ4gyf5ahNQQVXV6hWpFlKVZYxKqNrdFh/TxIe04byKdpELpJLSh6X7LZj44lJVtJ0w9rWwzlXM7OqqXydZi/IDr3i9mYO2s+sHxzREr/1vu7Pbdpacxh0o2nC9ytD8uVHL89w4i8hvYDV6vbRN/MaCuis6VmP99AI/hdCO+OzrlKq16grRCltjGhXu+p0L1gTOu87fj6P4NPlakBE2ZVOG6BUVclMM6bz+aW9fA4Z/6aC3qXLLLUS1bMeNt+lTsekvQlizk9RuNvhJKHUBO9S/sJXHZN9peeEgV+wWIZFI96QJyk/eJCxrISbvYxbN/vc6wmLck5RzejJkFs7CW8fpBS1ZZwYPnGrJjcmRmbEnAINoXuNFHJ18ZQmOsmxnE/R4j6D0U+GEoK6CvMzF20kPM7XpKQN90FRjk9P6fd79PO8Lc6ueHztOJ5NYecWNsmx3lNWBygulJXUAudqKq0xEgrIrxkaIjxBA1UblHVB8Hgx9LTHgDQWHHmWoZ2yxsvbcozxt80ZfbonXY+HXHqgP3UbcvHZ9aNg6tehC/txwehb002zMuLvjzWeZkUF7tsy3+tOeLePjRM8QjLE7bPlyiZwpPPdBc8SlXhAmFVUDxAOGIuKD9GJajFXIO4+p4x/Jc029vlNJfbc3MZarYm9weDOV/HGMLn9RUQG522n8UUmsbRiL7VYW8JCqahwfob4CtUcTA11TT0zfGPmySj5cp3z+c+NyFCOF1NKhN96a8bvf79igGF3VLDby7g7Bic1ohbxBk+w72dpRrIl0afTQ0A7FZk8Z0fvhvjhLI9x2pes5GgcVq+rSIPI9OvacXh4yKA/WEuTF6CoS2aLJfm9XW6aMQWOR1SoPqJaKrXW1K6mWBQYMWTjkKHYlWK8cYhKiFDQAG7sZCXhd7bjY0piL+gFPeekhl6e4gcpO6PhpZc+f4xfNeKTsKZCQWRPGo6D8zp4AEbS1DJ85asMb38ak+2GUKktzMV4C+Loi6AV/Nq3cm7t1PT6hi/fmmC0wnkFs+TWfslf/Jk+yypHfcX+wCFpTc+m7CQjzmZKuVjwF//YDjt9JZGMnbRAaxdldkXFxvqtLmLyy3YbfEutkQDvPdOjNxmPJpgtGsz69MU2VSnLkjzvrb4XWBZLpmdT7t6+hcQaxRD6slhOqTHsDPe5m+wySyxnVU1dPSJ1S2ojZElGnlrmvggSvjTRC7G3alv1tTYhFFIFrFoSbIwDp3X0vqAX9HEnlUZDiZqy6Dnsrk167hi/955isSRNLcbaNg5W2lPgkgkRF1T83j6S77c25q2WWlGcCbjoeWZYes/BGYwclDcShmrBOxCLUcPDM8c792scwhs3HbeGSi83DPo5KgkDI9zLHaOex5DEZJqVlKsY1NcYoRPNcxmt7IHVcs7y9ANu373RAtg1qeVbp0HCPNZ1TZ7HuRMoq5qTkzMWiyV7e3vr86HK6ekjZNBnkO0wkj4lGfiMQZKxY6dUxSMGWcYkzXmkszaZR7p5Al5br55TH8NlIfeWnk3Co4QWk/8FvaCPNwUTteBBPFWlLBeexccunNN7losFdRWq3OdZFtAOtUmKWdn51yVmJcjWDdqVxsj57QeFoFhncL7kjZccu3uGnJRentDP5ui8wqjHasZ7x5bffSfn9NRgDewOHcv5ERkZ0kvI+ylkCb/8zRl39jIGeckre8rQKl5DHU3RmtJV9HpZKAZ/Qahl6Fvz34DFszh7hFQz+r3XAELi1hWWHucD1ECLTaTKt771bX7vm3+Ic47xeNwepE2a+tnpIWa0w9AMsZJS0cN5Q5aN6aeerDxkL5lw24zZ9zstzCxNWr8q3npQpRaY+SVTV+BwDE3GxPa5+Lh6QS8Iuprux4O6AaFCWXvm3nE6+5gx/qaU4mRngqtriqIIyUZJQpqmoX5uB35gRU0cmMOoYNTgTAN+tOnSExwWI5A4j9qSdz4Y8YVPJPRtzaISUpNgtEaM5dFCGaUVe/s1N0ZQOM9itiDxBYN8H2MNw6HynYNQkHHSE25NUkZpAT4iaGqNqqeXrxBFL3TeNeYXDEZLZkfvk6WWLO9Fs8rV2kKxXGAkIYBtBeb/znvv8uu/8evcunGTd955l5/41Kfi4QBlXbKoFiTD1xhJn8oIc03AVKTGUNclmffsyICJDrFEX0nX3SCKSgAvcwJzVzKXkkocmRiGtofxBr9y3b2gF/SCcKHubjTzOA/F5Xz/OWT8xpDmGXs39lFVTk5OWC4WAXK1LAPMQQseZdqMOTBREi4jsp90wiHPU8CZr6ikz/c+SPnu20v2hn1EHTcGCXf6FsGhSYa3CS9Ngn26PzDcf39J6WuOTuekoxFZz/LpmymJ9MlxjDIllZKicqHoiEDtIEksaZJcL6KDGNpWL1kcv0O/PyKx2ZX3Nky+KkvyPGK8t5lAwtHxCcViyYMH9/n0G2+EsHdV5vNTlgq9fJeB5JTWMquCzpEnCYt5Qa4JA3KsSnA8y4b0roSIBEIxlRTLxORUNlyb+FhaMjgDIvN/wf5f0IqeBk7iI0sxMEUU0hT6NqHXvzyB62mj0z60VJQF+WDIrTv3uPvSK4wnu4ix1M5T1xVVVeF9vXL+hnJXGA1If94ELBnZBlmskDol9Z4aw3whfP6NlH4Ppt7gnJJQIqZCTMruUNjpBe3hW+96Ei+kGRRlyfz0FPElk1FCnllevdvj1ZcNqa2onQ/FJ9ThvCfPM4w111rcAThKKZczyvn9MP4G5emyuxScC9pFY1IKfxFsmpCkKXfu3OHevXsRJyjUlJ3NTyltSt+OSE2Ok4SlD3mERkuWfkE/GZKToCE+CTSEn7X/0IgjLtGpKyCWRBMyn8R3cV7/ekEv6GNNaoOAKjWJgeEw4ebueaiZLj1Xe6hJ7fCqLJZLVAxiE/L+gBu3bvHSK6+yf+MGELBmyrKkriu8d6g6kBo0lukzweTQQDI34FRNUoeKpzQpHoO1So3leFmxXDqMpnh6uLTPrMq4OfR88iXP3X1hWQqf2LWIhzTxTE8OKBbwzfeEf/jrJd9+qHznvuVk3qOX55T1HFeWGEeIe79m8lCQfTzz+RmuPGUwGnNxDHT7HwCqsmwTtxoQNkXp9/vcunWLn/3Zn+HVV1+lARPz3jGfn0E+YJiOsWKpVai8x4jH1SdUzOmnecC+N4qQbPlncKJ4CUk4TY8SbzDeRCe3NMW4XtALupQuSnR7vkhQEhAHUobfpCRLi0vver5MParU3mGShNFo0p5qjd3f9PvYNGUwGjOfzTg6esRyuSCN9n8xBsRFxmJjOGiASujkcQY7uQYnaW4Kslz5jW9aNFtyuw9/5O6MpIZKDN87ShiOHW/YKbcyy7/3eUOeOVw9Q9Kcelnw8GzGe48mfP0TSt7zVKXlRPp8elSCHVKcTiGHXra7Hp966VwYVB3F0fdJU2GQjHDGYdRsMY80DrFQ19a5JaqujbZpnMg74yF/5Ktf5itf+CIDm1CJYNXhC+WkOMQOXmFiJwjCCcFV3k+UM07okzGih1WLFxeTTdb7sc1uL6wyMRsfvH9h3XlB26jNkn2mjT7rBp8xKUIZBaJ+8JmpsLjirueK8asGfPpbt+/Q7/fXsdIjqFVTnzRNE7IspSwKpmcnzBeLWCMz1tVsYv5bYC2NoYSBGXoF4z3WwufvJdSLktMFfPIlxyAvqOoSLwnLqbCY5wxqC8aFJCqvDHSXUqfU6YJiMcVVJ+zu7WG8Mqtr9nJHYvuMewl9n6GJbq2adOFcCOBKTg7fZTzaj+iAF1wbbxDAa02xXJCmGdCFhFDu3r3L3t4ee3v7oSJlZNVFvWS2LMhvTsiSDDUJZawLnpjgWxmanFyS5tyM72S9H7L55ba/d25+wf9f0AsSIMAyN5p7XRnuv5NdetdzxfiNtaFYcXo+zn29eIiQpCnj8Rg/HJLlGfPZjOViwXy+xIohz/NYcWc9gNBoMKIUywXUJWk+ZLoUPv86lEvHzqDEVAVKjSdlWie8+cDy7nEWir9LyaduO75wu4/RJYkZ4H2GRfnd784ZZQnjPnzqCwalpGeAUY7DXRrCuUmKUi/OmE/v89KrnwoH1gU4J61SLIL3FdPZGXfuvMom593d2UGMwSJ4IlaIwqKesqiFW/0dUptQ24SiCOil3s9RVzG0EzKCLbJFuHzBuV/Qs6Rrm0GvSx92aT9SU0FPgt/Me7j/3iX1LXjOGL+1FmM7KHgbnGUN6EpDBJARYTzZYTAYMZ9NOTs9pSwKirJAELIsOFS7xRq8c1RuRpoMqJaetx4t+exQee3GjLpMkFqp1eK9JTHKsF8xHgWbeyIlqXU4LcF6EskY5Sn3blS8c2QpXMLrOwm3dj1oqEdbSwBpvTxTd50UZXbyAYaCfm8cCmDE7L5zkrQEs1Wo7VkGKOg0X7tMEKyx7eYKoaIhDv90fohPBwzyHRIsC7WU3mCkwrkzElVGZoD1Bh9r1z8WuvELekFXkFwk0zxdq8+6wR8OrdUvVozxTHY/RowfmhD2kAzUrQ7Vrca19nv8bBNhNNlhMByymM85OTmhWC4pqxLjhCRJQu1UBOcq+oMx48ktTufCtM74re/0eGU3J0/glZ0aywJBGGYFX/tkwus3FoguQ+SKF7RY4gC1GZVNeXm/oPdZkCTlzt0cKyE214uGwiDYWB7ygnF3xhU0Ps/Zo7cY5DlJmqAiGL0I0zI6cBUWi2kwkxm7yhyObZvunMW15r3j9OSQdLjLOBmRSsKhQqmKmJraT5lIysCsCo+/YPov6JmTnBf4Px7LTAEXN1XYsTatePVTHyNTT3PiX1RRCs5Ly+0BEBmmSYLzN+/3WS4WHB0+olguUPW4WAHKOceNm/eYTMb4nsW8Zfit71V8I624NXaMv9JjL1mg1ExGJZN0SVJMwYU6nw7B47CaMCv7HJz2uDOeMTGP2B/fZTqzHJYpL00UqKNT8zponCty5ZL58XvsD3axNmYsXyVqq2c2O2M83kFkhfW/9twGMiH+WmvFdDql99JrDEwfI5aFQqU1VmcYLRiZMUksLG/UrxLorj2aF/SCrqbH2R/PF8WMFjURPcVTX15y9zlj/I3p+ElVvmhDF2NIbYZNLFmeURYLjo+PmU1nCNDr98kHPTKxjPo9vvrZnNdfWZLRI7WOG4Mz/LzEyoBP3bLY0lGXDo8HXcFGiNRMK+HRzHJvZEhQFmeHPKwm2B68tFuDh8RZvNhgw7uw693EbagWJ7jyhNHNVwP2zhV6cAPTIGLp5aNrcOUAjbws5hRO2Rnu0yfDiaVUA1IBc6z3jLIBNoaEipdQA+ZaL+QFvaAfJ30UbPxrqe+AoN7y7g8uv+v5YvzPgFpLvoKIJe/1SdKUNO0x2SmYz+b0ej3yLMeL5cGJ5c33znh5z3E3n+P9KbLwGKfBwVudYOoAYmZM1Co8GBRnPc57nEKiHiGjqh2HpWdiBHwPpQiood3OXUGKMj+7j/EF/cGYgDjkQRtYii3jFiiWC3p5jzTtty1tXh/LwqKiqBpmp0f4rEcvG5OYlALL0hPyIljSwzCQHiYWcQlRUc+0jMoLekFttNizXVUflTXamHk8QoKqYXpy+R3PHeNvXv7jntUNzG+byBslaK+KmACklvcG5PmAxFoshhkJ/+a7joeHlsMTy+iNip5XalVSNQg1ZaV4FUyakff7uLKmLpY4FNWUvjFMlzBjwqRv8D7h0RHcHHpELSoGLx5vHUYvKbUIrU/De8/s9APy1JJkOYHx1ygZwdC0eV8Yee0q0jTHmgxPzUVgV6KCNx40YXZ6ggyG9NMBxqQUGJaVx/sKZcko6ZFKhqhr4/blBdDOC3rWtC1q4WNBHa+2eBSDiJIPLk/geq4yd69LzVQFVMnwzzcGmJiN2mTrSoxlF8Jh0Ov1SLKU2iizZcLRmfDKjYKzBdGda/FGArKnOhINyUqVMTycWxZ1AiLURvHUjLOKoqr4rXcSvnfa57ce5RwcVozSOc4vQ/6tmI1yct3BxDJ66trB+XrJ7OhtRqMdjLHoFcdh8IUHSIks73cgIbZvpKbEjauXTIs5aW+HXpJjsRQmpfQOrzOMViGap3kIQRtZFUq/6N/Ge7r8dT5zap/Z6cCPqy8v6AU9Hikijnv3Lo/q+VgyfuhI9m1CURMNs4qOCXVI/UqYiP/CAWFxsyU3RyVffK3kRq8gxTPoGfox/N+JBU0w3oBLeftRwskyCYUSImdJk5LX9uHBkeUP3hrz1vsDbo6UzJ2wXMwRfASM2/6qouU8mF4I0nu1PKaaPWS8sw9oBJoziPitoc6qinM1YALjF3cxl4shPaJCWc6Y1QVZvsvQ9hAvLBC81oicMRChT06IDzJrTfyo6EkZ9rZ7XjD9jwA905f0UXjjKwOXxj1m8NzYuxyk7bkz9TweBam+WC4x1pBmK2AjjVjz2wMFQuJSqZaTIuV7D/v84KQgud/jdD/npf4pRo6pY8XYRCtAyZIEk3hAsc6iklCj/MSdCgy898jxiYHh9VcVpoecHZX08ptYyYLEvLUvnbh6FCcwPX4XvDLoj7i++iskdgXDfNmiD1nNlsV8TuFq9voTcvrURpjXNaolRguGSU7fRERQbe/sHAEbfdtQNJ6V4n6h/rI5xM0LZHXZR4EFvKBnTR9F01HYYeaKCKePOeOH5XLBwwf36fV7jEZjsizDptmVoWGK4pOc9x/O+dZ3HQdlyjsHC+7slvyVr2XcTgRRHyVxj5WSl/ZrcimQskYlwXiPlxpTP+TTt/q8fndIWgecfmcM87Mpi0lOMsww2sTzb/YjFJb2GEQV9SXHD77LaDjC2rStQHbVGlaFfn+4DnOxjd0JISNXDdPZES7NGQ/2ycgorWVeOJSCVGpGMiIj6dhNOjb+yyd363OvvOaC6y8f+vlDTracFE/iN3pBH3X6KL3x9ZDrq7r+MWb8AetxuZhTLOYUxYKToyNGkx3292+Q5T3kgrqVokKicHen4q//fB9XQq1CeVbTM5adYYlbGgSH9Rrs/r6mn80wbolXxYkhNRWCx3tLVi7pmSW1mhC1aXpgphyfHJL1d8jsdlNPYKeR/YuhmD1kfvQOr929gzERv/4a8a3OeZIkaeqsNyO9cO5cVXN4fJ9kuM+v/ctP8v/4lXv8sT9d8vLPTlHOyEWZ2GGEZ1gv/fJEctTlbocLr79OjvO2j9L5vRss91h9eEEfcfoIvegomWjMZCuKjxM653UpQhd470OlKSNYm1C7mtnZKd55bt6+TZYH08926d+T2yWv7yeIN4Bymh0zOz7Glz1UFasKmuIEPB5TFgHdTQxeHLWX4A5WF+ASfEDB8QjeQpoa5rMFZ/OC3Z1QtercUKL5RNTjMcwP38K4JaPRLohtwTwvLNYVndhpel3I53DUFMUZh4sTfu97f5W/+Tc/z2Jp+Tt/z/M3/s+On/5TM/ompU8WnM8CEbONxky2/qjzx4J0OP1Fl0r3u05Uh659uugRXQmpmaTu9WEDtcmAsdFWeeHjnDD04aMfjmz+UZL4A7VW2iswvT5+jL/DCKu6olguSWxCmqWkPqGsaxaLOY8OHnLz5i3SPD8H8KYCTgTxFvEW1IYonqzPoj6Cako/ifjyxoG15MmQxAqiCWiFLY+pJEVVsCxxYqklIfMVagKXsQI4C/4y2SPodRalqBecPfwu49EwOGl187rtragSkT+32VPWvxPCIXZ0/D5V2ud3f+ezLJbhSFouDb/1Kzk/86eXjO0eCRY1Slk7psslpQvphAZIk04mckeaXyGQCib+LkjLk8Wa9j4DGDEdp4G2/z13WJwT23Xtb2s6SRtvqjFLWc4fJC/oQ0U/nCP4o3Owb2TbkFxgIWjo48f4iVtaoapq6romz3NAEGPIMktVVcynU46NYe/GTZLsPO6FYLCqGBZtezZT6tGA44MDVAwuNaipUdPn+4cjHk0tNRn3JkteG9eIW6IIXrMAokYI3UQrLAZXOQb9PqOBxUgNbPHUNw9XKGYPmB69yyfu3Q1gdS08w+UMS6SJYup+e1H4KLi64uHh+2STu/y5n1vwD/+hY7609Hqer/3xA1KUsQwxMSy2qCuOpmfUsX0jkNQJwbm+epaIYMSsRVcZYzZCz1b9bEJst46pabV7aDeDbcfdMPTgOO+2ZcW03xsEi9DPMpLOwfOCXtCHjTQi8JoLzNQNfSwZfyBluVwEgc+YRqFHRILZA+Xk+IjBaNQy/i42veAAgxODYoKUrgn9XcP0bE5ZlSSJxdDjqBjw7+4LZ3MBK5jU8PJuDvW8jXMRaixVlDANdanUKuzu7ZDmKW3K7JZxADgV5odvo7pgPL7R4dubNo7zDF3EbHx/8UGhIhSLKWfFgvG9V/iZP18wSd/i//ev9/j0z8z58p94h1xShuQgHq+wrCtqo0i+ipqqAe81FJIP4P7RRhm+Ux+zD7xbe75zPvxdrukkXtPWVvPQ1Fo2sjIlSSdyyiBgGjNagOO+MdlhbC8vafeCfnz0say3u5W0LSB1ET2XjH+NhW2xdQX7vjKfz7EdGOcmcUsAawzW2gvx70VDsL6XJkbdI5qSpcpkb8zDBw+RGqzNOD41DPt9fvoLFZksGYuSVXMqPD6i24PiNcGq4vDUdU02HDLYmYCkiA9+gTVmJ9qaKGpXc/TgB+zuTMiyfou2GYFKrz93banF9hHh+xi7ryinxwc4mzIe3yYzGf/Bz0/5E3/O8YdVxaxa0ktyeiTh2R6WZYnNckwei7vEXptzb6vbkZXFpXtFd8HKtnt108yzvX31sYymtkad4I+I36k26EYKHnxZRlNV/qFnL5eGrX5MlJVrBLI9JxRXqTZJpvG7jx3jl8BGpcGfbxggUZqM3g/vKqplQZquXKZKkGhpYvitIc1XZp4VzHO0+ErjWo07y1QIMBzvMp8tmM3mpL0+zlhuTSpumRnqPZlTKlfjRGPIJyA2hEmKp65K1Ap7e/vkJgU8XoKGsUZNsplCPXuL+dH3ePm1z4IBDV6HZko6I9xGV8dGelOT1jlLd8bB8Xu44R32s9vkHpzJObXKsjihpyW7fh9JwrzX3rGoamQ4JNTVDaUUZdNpe/6R7Y8nYbTdqJxNUkC2eMo3D3lRH2O/Ys1lWZcpP4z89MPSjx8bPfMJ+LDmuCot02+LG2nkCZaL6+0Fev4YfwRDQzVKux2HX6eM4mIeoJZF0rV72wLi6jHGxGpe69QNCukYCqK0KNgkZXd3j8WywNUVe2PDt98v+WCQ00tqRj2hb3K08OuNESKNqqpmZ2+/Uz6y44jckGUkxgEdPXyb1Fr6g3FrxlhddvFuOA9T3czFyrmJglWDA6rlnOPFgsmtzzFMM9AAJ1GrwfsSK0Lf9gnGI6WqazxKaldO29amf81d+sR7+YIbL2rvfM0GE7UTxcRiOF1Mpx8Fk73oGZdu682bNn7/MB5Yz4w+7OrYM6NGAN024Kvf6nPF+F1d42qHoBEGGM6ZcQScc0zPzqLUuXLWNVOoqjjvSbIUI9dz5gVzcjRiCPQGA0bjEWfTBRXKt97L+c6jjDyr+PzLFV+9lbR2+5WkqRRlSZrn7O7uYWxXLI2MUzR2VGhMTGW14OThD9ib7JJkPYKNzzxVJbrmVk84DE1tcEY5PTlkQcLtnZfoSYpXoRbPwhnwS3Jj6EuOUcWhLMsSYx+vlsCHhRq/T3PeBnevcP7I+tFzm5Xe+WS9eF5NIS/s/Nej54rxew21cA+nZwwHfYbjESbCEDTM1dUVJ0fHLBcLkiRptYK2UldUobz35L0+j8M9G5agKFjDeDJhUdRk9Zwvvr5HUXusGG6lkDio4ondPKGqK1Bld3d/BR8RVJXVQzbWtSgspgcU0w/YffW16Ki+3L73OONpnKgGwbuCg8MHJOMbjPMbpGoRhEoM87IEKenbjCxmHChQ1DU2TQkzu51tfpip0XgaF3xgmD9+9vKkJrDu/c8l/bhfzEeEnivGLwSp//TkhHIxZ1kWDEcj+v0BRgze1ZydnHJ89CiYZMyGobeRvCPiZb8/uPR552zC8b/Nt3mvx2Q8JilLemPP8VzAGXaGKRriWtq71CtVVTEcDhlNxjRFYbazych+FLyvmT36Pqk4hsOd8Dd9Npj3SvCTgOIFquWU4/kJo9feYGzGiCaIKrVYSj9F8AzNkERjroP3lN5Blq3MbvJRYvvQepej4zf4J5o/dQ/kCzjONu/65nebwsVVWXeEuWyl9o4J00CH+XXubwQcVitKr3mAfeS0tedVnWne1jXGdtV7fb4Yv4TauP1+j7pYcvDgPuqVQX8QmP7pKY8ODhCBLFvh8awv7FWt3jRLL9x8bfSLBu1AADEWomkEQIxhOBpz9qji99+0fDC1WGreuOP58s2A/unjG6rqCmtTdvf2W4ydJib33JtuI3aUqlpw8sE3mYx3SNKQKevFPPW61yjuNyzCi+Po6D6lMdwZ3w3hmhgUZSmCY0kmwtD0Ee/xJJR1QS1KYhojSRsr9JS9++FSN7FMO5FFLTx3c128pgmnaH0Dna+3Hgib313ic2+teluuWfnsmzUnrC4/f4Ns+7yxvjdrUr+gjx5duO469FwxfgBEsNYiWYbznl6e4euas+mUh/fvhyIFWS/Yz9sNo2vz5L3HJhZjVqGeXepK+qrKYjZDUAbDIWITGkgIENIs49Ey4dG04NX9nKGtuNlzGC80ZTGdq6ldzd7+DXr9wSpB6dzmayT9hiE7itkBxen7vPYTX0TFxu+fRYWrxosZGHalFQfHByTDfXZ7N8kweMAbw9R5VBf0xNDTPDJCpahr1IQDcV0yjY/4kPIWhVWmcGShHqi9xzl3rszlitGvfAKrkNhNLacj7V/IXFffdyX4zqrbaELaE0rb5re03elH1/8VfBjauWzTyf0hfVEb9NHo5dNQ97083WifK8bfWbrxiyBtzqZTDg8OsNaQJUmUzNnYeHHrSmD8ed5DzPZQLulId3VVcXDwELzjzp079EZjmlDFgJNvqNRx70bNZ/fn5FbJ1FO5JV7AqKeqSnq9HpOdHTCWzZfaMJDmMAmte9CakwffZZDnDAcjVAyivrVEPw2tjAFhDor5nKPFnOG9zzOyk7Y/lc04q5aoLhlKSqo2hsQ6Sl/F+1eM6aOyO1tBPv5ee8fZco7zPkr+Ya0YpP09/D/8DBnHK42yZdBr72aLVB61ufb3+J/1ads0DTX3Np83zGlxuTT9kybSbQtDl44Z6qPC8FuSjZ/PKT2L9/JcMX5gFd2qiqsd9z/4IGw1Y0jTpEWs3HJH5yu9EJlz/bKA7lkuA2zDwcOH3EzScGhE6UpF6PdS5NST9XLynpD4Ap0uUAdVVQGws7tLkmZt3zdfblvrtt3YSlHMOXrwPW7v3SKxBkcCUobAn2cg8CNNOKcyPTllCdzZuUcu/ZjQpZRiWPgK1ZqBGZIGBB3UlZR1jTGXF4T4sJISsnWbamG1c8x8TdHlykpbUGdrUN1aEk2Q0p1zYYbslkSCyOWl87M5WKA5QMLn9sCRUGpTRLDGkEjEYpf1AwkIIamtGXBVVW6t3diOMeYjJfH/+N3tPxoK71me+p08V4y/67jCWPJ+n7quERHyLAuAXhfc2UjonnBIuLoO2ZsbTFjj/0QEdZ7p6SmJNSQ2oSiWHB4ccOP2bfIsQxBqPAut+TffFb75bkLeq/j03YSv3EhRnVNXNaPJDoPROKri26X1wMwVLxbjFRFlefqAcvmI8UufJSSAuYuRHZr+b1HpL744PNi5kkfH75PlO+wMb4U0LA/OKEsUrzWp1AykjxUJmcceytphBr12dj9KFK1cNNqKopBmaJrRHYtrHb+ROtm/QoOOqjFgQFkUBSKGfppFibsr/Xfxkrrfx3iojpPZKAH0SJWyKBAjpEkW9Kuuv6E176zb16I1bjXeKOgbYKc/YDIaNrpas+LbuVi7YVN5aaUTucSUtUFxjkK/41rZVhThEmpyLBqpp6lKt8YTPvIU5ihhgK8qJF99/7j0XDH+QGHRGWPI8py0i7OzdSGu22sVMNawXBY4V5OkadvmJpXFgmK5ILEJNklIRFnMzjh+VHHj5svYLMXUsGMcr920lMua1CipFaxJmVeOJEmY7O4GULUL+ONqb63yBLyrOXn4PQZZSq8/aBn/yuTwlCQEX4IqRbXg0ekh45e/wsgOMShGbWD86vGuoGcTcpsj3oOBovbUXkmNaQ/KLVP+oaTWKgMts0UMSZqR5r3VdRu28PPtdEAl1ActFMUYS3842mD85ylAZntaY592fjZL0nt8VYaw5SwPkUfxkOm01B5O575vvvPxGuewIoxHo9WBoeFACvOyfow0n9uRnG/++qTtCo+H2+MslACyuArLFjz6YV9qj0VKSCKsCs98uWAvGzyxZv8cMv5Aq4St689MAxDmnMN7z/agmig/eM9sOsN7Txax7JMkZLLOjs9IzTHD/Tss5467w4q//jMGr47a9Dg7s0jxCO8cuzdurmfoXtBdlcCEDTVeDGUx5+Tg+9ya7JOm59FDt7bxGNK+xgIqop6z0yOWmnB776WAsR+lKRVYeo/XGT3bJzWWhk8t6wqeCyTLLQb39S+2j/Gc/1Y689+9b/v8NGtXtmFLAI3RXlSxNsHahGwLiuzGCLZTZ13URYGrKoqypNa4j+La7JqdVmNrvosmJDm3YR6TnoxZN1u1CVlFg0L0fFG0N2i9oRE9/kCfQ8Z/XiLpqr4XU/i7d466rhkMh4Ghbqiyza91XbOYzzDWIMbGSA5I0hw8nBweUkuf7x6NqMyE3UEGxrNwluP7Z3zxVkHWy5ns7EJMMLuMSTbbKWTEOmanH1DPH7H38pcQTAxQerYrXQH1jsOD+yQ7txj3bpNr2s5CBcx8CbKkL/skKq3zcFGV2Gju+sgzf+lI2R261AZ+4T2bnx9PLF5BeARmG0rcNBrtRk2F+DEke593rq/1unX4hmS8w9kUEyV9lVgbgcZ0FE1S8bOJ0BamcWLL+XFfTc0NEbpPPPIY4qwiLOoK71cPfkxr0YefIh/LByk7gwSVJ9dpnkPGH6hRS69m+IGCtOAplksGgwE3b90KCV5bBBgFiuWc5XJBnvdiIEVj/1QkT0lwnBw/4Lv3U377TYeVEqvgBF7eq/jcnYT9nQk2Sdbixq+yiyqC+pKjB99m1MsY9Ies24YvmZNrzEf7dxFEhUU14/TshN4nvsoknQS7NQLiWahl4aYY4xmZPjb6IdR5SnUYmz03ew54bAaydiBER3GwOIYPq0if89TNE9n699Yr1dizm3Y6ecXdQ6aT26Gdq2TjWSqwUAcxi7zbTJPMtzqvtDXHe1Wcq0EVu81xfQV5H6rQWZvEuWryvK9HouDU46xh0PoILrCdflQpHuBltcQlduV3eSHxb6frMH+REHGBKnv7+2S93lYmHKRgz/RsGkL2mpDP+AyjBoxDspTM93l1z3PvjjDOBavC3CccPaqZ7IzoD/tRSlv3k23tX3y2E0O1nHF68F1e278Jxl7LpPVYTl2avjhOTg+YC9we36VP2koYXqCwCaWbkpqEkckwLrCToqpwEBO3PvrUzlZ7Jj7+RmtmXztSbCPxb2tve3Lheo/W2XKrs55rI9zRef9X9FPShHTQC1fGAwsNUVy6cXHj9lVV3HKJc458MHjsOSqiiak3HMU98XiwI6KCqSvqsmjt3tL572NTO/+s0n1+zNQc9cFTJAT2/WQH23PP+B9nAYZQKYu1CWJknRm34pJSVxXzRcDyl4Zxx/8IiqHCS0KSwE/chDQvyPQRAIUT5sMxk/4oQkY0qvpVvVNCpmzN/OgDTDVjNH4NmuSoa1BXsruwclUj+aniXcnR4UP8aI+bvVsk0iSPKTXC1Hs8C/rSI/MhqsKzsu+fMz181OkphtIJj+9893Rzs5L11tt5rHZbm7gPyKOqWDEkJl0JJdFmstX0IlELUKVyHowLGFdNcZ1rdUGpfZDQs7wRhq6QhM41ApSCVGXUwGP3HqOJ8xT9XB+aJdxoQSuH/5PS8yGSPQNSBSMWYwzz+TxCKZyfXEGZzaZ450kS2zJJiX9r7G7BFlqQ2ZK6qJlPHadnNWdHR+z0K1Jjg5J+zVXVhnm6JUcffJtRv0fWC2aeq8e2HhVyXSqrOcezKf2de+wko6DN4EE8tcmY1gWKY2wGJHG+lMD45TEOpI8KPauwwGfh85C1z09iU99GTdWz9fZEJTL9zr/Wm2og/l0aC0tzQOj1/jXttxnH3Z/X/Kdt72mdu+2/p5iPq6APftQka59C7NKT0HMv8T8eCSKG5WKBV4+V9enRKO1Pp6dYGxKV1mL8BVCLqsVEe2hRnIJUWDGIePAl87NTRr2EtNcDvWbkiwqIo56fsjh+m3v7e7Gu7vUkoybJBy5nPN3DYXZ2xFnt+MTkZRKTIj4B41A8FQmLegEi7JgeJiLwOw32fS6Au/hIkzwr1v+UtHLDtPTE/er4lzRG8DT/VvrEhmN4zRfV2oI6PdlaG+0Kak+NFe9/rLulbeKZJDCuevUho8bM1wwwli59zBXwHDL+js1z00G2tlE2JypmShpDWVXUdYVNk2jCaS20FMsFRVGQxQIt5xK8xMX4YwGpMGrB53gJ4AW91LKYHnKSCru37pBGR9haycOoQYQQzubJgmrN7PgB4uZMdl5dNzPF/4YtqHGEsibtdzM0N6esyVANKfvg1PHo6CHSH7HXv4GIwSi4RqpXpdaCNEnJ1cb9LtRVTaUhVv1DwiafGT3VaFrJtPkfbMvQ/qFQ1/ax+YfWJxxsUa2wLWzYyjvOViG8XxG8c2DAmgSbVjhfrtp7jA425qRmHT02abPiO800f1BZM1e1n5/wjW5mCW8eNNdut9nbawdqo6bEFxBLnjbPPX+kPtkYnitTz6aba9sVl6V2KyF5y9UV9XJJ9xULoC7E7osq1mw/M1c+AQWJUq+sbHKSWbJswNnxMcVsvtX80jjpPASNQEOWrNYFpw9/j14vJc/3EDRa+7oxGoCsCpRvpvtfbu4Jqq2qpXBL7p8+YLL/GsNkQqIQcnJBSXnEnJITJpKSmxSV4Biva0/lFSsBqdRfWRH9w0/PZgQNK/I/Jk/hNhvJBddpWFEhb2Q7a0mykMwmNkFshknyAFXSGF0ey0Si4FeGmpUgc/02TBT3fXs2de1ABocCARzRb2m3cxyH35tQ3Qt73FwbTS3aNbo83opRgtyumDhvjXgVgBCNN4gKzjSVNqQzvquKLG6n54rxr7+klZS+knTl3FWb94oxoMpisURbwLNAdV0zn83aAi6bErQ0Mkf7GKFJeWwyH0XAWovznsVisZURh1j4Jks3snY1VItTjg7eY2/vRsBj0UbJa5J5LPgMfH9tnCEZLS7kbREkdFLyY23B2fEjCmfYHd8iNxkGg49z6IyldCXqa/rSIxEQDQuwqCtMsqq49ZGX+p9p94Mx+jomt0vp4mV8+fXb/m25dO2PCg08d1AKg4BRVzVHR0fYJMF5z5tvvUVVVZ08g8sfe9luvO59l+/oda3FIIQ6FRsrcu18We3FriJ0EYkapGlTpcVtelwKh6wP5mG1oElk9qE9b3xUBp7dYnwOTT2g3rc4Hav3INeStASwSRLs/M5hkybcUpnPZjjnSNPsMUO8VipyU/7RWEuSJuejbFqNt6n35IO91XtOH72D6ILJeJ8mSSacL42s4UB8SH6JrTRtG3OZL6HRFkLUkNeK44P7mN4uo/4+qaYIgpewbZYYSl+SCPTJSHzQdZ13LKsSk1oae/hHX95/tvRRmA9pV0/DVsP6aAsDiUGM4fT0jPl8wel0SpokEfXhyUf4wxARQo9jvQy1HW2iEXdWJpWOznxFP5u9GnwhTW05UcE/Rjtte0q714Msbmk1CVEUh2iC0SeT7rfRcyXxQ8i8nc1mlEWxknQb7AWNp+Yls6cEibwoltRVQMxvEBBn0xi7/xSFTkQE5zzWJvT7w5YZr/wQzdKUjros+DpE8+yMhqRpLzB7I0HiiCUQER/MPNHU04Zler/2+7k+sSoUr0BVTDmaHjHYeYlxtoNVG0I1Y1LNHGXpFmQ2YSR5m9jjVCmdwySNb6Qdzgvq0Ectk7krVRsxpGlGL++xs7vPex/cZzZfcO/eS6uclifaHY8lST1GqxGsTQGRTsDRmrflEp5wQZ9UQgSfKL415T5l/yVK99L4PIJ9v+UIz1Dif64Yv0aJI4/JV4vlgqIscN51LmquXWeCLYuNi8/VjrIsoslTWS4XLIslSfI00Sox3rmqIoBcujWmXqVx4wiN5bOYP2Jx+i77OzcxJkXxYdkqKAbVJKqJFjqwCtdJ3Ars3IMEGKjF9JgzX7Oz8xIDO2il/dB/YS6e0i/ITMpAEogRPaV31KIgZmXbekEfQWqciOGf0oQsC8Za5vM5b739NsfHxxw8esTpyRnT6XRtLT/ued/iYj1Tkqg5E3NMPF48xhuMDz4ojdqyaNc1HO7dprys+Ibipe6g5kbh6nEW/QbeTtAWPODwxqHiA2wGz34vPWeMX0mzjLt377G7u0fe62GMCYBTzgGKGD13T2N+AcU5R1XVpFkWsPsFVF2sssVTSjWhLVVlMBq3kRGwyZRXTlEVg6rj9NEPsFIwHO6xktEFnyjO+CgpeFbOptX4rL3oOc2lK2eRd46j4wNcbxQgmNWs+iOhvu7MLxFxDMyAxHsa5/K8KMDa6H948jl6vqm72T98FK057etbc40JcT8VHB4ecnxyzGQywVrDyclxxOq5nkl146nPeBSdZuNAgr0/aP1+KtRHCnUTjdYMer3frfV14wQIZh2DrS3MDMYlUVh7TMbfdjI4dhWD9RZTGIxPaCJ6xNtwKMiTxexvo+fKxi8iJGlGliXkecp4Z8JsNuPgwUOqqiJJQrnFBiOl6/AMJpEo5Yuwv3+TwWCIAFVVM5/PVwz0MRf2yncUzC7GWoax7XNjaC6VaKJSQasZpwffZzzok+XDGOYplM7xzgcHzGZz7t6+wa29EWJ8LABiWjPPVdgpoRJYeGZdFRycHjO8+RqTdKeNzw+s3bBMEmbFAqOOcTLE1qvShIuyQBLbOUbWUmpeEKw5dz+M1Ib/xt8bP1kD26Dq2dvbo9cfUjchyN6TJRati7adD8MYzzt+FS0Mx985o5hW3PzCDslN09r6z13bWF+7ARxRqFGnLN+vWDysGL7aJ73ZSOXtDr52P5vzSZyhfFSzfFDSu9Mju2E2nLrPwJwU6bmS+G1iMYkFMRhrsWnGaDzh5q1biICva9S71iTUDXH03lMUS1SVGzdvMdnZQWxgnov5nLIosMa0rq4nk1GCmWcwGGAbO/j5S9ZseQalnD9iefwe+/t3UBPT2bE8PDjl7//3/5z/+3/xX/Prv/mHOJegukos8953NJTL+9XA6i5mxxwXJTd3P0FfetH846P933AKFG5BhmFIhtHgPPMKtXpI7Erb+PHv/Q8dfVhdHiuGH0x1xlisTTEmwSYpNmqndV23NamXyyWDXs6g3yNJLMUy7J8PTzWsGBwRGaZRWB4uefPXP+DNX3mf47emUMe4/q3S9AXjUKEqa97+jQd8+xff5sE3jggFtNejAK/VPZr7PBTw7r99wB/+4zd58HtHaC1otPnDuXikp6LnivE3IZsaHUWKYJOE4XCEMYaqqijL4pyz03vPcrkksZa7d+8ymUwwUbr33jM9O4tl657MftmQ9+GwGY/HF9bzhcYBHaVs7zh+9C4pBePRDbQxVXnhrXfeY7x/gy9+5cuUVc1iWeJdjF6I49qWtPWPfukl/nd/8yf5R7/0UhiPRA3BKYeH97GDEZPeDTJsK2MYBFXDSV1Ta8Ugzcg0jEFwlFWIPjLGtAtUecH8z9OPKGnrCUni27Y2lBDtDYbkvQGDwRBrLaqe2jm8KtPplKquSKyJ5QDZkHo/DBQdpRrMM/WZxx0YOEgoD2vESbyGtW6f9/7F3+IBWVc1szdr9P2M2btFwCjXxzX0hIeKeASHm9dM3ylx72TM3yqpFzVOHN40jt1nN6/PlamnS74JdUQwScJgNOLw4CAWZyjJ81CtyHkfMnHznL39GwwiU240gboqKJZzkmQFWvW4099GvThHmvXI+4NLWmkWogcv+HrO6fvfZmdnFPqgocJS7YXT6Yz93T7znuHVV/b4zX/3e3zhJz7FzRsD1NV470iSdC309B/90kv8L//3f5z5MuHv/r03+Dv/+a/yl//se4BS+CkHp0f0br7BJNlDxKA4GsdTnWQs6jNUF+yYfQZOUCyCp6hnOBEyMW2SyTMLPotmqIDRbkANXlxoXy2Ii/HUBpWaWIjv2Tz7GVKLRYN5ygCWrkq1CgB4+vDZYMox1lJUjt/5/d9lsVggRvjcZ3+C3fEInEPUkSYZ0+kZf/CNI3YmO/TyjJ1hD608jZnkcYsgrcb2bN7dKvO4iewRbGaoxwt8YUj6AhLKlfoY8ml1ZRZttJdzPRJFDJhUkUQwSXOFJcAXPs64YzCoAHjU1FRJSWltkMpVMD7BS42XOpheuwivhGJJjZO5dcZf8dznSuIPtG6jBBBj2NnZZf/mLXb29vHe4dVTu5qiWJL3cvZv3mA02QngYi2qpDKbnqEaVFs6G+xxrfw+MuzhaIS16SW+Ao11cw1qhPnpQ2anH7CzeweRFDQggnqj1C7hnbcOmM9L9vZu8YffepOyqtsogBC7v74Bf/GX7zBfhvN+vkz4xV++sxrr2QnzumZnco8syWkSd5r5XAiUfolFyUlbUFivULoaTJi3RtJvE9qemmT1QhtAsOiMa+KnG/vbh8XIcCF1QnSfnlbjbtfmE54oTXCDEtbNyekpy7KiitXo5vNF2BdRoDIiDAcDVGFZFFR1HQrIP2ly2rkQmmcl4cb1ISFqrb/X594Xb3HvazeZvDKAVBAfnapXqKcrWBUlyRNufn7C+DM5Nz41Qa5XBG9L7xrnrpD0EvZf22H3UwNuvD7B5g3sSXOwbPoPZO3Hmhf+CnruJP7GSS+sL74s73Hrdk5VliznM4qiQIG83+fGzejINWYtysdVFWdn01AcglV+65P0yruQEzAYDGOkUOs5WruyfaXe4CTU1e1lMBrciCasYDK6f3CfvN/jzbc+4MbNXX7/D74PPmE46CHRBpnFkoyrqCX4hZ+7z9/9e28wXyYMejW/8HP3gVAI4+TRIa43YH9wN0RosEpKESwz7yjqBblJySSJ+HBC7T2FqzE2bQ+dZ8uCo/PNr6Qd64OvIxSFaeCDn606/MOiZ2fq6Uh28oxk5dhIWZR84tVXMQbSNKUql6vnxLX76iuvcveeA4U0TdAqXPO441tpQs/62G4OxtAfL45knPDKl+7iXEV6I0TLBKYf1o+a6/UhSS03vjpmcKfH+NUBpB7xj6tphmcZDVqy9ITbn91jtD9kdK+PpBG2XWoEg2gSfm/nKmTsKyb0/TGe/NwxflhNyxowWVyMSZoxHI15dHjEcDjk5q1b5L0eDaBZi0fvlfliTl1XLQN90v2qKLWr6Q+GZHmsSnUJbk5w3cKynHNy8G12dybBZCMViAXv+ea33qSWnE984jYHDw75vT/4Bl//ypfo91LUVbiqRrLeuU34V37+Pf7Of/6r/OIv3+EXfu4+f+Xn30OBql5yfHpIb+9lxukONoZxNmnjkDDVmtovGduUvknDmozmstI5bBYLkT9j8LFGTRc1MWxOV6rtOQH6w8/4nxkJgWs+0yy58O6yPCPr5ZydnlAs5udwnrz3OKcBdsRDr5eRmdAp1VU7j/PcZ/3qpKMJQXCU+qQi3bdYA842mbK6plRe2ssO4GN6w9Kb5Pg0INa2Kqc8ziG2usdbT3rbsrs/gIQWqkHFRa3WdkI621ig+Gkdr+uqqXwuGf82akM3jaE3GLLjlb29fbI8j7bs9etUPfPZFFjF7j9O8fb1UFGP857ReBJzAy4BS4smElXP4vgDitn7TG5/IR46CaoWoaKuU779/e/zp/70T/PWd94mSeHrX/s0WWZwxYI8z9Y2a7fff+Xn3wsMX2PImijz+Skn5Zw7e6/SMzkmZiY2oZklwlwroKbPkCzaQhWl8p4aSJrEradI2986l6yQIX0DSeFNtGlGyV8CnpFpIIKfERN5xkMJ77frRPxRIXRekxqNd3d3F4zl8OAhDx884NVXXqGtISyB8X/3u9/j+2++BSrs7+/wtS99vt0rj1cAqfn5bOehMfq2JkcfpH5Jm++bjHeHkxCufFlO/uZ+MmqQJIDuBWnc4+X6vq3WB6GBfXtxaKqQAkhINOtYGhoU0BWkRsPoVwl3HdStS+m5ZfzbkCib6ekPBuS9HkkaMlwbxqKd+6qyYBYxSJ6Gi4RM3Tqkufdifd5LuYkgHrzWTA++Qy+xjIb7YWGoBbFIUvKZz73BH3z7B0xPjvmTP/M1TAK7w4DPX5YVeS87DwdxAXmvHB/fp8r77A7vktMUUYkZxCLMBZbVAivKOOljG6hYhUVdgrFgrl/j+HFIYk+iqoQxFo9H8diY0+BaiUuesQTc9OBZMKWwUa/7Xi7vD6s2rkCSvHbvIl83Ruj1eiRZzquvfoLdnR12JpMAwYwiEqDLsyzj05/+FKPhmPlsGrRrVnvo+kLSU3b8IpIuuq62WDdBY7RYNQhBkPDRzr7m9Gz8Y7oSJFq+ogTIddxKG8XxuBRMlcGxbIBQmtNErLGwnlWSyJuCmac9sDpjY43h+ysn9Tl07na0/42FFypegUkSkjTjvENM2400m81Q54OEHq953DKOzSJxzjEaj+NBs/rbxeUPPa6ccXbwLfZ2bmOTLLA1cdSuYLaoGO+MeOONV/nOt76PkZrd8ZBEDN47xOYYk1zJWJo+OFdzcPSAwe5LjJIxiUqQrKO93mOYG6V0c3IxjJN+RCIMzHe2XGKSVRnKZ05RildR8qTHKN+llw5JJGPU36GXNTVet+GVPx3Js4aeaFJjn01jNFLesyQFDg4OODk5Ic8zdnd3Mca0YdAQDpw8y7ixv89oPMRaE2pW8zQH2g+JYmZu0AhNxL9ZpRkGZE0bK8xtu3+Dj0R7uheNGbWNf70JZrju+11FZLX98AnG2xadMwTqNFptmP8kyUlsxop969rPRli7jJ47ib8bR3KuEAsgjSQiGwu0Y5ZzzjE7m5IkAX7gSZZx07b3HsQwHI6C87ijoG2/Mdw7O3mHavqIvZd+EsRTlErpKk6Oj/nH//RX6e/sYtOEd95/xPffepuvjceIEVzlCAk4ISPxIsmrO/bp9JjTsubu3ifo2x7qhIAbHyCqvTUsxOP8kp79/7P3pzGWLFmeH/Y7Zu5+99hzz3xb7f1q66reu6f3mZ5pNreBRIkUBBEgQX7QFxIiuIiASOiLCEikCBESQIIfuEIABQ0x1JDD4Uwv05zq7pleqruqq6ur6r16a26RGXvczd3Njj6YuV+/N24smRlZlZWvTyIib/h1Nzc3Nzt21v9JaWlMZBNwXpl6R2I6YRifg9miCsdDhMS3OX4wpb/eJTVtpvslTktsJ6EMTofLpxeMj52gy2S0qhgxqHp2dnYYvPoqvaxFWRZMvcO7AHyYpin9fh+bpnz3nXco8ylb6ytYAfBPLAQ8F5NXjEprhnVWSuHMV6QodoZ82ezCmYp5MM2Ej74OLDD6hEXi55zaM4jnIPVXgdHht4rHiFAWnsPjMb3VzpxdP6ZaomLw58j0LxXjV+9jtqqtVc5Fcs5RwRSfRpPxmDzPaWXBFPQ0IYlNab/TbpNlrahK64IAsaSP6tnb/jbdrEO7HRjq9s4Bj3YO6Xc7TBzs3n+EAtuPj7i3fcAXfkjxPqcsSrKWhabj85w+7u0+RDprrHevkpLhhGjjDzJJKcJxMUGkoJN0SUKFmGDfd0XA57lQhvDTURVZlNiEfN/x/p/e48ar15AEdrf32bg+oN22IB7VEOlwuXTCg/zMLb2YNAMuFBHeefddjo6OyJKUGzeu0WtlVHwtyzI2212c97RaLQa9LjOH49PRZede1K2pztnGZwi4MXGLKOicLZKdbL829/ioIRuM13Ol7eb1DXl/5h+QKndGotQf+6lVvL/BL3RXMSFHWSyK4D5KEr9XpSxL8umUNEtI07Rm20pg+qPRCIBupxuwe4j2Y6XO1B0Nhzx5VELDoRvv6H1w6vb6fYxN5rUPnXnkK6+N0RB5kE+GHO5+wM31qxFnRyi15Hg4ZHfvkDe/+ElEDXc/fECWtbl29WoIP/UlznmStEL9XGTG0Zuh0XyhoYbw/vEe7ZXbDForsSuCwdSuohLLuBwjeLo2w+pMC5rkRdAMTlkwlU+jlmukOjqLCYdKXdZZ2crqnYqPLjdBrFDmjuOdMY/sLioO55W0naGUYcxlGe7K01NI4jmh7S88Y2NjUKntxk+USNbgl7rgo1jWxkxjezJGu3j2jDnORk0JEn230+Xg4IAksayvr9Jrheg2YyzTPKcoxqysDPjExz8G3jE6Pgj9kmVa7ZNunpe02VZzvWESC/EMEn0AEmdjBbcwj2t1ltnKqAkhxpXndTahL9zvwNQbPpsItFgVeKmEr8qQ6RWyNKFnu/EKX3mO8CjvH0ywps23H4/OvO9LxfiNsTiF46Nj2u0W7ZbHWoNNEkpXMplMGY8nocybQq/Xw9iZiiequCIPmbo2YP6ct+hPJVW8CwBp3X6/ngembkyinFExCsE6Q2lzxvvvosUh/dXbGLGot9y4vk5qO/w3f/N/Iu12+Pkf/QKf//kvISK0s5TEeKa5EABFT3NIx+WoIcNV8IxHRxwUE66t3KBLD5ESfIY3LoyHyRhimZgjMrX0va3nuUcYly6YsMxyFtfY3hBMyKgWV9s2w5oMamzFtEFjTDShuLsEp5dTR6vfYuPmGu1+C1FP50qX9tUWk+kU48HJc8jZvSiTVeKCnUltJ96DniUVz9T+GdbjxTSpJ8uSnd1t7kDVP1W2tjYZrK4FDUogS1KKySi8T5tw9/0Ay/zqnTtsbm5QFAXldEyr1cJHyXTJdsWyo+dpwE9NcaKGtzDr0OxzFcMTBZEzmjl5LJqLbVCB6pZiklv97uPYLn090jRD0QBICaihpnEeRPlQlcKN0Awq+PUQ0eYpS/g79+FOJvzBztmO5pfKuRuQKBP6KyuUzrOzu8v+wSHj8YSjw2NGwxH9Xp/BykrcBMY476nCvZQAyDadTmusnqe3OwqlKxkMBgFqYQmF11yZJgK8MoXj4OG7dNKUbncQGICUGFKOj4748R/9ER4/OuDv/tbvsLt7TLfdJcsyVAPIXLvVAmT5RGs4iYyCUzg4eERJynp/CyM2RChItTkEdfPIl2g5pWNbtE1aY7KUzuG8x9jTq3vVi65m9BKrCVVhb2FlGJ9gfUJdHiNGZFiX1WYnCqXTtbz2+du89uZ17rx5g7W1VaxLsGox3pK49FILVswicDiVJ4kajJdQOk9cQE91nbgJXIwqN21oL4QKGrXnPksViXNRksbP0k4E1Zfh8TF3797lww8/4L333ufw8LC+Li8Kdvf2Gayucvf+PUrn8V7xfhZ4u9j+WdtdFZhUTaEX2xz2ZHTZbvegqPs5TSSMd0mO5/3DHOvhs+vtM1t6qRi/iFAWjtFoTJK1WFldI00zjo+HmCRhsLZO1u6Qtdr0BiuMxhPGozHqPaIBi/74+BiJ6ISnVaw66/6V47gq/tLpdjHm5AZSLQTBBTVbg53QjY853nmX9f4VrJnBRAyHY776J9/g+lqP/8Vf+ymMSflbf+932D8Kxd+dK0PEUo29v0zeisclYHuUrmB3f5vuylV66Spodb8YDaxCKcKhz8HldGjR1hlCaekchXchD+KUcZKKY1YJYQCaBBUZgxdQExRuEyXmKlHLi8brQsFpVZhQ8PjBITuPRpQT5e43H3B8OMSZkBldJsUJU8mz0kz6Ps2cFU1V4nGmwBmHP8P8tZSi9DdD4G3+cYHLn+xWpzL/KnIxz3PGwxHHh0MePnjIcDiM89tQ5AWrq6u8+uprKDF3w5i5+hKnyck/aPTsDudLnIsSpf46XDM4p0UFJxYHdLKEzXbKID3bmPNSmXqstWTtFqV3jMcTRJROp007SWi1Wo3qWULaMrTKkvF4gjGGTrtFUUwZj0ak6XIJ/TxqMr+iLGl3OjF2fwnLkMrWCFVgmcMx3P8Qn++zvvIxEPAkiCrTac6o9GQty6u3b+Ek4f72bq1NjCehXoCJm0VTgprrI1BlpU8mx+yNjrl664fpmh6hWlGUJmIW5sgLQz/GitCTDKszOb3wAaXxbLz/qNcIiCiijipOOdiVTTTzuHD/iMXjrMObslbFRRXjDSUl3dWUB3/6kA9HOas3V0hbllwVNe7SQ/irmO0Ko+Wsp9QaxE/B5Kg+mdlp3uKhT8T4L5O897Q7GTdv3EBVOTg6xJUxhlyE0jmyrBXWiQSdtd3pUk7Hp2sTFxmJFyiRDTjzfV+ULtPwWBlMw+9Kew/r2ce12zEJ7VRjzP/p9FIxfu89SZKwsbHBcDhkMh4zGedYa2m1LRpx6jXaTjvdPgDj0RiDMhweofi57MOniUmuIJG7vR7Gnj3EgolSlgGm7D/6Nr1ui1a3i1OL0wTRKe+/f58/+867fOnLX+SmbfHmJ2/xxq0Neu0E70ucc7Q6rbrVpZJGowC9Aw72t/FZi/XBdVJS6nJ7DfzvkTHkfkjXWAYmQwIHx+GZFAXeGOyZC7YCbVNCiChACVIiaoPdn6YTK2TgigesBuavIX9RnKLq6G4k5HtDtu/tceOzV0lbCUUuqHHYMkWNvxCfuSya1UUVEmcRQr+Vi0v9zSp8VahhMCNHM+SSDOxAWtuhakf6ona5MIeXaZ/S+EsE2u02/UGA/EizjEfb23Pt3bt3l52dHbYfbZPnORtrK9zY2qB2+zckj/mw6dkxWWLbqTXhBUfEec/wotNlhqsaY7EmCW5dCQKRkWrMqkLtxZltvHSMP89zVJWNjU2KPGd/f5/ReESe53Q6nXoXVxHEGLq9HkMfon2ODg/rghNnlSo8japzy4hU2Ol06mSP00iZbTLFcJfD3Xd45dp1sMLh0ZBvfefb3Hn1KkrCaFTyld/9E64N2ty8ukrWC3a8yTQPm14DlO2UEUIxIRbYFezubtNZvUE/XaVZYibgjhgchjEgfkRmWnRIwrgR4vfHRY5JqizC0wzgM3eliZmSzjgUDdm/GvDIq3hkb6osRgG1UUMJpqI8LUhpM3qgtLdWuLXeJT8oKSYFmijGWZwtouZyuZKW6hnS2yzTBkMSM4ktT6x+VIlq1cdKtT9L+LjALZ6U4RhjGY5G7O09wHvP4fFRROIMps9Ou8XqYIU8z7mytYkYg3ehpKgx85Hps1yaqNnqyRoR5/Vu9vzPwXH/A0SVzzghwWgSIcg1wkpXCmIZ/HOcDRf6TDZ+Eflfisg3RMSLyI+ccs6nROSPGz+HIvKvxO82ROTvish34v/r8fj/RkS+JiJfF5HfEZEvXLA/FEXBzs4O3gfmsrq2Sr/fpyiKGdZIY/qIGLrdHtM8ZzqZRnPQ01G1MMqypNvrRcz/0xZew90lAQf9eOc9KEf0+usolvF4yB/9yZ/wlX/4NdbWNvjVn/8pPnz/fX7zd/6Y7d0RjiRAIhfT4JeQatNS5BSmUy3K0eSQo2nOYOU2bdON31UQDeHzxBiOygmGnIHpkKmJkyuUes/LEpMkleX+lDGpHlGwPkVcGrQGbdVRCYKSeEgKg3VJyIjEY1yC9TZEEAl4o1gxTCeOG5+5zif/0scQK0gpWLEYZ58Pa9DF3It5CljpLvazoExKnHDmuCyl+M4M0bnrzWyKnBJo0BSMheVzrZ73p2witVuBmPBnDHle8ODhQ+7evctwOGR1bSXOb0+30+Fzn3uTH/nSF/mxH/kyP/LDP8ynPvmJ6HRcvhdV0Nk1CGKjH5VgcHome3h2o/NY9B81qiKJ/FSZHuX1cS9QVRobeceoEETPMr8+u8T/p8BfB/7j005Q1W8BXwQQEQvcBf7b+PW/Cfy6qv57IvJvxr//DeAd4OdUdU9E/hrwnwA/fl5njDEkSVInTj1+/JhWq0VZlgsShjbZLohQlg5rDNaYhq1xQd+8AIVMXaXf70d8+tNp1qrH+SkH22+x0hmQpR0Qw+bGOp/+zKf4b/67v8vB/pif+4kv0Oln/OZvf5VPfvw2W+s9UCWfjBmsrNGsI3DaHcO3noP9BxS2zXr/BimWik35WrcWxiZhND1EtKRngn3fRzNE6UKYZfWMVVz0yTsaUId4ixsLIgm0FREb92AHXnD7UOyWJCsZZhO8dXUhCo16bOIsSSpcebWPnRiknXDj09cQcYzKAicliUtx5jll8J5KAkNDcQTJAHy3wlS5eCfq8no+QgqU0beQycwpc9q1sQun924e1f1Us0NsSIxhbXWNz37+c2hZkrZaJImN4ZxKPp1AUdQFhlQM6h3j8Zh+r4fIbMOftTubmcvMVWcqNXq6Y/2jRKIBNrocOY7HYzZWBqiGXJcExWKY5iU7k4Ld6fTMtp6J8avqN+GJVMlfAt5W1ffi3/8k8PPx838O/Bbwb6jq7zSu+T3g9kVvICJkWUZZlpRFQZ4HM8jq6mqUHCqpp3YbkhcFo/GIdpoGRnOG9EG8qv4UZnI9050raLdatNvtuXOazWmjiQrOdTg8YHR4n9c2r5OYFE9BZlu8+torXL1xk7/z239IYQp++ae+zF//tZ/jzo1VrCh5kVOWZdzwTgnjJBoQorRUuJyD/W3ag6v0OxshWSuK1WpmxafHQO6mJEbpSoLxBq8lCuRFHiOIzsIzpOY2xTjn8XtH2CRl89UBtpUDPpSVyzM+/OZj7v7xI258YoM7P3Md7bk6skfFY30AqCtVKHanfOsr3+W1L7xCtiJoOydpgTcOF6t0XaqpR/V0iVsVKS273xmy/Z0Drr25yvonWiQi+CcK7Jkl3/tS2dveByes3uhjWzN02Cd5rFmyILUJNM3SCB0Svqhj2uPNRcIa2t3do9Pr02plTPMp+/tD1ga9cE2wPzXs+R6vUWSI/Ws6w1WVYlqg6klaySzL+8SzLLH5x7H3TinzaayrLdGvEjQxXdbUS0gRcggtlHJSRGGr4mOWFvD6WgsS4RsHZ9v4v9fhnP9r4P/d+Puaqt6Pnx8A15Zc8y8Af/uiN6hwRIo8xxhDr9djZWVlPlJHoMLFMJSMj/cRddgkfQJNcqY1NO2ZZVnS6fZDWw0l+uTVsRtiEF8wevwtbDGis7qONxarCpQ8vH+PT9y+yT/713+Wx/d3+Z9+4/e4stlmc2WAE8/R+CCGjCYLvWlSnBwSsvymk2P2hiP6a7cY0I52eAkOVx9YZm7gsPQ4c8hA+nQ1DVmFMdtxmBeQNhBAzXKMEgHEJxy/N2bnN4559Nu7HD0eBTukxDKKY2H47hT/jmX0fkE5DrZL0Tp2oWoJCsvR9jHdrS5YpRxOKYc5ITQ0MP7L5AL1GzwjtNdN4PE3Dhl9bcLBN4e4wlMkrmZ8FyI1GB/w1sePc7Z/45j7f++I8YMScWaeGdLcALT+rcyYfbOvbqrs/KMR279+RPEobIwn3lZsz1gLGB48fMSDB9vs7O3z4d17HB7EOH6TkGQd0lYH2+5gW21su0vW7pG2OzG0NxidNSYm6tjz+A/HPPqtIe4xMeGo6rqPtupZH6J3DfFBEy2kIH/gefSPhhy/X2DKJjhZpXU8oT/lIvRMTSoB32Jp8cana1GC9laaoBGHzc9AXNc28fy1m8oXe46fu/aMWD0i8veA60u++rdV9W9etNMikgH/BPBvLfteVVUWDNMi8gsExv8zZ7T7LwH/EsDW1haqGiR+57BJUkve81C4DSOLcwyPj0gTW9fabbR+/nM1PnvnQqZurwtmJoqcCcumUBYT9h58m8Fgk1a7FQ8rpaTcffCIq5tr/PiPfJpep8/f+63fZWf/kDvXrqEup5jm9FZ6DWlrUceu7ht7ocrBwQ6FydjsX0eMrfRvaoVaobQhLR8t6CSrJGLrCVx6T6keMWm89vQV4o2CMxw9mnL04RTpevKjMvQrptOLQOGnOJNTSkhGq+QYIDh/pTLXOcpywtX1DZLUMj4qMQLWC+IyHKCXbeo5M9s2fD/aH+EOYXKQo4WQuOQJmdEMTmO0O+bg/SFuAsO9Lv2brXNFtGUaTmVPH+9O2f76Pvl+SXYr5cpWQhPNQ3UW7VVdc3Cwz/7BAZ1OiOy5c/MG6hVjLXt7+zx4+AinrjYPdtstrm6uzzTA6PAWZxg9HvLw67u4XUd2M2HzSi/MNwHjU0Qr4JnqWSK7lJjcOIWn2bQEAAEAAElEQVTdtw65/wc7rO336F27SmoTYgHt2PfnwPifloI9bU4Mu7TpqNDtt2mlAxq7J0IYjmv9jKKd8cp678xmzmX8qvrLl9Ff4K8Bf6SqDxvHHorIDVW9LyI3gDpmTEQ+D/ynwF9T1Z0z+vefEHwAfOxjH9Na4i+KU9XzyjIjwGg0Ip9OabVa9aS/mOkqLrVGyKcrCzr9HlmrXS+iOuVziVobzC/K/u49pgcPeOVjb8a+eVQsHsu4UJJxSSezfOHzn+GrX/827W4fEc90PEHUkCQZnMDlqfT3mbRsAKcFj3ce0F65ylq2Fbqm1IiA1fmFWHKGJB46kjW2D6Eo85DxbM4fJyclRoQkSfCJkCSGliRUoaUKSAYbr64y2ZsyuN0hbYUC7jXcLZVqLzhb4mzJ9t1HpIctytxw/RMDPGWjOtH3lmwCnfWUvDeltdrG2gTrDC5xFxYag9buwUkM0Qi4RWEuaO24bRalgQV+d8K4HrXQI0+5o5RHwvigQL1GjdKcmJfqPeo9N65fQ8WQpSntVouN9TXK6QSxJtZyjhpYwwxmbRCemg8laiiPPMVjh9uD8UEwUQR8Go/4qpzggslYQtEUqwaZWIb3JhR3PaMsJ89Lku6s9OcLTZe6H4W63a22odfpRjOxj7kvUdZUxaBYf/aNv5fhnP8s82YegP8O+N8B/178/28CiMgrwN8A/req+u2nuVmFwgkztVcqHJcYNud9ydHhAaBYa+bU5LOZ/xJbbwxn6/UHC5rD4sqqTDzhD1cU7N7/U/qdNr3uSgyX9LgS7j26R6uV8e233uXmjQGYjM31ATevbSLqmUyGpGkaGD8abfwNg+2CFIUK4/ERh6Nj1q5/gZbtRQzyyigVSxuKMPTK1A9pG0OXbCZwqiEvyyCtxYpbZwWsGsBIyeqtDpuf7WFbSmfN1gxMVJFUufqpDZLMsnqzT9JO8DrLwA3QByba7i2rK+scvvWA6TRndXOV7krK1IzxxqEKVp/HtF62eUdmnCpbb65iu8dsfrKPtJTCVslnF2NM9VmidNfbrLzWw+dKf7MXNtiItlpBVFcQIycaWJi3IkLWSbErIci13W8hCyGXUhnKCetG1fPKK69wPBpT5jkoFHkRIMrVs7m5xfrGFoV3qA+4SwYop6NZq5WzXzxpNyUdGKR0tHtJY1xCopH4U5y7sZNGDDYzaOqxma1lnPkw4hdI4m/SZe5LEcYk92N8amv8uRr3SgMWmKieCw/9TCtERP5p4D8CrgD/vYj8sar+iojcBP5TVf3VeF4P+MvAv7zQxL8H/Dci8i8A7wH/TDz+fwI2gf9XZKClqi4NF12kynHkvT8lA3c2UVxRMB2Pg9pYDd5FpP05KStcWZQlSZrS6faASgtYkEe08Z8Gu+Tk6DHDR2/z2s1bJDbYR40Ko+KYr//xN7l59Qpvf+e7/Mb//FVWeh1u3linYxVfFuTFlN5ghcpZPOv64jOETQGUg71tyrTFZv8W1ti6VGG9GMXhbMqxV6ZuxEBMkPhjf1EovQs3iyrtWbGOxqVASfdmxis/exVjDdlmRNH0YYP0xpFtJlwfbKGpBxPt0JF3GBUQj1hIUsOVV1dJTMJoNObqrVXK3gRXQOItaIyffy6C4CmNWsPWJ9fZfH0Vk4FaT2k9SQSaq00pZ7Uc1Rs1js61jFs/fgXnHd2tdlzwUdKvsoGbDZ7C8ypBprWZsPbZDtMjx8qNACGiC+fNz1NlOp3w7jvvkE9CZvtrr7zC6soAryVlWaAYRuMR4+EQFSFLLN1WOreJQCjo09pKWX2zgzsqWb3Rqso8gAje5Ki6kw+h1YYP0oL+ax3aewesvNGh1c7mx+QFZfqLr+gypqRgcJQ4VVQSqrrCM99kBczyHCV+Vf1vmYVmNo/fA3618feQwMgXz9shRPosHv8XgX/xKfozJ+VXoZ2n0WQ8oihyetGO+WRmwtmEU1VKV7CxtjUHv3z6i46RCr7g8OG3aDGlv7LRsM5Y9oZTPry/y5e+9DnWf/Xn+crvfh0rji9+/jOk1lKMJ8GR3I4x+MsyOmnyZcW5nL39R6SDK6y2NgGHkkQDT6i4pQJTMQzVoxS0JaUVMcfR8FxelQs7wTUJz5U5WtctUCVZNcfR4dICSRxVPd3mMpGYP5BmLRJt4Zynf63HSr6KyRylzTGlxbqgGTh7dkTDk9K5lcwAWoq0gukugLY96VKP8xZFW47ea62QG5DQKBqyrL3GJnfKJmy6wu0fuwpOsEEuCSn+MpujlYtYVTHWsPN4hzRNuXn9OtZa+r0e0WPL8fEx07zg0e4ue7u7KLDS7/Handu0slAmMJgQg3ZiesKdH7+OOI/thcpVBk+FErvMRCeVeU88mnk2PrlK71qXrJ9gUmbX1JLt82P+ek4ex1l0mfJHcN4H4UzDxKi/qMa88iycNxovVeYuzCR+59wZhZ8DINvBwR422iyf3DfUiJrwHmMTur3+xTN+vaMYH3Dw8Jusr2/Ryjp4IaJmer713Xs82h8h1vLxO9fY6HVwKFe2rqLGMconrPTXsZKeKXFXJCjj8RF7o2NWtz5DZtoRcX/+eRRhLJZhOcGI0rFprPAZgdtEqfJsLyJseeOQCApnTWBgvvIlzGkoAeagMsM1l4wiqIF8qLzzJ+9yvD1FvMXnDu0IH/+pG6SrRHC0Miojl7fkzpsaamItWk3DZ1VsBboqJ23Xp96lIcqbTIKJZ85Wu2jGaX5z0sTTbDsZhM29wpyvMrCXUWW829zaYnVlpXYdlGWJoHS7HdbWN1hd32B6J8SLW2OgnDLD44+Z2nFS20Hok68njQdN8ZKGz5wdimx6SqeTxJyG56LOLb3vs11/wuXybKTVZkjN6U+u4Ejn8ISXivE3JX7vT6aGA/XiUpTJZEIav36itPZqo9Ug4RVFQbvTIc2ys9uRmfSg6jl+/C7T0Tbrtz+HweAlSkEG0jThwfYuf/gn3+Qv/8wXuXltvU7Ndi4UIBn0+8ycus34gRnzrFRvpeToaJepJGwNbpMYi9HAhquaAGFcLGMSpj6wZyt21haCxy8wbDlbj5UiSqs2bjSuGvC6zxLbqP6vL402LCHEiSep5dYb1yhuKDoR7n7zIcNpQSvtoAzDQqsx/S+Rzlm9KrPi1j5GWtg5+zPn7h71thtzEASi5nOSAZ36jKdlvlZFR0QbUNGnd0hMgBsZT6ckaYI1Bq+h9Kf6EI+PKnk+5f79+3WVuSvrK8wiJ2rjYfQ9VU9hYq2oqm8hpFdO2K+op5cJv4IvWivNqDbOcvYEfAaKnXxWjJ0nS+U7r6W54OaGuDbDi7pIxvhLxfgrKoriTMRIVTBGWF0dcLy3Q17kJFk7DOYTvGQRcC6omv3BABvhHpaBUkn9p4A6imLK7offpDcY0O2uxrcYXqtTxxu3bvIjX3yT3//jb7CxtsqPfuFTZFawkpNPR2RJitQOnmWLOE6PKB44V7Cz/5hOb4NBezMwek0RKWsIYVVB1XJcKg6hhcSkkZnDzouP67op7p8+ZlbDMvdiUYoajXSewZt6QYdhiBJ0HWUUkoW8lHRvDEizNg++/Yh0Xfj4zWsk3ZJcK2exfK8Ewln/fQLiY50DpcIYqp4n0DmcPw6JifhFKqcv38XInppnnuZvkSDrB4iM0II959W50vH222/zaPshaZpw6+YtVvodSqe4smTkR9y9d5fHjx9jjKXodrm2uTbj+yoQK5HV26AKdWy7hFKZBsXrvNA2G60Y7x+jj1R9bfar53YNavT9iei6MF3anNSZchgmTP3ZaAgKu8gNX1rGfx7mjjGW9Y0ruCJneHyMYmhlWb0+mzHYy/brSnIP4GgpnW437LSL4XTM+GaoMBUY8ujwIcODD3nt9dcwkgZJWC1H4yG/90ffYHjo+Mxn3mBcHvEP//Cb3L69xStXryDqUVfSbnXqguonejczsgZ7qkI+mbJzuMvWKz9GK2mRqGmwj7hJCBRiGBY+LFD1WDELQlx1TVh0gf03JPcTfQnXexFmwejCzKAwo3lggUYTEsP/nMDY8vDdXR59d5/1qz22XutxzAGlKsYE3BL7BAVQziSdfThLHjAVoxePiSGMrhFjXbdy8tByClxy9h6JYyPz49xIzD37MWLKZ53tis5MBo0Wa4lRlXanzcbGJt6XeF9tvvFsgWk+pSwK1tfX6XZ7FHlOo8Dm3L1Vm1WqAtfyEMJXNerfjWetxyAer4ai6Tie83cs0xaelrT5IW4/p+ynZ11fN3PZQkil7encXZ4YxfulYvyVpF0UBVl2CjqdztRPk7ZZv3qTwt9jMjzGiJAmFXBYxahPY/pVMXVPf6VPkkbkygXJpfkpMGEHpbB37+u0W4bVXpCSEHDe8P79bf7B73+T7YcH/GN/9Wf5Kz/3Y/zu7/4J0+kYweG8QZIWNs3iBFg2K6uF7UJkjIejgwMKI6ys3CETG2zk4mOfPVUnRqllUoARDxF4TLTaXqqY4Zh8E5/rTOk04syEMhFNaXyBXVVQxHOjNtNaxAvWWEaPJmy/9Zj+Vp8bn7pGYaYYn2G0QLyQ+JDJeKkLruKwsjwVL9j4IdQWCKaf5bc/w7xCxdzDedIYK5l9mP97sc1TnlmqwoC1VCyc4JuN9tR7Njc2aXW6GGPodruUxZRyMqZSTURCkaFup4OqMB6NgqadNTLIRRBsPT0Dbw9/mOq3UGfu1uumfnSpbRrV31qHcladrzjtZRrTY29FZyHgT35147OydOI8IcUVGASmqOyIhloXJ5j+OcmDLxXjr6iCYD6LwkIQslabq9eu8+DuB0ymY0QgSdIoqcupW72qD4BswGAwIODPcYqq7VE1WB8k18lwl/3t73Jz4xpZ2onSvuB8yTvfvc/n3/wEjzcPsH7KymDAr/ziT7O2EnBSKqe1OQMALti6w1OKgtOSRzt3aQ+uMWivBAZVLc5K0oobyMgppQrWCNZftrjytKQhZ6BM+O4338fmLbb6G4x2HZpAd6XP1A/xPsTOu+fW7dMdkC8TKcpoPOatt75Lu93mzp07TEZD+p2Q5IhAmmT0+33SJOGDD+9SFnlI/qoEkadixB+BwX1B6KUqvdik07J2ZypctZsbWu0O127cIm21GU5GlK6I2rZZunFW4ZFFUdBqt8myWADllMleleazQYjm8PFbWHfMxvpVKpOMkuDwHB5NyLKM1GTcvHGFd7/7IfiSdkLUMMq5Gr5Ln7EyFUTZcDw+ZH+0x8raq3TT3hJpstJwLIceSg+JKMu8JN+PpemNx1uPGsWmlsloxHf//G2+84dv887X32d8kINAmeQUyeTScVsuoxITPAehNNLsDV5SeyLs7OwwnU5BYTwec3B4SF1iUyHLMm7dvMXGxgZpmsTa0k8vR1YAii8URd/Dc3pt31d66SR+7/2Z0nClSs84nwCWVqfH1tXrbD98wHA8otfpkpjl5iJVYnFpT6/fDyiVc2aM5aSi+MmYvQdfZ3N1NRZGBzTBe2E6dYi1/M7vfZ1PvfFxvG3x9nvv8sqdqyC+xgIyJzCFFh+xkucNop7R4WMKm7DWv0FGFhxkVXROozxggWGMASNkwR52JkN5TrEUJ8h4C16wCXz8C7dxEwnFXMQjCdieUnqP8fF9PbcErmegKClfdrdUZybOS2kPEGOY5jlra2ukNsCflEXIjaij5lSZTKZYI7z++uscHx7GeUlMFnwaegGZ/0tKL5XEX9ndK8Z43oKoEBeDdprQ7a2yeeUqadpiPJngNVa4WUA8DMlXAQSu0+nW6u+p98EgGhytB3vvMj28y9bmjZiKHxD2hqNjvva1P6fX7/HgwS73dx/x1a/9OUVR0Ot3cQTkz1BT9xyKdnkweFeyt/8I091itbuF1aTBzLVWDrwIQ4WxgyQxdKXSijhhml4c1boA1XMiUYt4Q+lzzKojveZJrintK4b2ulDaKaWUEcL5vJzFZ6GzcePPvlSpAaIum86Zf+fRSZk2YCsdHx8zHA7ZefQ4nBcfPklT1Ht2d3exxjAYDDg6Psa5ytfxFH14Xqb6Z6SntfF/v+iivX2pJH5rLRVI20XCMufOUcCk9AdrqCq7jx4wGo/otLvYRgZw9X/pHN3+gDTLLuDyD5VlizJn58HXGbTbtLvrIDaEUAp4k/POux+weuUaP/njn+X+9i5HBzv89Je/QK/VpXQTnHOnO61P3BFQz2h8zO7BISuvfJKe7c5Niyb7d0YYkVAUSjvxdIwyJkRdn5YV/L0ib/I6MsXnMYNYFOdDfLgTR4hgEgQX8Ycub7nO+PXTt9mMEbtcutx3EepTt1k3CQ8ePmJ/d49er8vrr7+Kj6HLxhgePHjId95+lwf31xFrmE7GbKz0AfsMPXrxWOx5Qt2LRhc1TL1UjH9R4j/jzBNH6ugoSegP1vBlye7OIyb5lE7DmVoVUnfeM+gPwvHFYJQljQue6fE2R7tv87Grr4BNgxAoguJod1psXbnC3YeP+dmf+RLvvHuPlW7KZz/1GgmOPC8D+uEJFM4lt6uca+p4tPeAsbS5s/YKKVXERVPmD/12GIZiQUu64kkj5O7y4iNwWRGTF6MYjeITiHV7RTWETErYVo2PPhliEtVlL9Zog34WU8Rz2y4vUUy2NmE6zUmyFnfu3OHRg4esra0wGAxwRfB9aVXbGmU8HoMRrmxt4ivnLk83/GF8f4C47AtKFxnBl4rxVxPvSZl+/U3E/xaTsbp2BcSws/2APA8O1xkcREHWymi3OwSLevV7+T1EwLuS/YffJFVHd7BZw/WrwniSoxg+/elP8s1v/12KSc5f+vE3SSWllYLXHMGTpq2GCev0+4VgHUORH/Pg0V1aW3dYaW9gF8qaVLudF3AIR14xCCuJYvOy7vtcDYNoHvteCv1SFSmJRSe8uPp48FFUnXlejrjLbfVFZW3VutnZ3WNalmxtXeGHfuiHsFbI8ynVBuy84/at22xdvU5iE3r9XjApPn7I03h+arnpL5j+pdBCiP9Seqls/GUZmFUFznYxNqCAR8Sj6uJ1gpiUlZV1Nre2yPOc6XQaNxZPWZasDFaDCWiuJa2TdLTi6gqoZzIesXf/m2ytXiHrdFF1HBzuM8lzPvzwAd/40++SF1MGqwO+8WdvkRqhnYGKoXSKmEnEFDqZ4ajx3yznJDz53v5jRtMRgyu36CShMIOKn8EdV21IiA8elSWJCD1rYnGM5REji76T571cVSTa712I+RZFNAk5BVRvEJwozjynakwwe69PetmSpL7LdMheFlVJif1+n52dXb7+9T/lwcMH5Pm0FhdUFe9CLQbnQ3bv8XDI0dFRAxvrybfgZZXD/oKens4b/5dK4rfWkiSxpucTcaMZzkWgEPFikpT+2lVKb9h9dA/wJDYhSQIg28zzWV0320eDa9Wh2sGZI8a771COdtm8/QUSYOQLfucPvsYrr7zOBx884jd/56u4pMNaX7n30PCLBxOyq12cdxwf79EfdM98gnA/wXjIE48vcu7t3MWv3WSjc5OON5QGrNoQth+LYIjxOJTHklF6yyAtGRQ5j8RRAqlPgllHPYLF41AT7lWNmdQ9eI5UM/PKtOZjrkKIG39WG/yZdAmPVvlcLl8nqexP1c+zUZ7nrPUT3vzMpzg4GvLe++/z3Xff5Yc+/SkG3Q6+DNE9RVHy4MFDRpMxRVGw83iH9ZXeLOTzSZ8iWidfJKG/Cvx4mvC1JTERz40CnEnTt+XQsyIbeckkfhGZD+W80MhXMq3UscSzdSTYJGFtfZ219U2KomQ8HtPpdOrY/Tr+uE4njzcVh2JBSrSYcv/DP6PfX6XVHaBYMkm4fe01jg5GqHp++ee/zI999hO0TBfxJaXLEQ8un+LKEivZQm5CUxavWK/HxxDN8dEee8dH9Nevs5KsoGKoSpBX6d3ehBo+RZJxUDoUTy8xZKpzya+Lw7h0HTzHFStL/lX8roq6WPy55A7M//+kl8+Nzbz+dBnmjWd95jkNMpry+r0+V69epdfrsb+3x2g0wpjAzgQiJr+ythaCIabTabPBZ+jNi0Pa+H1hii/jezoCenIG1Amlp9BLJfFX1Ez9voTGSNKMjc0roJ7j4yN6gwHGzqCcK/NL0wAjKB6LIWe0e5/jvXf51GsfA5vh1aA+5fU37vDWd9/mW2+9x0/91Jf4wmeu896dK0zzKYNBF6Oe44NdRAzGLCsqE7tYRQZJgF5Q59nduUdhU64NbtClSylCoh4wWIVSAta5F8tQU46dIzFKH0+i/swQzWqT/ChRvcU+42M/t1F75obDy7Y2IWu12dnZ5f72Nuo8n/z4J1gZDNBGjQEjAj4ACh4dHTGdTmeZu/CSMP8fBLPTzPc2s/XKudEXLyXjv3QSIc3arG9cRRHanW6NULlUrZUAuKaiaFlwcP/P6WcJK4M1BBhNRvz+n7zF0XjEa69cJet2+Pu/8wd0fv4n+fxn38AagxWlGB8wPNxl/epNRBLq6JY5ilE6jeIo+fiY+7sPya7cYb19hVQyZqBf1IZqFU9pWhz4hNx7+qnSx6G4Gvbg9ACZl2FhX4xm7/hFfuZLkXIwRtjd2+fhw0eUZcn6+ho3blzHGsEVQapXQpGjVivj/Q8+ZHd3l421tY+cMPDiUGVYms1Tfw5Y6Utl6nleFIbT4D10ewF+uVmYfVGVV0A04NhPh3sc7rzNlfVrpEmGesc7H9zjN3/39/mtr3yVhw/3+Ss/9+MYB//gK3/E7s4BCSWKcny8R1lMaLU6nC59SOOTAfUcHj7gQJXu+k1WzACEWHw5YPSoEFEkYWwsh2WwDa4Z6GoJwZIfQz1l7tYK+Ait+5Gi6E94Ft/j83Bc1gFWz9D2LDEx/BqNRrRaKZ/61Ce4c+cWoo4yn84FTKRpxo3rN1hZWSHLMm7cuB5LnerMYP9RJ1368TnR/KZburM5/18w/guSAuPJJIC/NZj+ybMEYqlCcY79R29T5Mesrm0hYhhOCr76jXd49c5tfvjzn+bb3/4ut65u8o//lZ9nMh3y+PEjBIe6kp3dh9g0IclaEaN+eb8qNEhRgyumPHj0AaxdZdC5EurlxgpYFXy5j4xfSTjCcOhKEiusJYbElcGUE/0VRszSyJ4XW/q9ZLqEVVsxzMVA3EujS3gdVbnQV1+9w8c+9jrWQDGd4F1RQyuHhCZDURSICF/84hf50pe+RJamoQoXvCQywWU8xPc27Dne8UJz4S8Y/7kUXp53saSetZzlvQkL3CLi8JMhj+//Gaura2TdDgo82j/inQ/2+IkvfpYvfvI1DocFd/eOyfptfuWv/gKv3LmDCEyG++zuPWKwuo6IPTVEcVZ7J8QaHu4/YncyprV+kxW7RiImbCRSFbWIMK7AVFJ2c0ehno71dFyOicUurGoF5tsciY84PQuWzCz/4rK3zMuJaArXF0XBdDyizKd4V6I+wJY0376xCW9/97v8wR/+Ibu7u+zu7PDWW29RlkXteP/BFwwuqf/fo2FYnAM2OfvGL5WN/2S0NDzryFeR4pPpmDSzWHt6pm4odhUWideS0f77TI/u89rH3kRsMBUd7B+xvf2Ag4MjvCv4+p9+i3c+fMTGSpd/4ld+kk+/ehPvc3YfvUdZlvT6m7GAxvLnUAKevseE6/a2cZ1VVvtXWLH94BhWP8PxriJ6BIYmZVgoqcBmamnHUL1QmVWfFQLmL6hBTYPc5XP+y8CTmcXRO+eC8zY0Pme1URHKsmQymXDt2jW+853vAPDandt459Ak4S9mzTxdXunF06jJkAK/svaj5NyNTK3+4zKWQ0zEKospWZqEkLYzAODCXT1l6Xl4/+sM2i1WuyuICk4MNzav8LnP3OHv/YM/RMXyUz/xZTY3+iSScn1rFSOeyXjCowffZWVwhbSCUdbluQlCMNt4gXE+ZO/wMa3rH6OX9ulKFvtkCPJ7SRWB74xwoMpEhb4V1vCkPhRLcRjKugjNXyxiuJywy9DOpTTToKfMKjuDRIOJb1YZd5bxDcJkOqU3GHDnlVd59HiHGzeus7G+zvHBbqhitwzZ7yNKz3/1VFFUgM78jWLOHv+XytQj0gxBfLIhP832KhLq1XrvSbMQUqkRtavK1BUfRGglxEAKhunRNseP3+bqxg3EWtAw2Ne2VvnFn/ky7ZbwzW+/x+c/+0n++q/+NL/2l3+E129eR8VztP+A/cNdNjZvYEzA1zntaWbBOo7j412OnSdZucKq6cXSjEFbMDjAYTQU3B6bhD0v4D2ridL1RdTQg2nIx6tOLuHlfTltmmlkTEoRGJSXpuv4B4Mapoun5bEzmawh+z/tLrAwWes/n9KBIHJyg6/q+i4CGYpI1AgMzgX8qM31DbwqxiaxTObTvtsXbU48fVj44qt4nk8mjTsGOJUEZblPsKKXivHP0yVJqxqKS4tEOFqCuguR8VfhlDSiJcuS/Yd/TkbBYGUTbyWq44oYx2u3b/FXf+5H+fhrV/jGn32LRzuHtNIUMeDKnEcP3kPSjP7KFaQKqD9lMQmKN4J6x8HOI+iukWQ9BtLBEKQ3IcAYOBPi/R2GYxKmKrQEBtaR+DImf4GhRNBQ+LsxjqeN5lmTOjB+S4goCg7o8696QShG8lQes2dR2GXhr8tJ3KqkfWlI2c86rtV8qwQbRaQSH8Kmb0Q4Ojzg/ffeYzQc8uEHH/D48WOSrNWI6HmaHegZu34ZFKIkGn+86BQiNrTSzyRE7+XF2X1/iRn/k9Gp24SCK0Px9ip0M0DVR/MLAuIakTVCMd1jf/st1tevkXVaiLdzN7LG8PGPvcGv/vJPsv3gIe++9y6eUGFqfHTE9qMHbG7ciCBwZ5usvCilCNO8YPdwn2Rtk47t0TYdjApWY/1dtaApToShCBNgJUlpJ4Z2xYSqyJ/ZNGJOlWw8xEX5VuCdBjRFo8lA9KNqB/4B2Owqnq0NQ18dKhKiAlqtFlmWMRoeM+h1mU7HjIbHoB5TZVI/zcb2Ag7PD0ZuQuBDAZ1WgQJXts684uWy8T8LLdnkVRX1jnwyZWV1UEt8snCy1rgxoVTj4d675KNHbN7+PGosxhvAUUmPgqeVGb7w6TdQ70mNR8VResPjhx8yzSesrl5tlFg832Z6NNznGE9rsM4g6ZOQRUYeXLUGAW8ojedYwCUpV7urPD7co+WGdaKWNn5OvbfML4izexfqTWrUOn6g7b/PyAOeZ2j7ZbKn2kW4IHMooRB7u9XmM5/+1Ox7BV/mjMdDNLlAoaAfFLrE9/X8t49KeFMQR5p+lJy7l0ELk927aOax9sSXNQuLjhUw+HzIzr1vsLHSp9Ppsyx12kiQqbuthM995g2c88EvMBnzYPtdWu0Wa2vXI97G2bMv0QCTe7z7EOn0Sdo9+pKSRkdPtPwhIe4HUUNuBZu1sVbAF9hYpBwIhWEg2PiXRovIEy4IA+IgQl5XjsIfJIm/+bjPLgG++M9db/zLgglEKcu8rgQX3qRSFjnTSYQvPwcn5i/ockmrtVUHZIBJJmde89Iy/mbUzSK0gvf+RMZt81N9rsJkPMPin2dXs798tP8aVY72P2S0/yG3X3kNY5KoNfu5NRSSYYK9fdBuhRfnlb2du0zKEYPBGv3e+sJdlpNHKPIxw+M97OpVkJSxn1LaKYmk0f4nEdIYjA/1gltJwqTMMV5JKkG88WRI0xE5w+D3Xim9A5Jqrp3ZT1Ebv1SMLwP/t2l9drOc5YtL59V4eAJ6Do8pz1ohZq6x2k3YOKbzu596vPNRgwlflGWB+jCPqSJKLtinoF1cXJo4a21XPbqM0Wgm3T1Ne3Nr/pL6dJKqbbqyPhgUS16cfdVLy/gXEQcrmkwmDIdDAAaDwdJShnVBaecoyoJ2rzP/1mpRP8o7sfKTugk7979JN7F0exuE0EmHb6RChaZj+6JYHxhzXozYffwhKob1zWskaevEfZZRaZSj/JjCKavrt5nS5nF5hFFlNV2hJx2s2jghQjOtNKWTpBxMh7REI2rnzJYfEBpjpqZWnZ7Z/H3M8Kx9n2fM6Mr5bRR0fJ9yOoH+K0ja/UEQfi+FqoxYuPzkrUsjmX2Y7SMy2wDm5iK1DyA4cz3EOVPBPlTRXBe/fTSjnrJZXHRjONVX9yz0lLWS5zTFS+vMMqpeTrD1qxr2Hp1t4/9IOHe994zHYw4PD5lOp7WjNs/zBvRC/ImMLzh1S0SpC65Uk1LrhKqKAZpQU3e8y+HOO2ysX8EmLeat38qJaRklYbzh8Gib0WiINS3W169BjWse2zht3qtnenhElmxyc/Aaa2aNaa7cLY544A450CGllBg1GG/wSUK/26eTWlIDXRPMQE3LfgXNuzyKRZ7MWC0u2PjzIw4+/AMef/e3mR68BzqrlvZiS/uXQ3WRnheV9WvjgxKYec28Zz81Rn29ATQb0MXGLnxrPWNTXMb0m/PmZGGiy6HzNqMXgxa3usCb7t8vz7zqpZX4q9q40+mUoihwLsS19no9BoMBx8fHTCYNO9jiu1WlLApsarHRYdWEX/Z1QlSwz6M5u4/fwbohq2tvYIwlxNIazJzEEF6Uaohx8YDXCTt722BaDDptur216EAl+ggcp7lQpSg52ttDOjdpywYrxuAzy8hP2BtNKTNHmZasSo+WZExEsDYhEWElTbEWjGuqijNJ3pxmQniidSAgnmK0w+EHX6M83CZbuU1r4+MRcfQHgC5BT6830ReWhwSGrqq4MseLnWd4MY07zN4QLgAB8E8W2K00bYAXuvUMeIRaEGuac07v7+I5z0Xif+Gp8p0F2HVFUfMRZPzOOYqioCgKJpMJqsrq6iorKytAxCOZTheKsjdVWEHVUTbCOAGaSJXz0rAynQ55ePfbbPa7tNrdIBkZj2iK4OZNpKEBjCoOYTjZ5fDgCJt2WOmkZGk7nteUoMKPaLUoQqKME4FOh2TzNabSIemmbGbrrE2m7I22OSz2KfwUl3pW7YChN5iyJPUliXMk6mq7bjP5rVLjT5X650hPOQ6iCZ4SX0yw0yGmGGHy4yhRvqBUT4VKr5tpP7qM29TXLbFtn6MdLdqr69sv3mdJ2+dKyI0w3ZPnztrX2okfonbK6ZSAN1Ux+8DIFWlI2lGAiZtBWZR47ymKHIxjOYT4cvJlifMlZVEgxtcPN1/HunrgJXMs/vbezdBKK+nlGajp53gCD0SzU3VfzjKHsjAHzpkxZ/ztQAxihBu3e2e28tIxfu89o9GI4XBIkiSsra3R7/eBsCEcHh5ydHREkiT1RnCSBO9KXDml31+Nh2TxjFo59QqjvQfo4VtsfPzLEaVQo7Tul7zIENXjRMGV7D58gJoU0Yz2yiqHE0dZTjFSUBrBujbeHiFYupLS7RosKV4cbuUGb/zkT2A6m1hpYYyEfCkHq8N1PnjwHsfjHT5kj8OkwPmr9IE0h+PhkCvOU0iAfbCA9cIUxQl0NEHFIZpQFTrXahOqNkGpzETLZ7bREi8W0x5geteYkFCubIB58eWy2jinJm6yHqONiJU55tzc/hpOwYbwOiuUNO+QnFlLZk5krZl2MLfMj3A8T0GkKrc3b5aoa9hy2psJ32qjLwJkYlk1Cb7y82g1W8HF0pGVKVQ15HsoincO6xz58UGj/YaPIHZmWV+8eoxzTI8P5jYbkapmXBR7hPr72S3CRmQ01NxW9TgtqYIaQgTxTFiaG5F6f1yyLarHRxOoV2X5RjZvYpp1KYybJwhmniDkLbu6csw30X5l8W4L80y04ikzczOUYZ2KYMVy/crxkv7O6KVi/EHiKFBVrly5QqvVIk1TnHPs7u4yGo3IsozBYECShNq5Jyi+hLIsQYhonPOWmmriS5WeXk7YvvsN+r1Vut3erHZo9f9cVuVMWhJgNB2zu/+Y7uor5If3OM6v89u//R1294YUhcNkIGVCqY5OZnjlxgo/8SOf4EovRbRLN71Ca+UG2A6Vwy1GlpKspCRJwv1HLXb3HnIwzCnSB/R1wHFhGZUF1ikZSmkqRnFSWV603NYSXy2Jnq5gOxMYQ9beYO31n6LMx3TXPouR9NJssc+NateKIt5jnF/ylLWsPHPc10JfGJs6r9tX13ua4yXNdnR+ScvcObFTddtNjUFPRrgsRrssUdSasxIRsixjdTCYMUOdSb5N236zOLpEBq+qGJH6POFkxM0yqm38Vf81MFutzBbxPkp1POph2vA5CBQWymlOMRzPaQdVeVStNwHq47VGE5+fhplKyqCp+yKfvYG5fWfRRdrY5gRwDuMclCVza6TRhqtuy2x9zXrOwhexb6pg/dzXqgHaJeTMgJGPWAJXmqb0ej1arRbT6ZTHjx/X2OGhVm5GlmUndvnatRQn3jRi74s56XycD31UJgf3GO29w51rN+siLSdpxvyrnEjjhb3DbUqT0E7bJFa592hKK7GsDlK+9fYuP/SpOwxHY+49OObjn32FXAvuPjhk82MpYhOSdh9sWqvrtWSkYI1ltbeBlYQs6fDw8T2K4pDtw3ukaZ8Vb7ARwK1+nqZV4TRZUcyM+Z9DXiSYp5I+2fXPkXpPkqxFs8G5l3//qLJhxFVXjKeID/hF0NzQZ/8vSqNNs4gAvihQ5yin01i/tjo/SLfVn9V2UTOv5jhV2oNGCBA8ggfvawFjDg8oPkrFs+eMcrXiNpv71hhaNsVa22BjQaJe/rq0uXOwcIcL0kyLiH/NtApmG0Po4kxy19jnSh4vnCMTG2HHZxty3U0Npqx4Wd3duVoJlT9OwZQO9YpjPOvq3GMtPGOjLQiCqCkdxXCIN3aRcaAo7hST2DKMtUbsHYMVA0lWC2pBQyzwPiPPLePR0mZreqkYvzGGNE3x3rOzs0Oe52HwjamZPixX7WYU7ZyuZKXVWz59tZp4grqS/YffJNUJq6sbtZRzXrSKqOCLnL39+3TXX6WcHNDpr7N7f8SbH7+DSeFoOOXHP/9x9o8PSVF+5guv8vb9xxztHYNewad9pDVAxQR1UqrpPmMWgjDor5IkGalNebB3j73hPrZ1QJsuI7NC22RYnUmhlWRY2fybyzkOERdd2MaH85wYaK1g8DFUtDJRvPhkBLpZRjdtLY0ZD4xHa+mxloa9i5xVUPVYFzOoiyIYERo5DHMMTeeZXXWfBfEDIeBIuaJgIoczBl5JsfXesbAh1d9FED8RrIA6h/HawHg6/w3poumlqZtcUKU7kYcQAx/MjGc3/B/NjWV+k/Eo7SShbNQd9Npg6xrMSpXkrxWj1krgiRtOdUW7HTeCs4MfFzXi+rj30O4ulejr56oYf20mWDhXmYVWI1QJkC27mCQXzsmnhqO8ZDQ8O5D/pWL8AHmeMxwOyfOcVqvFYDDA2lmEwglJf8nszPMpaWKjVLaMwjVehGJ0zO7Db7K1tkWWtepJqnFzmFcxtd4UFOV4uMt4MuHqtVvsvfsVBnfeBD7AJoJNDGKFxIK1BqeeaV7iHHgHkEC2iiQDBFuhdYR7KsE2j6knU6fd5vrVWyS2Rbr7AbuTbfbMAe1MuWHXYqx/gFWoUUcb6vL8J5377yxKVAJOoInlHgm1AC6mL3z/qXJorvX6rPV6wa5dM4hwRhUNE0wRFTOZnaMI3nvKVoDtEDHBnOFrj0m8PrbnZ++geY+5flUmliRFbYIRw8zoMq+tVbxs5qSudnQX+haZvFGlZWeYVPVpBLZy0lSk83Og6Zdo/n3eGDfPjxNPNcyT2Qgsu8/ss2hgia00ZZmR4zTmvOy8k+z3PIfr4n2qN7C4SZ0cj2W2f6Cued2kpr/D1M1W4dgCJEjiMKJk2UeI8Vc2fmMMa2trWGsxZrZbnyaBz0X2qFIUU5I0QcxZO72COg53PqCc7rF+50uIkdhEeOXOOayJanzzSvWodzzavUerewNxnkSUXm+NzbUdvvP+faa5496jfb725+9xNJry3vYB/+jP7jHJJ3zyznUQj1eY5iW+CMUzvC8jw4G0ndBpdxrp80KWplzbukYrTUgepeyOHrGbH7OedsnoUG8dqnj1yIkSAE/Oqj0eFYOoRAkuASzI2eFmLwLN9DrBGkPWgCmYk9AqO8oSxqiN5b9cWq3+bjS18GnuSN2ELJw3Y7q17ZumyWS2oXhmm5Kvzw1SfrbEVHk605N5K7fOjp9z4Yl2ZudLrVAuv3zOlrbwzYL5UJvfLW9i7tQTr/Di832+r5XeLSeOnaDTeNJ5N5T57cSoQcXQ7mdoauh1zx78l4rxA2RZRqvVqhn+spTuiubq5kbPvSsK1JUkrc65JiGfD3l89+us9tfodAfUmXOE+ryPdx5zZWuDzkKxdAHGk2MeH+xx4+M/zPDx2/RWtminCa+/coPf+r1v8Xj3GCsZ3377Q7xPMNLiu999yO1bK9y+tUpRHnPw6BF2sooDijynKCao9xixdPorbF29Rrvbw1TVeDSUZFtdv0Ir65I+SDkcPmRUevomLmINKrPH1zkLTXpS1u9io0YDEF1tQFguAL04VDn4Fg+ZmVQ6Pz9OcP3Gop6ZKWZnVZFfy+5dfX/ad822ZlJg+HPh7/pRZrLo7Dsf/25IzXOx+7OTpW7n+dJiv59oijzDfDrt0hNmzku+9fz7mLV1bntx/VQ5FaIhkOJw2CNdMRjOxkt6qRi/Mab+mYs6OIOBz3B5POoKRsNjVD2tLD312op5Tfc/ZHLwHnde+zhiBaKkPxyN+Oa3/pz33nuXn/+5n6XT7sQrq+iCUEjdtDdp99fZfW+brVuvkxi4eWWFv/qzbzLNq7jpEvEJzvhoa7as9zN2Hn6Xh/v3uPPGKh3bpm8SSJP4TDAZjXj8wfusX79Bd2U1JKFJcAcmBnq9Lrdvvcr9u8J0NMS3qsLq0Uwhp49bMDModYRBfLal59Zyj49mJB+3xhfYxi+N/5pWrUq1vpAJY7noOdvvtLa1XwY1+0q1YddtK5Wzuom/BCaab2Lk0bJXuahYLJBfPP8S6SxmvEjnMuen7OPz3uvqedU8dsqGd9pKCyEHSu6FP/yjKZ/7cgf1HyHGv0jnLdBKG/DeM52MmQyPSBNLv9erQdlOY/6lU3bufpN+29Dvr8WChsJkMuZrX/8av/X3/37ME5AF6UzIp1P29ndYv/ElptNjwNHr9RAR2qlyY6uLSoj6cdZhnUWNwyNYD855dh/vstq+ycCmpDbBSjITy7yQUTJ0Bbvb95gUE9Y2NkmSrLbdqoFOt8/VzRs8GL1L4UqSJK2ZkZ42frX02JReT2f+VmOoHwbxSbBHijvt9BeCFtX+pn14WaSTLrCHKga/YWRs/J4JG3M28+ZiX7CUPIkxoPIaLMbzz0z2UROJiYpS7UQNM03TwTnLK1h6uyd7hU/BRat8xeZ9TksNmyU3Ln5x8Xs9qSK67I6nvbcllsD5DXuxjcUNoWpH5++hUoC2yF3Cd77t+KEvKspHLHO3yYxmyvp8Akw9QVQp8wDapt6RZSntdousNYv+qbz+tdNMLc6UuONtdnfe4vbWFjZpxaiOnJ3dHf7R7/8+33n7bb70pR8msZZQHweMWpSS4+EBEyfc2HyV3Xt/TLvTJUuDjV1xKLbWHvDVBiQEaAhlMjlgOp7wyq1P0Eo7QT2f405KK7GIsUg+5njnAZSOwdUtWkmnZkMG6PUH2F6L0WRMizQAtqmJIaHCbGoLgseL4rxiVZll3wbnkq9bnjGZIFBWSf0+TlqJ0T0zplJdedLAslz1nTlDmycGM0zznsupOR9O52jV9qYC3gRQvZkT/XRqIpYqMmcjCeaLCp5g/gFPY2gX5ZdVlaxw0RJTVdVWzdgXdph4xtzIzeUVnHLfJ2CssMxkND/PFs+vBZEz+jD/DAtfLGOscvLwMtPSWQpPo3vzJqol41GZ27xoLJgC887fE71ecj+td0IB1Cd4k6MmR32H0luSlsEmQqkfMcZfT51GFlxzYKtcKu8c4+ExrswR9bQ7LTrd7gKMQ81HCVmrNkirvmD/wTdRN2F1ZWu2QWAw1uB8yGfMshbWmAqHLd63ZOfxfXobd2i1Ogz3H3Jjcy3W1o1MsGZeBEudzDOqo6MdEtum099o7maNQQiRPZlY0jTDu4LR4RFT8WysXaHb6VJV4rVJSrvXpZiOQy5AiDMEr4itIJ0r0LZgFS4JbYPECJ0GK9QmozbV4NWaBJW5wUdpMka41O9nTpM4nZaCSej852be6DIm37zTsra8hPliNOTLVFFJJ08+XSaXJYxnKfPSZ0dMnMnpy3syf4Y05lSzBWFZT87afE5Y+05w1OZhT7UXNnm10Iwkm29uSVML96/EjPO3yErLXzp/zph4583Ji8zZ+d6F1fREzl2ttuWqDGaVnZwiRmm3HV/6sqHdDtFlZ9FLx/hnFCd73GkDww8hdMV0SpFPyacT0sSysrIaMnTNTD2uwz/VojIrXOzFURxs8/D+19hc26TTXmlIWRmDlRWuXLnCnTt32NzYiNnBIapF8UxGQ46GR9z62C/gJoe4YsjqyivU6rcut81Vu73XgoODHfr9myRJ1hSXT5wv8TkGWYdD22IynLLrd/Arjt6gg0oI92y3uuy5x5RJQSIGpYrnjtrSwiTyXsnzArFVIfgo24ac+pC9ybwkJHXSV2Q+VYZn5SgNAxh/X0zGPS2Co3loMQmpurDq31kOSwOIB/XBxGZV6rrEsclwn6XcaBlTbXw6EZFyGRTB05Y2tlxePnHkVMl5ySFdaFXnTz15XBEsi69N1INUmc9zsvPyflTXzk3Mi82ZZq2NCz3jC0XV+jCIFFQwDaIetY5eu8/nP60443Bn11p/iRl/taFWLMV7yrKkLHLGo2O8d6yurpJmKdZUstnJySNRPSPitWhZsPPB1/GTHa6/8iWM2MhEguljf28PUH7uZ3+WrfXA+BXBqMFrwe7efdLeFqvrr/Lg7d+l20pot7qz+0V8n8UJKBF7ZDIdMhmN2Lr5Cta2Tp3uGsMoLSGnwKcZq90u+0cHPN7eptW+SZolqECWtpmgHDNFTMLEF9GsIeFHAA2FZhKEDNDpGCLjV68zrUQMGp3rqjpzHhqJkVYxlDA6mkN0TFUrVGcx/k0F5hSzzSLTnmlqUv+31LzQiFaShfOb51SHnHi8gGtUOIqDHM9ZLmv7Sstpnlz15USkmeCfMZVZdLmGsXj/i9EpO+niPTmdVy7j43PnRgk/DMdJrfw8LjyXqwCn7OJLenjGUDzpKF2cJGbXVwbRk/rWxVqZiVqCqwXF3HiMKimKUyjOCcF6eRm/QpUV553DO8doeEQ+nTJYGZC1slBOsVIK4u8T8AyV/VqCyWa8f5ftD/+EG1du0G2vxLJnYfCdn/DOu++yubHJl77ww7RbLdIkQUUxXsnzETu7D9n4+C8ikrD/+F2ura1hJIm5MBHieSkJ4BiO9lGX0OttEtjwEoVdZiqhAgWGQ+dopS2Sbp/J48dMJlOStIMKpFmL3CqP3ZCJGA51SoGPtg6NcHSBi2Y25cqgT+GCmqrexzR4xZuZpJcXDt/UN+sERQ+E7EnvtXFOEB99rWktPvvJRVI9H4QwxKocYG1xqBjNnIOyivWWGq6ggl8QZLZRNBi/9yVqwnDYBsM+y4wU7xChARqGulPXozwz1wl3uAzU02cVe09JPqu0b2aPGrZMAzoTvGR26pPcMeBmnfJtY1Zw1vM9L4FfUawBe54t60xaVDeVUO/CcjBuMzkQbqyX+BTOKcD18jJ+UQXvUPWMhkMm4xGdTofuepDyL5LYVX/vBW8U8gmP3vt9MuvY2riNSIbKGNSCGvYOD3j8eIdPf+pTrK6sYE3oh5cQL3148AifdBlsfYLR0Tbl5IDVwSeRqDUEJMzT+6G+4OjoMd32VVqdPqep77HXVNjcuUIhhhxhOC0Rr0ynBf1BOCuNZq698THHxjM1YQvKnWfkPSKKtUKKwWHotLu0VRuLNcogOltUvj2r1LXwFPUCnxX1AIlGX5XK8TUv0S17Q55q49A6o7Y5HIriXWCEjvnEpSqaq8I5rPzUVZtS9VQV6z1JtA27yrBX/1qQ9xv3N8tMKxo3pAU+L3pa4ZuLU2B+55+3xGKzwFKiRjbne4HKeT7HehoXanN8fYVqqfVQVd/PaYMiqCR4H4WC2Jlwva/nx0mzTgNVtBZ0JGoVywehmag5i1vQWjAIUBGzugAX9lqfRk2TsXesdjskUUt++i1GY78twTJQopLy/nvCw/s5Gz9XQNbCmI8YSBsQJqf3TCejUNXKWrq9bpDA03QG73qRpqKpQ9VztPcdDh99mzs3XqXV7gXTj0TMFCfcvfcIEeHGjRsxESZMHlFP7qbs7z6mv/Upur017t37Gt3MkLV6zDBWKuYJy5ZnWU45PDzg5tZnsGlWO6mWkYnitxfBKaSxzm3pPF1ryPOcSvoyYujajBEGJ4Y0zWgBKh2manE+OKVDvV6/RBqvlx3zEknTLCKVjYMo49UM04hgxWAMpNEMIyIk1tYJRcs2xKBnVJtHlZnaXMdxY5AG49AZc3Te4yOui4ubQAW/IBpwXWrmpcKkcDgq/JcZkyucp3RNSTs6Kpu7QWRIDVY4F3IpMbv5Wao9zVlHKoZcceeZ/aTZS+bnWcV1G20sk5R1/kplYT0tMt+qycqZT6V9hef2IoSw81nSJVC/m4qMGDS+E9WQra7ek6RpNLkG7c2YAOcsIkQ3Vp09X+f6xPssyM+VGLAwLk9JMxZAeXRUz9Pq+WVunC/WoEYYdKGq5w2SpqyvBh+WkSleW2TJRy2OP0IujI9HKCVJYul0OrTbbWosmydu0+HHB9x793fpZhnr69cRE+AI0CAjTKcF731wl5s3bzLo9YO0F1+0AYajfY7GOa/+0GfBTzjee5+1/go26dTTzM+t2oUuoEwmQ4qJsrp6ixCHXZmZ5he0NGK0VRSTJAyyNqIhg7ZjwOXTxhWGQdZnYvtkvS7tzgBBaUmHRBOozDkuMH3xS0ZwqaViUTWFann5BiZLqYGhoqEwjHehaLdoGSRF9TG0dJ6q6gCV6eak3fxkb+ouxOeWWFZTUSRGYCkBXrjSCT1KKQZnDJVfotpwVJWx5iSdbt3XeiNauH8tSdZazgzQz1iL81Xt2mVXL6ems9IYgxFbV5tbWjSmaaqa+z4wVu9n/qV58LQwS+sxrJPEBGttwMKvxjhmNS9WcBMjYGL96YbmIzYw4gqMrIqsMzozywUAxiQy/Ljlz+XYBDykSlDXxjjq4rOi4DRomZG8j5t8hZrKXNefmqxN6HW7mKJAi+mCdvUUOp7G7bH2k3XwSYtbt3OubRYhb0YdadI+s5mXjvGXrmAyHOFcTrvTptubD9GsTQsXbE8F1JfsPfgzRjv3+PirnyRJszidfHSueMoyVA967dVXsbaSZyOb88ru4wdkK7ford1kenyfcrjD4ParqLGgEVCNKkhraU/Y39um375Cq72CSDLDWFlydnCSBqdk2klptTKmODItybRk6pPAUAkwtq2sQ0t7DNJNBp11vAmW/cRDItQJZctkxJpOKCk1h2ucMGNUEIrYeFcGO7p3AV7YBeavUSJXf5rJaNZsM9vxpGy7vHtizAyITwSizwdiZoKY2QYgDSky/qiEam5ZUbKxtQkaGEhT0F4cKVVtwPFH7cYExl+WAcRthhI5P4xzfa/3udm51loMhrIsgsP9xN3nx8BTaZgShfHolI8Qz0tnYtSWq2+MtVhjKEvX6LPWzH/x4hPzVYQkCQCBZVnG8TAV6639L8aYECGn4H0oRWqswRpDUZZ4F+dKpaVFbc+rr81GRC1OvcdbnR9Y70F9mBOypJ9PQZWAP5nkUTyTprvniduf9TaIiYohL1t8+1slH3/V0k8g9zHrPs3ObOulYvzee1wZ6uCura1hExukjIY4elqa/IxxaCN5KUjMk/EB9z74Kpu9dQarW2A0hHlWtXBVSKzhk598nbW1tXAX1QhZq0wmYw4O9rn+Qz+KtQk7+9uI5nR6g5larEqo2NVUOqsEMqEsSw4P97i6/jmMzeKcFULg/fwDqWhdfdOJoElCmlhKX9BNhDT35L7EOYexFhUhydqItxhNsZoGkDYJ9ooqXrgaOm2YbOrFrIvyizbCwZvLaDbrVYMZLeQwVABoppaK5/nmcn1i+V869/+crLfw7utNou7ekkU/8/gutAYlkBhLq9WhKEqUsj6l6aafg+lOqkcKd7KJpZVl5NMpzlVF6Gc9XCZ5Nje6ahPJshQx1HDk1X0XnrTRp9mDV5DmRVHUDvcTENS6eL3UBY2m0+kJ08xZ1NQcWlmwR09jmdTZOId1G5IfBZOX+Kgleu9IjCW1GcW0BK9YMTWwokTNTKQxL6vNNuwuM/u7CMaEjc57nRuXJ32exVk6HA55/PjxSXz9iyl0y2+kUVsRy4NHU37/9z23Nrv0uyMQj6cNWX5mMy8V40c9WZbQaq1gbHQSLnrRTqXIcKRESWJMOng3Zu/eV9HjB9z42OdJkwyHw+KjBBhU404n443br2ESi4rBqA+l2LVkb+cuvr3BYOvjqJ9y9Pgd+v010qwbYphD5yOjCMw26MIWkRJIGI/2KPOS7sptaCBuRtZz8mnUY1SYmBbD0tBRUDwDAynCpCwpi5IkzUhR0laG1yBJOFNiZJYmEu60TFWSk4c4+f2p3zaNnE1JaOk7e5KFePqWIIsftOYHS6XiumMnLqz+CiaGPA9Ff4Lv5CTZBn76IpxCp9Nhc3OTxzsnr19MKGxeV31ftdnv9+l0Ouzu7kZzyPz9FqkZ4JCmKevr6xwcHFIUISZkkZEvAzvs9/t0u112d3fr6y5KVb82NjYwxrD9aDv4kCrbuyiJh6kasgRW9neYdjJGtktRlvT7fa5cucL9B/dQ1bmxqmz5IlI/Z/W3RPNU83iapnQ6HSbT8YIJ6fS+CzOIcetDZncoPDQ7Ly+mIUfRzTajaq0/KTx5MO5qzL9xICnvPrCsDjy9pMRJETP9Dek5NQReKsZvTHiZ1poQ1VO9vIuMbJ2kJRhPBBQryQ8ece+db3B98xrdwQYqHqOVVNG4XIQkzYKkj6OUYAIq8im7e4/ZuP0l2p11yukhRwd3eePa9Ri/Xt/2BEuJMG2oOo6O9knTFTrd1XheLGaidsnzhenkDUyAUekoFYajnFZZBturDzVKK7JJhfUTG9P5WdkUgpay+6V9eAKShVafVc++8H2Xfpw/4by+xAghVZ2r47yskPr8ZcFBOZlMKMuggaXpyYizE3V0G6ag6ruyLBmPxxhjmE7zusrcotmoSRVjDxtXzmAw4Pj4uC5JutjnxU2oLEsmk0mtKTTrXlyEjDFMJpP6Wucc3e4sp8VYg0FoK6RAufsWdm2Nwa1rwbzT0Gp6Fb5WfBfVOPmmA9+5E2NYnZOmKVtbW2xvbweT0xnPUZWHVKidtBJ9Fr4xXUIVPMOgP8CNSpoaqMx9uBgJPsA9+BYYC23ltVs97tyENDsMxZ08gPmIRfU0GFMNx3zBiSgoKsFmb1QoxeHKEQ/e+UPaOuXa1dfQJEFRbAM5ar6KUvVCFRdxXY6PDpl6uH3t06hkTIdH4I5Z6a+f/s41JHtoDHH0bsrR4R79/iukSTc6NCsbZQzrmrseCGg4jFVx1pIrjIYTNnwRJY9QvampchsxDUn7pGngL2iempXWqs9Zls0x7uq806gsy1rKr8qDWmtP3TSWtaWq5HleO3WTJAllQ89h/IubRnVup9Opn2GxH82+TKfTWAfCY62du+4iJBJMmFWVvErqnn0PYDBakGjCCCWVBGm1QaZMp9Na0m+320ufd/Fzk/FX/zvnavNYtYnYExWuONHOXN5HZOIx9SUeC31rZS3Go6Pq6nppPbFsowLGgeSISfFJys0bDudHGJ8jmuA1mJ+tTc9s6uVi/BXpnOvvgjSzK1Y27OHuh+w//AavXrtOp7MS0/UrRls5xWaTLZgoqpngccWEncfbdDdfo71yE/BMh3t00pQkzZjz9DQ7j0TmH+J88umY8XjMtau3EBOLlJ+GRNh4EsXjIzPKy2C7tXU/F66oFoLQcDB/r8TuH1xqMn9YLtmf9d2ilFyZJi4EJc5MwPHe14y/MmWcVf5z0ZxRMbrKbt80IZ12f2vtnNR90cJHzXaa92maZ4iM1Ufm79XQuraF7a7hzLwWVD3nRTbcxesqxl89R7X5VFrP6Z2P/zWEzdpUWJdm1cbS0jnwPlm45iIUis97MCW5aVNqRrdV4PIx4gTxJualeMyyor0NelZcqBeOZhmXp0QlnELh3SSA4AT8dMj2u39MJ4WNzS1ELPhZJPaye6pGtHkB8crw+DFHw2M2bn4ek3RBSvLxAVnSRs1Z6JHVEyioZzQ6xkibfv9qrV4GSV84PVMzHG8lCb00pSgmJOqxGksHxgUenj32xLtoIrvwsNXPfZZUu3jesp8fRFrG0JtRP+fRovTZvP4y+nUROk8buMzvnuyaKmgghtJag715A7OxTrOi3Xl9Wfw5797L3snyxpmtk5gNJjBLVamPBO08RNA1OP9TUBDKFJWEt95t8fZbUBZTxPkI6RLDTYwJvscz6KWT+OejAuDiXCy8PI3Dt//w24x23ubV26+StHqIKFYNStkoXtG4Opp6NErxrsjZfnCX1uoNVjZfC9EFqpTFIdamAQLizK2pyh717O3tsrpygywbRNO7UmEHIctgHqLR0ST02x1sknA0cXSMx7jgDvZiSNJKHRS8cwub2pObehbtzidGeMFW/TLQWWaYZ2XgF7nnsu/Oew/nfXfR+yyjizhGL9qHCr6bGGxhOwMUC8U5CGRPcO9nFT5m2jU1qq5KCIktphN8USLqkaKk8ujpwvUXJx+CSpI229vQbnn0ptbteClxKqSScp5M/9Ix/oqelO2HC8KuXIx2efDeH7DWa7O+cRUvbdAcQwlqUSkB4W/9xk1+/SvX+KWffsiv/eI9QugjqDfsH2xzOCy5/YUfCWUcY5ROXhzTTi1VXPiJbtQ2w/AERTHl8OiIj73+Q8Gup4tgwksmbPQcFZIiNiG1hm4rw08E8ULpPZoY0mxmB8wnY2y9hVx8EZxmcz4rEuUs88Fp37+M9Dye82UZuxDVE+UXFSyKDCeQZhf22134Xkuc5edvSoHmsrPVh5BUQi5KfjzEjScYVdqJxWYRrqH2Bz4ZlwryZoIkCa+85lltWxKfIhSxrKmj1IzMJqAfRRv/U/klo2nFT9j94OuM9+/yxiffxNoEVQExKAX4FBXD//AbN/nn/w8/wWiS8F/+jdf5z/793+Mf+8W7oFDkRzx4eJfB1U+xeuUTIUlIFY+hyHMGWcVil3dS0VppOTzcRzF0u1dCL6vYsNrEc9qkEY5dcNwZH2L924SohlLBplkNaoYqk/GYROYHbqkLYvEuz7gIXybp/2noMp7/ZdSkqMwaCEYdCuT37iKra+jaxnO55UU0pWVU2wnKgv1HD0m8IxGhl2WknVYA9jMBkFoWTLNPFtgjTLXFdNjm+s2SVjnCFEXwJ4riVHAYxDbhC5fTS2fjh6czoUkoL87x0SMeffDH3Ny8Qre/ESXzAq/BuUKM/Pn1r1xnNAn75miS8OtfuRYqV3nY3XuXshSuvPYFkqwdHcKhX3lRkto0oJKftlCjxC7A0eE+3W6PNA2lGaUuBnI241c1DL1hagzjsuDoeIiJafWF92TdTi05qfcUkymJTWoM/otS07FY/VQhdM2fRZv+acerNn/Q7f9PQpf1jN+vsXo+70ljXJqAOLxR/OEO5eiQpzaSn0HPJsDEDUOVDGEzTVlPU7pGaJlQCjsxFdRCdcOZdn/hu4jy6CDld/7RFFcKUKKmJKRqWlSTAHJoHMjZ5rCXTuKvHSynkUabXIWtrhHTxuRoXrL7wVeRco8rV7+MSVLAIWLjDhmk9P/+N27w7oc9ssyR55Zuu+SXf+ohpSmZDg+4v73Nyq0fpbv6avTEx+QsX6LFELGbiPjaH3DiCTRG8KuQ58d0Wm8gdbauMtuvqwig2dVVoZBcDMfGsJa0mZYwmUxx4jBYCgyDTqe+c1HkSFGQxJ4qxHDR86MyAMbjMZPJ5ESERvV5WQRGc6FV4YDN71R1FiWiYRsMMdMB1tk3NsGLJtxclJrhmefRk2SrnnW/Jj2JnbzZxsti5oEqMibM50QFjOKuXkN6vTlTz/drs6sjdIJRH9UA3902SidJwxyqNgQq3Cziuo7rVzxOQpGf0FbA1/dShGcmwUk1xxOmyYRvvSXs7ZUkZY7F46OoFhLdwGQWxDYEw+X00jF+ONvSU8XG15IzipoAdjbcf4fHd7/DrSs36XT79Wtr/v5bv3mTf/5fCyaeLHX8ys/e41/4Z77Lr/3SPXLvePzoLs6scvXOm9ikXYd0oYpzBUYdckaMbR0oECN2vCtJky4izbC/WZ9OiclAUawRMpswnE7AeawNSJ2SpKTZDMtjmk+x6rAyMyAF5n9qN2sqyzLg1WRZLcUvOs7qsW+EvTbVamsteZ7PJc5U3xtjSNIkVk4rCFj+fi5D0jlXY7k0mXYzRHFZdEfzs7V2FuX0hMzkWZjP82DY30tm+Lw3GwGcGBKE9pUbiDVMz73qe0xxIXoX1lAV8bPowwtOYJkLIwmV7gwuCoFGDUILr1mQ5lNALVaUVFbwvuCN13skso94AyZAzyvBd5dkKbPM/tPppWT855FKVSw8xAmrlPhxyfZ7f0Rqcq5svkJ4gwF9s/n+fv0r12oTT15YXrt9xK/90oc4VSYHhzza22XrjZ+h3b8OVFabGJ/jckRCNt+pfWuEU1aM1CbphR1a1WZmxbDWadES5aCc0EFJvDB2jla/T9LYfIrJGEsAJvQLLZ1HeR6yRNfW1uYyI6tnWWa+qZ8zUpIkeO+ZTmdLurmJJJkF77EKLoJwmaoiGjMm30w6WrzfeVEoIkKr1aLVan3PJefLjgb6XkvBz2e8QmSaqMEZRdXip6OghWfRdHqJJqYnSTw7jbz3JOc6xWaBGyAkasCnYEPACHiwFm8mqLEUrsM3/zxjYx1euSN8/I2StdWEAGuXIBrMt16E3HuydhsjZqZVnEIfScZPdLLUqpdXDh+9zcH2t3nj9m2yrBNwa2pTzGxy/dJPP+S//BuvM5okdNolv/yT20CQfLcffEDSucLWrU8jSYc6vlcDno8rJhGU7CSUct2zynKjivMBUiGJWPpLz9dZBET1n4pg0pR+r01qoCfQjWB1hfe0Ol2MrZikp5xOMZVDmSeDrfbe0263SZKEoijmzBSLyU3zzzmTvtvtNmVZ0mq16u8qMsZg1WEAJzZI+hIko4gMV5+/6DNo+hEWPy9uDHmeMxqNaqiDJ6HLYHyXJfm/NOae+BiVc1dQJvc/JFldhc2rc6d+3/1AlVJfupkR9hRzndTmWgChlBKxFk3AIHgsu+M2334nY3PDsrVV8M4Hx+Suze3bljs3BNFDpNA6wTO0KJQKvSxD/oLxL6GIVa84PAYwuNEx2x/+PqvdFuvrV8FocOpqlbA1o1/7xXv8Z/+33+PXf+c6v/Qzd/m1n99GvXB4sMPO4SGvfv6v0eptgHp8LCxdvX9XThAqif8cmzQV/KzB2uSM88PGVG9RMY9hYlOcQMcY1tKUzAgOKBRaaVoHbnqvaFlGCWK+1YuQMQHDfTQa8eDBg3Btw5Qzl43JbJFWZhVjDFeuXGE0GjEajepjFSNMbULLlYg1jNNQojKN1TVEBBvT9SFsvotMYBGgq7kgm2aesiy5f/9+DR/wNHb2p6WXwbl76W0CwSAipN4Ft9beI1yqmM0qwu1y3s+zaQ4Vei2o87MaBIvtVYKZBoNPuNKgiVCKsDcc0E4sK33l/vvw//sfcr70WcOv/BXDX/rJFp2OwWiO+BGURfQFlIgaDEoZI4dMUmF3nT02Hz3GT6VQmeAYcQUH228z2n+PT73+aZKkh4+OEalUr4VB/LVfvMev/eL9YCLCUOY59+6/S+/KqwyufRKRFhalROfqtPpyjKpDzpD4m1Z+50oUwdrsCeK+hFKF3anDTkuydgtXlFgtcHWUxKwhV5ZoWZAYKMqGx+qCa0okoFMWRUGapvR6vZrBViBwi0lOTTt/BVA2HA5D6Kkxc4VESmtx3oERjsfgixJ1JWVccAbh6tWrTKdTdnZ2TtyvqcI30RqbEAHdbrfu9/fbzPOs1HSOP09qmtCe35jp3DwUY2KYxOXfrxqzpx632sZvTlnaGh3WcVMQAIsxfSY+5Xf/0ZArWy1+4kcsN64k/K/+6YQbW46undLrTFHjcKUncYr1FZRFwOQXQtEZY5MIo6GxUtfp9JFj/JUEr2JAPfnxNnff+YdsrazQ72+hJgGKGG+7fJJVPFjUUkrJ4727TAp4/dUvYdqriCbBvBPd9ZXVyJdT7Dk2fpgZl5wv8U4DXv2piytK6lo5jAzOCGO1rIjlcJrjpiN6OKzX4Lsws7aKssAXBYkxFEuw/Z+ErLU1SJmqkqbLndjV4qo2jGrBtWJpzLk2BawNb21QgKYO1ZJSgv9lMp7UIaTtdrs2F1W0LLO2MveICM45jo+Pa3C05nk/aNR8vh90k0/de1VKsVhJSW++gukNKF+YZ6ukd6n/msE0nNFHCfxHJeHwOINUuHWjw9aWweqE9V5J/7UxqVWUHOszjPfkxhJQ4H2MDgoCpAKlKibLIuOfIYGeRh85xh8oRPGIO+bx3T/BTR5z5dabiE3xOEKqRaiGtDR2RkBVEBz5eMz97XusX3+Tla03KiN7hGQIL0BjyJUrg/NS5vD0FyjeKjClElWiqecMEq0xQrxAoUohhsym7IxGZGXw/FsNBSeajN87H1RUa06qp09By6Tt0xZBZVapKEkSshhtpFrVAw5x0CAhwUxD2JuXENaqXmvpvdPp1KiUi7ToZK7CMJvIlM1nuAjz/95IvRenF6EPl0bVOiAUEzJiSa/eDBXrFpKgvu/PXSvpWkf0nHdySKQU/uTPc25ftXzyTk6nXcJUQEsyVbQEZwEDVk0QKHGEgGYwGFQcBSGUU5IWNkkoipLzBLiPHuOv+Lh6xof32P7wT7i2eYVufz1W1lKMChCxcFgu86s48Mrjhx/itMOVV7+ISQegHjUFDksS48+dGMDjyikieiEbPwQbv7GWxKZ1GNhJ0vr/qtCDM0EtTgSKomSgIcwxh2gXryQFwXkf52qF1FPN3AvbluZ7c0EGehZEQ3BWB5VYgOnuAVkrw7U6eDEhomehrcVooiY1zR+VNrIMRfJpYSNepMzZF2UTenaKYyo+VK+yDpNkgeUX5xeIeeq7LgQmXIRqf20dmXHaWQ3tU4SyVL7zbslKy/La9SLUAXEe7CQEWyAYl1GIxRvB6jT4BWLQiaij9J5j55mU0Ot0ERNwjZbVqG7SS5m5W1OUzANHi1EcEEoTFiMevP+npDri6pXbqE1AKy95GNjaDaMaGDqxvRBAxWh4yKPdB1y99Vl6q7dDNE2USCsbW1X4vLLZWwn1Vanvs7zjiuJ90D5scnb9zJkrLJiUrE3od0N0ivGOroZJlONRMbEmMNEuWUZwqRhlQ9PLcPEFdR7+zqk9X4jrn6nP4Ue9Y/zwAe5gP0Q+R8eVl1n/moz9tJj9Raa+yCDPikA6rd/Nz5fJfJ62rRdh47lcCuJI4hW0xB3ukefDuTMu45mX5ZYsfr88k3x+tUAIq0QXZrEGG7xW/2LEhxhYXTUM1kqQYwSHSKgNXEoXrylWcxJyEg05QJWsr8DUlRwXJblY0sEK3X5/mX1iKb3UEr9WoYkqIK6ROec53nmLvXvf4PVrN2m3+tGFG5l0uCiGV81MNl4tVcEWLTzbD97Bd9bYePWLiG3hKfHGYDQNOb4S2gpYIw7nClIRvLHYM95O2Jw8eAc+AdPiNAm8wiy3KJ6Qn2DTjI1eApowMI6en6I2WAZ9kgbTkUiodJ7nJOJn1R4rB/AFmX6TiT4JFjvM29rnn756F2BcCaN9tGVDDQpThcTN/BEXids/rz/L8gvOo2abL4eU/Wz0tNrGsjGv5LVKaDKlUr73HnptC1m/NnfdZec9NDXD6pma4cCzE2PBeoKA5ZxjJGEN+cjojQg2Li6RUMhdYpmuLHF8+U3h6maCkQyjJZ4klm4twAiOtA7Z1qoutQ/ReYfeMM0yVreusLqyFhIYIQi8p8K1B3qpGX+I9S7igCUYHN4LxfFjPnjrd+i3M9a37kAs8bZs+kiEB0DDNqDiEZdwdLjN9uEBtz71y3R66yglJjpbFhuqdn1X5qQ2CX7a8/iLgnMlIpa//ffX+fXfXeWXf3rIP/6LRyfOMzqTMkpjGSF0jQWvDLIUiWVcxQcHrK1gEDRU4bLG1s7jy2Bfz7QQKxiGGBbnRXBZlyLrYKzBicd6Q+IMzVDly5C6n7Tfy6XA7z99P/rzLO986Yah4I2JG4An88okz8lGBbo2z/AvI/lqkZpaQFWhq6qUVvmfvFaBFSHXIC9LHLHqXSxYb63BGkiQAKlsTKikYULRl+s31xBGjHLBuvCdnTPEzGuqXpUc5agoMN0e169ep31OxbBl9FIz/hmeRoknw3jBjXb54Nu/zWT/Hq997LOkWS8y7TjxZLENpTTBOWs1JH35vODu/fdor73GxvU3UZMFe5wGoLclPUG9Q10esnDPXZeBi7uy5B989bP82/+P1xlNDP/F/3eD/+I/+GCO+atIlceEF2GKsFeUZE7RMsc6B6KoCsYLYi1SL5SAKJiYF0VaDb6VSldTwCQJvRvXMZ0+Po5x2BkMqrNErGeRvp/l2stksickyqek78dm9CyMf9kGKkCrVJwBJ4KzhuzmVdLOCsvL2V8+VUz/6OiIoijmAgfmzYkWg9LvdbCAmoQkTRAT0HhdmeOKkrLSGpzDeyURJUtGTKdjxtMSUypda+iJJTMxBkODpTkscCgRjooC6fVYv3aTdreHPMX6fakZvxOwWEQ9ilJOj/jwO/8zhw/+lNs3XmGwshWq3XNWxfuQNh7Q7hw4w97efQ4nY1771I+RdFdBBa8Wgzs17NL7MoRzRqiEs5ZlJU0URcE//PonGE0Cox5NDL/+lf484yd4BKow1Rwhx+LUcjwe0h+P6US7oMQz62tV8c6H2GMuz1xxUcfYueeoIkboDPo426LQmVbmZXYvOFkI/KL9vMix0+h7FTP/pPS97s/zSUBTEBdFAYuKpbO2QZm0LmqFfCJaZhpUVabTKSLC1tZWXdd38TyREEtfWYlFLCaCDgbE2hLvAtSI1xAUojG02lhHy/XoFJtoWZIfHbJ3fEQbT7vVwohQOofzDq8wdR6XpWxtXaEdc0+ehl5Cxj/LtVVRnILVDCmHPHjvD9j58I+4sbHBtWu3kdSjHkSzyNiX2dEFozOLWTkZcf/RB6xc/RirV14HsaHsmfiYCbyc1DtcMUHaSQM99Iw4HVXKsuCnf/h9/rvf/BKjiaHb9vzSTx/PnysanbMKKpR4jE1wajnKczrOIaZyPIWSi5UDWzU4T833wT693Jmmdb3jahMWrxQHh5huD9orUeoHwc2K1jxDJMtiJu9idu9Z/V/2+ftNL1JfLkpLAwMEchvClI33iCp6MMT3DRpzPZ5HNE/1uZL2i6JgdXWVtbW1pxhbIUksSbJghtH6a6AAkjDjvWfUaTNqdyhHQ46LIhReEoNJU0ySkNqEQb9Hb7AS+yMLjV6MXkLGHwYKZkGJZTlm54M/5uE7v8vGao+btz5FkmSoFKgkSF1Ll6X2eRPB2pwqj3c/JCfhjdd+DNtqISrBdyDgNUGWGnsEryXeTUjS1fl3tdQyFKIAyrLkF37iPf7zf/99fuMrfX7pZ5bY+Kvol9iUGEPbJngPpXpMYoIzScEbTqiF3nnkkkykl8N0Ku0lpsI7z/DxI7obCu2VYPtXDQ6LSwxKexom8jwZzw8SPZ/+CuID5IlRRX3B6N49uHEV2bh66fddFEIqaV1E6Pf7p95rMWpsfkkvOI0rhhQxdsIMT2ahlwZ6gz7tbp/J6JjRaBQ0chvKpNo0I81aZGka8nGgtmfX4twF5+RLyPgDqWpAc/QFO4++zt23f4NB6rlz61PYVjcYPVwrJIeYMoRhLmtIAPWIGsajIQ93H7F564t0115hhrPtEE3ODH9U58DlJElWY3Mvm0pV5JGqUpQFSSvh137xkH/yF49PhcfXyAsxhqSTsdLpgCgtlKS6j4A3zcibyF69/74E9TZt80sXVXMokwQSi8R3CgEK48y6C0/Zn6elF4VZvyxx/KJg6zUVsrXz0RHJpM+TuTEvTs05UEn8aZrWuFKnXDXLe5RKgIwZ+zpjyEBdEL3O7q2YdeN1eQxqod0f0O71Z1+IhHBxaASiaEPkezJ6ORl/5ZF3E0Y77/Hhn/82KWNef+0LtDtrEYvHgLdItN3radNJgwPVuQk7j+7j7Spbd76IpK0giUjACw8O1tMZh1eHr5y7tWV+uU8hPgKlK7E2PXNDEQiOThG8CpJYOllK6Rxr1tByVXvxfgsSf4hQ+N5z/uVmlaC6ajghHEoSetdvQNZBMSHkTQT0LLyji9NlwBu8DIz2RaRgmgzmHlGBdguzkMV+WVrXsndYluUJaX95smAMLY4iveKD3T9G4UBk1nLyPpUAqNG2QPVbZM4Eu6A7NGN9nuZxX1LGT4iQOD56yHe/8RukkwPe+NjnyHqbEE0xHsUYh9WA0unEYHBR7WowZoFShePjxzx+dJebn/nLZL0bYef2QYr2pCQyRTQ9lRWpd5Rlga2KfVDt+ItXSDT1BInDWIvzniQiUi5SkCLCT4kyynNWvcdKycAKqbpZuyybJt9fprUYlVOpvSoBLUlEyPqrFCbFl1BBZafO4MzyWOUnYeYvi4Rc0cvzLIpKWeNcGZPRvX0b0xtQXPadGqGbi3hOTewoVWU4HNZwH977KHP74LB1YTW5WFEujXUmQLCJDciZxmBNqLmdFwWpNRijIII1lQmnGRLeXLdNXiGBH0SBMxR8uvi7f+kYv4rHOpiO7vPhN/4WjB7yyqufZDDYjGYUrRmu6oz9GnWxxmdCiORJ8aI4M0KnjkcP7pKsvsLg+udQY0I0UHxJFoX4+5RehRCuaOoJUkylbSxECRDM1x5PoSB2APmUsmMjyPM8VSUIjXpGYjkuEzrAcFSyVuS1tRxxMcFr3hlUjcnTbgDPKnEtRnIEHB7B+kr6d4j6WCSmpKpxUNqCy7JRPW1kzmUw2dMynp/FWf0yUOXpEfU4SRFjSa5cpxSLRNTXy6ZlY948Nh6PuXv3bp2sGKymQegSVXQ8JPMObEz+MiHD1vvAlBWLeqW0Dpus8tU/a/HarZKt1THGeAZrm3RW15DEkmJijV6NykTQKEKw8/xI1YJqzCsQ7+uot9Po5WP8JJSTXd7/9u8w2t/mtVuvsrZxLUIhz+JFKrt3RSE7zsziSaQEAeOF3f1t9oZjXn3zL9HqroaXEHfcWRPmTN7pyzzYLRsx9Kc8QPhPg1SRtHoh9OuUxiUmkziBqRHUZqgKx+MJK2VZh3AKPmCBxHaRmvVTuYe+l9R0ptVgbvF3ZbsX8RhXMNl5hBlsoJ32nM202dbTMspmzdymY+9JnuNFkrJfpL48E0lITLQqTK3HYGlVxYSe523PGL8KLrzVaoUa0dHE48UgXpkOj8hUSb2Car3WPIp6wWuITipUcfmU7W87rnc8SacACo63tzk6OGBlc510ZR3MTMuvHcCLvsGKkYVb4lwRQkiLszfHl4zxC64Yc+/t3+PgwZ9x4+oNrlx9BWPT2v42j0YzI20MoBdFYpGDclxw/+GHdDdfYfXqp1FjZ/V6L7zGPGUxirHmcK6kKoL6MmwU7R6Y0wDagrxhFHKBCYpNU1zpKYs8lFNUcIDVIEWXlURYBzGd3vZ5VC2Spy043mSatfbVqIXscSRlweT+h3RsCp1eOC6KYE/snU8bmfMiZt8+C70sz2IgRs2V4A1u9yH0ViE9D7vq6anpe1qEE1FV2u02/X4/CitR0hZBnEOPLB2xdObC5BqeP/GICs4IhRM+cbPNjZWC9QzwyigvGU9zRsUUXzrWNrdAouQ/HwM661P8pQrDwwOO9nZptVoc7e6d+ZwvF0ibevLju2zf/So3Nja5deM1jEnCQhBPCLXUuFOf/FFm56gKeGVn5z7j3HDj9S9j2mtByn/SdaWKKyakSRJscrUf4XRysSiJZB1K5zgtpKeKezcIiU3otDIKV5KoDynijdsI80xBkODsfUrO/3wSdyJV+7N36HQKrqhHLJgAZhvWop3+aTJ3v9+S+8vma3h20mhqDXk0Tj2j+w8pjo8vDaOnSYva3lnCwCxj19Rav+qsREwE90VNXJ8Sw49FEeMQKclayg99wXJ1A1IcmcCglbDeyTDTCYePHjGejKo7NsMeFoYpHB2Njtl/eJ/x7i6+yHGj0clzG/RSMX7vppTDHTZW+ty6+XoInRRFagQyqX9k2Q8gMVjKkDAdj7m/fZeN65+ht/5x1ETM+idlLCjORZyeeGQuDGyBlDiRxCBJQlE6WFInFiIaIGDE0uv06LdSRBx9G7wOIWqgYc/X+Z1ALiGIfzGW+UlosT9QSTGhYpGaFPoDfNqiiu8PAHj+xDK4qOaxCOb2sjHcl0PilwDVIMF/FkwkRLPn5dIygL4mJMPiedXn2d8xEZIAs6ASEj6VmQ9NMahafNSxTZKyvilkbUUJsCqCkhjot1qkZcFwby+WX9Xakn/y/oovHfuPttHJmM1uhyyx9LOztaKXytRT5BNaaZc7tz9F0kqpMGq8A+8kbMExamaRwhEfsN5FEevYfnyXMuly9dUvBKx9ygiI6iNDvRjDUEKi1IU3DFXSJA0lB8VRqserxy4JOQ2+CcEZS5KktAw4K6Goe7Au1mANThqTtTIZ1o7NZ4ceeFpky9nfGjOghUSDg0yzFr1XXkNbfarlJGoi7PWzb1rLcH6+39L/s9IPct8XSQCPpSVgbt7CdHu1jf+yN7jFqB7gBOM/bWzVxwreqjPcr7mniKzbJyAm8COpInIi/5Hgr0uM0LeW/b09JoMV+oPVcA+WK+eT0Yji8JDVLIxTqZ70o4TOKQJZu0cifdAA5eS95fgoZzQs8b6yHyybMDGOVkuSBGx2yIOdh1x742forN5A8RgN3ntvHDxRGokgJg01aKW619nmHmsD0FOZH5HZ9lzIWXPyVZPsSD2ToqTlPYkIqYSIiArELcQJnehVsFWeDC56KroMhhMWALVWpkYx3R7etkBjDV+iDHSJ/K2pTT0PtMcnoWcdx5dB4g8JXBDEGgNWyVb7OJvUQE3Pc4M7z9Ffa7nxb42wEmYJYFpI2FTARciUhINDOJ7k3NzKa19GxREEpWUM7bLkeGeHTrcX8hdOiQA7Pjqga4S2Eawqjog2cAa9VIw/SVJMKkih4AL0cFnAdGJpdzYxNqkTQk5SYPwKuHzC/uEO6eAGWzc/CzZDpAS1s4ieJyExZO0+eVngFcQECAhZpnnE/lmb0mq1mBzvkLVeCeog6UlJWQN64bH3OA/TwrF3PGLLVRE9VbWqyla60DVpxPV8nyTFGaOKrmadMXbxjuPth2Srm9Bph/MJJrnL5m8vg6T8MpmujIIzgvWeQj3l48ewugpZtz7neW5yi20vk/grOc47F8zA0YNYs4jaMmxAPF5yRBPuP1LuP5hwfd1jNc7nWUwhRpSutewfHzM8OmSwtlGlsJzo02Q0ZJ0q1DMILR+pcE5TRdzEpCZEKUuP2Da9wSaSJEDJsiLqVTK1Nx43nnA02uLWnc/Q6m/F86tkDQG1TxjVI7TaPRQonYsVsM6+WExCp9NmdLzDavd1SudIk5MTTwnQtVMPmWlRYNgvStakKr8WC7WoYJVZKFwjqkf1cqTnS4lrb0T1qHiYTikf3qOVZfhOt3aeiZpLEfibmhQ83TO8SMz2RenHZZCvFpmUaKkU9+/RtgluvfPc7/2kG4r3PkTRNQQpgCDHBL9iqA+iYDxZxzJYDQJlda+qtFBl9mkZQ1J6xqMh/dXI2hder3MO7xwpUguBijkFHn5GL5Vzt3LOGl8xao/XUKtTkpDi783M4RJDbMJxCI4kVZI0o9XbYH3j9gwt0sPf/tsp/9q/3uNv/Y8ZRhUi3HOICfI4cSg+wCOoCf4FQhlGm3WQtEU+HiFq8Ub5d/7DN/nRf+Kv8O/+398EGpNNwBihlbXJJ/v8y//GJ3jjZ3+Yf+5fuVOHblUO4BAgFAAnPIJJMrrdNjZLo6hhQnJJuEP4XN1GBGwAn6volLIEZ9JZdtEnvbY+XskuFlr9PkmSoiL1Iqr89BU1/S1PKwU+iZO62e8nYvzR46coUmdVG8ARQVRrGADFRU3v4v3/XjH+EwLIM0jey65VocZjcqKId+h4DHkjuus5m7SW9qu5VupfxKieGQxLBYBeS/BV9KCmqML1G5Y3PmkRU/GPcGJV57sq8ZqK4EsXhbOT/fE+RCEGf0FFcu4CfqkkfgA1QsDxDiUEq1eh4hFfFfloSM5a1eEFBKyLwZ5lzvDBBzi5i5TwP/3WBv/7f+dzjKcJ//V/5fD/zxH/1D8VK3dpgAj28fXaijtLUL2MCjbpYtqrTMf7MNji//wffob/63/8GUD4xneC8+bf/Ve/ESdWcF62sw7/x//LL/Obv7cOCH/j76T8c/8K/Ff/4V2iHAFAokJPYHc6xPe6XO+2wDimkwkJGmClJTBLvAvSiY1X24RiXkap6SIspCktP+1CXB7OKVgPPmuTvPYGatv1BLfeUkoxx+yflt0tVd+fkHkuwk6cc3b8Pwon9fwL87WqPIYqKha5IOO/SBji86Dne69q/RrEeGQwQNvt2bdPkXC3jM7y6zSPn/2ONWJ3CbXJsn6K8L2XwKS9WkwJ/aSYfS+zjSKIcBbFYQHnBa8VNsDJ+xsRnFGSmuHrWe7DcM3ZX//gUeUh91RhmrPC4oECvp3GfVhrvDsTMlsllvQbjXnwR3/Cw9/+LR785v/I//A3jhhPwz45nlj+zt88Znj/fSbHh5QOVFNQG6Q2cSAFQigTaLwhSVq0sgHHkwNEpvztX7/J7CUKf+s3bjQSRoJhMMva/OHX35g77zd/r898PG+QBLoCWT7G5SNaSYuJzdiRlApAREVJvEW9D4icBOkwsfbSbeVPQqdL2RLwk0xC1u6iSYDPBocTR+rNqfkUTxPH/7T9rujCSWwCSEl4vqCVhegrQ1nFC0TQPfEZoheXzb5XTH8xHPZ53VOieRU1mKRN784r2JXVE5E2l5lPshjm29SinvU+xmckXnCl8N67hoNHKcaHpM6Z8TfwpepjtWnIKc5aY8zM36XUmfzn9uWZnuSFJYOoxaiNkTjxcPBkBlwe7xBfYtQh8e9KVVOUVB3dfMpGK+Pqxjp/9csP6GQhUqid5ryZ/W3e/h//P+x/66v44QFogUqAZQjxumncVBQ1BSQJWWeTybTEo/zqL9yjERPAz//E25RlZe8LJc/TtMWPfO6tufN+4SeOgxoZDIH1ntBWZcMqbQk6R45lx1tGUmEIGax41JV1bLAI2DSNCIJBS5EnnNyXZV6YtaG1CcdJgMxISx/zDYIEGEI5nyXn+OS9v7eRMIJKjFDSYOaxarDOY9VHxu8xMuVc0e37SItx7U9Ly+dQYHa16UMsdn0dzU7a959HItdlb6Kh1QQvysQbvvbWhAfHDj11FkfRVAxaljXY2yJZa/Ea4Zwrab/OIjidXjpTj2ioYu8Ljy88bupjjdmgSDnnePc7f87bb70VKt5HZt8dDPj0577I2tpmcMQkls0bVzCJQY3ln7oxpLXx9/mtr97iZ77wAX/1cyWTowE7v/8PuP97f5/B7Te4+snP0739OqadIWmCl2AKAsFIQru/xe4Dx2hS8u/8q18DUf7737jFr/zs+/zCD/+n3Lv3MV599VUqF0+Wdfj3//X/mn/rP1rnH/7RLX7my7v8V//BPcDU0oFGJ2eKp0dJno84JqWTZJh2m92Jpy0Rhcg4UF9LpyKCiUVbgO8pj1lkGrPF35DmRHGTCQf37pJevw6dQUiCFKVY8HNdNN56WT+e1VT1JBSWswWKUANCYaQJu3nKkUtpeU87ieU+KUEsL5p81hzbqk7wszDf08e9sbmrR2JeS/O6y2DQp5nqlkX1PC2FWkguzN1SOD6e0ulkcIokX90psYIri4C9swSqQkQYrK0z2X5IZmcBD+cJRS8X41fAgR+XlKP/P3t/GmzZkt33Yb+VmXs44x1qHt78uhvdQE9AE2iAEIgmAJFNiqIleVJIIUfYshT+YMkK26QcloJSSBEiHeFwOBwOO2h+kGRTCsumKVEiIRGgGgRECBCGnofX7/Xwhpqrbt3pDHvIXP6Quc9w696qW8N7aFT3enFf3XvOHnLnzlzz+q85oQ00tUCfyCWSINy5e5vr773D+XPn4nkCWe7wIdDV73pjCGWOGGJRF/Dnfu4Gf/7nbqSA7nl65YRzzlAfTKh3bnP3934D891vsfHSawxefBkz3EAlupIQoZ+PY0pliInz/9a/+jX+yr/6Naqq4rd+K7C7u8tLL75El7clxuCs46/+7/8LXnrtl5jeuUvdFpRZDl2gcyWGYUML0yn3a8PWeIPxoMekbfHB40KdMspCRAtMC8PYziJY8Q8CCzzcJ3kNp2AERzWrjulr5+rSEKuu2xp/7w7lxoi2N8ImoedFF8HQlRufanxHTfdO4+/8uacNUj85IxBEHYbABPja3Ybr37tO00z5mVfHfOxioFAhiEse7kfT6px/UNbL0zLdh81zB0omSMTl14b67m0Yb0FWnnjek9JprvWAeys65091fS8RON2q0Cstn/jxTS5uVDFonWI6R8ehRP+9Nk2y0tfH273zYjTk8M5t5gEKJ4sEgofRc8f4QxMIB3OofMx+add9XkYsvdEmJu9z9aXXGPQHBJS8LOn1eywbIiTff5dCs8IHBSFTxeYl9tJlemc80909pnv38Te+x/7uXQ7e/i75lRcYvvAS5fYZDBnlYJNMHFrP0OEojTlid49GIw4ODhbrKHYEE3pln/vzXSQzuP6AyeSQIstTswZA4xi9RP+eazy1n7I3z9ge9HHDHr5SZNYgkoEPi0UU162gxjyo7D/Gnnoaje/4Td9dOEBo8b5GtE2ZzpaYxXRMxsUTjSD6SY8Ccj0Jneb8zpWmOJSW9yYNv32t5bu39zEWKqk5t9HwQg986uf8g0gdE1wgq74P2UQxMQKQQAgN1a1bFC6DjXLNPfQs7t2tgUfRk94r5uorQQz9UvnxHxOKzBPm8hC/fNLbg0f9g2ibHfPPy5JiNOJg/z5YixOTFM6T6bli/KqKtkqoPc7LEs+aBe/GGMOVl15jf1Jx5eXX2NzcjCdLrAPojhZVbBDEKmqSVp3+32VhoAYbLMYp2ZktBltbNJNDDu7e5vCdbzG/e5361jUGFy5SXryMGQ8hH+LrWQy6auzSY61lPB7zzjvv0DQNWZ5hUspfbzDm7s0bBGry0Yi9gwPqpqbI8mVez+IfIQMG4pnMp7h+yWY/Yxoy7MzETIEwT/jgcVLEmMVzL3N7Hl9zFolVwI9b+bq+kbrQPKnCURCXkZ3dhqJI2OwxYG9Du8Ap+kGg0zOE7mUFGhW+fafh2oHl5Us51XzKG7dmvL1bcrWXp7RkTmV5fZCpnKuab0ScfT+Y/vq/gmCs5fgG0esuwveTVoXN4ygaNlVU1c6QhRp3cBs2Roi1qPfHx9ZSTYuBRfzvgbmWaLVvnDnLrWrOft0w6AUmTf3Q8TxXjD/GNSTmwKZsnuWELk2z4XjMRz/24/T7/VQKnc5NPsUOoRN0jRkuplwUn9wrogbVHLUNuIbcDtke9hjPKw537nP43TeYv/0m5ZWXKa5eQieeaXbAlg+RURKF0WAwoKoqqqrC5TlGY6OX3mBEM/s2VTVjMNom7/eY1xV5liGShJDqCoQtbCZXCaFFnGWKocKxLRo7BXVGjEQmLalxBKwyfx4SeErfP2OXQidYo1dOYrOassfg6suQF6nSORCXrTzTvX7UbfEkKZ2nPyfiDClwe79mmBX893/yAjfu3OA//cqUe5MYoBeN1Z6PM4Y/KpyhZ+5eSm7HLjFBTM7w0mXCYET9ftzvfSYv0WUMQjWF3Rs7nMn6uGEeq+lDV/m7ToJiDcxnM8YnPLOgFIMBWxcusXP7Fo0R6kesgeeP8dP5ilmbyEVDchSCZ9DvYY2we3+HqqoYjsb0B6NF71wVxRvFSpcW2hlemhwOMdmsg3s2waEUcaNaxfQyti7kbJzZYnZwyMG1G9x96w1aO2f24Q38QumO7LUsS4wxTGdT+qPh4l7W5bG71vSA/qalPxozvX2T1rc4sdHyELABwIIoQ9VYHRxa6pCDK7hvHCOdxElInF8hwTLHJhEf6Ks6JnAmyV0VsU1iqm2LoFmJMRmqbZxfhdZ0Yfn3czynZ6CnZUSaIHolxEbiTWg4Vxg+sWXJDw1l7mjbmOMfTItR25WEpLCLLDJdTswHeZ+Z4rHuuWcubJLiJUmJM5YwGOJdkeI/q8kA76+gOy74/7g+/tYKeRtrU3Z8Rju6gBYlxhqC7xSvkPbl0s6B2LzpYDbFh7BmTS+sj/T7YDym7JVMqynbFy88dDw/WOkCz4IkYEJiCtK9nBC1RwUfWu7v3GUynTI5POS3fv1X+dv/8b/PN7/8+7TNnCAKGvP8lww/0rKnvbAopEuVX/GbFtUAnesjK7C9Eb0zZ9l65QoXX36BjeE25qBEWkus840l1mXZJ6DcvHuH6eEkFnsoWCx5b4v5zncJzNDRBqHsM6sbRENquyipqjV1AJVAv56yfzjj3rxllGdYl3HH5VgBaeaLdFBjBDU2+rg1aqJyinSwE6f/lAzg2OMURA1BbCqF80h1gL7zFn6+m1oy2hVrbCUjaMVqeRxahWx4pgVoJ1BUZB0qHqctDRkhM5AJ1gRsBllQQirPV+kge9MTq8U/Yoo/CI3/WWa8HEdCF+eK6bvi5zQ33qVpdo+OhNOkLz4L6jKYFmNUTRXkXYzs5DG41J/XY3n3huXOfBPplbS+Qnd3gIZgA0YtjW0XrmkFeuLIqpppNTn22pKsX2sMeVHgbE6WFQ99lueP8XfUafeLdLD4q/ct777zDvfv3eXevbvM5hUf+vBHuHXrFru79x/QomT1l1XlIorZRRbQ4h9ZfkfagM5m9IZDRmfOcO7yFbY2zuEnDTKPlcIaPI2v2d3b47/+r3+Dr3z1q4sMI2OEzc0Ndu+8QzPdxxihHG3QVHPasGytqGkMQieQAlLXzA72aYDNQZ+yGBCynEYDHZq9NdFvGp4RzvnjMoCjTNebJcCUQQhtYLY/QSqfBFz6LgXEnlb7XNXsV/99ElfP6Q/u/jFYNbig2ADOW0SX9ZkmFNHxaCLKqlHB4HEPMc7+qFwgz17YpM5WmAiP0jTUt+9hDud/JBbNCUMETnmsGjBgBc6dc1w430O80Dae/Xffob5+Dyuxf0jmXWQfxKBwAeReme8fHjOE1UKztHZPMZznl/EfRwreB/b395lPD5lNDrlw6So/9dM/S38wZH9/n2etOSzSFBVwGeVog+FgA522tLs1/qAh1J7vfe/7fPut7/DNN97i9u17iZnHsWxtbqL1Pnu3vgsacIMB4oR5VSWvzYpxqB2cLfTVk9UzJvOKYekYlyOaPKcKIRVtxYC2tTYJjvc/q+W44xeMX7pMtKjRi4JkOYPtbQpXwsqcPAtsnqPnrqZzvp/MZdFPSQBp8KalRgg4BE9rPHMRas1ptFzGrQBvfOoFcbpn+qDoSdtvnkgai5I61ysaYNZiqw/WJXmU1hMXlr6ARzqcBAItYpRz5yzbm9HyNqK44ZhmPgURNMsxkuxdiT9I7EbWNssA79MK2ufLx/8oSnMVvOdg7z7WZow2t+iPNhhvbES8fE72nT7VrcXgE9syKhEmswk0bUC90sxqDg8mKMJ4PF5aFAK9Xp/N0YD9m29w5urHcW5EPt6k3t2jV/pY3ZdiGJ3Gryh9PCMxHNRzbH+IWstMzGIBdeMS45KL65k/9inmZZlDL0St1ndiTwTb61FcvkQwxQriYAdg+/RumtUN9IG4SOgylqKbDjXsTAK/9b0D7t2uOKhbvrdb8Y/enWBDTeGET53PGDgS3pJJ6LPvt2f78ej9g21Iy9I58jPbmF7/EWc8Pj1OBfKC6R457tHxJiVicCm79+dsDUF9hbFC7/IV6uqANnjCwQFukGFxeE1owSEwNzDs99eqzB+2Xh+1lp9a4xeR/4GIfF1Egoh85oRjPiIiX1r52ReR/1X6bltEfk1E3kz/bqXP/6KIfCUd//si8vNPO1YSg3Eu48a1a1y/dg2MxSs0TZs03/XMlmdDimpYCRALC3jJFsIk8NK5F/nQS6/T7/XY3t5K2m9E7hOTsbV5nvnBNSZ711ABO94G42iaOvmNk4dflqmQjsBQYITSqNCK0qqhaZYZBGIETASBWuYtyRMJgcetgH0AF4VorRi6AK8QnKUpM5rMLmochUfjjT8Nvd+pkR3kRhCHJ+P6gfC3vrLDr7/juTXN+fJ1+NtfnfG3vr7Lr715h4MGIv6rYILENOOVKT463x9kVs+zzKU/jjpBqXlO/tIVwmj0zO910ro96T7ROpVFskjX2TXu7OPPkWARdcwaxze+BgeTGLincVjrKLe3UR9ob1xHmxbrsliqGCB4RcQyHoxO/SyPomfh6vka8E8Dv/mQwbyhqp9S1U8BPwVMgb+dvv7XgX+gqh8C/kH6m/T7J9M5/1PgbzzVKNP7sNZx4eIlxBjqpmY0GgJKlmcMBoP3RYvqEBdNFxAGggFvYmtI2zg2sg1+8mOf5NLZs4yGw4WmE10wltHoDJmFnRvfRH2NFn2y0ZiqnqNBFy+yY4hdSmqBMgoN03lDawKD/hD1mhh/V5NgCCk/eiV09T7MxMqcnLDJlgDS6XMf0HmFeL8yJ8eP7nG0ztXN/rRWw+NQtMi6gKTnXN9zoZzQsw2lqXlx6DlXBEr1ZFJT0GAWGVe60Bd+0OhZdy1b7RVNUmN0PMSnXrLPGpztOBTOo4x/zZ21dms94fMlxYJL5XBS8J23cuZziM8V8AraeJwYyAsUIeQZkhnECvOgZP0BLstX/PkPXwSPmpundvWo6jfhsST+LwHfUdW3099/EfjF9Pt/APwG8JdVdTWSMeAJdNB/9z/4NL/6uy/wj//CDv/2v34IqVjqpVde4dL5c6gGev0Bf+83Nvn7v/ln+eWfn/JP/fn3z4fY+QF90uYRXSCIZmS8evll7u3eZbM/xnYdc1W4+rN/gZ29go3RP83f+ev/Jhdf/hmKjavY0Yhq/x51U1HkJX/3CyN+/bdH/PLPHfJP/um9CO6qgbyeM6mVSkuGvTHN4QGswDZY51KPgqejx8puWSk5X5wvXeO0zpwOMJsxv3Gd/tnL2H4PH3HveJaeqQ+01eIi6QBK9fziyyNeH8DFS2e5fecuZb+gsDlgCBJwYtnsRTeBJRAk4BcIUOva9h+33PZHU7IIVTBBsd5jXGwherTS+v2yODom+8DcCsnllgSQRjz+k/QlpQUR5lVNf2DJsvSZaWhMTu4jim7v6gtIPydoQNoKUZgK9Dc3EPfgOn3S2pM/Ch///xj4j1f+vqCqN9LvN4FFAqqI/FPAvwecB/7849zk3/0PP8X/6T/5OCB86/+5hevd4q/8q7cQEcqyR1kUhKbmb/+9nP/Fv/URqjrjb/1XLXnvHf6Jz+0+1QOeRFG7jr9HnJm0YVO63qgY8qkPfYKeKZFWMI4F0wdh76DHX/if/9v8t7/2n3N1dBbKAtPrM5nN+Pv/zVn+hf/Ni0znhv/wb23xH/4flT//S4cYVWzwlLTsH1b0Mx9TONOYBHDOLQo+pBuoLLyrD6VV7eO0GDeL+Vhh/Kqd9ZGaqZMaxtcVzZ27yMY2Qgka59Dos3PIHbux3zdKBWpi8Ehk6iPlxc2c/lQYDDOyzCbLMCOIEkxLCBGawyb//okM5jlj/oue0W1LfeM6XDiP5r21YrWnFdwnrddHatVdVo+G6Mp9yPEx3dpwZkv5uX/MMO5rNPuxZKEGzaKAcwZvHHp4yP3vf4fheIv87CXK1H3uWdGpZkxEfl1EvnbMz198nJuJSA78k8D/57jvVbWz5Lu//7aq/hjw3wP+nROu+S+lGMDv70+mi8//y9+9ynJ3CP/lF8bxmig+KNOq5dtvvsn/6/97QFVnAMwrx2/89vh92zyrWrXRpa9WJRaMWSxnh2eRxtDOGiSwYPrdc+wfDti5/k2q6S4YS7GxhUf5tf9mwHQeX+d0bvj13x6tOU1GEhAPs3oOIgkoLlJRxHuEZ8RKH3f+lscrJoBJ7Yg8AQ0N0lbUNAsBiT46lPZ+jvc4On1WS9cHOWHu02JoYgaHAcHgRWisEFaKlLpgt6hLSI/HXPkDFWDvL4mSgt9xf9Shwt++jTbTtcBqN+/vx3MfZeQnuZfi5w9n/EEExDDqGV6+4ulbg5GYxpB5k+pXfIRvqCqMETJaDu/eoSjKCMz4iAbqjzMHp2L8qvrLqvoTx/z8Z6e+U6TPA3+oqrdWPrslIpcA0r+3j7n/bwKvisjZY77766r6GVX9zHjQT0GWwJ/57Dsst4fy+c/t4SXQSmDn3h1+/7/9R3znW9/k6vbvkmcR16JXen7xT+53BjQqGkNqqZo0tjD0hNQns0MQUIUggVZ8avi4Kr1YLwJbXRsLsz/eJ2bxGGigmbRoBdsbq5jsytZ4hlY7HN59BwmKGfQw/R4//5m79Mu4MPpl4Jf+5OHiOUSEksCWBKx6nDHUdZ3c/EqWO1qBoMtsGji+hPwonTbL4Mg7O3aRLgJjXWWqAL0ecvkS2h+imEVPXm90pU3ds9v0T5O/f5pzY0vBhMGigUwVFxRHQPAITapX9og0oMk6lDqtFIs3DzIAEegU3+eF+auQOtzFAj3Z3ABn14/5I3jWtYpZiEy/9ZiFuXzMOckthE3P5AMqPvIYcYsUZq8KbQ1WGFy8gj9zhnw4xHZ4WmnvhPSvAlVd0zYNXYQswCNxrD5oV88/y7qbB+DvAP8T4K+mf/8zABF5nRgLUBH5SWIdw72HXz76rRXh3/wXvoKo8Pd+9wV+5Rd2+Cv/ygGBWBB07bvf5Yv/3X/Lx3/io/yFXzrgQx/7dd6+81P80s9N+Mf/9B7i4xQaVdQYPLbrXQ9qYnsV6e6WtDEVxCjdnlww+MVxifkngLRghNBEt0vXZKTT0EVB60Bz2PDOP/g7vPhL/yQ7ewXbGxXv/qP/lLe+22fn2rfYvvgxKEvKjU1++U9e59//axlf+N0zfO7n9/kLf/ogMlKJ17Ua2JCKvdZRqTBvakbduKzBG5v6kCXz+knebvfIT+BvjX7SVasoCduix+DKCwTXIwSh60G7aETDcjM8juBZ/fdZ0Wnuv+wAEefZi6U1Nn6jQhCDxcZaDFVi60UBYnc3oT2mgGtl7bzPGUlH6X1jvNJVp8Sd51yGvfoiWjiO1ho+LrzGibdcyVDy/nQtLxVJjL+NGXIn7Byjghe4s5sjFrbdDE3dt9R0+XQ28QtBW8X3NrDjs+SD4eLzLgWiYywRieAexgfKssAWJd4Hqqp66LifmvEnP/z/BTgH/F0R+ZKq/hkRuQz8DVX9c+m4AfArwL985BJ/FfhPROR/BrwN/A/T5/8M8C+ISAPMgP+RPmKV3d3b5Fd/Y5NfedWQe+Wv/PNf5l/7576Cbl9AuYDzBlsbfAhsntmm7Pe5e/sO/9gnv8P/8k+cRV2eXiQQAtXeAVDjQxuDNzYjK0e4vA/OI2hyj8RUC9tagmGR3rVoGM0ym6cjDYGd3fvUTcO5c+fInIuWhcTUSrzSzBpaDbz7G/85poiY3qqOM5uXeOvtt5nsv8Ow+ChZb4N6eMAv/9w1/sKvNIj4teUXXZGCVYWq5kAzTNUAAcRgxGFcjpf5ytJ6/5jH0SyahcVA5/oigdSB9YqtGmrrCBIhmVXABRNrD56SjsYZftAoNhuPKLBBPEFiWX/XnHtBD3P8/zElIaR3bDBJ6IsW78tTriUZdNr0adfDqSxeT8Dy1rdzyvGcjZc1rXezYA4Lr0C6ZuU9FCU2c2vfL2xjieBt03v30GrOLM/I+wPy/oD53v2HDvlZZPX8bZapmaufXwf+3MrfE+DMMcfdI2b6HP38rwF/7XHGsj8Z8i/9r1/mr//ld/jzP/02IOCT91rAo5jM8eFPfpxy2OObX/xDrr39DqPRmL39PYYb21gTMVLqtuXundtIdQBtA0ExLmO4uUl/vEFRlFDmeGcxGGyIWntrwlra5lHrb5XJ3Lp7l++//Taf+uQnuHjuPM7aaNonqwUPOg+0riXDoaUBE9gcn6OXfY+7N77BYOs1MCVuvMF8ukPWzilcnrKG1ufHqZJ5zywIZRNb/nXdPl1ZMj/Yx+lq0+gPjhEuSs67vzVpxHXD7MYt3JULaJmKdxZNOp4+m6PDX3kWBWDPnqIF4IXYNlOECA/o0/paDdFHheUHUXg9KQlLDBxtldmNa/QuvgBF+Ygzn56OUwiOtSw06d8imIftGQmEAIeTCVnZJpelPKgRJgpExp/3+nRQ1AsXdFLLVJX5dEIRWob9HkED1WyGOAez2UOf77mr3J3NLb/xB5f4/J94G20qfBPI1aPS4o1BrDJwQ157/cOc2driO996g2+/+SYths/+7D/GeGMzvrrMkV09i3OXcfmYPM9pD/fZf/d77Hz324yGW2yeP0feL7E2Q2yGF4NLlrnSBajSwNJ6Wc0RvnTpMjdv3eYrX/kK2ad/krPbZwghYI3F2NigAQ/tpCH4gJMCKTzGOc6du8h7d75LPbtDb3AV2x+g5ZB6fkAx2OIobnlnhOYCNnjUB4JvMc4hIuRFyYH3lMEnH6MjOS3fNzrqH+8i+woJiVJp25bpZMqoDcsMD6A1SwfH09LTMu9n5WZ44DqiKC1GHUYD3ihGA4ElUN3KwTxXGr8KiiMCN3hC08CtW7B9Di3K992ldVy20In3U41YV+5hypLgrONTP9kjlxlOWzxHmMMKBVW8MZTD0RpEx6pt0LYN1WRCT4TCAGpwRlAjlEdiIUfpuWP8vdLzi5++hh5OuXf7Nvs+8MK5K+nbqM2KWopen/NXrtIfjDhz4SKHhxO89wvoAskdvdevEPqWkPWoXQ+qbYaXRrS3b1Lf2OH6u+9SiDA+t025tUWWFRh1qOlwWGTRHrALzHQkImyOxnzsIx/h69/4Gl/5+tf4+Mc/wf7ePufPnWFjNIoasBL9ffMWmzmcFYKFja0L3Lx7l91b36L36gXEOoqNczQ336ZpK2xeRm/yihmqgBNlbKIV1DYe52JgsChzgirzg32q2YxiY5Ni9GSVgo/jcz26ubrYiBLdPbbM6V86jyl6BLWo+AUkRadpPQ0DeBbnw9Np2quur6PXMUTtsJWMGsdIZjSpe1e6MdG3/+CY/rjQyXMXhZkgBFWM92t89Vl1/zppvT7WdVUXbspjv8YiUjAYK0WokfmDHbUW41CYtx7bH5Llqyib6769tqnxsxmFMZjYwQIVQytgf8CCu+8rjQeH/F//vbf42c0vcv3dGzR5j/65i6hxiBqMmvUuTgqbG1v0x2P2Dw4o8h5BkvPDCu1Gj3YASMAwxxQGO97GXBpgz2/Q3LrL7PYO9e497N27DDc2GW2fI+935lmHtn88WSNcOH+Otvkw33jjDX7/D7/I7t4+n/z4xxh++EO4VPELIF7xkxoRhx1DVvTZGm2yd+vbnLn6KVx5hqw/oCkHTKspwwTLupp1oyJYYDs3TKyhbQL04nfGGLIsI5dAaGt8XYGOTqVEPg1A14OMUxZjNapInpGdP4NKjviU4ohiNSR31JPd86Hm+2OO/VnQscxPBdGcYBzfu+u5fs/zJ1521BgGRYTPFtHTJF/9wNODcxl71MbMOrBFgVy8hCl6fxTDeyQ9aiUowsFEePuW50MvQd8EJMReC6snB43P2wDFcIhz6yx6cagq1WSC9R6XuYX7p4NofpSb9rlC5zwzus8v/okb7Owe0G5vUn78dQYfeZnWWowaDIZgLJboxQgmQhUY49jY3CIflAleAVBoLag4THCxKTI1DTVtaTEvn6f/Ux8i/8yHCa9dYj4u2J0fcuedd7n39jtU93aQpkHFE1j2uF0scFXQgBXh8uVLvPraa9y8eZtvfuvbfOe736dp/SLA2gWHtfbUB552FnBkbG+cozq4zeH9d5HUbSvbOEPlA8H7hca/hEOIhU89GxlNVXcZI7F9W54X9LOMfuaQU8I0i8iiivJJGOHJcAkxiGtEYnDLLt08Smo88xwwvIdRTM3L2JlnfO0afOM9z915xls3A0275Bgxq+yP52QcDaquf9fSYRRJlpG/8CKUz57xn5ybf5qg7QozfthhouzuK1/9qjBvHB4B7Vx2q8cJXhVvY6B2PVS3/C2EwOxgnyIpqsnuW+yJR+3E50rjb0OLN4K9cpHtD79MONNjtjujqD2qHlJSvYmu86jdJ3eMBAgmvmzvffQni2A1mmSxyApIueRBPJlzmAvnyM5tEXYPqN67zd73b7B/uMOwOmRwOKAYDSmHI7Kst/6Kl6Ibay1nz5zFWcfhwYS337nG7t4+F8+eWbcdBbQNtHuCCS2DwZheWbLz3rfYPPshgi3JhkOa3pCqqrBdW8nudAVDYO49cw/9tl1cWIzD5QU6q7FxWKeiY/PxHzOtcnVKOnNZVAhGoQ3I9BDT79Mah00aUZuqj58WZ+eDTn98LJK47u7uNUxnjl4vY47h3Xs1r59Xchf1h6VYf74oNkNK/SIMuHIQs5ke9JI8+3s/wXrqoi7HrSYVoa5hclCTC6mfclg/Q2LgtvEtUo7Iyl4y+B+8alVXNPM5I2sW119AWJ+CnivGD0J+YZuz53+MWQGt9UimVFozme+RSXzchq41o1mRlpomzTBv56hL2iyKmrgAjQIaUGkwCI0BjMGGHHtmk3yzT+/VC/j37jJ/6wYHt28znBwwGM8ph2OKosTleQqaChAWyAg+aeibG1tMDifcvnWHC2fOrGgTJiaPSkArS61zsu2Mc+cu8fbbb3N4cJ/y7EWssZTjDWY3blIUBda5ReYBKTfeI9Stp/EtvgsmG4tzWWzv9pRxwtO4T06GeUhpboAXwc/mNNdukV25SBgMsCH6s1sTXUFPev/VY3+QSSQQfGBY5mir1FWg8h4lZoAtE0miADyKYfPHmQIWqxZQgrZo3aJ5qnn4AKqUT8TpSaQnsvn47WpIVhHK0nL5olIaj/GCGr9g2B0ASUCpQ6AcDrEpyy+austsHhQmk0OsKs6AyDL5ejUr7mH0XDF+6RW0fcsktHjToiqYAtp+w63d93Btp1XGFMZ1SkzRKG0B9mwPyXQBcbx4NUnrX77WZAmIwdgCzQroDymvXCS/vcv0vRvce+c641s3ObOxTf/cWbLxMLmZoGgjuFO/X/Lpn/wkZ69c5P6dO7Rtg/ceY12yNiLaZnyhLaGBdi/Q759l6G6yc+2rXNm4gFohjEp0v2RaHzK2mzE4JkKwFbVa2rJkkDvaxqNti+axE5eUGfW+IUeiCfTQhZ3mfEVjPtqa7mH0oFnf9ZJVrLex33FQpJlQ716nPLdB2x/ixUa4C/UPnP849CQVxx84KYChnxl2Zi3VRKg0BxfIXceUkrtHhM5z+wP7PI9JRhVvPELA1RXtu2+jVy+De3TSwbOgh2Lv6NGUvbg/k7nK0X0jopy/6PmFzQDWoEEJSZmzcYdi1DILMC37XN7cXAnQxhTzRUabKvXBIYMQIDO0oimdPDZsEbWPRHB9vhh/l01DyvoQhVxwW33oJ4AvVfSEyEYgSt/MgJQ2mZopY+IYR97Rjxbpm5lDNke4XkF+ZsjgxYv4W/vce+cuB+9d4/xLL9Dr9RGxeIkt5oo85/WXX+LqxUtM6zmDsowSX+INjvb/FSDMQVTZ7l/gztvvEl7axY3OY21GtjEm3LqDz2skd5iQ0YYeO8GCZIxHPSb7+7RBcdG5E60DkUV3rsee/6d2m8S5aGwUdFYNiqN1Ja3N4lNLoINu+KOGJ151MT3zDlREZgEtZ8clFwbKf3djTu1n/NJPjChc9QA+TPfr88D4l2CGEmNzjVLtTOidg+CeLij/wL2OudZxa3ntuIfe+sEvrQpl5uhlEGYzRBpEcwSbivKEFph6z2h7izxfJmesjAAFqtkMP5+T2Ri3VH38tfdcMf4u/7sDG5P0t/Qc9GIHrCABe0xzZk1asQlmGfGW9TS5R9Oyoq4VkDLDlmPyzSH+3Bbh3Cbtt97j3nvXuHLlCrY/pE2mnsNgi5xhkeNNBIqTlefolAnogpyKhoBU0DNbZPtvMnv3O+Q/dhZjHNlgQJ0fMKvn9F2J4tjzlvu2ZCvvU1rDYWgjNkhSUJzLoj/Ve56E9T+p6b1euWtQExCNxWXaG9C/8gL0Bmkm/CIGsHBgHdHcH4chrJ77pOet/v1MScFIS+Vbzp0t+JXNEaVreOlsIDkhVw7+48/sj6OoSxs0L8jPnY0W9QdAq0y+S2DoftekDB7/xk96D0IbDA7FpHijUVLWUnTizEOgziybo/GxrtAuhlDNppi2webuOOPiVPRcZfXA0leGdg25I7CalxY1HkxIeDCy9hNTBD0iHpWAl5Dw8B9vQ3cQDSZoChoLwVjYGOE+fBX3iZeZ5nDr5g2qaopI13UK1BIBuEJYMP3F3TsciM6SEY0aYRCsZIwGI/6dv3qGn/n5Mf/Ovzsgszluc4t52yINVM6yYwU3yCjznOADNii+aRbalcsy1EgqLDndajquuvFx6GhwVjSic7oQfw9lTu/sNibL0xkr1/8Bcc8/icA55ZWBnN1JTL392VcDn3lJKfttZBVyZL5/QObjWVHXcyEImCyjf+kcpoiM/2kC+g+95xO4LR9GXbZNBbzxHWX3oI0JfWQxHTfm9xBUmIVANhhSlCe3l/TeM58cULDCvJ9gmM+Vxp8SmtbTm6Rr0K0L4KvAcVVtsSpy1WJgqVSejlb2vUHoknRVolvCqyJXz2CqF7n7xbeQ27fYvngRil7UYEMMWmadu0rieFchCroxRUmfFqkJ/J//iz/LX/+7PwkI33wjNm38N/53Cns9DrzD90oyLONBTuMbJrMZNkCYz9DREBGTGL+l1YZHMf7jfPTdv49igMchWi5rDTRZXxHAyjUNeniADC2Y2KAkxmj0xCE+bnD3aQKF7x/Tj6/diyAG3r1e08uEzZ6jX7Rs91ctnsVo0t/LYrA/rm6fRVhUQAjYxsNshjU5jXlw/z7Nsz4qnfNp5jJaLFB7yze+6dkYtYyHXSwmxqmMCpXCXISt0Rhjj38+gKapqaeHjJ1Z8oLHHtVzqPF3JERoUk+Hhb1MdDJJw179gYiUGJKwIDHdJ902KhGBs7Wy6CplFMRailcukn/0Be7Odtm7d4fQ1tHVorHZ+PIiJFskaeBJKKmkOIWASZWsv/b7r7AaAfh7/1UB1iKjLe7YjLbscW40xqqwc7DPZDIB72mrOZJwvo21GOdOXRh13EZ4HE3sAQEgifGL4I1BFcx0yuTGDULVYY906WvvT6e00479qIB7fzJMlCCeXt9yd9LyW98x/N73PG/fNhGp9CgzWknleD9iDh8o6fIXIeCbGYfvXaNu4jp4lmm4J63j4xq8LO97esUCwIpja8PQzy0ddljoejKoMPMe1+szWPTVPS7GANODA4xvsQlOpatgf1x6bhk/pGYnmmATdNUK8MRM/uVPNLuSlz4d/8TLKmnkwjLgK6qLxhrOZfQ//CL5h69wa+8u050daBsiFPTKotJu4SRBREAiNm8aYkigvRl/5meusdwtyuf/7AwPHOYFs7LESkaB4XBaU03nbAJ9Dcyq+QLmVkTIypIgyxz5k+hhWTGn2ZBHtey1IKVG4SwSEUnb0BK6ANYxEd1nhZXzQdNphIUNUIbACxfgXE8pqBebfuVKyfj74HoHfxDUhXFEwbct7b1dfNusH/OMM7NWLThjzJpF+kTzKtGVXBbKZz9bsDUIyQXdxu5qGFqFuSqDzc0YZzuBgm+Z7+/RNwa7ZBFPxKieM1fPigZGZLarJqMiyZVwzJnKAlenO75rZvAkSyr6+buxaNLWJZruGChLej/2MtIq1968wYvO0dvYREyWzFtZ+nCNULWeee1pReP5SR54Aauef+2f/xIEz9/97Yv8qZ96m3/jXxkzacbs1Z7RaEDmcpRApp4zxrAVPKjnoFWCQsyWFlxe0IaAo3MhnLzYVzfF42hg65koD1o4ACYEVCyhP2Bw5SpSDtJ4Airr6bgnuZ1OQ0/LJN9PJivEZi0bhedTr/bZ3Q8U+QZnxxXGeNCjwvP9Hc8HSV1fBkPalxot8jwYGpY9d1fRVZ+18H7aWoGY8plQewNY2yChjnAk+JhiopapekzZoz9cQqTIMXG2yeEBOp/RS/n9T/O0zxnjXyjrceGk6NCazz/6E449z5uw0NSfyMlzJM6momtfSvqitcmlMx5SfOwl2tmcm+9d47Kx5JubpAhBJBHa4Pnezdt86fu3OaxmBI1N40PwiCjDXs7r58/zl/+5mv/tP3PA3Wu32X/nF+H1jzHqjdnoWyb1jKppGLcTDJ6MhkCL8xm+8WQ2LoWsKPBBMSEQQnusuSlinmpTHM2YWDxqej/eBNCAqAPXw22epZUcaT1I3DBmBcd8NePiaehxz39W2vWJQlPjqpkaw9ffrvnGd2eUec3nPgXj851i0IV69OHX+mNGnbUcXbAG0+vjXr2KlBGSeTU286yY/qOq0B/rXXd8ROM13r0W2Dn0fPz1kkymyRNhaUWZq9Ifj8myPK7tY5i+956D/X2yAJlN6pEKkrCMHvfpn2tXT2cGLXqULqTp8T+dwAhP4+NJyVmxjmApfCTh3sviTqmFy8aI7CdeYX5uwO3r7zE73I3ZLKntI0A1D3zn7j0GuaFuG24fHrBd5uzP5tyfz9ns97h5f5+d+ZxiMCIbWvbf+gqunrDdz2ka4fbuhN29uxSTCXlX/CQx9FRV88UTZHkG1tDOZszu3GZy+xaHt29zePsWk9s3mNy+zvT+ztpKE46VpQ+fqeMCaguPpSz8nw5FUnViQPEYItTcMp3x6LUelxmfFNw7zTknuasej05q/BETA25OPfen8MrVMRfGOW/dF2ofhcL6PVOs5imbj/8gUJrdGOMSoS1K5PJlmsT4T7Qan+ReTyDAFy5YQINf5oFITKyICQqABCosX3rDc+8u0bOsAjiCCcxVaa2jHI8w0tm7Ud8PuuyCXc/ntIf79KwsU8xP8F6chv74r5A1Wuj0QMdm038iy+9O4Pxm5fjOrf5YS0oAWXkxnfmxuGlkbmblY0Eozp1h+BOvMRtl3Lt5g2o6wcYWvAiBw7ZlVjV85vUX+YkXr/DS2W3+5Ede58cuX+RDl87zk6+9jHGWg6rCkbO1cZ529x7+3e9iqNmZzBEfyOuGap6YvAgGixNo69imzQA2y+lvjFDvMfMZdj7Dzae4+Qw7nyOzGc0sNryWrkHEY66+4wpjlrn8GpvQY6IYqGc0O/egnqcpNEkTfjYujZOhI05HzwLlM13p2E8NhnpPuDA0/OOfyvjFTxjCTGia5f2P8qznReOPSltMi7Zi6GU5biWj51k+52ky0Y4TzKDgI9jiQrFUA2qS1SIoOaqWi+cMmZnRgS8EArM2UPQH5Km5zAqXWrqpVZns7eF8S5a8nItGS084Bc8Z4/+jpc6dpClAGxmjSfr9SsGNLgVMSALHXTpD+cnXmOC5f/s6flZhQ+d0igGi3Fl6ztI3kOeG0kLReEyr4D2qQmsyit4Gg/6Iw299ler+HUQbLgxyNvtDZu2c0MZG60YMhUJTzeKiVjDGMtjYwOU5w7LHVq/PmbLPdtlnqzdgXPYjVOwzZL6LDSXdwlcMAUMgzKbM37sG8xnRbgogPmr9Kk/t2njaNM6noeU1jt/Bcd0YjOTUtaFqZsybBtp1qO/jxvLHnvkv/PoeGxRb18j9e9i6eeSpj0vHAf09zO2z/l2Hj8QiEG00sW9tMaZHbjM+8dGSF640qNSoeCDgW4tHGG5sJCvtmPcIVPM5s/1detZijnGxPsmb/hHjf6YkhKA0raduPE0b8DE95hi1OCZRehO/F2dxV8/R//FXuF8dsnPvNnU9Q4HSWJzN+MbNHd68dY/3did85fptvnt3lzdv7fDld65zOJnRs44gLSFTNrY2qPbuMH3zW1zIhXE/w477hDynmc8RjQ3iDdBWM9qVbIm818cVZUQJRHEEcg04XY0+PFuN+4E0uRRYVt/C4ST690kQGis+0Gfh034aP/3q/Z85sxVQaegNK/ZnDV96R/jy24ZyGMiyaDf+sWfwJ1JaC5JSH6uKw+vX8dWypeD7+exHLbjjEhiin10JbdslGcf/S+z4p2LxueB6wisvBMa9WVL3ojOo9uD6A8r+YOEEXh+EoEE53N/D1DW9Z2jtPHfB3feLjnMFHPdZ4z2Twyk+KNY6siyjyB3WRP5vFvUEugj+RsPPoEWO/dBVhkG5/eU3QVq2zl+hKAuubo75g++/x97BjDrAH7z5Xaa1p1Xl69fe4WNXXuTsoIeRhv/yd67yhT+4zGde/gafyb7C+MXLtBevYvKMYrxNdecORVtDVmKdJdQ11XRKNo7VsXle0huPmdye4DSidTogAreFqG2LPDXvP94/rov/R5ebIRQ5waTGNrK0gZ6V8Hka6pjBE8H4nqBhrs2LKmeHwsVtxx9+e8q47/iFT5ZktqVzNTzs3j/wQHQnUBczssHEeJcG5vMa8wS4NO8XdVayer/wz8fMQYCAl4K9Wc7ACH2aiIEVHKC0CjMNjDY3ManZygNonwJtXccUTmtwT+HTP0o/YvynpFP5ABGaxjOvakJQRFrmVcXMWqw19MqSssgwptP3hSxm5dEmIWDKHPv6ZYp6xr2vvUPmSsbnzvORS9tsj3v4kMDkJLp2kAwRz3Z/QJk7/u7vvsC//Nf+FLPK8TfzD/Pv/bMTfuXs73L+T23g+hvY0QbV3n3msym9LMMYS9Yos8N9+sMRxkaswOHmJtPDfQ7nM1wWg6nL7BFdBrNI5e1H5uI0jOa4RucxKG6SKDRk/QG9F17A9PoRawkTMdrxUSGUYwqZnoAeZeY/7jWeGUlG2ygvns24fHYDbMC24ANYsy78Vm//xz+tM+2HYFETMHnO4OJlJM9ZxWUViRluz/zup04RVoJvsbJMsUYNIoHaC//wN2Z85jM5L23VEGy0tAnMfED7BeVwACdcOxDhl5nPKTIbFUR5Nk6aHzH+J6CTALpUlappaIOiIXpoCdC2ASOC9wHvC3q9DGslYfQIXliguRoFHZRkH3mZZt5w7zs3yCyMz5xho7edXJ9Jt1AFDMGE1Foy8A//4AqzKr7WWZ3xpfc+zp9+7//N7pe+yLlP/TTSG5Btjqhv3aVoG1xmGBnH7sEBzZmKwkackCzP2ThzjnvXrjFpPENnY+FJWt/eB6w1i7S1xw3wrs7b2medp0dSrMTlZFubBOsggEqCbJAlrMTTlNYf9e8+CcN8UqFz0nmrwswauHOQMa8CH31JmdXCH7xRcXag9ApYyR5AVf/4V+yukGhUAtCAcRnZ1hbBZdF9unrc+2TNrGZHneTzV4CgGNMFd2N8CjJUC/pFRmEa1MdMHyMtPhhmqpTjETbLFsV3C2Uq3attW6b7e5SS+rg/w+f8kY//FHRcRP+4HOK2bTk4mHCwf0hV1fG45KsMClXdMJnOmEwrmiZaCF4UVMlCBGvrqmbtaET2idfwVza4fvcm88NDFLPQhhWLil3AK4jGyuPPffoavSK2KOoVLb/yM/cYbI6YfPtb7HzlD7GTPcrRAC1L5vMqZvsYQZqaycH+mlAbjMaMt88wV2GvamgwaHLzdEbnwghged5psXq66si1ee3+TQJFm4bZ3h4hdQuLwi6wnj8a6FIZnyZY+0HXAaycyUkhuso7/uBNz9/7wyn/0W82/P9+q+L6TlhI2qNafvfzQQuAZ21hdHktodMofEszPUTCB9B+qxvDypo4bk67ZR95wOIsUENwPWzZ55OfaNjqN0k+e4J4quDxzjEYj5eWgurqNgJVqumUdnJI6WJk7bgpfhKFC36k8Z+KjqtQPeoaEBGapmE2nR+TYrfcpHXTxobKAbSXkWcuppEmRtcaECxGA+V4RPjURzj43W9w99ZNLhYDXBFx6UUNIh6PxQSLAF4Cf+Zn3+Wv/+Xf5B/+4WU+9+lr/NnP3qBtL+KvX2f/jS9hJLDx458gG28yv32bIrQYZ+hZy3R3j8F4kyKllhlrGJ87i0eZ7e+x17aI94QsBp06rDtDjF10c/E4ZIxZR0JMpk/MY/JoNaO+foMs70M/RxaGfpcUu74hHpeBPw3sxEnXenw6+V5eDaoNjSoHU0OG59WrOXnWclIPwmeZ4/4oetrq1pNIFynVHkTR+Zzm2nvIK69AeTKswVPd8wnrQdaqbAW8FNw5LJi3LS+dbaFq0KSYBIVpq/S2x5R5eeI1fQjMdnfJg+JcShE/qVjmCab/uWT8i3lYKbJYfLoqmU9zrSSGm9avVYh2P9bGKtagynwe8+GHw1H6flUbULqmgm0bmEwrWm3YHg4x1iTohe6esR+nQTBbZxj/xIeZ/DdfYu/ePbYunsMYl7C8WaBZkmIMRpV/4qff5S/89DuxyQuG3BRsXTqP3LjGrW98hSovOPvKR7BFybyuKTNLbgyTqmJvd48z53KsiVq9cY6t8+cp+n0Odu5RTSYE75nNZoSgoCE1blm2/jvJOlqdu5M2VWfuimra+Eoplq5DaTT/A6hdfdHAyQz/ONfcaayS0zK1J63gPemcpRCEvm34uR/P+Ng859WR46CeU4w1tsdci7ToIuZxVFOF45MSHjWm4zJbTjrnuHqGpyqk0+juM+qjhdnW6O4ewT86nXP1mY++x4etkW79tm1LVVX0+8fAI68ZZ7r+O4YgLfOQ8+VvVPTKnJc2AkJLbB4ElTd449jY2MSsxgXiIBa3qas5zeGEkbPIKYO6uvbbw9f3c8f4RQMPlnGlRbmYmsfxAYP3cDCpqOoGBIwRbAoqFUWOdZH5z5saY2TJ6BeM/OjGgxA89VyZ5Z5BLyL2BSE1GAmp2lgwVjCXt/E//gK7X/o+/fGAQW8Li6bewdHtodKtyS7fZekCCgLG9RlffBm9dZ3JH/4ms9BQXvgQ08NdysKQ2z59MUzu7VANhpTD3qKgzRjLcDSmHAw4PDxk7949ptMpbdtijV2kpIYQqKoqtow84sI5LoOnbdvF59572mYdIsIawfcGtC+/ii17aGii3tS5ezDpfLMIeh1nkh+32Y9Lzzt5DTzIOI4ye+/9seeejgLHdVFSlBbPIHeIWBoJfP0dOH9VGW6CW8mE0pREfhohdBIjPE0F82nm66jAOK0AXb+2xq5zWEQ9wQqaD6O8PzL2EMIDCsdJ2vtxsZzFu1OlqaOLtq7rWMUuXRVtp4h0vEVZ9MCVuBbRDCRw2BS88YbhT/18hbSpYl/mKAUHAezGgDzvLd20a08NqoHDgz1caChcXNcdLMODsx9HFNJvS/7xQ8T4Vdd/hKOSUngC3k8IgaZpaJoWSBAC6VqHhxOyLGMwGACGojiuZdr6LbuvuutqmUcsJ7ruWgJ0kt5jnGXrlRc5uHaXw5075JdHeBfZsg12Idh+9Xeu8oUvXuZzn77O5z/73mJ5duSynNGFS3hRbn3pi2x9XMk3tqgPLcVGn8IpVT1n995tzudXMVmWVptgRMiNYXM8ZlD0qNuG2WxGNZtT5CXOWZxzzOfzxSbsGPDRzdb59r33DIdDAObzOd57rLULhmyM0MsysrzAh5gtFQHalE7DqqoqFpSl+azr+li3zXGZH0e1U+89bdseywxPYnht21IUxYLheu8fy71ylGEdFZpGPXfuC7uTDOMc37tdUTUFr/24Im6lYU8AI/YBZngcHZeUsPr5cYLzqBbdHXfS/U5rKXjv167XdrEcETS59SyKzUsGV67Q2IK6rmmahiyLLp+qqhARvF9a5asZY6tjOy4GIiI457DO4UMgAy5cuMCgP1js2dBG+HNrTLJGVwWAAS1AAoYhTjyf+JjhykWPSoUEi1BSh4jQOx6Ncd16XBhtS+utqRvmBwcMjFkWbMnDWNZSgHS9Bf0jQjzPFeMPIdD6lllVk5UWI10Hrk4XPuL2OSUpoIuFAxqi06auG9q2oVcKdbNPNa/I8vxY7fbY6yrxGt6TR0CaFbkkSXopagQZ98k//Cr7v/MG/cmEfGtIFjRluESm/y/+H34hpnH+2uv8jb/0m3z+s++tjUMV8qzH1rkLWL3Fzje/yPDyK8j5F8h7PfLc0nfC4f4u923OxvkLZLlL44lkxWB6JTkFRVnQDlqss7jMcfbs2YUW/7BMmdXNORqN8N4fu2mDD7RWwXvqpmE2r46YsxCCUpYlWZYhIkyn05X51YU2d1Kgzlq7EEL7+/sYY47VWDthdbTgrG1bhsMhqsp0OqVpHq+ytHv2br729vbWGH9hCw5nNXdnBfMq59UrffZ3Wvb3D8ldEzk+gmrABw8Jzv3w8HBN2K0+Q/d3R23brs39dDp9pPASEeq6Xig6dV1zcHDwgNZ9nPBf/Wnbll6vh4gwm82ok8ZtUt2GFyFD6Pf69IdDprOGaTXFGLMQ+N176ASRc24x/u6drb6/o0kFxhh6vR55ntMf9LHGkuc51thFFzDftgQfludp5C0hCLGCvEFNgNwxznp86mNCr6xQ7xEEj2GuDa6Mz7HuIkrrMvH+6eEBzGYUWR7vI50m/2jqXlv7CAv0uWL8CjReOZxMsY2QZ4Y8y+Pmli4E82S+2OjH7nw3KfToOyw9oW08s3nFPGkfWZZRlicHb7qN0PqWpm7IXZkEf3LUaHTXqMb8XYzBX3gFPXPI3t07nBnk4BySAKG+8MXLyzTOyvGFL16OWv8R89mop8gHDC+eJ7x3jcm736OZT+lbYbh9kb61qLTs790nGMP22bO43LFYnJ12IXFu85WWiL1e79Tz2f10jNY5t6aldUzDps2aB0/Z9w8IEYBer0eWZWxvby80xo5OaqHX3SPPc4qiYGtr61TjX72eahQ6ZVmuMdTHDS4bY8jznI2NDWaz2dr3xpbkVcG1dzzGBH76Q5YvTqIbIroBYkWzKlgrC+ujG89JWv9RBp3ncZ+UZfnAHHbruWP2xhiMMYvji6JYm7ujc7Aad1j1u3c0Go1wznH+/PkjsaCoIVu12CInc45h01C2DdZa+v3+mjW3ytS7519l9keZ/1EXlHNuIciWcxN1+qquI1cVSc1TYjp1NT3AhFjhHkyPYApyY8kHE0IdU1GRQKvKLMDm5hY2iwkai92UdDwUfNMw2V2mcK4ctTjnKD3gKgKa8EPE+NGoAVZVgzaeyhmKQinyLBZOCejSG3a6S+pqwHIFgC3dcF2rlbQ2TiudI8TDvG4oywKb4gOrsYj4m8M3JY1ssf1hw/T3/j66u4+eOUssBLP84qev8zd/7XVmlaNXtHzu09fXniHeT0ECqobC9dm6dJlw4zrTa9/nLpAVA/LhJnme0W9bZjv32GkqyvGIwWiMddni+RfXPNWTPvjcRxnD0Q33JDQej5/43M3NzWM/X3VDHNVWOw0zy7IHmN+jaNX6sDa6yTY3Nxeur8X9EZrcceN+zaAnXNgwvHxZ2N4eU7ou1tFpt0KW5WRZRq/XOzbecZwg9N7jnFsIz07rXh3rUcbfjb8sy4XV1F139fujjPbo56t0/vz5BxSVLj4W25ODS4x49bg8z3kSOlXwWWLNynReYbNsUUOjQJjOaSb3GVjFSMlBNeCNb8EnPubJqRFvEBMLLqe+wfRGlKPR2uWXQ4i/zCcT2umUTRc9FqpdPe9DPAfH/B0e8WzPF+MHIrOMefPTWc3h4Zw8d5zZ3qDfy3mgedEjKFoRnqAR2yZqCdGT5pxlPp8zn88IIZDnGWVZnDpgCPHFN01D03ps7pYBYSxIQCSA79NWQ3puk42XN/G33uLwnXfIxmeQLG64z//Mu/w//tJv8hsrPv6j94IEUS0BG4QiH3D20iXu+mvsXXsbV/Q495FPYHsjRtZgCBzev0tbzWiqirw/pN8f4FxMH9U1BeTBTJLHodMGAD9o6p7pUdWh1tqFz/lJyTm3cF90pOrpzZSPXs14+byjcC2ffLHHsJdhzDpuURoxxpjFWB5nTkXkAcFzlGIsa/2cbuynyZY66b6r50qyzlWXiRkLCDPRE5ngSUH8044hqffLIkLAB8/e/gFNUzMeDyPkokaY5OZgn9y3DPIMTMH+DL7zpuejr3lsHshM5Ea1Gubq2NjawiVtf6lArYzVeya79ylMDNx3Xx1VA09Dj+on8twx/m5CfQhU85qmbamqmHaZZ1u4bBX49BSk4Nuln7j7t9PUrLXUdYW1ljwvHt/UJwqWumkocrfo/9uBNwsWx4ggY7ZGPZzJcS//OHtvv0O5v8vg7PZiZXz+Z97lz60w/GNmBzQKlCAR+tgVA7avvohcu8bOd79JXvbZeunDuDKjby1ZWTCrK/Zu3sD1B/itbQbDIVlZ0kEks1jExy/M02SR/CAy/ZPoSZjbSfSweFDU54W7u57rO4GPXHZkGbFpjjnC7jtNVNc/O2msR++77mJ5vHMedd6jrnWqjJ+FEyP+9ahrPi6tWbAasfDbtmEyOWRvZ4fMWKRtaesKCYFqMiHzc0ZZH5OAEV2pfOgjJZk9QDXEfhpqmPoW0xukDlsrUoVl7A2gnk3xsykDIywKgVf3y4lPzhEvkJyY8t/Rc8f4u0ls2xYlMBgMaJqGg4MJZZGzuTHC2tPju0SpH1hkCq2cIiKUZUme52sBo9MGdyGacBqUpkttXBwe0JAhjBgW59gsBlgj3D+ccjAY0Fze5P7N6/Q2h1hXnGrRd0u7a+je2AiCVeQDtq9cwV1/l5tf/yJiDVtXX8GVfYzEIFphHdNqzs577zDZ2OTMhQtgXCw8M+YB8/vo869qdcf5eZeMY5kOGz9f7V7wg0MPY4LP8toxU8xxczLnW3cazhaOooCtPotMsM7H/6Rz9KixnybN81HfP84crTHhow7sR+yn4xIKjgaWjxvj2u8h4Juaw4MDdnd2KIucwhjm93doqzniPWWeMcgNmVpUDNOmR3/g+LEPT3EacXlAqTX20x1vbiRtf/EgdPU33T0nB/tIW1Pk2XJvaMfT9ZgJWV5tfY/IcaGANXruGH+kFBi0BucMIhkHB3Pu3tslc47RsBd96cdooQ9cKcUNVq/dndMF0Y7LBInnPmL2O/+dQJsKxKxN9oi0+Da6eMSV9AvD/mHD3eqAbODpfeg8s+tvM9s7ZLB9eh9n5KlRXcy8ohJbHWZFj82LV0Cucf0bX8J7w9Yrr+HyghyDM5BljtIadmcz3v7+9yLjp8szXmeEq8G17qcLxB0NwnW/W+swxmIMGAFr42eL+f6AmP/D1sPR705iaM9MEEgAgW+/U/GHbx2yZXM+8qrjL36mR1ksq5fTXdfGdNJzPEoZeZyxn5S59ajPjs7bsfdUCCb2rk4GDcFIgu1Ypy5ls4thdJlSqxlTXbpud78uk6zL/PLBx70eArQttC3qW9q2oXGOzAj9PMOqIzMGh2JRJl745huB8xdaXrrQInWsrPfSMg8e0xsz2Bg+dN7rOkKmjJzFaUgWf1KaEk9/AL2T5Z+68v9Hcn2eQ8afpoqY4tW9w5gbbaxlVjeUbUGeRYkM3T/rEXNNEz2vW5q2C5A9Wos53aZJZqssJbP3nrptcTZjUbdrlDwrUTIaDczbKZncp8juEy5sEl7Y5vDOLQabGxgT4V49xNiAPhjAXlGkUR4EarK9AeMLV2hv3uTWm18iaM3FV18j5ANEcwoC1kFTK5o5bG8Qg20SaGUl5az7R4gdiMKSOSxz/LtwnaQgd8xOErEQorWm4uhRYaeHtIMxMzWxVkYNwfi1Z1z1g3YpeEh6j2kclpiRERDUAKLYEGJeVsrYWAgjjUVhYmI9gYpiRLA2i6kBIogxiES4CpOyPTzgNRA0kIXUKJwYW+mEoyWmKRoVbBBqPK0oLkjXPBGris8CjoyiEP70Rwvuzxyla9ncMkyrKU0dok8aocsGW67jVPwn61GAtVRGSe2AZGlxaXxRyzWzsNhi3YgPfgGSptrGd67H1SPE8USmGj9fZbLd36tB8vVagGhi+xChSQorFPM5s35JVR1fHb5Kq1lNq24oVcXYiDclRrBiEWMiyJpGV5mvZsisZuQsZDE11ErAWUsucZ8hMZOnEbi1k/HFbxj+3LkaDfPUdUupESZI1PbtunKmXetVjXl5B3v3yaqaXmYJ4tcNncW2OkZwaIrzGBb7AoTWPhzT6Llj/N3Cdc7R1A3T6RRVpShitkOT0i6tLRO65INSUuIl8EGZV1VK21xuqFU6TgM8HS1dIHGDBNrWQ5lHl1KSCw2wczhl3PMEs0+WTzG0aJYzeOEKB9e+znY1p+gNVsXWA+M8ctsUnF2IycXnWa/PmYsX8devsfPWNzDGcPaVH0MyixdN7Rob+r0e+XgDFwBCvNZqtDddL2jEUo+uspUimrCeEbXY8NEtitcIyyDzhtntu+SXe9i8RKUDvuiY3eIJVu693CLdu+x6oYLgkKhFogRsYpyRgbWtpmwKHxlbYv5KQEPAyJyuxqITLrL63jWa7aKKtzaObYVHKaApTdGojV3WJKCmxapGoYTFBaExsQlJ3utx7swmeuD40LkMbT2z6YzDerZM+5Uu0Jv6Fizcauuv/zhLYNX9Fr9/8BySSy8+Q3cPv5jfo+mRulgL61p9tGrtgtEfHVPHqI3pkF9Tvvx0zuz6NeSlq0B+4jPA0spc/e6BTCMjC8gEESIceXKlVIcGqopxnhEkwbSkLRXlqyGQxbFlgg+OzS1lPG4j3r60BJR5G3C9PoNRp+3L6oJceG6aqma2v09fom//uIrek914UYEIGpU9o4oJDhceniX33DH+bjKNGPI8i6mdqknrbzHGMJ3NcdbQ7xWIWW7YjlTiwq3qhqqq1yoUn+Eo10gh4QEJRhSrAQ3C3qyhqaYonqI4QOwU1chQ8jNnORwNmezvkvX6qJi4JfXxQFeP6E5kvR7nL13i9rVr3H/zDTIs49deg6xEAnjfUB8eELAIBqNxM6l0rqvEcCQyJFb+hph2aCQxxe54s3RbBAOqHkuGmxrq6YxyvEVb9vDio0AgEKTryrUSK0AW5eqiXR/lqG17CYu2eFaXjL9DRNUkgBWNUBeh26CGrkCqS5OLgissWFtILtjF84iCpEKi7rvFREerJAiQKdGGyAii8TzABYMJhtYEJlPHV9+dcue+cmlgubXneeWsYMUhHVZTuq52IHcL+Ib1dx3SuB9YAyvC97gAfJfJZoyNFcJKFFhp3jpm3r0FYwQwsffEkeDx+rGkNbFeUBXXU3xHNkC4f5/5bMYw79MfPpi2+zgZRd27iIJ7qdDpwmBavjOzyCzq4ihJKyOuX2MztrcyPvOJlrJsEO9RhEZhHpTxxuZ6tlfSFhZiUQPT/X2oKnK3FD6PQ5r6UwcBoyYpAQ9n7c8d41/ogBIxZpxTvG9pmhrVQJZleB/L/8syxx4TCFGN7qHZLGr773+qYdQgm6al8SEtgLiQvQaqAId1wBUt0KDkCIoOcvIr59n/xjsMz57FuXJZTv4Qpf9hw4CoQWb9AedeeJGdt99h582vIk4YXnkVKXo4LHY2B3+Pxgiqhvhf2txmmaftEUgalkjMNjBiIsPtNMnEDJSAGghiEDwtBrWW/OwZalHq6SGKR7FxqYvS9S/uNiqQMpZ08V7TYUlTXX3OFSaQ/GAxb1oRCYvrolFrd9KBP7OwFLuOYLrKdNKuLgmIiejsdO6U1EjG0BJMm8ItFsGSIWAC3gSMGrJg6Ilh517G3f1A3TpqCt67P+e1C4bhIKcr4Fp7qMVDpw9k5fu1g1aPX07IWmZQd5gssWmMRmEb1qXZEVqF1linx0l3jjEOizhHPhog1h27H0/KKnpkokV6f8s5TO81mm5xHyarKiYaeBAPtASXYbKCjbEwzFvwUftujTBtPLbfpz8ec7R5ymIUGrGBprv36QGZdON90FI7iVRiQ/rV0QfT0rj6oec9d4y/W73ee6pqTtM0KdUyT+6UQDBgm5bWx8rQ7tUnfWeh7ddNe6zWdOqRPCRl7rjffRuo6xYbeSVilF4J81qZtzlNKHHGEV0rgdYF8stnmH7ze9SzKfmwTPjlhsfJ+V0s9853mzZtVpZsv/wie9eucfOrf8AVheGV1+jlPYo8BwkE9bTBE7zHdu4av9xkNeCRI7JIaImVz6u+YRHFqEbGri3BOvxoSHDCdHpAezDFhBa/6Pyri/EvNq4qnadcO7N5wdmPcPzF70cEBdCatJl03exe1a+XlJjESkAOElR1Ql4NolgTg9eqoBKiZWcsSAYpBkHmaE0coMXhjGFWCdvDEi0Cra/Q+Rxtoa1bpGP8ejTasTaUJ6bVVRS6qdTUCSrLMSbVdBxJlFiu/RVr7AjDflTaqKAQ4vyZQZ/ipRcIvfKh5x6lY4UBS0FPspg0WYBGSdZaUlKiPZPOS753jbGdSZ0zrwrODGtyneGDRTFUvmamyubWNtat+/bjXlsKl8nBHmE2pZ9nsYFLFys7teKmgMelFpUQ41PmEfv/OWT8cbaatlkAaHXFJfP5lLY9IM8znLPUdUueuZUNE3/zISx8+906fVxXz+MEfbtr+6Ds7e3TlDmDYZ/M1fTzGfMsY1pnzNoBG3aKykHUjhFkY4A5N2a2u8uwvxnf6BP04FjqOiu/i8UVJaMrFwnXbvLe177MZVVGL76OFAVgKRQwijfRPbbc3PEqeYK0WMxD+jcIqFvJSkmSxyCQNGJvLDhLJkpuHRQFJpjFRlw0I1l5CFVdvk9Z+uFJ10VXHCMCSsyaMTF9KzEbTTj4GidTA2iCiwhAF58QFoFBaw1qBEwGxiY3RfTR+xDHZRGkbQlhjscBBkOLSEOtijeCVi6a7RogCK21tOEsk8pQH1refHdG4w9o9msOwxTRNq6DtVD901qnx631VcwrRY2h3NqmN4i56adKjT6lOyYGmTXBIjiCBDQvoDhLkAxa/4CgeRIKbQsasXQ68R5QaJvkxovxn9gAKYB4BAshQ8Tw9ns571yr+KWf82TMseJogUnjKUYb9Edjjqrui/UPNE3F/s49Bs6SsbqWV3fjoykebVDxaetbcn14pt9zyPgjOetobURvDCGsYYtYGzd1VTf0e0XyRy4ppn35x/IbHkfLczs/6fKzk8zSuvXU1YzDqmJj2LDZy+gXPaZNxmRmGGVDsJPk2rBIbrFXzzL9g+/T+hqxBR1+95N5err/R61DRSjKARsXr9Leusn1b/4eV0QZvfQ6wQ2J7MwvtRU65Xrl2Y8yaFgEy1ZH2blM4lcGIwapa9q9XcqNzegWMZH5GIVWbDo9+a2lY0tmocGLhsTQAW2THyPBL0AsskGRoPi6oalrQtMiswlNPaf1DU09p67n+LomzKc0CR2yW0/laJty4wzlaEw+2sAUBepSgx0Tu6ZhYjxERaM5l+IUKh4VIVclmKhomKCR2VkDorxUtLx1p8cfvAvn7gq//OMDzmQN0hhEXAqkvr8UWbFJQiZQqeKrGhmccPyziIkJUbtONqhRi9XYfuap9qWCqHKwc59QzZJ2nMLIomjTUKasMkjQ590xqmA86sBkjs0tjwmajlXmKnibMd7awiSYi6Mug+gAUw729jB1RemyZFnwRDJbsbRisFpjDARpF42RTqLnlvFbZynLHk0TNf+maRIIU0bnf2zbNvaONTFQ0816l4nyNLRq8kZmldwPsNAvjiOT/OLVvGbP71PajKIYk88y6kaY1BmDXg/DHFIgx5zfos7fpppN6GURHnbN7/sIOlFIiEdwqBrKvuPMhW3uXZ9y69tfxwfYfPHDkBV4ic/bOWAiiN2DHpW1Sx/n+yWmPwZia0GjgkwnHN66SVaWaJkTSO6g7v0EouDRsGD2ikAIhLqhbRpC3VA3E3w7pZ3PCXVNWzW0dUNoK5q6ij1RvU+ZOwaDBwLGRpbXfe7EYA2URdzUElqqnZvM7t0kYFBjcXlOfzDEbZ6lN9qgNxzh+n3UuIWV0IihwUaXiXZFdTGjpowtzajEYYHz5pCfurpBPsgZ4vjI+T0GKCZzLNFnV2f52QuC2CTcxOYoeEzrmb7P7R27NFVRhXlN2N+FrW14Fs3VVaGpyduWIhUgqiTkI2sokgsrOf4Ai2jM2PFGUZtz4RKcO1NjCQQcXmEWalxvSG8wjNW3D5jRkdpqznx3j54ITjphcNJuOZlEl8kNojkzHK3A7BFz9NwyfkFwmcNaS9u2sbHCSnRdNUKX1k1DnjrYr5z87MYhQp5liImYPOFop+gjx2IMvoGmafF14KA3YbOY0C961JOMw9pR5n0yUxGkBQxmOCScGTA92KM32kZWPCinpaPMX1NwWYISxBPw9HtDuPwyO9fe5fZb38BXU/LtM+SDTfL+CHUuarfdQk7qf9dWMj3l0vfe3WvFH2wRrEYtOCgEbQmhQrUFzWL6qPe0bUVbzWmqGdpUtPMp7XxGW9eRuYeW0PropgkxI0fFo22LhPRZ20YXj/eIjdjnCLjMoVmBtRkuc4h1WGOxWQ55GX83cc00bUsz3aeZHlLPa9q6op0fMDnYgd077DuHzQpMXmCLHr1BHzMc86Y7z7cnBY03OPUojlYMF/uBn7s4YEvquDkVgsnxocE0UzSz1MZDSGmXuuqofBI775TU+cQXdztdV6gnvl3y0al4RJUwn6I3rsG4D/YEM+OUpAJqYmvRQZnTM2axXtczr1LXPBFELV3Do6od8N61nKtXlUEPaCoEpVGhUWFzcwvjspVrre0sVAOz/QNkXtN3BiMxKyweuYRbOK3aFjO44O3K8Yd3Zrz0Uo8v3aweetZzy/gBUBaAVR1G99FUtaZtCcoSvE3WTo/ugqfYSyJQljlZ5pjPK+q6om015bUvr90xv6ZpYqev1NRnOq8oqwOKfAM3z6najKbpkRV7ILEjlctzsvPbTG++w2bT4kzn7liMYvk8nLyg1tmGoMGCtFg8AUtrHL3Sce7KVW6/9x53vv8G2d0httwgL4dkZUHW65P1BmT9PnnZQ1zBIpum02sUFvnm0WeVNl7ynbc1bdVSe0F8BZlhunuP6XQO1Qxft1TtHJopvpojocXXFb6q8E2LttXCB+8yhzUGm5W4rMTmBTazGOcwzmJdiVgXGbwxC0Np0RAnuaM6BhDRc5ZzZLOconcWts7G5wuBtq2ZTiaE6QH1dMp8f5c2KIhlWpa0/U3+YVbw29VZ8uk+Z9hnrxgSihFbpXJh1OOTYyGjJhjLTp3xxXeVa7t9cjxDazl/ThDviWmF0Qcd/eKyZMkLZp188ym+0c3141iFy8woXfweZHn144SAwJov/mRB0dUgrJ7cpU/6WL0rYJzDm2RLHl3MuvJHt6dOuONSbIX0Zv3iPSeA57QyOw2qc3EpguHGTeErX2u4sO0xeQ0SCyenvsb1zjNYQeCUlft1v7d1w3Rvl0IUlwrHYlD3xAk6eeZSnGrmA7+30/IP3jvgL17cZKd5uDX2XDP+RUbYA8Gnpc+9blraEMjtUk3uWg7Kg8vx8cdgwFmhX2QUzjKfw6xqmFXtQltbpaZpyBO0blXNmUxmGLPD2e0egzJjb1Iyr4b08n4sMhKPisFdPM/sq9+hqSa4fHja/RzHeNJn0vUbWGbRBKO43oCzL7zIwc496smE6b177M5nZM5RjsZkw03y0QbFcIwrB7i8xBY5Ji+QPI/afhsIbQO+QX2Db1t820Jb4+cVbdPE1NZ+H6MtB++9xf3r79FMDvBtg1hweUmW5eRFEfsu9DeiECz6uGwF7yRp8t2CWMMP6pjiQ2Iv63P0oAkt6ePo/7U4lzHMe7B5NrYC1UBoW+azGdVshk73uTVXyrzlo/V3+EV9m9+xL3Iz/zA39uDOm9/g8NIgWqL9kpvNJojln/6MsLsnvHHf8akzAwqtIuvqLCtZH5OkeEaQmG1kkuUVFqmZpwUnT1dcOKGTynzSRD32pukcg0c+EXBBqB24/gh58VVMlsVY+3IkJ17xYWR0+dM5YkPKzzcLC9ShUiMS6zfEWKw4rt92NBacm+PTCqoCTCRj68wwFoOtzMeqsRQUpvv76GxCL08VxEcE1uPpmQJk7FYt701aLo4GvJDnvHbuh6yA6/FIaNvY6zV3xWLCRToe8bSmc0zXy1zMHHLW0uv1MC6jqg9iHjQsgsixiEbJsojP3raWyeSQEAL9YsigfwZrciaVp98fktsJViNztuM+7dkxh7t79IbDZDIuvZTPjNI187LH9vkLqG8heHwbaGplPpsw2z/g4OZNmroCI/THGww2YgC0GG2gxjGvDmhmE3Re0U6m1NMZ9WxGOz/EhxZX5JTjMeNz57BFiWpgtLVJcfYMZVmANVGqSioG6wB+RDDGLTTMhzKApNkrJzP8J6VFpagmoZk58jynHW8wbwPj3Yzz2ZRNN+ZFtvn6bMjvzDcZzr6L3PwC175nKPubFBcuMdkecM46ztspw2Gfd+8VNFi8KUArgoBVg/UGb80iKB8zmAwmhXy8SZYLLJnbEz52zJLt4iqyvE4nHLp5RR7N0NQe/62ASojFbA5ckeElo5YOG2tFAEgSdLJ+AdHVPbwC0qZCbHJkUF0iTpmQUnIlQk0YFUyI7phWhNYVnDnnOH8BCieIj3Un07ahHI0ZDgYPXUu+aTjcvU9hYrzoaVddXL9KJYZPbFteHpaUPeGdmz9kkA2PQ6qKD8psXpFnDmeXWp8xhq7n59OQsxZnHV1w3xoTW7otKgbXyZjYRs4YQ9u2C/TPupkz5JA8L5jODYfTki1XYjiMwdU8I3/pEof/3ffZ9hew7hkEwE6iJBklyzF5Ho1iBeuVfNRjsD0mNBXqW6qmpa5qZoe77N29FTNBALEZ1hny3GEyR2+YMdjcwtnzkWlag2QZpigQYymKDBn0E+aSS/n5aTwrjEdhkbHDowrvOt73jJj+WkD/yL0VQVLFamYDzioj15INRgxGZ7B7BYd7OS9ubPD6pdcYzveZV3OmezeQ8i63DjK+babs+xkH84vcCpasGDCazclUCVbwVhBtiJXGhi4V0RJ4MM/riVTzeF7npwwBbX2yDDm+8OuY0x+g1RqLtWOjP1zICH7G7N4dsrMXUJtx1JGjx99tkdkspKrlkIDZQovXhmBtrE+gExwxTRrx6XImVag3EZvJOV58ucE1NVZjkV/lPbWzbG9tRZcywklupvlkQqjmlM6uB36fmOLeu1AEChMF1EyVXvnw3hA/1IwfAIWqqjkQYTSITcOtNbHlHxyzYU5/YRFi0xJhkV/eaWKrtIqmmGUZ83lMFzQmwj475/C+oap3KPMx87pg3uQ07YDCTVOmhZCd26LJv8/s8JDB1pEWck86P8c92cI9LMltYGKlq1Fs5rBkwBAUyjbEgGdd4asZbVNHX7Mr4jw7G89xsZWkZgU2BZU7r+rCl5KeI4hZlM8n1+za860x3c7Fs6IMvr9V2Mt7rAuCDudGEAk4FZwq1ih5llNKTta2lD3D4Nx5ek2fvK6pxXHYG/Ht90a8sT+kwtIg3L5f8QtXDvmQeZfBYIQdjjFGYtW0KKyWuaUHN7razekpuI2AhkB1eEhQWcxvCJ5O6TZGeKDt42PeMq6sgEhB0Uzg+nVahLmYY2Anjkdv7Zy1qhFkr7MDRZSCkNobdhp/8vwbiP5/IeZtBgISUyYFBoWPCQKtp0WY+kCxtUkv4e0/LOzdtjVOYqMVw1Hx9QQkoOIpVPjOnvDbNyf8zI/1uXUwfehpP9SMv9uYrQ/M5xW9MiNLBV3W2WNLwx9GR4+1RiiyLHkglm4XWfj1Hry2cxl5rqkdXmz0ohqBCmbNIVu9KWWWMa8c83pAlu8BLUYDdlDSnhkw2d9jsLm9whCfpRtjaWJ3N5CO+9IBa3WZPIJaxfYKil4JbC3OUxO1xi7jp2PyrQmo+oX/feG/7rbwQog++Hd6CctZ7bjQA3HDZ+vWOY6O3mMpiGJleFBHjSeTGBwklKgYmlAg3hDKHkXeozAlF0YFn/3QgEntMSiNqcirmmK+y+6tr7FTT8n6Y4ZbF+mdu8RwvIFYFwVkyrISXffpd4B1q3NzuuKqOK3OGgpjsG21WMsdCqsA+PTZqbbPEsHz6M2ECB1uZ4cwO0TaOWVy9axdWyQ+a5zs5fOoJsshphN0DU5ELJm1OI0IpqIKGovwRFO3vSUICZ4BX/2GYWvL8NKVgG0bUOFQA3NjOLex9cgubVHohliZn1j+0zqTu03QkvH1XcMf7tf8KQfnN37IsHqejDo42uVfeZYhMufYBfmoqyU3jnOWLEswrmmTnXS1JXKgUBT5A5+rBOrG0za7DMsBVe2YVRmDssTaSUy/zHPM5W3md97D1zU2L9YEzrPTc1fbP3eO1g6uIC5nFU3FUZ3eeYTJdOZ9+rjLlXEeYpYKCwjlNa+YJqRy1QUY6MKbv0iTkrViuQ+aHorYKtHXPg85t2fKJ/oNiqfJG17o3efQF3y/KfixrEmz15K7hpfPHFJrhG7ulQ1nZQ+5d485LQfTQ2Z7u+i9exzeepf94Sa9rbPkG2cpxtvYLPrQYxZOYv4JfOxJ5kgEMmsZ9x1WluwRWLGsHtRlT75T1mkP66Qkd2uOmgHt9iZZ2V9eZ/WUNSmgq1su/Ru/X4Sk1S7G2STMftGI2mpshlED4iO8sS3wmnHzjqXotaifI9LQBMukbSm2ztDrDYilbalN5NHn6YSQWZRqPbP9KAknqw41g8xwqa98+vzDU15/xPhXaBkMFLLMYa050oTl4bSG+W2EMs8j9HN39UWWycOZ0kn4Ij7AfL7LcLhJbgvqVmjbHpmZ4w0gBnNhm8q9Sz2bMMjzI8mH7w9JYr6J5aeNJikvugs2ajowmeiLrJClDiraoQuyeBlG1o9azkbS+jW2yavqmjIvV3TapXvtqfJxnzGJRhgHZ1remgwZOMNvHghv1z0GGdyvanZDwNIQGSIcVoZv7LXsNn2qCl4ZwZmtmqw9YOvCeQbnrjCfTJnv3mG6c5u9W9cpRzGg3h9vko22yUab5KMhJi9I4BF0FcxwCiEpnbBfWsEOSX7ux9gjx3ymR311i1sKSKx49sMRpsgxJoemietsxX0X+zAkfH/tkEmV4EP8WxL6qHbpxJ1CJfgQFr0SRCC3JT2XIRk0oeTefo/RRsNrrxoubleYELH25xrwzrG9vR0x/rurnijEQExKv9VnsywXsCMKSksWLCZk5Pwoq+dUdMRqxIjgrKVpnizA66ylKIrkV+wqadP14UQufJxrKRaQRA1t3tT09BDnxlRtRhv6KHvE4hKD3dhAt4dMDg4SMuBT+nMfHA2rzBq6xRf19uR0TFq54CUQjC4sg04QLDwz3ZWEZCXo2p06lW3pm05/d/4mEZqm5Xvfe5vt7W02N7co8mwxb0vsng+WdO05liMwqpQqvD484J3acaOq+K/mBRocrQReyWpez2oIqSpXoQwTLkifgYWbwLQSjLYoDd45nEJvo08xusJ2c5lmPuVw7z6Ht9/m7ve/ie1vML5wha2Llyk3zmB7I0zRQ1Pm0RKH/xQzlRhWtwoWLr2HPHM3H1Gen3SPB9d9AFR9+rZAygGhavFtFbF0VBcKgiQpEDRERp7A/9o62p2kpIll+8XUoMVYjDUx8O4MTdsyaybQyzFuxDu3R3zjzZpf+DnDa1ctto2ZPF6USYD+1ha9Xn9h7Ebr9DiunpBNE+NfzMlTcv+FEFOb4h6CaIt3DxfGP2L8q5Q4jWqEDo5t/yK86ZIf61G+t/byOojhoiiiuyjp3GtZZau5u6cdmgqIxwdHG6YUOUznUHmhl4K7BFCXUVw6y/6N73GmvYDJl3AUnTXz4JJM/18rGVxfOJLUcJVVP/HRK3XnL0PiEfFQHsCT6a7eZTaYtIDD6lyuHLSc/gik1YYQwdJQdvb3+cJv/haj8Zif+qmf4tUXr1KWvXjqWrBNjr661VE/9POj3x399Nj3mSqd1vy4Ihg1/PR4lw8XdXTvrwjT0rZsuRrjHcG0oC059/jYGJSc+2dHfGWnoPItQ7WoOlTamEhgDd6BKxwb/T6jsxeo65pq/x7TW9/lO+98l3LrAlsvvcr44mVcf4xz2bJX9Mo8Led/Beiue4cd81cFzCItuVNr9QHNJvrM4+WSZZgyg+IdOyycdfJB0dDgRbAEjHH4Zsb8YC9CcSQNPt5BEOvAxP1nbUyJ1o1BrCHJHOWiD0C3TtM+7PK3BcQr1f4+B4c7BL/BP/r9KU1rcJpjOEDMAeILtDEEZ9nY3MKI6XSQbiTHLhMRlr0IFqmnT+3lBwQ1HqeeQB4VLfejdM5TUnz5kelHJlfmltksuljW6cGXFXvECrmz5EVOUeQYs2S2q8fHjaTHXudkDaBjvAqhocyniBkxq4Stfh8jc1oTGai/tMWs+A7NwSH5mSK28RNSo4YHr6xJSwiNxFRJqxhp8V0do8akQIhY3xKOy7t+kH12Wvoq0z8JT+yoIDju6SHi+EymM/YOD5jM5szrhjt37nH9zg7+xm32J1P053+Wj37kxxbvcSGsnwGY2YOX0LVGMI84OJ2hnFPlfDZdMlchYdwLigUJizhH7oaEfo+ajLzNmTaeOkRAMUNYYOMHAgYTeyEXDpsLth+L4MqNM/RnUyYHh9z65u9z/zsF2y98hK3LL+CGY7AZ6rrmJ9EVFNGJFZWwEE4CSZAr3igutEhI7SyBYAKegDviIvUhICEgTdTIG+9pgqdVFrUg2lWwEveBEwGTQxFB7HRe05zbQnsXcXK0KFMWhZqx90O0ZgqbWitaixgFLCIe1EWBpQUiM2IsqgXfI3MZMtigrRp+/CMTxkVDKT1s2xJEqKyw2yjl5jZZrx/v3i21k5j4QtYIrUR3VAfJ8TR8X9N7tyFawVEIuzUX73H0I8afKLp3zEJaR+lscM4SVtw9qt3yl7UXZq1hOOyRO4u1MT6wVC8ffAlPHtjpTMYWayI+SNAMK0LECxeyQZ/8zJjDnQPObJ9ZBPWOY/qLqzY1h3d36I1H2OEI4x2x9ZEBsXiJS8l6t1jfJy8tOfHPB8451aJfHlTVNV/+8pe5ffcuYi0uL5jPG6wxzOqaIssYDYdLrYqly+dpqXNtwOr7e5igPu5bSdryqnW14BpIinV0P2RwQ8/wO2+e4/4sp2o953sNxVYbkUcXFs0KWBfLawtCVpTkRUF/OKLfHzA93Gc+nXH/nW+x+953KDbOMLh0leHZS5S9IcY0gKEVk3oDG2yIrSi9Km2I/Y41KJV6Wg00bYjjDT7iIq0q8akJD8YQbGxzqM6iNsNZF62glQ5cEN9ZsKnmxVnc4YzmcIfepSu0vTIVyJkjHhVZezdxVlNePpZoW0Vk1IVbUlJWkraolmBbDg8KfOvY3sp4/ccy6r07HB7us9ErMJmjalokzxlvbKy1dDzNWl6Hrli+9yenlH2UYkex/sBjHtRW1+hHjD+RyIMGmnOOQb+PmVdUdU01ryOoW57jXOdHjscaYyjLgiwt4IUL+uhVlWj+PzYjSlq0dsiUNWWu1DNDXWfYnsXQgKZuRee3mVy/xmbbIsnnbQOLblBrz05MxZvs3OJg5yZnX3qdvLcNqb+tBlm2qHwmi/XJyYih3+9zdnubrMgpewNCUG7fuMELly/yM5/5DJcuXEza6qpj54hlxRM8hR65ytMbEOuXl6PixBBsn75xDEpH4wwjcj4yOqD0U0xIWZMSEI0NOI4blyZrVlxGf7zJYDSmms84vHeXg/1dDm7scXjvJvub5xifvUS+eQ7yhPyqFki9Z23CqA/gUq67Ssxv91ZioaJmGBHaVQaXGLtYgyTFSKxDnMNmDjFuUdy2jIJG60fU443BMsHPJ5i8l/prHPeM6feF+2dlNlVgke5p01yHJGAdmiylurV89Ys1W1sZ587n9DcN6gvag5bdgwlFUTIXoX/mLEVRrN3vcTqLraUkPw2l+IaKUjrLvGp4dy78/rUfuXpOpNUXZmS9QTMaq2z7vQKXNH/ftkymTSq0ylOAaeWFd2XkqznGIg9uxEWA6bFGC8n8jv7CmiIPyCymdZa9HJgltdRgNgY0NraddGQYfRijU8RlYA2Te7vY/DbmosGORwmpxyNqCaJ400Ym86y53gn0q79zlS988TKf+/R1Pv/Z98izjE98/OMLEDYRw3xeU00mbG1t8dprr5Jnbhn4e0hw+7hPH/VUS2bW/X28Zv8ksyPJ5bMIhUpOyLYYlS2/9PptdnTE7WqLV6TC3q0xKO0iTz+51U6KRGhy6QmIWFx/wHbZY3j+PAe7O0zu7TC9+X3m965j+mfIt89SXriIG43A+giDYXoEm+xd0/XTzXFZrL62eYYxkbH3VoTYIhaU3G2SLFDtfOuL8cX3qQlHwyiI2liKNh6S967SFAVGQ3rg4xnnehcwk5h+tGKAiG+FBWkQNSgZwRiaUFP7CHiX93NaAmILBmfP0BYl03s77DUNZrxBf2Nz0Xz+cSgGd9cG+9jXOEoqQjDCxzYs0+kcUc+8bR56zg81418lY2TRhnFZ9Bm73heFI8tiEMz7wLyqqao6Vp4uwN2WGvkqHacNhBAi0JSe/r13AbNl5WGDsxXW5LQ+J2iJZZ8uGCe9klBYmqYiK3uYsNJO8Dg2ZXJsb8DowoiZybh79wabovSHw+Q79OnITpvSJIDePwHwq79zlX/x//ALzCrH3/y11/kbf+k3+bM/8y4uFbV1ZnNZ5vzEx3+cXlniurS6tc3P4rOHaWfHHRunPV1rccoqU0v8bOW1P/GcpKYjKhqB1VzBTtikrXPOsMubd4e8tVdRnu/xiriIGamQMsfRNYCC9bGsQNQkJ4cQrJKZgo1zlxieOc9sf4+DOzeZ3fs+0kzp90rcaIQbjyhH2+DKGHBGEWxknsgC5rizUlRIldcrbu9uomRVUHbuuOX+WRXTMRsuS7DVUTM3i5NPO8edWzakjDKJPn4MhB5IjYqycx9uXs948RXlp//kCLGT9P4dwVrMaEgvc8zu3WfjzBYuJQ+svb4TMvLW/rYRSmOtd/NTZ/ZEAfrps/Dh7RF2LHzutQ3+g4ec8/gi6zmkzuzqGpyvfENXCG6NMOj3GA76aPBMJoc0Td0dRkoyefS9iE3Vn9TVAyTLtcWYOZkJtMHQ+gKRjOQlRoqckBmo66V2+pD11fmC7fZZLv3kTzMVx96771JPJrQSQGJ1MCH2h43zJU9ovZyOvvDFy8yqqJvMKscXvnh57fuOMRsjDIeDBL29Yuofw+QfRGpdp9Xvl3xeozXXrYfFF0sU16P3eVySRc/cLkgntMby1l7GwWHGrN3kjVsZOYY37lkqk9IxARMSnEUKCD9Imtb2krlGMknAZEhe0t86y/lXPsyVj3yUshB2vvGH3PiNf8Dul7/O9MY12skO0nqMKVCb4zMHLraezIBcISNgNBAkgpp56ZAvV0P+SXlZwCLrIrFmZUIIEiFBUE+YHtLeuIHU89PPKV2gWJNfv3t4B0nrV8nxWL72Zc9vf+Eu831DUTQ4FzVnoYneJ2OZKchgwGhz65Edrk4iE82kxUw8LQlgg2JVGZiarawmM4a+fThWzw81419kARzjjll8tvhRrIHRaMD21ibj0ZA87ypsYwl52/qIXZI0sLXrd6TQtu1jv/WFJpT8uKoBaxryrMUHT91koPlSsSoLKBza1BGiS5YZPb/6O1f5S/+3n+ZXf+fqyvMqRZGj3tO7cIUrP/0LaG/AzWvXaA8Psa3GZhTJSHys3O8npM99+jq9Ivoqe0XL5z59/YH7dXGUDtRhLZd81QXH8hUfJ6i6Ofl7v3MVTWmC3TNqUIL30HpoW2hapI0/xsemLidd9/Eo+aKTFo0IVSu0WcH3DvucHQo/efWAykMjefKBrxRWnQjovq5Vd6spRLQaRAOlbyM+fJnjNrfYvHSV8y+/zHCz5ODdr/O9X//PeO8f/n323/omfu8eVDNcW2M0wS2klN1F+8zFvknxhZV4i0r6WYwpmQxrP7HjVbSADMxmtHdvEsLpGX+8nQCxV65Ki5oIY66aMZ9bguZoyKlr5TM/t8nmpke8Yn0Zq3dVMGoJbWBeN2xsbpNnxWIvHbf+67p+EKeom/mYRbJ0fz0LktTPoJs3FJEfBXdPRUe1wpVvlq9IoMgdG+MBSCz26NiJD4HpdIaq0isKrOma4q1uNpJ1sKgTfKKxLrI4pCbPGkQy6iYnFBli5vHa1mIGPZrJnFIXyCz86u+88ID75POffQ8VsEWBOThEVei99GFMCNz60u9x951rnL/6Iq6fY6VdMphnlC1zEn3+s+/xN/7Sb675+Dtaa6izCAh2vCY5xDqm2PGWE8a66lL6j379df7v/9p/za985vsE72M7Rg0pZzy1j1HFB4+xNjIB55DMLfo6Pwl1fm0wiZlHodNzylu7jsNJy6fOTrmQVXxTet1J0detHpBlcPcBkgd+67RvpwGrIaVsGkSFDEX7PUyvhxv26U96zA+mzHfucev3fovb3/oy4xdeY/PlD1FsbaA2w5sMkS4NNCxcPHJkGGtphunlrHdoW44vYBACQSKUQlDPI/jZA9eQJBBVDUFzQjvAOM/uvTm/+1s7/Imf3+bsBfiJT+ZsbFqyfJZSprMVC0SpqgpnMkbD8YqN9yC1bcve3h7j8XgR/F2nVRXk6UlRvEnxGyKEtGhAzcMLT3/E+BOd+CoWfDua+0aEIs9wrqZtmwUDV4V5HRu7ex/olTm5M6xxnpXLwZO49lKwCohWRtT4jQ3UjSUEh+36+xpBRiXzmweM24BYiwJf+OKlB9wnn/+ZdyMQVj6gnd+iaSaU2QX6r36UMyrc/dLvcePdd9g8u81gYxObFYt0yWeVKnkSff6z760xfFhx4aS/l5p8mqJU/xt8bK+oPjZDEWdxWbYor+9o3aWU8Q+/fJXP//TbaCpOUjXRAogpFPFaXjDGYpxdtm1MY3siK6grelMi49dACC2Xh/DGex7CnIu9CX7m6WcZVtvUbSu64YSMZbbKOukxjD/qnNFV2RpDkDgnJvVwVQKWhBy6eZ7eqGF2sMdsf496f5fJt77C5N3vUV64zMbVl+hfuAJFPzWVXwkorD/k0u+/GEtnpx2zhiQ+o1HF9PuYi1ewtnwssPSuub2q5e4t+NbXJlx9VRiPLIPRCJsJRuZcuSQp7mYRaejSZFUiM59VNdvbZxdW/hF1bkGTyYSdnR36/f6xjF+PO+kpKC612PMXYizES7YErDuBfkgZ/xr7jdZoxBhYeaHHv52YjtwFgjswsHhNVaialhBmoAE36GGssNodKd6rq5R8nDWwYiovzg5YU2NFqRrwWmKxQBvl/6BHlYpjrMmpTeAXP32Dv/lrH2JWuYX7JF5dsTYnAM1kn0HwBFcyevWjgHL/K7/H4d499vbuUJgeeVniyhJT5GS9Hs5lSCoiERSrHi+B2KQ69qcNJmA1lrtLp6EuGp226ZlcwuyJTxlMZOOGlUIwUYJ6aGLXrrZp8HVN09T4piUkQWecIytLXJ4jYo7pnRXpc5++zt/8tdcXc/JLn7lFludrxyxbD67DbyyDh0+5m3X1l3gt4xsulbt8aBtKaehxQE3OyxtKEerl0UnWn1QUeNL9BPDGxLIvjWugm+uImaQ0lqTwGAZbm/Q3t2lmcw537jG9d4tqf5e7N66Tnb9A/8oL9C/GTCCjGUIHny2EFH8walYAC9J/KfOqG3VIriDnl8B/MhiSFzkhy9JZUfWPQea4fgQXn0tjbQC2Zt6AFYMRw93bgffebrhw1TIeG37ys4b+YBb7CgSDUkdZFaU9mLinJ/M5NssYDIeLOVeiEriq9LRty/1795hPDllG+48RaQtX2DNQmDprSQBJCg4B9whl7IeU8cPaBpEIqtYxVFntKLTi51lotyIYa2i9x1oXJ1u6bCBD6wNN08Z2bbouQrrm61NTJRjb0zKMbqxhqUmJIkwpsy3qRqjbHrnLQKIf1AwHtL7Faxt9kgKf/+y7D7hPIhuOxV/OZvi9PUJX7OJyxq9+lGI4YufNrzO/9n2aeY1tWtxkijNC5mLPWpfnUPQwWUZpHFq4qG0Fg6HBSIv1OcFGDzOwaKgiaqO7QcAGoQngfYP6Gm3a+NO2aNvQhhaPRxuPrxvq+YxqNkWDT/7kjKzXoxgNKXolRa/Eumwxh0c18uNcSnok/LVUXt+fsFiHCB+ZQZcZU5NV1/kTozmWCplP6RUFm2WLHM6iZi1ChzQZpF0GMdeufdwNY4WwUdbQNSWNobOpOl+2yjI4mvV7bJaXGZ4/T7W/y97duxzcvU59412qqy9QXLhEvnWe3sY25GVSjlbwaRC6oSO6gOuI36eZUImpnCZBnriMzJZUUiMtqOSI1MnqdMkHF/tChNDiNaOtenzjay1XXsw4cxYGfeHjn3a88KKllwVKt3g4kK42uXsPAVWhbRuaquXM2fMLN15k+DwQp5tMDqmrGcVq9/QFn5FlrMmsgjI//XrSJLghplxHJeXhLscfUsbfmeUAqb2aMSeX3q+emVwc1lq8b1fyctfPzZLP97gr5nmGNSYyqicZ/RrjChRFi04z5lVgUOZ0C60Y9DgQCG1LyFg831H3iSwWoFKWJdPdHTZCwBoPYtCspLj4Cpc3LxI+PmV2cJ/pzj2qu7dp7t3h8P49CDWuiBhFWVHgbUmW9dECNDPkBpzr4Y3FJA0r+BrVhtC2EBzaBghzagKND/imRRpP3TTM6zltXVFPJ7SHh4SqIst7WJfFzA9j6Y0GjDY2GGxtUfYHYC1qHVi3mLeTgtLHuZT+qKjTIkMIhPmEcu4JTmM64/yAMJ8RgmcJ/tflxjx9K79HURQMgrE2xjS2z9IbbeBnMw7u7XL/y1/F5G/Se+FFtl95Bbt9lny4hc36MagZDWCCxP0mKhjaaGtITGe1ISYiBGkWyQz4Ft+0mMIgpiUGbGOnsflUY0Za7tnbK3nvncB4Ewa9jLe+tsvGqM+F8yUvvJTRhjalA8c898QC1tdDF44LMJvNyfOCwSNaKjZNw97eLsPhgMa5B7T8zgWnmnL51SzgOp7lS1vWDz38uB9Sxg8LExIQI7jHaVUoEba5LIuU0LE6yxGHv8jziMx5zAuwRnDW0LaPz/hjksRScBk8xk4w0qNtDapF8jdLDDj2cpqqIvT0AQ1llbrKx7zM2T/YTZkqFtDIWJ3DDoaY3oByY5P8wmVo5tDMCfWM+eGU5t4e9d2bHO7d5t6da1B7XOko+j3KXo/B6AxmlGOlpp3OqA730WpONZ9Rt56qaiL6Ig02sxS9EWawgfR75KM+pVjq2YzZvdtM793GZ5b+5gbjrS364w1MUWJchnUuutNWirdiRub7F4t4WlrLt5HYvapt29iU3kHIN/GuwCF4rbHNDEkWY0pqRR+J0PLktLbCF4UuERjNWIvNMzbLnPH5TQ739jl4+w2+851vMrr0Amdf+zD9qy/AYITJBwQjC9woGxQvZgHOt8D5FEXFY4LBi4PJPfzuHnL1JfbnfSaHhtE44Izhre8ccumy5cwF4Y03Wv7Of3KPP/1nNvj5P2X45T+3wWDUQpiluhsS008Md5VTrsTzVKFpW+rac/bsmUcG7Q8O9mmbhuF4TFPXKw7ZToosG+EYE3v9RmPgMaLVp6FlnsND6YeU8Semn0rEjcjixZ42MGdMhHSo6xZNPnwhIAJFnqUGLEeCfWmtWWMo8/8/e38ebVlynfeBvxjOcMc3v5dTZY1ZE4YCCkMVCBJEARRRVaAokZrc1pIpyRp6eam92rINyaJkaS21JVluudXdXi01SQ0WRapli6YoiwA4ARRJEPNQQAGoObOycs433fGMEdF/RJx778t8mZUFFEi6wKiV9d679wxx4kTs2Pvbe387piiqm8nim/R93hwGKQviyFFVmspoEqkAg5US2WtTjDLMSgAvDpkVHtv1vCdREmO3r+KqChenHirFIkKVJCFBSo3SGtodP9Ec6NrgtjJcNqKqJtR5TjWaUo0G1MM9xpMdyuEekZWQRJjRiDwr0HEbubZK3GrRbrWRSY8oTSHR3tyeThm/cpbB+bPYPKObxiz3+2xsbqDaKVGcEMUpKk4RUgWeRxEofd0MRg2G2mt6x78bbQYMCIHWGiUtdXeNnfQol8YR1sJ6u+IEF3B1BjNxYl8XyPhW2gzydA4ZatQ6KZHtFsol9JOYVrdFnmXkkz3Of+FTiG90WTp5J/07TtFaXkbEsbfElEI4D1U44a0W07h9CECIkNjcUGzvk27dxqd/u+Qzn8x57MOaNz0U88KLU9qdmPUtzfGTkg//0S1uv7MiiipW121YdwaovPOWeRTMYc0B1jmyPCdN27RfRdsvy4LxaEiSxCgtZ1bNAshz4P9KSQzG8yCJVxfSt9KuX9Y3v+p3qeA/2Bbj7Re1mWsJQQ7+1YTu1Qe+VUqSJjFSiuvOmE03AVpLhPSRBK+5vwcu6VCyJo4NRaEpSr+pWJd7rbebUl7d8xrIzagxw0RVWiOqknoyRrV7LMaEOKGwbu6Gs+F6TgqIpY+Q6LeICUk7dUk9mcK4oBxvU1++gEu7xEe3MHlNqzLoOEalCTKJ0XGCiBOE0hSDfUYvPcf07POIyYClJCLpdknSNnE7IWrHiDiFxukrBMIGKi7JQtbtgrvm97DAv7YJ4QMIXBRxRa3xG+e2eHlXomXBW44YNjpXcEVJrBOkFj4aB1/b99Usm9djHObXCElYToX5JdGJQsdt4n5NPB0TD8fUeUX+4jcZv/wsyfIa7SO30Tl2B8naut8AhJzTiogGulI4BMoYdssu43qDk05z8vYI8x7NsaOCVlzwwJtSVte8Jr+1adnYAK0CbbfzwQKIplCKoCFsO2wsmlDpqq6oa8P6xhJa31hMOueYjEcYU9Pt9huTfD7/5qtnJg6EAOtCKLhTN1T+XtN7Es0t3OweN2vfpYL/mqgeuRBmtpD044/y8fomwDINRmwcsySNWUakEKRxRBzpUDnqsNH3E0sphZIK+y3i/ItdFc4S6xwpu1RGYW0CIveZnUttiupScOCFqljX9UjMruekJBKScrhHunE0OL4C5S7Sh306yzxHwWvVnsfHCx1lFUhQiSDSMXopob6omV7eQy1vkN5+HxUOYd3MuWgBa2qmO5cYnz1Nee5l2N8lMRVJv0treZWk3cXJkPIuCWGPC/vZbDwWAxgPvuv/Q7UApYyrDuNag4440jMUpabuRLPqblVZ4uoaHUcHQm2vn8uvb3PBN3QABhJgpGdx9Yy1S/Q6PfKiZDzYpxwMqS5dZLizz+DMadLVNdpHTtLZOkK81Mdqj30rJzBOY6Wfb/smJU+3QMG9pzJO3SNRJAjg/lMJTlbgLNqpkF1e40QNosTNqJgFXuQdrm01hVFqY8iynCRt+SIrHA7Zgtf2R6MhaeI5vZpyljbkMsyc4801wnsp8wJaEUI3kUuvz9yc+ZxfRfJ/lwr+g01KBQtxr8ZYqtp455qDsqyoqpomlrshYTMH1HWHVsrzm6gbeerFbHI1fOGvqR2iyXkRVxNHOUp3qCpFbRKiYHLqfodSWGxVI+PG8Xt9vwRhYSiF1hH1cI956AWBF8Zcd2fhf0U64dP/JVgZIYREZjXllSuwukJlS0QaoXtdsAopcqwQGCGhqMh3rjC6eI7s4mmKq5ehnNJbXaG/fgIVpd4aC1zFwgl/jQA/NaPSFASRDXz72kb3d7XdWEWwWBtx52rJ8RXDXWuCFy9ZnIp8zQcjqU01qzhl6pq6rpFSBgqLawCA19XqmWegzhMVPeTkZA3OBp0d4jRhOT2C2DhKOR4x3tthvH2O8fbLlJfOkq1skG5sotc2SNc20Z0+ShhqAVYo0q6iFStqVSKNAheF+gMOZxUuEK557rbcZ+kSQ6OgzCKHDIgaOKymhFfsqqqmqi2ra0sLpVMPeXZnGQ6H1HVNv9uZhXcKKbHGHsBfmkwFIQRCKSpjGI9L0lYr5AbMq6F9W++osSp+H+o5rB3UAp1zVGWFiDyUkecleVF4CgbriyZA49RqRErQoJ3X+D2ZW0Qc++LqB9g5w1n+VH9ObQzmBmndN2/iwG7ue1GjZYGWhryIsDZFoqiwkEQQKWxRBMF/+DWFL+eAkBKlY8rRPtZZxEK0kwwIehP4ZplTC0gkkbW4LMM4iNptbDahuHwBOjHy2BHSzVVcFGNlgTQSWxbkgx2qqxeZvPwSo3NnSEzF8uYGnZXjyDgBrRFhgdch9E1iUK4CoWjqHS1qVwff8P/BtPxrWo0m0oZlochMzQuXYkZV7t9NI1STBBHHPtmoqqmqalaFylrP2X+AN/51bAHso8khUE6gLCAMTgjMLMDBF2UX0pH2WiTto6yYLSbjKaP9qwxe+BqT023StSPkJ24j2tyk21tCLC0h0y6ba12ksVhR4ZzDyqmnUxa1jxDCByM4Yb39KLTn2plVDQtKjzictXLO72SZZjmtVido+41Ff72dXBQl49GIdqu1QNbowz2taQoSzNd/M09FFEGrRZZNsVmOtZYoSmbVuV4LzfMhT3JL536XCn5YfCllVTGaWNI4pjaWoigxxh5CuraYsNHAI/51SilnNXYXj78WaXA4rHUUZXVDPo/r+9mc7xfwAfpoAR5nLVHa4nKNMdpvMBJkrJFJRFXknmL3EDfQjBlcgBASHSdMpiOMrVAq9rH2romS8ecvOt9EgF4qU1FfvICtHfLO23G9Np3b78D1l3E6wcoEaaEqplTjCeXl8+w/9zVG58+QRor1zXXS/gqRjn12rZC+nKTQGEAHYeeEwCjtOeIJuRKNRneIK6OxSuYfXA99NALCHTh4/ryzkXJidoz//eCVRHORQMHQJLQt+lEWx6/55cDn4VwhfFT58WREu5eymyl+/bmYBzdKdNNPATRUxkAURTMBYoyZaf8iig7VJg+Wprz2SQ55ttkgeWI16XwylU+0EyH7wysnJvz0kJzvqw1wolAaYR39KKHb7VCbimwyYTzYYfuLZ4hUxOD2e2nfcYr+5lHy2JK2u0Q6EK85ECKQHYo6CPbSJ3+5JMB9TbirBdkQKkqEjXHi+iLx1hqyLKOuDRuby/OSlG5u0TSco9Z6bR8BabqYoRvstEDZPpsrC1aH0BG602V5ZYVy5wrD0YhO25LECTqKZu7Fgxnqh8O017ZbtXK/iwX/fAitcRTWUFWF1ybswd36wFnX7aSe9dBTN3vzUYTkj8XFM0tcQVAZQ1GUCxbEq7UZOw+xliTRPLTMywgJ1HTimqmsKY2mRqIocVFCtdSmHkxxDUxy3UMZQKOtoJbOF8coCkSWo1RCJW2oK+qzbyNfvRorBRAhsgwbl8jBiOLlsyQrq77PcQJryyAUwhhcVWCnI6aXXmH89S+ye/ES7TTl6JEjJJ0OutVC6XghOqUBSOcUvw5mkl0eeJZXG8fmfYR3K2zgcFHe/2EThKixgFEGbfHCRNTBaSZBNHUJwAlHUmtqUWNlhXTab46BShgKfzehEK5GInFOUEYl0rSIrQQMNiQOVdKhbRQEv8EhqJMOWbqF1C3aOHqp40cfqenrgnQvQ7oQatv4YYSPbZeBtlpqSaT0bGystddp/jNNN1huhDlphYf3PIQXKLlnXEANr32Jxcek4+apSM0mJHFBgl3zFsLGgRA4KRBpgiamk6QkvT79siDPJlRXz7F97jkud+7i5fqdnHrbCnfebbGqi1AStPI+W2GYBy/IYG0QAhFCiKuTC8RxXuhLY6GqMKaiMiVlPmGwP6B/9A6SIMyNsMFxTljT3rrJ8z1G+5dpt9ooCwpJqSxGgVRQO4MJyWlGeNGvg+COkD5PvZ1CcoR41GVydZcyz+l126hYI0U0g9F8ToO/zmE11JvjmkgiJwXO/T5XzyHteiFhrSfimi+KWzWzfBGXOE5CcXY396stKI7NDu4cFEVJbcwNtpYb91cIRxxHvkTkdSc6XxiD+VoTznkCsSSmqEZ0neNGmYKL7lCtNS4rKMuMiCWUkzMKBZz0Gp3T3hGcj8ifeQa9tIQ6cpz0nlOobgerIp8LICTOVNhswviVM+w//yzV1ctoZVlfX6Pb69Hq9kDrEMs99yscfPprxuKQb5qPDhtTJwwz/wDCp/W7JmvVF5tBlEg0sm4EfpAUYeFbIUE4tLUYKTCy8klVVuAzqjVQhX8KI7w27IiohEY5SCvPElkribaGWmgiq4lNiW0S5pAgJFq3eH7Y48VJD6M0KQqrOpxsVRyJ4sAyCXJWDzIgyQ3OG6gK/GbJggbrlRsVNgE/KwJsCQgX9HYbI0UZKDcClbHwer0X9qkH/l5NEz30S3HND59LE6mYdtqm02pTpFPSImdqHZ2rLzF5ap9zL4xob91GurpOvLpB0ltGqBgpQtYXkoYSwWvIYnb98CpxzuJqQ5mNGV96hfGZl6gvX8JWNa0Td7F29HZklYPy78yzafq5bJGIumJ4+jT5hbPEvT7F8grp8iqJThFCU6EwtUVZENIFUon5IMz8BkKQRCn0FZFUVKMRu6MR3TShlSqcUqiwCV8LZV43kgcNU+bC5/D2XSr4r28HSqK9Fmyt0ZBswPXlzbj7oA6FXKx13Jrknxl6aK2IoyjAA4edeL2IFFIi2wmVG4DxHDY3ag3wpLWCuqauijmVjnC+kDeKerqPHYyJto7ipKbqRKh2G9fpEacKKSS1FdTGwWTE+JXTDF96AbNzGVGXdNKIzvIanW4PFUWNDn4rg/FtNW9pB0HeaHEIRIgdd0IhnAtRSwJHjQ/XDZm/ztNlSATW+ugQDycEC0/UIAq/KRIjAje9sCpQU5QQNECvwemAgxuaoD4XeOiFFURSY4ViWrS5OnasdUsys09cW9xG4q0JfHSUAy8Zwnw8wDZLsDivnePBt6Uin4Q1oxQgMGYKuxA1NQeEXLAAPLzS4Pvf5rtZWA4SgdYpYjnmk58+ya998SjvvP8y9993ATPYo5wMyM4oiFsQpUTtDtHSCqq7TBTHSBUhlERphU1aCO3hLx1plFLk4xHjF7/J4MIF3HAfXedErkboiJ4oMRdOk+1v+2Qd5WlLlBQ4pTE6Qo7HjL/2VertcwykYCeKibaOsnnfm+msHkEK6f13rqmodnDJSimxzsNQykmMjlHLS5D63IZikmEmE9JuFyU9UaDA+04OI2AVCziiCLUybhC4NGu/L/gPaa9F+Du8SZllBThIk4g49qUJZ7jgzHEEeVFS1fWMvOq1tCSOieKbF1hY7Fez5GUnpcLgagNSX6dRz/Ui36QUCFNDHXBRD+YirKUyjvqFl6iKKdH6KjbtEN1+F1JHOJv7kE5jqff2yC68THn+ZfLdy1TjAWka0z+6QdxbRgmvmdULGt+MAOU74YR0cgGfByes19IbIjFhsUKFhCE782s4VBCofoNAGOoQEuhNcIuVFmGDtYcGF+GEd0gboRCq9gyTzld+8hmrIESJMp7v3YnGhS2CFu0w1ZTbW/vUyy1aMubNq/sMjWa/jqhDf1TDhx8shaqqUUKiZ45CPw0Oje4JVbKEg6ookCIISymCk7TC2tQfMCtTuACZ3cBR+ppbswnLkP8RpsDHPnuSP/8/eLrsf/WJU/zEf2X54EPPUoyG5FOfHFjVV7BaUlxKkXEHqTw/FAikErgowgnhkzTDBldmU8zVi7iqIk1SOuurtPo9RBSDVOS7l5E7l4EA3egEKbVPiFQxZFOSYoBTFmdqxGBENRpxYTRi/b4HaW2epJTSw3D4ud1k3DfwbmNAG/+2sVKhWh2SjZQ82iff30UWBbrVCvO3Wc23Mp54xfIm7fcFf2iLnvTXktrfHF9VNdYYrInRqo1SC/Zv85KtI8+L4Dx2IbtXHLjWYl8WP5dSkCSRp1121zJEhuMO+cMBspN6NpTaoG4U2ANz7URInKlxtZlpfDbLcKMM2l1cXiC6Sxgl0VjiqA3OYcop071t6u0rFBfPMb14hmo4otPrsHr7UaJOBylilNNBs53f05NtXfcUr0ubVVgLOLBbJIB3DQZskc7zyVt8BrAImaRNr5xTeGelwInaFzp3CbgqKL0RhlASkZDr4KSPIRfWF/1ABqGagPBBhbXQSOogWF2AqwymnLDa0lzorLOlNA+uDRlVPT51RVOZmuZVGmMYjEfsDgYM9gfcdcdJlvp9GszxsPnkww4FOonDu7M+F8MakMydjLOJIRZ+Km/piDqMj7yuNvJrfkciQKEhvdwBn/zSQQrxX3/qGE++52XSpEVPOKyzfPgjT/LUixu8+fYL/Ou//E+pyxxjjA/JthZhav5fH/sQ/+GZN/G++77Gf/YD/x6lNb21Nfpra6jEC3vppPdnWL+Zu/BkyoAweYBb/HxwztDa7NExPf9JbZjsjbhy/hWG4zHl3UPU8dvhyIkDCuBhzUqv8MgQoGCjiHh1BYeh3B2QxLF31kPYSK5fHzPfl3+5IJhFIt6ofVcI/luqhSmuF8Cv6R5AbS1V7Vk5rwVUHIIszxmNp2R5QVnWdLvthSpe1/dv3m9HpDWRUtxsz79mec9+qFZCJXyC1Ks14QRIERxzzXUc9WhCfvYiKw/cR/KW+7C6RR1pz0SaT3GjPbLtywzPfJP87BlEbWmtbbB6aoskSVFa0TA0WlHTxAM1HT+4OF5f4S8gCNu5g11Y8FWZgnQT0seEC4eRLhT6nvdThHBFj7Uar12rGmkN0hmUi3HCYGQTZ+6drcoqBBonK4zw2rl0FlwRONRLjHJYB5FxzDNhHcIaZDEmURW7WY9nplvsZAlZbVCYcB3HcDzmq19/lmeee57h/oDlH/lD9Hv9oOnPtc4DY3LNHI/TBOcc0+kEYa33W0iL1NMQ0jvPMPVgV7BMOLw28msR/jOFA+d9SQGy+MDbLvKzCxTiH3j7BZRwWO2F8pP/5Yf5/LNbgOBLL97Gn/x//0X+/d/79/6aQRz+3Z9+J//0Nx4GBC9eOU5/c5Mf/4+/gNQRWioknszBFzOxwdfj4RWcQNiGu7QRzs47T1XkR8EJXOxIN2KOt2O2L1zi0lOfZwOJuOs+hI7C2fM5LsQiHNxQlDM7wmpFvNSnHk4oi4JWO8UFZeQwD52D4FBvnDTiYOTfIe27QvD/jjUHxjYw6+LCEtS1ZX8wZDyeoHSM1nrmUL72JTUhoj4/wGv7aRITaRk041cXjAGd8BNMSq9/Nt67G3UewoKWQbP1U9FIQZQkuF4PG2tM3KJyDlEW2L0Jo/MvsPf8V8ivbNNKY1Y3N2l1+kRRiogjj5PaBnbw2u+MQ+fbh4dvsQmsDEU9rPW1AwCswyqvParA+GiwlLUmUhJrFaXxFACxtNTUTKsOkSqxVpMXCVpKOspQC8ekSGhLixYWIyKEBil8BNIYxbBuY3A+gQ2FcAmqStnUU1yATjxOqxBOoOua49GIL2Zd/pevRggX8dhdEFP5b8st9wAA9wpJREFUYi0OdnZ2+NrXnublcxdoJynbOzv0ex3SNEbHmkhHqJvR9DZJekLQarUQzpFlOWVdEKVLKKlJIoNQDYOmDVw9/rzDaiO/VsHvazDMMWrrBE+85xw/9ZHf4hNfPsoH3n6eDz36ChZJLT3e/dQL68wntOCpFzaIdMpMBxaCX/7CnQeO+ZUv3Mnf/LNPe4sz6DbNsnAhBFU6vN9EWFzgM5dWzGoJCxxxLTCh8rtAIZVCdAXrJyXx7j7l1UuQTyBJWdx2Z/Wcg8Kh7Bx+bJpEQJQQry6TX75KHEe4SN4i96r380Q3oZmA7xLBfy188x3jbGmgmgXt1TmvZ06yjDwvSNIUrWPyPGc6zSiKgtYse8+fTXDEaaXQWtNupaRxhAyUCLfig5ihJk7MFXcxcwPd4CQHNhCc0YRQ+t9kp0d6so1NUnwUXE599gzbX/oc9c5FWp2I1a0tWq0uqtOGWKFdc35wcjXhdo3Qv77Hr2ub86WEe9fgbI2zhqJ25JUlkoJcxEzLFt14SDeKGY4sVweWtY2K6VRwdTtmZUWwtlIwyWNeuaI4siaxleOZFxWra45Tt2dkVcpLZ2OOb4xZatcUVYt+X9DTBbXQfKns84ndHkUtScjAKUopWFGCH9kouUfXob+BDEOAAdpRzmP3wakiwdLlnuQyYr/0RwnJxuYG9957iguXLyOU4Omvf50Xnn+Wzc0Njh4/zomjR+n3ev7Kh8ybRX4qqb1VGdNG2pi9Qcp4mHPkKCSJAmKUqtGiCk5seV0hm6a4z62/KP8/h6B2gqx2VAKMK/meh0/z3odPI51jXEGCIoo8nPHQPTt87plNGqv0oXt2OFDc0Vkef+Qc33h5ZXbM44+c884E4TxUh4cYlXNgJY4kKE0WF2p9+TwFEeLy/fqUzherMaF2sLIOITWq3WNJaSqVYPcuo9IY4jaeGWCu4HlaB4cK8E1D8huS07FCorptxCAmK3K6URRyIW68TsLqwhlDmWc3HfLvCsE/d67OSwV+p4R/459cbLWpybKMsqqxdvZ6iOPIMzAGR1zTlJSkaUqSxGgliSMdQqwXL9zc6AbP4Roj0jd5k5i72VWc1zYq1wQF+MQg6RxChZq+zkE+ZPrsV9j/2pfQxYjVpS7Ryhppp4uSPjoE56iVDPjlInNkQ8B1sDuvN9Aze+eAsxZnLeVkwnQypCxrbNRBtpbRSczXX+7xjefbvOuhhPtOVtRthbAa2bUoHSEK0MsKvWSIOi3aukW6kuFqSb/u0lutaB/JUCQsRy1a7X2s3WV8tYBhhY4zMtnm2ZHm69kSd0YV9y0ZzmctztuI3crw7HSfu3o6hGaGvguDU5qBSGlpy6mk5LfO7bHSNiwL8Kywgl6vx1vf9CB7e3uMpxMefOB+6rIgywpefPEM4+GIt775TbSCo/DatlingABDJFqihaTb8VnZVVUwGDjyTLGxqel1a6Twm/jjj1xf3Oe1tCa5yQjB9njKl188w9UsxxhIEBhpwCriRHFbf5mH7tiilSR8/B/8Eo//lx/iqRfWeOjUDh/7Bx+fEQc2sMeP/9hXcMDHP3uCxx85N/sbB2p29wBaCYt0FVY0Mf8irAkZoq98wpoAaunrAHsArGHZVQgUOukgpSI7/zJlVZMeuQ3V6fvENdH47IIS1yhjc6Mk9E8idES03KO4uo0pS2R0WA3fxbXr0MLnCEwGw5uO+Rte8DcCoChK6rpGKUUcxz7m/TtgCbiQsefnsnfC1rXFWIfWEVVlKMsCY2ra7TZpml6nxWut6XbaxJEK+QCNLbrYz2tE5yHpqos5mbOkmUPagnfD611BcDfap3RQCxBVhb16kezCSwy/8WXiMmNp6yjt/jJOaQSeW0UIibQ+zLCptnQwW/bGG5ZwIaImbGxWOqSVvhSgkzhZh0IeDX7uvABcTNd33sFqCsN0sks2nlKVOSJqIXp9xNoS+5M1XjjX4W2PdlhOlznWUvTvNagjE3rC0KkVaRzRNZrOHQWttiKJNDHQNpo0MVgnSe/UJLGjHQtaUhDfponMMqZYRa9NcGVJlQ+opxV5CUfZ5i5b8H31Dl+sV9ipthDO0ZU2ODgbQ82BqLFSsl922B+0iYTk5V2LrGtOdBO0cLgAT22sr/GOd72Z4SDnvlOnsNayv7/L9s42SSgKdCCAIWy/0oFF+ygkJ6hFjbYCh7coOl1BtwWTrGavknzzTMrORHPvHRlpkqGVJFKSxx89yxOPngYhqISfb8p5fNy7rCVWGO9Ad40tKbGyAuFQRmOt46UrO0ymBdNiyitXp9y7scygLtge57z5+DEujYesDnrcs9FCUvNL//eP02QON87nGYGgAzD8jR/7wkzgS2eppUHZJl/Cj58Vcl74pQmFWoCeZtTrCwqMFQ4V3leTgyJcgICcwQz3qKsaWxWkR04QLa/jZOwxfamohM/BUM4hrOetks5hlE8UFEIRdfsUwwlZUXgqdNFU2/L3a6AnXyfZbyhKgjbloeuraW94wQ9Q14aqqkPiSo2U4oBT9fXU/hukfLHZAPd4ugWHMXam6V9/fwFCoGQwAN3C99ced+CuB7/zk7wBbETDAnBoawR8g8Y0YM8v/8YKv/2Pezz2WMnjT5bo8YDp6W+QXbmAFLBx8naiOMWqhvtT+YSXoG3N7A0hWPjrhn1oIKEmyQrh/AZC0H5DYo5wEm0DP0tjyVhPmpWVOW68Rz2ZUleOWikq3SaPlhjZDZaXT3DXW0/CtubF3NE/mXLXSou3GYNSDp9xWwc4wId6tmHG1xIjaC+Y3C3mwlQAfQdCJOC69DYdpjbU4yF6NCStJQ/ICpPHVKmlzCUvVW02RMZxM6YqnKckEL54u3AKZRNyp5kUkJkxD61r9iaC0nXoCL/ZCufQQnPbsduo1ivSWCJlRKd1jGNbxwCDlOq6eW6ECER3/vmU9bFIVoToJRw4jRKCVqvN2oql3c4pasukWubplwQn1sYc3ciJhUPpDlbVxNYGPURSS8BVaKuYEaMJB1ikVb7QijSAwDjDpf1dHjhxglpVlOYsjz5wJ1fHBd88f4nvO3UPL+1dYmcw4tTGKlYJsCJo5IbpJGM0HLO5sYHQwW/hhC/f6ALQ4iQS618vwofwGuWhGuXrQ187MR2NnTpfZjOXr/D00U3zpY9DwRVrfX2KiyWiLBB5iV7fAhmSMGuL0KE4vViY8y4kPjqBUDHJ0jLZ5cvEZUGStjwNyGwxu9nqn2X6Au3vZoy/GZuqKpEBPinLgrKc74YNmVXTvt1N4CDvydzsrOuaIiRu+dBM7+A9zOJw1oYEj9dQFewW2mt5sl9/+gE+8i/vJ8sVP/0zLf7J/3SR9596FrOzRytN6fc6noU0hKO9LtYSAicEOsSLOycC3mqwskLgNTUfk6+oZY2pK0wxxmYGU07Js4qizqkM1ElCtHYna3ffx6Dc5NmvSZxOkP0ljncqHt+MaHULhKhmEIuHL5TPioUgAAkbGQvP2jy3DFw0cw4fv+/5sZFJhI4lreUOnZ2Kjk4ZZ7tsnlxm7cwU9xIIoVHEZMUYk1coZ1FRjIoTROIQsePSCAoT89gdEU+NK6T1G6BPHKtw0qJlm0QakBUe6479+wnE1wfJv7woq4UN0UcWK/yGaoTDOU8poZ1BAFpELLUND987pTQVRi5xen+VzlqPZXWZ6bAg0VPixKBIUZEKuQwK6Xwim6UprO4FvQt5FMp6C8cIi7EVaStBEtFVkl4rpagtqXQoCRGOwhhG4zE7+9tEMqaVxohYsX1lm2eeeY63v+1tHD26RSQVxkmGo4qro0sUCISLwlgopDBoqVntdthIFdLo4Mz91pufAh4i9RQpFlnk1JcvMp3mJFWO6C1jx/uIVgrpMiCpBSjX1JzWcwNeCNJOm6rtC9skUYwN0HATAtpQZIjFf6+yHt/Qgn8GGDiHUt7cVUqTZVPq2lsArVbrOoz922qOILQP9qQsK7TWRFFMURRz8ixxPfGat0yaRRouOnui73ALZu5vP3eKLPcbT5YJfunfl7z58a9wpLuBSlOEdLOooderVzJAZDZUdfIRRcHZ7TxLp3OGus4xdYmrDHk+YTKeko9z6jqntdQjufNBNk8+SNla47mXFGtrbSYXK8rIsXG8D6pGCEWnM/FCYBYvIQK/i8LObLewGQd+dTFTtWYMKUHrC9aVDM505zw8JSxCKBQKZMkXPpfw9G/fxsoftSzdN8GcHqO6Ecv33ofYfZnh1Qu40ZhUadIkRadTllqXmIxSVpZapElJr1sRRQUUQTMEEFXItNUhWkgGjbZk0aE+f8+gA4xRSce4MuzlZciesj58UxiUdSgp6MQxnThiaSVmvJezP3qe7/2et3HkrjuJxApf/ewOk5f3uWN9h5XlXVJiIilRqo2QUEuLlb6UohUOXwzch9iqwKetnaIXd3hle0hua66Mc565vM1wXHBhMOHrF64wmI44e/ad/PQv3Mlq9HEeOfVFlpaWSdoJuzt7fOmpr5EVJe9/33vZWFmjAJ67sMtTp5/nSlZhakU/kUxLh1SGY50WJ287yjvvPkr3VUIgb7kJ459ROmQQBc4ZqnFFfXpM0l2h2t9j3G2x2nsLTsZhoQeoaMY2Gs5VitbyEtMsp64qz8UU9PzD1p47zNF4TXtDC/6mSSkxpsYYTV3XxHFMHMczoQtcow19e82Yg4LfWos1ljhO0FpjjGE6Hc8sj3a7PeuP70sjfxccVTfBxW/Ubozqv1pzvPf+F/m3n3sXWa5opZa3HfkCqTBE3dhX3BJe8Dv7ejrKfXx2Q26lnJvTORiJsTlVmTEZjpkO9ymGE2wsaG2cZOnOB2ltHKcUR1FLbeLNNrs78OxLU267N+KOuztsbJUs9QqEK7C0gqMN5mXQhId48ER7AMKZmb/DMV9QLsSbz53IIkBRYu68w0NVCEEhJF/+dIef/ttrVIXk87/s+Mv/N0uc7mOkolzaYGtzld5d9+EmY7JLF9g/9wrVpcvovuEDd6+SLkusTthaS4nKhFoIBCXKKYRpKIprnGjmdO21Qcc1rLF+bihnEQgKAy9d2uVLz59mLy8onKIvJRPny26utdvcdXyDh+88QjuCTr8DtmTn7Kco22O6px6iXN3kU5/dw/UvE9sz7Fwe00lz+l2HjiSoBOFaeC78hvrCoK3wdRlwpCju2jrK5555ngujEcMSvvT8GUwtGNSGL710his77+Vf/PyPkpcRafQ2jh39l/R6v83Fi5d45dwFBsMh33j2GVZX+nzfI9/DhIqXh9s8eNfdpJeusjfJeeTOE3zl3DmipMPDJzZ5eWeP3WlFt3e48/S1zmHhjDe0GvI859EtZWqYjjF5jt7bZef5PfpL6+hjt3mSvzC/fMgsjfGIFQLVaqO7HbLJhE4UI6Sci/4F1MCLjVdfj98Vgj+KIrIsYzweI4QgTWOiaE598FqzdW/WvLZugrN2dgeEENS1x1qNMURRPKvLe6NCzi7g5aJx+n2L8vU1xcqHm3zgrc/wj//O8/zW08d514mv8Ej/C/RWj2M0sxJ5tzrJbqU1OQYmOBxxYAi0zNZispzB9kX29/cRrQ7p2lFW79qktboBnU3i1S5XRx1+6aOO1U3Bh/+wZLXteM+72vQ6hjge0loWSGcwlcWJnIZVkpBY1ZDoeaXXv0NnwZga5yzWGGTTH+M3BGsslTFYFxx8UpKmLZaWlnCxQOBL/zlp+cbnO1SFF8pZJvjsb0nu/iOCQWl4+mrJxqlVou4Ssl+h+yvER49SjzPK0mA7BWf3S77yTcfxtYqTaQGVRSqDC9CXE54AzhPQueC4DNbIwhxoggOMdOAk07zm7NUdjq8fodrbIR+Puef4Bs9cHoBy3HV8i93xmN1JQbffAq3o9ldRlWPvua9QlFPuueO9tP74cVZX16jHx3nulVc41btEvb+NKCd0Om3a3WVsLFBCI9B+nxXeOe8kIB1HVzu884E7mFQVFoV2niSukprIGf7Rv3k7eenXbl7FvHj1nfzxD+4xyibUxnLx8mVarYQkSbylkQO1476tDbAFV/bg3hNr7OYjUF1ObC5xbn+PvK688/nbhVeFCIylYia4Z24NPEeTdRXdOGIyzdh7+musraygk2VAYKWHhxpscWZJKkW83Gc0HpMWJXGaYiQLjt7X1t7Qgt8Fx2gTyVNVNdY6yrJECO/gfT01fd8E1+8hLmw+BVXlk3RarZQo0teHls6ET6PhS5yz37LQD1265dZwiQgh+MHH9nj88TGXPvnrLMVd4qTnZaVtLnszB/Nr7GIIa7NSerpcZ7HCkE0zxttXySYjonaX/l0PkG4dIVk7Qry2QVX3ePrLOceAuqpY0pa11FBc3UbVNVupw16smVLjbIqQk2BXCE8zPKNJsAG299EmpVYBJvTvQgrA+kIjOF+cRzSadCAAk5E32a0x7O3ukHQiWt0VtJCkxvGu99Z8/mMWU0qixKLu2GenCsG9ecl4+worqz2kVkRLS+jlJWqh2blo+Mw3p5zf7tDtWzaji4x2zuEmI3QUEceGuBUBKQKIbFAW8GGpjvoa3xMhMipYI6YiqwreedcpOu2Il69c5p13HsE5RSkMbz2+wWdfzJgUNQjtk+DimPbmMuZyzeC5p0ltwVvf9n2o3gZ7e12iC31ad95GvzpPfvkSk50rjHafReuITn+NVn8VmfgNUQayNyOhnUruObIeKLc9v5FAUAvvK/hD79nhf//NepYz8IPv3mZzc4MVs8Kly5cRAm677QR33naCKNJE0xonLHlVklUlmamYVjV5WVHbCdtZnyKviI1COvVto6mNhi6tnxs+YMH7N0QIf3VCoNoJva01ds6dIXnpGEv3vQWhYryr2M18XM26cAJEmhL1e2R7Y+I4CQheU9LxtfXzDS34Zwt5Qbg652b4ehRF36GQzoNvQQA60uiqxhhLFEVorQ7kFTT3dvjEjrKs/MQNPB3fjsZvreVWFYNZqKgDU08Zv3wRWU5pH72NCE1pG9oHMZts347Ib55dNvHM1vtIyuGAyd4e0yLDxjHx0eO0T97N0sn7SPqrCCLKOmewP+DyOcvGqmJ5ueJ731vSTTL0uAJTQe3AOHAVRZWR2wzn5syaDk3Dx4MEqQQqjrG6g9Q+LV8LgZDeYStEw33t34eWGh1rVBQjowiEIM8zpqMR5aigzq/S6vVpxyn/yR915OVFvvbZDifetM9D77WQ9FiOBQ+uGYwZMdjfpdVqk7aXcDLi7BXNZ88YKtkjacFDdxW8ZTlmcvEI1bhHlVXU9ZTppGLvqiZOEk6sV+ikxIoIZb1/1ywEGjRTQTbJfc7gHa412BqcwhJhnaQsa6aFpSxNEEYOJ63nJJJtljaP4EzN/gsvYl2HrTc/wkavx5vfmrC6dhxRb/DV05cZDy5xz5ElRLbLYDhkuH+ZuJWSdldodfuoSOLw3FXNhux59vU8akVInnj0HD/5kf/Ar3/pGO9/+CJPPnoWECgBJ08c587bb2dtbY048mGP7TQiacV89oUznNnbZ1iUqG+c5vTVXZxxFCanp2KWkhRBU/35W2/COaIwzD5C6iAM0+SwIKC9ssR0NGb/6a8Rra7S2TqBdtr7B2gcxcwXl1SkS0tMxlOmRU5LtWZXfa0r8A0t+JuNsKoqiqJYKHEmMcZQFAVKqQOwz+vRvNY4T59y+MXXaqXzeOCFTQnmG04D6+RFAThaSUocK74dv5M1Cxj2LfTdOk9hkF86x+TlM6ysrCDTNs54nvYDV3Izq/ZbEv6zwuAAdU0xHjIZjynykrJ2xMtHWbnnFEu33Y/q9qiV5Nwlzd7elGOrBYnIeeC+mK3Vik5sMNpgbYSmjW4ZnDQ4G4OYYqcGI7c8/bKoQo3eeb4CQiAjbx3quEUUBb+LaB61iUo58ADhbDlLxknaijhpUQ5GTCZ7GCEwScXtnQ5/6/8cY/7TMfuXd+iubNFKUqxIiFRNVSZMd3exVYGpp0SdNttjwTMXLA/daUjaEa20jV47yuryKrbIyXZ3KIcj8lHG6GqFLiWrdU1VOKa1Zb1naGnHYRFiDUdMW2tacYunXj7LuZ0B2+Mpn33xHKcv7ZBXFbGUlFVBP44RyOAAD/H5saB9YgsuDRk9/2n2Xc7Kmx7l2JE1hDZMRzGXphvs2y7vftdbEINXGJx5jnrnNMVkyrQYkA7HtNMI3V4mSn2RdiubCllN5Sk3C69/4tFzPPHo+RmUIvBJj8e3jvpQWCmCM14QJyn3rm/w1JkL9NMO3bTNpK7YWFpCuBrhLCePrtLq+voK8tpwztc8oT0UOCkNZ3f2GNUmONobm0ugFKy0E44v91ndXOPymQvsP/1VWu0esrc6yz1uInSanUIgEHGKXu4z3dkjrSOE1t/S2ntDC/6mGePx2jj22H5dVxSFZ/FL0xS9EPP6+mj8XC8JRXPtWazRob6FRrOvaoM1GVVV0+2kpEnsY7tFg4c3k+NWbTz3qpOjwewFYKqa/RdfoGVr2ktHwSlqucgKOtf45+eHXQAWZ+yCA2oOdn7sM7fxyS8d47GHL/CD7zxDkWeU0zH53lVGWU2ydZz1+95M97Y7Ee0UoftYIcmnOV/67ZKrV3P+4AcdRzb6rN5RIl2JdjVaxLjIx+ILF+Gs9tEtJFhd01ldRyWRT5QRnmXSF5kJIaQh4FsEZ+1s5GbetrnmvFjo40AchZAoKUiWV9DdhOH+PpO9XbpVQdTpIKqaZZGQtmKkBk/xbNBxQry+wXgwZDDcpW8zTi6tcmqjx8uXa2pVstErqY1CRQqpu3TSmM7mcWpb0z6ZUQ+2UaOKqxdTLl81xLqillO0gjRRM4uugQ+kc3TihBObx/jiCy+wX1mIY164ukshLEJrzg6GvOW2ddY6EVb4yscqVGtzSJTs0ttIiEXFheefIhOCtbe+m9byGknX8b1/YImXXxLE7S472XGyE6vc+e7voTz/HKMXv8748nnyfUfULWh1FWnSQaUJKm15X0DzFsTibG/mkpwLfyVmWkhDSS2V456tJY6tLhEbX+nMCb8WvDqkaUtF1DiWDjhDwpqYmctzfv3ZIeE7F/5wQKUEL+4N+PyLp7k8yplmNb12m6quMFXN1lKXYysdWvelbHZarG+ucOXlM+wfPUH/gSWEiObr+gAU7Hzxo36XajCgzHOSbmfW2cNLaB7evisEfxRFGGPIcy/sAZIkIU3T7wB1w4yDb/aJdxI2f9uDQvHQ+weoxQlsabAuw6HoJPK6rb2xLJrEcy+a/ZRusgmlg5pZCsoNmwvXk9SQTyknOVv33YeMopBRC1YyC1Fr2pv/1I9ycbfD0bUJT/+Lf+vHQPjC2MqGpB0Ej/zFH+bFC322Vqfsj9PA5ng3/9Nf3OMdtz3NpMz43OXH+fKFt/OBDwk+fJ/12bYIplMwhaEYj5lua9751pqNFYs0FU3CmUWCMjOrpCkZGOJzPA9KJBChUpoIzs1mNftezjcu1zjnFgRC87qca4JAgxB1FmPszEntnEUiESqht7xBXebsDfYgL4mEIum20VKFzWYeUiqjmO7KCnErYbS/j5aX+aE3w5lhi099s+abpwVHNxX3r3nSMKESUKDR9OME1jo4dwx1u8E+/woFU85fjKmnCXcfyVnuFGhpsMqGHAkBGu7b7HB86UFqbCjs4sNn/ayJaKeGWHnaaucIPDcNXGQRWtJaP8qG0Fz5xlPEdUX89kfRK+tsrUxYfiuo1HD1pYRXXhbc+WCbbvsd1Bv30zIXqM5dZPLyMwwunCZ2S3Q2e/S3NkidxsoYJaW33qRFWh2cwm428/0WcFDTEjgiC6WK6ChBbLwzudCO1FiMEOB8XogVDUlJINSeqduhGlkzVg18I3xGuZ8MAoTCiQonamojeOXiDvce3eT2lZKnzlzmPfce5/JgwtndEe+/707ODwa8sr/HevcYemWF/mTM+BtfYenoCVhbC30SIevZKyhGhozeKCXtrTC5ehXVrpB6sZhRM+Nvvgl8Vwh+rTWtVosoiqiqiqqqZpr+6xXN0zSBO1Ba7RBP74Ihd8j5Yn5UAwVVtfNkbpG+LixvwSAEMee0XzQ4rjE8btJ33wHroHKOpbU12r0enmAqEBrbgye8KQh9EFzc6fDmP/WH+fpP/2uE1SjXwqoKi+M9f+EP8fz5pdlxTU+yMuJjn9/k0Ufu4pmz38Nf+8mHyHLF//pRy//cnvDDTxbkleZLnx4x3Rvz/d8f8/3vlyx3NdpVOGNmWZRzK2TOwtK0+VJwQdNlHu10g0FZFPKH1UpoShg65wMGJpMJVVWhtKauK7TSxHHs4bokYXl1lSLPqfKCOE0RIQZ/VjkxXFcpRavVRglBPplQjHY50e3yoXf0eOWKYveqpepbYuWViGbDEkrwi7/c5ZOfjHj/99f8wPe2UDbDLk34rY/vMJxkPHxfQVtKFF1kXKKExLmaNFK0ohjhFEbWOKcQGIQA6xKEzBEm3Gm2N85H2AWYrL+6gnOWnTMvYEzN1jveR9TfpJVorLPcc7fgts0OHWXZqVK+/HTFW+47xeYDR8hP3k012CW/cJFyeJXhIGFkpmi3T9pK6SQtz1+vDIRNaKZ0rE74+k//b9dMdl/o52OfuY1f/5LnEXrykXPEBoyLQoZtjXAFlPCLn7mNTz51jPe95RWeePdZhPTPWgp/LeUkygl0cOrbyPnCQ8KhbIGwAkQMdU2Wlzx4x21UVc0r2xPu3lwnTSPGVc3a+jr7FZhpiXQWp2M6a1sML5xncPo5VvqPgPbKiVfeLMo6bKgXIQDV61CMB+RZTqft6R3mRvirK7NveMHfwCkNRYIKjJdRFB1wrr4+mr9DaUkax76KFQuIT6ho8lruMxc2lqIsKeuYVC3E+wOLpu68F0FvPQAJ3bzfNEc5n1zTWVqmv7KKiCNfCjBkp8prEJ5G6DfnX9ztIGgyFytwAuUML17oHziuGZk0rvjBJzRrb/8+Pv2JexaSxiS/8omID31wQpEN6SSwdiympWq6G6DMBGfUDRzeh2x5h2zAM+fmLbySawU+eN/RZDKhLit0FNFpt33pP6mwIeTTmJrxdEKkFb1uB6k1SZKi4/iAH2gmwcP1hVSkrXbgXqko811WogHLx49TuhitGyf7/N394sdi/uyf65Nlgp/+Gcc//SnJDz0ZczTp8egHV4ncGkpe4oXnBkyHLd58tyFNBELECJqqcMYTkblQTMaBwODsjcZ63iwCGcUsra/jhGX8yktcRbH6ru8hXlpHCstqv0YseZJCIRxXdw2f/6riAx9YobW1SnvtKO31o2RZRl063PYZsue/yt7Fc+goQbdbLK+s0Vnq86Yf+2NzpWO3w5v+1I964b8wMh/97An+wn/vawX8bKgV8EPvPkclJcL5JM48q/iFT6zyf/0nj5FXMT/7q/fyd//oP+P9D3zVb4yRL+yuVYxUiv/nR3+QT3z1Pp545GX+xp/9BlJJZivdgcIQScs0mzKtDHlVMZpOmY4nTMYjrgz32Z8MWG+lMxVNtrv0Oy0Gp59l6fb7Eesb3tUsJDhfpOdv/+0eH/94xBOPF/y3P26Jlpcor27TqmriSGNmUNSCMniD9oYW/D5iIeh5QbhHUTQT+s3nr1eTQpImCXE8L7oOgRZCSMwNKmfdsP8NvICgDlpEFPkqXI3PcQZFALgQSuoWipzcyn3CTwGBH0SztL5B3GrjgrG5ePCiADi6OlkQ/o6jqxNqEeHpFQzSeU6Yu47u8cKF1dlxW8sjfvC9l/mBx+FH/sRJ0Akf/GDFz/wrR5YJ0tTR7Qx45psVd52suPekppNKlM0RtUYIO6uKNNtMD2jO7uD0n2mpB9D419yMMWSZp9P2meCKpJuQJgndbpcoSWZZ19Yaqsq/s8lkwmA4pt1ukbbasySr617AwkdOKOK0hYpa2ImhmmZE5gpLvQjluuFIDxMh4BOfjMiyYEllgl/7pOLxJ6HdEbz57T2sa1EMWqTFgEsvZgzzXSYmo51E9JRCCkElwZeH9FxFngDMBu76GytIzZhbBGhNf3MLaSWDV57jsqhZf/h7aS+vgVSBJkLRa1U89KaUca4wNuLzn8vor2juvW+LthFcuGDZuqeNjiPklbPUwzHZ1QsUSYvOUu9QpePa9utfOlgr4BNfPsYTj76CpMZQM97ZYf/yFT759NvJK8/flVcJX9j9Xj50t7foZF1h6wprLf/w59/LT378vYDguZ/fwtSWv/Xnv+k17lCyUkQRaxsbfPXsWXbHJa/sT/nEsy8zynK2RznRN56nncTce2TLJ2tZH3rVW1ll+Mo59l74BmtLj+CiyEcZS8ff/Dsd/sH/2AIEX/+GxgJ/469W2OGYoiiIVYxUzDLOv6sFfwNdXCvkhbi55n1YqbpXO86Hc0vaqS/MvChcPK++wpT2W9xovEDPy5K0Smgl0YIpYb1TKTgyGwNchNj/a6fBjSMA5t9IrYnbPV8UWjSWi7vev+AcT/+Ln+PN/8kfmWH8X/vpnwuEWAJjBeV4SDYc8gv/1f/Ih//uf87LV9e58/iI3/7lF+isbWJ1AlLiqPjwhw3/9Cf2+dVfSzh5LEPUe9S5okOEatW+glioNu1rwVbXvQcW/CezT4NaL11w/tGQ1wV49iYj31w7z/NZprVzDiklrVaLXq9HmqYopXDWMhqNmEymIXsX4jim3++TJAm7e3tMsgxjLEmaesqOa8Z/cbN3+IUslKDb71EmLaZ7E8aDKbqsaXfaPhdE+Od57LGSf/kzLbJM0Go5fuCxwhPeCUElDE44ktUud7+1S2t1Hz02PPvMgGI74h33XKLfqnFpEkjP8D4TfFy5QHCYyn/AqkV4uNEFSuetIyAEg5deYqA08s3vIF4/HrKea6SsuP/+Fk4oauvYn1bQauFExGCn5kufhSd+6Bidty7Rz99M9tKLXNi9TBT7utGHKR0H+uYcH3j7BX72mloBRoDIcwbbl5mMxsilFd7/A5Z/9wVLlktaLcsP/ckjHP3gk9R1BXmJyXPqPOM3//5DsLDZfPzzd/CX/+Cv0d7YJIpTlIFICO7YWmcw3kHg6HbX0RjacZ+N/ipdCjY3V9lc7uKQobaWgVaLfn+Z3Ze+Tue222gfv4OmCthHP54cvO/HE/7mX4+Il5bIr1wmqSoipefT/Vov9DXtDS34m/atwDhzOGVRQ7wxLi+FoJXOtf3Fe0aRJo40ZVUdep35YvcXc8y8igeuUxtDUVakcewXGF6D9WGGMWXlHW1KLjqQxSwy4KbDEFaw3ywkqMWIBjiImB98gqf/xc/5SAnhuUlcWZFPJ2T5hGxaUmUFotXhl//5J+jdfR+tpTVsdDu1CjVpASk1g6HmjpOGH/8vdrhwtsJZzYN3WU8x6wovkFxw54VSiQdMkEOU+YZX3QXnXGOUv8q6ONCKomA6nWKtJUkSlpeXSRJfqlApFShBDJPJhJ2dHYqi9Ni49Rna/X6fTqfHxsYme3u7ZEXuKQqSNFRKOsT6DNaMY14PNkoEvY1VsuGYbLyPM452u0XU8vV7n3yy5J/+1JBPfjLmA48VfPiJAl/8HUxT/B1FlCacvCeiLraoLm7z/DMZt905hmqXhAmtKEFISS09DbC11lN132j+N2O98JdwDqUE3bWjSBQ7zz+DsIaVt7wbvXEUJTxebVQOQpGoiHe/O8UqgZOOV65Izl7OqESEjDTO9alMhYgUnW4PhOBrP/1zvOVP/ZGDGP81PfvwI+f4qY/8Bp/48lHe/7DH+F1eMb56hf3dEa3b7ubYOx7ljpVVlu/e5xO/nvKBD5R86MnKB1dEmqjVJnY+kfLDP2x45v/RjIXjA+86x3BviKkruqsbtNpdYhxb3YT3v+l+nA1z1fpyneAZVV0kaSkPqc0IQaSit7rK8Ozz7D//TZK1I8i0g0Px+BMF3/iGnt33iccLT9LW68JoyCQv6SfqUFqmw9p3heB/Le06LHeWTHGItrMQZqW1otWaa3GLfgOBII4jZJ6HyI+5kG+u02wwUvgELmZ8KwuORYvPPnYOJcJ3gH/bKUUlAUukS2TDf+/8eU0W8w3l3U0k4UH75bDnD81Y8umEfDRif2+PvKhIjhxn/aFH6B47jmp3kEkXJ1IUFksV+H4ErpJcfGXMb/zyhD/0pOSt9yqcsaTUvv+znckhKPFJRwHSahA014y2p16zDowLvyMoLcTu8Lqlhw5JcN5Op1PSNGV1ddU/pjGUZUlZlt55224zmYzZvrpNHEe0Wj208tTGVVWzt7dHnhesrK6wvr7GcDRib3cPW5tZ0EHzbq73NzWbnUYKEMrQ66fU0Qr7+3sURUHfLRElMUIrnniy5IknSo/P+6eY1Qj2FMUahC+oHrUk73nsCMdPDliNT2H3Xmb7/BU2ejWttkAhqaXPT7iVsOHZahCB8tk5RALtjQ2cEuw+9xyuVqy/493I1U0QCk8IZ5AGltsSqwNzpy158EFBHBUoV2HLkuG5Z+l3l5BJPIP4nr5O2C+8P3wNrScePccPvuesZwDNa7Iru2wPBiy96Z2svvkdqP4SSHjiwyU/+OEpBkNmCoo6x2JoRR0iFSOc4L/5GwMs8Esfb/H441N+/C+l7H/trex986sUxUWWj2yRdnoIAW2VYHQo5YjFSushNCcx0m+OEutpsPEp8SqOWF9d48orZyjv2yY+1sIh+Rt/PUM6x0c/nvLE4yV/68enCCewWpGuLjM5d5mirIlSPVsnN2u/L/hDuxa2AU+fTBCwTejYYU0ISJJoVhPXcY1QFI4k9r4FYwsWiZXcTBt3KCHRWlOZGlMffHHN3eu69pEjSRQuLXBoahNR1QqtLZHOIfCsLzzgoQ7O0MGF+3Dg98Oe+NrPZs7OvODy2XPkpqZ78m6W7zhFunGUuNtFpgnCaU+BICqQFoNgup9isoyWHrPVE/zQE12OruSkYoKRCovP3pQB1rJESJsA1oeoupBU5ebbs3dLQmEMeVUHwgJB6aBlQyF1bk3rbyg2lpeXAV/f9tKlS7TbbTY3N0mShPFozPb2VZIkJokjppMRnVYbnaTIJGF5WZHnOZcvXWJtbY2lXp80Ttjd3WU4HNLr9ebCv8mcnj2JL0bjrS+BQiGlQLY1S0qRTcbs7uzQ7XTp9LuIKPiXQi0BgQ/rdcJhhUVYn7wmrAJR024L7nwwRXE79d4Gz595hnp8nk2V006CghG20lvlYRV4R2+lBNKViCims7qBRHL15RdwzrDxru9Fr6z7fAoZmCydQBkH1nLf3RJ7B6TOQK0ZXz1NvneVpfVjc/+IvTa2/9qOzOE8XxbAMtjb58reHqtvehfrb3kTLLepMAhqSjslryfUrsJSY1yNw2LqoX83zmcV/6WPXOA//6sKqVKE6LHy9neh19e49NQXKV4+x9qJLXrdDqgWPlHDB0l7q8ngpLdWfUgq+Cp3oQCMhFZviWh7QH7xFZKtLZzyVBx/68cn/PW/noc15wfaOoFotYh6PbLxAB3Ht/SWfl/whzZbcIJgvnuGxYZNsywrrLl+ignhoZw0TWbXuE4Tdj7Es9VKMdZirSf/ciEFUghCbd0WWmtGkwnWVNfmkgBgrPWU0kk0TwgTEWWtqI0kSSxKF42bbb4oBIdL8WuuPzfYmwU1/7uB+d3BEwC/IQ2yEnHkBMfvuItk4xjx8joiFLwR1hc79xq7BafYHzp+8ef2aKspf/BDmrU2rLUnKCMwtcSKJnKlBuvjma2wGAeVtUxNTVnXoT+BFRPhM3KlAq1RnQ5KeUw4BVQc0YTEzYrTHOK7AE91UZYl3W4X5xznzp3jhRdeYHd3l/e97320223G4zH7+wPSJKWVJlRFxt7ODhO9T29ljW5viSSOkVKSZRm7u7sURcHKygrr6+sMBgMGgwHtdod2uxXmVBhz5wE2I3x0hwrWSym1Bw1aLTpKEmlFPs2oypLecp8ojcNbaqLSBcJqrCpRIR7XQ/81woVIMWVwSytMOrczcJBWr0Bd0ukmIDQE7vwD43TI/JlZGQQYzyWedExBurrMqssZXTrNxc9att71XuK1LYQIvEjSEyYoYWl1/N+uVtS1YfzKGVKnSDreJ9TMRdGgmTeY002Mv6gM2c4e+3t7bNx3N/0H3obudchdwbgeY12OoaCmxBIYRKU/2za+ISFm0CFCEtUpQljS3grtex7gZNJm/5tPsX3+LGapy9LWMaRwCGnBRUjn56ZzoJwfJSt9eqFwarbByiil3e0weOU0/fseRHZS7+8RCgmzoAYAJcBoTWupz3Q8IssydLfP4SMyb29Awb8wI16jH9UBWgp63RZKCqSQPn3cWnIlyfKCujazy0oh0VrRaSUkkU+yEOJwIEEA7SRCi3YI9bOUVY0xBikFrZavsSsEZLmipFpwps1nt3OWsjK0rfUJSEiciZkWnvK2o0qcmCCcmTnnnKvRztPfHqbF30xDuPZ4nxjpQuUknwSEhVGdoTaPs3Lb7SytHcHFMUIYcCWO2LMOWoGQlmlVUQ9KipGlJ2puOxIRS4d0Ga5WVNZQGkNhKkyoCiURHhpQYcorhWu3EVIF2CxsTk3oqZSoKEInyazuQSMMucnUWLT86tq/n3a7zWAw4PTp03zuc59jZWWFbrfLdDplOBz6TbvbQWEZbA+hrqip2d++TDkds7KyRpK2kJ0O0yz3oYp1zfLyCqurq0RaMRqPqeqKbqeD1j5Kx+cbhFR9G8RYsA79i5GoOKGlI5yKKbIpg919Ot02nW7XP2qwFpryfsIZjBQY4dAOBDWCGgwoLTj1UB/t7mb/uZjL289zZ1TTTwRCGrAxRtVATWQUlfJEdcLNs2vn/3z5TUugKxCWSCn6axuA4N/+aofP/XPBEz864of/RA/pNJWSHqAS4DA4K0FY7HiH/NwZ+t0eQi+URmTxPfr7WjTS1YGOQ/mNwdWMd7cZXB3SvfMU3be9DbnUZmBH5PWAwo5xwtuFdrabzFeHL7YDs+g24fHTmiljV1HVFZ1omfadd2HbXewzS4xf+gZVdY7lEyeJEq/ENNFXnvPIa/0N/YUPnghrHEGr32N44TJ1nhF1fFlMo3ztgma+N9TgCIFspUTLK4z39ugbc8P53bRvW/ALIf4Y8LeAB4B3O+e+cMgx9wH/euGju4D/1jn3D4UQq+G7O4AzwB93zu0tnPsu4NPAf+Sc+ze30KPXKu+B+UtVStFOkxAy2eCuoJXnEMmLirKqEEKQxDFpHJEkUaBTaCb9QVHaWABKClqp14B90k+NsRbPFOqv75wj1po8JFLNsO3ZgoDa+EItDZuztW3KSiFlTRLVQIh2wffJFiWxBXED+ueDoycWfp//f/5r6IcUKDwnymg4pO62Wds4QrK6gYg7OFGDjUFUOGIcikjUFLnhi5+K6UVjbr/D8X2PwvIyFFlJIUpmxQC1xkZtL8hpClLPtS6lI1Sr7Yuh38BrfZASY8HkuQVb2DlHlmW0236jPn/+PF/96lc5c+YMy8vLDIdDrPUlNDudro+AqiuKLCPWGhkrqrJkMhpgTU27t0Snt0y32ybPJNNpxu7uHr1eh+WVFZTWjEZjRqORVwLSBDEr6tLoACF554BckjgpaPV6xElMNthnOsmoK0On30FF3toxovYiWCxeI0SBhHklheX22xOES5lcbfHpT2uK/CIPn5oQ4TOFMZZaJlhAGg2iPDCc1yoJjcXRlCUXKua3XnoHf+1nHyMrI37+NyqEPM8f/uP+XWvrN7uZh8IZsotnMdMJrfXVmXAU19xMLP6cKQGANUx3t9nb2yc9eTfrDz2MWFllbMZkZo+aibcsg7CXh5rGwTI/8GwOKzwVTGGHQUgs0z56hG67zU4s2H/2Wbh4ibXjR3z2OwSBH86fwWdytraa9RenLbA11WRMtNa8eQNCzfvRKHIOnJQkS32yqsIaL1du1l4Pjf9p4EeB/++NDnDOPQu8zfdVKOA88PPh678K/Jpz7u8JIf5q+PuvLBz73wO//Fo65MfwANBxS2eJgOsvhns2NMVaqaCNlRRlKOUYJ0RRqJmJ5xW/WeTM4jWllMRJPNsnmuLQQgi0VgiJ918eaA5rYZoV9LspkY6wRJRVijWWNHFIXQQs0mfxSgd2knvrRb4OpRzDojPCEllDkWfs7e2ydtf9SGOwVy4hbuvg+WcUjhija4pphTEVriyZXLEsbVnWehGiXTDJMzKrIPGQCNLHr6dpGuqgNrzj0EQ9ec1MXSPcr+nqQvjurbbm2KIoMMbQ6XQYjUYeo798mbIsMcYwGo1YWlqi3W77UE7nYaG6rogjhZASmbYwtWE8HlMUFXVd0+n2aKVtIq0ZjSfs7Q8w1tJpd4iimL29PaYTH/LZarVm8/FGz7L47DqO6a6uMB2NmE6mGOevkXRaWCFmpHTSCZSDGYvILEgAREjgWj3RonPsOHVHUMUXESJDiQpVK6SNADsrlLMgiVgAA69/HwIQkl//ygmyhlO/jPjl/z3nwz/sEK1OgOGCE1Q46qJk/8wLxK0WKk1v7KYCrJDIZtE4gTAl070dtnd20Bu3sfaOd+NWlynrCYUZULsMK+fH3xI4PmuNxeEwVBR2jC1rbNQj7bRZfvi9IBOG3/gy090B3bV1z9TYWKS4BT79a8dpbrHmVy/RPn4PVjmUvZ6yRbj5RyKJ6K2tYCpzoLzsYe3bFvzOuW/Ca1pcHwRedM69HP7+Q8D7w+//M/DrBMEP/F+AnwPedSsXbpyyh+IZr3bu7OdC1uuszRddGkckcTT7+/qEoFu7ceMsvib3CIFAKRlqv/oIB8QcraxqQ11ayqpNmsQ41yIrInCCVmywYjLjYRSAsxY5KVBCoZR+rcNySAsalzAYZxjv7uKilPbWCcT2NtWFS6Rbt+ESjVUWY2OunK955YWa249O2FiCD7w/QgmQVeaLqVtH0usQLXdCuULwPMgNX0lTnyCM1cJDvH5Z13Mh6pwjz3Pa7TYA0+mUlZUVjh07xmAwACBNU9ptn1nblLrLp9O5sx6vv6nguymKnN2rlzBVQbe/Spy2WFrqM51m7OzsUZYVy0vLbG5usb+7S5ZlCAdJmqACieBhz3ld5rnWtPtLRLHn+vElRiFKE0R0o43/4Jw30rG8VfL4n+iSFHcix5qLL2foeof1dETMFIn01A4oxHXMnzd4H44QW3+Rn/2Ve31sfVzx8JHPk1+6nd7J+7AS6sChJDGUOzsUVy+ytbnpazU4d+jlHd75OgtqsIZsuM/O1R3k5jGOvPt7UGurTMyYid3FMMHJmrmwCOD7rU6l2YJ1OGEwrgBnGNYFmVymk26w9ta3Y/MBe6fPECcpSb/rKacbRbG5ziH3FFLR7nUoLl/EWU9RIeHQLTWQAlAjEGmCFBVV/Z3X+F9r+4+Af7Xw95Zz7mL4/RKwBSCEOA78CPAYtyz4RYj+gJtpHje9xsK1mjavpuWYxc8LD3PMGTdfwz0WrYmFkM/mM6W876Cqr43MwfP0q8hXhbLg6FAagRKKJC4QokTYuQJjjEGMCx/u12R0fYtyclakBZCuJp9OGQ9HbLz9e1H9Pgma8WCCrRwkmrKWmDLn85+Y8uLXc277k4q2VjgqnMiRtfaEcNQIJRGqhXf8Ekx6t+CAvVbT9VbS4li+XhuAp1owdLtdxuPx7Prr6+ucOnWK48eP0+l0Zr4DT8JnKYscKUGEAuezmaF8RrexhuFgn8kkY2Nzi7Tdod1OiaKI0WhEVVasr6+xurZGlk3ZvrpNVftELb0g/G+o/QdIRUhJkrbRa5rpZMzezi7dbodOv4uMIpx0nmStgaxpXAYeezZYlISVvkO7lKJ9G09/eoDdTXnvAy8RxWOMFD66pilk0xDd3ewVhO8+/Mh5fvIj/4FPfuUo3/+Ws7zjyLPsPzOgt3ES12ljA1Tj6orxyy+SCkjbLQi1aA9PKQhzRTqEVVT5iEsXLyPWj3HHO74Pt7ZFISZkdpuSDCFK/9RikaRvntj3aq3Z2P3IWZxw1BgEFZWzqEoTt5fpv/VhRnu77Fw+z2Z6B1HUwgY1v1FyDrujE4K0lbK/s0ddTNBxAjfK/A/L2gVZJLUm7lyfxbzYbknwCyF+FThyyFc/7pz7hVu5RrhODPww8N8c9r1zzol5Net/CPwV55y92YIWQvwF4C8ArKwtLTjxXpvmf7BU4kFBctj9rz3+VtutZA8rKfxCF+V873LgnMBZR9yO0FoiZcw0jzAGOqlEqxxHDQHLxVlcWeFGU6JkCTjcufvam8DWhvHOLtHqFp0770EoQb3Sp33/A8h2xCQTnD1TstLd4Z7b+9x/V8zGyhjqHGk856N0ImSI+qgRQYFPcOEai+uQHohmTL4Vj87Nriuw1s4SsyaTCUmSsLOzQ1mWvPOd7+To0aMkia/POosAqkuKLPNQ1YzUblZpG6kUQvnyiKaquHLpPN3+MssrqyRRjOh1yPKCS5cusry8TKfTYfPIFvv7++zv79Pr9Wb3XGzXP3/YCKVEJQltKdFKMxkNqcqSpZUlVBLhVIMtN5pus6FYX2re+ZBZI2tUu8fGnZpvXnZcGMTEK45Uy5ArsuDwPBQfX+hrA9EheOLR8zz+nnM4Z8mHm2xfOMfw8it07rwPn3/oKEdDsvMv0ev1kYFQ0XJ4ToHAQyQgsc4x3t8h6q2w8c73oDc2GdspY3OVUoy8gBcL3Q69e61akSSsyWYdC/+M0mXkbCNdRHflCJtveQcXPvVJ8tGQaDWe+VRUCFy4/pb+gziKEaam3L+C6q3gDulfKAg3O6thEdXd9k37fkuC3zn3A7dy3C20J4AvOecuL3x2WQhx1Dl3UQhxFLgSPn8n8P8LwnEdeFIIUTvn/u01ffsJ4CcAbr/rhJNyAWd/DRJuHooZ0uhv4jD8VibJwfNf9aiF2y86J32Cl1aeVtqRUNYRDkjiAinLhaiIoJsXFXZSoPqLKd/fWpuVR3SWapwzmRasvflBxNKyp2hQEWKlQ717hStnLS8/6zj+Ls09d01JYod2JdimiLknKXPCV3YStilW0SwEN1uUPpT0Bn1/nbT8pjUV2uI4npXoNMawt7dHHMdsbm6ytrbmBfzsHENVFpi6Ik7jMDvEjLaZoIl56EeiBZRlyWh/lyLPWFldo9XpQSulKAqGwwFZnrO6usrq6iqj0YjxeDwLLZ1HKR2cTwdzdvy7knFMrCUoQTmZsru9S7vbotXvIX2QfoAcGuem9dw8+FBaS4WQigceVKz0N+m4AePtfUwm6LRFiCyD+Zrw9z6syTC+HpZpSPIUrXaXltYMX3qG1rE7iJMI62ryK5dw4z3S224HKUINBQ99XnsH4RxWegbNsi6YTKcs3/8g7a3jTETGxGxTMQnkgU0fxYI79bWw2S+OMjQ0Is2Yg6EWUyZuQEe06R27h87trzB85QytpT5SRbgmxfZG0xqIdITQiuLyedon7uKjH2vxiU/GfOCxiiefnGP4zfM0r8LzJd3cn/dt1HX6ltr/iYMwD8C/A34s/P5jwC8AOOfudM7d4Zy7A/g3wH92rdA/rAkhgqn9rbTgSLslAfn6Cpz5ZRf4Ghe0kWAnkCYxrSRG64TatCkKgRaOKBrjKBEuJLI25uu0RNQGlcQHHEHfSmuwbGtLBleH6K1jdE7e5bVZIpQBa2rc/ogOU04c03QiSS9yRAaU0QEaUF47E54sWYgaUGBTFgWIu4m8/042Y8xM8EdRRFmWXL16lbW1tRkvz4HmHHmW+bGVTdiswAiJFQrXMKgGs15KRZKmaCWp8oz97avs72yjBXQ7PpM3z3N2drYBWFlZodfrYYxhMBhQluUsqfD6Nlf/ZiOpNEm3R2dpmShJyKYFg509TOEjciTM/BJeePkMcGUF0kY4SvpLhvvfLDl+zxH0+im+enqJ3aHPx/DCU7Iojj/2mRN85B+9m4995sTsM+lAL4QjNj+0UPSWVyjPv0y2c9FvPFXO+OxpkiRCpykuhIXeuIXsd+uYjgaYqEX3znuotSMze5TsU0sTCqFDU4dBHLzEa2ruwGYRRs/5YutGgLUjxnYP10pYPfUglYwYD4cBMQ5Ff26YYesQUhN3WuSXLvCL/1vNn/lzS/zET7X5M3+uz0c/Gh98+oXLzHINbtK+bcEvhPgRIcQ54D3ALwohfil8fkwI8dGF4zrAHwCuzbH+e8AfEEI8D/xA+PtbblL6CJxvBd8HX3Lw1c8VC/9e3zbXcq/5XPiIo06nTa/bRoiIqkopa0WiLVrlgKdv9aanxTmLHU6JlUZF0Wwz+Haac45yOGRqDCv3v5Xj993N0soG60eXuXzB8tTn9xA6YfNIxJvuw/fLVLztydtov+l+3vrhU75Ii/SlJYVNQp99kY2DY3twjJuN4Du9GTSC3ztGHcPhkDzPWVlZObR4j3OWbDomagq047VSKzQGFVLpREjR91m1SEmcJqRpQlWVDHZ32Nu+QplldNotep0OVVmxt7dHlmUsLy+zvLyMEILxeEyWZTd9hgNQpRUgFCpN6a6uErXblJVhNBiQj8c+kdDOtXVH42CvAnyggBrnKqKkR/fE/ezFt3FxKpnkJdYIfvEzJ/jIP3qEj33mNj72mRP8ub//Pn7q39/Pn/v775sJf4sI/PIAIXMVMBKSXp9YWEYvfgNTlpS7u9SXL9BaXUEoASisYJZ1fd3zihAGamqyvV3aR25HrqyRuRElk1lRHmC2RS0GZjhuVeFr7ueC4J594v+JJhBVgquYuF0mYki6tUH3xEmm+0Os8Zuqvbai0cIb8OMiaXe7uNGIX/m4O8C8+olPNpn7zlNjsLDRw6uKsG9b8Dvnft45d8I5lzjntpxzHwqfX3DOPblw3MQ5t+acG1xz/o5z7oPOuVPOuR9wzu0eco8/fWsx/E1SlZ47/WBBO1r8d3iz12hSrzeG/Grt+ru52X9SSdrthFhrsJqi8BwfcWwCPt7w1wSz2jrKwYg0TuH6qbFwC3/9j37mBP/1/+fdfLTR0lxja1ga7nhbV4x39+geP8rd3/t95IXHs4tC8uDbVnn6ywYb90ElqGqMcIaHPnw3z73UwlrBcy8lPPTkvRBqm4om7FbUOFHRKEGL/w4bmWbhuQMjNP9v/qrd7Pnm37mZf+Ba5taGn0cpNcvcvXLlCq1Wi3a7fQBnb86vq4qqrJDKi5TCOM4Ncp6/MubcICc3wbLB0yZYBFivJSupSNMEqQSDvT12t68yGQ5QSrDU7+GsY3d3j9FoTJqmbGxs+CzgPGMynVKHZJ0DzyfmENBMF3feGeu0pr20RH9lhbo2jIYjstEYW1XMV0wjEpV/704grfbF14Uj6se86XuOoDdPsJ1r/vWvHeEvLAj6f/6xU9dQIR/F4akZfuzvvY+7/8Qf50//nfeFd2ipFchY015dZvrKaSY7V9g/+zJRXRJ3ezMM24oZCnjd+rACpBUURYYpK5Zvu5tKCbJ6QEmNEQrpQDkbipkvTrCbQ1Q3bgvQZLBgnbBIfGJjLS3OFUzsLlVsWbnjLkxlqMpyNtaHAkyz7kjSJKWdxrzjzm/QavmNotVyfOCxeWb/wQ3Mt1cT7G+8zF0hSSLFpBCY5p0ciPW+OTZvjaGuLUpeHzP7O9IaX1vA+RfjDOIoJk00Qjic7ZFVGiUykrTCyXJmPgo8dCKtxe3sEyc9tI2oVI106prH8pP/Y5+5jT//90PBil+9m5/8yG/y5CPn/ffUQISzgny4TWFh4/43URSLvP+Cqpa868Ga2I5RxoToC8sLZ9IDx71wJpnh30YZXO05UHB6dtgB7iSaMWnw8ptt3WIm6OeGvAvYcjCxG4fsNRt8I/Sbqlo20GMYY1hZWZmFb/rj5xtpNh0incMpH+VyehzxS+cll8eWrbbmQydrHuhalBOYyKCsRRtFrYzPepUVsiNolTFFNqbIJ6yub9Lu9uh02uRFye7uLmVZsLyyzNbRTfb3BgxHI5yzpEmK0p5Pv3mkA+R+BwAJr/3rtE1/QzMdDhnsDeiWJa1eGxl8FDI8nwCsNBgnZpuwFhV33qMoTt7Hlz61wf/6W0sHBL0TllZSkRURraTi/Q9fxArJf/p33su/+63bAcG/+9Qd/Jn/TvDP/tp/ILIWhCJeWiHaGzH+xufJ9vfoLK8QiRhfxN6E+X3jl++A6XCAWj6K3DxBxoBcDBHC11V2s8m0OLO+nXadXX6gN8L5DOncjpjaiHR9Hbm8Sjkckmy2/Ry4gdY/eyIhaa2s8f13fZF//NfX+K0XH+CDHyz48ONNSVEbCiX5M+bBojd/tjeg4PeEaTqTWFtziBvo0NOa7cAYS21qYjS8jiGCr6UJfOHoSOvA1Ok/bKcJWmkcirKMsdaRRITQNBMEpITAoI4xmKwgWd1swIYb3vOTBwpWRHzyS0d5/NFzKCdwQiMcVLZkuDMkPXk3nSMnSBK7IPwdcWy58y4gVDbCpUDFPXfkPPfS3Oq45448CKBFYJKZhdFEPM20cIJu5JhBEl4TXTRt5583GOecx8WHW1pjA1OpF/KVqcHNyyc2jl2t9WwDAHjwwQcZj8e0Wq0Fp2rQjK1lmmU44emTM+N46uqUy7sxVkZc3hM8FWnuvAN0ZNEm1COWDiM9GYW2kd/QlCNNEipj2N3ZYZJlrKytkyYxke4xmUy5dPESq+vrrCyvkiYtdnd3KPKCfr+P1vqA0/nAhJr9EDOLwImYbn+JNE4YDQZMy4Ll1RXiOEYo6R2pBKiIBdhYNOUhNbffeZStIyPiqKasNK2k4scef4k//fiLfPJLx/jgw+f50CMXwEp+8yvH5p1B8JtPHcHH6PgkyJaMWOovc+HFF4mkon3H6jXrr8ngvv7hpIOyzsnGU/oP3o9OJUU99bNnwQJaGI4DA/NaV/mN5MoB/0VjeDpHVuW0ki7p2hrT86fpG4vV8vA1eY3zWmtNp9vh7a1P8wf/WIpa38CGYjlmltvQ5GLcWv/fcIJf4AufpEmEMY32tvjtjZvDUyLXtZ1ZCr/jLbzEJEnQOp6b70CsYxTgREpW+HC7NHFImXOApjighHaSoQ3IOAoy93DR74D3P3yRn/mVe8jLiDSueOzhiwjh+OhnbuOTXzrGYw+f59G7voiVLfqn3gZxn+2LI9aO9ChLSRJb9r75EpgSYSIP3VAhcHztoy/ylifv5oUzKffckfO1j7544P6CoMnhZsIWmAlfD79ZnA3fB+FfG5+cZK3FWAMOrDPBTxN4/pWkoX1QUiKFj3NvKJV0pD0cIuVMaDY4vjEeF15dXZ2V7bx25OqqpCqKUAzcMS0lr4wkxzopDxyBb17NOTMVZA4S6d2mTclHJwh8R5GHUoRBaYmQmtrUFFnO5YvnWV5ept9bptNuUZQ121e26ff79Pt9NjYUo9GQvb09Op1OyPaVtzZ3hUREMbHU9IRiOhmze3WXXrdNe6nnie6EuE44LdaP2DgB/8VfafHou1/mS58p+OBbzvH4Oy+Bdjz57vMgaw8VOXjfQ5f4hU/dTqMAvO+hS+GKEqiRQKvXo33BolVMlCTzDV8sCNbDHsU5yukYEyWkt5+kEBkVQfD/bjXBjG+/dhW5nKLWVzFnX8DVFhcFS/fVLiOE54a6fJXhyy+ysrSMjeOFyKjXvnG94QQ/OKSAdppS14a8KLn1YfFaZm1M4ML53cB6ms1Lomf391qsr3srMbQp6xgpS+KoRIoCF4TdXOWwmOGYSCgIlXkOF/t+o3jsbc/zl3/4m3zl9IP80R8oeOKRy3z8095JlxWan/mVu/l7f/I8P/wjmnTzqGcTNBm/9SvbjC7EPPKQQdUlzuqZg1nM2DXVdcJ+8e4uQDFZljEJCVON1j/TsKX0fEgBAvO+nGiGqyN8MRxm2dTBxhFB8AsxE4j+p99g1YHP5htAXdczq6OqKtI0vT4N3jnKPMNVlihWVNJSEFFXEac2Le9dq6iM5XOXNHWgg24gAIdAWa/9u+B4FCGmXgrhQ/lETVkVDPd2KLKcldV12i0vDIfDIVVVsbq6yvLyKkIoptMJdV3T6/VeVfh7TVQES0MQtztIpcgmmmmZkW9XLPU9zz+CkGgU4J8FayxJLG95U8K999b86IfOMnnhEvl4RKuX4JSPWfe1F+Cf/Pgn4b97jN946gjve+gS/+yv/ca8M01f04jPX/gefuObd/GD7x3wxKPnWaSUuOHzWEO2NyTaOIpaWWLMAOsK5vkFv3tNCIejZmLGpCs9vxGUJarVupWTEUAURSz3O4zPvkT7xEmirRMB1v0WzBXekILf67tJ7FPl69pQVTUIyQHceDF71n8w+84arzWq61LRv/PtgEk6wzIaDcshiCjLlMo4kligdQ6uCovRC/wQyYsdjGkrX/yb2RUazHw+FhbY3tnlnrUv8sd+YJ+TJ04ghDgI/5QRn37pPv7jezUu0WSDMdLmHF+vaW9KlCzAGAQaRBUiQcwtTUqBT5rK85xkgU2zqWm7KJDF7DuBRl13jJAS6+wsm9ZaT2VtnXdQN8yozhicNRQL2H4D90gpWVpaotPpMJ1OyfOcpaWlWRYvYfyEs5Rl7sm2hArancOh6bUMLW3pJRKJxgaaA+msD/PEc69IzIy5cRZQGeZAFEVoKSnKgslwiDGWbq9Pp+sFe55nXL16lX6/560S7bX2wWBAp9MhjuPDxztkcC8SbzsBOk3pxBox1RTjMaP9Ia12SqvbQQQCQd81H30lhPeZWCGI0g5q9R6e3lbcKZ7hSL5Lsr6CjiKMkLOom5mwP/D+Lc4Jaun46OdO8pd+6n1kRcT/8qman/zIb/DEI68c+hwzP4ZzVOWUPK9ZuesUpazJ7RTEdWRXv/NtNv8Ntaig14E4pSpztE3nwvsGbXGdpp025fAygxefZX1lAxEnGBH4fl6j8H9DCn7w45AmMXWdMrZTTIAHDiP1EsEpJoSvmxtFnm3zd7MdSEJzQdtHYojJC42jJokMUviwyLlbxyLwcIgbZejIC/65g28uXIy17O3vg5ScOfsy6+vrbG5szPrw2MOX+JlfvYesiEijkg98oEKu3c4rZzXnn8l56AHHSkci6hzIQcQ4DIga4SLfH/fqTnKHj0CyWFY3NoijyAtj53zpOs9NgWkEurNUtaOe1Sxws/eHgNoZsPhwVuuvYZ3DhXR/Yy1YO7t24+RthH/Ter0e+/v75CGZSggRfAARAoc1hmw6QWnp+fKtQzlLrbwWb6QLcd0EDhqP8QtnAju08sVEcCzyb80yNJ23dJI4RcmabDKiqktqU9HpLhFHbcbjCfv7Nd2+YWmpT5rE7O/vM51Oqet6Bv1cN7+a+dA4TEXIIlWKdqdPrGNGgz1G4zG1qWh3u6g4YaaEiOArET6izKFwSRe7dAe2VTPa+yzllSssb25AlCKdDMr3Ic5MYWnCNX/ji8c89xTeUfzrXz7Gk4+eO3TOzLF0x2gwQC2vkWxuMbETLEWDbv7eaMLinKGOLHpllWznKu3VlWsdFteftvC9VpJ0pcvg/Dnyk+fpHL8DKdS3ZNW8IQV/k12rpKDdSiiriqwor9OoFn8XwkNESRzTSpMZ+dbvCs5/bQvCHxSVbZEXgYI5rhAE+KHBChsroba40RQddf3kuAYJ9LTQJU9/45tUtWE6mfDudz5MkiSzzfHJR17hJ/7rT/BLv7nKO958nh/9U/dRVhFPfW7K7oWahx+QKFNinUX6nM/ZIhazzehG1FLzLgkBQvqQw+l4Qh7G3mvnZiaQjTVYa3DOBi2+2RxCNvDsXYYntaEYjfW1caNIo6KEOIqQIkBHC9ZF08qyZDqd0u12WVpaYj+QnS0mdeGgrjxNQ5pGOOFQrqnuZVCUJNYRW09BIW2CdBXe9yADZ7yP5/dwjzgIeTTj4zwsFUURSiuKqmTn6hXqqqa/tESv1ybPS3Z3tjF1Ra/bY3Nzk52dHaaBNO7apLMb8ksJEfxAAp2m9KMN8vGQyXCENY6k62sOL5acEGiU8c+w1DO85/uXiLif0deHDJ7/PBFX6K5vIuIE12TFHzINmuaLo586UBz9xs1r+7YuGY0zlh54AJdEFG6CpwN/vShKXp8msNSiIjqyTn7hLNYYT8Z4yx0URJ0uyXCH4QvfpLW6gWp1MPJ6P8yrtTek4HdNJAzzWrhlXVNX9jpB3mh4UgiSOKLf9YUwggX5e6PN1BZNbbrURhFrQxRNEdQL4VsNNCSxeY6oanQ7moWFLs4wIQRVbXjuhZe4ePEi733ve1heXjkwfRyOD775WR5cvszqIx9ApFsUA18W8fve26OTjnE2JI0hZ5qHCDH6Xtt/lYS4EM0jhSSN4xmcsoi7i0BNHCnlU/cFKCFwQZjN4vabJ7SGuigo8wxbVbhQok/alFbaQsXxzO/R3GsR+kvThjphyPLyMuPxmLquSZKEyWQymxdZliHxfbEQONYlwsKw0lwsJYNKYV3NXhGjpS+DmErJsrIe+xWB08c1wljMnsVrtY348ltGEicoIRnt7VBkU1ZW10hbHXQUMRwMybOcjY0NNjY2GI1G7O/vY60lTdNZfsuic9a/Lw6GSQofRqi0pt1bItEJw/198nKPpeVloiQOjKEOaQVG1mirENSsLEfk5RJZ/1207zJcfea3EVLS2dpACA2Hwqf+5tI5fujd5/ipj/wmn/zSUR57+AJP3EjbD78JHPl04hliT5ygEhUVRVA3bqJ0/E43JxEYLDVybZkKMKZG6uiWL2GFRDtJd6XHlcsXmF44S//O+xDytYvxN5zg95Z/E8/uN4Akjom0xtTVwWObBSA8FXK75fn1g7sxKF+/uzpDM229rhSRFQqHIok1guk1Aj0sZSepiwpRW6I4CVER1193mvtiIIPRmMl4Ojum2TgrUzPd3qO1uUHryO28cm6fJeV49OGUpWSEokA4jXCCWooQ+93ACMZrscJyPW3vwdY4eOMk9vkTHBTGCKhrg61K6iLHVXVwdB8eA62kQAvoAFGShGR/QYVgOhgSW0fS7Xqu/+DQv5bxst1uM5lMsNaytLSEtdZr+nhISODIphlKqzBPJFY4rHLUteLLVwVnJrA/FQxKxa9dyGlLgZHw4ErBo+uayFWeNrvMsTrC6fgaxSRg8I1jX/gxjnSCAqq65MrlS/SWVugvr9LrdplmGRcvXmRtbY1ut4vWmr29PYbDId1u14dqBpNoliftOJDV7YSH1iTeIhFtzZJUVNmU/b09klZKt99HRxqwVFIhRIFzKQjLZFTxH75Q84F3voXVB6bsvvAMaadP1Dvc5+Bnt6cgN0Lwofec5ge/52WkvXGpx9lnxjAejuisHyVeWmbsRiC9z+D3iMgPTeJEjXAWk8boVotiOiFKbsHBO2teNqkkopfE7D3/TaIjJ4i7K9yY+uHw9oYT/NZYKkdgR/GqjJYQa00hylmpswYXF8KX8Gy1ItI0Cot4Uf35nW4OnMURB6FpmaWT2y5lJVHS0E7GCJH7eqDCl9arBUQWrHCIyRRZ1Mg4wsoSZRWVMoErxS+M6XhIWRXoVoy0Nc5U2DglchmVgGK8zdgUrN/3MJd2+3zhM1M+8L6MrZ6E2uBsSC4XLpQIdPNnEM0YHrJpLoTXOuHpravRHrLMMIdk00o8QZcGEixSenNM2sX7zS+vCGUzpQz0HV4jj5xD1YZ8tM+0ymmtrCDkvAavnzG+uLmOI1ShGQwGrK2tMZlO0FGEEBJT10hXU1c5Sgo8I6qfaxZBTM6FQnG50DgDtYMXR3qWtLaWVP6OVuL2X2H8yqcQK2t0jn0vTvdwog7MpQYf4+4tgQbXFsKTr2mjoKzIhvuU+ZjltXV6nR55kbOzs0On02F5ZZk1ucZoNJo5fWchn7CAD1/j92LBShQC3WohtKZWkiKbUu3ssLzUJ0oSX9az2V5dTavtSBPNhWGbdz7wMMPty0z39+h1I4RoYYVDW+/UrEKR9cbScRCS+Q5XtubUyQKBwRhLVZR0bzuFTRSVbRzwjbXZPM3vbnNYpNMYaRFxBavrFLs7tFdXECHPtnkVVnjf0LXwTVPARUpFu98jv7rP+OVvsHr/w1idBhI7ibASRHVIL+btDSX4rfWhd+N8Sq+X+OkRNKg4jlC5whozhwWCkI/jiFYr9aF9s6v9Lk0W56d0cDfO4SYRUdaa2kCqIVIFOEsT7uVgVhHJOYsbTdBIYhl7mlsXExuf5YfzWbV7wxEbK6u89cRR7jt1D7FKEU5hXQtKy+hqRXvrAbobW4x2xtx9zNCPEjAZ3sye45PXj9at4I7h3WiNNRXUJZE5LI1d+BBHJYmUmlsFYawWcZ4mCEo2mDlzzTYWnu5a1LUPHTWGpL9EnLa9MAndlWEzTZOE8WhEXVW00hY6jpDSC/6yyqmqEp34zQAnkM6wLCXfd1Sz5zwb6VzJCK9XwIm+RDtfum+y/Tz7L38JOT1OvPImdK/rqYfdnCX22pC95hmV1igpqcuCMssY7O2yvtXzdQQmE+/gNTUrobavUoo8z6mqim63SxSc6Ne+pmvv19hxKo7pqj5KScpsymB/SNpK6fR6gajPv7lWW/HuRxOErmivHmf9rgfZ/spv0c4kuh28PqFq+IyyI9zT3+twX8BBA9yf53M9HO31DSoqrKsCPPZ7TOMXzm/0woF26OU+xcULOGMQ6taYc5zwSYtWCGQrodtusXf6NJ2jd5CuHvMjEjYNd4Pa3017Qwl+5yy1sWRZQasdEan54omiCK0V9TWVaYSAOIqIokbb/91uQfsRXosMZU9wLiYrJc4K4rhGyAqL8JZNMGu1E1QSKGvszj5p3EIIiUVipEBbiZOGOvgv0m6btz/8Nk7ddZKl5TU0EkSGIKEaDShFhOney2jqOLpScMdSjDQlC2bTt9QWlTnhHIlSHr9HoPR8V24Os4g53BEKtTRa8HzM3Ezx95vfoh7rj1bOj2cnilG1YTLNqZyvLRB3OkihZ8lGDkesI+IoZjgcsr65jhLCO3iL3PfLQZaXtOIUoXxPexreczIGZ0AGUbgoXJ1EBQqBUtRUk4vYbA87amOrkT+EkAfhPI5+rRkvgurfBB9EcQxCUOQl1lqkVHS7XbIsI8sydnZ26Pf7rK6uMhwOGY1GjEajA9xDNyrucvDFOYRUdDo90iRhOBiQjTNsbWl3ffioTw1w3H23L6xjRUH/9nu4/NzTTAf7LLXWPZWBZ7fwc/KQZ7xhm3UvqEbW4pQiSiKGdeZhqt9bIn/WGsHtBKh+QiXBlBUqjQ70+GZkilYEz4YUvmrd5W1Gp0/T6q7iotjXRRYC527uO/idpmX+jjYXFkReFOS5j3Zx+EltzMFQvQVA2x8VIIbfaVK2w1pgSJmxOYKgNilZ6TXOKMpB5EGrcTMR2IBC1DVmb0S73ccKqCV+IxElgtITSQnHqWPHePtb3sTKag8tIs+OKSpsnTHKJlzlHr58eo3RyJEIjXQ5guLWF+lNn5GZAFd4DUQ1AiCodvOsZS8oZdgIZzIUu/Bv/t8cGmkgAT8uLgDaQjhSrVhptdBFSbU/oByNqKswZ5q9V4qZozfPMqQUtNstqromabXo9vo4ISnLCmMyX1RGSJTOiVVOJGoiYYikJQ7/EmFJnPEmP6CjNjJKSJIEpeKw6CWN4/LVxtDNktZ80lcURzS0F+12m36/T13X7O3tMR6P6Xa7M6K36XRKlmW+StuiT+Vm9wMQEqljllfWaLU7ZNPMk71NpwjrwBkkGQrDaCq4mq3Tu/1uxqPLmLwI8F6zLX8rgnoO4xpjIEoQscBS4Zgrdq/DNH3dmhf4IQRDWNxSjI0UJi9ofJENr77gRtayf27pvKUkQjBKefY0093LM5hskbvnRu0NJfjBc+1MJlPG02wm0611ZHlOXfmEjkUiK4f3ri8ust8Lwn+m1WERIqKuW5SVJlKOOCqAimbyg0/iqJTHwkVeYiY5cdpjZ5Lxyt6ACzsDTu+POLuTcXYn55XdKZPMIGWAKjBYIbEuIs8zqnSFlwYnuXQF+kmMqx01la+W9boGR4fN1jXCuanKtSjIHQIzE/LzeE2vXQbZ5//GI/r+n5v9Dp7B0ae3+f9r4ViOI3oCyr1dqtGQqsowWK9ZCYGOY6I4ZjgYYWofHeNvJFnfPMLG5hZWOooqw1QVzjiEEeAa68FbENJ69kjhmCVwRS4mWT9FfPQttI88iE7Xwjbv++dEzaFx74uj51zITXDESToLT21aFEUsLy8TRRHb29vs7e0hpWRzc5M4RFE18I+7Rvm59mfT7P+fvX8L1i277vuw37ys63fd99N9uhtooAEQEEkRoCmCNkkZFGUSkqVK/JQ350EpV6qSKqccKy8uP7j8EMt2SuW8xIqqElXJSWxXkkosiWRkERIdUaAoAqBIQgAI9P30Ofvs63dftzlHHuZa6/v2Ppc+3UAL0FHmqX323t/+vrXmmpcxx/iPMf4DAp2DichHY6YHB1R1zeXFBcV60z5zg/iah6ee3/8Dz/ilz6HiKevZDI9rk9kEUfWHlNBhpFxTY7McpxxOtXuC7VHyI2HEt60DoLwS/MDikpimrFrI9tmvYgQiFyymeJIT1Stmb/wxri7a+g+qLWn65PZcQT0AKEjSHO+hrBsia1muN6xWa1r5Qo9athvE+44P5IfW61uti4UHELwkVHWCoImjEsWGLQXzrktVUCK42ZJEFIvG84/f+C6vn1+zKhuUtaRi2DSQp4o7w5QvfObTvHowCgJSNLUzXBYp0Z0XOf3mC3zrWwe8enLN/+jPXNKo28ye8B/+1WP+9m+O+PO/tOA/+ncf8qxtC9N2CURBwOlbMkB2nrCzb7awxI5zd+d64RXVv9Q5KmW3wGlLzWu0IlcarSOWywXrsiSbTjFp2tI9aNJswOz6mtVqzWg86uP5B3nGYDTBRhGzyzPW8zlR7IijNg+kB623UJS0xbm1GLQY4oOPczgaB1gkmtAxSQb+InfLxnnyaIoX8jx/bIKi1po8zzHGsFqtKIoQ8nlwcECWZX1ZycFgcIPobbfK12OVIQViDdZk7BnNanbNfD4nHaRAhPeGNF1jIoUM9hm++inm3/l98v0RKo7RogMnvTw9e3W3hfXQ12rD1TUmn1BKRUPFTeY+dRNm+6G27RpACS5WRPtTinuXjLwPB+kzXMG3j2QlcOZ6qxlNRzx8513Ku++Qvvwa2sconq4wPFeCvzNxI2txXiiKio2UnF9c0jhPluWtSbv9jKLFCX9ovb7VOn5w0W2fYpzPKUqFUY4sDSUWpVvUobRHSLkXEO8p7p8zSge8O58hGH7s7sf5ve+9xcuTA6bDhG+88S4fv/MKg8Tw5uk5r0zG6Ai0CMslfPOtuzx48zP8b//qS2wKzf/r1zP+5n9W8ed+qUTR9Ar/f/hXj/lP/g9HgOIPvxM04WcR/rv7sKs/yo6g3n1HZ5KKtLAGHfu49Fio70/tLfnZrsZn6OpDqdbxS2/2+dZiyJTBoFg1NcXFOXY8Jh0MUdpiTOBFn88XDIYD8jzn4uIiEOkZS5aPsMQkScbl9UNcKaRJjDZtdaqubsANzVbhtKD1EIkHIIHawEgZ4mMk1Od9mtTqIS8JNkzcWSPd33dyE7TWPflcWZacnp4ymUwYj8cYY5jNZjdq+z5O6O9aEv1RrEApjUli4jTFr9ftoRXW5d404U/+VIQdCLzyOeo3vkM5uyY5GqLRKLGP7L3/+G/8FL/+Oy/xqz/7Lv/Bv/2NJzx9mP+mqbH5AIfrHbvdOviRkPc7rV/brdIRHx2wefM0+GV60PYprd0DTRtToQSMAhkMGcwuufyj3+d4MMBO7vJ+YM5zJfiBDq6nqR3zxQpjguZljN3BMTsTVvVKQS8ofiQ8vF0fFagBmyKhaiCNHZFZg9R0BZ57JVcUxgvUDjmfkw0mXF2s2Z9M+OTJC9y/uuQnXjzgYC/hwfUpP/7CAcpavvHGmzgEi8G7kmXpWNSH/N4/O2RThMWzLjT/n98e8eU/UyA7lsbf/s0Ruw7Wv/2bow+k9d982laIP2b4u4LWXilCsagQydFFdDQ+kOr51inrdJeJq1DekcURuY0wrT8hKIXdGEvLIyMkJmTzmrpms5izqSqy8RRtY5I0Yj4vWC6XDAYDFst5OAgGA5IkIc1GmDgCaylnK8rlCp144iRGZAc/lxCVEc4sj/E71LxqZ11CIMJr/R1PGjcQGuexcRyqrD1m/XbCuxP+1lrW6zXz+Zyqqtjb2+tr+65Wgeitqz3wJKdvZ0X1dpgEKowojtu16UBVpHZAeiC8+WbD1fkLHL/wY8ze+j0OpiXaZi275FYr/4//xk/xv/tvfgJQfPOtPYBHhX+7NYRQBCfLMpx2fQb3DeX6R2I/t61XXoKyYff3WGlo6pAVrvoZDe0xM9lq/YJrjUnlAzXzaDqmvD7nwTd+l6/PTvi//bc/DexPntSV5wrj75Jx1us1xaYITjcvJGlGkqatt/smPCDS0vo2Tfv7D9nB29UWVD5oBi6nKCygyZIGo9Z0blzVUSMIGAlCs7peEK0qsnyE0gYngqfEKc/GOBoxlA4Wmw2LzRrXYugIlM6TTof8xE+n/MqfmZOnYSPlqeeX/7UVotvY4HZF/vlfWrBdptL+/gyPuPPVFUHSsjV2breNc1yUJRdlyXXTMBdhpaGIYqo0xeVD1GSKPTggOjgiOTgkPjgi2T9Ej6asxXBZlqzqipqOwq4NGhXd880DWK0YxjG5eFiv2Vxf0ZQF1hiSJGaxWCAi7O/vE8UR6/Wa5WZFQ4OxKdO945BNOxrinKdYF6EGAMERIao7fIL/oSsnqPEYH+A23yaDgTwW/r5dftI5R5JlKGMei8vfJieMoojRKEBWm82G8/Pz/pkGgwFVVfXsn91nZFc72pnIbu7Ee+q6Js7Stu5wRzu3wUvFegm/+/UaP/kxShVTL2Yo5UIUzs6z/PrvvMSuMhF+321b8A6BpqkwaRp4nDrCsx8Zgp6brVc5RYX9mqZEec5qvd4Z293d8WjTHozvjtut38DmKePJmL/39yb8O/+LE/7Ob3wa+PgnntSX507j79j60II2u6ayAvwNjb97q/PCpihBBGst1pie9Ouj4+vZmdgbCzXAN4hHVETVxDROYyykcY3Sza3Dy4MKNAEinvL+BalooiRhbzjijffu8/uzOQ8eXiHe824y5sFFydfkbQZ5wsFojFKwKhwbn3D4sZd5eZrx45+bkfxn8Hf/Uc6/8XML/s0vbfAirWkeNLROu//gGP9tAgn6YB6vtptaUJTesXSOJoqDVmst2hqMNRgbtzz5NhDrtQlWHayuBOqyYn51wXoxZ9NU1FVFohWpDZXMQiIRreM3jKtWMIwirHPMN2s24olGI+I4YrXacHV1xWg05PDgkMvLS4qqAO/I0iHKGuLJgHFu0OewWS4pyxU2si1lAihRmLYWr1OC2al21ddUUK61TB6jm8nOt5bTKE6SkIn4OCh+B/LZfa3L5F0sFu0zjXpH8Hw+Z71eE8cxaZoGTpnu9rvXab/ESwiLjeM2N0CBN4SwZMXhsZBmBS4/ZPTSq6ze+x7JaNJm/wqdKPqVn3231fTDmPzqzz5K2bAdAME1DSaJqX15k6byRymk53YLogiJFOnhIcW778LhIb0yshVRt1rYJEa6fQJeBwVCtCEZDvnG659lU/RsvE9U7J87wW+MYTAY4HTTp4FsDajdQ2CnwpMoluuKsnKkScwgz4iMDqyQ/1xaj9Z2dggahZcR6zKj8cIorYjMoqUXDtBEH/siIWRTrUui9y7JBkOMtby8N+HB2QVvnl+RDlKWZU1RXjEdpax8QyoZnz4+orKGh2eKZH9KPhpiJFT0+gu/fM1f+OVZ30uNQW55X/+jf/fhB4Z3OmGx++jdk/ehmAoqJ8w8yHDE0dExaZrfoHHonDUtqIMotVN1OBzYSZqyf+eEwf6UxfWM1fV14G1qHHHHyd9CZVrRY9NKIDMGCyzKNYWrScYTrDUs5nOaumEyHbN/uMdsNme5XCKyIksztLUk8ZD4OGadLbi6uKCqK0QabGTxqvM4qBB3rV27OoPg7kJ4tzw9j8Is3Zh579FKE0cpaueQeBLkc7vFccxkMmGxWHBxccF0Ou3hq/Pz8xtEbyHb91Z1NNXSU5dlyCjuoAzpsGyNEmG6p/nSlyx5ljBIf4z773yPclGg96agizZnYQvrPAnjD/K8hZjEhX2SJTi9ae/3o4ftA/TaSLtnvTIY7TBHL1B/99shsMf4kHj1hIJJqABLetE41ealSJuUiUIpwy/97Dn/9W+5Vvg/WYA9d4IfQOsuc+3pp/4NZ5WXAA01DVop7DDblS0fYds93qUDoNEqom5S1qVHa0iTOoS+9XmoWxpmLeHk97Ml9fWK0d2PoZRnlBn+1I99kp+qO6Hq+bv/5BX+4T+7y8//5Dv82Z+6x2FkWFUVRal4+egEraLWAumShz6CR75tiit6TUeJIB4qYNY0qCzn8PiENM9R6lbkw+4ub4fO7rhHAsYLRlmy1JAcpUzGe6yur1lcXrBsGnIDqTXYFoIx0hVF1yDBahxog2oaiosr4vGU8XDIpqp48PAhB3v77E32SKOUy8sLvPPkeU4UWbSJGI7HJEnC1cU5i8WcWCAy4bodZ460Av/RsX7/wffisdYSJ/GzfuSRZq1lPB5TVRVXV1dUVcVkMuHOnTvMZjNmsxnee7Is61k+ldqJJhNFsdmEZDCtWuK5MCnd98hoXnxhD6UhTu+QvPAS67N7pKMxJrrJ4fMf/NvfeIpTd3tV5xzKWrS1P6LS/v1bGsespUUWeHr8vfImrBfl0Ai6rVMtfd1e4Vd/7h5/7T99g//z33iPv/dP3nz9Sdd6rjD+bWurN32AT/QFuL1QlhXO+Y+YoXNH71U3fw3CP6EqcxqviSNPajd0sfuqF/zhywDeN1T3zkjEkKQ5ToFoYZgZDsaWo7HlH//RJ/lf/+//DP+X3/hx/r3/4pf5R3/4CZTVVHXN8Qv7DEYJHZtmF/v+0bUben/AvwGvPA5Y1A6XZuydvECWDR4V+jvX6fBzxRYyCqdI50wLFoExhjTLGB8ecfSxj5MfHbPEcLapWDaeSsC1j6xbiM8oiLVibC0TrWkWc9x6RZ7GJHHM5eUls6sZWZpxfHSCUorZbEZV1UGWG0uSZhwcHXNwdIzzUGw2uKamqzMg0iWbyc6w3F4Uu633kIRKcVGEMR9ehwskhYYkSRiNRpRlycOHD6nrmslkwtHRUc9W2uH+XQ97p7x3JHFL6X2jzxIOUDxWgVZCkwyZfPJzbKo19WZ2Y5Mpnv7k3R8U4OoKZeMW4voXT/ILPlCVaN1qmDtazOOaChBPYJqFEAp9K/JLKb78SzP+Z//jvwNczh5/oedW8EufnPWBPtX6r+q6pml+WNV7FApN4wesy+Dpz1KH0muEZkcoAEibwi2w3tC8c8ZkMsXoCCUGKzqUXVceh+MrX3/hRkH1v/+1FylcKBY+3h8QFC8PyoUD4CPaS4+4rtoXBGhEsWwaXBwzPT4hGw7CxujeeuP5W7gDCZE+vcMr+DvE+1tCJQhWGxkGowF7Bwcc3H2J0dEJpbFcbQqWTUOFxkvQvpQXtHisFtJIM9QKXRWU8xmJ1mRtEtT5xSXaWvb3D8nznMV8wXpd4hx4ZbBJyni6z8HxHbJ8SFGUVFUombk9rD5Aa+EWL5BkWRuj+uxXeVyiVif8B4MBxhjOzs56aofDw0OiKGI2m/XZvkFLDfsF8UTR48VJZzWv1xXnDxsqFZGffJz48GVWl3PeJ+T80eu1313TQByjrP0XSuHvrCART7VZo9uIw9s557ebKAFpkCYw3joNTrsdf8ajMOiT2nMn+He1vQ+yGLYOsMDBUlU1/oOeHB+6dZIvpGJrYjZ1TlFpYu1JozVCucMcCl0Oavik4N+7wC4rhuNJm7JtUF6hXfgyYvnS5++TJSF6KUsavvRT71GvligPg+EoLBZpSVTEfHRaVHtYCT7AkK0AEYFl7SlNxPDwiNF43GYVb0cJaT/pPFVdUxYbiuWCxfyaq+srlsWaxjfMLi+4evCAcrNpq29t/SfBkvNYqxlPxkyPjxgfHZHu77PRlvNNyaKuqIXgH5OWF0dDHhsGWhFXFW65IFJClsWUdcH5xRlePHv7ewyHg1ZLXtA4h6AxNmY0mbJ3dMJwsoeToP2Ld3SUIbvUIU+MMLsFUaZZ3g3qB56z27UItNbEcdwL/+Vy2ecs7O/vk+d5iGRaLgNdggh1VSDet1BFSCIMY9Z9he6dn5V88/crykKjsozxa59jVawoNuv+gH7fiDrZeoN83UCcoG3EBy1E8kNp/fx04+2pN0t0FPWW6VOlljhcuWazWNCItPH8gaJ8e4Nna88dxi+P/PDsrc/kFaGoKnKXYJ+ROe/7a7JdEKLwkrKpEhyecdxg9YrdhKXQOkgGfFXRvPWQcTrAJClet7CBtI7PNqPpy198l7/+v/kKv/m1l/jS5x/wq3/qDa7fu2K4/yJJlrcuZXY20Ufl3JbWKdg5MUMW4rp2lMowODhgvLffRpK0WryH5WJOuVmFspJeAtWGd4jz1F6oteLwzgnrTcX84hxVN9RFQTQcMBiNSZK0F5qrdcG3/9k3me7tc/fuXSb7BxRpyv2qRkcxa1dSVCUDbcijqN2PHiWOTGtsZFnUJc3KofIBeRqz2hRcXl0wHo3Y29tDmyXzxYL5Yskgz0jiGKUNcT5iP4qws4j1Yk5RFIFEMI5ABYoHz/tEk0mgIFfaYqO4PbSffQYeicu/FfnT4f4dn8/5+Tmj0YiDgwNms1kv/IfDAcYEqGI2n5MPBsR5xlav3eH9NxHKaLR3+EgYvvQK1weHzK+vSbMscP8/Q99b1y6uqTHjKcr+86+N/cFb58TpnFCCiKPZLEmM3Trxn+KdFqBerrk8PecotkSDrD1o9a3z/v1H8bkT/D+o1jQNVd1gzZOKR/yg2u5uVaAMTTOkbHn3s7RAqWKnQpIiwDGtee6F+moBZ3PGhy+CtUF7asnIOiWjiw/51Z+9x6/+7H1A48uGalWy98n9nkpgu4KEj9Ig7CyzEImj2DhPoRTZ3gGj/QPULrwjnvViwfXpA6rVCiWhnoBRQoRGaUMtgh2NibXl6uIBtq5IlWY5u2azWtAUBclwQpJlLeVCzetvvI16800ePjzl7ksvEUURb967xyc/8RpZPmZ9ecWyqJDGkVmDUcFBrhFiFKM4ZuUaNosZ8XDMKE1YVxWz6xnihdFoQBxHXFxehKIuzoXsWW2wccrewRFJHBy/dVPjq8AIGlwWT06e6l53zpEkIYroB+WLul2WNM9z4jju8f3JZMJkMiGOY87Pz6mqkjxJqbOMzWqFEyFrHHGSYOMYpfulysFxTDrS5GmBIOjBiNGrn+P8a79NWWxI88Eznl1BqRHXYNJQJ+BfvBasuXq1YGC7kNZ+kz/2ABAUZVlTlSWLy0v29SEqTR8x8n7tNyf8zf/3XwD+2uRJd/8XccQ+otYDASgUzgt17SD952VCdtpARFFluEZIE4eN1kDDjdp4/Y8a5Rrce+ckokkGQ0TpkAzlg54laqshKUBLSPryCFI3uEaRTPZaCuGuWpZv8cQPXsvzmZoEq0IpFeAOLyy9J9vbZ+/oELtTjk48lOs1s7OHmLLgKEtDPJMKYY9KFKUXKucYjUe4qqGZL5hoTaIVURpTibC+OGdxdcVob5/BZEKaJPzMz/wMf/BPf5+vf+1rvHvvHtPplN/+h79NsSn4hV/8BUavTLh6+JDl7BrlFJkOBV5avxpGwcBYIuVZXl9jhiMGeU7lPBcX5zjnGI/GnJyccHb2kNVqBQqSJEErjdIR+WhKlGZcnp2yWa1ABGt0W9rwKYyZ4vEuRNoE5yA73Pbfx9TsHDbdV0f0tlqtuLi4wHvPdDqlqqrgp1CGwXiPNB+yWsy5urpimGXkwxE2jVAtPXUcg9KhkIgXAaMZvfQyV98ZsJjNSNIMzDNo713UhQg6ClbUY1O+f1RbJ9vFURcroni6Y7A9eQ4FofGe4Z07rMVjr5YMDzQmTvr3/PpXX+Lf+U8+zqb4JE9L4HruMP4fRAvOQVps9jbuuEsX/EEuuPvD9qt/uXPriGZVBHGbxoAuCMdRgHZE7d5dU5cV5btnjEbj4OhqLygq0LNuqYnbSAgliGoQVbMqFkSjIaQDRCwito2nNgHj/0EI/c590X51eL5qMYDGeZZlRTweMz46RreFzNunYFOUnJ0+xJcFw9iSKQlfCDGCVkItDSaLibOU2eyaBEi1IkJINAyUZj+OmVpFcXXGe2++zuXZA/amI37u577IL//ynyWJE373d36XN15/g6/+f/8h7719Dxsl7N25Q7K3x7qpqX2wgnxnmIsQIeRKM44TpChYLxZYaxgOB8xn15ydPUQBJ8cnjEajlr542fJDadARNsk4OL7D8fER3nuKoqBpmi3Gv4v57w6rCEnLv/NB5+q2H+F2ctfu+7qon8FgwGAw4PLykrIsu3eH0GkTYeKU8XjK/v4BVbHm/OwBdRnWrwbq0nF6b0NRCdpbvEREwwOOPvYpFvMFVVXRRVg8yx5TIihjbgXDyHbNfdB9+lE26ZhmQws+LcFVFVFkex8H/QHwaNMiNM6RvfIKRz/xkywLx+rqGt/U/Yf+/tfuPFMC1/Ml+FXYliHxxX8fkx6mp/EO5x+Hc38/i6lDPT3QVQNThKLpEUWzR+U0kYYsXqClRHrCtoB5OxXoGoxzyP0z7KJkONlHobE+JHM9Fp0X0OLxxOA91dWM7PAltNGAD4tBddFMPxgNarsnt9aDqCA6C624cIIeTZkeHhPFto+8EYG6KLg+fQezmTExkKJDlqt0BSmgFk+pLDqZsJotYXHJoPPVECJztILIaHJlyL2wh2AXMy7fe5tis+Lkzglf+MLneemll0Ar7p895Otf+3qITY9i9o6OsPuHnHvHuqWFthLqAzgFooTECEMjDJqS6uoChZAPBzTe8eDBKU1RM51M2T84YF1WzOZzGtcSSCiNjTPS8QEHd+6SDEasi4K6KkAcSHfUtKtHKbwLZTV1lPSjLG2Cz/fbnuRUNsa0BYva/dE0aG1allQXDvQoxgyGxHsHmMZRnp5iqxKPMFtVfP3rmvlCEWoyg7eW6JOfQg2nbK4vQeq27OSTiRO1B69b+NIH1lWvHkdD/CMi9IE+zbAd10YpVONQVYOJolsVsx4P7XkUdVPC9JDBS59l8oUvcN0oFpeX6GaDFs+XfuohWdrt4ScncD1fgr/FpYN+8UE11k4z3nFteo9zP0AHp6igSYsFiQj151oNG4CYsozBQ5p6rC0JuMhOiUNpuV0EfF2zfueUYT4gSlMUCt+a/J0OuNUFd7Q4QBpHXVYMJtOQkanYhhK3P/8gktd6Y6f9qSuLUgGLssRkGXtHR6RpHtgaWxFXNzVXZw9plitybYh16+hV9BEQHkXpBJNkGGMplwviVsjfeBiCs3RdbbiYX1HXFTGQOo8sl8xOHyB1RZ6nvPbaJ/nJn/xJjl+4gzGB2z6OUyYH+8SDIcuyovQ+JHj1llRg/0yMITeGzHua+Qy/2ZDHMVorzi7PWSwXgeph7wCtFPPZrNdyg1YdMRhN2D84Yrp3gPNsC6V0K1PC6vbOESUxJrItdPbh2i6k86Tfd5tr/RQiQtM02B5f37EYtMZoQ2ItUpZsZnOUD2Grs+uCug7PE4oDQTI64OCVjzNbLnFVdUNJeGQ99S+HE90VBdzYoz9Kwn639V6tML6i8EUF3rf+LHXjvbcPcBEJJVSdI0lzbDZk72Ovcvipz7KshYvrGeIcv/Kvvstf+8/f4Fd+9reBJydwPWcYv2qF/jbk64O37cIJjI+BG//2fT5Ytzrs4oZNGq4bio+idExTJxQbi9GQJAUim3An2Qo7LQpDyCptZnPU6Zzh4Qs9T4vTYP0OenS726JQeOqyRNmYeDBocf2Ppu0AWhCelEYU87rGxzHTw0Py4bCNQ2/f4xpml2cU8xlDpcmNRUlXhmWbqFV7KDHYLMP7Ct2UZMb2h8eubwOERblm7Rvq9ZI9L0wGA0SE1XrFRikmecoXfvInuPvSK7zwyktEXTYsijTN2D864qKpmW02qCQmaSNwVDs/SoRYaYzV6Lpi02xoREjzjKKsWSwWOOeYjidYbbi+vma5XJKmCXk+ADRKGbLBkDhOMMaynM/ZFCVJHIqqGBWSpbwTsjhBPwOP+yNzsoPjP1PJxZ33Nk1gknQuFDqPItvCFhByC8IvUlXEWhPFMcvrGaNsyCgZ8olPpmRZsHpVC/thYiavforLN75FuS7Q6eSp5QdbNgiUNkjrfDdW06jd3JsPDn99lK0PshDpC/TU6xJNp6Q8uXVjL86hPMRxSqM15EP2PvVZGmlYfO/b6MtL0hPDr37pivTq7/Abv/PkBK7nTPC3TXUwyi6i9sGbiOC93JqY78PdqWAL8wiIQbU0DJ4xZZVSOxikHmtXoMpg03Yf3nHgOWmo3zll5AxZPqQLxfQKIukSux7taUin95SbDVE2xKRJu5M+7EM9vXVT0Jm4DsW6bqhsxN7RMYPxuBf6QqiGtrg4p7i4YKBgYC1G2i6q7fu8F9ZOUPkQ0YZ6OWOghFi1ZTp6YRzu3zhHVdUkwwFN45htVijvGQ9ypllC5jz6zh1qbUhHAyxho6FNO/+abDhkenKHywcPmNclY2NI6SqG0fLLCxYYxhbTCIvVggZPmuU4D4vFArwwGo84ODzk8uqSoigQgSwbYHRQXrRNmB4eE8cJ15eXuLrCuYI4CuRyKE2SpGHaPoRpVlUVZVkSRVFfdzdc6snXChawYzgcUpYl1ra0E53Q797nHLSCP0sSysaxubpkdJLyJ35yxHDogZKOSVOUQ00PGewfUi2u+cpX7/IPvnbCl75wny9/8TEkbe0++M0/+DG+8s3X+LOrjC/+eQOqvvm27oT4kWitKrLbpaIislE/f08a+e5wbpoaZSOUjYLXT0eobMTBj/044hvW3/0u/mLO5BVHc7ui0a32nAn+3qtzQ+t7XKzbszBuBr+a3/n9+2HqbKVXWzk2OLwEaPAYvBtQViloT5qUGFOE+qX9YdE9XyhC2Kw3yL1LJqMpNkp2IBVuFCJ5tAXNtC5KdDZGRRHBovmINohsa956pdg4R6E0o8NjhtN90GYrMHyIjlmcPSQXYWhtKFDRmj27DJ6FF0oTDr2qLNFlSR53FcJUz6zaXbuqapyoUNc20ngKLjZLnHKMs5w0SjkZDNmIZ7lacF1sUE4Y7R+irWkxUUU+HCMncP7eu6wah7G2HT1pY+/7YSazGm0SZusVdd2QjsboPGOxWlK5hulkj8PDQ66vrluSN8iyNPDhKADLYDQhTlKuLs5ZLQI0pDVoHZEmKSEgoFuXsr35k6ajxe83m02fP+C9b2v+mhtr/LbDt8vWjeOY2WwWKn5t39H/L02NL0vixGLEM8wyrlZrmtWCvYMhSlnEBe6p0GsFUUY8mvB3/v4+/97/6efZlJb/6r//FH/9L//Wo8Jf4Ne++jL/y//yF9hUEf+P33b853bJL3z5nT6bmFv9+qG3HYHfaf5SNsQmegodSfvRzqfiGiRNEBsi85QHlIFkyOFnfpzLGq7eepNBVePl6aUXnzOMv02zF91Lv+8rHLGPRvn+hGK4hup/DhEzbbgeMcKYqhmyqQzGBpgHqRBaoahcYJyVEJXjxSOnV6j5hnQ6hY7kC0ELOKV2MgFvP5Ig3lFXFdFgjIoerYD0g2y67RMoGmAjsk3Q2oEpxHs2iznz01MSgUFk27j5bWxG8G0EqGjhHNFoiCho1itGRgctfefw75oHVnWFWIvSFqUsNk0xg5yrYsPZYk5R12g8A604SGJGSnF9+oDl/BrXVWiTUOAlH43ZO7lDoVSgjG6P8r5aWAszaIREwV6ckDaO9dUVWhzD4YC6qXnw8JSyrNnb22dvb4/NZsVyuQwRPWHIwBiiNOXg+JiDkxO8UpR1gzIWY6NH5u79VnsnwL33nJyckOc5y+Wyv28/HzsHwC7M0x0U3vtwUDxyV8FXNbalQBcgspZBmrCez6nWNd6VCA4RC7qNbkJj8yH/wzdf3aEVsXzl6y8++gzAV772ApsqhP1uNoZ/+Fv7z/D0P7zWKS2dguaV4MoycCz1e3VXfbvVRGiaGuIEjEUpj8GhxAMWlU+Z/vifJP/kazS10KzXT+3PcyX4tbIoHU5QxZZkbddhteu4enoLeKVrfJt2/v2Ix45QTYJDSzegHJ4UL8fU9SGLlUY8ZAlovWwntNtYQdvt8hr1ekP1nXfJ0yEqTVoYBFCt0/cpj6cAV7f47HB8g2f9o2pB09FUDryNGEz3eqdgUOY9xWrB9YP7ZN6RR4ZAQdtVVOoOslA6fdM4JE5IBkOaYk3S1KR66xjuLtzBII13bFyDiyyo1oWsDTZKibMBGy/cn10yrwpEPCkwNIYc4fr0AZv5NexEd2mtA/XCnTusRVjXbW3crrA6rfJBsKUSpRhay0ArNleXuGLNME2II8vDhw9ZLJYMh8M2nNNxfX1NXVWBb0iCbaijmMF4wsmLLzGc7jMYjVAtw2cYw/ct3Ndr+3VdE0URg8GAvb09jo6OaJqmT9Ly3j8i9EWEsizJ85zNZhPqH+gtPt3TJXtHvVmTtklJohRKadI4JlKKt799zYN3PeINSETgn3IYEUw25Oc++zpZEiCbLGn40uffu7mW2mf90hfuk8Xt+1LHL/zpZfv3H03h33kcdiu/+aIIUI9+tj0oTUMUp0F5wQdKbxWi8WplkMGUo09/lnj/gOV889RrPVdQj6AxZkAcTyhrQah3cP4PF53TOB+Evg7FUT586zaSRjCgYpxM2KwGbCpLUQvWNORxQYh58dtFLCGqR0SIGsfy9ffQ5wtGdz8eTv9bjrAnYoUAhEglLxANJ+3J+H081vs2aYucQOWFZDTExununynXa65PQ7ZtbgymFWbSPYt011HUImycJz88xGpNs1owtR0PfIvv72D7glC7hso5TJax1aqkDaNMEaWpyoLT+TVNPmSa5RglDCKLNDWzBw/QSjMYTXpBa4xlONmjaRyLs4foxjM0BqN2deBtEGakVaB3dp5yvQrFzccTNDBfXFNWG/b3gxBeLJbM53PyPCfLcrQO9oSxMdkwwkQhAWxbUH4X5nmf2RDBuVAwpSgKiqJgPB6jtWY+n3N9fc1wOOzr83ZfnZWQJAmLxYI4fkJGu3ikqYmM6gWdQmG0Jo0Tru6XvPvOkjvH++ikZCsOHSod8Kd//Dv8tf/Vf8/f/8NX+dLn33s8xg/86s+9w//x3/8H/K3fGvDL/2bEL39Zs/StgtB7m3cX0Q+3hW4EvEdJG9ZZVFidtjKBR/raA3edf6xusHmGNnEv14IvrzuoNdFwjNSO/M7dp/bn+RL8Lc+NNUdonVM2D3FUgCBt9MwHu17g6C+KijxPvg+nbrtFxaIkRfyQsopZ1xGbTUztPUor8tSTmhkhxrljlgyhqb4VKPXFnOrb73A4GAZitQAY9rU8EfUUMy44dpu6QRtDMhyhW5/BR9VCMXOF89CIMB2N2nq4oa/FpuDy4RlSFAysxmjBtHTFqC48NYxCg7BuGkyWkY+nzM/PicSF8E2kd3Bvc2FUz7uktMIqjcLvMHwGwWzjGKUUdVlwsV5ResdhnhOZiJGxzIqSq4cPwYTErM5QNjZivH9II8Li4gLV1OSxRtFypbcltGmLlUTAyFhs07CpSorZjHg0QpuYsiw5Oztnf3+fvb19tNasV2ua2jEcDfsawiDESTjAvFK3hP77S7kOshmPxyyXS1arFXVdM51OOTg4YD6fs9lsqOu6J2oDKMtyJ5rH9a93AbpdH+qyaAOU1fbv7VxGGu6+aDlblIjfoHAgtsVBPCYfIl7xq//K6/z5nz+/VZx+5xlUEHh//ov3+Nm734WXP4P2nws92fGxbH17P3zJ382M0MIQzqHKGqPzHUv1yfOnCGykcZoiJgpKrrSjr3xbmIlggUUpg7sfe2p/niuoB6DxCtcMEX2EsUek6TFJsoe1nZbZZuPu/PN4PK4NF9yJu1GKxjlmszlVWdNj6V0a6u7PbF9TeELiTbcdApYPI4pqj9Vmn/lqwHKlcQ6SSDPKhSxdocwyCIuuCHUL9nolqLJk/d13Sdae6eExWgc/ATccezyxdm2XAeqqApsOsEnSJof9AHIVZOfr5o8g0AhIFBOnW4dgVZdcn5/RLBcMjMZu0xV6Yjlha7Q5EUo0g70Dmrqiml+RaY1RO4bdrS55EVZ1hbZ2S3/cXZet89fYiCTLcdZyWWw4XywoqpJIwTiJoVhzdfaA1Wq5+2TYKGJycEg8mbJA2DShHrK0zKm7JR3D/YXcWgbWoquCejnHSMNgkFI3DRcXIcrnYG+f4WiI847FYkFdt5Tcqsscvl2am90l2H7vXpAWClIBx1chNLSDbDabDRcXF1RVxf7+PsPhEO89i8WijTgK8FCWZT0fv+mpFdps8ja6py6KUFSyVbw7CDLoo8IrL3k+/WlHWS0QtzNxCnSa4gkRWE+qB7HVgsPPWT6iODvDOI8iCitZ2v3zhHXxw2lbHF9Q6NqHGH5rdp7ytuXertJu/bsGlaagTUvx0EK/N0xjhVcKkw+e2pvnSuNXrcSrnKVGEasT4tigVAFyjVarULPW1zRuhfdNqyV2wk/68LQgbwP976LcYGPDQTTFaIVSvsdwtwKu896E1RZiuwWlYrxPaJohlRswX2nKxuOBOLIk2pGlJVm6QekFrss8bq+vFODDkeTuneHfOuVg/xibDbdmHjsJL+rR7fJrX32Jr3z9Rb70+ff4lT/1FuVmSTK522LnmlDg5aPTAbRoSueIphNM1PHwKFarBeX8kn1tSDR45VASatEqveUmBwmae+1Rwwl2MGT28D1SV5GYBNV5P9ROxkD7Q9k0FM6hu+pQbJPbtvusk1KGJMupqorrzYZG4CCHQZwwjQxXyznXymK0JU3z9mNCEkXsHx1z7hvW8wWmERK7zdJU6HY9hINAI6RaYeOIRVVQuop4OGE0yFitN1xfXiLOMZ6MieKIq8sr1usliU9JkmQH12/5mFCUxRq8I04ztGlpfkXob9xiCXXTEMUxvvVZDIdDnHMsl0uurq4QEUajEUmScHl52Wv/zrn+kLDWthZIC0PoQGWunEc1DVF7wm7XZKcNaIx3RC7l29+BF16uOTwybYF5j0oioiymLmuS4ZO03+7Zw/6K0hH+/gOYLzHThJpNsLOkVZZ+BLR92Dp2gyDXqCrkHIhpI+p2lMRt68YgZGrjPZKk6FDdHq9aX1i3/1VAPay49z3wni/Bj8doj9WexlkaDGsHEKM4II6PiCODuGvK6hqnVoDDuxrv6065DqyWrRYvWmOiQLmb5zWDLKTIdyGG3Z17iasC304o4BojzZC6GbJYa6pKcB6MdiQW8lTI8watroBlq6lotHL9lHsEq8DM18y+8w65iRnt76G0CbHj72Pd/9pXX+Iv/ZVfDOFxf/c1/st//yt8/vA7DMcTdCtWteinXuMZB/+JvzYIlQjjfNg7k70XysWSVGsi0zrjRfeanOq3QRDmlUChFIPREFesccsVwyjG6Md0vLc6hHVVIkr1guqpj9Di2Ukc44FFsUZWoSBNGieMbMxsPmNmNOr4JNA8t6IlTRKOjk64dEFDR1lSrfp0Qt9pvW21La3AKMUwTlGuYX11TTqeMsgzqrrh/PKCqfeMRkNOTk54eHrKehmc/nEcgw6OaoUC51lfXUNTI5MJcZajW6pmQbUKCOChriqm0ynr9RprbVus3vSvnZ2dMR6PGY8Dudz19TXz+bwP9yzLsj98urEWEbQCV9f4uiKOnlYtraJqEv7wG7DcFEzHESZN8NqhlSWZHFBdn4VCOI+Z2l5vVgFO0nEEIizevUc0eQUjbd1lJS31w/tO+z+X1q3j0D/BVxXGQdRF9bRRVE8At/DeIUpj41b+dNcN0SsfuD/PFdQj4lAUpMmK2K7RqmMCNzgJdAjLtWVTjomiVxgNPsMgf4U4nmJtRmRSrI7QSmOUagkEDFbHIIZiUyE+1LlEuoITrQkvne4VtB3PCOdeZD6fcjVLWFcxTmKMMgwSOJzWDAZnaHWKkqKNBhGMalqObegm2PmG5vX7qIcLTo5O0HHcCsded31i+8rXX7wRHvf3v/ZCSGSaTNFdWW/5CJeBqEBxEBniNlFIgKoqaFYrUjokXHrFcPeRVItUbDxIluPxLC/OSL0QaRPG4Ba0FQ6zAA2tqhJtLc/C9N5FryilMFFMPBywdDWXixlKhIHSTKOIzdUll2enN8oQIhBnGZOTO0iesawbXDuPnfXX9QvCfTrCjpGOmEQx1XxOuVgQR5bhYMjsesbFxSVaa+688AJ5ljGfzaiLEu+DT0NE4ZuG2DmGGqrZjGJ2jVQl4oNl2eEtXkIYZufYjVvfBoRIpTzPe+z/4cOHOOfY29vj+PiYyWSC974P6bzB59NiS9LUGAHL1rl+szmUd+SJZzK2LC6hmF2CW7SHkyGZHlKXZQufPvlQbycMYsNwmLN5+13UatV/RjrV6UdE8nvVru+uKt66IHYa3ZbMfHyk4fY18R7RBpOk7ZPtrOjHnxZPbc+V4AcQv6aq3sXohwzzhsEA4ljQqkFUiEyovWVTRyyKmHU5QtRd0vw1hqO7ZIMT4uQAE00xdorWQasri4qqdCAGJRYtCUoSDBEai8GisWhJEX/Cen3ExTxhURkq36BUTZoo9qbCcLjA6gs0M5SsUeJANCI6+Bm2yhQKob6YUX7nXY4GewzyQL0ckhKFJ+ywvn3p8+/dqLr1pz/3JjaKibIcaK2bHwQpzxObohKPzXOinUiQsizQriHRweGMCow34Ti76TCoBUplsNmQpqqQzZrcmkA0IbfFg/T6UO0chXcoY3mWpb4N9VWI1sEv0OY5BPUBMg0DYyiur7k+e0hTN91jolDE+YDx8R1clLBqGrzQ0jpse7nbX91adLnWTCKDqQo2V5dECKNBRl2VPHjwgMY5Jnt77O0dsFwtWSxmuDrE+9ebDSnCyBjG1mCqkuX5OW6zRnnXQk5CUZZEUYB5nHdYa/uD7nbdXa01Dx8GKuk8zxkMBjdgHtU7llsfk3c05YbEaJ6ktyoUxmck1Hz+Tyr+xKeH6KagnF+jnEMpTbx/SN1U4JrHLu2Oebr7m9KKfDJCXc+pTx8Guud2HeyATT/01td/UyrQoT+4wDQqsNHCljrjxqe2v3nn8Fpj2oi4/ik/5AM+V1CP1orICnFSUtQ1ZVUTHjEmTQZok+M9rEtN41qaYwzaxLhGY9UA72u8lD2GYtUGcQvyzDPIJ3ifY7TuGSZDxI4AId5/vc4oqphNo6ldBSjSSDHMG6xdENkKTYGw6RwJBEbMzl6I8Mq1IlCQsqb89jvEpWfv5UOIol4Zaq33py7uL3/xXf76X/6tHuP/069+k1UzRNuoXTQewT5xs36Ytpvz4ERRociGg8CbLoFrplgusYBVvXelf44OrwdNI7BqGtRggNaGenZN3kaI9O99TPMKiqahoTWnP9SDhEI3eZL28ewWGEYGqT3ry0tQmunxUbiHgFKafDjG7ZcsHr5HgpC1h5mn1fzolOQOnQ1Z3KkJToCNc5TXV0SjIVmWsikrzs5CBazheIw2msViwWx+zXAwpKlKUgWJEow2WO+hrimur4jqinQ0QrSmbmoG2aA9rIKg383S7aGuFtbZbDbM53PKsmQ4HPaHQN+2wDXiPU1V9hFWjx9OQdFgneLFwxqsxlcZ1/MFcVKgMoMdDfGRwdcl2r5fEaSQN2HzlEESs3rrHvblKT613fT9yAh+xZZRVmZLyrdOmQyPbhQceloLGr9FJ12Qyu6TffCnfK4Ev1IKaxWDPIJNzWbzkKpxrdY+AjIgIo4irBnhfRJwd+eonVCLbSci7p2LSEpZG/I8p5GM5cYEXLl1JCvlUSqILu9htUmoW7rdJDKkiSc1BXlcgJkhbJDeBO0cxN0htH0ORFBeqO+do948Y+/gGJtnNGqrQfZUJO8z71/+4rt8+YvvIiLM3tqQTA+ITBQcjeJ7YfSDbkopGg9Oa7LBkM6h6qqacrlgYlqMeufZuybSUTM4Sh00UVdsMFVFaruoBh6VMe14NM6xqgq0MSj9GI/3U1o/D85jGiEbBIjK6XAQWGBkDFLVLK/OUbFmb7qP0VEAz7RmMJ2yXs9ZLlfEURysk84R11opbSRu6xoKwj/TmkjBoqqplnNMPmCY5iw3JbPZnLpu2JtOsNZwPbtmMbvG1CXKBMDMiCfVCpPELKuKerlgXVfEoxGIEMcJxWZNZEybH7Cdq93vXYJWR+3Q8e/v0jIHBSTsg6YqMd6hTQe1PLosvQrvt15jpMRaTakGmFVDcXnN4E6CSmPUaErjPPYJorvTckUJ2guN1Qz2Jiwe3kceXiGvHPKjpO33TYFqGjZv3CetFIMXp73P6/2SSr13YAw6TvoDVz1m3zxre64EP4TBiKwlzwWlUtS6oHIFZRkoEJTSJHGGMWsUGZGxxCYFlVB7wbmW4Mu1ppkoigqUAeeDZh9ap3K2IZ6qCw11RNqQxYosKcjSJYYl+Bq86x0C0tJG9xG8aqu7K6+IBOrFis2332HPZAz39hBjgrBvu+B1hxm/fxMRxHuKumKSj4P2/RFtjRvZnl4weU4cbYnAymKDqkpsErfsp7cStsJFQh1eJ5hhiGMvV3NGCiJt8OJ6WCa8f+f+oqhEWJUl0U7912dv4SB0TUNsDGlbEUzYCh2LMIojXFOxODsjVprxZK+FlRRRHDPaP+S6KFl7R27MroK8vdOOtzLIRSFSinESs2gqiuUC7YVRlrNpHKvVEhHHdDzm8PCQs7Mz6rpk40Lx+KglqYuAURyzqWvWqxVr71FphrGGsihJ0pjH+QV3rbUO94+iiPV6TZqmaK0f5QYSaDYFsepYn9QThlzj0W1OSk3TxLz1dgRNynS0oJjN8LEmOXkZ48qA+9+6wm0oRLX3i0ZDsjPD8vV3Se9MkDgB8Z35+LTJ/ufUFNYJ5eU1zZunTPb2Q43l97VLWhnhPRjbVtvahj98WKvmuRP8YRg01upAdasiZLMJvOc0iCjKAqqyBAU2iknjKVoNUU1M4z0oi1K61ypdolFSk9gMpULZON+CLM73paTRChIrpFHDeFii9RXIJrgutQPlUT0Pf8Mu+Zrqiq13sTZ1Tfnmfcz5gukLL2OilBA5F5BwF8yRnWd+/+bF46KYaDhtydFCkpH6AWfvdr3yIpTOkY+21BBePJvlikwpTO/A22rB2wsoKueolCZPclxZYHxFEie3Doib9+7EUdnUOKSFYB4j4Z7SwsHlcU1DmiQB02abiBQgGk+kFJPIMitr5mfnGBuRjyatL1UxGE4op2uWF2cYFaqCBU1f3cCpO3S3R/4IZB1DGxE5x3J+jXhHOhhiTcZiucQ1jr29CScnd5hFF2yursAJAwORDmNrgTyKiEzE2XpNPBgg4qnrhtFo+FSduDu8Qz2C+EYI5/Y9ofPiHFLXxEqHWgHqBnlG37QIqK6sJ0gF996uiGPhzlHC6nqOH2VMXvks6fqC5uxdutyTrk8IPZlsiJYKcI/REcO9KbMH91EXS+SFtL3Xj4rmr1FNTf3GPQYVDF7cC+HFz7L1JGD8JkpCfeV+B+zW9Ppg7bkT/AFGCSepMo5sYFA6RnDUdWAXFF0gYkAUdV3i6g0oi9YR1qQYk6G1wWiNUhFJ5GnqmvF4gNaapmnwKsA1Ve1CHQgJkUDDrMZGC7Sao6TCo3Hhzyjp4mgCiW9IJguRQ10dAYUgTlheXbP+43d4cTAiGo/QEhIzukgir9WTQzk7gbLjHVME+Tc42Ccf77fCR23/1u6orQLaiaNnW1hdVI5sr4YXQRlLPhhsGQabhmK9Yk+b/om39/A91u9FKBtHNt0HZajWGwaRDQzOXS3g/jm7TrR3F2FVFIFVs+X5kfZwlV1pu2ssSP8ToiQ4QMUTJXFIRhJBK4Vv8bWgnXtipZjECdd1zcX5GTZJ2zBPMFoz2t9ns5qx2WxIogSt2nFhO/ahd8Gr08FuWiBC0Eajk4T5Zk1RNwymUybjEYvVhtPTM46ODpnuH5JECdcPH0BVM4gitArXDcltitgY8ixjs9kg3uGdQ+ub49j/oLb+hw5M6DN1O21fpBfArmnQXoi03o7lY5aNQrDO4HXHTCt87BOCJycdOFbLDWXZcOdjn0bOFe7iPjRb53nw+nQ0fNu50qIwXhFNRqTXDyjunxMfHyC27Yx0a2SbX9P+9rQl/eFaB911ljyqPyBX8znNWw85nhwERt0n3n77WWBLkDca9bw+N4f4cbbk09tzJvhbnhYcXSlBrSBPIhTCar0JGrqERexbbcJLDVLjXYHzK1SjUR321kI6kdEYs2zjnvvbkUadNhLep3UT+tETITTtRjFt4YkWElKA0hjflolU4RDwXjBXlzS/+23GKxh94gRvI5zsCH31/hBPvxRaJ4DxsFKKaPoidjzBGQU+CEOnaoRtyKMWoVHhcPogW6PbkKq9xsyDjIbBpG37Xa5W2LrAalq466b2FgSHsKwdPs2Z7O2xuDonloKshUt8i4d3kTK7m8AroRDYuBIdhbBX1zrPrVc45duxCwevV205x+5CtIK/qRgoTa4DeOF7weOhyzdQ4TCO8EyNYrZasTw/J7rzQigariCJUyb7L3B+720i7xhrFQ4QOlI3oTHglcd41QXY9mOqUWQarNFsmorV+QOyvX2GgwGb1ZLzd+9xcHhIOhkzThJmp6esN2v2o4hch7XlAW8iknTI8sF7qPWMQlXEkyNMFLU8Ry1w0DrVO3O3o0G4IYp2Ime8UjTVBuMrrG7rJT9hcQrgWzbOgGxW3D3QuNizaoaUw4LJ/gFxnlHt79O8lxMtZig0TjmUaJx2O+HHW7vCaSHSCZPBIeffO0VefQEzHdFojWnLsHqlyBoo7Ued2BWSIrdue4GmxP7xA6LCkL540FpUj/900G08XmKsb/BS02w8vDzuh9e362R7DHyw9pwJ/tC6WHqAQKWryJIEa2wYsFa7816o6jowEkrI0nXe4X2IepA2iUShyNMMrQOZw64jRinaaIjOJN2hP2iFbhfjv6tn6DaNPrBphgVsnMdfLZj/3ncw1xsOT14kTjNw4f1eb7FTtfP/49pWidsRjs4TxwlNtSZKUryOkEYjytBFl/hWZdOiP1So2FZ3D2BWkmUYbXststis0d738cu7vQ2cPELhhUIphtM9EKFerxlpQ9QKS+lHcQfs2ln7UpbQKHSa4NEYF9aDVx4d1EC88sTO0mi1dZr0DyD4xhEZ2yaX0RO/BfEo/brosnOt1sRGWM1nJMMR+WQCBO14OBpT7u2zvjwLLJX91Gy1Zt2jUdsJ7uLFFIHaWHQohFLMZpjMY5sa5xpmZw/J6pLRwQHxnTvMz8+Yzec4q0kiTSGCSRLEO6QsGEaWpqpZX5yRjsdEeR6CGkShRff8SP2Q7GjMj8y290jdYMNGCPPxDMCzasc5MoqqifnGP3Z8+mcOmUwPUFYTZWPi4QTfJq0FC2sL2SluZqR/+YvvojAMxhNO55fU756hJzkKva2SphW1kVDY53GP8wNq3ax1dr14j1wtWdw75eW9gxbbf/+raATR4BuhrkoG44OW0K1bI+0u+BDP8dzF8d9sqhfM2miSJCZLErIkJksiBlnMKM8YDwfhazQkS7ts0CDElRLS1JKmURu901b3wqFU+AKHSNO+3mpO7f27/3cFIoARMLKtlKW8Qi82rP/wu8T3l5xMDxnsTaGDQj7I5PY3DD8oCTW+fLFBG0354Jz12+/ifdNGothW+wzPFywK/Qjr51Nv2QuKEOZaI3htyLNBv1l901CtVy0kcPOZFBIwf4G190iek4yGLK+viRpHpjTGb+sN3zZ0uyYCq7oErTHKosTQl87so2pMKwxMqz22QksFoS7OQ9OQxjG7SXLd/0VdsWlqPNL3RyFk1mKamvnlOa6uen3URIbJ/gGSZCyabflIUdIm9oRSfE9srZIQacPQxuSikPUSWS8ZWUUmjur6iuvT+2ijmB4fkR4csFSa803FVdEQD0fU5YZIHMPIMtSWpK6oZ9dsFjO8C2JKdugldmh02mfcWVvdAekafFUSa0NfN+HGenj8YunrJnhPWQqnp5o4HRNnMSjQUU66dwcfpcAOhUkLR3YZ6X/9b/0Yf+mv/CK/9tWXEMCmCePRGPf6KVJU6D4ZEiK/Dan8KFtgiAVa+003jvL190grGEzGLTpwYyAfvYYolASqlmqzocKT7h0T6m8r3i8K6P3acy/4g+YudERqSiQsBoI8slaTJpY8jRlkKcNBziDPiCNDZDVZFjMapm0aeqs63P6iq7/ktwta3eyD2tk4vaGsgskmSlCLFYs//C7yzjkHB0dMjo6RNp270UL9AWbqJgoamvM1m9mMRkMcRTSLNdI4SCLoooVQ/ab/4LRtuwJSKEUwO3g3QF0VuKIgMV3G7Y7wblXFSoRKaQb7B1RlRT2fk2vVOga3MFn3hCGhZ/ustReWrsElKtAA4EDVKBq0eERXaGlCZq/2Pef/rjDwLmDWWRz3lbc657sT4Xq14nw+Z1kUPZWYAiLxjCJLvVyyvL5C/PaqcZox2j+kUJqiJXKjF5U88ZDtXg0Fuj0xMLQRAyBXkGnFOI4YaMHNZ1w/PKWqGybHx6R7B6h8RLq3z2AyoaoqlPdYIDOacRKR+AaWK4rra1xVclssPuk86nkJXQN1Q6R08KU8VR5t2URVuxe99zSy4RM/njAYx9v9oRV2/wg9mOA7Z1ZvcqlHMtK/8vUXQWm8MeyN97CzDe70Gu3DemlM6wT2ITDio0roFdVloYcndUrwsyXurTMOB9NgefH0+3eFfBSByG01u8YcHBMPJ/16+X7bcy74Q+t5xXtF/IaO2L+klJDEluEgYzjIyfOMUZ6RxFH/9+053Wn2nfDfud6tSe0mulWSQvUdFerPgkLWKzbfeRP3x/c5HOwxOj7C25Z5k0cu90xtt0eKwOxXrlZgLNGLJ0R3jsBGOAuiHOjQH9U6vb3aCqUb6fnv15TgBQrviQdDTFtwxYuEpC3vsTdVfWg1JKcUay+oOCONU1ZXF+Q4Ug1KB6+Jb6NCupjw28/cNDW+rtFRTGOCcPfKUJPSqBQhHAiioNEhm/vmmAnSOPIoIjbbkNcOpmsax7IsmFcF58s5s82auq3TYMSTtMJ4eXHBerXebnKtGE6nRIMhS+8Cn8z7DKnaWVqdsxW6aB3LKEsJhTM9mTGM4gg/XzB/eMpquWS8f8DRSy9x5+5dkjRD24gaReNDEQ+jhGEcMVQgixnl/Ipqs+il+o4as1VWBLpqcoiEg1xvqcCfAeXZeUCFF/C64nNfyBiOLaorWqQEnY1IDo7DXuhSdtur385I/9c//15bqjTUIh6mOfVbp/imbi25oEDdthY/iiYdxEs4GIu3H5AWwmgyAa36aMHHLOHtNWgVsKJkvS4YfPy1EMPf/f2D7MnHtOcS439s25HHu3N/G6+H4EjLs7R/bfuW3QVzc/E8zfLaEnSFA8O3mpFxCl8VNK+/R/2ttzka7bF/8iLKxG1iT7iobdVK/yGO6Q67b+pQIHAQDfDKkh2fQJogVYm7vMJMx0gUQROsF906RD9Mqwmurb3hsL+Ed47NfE62U792+4QBDy1FWGvNYDiiWq3xqyWZAaMCPCJKt5qiCwJCbYGYAMyFbF2PJpIY8QolTY/JI8HBK9q311N9Sct+Kwr4qmI4HPeu7f4ABIqqQowmTjPW6w3Ncs6hgnGSEimFIZSNbMqK+eUlSZphorDNbGSZHu1ztlmyqetQrJwAjj2Oa253DjsHaxeVord/DL4RpUhVyB+4rmuu79+HY8/k4ABjwruHkz2K+ZzFZomJAwAWqpEpVBqx3Cwpqg1qotBpjLK2FUC6tapkp0/hMK/XKwbG9L6O7Wx0Pz+5eaB0DptkDEZxcDJ3WYnK46OI+OCI4nyE1C0ddnv52xnpv/rFdzvjO0SS7U25fHhKdTEjunOIbgW/kkCU9pFR+MhWyRMEdb2keP0+++MJusspaYenM2AevYYgWiEONrMZkg7J774cckRuJdp92PYvhcbfNXnM1+3WbXWtQvheN77vO8xPu+itpgWsE3RZ4954QPH173GUjBi/cAdJAvuebk1Fr7YHxwdtQZ4FzaAqKuLBkMgmRLUGrxAfyr9d3bsfkqqs6TWSXW3zWctVdhZNgHky4mSbcl8XBVKVJDtx1artn0eolWLlPSQZIprl1RURoLSmFqgc1D5omxrVYrfdzglXdCIsigIf5WzEcr4xvLfJuV9EnBaOs41wWsSc1xHiNdpbkO0xhFKIcxgUyY1ol9B8S/qmrEXHMclwiDOah7NrFkVBLSEH24owsIZ6uWA1u0Ja5yRAlufk+/usvVAJdIP9LNBad7j12jcd+2YrDESIgYk1DLVicX5G08I3CoiTmOnJHWobsfZ+++waIg3jyDLwwuLijHoxhzpg5NInQrGD6Am+qdHOhQgrHYT2zRF7fOuO/AbFRoRsNCayCRAiocLlw43MeEoyOW7X5c3sgC9/8V3+yv/8H9+o0qVQoDXJaEjmDe7th4Grv/UP7VreH1ULAl1QztG8fp9k1ZAf7uPNLrb/5C4E9FJo6prrxZLxxz5FOpnc2M/w/Wn9//Jo/J11+ixv7VPSd8offr+3lu1vxglR1bC694D1N/6Y43jE+M4doiTDqxDdb0X19XOdgg/CnLyNeOk0JKFel6STKRIZGtNqzSXoKGZy90WiJEPVBcYLjQl5BR/kyTvTVVAUzpPvj0MhaUIm9Hq5JBJCXHkPnITvXmlK76mUJslCIfKy2JDEhjWCc56yqtHaMIwNmQ6UvLtBeYJQNg1VXUM+4JtLz+++u2FTxW1ytWBwaAVHI8u/8aJlPy7oavkGTSxstiyK+sSvoPGG+9RNzcY3qDgGNNpo4kzRqIKz5ZzKOaaDIZFRpFpRe8/i/Iwky0gHwzAzSjPe26derViuV0x0KCr/OJt/V2/unzN08/F6dQg1ait9aZqqptysSdIUVNDyssGAav+Q1cMHpDZQQyOBVtlojQlxthTzOZuqIp9MUXESToednimEqtgEK0eHoFGN7mqg3OxX37/uW9C4K+dpjCUdDVoVtDvagkNeAWIT0skR5buvh/Bj9bgLh7XURR6JgLYR08keD98+x75WwF6wPr2SNtD7o5H8fWSWgJqvad465Xi8j0lSENXTXHRjsDMsN5oWz+r6mjrNmX7yMyhjt4pYf68PL5v+pdL4YbuJtoqL3PzqWqfxPvZEfYxqf+Oit/4kfan1kKLUNKzun7H+/W8z0obRyQvYbAQSQg9bVAJRu1EsH2Ch3niM8K9cl6TDkAAScgZqlKtRoon399HGsjp9yOK9e+Ab6Ip5POstO0jHC04r0nzQh+w1TcNmtcaqzkm700nZZvjGWU5kLMvlkk1ZMC83LD3USUY03cNnGYumoRRobmh/0sIwJUSauQh/eOG5X0YcTBM+eZzx8eMJHzvOOToYcllprmuHM7d8BOLxriFPUkyXpbpLP1FXOAQdBSxao9HaYpIEHxmuNysuF3OapkEjDIyCqmB2eYVrtr6EOE4YHR5SG03ZOHqK79tNbddBtx776Jqd9/TfWiVB4YnEk2jFcj6jdq59j2C0ZjiZQjJk7QK7pxawPuSEG2MYGsXA6MDyeXVJXaxDKGiXQdvuC1fXWLXFrIOe8WS6v06sd9undp54OCJKs/YdPkB4rf0TotEUm1K4urwgFJ55vFmtRHAtbhfgTc1wNCYtPeXr99GlY1sY58OCmO/fOpEhjbB++wHJuma0t4dRBitbSHgbIvuYayiFq2rWlxeMX3kVPZ0gXoFv8D4wDIv3/3+Nf9tC5EMYfgcSsU1v9v2JH0ojRggtEZSA0y7ErrPdZSGSdjs7XeSJ0yFbUHez3F5XCBmE2yIt0vKSKEIci8euKzbfe5fl6+8y2ij2775INBi0cfMh7nsr6Hei1dvHeFYktdWlARXoe5uaaBioE0L2ZVvg2TtEa9CgjWWxvCYqa8x0iKocqg7PJTpsW6cF48y2Z52zlRD7XzmBNCHqufcVVV3RlAVWh3wHh+vHthZY1DUuTRhORihvyfOcPEuIIoONY0wch/yDsmJ2dsa8XDOOFcl2+PHes6lKxFqWDQwi4RdONHcnmrfmJbNqg/aGCo1yAVqptCYSj24T+sQ5jPcknUOacAONohHPqqkQG6GU2W44Fah1I22oKZhVJX7p2R8MSK1laC3z2TXrbMDwYD9QDBA0781oyvLqilggVtIT0+lW0m8zr2/OsHrsq92ctwtFQaw169WC5dUl04PDlnoiHDzD/T3mD1ZkBCHQPY5XHkNwHlsvLOuaen6Nr0rS4RixNmStNw2qqbHtQuyUhJt1B9pd0FvbW59O40Pk13gy3qGCuC2Shdo5zi/PuHpwyp49QYYjOlfythBRmw+xm7MioKKY8d4+F9+5hzOG9LMvoTJDo3woPiTd8wblyCnd1krurt4dMiG0uUuW6iLLtJhH9np4t0YvC8rX77M/nGKyFKc8xltESUhC86rNK2krAN4S4PPFjCqKmB4cUM2uaEqHLwt82eCNJp2MSKdTVBLjMBgJ9w2iQlNrx9PacyX4w7IRnFJt3K9rBb1BCSwuC2aXG/JxxGg/5eLeFeKE6Z0J3jVcna5IhxkHJ0NQDiFUhpJuL3V7fWdRd8K4mzang/ahVJeIHzahuIb69JLmjVPqdx4yroWjFz9OPpi0vQ5C2vdb4/aTbe/5bNpKhwcoXFURRREmG7QY5y6nsYAL9YHzvT0cGmNjjNU4McEsblptT4FxN3MFQ0JVyHfwCBWKOBtgW2IzRKhWKyLfkFqLEocoRS1CUTfUyuLilNHBQYBDvCbJYiIb4cRT1yWNa9isVuRZzuTwmKsH77GqC6yxwQ9DoIKomgbilLGHP3UAh2nEt69rTuceURvwMdo0fHwSc5hGJI1G0+A6d3NTkyhNGtketlKtsKq9Y1XV6DTrKQu2Hn2F0sHhW9cls2KDQjgeTUhMRNo0LK8uiIYZUZqhAGsM4/1DztYFq3qNtbvUFe0aUzuEFo+FN27+EKZz+8bIKHIRVhfnRHHCcDIJAlEpBpMBi6uUpqmIDYh00J7v+W8SrdBJxKouqZYNRUu4Z7MMV9fopiaKbLBmZRe6uL16t+pXZxEUzqGShDTLdrj9Tf8JJaHc5mI+Z1MViI5YzBcMhyO2ao/acaSyzYVop4fWulmu1hTffpfCN+jPvIAd5u2+9X0GrZLgmA+RQTf739kJrqd66IZcbhxwpjuw6wr3rbcYLBzZKweolrW1s+BDopwJgQa749TRmlQlmwcP8EQUb7+NvHMP19T4poaqwWtFPchYD4bYfIAeHzAYT5HpJFBZO0P8Pt7r50rwC+CUximD9aBU2W5bBxj++I/e4qu/+R1+4qdf5Qv/Ws5X/rt/RFUbfukv/gzlouA3/tbv8qnPvsKf/Ys/jTKqVZzCAgvF12l5QeiTb3y7aLUPESdONz3WCRrtFW69pjp9SPGde7h7l+yPpxy/dEKUjfq+P7ns2s3WI0q3LIDbb+rSxZVAXW6I0xQbp497dxB7HrzWDI4P0VGEqjzN1QI3SNFWYxrVPk8XIrnth/UGUUItQqOE4WjYUv6GZKhmuSTFo/BUHtYNFEqolSbKMvYOjhiMRjjv2bgNvq6o1kvquqYqC1xZUtcV9WTC5OCY8eEh89MHrBvPIA7FRIq6xnmwJmZkLIsV/NG14fcvGnQ05uVR3voXKqxWfHcGJ7HlpaFrI34EXzdkcRJw726whRbmqWnEtyGej58XdIiqUU1NsSnwgzGRgSy2XBcblleX7J3cgZYZNclSRntTFqdrEh/CQIE+t0D1nshnb7uKgRbITUxVN8zPz0jSlLjNq7AmIhsMKC/WpNqyq3PvXswqxSBKsM6zXCxomhppGqgqrEiLxO+sybZ56IMEgg7i2zWrqVCsxZOPJ0Q2fuJzNs4zv56hs5z8Y59gs5qRE2FxdPy2NwvP78xHezibJOHopbvM759y8UdvY8URv3aXZpqhlMY2tNFiGu09XtUgIZGtTUWjLY/UyoCOaiPUiO44u1S716Wuqd96h/qP3+B4+iJmmAYF0IcaHggoH4ouKdGgXNivO4eNeE+MQFOyvPcWxlqSyGJiG2ivvac6v2b25gZjYuK9A9zhPmb/EJ2PSA5eQS03T10nz5fgV2GqrIAoh1cWxNBx9zTO4etQ8E5TUzQO3WQYL1Te48tgvmmaYD62PBui6KtiQVij23hg1SZrhO+RNy0RHEjtcNdrqrfeY/OtN8kqOHzxFYaTPSSOEG1uxGm/L4PkM6r7nUkt7aKtiw06GWBt1h8YN97fY7Mhv8AAUpSs7r1H9OIx8cEh2jlEHE77NjpiB4ZozePaN/goIssHbV8VVVOzWq8YGcVKGjZesXEKlSXsHRyQ5Dmg8U4oNwUPHryDLzbBAa5DEl2uFcpoFrMr5sYw2TvCu2PWD+9jGiHSsKprsDaYu0rx1XPhDx+uSZSjouCfnjuMMyFaShRKeb5wp+HfGmkiBPEOnGeQZb1bW7Xj4vGsiwLVFi7Z0hLTvy+sP0XnfUyTNBCbiSfSmswoVldX5IMh+WgCLTY+nE5ZL2eslkuiyGBUBxvQwxEfSPh3xgiB4VOLYmQiLpdLlrMrpocnaK3R2pBmOQsR+sLst5daGzYaEUjatFKsioL1ZkOEYhybHaEr/ScfJ8g1AcpsRFh7T2Mj0uEY9Rih3V4F5xxGaZK9Q9LJELucI5cXUFwFa6jVzkURhO7tda2gUZrEJuzdOcGeGe7/0zeRxhN/7mPocd5HbnkVhLvTt/c0LVwr7doJffO9ctXdX2BT09w/p/za64yTnMHhFEvIiQmhx1tsQHQFaLpIKKBfVzZJ2H/tU8EYN4HbKdA3aFAmVLb3wr4TGucp1jOWb3+LzbcaJB5w9xd+mdnDt566TJ4rwa+9YHzIzHXat4KvNQGVIooNNpOQwKOFODf4wiHaY2OIBg5s1SdgSBs7gmy94J2xF05+wfamXldQ2yDiUOsSHlyy/KPv4R9cczTeZ3rnEDMcgomwopCd8lnv56F/3KKGJ8sE1QpenMeVFen0TijA/QTMQDoHY9201N+a9M4BpDG6DhTSolv50JKLdVLJtfKpcJ5oMkB3TI7Aar2mcA6co0FIx3scTY8xkcEYRbFZcXl+yXR6QGQspqqZxglRi60b3WLQClCW+dUVWkeMJvv4pmZxeUGihVVdobMAo2hfcbVOGWn4tz6jeW+l+H9+z7OqE4wEMjynDZtGQHw42JsG2xZ+39p54SkaL5RNjU2TR4aun4wO8vMe8Y4kS3sYyognM5qqblicXwQorC3paCLL+OCIi82GjXcMVVhzHzbOvIOFdkv5JUoxsJrV9TWDyZQ4CQqANhavNR61C7LcuhB9pnuqNTqOKJ3H1TWRsqAER3dIdhfxLbl4m38gwZcT8iwcC+eIpvvE2VNqJSiI4pgX7pwEjVhDVG4o7esU95YoV3aDD/J4a7nLnq0NKB0zPjrEG8V7336HpqwZ/clPUe1lbV2LtkKG7IpE32LyQdgb3wVphMNSWuoPnMMuN1TfeZf1N99gz+ZMX7iLiVOMt6B063QP/Q1rVHq/4G4LCqBGpSM6irfdwzRYlrCNjIM0MuTDnMZBLQqlGpb37z15kfCcCX5f1viqxogg1iDaowgUyk4pXv7MKwynh4ynGVGe8Iv/+s/gvWbvZMS0rvmzf/GLDMY5HX1LB+JrpKuO2BOqORXiyQOnvO9TtWkUslyz+dabuD++xwDF+OQF0ukeJsvQrZu3C9XsaoQ+TfB3+HoQRuqGdfC4TymCRq5E4VyNc45oOArawhMApW4Jxh68OLzR2PE+OlIU9+7hNxvSj70CJsXRBOIsCSLSa08jmgqYjEb0xWlE2GwKjE3Ih0OiPCPKUrIkZ7VacX36kGa9Au8o4ohoukeiDalSJHoXQgiOz0wFc3l5cY42hnz/AOcc1+cPKRRk1uCV0KDQjWGgPa+OA3+S8SnaWxQOr0NBHN9q50IQZOO20Eg3+d3mWlcltQh2R+O/rfV3Yyg+WERpHIpihyhFT6QNA2tYrBYsZtdMDw566yAfjlhP91hdnJOpUIGrgxc7aO9ZWmd5dAXWRUI+ihEhN5Z1XVOVJXGSgQqHDjbC+VD8pX2Ifun7FuoMGetB+0+0wiiDa7N1d52S3WG5S63t0NRAUTdsmhqxlsHeIePDw5bqecdyvNWMVpgs2Y6FjbBHJ8j5PVg3eOX6Tz4OLeqdyiqQz6kkZnSwz13g7O0HLF3F6AufpR5lGGVC4IPuspUFp3w4xHzYs6JCrohSAt6jnMY5h7qYM/uD76EfXnMwHDE4uEOUj0D5VgEN6017hyiNY0tJ/iSLLuzfbdLcTQe5bN+DgjhF65hUCESGccQ4Hzx1rTxXgp/GIafXLM/fIHvtBJ1FoJoA+SDsT3MOx0NEC854XvzEcZgA7VAYPj5qQxCVgxbu8YQoi1C9rxMGiqjPuAkUzIggZUn9zgXlt94huSoYxDmjgz2Gkz2UDqUORUImbt2u+WeJlt91FD8TJNR3zeNcgxfV8ny017v1Ni07kQoEGMuJx0qC1xBFmtX9a9x0j+RoTIVHuUAdoCVs8MY3ECfESbpVFr0wGoTSgXma47WibAqapmS9mFEvFgxVCI9clmuU2UNHEb7pSgnS9wlCVbKB0bi6YXVxhrJhIxdVAb7CiWB00DQbLVRG41UwyxttcNrhsXgMxpeBBEupAPN4TxJHO3z5oTkR1mUB2qC0eazAp43mQCSQu9mY2NpegOrWOoyVJlGO5dUF2SAnyfIg2Fve/nK1ZLUpmcSBRvzDJu4ptsLft/i6UQrjPb6u+/cZYzFxjCsLOtJ4tXON1rgLgly6GgSCUQqtA8Ju2jGEwOba0RMJwXm/ahyNNtg0J5/uYbOU4WBI0odwdjvqEbG9g6EF7R1tMJMp0fSQstigxbchmk/2jykB67bPYeOE8dEhioarB3NWX/0m0ckBMhnD8RgZtBFrSrdIgdkmU3qPxqPqmmq1xp3OKO5fYM+WZJUiG+0zPj4kijOU9zSeIH9oEEzw92lFo0Iw8FaFb/var6tQQrPrP6qbmU5RaZXFNoFR2rEyHlAa0YY/euungY+//KQ18lwJfqM1bBrKb7+Fe3gfn0eYPILBAJOknF5tuHex4O6Lhxy9dodv/cHr0Hhe/fSL1HXN9779gIPDMa995iVUm+bX6EC0tCs0O5hDnKNZrXFXc+rzGc3Vgvh6TbKsGE33Gd45IY5SlLQs6yJ99uCHgG5BQlap64X/E64gnQYkSN3gdEw8HG+NmMe8v1M+nGpzBzwIFb5WqOkethGIYyQSos6Mb7bRGrVzxKMpNor7+yilyPOcsiiYza8pq5KyLjg4OkCJkGjNODI4JSxaamyJI5q67EPjaDWtLlQvEmEYGVxdsTx/SHxyzN7REderJV4cjfMtzh+YZiIvpK4kEkelHMqH5KsuQU6LBJhHaRIbsauzCkLtHZumRrcZ1U9ughKPrxuG+bB1JO8IYQL1RGYNRblmcXUZDsk2lDFJMoZ7+yyLB8ReSG2IStuZ/Q/UdgxWOtFoUTRlFRITlcZYGw7azQb0drxvrpPW+lEd19U256BPVmoFbyOK2jnKuqFRAjbGDEIkUzYakw4Dd9MN93h/jUf7j2yPol7LjTPiwzuUlxdIUT51ZAI9wy4jZ9CztY2ZHL2I1hkXZ2eY64IivkczSTBZHAofjUdE+xN0nuJcTbVc4S7nyNUSN18hZYXelAznNQkRgxdOyPb3MSrM27yo+KN75yyrEiUah2o1dE2iFSejnFfvHJM8rgJqZ3UpUKLbQ5x+/GF7kHV+zeB70Hhl+fXfPOCv/tf/E+C/OH7S2DxXgl8ZSzoeMklz1m+8F/hP8ghSS50mvHFvztcfFHz+43Oi+Yx/+g++hbcDxlpRrCt+5x/8Mz7z2Y/x2qt30ZFGlMX6ZucOgmxKmutViDpZrFDzAnO9QV8tScqGwWjE6NVXiQcDIhUFoa86Ey1sokYHlsDQ6Wd8uFabXK83JMMhPCG6ZHvNcOG6LNBphk0y6M3EWxBFe4hoaYW/7qwAh20MzsQkL95FR5ZGPMyuMHEKNqHxEko6AnGWY3Rb5AahWK8o53OKdRgvmvC+ZjwiThM2tAKIYAX5yqHjBLdctBEP4TlUm0HbYbEWYRzFXG1WXJ89JB6OyNIhVoeiIEXToHwb0iudpZXixbWcOJ5GKRodYB5fOwZxFOii5Sb/YVGV1OKIreWpZfwU+MahvJDuHH47AZmEerrCwGgW1zPSwYjRZBz+phTDyR6b1YrlYon1hBj57VS+b+v9PtIJgv4vgCIyhrooA+201YGjx9gebuwO2C7jW/fXUH2Ag5atKIZwNNVeKF1DJeC1wUcxJDH5cMRwNCLqDrhOWZFOmw+WwmMfT7b36B8KhVKGaO+AeDzBlXPouJgedxW1VWQg9N/4NgrIxORHh8RZRjmfIcsZcnUeeHyG15TDhHpviBqkUJbIckNzvYJlgSoa8iglngwYv3yHZDCCLr+DwFP1nYsLvvPgjIt5weVyzfF0xKIpqYqCVw+PuFpvGI2G3J3kj53LYKkGqd4dXKaFlPvhab+3JaeC4EfxN/6bA6o6fux1u/ZcCX4AqywnJ3fxB4c0jafcbGiKK8pVQTwvMHVEfb1m/Y/fgwuH3tunevM9lkWNLjWyrrh+902ixKJsjFGCcgonoVydm62oTi9J3rvArQsiEzEYTRidvEA6HCJRSqxMKGgB7YYRtA8YadOxcW0h1f7Xm1NK/xclgnMNy/NzFosldwc5iq6W7M7FuHlNL46y2JCOTgj4/uNrkPp2w2tp6SHotInguDNNi2kCqvFc339Atn9IdpTTOI9zHrGWqHN+SoirP3t4ip/NyaxmL7JEkWJROaSs0cMk+F4kcCLF2lJtSuIspRYQ31WZk7ZfAXajFT4RMIosD2fXnF3PGI/32Z9O2RQryuUV4LDSxuTo4Oz3XrXwgAel0NKELGXnSLOsdcZuRbZvs3XROnw9zUxr6R4G1mK17lW2XS06qLAe4wXX1FxdXpENcqwNap+NIkYHB1ytNxRNzdBqujqzvTuvv//j7TfZiRLZYsHhp0gbNlWNF9/DZ8baNiSyu0cHI8Au9PM4J2TtHBVC6X1w+BpLNhww2dsnygYYrdFtIZsbfdqxoOkOl0fGdfeFbkW2ryc52cEhm8sHuKZp8fBbb4f+sPJK9YqWa5Wu4P9TpMMBUZ4y9Eco51k3JZvFgvX1jPLdc3xdgYYoTRkOh+THJwwGo5Cnoi3ealDBgpQO9qoM9x5e8dmXX6QsPf/kze/wC5/7OA+vFrz38Jx/9U/8GG9fnHJ++ZC744+xTRrdPnlnRymv0FoQ5XutXiE9/NTLDBUoxn/9d+7yW/9oxPu150rwK0CMRqIIazQmgSjLED9ENYqj8h3S8gGTyZQfO/wYf7D6Jg0r9hZDpFwz8jXxwzPqX3sdQWHyAXVqUBVIVePqBm0Mw+GQ0eiI9IUhNkkwJm4dZWDEIKJCpHFrr6p2ZXt4X0wSYMvpHQqWaFdzNTvj6nt/jJ0MQ/asaDQOp+TRIh5CwCh9w6pccXj3ECOaSgfT93HjRtvfm5tU9a8LDpoSrSE9OMBECQ6PcTWN99Rx0hZCD1q8XxWwXnCQapI2xFIjpAbWdUGqxnhrQmx868ydFSsG0ylLo2kUJB68DokzQTdsoxswSJth6qsS54XN8poyi8mHA/a1wqQr1vOCt0vNWampjIPG0GiNdRaPx+BovCMGBlEcQvc6uk6BCmFR1dgka8eg4256VPoHx27DMMmJUW1JnjBHGo/3mgJhg7BwGh9FKBRFWTG0eW+J5fmIcv+A2el7AORYOg7PLWizq3PvTujuwbVdS11FLaMEV5ch7R+PEYWJYtZGM0RhRWh0cGbSr1+/hdp80GYrhEo8m6ZmLZYoHTA+nDAaj7BRhDahXnXnN+h713FPPO70vPXyo+/S2yvpCA5foDl9F3VZERI1fWslSkiMUlAawfhtCGZHndIOTHs2K7TV/U1zUpJ0yGj/GGmaQLWhwwGpjWm/tsywnd294/LDU9NUwsnegLry7J8OeWWSY9FcLwuOc8X1PGXtajqm1U6HE0B0yEcKmH1bt0BDYzpcP+j2ECKOvNJoMShR/IOvvUhVPwUNaNtzJfgfaaoJtV1NjLKKn/jYy7x49CKDXDNNIv7c53+SAjiJFR+rHSd3auLYcAcBV+FqoaKC1BMpgzUGG8XYNMFGCTqxwenXLjjfLc0OomBn2d9U9G9t1xudRokmkganQxJLMZtx/eAhziZMhhNMe+pLj/vdfu5wB/GOpnbk4xHbOOInvP1W/x73oniPF0U62cPbiPrhOeXVJfbuXdJBjunKFIqwLtbEXkLiCYquRqi1lqaqUFqjbYQrC5Ru45SbJsQsGxPghzZ++rYQ6J6ibmrqpibJMkQcs+tLRCviaMDRtOHNRcX//bsVvtDEjSXTZbiWqfFaYXRE3VRBS2+17i5jFqCqa3wLkWzZlh7XBO8cFk0aJ4Gpku3x3qBYe8+irpHIMD0+JssHiDYkSULnUQDQWjHZ24OqYHl1gY00sdatg5iWC1/1Gvujmr/cnsRW+G2pFHzVYNrIniRJWAiID0RtgQuozR/30InKBqgENnVF0TiIY/LxHnvjKTZOiJMYG7XZ2jciznbhmvY/eXQfhHWzfWWbQ6duphioACPaZES+f4f1/BJTd1Bg+N7oYL3GzY6VtLuU1dYGu3nYBCoTa8M6VUmC+MA8ugutdMEWXf92ryOEEqmRtVxcLSkqYbFwPLxacX++4N5qyTsPZ5xfzTneH7Q7Q/XZy6pl4dOqJuQLBBinYxdVBAum0i23kgNL02P+f/oLp/xf/+5rbApDsJsf355rwV8ZQ+Rp64g2DAaGLI2xKJT1nBxM0B4SAu4+2qsRZRi6mEoV1M7hXWAEtFpjtEFp3fOSdDw8Clrt/NFxfhIy8LjXe31IFHgDNBSLGfP3zhi8+BKFuSIdjNEqsIs8vei6UJcVWluiLAsZxh+S0OnGVUUQbUAZdGypljP89YT8xVdbat4QEbTeLBkp/QjBnEEhTQ1KYaKIpiza10H7hqquiNKMerUgM/oxAiKMkpcQZukRosggXuOamsV8hkQ1P/9Sxmv7Q6qqZHF1zU+4kly3iXUtLcGLKUR1ST4c7EAqYfy9SJu0pdt6tDtjdysLThRI44gJG77j+OnExapxzD1kB0ekgwH5YBCYM4s1iEPlWXtotlh8HDM+OKJuPPPFFaM4IqHje9pNebqtQT86v50w6aADo6ApSxiMAoQRx3Shn0rpnu66EzqNhBoH66ahbtlTJ8MRNk2I04wkTUMY5I2TuRvI26tcdvr7yLGwO6LtJVrH/m5Wq4Rj0keGaP8Ye3oPV1+2WfWhwI7TIboo9uoGjfWztD7/oR0TzA6Pjtod+S7C7tFrRMbwwvER33r7DU6Xax5sGv7ed77LshKuNiX/w3deZ28y5MenL7RHeJj5rk6HEkUsbUQaCuU7J3VIsNRegjNeNe0Qt4JfKX7l597ir/2nd/mbf/OM3/idN19/0nM+14I/8mAkhFo6DW88nPPdBzM+tj/h48dj/snrb1MT8SfvHrN2Fd98911Opnt8/oU7eKtRkSYOpB+tMABUyMTbzdzt9NKbuXlPFvpPa11sfKOhWMxZnD7AHN9h8tpnqRa/10aX3DwkHp/sI5TrFWk+QscRonQbU/74xfq+/eovG6KZEIMaDkhfuIOPY9I0JsADGt8EQqlE3+T1Cc8XwkCrqsImKW61QlqBZLxQFQVxmlHMZ3ije2HYP7OEg1i8sK5KTGQDsZ1pOXvKDX614WQw5FN3JthkwGzhWcwuUJXHxIGQTkSwVQ0rRxZFO/cJ96q9Y1NXEEW3NNhHMQkRj1Q1gyTFKE2XE6EQHIrCCcn+AaPDY5TzXF+ch2pozrEyGp2kjPf2GI5G/R3iPGdyfMK1r5mvFkzihFTpWyusR3hv9Or29O6GhRqtKMqCYbtetTboKMJVFa7X9YXCNaybikopSBLMYEieJAyGQ/J8iLbmVi+etT0LNcnNJ7hBYCbddHgYjjF7BzTrK3ANuk18EB34umr9/lXObty1E/Y3b/7U9z/ac4VR8OrRAfVmyf604DUSrDQBvhGPM3B3MuFklPcWXBjFrbelxG59O+Iom+CLqhuHiSxJGoVPqdYP0BJLKIQv/9I18fy/4zd+53L2pL4/14LfupAmjvIoLPfPVvyjP36A/7Tw4kHG1954l9IOeOVwxHK15Le//ZA/8YmIn3zRoUW1VLVuhzitNbP7nRYMPieepmmIrG05asJEdvbAY2O/d9ru31ueQIrVnNn9U9z4kP2f+dmQni4eYttqBQHbf/KyFKqiJB3toWyEbxN5vp/Wk9Th8VJjMNjjF6iSFG0ttMhjXZVY8aAVXZWrTkQpAmtkudmQDXJWdIlGYTG6uiIbjVhIQBpsO9S9/0GFHyrXUDYOk+c9diyESBinGtarOVo1jPZOGI/GGGlYzReIasCDRahdQ25jEm3aPm7FZ+kctUjIblU3mVgfmbM2M3mYpIFUeMe6ajx4Y5lMp1RFwfryimp1TSQhaaopPeVqxaxpiKOYOE3bkYI0zxkfn3B137EsS0wUESugj52/PeO7kMm2+Q7mE8EqYVMWPTUHKsS2V3UI8yybEJ0jSuOTBJUk5KMRg9GYOEpuMWnedvk+Xhh247X7915vuv0AnT3TGzHhc96HUNmqrnG+ofE1UlasL87Q15cMBkNEB24q02e+qf4Qfpb2iNBX2/317NcArYTDNGL6qdfwusG6AHY6pVBUVDomEo32jroscXUVrGDnkKbGNQ11a9mEg4xA19BCcijFxoPVBpOlmMEYG9mw+9rsU/c+HX6uBb9r09EjqQO1rhLWETQmxHKXyiLKYAjVgCpt8NoQibSJKLrPDuz1PfHbmpkCHs/Di3MWyyWvvPwSxms2ZcFqtUIBB/v7RB1T5U67vci2vwtNsWR5ekoTDTj8/M+T3XmF6+99EyMNJgrZqZpt9u8jm08APE1Vkg/HaG1Dfd9byuqHayEhykiD8poNCr03hPYZg9ZdEuvw2w0MF4KAV4r1Zs14MqEmhAQqwutVXQW/SRTR8aPebh5hU9WB62inLm7QgDw+1livaDYlM+Zkw5zRcEAUxRSbJcV6g9Q14iuyJMco3YuxAA0Im7pqHX9mq1HfkEj0GplvGrIoIjH2xhh7FJvGEQ9HKPHMTt9DbQrGsSEzBoPHi6UUYbFaMbu4ZP/4CBtF/UGXDcf4Y8/svXusmgaswWrdC/KuN50HosOLb8xY6yA0QCSKTd2069iAUkRZyuz6ikgrGqVpoog0y9ibTIJ2bwxK6Zu1WHYE6lOCXB+zzrefbfOPCNWmQtScSMsz7z3i6yDoRPCNo2lq6qrE1WWoxlZsWL33Dur0Pvr4BeLxEK2DFWxle/1nXfOPZmJ/iKaC5m4QxGiUFrRq8MpgvMYoFfIpXBEih8oqwLY+JAt6Qk0L8Q2okDRodAyiUVmGGeT4oqCczdF1jZENpimw2hArjUpztH86JTM854IfVaFbjMwDRjWkbo13Du0jhqIomzXeOywRKQXaFXgJbJMe6bXrrUeqTWBRBhGYzRf8k699g9lijjEG8Z7ZbMb5+TlpkvDTn/888WME/6OakaC8p6pKrk5PKYk5/tlfYPDCq6ChWcyIlLRp7iGyQz9JkCuFr13IEh6E4iuPI2f70MPaRhQ1ylGXMFQx0qbwKwFTlaQqhGluN34n+gPUQ1MH7dFanG9Cej4KX1cIYJKEulgTG30T40VwEgSzimyfANULIVHEPjj4RDvWxYz1ZombjhmOh6RJzEV9znK5QeGDQ1LrHY0UGudYbdZ9ofjeN9JHqaie0RPxoUbvYBQYXXu7UNEIlKIYjca4ssBWBZPEEmmF6YSDCpm93sDs8pw4Moz3D1oLKmh3g/EEGsfV/ffwzhF7hSVUzzJKtWGoQcr5dr3exs6VdAaLRhqHKyuiltsoSTNqo1E2Yry3z2A4wURtFEtfDFj6b7eOlQ+4rkI/nWvwTYNzjqap2Gw21GUVwjO9p6kbfF3iXYA/tG6FptbECANtsEnE/iuf4J2Lh5zff8ChukMyzGhLmt04dH7tqy/19Xl3SzU+rXWz/UFb8DO066klMBQFzgjaKTw11fyKh6f3sEcvk032iLMhJhtgs5w4H6CzECwhTYMrSsr5EmxEPB6jrQLlqFcLlvcfUN57k+XFVTjYhyX7ZUFdLJ7ax+da8IcQLk2tA6fOz7/2cf6VT34SYxSxbvif/pmfRZQntQ7lIj71wi8hRqFwzOsSV3d8321BFhGMClpoGmvqsuIP//CbfP0b/xStDfWmwiBM9qccHx3y8ksvkSaPp0Lu+9inwjtcVXN5esqyUrzwp/5VspdfQ8cWqgX1fBHqwGKgTQp72oZrygpU4MbvYn/h6Z958jhumyLE0TdaUzoPkSFOov4Q8q7BzWckqxV6MOphsvBhBd4HrV8CP06cZfjVEqwlUga1KfAi2DihXi8QY3Zw3eDAqpuGsqlRLbd994bO5xF4KUO0Q6JKvDdcX18iUjMZHTIYDVkXFdZrvLXUQE9fJxJob6syOFx3ojp8C+/sHkPeOYxAbG3/WpcEVYvgI4tJUtaXZzc4iIKQDtc1KHKjcL5h9vAUG8UMJtOgLaJQWjOYTHDiuDo7Y1GWRAixtSTWEhHSoDoi4XC87hRk9+24KSiVxnnBNdvExCTPufuxj2ONxUYxRttdd0cPWT4u+e+DNBHBOYc0DZvlgtXsms1qhZawJozSWK37PAgd3yw3qLtoHQk4vgHU5ISXPvd53v6jr3P67j1OXjwhGY/wJgrXQPFrX32Jv/RXfpFNafmv/u5r/PW//FsfSPh/8Ka2B3BLWW5cEywsNPWm4Px0SfrKZ/m9q1/mt74y5Uu/WPLn/lyNUjZYsQpoaqr5NevFAuMcEbA6f0iUpaR7eyT7J8TjQ+TVz+DLknpxxeziAbXSXF5cPLWHz7Xg7xZrcKo4YiNY8RgaGjQjG9QXwYBx7GmPJ2JRlHz9jbd56+GKTVOhdNB8vGuIjWE6GvLTr5xQzK75gz/4I+bzJYN8wMt3X+HuC8cMRsP/X3vnHWzJcZ333+mecPMLu2/zIi4SSZHIWEEMCBQIgGawpLIpl0qUaJUtuayiKEskZblsSiqLlkpyUFmmTJEiFUhKYJBMM4gECDBYJsCABQEwg2l3seGFfemGid3+o/ved9/D7mJJYgHv7nxV8969M3NnpsOc7nP6nO/QajdoNRoEWrM+aYfDOHuiNSXpoM/8kaMYC1uu3Evrgj3YWkxBCfmAYrVLK64RWI1ByJUZs0lvVFFdMJEKA6K4MWZnP0GE45NgNGf3s1yrDCWRS+nXDFE1Pzu1kOYpycI86ewR2hddRFBruN8Mr+Nf8NC41H2NVguVJegwREtAlOcURek4ZFhPlTFEmucuBeJY9LK1Q79zwagSZRllPNIiGAqyfpfFLKBgwPTWrdRF6M0fRZmMIAhdsB7Og6vdarM8GGBEEUbxiDto4wMVRUEt1ISBdlrl2JPmxhC22xilSPoDpnWAwkUDGBGGthNnhjE0AygKmD96FKs1zVYL5SWfCkNaU9PouI7Jc/JsQDoYsNzvY7OcQAn1IKCptY9OdmYD5ddEcmtZzDISowma7ZGmBI6zp9nqjLX3Gj3c+t6l1r58H1NhYwzGGJJkwMryMkl3lcALspZSaOsJ2bz2ory2ON5XR8Y8Mc5+bTViS0wQUJ/ZxXnPKpj7xpeZ3X+QTbt2UJuaQikn3u7bt4NB6j4P0oD79u04ZcH//UIAjMIo+Nj9O7nvwZ286JpDvOyG74K1ZEmfhYP7MbU2D8/dwi++/kIGA8W732t5R32ZO+9IsWVBsbpKb2GBMC+YDEKCRgMRqOcFaVnSO3oUozT1yQmiyWlEB+jNm1HbtkHUYeaS5wLvPuFznlWCf0iN4ObkmbOBWmfzHDIxGm2xPtjBCKPECkaVGCsEpeXxlS4rqzmdZsS3Dy2wvdWgU2vy6OEFrtiylTAUvj2/xIWdFuefv4usLOivdjnvwp3sOf8CN0MUi7Z4kxGIkRE1gmCwqnBqX1myPDfLyvwSTEwycflldC69AtVoUIgLRy+znKw/h9681UWgeiW0HMWdrE/cYTDkRQZxA6k1MGLARliVIfZ4DJ0bBg+/2Dru/mnH3B0tgjKQCYSNFoEO3ZBiDFm3i45jrArIkgTdmYA8RxXO/GKkRhkmztVOGeoS0l1aojYziYk0NR3SzwbU4phChZ54za8PGBdJnOQ5NtCjZC/DIji5790oxTGyGtEosQRoSmNJk2XSMiVudWhMz0AgdI8tkKUZE1FEpEqUskw2mwSiWB0kFGWJrsfYYOjPL97MYylNTi2oESo9qntBKAwkFlqtBll3iSBP0XFIKoa8FGxpCbX1s1s3LGpRNEOFzRKWjx7Cqm20mi5dpgBBENKecBHbRd4mTVLSdECR5xRZRpJlDJIck2coDKFWhFohOmCQl1Br0el0iBtNQr+IPO6iOBzZLMozcm7oKqP2t6O/4mZOI/6p4eA41J6KIqe7vEyvu0qZJoRlQVyWLmjPx0840o41SpNhj1Qb1wd8PxTfN62AUQaJQtrbzscScPSxrzB76DCby5zGzDRKCTdfdZB33b2HQRpQjwtuuurAuknT8FoWRrkm7BMKjz+XUYClNkNznMWO0SkIAX9//y7+xVDLuOdi3vqGklue+3WW9n+Pot5g849cy2fesY3BwL3Eg4Fw770Rd75oleXlwwS9AbEJ0VGTuB6jY0WhIAaCJEX3M4qypFhZoFhdRsUNapMTNCemySSkseM8ToazSvADDGMWnJwaZtABUGjrkzfYsfAX37bKaLBu4XS+22Oq02bP9s0spRmXbZth1/Qki0nGlRdeQK2meORbB5i+4AKuv+5atm/fxbGjs0xPTvgZn8XaYaYul7HK+WkqlC1QGAqj6PWW6c7OUWQW2bqdicufzabz9kCtBda5o1qEopcTpDlRUPP2dTwXjS+zf3PF915rLTbJiFqbCFXkkjPbIf/OCWb8Gy1Bdu1FVkPvBm/jFgRjDTmGVqPlkmwAhTF0V1bptNuEO3Zi6jEqilwQigYlJaqAfH4Jk2TouI1u1yAIsb48GsgHPdrtNn2lMbZwdep90UtrnH0/WnOzXPfcY9+sGvoZuZwM1gpKSqQoWZ2bpREETExNE6iA3tw8q+mATqiIA0U9UERNTYCwlAxI+33CZh2lwjXRZAyqNNSbNYYD+pAjp7RgdJ0wbrB47BDkJQulwQQCOiDQmn6eUxNoRqFna8T56wcBS4Mey/NzBDqiUW+slWpIVhdEhK2IVquFsZYsTUmThEE/ocwzKAswJVlZOCrheoOpma00Om62L+tqau3LaO1oRP3ghaA9nhhc32+G1zLG0Ov36Xe7lGlCmSYUSUJoDe1AE0bRyHt9GMnOE57IjiZnGx5wXU7qEWGijmlv340EwtzXHmVxdgEDtDfPcOfex3nb6z/Nvft2cNPVhxA0r3/L9dx81WHuvOHg2v18K370/t3c9+AObr76ELfvPegmEnZ9X3N+82uD1NoAKIDhUw9uG9MyQu77wg5uvPQrlK3tbHrWFXT2PIdbbjH85bstg4FQrxua4Sqv+9WQ51/b4OU359Qm224dqyhQVghzSOfnESloTE5jwjplr0faX6EoegyKEhv1qE1NU544dgs42wS/tU5NMsbJfy2OZ9wahiHfRo5PCuX85w0lBmNytIqo6YiWFZpK0dCKprWo3C1KWpsjGqY3TTMxtYlyzx5UzfF5jzoGMmKVFClR1vHD5mnBYHGZ1dUlUqVoXXwx01c8l3B6G1ZHozdKW6G0kCwtEttwLTKWtQHLlXvtpREstnTBW53tk352NFz8W0u3cXI4G3U3LxCEehj6OZllSFuQ2RIJQ2qeXtcCaZaSpQNn95+axEQxpigolpeQRouwFmCzBHtkyfGYb+lhp6eJZraSDhLqA+MStmQZiMJoTVGUhNap/UYgzUvy0qB1MHrWU4VYS4izMwdpymBuDl0amhMT6C2bWVlYYDVJKKxQ185dbqLlfNbnu6uYfoqKFYTOpZbS0JCQOAzdPNk/Z2Ghn2fEU5uwhJSESL1NqRQSaWpRhApD+v0u3X6fPC1oakUt0I6EThQTYY1jqwOW1Rx6ZgtxfUhj7AbBtQ6gUGKp+WCq9oTz+y7LkjzLSJOEIstoNFs020OhvxZ5+sQ6emJfcP3Z8/iMFndlKHtd+xtLmWek/T7ZIGHQ75L0eqjSEeA1otitlAlrQp+TuSM7l8Rh1x73x9+4dD3SP5SmuWUHNR1x4NGHWTm6CHlEa2aKl+zdz+179/PR+88b2fvfffcl3t5/YPRefeSBsfWAe9x6wJ03HFxv4fMPNUyl6CaSrl6d44fh1iuP8K67L3VaRpTzY5fvR3SLzddexcSObWRxwEvuLHjHWxe5+x5FqzbgT965hUGiec8HZ2j/18O87OZ5ytk58n6Kmd6KRCHJ3FFI+tTRhNtaiI6JGm0KDKuDlKSXEEQ1kuXlE9YsnGWCP81yvvjFh8jn5hGb02zGXLZ7B7UQhiqsm7k+cd47NMlghYl6k+8dXeLRQ0fYv7xKEcCxJOXA8grBgcfpNCLCUFDaoDSI0sTNmFKVQAlWuYQgWlAjTljBmIKsl9JdXGFp+Rjx5Fa2X3kl8e4LCOI2IgGlsmMJJoSiLFldPEBUCzFqqMlsWGTzOVqHBF3GZCR5xlRnwnN54J9Lry34nQQWKKxlKc1c6Lpo6lo5848XPIOyIJqcHNnZBUuyukrsNZVSDJRg8oTB/m8Tbd1CuG0XpQ5gok09jkgUJGmGrTdYXV7xNl5D6AnPJK6RZykNGZqwhN7Im0ePNLdTgQvHd8FnqsyZarUIxLI0f5TMFrSmp2nv2M7S7BxJtw/WEAeKQBSdWh1BWFhdoUgSkBgVaEye04xqLhJcXEa1rHR8PGkQMD3RIlAwNdVxPvpR5ExEpaUQqE9M0l1eZHVhnrwoaAOxdkGDsSgmwpDF5WVWRDExM0MQx2sEl67S1zx4vMnG9Y8QpQOCMKbWaIE1zlw0DKgb/eZU6441OgUZk8biaKuzLKNIE/J+n+7SEmWS0BDYFMcEEhJYt5iPQDHSHtbWveyJ4lHWrIujgWrtvDV+Hcd3494JKzHB9DZ2Pldz4CuPsDx3GKNSWjNTRDriUw9uX2fvv3ffdu7Ye4AhKeG9+7ZvWA/Yzh17D/pJo/V8UaPiM7Qxrj2nIGhuv+Fx3vq6j/OJz23h2su+ywt+bIlIN2lMTVKGIZBRZANefGOX51+xwG+++WJPswD9RPOJz9R56fUDVvcfxBaGuNFGtyYpJusUCxkqS4myPsn8IR4/MsdCkmLCkMxYZP9BvvHIV07apmeV4B9kOe/9yCdQifMOj8oBv/hPXsnumY5XXUfzZf+L8c/OJqwRdkzO8L0jy3zpW9+mWxi+O3+Mo8eWSAn47uIS00WTF1x+ATWl0D7zhDOzKK85DLlRhu6gQpkbBt1VlmeP0ith+keuYfqSZxN2prBRbbQAHZrSZwzzHSztk8w9TqtZB1F+nXjowTIsxZiabF3ScGstcavjjlqLSy4TOM6c477wa2qrRcisRTebRGGN1W4XBGrauREaK6RimWy1Rq6Wxtv3GzhXRVsC5AQqIIhCyiIHo1BxTLhzG7qALC/ozR1jYscOigDSIqWBy8CVJQlRvU6+vAg+grewln6aoqJwrC1PDUOmRpsVBCLUtHKJ00VYPbZAkeVMbtnK5m3bOTY7x9LiAi2gESoCsXRqMYGaZLa7wqDfJYgiKHPidsetIRlIjaFfGlKtaW/ZQtysgTG0GjWXrMbT8iZJSl4YOpNTTE5totVqs3j0CMdWl2mrkLYSAkoiNBOBZuXYPMYWNKan0VGEUppQtKPAfkJbDk004mW0IBuH+5NU3UZNYO1q/q8Fawxl6bSKpL/K8uIx0m6XSIRmEBDVa0TWOC8cAWuNm3xYnwZ1pCY4nv/RRMyO39fNZ9bGGDsyRa2tPXlhP+q77h0staCnNrHzyqtY+DrMfe87aFOgNk/zoqsP8lf3XDKy99981eGRWUuAm68+xLvvvmRsPeDwSEyMz/bXP64dbe7dhzzvc+OeA1zRniM+7wImLr4GvvM4amke2w6hN8DOL5Eur1Jr1HnprYa7PlQySDX1KOf5z5sjDUOyLZuI4pCyE5FkAxZrEZy3haLeRExC2l/mw3d/nG/MLiD1ukscJYp+r3f8BvY4qwT/th07+cVffSOBgaIs+OT//lsWVhJ2zkwD1iWvXsens95uF1oAw1Rdce1lu7j8vBkKXLq+0Fgy5UL7a1qxqdNC22EGTjWivoUhN4pBrEvgnaU5y3NHWF5cpLnzfHZd8Tzi7bvQrQ4Ms5N6quASjTIu8AMM+cIxgv6AaHLz2vvCUNV030Y2bXGCP0sz4noLHboFvFGe0BO88WLXriXWCcisKIjbU8SNJmhhZXkZJSFKFKkxEEUukYgX/GmaUOQZobjE1QJYk1KqGvWLL8eKVz2KwTA9FIFAnvQpyoJas0lxbACBIsDSH/RpbZ4hGQ6gCEmeUZgSreJxl/pTh3Xul40wJFYuEX1TCxpNb3WVpSxnavsOpjZvohdqVhbmMUVJS7t0iM0oZKbTYaXXZaXbpR7X0IEit9DPC1bLkvrkJJumNxHUaqRZTrKyQn9llTRLXF5XY9HKUqJZSBK27dpNrVFjets2Vmoxq4vzaAvtwE0E6iJIoOgtLzG7soQNAuqNJs1mm0az5fz9PW300KVzowAFRhHP1tfDSKA+WZWNGfdN6bxz0qTP6tIivV6XqMhHAj8QXIyC+Nm8MIqFAe8KO7LPD6/vj214mI3mTOuj5K0PXtzYj4fuk9onr7FaE7cm2Xzp87jnwcu554NNbnreAX7itm/yp7+m+ORDO7npau/Tbx0Fy4cf2M0n9+3gl17xFVb6ETdd5Wz8djS4DDUUvMVtOOlbG3iUCIUpOHL4CP1Bwszzrmfi4suJJqcx/YJ80KNYWWVwZIGGQKcziQoUt9+2wtt+d5l774t40Y3L3PjilO/0+qwWPQZ5QtE7RIgmataRWFH2F4kyIaxZ5kPNy//Zz3DeBRd5WeS0k7/+8EdO2K5nleCvN5pcec11fsTNeeQL95OaxBvwrU84YY7f2/1MxAqIgplOna3tlldHDdo6qlS3mm8x4oN+Riv6ssYLbkBsicoSlhdXWFiYR8c1pp9zHc0LL6O+dZszV/iBw5lqBGOVo1hV4gYBW9A/cogYTTDik4H1L86Y2coPOGm/RzQxiQSRJ3JTDH2BNgoGYLQgCcNUis4CG4QREoSErTZlWbLS7UIYkVpLWG+ssTECaZKgypJACyhBGW9rtgZVqyFpgjU5YkrC0joGRW0JSuh1e7Rbk6zOL1Lg6t8WOUoJEoYUWAIR0iIHJWukaXIyG/GGMuJMLFIYms06gQR+lmepa5der5emLBw+RGdmhsb0NKI1vYU5TJ7TDkMiEVphRNhoE1mFCkNyY+nnCdQatCcnaLYn0EqzODtH2ltFFSWBtYTWpSkMcSkkl0xBFoaoQFhaPEYQhExMbUKMIV06RsMKAc6tsR5oKIWgKLBZAcUqK70By2oeCQPiRpN6q0mtVidQPoJavGbos22Nus3QHnTiimJk1Rn2MGPJi5yV5RUG3VVMmqBMSR1DDSFSikCrdQu2JWrMB3+4HuDn1cIG/p2NHdL9M2qsX+KGBzeQjNFjj2IrhrqJD/iyCm1C7nngIl77P3YzSDQffDAjT9/FK2/9EnfceAirFcY6YroPf3bnyLZfjwve9vpPA/CGt1zHLVcd5o69BxhGSlvx5GmOQQ6rNUY0ogJ0s0ne7ULU4qFjt/P5uy7jx39ccccdKWzdhFnuI0lBO64TxhpZXeX9H1F84stTXLP3GK/55S+TxcLBXBM1YuJW7MxMxnD/fTv5wue2c8MLZrnx5kPYUlGoGrZV55IrnsNlVzwbEZ+e/UlG9LNK8INX/ASnPtqCwBZok1MOu4oYT4z0RLjZjcLNAQEb4Gi21Bjjoo+addJ9TMm0I65si0KKksXDR1hZ6VHbvI32RZfS2nMFujUxWih1XgtrA4b4ro3/brIBg9lD1Gouik9tWKkfvkvDF8yIoIyhGAxobrsYJT74yY5E/vgwMV5pIxunWMhLi9UhOnAeLCoMqXU6pMayOkjIsXQaTQLvJ22M45sJrdNfSqN8HVuszbG9hGT2EHZqGyqMiKVAWUOIoima1W4X6Uxi6i0GeZco0JSFz38QxyTJgAhDN02xOhi5xY4cQk4FFihdIvQ4rGFxnPli3Sy5HmiUsqykKd3ZWaJNm+lMTaFEGCwusJwmtKKISIQwqlFD0csyCiOEE1PUJieJG00G3S7J0jJ5v09QptS0pqYDQhUwZNJPSpccZmrzJvI0pTs7hxJFe2YLnckpFlZWyIwLWHJOAm7htxZELqq1LAnygqy0WJVRDnK6y6t0gwAbR4RRSOh5f2q1eH2qw1OpJ4+yLEgHfborq2SDBJtmkOfEGBqBpqYjp5kKa8l2GZIGroV7qbFrW69eDo0jYq2PmRuNEk6QizjN0ee+FbPGLWSldP1y+BNjGWbyGjJagnu37vlse2Q7T/KI//ONS3nRlR+CmR1s2bHbrU8M+nzi4d3rbPt//tFL+Mwj20eLwG9//Sd56fX7ET8BFK1RUZOw0UA1WlBrQhQT1Jr0Zue4/8FLeN3v/oj30Tf88R/s5x/dnNNsTGIiIW41KeePcdcHUv7lf7uJJAu56yO7+A9vHnDDTQcgVkRthYoUsQR86sNbedMbriRNAj70/gv49d/+NNe/YD9hIFAU3iXd1b02x8+7MY6zTvCPSE5wXPbzS0vMHmtDXEMHNaJAoYJo5N0wbtVUFE7Y+0WcEu0rchi4YkczTSMWq4SRAzDeb0gspTjCstmBwdQnuOTaFxBv3w2hU8EKqx3/vIj3xQ/QWOduKWvZdQbdASv9VaLONEngXAbXwd9aeQloRLBlRpeIic4UVgUU2mKN85Bw86UnLogOvTxc0g4hKQvyMKQ29F6xgg5j6pOTrNhjmLKk1miMZpBZkZENBjQDRaFdlHMpCmMLF2yVF+RpQWgsSWmpG0NLhyDKJbbKUrI8Iep0GMx1R8nJy9ISxA363VVMoMkKQxEoFI6f/kmnNes7hssLHIZIGJIjGK9wKQSsQbSiGdTpJSndhXkwhnZnEq1DugvzrGQJda0pbEkmgm22qXUmmJieJisLlo8tkiyvYJMBjSigHte9eWNI2G0prGHRWMLOBLV6i4XZWcgLLLC4MMvWnbvRjRa93qofeNdMJBbceocW6laoiWOMzcqSJElIjcGEyi1864BNM1td5PhYNZ1sZWQ4C8/SlH6vT5YOyAcJ6aCH5AWNQBPXAkIRhtEgxVpINcMeZoyh9MLZ4lJzDn3/TWkw1hHkZVlGkRdkmUvm44qnCMKQQGtUoAiDgFiFdOIGCkVaZKTkiAhatOsLCFpZz4yqR5ObUlte+Pwe7/jAFINEUa+V3HRTjpneSdrZSrhzD7ooKQZ9bnuJ8J6PlQwSTT0uKFWwbiC4e99ufuzK/SRJgtERWy/YRbRpO2GjSdBoQa0OoUt3aHL4v1+dGvPRV3zyvog7bzTIdA1jElJc2939yG6SzGlpSRLw8MPn8fJ/2qcUl3XDWMtgucu9H+mQJu550iRg32d3sveGQ5S5cclixBNQjwbVk0v+s0/wi7fHWUFqTbbtfi5br3wWEkTORq0sovQa/8tI7R1OnYdCvgDEuWcaPRL8TtaNucMN/Z0tflAwWJ/msHPJs0BHRFu3Q1T36vPQqqmx4rI/ifFBQWIYT6cYIFzxopsIa20kGFlwGd5uVGS/wyrBFgXtPVcQT28hCJuE2oJRzq1VCo7rCTOaOTuTk7aKehigA7+IOgryaVBrNrGmJI5rWOO0K600m7dsIRK3VmGtworGYgiNodQReuduJIjIlBAUpcsnq4XIQmQMxDHSDGnHAVpKGlZQcQOaDYqGm7U2ZrY4hsMgGFPtTxUWUxaEIoReU/H2kGHjMTQdNHFutEY5vprm5ASNZoNy4Ph9rHKDrI5qozoKraVTrzMZxz4C2Izqzq37OBOBxjIDBHEDRLFpeho9NYFYQyGgw5Dprduw6QQBzhPJ9ZthLIVZa3Sv8jW89jMshbHu7lG9gXjhMdL1xq2Fsr4fWa+xChCHAZGuo+p1RKZ8eczaIqef5IzMOP75tH+QYUCTFSjxvFeYEQleaA1xaTClpbRuMBi2p1IKpRwpnBZNhCbWsWtzUyCSMzTujKgqxJnrxCq3+br6yZ9WRBM97rkv5MU3Z9x+6yXY8iKoN7GNFkpp4gnDT/18TrR5wN33aG594QBbhnz2EUN/oGjUDXe+ssH987dwz6db3PzCPj95eR2pOx6sUoYZuRw/0MTmKe68M+Su91r6faFRN7z8FQ2mz78IiTVB0gcVI50JXvbTlvd/yjAYKOoNwx0vrbFt+iLfbq4f2lrBy15e5+Mf8ufVDa96VZsbrtmLscL9H/vSSFsfzkXPSXbO4TuRFyVfOzRLHtUwWUaZpZRZQpHnIxumKIXSyplStBsQRClENKJcHlSljiMsj4u1pSoByiKnt9yjfcF5xO0p4Dh83ye6UmnoHdlP0V2l2Z4ANebicBIk/QGmNExs24kOoielhN6IAktWGoJGcx0lAjjBkGUZYRhSr9dG5Rn0uph0QKQ0pTHkFgoUKtDUajXiOF73DHme0+/1MWWG043c+fVOh3TQR+cZIlCqgFqrTV7kpP0egTEUZUFaFCPhcKptY63BlCWtyEfZPtn5WPLSkhiDjmPqjQYiQpqmBEFAGIaUZUmWpmT9AVqMi0Qdia8108ew7gpcftqo0SIIA/qrK0QWl+QdS24sudbUW2363RVCYwhPEHdyPBjrUiLmIjSabSKfuwGG9v71fW9IpWCMochzsizB5AXaQhC4+IDSOg74wpSUPo+aYTibN+Q+bqYsDXmeu4nLmOfOeLuLj7oFQSlFEAToQBOEetSOReGSH1l/TWNKlCi21CcJw4Bj2TKLKyusjykAHQfUooi6imiGdSIVojzz7q6t8HOvcm3wyCOQZSlJaQhbLZqdjtcU4Pw9wi/s8YOfVfz27yzyD5/UXLHrUfZ9Ef7w7XeQZiF/8b6CQyvf5uZbDjyxDYyl1+uybWvJb/ybFg/um+FHr1tm9/Z59u0DU+YkxxaJ2i2CdofOzCK//m+38tC+rVxz3Szbth7hc/cb8rwgGeTkeU6z1WD3+TFv/Pfb+OLnZ7jmulm27jjCvn1grbCytOJMtcM6hyeVFXKqguhMgIjMAd97mm+7GZh/mu/5dOJsLl9VtjMTz0DZLtgNm7asfV+Yhe8+UfI/NXiqyne+tXbmeAfOKsH/TEBEvmCtvfaZfo7ThbO5fFXZzkyczWWDp6d8px76WKFChQoVzgpUgr9ChQoVzjFUgv+Hx1uf6Qc4zTiby1eV7czE2Vw2eBrKV9n4K1SoUOEcQzXjr1ChQoVzDJXgB0TkdhH5uog8JiJvPM7xWET+xh9/QEQuGDv2G37/10XkJWP7Xysij4rIl0XkV8b2T4vI3SLyTf9/6gws2+t8uR4VkfeISM3vf6eIfEdEHvLblWdR2S7013jMXzM6k8omIpeNtctDIrIy7Jci8iYReXzs2J2ns2zPQPnOhnduUkTeJyJfE5GvisiP+v0/WNtZa8/pDUcB8i3gIlzO7S8Bz9pwzr8C/sR/fhXwN/7zs/z5MXChv44GngM8CjRwQXL3AHv8b34feKP//Ebg986wsu0EvgPU/Xl3AT/nP78T+KkzuN1OVra7gFf5z38C/NKZVLbjXP8Izs8b4E3Ar53J79yTlO+Mfuf8sT8HfsF/joDJH6btqhk/XA88Zq39trU2A/4aeMWGc16Bq3iA9wG3ioj4/X9trU2ttd8BHvPXuwJ4wFrbt9YWwKeAnzjOtf4ceOXpKRZwesoGbjCri0iAG9wOncYynAhPW9n8b27x14Azt92GuBX4lrX26Q52HOLpLt8Z/c6JyATwQuDtANbazFq79MM8ZCX43SxvPALvoN933HO8IF8GNp3kt48CLxCRTSLSAO4EdvtztlprD/vPR4CtT11RnoCnvGzW2seBPwD2A4eBZWvtx8fO+48i8rCI/BcRiTl9eDrLtglY8tc40b2eSpyOPjmOVwHv2bDvX/t2+7PTbQrh6S/fGf3O4Wb/c8A7RGSfiLxNRJpj533fbVcJ/tMAa+1Xgd8DPg78PfAQ+AwR688b8mqdMfAd6xW4zrgDaIrIz/jDvwFcDlwHTANveEYe8gfEk5TtrIBfm3g58N6x3W8BLgauxA14f/j0P9lTgxOUb4Qz8Z3DaaFXA2+x1l4F9HAmK/gB264S/PA4a7NxgF1+33HP8SaACWDhZL+11r7dWnuNtfaFwCLwDX/OURHZ7q+1HZh9Sktzgufe+HzHO+cUy/Zi4DvW2jlrbQ58ALgRwFp72DqkwDt4ogr+VOLpLNsCMOmvcaJ7PZU4LX3S4w7gQWvt0eEOa+1Ra21prTXAn3J6223ds5/gGded88OWjzP/nTsIHLTWPuD3vw83EPzAbVcJfvg8cIn32ohwauIHN5zzQeDV/vNPAff6mcMHgVf5VfoLgUuAzwGIyBb//zycff/dx7nWq4H/dVpK5XA6yrYf2CsiDW+XvBX4KoxeKvz+V+JMXmd82fxv7vPXgDOz3Yb4aTaYeYbt5vGPOb3tBk9z+TjD3zlr7RHggIhc5n9zK/AV+CHa7qle1T4TN5wN/hu4VfTf9Pt+G3i5/1zDqY6P4TrZRWO//U3/u68Dd4zt/4xvnC8Bt47t3wR8Avgmzttn+gws228BX/Od7C+B2O+/F3jE7/8roHUWle0if43H/DXjM7BsTdzMcmLDvf7St9vDOOGz/Qx9505UvrPhnbsS+IJvo78Dpn6YtqsidytUqFDhHENl6qlQoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QocIzjlMhGxOR3SJyn4h8RRyR3ms3HP9lT2L2ZRH5fb/vx0XkiyLyiP9/y9j51/j9j4nIH3kX3hOSuonDH/nzHxaRq8eu9Wp//jdF5NWn4x4nqbs/E5FZETl1N9zT7bZVbdVWbdU2vgE3Ae/csO9NPAnZGLAduNp/buNcJp/lv9+Mc9Ucut9u8f+vAnb4z88BHh+73ueAvYAAH8W7T3ICUjecm+ZH/fl7cXxc4KLUv+3/T/nPU0/lPZ6kXl6IC+h69FTboJrxV6hQ4YyAdZHhD/rPq7jAwSEPzi8B/8m6qHGstbP+/z5r7ZBE8Ms4Ar7YBz51rLX3Wyc9/4I18rYTkbq9AvgL63A/Lpp7O/AS4G5r7TFr7SJwN3D7U3wPROTXReTzXhP4rbF6+TRw7Pupy0rwV6hQ4f8XnDLZmDgO+6uAIY3BpThixAdE5FMict1xfvaTODqHFDdgHBw7Nk6mdiJStxORqJ1s/1NyDxG5DRfJez0umOsaEXnhccp4Sgie/JQKFSpU+OEhIg/guOZbwLSIPOQPvQFHNvY7OAK138GRjb3mBNdpAe8HfsVau+J3BzhTy14cSeBdInKRn2kjIs/GESfe9v08s7XWishpjXI9xXvc5rd9/nsLNxB8+ge5ZyX4K1So8LTAWnsDgIjchEtw83PHO09E/hT40AmOhTih/y5r7QfGDh0EPuAF/edExACbgTkR2QX8LfCz1tpv+fMfx5GgDTFOpnZURLZbaw/LelK3E5GoPY5btxjf/8mn+B4CvNla+z+PVy/fLypTT4UKFZ5xnArZmPeIeTuOOO8/bzj8d7gFXkTkUlyWqnkRmQQ+jFtI/Yfhyd7MsiIie/11f5Y18rYTkbp9EPhZ73mzF5ev4TDwMeA2EZnyJqrbgI+dhnu8xms7iMhO8USQPxCe6RX+aqu2aju3No7v1XNcsjFcXoSP+M/Px5mCHsbluHgIuNMfi3DEgI8CDwK3+P3/Dsdf/9DYNvT4udaf/y3gv8OIu+y4pG64Wfcf+/MfAa4de/7X4EjXHgN+fmz/U3mP1/p9jwCfBS72+9+D4+LPcZrPP3+yNqhI2ipUqFDhHENl6qlQoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwyV4K9QoUKFcwz/D4F7tBa4XVDVAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 1440x1152 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "#ruh_m = plt.imread('/Users/Asfandyar/Downloads/map (13) 2.jpg')\n",
-                "ruh_m = plt.imread('/Users/Asfandyar/Downloads/12.jpg')\n",
-                "fig, ax = plt.subplots(figsize = (20,16))\n",
-                "ax.scatter(above_A51.b2, above_A51.b1, zorder=1, alpha= 1, c='b', s=10)\n",
-                "#ax.scatter(\"-0.43923212\", \"51.34009127\", zorder=1, alpha= 1, c='r', s=1000)\n",
-                "ax.set_title('Plotting Spatial Data ')\n",
-                "ax.set_xlim(BBBox[1],BBBox[0])\n",
-                "ax.set_ylim(BBBox[2],BBBox[3])\n",
-                "ax.imshow(ruh_m, zorder=0, extent = BBBox, aspect= 'equal')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 56,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+--------------+----------+---------+--------------------+--------------------+---------+---------+\n",
-                        "|road_name|count_point_id| longitude| latitude|         coordinates|      Accident_coord|       b1|       b2|\n",
-                        "+---------+--------------+----------+---------+--------------------+--------------------+---------+---------+\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.704792, 52.62...|-1.704792|52.626525|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.704792, 52.62...|-1.704792|52.626435|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703753, 52.62...|-1.703753|52.627241|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703902, 52.62...|-1.703902|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703902, 52.62...|-1.703902|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703902, 52.62...|-1.703902|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703899, 52.62...|-1.703899|52.627511|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703904, 52.62...|-1.703904|52.626702|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703903, 52.62...|-1.703903|52.626792|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703903, 52.62...|-1.703903|52.626882|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703902, 52.62...|-1.703902|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.704345, 52.62...|-1.704345|52.627063|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.704789, 52.62...|-1.704789|52.626884|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703754, 52.62...|-1.703754|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.704493, 52.62...|-1.704493|52.626973|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703906, 52.62...|-1.703906|52.626433|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703755, 52.62...|-1.703755|52.626882|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703754, 52.62...|-1.703754|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.703754, 52.62...|-1.703754|52.626972|\n",
-                        "|      A51|         99805|-1.7035958|52.627988|(-1.7035958, 52.6...|{-1.704197, 52.62...|-1.704197|52.627063|\n",
-                        "+---------+--------------+----------+---------+--------------------+--------------------+---------+---------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "findaccidentspoint=spark.createDataFrame(above_A51) \n",
-                "findaccidentspoint.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 57,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------+---------------+\n",
-                        "|       b1|       b2|Total accidents|\n",
-                        "+---------+---------+---------------+\n",
-                        "| -1.70404|52.628411|              9|\n",
-                        "|-1.703004|52.628768|              7|\n",
-                        "|-1.703892| 52.62841|              6|\n",
-                        "|-1.703902|52.626972|              6|\n",
-                        "|-1.704041|52.628321|              5|\n",
-                        "|-1.703893| 52.62832|              5|\n",
-                        "|-1.703754|52.626972|              4|\n",
-                        "|-1.702856|52.628767|              3|\n",
-                        "|-1.704049|52.627152|              3|\n",
-                        "|-1.702855|52.628857|              2|\n",
-                        "|-1.703755|52.626882|              2|\n",
-                        "|-1.703152|52.628678|              2|\n",
-                        "|-1.704197|52.627063|              2|\n",
-                        "|-1.703906|52.626433|              2|\n",
-                        "|-1.698427|52.628217|              2|\n",
-                        "|-1.703904|52.626702|              2|\n",
-                        "|-1.704188|52.628411|              2|\n",
-                        "|-1.703001|52.629217|              2|\n",
-                        "|-1.704024|52.626433|              1|\n",
-                        "|-1.703903|52.626792|              1|\n",
-                        "+---------+---------+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "findaccidentspointee = findaccidentspoint.groupby('b1','b2').agg(F.count(findaccidentspoint.road_name).alias('Total accidents'))\n",
-                "findaccidentspointee.sort(col('Total accidents').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 163,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------+--------------+---------------+\n",
-                        "|       b1|       b2|count_point_id|Total accidents|\n",
-                        "+---------+---------+--------------+---------------+\n",
-                        "| -1.70404|52.628411|         99805|              9|\n",
-                        "|-1.703004|52.628768|         99805|              7|\n",
-                        "|-1.703902|52.626972|         99805|              6|\n",
-                        "|-1.703892| 52.62841|         99805|              6|\n",
-                        "|-1.703893| 52.62832|         99805|              5|\n",
-                        "|-1.704041|52.628321|         99805|              5|\n",
-                        "|-1.703754|52.626972|         99805|              4|\n",
-                        "|-1.704049|52.627152|         99805|              3|\n",
-                        "|-1.702856|52.628767|         99805|              3|\n",
-                        "|-1.703001|52.629217|         99805|              2|\n",
-                        "|-1.703152|52.628678|         99805|              2|\n",
-                        "|-1.703904|52.626702|         99805|              2|\n",
-                        "|-1.702855|52.628857|         99805|              2|\n",
-                        "|-1.704188|52.628411|         99805|              2|\n",
-                        "|-1.703755|52.626882|         99805|              2|\n",
-                        "|-1.703906|52.626433|         99805|              2|\n",
-                        "|-1.704197|52.627063|         99805|              2|\n",
-                        "|-1.698427|52.628217|         99805|              2|\n",
-                        "|-1.702854|52.629037|         99805|              1|\n",
-                        "|-1.698132|52.628216|         99805|              1|\n",
-                        "+---------+---------+--------------+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "findaccidentspointeewithcount = findaccidentspoint.groupby('b1','b2','count_point_id').agg(F.count(findaccidentspoint.road_name).alias('Total accidents'))\n",
-                "findaccidentspointeewithcount.sort(col('Total accidents').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 173,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-1.913612</td>\n",
-                            "      <td>52.740852</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-1.912060</td>\n",
-                            "      <td>52.739557</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-1.913879</td>\n",
-                            "      <td>52.741123</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-1.912874</td>\n",
-                            "      <td>52.740255</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-1.912963</td>\n",
-                            "      <td>52.740372</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2022</th>\n",
-                            "      <td>-1.930480</td>\n",
-                            "      <td>52.752100</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2023</th>\n",
-                            "      <td>-1.922639</td>\n",
-                            "      <td>52.745893</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2024</th>\n",
-                            "      <td>-1.920105</td>\n",
-                            "      <td>52.754072</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2025</th>\n",
-                            "      <td>-1.928408</td>\n",
-                            "      <td>52.750841</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2026</th>\n",
-                            "      <td>-1.920847</td>\n",
-                            "      <td>52.754509</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2026 rows × 3 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude count_point_id\n",
-                            "0     -1.913612  52.740852          70287\n",
-                            "1     -1.912060  52.739557          70287\n",
-                            "2     -1.913879  52.741123          70287\n",
-                            "3     -1.912874  52.740255          70287\n",
-                            "4     -1.912963  52.740372          70287\n",
-                            "...         ...        ...            ...\n",
-                            "2022  -1.930480  52.752100          46549\n",
-                            "2023  -1.922639  52.745893          46549\n",
-                            "2024  -1.920105  52.754072          46549\n",
-                            "2025  -1.928408  52.750841          46549\n",
-                            "2026  -1.920847  52.754509          46549\n",
-                            "\n",
-                            "[2026 rows x 3 columns]"
-                        ]
-                    },
-                    "execution_count": 173,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "findings2 = A51accidentoncountpoint.rename({'b1': 'Longitude', 'b2': 'Latitude'}, axis=1)  # new method\n",
-                "okforcount=findings2[['Longitude','Latitude','count_point_id']]\n",
-                "okforcount=okforcount.dropna()\n",
-                "okforcount\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 58,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>191</th>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626525</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>192</th>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626435</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>193</th>\n",
-                            "      <td>-1.703753</td>\n",
-                            "      <td>52.627241</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>194</th>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>195</th>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1064</th>\n",
-                            "      <td>-1.704050</td>\n",
-                            "      <td>52.628537</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1065</th>\n",
-                            "      <td>-1.697571</td>\n",
-                            "      <td>52.628215</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1066</th>\n",
-                            "      <td>-1.698753</td>\n",
-                            "      <td>52.628236</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1067</th>\n",
-                            "      <td>-1.704084</td>\n",
-                            "      <td>52.628492</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1068</th>\n",
-                            "      <td>-1.697323</td>\n",
-                            "      <td>52.628303</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>137 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude\n",
-                            "191   -1.704792  52.626525\n",
-                            "192   -1.704792  52.626435\n",
-                            "193   -1.703753  52.627241\n",
-                            "194   -1.703902  52.626972\n",
-                            "195   -1.703902  52.626972\n",
-                            "...         ...        ...\n",
-                            "1064  -1.704050  52.628537\n",
-                            "1065  -1.697571  52.628215\n",
-                            "1066  -1.698753  52.628236\n",
-                            "1067  -1.704084  52.628492\n",
-                            "1068  -1.697323  52.628303\n",
-                            "\n",
-                            "[137 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 58,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#findings=above_35.withColumnRenamed('Accidentprob', 'Accidentprob2')\n",
-                "findings = above_A51.rename({'b1': 'Longitude', 'b2': 'Latitude'}, axis=1)  # new method\n",
-                "ok=findings[['Longitude','Latitude']]\n",
-                "ok=ok.dropna()\n",
-                "ok"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": []
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 112,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "1978\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "print(Car_AS.count())"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 59,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "|Accident_Index|1st_Road_Class|1st_Road_Number|2nd_Road_Class|2nd_Road_Number|Accident_Severity|Carriageway_Hazards|      Date|Day_of_Week|Did_Police_Officer_Attend_Scene_of_Accident|    Junction_Control|     Junction_Detail| Latitude|    Light_Conditions|Local_Authority_(District)|Local_Authority_(Highway)|Location_Easting_OSGR|Location_Northing_OSGR|Longitude|LSOA_of_Accident_Location|Number_of_Casualties|Number_of_Vehicles|Pedestrian_Crossing-Human_Control|Pedestrian_Crossing-Physical_Facilities|Police_Force|Road_Surface_Conditions|         Road_Type|Special_Conditions_at_Site|Speed_limit| Time|Urban_or_Rural_Area|  Weather_Conditions|Year|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "| 2005070500109|             A|             51|            NA|              0|           Slight|               None|2005-01-07|     Friday|                                          1|Data missing or o...|Not at junction o...|53.168825|            Daylight|                   Chester|     Cheshire West and...|               352670|                363760|-2.709482|                E01018369|                   2|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         60|10:46|              Rural|Raining + high winds|2005|\n",
-                        "| 2005070500166|             A|             51|            NA|              0|           Slight|               None|2005-01-11|    Tuesday|                                          1|Data missing or o...|Not at junction o...|53.139771|Darkness - no lig...|                   Chester|     Cheshire West and...|               356640|                360490|-2.649655|                E01018372|                   2|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         60|16:34|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070500346|             A|             51|             A|             51|           Slight|               None|2005-01-17|     Monday|                                          1|Give way or uncon...|T or staggered ju...|53.192183|Darkness - lights...|                   Chester|     Cheshire West and...|               341710|                366480|-2.873913|                E01018318|                   1|                 3|                                0|                                      8|    Cheshire|            Wet or damp|Single carriageway|                      None|         30|17:20|              Urban|Raining + high winds|2005|\n",
-                        "| 2005070500385|             A|             51|            NA|              0|           Slight|               None|2005-01-24|     Monday|                                          1|Data missing or o...|Not at junction o...|53.039112|Darkness - no lig...|        Crewe and Nantwich|            Cheshire East|               368350|                349200|-2.473493|                E01018517|                   1|                 1|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         60|22:50|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070500597|             A|             51|            NA|              0|           Slight|               None|2005-02-07|     Monday|                                          1|Data missing or o...|Not at junction o...|52.991523|Darkness - no lig...|        Crewe and Nantwich|            Cheshire East|               372540|                343880|-2.410551|                E01018515|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         60|18:20|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070500712|             A|             51|  Unclassified|              0|           Slight|               None|2005-02-11|     Friday|                                          1|Give way or uncon...|T or staggered ju...|53.073447|Darkness - lights...|        Crewe and Nantwich|            Cheshire East|               365410|                353040|-2.517753|                E01018454|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         30|17:15|              Urban|Raining no high w...|2005|\n",
-                        "| 2005070500755|             A|             51|             A|             55|           Slight|               None|2005-02-16|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.194546|            Daylight|                   Chester|     Cheshire West and...|               343620|                366720|-2.845371|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|08:00|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070500964|             A|             51|             A|            530|           Slight|               None|2005-02-28|     Monday|                                          1| Auto traffic signal|T or staggered ju...|53.070401|            Daylight|        Crewe and Nantwich|            Cheshire East|               365560|                352700|-2.515478|                E01018451|                   2|                 2|                                0|                                      0|    Cheshire|            Wet or damp|  Dual carriageway|                      None|         30|15:00|              Urban|             Unknown|2005|\n",
-                        "| 2005070500997|             A|             51|            NA|              0|           Slight|               None|2005-03-01|    Tuesday|                                          1|Data missing or o...|Not at junction o...|53.071567|Darkness - lights...|        Crewe and Nantwich|            Cheshire East|               365520|                352830|-2.516089|                E01018454|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         30|21:50|              Urban|               Other|2005|\n",
-                        "| 2005070501194|             A|             51|            NA|              0|           Slight|               None|2005-03-18|     Friday|                                          1|Data missing or o...|Not at junction o...|53.195969|            Daylight|                   Chester|     Cheshire West and...|               344330|                366870|-2.834771|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         30|13:07|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070501251|             A|             51|            NA|              0|          Serious|               None|2005-03-28|     Monday|                                          1|Data missing or o...|Not at junction o...|53.193045|            Daylight|                   Chester|     Cheshire West and...|               348300|                366500|-2.775292|                E01018368|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         60|11:43|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070501316|             A|             51|             C|            224|           Slight|               None|2005-03-11|     Friday|                                          1| Auto traffic signal|T or staggered ju...|53.192439|Darkness - lights...|                   Chester|     Cheshire West and...|               341590|                366510|-2.875715|                E01018318|                   1|                 2|                                0|                                      4|    Cheshire|            Wet or damp|  Dual carriageway|                      None|         30|20:13|              Urban|  Fine no high winds|2005|\n",
-                        "| 2005070501339|             A|             51|            NA|              0|           Slight|               None|2005-03-26|   Saturday|                                          1|Data missing or o...|Not at junction o...| 53.12433|            Daylight|        Crewe and Nantwich|            Cheshire East|               359160|                358750|-2.611763|                E01018458|                   1|                 1|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         40|13:38|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070501343|             A|             51|  Unclassified|              0|           Slight|               None|2005-03-26|   Saturday|                                          1|   Authorised person|          Crossroads|53.069776|            Daylight|        Crewe and Nantwich|            Cheshire East|               365630|                352630|-2.514425|                E01018451|                   4|                 2|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         30|12:00|              Urban|  Fine no high winds|2005|\n",
-                        "| 2005070501497|             A|             51|            NA|              0|           Slight|               None|2005-04-09|   Saturday|                                          1|Data missing or o...|Not at junction o...|53.177944|Darkness - lights...|                   Chester|     Cheshire West and...|               351140|                364790|-2.732526|                E01018369|                   4|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         40|20:36|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070501536|             A|             51|  Unclassified|              0|           Slight|               None|2005-04-07|   Thursday|                                          1| Auto traffic signal|          Crossroads|53.070044|            Daylight|        Crewe and Nantwich|            Cheshire East|               365610|                352660|-2.514727|                E01018451|                   1|                 2|                                0|                                      5|    Cheshire|            Wet or damp|Single carriageway|                      None|         30|10:14|              Urban|  Fine no high winds|2005|\n",
-                        "| 2005070501632|             A|             51|            NA|              0|           Slight|               None|2005-04-15|     Friday|                                          1|Data missing or o...|Not at junction o...|53.082643|            Daylight|        Crewe and Nantwich|            Cheshire East|               363140|                354080|-2.551753|                E01018444|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         60|16:23|              Rural|Raining no high w...|2005|\n",
-                        "| 2005070501664|             A|             51|  Unclassified|              0|           Slight|               None|2005-04-13|  Wednesday|                                          1|Data missing or o...|Not at junction o...| 53.12532|            Daylight|        Crewe and Nantwich|            Cheshire East|               365520|                358810|-2.516732|                E01018480|                   1|                 1|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         30|09:50|              Rural|  Fine no high winds|2005|\n",
-                        "| 2005070501686|             A|             51|            NA|              0|           Slight|               None|2005-04-21|   Thursday|                                          1|Data missing or o...|Not at junction o...|53.199793|            Daylight|                   Chester|     Cheshire West and...|               346550|                367270|-2.801612|                E01018324|                   2|                 4|                                0|                                      0|    Cheshire|                    Dry|Single carriageway|                      None|         60|17:43|              Rural|  Fine no high winds|2005|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Car_AS=Accident_Information20052019_df.filter(Accident_Information20052019_df['1st_Road_Class']==\"A\")\n",
-                "Car_AS=Car_AS.filter(Car_AS['1st_Road_Number']==\"51\")\n",
-                "\n",
-                "Car_AS.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 60,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "ok3=Car_AS.toPandas()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 61,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>191</th>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626525</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>192</th>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626435</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>193</th>\n",
-                            "      <td>-1.703753</td>\n",
-                            "      <td>52.627241</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>194</th>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>195</th>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1064</th>\n",
-                            "      <td>-1.70405</td>\n",
-                            "      <td>52.628537</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1065</th>\n",
-                            "      <td>-1.697571</td>\n",
-                            "      <td>52.628215</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1066</th>\n",
-                            "      <td>-1.698753</td>\n",
-                            "      <td>52.628236</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1067</th>\n",
-                            "      <td>-1.704084</td>\n",
-                            "      <td>52.628492</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1068</th>\n",
-                            "      <td>-1.697323</td>\n",
-                            "      <td>52.628303</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>137 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude\n",
-                            "191   -1.704792  52.626525\n",
-                            "192   -1.704792  52.626435\n",
-                            "193   -1.703753  52.627241\n",
-                            "194   -1.703902  52.626972\n",
-                            "195   -1.703902  52.626972\n",
-                            "...         ...        ...\n",
-                            "1064   -1.70405  52.628537\n",
-                            "1065  -1.697571  52.628215\n",
-                            "1066  -1.698753  52.628236\n",
-                            "1067  -1.704084  52.628492\n",
-                            "1068  -1.697323  52.628303\n",
-                            "\n",
-                            "[137 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 61,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok['Longitude'] = ok['Longitude'].astype(str)\n",
-                "ok['Latitude'] = ok['Latitude'].astype(str)\n",
-                "ok"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 174,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-1.913612</td>\n",
-                            "      <td>52.740852</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-1.91206</td>\n",
-                            "      <td>52.739557</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-1.913879</td>\n",
-                            "      <td>52.741123</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-1.912874</td>\n",
-                            "      <td>52.740255</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-1.912963</td>\n",
-                            "      <td>52.740372</td>\n",
-                            "      <td>70287</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2022</th>\n",
-                            "      <td>-1.93048</td>\n",
-                            "      <td>52.7521</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2023</th>\n",
-                            "      <td>-1.922639</td>\n",
-                            "      <td>52.745893</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2024</th>\n",
-                            "      <td>-1.920105</td>\n",
-                            "      <td>52.754072</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2025</th>\n",
-                            "      <td>-1.928408</td>\n",
-                            "      <td>52.750841</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2026</th>\n",
-                            "      <td>-1.920847</td>\n",
-                            "      <td>52.754509</td>\n",
-                            "      <td>46549</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2026 rows × 3 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude count_point_id\n",
-                            "0     -1.913612  52.740852          70287\n",
-                            "1      -1.91206  52.739557          70287\n",
-                            "2     -1.913879  52.741123          70287\n",
-                            "3     -1.912874  52.740255          70287\n",
-                            "4     -1.912963  52.740372          70287\n",
-                            "...         ...        ...            ...\n",
-                            "2022   -1.93048    52.7521          46549\n",
-                            "2023  -1.922639  52.745893          46549\n",
-                            "2024  -1.920105  52.754072          46549\n",
-                            "2025  -1.928408  52.750841          46549\n",
-                            "2026  -1.920847  52.754509          46549\n",
-                            "\n",
-                            "[2026 rows x 3 columns]"
-                        ]
-                    },
-                    "execution_count": 174,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "\n",
-                "okforcount['Longitude'] = okforcount['Longitude'].astype(str)\n",
-                "okforcount['Latitude'] = okforcount['Latitude'].astype(str)\n",
-                "okforcount"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 62,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "1978"
-                        ]
-                    },
-                    "execution_count": 62,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "len(ok3)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 63,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Index(['Longitude', 'Latitude'], dtype='object')"
-                        ]
-                    },
-                    "execution_count": 63,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok.columns"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 64,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Accident_Index</th>\n",
-                            "      <th>1st_Road_Class</th>\n",
-                            "      <th>1st_Road_Number</th>\n",
-                            "      <th>2nd_Road_Class</th>\n",
-                            "      <th>2nd_Road_Number</th>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Carriageway_Hazards</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Day_of_Week</th>\n",
-                            "      <th>Did_Police_Officer_Attend_Scene_of_Accident</th>\n",
-                            "      <th>...</th>\n",
-                            "      <th>Pedestrian_Crossing-Physical_Facilities</th>\n",
-                            "      <th>Police_Force</th>\n",
-                            "      <th>Road_Surface_Conditions</th>\n",
-                            "      <th>Road_Type</th>\n",
-                            "      <th>Special_Conditions_at_Site</th>\n",
-                            "      <th>Speed_limit</th>\n",
-                            "      <th>Time</th>\n",
-                            "      <th>Urban_or_Rural_Area</th>\n",
-                            "      <th>Weather_Conditions</th>\n",
-                            "      <th>Year</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>1857</th>\n",
-                            "      <td>2017230251905</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>NA</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-12-07</td>\n",
-                            "      <td>Thursday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Warwickshire</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>10:20</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Raining no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1856</th>\n",
-                            "      <td>2017230197164</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-06-05</td>\n",
-                            "      <td>Monday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Warwickshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>50</td>\n",
-                            "      <td>10:06</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1855</th>\n",
-                            "      <td>2017230169938</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-03-31</td>\n",
-                            "      <td>Friday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Warwickshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>08:35</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1854</th>\n",
-                            "      <td>2017230155076</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-01-20</td>\n",
-                            "      <td>Friday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Warwickshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>50</td>\n",
-                            "      <td>08:16</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1853</th>\n",
-                            "      <td>2017220216401</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>NA</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-09-02</td>\n",
-                            "      <td>Saturday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>West Mercia</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>11:30</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1950</th>\n",
-                            "      <td>2.01907E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>-1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>24/07/2019</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>16:13</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1951</th>\n",
-                            "      <td>2.01907E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>-1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>07/08/2019</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>16:00</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1952</th>\n",
-                            "      <td>2.01907E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>-1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>12/09/2019</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>16:37</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1953</th>\n",
-                            "      <td>2.01907E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>16/09/2019</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>50</td>\n",
-                            "      <td>7:35</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1937</th>\n",
-                            "      <td>2.01907E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>01/03/2019</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:25</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>1978 rows × 33 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Accident_Index 1st_Road_Class 1st_Road_Number 2nd_Road_Class  \\\n",
-                            "1857  2017230251905              A              51             NA   \n",
-                            "1856  2017230197164              A              51   Unclassified   \n",
-                            "1855  2017230169938              A              51   Unclassified   \n",
-                            "1854  2017230155076              A              51   Unclassified   \n",
-                            "1853  2017220216401              A              51             NA   \n",
-                            "...             ...            ...             ...            ...   \n",
-                            "1950    2.01907E+12              A              51             -1   \n",
-                            "1951    2.01907E+12              A              51             -1   \n",
-                            "1952    2.01907E+12              A              51             -1   \n",
-                            "1953    2.01907E+12              A              51              6   \n",
-                            "1937    2.01907E+12              A              51              6   \n",
-                            "\n",
-                            "     2nd_Road_Number Accident_Severity Carriageway_Hazards        Date  \\\n",
-                            "1857               0            Slight                None  2017-12-07   \n",
-                            "1856               0            Slight                None  2017-06-05   \n",
-                            "1855               0            Slight                None  2017-03-31   \n",
-                            "1854               0            Slight                None  2017-01-20   \n",
-                            "1853               0            Slight                None  2017-09-02   \n",
-                            "...              ...               ...                 ...         ...   \n",
-                            "1950               0                 2                   0  24/07/2019   \n",
-                            "1951               0                 3                   0  07/08/2019   \n",
-                            "1952               0                 3                   0  12/09/2019   \n",
-                            "1953               0                 2                   0  16/09/2019   \n",
-                            "1937               0                 3                   0  01/03/2019   \n",
-                            "\n",
-                            "     Day_of_Week Did_Police_Officer_Attend_Scene_of_Accident  ...  \\\n",
-                            "1857    Thursday                                           1  ...   \n",
-                            "1856      Monday                                           1  ...   \n",
-                            "1855      Friday                                           2  ...   \n",
-                            "1854      Friday                                           1  ...   \n",
-                            "1853    Saturday                                           2  ...   \n",
-                            "...          ...                                         ...  ...   \n",
-                            "1950           4                                           1  ...   \n",
-                            "1951           4                                           1  ...   \n",
-                            "1952           5                                           1  ...   \n",
-                            "1953           2                                           1  ...   \n",
-                            "1937           6                                           2  ...   \n",
-                            "\n",
-                            "     Pedestrian_Crossing-Physical_Facilities  Police_Force  \\\n",
-                            "1857                                       0  Warwickshire   \n",
-                            "1856                                       0  Warwickshire   \n",
-                            "1855                                       0  Warwickshire   \n",
-                            "1854                                       0  Warwickshire   \n",
-                            "1853                                       0   West Mercia   \n",
-                            "...                                      ...           ...   \n",
-                            "1950                                       0             7   \n",
-                            "1951                                       0             7   \n",
-                            "1952                                       0             7   \n",
-                            "1953                                       0             7   \n",
-                            "1937                                       0             7   \n",
-                            "\n",
-                            "     Road_Surface_Conditions           Road_Type Special_Conditions_at_Site  \\\n",
-                            "1857             Wet or damp  Single carriageway                       None   \n",
-                            "1856                     Dry  Single carriageway                       None   \n",
-                            "1855                     Dry  Single carriageway                       None   \n",
-                            "1854                     Dry  Single carriageway                       None   \n",
-                            "1853                     Dry  Single carriageway                       None   \n",
-                            "...                      ...                 ...                        ...   \n",
-                            "1950                       1                   6                          0   \n",
-                            "1951                       1                   6                          0   \n",
-                            "1952                       1                   6                          0   \n",
-                            "1953                       2                   6                          0   \n",
-                            "1937                       1                   3                          0   \n",
-                            "\n",
-                            "     Speed_limit   Time Urban_or_Rural_Area     Weather_Conditions  Year  \n",
-                            "1857          60  10:20               Rural  Raining no high winds  2017  \n",
-                            "1856          50  10:06               Rural     Fine no high winds  2017  \n",
-                            "1855          30  08:35               Rural     Fine no high winds  2017  \n",
-                            "1854          50  08:16               Rural     Fine no high winds  2017  \n",
-                            "1853          30  11:30               Rural     Fine no high winds  2017  \n",
-                            "...          ...    ...                 ...                    ...   ...  \n",
-                            "1950          60  16:13                   2                      1  2019  \n",
-                            "1951          60  16:00                   2                      1  2019  \n",
-                            "1952          60  16:37                   2                      1  2019  \n",
-                            "1953          50   7:35                   2                      1  2019  \n",
-                            "1937          30  14:25                   1                      1  2019  \n",
-                            "\n",
-                            "[1978 rows x 33 columns]"
-                        ]
-                    },
-                    "execution_count": 64,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok3.sort_values(by=['Accident_Index'], ascending=False)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 175,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Accident_Index</th>\n",
-                            "      <th>1st_Road_Class</th>\n",
-                            "      <th>1st_Road_Number</th>\n",
-                            "      <th>2nd_Road_Class</th>\n",
-                            "      <th>2nd_Road_Number</th>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Carriageway_Hazards</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Day_of_Week</th>\n",
-                            "      <th>Did_Police_Officer_Attend_Scene_of_Accident</th>\n",
-                            "      <th>...</th>\n",
-                            "      <th>Police_Force</th>\n",
-                            "      <th>Road_Surface_Conditions</th>\n",
-                            "      <th>Road_Type</th>\n",
-                            "      <th>Special_Conditions_at_Site</th>\n",
-                            "      <th>Speed_limit</th>\n",
-                            "      <th>Time</th>\n",
-                            "      <th>Urban_or_Rural_Area</th>\n",
-                            "      <th>Weather_Conditions</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>2005070500109</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>NA</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-07</td>\n",
-                            "      <td>Friday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>Cheshire</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>10:46</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Raining + high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>6530</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>2005070500166</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>NA</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-11</td>\n",
-                            "      <td>Tuesday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>Cheshire</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>16:34</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>81264</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>2005070500238</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>55</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-16</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>Cheshire</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Roundabout</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>12:28</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>8661</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>2005070500238</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>55</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-16</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>Cheshire</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Roundabout</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>12:28</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>8661</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>2005070500238</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>55</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-16</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>Cheshire</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Roundabout</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>12:28</td>\n",
-                            "      <td>Rural</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>8661</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2907</th>\n",
-                            "      <td>2.01921E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>08/08/2019</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>19:16</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>99805</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2908</th>\n",
-                            "      <td>2.01921E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>359</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>14/11/2019</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>16:45</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>6533</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2909</th>\n",
-                            "      <td>2.01921E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>-1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>02/11/2019</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>60</td>\n",
-                            "      <td>12:25</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>57157</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2910</th>\n",
-                            "      <td>2.01923E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>4097</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>06/02/2019</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>23</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>18:55</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>8522</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2911</th>\n",
-                            "      <td>2.01923E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>31/03/2019</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>23</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>50</td>\n",
-                            "      <td>12:47</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>36559</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2912 rows × 34 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Accident_Index 1st_Road_Class 1st_Road_Number 2nd_Road_Class  \\\n",
-                            "0     2005070500109              A              51             NA   \n",
-                            "1     2005070500166              A              51             NA   \n",
-                            "2     2005070500238              A              51              A   \n",
-                            "3     2005070500238              A              51              A   \n",
-                            "4     2005070500238              A              51              A   \n",
-                            "...             ...            ...             ...            ...   \n",
-                            "2907    2.01921E+12              A              51              6   \n",
-                            "2908    2.01921E+12              A              51              5   \n",
-                            "2909    2.01921E+12              A              51             -1   \n",
-                            "2910    2.01923E+12              A              51              3   \n",
-                            "2911    2.01923E+12              A              51              6   \n",
-                            "\n",
-                            "     2nd_Road_Number Accident_Severity Carriageway_Hazards        Date  \\\n",
-                            "0                  0            Slight                None  2005-01-07   \n",
-                            "1                  0            Slight                None  2005-01-11   \n",
-                            "2                 55            Slight                None  2005-01-16   \n",
-                            "3                 55            Slight                None  2005-01-16   \n",
-                            "4                 55            Slight                None  2005-01-16   \n",
-                            "...              ...               ...                 ...         ...   \n",
-                            "2907               0                 2                   0  08/08/2019   \n",
-                            "2908             359                 3                   0  14/11/2019   \n",
-                            "2909               0                 3                   0  02/11/2019   \n",
-                            "2910            4097                 3                   0  06/02/2019   \n",
-                            "2911               0                 2                   0  31/03/2019   \n",
-                            "\n",
-                            "     Day_of_Week Did_Police_Officer_Attend_Scene_of_Accident  ...  \\\n",
-                            "0         Friday                                           1  ...   \n",
-                            "1        Tuesday                                           1  ...   \n",
-                            "2         Sunday                                           1  ...   \n",
-                            "3         Sunday                                           1  ...   \n",
-                            "4         Sunday                                           1  ...   \n",
-                            "...          ...                                         ...  ...   \n",
-                            "2907           5                                           1  ...   \n",
-                            "2908           5                                           1  ...   \n",
-                            "2909           7                                           2  ...   \n",
-                            "2910           4                                           1  ...   \n",
-                            "2911           1                                           1  ...   \n",
-                            "\n",
-                            "     Police_Force Road_Surface_Conditions           Road_Type  \\\n",
-                            "0        Cheshire             Wet or damp  Single carriageway   \n",
-                            "1        Cheshire             Wet or damp  Single carriageway   \n",
-                            "2        Cheshire             Wet or damp          Roundabout   \n",
-                            "3        Cheshire             Wet or damp          Roundabout   \n",
-                            "4        Cheshire             Wet or damp          Roundabout   \n",
-                            "...           ...                     ...                 ...   \n",
-                            "2907           21                       1                   1   \n",
-                            "2908           21                       2                   6   \n",
-                            "2909           21                       2                   6   \n",
-                            "2910           23                       1                   6   \n",
-                            "2911           23                       1                   6   \n",
-                            "\n",
-                            "     Special_Conditions_at_Site Speed_limit   Time Urban_or_Rural_Area  \\\n",
-                            "0                          None          60  10:46               Rural   \n",
-                            "1                          None          60  16:34               Rural   \n",
-                            "2                          None          40  12:28               Rural   \n",
-                            "3                          None          40  12:28               Rural   \n",
-                            "4                          None          40  12:28               Rural   \n",
-                            "...                         ...         ...    ...                 ...   \n",
-                            "2907                          0          30  19:16                   2   \n",
-                            "2908                          0          40  16:45                   2   \n",
-                            "2909                          0          60  12:25                   2   \n",
-                            "2910                          0          30  18:55                   2   \n",
-                            "2911                          0          50  12:47                   2   \n",
-                            "\n",
-                            "        Weather_Conditions  Year count_point_id  \n",
-                            "0     Raining + high winds  2005           6530  \n",
-                            "1       Fine no high winds  2005          81264  \n",
-                            "2       Fine no high winds  2005           8661  \n",
-                            "3       Fine no high winds  2005           8661  \n",
-                            "4       Fine no high winds  2005           8661  \n",
-                            "...                    ...   ...            ...  \n",
-                            "2907                     1  2019          99805  \n",
-                            "2908                     2  2019           6533  \n",
-                            "2909                     2  2019          57157  \n",
-                            "2910                     1  2019           8522  \n",
-                            "2911                     1  2019          36559  \n",
-                            "\n",
-                            "[2912 rows x 34 columns]"
-                        ]
-                    },
-                    "execution_count": 175,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "resultwithcount=pd.merge(ok3,okforcount, on=['Longitude','Latitude'])\n",
-                "resultwithcount\n",
-                "\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 176,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+--------------+\n",
-                        "|Accident_Index|1st_Road_Class|1st_Road_Number|2nd_Road_Class|2nd_Road_Number|Accident_Severity|Carriageway_Hazards|      Date|Day_of_Week|Did_Police_Officer_Attend_Scene_of_Accident|    Junction_Control|     Junction_Detail| Latitude|    Light_Conditions|Local_Authority_(District)|Local_Authority_(Highway)|Location_Easting_OSGR|Location_Northing_OSGR|Longitude|LSOA_of_Accident_Location|Number_of_Casualties|Number_of_Vehicles|Pedestrian_Crossing-Human_Control|Pedestrian_Crossing-Physical_Facilities|Police_Force|Road_Surface_Conditions|         Road_Type|Special_Conditions_at_Site|Speed_limit| Time|Urban_or_Rural_Area|  Weather_Conditions|Year|count_point_id|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+--------------+\n",
-                        "| 2005070500109|             A|             51|            NA|              0|           Slight|               None|2005-01-07|     Friday|                                          1|Data missing or o...|Not at junction o...|53.168825|            Daylight|                   Chester|     Cheshire West and...|               352670|                363760|-2.709482|                E01018369|                   2|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         60|10:46|              Rural|Raining + high winds|2005|          6530|\n",
-                        "| 2005070500166|             A|             51|            NA|              0|           Slight|               None|2005-01-11|    Tuesday|                                          1|Data missing or o...|Not at junction o...|53.139771|Darkness - no lig...|                   Chester|     Cheshire West and...|               356640|                360490|-2.649655|                E01018372|                   2|                 2|                                0|                                      0|    Cheshire|            Wet or damp|Single carriageway|                      None|         60|16:34|              Rural|  Fine no high winds|2005|         81264|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2005070500238|             A|             51|             A|             55|           Slight|               None|2005-01-16|     Sunday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      8|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|12:28|              Rural|  Fine no high winds|2005|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2006070604094|             A|             51|      Motorway|             53|           Slight|               None|2006-10-11|  Wednesday|                                          1|Give way or uncon...|          Roundabout|53.195008|Darkness - lights...|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|            Wet or damp|        Roundabout|                      None|         40|07:15|              Rural|Raining no high w...|2006|          8661|\n",
-                        "| 2008070253439|             A|             51|             A|             55|          Serious|               None|2008-08-22|     Friday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|        Roundabout|                      None|         40|17:25|              Rural|  Fine no high winds|2008|          8661|\n",
-                        "| 2008070253439|             A|             51|             A|             55|          Serious|               None|2008-08-22|     Friday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|        Roundabout|                      None|         40|17:25|              Rural|  Fine no high winds|2008|          8661|\n",
-                        "| 2008070253439|             A|             51|             A|             55|          Serious|               None|2008-08-22|     Friday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|        Roundabout|                      None|         40|17:25|              Rural|  Fine no high winds|2008|          8661|\n",
-                        "| 2008070253439|             A|             51|             A|             55|          Serious|               None|2008-08-22|     Friday|                                          1|Give way or uncon...|          Roundabout|53.195008|            Daylight|                   Chester|     Cheshire West and...|               343740|                366770|-2.843584|                E01018323|                   1|                 2|                                0|                                      0|    Cheshire|                    Dry|        Roundabout|                      None|         40|17:25|              Rural|  Fine no high winds|2008|          8661|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+--------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "\n",
-                "resultwithcount_spark=spark.createDataFrame(resultwithcount)\n",
-                "resultwithcount_spark.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 178,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "resultwithcount_spark=resultwithcount_spark.withColumn(\n",
-                "    \"Accident_Severity\",\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 1,\n",
-                "        \"Fatal\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 2,\n",
-                "        \"Serious\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 3,\n",
-                "        \"Slight\"\n",
-                "    ).otherwise(col(\"Accident_Severity\")),\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 179,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------+---------------+\n",
-                        "|Accident_Severity|count_point_id|Total accidents|\n",
-                        "+-----------------+--------------+---------------+\n",
-                        "|           Slight|         48717|              9|\n",
-                        "|          Serious|         81239|              2|\n",
-                        "|          Serious|         57148|              7|\n",
-                        "|           Slight|          8661|             98|\n",
-                        "|          Serious|         36553|             11|\n",
-                        "|           Slight|         16512|             28|\n",
-                        "|          Serious|         81264|             24|\n",
-                        "|          Serious|         36552|             11|\n",
-                        "|           Slight|         16513|             37|\n",
-                        "|          Serious|         16511|              3|\n",
-                        "|            Fatal|         48717|              1|\n",
-                        "|          Serious|         80753|              2|\n",
-                        "|          Serious|         16513|              5|\n",
-                        "|           Slight|         46549|             10|\n",
-                        "|           Slight|         26540|             19|\n",
-                        "|           Slight|         77793|              2|\n",
-                        "|           Slight|         81265|             51|\n",
-                        "|            Fatal|         70286|              1|\n",
-                        "|            Fatal|         81265|              2|\n",
-                        "|            Fatal|         77505|              1|\n",
-                        "+-----------------+--------------+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Countpointsevrity = resultwithcount_spark.groupby('Accident_Severity','count_point_id').agg(F.count(resultwithcount_spark.Accident_Index).alias('Total accidents'))\n",
-                "Countpointsevrity.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 180,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>16510</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16511</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16512</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>28.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16513</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>37.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16514</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>43.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18420</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>49.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26540</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26541</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>23.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26543</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27905</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>190.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36552</th>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36553</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36555</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>42.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36556</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>41.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36558</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36559</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38742</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46547</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>59.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46548</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46549</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46550</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>48717</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56509</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56542</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>33.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57148</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57157</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>50.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>60010</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6530</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>22.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6532</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>56.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6533</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>61.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70286</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70287</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7259</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>84.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>73256</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>30.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75175</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77377</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>18.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77453</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77454</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>31.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77505</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>48.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77793</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80750</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>73.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80753</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80754</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80755</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81239</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81264</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>24.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81265</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8522</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8653</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8661</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99700</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>148.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99805</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>16.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Total accidents               \n",
-                            "Accident_Severity           Fatal Serious Slight\n",
-                            "count_point_id                                  \n",
-                            "16510                         3.0    23.0   95.0\n",
-                            "16511                         NaN     3.0    5.0\n",
-                            "16512                         NaN     2.0   28.0\n",
-                            "16513                         NaN     5.0   37.0\n",
-                            "16514                         1.0     5.0   43.0\n",
-                            "18420                         NaN     5.0   49.0\n",
-                            "26540                         NaN     2.0   19.0\n",
-                            "26541                         2.0     NaN   23.0\n",
-                            "26543                         NaN     1.0   20.0\n",
-                            "27905                         2.0     2.0  190.0\n",
-                            "36552                         4.0    11.0   52.0\n",
-                            "36553                         2.0    11.0   40.0\n",
-                            "36555                         2.0     1.0   42.0\n",
-                            "36556                         3.0     8.0   41.0\n",
-                            "36558                         1.0     NaN   32.0\n",
-                            "36559                         2.0    11.0   79.0\n",
-                            "38742                         1.0     1.0    7.0\n",
-                            "46547                         NaN     3.0   59.0\n",
-                            "46548                         NaN     1.0    4.0\n",
-                            "46549                         NaN     NaN   10.0\n",
-                            "46550                         NaN     1.0   10.0\n",
-                            "48717                         1.0     2.0    9.0\n",
-                            "56509                         1.0    20.0  119.0\n",
-                            "56542                         2.0     3.0   33.0\n",
-                            "57148                         NaN     7.0  100.0\n",
-                            "57157                         NaN     2.0   50.0\n",
-                            "60010                         NaN     3.0   17.0\n",
-                            "6530                          3.0    22.0   53.0\n",
-                            "6532                          NaN     9.0   56.0\n",
-                            "6533                          NaN     5.0   61.0\n",
-                            "70286                         1.0     8.0   32.0\n",
-                            "70287                         NaN     2.0   13.0\n",
-                            "7259                          NaN    11.0   84.0\n",
-                            "73256                         NaN     2.0   30.0\n",
-                            "75175                         NaN     NaN    2.0\n",
-                            "77377                         1.0     NaN   18.0\n",
-                            "77453                         NaN     1.0   15.0\n",
-                            "77454                         1.0     1.0   31.0\n",
-                            "77505                         1.0     3.0   48.0\n",
-                            "77793                         NaN     2.0    2.0\n",
-                            "80750                         2.0     9.0   73.0\n",
-                            "80753                         NaN     2.0   15.0\n",
-                            "80754                         1.0     4.0   21.0\n",
-                            "80755                         NaN     NaN    3.0\n",
-                            "81239                         NaN     2.0   13.0\n",
-                            "81264                         3.0    24.0   54.0\n",
-                            "81265                         2.0    21.0   51.0\n",
-                            "8522                          1.0     9.0   32.0\n",
-                            "8653                          NaN     NaN   11.0\n",
-                            "8661                          NaN    17.0   98.0\n",
-                            "99700                         1.0    11.0  148.0\n",
-                            "99805                         3.0    16.0  374.0"
-                        ]
-                    },
-                    "execution_count": 180,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Countpointsevrity=Countpointsevrity.toPandas()\n",
-                "Countpointsevrity=Countpointsevrity.pivot(index ='count_point_id', columns ='Accident_Severity')\n",
-                "Countpointsevrity"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 182,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "      <th>KSI</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>16510</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "      <td>26.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16511</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16512</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>28.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16513</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>37.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16514</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>43.0</td>\n",
-                            "      <td>6.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18420</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>49.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26540</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26541</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26543</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27905</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>190.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36552</th>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36553</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36555</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>42.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36556</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>41.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36558</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36559</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38742</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46547</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>59.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46548</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46549</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46550</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>48717</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56509</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56542</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>33.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57148</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57157</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>50.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>60010</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6530</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>22.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "      <td>25.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6532</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>56.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6533</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>61.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70286</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70287</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7259</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>84.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>73256</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>30.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75175</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77377</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>18.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77453</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77454</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>31.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77505</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>48.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77793</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80750</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>73.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80753</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80754</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80755</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81239</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81264</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>24.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "      <td>27.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81265</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8522</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8653</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8661</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99700</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>148.0</td>\n",
-                            "      <td>12.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99805</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>16.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Total accidents                  KSI\n",
-                            "Accident_Severity           Fatal Serious Slight      \n",
-                            "count_point_id                                        \n",
-                            "16510                         3.0    23.0   95.0  26.0\n",
-                            "16511                         NaN     3.0    5.0   3.0\n",
-                            "16512                         NaN     2.0   28.0   2.0\n",
-                            "16513                         NaN     5.0   37.0   5.0\n",
-                            "16514                         1.0     5.0   43.0   6.0\n",
-                            "18420                         NaN     5.0   49.0   5.0\n",
-                            "26540                         NaN     2.0   19.0   2.0\n",
-                            "26541                         2.0     NaN   23.0   2.0\n",
-                            "26543                         NaN     1.0   20.0   1.0\n",
-                            "27905                         2.0     2.0  190.0   4.0\n",
-                            "36552                         4.0    11.0   52.0  15.0\n",
-                            "36553                         2.0    11.0   40.0  13.0\n",
-                            "36555                         2.0     1.0   42.0   3.0\n",
-                            "36556                         3.0     8.0   41.0  11.0\n",
-                            "36558                         1.0     NaN   32.0   1.0\n",
-                            "36559                         2.0    11.0   79.0  13.0\n",
-                            "38742                         1.0     1.0    7.0   2.0\n",
-                            "46547                         NaN     3.0   59.0   3.0\n",
-                            "46548                         NaN     1.0    4.0   1.0\n",
-                            "46549                         NaN     NaN   10.0   0.0\n",
-                            "46550                         NaN     1.0   10.0   1.0\n",
-                            "48717                         1.0     2.0    9.0   3.0\n",
-                            "56509                         1.0    20.0  119.0  21.0\n",
-                            "56542                         2.0     3.0   33.0   5.0\n",
-                            "57148                         NaN     7.0  100.0   7.0\n",
-                            "57157                         NaN     2.0   50.0   2.0\n",
-                            "60010                         NaN     3.0   17.0   3.0\n",
-                            "6530                          3.0    22.0   53.0  25.0\n",
-                            "6532                          NaN     9.0   56.0   9.0\n",
-                            "6533                          NaN     5.0   61.0   5.0\n",
-                            "70286                         1.0     8.0   32.0   9.0\n",
-                            "70287                         NaN     2.0   13.0   2.0\n",
-                            "7259                          NaN    11.0   84.0  11.0\n",
-                            "73256                         NaN     2.0   30.0   2.0\n",
-                            "75175                         NaN     NaN    2.0   0.0\n",
-                            "77377                         1.0     NaN   18.0   1.0\n",
-                            "77453                         NaN     1.0   15.0   1.0\n",
-                            "77454                         1.0     1.0   31.0   2.0\n",
-                            "77505                         1.0     3.0   48.0   4.0\n",
-                            "77793                         NaN     2.0    2.0   2.0\n",
-                            "80750                         2.0     9.0   73.0  11.0\n",
-                            "80753                         NaN     2.0   15.0   2.0\n",
-                            "80754                         1.0     4.0   21.0   5.0\n",
-                            "80755                         NaN     NaN    3.0   0.0\n",
-                            "81239                         NaN     2.0   13.0   2.0\n",
-                            "81264                         3.0    24.0   54.0  27.0\n",
-                            "81265                         2.0    21.0   51.0  23.0\n",
-                            "8522                          1.0     9.0   32.0  10.0\n",
-                            "8653                          NaN     NaN   11.0   0.0\n",
-                            "8661                          NaN    17.0   98.0  17.0\n",
-                            "99700                         1.0    11.0  148.0  12.0\n",
-                            "99805                         3.0    16.0  374.0  19.0"
-                        ]
-                    },
-                    "execution_count": 182,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Countpointsevrity['KSI']= Countpointsevrity.iloc[:, -3:-1].sum(axis=1)\n",
-                "\n",
-                "Countpointsevrity"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 200,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "      <th>KSI</th>\n",
-                            "      <th>SLIGHT</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>16510</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "      <td>26.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16511</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16512</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>28.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>28.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16513</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>37.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>37.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16514</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>43.0</td>\n",
-                            "      <td>6.0</td>\n",
-                            "      <td>43.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18420</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>49.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>49.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26540</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26541</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26543</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27905</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>190.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>190.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36552</th>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36553</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36555</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>42.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>42.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36556</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>41.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>41.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36558</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36559</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38742</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46547</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>59.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>59.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46548</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46549</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46550</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>48717</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56509</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56542</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>33.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>33.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57148</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57157</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>50.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>50.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>60010</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6530</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>22.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "      <td>25.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6532</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>56.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>56.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6533</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>61.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>61.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70286</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70287</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7259</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>84.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>84.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>73256</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>30.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>30.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75175</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77377</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>18.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>18.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77453</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77454</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>31.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>31.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77505</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>48.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>48.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77793</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80750</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>73.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>73.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80753</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80754</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80755</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81239</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81264</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>24.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "      <td>27.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81265</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8522</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8653</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8661</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99700</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>148.0</td>\n",
-                            "      <td>12.0</td>\n",
-                            "      <td>148.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99805</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>16.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Total accidents                  KSI SLIGHT\n",
-                            "Accident_Severity           Fatal Serious Slight             \n",
-                            "count_point_id                                               \n",
-                            "16510                         3.0    23.0   95.0  26.0   95.0\n",
-                            "16511                         NaN     3.0    5.0   3.0    5.0\n",
-                            "16512                         NaN     2.0   28.0   2.0   28.0\n",
-                            "16513                         NaN     5.0   37.0   5.0   37.0\n",
-                            "16514                         1.0     5.0   43.0   6.0   43.0\n",
-                            "18420                         NaN     5.0   49.0   5.0   49.0\n",
-                            "26540                         NaN     2.0   19.0   2.0   19.0\n",
-                            "26541                         2.0     NaN   23.0   2.0   23.0\n",
-                            "26543                         NaN     1.0   20.0   1.0   20.0\n",
-                            "27905                         2.0     2.0  190.0   4.0  190.0\n",
-                            "36552                         4.0    11.0   52.0  15.0   52.0\n",
-                            "36553                         2.0    11.0   40.0  13.0   40.0\n",
-                            "36555                         2.0     1.0   42.0   3.0   42.0\n",
-                            "36556                         3.0     8.0   41.0  11.0   41.0\n",
-                            "36558                         1.0     NaN   32.0   1.0   32.0\n",
-                            "36559                         2.0    11.0   79.0  13.0   79.0\n",
-                            "38742                         1.0     1.0    7.0   2.0    7.0\n",
-                            "46547                         NaN     3.0   59.0   3.0   59.0\n",
-                            "46548                         NaN     1.0    4.0   1.0    4.0\n",
-                            "46549                         NaN     NaN   10.0   0.0   10.0\n",
-                            "46550                         NaN     1.0   10.0   1.0   10.0\n",
-                            "48717                         1.0     2.0    9.0   3.0    9.0\n",
-                            "56509                         1.0    20.0  119.0  21.0  119.0\n",
-                            "56542                         2.0     3.0   33.0   5.0   33.0\n",
-                            "57148                         NaN     7.0  100.0   7.0  100.0\n",
-                            "57157                         NaN     2.0   50.0   2.0   50.0\n",
-                            "60010                         NaN     3.0   17.0   3.0   17.0\n",
-                            "6530                          3.0    22.0   53.0  25.0   53.0\n",
-                            "6532                          NaN     9.0   56.0   9.0   56.0\n",
-                            "6533                          NaN     5.0   61.0   5.0   61.0\n",
-                            "70286                         1.0     8.0   32.0   9.0   32.0\n",
-                            "70287                         NaN     2.0   13.0   2.0   13.0\n",
-                            "7259                          NaN    11.0   84.0  11.0   84.0\n",
-                            "73256                         NaN     2.0   30.0   2.0   30.0\n",
-                            "75175                         NaN     NaN    2.0   0.0    2.0\n",
-                            "77377                         1.0     NaN   18.0   1.0   18.0\n",
-                            "77453                         NaN     1.0   15.0   1.0   15.0\n",
-                            "77454                         1.0     1.0   31.0   2.0   31.0\n",
-                            "77505                         1.0     3.0   48.0   4.0   48.0\n",
-                            "77793                         NaN     2.0    2.0   2.0    2.0\n",
-                            "80750                         2.0     9.0   73.0  11.0   73.0\n",
-                            "80753                         NaN     2.0   15.0   2.0   15.0\n",
-                            "80754                         1.0     4.0   21.0   5.0   21.0\n",
-                            "80755                         NaN     NaN    3.0   0.0    3.0\n",
-                            "81239                         NaN     2.0   13.0   2.0   13.0\n",
-                            "81264                         3.0    24.0   54.0  27.0   54.0\n",
-                            "81265                         2.0    21.0   51.0  23.0   51.0\n",
-                            "8522                          1.0     9.0   32.0  10.0   32.0\n",
-                            "8653                          NaN     NaN   11.0   0.0   11.0\n",
-                            "8661                          NaN    17.0   98.0  17.0   98.0\n",
-                            "99700                         1.0    11.0  148.0  12.0  148.0\n",
-                            "99805                         3.0    16.0  374.0  19.0  374.0"
-                        ]
-                    },
-                    "execution_count": 200,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Countpointsevrity['SLIGHT']= Countpointsevrity.iloc[:, -2]\n",
-                "Countpointsevrity"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 201,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "      <th>KSI</th>\n",
-                            "      <th>SLIGHT</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>81264</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>24.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "      <td>27.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16510</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "      <td>26.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6530</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>22.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "      <td>25.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81265</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56509</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99805</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>16.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8661</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36552</th>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36553</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36559</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99700</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>148.0</td>\n",
-                            "      <td>12.0</td>\n",
-                            "      <td>148.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36556</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>41.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>41.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80750</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>73.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>73.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7259</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>84.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>84.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8522</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6532</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>56.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>56.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70286</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57148</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16514</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>43.0</td>\n",
-                            "      <td>6.0</td>\n",
-                            "      <td>43.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56542</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>33.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>33.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18420</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>49.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>49.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6533</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>61.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>61.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80754</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16513</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>37.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>37.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77505</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>48.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>48.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27905</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>190.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>190.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>60010</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16511</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36555</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>42.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>42.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>48717</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>9.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46547</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>59.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>59.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77454</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>31.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>31.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16512</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>28.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>28.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38742</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81239</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80753</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>57157</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>50.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>50.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77793</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>73256</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>30.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>30.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>70287</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26541</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26540</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77453</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46548</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>77377</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>18.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>18.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46550</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36558</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>32.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>32.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26543</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>46549</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>10.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>10.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75175</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>80755</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8653</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Total accidents                  KSI SLIGHT\n",
-                            "Accident_Severity           Fatal Serious Slight             \n",
-                            "count_point_id                                               \n",
-                            "81264                         3.0    24.0   54.0  27.0   54.0\n",
-                            "16510                         3.0    23.0   95.0  26.0   95.0\n",
-                            "6530                          3.0    22.0   53.0  25.0   53.0\n",
-                            "81265                         2.0    21.0   51.0  23.0   51.0\n",
-                            "56509                         1.0    20.0  119.0  21.0  119.0\n",
-                            "99805                         3.0    16.0  374.0  19.0  374.0\n",
-                            "8661                          NaN    17.0   98.0  17.0   98.0\n",
-                            "36552                         4.0    11.0   52.0  15.0   52.0\n",
-                            "36553                         2.0    11.0   40.0  13.0   40.0\n",
-                            "36559                         2.0    11.0   79.0  13.0   79.0\n",
-                            "99700                         1.0    11.0  148.0  12.0  148.0\n",
-                            "36556                         3.0     8.0   41.0  11.0   41.0\n",
-                            "80750                         2.0     9.0   73.0  11.0   73.0\n",
-                            "7259                          NaN    11.0   84.0  11.0   84.0\n",
-                            "8522                          1.0     9.0   32.0  10.0   32.0\n",
-                            "6532                          NaN     9.0   56.0   9.0   56.0\n",
-                            "70286                         1.0     8.0   32.0   9.0   32.0\n",
-                            "57148                         NaN     7.0  100.0   7.0  100.0\n",
-                            "16514                         1.0     5.0   43.0   6.0   43.0\n",
-                            "56542                         2.0     3.0   33.0   5.0   33.0\n",
-                            "18420                         NaN     5.0   49.0   5.0   49.0\n",
-                            "6533                          NaN     5.0   61.0   5.0   61.0\n",
-                            "80754                         1.0     4.0   21.0   5.0   21.0\n",
-                            "16513                         NaN     5.0   37.0   5.0   37.0\n",
-                            "77505                         1.0     3.0   48.0   4.0   48.0\n",
-                            "27905                         2.0     2.0  190.0   4.0  190.0\n",
-                            "60010                         NaN     3.0   17.0   3.0   17.0\n",
-                            "16511                         NaN     3.0    5.0   3.0    5.0\n",
-                            "36555                         2.0     1.0   42.0   3.0   42.0\n",
-                            "48717                         1.0     2.0    9.0   3.0    9.0\n",
-                            "46547                         NaN     3.0   59.0   3.0   59.0\n",
-                            "77454                         1.0     1.0   31.0   2.0   31.0\n",
-                            "16512                         NaN     2.0   28.0   2.0   28.0\n",
-                            "38742                         1.0     1.0    7.0   2.0    7.0\n",
-                            "81239                         NaN     2.0   13.0   2.0   13.0\n",
-                            "80753                         NaN     2.0   15.0   2.0   15.0\n",
-                            "57157                         NaN     2.0   50.0   2.0   50.0\n",
-                            "77793                         NaN     2.0    2.0   2.0    2.0\n",
-                            "73256                         NaN     2.0   30.0   2.0   30.0\n",
-                            "70287                         NaN     2.0   13.0   2.0   13.0\n",
-                            "26541                         2.0     NaN   23.0   2.0   23.0\n",
-                            "26540                         NaN     2.0   19.0   2.0   19.0\n",
-                            "77453                         NaN     1.0   15.0   1.0   15.0\n",
-                            "46548                         NaN     1.0    4.0   1.0    4.0\n",
-                            "77377                         1.0     NaN   18.0   1.0   18.0\n",
-                            "46550                         NaN     1.0   10.0   1.0   10.0\n",
-                            "36558                         1.0     NaN   32.0   1.0   32.0\n",
-                            "26543                         NaN     1.0   20.0   1.0   20.0\n",
-                            "46549                         NaN     NaN   10.0   0.0   10.0\n",
-                            "75175                         NaN     NaN    2.0   0.0    2.0\n",
-                            "80755                         NaN     NaN    3.0   0.0    3.0\n",
-                            "8653                          NaN     NaN   11.0   0.0   11.0"
-                        ]
-                    },
-                    "execution_count": 201,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Countpointsevritysort=Countpointsevrity.sort_values(\"KSI\",ascending=False)\n",
-                "Countpointsevritysort"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 202,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "      <th>KSI</th>\n",
-                            "      <th>SLIGHT</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>81264</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>24.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "      <td>27.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16510</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "      <td>26.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6530</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>22.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "      <td>25.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81265</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56509</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>20.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99805</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>16.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8661</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36552</th>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36553</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36559</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>11.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Total accidents                  KSI SLIGHT\n",
-                            "Accident_Severity           Fatal Serious Slight             \n",
-                            "count_point_id                                               \n",
-                            "81264                         3.0    24.0   54.0  27.0   54.0\n",
-                            "16510                         3.0    23.0   95.0  26.0   95.0\n",
-                            "6530                          3.0    22.0   53.0  25.0   53.0\n",
-                            "81265                         2.0    21.0   51.0  23.0   51.0\n",
-                            "56509                         1.0    20.0  119.0  21.0  119.0\n",
-                            "99805                         3.0    16.0  374.0  19.0  374.0\n",
-                            "8661                          NaN    17.0   98.0  17.0   98.0\n",
-                            "36552                         4.0    11.0   52.0  15.0   52.0\n",
-                            "36553                         2.0    11.0   40.0  13.0   40.0\n",
-                            "36559                         2.0    11.0   79.0  13.0   79.0"
-                        ]
-                    },
-                    "execution_count": 202,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Countpointsevritysort10=Countpointsevritysort[:10]\n",
-                "Countpointsevritysort10"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 203,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "/var/folders/v0/jqv1xcw13pn37fh0ppsl8b_w0000gp/T/ipykernel_52862/2563772234.py:2: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only\n",
-                        "  Countpointsevritysort10 = Countpointsevritysort10.drop('Total accidents', 1)\n"
-                    ]
-                }
-            ],
-            "source": [
-                "#Countpointsevritysort10 = Countpointsevritysort10.drop(labels=['Fatal'], axis=1)\n",
-                "Countpointsevritysort10 = Countpointsevritysort10.drop('Total accidents', 1)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 204,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th>KSI</th>\n",
-                            "      <th>SLIGHT</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>81264</th>\n",
-                            "      <td>27.0</td>\n",
-                            "      <td>54.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16510</th>\n",
-                            "      <td>26.0</td>\n",
-                            "      <td>95.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6530</th>\n",
-                            "      <td>25.0</td>\n",
-                            "      <td>53.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>81265</th>\n",
-                            "      <td>23.0</td>\n",
-                            "      <td>51.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>56509</th>\n",
-                            "      <td>21.0</td>\n",
-                            "      <td>119.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>99805</th>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>374.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8661</th>\n",
-                            "      <td>17.0</td>\n",
-                            "      <td>98.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36552</th>\n",
-                            "      <td>15.0</td>\n",
-                            "      <td>52.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36553</th>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>40.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36559</th>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>79.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                    KSI SLIGHT\n",
-                            "Accident_Severity             \n",
-                            "count_point_id                \n",
-                            "81264              27.0   54.0\n",
-                            "16510              26.0   95.0\n",
-                            "6530               25.0   53.0\n",
-                            "81265              23.0   51.0\n",
-                            "56509              21.0  119.0\n",
-                            "99805              19.0  374.0\n",
-                            "8661               17.0   98.0\n",
-                            "36552              15.0   52.0\n",
-                            "36553              13.0   40.0\n",
-                            "36559              13.0   79.0"
-                        ]
-                    },
-                    "execution_count": 204,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Countpointsevritysort10"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 205,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\n",
-                            " [Text(0, 0, '81264'),\n",
-                            "  Text(1, 0, '16510'),\n",
-                            "  Text(2, 0, '6530'),\n",
-                            "  Text(3, 0, '81265'),\n",
-                            "  Text(4, 0, '56509'),\n",
-                            "  Text(5, 0, '99805'),\n",
-                            "  Text(6, 0, '8661'),\n",
-                            "  Text(7, 0, '36552'),\n",
-                            "  Text(8, 0, '36553'),\n",
-                            "  Text(9, 0, '36559')])"
-                        ]
-                    },
-                    "execution_count": 205,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAJ2CAYAAAAuWFkeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABfHElEQVR4nO3deZglVWE34N9hhlVZZZTdQTQGZBlxxB0REESjIG4oCi6IGpdoNC7Jl4j55JOokahJ3CKLiCiuGBdEEVTiOuCIIC6Io4Aoi0JAWWfO98epO3On6ZnpWXpu99T7Pk893V237r2n69yqW/Wrc06VWmsAAAAA6I/1Rl0AAAAAANYugRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAFhnlFIuLaXst4zH9iulXLV2S7Rylld+AIA1aeaoCwAA9Fsp5fwkeyXZptZ6++q8Vq31QWukUCtQSlmQ5Jha69dW8nm3DP25SZLbkyzs/n7J2io/AIAWQgDAyJRSZid5TJKa5CmjLc3kq7XeczAl+U2SJw/NO33U5QMA+kMgBACM0lFJvpvklCRHDz9QStmxlPKZUsp1pZQbSin/PvTYi0spl5VSbi6l/KSUsnc3f0Ep5cDu941LKaeUUv5YSvlJkoeOef3tSimf7l7/V6WUVw09dlwp5cxSyke697i0lDK3e+y0JDsl+e9Syi2llNeXUjYqpXy0K+eNpZQflFLus7IrY0z5jyulfLJ73ZtLKT8upfxFKeVNpZRrSylXllIOGnru5qWUD5dSrimlXF1KeWspZcbKlgEA6AeBEAAwSkclOb2bDh6EKF2Q8YUkv04yO8n2ST7ePfaMJMd1z90srWXRDeO89puT7NJNB2cocCqlrJfkv5P8qHvtA5K8upRy8NDzn9K95xZJPp/k35Ok1vq8LN265+3da2+eZMck90ry0iS3ruI6GfbkJKcl2TLJD5N8Je34bfsk/5zkA0PLnpLkriT3T/LgJAclOWYNlAEAWAcJhACAkSilPDrJfZOcWWu9MMkvkzyne3ifJNsl+bta659qrbfVWi/oHjsmydtrrT+ozeW11l+P8xbPTHJ8rfUPtdYrk7xn6LGHJplVa/3nWusdtdYrknwoyRFDy1xQa/1SrXVhWiiz13L+nTvTgqD711oX1lovrLX+78qsj2X4Vq31K7XWu5J8MsmsJCfUWu9MC6tml1K26IK0JyZ5dbe+rk1y4pj/BwBgMYNKAwCjcnSSc2qt13d/f6ybd2JaS5tfd0HIWDumhUcrsl2SK4f+Hg6N7ptku1LKjUPzZiT51tDfvxv6/c9JNiqlzFxGmU7ryvXxUsoWST6a5B+64GZ1/H7o91uTXN8FVIO/k+Seaf/r+kmuKaUMll8vS///AACLCYQAgLWulLJxWgueGaWUQfCyYZItSil7pQUZOy0jgLkyrRvYilyTFtJc2v2905jX+FWt9QGr+C/Upf5owc9bkrylGyj7S0l+luTDq/j6K+vKtDuWbb2MwAoAYCm6jAEAo3BY2u3Wd0syp5t2TWuhc1SS76cFOieUUu7RDdr8qO65/5XkdaWUh5Tm/qWU+47zHmcmeVMpZctSyg5JXjn02PeT3FxKeUM3+PSMUsrupZSHjvM64/l9kvsN/iilPK6Uskc39tH/pnUhWzTB11pttdZrkpyT5F9LKZuVUtYrpexSSnns2ioDADC9CIQAgFE4OsnJtdbf1Fp/N5jSBm4+MklJG1D5/mkDOF+V5FlJUmv9ZJLj07qY3Zzkc0m2Guc93pLWTexXaWHJaYMHum5Xf5UWRP0qyfVpQdPmEyz/25L8n+6OYq9Lsk2ST6WFQZcl+cbw+60lRyXZIMlPkvyxK8+2a7kMAMA0UWqtK14KAAAAgHWGFkIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpm5qgLkCRbb711nT179qiLAQAAALDOuPDCC6+vtc4a77EpEQjNnj078+bNG3UxAAAAANYZpZRfL+sxXcYAAAAAekYgBAAAANAzAiEAAACAnpkSYwgBAAAAa8add96Zq666Krfddtuoi8JastFGG2WHHXbI+uuvP+HnCIQAAABgHXLVVVdl0003zezZs1NKGXVxmGS11txwww256qqrsvPOO0/4ebqMAQAAwDrktttuy73udS9hUE+UUnKve91rpVuECYQAAABgHSMM6pdVqW+BEAAAAEDPCIQAAAAAekYgBAAAAOu4Ukpe+9rXLv77ne98Z4477rhJf9/58+enlJKzzz57lZ7/29/+Nk9/+tPHfWy//fbLvHnzVul1zz///Hz7299e7jI/+9nPst9++2XOnDnZddddc+yxx67Se62MRz7ykUmSBQsW5GMf+9ikvpdACAAAANZxG264YT7zmc/k+uuvX6vve8YZZ+TRj350zjjjjFV6/nbbbZdPfepTa7hUEwuEXvWqV+U1r3lN5s+fn8suuyyvfOUr13g5Bu66664kWVwmgRAAAACw2mbOnJljjz02J5544t0eW7BgQfbff//sueeeOeCAA/Kb3/wmSfL85z8/r3rVq/LIRz4y97vf/ZYKZt7xjnfkoQ99aPbcc8+8+c1vHvc9a6355Cc/mVNOOSVf/epXl7oL1r/8y79kjz32yF577ZU3vvGNSZLLL788Bx54YPbaa6/svffe+eUvf5kFCxZk9913T5LceuutOeKII7LrrrvmqU99am699dbFr3fOOefkEY94RPbee+884xnPyC233JIkmT17dt785jdn7733zh577JGf/vSnWbBgQd7//vfnxBNPzJw5c/Ktb31r3PJfc8012WGHHRb/vcceeyRJFi5cmL/7u79b/P9/4AMfSJIcccQR+eIXv7h4+ec///n51Kc+tczlzz///DzmMY/JU57ylOy2225Jknve855Jkje+8Y351re+lTlz5uTEE0/Mvvvum/nz5y9+7Uc/+tH50Y9+NG65J2rCgVApZUYp5YellC90f+9cSvleKeXyUsonSikbdPM37P6+vHt89mqVEAAAAFhtL3/5y3P66afnpptuWmr+K1/5yhx99NG5+OKLc+SRR+ZVr3rV4seuueaaXHDBBfnCF76wOLg555xz8otf/CLf//73M3/+/Fx44YX55je/ebf3+/a3v52dd945u+yyS/bbb7/FYcmXv/zlnHXWWfne976XH/3oR3n961+fJDnyyCPz8pe/PD/60Y/y7W9/O9tuu+1Sr/e+970vm2yySS677LK85S1vyYUXXpgkuf766/PWt741X/va13LRRRdl7ty5ede73rX4eVtvvXUuuuiivOxlL8s73/nOzJ49Oy996UsXt/55zGMeM+76es1rXpP9998/hxxySE488cTceOONSZIPf/jD2XzzzfODH/wgP/jBD/KhD30ov/rVr/KsZz0rZ555ZpLkjjvuyLnnnpsnPelJy1w+SS666KK8+93vzs9//vOl3vuEE07IYx7zmMyfPz+vec1r8qIXvSinnHJKkuTnP/95brvttuy1117LqOmJWZkWQn+T5LKhv/8lyYm11vsn+WOSF3XzX5Tkj938E7vlAAAAgBHabLPNctRRR+U973nPUvO/853v5DnPeU6S5HnPe14uuOCCxY8ddthhWW+99bLbbrvl97//fZIWCJ1zzjl58IMfnL333js//elP84tf/OJu73fGGWfkiCOOSNJazwy6jX3ta1/LC17wgmyyySZJkq222io333xzrr766jz1qU9Nkmy00UaLHx/45je/mec+97lJkj333DN77rlnkuS73/1ufvKTn+RRj3pU5syZk1NPPTW//vWvFz/v8MMPT5I85CEPyYIFCya8vl7wghfksssuyzOe8Yycf/75efjDH57bb78955xzTj7ykY9kzpw5edjDHpYbbrghv/jFL3LIIYfkvPPOy+23354vf/nL2XfffbPxxhsvc/kk2WeffbLzzjuvsCzPeMYz8oUvfCF33nlnTjrppDz/+c+f8P+xLDMnslApZYckT0pyfJK/Le0G9/sneU63yKlJjkvyviSHdr8nyaeS/HsppdRa62qXFgAAAFhlr371q7P33nvnBS94wYSW33DDDRf/Pjitr7XmTW96U17ykpcs83kLFy7Mpz/96Zx11lk5/vjjU2vNDTfckJtvvnn1/oFx1Frz+Mc/fpnjFA3+hxkzZiweq2eitttuu7zwhS/MC1/4wuy+++655JJLUmvNe9/73hx88MF3W36//fbLV77ylXziE59YHIYta/nzzz8/97jHPSZUjk022SSPf/zjc9ZZZ+XMM89c3DpqdUy0hdC/JXl9kkXd3/dKcmOtdbAmr0qyfff79kmuTJLu8Zu65ZdSSjm2lDKvlDLvuuuuW7XSAwAAABO21VZb5ZnPfGY+/OEPL573yEc+Mh//+MeTJKeffvoyu1ANHHzwwTnppJMWj9Nz9dVX59prr02SHHDAAbn66qtz7rnnZs8998yVV16ZBQsW5Ne//nWe9rSn5bOf/Wwe//jH5+STT86f//znJMkf/vCHbLrpptlhhx3yuc99Lkly++23L358YN9991080PIll1ySiy++OEny8Ic/PP/zP/+Tyy+/PEnypz/96W5dsMbadNNNVxhOnX322bnzzjuTJL/73e9yww03ZPvtt8/BBx+c973vfYsf+/nPf54//elPSZJnPetZOfnkk/Otb30rT3jCExavr2UtvzLlO+aYY/KqV70qD33oQ7Plllsu9/kTscJAqJTyV0murbWufvw0pNb6wVrr3Frr3FmzZq3JlwYAAACW4bWvfe1Sdxt773vfm5NPPjl77rlnTjvttLz73e9e7vMPOuigPOc5z8kjHvGI7LHHHnn605+em2++OYsWLcrll1+erbbaKmecccbi7l8DT3va03LGGWfkCU94Qp7ylKdk7ty5mTNnTt75zncmSU477bS85z3vyZ577plHPvKR+d3vfrfU81/2spfllltuya677pp/+qd/ykMe8pAkyaxZs3LKKafk2c9+dvbcc8884hGPyE9/+tPl/g9PfvKT89nPfna5g0qfc8452X333bPXXnvl4IMPzjve8Y5ss802OeaYY7Lbbrtl7733zu67756XvOQli1seHXTQQfnGN76RAw88MBtssEGSLHf5Zdlzzz0zY8aM7LXXXosHAn/IQx6SzTbbbMKtu1akrKgnVynlbUmel+SuJBsl2SzJZ5McnGSbWutdpZRHJDmu1npwKeUr3e/fKaXMTPK7JLOW12Vs7ty5dd68eWvkHwIAAIA+u+yyy7Lrrruu9fe95JJLctJJJy01oDNrzm9/+9vst99++elPf5r11rt7+57x6r2UcmGtde54r7fCFkK11jfVWneotc5OckSSr9daj0xyXpKnd4sdneSs7vfPd3+ne/zrxg8CAACAddvuu+8uDJokH/nIR/Kwhz0sxx9//Lhh0KqY0KDSy/CGJB8vpbw1yQ+TDDogfjjJaaWUy5P8IS1EAgAAAJhyjj/++Hzyk59cat4znvGM/MM//MOISnR3Rx11VI466qg1+por7DK2NugyBgAAAGvGqLqMMVprvMsYAAAAAOsWgRAAAABAzwiEAAAAAHpmdQaVBgBgsh23+ahLMLmOu2nUJQBgJc1+4xfX6OstOOFJa/T1mBgthAAAAIAp7dZbb81jH/vYLFy4MAsWLMjuu++++LEPfehDechDHpI//vGP+e53v5uHPexhmTNnTnbdddccd9xxSZJTTjklr3jFK5b7Hj/+8Y/z/Oc/fxL/i6lFCyEAAABgSjvppJNy+OGHZ8aMGUvNP+200/Le9743X//617Plllvm6KOPzplnnpm99torCxcuzM9+9rMJv8cee+yRq666Kr/5zW+y0047rel/YcrRQggAAACY0k4//fQceuihS80788wzc8IJJ+Scc87J1ltvnSS59tprs+222yZJZsyYkd12222l3ufJT35yPv7xj6+ZQk9xAiEAAABgyrrjjjtyxRVXZPbs2Yvn/frXv84rXvGKnHPOOdlmm20Wz3/Na16TBz7wgXnqU5+aD3zgA7nttttW6r3mzp2bb33rW2uq6FOaQAgAAACYsq6//vpsscUWS82bNWtWdtppp5x55plLzf+nf/qnzJs3LwcddFA+9rGP5QlPeMJKvde9733v/Pa3v13dIk8LxhACAAAApqyNN974bi19Ntlkk3zpS1/KYx7zmNz73vfOkUceufixXXbZJS972cvy4he/OLNmzcoNN9ww4fe67bbbsvHGG6+xsk9lAiEAAABgwtb2beK33HLLLFy4MLfddls22mijxfPvfe975+yzz85+++2XrbfeOgcffHC++MUv5olPfGJKKfnFL36RGTNm3K110Wc/+9l8//vfz9ve9ra7vdfPf/7zpe5gti7TZQwAAACY0g466KBccMEFd5u/88475/Of/3xe+MIX5vvf/35OO+20PPCBD8ycOXPyvOc9L6effvrd7kz2y1/+Mpttttm473PeeeflSU9au4HXqJRa66jLkLlz59Z58+aNuhgAAFPPcZuPugST67ibRl0CgHXOZZddll133XXUxVijLrroopx44ok57bTTVvu1nvvc5+bEE0/MrFmzlpp/++2357GPfWwuuOCCzJw5/TpUjVfvpZQLa61zx1t++v2HAAAAQK/svffeedzjHpeFCxfercXPyvroRz867vzf/OY3OeGEE6ZlGLQq+vFfAgAAANPaC1/4wkl9/Qc84AF5wAMeMKnvMZUYQwgAAACgZwRCAAAAAD0jEAIAAADoGWMIAQAAABO3pu+A6Y6TI6GFEAAAADCl3XrrrXnsYx+bhQsXZtGiRXnVq16V3XffPXvssUce+tCH5le/+lWSZPbs2bn++uuXeu4pp5ySV7ziFYv//uhHP5o999wzD3rQg7LXXnvlmGOOyY033pgk2W+//TJv3rzFyy5YsCC77757vvKVr2TOnDmZM2dO7nnPe+aBD3xg5syZk6OOOmqZZb7jjjuy77775q677lqDa2LN0UIIAAAAmNJOOumkHH744ZkxY0bOOOOM/Pa3v83FF1+c9dZbL1dddVXucY97TOh1zj777Jx44on58pe/nO233z4LFy7Mqaeemt///vfZYostlvm8gw8+OAcffHCSFhq9853vzNy5c5f7XhtssEEOOOCAfOITn8iRRx454f91bdFCCAAAAJjSTj/99Bx66KFJkmuuuSbbbrtt1luvRRo77LBDttxyywm9zvHHH593vvOd2X777ZMkM2bMyAtf+MI88IEPnJRyH3bYYTn99NMn5bVXlxZCAAAAwJR1xx135Iorrsjs2bOTJM985jPz6Ec/Ot/61rdywAEH5LnPfW4e/OAHT+i1Lr300uy9997LXebII4/MxhtvvPi9B8HTqth9993zgx/8YJWfP5m0EAIAAACmrOuvv36p7lw77LBDfvazn+Vtb3tb1ltvvRxwwAE599xzV/p1f/zjH2fOnDnZZZdd8olPfGLx/NNPPz3z58/P/Pnz86UvfWm1yj5jxoxssMEGufnmm1frdSaDQAgAAACYsjbeeOPcdtttS83bcMMNc8ghh+Qd73hH/v7v/z6f+9znJvRaD3rQg3LRRRclSfbYY4/Mnz8/hxxySG699dY1XezFbr/99my00UaT9vqrSpcxAAAAYOLW8m3it9xyyyxcuDC33XZbNtpoo1x00UXZZpttst1222XRokW5+OKLs+eee07otd70pjflda97Xc4666zssMMOSbLaYdDVV1+do446atxWSjfccEO23nrrrL/++qv1HpNBIAQAAABMaQcddFAuuOCCHHjggbn22mvz4he/OLfffnuSZJ999lnqtvJ77rnn4nF/nvnMZy4VFj3xiU/Mddddl0MOOSQLFy7MFltskd13333xHcRWxTXXXJOZM8ePV84777w86UlPWuXXnkyl1jrqMmTu3Ll13rx5oy4GAMDUc9zmoy7B5FrLV5kB+uCyyy7LrrvuOupirFEXXXRRTjzxxJx22mmjLsrd/Pu//3t22mmnPOUpT7nbY4cffnhOOOGE/MVf/MWkl2O8ei+lXFhrnTve8loIAQAAAFPa3nvvncc97nFZuHBhZsyYMeriLGW4ddKwO+64I4cddthaCYNWhUAIAAAA1jG11pRSRl2MNeqFL3zhqIuwUjbYYIMcddRRa+W9VqX3l7uMAQAAwDpko402yg033LBKIQHTT601N9xww0rfyUwLIQAAAFiH7LDDDrnqqqty3XXXjboorCUbbbTR4rumTZRACAAAANYh66+/fnbeeedRF4MpTpcxAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMysMhEopG5VSvl9K+VEp5dJSylu6+aeUUn5VSpnfTXO6+aWU8p5SyuWllItLKXtP8v8AAAAAwEqYOYFlbk+yf631llLK+kkuKKV8uXvs72qtnxqz/CFJHtBND0vyvu4nAAAAAFPAClsI1eaW7s/1u6ku5ymHJvlI97zvJtmilLLt6hcVAAAAgDVhQmMIlVJmlFLmJ7k2yVdrrd/rHjq+6xZ2Yillw27e9kmuHHr6Vd28sa95bCllXill3nXXXbfq/wEAAAAAK2VCgVCtdWGtdU6SHZLsU0rZPcmbkvxlkocm2SrJG1bmjWutH6y1zq21zp01a9bKlRoAAACAVbZSdxmrtd6Y5LwkT6i1XtN1C7s9yclJ9ukWuzrJjkNP26GbBwAAAMAUMJG7jM0qpWzR/b5xkscn+elgXKBSSklyWJJLuqd8PslR3d3GHp7kplrrNZNQdgAAAABWwUTuMrZtklNLKTPSAqQza61fKKV8vZQyK0lJMj/JS7vlv5TkiUkuT/LnJC9Y46UGAAAAYJWtMBCqtV6c5MHjzN9/GcvXJC9f/aIBAAAAMBlWagwhAAAAAKY/gRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6JkVBkKllI1KKd8vpfyolHJpKeUt3fydSynfK6VcXkr5RCllg27+ht3fl3ePz57k/wEAAACAlTCRFkK3J9m/1rpXkjlJnlBKeXiSf0lyYq31/kn+mORF3fIvSvLHbv6J3XIAAAAATBErDIRqc0v35/rdVJPsn+RT3fxTkxzW/X5o93e6xw8opZQ1VWAAAAAAVs+ExhAqpcwopcxPcm2Sryb5ZZIba613dYtclWT77vftk1yZJN3jNyW51ziveWwpZV4pZd511123Wv8EAAAAABM3oUCo1rqw1jonyQ5J9knyl6v7xrXWD9Za59Za586aNWt1Xw4AAACACVqpu4zVWm9Mcl6SRyTZopQys3tohyRXd79fnWTHJOke3zzJDWuisAAAAACsvoncZWxWKWWL7veNkzw+yWVpwdDTu8WOTnJW9/vnu7/TPf71Wmtdg2UGAAAAYDXMXPEi2TbJqaWUGWkB0pm11i+UUn6S5OOllLcm+WGSD3fLfzjJaaWUy5P8IckRk1BuAAAAAFbRCgOhWuvFSR48zvwr0sYTGjv/tiTPWCOlAwAAAGCNW6kxhAAAAACY/gRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9MwKA6FSyo6llPNKKT8ppVxaSvmbbv5xpZSrSynzu+mJQ895Uynl8lLKz0opB0/mPwAAAADAypk5gWXuSvLaWutFpZRNk1xYSvlq99iJtdZ3Di9cStktyRFJHpRkuyRfK6X8Ra114ZosOAAAAACrZoUthGqt19RaL+p+vznJZUm2X85TDk3y8Vrr7bXWXyW5PMk+a6KwAAAAAKy+lRpDqJQyO8mDk3yvm/WKUsrFpZSTSilbdvO2T3Ll0NOuyvIDJAAAAADWogkHQqWUeyb5dJJX11r/N8n7kuySZE6Sa5L868q8cSnl2FLKvFLKvOuuu25lngoAAADAaphQIFRKWT8tDDq91vqZJKm1/r7WurDWuijJh7KkW9jVSXYcevoO3byl1Fo/WGudW2udO2vWrNX5HwAAAABYCRO5y1hJ8uEkl9Va3zU0f9uhxZ6a5JLu988nOaKUsmEpZeckD0jy/TVXZAAAAABWx0TuMvaoJM9L8uNSyvxu3t8neXYpZU6SmmRBkpckSa310lLKmUl+knaHspe7wxgAAADA1LHCQKjWekGSMs5DX1rOc45PcvxqlAsAAACASbJSdxkDAAAAYPoTCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnllhIFRK2bGUcl4p5SellEtLKX/Tzd+qlPLVUsovup9bdvNLKeU9pZTLSykXl1L2nux/AgAAAICJm0gLobuSvLbWuluShyd5eSlltyRvTHJurfUBSc7t/k6SQ5I8oJuOTfK+NV5qAAAAAFbZCgOhWus1tdaLut9vTnJZku2THJrk1G6xU5Mc1v1+aJKP1Oa7SbYopWy7pgsOAAAAwKpZqTGESimzkzw4yfeS3KfWek330O+S3Kf7ffskVw497apuHgAAAABTwIQDoVLKPZN8Osmra63/O/xYrbUmqSvzxqWUY0sp80op86677rqVeSoAAAAAq2FCgVApZf20MOj0Wutnutm/H3QF635e282/OsmOQ0/foZu3lFrrB2utc2utc2fNmrWq5QcAAABgJU3kLmMlyYeTXFZrfdfQQ59PcnT3+9FJzhqaf1R3t7GHJ7lpqGsZAAAAACM2cwLLPCrJ85L8uJQyv5v390lOSHJmKeVFSX6d5JndY19K8sQklyf5c5IXrMkCAwAAALB6VhgI1VovSFKW8fAB4yxfk7x8NcsFAAAAwCRZqbuMAQAAADD9CYQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM+sMBAqpZxUSrm2lHLJ0LzjSilXl1Lmd9MThx57Uynl8lLKz0opB09WwQEAAABYNRNpIXRKkieMM//EWuucbvpSkpRSdktyRJIHdc/5z1LKjDVVWAAAAABW3woDoVrrN5P8YYKvd2iSj9dab6+1/irJ5Un2WY3yAQAAALCGrc4YQq8opVzcdSnbspu3fZIrh5a5qpt3N6WUY0sp80op86677rrVKAYAAAAAK2NVA6H3JdklyZwk1yT515V9gVrrB2utc2utc2fNmrWKxQAAAABgZa1SIFRr/X2tdWGtdVGSD2VJt7Crk+w4tOgO3TwAAAAApohVCoRKKdsO/fnUJIM7kH0+yRGllA1LKTsneUCS769eEQEAAABYk2auaIFSyhlJ9kuydSnlqiRvTrJfKWVOkppkQZKXJEmt9dJSyplJfpLkriQvr7UunJSSAwAAALBKVhgI1VqfPc7sDy9n+eOTHL86hQIAAABg8qzOXcYAAAAAmIYEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPTMzFEXAABYC47bfNQlmDzH3TTqEgAATDtaCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ6ZOeoCwEo7bvNRl2ByHXfTqEsAAADAOk4LIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpm5qgLAAAA66zjNh91CSbXcTeNugQArCIthAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6JkVBkKllJNKKdeWUi4ZmrdVKeWrpZRfdD+37OaXUsp7SimXl1IuLqXsPZmFBwAAAGDlTaSF0ClJnjBm3huTnFtrfUCSc7u/k+SQJA/opmOTvG/NFBMAAACANWWFgVCt9ZtJ/jBm9qFJTu1+PzXJYUPzP1Kb7ybZopSy7RoqKwAAAABrwKqOIXSfWus13e+/S3Kf7vftk1w5tNxV3by7KaUcW0qZV0qZd911161iMQAAAABYWas9qHSttSapq/C8D9Za59Za586aNWt1iwEAAADABK1qIPT7QVew7ue13fyrk+w4tNwO3TwAAAAApohVDYQ+n+To7vejk5w1NP+o7m5jD09y01DXMgAAAACmgJkrWqCUckaS/ZJsXUq5Ksmbk5yQ5MxSyouS/DrJM7vFv5TkiUkuT/LnJC+YhDIDAAAAsBpWGAjVWp+9jIcOGGfZmuTlq1soAAAAACbPag8qDQAAAMD0IhACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzK7zLGAAAAMBac9zmoy7B5DnuplGXYDEthAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGdmjroAI3Hc5qMuweQ67qZRlwAAAACYwrQQAgAAAOgZgRAAAABAzwiEAAAAAHqmn2MIAaNh/C4AAIApQQshAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6Bl3GQNgYtwlDgAA1hlaCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnpk56gIAAABMOcdtPuoSTK7jbhp1CYAR00IIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9IxACAAAAKBnZo66AAAAALBGHbf5qEswuY67adQlYB2wWoFQKWVBkpuTLExyV611billqySfSDI7yYIkz6y1/nH1igkAAADAmrImuow9rtY6p9Y6t/v7jUnOrbU+IMm53d8AAAAATBGTMYbQoUlO7X4/Nclhk/AeAAAAAKyi1Q2EapJzSikXllKO7ebdp9Z6Tff775LcZ7wnllKOLaXMK6XMu+6661azGAAAAABM1OoOKv3oWuvVpZR7J/lqKeWnww/WWmsppY73xFrrB5N8MEnmzp077jIAAAAArHmr1UKo1np19/PaJJ9Nsk+S35dStk2S7ue1q1tIAAAAANacVQ6ESin3KKVsOvg9yUFJLkny+SRHd4sdneSs1S0kAAAAAGvO6nQZu0+Sz5ZSBq/zsVrr2aWUHyQ5s5TyoiS/TvLM1S8mAAAAAGvKKgdCtdYrkuw1zvwbkhywOoUCAAAAYPJMxm3nAQAAAJjCBEIAAAAAPSMQAgAAAOgZgRAAAABAzwiEAAAAAHpGIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICeEQgBAAAA9MzMURdgFGbf9rFRF2FSLRh1AQAAAIApTQshAAAAgJ7pZQshpjctvAAAAGD1CISAtUaYBwAAMDXoMgYAAADQMwIhAAAAgJ7RZQyACdHlDwAA1h1aCAEAAAD0jBZCANAD63ILrwWjLgAAwDSkhRAAAABAzwiEAAAAAHpGlzEAgClsXe7ul+jyBwCjooUQAAAAQM8IhAAAAAB6RpcxAACYJLr8ATBVaSEEAAAA0DNaCAEAAIyhdRewrtNCCAAAAKBnBEIAAAAAPaPLGAAAAOsUXf6mt3W5/haMugBDtBACAAAA6BmBEAAAAEDPCIQAAAAAekYgBAAAANAzAiEAAACAnhEIAQAAAPSMQAgAAACgZwRCAAAAAD0jEAIAAADoGYEQAAAAQM8IhAAAAAB6RiAEAAAA0DMCIQAAAICembRAqJTyhFLKz0opl5dS3jhZ7wMAAADAypmUQKiUMiPJfyQ5JMluSZ5dStltMt4LAAAAgJUzWS2E9klyea31ilrrHUk+nuTQSXovAAAAAFZCqbWu+Rct5elJnlBrPab7+3lJHlZrfcXQMscmObb784FJfrbGCzJ1bJ3k+lEXglWm/qYvdTe9qb/pS91Nb+pvelN/05e6m97U3/S1rtfdfWuts8Z7YObaLslArfWDST44qvdfm0op82qtc0ddDlaN+pu+1N30pv6mL3U3vam/6U39TV/qbnpTf9NXn+tusrqMXZ1kx6G/d+jmAQAAADBikxUI/SDJA0opO5dSNkhyRJLPT9J7AQAAALASJqXLWK31rlLKK5J8JcmMJCfVWi+djPeaJnrRNW4dpv6mL3U3vam/6UvdTW/qb3pTf9OXupve1N/01du6m5RBpQEAAACYuiaryxgAAAAAU5RACAAAAKBnBEIAAAAAPSMQAgCmnVJKGXUZAKYT+83pTf1Nb1O1/gRC01gp5Z6llMNLKU8qpWw46vKwckop64+6DKxYKWVS7sbI6JRSNiulPKOU8tFSyo7dvCn5Jc3dlVI2KaXsVN0VY9rptr1nllL+rZSyTTfPtjcFlFI2KKU8vpTyoVLKid28GaMuF2tGKWXjUsq97Tenp+57b7b6m566+ttmqtafE51pqpSyQ5KvJNk1yTlJLk5y5UgLxTKVUkqttZZS9k7y7CSPSPLnUspXk/x3rfWnoy0hQ3U0M8njkjwjyV8k+Xkp5UtJvlBrvWukhWSVlVIem+TwJAen1evCJNckuV+SK6fql3TfDW2X903yvCTPTLJtkmtKKd9P8l+11u+OtJAs1zjbXpLMT/LRJL+z7Y1WKeXeSZ6S5LlJ9u1m/y7Ja2qtC0dWMFZbKWVOkmcleUKSLZL8upTy3SQfr7XOH13JmIhSykPSjkUfn2RWkhtLKVcl+Wit9WPdMsU+dGoppaxXa11USrl/2n718CT3Stv+vpnkI7XWn4y0kGO47fw0M/QhOyLJx5JcleS2JEfWWn8w2tKxPF2dvbv78/Ik906yS1qY98Za69mD+h1VGUlKKe9NcmySq5Ncl2T3JBsnOS3JS2utt46weKykUspRSU7p/vxNkkuTfDdtu7s8yS9rrbeNpnQsz1AYtFOSDyY5KMm5afV437Tg9mdJ/q7W+kX7z6mllPLKLPnOuzLJJVmy7f08yRW11ttHVLxeKqVsVmv93zHzjknyniQbZcl2NjvJnFrrxbar6ae7aPzKJM9JUpNcltYr5IFJdkjynSQvr7XOFyhMPaWU3ZP8nySPSqu3i9OOR7dO+977c5L/U2t9n+1zahk6T981yYfSGgCcm+TatAsic9O+B19Wa/3RVNn+tBCaYkops9K+iK+ptV419oPSfchKWtr44yRfTvK6tJ28QGiK6lL+05P8IsmrkvwwLch7ZZK3JvnPUsqDhA2jVUp5a5KXJ/lUkrcn+VWSrZL8e1rrhF+UUt4pQJh6xtl3rl9rvTMtPEjaF/DRSW6ptV4zomKyDKWUmWNb4HVh0D2SvC3tJPWf01oEXdU951lJzkjy7lLK1+0/R2MouBscCM/oWpb8qlvkv5O8McmNtr21Y6hONk/ypG6anaSWUl5Ua/3ZUD1dnXby+dla669KKf83yT8k2S/tRFSXvimqC352rrV+a2jeRklemuTvknwuLeT7Ya3196WUeyb5ZFprvReUUl49FU5G+2ps/Q2FO9untYb9jySfT3JxrfX33TJPS6vDw0opHxAGjc5421/3HbhlkvcleWTaOfqZQ8ctb0pyfJJ3lVIeP1XqTwuhERr6wp6T5PlJ/irt5PPmJN+otR41XnJYStk2yYK0E9R7JvlA2tWdf6q1/mnt/Qd0X7wHJtmi1vrRoQOsscu9I8lrkzyz1vqpMY99Lq259uuS/IcrpmteFxY8MsmOaV0VLq21/nHo8ZK2LX01reXBI2qtC4Yef3SSU5PMSEv1vzxVUv0+Wsa+c8skt2TJvnNwcrpBWhBba62zh17jbgEEk295XTOT3K1rZtdV7PIkv0078FrUzV+/1npnKeXc7nVeXGv98Fr+d3plqO42SHJAkkOTbJPkwiRfqbV+f3i/WNrYhrcm+Watdb+h1xn3e5I1q5Ty+CQnpG1fv07yyyS7JXldrfWsoeU2SLIoycKufvdP8rW0bfEpWiBMHaWUTdLC8cPS9ns7prW8e2St9ZZumRlp3VQW1VpPG+c1Dk5r8fyjJM8dBA1MvonUX7fceknuM16AXkqZneR7afV3RK31D5NfcpKVqr+Hpl2EnF9rfcjQ/Bm11oWllIuSzEnyxFrr2WvvP1g2LYRGqPvifWiSk5NsnuT7aScuf0ryy+WccD47LTSal3YSdE2Sh6T1L/2TE9XJ1R3kPiTJ05O8IK3ubkjr07twzLKDunhUN+sn3fyZaR+BhWndWR6V5GlJzk7yE3W4+roTycPT+s/PTQsLNk6yfpIfl1Le2AU7gx307kn2SfLVWuuCrp7v7A6EL0oLhI5LC+++rH5GZ4L7zkXdicwdpZR5SZ5aSjkoLVjYN8lmXRD48yRnC9PXjqHt5t+SvDhLumY+J8kxSU4rpQx3zXxAWqhwUVof/Ou6ehs4P+3A7MmllK/WWn8TJsVQi5NTkzwxre4WJXlykn8spfx199idXeB6e3fgu1cp5VFp3Rz2SbJxV4WXJDmv2//6zluDSimPTPLxtGOTv007Obmy1nrj2GVrrXeMmfXNtG5GDy+lbKzl3WiVdgOS5yR5dZK9utm/SqvT96R1g15ch9329Lm084Thk9DBNnZX2r70liQ3rp3/or9Wtv6S1sokbZy8pcLY7rj0mLTzvfNqrX+w75xcq1J/SfZI24deUEq5xzjHl+enBUJHlFLOr1Og14FAaIRKKbukNQW8Ja3r0P/UWq9bzvKDg+BDkvyo1npFd9J7SdoJ705pLYdK2geRyXFgkhOT3D+tOfV2SbYqpTywa4a9eOfcHUBvlPale1OS+6SFQsPB0fe76TFJ9kzyEzv31VPanaPemhbeXNj9/pO0wOChSf4pyf8tpXxn6AB50GJo8yQZbqlVa/1zKeVrSV6TZN9Syna11t+ujf+Fuyul3C9L7zsvqLVeP96i3c9zkzw1bbvdLK059m1pY2YkybdKKcfUWn8xqQXvmVLKPYevmg3N/+ckf53ld808cegg6pa0/ex90sKj9WrrDpi0+kxa0LBLlnQRZHK8P22/+m9JPpK2vg9J8n/TuqZcm7ZtDu5i+4W0/e2JaVdT75PkzrRgfmGSs0spRw232GT5uv3f/mktfy5N8ukxV6c3TOuid1eSx9Var16J155Ra72rlHJB2jHJPkm+oZXQ2jN2v9m1hHx82snoyWldMH+V5DfL2m5qrTcN/T443hycG+zY/X51F9oKFNagNVF/Q89dVErZOG073C2t6+cT07qMvbNbRt2tQatTf0P7yVvStrFd0nof/GlMy9jtup/7pY3pdfkk/ksT4rbzk6CUMquU8lellOeVUnYsY24vPhTsvCTt4OioWuvnxoZBw1dBh3bYf5n2ARo0A706LZS4V9rgt/GlvXq6+ju6lPLfpZS/7ZpTD5pwJq1V1vwkz6+1zkm7U8p6WXJ3jrHb1T3TTj5Lkk2TtgMf2olfk3b1+55Jditucz4hpZRduvr5eCnlid28wbqbkeQPaS16jqq1HldrPbPW+sW0JvRfT/LgtIG9B+5MC+42KaXcZ5y3vDyt3ndJd5VgTEsFVtM4+86ZYx4frO+XZel95/XLWG6wjX0zLQz8U5IPpwWvD0prVn9+2onPqaWNr8Aq6urv+aWUz5RS/pTk9V0gPni8lFI2TWty/fskr6+1zqu13tCFcf837UDrmLTvuaS1/PpR2vb67GTxFfD1u4O0Fye5Iq3r0s62yVVTStm6lHJ4KeX1pZTDSinbDNbl0M85aScjX06ru/m11j/UWk9P8ubupV5V2q11B1dMv9j9XJg2psKD066MvjxtQPAnJfn37qSH5SilHFJK+UZaq8Z3pO2/Xpdk5zGLbpu2Xj+Z5LellHuUUnYvpTy6lLJTaXcVW+bbdD8H9fa4MfNZw5a33xw67jw3rTXe5d133o/GORldbh114cImafvMO9NCWoHCaloL9bdZ2sWT/0g7z/hhWguU75VSnjL0HqyCNVx/g23ph0l+miW9P4aPW56S1qr26rSGHDtO8r84IU4815DSxih5atqgpQ/vZt+ZdmL6wVLK22utvy5Lmm5unXZQ/J1a63dKKVukJcA7pwUKf0y7snZLstQO+2lp4cJ5XUh0Vynlf5K8IsmupbU62intQ+s29BPQBXYHpNXfwWnr7/a0265+IW07uSNLNvTPp90qfnAF5ty0poQHpo0oP/bL9Q/da22WZMfhK22DoK+U8vO0ep2dFhq5WjpGaYO0HZg25sh+aXdbuCOtL/WgRdZd3c8FSf5mvNeptd5W2hXUmqXrqqadWG6X1k3l92Xpq6I3pwVCj00bxP3La+yf67FV3HcemAnsOwd1V2u9pLSBUj9Va72ie99S2wCq307rWvHwtJOf/x4K4FmO7gDoMWnNqQd3Jror7Y42ZyX5n7SDqOF93Yq6Zp6S5C1pB0xf7Or+vWkHwm8qpeyctp1ukTaGzVlp+9e/S7Kdels5pZT90lo+PiGta96gW+1VaV2NPpW2Ld6VdhKyaZJfdMceGya5q7vq+ZUk56XdUeVxaYN9p9b6g1LK/0vy/rpkUM31aq2XlVIuSWtV9Oy0787zbXvjK6UcmHZCuCgtfJufFqr+ptZ67ZjFH5sW4JzXbXOvT/ve3D6t/n5aSjkhyen17t31Bt93X067eLJ/2oUVFxrXkJXZbw75cVp971/amJS7ZElru/9NckOt9XfLec/Bscyhadvoe2utv1yD/1ZvrO36q20w8Dem3RnuF2nb8CPSts/PpQ1f8Zk19g+u49ZG/dVaf1FKeV9aK65/7457fpt2fvG0tJa2myd5Ydqx63kj/+6rtZpWc0oLED6S1rrgO0n+McmLkrwh7QB3UZJPdMvO6H5u180/L8k90gaGvrmbd1f3c36SPca81/wkHxoz72Vp/cT/1D3vd0mePOr1Mh2mtG5f87r1dmXaFbU3pl0FfWCSjSfwGpsMPX/GmMcGA7e/sqvXDyfZaujx9bqf+6ftVL6SZINRr5epNnXrZ1E3XZrWQu6VaUHefZPMXMbzZgz9vmna1el3da9zfNpB82Cb3DLJSWlXsl8xXH/d7zPTBgZflOSNo14n68K0mvvOr6/MvnMZ7z+z+/m67nnv7f5eb9TrZjpMaa2sft6tuy9228eTu33nPccsO9gX/mW3/HeX8ZqPTAvRL02y/dD8F6e15rqle/4tST6d1jr2qd28/xh+L9MK62/vtIPg3yf5l7Qx1w5Mu+PUorTvxs2Gln92N/8dy3i9N3Tb4H8m2XQC779e2gHzorRbKPe27tIuQjwyyebjPLZhV08/TPKg5a3P7udfd+v07Une3f3+0bQLh+/v6uj2tMGll7nOu/3yn9MGt128Dzatdl1PeL859JzN0wbd/9+0gO7CtGEI7uhe54K0sGeZx49pLaLnddv7fUe9HqbrtLbrb+z2mSXfpU/vnvuZ8ZYzjb7+0o5p56dd8B8ct3wsbbiCF3Xz/nEq1N/IK2a6TGkDeG0yZt5gozy4+4L95ySzxyzzF12F355ky6H5m3UfrPPSEt6r0g6mHpB2kntm97yvJdm7e84Tuvf5t7Rbl89LO3ld1H0o7+g+3Edl6EDaVJMWGvxVkkcnWX9MvX4k7QTk2ZnAQeyY1x0cgP2gq4d9xswf/Hx02h0+Lk27g1XSwojBZ2h29/wfjXpdjbie9krrSvCPSfYdmr9T2oHp/6QN6L3JSrzmRl3dn5nWhHMQGDwpyY5Dy81IO+lclNaSZLzX+sfu8ZeOel1Nl2kS9p2bj9l3XrmcfeecQd0Ov+/Qaw22z8O753x81Otrqk1J7pfWhevtaa247jn02JZpgdx1SQ5axvPHrvP7p7XiujjdieaYx+/d1e1tSZ4w5rFNun3pnDHzn9jV32tHvb6m0pTWjW6bZTy2SVrLuEVJnjLmsY3Swrc70lpdDeYf0817z/A2PbQ9Pz6tGfy3k/xFN2+94WXGKcffdmU4YdTray3XzYy0lq4nd9vPH9MCmJ+ntTjedGjZlw5/73TP3TpDF5e6+et3Pw/IkouD1yV56tAyM9OOdW5NO+7ZbJyyDV7ns93rPHFsXZtWWL9rdL/ZzRuEp39KawX7N2lDT3w+Sy6YPWc5z//7bpnXDD5Ho15PU3WaovU32M8OLmTdu3vOFaNeX1NtmgL1N3PM+x2U7lx+aP5gv/6MUa+vWgVCy/swzUxrTXBCWuubKzN0gjpm2Y3HVmjayf6G3e/f6yr9oUOP75g2QvngqvZrxzx/+7STnUVpt5NPWl/ERVmSNF6aFma8Osl/dfNeP+p1N1WmtBOPE9Jut3pbWpr7oyR7Di0zo1t/d2Xpg6Z7TPRz0v08rlv/bxi87pjlBjugRUn+Zfi53e8PTzvxPSM9ayGUdvLxiixJ7K/tplOzdBDw3bTmsrOH6m6jMa813k58k+5zcHNa94d/6LabRWlXXR+TJV+0u6QNzH5Xkr0G9ZQlgcLbu+cd1f2tJcnd1/fa2HcO5q9o3zlodbDe0OPrja23JJ/oln/FqNffVJnSBgr+RreO/5jW3PnHGWp51a3Lv067MDE4ENo8LYDfYOx6737eL+3q2m+TPHqc+tk4bWyLRUlePea5ywoVzuiW323U623UU1p3vPd3290NXZ39W5KdxqzLe6QFAn8Ybz+WFupckeTeQ/MOT/se/e8s3XprsP+8f1pLv6vSbsM79jXXG1uHaS39FmXo+7cPU1oY/uu0Qbk/lHax4b1Zcue2Fw8t+69pF0T26P4eDMh+QTf9Y4ZaFqW1oryze52zs+T7a7jF7GC9/9XYx4aWGbQI+6+0cdfekNaydv01tR7WtWkS9ptlaJs9LK077V+Oec/B6y1K8q0kW4xTrr3TToAvGuexzcar/z5OU7j+xjtu+au0c5svpDtm6vs0Fesvyz5u+XrGXHQZ6bobdQGm4tR9MN6e1qJjEMD8efDBWcFzxx7sbJI2xswfM3RVM+2OKu/rXv/idCe+GUqA026XvSjJ54fmfSRt4M0np528Dk6c9k9rBvrxJNsu70O4Lk9D6+8+aQetN6R1A3t9Wlr8tNy9K8MBaS0O3p02TsVfp93t5oNpB2iPyDJOSIbm79PV1TnLWvdpA2nenBb8PGLMZ2RwQvrMvtRdt6MtaWN/3NztHF+edqC8T7orpEN1+v/SdvIvTvKwJG9KO1B+d1e/Wy7nve4W8CU5onvf85Lcf2j+W7u6OCPJrKH5e6YFUtdknJYNpjW+79x4Te07l/OeW3X7hTvTTmJ7Hyh06+XAtDDg8rQA9Ulpd7K89zjL7tvtZ09OawJ9ctpdE3+a1or1mOHtpVvna6RrZlrQPmh2/aH0KExfxnfM3LQLRX9O+977jyRf7dbPz9OFOEPbyiBYfWL396ZprTT/Na0FyXO7+Rt0P/dIu1vjFUkeNs77b5L2vXtbkoevoPxbpV1hHbTY3GnU63Qt1t2D08Kga9LGWxpuDfSkbp18bqhOTu/2g49Ja/m4qNs2v9TV06K07ubD31ff7ua/I0MXTrIkHHpj9/g/d38PnwRtlXaTkkFX2oVpQeDgKvjsUa/DEdffsk7wJmW/mSUXHu+ZrkVXhk5Uhx67otv29x4ua9oJ6ylp33OPSNvH7prWsvJN3WP7Le9/W5em6VR/yyjnll3d/aTbHg8b9TpVfytdf6/p6u74Ua/PxeUadQFG/KEat8922pWzW9JONo5J+1K8I23skYm2HBkccA2Cgi+MmT8jbTCpRWlf6OMd3D0mLdE/J90XfZYxpk3aQdyCtIOMv5xIGdflKW1AxJvSwoOtVrDs/bsdwR3d+h60Urmh+/26JP86gff8c/eeW3R/D7cAGtT7cd37/D7tKu6b0rr53Zp28D5zWTu7dWkaWh9PSGt+eXrG6QaWpU8UH5clYzUNxoz5fZYcpF6TZO4K3ne4tc+W3fvelOTQoWXumzZA36Luc/EPaU2tL+z2C88d9fob9TTN9p1bd/O2STuhfWLaYIJvSOsScWdX3scMXn/U63ct1N+D07rpnTHOYxMar2Ro+Z3TWikMb4efTwt4B60UPpMlocJw18xPL+M1x+2amTZe0KFpTa1fm9Y98Ka0gSDvdtC3Lk5pLeTGO8DdJO0Y4PYkz8/SIcM/d+vztCzdsufILPme+5+0MGfQrfZnaQH9o8a8x+ldvb5yzPsPts8v5O6t+rZNG7fhgLSw9vXdcgvTWn4+uFuuFy0uu8/woiTvG+exnbrHPjQ075PdvM+mBdeHDT02p9vPLRWgpl1oWdRtG4OLKzOy9LHIoiRvGvP+s9OOnwbHQoMw8QNp+84Vjqu4rk5pxwY7L+OxydpvrrA11lCdDsLfA7q/Byeyh6aFtN9Ja439kSSXZMn4Jz/LmG6j6+I03eqvmzcr7WLkYWnDgbwx7QLyjWnHwkeNer2qv2Vuf4P5wzdO+du0/fjNad+lKzVMyaSu31EXYC1/mJbXZ/s1WfoA6lHpTnbSxixZkNanfvZwRU/gPT+acfroD30gf5Ghg6cMBQJZcpX7w2PfM13T66FlN0xLQpfZSmK6T2lXrZ7bbaQnZxlXg9MOWu5Kd+VraP7Ywb4GrXs2T7sienm3s90lrXXCX6Ylx7cvqw4Hn6vu51e65e7WJ3XovWaknYzOT2uqf0daE/HjMzSeTR+mtK5iJ6ed0O3YzZuZNjbCeOHQVmmB5zfTwoYdurp7bJaMhXF+VnByMVRf90w7WL49XRgwtMxmaQO//TwtdFiYFhocmx42l8803ncOzbt/lpw4/aHbR/w2bTyUB2dof7quTd228rK07iODQZmvTzuAGdTVYD1NdLySwXa0aVqA86kMBbLdNrRXWpeYRWkh0OAEZWW7Zg6et0/avvPmLNl3viPJLqNex5NYdxuktZr8VFoA/ru0JvFvztLdhJ6TdiD70aF5g++dB6a1hLwlyTFDj5e0QOH/pAVDN3Tv8/q0bX1R95xDhurmBVkyhtegxdH6Q5+fs7vHHzn0Pnun7T8HzfgXpgUb78qSblDr5La3jDrdt1u3Xxyuq7QTng+nfc/tNvTYO7LkxOWdQ5+LQf0e0j323SxpIb5zt31cn6ELHt1jG6WdPN2V7uRpqP52SvuO/XLaCUxvW8OmBdDPSTtO+E237V2c9j0yd8yyk7nfHPciRZa0si7d+53fPefQoWU2z5IutYPp+rQB+Z+X7oLJujitI/W3Y5ZcoLw+Sy4ofyDtWGudvYg83etv6L0O7Mp+Y9o+98q0c74p1Sp25AVYyx+uCfXZHlv53Qb5pbRWI+OOhbGM93tE97qnZxknkVly5e7j6a76dR+u7dOu1i1K8oJRr7sR19u2aYNoX5glX2gXp2sJlSUHMoODo+O6ZR7b/X1g2gHu29O62z11zOuXbsf66GW8/1u6nfAnMubgqHvuYADGY7r3/Zdu53BQWrek8VowzOg+H7NHvX5HWK8bpp2Yf7/7+/7dNnlW2onql9NaBQ3W74wkz8xQC7ihHe59s+RL8/XDn4fh5ca8/y5pYdCvsnRT++Hg9QFpgVNvD4q79TDt951pB04HpHVTeU7W4RBhzHoaDLJ9Z1oXofd1+6pHZukBgwf70cF4Jbt3fw+PV/I/GTNeSbfMAzN0cDNm23tlWqhwVpZunTLomvmxMdvfXmnh/O/GbnddHe6bdsX7fqNet5Ncb4Pvs6PSgppr0rranZR2dX8QeM4eWs+LsuROeRsMvdbm3fMWJfnSOOv0+LTv17F3Nf2b7rNwXpYMEn2fLNnX/v2Y5Z/Yfc6+2f092D9vmNZd++/STkJ7se0tp25nZsndTc9MC+T+X5Z08zo17ftpk275w9JOJP6c5CXdvOELglukddO9LUN3j0oLdO7sPj/PTvs+fU5a4HNbkrfl7vvsdfLkchXq6Mi0gO3atBD65LRW3YMLfxenO8bslp/M/eYKxxhJG9x2UdoNTmYO7T82TgsUv9SV6YGjXrfqb6Xqb72078Sj045/1+nvvXWo/obPI9ZPG+/p6ZnC330jL8Ba/HBNpM/2Z8d+KLq/Z6QdMC1MSyGX+4WZJQdBg/EvFl/BHvvBSzthGqT3F6YdJL8lrWnnorSBWXv9Bd3V18K0dPU/08KCPyV5+tj6Srtq9p9prU4emnag9ccs6QY2uOL5rqygC8tQPT4qLTT44WBnM86yM7Pk1sfXdDuhwZX4u+3A+16n3TqYldZC4zNpB6s/y5LxJC7tfr89Y046lvFaG2RJN6LTx6vH7vet0q5W/2333v+b5OhRr4upPNl3Tu+pW/+L0gZq3iLj3FVoaNlBl6A/5u7jlXw544xXsqx1PFRPD08LEi/K0MlIdM2cSN09Lu17b0FaEDYYv2CrLGnB8+5u3v7d3z/o/l5/zGv9KEu+B4eDwEHrksGV1fWzJIQftKq7PsmTh57ziLSr1Ld15Xhx2gH3r9O+Kx876nU31ae0lln/niU3U1iU1mrni2ljUdyU5B3dslundeW7Pcmrhl5j+ILUD7vX2GvwWPfzr7t6WZR2wnRX99pvzwq60/d5SrvwcX3aieGD0o092a3zwcWIwfhLyxvnaY3tN9PCgQ27aau07+anZEnY+8OMae3c10n9Te9J/Y1gnY+6AGvxw3VoVqLP9jjLHJEWQnwo44wAP86H6bnda65wwKi0g/APpl31uyXtis5P08bfmLWi56/rU9pYL6/MkoPhF3Tr9v8tY/lB96Hjux3EO9LGD9ksbWyFwRgJLxrzvLGD2g5OTndMa8lyVe7e/PDeaVfZvpoWMAwO7H6VlmY/NT0ZF2EV6nXbtIPhH6aFQN9Nd3Uz7Yr2kd26vCpL34J+WQN7vyAtePhAlh5E88Vd/Xwy7SrZFd029uNMYLDjvk/2ndN7SjtAWiooTQvqltUMeqLjlbxhzPPGbpeDE9W/SDsg+22GuhZ1j20WXTOXV3eDcWDuti0MbXu3px2cbph2AL1oTJ1tkRYKXJ0l48I8ZejxQXekowf1liXffVul3TXlliT7j3n/vdKuht6UJXc+/V6myC10p8OUdiLzX2mtj+/fzdsgrWvkIMR5cjf/n9PCnE/l7i3n/jLt5OWS3H3g8JLWZfQ5aRfIDs0Ex3Pr85Tl36TiiK5u/nFo3qTuN4cef3haqPvTLGkVdkdaS4bHj3q9TZVJ/U3vSf2NYJ2PugBr8cO1bybYZztLH7AOvlT3ThvRfV6WpIXLShi3TGvu/sMMBQhpV3kemqWbqA2/145pzfh7MTjmStbfYAyJGWktdm5NO7kfbq0wOKE8MUuCmU/n7k2iBzuT8zJO/9LcvZXD09JOVH6Qu49DtHNa+HNblvTJ7nX3opWo042GdtJ3ZPxbUL+/W/dvy5JBaQf9dcfuyD/Uvdaru78HO/bDu233x902eVJaqt/bwTFXsp7sO6fx1G1nV6UFoTundT/5+26b+pe0VigbDi3/zqH954rGK7n3mPcar2vmm7rlP5pxBtrvftc1c/y6+1BaCPCsjNMFNku6jg1a9xzXfRfdmtZ67h3der++q+/jxuwjN+w+C8sKfHdMC5xuTDc2zTh19/DuM7HNqNfXdJuypNvkwwb1OlS3b+ge+69u+7tflnxf/lNaGL5NWuB7djf/zaP+n9a1aex2l9Zq7hvd+p4z9NjKjPO0OvvNe6d11z4r7fjoaNue+ltXJ/W3Ftf1qAuwFj9UE+2zvfikc8zz75V2FeemJE9YwXu9p3vNl3WveVjaF/jn0w7U3pWhFgymla7LbdJOGH+d7vZ+aSeogwOpZ6UdRN+V5DVDjw9OUO+ddnL0v1lOf860k9DDsqRF0dPHWWb9TKB/qWmZ6/i9aa06/piuSWg3f1BXz04bQPbTY3fig+XSWhoNbo97WcbcYaDb9u+bdXjA9UmuI/vOaT4l+Vy3Xi9NC1/vSjvJHxxAvT/JDt2yT82qjVcyHBJsmRbgvb3bfq/MCu4AaBq33gahwN+nC7CH6uEvsqSb7ae676L101pEXtrV78K0gPVtaeHOYJyh5w29xwFDn4lnpYWGD05rcXl5V8+vG7tdm1a7bjft1u+FGerGMLQfHXTH/erQcx6c1oVhUdqV62939XtrJnAnVNMq19UOaeN/HN9tc3cmeVn32OCE8ylra7/pO1D99WlSf2tnmpmeqLXeVUo5Jm0wzYPSPlxJ+3B9Oe0qy0VpB8ZvqF2tDz3/hlLK/CTPSLJXKeXrtdY7xr5PKeWhaQdVv0sbYPGVac15k3aV/OQkH6m13rZm/8Ne+WPaOCEvSWu2flE3f1H385tpB0uzktxVSim11kVJUkqZUWu9tpTyh7Tbq246eNFSyn5pB1wL005i90zy+LQdw4trrZ8aW5Ba653de7FqvpC2TSWtn/D3Sikz0nbkd6V1cbhHWnfBa0spWyV5dFqXss3TBhB+eFrrkIvSrpRfOvwGtda70sJDVoF95zrh/LSWQJekBWznpe3j9k8bsP/YtNYiL0gbgPEXaS0SNkySWmstzfq11htLKf+bFhxskSXb1ktKKU9Na069Rdr2PDttX/3GWuu8yf4n10Fnp42t9Jy0cZa+liSllEE36p3Sgp/BHUavTfKhUsppaXf4u7rWumDwYqWUwfZ0Rff3erXWc0sp707y2rRWRX9IO2jeNq0u35Lk/WO3a1bbxmnfcYPWltd163iwb9ys+/mnwRNqrT8spRySFpQflHbR6uNJPlFr/c5aKndvdMeONe0YYzA4/4K0VgZvLKU8O60lwf9089bKftN34MSov+lN/a1lo06k1vaUifXZflKWTg0H3ZX+Ku1g6aPp+mCnffiG75AyGGl8UVqf/Y+ldTnadG38f32ZsmSckfcu4/H/zJLm1puPeWyztKty16cbgLGb/zfdc65PS5kXJPmPtAE0xx1vw7Ta9bhllrRe+LtxHn9m99hJ3d8bpe38b01r4XVr2tXwf8qSu+C4kj05dWXfOU2ntAOcYzPOla20LriDFiKbd/OOT7sKt8LxSrLkCtzzujr+eVr3zJO7z8M6eTVtLdXbBlnSBfp3aaHr/0sbHPO3ac3VBy1Gdhh63t3GrUvrYvS9tFYps4eX674TD+xe+zPd9+fhMdbMZNbtzLRuB4uSnDI0b/u045vfpnXXO2RZzx/1/7CuT0P7tq2TPHnou2vQYuHP3XHItt38t9pvTp1J/U3vSf2t5fU96gKM4AM2kT7bH8iYEKF7fNe0rkpXpN3i7uNpB2OvG1pmq7QD7+0n8//o+5TWeucPaQNe3nto/uAA9xFpoc9tWbp5/NZpdx9alOSMwWeg+7l5WguFg6Mb2Nqsy/26+vhNWouFGd0O/1lpY5/8KUPNNtNaAz077QRm81GXvy+Tfee6N2XJOFvndfX3xKH6GtzedbnjlQwdWG2QdnXtXqP+v9alKS0E/2DawPt3pLVg/dlg20lrpTe8XY7tslm6untvt9xx4y3XzXPhY+3W7ePT7ta2KK1r+hfSWvPdkhYAPn/UZTTdrc6GL3gMujgf2/39l/abU3tSf9N7Un+TNw1WSC+UUjZNOykZjGVxXSllcNvOO0opT0ry30m+Vms9qHuspHUjekhayPD0tC4sSVLTmnG/rdb6+bX87/Ra13XoM0l2S/LMWuv5XXewhUPLPDlt5PkN0nYGV6Sd6Oybdtep59Vab1jrheduSimvT7uLyvppdxm6NcnuaQfGr6i1fmaExes9+851w1AT7MHfM2qtC0spH0gbe+altdYPdo89OG3Q8DlpJ6cL0lp1bZ7kP2utr13Lxe+1UsrsJNsl+WWt9fdD8z+btp3tX2u9otv27pPWzeyWtKuhj03bDv+r1vqasZ8DRqeU8oy0AU8fmtZl4Zq0fekna60/HWHRGDK8zZRSNq613lpKeV7aGHofqLW+rHvMfnMKUn/Tm/qbfL0ZQ6gz0T7bf06W9D9M8ua0Lg9JG7T2i2l3uPpm7camYa37c1ofz33TUuHzuxObjWrXv7PW+t+llEeljY2wT1o/1N8l+b9JPioMmjpqrW8vpVyY5AlpLYDuSmtJ8gkHxVOCfec6opSyXloV1W6fuU1ac+zr0gYPT2K8kqmmtrGAFgzPK6Xsmjbe1jdrrVd0y9VSyrZpLfruSNt2L0sbmPrjg2XWWsFZrlrrJ5N8spSyY5JrahvzjilkcIGjlDLYcd7aPTS3+7n4GMV+c+pRf9Ob+ls7+tZCaGba3YqenDY46fO7efdJG3Dz7WkDbR5Wa/1yN+DiolLKc9P6cn+11nrjiIrPGKWUg9Ja/nw6bWySOWl3Xnl5bQOIDSfK903yh1rrzaMqLxMz2O5GXQ6WsO9c95Q2ePsD07r7PS9tPJPDxwsLSikznahOHV2ot1ta6POUJI+ttX5rzOOPS2uJd2Gt9aaRFJQJ0WJr+uj2mzuntcB7U1qXv4fXWn83zrL2m1OM+pve1N/k6VUglCSllMenhQez0gaRujzJPdOSxlvSRhU/ZWQFZIVKKdultQo6MMmr08ZYGLg9yeNqrd8dQdFgnWXfOb2VUnZJG1x6m7Txmman3XJ8zySnJXlVrfUmJ6dTUynlYUn2SBsXYfu0q5/3TfL6Wut/jbJssK4qpeycFpxvm3YTjO3S7nT6kLQxLF9Wa/3Z6ErI8qi/6U39rT29C4QSfbans1LKTknendZSYb1u9nfTWgp9sdZ64ajKBus6+87pq5Syd9q4a9um3YljRtq4UKck+Vyt9Vph0NRVSnlr2p34Nkn77vte2iDun6m13j7KssG6quuW+Zm08PXOtKE2Lkm7OPLZWutV9ptTl/qb3tTf2tPLQGhAn+3pp5SyRVogdFeSM5N8vdZ650gLBT1j3zn9lFI2zJI+9Zcn+a595/TRjfX0kCQ3JvlBrfWO5T8DWF1d1+h90u58elXatme/OU2ov+lN/a09vQ2EJIoAK8++EwAA1g29DYQAAAAA+mq9FS8CAAAAwLpEIAQAAADQMwIhAAAAgJ4RCAEAAAD0jEAIAAAAoGcEQgAAAAA9IxACAAAA6BmBEADQa6WUV5dSNlnDr/nPpZQDV7DMfqWUR65gmZeWUo4aZ/7sUsolq1tOAKC/Sq111GUAABiZUsqCJHNrrdev5fc9LskttdZ3rsJzZyf5Qq119zVdLgCgH7QQAgCmvFLKUaWUi0spPyqlnNa1kPl6N+/cUspO3XKnlFKePvS8W7qf+5VSzi+lfKqU8tNSyumleVWS7ZKcV0o5bznvf0sp5cRSyqXd+83q5s8ppXy3K8dnSylbji1HKWVBKeUtpZSLSik/LqX8ZRfovDTJa0op80spj1nG+x5XSnld9/tDuv//R0levvprFQDoM4EQADCllVIelOT/JNm/1rpXkr9J8t4kp9Za90xyepL3TOClHpzk1Ul2S3K/JI+qtb4nyW+TPK7W+rjlPPceSebVWh+U5BtJ3tzN/0iSN3Tl+PHQ/LGur7XuneR9SV5Xa12Q5P1JTqy1zqm1fmsC5T85ySu7dQAAsFoEQgDAVLd/kk8OunTVWv+Q5BFJPtY9flqSR0/gdb5fa72q1rooyfwks1eiDIuSfKL7/aNJHl1K2TzJFrXWb3TzT02y7zKe/5nu54Ur+b5JklLKFt17fbObddrKvgYAwDCBEACwLrkr3fFNKWW9JBsMPXb70O8Lk8xcjfdZ2UEYB++9uu8LALBGCIQAgKnu60meUUq5V5KUUrZK8u0kR3SPH5lk0OVqQZKHdL8/Jcn6E3j9m5NsuoJl1ksyGJvoOUkuqLXelOSPQ+P/PC+tO9lETeR9kyS11huT3FhKGbSEOnIl3gcA4G4EQgDAlFZrvTTJ8Um+0Q2o/K4kr0zyglLKxWlBzN90i38oyWO75R6R5E8TeIsPJjl7eYNKd6+zT3er9/2T/HM3/+gk7+jKMWdo/kT8d5KnLm9Q6TFekOQ/Sinzk5SVeB8AgLtx23kAgBUopdxSa73nqMsBALCmaCEEAAAA0DMGNQQA6JRSvpdkwzGznzfZrYNKKf+Q5BljZn+y1nr8ZL4vANBfuowBAAAA9IwuYwAAAAA9IxACAAAA6BmBEAAAAEDPCIQAAAAAeub/A/O+qoWTZAsVAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 1440x720 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "Countpointsevritysort10.plot.bar(stacked=True,rot=15, title=\"Accidents Time \",figsize=(20, 10))\n",
-                "plt.xticks(fontsize=20)\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 65,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Accident_Index</th>\n",
-                            "      <th>1st_Road_Class</th>\n",
-                            "      <th>1st_Road_Number</th>\n",
-                            "      <th>2nd_Road_Class</th>\n",
-                            "      <th>2nd_Road_Number</th>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Carriageway_Hazards</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Day_of_Week</th>\n",
-                            "      <th>Did_Police_Officer_Attend_Scene_of_Accident</th>\n",
-                            "      <th>...</th>\n",
-                            "      <th>Pedestrian_Crossing-Physical_Facilities</th>\n",
-                            "      <th>Police_Force</th>\n",
-                            "      <th>Road_Surface_Conditions</th>\n",
-                            "      <th>Road_Type</th>\n",
-                            "      <th>Special_Conditions_at_Site</th>\n",
-                            "      <th>Speed_limit</th>\n",
-                            "      <th>Time</th>\n",
-                            "      <th>Urban_or_Rural_Area</th>\n",
-                            "      <th>Weather_Conditions</th>\n",
-                            "      <th>Year</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>2005215401199</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-09</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>Staffordshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Dual carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:30</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>2005215401199</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-09</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>Staffordshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Dual carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:30</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>2005215401199</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-09</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>Staffordshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Dual carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:30</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>2005215401199</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-09</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>Staffordshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Dual carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:30</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>2005215401199</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-01-09</td>\n",
-                            "      <td>Sunday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>Staffordshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Dual carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:30</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>388</th>\n",
-                            "      <td>2017210173970</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>NA</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-04-06</td>\n",
-                            "      <td>Thursday</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Staffordshire</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Roundabout</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>14:45</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>389</th>\n",
-                            "      <td>2.02E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>4091</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>12/10/2018</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>4</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>19:05</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>2018</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>390</th>\n",
-                            "      <td>2.02E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>22/12/2018</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>18:45</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2018</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>391</th>\n",
-                            "      <td>2.01921E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>11/11/2019</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>9:48</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>392</th>\n",
-                            "      <td>2.01921E+12</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>51</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>08/08/2019</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>21</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>19:16</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>393 rows × 33 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    Accident_Index 1st_Road_Class 1st_Road_Number 2nd_Road_Class  \\\n",
-                            "0    2005215401199              A              51              A   \n",
-                            "1    2005215401199              A              51              A   \n",
-                            "2    2005215401199              A              51              A   \n",
-                            "3    2005215401199              A              51              A   \n",
-                            "4    2005215401199              A              51              A   \n",
-                            "..             ...            ...             ...            ...   \n",
-                            "388  2017210173970              A              51             NA   \n",
-                            "389       2.02E+12              A              51              3   \n",
-                            "390       2.02E+12              A              51              3   \n",
-                            "391    2.01921E+12              A              51              6   \n",
-                            "392    2.01921E+12              A              51              6   \n",
-                            "\n",
-                            "    2nd_Road_Number Accident_Severity Carriageway_Hazards        Date  \\\n",
-                            "0                51            Slight                None  2005-01-09   \n",
-                            "1                51            Slight                None  2005-01-09   \n",
-                            "2                51            Slight                None  2005-01-09   \n",
-                            "3                51            Slight                None  2005-01-09   \n",
-                            "4                51            Slight                None  2005-01-09   \n",
-                            "..              ...               ...                 ...         ...   \n",
-                            "388               0            Slight                None  2017-04-06   \n",
-                            "389            4091                 1                   0  12/10/2018   \n",
-                            "390               5                 2                   0  22/12/2018   \n",
-                            "391               0                 3                   0  11/11/2019   \n",
-                            "392               0                 2                   0  08/08/2019   \n",
-                            "\n",
-                            "    Day_of_Week Did_Police_Officer_Attend_Scene_of_Accident  ...  \\\n",
-                            "0        Sunday                                           2  ...   \n",
-                            "1        Sunday                                           2  ...   \n",
-                            "2        Sunday                                           2  ...   \n",
-                            "3        Sunday                                           2  ...   \n",
-                            "4        Sunday                                           2  ...   \n",
-                            "..          ...                                         ...  ...   \n",
-                            "388    Thursday                                           2  ...   \n",
-                            "389           6                                           1  ...   \n",
-                            "390           7                                           1  ...   \n",
-                            "391           2                                           1  ...   \n",
-                            "392           5                                           1  ...   \n",
-                            "\n",
-                            "    Pedestrian_Crossing-Physical_Facilities   Police_Force  \\\n",
-                            "0                                         4  Staffordshire   \n",
-                            "1                                         4  Staffordshire   \n",
-                            "2                                         4  Staffordshire   \n",
-                            "3                                         4  Staffordshire   \n",
-                            "4                                         4  Staffordshire   \n",
-                            "..                                      ...            ...   \n",
-                            "388                                       0  Staffordshire   \n",
-                            "389                                       4             21   \n",
-                            "390                                       0             21   \n",
-                            "391                                       5             21   \n",
-                            "392                                       0             21   \n",
-                            "\n",
-                            "    Road_Surface_Conditions         Road_Type Special_Conditions_at_Site  \\\n",
-                            "0                       Dry  Dual carriageway                       None   \n",
-                            "1                       Dry  Dual carriageway                       None   \n",
-                            "2                       Dry  Dual carriageway                       None   \n",
-                            "3                       Dry  Dual carriageway                       None   \n",
-                            "4                       Dry  Dual carriageway                       None   \n",
-                            "..                      ...               ...                        ...   \n",
-                            "388                     Dry        Roundabout                       None   \n",
-                            "389                       2                 3                          0   \n",
-                            "390                       1                 1                          0   \n",
-                            "391                       2                 1                          0   \n",
-                            "392                       1                 1                          0   \n",
-                            "\n",
-                            "    Speed_limit   Time Urban_or_Rural_Area  Weather_Conditions  Year  \n",
-                            "0            30  14:30               Urban  Fine no high winds  2005  \n",
-                            "1            30  14:30               Urban  Fine no high winds  2005  \n",
-                            "2            30  14:30               Urban  Fine no high winds  2005  \n",
-                            "3            30  14:30               Urban  Fine no high winds  2005  \n",
-                            "4            30  14:30               Urban  Fine no high winds  2005  \n",
-                            "..          ...    ...                 ...                 ...   ...  \n",
-                            "388          30  14:45               Urban  Fine no high winds  2017  \n",
-                            "389          40  19:05                   2                   5  2018  \n",
-                            "390          40  18:45                   2                   1  2018  \n",
-                            "391          30   9:48                   1                   1  2019  \n",
-                            "392          30  19:16                   2                   1  2019  \n",
-                            "\n",
-                            "[393 rows x 33 columns]"
-                        ]
-                    },
-                    "execution_count": 65,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result22=pd.merge(ok3,ok, on=['Longitude','Latitude'])\n",
-                "result22"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 66,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result22=result22.drop_duplicates(subset=['Accident_Index'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 67,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "0      Tamworth\n",
-                            "5      Tamworth\n",
-                            "10     Tamworth\n",
-                            "15     Tamworth\n",
-                            "20     Tamworth\n",
-                            "         ...   \n",
-                            "386    Tamworth\n",
-                            "387    Tamworth\n",
-                            "388    Tamworth\n",
-                            "389         258\n",
-                            "391         258\n",
-                            "Name: Local_Authority_(District), Length: 135, dtype: object"
-                        ]
-                    },
-                    "execution_count": 67,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result22['Local_Authority_(District)']"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 68,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result22spark=spark.createDataFrame(result22) \n",
-                "\n",
-                "result222=result22spark.withColumn(\n",
-                "    \"Road_Type\",\n",
-                "    when(\n",
-                "        col(\"Road_Type\") == 1,\n",
-                "        \"Roundabout\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 2,\n",
-                "        \"One way street\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 3,\n",
-                "        \"Dual carriageway\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 6,\n",
-                "        \"Single carriageway\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 7,\n",
-                "        \"Slip road\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 9,\n",
-                "        \"Unknown\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 12,\n",
-                "        \"One way street/Slip road\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Road_Type\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 69,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result222=result222.withColumn(\n",
-                "    \"Accident_Severity\",\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 1,\n",
-                "        \"Fatal\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 2,\n",
-                "        \"Serious\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Accident_Severity\") == 3,\n",
-                "        \"Slight\"\n",
-                "    ).otherwise(col(\"Accident_Severity\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 70,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+------------------+---------------+\n",
-                        "|Accident_Severity|         Road_Type|Total accidents|\n",
-                        "+-----------------+------------------+---------------+\n",
-                        "|           Slight|Single carriageway|              6|\n",
-                        "|           Slight|  Dual carriageway|             47|\n",
-                        "|           Slight|        Roundabout|             74|\n",
-                        "|          Serious|        Roundabout|              2|\n",
-                        "|          Serious|  Dual carriageway|              4|\n",
-                        "|            Fatal|  Dual carriageway|              2|\n",
-                        "+-----------------+------------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "dangeorusroadtype = result222.groupby('Accident_Severity','Road_Type').agg(F.count(result222.Accident_Index).alias('Total accidents'))\n",
-                "dangeorusroadtype.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 71,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result222=result222.withColumn(\n",
-                "    \"Junction_Detail\",\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 0,\n",
-                "        \"Not at junction or within 20 metres\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 1,\n",
-                "        \"Roundabout\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 2,\n",
-                "        \"Mini-roundabout\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 3,\n",
-                "        \"T or staggered junction\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 5,\n",
-                "        \"Slip road\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 6,\n",
-                "        \"Crossroads\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 7,\n",
-                "        \"More than 4 arms (not roundabout)\"\n",
-                "    ).when(\n",
-                "        col(\"Junction_Detail\") == 8,\n",
-                "        \"Private drive or entrance\"\n",
-                "    )\n",
-                "    .when(\n",
-                "        col(\"Junction_Detail\") == 9,\n",
-                "        \"Other junction\"\n",
-                "    ).when(\n",
-                "        col(\"Junction_Detail\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Junction_Detail\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 72,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+---------------+\n",
-                        "|Accident_Severity|     Junction_Detail|Total accidents|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "|           Slight|          Crossroads|              2|\n",
-                        "|           Slight|T or staggered ju...|              7|\n",
-                        "|          Serious|Not at junction o...|              3|\n",
-                        "|           Slight|          Roundabout|            100|\n",
-                        "|           Slight|      Other junction|              1|\n",
-                        "|          Serious|          Roundabout|              3|\n",
-                        "|           Slight|           Slip road|              1|\n",
-                        "|            Fatal|T or staggered ju...|              2|\n",
-                        "|           Slight|Not at junction o...|             14|\n",
-                        "|           Slight|More than 4 arms ...|              2|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "dangeorusroadtype = result222.groupby('Accident_Severity','Junction_Detail').agg(F.count(result222.Accident_Index).alias('Total accidents'))\n",
-                "dangeorusroadtype.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 73,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "dangerousroad_df=dangeorusroadtype.toPandas()\n",
-                "dangerousroad_df=dangerousroad_df.pivot(index ='Junction_Detail', columns ='Accident_Severity')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 74,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Junction_Detail</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>Crossroads</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>More than 4 arms (not roundabout)</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Not at junction or within 20 metres</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>14.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Other junction</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Roundabout</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>100.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Slip road</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>T or staggered junction</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                                    Total accidents               \n",
-                            "Accident_Severity                             Fatal Serious Slight\n",
-                            "Junction_Detail                                                   \n",
-                            "Crossroads                                      NaN     NaN    2.0\n",
-                            "More than 4 arms (not roundabout)               NaN     NaN    2.0\n",
-                            "Not at junction or within 20 metres             NaN     3.0   14.0\n",
-                            "Other junction                                  NaN     NaN    1.0\n",
-                            "Roundabout                                      NaN     3.0  100.0\n",
-                            "Slip road                                       NaN     NaN    1.0\n",
-                            "T or staggered junction                         2.0     NaN    7.0"
-                        ]
-                    },
-                    "execution_count": 74,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "dangerousroad_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 75,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:title={'center':'Accidents on Study Road'}, xlabel='Junction_Detail'>"
-                        ]
-                    },
-                    "execution_count": 75,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAFECAYAAAAaxygBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABYHklEQVR4nO2dZ3hVVdaA3wWhd8QCooANwRBCb4ooCjjYG44NVERFwbG3GUVHRkYdHdFvRnFU1AEUUdQRC4KgooIUQxEQUJAuRRGQDuv7sfZNTi43IZBcksh6nydP7j11nXPP2WuvstcWVcVxHMdxCpoShS2A4ziO8/vEFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOAWKiHwrIh1yWNdBRJbuX4mKNyKiInJMYcuRGyKySEROK2w5nKKHKxgHERkvIr+ISJn8HktVT1DV8QUgVq4UlUZNRK4RkbkiskFEfhKR90WkUlg3WEQeLiS5BovINhHZKCI/i8jHInJ8YcjiHLi4gjnAEZG6wEmAAmcXrjTFCxE5Gfgb8EdVrQQ0AF4vXKmy8aiqVgQOB5YBLxSyPM4BhisY50pgIjAY6B5dISJHiMhbIrJaRNaKyDORddeKyJzQc58tIk3D8kzLQkTKhZ70LyIyG2gRd/xaIvJmOP5CEekbWddPRIaLyCvhHN+KSPOw7lXgSOB/oYd+p4iUFZH/BjnXichkETk00QWLSINgta0Lxz07sm6wiPyfiIwK550kIkfncO9aAF+p6jcAqvqzqr6sqhtEpBdwGXBnkPF/4fjZXF7xVo6I3CEiK0RkuYhcHVneIlhIJSPLzheR6TnIlomqbgaGA+l5vAddReQbEVkvIktEpF/c/btCRH4M9/q+PZ3fOYBRVf87gP+ABUBvoBmwHTg0LC8JTAeeBCoAZYETw7qLsB5xC0CAY4A6Yd0i4LTweQDwOVAdOAKYBSwN60oAU4H7gdLAUcAPQOewvh+wBfhDkOURYGJE7szzhO/XAf8DyoftmwGVE1xvqXDN94bzngpsAOqH9YOBtUBLIAUYAryWw707CdgMPAi0A8rErR8MPBy3TIFjEm0DdAF+AlLDPR8a3R6YDZwR2XckcFsOskWPWwF4FZiex3vQAWgUfqO0INO5YV1DYCPQHigDPAHsiP4W/ud/sT+3YA5gROREoA4wXFWnAt8Dl4bVLYFawB2q+puqblHVCWFdT8z9MlmNBar6Y4JTXAz0V+vZLwEGRta1AA5W1YdUdZuq/gA8D1wS2WaCqr6vqjuxBrJxLpezHTgIa4x3qupUVV2fYLvWQEVgQDjvJ8B7wB8j24xU1a9VdQemYNITnVBVPwfOB5oCo4C1IvJE1MrYSy4GXlLVWar6G6Zko7wMXA4gItWBzpgSyonbRWQdpjxOBK4Iy3O9B6o6XlVnquouVZ0BDANODvteCLynqp+p6lbgL8Cufbxe53eOK5gDm+7AaFVdE74PJctNdgTwY2hk4zkCU0Z7ohawJPI9qoTqALWCi2ZdaAjvBaJurZWRz5uAsiKSksO5XgU+Al4L7qVHRaRUTjKparRR/BGLU+R03oo5nBNV/UBVz8KstHOAHpgC3hdyu18A/wXOEpEKmDL6XFVX5HK8x1W1KlAXs7TqR8+T0z0QkVYiMi64Ln8FrgdqJJIxKMK1eb5C54DCFcwBioiUwxqpk0VkpYisBG4BGotIY6wROTKHBn0JkFNcIsoKTBnFODLuGAtVtWrkr5Kq/iGPl5CtDLiqblfVB1W1IdAWOBOLL8WzHDhCRKLP/pGYy2+fCb39scAnmItrNxkDmzA3XozDIp9zu1+o6jLgK8xqugJTqnmRbTFwM/BU+N33dA+GAu8CR6hqFeBZzBW6m4wiUh6zHB1nN1zBHLicC+zEfOrp4a8BFjO5Evgaa0wGiEiFEERvF/b9D+Z+aSbGMSJSJ8E5hgP3iEg1EakN9Ims+xrYICJ3hWSAkiKSKiItEhwnET9hcRsAROQUEWkU3FPrMZdZItfNJKyRv1NESomN2TkLeC2P581ERM4RkUvC9YmItMRcSRMTyRjIAC4N19uFLNcT2P3qISINQ8P9QILTvgLcicVI3sqrrKr6MaZYerHne1AJ+FlVt4RrujRyqBHAmSJyooiUBh7C2xEnB/zBOHDpjvn7F6vqytgf8AyW/SRYo3MMsBhYCnQDUNU3gP5YT3cD8DbmIornQcz1shAYTaTHHeIqZ2KKbSGwBlNcVfIo/yPAn4N77XbMEhiBKZc5wKck6OGr6rZwXWeEc/4LuFJV5+bxvFF+Aa4F5ofz/hd4TFWHhPUvAA2DjG+HZTeH86/D7nNsOar6AfBPzApaEP7HMxJzL45U1U17Ke9jmHKK/bY53YPewEMisgFLwhgekfFb4Ebst18R7oEPnnUSIqo+4ZjjFCdE5HvgOlUdU9iyOE5uuAXjOMUIEbkAi+0ksm4cp0iRU0aO4zhFDBEZj8XMrojLAHOcIom7yBzHcZyk4C4yx3EcJykUCRdZjRo1tG7duoUthuM4TrFi6tSpa1T14MKWIyeKhIKpW7cuU6ZMKWwxHMdxihUikqhEU5HBXWSO4zhOUnAF4ziO4yQFVzCO4zhOUigSMZhEbN++naVLl7Jly5bCFsU5AClbtiy1a9emVKlEBZkdx8kLRVbBLF26lEqVKlG3bl1EZM87OE4BoaqsXbuWpUuXUq9evcIWx3GKLUXWRbZlyxYOOuggVy7OfkdEOOigg9x6dpx8UmQVDODKxSk0/NlznPxTpBWM4ziOU3xxBeM4juMkhSIb5E8WIsKtt97KP/7xDwAef/xxNm7cSL9+/ZJ63oyMDJo0acIHH3xAly5d9nr/5cuX07dvX0aMGLHbug4dOvD444/TvHnzvT7u+PHjKV26NG3bts1xm++++47rrruOdevWsXXrVk466SQGDRq01+faG9q2bcuXX37JokWL+PLLL7n00kv3vNMBQKOXGyX1+DO7z0zq8Z0DiwPOgilTpgxvvfUWa9as2a/nHTZsGCeeeCLDhg3bp/1r1aqVULnkl/Hjx/Pll1/muk3fvn255ZZbyMjIYM6cOfTp0yfX7fPDjh07ADJlWrRoEUOHDk3a+RzHSR4HnIJJSUmhV69ePPnkk7utW7RoEaeeeippaWl07NiRxYsXA9CjRw/69u1L27ZtOeqoo7I19I899hgtWrQgLS2NBx5INIW6pb2+8cYbDB48mI8//jhbdtLf//53GjVqROPGjbn77rsBWLBgAaeddhqNGzemadOmfP/99yxatIjU1FQANm/ezCWXXEKDBg0477zz2Lx5c+bxRo8eTZs2bWjatCkXXXQRGzduBKze2wMPPEDTpk1p1KgRc+fOZdGiRTz77LM8+eSTpKen8/nnnyeUf8WKFdSuXTvze6NG1oveuXMnd9xxR+b1P/fccwBccskljBo1KnP7Hj16MGLEiBy3Hz9+PCeddBJnn302DRs2BKBixYoA3H333Xz++eekp6fz5JNP0r59ezIyMjKPfeKJJzJ9+vSEcjuOU7jsUcGIyIsiskpEZkWWVReRj0VkfvhfLSwXERkoIgtEZIaINE2m8PvKjTfeyJAhQ/j111+zLe/Tpw/du3dnxowZXHbZZfTt2zdz3YoVK5gwYQLvvfdepiIYPXo08+fP5+uvvyYjI4OpU6fy2Wef7Xa+L7/8knr16nH00UfToUOHzMb3gw8+4J133mHSpElMnz6dO++8E4DLLruMG2+8kenTp/Pll19Ss2bNbMf797//Tfny5ZkzZw4PPvggU6dOBWDNmjU8/PDDjBkzhmnTptG8eXOeeOKJzP1q1KjBtGnTuOGGG3j88cepW7cu119/faZ1ctJJJyW8X7fccgunnnoqZ5xxBk8++STr1q0D4IUXXqBKlSpMnjyZyZMn8/zzz7Nw4UK6devG8OE2jfu2bdsYO3YsXbt2zXF7gGnTpvHUU08xb968bOceMGAAJ510EhkZGdxyyy1cc801DB48GIB58+axZcsWGjdunMMv7ThOYZIXC2YwEB80uBsYq6rHAmPDd4AzgGPDXy/g3wUjZsFSuXJlrrzySgYOHJht+VdffZXp67/iiiuYMGFC5rpzzz2XEiVK0LBhQ3766SfAFMzo0aNp0qQJTZs2Ze7cucyfP3+38w0bNoxLLrkEsN59zE02ZswYrrrqKsqXLw9A9erV2bBhA8uWLeO8884DbER5bH2Mzz77jMsvvxyAtLQ00tLSAJg4cSKzZ8+mXbt2pKen8/LLL/Pjj1nFVs8//3wAmjVrxqJFi/J8v6666irmzJnDRRddxPjx42ndujVbt25l9OjRvPLKK6Snp9OqVSvWrl3L/PnzOeOMMxg3bhxbt27lgw8+oH379pQrVy7H7QFatmyZp0GNF110Ee+99x7bt2/nxRdfpEePHnm+Dsdx9i97DPKr6mciUjdu8TlAh/D5ZWA8cFdY/oraNJkTRaSqiNRU1RUFJnEB8ac//YmmTZty1VVX5Wn7MmXKZH6OzQKqqtxzzz1cd911Oe63c+dO3nzzTd555x369++fOUp8w4YN+buABKgqp59+eo5xntg1lCxZMjPWkVdq1arF1VdfzdVXX01qaiqzZs1CVXn66afp3Lnzbtt36NCBjz76iNdffz1Tuea0/fjx46lQoUKe5Chfvjynn34677zzDsOHD8+03hzHKXrsawzm0IjSWAkcGj4fDiyJbLc0LNsNEeklIlNEZMrq1av3UYx9p3r16lx88cW88MILmcvatm3La6+9BsCQIUNydBnF6Ny5My+++GJmnGPZsmWsWrUKgI4dO7Js2TLGjh1LWloaS5YsYdGiRfz4449ccMEFjBw5ktNPP52XXnqJTZs2AfDzzz9TqVIlateuzdtvvw3A1q1bM9fHaN++fWbge9asWcyYMQOA1q1b88UXX7BgwQIAfvvtt91cTvFUqlRpj8ruww8/ZPv27QCsXLmStWvXcvjhh9O5c2f+/e9/Z66bN28ev/32GwDdunXjpZde4vPPP8/Mmstt+72Rr2fPnvTt25cWLVpQrVq1XPd3HKfwyHeQP1grug/7DVLV5qra/OCDC2dCtttuuy1bNtnTTz/NSy+9RFpaGq+++ipPPfVUrvt36tSJSy+9lDZt2tCoUSMuvPBCNmzYwK5du1iwYAHVq1dn2LBhme6uGBdccAHDhg2jS5cunH322TRv3pz09HQef/xxAF599VUGDhxIWloabdu2ZeXKldn2v+GGG9i4cSMNGjTg/vvvp1mzZgAcfPDBDB48mD/+8Y+kpaXRpk0b5s6dm+s1nHXWWYwcOTLXIP/o0aNJTU2lcePGdO7cmccee4zDDjuMnj170rBhQ5o2bUpqairXXXddpmXUqVMnPv30U0477TRKly4NkOv2OZGWlkbJkiVp3LhxZmJGs2bNqFy5cp6tT8dxCgeJuXty3chcZO+pamr4/h3QQVVXiEhNYLyq1heR58LnYfHb5Xb85s2ba/yMlnPmzKFBgwb7ck2FzqxZs3jxxRezBdidgmP58uV06NCBuXPnUqJE8hIhi+Iz6ONgnCgiMlVV934A3H5iX9/Od4Hu4XN34J3I8itDNllr4NeiGH9JNqmpqa5cksQrr7xCq1at6N+/f1KVi+M4+WePQX4RGYYF9GuIyFLgAWAAMFxErgF+BC4Om78P/AFYAGwC3IdRjOjfvz9vvPFGtmUXXXQR9913XyFJtDtXXnklV155ZWGL4ThOHshLFtkfc1jVMcG2CtyYX6GcwuG+++4rUsrEcZzijfsYHMdxnKTgCsZxHMdJCq5gHMdxnKRQbMr117171J432gsWDehaoMdzHMdxsuMWTC5s3ryZk08+menTp5Oenk56ejrVq1enXr16pKenc9pppyXc729/+1uejl+3bt2kTRvQs2dPZs+evdvywYMHc9NNN+3TMdetW8e//vWvfZapR48emfcuPT19t1pwUQYPHszy5cvzdMxYdetLLrkkYS04x3EKB1cwufDiiy9y/vnn07hxYzIyMsjIyODss8/mscceIyMjgzFjxiTcL68KJpn85z//ySx9X1DkV8EAmfcuIyMjW7XqePKqYKLccMMNPProo/mSz3GcgsMVTC4MGTKEc845J8f1w4YNo1GjRqSmpnLXXXcBNn/J5s2bSU9P57LLLgOsEnOzZs044YQT8jQT5A033EDz5s054YQTss0xM3nyZNq2bUvjxo1p2bIlGzZsYOfOndx+++2kpqaSlpbG008/DVixyVh1hJdeeonjjjuOli1b8sUXX2Qeb/Xq1VxwwQW0aNGCFi1aZK7r168fV199NR06dOCoo47KtDTuvvtuvv/+e9LT07njjjtYsWIF7du3Jz09ndTU1BxLzeTGQw89RIsWLUhNTaVXr16oKiNGjGDKlClcdtllpKens3nz5oTbxXPSSScxZsyYvS7k6ThOcnAFkwPbtm3jhx9+oG7dugnXL1++nLvuuotPPvmEjIwMJk+ezNtvv82AAQMoV64cGRkZDBkyBDBLaOrUqUyZMoWBAweydu3aXM/dv39/pkyZwowZM/j000+ZMWMG27Zto1u3bjz11FNMnz6dMWPGUK5cOQYNGsSiRYvIyMjInMcmyooVK3jggQf44osvmDBhQja32c0338wtt9zC5MmTefPNN+nZs2fmurlz5/LRRx/x9ddf8+CDD7J9+3YGDBjA0UcfTUZGBo899hhDhw6lc+fOZGRkZLoR98Qdd9yR6SKbOXMmN910E5MnT2bWrFls3ryZ9957jwsvvJDmzZszZMgQMjIyKFeuXMLt4ilRogTHHHOMT0DmOEWEYhPk39+sWbOGqlWr5rh+8uTJdOjQgVihzssuu4zPPvuMc889d7dtBw4cyMiRIwFYsmQJ8+fP56CDDsrx2MOHD2fQoEHs2LGDFStWMHv2bESEmjVr0qJFC8DmtAGbU+b6668nJcV+yurVq2c71qRJk7LJ2a1bt8wKy2PGjMmmcNavX59ZGbpr166UKVOGMmXKcMghh2TOgROlRYsWXH311Wzfvp1zzz03Twrmscce48ILL8z8/uabb/Loo4+yadMmfv75Z0444QTOOuus3fYbN25cnrY75JBDWL58eWYBUMdxCg9XMDlQrly5bFMb7yvjx49nzJgxfPXVV5QvX54OHTrketyFCxfy+OOPM3nyZKpVq0aPHj0KRI5E7Nq1i4kTJ1K2bNnd1kXnv8lp/pj27dvz2WefMWrUKHr06MGtt966V2VctmzZQu/evZkyZQpHHHEE/fr1S3ited0utm25cuXyLIPjOMmj2CiY/Z1WXK1aNXbu3MmWLVsSNsAtW7akb9++rFmzhmrVqjFs2DD69OkDQKlSpdi+fTulSpXi119/pVq1apQvX565c+cyceLEXM+7fv16KlSoQJUqVfjpp5/44IMP6NChA/Xr12fFihVMnjyZFi1asGHDBsqVK8fpp5/Oc889xymnnEJKSgo///xzNiumVatW3Hzzzaxdu5bKlSvzxhtvZE4x3KlTJ55++mnuuOMOADIyMnK1QuLnZvnxxx+pXbs21157LVu3bmXatGmZtcJuuukmWrZsmeu1xpREjRo12LhxIyNGjMi0bqLnym27eObNm0dqamqu53UcZ/9QbBRMYdCpUycmTJiQMB25Zs2aDBgwgFNOOQVVpWvXrpkJAb169SItLY2mTZvy4osv8uyzz9KgQQPq169P69atcz1n48aNadKkCccffzxHHHEE7dq1A6B06dK8/vrr9OnTh82bN1OuXDnGjBlDz549mTdvHmlpaZQqVYprr702WxpyzZo16devH23atKFq1arZFMjAgQO58cYbSUtLY8eOHbRv355nn302R9kOOugg2rVrR2pqKmeccQapqak89thjlCpViooVK/LKK68AMGPGDGrVqrXH+1u1alWuvfZaUlNTOeywwzLdf2Dpx9dffz3lypXjq6++ynG7KD/99BPlypXjsMMO2+O5HcdJPnmaDybZFNX5YKZNm8aTTz7Jq6++WqhyFCfWr1/PNddcs1tV5v3Bk08+SeXKlbnmmmsK5HhF4RmMx+eDcaL8XueDOSBo2rQpp5xyCjt37ixsUYoNMTdcYVC1alW6d+++5w0dx9kvuItsD1x99dWFLYKTR3wKZccpWrgF4ziO4yQFVzCO4zhOUnAF4ziO4ySF4hOD6VelgI/3a8Eez3Ecx8mGWzC54OX6s5PfasoTJ06kVatWpKen06BBA/r167dX+y9fvjzHAZb7yu23384nn3xSoMd0HMdwBZMLXq4/O/lVMN27d2fQoEFkZGQwa9YsLr744jzvu2PHDmrVqpU590tB0adPHwYMGFCgx3Qcx3AFkwterr9gy/WvWrWKmjVrAlbfLKYAf/vtN66++mpatmxJkyZNeOeddwCzts4++2xOPfVUOnbsyKJFizLLwGzZsoWrrrqKRo0a0aRJE8aNG5e5T9RCO/PMMxk/fjw7d+6kR48epKam0qhRI5588kkA6tSpw9q1a1m5cuUefxfHcfaO4hOD2c/ktVz/1KlTqVatGp06dcos1//MM8+QkZGRue2LL75I9erV2bx5My1atOCCCy7ItZpy//79qV69Ojt37qRjx47MmDGD448/nm7duvH666/TokUL1q9fv1u5/lgtsiixcv1Tp06lSpUqnHLKKTRp0gTIKtd/4oknsnjxYjp37sycOXMAK9c/btw4NmzYQP369bnhhhsYMGAAs2bNyry2f/zjH3Tu3Jn77ruPnTt3smnTplzv6S233EL9+vXp0KEDXbp0oXv37pQtW5b+/ftz6qmn8uKLL7Ju3TpatmyZ6X6cNm0aM2bMoHr16ixatCjzWP/3f/+HiDBz5kzmzp1Lp06dMqtEJyIjI4Nly5Yxa9YswKyxGE2bNuWLL77gggsuyFV+x3H2DlcwOeDl+gu+XP/999/PZZddxujRoxk6dCjDhg1j/PjxjB49mnfffZfHH38cMOtk8eLFAJx++um7XRPAhAkTMouLHn/88dSpUydXBXPUUUfxww8/0KdPH7p27UqnTp0y18VK/DuOU7C4iywHklGuf/r06TRp0iRP5frHjh3LjBkz6Nq1a9LL9cfiS8uWLaNixYrA3pXrP/zww+nRo0dmscvcOProo7nhhhsYO3Ys06dPZ+3atagqb775ZqYcixcvzqwBVqFChb26ppSUFHbt2pX5PXbvqlWrxvTp0+nQoQPPPvtstsnVvMS/4ySH4qNg+v1asH97IFquPxEtW7bk008/Zc2aNezcuZNhw4Zx8sknA1nl+oECKdcPZCvXD7BhwwZ27NiRWa4/pgDiXWStWrXi008/Ze3atWzfvj1bnbBYuf4YUbdeIhKV6z/00EO59tpr6dmzJ9OmTQPgyiuv5Ouvv95t/1GjRmVOdTx//nxKlixJ1apV6dy5M08//XTmum+++SZXOcCmR47NGDpv3jwWL15M/fr1qVu3LhkZGezatYslS5ZkyrFmzRp27drFBRdcwMMPP5wpa2x/L/HvOAWPu8hywcv1Zye/5fpfffVVbrnlFsqXL09KSgpDhgyhZMmS/OUvf+FPf/oTaWlp7Nq1i3r16iWcEjlK7969ueGGG2jUqBEpKSkMHjyYMmXK0K5dO+rVq0fDhg1p0KABTZs2BWDZsmVcddVVmdbNI488AsD27dtZsGABzZsX2YK0jlNs8XL9ueDl+veewizXvy+MHDmSadOm8de//nW3dUXhGYzHy/U7UbxcfzHGy/XvPYVZrn9f2LFjB7fddlthi+E4v0vcRbYHvFz/75uLLrqosEVwnN8tbsE4juM4SSFfCkZEbhGRb0VklogME5GyIlJPRCaJyAIReV1ESheUsI7jOE7xYZ8VjIgcDvQFmqtqKlASuAT4O/Ckqh4D/AIUzATpjuM4TrEivzGYFKCciGwHygMrgFOBS8P6l4F+wL/zeZ4Cz57JS7bM5s2b6dKlCwMHDsyc633x4sVUqVKFKlWqUKNGjYQFL//2t79x77337vH4devWZcqUKdSoUWPvL2AP9OzZk1tvvXW3gpeDBw9mypQpPPPMM3t9zHXr1jF06FB69+69TzJNnDiRm2++ma1bt7J161a6detGv379ssn07LPPUr58ea688socj5PbNUTv/bZt2zjttNP45JNPMisdOI6z/9hnC0ZVlwGPA4sxxfIrMBVYp6qxYd9LgcMT7S8ivURkiohMWb169b6KkVS8mnJ29kc15euvvz5X5bInove+dOnSdOzYkddff32fj+c4zr6THxdZNeAcoB5QC6gAdMnr/qo6SFWbq2rzWJ2sooZXU94/1ZSj9OvXL7Mm2eTJk0lLS8s8X3S0/fLly+nSpQvHHnssd955Z673Pjbi33Gc/Ut+/AanAQtVdTWAiLwFtAOqikhKsGJqA8vyL+b+x6sp779qyjlx1VVX8fzzz9OmTRvuvvvubOsyMjL45ptvKFOmDPXr18+c1yX+3qempmaW13EcZ/+SnyyyxUBrESkvIgJ0BGYD44DYtIPdgXfyJ2LhsDfVlFNSUjKrKSdi4MCBNG7cmNatW2dWU86N4cOH07RpU5o0acK3337L7Nmz+e6773arppySksKYMWO47rrr8lRNuXTp0nTr1i1z3ZgxY7jppptIT0/n7LPPTlhNuUaNGrlWU37ppZfo168fM2fOpFKlSrle1/3338+UKVPo1KkTQ4cOpUuXnA3edevWsWHDBtq0aQPApZdemm19x44dqVKlCmXLlqVhw4b8+OOPCY9TsmRJSpcuna2GmuM4+4f8xGAmASOAacDMcKxBwF3ArSKyADgIeKEA5NzveDXl/VdNeV/Ii3wxtm7dmqul5DhOcsjXOBhVfUBVj1fVVFW9QlW3quoPqtpSVY9R1YtUdWtBCbs/8WrKu5OsasqJqFq1KpUqVWLSpEkAvPbaa7nKFiN67wHWrl1LjRo1KFWqVJ72dxyn4Cg2uZuFUYTPqylnJ1nVlHPihRde4Nprr6VEiRKcfPLJVKlSJdd7B9nv/ZAhQxg3bhxdu3bd436O4xQ8Xk05F7ya8t5TkNWUN27cmOmyGzBgACtWrOCpp57aq2Ocf/75DBgwgOOOO26vz18UnsF4vJqyE6WoV1MuNhZMYRCtppxbT9vJoiCrKY8aNYpHHnmEHTt2UKdOHQYPHrxX+2/bto1zzz13n5SL4zj5xxXMHvBqyoVHt27dsmW97S2lS5fO16BNx3HyR5GuplwU3HfOgYk/e46Tf4qsgilbtixr1671F93Z76gqa9eu9dRmx8knRdZFVrt2bZYuXUpRrVPm/L4pW7YstWvXLmwxHKdYU2QVTKlSpahXr15hi+E4juPsI0XWReY4juMUb1zBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFPKlYESkqoiMEJG5IjJHRNqISHUR+VhE5of/1QpKWMdxHKf4kF8L5ingQ1U9HmgMzAHuBsaq6rHA2PDdcRzHOcDYZwUjIlWA9sALAKq6TVXXAecAL4fNXgbOzZ+IjuM4TnEkPxZMPWA18JKIfCMi/xGRCsChqroibLMSODTRziLSS0SmiMiU1atX50MMx3EcpyiSHwWTAjQF/q2qTYDfiHOHqaoCmmhnVR2kqs1VtfnBBx+cDzEcx3Gcokh+FMxSYKmqTgrfR2AK5ycRqQkQ/q/Kn4iO4zhOcWSfFYyqrgSWiEj9sKgjMBt4F+gelnUH3smXhI7jOE6xJCWf+/cBhohIaeAH4CpMaQ0XkWuAH4GL83kOx3EcpxiSLwWjqhlA8wSrOubnuI7jOE7xx0fyO47jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEnBFYzjOI6TFFzBOI7jOEkh3wpGREqKyDci8l74Xk9EJonIAhF5XURK519Mx3Ecp7hREBbMzcCcyPe/A0+q6jHAL8A1BXAOx3Ecp5iRLwUjIrWBrsB/wncBTgVGhE1eBs7Nzzkcx3Gc4kl+LZh/AncCu8L3g4B1qrojfF8KHJ5oRxHpJSJTRGTK6tWr8ymG4ziOU9TYZwUjImcCq1R16r7sr6qDVLW5qjY/+OCD91UMx3Ecp4iSko992wFni8gfgLJAZeApoKqIpAQrpjawLP9iOo7jOMWNfbZgVPUeVa2tqnWBS4BPVPUyYBxwYdisO/BOvqV0HMdxih3JGAdzF3CriCzAYjIvJOEcjuM4ThEnPy6yTFR1PDA+fP4BaFkQx3Ucx3GKLz6S33Ecx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kKrmAcx3GcpOAKxnEcx0kK+6xgROQIERknIrNF5FsRuTksry4iH4vI/PC/WsGJ6ziO4xQX8mPB7ABuU9WGQGvgRhFpCNwNjFXVY4Gx4bvjOI5zgLHPCkZVV6jqtPB5AzAHOBw4B3g5bPYycG4+ZXQcx3GKIQUSgxGRukATYBJwqKquCKtWAocWxDkcx3Gc4kW+FYyIVATeBP6kquuj61RVAc1hv14iMkVEpqxevTq/YjiO4zhFjHwpGBEphSmXIar6Vlj8k4jUDOtrAqsS7auqg1S1uao2P/jgg/MjhuM4jlMEyU8WmQAvAHNU9YnIqneB7uFzd+CdfRfPcRzHKa6k5GPfdsAVwEwRyQjL7gUGAMNF5BrgR+DifEnoOI7jFEv2WcGo6gRAcljdcV+P6ziO4/w+8JH8juM4TlLIj4vMOUBp9HKjpB5/ZveZST2+4zj7B7dgHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTg88E4juPkEZ8Lae9wC8ZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCq5gHMdxnKTgCsZxHMdJCl6LzNlrZi5cXNgiHLD4vXeKE27BOI7jOEmhWFowxb2iaXGX33EOVDbMGVDYIhQrkmLBiEgXEflORBaIyN3JOIfjOI5TtClwC0ZESgL/B5wOLAUmi8i7qjq7oM/lOPtCMi1Itx5zx633A4tkWDAtgQWq+oOqbgNeA85Jwnkcx3GcIoyoasEeUORCoIuq9gzfrwBaqepNcdv1AnqFr/WB7wpUkOzUANYk8fjJxuUvPIqz7ODyFzbJlr+Oqh6cxOPni0IL8qvqIGDQ/jiXiExR1eb741zJwOUvPIqz7ODyFzbFXf78kgwX2TLgiMj32mGZ4ziOcwCRDAUzGThWROqJSGngEuDdJJzHcRzHKcIUuItMVXeIyE3AR0BJ4EVV/bagz7OX7BdXXBJx+QuP4iw7uPyFTXGXP18UeJDfcRzHccBLxTiO4zhJwhWM4xQDRMTfVafY4Q9tPhERKWwZnNwRkRYi8sfwuVj8XiJSIqpUVHVXYcqTE0HO2hIobHkSISINROSvhS1HcSX8tCXil+VlX1cw+0jshqsHsYocIlJZRJrFLT5TRE4uyr+XiJSMvMgaUyoiUkdErhCRCwpRvGxE5CwBPKiBwpQpnkgjuAnoLiKlClOeokxUYSTo3ESfxZoicpyqal6UjCuYPBA0+NEi8paIHAtZPUoROVFEmhSuhA5ka/S2YfXwEJEqqjoZy+bpKyIHFZZ8UcIzlRJq98VQVd0lIhWBk0XkZREZArwFnAhsK0wrIZFFpao7gBNF5AMR+VJEWhSCXBKUc7Z7ExrBw4BDsbF4rfe3bEWZ2P0SkfrhXpUE+22jFrOIHCoiN4vIK8Bo4IWYktnTOVzB5IFwI5cBPwPNAUTkWhGZCwwA0gtPugOXBA3KrvCSVAEaiUgG8JqIHKmqnwIVgQsS7bsfZC0vIqeJyDkiUi70Cneo6s7QY6wG3CMi3wFLgCuxYrEnA1+o6nWq+r/9ZSUEmaLKj7hGp7mIXC8i5wJzsHt+iapO3t/3NtzLnfH3RkT+jI3LuxwoD7Tfn3IVVUSkPGQq4PrAHeH7zrC+rYg8ICInhl1qA/cBY1W1ETADuDg8s7niCiYQ556ILi8vIldjN3gX1nClAG2B81T1RFV9aT+Le8AR66VGl8UaFLEBvYhIH+AmIA2YBExT1TNUNTYN5EjgrP0oczUROVZEqmB193YAX6vqZhGpKyK9RGQlsBB4AXu+eoT/RwFvAGOBHiLyfyLyhFhtvwIP+idS1rEGJ6xPEZHrROTWsKg89g58D9wLlFTVxSIiyVKCCeIAJcL/E0TkYRF5XUQuCsuOB9oBx6lqX8wK7JgMuYoDkXtVBugfW66q3wG3xZSOiPQO61OA/iJyDVYncjI2rhHMiqkBHLmn8x6QCiY0VtmuPfSAdolI6ZgbJWzTHbgIWAQcDjQMboFtwCAR+buI/FlE0vbvVfy+Cb9RZqMX66WGdRXC/yNF5HHgwrDZaqyw6sfA34DGYbtyYf37QNPY8ZIkc8mIIjwCOB+znDoA1wGjROQS4G7M+h0JNAPqAL2xyhcVgS3AduBhYCowCpgL/CPIn6+gv4gcIiLnichx4XgaWSci0kFERoRGu3N45ksEWQG+ATYCqWEqjhoickxB3dfYOxr3DMTc0keIyFHhfT0SuBpYAfwLOFdEOmLehtSgzEuFdTVEpHpByFdciN2/iEtzK3BhaLf+EayQd4Dbwi7tgf9T1b8Az2K/d0PgQyA1bDMDKIu1h7lywCiYBI1V1NwvKSLdReQjYAqmuWuGbW4HblbVF4DHgJIikoo1BjdjP04LoI+I1NyPl/S7Q0ROFZEbRKR6fNBYRKqKyIMiMhsYLCLnY66k34C6YbPPgCoi0hj4CjhGREqo6maAYMmsEpGjC1DmTMs34qrZGZRaa+BWzAppG/5KYu/dGEyRPKGqa4CPgQrhGt4D3g4VMNYAi7EYTFnM5Vd6H+SMV36HA2djlhIi0j7y/NbA3CbvAgOB58M9nQZUFpEaqroBWAkcE/aZh70HiEjlvZUvntg7Gtw41YPFd7yIzABGAI+LyInhN/0LMB9TzqcCZ2DPxU8i0lJVtwMHAwK0ya9sRRWJc2vGrEkRKSMiZ4tINxE5G+uIXQB8pqq/AG8CzcK+G4CfwiHGY5ZqCez+1gFQ1YWYhdNwT8/i717BRDR4tLGqFxqy7iJSKvSMNwO3qWoa1vO8VkSqAl8AJ4Rdv8NeqjZhn29V9UtMu29R1RVRRebkTqzBi1iTlYFWQM3Qg+4tIoeGdelAE+AU4BGs4auFuWhqiUgFVV2OZQw1UdXfsBepo1jmS00xN8B4oFI+ZC4h5iIFsizfsK6yiNwvItOxmN152Av7Lea2m4VZIkcEubeE5WCN9zbMXfY+0E1EzsPe0WOxmMyxwJNq8yztSc5qYm4igpLNVH5hk/lYjOcMEfkKeAh4WURqYfd6C/BfVf0CeBlruLcCq8gKlu8A2geL8mngchFZCvTci3tZMod1KeH3vzPcj3bAA0A/VW2FKe3eInIEZpVeh72HdwDVsIbxE+AmEWkKdA3yd8mLbMWB+LYm3q0ZlEsjrGzXjdhzPx74E7BNVd8Jm44E2oV9txKeSVVdgXVs1mPP5aGhowH2TLy1p2ex0Mr1J4NITzLTOgk3uRzQGes9LgH+SrhhWC93oKoOF5HbRORlrGe5Fnuhp2ATpo3EekXHAzuB54FnxbJm5gL/jp1vf1xrcSP0dNKB30LPnOjLEJiE9axuwnpLS7D4QwesgZugqj9hPdNPMWW0BDPr62INeQrWiAwG/ow1SmWB67FgZXlVzdgH+SVi+cYUSmqQ61RgNuZGPRqzOE7HnqNXg5ylgNLYs3Mkpgh/wRrEN8N1/Iq5zlLD9R+KvdynquqWvMgYPpYHrg33pHdwJR0V7ksqMCDES5YAfYGrVfVrERmKufTKYM/9keGavsPu8dOY4rxWRNZhrpMtmEJ/X0QWAGtVdW0C2UoDf1DVt2PLcnPzqdU0PAt7Z89V1ZUici2mhAGGhfOnYpbTb6r6joicGWRtiVk2PYAXMU/DZeF6iiWho5CtbYusOxx79u7FOlb3B0vjLGC8qvaLHOozETlcRA5S1bWqulREtoq5S1/CPDhVsOdnLFn3rA8wJ7wLn+dF5mJtwcT3gIIG3xV6P8eFbR7GXuCzsR7b5cBsVb0euB9rBLqIyDHAH7CHtRXWGFXEFEtjERmA3fxvgK3hZb5fVVNV9UJVHbufLrtYEfl9KmM92/ZheRURuUZEXhORISJSO/SYVmGK6DxVvQ7zpXcK+2+IuF+WAa1VdRzWWPcTkb9gvbQ1IlIDC5KfoarNVXUKsACLZ+QkaxkROUtEGsnu/n8VkXJh/TgRWQN8gLnAFmINXU8sGNoE+BT4D2apTAMOCZ93YM9VdcwtVlVEJmIxgmeAfsCZqlpBVZ9V1e2qukWMbIkoYVm861eD9bYwbFJdRBpigdtDMCvq1tCznYxZMuXDIV7BlNpKoCZwWli+HqilFocZCPyAKcIPMOU0IZx/XlS5hPfwjvBubQeOk6yEjINFpLOIvCoiH4ul+8cC0bGO75jwO28UkbLA5+HegimaEljnYSyWfPMvTGG+C5RS1a2q+pyqpqvqA6r6nVoMosgSb5WIyBki0g+yxaBiNBdzG9bAMvk6Y+n4s7D4Hpjl90nYr1zkfVyItXMxvgb6qOpU4EHsGZ0HPKCqm8LfN6q6LabY4mVNRLG2YOJ7QGKB9gexl/0jEfkTZl1cjN2870WkFeaPBfgxrK+L/UB1goKqBTTA/LWfAWdiwf7BwAfhRQPrdTqB8MCViDPTY583AcuxBjUFM73rYkHrZsDdIvIAkIHFImphL8E7Yf3HwB+xe/4e1lCvC8d+GLglnKOnqi6KiLUhyCWq+ouIPJ+D7OnhHCuwRvcpYAKgoXF7CItX1MFcMKMwy3YE9qx8iCWDlMMavM9U9QURqYT1/OtjDXpnzJKohHVwJoVtd5vRVURKxu5feKljSQ4lQmcqPi23NGb9dQv3rlyQeSqWxXYUZsl1DOsHh/sZywaaATyONUrrgJvF0pDrADcEOdaEe53oHrYL19YO+LuqfiQinYEVqrpARN7C3M3fYBb/McBdmMuwN6YA38JiJYT7dTJQTlVXi8h44D8i8hSmaI7EUrhXiciDQD1goKrOTXQvgd3uWVEgZh2LSF1VXRQUrQZZJ2EdFMSSj85S1cHh+43ATFV9QkTmAGtU9a3QfrUXs1oXYkMrPtMQiwwMxt65G7GO0CNhO1T1KyyGmSt5uZdFXsHEtGSCl6kS9iKdiVkmfYFGwEJVPS+y3adYT2epWDbJSsx8RlXXi0hbzC85F/hKRGZiveYnMN+vquoyLCvJSUDsBYk2gpF1RwH/xILKa7Gg9SGqOkpEvsUCs90wt1NbrDHshDU+CzHX07Wq+hexFMs+IvIIZrZfCaCqq4B7EskU1isQe36OEJE/YBlmQ1X18/BCn49ZI+9iz9SjmEI8P+y7BmscN2A9+G8wJbEe67AsxdxFf8DcYj1EZANmedXEXGFlMbfd/4DhoTc9KyJzvAsk3oUYWx7ryTbBlNtXwR3SGrM6umGu3AeAZqo6RUS6YG6ztzH317mq+pSI/AzcGKyojpiS2R5+n1VYT3ZiXOO0GyJyMaaEPsGSYeaEVR9jFul/gavC567hPEcHJVQas0jOxRRM7Lq/xpRkHWC1qo4Vkb9jv1EK1jCuCffk7Th58nQvC5tYJ0JE6mEWbrzcP4vIGyLSF/strhWRyWpu5gxMKUNIwAif12FuzdOA5zDrvhTmum1HcO9jnYstwEeh0zw5Ipdg7Wa+lHKRUjAicgjmPxTNSquLmWOVsV7gtPCwdMV6g89jL3sKdrPOFJFfMetkjqpOCi96C1WdICL/wxqpfmH7WsA3qrpRRO4Gyqrq9/vvqos/kd/oSOBSzLoYESyJ87Ce1dki0g3rSTfEGu+bsFTXqzGl0gazDEphveeqmEvz30FhvCUis7Ae8YZ4OaKNSvSliPQQG2A954WYu+U/InK9qo4TS21dCQzBrOC1ZAWzd2E9uguBLzHFUhZrDP+EKZ1SwEys83IG5mL9N+YqewWzfH/eg8zRzMbdxpOETtUmzJI7E7P0NNzzM7Hsr9KhF7wSa5jrh91vBO4K78OfgDrhfVuIvXOPhmM9rKqbgjyZDU5uhMaoAzBMbSr0qPvkK+AusTjo0CAnmHvtkvB5F6agS4pIeVXdFO7LFhHZBrQQkWnBantWRF5K5OqK9vzjvRtFhfjfNWKhLhSRlSJyvKrODfevZGj46wFnq+pz4flvhcUbZwPHi0gdzKq/HXt2t2CdiCtVdZCI3BvWnYBZ2t+pxfTejJMtocWcHwpVwYSHrgfmajgI87n+U1V/CiZtM7Xg41NYIHUJsFpErsJe/rnYy70V+zHeDA9kKewlv1Js4NDHWLBrglpe/OVYY1EbuFNVM8ID7VM7x5GooYusqwxUxRTKrViQ8TusofsX1puvgCl7sN+3MVAv9Fp7q2psgNdDWBA8BWtsSmEWzcfAkKAgRFXnhe2jbgQgu486sn10m9+AazAFdwgWe7gYGIdZTvWwFM06WObNiWKxijmY1bIZ61FvCtc4GstgehE4KWwzA2u0l6rq/Ph7ibl/MmVSc8nGXHgx+WO92rLADrWAdxegv6o2C4qykaqeELafGCzxXVgQtqqqrgvHrR3+LwIuEUtTPTTc42OwhumDYAXuKyXC8U4JnbnSwFQxt83EcJ8bhXe5nFhyxDdAORHpGqylVtj7HJ+VdDuwPK5XvzX8/qLZ3bFFUqlArm7Nxph1O4+sLLe52D2Nbfsy1lF7Dnu/YnGoWZiVehzWkRksluL/s1gm47diVSO+w6zXHOWC5Fh5hW3BdMDSTp/AHsTKQAMRuR17+A8Jva0jgPZqPvSvMYX0EpaaeB7mH58tIo+q6v8ARGQaNnhoO+bHvDh2UlX9kTBgLbKsyD6chUF84yxZwcETVHVG+N4LyyC6TGwMxWZVvVusltZkMV/wdiwporSqrhWRWCbXNrHg7n+xBm8h1khVxYon7mahJFImQbaKwQItpRYUz3SNSVa8pyLm8hQsxvJ37BmKxR8+Bu7ElE0DTHlsBLqo6kyxVNyyWPzl1yDzYViMaCiwTBPHUVIwN0NsTEcDrCH+UVXfi1xX7D7H/PA1MHdWb0xpTcbiV+Ww1PljRORQtay6DExpTsI6bJ2B1zFFeSyW0XYd5kY+AuvEZbrm8ktQhs9i1t812G/ZH4tP3YLd75aYy2sq0FFVZ4V3tJ9YEc+2QN/QY48ODJwTf77o+qJIfIcBsnUkTga2qsU5wKy4NZg13BhzE/4zrIvt/w6W/AEWF+wVnqvK2HPYVlU/FpFRmLv2ZzUX2m0xecKzF6s1tv+UsqoW2h/mNzw9blk9zFLpHb53x5RBtfC9N/YDlIzs0xQrbnga5jOfGo79WGFeX3H6w3y/iZY3wdyLYCb2WsicCbUdMDp8vhMLWlcK3z8Lv0crrLHujPVsP8RiEPUxZdIDs3R2Oz+mDCTB8pTw/+Rw7D/HrW+MuWLaYj27YVh2zdVh/aQg7xSsMgNBtlVYA/kc5rYbgfn778cC9UOB1zDrt2lU5sg9yfY/sr4i1jv/AOuRfoDFlsCsoleB6ViCwMVh+RvhXCXC988xV+JRQcZTw/JeWAZaGSzN+z2sR/wa1rE6Zj8+R6Uwt3OrcN87YckPL4T1vbGYDlis6DMs2aN0ovtWHP4wa6NkDutOwCz7ZlibNBJLSrkTq982DUtiINy3X+PfgfB/OdaZIzyL07F4141YOZxE5074/uzPv0KzYMT868sx/y8ikqLWe1mDBd1jAatNWK+xEjZuYBZwvVqv6TSsZ9Qac9OMxRRUdy3AHtqBgGa5Z47CHvwNmI/2F2CLiLygqm+IDaRLx1wci4BdYgP6ZmNB4tqYS2ki1vu/XUT+g7nQ/oH1rN8GflAbYT04JkPMb6/h7VA1N1fotR+JNZpp2G/8NtYjHo/57ntiL+1y7FlZFa7jYbUxGoOxAOkoTCldiCmYWLxtO6ZQ2mC9/sZYJtlyLP14FPA/tRTgbISeYbbYT+x/5P5uFJFtqnpG2OcqrGLycKwR/gVT5m2xopeLw7W1xCyvTZhi7KSqo8WC842wRmYKFoc5Qs1NPBWzmhaznwm/6XIR2UhWpt8KLDW6OqakY/f8G0z5LYLdA/NFlXi3cbzMYuVXrsS8MMdhnYfGWNx4B6YU7lXVR4NFXwaz/peLyK8i0k5VvwhuwBJhnwlY5+EbzC0mmni8UXwcpVApzHEwKZgpXS98j/1Iv2G++uPC90+wnl9fsWDWqVgjBeaiKA88CVygxg+uXHZHRCqISKfgvkq0/m6xVM/BWI/rb5gF2AHrLV8sNmr6S8zlAuZCWo01gtOxF+XYsG481gCiqsOBbmpjhv6qqjNDQ5RtLEf4/WKuopZiY48mYvGQcWFdCjbK/WbMQmqMWUAnhfMegTXEF2KurlfE0lvXY/781VgPvwHW698moVx5WD8hXP98LLvmU1W9QlVfU9XfovLG0ASVfHPgdRE5J3z+DRuU+GtMdjU32gTMXdcNew8aYIqScH9jY1N+Jrj3VHUaFtBdEL4v2t/KJdyWE0Tk8vC7jQJ2qurXqjoTy1r7WVXXqepHYbcfgIFiyQa7NdRFCYmMuYv/rUWki4g8I1a37XhMqZ4ENFDVzqr6X8z1NR7rxFQjy2U/BbPqCO1bCbKSH6JxmKFkxV5+UXM3i+w+XqtIZcsVZgxmHeZuaYWZjbFeoGI39pDgW18rNhvdHViq4w/YaFXCD+ckIN7fGhrHazCLowQwNdzbWI/nuPB3uVoM4HwsQA9mGTbFYmbvYn71R7Hf7DBsYOArIrKZ8Eyp6vtYz5vwfV2QK1twPqJQSmPxuO+xGMcgLB7SA1Noj4tl/p2HWTHNsLjCwiDbe5j1WxlzS1TEBuktUdUzIlbGYZjiq4gNRjsaiGVWbVTVwSJyOqbQfo750wkB5Xz2Codi/vPvg+wTwvJPsbp2MX7CrMR5mKIbKCIavq8RK3kzCFOasR71frdWogRrczv2Gy7E6vfFxm+UUIsVEb7H4ns7yBoQWKSQuKogmj3mVwcbePpV+NwVe0eWYFWxL8ee3WicbBb2zj0cOU4pzP16lVhseRnmPl0VzrkjbHco1uYNCsuj706hWym5UWgKRi0z5j2skN4nqjo6rLoYy/Api71kE1R1mYjcpUV8FG5hEu9eiPZkQkCwDGayv4op6d6Ygo89oLHii+tCYz+JMM+N2nihqpji/wxLBf8y7DeSrImw7thTLzSX9TuwOMhaLA23PubKehhz/9yEjbPogbkfjsaskfcxFxOYy6wLNkq+Kubiu1VEuobv54djlsCC5m8AI1V1feRenYzFROZFXCEF9RJ/hVknijU4Z4lVBPg3pkSaYgqlM1bsUsVSTHuFa31bE4xHKQquELCR/FgMK375rrjvRULeRESUX7zb6xjMqq+DZXv9GJTCnzBrtBr2nB6NBdp/wBIvqmEdhjexzsXXmAv3LGyQ6PNiJXbaAF8GizaeNcCf1OoeFi+08ANkfbE0z/HYy/U25gY7rLBlK+p/mAWRMIiHxaXewlxMvbFA6vXY4MLYNplBQEz5jAHqRb6vwMzyrpib6siwrhKWBn5IgvPmGFRMtI6sAHZJbDBmRyxhYw3mjjs7rH8ei1OkYzWRpmBZMlUwpTcMq+DwMaZE+mIv+wZsQN4bWCylWiIZcpO7gH+zRZFrbo1ZJadhjdOrWIrqIODQwn6+kvFcFpW/8OyXJHFyySFYAsk/ga5h2f1YlQCwQb0fhXeqF5a+3if8jrH3qQ6hSGj4nhLatf+FZ/U6oHpO96+w709B/RV2mjKqOlBsWtNjsMmY9lgp9kBGrJzKt6o6QrPmR6mEPbyr1Mz2SpgV8DHmhrmWrEJ43YKf+HsNcRAAtVIeW4D6Yim0C8QC53/GLJsXMBMetRTiDyIyxY+aT0h0XbCSDlErtDcgHHs2pgSmYspll6q+G9wVQ4ErsJd/CpaZlKaqv4oVbTwa6y1WxAKhVdRKAzXVuPEo4fyxxmW77l/f/ytYkPdpVZ0oIv/A0qgHAqM0cQ+2WKFFLA4AmWPutmtWGrSSYCChiPTAlMkIrBN1OBZPqoZZJWAx4BqYm/YLbMzT05Fj/EEtsaQ0cGRwQ+/A4smf5CBf9B0qcvdvXyl0BQOgqiuxUdRODkQewK2Yu4vgUrkXi2cdg403uQcb2Hihqh4etnsEUzZ3Y/GNozRSrykSh1mJFfscgzXuo7CXK1fiFMduFa0j62oBNVR1BjAcy+Fvg/Xqa2Apm7uw2MJ6LMuqKlZafFw4dh0s/XYFVqT0r5hbrQrmqrgMKxcUe1nnx64xiBodVFYYL/JIQlA3yPFcIchwQBBzG4sV+6xP5FkWmxOoO5agMh5zU+4I329U1Q9E5AvgiRDzWo9l8qGqP4TYyy9qWXtfiMgL2DN4AvChiHyMxY2Xx78L8fHR8LnIug3zQ7Gupvx7I2SFlIxmhcRQVRUrdnc4ViYCzJd/PjZHSAfMHXYe1tCukVBRGns5lmFZR18Bp4rI7WI1uSDrObgPK1IYK+YZk6uEiCR8VuLXaahoHdYdHtmuJBasfyIs+hX4XqyGVSms1tQvWGZaCUxplMfqVW0SK9m/GXMrbMDcSBnYyObbVfVMVZ2mlkWo8fJqZN6WwkStIm3CUdVOwRB7fyK/d2kstjtQRPqJDXY9FcvEuwfraNyHZas2A6aLDdp9B4vH1SJMJSEidcMxK2HzFh2mqj2wjsMw4CRVvSVYxksTPXOafV6e3zWuYAqRBI2zhodPReSw0HMisn4tNk5iU1j0LRYsrhq+T8N6UQdhLqbrw/KmmIJZi7loVmMvWKw3vz38/ymRizKqNPa0TkQOFZFHQo/uv8FdF3upXsYmLToCC8S/jRVlPIOsWfTmY0r0n1hWzjti2WmvYG66meF4YzWkgMZkjirmoqBMnOQSOmQ5dcZqiMiFYmWhBEtlb0DWFAX/DZ+vx4pwnhx2X4cNLI65jzdjcZj3sVjfULEyLKuwLMtt4ZzvqeqbqromkUwHKq5g9jNRCyVB41xCRB4IGVqfkDWTZrRUy8+EsRChYf2crLERCzEz/zhsbFClYOYPBGaojUFYoap/V9U/qOqH+bwWEZHTRKS/ZI3vSMFKsH+hqqcEayPTdYYlHnTElNtazK/dEYuhgM3Z0iAcpxVmqfRW1SNV9dbwokfPH50P6HfpZnASEzpku/3mYkVVP8FKSpVR1W+wWOK7qjoqWOiHY4H2yVgSywrMPfwCcJGIXCWW1r8Ks2rApjI4R1UbYxbLTo0UMI24h/05DBSJGMzvGck9ffgErCTJl2RNpVsduEFVp+dwyFHY5Gn/Ct/HkzVF7RKs4W6lqgPEBiOmApPjH/qIkkv0gu5WSykHumPZT2OA28TqkT2PJRbE3GSlQm8wdp4hWLD+WMwSi+X/xwZojsXGwsQGDT4UkStbgcMg+wHhajiQiAa8w7OYOcdQ3Lpa2PM3UcOkZ4HrgJtU9bPIsqVABxFpqapfY6WEyqrqf8SqgNfD4pa3ilVj74ONZXmWrJjZDuAOscrbm7GOVCZuNe+OuLJNDtEXIbKsJjZm40zMRG+IDfw7FLNERmMT/+zEevo/k1UBOhawPBwb7Hie2rS3R2GN8gkhVlEHWKlxY4biFV38OsgxMF8Xs3QXJriekcDrqvqa2PzxJ2MB+FZY9dyeEildEdmvLaaEmmCFHJsA8zVBgcuc7qXz+yO4U9tq1kj/+PVVNGTZicgELG19NvCcWuA9RW183V+wd2wmFtPLwDpm/YB31ErtNA3ft2HxlK+wLLP+4X2ogrmWe2JTT7wZznsCloG5xymsHVcwBYLEZShFlEEVrGREVcztczkWW6iAlQJ5XVUfFpFOwBOqmioirbG4RM2w/VMa5tiInO8BrHbWS6q6IgQaV+amROL2PwarBZaTwjkWm93uNGz0/gxsro/hkZe4Jjaif6LaPC21sUFnYzHF+E9VbZOLDEerz7tzwCNZs2CeggXUV2LVJH4J60thz9XVWLbhUFV9VWwKj5bRZyzWERGbmK48NuDxRKyyc11MWVyMWR9/C+eKVW2YHTlORayMUAVMMb3mCmXfcBdZARAx30thSntb6NEPxlxG/8NM9FswhbFLrCDer2H/0SJyZOihTcSywRCbDyTRJFSPYBML/QGrUrsyHCcnhVEOSzveKiItMYthDWHKYRE5CXvRZqrqG9jLeBs2cvwaEfkjlmUzPHLYX8P+LYG31MaznIZZZouwmSMTKpGgCF25HOCIyBuYS3gL1tjfqao/hHWxZ701VrW7Ndbp6Ssiy7BxUeeFbUtrZK748JzHJmPbigXnU7CaepuwzlXMfTYvIk9JtWSUjVjFCCefeJA/D4gVs3tcbI6O+HUVROROEfkE89n2CasmYqb3y2oFE8djD3ys2ORirN7aoeH7XKCziBwuIq+IyAzsxZoWO1fkBdqGBe4/zyljJeb2Csc/CwtqggU1X8EGjiEiF2FT3KYAp4vIk5gVspCsgWVvYZOExQaMoTbr4XDgJBG5X0ReJlRYVqs7djamaHbDfdVO4ApV7YgNPP0em4YgVlk95lo5BCtn/yvmVn0dC7RPAiqLSGVNPDj7IcxdexowQFV/U9UdqvqSqn4a2ygkisTikR7PK2DcgtkDwf3VExtD8hZhDvAI2zB31XXYS7JQbM7sz0RkNTbGI0YGYW4MrPE+Ggtu/4T1stpjNYtewqyJ+HNloqorsMyXnNbHGvFdmJvrQrGaR59iPcFDsAKLVwC3quqXYuNs5mBjA5YA5UWkglqhzIVYjaz3Iz29BSLSC1MmX2OuhHWh9zkNx8mFiNvpN6yze1RYHh2HtR2rC1c1PFvlyLLq52FVil+RrFlAY5bPXZpgagXIHo/02F5ycQtmz1TBLJGZwOGy+wC+7Zi5fh2WDVaWrOKLHxCZSROr+HtZ+LwQcw3E0mzvUdWbQsM9TkM+fS4WikgOAyCDVXWWiNyFvYznYzGgWWTVfCsdNj8aC4TGxtn8gI21mYRVBzgobDeVrEKGmS+lqn6rqo+o6v+F/f2ldfYKVV2Nuchqik3DHR3TNAvL8DozfE8jq+rHh4T0do2bAyWmXMSGBcS/s25B7ycOWAUjOYyYT0A3LFVxCVZuIlbCPvoSdAUOVtXWWCPcLix/E5skKMZbWI8MVZ2lqnfGzHWN1AWLoYHI+eIHZe42AFKsrtv7WFA0BYuVXI6lEo9Syy5bDpQOgfpPw/oY34ZrXIglG8RceA8RSqsnOKckUnSOsyci79APWGfuyNgqsLIsWBzzTLFpDuoQSr6o6v2q+kBux9ciUsHhQOWAaRQkwcQ8scZbRFKDeyjb9uHj8Zjr6y0sblE3ZKnERgyXxjK+YqPrqwMtQjB9NLBJstKAv1PVznHnyVHJ5dbzEhvpf4GIvC0i74mVvwAbUPaBqp6nqv2Du2El5qqLWVaxUf2tsRpMx4rIX0XkJaCqqv4Ps9j+SogBqU1iNTmRnDFll9N1OE4e+C78Pyb8j1rJ72DVsZup6rkamVBQIgNtnaLH717BRAJ4u+KsgY4i8qDYdL6jgD+LVRmOphkfj6UYV8bmI7kaCzKmxo4TAoxjgIYi8g1myg8AflLVraraOE4xZHN7xbuTxGZyvDX4lOMthbNEpIHYeIEXsUyXh7CxALeKpVf+QrCywnZgsZqVZPUOV2Nxn85qsw3eiLn2viQkKajqZlWdqtkHhnoJDKdAiTz/P5I1gd1u74WqrorF9+IseQ/MF2F+N+NgxEbjrtPsk0fF8uIrY/WuDsPcRAtEpC82R3xDLIX4fmCrqvaLKJgKWLxiETYQ8jhsoNbgBOdojs2ImFmlOH6bvCwXy/rapKobxMaWpANT1Ma5DMMGg10plrVVUlUvF5FG2GjjkdhYgmtU9ezIMUtitccewuItr4ZrLg2MiQuqOk6hICI1cktscYofxdaCEZFysR66iHTGRuXWC99LiOXGq4ikYTGJUzC/bmzehjewxno+lis/EUvFLReUi4RA4VGq2lZV78IC30dH3WmRoOKUmHLJg5VypFh14HIJLm0zcIVYpeNDsJhO7bDuP2TVRRpNVoLAd1gZi5qEUf0ick34exsbVf8xVsn4ceC/qvqJqn6oWdOyyl7EpRynwHHl8vujWCqYYJGcjg0YBLMy1mDjSIZj6cD3hHWzMbfVY1gJllNE5Ey1NN+fRaRZcEWtwALwme4vsFRKsQGUYG6ph2PZUjkRDc7n0HBXwFJ+LxQbY3Nw9PKwEchNsQya9WS5DcYCdYJizQAqisiRwU23EiuOuQtTpsdho5iHA98FhfmGqn6kWRUHsilBzf+c847jOJkUaQUT72+NsBWrfPpnEXkWcyP9hrmB/otlcfUWkRahh34mNrakFJbZFSsvMZqsLK81mBUQywDLRLPK2a/SuBpfeyLacAeXG1giwE3AA9hAsGhA81ds0OURmEJcic2KVyVssgoL1s/BxuCcGpZPx1x55VV1sarepapXqerQEE+JKbxsmWh7cy2O4zh7Q5FSMIlcS4myk0Ij3xkraTJHVd/CrJhSwGy1oolvh23AevKvqeoT2IDAWHziI7JKQqzA0pFfi507jzKnBJdX9RzWHy4ij4rIp8BbItIGUwYDgUGqensC18ASzP11NDYla1Ms0+sYTAleGu7L+1jKcWw+in9FjyU+BsBxnEKkSIzkjwW7E8QqWmHWx4fAJLUii7HqvL2wUt2xMt3LsIb7CKzU+xjg0uBO+hFoJyKbMGWzNmSIjcCC3ajqZsztlBd5o9WHS2KDKcdgLrfSmr10xZGYq+tRzOq6CxtBPw44S0TSVHVGXMB/GVYwspVaYb+aWJr0FCxQvzic/4X4+xiW/+7m9nYcp/ix3y2YRDGJiPumjojcICI1ReR6rDFegZVXuSNO5lVYzKRD+D4PcynVCd8/wQLiVbHA/hZMuTwL/CEE5Hep6hd7kLeUWEn8TDQywDFYU6cDL4nIfLJmxovxNaa4/oHFgepiLq5vMQVfI3oPAqsxxReLBw0C0lX1fLUZHDPnuYh3ebnby3GcokLSFYyItBaRu0TkENgtJlE6bJMmIn/HRuzWxBTBMcBfsEGOsWq/0RHvqzFXUq2wfAU22PF4EakUAvFDgBRV3aiq16hqT7WpdjfFZMlB5lqRr72wSYaqh3XlROQcEXlCRNqHjLL52LiSi0O2VpRyWHmYyVhSwnNAuyDvT8AfReResTRnglybMCtGxWqBqar+LFlElYq7vBzHKZIUmIKJWSQiclzI8orRFysv3yqsP1hE+onI18C/xCb+WYgVfVytqvdj7qZrsTjFRdh8Dl2j5wuKZiLQQESmiY1rmYHFVWLzZN+jqgsjMmYbzZ/DdUwHvhaRxmHRD5j1E7NibsIGI67H5vLujinC2GyS8ZQI1/BakLkd0FpEqobrU6xCQGbhyqDgbgRWaaRgn2bhSsVxnCJPgcVggkXyV2zekOuA50Pm0wJspPxJ2LworbF02u5Yba8RmHLJAHaJSFlV/UVENmDTns4BG4AoIhVVdbWEgZCqmiEif8MmFxqbKOYQjW3ksWF+C8vuukhEtmGlUjpjJWIWYZZUd1VdJiJNsIGXT4iVjzkWiwNFz71eRN7CKr4ehSURTAZKq+oqzEKKZxPQR1W/zYO8juM4RZKCdpG9G/63ChlP2zG30CtYTS+AC7EJquao6ttYMcbm2GDBKmTNW/IccJ+I3CMi/8IUUQvIrihUdYKqjtbInN1RgfYhJvEx5n77Aiurvyb8HRMytBoDq8TmrPgmnPPwIH89EaktVnAyyn3YDHqdVbWfqj4VlAth//iY1DpXLo7jFHcKVMGoFUP8Fct26o25f0pgo9M3hYZ4G2ZxxPgGGxj4NTYA8eiw/O9YcP5wbFzIVar6fqLzJkoYyMc1fInFTcZgsZXbg/yxcShzsTThHWIDMKdggfoRQfaZ2Ej8qOW0NSjCH4O82crsqw9wdBznd0gy0pTnYZV6t2DlW8ZhFsBKbIDj20BPEflMrUzLL9hYjnXYAMqykFlEclL4y5UkNM7zsVnzuovIq1jiwXciUhd4CnOf1QcaYdOvTgcQkXuBG/eUHuwxFMdxDgQKvNhliMMcirmFRgEbVLWjiFwHpKpqHxG5GRvfchAWHL9EVTdHxrhEjydBzv3WKIvIA0Caql4Q4ix/xub/vlJV/ytWGr8HZnV9qHEz50lkxjzHcZwDlWQomDTgPVU9UmxOlIaqOlhETsUsmjPUpuBthc3f/lPc/gkrD+9PxKoTT1TVWNn7WsAzwN9UdUphyuY4jlNcSEq5/pB91UBVv48sqwxUVNXlUUslfvR5UUFEPgS6qdUGS7R+v1tWjuM4xYlkKZh/AUN0D6PkixNBoZTYU3zFcRzHMX43E44lg0QxIcdxHCdvJK1UjCQus1+scOXiOI6z77gF4ziO4ySFYm9lOI7jOEUTVzCO4zhOUnAF4ziO4yQFVzCO4zhOUnAF4xQ5RGRjAR/v3rjvXxbw8ceLyHciMkNE5orIM2G+n72SK5ft3o8dr6DvjeMkE88ic4ocIrJRVSsW1eMlOP544HZVnSI2S+sjQHNVjZ8+O99yJftaHKcgcQvGKZKISAcReS/y/RkR6RE+LxKRB8NMpjNF5PiwvKKIvBSWzRCRC0RkAFBORDJEZEjYbmP4LyLymIjMCvt0i5x7vIiMCBbJkPh5hnIiVAG/EzhSwqyoInK5iHwdZHguzP+TSK63RWSqiHwrIpkT0YXrrZHvm+o4+5lklOt3nP3BGlVtKiK9sTl7emJTV/+qqo0ARKSaqr4pIjepanqCY5wPpGOTyNUAJovIZ2FdE2zm1eXY5HPtgAl5EUxVd4pNvX18qMvXDWinqttDGaXLVPXuBHJdrao/i0i5IMubqro277fEcYoWrmCc4spb4f9UTFEAnAZcEttAVX/ZwzFOBIaFig0/icin2Kyp64GvVXUpgIhkAHXJo4IJxCyejkAzTGGATWa3Kod9+orIeeHzEdgU3K5gnGKLKxinqLKD7C7csnHrt4b/O0nOc7w18nmvziEiJbHJ6OYAhwAvq+o9e9inA6Yg26jqphDXib9mxylWeAzGKar8CDQUkTIhg6pjHvb5GLgx9kVEqoWP28Wmt47nc6BbiIkcDLTHJpHbZ8J5HgGWqOoMYCxwoYgcEtZXF5E6CeSqAvwSlMvxQOv8yOE4RQFXME6RQkRSgK2qugQYDswK/7/Jw+4PA9VC0H46cEpYPgiYEQumRxgJzACmA58Ad6rqyn0UfYiIzAjyVgDOAVDV2diMqKPD+o+xKbjj5foQSBGROcAAYOI+yuE4RQZPU3aKFCHz6nlVbVnYsjiOkz/cgnGKDCJyPTAM6/E7jlPMcQvGcfKIiIwE6sUtvktVPyoMeRynqOMKxnEcx0kK7iJzHMdxkoIrGMdxHCcpuIJxHMdxkoIrGMdxHCcp/D+efuyRr39/TAAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "import numpy as np\n",
-                "import matplotlib.pyplot as plt\n",
-                "\n",
-                "# Draw a vertical bar chart\n",
-                "\n",
-                "dangerousroad_df.plot.bar(stacked=True,rot=15, title=\"Accidents on Study Road\")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 76,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "DataFrame[Accident_Index: string, 1st_Road_Class: string, 1st_Road_Number: string, 2nd_Road_Class: string, 2nd_Road_Number: string, Accident_Severity: string, Carriageway_Hazards: string, Date: string, Day_of_Week: string, Did_Police_Officer_Attend_Scene_of_Accident: string, Junction_Control: string, Junction_Detail: string, Latitude: string, Light_Conditions: string, Local_Authority_(District): string, Local_Authority_(Highway): string, Location_Easting_OSGR: string, Location_Northing_OSGR: string, Longitude: string, LSOA_of_Accident_Location: string, Number_of_Casualties: string, Number_of_Vehicles: string, Pedestrian_Crossing-Human_Control: string, Pedestrian_Crossing-Physical_Facilities: string, Police_Force: string, Road_Surface_Conditions: string, Road_Type: string, Special_Conditions_at_Site: string, Speed_limit: string, Time: string, Urban_or_Rural_Area: string, Weather_Conditions: string, Year: bigint]"
-                        ]
-                    },
-                    "execution_count": 76,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result222"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 147,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "root\n",
-                        " |-- Accident_Severity: string (nullable = true)\n",
-                        " |-- hour: integer (nullable = true)\n",
-                        " |-- Total accidents: long (nullable = false)\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "Row(Accident_Severity='Slight', hour=0, Total accidents=2)"
-                        ]
-                    },
-                    "execution_count": 147,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "from pyspark.sql.functions import *\n",
-                "#Timestamp String to DateType\n",
-                "result222_s=result222.withColumn(\"timestamp\",to_timestamp(\"Time\"))\n",
-                "result222_s\n",
-                "TimeAccident_dfhour = result222_s.withColumn('hour',hour(result222_s.timestamp))\n",
-                "#TimeAccident_dfhour.show()\n",
-                "#Time of week accidents\n",
-                "TimeAccident_df = TimeAccident_dfhour.groupby(\"Accident_Severity\",'hour').agg(F.count(result222_s.Accident_Index).alias('Total accidents'))\n",
-                "#TimeAccident_df= TimeAccident_df.withColumn('Time',F.col('Time').cast(IntegerType()))\n",
-                "TimeAccident_df.printSchema()\n",
-                "TimeAccident_df=TimeAccident_df.sort(\"hour\")\n",
-                "TimeAccident_df.head()\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 132,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+----+---------------+\n",
-                        "|Accident_Severity|hour|Total accidents|\n",
-                        "+-----------------+----+---------------+\n",
-                        "|           Slight|   0|              2|\n",
-                        "|           Slight|   2|              1|\n",
-                        "|           Slight|   7|              2|\n",
-                        "|          Serious|   8|              1|\n",
-                        "|           Slight|   8|              7|\n",
-                        "|           Slight|   9|              5|\n",
-                        "|           Slight|  10|              3|\n",
-                        "|           Slight|  11|              4|\n",
-                        "|           Slight|  12|             13|\n",
-                        "|           Slight|  13|              5|\n",
-                        "|            Fatal|  14|              1|\n",
-                        "|           Slight|  14|             13|\n",
-                        "|           Slight|  15|              7|\n",
-                        "|          Serious|  15|              1|\n",
-                        "|           Slight|  16|             19|\n",
-                        "|           Slight|  17|             13|\n",
-                        "|          Serious|  17|              2|\n",
-                        "|           Slight|  18|             13|\n",
-                        "|          Serious|  18|              1|\n",
-                        "|            Fatal|  19|              1|\n",
-                        "+-----------------+----+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "TimeAccident_df.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 83,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>hour</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>9</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>10</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>11</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>12</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>13</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>5.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>14</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>15</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>7.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>19.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>17</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>13.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>19</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>6.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>20</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>21</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>22</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>23</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Total accidents               \n",
-                            "Accident_Severity           Fatal Serious Slight\n",
-                            "hour                                            \n",
-                            "0                             NaN     NaN    2.0\n",
-                            "2                             NaN     NaN    1.0\n",
-                            "7                             NaN     NaN    2.0\n",
-                            "8                             NaN     1.0    7.0\n",
-                            "9                             NaN     NaN    5.0\n",
-                            "10                            NaN     NaN    3.0\n",
-                            "11                            NaN     NaN    4.0\n",
-                            "12                            NaN     NaN   13.0\n",
-                            "13                            NaN     NaN    5.0\n",
-                            "14                            1.0     NaN   13.0\n",
-                            "15                            NaN     1.0    7.0\n",
-                            "16                            NaN     NaN   19.0\n",
-                            "17                            NaN     2.0   13.0\n",
-                            "18                            NaN     1.0   13.0\n",
-                            "19                            1.0     NaN    6.0\n",
-                            "20                            NaN     1.0    3.0\n",
-                            "21                            NaN     NaN    4.0\n",
-                            "22                            NaN     NaN    3.0\n",
-                            "23                            NaN     NaN    4.0"
-                        ]
-                    },
-                    "execution_count": 83,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "TimeAccident_df=TimeAccident_df.toPandas()\n",
-                "TimeAccident_df=TimeAccident_df.pivot(index ='hour', columns ='Accident_Severity')\n",
-                "TimeAccident_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 84,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:title={'center':'Accidents on Study Road'}, xlabel='hour'>"
-                        ]
-                    },
-                    "execution_count": 84,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEZCAYAAACZwO5kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2vElEQVR4nO3deXgUVdbA4d9hD4jsKogILoNgSEJIgiBgkFVRXFBBGSEgoKiouOL4jaIjyogOI+rI4AhRB1BEUUdEERQQBU3AZhEQUMOOShABZed8f1R12wndSS8JSZrzPk+edNdy6lZ196lbt6puiapijDEmdpUr6QIYY4wpXpbojTEmxlmiN8aYGGeJ3hhjYpwlemOMiXGW6I0xJsZZojfFRkS+EZH0IOPSRWTz8S1R2SYiKiLnlHQ5CiIiOSLSuaTLYfKyRG/yEJF5IvKLiFSONpaqnq+q84qgWAUqLclFRG4SkTUiskdEfhSRD0SkujsuU0QeL6FyZYrIQRHZKyI7ReRjETmvJMpiSoYleuMjIo2B9oACPUu2NGWLiFwEPAFcr6rVgWbAGyVbqjyeUtWTgNOBLcDLJVwecxxZojf++gGLgUygv/8IETlDRN4WkZ9FJFdEnvcbN1hEVrs12VUikuwO99W0RSTOrVn+IiKrgNR88RuIyFtu/B9E5A6/cSNFZJqIvOou4xsRSXHHvQY0Av7n1ljvF5EqIvJft5y7RCRLRE4NtMIi0sw9itnlxu3pNy5TRF4QkZnucr8UkbODbLtUYJGqfg2gqjtV9RVV3SMiQ4C+wP1uGf/nxs/TFJO/1i8i94nINhHZKiID/YanukcM5f2GXS0iy4KUzUdV9wHTgKQQt0EPEflaRHaLyCYRGZlv+90oIhvcbf1QYcs3JURV7c/+UFWA9cCtQCvgEHCqO7w8sAwYC1QDqgDt3HHX4tQQUwEBzgHOdMflAJ3d16OBz4DawBnASmCzO64csAR4GKgEnAV8D3Rzx48E9gOXumV5EljsV27fctz3NwP/A6q607cCTg6wvhXddf6Lu9yLgT1AU3d8JpALpAEVgMnA60G2XXtgH/AocCFQOd/4TODxfMMUOCfQNEB34Ecg3t3mU/ynB1YBl/jNOwO4J0jZ/ONWA14DloW4DdKBFu5nlOCW6Up3XHNgL9ABqAz8Azjs/1nYX+n4sxq9AUBE2gFnAtNUdQnwHXCDOzoNaADcp6q/qep+VV3ojhuE0yyQpY71qrohwCKuA0apU9PdBIzzG5cK1FPVx1T1oKp+D7wE9PGbZqGqfqCqR3ASVWIBq3MIqIOTFI+o6hJV3R1guguAk4DR7nI/Ad4HrvebZoaqfqWqh3ESfVKgBarqZ8DVQDIwE8gVkX/417rDdB0wSVVXqupvODs7f68AfwYQkdpAN5ydQTD3isgunCTeDrjRHV7gNlDVeaq6QlWPqupyYCpwkTvvNcD7qrpAVQ8AfwWORri+phhZojde/YHZqrrDfT+FP5pvzgA2uMkuvzNwdgqFaQBs8nvvvzM4E2jgNh3schPSXwD/5pbtfq9/B6qISIUgy3oN+Ah43W32eEpEKgYrk6r6J6cNOO3YwZZ7UpBloqqzVPVynKOWK4AMnB1hJAraXgD/BS4XkWo4O4XPVHVbAfGeVtWaQGOcI4+m/ssJtg1EpLWIfOo2qf0K3ALUDVRGd4eUG/IamuPGEr1BROJwksVFIrJdRLYDw4FEEUnE+TE3CpJYNwHB2q39bcPZKXg1yhfjB1Wt6fdXXVUvDXEV8nTBqqqHVPVRVW0OtAUuwzn/kN9W4AwR8f8dNMJpioqYW/udC3yC0/RyTBldv+M0L3md5ve6oO2Fqm4BFuEcRdyIs3MLpWwbgTuBZ93PvbBtMAV4DzhDVWsA43Ga6I4po4hUxTmSMqWMJXoDcCVwBKfNNcn9a4bTpt4P+ArnRz1aRKq5JzsvdOf9D06zQCtxnCMiZwZYxjTgQRGpJSINgWF+474C9ojIA+5J2/IiEi8iqQHiBPIjTrs+ACLSUURauM0mu3GacgI1KXyJk2zvF5GK4lzzfznweojL9RGRK0Skj7t+IiJpOE0ciwOV0eUBbnDXtzt/NImAs70yRKS5m0AfCbDYV4H7cdrQ3w61rKr6MU6CH0Lh26A6sFNV97vrdINfqOnAZSLSTkQqAY9hOaVUsg/FgNNEM0lVN6rqdu8f8DzO1SKC8+M/B9gIbAZ6A6jqm8AonJrfHuAdnKaL/B7FaRL4AZiNXw3UbXe/DGcH8wOwA2cHUiPE8j8J/J/b7HMvTs14Ok6SXw3MJ0CNV1UPuut1ibvMfwH9VHVNiMv19wswGFjnLve/wBhVneyOfxlo7pbxHXfYne7yd+FsZ+9wVHUW8E+co4L17v/8ZuA0e81Q1d/DLO8YnJ2E97MNtg1uBR4TkT04J8un+ZXxG+A2nM9+m7sN7Ca4UkhU7cEjxpRVIvIdcLOqzinpspjSy2r0xpRRItILp+0/UG3fGJ9gVy0YY0oxEZmHc07lxnxXzBhzDGu6McaYGGdNN8YYE+NKZdNN3bp1tXHjxiVdDGOMKTOWLFmyQ1XrBRpXKhN948aNyc7OLuliGGNMmSEigboeAazpxhhjYp4lemOMiXGW6I0xJsaVyjb6QA4dOsTmzZvZv39/SRfFnICqVKlCw4YNqVgxUCeYxpRuZSbRb968merVq9O4cWNEpPAZjCkiqkpubi6bN2+mSZMmJV0cY8JWZppu9u/fT506dSzJm+NORKhTp44dTZoyq8wkesCSvCkx9t0zZVmZSvTGGGPCZ4neGGNi3Amf6EWEe+65x/f+6aefZuTIkcW+XI/Hg4jw4YcfRjT/1q1bueaaawKOS09Pj/jO4nnz5vHFF18UOM23335Leno6SUlJNGvWjCFDhkS0rHC0bdsWgJycHKZMKegZ2LGrxSstCv0zJpATPtFXrlyZt99+mx07dhQ+cRGaOnUq7dq1Y+rUqRHN36BBA6ZPn17EpQot0d9xxx0MHz4cj8fD6tWrGTZsWIHTR+PwYed55N4ynciJ3phInfCJvkKFCgwZMoSxY8ceMy4nJ4eLL76YhIQEOnXqxMaNGwHIyMjgjjvuoG3btpx11ll5Eu6YMWNITU0lISGBRx4J9JhP53K9N998k8zMTD7++OM8V3P8/e9/p0WLFiQmJjJixAgA1q9fT+fOnUlMTCQ5OZnvvvuOnJwc4uOd507v27ePPn360KxZM6666ir27dvnizd79mzatGlDcnIy1157LXv37gWc/oQeeeQRkpOTadGiBWvWrCEnJ4fx48czduxYkpKS+OyzzwKWf9u2bTRs2ND3vkULpyZ55MgR7rvvPt/6//vf/wagT58+zJw50zd9RkYG06dPDzr9vHnzaN++PT179qR58+YAnHTSSQCMGDGCzz77jKSkJMaOHUuHDh3weDy+2O3atWPZsmUBy23MieqET/QAt912G5MnT+bXX3/NM3zYsGH079+f5cuX07dvX+644w7fuG3btrFw4ULef/99X0KePXs269at46uvvsLj8bBkyRIWLFhwzPK++OILmjRpwtlnn016erovCc6aNYt3332XL7/8kmXLlnH//fcD0LdvX2677TaWLVvGF198Qf369fPEe/HFF6latSqrV6/m0UcfZcmSJQDs2LGDxx9/nDlz5rB06VJSUlL4xz/+4Zuvbt26LF26lKFDh/L000/TuHFjbrnlFl9tvX379gG31/Dhw7n44ou55JJLGDt2LLt27QLg5ZdfpkaNGmRlZZGVlcVLL73EDz/8QO/evZk2zXnU6MGDB5k7dy49evQIOj3A0qVLefbZZ1m7dm2eZY8ePZr27dvj8XgYPnw4N910E5mZmQCsXbuW/fv3k5iYGOSTNubEZIkeOPnkk+nXrx/jxo3LM3zRokXccIPz0Psbb7yRhQsX+sZdeeWVlCtXjubNm/Pjjz8CTqKfPXs2LVu2JDk5mTVr1rBu3bpjljd16lT69OkDOLVdb/PNnDlzGDBgAFWrVgWgdu3a7Nmzhy1btnDVVVcBzh2a3vFeCxYs4M9//jMACQkJJCQkALB48WJWrVrFhRdeSFJSEq+88gobNvzRwd3VV18NQKtWrcjJyQl5ew0YMIDVq1dz7bXXMm/ePC644AIOHDjA7NmzefXVV0lKSqJ169bk5uaybt06LrnkEj799FMOHDjArFmz6NChA3FxcUGnB0hLSwvp5qRrr72W999/n0OHDjFx4kQyMjJCXg9jThRl5s7Y4nbXXXeRnJzMgAEDQpq+cuXKvtfep3SpKg8++CA333xz0PmOHDnCW2+9xbvvvsuoUaN8d13u2bMnuhUIQFXp0qVL0PMA3nUoX768ry08VA0aNGDgwIEMHDiQ+Ph4Vq5ciary3HPP0a1bt2OmT09P56OPPuKNN97w7eSCTT9v3jyqVasWUjmqVq1Kly5dePfdd5k2bZrvaMYY8wer0btq167Nddddx8svv+wb1rZtW15//XUAJk+eHLQpw6tbt25MnDjR1w6+ZcsWfvrpJwA6derEli1bmDt3LgkJCWzatImcnBw2bNhAr169mDFjBl26dGHSpEn8/vvvAOzcuZPq1avTsGFD3nnnHQAOHDjgG+/VoUMH3wnKlStXsnz5cgAuuOACPv/8c9avXw/Ab7/9dkxTSH7Vq1cvdKfz4YcfcujQIQC2b99Obm4up59+Ot26dePFF1/0jVu7di2//fYbAL1792bSpEl89tlndO/e3be9gk0fTvkGDRrEHXfcQWpqKrVq1SpwfmNORJbo/dxzzz15rr557rnnmDRpEgkJCbz22ms8++yzBc7ftWtXbrjhBtq0aUOLFi245ppr2LNnD0ePHmX9+vXUrl2bqVOn+pphvHr16sXUqVPp3r07PXv2JCUlhaSkJJ5++mkAXnvtNcaNG0dCQgJt27Zl+/bteeYfOnQoe/fupVmzZjz88MO0atUKgHr16pGZmcn1119PQkICbdq0Yc2aNQWuw+WXX86MGTMKPBk7e/Zs4uPjSUxMpFu3bowZM4bTTjuNQYMG0bx5c5KTk4mPj+fmm2/2HSl07dqV+fPn07lzZypVqgRQ4PTBJCQkUL58eRITE30n0Fu1asXJJ58c8tGYMSeaUvlw8JSUFM1/Hfjq1atp1qxZCZUoOitXrmTixIl5ToSaorN161bS09NZs2YN5coVX92lpL+DoVwnv6L/iuNQElMaicgSVU0JNM5q9MdBfHy8Jfli8uqrr9K6dWtGjRpVrEnemLLMTsaaoEaNGsWbb76ZZ9i1117LQw89VEIlOla/fv3o169fSRfDmFLNEr0J6qGHHipVSd0YExk71jXGmBhXaI1eRCYClwE/qWq8O+wNoKk7SU1gl6omBZg3B9gDHAEOBztRYIwxpviE0nSTCTwPvOodoKq9va9F5Bng12Nn8+moqse3xzBjjDE+hSZ6VV0gIo0DjRPnsTvXARcXcbkK1XjEzMInCkPO6B5FGs8YY0qLaNvo2wM/quqxHbo4FJgtIktEpMBOy0VkiIhki0j2zz//HGWxise+ffu46KKLWLZsGUlJSSQlJVG7dm2aNGlCUlISnTt3DjjfE088EVL8xo0bF1t3yYMGDWLVqlXHDM/MzOT222+PKOauXbv417/+FXGZMjIyfNsuKSnpmL6G/GVmZrJ169aQYnp7E+3Tp0/AvoaMOdFEm+ivBwrqUL2dqiYDlwC3iUiHYBOq6gRVTVHVlHr16kVZrOIxceJErr76ahITE/F4PHg8Hnr27MmYMWPweDzMmTMn4HyhJvri9J///MfX5W9RiTbRA75t5/F48vQOml+oid7f0KFDeeqpp6IqnzGxIOJELyIVgKuBN4JNo6pb3P8/ATOAtEiXVxpMnjyZK664Iuj4qVOn0qJFC+Lj43nggQcAp//0ffv2kZSURN++fQGn58tWrVpx/vnnM2HChEKXO3ToUFJSUjj//PPz9HGflZVF27ZtSUxMJC0tjT179nDkyBHuvfde4uPjSUhI4LnnngPyPnVq0qRJ/OlPfyItLY3PP//cF+/nn3+mV69epKamkpqa6hs3cuRIBg4cSHp6OmeddZav5j1ixAi+++47kpKSuO+++9i2bRsdOnQgKSmJ+Pj4oF0oFOSxxx4jNTWV+Ph4hgwZgqoyffp0srOz6du3L0lJSezbty/gdPm1b9+eOXPmhN1hmzGxJpoafWdgjapuDjRSRKqJSHXva6ArsDKK5ZWogwcP8v3339O4ceOA47du3coDDzzAJ598gsfjISsri3feeYfRo0cTFxeHx+Nh8uTJgHNksGTJErKzsxk3bhy5ubkFLnvUqFFkZ2ezfPly5s+fz/Llyzl48CC9e/fm2WefZdmyZcyZM4e4uDgmTJhATk4OHo/H14++v23btvHII4/w+eefs3DhwjzNOXfeeSfDhw8nKyuLt956i0GDBvnGrVmzho8++oivvvqKRx99lEOHDjF69GjOPvtsPB4PY8aMYcqUKXTr1g2Px+Nr3irMfffd52u6WbFiBbfffjtZWVmsXLmSffv28f7773PNNdeQkpLC5MmT8Xg8xMXFBZwuv3LlynHOOefYg0jMCS+UyyunAulAXRHZDDyiqi8DfcjXbCMiDYD/qOqlwKnADOd8LRWAKaoa2QNSS4EdO3ZQs2bNoOOzsrJIT0/H2+zUt29fFixYwJVXXnnMtOPGjWPGjBkAbNq0iXXr1lGnTp2gsadNm8aECRM4fPgw27ZtY9WqVYgI9evXJzU1FXD61AenT/tbbrmFChWcj7Z27dp5Yn355Zd5ytm7d29fj5Zz5szJk/h3797t64mzR48eVK5cmcqVK3PKKaf4+uD3l5qaysCBAzl06BBXXnllSIl+zJgxeZ59+9Zbb/HUU0/x+++/s3PnTs4//3wuv/zyY+b79NNPQ5rulFNOYevWrb6O3ow5EYVy1c31QYZnBBi2FbjUff09EDOP+omLi8vzyL9IzZs3jzlz5rBo0SKqVq1Kenp6gXF/+OEHnn76abKysqhVqxYZGRlFUo5Ajh49yuLFi6lSpcox4/z73w/Wf32HDh1YsGABM2fOJCMjg7vvvjus7gn279/PrbfeSnZ2NmeccQYjR44MuK6hTuedNi4uLuQyGBOLymwXCMf7cshatWpx5MgR9u/fHzARpqWlcccdd7Bjxw5q1arF1KlTfQ/NrlixIocOHaJixYr8+uuv1KpVi6pVq7JmzRoWL15c4HJ3795NtWrVqFGjBj/++COzZs0iPT2dpk2bsm3bNrKyskhNTWXPnj3ExcXRpUsX/v3vf9OxY0cqVKjAzp0789TqW7duzZ133klubi4nn3wyb775pu/Re127duW5557jvvvuA8Dj8RRYK8/fN/yGDRto2LAhgwcP5sCBAyxdutTXF83tt99OWlrBp2i8ybpu3brs3buX6dOn+2r7/ssqaLr81q5d63u2rjEnqjKb6EtC165dWbhwYcDLKOvXr8/o0aPp2LEjqkqPHj18J26HDBlCQkICycnJTJw4kfHjx9OsWTOaNm3KBRdcUOAyExMTadmyJeeddx5nnHEGF154IQCVKlXijTfeYNiwYezbt4+4uDjmzJnDoEGDWLt2LQkJCVSsWJHBgwfnuXyyfv36jBw5kjZt2lCzZs08iXzcuHHcdtttJCQkcPjwYTp06MD48eODlq1OnTpceOGFxMfHc8kllxAfH8+YMWOoWLEiJ510Eq++6txjt3z5cho0aFDo9q1ZsyaDBw8mPj6e0047zdcsBc5lk7fccgtxcXEsWrQo6HT+fvzxR+Li4jjttNMKXbYxscz6ow/D0qVLGTt2LK+99lqJlqMs2b17NzfddNMxvWAeD2PHjuXkk0/mpptuKpJ4Jf0dtP7oTUGsP/oikpycTMeOHTly5EhJF6XM8DYPlYSaNWvSv3//Elm2MaWJNd2EaeDAgSVdBBMie7SgMQ6r0RtjTIyzRG+MMTHOEr0xxsS4sttGP7JGEccrqEt9Y4wpu6xGHwbrpjivaHuvXLx4Ma1btyYpKYlmzZoxcuTIsObfunVr0BulInXvvffyySefFGlMY0qaJfowWDfFeUWb6Pv378+ECRPweDysXLmS6667LuR5Dx8+TIMGDXx9zxeVYcOGMXr06CKNaUxJs0QfBuumuGi7Kf7pp5+oX78+4PSf490R/fbbbwwcOJC0tDRatmzJu+++CzhHHz179uTiiy+mU6dO5OTk+Lo32L9/PwMGDKBFixa0bNmSTz/91DeP/xHLZZddxrx58zhy5AgZGRnEx8fTokULxo4dC8CZZ55Jbm4u27dvL/RzMaasKLtt9MdZqN0UL1myhFq1atG1a1dfN8XPP/88Ho/HN+3EiROpXbs2+/btIzU1lV69ehXYe+WoUaOoXbs2R44coVOnTixfvpzzzjuP3r1788Ybb5Camsru3buP6abY29eNP283xUuWLKFGjRp07NiRli1bAn90U9yuXTs2btxIt27dWL16NeB0U/zpp5+yZ88emjZtytChQxk9ejQrV670rdszzzxDt27deOihhzhy5Ai///57gdt0+PDhNG3alPT0dLp3707//v2pUqUKo0aN4uKLL2bixIns2rWLtLQ0X7PY0qVLWb58ObVr1yYnJ8cX64UXXkBEWLFiBWvWrKFr166+XjkD8Xg8bNmyhZUrnZ6zd+3a5RuXnJzM559/Tq9evQosvzFlhSX6EFk3xUXfTfHDDz9M3759mT17NlOmTGHq1KnMmzeP2bNn89577/H0008DTm1948aNAHTp0uWYdQJYuHChrxO58847jzPPPLPARH/WWWfx/fffM2zYMHr06EHXrl1947xdGxsTK6zpJkTF0U3xsmXLaNmyZUjdFM+dO5fly5fTo0ePYu+m2Hv+YcuWLZx00klAeN0Un3766WRkZPg6NSvI2WefzdChQ5k7dy7Lli0jNzcXVeWtt97ylWPjxo2+PmaqVasW1jpVqFCBo0eP+t57t12tWrVYtmwZ6enpjB8/Ps9DVqxrYxNrym6iH/lr0f4Vwr+b4kDS0tKYP38+O3bs4MiRI0ydOpWLLroI+KObYqBIuikG8nRTDLBnzx4OHz7s66bYm4jzN920bt2a+fPnk5uby6FDh/L0Q+PtptjLv7kpkEDdFJ966qkMHjyYQYMGsXTpUgD69evHV199dcz8M2fO9D0CcN26dZQvX56aNWvSrVs3nnvuOd+4r7/+usBygPPYQO8TvNauXcvGjRtp2rQpjRs3xuPxcPToUTZt2uQrx44dOzh69Ci9evXi8ccf95XVO791bWxiiTXdhMG6Kc4r2m6KX3vtNYYPH07VqlWpUKECkydPpnz58vz1r3/lrrvuIiEhgaNHj9KkSZOAjwr0d+uttzJ06FBatGhBhQoVyMzMpHLlylx44YU0adKE5s2b06xZM5KTkwHYsmULAwYM8NX2n3zySQAOHTrE+vXrSUkJ2AmgMWWSdVMcBuumOHwl2U1xJGbMmMHSpUv529/+dsy4kv4OWjfFpiBRdVMsIhNF5CcRWek3bKSIbBERj/t3aZB5u4vItyKyXkRGRL4KpYN1Uxy+kuymOBKHDx/mnnvuKeliGFOkQmmjzwS6Bxg+VlWT3L8P8o8UkfLAC8AlQHPgehEp2jt2SsDAgQMpX758SRfDFJNrr722wKurjCmLCk30qroA2FnYdAGkAetV9XtVPQi8DgS/28gYY0yxiOZk7O0i0g/IBu5R1V/yjT8d2OT3fjPQOlgwERkCDAFo1KhRFMUyxgRj7fwnpkgvr3wROBtIArYBz0RbEFWdoKopqprivZnHGGNM9CKq0auq77ZIEXkJCHTt2xbgDL/3Dd1hRSKUmkk4QqnF7Nu3j+7duzNu3Djfs0g3btxIjRo1qFGjBnXr1g3YsdkTTzzBX/7yl0LjN27cmOzsbOrWrRv+ChRi0KBB3H333cd0bJaZmUl2djbPP/982DF37drFlClTuPXWWyMq0+LFi7nzzjs5cOAABw4coHfv3owcOTJPmcaPH0/VqlXp169f0DgFrYP/tj948CCdO3fmk08+8d05bMyJIKIavYjU93t7FbAywGRZwLki0kREKgF9gPciWV5pYb1X5nU8eq+85ZZbCkzyhfHf9pUqVaJTp0688cYbEcczpiwK5fLKqcAioKmIbBaRm4CnRGSFiCwHOgLD3WkbiMgHAKp6GLgd+AhYDUxT1W+KaT2OC+u98vj0Xulv5MiRvj5vsrKySEhI8C3P/+7VrVu30r17d84991zuv//+Are99w5aY04UhR6/qur1AQa/HGTarcClfu8/AI659LIsst4rj1/vlcEMGDCAl156iTZt2jBiRN7bMjweD19//TWVK1emadOmvn7l82/7+Ph4X7cRxpwoym5fN8dZOL1XVqhQwdd7ZSDjxo0jMTGRCy64wNd7ZUGmTZtGcnIyLVu25JtvvmHVqlV8++23x/ReWaFCBebMmcPNN98cUu+VlSpVonfv3r5xc+bM4fbbbycpKYmePXsG7L2ybt26BfZeOWnSJEaOHMmKFSuoXr16gev18MMPk52dTdeuXZkyZQrduwe6XcOxa9cu9uzZQ5s2bQC44YYb8ozv1KkTNWrUoEqVKjRv3pwNGzYEjFO+fHkqVaqUp48eY2KdnZEKUXH0Xlm1alXS09ND6r0yKyuLWrVqkZGRUey9VwaqVYfTe+XMmTPJyMjg7rvvLrR93dt75eDBg6lXrx65ubkRlT2U8nkdOHCgwCMHY2KN1ehDZL1XHqu4eq8MpGbNmlSvXp0vv/wSgNdff73Asnn5b3uA3Nxc6tatS8WKFUOa35hYUGZr9CVxU4f1XplXcfVeGczLL7/M4MGDKVeuHBdddBE1atQocNtB3m0/efJkPv30U3r06FHofMbEEuu9MgzWe2X4irL3yr179/oehDJ69Gi2bdvGs88+G1aMq6++mtGjR/OnP/0p7OWX9HewKO5qtTtjY1dBvVeW2Rp9SfDvvdI6NgtNUfZeOXPmTJ588kkOHz7MmWeeSWZmZljzHzx4kCuvvDKsJP/Njj+uCN6+dzvXvZL3Wv8TNSnaDqNssUQfpoEDB5Z0EU5YvXv3znOVULgqVaoU1c1XxpRVZepkbGlsZjInBlVFse+fKZvKTKKvUqWK78HRxhxPqsrBPQfZtG9T4RMbUwqVmaabhg0bsnnzZn7++eeSLoo5gWzfux1F2bRvEy9tfKmki2NMRMpMoq9YsSJNmjQp6WKYE0z+k6/GlEVlpunGGGNMZCzRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+PKzFU35sRgt9YbU/SsRm+MMTEulGfGThSRn0Rkpd+wMSKyRkSWi8gMEakZZN4c99myHhHJDjSNMcaY4hVKjT4TyP+Mt4+BeFVNANYCDxYwf0dVTQrWfaYxxpjiVWiiV9UFwM58w2arqvdZbYuBhsVQNmOMMUWgKNroBwKzgoxTYLaILBGRIUWwLGOMMWGK6qobEXkIOAxMDjJJO1XdIiKnAB+LyBr3CCFQrCHAEIBGjRpFUyxjjDF+Iq7Ri0gGcBnQV4P0HayqW9z/PwEzgLRg8VR1gqqmqGpKvXr1Ii2WMcaYfCJK9CLSHbgf6KmqvweZppqIVPe+BroCKwNNa4wxpviEcnnlVGAR0FRENovITcDzQHWc5hiPiIx3p20gIh+4s54KLBSRZcBXwExV/bBY1sIYY0xQhbbRq+r1AQa/HGTarcCl7uvvgcSoSmeMMSZqdmesMcbEOEv0xhgT4yzRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+Ms0RtjTIyzRG+MMTHOEr0xxsQ4S/TGGBPjLNEbY0yMs0RvjDExzhK9McbEOEv0xhgT4yzRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+Ms0RtjTIwLKdGLyEQR+UlEVvoNqy0iH4vIOvd/rSDz9nenWSci/Yuq4MYYY0ITao0+E+ieb9gIYK6qngvMdd/nISK1gUeA1kAa8EiwHYIxxpjiEVKiV9UFwM58g68AXnFfvwJcGWDWbsDHqrpTVX8BPubYHYYxxphiFE0b/amqus19vR04NcA0pwOb/N5vdocdQ0SGiEi2iGT//PPPURTLGGOMvyI5GauqCmiUMSaoaoqqptSrV68oimWMMYboEv2PIlIfwP3/U4BptgBn+L1v6A4zxhhznEST6N8DvFfR9AfeDTDNR0BXEanlnoTt6g4zxhhznIR6eeVUYBHQVEQ2i8hNwGigi4isAzq77xGRFBH5D4Cq7gT+BmS5f4+5w4wxxhwnFUKZSFWvDzKqU4Bps4FBfu8nAhMjKp0xxpio2Z2xxhgT4yzRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+Ms0RtjTIyzRG+MMTHOEr0xxsQ4S/TGGBPjLNEbY0yMs0RvjDExzhK9McbEOEv0xhgT4yzRG2NMjLNEb4wxMc4SvTHGxLiQHjxiil6LV1oUOs2K/iuOQ0lMcbPP2pQ0q9EbY0yMizjRi0hTEfH4/e0WkbvyTZMuIr/6TfNw1CU2xhgTloibblT1WyAJQETKA1uAGQEm/UxVL4t0OcYYY6JTVE03nYDvVHVDEcUzxhhTRIoq0fcBpgYZ10ZElonILBE5P1gAERkiItkikv3zzz8XUbGMMcZEnehFpBLQE3gzwOilwJmqmgg8B7wTLI6qTlDVFFVNqVevXrTFMsYY4yqKGv0lwFJV/TH/CFXdrap73dcfABVFpG4RLNMYY0yIiiLRX0+QZhsROU1ExH2d5i4vtwiWaYwxJkRR3TAlItWALsDNfsNuAVDV8cA1wFAROQzsA/qoqkazTGOMMeGJKtGr6m9AnXzDxvu9fh54PpplGGOMiY51gWCMKTGFdQ9hXUMUDesCwRhjYpwlemOMiXGW6I0xJsZZojfGmBhnid4YY2KcJXpjjIlxluiNMSbGWaI3xpgYZ4neGGNinCV6Y4yJcZbojTEmxlmiN8aYGGeJ3hhjYpwlemOMiXGW6I0xJsZZojfGmBhnid4YY2Jc1IleRHJEZIWIeEQkO8B4EZFxIrJeRJaLSHK0yzTGGBO6onqUYEdV3RFk3CXAue5fa+BF978xxpjj4Hg03VwBvKqOxUBNEal/HJZrjDGGoqnRKzBbRBT4t6pOyDf+dGCT3/vN7rBt/hOJyBBgCECjRo2KoFixr7AHK8OJ+3Bl2zbG/KEoavTtVDUZp4nmNhHpEEkQVZ2gqimqmlKvXr0iKJYxxhgogkSvqlvc/z8BM4C0fJNsAc7we9/QHWaMMeY4iCrRi0g1EanufQ10BVbmm+w9oJ979c0FwK+qug1jjDHHRbRt9KcCM0TEG2uKqn4oIrcAqOp44APgUmA98DswIMplGmOMCUNUiV5VvwcSAwwf7/dagduiWY4xxpjI2Z2xxhgT4yzRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+OKqlMzY6zbAVMiiup7V5q+v0VdFqvRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+Ms0RtjTIyzRG+MMTHOEr0xxsQ4S/TGGBPjLNEbY0yMs0RvjDExzrpAMKXq1m9jyrrCfk8l8VuyGr0xxsS4iBO9iJwhIp+KyCoR+UZE7gwwTbqI/CoiHvfv4eiKa4wxJlzRNN0cBu5R1aUiUh1YIiIfq+qqfNN9pqqXRbEcY4wxUYi4Rq+q21R1qft6D7AaOL2oCmaMMaZoFEkbvYg0BloCXwYY3UZElonILBE5vyiWZ4wxJnRRX3UjIicBbwF3qerufKOXAmeq6l4RuRR4Bzg3SJwhwBCARo0aRVssY4wxrqhq9CJSESfJT1bVt/OPV9XdqrrXff0BUFFE6gaKpaoTVDVFVVPq1asXTbGMMcb4ieaqGwFeBlar6j+CTHOaOx0ikuYuLzfSZRpjjAlfNE03FwI3AitExOMO+wvQCEBVxwPXAENF5DCwD+ijqhrFMo0xxoQp4kSvqgsBKWSa54HnI12GMcaY6JWJLhBK0y36paksxoRrxQ8bS7oIpgRYFwjGGBPjLNEbY0yMs0RvjDExzhK9McbEOEv0xhgT4yzRG2NMjLNEb4wxMc4SvTHGxDhL9MYYE+Ms0RtjTIwrE10gFJXS9HR2uxW9bNizenTUMWLxsy6qdbLte3xYjd4YY2KcJXpjjIlxluiNMSbGWaI3xpgYZ4neGGNinCV6Y4yJcZbojTEmxkWV6EWku4h8KyLrRWREgPGVReQNd/yXItI4muUZY4wJX8SJXkTKAy8AlwDNgetFpHm+yW4CflHVc4CxwN8jXZ4xxpjIRFOjTwPWq+r3qnoQeB24It80VwCvuK+nA51ERKJYpjHGmDCJqkY2o8g1QHdVHeS+vxForaq3+02z0p1ms/v+O3eaHQHiDQGGuG+bAt8WsPi6wDExIlCa4lhZijdOaSpLUcWxshRvnNJUllDinKmq9QKNKDV93ajqBGBCKNOKSLaqpkS7zNIUx8pSvHFKU1mKKo6VpXjjlKayRBsnmqabLcAZfu8busMCTiMiFYAaQG4UyzTGGBOmaBJ9FnCuiDQRkUpAH+C9fNO8B/R3X18DfKKRthUZY4yJSMRNN6p6WERuBz4CygMTVfUbEXkMyFbV94CXgddEZD2wE2dnUBRCauIpY3GsLMUbpzSVpajiWFmKN05pKktUcSI+GWuMMaZssDtjjTEmxlmiLyLuDWTGGFPqlJrLK0MhIqcAtwO1gDdVdYGISDgneEWkGc6NXPXcGIsjLEs80BG4FOf61uuB9RHEaQj0A84H5gMvhXvCWkROx7kLuQYwXVUXhbtdTHhEpLyqHokyRiXgsKoejTJOHICq7osyzklAeVX9NYoY5aJdn6IiItUAVdXfo4xTQVUPRxmjKnBUVfdHGacaTpP73nDmKzM1evfyzJuBJsByYKyIxIeZ5Nvj3Kl7GvAd8JKInB1BWS4HJgMNgGk4l5b+EEGc6sBjQH1gNtAdZ4cRSYy6wErgERFpGmmSF5HTRGSUiHwqIjeLSBV3eFh3NItIvIiMF5H/cz+7cOYV93+qiPxdRN4VkQHujyXksuSLM0pEPhSRYSJSJ5J1cuepKSL/w+n+I5KytHTL8hnwDFA73DK4cSqKyCARWQq8AySHOX85939bEXlMRGYDm4EB/uUNMVYTEXlcRBYAT7iVqUi+M2eKyJMiMsv9vCtHGKe1iMwHvgZGiEiTcOOISCURyRCRjcBEb1nCLEdNEblfRL4AFrpliSTf1BKR+0RkHrAIeFBEktxxIa1TmUn07h71JuBWVX0JJ9H2F5HTwgizHuitqnep6r8AD3BBBMX5QFUTVfVB4L/ABpydR7iqAJeo6jBVfQX43f0LR10gRVXvUNVJwCxgiIgEvEMuPzcht/Qb1BnnzuS/u/8fDzeOiJwK9ATi3Xh1w4iRrKoqIgnAA8Ae4FWgLfBgBHHOBwYDh3CScwPg4QjWqaI7uB6QAjQCp7oYRlnOA54EEoE73c89pDsmA3xOzYDLcH4TlwEhHZn6leeoiLTD2cb7cLbNdGBVYeuVb7tUxqmc1AL+CvyMswMLa53EObr5M3AS8E/gVJwKTGExmonICBF5RkTauoPbAnOBBOA3oNAnkPvF+YeIpOBcSQjOd68mUCeMGGPd7+/JOHlhKNAD5/c+PMw4iUAlYD9wP9ABOAAMg8K/fz6qWib+gOrAG0Bb930r4DmcLhZCjeG9yqiy+/91nB9cJOUp5/6/HOeypzMijDPLXY//AV8BF4c5f1MgE2jjvn8QZ6/fvpD5KgPvA7uAr9xhJ+HsuC50358C5AC1woxTCecopSLwIZAWQVnigES/aS7DuVy3cphxyueb5h7gL97vQghxvsz33RmIk9i+BxpFsH0fBS4P4/MNVJZyODXvR/J/H8MsT7l80/wANA4zRh0gGzjbfX8VToIOWp4gcerhHGV7t/Np7nevZgFx2uP8Zv4J3IZTcUvC+U01c6epgHPjZoMw4izH2ZGe5I6fi/ubCCPGMpzOHuv7TdPbHV8ljDgrgKb5pnkGuCbU75Cqlp0avSsHOM99vQWn9tA01JnV3UqqekBEzsVJZO9EWabKwHmquimSpgCcD/MUYB4wDhgmIr3DmH8dsA24T0TG4NQ2s3Ha/INS1QPAeJxadzkROUWddr944LA7zU84h/OXQ+DDxABx6qrTyd12VT2E8xklFrRtgsTYp6rL/GrSbYHv3WlDjVNH3XZ0t/lmOjAC54cc9LufL055N4635nQVzme1EmgTxnap527fncBtIvKxiLwjIj1FpEYYZamnTht4Z2CrW5NdhtMs8Ce3PMesW5Btc1REyrnNQHHAJpwddKjrdIqq5uKcW/o/EfkEpwacg3O+KJw4P+Mk5c7uZGfhNGt1DhaHvEfoL+AcjZyCc9RWz13WYWA1zhFmqHGWAcn6Rzt4DtAy0HYtIMZyoKWqbvP7DncGvtOC2+nzx/Hg/KYRkStF5GucikaNUI/aoQw13eAcgm3AORwD+BXn8GpXhPFuBLJUdUMkM+sfJ5x+BMQdFkm7eG2goqo+o6r/xanZtwuzHI/i1Oq34xw+HwQ2hjD7B+p0OPcjf/zAVuMmdtf/cA47wV3PQuJ0dIdVcv8vxmk/rhZGWTqC7yTYIXHOQ5wLrAlznS72G74f+BdO80AX4F53GcF+A/5xOrnTtgK+UNVtOMn+zyLSsYDP/ZgYwFKcHfE/cZLd9WGWxfs5/YDTbPMdzk7wFJxmIYBQyuPdNuXcHXJznCSzFwr8Lgf6rB/E2aHPwklKKcCz3vhhrNM/gRtExHtH/WwK/u5tV9Uf/NrPK+McCX6Acye+1zs4n3mocSqSt6nmc6AlTlNMMPljVPLGcL/D5+A0RxXWxBaoLN6E/hWQipMDm+D81gv63viUmUTvJrT5QBsRaaDOFQZtcWqzYRGR2jhHAk+678+OsDYOziHeQnFPFEagNnBE3JOeOEcs34Xy4Xmp6n5Vfc/dWazC2VHk73co0HzendUX/PFjexvo6jfZEpwmB//pC4rj/UF5E8XnwNkUkuiDxPC6DOcQ/q2CYgSLI84VMitU9RNV/Qjnh391GOvk3R5nA7eIyFicq78uBXpJkJPN+WJ4E322qv6fqs5U1Q9xmv06hlEW7+c0F+dzyVbV33COBpPd6QMm6SDb2Pu9P4TT/LeikKOvQGVJBM5V1TGq+q1bli7u9AGvTMoXx7vTeRbnN/kmzs5jEk6lJeC2CXCEXg+YA3xC3srSJpzzEKHGOQV4x287fI5zwUXQq6yClOUdv0muwEniWcFiFFCWt91hW1X1sDrndebjNFMF/d74KzOJHkBVv8HZ6M+IyCKcDy+UWl5+D+F8uTJFZB3O5Y1hnVX3+xJcCFRT1d/DSc5+vsD5AmWKyEycL+iiUD68fOWJF5EnxDkzPx+naSFUC/njSOl/ODueS933acD7Ie4IF+LUfHCbb1BVD87Jo7buoWdBtaL8MQ67O8DLgVvFuYqhkziXmIVTlvw/0ARgtt8hdWFxEt3X63G+fzk4J8V+AB7Twi+9W8gfP8r8l0AmA3OC7SwKKMvnOIf157jvKwPfinOJZChxvNvmkDssF/hdRKqFeGTqi4HzXbtURGq57xsDH4VY+fGtk6oeVdW1qvqaqu7EadN+O4QY4ByhL1bV31T1Y2CziNwmInWBK3Gujgs1TpaqbvRLut/iHCk8JiIviEj9UGMAiHOV11U4VwpeJSJ/dYeFXBY3Tnn3/0nuOk0McZ3KzslY7x/OoUwHnDa3ihHMXw7nZNx4nKRaKcJyeE8ataWQk40hxDoNZ2fTw7tOFHCyMEiMdjiHvt2BChFsk8+Bk933V+C0tXpw2isTwozjPYl1KnA3cBTnyOtdoEmYMfq583+Fc7ncixRwYq2AOJfiPOVsHs7ONTHMdaoWYNxk4OoIynIR8JRbls+BFhF+TinuOn2Bc64mpJO8+cvjDhuMU4M+NcwYNdz3z+Fc3LAIJ/F3jvA7kwCMwmnjngrUCSFGbZwLNWq67xvgnKN6AVgLTAFOjyBOE+BPbjl+wzmBfHug70IBMeoDT7jf4SU4Rys3AnERrNNQYAHOb/LlUNbJFy/UCe0vdv9walSbcM53TMG5HPIsnJNJkcT51U0aacB1wAURxNgL/APn6GsEEB9hWfYAzwODgLuAVhHE2Qj8gpPYzyL8nbC3LLvd5JOBc3lcShSf01ScSxpPA86PMM4vbnKuhXNkcGaEn/Ur7nZJjXD7euP8B6fJpy/uVWQhxngG5xzBuzhHXX/DqRAGTcghxPkO+D/gdOCsCGPkAHfgNP2F+1vyj/MDztVirQmx0pX/zzo1O8GJcx/CFJyTsP8D5uofh/PHNU6+GO8Dc4qgLEUVpzStU2n6nEq6LOVwKgKNcC4N/krdZsPjHac0leWYmJbojTEmtpWpk7HGGGPCZ4neGGNinCV6Y4yJcZbojTEmxlmiN8aYGGeJ3pzwRKSxiIRzJ7ExZYolemOKQYhdGhhzXFiiN8ZRXkReEpFvRGS2iMSJSJKILBaR5SIyw9uXi4jME+fhFIhIXRHJcV9niMh7bne9c0tuVYzJyxK9MY5zgRdU9XycLgZ64fT384CqJuA8AOKREOIk4zwU4qLiKqgx4bJEb4zjB3V62gSn86mzcTqUmu8OewWnM73CfKxOz4vGlBqW6I1x+D+56gjOc0KDOcwfv50q+cb9VoRlMqZIWKI3JrBfgV9EpL37/kacfv7B6ZWwlfv6Gowp5ezKAGOC6w+Mdx+g8T3OA7kBngamicgQYGZJFc6YUFnvlcYYE+Os6cYYY2KcJXpjjIlxluiNMSbGWaI3xpgYZ4neGGNinCV6Y4yJcZbojTEmxv0/+LNdv+IAt8wAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "import numpy as np\n",
-                "import matplotlib.pyplot as plt\n",
-                "\n",
-                "# Draw a vertical bar chart\n",
-                "\n",
-                "TimeAccident_df.plot.bar(stacked=True,rot=15, title=\"Accidents on Study Road\")\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 148,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "TimeAccident_dfwithbrack=TimeAccident_df.withColumn(\n",
-                "    \"hour\",\n",
-                "    when(\n",
-                "        col(\"hour\") == 0,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 1,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 2,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 3,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 4,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 5,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 6,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 7,\n",
-                "        \"07:00-10:00 Rush Hour\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"hour\") == 8,\n",
-                "        \"07:00-10:00 Rush Hour\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"hour\") == 9,\n",
-                "        \"07:00-10:00 Rush Hour\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 10,\n",
-                "        \"07:00-10:00 Rush Hour\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 11,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 12,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 13,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 14,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 15,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 16,\n",
-                "        \"16:00-19:00 Rush Hour\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 17,\n",
-                "        \"16:00-19:00 Rush Hour\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 18,\n",
-                "        \"16:00-19:00 Rush Hour\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 19,\n",
-                "        \"16:00-19:00 Rush Hour\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 20,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 21,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 22,\n",
-                "        \"Off peak\"\n",
-                "    ). when(\n",
-                "        col(\"hour\") == 23,\n",
-                "        \"Off peak\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"hour\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"hour\")))"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 149,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+---------------+\n",
-                        "|Accident_Severity|                hour|Total accidents|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "|           Slight|            Off peak|              2|\n",
-                        "|           Slight|            Off peak|              1|\n",
-                        "|           Slight|07:00-10:00 Rush ...|              2|\n",
-                        "|          Serious|07:00-10:00 Rush ...|              1|\n",
-                        "|           Slight|07:00-10:00 Rush ...|              7|\n",
-                        "|           Slight|07:00-10:00 Rush ...|              5|\n",
-                        "|           Slight|07:00-10:00 Rush ...|              3|\n",
-                        "|           Slight|            Off peak|              4|\n",
-                        "|           Slight|            Off peak|             13|\n",
-                        "|           Slight|            Off peak|              5|\n",
-                        "|            Fatal|            Off peak|              1|\n",
-                        "|           Slight|            Off peak|             13|\n",
-                        "|           Slight|            Off peak|              7|\n",
-                        "|          Serious|            Off peak|              1|\n",
-                        "|           Slight|16:00-19:00 Rush ...|             19|\n",
-                        "|           Slight|16:00-19:00 Rush ...|             13|\n",
-                        "|          Serious|16:00-19:00 Rush ...|              2|\n",
-                        "|          Serious|16:00-19:00 Rush ...|              1|\n",
-                        "|           Slight|16:00-19:00 Rush ...|             13|\n",
-                        "|            Fatal|16:00-19:00 Rush ...|              1|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "TimeAccident_dfwithbrack.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 150,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+---------------+\n",
-                        "|Accident_Severity|                hour|Total_accidents|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "|          Serious|07:00-10:00 Rush ...|              1|\n",
-                        "|            Fatal|16:00-19:00 Rush ...|              1|\n",
-                        "|            Fatal|            Off peak|              1|\n",
-                        "|          Serious|            Off peak|              2|\n",
-                        "|          Serious|16:00-19:00 Rush ...|              3|\n",
-                        "|           Slight|07:00-10:00 Rush ...|             17|\n",
-                        "|           Slight|16:00-19:00 Rush ...|             51|\n",
-                        "|           Slight|            Off peak|             59|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "TimeAccident_dfwithbrack = TimeAccident_dfwithbrack.groupby('Accident_Severity','hour').agg(F.sum(TimeAccident_dfwithbrack['Total accidents']).alias('Total_accidents')).sort(\"Total_accidents\")\n",
-                "TimeAccident_dfwithbrack.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 151,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "TimeAccident_dfwithbrack=TimeAccident_dfwithbrack.toPandas()\n",
-                "TimeAccident_dfwithbrack=TimeAccident_dfwithbrack.pivot(index ='hour', columns ='Accident_Severity')\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 152,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(array([0, 1, 2]),\n",
-                            " [Text(0, 0, '07:00-10:00 Rush Hour'),\n",
-                            "  Text(1, 0, '16:00-19:00 Rush Hour'),\n",
-                            "  Text(2, 0, 'Off peak')])"
-                        ]
-                    },
-                    "execution_count": 152,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAKhCAYAAAAmDWnZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4xklEQVR4nOzdebxVdb3/8deHQQRTAcW5BMdQOOcIOCuiOGuIUw7klIk3u+K1SSt/abfsWnmlzEotyeEqppaaQ2aopOSQoOCIM06gAk6goAzf3x/ftY+bwzlwGA8sXs/Hg8c+Z6/pu0+29lrv9f1+vpFSQpIkSZIkSeXTqqUbIEmSJEmSpGXD4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJ0kolIp6OiH5NLOsXEW8s3xYtmgW1X5IkaWlr09INkCRJ5RcRI4FaYIOU0idLsq+U0rZLpVELERETgK+llEYs4nbTq37tAHwCzCl+P3V5tV+SJAns8SNJkpaxiOgK7A4kYEDLtmbZSyl9rvIPeA34UtV717Z0+yRJ0qrF4EeSJC1rxwMPA1cCJ1QviIjPR8RfImJyREyNiEuqlp0SEc9GxLSIeCYiehXvT4iIvYuf20fElRHxXkQ8A2zfYP8bRcSfi/2/EhFDqpadFxE3RMTVxTGejog+xbJrgC8At0XE9Ij4bkSsHhH/V7Tz/Yh4NCLWX9Q/RoP2nxcRNxb7nRYRT0bEVhHxvYh4JyJej4h9q7ZdOyKuiIhJEfFmRPwkIlovahskSdKqw+BHkiQta8cD1xb/9quEJUVgcTvwKtAV2Bi4vlh2JHBese1a5J5CUxvZ97nA5sW//agKliKiFXAbMK7Yd3/gvyJiv6rtBxTH7Aj8FbgEIKV0HPP21vl5se+1gc8D6wD/AcxYzL9JtS8B1wCdgMeBv5Ov0TYG/hu4rGrdK4HZwBbAdsC+wNeWQhskSVJJGfxIkqRlJiJ2AzYFbkgpjQFeAo4tFu8AbAR8J6X0UUppZkppVLHsa8DPU0qPpuzFlNKrjRziy8D5KaV3U0qvAxdXLdse6JJS+u+U0qcppZeB3wNHV60zKqV0Z0ppDjl8qV3Ax5lFDny2SCnNSSmNSSl9uCh/jyY8kFL6e0ppNnAj0AW4IKU0ixxKdY2IjkVgdiDwX8Xf6x1gaIPPI0mSNA+LO0uSpGXpBODulNKU4vfriveGknvOvFoEHg19nhwSLcxGwOtVv1eHQ5sCG0XE+1XvtQYeqPr9raqfPwZWj4g2TbTpmqJd10dER+D/gB8UAc2SeLvq5xnAlCKIqvwO8DnyZ20LTIqIyvqtmPfzS5IkzcPgR5IkLRMR0Z7cI6d1RFQClnZAx4ioJQcWX2giaHmdPHxrYSaRw5ini9+/0GAfr6SUtlzMj5Dm+SUHPD8CflQUrL4TeA64YjH3v6heJ88Qtm4TwZQkSdJ8HOolSZKWlYHkacy3AeqKf93JPW6OB/5NDm4uiIg1iuLJuxbb/gH4dkT0jmyLiNi0kWPcAHwvIjpFxCbA6VXL/g1Mi4iziiLQrSOiR0Rs38h+GvM2sFnll4jYMyJ6FrWJPiQP/ZrbzH0tsZTSJOBu4H8jYq2IaBURm0fEHsurDZIkaeVj8CNJkpaVE4A/ppReSym9VflHLqA8CAhyYeMtyIWU3wCOAkgp3QicTx4aNg24BejcyDF+RB7e9Qo5FLmmsqAYLnUwOXB6BZhCDpTWbmb7/wc4p5jB69vABsBN5NDnWeCf1cdbTo4HVgOeAd4r2rPhcm6DJElaiURKaeFrSZIkSZIkaaVjjx9JkiRJkqSSMviRJEmSJEkqKYMfSZIkSZKkkjL4kSRJkiRJKqk2y/Ng6667buratevyPKQkSZIkSVKpjRkzZkpKqUtjy5Zr8NO1a1dGjx69PA8pSZIkSZJUahHxalPLHOolSZIkSZJUUgY/kiRJkiRJJWXwI0mSJEmSVFLLtcZPY2bNmsUbb7zBzJkzW7opWoWtvvrqbLLJJrRt27almyJJkiRJ0lLT4sHPG2+8wZprrknXrl2JiJZujlZBKSWmTp3KG2+8Qbdu3Vq6OZIkSZIkLTUtPtRr5syZrLPOOoY+ajERwTrrrGOvM0mSJElS6bR48AMY+qjF+d+gJEmSJKmMVojgR5IkSZIkSUufwY8kSZIkSVJJlTr4iQi+9a1v1f9+4YUXct555y3z444dO5aI4K677lqs7SdOnMgRRxzR6LJ+/foxevToxdrvyJEjefDBBxe4znPPPUe/fv2oq6uje/fuDB48eLGOtSh22WUXACZMmMB11123zI8nSZIkSdKqotTBT7t27fjLX/7ClClTlutxhw8fzm677cbw4cMXa/uNNtqIm266aSm3qnnBz5AhQzjzzDMZO3Yszz77LKeffvpSb0fF7NmzAerbZPAjSZIkSdLSVergp02bNgwePJihQ4fOt2zChAnstdde1NTU0L9/f1577TUATjzxRIYMGcIuu+zCZpttNk8A84tf/ILtt9+empoazj333EaPmVLixhtv5Morr+Qf//jHPDNF/exnP6Nnz57U1tZy9tlnA/Diiy+y9957U1tbS69evXjppZeYMGECPXr0AGDGjBkcffTRdO/enUMPPZQZM2bU7+/uu+9m5513plevXhx55JFMnz4dgK5du3LuuefSq1cvevbsyfjx45kwYQKXXnopQ4cOpa6ujgceeKDR9k+aNIlNNtmk/veePXsCMGfOHL7zne/Uf/7LLrsMgKOPPpo77rijfv0TTzyRm266qcn1R44cye67786AAQPYZpttAPjc5z4HwNlnn80DDzxAXV0dQ4cOpW/fvowdO7Z+37vtthvjxo1rtN2SJEmSJGl+pQ5+AL7xjW9w7bXX8sEHH8zz/umnn84JJ5zAE088waBBgxgyZEj9skmTJjFq1Chuv/32+oDm7rvv5oUXXuDf//43Y8eOZcyYMdx///3zHe/BBx+kW7dubL755vTr168+FPnb3/7GrbfeyiOPPMK4ceP47ne/C8CgQYP4xje+wbhx43jwwQfZcMMN59nf7373Ozp06MCzzz7Lj370I8aMGQPAlClT+MlPfsKIESN47LHH6NOnDxdddFH9duuuuy6PPfYYX//617nwwgvp2rUr//Ef/1Hfm2f33Xdv9O915plnstdee3HAAQcwdOhQ3n//fQCuuOIK1l57bR599FEeffRRfv/73/PKK69w1FFHccMNNwDw6aefcs8993DQQQc1uT7AY489xq9+9Suef/75eY59wQUXsPvuuzN27FjOPPNMTj75ZK688koAnn/+eWbOnEltbW0T/0tLkiRJkqSGSh/8rLXWWhx//PFcfPHF87z/0EMPceyxxwJw3HHHMWrUqPplAwcOpFWrVmyzzTa8/fbbQA5+7r77brbbbjt69erF+PHjeeGFF+Y73vDhwzn66KOB3BumMtxrxIgRnHTSSXTo0AGAzp07M23aNN58800OPfRQAFZfffX65RX3338/X/nKVwCoqamhpqYGgIcffphnnnmGXXfdlbq6Oq666ipeffXV+u0OO+wwAHr37s2ECROa/fc66aSTePbZZznyyCMZOXIkO+20E5988gl33303V199NXV1dey4445MnTqVF154gQMOOID77ruPTz75hL/97W/07duX9u3bN7k+wA477EC3bt0W2pYjjzyS22+/nVmzZjFs2DBOPPHEZn8OSZIkSZIEbVq6AcvDf/3Xf9GrVy9OOumkZq3frl27+p9TSvWv3/ve9zj11FOb3G7OnDn8+c9/5tZbb+X8888npcTUqVOZNm3akn2ARqSU2GeffZqsI1T5DK1bt66vpdNcG220EV/96lf56le/So8ePXjqqadIKfHrX/+a/fbbb771+/Xrx9///nf+9Kc/1YdeTa0/cuRI1lhjjWa1o0OHDuyzzz7ceuut3HDDDfW9nSRJkiRJUvOUvscP5N41X/7yl7niiivq39tll124/vrrAbj22mubHPpUsd9++zFs2LD6Ojpvvvkm77zzDgD9+/fnzTff5J577qGmpobXX3+dCRMm8Oqrr3L44Ydz8803s88++/DHP/6Rjz/+GIB3332XNddck0022YRbbrkFgE8++aR+eUXfvn3rCx4/9dRTPPHEEwDstNNO/Otf/+LFF18E4KOPPppv6FRDa6655kJDqLvuuotZs2YB8NZbbzF16lQ23nhj9ttvP373u9/VL3v++ef56KOPADjqqKP44x//yAMPPMD+++9f//dqav1Fad/XvvY1hgwZwvbbb0+nTp0WuL0kSZIkSZrXKhH8AHzrW9+aZ3avX//61/zxj3+kpqaGa665hl/96lcL3H7ffffl2GOPZeedd6Znz54cccQRTJs2jblz5/Liiy/SuXNnhg8fXj9sq+Lwww9n+PDh7L///gwYMIA+ffpQV1fHhRdeCMA111zDxRdfTE1NDbvssgtvvfXWPNt//etfZ/r06XTv3p0f/vCH9O7dG4AuXbpw5ZVXcswxx1BTU8POO+/M+PHjF/gZvvSlL3HzzTcvsLjz3XffTY8ePaitrWW//fbjF7/4BRtssAFf+9rX2GabbejVqxc9evTg1FNPre9JtO+++/LPf/6Tvffem9VWWw1gges3paamhtatW1NbW1tfkLt3796stdZaze6tJUmSJEmSPhOVoUzLQ58+fdLo0aPnee/ZZ5+le/fuy60NS9tTTz3FsGHD5imsrKVn4sSJ9OvXj/Hjx9Oq1bLNKVf2/xYlSZIkSaumiBiTUurT2LJVpsfPstKjRw9Dn2Xk6quvZscdd+T8889f5qGPJEmSJElltEoUd9b8zj//fG688cZ53jvyyCP5wQ9+0EItmt/xxx/P8ccf39LNkCRJkiRppWXws4r6wQ9+sEKFPJIkSZIkaelz/IwkSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSa1wNX66nn3HUt3fhAsOWqr7kyRJkqTF1fOqni3dBGmZe/KEJ1u6Capijx9gxowZ7LHHHowbN466ujrq6uro3Lkz3bp1o66ujr333rvR7X760582a/9du3ZlypQpS7PJ8znwwAN5//3353v/vPPO48ILL1ysfU6YMIHrrrtusdvUr18/tt566/q/6U033dTkur/85S/5+OOPm7XP0aNHA7D33nvz3nvvLXb7JEmSJEkqO4MfYNiwYRx22GHU1tYyduxYxo4dy4ABA/jFL37B2LFjGTFiRKPbNTf4WR7uvPNOOnbsuFT3uaTBD8C1115b/zc94ogjmlyvucFPteOOO47f/va3S9Q+SZIkSZLKzOCHHE4ccsghTS4fPnw4PXv2pEePHpx11lkAnH322cyYMYO6ujoGDRoEwMCBA+nduzfbbrstl19+ebOP39R2d911F7169aK2tpb+/fsDMH36dE466SR69uxJTU0Nf/7zn4F5exWdf/75bLXVVuy2224899xz9ft76aWX2H///enduze7774748ePB+DEE09kyJAh7LLLLmy22Wb1PXPOPvtsHnjgAerq6hg6dChPP/00O+ywA3V1ddTU1PDCCy80+zNWfP3rX6dPnz5su+22nHvuuQBcfPHFTJw4kT333JM999yzyfUaGjBgAMOHD1/kNkiSJEmStKpY4Wr8LG+ffvopL7/8Ml27dm10+cSJEznrrLMYM2YMnTp1Yt999+WWW27hggsu4JJLLmHs2LH16w4bNozOnTszY8YMtt9+ew4//HDWWWedhbahse3mzp3LKaecwv3330+3bt149913Afjxj3/M2muvzZNP5jGTDYc6jRkzhuuvv56xY8cye/ZsevXqRe/evQEYPHgwl156KVtuuSWPPPIIp512Gvfeey8AkyZNYtSoUYwfP54BAwZwxBFHcMEFF3DhhRdy++23A3D66adzxhlnMGjQID799FPmzJmz0M82aNAg2rdvD8A999zD+eefT+fOnZkzZw79+/fniSeeYMiQIVx00UXcd999rLvuugCNrldTUzPPvjt16sQnn3zC1KlTm/V3liRJkiRpVbPKBz9TpkxZ4BCpRx99lH79+tGlSxcgBxn3338/AwcOnG/diy++mJtvvhmA119/nRdeeKFZgURj202ePJm+ffvSrVs3ADp37gzAiBEjuP766+u37dSp0zz7euCBBzj00EPp0KEDkHvFQO4p9OCDD3LkkUfWr/vJJ5/U/zxw4EBatWrFNttsw9tvv91oO3feeWfOP/983njjDQ477DC23HLLhX62a6+9lj59+tT/fumll3L55Zcze/ZsJk2axDPPPDNfoANwww03NGu99dZbj4kTJxr8SJIkSZLUiFU++Gnfvj0zZ85c4v2MHDmSESNG8NBDD9GhQwf69evXrP0u7naLau7cuXTs2HGeHkrV2rVrV/9zSqnRdY499lh23HFH7rjjDg488EAuu+wy9tprr2a34ZVXXuHCCy/k0UcfpVOnTpx44omNftbmrgcwc+bM+h5FkiRJkiRpXitc8LO8p1/v1KkTc+bMYebMmay++urzLd9hhx0YMmQIU6ZMoVOnTgwfPpzTTz8dgLZt2zJr1izatm3LBx98QKdOnejQoQPjx4/n4Ycfbtbxm9pup5124rTTTuOVV16pH+rVuXNn9tlnH37zm9/wy1/+EshDvap7/fTt25cTTzyR733ve8yePZvbbruNU089lbXWWotu3bpx4403cuSRR5JS4oknnqC2trbJtq255ppMmzat/veXX36ZzTbbjCFDhvDaa6/xxBNPsNdee9G/f3+uvvpqNt544wV+1g8//JA11liDtddem7fffpu//e1v9OvXb55jrbvuugtcr1pKibfeeqvJYXqSJEmSJK3qLO4M7LvvvowaNarRZRtuuCEXXHABe+65J7W1tfTu3bu+EPTgwYOpqalh0KBB7L///syePZvu3btz9tlns9NOOzXr2E1t16VLFy6//PL62caOOuooAM455xzee+89evToQW1tLffdd988++vVqxdHHXUUtbW1HHDAAWy//fb1y6699lquuOIKamtr2Xbbbbn11lsX2Laamhpat25NbW0tQ4cO5YYbbqBHjx7U1dXx1FNPcfzxxzN37lxefPHF+qFoC1JbW8t2223HF7/4RY499lh23XXX+mWDBw9m//33r/87N7VetTFjxrDTTjvRps0Kl19KkiRJkrRCiKaG9SwLffr0SaNHj57nvWeffZbu3bsvtzY05rHHHmPo0KFcc801LdqOldFTTz3FsGHDuOiii5b7sc844wwGDBhQP+PZkloR/luUJElSufW8qmdLN0Fa5p484cmWbsIqJyLGpJT6NLbMHj/kXjJ77rlns2ap0rx69OjRIqFP5dhLK/SRJEmSJKmMHCNT+OpXv7pM9z916tRGQ4p77rnHGakW0ymnnNLSTZAkSZIkaYVm8LOcrLPOOk3OqCVJkiRJkrQsONRLkiRJkiSppJoV/EREx4i4KSLGR8SzEbFzRHSOiH9ExAvFa6eF70mSJEmSJEnLS3N7/PwKuCul9EWgFngWOBu4J6W0JXBP8bskSZIkSZJWEAut8RMRawN9gRMBUkqfAp9GxCFAv2K1q4CRwFlL3KLz1l7iXcy7vw+W7v4kSZIkSZJWEs3p8dMNmAz8MSIej4g/RMQawPoppUnFOm8B6ze2cUQMjojRETF68uTJS6fVS9mMGTPYY489GDduHHV1ddTV1dG5c2e6detGXV0de++9d6Pb/fSnP23W/rt27cqUKVOWZpPnc+CBB/L+++/P9/55553HhRdeuFj7nDBhAtddd91it+n2229nu+22o7a2lm222YbLLrtskbYfPXo0Q4YMWezjN+boo4/mhRdeWKr7lCRJkiRpRdWc4KcN0Av4XUppO+AjGgzrSiklIDW2cUrp8pRSn5RSny5duixpe5eJYcOGcdhhh1FbW8vYsWMZO3YsAwYM4Be/+AVjx45lxIgRjW7X3OBnebjzzjvp2LHjUt3nkgQ/s2bNYvDgwdx2222MGzeOxx9/nH79+jV7+9mzZ9OnTx8uvvjixTp+U77+9a/z85//fKnuU5IkSZKkFVVzgp83gDdSSo8Uv99EDoLejogNAYrXd5ZNE5e9a6+9lkMOOaTJ5cOHD6dnz5706NGDs87Ko9nOPvtsZsyYQV1dHYMGDQJg4MCB9O7dm2233ZbLL7+82cdvaru77rqLXr16UVtbS//+/QGYPn06J510Ej179qSmpoY///nPwLy9is4//3y22mordtttN5577rn6/b300kvsv//+9O7dm913353x48cDcOKJJzJkyBB22WUXNttsM2666ab6z/jAAw9QV1fH0KFDefrpp9lhhx2oq6ujpqZmgT1npk2bxuzZs1lnnXUAaNeuHVtvvTUAkydP5vDDD2f77bdn++2351//+heQeycdd9xx7Lrrrhx33HGMHDmSgw8+GIB3332XgQMHUlNTw0477cQTTzxRv011j6YePXowYcIEPvroIw466CBqa2vp0aMHf/rTnwDYfffdGTFiBLNnz272/z6SJEmSJK2sFlrjJ6X0VkS8HhFbp5SeA/oDzxT/TgAuKF5vXaYtXUY+/fRTXn75Zbp27dro8okTJ3LWWWcxZswYOnXqxL777sstt9zCBRdcwCWXXMLYsWPr1x02bBidO3dmxowZbL/99hx++OH1wceCNLbd3LlzOeWUU7j//vvp1q0b7777LgA//vGPWXvttXnyyScBeO+99+bZ15gxY7j++usZO3Yss2fPplevXvTu3RuAwYMHc+mll7LlllvyyCOPcNppp3HvvfcCMGnSJEaNGsX48eMZMGAARxxxBBdccAEXXnght99+OwCnn346Z5xxBoMGDeLTTz9lzpw5TX6mzp07M2DAADbddFP69+/PwQcfzDHHHEOrVq0444wzOPPMM9ltt9147bXX2G+//Xj22WcBeOaZZxg1ahTt27dn5MiR9fs799xz2W677bjlllu49957Of744+f52zd01113sdFGG3HHHXcA8MEHudZTq1at2GKLLRg3blz930WSJEmSpLJaaPBTOB24NiJWA14GTiL3FrohIk4GXgW+vGyauGxNmTJlgUOkHn30Ufr160dlmNqgQYO4//77GThw4HzrXnzxxdx8880AvP7667zwwgvNCn4a227y5Mn07duXbt26ATlIARgxYgTXX399/badOnWaZ18PPPAAhx56KB06dABgwIABQO4p9OCDD3LkkUfWr/vJJ5/U/zxw4EBatWrFNttsw9tvv91oO3feeWfOP/983njjDQ477DC23HLLBX6uP/zhDzz55JOMGDGCCy+8kH/84x9ceeWVjBgxgmeeeaZ+vQ8//JDp06fXt7d9+/bz7WvUqFH1vZv22msvpk6dyocfftjksXv27Mm3vvUtzjrrLA4++GB23333+mXrrbceEydONPiRJEmSJJVes4KflNJYoE8ji/ov1da0gPbt2zNz5swl3s/IkSMZMWIEDz30EB06dKBfv37N2u/ibreo5s6dS8eOHZvsJdOuXbv6n3PJpvkde+yx7Ljjjtxxxx0ceOCBXHbZZey1114LPG7Pnj3p2bMnxx13HN26dePKK69k7ty5PPzww6y++urzrb/GGms0/0MBbdq0Ye7cufW/V/52W221FY899hh33nkn55xzDv379+eHP/xh/TqNhUuSJEmSJJVNc2r8LF/nfbB0/y1Ep06dmDNnTpNhyw477MA///lPpkyZwpw5cxg+fDh77LEHAG3btmXWrFlAHkrUqVMnOnTowPjx43n44Yeb9XGb2m6nnXbi/vvv55VXXgGoH+q1zz778Jvf/KZ++4ZDvfr27cstt9zCjBkzmDZtGrfddhsAa621Ft26dePGG28Ecrgzbty4BbZtzTXXZNq0afW/v/zyy2y22WYMGTKEQw45pL7OTv/+/XnzzTfn2Xb69OnzDNUaO3Ysm266KQD77rsvv/71r+dZtjC777471157LZDDsnXXXZe11lqLrl278thjjwHw2GOP1f+9Jk6cSIcOHfjKV77Cd77znfp1AJ5//nl69Oix0GNKkiRJkrSyW/GCnxaw7777MmrUqEaXbbjhhlxwwQXsueee1NbW0rt37/pC0IMHD6ampoZBgwax//77M3v2bLp3787ZZ5/NTjvt1KxjN7Vdly5duPzyy+tnGzvqqKMAOOecc3jvvffo0aMHtbW13HffffPsr1evXhx11FHU1tZywAEHsP3229cvu/baa7niiiuora1l22235dZbF1yWqaamhtatW1NbW8vQoUO54YYb6NGjB3V1dTz11FMcf/zxzJ07lxdffLF+KFpFSomf//znbL311tTV1XHuuedy5ZVXAnlo2+jRo6mpqWGbbbbh0ksvXejf6bzzzmPMmDHU1NRw9tlnc9VVVwFw+OGH8+6777LttttyySWXsNVWWwHw5JNP1hei/tGPfsQ555wDwNtvv0379u3ZYIMNFnpMSZIkSZJWdtHUsJ5loU+fPmn06NHzvPfss8/SvXv35daGxjz22GMMHTqUa665pkXbsTJ66qmnGDZsGBdddFFLN6VZhg4dylprrcXJJ58837IV4b9FSZIklVvPq3q2dBOkZe7JE55s6SasciJiTEqpsRI99viB3Etmzz33XOAsVWpcjx49VprQB6Bjx46ccMIJLd0MSZIkSZKWi+bO6lV6X/3qV5fp/qdOnUr//vPXwr7nnnuaNfOXlo6TTjqppZsgSZIkSdJyY/CznKyzzjrNKmIsSZIkSZK0tDjUS5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkVrgaP0t7ekOnkZMkSZIkSasqe/wAM2bMYI899mDcuHHU1dVRV1dH586d6datG3V1dey9996NbvfTn/60Wfvv2rUrU6ZMWZpNns+BBx7I+++/P9/75513HhdeeOFi7XPChAlcd911i92m22+/ne22247a2lq22WYbLrvssvna9MMf/pARI0YscD9NfYb333+f3/72t/W/T548mf3333+x2ytJkiRJUtkY/ADDhg3jsMMOo7a2lrFjxzJ27FgGDBjAL37xC8aOHdtkMNHc4Gd5uPPOO+nYseNS3eeSBD+zZs1i8ODB3HbbbYwbN47HH3+cfv36zbfef//3fzcZrC1Mw+CnS5cubLjhhvzrX/9arP1JkiRJklQ2Bj/AtddeyyGHHNLk8uHDh9OzZ0969OjBWWedBcDZZ5/NjBkzqKurY9CgQQAMHDiQ3r17s+2223L55Zc3+/hNbXfXXXfRq1cvamtr6d+/PwDTp0/npJNOomfPntTU1PDnP/8ZmLdX0fnnn89WW23FbrvtxnPPPVe/v5deeon999+f3r17s/vuuzN+/HgATjzxRIYMGcIuu+zCZpttxk033VT/GR944AHq6uoYOnQoTz/9NDvssAN1dXXU1NTwwgsvNPmZpk2bxuzZs1lnnXUAaNeuHVtvvfV865144on1x7vzzjv54he/SO/evRkyZAgHH3xw/XrPPPMM/fr1Y7PNNuPiiy+ub99LL71EXV0d3/nOd+r/ltdee22z//aSJEmSJJXZClfjZ3n79NNPefnll+natWujyydOnMhZZ53FmDFj6NSpE/vuuy+33HILF1xwAZdccgljx46tX3fYsGF07tyZGTNmsP3223P44YfXBx8L0th2c+fO5ZRTTuH++++nW7duvPvuuwD8+Mc/Zu211+bJJ3Ptovfee2+efY0ZM4brr7+esWPHMnv2bHr16kXv3r0BGDx4MJdeeilbbrkljzzyCKeddhr33nsvAJMmTWLUqFGMHz+eAQMGcMQRR3DBBRdw4YUXcvvttwNw+umnc8YZZzBo0CA+/fRT5syZ0+Rn6ty5MwMGDGDTTTelf//+HHzwwRxzzDG0atV41jhz5kxOPfXU+s97zDHHzLN8/Pjx3HfffUybNo2tt96ar3/961xwwQU89dRT8/xv0KdPH84555yF/s0lSZIkSVoVrPLBz5QpUxY4ROrRRx+lX79+dOnSBYBBgwZx//33M3DgwPnWvfjii7n55psBeP3113nhhReaFfw0tt3kyZPp27cv3bp1A3KQAjBixAiuv/76+m07deo0z74eeOABDj30UDp06ADAgAEDgNxT6MEHH+TII4+sX/eTTz6p/3ngwIG0atWKbbbZhrfffrvRdu68886cf/75vPHGGxx22GFsueWWC/xcf/jDH3jyyScZMWIEF154If/4xz+48sorG113/PjxbLbZZvWf95hjjpmn99NBBx1Eu3btaNeuHeutt16TbVxvvfWYOHHiAtslSZIkSdKqYpUPftq3b8/MmTOXeD8jR45kxIgRPPTQQ3To0IF+/fo1a7+Lu92imjt3Lh07dpynd0y1du3a1f+cUmp0nWOPPZYdd9yRO+64gwMPPJDLLruMvfbaa4HH7dmzJz179uS4446jW7duTQY/C1PdvtatWzN79uxG15s5cybt27dfrGNIkiRJklQ2K1zws7ynX+/UqRNz5sxh5syZrL766vMt32GHHRgyZAhTpkyhU6dODB8+nNNPPx2Atm3bMmvWLNq2bcsHH3xAp06d6NChA+PHj+fhhx9u1vGb2m6nnXbitNNO45VXXqkf6tW5c2f22WcffvOb3/DLX/4SyEO9qnv99O3blxNPPJHvfe97zJ49m9tuu41TTz2VtdZai27dunHjjTdy5JFHklLiiSeeoLa2tsm2rbnmmkybNq3+95dffpnNNtuMIUOG8Nprr/HEE0+w11570b9/f66++mo23njj+nWnT5/O6NGj6ws6jx07lk033bTJY2299da8/PLLTJgwga5du/KnP/1poX+7hu0DeP755+nRo8dCt5UkSZIkaVVgcWdg3333ZdSoUY0u23DDDbngggvYc889qa2tpXfv3vWFoAcPHkxNTQ2DBg1i//33Z/bs2XTv3p2zzz6bnXbaqVnHbmq7Ll26cPnll9fPNnbUUUcBcM455/Dee+/Ro0cPamtrue++++bZX69evTjqqKOora3lgAMOYPvtt69fdu2113LFFVdQW1vLtttuy6233rrAttXU1NC6dWtqa2sZOnQoN9xwAz169KCuro6nnnqK448/nrlz5/Liiy/WD0WrSCnx85//nK233pq6ujrOPffcBfb2ad++Pb/97W/ri0+vueaarL322gts3zrrrMOuu+5Kjx496os733fffRx00EEL3E6SJEmSpFVFNDWsZ1no06dPGj169DzvPfvss3Tv3n25taExjz32GEOHDuWaa65p0XasjJ566imGDRvGRRddtMT7mj59Op/73OdIKfGNb3yDLbfckjPPPHOR9tG3b19uvfXW+WofNceK8N+iJEmSyq3nVT1bugnSMre8R/IIImJMSqlPY8vs8UPuJbPnnnsucJYqNa5Hjx5LJfQB+P3vf09dXR3bbrstH3zwAaeeeuoibT958mS++c1vLlboI0mSJElSGa1wNX5ayle/+tVluv+pU6fSv3//+d6/5557mjXz16rgzDPPXOQePtW6dOnS6GxrkiRJkiStqlaI4CelRES0dDOWqXXWWafJGbXU8pbnkEdJkiRJkpaXFh/qtfrqqzN16lRvvNViUkpMnTq10VndJEmSJElambV4j59NNtmEN954g8mTJ7d0U7QKW3311dlkk01auhmSJEmSJC1VLR78tG3blm7durV0MyRJkiRJkkqnxYd6SZIkSZIkadkw+JEkSZIkSSopgx9JkiRJkqSSMviRJEmSJEkqKYMfSZIkSZKkkjL4kSRJkiRJKimDH0mSJEmSpJIy+JEkSZIkSSopgx9JkiRJkqSSMviRJEmSJEkqKYMfSZIkSZKkkmrT0g2QJEkL1/Oqni3dBGmZe/KEJ1u6CZIklY49fiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkqqTXNWiogJwDRgDjA7pdQnIjoDfwK6AhOAL6eU3ls2zZQkSZIkSdKiWpQeP3umlOpSSn2K388G7kkpbQncU/wuSZIkSZKkFcSSDPU6BLiq+PkqYOASt0aSJEmSJElLTXODnwTcHRFjImJw8d76KaVJxc9vAes3tmFEDI6I0RExevLkyUvYXEmSJEmSJDVXs2r8ALullN6MiPWAf0TE+OqFKaUUEamxDVNKlwOXA/Tp06fRdSRJkiRJkrT0NavHT0rpzeL1HeBmYAfg7YjYEKB4fWdZNVKSJEmSJEmLbqHBT0SsERFrVn4G9gWeAv4KnFCsdgJw67JqpCRJkiRJkhZdc4Z6rQ/cHBGV9a9LKd0VEY8CN0TEycCrwJeXXTMlSZIkSZK0qBYa/KSUXgZqG3l/KtB/WTRKkiRJkiRJS25JpnOXJEmSJEnSCszgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkqq2cFPRLSOiMcj4vbi924R8UhEvBgRf4qI1ZZdMyVJkiRJkrSoFqXHzxnAs1W//wwYmlLaAngPOHlpNkySJEmSJElLplnBT0RsAhwE/KH4PYC9gJuKVa4CBi6D9kmSJEmSJGkxNbfHzy+B7wJzi9/XAd5PKc0ufn8D2LixDSNicESMjojRkydPXpK2SpIkSZIkaREsNPiJiIOBd1JKYxbnACmly1NKfVJKfbp06bI4u5AkSZIkSdJiaNOMdXYFBkTEgcDqwFrAr4COEdGm6PWzCfDmsmumJEmSJEmSFtVCe/yklL6XUtokpdQVOBq4N6U0CLgPOKJY7QTg1mXWSkmSJEmSJC2yRZnVq6GzgG9GxIvkmj9XLJ0mSZIkSZIkaWlozlCveimlkcDI4ueXgR2WfpMkSZIkSZK0NCxJjx9JkiRJkiStwAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSmqhwU9ErB4R/46IcRHxdET8qHi/W0Q8EhEvRsSfImK1Zd9cSZIkSZIkNVdzevx8AuyVUqoF6oD9I2In4GfA0JTSFsB7wMnLrJWSJEmSJElaZAsNflI2vfi1bfEvAXsBNxXvXwUMXBYNlCRJkiRJ0uJpVo2fiGgdEWOBd4B/AC8B76eUZhervAFs3MS2gyNidESMnjx58lJosiRJkiRJkpqjWcFPSmlOSqkO2ATYAfhicw+QUro8pdQnpdSnS5cui9dKSZIkSZIkLbJFmtUrpfQ+cB+wM9AxItoUizYB3ly6TZMkSZIkSdKSaM6sXl0iomPxc3tgH+BZcgB0RLHaCcCty6iNkiRJkiRJWgxtFr4KGwJXRURrclB0Q0rp9oh4Brg+In4CPA5csQzbKUmSJEmSpEW00OAnpfQEsF0j779MrvcjSZIkSZKkFdAi1fiRJEmSJEnSysPgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkpqocFPRHw+Iu6LiGci4umIOKN4v3NE/CMiXiheOy375kqSJEmSJKm5mtPjZzbwrZTSNsBOwDciYhvgbOCelNKWwD3F75IkSZIkSVpBLDT4SSlNSik9Vvw8DXgW2Bg4BLiqWO0qYOAyaqMkSZIkSZIWwyLV+ImIrsB2wCPA+imlScWit4D1m9hmcESMjojRkydPXpK2SpIkSZIkaRE0O/iJiM8Bfwb+K6X0YfWylFICUmPbpZQuTyn1SSn16dKlyxI1VpIkSZIkSc3XrOAnItqSQ59rU0p/Kd5+OyI2LJZvCLyzbJooSZIkSZKkxdGcWb0CuAJ4NqV0UdWivwInFD+fANy69JsnSZIkSZKkxdWmGevsChwHPBkRY4v3vg9cANwQEScDrwJfXiYtlCRJkiRJ0mJZaPCTUhoFRBOL+y/d5kiSJEmSJGlpWaRZvSRJkiRJkrTyMPiRJEmSJEkqKYMfSZIkSZKkkjL4kSRJkiRJKimDH0mSJEmSpJIy+JEkSZIkSSopgx9JkiRJkqSSMviRJEmSJEkqKYMfSZIkSZKkkjL4kSRJkiRJKimDH0mSJEmSpJJq09IN0LLV86qeLd0EaZl78oQnW7oJkiRJkrRCssePJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIkldRCg5+IGBYR70TEU1XvdY6If0TEC8Vrp2XbTEmSJEmSJC2q5vT4uRLYv8F7ZwP3pJS2BO4pfpckSZIkSdIKZKHBT0rpfuDdBm8fAlxV/HwVMHDpNkuSJEmSJElLanFr/KyfUppU/PwWsH5TK0bE4IgYHRGjJ0+evJiHkyRJkiRJ0qJa4uLOKaUEpAUsvzyl1Cel1KdLly5LejhJkiRJkiQ10+IGP29HxIYAxes7S69JkiRJkiRJWhoWN/j5K3BC8fMJwK1LpzmSJEmSJElaWpoznftw4CFg64h4IyJOBi4A9omIF4C9i98lSZIkSZK0AmmzsBVSSsc0saj/Um6LJEmSJEmSlqIlLu4sSZIkSZKkFZPBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJGfxIkiRJkiSVlMGPJEmSJElSSRn8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJVUm5ZugCRJWrgnX3mtpZsgSZKklZA9fiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSZJKyuBHkiRJkiSppAx+JEmSJEmSSsrgR5IkSZIkqaQMfiRJkiRJkkqqTUs3QJIkSZJWFU++8lpLN0HSKsYeP5IkSZIkSSVl8CNJkiRJklRSBj+SJEmSJEklZfAjSZIkSZJUUgY/kiRJkiRJJWXwI0mSJEmSVFIGP5IkSZIkSSVl8CNJkiRJklRSBj+SJEmSJEklZfAjSZIkSZJUUgY/kiRJkiRJJWXwI0mSJEmSVFIGP5IkSZIkSSVl8CNJkiRJklRSBj+SJEmSJEklZfAjSZIkSZJUUm1augFatp585bWWboIkaSnoOvO6lm6CtMxNaOkGSMuB53OtCia0dAM0D3v8SJIkSZIklZTBjyRJkiRJUkkZ/EiSJEmSJJWUwY8kSZIkSVJJLVHwExH7R8RzEfFiRJy9tBolSZIkSZKkJbfYwU9EtAZ+AxwAbAMcExHbLK2GSZIkSZIkacksSY+fHYAXU0ovp5Q+Ba4HDlk6zZIkSZIkSdKSarME224MvF71+xvAjg1XiojBwODi1+kR8dwSHFNaGawLTGnpRqxSfhQt3QJJ5eT5fDmLn7V0CySVlOfz5czzeYvYtKkFSxL8NEtK6XLg8mV9HGlFERGjU0p9WrodkqQl4/lcksrB87lWdUsy1OtN4PNVv29SvCdJkiRJkqQVwJIEP48CW0ZEt4hYDTga+OvSaZYkSZIkSZKW1GIP9UopzY6I/wT+DrQGhqWUnl5qLZNWXg5tlKRy8HwuSeXg+VyrtEgptXQbJEmSJEmStAwsyVAvSZIkSZIkrcAMfiRJkiRJkkrK4EeSJEmSJKmkDH4kSZIkSVqKIuJzEVFbzIAttSiDH0mrrMjaRITnQklayVWd06Ol2yJp1RYRHYFRwK3A5sV7UbXca08tV/4HJ2mVUn1TkLLZKaW5EdG6pdsmSVo01efuqnO6U9ZKamkfAf8E1gS6NlxYXHuuHRF9lnfDtGoy+JG0Sqm+KYiIDSLi2xExDvhZRLRr4eZJkhZBSmlO5eeI2CIizo2IpyKiR0u2S9KqLaU0i9zjpxPQs3gvVR4+RsTpwHvA1yJi9RZrqFYZBj+SVikRcURE3BERXwDOBP4L+BB4B1irJdsmSWpcY8O3ImK1iPiPiDgjIroDvwROBNoDGy/fFkpaVS1geOlT5HCnV0R0gvrw54vAucA/gNNTSjOXT0u1KmvT0g2QpCUREa1SSnObWNaZ3L326ZTSJ8XbewMHADeQu9/+kPzF+2ZT+5EktaziZqkLMCel9G7x9lrAd4ufTyRf1/4H8Bzw6nJvpKRVQhH0tCKfmuYuYHjpROBxoBb4AvBeRLQBfgK0Bs5KKc2KiNbVvRelZcEeP5JWagsIfTYBRgI3AptULfoL8ClQA1ybUhqWUnrd0EeSVlwRcSjwNnBe8Xsr4APgOnLAvxZwZErp7ymlCdb5kbSsFPXE5hR1ejpERO/iuhOYp3DzdPJwr82A7sV7RwCHAeellMZGRBj6aHkw+JHUIhZlNoMFrVt82fYvfq7uxfgBcD/5ZqC6y/9DxbK2wJ8WtS2SpHkVs2ktyjm9yVm3IqImIjYrfm5Vtd8XyUMmdip+T0UNjX8Xv3+cUhpftMVZvSQtMxHxhYj4ZkQ8DEwF7gVGRcQVEdGh8jCxCHQeIl9zbhURGwEXka9PryrWMaTWcuHNjqQWsbAeNhHRunLBv4BePVsBj5Kf+ALUr5dSmgaMBjoDPar2Na3YpjWwzhJ+DEla5RVPv5s8pxdZTPU5vdEbnYg4BhhLHrZVWbWy32eAJ4E+xY1VZR/PAZOAjyNio6It3khJWiRF0NxmYcFxRNQBVwJnADOB3wCXkc9dJwFXRMQaVZs8B7wJ7AlcA2wA/HdK6X1nlNXyZPAjabmLiPUj4vyI+F5EtG9snaoutB0jYq+I2K1q+8qX8gvk+jxdImLNRm48xgNTgB2Yt3DzP4vXXSu7XNLPJEmrqojYMiJ+ERF7F7/PczPTYFjE2hHRJyK6NrKrfwOzgM0iom3VDIytiifnld49e1ZtM4kcCK1DvqFaYI8iSWpMUatndlFPrHNEbN3EqruRzzfnAyeT6/R8N6U0ELgEOArYq2r9KcCDwB7k687pwDERsX1liJc9z7U8+B+ZpOWm6mK8O/A94KvkHjkN12sVEV+OiAfJX5h/A/4aEU9HxJ4UQU1xUzCm2Kwy3Kv6huN18owKfYD1q94fWbz2K159OixJjWhmiHIk8C3guCb20TkiTouIceQZFEeSz+m/jYjqnpevkAP73uSaGA2P/3Dx+qViWSvyTdQDwOeBrcChE5IWXURsFhE/iogXyMXh742Iv0XE7g3OQ39JKdWmlC5PKb2UUpoTEbWRp2ffo1jnyGKfrYAZ5Do/kHsH/Zncq/G+iPh1RHS2zqSWB4MfSUtN5YsxItaNiN0bLq+6GB9DHm61EdCtkV0dCPwO6EKe+eCb5CLNGwO3A1+uWveh4nVApRlVy6aSnxBvVvyrGEO+wagMGfALV5IaUTz9Xqfy9LuJJ9N/L163K7apPMWunI//kzzV+gzyU/LfkgP3/wAuiYgti+3mkmtlbA5sW2wbfBbOjyHPkrNvVfPmkgOhNkCNQyckVRRDTNtU/d5okB0RG5DPS98k1xP7HXA3ucf4P4Djq1afVGyzZdF7/VXyzF0/AT4hh9H7QX0vojnkc9cc8qyEJwEHkXuffwN4LiJOb6oHvLS0GPxIWmqqptt9B/hnRKzfcJ2IiKLOzpNAe2C76huJiNgQ+F/yF+RXUkrnpZR+k1I6FRhSbHNm1b7HAq8B+xS/18+MkFKaCUwAViffELQt3p8LPAJsSP5St5utJDUiIg4BJpNvhJqqufYc+VzbIyK6F9u1Kb4TjiHPxHU/eSabn6aUvku+8bmBPCzi1Kp9jSCHOL0qx6s8NEgpvUo+33eNiPWrHia8ULzfm6J3p8O9pHIpaoV1aMY69UFPMcR0drFs7cZ6AxbXhv9LDpT/H3ByMXTrJPLQrBeB71WuO4vz2lrAucB3geeBb5MfQB5Mri/ZJSI2rzrMK8V6u0XEZimlu8kPMY8FXgJ+BUyIiO8s8h9GaiZvdCQtVSmlycC/il97Vt4vvoyDXFQZ5q2zU10Erw+wJfDXlNIjxbaVbW4A/grUUQzTSim9DjwGbBwRXYsv5FaVkIcc+kB+elw9pGBE8bpf8er5UJLm9zp5Nq0Ni2C+undnq6L+znTgvmL9ylCHyrm7MgvX71NKE1NKs4sHAG+Qh/zCvEPERgMfAb2Km6vKcSrn8inFa2V4b5CDqQeBbci9hSSVQNGD/NTIs2d9xLz1veZT1BObXbV934i4OiKeA+6OiPMiF2euvrbsARwDXJ1S+mVKaWKxvCOwGrmH+lbAwVWB8pnk0ObnwBEppYtSSv9MKb1DDnmgeCBZbPMu+dq4K0VP95TSRyml64EDgNOBa8k9HqVlwhsdSUtN1ZdoJdSp/4JOn6l8Ib9J7g7bG1ivajeVn1+r2nZO8ToTuIt87uoVEWsWqzxYvB5RrDc35Wl+Id8IQA6hNqg6TmWIWKUmxGwkSQ29BjxBDuR7F+9V6qzNreoB9ETx2r9YNpscvPciD/G6v3LTVAT0kVJ6hVyfp0vlZiyl9Db5RmsniocHxXFmRkQ3PhsefEhVW2YWx9+YXOvHOj/SSigiPh8R1bUfzyFPfz6L3OvwlUY3/Gz7dYu6Od+MiI2BYeRgZyL5+vKHwNURsUPl2hLYongdFRFbRMQBEfFt4HLgZuCEYnlHoNLjqHvx+peU0geVXuMRsR754SRUnaNSSp+QH1JuULUcgJTSe0XP9m+mlMYgLSMGP5IAiIh2EVGzhEOeKhfalSe/fav2v05E1EXE0RHxU3J32tXJT2e3rNpH+2I/ERGrVW1fecryZrH888DHxXsjyV1oT4uIQyMXEt0pIq4gF9i7Eqglf/nnhqb0LLBxSunwJfi8krRCKs7p8xXPXwwfkoPyVnwW/FQKNtdFxFER8T/kJ+YAO0ZEO8hPtIvt2gOdK4FPsV7lQUHlRmeHqmP+iXyT9fXic6wXEXuRb8RmkXshHVkcozIUbBjQNaV03VL4zJKWk4j4QuSiyi+RiyofXLy/C7m2zkjy+eWclNIzC9ldR+AUci2xy8kTfJwCDEwpdSMXV+4B/G/V+fEL5OvKk4CbgFvIPXl2Jg9RPQT4XErpf4tzGuThX3OBms8+RnyBfG27EfAMVXV+inXuKj7PFU38HVpbdkDLUpuFryKp7IovmrHkoVB9gfFVXz4BzG3O09OqL7d/k7vj7xgRXyXXXNiBfNOwCfkLdjT5qe7OwPYRcV/xROR1ck+gOqAT8HbVELHZwFvkc9d6VU9rxpG/5K8CridfOLQj3yAcTS7yPB64p0F7JzXrDyRJK5GI2Ic8G+L/RsT3G0wZHFXnzoVKKX0aEZVp1PeJiDHknjg7knvzVM7pY8nn502K9yu9KseQz/N7AE+Tg6Dq408sXttWvXcDOdg5ljys9xVyb563gb2B04DVI6Jd8b1RGWYsaSVR9PpL5OLvXycPc/oDn/UeXIMc5DxdDA0lIrqklCZXbTuPlNKLEfF3YH9y6YAtirqSFWeSHzjuTw5mhpOvV98nn9P+Rp6S/c7KkK+q9rap6h1+HXmo6v9GxM7k4bA7kHuRH0Ou3zM7IjZIKb1VtG0CuRZaoxblvCwtDoMfSaSU5kbEPeTpJbcihyRpcbrKF1/G0yJiNPmL9TJyaPMKeUaum4EHim77e5LDmF2Az5FnQ3iSfKPQF9gLGF60o/JlW1u8VoZ3UQzruiYiPiAXCt2s2Mf1KaXKFJp2n5VUalU3Q+8CL5MDmjXIvXaaKszcHM+SQ/ldgL+Qrx9fAW4DbgXuSynNiogfAz8gD/OtBD+3km/svhIRvyM/Ja8eXnsQ8CmfTdVOSum9iDiZ/J00gHzzdxvwx5TSu+TZcyStoIoHdlE55zQW1BQ9AOvI/z9/AjiqGNJfMRKYBhxWDNvqD8yNiE2rhvNXH7NVcbzHgC+Rry/rjw+0KmqMXU2+Pj2cHPyMJj8g/JDcM6ipAOaoiLilqM3zTER8gxxOH0OuBfQEuVfSyKLtTf1dHIqqFmHwI6niH+SnqH3IhZVTRPQhf3luRJ6u9+6U0ocL2U/lae5I8hfrSOCwBk9cKt4g30xsRx73PJX8NORqcrf984qnyy+Tp3bfmTw++2Pyl/U8Ukp/jYg7rdcjaVVUdTPxCrknZD9yT5kPASJix+K9tsC1RY2d5nibHJ5/nhzmD2nixuXx4nVP4KfFz6PIwyX6AhemlL5VtGVj8o3XHuQbtOcqOyluEl+NiJ8AP08pzWhmOyW1kOpQozg/pOL9Ng2vy6qCoElAZ+CdSugTEb3JDyHPAtYkPxhsRb4OfZw8dHS+4KfKg+Tr0HVSSh9VAqGIqATflTqU2xXtfToirifXExoWEWenlCYVdSs3JvfkORE4kNxL6B/FdpdGxM3kXo4vNLw+rtS9rA6SDHzUkgx+pFXMArr6/5tcILMu8lSY55KnT0/AWsDJ5IJ4P0wpvVb1ZKWhypdaZVjVekUPoNZ8Nmys8sT3hYh4kvxl2j0inimWXVncoJxKfoLyaNG27cndcb9c1OiZ/+CGPpJWIY2d01NK70bEY+RgpVtEfEiubXEgn137/SAivppSmi9Eb8Q04BFgIPBx8WCgsp/qAs+PkAs594mITkXR0k8i4vvAr4Ezi2Foz5Jv6PqTg6FvpJSmV75XKjdHxWcy9JFWApX/30aejW8/8rDMDYDXI+JR4J/FcCeq/j/+dkS8A/QtHvRtR67ZeBs5wPmYXOj9ipTS+Qs5fuU89Dh5ivQ+1e8X560A3iEPS20VERsWw/5/Sq79cxywS0SMK47dFdiaHJ6fRb5Wrj7m2+RgvP5cTFEewaFbWtFYQEpaBUTWCuoLYVbXe6B4fxK5e+wXyb1tTgAuJvf46Ucez3w8OYyBYlaXhhp88b4C9IyImpTSnJTS7Kpuv5VjP1K87sS8NR6+CRxWHHet4t8lwEEppTurCoRK0iolimnUYd5zegNPkm9cDiaHLjXk8+q+xevHwDlFAVUWdE4t9v8oOdjvGxHti/P57KpzPimlN8nn9LUppnEvnvY/CHwNuJBcw21XYEPgx8AJKaXnix4AizsUTVILi4j2Rcj7NPB/5GvH7sBXgD+SZ/Y7Oori7xExKCLeIodDHcm1GS8gF0i+NKV0GnBesfstim0qReGblFKaQu6h2Cki9i+2iyJYTuRwaU1y4eePi3PPTPJ17ynknue15OBqNWAo+drzFymlDxr53NWzHM6xV49WVPb4kVYBlS63EdGW/EW8F7n76uMRMTwVheeAEeShVG2BH6WU6mceiIgJ5BBoEPCDBT3JqOpW+yB56t2d+KxYX0MPknvz9CV3960UwZsB3BIRdxS/z9Ot1y9WSauqqgB9NfK5cyfy+fOOlFKlt+VL5PPuyeRhX/2rhnaNiIiZwG/JT+YfbMY59SXyk/gvAtsAY5ro+TmC/D2zL7lQaqXNj5O/czYA3k0pfdrgM3lOl1ZSEbEmObD5Nvm67vvk886b5GvK/wT+i/ww7wfA/5DPKcPIE3mcSu4R9P0Gu36Q3ENnt+J8s8BeNFXnpIfJtXeGRMSklNI4PuuRfiS59tmT6bOp2FNRkuAK4IqI2BR4szm9yD13aWVhjx9pFRARHSLiHPJTjNvJM131JXdp3bxq1X8Ur6uRh3VF5clySuk18lSUX4iILYv9NvWEuPL+vcXrXg1XqLpZeIo8fGs9oEMj681qGPpI0qosIjaNXCh5EjlcOQX4D/INVcWb5BuvtsBLKaVXqs/p5EL7HwA7R0SnZhx2CrnXz9rMO/V6Q48Wrz1g3uG3xZP1txqGPpJWTlW9tw8nhz53AnumlK5JKT2RUppa/H/+HHIIDXBqROycUnqYHBadWby/ddV+IyJap5Smk3ujb04xuUc0b8rz0eQHifsDv46IcyPi1Ii4FvgOxayH0HjR+5TSqykXgm4VEW3sZa4yMPiRVhDVXfebse58X0CV9yKia0T0KH5uXbx/OvBd8mxdXyc/BdkjpVQ95S7k7rlvk4vmdSzGKFd/IVZm0jqweG2qy21lmwfIs7XsWIz5nk8xPrpPSqlrSunlBXxsSVppLMo5fSH72TAi1q76fW3g5+Rio7eTb6aOJw9fOLSyXsqFRp8hn4+fLoZcpWI4wtzi3PsIeeavrSptXkBTZgD/Kn7evjhGY0Oz7ge2Tint03CBT8alcil6d28IfIM8M+t/pzzDX6uG16oppT+RZ/n7AnBsRKxeDI2aSR6aul1EbNPIYe4rXvsVrwsallo5Jz0BvEY+/91Hnh3wR+Se69cCP0wpTW3O5yuGtHru0krP4EdqQQ1q7NQXyIyIrSNi2/iseOY8GvsCKorWdSPPgHVR8d4c8tPeb5Kf/h6RUhqWUno4pfRq5bhV+3if/LT2cxRPXhrcCDxMDnK+VNlkQe1LKb1I7qK7KfnmolEppYlNLZOklUV1/YkG5/RuEdFxIdtGg9/bRMR3yOfu6hClhjxU4TLg1JTS1Smlf6aUnqvUn6ja19Pkqd23ZN4aahX/ANaneJJOE+f0yuch35wBHBgRnZtY75OU0gtNf1JJJbMW0Bt4OaX0b6g//9WfT6rOSX8G3iPX+dqsah9/Iw/56l383orPzkcji9c9i9cFhjBFz8KPyLUmWwE3ALsDe6eU1kopHZdSGrOoH1Ja2Rn8SC2o6qZg84j4VkTcFxHvkovS/R0YHhH9i3Xq//8aEbtFRPdG9vcKOWjZJCLWK95eg/wlOxtYs7iZ6FS1r7YN9j+CXCui52e7rQ+Hni7+7VosWFCdn8oN0HfJPYz+3dS6klQG6bPC+VtExDcj4t6ImEjuKXNrRPyoEuhX9dKMiNixYaBfDJGaQA7bt4iiICq5vk4CXkwpzYyIdpXzeNW2lX29RO7puT25eGpDDac1XthT7RfIUx6fTB6iK0nbkXsEPt+MYaNPks9rmzBvqYG/Fq87F6/VswWOIU8W0iciOjTR07Ba5Xq20kv9uJTSxymlp6C+N7z3wFrl+B+91IIion9EfEq+mP5/QHvy05DhwGTymOlrI2LtqpBoALkr/clVNwJU9Q4aSS6+WVf8/j65lsO2xXZ3A1dFxKiIeBz4SUT0rPoirdwI9IJ5pueMYqz1v4F2kadbb3JoQOUGKKV0fUrpT9bpkVRmEbFGEeC/Ty6CfC65btmD5PBlZ/J5vlJXohKy/Al4KCIqs9ZU9/wZT+7xsws5kId8EzQOuDgi7gN+B1weEXdGxJ8i4ojIRZ8h17gYQ54Rp/rpesXT5OEQPSNio0aOP4+U0uSU0k9TSnc04+ZL0qphdfL1aysa71lYfb57k/wwcg1yPcnK8gfJZQZ2iIg1qq49K8WaHyTP/rVD8f6CZveqnJseJfd43K/Ypk1xrDmev7QqMviRWtZ75Nn13iZPXX4EcHpK6RRgD2Asuejxl6u+5F4GniUPxap+slL5Uq08NdkJ6r9sfwF8i3wzsiHQhTyl7trkInc3VdWQeJ78NGa7iPg81N8IVG4GKt1jBxWvFryTJJhDrpWzFnAbMJA8JOv4lNJe5Blt3gVOalDHotIbcu/itfrabBK5sGkd+dwN+Rx8Gnl2nE3I07X3ATYi1/i5ATg9IlZLKX1CrnXRmnxD1bDmxoxi/7vw2cMCSVoUzxavW5OvK5uU8lTrHclB0TvwWc9zcs/IbYt/lQeLUbUM8nkVFjwstbLsOfJwr9qIWDM1Y4YuqcwMfqQlUHTRb93wvUXYxTPkL6b1ydNGvlHpul8U5ry5WK9X1bCqieQL+e3IU7ID8wy7qszMtWPVcd5LKQ0l1/jpnlLaGTiW3DPoz+T6D3sV+5lB7jW0WbEc5g137gN+AlzV4LiStFJr7JzeXEWB0oeAj8nDHv6dUno9pfRxscpfyE+tP0cOaioeJg/FHdDIbt8nB0MbkXvtUBRofhg4AdglpbQe+Sn4QcU+XiYXft6q2MdzwKvkcKdD5XNWHeMa4Ffk7xULMEtaVGOBF8nnnN4LGkYVEWuQe/bMBT5qsPivQDs+mzUw+Kz3zh3ka88/QJOF5auP06o4lz1TvLXVgtaXVgUGP9ISKC7AKzUd1o2I9Rflorm4UXig+PXAYj+Vp7QAbxSv61Vt9gH5RmBDqqa+LLaNlNJk8oV/XVHsuVL4OYowqXLsd1OeUnd88VbHql39q/h952Ld+rHWKaWXUko/tDCepLJpcE5f4JPralVByvPkcL5H8a/6afZ08pCImQ02f5L8xHz3og31YXrxhHocuc5P74hoX7VsTnG+J6U0I6X0Jjl4epc8hKJyvn+F/F0ykPyQYZ5wJ6V0c0rpzJRS5ftGkpqtuGa9s/j1GKArfFZLp0HQfDD5weSdwLhiWaUnzojitfIgck7lXFWE6D+s1OlpTrOK1++nlFp5zSoZ/EhLJCJqI+K3ETGBXCvhxog4OyI2Xsim1e4tXvsCFGEMEbEtuYAmFE84iuVzyDcKH5NvBDpU7avy/+l/koOhPsW+2lI19Xrk6YF7R8QPycWXR/HZFy7kJyv/Qa4dIUmlVunpExF9I+KPEfEcMCoiLo2I3arXW8iuXiGHOJtS3PxU1TfrTR6C+zF5GvZKWP8BMBpYIyJ6Fe9XX5+9TQ6TegPrFstbV7clItaPiB2AC8nn/QdTSq9VbX858J/FfiRpaRtOfmj4JeDUosfNnFQ1u1dEbA98v1j/wkqwUxXuPAV8Bfh6YwcoQqRm3btW7bNhryJpldXoVNHSqqxSz6YZ3Uh7kAOZrcj1HBL5ov6nQK+IOD2l9HZxYb+gXkD/JteG2LX4UtyA/DTkEPI45/MpQpmIaF0EP6+QnyzvSO4NNKEYnpCKL8XKk97dgBvJ3WX3jojzyU+D2wGfJ9cIegD4dkrp9UqDUkpvkW8UJGmlVglImjoPV86rEXEEMJR8vvwXuXfMYOD4iDgrpfTrpo5Rte+3yT10vgTsFBHjyQHQbsDXyAH88Smld4v125CHPTwInFRs9xjQqrhxmk3uKbQaefhtV+B1cn2M70TEduQgqTN5yG5H4PfAmVVtmwv8XzP+VJK0WFJKj0TE98mh9nfINcX+h3xt3JE8YchXyOe8Y1JK9zfcR3G9fN0CjmFBZmkJGPxIDRQX8PPcIFTNKlD5fS3gR+QnsCcAt6eU3os8jeX/kYs0Twa+0YyhX6+SL/S3B24iBzKQx0u/Q+6Rs15EnJdSmlQse4dcF2IQudbPhKrhCauTaz3MIs/U0jal9GlEvEV+2rsu8Am5V8/NwEgL3kkqq4Wdg4vQpw64jKL4MjA2pfRBRBwA3AKcExGPpJT+3fSe8o1JRDxd7GcQOcDvWix+i9wr8ycRsU5K6Ro+G+Lwb3Kx/wHAjxqck7uQizjPAjaPiFEppelFyP95cgj0EXnoxI3AA9Zek7S8pZQeiIgDyZOJDCRPUjKN/LCxNbk3+m/J59TGtq+eRdZaY9JSFv7/SvpMRHQhX3jvSe6Fcw9wf0ppQnX4ExFbkgtm/iultHuDfWxOfnrbBdgypfTSwr7EIuJn5CckjwPfBsallN6NiJ2A08ljpv8FHFwMCyAi9iZPzT6WHPQEuabEucBLwP7kkKdPSumxokfQ2sAndn2VVFbV59uI2IB8fuxFnq3wH8ATDZ8cR8R/AhcDZ6WUftFg2U+Bs8ih/hkppfcXdNxiuNYl5B6gdxU/P0zutXMU+aHBHOAnKRfdr0wzXHlo8C1yj8uO5ILMlwD3k2cIuxE4NaX0flGDaG3g/er6bZLUEirXycW5aSPyg8nPk3uoj0wpvdeiDZRWcQY/UiEi+pK7yG9CLoS5Hvmi+kngKymlJ6vWPYR8AX4x8IOisF31l96l5CEC30sp/awZwc9+wN+AESmlfYv3KjcRq5Gn5x1AHlJ2YuXLMyKuA44mP1F5E1gTmAr0I9cM+iJwqTcFklY1EfFNcj2J1cm9aSq1185PKf2/BuveQj7H9k4pPV4E5XOLc3ANeRbDjYGjU0r3NuwF2mBfncmzZB1BHtZ1Y4PlfYFbyd8vhwJ3pZQ+iYjdgavJ9YHGkYdwfZ4cHv2KPFPXGOAme2lKWhEt6Hq36KUY9kiUWobFnSUgIjYF/kjupXMGuXv+FuSu/z2B3xY9eSo2IA+VjPTZDFzw2bTnlWnYD4JmTY87ljxb1y7VhaGL2hOfAqeQp7n8EvD9qnW+Wyx7lDy04Bry2On3U0p/TSn93NBH0qomIgYB5wCvAceTZ5LpR57a9wcR8fViWGxF5Tz+heI1VZ23XwLuI/eg3I2FKOr3PAm0BfaMiDWr2tW2qG3xLfLQ26uAfYvtHiAPMxsGrEUeHnEFeejX0yml76SUrjf0kbSiani9W12QuSj0bOgjtRBr/KgUmluQeQGOBboBp6SUrqja73fI/z85mVyv4b+LRa8Wrz2L9Vo1+EJ7mBzk7BARnRbWvbUoAv0I+QZge3LvnVZF7YlWKaXJkWfgWpt8w7AJOeB5A7giIq7yZkBSWSysIPOCtiu2+Rr5fHlCg96a3yP3nvkm8AIwohhmVTmnb95gl6SUPoqIB4H/Ig9daLLIaNXxK3V+tiUXiZ5WLJtVbD8sImaRg5+bIuKEItQZGRGjyOf/Txfls0vSisaCzNKKwx4/WqlV3xwszpdL1bSQ2xavbxXvty1620wnD/8COCYi1il+Hl287lIcv7rwc2V63mfJNR22anCsplSmdd+j+s3KvlNKT5CfXH+VqhlbimWGPpJWapFVngynRQ19KtsVQ7O2AEYBrxZPnCsPuu4l94zcHDiscmhy/R+ArYv9NPw+mQBMATaOiI2a0ZQXycHS5uTZuBpzI3lygK+Rh3NVPsNsQx9JkrQ0GfxopVVVA6dtROwfERdGxG8j4sCqgGa+bap/L+rxdCbXxnkXeL94f1ZV753RwCPkG4LeRQ+cKeSu/B0iYucG+678/+qx4nWbZn6kB4rXLxdtmK87bErp9ZTSlSlPty5JpVEJ8COiXXFO/35EDI6IrpXza/U5vDooanBub02ux7NaZahrJRwvCtvfAswF9ouIDkUvnOfJ5//aiNikkX1+TH4wsBrwuQV9huLHN8jfERuRizzP13sppTQzpXRN8e/95v6dJEmSFpXBj1ZaReizAzkwuYNc5Pgo4HbgLxGxI8zb06bYZp1ippeK98kX853JNwz1qgp4jire2oHPhkjeWrweWbXvAOYWT5enkW8uphXLF9Yj6RnyLGLXNKg9IUmlFxFrRMTZ5Lo8t5Nn0voNOXz/XnE+rg9PqoKiTlXnX/is987GEdGukXPv0+S6at2APsV7r5ALKtcBOxbvtara5wzyd0Rb4PWGDxEaKgKmp8kzNT5bFIuWJElqEQY/WqFUF4FrxrqbkKe83Ro4mzwjy97A/wK7A38onuZWD8M6F5gMnBF5tqxKIPNGscoXGx6meH2keO1V1QX/FnJodGjkadfrhycUT5f3Jgc/j9EMKaUPUkr7pJTOTinNbM42krQia845vSpEORn4IblnzSnkgsyHk8/PPwK+3ci2jwNTI2L9BuHPM0Anih6XDR4AfMpnYX7v4vU14M/khwBfqey+QS+dLsDHKaUZzRyG9puUUu+U0o0WNJUkSS3J4EcrlKJA8tyiV04vyDNbNbF6X6AG+H1K6RcppcdSSo+nlL4D3E2u2/MfDXrPfEjugfMx0KbqJuFfxeueDY5RCY0q4U1t1bKxwO/IU+9eEBEdi/auFxGnkm8o/gq807xPL0nlUnVO7xwR28L85/QisPk8cC4wE+ifUvpjSumBlNJfycNf3wd+GhFdi32sVmw+o3jtXtlX8d5oYA2KYVZ8FuJXPFu8blhsVym0/CZwSEQMrgwPK3qIfo/c2+eSRfnszV1XkiRpWTL40QojIjaKiOMiYiS5V86DxaKmLp6PLF5vKrZvExFti/d+S54q9xiKYp2FK8nhzc9SSh9Xvf8v4COgb0TUF+Kseqo7iaL+T0SsXSybS57l68/kEOrpiLiJPAX8L4v2fz+lNH1hwwIkqWwiYpOI+GrkGbGmkHtJQuPn9O3Is3CNAKYX27eOiDYppeeL91uRZ2AEqBS0H0SeXbHSg4eix2SlZlr/BRxzLvBh0SspUkrTyLMmvgxcGhF3RcTFwB/JRZh/D/xpEf4EkiRJKwSDH60QIqIHedjWVeQ6Oh8Aq0XEFxp0369+Wly5kF+n6vfKzcCjwENAj2J/lWLQ76WUJlSGa1WCnZTSC8DfyU9/D608Ta46Vh3QDhgDzCmWtUopfQL8J/AN4ClybYitycHPySml5ytFqJf4jyRJK4mi6P0VwB/IvS9nAetGxHrV5/Sqc3sX8jXJh+SeNQ29VrweVOyjMtvhKymlp9P8Mxv+ndzz57CI2Lg4ZvXsXpsUx5tY7Ksym9gNwKnADeQZuU4EupJD/vMchitJklZGBj9aUWwBfIHcI+eLwNXF+3sXr9X1GeZERHtyr6DZwAafLaoPWN4h97hpRw5t5ptRpaKq9sM1wOvA6eQaQdUzax0CtAcer/TgqbrxeDul9DtyYenuKaVtUkrfSyk9t6DjSlKJ9SGf039PDsNvJ/fo2blYXjnvVoKf8eRelTsAW0E+/6aUZkdEO2B/4BOgV7HfJhWh/BvAdcVb3y0KQM8t9vc5YFfgU4phvNU1eFJK96SUjgYOAjZJKXVPKZ2fUpq0eH8KSZKklmXwoyW2KAWZF2AUcEhK6asppdfIs1sBfKmJ9WeTw502FDcBDWZ7mUOenvdDoFtErN/UgavqMNxG7qnzBXJh6LMi4sSIuJTc/f9W8jCu+cKcIgh6P6U0vfkfWZJWPEtyTq/qwXMzcGBK6dSU0lvkemcA+1SvX3X+HQf8jdxL88KI2DgiNouIfci9bzoX67Qjz8bVHL8mf5ecDlwWEYdExNHA/wH9gJ8X+2z0c6SUnk/FdPCSJEkrszYLX0VasAazZn0ReCul9P4i7mMKuQZExSPkmjv9iuVzGqw/KyJeJBcC3TYi1i32UblgT8X+pgAdyTcLC/0cEfEbcn2Jc4AfF4vmADeS6wK928S29uqRVAoNzulbAq83d4hT1fDZN4rtK+fjSpjft1je8Jw+PSJ+Qu79uQe5zs5EcoFmyA8BdiH3COpa7Lt1Y7NlVfXGfCIivk7udbQvcFixynTgIuDCps7dntMlSVKZGPxoiRT1Eg4ATiNflM8BXo2IG4Ffp5SmFd3umz27SXGj8HZEjCEXW65NKY2r3EBU3UiMJ98c9CZP2Xt/8ZS6csE+hTyd7yxgYnWtnYjYqmj3Eyml+yrHLmr//D4i/kK+wZgBPFTU8pGkUiuGVX2JXOdme3K4/nxEXJ9S+m2xTrPrllWds9+IiNeAHhGxRUrpxQbn5FYppWcjYhA5+NmXHPo8CtxchDibF7ttXey7PvSJiF2BXimlXzc4/osR0Z/8/bQNMAH4p+d0SZK0KjH40XyKrvoBTU9HWxXm7AP8plj/j+SinP2An5AvtA9elNCn0IocIN1Hfjq8P7k7fitgTtUNx/PFOt8ADgbuJ/83PZsc/nxE7ukzp/gs1Tcqg4D/B9wQEWMadudPKU0lDzuQpJVa1Tk9NRXYVIUwhwIXkwvsXwOsCewHXFKE8KcuRm+Y1uTz8l3AYPJ5/UU+O9dXelxGSulF4MWIGFZ9nOIz9C5+/Xsjx7gK2CwixqWU7q98R1XVYxtF1cxfkiRJqxJr/Gg+KZtbXDS3bmKduRHRmTxjSwfgy8B3UkrfIBdGfgQ4MCK+UTxBrheFBTWheK30xDmwwfuVNrxfHD8Bp0fE1imlT6uCpuOKtv1fKmZ8qapb8TB5Gvjrgepp3SWpVKrO6amp2j3Fsi+QA/xp5GL130wpnUgO8ycAp0TEgQ23XYRz+u3Fa/8G79e3odhf60bCpXXIgf0j5J6elWNXZgD7E/ACxfm8ariXQ7YkSdIqL7wmUkMRUQMcTR7q9B5wJ3B7Smlyg/UOJV9sX5ZSOr14r21Rf+dQ4BLyzFtfSymNbmzIV0SsCcxqrH5ERHQgX+CvC3RIKX1avY+qJ7oXkYt3vkAuvvwGsB25J9CLwJEppQlL5Y8jSSuZiKgjh/N1wCRyAPO3hufdiBhCLnD/3ZTShcV7qxXn3tPIdXHuBYYUQ6gaO6d/DpiZ5p9evbLsQ/LU7JsV5+8mhwIX3w8bkmcIO4s84+OhKaU7F+8vIUmStGqyx4/mUVzc3wt8jVxfoS9wBXBrUeSTql5ANeShVc8U71eGWQE8QB4qVQPsWbyXIqJ9RGweEftFxHfIQc1+jbSjVUrpY3LPnFZ8VhC0+gahklqeA/wA2Aj4H2A48H3yNL1DDH0kraoi4vvASOBkYH3gCODPwP9FxIbFOpVh318sXl+ren9W8d7fyb0wdwV2hPqen2tUndO/Sz6n1zbSjlYpz3o4ljxzYp/KPhpZd8+IeJg8k+IN5OLMHYDjDH0kSZIWncFPSTWj631j2wwg1+aZCHwFOBzoTq73sBPw04jYtKqgZmUWrk2L17lV3eqnAiOKn3eH+i73ZwO3kC/of0YOfdpWDykr2l3pvl+p5bBXsWzziNghIjpUFQ39OKX0c2Bz4D/IwwE+n1Lqn1J6aFH+BpJUFhHxVeCHwJPkXpwHk+vkDCfPcPWDiPhcVe+cyqyFGxSv1TXVXgP+Sa75s1PVYX5Gnqr9FuAC4CBg7QbtqD6n31a87lgs2zwiehU/V65JXgReAlYn13IbAuyaUrphkf8IkiRJsrhzmVQKeFZqOSzCdpWu9vuRpz4/OaV0d9XyoeRwZwB5hpWfF8eqBD8bwbxPbotQ5ingbeCLlVlcgM7koVi/BO5IKb3VsD1F2yszrjxbvA6KiLXIs71sQJ515uHqz1kUZL66uZ9bklZk1ef0xdgOcmH8AL6XUhpVtfwnwLbAMcCDwHURsRp5mnOALjBvfZxiCO8T5KFaX4yITVKesn098pDe/wXubMY5/ZHi9eSI2JpcP2jdiKhJKb1TrP96RJxa9BCSJEnSEjL4WYkVF/etKj1wiovrSnHMOnJQc3dK6eGiWOacxvZTdNdfn/wkeCLwcNEDJxU3HK+Ru9oPAL4cERenlGZGxDvA+8AWEbFRSmmeKdPJT4+fJ/ca+gLwYqUWUFOfoXhvdXJh0RqK4QDA58lTxj9LLsr86uL91SRp5dDgnN6NXA/tjeZsFxGbURRlTimNKoKd2cU5/XnykKxLgMMi4qaijs8kckCzRUR0Tim9Wxy7cl6fCLxJDt/XAd5IKX25+thNnNPXIs8W1pM8RTzk83sN+Zx+C58NKat8BkMfSZKkpcTgZyVWXIjPgdxdntyN/xByF/r2xWrvkevkLOyJ8VRgC3IX/Q+qL9qLm4h/AU8AvcgX7g+QbwLGA1uRL+gnUkwZXGz6KblXUJtKO4u2ti72O6f6M1RpBfwY2IRciPRq8o3BfSmlDxbyOSRppVVVtL4j+Zw+iHx+bQ3cHxHfak74Qz73dgQ+rRRorixIKc2JiPuBV8g1e3qQa6K9TO6R2ZM8dPbdBsWX3wc+Igc/9efiohZQWsA5fX3g5+SeRJPIU6/fiud0SZKk5cIaPyu4pur0RESriNg7Im6NiLfIM1qdTy6AeT25PsK7wEMw/5S2EdGr6FlDRLQpajy8Rr652LZyjMr6xcV5ZXr13YvXt8kBUGdg30aaOZV8wb9Wse/KvuY01fuoWP4xcBKwZUpp45TSiSmlW7xBkFRmRc+aucXsVxcBvybPavg34GZy75hPmti2R0S0q+yHHLi/Qv6e36Lq/YrXyMOuKr09IQc//yaH+bsV76Wq7V4lhz7rkh8q5BVSmr2gczo57DkJ2KI4p5/kOV2SJGn5MfhZATUIXJqq1bMWeXreHuQCyGeQh2IdBQwm97rpDMxXbyEibgRGk58kQ76wb02ebQVyrx7IvXeqPVy89iza9j45ZAI4PiLWblCLYnVy/Ye3gI+b+ByNSindk1J6aVG2kaQVTVFnv1nftVXn+6vIBfZ/C5wInJFSOi2ldF5KaXIjx/g7uUfml6r204ZcJHktPputq/qcPgN4vPh5i+J1EvCXYtuTiiHCqapdXyiWjWX+74cFfa7pKaU7U0ovN3cbSZIkLT0GPyugSngSEbURcVJEHFbpnVO1zvvkqcsPAL6RUvp1SunelNKrQCdyvYQJfDbkq3rK3vuL1/ohV+ShYP8u3t+l6v1qE8lPmz8XEWsU6zxOniFmHeCyiPh8cazNgF+QbyiuSCm9vdh/EElaSRW5SeWcvm1E7LGg9SNib/KQ3Z+klH6QUnq66AW5II+Rz/mtq96bBowj9wLtVbSlugD/bHLQMxvoEBHtUp4Y4M/AveSHCv8TER2L8Gozcq/SDYAbUkrvL+rMkZIkSWoZ1vhZAUXE8eRpz79IrpMzB/ggIk4B/l5csJNSeqXBdpUCzluRZ+F6GHipUpgzfTZl7+XADcA7lW2LOj6PkJ8C7xERHYtwqVoHcvDzPjC3qvbDj4vlxwC7RsR48lPmWuD/yFP8StIqpQjbtyYHOaeSi9Q/FBEHpJQ+bLBu5Xw6kHzO/0fx/nbkejutyLNuvZhSer5BIf0LgKGpmBULIKU0IyIeJX+H7BYRa6aUphX7rGy7Gvk64KOU0idVw35/SO7R821yL6LnyDXXtgV+k1L6ZXGMZs8eKUmSpJZjj58VTETsQ54WN8jDt44mT33ehhyiHF2s19j/dpWnuTPIIc1qqZGp3VNKn6SU3m7k/ceBf5G78x9UHKd1VU+htYp/H6WUZhRtJKU0HvgG8E3yE+ZNyFP+/idwZrGuJK1qDiIXp/8JOWR5j9wjc3OYb1jv3KJGz7rk6dEnR8SXyef9G8jDam8Hro+Io6vP3ymlD6pDnyoPkc/JfSlqs0VEWz7rGdSueK3MqJWK/T0IHEcO9SeTh/e+T55Z8f8t3p9CkiRJLcXgZwVRVQfiv4A1gdOL4Vu3pJR+AHydPOPWt4tpduebpavqRmBzcvf90cVFfnOOX7kRuLx4/XZE7FwUYp4dEesChxfLbiqOVz0U7IPiKfCglFL3lNI+KaU/pJSmNvNPIEmlUDUE6vPk0P5MYAfgWnJPztomNm1DHjbbEehPDn2eIwdIOwNXkEOY6yKiz8LakVJ6q9gG8jn98ymlWcU5fWPgyGLZn4r1q2dznJhSOhcYmFLaPKW0d0rpj430BJUkSdIKzqFeK4hiqFV3YH/g0ZTSiCKMqdSHuIU8s8sBwBER8YeG4U/VUIEaihldUkqzGkzH29TxKxf8fwP+m9zV/6aI+CN5drB+5KmF/5fPagQ1bH8kZ2mRtIqrCuGvAW5JxfTrxdAryDV3rmx4Xk4pfRQR08g9Ni8G7gSOSyl9VKzySERMBb4LfC0inkhV07RXqxrO9SfyDF1fAe6MiP8jD9k9kNwT6P8BzyxgH+8u+l9AkiRJKxKDnxXLHPLwqZlFWDMH6i++50TELcCe5KnTbwMmNajzUFH5PRr8vlDFDcZ5Reh0MLkHUnvy1O3/A/yyqRsN6z1I0meKILw6DB9HHjK1XUR0SVUzdFXVaHucXOenLbmI8kdFz805RVB0E3kY7R7knkGNDfGqPx+nlD6IiK+Ra/30A84jD/F6kzyU69dNPRjwnC5JklQOBj8rlvWBKcBHxc+TGiwfQ56etxbo2nB5USOiA7AlMJM8vW+TF+8RsRf5KfDPU0rji6FmRR3o9P8i4tfANsCbKaUXls5HlKRVS1VA/yb5vLwN0J1cx6fSI7Nynr6XXNx/Jp/VUZtVtbsx5DBpa5h3SvWiRtz+5ALML1ed0z8l9xDatDjuKyml55bNp5UkSdL/b+9+Qi0t6ziAf380hDqCI0WYG52sFhnDYNaimNyFmyBKsALJaRHBbINwkytbtWmhBUVpkUYUQ3+MqCwDk6E/MlTSIknHskiwP4MGU6O/Fs/7NsfbVcyZe8+Zcz6fzXnP+7yc+xwuvPec7/09v2fV6PGzWk5lbMH72owGoNlS0XMio9/D5RkNlP8n1Omx7e/VSS7I2M59sd9Epufz7/3GJDcn+eg8tKVh6JPdfb/QB+DlW7ivnkzyYEYD54Pz8HTNXHXzi+mafUn2z/fvhfv43oy/Eycz+sEtjh3J6Cf0/m1+drr7RHd/T+gDALBZBD+r5fEkf0iyP2M79q0f2p9K8seMpVeXbPcCVbU3o6T/iYwvCNtV/MxfEr6Y5BvZprEnAOfWVLlzbHp6zXTuv/fnKeg/leTOJE8l+WCmgGjhuiNJ3pjkm939yFQxNI/dleTujF5ti2ESAAAbzFKvFdLdf66q4xkNN99aVffN/XQWlgPM/SJeueX87Kokr8uoDPrddj2A5oCnu4/lzK4uAOy83yb5U5IDVXVFd5+oqj3dfXrhXn1PxnKwW5J8uaq+knHvvzajUvNYRn+e54U73X00ydHdeysAAJwPVPysngcy+vy8K6NXT6bGnvO27P+cHi+cHnu6Zq7iqYxlYhd397805wRYKX9J8lCS1yd5c5J09+l5cArrn0vyyYzqnksyGjJ/OskHknwnyce6+5HdnTYAAOcrwc/qeSCjTP/tGR/y093/7u5T005b1yd5OmdK+XvxMSMgui3Jh3d53gC8gLm3WnefTPLjJBdnCn6q6mBVXT+Nz/f0Z7r7MxmVP+9OcijJ3u6+sbsfXMJbAADgPFUKQlZPVR1I8rOMXV0+keSHSV6V5KYkh5N8Ncnhxf8SA7D6qmpPxnKtz2fs0vh4RgD0miRv6u5Hlzg9AADWkOBnRVXVe5LckeSyJE9m9GPal+TrSY5MjZ4BOA9U1eVJ3ptRzfm2jF5syVi++9Mk9yb5Qnc/vZwZAgCwrgQ/K2huyFxVVyS5Lsk7Mnb7+m53P7Tc2QHw/6qqQxm7de1P8vOMXj3f7u7jS5wWAAAbQPADADusqi5NcmWSh+fdGgEAYDcIfgAAAADWlF29AAAAANaU4AcAAABgTQl+AAAAANaU4AcAAABgTQl+AAAAANaU4AcAAABgTQl+AAAAANaU4AcA2BhVdWVV/WbZ8wAA2C2CHwCAs1BVe5Y9BwCAFyL4AQA2zSuq6nNV9XBVfb+qLqyqg1V1rKp+VVVHq+rSJKmq+6vq2un41VX12HR8c1V9q6p+lOS+5b0VAIAXJ/gBADbNG5Lc3t1XJ/l7kvcl+VKSj3f3gSS/TnLrS3ida5Lc0N3X7dREAQDOluAHANg0j3b38en4l0muSrKvu38ynbsryTtfwuv8oLv/ugPzAwA4ZwQ/AMCmObVw/GySfS9y7emc+bx0wZaxZ87hnAAAdoTgBwDYdP9I8reqOjQ9vynJXP3zWJK3TMc37PK8AADOml0oAACSDyX5bFVdlOT3SQ5P5z+V5GtV9ZEk9y5rcgAAL1d197LnAAAAAMAOsNQLAAAAYE0JfgAAAADWlOAHAAAAYE0JfgAAAADWlOAHAAAAYE0JfgAAAADWlOAHAAAAYE39BzAngTJP2ANuAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 1440x720 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "\n",
-                "TimeAccident_dfwithbrack.plot.bar(stacked=True,rot=15, title=\"Accidents Time \",figsize=(20, 10))\n",
-                "plt.xticks(fontsize=20)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 153,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result222_dfweather=result222.withColumn(\n",
-                "    \"Weather_Conditions\",\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 1,\n",
-                "        \"Fine no high winds\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 2,\n",
-                "        \"Raining no high winds\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 3,\n",
-                "        \"Snowing no high winds\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 4,\n",
-                "        \"Fine + high winds\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 5,\n",
-                "        \"Raining + high winds\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 6,\n",
-                "        \"Snowing + high winds\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Weather_Conditions\") == 7,\n",
-                "        \"Fog or mist\"\n",
-                "    ).when(\n",
-                "        col(\"Weather_Conditions\") == 8,\n",
-                "        \"Unknown\"\n",
-                "    )\n",
-                "    .when(\n",
-                "        col(\"Weather_Conditions\") == 9,\n",
-                "        \"Unknown\"\n",
-                "    ).when(\n",
-                "        col(\"Weather_Conditions\") == -1,\n",
-                "        \"Unknown\"\n",
-                "    ).otherwise(col(\"Weather_Conditions\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 155,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+---------------+\n",
-                        "|Accident_Severity|  Weather_Conditions|Total accidents|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "|           Slight|  Fine no high winds|            109|\n",
-                        "|            Fatal|  Fine no high winds|              1|\n",
-                        "|          Serious|Raining no high w...|              1|\n",
-                        "|           Slight|         Fog or mist|              1|\n",
-                        "|           Slight|             Unknown|              1|\n",
-                        "|           Slight|   Fine + high winds|              1|\n",
-                        "|           Slight|Raining no high w...|             12|\n",
-                        "|          Serious|  Fine no high winds|              5|\n",
-                        "|           Slight|               Other|              2|\n",
-                        "|            Fatal|Raining + high winds|              1|\n",
-                        "|           Slight|Raining + high winds|              1|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "\n",
-                "result222_dfweather = result222_dfweather.groupby('Accident_Severity','Weather_Conditions').agg(F.count(result222_dfweather.Accident_Index).alias('Total accidents'))\n",
-                "result222_dfweather.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 156,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Weather_Conditions</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>Fine + high winds</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Fine no high winds</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>109.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Fog or mist</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Other</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Raining + high winds</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Raining no high winds</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>12.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Unknown</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                      Total accidents               \n",
-                            "Accident_Severity               Fatal Serious Slight\n",
-                            "Weather_Conditions                                  \n",
-                            "Fine + high winds                 NaN     NaN    1.0\n",
-                            "Fine no high winds                1.0     5.0  109.0\n",
-                            "Fog or mist                       NaN     NaN    1.0\n",
-                            "Other                             NaN     NaN    2.0\n",
-                            "Raining + high winds              1.0     NaN    1.0\n",
-                            "Raining no high winds             NaN     1.0   12.0\n",
-                            "Unknown                           NaN     NaN    1.0"
-                        ]
-                    },
-                    "execution_count": 156,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result222_dfweather=result222_dfweather.toPandas()\n",
-                "result222_dfweather=result222_dfweather.pivot(index ='Weather_Conditions', columns ='Accident_Severity')\n",
-                "result222_dfweather"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 157,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(array([0, 1, 2, 3, 4, 5, 6]),\n",
-                            " [Text(0, 0, 'Fine + high winds'),\n",
-                            "  Text(1, 0, 'Fine no high winds'),\n",
-                            "  Text(2, 0, 'Fog or mist'),\n",
-                            "  Text(3, 0, 'Other'),\n",
-                            "  Text(4, 0, 'Raining + high winds'),\n",
-                            "  Text(5, 0, 'Raining no high winds'),\n",
-                            "  Text(6, 0, 'Unknown')])"
-                        ]
-                    },
-                    "execution_count": 157,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAKfCAYAAAAfExNUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACj6ElEQVR4nOzdeXwV1fnH8e/DvsgOKq6oVQRCCAi4I4qCFqvUpdjSAiJaca1Wq7WLdNHSamtF2yqtuBWpW9X+tFaLFXBDWQyLguCCqCACiqCyhvP74zmTTEISAgmEMJ/363VfN5mZO3PuvXNnzjznOWcshCAAAAAAAABkR63qLgAAAAAAAAB2LAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAABAjWFmb5hZ7zLm9TazD3dsiXY8MxtpZn+v7nIAAICajYAQAADYrsxsopl9Zmb1K7uuEEKnEMLEKihWucxsoZmdWM78t8xsYOr/o80slDJttZnVqUQ5MhHkAgAAOx4BIQAAsN2YWTtJx0oKkk6r3tJUqcmSeqX+7yVpXinTXgkhbNyRBdsalQlWAQCAmo2AEAAA2J4GS5oi6R5JQ9IzzGxfM/unmS0zsxVmdntq3vlmNjdm2LxpZt3i9MLMHTNraGb3xOyjNyX1KLH+vczs0bj+98zsstS8kWb2kJndF7fxhpl1j/Pul7SfpP8zsy/M7EelvK+SAaFjJf22lGmT4zqPMLOXzWylmc1Md3szs3NT7/VdM/t+nN5Y0tOS9orl+MLM9oovq1da2Sv4vh8xs7+b2SpJQ0t5bwAAIAMICAEAgO1psKRx8dHPzPaQJDOrLelJSe9Laidpb0n/iPPOljQyvrapPLNoRSnrvl7SQfHRT6mAk5nVkvR/kmbGdfeR9AMz65d6/Wlxm80l/UvS7ZIUQviepEWSvhFC2C2E8LtStj1ZUiczaxm31V3Sg5Kap6YdLWmyme0t6SlJv5bUUtJVkh41szZxXZ9IOjW+13Ml3WJm3UIIX0o6RdLiWI7dQgiLyyt7Bd/36ZIeia8dV8p7AwAAGUBACAAAbBdmdoyk/SU9FEKYLukdSd+Js3tK2kvS1SGEL0MIa0MIL8Z5wyX9LoQwNbi3Qwjvl7KJb0m6IYTwaQjhA0mjU/N6SGoTQvhlCGF9COFdSX+VdE5qmRdDCP8OIRRIul9Sl4q+t1ieRfIsoC6SFoQQ1kh6KTWtnqRXJX1X0r/jtjaFEP4raZqkr8d1PRVCeCe+10mSno3rKE9ZZa/I+34lhPB4LMuair5nAACwa6HfOAAA2F6GSHo2hLA8/v9AnHaLpH0lvV/G+Dr7yoNHW7KXpA9S/6eDRvvLu1qtTE2rLemF1P8fp/7+SlIDM6uzFWP+JN3GFqXW+2Jq2mshhHVmtr+ks83sG6nX1pX0vCSZ2SnybKdD5I11jSTN3sK2Sy27Kva+058ZAADIKAJCAACgyplZQ3kGT20zS4IX9eVdqrrIgxL7lRGA+UDeDWxLlsiDR2/E//crsY73QggHb+NbCBVYZrKk78sDUXfHaS/Ig17vx/lJWe4PIZxfcgXxzmuPyrvHPRFC2GBmj0uyrShHWkXe99auEwAA7ILoMgYAALaHAZIKJHWUlBcfHeQBk8GSXpMHdEaZWWMza2BmR8fX/k3SVWZ2mLmvxSybkh6S9GMza2Fm+0i6NDXvNUmrzeyaOPh0bTPLMbMepaynNEslHbiFZSZL6irPCHopTpst6QBJx6soIPR3Sd8ws36xHA3i7eT3kXcrqy9pmaSNMVuob4lytDKzZhUsd2XfNwAAyAgCQgAAYHsYIunuEMKiEMLHyUM++PEgeQbMNyR9Td696kNJAyUphPCwpBvkXcxWS3pcPhhzSb+QZ+K8Jx935/5kRhxb51R5IOo9ScvlgaaKBlZ+I+mn8a5gV5W2QAhhvjyQ83EIYWWctkkelGkq6eU47QP5QM7XxeU/kHS1pFohhNWSLpMHtz6Tj7H0r9Q25kkaL+ndWJbkLmOlqoL3DQAAMsJCIGsYAAAAAAAgS8gQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjKmzpQXMbKz89qWfhBBy4rSb5LeKXS/pHUnnJrdbNbMfSzpPUoGky0IIz2xpG61btw7t2rXbxrcAAAAAAACAkqZPn748hNCmtHlbvO28mfWS9IWk+1IBob6S/hdC2Ghmv5WkEMI1ZtZR0nhJPSXtJWmCpENCCAXlbaN79+5h2rRpW/m2AAAAAAAAUBYzmx5C6F7avC12GQshTJb0aYlpz4YQNsZ/p0jaJ/59uqR/hBDWhRDek/S2PDgEAAAAAACAnURVjCE0TNLT8e+9JX2QmvdhnLYZM7vAzKaZ2bRly5ZVQTEAAAAAAABQEZUKCJnZTyRtlDRua18bQhgTQugeQujepk2p3dkAAAAAAACwHWxxUOmymNlQ+WDTfULRQEQfSdo3tdg+cRoAAAAAALusDRs26MMPP9TatWuruyjIoAYNGmifffZR3bp1K/yabQoImdnJkn4k6bgQwlepWf+S9ICZ/UE+qPTBkl7blm0AAAAAAFBTfPjhh2rSpInatWsnM6vu4iBDQghasWKFPvzwQx1wwAEVft0Wu4yZ2XhJr0hqb2Yfmtl5km6X1ETSf80s38zuiIV4Q9JDkt6U9B9JF2/pDmMAAAAAANR0a9euVatWrQgGYYczM7Vq1Wqrs9O2mCEUQvh2KZPvKmf5GyTdsFWlAAAAAACghiMYhOqyLfteVdxlDAAAAAAAADUIASEAAAAAAHZSZqYf/vCHhf/ffPPNGjly5Hbfbn5+vsxM//nPf7bp9YsXL9ZZZ51V6rzevXtr2rRp27TeiRMn6uWXXy53mbfeeku9e/dWXl6eOnTooAsuuGCbtrU1jjrqKEnSwoUL9cADD2z37VUFAkIAAAAAAOyk6tevr3/+859avnz5Dt3u+PHjdcwxx2j8+PHb9Pq99tpLjzzySBWXqmIBocsuu0xXXHGF8vPzNXfuXF166aVVXo7Exo0bJamwTASEAAAAAABApdWpU0cXXHCBbrnlls3mLVy4UCeccIJyc3PVp08fLVq0SJI0dOhQXXbZZTrqqKN04IEHFgvM3HTTTerRo4dyc3N1/fXXl7rNEIIefvhh3XPPPfrvf/9bbLDi3/72t+rcubO6dOmia6+9VpL09ttv68QTT1SXLl3UrVs3vfPOO1q4cKFycnIkSWvWrNE555yjDh066Jvf/KbWrFlTuL5nn31WRx55pLp166azzz5bX3zxhSSpXbt2uv7669WtWzd17txZ8+bN08KFC3XHHXfolltuUV5enl544YVSy79kyRLts88+hf937txZklRQUKCrr7668P3feeedkqRzzjlHTz31VOHyQ4cO1SOPPFLm8hMnTtSxxx6r0047TR07dpQk7bbbbpKka6+9Vi+88ILy8vJ0yy23qFevXsrPzy9c9zHHHKOZM2eWWu4djYAQAAAAAAA7sYsvvljjxo3T559/Xmz6pZdeqiFDhmjWrFkaNGiQLrvsssJ5S5Ys0Ysvvqgnn3yyMHDz7LPPasGCBXrttdeUn5+v6dOna/LkyZtt7+WXX9YBBxyggw46SL179y4Mljz99NN64okn9Oqrr2rmzJn60Y9+JEkaNGiQLr74Ys2cOVMvv/yy2rZtW2x9f/nLX9SoUSPNnTtXv/jFLzR9+nRJ0vLly/XrX/9aEyZM0IwZM9S9e3f94Q9/KHxd69atNWPGDI0YMUI333yz2rVrpwsvvLAw++fYY48t9fO64oordMIJJ+iUU07RLbfcopUrV0qS7rrrLjVr1kxTp07V1KlT9de//lXvvfeeBg4cqIceekiStH79ej333HPq379/mctL0owZM3Trrbdq/vz5xbY9atQoHXvsscrPz9cVV1yh8847T/fcc48kaf78+Vq7dq26dOlSxje9YxEQAgAAAABgJ9a0aVMNHjxYo0ePLjb9lVde0Xe+8x1J0ve+9z29+OKLhfMGDBigWrVqqWPHjlq6dKkkDwg9++yz6tq1q7p166Z58+ZpwYIFm21v/PjxOueccyR59kzSbWzChAk699xz1ahRI0lSy5YttXr1an300Uf65je/KUlq0KBB4fzE5MmT9d3vfleSlJubq9zcXEnSlClT9Oabb+roo49WXl6e7r33Xr3//vuFrzvjjDMkSYcddpgWLlxY4c/r3HPP1dy5c3X22Wdr4sSJOuKII7Ru3To9++yzuu+++5SXl6fDDz9cK1as0IIFC3TKKafo+eef17p16/T000+rV69eatiwYZnLS1LPnj11wAEHbLEsZ599tp588klt2LBBY8eO1dChQyv8Pra3Ld52HgAAAAAAVK8f/OAH6tatm84999wKLV+/fv3Cv0MIhc8//vGP9f3vf7/M1xUUFOjRRx/VE088oRtuuEEhBK1YsUKrV6+u3BsoRQhBJ510UpnjFCXvoXbt2oVj9VTUXnvtpWHDhmnYsGHKycnRnDlzFELQbbfdpn79+m22fO/evfXMM8/owQcfLAyGlbX8xIkT1bhx4wqVo1GjRjrppJP0xBNP6KGHHirMjtoZkCEEAAAAAMBOrmXLlvrWt76lu+66q3DaUUcdpX/84x+SpHHjxpXZhSrRr18/jR07tnCcno8++kiffPKJJKlPnz766KOP9Nxzzyk3N1cffPCBFi5cqPfff19nnnmmHnvsMZ100km6++679dVXX0mSPv30UzVp0kT77LOPHn/8cUnSunXrCucnevXqVTjQ8pw5czRr1ixJ0hFHHKGXXnpJb7/9tiTpyy+/3KwLVklNmjTZYnDqP//5jzZs2CBJ+vjjj7VixQrtvffe6tevn/7yl78Uzps/f76+/PJLSdLAgQN1991364UXXtDJJ59c+HmVtfzWlG/48OG67LLL1KNHD7Vo0aLc1+9IBIQAAAAAAKgBfvjDHxa729htt92mu+++W7m5ubr//vt16623lvv6vn376jvf+Y6OPPJIde7cWWeddZZWr16tTZs26e2331bLli01fvz4wu5fiTPPPFPjx4/XySefrNNOO03du3dXXl6ebr75ZknS/fffr9GjRys3N1dHHXWUPv7442KvHzFihL744gt16NBBP//5z3XYYYdJktq0aaN77rlH3/72t5Wbm6sjjzxS8+bNK/c9fOMb39Bjjz1W7qDSzz77rHJyctSlSxf169dPN910k/bcc08NHz5cHTt2VLdu3ZSTk6Pvf//7hZlHffv21aRJk3TiiSeqXr16klTu8mXJzc1V7dq11aVLl8KBwA877DA1bdq0wtldO4olqWPVqXv37mHatGnVXQwAAAAAALbJ3Llz1aFDh+ouxjaZM2eOxo4dW2xAZ1SdxYsXq3fv3po3b55q1dp+eTml7YNmNj2E0L205ckQAgAAAAAgw3JycggGbSf33XefDj/8cN1www3bNRi0LRhUGgAAAAAA1Dg33HCDHn744WLTzj77bP3kJz+pphJtbvDgwRo8eHB1F6NUBIQAAAAAAECN85Of/GSnCv7UNDtXvhIAAAAAAAC2OwJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMg0oDO7HO93au7iLUaLOHzK7uIgAAACCj2l37VJWub+Go/ltcZs2aNTr55JM1evRoDRkyRJK0aNEiNWvWTM2aNVPr1q01YcKEzV5344036rrrrtvi+tu1a6dp06apdevWW/8GtmD48OG68sor1bFjx2LT77nnHk2bNk233377Vq9z5cqVeuCBB3TRRRdtU5mGDh2qSZMmqVmzZpKkYcOG6bLLLit12XvuuUd9+/bVXnvttcV1nnrqqTrrrLN0zjnn6Fe/+pUOPvjgbSpfZZEhBAAAAADALmDs2LE644wz1KVLF+Xn5ys/P1+nnXaabrrpJuXn55caDJI8IFTd/va3v20WDKqslStX6s9//nOl1pF8dvn5+WUGgyQPCC1evHir1j1ixAj97ne/q1T5KoOAEAAAAAAAu4Bx48bp9NNPL3P++PHj1blzZ+Xk5Oiaa66RJF177bVas2aN8vLyNGjQIEnSgAEDdNhhh6lTp04aM2bMFrc7YsQIde/eXZ06ddL1119fOH3q1Kk66qij1KVLF/Xs2VOrV69WQUGBrrrqKuXk5Cg3N1e33XabJKl3796aNm2aJOnuu+/WIYccop49e+qll14qXN+yZct05plnqkePHurRo0fhvJEjR2rYsGHq3bu3DjzwQI0ePbrwvb3zzjvKy8vT1VdfrSVLlqhXr17Ky8tTTk6OXnjhha35eCVJv/zlL9WjRw/l5OToggsuUAhBjzzyiKZNm6ZBgwYpLy9Pa9asKXW5ko499lhNmDBBGzdu3OpyVAUCQgAAAAAA1HDr16/Xu+++q3bt2pU6f/Hixbrmmmv0v//9T/n5+Zo6daoef/xxjRo1Sg0bNlR+fr7GjRsnyTONpk+frmnTpmn06NFasWJFudu+4YYbNG3aNM2aNUuTJk3SrFmztH79eg0cOFC33nqrZs6cqQkTJqhhw4YaM2aMFi5cqPz8fM2aNaswCJVYsmSJrr/+er300kt68cUX9eabbxbOu/zyy3XFFVdo6tSpevTRRzV8+PDCefPmzdMzzzyj1157Tb/4xS+0YcMGjRo1SgcddJDy8/N100036YEHHlC/fv2Un5+vmTNnKi8vb4uf69VXX628vDzl5eVp9uzZuuSSSzR16lTNmTNHa9as0ZNPPqmzzjpL3bt317hx45Sfn6+GDRuWulxJtWrV0te+9jXNnDlzi+XYHhhDCAAAAACAGm758uVq3rx5mfOnTp2q3r17q02bNpKkQYMGafLkyRowYMBmy44ePVqPPfaYJOmDDz7QggUL1KpVqzLX/dBDD2nMmDHauHGjlixZojfffFNmprZt26pHjx6SpKZNm0qSJkyYoAsvvFB16ng4omXLlsXW9eqrrxYr58CBAzV//vzC16YDRKtWrdIXX3whSerfv7/q16+v+vXra/fdd9fSpUs3K2ePHj00bNgwbdiwQQMGDKhQQOimm27SWWedVfj/o48+qt/97nf66quv9Omnn6pTp076xje+sdnrnn/++Qott/vuu2vx4sU67LDDtliWqkZACAAAAACAGq5hw4Zau3ZtpdczceJETZgwQa+88ooaNWqk3r17l7ve9957TzfffLOmTp2qFi1aaOjQoVVSjtJs2rRJU6ZMUYMGDTabV79+/cK/a9euXWo3rF69emny5Ml66qmnNHToUF155ZUaPHhwhbe/du1aXXTRRZo2bZr23XdfjRw5stT3WtHlkmUbNmxY4TJUJbqMAQAAAABQw7Vo0UIFBQVlBh569uypSZMmafny5SooKND48eN13HHHSZLq1q2rDRs2SJI+//xztWjRQo0aNdK8efM0ZcqUcre7atUqNW7cWM2aNdPSpUv19NNPS5Lat2+vJUuWaOrUqZKk1atXa+PGjTrppJN05513FgZsPv3002LrO/zwwzVp0iStWLFCGzZs0MMPP1w4r2/fvoVjDklSfn5+uWVr0qSJVq9eXfj/+++/rz322EPnn3++hg8frhkzZkiSBg8erNdee63cdUkq/Gxbt26tL774Qo888kip2ypvuZLmz5+vnJycLW57eyBDCAAAAACAKlaR28RXtb59++rFF1/UiSeeuNm8tm3batSoUTr++OMVQlD//v0LB6C+4IILlJubq27dumns2LG644471KFDB7Vv315HHHFEudvs0qWLunbtqkMPPVT77ruvjj76aElSvXr19OCDD+rSSy/VmjVr1LBhQ02YMEHDhw/X/PnzlZubq7p16+r888/XJZdcUqycI0eO1JFHHqnmzZsX69Y1evRoXXzxxcrNzdXGjRvVq1cv3XHHHWWWrVWrVjr66KOVk5OjU045RTk5ObrppptUt25d7bbbbrrvvvskSbNmzdri7eIlqXnz5jr//POVk5OjPffcs7A7nOS3k7/wwgvVsGFDvfLKK2Uul7Z06VI1bNhQe+655xa3vT1YaSNd72jdu3cPyWjiAIp0vrdzdRehRps9ZHZ1FwEAAAAZMXfuXHXo0KFayzBjxgzdcsstuv/++6u1HDXJqlWrdN555xXLRNpRbrnlFjVt2lTnnXdelayvtH3QzKaHELqXtjxdxgAAAAAA2AV069ZNxx9/vAoKCqq7KDVG06ZNqyUYJHnG0ZAhQ6pl2xJdxgAAAAAA2GUMGzasuouACjr33HOrdftkCAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoZBpQEAAAAAqGojm1Xx+j7f4iJr1qzRySefrNGjRxfevWrRokVq1qyZmjVrptatW2vChAmbve7GG2/Uddddt8X1t2vXTtOmTVPr1q23vvxbMHz4cF155ZXq2LFjsen33HOPpk2bpttvv32r17ly5Uo98MADuuiii7apTFOmTNHll1+udevWad26dRo4cKBGjhxZ4dcvXrxYl112mR555JFt2n5prrrqKn3961/XCSecUOl1kSEEAAAAAMAuYOzYsTrjjDPUpUsX5efnKz8/X6eddppuuukm5efnlxoMkjwgVN3+9re/bRYMqqyVK1fqz3/+8za/fsiQIRozZozy8/M1Z84cfetb36rwazdu3Ki99tqrSoNBknTppZdq1KhRVbIuAkIAAAAAAOwCxo0bp9NPP73M+ePHj1fnzp2Vk5Oja665RpJ07bXXas2aNcrLy9OgQYMkSQMGDNBhhx2mTp06acyYMVvc7ogRI9S9e3d16tRJ119/feH0qVOn6qijjlKXLl3Us2dPrV69WgUFBbrqqquUk5Oj3Nxc3XbbbZKk3r17a9q0aZKku+++W4cccoh69uypl156qXB9y5Yt05lnnqkePXqoR48ehfNGjhypYcOGqXfv3jrwwAM1evTowvf2zjvvKC8vT1dffbWWLFmiXr16KS8vTzk5OXrhhRfKfV+ffPKJ2rZtK0mqXbt2YcDqyy+/1LBhw9SzZ0917dpVTzzxhCTPZjrttNN0wgknqE+fPlq4cKFycnIkSWvXrtW5556rzp07q2vXrnr++ecLX3PJJZcUbvPUU0/VxIkTVVBQoKFDhyonJ0edO3fWLbfcIknaf//9tWLFCn388cdb/F62hC5jAAAAAADUcOvXr9e7776rdu3alTp/8eLFuuaaazR9+nS1aNFCffv21eOPP65Ro0bp9ttvV35+fuGyY8eOVcuWLbVmzRr16NFDZ555plq1alXmtm+44Qa1bNlSBQUF6tOnj2bNmqVDDz1UAwcO1IMPPqgePXpo1apVatiwocaMGaOFCxcqPz9fderU0aefflpsXUuWLNH111+v6dOnq1mzZjr++OPVtWtXSdLll1+uK664Qsccc4wWLVqkfv36ae7cuZKkefPm6fnnn9fq1avVvn17jRgxQqNGjdKcOXMK39vvf/979evXTz/5yU9UUFCgr776qtzP9IorrlD79u3Vu3dvnXzyyRoyZIgaNGigG264QSeccILGjh2rlStXqmfPnjrxxBMlSTNmzNCsWbPUsmVLLVy4sHBdf/rTn2Rmmj17tubNm6e+fftq/vz5ZW47Pz9fH330kebMmSPJs50S3bp100svvaQzzzyz3PJvCQEhAAAAAABquOXLl6t58+Zlzp86dap69+6tNm3aSJIGDRqkyZMna8CAAZstO3r0aD322GOSpA8++EALFiwoNyD00EMPacyYMdq4caOWLFmiN998U2amtm3bqkePHpKkpk2bSpImTJigCy+8UHXqeDiiZcuWxdb16quvFivnwIEDCwMnEyZM0Jtvvlm47KpVq/TFF19Ikvr376/69eurfv362n333bV06dLNytmjRw8NGzZMGzZs0IABA5SXl1fme5Kkn//85xo0aJCeffZZPfDAAxo/frwmTpyoZ599Vv/617908803S/Lsn0WLFkmSTjrppM3ekyS9+OKLuvTSSyVJhx56qPbff/9yA0IHHnig3n33XV166aXq37+/+vbtWzhv99131+LFi8ste0XQZQwAAAAAgBquYcOGWrt2baXXM3HiRE2YMEGvvPKKZs6cqa5du5a73vfee08333yznnvuOc2aNUv9+/evknKUZtOmTZoyZUrh+EgfffSRdtttN0lS/fr1C5erXbu2Nm7cuNnre/XqpcmTJ2vvvffW0KFDdd99921xmwcddJBGjBih5557TjNnztSKFSsUQtCjjz5aWI5FixapQ4cOkqTGjRtv1XuqU6eONm3aVPh/8tm1aNFCM2fOVO/evXXHHXdo+PDhxZZp2LDhVm2nNASEAAAAAACo4Vq0aKGCgoIygzE9e/bUpEmTtHz5chUUFGj8+PE67rjjJEl169bVhg0bJEmff/65WrRooUaNGmnevHmaMmVKudtdtWqVGjdurGbNmmnp0qV6+umnJUnt27fXkiVLNHXqVEnS6tWrtXHjRp100km68847CwM2JbuMHX744Zo0aZJWrFihDRs26OGHHy6c17dv38IxhyQV6+ZWmiZNmmj16tWF/7///vvaY489dP7552v48OGaMWOGJGnw4MF67bXXNnv9U089pRCCJGnBggWqXbu2mjdvrn79+um2224rnPf666+XWw5JOvbYYzVu3DhJ0vz587Vo0SK1b99e7dq1U35+vjZt2qQPPvigsBzLly/Xpk2bdOaZZ+rXv/51YVmT1ydjE1UGXcYAAAAAAKhqFbhNfFXr27evXnzxxcLxbNLatm2rUaNG6fjjj1cIQf379y8cgPqCCy5Qbm6uunXrprFjx+qOO+5Qhw4d1L59ex1xxBHlbrNLly7q2rWrDj30UO277746+uijJUn16tXTgw8+qEsvvVRr1qxRw4YNNWHCBA0fPlzz589Xbm6u6tatq/PPP7/YoMpt27bVyJEjdeSRR6p58+bFunWNHj1aF198sXJzc7Vx40b16tVLd9xxR5lla9WqlY4++mjl5OTolFNOUU5Ojm666SbVrVtXu+22W2GG0KxZs7TXXntt9vr7779fV1xxhRo1aqQ6depo3Lhxql27tn72s5/pBz/4gXJzc7Vp0yYdcMABevLJJ8v9nC666CKNGDFCnTt3Vp06dXTPPfeofv36Ovroo3XAAQeoY8eO6tChg7p16yZJ+uijj3TuuecWZg/95je/kSRt2LBBb7/9trp3717u9irCkohWderevXtIRhMHUKTzvZ2ruwg12uwhs6u7CAAAAMiIuXPnFnYbqi4zZszQLbfcovvvv79ay1GTrFq1Suedd16xTKSd2WOPPaYZM2boV7/61WbzStsHzWx6CKHU6BFdxgAAAAAA2AV069ZNxx9/vAoKCqq7KDVG06ZNa0wwSJI2btyoH/7wh1WyLrqMAQAAAACwixg2bFh1FwHb0dlnn11l6yJDCAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAMAuYM2aNTruuOM0c+ZM5eXlKS8vTy1bttQBBxygvLy8Um9HL0k33nhjhdbfrl07LV++vCqLXGj48OF68803N5t+zz33FLst/dZYuXKl/vznP29zmaZMmaLDDz9ceXl56tChg0aOHLlZme64447C29eXpbz3kP7s169fr169emnjxo3bXOatwaDSAAAAAABUsc73dq7S9c0eMnuLy4wdO1ZnnHGGunTpovz8fEnS0KFDdeqpp+qss84q83U33nijrrvuuqoq6jb529/+VuXrTAJCF1100Ta9fsiQIXrooYfUpUsXFRQU6K233tpsmQsvvLBSZUx/9vXq1VOfPn304IMPatCgQZVab0WQIQQAAAAAwC5g3LhxOv3008ucP378eHXu3Fk5OTm65pprJEnXXnut1qxZo7y8vMIgxIABA3TYYYepU6dOGjNmzBa3O2LECHXv3l2dOnXS9ddfXzh96tSpOuqoo9SlSxf17NlTq1evVkFBga666irl5OQoNzdXt912mySpd+/emjZtmiTp7rvv1iGHHKKePXvqpZdeKlzfsmXLdOaZZ6pHjx7q0aNH4byRI0dq2LBh6t27tw488ECNHj268L298847ysvL09VXX60lS5aoV69eysvLU05Ojl544YVy39cnn3yitm3bSpJq166tjh07brbMyJEjdfPNNxe+39zc3MLt5eTkFC63ePFinXzyyTr44IP1ox/9qNzPfty4cVv8zKsCGUIAAAAAANRw69ev17vvvqt27dqVOn/x4sW65pprNH36dLVo0UJ9+/bV448/rlGjRun2228vzCiSPNOoZcuWWrNmjXr06KEzzzxTrVq1KnPbN9xwg1q2bKmCggL16dNHs2bN0qGHHqqBAwfqwQcfVI8ePbRq1So1bNhQY8aM0cKFC5Wfn686dero008/LbauJUuW6Prrr9f06dPVrFkzHX/88eratask6fLLL9cVV1yhY445RosWLVK/fv00d+5cSdK8efP0/PPPa/Xq1Wrfvr1GjBihUaNGac6cOYXv7fe//7369eunn/zkJyooKNBXX31V7md6xRVXqH379urdu7dOPvlkDRkyRA0aNChz+XPPPVd//etfdeSRR+raa68tNi8/P1+vv/666tevr/bt2+vSSy8t9bPPycnR1KlTyy1XVSFDCAAAAACAGm758uVq3rx5mfOnTp2q3r17q02bNqpTp44GDRqkyZMnl7rs6NGj1aVLFx1xxBH64IMPtGDBgnK3/dBDD6lbt27q2rWr3njjDb355pt666231LZtW/Xo0UOS1LRpU9WpU0cTJkzQ97//fdWp4/kpLVu2LLauV199tbCc9erV08CBAwvnTZgwQZdccony8vJ02mmnadWqVfriiy8kSf3791f9+vXVunVr7b777lq6dOlm5ezRo4fuvvtujRw5UrNnz1aTJk3KfV8///nPNW3aNPXt21cPPPCATj755DKXXblypVavXq0jjzxSkvSd73yn2Pw+ffqoWbNmatCggTp27Kj333+/1PXUrl1b9erV0+rVq8stW1UgQwgAAAAAgBquYcOGWrt2baXXM3HiRE2YMEGvvPKKGjVqpN69e5e73vfee08333yzpk6dqhYtWmjo0KFVUo7SbNq0SVOmTCk1S6d+/fqFf9euXbvUgZl79eqlyZMn66mnntLQoUN15ZVXavDgweVu86CDDtKIESN0/vnnq02bNlqxYsU2lb0i5UusW7eu3EykqkKGEAAAAAAANVyLFi1UUFBQZjCmZ8+emjRpkpYvX66CggKNHz9exx13nCSpbt262rBhgyTp888/V4sWLdSoUSPNmzdPU6ZMKXe7q1atUuPGjdWsWTMtXbpUTz/9tCSpffv2WrJkSWH3p9WrV2vjxo066aSTdOeddxYGREp2GTv88MM1adIkrVixQhs2bNDDDz9cOK9v376FYw5JKtbVqjRNmjQplmnz/vvva4899tD555+v4cOHa8aMGZKkwYMH67XXXtvs9U899ZRCCJKkBQsWqHbt2mVmYTVv3lxNmjTRq6++Kkn6xz/+UW7ZEunPXpJWrFih1q1bq27duhV6fWWQIQQAAAAAwC6gb9++evHFF0u9vXzbtm01atQoHX/88QohqH///oUDUF9wwQXKzc1Vt27dNHbsWN1xxx3q0KGD2rdvryOOOKLcbXbp0kVdu3bVoYceqn333VdHH320JL9j1oMPPqhLL71Ua9asUcOGDTVhwgQNHz5c8+fPV25ururWravzzz+/2C3Z27Ztq5EjR+rII49U8+bNlZeXVzhv9OjRuvjii5Wbm6uNGzeqV69euuOOO8osW6tWrXT00UcrJydHp5xyinJycnTTTTepbt262m233QpvFz9r1izttddem73+/vvv1xVXXKFGjRqpTp06GjdunGrXrl3m9u666y6df/75qlWrlo477jg1a9as3M9OKv7Zjxs3Ts8//7z69++/xddVBUuiXdWpe/fuIRlNHECRqr5VZdZU5NacAAAAQFWYO3euOnToUK1lmDFjhm655Rbdf//91VqOmmTVqlU677zzimUibasvvvhCu+22myRp1KhRWrJkiW699datWscZZ5yhUaNG6ZBDDtnq7Ze2D5rZ9BBC99KWJ0MIAAAAAIBdQLdu3XT88ceroKCg3EwWFGnatGmVBIMk72L2m9/8Rhs3btT++++ve+65Z6tev379eg0YMGCbgkHbgoAQAAAAAAC7iGHDhlV3ETJr4MCBxe6KtrXq1au3xUGuqxKDSgMAAAAAAGQMASEAAAAAAKrAzjBGL7JpW/Y9AkIAAAAAAFRSgwYNtGLFCoJC2OFCCFqxYoUaNGiwVa9jDCEAAAAAACppn3320Ycffqhly5ZVd1GQQQ0aNNA+++yzVa8hIAQAAAAAQCXVrVtXBxxwQHUXA6gwuowBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxWwwImdlYM/vEzOakprU0s/+a2YL43CJONzMbbWZvm9ksM+u2PQsPAAAAAACArVeRDKF7JJ1cYtq1kp4LIRws6bn4vySdIung+LhA0l+qppgAAAAAAACoKlsMCIUQJkv6tMTk0yXdG/++V9KA1PT7gpsiqbmZta2isgIAAAAAAKAKbOsYQnuEEJbEvz+WtEf8e29JH6SW+zBO24yZXWBm08xs2rJly7axGAAAAAAAANhalR5UOoQQJIVteN2YEEL3EEL3Nm3aVLYYAAAAAAAAqKBtDQgtTbqCxedP4vSPJO2bWm6fOA0AAAAAAAA7iW0NCP1L0pD49xBJT6SmD453GztC0ueprmUAAAAAAADYCdTZ0gJmNl5Sb0mtzexDSddLGiXpITM7T9L7kr4VF/+3pK9LelvSV5LO3Q5lBgAAAAAAQCVsMSAUQvh2GbP6lLJskHRxZQsFAAAAAACA7afSg0oDAAAAAACgZiEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMqVRAyMyuMLM3zGyOmY03swZmdoCZvWpmb5vZg2ZWr6oKCwAAAAAAgMrb5oCQme0t6TJJ3UMIOZJqSzpH0m8l3RJC+JqkzySdVxUFBQAAAAAAQNWobJexOpIamlkdSY0kLZF0gqRH4vx7JQ2o5DYAAAAAAABQhbY5IBRC+EjSzZIWyQNBn0uaLmllCGFjXOxDSXuX9nozu8DMppnZtGXLlm1rMQAAAAAAALCVKtNlrIWk0yUdIGkvSY0lnVzR14cQxoQQuocQurdp02ZbiwEAAAAAAICtVJkuYydKei+EsCyEsEHSPyUdLal57EImSftI+qiSZQQAAAAAAEAVqkxAaJGkI8yskZmZpD6S3pT0vKSz4jJDJD1RuSICAAAAAACgKlVmDKFX5YNHz5A0O65rjKRrJF1pZm9LaiXpriooJwAAAAAAAKpInS0vUrYQwvWSri8x+V1JPSuzXgAAAAAAAGw/lb3tPAAAAAAAAGoYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyJhKBYTMrLmZPWJm88xsrpkdaWYtzey/ZrYgPreoqsICAAAAAACg8iqbIXSrpP+EEA6V1EXSXEnXSnouhHCwpOfi/wAAAAAAANhJbHNAyMyaSeol6S5JCiGsDyGslHS6pHvjYvdKGlC5IgIAAAAAAKAqVSZD6ABJyyTdbWavm9nfzKyxpD1CCEviMh9L2qO0F5vZBWY2zcymLVu2rBLFAAAAAAAAwNaoTECojqRukv4SQugq6UuV6B4WQgiSQmkvDiGMCSF0DyF0b9OmTSWKAQAAAAAAgK1RmYDQh5I+DCG8Gv9/RB4gWmpmbSUpPn9SuSICAAAAAACgKm1zQCiE8LGkD8ysfZzUR9Kbkv4laUicNkTSE5UqIQAAAAAAAKpUnUq+/lJJ48ysnqR3JZ0rDzI9ZGbnSXpf0rcquQ0AAAAAAABUoUoFhEII+ZK6lzKrT2XWCwAAAAAAgO2nMmMIAQAAAAAAoAYiIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjKl0QMjMapvZ62b2ZPz/ADN71czeNrMHzaxe5YsJAAAAAACAqlIVGUKXS5qb+v+3km4JIXxN0meSzquCbQAAAAAAAKCKVCogZGb7SOov6W/xf5N0gqRH4iL3ShpQmW0AAAAAAACgalU2Q+iPkn4kaVP8v5WklSGEjfH/DyXtXdoLzewCM5tmZtOWLVtWyWIAAAAAAACgorY5IGRmp0r6JIQwfVteH0IYE0LoHkLo3qZNm20tBgAAAAAAALZSnUq89mhJp5nZ1yU1kNRU0q2SmptZnZgltI+kjypfTAAAAAAAAFSVbc4QCiH8OISwTwihnaRzJP0vhDBI0vOSzoqLDZH0RKVLCQAAAAAAgCpTFXcZK+kaSVea2dvyMYXu2g7bAAAAAAAAwDaqTJexQiGEiZImxr/fldSzKtYLAAAAAACAqrc9MoQAAAAAAACwEyMgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICM2eaAkJnta2bPm9mbZvaGmV0ep7c0s/+a2YL43KLqigsAAAAAAIDKqkyG0EZJPwwhdJR0hKSLzayjpGslPRdCOFjSc/F/AAAAAAAA7CS2OSAUQlgSQpgR/14taa6kvSWdLuneuNi9kgZUsowAAAAAAACoQlUyhpCZtZPUVdKrkvYIISyJsz6WtEcZr7nAzKaZ2bRly5ZVRTEAAAAAAABQAZUOCJnZbpIelfSDEMKq9LwQQpAUSntdCGFMCKF7CKF7mzZtKlsMAAAAAAAAVFClAkJmVlceDBoXQvhnnLzUzNrG+W0lfVK5IgIAAAAAAKAqVeYuYybpLklzQwh/SM36l6Qh8e8hkp7Y9uIBAAAAAACgqtWpxGuPlvQ9SbPNLD9Ou07SKEkPmdl5kt6X9K1KlRAAAAAAAABVapsDQiGEFyVZGbP7bOt6AQAAAAAAsH1VyV3GAAAAAAAAUHMQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMiYOtVdAAAAAADIus73dq7uItRos4fMru4iADUOGUIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMQSEAAAAAAAAMoaAEAAAAAAAQMYQEAIAAAAAAMgYAkIAAAAAAAAZQ0AIAAAAAAAgYwgIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAypk51FwBA2Wa/t6i6iwAAAAAA2AWRIQQAAAAAAJAxBIQAAAAAAAAyhoAQAAAAAABAxhAQAgAAAAAAyBgCQgAAAAAAABlDQAgAAAAAACBjCAgBAAAAAABkDAEhAAAAAACAjCEgBAAAAAAAkDEEhAAAAAAAADKGgBAAAAAAAEDGEBACAAAAAADIGAJCAAAAAAAAGUNACAAAAAAAIGMICAEAAAAAAGQMASEAAAAAAICMISAEAAAAAACQMXWquwAAAABpne/tXN1FqNFmD5ld3UWo0dj/th37HgDULGQIAQAAAAAAZAwBIQAAAAAAgIwhIAQAAAAAAJAxBIQAAAAAAAAyhkGlK4DBBSuHAQa3Xbu1D1R3EWq0hdVdgBqOY1/lcOwDaqbVc0dVdxGQUbPfW1TdRUCGUe/bdjW5zrfdMoTM7GQze8vM3jaza7fXdgAAAAAAALB1tktAyMxqS/qTpFMkdZT0bTPruD22BQAAAAAAgK2zvTKEekp6O4TwbghhvaR/SDp9O20LAAAAAAAAW8FCCFW/UrOzJJ0cQhge//+epMNDCJeklrlA0gXx3/aS3qrygmRHa0nLq7sQyCT2PVQn9j9UF/Y9VCf2P1QX9j1UF/a9ytk/hNCmtBnVNqh0CGGMpDHVtf1diZlNCyF0r+5yIHvY91Cd2P9QXdj3UJ3Y/1Bd2PdQXdj3tp/t1WXsI0n7pv7fJ04DAAAAAABANdteAaGpkg42swPMrJ6kcyT9azttCwAAAAAAAFthu3QZCyFsNLNLJD0jqbaksSGEN7bHtiCJrneoPux7qE7sf6gu7HuoTux/qC7se6gu7HvbyXYZVBoAAAAAAAA7r+3VZQwAAAAAAAA7KQJCAAAAAAAAGUNACAAAAAAAIGMICAHADmJmVt1lQPUzsyZm1snMasX/2S8AAACwwxEQwi7LzFqaWbl30jOz2mZWe0eVCdllZt1COaP4m1mtuD8SHNiFmdkBkqZI+pekPSQp2S/47mGuDvsCUH2SYH05843zNbY3M2tuZs22sAzXMag0AkLYJZnZWEnLJR0T/6+VmlcrOYmHEApCCAVxOid2bBdm9k9J08xsn/i/pebVkqQQwqa4P4Z4QVi3moqL7etzSa9Kai5pkySZWQMz6y/OyZmUPj8Ft7G84DGA7cPMzjWz9ZL6ljKvVnLhHX+nBfxOsT3Efe37kj6V1L+M+aVdx1CH2IFSgeHa6WnVWaZtxY6DXUoqI2hWfO5Scpl44R3MbA8z+66ZjTaz2yQdt8MKikxInSSmx+cT4nP6AjAJChxlZjea2ROSxkk6J06vkSeXXV3s9rXbFpbZrOUuhPCppBmSWki6y8xmSlol6f8kHbG9youdV3IMkCQz293MLjSzyWbWujrLBWRF6kI6SKqj2JiYljTaxOW7mdmlZvZLMzsjTuNcjSoRzwlLJK2V1N7M6pecH69jWpvZt+N1zN8lDZbYF7enWK9LGnKTwHBBDA61rKlBYgJC2NUkP8R/xeejpM0q3IfFjI2Fkv4i6SRJQyWdambNd1RBkQlJMOCV+Dyg5AJmdpKZvSppgqQhktpK6iCph5nVrqknl11VrAxcKs/0+Xop88ttuTOzKyWNlh+rTpC0TNIN8u/+3R3yJrBDxYpiqfWtuD9908xON7ODJf1V0s8kdZfUdUeWE4CmyY/DJ5acYWZtzOxXZvZeXO5nks6T9Asz241zNapCqhFpvvw65UhJrUoss5+Z3SPpHUljJfWT1FvS5VJRN3RUXslzd6zXJQ25Tc3sfDObJP+u/mFm3zGzhtVQ1Eopd3wVoCaIF1+10hdfIYR3zewTSd3NbI8QwtK43D6SfiOpp6S/SXpO0nuSPgkhLCHdEpUV9zOLLTjr4+RZkt6Sn7CVChK0l/Q7SftJ+pWkSZI+DCEs2tHlRsXElqCVktZJamhmtdIB51RFoYX8ouJIeTbQs5LGS5oj6e+SDpdUV9IPQwgzd+ibwHZX4rwUVNRYUTg/Tv+avGFiRXzsJekSSQviA8B2kuoCVhAnvSs/Rp9sZvuEED6My9WSdIWkayT9R9IoSe/Lszg+CSF8saPLjl1LbAAsSO2LH8uzy0+SX7ssjsvtJun3kk6XdJ+kf8v3xQ/l5xBUoXT9TpLMrJekn0g6V9IZkq6TB+YWy+t1J0q6SNIdO7aklUNACDVerFQnF9gHSjoghPCcpKfkP9jDJP07plf2k/9Ybwwh/LSUdW0qOQ3YGsnFX2whOFbS7pL+Ie8m9G0z6xRCeCMufqa8W+OwEMI91VFebJP/k9QphLBZRo/5oNEjJX1TUj1Ji+QBofaSxocQnjWzKXGZi+VBoeS1SZAAO5Ft+V5KnJfy5I0QyyW9FEJYmlrfUkmPShohb2E8IYSwsGpKDqA8JTI4O4UQZpvZa5JOk3fhfSQuepQ8++JJSd8KIayrjvJi15XaFw+QdJCkNyS9JOk78qzx1+Ki7eV1xzskXcJ1S+WVEhhOppukPvKA3BMhhM/k9fqT5A17jSX9SdI/QgjvmNkx8h4ql5rZs6XVEXdWZENgpxfT7cvsD2s+IOvFZvaOpHmS7jezxyXtGxc5OrV40oqzNr62Rcm+uUB50l2CypjfzMxukHcFekyeAfSapE5xkVNSi38anw+Iu/l+ZtYkrqdJ1ZceW6u07zqEsDJmIR5qZrunlm0m6Q+SBsqDgIPio4tSY5SFEFbJW6HrSDo23R99e74XbB0zO8Z8jKdvlzKv3DEazKyumV1iZvPlweA/SnpY0hQzuyC16CoVjXm3VNIH8fXUz4BKqsDvtJeZPSXvAvys+Rh+PeV1xT6pRRtLaihpWQhhXax31tte5cauZUvXMXGZ75rZG5LelnSXpBfk+2CQlGtFQ1ocJL+G+VJS3Vjn3C21Hs4dW6mcgbm/Jg/8XKyi68f/ybOxekt6NYRwQwjhnThvqrwOeIj8OFJjkCGEHS5e6J4paU4IYVo5yyXpk6VeJKVabU+Td7dZLelqSZ/JszKukx9ID0u97AX5hfrPzew0+Y+6tpm1kbRSfhD+XwjhM1rrs8HM9pZ0maQpIYTHylgmGRMmlNUak9pfvifpx/Jxg0bL034PkXRpXLSvpJvj309KulJFYxF8JKl+DDJ8ZGYPSvpLCOHLSr9RVJgVv/PbZseA2Jp0qfzEP1Seti150O90SbfKu4Jttq+kupjNlacYHyNpjLxyhx0sOc+UmJb8lltJypF0lJk9EkJYb2Z1QsXuAnaBvHvyPEk/lGf/1JZ0vaQ7zGyJPHO1wMzekmcPrZDUUn7RSasvUIKZHSGpccwCL2uZ2vLTdanH79RyHST9WX6BPUbeXexAeRb5bpION7MGIYS18gu9GZKGmdlB8vFdCqxo4PcHJT1D17FsMLMG8ht/bAwh/D05L5SyXK0t7YdxuePk9cICST+X9KZ8X/yGPHmjo/y6ZqW8G9kE+Xnl6/JhL2rF65i1kh41s3tjNgtSyrquM7Muku6X9Im8/j41ztogaaOk9SGEDXHaLHm9vq2kh+Lra8mPOetiBvhaSUeY2f/VlPo7ASFUh1Pkg6Dda2bnJwfR9EV3fE6itbmS2kl6IxWFVewC1ljSjfJ9uV8IYV4y38w+lLfK5pjZ10IIb4cQPjKzc+UH2WMldZb3Aa8vvzA7WdKv5QdkU4lxH7BLOlQeSPy7mT2VjPuTPnEkz2bWSt4qsLekScnYL8lJP6b6/lgeaDw5hLA6bmOSmU2Tn8jTmSIfmtlZ8sGmj5R3H5onqamkbvLsotqSfrv93n62xeOOlTEOUFN5QKDYuE6pi/gvJB1iZo1CCF/JW5M2yoPSteLxaWMIYU2yrdR2FkqaLR88uI2kL0seA7H9pc4zpVUU50h6Vd5dpLl8rJDkfNVdUpMQwvMl12lm+8uDhS9IGhriOCRx3ix55uBV8jGC5sm7Fc6XH1eaSVpGgwRQXAy+vCxpgZkdkVzwxuNmrVA0hmTym24sKVfSxyGE95JlY92xnrwhqKN8QP9/JBd8ZtZV0mRJefK657wQwqdm9gN5A0Av+fl5ufyCcS9JZ0n6rZn9PHXhiF3XnvLrmOWS/p4OBpWoOyZ1iRz59cYMSfPjPpg+318uD/icFUL4Z2pdEyX9U76/7R1f+07cF2dLOl7SwfLGpc/k++wfJLUzs+tDCJ9vrw9gZ1ZWXSp+7ntIahZCmJ8K5LWV1/U2SBquooDQ+/LgcG0zqx9CWBdC+NLMpsvrbo1L2fx78jFDe0hqrZrS2BdC4MFjhzzkJ2zJL8DHyMf3qV3Kcs3j8+XyH+Om+JgvPxnXSi3bS54Z9LCkOnFa7dT8u+NrB8b/C5eR1Cj+XU/+o+0Wl/2wuj8rHjt0v2wt6ZfyYGCdEvPqSto//j1Knlae7I8fShoV5yX7do84b1xqHbVS+93Dcf6xyfrjc5308vH5GPmJ5GVJDav7c9rVHunjSCnzusuztzamjj1nlDi2HCJvKfqfpP3itA7x/02SXpdf+D8uzxb7r6Tvy4MIyX7xq7jsKdX9eeyqj/g5Wxnz6sXzzCuSuqamJb/BhvIBn9fI7/jVUtLtqePA55ImSjooLm/xOflevxH/byAfOP5YScPkgaZNki6K85vIGy9WyccQqvbPjQePnfEhz8YcLal1Ocv0ir/L5Pg9S9Iv4rzkN9pAXndcpKK6oEmqF/++Jb52eInX1ZcHgGrHY8U+8rrDm/KuPnnV/Rnx2GH74p8l/VRS/VLmNY/702nywH9Sb1wp6eYSyx4czzHT4/+1VPw656fxtRerRL0l2XdT2+wmrzN+IOno6v6MdvD3UUulXFPGecnv95D4Wb5RYv7Z8qyeV+SBtS5xehN5/e/p9DFH0uC4nhvj/+k6fBN5veFTxbp+TXjQzxA7RLpPZghhXgjhghDC3WHzVP13Jb1sZoPlo7RPk6dF3ii/cP+bUhkW8tabxpIWhhA2Jun/qb66D8fnI+Nzsr1NwVv0FUJYH0JYHkKYIT9YrzGzllXyxrFTMr/Vc9KCsDyE8PMQwn9C8VaeveQn1Zlmdqa8C8g9kr4rb0GoLelHsaUyyfrIkVdC3zWzunH9m1SUafZ0fE5uV560IhVuN7WuD+QViiYhZpigctJ9+ENRy12n2He/m5nVN7872A3ySv9v5QMGNpN3Jz0rtbql8oyvHHnLnUIIc+WVtj/KjzW58m5H6+TBwr9Iusb8FsWbJM2UB/1OsDgOgJkdFrskbHH8C5Su5PccYi2tlPm15S2Dh8sv7JLzwabYcrhGUr78IvAISb+Q/3bvkw8KPkl+8Xmjme2X2k4j+fe/r5kNiK+7V9IT8nNYO/lgtdPjNlfLWyQbS+psRbcdBjKvxHFwWAjhshDC8tT8Bmb2RzNbZD6A+x/lwZpb5Mfc1pJ+Zmany8+pknfH+VyeobebVJhNkJyL/y3pK8Xbzye/7eAZAouDD2ewPoTwYQjhP/KhCPaS1yGxC7Io+T+EcFEI4dchNcC4+W3I75MHIUfIs3XekGeEXidvSLzYzC5Lrfor+TmmIJ53NoXiXYYny7sT95TXRQol1zHx75Xy/XmdvDFzceXfdc0RP7ckO7CrmZ0Ze5ikf7/zJT0gqYOZnZ0617aWHw+ekWdv/8T8xjDN5FlDdUIIy80s6Vk1VR7w6R//T2eYr5aPG9pM3kOlRtTj6DKGHSJsftu+veQtsy+EEJ60onE1lsn7c/9K3p/zl6GoC888eUX8fElJmn7ShSwv2VTcXlIxnx+n9UjS/cysbihKDa4jv5hrL7+Qay4PPmUyzTIrSglEHiy/jedTIYQ74zKLzQeUPV7edeuiEMI/Uq9ZL28hGm5m80MIn8ov7uvIM0bSaePJ/pgfn/vKu5ZtiieL5sHHrdpTnoqcKx+jZo18PBpUUqqrwJ7yE/nX5CnfycB/Qd5d9Ct5JshASW/H1zwsb3E+Vz5WhOTZHK/KW4oOlbcsJUGhK2PQ54tY4WgubwX8i3zcgSfkFYqp8m5FP5R/55/L714xVb6P0G11GyTHf/NxAU6Sn1OWyFtOZ4cQlsbl1pjZo/Lf2rGxAthXHvS9Qv59vSUPzl4hzyj4oaSnQwhrzQfyvFU+cPjTku4xH1viK3mwaaS8oplkjP1R0r9CCPmlFPst+bgESaX/01KWATKnlIDuYPkF2tg4f62ZNZIHdf8s77LxU0kLYkPhM/JA7IXyC/X35K346+XB27qp1afrjl/IxwHZLcSxgcysXqpO2lQe3D1LHjB+Rdz2e5dVyn7YXF6PWxNCGBknr5P3bGgrHxfyf5KuCUXdG5+W1yW+a2bjQwjL5PviQnkjwn7yBsV0l6fP5OeDnLjez+K1S914DqsrD0YeIK+PHCdpnDz7bZexpW7UZtZOfh03VH5nV5O00sz+K7+WfDMu+jd5I9CV8qy+1+XHgobyRpqPJd0mv/vn0/L6W3LNkDzPkx9LeqePDylz5Y2GPSWNV00IFG/vFCQe2Xko1TWmlHkHy1Pl28b/T5NXku+Rt+Qk6Xw/UFHluXmy3vi8h/yE+7GkpnFaPXmLzmpJDeI0S73mKPkgYYslHRan7S2/8JsmvzX9lLjOZfJAFN1zdoGHyk8fPUXeepjsJz3jfnevpN1Sy/1a3jowVVKbOC3p/rWvpGflB/6cOK2TfGDot1XU1axWajtdVJQ63CS1nf/ILzqnyQe2/EJeab0k+W3wKPe7LvzNb2G5EfGzv0V+sp8qD0xfJg8yb4rHkkGlvHZSnN8qNe1YeUXtz+nvs4xtN5UHJBZK2jc1vUssy4fybgd/ldS3uj/TmvqIv7fB8rEakkaGJfKKepKVdWo8d7SQVw7XySt6m+QVvadV1N1rf3nXv02S7i9lv0u6iY5R0XnsEnlweLqkU8spayPF7gbyiv6T8u5kHZP1V/fnyYPHjnjIG1I2O4bH3+kpyXlZfvG8KR4r90wtNzT+zjcpdrtM/R6bym/R/ali91x5PXByPD4cmVpPuv74cVxfj9T8a+LxYJx8bJeZ8vP1P9PHdR418xG//7plzGsr7/Z9YPy/Zdw/Piix3OlxX9skqX2cVktFQwQkQwf0jf/vJ89IW5o679RRrL/KA52fxX311DittjyT+VV5d/TkOuazuK+XWx+pKQ+VU48vsUx9eQPORkn/J8/iP1/eZX+TpOdUVE+vLw8GbZL0hzitX/z/iHheni9pZpy3VF6faJx89vF5VHzNaenpqe90lvz6YP/q/hwr8qDLGKpM8HS9ZMDNWvE5SZW7TV5h3if+/4akF+UXQy1C/AWpqEvNphDCylTmkIK36r4qH3itc5y2Xl6Jbizp23H5EIoykpJBvRrKI8KSt+yvkB9E9oz/3y6pVwjhZ8Ej7jUixQ9li/tjuvtgcvcRye/mcLk8S0TyIMzL8v1q39RqXpRXED4JISyL+1eSUv5JfM2B8SH5wf85eUvNt2M2Wjr9d7B8EELJMxcST6nozgXPxuU6hxBuT/02EJX8fZb4zZe2fHKumxKfT5FX7r4eQrg1hDBaPkbQKvmxZGKyndRrJ8bnE1OrXiT/znvKB4aWmdWxeDvi+Pd+ZtZbfgw8QtJzIYQPUmWfKc88OjSE0DGEcH4I4dkKfhSIUt/V+fJufrtJulbStySdIB9b4Xb5b/wxeVbPgfKxupLsvh/LK/PfCSH8X1z1YhVlmr6c3mb8bc6SHz+6y4NHklcel8jHJHi9jPIeLx+7LOkC8FncTkd51oH47SMrgt+5r/AYnjrG/0F+fuwVl1st6R/yet2hqVXMkh+/35L/jtLrXiU/fjeXN9oohPCRPDuzpaSzYnZg4bnEzI5RUfexXqnVrZVnpHeP63pTPij14BDCB8Ytv2u0+P0nPQhKXgf8TB50aByX/VTemLe7+aDRiXflDXxvpVetom5Fj8fnI+LzsrieNvLs1OT3kGSj7C8PALWSdKj5ne8K5I1IK+UBz9XyQNBxIYQLQ9ENTWqcdJfpVD2+tpn1NLMuqW5b6bu2niMP1v0zhPCNEMLfQgh/lQeK75Bn+l8a17lO/j1+KOnC2GOlQVzlhuDd8G6V1MnMrpR/Pyvkn7NU1O30pfj8zRLTJT//f0ueiPB+JT+SHaO6I1I8at5DqVbLEn/vKW95f1HSt1PTm8pvzfeuPPgj+Y/vdsVb85VY/zJ5K/ruqWlJi00ykNfPUvO+Ic/KWC6/sKol7yIwQn6xdl98zeOp1zSUZxxtMauAR818xH0gaYnpH6fVlh+0H5cHJZPWm3qSbpK39H0jtY495JXLT8rYxuny7IKfqShD7di4r2+SX5y2k1cefxn360fjvEdT66mn1OCAqenJHbCq/fPcGR8qagH+mjwrY2B6ehmv+Sx+/oNSn3GSpXFXnHd6an9Jjj2naPMBwxurxGDA8tanUfE4+G95VuMSedDhT6V9zyW+78KWQR5bvR+cLM/0maM40HeJ5epK+l78Ht+Lv9WO8rEdCpQ6b5VY76D4O79epWTByrsefiEPMCa/5x/F7TwjD0I1lzeAfDMuv0zehXSP1HraS+pe3Z8nDx7b66HSs4Dqyi+epsrvsiQVZVMkA7T3Ty1/fpx2eWpaE3lmwFeS2pWyjU7xGDxOUss4rbs8kLRJ0pA4raU8s/w1+V2clilmCsT5DeXnmz229r3z2Pkf8Zx/s/ya4tsqnvVxR9xXjkhN+3GcdklqWiv5ODUfSzq8lG3sHl/zVGpaM3kQaZM8e2VPed3xTHn94Ql5PeMFxcy4uC+2Uuk359kp6o3y67GfSHqnnPll9SypJW+4e0DeYJMMyn2nYm+TuFwj+RAj6yX1KfkZxM9xtTzTJ53hfXlc5w3xM18h6Yw4b0/59cO6+HhWRdcPJdc7q7o/56p4EMnGVgvJL83sgBBCSEVr28h/YEfJ+3EmvpIf7NrKu98ohLBWXhmuJ6l7iZb4yfJ0u85xO+n9dI48qtsnNe1Z+YBtu8kv6BbKA1A/lfRiCGGw/ADyp9R7WBNCWBq8JahWbMknK6gaVMXnbmZt4yBy6X3lIBVlc5xvZq2Ct6q0lB/Um8pP+gqeafay/MRS2NITPCtthqTWVvpAv2/L+4sfIb/gUwjhBfnF4Afy/W6mPJ38UnmrxGB58OKnqe2sD3FwwNgSUjtOD8nvLWvK2y/MrKWZnRqPP1fJK0k3SupjPijjZp9ZqtVpQnz+LJmlopbgJDPnuNRLk3XNkAf6Co89IYQv5Rcx9SR1jBlh6+TZYxvlAcU18m5gfUIIF4fUIJAlxa873TKICoj7QTP5GCEm6echhEWWEpfbEEK4X55Vur88E+hN+T7xpaSj47ggJb0lP+/0UFFLYtp/5ceOLnE76+UtjKNVNCbUbHml/gF5l7Un5QPkLk29j7dCCNMq92kAO69Y59otjnuS2EdehztM0kWxbrkh/m6/lDccrk0t/2J87pac84NnRLwu/312LmXTH8mDP3kqGkB+mjzIu1rS3WY2S35hea/8/PBteTbSg6lz8poQwtvJ7zbWHRkEvoYys6/Fcd+SOkdD+UDBbeXDXHRLLZ6MD5W+6cz/4nP6mmSl4jADKsoeT7ZnIYRP5HXHrmZ2gCQFvz38xfIGyJvj6/9Pft3ynKSr5RmvN8mDlMm+uCJ4Bk1yHZP8Hqq93hjf6yZ5Jt8BZnZ0nJ6+yVBhz5LU6842s1UqGoi7u7wOdaO8Pn2+/HNI1vGV/NxbR97Qm0wPMYNoobzLfxv5OTzxiDz78NvyLMAvFccTCyF8LM9OrBWnHRx8IPnCOnlcb8cQQm4lPqadBgGhDDGzumbWy8xaxf+36ULczNqY2XuS3jSzlqkfczJOw0xJR5nZgHhxtlHear5B8W480dz4mmPlB+HkAPZEfE7SKRWKUokXyCvWXc1sjzhvXQhhvLwF/4/yE/9S+Z1dfhSXGRFC+G9p7yc5IO0MB9AsMbN9zeziyn7uZnao/GD/jLxCmVgirxxOkQ8U++04faU8eNNSxQfsfUN+oj0s+Y1ESTej5G4C6crfx/JAQSd5BUKSFEJ4RB6M+qH8YvGfkgZI+l0I4csQwp+DDz68mXjSyWRAIFZqCoNhcVppx6m/S/qXmV0tD649Jb9t6O9UNOhfWZJuqXmpacnx5UV5pSDpnlCQOvkndxXb3czSlbz58iBEfxV1/7lD3uJ9eAjhhOB3sXu9nPeDymsoH5tuqTwzqzCgWsq+9IA8o/RYM+skb0SYL694tkyWTR2b3pdfTHaXtxyW9Io8ANjFzOrHaetDCD+Qp6qPlAct/yfPXM0JIZwb/M6WwE4vnq9LC5ZuzTqamdmd8t/TCalZa+QXXe9KOlreBSs5BzSRn8dXxHWYvB44X1JXFXXTlDwgtFHFu/UmVsuP7weoqKu45PXN3vKM9bpx3rOSrg0hzAkhXBpCuLGsczIB/B0r1hF6lTgHb8t6apvZk/L9qJ9UuL/tJa/XfS4/1l8Ql68nz0BZo+I3nZku7zrePQksxf1htrwxvLv5gOeJpP74TFx/16Q8IYR/yc9hP5L/Fj6UB0GuDCHMj/XGf5W2v6WuY8rsOl8NkhjDf+LzN0pMl5ntYWYPmNlTyTWd/By+m/yzOEU+OPdVIYSfygNv+ZK+Y2btU9taEp87xvWWjG9Mjc8d4nwL3m30t/JMn97yMQU/SV4QQnhFRdejs0p8j8kyH5ScVlMREMqAVCX4Fnk/6uSW17W2JTsm+Kj4f5PvPz8ws8Zx1r7yg+Uj8ovg61TUx/sT+YV4unX1PXnGT09JrVOV76SV/vC4vcIDXGwFmi6vJByTeo+1QwjPy0fzPzKE8PUQwpgQR/ZPlqnoe8QO8WtJt5nZcVJRS1v6e6rgfvm2PPjXWp4hkFghz9y4XT5Q7CXmt4YukO+7a1Q0ppXklYDX5S0N6Urmq/Jg5qnx/3QQaaX8RLOfirckKYSwIIRwSwjhrBDCD0IIk9IXpqWcsDIvFL9taCczO1bFKw9JNuKL8u9vpKS7QgjDQwjPxJbbsgKMyXEkCQwfltpmEvT5SF6R62h+x4qS31UyhkzSZ1zyyuBIeUvep3E9X4UQPgl+h5udruVuF3WAPKV+nmK2Xjlmye9QuY+kQ2KL7Wvy89X+UvHvKZ7zpstT/TuUXFlsKZwjb9w4JJkeWycnhRBGhRC+E0IYFkK4J24PqBHMbLg8iDM0Nc1Knq8rYJU8WNtCqSzy2Bq/pzxYP0XSUIu3i5Zn3kl+fpe8y9lGeV32YMUxgaI58vrACSXPr/G88qK8Dnp4UreIx//X5XcR7BFCaB88k/P11Hvljsw7jyHy7/4MKxqrtNg5tiLi/jAm/jsiNWu1PCg0OT4Gm1m74Fmfu8kbHj6L200avF+TN3ans0/ekwebeiruu3GfS+ohyRh1JydFiuWaH0K4OYRwXAjhlBDC6PT5ojquYyrRiJW81+nyulFy7ZluoLlYPv7P7aEoW/Z1eb3qKEl/DCG8EOtS9eLnfX9c7rTUtpKswWOTYifbMs9GTPaNJVKx29C/KG+w3U0+BMCXsWzJ53yZpGYhhNNDOdnduwIuSLIh+Z6TSGeX+LwpbGV2TOrAMFZ+oXyxigIzyd0fVkv6TdzOd1MvrycfoDORtLjvp1iJjlHbj+UH01wz2y+ZnjrYz5FnF6UDRQXxORkMrnZ8WMllUL1SB9rkwryvVNTSlgoINAghhC2djOLrxskv8s41syQws5c8W+QreXByX8XWHvl+uFqeYpr4Qt6Kv798LI/E7PhIApSF+1H8+3X5ILVvqhRx3y1WWYlJCztTS85Owcy6mdm9ZrZS/rn+U9J0Mxsm+XcdF50i/16/VEzZLvl7LynZl2KLzofylrt94msttV9Okl80JMe19HkyP26zTWq9S0MIvwkhPFnad7qTttztir6SV+g2qngWX6HUeW6xvJGioYoGinxVfg7rbMW7syTmxG0cWcYF4iR5ZTOpaPIbR42WOmctlDd+9Eymx/27WDZrRS4cQwhPyLvAnGpmJ8XX1ZWfj7+U1x0byy/EJK8nSkXZl8lveII887xravUL5cfo9vIAcUnvyC80N6pE18/4Xr4o43y9UdhZJD0LOigeuytxjn1Wni16onk3JQshLJEHLBfKxx/9XNLPS7wuyRJN9pHn4vPxqWWWyRsL2yveqKTEOWFS3MZbyXsoWbid5TpmS9eHZSUWpF73lrznSI6ZNUm9h97yMZj+EkJ4OhWkTbL5pBjAiefc5Hf4gvxcnA4I/Ss+D4qBuuSaMMTrwq/Ljx2z0+WOf94pr1O+rKJGveT1i0MNHqB7axAQyoDUj29SfD4idbHdxcx+YWb/NLPrzezQLV1Uxecl8u5ZLRRHbpdXsBvJT9IvyQfu/b6Z7S2veLdR/EHHCkWB/CK+IJaploqiuhPkgaLkosxSB8xHQgidQgiPlfeeQ6q7B3YqJVsNviFJ5uMKnGFmD5rZa5L+bGbHVOBklFz8/UGeyXO1eepuLXkF82shhP9IelAeMDolLtdYHhiQVHhCniK/mMyxoq5LX8i7kzWxoj7Q6RP0/0IIZwZPL91MPCERENgCMztEns11lnwMsJ/LB/XbT9IfzezXqcVfl1cUGskr+arg7z0djNxXRRcTpqILjWRMgDOTF6W+uxdCCE1CCNeWUn4yEKvXu/Lv8CAVXTyWKoSwUv77ryu/0JU8s2ippCPjdJlZPfOxiSRv7f1AXgltXspqfxhC6B5CmFOZNwHsLFLHvTfkF3W94wXdJjNrYmZnmtnvzexXZnZQBY6/yTXHaHmXzavMrK08EJsMBv0feYPjQDP7uvyCvEDeYJMu06vyLjzdrOgOYRvkXbjrqPRuY++EENqFEH4SQlhTxnvmfL1z+0B+rD5cMTBjnk38MzN70sz+bGa9yl1DFHws09vlwZsr5ecOyTPZ6oUQXpV3Tz/bzPrLs8+kokaEdHBno1IBoeB3tpsmzw46PF1njPPXhRAODCH8vpzy7RTXMWZ2kpkNjH/XToKmyfxUQC6YWZMSr60Vy/9anHRinL6XfKykD+S9BUoGnibH5ySwW1DiePSG/LoxCSLNlAf4vibpr2bW2swamVmOmf1enhE+Vh6EKyx3/PN/IYRj4iP5jjOHgNAuKv5g010tagdPeZwqz9zZ08xOl/ftHCHvz329PMp6SvKaLWzmP/K0x1PM7GR5l5s6ktbFE/NoeXBosPyg+LmKuuIkZZsnP8geK6lJ6gf6eCzr+9Jm3cY2xfKRxlsDpQ768xRbDeL/F8q73eTIg4dDJD1rZn23sMpk33haPhjkGfKL+Q/lFc3EDfILxUHy8X6aKgYIUifr+fLstKPkGUaJJ+SD2n1c4j0oeT0BgSK2ld3hYoX+p/Jxwy6S9IPg3Wwukt/Jra6k6yxmDAbvCjpDHhDaeyu2mXxvSWtSz8IZRceY1+K6Z8fpBSWXKe27ro6WOxSJrXhvyscDyCvr95j6ra+Pz8mF4XvylsezJf0kVoBvkGcsSJ5VNFl+zCp1DIfKvwug+pWsW8UGwNfl58S9zCxP3mj3d3kmz3XyTM4BW1h18huZKB924CT52H5fKN5pM86/Uf77vFTeIFBbcdyW1AXgB/JGpU4qPibQG/K6xWZZPeUdv7FzslS3sDhphfwcfaCkvWMj3aPyfaWr/NbjE2OwcovfcwhhirzeeLikM2Nj4hr5DSEk6W55o9ON8kaEDYpdxpLMsRDCPPl+18XM2qRW/4a8rjFbZajO65hYby03q8/MOsvHOxoTM6iSgZU3ppbpEgNxcyW9Zma/M7OOcXbyHSQNpslYnD+Tj+N4XQhhSSnlSDKEOqWCSkkvkjXyfaC2irqISX4celp+7TBbfowaJ7/Z0aOSRga/EUgx1N2isBPc6oxH+Q/5RexVkr5VxnyT/zBKu/Vgozg/uXXyz+Un5fvlqZd3ye+o015+y/ZNkqYl661A2U6SR9efkf/Q35cP/pXM/4u81XWl/OB4eJyelKe1PN3yU0n7V/dnzaNC++O+8jtvXB7/r11ifq3S9sU4bz+lbjEpvz33JvkJeab8pJsjDyQOVdFtm1tXsGwHyyuC8+TBx7XybmLJ/jZGnjK+Tp5RkJeUOT43lt/9Z5Z8bJFq/7x39kf8vuuUdrxQ0e1RN7vVcInldo/f29xk34nHrXrx79vivnCNim4Rf2Gc9uP4f6m3Li1je0n31vyKHOd41IyHvHFjk7wL50FxWpJ5mj4P9pYHdabJGyKS1/eM56sNcX/cJM9EaF7d740Hj619xH3+FEmD4/+l1RHLO37XSv09PP4ebpFnWE6XB3N6yINCG+QXaQcn295C2VrJL6yXyYNB70i6J/k9ym83v0QeqN0k6fSS70Ge3bFJ8Vb1JcvMY+d5yMdouUTSxeUsU9Z1zG4l/j8rHp9vlfdMSG7isZ98mIpF8i6+XcvbJ5J9VF5vfC/ug0fEeshDqeXOj+eLZF/sli5zfP5HnHdcdX/W2/DdtCxnXoP4WW6S1CVOayEPvlwpKVce4J0vbzCZF5d9XtK+qfXsE7+XhfEzXi7pzrK+H3kj4Hx5Ha1d8n2lPu9BcTu/jf8ndcW94n72aDwe/SPuL43S3zmPUr7r6i4Ajwp8SR713iSPdjbbwrJ15EGWZvGHMEfSHqn5h8V1LZU0ppTXPxbnd96K8iUXaw/LL6RvSs3LSR1Mlkraq5TXH5T8WEtMLzOwwKNa98e94/f5UgWW3V8+PlTTeNJYIKlDav4Z8mDhJkm/LPHaFpL+LE/fPbEC20oHfTbJg52rJF2YWqaHPMC0SZ5NkBenW2qZZmWsv9TKCo9in9Gecf+oK8+mml/B1x0f94P7VPwCPflO+8X5/1a8OI/HxdWSXk6+nwpuK1nn3bHiUK+M5SocYOKxczzivvdS/H3/poxl9pS32m6SNLCU+QdJ+o685ZGLSx419iG/CN8UH1vclxUvvCX9QJ65fVxq3pHybmMb5V0z0g07teSNjRskXVCB7STH4Bti2W6QX0j+VUUX6YeqqD66VEVBrfS5en9JuWVsg+P3TvSQj/mzQZ4NtqUGIlNsIJZnkm2S3947mZ8nb2DeJOm+Ul5/TZx3ZXp/28I2L5MHfX4jD1T+SVLjOK+hvOE6+S2dnqw3tS/vpaJgppV4LzvlvijPgpohD84cWLLsqeXujO/7itR3+Za8jvdveW+O4+TXnbvJ6+AFio11qfU8Htfzfnw+XyWCfSWWHyMf9uHrqc87HcRbJmlh/L9kw/Rm15Q8yn/QZaxmeFd+wrxXntlQjJk1MLMhZvaCvEXlYXnkvIn8hFl4q/cQwnT5RVQb+Y88ubtTkraY3B5wS9100imcf5FHfs+Ud8UpHIk9+HgK98Z/d1NRer5Sy7wTQviqlD62hXccwva3pdTRZJngd2K6TtIvS+umY2atzGykmS2SB10elV9815G3BKYHe5wmb+FZLemJdFfH4N2CJslPxodtRWrtXfKxgM6VZ8glqb8KIUxV0f74vqSP4vSQWiZJTd/sLiW7yv5YlV3czGwvM/u5mb0nD/4+JemX8t96S0sNDF9aOeKf9eRBpGYqfoxLvpe35MeVzopjScj3rdny/vl1KvrdhNhtIPhtv28P3pW2tOUYSLSGicemn8oro9eY2SNm1jk+jjOzy+TnuBPlXaQfK2Ud74QQHgh+ZxO6gaFGit0svpBn0fxZReOeJPMtPnc3sz+Z2TxJT5vZdfJg+4Eq6s4t+TF4gfyi7OXgd/2xuJ1N8uP+Wvm4HsXGESnHOHlD51XyhqOWIRQO/j8vllvyMbuWSpudq98PIcwqbcUcv3c6C+SBmp8rjtGWZj5e2wAzmyAPUPzXzH4l772wUdLRqcU/ltcdJa9zJK9P6jQPxudjpAp3571b3q3pKnk9ZG0I4Uszqxu8i9Jf43IfKt6JKl6jJPWJxSGE1XHfTe+jYSfeF7+UN5q2kGf6SEXjuKYl4yqeEJ8XyTPpd5d3tTsx+N00P4/HnF/L6/UnW9Gt5CX/zjbKAzkvy69BHzazE1LLpOve/5XX/7tIm90RdoE8AeEzM6sfSgxuH3bxO4JtDwSEdrDUSfhwM9s9/l3u9xB/ZD8LIdwffBC0ks6RH6z2kF/svio/iHaXd4HpnL7QlqfySUUDYyZRb8nT8z6RdwUrV+pA+Gbc/lp5GvDyEhd/d8nT9xuH1G3gS1lfKGseth8za2Nm56n4HbdKlToYjwp+m++kT76lni+RB4yWxOex8n3qKHn2WqfU+hYpDtgsH3sqqPht3efJgzaHy09a5ZUt2YdnyIOUUunHuPHylp9Tgt9Oekvrq/GS338q2BZC0d3cSqucbXY74ZIBndT/P5Dfdv0jeZe/JyR1k2ditFRRRa6849wCeSUwT0W3F1a8OKgV/LbeJt8HGsd56+SBP1PsR761Qa7q7L+P7SOE8Lx83KkJ8gzEmfHvR+U3Qmggv7PJTWUFA4GdVTxfN9/Scqn62WUhhEuCD6SerMPisbWrfBygC+R1v7nyxsBvyLM58lLr+1R+rpb8eJ2cR5Lz5ELFbjry7iFlNjKVqDv+QUUBguSuUUk947/yLm97hhCeKePz2NZbYqOSzKyHmR205SUL7wb7h/gobPRJnbNPkmeEdJVfTzwkD0p2ltdNe6dWt0JF++LquP71IYSCuG8vlNdHupnf1Kbc/STWMVbLezskjdaHJEWPz0/Ir2P2CyFMKOd91qTrmOQurabiAbeSXpM3svQws92Cj8MzP77+pWShVP1yUZzeWZ5NlHhRnmn/bgjhGHnD4QmSJpjZ3WaWE1+fHFOmxOcTzKyRNtc3hNA1vT/F19ek72CnQUBoB0qdhH8pj0SflZpl8SKs1O/EzPYws7+Z2Q/SB7bY+n6rPIvou5KuCSFcG0I4UkW3mT9SXglOfiRJFlBye+70D3C+ilrdW27F27tL3qf8c0lzSkTIPw0hvBfLyz6387lefgJOBhOvE/fFwovlUoIBB5jZbDP7XZyUfK/t4/pelzQghHBrCOGWEMIIeQpufUm5JSq0yUH/8BLrknwg13x5xbRtRd5MCGFDCOF+eWvEk/I01fT8EEJYU97vbVeTVNyD3x2mhZmdE7Mn5it+7yWWL8yGMrN9zWz/9G86dSw7Q96i9l/53ZduCSFcLz8W3R0XP15lSFX835VXIPaVdHo6SBXLfIS8pei/kgpS39vr8XlQsvhWfi47a8sdtlHcN/8t6Xvyfe8H8qzZmyT1DCEcGo9LpTWuADstM/u2PFPm4hLTa5UVDI+ZE5eZ2Q3JskmgXT5mzwHyrhsXhhAuCCH0lmfubJLfbXO/1OpmxOldStnU5/ILvoNVfJDncgW/q9h0+SDSz5lZ/fT7ig1Pn5UTXOLirxqY2dnyxufvJXXFZD8s5zqmlZn90cz+GP+3GMRpKx9PsoE8mH99COGnIYRB8vqkVHQnYgW/ac1seSP0/uYDQSfSdxLdT0XXOeXdPTm5/nlGXmecr3idFIoGjl6zq13HxN/O1Phvd/ObD5XWEPq+vD6dZARJ3lj7qeJQCnF96dc+K086SB8rZqoo6KwQwkh50O8++UDQr5jZDeYJE/WDDxz/vDwbfLOGy7CLZOzvLHaJnboGSQ5IT8fnJFNiU9JiX05WQjP5D+ZkeXevxJny7Iq7QwivxYNr8sO5XT5IWi/FVNw4PQkI9ZQ2u4PXZ/KLrGZKBYy2JITwsaQ+IYQWsYW2rOV2mayLmi5VgUy+r5OkwpacguREaGb1YgUyfUL9WL7/HmHFu+ucE5//GuKdA1L7453yFM88+YV/4lX5hfw3kqKl5q2M8/eVVzQr8r6Su5D0DCGcFvx2lJvZwu9tlxErab3MuwUskLeu/V1SR3lF/MPkM4vfVy0zO9bM7jezpYrdwMxsdGxRloq+o87x+cHgLchJJX6ZvJurVJS2XerJO7VfPSwPAP5SUp84r5n5HW1+JW89/nfwlOTkNc/LBza8OW5jl/8+Ub7kWBVCWBo8jX108AyJ34YQpm15DcDOJXUB+oE827ZHenoov3v9Bvmx+IexdT85RvaUn1efCSHcE0JYmdrOKPmYf4eqeAv/HHkmUO+SG4n1hZfl3bSTlv5ygzWp7X09hNAgeOZxYWt/ibopgZ+dyzvyQEF7xd4GyX5Y8jycOsc3lnSqpO+YWcPUd7qfvD45IYTwYghhXayL1Akh3CoPRB4gzx5KvBsfPeQ9E5LtJOtM7iR6ZEXfUPAsuqGx0eBP5Sy3K9Uz3pD/pjvKf++bNQDH9zsx/ts7Pr8nD+50kg8HUtIL8bmbFR8GYpqkpuZ3L5OkJSGEofIs7xfl2bvfVVEmeJ8QwuUhDuWA7YeA0A4UitJkX5GPk3GEmTWNFdhDzOwaM/uHmV1vZh1K/CgXy2/xfrCKbt0uecaFFNMc48XYhjhtvjxKe7A8CpuUY6H8gv6wGJkveZv6GfLWmt5b+f7Wx4tJumHUDMlJbbp8/+ovSWZW38z6madwvizpTjM7RvEiPJ6k18hbFkqmhCbdupK02/T+uEDedeMgFaXjSkWtBsdJxbM24mtfj+vrWqIlqFQlMlnqlNVymiHvy0/mZ8kDcj+X9M34uCCEMCMeg2rHz+44eTe//vIsw7/LA3OXSLrHzHJi1k4DeWVwXVxvYSZSvCD/SH6CP9TMOkmlt6wl31cI4TF5l7NWkv5tPibanfI7iBwp6RchhL8mrYrxNR+GEP4YfLwJQBIXj9i1pC5A58pby481s1bxWFvPzE6JLeu/NLPC7Jx4rg7y7pL1VNS6L/l5u7lSY7Ck6qgfSfqnvGEw3cL/rvx83cXM0o06iTfkdcsuZtaqou8rNiAkXZXpAlYzfCTfd3rIB1SWmR1oZleYZx//2cx6ScXO8YsU7xqr4vXGZB9LssVLHsMfis/pbOOl8uBCjmIDY9KwHucn494cFusMFQrixOsYy9B1TPI5tlEMNKv02MDE+NwrPi+WXzvsq+L1+cQC+TVonopfsya3nx8Yn2vH69aXJH0zhFArhHBp0sCIHYeA0A6Wujh9UX4xvbeZHS8fwf5H8u4b18sH6Ds9vsbkA6q+Iv9hdYjT68hbf6Q4/kuJFpW18shvbXk6YOEYIvJ0ynYqnk6ZHIDflAeEvr217y+2ENANowZInaQXKt7aMV7kf0/e3edo+VgAg+X7S8kMnmfkFcYeKvJefE4CkOmT8AZ5hbKB4rhWcfufyU8szZJWgxKVwg/kQYc+cXtb8x43ltNyuktLHWuei89/DSGcKWlUCOH/QghvBe83L8kzeMxsT3n6bhv57/+HIYSLg/f3vk1+zLoxtjSvlR9b6it+L6nvLdl2kpGRVCK2VNlPui7eIx9/qLt83/iWpN/Gcha72C8RzAaAXVIIYYW8gaSF/Hx9sLzR73H5gL0/lTTNzL6TvCQ+T4zP6cFbP4jPSQBpg4qbqXiLbTOrF7e/Rt5gWFelZ158LK8DfF3e8LNVYnYJwdya4TP52DL7StonZg8/Juln8qzgCyRNNLNvW/FxCpNBwHunpiX73v5SsYajpP44OT4fl3rNqrj91oqZLYkYYFglD3acpNIDFmWKgaWsXMesl2f2ST7Op1S83p6YIx+vqb2Z7RE/nznyQaKPLNnwGuc/p6JxoBIz5N3NkrGfNqQCw3TjrkZUone85ILoSXkQ51r5GEAvyS/AjpZ3DWsnby1PD9yXdK3Jja05G+Xpw+vkP9IWUuEFUnIAXhWfD5Pf3i/5oSfjCxW2GKVOxG9JulzSeVX0nrGTSp14X43Pf5V0obxFcaA8jfS78ov+q8xs91TGz5Px+ci4LpMf6CVvIUwyTmRFfZOTgeE6yAcdTiQD050an9Mnl4Xy7JazQghLt/GtZlHyW388PietcOVVuHvJx2p6MPjYDatTQZ5fybPCTpV0RJyWVO6Ol0rNzFgYn/tUYNtJ5eAZeWXymBDC10IIA0MI/y6rspA6PgLALqlEBrckDZMHyfeQ9H35Bfal8gaXa8ysQ6oxZLL8wi99QT1ffjxubz5eR3KuTgf1V8izQNPBndflF3OljQ33hXyswOvkDYvYRQUfkD8Zw+/r8nrGEnl98Sh5Q+JC+Q0nuqdeOlOb37gmWU+SUZScz5OhClbKBzXuafEOdnGZOfJxbA6z4ne2S34r349lm7+t73NXF3/30+VBuW6xsa+0etp6eYZiLfn1qeSf6/vy7l6NS3nNlDi9fWp7U0MIHUMIv62yN4EqQUBoG1QylTA5QSfjCJ0s6Y0QwjkhhGdDCHOCD4j7oLyrRTrF9x1560s3xRRN+Q/0LUn9VNS/1lIX7bvH58NVfOyhifH5RGmzzKJ1IYS7QwgThRoj6a63jdkSr8lPrIMkvRRTNl8PPl7L/8nvztNdcdwpSQohvCbvytU96fooP9kvkHdHyk0tm+z3yThAh6jopKL4OslP3lLR70QhhC+DjwXy0Ta8r8xKndQnxec+cXqBmTU2s4PN7Otmdp7FOx7KAz21FI8PSZeDmHK9XN59Syq6GPifvKIwwMzapbadtK6dJm9B6hkvOiqatr0xZo7R7Q/ALqES52epKJj+hjzY8n15/a5n8DGAXgw+7snP5d1o+ha+0Aftf1PemNg2Tlukom7fR8fy1U6dN74mrzO2UupcLm/0WSXpnBKZH0mG+AMhhNtj3QE1gJVyV9EKek++P14kD1SeEhtv3g0hPCDp9/I6XzozbX58TfrGNTPl2cSdzKxPUpbY2BPk3dcL5PviUal1fSgfzLyvUnehDUUDQf8rhPAfss62aK6KxgPqJhVd56b2i2byRtzP5N0FJf/+p8u7he1dynofk9Q5hHDT9io4qg4BoW1QmVTC5MAUQpgvT2ds8//tnXmYXVWVvt8vYYgyTyIiIiAIBEgIkyAggiDYQgNC0xqbBlFwFkW6bVEURcAfttrSKooiCAqtCMg8z/MUCERmmSETo8wkWb8/1j6pXTe3ppBUVaq+93nuc6rOsM85dXftYe1vrUWmWkTSwlUH2wR+rjMAPUNaXEeTAdYg/4n/SAZl+6qkxSL9ypeVNJ4MuHouucKzWrmPIv0zP0FHEOA5sBvGgkUZjM0o3//szr07n/xqgj6BXN15FTi9ccMpdeVF0qgwgjT+LFoVcQ2pIlq/lPcU6XIk4AeVC9jqkr5NqktOJxVCdfaSW0nXs66UJk4vOxcU6fSzZEaOUZIOkLQP6f51Gmns+wkdhr6nyrYx3LV+D42PfyPRvgU4iawDP1LGs1hImYXuUNJwfQ+5it0MNPrUrsQwdvszxgwdmv55Lq9t2uIHyEXAEcCNjYqzalfPJxUV72tU44VryOCvW1b7Tizbb0paqywWjCruP58kF4reSed4Lw8BhwCfrBYeOyHHAlogqNz2Z7b2sb38/qaQdQRKduEyj2nqYhP7Z3adK3OP28j4VWPLviBjFb5CGpHWK8+wvKSdSO+JSa1lkXFsPkUGJX+0i3f0PKZnnibDQixKLubWRrWmXqxLjtnviIjHy7FnyDAQy9PGIBQRL0bEpNb9ZnDif5Q+UibJ/yrpdkl98kutymgURheVbRMXZSa5mg4Z0+VRioKn8CoZuX0FSgcdES+R6o1rSCv6bZJOIY1MhwG/oEON1Mh+VSb6p3bViJay7YYxyKk7bUkbSjpK0sXAHyR9WtIajcKju3IiYirFaAC8VjroqAah95Py383I2C4NZ5PxBDat9v0O+A2pfrtU0rVkZ78vmfnuJFKOvkw1IJkREbd2Z2z1Ks+b4sKy/REZMHo3cmC/H/CeiGjc/24t2w2hYzDQ8rd/DXhemSXkDTIr2GXA7mQ9OYf8/j8PHFx+XpjOkwpjjBlWlD76Ykm7l9/7PAYvCzR3ll/vK/uiGq89Si7wjKXzoksTS65Wa5wG/LbsO0/SccCR5LhxcbL9fpmMETOqutfvI+Lcbp7RsYAWAMrYcCllnJ9fKxOJ7C1p9XKsp/r5LB2GmudKmW+URckm2+h9ZEKQ91TXNW6PdV08gQyfsQE5bryIdD/8OVmf9ybnrLPdFyPi1Yi4KiIe7OYdPY/pgfK/enz5dT9JXyoLe6tKer+kw4BTSJXh0dCp7ToGWDoiLun3BzfzFBuE+khpXBYnG621W4/3soNvTf8+tiq/XgWaSPp0rlQdu420oo+R9Nay/3UyAPV3gZdIw9BYMk7Qd+iQ982O9N7cx6s4gxv1kLWt+h6PII2Ce5MGxu1Jo+DpkkZ3Nzir6mwT/b+R5NYS4smksWADOq8ENMbG2pXsSVLO/mVSQfI2sl4eSXYmS5ayo5eDDjP3NN/7eWU7HVgpIpaJiF0jXQ2mVu3AjaQEe2e1zyKzGbmKdFdEvKJ0KXuMjDv1TXLFbgPSAHQo2cY9W65tVpw8QDPGDBuq9nUG6bq7KXRuC3szFqv6ygmkYX5sm9NeJMcCq9E5mO51ZNv+/mZHmbDvTy7UvEiOHw4g2+yvkorRF0jF7+tdPIsZZBTF2MieviNJu5JziuNJt6udScPM+ZK276mvLgtGk8iYUqtKquPI1Iq1t5FxTBvuIhektmueNzII9OHAF8ix5obk/8nZwI/Juvga8Kpass16HvPmiYi7gc+Rf+P/IQ3LZ5GK/v8ilWCfj4iby/lNIOjJ5bszCzhu0OeOCWRQtK2UKbpnT9p7M9mpJHiNRXWT1muL8uc2UrFRqy8epSPV47tgtt/3sxHxPdIlZ7XIYKwHFcXFeuXau9rcx6s4g4jWDjx6kbVN0iHAQaQ7zydIpcZK5Crf+sBPGjVbDwOEG8nOoAnsXNeN58vxt1MZQsvKzGRga0lN6tFG9fO/wCciYs2I2D4ijit1r8lKNrV5x+7ez8w91f/3NeT3uWqUwNxF2j3bV7+0Iy8BfyD7hiOUWceQtISkzUnDzzSK8bCSFT8QEUcBu0fEOyJi64j4dWnr9iIDXDeBI40xZtjQtMMRcSdplN9QHUlAFq7P6WFyW8cRepDsd1uz+8wk2+dFyJhBI8r+aeREey1JTabakUXx82VgV3KsuVhEfCQyRuBaZJ//YlF9qLqP++1BSvlOZ3ZncFTGJ/01Ocf4Ajnu25BcuFsV+GPT/7ejKu9hUgW0Mek61Bxr7n122dZZ6R4kxwMbSVql+v94OSJ+SSbWWTsiVouIrxRjxR7kYtS9EfFqPZb1PGbeEBG/ItuBb5CJXh4GjgU2j4gPRsRVXV9tFnTeTHDk4cwUskPeGmhS5s0qVuttgIUi4pxi9W7bUJVj0yQ9QA4OVo+Iv5eGVKXMCaRcd1s6soK9UO69M6m0qA1MjToDSW8hV4h2Jq27j5A+omYQ09KBjyTr0z+Tg7ILgLMig/s2ne5bSfefl4HPRAaPbK7/Xjm+D9nZ/5g2ab+re95F1q33l/11vZopaSIpCx4n6YxiPIBceRxHKpOerOt8RDxXnuUdZH38V3LwcQFwed/+OmZuKNLtGZKuBLaRtFNEnA/Mis5xA5rv7RekQXE8OWBrgofvSLY5X46I62mh3Oep8vMKpOHw38hA4WfRkXHMGGOGFUVNOYPsLzcnF/SejRKHR9IapMH+surcTlR968Pk+HA86ULTmkXpXnLMN4ZUZ0wu++8gx5PjgLtb+viHq2ddgUww8P9Ide9ZLfc3g5DSB8+StDLpKTCarAunREnSUPEV0oCzbXROIHOIpOWBz5Au5T9od6+qLkwlg5N/nDQkPVKONcevpiOD1aKRSWtelvQgOQddDXis5R0ml59HlTK3JT0gnqBkpLVBct5T5qXXAtc2dWmgn8n0IxEx5D/kJHgkMGIurx9JNlyq9h1MSmzHkw3m7aRFfBYpv124hzIXKttjyjV7lt9HNPchA7tOJhvchaprl+2izCVJqd8JZNyOW0iJ8kRgk4H+HvzpVV0bQ6p8FiVXap4jpbKvlHpyOrBmdf42ZGd7dvl9kZZ6umW57rIe7tvUuV+W87do6mN1zpp0KNTeWe1fpIsylyLjFpxFxst6vJR9Yf0O/sz3OjWibA8qf/+fld8X6uaapUrbdB2pCJpW6t6OXbVtpPvCr8kYQn8hJy2zyve/el3P/PHHH38WhM+babPK2HOhMoZs+thdSrv4RXLB7lTS1XYWcH9vn4dMGDIL+FSbcxYjF11eB7aq9r8deFfre5VnPIAcy/4Q+DM57nwB2H+gvwN/eqwTi5GBlSEXAB8jFwlnkbFJbyNjBULOMd5CzgseI5U4lDq6cPl5m9Ln3wCs0Iv771vu87mWMePIsr2nPMu46tgyXZS1bBmr/JWcx1xPzmP+Duwx0H9rf/wZqp8hrRBqFDoREVRprPtKVKsoJTDaR0lf67eQAXKnkwahw8nJ8m29uF9jPT+LVExsRnbClOeF9LH9JjAlqtWiyMjutLHg/oO0+O9Auv7cBxwInBERT3SnWDKDht+S0fw/RrpW/ZBUds0EPk12uI+S3ytkpz2STMcJqVirv+MbyEHd2pKWi4inu7jviHKPa8mB4S6kMWAEHdLfx0kp76NRsgxAxrBqUbY1+5+X1MSUeYM0FJwOXB5dZCcx84U6ZtnRdGQu7LKNiojngS8VZdfIyDhBbanalZfI2EHrkgbMy8k27dKIeM3tjzFmQaBys5pVt1klnuOSEXFvb8op184o144sbre7lMM/I9vm+8mg/DcC9xU3ru7GjyrX3U5mB9qWjoCwDS+XfVdQQgWU55lc/VwreWeUZ9uBVBU/T45Nf09RZJhBzbHAeEn/Sc5Nrie/uylkFq4DyCzEXyt98RpkXz2NnDc085ym3t1BKos2ILOBTevh/n8jF683JoMPP1f2N4r0g8h61QRDJ4piqc085iVgCTLUxSLkPOgbwGkR8bDHEcbMHzRU/6/qRkPSaNIvckNyMn0BcGVEvNbLsrYjM+ZsRRpcXiat1auSDechpAX8mR468nZlL0pOniYBG8abSGlfylsRWDy6ibpv5i/FODKCHHP1SXIp6WDSCPQo8O2IOKk69jZycBcRsWLZtzjZ6U8GNo4WWXA5fgkZCHqniLiLNjT/L8o08XeQcvLRfXn2LspbGpgZEf+Y27LMvEPSVEqK0Ih4qhdurfVkqIk31LaNK/V+efL7fmbeP70xxvQfysQdm5L98dKk+8uEiNiyu+uq61ckXW92Jt20RpJuL8uSxpxDgauAp4sRvjdlNn3rO0ij++pklp+Xeri0N+W9E3gsiuuv6V/6auxojIeSPke69wXwq4g4uDpnFeBXpHFnt4i4ubgEXki6a42NiEfalH0RmeV4TETc2cNYYRVywW85YJuIeKC379BFecuQhtc5nssYM39YYINKKwM5j+zqeOngFpV0DKmS+DqZ9nh/0iB0XImz0909mvI3J115ziP9bncilRKXkROg2yNiWjNRag3e1l35xSi1N+ky1tYY1N17thIRU2wMGhia772I0joF9OsDTVydUcCpSkaUujKVzNiwgqQx5V4vkqtBq5HuYUhapKoz7yBjDEwhB7VtqTr6u8gsY5t2dW5v6ndTXkQ8Z2PQwKOOAIxNWvkdm0NdXdM6+Ct1ujtVUZR20MYgY8ygRT1nXxot6Uwy29aZpLL1WHLhb1VJS/byVjuQ47sZZAy/fydj8/yFNDDdGxF/b4xBfexbnyTdyj8JvNrFe4zsqcy6vIi4ycag/qWM7xpFWic1mqT39nB5c36THXQmJaNoNQZ8suxbCVivGHamkWO9pYAPNueW+tJ4jjSKoWVan60NU8issjt2ZQzq4zzmWRuDjOlfBtRlrFFSVIaUj5JBSH8aEdfXUsJqFaNxA+t2sl3K/jHpYnMqKZ/8OxmP5XDgS8BDko7oRinU3OPnpOvDE2UC3tzjajJw2/qSrq861l5Z+ItlXxFxck/n9aY8M3DMQ0XaPeWakcDbIl396uPXkf8j/0QqeSAlutsCn5N0XXR2C/sAuWrzf9GL1JDlHW7oxTlmweRH5Cr32eDAjMaYBZ/i7rQJcGpETG2nZiiT7uhp/ChpWVKl+xHShbtZpNmVdPdahHSL7bKfrO5/Phmr5WlgcrPoJ+lk0pDzPuD6RunR1741Ik7o4bjHjoOcao7TVo1GWejr7lrSuPMwuZh3Xzk2s9lKuoMMHbAJcAbp0nURqVzbl3TlurWai21Fjh1vjIirelIuRcTrwJU9vKfrojGDmH41CBUjTaOiaHyz60ZiHLAn6bN8fbRJj15NurciXbhGAidFyZBQNVybkcagEyNi35bn+BmZAWdPcrJ+fbsGr7rns+RKUXN9Y6i6qzz/RpQ0zH2leh9HdB/ElMGkuurUirFyUXLCvQ+5IvgkqcQ4EDhZ0gER8Up394mIFyXdUK57Lykvry1CN5I+1h8Fjij7ziAzjX0EOEPSsWS93IRctbkG+O8+vrIZQjRtS0RcSgb6NsaYocLhwAfJRb9zmp31uKqaeK9ATrwVEee0KavpS48ADq3GZX+U9HvSkLMN3RiEqrHjdDLGZPM8zTjzmrJrrHqOGdQtb/Z6M3/paWxfFhB/QHoevEIadl6nUqN1t5hX6tTrkm4hDULrAk/UBlDSyPQ3cky4AmkQuoCMM/VV4H8kHUYugq9Njlmfp4wbe2uo7KvLmzFm8NCvLmPNykxkWsRlJP2rpNMk3V/UQSeQKdLPbb1W0jqSlpW0qqTzyUnN4cBhwK2SPllObd5pq7I9q1z/bklbSdqPdB8bRzZ8TYrtXjdiVeP+YPn8Exlgeq6xMWj+U9yvRla/f1TS/5XVxU4y8kZmXbmBtabonqNsUpH2BVJ98XFyYLkSma3pk8A3itGoJy4hM8ZtUH6vVzTvJldzNmukvZEuOvuQWRlGAycCJ5PujRcAX4+Ih3pxXzMM6I0bgTHGLEAcQ44fH4ROBplZkhYBkLSmpDNIlfjZpIHncmWikNqlpQm6f3m5fqGq3z6ezC774b48XDWOiGIgeJlMPrI56e7d61ADrdgY1L9I2lzSl5UxHdt+b0o3sNljx27KatRou5BeDJ8nYwE9TI7lViYNPN3RjFubRel/avZX85rpZGr49wKrlOeaDnyPjC/0PjKm0F/I/6WZwCERcUYP9+6EjUHGLLj0m0KoTLa3BPYi/arXIK3R95Hp0Z+MiEfJxrHVBWc3sqE6pVzzXlL5cD/ZWB5NTrYnRMSkMgBYklRpbCppU1IxNIb0h32ZlGOeTsnsNZdMJxUbyzPA7ndmThY0RVpFs3o4rl79K9e8VhRE7yvPc7mkRSJiuqTdyThZm5FZIa6JiOf69EczQx5PIIwxQ4mIOJOM9dMJSZ8CfiPps6SCaF1yEvwsqfLZDfiWMvvSM8okCJD95xul7BmUTGGkEedmcly5YkRM6eXz1X19k7nzKnLhaIk255jBy6BSo9ER2uIWMpbPTqTCpx7PviTpZuCzwGhJV0a6KD4v6cvAL0gXsUXIceNNvfxbGGOGCP1pxHiEtHZPIye8J5IxUO4jjUH/AJC0N6ng+QYlOBrwQDl3N1IdsUV0pM+8VBkc+khy1WZSkU8G2SD+Z9lOIC3ff42ICfPihUpj+ml35IOT8r00Bp1lyPqxB2kY/Cq5ovgaXSjSyM51CTKY5HZ0/L8cKOkrkbGfmnTtcyjSyJWYtchUnOPIWD7vJ41P3dWZB8iUn2OBdwMPVsatIOsywHgyvsGMysD0t/Jp3mN2+txu7meMMcYMWnpy25a0JxlL70fRkVjjBdL48y1SPfQvwMSi1DmZHBvuSi4OnkX25a+RC4qLtN4jIl6QNAVYjOzTz5+LV2me/78i4mtzcb0ZWI4h5zNt1Whl/rEmqfTZmRwjvijpVuAzEfFAtdA3hxoNaJLNHE/WzQ8DR3X1MNX9H1TGCtpB0nLROZYk5FxLpAHqj8DTZdz4BjmvurM+uSdXN2PM0GK+u4xVMtwmbsVxEfEx4KiIODsi7o3OWYgWBdYrn4YHSDXQKDLl5+SWss8hg/Zt3sg4Sev9S2TgtLdFxCYR8d1WY5Ckld/M+zUSYLtgDC7Kd7K1pJ9Lup+sHyeTK4SzFWkR8cPSkaq6djdgEtnxH06HIm170g1rMVKRNjoyYF+rIu1IsjM/EziODAJ9C3AA8Juenr2sSF5GGoMauXBjDII0An2NjFdUq5+a51dtCHKnbowxZrAhaRNJF0n6WJtjncZU7dy2W87Zmexjx1T77iBjsbyTDJB7R9VXvkAuTC4JbFIm6f8gJ/qLAhtJGlXuM6L5uVwHHYtAfaKawL/WlD035ZiBISLOjIhPRcTd9f6iRntV0v6kCq1Ro30FuJhU4HxL0rJl3Lh0ubSTGi06ko80arSNJa3Y3TNVdahxG9uu7K/dwx8FvksmyXm23K818PpILyIaMzzpj46oaVTOLNums+5KIXEJ2TiOa3y/IwPxTizHJzUnVoODx8nGcyywatl3Axn0eTQlTlCNpJUlHQxcVfx455rWCbkZFDwCXEEqgiYCh5IKs92A/SPiNkhFmqSJdKzUQGdF2lqkIu3YiLg0Io4pZa1DiSMQmWGhVqQdTCqLjgE2iojFI2KniDiuDy5c1wKLU9K/13UsIh6PiJ9GxD3tLozEnbkxxpjBzGrAh8iFlE7x9VoWOUZI+qCkIyX9VNKHixojqglv4/6/QVXM3ylKDlqyIJXx413AY6SKd6Vy6AYymcMewPrl3FkR8aqkJUj3b4Ad54Uxx3314KPUty7TpEvaU9IvJa1R7a7VaG8n1WjfL2PGT5NhL3alI2tYj2o0UqXeqNF6w61l++8dxcweN06JiCMj4pyu6lxxI3N9NGYYMt8NQlWn3nTG25X9MyUtpgz09xFJ+0laPjL4beMus1pV1AQyAv/YNrd5kYwJtCqwZtl3P6nuWBk4TtJnlUGEx0v6DhmP6OBSro05Q4QhpEg7nxxQ/LCL99S8GIwaY4wx/UllxLmGnLz+rlJGNOeMkdRMnv9E9rtfJNW6ZzJnBqRbgFfJxcTFy7GZdLhY1+PJhqmkCmM9OhYTbwT+QGaPPUTSCpJWUiaf+DW5SHQBubi5/Ny8v+l/hrgarbnP9WTIje8079HmXbs0dBljhi/9MqEsvqjPkj6qoyQdIGkfUkFxGpnx4adkSkRId5nV6TxJn0RO0reUtHBdfmn0biAD/q7f+OdGxMXA7qTV/hfAqcDvSIXHKOD7wBfLs5mhwZBQpEXEsxFxWkS82MVxq4CMMcYscFSqhScj4qSIuKce15WFlgnAXyT9hFTwHErGP9mSVAB/QZnsoSnzKVIhsQHwnup2t5MptD/Q5lFeIYM7v4N0DScy9srhpNFnFzLj03mky/nGpOv4JNKNe63yvF6cGfwMWTVa9f/0dET8OCJu6eZcJ5UwxsxBf3diF5btj8gYK7sBDwH7AWtERBOg7yIygO+G1bWPkJPwNSmdcAv3kQ3yGGBFSEt4ZPaJzYAtyEDV44GVI2LTiDgmOoJTmyHAUFKkta5aGWOMMQNJUaf2qm8qp47sbjIraRtJDwOzs3NGxFRSPbQImZ3zXyLivyPi6oi4joyF8jLw781CTuFS4F2UyXXhHuBucjFxsfreZbxwM7kotH5jKCgLMeNJ9dJ55FjgbOBTETGJjqxjzcTeKvNBynBTo1k9boyZG/qr0Wga0SZr2HRgpYhYJiJ2jYgTImJq1XDfQrrfjCtW8qYhbhrbdvLJ6WR2pQ9TVnooapGIeCEiboiI/42IP0fE5Gqg4kn3EGOoKNLqVStjjDGmv2kmmOoINht139RuDNVybk9xSRYmDSsbNJPrwhXAUsDNEXGTpIWUWZgAriPHiVsDb6uuaVzFZy8mFuXQhHKP0W3u/xCpAvoQmRl09hgiIk4CxkfEFhFxYERcrQwGvD0ZDPjq5j27eT8zgAw3NZrV48aYuaFfDEJVZ3kNaRxaNSKmAEhauPFprRruqWRjuz4dCgxIH91pwAfb3OZV0tJ+FMXNp7WTri3n1UDFHfnQxYo0Y4wxZi5pJpiRabGXLgrbfSVtIWnhdmOoZkIq6b2Svi7pT5JOlPTxMgGvY5ncRxp3NqWzceeSsn1r9SiNMucpUm2xOlAH9p1ILg6Ok7RCtf+2st262VEZsp4t97qTVB11ir0SmUZ8KUmjJY0n09OPAf7g/nz+YjWa1WjGmP6h32SFZcVlBsWVR1KT1WmO4G2FS0j3m1q1cS8pu9yzUQ41lEHLnyLikNLAz4Et58MGK9KMMcaYN0FRBm0t6eeS7geeIServyUXXP4qaZU212wh6TQyyO03SdfrnchFu+MlrVaN+6aTffDadLjSUPZNBtYp48fZ48SIeINcIAxgs2pR8XlSvTuazgs5E8kAvR+vypid/j0ivhgRn4iIJ1veZawyC+n5wEnlvceRqbsP6e3f0fQOq9GsRjPGDAwD4Wd6btk2BqGuJsiXlW0t05wC/A+wP6kImgNPuo0VacYYY8yb5hFysrwHaVT5LvAZMpPRg8COwIGS3lJdswqZ5WhL0nX6k6Q7zFjg86QrzkHNyRHxEqmcWIxUTjR95svkRPydlLTbxVjQjO/uJYP0bkWHigjSULUcnVN130+6i19UTfQ70YW65CnSzSdIRfBXgXXKhP2VduWYucdqNKvRjDEDQ9uOcT7RNOQXAEfTYRDqKuL9XeTq0GuS3loGB0TEb7q9iSPoGzoUaZKuBLaRtFNxEetOkbY1qUhrOvRakfbpqNLVl4HJn8qnLeUcG4CMMcYsMBT355mkCmJv4LiI+FaZlL9RzrmHDL67A7k40vSbz5H94mcjkzbU5Z4CHAbsJukHRVEBHX3tpqRSo4mzdznwUWAbciKvagL9MBmzZSNyct/0zzeW7ezAvhHxHPDp7t653bggIqZI+o9m/GnmH8UYtyWwF1mn1iDHTyIV3FdLOiAiHmu55n3A14Bty+7pwNLAvwHnSfpSVQ8bNdq+pBrt72V/t2o0SbUa7ZqyuPe8pBuAzUk12rRySa1G+1EpY7YajQxW3e79xwK/J5OWjALWJd3FrEYzxsx3+k0hVDWIk8hGeQ1JK0V0SuVYn/8CGXvli62dcWXtN6YnrEgzxhhjek9jdDmzbMeU7cxKYXMV8DiwTnV+47Z1YkQ8JGkRSTtIOl7Sk6ShZ2nSpaYOvPs4OZEeB7y92n9F2TaT/fo+08h4LavQORvobcC7I+JrrS9VXIH61F/bGNRvWI1mNZoxZoDoT4VQo9qYRbrnfJhs4H9HTtLbSUGjGH9m1VJRq4BML7AizRhjjOkj1XjryrLdrlINNUaZN8pnBC0LJkWduypwJJnMYRoZi+US0hj0bdIgdGq55BlS2fMB0jXn7lLOBEn3kpP3xSMD8CJJ5RkvJl1vbqjuPQt4tIv3mtFuvxk4rEabvc9qNGPMgDEQMYQgZZTfIoMTdvKhbcVxV8zcYEWaMcYYM3c0wW7JeCejSCUQkpaQtA7wU3Ii/EtaDDCSliQXYvYiF/0+AewfEccCPyunbdmcX1xpJpCLgxuoSgtOTuBXbs6vjEFExBUR8YOIeGIevrrpX6xG67iPjUHGmAGhXw1CjeEnIi6NiCMiYnp/3t8MLypJ7q1lu2NzqN35jSKttRO3CsgYY8wwpcnW+RVJHyMNPf8HHAA8AJwSES+39JvLkcqgiyPi8xFxTUQ8U45tQqbWXkvSutU19wNPkCqQ5av9PwH2I5NEtEveMELdpBo3g5tu1GizKkVXb9RoJwB/JTN4XUe6jB1VTqsNQo0abfXyacqZQBofGzVaQKeA0BeTyrZOarSI6FKN5sVsY8yCwoB1oo69YvoRK9KMMcaY3lO7XQOMB/5MxmmZTgbAXQm4StL3W/rNpUhXrkck1TFXKNe/Trpvb1vtnwLcRLpuz3btiogrI+J3jbvYHA9ZslLNxfuZQYLVaMYYM7DIc19jjDHGGNNKcdt5jZxAbxUR11bH1gN+S6p+DgN+ERHTimLjRNL95yDgeuA9wGfJif2ZwDeAv0bEbr14hhE2+gxdmu9X0pHAf5J16gJge2ALMvvrA8CnIuKa2lAjaTUynfylEbFjS7k7An8h46VuGBF/K/vXI1O6PwJ8ookvJKmJYfXndgbIKgi166IxZkhhma0ZFliRZowxxvSeMlGfQYc7z4iyf1Q5dhdwIHA1me3pqwAR8Qjp6rUo8CvS3euP5MT+iIj4JplYZHybe7Zz2/YEfGhjNZoxxgwgVggZY4wxxphOVMqNg0i3nF9ExBclLVRn7JK0PpmCezHg6Ig4vOxfF/g4sAyZpenciHjKih/TDqvRjDFmYLBByBhjjDHGdKJxzZE0mozv8mBErFm77FTnbgVcRKqCxkbExAF4ZLOAUhkfLyNTv38gIq6WNAp4vRzbnAwUvRVwVFGaIemfgVOAhYEXgEXI4NGHRMTJkrYHru0ig+wsx400xgx3bBAyxhhjjDFdImkqmf1r5aLyqeO4NJP59wAPtWbmLLFXhCffpgusRjPGmIHDBiFjjDHGGDMH1UT9fDLuz34R8bvWiXY7A9FAPbNZ8LAazRhjBg4bhIwxxhhjzBxUBqHtgM2AX0fE9IF+LjN0sRrNGGP6FxuEjDHGGGOMMQOG1WjGGDMw2CBkjDHGGGO6xUF4zfzEajRjjBkYbBAyxhhjjDHGGGOMGWaMGOgHMMYYY4wxxhhINZokDfRzGGPMcMAKIWOMMcYYY4wxxphhhhVCxhhjjDHGGGOMMcMMG4SMMcYYY4wxxhhjhhk2CBljjDHGGGOMMcYMM2wQMsYYY4wxxhhjjBlm2CBkjDHGGGOMMcYYM8ywQcgYY4wxxhhjjDFmmGGDkDHGGGP6DUk/kXRg9fuFkn5T/f7fkr7WxzJ3lbRu9fsVkjaeJw/c+T5vl3SqpAcl3SrpPElrzYNyt5F0Tvl5F0nfKD+3vtf3JH3ozd7PGGOMMQZsEDLGGGNM/3ItsAWApBHA8sDo6vgWwHV9LHNXYN2eTuoNkhbqYr+AM4ArImKNiNgI+C9gxXlx34aIOCsijiq/7kr1XhFxaERcMi/vZ4wxxpjhiw1CxhhjjOlPrgM2Lz+PBu4C/iFpGUmLAusAIenKosK5UNJKAJI+I+lmSXdI+oukt0raAtgFOFrS7ZLWKGXvKekmSfdJ2qpcP1LS0aWMiZIOKPu3kXS1pLOAv3Xx3B8E3oiIY5sdEXFHRFyt5GhJd0m6U9JeVblXSDpN0j2S/lAMS0jasey7Ddi9KVPSPpL+t917STpB0h7lvO0kTSj3O7787ZD0sKTDJN1Wjq1d9n+glHN7uW6JN/EdGmOMMWYIYIOQMcYYY/qNiHgSmCHpXaQa6HrgRtJItDFwN/ATYI+iwjke+EG5/PSI2CQixpTz9ouI64CzgIMjYmxEPFjOXSgiNgUOBL5T9u0HPB8RmwCbAJ+RtFo5Ng74SkR05QK2HnBrF8d2B8YCY4APkUaclcqxDcszrAusDrxf0ijgOGBnYCPg7W3+Tl29F+X6E4C9ImJ9YCHgc9Xl0yNiHPBL4Otl39eBL0TEWGAr4JUu3sUYY4wxwwQbhIwxxhjT31xHGoMag9D11e9PkMaXiyXdDnwLeGe5br2i5LkTGE9nV7NWTi/bW4F3l593APYu5d4ILAesWY7dFBEPzeX7bAmcEhEzI2IKcCVpcGrKfTwiZgG3l2dZG3goIu6PiABO7uP93luuv6/8fiKwdXW83btfC/xY0peBpSNiRh/vaYwxxpghRls/eWOMMcaY+UgTR2h90mXsMeAg4AXgCmDliNi8zXUnALtGxB2S9gG26eYer5XtTDrGOwK+FBEX1idK2gZ4qYdnngTs0cM53T1H67PMT+Z494g4StK5wEeAayV9OCLu6YdnMcYYY8wgxQohY4wxxvQ31wEfBZ4pqppngKVJt7FTgBUkbQ4gaWFJjRJoCeApSQuTCqGGf5RjPXEh8LlyPZLWkrRYL5/5MmBRSfs3OyRtUOITXQ3sVWIUrUCqdW7qpqx7gHdX8Y4+3sV5Xb3XveX695Tf/41UJXWJpDUi4s6I+CFwM6lSMsYYY8wwxgYhY4wxxvQ3d5LZxW5o2fd8REwllTg/lHQH6Wa1RTnn26Sr17WkUaXhVODgEix5DbrmN2TQ6Nsk3QX8il4qdopr127Ah0ra+UnAkcBkMvvYROAO0nD0HxExuZuyXgX2B84tQaWndnFq2/cq1+8L/Lm4z80Cju2ijIYDS9DricAbwPk9vrQxxhhjhjTK8Y0xxhhjjDHGGGOMGS5YIWSMMcYYY4wxxhgzzHBQaWOMMcaYgqTlgEvbHNouIp7u7+cxxhhjjJlf2GXMGGOMMcYYY4wxZphhlzFjjDHGGGOMMcaYYYYNQsYYY4wxxhhjjDHDDBuEjDHGGGOMMcYYY4YZNggZY4wxxhhjjDHGDDNsEDLGGGOMMcYYY4wZZvx/4oE7kLGVysoAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 1440x720 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "\n",
-                "result222_dfweather.plot.bar(stacked=True,rot=15, title=\"Accident Weather \",figsize=(20, 10))\n",
-                "plt.xticks(fontsize=20)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 208,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result222_dfLight_Conditions=result222.withColumn(\n",
-                "    \"Light_Conditions\",\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 1,\n",
-                "        \"Daylight\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 4,\n",
-                "        \"Darkness - lights lit\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 5,\n",
-                "        \"Darkness - lights unlit\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 6,\n",
-                "        \"Darkness - no lighting\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 7,\n",
-                "        \"Darkness - lighting unknown\"\n",
-                "    ).when(\n",
-                "        col(\"Light_Conditions\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Light_Conditions\"))\n",
-                ")\n",
-                "result222=result222.withColumn(\n",
-                "    \"Light_Conditions\",\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 1,\n",
-                "        \"Daylight\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 4,\n",
-                "        \"Darkness - lights lit\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 5,\n",
-                "        \"Darkness - lights unlit\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 6,\n",
-                "        \"Darkness - no lighting\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Light_Conditions\") == 7,\n",
-                "        \"Darkness - lighting unknown\"\n",
-                "    ).when(\n",
-                "        col(\"Light_Conditions\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Light_Conditions\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 159,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+---------------+\n",
-                        "|Accident_Severity|    Light_Conditions|Total accidents|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "|           Slight|Darkness - lights...|             22|\n",
-                        "|            Fatal|Darkness - lights...|              1|\n",
-                        "|          Serious|            Daylight|              5|\n",
-                        "|           Slight|Darkness - no lig...|              1|\n",
-                        "|           Slight|Darkness - lighti...|              4|\n",
-                        "|          Serious|Darkness - lights...|              1|\n",
-                        "|            Fatal|            Daylight|              1|\n",
-                        "|           Slight|            Daylight|             99|\n",
-                        "|           Slight|Darkness - lights...|              1|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "result222_dfLight_Conditions = result222_dfLight_Conditions.groupby('Accident_Severity','Light_Conditions').agg(F.count(result222_dfLight_Conditions.Accident_Index).alias('Total accidents'))\n",
-                "result222_dfLight_Conditions.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 160,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Light_Conditions</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>Darkness - lighting unknown</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>4.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Darkness - lights lit</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>22.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Darkness - lights unlit</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Darkness - no lighting</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Daylight</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>99.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                            Total accidents               \n",
-                            "Accident_Severity                     Fatal Serious Slight\n",
-                            "Light_Conditions                                          \n",
-                            "Darkness - lighting unknown             NaN     NaN    4.0\n",
-                            "Darkness - lights lit                   1.0     1.0   22.0\n",
-                            "Darkness - lights unlit                 NaN     NaN    1.0\n",
-                            "Darkness - no lighting                  NaN     NaN    1.0\n",
-                            "Daylight                                1.0     5.0   99.0"
-                        ]
-                    },
-                    "execution_count": 160,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result222_dfLight_Conditions=result222_dfLight_Conditions.toPandas()\n",
-                "result222_dfLight_Conditions=result222_dfLight_Conditions.pivot(index ='Light_Conditions', columns ='Accident_Severity')\n",
-                "result222_dfLight_Conditions"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 162,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(array([0, 1, 2, 3, 4]),\n",
-                            " [Text(0, 0, 'Darkness - lighting unknown'),\n",
-                            "  Text(1, 0, 'Darkness - lights lit'),\n",
-                            "  Text(2, 0, 'Darkness - lights unlit'),\n",
-                            "  Text(3, 0, 'Darkness - no lighting'),\n",
-                            "  Text(4, 0, 'Daylight')])"
-                        ]
-                    },
-                    "execution_count": 162,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAKwCAYAAAAC3h+0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACiUElEQVR4nOzdeXgW5dn+8fNiB2UHFVdcEQwhICBuiCKgxSp1Kba0gohWXIvVau3bShctr9r6E21Fqri9SN2qtlo3rKBYURYDKCAouyACFgEFhXD9/rjvCZOQhACBAPP9HAfHkzyzPmHmmZnz3szdBQAAAAAAgGyqUtk7AAAAAAAAgMpDOAQAAAAAAJBhhEMAAAAAAAAZRjgEAAAAAACQYYRDAAAAAAAAGUY4BAAAAAAAkGGEQwAAoEKZ2Ydm1qWUaV3MbNHO3aPyM7OTzeyjcs67S3+W4sxssJn9X/z5YDNbY2ZVy5h/jZkdtvP2EAAAVBbCIQAAIDMbY2b/NbOa27sudz/G3cdUwG6VyczmmdnpFbmsu7/l7i22f+8kM3vYzH6/hXnMzK4xsw/M7CszW2RmT5lZ64rYh9K4+wJ339vdC+J+jDGzAcXm2dvd5+zI/QAAALsGwiEAADLOzJpLOlmSSzq7cvcmc+6WdK2kayQ1knSUpOck9azEfQIAABlDOAQAAC6SNF7Sw5L6pieY2UFm9nczW2ZmK8zs3tS0S81shpmtNrPpZtYuvl9YK8fMascaNP81s+mSOhRb//5m9kxc/1wzuyY1bbCZPWlmj8ZtfGhm7eO0xyQdLOmfsfnTz82slpn9X9zPlWY2wcz23Zo/RPGmYmbWzszej9t/ysyeKF4byMx+Zmafm9kSM7s4vneZpD6Sfh73758lbOtISVdK+oG7/9vdv3H3r919pLsPifPUj59/mZnNN7P/MbMqcVo/MxtnZnfGv+9cMzsztf5DzWxs3PfXJDVJTWtuZm5m1czsVoVw8N64r/fGedzMjqiA/ehnZnPifsw1sz5b838CAAB2PMIhAABwkaSR8V+PJFCJ/dG8IGm+pOaSDpD0tzjtAkmD47L1FGocrShh3bdIOjz+66FU+BTDhX9KmhLX3VXST82sR2r5s+M2G0j6h6R7JcndfyxpgaTvxuZPt8d115d0kKTGki6XtHYb/yYysxqSnlUIzRpJGiXpe8Vm2y9u8wBJl0j6s5k1dPfhCn/P2+P+fbeETXSVtMjd3ytjN+6J6z9M0ikKf++LU9OPk/SRQvBzu6QHzczitMclTYrTfqdiwV/C3X8p6S1JV8V9vaqi9sPM9pI0VNKZ7l5X0gmS8sv4vAAAoBIQDgEAkGFmdpKkQyQ96e6TJH0i6YdxckdJ+0u6wd2/cvd17j4uThugEHxM8OBjd59fwia+L+lWd//C3RcqBAWJDpKauvtv3f3b2L/NXyVdmJpnnLv/K/aN85ikNmV8nPUKodAR7l7g7pPcfdXW/D2K6SSpmqSh7r7e3f8uqXiQs17Sb+P0f0laI6m8fRY1lrSktIkxnLtQ0i/cfbW7z5P0R0k/Ts02393/Gv8+j0hqJmlfMztY4e/7q1gj6U2FIG6rbc9+xGkbJeWYWW13X+LuH27LfgAAgB2HcAgAgGzrK+lVd18ef39cm2qYHKTw0L+hhOUOUgiStmR/SQtTv6cDpEMk7R+bgK00s5WSbtamUEGSPkv9/LWkWmZWrZRtPSbpFUl/M7PFZna7mVUvxz6Wte+furun3ltYbJ4Vxf4+X0vau5zrX6EQopSmiaTqKvo3m69QSylR+Pdx96/jj3sr7Pt/3f2rYstui23ej7j93gq1uJaY2YtmdvQ27gcAANhBCIcAAMgoM6utULPnFDP7zMw+kzRIUhsza6MQhBxcShizUKGp2JYsUQiSEgcXW8dcd2+Q+lfX3b9Tzo/gRX4JtXd+4+6tFJovnaXQ/GlbLZF0QKqZllT0s2zV/pXgdUkHJv0olWC5Qs2kQ1LvHSzp03Jse4mkhrFZV3rZ0pS1r9uzH3L3V9y9m0IQNlOhdhgAANiFEA4BAJBdvSQVSGolKS/+a6nQ/8xFCk2olkgaYmZ7xQ6fT4zLPiDpejM7NvYtc4SZHaLNPSnpF2bW0MwOlHR1atp7klab2Y0WOq6uamY5ZtahhPWUZKlCHziSJDM71cxax2ZQqxQCjY1lLF89fqbkX/EQ7B2Fv89VsePmcxSa2pVXkf0rzt1nS/qLpFGxI+wacT8uNLObYhOtJyXdamZ149/3Okn/t6UNxyZ+EyX9Jq73JEkl9Xu0xX3dnv0ws33N7JwYUn2j0OyurP8TAABQCQiHAADIrr6SHnL3Be7+WfJPodPnPpJMIVA4QqHz50UKTYTk7k9JulWhGdpqheHXG5Wwjd8oNEGaK+lVhaZfiusoUKjdkxenL1cIneqXc///IOl/YpO06xU6h35aIRiaIWlsensl+JdCh9XJv8Hpie7+raRzFTqaXinpRwoddH9Tzv17UFKruH/PlTLPNQp/7z/HbXyi0Ol10j/Q1ZK+kjRH0jiFv/eIcm7/hwodRX+h0DH4o2XMe7ek8+NoY0NLmL6t+1FFIUhaHPfjFEkDy7n/AABgJ7GizegBAABQGjN7V9Iwd3+osvcFAACgolBzCAAAoBRmdoqZ7ReblfWVlCvp5creLwAAgIpU2mgfAAAACMPSPylpL4UmVee7e6nDzwMAAOyOaFYGAAAAAACQYTQrAwAAAAAAyDDCIQAAAAAAgAzb5focatKkiTdv3ryydwMAAAAAAGCPMWnSpOXu3rSkabtcONS8eXNNnDixsncDAAAAAABgj2Fm80ubRrMyAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAzb5focKsn69eu1aNEirVu3rrJ3BRlVq1YtHXjggapevXpl7woAAAAAABVqtwiHFi1apLp166p58+Yys8reHWSMu2vFihVatGiRDj300MreHQAAAAAAKtRu0axs3bp1aty4McEQKoWZqXHjxtRcAwAAAADskXaLcEgSwRAqFccfAAAAAGBPtduEQwAAAAAAAKh4mQ+HzEw/+9nPCn+/8847NXjw4B2+3fz8fJmZXn755W1afvHixTr//PNLnNalSxdNnDhxm9Y7ZswY/ec//ylzno8++khdunRRXl6eWrZsqcsuu2ybtrU1TjjhBEnSvHnz9Pjjj+/w7QEAAAAAkBWZD4dq1qypv//971q+fPlO3e6oUaN00kknadSoUdu0/P7776+nn366gveqfOHQNddco0GDBik/P18zZszQ1VdfXeH7kdiwYYMkFe4T4RAAAAAAABUr8+FQtWrVdNlll+muu+7abNq8efN02mmnKTc3V127dtWCBQskSf369dM111yjE044QYcddliRkOaOO+5Qhw4dlJubq1tuuaXEbbq7nnrqKT388MN67bXXinR0/L//+79q3bq12rRpo5tuukmS9PHHH+v0009XmzZt1K5dO33yySeaN2+ecnJyJElr167VhRdeqJYtW+p73/ue1q5dW7i+V199Vccff7zatWunCy64QGvWrJEkNW/eXLfccovatWun1q1ba+bMmZo3b56GDRumu+66S3l5eXrrrbdK3P8lS5bowAMPLPy9devWkqSCggLdcMMNhZ///vvvlyRdeOGFevHFFwvn79evn55++ulS5x8zZoxOPvlknX322WrVqpUkae+995Yk3XTTTXrrrbeUl5enu+66S507d1Z+fn7huk866SRNmTKlxP0GAAAAAACby3w4JElXXnmlRo4cqS+//LLI+1dffbX69u2rqVOnqk+fPrrmmmsKpy1ZskTjxo3TCy+8UBjivPrqq5o9e7bee+895efna9KkSXrzzTc3295//vMfHXrooTr88MPVpUuXwuDkpZde0vPPP693331XU6ZM0c9//nNJUp8+fXTllVdqypQp+s9//qNmzZoVWd99992nOnXqaMaMGfrNb36jSZMmSZKWL1+u3//+9xo9erQmT56s9u3b609/+lPhck2aNNHkyZM1cOBA3XnnnWrevLkuv/zywlpBJ598col/r0GDBum0007TmWeeqbvuuksrV66UJD344IOqX7++JkyYoAkTJuivf/2r5s6dq969e+vJJ5+UJH377bd6/fXX1bNnz1Lnl6TJkyfr7rvv1qxZs4pse8iQITr55JOVn5+vQYMG6ZJLLtHDDz8sSZo1a5bWrVunNm3alPI/DQAAAAAAiiMcklSvXj1ddNFFGjp0aJH333nnHf3whz+UJP34xz/WuHHjCqf16tVLVapUUatWrbR06VJJIRx69dVX1bZtW7Vr104zZ87U7NmzN9veqFGjdOGFF0oKtWqSpmWjR4/WxRdfrDp16kiSGjVqpNWrV+vTTz/V9773PUlSrVq1Cqcn3nzzTf3oRz+SJOXm5io3N1eSNH78eE2fPl0nnnii8vLy9Mgjj2j+/PmFy5177rmSpGOPPVbz5s0r99/r4osv1owZM3TBBRdozJgx6tSpk7755hu9+uqrevTRR5WXl6fjjjtOK1as0OzZs3XmmWfqjTfe0DfffKOXXnpJnTt3Vu3atUudX5I6duyoQw89dIv7csEFF+iFF17Q+vXrNWLECPXr16/cnwMAAAAAAEjVKnsHdhU//elP1a5dO1188cXlmr9mzZqFP7t74esvfvEL/eQnPyl1uYKCAj3zzDN6/vnndeutt8rdtWLFCq1evXr7PkAJ3F3dunUrtV+j5DNUrVq1sG+f8tp///3Vv39/9e/fXzk5Ofrggw/k7rrnnnvUo0ePzebv0qWLXnnlFT3xxBOFwVhp848ZM0Z77bVXufajTp066tatm55//nk9+eSThbWmAAAAAABA+VBzKGrUqJG+//3v68EHHyx874QTTtDf/vY3SdLIkSNLbWaV6NGjh0aMGFHYr8+nn36qzz//XJLUtWtXffrpp3r99deVm5urhQsXat68eZo/f77OO+88Pfvss+rWrZseeughff3115KkL774QnXr1tWBBx6o5557TpL0zTffFE5PdO7cubCT5g8++EBTp06VJHXq1Elvv/22Pv74Y0nSV199tVkzreLq1q27xaDq5Zdf1vr16yVJn332mVasWKEDDjhAPXr00H333Vc4bdasWfrqq68kSb1799ZDDz2kt956S2eccUbh36u0+bdm/wYMGKBrrrlGHTp0UMOGDctcHgAAAAAAFEU4lPKzn/2syKhl99xzjx566CHl5ubqscce0913313m8t27d9cPf/hDHX/88WrdurXOP/98rV69Whs3btTHH3+sRo0aadSoUYVNxBLnnXeeRo0apTPOOENnn3222rdvr7y8PN15552SpMcee0xDhw5Vbm6uTjjhBH322WdFlh84cKDWrFmjli1b6te//rWOPfZYSVLTpk318MMP6wc/+IFyc3N1/PHHa+bMmWV+hu9+97t69tlny+yQ+tVXX1VOTo7atGmjHj166I477tB+++2nAQMGqFWrVmrXrp1ycnL0k5/8pLBGUvfu3TV27FidfvrpqlGjhiSVOX9pcnNzVbVqVbVp06awE/Fjjz1W9erVK3etLwAAAAAAsIklTaJ2Fe3bt/eJEycWeW/GjBlq2bJlJe3R9vvggw80YsSIIp1Bo+IsXrxYXbp00cyZM1Wlyo7LO3f34xAAAAAAkF1mNsnd25c0jZpDO0FOTg7B0A7y6KOP6rjjjtOtt966Q4MhAAAAAAD2VHRIjVLdeuuteuqpp4q8d8EFF+iXv/xlJe3R5i666CJddNFFlb0bAAAAAADstgiHUKpf/vKXu1QQBAAAAAAAKh7tcAAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgw3bLDqmb3/Riha5v3pCeW5xn7dq1OuOMMzR06FD17dtXkrRgwQLVr19f9evXV5MmTTR69OjNlrvtttt08803b3H9zZs318SJE9WkSZOt/wBbMGDAAF133XVq1apVkfcffvhhTZw4Uffee+9Wr3PlypV6/PHHdcUVV2zTPvXr109jx45V/fr1JUn9+/fXNddcU+K8Dz/8sLp37679999/i+s866yzdP755+vCCy/U7373Ox155JHbtH8AAAAAsC1aP9K6sncB22Fa32mVvQuVgppD5TRixAide+65atOmjfLz85Wfn6+zzz5bd9xxh/Lz80sMhqQQDlW2Bx54YLNgaHutXLlSf/nLX7ZrHcnfLj8/v9RgSArh0OLFi7dq3QMHDtTtt9++XfsHAAAAAEAWEA6V08iRI3XOOeeUOn3UqFFq3bq1cnJydOONN0qSbrrpJq1du1Z5eXnq06ePJKlXr1469thjdcwxx2j48OFb3O7AgQPVvn17HXPMMbrlllsK358wYYJOOOEEtWnTRh07dtTq1atVUFCg66+/Xjk5OcrNzdU999wjSerSpYsmTpwoSXrooYd01FFHqWPHjnr77bcL17ds2TKdd9556tChgzp06FA4bfDgwerfv7+6dOmiww47TEOHDi38bJ988ony8vJ0ww03aMmSJercubPy8vKUk5Ojt956a2v+vJKk3/72t+rQoYNycnJ02WWXyd319NNPa+LEierTp4/y8vK0du3aEucr7uSTT9bo0aO1YcOGrd4PAAAAAACyhHCoHL799lvNmTNHzZs3L3H64sWLdeONN+rf//638vPzNWHCBD333HMaMmSIateurfz8fI0cOVJSqIE0adIkTZw4UUOHDtWKFSvK3Patt96qiRMnaurUqRo7dqymTp2qb7/9Vr1799bdd9+tKVOmaPTo0apdu7aGDx+uefPmKT8/X1OnTi0MpBJLlizRLbfcorffflvjxo3T9OnTC6dde+21GjRokCZMmKBnnnlGAwYMKJw2c+ZMvfLKK3rvvff0m9/8RuvXr9eQIUN0+OGHKz8/X3fccYcef/xx9ejRQ/n5+ZoyZYry8vK2+He94YYblJeXp7y8PE2bNk1XXXWVJkyYoA8++EBr167VCy+8oPPPP1/t27fXyJEjlZ+fr9q1a5c4X3FVqlTREUccoSlTpmxxPwAAAAAAyLLdss+hnW358uVq0KBBqdMnTJigLl26qGnTppKkPn366M0331SvXr02m3fo0KF69tlnJUkLFy7U7Nmz1bhx41LX/eSTT2r48OHasGGDlixZounTp8vM1KxZM3Xo0EGSVK9ePUnS6NGjdfnll6tatfDf2qhRoyLrevfdd4vsZ+/evTVr1qzCZdNh0apVq7RmzRpJUs+ePVWzZk3VrFlT++yzj5YuXbrZfnbo0EH9+/fX+vXr1atXr3KFQ3fccYfOP//8wt+feeYZ3X777fr666/1xRdf6JhjjtF3v/vdzZZ74403yjXfPvvso8WLF+vYY4/d4r4AAAAAAJBVhEPlULt2ba1bt2671zNmzBiNHj1a77zzjurUqaMuXbqUud65c+fqzjvv1IQJE9SwYUP169evQvajJBs3btT48eNVq1atzabVrFmz8OeqVauW2FSrc+fOevPNN/Xiiy+qX79+uu6663TRRReVe/vr1q3TFVdcoYkTJ+qggw7S4MGDS/ys5Z0vmbd27drl3gcAAAAAALKIZmXl0LBhQxUUFJQaQnTs2FFjx47V8uXLVVBQoFGjRumUU06RJFWvXl3r16+XJH355Zdq2LCh6tSpo5kzZ2r8+PFlbnfVqlXaa6+9VL9+fS1dulQvvfSSJKlFixZasmSJJkyYIElavXq1NmzYoG7duun+++8vDG+++OKLIus77rjjNHbsWK1YsULr16/XU089VTite/fuhX0USVJ+fn6Z+1a3bl2tXr268Pf58+dr33331aWXXqoBAwZo8uTJkqSLLrpI7733XpnrklT4t23SpInWrFmjp59+usRtlTVfcbNmzVJOTs4Wtw0AAAAAQJbtljWHyjP0fEXr3r27xo0bp9NPP32zac2aNdOQIUN06qmnyt3Vs2fPws6rL7vsMuXm5qpdu3YaMWKEhg0bppYtW6pFixbq1KlTmdts06aN2rZtq6OPPloHHXSQTjzxRElSjRo19MQTT+jqq6/W2rVrVbt2bY0ePVoDBgzQrFmzlJubq+rVq+vSSy/VVVddVWQ/Bw8erOOPP14NGjQo0vRr6NChuvLKK5Wbm6sNGzaoc+fOGjZsWKn71rhxY5144onKycnRmWeeqZycHN1xxx2qXr269t57bz366KOSpKlTp25xCHpJatCggS699FLl5ORov/32K2wyJ4Uh6i+//HLVrl1b77zzTqnzpS1dulS1a9fWfvvtt8VtAwAAAACQZVbSSE+VqX379p6MrJWYMWOGWrZsWUl7FEyePFl33XWXHnvssUrdj93JqlWrdMkllxSpobSz3HXXXapXr54uueSSClvnrnAcAgAAANi1tX6kdWXvArbDtL7TKnsXdhgzm+Tu7UuaRrOycmrXrp1OPfVUFRQUVPau7Dbq1atXKcGQFGoi9e3bt1K2DQAAAADA7mS3bFZWWfr371/Zu4Byuvjiiyt7FwAAAAAA2C1QcwgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMmz37JB6cP0KXt+XW5xl7dq1OuOMMzR06NDCUbAWLFig+vXrq379+mrSpIlGjx692XK33Xabbr755i2uv3nz5po4caKaNGmy9fu/BQMGDNB1112nVq1aFXn/4Ycf1sSJE3Xvvfdu9TpXrlypxx9/XFdcccU27dP48eN17bXX6ptvvtE333yj3r17a/DgweVefvHixbrmmmv09NNPb9P2S3L99dfrO9/5jk477bQKWycAAAAAALs6ag6V04gRI3TuueeqTZs2ys/PV35+vs4++2zdcccdys/PLzEYkkI4VNkeeOCBzYKh7bVy5Ur95S9/2ebl+/btq+HDhys/P18ffPCBvv/975d72Q0bNmj//fev0GBIkq6++moNGTKkQtcJAAAAAMCujnConEaOHKlzzjmn1OmjRo1S69atlZOToxtvvFGSdNNNN2nt2rXKy8tTnz59JEm9evXSscceq2OOOUbDhw/f4nYHDhyo9u3b65hjjtEtt9xS+P6ECRN0wgknqE2bNurYsaNWr16tgoICXX/99crJyVFubq7uueceSVKXLl00ceJESdJDDz2ko446Sh07dtTbb79duL5ly5bpvPPOU4cOHdShQ4fCaYMHD1b//v3VpUsXHXbYYRo6dGjhZ/vkk0+Ul5enG264QUuWLFHnzp2Vl5ennJwcvfXWW2V+rs8//1zNmjWTJFWtWrUwvPrqq6/Uv39/dezYUW3bttXzzz8vKdRyOvvss3Xaaaepa9eumjdvnnJyciRJ69at08UXX6zWrVurbdu2euONNwqXueqqqwq3edZZZ2nMmDEqKChQv379lJOTo9atW+uuu+6SJB1yyCFasWKFPvvssy3+vwAAAAAAsKfYPZuV7WTffvut5syZo+bNm5c4ffHixbrxxhs1adIkNWzYUN27d9dzzz2nIUOG6N5771V+fn7hvCNGjFCjRo20du1adejQQeedd54aN25c6rZvvfVWNWrUSAUFBerataumTp2qo48+Wr1799YTTzyhDh06aNWqVapdu7aGDx+uefPmKT8/X9WqVdMXX3xRZF1LlizRLbfcokmTJql+/fo69dRT1bZtW0nStddeq0GDBumkk07SggUL1KNHD82YMUOSNHPmTL3xxhtavXq1WrRooYEDB2rIkCH64IMPCj/bH//4R/Xo0UO//OUvVVBQoK+//rrMv+mgQYPUokULdenSRWeccYb69u2rWrVq6dZbb9Vpp52mESNGaOXKlerYsaNOP/10SdLkyZM1depUNWrUSPPmzStc15///GeZmaZNm6aZM2eqe/fumjVrVqnbzs/P16effqoPPvhAUqgFlWjXrp3efvttnXfeeWXuPwAAAAAAewrCoXJYvny5GjRoUOr0CRMmqEuXLmratKkkqU+fPnrzzTfVq1evzeYdOnSonn32WUnSwoULNXv27DLDoSeffFLDhw/Xhg0btGTJEk2fPl1mpmbNmqlDhw6SpHr16kmSRo8ercsvv1zVqoX/1kaNGhVZ17vvvltkP3v37l0YoowePVrTp08vnHfVqlVas2aNJKlnz56qWbOmatasqX322UdLly7dbD87dOig/v37a/369erVq5fy8vJK/UyS9Otf/1p9+vTRq6++qscff1yjRo3SmDFj9Oqrr+of//iH7rzzTkmhVtCCBQskSd26ddvsM0nSuHHjdPXVV0uSjj76aB1yyCFlhkOHHXaY5syZo6uvvlo9e/ZU9+7dC6fts88+Wrx4cZn7DgAAAADAnoRmZeVQu3ZtrVu3brvXM2bMGI0ePVrvvPOOpkyZorZt25a53rlz5+rOO+/U66+/rqlTp6pnz54Vsh8l2bhxo8aPH1/Yn9Knn36qvffeW5JUs2bNwvmqVq2qDRs2bLZ8586d9eabb+qAAw5Qv3799Oijj25xm4cffrgGDhyo119/XVOmTNGKFSvk7nrmmWcK92PBggVq2bKlJGmvvfbaqs9UrVo1bdy4sfD35G/XsGFDTZkyRV26dNGwYcM0YMCAIvPUrl17q7YDAAAAAMDubKvDITMbYWafm9kHqfcamdlrZjY7vjaM75uZDTWzj81sqpm1q8id31kaNmyogoKCUoOZjh07auzYsVq+fLkKCgo0atQonXLKKZKk6tWra/369ZKkL7/8Ug0bNlSdOnU0c+ZMjR8/vsztrlq1SnvttZfq16+vpUuX6qWXXpIktWjRQkuWLNGECRMkSatXr9aGDRvUrVs33X///YXhTfFmZccdd5zGjh2rFStWaP369XrqqacKp3Xv3r2wjyJJRZrClaRu3bpavXp14e/z58/Xvvvuq0svvVQDBgzQ5MmTJUkXXXSR3nvvvc2Wf/HFF+XukqTZs2eratWqatCggXr06KF77rmncNr7779f5n5I0sknn6yRI0dKkmbNmqUFCxaoRYsWat68ufLz87Vx40YtXLiwcD+WL1+ujRs36rzzztPvf//7wn1Nlk/6MgIAAAAAIAu2pVnZw5LulZSuGnKTpNfdfYiZ3RR/v1HSmZKOjP+Ok3RffN0+5Rh6vqJ1795d48aNK+z/Jq1Zs2YaMmSITj31VLm7evbsWdh59WWXXabc3Fy1a9dOI0aM0LBhw9SyZUu1aNFCnTp1KnObbdq0Udu2bXX00UfroIMO0oknnihJqlGjhp544gldffXVWrt2rWrXrq3Ro0drwIABmjVrlnJzc1W9enVdeumlRTpkbtasmQYPHqzjjz9eDRo0KNL0a+jQobryyiuVm5urDRs2qHPnzho2bFip+9a4cWOdeOKJysnJ0ZlnnqmcnBzdcccdql69uvbee+/CmkNTp07V/vvvv9nyjz32mAYNGqQ6deqoWrVqGjlypKpWrapf/epX+ulPf6rc3Fxt3LhRhx56qF544YUy/05XXHGFBg4cqNatW6tatWp6+OGHVbNmTZ144ok69NBD1apVK7Vs2VLt2oVs8tNPP9XFF19cWKvoD3/4gyRp/fr1+vjjj9W+ffsytwcAAAAAwJ7EkhoaW7WQWXNJL7h7Tvz9I0ld3H2JmTWTNMbdW5jZ/fHnUcXnK23d7du392RkrcSMGTMKmxZVlsmTJ+uuu+7SY489Vqn7sTtZtWqVLrnkkiI1lHZlzz77rCZPnqzf/e53JU7fFY5DAAAAALu21o+0ruxdwHaY1ndaZe/CDmNmk9y9xNoQFdXn0L6pwOczSfvGnw+QtDA136L4XvEdvMzMJprZxGXLllXQLlWsdu3a6dRTT1VBQUFl78puo169ertNMCRJGzZs0M9+9rPK3g0AAAAAAHaqCu+Q2kNVpK2qjuTuw929vbu3T0bS2hX1799fVatWrezdwA5ywQUXlDkqHQAAAAAAe6KKCoeWxuZkiq+fx/c/lXRQar4D43sAAAAAAADYBVRUOPQPSX3jz30lPZ96/6I4alknSV+W1d8QAAAAAAAAdq6tHq3MzEZJ6iKpiZktknSLpCGSnjSzSyTNl/T9OPu/JH1H0seSvpZ0cQXsMwAAAAAAACrIVtcccvcfuHszd6/u7ge6+4PuvsLdu7r7ke5+urt/Eed1d7/S3Q9399buPnFL699VrV27VqeccoqmTJmivLw85eXlqVGjRjr00EOVl5dX4hD3knTbbbeVa/3NmzfX8uXLK3KXCw0YMEDTp0/f7P2HH364yFD3W2PlypX6y1/+ss37NH78eB133HHKy8tTy5YtNXjw4M32adiwYXr00UfLXE9ZnyH9t//222/VuXNnbdiwYZv3GQAAAACAPdFW1xzaFVT00IDlGapuxIgROvfcc9WmTRvl5+dLkvr166ezzjpL559/fqnL3Xbbbbr55psrale3yQMPPFDh60zCoSuuuGKblu/bt6+efPJJtWnTRgUFBfroo482m+fyyy/frn1M/+1r1Kihrl276oknnlCfPn22a70AAAAAAOxJKny0sj3VyJEjdc4555Q6fdSoUWrdurVycnJ04403SpJuuukmrV27Vnl5eYWBRK9evXTsscfqmGOO0fDhw7e43YEDB6p9+/Y65phjdMsttxS+P2HCBJ1wwglq06aNOnbsqNWrV6ugoEDXX3+9cnJylJubq3vuuUeS1KVLF02cGCptPfTQQzrqqKPUsWNHvf3224XrW7Zsmc477zx16NBBHTp0KJw2ePBg9e/fX126dNFhhx2moUOHFn62Tz75RHl5ebrhhhu0ZMkSde7cWXl5ecrJydFbb71V5uf6/PPP1axZM0lS1apV1apVq83mGTx4sO68887Cz5ubm1u4vZycnML5Fi9erDPOOENHHnmkfv7zn5f5tx85cuQW/+YAAAAAAGTJbllzaGf79ttvNWfOHDVv3rzE6YsXL9aNN96oSZMmqWHDhurevbuee+45DRkyRPfee29hTSMp1EBq1KiR1q5dqw4dOui8885T48aNS932rbfeqkaNGqmgoEBdu3bV1KlTdfTRR6t379564okn1KFDB61atUq1a9fW8OHDNW/ePOXn56tatWr64osviqxryZIluuWWWzRp0iTVr19fp556qtq2bStJuvbaazVo0CCddNJJWrBggXr06KEZM2ZIkmbOnKk33nhDq1evVosWLTRw4EANGTJEH3zwQeFn++Mf/6gePXrol7/8pQoKCvT111+X+TcdNGiQWrRooS5duuiMM85Q3759VatWrVLnv/jii/XXv/5Vxx9/vG666aYi0/Lz8/X++++rZs2aatGiha6++uoS//Y5OTmaMGFCmfsFAAAAAEDWUHOoHJYvX64GDRqUOn3ChAnq0qWLmjZtqmrVqqlPnz568803S5x36NChatOmjTp16qSFCxdq9uzZZW77ySefVLt27dS2bVt9+OGHmj59uj766CM1a9ZMHTp0kCTVq1dP1apV0+jRo/WTn/xE1aqFzK9Ro0ZF1vXuu+8W7meNGjXUu3fvwmmjR4/WVVddpby8PJ199tlatWqV1qxZI0nq2bOnatasqSZNmmifffbR0qVLN9vPDh066KGHHtLgwYM1bdo01a1bt8zP9etf/1oTJ05U9+7d9fjjj+uMM84odd6VK1dq9erVOv744yVJP/zhD4tM79q1q+rXr69atWqpVatWmj9/fonrqVq1qmrUqKHVq1eXuW8AAAAAAGQJNYfKoXbt2lq3bt12r2fMmDEaPXq03nnnHdWpU0ddunQpc71z587VnXfeqQkTJqhhw4bq169fhexHSTZu3Kjx48eXWHunZs2ahT9XrVq1xE6dO3furDfffFMvvvii+vXrp+uuu04XXXRRmds8/PDDNXDgQF166aVq2rSpVqxYsU37Xp79S3zzzTdl1lACAAAAACBrqDlUDg0bNlRBQUGpwUzHjh01duxYLV++XAUFBRo1apROOeUUSVL16tW1fv16SdKXX36phg0bqk6dOpo5c6bGjx9f5nZXrVqlvfbaS/Xr19fSpUv10ksvSZJatGihJUuWFDaRWr16tTZs2KBu3brp/vvvLwxHijcrO+644zR27FitWLFC69ev11NPPVU4rXv37oV9FEkq0hyrJHXr1i1SA2f+/Pnad999demll2rAgAGaPHmyJOmiiy7Se++9t9nyL774otxdkjR79mxVrVq11NpZDRo0UN26dfXuu+9Kkv72t7+VuW+J9N9eklasWKEmTZqoevXq5VoeAAAAAIAsoOZQOXXv3l3jxo0rccj6Zs2aaciQITr11FPl7urZs2dh59WXXXaZcnNz1a5dO40YMULDhg1Ty5Yt1aJFC3Xq1KnMbbZp00Zt27bV0UcfrYMOOkgnnniipDDy1hNPPKGrr75aa9euVe3atTV69GgNGDBAs2bNUm5urqpXr65LL720yDDvzZo10+DBg3X88cerQYMGysvLK5w2dOhQXXnllcrNzdWGDRvUuXNnDRs2rNR9a9y4sU488UTl5OTozDPPVE5Oju644w5Vr15de++9d+EQ9FOnTtX++++/2fKPPfaYBg0apDp16qhatWoaOXKkqlatWur2HnzwQV166aWqUqWKTjnlFNWvX7/Mv51U9G8/cuRIvfHGG+rZs+cWlwMAAAAAIEssqb2xq2jfvr0nI2slZsyYoZYtW1bSHgWTJ0/WXXfdpccee6xS92N3smrVKl1yySVFaihtqzVr1mjvvfeWJA0ZMkRLlizR3XffvVXrOPfcczVkyBAdddRR27QPu8JxCAAAAGDX1vqR1pW9C9gO0/pOq+xd2GHMbJK7ty9pGjWHyqldu3Y69dRTVVBQUGYNF2xSr169CgmGpNAM7Q9/+IM2bNigQw45RA8//PBWLf/tt9+qV69e2xwMAQAAAACwpyIc2gr9+/ev7F3IrN69excZXW1r1ahRY4sdZAMAAAAAkEV0SA0AAAAAAJBhu004tKv1jYRs4fgDAAAAAOypdotwqFatWlqxYgUP6KgU7q4VK1aoVq1alb0rAAAAAABUuN2iz6EDDzxQixYt0rJlyyp7V5BRtWrV0oEHHljZuwEAAAAAQIXbLcKh6tWr69BDD63s3QAAAAAAANjj7BbNygAAAAAAALBjEA4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkWIWGQ2Y2yMw+NLMPzGyUmdUys0PN7F0z+9jMnjCzGhW5TQAAAAAAAGy7CguHzOwASddIau/uOZKqSrpQ0v9Kusvdj5D0X0mXVNQ2AQAAAAAAsH0qullZNUm1zayapDqSlkg6TdLTcfojknpV8DYBAAAAAACwjSosHHL3TyXdKWmBQij0paRJkla6+4Y42yJJB1TUNgEAAAAAALB9KrJZWUNJ50g6VNL+kvaSdEY5l73MzCaa2cRly5ZV1C4BAAAAAABgCyqyWdnpkua6+zJ3Xy/p75JOlNQgNjOTpAMlfVp8QXcf7u7t3b1906ZNK3CXAAAAAAAAUJaKDIcWSOpkZnXMzCR1lTRd0huSzo/z9JX0fAVuEwAAAAAAANuhIvsceleh4+nJkqbFdQ+XdKOk68zsY0mNJT1YUdsEAAAAAADA9qm25VnKz91vkXRLsbfnSOpYkdsBAAAAAABAxajooewBAAAAAACwGyEcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIsAoNh8ysgZk9bWYzzWyGmR1vZo3M7DUzmx1fG1bkNgEAAAAAALDtKrrm0N2SXnb3oyW1kTRD0k2SXnf3IyW9Hn8HAAAAAADALqDCwiEzqy+ps6QHJcndv3X3lZLOkfRInO0RSb0qapsAAAAAAADYPhVZc+hQScskPWRm75vZA2a2l6R93X1JnOczSftW4DYBAAAAAACwHSoyHKomqZ2k+9y9raSvVKwJmbu7JC++oJldZmYTzWzismXLKnCXAAAAAAAAUJaKDIcWSVrk7u/G359WCIuWmlkzSYqvnxdf0N2Hu3t7d2/ftGnTCtwlAAAAAAAAlKXCwiF3/0zSQjNrEd/qKmm6pH9I6hvf6yvp+YraJgAAAAAAALZPtQpe39WSRppZDUlzJF2sEEA9aWaXSJov6fsVvE0AAAAAAABsowoNh9w9X1L7EiZ1rcjtAAAAAAAAoGJUZJ9DAAAAAAAA2M0QDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZFiFhkNmVtXM3jezF+Lvh5rZu2b2sZk9YWY1KnJ7AAAAAAAA2D4VXXPoWkkzUr//r6S73P0ISf+VdEkFbw8AAAAAAADbocLCITM7UFJPSQ/E303SaZKejrM8IqlXRW0PAAAAAAAA268iaw79P0k/l7Qx/t5Y0kp33xB/XyTpgJIWNLPLzGyimU1ctmxZBe4SAAAAAAAAylIh4ZCZnSXpc3eftC3Lu/twd2/v7u2bNm1aEbsEAAAAAACAcqhWQes5UdLZZvYdSbUk1ZN0t6QGZlYt1h46UNKnFbQ9AAAAAAAAVIAKqTnk7r9w9wPdvbmkCyX92937SHpD0vlxtr6Snq+I7QEAAAAAAKBiVPRoZcXdKOk6M/tYoQ+iB3fw9gAAAAAAALAVKqpZWSF3HyNpTPx5jqSOFb0NAAAAAAAAVIwdXXMIAAAAAAAAuzDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyDDCIQAAAAAAgAwjHAIAAAAAAMgwwiEAAAAAAIAMIxwCAAAAAADIMMIhAAAAAACADCMcAgAAAAAAyLBqlb0DALAztH6kdWXvArbDtL7TKnsXAAAAgD0WNYcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMqzCwiEzO8jM3jCz6Wb2oZldG99vZGavmdns+NqworYJAAAAAACA7VORNYc2SPqZu7eS1EnSlWbWStJNkl539yMlvR5/BwAAAAAAwC6gwsIhd1/i7pPjz6slzZB0gKRzJD0SZ3tEUq+K2iYAAAAAAAC2zw7pc8jMmktqK+ldSfu6+5I46TNJ++6IbQIAAAAAAGDrVXg4ZGZ7S3pG0k/dfVV6mru7JC9hmcvMbKKZTVy2bFlF7xIAAAAAAABKUaHhkJlVVwiGRrr73+PbS82sWZzeTNLnxZdz9+Hu3t7d2zdt2rQidwkAAAAAAABlqMjRykzSg5JmuPufUpP+Ialv/LmvpOcrapsAAAAAAADYPtUqcF0nSvqxpGlmlh/fu1nSEElPmtklkuZL+n4FbhMAAAAAAADbocLCIXcfJ8lKmdy1orYDAAAAAACAirNDRisDAAAAAADA7oFwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDCIcAAAAAAAAyjHAIAAAAAAAgwwiHAAAAAAAAMoxwCAAAAAAAIMMIhwAAAAAAADKMcAgAAAAAACDDqlX2DgAAAAAAsKeYNndBZe8CsNWoOQQAAAAAAJBhhEMAAAAAAAAZRjgEAAAAAACQYYRDAAAAAAAAGUY4BAAAAAAAkGGEQwAAAAAAABlGOAQAAAAAAJBhhEMAAAAAAAAZRjgEAAAAAACQYdUqeweypvUjrSt7F7AdpvWdVtm7AAAAAABAhaLmEAAAAAAAQIYRDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhhEOAQAAAAAAZBjhEAAAAAAAQIYRDgEAAAAAAGRYtcreAQDYGabNXVDZuwAAAAAAuyRqDgEAAAAAAGQY4RAAAAAAAECGEQ4BAAAAAABkGOEQAAAAAABAhtEhNYBMaL7u8creBWyHeZW9A9gurR9pXdm7gG00re+0yt4FbAfOvd0X597ujfvO3du8yt6BSkLNIQAAAAAAgAzbKeGQmZ1hZh+Z2cdmdtPO2CYAAAAAAAC2bIeHQ2ZWVdKfJZ0pqZWkH5hZqx29XQAAAAAAAGzZzqg51FHSx+4+x92/lfQ3SefshO0CAAAAAABgC8zdd+wGzM6XdIa7D4i//1jSce5+VWqeyyRdFn9tIemjHbpT2JGaSFpe2TsBZBDnHlA5OPeAysP5B1QOzr3d1yHu3rSkCbvEaGXuPlzS8MreD2w/M5vo7u0rez+ArOHcAyoH5x5QeTj/gMrBubdn2hnNyj6VdFDq9wPjewAAAAAAAKhkOyMcmiDpSDM71MxqSLpQ0j92wnYBAAAAAACwBTu8WZm7bzCzqyS9IqmqpBHu/uGO3i4qDc0DgcrBuQdUDs49oPJw/gGVg3NvD7TDO6QGAAAAAADArmtnNCsDAAAAAADALopwCAAAAAAAIMMIhwAAALDbsqBqZe8HAAC7M8IhAABSzMxSPx9jZo2T99PTAOwaPChIfuc8BQBg6xEOAdghzKyKmfEdg12emR1kZs+a2e2b3rIaZvZbSdMkdZEKH0AZxQGoRGa2l5l9x8wOSb23t5k9YWavxbeqmdkOH5EXwOY497CjJbVFzex0M2sR36tKwcD248ENQIVKAiF33+juGyt7f4C0GPp0M7NDU29vlHSOpAukcOxK2iDpQ0nfSGqaWr69mbXaibsMZFq6uVj8+RpJL0g6I3nf3ddI6iCps5k1cff17r4hLsODKrCDxILAaumH8tS5x3MmKpyZWSyou1DSq5IukyR3L6AAb/tx0gKoUEkgZGadzOzy+FqrsvcLiDevl0l6RdKZyfvu/qmkAZIuTUqj4nE8QdJyST8xs3+b2ReS3ovzAtiB4kPn3yXNMbOaUrj5Vzgvx0haVKyG6iOSqkv6npl9z8xeMLOpCsEvgB0gFgRucHc3s5rxGjrQzN6XdHxl7x92L2a2d3wtT0aR1BQ9KLX8aWbWy8xq7Ij9ywJKUwBslVhyu7F4Om9m+0taKqmbpHslHZaa/LCZXefuK3fajgLFxJvXaZJWSGppZnu7+5pYCjVCCrUM3H2DmR0r6XFJB0jaT9JsSSMlzZA0vpI+ApAJZlbF3TfGgoWDJLWT9E6cPMbdR6fmrWpmBylcewok3S9pvaQ5ksZKWrBTdx7IgKT2hpm1lXSRpNMlLVY4Tw+Q1EbSkZLerry9xO7CzJpJ+pekWpJaSkr3/VhFsWW/4g/x9XMzWySpRwwjW0qqoXCvNl7SZzv1Q+whCIcAlCq5QU/9bkmnn2ZW092/iTfvf5TUX9Jtkn4gabqkO+Ji50vqJ+m/kn62E3cfKMk8haDnOEn7SFoTb3APlfRPSTMVjtnPFJquHC2ph6Q/S3rA3b+pjJ0GMiZ5MPinQvOxrpLeSYW3B0n6vqRX3X2amXVROFc3KIS//SR9Immxu3+1k/cd2GWZWX1JG9z9q1TznOLzVJFUJWkeVpJ43cxRKEQ5XNKLkr6Q1EuhQEWSjknuFSv6c2CP87lCM/42ZlbH3b+OtbgLSuqiIt6zPSjpQIVCgZqShijc4yW1vrENaFYGoFSpJmIWf3czO9LMFkt6KM5WoNBpbw2FPlsmSvqBu9/v7vdLOk/hhuEHZrbvzv4MQDHLFW4cjpZ0SOr9ZfH3tjEU/VTSzZKGSvpWIUhKglGGzAZ2rORhYGz8uYsU+jKJ16PvKRRAdI7z/UPSsQrndmNJs9x9NsEQsImZXahQUPeL+FbV+L6l++ZKmorFaQ3L6OT3/yQdIelKSZe4+yXunifpuTg9V1Kziv4c2LOkCp7HxLdOk0IzYjOrY2ZnmNlPzCw3tdgqSfdJGqZwHI9z98Hu/rC7f1hWsImyEQ4BGWdljCoWO989J4ZCyQPxRoVSoRWS5O7rFQKhLyXlSLorlkhViSVGqyQ9FZc5aUd/HmRTeUeoiA+LEyTtJal1qgP1NZJGSzpUoQmLYmnnPIXmKScploamh8wGsO1ik7B0h9OFBRHxdbqkjyTlmVmj1LSJCiXNrc2snrt/6e7zJb2s8KBwRlxf9Z35eYBdUeoeb5GkryUl59KG+Orph2kzO87MHjSzuQrn2r1WdBAHxdp6h0p61t3/6u5fpK7Df5T0uqTWcR6giPiMkHz3J8fnu/G1R5znFkkLFZqb3Sfpn2Z2W5znv+7+lKSr4u8tkvWVs78ilII/HpBxJY0qFr+0Byt0vvusmR2QeiBuIGm1pK9SN94LFZqSrUyvWqGKvxQ6AJZC0wCgVLEEc4tBT5yt8MFyK0eo+Eihf6zjJNVPvT82vp6aem+pws1xjkL1ZQDbqNgDQTK6TEF8/7D0eZyqyfAfhYfZdOe2CyXNktRRoVZf4q34mpzDBLnIHDM7oNhbyXn1jqTW7n5FsfnrmNnvzOy3ZtZe0h8UCkRmSloraaCk+2MzssRBkuoqBE4ysxqp83eeQm2+/SQxuucezsJodcfHJoslFtbF7/jitdMK4s/J9/QkhX6reppZT0lXS3pa0iUKtdNqSLrJzE5Inlvi60RJeQr3adhOhEPAHi6pLlxG7aA2ZvaImfVI3otftk0VQiBJusbMGsefGym07a0Zaw1JoZryRIUv7gNT60m+8P+jULOImkMoUyzBdDOrK5VeIyjOVpDqA6uFmbU1s9rl2MwiSVMVagjtl3p/THw9LfXeKoWQtIlCUzSVtV8ANil+nqQfCOLDwrlmNkbhGjLWzIaZWbs4e3LN+nd8TRcurFA4L4+S1Dz1/nuSPpXU0cyql9RXBbCnMrPqZjZC0kIzOzwWoKT7Fdro7nPjfd/+qUXrSOot6YeSRij0SdtPof+9kxT6cjk9Tk98Gl+bSpK7f5tMiPeGMxWaZLexOAIV9lj3KXQ8nowMudn9UbGmimZm+5rZKDP7SWqeBZLeV/hOv1vSL9z9J+7+kLvfp9Bv6WqFkWUbpFb/okJQ2b607aP8CIeAPVxSXdjDyC/p3v+Tnw+X9COFNP7I1KJrFW7YX1EYiSIJj9YohEBNkvXEm4L/KNxgHJ1sNzX9c0lTFKp9HrVjPin2BPHmdr6k1y0OX50ONpPj1kI/CBeZ2Stm9plCrZ+nFfq42lK14mRI+kMVjn9JkrvnS/pYUrsknIoPlx8q3JB0NLN68f2tqakEZFLx88TMmpvZs2Z2k8JD5x0K96IvK5QYXybpTjNrlHrYfEvSV5JOTq33a4UCiVqSclM1CL9ROLcPUqgZSB9hyIwYyiyMvx4WC1DczA42s0Pjzz9SeAD/H6nwWvmlQsfShykU/p3v7u+4+1ceRpkdotBZ8HdTm1uucD/YPFV4mL63dIXz9mhJB++YT4ydycwam9lwM/t7ci8U/VPSEoXjobC/0tRyVc2ss5nda2YvSrpBoRCut6TOSY2jaKJCq4O1CqFPuhbpWIUQ6iQVrcn9YnxNapc6BXjbjnAI2MPFGhX/Y2avSPqXmd1gZq1TfTr8XdLvJJ2i8EWdWKnQv9DNChf4QfH9RfF1bbESqWkKYdKxZtYwtZ7ke2aMpOra1IEoUISFkSnWK9wUHCapUQw3N5pZfTOrH29uGyn0aTBMoZnj85IeVhi+dL60+c1JWnyAnKxwbOaZWY3U5HcUSkKPS703V6Gm0YmK/SdY6Ji97fZ/amD3FUuAS7wJN7MaZnammR2TeruepE6Sfirpt5LekHSpu/d29+MUOrjtolBjQZLk7oskfaAw8lHz1LpmKYwqeJzC90Di9fh6aly+IO7LXtv4MYFKYWYtzew1M7u8eIFH8fMu9QD9sqR1kn4ea4V/qtDM69o4fYrCAAwd4++e6jtSkj6PBXqF53fsO3KspFZm1ibOt1jhOnqiwjmtWFsvuSdsJKmhwrD26YJH7L6qKtTqOUVFm/P+U9LB8XmiJIMVvpfPlbRe0hWSborT9lfR2p9vKwSLn7n7YgsDhCRdVCxTKIg+RKEjdEmSu09U6EurvYU+6DZSgLftCIeA3VCsjl9tS8m4mV2iUOo6SGEElyMl/a+kF83sotSsDyr0rXJNKtippnBRnyHpLoXQ53sKNYa+UPgirpZax2JJ+ZLaKJTaJjcvyRf0G/H1gq39vNh9mVkPM3vJzAprmpUxe3KsPKhwY3m9md0Vb24/0KZg8TKFKu/3K7RFv9bdb3L3X7v7WyqfjyUtUHiwTIeZyYNlugnLp5KeUOhc81Eze0yhk/VXzYyRWJBZSTPQUiZfoFCie2HqvVkKzcSaStrf3Qe4+0ep6XcpPAB0S74zorcUagmdnHrvU4VrTlsVbR46WqHZ2RVm1sfMLlboQ+XKrfx4QGVrrHDMn6gQrBZ2sl78vPMwkl8LhdreVRWuYScohDo3SPpbnPWD+K+dme2dWs9HCvdxG5LrWpyWPCu+odBcp0uctlzSY3HatWa2v7uvj/emuZIuVyhsaa7Ugzx2XzE0/LfCPVNO6n2XtK+Z9TOzg6VNNTbN7MeSfilpvMI1YYC7N5d0m0KfcC1V9Ph4X9Inik3E0gV9sTbp+woF1+2S2uXRawqj450Yn5FyzOxk7tG2HuEQsBso/kCdtN1N3xyUUKrUTdJfFUpW+0nqpfBle4XC0KJDzezAuL6FCkN2N1a4iZBCE7EvFKoDP6BQqnSNws3GBkl7JTcCcf41CjfwBylVSpT6Yn9PofbQmG36I2C3kjoeuyk0STwz/l49dcwk8ybHd1Uz66pwnBUohJrnKIwuNlThhlYK1ZHd3Qe5+wfuvm4bdnGJQqlnG4UQNPGWQqlruglLgUIQdZdCk8ouCjWUfqNwjgCZZGb7m9llVrT/ksTbCufSEclNfDxXpysEwf9MHnRT3xefKHRK2k6hdDgxOr6m+wP7r8LoNs1VtBR5lsK56pIeUQibr5HUzOj7BLuB1DVxjsI9U2EAGmv5yEKfQh2LLbpI4SF8evz9OkmXufsf3X18XN4V7sekoufTZwq1ig5WqM1RWgFfesCGJxWGrT9d0itmNlQhiP2zQph7h0KTtUOsfP0BYhdjxUaUVDi2vpZ0QrF7uesV+qs6I7Vszfj715L+x93fjqGiJP1dISDaR1Jh7VJ3X6Fwb1bfzFrG9aSfgebEf8cpjroX/Z/CfePDCteL5xSOz9O35XNnGeEQUAnMbB8LQ4XW3PLcJfbb0MnMhlho9/s/ZnZEuk+heKN9fZz9Inf/p7svcveV7j5M4Qu8nqQBqZvl/5P0pqQrY3OZxQoPwrViM5w/Kow6cZ5C87CkjXkyYkCBwo16HUknx6qghfvt7mvd/TR3/8PW/K2w23tF4Rj5jhRKfnxTp4T7mlnz1HGyQSG4TGoSzFPoD+vH7n6Hu8+N788Ni9udZna+mZ1hZieY2XfiuZE8cJZVS+lLhRvk/RU6tVXcv7kKNz8nmFlSAy6p1nyjpJPd/SB3P8fd743nBrDH2FKN1GKuVGjeeXzxCe4+T6HmaTsVHc76fYWHhWbJg26qECEpZDhYUovUMuMV+jgp3E6qFPkbheahNVPTbpPUR9Klko519+oxTF6zFZ8N2KlijYf0vdMXCmHp4Qp9+1Q3s9+Y2SJJsxVqr4622NzS3b+SdJZCKCpJjZNj3oqOFPhOfD07mabQfcA4pc69pFl3nHeywjW5vZnVitNXS/qBwndATYVRza5W6Ij6SoVr9XpJdd197VZ+t2AX4JtGlEyOnTkKIf5JirXZoifja26ynELO0E3heHg7aaYYp69X6BJgmUItoKapdSXHZ8/4mg6nPlM4J1qpaMHevxS+82coNDN+W2GY+ye2/lNnG+EQsJPFZltvKDRLOSy+V1JH0enOdw8xs/7x50EKiXh/hS/d30oaEwOi5IaiukIngPMVSleLp/9/U2hS003SvlJh7aH/p9Dj/y0KN+9VFb6IpTAs6b8Vbs73lvSlmVUr1rfLdIWbkpfL+PzVSpuG3V/qwp8cF1MUbia6xukHm9ntFjqdnivpGTO7zszqxuP3X+5+ukJQub+kr919dbynSI6dv0p6VaFm0ZMKNwXjJL0Q3x9lRfs+2EwMe6YoPIy2NbM6qcnvKNx4N0h/llhbb3n8HFU5lrErS9+Il2O+wutDefpqSK33PYUR/Y4t5Xx4Q+E61zr13ocKzTo7WtH+vpJzbbxC85U2yTpjnyeTJB1mZul1zVcIlbuo6IOK3P0ND6PcvB/3uSoPp9iZLPSPV9Z0Sx+XsVZ4uhnNOoVQprrCUN03K4wYNkbS7QrXqtMk3W1xQJEYmk5W6Dfyu6l1bVQszFMIVRdK6l5su5ude3E/kwKS/yhcl4+P71d392/c/QqFGsInSqrn7l3jebevQhPSteX/q2FnKhYaljT9SDP7UNK98a1FCsdXjoqOTjxeIQTqZLF/N3dfq3AcmkIH6cWvLQsVnhuO0eajTq7TpnAovdyXCrXJD1AoeEi2v9bdn5TU093buXtfd3/GU6PooXwIh4Cdb43CA+xeKlqaKincmJvZAWZ2cuqL9PeSHjCz30j6hUIS/j2F5PyPChfrG2xTHw1HKYyutEKxXyBPDfutMMTobIWq+Olq9i8rdCx3tkJTtL0VSmWTL/n7FUqyqsfPUeRhwN3nu/vF7v6yl9IhsG/qWA67gaSEsLSHqnhzW3gtKX7x99BGfZKkJvHm9SqFPkjeUQh19pV0p6SL4yIr4+tz2tSES5IKOyX00PngeQolpJcp3ACfFdc9TaHTw4vLuuGJFiqEoF0lpUfL+Km7t3D3aaUtGM8njmXssmKpv1scea+0czjOVnh9sDCIQVsrXzOQ2QoBTWcVC2ei1xQKGdKdtyfDFR+morWD0uucp3Djv2/q/TcVrjlnp96bo9Bk9Vx3X1Z8RfHBJ3nwLihP8AVsLwu1w1+X9GFJoWnqmPT0cRkfxH9lsd+WKDkfLlQIhoZKusLdb1K41t2ncA3skVpmlsJD9/GWakqZbCcWBr4v6UCL3QsU21bhuRf3NfnuSDqtTvqDWZ9a91x3f8/dv7UwmuiZCvenGxUGi2CUz11QDAYLypjlSIV+gT6K869UOHb2VvxeT90Dvq0Q9LSO7++lMJhHTcWRjFV0mPkNCs8p+8ZtJD6My3WM2yzcv/hsMU2hVvrHxa9rsfacLPR9xUiV24BwCNjJ4sX0PwodurWO7xUOu2hmP1d4aD0vdXM+TqFK/c2Sbnf3az203V2o0LfCswoPx0kHcaviv2YKzbyK78MShZvspgrpfFIy9I1C9eA5CqNPLFKqdpO7j1GoXTRK0jAvoa+XpCRsW/8+2DVY6M9guaS/lDK9SjwmPB0EmtlRZnaOFR3m9N34OlKhxPEGSVe5+/kKfQotlnS5mR2ZWtcr8bWTVPTmIP7+lbu/5O4PuPuLkl52979I+lOcpZWKljaVZL6k70v6bjwnknUXbKk0DdjVWWiCMl/S6xabXKWD3NQ1p6GZXWRmr5jZZwod2D6tEMBu1p+dVOQhb5FCp9CtVbSKf+J9baqdVz+17PtxekmjV65QuEbmqOgoR6MVOozPT+3HV+4+3t3/W9LfwBm1BjuYmTUxs3vMLN3h+X8VCh5qqGjAmdxLJWHQYWZ2lZn9zkK/Xdcq9GXXK7XIUoWH7lxJM939Hg816ZJCu/8X5yvsC8jdP1M4x/ZTquPgYvdnSdOdHsk0lX7uJdflhyUd6e53lPB3uNzMfm1mv1e4b3hIoTbIQHd/u/j82DlStdNKfOY3s1Zmdr+ZDShlFSfE13Rh2XSFY/ykeG1JvmP/qRAEJaO9fqvw/FJLm2oBpQfTWakQNO6tMBpl0tn61wrhUG0L/VAWuQ55qBV6prv/u7Tvdw81vcsKvVAKwiFgByrty1jhS/YLhXa2DaXCgKiNQq/+/5R0XbzwS6Ej3hUKgc/4uO6kNOozSS8pBEHJTcBChS/WZpJOsU2jBlRJfSlXV7jg10rvmLu/FLcvhc7dCku44usd7t7H3T8s6YMlJWFl/V2wa4lB0C/N7PDU23MVOvs7zMxqlFAjaGM8Zg8wsx+Z2ffM7FCFzssfU9FSoAkKN7jtJb3m7k/4pk4JP1Qo+TxSRasIz1IIRNuZ2T5xP0ttEuKhz63aCkOsStJKT/XDVcoya919XDoYKvb5OI6xWzKzqrEgYq1CwN8oCXLNrL6Z1Y/nbyOF0v1hCs0on1N4ABypEJ4WGS2muPiQ+r5Cc+Q2JczylcI53kpFHzanKFwDu5awzLo4fV+lRhJ09wnu3i2GwcCuorZC/zpnW2yeHM+9n0pq7e6fpmeO5109M7tboabOYEm9FZrtn6EQpnZKLfKFNj2YF6nNGoOm2QohbftitYAmx9fCTqeL3Z+9q9AfUDJYhKmEcy8uk9z/rXT3T4rtQ3Kfe5pCU+9rFGr8jlao4f5Q8T8Ytk4MeKqUdT9TwjJVpCK100r7Hm8k6SJJw8zsuNTyyTNGUvMs3QT4E4W+fY6X1DB1f/iv+JoU6q1XaOmwXlJfMzvWQ7+THtf/I4Xjfa1C+JkOUl9W6ALjs7iuIvtPQfSOQzgEVLD4hVW835XCafHHJdo07Hsy7GNNhZ77v5F0U7yJT76cZygEPtUUHrILm2fFbUxSKKXKM7N68b3XJH0u6SeKVT9TD/QXKJQGvOTuU+INRvpB+o8KF/jT3D25wUh/Dqpr7lkulPQ7xVL85HhQGOWhr5fQZtvMDjKzpxSOy6EKTcNeVqiptkZFhyadonDzukFhhIp0tfp12tS+vKMV7fvn33E97VSMmTU1s55mdloMp65X6H/oYoWH2zvj+rem/xRgl2VmPczsJYvNh7dw3CbH/YMKN//Xm9ldZvapQmFDUmPnMoUmxPdLukShSeVN7v5rd39rC/uTbP9DhVLkU2JAm36waKBQEFFXRZuWzVR40D3VYo2iwh0P5+wDCiNiPltsm1WMvr6wC/FQg/sthU6jj5AKw9lPJH1uZseUsNgAhY6bxyo8IJ8d/81VeBjvZJv6AFuvcM5+Lamuxf5couQ+7FWFkWLT18opCgFvNzOrGW9ND7A4ApQ2FTqeG7ezsaxzrxyui58h192bufuP3H200/x6m8TvunTAk9y/1zGz5raFkReT5w8LzYSvN7MnzewRM/tBqsCtmruPU7gOfCvp1tTxURC/zxspFNTNTK1+scJzx5FKdY8RC/VWKFWoFwvfkuaFf7dQS+5yheedIQoFEi8qNDtrkFrX3939hxRE73xcYIEKYKFJVtJpbVJduInCcNg1JY3zMFpYcsOejMhys0INiykKbcnPlPQTd58RH9CTAOgLM8tXeFg/RKG0KW2Bwg16O4UO4qYrJPgPKYywNMzM7lfoyO0YhRuTOQpfzulaQcnrIm3qfG4zXOz3DPEYS4a1Xa5Q8jjSQ58BVdz933G+fd19aXKcW+iH6A8KpYJ/Uxjp7kuFvq8eVTjmj4k3HhvcfY2ZTZZ0rMKwpcnmk2NujkIfCcdJaqJwPEvhpuH7Cg+yL0uqbmYNFEqZXKGT9HWKo6EolGb9SdII34pRicoTIAGVJXV96abQBORMhdp51c1sY/r7OHVOVzWzUxVC/gKFEv15CrX43lZ4MJRCab+7+6Dt2MXZCkFPZ4Xr2eTUPh2s8ABRXalOqd19mZl9rFCbsJnC94dS078s9tmT99Od6gK7irGS/kfhGJ/qoWlyE4VBEtqaWSPf1BdKfYVgaKWkczyM+KU47YcKNW5aK4SpSR8/yfDdrRUeoL+K4Wxy7fqHwiAlJ8SfpdBHzAsKtZqeV7jG5kjaz8yOc/flZvYHSWtjmFUglX7ulSZ177tIoRAIFSAV7lRR+J7uqXCPVE+hcscKM1ut0KxwrKdGTo3LdFII7JKaY8sVjp0fS/qXmV3tm0aAfUah1s7tkn4t6QcxiNqoUIi9UVJhDTh3/8bMpijkCB3MbLykpFDx35IuiMu9Fhe5RaFQ/GZJNymEmmsUmh8OVTh3Gij0lVoofg4jBNq5qDkEbCUrNuJJqtZNDTNrHGvVPKpQo+IZSY9LetHMzkmWiV907yjcMB9lYRjS/1XoZ+VvcZ4kZErO06SPhsJ25SmrFG74j1QovUraov9B4Uv5KIWS4Uck/UrhJmOQu79TwrqSz7VVVVixW0sPTdpAKmymdUi8Ofhr8l6c/2iFMPM1ST9y93956APrKYWH0FUKI6ukqwgnx1pyo5IerneZwk1wK8WadNGrCjUSrjSz3yocy49JusFDs7SzJP1ModTrcHc/yt1vcff52/n3AHZFryjcpJ8phVGJkhDGzPY1s+apc2qDQujyUfx9nkINhR97aBqcPBTMDYvbnWZ2vpmdYWYnmNl3zKyTxT4gSroWpLa1SKGPoiMl/dZCM9W2Zna1QonwvQrNl7uZWfo74WfuXtfdZ6oU5Xk4BXYB/46vhbXj4jUqX5tGj00cJamxQghUeJ8XC1OWadPQ26elllmqUFMjR6GGUPGaE8n2j03O1RhG/VGhRm0bhaZDtRSajCaBzj0e+u3b7OGbc69ymdkVZvaWQgHYqwp9wK1WaEnwiUINs+4KBWe/T2rqRAcp3C+dpBDAJLXT8iRdIek7CvdOkgr7+LlL4ZjsbaE2dq0YONVXqIFWL+5X8kwyQ6EGUWdJtVPHy3Px9bg4fzV3X+/u9ygUTl+kUNDdxEMt1c8VmqfVVbFwyGneXzncnX/84992/lO42G9U6Kvn9wo34n9QaOJyS5y2VOHLMFmmuUINiTEKHQBulNQ5Tquams/ia47CBWF8KftwrkK10J+XMG1/hTbt50rar7L/Xvzbtf4p9JnwZ8WmXcWmrVLov6pR6r3fx+P1kvh7dUnV4s8HKJRWLpJ0UmqZYxT6Tpgcf6+SmmYKtdkKJF2aHPNx2pUKNeu+UagxNCueVzVK+SxV0+vmH/9213/p8yD+vk88/j+Pvx+sUNI7X6HJySSFkuK6cXqj+Pp6PLfzkvWmztf2Cn3WFcRzOv1vlULoU70c+1pLYTSxjQr9DH2mEOwOj+fkeZI6lbIs5yv/dut/CoUqy+O51jj1/qXxnLg+9V6v+N6j8ffkHq9KfG0bp7+YWqaKpIHxPL242LaT5d6P515O/D05xxsqFJ6Utu9Vt+az8m+nHVN3xOPgWYUwp4OkfVLTayrUAvo83h/9KTWtvkIz4UNLWG99heeRTyU1K3astFHoq2qlQv+Nhyjctz2WOg6T47VZvHbMkXRwav37xf0eW47P2FShE/aNCk2ga1f2351/Ts0hoCRl9WlgZieb2dNmlpe856Gd7VqFKvU/kjTA3X/h7g+5+28UvuSbKjSRSSxX6MW/s8LNwGpJl1oYwj4ZUriqx29QhWBoqkK/QgeVsGszFKp4drPQyWghd1/soRPgv7v7Z7HtOX0GQVJhLbN8hQ4H28fjI7k+vKYQTKY7m02qL9eNr+lh3T+T9IbCjUOr1DIzten4reNFm4q4QrPI5QolXfVT0/6scN6cLKm+h9pBD3nsBynZ11RpaVkdLwKVJjbHLLWvoGLnnVLf/cnvnysEQE3M7EhJVyn0FzZeoRnxvgp9bV0cF1kZX59TOLe7xN+r+KYmyxMlna9QC+8nCqXLZ8V1f6BQoHBxWdeLeJ1aJ+kHCrX4XlMoKLlY0tXxnHzG3ceXtDznK3YFsVb4Nt0XeRje+12Fa+VRqUlTFR7ET0+997FCjaFji60jOQ+mKxT0dbQ46mec9qFC88tjrWh/M8l3xhiFEHjvuExyjv/XYyfS8TOmR4uSUzNjV5V05P2Vh9rZE+I1IKmN8427P6bwvV1d0k8sjHgnD00DH3H3ubFVQ3czG2FmixVC+waKA9YkG4utIKYojJZXT2FU2Q5x3uRa5Knr0lKFIKm54v1hXMdnkvoq1BAqwkJfST82s35mdqNCIPRHhZrlQ3zTIDyoRIRDQAm87D51jlO4YU6qTKYfog9TGI1pdJxWPU57XqHpzDmp9axVqDEkhTbDjyvcpL9mZg+aWbNUSGTxS3Oiwk1+x2QlqYv8AoWSgp+7+xcl7bgVG72grL8BsiF1/MxQaBN+skItgPTQpFKo9puYF18Ploo+3MXjallcvrXFDmrj+8mQ9l3ittNNNJcolGQdrM1H0PvI3d/z0BdS1XR4G49lhqvGLis2s1quUL2/pOlV4ne8p88lMzvKzM5JHhCj5BwaqXBO3iDpSnc/X+H6sljS5WZ2ZGpdr8TXZASZIt/9HoaDf8nd/+ruL0h62d3/onDTLoWQt9Tzy0P/Kubun3pootLL3S919+d8834wgF1SDDGTe679kzB3K4xWKARMF6TMUghZjzOzxnE7Hyhcb1uaWa67e7Fg+GiF2hqNtfl19yOFoGn/1PvJ+fxzd29cWgib+owbuF7uFpK+RUsayj1pTlzVQ8fh7ynUAD8rPY+ZHaIwQMfzCsfNfxSalQ2Js52yafbCY+IVhb7qvqNQS1xx/YUFFvH7fqNCX3PjFWqZKjmW3f0xTzXvT93n5cX9+X+SblUIn/6i0Ndq8b5UUUm4UAMliG19J5tZMvKEpb7c3lN4kD0h3jykOwSUQidr6aGEpXAjMEWhJCi5QShQSN0LFKrtD1TobPRFhdFjZprZjWZWN/WlnfQfcXayr8m0eIP/kLsnfRNthhJalGGuQollR4Xmj8kx92p8PS4170yFEspOFjqILiyRjNObKlxfjlDsHyFKwtDe8dVS21koqZu7nxpLnoooVjOIDtGxS4pB0C/N7PDU23MVRnw5zMxqlFAjKBmF5gALfT18z8wOVRg16DGFGqmJCQoltu0VCiKe8NC3iRRqFtyn0PdPu9T6ZynUyiscQaa02kvJ/sRQN3lwWOlFR7MsaZkin6mkWhhcf7CrsjCa11lm9oyFEf3ekfS8mQ0wsxpxni09M42Jr+l+h/6r0NyrvsKDcSIpdLnczPYpFgx/R6H2zzcKndAnvlAIh+crXH+TbST3gOvjrSq1wvcA8flhgqR9zeyIUr6Dk9+fia+dbVMN1foKrRZ6K9RC+qGky9x9mEIn0FKoqV2kwMDd17n7vQq1UQ+Jb8+L60zuw5Jj7m/ufoK7j00t7+l50+/FdZ6v0NzyKA+j2l0TA1PsIgiHkAnxgrnF0flSF9WjFS7kJ8ff0+fKXIXSoE4KbcuTL73X4+sR0mZftukbhPRwvsm6jjezw939TYUv8PMVmvn8QdIiM/tVnH+cQq2lG8r4DJzXKLfU8Zt0eNlcqWrx7r5YoVZa21gKJYWH0PEK50C3OF86tEmWb6nUMKcKpUxLFR6Ui9TQi8uvkLbY+S2wK7tQ0u8Uh4pPlbCeLqmvx+aQaWZ2kJk9pRCQDlVoGvaypDoKhQ1HpGafotCf1wZJf0+2IYWbeoXCi3UKBRF1Usv9O64nPdR1sv2mZtbTzE6L4dT1Cp3YXqxQyntnXH+5z8F0LQygspQUUpain0IQm6tQA2iCwj3gcIUROMsTbs7Qpmvlgan331coREw3LXtM4Ry/XNL/WugEvpuZ/VGh/73/p9BUKCdZwN3XuPtP3b2Huy9QCWLIxHm35xgWX3vE1+LHcnJMvhFf22vTSOSNFEaUfc3dr3D3cb6pVUEHhdYLR5lZK2nTdST1DPGL1HpLfa4oLZAs6XrhYRCFZ939KXefU9o6Ubl4iMQeKVbTr5a6afZy1jZIvsz+Hl+7Ju+nvug+U3iIPkxxZLA4w3yFKv2tLLb7LVZVeLI2v0H4r0Lgc5jCQ7k8tCN+VmHYygHaNNqE3P0zD1X1Py/1A1A6u8dILrrbUxJYVml/Wjw/pirUZOsUz6Hk2H1F0oGKwaaHkS3ui9NuM7P+ZnaEmZ1iZiMUmrf8UaGJ2EGpbcyRdIi7f3cL+0IQhN1KsZqlyxX67qoRawRVcfd/u/t8i6N1JedWLOX9g8JN/N8U+qy7SGFo32MUOvc8JinccPc1CteSagodVCebT7Y/R6HA4ThJTVK7+Fx87Rxfq5vZPmZWV+G69A+F2gz3Koyc2ULSnyT9Jm4T2OVZsdFkvWhTsWS0JSu2zAkK17PZkvpIutxDM83jFQpCvm9mfbZ0HY7h7FsKhYvp2n5TFWpenJaad7qk6xVqKP1Y4T7weYVAdpS7/1qheXa9WAMkvb/pazP2bMlQ8Elzsc1qncYfZyoUGBylTQFSA4WBCuYXKyiQwnXmW4X7veS4rFpsnfMUWkksV2gaWVrgQyC5h+HLBXukWE1/Q7wxNzPby8z+n5ndt6Xl4o9J1f1OqZLfZJ71CqW3ptCOPH2hHq1QUyKpHWTa9GX+gUKn0snNuRSqDb+v0JFobrF9WePuI9z9t+6eNCcr3sQNe6BioWb65rb4Bb7M5ZN1FH+vjPlnKpR8niRpr9Rxn1SB75Ra7J+KQ8grDHX/rkLV5q4K7dX/pVCDociNrW/qN4hjGHuiOQrf8ycp3JwnzbQOMbONCudK+lpztEJt0dck/chDx6Nvu/tTkgYp9OWQp3CNSLwTX5Ob+iqpm/ZlCn3TtVLsEyx6VaEw4koz+63CKJqPSbrBQ7O0sxSGNr5MYWSjo9z9Fk/1GwHs6uL1Mrnm1YkFF6PNbJ6kJ83skhIecK+Nr7/y0LfdWgsd/s5RaJazSuFh+qC43rKuXa8pNAnLS703R6EmeKt0jaIYEJ2hMODC7ZJ+LqmDu/9PnK+awsN58T7CNlIImBmfxtcuUpmdhx+kUDj9mcKIsVIIdd5XOL4uNLOWZvZdM3tRoQbpfQr9O3aN6y5SgO7uqxW6GaiW2g9kAOEQ9khmlmdmQ8zs3wqloBcq1Nj5gRUd5aGkZau4+1cKN9iHKVbDt9SISAolTEsknSipTgkP0YWdCKZuRD5R6NOlk5k1T017UWFo06T6aPH9qWrFRrChZsWeo6QbzdTN7QFmdrmZ/Z+ZjZb01/KEKqnlm5jZsWZ2iaReZlazrPkVgqEpCsf8fqlZkqrFx6aOxW/c/YE47+8Vbor/JOksd39S4QallmKb+HSpa/oGHtgTpI7nxQo1e1oo1gaN0+crNBFrbkVHkzw/vj4dQ6TqtqkJ9D8VahTkqmjzzAkKI5F9J/6eflBcHafXV+jwNgmav5D0a4XS4BsVhrw/VNLcWMPpJXcf5u5Puvs8afNrD7CrM7P2ZvaImeUqdLz7K4VRNZco1Kb7q5ldZJsGC5FC8FogKWnWXFWbApkxkt5WuM4dWY5deFuhQDAv2YaHwUQ+lLSXNo0YmNxrrvYwiuxN7n6vx1HFFEagaizpI3dfw3mYTfG68oykmmbWUSradYTF/rAURr47WNLkGDrK3Rcq1OCuKel+hWvJ4wpNFW9z95sVmqv1Kb5dM6trZt0VaiK9qE1N1ZAB/GdjlxAvouYl9MeQmqeKQqBZkNQIKukB08zOlTQi/vqOQvJ9qcLNdD2FEtX3ytqd+PqGQtOuUxWakaVrAS1UqBXRRuEh+uP4/uj4eqy0qXQ47us6M/uPQj8S6bBnYVxfiaiuuWeJD2vJqHElhiSxqcnvFIYDraNQ8rhcUneFfkPKHNXBzI5SqAGQdEx7gELNnnEKNQtK5O7LzWySQhOXVpJmx2P3KzObqVDClKNQTT45rvMVSkXT26+qcO5IoZ8hjmNkQqx1kK8wqmR7M5ugcG3bqBCgfk/hupEErsloXnXja0GqsOGzON+ZCufjuPj+TIVzsLOZ1fHQzDPZvpvZhwrfFydJekpxSHt3/3MMmetLyi9+vY3fTaZNZRCcs9jdnKTQTKuGQi3t+yU97u4fm9kZCrUlfqYQ1kyy0EH7SoVadck5mB79crlCM81u2tRXXlkFG3MVzs1OCtfqGfH9NxTCoUnJjDEMrqZwX3qAQhh0iEJh4TmSXpJ0dzLvVv8lsKd4SNJ5CteB9xSe3b+VCmtiN5J0lUKg+Ux6QXf/p5m1l/QDSQ0V7tVedPclMZx8TcVYGIjnMkkDFc6LR+I9YInPXNjzkESj0pnZ7xRKbE6Pvyd9MVQpVtsg3VSsVikP1Uco9JmwTmFY94vdvYvChT3pp+fELexSst4x8bWkjuA2KlzMD1EsTYpfnF8qlMz2sFQnb8m+uvvt7t7di3XERhOb7EgeunxTU7GjLQxZnf4+vknhBvZthSYnF0r6rrs39TKG+0wdR3UUagYcrvBweKq7H+/upQZDqWWnKtQ+OCUJbeP7D0sapXCzUKQGWyxlOsDMjjezHyvUeOit0JnnWAEZkDqHZijUVDhZofZcck3ZrGap4igwik3AvGgT5gKFMNcltbYwgljyfjKkfZe47XRTzSUKzQAOjttXap0feWg6kzTvrJaa5vE6ywMAdiupY3+yQu3X3goPtb9196Tw7jVJf5bUWpuaSK9VqO1XX7E5Tuq6ZjF4raXwQL52S/sRz98JcZm9U++/4e4/c/cZxRYxhf7F3lG4vo5QuOd8TKGZ29Ly/g2wx0qaEX9HCoGQJJlZIzPrpdCEv6OkkQrHTaF4DE9391+5+1Xu/oC7L4nr2Vh83vhjDYVz5B+SLpD0b4KhbKHmEHa4VLX20r5Y/qtwEU1KZTamX1PrOF6hRKi9pOVm9qik5939awvDxhcofJHtJ+lKdy9M0N19opn9XqHDvzMk3VXa/qa2P9nM3pfU1cxaeOz3JzbNuVmhttCRkk41s9cUAiNXKKlqrlhFufjnTgIvLzqaGV+6e7jk4mpmzRRGnPu+NlVT/0Shc8p3zayJQv8f0yT1i4FjuaRCyHwzq+fb1pHsAoWS1FxJNZN1uPvtpXyu6gqB0nqF0VUOVriJHibptx466QSyZK5CE+KOkprE2qFS6PdHCs1bEjMVCjM6mVkDd18ZrxHmoQ+IpgoFeUco9CsxKy73n/jaW+HhIH3zvlBSN4+j/xWXfBdRMwh7oLkK17BWCv2tKLk/dPcCM3tFoX+fY5NmXWY2WVJ/Sd81s3+6+5dxWnIPmjQDXRPXt6UH5Z+6+2XF34wFQFbs3m+9mY2S9KVCUPSOpDe8jFr0yBZ3/6+ZfSOpQyx0bqxQI/wkhZBzvaSr3P0vJSxbeJwmx5+K1ozbbF4PzdLO3BGfBbsHwiHscOnaBfFCXPzCOkKhym1+ern4EH2lQs2HRgrVgaspfBEeqVC68mtJv09dbJPRW9Jtx5Mvwv8ojCTRycyabqEWRXJjMFJh1Iknzez/FGpUJE1rHlVoF360pBqxhEnu/r9b+HtwQ76HieFlcqyVWP07BkNHKBzHJyhUL39WYYSJ5ZK+irPWVgga60g60Db1kbVU4cJeGNiUtT++qZ+CKmXtV3r/4o8zJJ3o7otKWG+19LriebLezP6k8MC7QtKbkl710JkhkBmpc2ipwvl9mkKfDQvj9MVmlgx1fYiHfog+lDReoQZQN0lPFbtGHBVfWyr0EZSEQ9PidpJClcLOROPyyTVwswdZCiOwp0kd00sUgtmzFPsNKnY+faRQsNdOoRBvjkIt8XcVChffkDTMQ5OvWgrNec5XaNI5rjw1KJJ7wWIBU6lNw9x9gkJtI6A090n6qUIB974KBerzJD0R/yVBaJUyjjOaJqJcCIeww8WaBR9LWmpmJ0v6Nv0F5u4rJb1vZgea2Sp3XxUX7axQQ+dEhQ7VZih0Lv2hwo3ySEmXm9kYdx9nYSSnmgptcZP2uOkSmhVmNl2hqn87heG5S5Nc/O9TaId+c9y2FKrr3+TuI83sQS9hWPniD9HYs8WbxQ1SYX9B+0haWKzUpr6k3yiEizcqDC09v3gJobsvNLMHFGreTFI4d75VaC9eR9KbZnavpDdLu0lNlQBtVNHOasvzWdZL2iwYitOKj2aRrPsv7n7P1mwH2JligFvY19e2rqM8wYq7bzCzqQoPp53M7I34/kaF686lCiNazvdQ8/U+hXDoNgtDy7+p0MSlr0JTgj8qNDM9KLWNOTFgKrOGAUEQKlslnHvTFM69liUENN+a2ZsKfbC0lDTHQ39EtyvUwvizmZ2uECLtrxAyzVSombFVtXm4/0MFek4hHJop6S8KrSbmFJ+JYw4VgT6HsEPF6rzrFZqZHCapUazOvtHM6scHZpnZnQpVgc9ILZ6vUMX2FElfu/v33H18rJEwQeFBu5mkLvEG4GuF0tIakg5K96Vgm/ouStpvn1TWfqcertcqjMTUVtLFko5z94PcfWScvlkwFN/fwJf0ni9pMhmDzRti9fTFCn0bPBxvMhOu8KA3w93vcPfZZdxsPqjQKeWDCn2OfKTwUDldoSQzqX1UZOSKykJtOOyq0s2avWhfX3W2ZvlkHcXfK2P+mQrXtJMk7ZW6HiT9DnVKLfZPxSHkFYa6f1ehY9Gukq5RaDa2TqFflEK+qd8g+qzDLmcXOfdKGp32NYUaunmp9b+oUHD4ukIXBtdKOluhU+hL3X1qefYZ2EHGuXsVd/+uu9+VBEPGiJLYAag5hK1mZj0UEuwfexjdqKwSneT9BxVq3lwfv8i+H6ddodDpWTJ6WHqo0DkK7cc7SXopdeG3GC69o1CFuJNCP0OLFfo+WaXwEP6ipDlmVi1V4yG5KTnNzG4pT4ATb2imx3/J36DUqpvYM1ix0fFKmsfd3cwaK3Ry2U3SRIUqvvspVFE/x8zOUbiwr4pNSlqb2dUKVYJXKTRVbCJpnrvPiustkPQPM3vBNzXhqqFwQ3u1pMEKN75vcxwCQVlNqMzsAEnfVThv9lOoyfqjcjQRSZZvojAAQZ6kL8zsX+7+TWnzKzycTkltL2lmmYxSdmzqOvKNuz9gZhMVRjNroXAt+6e7TzOzHyl0cJuE0UkfewSz2CXswufevgrX2bR3FAos21oY3GRd3P/3JHW30K/LupJqZgCVIXUfmBR0b0xC10rcLeyhCIdQbqkb2W4K/f2cqdAzfnUz25hucpK6UahqZqcqlH4WSBqk8FA8QWEkpg/jIm8rDOnbweLQvB76MslXGK1pQ+rCn7x+FteTtB1fHH9Phgv+saTfJPtlZicqjPr0vkJHoc0UmoiV9/ObYjDFA/meJ6n6nnroKmySZWa1Yy2ykjymcD4MVuiHanE8dttLelqh88sBCn2E3KHQRPFuhePYtakG5wIze9Ldf56suHh1eIUmmXXjMh9VxOcGdlfFm6uU9LAZm3n+TqGJVh2FQoflkrordPJc6uh/cfmjFGr1HKlwrTlAoWbPOIVafSWKBSeTFK5FrSTNjtfFr8xspjb1XTc1+Szunq/N+96rKqln/HVa8lnL2mdgR9vdzr1i0xeY2XJJHeI6P0nvv4cOeZN92GwAEaCycBxiZyAcwrZ4RaHm0JmSHks3jTGzfSXVdvd58a0NCiHMRwolRvMk/UjStP/f3n2H21VX+R9/fxJ6CQm9wwA/QjFAkBDQQNBQFEFEkOIoRZozij+ekTAyA0gEEcFhfo5YkCLNn4AgA0QIBFDEgPQUAwHCYGiSEFoSQkhb88f67nt3Tu65uZSUe+/n9Tw8JzlntxvOvnvv9V3ftaJWsDYiXi6BoB3I1Ppx5aPR5Ijrrm0cx0yywPSBZNHOByLib5LOIdOBvytpHfLGYE2yQ9TdZXv9yfnmL3c0C6jcPLh+QychaU2yk8/YiBhVH20vny/QRa+81j/fmbypHUwGZW4ELouIN2rL7E6mol8REefU3l+DzGq7lwxS7kt+p68jg5f7kenur5AdvrYBvg6cUgJEj0paK7JO1qrAxmQXsH3Jm+UHaM22M+uW2jhntyEDuhNrv9O/Q9bruQX4FVnDa1JEvEM7agMcqwD/QmaO/pas9XBfB9cdS15vBku6vRxrAFcCO5KdOhs7yqwO9CLP963I2iifAX4JtLtfsyWls517keUN6j4LvBStNS7b3I4fxs2su3FwyBapdpGsLvhjyBGgvcvnmwLfJB/E1wGekvRr4NLI7mS3R8S1ku4hi0vPLO83tri/h8yq+BitwaGnyMDSoMbsjYgISQ+TN9s7SFohImZHxFhJnwP+newm1pPscDaSfAD/x7KJvmSwyLqQ2s3hJ8jpXpeQmWkLBAAbRzol9SK/xy+TGW0/JgOar5Gji+cDfSWdGRGvlNX6AasC48so6Z7kKOcAMgDZryy3SdnnXLLu1dWNx6vsSjaUDBQ9SrbVHUrW0JpVjmElsv7IGbVjMOtWaufMBmTQ/zBapyQ/B5wKPFSmoxxAXk+OiYi3O7qPWtB4tKResYgOgU28ALxFDnq0dBmMiAua/FzLkw+1c8ig8abk9JdfAN+LiFkf4BjMPjKd9dwjz6n6Pp5sY52FjsHMrLtxcKgbaphj3VYqcMv0KVj4IhkRU0rK7uGS/g/ZeeUIch53T7IG0I/IrKH/Ii/QkNX2P0V2ZRlNbQpPcS8ZHNoZ+E3Z18vKIr8nkpk+jzcc7nNk8cGdyAylSSUT6G5lTaKB5MP1g9XNiaQty7G9WvbhKWJdSO37OpL8/7ytpOWrkcMqU0zSJmTa+aiIeIxsEz2UHN1cjqxTcAz5sLYO8H0yC+hxMugEUN3wHkIGR7cnM4LeJEf5LwKGR8Tr7R2vpD7kTSy03sQ+AdxFTpmcBVwB/D5KXSKzrqhcf3rSTrfHcs5sRWth9seAm8nzfSpQZSasTAaFVwE2LgFYyACtqAVs2jueiJih1hpki5xWXPsd9BTwyYhYqPufGjpalt9LcyRdRF63Xie7lt1Vz7I1W1y6y7lnZmbNycHx7qMERR4Cbo2IrzUGh8oFONrIqNiaDMz8oUrBlXQK+eD7KFkr6GLgnsi53h8n04inAQdFxLO17UwAboiII9o4vj7kg/lo4EtRpu9IOpEcOR0aEf/RsM5K5FSdzwODI+L+dn7+XmS9pJ+TNydb+Ka7a6nd3EZEzCuZZX2BQZGFXZcvD2Cbk1ljKwBDIuJZZWHpH9BaH2iXeiq6pL7kDefwiPh8ee8AMpC5Khkc/R0ZwJnQ1nFFttndmDyf5pKtcjcma4r0B34UEcNq67VZ66ijUyHNOrPy+31d4MWGa9UaZDvfI4F/JQceJkUb3f9q14/Z5PVlNtCHfGj9E3nt+tOykinQOP3VbGnojueemZk5c6jLKoGgI4DrIuK58vbzZO2dLaopWPV1aiOYG5EZPu+QgZrLyMycfcjgEmTh58nALsDZEXF9bVPjyQDM2WQW0LNl+88oiwDuLGndkoHUEqCKiDclPVTW2Rr4S9neGHKqzxBggeBQyYA6CzgzIsbVP1PWnBlSfuZVyKk+B5HThI53YKjza5yaWF7n1ha5g/yO7krWuaqCPeeQgZn9q+AlmQXUMp2xBJHqHfKeljQR2EXSVhExkUxdf54MNh4cEVOaHOoAMhPgOTIF/04yo245MtNoDHAGcG19pSowVAK3orVDhQND1qXUpqtsTD54Hklmzb0G/EXSNRFRTQMOsiPlUxFx4SI2fTmZJbofWZz2VfJc70tm/G1PZr+OWhaCrg4M2ZLmc8/MzCoODnVdR5APwK8Az5WL/3xJe5OdGdoa5dmEzAY6hHxwfZN80J4OzCCLY1bBoTHAS8BaZLZEvTbRrJKxMQvYVdJtETGzrHcvOUd9Z2BEG8c9kiy++TFag0MTyQfrvcr88wUKCEbE2Cb/BmuQ09S2J9ObZ5IZTZcBf2yyjnUibWS59SULnveOiJPJ79iZ5FTHy8syR5E3vxdExB9r25or6Uky422WpDVqUxF7kt+hEWRdoo+T38vxZKHMYcD5kk6JbFnfg2xPvytwLFl7YX8yOHQ/8DXy+/kyOeWx3a55vmm2zqw2LaTNrkbQMl1lLXLK5j5kVur1ZN2vLwEHSToI+HM5x14A+kk6mWx0MI28Vq0N/K2aflmCLbdKGl4bAFmBnPZyMjmIMYicXurzzLoUn3tmZvZ+ODjUxdQycR4m53/vIunXETG7jMzcW5ZbLyIm1+qvrEROqTmYnKZ1LTnCsyFZPHdFYHtJy0XE3Mh54I+TD8nr1nZfPbD/D/AMWTthbTLDAjIF+TCycO8IYPmSphwRMZVMNYa8QbmM/OB1SV+lA50lGt6eRBak3gSYEBHj3/c/qC11Tf7fVp+tQQZeHiFHOi8mv29TASLiQUkzgQGSepO/884jC1Sf38b2nycz3bYGegNvl+yh6sb1VjI4tDtwfZm69jOy0PoxZGH0J8mplhuRHYlmA+eWY6yKUl/Z+DPSWlPBKfbWqVXf5yoLpjz4VQ+HbU6VLK4hswzOJq87r5QMvl2AG4ELaJ32eSEZ/P8xmc0QlNbawAvKrn+nVRuuP3yWwZHZys5gPcimB2adns89MzP7MBwc6rr+h8xSGEQ+5E4pQaDNyAfg4cDnaxftbYAvk9NdvlK/mJcRpfPJqWXrkdkOkDVWTgA+TWYE9SgPvpDpyI+So06b0hocuovMSPqGpLlkfZhdyNTl88niv9cAt9TTjBunjDVq64G6rPswbvm91DVO/2ov4FM+71mWn7eIdQ4FLiUDiYeRAcdLgMlqLUJ9Pxls3ILMqFuN7PwzrY36HtX39nBgM7KWQnXzC62tpAeotTve66X20HfJYut7AquTKfS/Am6KiCea/JuI1jpfnk5iy6QyRfdwYGxEjGo8b5pM76x/vjNwNDCYfDC8EbgsSl25sszuwB7AFRFxTu39NYC/k9eYrwL7kg+o15GZpvuR5/QrZIevbciulKeUh9RHJa1VztNVyRpfm5btnAg8gK8RtozyuWdmZkuSg0NdTO3h+RWyq9JxZEbFlPL5JEkzgM0lrVm7QTi0vN5YgkjLl83NBW4jszN2Ijs6VcGhR8jpZ/uT9VLqacHTy+fHk92iRkV6Q1kj6ESymOF84EXyZmN+eZg/+iP657ClpBb4ICIWyoYpaexNA0QNN7/9gV5kkKcxUDSOzFA7HrgqIo6trVeNZA4nb2IvIgM3v4+Iexr3U/4+vUyJPBHYTtL9teBUzzKS+gBZP2E7YHSVTQecWTLwNiez3NrtxNIQdDJb5tTOs0+QU04uIbPuFpgC0ngeK4v/f5O8VownMwzWJ4OvG5GDDX0lnRkRr5TV+pGF3ceX82hPsj7XALJYe7+y3CZln3PJundXNx6vsjPSUPJh9VHgQElDyQL0s8oxrATcDpxROwazZYLPPTMzWxocHOqiIuJdSaPJC/Iukh6htT39SHL62I7AH8oq75XX1cvrvFr20Ktluc+SD8R/Lu9PIDN99pS0SrTWFaoe/seT03sGkXVZ3iqf/VTS3WTNldHRdv2j6oHbOqF64KNM5xpEfncgs9qmkMGehZSb28+QtYM+RX6H3wVeknR2RNzYEAQdS04DG1/WX4HWdvCQN6E/IW9w3wQGS7oUGBZtt7mdQNa4Gkh2Iqva1VfFqUeRN+w7kd/flu9pRMwq69drPSyy/a7Zsqh2no0k689tW8vIa+map6xXdzBZO+QxchBhKFmXazmyJskx5Lm6DvB9MhPhcfLBF1rPs0PITIntyayEN8mMvYvIToGvt3e8yq6XO5S3qt8DT5BZq5uTD6hXkEHiZ97/v4rZ4udzz8zMlgYHh7qg2ojTU2RK8B7k9JZZZZHbyJuJ3WkNDv2tvG4KC80RnyfpNfJhv181b728/xA5yrQXcHuZDlRlivydHL3alBwporbNlnnmZR01PGQ7MNRJlaDIIPImc1/yZvVdsvvdurVFR0o6PSIer63bBziVLOL8Almb51Wy49wBwE/K1/umsspU4Mny53ehpaYBlOBURDwvaXLZ/8nkDfBxwFGShpGp9K/WzpsXyS59OwMbsHDdoYuAG8qNeFNRq/Vg1tmU73xP8rnvvTLY0J/MCBhXPahK2hy4mwzi3lFWf4kcEKhqlOwdrZ0C3y7Zo18iM/qqB9R3yn+fJKcsDyMfIie0dVyRBeQ3BrYlH543JKetfK4c57AoXTQjYoykf4s26q3IXZJsGeNzz8zMlhYHh7q258kH512BtSPixfL+XeV1YG3ZCWTwaDdJvSPirYagzTpkFsRWZGpxNerzQHk9nMzQqE8VehHYp9loU/Uw3ji1xzq9SWTq+Gtkltk1ZJHnqWTAZyAZnNkH6C3prIi4s6y7AZnKfgMZ0HwmWtu5DyMzek4CboLM1JE0hhylXFulDlB1ILUMtHvImlpzIuL4UnfhW2Sh6K9LOofsZhbAG2S9rr3J7/2EeiZUREwmU+rNuowmtUvqQfo7yPpwuwLjag+c55APh/tHxLPlvbfJB1PIltdzqu2T14inJU0ks1q3ioiJ5O+G58kMvYMjYkqTQx1A/h54jpz6cieZlbocme0whpzmfG19pdrvkR5lH/PL9ccPp7ZU+dwzM7NlRY9FL2KdTS04Mxl4jEzn3br2+SvkzUB/ZYFqyCk5fyFbfu9TlptXy+Cp1t+WzASpjCv7WbOsU8/+mVcFhmo3J20dp3UBJZgIGYgBuDQiDgHOi4jfRMTIiHg6Iq4mg4nXkzebp9U28zTw5Yg4JSLGRE6P3EjSP5Pp6AADJW1bW2ciGYjcmSy+Xld9x24tr3sCRMQIsoD1IWTq/CXA85J2ipwe+X0yoNps6ttC32ezzqw8rLX8TpbUV9I5kn5S3hpRXnerLXMUcCTw/yLij7VtzSUHJqYBsyStUdt+j9r21ic7XkJeg35LTmk5v0wvRVIPSetKOkDSTeR01M3LOvcDXyMzHb4GbBIR/SPix80GJSJroDVt6222pPncMzOzZYUzh5aw8lDZAxYuhvt+ttGRi2tJ/R1Ldq7YTdIfyvvzyRGfE8gU4EkRMVPSz8npYecp24z+icwAOZosOv0fwLcpRQnLtv5H0mbRRt2ghmPxzUDXV40C/jdwFFnTCmB++d7XO3NNJusifBH4lKRdI+Lhck5MLTenh5CdTwaQmUF/JesX7EJ2XnmqbP/v5f2B5Pe1ZdSzdo6NLK8Da5/NAG5W1r/aDxgfEU+Vz16C5ueav8/WGbV37VB2JjqAbCSwOXAxsDaZ8UdEPChpJtmprzd5/3AeWYPr/Da2/zyZMbg1GbRtnJ55K1k4d3fg+shpyj8jp7YcA+wg6UmyHt5G5O+T2WS23yPlmOaSU08X+BlprfXl89SWCT73zMysM3Dm0BJSTxsuIyfzyvurvJ/1q200vtfO8hPILKFBwKq1NN7byututdVuI7s0bUm2B3+InL4zhJyCczs59WyN+r4iYrakns6m6N5qN4NVu/ch5f2WFPLaMj1KAKb6Hg4po5TVd+hw4EJgLfIm+BCyftGw8vng2q7fItvhbkgtQ65S6hq8SU4X27nUSqgf9/TIItdPNa7rG1xb1qio/30Ry/essvoWce04lJwCeio5rfNx8rz7grJ7JWS2wMeALciMv9WA70XENGU3v/r58hrZrWgbYLNq/7VrUPV7YoCyiDwl4+AAMnPvXTLT74tl/V8BX4yIcyJiWhv/Jj2qB2RnJ9ji4HPP556ZWVfnzKHFoK0RotqNwUbAgWSwZn1gsqSvLOpiWlt/bfJivRPwhqTbI+K9ZsuTgaExtf1NL+9Xhag/rtaigO9FxGWSHiULVvclO1zcFhHjJH2FLCytciw9qyDXB82Csq6lCsRIGkcWLx8QEY+oeeHJO8gb0N2AFSJrCPUlA0MvA/tFraOYslYCwO4qRTlLhtxoYAY5VfLWWLD4ZXUzPojMkmurMOYCNR/MlhW1rLuWQGv984iI9rIS6r+bJfUHepEPmi0Pq2XdcWQtueOBqyLi2Np61UDScDLL7iLy4fH3EXFP437K36dLepgccNhO0v2161jPyFooD5BdDLcDRqu1RtiZypbamwMvRWb5NVW263PXPlI+93zumZl1N84c+giUkZOFRogalllJ0oXk9Jcfke0+e5DZEFt1YB9bS/oRWTT3v8nMntPIm42mImIqWXdoHUor8XJD8g6ZVTSEHI2i9tnoiPhuRBwREeeVwFBPshMFlGKHDghZO24vr/uX18bfNVWgaFR57U+msENmpvUCRsTCreaPI6dJrkdON6u8CMwkb5771FeoBTAnRNYwarP+lQNDtiyqRvwj21b3Vtb/OK38d6ikPZutK6mXpMMk3SppOllX7hZgrKRDq+2XxV8hBwMga5AgaYWG86U6r/uRtboGS7q0MRuvZgJZwHYgC16rqm2OIqe97FSOpV6zblY5Z2eUzITlag/KZoudzz2fe2Zm3Y0zhz4C5QJfHyHahnz4nVjLlvgOWa/nFjJFdyKZxfBOe9uujSytAvwLWWjwt8AtEXFfB9cdS2YMDZZ0eznWIOeL70jeaCwQ1FLWHOpFtqHfiix8+Bngl7SmJJs1qr5DtwP/SgaHhtHQ0r0acSW/l9PIm9Q1yZvZIOsGbSWpT8lEWqds6wBa6w4dRGu3vBfI2lh/iyy43vwAHQSyTqI8kA0ip1nuSzYDeJdsO71ubdGRkk6PiMdr6/Yhp6kcS54fVwKvkufZAcBPyiXiprLKVPL6QtkH0VpLruqi9LykyWX/J5NTX44DjlJ2E7wiIl6tXXteBEaTxeI3YOHaJxcBN0TEY+39O5TrqDsb2RLjc6/s3OeemVm34uDQh1BdhCVtQE6NOYxs7wnZ6vNU4CHlVLADyIybYyLi7Y7uo3qQjYjRknotKsW3iRfIuiw7ACtW24iIC5r8XMuTAaU5wPJkgOhd4BfkHPdZH+AYrBuoBV4eJG9qB0hatTEIWjt3dgVWJFveV93OxpNB1BOA4copan3IYulXkW1yryZHRqv9zqS16LRZVzGJLAj7GnmOXEMWmp1K/l4fSD4g7gP0lnRWRNxZ1t2AzK67gRyQeCZaW0oPIwOxJ5F15Yic0jmG/L2/tqQVag+o1Kad3AN8GZgTEcdLupGsSXcu8HVJ55AZrkHW+XoO2JvMXp1Qn4YSEZPJ4vRmyxqfe2Zm1u3Ig+htKyMsPcmuC01HTSRtBfwc+AQ5fWscMJe8gbg5Iv4qaRPyJqAP8AUyUAN5YRa1gE17x1MepnvQ2g2iQ6M5JdizXhtTdJC0XH1bKrVhJJ1M3vy8TnYtuysipjeub9ao9h26lwzo7B8RI8p3rZriVdU/+CVZZ+E/ImJobd1NgLOAT5M3tq8DvwF+1tb3uLbvDnXyM1uWqdRzk3Ql2fnvvIg4o/aQWF92feA/yQyHP0TEkGobQJ/IqcXVshuRGXefLq8zgd2iFGOX1A+4mQzQnhARU2rrVsd0GHAdcG5EnFU+W418SD6bnPbyInBQGdTYGJgZEW80+Vl9ztoyw+eemZl1Zw4OdYCyON+6wIsNU6/WAH5GTrn6V7IW0KRoo627pBPJzJvZ5JSy2WSwaBUy+HIx8Kdl5UKtWrFps/ejFuD5NllY+qcRcXIby51EBlbHA4PbuoEtUzTfqN8ol/cF9Gy8WTfrCmqDAV8AfkcWnz2wDA4EOagQtemZG5FZAsuTD5wP17bVi5yC8nUym2EO8FcyULsL8M8R8Yuy7NrkOTmQfMB8oo1j60MGa0dGxH4Nn61O1v0aHw3d//wgap2Bzz0zM+vOXGCuQbnYI2ljSUMlPU4WCxwJXClp79riQdZBeSoiLoyIZ9sKDBWXk1lDl5Npyk8Dd5LzzA+hNfuo3p1iqXFgyD6E6iZ0RHndD1oKdG4r6WhJd5Df+TuBrzYJDCmyKOYUpZaimJEcGLIuqfYgV9V3G1Len1+++/XOST1KNt1t1bIqraXL3w8ng7RrAeeR15t9yVpgAINru34LeBjYENi68bhK4PdNcsrKzmoohhsR0yPixsaH04afyWyZ5XPPzMy6s25Vc6g2JWtes4tlGQ1aC/gpmar7KHA92Qb+S8BBkg4C/hwR0yS9QLbsPhn4G1lcdzqwNlkc95my3XnArZKGR+sUrhWAlcnigmeTxQ9HRQeni5kti6pzKyLGS5pKFpb+d2BLclR0M3JK5Q+ByyNiYnvbqf3ZwSDrNqqHQWXNrX6SBkTEI1VmXhur3EHWvtsNWCGyjklf8uH0ZWC/qE3JlFSdd7tLWj4i5kTEXEmjgRlAf0m3RqmVUq1WXgeRWbL1z6rtVq2//UBqnZLPPTMz666WeobK4lSyDaoit9XIz9wSAFq5nVWvIQtI/wD4KvCtiDgY2JMc3bmA0haevPhPAH5MTiu7hwwojQDukrRA0ef6jUVEzI4sTr06+f/i6Q/+05otO2rZb1V73nOAA8vfjwH6R8TpzQJDZtaiamG9f3ltvG5X15RR5bU/8F758xpk18kRsXCtruPI6S3rkVNeKi+S9VD2I6c+t6gySktG37u1DIn6MuGHU+sifO6ZmVm30qmCQ5LWlPRPkj5Z/t6z4XPVL5jlOllvMb+zpB+X0Zn7JJ0mac2GbewO7EG2BT0nIiZFxJxSX+jvwL1ka9B9yyrXAZ8iH3hPBg4lU4m/S85BP0XSLmXba5XXVSX1lbSPpAvJ+egPkCnFZl3JBcC3gX+IiHUi4siS+j6tnK6d6neQ2RJUPeQ1PqAukLlQBjtEZqxOA3qTLbOrbUwhs/f6AEhaR9LR5ADIE2S3wINqm3wBOBo4LCJeafcA/SBqXZPPPTMz65Y6xbSyWjG9T5DTvS4hR2oWulA3rNcL+CaZ1juezO5Zn6z5sxFwPtBX0pm1C3E/YFVgvLIQ9Z5ke/oB5KhQv7LcJmWfc8kpMlc3Hq+yi8RQYBsym+hASUOBFYBZ5RhWIm9AzljUzYBZZ1FlyEXEXcBd1fvKjmUREdXUTt/gmrWhdj17kDxPBkhaNSLeqS9Xu97sSj5s/pnstAl53bsFOAEYXqbJ9CG7CF4FXEteuybU9juTrLFn1i353DMzs+6qUwSHahfqkWTdkW2redqwQHekTYCDybo9jwH/QAZnJpI/6zQyw2cs2R77++S0scfJoBPA2+X1EDIDaHtgNeBNskDhRcDwiHi9veMtI0U7lLfmlNcnyAflzcng0BVkJ4xn3v+/ilnnUDL8qmKerhtk1kHl2jZX0n3kQ+UewIgSZK2mmVTXx8+SD6ijI4u494iImZLOJbOEP00ObrxONkb4WZnuslOTfbvDkXVbPvfMzKw7WuZb2ZeU3Z6UbANJDwN9gUERMa4KEknaHLibzMoZEhHPlmlcPwCOB8YBu1QBpbLtvsBTZLDn8+W9A4DfkNlDD9LayrRldKd+XOXmYWNgWzJwtSGwMfA5MtPoRxExrLbeyk0KCTYrdGhmZt1QbeDj22R9u59GxMltLHcS2f1vPDA42u7+tw3wRkRMaXi/5Vq2WH4Is07I556ZmXVHy1zmUGO3hfJav3DeAewC7AqMqwV7ziEDM/tHxLPlvbfJoBBku/k5tZpEioinS9eIXSRtFVkc9wXgebIzxMGNF/OaAeQo0HPktLM7yWLVy5GZRmOAM8jU4RZVYKjUWhGtGRUODJmZWV01ejOCfEDdD1qmTG9EXgePKO/fCZze5OFU1QBHbcBlfrS25fbDqdmCfO6ZmVm3s8wFh9qoG9QX+ArQu4zajADOJFuGXl6WOQo4ErggIv5Y29ZcSU+S08lmSVojsjtYy1SXsr1vAh8np5+NB34LDAPOl3RKKZ7bg2xPvytwLFlQcH8yOHQ/8DWyO8XLwIMR8fIifk4Hg8zMrKnaIMl4SVPJ4rb/DmwJDAQ2I2ve/RC4PJp0/6tfV/1AarZoPvfMzKw7WirTytqbT126gh0APELW5rmYDMpMjYityzIzyEDOXmSAazQZpDmwBHJati9pC+B6su7PkRExqYzeqKQM703WAfqviDilrLMW8GuyI9njwJNke9KNgB2B2WS9oB9HxLRmPyM513x+s5/VzMysPbXpLXeTtUsgs1bvBm4C7mp2HTKzD87nnpmZdTcfOHOocfrXogrolUwdorVLUbN1DgUuBS4DDiMzey4BJteKUN8P7ANsQab1rgZ8rwSGekatfT3ZmexRsrj0ZsCkss9qv/eV1wGSVoiI2RHxeqk99F0yALUnsDrwKvAr4KaIeKLJv4nKP0tQihaamZl9SBcAvwd+FxGT6h/UBzyWypGZdW0+98zMrFvocOZQLfDRdEpURzssSOoP9ALur7bV0BL0amBr4KqIOLa2XjWK8w3gJ8CfyMDN7yPiwHb2dywZbPoGcEktONWzFLn+M7Ad8OmIGC1puapAoLKd/ebASxExY1E/m5mZ2eJWuiZFw2CImS1mPvfMzKyr6tHRBauiySU401vSAZJOK/8dKmnPZutK6iXpMEm3SpoO/AW4BRgr6dBq+2XxV8hW85D1f5C0Qq2QNMDt5bUf2WJ+sKRLS9ewtkwgU4EHkkGplkMrr6OA3pS2ovXOERExKyImRMQMST0kLVfqD5mZmS0xknrWsnbn+uHUbMnwuWdmZt1Bh6aVlWDIIHJq1r7APwDvAu8A69YWHSnp9Ih4vLZuH+BUsojzC8CV5PSsNcnaQj8pSUM3lVWmkjV+KPsgImaXv1cFAp+XNLns/2TgEOA44ChJw4ArIuLVWibTi2Rdop2BDYC3y0W+yoC6CLghIh5r79+hZDk5ddjMzJY4P5CaLR0+98zMrDvoaM2hSWQx5teAPwPXAM+SgZwXyIyc48g6QL0lnRURd5Z1NyDbvt9A1ut5JlrbuQ8jM3pOIov7ERGzJI0hC0ivXdUBqg6kNuXrHuDLwJyIOF7SjcC3gHOBr0s6h+xmFsAbZMHqvYF1gAn1ukMRMZnsOmFmZmZmZmZm1q20W3OoVpPnSuAo4LyIOKNek6e27PrAf5LZRX+IiCHVNoA+ETG1tuxGwEFk94eDgJnAbhHxVPm8H3AzOa3shIiY0sYxHQZcB5wbEWeVz1YjA1Rnk1POXgQOKnWENgZmRsQbTX7WDtVLMjMzMzMzMzPrShZVO6eaQvXf5XXH6n2lHrVaQJOBoWTGz6dKYemqO9nUUnfoWEkPkUGb/ySnpz1BdgIbXNvv38v7/cmMpRa11N6R5XVg7bMZEXEzOQXuMOAzETG6fPZSRLzRULuovl0HhszMzMzMzMys22k3OFQLmFTt3oeU9+fXClRXy/SIiJeA26plG4JHhwMXAmsB55F1gvYFhpXP68Ght4CHgQ3JrmULKF3L3iSni+3cWIg6IqZHxI1VJlKTn8nMzMzMzMzMrNtbZNetWiBmHLCSpAHV+01WuaO87gasUNrT9yUDQ5OBvSLijIgYHhGvAxPL8rtLWh5auoWNBmYA/SWt3HhY5XUQsGkJSjUet5plCZmZmZmZmZmZWXo/Ldmr9vH7N1m3moI2qrz2B94rf16DbCE/oo1AznHAPGA9snB15UWyFtF+QJ/6CtXUstJi/t22gkAls8lZQmZmZmZmZmZm7ehIcKgKsDQGhxZo6V4yhARMB6YBvcl29dU2pgBbldb2SFpH0tFkO/sngBXJ4tSVF4CjgcMi4pV2D9BBIDMzMzMzMzOzD2SRrexrgZcHySDPAEmrRsQ79eWqbl+lEPWKZMv7nuXj8cAtwAnAcEnjyGygvYCrgGuBq4EJtf3OpLXotJmZmZmZmZmZLQaLDA5BS92huZLuIwM6ewAjJC1HTgmrB5E+SwaHRkfElLLuTEnnkplKnybbzL8OXA78rEw126nJvt1i3szMzMzMzMxsMVFH4i4lwDNf0rfJwtI/jYiT21juJODnZKbQ4Ih4o41ltgHeiIgpDe8L6FmKUZuZmZmZmZmZ2RLQ0eBQNWVse7Jr2cSI2FpSL2AjYFfgCLJ49J3A6RExutl2qj+T087mR8T8xmXNzMzMzMzMzGzx61BwaIEVpCnA2sCZwJbAQGAzsk39DcDlETGx+RbMzMzMzMzMzGxZ0eHgUG1q2d1k3SDIukF3AzcBd0XEtMVzmGZmZmZmZmZmtjh8kODQvsD2wO8iYlLDMirb9DQxMzMzMzMzM7NO4H1PK1toA9mxLCJi3kdzSGZmZmZmZmZmtqR8oOCQpKqQtFvMm5mZmZmZmZl1Yh86c8jMzMzMzMzMzDqvHkv7AMzMzMzMzMzMbOlxcMjMzMzMzMzMrBtzcMjMzMzMzMzMrBtzcMjMzMzMzMzMrBtzcMjMzMzMzMzMrBtzcMjMzMzMzMzMrBtzcMjMzMyWWZJmtPHe1yUdtYj1jpF0cZPP/q0D+11f0nWSnpP0mKTbJW3d8SNvut29JA0vf/68pO+UP39B0na15b4nae8Puz8zMzOzjlhuaR+AmZmZ2fsREb/4kJv4N+C8Zh9KEnAzcFVEHFHe2xFYD3jmQ+67RUTcCtxa/voFYDjwZPnsrI9qP2ZmZmaL4swhMzMz61QknS3p1PLnAZLGShot6UJJf60tuqGkEZKelXRBWf58YOWy/K+b7OJTwJx6ECoixkTE/UoXSvqrpHGSDi/b3UvSHyXdKGmCpF+XIBOSPlPeexz4Yu3nOEbSxZI+AXweuLAc15aSrpR0aFluiKQnyv6ukLRief9vkoZJerx8tk15f3DZzuiy3uofyT+8mZmZdVkODpmZmVln9ivgpIjYCZjX8NlOwOFAP+BwSZtExHeAdyNip4j4xybb/BjwWJPPvli2uyOwNxnQ2aB81h84BdgO2AL4pKSVgEuBA4GPA+s3bjAiHiAziIaW43qu+qysfyVweET0I7O+/6m2+tSI2Bn4OXBqee9U4Bvl32QP4N0mP4uZmZkZ4OCQmZmZdVKSegOrR8SD5a3/37DIPRHxdkTMIqdrbfYR7HYQ8JuImBcRk4H7gAHls4cj4qWImA+MBjYHtgGej4hnIyKAa9/n/vqW9avpbFcBe9Y+/115fazsD2AUcJGkbwG9I2Lu+9ynmZmZdTMODpmZmVlX9V7tz/PoeK3F8WSWz5La34dR7bNlfxFxPnA8sDIwqppuZmZmZtaMg0NmZmbWKUXEW8B0SQPLW0d0cNU5kpZv5/N7gRUlnVi9IWkHSXsA95NT1HpKWofM4nm4nW1NADaXtGX5+5FNlpsOtFUb6Omy/lbl718ls5WakrRlRIyLiB8Cj5DZS2ZmZmZNOThkZmZmy7JVJL1U++9fGj4/DrhU0mhgVeDtDmzzl8DYZgWpy/Svg4G9Syv78cAPgFfJLmZjgTFkEOm0iHi12Y7KlLYTgd+XgtRTmix6HTC0FJDesmH9Y4HfShoHzAcW1a3tlFIweywwB7hjEcubmZlZN6e8/zEzMzPrfCStFhEzyp+/A2wQEf93KR+WmZmZWaeyJObCm5mZmS0un5N0OnlPMwk4ZukejpmZmVnn48whMzMz65YkrQXc08ZHQyLi9SV9PGZmZmZLi4NDZmZmZmZmZmbdmAtSm5mZmZmZmZl1Yw4OmZmZmZmZmZl1Yw4OmZmZmZmZmZl1Yw4OmZmZmZmZmZl1Yw4OmZmZmZmZmZl1Y/8LoWNc6WDKKzIAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 1440x720 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "result222_dfLight_Conditions.plot.bar(stacked=True,rot=15, title=\"Accidents Light Conditions \",figsize=(20, 10))\n",
-                "plt.xticks(fontsize=20)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 207,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "DataFrame[Accident_Index: string, 1st_Road_Class: string, 1st_Road_Number: string, 2nd_Road_Class: string, 2nd_Road_Number: string, Accident_Severity: string, Carriageway_Hazards: string, Date: string, Day_of_Week: string, Did_Police_Officer_Attend_Scene_of_Accident: string, Junction_Control: string, Junction_Detail: string, Latitude: string, Light_Conditions: string, Local_Authority_(District): string, Local_Authority_(Highway): string, Location_Easting_OSGR: string, Location_Northing_OSGR: string, Longitude: string, LSOA_of_Accident_Location: string, Number_of_Casualties: string, Number_of_Vehicles: string, Pedestrian_Crossing-Human_Control: string, Pedestrian_Crossing-Physical_Facilities: string, Police_Force: string, Road_Surface_Conditions: string, Road_Type: string, Special_Conditions_at_Site: string, Speed_limit: string, Time: string, Urban_or_Rural_Area: string, Weather_Conditions: string, Year: bigint]"
-                        ]
-                    },
-                    "execution_count": 207,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result222"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 209,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+-----------+---------------+\n",
-                        "|Accident_Severity|    Light_Conditions|Speed_limit|Total accidents|\n",
-                        "+-----------------+--------------------+-----------+---------------+\n",
-                        "|           Slight|Darkness - lights...|         40|             10|\n",
-                        "|           Slight|Darkness - lights...|         40|              1|\n",
-                        "|           Slight|            Daylight|         30|             50|\n",
-                        "|           Slight|            Daylight|         40|             49|\n",
-                        "|          Serious|Darkness - lights...|         40|              1|\n",
-                        "|            Fatal|Darkness - lights...|         40|              1|\n",
-                        "|          Serious|            Daylight|         30|              2|\n",
-                        "|           Slight|Darkness - lights...|         30|             12|\n",
-                        "|          Serious|            Daylight|         40|              3|\n",
-                        "|           Slight|Darkness - lighti...|         30|              4|\n",
-                        "|           Slight|Darkness - no lig...|         40|              1|\n",
-                        "|            Fatal|            Daylight|         40|              1|\n",
-                        "+-----------------+--------------------+-----------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "result222_SPPEDANDWEATEHR = result222.groupby('Accident_Severity','Light_Conditions','Speed_limit').agg(F.count(result222.Accident_Index).alias('Total accidents'))\n",
-                "result222_SPPEDANDWEATEHR.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+---------------+\n",
-                        "|Accident_Severity|Total accidents|\n",
-                        "+-----------------+---------------+\n",
-                        "|           Slight|            127|\n",
-                        "|            Fatal|              2|\n",
-                        "|          Serious|              6|\n",
-                        "+-----------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "acciden_index_df = accidentindex.groupby('Accident_Severity').agg(F.count(accidentindex.Accident_Severity).alias('Total accidents'))\n",
-                "acciden_index_df.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 85,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "ok_sparkDF=spark.createDataFrame(ok) \n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 86,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "DataFrame[Accident_Index: string, 1st_Road_Class: string, 1st_Road_Number: string, 2nd_Road_Class: string, 2nd_Road_Number: string, Accident_Severity: string, Carriageway_Hazards: string, Date: string, Day_of_Week: string, Did_Police_Officer_Attend_Scene_of_Accident: string, Junction_Control: string, Junction_Detail: string, Latitude: string, Light_Conditions: string, Local_Authority_(District): string, Local_Authority_(Highway): string, Location_Easting_OSGR: string, Location_Northing_OSGR: string, Longitude: string, LSOA_of_Accident_Location: string, Number_of_Casualties: string, Number_of_Vehicles: string, Pedestrian_Crossing-Human_Control: string, Pedestrian_Crossing-Physical_Facilities: string, Police_Force: string, Road_Surface_Conditions: string, Road_Type: string, Special_Conditions_at_Site: string, Speed_limit: string, Time: string, Urban_or_Rural_Area: string, Weather_Conditions: string, Year: bigint]"
-                        ]
-                    },
-                    "execution_count": 86,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "result222"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 87,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+-----------------+\n",
-                        "|Accident_Index|Accident_Severity|\n",
-                        "+--------------+-----------------+\n",
-                        "| 2005215401199|           Slight|\n",
-                        "| 2005215424144|           Slight|\n",
-                        "| 2007217002388|           Slight|\n",
-                        "| 2007217006968|           Slight|\n",
-                        "| 2012212004022|           Slight|\n",
-                        "| 2005215410310|           Slight|\n",
-                        "| 2005215414773|           Slight|\n",
-                        "| 2005215415298|           Slight|\n",
-                        "| 2007217004953|           Slight|\n",
-                        "| 2007217008506|           Slight|\n",
-                        "| 2007217016015|           Slight|\n",
-                        "| 2008218014896|          Serious|\n",
-                        "| 2010210002455|           Slight|\n",
-                        "| 2010210003942|           Slight|\n",
-                        "| 2005215419241|          Serious|\n",
-                        "| 2005215425568|           Slight|\n",
-                        "| 2006216412941|           Slight|\n",
-                        "| 2005215427716|           Slight|\n",
-                        "| 2006216412517|           Slight|\n",
-                        "| 2006216418245|           Slight|\n",
-                        "+--------------+-----------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "accidentindex=result222.select('Accident_Index','Accident_Severity')\n",
-                "accidentindex.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 100,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Accident_Index</th>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>2005215401199</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>2005215424144</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>2007217002388</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>2007217006968</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>2012212004022</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>130</th>\n",
-                            "      <td>2016210123287</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>131</th>\n",
-                            "      <td>2017210173390</td>\n",
-                            "      <td>Serious</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>132</th>\n",
-                            "      <td>2017210173970</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>133</th>\n",
-                            "      <td>2.02E+12</td>\n",
-                            "      <td>Fatal</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>134</th>\n",
-                            "      <td>2.01921E+12</td>\n",
-                            "      <td>Slight</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>135 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    Accident_Index Accident_Severity\n",
-                            "0    2005215401199            Slight\n",
-                            "1    2005215424144            Slight\n",
-                            "2    2007217002388            Slight\n",
-                            "3    2007217006968            Slight\n",
-                            "4    2012212004022            Slight\n",
-                            "..             ...               ...\n",
-                            "130  2016210123287            Slight\n",
-                            "131  2017210173390           Serious\n",
-                            "132  2017210173970            Slight\n",
-                            "133       2.02E+12             Fatal\n",
-                            "134    2.01921E+12            Slight\n",
-                            "\n",
-                            "[135 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 100,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "acciden_index=accidentindex.toPandas()\n",
-                "acciden_index"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 122,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+---------------+\n",
-                        "|Accident_Severity|Total accidents|\n",
-                        "+-----------------+---------------+\n",
-                        "|           Slight|            127|\n",
-                        "|            Fatal|              2|\n",
-                        "|          Serious|              6|\n",
-                        "+-----------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "acciden_index_df = accidentindex.groupby('Accident_Severity').agg(F.count(accidentindex.Accident_Severity).alias('Total accidents'))\n",
-                "acciden_index_df.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 123,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Total accidents</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>127</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>Fatal</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>Serious</td>\n",
-                            "      <td>6</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "  Accident_Severity  Total accidents\n",
-                            "0            Slight              127\n",
-                            "1             Fatal                2\n",
-                            "2           Serious                6"
-                        ]
-                    },
-                    "execution_count": 123,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "acciden_index_df=acciden_index_df.toPandas()\n",
-                "acciden_index_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 121,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th>Total accidents</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>127</th>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "Empty DataFrame\n",
-                            "Columns: []\n",
-                            "Index: [2, 6, 127]"
-                        ]
-                    },
-                    "execution_count": 121,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "\n",
-                "acciden_index_dff=acciden_index_df.pivot(index ='Total accidents', columns ='Accident_Severity')\n",
-                "acciden_index_dff"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 124,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:title={'center':'Accidents on Study Road'}>"
-                        ]
-                    },
-                    "execution_count": 124,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZXklEQVR4nO3de5RU5Z3u8e8jtLQoBxQYlYvCRBQR5JIGkzGOKGZJxETjSTwaUVCPrVHHZDKixCRoXIPBiZMYMzOexcQIIajgFTXqiIi3k4g0CsjFOaKANAJ2UCMiKOjv/FGbTtF205eiKfrt57NWr6693733+6u9u5/a9dauKkUEZmaWln2KXYCZme1+DnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53G23krRU0vA62oZLqtyzFbVskkLSEcWuY1ckrZJ0SrHrsJ053A1Jz0h6T1K7QrcVEcdExDO7oaxd2lsCRdLFkl6TtEnSBkmPSeqQtU2R9M9FqmuKpE8kfSjpXUmzJfUtRi1WHA73Vk5SL+AEIIBvFLealkXSicBNwLkR0QE4GphR3Kp28i8RcQDQHVgL3FHkemwPcrjbBcCLwBRgTH6DpJ6SHpBUJWmjpH/La7tE0vLsjHWZpCHZ/Oozakn7ZWeQ70laBgytsf1uku7Ptr9S0lV5bTdIminpd1kfSyWVZW3TgMOAR7Iz02sklUr6fVbn+5LmSzq4tjss6ejs2cr72Xa/kdc2RdK/S/pD1u88SV+oY98NBf4UEa8ARMS7ETE1IjZJKgfOA67Janwk2/5Owyw1z+4ljZO0TtLbki7Kmz80e2bQJm/eWZIW1VFbtYjYAswEBjVwH4yS9IqkDyStkXRDjf13vqTV2b7+UX39W5FEhH9a8Q+wArgc+CKwDTg4m98GWAT8EtgfKAW+krV9m9yZ4FBAwBHA4VnbKuCU7PYk4HngIKAnsASozNr2ARYAE4B9gb8F3gROzdpvALYCp2W1/Ax4Ma/u6n6y6UuBR4D22fJfBP5HLfe3JLvP12X9ngxsAo7K2qcAG4FhQFtgOnBPHfvuBGAL8FPgeKBdjfYpwD/XmBfAEbUtA4wENgD9s31+V/7ywDLga3nrPgj8Ux215W93f2AasKiB+2A4MCA7RsdmNZ2ZtfUDPgT+HmgH/ALYnn8s/LN3/PjMvRWT9BXgcGBmRCwA3gC+kzUPA7oB4yJic0RsjYgXsrb/Te4p//zIWRERq2vp4mxgYuTOaNcAt+W1DQW6RsSNEfFJRLwJ/CdwTt4yL0TEYxHxKblwGriLu7MN6EwuCD+NiAUR8UEty30JOACYlPX7NPAocG7eMg9GxEsRsZ1cuA+qrcOIeB44CxgC/AHYKOkX+WfXjXQ2cGdELImIzeQe4PJNBUYDSDoIOJXcA0Bdrpb0Prng/gpwfjZ/l/sgIp6JiFcj4rOIWAzcDZyYrfst4NGIeC4iPgZ+AnzWxPtrzcjh3rqNAZ6MiD9n03fx16GZnsDqLOBq6knugaA+3YA1edP5DwCHA92yYYH3sxC6DsgfSlmfd/sjoFRS2zr6mgb8F3BPNqTxL5JK6qopIvIDaTW5cem6+j2gjj6JiMcj4uvknp2cAYwl9+DXFLvaXwC/B74uaX9yDwTPR8S6XWzvlojoBPQi9wzjqPx+6toHko6TNDcbLvsLcBnQpbYaswehjQ2+h7bHONxbKUn7kQuIEyWtl7Qe+EdgoKSB5P6BD6sjTNcAdY1D51tH7oFgh8NqbGNlRHTK++kQEac18C7s9HGmEbEtIn4aEf2AvwNOJ/d6Qk1vAz0l5f/tH0ZumKnJsrPcOcDT5IZVPldj5iNyQ0c7HJJ3e1f7i4hYC/yJ3LOF88k9oDWktreA7wG/yo57ffvgLuBhoGdEdAT+D7nht8/VKKk9uWdMtpdxuLdeZwKfkhtDHZT9HE1ujPwC4CVy/8iTJO2fvWB5fLbub8g95f+ico6QdHgtfcwEfijpQEk9gH/Ia3sJ2CTp2uyF1zaS+ksaWst2arOB3Dg9AJJOkjQgGxL5gNwwTW3DBfPIBew1kkqUuyb/68A9Dey3mqQzJJ2T3T9JGkZu+OLF2mrMLAS+k93fkfx1uANy+2uspH5ZaF5fS7e/A64hNyb+QENrjYjZ5EK9nPr3QQfg3YjYmt2n7+Rt6j7gdElfkbQvcCPOkb2SD0rrNYbc+O5bEbF+xw/wb+Su8hC5f/gjgLeASuB/AUTEvcBEcmd4m4CHyA1L1PRTck/3VwJPknemmY2jn07uQWUl8GdyDxodG1j/z4AfZ0M6V5M7A76PXLAvB56lljPbiPgku19fy/r8D+CCiHitgf3mew+4BHg96/f3wM8jYnrWfgfQL6vxoWze97L+3ye3n3fMJyIeB24ld/a/Ivtd04PkhrQejIiPGlnvz8k9MOw4tnXtg8uBGyVtIveC98y8GpcCV5A79uuyfeA3pu2FFOEv6zBrSSS9AVwaEU8Vuxbbe/nM3awFkfQ/yY3l13ZWb1atrisPzGwvI+kZcq+RnF/jShezz/GwjJlZgjwsY2aWIIe7mVmC9oox9y5dukSvXr2KXYaZWYuyYMGCP0dE19ra9opw79WrFxUVFcUuw8ysRZFU22c6AR6WMTNLksPdzCxBDnczswTtFWPuZrbnbNu2jcrKSrZu3VrsUqyBSktL6dGjByUltX2Kde0c7matTGVlJR06dKBXr15Iqn8FK6qIYOPGjVRWVtK7d+8Gr+dhGbNWZuvWrXTu3NnB3kJIonPnzo1+puVwN2uFHOwtS1OOl8PdzPaojRs3MmjQIAYNGsQhhxxC9+7dq6c/+eSTnZa99dZb+eij+j+2fvjw4c32XpkJEybw1FOf/3TlZ555htNPP73J273pppsKKaterXLMvdf4PxS7hGa1atKoYpdgLcju/n+o7++vc+fOLFy4EIAbbriBAw44gKuvvrrWZW+99VZGjx5N+/bta23fE2688cZm2e5NN93Edddd1yzbBp+5m9leYM6cOQwePJgBAwZw0UUX8fHHH3Pbbbfx9ttvc9JJJ3HSSScB8N3vfpeysjKOOeYYrr++tm8h3NmNN97I0KFD6d+/P+Xl5ez4FNwVK1ZwyimnMHDgQIYMGcIbb+S+7/3mm29mwIABDBw4kPHjxwMwduxY7rvvPgCeeOIJ+vbty5AhQ3jggb9+y+HmzZu56KKLGDZsGIMHD2bWrFkATJkyhbPOOouRI0fSp08frrnmGgDGjx/Pli1bGDRoEOeddx6bN29m1KhRDBw4kP79+zNjxoyC96nD3cyKauvWrYwdO5YZM2bw6quvsn37dm6//XauuuoqunXrxty5c5k7dy4AEydOpKKigsWLF/Pss8+yePHiXW77yiuvZP78+SxZsoQtW7bw6KOPAnDeeedxxRVXsGjRIv74xz9y6KGH8vjjjzNr1izmzZvHokWLqoM4v85LLrmERx55hAULFrB+/frqtokTJ3LyySfz0ksvMXfuXMaNG8fmzZsBWLhwYfV9mzFjBmvWrGHSpEnst99+LFy4kOnTp/PEE0/QrVs3Fi1axJIlSxg5cmTB+9XhbmZF9emnn9K7d2+OPPJIAMaMGcNzzz1X67IzZ85kyJAhDB48mKVLl7Js2bJdbnvu3Lkcd9xxDBgwgKeffpqlS5eyadMm1q5dyze/+U0gdw15+/bteeqpp7jwwgurh4AOOmjnrwV+7bXX6N27N3369EESo0ePrm578sknmTRpEoMGDWL48OFs3bqVt956C4ARI0bQsWNHSktL6devH6tXf/7jYAYMGMDs2bO59tpref755+nYsaFfJVy3VjnmbmYtz8qVK7nllluYP38+Bx54IGPHjt3l5YFbt27l8ssvp6Kigp49e3LDDTc02xu3IoL777+fo446aqf58+bNo127dtXTbdq0Yfv27Z9b/8gjj+Tll1/mscce48c//jEjRoxgwoQJBdXkM3czK6o2bdqwatUqVqxYAcC0adM48cQTAejQoQObNm0C4IMPPmD//fenY8eObNiwgccff3yX290R5F26dOHDDz+sHjfv0KEDPXr04KGHHgLg448/5qOPPuKrX/0qd955Z/XVOe++++5O2+vbty+rVq2qHp+/++67q9tOPfVUfv3rX1eP6b/yyiv13u+SkhK2bdsGwNtvv0379u0ZPXo048aN4+WXX653/fr4zN3Miqq0tJQ777yTb3/722zfvp2hQ4dy2WWXAVBeXs7IkSOrx94HDx5M37596dmzJ8cff/wut9upUycuueQS+vfvzyGHHMLQoUOr26ZNm8all17KhAkTKCkp4d5772XkyJEsXLiQsrIy9t13X0477bSdLlcsLS1l8uTJjBo1ivbt23PCCSdUP/D85Cc/4fvf/z7HHnssn332Gb17964e369LeXk5xx57LEOGDOGCCy5g3Lhx7LPPPpSUlHD77bc3dXdW2yu+Q7WsrCz25Oe5+1JIa82WL1/O0UcfXewyrJFqO26SFkREWW3L1zssI+m3kt6RtCRv3s8lvSZpsaQHJXXKa/uhpBWS/lvSqU2/K2Zm1lQNGXOfAtS8Lmc20D8ijgX+H/BDAEn9gHOAY7J1/kNSm91WrZmZNUi94R4RzwHv1pj3ZETseMn3RaBHdvsM4J6I+DgiVgIrgGG7sV4zM2uA3XG1zEXAjpetuwNr8toqs3lmthfZG15rs4ZryvEqKNwl/QjYDkxvwrrlkiokVVRVVRVShpk1QmlpKRs3bnTAtxA7Ps+9tLS0Ues1+VJISWOB04ER8de/krVAz7zFemTzPiciJgOTIXe1TFPrMLPG6dGjB5WVlfikquXY8U1MjdGkcJc0ErgGODEi8j+P82HgLkm/ALoBfYCXmtKHmTWPkpKSRn2jj7VM9Ya7pLuB4UAXSZXA9eSujmkHzM4+RP7FiLgsIpZKmgksIzdcc0VEfNpcxZuZWe3qDfeIOLeW2XfsYvmJwMRCijIzs8L4s2XMzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7ME1Rvukn4r6R1JS/LmHSRptqTXs98HZvMl6TZJKyQtljSkOYs3M7PaNeTMfQowssa88cCciOgDzMmmAb4G9Ml+yoHbd0+ZZmbWGPWGe0Q8B7xbY/YZwNTs9lTgzLz5v4ucF4FOkg7dTbWamVkDNXXM/eCIWJfdXg8cnN3uDqzJW64ym/c5ksolVUiqqKqqamIZZmZWm4JfUI2IAKIJ602OiLKIKOvatWuhZZiZWZ6mhvuGHcMt2e93svlrgZ55y/XI5pmZ2R7U1HB/GBiT3R4DzMqbf0F21cyXgL/kDd+Ymdke0ra+BSTdDQwHukiqBK4HJgEzJV0MrAbOzhZ/DDgNWAF8BFzYDDWbmVk96g33iDi3jqYRtSwbwBWFFmVmZoXxO1TNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQ53M7MEOdzNzBLkcDczS5DD3cwsQQWFu6R/lLRU0hJJd0sqldRb0jxJKyTNkLTv7irWzMwapsnhLqk7cBVQFhH9gTbAOcDNwC8j4gjgPeDi3VGomZk1XKHDMm2B/SS1BdoD64CTgfuy9qnAmQX2YWZmjdTkcI+ItcAtwFvkQv0vwALg/YjYni1WCXQvtEgzM2ucQoZlDgTOAHoD3YD9gZGNWL9cUoWkiqqqqqaWYWZmtShkWOYUYGVEVEXENuAB4HigUzZMA9ADWFvbyhExOSLKIqKsa9euBZRhZmY1FRLubwFfktRekoARwDJgLvCtbJkxwKzCSjQzs8YqZMx9HrkXTl8GXs22NRm4FviBpBVAZ+CO3VCnmZk1Qtv6F6lbRFwPXF9j9pvAsEK2a2ZmhfE7VM3MEuRwNzNLkMPdzCxBDnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQ53M3MEuRwNzNLkMPdzCxBDnczswQVFO6SOkm6T9JrkpZL+rKkgyTNlvR69vvA3VWsmZk1TKFn7r8CnoiIvsBAYDkwHpgTEX2AOdm0mZntQU0Od0kdgb8H7gCIiE8i4n3gDGBqtthU4MzCSjQzs8Yq5My9N1AF3CnpFUm/kbQ/cHBErMuWWQ8cXGiRZmbWOIWEe1tgCHB7RAwGNlNjCCYiAojaVpZULqlCUkVVVVUBZZiZWU2FhHslUBkR87Lp+8iF/QZJhwJkv9+pbeWImBwRZRFR1rVr1wLKMDOzmpoc7hGxHlgj6ahs1ghgGfAwMCabNwaYVVCFZmbWaG0LXP8fgOmS9gXeBC4k94AxU9LFwGrg7AL7MDOzRioo3CNiIVBWS9OIQrZrZmaF8TtUzcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0uQw93MLEEOdzOzBDnczcwS5HA3M0uQw93MLEEFh7ukNpJekfRoNt1b0jxJKyTNkLRv4WWamVlj7I4z9+8By/OmbwZ+GRFHAO8BF++GPszMrBEKCndJPYBRwG+yaQEnA/dli0wFziykDzMza7xCz9xvBa4BPsumOwPvR8T2bLoS6F5gH2Zm1khNDndJpwPvRMSCJq5fLqlCUkVVVVVTyzAzs1oUcuZ+PPANSauAe8gNx/wK6CSpbbZMD2BtbStHxOSIKIuIsq5duxZQhpmZ1dTkcI+IH0ZEj4joBZwDPB0R5wFzgW9li40BZhVcpZmZNUpzXOd+LfADSSvIjcHf0Qx9mJnZLrStf5H6RcQzwDPZ7TeBYbtju2Zm1jR+h6qZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYIc7mZmCXK4m5klyOFuZpagJoe7pJ6S5kpaJmmppO9l8w+SNFvS69nvA3dfuWZm1hCFnLlvB/4pIvoBXwKukNQPGA/MiYg+wJxs2szM9qAmh3tErIuIl7Pbm4DlQHfgDGBqtthU4MwCazQzs0baLWPuknoBg4F5wMERsS5rWg8cvDv6MDOzhis43CUdANwPfD8iPshvi4gAoo71yiVVSKqoqqoqtAwzM8tTULhLKiEX7NMj4oFs9gZJh2bthwLv1LZuREyOiLKIKOvatWshZZiZWQ2FXC0j4A5geUT8Iq/pYWBMdnsMMKvp5ZmZWVO0LWDd44HzgVclLczmXQdMAmZKuhhYDZxdUIVmZtZoTQ73iHgBUB3NI5q6XTMzK5zfoWpmliCHu5lZghzuZmYJcribmSXI4W5mliCHu5lZghzuZmYJcribmSXI4W5mliCHu5lZghzuZmYJcribmSXI4W5mliCHu5lZghzuZmYJcribmSXI4W5mliCHu5lZggr5DlUzs0bpNf4PxS6hWa2aNKrYJVTzmbuZWYIc7mZmCXK4m5klyOFuZpYgh7uZWYKa7WoZSSOBXwFtgN9ExKTm6staF19xYVa/Zjlzl9QG+Hfga0A/4FxJ/ZqjLzMz+7zmGpYZBqyIiDcj4hPgHuCMZurLzMxqaK5hme7AmrzpSuC4/AUklQPl2eSHkv67mWrZG3QB/rynOtPNe6qnVsPHr+VK/dgdXldD0d6hGhGTgcnF6n9PklQREWXFrsOaxsev5WrNx665hmXWAj3zpntk88zMbA9ornCfD/SR1FvSvsA5wMPN1JeZmdXQLMMyEbFd0pXAf5G7FPK3EbG0OfpqIVrF8FPCfPxarlZ77BQRxa7BzMx2M79D1cwsQQ53M7ME+cs6momkvwGuBA4E7o2I5yQpPA7WIkjqD5RExCuS2kTEp8WuyRpO0tHk3jjZldz/34tFLmmP85l7M5DUFrgU6A0sBn4pqb+Dfe8nqZ2kR4EXgNuz2Z8VsSRrJEknAFOBQ4A3gP+U9IXiVrXn+QXVZiJpFTAgIjZJ+gFwKPCvEbG+uJVZfSSdDiwEHgJOjYiNRS3IGkXSoUBpRKzMpqcBT0TE9OJWtmf5zL0ZSOoAzAMGZLOeBUqBQcWqyRrlsYioBDYAJwNI8v9Ky7E+IlZKapdNl5D7GIJWxX+wzWcV0De7vRaoAo4qWjXWYBGxYxjmj8BXs9sqUjnWSDuGPyPiY0l9gL8h9yysVXG4N4/NwGrg2Gz6L+TezPV+sQqyJnkBGAzgF1RbrPOB+RGxutiF7GkO92aQnfk9C3xZUreI2AL8HbCuuJVZIz0PfCLpAABJJUWuxxpB0kHkni3/LJv+gqRW8wzM4d5Mso9b+L/Av0r6E7AFeK24VVkjDQAOA9ZImg50K3I91jg/IveayRRJrwMXAO12vUo6fLVMM8rO9L4MdAIej4htxa3IGkrSIcBdwHLgEWCOj1/Lkb0APp7cg/PvgZeyLw5qNRzuZmYJ8rCMmVmCHO5mZglyuJuZJcjhbmaWIIe7mVmCHO5mZglyuJuZJcjhbmaWoP8PemdquEtwSBYAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "acciden_index_df.plot.bar(stacked=True,rot=15, title=\"Accidents on Study Road\")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 105,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "(4196486, 23)\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "\n",
-                "print((V20052014.count(), len(V20052014.columns)))"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 106,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+-----------------+------------+-----------------------+-----------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+-------------------+----------------------------+-------------------------+-------------+-------------+--------------------+--------------------+---------------+--------------+-----------------+---------------------+----+-----------------+\n",
-                        "|Accident_Index|Vehicle_Reference|Vehicle_Type|Towing_and_Articulation|Vehicle_Manoeuvre|Vehicle_Location-Restricted_Lane|Junction_Location|Skidding_and_Overturning|Hit_Object_in_Carriageway|Vehicle_Leaving_Carriageway|Hit_Object_off_Carriageway|1st_Point_of_Impact|Was_Vehicle_Left_Hand_Drive?|Journey_Purpose_of_Driver|Sex_of_Driver|Age_of_Driver|  Age_Band_of_Driver|Engine_Capacity_(CC)|Propulsion_Code|Age_of_Vehicle|Driver_IMD_Decile|Driver_Home_Area_Type|Year|Accident_Severity|\n",
-                        "+--------------+-----------------+------------+-----------------------+-----------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+-------------------+----------------------------+-------------------------+-------------+-------------+--------------------+--------------------+---------------+--------------+-----------------+---------------------+----+-----------------+\n",
-                        "| 2005215415298|                1|       Goods|                      0|                4|                               0|                1|                       0|                        0|                          0|                         0|                  1|                           1|                        1|            1|           -1|Data missing or o...|                2496|              2|             9|                9|                    2|2005|           Slight|\n",
-                        "| 2005215415298|                2|         Car|                      0|                8|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            1|           39|          20Y to 40Y|                  -1|             -1|            -1|                3|                    1|2005|           Slight|\n",
-                        "| 2010210001706|                1|         Car|                      0|               18|                               0|                1|                       0|                        0|                          0|                         0|                  1|                           1|                       15|            1|           48|          40Y to 70Y|                  -1|             -1|            -1|                1|                    1|2010|           Slight|\n",
-                        "| 2010210001706|                2|         Car|                      0|                3|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            2|           29|          20Y to 40Y|                1229|              1|             5|                5|                    2|2010|           Slight|\n",
-                        "| 2014214001714|                1|         Car|                      0|               18|                               0|                1|                       0|                        0|                          0|                         0|                  1|                           1|                        1|            1|           50|          40Y to 70Y|                  -1|             -1|            -1|                5|                    1|2014|           Slight|\n",
-                        "| 2014214001714|                2|         Car|                      0|                3|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                        6|            2|           40|          20Y to 40Y|                1124|              1|             4|                6|                    1|2014|           Slight|\n",
-                        "| 2014214001714|                3|         Car|                      0|                3|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                        6|            1|           39|          20Y to 40Y|                  -1|             -1|            -1|                6|                    2|2014|           Slight|\n",
-                        "| 2007217007815|                1|         Car|                      0|                5|                               0|                4|                       0|                        0|                          0|                         0|                  1|                           1|                       15|            1|           18|            Upto 20Y|                1242|              1|             9|                6|                    1|2007|           Slight|\n",
-                        "| 2007217007815|                2|         Car|                      0|                3|                               0|                4|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            2|           46|          40Y to 70Y|                1597|              1|             9|               -1|                   -1|2007|           Slight|\n",
-                        "| 2010210001455|                1|         Car|                      0|               18|                               0|                1|                       0|                        0|                          0|                         0|                  1|                           1|                       15|            2|           43|          20Y to 40Y|                1895|              1|            11|                3|                    1|2010|           Slight|\n",
-                        "| 2010210001455|                2|         Car|                      0|                8|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            1|           47|          40Y to 70Y|                3498|              1|             6|                7|                    1|2010|           Slight|\n",
-                        "| 2006216424235|                1|         Car|                      0|               18|                               0|                0|                       0|                        0|                          1|                         5|                  1|                           1|                       15|            2|           32|          20Y to 40Y|                 998|              1|            10|                3|                    1|2006|           Slight|\n",
-                        "| 2006216424235|                2|         Car|                      0|               18|                               0|                0|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            1|           80|             Over 70|                1587|              1|            -1|                5|                    1|2006|           Slight|\n",
-                        "| 2010210003942|                1|         Car|                      0|                5|                               0|                1|                       0|                        0|                          0|                         0|                  1|                           1|                       15|            1|           35|          20Y to 40Y|                 998|              1|             3|                4|                    1|2010|           Slight|\n",
-                        "| 2010210003942|                2|         Car|                      0|                3|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            2|           50|          40Y to 70Y|                1229|              1|             5|                8|                    2|2010|           Slight|\n",
-                        "| 2009219003105|                1|         Car|                      0|               18|                               0|                1|                       1|                        0|                          0|                         0|                  1|                           1|                       15|            2|           -1|Data missing or o...|                2993|              2|             3|                5|                    1|2009|           Slight|\n",
-                        "| 2009219003105|                2|         Car|                      0|                4|                               0|                1|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            2|           44|          20Y to 40Y|                  -1|             -1|            -1|                5|                    1|2009|           Slight|\n",
-                        "| 2010210001384|                1|         Car|                      0|                7|                               0|                4|                       0|                        0|                          0|                         0|                  1|                           1|                        1|            1|           40|          20Y to 40Y|                1597|              1|             1|               10|                    3|2010|           Slight|\n",
-                        "| 2010210001384|                2|         Car|                      0|                4|                               0|                4|                       0|                        0|                          0|                         0|                  2|                           1|                       15|            2|           49|          40Y to 70Y|                1120|              1|            15|                7|                    1|2010|           Slight|\n",
-                        "| 2011211004849|                1|         Car|                      0|               18|                               0|                0|                       0|                        0|                          0|                         0|                  1|                           1|                        6|            2|           39|          20Y to 40Y|                1998|              1|             8|               -1|                   -1|2011|           Slight|\n",
-                        "+--------------+-----------------+------------+-----------------------+-----------------+--------------------------------+-----------------+------------------------+-------------------------+---------------------------+--------------------------+-------------------+----------------------------+-------------------------+-------------+-------------+--------------------+--------------------+---------------+--------------+-----------------+---------------------+----+-----------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "V20052014vech_dff = V20052014.join(accidentindex, on=['Accident_Index'])\n",
-                "\n",
-                "V20052014vech_dff.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 107,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "V20052014vech_dffpandas=V20052014vech_dff.toPandas()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 134,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "DataFrame[Accident_Index: string, Vehicle_Reference: string, Vehicle_Type: string, Towing_and_Articulation: string, Vehicle_Manoeuvre: string, Vehicle_Location-Restricted_Lane: string, Junction_Location: string, Skidding_and_Overturning: string, Hit_Object_in_Carriageway: string, Vehicle_Leaving_Carriageway: string, Hit_Object_off_Carriageway: string, 1st_Point_of_Impact: string, Was_Vehicle_Left_Hand_Drive?: string, Journey_Purpose_of_Driver: string, Sex_of_Driver: string, Age_of_Driver: string, Age_Band_of_Driver: string, Engine_Capacity_(CC): string, Propulsion_Code: string, Age_of_Vehicle: string, Driver_IMD_Decile: string, Driver_Home_Area_Type: string, Year: string, Accident_Severity: string]"
-                        ]
-                    },
-                    "execution_count": 134,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "V20052014vech_dff"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 138,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------------+-----------------+---------------+\n",
-                        "|  Age_Band_of_Driver|Accident_Severity|Total accidents|\n",
-                        "+--------------------+-----------------+---------------+\n",
-                        "|            Upto 20Y|          Serious|              1|\n",
-                        "|Data missing or o...|          Serious|              1|\n",
-                        "|          40Y to 70Y|          Serious|              2|\n",
-                        "|          20Y to 40Y|            Fatal|              3|\n",
-                        "|          20Y to 40Y|          Serious|              4|\n",
-                        "|             Over 70|           Slight|             96|\n",
-                        "|Data missing or o...|           Slight|            221|\n",
-                        "|            Upto 20Y|           Slight|            266|\n",
-                        "|          40Y to 70Y|           Slight|            806|\n",
-                        "|          20Y to 40Y|           Slight|           1276|\n",
-                        "+--------------------+-----------------+---------------+\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Age_df = V20052014vech_dff.groupby('Age_Band_of_Driver','Accident_Severity').agg(F.count(V20052014vech_dff.Accident_Index).alias('Total accidents')).sort(\"Total accidents\")\n",
-                "Age_df.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 139,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Age_Band_of_Driver</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>20Y to 40Y</th>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>1276.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>40Y to 70Y</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>806.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Data missing or out of range</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>221.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Over 70</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>96.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Upto 20Y</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>266.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                             Total accidents                \n",
-                            "Accident_Severity                      Fatal Serious  Slight\n",
-                            "Age_Band_of_Driver                                          \n",
-                            "20Y to 40Y                               3.0     4.0  1276.0\n",
-                            "40Y to 70Y                               NaN     2.0   806.0\n",
-                            "Data missing or out of range             NaN     1.0   221.0\n",
-                            "Over 70                                  NaN     NaN    96.0\n",
-                            "Upto 20Y                                 NaN     1.0   266.0"
-                        ]
-                    },
-                    "execution_count": 139,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Age_df_pandas=Age_df.toPandas()\n",
-                "Age_df_pandas=Age_df_pandas.pivot(index ='Age_Band_of_Driver', columns ='Accident_Severity')\n",
-                "Age_df_pandas"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 140,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:title={'center':'Accidents on Study Road'}, xlabel='Age_Band_of_Driver'>"
-                        ]
-                    },
-                    "execution_count": 140,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAE8CAYAAAAsfWGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABEsklEQVR4nO3deXxVxfnH8c9XdhTZXUHBpQiGEFYFFREUcKlaxeJSZRF3xWqrYm0rtaWlouXn0qq0ImoRd9RqVQRFRQRZDEgFETXsKKAoKLI+vz9mbnITkhCSkIX7vF+vvHLvWeece+9z5szMmZGZ4ZxzLjXsVd4JcM45V3Y86DvnXArxoO+ccynEg75zzqUQD/rOOZdCPOg751wK8aDvyoSk/0nqVsC8bpKWlW2KKjdJJumI8k5HYSRlSTq5vNPhcvOg7wokabKkbyTVKOm2zOxoM5tcCskqVEUJNJIulbRA0npJX0r6r6Q6cd4YSX8qp3SNkbRZ0gZJX0t6Q9JR5ZEWVz486Lt8SWoGnAAYcGb5pqZykXQi8GfgAjOrA7QEnirfVOVyp5ntAxwMLAceLuf0uDLkQd8V5BJgGjAG6Jc8Q1JTSc9LWi1praT7k+ZdJml+zOF+LKldnJ6dA5dUK+Y4v5H0MdAxz/YPkvRc3P4XkgYnzRsq6WlJj8V9/E9ShzjvceAQ4D8xJ3uzpJqS/h3TuU7SDEn753fAklrGu5t1cbtnJs0bI+nvkl6J+50u6fACzl1H4H0z+xDAzL42s0fNbL2ky4GLgJtjGv8Tt5+ruCbv3YCkmyStlLRC0sCk6R3jnUSVpGnnSJpTQNqymdlG4Gkgo4jn4HRJH0r6TtJSSUPznL+LJS2O5/q2ne3flRMz8z//2+EPWARcDbQHtgD7x+lVgDnASGBvoCZwfJx3HiHn2BEQcARwaJyXBZwcXw8H3gUaAE2BecCyOG8vYBbwe6A6cBjwOdArzh8K/AicFtPyF2BaUrqz9xPfXwH8B6gdl28P7JvP8VaLx/ybuN/uwHqgRZw/BlgLdAKqAmOBJws4dycAG4E/AMcBNfLMHwP8Kc80A47IbxmgN/AlkBbP+RPJywMfA6cmrTse+FUBaUve7t7A48CcIp6DbkDr+BmlxzSdHee1AjYAXYEawN+Arcmfhf9VjD/P6bsdSDoeOBR42sxmAZ8BF8bZnYCDgJvM7Hsz+9HMpsR5gwhFBzMsWGRmi/PZxc+BYRZywEuBe5PmdQQam9kdZrbZzD4H/gmcn7TMFDP7r5ltIwStNoUczhagISFAbjOzWWb2XT7LHQvsAwyP+30TeBm4IGmZ8Wb2gZltJQT9jPx2aGbvAucA7YBXgLWS/pacG99FPwceMbN5ZvY94cKX7FHgFwCSGgC9CBeGgvxa0jpCQD8euDhOL/QcmNlkM/vIzLab2VxgHHBiXLcP8LKZvWNmm4DfAduLebxuN/Kg7/LTD5hgZmvi+yfIKeJpCiyOgS+vpoQLxM4cBCxNep98YTgUOCgWL6yLwek3QHKRzKqk1z8ANSVVLWBfjwOvA0/GopE7JVUrKE1mlhyoFhPKvQva7z4F7BMze9XMfkq4mzkL6E+4KBZHYecL4N/ATyXtTbhAvGtmKwvZ3l1mVg9oRrgjaZG8n4LOgaRjJL0Vi92+Ba4EGuWXxnhxWlvkI3RlxoO+y0VSLULgOFHSKkmrgBuANpLaEH7YhxQQZJcCBZVzJ1tJuEAkHJJnG1+YWb2kvzpmdloRDyFXt7FmtsXM/mBmrYAuwBmE+oq8VgBNJSX/Jg4hFFcVW8wVTwLeJBTP7JDG6AdCEVTCAUmvCztfmNly4H3C3cXFhAtdUdK2BLgeuCd+7js7B08ALwFNzawu8CChGG+HNEqqTbjDchWMB32X19nANkIZbUb8a0kog78E+IDwAx8uae9YUXpcXPdfhKKD9gqOkHRoPvt4GrhVUn1JTYDrkuZ9AKyXdEus8K0iKU1Sx3y2k58vCfUAAEg6SVLrWLTyHaG4J79ih+mEwHuzpGoKzxT8FHiyiPvNJuksSefH45OkToRikGn5pTHKBC6Mx9ubnGITCOerv6RWMZjens9uHwNuJpS5P1/UtJrZG4Rgfzk7Pwd1gK/N7Md4TBcmbepZ4AxJx0uqDtyBx5cKyT8Ul1c/QvnxEjNblfgD7ie0OhEhEBwBLAGWAX0BzOwZYBghR7geeIFQvJHXHwjFBl8AE0jKmcZy+jMIF5svgDWEi0ndIqb/L8BvY9HQrwk55mcJAX8+8Db55ITNbHM8rlPjPv8BXGJmC4q432TfAJcBn8b9/hsYYWZj4/yHgVYxjS/EadfH/a8jnOfEdMzsVeD/CHcLi+L/vMYTisbGm9kPu5jeEYQLRuKzLegcXA3cIWk9oaL96aQ0/g+4hvDZr4znwB+4q4Bk5oOoOLcnkPQZcIWZTSzvtLiKy3P6zu0BJJ1LqCvI7y7AuWwFtXhwzlUSkiYT6mAuztPyxrkdePGOc86lEC/ecc65FOJB3znnUkiFLtNv1KiRNWvWrLyT4ZxzlcqsWbPWmFnj/OZV6KDfrFkzZs6cWd7JcM65SkVSfn1eAV6845xzKcWDvnPOpRAP+s45l0IqdJm+cxXdli1bWLZsGT/++GN5J8WloJo1a9KkSROqVcuvt/D8edB3rgSWLVtGnTp1aNasGZJ2voJzpcTMWLt2LcuWLaN58+ZFXs+Ld5wrgR9//JGGDRt6wHdlThINGzbc5btMD/rOlZAHfFdeivPd86DvnHMpZI8v02/9aOvyTgIAH/X7qLyT4CoRSdx4443cfffdANx1111s2LCBoUOH7tb9ZmZm0rZtW1599VV69+69y+uvWLGCwYMH8+yzz+4wr1u3btx111106NBhl7c7efJkqlevTpcuXQpc5pNPPuGKK65g3bp1bNq0iRNOOIFRo0bt8r52RZcuXZg6dSpZWVlMnTqVCy+8cOcrlTPP6TtXAdWoUYPnn3+eNWvW7HzhUjRu3DiOP/54xo0bV6z1DzrooHwDfklNnjyZqVOnFrrM4MGDueGGG8jMzGT+/Plcd911hS5fElu3bgXITlNWVhZPPPHEbttfafKg71wFVLVqVS6//HJGjhy5w7ysrCy6d+9Oeno6PXr0YMmSJQD079+fwYMH06VLFw477LBcwXfEiBF07NiR9PR0br89vyF2Q2uQZ555hjFjxvDGG2/kqiD861//SuvWrWnTpg1DhgwBYNGiRZx88sm0adOGdu3a8dlnn5GVlUVaWhj/fePGjZx//vm0bNmSn/3sZ2zcuDF7exMmTKBz5860a9eO8847jw0bNgCh65Xbb7+ddu3a0bp1axYsWEBWVhYPPvggI0eOJCMjg3fffTff9K9cuZImTZpkv2/dOtzlb9u2jZtuuin7+B966CEAzj//fF555ZXs5fv378+zzz5b4PKTJ0/mhBNO4Mwzz6RVq1YA7LPPPgAMGTKEd999l4yMDEaOHEnXrl3JzMzM3vbxxx/PnDlz8k13WfOg71wFdc011zB27Fi+/fbbXNOvu+46+vXrx9y5c7nooosYPHhw9ryVK1cyZcoUXn755ezgPGHCBD799FM++OADMjMzmTVrFu+8884O+5s6dSrNmzfn8MMPp1u3btkB8dVXX+XFF19k+vTpzJkzh5tvvhmAiy66iGuuuYY5c+YwdepUDjzwwFzbe+CBB6hduzbz58/nD3/4A7NmzQJgzZo1/OlPf2LixInMnj2bDh068Le//S17vUaNGjF79myuuuoq7rrrLpo1a8aVV16ZnYs/4YQT8j1fN9xwA927d+fUU09l5MiRrFu3DoCHH36YunXrMmPGDGbMmME///lPvvjiC/r27cvTT4dhfjdv3sykSZM4/fTTC1weYPbs2dxzzz0sXLgw176HDx/OCSecQGZmJjfccAOXXnopY8aMAWDhwoX8+OOPtGnTpoBPumx50Heugtp333255JJLuPfee3NNf//997PLji+++GKmTJmSPe/ss89mr732olWrVnz55ZdACPoTJkygbdu2tGvXjgULFvDpp5/usL9x48Zx/vnnAyEXnCjimThxIgMGDKB27doANGjQgPXr17N8+XJ+9rOfAeEhocT8hHfeeYdf/OIXAKSnp5Oeng7AtGnT+PjjjznuuOPIyMjg0UcfZfHinP7BzjnnHADat29PVlZWkc/XgAEDmD9/Pueddx6TJ0/m2GOPZdOmTUyYMIHHHnuMjIwMjjnmGNauXcunn37KqaeeyltvvcWmTZt49dVX6dq1K7Vq1SpweYBOnToVqU38eeedx8svv8yWLVsYPXo0/fv3L/Jx7G57fEWuc5XZL3/5S9q1a8eAAQOKtHyNGjWyXydGxTMzbr31Vq644ooC19u2bRvPPfccL774IsOGDct+8Gf9+vUlO4B8mBmnnHJKgfUGiWOoUqVKdtl5UR100EEMHDiQgQMHkpaWxrx58zAz7rvvPnr16rXD8t26deP111/nqaeeyr7gFbT85MmT2XvvvYuUjtq1a3PKKafw4osv8vTTT2ff5VQEntN3rgJr0KABP//5z3n44Yezp3Xp0oUnn3wSgLFjxxZY3JHQq1cvRo8enV1uvnz5cr766isAevTowfLly5k0aRLp6eksXbqUrKwsFi9ezLnnnsv48eM55ZRTeOSRR/jhhx8A+Prrr6lTpw5NmjThhRdeAGDTpk3Z8xO6du2aXbk5b9485s6dC8Cxxx7Le++9x6JFiwD4/vvvdyguyatOnTo7vQC99tprbNmyBYBVq1axdu1aDj74YHr16sUDDzyQPW/hwoV8//33APTt25dHHnmEd999N7u1UmHL70r6Bg0axODBg+nYsSP169cvdP2y5EHfuQruV7/6Va5WPPfddx+PPPII6enpPP7449xzzz2Frt+zZ08uvPBCOnfuTOvWrenTpw/r169n+/btLFq0iAYNGjBu3LjsopqEc889l3HjxtG7d2/OPPNMOnToQEZGBnfddRcAjz/+OPfeey/p6el06dKFVatW5Vr/qquuYsOGDbRs2ZLf//73tG/fHoDGjRszZswYLrjgAtLT0+ncuTMLFiwo9Bh++tOfMn78+EIrcidMmEBaWhpt2rShV69ejBgxggMOOIBBgwbRqlUr2rVrR1paGldccUX2HUTPnj15++23Ofnkk6levTpAocsXJD09nSpVqtCmTZvsyvf27duz7777FvkuraxU6IHRO3ToYCUdRMXb6bvdaf78+bRs2bK8k1Es8+bNY/To0bkqUV3pWbFiBd26dWPBggXstdfuy1/n9x2UNMvM8n0gwnP6zqWotLQ0D/i7yWOPPcYxxxzDsGHDdmvAL46dpkbSaElfSZqXNG2EpAWS5koaL6le0rxbJS2S9ImkXknTe8dpiyQNKfUjcc6lhGHDhpGRkZHrb9iwYeWdrFwuueQSli5dynnnnVfeSdlBUVrvjAHuBx5LmvYGcKuZbZX0V+BW4BZJrYDzgaOBg4CJkn4S1/k7cAqwDJgh6SUz+7h0DsM5lypuu+02brvttvJORqW105y+mb0DfJ1n2gQzS9RsTAMSj8GdBTxpZpvM7AtgEdAp/i0ys8/NbDPwZFzWOedcGSqNwqaBwKvx9cHA0qR5y+K0gqbvQNLlkmZKmrl69epSSJ5zzrmEEgV9SbcBW4GxpZMcMLNRZtbBzDo0bty4tDbrnHOOEjyRK6k/cAbQw3LafS4HmiYt1iROo5Dpzjnnykixgr6k3sDNwIlmlvwY3kvAE5L+RqjIPRL4ABBwpKTmhGB/PlDxO552bhc1G/LKzhfaBVnDT9/pMhs3bqR3797ce++99OvXD4AlS5ZQt25d6tatS6NGjZg4ceIO6/35z3/mN7/5zU6336xZM2bOnEmjRo12/QB2YtCgQdx4443ZvVYmjBkzhpkzZ3L//ffv8jbXrVvHE088wdVXX12sNPXv35+3336bunXrAjBw4MBcndrlTWfPnj056KCDdrrNM844gz59+nD++efzxz/+kSOPPLJY6SupojTZHAe8D7SQtEzSpYTWPHWANyRlSnoQwMz+BzwNfAy8BlxjZttipe+1wOvAfODpuKxzroRGjx7NOeecQ5s2bcjMzCQzM5MzzzyTESNGkJmZmW/AhxD0y9u//vWvHQJ+Sa1bt45//OMfJdpG4txlZmYWGPAhBP0VK1bs0ravuuoq7rzzzhKlrySK0nrnAjM70MyqmVkTM3vYzI4ws6ZmlhH/rkxafpiZHW5mLczs1aTp/zWzn8R5FatRrXOV2NixYznrrIIbw40bN47WrVuTlpbGLbfcAoT+3zdu3EhGRgYXXXQREHrobN++PUcffXSRRpy66qqr6NChA0cffXSuPvpnzJhBly5daNOmDZ06dWL9+vVs27aNX//616SlpZGens59990HhA7PEk/dP/LII/zkJz+hU6dOvPfee9nbW716Neeeey4dO3akY8eO2fOGDh3KwIED6datG4cddlh2b6RDhgzhs88+IyMjg5tuuomVK1fStWtXMjIySEtLK7Abh8LccccddOzYkbS0NC6//HLMjGeffZaZM2dy0UUXkZGRwcaNG/NdLq8TTjiBiRMn7nJncqWlYj0q5pzbJZs3b+bzzz+nWbNm+c5fsWIFt9xyC2+++SaZmZnMmDGDF154geHDh1OrVi0yMzMZOza0wxg9ejSzZs1i5syZ3Hvvvaxdu7bQfQ8bNoyZM2cyd+5c3n77bebOncvmzZvp27cv99xzD3PmzGHixInUqlWLUaNGkZWVRWZmZvY4AMlWrlzJ7bffznvvvceUKVP4+OOcR3iuv/56brjhBmbMmMFzzz3HoEGDsuctWLCA119/nQ8++IA//OEPbNmyheHDh3P44YeTmZnJiBEjeOKJJ+jVqxeZmZnMmTOHjIyMnZ7Xm266KfvBr48++ohrr72WGTNmMG/ePDZu3MjLL79Mnz596NChA2PHjiUzM5NatWrlu1xee+21F0cccUS5DariXSs7V4mtWbOGevXqFTh/xowZdOvWjURLuIsuuoh33nmHs88+e4dl7733XsaPHw/A0qVL+fTTT2nYsGGB23766acZNWoUW7duZeXKlXz88cdI4sADD6Rjx45AGBMAQp/8V155JVWrhpDToEGDXNuaPn16rnT27ds3u+fNiRMn5roIfPfdd9k9hp5++unUqFGDGjVqsN9++2WPIZCsY8eODBw4kC1btnD22WcXKeiPGDGCPn36ZL9/7rnnuPPOO/nhhx/4+uuvOfroo/npT3+6w3pvvfVWkZbbb7/9WLFiRXYndGXJg75zlVitWrVyDWtYXJMnT2bixIm8//771K5dm27duhW63S+++IK77rqLGTNmUL9+ffr3718q6cjP9u3bmTZtGjVr1txhXvL4AQX1v9+1a1feeecdXnnlFfr378+NN97IJZdcUuT9//jjj1x99dXMnDmTpk2bMnTo0HyPtajLJZatVatWkdNQmrx4x7lKrH79+mzbtq3A4NKpUyfefvtt1qxZw7Zt2xg3bhwnnngiANWqVcvuM/7bb7+lfv361K5dmwULFjBt2rRC9/vdd9+x9957U7duXb788ktefTVU37Vo0YKVK1cyY8YMANavX8/WrVs55ZRTeOihh7KD8tdf53rIn2OOOYa3336btWvXsmXLFp555pnseT179syuAwByjT2bn7x92y9evJj999+fyy67jEGDBjF79mwg9I/zwQcfFLotIPvcNmrUiA0bNuQaezh5X4Utl9fChQuzxxIua57Td64UFaWJZWnr2bMnU6ZM4eSTT95h3oEHHsjw4cM56aSTMDNOP/307Erfyy+/nPT0dNq1a8fo0aN58MEHadmyJS1atODYY48tdJ9t2rShbdu2HHXUUTRt2pTjjjsOgOrVq/PUU09x3XXXsXHjRmrVqsXEiRMZNGgQCxcuJD09nWrVqnHZZZdx7bXX5krn0KFD6dy5M/Xq1ctVBHPvvfdyzTXXkJ6eztatW+natSsPPvhggWlr2LAhxx13HGlpaZx66qmkpaUxYsQIqlWrxj777MNjj4VuxObOnbvTppYA9erV47LLLiMtLY0DDjggu+gKQlPMK6+8klq1avH+++8XuFyyL7/8klq1anHAAQfsdN+7g/enX0a8P/09U0XoT3/27NmMHDmSxx9/vFzTUZl89913XHrppbnuKMrKyJEj2Xfffbn00ktLZXven75zKaZdu3acdNJJbNu2rbyTUmnsu+++5RLwIdw5JB6iKw9evOPcHmDgwIHlnQRXROU9fKLn9J1zLoV40HfOuRTiQd8551KIB33nnEshXpHrXGkaWreUt/ftThfxrpVzK2nXytOmTeP6669n06ZNbNq0ib59+zJ06NAir79ixQoGDx5c6MNZu+rXv/41p512Gt27dy/xtjyn71wl510r51bSrpX79evHqFGjyMzMZN68efz85z8v8rpbt27loIMOKtWAD3DdddcxfPjwUtmWB33nKjnvWrl0u1b+6quvOPDAA4HQn0/iovT9998zcOBAOnXqRNu2bXnxxReBcFdy5pln0r17d3r06EFWVlZ2Fws//vgjAwYMoHXr1rRt25a33nore53kJ5LPOOMMJk+ezLZt2+jfvz9paWm0bt2akSNHAnDooYeydu1aVq1atdPPZWe8eMe5SqyoXSvPmjWL+vXr07Nnz+yule+///5c/diMHj2aBg0asHHjRjp27Mi5555baC+bw4YNo0GDBmzbto0ePXowd+5cjjrqKPr27ctTTz1Fx44d+e6773boWrlq1ao79L2T6Fp51qxZ1K1bl5NOOom2bdsCOV0rH3/88SxZsoRevXoxf/58IHSt/NZbb7F+/XpatGjBVVddxfDhw5k3b172sd1999306tWL2267jW3btvHDDz9QmBtuuIEWLVrQrVs3evfuTb9+/ahZsybDhg2je/fujB49mnXr1tGpU6fsri9mz57N3LlzadCgAVlZWdnb+vvf/44kPvroIxYsWEDPnj2zew/NT2ZmJsuXL2fevHlAuGtJaNeuHe+99x7nnntuoenfGQ/6zlVi3rVy6Xet/Pvf/56LLrqICRMm8MQTTzBu3DgmT57MhAkTeOmll7jrrruAkItfsmQJAKeccsoOxwQwZcoUrrvuOgCOOuooDj300EKD/mGHHcbnn3/Oddddx+mnn07Pnj2z5yW6Yy4pL95xrhLbHV0rz5kzh7Zt2xapa+VJkyYxd+5cTj/99N3etXKivmL58uXss88+wK51rXzwwQfTv3//7A7XCnP44Ydz1VVXMWnSJObMmcPatWsxM5577rnsdCxZsiS7z5u99957l46patWqbN++Pft94tzVr1+fOXPm0K1bNx588MFcA8aUVnfMHvSdq8S8a+UdlbRr5VdeeSV7mMNPP/2UKlWqUK9ePXr16sV9992XPe/DDz8sNB0QhkZMjEy2cOFClixZQosWLWjWrBmZmZls376dpUuXZqdjzZo1bN++nXPPPZc//elP2WlNrF8a3TF78Y5zpakITSxLm3etnFtJu1Z+/PHHueGGG6hduzZVq1Zl7NixVKlShd/97nf88pe/JD09ne3bt9O8efN8h0NMdvXVV3PVVVfRunVrqlatypgxY6hRowbHHXcczZs3p1WrVrRs2ZJ27doBsHz5cgYMGJB9F/CXv/wFgC1btrBo0SI6dMi348xd4l0rlxHvWnnP5F0rV07l2bVycYwfP57Zs2fzxz/+cYd53rWycynGu1bedeXZtXJxbN26lV/96lelsi0v3nFuD+BdK+/ZzjvvvFLb1k5z+pJGS/pK0rykaQ0kvSHp0/i/fpwuSfdKWiRprqR2Sev0i8t/Kqn8RhBwzrkUVpTinTFA7zzThgCTzOxIYFJ8D3AqcGT8uxx4AMJFArgdOAboBNyeuFA455wrOzsN+mb2DvB1nslnAY/G148CZydNf8yCaUA9SQcCvYA3zOxrM/sGeIMdLyTOOed2s+JW5O5vZivj61XA/vH1wcDSpOWWxWkFTXfOldDGjRs58cQTmTNnDhkZGWRkZNCgQQOaN29ORkZGvk05oegdrjVr1ow1a9aUZpKzDRo0KNfTtgl5+6bZFSXtcG3atGkcc8wxZGRk0LJly+weNpPT9OCDD+70Ia/CjiH53G/evJmuXbvm+2DZ7lDiilwzM0ml1u5T0uWEoiEOOeSQ0tqsc2WitJsIF6Wpb95eNgH69+/PGWecQZ8+fQpcr6hdK+9O//rXv0p9m4mgX9yulfv168fTTz9NmzZt2LZtG5988skOy1x55ZUlSmPyua9evTo9evTgqaeeyu78bncqbk7/y1hsQ/z/VZy+HGiatFyTOK2g6Tsws1Fm1sHMOiT64XDOFcx72SybXjaTDR06NLsPnhkzZpCenp69v+SnZlesWEHv3r058sgjufnmmws994knd3e34ub0XwL6AcPj/xeTpl8r6UlCpe23ZrZS0uvAn5Mqb3sCtxY/2c458F42y7KXzYIMGDCAf/7zn3Tu3JkhQ4bkmpeZmcmHH35IjRo1aNGiRXa/+HnPfVpaWnbXFbvbToO+pHFAN6CRpGWEVjjDgaclXQosBhKjDPwXOA1YBPwADAAws68l/RFIHNUdZpa3ctg5t4u8l82y62UzP+vWrWP9+vV07twZgAsvvDBX1ww9evSgbt0wmlqrVq1YvHgxTZs23WE7VapUoXr16qxfv546deoUmr6S2mnQN7MLCpjVI59lDbimgO2MBkbvUuqcc4XaHb1s1q5dm27duhWpl80ZM2ZQv359+vfvv9t72cwvt70rvWy+8sor9O/fnxtvvJFLLrmk0H0metm87LLLaNy4MWvXri1W2ouSvoRNmzYVekdRWrwbBucqMe9lc0e7q5fN/NSrV486deowffp0AJ588slC05aQfO4B1q5dS6NGjahWrVqR1i8J74bBuUrOe9nMbXf1slmQhx9+mMsuu4y99tqLE088Mbs4pzDJ537s2LG89dZbnH766TtdrzR4L5tlxHvZ3DN5L5uVU2n2srlhw4bsQV2GDx/OypUrueeee3ZpG+eccw7Dhw/nJz/5yS7vf1d72fScvnOVXHIvm4XlSF2O0uxl85VXXuEvf/kLW7du5dBDD2XMmDG7tP7mzZs5++yzixXwi8ODvnN7AO9ls/z07duXvn37Fnv96tWr77RiuTR5Ra5zzqUQD/rOlVBFrhdze7bifPc86DtXAjVr1mTt2rUe+F2ZMzPWrl27y237vUzfuRJo0qQJy5YtY/Xq1eWdFJeCatasSZMmTXZpHQ/6zpVAtWrVaN68eXknw7ki8+Id55xLIR70nXMuhXjQd865FOJB3znnUogHfeecSyEe9J1zLoV40HfOuRTiQd8551KIB33nnEshHvSdcy6FeNB3zrkU4kHfOedSiAd955xLIR70nXMuhZQo6Eu6QdL/JM2TNE5STUnNJU2XtEjSU5Kqx2VrxPeL4vxmpXIEzjnniqzYQV/SwcBgoIOZpQFVgPOBvwIjzewI4Bvg0rjKpcA3cfrIuJxzzrkyVNJBVKoCtSRtAWoDK4HuwIVx/qPAUOAB4Kz4GuBZ4H5JMh9nrsy0frR1eScBgI/6fVTeSXAuZRU7p29my4G7gCWEYP8tMAtYZ2Zb42LLgIPj64OBpXHdrXH5hnm3K+lySTMlzfQh6JxzrnSVpHinPiH33hw4CNgb6F3SBJnZKDPrYGYdGjduXNLNOeecS1KSityTgS/MbLWZbQGeB44D6klKFBs1AZbH18uBpgBxfl1gbQn275xzbheVJOgvAY6VVFuSgB7Ax8BbQJ+4TD/gxfj6pfieOP9NL893zrmyVZIy/emECtnZwEdxW6OAW4AbJS0ilNk/HFd5GGgYp98IDClBup1zzhVDiVrvmNntwO15Jn8OdMpn2R+B80qyP+eccyXjT+Q651wK8aDvnHMpxIO+c86lEA/6zjmXQjzoO+dcCvGg75xzKcSDvnPOpRAP+s45l0I86DvnXArxoO+ccynEg75zzqUQD/rOOZdCPOg751wK8aDvnHMpxIO+c86lEA/6zjmXQjzoO+dcCvGg75xzKcSDvnPOpRAP+s45l0I86DvnXArxoO+ccynEg75zzqWQEgV9SfUkPStpgaT5kjpLaiDpDUmfxv/147KSdK+kRZLmSmpXOofgnHOuqEqa078HeM3MjgLaAPOBIcAkMzsSmBTfA5wKHBn/LgceKOG+nXPO7aJiB31JdYGuwMMAZrbZzNYBZwGPxsUeBc6Or88CHrNgGlBP0oHF3b9zzrldV5KcfnNgNfCIpA8l/UvS3sD+ZrYyLrMK2D++PhhYmrT+sjgtF0mXS5opaebq1atLkDznnHN5lSToVwXaAQ+YWVvge3KKcgAwMwNsVzZqZqPMrIOZdWjcuHEJkueccy6vkgT9ZcAyM5se3z9LuAh8mSi2if+/ivOXA02T1m8SpznnnCsjxQ76ZrYKWCqpRZzUA/gYeAnoF6f1A16Mr18CLomteI4Fvk0qBnLOOVcGqpZw/euAsZKqA58DAwgXkqclXQosBn4el/0vcBqwCPghLuucc64MlSjom1km0CGfWT3yWdaAa0qyP+eccyXjT+Q651wK8aDvnHMpxIO+c86lEA/6zjmXQjzoO+dcCvGg75xzKcSDvnPOpRAP+s45l0I86DvnXArxoO+ccynEg75zzqUQD/rOOZdCPOg751wK8aDvnHMpxIO+c86lEA/6zjmXQjzoO+dcCvGg75xzKcSDvnPOpRAP+s45l0I86DvnXArxoO+ccynEg75zzqWQEgd9SVUkfSjp5fi+uaTpkhZJekpS9Ti9Rny/KM5vVtJ9O+ec2zWlkdO/Hpif9P6vwEgzOwL4Brg0Tr8U+CZOHxmXc845V4ZKFPQlNQFOB/4V3wvoDjwbF3kUODu+Piu+J87vEZd3zjlXRkqa0/8/4GZge3zfEFhnZlvj+2XAwfH1wcBSgDj/27i8c865MlLsoC/pDOArM5tViulB0uWSZkqauXr16tLctHPOpbyS5PSPA86UlAU8SSjWuQeoJ6lqXKYJsDy+Xg40BYjz6wJr827UzEaZWQcz69C4ceMSJM8551xexQ76ZnarmTUxs2bA+cCbZnYR8BbQJy7WD3gxvn4pvifOf9PMrLj7d845t+t2Rzv9W4AbJS0ilNk/HKc/DDSM028EhuyGfTvnnCtE1Z0vsnNmNhmYHF9/DnTKZ5kfgfNKY3/OOeeKx5/Idc65FOJB3znnUogHfeecSyEe9J1zLoV40HfOuRTiQd8551KIB33nnEshHvSdcy6FeNB3zrkU4kHfOedSiAd955xLIR70nXMuhXjQd865FOJB3znnUogHfeecSyEe9J1zLoWUyiAqzjm3J2j9aOvyTgIAH/X7aLdt23P6zjmXQjzoO+dcCvGg75xzKcSDvnPOpRAP+s45l0I86DvnXAopdpNNSU2Bx4D9AQNGmdk9khoATwHNgCzg52b2jSQB9wCnAT8A/c1sdsmS71zxpELTPOfyU5Kc/lbgV2bWCjgWuEZSK2AIMMnMjgQmxfcApwJHxr/LgQdKsG/nnHPFUOygb2YrEzl1M1sPzAcOBs4CHo2LPQqcHV+fBTxmwTSgnqQDi7t/55xzu65UyvQlNQPaAtOB/c1sZZy1ilD8A+GCsDRptWVxmnPOuTJS4qAvaR/gOeCXZvZd8jwzM0J5/65s73JJMyXNXL16dUmT55xzLkmJgr6kaoSAP9bMno+Tv0wU28T/X8Xpy4GmSas3idNyMbNRZtbBzDo0bty4JMlzzjmXR7GDfmyN8zAw38z+ljTrJaBffN0PeDFp+iUKjgW+TSoGcs45VwZK0svmccDFwEeSMuO03wDDgaclXQosBn4e5/2X0FxzEaHJ5oAS7Ns551wxFDvom9kUQAXM7pHP8gZcU9z9OeecKzl/Itc551KIB33nnEshHvSdcy6FeNB3zrkU4kHfOedSiAd955xLIR70nXMuhXjQd865FOJB3znnUogHfeecSyEe9J1zLoV40HfOuRRSkl42nXN7AB8kPrV4Tt8551KIB33nnEshHvSdcy6FeNB3zrkU4kHfOedSiAd955xLIR70nXMuhXjQd865FOJB3znnUogHfeecSyEe9J1zLoWUedCX1FvSJ5IWSRpS1vt3zrlUVqZBX1IV4O/AqUAr4AJJrcoyDc45l8rKupfNTsAiM/scQNKTwFnAx7trhx99sWR3bdo55yodmVnZ7UzqA/Q2s0Hx/cXAMWZ2bdIylwOXx7ctgE/KLIEFawSsKe9EVBB+LnL4ucjh5yJHRTgXh5pZ4/xmVLj+9M1sFDCqvNORTNJMM+tQ3umoCPxc5PBzkcPPRY6Kfi7KuiJ3OdA06X2TOM0551wZKOugPwM4UlJzSdWB84GXyjgNzjmXssq0eMfMtkq6FngdqAKMNrP/lWUaiqlCFTeVMz8XOfxc5PBzkaNCn4syrch1zjlXvvyJXOecSyEe9MuRglPKOx0VgZ8L53JIUvx/ZPL70uBBv4xJSm47ewBwn6QDyis95cnPReUlaa/kQLQrQSkpoFWX1F3S4bsjjZWRpJoAZmaSTgXGJt6X1j486O9mklpKahtfXwOMkZRow3s1MMbMVpXmlbyi8nNROcW7sFxB3sy2x8DUUFLbogYlSbXjet2BucAfgSGSesb5KRWTJDWS1FhSFUl/BUYmzb4AuL2091nhHs7aU0jaGxgNdAA+kzTOzP4uqRZwk6SxwEbgm/JM5+4kqWpssZXy56IyiwE9V1CXdAjwL6AO8Lmk8cArZrYxz3JHACcBpwHNgBslTQY6AyPM7GFJPwP+AEwws+27+XAqBEkHAk8T7nA/An4N/AZ4VdKfCOe2NvHJXkkqrdx+Sl1VdydJgyQ9I+kncdLpwF5mdjghN3OKpJ5mdhfwCDAC6AOMkrRXad6+lZd4u95L0p8kLQeGxllnkGLnorKJufkqBcxrJ6m/pIcknRYnnwv8n5l1BmYBNwJt86x3IvA80Bp4FjgE+DB+vr0Jz+1gZuOBhpI6J9JS6gdYjiS1l3SjpBZJx3Y58IaZHUnoauZ6YD/Cb6UKMAH4xsxmxMyTF+9UJJKqAj2AfYG0OHkzUCO+/hB4G+gFYGavEXI23wJ194TcTaxwegS4gZBjfw2oG2dvIoXORWWQN7BasC3Oq5603M3Aw4SAdDJwdpzVBviHpPcJn+WjQN5nbqaYWbqZDTazsYSOFQ+N87aT+yLxDvCzxG5LdnQVQwzy/wHuIcSFoUD/OHs/co5zDPAdcI6ZbQbuJvx+6sf520ozXR70i2gnuY/9CR/Q+4TcDMD3wDeS6pjZBiAL2FdSszj/LWApcEzcfqX5LAo4F58DF5tZbzO7G/iKmJMDfmAPPReVSaJsHnIqBuO0mpLaSPq1pM+AO2PAqgW0BG42szsJQatJLNpZALxjZp3NrJeZPZR3f2a2LanS9iTgU2BrnP0qORcQgP8Qiv/2JFuBv5rZ8WY2EHgTuDDO+wTYO75eDCwBjgAwszWEDFQ1SXVL+87Xf1w7kfjS7uTEnwo8BnwJHBhr4JcTcvut4zJfA+sJFwgIF4VFwHGJXZVuyktfYefCzLaZ2fZ41wOhDHdtfP0t8CN70LmoDGLla/ZvPObmt8fpHSUdGj/LvsC/CXdjvYHVwO8In0N9QlACeBFoCNQjBLBjJR0hqaukZ4B3JQ2I+877GW4H2iY9gf8s0FJSvURygU9i8V6luNtLvogm3udZJAuYmjT9K2BlfL0cqCdpbzP7Mc5D0n5x/jeE30jHOL3UYrUH/SSSDpTUKXlabGlQX9LZMYeTvHyiDLQ9MJXQvUQN4BRCxVcWoYwOQuBrQ87YAd8DnwGHxf2U6i1cSUk6VHkGuInnooGkU5W7uWWyxHH8j5ygvphwQTw1vq9U56IykHSIpJbJ02ILm+1xfvP4N5xQcXg7oVL1AML3dj2QaWafEi4Ax5jZD4TPMy1u7ztCZexphFzqMOBvwDNAN0KxxNjkSsekDMIaYGvSncYiQrn17yWdB1wDvFBRA368UDaRdHBiWtJFtIqk1nkzQ4mMUNL064Cn4utFQE1ChTaEi2l1cjJKXxPOWZe4rVI7LynbeicG8MbA7KQPpTFwlqQ1wHYzy5J0CaGSagWwVtIbZvaYclqmtAZqAecQyvVPJPwABgAvA89Jej1OW2Jm6yH71vf5WNZZrmJ5/DaLg9tEacDhkr4hdNexQtIvgUGE3Mqnkl4ys9ckVUkE6nhhOISQs8+K01ZJeh54VtJEKvC5qIwkXQHcAfxS0iIz2xKn70+oJP8SOIrwPX7OzIZIOggYD1xiZndKWgdskVTdzBZLWiepDaGY4RJJRwH7EALTlcDBQDVCp4mXAT83s0cLSWY6MIVQz5NopXUzcBXQj/BbmVo6Z6R0xAuU4ne7CuG3/QMwXtI+ZrZB0kjC7369pJeAR8zsq+QLX9xWT0LmZgqAmc2RtBC4VtIHwNHA6qQMz3pgODkXgdJjZinxBxwEVE96/yTw6/i6Svw/AFhHKF/+E+GL+g/g5Dj/F8D78fVe8X9DYDIhd3QpcCfwy6T9nEworxwDtCjv8xDTtF/imOP7N4GBec7FEEJOYylwC6HS7THgiDj/akJFHcnbiu9rEAJ+vfg+0cdTj4p2LirbHyH47JVn2s2EQHxInvMtQrHKdUnLHkBoUfMBoZ38CkLdy0RCTr1G3Mc/43e/PuGu7TFCy6vHCDn0Y+O2jyO0VBsFNMsnvYnfyZ3AU8nTKtIf4WKWOH/5pi8e+yfAQkKRWDdC08pGhDuf54FbE59TnnXvBn4aX+8d/9cDfhW392+geZkca3mf7N34IdYhlE8eHN+/DvwZaEC4w/k30CX5AyJUJD0B/Da+PwB4jxDYEz+kLKB+IfsdSKjw2r+8z0FSmvaNX9B68fjfAG6K8w6NX+bD8qzTm9Dt9cXx/WHA5/F14of8Td4vd5zeEJgHtInvVd7nYE/9I+QQF8bgPR6oFacnvtOZxAt6fH9TDOZnEQJ9JqEd/XPx89wPeJfQCmtwXOcjQiX7K8CGuL8XCEUyVQmZo3uA05K/H8mfPZABdC/v81XIebwFuCvx2yYUvXSPv40LCUH9t8Akwuh/xON/LmkbpwGzks9/0rFvJlw0Xyc0ca2e91yV1d8eWaav8LDHLOA24DcKT31eSLgdHUHItTY3s6mx4ihRNDGT8GXeT+HJwVWED/8oi58QoTx6h8HcJVWLL8eZ2VAz+3L3HWHRSepPyKn9Efg9oSjqOuAoSXcSLmyHmtnneSr9XiNc8BpLqmmh6GcfSUdYToXtPHKaqCarTwgai+K2vN19EUk6SFKdQub3lfSSpDclnUwoBniAcOfa38w2Jool4ir/JdQxJWwA2hGKgz4HthAuHBcTiuS6APcRhiqdKakRMI1wsagFTDezn5jZ2Wb2d8JdQRbh4bpE+XT255347M0s08zeLOZpKVWSqkp6W1LXpMmfxv91JZ1FKG66kPAd70GIG8MJd0W147LTyN3iKCvxwnLXS51DKNbZAvzBzNpbaJqJ5dS5VCnNytrCVOqgr/BY/xBJdyvnwY59CB/EEDM7gfDB3G1mawlX6i2Eq/fLkG8FyTeEQJ8Y4esZ4FJJP5N0C6HcMTNvWiyWo1qeJxLLkqTDJY2XdHV8fwDhNvyMeC7WAHeY2QLCbWVLwpOyD0C+5+JrQs6vQXz/LKHy7wRC0JhKKCLIxcwWmdkbZvZ9aR/jnii2AkkE6YHECm3leVhKoYnrGYR283cRytK7EPpnqRFfQwi6iaDzVNJ0CHeynwGHE+qwBgNPWqi0vRfoYWZPE4r1LorLNTKzPsRnMCTdIqm1pGHAQxYqeN8hPH9R4S/yZraVkBE6MWnyJ4TffTNCA4P9CcWXdwJ/IRTT1iI0w2wetzMLWCNpQPytDST8noBcrXnuMLPuZnaHmU3NMy+Rpm35/P52i0ob9GPgeZSQU10E/FPhke9NhA9oRqxMeRw4QtKRZrbJzK4k5Ha+iNtR8n9CS5PvgTMltSdcHMYRnqA7jFBRU6GCWVLamxNyaImmj98QgsSC+P5hoI2kZma2DjiP8EXeELdTJc/2Ej+EUySlE/oFeZdQTLYv8ERF/4FXVNqxKWXiPB5O6JNoHqGOKTn4dwWamNmLZvZfQgAfYGZfEXLpTfNuz8zmAE0lNYnvvwVuJVTQPmZm7xPqsSDUTZ0cX48lVNz2IATCxLaGEJ5F+T/CnfNDcd5/zWxiKZyasvIm4XwmfEF4QCrNQgumr4BFkmpZaGm0lXB+PwYOkJQmqS5wLeFu93VCBun1xAaTPoOt8bpeNfHbKs/fTaUN+oRA39fMfmlmDxCe9OwSc9w1gKOTTuws4MykdV8AekKuDybxfyGxVQOhcmx9zLWeamZXmNkHu//Qdk3ScZ5PqDCrJekwM9tE+PJ2jst9Sbil7xHf/0i4k+lTwPamE4L8bYRWFl+b2TgzO8HMro1BwO2EQnO/XLn25FxdLNK5TlI/Qnl5TeAaM/tXzLgkcu0zgAPjOlUIF/OasahtMXBoDEQkLQOhOGd50sV8BaFVyLF5ioIAvpZUzcyyCGX/18d194npXgRcb2Y9zOzmeNGojKYD+yeK0uKdznJymhl/QiijT8giXPxeju/fJvSXM5NQB9jGzC6J52cH8Tq8tSJkkipz0F9lZl9ISjzeX51wuwrhA/lZ0rIvkVPeCOFpwPYFbdjM3jGz1mZ2mZktLmi5iiLmIvYmFF19SvhBZ8TZU4jt4+OPfgq5y+GfJ1TyQp5OteJF4/lYhntVLCJzu8hCW+1EFweJu6nekp6Oi2wj5CL3NrO/EIpWlsV1k8vH54dV1T1u7yRCEcRWYBUhN1onaflt8aKRmSf3v5VQKdsT6BozShDuZh8ysy0KzXCnEzI/l1t4kpqk9Su7ZYRzlpzb/46QW4cQQ84g1Am+Srj7nxSLsu4A9jOz35nZFotFumVZLl8SFT6BBUn6Am9SaGfemBDAIFRqdVR4jBxCMMxKWnc2UF853QBUavFcnEloXfMe4Ra0h8LTfU8QL4BxuYbkVFoRf9j7S2qQX5liRciZVAbK8/RrnnktJY2V9BahLf1ehMB+dAzKXxKKF5rFVdYCxyUXPSbl2v9GaDc/nVCG/HacPt7MbjezZcn7LujzM7MZhLqt/rFSM4tQKftGnJ+4YLxuZit2/YxUbPG8vEe4qCVUj38QcvDrCN0jPAxcGjNBmNn6eH5yfd5WhuXyJbGnPJx1MfCBmX0BYGbvxx/FHyXNJpSN3gzhahxzSUfFW7o9xT5AW0kjCK0F9gPWmNntkj6XdCPh9vUkQgVg8rloZGbfxx+5B/mdiMFYyT9wy2mFUSMRHJLcSKj8H0KoWF1P6FY3kdN8mxBcWscL9XRClxU1FR7TX5MomTGzhxQe9mscA3ei290tSa+L9Bma2chY1n8YMM1ii5Kk+Xv6d+Fx4C+SRhPqw2oBVwCY2WeSNgNZZvZGfitXhgCfn0qb00+Q1IBQeTk8vj8y/iivJzSvPI/QJn8u5DSl2sMCPoSK1X0JTwzeSmhP/M8471LCw2n9CQ/RJC6OiXPxffy/p//IS0UsKUkuk68n6YwYPKYoNHNMzGtECKoTzGwp8FdCZe2hhNZPyd10dCIUvT1FaBeeRXioJ1cTQDPLSgr4ubqi3tXP0MyWxeLMzTtfes9ioRnyJYTnFW40s2MtPCmbuKuaBTRQTn9SewRV9t+5pLsJH9xUQvv5J4CRFlqnpIzkHJ5Ch293E/rrfqFcE1ZJ5ZdjTkyT1JRQT/Khhf7OuxIeTnrNzG6Ny1aJRQBtCE0fXzOzNyWlES7KtxFyl6MITSFPju8nmtl9in0bmdnqoqbPlVwssrE9+dxW6itY/IDWEp4m/DehiCflciyQ3edN4s5tC+HR+0p5+1leYg7PLHcnWdniOT6X8KDSQqCXQr8pIwmtPb6J26maVNm5NE7/BaGZ4NeELnS/ttC30zBCf0YTgL/E8v3sYF9QcN+Tg1J5SJznVPjNVPqcvnPFpUK68VXoYKy6mc1NLBebLf4BmG+hOeVJhFz7NYTmfY3N7Lf5bOsgQvPHasCRhMrYhzxwu/JQqXP6zu1MUpFMdTPbnJwLzxvwFZ7qHkF4tqEOIfd+LTnt2KsRHkwaF4tv3pJ0K6ESfQnQIraC+jrP/ldIuopQfDPXkpo/xmWSe3N0breq9BW5zhUkUckp6QZCuXl2G3NJ+0n6haTEMwz7EB7G+zuhddMywtPeyc0XvyG0hW+ZFKDrE3pZXEhoDpuRnIZEbt7MVprZVAvd8eZ9BH+7B3xXVrx4x+1R8mtOGcvqt8cLQFtCmXyihcZhhP5nphOeVj7GzL5UGCdhKKHflDkKT6lukXQ2oUXYbMKTs60IF4sahD7r/xcvDvmmzYt0XHnznL6r1JSni4PkyjhJnSQ1jLnoH2Lz3k2EljcPmFlfQtPWHoTK1QnEcXoJT2BWJSfnnsixv0Do7OwoQkd0d1l4WGeNmU0pKOAn0lZKh+1csXnQd5WKpKMkZfcVlF/RiKR7JGUSeo08Kk6eA/Qys48JA7E3idOnkjMIxv+ID64Rimr2JgzrCDm9VmJmH1roouNXZvZhaR6fc7ubB31XoeXpggBCMcr/kuafqdDFwRxJ7SW1IAxYcU582Oa9uOgrwLnx9Qxy+l6aQ3gSszGhW4J1kj4i9CL5EVA1Fu3skEtXJelrxblk/oV1FU5yMI3FNck5+YVAc0npkg4kDFs3jjBG6yxCS5oDgEckDZZ0hcIAN0+T0+V0Jjl9oi8m/A6OJHS4NRDoaWbHEYYDnGE5HZLlYpWkrxXnknmTTVfhJAf52Mb9emA1obimLmGov/cJufSWhJx6HUmNzWyWpN8TOi9rQmhyWdfC4N+1FcZcmE/ofrqFmX1CaHu/IrbFbw5cI+l0QtcdD5XNUTtXNrz1jqtQYu79BEJRzHRCT4dphAxKdTO7UtI1hEGsb4nt348gVLT+AuhjZlOStjccWGxmD0h6EhhjZq8pdGT2fd4HtBT6o28GfFxQDt+5ysxz+q5M5NeUMp9lEoNv308Y8+BXwHsx0O8PvCapPuGhqXaSmloYQCexfi1CT5XfEcYDPppQlDMWwMzOTyxrOZ3M5UqPhZGlfHAYt8fyoO92C4UxQ/czs0TvpgZY7LGwIzDHduzpdBGhP/P/xGKaNGCVpHqx7fwywoAv0wgDcbeU9D1hBKMjCE/L/pswnsBvLIyCljddVcwfhHIpzCtyXanI216e0Bom0W//AZLqSnoU+AD4DWGsg2aJdQEsjMz1FpAetzGXEMgTA7O/B5xuZisJlaxphCdkE4Pdn2Rm71sYlm5hUrqSx6P1gO9Smgd9t8vya6aYT3v5E4C+khYCVxPavI8AOhAuBr3JaUKZvL3JxDF8CaMXNSQEfght6g+Nr+8BRpnZdxZGjHrZzDYW0MWBt7BxLvLiHVckko4jPMnaGZgm6QlgQeyXZh/gFMKQje+Y2SOEUaE+Bp4zs/viNmoTyuqrEgZyuYjQ739ya4J3CIOwY2YfS9pATpcJ75rZKXHeZ0lpy64v8KdenSuc5/TdTkmaATxK6Bf+t4ReJ/9BTk79asIQjf8BDpD0kJk9Txir+Ii4jZqEHHymmfUgjObVMvZHk3yHsACYEesEMLMrzGxSfJ0YJCZvbt48N+9c0XhO3xXFDGCDmd0d378v6UrgFsJDT38ntJ8/h5DbT3Rx8AWhn3nM7EdJrYDVkg4Ffkp4urY7MCnRGVlsVXMR5OoWOVdHZZ6bd674PKfviuIZQkBHUvU4bRxwiMJA3tsJD04dBlxAeFDqaMIYo9Uk9VAYgPsF4EBC2Xx1wkNWM2DHQK6ksV89yDtXevzhLFckse17UzP7Vjnjv34O9CM8EXuBmQ2Iyy4F/mlmd0j6FWFkqTeB24F1iTbyzrmy58U7rqgWEIpk/k3ohGwvIAuoTSjr3yrpAULXxf8DDo/r3UcYqD7vKFVVCHcInpN3rgx58Y4rqleAXgBmtgn4GWGQ7+mEIpp/EL5PbwJnm1m/uOzm2KfNXskVsLGzMvOA71zZ8uIdVyRxJKk5wO8IlbPVCE+9Tixg+QIHHXfOlR8P+q7IJP2X8FTsq2Y2O5/5PsC3cxWcB31XbJ6bd67y8TJ9t0skVU2UzXvAd67y8Zy+c86lEM/pO+dcCvGg75xzKcSDvnPOpRAP+s45l0I86LtyI+lsSSbpqFLe7hhJX0jKlLRA0u2luO3JkjoUY73zJM2X9FYB87tJ+lbSh5I+kfSOpDMK2d6Zkobsajqc86DvytMFwJT4v7TdZGYZQAbQT1Lz3bCPXXEpcJmZnVTIMu+aWVszawEMBu6X1CPvQpKqmtlLZja8pImKYxa7FOJB35WLONrW8YRgeH6ctpekf8Tc+RuS/iupT5zXXtLbkmZJel3SgUXcVc34//u4nd9LmiFpnqRRiWcOYg7+r5I+kLRQ0glxei1JT8Zc+nhCj6KFHdcFkj6K2/9rYp/xWB+WNKIoiTazTOAO4Nq4jTGSHpQ0HbhTUn9J98exhxcnhrCUtLekpZKqSTpc0mvxnL2buKPKu60inke3h/Cg78rLWcBrcQDztZLaE/rsbwa0Ai4mDM2IpGqE3jr7mFl7YDQwbCfbHyEpE1gGPGlmX8Xp95tZRzNLIwTw5CKUqmbWCfgloRtoCEM3/mBmLeO09gXtUNJBwF8JA8NkAB0lnW1mdxDG+73IzG7aSbqTzQaSi76aAF3M7MbEBDP7FsgEToyTzgBeN7MtwCjgunjOfk3oFK/AbbnU4Ld2rrxcQBjcHMKwihcQvo/PxCd9VyWVf7cA0oA3Ysa8CrByJ9u/ycyejXcUkyR1MbOpwEmSbiZ0Cd2A0A30f+I6z8f/swgXH4CuhAFiMLO5kuYWss+OwGQzWw0gaWxc/4WdpLUgyvP+mQL6NXoK6Au8Rbhr+kc87i7AM0mdm9YowrbcHs6DvitzkhoQcsOtJRkhiBswvqBVgP+ZWedd3ZeZbZA0GThe0mxCbreDmS2VNJSc4h8IYwEAbKNi/DbaAvOT3hc0+MxLwJ/jeW1P6N56b8KANRkFrOMD2aQoL95x5aEP8LiZHWpmzcysKWE83a+Bc2PZ/v5At7j8J0BjSdnFPQrDMe5UrKg8BviMnAC/JuaE+xRhE+8AF8ZtpQHphSz7AXCipEZxkJgLgLeLks580p1O6Mb67ztb1sw2EMY0uAd4OY5V8B3whaTz4vYkqU1x0uL2LBUhN+NSzwWEsu9kzwEtCWXwHwNLCWXa35rZ5lihe6+kuoTv7f8RimYKMkLSbwlj8U4Cno+DrP8TmAesIo7PuxMPAI9Imk/Idc8qaEEzWxmbUb5FuDt5xcxeLMI+Ek6Q9CGh6OkrYLCZTSriuk8RxjLuljTtIuCBeB6qEYrR5uxCetweyDtccxWKpH1ikUxDQs75ODNbVd7pcm5P4Tl9V9G8LKkeIYf+Rw/4zpUuz+m7SkvS34Hj8ky+x8weKYN9Tyd3axiAi83so52s14sdi7a+MLOflWb6nCuIB33nnEsh3nrHOedSiAd955xLIR70nXMuhXjQd865FOJB3znnUsj/AycrZz2m4tWeAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "Age_df_pandas.plot.bar(stacked=True,rot=15, title=\"Accidents on Study Road\")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 108,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "2676"
-                        ]
-                    },
-                    "execution_count": 108,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "len(V20052014vech_dffpandas)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 109,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>191</th>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626525</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>192</th>\n",
-                            "      <td>-1.704792</td>\n",
-                            "      <td>52.626435</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>193</th>\n",
-                            "      <td>-1.703753</td>\n",
-                            "      <td>52.627241</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>194</th>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>195</th>\n",
-                            "      <td>-1.703902</td>\n",
-                            "      <td>52.626972</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1064</th>\n",
-                            "      <td>-1.70405</td>\n",
-                            "      <td>52.628537</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1065</th>\n",
-                            "      <td>-1.697571</td>\n",
-                            "      <td>52.628215</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1066</th>\n",
-                            "      <td>-1.698753</td>\n",
-                            "      <td>52.628236</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1067</th>\n",
-                            "      <td>-1.704084</td>\n",
-                            "      <td>52.628492</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1068</th>\n",
-                            "      <td>-1.697323</td>\n",
-                            "      <td>52.628303</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>137 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Longitude   Latitude\n",
-                            "191   -1.704792  52.626525\n",
-                            "192   -1.704792  52.626435\n",
-                            "193   -1.703753  52.627241\n",
-                            "194   -1.703902  52.626972\n",
-                            "195   -1.703902  52.626972\n",
-                            "...         ...        ...\n",
-                            "1064   -1.70405  52.628537\n",
-                            "1065  -1.697571  52.628215\n",
-                            "1066  -1.698753  52.628236\n",
-                            "1067  -1.704084  52.628492\n",
-                            "1068  -1.697323  52.628303\n",
-                            "\n",
-                            "[137 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 109,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 110,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result22_sparkDF=spark.createDataFrame(result22)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 141,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "DataFrame[Accident_Index: string, Vehicle_Reference: string, Vehicle_Type: string, Towing_and_Articulation: string, Vehicle_Manoeuvre: string, Vehicle_Location-Restricted_Lane: string, Junction_Location: string, Skidding_and_Overturning: string, Hit_Object_in_Carriageway: string, Vehicle_Leaving_Carriageway: string, Hit_Object_off_Carriageway: string, 1st_Point_of_Impact: string, Was_Vehicle_Left_Hand_Drive?: string, Journey_Purpose_of_Driver: string, Sex_of_Driver: string, Age_of_Driver: string, Age_Band_of_Driver: string, Engine_Capacity_(CC): string, Propulsion_Code: string, Age_of_Vehicle: string, Driver_IMD_Decile: string, Driver_Home_Area_Type: string, Year: string, Accident_Severity: string]"
-                        ]
-                    },
-                    "execution_count": 141,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "V20052014vech_dff"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 142,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------------+-----------------+---------------+\n",
-                        "|        Vehicle_Type|Accident_Severity|Total accidents|\n",
-                        "+--------------------+-----------------+---------------+\n",
-                        "|               Goods|            Fatal|              1|\n",
-                        "|                 Car|           Slight|           2034|\n",
-                        "|                 Car|          Serious|              6|\n",
-                        "|Agricultural vehicle|           Slight|              6|\n",
-                        "|               Goods|           Slight|            238|\n",
-                        "|          Motorcycle|          Serious|              1|\n",
-                        "|         Pedal cycle|          Serious|              1|\n",
-                        "|                 Bus|           Slight|             27|\n",
-                        "|          Motorcycle|           Slight|            185|\n",
-                        "|       Other vehicle|           Slight|             22|\n",
-                        "|Data missing or o...|           Slight|             19|\n",
-                        "|        Ridden horse|           Slight|              1|\n",
-                        "|         Pedal cycle|           Slight|            133|\n",
-                        "|                 Car|            Fatal|              2|\n",
-                        "+--------------------+-----------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Vechonthatroad=V20052014vech_dff.groupby('Vehicle_Type','Accident_Severity').agg(F.count(V20052014vech_dff.Accident_Index).alias('Total accidents'))\n",
-                "Vechonthatroad.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 143,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Vehicle_Type</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>Agricultural vehicle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>6.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Bus</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>27.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Car</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>6.0</td>\n",
-                            "      <td>2034.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Data missing or out of range</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>19.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Goods</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>238.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Motorcycle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>185.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Other vehicle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>22.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Pedal cycle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>133.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Ridden horse</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                             Total accidents                \n",
-                            "Accident_Severity                      Fatal Serious  Slight\n",
-                            "Vehicle_Type                                                \n",
-                            "Agricultural vehicle                     NaN     NaN     6.0\n",
-                            "Bus                                      NaN     NaN    27.0\n",
-                            "Car                                      2.0     6.0  2034.0\n",
-                            "Data missing or out of range             NaN     NaN    19.0\n",
-                            "Goods                                    1.0     NaN   238.0\n",
-                            "Motorcycle                               NaN     1.0   185.0\n",
-                            "Other vehicle                            NaN     NaN    22.0\n",
-                            "Pedal cycle                              NaN     1.0   133.0\n",
-                            "Ridden horse                             NaN     NaN     1.0"
-                        ]
-                    },
-                    "execution_count": 143,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Vechonthatroad_df=Vechonthatroad.toPandas()\n",
-                "Vechonthatroad_df=Vechonthatroad_df.pivot(index ='Vehicle_Type', columns ='Accident_Severity')\n",
-                "Vechonthatroad_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 144,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr th {\n",
-                            "        text-align: left;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead tr:last-of-type th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr>\n",
-                            "      <th></th>\n",
-                            "      <th colspan=\"3\" halign=\"left\">Total accidents</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Slight</th>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Vehicle_Type</th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "      <th></th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>Agricultural vehicle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>6.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Bus</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>27.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Car</th>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>6.0</td>\n",
-                            "      <td>2034.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Goods</th>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>238.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Motorcycle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>185.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Other vehicle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>22.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Pedal cycle</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>133.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>Ridden horse</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                     Total accidents                \n",
-                            "Accident_Severity              Fatal Serious  Slight\n",
-                            "Vehicle_Type                                        \n",
-                            "Agricultural vehicle             NaN     NaN     6.0\n",
-                            "Bus                              NaN     NaN    27.0\n",
-                            "Car                              2.0     6.0  2034.0\n",
-                            "Goods                            1.0     NaN   238.0\n",
-                            "Motorcycle                       NaN     1.0   185.0\n",
-                            "Other vehicle                    NaN     NaN    22.0\n",
-                            "Pedal cycle                      NaN     1.0   133.0\n",
-                            "Ridden horse                     NaN     NaN     1.0"
-                        ]
-                    },
-                    "execution_count": 144,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Vechonthatroad_df = Vechonthatroad_df.drop(labels=['Data missing or out of range'], axis=0)\n",
-                "Vechonthatroad_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 146,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(array([0, 1, 2, 3, 4, 5, 6, 7]),\n",
-                            " [Text(0, 0, 'Agricultural vehicle'),\n",
-                            "  Text(1, 0, 'Bus'),\n",
-                            "  Text(2, 0, 'Car'),\n",
-                            "  Text(3, 0, 'Goods'),\n",
-                            "  Text(4, 0, 'Motorcycle'),\n",
-                            "  Text(5, 0, 'Other vehicle'),\n",
-                            "  Text(6, 0, 'Pedal cycle'),\n",
-                            "  Text(7, 0, 'Ridden horse')])"
-                        ]
-                    },
-                    "execution_count": 146,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABIoAAAKYCAYAAAAc3xNfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACZ7klEQVR4nOzdeZxWZf3/8ddHQAQXBEXDFTVFlGVEwB1xQ81Sc0nLEhc0zaVs07KSvmXxTfv6kza1wu2LpGYuX80yzD0XwEbccMcVUXEBFZXl+v1xXfdwM8wMAwwM0Ov5eJzHzJz1uu/7zLnPeZ/ruk6klJAkSZIkSZJWae0CSJIkSZIkaflgUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSdJyICIej4jBjUwbHBGvLNsStZyI6B4RKSLaNjL9+xHxh2as57KI+GnLl1CSJGkegyJJkrRYIuLOiHgnItov6bpSStumlO5sgWI1KSImR8Tei7Hc3yLivxoYf1BEvN5YCNQcKaWfpZSGLe7yzRUR71cNcyNiZtXfRy3t7UuSpBWDQZEkSVpkEdEd2A1IwIGtW5pl4nLgyxER9cZ/BRidUprdCmVaJCmlNSoD8BLwuapxo1u7fJIkaflgUCRJkhbH0cADwGXA0OoJEbFxRPwlIt6MiGkR8euqaSdExJMRMSMinoiIfmV8XU2fiOhQmlm9ExFPAAPqrX+DiLiurP+FiDi9atrwiLgmIq4o23g8IvqXaVcCmwD/V2rRfDciVouI/y3lfDcixkXE+g283huAdcjhWGVbnYHPAldExCoRcVZEPFfWdU1EdKm3jqMi4qWIeCsizq5X5v+t+nvXiPhXKc/LEXFMQx9ARHw2ImrLfP+KiD4NzdeUiFg1It6OiN5V49aLiA8jomul2V9pHvdW+ZyOqpq3fUScX17X1Ii4KCI6LGo5JEnS8sOgSJIkLY6jgdFl2LcSrkREG+Bm4EWgO7Ah8Kcy7XBgeFl2LXJNpGkNrPscYIsy7EtVEBURqwD/BzxS1r0X8I2I2Ldq+QPLNtcGbgJ+DZBS+grz16T5RVl3J2BjchB0EjCzfoFSSjOBa0rZK74ATEopPQKcBhwM7A5sALwD/KbeanYFepQy/ygietbfTkRsCtwK/AroCtQAtQ3Mtx0wCvhqKffFwE2L2gwwpfQJ+b36ctXoLwK3p5TeLH9/CliX/H4PBS6JiB5l2ghgq1LOT5d5frQoZZAkScsXgyJJkrRIImJXYFPgmpTSBOA54Etl8kByUPKdlNIHKaWPUkr3lmnDgF+klMal7NmU0osNbOILwLkppbdTSi8DI6umDQC6ppT+K6X0SUrpeeD3wJFV89ybUvprSmkOcCXQt4mXM4sctHw6pTQnpTQhpTS9kXkvBw6LiNXK30eXcZADprNTSq+klD4mB2KH1eu76McppZklWHqkkXJ9CRibUhqTUpqVUpqWUqptYL4TgYtTSg+Wcl8OfAzs2MRrbczlwBermtV9hfy+VfthSunjlNJdwC3AF8r8JwJnlM9qBvAz5v8sJEnSCmaxO16UJEn/sYYCt6WU3ip/X1XGXUCumfNiI332bEwOlRZmA+Dlqr+rw6RNgQ0i4t2qcW2Ae6r+fr3q9w+B1SKibSNlurKU608RsTbwv+TAZ1b9GVNK90bEW8DBETGOHIodUlWu6yNibtUic4DqZmz1y7VGA+Vp7nu0KTA0Ik6rGrcq+b1bJCmlByPiQ2BwREwh1wy6qWqWd1JKH1T9/WLZTlegIzChquumIH8ekiRpBWVQJEmSmq30P/MFoE1EVIKP9sDaEdGXHPBs0kgw8zK5OdnCTCEHJo+Xvzept44XUkpbLuZLSPP9kQOhHwM/Lh10/xV4CvhjI8tfQa5J1AP4e0ppalW5jksp3Vd/gbLe5nqZHEA1Z75zU0rnLsK6m3I5ufnZ68CfU0ofVU3rHBGrV4VFmwCPAW+Rm+ltm1J6tYXKIUmSWplNzyRJ0qI4mFxTZhtyvzQ1QE9yjZ6jgYfIQc+IiFi9dBa9S1n2D8C3I2L7yD5d+uSp7xrgexHROSI2Ivf/U/EQMCMiziydXreJiF4RMaCB9TRkKrB55Y+I2CMiepe+laaTm6LNbWxhclC0N3AC85qdAVwEnFt5PaUj6IOaWaZqo4G9I+ILEdE2ItaJiJoG5vs9cFJE7FDey9Uj4oCIWHMxtgm5JtXnyWHRFQ1M/3Hp+Ho3cgfe16aU5pZyXBAR6wFExIb1+ouSJEkrGIMiSZK0KIYCl6aUXkopvV4ZyB1GH0VuevQ5cvOll4BXgCMAUkrXAueSm6rNID9JrP6TwSDX8HkReAG4jar+ckq/Q58lB1QvkGu1/IHcIXVz/Bz4QXlS2LfJHTX/mRwSPQncxYL989RJKU0G/gWszvzNsy4sf98WETPIT4TboZllql7/S8BngG8Bb5M7sl6gL6OU0nhyWPVrcsfZzwLHLOr2qtb3MvAwucbVPfUmv1628Ro5yDoppTSpTDuzbPuBiJgOjCXXtpIkSSuoSCktfC5JkiSt1CJiFPBaSukHVeMGA/+bUtqotcolSZKWLfsokiRJ+g9X+lE6BNiulYsiSZJamU3PJEmSVhIRsUlEvN/IsEkjy/yE3Dn1eSmlF5ZtiSVJ0vLGpmeSJEmSJEkCrFEkSZIkSZKkwqBIkiRJkiRJwArQmfW6666bunfv3trFkCRJkiRJWmlMmDDhrZRS1/rjl/ugqHv37owfP761iyFJkiRJkrTSiIgXGxpv0zNJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIErAB9FEmSJEmStKKaNWsWr7zyCh999FFrF0X/oVZbbTU22mgj2rVr16z5DYokSZIkSVpKXnnlFdZcc026d+9ORLR2cfQfJqXEtGnTeOWVV9hss82atYxNzyRJkiRJWko++ugj1llnHUMitYqIYJ111lmkGm0GRZIkSZIkLUWGRGpNi7r/GRRJkiRJkiQJMCiSJEmSJGmFFBF861vfqvv7/PPPZ/jw4Ut9u7W1tUQEf/vb3xZr+ddee43DDjuswWmDBw9m/Pjxi7XeO++8k3/9619NzvPUU08xePBgampq6NmzJyeeeOJibWtR7LzzzgBMnjyZq666aqlvb0kZFEmSJEmStAJq3749f/nLX3jrrbeW6XbHjBnDrrvuypgxYxZr+Q022IA///nPLVyq5gVFp59+OmeccQa1tbU8+eSTnHbaaS1ejorZs2cD1JXJoEiSJEmSJC01bdu25cQTT+SCCy5YYNrkyZPZc8896dOnD3vttRcvvfQSAMcccwynn346O++8M5tvvvl8gc15553HgAED6NOnD+ecc06D20wpce2113LZZZfxj3/8Y75Okv/7v/+b3r1707dvX8466ywAnn32Wfbee2/69u1Lv379eO6555g8eTK9evUCYObMmRx55JH07NmTz3/+88ycObNufbfddhs77bQT/fr14/DDD+f9998HoHv37pxzzjn069eP3r17M2nSJCZPnsxFF13EBRdcQE1NDffcc0+D5Z8yZQobbbRR3d+9e/cGYM6cOXznO9+pe/0XX3wxAEceeSS33HJL3fzHHHMMf/7znxud/84772S33XbjwAMPZJtttgFgjTXWAOCss87innvuoaamhgsuuIBBgwZRW1tbt+5dd92VRx55pMFyL0sGRZIkSZIkraBOOeUURo8ezXvvvTff+NNOO42hQ4cyceJEjjrqKE4//fS6aVOmTOHee+/l5ptvrgt0brvtNp555hkeeughamtrmTBhAnffffcC2/vXv/7FZpttxhZbbMHgwYPrQpRbb72VG2+8kQcffJBHHnmE7373uwAcddRRnHLKKTzyyCP861//olu3bvOt73e/+x0dO3bkySef5Mc//jETJkwA4K233uKnP/0pY8eO5eGHH6Z///78z//8T91y6667Lg8//DAnn3wy559/Pt27d+ekk06qqy202267Nfh+nXHGGey5557sv//+XHDBBbz77rsA/PGPf6RTp06MGzeOcePG8fvf/54XXniBI444gmuuuQaATz75hNtvv50DDjig0fkBHn74YS688EKefvrp+bY9YsQIdtttN2praznjjDM4/vjjueyyywB4+umn+eijj+jbt28jn/SyY1AkSZIkSdIKaq211uLoo49m5MiR842///77+dKXvgTAV77yFe699966aQcffDCrrLIK22yzDVOnTgVyUHTbbbex3Xbb0a9fPyZNmsQzzzyzwPbGjBnDkUceCeTaNpXmZ2PHjuXYY4+lY8eOAHTp0oUZM2bw6quv8vnPfx6A1VZbrW56xd13382Xv/xlAPr06UOfPn0AeOCBB3jiiSfYZZddqKmp4fLLL+fFF1+sW+6QQw4BYPvtt2fy5MnNfr+OPfZYnnzySQ4//HDuvPNOdtxxRz7++GNuu+02rrjiCmpqathhhx2YNm0azzzzDPvvvz933HEHH3/8MbfeeiuDBg2iQ4cOjc4PMHDgQDbbbLOFluXwww/n5ptvZtasWYwaNYpjjjmm2a9jaWrb2gWQJEmSJEmL7xvf+Ab9+vXj2GOPbdb87du3r/s9pVT383vf+x5f/epXG11uzpw5XHfdddx4442ce+65pJSYNm0aM2bMWLIX0ICUEvvss0+j/SBVXkObNm3q+gJqrg022IDjjjuO4447jl69evHYY4+RUuJXv/oV++677wLzDx48mL///e9cffXVdSFZY/PfeeedrL766s0qR8eOHdlnn3248cYbueaaa+pqU7U2axRJkiRJkrQC69KlC1/4whf44x//WDdu55135k9/+hMAo0ePbrQpVsW+++7LqFGj6voBevXVV3njjTcA2GuvvXj11Ve5/fbb6dOnDy+//DKTJ0/mxRdf5NBDD+X6669nn3324dJLL+XDDz8E4O2332bNNddko4024oYbbgDg448/rpteMWjQoLoOnh977DEmTpwIwI477sh9993Hs88+C8AHH3ywQFOu+tZcc82FhlZ/+9vfmDVrFgCvv/4606ZNY8MNN2Tffffld7/7Xd20p59+mg8++ACAI444gksvvZR77rmH/fbbr+79amz+RSnfsGHDOP300xkwYACdO3ducvllxaBIkiRJkqQV3Le+9a35nn72q1/9iksvvZQ+ffpw5ZVXcuGFFza5/JAhQ/jSl77ETjvtRO/evTnssMOYMWMGc+fO5dlnn6VLly6MGTOmrhlZxaGHHsqYMWPYb7/9OPDAA+nfvz81NTWcf/75AFx55ZWMHDmSPn36sPPOO/P666/Pt/zJJ5/M+++/T8+ePfnRj37E9ttvD0DXrl257LLL+OIXv0ifPn3YaaedmDRpUpOv4XOf+xzXX399k51Z33bbbfTq1Yu+ffuy7777ct555/GpT32KYcOGsc0229CvXz969erFV7/61bqaSkOGDOGuu+5i7733ZtVVVwVocv7G9OnThzZt2tC3b9+6Dsi333571lprrWbXBlsWolLNbHnVv3//NH78+NYuhiRJkiRJi+zJJ5+kZ8+erV2MxfbYY48xatSo+TqSVst57bXXGDx4MJMmTWKVVZZeXZ6G9sOImJBS6l9/XmsUSZIkSZKkBvXq1cuQaCm54oor2GGHHTj33HOXaki0qOzMWpIkSZIkrVTOPfdcrr322vnGHX744Zx99tmtVKIFHX300Rx99NGtXYwFGBRJkiRJkqSVytlnn71chUIrkuWnbpMkSZIkSZJalUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAuzMWpJaVe/Le7d2EZZLjw59tLWLIEmStFR0P+uWFl3f5BEHLHSemTNnst9++zFy5EiGDh0KwEsvvUSnTp3o1KkT6667LmPHjl1guZ/97Gd8//vfX+j6u3fvzvjx41l33XUX/QUsxLBhw/jmN7/JNttsM9/4yy67jPHjx/PrX/96kdf57rvvctVVV/G1r31tscp0zDHHcNddd9GpUycAjjvuOE4//fQG573ssssYMmQIG2ywwULX+dnPfpbDDjuMI488kp/85CdsueWWi1W+JWWNIkmSJEmSVmKjRo3ikEMOoW/fvtTW1lJbW8uBBx7IeeedR21tbYMhEeSgqLX94Q9/WCAkWlLvvvsuv/3tb5doHZX3rra2ttGQCHJQ9Nprry3Suk8++WR+8YtfLFH5loRBkSRJkiRJK7HRo0dz0EEHNTp9zJgx9O7dm169enHmmWcCcNZZZzFz5kxqamo46qijADj44IPZfvvt2XbbbbnkkksWut2TTz6Z/v37s+2223LOOefUjR83bhw777wzffv2ZeDAgcyYMYM5c+bw7W9/m169etGnTx9+9atfATB48GDGjx8PwKWXXspWW23FwIEDue++++rW9+abb3LooYcyYMAABgwYUDdt+PDhHHfccQwePJjNN9+ckSNH1r225557jpqaGr7zne8wZcoUBg0aRE1NDb169eKee+5ZlLcXgP/6r/9iwIAB9OrVixNPPJGUEn/+858ZP348Rx11FDU1NcycObPB+erbbbfdGDt2LLNnz17kcrQEgyJJkiRJklZSn3zyCc8//zzdu3dvcPprr73GmWeeyT//+U9qa2sZN24cN9xwAyNGjKBDhw7U1tYyevRoINdMmjBhAuPHj2fkyJFMmzatyW2fe+65jB8/nokTJ3LXXXcxceJEPvnkE4444gguvPBCHnnkEcaOHUuHDh245JJLmDx5MrW1tUycOLEunKqYMmUK55xzDvfddx/33nsvTzzxRN20r3/965xxxhmMGzeO6667jmHDhtVNmzRpEn//+9956KGH+PGPf8ysWbMYMWIEW2yxBbW1tZx33nlcddVV7LvvvtTW1vLII49QU1Oz0Pf1O9/5DjU1NdTU1PDoo49y6qmnMm7cOB577DFmzpzJzTffzGGHHUb//v0ZPXo0tbW1dOjQocH56ltllVX49Kc/zSOPPLLQciwN9lEkSZIkSdJK6q233mLttddudPq4ceMYPHgwXbt2BeCoo47i7rvv5uCDD15g3pEjR3L99dcD8PLLL/PMM8+wzjrrNLrua665hksuuYTZs2czZcoUnnjiCSKCbt26MWDAAADWWmstAMaOHctJJ51E27Y5pujSpct863rwwQfnK+cRRxzB008/XbdsdXA0ffp03n//fQAOOOAA2rdvT/v27VlvvfWYOnXqAuUcMGAAxx13HLNmzeLggw9uVlB03nnncdhhh9X9fd111/GLX/yCDz/8kLfffpttt92Wz33ucwssd8cddzRrvvXWW4/XXnuN7bfffqFlaWkGRZIkSZIkraQ6dOjARx99tMTrufPOOxk7diz3338/HTt2ZPDgwU2u94UXXuD8889n3LhxdO7cmWOOOaZFytGQuXPn8sADD7DaaqstMK19+/Z1v7dp06bB5lyDBg3i7rvv5pZbbuGYY47hm9/8JkcffXSzt//RRx/xta99jfHjx7PxxhszfPjwBl9rc+erzNuhQ4dml6El2fRMkiRJkqSVVOfOnZkzZ06jgcTAgQO56667eOutt5gzZw5jxoxh9913B6Bdu3bMmjULgPfee4/OnTvTsWNHJk2axAMPPNDkdqdPn87qq69Op06dmDp1KrfeeisAPXr0YMqUKYwbNw6AGTNmMHv2bPbZZx8uvvjiuiDn7bffnm99O+ywA3fddRfTpk1j1qxZXHvttXXThgwZUtenEUBtbW2TZVtzzTWZMWNG3d8vvvgi66+/PieccALDhg3j4YcfBuDoo4/moYceanJdQN17u+666/L+++/z5z//ucFtNTVffU8//TS9evVa6LaXhoXWKIqIjYErgPWBBFySUrowIroAVwPdgcnAF1JK70REABcCnwE+BI5JKT1c1jUU+EFZ9U9TSpe37MuRJEmSJGn51ZzH2be0IUOGcO+997L33nsvMK1bt26MGDGCPfbYg5QSBxxwQF3H1yeeeCJ9+vShX79+jBo1iosuuoiePXvSo0cPdtxxxya32bdvX7bbbju23nprNt54Y3bZZRcAVl11Va6++mpOO+00Zs6cSYcOHRg7dizDhg3j6aefpk+fPrRr144TTjiBU089db5yDh8+nJ122om11157vuZhI0eO5JRTTqFPnz7Mnj2bQYMGcdFFFzVatnXWWYdddtmFXr16sf/++9OrVy/OO+882rVrxxprrMEVV1wBwMSJExf6WHuAtddemxNOOIFevXrxqU99qq5ZHeTH3p900kl06NCB+++/v9H5qk2dOpUOHTrwqU99aqHbXhqioR6255shohvQLaX0cESsCUwADgaOAd5OKY2IiLOAzimlMyPiM8Bp5KBoB+DClNIOJVgaD/QnB04TgO1TSu80tf3+/funSg/nkrSy6X1579YuwnLp0aGPtnYRJEmSWsSTTz5Jz549W7UMDz/8MBdccAFXXnllq5ZjRTJ9+nSOP/74+WouLSsXXHABa621Fscff3yLrbOh/TAiJqSU+tefd6FNz1JKUyo1glJKM4AngQ2Bg4BKjaDLyeERZfwVKXsAWLuETfsC/0gpvV3CoX8A+y3G65MkSZIkSc3Ur18/9thjD+bMmdPaRVlhrLXWWq0SEkGuoTR06NBW2TYsYmfWEdEd2A54EFg/pTSlTHqd3DQNcoj0ctVir5RxjY1vaDsnAicCbLLJJotSREmSJEmSVM9xxx3X2kVQMx177LGtuv1md2YdEWsA1wHfSClNr56Wcvu1ptuwLYKU0iUppf4ppf6VR99JkiRJkiRp6WpWUBQR7cgh0eiU0l/K6KmlSVmlH6M3yvhXgY2rFt+ojGtsvCRJkiRJkpYDCw2KylPM/gg8mVL6n6pJNwGVRnNDgRurxh8d2Y7Ae6WJ2t+BIRHROSI6A0PKOEmSJEmSJC0HmtNH0S7AV4BHI6K2jPs+MAK4JiKOB14EvlCm/ZX8xLNngQ+BYwFSSm9HxE+AcWW+/0opvd0SL0KSJEmSJElLbqFBUUrpXiAambxXA/Mn4JRG1jUKGLUoBZQkSZIkaaUxvFMLr++9hc4yc+ZM9ttvP0aOHFn3NK2XXnqJTp060alTJ9Zdd13Gjh27wHI/+9nP+P73v7/Q9Xfv3p3x48ez7rrrLnr5F2LYsGF885vfZJtttplv/GWXXcb48eP59a9/vcjrfPfdd7nqqqv42te+tlhleuCBB/j617/Oxx9/zMcff8wRRxzB8OHDm738a6+9xumnn86f//znxdp+Q7797W/zmc98hj333HOJ19XszqwlSZIkSdKKZ9SoURxyyCH07duX2tpaamtrOfDAAznvvPOora1tMCSCHBS1tj/84Q8LhERL6t133+W3v/3tYi8/dOhQLrnkEmpra3nsscf4whe+sPCFitmzZ7PBBhu0aEgEcNpppzFixIgWWZdBkSRJkiRJK7HRo0dz0EEHNTp9zJgx9O7dm169enHmmWcCcNZZZzFz5kxqamo46qijADj44IPZfvvt2XbbbbnkkksWut2TTz6Z/v37s+2223LOOefUjR83bhw777wzffv2ZeDAgcyYMYM5c+bw7W9/m169etGnTx9+9atfATB48GDGjx8PwKWXXspWW23FwIEDue++++rW9+abb3LooYcyYMAABgwYUDdt+PDhHHfccQwePJjNN9+ckSNH1r225557jpqaGr7zne8wZcoUBg0aRE1NDb169eKee+5p8nW98cYbdOvWDYA2bdrUBVkffPABxx13HAMHDmS77bbjxhtzV86XXXYZBx54IHvuuSd77bUXkydPplevXgB89NFHHHvssfTu3ZvtttuOO+64o26ZU089tW6bn/3sZ7nzzjuZM2cOxxxzDL169aJ3795ccMEFAGy66aZMmzaN119/faGfy8I0p48iSZIkSZK0Avrkk094/vnn6d69e4PTX3vtNc4880wmTJhA586dGTJkCDfccAMjRozg17/+NbW1tXXzjho1ii5dujBz5kwGDBjAoYceyjrrrNPots8991y6dOnCnDlz2GuvvZg4cSJbb701RxxxBFdffTUDBgxg+vTpdOjQgUsuuYTJkydTW1tL27Ztefvt+bs0njJlCueccw4TJkygU6dO7LHHHmy33XYAfP3rX+eMM85g11135aWXXmLfffflySefBGDSpEnccccdzJgxgx49enDyySczYsQIHnvssbrX9stf/pJ9992Xs88+mzlz5vDhhx82+Z6eccYZ9OjRg8GDB7PffvsxdOhQVlttNc4991z23HNPRo0axbvvvsvAgQPZe++9AXj44YeZOHEiXbp0YfLkyXXr+s1vfkNE8OijjzJp0iSGDBnC008/3ei2a2trefXVV3nssceAXDuqol+/ftx3330ceuihTZZ/YQyKJEmSJElaSb311lusvfbajU4fN24cgwcPpmvXrgAcddRR3H333Rx88MELzDty5Eiuv/56AF5++WWeeeaZJoOia665hksuuYTZs2czZcoUnnjiCSKCbt26MWDAAADWWmstAMaOHctJJ51E27Y5pujSpct863rwwQfnK+cRRxxRF6iMHTuWJ554om7e6dOn8/777wNwwAEH0L59e9q3b896663H1KlTFyjngAEDOO6445g1axYHH3wwNTU1jb4mgB/96EccddRR3HbbbVx11VWMGTOGO++8k9tuu42bbrqJ888/H8i1hV566SUA9tlnnwVeE8C9997LaaedBsDWW2/Npptu2mRQtPnmm/P8889z2mmnccABBzBkyJC6aeuttx6vvfZak2VvDpueSZIkSZK0kurQoQMfffTREq/nzjvvZOzYsdx///088sgjbLfddk2u94UXXuD888/n9ttvZ+LEiRxwwAEtUo6GzJ07lwceeKCu/6VXX32VNdZYA4D27dvXzdemTRtmz569wPKDBg3i7rvvZsMNN+SYY47hiiuuWOg2t9hiC04++WRuv/12HnnkEaZNm0ZKieuuu66uHC+99BI9e/YEYPXVV1+k19S2bVvmzp1b93flvevcuTOPPPIIgwcP5qKLLmLYsGHzzdOhQ4dF2k5DDIokSZIkSVpJde7cmTlz5jQa0gwcOJC77rqLt956izlz5jBmzBh23313ANq1a8esWbMAeO+99+jcuTMdO3Zk0qRJPPDAA01ud/r06ay++up06tSJqVOncuuttwLQo0cPpkyZwrhx4wCYMWMGs2fPZp999uHiiy+uC3LqNz3bYYcduOuuu5g2bRqzZs3i2muvrZs2ZMiQuj6NgPmayzVkzTXXZMaMGXV/v/jii6y//vqccMIJDBs2jIcffhiAo48+moceemiB5W+55RbyA9/hmWeeoU2bNqy99trsu+++/OpXv6qb9u9//7vJcgDstttujB49GoCnn36al156iR49etC9e3dqa2uZO3cuL7/8cl053nrrLebOncuhhx7KT3/607qyVpav9H20JGx6JkmSJEnSstKMx9m3tCFDhnDvvffW9ZdTrVu3bowYMYI99tiDlBIHHHBAXcfXJ554In369KFfv36MGjWKiy66iJ49e9KjRw923HHHJrfZt29ftttuO7beems23nhjdtllFwBWXXVVrr76ak477TRmzpxJhw4dGDt2LMOGDePpp5+mT58+tGvXjhNOOGG+zpy7devG8OHD2WmnnVh77bXnax42cuRITjnlFPr06cPs2bMZNGgQF110UaNlW2edddhll13o1asX+++/P7169eK8886jXbt2rLHGGnU1iiZOnMgGG2ywwPJXXnklZ5xxBh07dqRt27aMHj2aNm3a8MMf/pBvfOMb9OnTh7lz57LZZptx8803N/k+fe1rX+Pkk0+md+/etG3blssuu4z27duzyy67sNlmm7HNNtvQs2dP+vXrB8Crr77KscceW1fb6Oc//zkAs2bN4tlnn6V///5Nbq85opJ0La/69++fKj2cS9LKpvflvVu7CMulR4c+2tpFkCRJahFPPvlkXfOj1vLwww9zwQUXcOWVV7ZqOVYk06dP5/jjj5+v5tLy7Prrr+fhhx/mJz/5SYPTG9oPI2JCSmmBZMmmZ5IkSZIkrcT69evHHnvswZw5c1q7KCuMtdZaa4UJiQBmz57Nt771rRZZl03PJEmSJElayR133HGtXQQtRYcffniLrcsaRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkaaU2c+ZMdt99dx555BFqamqoqamhS5cubLbZZtTU1LD33ns3uNzPfvazZq2/e/fuvPXWWy1Z5DrDhg3jiSeeWGD8ZZddxqmnnrpY63z33Xf57W9/u9hleuCBB9hhhx2oqamhZ8+eDB8+fIEyXXTRRVxxxRVNrqep11D93n/yyScMGjSI2bNnL3aZF4WdWUuSJEmStIz0vrx3i67v0aGPLnSeUaNGccghh9C3b19qa2sBOOaYY/jsZz/LYYcd1uhyP/vZz/j+97/fUkVdLH/4wx9afJ2VoOhrX/vaYi0/dOhQrrnmGvr27cucOXN46qmnFpjnpJNOWqIyVr/3q666KnvttRdXX301Rx111BKttzmsUSRJkiRJ0kps9OjRHHTQQY1OHzNmDL1796ZXr16ceeaZAJx11lnMnDmTmpqaunDi4IMPZvvtt2fbbbflkksuWeh2Tz75ZPr378+2227LOeecUzd+3Lhx7LzzzvTt25eBAwcyY8YM5syZw7e//W169epFnz59+NWvfgXA4MGDGT9+PACXXnopW221FQMHDuS+++6rW9+bb77JoYceyoABAxgwYEDdtOHDh3PccccxePBgNt98c0aOHFn32p577jlqamr4zne+w5QpUxg0aBA1NTX06tWLe+65p8nX9cYbb9CtWzcA2rRpwzbbbLPAPMOHD+f888+ve719+vSp216vXr3q5nvttdfYb7/92HLLLfnud7/b5Hs/evTohb7nLcEaRZIkSZIkraQ++eQTnn/+ebp3797g9Ndee40zzzyTCRMm0LlzZ4YMGcINN9zAiBEj+PWvf11XAwlyzaQuXbowc+ZMBgwYwKGHHso666zT6LbPPfdcunTpwpw5c9hrr72YOHEiW2+9NUcccQRXX301AwYMYPr06XTo0IFLLrmEyZMnU1tbS9u2bXn77bfnW9eUKVM455xzmDBhAp06dWKPPfZgu+22A+DrX/86Z5xxBrvuuisvvfQS++67L08++SQAkyZN4o477mDGjBn06NGDk08+mREjRvDYY4/VvbZf/vKX7Lvvvpx99tnMmTOHDz/8sMn39IwzzqBHjx4MHjyY/fbbj6FDh7Laaqs1Ov+xxx7L73//e3baaSfOOuus+abV1tby73//m/bt29OjRw9OO+20Bt/7Xr16MW7cuCbL1VKsUSRJkiRJ0krqrbfeYu211250+rhx4xg8eDBdu3albdu2HHXUUdx9990Nzjty5Ej69u3LjjvuyMsvv8wzzzzT5LavueYa+vXrx3bbbcfjjz/OE088wVNPPUW3bt0YMGAAAGuttRZt27Zl7NixfPWrX6Vt21yfpUuXLvOt68EHH6wr56qrrsoRRxxRN23s2LGceuqp1NTUcOCBBzJ9+nTef/99AA444ADat2/Puuuuy3rrrcfUqVMXKOeAAQO49NJLGT58OI8++ihrrrlmk6/rRz/6EePHj2fIkCFcddVV7Lfffo3O++677zJjxgx22mknAL70pS/NN32vvfaiU6dOrLbaamyzzTa8+OKLDa6nTZs2rLrqqsyYMaPJsrUEaxRJkiRJkrSS6tChAx999NESr+fOO+9k7Nix3H///XTs2JHBgwc3ud4XXniB888/n3HjxtG5c2eOOeaYFilHQ+bOncsDDzzQYK2e9u3b1/3epk2bBjuEHjRoEHfffTe33HILxxxzDN/85jc5+uijm9zmFltswcknn8wJJ5xA165dmTZt2mKVvTnlq/j444+brLnUUqxRJEmSJEnSSqpz587MmTOn0ZBm4MCB3HXXXbz11lvMmTOHMWPGsPvuuwPQrl07Zs2aBcB7771H586d6dixI5MmTeKBBx5ocrvTp09n9dVXp1OnTkydOpVbb70VgB49ejBlypS6ZlQzZsxg9uzZ7LPPPlx88cV1QUn9pmc77LADd911F9OmTWPWrFlce+21ddOGDBlS16cRMF+TrYasueaa89XMefHFF1l//fU54YQTGDZsGA8//DAARx99NA899NACy99yyy2klAB45plnaNOmTaO1ttZee23WXHNNHnzwQQD+9Kc/NVm2iur3HmDatGmsu+66tGvXrlnLLwlrFEmSJEmStBIbMmQI9957L3vvvfcC07p168aIESPYY489SClxwAEH1HV8feKJJ9KnTx/69evHqFGjuOiii+jZsyc9evRgxx13bHKbffv2ZbvttmPrrbdm4403ZpdddgHyE7yuvvpqTjvtNGbOnEmHDh0YO3Ysw4YN4+mnn6ZPnz60a9eOE044Yb5Hx3fr1o3hw4ez0047sfbaa1NTU1M3beTIkZxyyin06dOH2bNnM2jQIC666KJGy7bOOuuwyy670KtXL/bff3969erFeeedR7t27VhjjTXqHms/ceJENthggwWWv/LKKznjjDPo2LEjbdu2ZfTo0bRp06bR7f3xj3/khBNOYJVVVmH33XenU6dOTb53MP97P3r0aO644w4OOOCAhS7XEqKSgi2v+vfvnyo9nEvSyqalH4+6smjOY14lSZJWBE8++SQ9e/Zs1TI8/PDDXHDBBVx55ZWtWo4VyfTp0zn++OPnq7m0uN5//33WWGMNAEaMGMGUKVO48MILF2kdhxxyCCNGjGCrrbZarDI0tB9GxISUUv/681qjSJIkSZKklVi/fv3YY489mDNnTpM1XzTPWmut1SIhEeSmaj//+c+ZPXs2m266KZdddtkiLf/JJ59w8MEHL3ZItKgMiiRJkiRJWskdd9xxrV2E/1hHHHHEfE9pW1SrrrrqQjvXbkl2Zi1JkiRJkiTAoEiSJEmSpKVqee8bWCu3Rd3/DIokSZIkSVpKVlttNaZNm2ZYpFaRUmLatGmsttpqzV7GPookSZIkSVpKNtpoI1555RXefPPN1i6K/kOtttpqbLTRRs2e36BIkiRJkqSlpF27dmy22WatXQyp2Wx6JkmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJKAZQVFEjIqINyLisapxV0dEbRkmR0RtGd89ImZWTbuoapntI+LRiHg2IkZGRCyVVyRJkiRJkqTF0rYZ81wG/Bq4ojIipXRE5feI+CXwXtX8z6WUahpYz++AE4AHgb8C+wG3LnKJJUmSJEmStFQstEZRSulu4O2GppVaQV8AxjS1jojoBqyVUnogpZTIodPBi1xaSZIkSZIkLTVL2kfRbsDUlNIzVeM2i4h/R8RdEbFbGbch8ErVPK+UcZIkSZIkSVpONKfpWVO+yPy1iaYAm6SUpkXE9sANEbHtoq40Ik4ETgTYZJNNlrCIkiRJkiRJao7FrlEUEW2BQ4CrK+NSSh+nlKaV3ycAzwFbAa8CG1UtvlEZ16CU0iUppf4ppf5du3Zd3CJKkiRJkiRpESxJ07O9gUkppbomZRHRNSLalN83B7YEnk8pTQGmR8SOpV+jo4Ebl2DbkiRJkiRJamELDYoiYgxwP9AjIl6JiOPLpCNZsBPrQcDEiKgF/gyclFKqdIT9NeAPwLPkmkY+8UySJEmSJGk5stA+ilJKX2xk/DENjLsOuK6R+ccDvRaxfJIkSZIkSVpGlvSpZ5IkSZIkSVpJGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQsNiiJiVES8ERGPVY0bHhGvRkRtGT5TNe17EfFsRDwVEftWjd+vjHs2Is5q+ZciSZIkSZKkJdGcGkWXAfs1MP6ClFJNGf4KEBHbAEcC25ZlfhsRbSKiDfAbYH9gG+CLZV5JkiRJkiQtJ9oubIaU0t0R0b2Z6zsI+FNK6WPghYh4FhhYpj2bUnoeICL+VOZ9YtGLLEmSJEmSpKVhSfooOjUiJpamaZ3LuA2Bl6vmeaWMa2x8gyLixIgYHxHj33zzzSUooiRJkiRJkpprcYOi3wFbADXAFOCXLVUggJTSJSml/iml/l27dm3JVUuSJEmSJKkRC2161pCU0tTK7xHxe+Dm8uerwMZVs25UxtHEeEmSJEmSJC0HFqtGUUR0q/rz80DliWg3AUdGRPuI2AzYEngIGAdsGRGbRcSq5A6vb1r8YkuSJEmSJKmlLbRGUUSMAQYD60bEK8A5wOCIqAESMBn4KkBK6fGIuIbcSfVs4JSU0pyynlOBvwNtgFEppcdb+sVIkiRJkiRp8TXnqWdfbGD0H5uY/1zg3AbG/xX46yKVTpIkSZIkScvMkjz1TJIkSZIkSSsRgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSZIkSZIkqTAokiRJkiRJEmBQJEmSJEmSpMKgSJIkSZIkSYBBkSRJkiRJkgqDIkmSJEmSJAEGRZIkSZIkSSoMiiRJkiRJkgQYFEmSJEmSJKkwKJIkSZIkSRJgUCRJkiRJkqTCoEiSJEmSJEmAQZEkSZIkSZIKgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSZIkSZIkqTAokiRJkiRJEmBQJEmSJEmSpMKgSJIkSZIkSYBBkSRJkiRJkgqDIkmSJEmSJAEGRZIkSZIkSSoMiiRJkiRJkgQYFEmSJEmSJKkwKJIkSZIkSRJgUCRJkiRJkqTCoEiSJEmSJEmAQZEkSZIkSZIKgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkS0IygKCJGRcQbEfFY1bjzImJSREyMiOsjYu0yvntEzIyI2jJcVLXM9hHxaEQ8GxEjIyKWyiuSJEmSJEnSYmlOjaLLgP3qjfsH0Cul1Ad4Gvhe1bTnUko1ZTipavzvgBOALctQf52SJEmSJElqRQsNilJKdwNv1xt3W0ppdvnzAWCjptYREd2AtVJKD6SUEnAFcPBilViSJEmSJElLRUv0UXQccGvV35tFxL8j4q6I2K2M2xB4pWqeV8q4BkXEiRExPiLGv/nmmy1QREmSJEmSJC3MEgVFEXE2MBsYXUZNATZJKW0HfBO4KiLWWtT1ppQuSSn1Tyn179q165IUUZIkSZIkSc3UdnEXjIhjgM8Ce5XmZKSUPgY+Lr9PiIjngK2AV5m/edpGZZwkSZIkSZKWE4tVoygi9gO+CxyYUvqwanzXiGhTft+c3Gn18ymlKcD0iNixPO3saODGJS69JEmSJEmSWsxCaxRFxBhgMLBuRLwCnEN+yll74B/lKfcPlCecDQL+KyJmAXOBk1JKlY6wv0Z+gloHcp9G1f0aSZIkSZIkqZUtNChKKX2xgdF/bGTe64DrGpk2Hui1SKWTJEmSJEnSMtMSTz2TJEmSJEnSSsCgSJIkSZIkSYBBkSRJkiRJkgqDIkmSJEmSJAEGRZIkSZIkSSoMiiRJkiRJkgQYFEmSJEmSJKkwKJIkSZIkSRJgUCRJkiRJkqTCoEiSJEmSJEmAQZEkSZIkSZIKgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSZIkSZIkqTAokiRJkiRJEmBQJEmSJEmSpMKgSJIkSZIkSYBBkSRJkiRJkgqDIkmSJEmSJAEGRZIkSZIkSSoMiiRJkiRJkgQYFEmSJEmSJKkwKJIkSZIkSRJgUCRJkiRJkqTCoEiSJEmSJEmAQZEkSZIkSZIKgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSZIkSZIkqTAokiRJkiRJEmBQJEmSJEmSpMKgSJIkSZIkSYBBkSRJkiRJkgqDIkmSJEmSJAEGRZIkSZIkSSoMiiRJkiRJkgQ0MyiKiFER8UZEPFY1rktE/CMinik/O5fxEREjI+LZiJgYEf2qlhla5n8mIoa2/MuRJEmSJEnS4mpujaLLgP3qjTsLuD2ltCVwe/kbYH9gyzKcCPwOcrAEnAPsAAwEzqmES5IkSZIkSWp9zQqKUkp3A2/XG30QcHn5/XLg4KrxV6TsAWDtiOgG7Av8I6X0dkrpHeAfLBg+SZIkSZIkqZUsSR9F66eUppTfXwfWL79vCLxcNd8rZVxj4yVJkiRJkrQcaJHOrFNKCUgtsS6AiDgxIsZHxPg333yzpVYrSZIkSZKkJixJUDS1NCmj/HyjjH8V2Lhqvo3KuMbGLyCldElKqX9KqX/Xrl2XoIiSJEmSJElqriUJim4CKk8uGwrcWDX+6PL0sx2B90oTtb8DQyKic+nEekgZJ0mSJEmSpOVA2+bMFBFjgMHAuhHxCvnpZSOAayLieOBF4Atl9r8CnwGeBT4EjgVIKb0dET8BxpX5/iulVL+DbEmSJEmSJLWSZgVFKaUvNjJprwbmTcApjaxnFDCq2aWTJEmSJEnSMtMinVlLkiRJkiRpxWdQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQsdlAUET0iorZqmB4R34iI4RHxatX4z1Qt872IeDYinoqIfVvmJUiSJEmSJKkltF3cBVNKTwE1ABHRBngVuB44FrggpXR+9fwRsQ1wJLAtsAEwNiK2SinNWdwySJIkSZIkqeW0VNOzvYDnUkovNjHPQcCfUkofp5ReAJ4FBrbQ9iVJkiRJkrSEWiooOhIYU/X3qRExMSJGRUTnMm5D4OWqeV4p4xYQESdGxPiIGP/mm2+2UBElSZIkSZLUlCUOiiJiVeBA4Noy6nfAFuRmaVOAXy7qOlNKl6SU+qeU+nft2nVJiyhJkiRJkqRmaIkaRfsDD6eUpgKklKamlOaklOYCv2de87JXgY2rltuojJMkSZIkSdJyoCWCoi9S1ewsIrpVTfs88Fj5/SbgyIhoHxGbAVsCD7XA9iVJkiRJktQCFvupZwARsTqwD/DVqtG/iIgaIAGTK9NSSo9HxDXAE8Bs4BSfeCZJkiRJkrT8WKKgKKX0AbBOvXFfaWL+c4Fzl2SbkiRJkiRJWjpa6qlnkiRJkiRJWsEZFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZKAFgiKImJyRDwaEbURMb6M6xIR/4iIZ8rPzmV8RMTIiHg2IiZGRL8l3b4kSZIkSZJaRkvVKNojpVSTUupf/j4LuD2ltCVwe/kbYH9gyzKcCPyuhbYvSZIkSZKkJbS0mp4dBFxefr8cOLhq/BUpewBYOyK6LaUySJIkSZIkaRG0RFCUgNsiYkJEnFjGrZ9SmlJ+fx1Yv/y+IfBy1bKvlHGSJEmSJElqZW1bYB27ppRejYj1gH9ExKTqiSmlFBFpUVZYAqcTATbZZJMWKKIkSZIkSZIWZolrFKWUXi0/3wCuBwYCUytNysrPN8rsrwIbVy2+URlXf52XpJT6p5T6d+3adUmLKEmSJEmSpGZYoqAoIlaPiDUrvwNDgMeAm4ChZbahwI3l95uAo8vTz3YE3qtqoiZJkiRJkqRWtKRNz9YHro+IyrquSin9LSLGAddExPHAi8AXyvx/BT4DPAt8CBy7hNuXJEmSJElSC1mioCil9DzQt4Hx04C9GhifgFOWZJuSJEmSJElaOlriqWeSJEmSJElaCRgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkgCDIkmSJEmSJBUGRZIkSZIkSQIMiiRJkiRJklQYFEmSJEmSJAkwKJIkSZIkSVJhUCRJkiRJkiTAoEiSJEmSJEmFQZEkSZIkSZIAgyJJkiRJkiQVBkWSJEmSJEkCDIokSZIkSZJUGBRJkiRJkiQJMCiSJEmSJElSYVAkSZIkSZIkwKBIkiRJkiRJhUGRJEmSJEmSAIMiSZIkSZIkFQZFkiRJkiRJAgyKJEmSJEmSVBgUSZIkSZIkCTAokiRJkiRJUmFQJEmSJEmSJMCgSJIkSZIkSYVBkSRJkiRJkoAlCIoiYuOIuCMinoiIxyPi62X88Ih4NSJqy/CZqmW+FxHPRsRTEbFvS7wASZIkSZIktYy2S7DsbOBbKaWHI2JNYEJE/KNMuyCldH71zBGxDXAksC2wATA2IrZKKc1ZgjJIkiRJkiSphSx2jaKU0pSU0sPl9xnAk8CGTSxyEPCnlNLHKaUXgGeBgYu7fUmSJEmSJLWsFumjKCK6A9sBD5ZRp0bExIgYFRGdy7gNgZerFnuFpoMlSZIkSZIkLUNLHBRFxBrAdcA3UkrTgd8BWwA1wBTgl4uxzhMjYnxEjH/zzTeXtIiSJEmSJElqhiUKiiKiHTkkGp1S+gtASmlqSmlOSmku8HvmNS97Fdi4avGNyrgFpJQuSSn1Tyn179q165IUUZIkSZIkSc20JE89C+CPwJMppf+pGt+tarbPA4+V328CjoyI9hGxGbAl8NDibl+SJEmSJEkta0meerYL8BXg0YioLeO+D3wxImqABEwGvgqQUno8Iq4BniA/Me0Un3gmSVLz9b68d2sXYbn06NBHW7sIkiRJK43FDopSSvcC0cCkvzaxzLnAuYu7TUmSJEmSJC09LfLUM0mSJEmSJK34DIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSZIkSZIkqWjb2gWQJElSy+p9ee/WLsJy6dGhj7Z2ESRJWu5Zo0iSJEmSJEmAQZEkSZIkSZIKgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKtq2dgEkSZIkScu/3pf3bu0iLJceHfpoaxdBalHWKJIkSZIkSRJgUCRJkiRJkqTCoEiSJEmSJEmAQZEkSZIkSZIKgyJJkiRJkiQBBkWSJEmSJEkqDIokSZIkSZIEGBRJkiRJkiSpMCiSJEmSJEkSYFAkSZIkSZKkwqBIkiRJkiRJgEGRJEmSJEmSCoMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSZIkSZIkqTAokiRJkiRJEmBQJEmSJEmSpMKgSJIkSZIkSYBBkSRJkiRJkgqDIkmSJEmSJAEGRZIkSZIkSSoMiiRJkiRJkgQYFEmSJEmSJKkwKJIkSZIkSRJgUCRJkiRJkqSibWsXQFoZ9b68d2sXYbn06NBHW7sIkiRJkqQmWKNIkiRJkiRJgDWKJEmSpP9o1oRumDWhJf2nskaRJEmSJEmSgFYIiiJiv4h4KiKejYizlvX2JUmSJEmS1LBl2vQsItoAvwH2AV4BxkXETSmlJ5ZlOSRpefHoCy+1dhEkSZIkqc6y7qNoIPBsSul5gIj4E3AQsNwHRbbdbphttyVJkiRJWnlESmnZbSziMGC/lNKw8vdXgB1SSqfWm+9E4MTyZw/gqWVWyBXDusBbrV0IrTDcX9Rc7itaFO4vai73FS0K9xc1l/uKFoX7S8M2TSl1rT9yuXzqWUrpEuCS1i7H8ioixqeU+rd2ObRicH9Rc7mvaFG4v6i53Fe0KNxf1FzuK1oU7i+LZll3Zv0qsHHV3xuVcZIkSZIkSWplyzooGgdsGRGbRcSqwJHATcu4DJIkSZIkSWrAMm16llKaHRGnAn8H2gCjUkqPL8syrCRslqdF4f6i5nJf0aJwf1Fzua9oUbi/qLncV7Qo3F8WwTLtzFqSJEmSJEnLr2Xd9EySJEmSJEnLKYMiSZIkSZIkAQZFkiRJkiRJKgyKJEmSJEmSBBgUSXUiWyUiorXLIi3vyv9LW/9fJEladH5/qpxLuR9ouWRQpJVaRHSKiIsj4g/l7wX2+Uo4lLK56T/0UYDlfWjjF5YaUx0Mlf+X2SmlFBFtW7tsWrE0dCyuNz0ios2yKo/+c5Tzgl0WMk8bj2taVBGxZkScERFHlL8XOJ8q+1YbyN+jy7qMWroiYrWIGBYRZzQxzyrV+4D7gVpC5bxpYedXi7RO902tzMo/yzvAXGDDlNKHTcy7ETAIWAu4A3i6XASvklKau0wK3Aoaen0R0SalNKe1yqTlX0RsCBwLHAr8K6V0SisXSSuAiPgG8AvgkJTSzdXHmnK8Do89WloiohNwM7AL0DWlNK0Zy6wDvOt+qYWJiE8DTwO3Ap9PKX2ykPm3A1YDalNKM5dBEbWURUR34B5gdaBbSunjhcxfA3wKuD+l9N5SL6BWOpXKDktj3dYo0kqrKgC5EegE7FAZX2++vSLin8BLwKXAL4HxwGURscbKEhI1VlOo8voiYreI+GlEXAf8PiL6LNMCaploqsZYucvV6PdCRBwREf+MiPbAj4ATgDeBKRGxZsuXViuLqtpBM4C25Av1+ZQanZXQaPuI+HpEnBMRey3DomolVi7EHih/NvgdFxHtImKfiPjfiHgBuB+4JiKOXFbl1ArrOWAC0B3YHBb8zo2IQRFxdUTMAB4CbgFui4ijlnFZtRSklCYDfyVfd2zV0DwRsU1E/D4i3iFfb/wZeDIivh8Rq5V5rN2vZqmERBHRIyK+FRGXRMRpEdFzSddttVqtdKoCospB9i7gy8Ce5JpCUUlfI2JHYCQ5zf9v8gF7NvB54GhgVkR8bWF3hVYEjaXN5eT3e8C2wBTgVWAv4K6IeCKlNHvZlVJLU+V/o/ruQyUYKhfpDYaiVfPvCwwG/g/oCpwD/D2lNGWZvACtyCrHn7HAh+T9iOpaGqWW2qnAV4BuwFRgTaBvRDyZUnptWRZYK5eqc4N/l1F7kc8J6jsROBd4m3xO0I58o+nzEdErpfSDZVFerXjKeeXdwOlAL2AS5Zq/TOsP/IZ8fPsTufbR2sBQ4PKIeA+4xaZIK6aqc6VHyNcguwOPVk+LiE3I1x27ANeSg8V25GuUnwKbkW/CSXU1rcmHl8bO0dcnV3I4FJhFbkkzDJgTEWeklH692Nv3WKTlWUnUdydflP41pfRBA/NU/onm61+o6qD8aeBx4MGU0qB6F8n/BHYGhqSU7q633puAA4C9U0p3LM2qfS2lqWZy5UDSk1y99eMybl/gcvJB5SLyF9aLwBQDohVfqRX2OWB7cvPLV4AnUkqXNDBvB/KJSl9yWHgH8HL5H2qXUpoVud+F3wBdgDNSShcuo5eiFVRVPwzVgdA4YGugZ0rplTLPKsAI4BRymHQT8AL5Yv0F4D2b/mhR1N/3qoLy3uSaxlNTSjvVW+Yw4BrgdvJF2yMppXfLXf4bgX2Afiml2mX3SrQslaZDbVNKzzYyPSgtMho6JkXE/uRaQj+rDhUjoh3wGNCZ3Gz7H5WbkGWbt5FrXB6VUprUgi9JS0Ej322VY8wuwA3kZvkHVU1fFfgVOQg6Brg+pTSjavoNwIHAtimlJ5fBy9ByqqFrzrLPta1uzlhq818KHAL8AfgL+Rw+ka/rdgY+l1K6ZXHKYY0iLe82Aa4k31XeAXiq/gzVwUhErAf0Bj5KKd1Xpj8bEU8AfSJi/ZTS1DLvQGAAcElK6e4SOK0DbEH+Ip9NDqBOIl80rwK06oVKCb06A/9uKMhZSDO5W4FtyHcxJpRxnwXWA05MKd3UwsVVKykXO18HBgLvA88Da5D/h74WEY+mlO4vJy0DyXfQDyS3qZ9F7jPhJfKF+0XMqw0ynnwiCzC2UjV6eQ9Q1XqqLtLbANuklB4lXxBtD+wGjEkpzSmh9RnkE+dDW63AWuFVTrDrXcCtBlROrp8HJgL7RsSGKaVXqxb/JvmYeXhK6d2ybFty0P53YG/g2Ij47sL6HtGKJyJ2I9dCvwvYo6F5yvdd9b61KTCrqsbjBPI+1C8i1kopTS/jDwW2BM6qXLSV/XIj8nndM8D+5BuUBkXLuXrHl+7ka+oXyqinyTeod6q3D3Qhh4Q3p5SuKMuuyrx94M0y3zER8YOU0qyl/kLU6hoKHasqNPQn3/DdDmgD3BwRf6jaNw4kh0Q/SCn9rN56f0iuDHB8RIxLKb2xqGUzKNLy7i1y+t4NeLehGSJiY3JThaHkYGk60DUiBqaUxpfZ7iPXlNiFnLZCbj++OrBKROxEroa+fRk2IgdFD5NPGBq8c7S0lSqqBwAHkUOt1civb0pEfI98R6quKVFEbA+sD9yWUppdL5G+iVwVemtgQkR0BD4APgI6lhOWzsDbKaWPI2L1hmpwaflUQpsAjgIuJH+uvyDfGX+RHPzMJX+pvF4W6wn8L3k/GA38i/w/14F8N/1/IuL+lNIjACml50rouj/lYR3L5tVpRVT2yb2Bb5GPvdMj4i7ycewjYAgwpsz+bvn5elm2PbmWqCfKalC5ubPAcah8F3Yk71+fJX/XvwX8IiImpJQ+iIiHycfCHSjnBBGxOblvmRvI5wV9gE+Tbz5tD+xEPsYOIN+8MihaSVSdK71EvjH4atR7qEfVedba5H3ny+TzqTnAUxFxakrp2ZTSGxExgbzffJp8Hgl53wJ4PyK2JD88pTewI/m7eE3gNcBOrZcD5furTUM3ZSNidfLx5Rjyzba55JtoQ8mtF96MiH+TP+O+5M6tAfqTjyEPR+7Euk8ZdiSfn69F3p/eY173GVrJRL0HdzRSM7E/uQn07uRWH8+RKzP0LT8r5/EHkIPpG8pyGwGbkpsw7kq+fv4s+Vhz+6KW1aBIy1xEdAbWSCm9vLDmXCWo+EUT61oD+DnlyUvki93Xyf9Eb1et/3bga+SLlkpQVEn+jwROJh+UXyBXGb4e+GdrNb+KiLPJTTA+RT5pmFTK9AH5jtR+5DbOpwBjy8nLluQq823JJ7Jv1Htv7yB3QLw9MDql9GFEXE++iLsceJJ8sbZ6RKwLTIqIi4Hbq6vGavlTdQK7O/B7chOzA1JKC9TAIzefqJhKvrP+E+rVUovcyeLfgKER8aOU0vtl0oPkoKgGeKL+ybRWbpWTZ3KIs7A+rfqSj1ObAb8mXwRtSA4zVyOfYFeMK9OHlWPZ88DsiOhSpo8G7kkpTY+V/EmUap4m9r8h5GNaDTC5DLuSawQ9Tv5O/Tc56Kk+J1iPfPNoB+ACcri5eZn2FPl78vpKbWWtOCKifVM1wCrnSimlFyPikNTA06eqQqILgcPJ50x/J4cEM4H2VbOPJV/g9WVeUPRO+XkK8GPyeerH5O/UHwM3NdbcTcte2ScauwY4m9wP1cvka4ap5AvyTyJi1dKksNIX2p7MC4rak78/jyf3IbNB2cY4cg3uG21ytvKr1xJmFXLtxRPI3z/fItcs+zn55sQF5BYhk4FX64XX65Bv8M8Ado3c5+wO5O++ruTjy13k68eHFrewDg7LbGBe8v77euNXISf3DS2zKjm1PxPoXMa1KT/PK+s7j/yo28a2ux45BHmkalxXcgo7A/gqsGYjy7YnB1vL8n06rbyua8h3ILYEVi/T1gB+W6afXbXM6sDvyuvs18A6O5Hvqt4BrFs1/jPki7lx5YDyJ/KX2ofkk59hrb3fODRrn1kLuK7sF4eVcZVaRlFv3mhkHVuV/7P7yuc/F7iT3F6+Ms+QMn5M+btta792h9YZyrGoJ7BWA9PakEPJueQgv23VtIPIbejnkvspqow/kFzD7Xnm3UF7oWpf/J8y3yqt/dodWn8gNxM/mfwI6sq4ncp+Mw34DvlCvXPV9LZVy04kX+y3K+PWJYeVc8vP/yVX6V/g3MB9cPkfynffEeW85wsNTGvwMyzT9gIG1RvfoZxjzQX+H7k20WqNrGOnMt/IqnGHlmPZ2+SOZwc0smw7YNXWfv/+EwYaue4o09qSH9jx53rHkB+Xz/Ymcm2g1estt0r5WUOuzX131bStybWFKjW+Bzey7fZNlc1h+R7KMaQNjZ9rb0ruT2gPcrDzArlCwFXlnGq/ynGmsfWXn+3ID5eZU+afS+5I/efAji3yWlr7zXT4zxrIyedb5Lsw6yxk3so/wgbkEON1ch8XlembkNPSR6u/rBs7ASCHIB8DW1aN+2v5x9qlkTJsAgwn91dQV6Zl8D5tVMr110amf6dMP6Pe+JPL+BMaWe5m4A1g5/J32+qf5ff25NBpn7Kuv7X2fuPQrH3mU8y7wGm/iMv2LCdDH5KD03+R72LcRr5gP6hq3vXI7e/faO3X7LDsh7KfnVFORmaQ73yNJd8lb1c13/rkpyg+QQmSyolT5ZgzsuyvJ5W/K+PbARuTT9I7kGsj7U6uTTkNg0mHVLcv3Vu+03tVja/cRDm2gWWi3vJXlHm3rhpfOSeoaWLbm1JuxjR0ruGw/AzkcGYuuTZ1++Z8ZswLee6v3m/IoeNc4N4GlmlT7+81yvHvHuBTZVzvcjx8hHL+W78s5Bt6Xwa2au33bmUcWIRzeHLt17eBfzLvRu1GQC35wr57vflXYf5jzBrki/gPKvtAGX9n2Y82amLbJwG7L2qZHVp9/2r02ELVTVvyDfq55H7J7iDflOgPrF2mV44115b9aFPKDX6gU731XlDm/S1NBMxVx6FF2p9WQVqGUkrvkKvZ1pAvTomI9hGxd0T8LCK+HxF9y7ypLDaNnNyvSb4LWLEe+cD8dErpo6ptpDR/tb425dc7yRchu1et49fki+NrIuJLEdExInqU8pxLbnpzMjn9ry7T0lbpXHO+zhQjok3pR+Hz5DsVN5bxlWakT5Av3HYrfQ7V9w/yXdO+5e859X6SUvo45SZ/75RRr0V+WoeWb5uR+696kvy43WaJ/DS835HbOY8mN8U8Avg+ubpqJ3LbeQBS7gxvArBuaSJUaY6k5UhErFKqNDd33rbN/Bx/SK7B+S75CXg3kztZ/BXw3YjoVObrQw6cayl9bqRcZbpybL62/Nyz/KyMn51SejmlNDulNDOl9EJK6S5yLZFO5Or9WklE1qbqe7p6WoeI6Fv6A6l/nNmIHEaOSyk9VqavRz52vQL8b1lv3TKV7+/SNHIO85qG7Fq13quBT4ARpQ+RSllWi4htS7Pwh8m1fmFeR/9aPj1Bbja4M7kjYVLu13GTiDgiIvarnCtV7YNPk8PvzSJi7arzvt7l5y1lv63et+Zrfp1yU+1/kR8g0qOMe5T8cJbewCURsWkpy7plP/8WOfwcST52agmVj6lt5buw+hy+HF++HBEnli4xqPe5bk4+l3oxzeuvcz3yd9vzKaXJ1efGKaX5nrxc9oGHyTc8BlQV61LyudotEbFH2W7niOgTEcMi4h7y9+k29cusZWdxzmsr154RsWlEHB8R50TEQRGxbvkcK8eYh8j7xmbkig5fTimNT+UBCin3C/ogOeh+jnytd3tEvAaMj4ifRMS2ZV1jyddr3cnhZv3X0S0i/ov83bbI7KNIS01VPxX1jSX3cbJl5M7ebiF35DaX3G/F2RFxQkrpKsjBRURMJO+vNRHxjxIMbUQOcN6LiE6pgTblRaUMd5AvcvYiV/mDHJx8BfgfcqI7g9zWeL2yvXHkC+a/L+bbsFhSSikirgMOjYi9yKnzQPIF2eHkDhL/SO5ws9IeGnKTjcfJ7+c6zAucKh4tP/tVbadjSulDqDvR3oCcbH+b3DTvqmSHsiuCD8l3HuawaMf2geQOF3+cUvpx9YTIHcUDbB0RXVNKlSdy3Ee+IDuQXIW+DY235dcyUn3MrTphCXKNnsaOj5V5K/OvBcys/p+vrDcifkAOzq8it6N/O6U0KyJ2Jd/NOpNcY/H35BPhDuQ747Oi9CtUFeJXHjSwY+UYVv87o4ROmwFfIoeVV5b1aiVRPu/qPhc6pZTei9wh5xhyP0EnAxeT78hW9o8Z5Au516pW9xH55tFM8l3XtxrZbGU9teRmIPsw75zgOvJ34LnANhHxf2Vb65C/FzcE7ib3U+NF3PJvKjkQ3J38kJN25Av1weT9YDYwMSI+m1J6HSClNK2cc+5Nvql5Z1nXp8vPD8rxcGEXkv8g39TrQ3koCvkpoj2Ao4GdI+Jl8nlWJfh8kry/P7b4L1kV5f9zNuRgiHyD+uOU0uPkWhrfJH/Gq5NrZlQfYyo3oN+pWuWsMv2jiOiQUmqw4/GY149ebVlmb3LtIsg1GVcHzidf/D9Frn22IflGyMvkWrujl+ClazFFxEnk85nPAzdG6Yez/L9HaqJ/xIjYitzX1GfJnzvkVhqvRsTR5aYXKaW3IuJp8rXY9ZV1k/etyjaOJu83+5KvjV8jn1P1JveRtS25afS95PPwnwJXRMSPyrYrlQKGkJs8XhcR7Rb1es6gSC2m7OiVp5DMbeIE6s7ycw9ySLMm8A3yF2R3crvdkRHx7zSvU7dnyTVodiDfFXqNXNPoPXK/Kp3K79VliXoXJg+RD8YDqg7is1NK10fEM+TEf4eyrn8D/5dat1O5y8hp8i/JB4mtyvinyNXj9yGHRr8GflCmTSWn1IPI/Rq9CvlOWbnjtQ75bmmPcjfrRXII8H3ywect8hfV+uTQaVhKaezSfZlqIc+TL/Y/Td6H64eE86naJyodCjfU0V3lLthW5JOqSlA0sfysBI6GRMuBqhoTvcn9AO1CPiH9MCLeJl8E/6W6ZgX55GRH8tNaBjHviSzXArdWamuWO647ky+a/yelNLVq0/8iN9H9M3AYOSiaSN4H+0XEpyoXYWWbbcjHtOfItUT7l3WsEbkzxgPJVf7XJO/P3ck1kL7fVOCl5VO5m79KQ8eJEkYfQr55tC7wUkT8d0rpwXLCfh/wk4i4LaX0QtWiW5DD8furjmVdyE1COpAvvN9q6IZV1TnBJPJ5xy5RnvKZUno/Is4jdxx6Gnl/Xo18An8P+abSX1NK01rgrdESigYeK13Pe+Q7818Adis/O5BvGr5JPo86jPyEzzOqjmuV2mZ7Me+c9Znys19l81TVKIsFO9m/uzJ/VVD+DvnR53eTj889yV0y3E8+ft5euXGnrITGPyffXPhtcy50q25urE++qXU0OaD7mHzRfkpK6d6IOIz83fODcox5vGo1NeVndef1bchBThdysPNs9TGmah+o7BePk7/n9qjaB1JE/I58rn4g+fuvc/n7L+SnFvs9t4xVfY+8W0btTa7J0xaYUz7jRm8MRO5Y+jzyo+x/Q64E8S75Ou6r5EBo35TSuLLIv8g1+DuVfaJu3yn71DPkY87vqraxKtCR/N31uRJWvgf8LHLLkrPID296j/y91Y7cAuBs4NrFuumfloM2fQ4r30C+UN0V6NvAtA7kk7A3yw786XrTf8CCHTWvQ+7Y+WWgfxm3PrlJ2geUPnlYsL33aszfb8YNZd07Veavv0wD5W2VPgjIX0RzyXebLian25V20h3IJz3vlXn2YV4HekeR74T8nHqdcDOv/4ZngM+UcRuQ2+//g1zb63fAwUCH1t6PHBZ5n6ktn+8XaWZHiOSwcS45mFyffLG2GzmMnEyuxTFfnx/kL871Wvv1OizwWR5MPkmYSQ7S/1X+px8kB4lXAZuUeSvHi6+QA+bXySepY5nXefSvqta9EfnO6gvl7/p9ckTZ5vvAhmXcqLKeb9U/npBPkN8n3+39YWWd5Lvpr5Cbf0wi1yo5COhY2U5rv88OC90Po/7+0ch8XyFfRM0o++gN5IulQ5nXn8zXyXdH/wJsXrXsUWXf+l7VuM7k2iIzgZPLuFXr7zPVZWNeX1mNdSy8DdCjtd9Th2btdxvQwINHyGHPO+RQ8C7mfzjD6uSA5hPg4Krxvcmh478q+w+5Btt08g3H7mVc/XPOuj4yy773OLlPos0r81etbxUaeBCAwwKf3/bkc91baOKhNQ0s15F8XjOLHPL+N/mC+WxyDYvK5zCUfB1xJ+X7sYwfUY4NB1aN+xT5hstM4PgyboEOzSv7IflCvXIO1WC/U9TrDLtqP/K7btnuZ5X9YVPyteZz9ab3Ij+t7ivU6xe3/Pxq+Zx/1sC6zy7TRjHvYUwDy353V/m72Z2XM++BDZvUG9+dfE4/HDgW2HSJ35fW/mAcVryBRjoTLV+4RwMPlAPzTPIJ/1+APvXmvZj5n2KzKvOePNKbnMKOq5q/DbmK6GzgyKrxR5AvNl5kXgfNUf7Rv1D+kb5SNf+Z5Foz+zbx+lahid7ql/F7PZP8GOr65auciFzIvE7MKp0jfprczG4m+fGb65A7Z7yUXBup8t4Pr3q/Ojb0ZeWwYg3M68z8OuY/MZ2vk8Uy/vPAj8rvl5blXiFXY32R3LfDEPIdz+8A67f263No8DOv1OT8Mjl8f4NcK3MPcmf8lQvudcuxofoieefyuT9B7iuo8lTJnuQTkVn1jp+VIGjdemWoHI8qHQHvV/7elxz4TKcEjaUce5Lv0j5Q5q9+GmUHcg0297eVZCDXwLiAfPJd6dj8iLK/vlD23c2Z/+S7sk+1L/vzfE+AIZ9rzAW+WjUuyAHkXHIz6071yrEa+ST/c8w736g8YfTsZryONiwn5wb/SQONn3O2J3cKey05vHmN/ACG46o/+3I8ua18zt+t+iwrHejvX6b9smqZjuTaBDMpwXcZX/mu/APzPwlr7VKWG4A9q8ZfTb4Y3Km138cVdSjfGdeQb3bULMJyl5fP6kLyNUFTHQ1XQqH/R+kQmFx78ENgt3rzfq7M+zhVITK56f+u5K4qDq06hg0v8x+wkPK2wSedLRcDue/FueTr2p7M64B8Lvm86F7mVTioHEcuK9M/Wxlf9T3zafIN+lcq+0w5xjxEDqkX+E4py1dukK1DbkZ2OPmm/ifAd5fF/tLqH4bDijtU/XNUn3C9Tb7o+Cm5j5vLyxftg8B2Vct+iaoTv+p/kvLPcVeZXn3iuA/5IuV8qkKN8nel5s0/yH0N3UE+afh39UGeFeyJOeWLar4DT/lZufir3FX9B/NfAO5P7vfhE3JNgZfJF/9fIjfn+A6wcWu/PocW3182IF+AzwXObWSe1ckh6gvAA2VcJ3LzzzvId1DPp9Tcc1h+B+bdydqTXIvwOaqeDFk1X0NPgQxywDwHOKKB6V8h38W9rXKsKMeZuZSgvd4xZzXyRdQMYJ8yri35hHkm8x7bejM5sL6j7Hd/Igf4niCvQAP5oqaxx4uvRe7b7yvkMPJ+8nnBs8DAMs+N5Bs/gxvYLyv7deXn+mV/eR84poz7cdl3Bzaw/VvK/nYvuXblfuTw4NKyzR9VfZduQQ7NOzXxWg2GlqOBeRfgp5HDxufJ55pXki/G5gK/qZp/bXLNsdnAlxtY36pV+8uqVePPKeM/XzVuc/JTsOaSa6mcS64t8L/k86z7ge2r5u/qsW2JP++25IviWZQnEDdjmZ7kc5xHgDWrxs9X27FqX9qYHEZ9Apxext1KvjmyQK0vcu3cWeQL/0vKfnAZOTyaQtXNaHLrgEV6Eq1Dq+1rlf2h0rLlW+XY8iRwevk++V2ZdjPz34j7P/KNusZqp1Zqlg2pGvcbqp68TdV3KjkI/xn5POxh8vndB2Wf+xEN1J5cKu9Ja38oDsvfUA7KjZ4YlS/nj4FDq8btVb6E7yxfpNWPW688BnBU1bgtyCd5V9f7Yq6cGJ5H1Z3pMu7T5ODnbqpCjlLeA8k1lyaVg/T95BpImzbyGlaIL25yn0lzgV+Xv1etN/2YMv2WBpbdhVx76B/ku7ne0foPGMiddlYuzP9S9qH+5NpBJ5IvzN8p/6tb1Vu20UdrOiyfAzlsubF83oeVcZW+hxaoSVamV06GJpTlKne46mpLkPsq+zs5/K8EQ2eU+f9Q/q4+zrcnh9FTqdc8gBzy/44cEE0iX7T1bu33zmGR97UG96cG5utT9pt/kzvlvZscGG1UpteQg83K48cXaB7WwDo/Xfatt8nNP/5U9sXeZXp1k5+NyU8NmkW+8PuYfL7xGrnPv80X5/U7LLX9qtHzsXJ+dzz5Iqxf1fiDmHeTbCdK0FeOYReXz/0rVfvGsWUfOJ35L8YqzUDuJ9d87Fs17cCyn/62sp7yc3PyzZTJ5Bons8j9sV1IbiZlsDj/Z7gW0KX6PWxoH1jIfrBfea9/ThPdIlR9RoeW/eOi8vdCz23KceW1sh9sVr6vXqbU1q+3/jbkGxzjyeHAR+SbspeSz8EWuClNK3Vj8Z8+sAi1QKu+Q4aQA5r3yOdB61fN054cFH7A/Neo15V9btdG1lmp1HB01bQvl3Ejyt9t6y27X1nvDeSO8L8IrL1M37/W/gAdlsGHnPuW+BvwX00diBdhfReR7+zVlL9XLV+QM4FeVfN1Ijcj27scSD9g3p3ptuTOTp+gXKwy/4neIeWf53dV61uLfLHxBqWWUP1/fvIJ4goRAjXzve5Q3odnqsatUj7To8sX08fA5+otV3kfV5r3wmGR9pu9mBcezC1fdm+X36eQL5YWqHnisOIN5Fpkc8kXKg3etSwnSt3IfU+dXDlOk++YzgD2Kn9X1+xcjdzkZxa5U3vInXe+XY71X66ad0Pm3X3/DQ3fsW1P1Z1dh+VrIIfJ3et/bo3M25ncAfAPybVxutWbvg75LvtcclBUv3+qDcu0cc0sW2Uf+io5ALieXFPgMWDrevNWX8htVpY5nXLHtpH12x/IcjqQa+SML99blT4a25NrOk4DPlU1b5uybx1GPke9nnlN8ncmnzv+kfmbpVVqllVqEJxQNW0Lctg5saFzKfLTcXer/r9xWOA9+mJ5X7/ewLSFBs9V/89blc/hn8wLnBu6CVKZf1DZ7jXNLGd1H5/vlePLTPLN7NUb2kb5fVVyXzPuA8vZsCTH9PK/PZFcAeKsBvaTQ8jXXucwr3nYf5V97ofMa2nThnm1jn5cpp9Wtb4e5dj2aPX6q7dXWX9rDT717D9DO/KBrA1555/S2KPrI2I1csdunyP3H/TP6ic5RER7cueOiZy2k/Jjjfci362ZGxG7k/sk2J781KTNyMHQE+QqmC+nlGZHxD+Br5E7CHua+Z8gMYGc5O9RVbwZ5LvR65L73qD6NZTX9HL5vU1Z35yGXueKIqU0MyImA1uU93gN8me5C/m9fQc4MaX0f/WWm1t+NvYkEK2kyv/B7RHxb/Jd+J7kjhunAveklCa0agHV0rqTj41PkJtY1D2NrDxtaidyU8NtyftDV/Id92+S74jvSe6/YT4ppY8iIpFPVN4r416NiDOBn5Afw/oVcvX+Tch34G4EfpzKo2RTVjkWfUw+sdJyJiK+SH4U84iI+HFK6eOq7/zqJ/p0JZ8MH03+Tv+I3JT5lYj4YUrp8rLK95j3ZMTny/dYQN13dqI86jciNkkpvVRvO/XPTyq/X0nex39e/n40pTSpev6qn3PI++bF9V5rmzLb3LqVr8DnCCu68qSew8lPaf3vcpyo9jH5xti0lNIHZdwqwHbkoHCViOhDPi/tQ65B25vc/0c38jnvNOClMv8AclPG98o+WdkPbiHv2wPJT22EXEPyFeAA8rHzqeqCpZTeIIdPatyL5HB384hYLZWnaMK889SI6ET+/tiTfIPiDnIHvy+SP+s55O+1CeTPYmPglYb+b6vGvUMOCzeIiHVS1VMKK09ornd+XDlujI6IDcgdX1Pm+6D6OqjedmellOqeGNuMp/BpGUkppYhYj7xfbUy+MXFnM5d9IyIeI1+fVj8RuPLZTyJ/v+xIvq79kNxlyvHkoPpO8vn2HGBORHQk77vvkI81FU+Tb/j3jYiOqd4TD8s+16pPQVylNTeuZWYquUbR1uQqs02Zw7wOAn8SEW3rnTB+TL6b+E75Wb2NjuROBW8l11jYh9yu8ivkTv96pZQeqZwwkp+u05byCMpUHhtZfn+R3O58q3LQrhyc/0RO7kfXL3j1wTulNCelNHslOQH8bfl5HfkO2ffItat+Tq4JcHljC+o/T9X/0NsppYdSSpenlL6XUvp/hkQrpQ/I/U4l8vGUqmNskO+kn1bmuZlcS3GnMv3+ssz+VY8Trj4v2KKs47XKelNKvyfXSrqWeU/Y2Ih8F+30coLV4I0ILV+q9pPnyX27bFG5UI+IgRFxRNkn2pabRD8lnwjfSq4pcDC5Oeu6wKURsVe5oJpNPpF+D5gZEZ3r7Q/TyRd925A7fwVYtV6YVLlxVX1M+5Bce/mv5P39nfJI4yb3tYhYpbJfl3ODuU3NryUXWZvqvxuZtSNwKrnD3zMamJ7Ix6CXSqAAOeh5i3z8+QO5WdpV5KZAncnhYP+U0o4ppSfLMtPIF3yfppwH1wuy/02uPbl/RHQu42aT+4n8DPn/Q81U9T3yHPliuD+59mvdvhARm0fEL8n9+lwOfJb8Xl8G3BIRvasCl+nkz28d8rXMwrxMvv7YuQxERDuo+9znlHFdKuOqlr2Y3IQMcsBIY8eM6nC7/D3HkKj1RET7iOhVfv8x+XvoKnLwd0NE/L965zgNraMy/f7ys38Z37ZqP3md/B3Wl7JfA+PILW56AxdExLYR0TMi9gauIAfZY8gBU/UNkcPJtW4/bOI42XrSclA9zGHpDuQv2VPJd06Ob+Yylfb/Z1BVbZz8BV2p/ll5Qk5b5j2V5FFyVe8tGllvdSfUnyI/3ewGqjrlYl7VvuPIYUjn5r7WlXEgn0y/TX4awwHYj4yDg0MZyDU6PiGffDTUkXVn5m8K9jK5OvWG5PDo8XLs/kLVPO3Id3hnkk+WGjwGk4OkRvuLcFgmn3+z+g0q887XxKrqu3ZVcj8M75L7E3qv7BOTq+at9Jf3V+o9DprctGsG+YbUp8u4LcknzvdT+gqst+0jy/rupvRfUjVtfXKNt8MaeR37l+1dgP1+LDdDY58FC3lSFfluf+U4tHO9abuSa4ZcVDVuc+Y9YfFl8sXZ/pTmHvWWr+5H7XByLbhv1xtfaX52FblmXbMfwe6wwPs9X38w5bvkknIOu0/V+NXJfdXNIId9R5Frc21OrpHxATkA7Fi1zCDyTerf0oxmzOR+qeaSH/DRp7KPluPLEeXYc2gjy55Yll2g83OHFt9n2pMftLNH+bvB/p3qj4cFuh5pw7wabKeTQ76LyTWqDyVfu84FDllIeSrfiwPJtXn+WVl/vW2dTq5cUd0Mvy25RmKl24fJzGuufxHLqAPqlhxserYSqFSjhIarO6aUUkSMJ//zbFe/+me9dVWqV/43+S7xOeTkdEyZpSv54mBqSumdyt3DiLib/OU7IaV0cSPr7gn0j4ibUkrvpZRej4iXyF/wW5HTf9K8OzyjFusNWcmklCpN9iRpPimlGRHxBPluVd+ImJTmb1bzDkBEdEgpzSSfHH+R/AjnKyPiQvJd899HxH7kp3t8inwhPxX4TmUd1crdsOeW9utT09JCaseUu6OR8p3u+WrepJTmlqY/D5LvjCby3dGryHfvn4+IVVNKn5A73QT4U8rNElcF5qZc6+I6YDA5XNye/HSzN8l9yxxBbtr4Yr3tX0Nu5r4v8M+I+BX5pHwjcmewewOnxPxN39uW7XUkX2i+V15Dm4bOfbRsVX1Olb4Vv0u+4N4wInqmlJ6qv0z57F6OiP8h90H544g4tWreVcifd/Wd9tfJx6l9gDNTSlc1VJ6I2AxYKyIeK/vHs+QA4jPkO/yVZmNzSvm/tPivXjDvGiQiNiaf1z9N7k9qGLkZzz/KfB9ExKPk/jXvrLea5yPidPLnuzO59QHkEOAJ8gV8V2DGQmqvXkOuPTuMfIy5nfydtgW51sc75Av5OlXrW7+M+qCMX2Vhx1otth3JTw38FzkYbqhJYSV4ISI2It9cqDRvrvtuKNe6e5FbXvwkpfTbqnk+LNs5LiL+luo186q3LchNVR8nd/Ux3/V1ys3rHyMHndtFxPUppQ9KGb5OriG3N7nW46PATSmlFbJWok3PVmDV1bTTwqs7vkA+YPejXvXPamn+arg/IDdxOru084R8p7ED+QBbPf/N5M7fjo6Ib5aTSCJig1Id/RfkTgEPJbdBrhhOTv0fb+Q1tllYNUFJ+g9XCecPpfQ3VGluU/U9MbPMU7moGlR+XkpuQvQCuW+6n5D7jnsE+GpK6d6GNtjEybmWkfL9+rWI+G1EDGhonpSbdFcu3gZGxGcrzS3KRdFsclOPK8hNb8YC300pXZpSuquERJDviEKuIQAwuywL+cL9n+QL+m3KuPfIYVMnYJv65xvl3OHL5NoEG5Lvtl5BvknVnXyif2O90LOyvU3Kz8fLeEOipaw0JWvbVHOyiOgREU+RO7T/IblW+F+BETRw8VdUPt8/kx8FvRe5CVlFZX+rC6XLBd615OZIP4yIXarKsEZE1ETE98nnvCcyL2R6jbyP3Uy+wKus7z/2WFY+12Y1d2nOvBFxREQ8TA5gLgXuIT89bi6wbcxrPghweSUkKs10fhQR/46I2eTAYFVy+FzxFrmW4lbkY0STn125cD+RfC3zb/IF/1Dy8eMy4IjUQHP8iFifHFZPI4cFCw3ktUQeAWop3x0NHc8joldEjIyIV8h9hf01Im6PiH3KLJVlbiNft75BDgor/aBB3nfuINeO3bipApXvxg/JNzvaRUSl+WL19ehk5vVhtn5lekrpw5TSvSml4SmlY1JKv1xRQyLAGkUrirJzrlJ1olR3gIyITckn+IPJn+kdwN9SSk9VpePvkKuAH05O059f2DZTSndGxAjgLPJdnm+RD85zyP/YlbJV7uZ9k9yr+/nAqRHxWpl3K/KX/Y3kRwBOrdrGXxZSBk8AJalpN5H7gjuE3Cb/B/VPbCNidXJtj++UUa8BpJQq4UBNROxIDgv+7Ylx64l5/ek0+hlExNrk7/TKCe/95BPh+vP1IX83V27SzALej4hfk2twvJlSujByjd8acuf3lT5E2pQ7p23INYSg1G6tF+DMiYh3yU0aO0RE+5TSxxExiXyxtQO5VvJ71a8xpTQtIr5K7kR4EPl84cGU0uRGXnNfcsekPyRfWNzR2PujllXOI2dD3f65RkppeuXvsj/M5v+3d+ZhdlTV2v+tdIAQQiDIPE9iGIRAEJQZRGT6jFwHREBRP0TwKl4uelUcUBH1ioI4oHyAXhRQmS6DzBjmMIYEQgiRGQJhMgQSSYD0+v54d+VUV7o7U0Onk/f3PPVUn5pOnT51qvZ+91rvUvriB5EQ80vgVzWxsavjkplTI+JHSLQ+LCIuyMwraAmPD9ffKzNvD/nbfB+4MCJGIuFoILqOV0deWmdV7ebS9uzMB2mJoQg91eDBbF/Q+vr6sugmIrGTY2+PxL4V0IDDWDQw/TEUmLAxEmnuL9/j62VQ+dvI966qhvxDdL85FVWVo5zv9BIx8iXg3RFxY3d9hOqzZOaJEXEyGkSZlJmvdrH9MiiS9mB0nzm5L3fwe5OIWB14NVsG9M31VSZMZObLETEGtUG2zsx7y3WXmZkRMRQNJAxDwvNEZFS/D3BORPxXZlaeUtUzYZnMfLE2GEJ5fSdqJ21Jw5y+QWWifhuyU9mv/N2Plrj9ArJOWQ7d9xZPQTEXgfw3T3NO6EbebWlz1KA7HY3mvYxCMh+jlFMHdm1sf0hZ95X5OI/ByHegHYlRHyt/f62sb2tsvxYSls5HqWSjkM/QNt28h0u4e/LkydNCTKhhO7Pcny9GDeztUGPqcFQx6iHU4fpEb5+vp3n6Trv0HkId4heASeV7P4k5yzivCVyPPF7OAL4AfBOlmrUD59W2XaFcI1Mpfh6NYx2Aoor+TCkvjnwaqjLAXyrH/GZtn7XQCO9YShn77j5T4/3amtuiSJV2lHb0od7+fvrShHxA9mM+y3jT8utYF/hP5PfyKPK0+g9gzdq2g5BQ0I7E5jmOMw/vsx8aqX8EdeyPLsc7sLp+quui/L1nucYeKr+HySgV8iPVdeqpy//5iuX58GlUDW5ufY6hwAgk+PSrLa++u/PKd3VoY7/tUH/gJeCA6rsr8+OQLcZ15R6zNi3PqEnlnrN27VjbluV/YgH9Syl+N51dk2hA+yHgO8Dqvf0d9bWp/CaPLdfBPN+jaflJfau8rq6Blcq9popAXaW2z8blWniicaz7UBrzyvXzKvN9kaB8Cp14mnWy/aZIAH+2unZ6+3/8tn+nvX0Cnubxi1Ip0F+j8Nwtyk3ul+UmegpSSDdD1Ud2KDfkUY1jvBs1As8GBs/De1Y3/91QGN8dyESuHTh6LvsOohPTZeaxkejJkydPnuZvQiP5l9IyUpyOBhHaUSfqDCQgzWEW6WnRmVDq303le/tYZ98X8t6YjAxfx6AO/PplXfXs/mE5xjfoaMS5LhJbZlIzc0Ud/3bg4NqyqsG8Pkolawf27eR8ftfsHCAx67SyfOd5+NydGnPXPs/mzKfQ4anDNVUVKKm+07bSluy2XYYEgtuQ4HgLcBEt8+mb6Gg4fAjq+J+3oPcZWsVXLkIDja/O7fpBncb1evv/vChP5fe1C+pL/KP8j98s81dQdMTajX1WQ1FbT5ftZqJ+xFnAJrXtNkGd9vtQBkFVgr66zr5ITQgoywNFwD5No08CbIAiR9qBg2rLV0dRJU/SiaC9EP+b6jexTG9/T311qv0PD0J902/RhfiIBjGOKM+Nj6KKdy+giFJoCUU7lGvgpMZ1s2a55i6n8UxC0Uezn0XUBh3KPveg6NuV5+Ez9UNFE742t/vk4jo59WwRJSIGI1X2YeBGNNK3AsqXHYxC4q4HzszMMY19X0YP8Z0i4r2ZeXtZNQmZag1Dqv34ZphpnWyF0N2KRnXOQaMOoAZjV+feLzOnVX9TQvWykzBXY4wxC0+5l19dQvM3Qg2id6HG163ZiReDWWTZgFbZ+G8hwe+KkgKW5dk8BJWKHlfWfwAJQI+nDJ6XRQ3x51DFqFkl3L8tM5+MiFNQA/iAiLg5M59HUckvAztHxPmplKF+wKzMfDwiTkcj+ieUcxmLooYORFFrF9IyniVV7vdE4LjM/OfcPnR2XYK68kLs1MvQdE2tjTcOtQGHoRTE17KWtlNLM2ymHq2AoixWQ9FolwNPp9KGjkUVb78TET9MpfRMRNfccuj6nG01MB+cjQTtjyKRaCDdlKcvbc6HF+B9ljSeQL/XF5Dg90fgWfQ9HYK8hB6JiG9l5msRMRAVtPksSun5OYrU2BwJP8MiYqeUl8uLKB3olVQ6MxRfqnJd3VDed3hErFruN6uhKnQvoP7NK7Vz/T9IDJiOosaqgjovI2F8bVq+NAtNdc1n5syeOuYSSBsSHscjIW9XFNAwtb5RRBwM/ALdIx5E3+8gJEK+J1pFC0BCEcANEbERun9tjtKZt6JVmr7yrQP1jT9fjnspdPCymoSEogNR2vaL3X2g8uxZotNVe12pWhwmekBlRDfY5WuvhyBFdCx68F6GIntWq22zdJn3Q43KX9FKPXutzE+sbdMfmQpOB0bM77kjFf9VFEK6Tm//3z158uTJk6fFbUJRw+2oQzQeDcysWNZVI6MjkN/Qrijqoh2lllXrV0eN4nF0DNev1m9WnuXjgK3LsneiyJH7qKUU1fZdFglXVSTCE0gIeJ1OohEa+y6Ro7Fv83WzFkrdWqm8bqM1Mr82EvEeqdpvSPT7b2RE/kdg706OWZUJP7yxfJlynd6FBiZ3rr3PlShSZNOF+CwblmuragfPcT16muf/ZVuZ/6H8P08or5eubbN/WXc/sF1Z9qmy7CfAOxrHPLrcA76MIohWKPeDicCGZZuobb8hMgZ+ENi+LBuCIkpmoajHdVBf5hSUxVClMT7deO8uU4Y89fi1s0x5vlwJvKv5vdavr9rrlYC/IBFmaGPdNsgfcTLyVdwECUZfL995O7BbbfvvlmW3l2unipaegAY65og0pAiWwOguPlMVsXh0b/9/+8LkalILSX30JSLWndv2XRzjK6hB98HaMaegxlqVLvapzLwhOxpBvx4Rg9BN/AqUkz0O5ZEfg27i+7Y2zzdRI3DZclyqc5/L+VXXyacyc/nM3CYzn1qQz2qMMcaYbqmXBj8Bdei/14j2GIaEgMdQI/p1ZFa+Ylm/EkpBn4EiBppGtf9EDfOVaRU2eRqlmG+MRnYHRcQGEbFXRCydma9l5gko7e14VNHod8BOmfnhzHy6qw80L20N0zlRKhjWX3eyzQpo9P4yJOCQMiCuV6YbjXx/1oyIfZDPyydRBOJHUNTaoVGrbIY67jOACRExOCJ2i4jDUWf+9+ia2wSJjKDO4Z0oKm7jBf28mfkoar9umJlbZeYzC3IsA7TMd/+3zLcq8zejVRFqJOrAb1rb72so4ugHKeP5/hGxdkRshyqSvQl8HF1TryJBbx0kBgC01a6ldnRPWhmlMlL6Ob9A18wJ6Pq8CAlUZ2fmN1GU0671D5OZb4RwH7YHiFp11C7YFPVP14A57+XZqqq5WUR8CKWGjUbf97sbx/o0GsQ4KjP/mJkTU9XpfoyuBZBoWTG6zDdD2S0HIe+xoZn5H5l5c3nvpWvn8yy6FjeOiA3L+qh9xrEoQ2ZMN5/ZFJx6Np9ExDbo5nluZl6amRkRq6DQ3E0jYh1gZrZCL+v7bgeMyVIBotZom4TCObeKiItRuGYCf0PO7KMyc0pEDMjMGbXj9Uchcf+JHgCnleO/UNZ/G9gyIgZlSQVDo5OTUcjoypnZbdgddAj7frEct628dkUyY4wxpgcpHaHRqMN1FerQfwkJMxeUzdZGHaxAKeqPl+1XQ1VOp5ZlO6DR/AnQoRLQ5IgYAqyKOoOk0k0uRClrfyrvtxIyo/04cEFJUboDCUod6C6V3cwf9f9l1QYrHZ1B2XnVpteAa5G4MqhsvwaqIjYyMydExH2obflZVHb8blRZ6kEUsX4yqor4EHBnRAxAbdP+qCrVGqhNOgRFpt+KvI8uy8xJ5VxnRMS96LocFhFXZzdVzzqj1uZ0umwPUPtN3ljm749WteJKREokNvcD3ghVyRyA7hvbRMTK6P5SpfysXPYZj9IY2yPiEtTJPxi4oCZSgqJG1i5/b1KlF2Xm+IjYhZbP6qPoerq7nPvl3Xwm32sWgHIf6Vf14XLOCqn1e8/MiPguGhC4fY6DafvPIlPy9dGzZDqKLpuFBhwuLcfpj55Fr6B+aLM/eRGKLNsfWa8A3IBS0l7LzP/bzccaERF3Zati5p3AjkjgOg1FQVX3lZvRs83MA1Zj5591UYNpx9qyqaihNhhVHXkDICI2j4hqJO+P6Ee2Z3ld/98/iBp0u6D0s+pHe0WZr1XmzdzZQA/8SagixLU1kWhNdNMHNQAqJiMVdVfKCNBclOQ5KKNUFomMMcaYt4bTynwXNBh0F/DjiNijLF8eeDkzq/SvseiZvkFZPxl1DFdCJZ8pAlEVAb0KGtl9lFrbIjNvQX5Dt5XjPQN8BYkQHQaIyiBtW9WesUjUMzQi1TeNiOMi4jp0DZwbESdGxLaN7V9H7chZwEkRMQm1DX9Ny+djIoo6Pxy4PTM/lpk3l0HAi1B0+hbomqt4CQlFH0fX3C9QFdvlM3PvzPxtZk5qRHhUwuW2SFQyvUyJ0pqCUssGUCKHImL5iNgMWVesjzxdHkaizlTkS/pHJFB/E1gFFUXYPjPbMvPzlUhYtnsCddq/HxGrRMS6JcrkClSN83WUHrlGef+2zHwoM3+UmYdm5ncrkah27vPVRzHdUx4DVRTQsIj4ckQcHxEfCflHNSOGxmbmlcCsStipvpOI+AASmNuQuHMEKnrUryzbhtY9YGV0D3kNDWZ06E9m5oPo+tyk6jsXUfz3wCoR8ZuIWL2874CIeGdEfCoi7kAG1kNrp30BuqZvLMdZ/MrWv004omj+uQVd4O+OiBUyc2oqBezvyAzu5FA62C5IODocOBOpogejB/YV1NRN4CngXmTetjYyawM11GYB60XEspn5WuNcAv3gpiFDrydq6w5HBoBvIEPAy8tD/F/oh7McxTjOjTtjjDFmkeKaMh+Rmf8bEV9F0UXfj4hRqKM3DRTtGxFjUYW0LSLi+tIuuRiF+h8SEbcgk+BlUErQN1GayDHVAFNFZp4TEZfUIpE7pbQdPGjUw5RI9UG0jIRBA4ozUGdoP+BrEXEccHqJOD8UdZaWRalAI5Hw8xit9I0nynG2QqJTFZk+q0SEXEkrCmBAiQ6aiCIEzs3MI7o57S2Q6DgdiZT3AXsj4XJBDK3NW8MVKB3o6Ii4Cpng74Siea5BxvOvRsQUJBJvjTysjgSuz4bZc+lX9AfeLPeczwM/Q15mn0P9pSEoeu2bSHB+hVYUYwfhGQkMWe/Yu4/Sc0TEWiia8EAU8LAc6kcuWzYZFxGHZubY2j4DUFrrjihVdYwWxzJoEGEgek7dUNvnShRxuC0KdphcolinoqjXDgJyLcLtSRS1tisSr0HVOwchD74PRcT9qJ9cDYw8izJ9qog5MnMUMGrB/kumjiOK5kJTyS4jL2NQ+G0VkTMClYp8A426rA38FVUFuK3sOhKN2u1ejjOrdsypSCgaXI5bqf+JopCGopt4MxLpDWROuC1wRERsERF7R8SZSNX9Q9lmv/I+VeWxn2TmrukKIsYYY8yiSOX3swtAZt4EfA8NNn0djciPLoICKFJkKmoPrFj2eRR5CT2LRITRqG3yV9SJ/xktX4gOZKtyaVuZPKr/NlGivX6FIsluRaavn0SVwDZFHaYnkMns98tuo1CH6mok9pyWmadmZj0t7DkkFAFMKZFIb9Y64o/Sqoy7UVl2ExKVPhkRn2meZ0TsH6podREl5Q114m5GHbe52huYt4XqO76qzA8GzkcD3E8jX6CDMvOB0v94Hok7AFdm5hVNkajwCeCAIjS2Zea1SLA+FqUwTkLV0o7MzEcy84zM/Gt2TEvTCZZIF0d/vKXchoIXNijzo1AwwQFIRNwCODaUllzxJvKgWr9MVYTOSsA+wH2VSFRFmWbmROB01K8dFi0vrHvLfP9QZc5KrG6vCYWgYg2EUhQnodTro1DFsg3Qc3AKSlXbOzPP7CSYwvQEuQg4ave1CV2Ys6tAoIfqSFS+c0p5PbCT/UYjJX2N8jpoVSD5YNn318gkrlr+X+W9jiyv+zWOuQnKEZ6FVOFXUajw8WX9+2hUK6iO0zyWJ0+ePHny5GnRmFDnux0YVlv2V1qVX35YWz4UdegnAFs2jrMpMou9CQ10/U9pcyz9dnwOT/P8ffcr86rS2F+62Xbnss1LwP7V/sjsdRYSk/rVlldtyg+jqJ+fUCqiNY57EmXQs7ZsDyT+TEeDoieU/S9BIsNDqBM3x/E8LVoTiv6pvIl26GKb6lqpqtpNL99vG4pAGYoGxat70e/m8xzaFuYzeFqg7726F/y4fGc/62Sb7VHU4iPA+xrr9iv7fae2bDM0OHEtMLiT62cvVDTh98hbDRS99hASpT/UeI8dUPThUygCqavrd43e/n8uSZMjimiZaXWxbr2IOKgxmjayzLcEyMwxKG3sb6hEZFtm/qvsH7Xj34xGXCp/o/r//yn0A9kOGJLlF1GOCRJ8yIbSnlJt90Bq6+/QSOPwzDy+rB+VmS81P1eW6KKuPrcxxhhjepWzyrzuGfNj5L/wd5QKX1GlsG9IiUCuyMwHM/NbwD6ZOSwzP52Z820ybN5aUlEZa6D23GvAD2B2VNfsNmiJBLoZecUMAQ6MiJVKm+4JFMWzAxrNb7Yb/4E6gjsiv5Am1yFBYFjtvP6O2qC3ovbmUag8+ma0Kqedlp1EiZhFhxIp9CatFJ3Kb2ZAvR9U9T8ycxxK6XkGRbg9AlwPXAj8PyQsnIQi2bp6z7ZQtbTZ12/a47Q3aPYpd4A5vp+70f1jAxRFVGcCSikdHhGrlWWDaHmYrVSOV+8rP4OEp62r9Uh4/AmKTPpt8RgaERHHoAGMS1G67KrRSSXxVATks/P/8c2CYo8iur5pRcRSKC9zfxTuNrGsGod+MNtExGqZ+VxmTgtVKQEpr/eUY2ftd3M9agDsiRp6VZjdLDQqMxB5Da1PyenOzHER8SL6cb6jKfqUBsNkZB5mjDHGmMWDKnV9T1SdiswcHRFHIK+h56sNM3N6RDyK2hXL1TwfqG8Ds0P90x22RZLlgM2RoPMP6LZjfTlqb74HWSHcgQTD+2lVwHu5HKPqKD6FospGIJuEKY1j3lOWbRkRgzPzlXItPQjsFRHro7THh7PhbWX6DH9DRW4ORAPYb3Z1jWXmyIjYEaWqvRf5zUxABsaXl/5Hl/ges2hQ+/2PQqLR9tXvu9qmeBFVAQyvlWWVsf5z6N6wJa0+6gtIPNwceBcysK/2n4WEoiFIJFoPeDKVvnhWEZu+jCxSEglT16E+8hrAjMx8tvb+ppdYLCKKSp70st2sjyrPvov1e4Zc39vq+6Sql1XK+/a15dNQA25TOrqs348Enz1qy+o3ytuQ+lp5BtVvzpsgoWgQMsqOmh/RhPJeGzfPvf4Dioh+9hIwxhhj+j6Z+U/kbbh9vY2TmVMyc3J2LJsO8iFaJuXX0GUHrdH2MIsWw1Gqz0QUod4dE9Do+2q0qt29hEpDb1Smqg0cAKVjOBpFE23VPGARf55GJscbl2V1T83HS6S6RaK+R9On6INl3u29IDOfz8yTgcMyc6fM/EjKa6gqce4+Rx+gk4iy4WX56hGxA0oR2whF/EyEDn3MfyFRcW3UXwUJQdeh6pmHlO3rVbF3RkL10sDWdY/dzPxRWf8F5Oe7dWbul5kzMvOxKmrIIlHv06eFoogYGBGnoofae7raLsXsizcihkRHU+gzgFOQKlrd9Kob332osshejcNeiwwjh9WWPVy237YWmjf7IZ0ywr4KWCsivhIRK0bEqqHSkX9BozzTkBHcsrRu6oehnMw7uvt/lHSyWf5hGWOMMYsFv0UlqWenCjQ3qKWKvFzSl/p0224Jpx1FFQ2gpAY1qbXxnkVtxuUo7cVie3BP2XfrEg2UjXbhOBQNsGOoclGzs/9lYPfMHI1ZbKjdJx5A6YkbRcQaJfOhW7Gn9GGqKJMOBvfuc/Q5qvSzr0TEF5FtyfnI1Pop4M5mWnIZlLgD9Y23jIilS3TQOchz6OCIODoi1gmVrT8YPbvuQ965H0fBENSum4cz8/TM/G1mjn+LP7NZQPp6Y2ImUjSnAUs1V1YXY1FLvxARl0XEvcCVyFOoovIBGF7m/WiJNOPRqM3OoRL11fKbynybqlGWma+ikZqBlAiksrz+kD4NCUI/R/4CF5ZlN6OQu98AfwZm1m7qj6aqVRhjjDFmyaEqEbwazFsqR9p/sC8zDngdRZGv0tVGJTrgVRSF3p+O1cUeRCkhHwA2i4iVImLniNi5rH8SFVbZi+JTVO/sZ+aNmXkbZrGjJiLfU+Z7V6u6269xfczyoHSfpPq+rinzfZC9yhao4tl3yzYXRsS5EdH0MHsYmVAPp/U8ehpVZ3wIpSPehXyGTgUuQxW4vw58r2TjWFjsY0Rf/b6qvMWIWBlV7nimi+32QOVfN0IP4CfL3xdm5gllm/cgpfSMzPx8MycyIn6LqlAMz8x7y7KlUKrZTODDmflYWT4COBflXf47eoCvgxznHy7bDCvH2xOJXJcDZ2Xm4z3z3zHGGGNMX8ceDUseEXEX6owdBZxZbBDq66v274qog7c1sFNm3lPWtwHHA8ehDtxzKOr+OZQ20g95GD2VKj1tlhCKwNgeEe9HA9qnl2wHswQREVNQausW9WieiHgHKmt/AHAmcGKtfzugrHs/8ImUoX613/ooAGN/1K/9G3BxZjY90Ewfo8+ZWVc3uVq0zYvFm2dr4PHMnFJ7iA5DptEzgWNQLuWkKnyyIjPviojXgPdExPJllKbeQBtbNt0VuLfyL4qIG4FDUeWHx8o2o1E1kiORIdfzqJLZVGD38n5jIuJLqDraHFVHIqJ/unqEMcYYs0RTtXWiE3Nqs9hyKbI1OBi4HRgTMiBvr7d/kd/le4GLgdFVmzUzZ0VEVeZ+v7LtT4FLa23L29+mz2IWIapow8y8HhXYMUsQVR8a2ad8FHg3ML544M3MzJci4huo3/w55C/06bL76yj75RDUr50tFJVAh1+WySxGLPKpZ3UTPmjd5CJi84jYoiz+DQqjHF62qR6iRyMfoSNKDuTDtRzbKi2tygG/BQk+W5Tl/WiFYlbVznZtnN51KI98tiFgZj6FwveuQ0ZdH0GjOH9qGHnNyszXi8jVv7HOIpExxhhjAFcPWsL4KxKLdgS+GhErpQzIq/bvgIjYH/gBqhb0300fosycCpyQmdtn5m6Zebw9h0ydcPGbJZHqHlH5FB1Q5m/URMSJKJ3sXuCgiPh9RAws68eggIjHfe0sGSxSQlHRhDqY91UPv5JiRkQcFBHjUdrXl8pmd6KRk40aF+4uyLBvbNm3f/241duW+WXI52iH8ro/LSPBKizzveWBXS8z+DryL5pt0lUexociF/dVMnOfVBWSOXwDyujQm52tM8YYY4wxSw6Z+RBKG5sIHATcHRH/HhGfKeazv0b2BrOAfbKLQiduV5rusM/Qkkft+76uzN9flr/Z2O5Z4EBgEopsHFqW35WZ22bmhb52lgx6VSiqhKGaGXQ2R83K+guB5yNid5R3/SSqyvDXstl4VILvfSiCiIjYFJXze5qSYtdFpE71fh3U1cx8vZYX/ilkmr0aHaOHnkamgUnDEDAznyvrKRFDnVavMMYYY4wxpiIzJ6C0sV+i9uWpwK+Q5+YByJvoc8jqwBhj5okS0DAJmVO/IyKGluX9attUvrrDMnNpRyMuufSYR9GCGC6W7WcLQ6EynccB04FTMnNmybWuKn6dDVwCfD2Le3rhKeABlHq2OjAF5VdORz5BA+ZyDmTmY8VzaNeIOAbl7g5Biur+6GF8CHpwj6wd4r2pEoHdfU6nkhljjDHGmLlSOmqPRMSxwPeALVH79sHMHNv93sYY0yX9UN/7TmBjVPluAq20tLqX1dTeOEGz6NBjQlFJDxuC0q26HeGomU1vCPwbct6/E1UlOwoZQ5+PyvCBDLM+iUZVLsrMaSXFrF+JQHoJVS07GlgfRfk8icSj9yBvoQfKe3dnCPkdFNJ7EvAqSmdrL+c0EriKhvlbZs4sKmzOr1BmjDHGGGNMnVRlqiiR7f8EbujlUzLGLB5UKaknor725a6uabqiR4SiIpR8GpXSIyKOBH6fnVf0qkSiT6BQ2sGo+sLhSOEcWKZ30hKK7gReQSroGOgYjZSZMyLiHuQxtGVE/L0IOFehcn1fjoi7M/POSiSKiMFIAHozM08qAtLNEfFvwAgkXj2AhKn7y3mc29nndx64McYYY4zpKdxxM8b0NLVMmvHIusWYLllooagIP+0RsXNZNB04AXgcuLqpUhaRaBjwO1Qy/svIFPpFVA70KmADZJx1ddnnkYgYh8LjlkejK03+gfyItkc+Rc+hqhHbAl8FzoiIPyBz65WA3YA9gPPKe1Si08PAz7r6rNVnmNf/jzHGGGOMMcYYY0xfoSfMrKuqYUsBjwBnAMsC346IoUUYar7PXkjw+Ulm/jkzn8jM6Zl5K/C1cl5bRsTytX2qqg47QIey9hXPoGijYch0muId9APgGGA94Mfl/E4GNgd+Dvyw0w8lmmXrnV5mjDHGGGOMMcaYxZaFFopKNNEQYC0kGv0UiS87AN+vtmnstm+Z/x1mVwWrzuUq5FW0DbB2bZ9RZf6hMg868jJKYVsdmXNV5zctM08B1gU+hiqYbZKZm2Tm9zLzqS4+V7psvTHGGGOMMcYYY5YkeiKiCGAaShUbALyQmT9Cos1HI+LQiFgKoJqjqmQg42mA9pog8xxwN7Ah8imqGIMilvaAOSuJFcO/8eUcdo+IAY31UzPzksz8S0kvIyLaOol2MsYYY4wxxhhjjFki6SmRZEVUIewB5P8Diib6B4ow2qcsq8SgB8p8k06O9ToSkgYBW1QLM/N5JCCtEhEbQ8szqJqX434HODszZ3R2ohHRr+Y1NMsRQ8YYY4wxxhhjjDGip4SizYF1gOcz87mI6A9ci8SiVZFf0aq1svS3l3klIM32MSqRQlug1LJNI2KV2vtUPkUfr59/zcH90cw8ITPv6upEM7PdPkPGGGOMMcYYY4wxc7JQQlEtbatKA5st9pRonXOAy4DhwIm1dLDrULTRXhGxf/EDai/HHI58hqYCWzGnT9E1wITyPrNoUEyom0bXxhhjjDHGGGOMMWYu9F+YnWtpW+uW+fURMRDYGTgA2BN5Db0BfBa4BfhDZs6IiFOAn6Cy9WehtLE1ynbjgRuALwKzI4oy8w5g77mcUwJzCEjGGGOMMcYYY4wxpnsWSiiKiCjCzLCy6ARUfh7gVST4XAy0IQHoGxExJTMvAf4HeBH4NXBsOZdZwOXAV4EPAssgkanDewJtTTNrY4wxxhhjjDHGGLNwLJRQ1MlxXgauAO4HxgITM/MZgIiYCPwG+GFE3JKZLwHnR8TVwAgkEt2amU+U7Ycjn6IZ5XWUFLWklepmjDHGGGOMMcYYY3qIWFhf54gYjKKI9gMOAi5vVhKLiH6Z2R4RI4FdgcOAc7rwGFoG2A24EJgI7JuZkxfqJI0xxhhjjDHGGGPMXFlooQggIiagUvdrZubkmsl1ZmbWhKLVgBfqQlJELI/Eo6WRH9HWqKrZDOCwzLxmoU/QGGOMMcYYY4wxxsyVhU49K+bVAUwBBgOTmxFF1evMfK7s048iIgGrouihacDyQALXIu+i6xb2/IwxxhhjjDHGGGPMvNETHkWroGigs4Hn5mWHupCUmY9ExCeQYPQAcFtTaDLGGGOMMcYYY4wxbz094VFUVT4zxhhjjDHGGGOMMX2YfnPfpHsqkSgi2krpemOMMcYYY4wxxhjTB+kRM2tjjDHGGGOMMcYY0/dZ6IgiY4wxxhhjjDHGGLN4YKHIGGOMMcYYY4wxxgAWiowxxhhjjDHGGGNMwUKRMcYYY4wxxhhjjAEsFBljjDHGGGOMMcaYgoUiY4wxxhhjjDHGGANYKDLGGGPMYkREjIyIDzaWfSUiTuti+8cjYuVOln8oIr4+l/eaNp/n9o6IGFOmyRExqfZ66fk5ljHGGGPMW0VkZm+fgzHGGGNMjxARnwfel5mfqS27HfhaZt7UyfaPA9tm5osL8F7TMnPQAp7n8cC0zDxpQfY3xhhjjHmrcESRMcYYYxYnLgD2qyJ0ImJ9YE1g2YgYFRGjI+L8iKgLPF8qy++PiKFlv8Mi4lfl79Ui4uKIGFumHZpvGhFfjYi7IuK+iPjevJ5sRCwfEY9FxFLl9eDqdUTcEBG/KBFH4yJiu7LNchFxVkTcGRH3RsSIBfxfGWOMMcbMgYUiY4wxxiw2ZOY/gTuBfcqiTwDXAMcBe2bmNsDdwDG13V4sy08Dju3ksKcCN2bmVsA2wAP1lRGxF/BOYDtgGDA8InaZx/N9FbgB2K92vhdl5hvl9cDMHAYcBZxVlh0H/D0ztwN2B34aEcvNy/sZY4wxxswNC0XGGGOMWdw4DwkulPlTwGbArRExBvg0sF5t+4vK/B5g/U6OtwcSkcjMWZk5tbF+rzLdC4wGhiLhaF45A6hS5T4D/L7xWShpc4MjYsXyXl8vn+UGYACw7ny8nzHGGGNMl/Tv7RMwxhhjjOlhLgFOjohtgIFIvLk2Mw/qYvuZZT6LBWsbBfCjzPzdAuxLZt4aEetHxG5AW2aOq69ubl7e7yOZ+dCCvJ8xxhhjTHc4osgYY4wxixWZOQ0YiVK1zgNuB3aMiI1htsfPJvNxyOuBI8u+bRGxQmP91cBnK9+jiFgrIladz9M+GziXjtFEAAeWY+4ETC3RTFcjX6Uo67aez/cyxhhjjOkSC0XGGGOMWRw5D9gKOC8zXwAOA86LiPuAUSg9bF45Gtg9Iu5H6Wmb1Vdm5jVI5BlVtrkAWH4+z/ccYEg57zozIuJe4LfA58qyHwBLAfdFxAPltTHGGGNMjxCZzYhmY4wxxhjzdhIRHwVGZOahtWU3AMdm5t29dmLGGGOMWeKwR5ExxhhjTC8SEb9EVdr27e1zMcYYY4xxRJExxhhjTA8TEe9A3kZN3p+ZL73d52OMMcYYM69YKDLGGGOMMcYYY4wxgM2sjTHGGGOMMcYYY0zBQpExxhhjjDHGGGOMASwUGWOMMcYYY4wxxpiChSJjjDHGGGOMMcYYA1goMsYYY4wxxhhjjDGF/w+h5j0y+GNTCQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 1440x720 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {
-                        "needs_background": "light"
-                    },
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "Vechonthatroad_df.plot.bar(stacked=True,rot=15, title=\"Accidents Vehicle_Type \",figsize=(20, 10))\n",
-                "plt.xticks(fontsize=20)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": []
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "above_M25"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "## A572"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>number of times</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>11</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504119</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>21</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17932</td>\n",
-                            "      <td>-2.337699</td>\n",
-                            "      <td>53.506830</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>20</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17932</td>\n",
-                            "      <td>-2.337699</td>\n",
-                            "      <td>53.506832</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>32</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>18545</td>\n",
-                            "      <td>-2.384843</td>\n",
-                            "      <td>53.501474</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>28</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>18545</td>\n",
-                            "      <td>-2.384843</td>\n",
-                            "      <td>53.501476</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>34</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27308</td>\n",
-                            "      <td>-2.609867</td>\n",
-                            "      <td>53.455415</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>22</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27308</td>\n",
-                            "      <td>-2.609867</td>\n",
-                            "      <td>53.455417</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>43</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27309</td>\n",
-                            "      <td>-2.438699</td>\n",
-                            "      <td>53.504884</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>30</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27309</td>\n",
-                            "      <td>-2.438699</td>\n",
-                            "      <td>53.504886</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>24</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>28527</td>\n",
-                            "      <td>-2.675890</td>\n",
-                            "      <td>53.449848</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>23</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>28527</td>\n",
-                            "      <td>-2.675890</td>\n",
-                            "      <td>53.449846</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>12</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37348</td>\n",
-                            "      <td>-2.528454</td>\n",
-                            "      <td>53.484387</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37348</td>\n",
-                            "      <td>-2.528454</td>\n",
-                            "      <td>53.484388</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>31</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37349</td>\n",
-                            "      <td>-2.363307</td>\n",
-                            "      <td>53.504014</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37349</td>\n",
-                            "      <td>-2.363307</td>\n",
-                            "      <td>53.504015</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>39</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>29</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>10</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>47316</td>\n",
-                            "      <td>-2.679066</td>\n",
-                            "      <td>53.450727</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>42</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>47316</td>\n",
-                            "      <td>-2.679067</td>\n",
-                            "      <td>53.450729</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57197</td>\n",
-                            "      <td>-2.570844</td>\n",
-                            "      <td>53.465227</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>17</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57197</td>\n",
-                            "      <td>-2.570844</td>\n",
-                            "      <td>53.465226</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57317</td>\n",
-                            "      <td>-2.462120</td>\n",
-                            "      <td>53.495807</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57317</td>\n",
-                            "      <td>-2.462120</td>\n",
-                            "      <td>53.495809</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>58146</td>\n",
-                            "      <td>-2.543882</td>\n",
-                            "      <td>53.477065</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>58146</td>\n",
-                            "      <td>-2.543882</td>\n",
-                            "      <td>53.477064</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7287</td>\n",
-                            "      <td>-2.588989</td>\n",
-                            "      <td>53.461508</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7287</td>\n",
-                            "      <td>-2.588989</td>\n",
-                            "      <td>53.461506</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>33</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7288</td>\n",
-                            "      <td>-2.393455</td>\n",
-                            "      <td>53.503425</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>14</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7288</td>\n",
-                            "      <td>-2.394736</td>\n",
-                            "      <td>53.503411</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457810</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>9</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74618</td>\n",
-                            "      <td>-2.383193</td>\n",
-                            "      <td>53.500672</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74618</td>\n",
-                            "      <td>-2.383193</td>\n",
-                            "      <td>53.500671</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>37</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74901</td>\n",
-                            "      <td>-2.196223</td>\n",
-                            "      <td>53.071283</td>\n",
-                            "      <td>1</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>45</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74901</td>\n",
-                            "      <td>-2.196223</td>\n",
-                            "      <td>53.071284</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>19</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77856</td>\n",
-                            "      <td>-2.701703</td>\n",
-                            "      <td>53.453744</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>35</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77856</td>\n",
-                            "      <td>-2.701703</td>\n",
-                            "      <td>53.453742</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>44</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456150</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>15</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77859</td>\n",
-                            "      <td>-2.600703</td>\n",
-                            "      <td>53.456991</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>40</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77859</td>\n",
-                            "      <td>-2.600703</td>\n",
-                            "      <td>53.456990</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>5</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77863</td>\n",
-                            "      <td>-2.416059</td>\n",
-                            "      <td>53.502360</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>41</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77863</td>\n",
-                            "      <td>-2.416059</td>\n",
-                            "      <td>53.502359</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>13</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>8498</td>\n",
-                            "      <td>-2.660382</td>\n",
-                            "      <td>53.449935</td>\n",
-                            "      <td>13</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>8498</td>\n",
-                            "      <td>-2.660382</td>\n",
-                            "      <td>53.449933</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   road_name count_point_id  longitude   latitude  number of times\n",
-                            "0       A572          17253  -2.426630  53.504121               13\n",
-                            "11      A572          17253  -2.426630  53.504119                2\n",
-                            "21      A572          17932  -2.337699  53.506830                2\n",
-                            "20      A572          17932  -2.337699  53.506832               13\n",
-                            "32      A572          18545  -2.384843  53.501474                2\n",
-                            "28      A572          18545  -2.384843  53.501476               13\n",
-                            "34      A572          27308  -2.609867  53.455415                2\n",
-                            "22      A572          27308  -2.609867  53.455417               13\n",
-                            "43      A572          27309  -2.438699  53.504884                2\n",
-                            "30      A572          27309  -2.438699  53.504886               13\n",
-                            "24      A572          28527  -2.675890  53.449848               13\n",
-                            "23      A572          28527  -2.675890  53.449846                2\n",
-                            "12      A572          37348  -2.528454  53.484387                2\n",
-                            "18      A572          37348  -2.528454  53.484388               13\n",
-                            "31      A572          37349  -2.363307  53.504014                2\n",
-                            "38      A572          37349  -2.363307  53.504015               13\n",
-                            "39      A572          38662  -2.504827  53.493522                2\n",
-                            "29      A572          38662  -2.504827  53.493524               13\n",
-                            "10      A572          47316  -2.679066  53.450727                2\n",
-                            "42      A572          47316  -2.679067  53.450729               13\n",
-                            "4       A572          57197  -2.570844  53.465227               13\n",
-                            "17      A572          57197  -2.570844  53.465226                2\n",
-                            "16      A572          57317  -2.462120  53.495807                2\n",
-                            "27      A572          57317  -2.462120  53.495809               13\n",
-                            "36      A572          58146  -2.543882  53.477065               13\n",
-                            "2       A572          58146  -2.543882  53.477064                2\n",
-                            "3       A572           7287  -2.588989  53.461508               13\n",
-                            "26      A572           7287  -2.588989  53.461506                2\n",
-                            "33      A572           7288  -2.393455  53.503425               13\n",
-                            "14      A572           7288  -2.394736  53.503411                2\n",
-                            "25      A572          73966  -2.598757  53.457810               13\n",
-                            "1       A572          73966  -2.598757  53.457808                2\n",
-                            "9       A572          74618  -2.383193  53.500672               13\n",
-                            "7       A572          74618  -2.383193  53.500671                2\n",
-                            "37      A572          74901  -2.196223  53.071283                1\n",
-                            "45      A572          74901  -2.196223  53.071284               13\n",
-                            "19      A572          77856  -2.701703  53.453744               13\n",
-                            "35      A572          77856  -2.701703  53.453742                2\n",
-                            "44      A572          77857  -2.641503  53.456148                2\n",
-                            "6       A572          77857  -2.641503  53.456150               13\n",
-                            "15      A572          77859  -2.600703  53.456991               13\n",
-                            "40      A572          77859  -2.600703  53.456990                2\n",
-                            "5       A572          77863  -2.416059  53.502360               13\n",
-                            "41      A572          77863  -2.416059  53.502359                2\n",
-                            "13      A572           8498  -2.660382  53.449935               13\n",
-                            "8       A572           8498  -2.660382  53.449933                2"
-                        ]
-                    },
-                    "execution_count": 52,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Trafficvolumepoints=Trafficvolume.select(col(\"road_name\"),col(\"count_point_id\"),col(\"longitude\"),col(\"latitude\"),col(\"count_point_id\"))\n",
-                "Trafficvolumepoints = Trafficvolumepoints.groupby('road_name','count_point_id','longitude','latitude').agg(F.count(Trafficvolumepoints.road_name).alias('number of times'))\n",
-                "Trafficvolumepoints=Trafficvolumepoints.filter(Trafficvolumepoints.road_name==\"A572\")\n",
-                "Trafficvolumepoints.sort(col('count_point_id').desc())\n",
-                "Trafficvolumepoints=Trafficvolumepoints.toPandas()\n",
-                "Trafficvolumepoints['longitude'] = Trafficvolumepoints['longitude'].astype(float)\n",
-                "Trafficvolumepoints['latitude'] = Trafficvolumepoints['latitude'].astype(float)\n",
-                "Trafficvolumepoints\n",
-                "Trafficvolumepoints.sort_values(by=['count_point_id'])\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>58146</td>\n",
-                            "      <td>-2.543882</td>\n",
-                            "      <td>53.477064</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7287</td>\n",
-                            "      <td>-2.588989</td>\n",
-                            "      <td>53.461508</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57197</td>\n",
-                            "      <td>-2.570844</td>\n",
-                            "      <td>53.465227</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>5</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77863</td>\n",
-                            "      <td>-2.416059</td>\n",
-                            "      <td>53.502360</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456150</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74618</td>\n",
-                            "      <td>-2.383193</td>\n",
-                            "      <td>53.500671</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>8498</td>\n",
-                            "      <td>-2.660382</td>\n",
-                            "      <td>53.449933</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>9</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74618</td>\n",
-                            "      <td>-2.383193</td>\n",
-                            "      <td>53.500672</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>10</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>47316</td>\n",
-                            "      <td>-2.679066</td>\n",
-                            "      <td>53.450727</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>11</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504119</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>12</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37348</td>\n",
-                            "      <td>-2.528454</td>\n",
-                            "      <td>53.484387</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>13</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>8498</td>\n",
-                            "      <td>-2.660382</td>\n",
-                            "      <td>53.449935</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>14</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7288</td>\n",
-                            "      <td>-2.394736</td>\n",
-                            "      <td>53.503411</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>15</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77859</td>\n",
-                            "      <td>-2.600703</td>\n",
-                            "      <td>53.456991</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57317</td>\n",
-                            "      <td>-2.462120</td>\n",
-                            "      <td>53.495807</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>17</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57197</td>\n",
-                            "      <td>-2.570844</td>\n",
-                            "      <td>53.465226</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37348</td>\n",
-                            "      <td>-2.528454</td>\n",
-                            "      <td>53.484388</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>19</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77856</td>\n",
-                            "      <td>-2.701703</td>\n",
-                            "      <td>53.453744</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>20</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17932</td>\n",
-                            "      <td>-2.337699</td>\n",
-                            "      <td>53.506832</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>21</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17932</td>\n",
-                            "      <td>-2.337699</td>\n",
-                            "      <td>53.506830</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>22</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27308</td>\n",
-                            "      <td>-2.609867</td>\n",
-                            "      <td>53.455417</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>23</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>28527</td>\n",
-                            "      <td>-2.675890</td>\n",
-                            "      <td>53.449846</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>24</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>28527</td>\n",
-                            "      <td>-2.675890</td>\n",
-                            "      <td>53.449848</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457810</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7287</td>\n",
-                            "      <td>-2.588989</td>\n",
-                            "      <td>53.461506</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57317</td>\n",
-                            "      <td>-2.462120</td>\n",
-                            "      <td>53.495809</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>28</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>18545</td>\n",
-                            "      <td>-2.384843</td>\n",
-                            "      <td>53.501476</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>29</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>30</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27309</td>\n",
-                            "      <td>-2.438699</td>\n",
-                            "      <td>53.504886</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>31</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37349</td>\n",
-                            "      <td>-2.363307</td>\n",
-                            "      <td>53.504014</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>32</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>18545</td>\n",
-                            "      <td>-2.384843</td>\n",
-                            "      <td>53.501474</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>33</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7288</td>\n",
-                            "      <td>-2.393455</td>\n",
-                            "      <td>53.503425</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>34</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27308</td>\n",
-                            "      <td>-2.609867</td>\n",
-                            "      <td>53.455415</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>35</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77856</td>\n",
-                            "      <td>-2.701703</td>\n",
-                            "      <td>53.453742</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>58146</td>\n",
-                            "      <td>-2.543882</td>\n",
-                            "      <td>53.477065</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>37</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74901</td>\n",
-                            "      <td>-2.196223</td>\n",
-                            "      <td>53.071283</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37349</td>\n",
-                            "      <td>-2.363307</td>\n",
-                            "      <td>53.504015</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>39</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>40</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77859</td>\n",
-                            "      <td>-2.600703</td>\n",
-                            "      <td>53.456990</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>41</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77863</td>\n",
-                            "      <td>-2.416059</td>\n",
-                            "      <td>53.502359</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>42</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>47316</td>\n",
-                            "      <td>-2.679067</td>\n",
-                            "      <td>53.450729</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>43</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27309</td>\n",
-                            "      <td>-2.438699</td>\n",
-                            "      <td>53.504884</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>44</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>45</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74901</td>\n",
-                            "      <td>-2.196223</td>\n",
-                            "      <td>53.071284</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   road_name count_point_id  longitude   latitude\n",
-                            "0       A572          17253  -2.426630  53.504121\n",
-                            "1       A572          73966  -2.598757  53.457808\n",
-                            "2       A572          58146  -2.543882  53.477064\n",
-                            "3       A572           7287  -2.588989  53.461508\n",
-                            "4       A572          57197  -2.570844  53.465227\n",
-                            "5       A572          77863  -2.416059  53.502360\n",
-                            "6       A572          77857  -2.641503  53.456150\n",
-                            "7       A572          74618  -2.383193  53.500671\n",
-                            "8       A572           8498  -2.660382  53.449933\n",
-                            "9       A572          74618  -2.383193  53.500672\n",
-                            "10      A572          47316  -2.679066  53.450727\n",
-                            "11      A572          17253  -2.426630  53.504119\n",
-                            "12      A572          37348  -2.528454  53.484387\n",
-                            "13      A572           8498  -2.660382  53.449935\n",
-                            "14      A572           7288  -2.394736  53.503411\n",
-                            "15      A572          77859  -2.600703  53.456991\n",
-                            "16      A572          57317  -2.462120  53.495807\n",
-                            "17      A572          57197  -2.570844  53.465226\n",
-                            "18      A572          37348  -2.528454  53.484388\n",
-                            "19      A572          77856  -2.701703  53.453744\n",
-                            "20      A572          17932  -2.337699  53.506832\n",
-                            "21      A572          17932  -2.337699  53.506830\n",
-                            "22      A572          27308  -2.609867  53.455417\n",
-                            "23      A572          28527  -2.675890  53.449846\n",
-                            "24      A572          28527  -2.675890  53.449848\n",
-                            "25      A572          73966  -2.598757  53.457810\n",
-                            "26      A572           7287  -2.588989  53.461506\n",
-                            "27      A572          57317  -2.462120  53.495809\n",
-                            "28      A572          18545  -2.384843  53.501476\n",
-                            "29      A572          38662  -2.504827  53.493524\n",
-                            "30      A572          27309  -2.438699  53.504886\n",
-                            "31      A572          37349  -2.363307  53.504014\n",
-                            "32      A572          18545  -2.384843  53.501474\n",
-                            "33      A572           7288  -2.393455  53.503425\n",
-                            "34      A572          27308  -2.609867  53.455415\n",
-                            "35      A572          77856  -2.701703  53.453742\n",
-                            "36      A572          58146  -2.543882  53.477065\n",
-                            "37      A572          74901  -2.196223  53.071283\n",
-                            "38      A572          37349  -2.363307  53.504015\n",
-                            "39      A572          38662  -2.504827  53.493522\n",
-                            "40      A572          77859  -2.600703  53.456990\n",
-                            "41      A572          77863  -2.416059  53.502359\n",
-                            "42      A572          47316  -2.679067  53.450729\n",
-                            "43      A572          27309  -2.438699  53.504884\n",
-                            "44      A572          77857  -2.641503  53.456148\n",
-                            "45      A572          74901  -2.196223  53.071284"
-                        ]
-                    },
-                    "execution_count": 53,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Trafficvolumepoints=Trafficvolumepoints.drop(columns=['number of times'])\n",
-                "Trafficvolumepoints"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "      <td>(-2.42662982, 53.5041206)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>58146</td>\n",
-                            "      <td>-2.543882</td>\n",
-                            "      <td>53.477064</td>\n",
-                            "      <td>(-2.5438819, 53.477064)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7287</td>\n",
-                            "      <td>-2.588989</td>\n",
-                            "      <td>53.461508</td>\n",
-                            "      <td>(-2.58898858, 53.46150787)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57197</td>\n",
-                            "      <td>-2.570844</td>\n",
-                            "      <td>53.465227</td>\n",
-                            "      <td>(-2.57084396, 53.46522737)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>5</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77863</td>\n",
-                            "      <td>-2.416059</td>\n",
-                            "      <td>53.502360</td>\n",
-                            "      <td>(-2.41605888, 53.50236019)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456150</td>\n",
-                            "      <td>(-2.64150335, 53.4561498)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74618</td>\n",
-                            "      <td>-2.383193</td>\n",
-                            "      <td>53.500671</td>\n",
-                            "      <td>(-2.3831929, 53.500671)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>8498</td>\n",
-                            "      <td>-2.660382</td>\n",
-                            "      <td>53.449933</td>\n",
-                            "      <td>(-2.6603823, 53.449933)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>9</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74618</td>\n",
-                            "      <td>-2.383193</td>\n",
-                            "      <td>53.500672</td>\n",
-                            "      <td>(-2.38319291, 53.50067244)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>10</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>47316</td>\n",
-                            "      <td>-2.679066</td>\n",
-                            "      <td>53.450727</td>\n",
-                            "      <td>(-2.6790665, 53.450727)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>11</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504119</td>\n",
-                            "      <td>(-2.4266298, 53.504119)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>12</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37348</td>\n",
-                            "      <td>-2.528454</td>\n",
-                            "      <td>53.484387</td>\n",
-                            "      <td>(-2.5284538, 53.484387)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>13</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>8498</td>\n",
-                            "      <td>-2.660382</td>\n",
-                            "      <td>53.449935</td>\n",
-                            "      <td>(-2.66038232, 53.44993462)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>14</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7288</td>\n",
-                            "      <td>-2.394736</td>\n",
-                            "      <td>53.503411</td>\n",
-                            "      <td>(-2.394736, 53.503411)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>15</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77859</td>\n",
-                            "      <td>-2.600703</td>\n",
-                            "      <td>53.456991</td>\n",
-                            "      <td>(-2.60070306, 53.45699118)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>16</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57317</td>\n",
-                            "      <td>-2.462120</td>\n",
-                            "      <td>53.495807</td>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>17</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57197</td>\n",
-                            "      <td>-2.570844</td>\n",
-                            "      <td>53.465226</td>\n",
-                            "      <td>(-2.5708439, 53.465226)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>18</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37348</td>\n",
-                            "      <td>-2.528454</td>\n",
-                            "      <td>53.484388</td>\n",
-                            "      <td>(-2.5284538, 53.48438829)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>19</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77856</td>\n",
-                            "      <td>-2.701703</td>\n",
-                            "      <td>53.453744</td>\n",
-                            "      <td>(-2.70170321, 53.45374389)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>20</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17932</td>\n",
-                            "      <td>-2.337699</td>\n",
-                            "      <td>53.506832</td>\n",
-                            "      <td>(-2.33769898, 53.50683197)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>21</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17932</td>\n",
-                            "      <td>-2.337699</td>\n",
-                            "      <td>53.506830</td>\n",
-                            "      <td>(-2.337699, 53.50683)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>22</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27308</td>\n",
-                            "      <td>-2.609867</td>\n",
-                            "      <td>53.455417</td>\n",
-                            "      <td>(-2.60986717, 53.45541667)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>23</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>28527</td>\n",
-                            "      <td>-2.675890</td>\n",
-                            "      <td>53.449846</td>\n",
-                            "      <td>(-2.6758903, 53.449846)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>24</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>28527</td>\n",
-                            "      <td>-2.675890</td>\n",
-                            "      <td>53.449848</td>\n",
-                            "      <td>(-2.67589035, 53.44984786)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457810</td>\n",
-                            "      <td>(-2.59875677, 53.45780993)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>26</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7287</td>\n",
-                            "      <td>-2.588989</td>\n",
-                            "      <td>53.461506</td>\n",
-                            "      <td>(-2.5889886, 53.461506)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>27</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>57317</td>\n",
-                            "      <td>-2.462120</td>\n",
-                            "      <td>53.495809</td>\n",
-                            "      <td>(-2.46212041, 53.49580907)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>28</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>18545</td>\n",
-                            "      <td>-2.384843</td>\n",
-                            "      <td>53.501476</td>\n",
-                            "      <td>(-2.38484342, 53.50147609)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>29</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>30</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27309</td>\n",
-                            "      <td>-2.438699</td>\n",
-                            "      <td>53.504886</td>\n",
-                            "      <td>(-2.43869908, 53.50488585)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>31</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37349</td>\n",
-                            "      <td>-2.363307</td>\n",
-                            "      <td>53.504014</td>\n",
-                            "      <td>(-2.3633068, 53.504014)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>32</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>18545</td>\n",
-                            "      <td>-2.384843</td>\n",
-                            "      <td>53.501474</td>\n",
-                            "      <td>(-2.3848434, 53.501474)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>33</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>7288</td>\n",
-                            "      <td>-2.393455</td>\n",
-                            "      <td>53.503425</td>\n",
-                            "      <td>(-2.39345465, 53.5034255)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>34</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27308</td>\n",
-                            "      <td>-2.609867</td>\n",
-                            "      <td>53.455415</td>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>35</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77856</td>\n",
-                            "      <td>-2.701703</td>\n",
-                            "      <td>53.453742</td>\n",
-                            "      <td>(-2.7017032, 53.453742)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>58146</td>\n",
-                            "      <td>-2.543882</td>\n",
-                            "      <td>53.477065</td>\n",
-                            "      <td>(-2.54388195, 53.47706529)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>37</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74901</td>\n",
-                            "      <td>-2.196223</td>\n",
-                            "      <td>53.071283</td>\n",
-                            "      <td>(-2.1962228, 53.071283)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>38</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>37349</td>\n",
-                            "      <td>-2.363307</td>\n",
-                            "      <td>53.504015</td>\n",
-                            "      <td>(-2.36330684, 53.50401536)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>39</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>40</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77859</td>\n",
-                            "      <td>-2.600703</td>\n",
-                            "      <td>53.456990</td>\n",
-                            "      <td>(-2.600703, 53.45699)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>41</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77863</td>\n",
-                            "      <td>-2.416059</td>\n",
-                            "      <td>53.502359</td>\n",
-                            "      <td>(-2.4160589, 53.502359)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>42</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>47316</td>\n",
-                            "      <td>-2.679067</td>\n",
-                            "      <td>53.450729</td>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>43</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>27309</td>\n",
-                            "      <td>-2.438699</td>\n",
-                            "      <td>53.504884</td>\n",
-                            "      <td>(-2.4386991, 53.504884)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>44</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>45</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>74901</td>\n",
-                            "      <td>-2.196223</td>\n",
-                            "      <td>53.071284</td>\n",
-                            "      <td>(-2.19622279, 53.07128422)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   road_name count_point_id  longitude   latitude                 coordinates\n",
-                            "0       A572          17253  -2.426630  53.504121   (-2.42662982, 53.5041206)\n",
-                            "1       A572          73966  -2.598757  53.457808     (-2.5987568, 53.457808)\n",
-                            "2       A572          58146  -2.543882  53.477064     (-2.5438819, 53.477064)\n",
-                            "3       A572           7287  -2.588989  53.461508  (-2.58898858, 53.46150787)\n",
-                            "4       A572          57197  -2.570844  53.465227  (-2.57084396, 53.46522737)\n",
-                            "5       A572          77863  -2.416059  53.502360  (-2.41605888, 53.50236019)\n",
-                            "6       A572          77857  -2.641503  53.456150   (-2.64150335, 53.4561498)\n",
-                            "7       A572          74618  -2.383193  53.500671     (-2.3831929, 53.500671)\n",
-                            "8       A572           8498  -2.660382  53.449933     (-2.6603823, 53.449933)\n",
-                            "9       A572          74618  -2.383193  53.500672  (-2.38319291, 53.50067244)\n",
-                            "10      A572          47316  -2.679066  53.450727     (-2.6790665, 53.450727)\n",
-                            "11      A572          17253  -2.426630  53.504119     (-2.4266298, 53.504119)\n",
-                            "12      A572          37348  -2.528454  53.484387     (-2.5284538, 53.484387)\n",
-                            "13      A572           8498  -2.660382  53.449935  (-2.66038232, 53.44993462)\n",
-                            "14      A572           7288  -2.394736  53.503411      (-2.394736, 53.503411)\n",
-                            "15      A572          77859  -2.600703  53.456991  (-2.60070306, 53.45699118)\n",
-                            "16      A572          57317  -2.462120  53.495807     (-2.4621204, 53.495807)\n",
-                            "17      A572          57197  -2.570844  53.465226     (-2.5708439, 53.465226)\n",
-                            "18      A572          37348  -2.528454  53.484388   (-2.5284538, 53.48438829)\n",
-                            "19      A572          77856  -2.701703  53.453744  (-2.70170321, 53.45374389)\n",
-                            "20      A572          17932  -2.337699  53.506832  (-2.33769898, 53.50683197)\n",
-                            "21      A572          17932  -2.337699  53.506830       (-2.337699, 53.50683)\n",
-                            "22      A572          27308  -2.609867  53.455417  (-2.60986717, 53.45541667)\n",
-                            "23      A572          28527  -2.675890  53.449846     (-2.6758903, 53.449846)\n",
-                            "24      A572          28527  -2.675890  53.449848  (-2.67589035, 53.44984786)\n",
-                            "25      A572          73966  -2.598757  53.457810  (-2.59875677, 53.45780993)\n",
-                            "26      A572           7287  -2.588989  53.461506     (-2.5889886, 53.461506)\n",
-                            "27      A572          57317  -2.462120  53.495809  (-2.46212041, 53.49580907)\n",
-                            "28      A572          18545  -2.384843  53.501476  (-2.38484342, 53.50147609)\n",
-                            "29      A572          38662  -2.504827  53.493524  (-2.50482745, 53.49352394)\n",
-                            "30      A572          27309  -2.438699  53.504886  (-2.43869908, 53.50488585)\n",
-                            "31      A572          37349  -2.363307  53.504014     (-2.3633068, 53.504014)\n",
-                            "32      A572          18545  -2.384843  53.501474     (-2.3848434, 53.501474)\n",
-                            "33      A572           7288  -2.393455  53.503425   (-2.39345465, 53.5034255)\n",
-                            "34      A572          27308  -2.609867  53.455415     (-2.6098672, 53.455415)\n",
-                            "35      A572          77856  -2.701703  53.453742     (-2.7017032, 53.453742)\n",
-                            "36      A572          58146  -2.543882  53.477065  (-2.54388195, 53.47706529)\n",
-                            "37      A572          74901  -2.196223  53.071283     (-2.1962228, 53.071283)\n",
-                            "38      A572          37349  -2.363307  53.504015  (-2.36330684, 53.50401536)\n",
-                            "39      A572          38662  -2.504827  53.493522     (-2.5048274, 53.493522)\n",
-                            "40      A572          77859  -2.600703  53.456990       (-2.600703, 53.45699)\n",
-                            "41      A572          77863  -2.416059  53.502359     (-2.4160589, 53.502359)\n",
-                            "42      A572          47316  -2.679067  53.450729  (-2.67906652, 53.45072871)\n",
-                            "43      A572          27309  -2.438699  53.504884     (-2.4386991, 53.504884)\n",
-                            "44      A572          77857  -2.641503  53.456148     (-2.6415033, 53.456148)\n",
-                            "45      A572          74901  -2.196223  53.071284  (-2.19622279, 53.07128422)"
-                        ]
-                    },
-                    "execution_count": 54,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Trafficvolumepoints[\"coordinates\"] = list(zip(Trafficvolumepoints[\"longitude\"] , Trafficvolumepoints[\"latitude\"]))\n",
-                "Trafficvolumepoints\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------+----+---------+\n",
-                        "|Longitude| Latitude|Year|road_name|\n",
-                        "+---------+---------+----+---------+\n",
-                        "|-2.660106|53.450286|2005|     A572|\n",
-                        "|-2.633694|53.456362|2005|     A572|\n",
-                        "|-2.694925|53.452426|2005|     A572|\n",
-                        "|-2.730629|53.453291|2005|     A572|\n",
-                        "|-2.633694|53.456362|2005|     A572|\n",
-                        "|-2.681045|53.450798|2005|     A572|\n",
-                        "|-2.629028|53.456566|2005|     A572|\n",
-                        "|-2.730629|53.453291|2005|     A572|\n",
-                        "| -2.70503|53.453355|2005|     A572|\n",
-                        "|-2.717654|53.451842|2005|     A572|\n",
-                        "|-2.681045|53.450798|2005|     A572|\n",
-                        "|-2.684215|53.451319|2005|     A572|\n",
-                        "|-2.681045|53.450798|2005|     A572|\n",
-                        "|-2.715531|53.450956|2005|     A572|\n",
-                        "|-2.717958| 53.45202|2005|     A572|\n",
-                        "|-2.612435|53.454675|2005|     A572|\n",
-                        "|-2.689506|53.452547|2005|     A572|\n",
-                        "|-2.630682|53.456377|2005|     A572|\n",
-                        "|-2.681045|53.450798|2005|     A572|\n",
-                        "|-2.715986|53.451133|2005|     A572|\n",
-                        "+---------+---------+----+---------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                },
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "Accident_Information20052019points=Accident_Information20052019_df.select(col(\"1st_Road_Class\"),col(\"1st_Road_Number\"),col(\"Longitude\"),col(\"Latitude\"),col(\"Year\")).sort(\"Year\")\n",
-                "Accident_Information20052019points=Accident_Information20052019points.select(col(\"Longitude\"),col(\"Latitude\"),col(\"Year\"),concat(Accident_Information20052019points['1st_Road_Class'],Accident_Information20052019points['1st_Road_Number']).alias(\"road_name\"))\n",
-                "Accident_Information20052019points=Accident_Information20052019points.filter(Accident_Information20052019points.road_name==\"A572\")\n",
-                "Accident_Information20052019points.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>road_name</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-2.612435</td>\n",
-                            "      <td>53.454675</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-2.689506</td>\n",
-                            "      <td>53.452547</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-2.730629</td>\n",
-                            "      <td>53.453291</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-2.630682</td>\n",
-                            "      <td>53.456377</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-2.681045</td>\n",
-                            "      <td>53.450798</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>-2.553954</td>\n",
-                            "      <td>53.475343</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>-2.519602</td>\n",
-                            "      <td>53.495084</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>-2.46447</td>\n",
-                            "      <td>53.494421</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 4 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Longitude   Latitude  Year road_name\n",
-                            "0    -2.612435  53.454675  2005      A572\n",
-                            "1    -2.689506  53.452547  2005      A572\n",
-                            "2    -2.730629  53.453291  2005      A572\n",
-                            "3    -2.630682  53.456377  2005      A572\n",
-                            "4    -2.681045  53.450798  2005      A572\n",
-                            "..         ...        ...   ...       ...\n",
-                            "824  -2.553954  53.475343  2019      A572\n",
-                            "825  -2.499703  53.492355  2019      A572\n",
-                            "826  -2.519602  53.495084  2019      A572\n",
-                            "827   -2.46447  53.494421  2019      A572\n",
-                            "828  -2.500262  53.492479  2019      A572\n",
-                            "\n",
-                            "[829 rows x 4 columns]"
-                        ]
-                    },
-                    "execution_count": 56,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "Accident_Information20052019points_df= Accident_Information20052019points.toPandas()\n",
-                "Accident_Information20052019points_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>road_name</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-2.612435</td>\n",
-                            "      <td>53.454675</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-2.689506</td>\n",
-                            "      <td>53.452547</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-2.730629</td>\n",
-                            "      <td>53.453291</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-2.630682</td>\n",
-                            "      <td>53.456377</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-2.681045</td>\n",
-                            "      <td>53.450798</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>-2.553954</td>\n",
-                            "      <td>53.475343</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>-2.519602</td>\n",
-                            "      <td>53.495084</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>-2.464470</td>\n",
-                            "      <td>53.494421</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 4 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Longitude   Latitude  Year road_name\n",
-                            "0    -2.612435  53.454675  2005      A572\n",
-                            "1    -2.689506  53.452547  2005      A572\n",
-                            "2    -2.730629  53.453291  2005      A572\n",
-                            "3    -2.630682  53.456377  2005      A572\n",
-                            "4    -2.681045  53.450798  2005      A572\n",
-                            "..         ...        ...   ...       ...\n",
-                            "824  -2.553954  53.475343  2019      A572\n",
-                            "825  -2.499703  53.492355  2019      A572\n",
-                            "826  -2.519602  53.495084  2019      A572\n",
-                            "827  -2.464470  53.494421  2019      A572\n",
-                            "828  -2.500262  53.492479  2019      A572\n",
-                            "\n",
-                            "[829 rows x 4 columns]"
-                        ]
-                    },
-                    "execution_count": 43,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#A2572019=Accident_Information20052019points.filter(Accident_Information20052019points.Year==\"2019\")\n",
-                "A2572019=Accident_Information20052019points_df\n",
-                "#A2572019=A2572019.toPandas()\n",
-                "A2572019['Longitude'] = A2572019['Longitude'].astype(float)\n",
-                "A2572019['Latitude'] = A2572019['Latitude'].astype(float)\n",
-                "A2572019"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "ename": "ValueError",
-                    "evalue": "could not convert string to float: '(-2.42662982, 53.5041206)'",
-                    "output_type": "error",
-                    "traceback": [
-                        "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-                        "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-                        "\u001b[0;32m/var/folders/v0/jqv1xcw13pn37fh0ppsl8b_w0000gp/T/ipykernel_3674/3526696089.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTrafficvolumepoints\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"coordinates\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrafficvolumepoints\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"coordinates\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m   5804\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5805\u001b[0m             \u001b[0;31m# else, only a single dtype is given\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5806\u001b[0;31m             \u001b[0mnew_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   5807\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5808\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m    412\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    413\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 414\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    415\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    416\u001b[0m     def convert(\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, align_keys, ignore_failures, **kwargs)\u001b[0m\n\u001b[1;32m    325\u001b[0m                     \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    326\u001b[0m                 \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 327\u001b[0;31m                     \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    328\u001b[0m             \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    329\u001b[0m                 \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mignore_failures\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m    590\u001b[0m         \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    591\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 592\u001b[0;31m         \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array_safe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    593\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    594\u001b[0m         \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmaybe_coerce_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/dtypes/cast.py\u001b[0m in \u001b[0;36mastype_array_safe\u001b[0;34m(values, dtype, copy, errors)\u001b[0m\n\u001b[1;32m   1298\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1299\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1300\u001b[0;31m         \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1301\u001b[0m     \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1302\u001b[0m         \u001b[0;31m# e.g. astype_nansafe can fail on object-dtype of strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/dtypes/cast.py\u001b[0m in \u001b[0;36mastype_array\u001b[0;34m(values, dtype, copy)\u001b[0m\n\u001b[1;32m   1246\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1247\u001b[0m     \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1248\u001b[0;31m         \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_nansafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1249\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1250\u001b[0m     \u001b[0;31m# in pandas we don't store numpy str dtypes, so convert to object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;32m/usr/local/lib/python3.9/site-packages/pandas/core/dtypes/cast.py\u001b[0m in \u001b[0;36mastype_nansafe\u001b[0;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[1;32m   1190\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mcopy\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mis_object_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mis_object_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1191\u001b[0m         \u001b[0;31m# Explicit copy, or required since NumPy can't view from / to object.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1192\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1193\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1194\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-                        "\u001b[0;31mValueError\u001b[0m: could not convert string to float: '(-2.42662982, 53.5041206)'"
-                    ]
-                }
-            ],
-            "source": [
-                "Trafficvolumepoints[\"coordinates\"]=Trafficvolumepoints[\"coordinates\"].astype(float)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "0      (-2.612435, 53.454675)\n",
-                            "1      (-2.689506, 53.452547)\n",
-                            "2      (-2.730629, 53.453291)\n",
-                            "3      (-2.630682, 53.456377)\n",
-                            "4      (-2.681045, 53.450798)\n",
-                            "                ...          \n",
-                            "824    (-2.553954, 53.475343)\n",
-                            "825    (-2.499703, 53.492355)\n",
-                            "826    (-2.519602, 53.495084)\n",
-                            "827     (-2.46447, 53.494421)\n",
-                            "828    (-2.500262, 53.492479)\n",
-                            "Name: Accident_coord, Length: 829, dtype: object"
-                        ]
-                    },
-                    "execution_count": 44,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A2572019['Accident_coord'] = list(zip(A2572019.Longitude, A2572019.Latitude))\n",
-                "#Year=A2572019['Year'] \n",
-                "Year=A2572019['Accident_coord']\n",
-                "Year"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "float"
-                        ]
-                    },
-                    "execution_count": 46,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(A2572019[\"Accident_coord\"][0][0])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-2.612435</td>\n",
-                            "      <td>53.454675</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-2.689506</td>\n",
-                            "      <td>53.452547</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.689506, 53.452547)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-2.730629</td>\n",
-                            "      <td>53.453291</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.730629, 53.453291)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-2.630682</td>\n",
-                            "      <td>53.456377</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.630682, 53.456377)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-2.681045</td>\n",
-                            "      <td>53.450798</td>\n",
-                            "      <td>2005</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.681045, 53.450798)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>-2.553954</td>\n",
-                            "      <td>53.475343</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.553954, 53.475343)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>-2.519602</td>\n",
-                            "      <td>53.495084</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.519602, 53.495084)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>-2.464470</td>\n",
-                            "      <td>53.494421</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.46447, 53.494421)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>2019</td>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 5 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Longitude   Latitude  Year road_name          Accident_coord\n",
-                            "0    -2.612435  53.454675  2005      A572  (-2.612435, 53.454675)\n",
-                            "1    -2.689506  53.452547  2005      A572  (-2.689506, 53.452547)\n",
-                            "2    -2.730629  53.453291  2005      A572  (-2.730629, 53.453291)\n",
-                            "3    -2.630682  53.456377  2005      A572  (-2.630682, 53.456377)\n",
-                            "4    -2.681045  53.450798  2005      A572  (-2.681045, 53.450798)\n",
-                            "..         ...        ...   ...       ...                     ...\n",
-                            "824  -2.553954  53.475343  2019      A572  (-2.553954, 53.475343)\n",
-                            "825  -2.499703  53.492355  2019      A572  (-2.499703, 53.492355)\n",
-                            "826  -2.519602  53.495084  2019      A572  (-2.519602, 53.495084)\n",
-                            "827  -2.464470  53.494421  2019      A572   (-2.46447, 53.494421)\n",
-                            "828  -2.500262  53.492479  2019      A572  (-2.500262, 53.492479)\n",
-                            "\n",
-                            "[829 rows x 5 columns]"
-                        ]
-                    },
-                    "execution_count": 45,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A2572019"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "([(-2.6098672, 53.455415),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.4160589, 53.502359),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.394736, 53.503411),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.43869908, 53.50488585),\n",
-                            "  (-2.43869908, 53.50488585),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.6098672, 53.455415),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.394736, 53.503411),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.58898858, 53.46150787),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38319291, 53.50067244),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.3848434, 53.501474),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.43869908, 53.50488585),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.38319291, 53.50067244),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.43869908, 53.50488585),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.58898858, 53.46150787),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.6098672, 53.455415),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.39345465, 53.5034255),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3848434, 53.501474),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6790665, 53.450727),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6098672, 53.455415),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.394736, 53.503411),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.4160589, 53.502359),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.42662982, 53.5041206),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.394736, 53.503411),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.58898858, 53.46150787),\n",
-                            "  (-2.58898858, 53.46150787),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.60986717, 53.45541667),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.38319291, 53.50067244),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.600703, 53.45699),\n",
-                            "  (-2.6098672, 53.455415),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5889886, 53.461506),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.5987568, 53.457808),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.6758903, 53.449846),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.1962228, 53.071283),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.67906652, 53.45072871),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.4266298, 53.504119),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.36330684, 53.50401536),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.43869908, 53.50488585),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.70170321, 53.45374389),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.394736, 53.503411),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.43869908, 53.50488585),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.50482745, 53.49352394),\n",
-                            "  (-2.5284538, 53.484387),\n",
-                            "  (-2.46212041, 53.49580907),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.54388195, 53.47706529),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.6415033, 53.456148),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.66038232, 53.44993462),\n",
-                            "  (-2.7017032, 53.453742),\n",
-                            "  (-2.64150335, 53.4561498),\n",
-                            "  (-2.6603823, 53.449933),\n",
-                            "  (-2.5708439, 53.465226),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.33769898, 53.50683197),\n",
-                            "  (-2.337699, 53.50683),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.41605888, 53.50236019),\n",
-                            "  (-2.38484342, 53.50147609),\n",
-                            "  (-2.3831929, 53.500671),\n",
-                            "  (-2.3633068, 53.504014),\n",
-                            "  (-2.57084396, 53.46522737),\n",
-                            "  (-2.4386991, 53.504884),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5438819, 53.477064),\n",
-                            "  (-2.5048274, 53.493522),\n",
-                            "  (-2.5284538, 53.48438829),\n",
-                            "  (-2.4621204, 53.495807),\n",
-                            "  (-2.5048274, 53.493522)],\n",
-                            " [(-2.612435, 53.454675),\n",
-                            "  (-2.689506, 53.452547),\n",
-                            "  (-2.730629, 53.453291),\n",
-                            "  (-2.630682, 53.456377),\n",
-                            "  (-2.681045, 53.450798),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.730629, 53.453291),\n",
-                            "  (-2.715986, 53.451133),\n",
-                            "  (-2.717654, 53.451842),\n",
-                            "  (-2.681045, 53.450798),\n",
-                            "  (-2.633694, 53.456362),\n",
-                            "  (-2.633694, 53.456362),\n",
-                            "  (-2.684215, 53.451319),\n",
-                            "  (-2.681045, 53.450798),\n",
-                            "  (-2.681045, 53.450798),\n",
-                            "  (-2.715531, 53.450956),\n",
-                            "  (-2.717958, 53.45202),\n",
-                            "  (-2.629028, 53.456566),\n",
-                            "  (-2.694925, 53.452426),\n",
-                            "  (-2.660106, 53.450286),\n",
-                            "  (-2.659512, 53.450829),\n",
-                            "  (-2.629028, 53.456566),\n",
-                            "  (-2.730629, 53.453291),\n",
-                            "  (-2.660106, 53.450286),\n",
-                            "  (-2.731835, 53.453374),\n",
-                            "  (-2.644232, 53.456125),\n",
-                            "  (-2.342373, 53.505281),\n",
-                            "  (-2.385919, 53.502272),\n",
-                            "  (-2.344027, 53.504827),\n",
-                            "  (-2.347636, 53.503558),\n",
-                            "  (-2.427247, 53.504109),\n",
-                            "  (-2.41562, 53.502352),\n",
-                            "  (-2.382889, 53.500664),\n",
-                            "  (-2.411099, 53.502548),\n",
-                            "  (-2.344027, 53.504827),\n",
-                            "  (-2.348389, 53.503466),\n",
-                            "  (-2.420749, 53.502604),\n",
-                            "  (-2.417886, 53.502794),\n",
-                            "  (-2.402358, 53.502847),\n",
-                            "  (-2.386068, 53.502092),\n",
-                            "  (-2.382282, 53.500217),\n",
-                            "  (-2.344329, 53.504826),\n",
-                            "  (-2.342373, 53.505371),\n",
-                            "  (-2.382132, 53.500307),\n",
-                            "  (-2.345531, 53.504373),\n",
-                            "  (-2.386071, 53.502452),\n",
-                            "  (-2.382133, 53.500397),\n",
-                            "  (-2.341471, 53.505643),\n",
-                            "  (-2.342373, 53.505371),\n",
-                            "  (-2.345531, 53.504283),\n",
-                            "  (-2.426644, 53.504111),\n",
-                            "  (-2.445387, 53.566154),\n",
-                            "  (-2.433838, 53.573747),\n",
-                            "  (-2.519711, 53.495204),\n",
-                            "  (-2.493479, 53.494955),\n",
-                            "  (-2.519858, 53.494933),\n",
-                            "  (-2.510366, 53.495334),\n",
-                            "  (-2.448335, 53.502234),\n",
-                            "  (-2.509008, 53.49516),\n",
-                            "  (-2.534633, 53.483183),\n",
-                            "  (-2.507799, 53.494895),\n",
-                            "  (-2.518502, 53.494939),\n",
-                            "  (-2.543148, 53.477302),\n",
-                            "  (-2.533216, 53.49029),\n",
-                            "  (-2.45481, 53.501581),\n",
-                            "  (-2.522922, 53.48665),\n",
-                            "  (-2.534182, 53.483275),\n",
-                            "  (-2.495435, 53.494588),\n",
-                            "  (-2.522923, 53.48674),\n",
-                            "  (-2.562654, 53.471099),\n",
-                            "  (-2.522808, 53.489617),\n",
-                            "  (-2.517145, 53.494945),\n",
-                            "  (-2.519707, 53.494934),\n",
-                            "  (-2.47101, 53.494147),\n",
-                            "  (-2.521185, 53.492501),\n",
-                            "  (-2.457969, 53.500849),\n",
-                            "  (-2.495881, 53.494136),\n",
-                            "  (-2.543148, 53.477302),\n",
-                            "  (-2.459313, 53.499676),\n",
-                            "  (-2.492574, 53.494869),\n",
-                            "  (-2.564002, 53.470554),\n",
-                            "  (-2.519708, 53.495024),\n",
-                            "  (-2.521184, 53.492411),\n",
-                            "  (-2.51986, 53.495113),\n",
-                            "  (-2.522954, 53.489257),\n",
-                            "  (-2.459165, 53.499946),\n",
-                            "  (-2.44397, 53.50297),\n",
-                            "  (-2.531953, 53.497757),\n",
-                            "  (-2.504769, 53.49365),\n",
-                            "  (-2.504465, 53.493471),\n",
-                            "  (-2.567435, 53.46811),\n",
-                            "  (-2.480795, 53.49303),\n",
-                            "  (-2.45451, 53.501672),\n",
-                            "  (-2.521034, 53.492501),\n",
-                            "  (-2.519711, 53.495204),\n",
-                            "  (-2.517749, 53.495032),\n",
-                            "  (-2.523072, 53.48665),\n",
-                            "  (-2.467091, 53.494162),\n",
-                            "  (-2.569819, 53.466121),\n",
-                            "  (-2.525617, 53.4852),\n",
-                            "  (-2.494988, 53.495039),\n",
-                            "  (-2.499024, 53.492146),\n",
-                            "  (-2.520891, 53.493131),\n",
-                            "  (-2.521038, 53.492771),\n",
-                            "  (-2.44382, 53.50306),\n",
-                            "  (-2.561305, 53.471645),\n",
-                            "  (-2.521185, 53.492501),\n",
-                            "  (-2.459166, 53.500036),\n",
-                            "  (-2.46423, 53.494443),\n",
-                            "  (-2.519708, 53.495024),\n",
-                            "  (-2.52279, 53.488179),\n",
-                            "  (-2.65417, 53.455982),\n",
-                            "  (-2.661292, 53.449111),\n",
-                            "  (-2.709653, 53.450631),\n",
-                            "  (-2.629028, 53.456566),\n",
-                            "  (-2.633694, 53.456362),\n",
-                            "  (-2.629028, 53.456566),\n",
-                            "  (-2.611538, 53.455129),\n",
-                            "  (-2.644232, 53.456125),\n",
-                            "  (-2.689506, 53.452547),\n",
-                            "  (-2.730629, 53.453291),\n",
-                            "  (-2.712664, 53.450613),\n",
-                            "  (-2.623031, 53.458395),\n",
-                            "  (-2.690109, 53.452633),\n",
-                            "  (-2.660846, 53.449473),\n",
-                            "  (-2.660106, 53.450286),\n",
-                            "  (-2.654612, 53.45535),\n",
-                            "  (-2.69373, 53.453062),\n",
-                            "  (-2.626472, 53.456849),\n",
-                            "  (-2.599222, 53.457528),\n",
-                            "  (-2.717198, 53.451575),\n",
-                            "  (-2.709653, 53.450631),\n",
-                            "  (-2.730629, 53.453291),\n",
-                            "  (-2.730629, 53.453291),\n",
-                            "  (-2.715531, 53.450956),\n",
-                            "  (-2.386826, 53.502539),\n",
-                            "  (-2.403714, 53.502843),\n",
-                            "  (-2.387277, 53.502448),\n",
-                            "  (-2.408688, 53.502646),\n",
-                            "  (-2.342223, 53.505372),\n",
-                            "  (-2.382733, 53.500035),\n",
-                            "  (-2.382283, 53.500306),\n",
-                            "  (-2.385008, 53.501556),\n",
-                            "  (-2.424079, 53.503941),\n",
-                            "  (-2.343877, 53.504828),\n",
-                            "  (-2.348389, 53.503466),\n",
-                            "  (-2.386826, 53.502539),\n",
-                            "  (-2.410496, 53.50255),\n",
-                            "  (-2.343425, 53.504919),\n",
-                            "  (-2.411099, 53.502548),\n",
-                            "  (-2.380778, 53.500581),\n",
-                            "  (-2.337711, 53.506823),\n",
-                            "  (-2.387126, 53.502358),\n",
-                            "  (-2.382284, 53.500396),\n",
-                            "  (-2.336507, 53.507186),\n",
-                            "  (-2.504768, 53.49356),\n",
-                            "  (-2.520447, 53.493762),\n",
-                            "  (-2.499024, 53.492146),\n",
-                            "  (-2.501744, 53.492764),\n",
-                            "  (-2.519708, 53.495024),\n",
-                            "  (-2.522812, 53.489977),\n",
-                            "  (-2.448485, 53.502234),\n",
-                            "  (-2.551277, 53.476725),\n",
-                            "  (-2.55546, 53.474009),\n",
-                            "  (-2.506282, 53.494093),\n",
-                            "  (-2.5652, 53.470009),\n",
-                            "  (-2.521183, 53.492321),\n",
-                            "  (-2.508554, 53.495072),\n",
-                            "  (-2.529374, 53.484375),\n",
-                            "  (-2.519406, 53.494935),\n",
-                            "  (-2.534333, 53.483274),\n",
-                            "  (-2.551577, 53.476634),\n",
-                            "  (-2.551577, 53.476634),\n",
-                            "  (-2.54045, 53.478393),\n",
-                            "  (-2.587233, 53.461812),\n",
-                            "  (-2.528772, 53.484467),\n",
-                            "  (-2.50931, 53.495248),\n",
-                            "  (-2.534632, 53.483093),\n",
-                            "  (-2.521185, 53.492501),\n",
-                            "  (-2.538816, 53.480288),\n",
-                            "  (-2.497373, 53.492782),\n",
-                            "  (-2.521627, 53.49169),\n",
-                            "  (-2.486378, 53.493546),\n",
-                            "  (-2.507646, 53.494716),\n",
-                            "  (-2.54721, 53.476834),\n",
-                            "  (-2.543147, 53.477212),\n",
-                            "  (-2.511572, 53.495329),\n",
-                            "  (-2.443068, 53.503243),\n",
-                            "  (-2.487133, 53.493633),\n",
-                            "  (-2.543147, 53.477212),\n",
-                            "  (-2.434188, 53.504713),\n",
-                            "  (-2.544949, 53.476754),\n",
-                            "  (-2.485321, 53.493371),\n",
-                            "  (-2.46066, 53.498772),\n",
-                            "  (-2.51112, 53.495331),\n",
-                            "  (-2.546304, 53.476658),\n",
-                            "  (-2.522784, 53.48773),\n",
-                            "  (-2.56505, 53.470009),\n",
-                            "  (-2.509008, 53.49516),\n",
-                            "  (-2.499477, 53.492234),\n",
-                            "  (-2.459166, 53.500036),\n",
-                            "  (-2.516844, 53.494946),\n",
-                            "  (-2.709507, 53.450902),\n",
-                            "  (-2.719328, 53.45291),\n",
-                            "  (-2.634898, 53.456355),\n",
-                            "  (-2.716591, 53.451309),\n",
-                            "  (-2.70473, 53.453447),\n",
-                            "  (-2.657137, 53.453089),\n",
-                            "  (-2.638962, 53.456154),\n",
-                            "  (-2.639112, 53.456153),\n",
-                            "  (-2.689506, 53.452547),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.695529, 53.452512),\n",
-                            "  (-2.70473, 53.453447),\n",
-                            "  (-2.344328, 53.504736),\n",
-                            "  (-2.362866, 53.503873),\n",
-                            "  (-2.343727, 53.504918),\n",
-                            "  (-2.386977, 53.502538),\n",
-                            "  (-2.421204, 53.502872),\n",
-                            "  (-2.342523, 53.505281),\n",
-                            "  (-2.382132, 53.500307),\n",
-                            "  (-2.334851, 53.50746),\n",
-                            "  (-2.351404, 53.503457),\n",
-                            "  (-2.360751, 53.50334),\n",
-                            "  (-2.423325, 53.503943),\n",
-                            "  (-2.346734, 53.50392),\n",
-                            "  (-2.383191, 53.500753),\n",
-                            "  (-2.422416, 53.503497),\n",
-                            "  (-2.342523, 53.505281),\n",
-                            "  (-2.411099, 53.502548),\n",
-                            "  (-2.384403, 53.501378),\n",
-                            "  (-2.408688, 53.502646),\n",
-                            "  (-2.344027, 53.504827),\n",
-                            "  (-2.408537, 53.502647),\n",
-                            "  (-2.409591, 53.502553),\n",
-                            "  (-2.355778, 53.503624),\n",
-                            "  (-2.335754, 53.507278),\n",
-                            "  (-2.348389, 53.503466),\n",
-                            "  (-2.34433, 53.504916),\n",
-                            "  (-2.386375, 53.50272),\n",
-                            "  (-2.476721, 53.492596),\n",
-                            "  (-2.567733, 53.467839),\n",
-                            "  (-2.503105, 53.493117),\n",
-                            "  (-2.52192, 53.490969),\n",
-                            "  (-2.521185, 53.492501),\n",
-                            "  (-2.569669, 53.466212),\n",
-                            "  (-2.533883, 53.483456),\n",
-                            "  (-2.519707, 53.494934),\n",
-                            "  (-2.523103, 53.489166),\n",
-                            "  (-2.436601, 53.504794),\n",
-                            "  (-2.52089, 53.493041),\n",
-                            "  (-2.563852, 53.470554),\n",
-                            "  (-2.438412, 53.504968),\n",
-                            "  (-2.459015, 53.500036),\n",
-                            "  (-2.52001, 53.495023),\n",
-                            "  (-2.537772, 53.481101),\n",
-                            "  (-2.556057, 53.473557),\n",
-                            "  (-2.520593, 53.493402),\n",
-                            "  (-2.52074, 53.493132),\n",
-                            "  (-2.504465, 53.493471),\n",
-                            "  (-2.551577, 53.476634),\n",
-                            "  (-2.508857, 53.495161),\n",
-                            "  (-2.519711, 53.495204),\n",
-                            "  (-2.522782, 53.48755),\n",
-                            "  (-2.462881, 53.495078),\n",
-                            "  (-2.534484, 53.483273),\n",
-                            "  (-2.448636, 53.502233),\n",
-                            "  (-2.461096, 53.497332),\n",
-                            "  (-2.461392, 53.496791),\n",
-                            "  (-2.503105, 53.493117),\n",
-                            "  (-2.563852, 53.470554),\n",
-                            "  (-2.455862, 53.501217),\n",
-                            "  (-2.493479, 53.494955),\n",
-                            "  (-2.505374, 53.493827),\n",
-                            "  (-2.521625, 53.49151),\n",
-                            "  (-2.567729, 53.46757),\n",
-                            "  (-2.56967, 53.466302),\n",
-                            "  (-2.482153, 53.493114),\n",
-                            "  (-2.572654, 53.46413),\n",
-                            "  (-2.486831, 53.493544),\n",
-                            "  (-2.498269, 53.492059),\n",
-                            "  (-2.519708, 53.495024),\n",
-                            "  (-2.664288, 53.448105),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.695529, 53.452512),\n",
-                            "  (-2.646041, 53.456206),\n",
-                            "  (-2.649205, 53.456278),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.715078, 53.450868),\n",
-                            "  (-2.697195, 53.453131),\n",
-                            "  (-2.599222, 53.457528),\n",
-                            "  (-2.629028, 53.456566),\n",
-                            "  (-2.623625, 53.457853),\n",
-                            "  (-2.699467, 53.453927),\n",
-                            "  (-2.62407, 53.457401),\n",
-                            "  (-2.382738, 53.500665),\n",
-                            "  (-2.421204, 53.502872),\n",
-                            "  (-2.345381, 53.504374),\n",
-                            "  (-2.382133, 53.500397),\n",
-                            "  (-2.355928, 53.503624),\n",
-                            "  (-2.421506, 53.502961),\n",
-                            "  (-2.382888, 53.500574),\n",
-                            "  (-2.376396, 53.499516),\n",
-                            "  (-2.387278, 53.502538),\n",
-                            "  (-2.382283, 53.500306),\n",
-                            "  (-2.349443, 53.503373),\n",
-                            "  (-2.410496, 53.50255),\n",
-                            "  (-2.387278, 53.502538),\n",
-                            "  (-2.34117, 53.505734),\n",
-                            "  (-2.410496, 53.50255),\n",
-                            "  (-2.412154, 53.502454),\n",
-                            "  (-2.342223, 53.505372),\n",
-                            "  (-2.342073, 53.505462),\n",
-                            "  (-2.41864, 53.502791),\n",
-                            "  (-2.337259, 53.506914),\n",
-                            "  (-2.522952, 53.489077),\n",
-                            "  (-2.528922, 53.484377),\n",
-                            "  (-2.550527, 53.476998),\n",
-                            "  (-2.459912, 53.499314),\n",
-                            "  (-2.557252, 53.472743),\n",
-                            "  (-2.534781, 53.482913),\n",
-                            "  (-2.551577, 53.476634),\n",
-                            "  (-2.570562, 53.465399),\n",
-                            "  (-2.559802, 53.471922),\n",
-                            "  (-2.494688, 53.49522),\n",
-                            "  (-2.51986, 53.495113),\n",
-                            "  (-2.549926, 53.477091),\n",
-                            "  (-2.569669, 53.466212),\n",
-                            "  (-2.519859, 53.495023),\n",
-                            "  (-2.560854, 53.471737),\n",
-                            "  (-2.441418, 53.503968),\n",
-                            "  (-2.505374, 53.493827),\n",
-                            "  (-2.570711, 53.465308),\n",
-                            "  (-2.494084, 53.495133),\n",
-                            "  (-2.497373, 53.492782),\n",
-                            "  (-2.520299, 53.494033),\n",
-                            "  (-2.504768, 53.49356),\n",
-                            "  (-2.518502, 53.494939),\n",
-                            "  (-2.461836, 53.496071),\n",
-                            "  (-2.507646, 53.494716),\n",
-                            "  (-2.459166, 53.500036),\n",
-                            "  (-2.557402, 53.472742),\n",
-                            "  (-2.459166, 53.500036),\n",
-                            "  (-2.522783, 53.48764),\n",
-                            "  (-2.507041, 53.494539),\n",
-                            "  (-2.480494, 53.493031),\n",
-                            "  (-2.466338, 53.494165),\n",
-                            "  (-2.567285, 53.468201),\n",
-                            "  (-2.566095, 53.469285),\n",
-                            "  (-2.665938, 53.447737),\n",
-                            "  (-2.661291, 53.449021),\n",
-                            "  (-2.633694, 53.456362),\n",
-                            "  (-2.647247, 53.456289),\n",
-                            "  (-2.695382, 53.452782),\n",
-                            "  (-2.713569, 53.450698),\n",
-                            "  (-2.731384, 53.453376),\n",
-                            "  (-2.623031, 53.458395),\n",
-                            "  (-2.63806, 53.456248),\n",
-                            "  (-2.710857, 53.450624),\n",
-                            "  (-2.731233, 53.453377),\n",
-                            "  (-2.633694, 53.456362),\n",
-                            "  (-2.62407, 53.457401),\n",
-                            "  (-2.690109, 53.452633),\n",
-                            "  (-2.416224, 53.50244),\n",
-                            "  (-2.422264, 53.503408),\n",
-                            "  (-2.386822, 53.50209),\n",
-                            "  (-2.366178, 53.503323),\n",
-                            "  (-2.417282, 53.502706),\n",
-                            "  (-2.348389, 53.503466),\n",
-                            "  (-2.334399, 53.507551),\n",
-                            "  (-2.34147, 53.505553),\n",
-                            "  (-2.420597, 53.502515),\n",
-                            "  (-2.38304, 53.500664),\n",
-                            "  (-2.335755, 53.507367),\n",
-                            "  (-2.348539, 53.503466),\n",
-                            "  (-2.385916, 53.502003),\n",
-                            "  (-2.386068, 53.502092),\n",
-                            "  (-2.386068, 53.502092),\n",
-                            "  (-2.410798, 53.502549),\n",
-                            "  (-2.383344, 53.500932),\n",
-                            "  (-2.424532, 53.504029),\n",
-                            "  (-2.343426, 53.505009),\n",
-                            "  (-2.420598, 53.502605),\n",
-                            "  (-2.410496, 53.50255),\n",
-                            "  (-2.340869, 53.505825),\n",
-                            "  (-2.348389, 53.503466),\n",
-                            "  (-2.461243, 53.496972),\n",
-                            "  (-2.547814, 53.476921),\n",
-                            "  (-2.528169, 53.48447),\n",
-                            "  (-2.508857, 53.495161),\n",
-                            "  (-2.542997, 53.477302),\n",
-                            "  (-2.539413, 53.479836),\n",
-                            "  (-2.570563, 53.465489),\n",
-                            "  (-2.568181, 53.467567),\n",
-                            "  (-2.5203, 53.494122),\n",
-                            "  (-2.522928, 53.48719),\n",
-                            "  (-2.478682, 53.492768),\n",
-                            "  (-2.548719, 53.477007),\n",
-                            "  (-2.561005, 53.471736),\n",
-                            "  (-2.519858, 53.494933),\n",
-                            "  (-2.437356, 53.504882),\n",
-                            "  (-2.504768, 53.49356),\n",
-                            "  (-2.499174, 53.492145),\n",
-                            "  (-2.500232, 53.49241),\n",
-                            "  (-2.449389, 53.50214),\n",
-                            "  (-2.448335, 53.502234),\n",
-                            "  (-2.585129, 53.462182),\n",
-                            "  (-2.44397, 53.50297),\n",
-                            "  (-2.512023, 53.495237),\n",
-                            "  (-2.520593, 53.493402),\n",
-                            "  (-2.461107, 53.498321),\n",
-                            "  (-2.517748, 53.494943),\n",
-                            "  (-2.45451, 53.501672),\n",
-                            "  (-2.495135, 53.494769),\n",
-                            "  (-2.544949, 53.476754),\n",
-                            "  (-2.500384, 53.4925),\n",
-                            "  (-2.561154, 53.471646),\n",
-                            "  (-2.534934, 53.483092),\n",
-                            "  (-2.522922, 53.48665),\n",
-                            "  (-2.567434, 53.46802),\n",
-                            "  (-2.521922, 53.491149),\n",
-                            "  (-2.556208, 53.473556),\n",
-                            "  (-2.460809, 53.498681),\n",
-                            "  (-2.460809, 53.498681),\n",
-                            "  (-2.66159, 53.448929),\n",
-                            "  (-2.709653, 53.450631),\n",
-                            "  (-2.705031, 53.453445),\n",
-                            "  (-2.639563, 53.456061),\n",
-                            "  (-2.711761, 53.450619),\n",
-                            "  (-2.638359, 53.456157),\n",
-                            "  (-2.699467, 53.453927),\n",
-                            "  (-2.644232, 53.456125),\n",
-                            "  (-2.612435, 53.454675),\n",
-                            "  (-2.703226, 53.453546),\n",
-                            "  (-2.695531, 53.452692),\n",
-                            "  (-2.690109, 53.452633),\n",
-                            "  (-2.64589, 53.456206),\n",
-                            "  (-2.633694, 53.456362),\n",
-                            "  (-2.70443, 53.453538),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.684215, 53.451319),\n",
-                            "  (-2.347786, 53.503558),\n",
-                            "  (-2.392714, 53.503419),\n",
-                            "  (-2.382733, 53.500035),\n",
-                            "  (-2.346132, 53.504102),\n",
-                            "  (-2.384553, 53.501288),\n",
-                            "  (-2.421961, 53.503229),\n",
-                            "  (-2.345381, 53.504374),\n",
-                            "  (-2.355928, 53.503624),\n",
-                            "  (-2.557552, 53.472651),\n",
-                            "  (-2.560854, 53.471737),\n",
-                            "  (-2.523221, 53.486469),\n",
-                            "  (-2.56505, 53.470009),\n",
-                            "  (-2.485171, 53.493371),\n",
-                            "  (-2.493178, 53.494957),\n",
-                            "  (-2.565049, 53.469919),\n",
-                            "  (-2.572354, 53.464222),\n",
-                            "  (-2.572203, 53.464222),\n",
-                            "  (-2.519558, 53.495025),\n",
-                            "  (-2.494988, 53.495039),\n",
-                            "  (-2.542247, 53.477576),\n",
-                            "  (-2.480947, 53.493119),\n",
-                            "  (-2.46408, 53.494444),\n",
-                            "  (-2.557402, 53.472742),\n",
-                            "  (-2.521039, 53.492861),\n",
-                            "  (-2.504012, 53.493383),\n",
-                            "  (-2.55561, 53.473919),\n",
-                            "  (-2.549323, 53.477094),\n",
-                            "  (-2.519858, 53.494933),\n",
-                            "  (-2.501593, 53.492764),\n",
-                            "  (-2.455862, 53.501217),\n",
-                            "  (-2.504467, 53.493561),\n",
-                            "  (-2.499779, 53.492322),\n",
-                            "  (-2.521627, 53.49169),\n",
-                            "  (-2.448787, 53.502233),\n",
-                            "  (-2.666539, 53.447643),\n",
-                            "  (-2.67878, 53.450451),\n",
-                            "  (-2.648751, 53.456191),\n",
-                            "  (-2.696438, 53.452866),\n",
-                            "  (-2.66055, 53.449834),\n",
-                            "  (-2.607474, 53.455329),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.661143, 53.449202),\n",
-                            "  (-2.685274, 53.451582),\n",
-                            "  (-2.710857, 53.450624),\n",
-                            "  (-2.706971, 53.452355),\n",
-                            "  (-2.718262, 53.452198),\n",
-                            "  (-2.70503, 53.453355),\n",
-                            "  (-2.35154, 53.503475),\n",
-                            "  (-2.33574, 53.507323),\n",
-                            "  (-2.334897, 53.507496),\n",
-                            "  (-2.35249, 53.503499),\n",
-                            "  (-2.355174, 53.503572),\n",
-                            "  (-2.386837, 53.502081),\n",
-                            "  (-2.359452, 53.503155),\n",
-                            "  (-2.348961, 53.503411),\n",
-                            "  (-2.422977, 53.503846),\n",
-                            "  (-2.382617, 53.500521),\n",
-                            "  (-2.337591, 53.506868),\n",
-                            "  (-2.382178, 53.500325),\n",
-                            "  (-2.39502, 53.503384),\n",
-                            "  (-2.382748, 53.500017),\n",
-                            "  (-2.387277, 53.502439),\n",
-                            "  (-2.411038, 53.502512),\n",
-                            "  (-2.500383, 53.492419),\n",
-                            "  (-2.515864, 53.494933),\n",
-                            "  (-2.528876, 53.484359),\n",
-                            "  (-2.496271, 53.493973),\n",
-                            "  (-2.504026, 53.493302),\n",
-                            "  (-2.483541, 53.493261),\n",
-                            "  (-2.504935, 53.493676),\n",
-                            "  (-2.52966, 53.48432),\n",
-                            "  (-2.560975, 53.471754),\n",
-                            "  (-2.560929, 53.471719),\n",
-                            "  (-2.519754, 53.495069),\n",
-                            "  (-2.552252, 53.476397),\n",
-                            "  (-2.560945, 53.471718),\n",
-                            "  (-2.494582, 53.495149),\n",
-                            "  (-2.459166, 53.500036),\n",
-                            "  (-2.499749, 53.492323),\n",
-                            "  (-2.529072, 53.484358),\n",
-                            "  (-2.511316, 53.495348),\n",
-                            "  (-2.459478, 53.499666),\n",
-                            "  (-2.519813, 53.49497),\n",
-                            "  (-2.500263, 53.492437),\n",
-                            "  (-2.483405, 53.493235),\n",
-                            "  (-2.56093, 53.471755),\n",
-                            "  (-2.630863, 53.456421),\n",
-                            "  (-2.713569, 53.450698),\n",
-                            "  (-2.638359, 53.456157),\n",
-                            "  (-2.69765, 53.453309),\n",
-                            "  (-2.634898, 53.456355),\n",
-                            "  (-2.695531, 53.452692),\n",
-                            "  (-2.660106, 53.450286),\n",
-                            "  (-2.699164, 53.453839),\n",
-                            "  (-2.699164, 53.453839),\n",
-                            "  (-2.704129, 53.45354),\n",
-                            "  (-2.623625, 53.457853),\n",
-                            "  (-2.64589, 53.456206),\n",
-                            "  (-2.649506, 53.456277),\n",
-                            "  (-2.368923, 53.501724),\n",
-                            "  (-2.345426, 53.504401),\n",
-                            "  (-2.345516, 53.504328),\n",
-                            "  (-2.345546, 53.504337),\n",
-                            "  (-2.334836, 53.507505),\n",
-                            "  (-2.387004, 53.502269),\n",
-                            "  (-2.333, 53.507914),\n",
-                            "  (-2.421991, 53.50322),\n",
-                            "  (-2.336297, 53.507222),\n",
-                            "  (-2.422234, 53.503354),\n",
-                            "  (-2.415756, 53.502352),\n",
-                            "  (-2.379932, 53.500368),\n",
-                            "  (-2.421415, 53.50288),\n",
-                            "  (-2.427201, 53.504118),\n",
-                            "  (-2.361338, 53.503338),\n",
-                            "  (-2.422279, 53.503417),\n",
-                            "  (-2.543163, 53.477275),\n",
-                            "  (-2.562684, 53.471099),\n",
-                            "  (-2.454525, 53.501698),\n",
-                            "  (-2.520726, 53.493204),\n",
-                            "  (-2.56189, 53.471435),\n",
-                            "  (-2.503059, 53.493118),\n",
-                            "  (-2.571622, 53.464657),\n",
-                            "  (-2.508614, 53.495045),\n",
-                            "  (-2.500519, 53.492463),\n",
-                            "  (-2.543132, 53.477248),\n",
-                            "  (-2.461258, 53.496972),\n",
-                            "  (-2.538936, 53.48026),\n",
-                            "  (-2.504783, 53.493578),\n",
-                            "  (-2.49776, 53.492385),\n",
-                            "  (-2.485789, 53.493423),\n",
-                            "  (-2.563942, 53.470563),\n",
-                            "  (-2.505404, 53.493773),\n",
-                            "  (-2.503755, 53.493294),\n",
-                            "  (-2.513225, 53.494908),\n",
-                            "  (-2.534664, 53.483192),\n",
-                            "  (-2.499084, 53.492146),\n",
-                            "  (-2.599223, 53.457529),\n",
-                            "  (-2.701212, 53.453765),\n",
-                            "  (-2.687648, 53.452172),\n",
-                            "  (-2.717094, 53.451657),\n",
-                            "  (-2.718858, 53.452698),\n",
-                            "  (-2.599447, 53.45742),\n",
-                            "  (-2.701212, 53.453765),\n",
-                            "  (-2.69067, 53.452819),\n",
-                            "  (-2.710137, 53.450773),\n",
-                            "  (-2.696379, 53.452894),\n",
-                            "  (-2.623951, 53.45742),\n",
-                            "  (-2.37068, 53.500883),\n",
-                            "  (-2.414716, 53.502356),\n",
-                            "  (-2.421961, 53.50314),\n",
-                            "  (-2.357585, 53.50335),\n",
-                            "  (-2.402358, 53.502848),\n",
-                            "  (-2.342223, 53.505372),\n",
-                            "  (-2.386822, 53.50209),\n",
-                            "  (-2.412154, 53.502455),\n",
-                            "  (-2.561004, 53.471647),\n",
-                            "  (-2.52089, 53.492952),\n",
-                            "  (-2.568927, 53.467025),\n",
-                            "  (-2.497375, 53.492872),\n",
-                            "  (-2.479589, 53.492945),\n",
-                            "  (-2.519559, 53.495115),\n",
-                            "  (-2.522783, 53.48755),\n",
-                            "  (-2.480947, 53.493029),\n",
-                            "  (-2.458867, 53.500217),\n",
-                            "  (-2.499023, 53.492056),\n",
-                            "  (-2.448335, 53.502235),\n",
-                            "  (-2.569521, 53.466393),\n",
-                            "  (-2.543298, 53.477212),\n",
-                            "  (-2.538369, 53.48065),\n",
-                            "  (-2.540004, 53.478845),\n",
-                            "  (-2.562654, 53.4711),\n",
-                            "  (-2.459017, 53.500127),\n",
-                            "  (-2.588586, 53.461626),\n",
-                            "  (-2.582876, 53.462553),\n",
-                            "  (-2.661904, 53.448739),\n",
-                            "  (-2.666736, 53.447706),\n",
-                            "  (-2.664153, 53.448143),\n",
-                            "  (-2.634613, 53.387655),\n",
-                            "  (-2.661561, 53.44893),\n",
-                            "  (-2.661441, 53.448967),\n",
-                            "  (-2.661771, 53.448902),\n",
-                            "  (-2.637247, 53.456262),\n",
-                            "  (-2.704775, 53.453384),\n",
-                            "  (-2.654582, 53.45536),\n",
-                            "  (-2.599447, 53.45742),\n",
-                            "  (-2.599119, 53.457628),\n",
-                            "  (-2.705152, 53.453409),\n",
-                            "  (-2.69629, 53.452975),\n",
-                            "  (-2.69989, 53.45397),\n",
-                            "  (-2.638361, 53.456202),\n",
-                            "  (-2.623447, 53.45798),\n",
-                            "  (-2.695381, 53.452675),\n",
-                            "  (-2.68928, 53.452558),\n",
-                            "  (-2.694556, 53.452887),\n",
-                            "  (-2.385842, 53.502003),\n",
-                            "  (-2.382268, 53.500298),\n",
-                            "  (-2.335048, 53.507469),\n",
-                            "  (-2.374138, 53.499802),\n",
-                            "  (-2.383328, 53.500825),\n",
-                            "  (-2.374214, 53.499802),\n",
-                            "  (-2.375071, 53.499602),\n",
-                            "  (-2.41018, 53.502507),\n",
-                            "  (-2.415636, 53.502362),\n",
-                            "  (-2.342674, 53.505245),\n",
-                            "  (-2.422659, 53.503677),\n",
-                            "  (-2.382663, 53.500593),\n",
-                            "  (-2.415289, 53.502372),\n",
-                            "  (-2.419153, 53.502763),\n",
-                            "  (-2.345592, 53.504302),\n",
-                            "  (-2.490731, 53.494491),\n",
-                            "  (-2.519829, 53.494952),\n",
-                            "  (-2.520167, 53.494258),\n",
-                            "  (-2.52293, 53.488521),\n",
-                            "  (-2.572339, 53.464231),\n",
-                            "  (-2.538982, 53.480225),\n",
-                            "  (-2.495195, 53.494715),\n",
-                            "  (-2.513722, 53.494772),\n",
-                            "  (-2.572354, 53.464186),\n",
-                            "  (-2.494568, 53.495203),\n",
-                            "  (-2.539944, 53.478872),\n",
-                            "  (-2.567406, 53.468165),\n",
-                            "  (-2.519814, 53.494961),\n",
-                            "  (-2.496585, 53.493694),\n",
-                            "  (-2.563808, 53.470627),\n",
-                            "  (-2.551563, 53.476644),\n",
-                            "  (-2.664108, 53.448152),\n",
-                            "  (-2.6654, 53.44792),\n",
-                            "  (-2.66174, 53.448848),\n",
-                            "  (-2.661501, 53.448939),\n",
-                            "  (-2.699023, 53.453794),\n",
-                            "  (-2.63363, 53.456352),\n",
-                            "  (-2.684678, 53.451378),\n",
-                            "  (-2.660929, 53.449247),\n",
-                            "  (-2.661092, 53.449111),\n",
-                            "  (-2.661364, 53.449173),\n",
-                            "  (-2.642105, 53.456091),\n",
-                            "  (-2.66702, 53.447865),\n",
-                            "  (-2.6532, 53.455842),\n",
-                            "  (-2.63601, 53.456366),\n",
-                            "  (-2.718198, 53.452287),\n",
-                            "  (-2.695571, 53.452637),\n",
-                            "  (-2.604821, 53.45536),\n",
-                            "  (-2.613659, 53.454137),\n",
-                            "  (-2.382574, 53.500583),\n",
-                            "  (-2.410181, 53.502559),\n",
-                            "  (-2.342211, 53.505379),\n",
-                            "  (-2.410483, 53.502558),\n",
-                            "  (-2.410483, 53.502558),\n",
-                            "  (-2.342361, 53.505379),\n",
-                            "  (-2.417117, 53.502625),\n",
-                            "  (-2.416815, 53.502626),\n",
-                            "  (-2.42316, 53.503952),\n",
-                            "  (-2.4141, 53.502455),\n",
-                            "  (-2.462418, 53.495447),\n",
-                            "  (-2.523057, 53.486658),\n",
-                            "  (-2.448773, 53.50224),\n",
-                            "  (-2.501275, 53.492683),\n",
-                            "  (-2.51351, 53.494789),\n",
-                            "  (-2.459749, 53.499502),\n",
-                            "  (-2.591423, 53.461081),\n",
-                            "  (-2.494672, 53.495138),\n",
-                            "  (-2.563387, 53.470834),\n",
-                            "  (-2.499008, 53.492154),\n",
-                            "  (-2.459151, 53.500044),\n",
-                            "  (-2.489236, 53.494351),\n",
-                            "  (-2.500217, 53.492418),\n",
-                            "  (-2.521021, 53.492689),\n",
-                            "  (-2.534468, 53.483281),\n",
-                            "  (-2.664074, 53.448151),\n",
-                            "  (-2.655324, 53.454582),\n",
-                            "  (-2.704926, 53.453428),\n",
-                            "  (-2.59937, 53.457303),\n",
-                            "  (-2.653405, 53.456148),\n",
-                            "  (-2.63824, 53.456167),\n",
-                            "  (-2.687618, 53.45219),\n",
-                            "  (-2.636043, 53.45635),\n",
-                            "  (-2.659881, 53.450351),\n",
-                            "  (-2.412019, 53.502482),\n",
-                            "  (-2.382253, 53.500298),\n",
-                            "  (-2.341531, 53.505617),\n",
-                            "  (-2.342283, 53.505381),\n",
-                            "  (-2.423175, 53.503944),\n",
-                            "  (-2.415048, 53.502364),\n",
-                            "  (-2.342283, 53.505372),\n",
-                            "  (-2.355748, 53.503643),\n",
-                            "  (-2.459838, 53.499387),\n",
-                            "  (-2.442529, 53.503497),\n",
-                            "  (-2.48324, 53.493182),\n",
-                            "  (-2.520342, 53.493808),\n",
-                            "  (-2.492604, 53.494798),\n",
-                            "  (-2.463991, 53.494526),\n",
-                            "  (-2.459271, 53.49991),\n",
-                            "  (-2.500807, 53.492525),\n",
-                            "  (-2.523044, 53.489185),\n",
-                            "  (-2.551578, 53.476652),\n",
-                            "  (-2.539027, 53.480197),\n",
-                            "  (-2.511165, 53.495304),\n",
-                            "  (-2.468283, 53.494194),\n",
-                            "  (-2.675472, 53.449769),\n",
-                            "  (-2.664034, 53.448224),\n",
-                            "  (-2.666571, 53.447725),\n",
-                            "  (-2.664139, 53.448197),\n",
-                            "  (-2.192749, 53.066175),\n",
-                            "  (-2.660144, 53.449222),\n",
-                            "  (-2.689954, 53.452703),\n",
-                            "  (-2.625866, 53.456912),\n",
-                            "  (-2.709665, 53.450862),\n",
-                            "  (-2.68942, 53.452302),\n",
-                            "  (-2.705695, 53.45298),\n",
-                            "  (-2.704876, 53.453533),\n",
-                            "  (-2.714695, 53.450877),\n",
-                            "  (-2.640085, 53.456073),\n",
-                            "  (-2.70974, 53.450817),\n",
-                            "  (-2.708231, 53.451545),\n",
-                            "  (-2.689395, 53.452599),\n",
-                            "  (-2.337186, 53.506966),\n",
-                            "  (-2.422295, 53.503441),\n",
-                            "  (-2.341457, 53.505659),\n",
-                            "  (-2.364332, 53.50427),\n",
-                            "  (-2.56773, 53.467818),\n",
-                            "  (-2.483223, 53.493232),\n",
-                            "  (-2.557356, 53.472802),\n",
-                            "  (-2.55446, 53.474891),\n",
-                            "  (-2.519359, 53.494995),\n",
-                            "  (-2.487813, 53.493888),\n",
-                            "  (-2.520532, 53.493516),\n",
-                            "  (-2.534692, 53.483215),\n",
-                            "  (-2.519466, 53.495093),\n",
-                            "  (-2.521978, 53.490938),\n",
-                            "  (-2.496523, 53.493726),\n",
-                            "  (-2.569651, 53.466164),\n",
-                            "  (-2.515303, 53.49486),\n",
-                            "  (-2.454026, 53.501572),\n",
-                            "  (-2.437884, 53.504904),\n",
-                            "  (-2.509973, 53.495359),\n",
-                            "  (-2.489144, 53.494296),\n",
-                            "  (-2.500262, 53.492479),\n",
-                            "  (-2.648985, 53.456034),\n",
-                            "  (-2.700499, 53.453873),\n",
-                            "  (-2.649607, 53.456327),\n",
-                            "  (-2.698267, 53.453644),\n",
-                            "  (-2.382748, 53.500033),\n",
-                            "  (-2.411159, 53.502536),\n",
-                            "  (-2.414083, 53.502391),\n",
-                            "  (-2.402358, 53.502899),\n",
-                            "  (-2.386114, 53.502098),\n",
-                            "  (-2.381622, 53.500495),\n",
-                            "  (-2.345968, 53.504199),\n",
-                            "  (-2.529025, 53.484364),\n",
-                            "  (-2.51939, 53.495004),\n",
-                            "  (-2.569949, 53.465938),\n",
-                            "  (-2.463944, 53.49454),\n",
-                            "  (-2.439527, 53.504898),\n",
-                            "  (-2.456312, 53.501114),\n",
-                            "  (-2.519811, 53.494966),\n",
-                            "  (-2.554371, 53.475),\n",
-                            "  (-2.511646, 53.495325),\n",
-                            "  (-2.535065, 53.482908),\n",
-                            "  (-2.461134, 53.498075),\n",
-                            "  (-2.563146, 53.470941),\n",
-                            "  (-2.522737, 53.487735),\n",
-                            "  (-2.539382, 53.479895),\n",
-                            "  (-2.705068, 53.453343),\n",
-                            "  (-2.710672, 53.450721),\n",
-                            "  (-2.638296, 53.456235),\n",
-                            "  (-2.704695, 53.453525),\n",
-                            "  (-2.655705, 53.45428),\n",
-                            "  (-2.71001, 53.450797),\n",
-                            "  (-2.628964, 53.45659),\n",
-                            "  (-2.656966, 53.449186),\n",
-                            "  (-2.572098, 53.464418),\n",
-                            "  (-2.360525, 53.503302),\n",
-                            "  (-2.386853, 53.502132),\n",
-                            "  (-2.33678, 53.507084),\n",
-                            "  (-2.344194, 53.504797),\n",
-                            "  (-2.382178, 53.500349),\n",
-                            "  (-2.410542, 53.502565),\n",
-                            "  (-2.386977, 53.502518),\n",
-                            "  (-2.382267, 53.500196),\n",
-                            "  (-2.351556, 53.503535),\n",
-                            "  (-2.562517, 53.471178),\n",
-                            "  (-2.447507, 53.502405),\n",
-                            "  (-2.46417, 53.494513),\n",
-                            "  (-2.553954, 53.475343),\n",
-                            "  (-2.499703, 53.492355),\n",
-                            "  (-2.519602, 53.495084),\n",
-                            "  (-2.46447, 53.494421),\n",
-                            "  (-2.500262, 53.492479)])"
-                        ]
-                    },
-                    "execution_count": 47,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "def SED(X, Y):\n",
-                "    \"\"\"Compute the squared Euclidean distance between X and Y.\"\"\"\n",
-                "    return sum((i-j)**2 for i, j in zip(X, Y))\n",
-                "    \n",
-                "def nearest_neighbor_bf(*, query_points,reference_points):\n",
-                "    \"\"\"Use a brute force algorithm to solve the\n",
-                "    \"Nearest Neighbor Problem\".\n",
-                "    \"\"\"\n",
-                "    for query_p in query_points['Accident_coord']:\n",
-                "        datad2.append(query_p)\n",
-                "        datad.append( min(\n",
-                "            reference_points,\n",
-                "            key=lambda X: SED(X, query_p))\n",
-                "        )\n",
-                "    return datad,datad2\n",
-                "datad=[]\n",
-                "datad2=[]\n",
-                "datad3=[]\n",
-                "reference_points =Trafficvolumepoints[\"coordinates\"]\n",
-                "query_points = A2572019\n",
-                "count_point_id = Trafficvolumepoints[\"count_point_id\"]\n",
-                "\n",
-                "#reference_points = [ (1, 2), (3, 2), (4, 1), (3, 5) ]\n",
-                "#query_points = [\n",
-                "    #(3, 4), (5, 1), (7, 3), (8, 9), (10, 1), (3, 3)\n",
-                "#\n",
-                "\n",
-                "points=nearest_neighbor_bf(\n",
-                "    query_points = query_points,reference_points=reference_points\n",
-                ")\n",
-                "points"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "      <td>(-2.689506, 53.452547)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>(-2.7017032, 53.453742)</td>\n",
-                            "      <td>(-2.730629, 53.453291)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.630682, 53.456377)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "      <td>(-2.681045, 53.450798)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>(-2.5438819, 53.477064)</td>\n",
-                            "      <td>(-2.553954, 53.475343)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>(-2.5284538, 53.48438829)</td>\n",
-                            "      <td>(-2.519602, 53.495084)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "      <td>(-2.46447, 53.494421)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                    coordinates          Accident_coord\n",
-                            "0       (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "1    (-2.67906652, 53.45072871)  (-2.689506, 53.452547)\n",
-                            "2       (-2.7017032, 53.453742)  (-2.730629, 53.453291)\n",
-                            "3       (-2.6415033, 53.456148)  (-2.630682, 53.456377)\n",
-                            "4    (-2.67906652, 53.45072871)  (-2.681045, 53.450798)\n",
-                            "..                          ...                     ...\n",
-                            "824     (-2.5438819, 53.477064)  (-2.553954, 53.475343)\n",
-                            "825     (-2.5048274, 53.493522)  (-2.499703, 53.492355)\n",
-                            "826   (-2.5284538, 53.48438829)  (-2.519602, 53.495084)\n",
-                            "827     (-2.4621204, 53.495807)   (-2.46447, 53.494421)\n",
-                            "828     (-2.5048274, 53.493522)  (-2.500262, 53.492479)\n",
-                            "\n",
-                            "[829 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 48,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DataframforA257 = pd.DataFrame(list(zip(points[0], points[1])),columns =['coordinates','Accident_coord'])\n",
-                "#DataframforA257 = pd.DataFrame(points[0])\n",
-                "DataframforA257"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "      <td>(-2.689506, 53.452547)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1250</th>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "      <td>(-2.46417, 53.494513)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1251</th>\n",
-                            "      <td>(-2.5438819, 53.477064)</td>\n",
-                            "      <td>(-2.553954, 53.475343)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1252</th>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1253</th>\n",
-                            "      <td>(-2.5284538, 53.48438829)</td>\n",
-                            "      <td>(-2.519602, 53.495084)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1254</th>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "      <td>(-2.46447, 53.494421)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>1255 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                     coordinates          Accident_coord\n",
-                            "0        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "1        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "2        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "3        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "4     (-2.67906652, 53.45072871)  (-2.689506, 53.452547)\n",
-                            "...                          ...                     ...\n",
-                            "1250     (-2.4621204, 53.495807)   (-2.46417, 53.494513)\n",
-                            "1251     (-2.5438819, 53.477064)  (-2.553954, 53.475343)\n",
-                            "1252     (-2.5048274, 53.493522)  (-2.499703, 53.492355)\n",
-                            "1253   (-2.5284538, 53.48438829)  (-2.519602, 53.495084)\n",
-                            "1254     (-2.4621204, 53.495807)   (-2.46447, 53.494421)\n",
-                            "\n",
-                            "[1255 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 49,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DA257=pd.merge(DataframforA257, Year ,left_index=False)\n",
-                "DA257"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "tuple"
-                        ]
-                    },
-                    "execution_count": 50,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(Trafficvolumepoints['coordinates'][0])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.series.Series"
-                        ]
-                    },
-                    "execution_count": 51,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DataframforA257['coordinates'] = DataframforA257['coordinates'].astype(str)\n",
-                "Trafficvolumepoints['coordinates'] = Trafficvolumepoints['coordinates'].astype(str)\n",
-                "\n",
-                "type(DataframforA257['coordinates'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": []
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "      <td>(-2.42662982, 53.5041206)</td>\n",
-                            "      <td>(-2.427201, 53.504118)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599223, 53.457529)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599447, 53.45742)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63363, 53.456352)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.642105, 53.456091)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63824, 53.456167)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.640085, 53.456073)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.638296, 53.456235)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 6 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude                coordinates  \\\n",
-                            "0        A572          17253  -2.426630  53.504121  (-2.42662982, 53.5041206)   \n",
-                            "1        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "2        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "3        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "4        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "..        ...            ...        ...        ...                        ...   \n",
-                            "824      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "825      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "826      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "827      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "828      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "\n",
-                            "             Accident_coord  \n",
-                            "0    (-2.427201, 53.504118)  \n",
-                            "1    (-2.599222, 53.457528)  \n",
-                            "2    (-2.599222, 53.457528)  \n",
-                            "3    (-2.599223, 53.457529)  \n",
-                            "4     (-2.599447, 53.45742)  \n",
-                            "..                      ...  \n",
-                            "824   (-2.63363, 53.456352)  \n",
-                            "825  (-2.642105, 53.456091)  \n",
-                            "826   (-2.63824, 53.456167)  \n",
-                            "827  (-2.640085, 53.456073)  \n",
-                            "828  (-2.638296, 53.456235)  \n",
-                            "\n",
-                            "[829 rows x 6 columns]"
-                        ]
-                    },
-                    "execution_count": 52,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "\n",
-                "A572accidentoncountpoint=pd.merge(Trafficvolumepoints, DataframforA257, on='coordinates')\n",
-                "A572accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.series.Series"
-                        ]
-                    },
-                    "execution_count": 53,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(A572accidentoncountpoint.Accident_coord)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "      <td>(-2.42662982, 53.5041206)</td>\n",
-                            "      <td>(-2.427201, 53.504118)</td>\n",
-                            "      <td>-2.427201</td>\n",
-                            "      <td>53.504118</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "      <td>-2.599222</td>\n",
-                            "      <td>53.457528</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "      <td>-2.599222</td>\n",
-                            "      <td>53.457528</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599223, 53.457529)</td>\n",
-                            "      <td>-2.599223</td>\n",
-                            "      <td>53.457529</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599447, 53.45742)</td>\n",
-                            "      <td>-2.599447</td>\n",
-                            "      <td>53.457420</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63363, 53.456352)</td>\n",
-                            "      <td>-2.633630</td>\n",
-                            "      <td>53.456352</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.642105, 53.456091)</td>\n",
-                            "      <td>-2.642105</td>\n",
-                            "      <td>53.456091</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63824, 53.456167)</td>\n",
-                            "      <td>-2.638240</td>\n",
-                            "      <td>53.456167</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.640085, 53.456073)</td>\n",
-                            "      <td>-2.640085</td>\n",
-                            "      <td>53.456073</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.638296, 53.456235)</td>\n",
-                            "      <td>-2.638296</td>\n",
-                            "      <td>53.456235</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude                coordinates  \\\n",
-                            "0        A572          17253  -2.426630  53.504121  (-2.42662982, 53.5041206)   \n",
-                            "1        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "2        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "3        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "4        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "..        ...            ...        ...        ...                        ...   \n",
-                            "824      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "825      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "826      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "827      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "828      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "\n",
-                            "             Accident_coord        b1         b2  \n",
-                            "0    (-2.427201, 53.504118) -2.427201  53.504118  \n",
-                            "1    (-2.599222, 53.457528) -2.599222  53.457528  \n",
-                            "2    (-2.599222, 53.457528) -2.599222  53.457528  \n",
-                            "3    (-2.599223, 53.457529) -2.599223  53.457529  \n",
-                            "4     (-2.599447, 53.45742) -2.599447  53.457420  \n",
-                            "..                      ...       ...        ...  \n",
-                            "824   (-2.63363, 53.456352) -2.633630  53.456352  \n",
-                            "825  (-2.642105, 53.456091) -2.642105  53.456091  \n",
-                            "826   (-2.63824, 53.456167) -2.638240  53.456167  \n",
-                            "827  (-2.640085, 53.456073) -2.640085  53.456073  \n",
-                            "828  (-2.638296, 53.456235) -2.638296  53.456235  \n",
-                            "\n",
-                            "[829 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 54,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#type(A572accidentoncountpoint.Accident_coord[0])\n",
-                "A572accidentoncountpoint[['b1', 'b2']]=pd.DataFrame(A572accidentoncountpoint['Accident_coord'].tolist(),index=A572accidentoncountpoint.index)\n",
-                "A572accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.series.Series"
-                        ]
-                    },
-                    "execution_count": 409,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(above_35.b1)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "      <td>(-2.689506, 53.452547)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>(-2.7017032, 53.453742)</td>\n",
-                            "      <td>(-2.730629, 53.453291)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.630682, 53.456377)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "      <td>(-2.681045, 53.450798)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>(-2.5438819, 53.477064)</td>\n",
-                            "      <td>(-2.553954, 53.475343)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>(-2.5284538, 53.48438829)</td>\n",
-                            "      <td>(-2.519602, 53.495084)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "      <td>(-2.46447, 53.494421)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                    coordinates          Accident_coord\n",
-                            "0       (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "1    (-2.67906652, 53.45072871)  (-2.689506, 53.452547)\n",
-                            "2       (-2.7017032, 53.453742)  (-2.730629, 53.453291)\n",
-                            "3       (-2.6415033, 53.456148)  (-2.630682, 53.456377)\n",
-                            "4    (-2.67906652, 53.45072871)  (-2.681045, 53.450798)\n",
-                            "..                          ...                     ...\n",
-                            "824     (-2.5438819, 53.477064)  (-2.553954, 53.475343)\n",
-                            "825     (-2.5048274, 53.493522)  (-2.499703, 53.492355)\n",
-                            "826   (-2.5284538, 53.48438829)  (-2.519602, 53.495084)\n",
-                            "827     (-2.4621204, 53.495807)   (-2.46447, 53.494421)\n",
-                            "828     (-2.5048274, 53.493522)  (-2.500262, 53.492479)\n",
-                            "\n",
-                            "[829 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 56,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DataframforA257 = pd.DataFrame(list(zip(points[0], points[1])),columns =['coordinates','Accident_coord'])\n",
-                "#DataframforA257 = pd.DataFrame(points[0])\n",
-                "DataframforA257"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>(-2.6098672, 53.455415)</td>\n",
-                            "      <td>(-2.612435, 53.454675)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>(-2.67906652, 53.45072871)</td>\n",
-                            "      <td>(-2.689506, 53.452547)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1250</th>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "      <td>(-2.46417, 53.494513)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1251</th>\n",
-                            "      <td>(-2.5438819, 53.477064)</td>\n",
-                            "      <td>(-2.553954, 53.475343)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1252</th>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1253</th>\n",
-                            "      <td>(-2.5284538, 53.48438829)</td>\n",
-                            "      <td>(-2.519602, 53.495084)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1254</th>\n",
-                            "      <td>(-2.4621204, 53.495807)</td>\n",
-                            "      <td>(-2.46447, 53.494421)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>1255 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                     coordinates          Accident_coord\n",
-                            "0        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "1        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "2        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "3        (-2.6098672, 53.455415)  (-2.612435, 53.454675)\n",
-                            "4     (-2.67906652, 53.45072871)  (-2.689506, 53.452547)\n",
-                            "...                          ...                     ...\n",
-                            "1250     (-2.4621204, 53.495807)   (-2.46417, 53.494513)\n",
-                            "1251     (-2.5438819, 53.477064)  (-2.553954, 53.475343)\n",
-                            "1252     (-2.5048274, 53.493522)  (-2.499703, 53.492355)\n",
-                            "1253   (-2.5284538, 53.48438829)  (-2.519602, 53.495084)\n",
-                            "1254     (-2.4621204, 53.495807)   (-2.46447, 53.494421)\n",
-                            "\n",
-                            "[1255 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 57,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DA257=pd.merge(DataframforA257, Year ,left_index=False)\n",
-                "DA257"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "str"
-                        ]
-                    },
-                    "execution_count": 58,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(Trafficvolumepoints['coordinates'][0])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.series.Series"
-                        ]
-                    },
-                    "execution_count": 59,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "DataframforA257['coordinates'] = DataframforA257['coordinates'].astype(str)\n",
-                "Trafficvolumepoints['coordinates'] = Trafficvolumepoints['coordinates'].astype(str)\n",
-                "\n",
-                "type(DataframforA257['coordinates'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": []
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "      <td>(-2.42662982, 53.5041206)</td>\n",
-                            "      <td>(-2.427201, 53.504118)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599223, 53.457529)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599447, 53.45742)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63363, 53.456352)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.642105, 53.456091)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63824, 53.456167)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.640085, 53.456073)</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.638296, 53.456235)</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 6 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude                coordinates  \\\n",
-                            "0        A572          17253  -2.426630  53.504121  (-2.42662982, 53.5041206)   \n",
-                            "1        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "2        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "3        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "4        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "..        ...            ...        ...        ...                        ...   \n",
-                            "824      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "825      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "826      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "827      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "828      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "\n",
-                            "             Accident_coord  \n",
-                            "0    (-2.427201, 53.504118)  \n",
-                            "1    (-2.599222, 53.457528)  \n",
-                            "2    (-2.599222, 53.457528)  \n",
-                            "3    (-2.599223, 53.457529)  \n",
-                            "4     (-2.599447, 53.45742)  \n",
-                            "..                      ...  \n",
-                            "824   (-2.63363, 53.456352)  \n",
-                            "825  (-2.642105, 53.456091)  \n",
-                            "826   (-2.63824, 53.456167)  \n",
-                            "827  (-2.640085, 53.456073)  \n",
-                            "828  (-2.638296, 53.456235)  \n",
-                            "\n",
-                            "[829 rows x 6 columns]"
-                        ]
-                    },
-                    "execution_count": 60,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "\n",
-                "A572accidentoncountpoint=pd.merge(Trafficvolumepoints, DataframforA257, on='coordinates')\n",
-                "A572accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.series.Series"
-                        ]
-                    },
-                    "execution_count": 61,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(A572accidentoncountpoint.Accident_coord)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>17253</td>\n",
-                            "      <td>-2.426630</td>\n",
-                            "      <td>53.504121</td>\n",
-                            "      <td>(-2.42662982, 53.5041206)</td>\n",
-                            "      <td>(-2.427201, 53.504118)</td>\n",
-                            "      <td>-2.427201</td>\n",
-                            "      <td>53.504118</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "      <td>-2.599222</td>\n",
-                            "      <td>53.457528</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599222, 53.457528)</td>\n",
-                            "      <td>-2.599222</td>\n",
-                            "      <td>53.457528</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599223, 53.457529)</td>\n",
-                            "      <td>-2.599223</td>\n",
-                            "      <td>53.457529</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>73966</td>\n",
-                            "      <td>-2.598757</td>\n",
-                            "      <td>53.457808</td>\n",
-                            "      <td>(-2.5987568, 53.457808)</td>\n",
-                            "      <td>(-2.599447, 53.45742)</td>\n",
-                            "      <td>-2.599447</td>\n",
-                            "      <td>53.457420</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>824</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63363, 53.456352)</td>\n",
-                            "      <td>-2.633630</td>\n",
-                            "      <td>53.456352</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>825</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.642105, 53.456091)</td>\n",
-                            "      <td>-2.642105</td>\n",
-                            "      <td>53.456091</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>826</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.63824, 53.456167)</td>\n",
-                            "      <td>-2.638240</td>\n",
-                            "      <td>53.456167</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>827</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.640085, 53.456073)</td>\n",
-                            "      <td>-2.640085</td>\n",
-                            "      <td>53.456073</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>828</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>77857</td>\n",
-                            "      <td>-2.641503</td>\n",
-                            "      <td>53.456148</td>\n",
-                            "      <td>(-2.6415033, 53.456148)</td>\n",
-                            "      <td>(-2.638296, 53.456235)</td>\n",
-                            "      <td>-2.638296</td>\n",
-                            "      <td>53.456235</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>829 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude                coordinates  \\\n",
-                            "0        A572          17253  -2.426630  53.504121  (-2.42662982, 53.5041206)   \n",
-                            "1        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "2        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "3        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "4        A572          73966  -2.598757  53.457808    (-2.5987568, 53.457808)   \n",
-                            "..        ...            ...        ...        ...                        ...   \n",
-                            "824      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "825      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "826      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "827      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "828      A572          77857  -2.641503  53.456148    (-2.6415033, 53.456148)   \n",
-                            "\n",
-                            "             Accident_coord        b1         b2  \n",
-                            "0    (-2.427201, 53.504118) -2.427201  53.504118  \n",
-                            "1    (-2.599222, 53.457528) -2.599222  53.457528  \n",
-                            "2    (-2.599222, 53.457528) -2.599222  53.457528  \n",
-                            "3    (-2.599223, 53.457529) -2.599223  53.457529  \n",
-                            "4     (-2.599447, 53.45742) -2.599447  53.457420  \n",
-                            "..                      ...       ...        ...  \n",
-                            "824   (-2.63363, 53.456352) -2.633630  53.456352  \n",
-                            "825  (-2.642105, 53.456091) -2.642105  53.456091  \n",
-                            "826   (-2.63824, 53.456167) -2.638240  53.456167  \n",
-                            "827  (-2.640085, 53.456073) -2.640085  53.456073  \n",
-                            "828  (-2.638296, 53.456235) -2.638296  53.456235  \n",
-                            "\n",
-                            "[829 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 62,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#type(A572accidentoncountpoint.Accident_coord[0])\n",
-                "A572accidentoncountpoint[['b1', 'b2']]=pd.DataFrame(A572accidentoncountpoint['Accident_coord'].tolist(),index=A572accidentoncountpoint.index)\n",
-                "A572accidentoncountpoint"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------------------+\n",
-                        "|count_point_id|Total_Accident_onthatpoint|\n",
-                        "+--------------+--------------------------+\n",
-                        "|         38662|                       107|\n",
-                        "|         37348|                       100|\n",
-                        "|         77856|                        86|\n",
-                        "|         17932|                        68|\n",
-                        "|         57317|                        57|\n",
-                        "|         57197|                        54|\n",
-                        "|         58146|                        49|\n",
-                        "|         77857|                        45|\n",
-                        "|          8498|                        44|\n",
-                        "|         77863|                        42|\n",
-                        "|         74618|                        34|\n",
-                        "|         18545|                        26|\n",
-                        "|         27309|                        23|\n",
-                        "|         47316|                        21|\n",
-                        "|         17253|                        20|\n",
-                        "|         37349|                        19|\n",
-                        "|         27308|                        13|\n",
-                        "|         73966|                         7|\n",
-                        "|          7288|                         6|\n",
-                        "|          7287|                         5|\n",
-                        "+--------------+--------------------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "A572accidentoncountpointsparkDF=spark.createDataFrame(A572accidentoncountpoint)\n",
-                "#A572accidentoncountpointsparkDF.show()\n",
-                "A572accidentoncountpointsparkDF_countgroup = A572accidentoncountpointsparkDF.groupby('count_point_id').agg(F.count(A572accidentoncountpointsparkDF.road_name).alias('Total_Accident_onthatpoint'))\n",
-                "A572accidentoncountpointsparkDF_countgroup.sort(col('Total_Accident_onthatpoint').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>526</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.493479, 53.494955)</td>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>527</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.510366, 53.495334)</td>\n",
-                            "      <td>-2.510366</td>\n",
-                            "      <td>53.495334</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>528</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.509008, 53.49516)</td>\n",
-                            "      <td>-2.509008</td>\n",
-                            "      <td>53.495160</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>529</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.507799, 53.494895)</td>\n",
-                            "      <td>-2.507799</td>\n",
-                            "      <td>53.494895</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>530</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.518502, 53.494939)</td>\n",
-                            "      <td>-2.518502</td>\n",
-                            "      <td>53.494939</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>764</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.487813, 53.493888)</td>\n",
-                            "      <td>-2.487813</td>\n",
-                            "      <td>53.493888</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>765</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.496523, 53.493726)</td>\n",
-                            "      <td>-2.496523</td>\n",
-                            "      <td>53.493726</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>766</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>767</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>768</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>107 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude  \\\n",
-                            "526      A572          38662  -2.504827  53.493524   \n",
-                            "527      A572          38662  -2.504827  53.493524   \n",
-                            "528      A572          38662  -2.504827  53.493524   \n",
-                            "529      A572          38662  -2.504827  53.493524   \n",
-                            "530      A572          38662  -2.504827  53.493524   \n",
-                            "..        ...            ...        ...        ...   \n",
-                            "764      A572          38662  -2.504827  53.493522   \n",
-                            "765      A572          38662  -2.504827  53.493522   \n",
-                            "766      A572          38662  -2.504827  53.493522   \n",
-                            "767      A572          38662  -2.504827  53.493522   \n",
-                            "768      A572          38662  -2.504827  53.493522   \n",
-                            "\n",
-                            "                    coordinates          Accident_coord        b1         b2  \n",
-                            "526  (-2.50482745, 53.49352394)  (-2.493479, 53.494955) -2.493479  53.494955  \n",
-                            "527  (-2.50482745, 53.49352394)  (-2.510366, 53.495334) -2.510366  53.495334  \n",
-                            "528  (-2.50482745, 53.49352394)   (-2.509008, 53.49516) -2.509008  53.495160  \n",
-                            "529  (-2.50482745, 53.49352394)  (-2.507799, 53.494895) -2.507799  53.494895  \n",
-                            "530  (-2.50482745, 53.49352394)  (-2.518502, 53.494939) -2.518502  53.494939  \n",
-                            "..                          ...                     ...       ...        ...  \n",
-                            "764     (-2.5048274, 53.493522)  (-2.487813, 53.493888) -2.487813  53.493888  \n",
-                            "765     (-2.5048274, 53.493522)  (-2.496523, 53.493726) -2.496523  53.493726  \n",
-                            "766     (-2.5048274, 53.493522)  (-2.500262, 53.492479) -2.500262  53.492479  \n",
-                            "767     (-2.5048274, 53.493522)  (-2.499703, 53.492355) -2.499703  53.492355  \n",
-                            "768     (-2.5048274, 53.493522)  (-2.500262, 53.492479) -2.500262  53.492479  \n",
-                            "\n",
-                            "[107 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 417,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "A572accidentoncountpoint.loc[A572accidentoncountpoint['count_point_id'] == \"38662\"]"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>526</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.493479, 53.494955)</td>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>527</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.510366, 53.495334)</td>\n",
-                            "      <td>-2.510366</td>\n",
-                            "      <td>53.495334</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>528</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.509008, 53.49516)</td>\n",
-                            "      <td>-2.509008</td>\n",
-                            "      <td>53.495160</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>529</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.507799, 53.494895)</td>\n",
-                            "      <td>-2.507799</td>\n",
-                            "      <td>53.494895</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>530</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.518502, 53.494939)</td>\n",
-                            "      <td>-2.518502</td>\n",
-                            "      <td>53.494939</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>764</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.487813, 53.493888)</td>\n",
-                            "      <td>-2.487813</td>\n",
-                            "      <td>53.493888</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>765</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.496523, 53.493726)</td>\n",
-                            "      <td>-2.496523</td>\n",
-                            "      <td>53.493726</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>766</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>767</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>768</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>107 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude  \\\n",
-                            "526      A572          38662  -2.504827  53.493524   \n",
-                            "527      A572          38662  -2.504827  53.493524   \n",
-                            "528      A572          38662  -2.504827  53.493524   \n",
-                            "529      A572          38662  -2.504827  53.493524   \n",
-                            "530      A572          38662  -2.504827  53.493524   \n",
-                            "..        ...            ...        ...        ...   \n",
-                            "764      A572          38662  -2.504827  53.493522   \n",
-                            "765      A572          38662  -2.504827  53.493522   \n",
-                            "766      A572          38662  -2.504827  53.493522   \n",
-                            "767      A572          38662  -2.504827  53.493522   \n",
-                            "768      A572          38662  -2.504827  53.493522   \n",
-                            "\n",
-                            "                    coordinates          Accident_coord        b1         b2  \n",
-                            "526  (-2.50482745, 53.49352394)  (-2.493479, 53.494955) -2.493479  53.494955  \n",
-                            "527  (-2.50482745, 53.49352394)  (-2.510366, 53.495334) -2.510366  53.495334  \n",
-                            "528  (-2.50482745, 53.49352394)   (-2.509008, 53.49516) -2.509008  53.495160  \n",
-                            "529  (-2.50482745, 53.49352394)  (-2.507799, 53.494895) -2.507799  53.494895  \n",
-                            "530  (-2.50482745, 53.49352394)  (-2.518502, 53.494939) -2.518502  53.494939  \n",
-                            "..                          ...                     ...       ...        ...  \n",
-                            "764     (-2.5048274, 53.493522)  (-2.487813, 53.493888) -2.487813  53.493888  \n",
-                            "765     (-2.5048274, 53.493522)  (-2.496523, 53.493726) -2.496523  53.493726  \n",
-                            "766     (-2.5048274, 53.493522)  (-2.500262, 53.492479) -2.500262  53.492479  \n",
-                            "767     (-2.5048274, 53.493522)  (-2.499703, 53.492355) -2.499703  53.492355  \n",
-                            "768     (-2.5048274, 53.493522)  (-2.500262, 53.492479) -2.500262  53.492479  \n",
-                            "\n",
-                            "[107 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 65,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "above_35 = A572accidentoncountpoint[A572accidentoncountpoint[\"count_point_id\"] == \"38662\"]\n",
-                "above_35"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(53.492056, 53.495359, -2.518502, -2.483405)"
-                        ]
-                    },
-                    "execution_count": 66,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "BBBox = (above_35.b2.min(), above_35.b2.max(),above_35.b1.min(), above_35.b1.max())\n",
-                "BBBox"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "(53.492056, 53.495359, -2.518502, -2.483405)"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "BBBox = (above_35.b2.min(), above_35.b2.max(),above_35.b1.min(), above_35.b1.max())\n",
-                "BBBox"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "ruh_m = plt.imread('/Users/Asfandyar/Downloads/map-6.jpg')\n",
-                "\n"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.image.AxesImage at 0x11b45c730>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAz6CAYAAACttXwZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRtWVUfjn9Ws5tzzr33tdUBVQVUUUgnKiCKoIISxFAR1HxtgNjlp444omAIjiSGQZSRKGIkxjiiDo2JMQIqgmiMDlC+fMsGDJgEFFCkoKqoorpX793mnLP3XmvN3x9zzbXX3ufc+96req/qcfMm3Hqn2We3a33WnJ/ZKSIiXJbLclkuy2X5nBD9SJ/AZbksl+WyXJZzl8ugfVkuy2W5LJ9Dchm0L8tluSyX5XNILoP2Zbksl+WyfA7JZdC+LJflslyWzyG5DNqX5bJclsvyOSSXQftzTO644w486UlPwtd93delv7/39/4efuM3fgMA8Pa3vx3f8z3fc9b9/PAP/zA+8pGPAADe+9734t/9u38HAHjPe96DN7zhDRfsfP/2b/8W3/3d342bb74ZN998M17xilfgf/7P//mQ9vnrv/7r+NVf/VUAwK/92q/h53/+5w/c/v3vfz9e8pKXrHw+vpc333wzvv7rvx7veMc7zuk8fuZnfgbvfve7z/v8H6q88pWvxAte8ILBeb/oRS9K5/3hD38Y3//9339BjnXq1Ck88YlPBHDuY+v9738/nvjEJ+K1r33t2nP/wi/8wgtybv+3in2kT+CynL/UdY13vvOd6f3dd9+Nl7zkJXjqU596zvv4kz/5E3zTN30TAJ7kZ86cAQB81Vd9Fb7qq77qgp3r93//9+NVr3oVXvjCFwIA/vzP/xzf8z3fg/e85z04evTog9rnBz/4QTzhCU8AAHzLt3zLQzq/8b38zGc+g2//9m/HZDLBi170ogN/+/73vx833njjQzr+g5XXvva1+Jqv+Zr0/sMf/jC+5Vu+BV/91V+Npz3tafjpn/7pR+S8RK644gq8973vxWKxwGQyAcD39tZbb31Ez+swyGXQPgRy1VVX4frrr8enPvWpweef/exn8frXvx6f+cxnQER46Utfin/4D/8hfuqnfgr33HMPXvOa1+CNb3wj3vKWt8B7j83NTVx//fX4/d//ffzcz/0cXvnKV+ILvuAL8KEPfQh33XUXnvGMZ+DHf/zHobXG29/+dvz8z/886rrGl3zJl+C//Jf/gr/6q79aObd7770X8/k8vX/Ws56FN7/5zTDG4I477sArX/lKfPEXfzE+9rGPgYjwute9Ds985jNx33334XWvex3uv/9+3HvvvXj0ox+NN7/5zfjQhz6EP/zDP8Qf//Efo65rnDp1Cg888ABe97rX4Y/+6I/wcz/3c2jbFqdOncJLX/pSvOpVrzqve/noRz8a3//9349f/MVfxIte9CLceuut+JEf+RHM53Pcc889+LzP+zy8+c1vxm/8xm/gIx/5CN74xjfCGIMbb7xx7XZVVQ32v7Ozg3/1r/4VPvaxj0Ephec973n4wR/8QVhr8bSnPQ3f/d3fjT/+4z/GPffcg3/wD/4Bvv3bv/2czvv222/HdDpFWZZ4//vfjx/90R/Fr//6r+PLv/zL8ba3vQ2Pe9zjAADf8R3fgZe//OW44YYb9j3fP/iDP8BP/dRPYTKZrCgC9957L777u78bd911F4wx+Mmf/EnccMMNK+dz9OhRXHvttXj3u9+Nm2++GQDwjne8AzfffDPe8pa3AADm8zle//rX41Of+hTOnDmD2WyGN73pTXj84x+PV77ylbjhhhvwkY98BA888AC+7uu+7oJZD5/rcpkeOQTyF3/xF7jtttvw9Kc/ffD5a17zGjz72c/Gu971Lvzar/0afvu3fxu/+7u/i1e/+tW48sor8aY3vQlPf/rT8c3f/M342q/9Wrz61a9e2fdtt92GX/mVX8Fv//Zv48/+7M/wgQ98AJ/4xCfwpje9Cb/8y7+Md7zjHdjY2ID3fu25ve51r8Mb3vAGPPe5z8UP/MAP4L/+1/+Kpz3tadjc3AQA3HnnnXjuc5+Ld77znfgn/+Sf4FWvehW6rsPv/u7v4gu+4Avw1re+Fe95z3uSRvzCF74QL3jBC/Dt3/7tePnLX56OQ0T4pV/6JfzYj/0Y3v72t+Otb30rfv7nfx6nTp067/v5eZ/3efjrv/5rAMDb3vY2vPSlL8Vb3/pW/MEf/AHuuOMOvPe978XLX/5yPPWpT8VrX/tavPCFL9x3u7G84Q1vwNGjR/Gud70Lv/mbv4mPf/zj+KVf+iUAQNu2OHbsGN7ylrfgp3/6p/GTP/mTaJpm7Tm+8Y1vxNd93dfhBS94AZ7znOfg3e9+N375l38ZZVmmbSaTCV760pfi13/919OzvPXWW/H85z9/3/O977778M//+T/Hv//3/x5vf/vb8ehHP3pw3Ntvvx3/4l/8C7zrXe/CM5/5TPziL/7ivvfxpS996cCK+b3f+70BTfW+970PW1tbeNvb3obf//3fx1Of+tREewE8Nn7t134Nv/Vbv4X//t//O/7oj/5o32P93ySXQftzUJbLZeIzX/KSl+Df/tt/i5/4iZ/ANddck7aZz+f40Ic+lIBtc3MTX//1X4/3ve9953Ws5z//+dBaY2NjA9dffz3OnDmDW265BV/2ZV+Gq6++GgDwile8Yt/fv+QlL8Ett9yCN77xjXj84x+P3/zN38Tf/bt/F3fccQcA4MiRI0kT+4qv+AoYY/Dxj38c3/Zt34Yv+qIvwn/6T/8Jr3/96/E3f/M3A419LEop/Mf/+B/xl3/5l/iZn/kZ/NiP/RiICIvF4ryuV/ZV1zUA4J/+03+K48eP4xd+4Rfw+te/Hvfcc8/a8zjX7d73vvfhFa94BZRSKMsS3/zN3zx4JkJNPeUpT0Hbtvte82tf+1q8853vxG/8xm/gmmuuwfHjx/HkJz95Zbtv/dZvxTvf+U50XYe3vvWt+MZv/EYYY/Y93w9+8IO46aabEu0jFJrI53/+5+P6668HADzpSU86cFF8/vOfj7/8y7/E/fffjw9+8IN4/OMfjyNHjqTvv+ZrvgYve9nL8Cu/8it4wxvegA984AOD6/2mb/omFEWBra0tfM3XfA1uueWWfY/1f5Ncpkc+B2XMw66TEALGZWVCCHDOnfexRJRSICIYYwb7Nsas/e3f/u3f4rd+67fwmte8Bs95znPwnOc8Bz/wAz+A7/iO78Dv//7v40UvetHKb0MIMMbgJ37iJ/B//s//wTd8wzfg2c9+NpxzK9eTy3w+x8te9jJ89Vd/NZ75zGfiG77hG/Dud7/7wN/sJx/+8Idx0003AQB+8Ad/EN57vPjFL8ZXfuVX4q677lq7z3PdLoSw8j5/JkKnKKUA4Kznf/z4cbz5zW/GS17yEjzjGc/Ai1/84sH3j3vc4/DEJz4R73nPe/Cud70rad37na88YxFrhxCRvx9vO5ayLPF3/s7fwe/8zu/gE5/4BF72spcNvv9v/+2/4W1vexte/vKX4+abb8bRo0fTYj4+FhFB68s6JnBZ0z60srGxgac//enJ3NzZ2cE73vEOPOc5zwHAQCtgkb8+F3nuc5+LP/3TP8Xdd98NAAkIxnLy5Em87W1vw//4H/8jfXb69Gncd999SSs8depU0jT/8A//EEVR4KabbsItt9yCb/u2b8NLX/pSnDhxAn/yJ3+SKJh15/vpT38au7u7eNWrXoUXvOAF+MAHPoC2bVdA8mxy66234md/9mfxnd/5nQCAW265Bd/3fd+Hr/3ar4VSCv/7f//vtedx0Hbje/erv/qrICK0bYu3ve1t6Zk8WLn22mvxvd/7vfg3/+bfrNXMv/VbvxVvfOMb8fSnPx1XXXXVgef7zGc+E5/4xCfwsY99DABHjDwUeelLX4rf+q3fwp//+Z/jec973uC7W265BS972cvw9//+38fjHvc4/OEf/uHgnv32b/82Qgg4c+YMfu/3fg8veMELHtK5HBa5rGkfYnnTm96EH/mRH8Hb3/52tG2bQtoA4Ku/+qvx6le/Gm94wxvwpV/6pfjH//gfoygKPOUpTznrfh/3uMfhn/2zf4bv+q7vQlmWeNKTnpQiBHI5cuQI/vN//s/4yZ/8SbzxjW/EZDJBWZb4ru/6Lnzpl34p7rjjDlRVhXe+851405vehLqu8R/+w3+AMQbf933fhze+8Y342Z/9WRhj8EVf9EW47bbbAABf/uVfjh/90R8dHOuJT3wivvIrvxIvfvGLsbW1heuuuw433ngjPv3pTw943rEI1QQAWmtUVYUf/MEfxFd+5VcCAF796lfj+77v+3DkyBFMJhM861nPSufx/Oc/Hz/+4z+OrusO3C6XH/7hH8Yb3vAG3Hzzzei6Ds973vPwvd/7vWe952eT7/qu78I73vEO/OzP/uwKOD7/+c/HD//wD+Obv/mb02f7ne/x48fxpje9Ca95zWtQFAWe9axnPaTz+sIv/EIsFgu84AUvWNHav/M7vxOve93r8Pa3vx3GGDzlKU9JvgSAn803fuM3Ym9vD9/6rd+KL/3SL31I53JYRF0uzXpZzlduv/12vPOd78Q/+kf/CFpr/MEf/AF+4Rd+YV+Nez+54447cPPNN+Mv/uIvLtKZXhYA+NCHPoR/+S//JX7nd34n0S6Xurzyla/Ey1/+8kFY42VhuaxpX5bzlquvvhr33HMPbr75ZhhjsLm5iX/9r//1I31al2WN/NAP/RA+8IEP4Md//Mc/ZwD7shwslzXty3JZLstl+RySy47Iy3JZLstl+RySy6B9WS7LZbksn0NyGbQvy2W5LJflc0gug/ZluSyX5bJ8Dsmhix65+/Rd6NoWtvEIyxYIhGIyRVGWcN5jb28HgVpoBBgFbJRTaGUBWARTAUZDaYXCAPffcwfme3touhY/814Hf355GhdUjAbe/E1LaCgACiANIgWQh9IBSgFQCrfefjcab6DLLZx41BNARY2gCgAFFssFvPe4+sqrsH16G845VBXHMBMRrr3+Otx226eglIJSGiF4AApEnLnH0QcKIRAA/usjEgjyUikNpXTKsBtHLeTZfpLpJpmBzjnMZjNMJhPMZjNYq1Pm3d133w3nPIwpMZ1OUFUV6rri3/sAooA8aY74YAAIXjJE+f9omhZ7u7uY782hlEJRFNBKwYcAXdTwUNhpW+zsNegCIRCgrQUBcAoISoGUBqChA4GChwLBWg3vOmgoWGVx/TXXwC0bNHtzXHPsCBQIhABtWxA1OHLkSmxvfxYaBgq8PwSVXUEAFIFAcvP4+WdbUPzkosWGUDyCkreEzSMnsX3mPiyXDRaLJY4fP4mqrlEURTqT5XKJv/2bT+Cqa65CXZUg+Ow8z//M85gJpRRUvJtEBAoEbTQUeLz54NPzls+11uhch62jV2DnzH0w2sB7h+WiwZ13fgbk+3OqqwpKAYEIrevgnYcPHrYosHVkC1VdwznCZDKBNRY6Ph/nO7RNA6KArm3RNg0WiwWU4nHe5zOoOEcUOu+wXDa48uorUZUVqqrG5tET+96HQwfabdNivrMDv7vERBlYbeFpwUNDK5Slhes6IAA6BKjgobWBUoS93T3YuoQtCiijUdoCalJhMqlwZvezmDePHGrPSgK5RRwaBgg9aEN7kOJp3S230ToDOA3vWyhdIGgD51t0XZfS0Js4oIxZNbYYTDkzrW1bdJ1D27aoqgpFUaAoKmjN23nvsVwuEYJHiBNFawNjLLTWMMZAa52AWSZeDuRt28J7D+892raFMQbWWljLvyMihBCwsbERJ2HB3xsDFSc8P1/NABezIFVEcAKglUaggM51WDYNdnf30CwbXuCthVI8qV3XwSgDrwxIabQ+oPMBngBFhAAFrwBHBFIGUBrKEzQICgQdPBSvckDwaDrCp2+9E3/9lx/Hi778SzHbqFFVBooYEACAgkO8oXwPQ1ya1bmD9kWVEI+gh6n1FAJCCPDewXsHouH8ICIec96DKIy+f/DLDREhrCgEhBCzKdNnEcwDJD0/xAWIv/PegQIrPGVZ4vSpU2i7DiCgicqMJ8J0OoXWClpbFNZCQ0ErhY2NGc+BwMpGCAHNcomdnW1433E2bgjQWsdFhtC1DQSwi6JA2zl0nYPrWiAEBO/Rdd2B13/o6JHgA7qmw3K+QPABCkDwPml9ZdlPeGMMtNIwEVS6roP3AaJBVmWJyWSKzc1NXHdlfbZDX0QhPPbEfgtGprtkmgiB4sRXSVOVe2CMAYUQr3UoArACYjLxBFgBrglRFCVrp3Eb5xjYGeS7NIgBrGja43MVwM7/QhzsuUwnE8w2ZpjNpqiqEsZmdUuUSoBGo/3LXYICfPBo2wbL5RJdN0pzF008/rafbApKq4iOEbDkvyPtj//VAFTU/oFTp87gE5/4FPbmS3gX4tnotODI6UPF3RFlu720Y6v5tiuEOL5Wv1cX7RLGmjeNziHd3/i5jP98e4A18aquEOJY7xyP96Zp0TQNrLUoyxJVVaGqKljL2DGdTrl2TrREvfdoOy7ytbe3h2a5hHMuzpdipW5LPr611tCK35+t9MKh07QBAEoNtToIePHXXdvBdy3gO9haIxgFrRmMtO4nvQ8MIKSAJz56io/dvn+VuYstT3706oNU6T/xfa6FiTbU62hpkHjvAaWg9XowHQ9+vi8adV2jLCtYa2GMTpqTcw7GaHhvI9iaaL2opI0Dw8GYa0mykIhmXpblcIDnv0nXt3LmUBQBgnorQApNhRDY1G1brhdCBKU0jFmlb+SgGnoAOpSWwtUTUJGGISJQXEC01nDOgwAYa7CzvYPNjRqzjXLweyW7IwZBWrP/dfJwJljwejU6YhxvQoUxKMbtafzj7N8LBOIyvtYBsYhWCjwsDlYcrLWoJzWgWPErjAERYEDJ8pPxCQDesVVIRMwcZeNZFA4T//ZTWnKrUykF5xyU0tDr66/153rut+hzQzR4xeraDqFiTVtunlYKnoDt7W0s9nbQLeag41eiKGrYosZs6yScYrPPOULTtHDdEtAaz7hhgnf+2SN3Xc99wvp61b2opGxSNL0JgCKAQq9hK6XQNA201rC2ADAcvCGZvGymGWNR1zW2traSZq21TYBPFDCZTBI9wpoya/Fd1yWtW8AzB2gZzALS1tqMgsmGZvxNvMqo2fjEvfOJAEwlgGkG79G0Lfbm83QeAN+XEM19G+9HWgwo05ahYIyOGlDkxEFDwEmTFUlLD4GgNLEFZw3m8wYghelkik9+8lbMNiocP7EVTfZe0wpEUERQUAgRvAcH6i9yII90ZpzWKi7Y66swaq2TEvRQsTrfvygg6zRorTW898xjx4qUwn2n34GpD6UUVKw5c/KKK+BaHitd2yVArusaVVWhLEt479G0DZrlEq0LqOua8SWOJQBo2wYbGzO25sVai4u6nCMAHpPUKy3z+RzTKVDVq3V8cjl0oK2goKHgpZRnvGE6/vkALBYL7OzsYL6zja1qhrIMKCqFo1dUINfBBYcQCM51aNsO0AqbkwmObVg8sHt+pU0fuhBOzIArNs91+4wqiRonoQdLgDVjnb0fgnavobZti7pm0/DYsWNpsHlPEXQZXOq6Tpwl/47vWwgBTdMkegVAcvrlg1xrnczPzc3NzGxcpR5YFWKuEgpQSSuJqiqpxGW2LTsbm6ZB07ZpghrN12SsSfTOOtGKF/oB2shKCB5r0f/LWn6uIysFoyzatgMBKMsK99x9Dxbz61kz7R9V3K/o8ecObY80YAM5SIa1Zn16lhfoZHOAzj/Lz2dwfKXZ9UshszkxoNBkTCZQXiwxn8/TsYqiSMDNtEmDru3gWscKhzEDxaLrIiViLY+f7Abk1jDfrx7U27ZFWVZnLTdw+EA73ryyrGCNhYKK/KoHosluC560oaphtGGA7hhknPfwIaAsehuFlbiAlzz7BH7lPXc/7Nf0jc/stWwaK3sSiZF/tvJiaK52XRcnk1qdaBk9wlycXanONgDQFEHCf2JCGhPSRAD6yauUivSKSe8FxHMg51PpeXnqPwRihIASswIKrut44QDgnUPXdWiWy3R9OU+fa/lKqbQAYHyseI05JUNKnGdjGaESsQMsBEJhC8xmM/idJgIFrQANBXZkXkwO+OIIr9znUg1jcFlrB+xDOIuzncPQ/ZB+00cy9SfFVqhd8buIxSa8t0fvXNeRkmULzaRjKflc5a+zMRSpG/ku0NmDHQ4daBfWYDKZwJw4gaktoYjwwOkHUFQlqrqEthpbW5uoCws/m2FSTLC3t8R8b4nlYoFF28AjYHPzGIcURVDw3uNZT9zCb9xyHxbN2aiKCyWE2hKec8Pws/6/q+Nd6Z4jUVCjrRkId3d3cWTzCJRSOH36AdR1nUA1UEjOwCNHjmA6naGO5loPdJnfD0ONRWsdaRTmpqfTaXIspnMUJ4xiOBSgF95wzI+KyKRgx6DmKA1ibWV3extt1yZNv3MdFosFiqpMfLwsVIBKESPyXu6k1hp+4Izs6Q/Koh20QozYoQEgJL8BEcg7WG2xtXUEj33s43DrX51O9ysQQev4dNLxePEYa2ePuKhIs2FVk1VKwWiNzg2fsdy/gTV3gcA53798JqDdh6ayD8J73y/Ekb6S3xtj42tW1rRWUAQYazGdzUARkJumiXwz48DOzg6WywawBTY3N1EWBbTRvI3mrkccScWKiJyTUgz+EsbK56VTdEvXcWjh2RbAQwfaWhtUZYl6cwuWgHbZYL63h82jW7ClhYbGdDrFpLBAXQOOsLO9h/l8jrZtsWwakGLnQ44aPoYt/dArnoLX/+L/ediu5//37NMAIjdyljlMEajHYJdrEdKC68TxkzDaRAqkzpwolDjtyWQSQbseTZIx59oLa7IKxmSmMfpJRr0KErnkSNesOGzW8LeyOOieRKAYITTf28NyuUQj5qvrsFwucezEcdgYP6yjBkSEobYd+WzhqHPhmPPRxUbtqF8QVW8V6BjFEAguEDwFTKczbFYb+PRH/3d6Hj1QswSiGOsrALT+HlxSEhdWpke6/aNHLpCMrbD88zx6ZOyjybsj9eMQKdzVe/ZZ8GKsoI1GYWxyZi8Wi+SbISLM53Mslw1MVbNCQgFKmTT/yrJMTnpRQobniCwIoB/LzjnGmbM890MX8gfwgs5hbRz3moOH8Nuy+vJNQoojlonCEQ/s6JKbGgLhuqsm+JInHX1YruMLrlrgMUfOxqGPOTP+rAfH3jkpA0euVQZ0PtAlxlkojHURJvueSWZurvt39Q9rt5UTT1eWAX7wHi5y5G3ToI2Nb5PTs+sGmn0I60PR4g4T79/fS6Z8eutheC7pd/nbdZMsuzY2tw02NzdQlkUylfv7Jpvnzqr1p/zIyEGUDd+zHjCHtydF1SQr5ZEVeZIy/oXeGD6P/npEgclDUYFscY5jCIhKk1aJWhnMq4wu4fk4spgzUPdn6SJ16DRtBI6WqOoaO7unsJwvUFUVjJKEBeacQgd47zDf2wXAmU0SWK+0wt7eHozWKMsCLnAmV9d1OHPmDL79ax6H2+/5K3zm/vWdsi+EXHuiwt978mfBE+LgbZNSphBD7QJCdAzpyDP70F97VVVomgZGs9WRm7VN26AsS8xmrGELqA+1HP53DLrrnC1jWRuWtV/vv7jasO+PB3PXdmiWbBEF5xG8x2M3N3Dq1Km+vZjq99t1HYxlqqYHaSSAAUJa0Prrk8lIyXJI5y7Xn2juGPERgwF1RqlJHoC1FtOiwlOf9mRceeUJGKOhYBECR7Qo6JjJeW7c8MMtsqCIQ3tsdWmdh9hS9gvxOww+ftCyLi47/3ydVp8+G20jjnHxo0juglBAXVz8u67D3t5eei/x1kppLDrWjDk0mMdwUTBlcs89czjjIj0TFY5A0T/UUzzihxEe3XmH3b1dXHHAfTiEmjZPtqos4boOTcMgpHWfzKAjgPvgsIzduquq5kxJ8GBbLBZx1Syic0jBuQ67u7soyxL/7O/fiGuOFhflCh5zosI//8bH9QBxVjO5/17M/jxOPXcCmhipIckDHK7XN5ftOqYqZrMZqqraF1DHGtVwRp7b7BxrGYO95Xx5PFAIAW3bYndnB6dPncKp++/HqfvvAwCcOXOGI4Lmcw73jDyihBvKvnINiiiwExJDQJAbL5Mp3b/09WhbiC6ZgQoUj7MY+lfVJW688fE4duxopI8M+pA/lcYn0dmM40dexlppcqKNndqqX+guBtWzH10ylnXfOedSZFOiUDIlRKKnmoYTsZbLJZqmiZy0jRSIpND3c80aGxUhP0gwE+uNn3t/TiFbTIwxCN5jMV8ceN2HT9OOjioOQeOVTBH1adawICiQUiBwTKyGKHUeChpK8aqoYsZdEC0hamg6gt8PvPBKvP39d+MDt124MMAv+bwtfNtXPQY6jf9+ElPkXseabXqVRR4wv5Z/r9KfONagVmuDCKCIBkI0nBghELyLjlgljro+RjwHImDVYz+QkW+K4jH6SRBiWjfvpEvZlvznvUfwwh2q+Cex1eysZGCOJm3UFuV1fv/EjM/PRsVnLYs234oIQUr2tc8CpSg5LyXs0liua0PYJ0JAAfxVPMuRwUIrL0ZvLhanko19YEwnrWrfg58KPTK8tWtloEnL+Blvc8B38YD9CcdTFMfvuNGy+FSQXRdRjBSJi738RmguJYeA0Byy8Pfgmz+GoQN27GxaVXUC9WUY9pNDB9qKOA7XNw3gOOvRNx6LPYIPHVBqeCg4FHCo0QYNbTSMVgjtHqpyCmMKLDqHyewYKATs7uzBlgUAgnIOhdZowFPrFc+9As++cwe/cMsulg8Bu+tS4/v+3vW44ZoZR0UgxP/JhDAQO5MohqEpQiCfACWomG6NgOBbaHhoEDwpEAxCjCXWGnAUkkOurCp0jq2Mup6inkxRVjUwcIpxXZe2bTCfLxG8Y9zXihMPigJFWaIsy37ejCVOijjme3VdeHMCyDMF4lyHplly+rxzcPHztm3RLBZs3mYL2HRSAaqKPgvJZNSYLxfwnUn1IhLQgL9P81vx/QQ61pIBgByqwsJ51sIICgEYQC4DsAJUgOjbaVfk4UKDxhssvAHpGh4ABUDl9UTiPvioY1AfLdoZv54tp/vc8Asl8YIy4E4fQ0Mp5n0phIhdHOKmVXT2ERfUIp0BWlyVJNrpQE05PyCSITTQ4p0PrEBEVSVP5fGe63tIgtWRE1fCagNTFP0TcA7BsXa81zbY292LtUMIhTUobE+jiHOxLgxCxwl4elJG2gtp7AUCnA+w1iQwFwZJRqIWRYACjNEIXYe2XR74NA4faEPBagO/nIN8BG0HeOXgVYD1EwRdwCkLr0p03qAqmFN03RwWBaw2ONM1UGUFFRQWDtgsNRQFwHkUiV4JUFWF666a4F/+XYUPfmqJ/+/TFveePti8yeXYZoGvffaV+OInHeNICCWWgk8GdyCKEzqGwkG0WsAFDygNUpqnulYgFUC+hSEfgVEhKMtoAUKhGGyIYoheWUTvOVBVE9TVBGVZZfeUpWtbLOYLbJ85gy6m8CqtsbGxgclkAqU0CltmCS9DEY0ZOc9JASBJwCCQ93Bty4V3ds9gsVig7bhymvMewTn4rkMg4ky0GEM+mZQwxibTkyeHwu6ugzcuwqHmUD2KICk3cQAYHhJWCHhURYXG6QTa4ndKzqpov0CHNCMVxHnt4QKhDQ2WwYJMjUBcS0oPYIVyOEIQfVKtbiFb7e81uAiSVlkB7X7ZSI5tL6FqNPzOKIACKKhopUpG4rnTJQduGZUKHzyUjiGjIaTnSgBcTDlfLnswNFqjKqs+YiOwf6RrGuzs7GB3dxcgwGqNybSK4aiiOPGcrKwBuRa+43FntEI+rgIBPhAMYnir6ks5sNIAaJJFKMBohTbmihwkhw60RfrhEz3aWXq2NhUQqZFcLSQKg1/yjV1duWXmpkkfv/qiawt8xz94Id77e3+Aj9yj8bf3tPjMAx6to5hKDpRW49qTNW66dhNf/HnHcXSrBFQ4UNOQ60lKylixyjAQSgz/Xj8bamryil9z7HOvsRpjoI0ZHIBAIN970XvqiTXlEItPuaipqKCgomMt0QsYmdcqTmbvAGOiFs5JTkJ/CB/t08TKeHrVZ7oCYr4OYYzShKCk3Yh5nd/tAQDLqaUb3S+QSSPPIUe+kN9RD8Dij4j2EQJx3RvXOUynSPd4BIPyJNMXhGyDEaHUn83FhfDh+Fw3Vtd/tl/IH1t5679LzsuDiZB9hYCBTyf37Qho9v6NiAtxnOXcfHomMtZ0b3Uq6mmh/lj9OBcqZTyv+/HRX1Y/tFbDddfJoQPtoAjOc21jrwAfJ5L3HtS22Nvbw8nNo/Bd4EiJWC0uQCXw0T5WmIumi45lMxU4FK5pGwQKsEWfDBKCTwBypAa+/KYCL3rmMZTTCSazDdx73/0AKVhToC7qqB33E46VmT6Ok613lTi5XBvMDeveRGQxJjoifUi/Iwnul2UsEIrCIgRgZ2cHk+kkZT3OZjOURSk4lHi77TNR621bKBCqsgCUgtYcXdI0S3QdO2qV5glpbYEyetttUfDgllAr7xG8g3NdmmTee7i2SeF7i8U8OX+IKFVn1DHLMiXpYBiBojItC+ifv7GFLFX83wAg1jlO9wpg2gRZ7DUi5ZJNsv5VD+xCH5Bi64aZHymaFdB1wG233YXTp0/ji5/1eSDXxhPkrFxePPVoSTlIKPu7eHJQtcYVyRZoAkdTBO8Q5FmtWDY9sO23//Ginzs/8zDWFDIn5YI9+0OKWGWvKIpEkUj0iOs6dF2L7e3tAQDXVRWfe79vObZEU8n+mqZB27YoijKWv3DYmM3QNOyDqet6cP4H3z4Faw+uGHXoQJsAdMHDKILP2MHgA1zXwu3t4dFlicZ0aJoWdVnCxNrQSRNPWVW9mZrX72jalkE7q10RAqVgfQqcRTUzWwCA+XwOY2wCK1VGhwMBMHGgxn9YKRwO4vSwe5U5aWGroG2g8trVlNUelsNQgDUVHALOnDmDuq5RZKA9TlunELC9vc2e9mi6lWWRqvktJaGl6+BcTNnVCpO6xnQ65boN8f5KpErXLlO8tdQ6kc+5joVfAeyyLFFYizJlM/ayLgGmv4A+M04l7SsSEYQ+Vj1wEwWxsEK2WJpoUSlZUQVAInAn+0b2P3hcfO1dR7j99s/iM3fcgS/9kqeiczI5NXzwMTyTyRXRzvk57zfZLz5gA0NNNX8vsjbEM947ay1a10fzIDtjmVdnA20t1m62nRSFyt/LuYUQuPRu2yL4gCNbW7FCZYlFjBZr2zaWJ3ZYLpc4depUysytqgp1rAHCl7a+mUdRFFgul6AI2tZyREnbtphNZwg+pOi0dfdt7bVqfdZHeuhAW4TEXk3mbK91AkLT5VxxH21CFNCXm1yNIxYaZVxsqJ+wMfokoyB44PXRCyI5mbEawTB6rwDQ8LPxb8QVc9YBMmB7KO1inJmYe95DrHSX4kNG1IdMGKU4Xjn4vvJfiDVdUrKC64G6B+0+62xdGdexVhXPcHCuK2CefUeDz9bfn/45DE3Z3FJZezNFu163T5L7CLRth/liwbXM01osoJee3ur+V87ygK8fAUmAKu/jv0J17DceE90w0mSTZM/zbJeZh3TKL/Lnn0ueNCMKziB6JUYgQXi1g4655vM++modPaKG8y/7PkW0HCCHErRT/pW1MGUJgoMJhKB4JXVtCyKPqixhg0LoGri2Rds5NMsGpDV0OeXyjIodFio4AAGkuFWV1gb1pMZyvsPH0go7Ozt8/EDoPBdl0lBoXIe65v0tl5yQM8BaSv9Jg8Do/sFKvQTFaIg8DI9/k9Esio/vXcfBEZH3Vdn+OSyPOfa6rtE0TYoXHYtzXHip6zoGY61hVD+5mBYCiphBWVif1kqlYiGnENC1TQLjELgVk3Oc1SjA7SPIcx0Sg6KwsZBSPK50qxkA86rpLJ8rFWuBG43OtXCuSyGBkimp4oKtdWwfRsJ5K/aRBg4Z1VpB+QivxBE8Qw043nvmtTKwAjwFdM4hBODMmV3cc/d9OP3AHqa1nKtNVSgRnXr9pY0X8odfVhfCXhmRhVSUnuxHPWWBPuQvASsEsCkttkNlgb/r+W3K5gul8gUq7sh5xwllMQRvUleoyxIUk8wkzlru7XK5hOvaNI4nk0kM5TUobBF9Jv0inoNpGjtrOHmpWJkSdkSR0WcHY1FItDp4y8MH2oo5xQCCLhi0QQqu89z7UWt0bYMQAsqqhPVA2y7RtE0CVdIadT1D17aANqirCu0yJM2raRtMJzNM6gnOPHAvOx6MzkCba0mbWNrTOYdJXQOksFw0vWIGpAGPbFADvNInB5nvaRrhq8fmP3OxfYy669oYq6xij5Rek9Bacb0ErTCZTNhTLiyN6mOuAU5CWC459K6silSbnA8bkkVRRKooFCH9njm9Fm0z1GSIeDFwMbxJEhxS8XhjYh3vCiZek8SvrjNT8/vWa3wcp13EsC5xcBZFyVoQcVswitchoYLB9xcf2P0PgGC0gqYRTmdUVq8RqljMSkEZgDxHNnQEBA+cObODz372XjxwahfFFVvxNzaFqyltQM5DFtVLQQaWR3b/BbR5EfTI24nlVlGujQ7HwdA3g2yb+Gl/EoLyCpz1jMytTuzA7lqOKtJKYWNzxgkzATh9+jSaGONvC06IWy4W2NnZTlz3ZDJJYaHamIE1plR0fEc/B6JFrtBzz3L+AtoyjtO4VvqA5zmkfbQ5GJYPH2hTHhYXEyziV/1KyeFZRmuomLqam/cyGDl0qO9WITuR0LVUDAZgDjQPipeHi167VWpoFolRfDYmY8VYVsKjZldFw/e5uToeK/mavzb5ITtqCCE2AJDt9+cee+qCf68UuO9dVuNBzkvKUI5N2sS951QIFO9nH8AenHVGkci5MjUR0tgYXDvR4DerM2uswcf3RBgYPLxqolfPRGPvFyoBKaFJUggk73FwDFp3Kv2m+ak8bJLuU378bLHvtUo9ANQHdSzZdfZseoV7vHJST8EQxRsnuQz8uVhyY+475+t1/6skK6MhmQzDOcavszG8QvfQaG/r78t+Skkuhw60g+vQLRtsTifoyha+c2j8ggFWKXjvsJjvQekCdV1huTOHp8DdQqS8YtviiNZouxaKgOnGFhZ7O3zzlULnHKAUirJAIEJhDAoMNZKqrLBcLmFCgM3qd1hrzzLZ4kBT4Lhj7RK3PjAn880VM/MBQFHYWCOcQSoEgocH9BDAe7ckjQpDDQdY27ZYLpaJ/lif1t6HT8n1gzihgku9xoSZ2N1EQJmoT+uVyaKN4QgRCQMc1bpORxyBwZg/lCvoozd8tjBzdBHEckHg5I/Bvvs7ZDQ3eTbaw/ueHlEZ35nMeW24o7vSMNqA4NMzbTqPo8eO4VGPvgZ33X03Tp7YAAB4H6A0ZdlwomVfIqr2PqKyDFRpIDCfzzHb4OsKFDCfz6GNhjUmgeYAlEYWUi7jaJG80Flumcn+rLXsc1Eai8UcEvXTtk3WF5QhTyuFaT1JtUSkyEWKDkm8My8IIS4Mci7GGARQ7D4P7O3uwtoSRdHXvMkjTIwuYezZq4bwdf5fBtq+69AuFqiOHoUrW7i2w54PMIVB0ITOOezt7WIy3cR0uoX59h472sDOg65rQeC63Ht7DTQUptMpTt3P2qE17A2HAsq6BIEiuJqeiyJCXVdYzBcoQkA1myXQLmwRTbv1K2raBQBtLFfbDRzlkAOYqB1iugEqgnaRzDIQUzWBXAIBHTVZrThOXc4/JT3EBUJFDaVpGswX8xi6F69xlGbbgzUfA+mcOVrGuw5Ns0DTtImKKMsypcvzQqM5Sy2rOkiBEFRPiYydnsP7NgT0eEsiFcR1kONNBOdecCEoguKQtKgNRcMjc0gSjDKoSwszb3rtL+NYVbSyCAwczrUgpWBjH00FgJTCsnU4fuIErr3uMfjMnZ/BTTc8hsesDxxEFAt9rTWPIPf2keG310V4SDhcDtq7e3s9aAfC3t4Otra2YG2RQFuANk8rz/nxfAEeA/cgAqnrBg1zrTVpIT59+gEu8GSKVD9kPp8npcNojdl0ChNruA904KRBU7KsZczlrfKCd+m6d7a3MZnM0ncSWliWJbqui01VxqF8Q+1bMEKfpUnk4SsYFdgRIcV6Ei+czCiK/BuH6OVOkp4qiBMtmu+p5kBOPfCynH6nlO4RV8lE9lmoU0xvjl29E+ZQP0f3ozEo/QcHcilpIVC5uZbzhnKMAZGSAC6dUHYYDlOMjhSl8kvM7hmQa9sC2H00zjCRQawA+b1opTIhVmtrP1ihpMH3SRXD6+zXWVmsRtRRXMBksUt/B2Dn4BFl4yQEQlkWmE4na+omy+sAjmqSzyj7bt/LfGSwPLtXsthKgorQginU8jxK/I5l3SLdf5bRW6r3x0iEkneOQTf01CcQLajYwzFP0MqOsPa+5hRRTqs55xLdly86fVMP9MdYuRVqddwdIIdO00aMl1ZKwceU0ECEdrEENGBr9ihrBVRVyVUfjIYtCuiYgGEtm+biSPTOoSjKBL5a6Rh32yWnA3xAFZM+jLYAEVznYAqftFitNQpboGu6OLiGKyrzubJwxIgFUn250ZyrRT9gU7KN6jVpCj5tqwEEjSw5JNItEDDJBnM28IWH9SF29QCYsqCRQzBOzi4EdJ1DCA5EPiX4hEgRqbJkCyKWoRSAzukZuR4GSkRmYR8qRA0/YyNgtK1WgKPUeUTHRVMbHZv88gLdl18VHwilhVuBa9OYeC81UTw5DuOThR1Q7JiNr50AVjxR55fYOrKBsnw0gjuO2WzG48JoEBykzACfomhhB03ggdn1sEgOnqlLj/dRo2Tt9/Tp05hNpzF5qu/VamzfxWbsxxiLxGbL/hNfHreVUqqcK8Cp6yHbzklbMGqhFCedTaoaOuZSSEhe0uyl52icf8JOjbnpNPbWgLlYDkVRYGdnB8YYbGxsYG9vb1QE6qFZTIcQtANsfJBsRjGvure7B20VjtQlgnMwSqGe1FznwWjYqoRqHaCIQTsEWKMBreBdi6ridlVd00AbToZougZlVcEQg4VkPhXWwAcOQ7Ku5GgL4lrXRamxnC9hTA94QG/+KajIobFDBx4D7aAHHt9zx1yBKOG6QsbbDvZNMUQqNzsRLQI92FZep4QjMSHT8bLiOAixwFODvd05vO8QyMMq3VMgkhSzRpO2484iihK1QXKPhGdOGpUaqLsqmgtK+cG+dAThtm05cUXFTEWtWSt0jgEgakBa87NDxGUfmG82RsEoggGxkas0EJvFhkAwMeGnbR2M4g45rfMojU0ae+fnOHZyE7PJFShUwOYGjxdrDSh0IPJQqnfk8XMflhRYlbMB+4WTnJ4CELuw912OQthD08xx3733Ql95BUz0EQnYmcKCXB8Xzfvsx1wO5Fr1JUwlnt85l8oFJ0okLvhBIRV8km7qTdPANS0njGmDYmJjiYa+DZo4vkE9ZRliOKcM0XEHpvGikxydThLPuPRxVVWo6xp33XVX6v3Yj3u11mo+F8ft4QNtWQ0xvLHee56YbLfFCZoBVXRUpnhZcUaAV2GOnxw+vBACA7KXQSwDQTOojrqmMC7odG7A/msun2I/SbJHva8oOUi/g3SAgblNPZem9j2D8T3tfzrWknrqIybJeAcKDioCViqXGsE6ZY4OaCmkRUh8QCm6oz+R/rwTTzPWwvv9CretZN/Z/ZATyMFjfHP7ybxKj8i9yxfG/NzSPcoWp0ABRWExnU1QGcAOsmFlPwSlKH9EB4hczMUH7fUme//cUo/RENB1EqnR34cEzOdwrLEV1TuQw2DcSSx1vp0oGVIyIc+azB3pKh8oaQc46xo4dnin883OM9fK+y42GHwnh1o/9w++S4cOtJUi2MJivlzCA9BFgaqesJkcCME7aFOBQuDuLdYAwQKK4BuO2LDW9BRApKqtNQjeJBAKUQMoqwquaeE7oKy4Ml6a4BHpQiyypEh4h8FcjqACJD45fsgPXCOQTw+e29gOKQPRPgmInH7PGzPgAF4WisQDIlIVqwH9Q+cPUwzOeajIVzvXoYnXFDKuMIQQu7drAAVMpmlLvev8wvuXcm5MC3Cz6tWZM9b0chmHXCHeU6VVSmxgIGHNdRilwTXCCYAt9Gj/PU/PC7rQSyEthgpI5rWOIaYyTogITLCAKSPyvRUl62sQcztb5NOgeHhA+cEIRf+RnLO1Nja1XSQA4ybPUuohwEd/Uap1DgzAU6y7pllCagEBfAfKoojKQ5+hK/dsb28vlVIQoLbWQpWIvLU0suiVlYDoW1HCuVNySA+ucx2IqmHdG2stfOBqgovFItEveZjhSr/K8f2k/Qts5XIIQZsf7s58Fw6AKStMZxsw2sC7FqHrUNY1yHssFnvMZQMgpeBIoSgMqqIABQ+tbAqqt7aAdwyZUtuj7TpsTifYcx6kgMmEu5ZrraFC1AQI8K4F+Ro0CrAX05ADfgMnDej4Fgq2KOCDRehiajchVhejCMgCUlI6FNHpElKygyTPg0ICdKjAB1HsQDU6b6nF5yYDjLPEuGsPpHxlHJhS2MlaA2vZi1/VJUzGHefAPx6PSv4zjqHOLJqxCB0h++21nL4ZQtqW2IQ3Rqd2ZVobrlscHBi0ebJ6xxEk2lhIxqlSMeQwBJD3MIpLxWhF8MGBa0kL5cLlXrn7CAM4H6cvtxsgoO0TtwpwY9meLRNKJAePswH3IwPqIeuZSEQpE7BtuwTSefcjH0sZaK1RGA3v+2uU8D15PV/MY111pl7KokBZln18f/SXeM8Avr29ncakUtwRvSgKlKaANTYNtoHFSlyemLVwVkz6MTG02ER6TR0ptNYYk6JImqbB7u5uWqyc0G9imQto5wvBGqviIDl0oA1EzbD1IMXFk4y1I6qhj90VjjXEB6UlFExMa+G1Rlwvgc1dLtDEnw94smS6ibOwbxqczjOfazQcHKwF83mJOSUTma3H4UMXYCBkNAOEZoj7h2iJyBxdYuavEjC5ec8F4fvaIcIdtm0DohJK9c5FYwwXWErnvFZxTjTIihykcewznuV5AcOQsTziJZDEkuvsHkULJgQMmwAPZlKiiPrLoh4IlLSNUukc8tNV8VaTaO3EWaN9S6TV+9Jf50GATfvdjosmA0ARcy1KT0HwBaTIq8xC6hdmsTqHNKZs19ej8Wkc6qidI/S1afLx2LZtAkmA57IxZ0tWye/vKNFqfL3IteEeC5JVFSj1lRTOPd/fufDV6b4eIIcOtG1hoTQnwNi64BZPyxbGWhA5GCWeZoeua9nrHQI8ELuSsCbXNi3MxKaiMXLjA4Ue4ojnnVKKNSc/LPAuq3Lbdqh8gDbEmvJBAynj1VTSUPrC6eL4SxxK4qgRNWck7RgJpAgSRiYcdvABnniALZcNihj5kvOPyUkDduQF14EiLSLahYmmYSqbmsIjzx9SxpNlfI8o5+JHz2U/kd8YY7hmsuFFmeudcLYniNB1XCJWFwWMKSC+p15xJ1hjYI2H9Qo+1keXpCahdnK+UlqvkVhBBHQ+oGk9ug7YOX0GR6ZHYYwFiKNHUqGy/q5gf9B+ZIXi2LfGJkDSsXRAngUrIqAutEEuArqyvcTx+47j613XYRkXTql/vVgsIQXJKAQUtkhj0GjTK1w6B81eicizI8eRLOvH3ujiMeTsZfHw3mM2m0F6mtZ1DYr+njLOs4cihw60y7pEIGDZddjc3ERRlKB5g6IooMjDag0E7o6C5RLTIye5oMxikZwF3ns08xZb9YTBL3hoU0KBwwitVVFzipmU2vCi4DNOGoDVHEXQNEtMvIfyHlAGxppMsx1yaOKEUUpBGQuCjmYbYuUxiiihhr+LHylwsSlrTKQdWLOD5lAypZhC6TqHNk6U5XKJqp7EPYUINsPBO5/P4doGSLx1gaosYoJFX8SJQVuuaQzaw4mgegxemUDrtK/0O6FPzgHLcodQ1zRpsu7u7qLrHLxnbS6EAG0MdFFiMhGHFfXOLvKorJTXDWhdyzSVVvAkGrQCMyMKyRkiWpYCiBTa1mOxaLEop7jt9rtxw7VHURQVujbSNTq2kCMB6/xv5er2vbcXUvbTEIkI2hiYwnKd9bjQ13Udy/T2jW3lOxMzI0UbVXE/TdNgsVjAe4+6rrG5uQlrLLxz2NnZQdMssVgQJpM6FiDr8MD996folLIqucxyLE0c7zrPB6MjdRhSFAcUa+K5g3Mc1ZRHteT3ISkU2Rg1xnCxOXDI33Q6TXTNbDbDfG8Xrmv3vZfnI4cOtE2s4OZDALSCMjFLSmuO6cweFBfG7z3Kog1xwSVu+KhVT6kgcaijCaIikIxSvIVGSf3zIpDlsbtr7X3K9omsyl/235XtReMWc00Gn+xLfqkEGDmutY2FdIyNneVHGodI6moepI64gjEWRVZ1bxCJQYNeP9n1rjv30T1bM7DHlIfsdd3963/fP6uUAh25UKZ32nRdRARDts+cjL/nJYjvrdaq5/+z6+uzI9miIbkHay41BO5n6D2wu7uI16Mh7uXcVE9t2JDvMLu29Zd/0WT8bETBSDV4MmCWOunj34+BUESA3DmXsnqLqBTI9+x8LFNMdhMrRAJ9JrCNoZd9mGysxkc0qGosNNYYkNN1rrnugSXIP+rnS8QdWQDy0qz5OaUx/CDuv8ihA23nOqio+emYHNPG9HNlOdlBCvUYGWxawdiib28fAtqm4fRmHziW13IMAKehc/aTD5zVpjUPlq7t4jkw36sVO7VcGgH9oKa4sEjFPBkouWEsFe4kMF8giIiG0zsfARRTbSJ9EIKHpw5Lx8144R2UX6ILFGkXGbT9MXpuT6fmA8LbIWqt1pjYE496bhJ9DfH9wPdsMv5NviCshoztv3/ZjXDdEjOstIJaMv/ISVhFchhC6Wyyx51Epy83jihR2IDSG1ijI5XGtUW0UslrIdRN+lOyaiqEAHZUArjnnvsAAJzxrMHNNR0wWu4uJcnBSwr2S9bjeDuJHsnrhIjCJKnoOi7w1lpMJpwpylrrEq5zg1T5rm0x35sDxBFZAtRiSaWxgqx2C/X893jBGWvV6bvs30TzqQzxxxajUtGH02vdYmUopVKz67ygHCFXatYoggfIoQPtdrlEPZ3FTtAGShu0rkNRVSiMgtGc9GKIYiEn5meruoIrS2jyCM5jb28Hrm3hyw7eK9hiCq016nqCebPDgBebTEgESjfvu2I0TYNK1whaoeskPIxBuygKtE0XIxCQwFBFcKCouWljAcWUTMjgnCdAnDhREyRkg4KQuPjgHRrXYHvRcUla10K7JUxdc9iVOHR8XuwJCbDKssR0OsXp06eAYGImaYVCTNvAHvd4BjiIgz17yN7+spa7zsZ6Cq8cZZ6JlVRWBXa29+KCytqZtRam4nIHXddyQpRzEHbDex99A+yknNQ2tYCbtx0a52OxJwOjDTQi5MZzCsmfEE9XGbgAdHEV/8QnbgUAzBeEurTQikCh4wzJs2rRD6OKjVV/A8DzK0R/QE5vCb9LRJhOp8myyaMoBLRNtF6qqkrRV/P5nMscE0dkSbq5azvsLHfYZ2MM6roeaLR99InvE7ZIY8yt8zZhoEGvG1+UzTn2PUoD6gjkWcKMMYbnXeT0xQoQukgp1WeH5ovKeQI2cAhB23uXOGEda4+EaK4AXEc5OU2ihsiOxEiTxAfsYo1nCuywEw+2MRYSBaCiP1B4XZmtMiCLEEDonS7yaKT/ZMgdIPKftMz3NAprLcPrJD5wtt98g177DVEraVuHtmnguwbaLVEZAxMrlCmVgWZy1vCfMTppMaxtq+jo4b6ZXiHbXjSITNvG6pBcp68cCEHZhmqf7jDxctccSSUT3gefDsSRLipFvBAFwHm4EDJqI9O5KN4LEKyRmuIeRB6KYgajLLzyRCire64AAmdjyrpy+vQ2AKDrCFWpGRSIN44N7jA2pomysfIwyX4OYuF183C9fHuhBnJuO/dXeO+hoBMIi5OO67dz8wyJ/VbRCmqWywSMVVWl5ycA2Vs3cfz5/UPoBp8PbiqtbKNy6nOkdCfKJ34kvL0sDBxJ0tMjcjtFi5fTOFfr9PCBduPQzpcojWUAdmxukbUg8iDn0k3L24bZmGJNPvLh1BfOJ9uXczTGYBBaF4FhcKuVYoCIAKY1dyMJFFKdr9zrLO/FhE4USEzB9lnNBd79auGmsVCMdQ3WwoUJlOJUcqsI2gSURQFtLXxMYEjDlYYxH+neJCDqt8sH93pNpf93dTqsbrci+yjXD0aUUijjIiXlX010PCn0IZ3eD+uwyBGZVuPSAEYbVKWFCwEBQCfaE6R6Ilsc/Wu+mKSBg+A8MJ1yNbzt7R3UZQ1dMr9NlHWuIbnq0c04fwXtgsiQRhCtcTg2cyeyteyklFo9eUJKXjGv67oh9aIUXHRQeufhsqp5aUzK80n+hf5Z8duzjJY11gyt/3h1rqZd9NcuVGfbtins0FqbEmyEKuISFquq1uDcD5BDB9rNfA+u7TDbOgbVsflaViVsmMCBsGwXfKOJUoEZYy2M0lDGwrdLuKgZN80SuqhQzmqmJY1GgSLx4pLJFvOyes3XcA3fQDMYpWGVOPI8bMlasPRdRFmlLKxAgDYq+je4NjNBoXN9TWZCdHJQGFy3OB8pcss+OJy6/z7omhAKQJtNVJMKRlWwoYAqKkBpuMAJDwMwzrTuouC64zobsCEE0JqqbQNP++g7kns0+mytqIO2OXe0knhaOa/pbJo+F4tBNCijNYLmbE/RiGyMvWVtimu1a2NQFhaz6QQBCtS08K2DxH9bY9B2HaAVtCkSf00xC5KILaymIZw4eRUA4DN33omtzcfEhAwDojae5/rr5U8itJyVRrmwkoOKLG7jGut579SyLLGzs5Oogaqqkn+Ek7cAEGF3dzdl5lpj0z62t7cRnOfPrcV0Ok2/TxEc4IbMFBc4tphlScH64aJG/2ZCNByr65yVgPjEeLkOIXBzbAIWC84Iresak8kkRcrUdc08vi5S8hlIHNcZRXMW4D50oB06B98FTI+xFkkB0NZCW4sQOThZ5yjG6MoAUOIoiam23nFImIhmj1bPUaaKcvERZ2Yjm+JSrU4nqkUkaSO9ssC/jeAs+yGgr/LHGyD16+5/lEQefKDA6bRqCY0plOVBXxoNSwC0RVAa5OP50aqzBoiatrG9Yy47916h2YcXzHe13zg8EHTUueIzb30W87IobNou/xfgwB9xFkktcr7/0QoRTVuzE7IsLAprYF30KgzuR0iUCb+P94cZFQRC1LS5yt/2zm5MIinicc46b/v78zBz20OJy4dSa++9RFEkp6PWA6e2hIdKez6AgdBOetBumgbdskl1s4uiGB0vt/iETOr9PGcdX2vIuv0Ae50WzAsHL8RGa/jAHL9w7mJpiKbdti3EKuvP+Pye4aEDbd85eAKsiloNuFRmiPWgQVxqFM7B+L5SHtCv3sJDicZrDC/jPf+sEgUm/d9YFedzMHZY9lE4N+8dgvdQ1gL9sBrIOlp2MBmiNsF+QopkLrIxR1FbidXMtIK2JtXDHh6HEj8tx8hjVpNkgJwG7xpQiUpT/+YgoD7oPdR4Hp6z7GdeHmx2ZpM0SK3vsd0sZniMRlEahY2Uk3FwJItZxonLvSJJclIgFUDk4YPD0WNHAABbWxvJ3N9/0clNcvkvjV5dfFl3jr1F0Ito0jKX8i4z8iy856bQ0vtTwvoo7KVEG64f0ofQCR0jfPA5nvQBnx3MwR30TITCVNk1AFkN8WxxkXDE+XzOi3Pcd+6jOddoq0MH2m65xLLpUBsDcg4dEWxVwLXsKAyBG84apaCaFrX3CCYk86vTBlrzKgliLaAu+9hQaAZATZx80TqH0kZzJ1IGZVVxRwwV43oLg3axgLEGZc2RF3mlv4GuEIbZcOywyRr/Ig6WbMgmZ4bwgVqjLkvoWGa2qisEaxPFAQBSXtVqA1tY+Khpu65DKMvU7ks0ImidOl3zmQ1rf1wcuRCk7UF0yio4B++49ViIVSGzG89aN0ErQmktJtHU94Ewb1p0wSMEisMgdqrX3CEoBA8yPLkDCG23wA03XgcAeMy1j8JkWkNpaQKrAMjiydZhX7dbVIaRE/sRkmRdjD6XcDwAKcoDQAJuohh1Etd/rTWaZYNmucRisUgZkXVZQZU9pYLBArGqJV+ca1y1zMQBK+nqvCgZIMaPb25uJs4+hBCzhxXuu+8+1HUFa5MLC2Kt9M7aIfU5lkPXucZ1Dl3TwGrN3bNjUXrWDnmwpPq83mUV1tBn9ikVe7+xdmWlX2GuacftvOdgPHkPSCp9X0zIaA3nOviuY+CPkmA3X/TXKng0+CBSYfFt/gOK16FgLXeUNlrDxnZeQ5Dla+Pz6xNkfAiRY8eA7oHKKJ11EvHvkQSQ85c1lo7QWGNHa6KjWNO2WqO0hgsZFRZGyTa9Uzdp2hFgSYWkaTvf4uQVxwAAR48dQVGIpp1P2PGz7Z9Lsmr2JW0fWRnUvI6x/hLpIWNNSgmIZScJMzs7O6xpB557VVVFvj8nFeiiXfW+NMjgA9G0kXAlv67cqhBNuyiKyO2HfMcDmvHAORbl0GnagGiiPIn4nma2uuK4Z+W58Iz3Lpq0FtroCLaaMykp8mOBJxsjaMYvR2dm9CRkK7LuA/8lG0sKEoWeixYOld8gnV8kVPPDjK8Qgwk9UiZFK0ntj4QbXqXAISAkR/MuUjj9zgBkGtI6k/QgZfZc5UDe8eKIsEv5kbK1lz9bN6FCAGxf48UaDWsNfLSK8kUuPWvki3QsIKb6RbZnnPLrzZ/z8POLauCMJCkr+1FM1A+AFE47ituW13lkTnJEAhwlEvooC3ZGypwVnlritg4eEw+1jBavg+NZMnoChAHA5nTI2Fkri1WgMLgXQm2KkZz8KQdUuQQOI2gnM6OvJS3JKwLlbduCtAb5gHa5RFlUMGUFU5YwRRGjSQgBHEHguxaBuA4z1++INz4EtE2LuqpgNP8OALQ1mM5mKKsSWmlueRa7pOSZUql0Y05dCPBDAVnIH7J6ICnja5+xqbVGUVq4roMPPpXB4IFCiZPnSeS5P2OcIIv5AlVVp0QHPiXVRzakRIWVYYyzTaZzeHgP8fcPfp/J/2AyE1zAQgA7cMnb4D2sDbBagazBrK5ijWyFbr6EUlzT0YOAEOFGKwS4vkxpaAHNAGYMoGM11kEn7jiRKaa4J36VZIERADjny7yI0lusRH2X8ryZr9S6lgJjRUxKC97h9AOnE5BvbW2hLIroa+HWgNAKCKwAHUR2jfSTh3I15/SZc1wptCgKDnqI9eOF7pBuOwqELsTwYwF81VObRCGl8UuBuP3k0IE2QfWdtZGPZdG9+UZr54EQ4NoWIfiYym6gjYEyBhqB+wEqxTHW2kMFjUB9bC+I4F3HA0mr1MpIac1hhrZgkPNc8yLVH5ZC8EpzfWEiZDFLSetV0SGXMTjxGnuIXDeQZPC3saZ2GsjJps5+SbEJcjxm17aDiBmR3hEkC8cIJ+ihaziPuCj0XenXXIv0lJRWbuzw5UiS0hVwMd59oFVLK7hIfRAUlIrO8Khp935shd7GkeNLlmkv/b2/EPB0YSXXtPPQP1lwUuu66EPiWuUK8709jraIVIjVXPDMeZ9KH6s0iM9BLvKtkefLPgjA6AIEpIQ+AW3vPaqqAgUHJ7x87s9K//blL8JZzvvQgba23KRXuKM+9hGptnbuDMkBWML+pK+gDI8gzsrIAXPd5R5cSf6TmT7ycOS9kc7wgftWIgKr6/xwYMc95mzqQMZzevCSR6oSayA2RKAQVmsPUW6m9VpbiM60wSGVGiRC8MJj0mJwcWXtsrTPZ6vbiqMn7e1AXkFBZS2yDrYe+DtWAnuapLQWHQVpc7nv4qqALIabneMaLu6RrSwFn0puq1gSMafaeyv84VW11znmZKEaXHMIcD4MGvqOuV553SsFuVqAwXb7Sbq3avT+QcgwS1KNv+y/wmDKp69VtOxTy7MUldXXYgFUijDhdH/eY6KGioPLtx460LZ1jalS2NnbgSlKqKLkwWIMirLEZLqBsqiipzfAKk49Dj7AFgWKooS3BdpmgTI689quQSCNQhuUxsC1jjVUbcA+KwZxY/h2CjdHxOah6xybe0rDdx3m8zmqukZVV1gsziRAlNTwPhpEeA1g3aQcMtvZBIqTIHQezjt0roUuaTjoMs3H2B7Rm6blLjWZKKVQVRPuHJKqrfUFetJkoRU0OU85l+l20L7H8Li67X4hXOI0tprrbruOax+nDFEpjiX7DwSluLa6AVDbInYQVzi9uwvyAQYKPlon/GvNliCjMJYtWzRtR9g7fQbWEI4dncCaAoCLh/LZcXMdPucBLgl+BLI+ypl457Gzs4PNI1v8PpZdFY4XABQRSGvUdR0BHWBNlK0WqVeStzU7pys9e/GW1Z/Qutk02iZ7zXO8V35CXGGrqsJisRhkQXrPdbaPHDmCxWIvVdfk+HQugzGZTGKtn9mB53nookdsWaKcTrBoFvDkE+aJll1WNaxMMOLO2tyhnPosrZSEww/EO4fOdcz/GpMyKVOj34iHqWlBVouBQqxIZiw0FLxjDzkUV/9yoxVZ9tfTGCoNjHMXFUPN+NjeeYxxKinsNOReuq5LXaVzYe9/EUvfhnFwxcMoF/GgUUsKvm8I2x8vgkBySMYenMRQXFqNqigwm9SxOqM4ePs/oef4pULX8TG8B7Z35tjdXYDbXxkodbYu7NlpXUKSrpdY017M52m+iFNOYtJzrVvacwEq3uOQnkd+v8/PA3vhb47K/lUp8iNaqdTXGhFQlsJZEiUznU4BqESFNE2DpmnQtm3K+Nza2jrwHA4daMtd7b3UDEzc4FWjN/VNAu5A4rVV6U80LIqV3/JwHvZ666QASVJASkghQBudOOw0aaNGL86UgxM+xt8R1uKkWt1WRSpISxRDltW330BO55I0/f6vz2Dje5MaqmKs7T8EUef4d+AO9v98bcbmypZqCBLIri//qdAnI9+Jjtp6YS2MNivmtNx/ig0OhIUKAXjggTPY3t4FoPs1e5/rusRwekXG9zl33A+AN6MFJUSVsoJd6zIsV/abUzQqutgv0Lq+MvwG9I2Mp2j9RCUv57NzWkd+L/Hqci1F7H1ZlmUf236WcXroQJs0h151rgPATgIu0mJhiwLKWtSTKZtpxiK4Dq6NlIA0MlA9tdF1LeZ7e7CW3fu7uzup0Sg3zyUsl0vs7e2lbuyeCGVV8QraNLDawCgG8Xa5HNQIznk97znHWRGXXGXNLAKvgOmaax5ozeB488IWHC+umKdG1khF+FopX5uLD33BJI5cEHqkSp1G2rbtY7kvOTknhF//SwUUli0p6RYkV0nEYCuF7r3rQMFBUYBCSE1/rVLY2phhFjusKArcYg4KShUgWBBpAIZL9oKr/H3wf/4vfOTDH4VCgeAUQuDj9aGW6MdK5pNhX8yFuG8XTpIGqriWjlYaGkyXQKgO70GBk8S0VlEDJXRdM4jlTiGrOJs/YnAGF+OyeM9Kjf748xA4eogbSZvUdiz9JlrxVVUlWtJai+PHj+PKK6/AFVdcgc3NTaaJRnNyLIeO0yat4EFw0cMvIKWt4cmj+cYF76CNQojp5d45FLVi4I6OSKkXsmwaHDcM2ovFHMePH0dDAW2zBEihbWLKbQxzIuIa223bgZxDWU1Yq4/VytQItJGtzsCqppJ6DPK79HnabDRGJbnG2hBBW7QXFS38eMzsWL0jMiT+kKL5j2i+ihbgnOu1z0sVuwGc/+RlZ+LS9UlQ48sTM9/HbEf+n4ZSBAMFo4DZZAIXCKDtBKqx3mPiownSjZzpkY99/BO48sRRKFiEEJ+NZotJ6qvLOUpJYcRl/FIDbQBAMlqlkBn6nAbK4swVj9eqqgAQfLRqx/wy0fmA9sUXNXjFc8VIPz8gOSKBeA+0AkinpD1J609ArW2qNAp98AM9dJr2QGuNNEQeVjNYJREr6mXdncemsKyKYhIH6msoUOg9+nlt7KEpjUGhqPzrQfTKmuvod5fV1KbePMv/xvtIGaDoHaX5NeWmaVTm03dEOcfO3+S1SPabPOdCQVxwGZzK/lzKudKhAhhnBQh5GITYvCJCcQQp/tODswj9T0bHlO9jEwaSyX8povH5Sd6t5iDhLkJrWsqd00PDcM5mfw+PDA8+Tiii6J+S+SEZoqIIpVIR6AMXDpJDp2lL66/F7jYQPIwieOe5vGnUtJU2HL4HBuTQdanpJoEjY7XlbXwIWC4XcL4DlMLussP9t+/h45+6H3/16dPYWRJcIFitcMXxB/AFT3wUwm6DSeHxydsJn7pfYbfpQGobWgEbFXDTddu48XqDJ1wPmMLGRpSxpjPrbdBgRyJBQWmTQobEJ7me6ewHPNf9DinEkGKCzniVjnpCioUNsaO0cy5GMfCCIIMLAJwPaSDucwoPo5wDsO17TmmpGoCF9x7KuYgX+4BnBtT81kNBpfKchTGY1DXmneyHe0Nq0unZmujItlZhNt2A0QVO3X8GJ0/OoJUFR46sOoXzO38pwnqePGatRdvFlHRrV/wkkvpfVxVslpSSKJIg1oRaofJWJQLl4N2FlYEFINaE0Jjxe4q1RgBu6DCbTGMZYAbtI0eOYjKZoK5rVFUVr4uve75YYNG0OHLymn3P4fCBduSU2uUSCD2n7X3kFrVOmX2aPDdZdQ4qloYkACQDKnAn8+VygU/ds8D/+7FT+MhtCxTFvWhavxIEf+/2Nv7qU9vjM4r/8sb37QG3PbCN9/3VLry/DU+6foqv+qIr8PirC0iKi0JsIxb9NlzalUOKtMm0+dWX/F4xtwaw9gZpwKB0GsnjiZ8aqEaQd86jsFXS4fM42kHqPa3u79KWg1YWoSu4BCuiZbZ262jmp94yIQBaozAa3nNtkqqssOw8QlSvXSDYOMkD9dqkMcBkOoE2BmfO7ODEiQ0oGKSGCOMbm2ufl9hNH4Ka5CJ0PI5HyTZc95oXpUo6qWegzX03hyB/dopkWGrhfG7PfuGg664tP4JYy2LVhhBQxlhraQBhbV/1cHNzE0SzLGKGndHOOSwWC5zZ2T3wPA8daMuklLAt7r6dMVBKQTrCJJpAqI9Yt1q2UQg4swTe9cmTuO+jp+AiiLpmVfs5HwkELFsGvg/fuoeP3jbH9VdO8B1/5zocmxWjyxGaIzf41gCPyn/C0J8niaTQvgH1s+b3kR4ZmLMZrTTQZki0jDHbfgFk38mjRq/P1znVO7b4n+HvhS5K94yJ/zX0EtK4kTwqlS2iSqnUyWTlzBViPRtK+5tMpiiNTvdYyc6Egsl20I+CBBXneA8ujOTZfGejw7jKHcVGyn2PyHHjBNlWquKdyzmoFe53dYFdoVvOIoPtKP1n7WckxxzRIZCggXitYwJTcjjyKBPvKTkvz7YwHUrQ9s6jaxrMd3ZgbYFQbrBpAnYy2qJA17Xo2hZBAyZ6qJumAaBQFCWCsfjzT7d450cMfDA4+zB6cELEjV4/edcc/+q//jX+ny+/Bl/2xGNcoAqsZfdmJV8f/46ik6sfqDxw+J0xGp1zgPFQxHGiWlFqq5WSRhiRIeyrDwFt26FZLjGL7bBkG2NsKkZPMcok70J9Ee7ORdpvfs7D8zcx0kdFc1XHhKnoj2XLJQR46rloW3ID5gDubqNgYbXmmjS7c6a5FGAsuyIVBQQE+MA7WCxbPOnJT0JpDDY2NiOg9WU6KS4cKtIqPYiLX2ZUdOwRklUelxvznj59BgrA5uYWFotFCnNjQKMUeluWJaoYdWWN5ZIS5+pjQOaPutDDZp/98TlxmQGOHrHJB+Yc89IUYnljwyGzfbY0/0bitPf2Flx7JEaVHCSHD7QjJ9k1LRZ7e7BFCTo2i15sjaA1rC3glELXttCFTfxk07aw8fu3f6TDn93q0YWHZyYEAloX8Lb33Yk7713g//mya7hMkOYKcpRW+P3PJ49A0Vqj8w7aexgiuBBgiSB0zVA37h2I0stv2SwhjkwBCWNsSo6QimSSBdqfBC4e1l5EEY7eSGaqmOnJUdw7cz0x2CgVC5Khzw51zkEZE/tI8kRVgemuRMkGLs8q9FrTtLjpCTehsgaz2STTQvvmCYk3C/3izZqmuiTvt4Ast9i6D0qpCOCnAfRjtfc3UmrWu7e3h0ldAxldIr8563EvytWsOwhPijyfwWgagLZ8nrr0xO2lxEXXdVgul9jd3cX99z8A7z3KqsLW0WMHHv7wgXb21ARYxtpoH+xPWTZipEe0xm/+6T14/61LdA+NBXlQ0jrCLR99AArAN33ZNDOt1nEZ6yVdozAiIxpASciYqI+55FTR2v0O44bXn8BZLzM/4OCfs+3qvCflyg9WV5V1l6GQXx//Jlky0fyVxX7dsSTcTSWqgxeFrE9J+kEIhKoqURUmRlGsPc01Z3i2bS6MnDUpKacG0HPD40gtkXXjJge3cbRTthXyEXGhL70n0EaHXPv98AHJnMmBGuhLGufbSYSW0CGSLXmuVM6hA23pdWit4RjsrsOkKPimgmAsm/c6Jrt0vgUVJVB1cKrB//rkHH/y0TNoHwHAFmkd4f/76AN4zAnCU6/UrM0KXzrg3CLojiI5OKyogJS1FK/8gPcWemQ0QESzke7YWlzkoBSqJKat9x4oisGEvHByIafk2c6PBv9KiKX3HsnDECmKtBIiTsDAfhMhnWVB4+xKznjz1MG5yGFTjDPQlJxwLrQ4sjnDpLSYVCaWU+aa20qpAfeNDADHYZmXgsj4zEPYyrIECGlMyefj35RliUk94bILGQCu6hUXeaUaLL6r91YWbwZqSiVYQ9uyx0QpbG1tceMDa6MDkqku7z0WiznatsFisUip7pNJjRA410OCCPaTQwjaPDEKK4V/OpRlCe9ZO7K2RIi1D7wPWLZLoKqhncO9e3O87f+9H627WAz2uUvrCG+55TR+6GttRkGotQ6pnuroJ4y1FoECrO57Vq6TFR0+gnbbtogu/3QUaw3KsuAOHF0Hr/xgL+fr9OnlYk7CczuXPPNOUCLFTEcaQmkFCr0jlogbR1MqgYBMswQMFApboHUBgTygeqtOC7UBwIUO9cRgY1KgsoD33DADRFCRUunLDUsX8r6x7cVZNM9Nxs7IcbKWgDYFik1te600VySE0+ZsU9c3BIBYLemIF/Fi9v9qfF1AX09EQHvZNjDaoq4n2NraSh13rLXwgekS5xx2d3ext7eL3d3d1NFmMpmAqK8yepAcuuQarlmMVLxJYpA5YSSsAErKAAwBv/Wnp+HOUoD84RQXCL/6Z25YGH80RceZY+l1pERYQdTDbwe3IONL41vCGnqEuIlp31Bif+eQmLcMbP3f8PssokWsiDV/QL8JjX6PwWcYTLqx84qo38uY1VhzU0a/Gd6fnohFdh+GC5acv4kJbuO4BhXvM++G+h4XavV+pcNT/24wCs67oNiFleG9HlFPQIpR7oE6D60bAv6BCVpnvcyDAX0wbvIxmP06q6F44OH4GQ33oeLCLkqTiQ0RBNilRpH8hdjNCpDImbNcf5RDp2m7toXzDrqsQEYjGI2ADot2DqsLTKcb6ALBKw1TVqDFLhA8PnN/iztPdTiHaKOHTXwAbr+fcKrZxGMcoD0nYnCcAvGSSwLjnKGpEWAUwRgF3wUoMihNDecUSExt1XPZ/RBlKWK6f9e2IHjkw9eWJYqqBiFWMkx1x8XsFxDqKQJkRzl3WTdoH6SGlUwJoZL6fSn0KpxWFAkJXvCJOLHKB99H2idLItYVJ4ILQOuJI5BMBB7y3PxXG8xKDdcGNGjR+VlUEAAohaA4N8DrBgvnoJ2FDxquVTDKwpoaIJf48UAaioYrLNep5Gt6BPXt/hVh4EMCAGMtQuewWC5R1TWU0lg2DerJJA7hPgwXUCjrGgHEkRTGJOopKRiQevarZ7FOkTgbCPbWwsgpkX2fCogFoUQ82pajzZRSqOoa040ZrC1QlRWqkmkOCh7zRYf5fA9Ns4T3Hk3TAlCoqjo59uVqzsVKPXSg3XUNV+KrKpACvDEIqsO82UVpJ9wZPRC8MtAV80jkPf74E0tcAqzIinQBeP9tE3z+1Qtor2BJI1A38LqraENTCFA6QGvO0PSdB8igMBN0TnM3cALzqVkt4HyYWGsQKKBrlmB06TXaoixRVhUIgIvHkqgWgRIOJeQFIoF2As19LnKc5rlu4AqPPN5JUvD6CZ2+Ej5UUeT3TdSMA7gKto6OQo0Qe4B6Vg0BCnCBNSJGTd13SpeQLc8NIzoXEKyCURpFbFBrQCiMxqxU6KzHgloswzF4j0h7sDIBAE4vMfcO6AK81uiWClVRwFoNCnvQWmpXmHSdSnP9ErYaNDSGNdAfXhlp1+IviWIsd/VZLJY4efIKeO8xXyxQ1pP+eUorO6X5c+LuPtYa3iZpoDQ45Dg++nz5/bUgDwxiwEPmKAzew8XokMVikYpA1ZMaW1tbiQ5hSoSpnvl8Dw88cAp7e3uQJCFjNCaT6aAjlLBFZ7uCQ0iPxPU6Vutjc5/5sRBr9AbEsR+7kC8d4a8+u1pz+lIQIuAjdwLzBlGVUP0ciab0vrRC1MK10im7cv+LHK70JBESGTGhlI60k+rNQxD22+M53c6c0oBKWvqYEhkRm+kczybnQ6+Pb48sSONt1Gj7QCPKJXHNXESIwwIpLk4K3EYo43MR4InLITgPtI2Dc2F08vkimFtJD7/k/O76+5tRV5m5z300+3DK4da95OVL971GNXz++bb7UQzn6mtZd9QE2hklkkfIGGMSWKd0+0SLuFQaok+e6YvGrUs0OkgOnaZd2AI6akhG8VDvFksYpWFjo1AXHKAUirrCbHMTn9q2MBqXpKYNANYAnzylcMUWG/Ap3CxKEPNOsSODAhe2gtax1go3VTUWIGv6yYSsEFWUHLS7zkFr7lIPkpCsrP4DZdXN8kEMGfgKkHC380GYAxSmPNtz+MXqduPEjNxRKrBH1Ec1BCJ03rPDTCnoor83eYpzIOq1HdWHlupYFbK/PZwFaI1lMx8dtDJcwxW9A897Qtt6qM6hdYSPfvgv8eirj+Hzn3YdSHEXb3jKziELOczA/5KSwaACpFASZ9v6QfRITmsYYzCdTjHf3VmJz86TWeTzoU+n18j3W9DHwL3OiZqHvIpjXkBXwvmKokBd1ylRaDqdpuYO3nssl0u0bZsaHADgBr8R4POyEMPbdvZEokMH2mVZwIMzjXQcz+18Cas0rDEM2t6BNFBNamwe2cLdn12iu1QRG0DrgE8/oPGs60MsIkU5NZsmCBek4Ww6T1Jnhf+adglbagQyA/wcD49eS2fQtkWI9X3ZRDdZNIlMNqUMCBz6JjW3+xOkfns6eNJkW0YKeo22xD9aGdhpociAWXr1yWKyLrqFqI9qCCFg3jC9po1BsWbu5MAt5JL3vnc4OZ9KaxIRbAz7KqwFBaa1tGKeSkXod47QNh1cMHBzjT/70/+Jp3/+4/H0z7+e9XViLdUajvkOHLIStcvz19QeDknPR/UlAAS0JflknEEpgLaxsYHF3m6qaT7cZ2ZmZp9TNDnVALSHEU3rxl5+DnmYovRwFBCWLjMAJwzVdY2jR4+ijDVTpKCaOBy3t7cxn8+xXC6hlEogL8ftE26G1xFfHHhvL72n/RBFq/5mJLPM+8hdxlz/6JSSFmS33k8XLU39Qkgg4G/uE/5yVdJQHlEISutUMD9QQD8mMgNQTPvRQCFC32mE95a0+RVZ+Uj4uR6GH4w2OE44WAXxoTZ3kDq/7rcS+ZE8+ZQnWx10YqvQsT4agZLmp7Vo13254CwIhZ1bnuBdwJkz25jPF3LiGBlW+d7TPi9VySmLPnGGBt8PCjxFjVzoj+GzGG63Iucxxg6iT8YRJuPXci1SXjXVmkevpUs7MYnDBjCgQ84lSmQ/OXSatlaKW6GyWscDvulQbUxhoLG3t8cdbIyGjqvzdvNIn/XZZXupQfAZTxg1C1Lo6y8DzvM2RVHi6JEjscj6BNY2mTbAccIUtw/BpdCjtutA4JT1zjn4EJCXsFKKE0ZSViXAdcUfJocAK/CZxqUG3wy33cfUFK3Oew/veIJZa2G0xmw24++NQRmbzebmeM8rZ9QE9ZOVtW5uRUeB6SwTG28o1wEUy3hml6BVgRC4o/vGRoHFcoH5YoGmbVFYRCpreMmsY+P8SPuHTXjRzu+91hpVVaFtWxAFTCYTbmprDaweAhhbLRKbPtxPHie9QpOQxP+ILjrc79kW45xndzFWXMaQMQaz2SzVRynLMoGvJKMtFosE1m3bQimVNHFpZpzz4Gvv3P+N0SM6AhPfbOZ3/aJBfbQAKY0z29soqopDtLwDtMIlFJq9r7iQOVBN727kRrT9g3beQWmNqq5x8oorMDtyDJPpDLaYwxYFtDHwXWx4TNxcVgrVAOBiPbZAUWi0bQvvXA9QQBqIeVgXN13NHFTZH7C//vug4IY45Eoa1e+/2XotXTRraQnVNjzBtNYoyhKbG7FIltZQxg40KK7/zNypmM9S2innQA31mmKIID6ZTKD35pm100fvWFMxaJcKRzYq7M13sbO7i0XTwFrEZgpD9V6J9XIJa9kioj1rrXHffffBWouNjU00TQNFBYyEx8WbUxQF8lyBPiQvXwwIOSjnwC3lglT0ack+9lvAx/8S0UBTLooC0+kUs9ksZTrm2rL3HvP5HPfffz+aSK9JFIm06TuXCoZpnJ4FuA8dPbLOgibPtaQ12OmkjYbKHAFnyRq9JCQqb1EURuG6EDJCtBOlNcqqQlGWMJadiVKEPR+64kQLMaU6hD69PacKxKRH9HoPOUVgCM0XPmY40Q+r35zT74dcZ7+/PPNOR3ApioJ7bK6ttqaGr5LiPa7Z0h9HuNqeDMi5Wd4J31oFa9nx6DNnnSwUiP+mRTFRUJcocI8mY+9jEH67j38eb5eubA3Q7q+NrsYynYvmmlNb4z+ZA+J8FC07HxuiCLRtm/5yx2oeIbKaWXn+cug0bSgFrdkx4J2HDwHGe5DzQMExtLYogODRNg5QwFatcO/uJTrwo2zVHK5IYK5Zx8JC3seYY9U3MFaaU/Q3NjZRTacoyhLHjh2Hcw3aroXV7Iz0waPtOg5VKpkEmW3MYE2BoiyZ6820bKCnR8rCpprlxhoknuBByrn+UoByPOZXHJP7eObz77TSKcW/KIrUmFnC0sSJlsAjLk7yniPSh5NQtDRtLbSx0VjXsDEzMkDM+J5Rcp4pKCJ2Oj/hphvxqEdds2pGpyhA6ZSSLQzneP8eThGnsQgRJf5X7lORh/dlz7AoLLrOrjzXEHpfwEr0SKSRSGXPa010iBwvfy/UVk9xMaUhUSHT6RRVVSVtOYSA5XKZnJTz+TxZoTnPnY+LsdJwmdMWiRORu9c0cE0DvewA5wCt4VyHclKiaxosXQtohcefULj1fqx0orlURCvg8SfFgcqTvDQch965jltcgRNeyqpAAKHzAceOH4ept6CqCa66Zgt3f/Yz2NnexdGNAj4AnfdYLBc4fvwE6gl7to8ePQZJV++6LmqOuYOGm7BWZYWubdF1HcpC4lIx5HrPUcTzjxEArhUleDqcsHlJ2v0iBfJtiAjaKBTgiVVVFSaTCYOsUty5xhgE6XxBlAo38QEJ0KuaXQgBbdehgIItKujgORlHa7bopH2W7ANA0zrYEvCksGiBZ33xs3DFiSkQG/uqEDI+myOEfKIKgBA81zW/BPjtgdU1oKWGoC08cFlYAAQf77GCOPmqxCsLRcVUhIuOwD70dPzsAc7YzUm6saUl++3DLpniEOA+duwYZrMZZrNZSkuXGGznHJqmwc7ODubzOdOIscZKroWPx+FZHdznuM2hA22e+1LiMXDFsK7jfj7ENUaMMXCaIyo0FB5zVKPQHg+xIc1Fk6pQeMxRn0gHAc8UZw0krk+rGHpGjp0lRQEyBpPJhCe7D1CKHzt3FWet3VrWtLm3HQ/2Lnj0CgsjhFJIIU4umwRJ7xsq5ucuhAFZN/bky+t8IuRAnMt+YYVj7Yb3xQeVawopA3LNRUTn9jA0a1gvguIYS9pv/G5EKEGBECKn3TvcuHTByZMnsLlpe6en4pKuotmPCJpLWnL7K/kF4j3vaQgkR6ssgjrWNU/3cvQM5fEcDHLnRq3kTmRZKIQOmUwm6XxSQ2/qI0QkDpuIUr9HoX7y/Z8LGJ+rHDrQFtNVEkFUfPBd20EZi8LYWP+BJ4HWCtceBa/0l+gkcJ5w3XEPwIIIMW6aB/gQxGIvSRBXCpM/zc1khc+WYI9eY+mvW0fqhIj5/7DipY1OJYlWcW7FDD1XGdzxs/x8PAnGsp9Gk2tWOa/IgE/oO8TwTUl8agTfdGojrUkcRomuyM+J0Id9Rc2QFFAVFaglOC8aZXREWgNShACPQB02j0ywMTUwhYWK6fVExH1DI7AFevDm9cMlKYIrijgkvWdqoa5rKCg0bYNJXQ/GQ1VVcF2Hvd0dFEUfv6S1lDntQx0P4okPGjdiScrn0+k07WcymaTjChcvUSEC1M65BO7it3g4nsmhA22A47KtKWBsAa1buJihVFiLqiyByEkRsYZV6oCbjjl89H57EVxoD02UAp5yrUVtWT8L4AI8XE+DUidngAe088zTa90DNrSJ5jNSwRsepwpFYQdmI5d05U43TdPw/gbnw1SCNpwg0nUdAK4ACHX+brF4Gue+fQSrcbacAPLQGbhKi4hYazl5g/qsSZLrD6z9som9SrdINTf5RGuuQ5KsHq3gg0fTNFi2TYqX35jM4N0Sne84LDBqnGVVgsjDUQsXgKuv2URdGO4ZqTuQJxAxBSJ8qqcAowygFZR+pHm9oc+DLbo+qSn/vigKOLfA3t4eTp68As1ygfneHLPplBWp6JicTKbwzuG+e++JVqJK412iR5jfXgVsUdpkLMhviWiwcEs9ayLCZDLBkSNHBo5GAWGlFJxz2Nvbw6lTpxKFIlq1hPX1TXqHPTBTdcP8jj0EcP8ciJs4fyFCipSQB+ad44y92GVbeEr5/hlXLWEvwbtRGIXnPlE0a7m2vv5HPziGadtSjlWK7Uh2KGvaQqkMuUGAJ5yYr977QVo2f993ZidgBSAPqBaxXlIYxHAQ5ybleI/7adoDiiJz+Mi/+TbjbLR8P1A9ByurygC4Ve/06k8qOy71EQXe+Tj2WJHgOjCxwFbUtLXRvAjDI5DHZFqiqqMjC30kRbq2MKx18siqGWrNH4tYL2lLpdJ4da5DWXIDDV74VfJVAIigaQfp7rwPoSgAuQPjZ5/LQTSFaM/Sz7EsS0wmkxSPnYO2cPDz+RyLxQJN06SwzzwO+8GCsRznXH5/6DRt0fRMLG6kNAOCD1xPmzUsNouMtTBBwViLx2wpXDMLuGPXXDIOSa2B66+qcOOjp8DuHgor1d5ijQviCIieV448t/B9IUANBrEMCgFJ/guBC7oDQNu1ScuUKIqcU5SJxxzkahZgPHKiX3K5UKbj2Am57vv9jkfEi1bbduicg/OOw+sCRxrpIc4k/lQmbjquLDTx+n3IipIFD6VNorF8rAxnqyln7EbA7xcUtvoCiB3EzsNANDwCSEEqOcqxtZK+lELxDBffR1LkulLySaYkiLZrbTHQxqVfZL6oSu32/L73EUD9wppr0ONz6CnBnrcGkOKvBWyn0+kg4kO2FQpFaonkMdpjoF7nf7mQXLbIoQPtEJNQlLGxWJKBtgYu8rOzqkazbOADO+qq4NFUNYqywtfd0OLnPjx5RFuN5VIYje+++TocnXh4tUChOljtQYGtBhAXyHKeI0u4v2AErACQd1GrU5DkF+FsuWIfAUrDeQ8dtY35YpEqmRljofJFQXHFwKIoEpiz0zP6BzIq4sFw3CIrA11xqVeg1+PGgJxr0gdpLASCD4RFs0iOpzb+OedgTJE0WC1dRNZo8JmPMO3HewfnGfyVUtCFRV1P4TruarJ19EqUxsKKIy5qB947iAuu9R3mjeMwwcJg2XKkUGEtQqS+FKLjWDkQHC4l0M5BNIGZ5wJt2hSJVphMagZE8tBax4QUCxVL22odwzGzeh45NRKPljJ5AQzAU/h0bW3qhCOOQwBYLBbY2NhIoXxS+ElAWZru7uzsYG9vL43rPBMy18TXafj54iWfXQi5BAmBhyjRbkwTV3GNER9Xa2sMvHccRRJrj3DkgMVmSXjJkwqUl8D4L63CN73g0Th5ZIK6rplnG8V9DrSPNCD6+AJxtoqwSZ9gD6J5h9APfjEX2fRbNfdksAIZbZHb6pnkYH82LXutVrx+w/23Hx1v3V8Mk0bbiabte55YOokkZVp+t885Z8elEBB8dD7GUEjXcY3rEFhjM9pwdqNo2inOOoDdx577SXou+EUAvCPQSNPmxTN3IPcNKC4Vye/52BpL7fDCUNMGMsooRpkkTX2kafcyTmrCYDvRtOUcuvhMupifIJmOk8lkwEsTUQL53d3dxH/LuYtWfj6UyFih6KNnzu/ZHTpNG+khsWPOFgWoLHszH0ixoNookOvYmWMYwJ91XYX72hJ/9sk5WvfITITSanz5U0/ieU+/Ekp5jmoQAI0AnfrICQ0hCki0mAk5fEdMjwPEdQ4BDFJQzKmKKV/HziJSjzzVGRGJ+5cQuXgK2cEvsow40jFnLaciy1VqJ5fRGD70WYpa6xQpkLh61R+K5LoS5RSzKJF3tPFA5Porw4WEoAAVuc7CFiisg++4JIBRCo58ckTytcgLjsNfzFt0e0ucufdenDy+gZPHZljD7kPokYfp7p+zrDwXpdLcE4uta1socEIKg+gQNLXWqGNDhKHjuR/oY0f0+BwkHV36eEqEyObmZgrREyDtLSYOXGiaBiGEVHI1B/WzXfe53p/8/bmC/+EDbXBImw8EW5RQAGzXQcLhEHjSKGNgSwMKnHSjC4tqYlAWJb7xGVPYqsYtH3sAbffwFiYpC42v+Pwr8YrnXYdgAE0B5AmFNtxUNhAUAUb4whg+xpEhIXY0EU5ZQ2XGFBGD2GLeoAsc9WsLA1MUKKsSACfX2KJAYUsOU4s1gIHc/ERMJOgLR6XICSXZeg9d1g3/MYeZT6KktTFBDE+EznXwzqHrHELwqWGBmMTGWEwmU8xmzGkiiwoJAQgqRO2PnV/ee3QxVdko6UIS09+rIgEBAfAUUJR10vbaxRLwAYVRaJsOyvYhZVAxSscoNI3D3mKBvQd2cOvHP4LPf+oNOLr1WNiUEinx+XFpUg5AdUHu+UOVXJMUCyb3g2ilmB6yBtunT2NjYwOz2Qz33Xdfsngl8sMYg2PHjuPM6VPw6JOiepf6sK+iHE/GgfceS3lWxqAqSxw7fhwA8KhHPWrgQNRao2m4Q/r29jYWi0UaZ5IJyc/aDKyHsUUBYDA+5TzOxdpMQH4W4D98oB2VzkAEbQwUCqiyhPM9jaAQg/etRacUg7YxUAVrnUYbfNPzHoVrH7OBt7z7djZXLzJ2G61gjcK3fPX1+MqnXQkTdFTwXNSsFQL62sQ8CRQ8oadD8joO2eeCfgTRtDs0jpskFFWR7gUA1JMaVVmjLKsUvjYcbNG7b/qQKLFsLoaqt263uem7sj2x4y5Eh6NzHl3nktYkvxVwFR6zKMoUSUMr+5N34rTlcD4TE0CKwqQQMQkZI3BDBW3Y4VZ0Dnuuf5YUPDT6zDnW7jnqx/mA+bzF/ad2cccdn8X1113Fi00KsmENu7dwCOuXuEdOctM/UQgUSbmoaUsdc9G0U1eXzGE5mUxw+oGhpp1rqXlESn5sWbyl6FPcGNPZDACwtbWVdZFhkfohOzs7WC6XMMYkajIvq3qu2vSFcryP5fCBNvosN3kv4ANiLgu6H+gEMDVScOKNsRYEwmKxwJd83lE8+XFb+KXfuRW33rmHztPZFsHzP1sFFFbjsdfM8B0veSxOTEt456EDwRtARSBeLpfQ1MGAoBIPxlquAGevgQifL5/wt2UsxK5sgCW2NibTCabTCapYd8MYk2pw53z4SgSJ0dCiFQUC6f64vDaem7m31sueaI71NzuVTMq+lnrYzC/zTz1JfDaDM++Oj8dgbQfaE9+pnm8MkQqBEnpEpXs0mUygFZdTNUYPOM7c6uDj8zFC46F1bJ6shkCblCxwfQ0dAWNnZw/Nso2LYr+E8X3rR/GlRI2MJR8H+YIr1Bs7gHnBDIFL2co2xphEd+W/B1azIvOO5/Ic5LmUZRmpvyGfLHSIUCJd10EiQ8bV/M5XLkbkCHAYQVux1hwCklnrQ4AxFYiAvZ1d2NkEykYaBYAuCpSzGTaLCQIpNJ3HXXfdhSuLR+HI1gw/9Mon4VO3ncHvf+BufOgT27BGoenCgw4NNIppEOcJX3jTEbzw2Vfjuqtn6NoO3bKBDwAFDRcUlAmoDHDv/fdjVgEbE35kHHmQaRxQgMrq9RqTwvJAAVpzMSiiABNmUEUFU5So6yo5YwGgKmvWOIU/z6QPLdSwZcVVBKuSO5YHwJ6lXOK60Khz2X547D4ChqhfRNuOnYpd2w0cV2VZpXRkTiTSSTszhrNmpVaErIMhMPfddQ5t26bKhzYWyppMeJFTCYAocfwS4UCItAcB1hjUVQW3ewbVpEZVlTi9N7wPKQpCK7SdR1HWOHGyxKdvvwunHtiB9wBl5WiDD1CW78elpWOzrAAdITbi6P0Jm5ubAID5fI66rqOjsI1zlberqgqEfgHNKYm068h5ixM9AW8sqTqdTlMhp3xxCCFgsVhgsVjg9OnTSXkQDV/okzE9OJazUSX5uN9vH+ezKBw+0I6aNiHEmGXOIuT+kFwv2kxrJK8zwIXYqxKTyRRt69F0C2yfOYNj7UmEMAGgcP3VU/zDF1+L3e0lPvmZBT559xwfv2uBB5YORAqF1Tg6K/DMpzwGO/d9GvW0xtxV+MRn9nBmt0PXeRRG4fhGiac8ZgOPu2aGGx49QzGzcErBBwL5gOAcyAOaFJxSKKCgNLC3t4dCFcCkL87U6xzpo/SJVlLtIoJ75KcpBBQoYCcz2KJMGrYMGqlBIp+tH0wKxvQFdNjZ9+ADkc7HCcPnFZ1V6Ckh7xlkm7YdTG6mPZiXrOt6EIcr23BqtY/7iokroS+36X3s+qMUyoIz4DY2NpjLDwFEPWcp4WscCs9jTiuNwhYIvoPRNcrSQmtISwu+FqlvRArOE+rKoi4LnDp1BnvzpZTOAZTcK0rj+5JE7SjDqJ0hrSFNEdq25RraRKmypNAo1tpB9Mc6akxAWxyJkiyjo4YtXdKNMYPWcgBSwszp06dTJmQe/vdgFY38fMfnOh7r56vFHzrQDrEHXXCeIyICTyjnPRQh1cyIs4q3MYa/i8k2tihQVzU7+zJz1IeAwhBuuMri+hObeN5NM+zUhKObW5jVEyjn8ZjrHos/ueVuTDcmOHHlleysCwS/mKNUBpWxCJ3jbr1GY+4cguaC+My1G2gAJih4ptuhtIJWKiZl5JoVpesYhY3kNGyy7I3RsIWFoRC1zH3ClfLd7QOoPBkjjZKiM7IoiJGcbdCPueuDnJAEdroOQ8GQ6kDkE9vaItIgJoul6S+UiDi2OnbpQZaBKGY1H5cXAHFc5fdKIiJWuf9MQ4t0CINR/i0Sj4vs2RIAKI3jJ06gnkzYuSo0mFxz2lqvubZLQxKIYTW0LY8Ukep5kuSV9A3wc/DI+3JiAOB5KF9OaUgDgnWarvgl2rjI2xT6uz6M76EC7X73ZZ8vD/ztoQPtpu3QLJfMCyvFVIQtMN9bgpRGPdWxKwmHtNmqAmkD5T2KyQTGBihd4IqTJ1EVJdPfgYs2NW2H+XwPezuLqBlpoJxECqL3GE+qmpsuENJCUU1mMIGgfcD2zg6q6QS2rjDf24OuSuaHlUZVWlgoFEGBlIe1BGsVCmtgNHvLfRAQVDEUkOtpIwQMWlkplfGxXOPCWA0dDHRRQWm7zwAZfrZOu7HWxFrUGp0L0JrDznhhWc/9r9OUBnz2iNuWyIM8GsE5D9f51Bk7n7hMg0zjxIs0CvHiVNgiar4CjFwFMgTCsuE2UcHzQlAUJYzlSJDpdApJ7VdaJw57yK2qFWAgKAzr+xMMBWhFcVz2AB0CV2cUTZuUROBofNEznoErr7oanSNAGxCxRaC0TnyOViUUXVo0ySBOOi22BKOz5iORqpBOL22Mbw9hGhPFmAaqqjpp5JPYHJeIEuASEZbLJSaTSfqTbEdTFIPFQY69WCxw7733pjoikhE57uO4Tg7SvsfWxMVwRh460O68Q9N1CB1XV7Naoy4tp2dDoagnUfPhqvRGFyCloLyBLUuuYawMtxWysTwm9aUYF8sGO3t7ADSHi1GdNJ+Y3I2yKJC0KmJNuSpLKOdBocVysYQpCtiyRLNcotQcmmdiFcJCGRQBaABoQ9AanJiRJRz0mKFimN9QiGK0AeJJQIBWQwUA2iKPE14341cchJlw6UzWXiUpZcCwrxmrY9BeGdCj4421/BC41G7TtujadqhpAzF8b4KyFO1ao2td0sJXFiNw3eWmaZNDSuqHC9c9nU6Tph5iKQTKuFnRtMf3Laev5GAKATpaT1qlxxJ5VAZtig+NAJDSePwNj8eRI0fhArHPInDcvtJR0yZAKws5i0sNuHPQFiewSM4vSzlT52IWr+2BsSjKmFLeDgpBSbEncSIKWHNf1JqzKfcZT23b4vTp0zFyqEi/XedHGcv5UiYXWg4daEe7ElzIX1rVs0Yo5UkDxfZagTUyiPMg7oB7/nlQpwCtUFRlogM4EqECoKCNhdWGtWqlYA3fzrIoeDITm/EEha7tYEIAfGDACQEKHDqndX+uHPrUovOExhAMVHxKEicwGiiZv5AvXUUzWsVU95AHPiQNXIkWnnaX75fBQLIFiSjW2Y7fEqW6Ln20CJjjzQBsP1olP6LK/814T5mM+fsQQnLw2YwGQbyPJj7nPNGX31NaEIikfnVf7ZABGpGfF037XAoAZfdM9fcmDsGVBaqIwOSdhzUGzg8KiKffM6/OXPlsNkFVl7EqoAGUj9dDSFlAGD3HA855ndX08MqQCJPIGoll5kxJToiS8ZU3pHaeF628w7lSqs8aHtNXIxlbeLkv4qxnvsZKPNtxLoYcOtBm6k/DFMxPWcODwhQlRwCUbIZ5rWA0UOoCBsxt+zhYnHdYLBfwy4ByUmO2MYOJmldVVainMwj3WVQGdWFRGoPZlJvCHts6AqUARwGhcwgKWMx3UGmNUilsnz6DejrF5tYWZpMZdFlAWwOtDO6/5x40uwu4xRJqa4aTx2bYLCexb6CCDy4O8tCDNTGcB1LQViMyOli0DcqqQ0mhZ0yA9ZM6+0iy/uaLeYpvPnHixMAxw1l+RZxMHiGYFK7GZUuH2kiuWSsVHa8R6HvgD/CeIm3BpWFFS/PeJ2eSOBTz3nuz2Qa0MbCpXgofQxudHFmd46p7nXMgCmlBr+s6TnbD/oNo1aS65RQ4eoPkLg5G3JpP1ogCNjc30LiA+c4eZtMZ/Dw6zJSKhb8AIg/oAI8GbSA85vorcWSjQj0poXW0RALAcU8KIA3yGoDrj5w9y4OspYst+bEFGNk6iLVtrEFVc/LW7u5ucgIul8uYLm6gDBdzcs7FOiALyKKmwM51iY3PI0TGwDq+ByYuDqJpizMa2D+78lKRQwfaIbCmIdENhTHMIRoLUmxCd84hdBpUaFgyMIpLYPo4mFzwaNomVbxTUDCK6YCiLDHd3ALAwfuGPIqocdc1d7nYnE6htcbpnTPovAcpwu7uLoItoMsSe7u7cG0LrRQmVQ2ysSIhFHZ3drF9/wOYb+9gFq7ArNYgqiN4seZrCwsVeoqEATuCstYJPH3XwmTFiAACqVFM7xqbWrTa5XKZWjAdO3YsmbMAYGwfDsXnlnXOxrDymYRRAT14Sy0Yot45LFq9j70n27ZLlEXXddjY2GAKKZqzEpIFIN17pfIFg5OlFBBjcbkVmHCh3MtPoSw5skSaIMt55N3AgdzET3cq++/wfo6nuILCdDLB8vQOlosGWyePYK+Zp+8UTHTWeUAFBOrgKeCKq65AXWiUUn6bHEAegItOaQ0iw+9X2KY1foOHSdYdUz6T0D+rLMqCy9Vub2/j6NGjKMsSe3t7nPxkee5K9qr3AcvQQKzOKvZinE6nOHLkyIG0xfh8dMxalVoiEvWzLqRwLOcb7XSh5dCBtik4REgSZazWsFqjKKOmXRTwsbg0cbV7TgxR4jyLzp2oaWnTxz6LKaY1TxZNBENSRY/DvxQA7zyCivwoxRZdWnNCitYoyiJVL5PqdcKNSoRHWVWwRZGy9FK4QbSEuTZChxCAup7B2ALKMMXDHF+LRivoukEdAshQ2o1cpWg8AlJFUSTtVhIOcgDLB2s+ZCn7dzCYk+KnVqgQPvzw+HkaMtDX7RbwNDELU2iQnL4YABQABErJNcCwj6A0ejDWDmiQA4zd/pXqV7nINA3kIGzsHWLDet4qv1lggo4ABJImY9k5kNzLTMMnNXBP9OeyP7jkp3kAPJ3TVucrQ+dkdrR488bFnwREZQ4ylahQ2GKlWcG+V5IO1I+Th1L/+pGUQwfakp5ampJ7HyqNWisoyytrUdVog4Mjj651QM3mWlAEr6LJaRTKukKlJyhKBrKiYDogpTvHOOiKYrlI7+GWS5RVie3Tp0EhwCuCMhpaW2xsbKC2FrWxOHnFFSjLklsXKaAwNWw09zc2N1GaAvoYQW3NMJtxqVBlVOxSouAp4LbPfAZ33vlZnDp1Gk98wpNw8oorcOzkcfhAOLOzi8989m6cnntce6NBffRq2CJkGmgAEECkUgulrm1x4uRJ3H333QB4UHfeJZNxsVgMCubsN0m0FjOfotPUACA4F2KdCCCIoy1bHPrKgjKZNKbTWaotAWSgbQr2BWS1VaT2MsCLpvMuadTCi1pbpC4oKosSKIqid1rFhUOkv85UHgo0DAtZL2PXg9KwuuAoDx9QlzWMipp2dG7ydSgQOXji18uug1GALSwoACGu3EQOihRABgo2Low9/7+vKHWeUEzntNXKrzJaJPdL9KchvRZ5cc07tCeNN26rjWEFTOjJusZkUkMrhbqWsgHZohh9H3KFuTKWR67UsZQBMIxUeiQppXORQwfas9kMgYhBW2sYpVArwJZlrLNtoNoFqFliuWwBR4AhkAoIMaOPNKc5F3UVIxBaVGUZu7zb2K2bgaUkncLFfMu1end3dkDOo5jUsFUBVSjU0ykqbVBqjaPHjgE6AqYCbMWOTaUUZrMZptUEtS3QVQUqG0BoYmduthACET57zz34+F//DT796dsxm22hrGscO3kCPhD25gvc9dnP4q77dzE5ejWucx00KEbzUnS18oTpug6LxQLLxQInTp7E/fffn5xDpuirmwkA9jKMEJEOOUmLCojdzpjH9MEBKsvSjCIJLNJzTzqWCAWSx88SCe+wGpLFVQkBIoVADs55NA3vV2umQPgvpjPHyZqzQ0wrhRVwybv5UMyCOXBS70NqW6GXiFDaEianWeJ+2TfsuQojAa3rUFkTa6nw9TGcBejk9jXRUlvV9FcdjwNb60FC8vlJrlmPwyP72u19w4hxTRBtOHtVartsbm5ia2srRp1wMIGPDZmVUlzpqz86+gci5iqPS6kpIlbe+YToPZKgfuhAW2kDHZ1MEiFBCn1PP52ZRdR3t+YBP6yvMX6IfQp1LxT6ELBkgiuFkJnbaT/R4ZYiBZCZ8/E9RAvcJxuLACyWC6ZH2iY6cfaws7sLH6kYGbzSbSPETD+JNPGxGa/3yELdDo4qyCdSTxFEc1VFsFkzkCU+N78/InkRoLRQGBsXR5OZw2MzdvW++BCtJPRRAXkacu64HGtUCg9+Eu7/qxwkhdroG06HaFXwFpGaG3Dlcs8I3hPa1mO5nGMy0SisGmy38sQuCBJfGFAaa9qrPHs/jgTYJfwvhNgHE7wop9jrs1l8KwsUj/t8MxkTcl7rzu3A8NRHUA4daHOBmb7WM4jDhIKKKb+Km4t2bQsdCGUM2eNNmduGAiffRJFBBMUVySh28VYKaBZLhGiYLnzADEhNSl1cPAQ4fCyU33YdZ18ahSLWXnbe9xNXc+q9CwEaHk751LLJe4+//eQn8Zk778T27i6uvPoafPSv/xpndvbw2BufgMmMa4JsbB3Bvfd9FKe3z6DtOrCbjhCCw872NpqGKQvJZgyRBpGiOkI3SNjVcrlc6dentUZZsQNPKQUXQ9lkKjIvG1Jo3bDSXg+cRVmijOUvi4L7BuZAm54NMNDmU0EnAHt780TJiGa+ubmZtldKpZAwlS2865x1+QTlz3LtW8qhHjQK133JVFBdVQhB4czpMzBaQJtDM9lKIBiroIgQyKPzDju7DqeXLT78wT/HM7/oJlx73TFoo6ACQYUA8pLjLux3rwika8mVzXOWi6NNDpUR5uOrSY22aRB8wPHjx9G2LebzBTY3N0EEVGWFEyc5gqmMIbi8DwFknXWxGV7kQOmJr7U2mG1sYHdnJzVEOBs4Xyq0yaEDbU5XxmDldj4ARkenH6epG2OgAqFQOvVZdAI1CoBhIkEplUBbKY2yLNAsl2yrwqNdLiEZEy4+0GmMZNhdLqCVThEOPngE16HtHArNx7VlgRC/o8B6k1KInzHwe9VruT54fPq22/DZe+7Gzt4eHvf4m/C//vcf4oHTO3hx06KeMYhubGzgvlMPYHt7B13UrKEY5HZ3d7Gz08A5bnQsZiLQ189ODkDF90EANxcVHby2KEHBwzmPUBI7yxQiLdJzxJLEItcinayLokwhW7woDusiJ414YLFwFEInbdLm3D5MEmLKssRsNouL4rCm8XhiroL0UPJQP7aG4u/2G4S5RZ5FsgTfoSpLQBW4+9QZTLY25AgM2pF/5SgRAnmPznk0S4ftUy3++I//D6679kpce90JaKPS7/jfqHDEYyq+sDXXctCJD7Y8l40ekghoa61R1TUW8zlc53DNNdfgzjvvhPc+gjbHzld1xW3H1qaZy3wPK9bwOtGafSY7EbR5H5c+nw0cQtBmy33NqMwtJhKjNWaRxToW0JEzlIdGvelExFloKvGqcfRHOiKfCIEotp/yQIytlTZKADtWVDbwZHeDCslp/vVxyxTN6LZtAaVQlRWXCDUWgQIWywZbcXHRMWEhJKcZxfvSm6oUKPrXMv4wVkZkbBx1AR8NZqU4vl0rBT/aJgTiYl0ptG/IZyaHY+YQlD+O2lyv9VIEqpAWA9GceofkMNKgbw6bn3foVbQhhjHaDSJc1kkeRbLPBqOd9tfDvZlD2kTJgIwDQV6ypRLDOQNhvliicz5l+fXpYOvOY6Rt7vt9/+u1NMv63V0kWbfIULK8dIy4Wr22IaG/FnjVmPrj8sJyjHOVddbYwy2HDrTlgUr3ZVCAsQahJ66ZTwxAZS20JyyaBst2iY2jR7i8Y2yI68khRMcIFKCVgTYdVOBMRa4VUrFWLkAA4MzONnbPbLNDczqBnlSoJhUDXAkcOXoUpICgFWuKxkApTqn2FKAI6OBB0eRz5LFYLDCtWDs9deo0Tp68EhsbW7jxxptw002fQtO2+Phf/zWOHN+C1hZ1VfN5E7gpLAWYOHBLK/GxhMLaFA8LZB54DOt6jLMTAV58ptMph1F6z11ifJlqhHACEPPsWpvk+U9AHcP2hBoRHBVIsnExYmaKHbc+dCnGW8L+AODo0aMJrCWUT2XW1mr8bQQripUeB54FNQDvwaQ+r7ma+UMUlxGA5wUpBJ/oEcYOBUDHMEUFIg0ijbYLKDR3GNre2cPefIll00Jpj1IbKE0I6LCW2x7JftB0QSjwkYz9Mfm9H7YOU2mBK0quMHnmzJlk4UoFQClzq+KzSRbPCp2dVVrkD1YX5rhdUZR92z70EST5+edyqWjghw60kxMBSHHStrSQyvgEdsQpIlSmgApAu1hgd3cXG0eOwHUd2q4DiNONibiGB3OjzJfWxoIrjRDKqgRphaCkUx+wvbONu++6C/XGDDMEVN0GqmkFZRlkpvUErevQuA6LZhHD2nqACQQEcMU5CYNaLBboNgpUpPHA6dN4wk1PwmMfewMef8MTcOMTbsWdd92Fv/nE3+DpX/h0zDZKVGUN75iDtoabqBrFAXJlYVEWXLyI+xn2Wqg20VmaATTFspdjbdtopiIKW6BRS05aChTrUHdomiZNorIssbm5yQks0UFIhJg2XmQx2nJoTogKrksasXMebdeiadvoKyhQVVxA6MiRIxkNFTnobCEdC2uya7hOAYLMmZWAWzTjgaPr3CeysZzApUCg4CBuEz6mRggRXEjFZ6/QuoCiUDCFwfbOHHuLJZZNh6LwqEoTT7M7r/N4OCUHba31YByx36m35qQ0wfb2dgLqtm0jfScUWa9UQKnhghPBubdg+1Z8YxHQzi3gvDWabHOpAHUuhw60RSjN/l7TSppioIEDLnimMoT6SAMt7QuDBx8CO4k8BZjCADH9WUbf0NzsKZCe8hDtQpxE/XFzfS+9iuDWUw8htrmKGWGx2M0Dp0+jbTtUHfdEFG12rJD03K5g03hgDwdqTpFke2HrQ+uEb/19Hh8n/um+z55o1sD6DDSS/YWhZx8YUizyOk9pD3JPH4Ssap2rlND+3/Y/Ts+e+n2m5zAy1bXicx74DOPCJWNCKQVb8HQVioDSf9dd6+hKFDC+sktNZIzk4Xc+0VpqZV7KJQ7ooZXnsy/5E4+hB+B8EEivc2g+EjTJIQRtSoAt2pv3HPcq5jAtG3TzJZrdPYRli0WziNET3MpL4l9Js8ajrGUbNhaGarZ3sVi2QOeA0uLIieOYbs5i2BmwsbkJfTXBVCXKKReycc7Dg9uIuVihzrPnEcFzFAcoNi9QSDymsJbOO+anxWzsXHK+XX3NNTizs4sP/cX/wh23346qrnH3PffgyNYWZtMJU0Rax/QQpkcoLGLt4mIwniUxIR/Ech/zRq2JipBoEYpx346bKJdFhbqeJDA1sSs51/WQwk6UCmXlwCz0SrNsE/gy2FtMrMV0xh21JdFGJKXGx/fj0K2MRMbYYB5y1Flp2WwRij99kKJAFADFQ6muCq7YB6CqSvgmAKRgjY7PQEPrAhQUQlDQ1uLJT30S6kmNZdPiiqJKVQc5a3bYHo5P/ZFNtz5IcppK7mqKxVeKcwSgMF8suN/rgOICa9nkOcEIHKWklIIiHgfrnLC5yJioqwpdW6UEurxUw7pzvhQ078MH2qKxxhRsybYLigFSESEsl2j29rB3ZhtdMYejAJJ0dRA0AQYAlIYyBqaqgCLWng6EM/MFltu76PbmaA1QziaYHdkEEU/CzSNbODLdYB69MNBlica1XLksBISmS85IgLuuiA5hbAlAATEEUPSozjP1oKBiyGKH+XwB5zwedc2jce+99+OTn/wkPv3p26C1xm233YajW0ewMZ1BhZAqEZIi7qJCAc53AGLfPBmMIcZVx9uZp5ZL4oPQEFrxgkYqWh+eoznKokJVVphOZ8yXR2dgn/HY9wAEKE3WvPZI1znM53POFI3c9Ww2Q1VXqOq+4mDuzJVzzZ2RYz46latFPwnXORXXaV4rzGiOOysfZip31JoDcVaq0Qp1VaYwy6ossGgaKChYU6Hx0Uw3JYLnJsXGFHjq05+CelpjuWxQFBvomj0gBJSmAJHKrERCKvE6XrAeQVkfUhlpjKiM8AZIpQaWbcOLWFzY85j9nkpDeu5BITU+UdgfZBNo1zW6jsu0puNf4vK5cZbnIeM6Fgl0pJGqgHp84s752Huvz/BTCmyvxm3EbEOc3EQhhqXF+O/Id8rw4NKhGh4E0r35lSfhJNO+t4UxIFTkO6Fc0uDmAZ1PyCKGzREBy2XD6c/LBhvHj6CI2+ZQolU/wRPvBznOmkGeaWwCcrzAZRNQ5bQFJ5BIsozwhuOQQUCAMz/UyATNrHyd0Svr5CAtaAAUiLeX1tAdYy5s3XHGdES++brIpfzAcXNjmN8GEEPYRttl9JnEhc9mMxSCa0rjgMt96HIR9j1YANOCusbikT+hA0e+lLMfaGW3svOVj2Q85ZmwY7okHyOXgrZ96EB7b74H5xxU1ggUpADNprjUoLCzGWptcer++1CVE0w3Nzhw31poCuiaJZqmhTIaldEoqwJKs2OrsAXsdApVVPBTi7Iu4YKHQJKnAAvm5gII5CI3R8QFXeMC0EN1BtaBem0wKUkaFB04xhg85jHXwtoJCltGD3jAiRMn8SXP/hLs7uxyH0hb4KYbn4Crr7qau7aAeCEKgDZ2BDQ0mKRCfxoTnWNKpcareYINRRrJWu7yXsTEh8IWKEyZUsv5EH2lv1zE0SqTY7nkUgDWWo4IicAqdSf21YYUt2Oj0QLDXw3rbYg2OjqT0evhRM3/PRdZtxhyuCInLNVVhe051x6ZTCbQO0sQeXjfRcuECw8QCJ46aKVx5dXHcHwLOLJpEMgAiA522T9lI0oJ9g8Xq0dC9oskGYOkfC5dbABgc3MTTcs5AmVVwlOAJjXQzIkodXDvL3LVespFjlfE3AAZ1wfF7F8KgA0cQtDe2dlG13XxwcYJbwqO0LAGttQwZYGirFBsbOLuuz+LWVlg68gRTrgpLHQIaNsOy50d1pTLAuXWJsdcB86orEyBiS6gjk5ApWH6Ij5wFwJKpTmEL8RiVOSRUuaVRAkIKaLSdxS4aIfWCj5qXEqpVBjeGIPHPe5x2NlpYG2JsqjgdcCVV16J53/F8/Fnf/YnaLsWW1tbeMqTn4yrHvUolLbgegzRhDZFgdyxs+JpjeekrYHzDkpzCVmAG6FOJpMM+AjWFphOptBTRK+/gUTD8O6HIXdDYOVUeikSNZ8vYmhgiaNHj8K1nPiQmjDkq1n/wcAhmTtsdbZwyLnw9rl1M9bkcvBbnyV3dn18VbhsMLcWm0xqnDpzBgBn0Gp9GhQ8F4oqJ4AyIOIG1T60MBa45lEncGxTYVpJOKuFghtcV7oXKnudff9wO9Dy4+fUlUSSyPjOk5/ymtpHjx7FqVOn4LxHNanhnQOBF+g86khrkyJT1rBdK4uoSFlVcK5bC9qXqhw60BbetZ9wmpNmsm201MbWfX2LPI1VKaTkmDxeWSaD1gpWsVauyhKtHjrAgL7eBqHvuALVDx1mReI2cY4lCkRLuVf0am+kUZRSmEwmWC5DBEcVHX8ljh07JodHYQvMpjNuc4aoWRAiqatWECfRswKoMvjjt3mdhrEw/8olcLlmCAPwuhKb6yTf57iEKgX2RQjvnaeQj88k14gP1ogoUiPyet018XWfi2ZF6b89xYaMbwXAjWbQP06tdKJZ8ggcUOyyjrwmDQEIKCqLolSwBYFcF/c2pJeG1zC+3+enJa6l7C+wjE9R5mMeFtgnUo3v9X7jqX9+KxbUiIpLvUQ/h+TQgXYVEzVMfKhaaS46Exuqcp0GlVb+kydPYrq1yaUviUA+wHcOzXwBAwVjC5RFAc5KVOkY1vGs7FwHpwlOAT7xu0iRJCLOO6jIUKBhOiAQcZMEmXhEUCr2rJvNMFIRU/jbxsYmtK6hVMFJBMQxy8eOHsdTn/I0OMcNA6y1cNGh5xcBhSlhbYGyKqCRF87qDzOocmc01waPXWM4YSHXbBUUWHuimN2Ya+D7SR9ri0TDyPMoiiJ1IiGiFE2TfrvvngWIh0CbOniPzN5+Uq87v1Wee8BrrovU2HdvSFjBVRZjt/dAMLE9HVc3NCgKA9cRCH1XeCiCUqyRNu0cztcIQUMFBaWK2JfUr12ocv/DIyW5hZXXkVlHY8nrvEa2cy793nsfk2w48kpaj+XHGe8PyLR9/nLwGQCo2L1I6L+DIkgu0yMXQVLrKEKKU4Yjjh4BwXsHKNbgggKuedQ10GUBZQ260ME7B992WOzsoa5rVEWJuqy4PZbikK26rmEbB9V06NoWnVHwGnBKYXfR4cOf3sVtn9nDx++a44G5gw8MEltTgxuurvDoLY1HHdEoDaF1HcdgBwYYoy0m0wmqukbfKhhZdATh6NGj2NoyIDJwbQetC5S2wJVXXIlnP/tLQMFDG42ysOjaFo3fwV67i1m9gelkirKwyJsI5FTNoDSm0bEKYEBVVdje3mXHbZqIgJRJJW2gjEJwPqbCr584/FpzAGYEWWU0XNeh6zqUZZk6ahNR7DyTAc/I9k3a6D4WgBTa0iq/k/s4wAb7OQtwZ+dB2asV4M52J+nYpDS8o9RT1LUtisKgDBaN76KVFuksBKjYpGPZ7KB1BpWtYZxCqUumocICiceOi+Y4euThhpo8fFPeJ0oEfSILZdvLPbaxdrY005Z9ee9RlpxxGzzXTJc8hHMC7f8/e3/WbUtypAdin7lHxJ7OdOchM5GJxFQFgAXUAFSxRpLNJvnAJkuP6uFFD1pL+ifqPyAtvUgPvai1pKXFKkpLLbGLFKcqNlBVzUKxgAYBJJCJHJDDnc60944IH/RgZu4esfc5d8h7bmYdyIGT95w9RLh7uJubfWb2WYH7lynx1ti03oac7mfj259ku3RC21gLGzgV3FquFh5NyBtf96uY2pPJFLAGwQDw+mAFJyNKoXIeWTtgWILjurX6zE8+WOOP/uIBvvuT78MYoOsDwug5f3TY4yfvr1Fbrl/4pdsVfvU1i1s7rGmHwBVmvNOQtqFpFxOGXIFQI0SLbuXEWcgRGzuLHSS+bB/gYwfXA+s10NgGoWlG0AcGdnwZ4lf+sMkaElVxGWebPP7pcpkiFoWwFaNWPpWZM6T0btKyNEokxoxDlpuyFNtlsMZYlLMVITzVG9pxWa4ti+jzMM3UBxr2Ycs0Fv0orzecJ1NE1aiZzoZPAQIohIMopGIcDw8fEA3BwEBWd+o/uyiK+PIE9SD1fQwVbB3v+W8/cxsfgOO/jRGnsvhyVNMu4bYIsaJoiFU/KSY9+BwhFRfWrNzyc2N/QPr+NoPyKSHxZ5njSye0I7gyCmc3qvBQU5wQIsEllDCAvGO4hHhTwBjYZoLFVa5XZ6YTiQDxXCiBgM4FUHAARbx/1OL/9P/9AD+918H5uGXjDluIQOv4Q997z+EHHzjc2bf4X/zKHLtTwDkPQoBFBIwDkQOiEz6UAK6DwDBF17Z440c/xc8+eIjVikmkuI4kQynNvII3NRwqrJzBV7/yS3j99c9jn/ZQVRbWEJanJ4ieQxgBoF0t0+KdzaYcv0Bcvi2KY1VFhIrQZjJFjGv0XQcrkQ8Ct/IziVlYCwqUNGat6em9h/Mei50dGGskkSjrriEyvKWX5f2SywD4FPstGrxq8WRlAVghweMnX66XyCtB77TVYbWxyArFXaGWrd+i4p/IqelMixBR19zn7vQYTd3A2wrH6Hg9spgGjBf/cQAwhesIR6s1fvy97+OXvvo69vancFTBhp7hF5LvFvh/4uuIOrYhJFY8qlHHn11sn6WZjkNHiynSb4IgzJq9Q7teYyJFudt1i6au2VlpKx6fjFPhOsiYz+z7yAIA2L8wnc64jmsIqGskqC1bL8+/PetVL53QDgA8IiChQYaIq77I84wgdD5AC1V5xyFmemJbY1DNpti/c0ufHHyMCD2brSFEOM/p7//+h4f4v/2P9/nvZ3gCEUDvgXceevzv/9UJ/tEv7+BL1yJMDKgQEa0DoQNcD9d3LLQBIHJExXp1ir/4i/+Af/cn38GHHz2UVOgI7wHfAfvXDKIlOBh0pgFMwPVbV3GHbqGpK6yNwcMHD9D3HWP9AJYnR/BC9nTt6hUYYgnYVBWCz+ZqBhkIs9kCzgWcnqwwm03FnEfSrrlRwu4jIqzh8l4ueBhj0Xvmjp4vFjyG6GGN5fj6CHipPm4BWHDl+UgGUZZwTxWIAowJgA8gcBiYhQWCAUJRqYYAH7ngMkQg8sHCx8ATaUtJy2IxqEDWQJdXpkL+A3CsFUcCYIHphPu0OnyAg5t3QbWFxRoePDceDtZ6BET4yGPt1oTT+yf4F//vP8HLd29i52AHvW1AjlkDjbGI0SFGn4W2UUHpxZ+g2Dpy/7a2jye4edhnQwzJwT+GqgD2I/mA48NT3Lx1C871ePToGLPpFJOmQVVX6F2f2C+tYb8V3xNb7wNgI2dALeedxQ6Ojo6Zr2eStn7S8je07NTTwZ2eZmrO/MbjrnLphHZpsWjqSHpFfk1+aCK4wBucZTtHSZAxqIW7l0PtlKSeyZOcD/i///t7+Pc/OEbnPv4pHCLQuYh/9j+d4OsvW/zDrzV8iFCAiscQAzS5BjGKZeDw6NFDvPvue3jv/XscLmYB7wDXAleXQLQETwbOTnB0/Ai9Z3IhI5V8+q5D33cpO8+7XoS2WCqACAPx6OvppNpyjFKCjRkJU7gZjTbo+PekcSE5ZYPAIz440fxVEI7mOOpzZcENgP9NQrg8Kog1f3EiRzVrJdlKEO/iLiMB8iTmdqF5b36a1xmltaiWRoZHfN/zYWTE+Zi6H7ifqjWDEDzQrT0+eP8+uq4XzZ2Kvm/v70aURvFb+daAq4M+/toez982x2ipzWpvFFNW/uxA7BRXi9AYM4DONm+MwfXO7yPnGiDqtTahj811UAru56CJx4J36DGa/aUT2mnZ0jgkaNtJKdtWEl88MHCUOOc4FT74xGsRQsAf/tkxvv2jJXr/fM2mzkf8h3ccrF3hf3U3pkWkDhMqMFGi7EB55ZW7uHr9Bq7duAkyEavlGocPjuHiIfavXsHB9Rtw9RSvvvoaZrMZQ0DW8maQiA1UzOFR1zViBLx32eMfuZYkgTWVWAgpQOlcM3c2RhEkjEqUgErWdKy1aNtWSOnnadMYyiXhVKNVMatgRhkYZ2IAIYAU54wAghe5F0GooOgIRz0GdiyruCN6HjLq/CaFDqCOLjPefvmQ5HVsUEI53jtEy4ebcz2Oj5c4OV2j3pUix+Vyp4zjb8RmPyc58zzamYdizHUctSReLSyASk/B0WEEsT8fK+y2O5OR1vm26uyfJgektksntAEx/qw+AE0fz3mHmY0ximMnIHgR0L3bqBDuvEtC+ztvO3z7Rw69P+vuH6/1Hviztzp8/n9+iN/4GzucFONZ0qRFGiVWvK6wt7eHr371F7DYPcCv/No3QSbiwb17eOsnP8GPfvwDfOEXfxFf/eVfRmx2cP3mHezu7oFMhaqqYasK3nvM5zspo2wynTLxU8cJL1Z4jDlDjQ8K7yOXu5J5tJLA4oNEnQQVjCK0I5h3RQ5SQnYw1XWNR48eYbGYY1+KtRIBMBaGLHxwPF6yYiUFEPUADIgiY/8AKjB5ko0+C3MXQMGDYGEpIsCICAwCu3OKKIFA0Z4tQJ5Di4BwaBAimOiq1Gr1sDNyLiduxpi188718BQQYkDXdbh3/xDXH53g5u5V0Txjct4SqQY+jJjgu13cOJ+lKf/1OPrDGIPZbIau6xBjTGGg+tmqYlzbhDj4Xtkeh63rv+oAH8M55bo973rPcgo+K7hy6YQ2xc2wqxyXiwEOqX9qeasQAsddi+Due86UcoGF+PE64p9/N16YwNbWe+D/+scf4hc+O8WVOTAMA6AUraE1Fa9cOcD1m7fxpS99HhERH+3vwPcrfPTgA9y+fRuf+9zngckOTDVBXXP5La2cowkMGn5mhaBJm4YElhljIUQpd5U/A2SOCJ3rsWZT4gg5Eidv2KapE06eTd/B15AhjWFBXooxQQkqtJVql4WYauXyw6p4mlu10J5m6z29kM8QSUr8Gl+Hcl+SmV44zzSkL4SAtu3QtmIBiVVShix+LOH8guT62ZptTlXXENSUYJWsT4W/4uDBba67x9yXcojfszxT6cgztYFYesL21ysV6CkaARzL2Tv0Qsi/Xq+xWq1wujzF6Sn/LE9PsVpJdfO2TZCIhrlVVZUSPv777wJ+k/PoQlofIv7P//yDre+pBtB3Pe7du4fFYo6Dg33oEmgaTgFfLlfoug5EhMlkgokU4YVg95pE0HUd1us1AMgc9IgxpOofSkbP8LCBc30uLkAMmRiTM1DLZAoaCA8qB8FFjtsOU+EUiZHjqaOOkb2DSCFAEO1R1FGFO+SCIpRzkVuClO+kKFp1FOcSwIyMHiCvwHoBxVxMI8rhbFzVh1+fTCa87rzHpK4huJgcIqQjQYzsoDWVwSuvvgJbWeZt0YQdgdMGuHR5BOTT9OIG+ZTtTM2VMmyhAloTvDYLcpwtMZ8mBFCpWXPVm3N7/kTXfZo2fFpnt0unaSPmgfddj77v4PqOIY8QmLvAe8YXpWwYY4hikkmwfpnaDkN454HDzw5XzxQl8iwtBOCtD1u89WGH1/aH53EIAKLHar3Cj3/8Y/zCl38JL730UvrMYr7Ayy+/jEcPH+H0dAlDhkPpqinIcAx4U9fC5xGxXC6Tg+f0hBNofPBo2xaT2QxVVWG5PAXDIwar9QpVU8FK6RU+AIzEGpN46DW2GwLL+qyRC4+K9w69c9hZcLp9jBEkfNIhRB6oaPpBBDqMQbAGFAzL56CatrBhxSC0AEIQFkXjlixDInbW9qEHTK7TyFmy5kLUmCgC2BgCrEU0FquuRyPWymKxi3XbwpkKO/MZTh4uWWgnZkk+aUKMcL5D1Vj88q99HXVdo21bcCgh+CAMASQJfXxcDnFxBHVpfnratqgSI1Wi6rpmit6qwnQ6xcnJCQAk3pEU3QEJRdU5eEqt2RiD6XQK7x1W6yXqRjnfh8RWo54/8xi39W27L25LX5/4rn+NmvJ2xBDgHWPTfd+jE217vV5htVrL72t0bYteMvLKU5yIC9fWdY0/+WEL94K0bG29j/gX3znmP7YsbOccDg8PMZ1OsbPYSe/VdYWdnR20bYe+55jupq5R140w/nFomEYr9L1D2zKrWtf37PCKIUEixhCcy2a40xJgyYmn5r7CKZloafiT+w6Is7fv0TS1YOdFVptEzPANZGCqJie8FqPIkjicq9Sn4n3VtOGBhGmzsL9wDVR8EoYKpy2QWOai90yli8KZG8XCkEnwwcNYws1bN2GshfMhQX5plMUwcmR70eJwzoZu44tvWwXWGDMuNG19TaGSbaXvHne/baF7qckpphWVSibLwcdixs6zFYhnOgG3CXGFIh8ntC+hph3TonS9g+t7rnwNcZhJFRquFCMFeg0kBI4S4b4xXNHcGMK6j/juO+sXblXGCHznxyus/uYUKcY5ySOGOHZ2dnDv/n3s/OxnuHWHq6O07QrHjx4m8ibn2JFqE95MCddmiCSmIrONFOlVq0RN0xACqtok83EchpcIntIkFU5IEcYpbdha9H2fxlF671GML883qRqCAMBFgoUBUZVwYQncBCfTRKnoXh4EhEBc4DlCK5tkGEU/sxFe+BybOgo121Z3OzuBuS/WcJGEENm6YLxWgW5xLFLEfDHHHISd3VlxKPE11Zmp19QklARUXaDD9VlbyVGiTlmG8ylZvFpdRgVrWm+UGR1LB+OZQlrulw8EltrKeTLm1i5jusc8KRfpvD6rXTqhHX1IDqp2vcZ6tUJVc7VxYyvUdQWbVD7AQDLtzDDkyxTOurc+WKMyBPecQ/yepFkLvHU/JuUrMvALIg6Hunn7Fn70ox/h8OgEX6/YUXP/3kf48Rs/xGTSwFqD1XrNIXsmpCKyIAJZi2YyQfBV4uaYz+foug5936PtOkxFq3HOYbFToaornCyXCMEDqBEC5NDj/gSFI0jIikSB5ZhbdTjO0Pe9bBzlOBe+iZgrYnPihKToy8by0WAVDCbUwFIFIxCNg+WsycomqAdEcBBNlCzI1AgkBTGMYe1aAsaM8FdzEs8FNQJC8PAIqIxNB1RdcQoexYDaGkysRYwevUQkahKQrYzELROu37qG2TRgMrVIJHXybI0FolopIpR43YR0OD352XSxQqnUmEttOwhfj8IWfd/j5OQEs9kMIYRU8FehkLHQ1kgZJZkq1xQwtNBUbE9nE7Rdk/jdyz5+EsL5rHbphHY2KyO8wCLWEqiqWEBUljcMdDmGZLICGSMF8iJ6537/XJJonqV1fcRbH/XYQekno4Gm/cEHD+B8xBdOTwFEPHj4AG+/845UjTHovRPHV4HvFJq2IaASp2RdNykO1vuczKCbwgqJ1FiDSRVlgrLUqVMsaz56jVLDUUhFXw8hR6nooyRCSqIJAPrI1LhEFprZF6JhlkWyidfcFwJH6WIZ3c7PGyIcSClrL7IRpP6jWAQyhdZYkDgQDQHWkDACDgULESGA0/vnixn2dw2qOhcFjrGEg7KGqM7JGJAOuaET95wOX5DlUWqt42xDjVDSVlUVnHNo2xaLxSJBmSpMx1DJGFYpW7rn+HUAtrKJcfLT3C6d0C7Nv2x6F5ENyNgRm43Fl894Vm980L0wB+S4hQh8/90O32jUYQqtZQBrLW7evInjE67s8d577wGIePToEYyxuHPnDvb29jjSpO/RTIqFLT91XaNdu+Qxd5IaDIjGM9aEiLPUxnNFxPBIu1qDTC5ppp8r6z+2bYsgdfyaptlK2anaOUMCAlto6jrV8KCBSHHGwKMCrGWoRHFeVvoBWBHUBlGEva4FhCIS5SLlduQbJO6W4pAwxjBOL3HqhiAJnoRiKBC0HyF6gYSUbktvwQx/A1yb0peRMv7kmk8muC+mqcDdJsDJDEMWS7hjG55drqHzPndeX1QRUobBEMKApvU8uOXjtG2WxnntEgptFtKIUuyAhE/EZqzaSiXwGIvUUeBMR9TR8oIDsx/THp16mKnGT+viDZg0E3z961/HyUmL997/EN/+9re5LFNdYbGY4xu//k3sX72OECKWpytMJnuYTHQDM//HfD7H8vQEvTgil6tVwhRV21bHjJU57LpOKqdw/2LkA2Q6neLk6BhVbVHZOqe1Azm71HusVisQcQmz3d2dhFmq41EFi60q4dJQfnKDQBbeTtHHCi4QjBgPrWngKSJUBE/cpy4ItAAAgoMbRFREoFCB4JM2GzU58mwq5Y/VmLcmgAz3wkWk6JsQgjA3As51qIxq24XQlmtEYiKpzrUIwXDEi0Je0KxdhURY+FkY4XBRIRYF+//kW4lBl8LKWkmmKqwzYwznTJQWhGDTdZ1hDQ0THAvu8pDcFsNuRPGYz+dJiXlesMiTXCcfXOdHPFw6oQ3IAyHBpUeOLubYHmaKbb1GMcn+k1KzpTmftU4eGmtStrJ4+eWXsbv7Pfh3f4Y333wTIXhcvXoFe3uv4dVXXwXVDdaOy6f5gs8DosnWdY0QIzpxDHZ9J5V9TOJdydpP5oMYT50m+jCJvBEoICMOZUX39XolGjalohXAWMPQmpKsDgaGdRHIIJqa5yRp0UBPFp7REY4LSXhwuhxMBCrByC0j2VnrHWmnz71FFrpJux/hpNYwJh+8T3AdITsPGdYRoU1cACDFyqsqLi0U886HvMxdEmCE5ySLLqxp8YvSCagQ22bkBbKDvNC0S4txQ2huGb/KiaZpsF6vk7PzrPDBi8C5n0STv3RCW4VxGT6T/wfWNkYZVIAsaqhcVHOZP6SRFZ9UqwZKEQlmrJmRwP7BPm7duoVl2yLGgP39Pdy4eYML80I2fCp5RtCSY2oOGqKk9VUSEshaWUjTRISBpqaV5UtNSZn7fPBcLCHkTacaU13XXHi4aTaL9IpmyNpRtn5CAZms1z3eP+xgXASJ4P7i1QN8cO8RPAHVKeADsdAOhcMpAjYQKoqYUMRL+1bCBokFtuDAF9nE+IWSVJX7U/mcO9fBUAObhLZ6GZUSNzLrn6T3n67WuH//Pj5zYw+VVeEiWnaKINk2trNe3/zE+Z96fu08nNsYw8lEyepjIV1LvdNSuJffe1zLWjgfiiRCeyUWZwm1PO21t41vfN9naZdOaIfA2W+WOHyvMqJTkVbrVvNjuChEKsm/rAkphrg3M/jw6JMYDbeDudTJkz6VfAg+RHzhC1/Ardt38eW/8VUYQ2jqCvM5J8V0Ymn13kkImfBdw3D0SNPAWIvJZAIA2NlZcBWZjqNHYtREBSPk+1z8gWGTgLq2CR6pJd44iAlLMWtGxhgsFgvUdQ3a2ckZmVF1SF7QVVWh74XrJQQEz8/Eyusf3j/B//ifPgA6D4qsK//uF38Nf/Ifvg9PEbEyCMJbTSEikk+Cu4oWdfRYmID/4ne/hqayiKksHMd+X2QjY9KaMqZwFBJHSIT1Co+ODrHYu4EQCEtyMOADJYCgvksXAlb9Gm2/iwf3H+CP/uhf43/5+38HVw92YaoaQZgcAbF2hCemzC58UgD/omH+spW4tfecX5CcigCmmOHw6AiTpsFkNsPp8TEWiwWvc8n8HcMsZeSIrkO917bwVHXu379/f0NQD8MEP7l2CYU2EwAZqTijUQKGKGkq/DD484MTk4p/Y3ZUvn6rwY8//GSckYaAL91tEO9nxo1ETCqa9u3bt3DrtoWLEdYykVIMHqt1x0x3ESwEARbYSdNmDM+QAdW8FCaTCRA5xp0JoELa8KXJycI4ALDyPqWQveD5gLGUI03quuastskkEdmnKjlptBLDLSXNWGsP3E/Jrjw+WeGHP/kAaDk2RMPdfvjmz+AowJNBQAVEAsWAaFx6jjUq1MFh13j43/4aEE3CT1TrvsimFpzmJGbskmEq07Xo1ivsHxhYo8nrxKyySjtLgEdA53u4EPDo8AR/+Zffw+//g99CpD22rly/RdJux44/bW0IbVCqFWmtRU1NKklXN5wNOp1OQQR4l6GM8bXOa4PQPtG0OTMyV4fXz23Ekn9C7dIJ7UFjyTaccA1piI+ZfAUSCXjlWo2m4iSbF92a2uC1mw0ePhBsMwYcnxzDUA2gQtcZrNcevYtJaDP3d4DzEdV0jmq6k5yLpeuVCAmiUGHMDsNNx6s6PxGVD2KIGepnANG65TBQzUZDAikFFatmlTF6ddZJaAUg+DNI6WBZGw4S+2INJeIqYy0MCH1Ua0tY4CgfvjZWqABYK9bU+JR+fCjFx2zZc0s5j6iA8rJFSOI4ZNCe+5qObXG0ei09BsJqxdw5s9k0W4sooZLyaDyjX4XT80W2cv3kbENK3Qox87SoEGenrsRil76aURvj0dsgihJGInnhImhan+T7Cuee1y6t0GYkgCuEB+eAWjdATMJYHZZnPRx9/dWbE7hPyBnpfcTrtxr8xQ+0OnWPN974MRANQjBYLgN+9KO38OjoGJ0LnDMSufDp/sFV/MJXv4Zf/KWvYy1ClpOPuCIMEWE6nyMiopPokePjY0aJRv2oKgMfONpCCY76vsd0OkmfIcHGm2aC+Xwu/BHs7PPeYzqZJKY2RqTE3CTps4QmRnD2KlnLVgMYEoCE+zlqYKxDU1tMJ8wDPp3N4A1hfbJGiOzY21nsIqBPzrc6WjShx8I4JE6OJLdj8mFcVAsxSuK8BOqV60zgvNpWqAwx5WwQzm+OoeQqPyq0AXTOoffsH/jZ++9jOqlw585tAMpHDvE9BHgvIjluebij9knpkGX6uDoiAaB3LgnS+XwOAFiv16jqGj4E9F2Puq4Gwm5bxMi4DRJsFAoRmaFau2rcz0tgn+XQfJrrXzqhncwZwafP9DgjGYyD17d5mmcTg6+8MsVfvvViU9mJgK+9Psd8YjhulXhhv//+z7ikmCMcH/f48z//c3zw4T2s+541uODhXcArn/kMrt68jb9RVQhdLvag2heI0AiWrWnly+UKdVWhqVkY6nAZHuHCskzWw87GcTOGKVZnsxmMMZg0DQyZlIJMQOKOUFgloazCLEjGwhjLG9WyU9GHKMLLcjy2iTB1g8mUCbDqyYRpCk77BNtMpzOEWMkzy0J7Sj0LbXk96dgXXAUhShRM9paUG5nXamVsCvdD4XshEHzUSkYMk/RCN2CrGg8fPsK1K3u4dfMWWx8EEBnx4Siwljry4oDqp2hlCJ/GaccY4YoK6ZPJJCXXWMkAVsikHFMJZejfG/fD5jSkeO2qSpFTTxo//aLapRPaABIsophvOuW2fFTDsAavbTkV/9ZXdvG9t9vnXq3mvFZZwt/9+hWULG1EjDsHT/AVwbkKBwf76F1A6x0b0cJgeOXKVa5UE/U0ZxjEGja/NRyOQyE5REXZ+rTFVCVEyo0hJnhkWzypJiNw6N8wMaEIacht/KdaQKkD+YP61Sj9nEwq7OxMAQC7OzM4EKrDU0QXUVcGu4spYhQCJhCqaNAEizkqjoGm8voZOrpIeUZADkMsNUNEieKxCMofnYoWbF6Ey7MFGHGc+RDgvTqN8zWH9ynWbvlW3Hj3hbXN8L3NvWhSoMAQ867rGghCLDZ8mGfea3vo36ama42BlxDV0nm5rc9P085KiX+aa186oc3czkrBmQPys5updEY+uVnyyvUGr1yv8eYLckgaAj5zY4JXb00Btyy0EItXXnkFiBYxGqzXwGKxj+WqhScgBAdDhMpW2D+4gpt3X0GIPiW7OOdhJ/lAAyLqpsF0NgPA3COsevL8dG2H1XKF+WLBmjVFYaXrU5JNqdFMJuzEOT095cMlaG1LSrwkVrg1ypZi6W2FVK4gcMWhKMJMk6E8EWbTCe7cOsDnX70GAPgbX3oFy87h0aMTrGKL3XmNr3zuNmoTBB8mmEiwIWCCgMqWG4cTVi5cbAnXuAGn6+vhGMTqsNZid2cHq+UKPhDmswnaFTtSFRYBkdQU9eicw2Q2xS9++ctw7gHarmcagtgjRq5vqpUUFTN/rGPuYmdg+z1Fu9ZnrB3RfVrXTfpdHeLOOezt7WF5eoqu67FnKGnG44iRbTh2VsykTNtIUZvO51ivVmjbNlW1AYZV3MvPv8h2+YQ2Uaq4TGJmxYGZmRfmtpjQ89p/+dtX8d/+4QcvhIfEGuC/+bu3stYUGdIwxuDmzZviiLToe4MbN+4iRAIqLlBQWctRGtMZ+mjQhQBTW1nsHpMpcYV6vjCqqk4hf9PpFN45rkoNwPU9uvUai50dLv5ruPjuarWSYgk5jApgmtHT01O0LYdgxRCT0I7Kj62OxVHTjetDTGY9J9UwRa5nYBYBwGTS4NrVHbz2mesAgNc/cwuHyxb/8XtvIfY9dmY1Pnv3KmYNH4AasG4iUAfAGjdwRUrqCjQP8bk3AlCIUE6R5u2nLHzWWsxmcxydPEQ0NaaTKWjdJ4WDfTBycAUug9dMGrz22dfw9g/uoXeezXrvEbznCkNGnZxDZ9+nrZXx/kEyo7SbGpXknBsI7clkgtPTU04Mo1wEomxnabbpc+k0G74/mUwSZXPZx23x4C+6XTo+7XLux+E5H3eeDxYWv//N/URef1GttsDf/YrBwc72M1VjnNWTPvxBkjlRKPYIUhFGQuiGjaTGo2h9hcA0xiR4iYg2tJ1tm1+zGLcKhpEnnzuJBN+c3cbfYV3cEFDJgVEZw+npYLY8g4DaEmoy/GP0h6NOMpJd8I4kcPtFtPGNGMM1xXpVgcuf3uxYEL9N0zSYzeYJ181TnxeD4vrAFggi/USMTrJPpG32bzh2zWzOfO8mWXQljMLffbL7lPNT3uNJQwbHKfPl+9uuUcqmsz5zVrt0mnYEm5sgCQMTftz0vrx3npA4771vfm6Onz3o8a0fLS9E464t8GuvN/jKS8qkx30xRgVSxKSZgMgiBMLpyRqrVQfnI6I16LoWhoDTqoKtGkzmu5gs9mGqCr1zWK/X2NvTnc2LfDKZYLVaAQDW65WiJmjqJhX85U0SAMPa+OHhYartWC7cyaTB6SnlSADSUEXGaFUo6TPRg0Ebf08rsQ8rvUMODh8ciBwqCmjkuw2AhiJM6EF+DeMrzAwwCUwnYiKScOaq7Zl3hNsFR2nL/cvDVX0CZMAsgzAwFBG9h62ASVNLEWr2UajvNAIga+FCgDUVDq7sYeeLX8SVgx3BuwHAyLPzG8j2Gd37RNs4A1JXvkZwlK1pGiwWCxweHgIAZrNZguMqUWTSmjzjfo/LTpxOp1itVvCyVp+9huTmOMf3Lp2mOdHv7HY5hbY4F8maRGr+pO1xD4WI8I+/sQ8A+NYPl+ieo2OytsCvf3GOv/fVOi3IBOsUXri6qUFk4foI1zus1yt0ziMai/V6BaWbJVPjwNSY7l6BkRTgtm3lMhkuappJun7bdrCGuUdYc8tx1kESdZTHuNxMuvjqInGG+52GIDUjIUk1ceva5PjbHKuqGzjGKDgHEIMDwcFSQC3XqOWHhXYL42tMDdA4wEZe6F7GHSmAEobNHbzY8gfjJjBHUZlHx2vIIAYPQ0DTVNB4bT1SVCE01jLUVQG7+zvYv/46JrVkT0YBYowFl9XLtx0ChJ+ONnbCady6LhDvfTrwAKQ19v7772Nvbw/T6RTHx8f8ev1kIm0AE20R2o3QLIwjzz4OvLRNox7DLU9yMFw6oa0tY1abk7xtSp70BI1yzX/8jX3cuVrjD759COfjx3JOMp814fe/uYtvfH6O9brduKuGhaX+yuvOOZycnGLd9aCqQt+3QNTiAp5Lg+n3Q8wkQ8XmJVPwSxfToKFiYcsiPQ8e0YX9JHO6cYUzNkSMRZRP0lLVZbkR/5PHhggT5V8AQWL1y5nUmXixqMCWO+rhJnVK81zksadvjcx/W1mJ0QcyxlHgtiz7tytxnzAc8jStXFvbMhbLaU2zd8beHGi8KPkUs/AcQ4GDBCA8udwovztuP/fwiHrYASRWuqedlCe7D+Gbn1/g9n6N/+Mf3ftY2ZJNRfhf/92r+MyNiQgnQOFFju0NiZ0QiFxowBh45/HgwX18+9v/AQ8Pj7F7MEfT1FDEYXfvCqrpHNdu3cWksnBtgO/7jCEzboG6rtFMJN5ZMiRjiOi6DhGA1bhqZLN+mwZCArVoqB8JwJpw8CJlfRBWCKTIEIYw8nVZOItzUA4RYwkxOATvpGhFjpBgGCkA4OLNFhEVIqoYmboVAQGeIRL+hjj6JD3/mZ/iYxoBXCepAJ0L4RIEpycizKZTwFr0bQsDDtEMJqYPRxBABtGwVdn2PTCvEUHoXQSHZ4ZU1ixHSOgzO0t6b+nyBbdSw1TYLCkoCTrIVMpl+B2nsOc8jBCY/bAqolD0fSIMHOalb0YW9aBPSm42m802qt88aRtYDslnlPdN+Xs59sfJqksntMvFuPUkHn/8GQ3jGCO+/cYyadofp3Uu4v/wPzzA739zD994fQ5OERShiiHmxTdnB6PzHo8ePcSf//l38LMPPsKdl6/g4GBfshAjbt66i6s3bycy9xgdR4DEiOyDjpxM07DQruoa0XNkQt/3CDGgEm9+ihoWgVDCTtq3pmlS6JYhSlq6MQbB+4RT6kaULsicpi4JD7ZsXHCyTAx8oFlDCMEx2ZNuDIAJpIgAKoR2DCy0hTubRbZP+jkXQwgjPesiWnlIZStQhx9jgIls8cymU3Qhou9aELRiEIGSRUdSJYGFfdt1gKkREdH3EZXlpJoQIshS0tzHRGlP1tuLb2OnXNlijCldfSzUlNZXk7WU+91aW+D4lOiCt+HYZwlJIuaDmU6n6ISmNdUxfYa2LdZ7XIvyPLimbJdOaBOpfpq1mfKhbHPKbEt/3bwmCjMz4g//9BDffk6YNsfdRvzBt47w3gOHv//VZmsfstGfOjuomF7XNeq6TkKbyaCGi6HEsrlYcBSLRBZjzPdTZ2DaTMmBlnuxrbrHOGpn2GU9gHRtlhrOeL2WEELxOw2/p39FQJj69HCLg3fTDBaFEfK/Fy+2NxplLUsdlQDBGAsKEmedA3sGrRyZFw3ahYD1usN8PimSO6n4ecruPfU3Pn5L8Ed59wLpKddUycNewhj5M1T893E3HvZB/7XWDqo3jfuq9x875Mdt22fGmnb67GPW4aUT2mMMW03vcXtSzHXb9/7wTw/xrR8tn3t2ZOcjvvXDJbx3+M3PQNLOcxgYZzoGUJV5k/u+xxe/8Fm8/rnX8IVf+Bzmi7nEJXtMpgtcu34d3juOvfYeXOmEslwDOyIriRl2rocV07CqKrRdiwgmkuJsSYuu61K44Wq1wmKxKLBG5v2oq0rqc9rBhkoiOGK4NMX5RGNFhsQpWXyYIykIsIQo4ZceQCDARyMlyYRLnPigijEgkgcoCBSiGz4LtBclshVFz5hrSI+ENbwGrVuhW68xm04QnEPrehiyCAKx6CHlQ8C6XaNtZ3j04CHe/PGb+PrXvoxJbWHJIgM+eugNy5N9GhpDOWMn3CifkzYpKeq6xnq9hnMOu7u7WK1WWK1WyVGp1zJVBbOhEKCAYpAUlNynmKoxPXr4cAMe2aaYjB2q43vpe072Ikdf5aiUumlAwGMt90sntMkQoo/Jy66atmKmH1d9+NM3lvj2D5+/wNbW+4g/+3GLvQq4+zneaIayRsHaV50EWd/3+OIXX8fBlav4pV/+OuqmBhAQncO6c+jBUQbO+0ynOjATWWhbqbTQOwdTM/UlJzVEdK6XKuAWprJJGKvQns/nWSgTpM5eja7rEgeJRgCU9y2fR+lcK7WstJcKTSsoDmkIseLPOnCmpI8WAVaEdkSQKA3OeHRIWTYDj6ukr1wg90iCsQfrT7DN6GFh5YDiqB1ardCuV9g72EW79IjewVQ2KZ36E4LH2nms24APPryPv/jL/4gvfvF1VHaOqrIoqYiz0NFCGp+GFgXaCAOSJlkQ/BE50I0xKcxU4YvT01N0XYfbt2/j5OQEXddhZyeXsIsx8tqOEdEP4TyFUlQgB++FtZiS0J7NZuj6fqNgx1honwXxjF+LkX1Ffd/DOYfK1klw27oBYgT585/NpUuuAcZ6xFBKj7Xrp5Hhj049/uDbh881zG9b6z3wL38AHJ70Q/VgfNvIPMLTaYOdnQV2d3ex2FlgMV9gPp9jOp0WTpmcYZYOMACAwhkKj2QQRp2VBNEUqHTsZM1n2MTrTsPssYH2cY6FU75T+utKtmsVXCECXj7kY8yZlPqpAv1Qjbt4N0m+i+bRTuPJd06Ek/z6aMUqHS1yyTzEspfZ56GWZIgRfe+wWq/R9V16XhhM+yZM8knr3LFYb8B4f8aBBjzeuyUcMk5dL1t6HecHJIzfUYfk+J7P4pDchmFvc1A+ScDEpRPaG6cf/1bKoieamG3tn/zbBx/b6fikzQfgv/uX99h0jD7JuRgigmf+4BgCHj58iLpiLzcJlEBE4rwh+BDgXJ9pUonguo6hF6hgpoRLa3ZZ13U4OTmBkzTevu/THLZtmzSU9Xq94SjVitac6u4GizH7BySqYbQERR/JAjY9uAiOPwcqa9B2HY5Wazw45qSg43XEgyOP01WHGJnDBKQaN0nlcr1uKK4pV6YLjBwZDTCvytwKxCpZK01dg0MVYy4/lrqdTRQyBOcD82vHiLfffhePDo8A0ow+wewL6OHT1sZ1QofaaRitMf7R9aXKw3Q6xWw2Q9u2AyHoJaW/bDEO75n9PqVVxJzsdpSwU7azIkPyffj+fd+jbVus2w5V3WCxs4vrN27i4MpVzBZz+BiwWq3Q9/1jD4VLJ7SBzWKgKDDA83Cn89pP73V4+17/wqrXhAi8fa/DT95fMY4NGUUEvJPwtBjw4N4D1HWN+XyRiLIYOWBnX/ABfe8GRY07WdQAEg2mFfNPM0jbtsXx8TG6Tgr+dl0SoOv1GlXFQltr6QFZk6tshbqusVwuU1XrtOlUc5GOqoZf6ltZIx4J7hhhiBn8Vn2Hw+UK94+XAIDDZcC9Rw6nyxYhEoytASNCmwxj3ucI7QiggLcvsImWPFAwuShCdpoTKmsxaSaAoNhVKW9jXtMstIHeBzgRGj9586d48PAQICNONP5gctKPBctmD194GxMylZCmOgK5/9lpfnp6OsjKnc/nmM/nA6ENcHJOKOqd8g02S5FpYyqHmIR2CbWM21ho631LuMR7j67rsF6vsW471HWD3b193Lp1G1evX8NCWBqXyyVznfy8Ce1xmoXY9CPjekuLUUzQMZcHf/7ffPfkhRdCcB74l985AXBGryMkMzEkx4br5cc5OOczfKGYJglx02goySGDvIiVuEf/1q+UDpzt1bE3nUajbm8dyzb4J11TXiAwd0gUxsK1Hiq9R9v7VLXGkOK/8k1KTNSjeIqR4N7Wt+fWShy9+Kt8uTgATcqWEUx6Yy6LUYiwN8Zi3bZyWD67+C3ho09SMed+5A5kSGQsaMOAL6TUnPV7xZ9ybRpccyzAxzJgmxY9/n2MXw9+l88asUQrcfarJq+tzGHY1i6dIxJg7dJajuvVkDaATccUayzKDgMK5wfZrLqAv3p7teF9vugWI/CXb66wdovcQwKsrVJSyc2bN/HjH/8YH3x0Dw8ODxksjQEUA5wHdq5cx8GN2yCNQiFC13VoQhCifTmoirJghmqYmh09EtKQYQ7kMD+imGJkB6FYUjC4NFGZr3sUFpU0v8cqFzp0NHWFq3s7eHDvPg6PDvHmT98GvnwXb/70HTx61MIA2J3vYH+xk/COFAZIopZS4FBuFJtY5d8FPuM0xC2HHMtGTqSywhsynUxwsl4iOMeFqgGpt8MHqvKWee/R9T2m8zk+89pn8fDeB8J8B5l3L4ZKTFqkuWDSs6dvQ/gswSAyVbqWFI4zhrBYLNK6PD4+TmsO4GgngpbTKwWvPHhzTlgqIjQhKYTA9+n75FgffLZcz0UbaPtkMJ3OMLcWtqqxs7OTWDW1sMPBwUFK6Fksds6dqUsntAkkCSRVFhiSbCDLAsO4ssLuLIRH+Qje/LBDZeiF4dlls5bw5keZ44NAqOsKruf+3r17F/+v/88f4XS1xof37yMEBwgOWjUzfOXrv4JXXv+CeN8JMRp0Xcfe+ggW2oa5xwHAmgpWqs9Ya9H1HXrn0uYAWEhUVQXvg9SUHGrUVWUTl7a+Z21VCPGcJCF6JPT4LGc+aXuU5em0qXDjyh4e3Yt4+OAhjo8eAf/g1/GDH/4EXRthI3BlZxdXd/cBD5DUg4yqMYkwMAVkpogFCBcWQMLrikAhFtprkXBBfHiFGGDAmthsNsVHH9xDIHBFm8jkVx4c5cORQhHOO7R9j/liF5//4pfwb9/5qcBaxPSvIYKrDuWCzMZ+OrZ+KUwV9ihhC+9CUhSUp53Xk8GtWzfRdR3atsXh4SH29vaSb6bvexA4w5dK7Lq4L5HWU80HhsIxtc0yYmdnB8dHRzhdrZLQPk/rDiFgLQk5MUZMZhwcsFjMMZvNBxi5Rqhcv349ZXhqQZKz2qfjyT3vliU0gEwryn+VnztL2xiCLO/c614Ih/a21vURb37Y43bxmo6HiFN51+s1jo6OcXR0jBCYa8QgYjILEl+ti4CFVpCyY7Ew0TOvBy9m5bY23gLk2flZLMzzfAPnm5TIr4/VaypN1pGjTv61xmDSVLAEdN6h6xkzXy5XCI5QGUJTV+LEK75M+SrDxI1P4LnGzWpJANIaZeWBYI1lki5jOAEyG1tF47UQQkRtLebzBTTyhE+6ERA0MC3O6+Mzjexjt1LTTksnQSLDCIySnliVh5L7Jg7kwMaN9Jez35f7jItfaxtDKiXEkRUWeZbWoq4bDufUA6koo1bXmdP+cVN/KYW2TmCUzaFC6zzn43kgyRsftC/MATluIQLff7fFnStK8s4LwRAX0L196za+9rWv48HDQ+xfvQqQTxEHk/kOdhY7aeEYYxAioe9dSi/XcDLVtIP36DzHM7dtC+c9XPBMiiXCXvHqtDCL/qqmcD67IqVCFSlDk4ZAFYn2SyPJvZhWeOn6Dh5ev4qjY4vlih2RlYmoJzWu7C5w58Y+blzZgUUUHLjoYRTpN3qpFOoX1zIgp3+VLXVB8GkirhlJlQXVDdadkF9FDASTZu2RMZg0E3zxi1/AzZvXuV6oD0noWVKL6tMGjQxbKZx9CFh32XG+s7NIvpqjo+P0+clkkrKD9XcfAlskptkYMhGlTFKe6/x6GWYIDKkZFBos0+eBbAnoM+HvsBNzOp9jNptlTp4SliEp/lHZTMz2mMdz6YQ2Qcl35G/aFNqbWJbu2s1CtQBwtPxkExEenQbQVfWuZ4x4NpvjtVc/i9/7XYv7Dx7i/sOHsBWBiHPmJvNd7O/tAyHCEC80EwjtumVubMhchJB4s51z8K5H37H2wioeIUSCD5wgY6WKTIJMsjIn8202aC3HESYaA555Q3PL2hYfPgxvMLXT3rzB51+e4+TRTXz4kcG9B3zdxkTszhq8duc6Xn/pOm5d3YEFY/sb6elxfEDnxKuLFWeFoxsGYRBkyJYHC1p1JRBXZ29q2KbBSd+lqdY6nYaYriD0EWQtFrsL/Mqv/Ar2dicwluBanQNummiyjbnxk25jB7YSQCkkUtc1rl27gb7vsVwucf/+A8xmU0wmzSBq5ODgAKenp/A+YN11qJomYfrlvZxzCRItw/8UJlGLR0nQtE9afqwMN/Tep0gqIsL+/j7m8wXmswXqaaY+LsepmjYsoaKaa12Cwbvz2qUT2gCGZjzOiMfkV5Luc9b3QXjhUSPjxlj6qJySaLSzWY3r164DZLFcr1HVBiTBvNP5HHVdq+KWMN1QEC1pK808L2adcw7GGpAxrLuL0lpqeaVXvjRth5/RT6SbQZ2Q5b03Wxz+SkBVGeyYGovpFLPJJLESWkNoKovFrMFi1mA2qTj8poAcxiJ521O9OLSkTMumwZhLqGg8F0ZqniYSfr0GkeCx4Cxg8OgqazE/2EdTZy4V/W9EzBS8TyC0C2/PhbatzkCFQ2Lm11GBqTBI3/eYTGoAyDVEYxzsd63EVGrS6R5A9psUrdS0VekbQC6jfqsw18NGoUWFPKrCKT8YY3G/8vqPc8pfOqFN6YdENpAIHV22uUXIJh2vThp+qHpMCM5Ft8py5Idmx6kFHWNEDAFVxXHa169fB3Nr8IOvmimapmFB7ANitEAssxvlBpQzv8iwllyLMxGCn6/aPpnv1lp45xPzmXNOiKqy+TeMgQ0gGjpXYgFblNrNUCMffg4AKETUiLixtwMbA+YNb9ovvHoXi+kc1w92uBycd+CjxidNUxFtucOgPxTpSeTYx2x5LJS8n/rOiMkRHGs/aRr4GNG1LRCYM4XkPa52k7FeHyJ6FxBrFVqQKAh2u8boEOM2NP2TbUOBmJ9/iBErcf7pGE9OTtJnF4sFJpMmxVKr83u1WqWKR94HoV0wTNsr8zuA7tI5NhTI6jwGYrq+MgnGGAe/E3E0i+Ls0+kMVVVjmwQeKzso1jwNNub2dimFNmLyy3MVlsoihMilgxDPMT6yxqItAtibG3x4dIGdfkzbn4tjkAwMjECyHIXhXMCkmeBgv8ZssYBza0A1KmNA9ZQ3tHOIVAGQsmHIJzrBJI+1NQaVqcXsnCBEpoDt3GHS1pumQd/3zFNiOBqlrutEOkVkuNSbxMyWDiJ9QFn7znogsLlx+H3dYAYWEVMPvHrjKm7u72HVsRb2za99EZUxmFcNptYBruPDLnrB4XmkiKa4mzYCwhaL6zk3DjezYHDEDKChKNaRMUx0pfDIfDbH8fIYq9UKFGsQajbnrZWTmzNmEQi98+g6B8waZhQPHPKnSkxwPbP6nmNOfBICfWiVZYqEGAKOj49x9+5daFjfw4cPkwC9cuVKMtrUwdd1HY6OjrC/vw9jgL5fY7VaoWkaTKeTzarqxKDV0BAkgSq0CIJH0zAEoweCtTZFrhARZrMZrly5gslkIjTHJiWuqXWqbQAbBimjFyNzDFH295zVLp3QBjCCR0TTDoK/xkIsxzE8kjWX4gL43K0JfvxB94k4Iw0BX7pTgTyvztRXGQonuhhUlYGpK3Q9gBhSTHYwTBoUYgTRUDCq5gnK0QwkGr3VWOsYgL5MH86LWpNsQpAahsgm53kRJKVnPrU4FKUD2CVdNQIRsIhYTBo0dYPZlO9x7WAXBuAwxt6lOUAotexizLkz2S8p+PyzCq7xOIcQSPHv1hts2IBQJ3qMgPcOoCoNgiCKuqwDDs8X/hUxxRgREmqD5PyMQ+ty1F600D5PqVSIrq7rJGS7rkvzylakhDCKhegkPLVcf95rktkIkio6MH4u42epglphEFVIEi4t/ZlO2br1Ls//WEXg0MOIdFake9Ho3+3t0gntkE7sHIIzxrEGrcB7t0aXRODl6w2aij5WdZpnbU0FvHajBt4Hb8QirjR4j/v3H+KNn/wMJ8sVYAEyPUg0bVPVuHn3Fdx+5bMcoy3QCjtBApwPqKzZ0DL04GrbFiGyB16hGHU8WmMRbBxgiYMm2B7zLjhU1SZH+KCNnoFGkpS2D4Frv9jgQYEQY3YxmigcHQaA8aDgQbB8IEW9YomDlaK8OLjVsXoBje8YOSRoeHtWmkcYfowR3nmJAOHQMxNoO+4ucELf9wihwcOjI6xOjvHyzeuoLGA+Nax+w7bh70iv8xw1TZPqmmpMs0JxJZSmwlS13q7rYAxTq2rEhwrbcRtbWDHGok5pjtBpmiY54AF+Hjs7O7DWYj6f54CHUIQCluMZ3XU87qEydXa7dEI7Cs6ktIsABmb61vjgwQU2N+1rN5pPzBnpAvD6rQo/+Rlry+UY+r7H22//FP/sn/0LvPPe+7ANsLNjUrmx2XwXv/23/zO88tkvMg8HWHAzDs3C1JpmkB6tIYAxRuYOkZA/1VaCF82+5qQFFuYxeb7LVgmndtuusVjsDDhhAN2wHO0yslDVABiKWSKYEFB7h0gMF1n5RBUCiDwmluCdA8gxhzJ51VmhV8uJ7AVhVRIe2yOIPnZTDT7wfEnxdQC6PnvRzBi3Vg2s6zp45xjLb2rYTq5RaoqRYZAQOGMw+AXee/d9vP3mT3Djd/8mqLGAKQ7kC3ctPnlTCIyjYfLrQSykxWKB5XJZlP9aJKhNcWeSvaDCdW9vj4nU6gbXr99IUSX8w9cfOM0xtPw42zRHawFI8EjXMYNi0zTY2dkRXH2CyWRSaPaBk5ooX68cLym2Lgcz+9/MRmWes9rlE9qFpj12avEHkNGRzZc2HAMAMGsMvvrKDN9568WmshOAr7xcYT6xSaaoA5It/4jj4xP85Cdv4Y2f/BT1FDg4aGAtj2Fn9wB/4/CQM8KIkuOLNZOI4AtnSLppXkzOOTjv4MR7r2YdQaqGG/HajyEl/YwwBjq3XRDS8D/8vcKsLTWg0nCkqIk+KoAIJPCPIebQBpWlAnCGCTq+/pPUron6/61RL2fpBCNdbjBfBEKQvuaXhTLA+0QYxiyN4/HoFVjweM8x+CenS9y7d1/IkoxU2aSslIynI4+OfQAY7osnNT+27blxqN221/m9vL41frqua6xWK1Si6Sp2vS3RRa9f13VKKiu14zKuenxfOTH1l0J48t96aGh4nyqFyixY13ViwuQ1kOGozVauwZjmeRwee1a7dEIbRDCSuspRI7IAJQnEe5/x1xgRnE/VyHmyOLKirurCUQf83pd38N23V+gvSBHb1ioL/M6XOPojEv+wRkoqNVBPJ7h+6xqCibh99wZ2d2toBm4zmeHatavo+xb1hIvZGmLCpb7v0HYt5nPOwvIhsC5qrLj+iIshVDUqmcWqaXKxZDlBQvApskXnKmm0UUOhtmyWgdDKAiIpvBsyooguIAIXNFBNuYaFY2EeshM6b8QzpOiZm2NwhG/086zPs9A5Rxoqkx8BESEJYANCCAxTRQpYrdvCURVRVzWMrdA0E9Rdi8oF+ODkLhHBAMF4IPJ89B7oHHPmfPjRIW7dOMDuzgQIGX8dWpyU5kOJBYYjuCC86DHXN0Z9KzWMsVK0OcqhErMiAyQ4joRkq6kbVLbKdUkBsBdWV0epGBRPNv0zPGiIDMhY7OzuMYtlU2M6m8NKhEgE7x2W2pTBqOS/odGaU+hFVI8QmC8GzC10Xrt8QtsYNJMJYCxgLJPsEFcujyHCGpdO8xAiuq4Fm+iAJSSnxu5uJfGxLMxfud7glesN3vzwxTgkDQF39gl3DyhXYOHBIETRRk2F2d4uvvCLr+Hzv/hZ/OZv/gZmk0oWN9B5j/nuPlbLY9SzPZCxsGTQ1BXWqyUiAVcO9hAR0TuHBgCqGjEYeCLU02bARFZVjCVSgps8lycTqKLEWiNlWkpOMfbCXkbQwsS8jmXz8FrP23fLHCvZT9S0QGgAXI0GQh3bg7MGYYBAoGg2cMUUNqn/C0E89ww3W5m/OHrQqpGNRXmil40Mr+jfJbckwCSrMECkiBD79HoVDIJjYePhcXT0MFk3VV1jOp2hbiaoZgucrhza2MH1HrGqEI1BIMCZHiYawDRY98BpCxyeBHz/B+9hNpnhYHcXITgmiooBXtLjQVm5ifCIkWPbjTCQG5hU4uxiWgmV5aYQyMQY5gFJYamZodKAEjyHEFHVmvTSY2c+59+7TmogxwG7paGh8AbRYH1kG5RAZEHGw9qIm7duo644zJD5eYxAGwRb1bwvfBDHvx4IlA9I5eAFEs978AHeO6xWa8bdrcW1c2bs0gntCAgBPqXFaIipPBWT9TFzA7RC7ckpw1loa+VvbQTgv/rtq/jf/eEHL4SHpLKEf/zLdTK3AmJKt2aFkxdCPZng6vUDzOcL/NIvfRVNZRO143K1wmnbYdV1rGUZDvWrrEHb9zBdC13FXs1NCf0LiDBVjbrhECZO0hlCIFqzkqt9c8fygs9mbipzBotCNRpKPxGIhOHmQXEtuasoSxIhINewikWnSC51sGpc+7ZnFguYJRRwTHl6IGOn+Vu521T+njfpWGCnnojkD8iJLhRJHKtcLb7t1syrDGCn2kVd1ZhOZjB1g8oY2BhhAsMeCgIF4jTKgIg+cABN20Xcv3+MtnNykLDQyzHiQh2gcdxJIMbiJ2CzcOfzbcNsQf5XAwkscdhuamNnnW4QIFl8McRUJzIEhjEofVbuM3jAesWYYK/SKVhq2ovFThLaZPIa5+8pM2CZSIXBIkljjbnrGlbbC4Rjz6R/4HbphDZQ4EnykDRcBwAT/scimaRwSFSGKRURI7bhlftzg9//xh7+4E+PLlRw1xb4R9/Yxc5kLWiAJKuAl5XGO/sQcHx8hKquMJ1NIFKvEHAFJwKPUsZlQMSH1vEx8ze0bYu9vT3B7Ypq7qOCptpKn4Fm7Ok91ZFZLn51BpfZX49r4wggxTmB4vmcoQAyoHO2dnje/TdjxQf7/UyYZNs1o+DDekalTVxwtnRdJw4u1nLL6vYMC3C8rx4exmhijXRM5pTEAnOux3Q2xbVrV3G6PEHX9aL5AULsCqJkZwAxpDjxPLgRZHDRCMkTtIEwJRpgx9qG78dEp6qCt8yuHEaSyHp+zDiN+IfGHx370DYTdWjwuQhVlPiZabUn/v3nDR4BkqOCzeCYHBjOeymOagcMYfpjEPDo0SN0EjC/zaP0jc/N8d4jh2/9cIn+AgR3XRF+/fMzfPPzC9z7aIUYOV2dHyh72FVoO9fj3ffew2w2xcHBvihEjJOF4DkEzDm0bSf7zwCwILIwlsuQvfvuu0lI3Lx5U6gnWX9TbQUYVgMCikUaaRCCpQtWN0WZ2ltW9Rg7p+ITCgZ+LKb4eyzU88YNMQvAbf3Xv8tolkyiv1khJETWUpnSMwtzFW7l2Fi4mkQRqmuJjAFFQl8IjePjY7RtK9wuvF4n8vm6FojKWnTOMYxXWVgQnN5TkVlDMIbLcF25coAvfvHz+Na/+Zc4XZ5wCrgFQnAgMFTlGQNCCJSgKUp9ZPxXHvETt22x+U/ilNzWytBdVQycy1WYNCMXMIOQPw3x67oOp6eniaypqizWaw4fLGOt+V4hz6Up1qfJ60uVv2y5Ddeecw6klAPeb4xFm/dcaLv3DnXdwBgrCTnbDpPNdimFtra8eVjoRSjJvxVMqkmnmyHG+rSi81mNiPCPv7EPAPj2D5fPVeNuKsI3vzDHf/GruwA4azmC8TcjcXxJMIAF89HRIW7fuSvaRBq5sO/FFL2ROKv1gCKDzvU4OTlJacAAZPHEpGmXhQzGmy+KRjauvKEx3UOz92zt+rFhmOU1Rn+f2R7zWLZr8UOhP4ybjtnK2XKzsxR31aoS54dAJKVm1rZtEtoBAfPpNM2pMRZWneoitI0I52Tqs22eFI2+6zij9cZ1nJyeoO06YQFkYCbEIJCDuB11vETISK9Gyn8yrYwA23YwZ0uL1zKN5lSvoTHeWehnTXt7tMZQexg/b473jsX6z/eSX1K/Nq+NdG/19Vhbw9qsafN4f86Etp6GObwnmx8RgKksDEmJH5OFWKnlUfoPtxGSCyKDf/yNfdy9UuMPvn3ItKUfY3VzsVrC739zH9/4/Jzvk0y/7Gwp14PsUzRNjaPDR6gqi/v3b6GW9GbnPFrv0XugaYr0XdW4KfP4qqNRr52y584RsqrVaHzqWGiPY1P52mPz9skm7czPnqOdC3T8VJpd1pyQYKmYhDUGjtYc9ysRAKrdBy4wq1S3w9AvxlhjADrVwKVZawHD1l7e8DLMYj6tsbDGIkZfYOwKwbBzmMB+jWpS46WX72BnZ87PyEDC0CO0QnCO0c9CvBBZZ0JBz7uNlYKzILmzXi/b0HrKglktvvF3iICzlqI+/7ETe9PncfZ69oXWnQ4go/w8+flylBUeW1Xo0gltPa003ZVllMFkNkUTAbLVABIhwYpTK2CROHKWRXm46pz45hcW+OLdKf7Jv32At+/1cOFsjWtbI2Iyqleu1/ivfucq9hdllld+wCGAOYR9UTQUHLd7sL+L73znP+Inb/6Yme5sJaaah4sRN++8jDsvv4qqbuCD4dhsY2GiT7BGiVvrQgIySXup6ejrznlUtsbulV2YymZNL73vBklNCa6iHGM7IKx/0kmLsfDMY2t2oCEl3sHgXuUG3sb8WGryCm845xJuUB5mzjksl0upAhTTuLuuw8svv4zKThAFnimtla7v0fcOq5NT9H2P2y+/BGMMJtMpXxuZ2xzyHe6DgbE1Jk2DLgJhteK1DAnXlOQa73rUIFS1wWI6xd/6W7+Fu7evw1iCsQbeRZFQWp9+i4CIXOGIkKGXFyW4AQz2p75eKgpAmbDC3ymfb7mey4SVIA5KIKe2K7HUuJX3dsGnPc/KTUilDFMPdNPEuKHFa+IPIAUVCiWS+8aJbl3Xs0xAfe48XTqhXW4SDp9hWKGqa9EuiyGXZrn+TsXmfQKc9WBh8b/9Bzfw9r0O//p7J/je2y0MRXRuu/ZtiGEQFyK++pkZfu/LO3jl+vYUb5LwoCCcErlwAXfOGMJ8NsWHH32Aruvx8ksvFUI7wBNh98o1TGdzGFvBB0oCTyESxa3HhwURZ5kl03xkdgYfQBVhJqFVCRAFEp1mufAVZyw1nsdrvptNe6FOo23ORsKmprUNay3Ho1ZNnvvxNeU/co5779G2LVarFbznMXnvsVwucffu3eI6clBF/mKqzN22aNfr9JmqfA4MmkKdY1q8uaq4OngthQ20T1ovlPsQUBmuATmbNbj5pc9jYiKISrgq5sFA94C8Fstl/2LrfpfPZozrjqGSwe/IyWbld7fBJVaLfRSCNflUilbCLUHS0hPLJhmOtCk08KzoofB35EO3vJepLIgM50VQVgKc6wUp+Dl0RJqBkOEFmTZlsW4jKJvR6dvbMcttr5d3eOV6g//6d6/ipS98Df/iX30Lb9/r8Mb7LY5WAc5HVJawNzP43O0JXrne4NUbDWbNFh6EsXCR04NpJfn3rFEwHeSVK1ewXK5Yw5WNF0JAZBBTTGcVShlb3eZsHWs7inmqZqMLsarrDTpWfp9JftTSGVK0Ppu+NjBloU+DEtvh49r4cNhmZitElt/LAjMEj4gAwypVGiOghXNzHwakQnYYq+4pCDdIGEY00fjoGcMUWTDxcyn6rZ8rD3Tiz/sQJBuW34hx8I10AUpXSjfLfyeB/mRtA3PG6PmNXj/r4B4L6PI11f252Ik+t+LapYAsiJ04izGLvDOdfluGm/ZDjOn6Z/V7nHlZWqpEejAOD5Tk5Bw9323t0gltW3HyRzbH2XwkoT1Mmhp47sePjAiAyVgmQAk/HkAl2C7Kd2Y1fuGlKX7hpSn+8699vLGw0GScsq6ygPTeA4ajNl599VX88td/GR/du8cCoXeARDgEAzB/siSYSKxpjOCCt1tWB3MP28EidSEgiGYZYsRsOsXOzi5msxmaphks/BiB1WqFw8PDgYNTcb1SWI2hCZ3Xs1r67Bb9utTEVNvRTVt+V38v6/OV4YoJOolI1Jt916JtV4IlSxyuzA9j+mYwxq7rUFUWdT1DL07G1WqFVb+G8ltPJpMUf0zWZk1NhIIeqJpfQLKeU+1OMggCblgiroJDJEUrAOcdVus1rizmierTB0KMFY80qpYNpFTNT6AlQTwS5uXrA6E9/DKUoTIGFshEQO98Oggnk0lSItbrFRYLdvJrdAmAFIygzYeQch2AIVwTQoAXOM8aA1JtXPqosJl+T5+XwpDcbfaFOEmFV4bCfIj/vDkirQVR6QgTrlrJxiuRsK2CVzdLwllfBJq3valmHWKAraxEIMgmNoCtKty4cQOvvfYa6qbBW2+9BR852sTaCqnajJzueWz59zzCjMvqRlFMV/G/dcvp1dPpFNPZFFMJpRprS13XYbVaYXd3d8BfXMbG68Y8T9s6c162vDbUxvKnxg6ibQdFxrJLwR+FobDHer3GqUTZhMDmctU0wp1cw5gqhaApNSjj0LzJ0zVWp6jqmillJ9ONXIHcR9WYh/ME5MiRkjbAEOBE62Q4C/DBo+87gOYZtvKc45hrup83o+e9fjFtLKC3Og5HyE7pMFZBqxzVIFZs9LlowpLeyzmXfGDpu1EyLAdCGwOhndePKIIhpGgp7z3WAnupwFYGQA17Zd/U0M9TVsd53LxfOqHNGV4awB6L8ZM4Ese0iYTkzRJhlpXqx0zgCM+6qDZmISvNaSKuyL5Y7GB/fx8UNUSwAmyN6XSysfHL/kZEYY3L8IeGJJX3s5Yr2cQYBw7M8dj73kmVnKFAVoKdclNuNO1eCWPpW1vMzW3X2IpxEw1+H8JnEoKlP97zXMSQKnyDqEg0AsjEpKEPtERCEt5936PrOvRyDRItOPFjnNPOXE4xAUOSbFVAIgmr02iHkJgX1+sWcA6LhotgEMn4KQyXuAZrl+Yo8DgZ8rHbWQd3+SwZVtB9Onzu+n1V1JLiIYpC5tMeV6yhxJxpq2or7DHGu8frRn9KVtEcupcFfQkv8v7lBLdSi39S5eXyCW3ih+2VpIiIzU+Jaw2R064TFpoeCleOMMLF4INHFc1gA5WRDmfBI8+3cWwtmVx0IGkfpPzYFjeu38RsvoPr128w74aWmKoazHb20DuHynt4eERYGMumtS5A53qmMwUS9scmvnKOVKjrGru7u4k5jcspVVCMV6GFo+PjhGer8xEAlstlut7GIfKUbesGLzTPNHuqNY8EfgnnhMBV59frNXrXw/kg0Sf6voc1hN3d3bzxAETkcEkiZjo0YNjj5OQEbdsyr42Y9LaqMLMzWFMlXLVM/MmVfYYHlmLSilGDTCpD5voeknwuSHUW2C46rgUB4N33PsTy6ARf/vzraKoGRBWAHjH2QLEPsDmD/GyfYpFvO1DPw7fHh7v+W8a1p981qCZEjPHostj0er3ijxuLWvi4NZpJIRE9RJ1zCDGgamrmyxHHbOKeB1JocO4r+zHW63WifQWAuq5hjMH+/n6icA0hpN9V0TGVRUXskOR+mp9zoW0MSLSmmF8UPLsMilcNW1ULSt/XE3jTHYQL16qH91IaVDHBYhbaUfg+CIT9gyvY3TvArZshU3CShakbLLsepx1nYEXyiCbAGhLOJt4s3vlkOupCc86lKtRa3mlnZ6eIyxbeiySwGes9PV0mtrIQQsK01+s1dnZ20tDKULzBkHE+ILUN/yy/e9Z3MryQN4j2oW1bLJdLrCXBBSGCjEFT1yADTCcTLBaLwYZ3AbIJmaebjTTGJnkje/TdmueuadBMGpCdwJDNZEWFgBsK7GIWdLyiEcKw0G7qCivh2U7SRZSPgACECCd/37v/CA8+vI8vvvY6mqoGkWDakVPas8YtFyKc62y7iDYW3IIM5r+LuQpFIRB9TQVypgQImEwmmNeLVFfSGJscyACvha7vOfsTyHNP4wNneBAxiVyGAUsrcjabYbFYpGxYtbhU4HO0lmGrq7jH+NA6r106of2srRTQ27Sz9DuyVnnhjQCQbELpQoyc5dW5NVwg2HqO45Nlqi4zqNJSNaC6gWmmyVyO0cNbL1S1mrabw4yUM9gYkzJGk4aQIkHKhaznGC/KlNklWkepVY+jAM5usTDNz8amB1Oln4vI0FjxPf0Zx/qWpqshQpRMQd1IRsZWmth8TSpMXvUPxAQlAawA5GLMnGGY8NFB9xM+IX0L2Zma5is7DtVa0HlPNoZo5PlqgPORY4DbHsvVGpN6DmsM9znFYYy0vLj11xfWtq2MsdVUPsMYI7xz6LsOru+56HTwSWEYC1uALW4UBwEHK2gHNnswXD9Z4Rg77VXhKfs5htJ0DZR9K27E7IvntEsntMcbMyI7JhgSVPKd4jvyvUgk3AGCQ8X4CfrVOTMqIsC5FkS8cUPw+OCDD/Duzz7EctXh1t3X8O0/+59w//4DkAoSUaQcGXztV38Vv/rNX0ffd+hDhI8OtrcgyyFptjaYTiYwsxkA4Pr1G8lJUmLX5QItZ6TEE/u+x3w+R10ZuG6SnDJ93w80HGAcljkS5I91JRTOxISD839ZKc2HQ4lltm2b+lJim3pIafV5pE1uQJJIsVwu0xjYGsukTs4FdspWPD9cPTxIBXCDSuaQ4SlVailFHGiiBeR15/hThAhr+YCIgavzGAtU1mDS1DBLQCr1gpCvoUdWRMTxaYej4yXuPzzEG2+8iV/4wus42F+AohELNBbueXm2af4ItC176Tm24WEhD74wNPhZZnA9CCe4tYYjMFyPXor59r2Ddz6txRgirlxlYaq0FX2vET49Gin0qzH3TZMJ0rRyTjociopY3uf1UhZG4AgVXu+a/6C+kPLHGpPx+rTms9yyj5E4l05oYwMrlXjOBImQmJxgB5xCJhAtxbDp76UQ8CehaWjjuo4ezjsR2kCMAffu3cMbP3wDDw9PEM0Mf/LH/x5vvfU2LNmE0cUQ0UZgtruHb/zG38TaO3R9QB8cqLdoJhY1KqBGItQCgCtXDgAgac2llsoaZCmw+V8iJA1jNpth0lTwfYPT01Msl8uUEVY+lzJbcmvbikzR5mf0vdGHx/crsevVajUgHtLxa2jWILIlMrHWar0uMkQNTFWnNPa+d6jqWsLt2DEM5IiEVCQieu0s9zFBRMNYb7638FkbQayj4OvEoWZ1VQnMkYn903WRD63lqsfJco3Do2P89J2f4TMvv4S9vR0RDOrMjHk6x07IF9CyNSRAU6GFZhyZB8jUyVbi4Xt477Bu13jw4D6CyxXU27YdhPIREeq6gffMReL6HrPFPL3Pn7dJyU3OY7GgvKxvJqkKqV6lrpcSmun7Hru7u8lS1Wo72yCQdCjEiOg5rr7QB7a2yye0sUVrwxlrcKw1QoCFkSm+5QbPqadnXX6gPmZtQ/621qJual4UtsJsNsfOzg4MTArsjzGiDhynaoxBZSwCLBAqkKlQVQxjsGPMDmJEVVs9G8Io4t0jZ19qmJsxFaIXp2kR0lR60wdj3DbujbvxxinvmbXBzWskk7nIyixTyXmcm6nS+u8AGjNFbHQZopfM3YAQrCioQ9M9R5XQGCp9bCu1PAycgbwOjPLmoIDBUcAjhTCoqgpVXWG5WjJmj3wm5n9FWA4kN4pPPVkbz0H52rbXt66x0e1osA/4sNMQPhWkGD0zvUwJaWlBE/07jNZn6RTVzwXJ8SgDF8r+jwnVNqGQ4TrLa2I4zqex5i+d0A4hwDtfmCDEZYAAoNBAUuPdkXYFb1CTYIazxdbFN5JTXnmWAU7DvXnrBkK0WK563LzzMv7O3/47ODw8gkHhhSbCOgT84le/iul0ip35FXg0CKgBmibTnbWWnPCioxtvpuwwlG0eY/LiHx8fYb1eY71uMZ1OEb1HcL1UxDaYTqcp4QDYFIznzkH5RyFQRuda2jyaSKHm6vg+qiGVG1Y3aeloJNVoJw0mUtTVSihXDAG9y5hoCEDv+hQmWWKXuY+CdRdVbqhI7YrFfxiW4XqQ6bBDxuDJRNRVhUqgPL66JghJWQTiuJLed7h64xp81+OHf/VXWK1/BckRSYzPRgrFRGd/QmYkv0AlJcakKG1riv+Wz1GjNk5PTxM0UVUVULFmXFW1RENxhIdaiVzH8QgAUu1J9cGsVitZQyatI4aXM781WYPKagAAOyJL/Fo16xJaVEE+Pswi2KFqkC3/Muv5vHZJhbaDNRkZ0rjY4elZLpT8uwoy1W63LaUXIbCzFhIljVpwVmtw5eAA8/k+nDOYzK5gf/8avA8gCUMzxsBYizY4NPM5JpMJdg8OgGoGmAbARO6hP3EwF3k+suk8DHnKgjeEgKOjYyyXSwlz6wDvET3jxvPFAnVdD4Q2kGNpH8cdXMIkhEKhKrEZZIFW4orr9Zo5juU+s9kshS+OoZO+7xNmqbijbaoUOdM0DSbTKWt53mO54uxG1qos7j24j1Z42CubE6FSI078KoyEkcMr08OqpmYMm/E6/0EiiAwi6srCGq7sEiNDML6cF3CJOhccrly9AjiPf/XP32Oq0tS1iPIZZ5W+yAIehqZcWMvp6KVWXrxfCO62bXH46BGOjo6gjt/S/9LUDdbtCiq0ASThrH6Juq5xcnSInZ0dWGtF+GantHMcr68+nOT8NVJWL8aU6aqY+c7OzmY01DbrUhZyjIFrscIAhpKF8Lh26YQ24tlmdm4FdDJYGPnnrEiFbR7sJ+7aGWbimZ+RPsZC5wGY3a+u60S4XlUVjIQvltVmDGkCjGjKxkg5MT3E+Kd03D7pOJTESKMqSnhh7Fc478rnQlHJdh++P45GATJr2zYY5Lx767+arWZVkyo2WnnN/LMpVLaNJZnbZwzt7L5tfp4fWBafCpGg8AtEBobTiomSTdtMGkymk8wgWGrWhaPv8T17zm3L7fKzy38r3KWadeJ3KSCrbGUWWLHfXol7DIvw8x9y7DxBVzegv220CdsHXf51fpWlcbt0QrvUloilb3r6vBnFVBGlYjxVqml/GpoxBjEAvVTE0NRqdqowU1jbt3j44BDrtoVzQcxo/tzK97j10kt4aTrLF5VNnw8nbPAsDJvGNGesr23X4mB0KdRQNfy6rgFrQCEnDii+XQrTZ2H5K4WmmqZ93+P6zRs4PDwcfM5ay1DNaPOkFHMgaWZ1XYuzSDRazyGRIfhkii+XpwNHrA+6rvhHx396espWns1rKwoEECGhZkFx+kIDExM58pRnq8YYJE5giFDxHgChqWs0vUPXrVhT4xuAIXbJ6owGs8kC165fw+/+3u/g6rUrkBrG4CxYjxiFrwaE9Oagb0+uZW/zWZyHb+shXx542ZoDgCj8L116FoplK+9NWaqLo29cgvtOT0+xkPyAkiLVGIP5fJ7W0O7uLrpuja6LEuYqGQ9JgWOR3fc9FHgtKztpaOw2Z6OMHBERzjvmnCE8PkP4jHbphLZGMZQnXhleQzCyWEVwj50eJldg/6QbGYvoAddLhW/Vig2hIublPVl2ePjoAY6OuBag63v0ncO6bbF0HVDVuPXSKzwPMetV5ZoyoxBIbVElCAqNMbLJeXR0lDbQdDYvBB+BggXFXM6p77lG4VlOQL3+trbNWVXyeaxWnP12eHiYIkHUVFZBCmRKVHVc8cFXp6zGyWSCqq5Q1xZ926HvOiyXS5yenopzVwmvOKGmqipmpBbL7ur166jrGoeHhwhNgIk2bXjVtHUOYoywRYjAYI0iofaFMJPPxChCP4BMwKSq0dU9YvBcMzKynyEaAohDVn10qJsKu3v7+K3f/S1c3ZnmOr2B4/Yj+BAgFUdJw92+Lp93Kw/zEoLT1nUdlqenOD46wsnJScrKVaGt1qZ+X4W29wHL5RK7e3sAMjMjwDDjYrHA/fv34ZzDtWvX8P77x1xfczrFbDYd5RkU1yamNdaQPz04Sna/7QpJhPcORFWqRjW2DJ+kXTqhXXpytbGWM56UpAehNFdUJ0+Tn33rW799kY3vXGggKDa4mn/RY71apdA67wJc36NtO7S+HzhKtt0hT9OmWZ/C8SISLYCap6WJWmJ+uuGeKArnMW28kQGIBhwG2jt/JqSNlZ+dbp7SfCWEQINU9Twbw3/zPHhxBueDLG1kIDutTWEebzWmcwQ1JbV63AM5JLf1RbWMpC0WKd5nzaH0w1iDyXwOa0sIpOiAwCrj3qSVv0VzHj/bJ4GiNr+zeTjwnEvvIyfOlGtO53gcqbFNux9HEJWj29an8wToQKYUcMhYASnH9iyS4nGBxpdOaCv/QNM0vLEBCMgH/XXwgGPxQ0jOJd2I+qUs24oMtAtuRBaIJAuYkPF6dQKy1vuffvB9fPDhR2jqCXbm7AwJADyhEKzFdc+5p8IgAHB8dAwvDsUg6dIMj3Csq5qDNjHPAW5bejpRItFR/HCsXW3vS0i8EakSjsAWfA/CdMLx5XNJDmJa1QDXd3DIEIgxBvPZNG2wEv/u2jVcz5EutjJAUP5lB8n3RwwBzWQCazVDlNPRY+Q1t1pzyvrBwYFENXiYOlcgUb8kyR+qQfOfoiWXesRgUeb5CSEAwaNCjbqq0NQ1KmO4apLMiTUGIXJh5wCgcz3avsN8PgEMEldJyoqkUaKTuMew9WB5/m0sDAFgvV4lp3IrMfIKaSgcotr14Frgkmys1WYiJ123ie/Fe1hrUkjs4eEhmqZGVdkBfq7r1VrxFUWJux/Be2cLe33IYssUCECplf9ca9oqtOfzeSKcVzxRhR1QLpThKavaUpA0b22GcskiY8yLWMsMiYAdJBQZ1skCmDXAdbvE//z97+GnP30bV69cw0t3XsZ0NkVVN0DTcLHYQmg/Dkdmoc2/HwsEotq68rEoDqybx1qNdiDEPqQY5nRPIG0wDYcaZ0gOx52LB6xWq4Rl8uYLiJ6fb13XaKYcCbOYz5IVwBBIgPcube7JZIL5bCrwSYO+71KY4nK55AidtEGVJjOHWoYQUEvkCYf+Mf6rKeDr1QrNZIJbt27h+PgYIXg0MmYO2csqZdIMi8icoHAdEYDCsZjVDn4/eETPvBVNVaGpK9TWYOU5BFGd09F7TrJCTELbVlPEyHVCTQRj5WRgTJRYZ6SDOfk8zlnp26CAs7Dss1vW+EvH4Gq1wunpKR49egTEiEpYJpX7Rp/TQFjKOVfJ60SO14C1iCFgLQcrwOvQAphO+SB/9OgRrlw5gFazT9mv6V4GVVXDgAZCe+yg3piP4r8a6XLeXD0JVHLphPYYHhmMXzWYLaaxtsHrcctrxefStZ9Q6X4ax5uGGkHvU5wxgyHFiK5rU0wyUY41p8oOU2ah8IpuRjbxc5kmW4RDIlGVKlbn40hjL7zl22CWbKgMPfVlG2vb48Wb+EESz/cQFtkWAaL9L6+rn9HDJZu1DK3oGMtkDOB8vLEMB1MWxmRhiFW0EdJYPMvt62oUaTJ82IUWLmMemeaU1naGWZR+FASuERpDcoSaApLZ2lE9LQbdeP4qSyn4dM0lCwtATGGQw8SVx0EZY6GaXoeueTNYN9s0aLniYL7He3lbP0pFsVynQ4frlrn/eRPa7Pnnk7kVPDIWOOD2lpBs9aGfuZRfZLNkmU/ER4loYfZCRMVFWUgfHOzDGotf/dVv4Mr+VdRNA1tXCMbi9u3bmM6mIEhkTejkXz9IzY0x4vbtW7h//z4aybZUszAETurxgR24Y0+5CrukSUSt/sFxrUYWp1K2jutSqoNQNXoVPEHGWlcVzGwm0EdECBx7XTp+NB67rmvmEEGGhvQzy+US6/UaSrbEJrCX6BleK957dC3H9iYoTa6j9LJVVWM2X6T3AYWDIk5OTlDXFYIZUtMONrXCXMUCy8KkbKXGJrBcDGktEzgRvTIGNi3YTGRFxgLRwAcmjvIBePTwGBQCblzZAfOVRHE/xnTyEhXCetTHx2nS+hl9hkO/xMjCjWBYSKALTQHvuhZtu0bwHrPpNMXNj/HjsePPqHmAjF9ba7Fer9hqjTE7LIvCvFqogA9vtSRzCrw1BoZYPuh3QgiJfZPn2qR5Gx4Ym+G0Zx02UQ/lxwieSyi0WROzxnL4kwuI9Yano1ANlRRHtQ7dEJsn6UVoGOc1I/SrwQfUtgKiKyqy84YyBrh+7Spu376Dv//3/x4qI2FIxqD1EYv9fSzmM4CYgrVzAet1ROc6OMcRGEplefv2LXz00QeYzzktnlPceWMwb4MDKKKpGUcOMSaifZ0fa62Q6wiPgmFTnoiwXq8RQsB0Ok1VsUtOEI1GSREBEhVQVxVmRbXyGHxKhlFK2b7vUVUV5vM5ptNpwtB1fF3XpUgQ7z2m06bAu/m5e+9SYo6m4Kv5rIk7Cg1NZ3PWuiRWmpnzAo6PD1HXFaI16Ls+1YzkEnFIYwi6RpE18ihCYFPbHsIlUQS3CqqqsjCOVQ4Q4DxXNjKmAjzB+4jeRbgAfHjvEOQDru3vw0AFk4cy1wFjjDnrO2Nr6SzLkUj3Uhae+j0NzYtxaE2tViscH2uSVs5UnAu/x2Ceiu+lPsSxsOQ+VlWF09NTgbUYs9bPaF+ttdjZ2UHft2kN63OPbIoKd8zQKozpdzmQzNACGMeSj62u7XMZ8TgC80sntDfM7CdEn2n032ztlwL+4lu5CFFAJCmhWDSWooOo6grz+QwHVw6YvU02b+0iagnDYzycEDzgPXvkVbtV7B/AgM/BkMYll4kDhamnOOzI/NN+6t/6U0YAlBpYikgpHI7WGJgCEy7T6CMAR0NMfKBxGTPYKGXYn465qjYzMUthEAtho610TOlmLccYwSFhdV1zre5zD/mCQlUe6GCVEYHGUBIih/YNfDNIkTBZ5YgAck1Uhkh4KbddD3LCVKfqeSy/PdTuH9fGkVmPSxLZ5rxTSETXYt/3UOdsSeI1pMYdQQyyT/WAVRhQ1521FjYOy5eNBXff5+txQIJYLVvgkPE1zmtnwiCPee+sdumENsAPITF8PXZSY7LUNvLWXqxivbURqVBANquRTbS27WSBiQYRIrS4AxliU/PwIRpH8LGBCxZdR0ITGlDVFkBO656KY2+9XqdIFEBDpwCNNCi1rxL717JlunkAJO1FNfoTqbfI/WXaAY2xVk1IrxeCB/uEsmZprcF8NhOIN/c7RqBt1/DeJVO65MFO3A4xYrVcwoimHWPkzLkopdRS6CJXiNExaDw7ETurZgRUdYZHgpQoq6qKOZ1FEKV5Mip0SdZcAR0UzoqxqC5/jyqwQy6IUFcVkniOwwMeMAiR4CPQdsCDB0foTpfYnTZ49TPXMW2sPFsj66YURJsCZYyfp+6pJpF0jpi03ywIs6bOFWbWSUi3bYsYAuq6gjFCN7Cl/uhYGdDfywNAn4eRWH2lF2iaSbLwuq7DdD5LuhHLjBoxhqScxKjjys2MUs0VajNG4EOKQLF+xgk02/FymU+UR/nZ7dIJbdWESjMMONuUy3tCH3j6QtogGwv1BbbkHBn0MWuoy/WaN29VeNJlJRpbYbla4WS9Rr10MNUcsBN4Z4HagKxB3VhUVXZWzucztG2P09NT7O3tgfqMH/KcGniv8AzBkkkQCQtEzsosnTsAm6kll3VyYMbIoXTGoJ5OkqDWJCmNkfZePfgc5jabz1JVcgCYTafo+lxJBGA/QNNwpRCAK85xd/jg0E4bOeQ1yiQ7mxgzRmTx6mMtmrrHcnkipFucmWqNgfNsqTRNgx45YzOxKCZBQ4h+aG1ErUCD82DNmDDgGDwMLCxJhR1q7CIrFwABAABJREFUWZ0OerBmoC8A8AFYrYEPP3iAR/fvIbRr3Ll1FZO6RvDgwzsGsPM1CBaL1N9k8W3TOnXbFC/rOiyFdlkSrO97HB8f4/T0NEV1VJYr8thJTpoZQwq6dkoLDkAql1fer7IVmobw8OFDEBksFkgUxOv1GvtxX85PgrWAMU3CoQFWKDaEtmVsPFmYQuVspXRZBFs+2s/Ma5Lhw7Oa5oQ8rl06oa1tyEp3Ris0ivHHxptmA3t6AofBx2rF8xtmqeWOJlMePBTvfaJs5kOHEkk8qg4WNSgaqEJAyJisCm12MPaFKTrUmrNWg4HzSnokUzrUJvTg0f6q01BFQV3XIBHA/Nji6F4RQOB49cjOV2ssKomdBXgzkSPRzPvkBGTBms1i7VnpxCqpaW0SFiKkZHJZbFuZB58LKUSp40nZ8cYOqYxrssDG4P7y4cHcoYAadHmNV28JSen02yJihYsaiM0YBfmILM+9B7reYb1ucXR8IlFDVDyzUXGQ9EfW3M+LdqDi97O23TY4pOs6EABr6nSAjg+H8bofC+3xZ9KhG80gV0E/PwyDza+XePtgpAOYNENURPn3yJtiKzRYHtBlH8vn+IQy+/IJ7bEzopTLG0K2hE9GE6am37mY1UULbnE6hciYXAAGeJ21Ffb29nF8dIwH9x/hT//0z2BEsDjPAMjOwQEOrl3DzqQGVQaRmHAqGADEmpWMGADgg4MxQDNh6ko2K2usiwKmLISH2PWZIyiEttac1MQnEROyiZ1oIhluUGeQNv1O3/c4XZ5yOKMhTPf20Asda9ooYO1ruTxNh55SycYYC16SyAdAiogZCh8VgAROHtJwSq2DSRKzr+NURkMnPBcKyRBB4qY5XbxsXGha7llqqzhreak2yFerrEVtLUL0HJZpikM+5CzMdbfC1etXEfo1fvazn7ETl+YAzODePOXFKVPuo6JPMTI1wlkQRtnGlV3UOUzECVIa719q1mNBN466SK/rf7ZMlmr4Sk3R9z3Upc3X4M/p+wleGWPv8uFB+GwIWAmTZNt1KXeAp3MI15w1L3kAwJMIbOASCm1tOdxLMxuHDrxNjSEm3BjF6Xi+UHrCo/FZm8Qkh+BRVxW6Dgg+h8VVtsb1a9dx//5DvP3Td3B6tMSkbtA7h9VyhbVr8bVf+1X8xm/+FhbzCTwsXGTB0yMgUATgRCsshHZlMKsrnJwcYXd3D9P5DK0IRU2OUc255JBO3R47tCJHDSiPNZd96gVKiQKbeBA5hJCz3WazWQoP1CiTvu/QrldYrpZyX+DG3ZeZgpM4isMbgyBCouvaJKg1IYijBRYIgYVfZWwOF9ODXB9rUYnbGoMo0SC9xMVbY+A0EYsITdPg6Ogoz4tRa4YjmwCtO0kMiYCTQVzM18jzuEUORXDFpeCBGGDIoK5qTCoHHyKCcwBJMhiY5gAmIiJguTrF3ZfvgILDn/37P0bbdXwHMgACMqe8aptIVpxWeUIpVH120pX7pYQwdG1473F8fIzj4+MksAGgaWrMJjOeFzPUnvVa27Tq8ZSgsBb1uyCmt+WKNAYheHSSzZsvpaGIOSpFNW+SD6pFFaXgs17fO4/jo2OcnJzg4eEjvP7668nhudHHQoiPnfaPc96O2+UT2jRY92PlZbATVORyDGwcQhKPwa4vUFQPzSnBMQ1pIsjQ6z2ZTNF3PY6OjvGzn72P2WSKvu9xcnKCVb/Ga5//HEIMqCzjnCaIM0XtZ2Lid52TEAPH/SpGF5HwWK0GL73EmVOk5mWBL2aNx6QwuBgpVcLWcZVUm0r6pEKbTephqJ82TXPmniFds+9d0uLLfihZfYwGlVbrAQmcsPl0FULSawzM7WI9GWNy9A2yli0dUjUe5WIrw8nSFMaYPrFtmkv/i5YzU8/Hxuflnj54zOczTGfTVEBABlHO2uB7cfTSECbIczPs17Cf+lNq2F3XsWWDeoDznhWl8Thtftv3NLBAfRqlkjG4zjYNffOlYV8ia9pOnKiZWCzDQ9uUvnId5hexaeWf0y6d0FY8MRUO2EIrOTjZSrMQSHStnKq+XdMujLILbRERhlRoumyyyxgJjAH/4pe/jJ2dfUzqCRoRRn3fo489Xn31M5LiLZofCIieoRECotYZlPFUNRePCDGgbmqEoEVPG3SxS07CGLPGlfBpPWwKfBfIzIveO67XKVCBJfbYl4k6qlmFENCuW3jBvzniQBKnZIy8SVjwKNk9AGi6v0I7MeZK85UIbKhGVfgLiPJ4kmWWzOgINY7V+alWkGpnkFnU+xDyBlStHOmSjz/2k8AW6U1pVUifQgTZzDdiDIM5Qc15YsU4Rg8PoLYGdWOwf7CLr/7SVxL8ZIzl9aDyJp3LfOMSLtnmlN8WHaECsmslTr7v0fcdDLFlQU0DW1lUlc3rZks7L3qlvHd2mPIAogD6ZEhoVnNVI4Adks71KSkm+KKQL20emqpC9V2fIl76tkvhibPpFO16jaZpMJ1OE4/32Bd2nkB+HNSo7dIJbWMIZAAXfBHVMMrkSr8Vp2LadDkmma3C8URevLDO3ROcVBMCoBtDyHzIoKosfu93/xYePTrE0aMjkGjGdV2BGsLV69dwcLCH4DvANBIN0QMWgn1GxEiIgrPWTSVMgQ7T2YSjJU5PcXBwFcEHtJ1H713CCYdp7DH9TpQdQCpge8dJK16+Xzc1ptNpyr4kosQ1opuilB9VVTPermRgokkDwPHxMTT7TAtBsEY9S8/TSIicNZwApGtF5xkEDsmTZBvEkDZwiEHwW66uXmr/0OgeIiASppMptORXgg3AWbohKL1qLjdmjAH5J7TeZJ6TE1QOg7oiVH0+LFW0G2sQfIcYDSb1DM3M4tada/g7//nfxmJ3hyEla0HRJYWPYQARXiFyklcBgWgbJ7roM2RrgzMbDw8fJbiolufSNBWIanEkn50SPtZIx/4q/V2tp+wMpBT6akCC93Oi1WTCh/t8PkfXtRwtBAsvUT4KZ4WkNWcrN8SI9WqNw8NDrIRVU6HC3Z1dnJ6eoqprXLlyhRWKEBEQ0trbJpQ1YmQMnZzXLp3QzoetcGZT+VZhbJZaFEaeYsppyWclGAj0fSEtP1zlEkmRt4NO6nt37tzB3t4BPqg/AEJEXVeYziaoZxUm8xmapmZBESVsRHneRDkRfRgAYCwn4LBT0ML1HbyTTDYz3DTxzMytoVZRbuwYA0jS4nWzaSV0IkqaSwwxF22Va7HwsAOHlc6VwiZlOBjX91NIRgQkWHAH70WzQtJKh71PTyP9xMiWjzqpIlSYDyGSHC1ScJdEFUKFlryR3zMGQ7ZAUYWwysINSbCkOaH8vSD9IBNhK4NJU+Oll++mmOUU+VLecvxEt8EPhXVUwlsq3BVDXi2XLNTn85Q4VUbslFDatns8ibN79C0wUyH3zximgijj5quqGllnaj9nO5yTmYZwkHcOrfC4ayKYhqGuujZFRukVyuf5JFp2FCj0vHb5hLa0IS9BCRmODB5d4OnhCE4ouO9gQaiQG/ImXVyjzIRSEujrOKJIG1W8Q/A4PTmFIcJ03eD65DpDBd4hwsDHgEgek+kuWKAAylSnpob3Lmloqrkq85lGgKgwDTHAGIYLQmTnGG8KhW4YK1cT2FZ8EAKivQbmnCg3u2LVGnYXYub+4D4QrOXqJE5oYwGkYgaqaZcp6kMnqYQOqrs0UoaZCyGpn1ZtOB+b6rjiRcWbLIeXJhwfAI2KaSjzoHcBwQXUVQkvFMpEAUeUUrQ00zNmGmAggpBIKAPyaHXNggJ8YIiirhtMpnoI649Jv2clhgbx4+OwOeUw1/A69Tn0XS8kZi1r2HI4lPzXedznt3H0xTbNe9tnS7jEGAP4IQ+N+h40JDP1SeZWp897rl7kvYfrHVbrFYggTm0jCgSJRcN0vpqIFos+bYt8oULenDWmbe3SCm0tLaRTwJWt9d0R8i/wSCnkbVVUlcDmdn4RjStyG4EamB94wOUgvVKtte97fPTRh/DOoWlqXLt5RXg6OgTvse4iQrSYzXYR4OARYalCKLZp71oYU6Gqa/jec/yzIRwePcLu7h4mkwnW6zWWp0tEBDRNjdpKfLRnLpMo/N8MfdSo6gpNUw80q+Vyib7rc5ILIBh0Aw1ji1GyDENkKtV2LdwcjIsW2TKYKaFU0TROmwjJtaGQBpfx4jm0wm6o0RtpL+k5Lia/D14oenOIWPABTWOYWhVsDfD1CRbDjaoCzXWO53ZuUp8UX1d97yyVVw+YGAKi98x+B6CuLCprCtGbfyHDUE/br7HuajQWuH6wBxMkSiSotq3f5uOKopSftJkqt5zjXJyZr8N0tys8eviQs1/l/dlsluCkMmlmjPee17bBB9swdfYdVGD8j627qqrQOy8yQQ75qkLbMjxShnuWipFmuD569Air1Qrtei0ZqDXmcyFhE824rit416PvWjjXsZ9ArEsYtrzGEWnJoRmfTnBfWqGdTtWsRkE1oYGWDRR/qwwoOLVVOCZFKIvvsTH7XJviL6Jtl174/JHMr6Ca9mq5RNd1qBubNEEfGF/rO4cQbfpuRADT5OeRhMiZdsYSXBdTeFrbtdgnjkPu+14q2QSok083NZMtMfbrvQeozpmMwoOi2gtiTKnt2owxqAXr1BRhgMfQti0LghgZi7QWRvD+cuP5RKqV48mzecSQhh1iQ3nOtwjLAWAhWjERZR8DsphNGy5uro7EseI5q1IpcbPzNuao+WKdUoHyZRhDYrUFejGkIXO8MksjXy+i8EAMAXVTAW2hVQ76Slte2xQubIlpLUU+uPu+x/L0NFEFq1A0xiToqxS2TyKwx33Y5tTL+6O0qrnpQTPWtDfLg/FJnTJ5YyY0W56eMme6lLOr6or9Q66XQ53HHyQsljF2iFE0jO8ejGX02s+lpk3EjoQIKWgQtzsARl8C0XACy015XrtIwU0CMxBxuZEYddEWG5ciPvjgfdz76D7eefcdrNuVOFEMvv+ffoCbd27ixp2b8JFw//5DtF3AnbuvgyynogdxtuVx86jS6/Je3nS8ASaTSY70YCmNqq6xWCzSxlEyesURVTNTfJsMpYIIuqG6toUzPWsxwaXYcJIDI1oLioyxG8v8EtxvFQT54OW/N59rwr3zp4YTXwjvoQNbwy7VCRcS5q6wRbbL8l37nmt3hujg+h7e+QFer73VXMbxittm5UXk9QCwj8CKo7WEVAt1BdZwgWbnA4KPaFc9FwKoKwSF2mCKo2No1ifuFr1mjIlsrOu6VIBXQzUBpH/5+0XdVqJzBdRZYYRnQyICJZ5xSSLK0TtASuwZXEsEdtd1UuLMoReLQX0vqZivLLRyTPq7E8ZJVaZydNH5+PyTHmCXT2gbDmEKIcBY5oUYY0llY9xV4rQLDg1jLWLXbWygdB293wWMQS9sYRFMBWMsoiPJ6FOBoBECHn/1V3+JN974Cd7+6du4e+s2C7fg8f/4Z3+BX/uNX8PvXPktdAH40Q9/iAcPT/C1r30T1EQQBfjoQaZOAzKWr+yDY+IbGW1VMY9J2/VYCHVrCCHhfbaymDUTzGZTdiKKNu36Hut1P9BoShN5Op0mSta+73F8ciTaCi901dKMMWxmA7CFpmXUwVjgyqpdM1vfUCtLfBYhP1mFJ7LiXWLGWcDkBBzuV/ABfd+N1pdUu0kKN1dhOTo6RG3zgeX7gEnf5sdNiq0/Huflpx9S4QXEiKau0NTipBVBnlcK+FC1NXrn0bYOXQc8eHCCSWUxuboHL/H7TDzmUeLBUeaHSb4yzKiVhU5OThLMZYBUdLc8IAH+flls4nFVXMavj53PpYXGgzVnFo7nCJs67dfT09NB3/haMeU4nBwf8QHrvcAfNSZNAyuJWDFEBBJ6XeLEKR1Pu15jOpsxzGoJPnqEYHGWTH5aa+PSCW2Iph3UjDKMTWko3/avqPFCyaylkVaQcbPxly9qIEh9LgmABpq2HDQffPg+fvrTt/Duu+/h6v4+iFi7/f5/+gFefu1leOfQ+4j79x/ggw8eyCaMAOnmiSAVbpqCG4L8wX2x1qJdd3DOYzGfYzKZwHuGLHwMqIiLAywWixSX7Rw7vsYFDqyUjqqs5WzAohBDJwJc6TRLzLGqKg7ZE3xUhQI/wwxdbdv0pUnNz7NMFJJnDtZIB+6OrbhrpmdNJjYVOvJoTTjnsFyuMG1yTHLwWUtnrc08dikN9HfKWjbj8pQ1bb1mzN/TNc3PJsA7YLXqgKZGjLk26DjFXmGDjOPnK6qmrVzYlbVo6lxAYyxkFZIYXvt8TXpbK7Hh7EBUn8B2qU0QTVs+P4ZqgKxpa7KMEytiMZvBVhWauuE1UkCViQUz9Elx0LWexh+EYO05CYvLJ7SllSE8iEjhaludAflL44vwZiwXRxQkuYAOLqLfACQ7T4Q2hotFu+BjZAeJNfjc5z+Huy/dxaThggUvvXQH00mD4+MT7BxcBQFwnqGKMvGIuaMV02argwwhOjH1RTjaqgKBEo9EGU2gCT3L5TJpUsoVojHTqWyZfN8RswSqlh2jYoGZRzlFglDORix/tGVMGYPXxo8owyVna7QaQTD27itkBiiLYcY/t11tjL8aHQcILrphF6LyWww7vbnECFmd1HBCWcsS4hjL+ptRIQ+ucM6uSq5mc3R4jLU1mDUGe7tTwG7HspNlF5VywGEBrgSk2HUtz0kjMc5TkMr52fb707Q0x3pejvZrUriI50ejk6JAbOWYQvDoRMmwnP/OwlcikUo3wfjASbCswIHbHKfbJwQbSsLAgtjSLp3Q1gVTxuwiYLCQlBmvnC3FiHWKx1pC2S4cGpHGz87AUoUIQvSAdxpzK5/xHo8OH2LSVPhH/+gfYn9nF9ZY+OCxateoJjXeefcd/PpnPgsig3bdFpgtX8d5B/XX+eBhycAagpORGkh1FGLnyrptE0cxgDTfp6enOD4+TqFQAECGK73Udc1wiWSlLZdLDuVz+Tlp4kxpWut7ViwOxQk3KS4lvrWANY1EiAw+FRViKrVsfc6UaDUBFFzIGcvWVkn0getdxjiLe/Dzy9aAIeLK6QL3dOsOA+doCI8rWLLZFNgGAIpSXbwBs/lD+qBPEHB9QIMGETXaFnjrzXcR+h6HDx7i137tK6hrLpwMsUR0DpWiNAQuubZarXDtNvDRRx+lrszn84IhcVTYudh324T2swrskuK3/L24MXQilIf99PQUAEM7e/v76HuOeDo5OUHX54zfSiwGIi7nlsYUM6d2KWA5/pzXy3q9luQtWdcjSZH2zWg8aT7C+fNx6YS2trQQztwIZxlSgmmfIbSfbXk9Q1MFSjRtdWKMKSVjDFgtl7BVhV/62i/Bps0a8N777+DDe/fw6OHDFHbV9y45ChnrlM1kRNDEAEOCC2syDkFoUw2CF0eNYH2TSQOA4D0L49VqhbquUNdVhjaqKmncABIBvusdvGSV6XeayWRj4xOQ2OQYVt4Gf2DjWZO8MXiGUeOsZZLHkz5qZ2lKuZqK3xDaw35lq0AddNZaBBcAXyoNkqy0cbuRKja8CbKzUX0AthgKJawX4OgiGNa0ewfcv/8I3WoJBCfCPTMaqmXHY5BbxZgOXABSD5Nrck4EEtk2f9vgj3Ek1IU30bQ1jV2Jy8pSdOt2xVZDXaOZz1CJhj1eWuWayGGPHBqrjswyr2KbJXaWWIpi6Z7XLq3QDiFwmixxUokFpdUXAjtxWKtgx1FEYLOSGC7QOO8xPJLM8BcwhkEqNJiJL4i5y4IsckKF/AwwPSIuKUVGwvQ6YXwLiMYjVSkBEgsd31M2VRDNVbRyPSAQOQyQCvyUwP2ojEFTCQQQuaRZDB5OIQHxyhOAyhpQtDBg07oS0zqPJQtdqbeQ+pi98bkp7BHl3oN5PMdEjXIP9WXkJ6vCBRv30ndZkCk2vh2XLfFcRM6wI5nTLLSCYMlJ/LIJjpxBOdzHVHw2CuOf8NRImKQYHYVFSSLDOdDTBY/5zgLedXh4eAg/GmhaB45JkYIkMvUFLFZZC2us3FOtrnLehx0f7qMMW5y3n8ZC/ny4Qa9U/puvM/4uP/Zc/V2diuobkBsX31PLII+TJAnPh1yKbjKZIPvJdFXJgVi+HvWwZh9H13dcW5UIe+eM8tIJbYIBIsH1HtMJY6Jdu0JFulACp2b7XvgBJEvN94jeFyckCyhbVamyuDaNqdgWe/lcx0KeNeDKIsDCRQPvDSpTs3MjRszqBhNbIRrLglEeOojQtR2srbA7m+Po+BCdWwGVg6/WiIYQKcC7gKqaJAeUJQMTCcEFVLZGcED0AVRFRO+BEFkwI+VqiiOMeUsamsJ5zlZs1+uUtai4OYmZWtUNULOaqJwPmuK8scFEACV/hGZzjpriuxtazXijJwh0Q8KIEBfNNBbCZXQBK5YIx6v75DsJyNVJVCAQcUkwEzxMCDAmwCCiD+pf8FDiRQ8m7k9dEmsrjbHoQyR2uPd9j9pWqIgwbSpUBDjiSA4Ox5Q5tew8dd5huV7hpddewZs/7vAfv/Pn6HyPQLU8V4KBBcWA9XKF09UR2m4lFdP7ZL7PZ7PMRU7E5GNpKs/SFnl/MtauSka2Sp6mlXuSUvGMKI81iBWi1x5nx0ahM3Doe6bwXcznDF+BUBmbHJPG2nQ4a6hnDODCHbDMydMy9DebzXBwcJDCCylmOtdxi2AOGu8d2rbF4eGhlA8k3Hr5tTPHfemEtj63IFom40xA1px4klzfM1+FRjiINuFFaCdODOTlV5p6FMsojufXBvdAAEyEsUzoFKKBjwRDFWLoEUJEXXPV8iCdCTEn3PSOtYfpdIr16hQu9IgmIJge0XD4VoiB8WeJHjFkmPDNB9iaeZa9VIWNIQAhpKgPRK52z5o4C92KCOvWw3UefZsrrCsPNzPgTVnwFwRD5fjLR5mfXPHHhZnVNPr3bC2QnxNSij2Rzd8mTTbJBSsqY0GBE4MoMD2XMi/y/Om6kr/TybIZEVH+pRANYoAli0YibAzFpFwkRdsQoo/w0aNzPa7euIb33nsH733wPvoYhJFGhLZYOL5zWC9XWK5PxMnMBxAATOoySiRbbue1GLfP55O2J3Lu6WfHmvaI0kCfkXcOXmp7TpoGCBHGIDmakcioeIaiwFIK+YUQ0Bcp8fP5PEfxoOCqGUyOHFcxIHiPvutwenKC1Wq13bQr2uUT2kXL4V2iPcvr3vtUyBXITgoCJ25E5IgHxbR0Il8ELDK4UYE/R/kjxpCEiXrBV22Pd955BzASVoaAex89gKkMdr0D/awGELnuo542aX6QJEGpJA3wYv23nFOxUjTO2YA2wvuUUEf7uS0ShK+9ObMXMtfnbYiELA3N4XFPsnDmv3isWbznQ5evZcgwl0twgsIMr5fw4y1929DyRf0uD5MUQSKwiEJluf/8gBOvNFhYVJXFfDHDtWtXU7q/9pu1SaYmUPpZFs4ay73tmQ0hibOb9u9JxPwZV9gCdZS9kIsPXlQhCyhPCls6A2rgGIW/ZXN9bj4KGjBZavEOM7IWN/xiIo/K6vMDzh17vli+dEJ7fJJqOrX3DpGYfGi1WiF6D1Xw2FNcs0Asvp8Et7UvTliPGoMBIXGj+OjR9S1rboaF5O7ODh48eg//9J/+U1y9fgNEwLpd41t/8pfY2Z3g2vVdHLUtrt25iV/8xS/BWos+AjEATdUguFAs9HRCSNSALD6pkgLL8+pcL4kzKwSnKe0cZ00ipFJCTLEBysSapzWHP10tplT7XOaMD3jl3DDEJE61pPC70xYRytx4VtLX9o2+tQdq7cmzJMNmfW0rdNGxZi995f4aWUecVLW/M8PLn3kJv/mbfxOzWQNjIyAx/EF4NJarE7TdGt4HNM0ExjCODWzLcMyCLEHCgx5TwnQVdnpSMf88mgEwnU4AMP+6JthMJhM0TZOc6yTFmkvq2XK8MhQYY9BKJFXf97h27Rp2dnYkCWlocZVrXRWbkxO2XjQvAQCm0ykm09m547h0QhvIgjsxxSXeY85k6loOt2oaIcevLGpholMvTlnmaJtX/EU1xXCB7LTw3qGSRAHvPGbTGbq2xR//8R/jtddfB4hwcnKM7373J7h2bYGTkz288e67+Hv/8B/glc+8Ik4xNvVsVaHrfU6pSOa51mS0YqrHJJgAqfnXd1i3LXzfJ86F9XKFZtKgkY2g7Hs5fG6TLe5p5uLMlLdPoPHaKGAQiqBI8MqOaEVwW4uqqtFJ5ArOWFM8vqdba6qgR9UQjTDP+WwZshIusfeQiusIaCYNbty4hurLv4DJpAYZrTsZ4YKDcy3abgnnerGUhEdEq9ubXKw5aZbZf1f4DrbbKhpV8SKObjGKUNdcjV3rVdYS2qfWoPcc8jq20rW/5fVYeXEpzns+n28Ql9FIlgAY5DQcHh4mjX8+n6NpGszn83PHcimF9rDR4L/JSUJ6EmIwodvM9XJRlfj2i2h8nxLXjIPNAUidvekM8/ksea6D97h27QquXp1jf38XN7se+/v7mE2naRQp8ai8X/ovY5qK5UXP5cH03ZIvpIQBbJFkcZY2PX5t26YY4JHj3j3FNS+y6bNBcl7La+o4LOAWEivvLL0yPRHCudS/m98u2CvFQrJkEkSiYEos1pBCbTEGGEOYziYDeCEKxq7JOgDS2MZrb6Nvgw7SyAdRwk6FgzcJ+pFePrKan7adB7mV0Si6VgdhiHG0BmnTJig/r5zwuua3xaSnYiACh2xm9T7ZGC+d0C4D9stUWo1MUCmldIrs2ef3vBDjg4bhOhsRCS/KqicAJoeLRTCJk7VVErjGGFy9ehWvvPIKpru7uHr9BqzlhIjXX/0CFospdvamCFWNz3zxs7h16zZiCDC2QoRBdGBWP2h8r2KwFSfzeA/Xh1RmSStyqHanGWNKkDOdMvue4oRl8sPTt20C7tOkaRsYwxtReW6qyqZqR7oGiTiFerBRrU2yPYQA0qoppMI1M01uuXEhfASeSMdtxKSpsfYe1jn4BJ9E+OjABGQMkXSuw6QyuHZ9PykzZIDQOxABVVNhvjPDcrVCCC7htbkbNNhvHLAxdBQmCL+MgGFQndfPC0TIMi7PmrZzDjs7OzDGoGkahk1jxGxiUtWr7Pgsxil/aYy3MQZXrlzBbDZL0Igm9+mPEmodHx+nfVQ654GcMDauYzlul05ol03N18HvJKYiZUcjM6RRgU0W4e1bcccXNQAkT36uxBMl2zBDFnt7+7h1q8fetauYzhds8lUWe7t7qBs2/67euYV6ZwYzaeDB5P4Ei+gjV3NJAAlDINbY5LDte4fVaoXVasWCx/tkUmq5JY2zLlndSk1kW4LF49s2De3T0xTTVkeUteJ8LYQZf86AjIHzmY41FyAohW42ycvK5Oetu1Iz1IO8qSrUho9hC65JFMQfUom3MkaOeJhNJtjfX4h6z4exD+zvqYzFdDZhWLE4gHDGswxSsd1qOnx6a6hxUhxc4oW1GHMkh+LKuobruuZsSdlTUavPb1wjp83rNZqmwcHBASaTSRK8JQSoMMp6vcajR4+S01GxdJ3XnBH5c5bGvq0l73pqI00aGAgXdZZEYOiW3rjw6CLPtY1Y2rY2vvFkwjiY8R7NbI664tCv+VycgKJJGC2Dpc7GYgw6PcF5xlXJCT2l5+QNIAkkFI7EbT98vafZlY8Z6TPM77OY08MVEgevD8sTDFfPNm04316cWKQAb4aC9DMhhCFN0zOMN5n7KEuPcc81Sad8JDFGSTAT3NVxVqyxBCavigC4WMRZ+Qg5aIW2PDrKj3UcxvEUY3qeMGSp8Wu3xtBccQae24eIHIO/rXQaMCzDprj3IMFoy755kvFeeqEdY4TrO4QwQYy8GFX79t6jsgo9YDDZqZ05iepUAi5IaifTN0oCi4b8+ehREZvjIUTcvn0bewdX0QMc8C/m+Hw6w9HxEY5PThgaipFDHcUPyYcTJzv4nsd8fHTMdKbRcAx2zLVQJk2DSdOIH8AkTZMzyMzZ5vzGuMpNLEDsCzSTz2tDx9hYEg3f1fG37RqTqfgSgofW2yRCqvLNJdfyM2X4gzd613WwdZO0wBwOt61/fOCON7d3DsZYGFuhqSvOOEWUmGNeK70XR2dkDvS+d+idQ++AbrnCpCHYiYW1DRC50nBlJ2fyezAtLIo5UcVH/pRzeLMEwNBLcVFK91YHovxeVzWHrDoPZ4RgS4oBlyGU4+tYaxM2vVqtsFgssFgsEiyigrrkGF8ul4nJUq1RvVYZ7PCkis6lF9qISBSLbJrlrKYcmpS1kOwc+eSlSM7w0yxA+S1yCSPt4fXrNxDJwBsDp9VMQsS0brBec4KLIc6e4/JHRmr7Mn4dAyGIB3t5vGTqTh8QPVBXDaqqRl1PUskwXbjajNE8uu0b5czxFVVzXlwcwfNrbG3w5lRBqqGPWQHgjVpZpQVVlsbsb+n7HtMB5ICsCo7giLOmKQiUVQGobcUHqRzyhixAFs4ruRWvBed79K6B98By3YJQYdZUsKZBDB1TGdhaQuC2REH4KAd4tjwGDs2ir/nXT/IZ53tX1kqegYfxBc9QoX0jxkEwT4x8+KrQXq9XgzC/UrNWitejoyM8fPgwhQ9PJhOuurQRLvl4KCz1/flNyKezlRzLCnrw5GwvtFkmRoynjzZW5EW2YQ/SvUf7F5DQK2O5aEGkpDFQEb0RfIBDhDOyEUnNfJKCs8MqKiSe/6QJFBpBuXHL75RtMylkpI8Vbxd7fnS9LWbpM2HjT9jG0HnGzsoeDL9ClA7T8WfHvSuhuFLYaX3KjVjtjXsXvSg2e/pwlM/L8+JiD54xZP5PqUCmj4cYsVquYWONeVOhmliBEQgar6xCezMiKJ0wSEnpWixZlzCNn2YW7pHy879on1FpFOdwRY8Yc6ENiMA1ZnjIjiNBGOO3+Xvyugr0kiO+VGSeVkBva5dWaJeLuazOjSjcEKp1xqFg3/j+uTe5iJ4XlychigJXRyeK8FEWVNSNa5MG7dMiUGcKf7auaxwdHWEVOngbcf3OLTaZUQEh4vDREXzPQruuG9QVgSIhBo5yYH6JZkM70D7qa0mzitpr2jpHunkoOcUu+gB8Hm2zj8YQDEn4o+cEIzKWK+uIhlxCC7aqGCn2niuoa6WTtkXwAdGKMKAqCRTC6IAs5xkZG88kVGw91tZg1jRY+zV8kAr0IrQjCKaqEWHhA7BeO3zvez/Awe4cr9y9hc9+5i6vjcgwWDOZopdICe7zEJNVWIxj+M+zCj4ZLXub9VdVFcdqr9YAgNlkivlsluKup9OpBC5kZk0iVnDaliNPDg4OMJ1OUw6CJtrojxJRzefzpGmXGZNnHQaPs/IvndAeY0QRcSC0o7D/heAFElAcLm5MZmnuf0Kj4b4RV1wHCXWqMeLsl4SJwJCJBwqtOI+prirGttulCO2bsGR500aPo8NjRKEJbaoG1lT8fsxagTU187JgU2tQfvIo6CVBI4OH4xgPbbxg//o0waRlrjV8KwaGrZKgLmGSGFMRYu8DQCFh2m3bMo+58njXzBES/DbNNrcksPUARARiAEWgthazpsHRuoXzfNgDzMMTiGBtxb6MELFuHb7//R/h+pU9VDD4zN2XctYjIppmiq5Z4/joKJV8y/cv91qGiD5Nbajp8mtVVaUK69YYLBYLzGYzrNdrrNdrEbRlqWUV2loAxOP69ZsDqEPx6+PjY6zX64Rfz+fz863UwuL6/zsiARZsG5OUUdRtbfz5rTjtBWLeZVyovCL9wDaF7wwsR4U2LxYtPuBtCf+waRtDacLpwirpNvVftdbPxp9JAdnSDteDEZtzO/zep6c9KcJOYlmUOOjGtYrIDr26QiT6/uO8ccOonGxRZdB4iMcaUg4SFD9Dz4G4PthSixF977BetwyxFbCHQgCD5JNRv0a9LfpXzoO+u51x5Hkf4uNIprGFqHBGFOu7VNrUWTy+VvblUMpNAJDgkBISGcMiZSuTe562XVqhnTghAKhXPxgkk7Vk4dL2adP2IsD4pDEpekQdqBaFc8hwrDQzEsaBtKnrBrPZHO/f/wgfPfwIzoR0cdagq8QjDGQuYT7YFIYpICRkEawLe3Nx5g1/7vg+ZfOt7ckENsfLx2jTYbQt3DEI/W/Qqu2RK+cYC5SUAABThTImnJkTtykc2sdYVLsxkWCCR/AOpuK8g0qK/BriqHwyFk6eZQTQBw/rCb2rcPv2XbSnJ3jrrXcRfhMAVSAYhNCjqTme2KlASp0pZiMd0gPkuhDP5ZGFc1Smi23lWtX4egADmEO59NVSzwUv2LloDDsUZ7MZrNQ4PTo6SpWZjDHpemUo4LgPz9ourdDWh+L09xikRh4lB8KYxuLTJkQiNOZWCvvGkMohWVMB4IPJVFwlmojggkA+IlBVaB8dneDDjz6CI+F+Bm8qay0qU0E3lSWTfzccUhhzCcmB0AbKOSu1ctHgz3Gilf9uE06fdHsSwc045dgpmCk8gcgc7SOhnYpJ2FzJhyIXMQhqpeAMLVbdBLIeGBqLqIgQPIG8QQUkoc2kvhyWGa2Fc0GYR4AQONyvNw537ryEn/zoh3jzrbfFl1mBEOCDQ90wl4wbO9aw/aBKr505iyV8dvHPfag959dUaMcYBcM2SWizMsTPUKvIayHr6XSK2Yx5RjiKZJ1KrykkMo4Qyc7L4WtnWfXntUsttMcTw3Jss+qJfv5p29OEtz19y+JxpMAMdBTVAACPABbaWtOPAqHvOrg+l/cKDGWm+AS1RJLdUf5e9iTbtmdus21Y3fM6CF/ogfrEj3PToigdcoRc4LgMkVQLausVKWun6lfhL+lr+UCJ5XsqyeW+5XPdJhzZalPxGTGZTmBtlfwT5fhKqCwWfcmjOXvCFE2jYY83IL3xXnoRh/h4fQ6d6nEE8eW9pk7FMgpkUHas+Lcc2/Nql1poh6AaTYHtUebDUAeSIZOE0ZPi3I9rqy7gzQ87vHOvwxsftDhaBrgQURnC3tzgc7cmePl6g9duNpg1Z1S2UMcfCWxhLMhm3C0Ej3bdYX26RucDVm2LdbdG13Xo2xb92mG1XuP45BR/8b2/wv7NK7h15w6PPQQQAmwF1HUFr/UK2dYHgTjlOsGnMUmMoSaVeisfkwPjCebweQr1T6LFyGXrKmvgHBeI1Q0cQ0wFEhCHEQglnzjAUShJEyPGmLOgG0EJsaQzjfmHWFTnQrNAZQlNXcG5CAS20kieoQ+OqVgpwgePq1ev4O7d24iugyHh3ogBZBh60RjjGNWpCaYMDtu9QwlG2VgIWRASvRiQhJWezbXXNMz4p8V9k+O+rgd+iOBDiiqx1mI2m2E+nyeOGTIGVV2naK2zamWO/9629n8uHZGlGaJaAxc44IdnDCXCd+bWCCBLA4y7nMqzJvEsYfPDtx/iv/vXD/BXb69QGULnIsbFlT88An78QYemIrgQ8dVXZvi9r+zglevN6B4hmZHM621S7HWMHIWwXre4f3yCk+USh8fHODo5wnK5xMnRCU6OTrFcLnF0coL/+J++j9/7e3+bCaNIM/V489V1gxj7NHYDAiIL7SSgQwRMoZUrthoLTmcx/csZe9wi/LTBIk/TGPYIqCsrJjWvvfW65SpIzqeyUwAL0SGXeIahZAJhiJ8rgWDMyGGXrJ3SFhLtWvHxoPg41+Fsmhrr0CN6hjpANQtq71EZAhAQgsON69cQXY/GZjrjGByqGqDIhSwmk0lO0ALACV+kCaCpDxkPxlBYjh71NtjiubaE3FFRPYZfVJIoYCi0NSxPfQ/WGvjAzHwa8jibzbDY2WGhTRwWWzcNfN+Pnu9wrOPfz/vMee3SCW1t6SSjbZNRmEElBCGm3nmTd9YCe3Tq8U/+7QO8++B9dM4jRsD5sxdjiMC65/e/89YK3317jVeu1/gvf+cqDhZ224AG2lkIfPq3bYv1ao3VaoXlconlasn/Lpc4XZ5iuVxhuVoyG5m1aCYTGQegzD3GbEIiT4s1jrktzv/s4w/C857BixP05w8oiu1PJGGXpFAI45/eOdCAEF8EeNq0SO+xA7K0duQ9bMnWTT6BIL6aXMlI8QjGmyHPNo9FD1jVzvW6Vc1CeTafyYeKUDcMLdTBHoiP2TNqoY2ssvLjJTTypGvgeTQNVlDrSO9ZppQrHKSHizoXrTEpGFC/459SGD9rtMylFNqD2NEo5YSKhU9GlzFDIx9nbcQY8ac/WuIPvn0I5ze16ie7BtD7iDc/7PDf/sEH+P1v7uMbn5+jxExJHIQKtR0fHeH+Rw/wne98F2sf4UJEHzwCpPRRU+Pg4Ar29w9wM0bceuUVfOlLX8LVq9cQNcsNBgFBFqIs2oRjIh0UgGSQFWNOYCWKfwlpE1+udvZDJWLoIIaQkvLrquLCsFU9iM2tDCRZSdacbFRrLYI4ujiMTO+ZhXSIAa53XIRaYBcfpBA1Apq9Gaqa09djCIhSKbipahjqGVYxhGhkVcWIAJ+ckp3rMJk1uHnrmrD0yXWikCJVFWazOZbL0wJfL4r52hLzxhZBPZzLGKN89wUAJKNDSl+sqipp0KvVimERRCzXqwFG3QmVqjEG+/v7SUMH8vNfLBZ4sF4PbzvC6c/6+2lD/y6l0AaGp6itLOAzP25OPgkpQYKIqSXPk+BjLSDGiH/2Z0f49g+X6NzHX3whAp2L+INvH+K9hz3+0a/tyn0h1UJ4I8YIPHjwAG+88Qb++f/wR5ju7KGZTTHdWWBnbxez6RSz6Qw7V3Ywmy2w2NnBrZdfwv7Nq5jt7wBkmU8CHFXDhQuKNHYCEIfVVYyxSUgATK9ZeMnKWUqY+HjOyrn769POEdjyb1VV8C4kXuy6qlMauUJ1VlLKQcTCs5gCay2cpD6zQMiaNIEQI/OKtN0a7XrNgqbg0wFF7MwOGEKrDUcYMZaFSVNL5Xi2qIIq+xWHI3oEBALafo2dxQQ3r+3CVnxwx0BwzsNaQlXVWCx2cHx8hDJ1huRwsFZw8BABMmfMWnnIK58OkmXxrHHL57akMeeEM/47JDrWvu9xcnKCmzdvoqoqnCyXWB6fAADqukbXdmKNWFy9ejXRD6tQr6oKOzs7uHfvHuIgSoh/mqbJz0rnjXJimv79pO3SCe1tJkdin4sjE/5jyNkYI/7wTw/xrR8u0T8HgV22zkV864dLAMDvf2OOIWzDh4Xy8x4ePYInNtVMU8siIFS2wqSZYD6fYWd3F9dvXMdkdwHT1OgQINFMaaNsmHRb/9qmPeWNKLL+r7meXa6f4StprqBrK5vDUT5P0ELRdiC0+QDkD8SkhWYrpjTBh5u7EACijSuPcym0Y8idjSmKRKIYuPd5ZFQKTxGfIcBag8m0yXqLyf3kAg8VW3pFdEuKzy6HFEsYpmzDF8o5vJgWz+gHtxJTT5q1RIVopIhi2wqz1nUNEquztEKV5e/j4PM/95g2kCewqiq0fY8YIqqqTCUtiH5QmC1PcO0//dES374Aga2tdxHf+sESdw4Mfv3z4sAiAy5UHLC7u4fPfOZV/PZv/w4mi13Ukykmizmmc66eURmL3cUe5vM5pvMFlqs1zHyCCTVJz9GNbSuOSgHA9Q2jhUZrj9dgXljbx03JrP/rLbrPayX2mjas8HqYKmfWqbW38X3o2sxzqERD3js4x5q1l9R4rb/JNTsZfjGGNdvgA3rXASSFDrwH+Vw8uBLHWmUtekhyVgkXRA4xdN6lqBDnI6xW0YlKwRpQCaVoSdKvh8qQkpef/zCLUgSffqJYPnL0yWFxVr7kx21RntHwwEnZnmDoSu/tY0B0Duu2FV9QzSn8hfVZxnprduQ4HhvAhpb9cXH7Syu0dSERsYmzPl3KwioiMIDkQDLFIs1e5+3XfnTq8QffPnwukMh5rfcRf/inJ/jSnQX2a+ZKNtbAOY+rV6/hYO8qbt5+CdHWgK1AVYVA7A1vV2ssZguuoF1VePfeh2j2F2h0I0aNHjGo6iolevjgYaiS6ivbtZR84I2n6AXgkxfcNkOxspUzpiZlIcShY0TMP22rKoV+DShsy8gPYm4R1XiJSByXPVxfoW27hLW2bcsV0sGVTqqqYuFpOeGqdz38iUMECxr4gNhbrlxTcUm9uq5QVRZ95DDRIJi5MSy0QwB6wcojAV0fMWkIlTGIYJIkoojJpAGIkt8mz1Uu7stXDiCqkoDzvk9atRocgBaOHjHf4eNpq2e2wkLgvrPyo9mOEYCVUnGseQf00cEHj9l8jvliB3t7e6xlDwik+FDWGpFODk5baOyqxaeubFhTTye4L63QBsSc1RMfhSPgGa+nk/t/+XcPz40MeZ7N+Yh/8u9W+N/8HVnYAo/UdYNmVmO22GV4RH46z7CJAWEymaBuJiBJteVSV0NnTERRRgpZtmx8MmYTURttSu2N9jQL8tMRMSLtTBM/N1YMM2kSokBxZ0BOEUgVajRUsnxXFY0QfIoLZq5urrSuWKoxbB2xFiwCgfQajIUrNKA+G0OEgZd8NJ0arojIIYcx5vJzURwptsq1SbdOWHnRLY9L9yPOiRIRN/i2GzxjKzSwEeyUfjcyRirDfkV4ywGsZcm2jQnAYA/x9TfjsJ842eYx719KoV1iUjBZS+KqInXChktMUrHix0mhn97r8Pa9/pmiRJ6lhQi8fd/j3QcZHnFCA5r6S4S2bfHBvft44623cXJyina1xrRpcOXqVVy9dhWT6QxkLC9Ca7nwAZsanLquyqMxQ6dQgXunhS9m7GXQrMetTKpIa+TMJTHapMVL2dKjJFRjjHCen1vXdQjijRwk3hiDtu0QQkBT11KmjPvTNDVDWSpcklAGNPzPDDAIvqe1XHA4uj4f/EnIEhANAgi9izhd9fjBd7+PO7eu4cb1A1SWOUiIWOBOptN0edYgy7kL5R9QhrxSs9TYfyLlt7kgB+RjmvbHWuaO0Uo0Gr+9s7MDIiaFms1mRf3HDOCX/Q4hYCLhtL1zqTrNNuH9cdulE9rlBKlTjr3zzMI1Q/bcls49FtrCGXHO+vk33z2Be1ESW5oLwL/+AeE/e6UCwcL1Pbx3iJb5RwwRlsslvvu97+H/+d//Czx48AjeBzTW4PNfeB1f+eqX8Ru/97uwlrPj6kkD59hEjyGgquq0+axUWPGBzeco8ddDXWgMH1ySprDRSGOi4negWGOUFQTSWHcV3mOhDb62OhFX7RreSWZhAacYY7BaLVHZCjvzOf5/7P1psG3JdRaKftnMZjW7O21VnTrVqqSSZAnLsiRLtjFhHPEwmIuvIy4Y4sX950v4GcJ/IMKB/xA2YYL3wn+AhwMIAvNMAD+4PBPcS8+72MZgSe5kNaWyXJKqr3PqNPvsbq3ZZOb7McbIzDnX2vs0dU6papfzxD57r7XmmjNnzsyRY3xjjG/onApVZ5odv+k18Yx43yPAAMqmjQMBIThYY1AWBcLREspYfoIKiJ4LDe8VmhbYvdXg//qvv4aPffTbYD70LB566BxUaEloK435bIZD7kPfd7DWDLDrEAh6oMxYREw8boZBReZJrRWGcj6cuPbeWkswl1xLhHIAsGiW2N/fj0RQAkXVdQ2ArBxxNvKDiNi1QCCz2QwAsL+/j5q5R+R6t9PC4/3fQTt1QjtvcRJBRaxKmoJi835sxh6vbS9ajy+9vLid9XLfWwjAF18O+J5HaKePiyAeodD1PXZ3d/HSSy/j2rWb8B4oDTCbT/HIow/DFgWgNE9WHYVLZAVMkgm3dQYFxg7yY8aHv4v9kMdpfivxtoObVAObWzTtcUpzcjg69H0KD5PzC05qMtL81BeKzU6WQOqXmPO5wOaTQ+ksfJMfXYQ5AgntANKCW+9x5Y2ruPX4PpqmYy07Xc1aSwWiAbb20v2Nk24Eklz9SdDLypiHqMfyNHvrEymHuaIRIuPA0JH3Pqapi6AuyxKTyWRQsSffsPPb9Z5CCGMm9m0w6xXo7C6EyqkU2rLz0QRR5DwIEsIDRFhOvL0AP7gh1jVu37zawmr1tuHZebMaeH1/gk1FjkjBREMIaNolDvb3cfXqm3jmfU/jzJldXL92A8+870lMpzVu3tylCTmpobWBdyGOA1kYSeaSdpho/fKU9WE7RRr2qI03cdKcs3dCiDjv4KgoZBI+LTSfdBDXj9QadT1Bb0loi9NKzr2SCp1r9vI8eM8UmMR7R3HSIrz5K5rZ/qw1iJE9ITndAysuPoCsKwRs75zFctnhytVreOLxS6xZao6SKCLd6Bi3T1olosDOCbP6vgesgbXgc4R4ew8aHomCO16HPAwEXWVwKkirbppmSPIVhuUIk8WZol5EGx8L7fvd1jMVvYubDH6s0eapQkheBzH4tOCGIUAnn/uVa+0Djxg5rrU9cOWghtYUXRA8JdyE4HF4eIhr167hhRdewHd/96fxR7/3M3jyqcv4s//Lj+Cpp57Aq6++iuViAUDBmgJd75OAURpZEjRc76JZL5pbXi8vSQr++xQ2wVsBFtA+DEx8seB8yBZnSHMvgAi52rbF/v4+9vf3mW+5gXMBRltsbGxiY3MTAGIJKoDLknGqdEob9/AhcW4bpYkfOzobCapwjoozi8ICEK9JVRSoi4LAkOCZBlbDezCuruEC0DmPzns8cukyDg6X+IOvfSPCIkEpdJ1DUVaZQzT1UbRWGTvR/HOH6mKxQNu2Mcb8pFC4+zmzUlZqei+ue60B5lrpubi1UK6OwzVzZVApxbWxhQWRNuKiKOmY+9j/lft5gOf+lrR8YSVOBjVYbLm4yRMF6PvHn/uFK83b5oAcNx+Al3ZLmizOJ1gDQNfRgrh16xYuPfIwLl16GFubczzzzPuwubmJw4MD9MKtIKXKIFrbcLMSQRSx2pGaLYsxd7pJU6tvvetaWti5VjV86PHdgJVjZGwCaIGLwGrbljZE1rTLoozp0GNNOw+Bi2cOoslLH9N1lVL83IaOP3keBLXotNcyoh0Vb7a2XCAahtl8A23XY3d3L46FjAdtJqJppzFLP6sQkQi7vu8jvBP7H9KxD6INMOV1RmO+OefOyRGcOj5meAJ6VsbYxFsyOnYdTDTuZ3Jan7yKTh08EpMQFIe8FQW00ZjP5mgaoi0tCkNYtnhzkAbxJDNt7+hbW/vuoDFI0SNC0UnJF0oBs9mMKmbsH6BrO2ilMZnU2NjYwHJBVTUk4iRwGWwx7YTMyHtP/BSKy5BhTcHWU91G21R227GALXLBTWW6nA8xaUXgCW0MbFFEwaWj9qzQc/KMnLcoEuywYl6vFRapt0Yb9L3jeGo29YNnvgwSkFopFNbAe8DxOdOmECDRLUF57Jw9g+XhIVxHSopmWCZGfESrIEDrHP+n7EHviYbYuZR4EvmnIVnJmcR/gFNrOG7CmTls4pAUf0OEdWQTRIj3j6zr9FkyQiX6p8ie+YNop05oCyyiuVhnXdcw1uLc+fPY39vD1atvYGdrkyaQloowtxfYAN72qJFxc4F2867tSKvSAODR9x2UAs6fO4+trW3s7u5hcbSAYYKbiw9dwN6tW9hZLDHbIiwPXAdQawM4xEKurncIhkz0rmuJjhWCiIy8OStt5Jx8lzYh7OdZEbXTHMIQnNt7j8OjZSRxkpC2oqAMulqODx5GEeyhtELTtnGkbFFiMp1CQaFtm0gZLG1VM0uvRUgcLRvYsohC2/UOnepQ6BLQgFXArK4Qmg6t8+j6HkYXQOCEKoAJpBQef+oJBNfj4NYufOBSZUpDawutETeXvidlQTRvEnYOTdOh7VyMV9/Y2EBRFOj7Hru7NwlNzgjd1j+Dtz6TAig6Ktde01NNk1jKg4ll5JxD53oYZ+GRWZVaVHXmjsn8Qin6yqKup1EGyVjdz3bq4JEccyrLElVVQSmF6XSKqq7RimNIYRABcSexolaf/PmDbkYHrv7NEAb33XGCxWw6RVWRs7HveiilUFcV5vMZmoY0bQRA5WxFHPY10LQzeCSZshkMsHY1fauq/t3HlpnPCUoYOtrWef07xm0FCpFyVZrJ8W1RwFqy+IgLREUhD4CjRAoYDinL8XPpxklam+F0+UFWImuNwrmjQOnvlJ4O1rQRNeyoaSNge3sb880N1JOaI63ZKtM64rfUz1UIwPvAYY1dHAcpvzWZTCCObxnPkx7Gus/Hs/FOWoQr4hmwongIh7aMmWjaKVokgy5O6LYk4vyhpn0XTUwTyWCS2EqlFGwWzgOk7DXvA/S4YOSatjnVuLp328MeWNuoAkV/+DabFAFlWUBrhf39fVy9ehW7uzcHVaERAGtsNM0p5M8AKmGpcSHyeERsla+d657HL5l3ueCO+1HSriQsNPeTkCbmGUsOjGcaFmjD6iWEASt4rwBP0II2BoVNTjwRGEoplBWV/QKf20hIWgZBRMxapWxMcZhi4IegTZ5igehcCp6ckcqsWE4ksj1c6DGd1sDOFnQkoVFRs4wwTvDoHaB7ynHIeTi0sQCTTJVlGQUZMNyAJKrjTqJHxnMrKrq3aWogaDPMfQSLktCmiB9ZL3mfj1fsBEAhmVKVJdrlIsFi63jI30I7dUJ7Pp9H02Q6ncYsJaU1yrrCmTNn4NoGikN0XN/DKTWoMHJce/piha9fab8lzkitgCfPelhbomuO4FxPKcw6YD6fobAWr732Gr70e7+H6zduoG2oekpwDioE1FUFqy0lNxgLSsLgDC8VILcvUTaxdNJgvoeRp1aAk3XOmXdjC4APCBnHOglEChXNC08slg2MtdDaZGRBgnEqLorso5LgvUffESeFLSw2NjdRlTQ3Z7MZ+r6HtQabG5s8Z4nEqShqhMw3RVQEudAjoe2dEEsNqw0Zo4DgoRBQWQUdPBQn3FBECmvQYMELh84tcfbCNh66uA1bAHDkCPfQQPAoCnKgOudpjnmHvu+igJpO5yirCWxRcKzzlMmzehaCIdsv1NoZdMITSvd+m2MV39v4ezJuzhN5ljhYKUSzxcHhEcqqQmEtPxcbN+xcAA+TimiDtNZivrGBm9evD4opyDXX3tNYmN9GuJ86oZ07dMqyjPXeANJoptMp9ltiRaPJ3g00y5Pao+dKlFbFijNvZyst8Og24YcdV2QPYCKhsoAxGnt7e3jttddxeHhITkc2jRGAwhZEvg8FDY2gDAKjY7RwUnZe1Cq0yirWZ2Oz1gUfjvvw3dUy9W2cORvDSZ1D07YoQqCY46JMuG72vRBCtPSoNBmgNBF/STVvgOZs13UAKE3cWEvlyrxn7T2saNrrMuwEBoiaNgsSHwJUCFydnRj7qBYlE6hlxQh8UOhDh+35DBt1BW2oynskAA9DTTt4wrXbto0WR1EUmEwnqKqaiZSEf5o11rE/Xz14b8i684d88+DxdM6hbVvMZjPojPAr9yGMte6QnUtqadKGlrMh3r909lMntNfhjvxB0ko8FV7VWsG54eQHjp88T1wov2XOyN4Dl3cCuv0s4yqAtWSyKh5//HHUVYW+67G9vQ2jKe34wvnzmNQ18UhEIBMQBwrB+xzGxZ+xuxIDDDAEXuDyRt7e5cIaQO5QAhLGK85qmR9SmDfWE0TKFBzj0UoKIEABMAwPUzUUrQ2qGY1w1/eRfVK09sgBj7xP63suNRC99zDaxscmEJpWTDSlDYz2cHF3EpGT5r33DkKgJJsQlIIKGlDjMFAV/Uc5sZLEmUvkkUSMFFwAt+8drDXxHACwsmzvFP+4gyawVyz5JlfOQgLlPnOWvr53qKqhTLmd8I3wmEpx9/eznTqhDazZ1RibFSL3tpXyQQYePTsXhBryOEcbMCk1vu3yBF948e1NZVcK+OjlEvOqx95Rga7rmfyKFmNRWDz00EP4kz/4J/Dqq2+iLErMp1OURYFLly5hMp2g3trBpK5hYBCCRh+oerckBxjNmoRAJt4T+5lobyot8FHv1vz97kS2lUKWok1Qidd+IClFMGmtUVc1yqrG4dERZrMZyrJEx8UpxKdgrUVdVSirCl3r0bQt2q7D3v4BFoslNs+cgQ/A0WJJRV8k1hdA36VCB6Sd+ij8dOYUDwCsJg501/UwZSLkD87R81UKlTWoywK9D1g4D47tBDRVsQGAoDVa18D5KQIIFtHQUMoSfXEAvBLtk9YNFbslKLIsS5RljaKsYLjcmnOJEGs6naNZLrBYLIiU6QFv9uRkTWn+Mm4ihI2RMn4BpiAYpGka1pZ7HB0eYnNzI1pZg/PKGMv6YGy+KAoijAJp7gN2wPuwEZ06oX0SxCEVRQRbi445ts9SVmQ4dmC/78NzfPnlJbq3MZXdaoXv//AESi9htBlkvCnQxNva2sRHP/IR7N78LBCAM9vbMMZiZzalBJu+hy3KVHVe5p8Gm+D0UimGREJyPqbo1oHOx79Pg4adWp46HgCuCDMU2pJhZ4sSZVHiAEcoqxJ1PYHm6JEcAy2Yw6IoiPeucw7LwwVa3dGlADRtS9SnmvjeEYgWNGKmx2yEoidLAV/vnRhF9LkPUIYzKY1GYQ2s0UCe7adCJMoKOhAZGWMYFKct0UUkcQbQDFLI3JSjl5TS0LZg6y0vPKBRVRW6rsVycXTyc8D93Ppvl9CiI9+LY7+FOE67rh84JAGsPdf4nIZ9BjELWyxj4C0L7lMntKUNHABAtL1iyFKGOw5D7o8X2ABw+VyJy+cKfPPq2+OQ1Ap47FyBy2csFvs51WMSJpJoUxQFU0pqWKOwXC7Q9S1636OFQV10KGwNZQjZDlBAGNbzE81HknDi+yrBBPxG+jSAz5Wbue9ObRsQWIRanqkYW4YhC3wgYyPUnqlGKdh52SIEyguQUECBNCSeV7FpHvkwsusRX0jI1ruQeg25uyO/jtwLW0zR2oSKdK8ICaoWa1Pe8yGg7Xpcf/MazsznmHKEkmj6AFDXNRQ8qqrMIBGFNG9WpZO1FkabQR9Pss/y6I57F+Qq4unrWno/jaH8iMAfnG0NVJIyiKlZS4yag5BI5LVVV2HZ7I0T7+ZUC+11g220oYrYnszJyGUs7FzAbXfBv/C9Z/D//OUrbwsPiTUKf+F7dxDgoJWGsYY1oQCC5wJc3wGwmE1neOrJJ3F0eIS2XeKN119H0zZougbT7TM4gwIbdgJjp3DKADC0EDyiahbZ37xMxrw3udaphr/fvTI6tYCYBSc3lBZU+k28HbywEWCMjVwVWltsbm4jBB9jtw8Pj3B4eISymgFQsLbE5mYVtdmyqlFVE2hj0DQNtKbwQec7BBG2WkEpg0h5CsHZeRPQCioEuK6HLx2MNlBao2s7FEryQjSs1sSf7gK9GaTesDgXqQZ25wJu7R/iP/2H/4rv+eTH8PilRzCZ1uTU5LG4cOEiFBysUajrMuNLoZqlEU/PIrPm8znatkF/w0d4JQHwGKy9+6FtK5USYagfkuXIl+R573kswZuscKSEAIZ3VkMt8ybRMXLe+XyOw8MDLJZHAy39frRTl1xznGYkv4nkxlBBATF7Qo6D336abM8MfviTWygf8JZXWIX/6ZNb2JxwlAeb5rS5JFsreA8VgLqqcPHiRVy8eBE72zvYvXkTV668gddeexV7u7fQLJfwzjNGaaBAC4zJ4egactZBqFLeqzsbo3djE0EopmzOBzFcpJTiL8kXFIVEaeTiFJ7N5phOZ/A+YLlssL9/gGXTUuy1tZhwshcAWFugYO286zoudpEYKAHui5YY+6y//JlgtRSumTYcz+GbYC3QKBbaAREGI9hXg6qoJ8a/o8USv/M7X8K1N29wdEtU0AEAW1tb2Nrawnw+R13XTE1q1q9B7g8dV8Z190CnkhINPT3D2Kc8+kPgpyyCRDIjARDXT/zaMYWw83OFQJnYxgxJp+7TvZ46TVuysCLLX4b9yh9jk+Y4vPCk9on3TfHaze6BVGMHSGB/6pkZPvHMbLBSVG42I0Rtq+067O5dxxtXbmG5WKBdHuHg4ADLxQJd17KGFkYTRw1xNkSEf7TgGDJS4++PzhV/n1Khni/YzAcgcEgMCWS2OBHoQkCktSZu6zUbAR3DfCGcOZkL7RBRuwRP5cMsc5lY9VpIpFQuGBVbCVpJhXaFpLcRZCLwB3GIUFp20xAh2ebWJnLwgzTTddDDED5YJ+CELjnkAPwINrhf7aT1nS+JCEuFEIVtIoDKz3dyL2Xsc9gszpk1Xcnl0Z20Uye09/f34y4pxTaNLWFN8hq7ngKeJHsyhtDd4aDJef7MJ4ha83NfO0Tb3797KIzCdz0zw5/6xBZfC1DMCx4ne/DxtzYae9d38Wv/7bfxe198Cb7vsTEz2JhXgAZMYfDw5VRJxDkmDg/k8MrT2gVbFb4MBIkH58V9W5ms7uSgd3YL/F8mjHLMOrHykeW2vb3DDHYeR0dHaNs2hr5NJhOUZUkadlFH2tUYegmC6KbTKUMpC468WMZ56QGoEOBd6l6SdbRRWGPQth0O9vfQLjtsbm1hc3MrOdl5My6LElUPKCygYChayBA9bwiULemDRtcGuC5gZ+c8rl+/gZdffgUXL15ETh5GG0ngOSUapdyXXiusBdMvyxJ930MZA3MMPcR9m0G8tsVnQG8FtrRJpMvG6noa86OjI1RVhel0irbvOLzT8NRIvoXclxDHWVFmK3HXr4NGjrnfNRvcunbqhPZiscBySRN+c3MTVV1DmwIhZHGYTJBjreW0bRHad3ctEdyP7Fj88uf20LvwlpyTWhGG/Wc+sYVPvX8DPYhfJI9uUVmpIyngarTC4eEhfvu3fwe/8qtfgVEBjz6yiSeeIBxyOpuyiQwW3HHK8cpPSTRaGyBkThiR9O9mIfwW2jrnFWWK0jPRWmFzcxN7+/vol0s0TYPlchnrDNZ1HRdiDxM1sPE16rpGCAF7e3uYz6ZU1T3I2OfPbDhPZTMxhqqEL44O0agWVVUhbGymw1nRK2yBwhK+TVVpNLSyDPXQuXxQ6PsA3wdsbmzh1u4erk44bI2dokCmwca5KEJMp4vGljZzCb3tnYNhP9Mxo38nj+jEJnb0OtgvXiOIdmygNVnny+UycqY0Xcu1Uwe2ThTayX/GeQ8c9qdlU2B9MLf2j+3vMc7SvJ06oQ0kCs180ktLu2OacCttxbWdr5L8T5qIn3hmjvc/MsE/+7UbePWGQ9u7tac9rilFYX2XzxX4C99zBltTTo7I+VCYlW8QVcAdDIH0KGsN5vMpykJje2cbW5tbqCc16tmEM/NCjO8GUvxxHitLfNvrICMV4xXyoaD3VPb63dvio5apgcAWRh5fJAV89QCyks8o1CukwhHyg9WxyWW3/E3JMcJdwgIhj9RZ32sSwVqxxpjweSDtuSI4lJJkHPpAxYPSXAjBI6iAyWwKhANy0EYLP0GOCjIzMkgEkoQV2Nk4FJpac23G3vGxih3AOWvKvbbVeXsnZxvCPqmkn9IqI8bi2c4TXVaEwjByRCJdpMwbbWhCGSHzLBf2d9dOndCuuKDmYrGIGCN5znlH1UQcFTUYjB/p+J11y2U0QUHOyf/HnzgPvfM0/j+//Hl86eUFrFZo+/Xat1ZAaRV6H/Btlyf4vg9t4NFzBVRggQoFBQeIszBoABZaF+i9p5qXbJ77QDHDDz18EX/0+3awtbmJJx67hJ2tTUoEKQzq+RxAQNMcoN6cw/uWK5gUdG6WGkU5Qdct0buO059BG4YXkzdQsV+OXFmFlTxSEPi7sYVYNTcEEchikRi6swDShIEYNULarsHG5iQ69oiGlRNdEICQFipVhBFhzqIwePRdi7qu0Cwq5sMIzPue4dAsNAibJqFRGIO6qihRp+kADfTBQQXiJQm9h7YaBh5We1QlmPWRZ7DzNNM4Y7BDB2UDnvjg47j+8jfQK5C0CB6C0xDNgQGCZHKKdeZ5FQWiE5Yx4Irxxlpsbm7i2tU3Ya0GdEHx5DHSI4gBONJkk8C77TOMR9NPhM3zjEgWtAQ/UqKaMQqFtXA9xaqXRYFbt/aYIVFH7voUQMl37D2MyjJaFVny1aQiGEjRhso7/kqP7xTPBk6p0DYcOhWFNhAnulLJ6SNvD9sa8+ku9MdnLu/g//5Hz2DRerz4ZouXr7V44UqDvYVH7wKsUdicaDz9UIXLZ0s8fr7EpMwSxqOzL0DB07QICj4QM59SFi54CqmCApRFcIA1Bc6fP4en33cGFy88hKeffBrWEL+yCx5Xb1yHg0fbLKCVA0JH5FGqgFcawkNiiwq96+C6JZKXhk1ixbHCykfZkTuR1CmBURiBWl1gip9KCES6BUSif+8JWprOZ/S8uBgA2BkoDuNEfRtSrUU5P4cJVmXJzk2D4EGathaNMWmOWirAIxCvTFFQ2KA7ABTggoPxhKsG7aENYLSH1QFlASycYyzbAN5BMXwTVIBDD22AS09dwv6NN4hcSoR2luGogkr4LhSgyJILzETtocHuJMKMPaWvz2YzvNG/DuctoDFYZiLwBR++F2109ETpjOF4oS0WB1kBFFaLEGALi77rEFgoE8nW0LqSe5NNht4OMNYwdt9FX8bwgcu8uDv79NQJbWkpsy17T17mnvdsQt3d4J1sdk1LjQ9eqvHBS3U66jan57kzDgwYLYoMyhj0N0Tna11TOrFRRPGpg49me7Ik8p/UOdEs5ZNk1ub9V6NPpeMn3987vq3tf36fw7GPkQE68WvQ+wnbRFg/S46XQ0lYiZmuBEdmyCFpeuP+Z6FtSIJELKL8GwTfuKggrO2fAow1qOsKlmtUrh4q28Zwc8P608b+perwdw8R3Pk0G8Jaa881mOACHynm016fui5/r/gmRu8rraCNRp8TzN2HNXJqhXYq3cRe7QzHFn7iu93h3p6WCQbNi5WFg6Qip9AzSa+16LoOV69exWOPP4lJPYnhXpJQVNc10PcIUvZJkWE9Ft3aGCiVRQMolQREDE3K12M02vEuZ9OObRiClf8N/pud2N6h63uUZRkpbSn+WEUB7jNHYh7+530fBQKlkCfhFbdRpbBYLlOIYHAwhhKsJpMqbhqAZysnFbGV0MNJOYH3IWVa8jF1WUEvGR7xPtEbpFEAQOvo8ccfR6UUXE88JAhSuYaQWg2NEPqI82pliPIUietbmkTOEGGbJk7uvudIrjQGeZWgNO4Pdr0GvgbxE7Vo2waLxSI+s67rYh8GmZqyCXFUiazPsiwxnU5xdHAQOUhyuGcc9vmejR6RlhZHjq8qgDkWcvMmH8TbadBvZ1Pi7GKHqghgct5oaE0VsrWm+PRr165RtZ66psXiGK/TxPnglEK/ZqvP7zaWHXMuCv0VjRonaYqnsZHaSRsdaZvGUF3GJHAcOuaUjoWTx3isSuY+5bvQ+z6EYZYbP2utNZrFkr4LIPieIxoKTCZVpqWm5BChaAjBw/WOBaSPSooCKS1VWULrBYKTgsAW+dwXH77WGo8++igmxsI5gReot86T1m+0SQUYFGVuIrtniTfX4KIQSiEY2igCV7qh6Bk3qOYDIArKt0/BUolbu+2wXC6z8mr9gPwpCV7EcZb3AYogmXJl93UVodbd13s2eiTfsdbuXiozeN9xyvaqbRkNdHb/J8dVvuMTHtcsGyyXFPboOuad0AqHiyM4raFzxjE6y5rLZxtXZorHmJJoduf9RdT2YofepW2cfAV2REp2HUEU8gySJi2CLge01u1utxuagaYvkQjxiyfDCWLeh5BS8iNUkl1fBIZSYCcg4rGDLTpQgk1RWCA4Am8SYUl29DqFR8W+jO87aqdqlcxprM2+1bZO4J+0CeTXHxc+OPlCiMfJGAtj43HX+cPoEaSBlRTSrh9nvUjExar2845rIQlmbQx0INekViaWRZKZUpYlzp8/jy99+Ut47bXX8egjl3F0uEDbtmi6FgfLI3zoo38Ejz31VOJYiS1NYG0MUXWyYB6yJ6cN5Z1jjzy4Np4X+etY3IBJ81PdTrB0ko0ufVcqKuVCc3w9rTU65ryoqhoIgTiwjQGCQ9s2BCP4/DsGwTmI4Cw4xrtr2tiDAA/ne4B5TYwJKIxB6wI6xzw2g02XkLm+7wB4FrgUxRQYHrG6hIJiJkCOnIBkE0osuxnQ2wpHuNbEV9K7LkbgAGogIHNt9O3StGk8mXc/BLRNg9lsI0JO65oMmxTCEIcAVSlKkEhew/OtyJxTJ7SlCctaPxbagXc/nxG8v0NbGAltxREccm9d18XSTyS0z+G//fpnMamnuPHkLm7e2MX+/j4ODvaw3y5w7uGH8cwHP7gy+XIBLEkEElI4UMHi0cCgBtaw1wDeuWN6J23FdA2r9yQms3MOTdMMKBPGx8q5Ump0WrjjZrRB15HQLksqO1YyPzPgcetmT9EMbOwoLXPdIxfabdujdURfwEg2+Xc0wROGecFN7xFCL9xRDGWkDYfWD5Wj814heBPngjEV4D287zncLQAqwPU9tCF+G3BYIkAbTeCqOVor1JMSR0cOXddy4YFUl/HtxLLzJhunMQbBe7RNi+3tItYGzfszFrraEK7tHcNGXCRDZ0JbNqUxEnA3QvzUEUYBaSAIXwzRxExL6nY799g9d9wxb3fLd+nhpBFO4xCoOnjTNswy12bkN3mfRZPOfvMlMtejHMnaxEiAj073XmhjOCn3m6jsc4Ee1p4jDAXRAPPWaviacWqtUvr87RZ3rBYz2pzHVoNWa9aBwIkKETMPgfDrhgmvViGR8d/HrZ6xkDMUERmOh3zeisAerxF6Lwx+j98fXzd34K7vI29I2YY9HufbwT0r79/m+Z46TTsfAO89nHcrxxij4b0iwviVAR2mvR5zldsecd8am9IU1E8bkDZk/jrufwiUBv3kk0/iwx9+E03Toa4nmD0yh3MX4IODndY4f/48uq5FUVagLK50jXg5FhzaGLgQoENAzjextovhbRuNb2FL7H8SCRICzbGmaagCSowBTvMjrzCzLoU9NtbMJpMJWTkhRKpT7x26LmAyrZPlpTVCIO3eOTd4AFSNRZzJEpJIr40l3hmlAGs0rNEwDI2IgFZaUTh2COh6h2Xj0Rwc4bmvfBl/5CMfxOZ8CgCkUUI2CdKiCSLi2HRPmnf0v3gPaymRxrkes+mUClD7BZTSmT9gNDRvE3wpip33nop+O4fFYhGhka7rBjSzALIwWpYhY+1ba2xsbESqV4kgkTYIEbzD+zx1QluaDPSAGhGIi6HvKUxJZTSY9DkfJ+d5G/u8rklsthOhDRLaPlBiRy60n376aewfLHDt2k3c2t3D+bMXMJnUqCc1zj1yEeVkgrZtUW1ouHyBDM2QaB567xGk+sjIwYTRq2/1OD34Rm7YoVZIWvZyuaQxE74QZM4+LVZRxhi3LowQFGo2nUwzEiN6Dn3Xw/UOMxaWIrQdxxJDsHI+s5HEn74faO29c1Cc8KMVZQaT0FZwIH5rH2ij6T1VfqfyaQGHNw/x3//Hb+HpJx/H5nxO53eA0bxJ+EBxzfCAYioE5eOmJVmD5E9ycH2P2XyKg4P9FW12HEgg/b9zwX2PHhdFGNFxQluKF+f9EkEt9yebujhhRWjv7u5iuVxiOp3Gy627nzuxLE4lPLLSRuMQveYhec1PbpmxFyXU24cH0OUyk0uTEPXZ5NYc1jebzTCdTjjJpsZkMsFsOsV8NiO+B1kE/N9a2kqVvP7ZVUc94qiG3HcVhq/f7S0uqkFgxPgGk4OJtMXbD8BxhyhFyRiR5EiJZj4WZMPrx79U6u6g/6PXCmlDkfMPO5LOLOGJXedwcHCIru/hfVJw1iFkwzW1bobxpjSyPE6CSe68rV/QxwnD270/LtQs/QREdox5elb7fxysdRwkc7t26jTtMYa0bmAMVyXP60SG9Y7hb2nLZYaxBYiLBLDGUvRI26WFzYJlZ2cHha2wtbmDST0lD74Grt+4jtnmFuoZOY+yukfjqxLxECePBG+AWE2avVWnSTKvaccvnmzDC4iC2nuPsiwYdqN08fiNkDiqZT6KsrBublprmWpAo64rhODgnUPvyaEuNSojIRoIyiLHJOPoDFdRHDRp1uJeDEyAoAGU1qDQpCUr4bfSpJEHpArvLnjS6r3H1SvXMKtrnDt7jlPrHXxw0Dpk00KlABpFsIgCovYafBhQSQAqFpBYN/b3JsjvQdv25MyV8Y2x8s0S3pM10/d9jACKV1J5EhFFn3gvpFlZpNGa7Mp7CW889Zr2usGQatryIFS2oNYb+8cN6IMVXpEWVSmYooDSxOdbFERo0zRtXMTy8M+dO4fHHn8Mzz77LB5+6GFsbm3CGIOrV69wooBG8C4ubGCouYnpbYsCvXMxNDLd7ukHQ45fSCK0md2Nw8Mo8kHDWhOjLeT7wzjuMIiMGC9c4ZnuOhLQUuE8cpSwcEj1JzkRxdrUO6Wij0GDBGbCWtNvrYCqKFAY5h1hga2MQu96uj+JJGLfkHMOr732Oq5evUb9MQBUgPcdoAOUHuKzyaIlrhqpcO6DJ6svwkQpYuT+att3N09Fg84jPIR8zjkHa20ssjK4Gm+2ebhxCOl+JCEnf+5jZ/PdlCQ7dUL7uJjOXK9UXHw0sLYEdVuH7ZoL4cHLrxx6yPFPdtqMowOAlDWZUmYB51NYGjASRhFjHVwshikNvZX3thjejW1djDaSQZNBJypCF0PfSIjjd7uogeGz5XOoVP1k/HmMjMo02/EVYoRU7igTUz5Q9H1Mj4/f4X5lr0VfDSzMmqZF27bxgIA184fHZUi0GuJ8FCslx/ZXxno0HncvyIdz9I4jN8ZnUcS/H9b15YRlsC6C5I4x7NvAJKcOHpF27INWZE4ST66PnAFugI/coyPjPjclNmbg0CPBNRVDOmDMDaR5LdoGv/XbX8Te3gJtAyj08L6HCz0W3RLbZ89h59w5VHJ+AGnBpYki8Ei7OIpJNquw53FMI/mSPx1tsLBUGo6Y7tx10Cxku2WDukrrzodhzPeYi0MaPQEO79Mahh2bEn9NccMUr0/FnR2MFeWDhHwOuUt/nHPQXicem4GXIsAooLAWy0CUu3FWBMCrAKMUxWFbjUcfexS967FYLlOvVWCt0kXna8jA9biJeaDriKJUswbumC0w9nPNJvWtauKMN8agazuq41kU6LqOLZ9k/QA59BE9EvFeDFcxKooiVjW6983oPSC0YxhT9pmx5BiQgP6+7+Hdamjgt7qRpsS4onNEo640cTSrFHKmlEfvHPb3D/Af/+N/xDe/+QZu7fbY2jSYTEtMZzV2zp/FxUcu4cIjj2CWOWBp0gwzJLU2KAqL/b5fkz2Z9W/tu8dh5e++JlBR3iJWG0RoBzRNE4sut2071LYhJnfCSkkzz+K7MyElwlay6aQ0nLGGajZaC8vCQ5tkdovQl7lOFdoNHWc1lNHQIY9eIQzaaI2qLLFsugSvsIZOlCQGve9gS4VnPvA+vPbSizg4OuTBoHJ0UB7Od5Ci2UCIm3qy7jzatktVfwAq+xcQsWIRZjlcIMLt7RDkSqViDiKwycfQYDolqGp3dxdlWUJwe3nW8T6BLEAgCe2qIuZNiSCRUodrra3b9PPUCu28RWWRTTKpaD3wyPOxyWx7hwge7g5pU4EXVRIkgW8uBCLeuXbtGt544wp2b3ZomhIbGxN0bobpxgxd38XNKd3lyLuvwBqTzoTOmm6FNePzDhmyB9+GuK3nkLUkbI7XnvL5NQ5nE8HLb9L55BidszsqOCkfhzHcBT5LDqOMYJoMzVBKYslDXCgRVZFTMsnabD4DkGGzAKCYKzKDYQb3ny2l1H/wedL93w2me6dtnaDPMffx+xRjjsE4y0ab93OtpbQSXTKEeHJfxPiasT8h2lsn3tcpFNqZJhEnh6eiuHwEmWEEMWhNk+hBTJq33LKFkE8yogXto8MKkMSMGpubG3jiicuYf/g8zp2bYzItMZlU2D53Blubm+jaFjpm3UkZpGGxKAo9E0x73KnjoKNvPZz0djWlAHhZjApN08UanN45qs4CRLxYFmda8IlQaNACkTzl9KqyIRhjI4RgjEHrfRTso1NQBRoWEl3XQlsNaAWrNTsmPZT30ErDao3SWmg0bG95+JA2Dh8C3Y8G5vM5Hnv8Ms5sU0FrSpHPsOq8BypBRCl0MUEvIVBSUteRNZdDBuMIsG9Fy/uRMoozCx6rRRpyjnDw5iyfWa43eXBwsCLg79aKOHVCOwx2fAAIPNnTDmaMjhlttiDuXJ8F+FN7B+DaDFKGQFzawq1dFhWca9G0HQDwotaYb8xw7uxZPPLIY/jOj38XLl68AGs1tAHKaYmbe/tYLimczMEDgaqVIOKZpHlT2SWTaWnjjuVjk4/Z6RHcxwmLGBUBqhbjlEbTNDGLsW9ZgKsArUzUWnO4DqCyVmOHmw+eeDuyDEbKorMoywKLwyNow5E9XMIqaoIMl+WKiTUGbdNQXL8CVEEYvHIeGhTxUhiNurLQBwE6EFDmEbjsGFkRTgUUxmJjvoOL57cxqwseIwelSKA7LvzAin42LVSCREQQ82Z0tFjQ2HmPsizjRpUL7bdTmcrhkTwS5PDwEH1PETWp9uzwuyGEuGa88xE6kY22KEvU0ym6N96IgnpljgXgTsJpT53QFiGXzZH04FnW5Lv++h197Ed/G1pY87cKEdPOmzYafQ8ykeVQRWFHZVVie3sTjz32KB566GGOGfZQpcJR06LZP+RxYY0vuk2yDigwgRBjsxhy/aUqKnww0vlOQ1uHM47fY8QyWWmsLIyjC2R7uyONMWBFC5MFriM8QgLwdsJMNHnvHZx3MN4NoBKEVF7LRCtUnqFKkIb0XQFFWWBro0ZdSCA6H5+ttVVkMfGnDByTIcD1iWc69x3I6/uhZY/Pse6Z5u+zfoxcPqTwynVJNuvPnes1cj8xy/ik+1qnI43aKRTaq23spVVIcc1xR4841Fh4319BtGg9vnm1xStSO/LIo/cBVitsTjWevlDh8jmqHVlXadVHkagUrC3QN4QJRjpIkMO164iIv6pL5HOITFCDsippOoqZDkCphFyHuAiFZEsw2vHm8Z4BsI9paZwA8ieYniMgNG9xQVy845Cv9B6Qmcj0MGK4Zte2UMzGZ63l6icGShyaubMO8nUqLEDvI7JBKqMxiRg3a4JsVRXWUvHrtNekboKO8yGgd2Mhxdp4XDs5BMJ3rihxzatA9SQzeKisKjRNixDaeB/rNOy3I6Ikar+juU5WbCqKIIkyzjtYnSJIclw+sKUSxCpTRJ9r2bmZQ2VjRzfu4D5PpdDOnQgycYef66g56liWTKgtgQchuF++1uJXvnJwYpX2q3vA16+0sUr7hy9X+GMfmuPyuQLecVV5bVCWFRaHws9MoWC0GBWa5RLee0xns2jGQwG9cyiKEtOJprrejGkbqaoeK6gzTqkVoKiyOmG0Oo4GfeP0C+1cqEp4aC54lU78z03bQnO0QZ6eTaRJCdelxTo8P0UxpaKvZVXCO4/FcknhYmURswmhFDQYZ80XPvPQaKXheoLNtFbo+x4ODh4em9iB8w46aMreRIBVBnVpOKKDnrfWlpRxhJhV6ZxH2zJTpGDVxgBeo/c0PxSyqjaOMzhtkTi0oaA0l6TWwHQ+w2KxhPeHUTgmzTZZNuPSYw9KgKdr0vyOIXvGwPUOy8UCVVWxldBHYq54zMjJqJWG565aCxRlGZNwhDK6LMsIo+RO2pPaqRPaqw8089DmLnMxfzIMSzLd1n03fm1dE8//2CkUAnYPHf7Zr9/Ey9da9GxFjzWWvPkALLkQ6O+92OArLze4fO4Af/4zOzg7o/5qY4CgImwR+xxCTEGmLLm04YjQEU0hmXqS3pxpgckPFQGSvIl2GbV/hqOCHPoOkufroI57PW7gNFLD2/TODVOxWeNdgZZOaFHZUBqea06KlmY049F04Ir1uNJPIG4ScIBiIZqY+OSaxOGdw9Bx1vCzDCBL1LnAbhW2FKAZPpEvDaGHAEqXD3KQ6Ao8nyQzOR/7MVwp43lcxMaKtTL6/F6bjHMOTfV9j5r566We5bEQWrScRMbo6BzOYa918+24iC1pp05o5y2GRw0I6kfH6AyCyD0599Dya3jv8fkXjvDLn99D71a16js7H9A54JtXG/y//s0V/M/fOcd3Pc1cEyCHR+54pXjXDnt7t/Daq6+hKip436F3LQ7bQ/igUZQ1zl/oEQKT1tOSREqOZWwWnojs2fliRlZcWPMXDd7JIW/v9HY7B+To3TTHOA3bWhureJNOvDqhTto/BP8V7cvy5uu8FPxkZUMqvHhyIsftl48hvFqjqkp0vo84NkJKpw9QgKb3tFbQQSXZG8dBiwSDD0DXAv2yxdlZBeepqo4KlLYdlGIlwmdjpQbjFNDH+4zVbrJNaJ3gXYc9P9CWyYHc2dt1HTY2LFfa6aFUdWx/1oXLKqVQ1USv2/cOZVkMHNR3em+nVmiLZqmUjjjvoKn0QIR75H61gIB//Zt7+NzXDtHeh5wdH4C2D/j/fn4fr++W+MEPlPA+wPN9EbcDOZSWywWuXHkDX/i9L2BaT9E2CxwtDnD91jWcPXcBFx56BJcff4pIoLRB8A4BOjHE6QAEj+Bd5ExwrkehK74zYoeDQDJpz4O6/y6Ad0Q7TiNS2Rzq+w7O9aiqCUdcaFg7DHUbx3Cvm3O5Nta2LTY2qNRV1/UDQWIKCwQiJiIYSxifuE+gcMTZbIaDxSFc8AjOwetUqT3WjYZGYTW6EOACkJBZ7rrSCEHBOeBoARzuHeDxhyp0vYetLXQoELoOQQ99RbJhKWV4EwF6jqyg+zT8owcOuvHrcUTJuueTH3O/1rJcr+BonaOjIzz8yCM42D9A33fY2NwYOFZzTTuPZRebXmuD+cYmbu3eQte3TAg2/N6dtFMrtIGhpj30CWe/eaIniGGdeXL8YI4/CSHgX3/+Fj77tSN09znJsnXAb3ythe9LfGwjo42UvmiF3nVYNj3efPNNzCYzLBaHODjYxdVrVxCUxnS+Ce8cNNftI8GbtHUBPgIopI3uKRc22STN3nkHISJvuZ0kHHKtKGTvE+FRiJq2HlSzwUhbPP56SSNlC8dQSKYkouTKhpzXh4RMyLOges4aZVlANwq94+eYaXbIflMmJm3GKnuyMjME4eg74OiIMHNisqOSYj4wlW8U2nL3BA9EI2EwDnqtoB0HCQDr4Y+7aes33SEUE68lnyPflHvK2mQyqLz02Dqoat3GoZRGWVbs1BUu/LuHcU4dYVTeck/0yrhEB4dMrPUmzYlNBFc2If7z517C537/CN0JuPVbaa0DPvsNgy9fO0uLNeKX1J/Lj17G+fPn4Z2PyTdlVWF7Zxtbm1uYz8lBuXfrFnZ3b8C5TkBHuoACBDLJ4ZFjpfJgMZwm0b3a1i+uwJohWTxG6gSGwJg2NTUQZre/jnxPkk6k8K00mrtDiobjBIAIR+ccCf+48YhGTBEkRiuokeYXBRvAiTbAYkHcI03TkuCGVO1J6wnxW6M/M/BcKQpTFSfrvbL8HYd333PLNzQM5cg41HI8VsdtwNKstexwzfH9YZbz7dqpFtrSeubQABAnTKq5x46CbNe9kwe+Lkbz1pHHP/jlL6J9QAJbWucUfu3VS9hvSs725MnhHT7z6c/gwx/6MFzf42hxBChgc2OOJ598nGK3L1yAURqvvPIyvvmNF7BcHiHAQYxiKmlGxV6LygA6UBVvZIIdo4mrMj397cAc3yktkFZqLVHlEk5ZRvghz4AEEJWEO3KK8vyqKqL36roug59CJJCKGZQBDGsJV3pqktzSNA28c3SM90RKpSjmY1JVKK2lDad3EROX/nhPoam9B27c3AMA7O0fous8lLJQqgCggZDfn1hl9JPgIUbgVSrc0XUdRbqw8B5GgOXwUuqP/J2HzuUY8V1rsLnT09NPXoxXkp3kuY43mZwmOe+/y4R9Xde8EVPUDelDxMwZQp5ZekI/7+qu3kUt3/VWEhF4t0+e/uyzu3jggY+X9s9+7Qa6/u3J4HJe4f/3xrMxVFGBQrMef+wxXLxwgRwnPS30qqqwc2YHW1ubmaa9ixs3bnB4mEcU2nxnAT6GNAU/Lgp8QsvM4ndjuzsTPACBMdjgo6YdQog81vSz/vwnzTH5KMYFjzJ2DTujBydfo2lLqrVSFP4XskSg+BkCCmsoVDE7B2noMhsCa9uILH+iaWNF087GkO8/WgEjTduY4zXt42CSk9o6jPlO29CyGPZDzpdj7Xdy/vhdXj9FUWSbgzw+1rRzveiEdkox7egaAxAG8IhYJAPeAH5NXyW7ZZ3jY3VBkKhTAF661uLlax3cvYSJ3EPz0Li23MA3rnf4wCMAaS4c9G8Ntre2YMsK02mF+azCxuYMVVXFe14uF1gsWrRtg4lP1VYkmYacRWTaORHaShBvuV6eR5l5Id9BMvu2z3CNYFhpuWm/cn5EeES0Mh8ocmTdddbDF6tCSc4bBT8QY7lDyDRtSaQZ9U9C8yTWWvooN0LRI+lapHVrSDCViC4fAKNE+JDGqE2KTW/bDpOS4qtF4dEqDATV6G6zbqrIpLeO8S76DkZ490mhjuMxPU7gnxRmKEOZKFgS4ZPUiTTc59waWHVEDrlUJOBBZdwyxugIPTnn6HndhnH01AntyOUbhTKiI5I+D7HS1toY0QBghE/ddkcNAb/65QP0b5PAluaCwr//coFnH5YwKqBrG9R1jaeeegrnzl9EVRmUpUY51eh60oqC63H9xpu4dXCEg8NbmO+cgWZ+4IAeUB7KKJjSwgeHtm8RlGdmP+FvHkqy9wQqsk54K8pgPFosOOHCsFZ88kZw3OYR56NOhYLFvK7rGkCAcx5lWWG5IN9J5bPQM9ZmJYsRioS9DQFd10HWhaRma9a4y8KisAZWaxjl4/067wnrVoDvezjfoSgpqmj31i3c2pphNqlglYUHVXXRYIhmYARQrUmVVadXShGcNJmQFcAwxyD6IqxWwxkL5/y9HCq5V8flIKUeYhHQ5rK3t4fpdIpJVaFpmhhhZa1F3/XRVxa8R1BULNloQzKFFUnJjHTOobCW+F56h6ZtaLPTJ/f71AntYRN4ZGjeiw4+yHCLToPoIbjjdtR6fOnlxd1+7S23AI3ffCngcAnMatKEKdW5wLlzm3js8mUUpYY2Hso63No7wHLZwXuHw8MD7O/vx/p3SQgTVKIUWAughB3StGXkhk0lsPU91+I88qnAr/cBWvmhwXcPTZtc0xbsnMI8KUoFUIEpWtmJmBLaPaXQB/LfaK3hMlbIhLWTVWWVCOw1EIHhG+ipVqSxtMEvlkssm4ackZYLc8imk1lkqWWDEcj/YYxBWZaDaIzjNO1ceK8Lk1unad9LSxsgojYimvZyucRsNkNRFFg0y8i7TdcXKyVjyFScdT3S2hNsQh8579DxxmVuA7GeUqE9dISMo0eETlLp3Nxn/pGQfz+1dZqRvPfSmy2sVidmOj6oZjXw+1cVPvYYXds5h6OjJZbLA3gPFIWCKYDpRomm6dD1Ac3CY7E4gvcU4E/zksdKwvvkPUWE/Wm5MUb5tt/pg21rze7RnIlvDQ5TcfwGzil2cK+DCE6y3KQfSnFKOieGibbXs9DOo0ckgoigvXwDTZm6or0OMF8fELQIeiaQUgrpDHKs5yOo4EFVUVbgbDZL7Hwhpafna4o6kE+YbM1lw5BzcsSU/my8cudj7uTLBftYUJ8Epaxra48NISp0Evon5ybH8xDwAVKOyOB8IY2JsRbGWjRNE9kaZSNWSkXn83HtlAptaqIByg6WPgCUUVQBpGmiZu28i3Xz7vAC0ABevtah7b81YqzpgReuKnz7Zbp+0zZ47bXX8Pu//000TQtjA6ra4MmnH8PGxhZsUWH3xgJvXHkD1WyG7TNb0EbBB9J0XOioMrcOXKWbBHdAACVxSKjI0OGUhPppxknyZ5xgIcPV0J1zkeZXay5V5fp7GhGqXGMjdakxBlVVoWmWcM6jrmlhS1q6VsdbiFormKDh+j46vkKgyjFQmvi2vYMGyCHZObgQYgUW73sADkoZBNVj5yzxaT/22GPYnk9hTYG+bWB0YOe1aPHjWQJybvIGp5CctFQNRqJkhnCIxEi3LdWnrKoKk8lkSB+MpCHnER9309Ym8QTaYmQjuXXrFuP6hqrQTCZM4BXixuicQ13XwygiHg+tNabTKVzv6FxM3Srv13WN2Xx+Yj9PtdCWtq6aiNaa0sGzHdB5D6WFPOcOm1L4+pXmntLU70fzQeErb2j8CN9H33W4efMmvva1r+H111+HNgGTWYGuX+CRS49iOtvAyy++iVu3buJMXWI2nwJGQQijHBzxaWsVBbaKTq2xDTMW0XLEaRbco6Yk84/C72J4aab53UvMcNKs+yiEYlXvkIRIrGzDfVl/LqIs8C5Vu0EA4a5cvIEEP2A5PNAxJKNAG3oIAYS+Osw3pgCAc+fOozSU6UjkZfR3yIS2wC+iWYvDElH5pv+LglK6xyF/AKLwWy6XWC6XUEoxvo/B+OaO23tp6yAX6aI8j6Zp6FpKoWvZR8CKjHyvZ99Gft7kq1AoywpFSQUgAm/IRVGgLEtMp1PM38tCe4DNDd6Th5z+vlOvdH5eabeOvrVVb24e8QRXClVVY2tzExcvXiRtQzmUFYVu7e8fomkCEAK2d7Zx9uyZyL0SRyj6sxLemT5f1TRji9p3eEfL7OOsqBMhi+y+16H3CiwvWdtmL+Qdn3/lZCFhn30vhS5EIInFfswgc0dC/jxSJzIBIrgrJ9mwtp64tZGw8ggABD63j5eS9SShg/EomU4qYb1DkD9t+5QpWEZnZC7k5G/iUalShM4xfOJjLfm4z9aN39oxDYHGIINgPLMejjnA8/P44OOGmp9bNHGBQ6qyIOpdDgUMgTfXE9qpFtoAIjY7xhaJ8a6IzGkmd/oIcc4aPHJdCNnbFeZ3XOs9918pXLxwAUUxxYWLl7FYLNC7Bm13hK9/46v4xtdfweFhj2c/8BQ+/p0fx0OPPQplAZh0r0qTC8s7B6MMQBQl8L4DzPGMa+9oSX1f2vieWfgEsUYklHJJ4XMmY+VDvqhPUAyyIRTS/IVbQCmForAR1xVNNDZFjIIrMiduALIMiFLU9S6VLzNkWWoEWK1RFQU0FolbWymGNDzgHDxauMDRGUx3EkAkZkqLw3+01kAYP+kBatA5pRSssdjZ2cHNmzexWCwid7hwgZdlibIssbm5SXOa4ZI85C6fk1KV6m4ViHVCmwR1Es5lWaLrOiyXi2j5DAS21jCFRccFHnwIsZB4CAHNgqyFvu8xn8+xvb2NsiypylDXous7HB4dYvPs8f089UI7aQg57poWRTKJmKRG55rJUHAfp92MGfDe7mY1xwoD2N7exubWOTz+BGGETXuEvYMbePmVP8Drr72JK1f28KFnn8Yz738fLj31BDmOTEiLyQDBeXjfUxq7BpShCJxg3tla9Nvf8hlFQqht2wixiUYrTkrgWARjeDqVWPqccxwiZmMseBISKv0KeV+QCexcUwa88/DOwxiyCmwQLRmwRqMsbHRGirqspFSfJ3jEhRRiqjQQPEW6KHVMEpYUQJCODdxLCtpYzOdz7O3tRXik6zoWjsuY6r6xsYGiKHBwcIDDw8NBiOBKLDcjQXeHdB4HL6XzW2sjvp7XtZTjaBMxcN5FLNsoRayMgcIu27aFcw6TyQTb29uo6xpaa1y7/iZ6vueT2qnLiIyhNGu1wZEGIAOumCwnPzKsnX4YHxRCwObU3O7IB9q2Jyk6RjYjyaRrmiX2bt1C13WYzSY4d24H0+kUVVVR6JaKRm86YZ4Gzab+KjyyOjq3USa/JW3dXFhxNmXH3RMeqtKC995HZ3bibFmNalh7fYwAqDySJGZd5gKCj0lnyf4fX3YYyjf8hngiVBLYg6/z99RwjJwL6Hvi2RYQac2siD9q1J/U3wTXyI9gyGVZoiiKyNkhhRLWPafhZpb8Cbd7psfNEem/yl6LVi+FK/KIoXXfp8+ThQRFiTm2sPH7YlXkzIcntVOvaQOIC8gH2vXESSTJC1pRCa/xpDlJ+qT4WYWnL1b4xpX2W+KM1Aj4wIUO3gFeKRhTIEDDeWBvbw/P//7z+MpzX8CN6zfwoQ8+jbNnH8Ljjz2Oze1N2NJQYH9wcDzJPRyx/pkAKA9tFExh4FwPZz3T3otZzH8PVut7TxXXigore0/RD/VsThXT2xZlLVmodKwI2/EiF/ElYYIU8sfViaoaZVni6Gg/RnREQc7CICiduOFHTmOANL3CllHIaK1j1qT3VPjaKoUS5IjUioRVgmIMEEjL9p7ExsF+j0IrWAXMJsSd4YMcz9rAYHLk3BoKABXsgKdjBe91jjhcrLUoyxJVVUXhLZE0OUQ0xL+xEoJ3ry1tXiQLtE7Y+7JpcHa+Ea2Coigk9BwAsmcTYhYlQFFB8/kc3nssFwssFovoXC3KEoUtuajy8e30C2013PWiRck7eb6rUxJO1kYW57jJ/Lt8rkJpD2LFmbezFcbj8Z0G3lt4pWEKDR9IaB8dHeHFF1/E7/zO76AsFL7z45/ARz7y7dCYYL4xg7EGnQuEYUdtinlIFDFOaKOgjYbrKINuLA6GjWGWO6gofZqaQBkhUHWTwloobdAsW1STOjrjVr53gu1OODSnOmuNoizQ3erjfM2TNATWO8lBqaBhDJcR8xkFQQBCoBJjVhkuh5E5FUNAKpjh4IKPBaUXRz06pVAaYD6pEEBx/lap7AxAInswsTe5Bi7O1VwjLYoC0+kUm5ubMSRO1mseny19TL+ZLnZwnTtr+TmVUqS8KKnyQ5ttURTEz9+2KMsSi8UiOhWRXY0if6iaUV5KzFqDyWQChADvHA4ODuLnFy5ciPd6Ujv9QjtkmNTA6k9p7oh/rzfwxnJKJhn4lI+dK9/2FHZpzis8daaHPMrAuNnB4QK7u7voug5VVWJjXmM2m6GqSjQLqvsYEJhLG0j3HeI/sTKVRjwewABKHQ5XHh3wzm13G8mx7m06D4ZjAazVAGXB36ZXOHbcWAhKWnouWOSa64DOXHuHSsIuwgEMewXvKbyTXIoR3km4tkyEYf/atkfnPTrlcHan4o9V9iPrSUV8WfSm8UYmDkmBQsZwyDh2O4eOVuESNbAE76YdD6tmwjyzxsfQyrpEoLxfAOCc8PuoyOOSj8PtJsupFtr5YEZMyRjGsKleYhDMirOdSltkO50W8ZVJ6qShAFyUVQV88JESX3q5fVvhXIWAp7duYGJppzZaoXc9rl69ieee+zq+9OUvQxuPj37ko3j88Ut48sknUVU1XnvlNZiHpphMC3KQZOnppF/T/9DkYDLGYNG35IyEB2BWxMs7W0w/uJaH0AFkKlOBAsVcH3d4HgzHMIrKTEh556m8F8dFC9FS13WobZlFOWRaLL9WUCisRfAhOvksl7vq2g6FooBrFQKsNYyOsVYSDAAFrQO0sPoBuHr1Fg5v7WJ5eAuXHv4uFIXOtNyEYa8ThBIWp5C06J2dbUymdYRFiiIraMznEYGutY6wRE6kJdj9vfgmcn9B/jdh0VR2LQpklTIkk/bP6ehdh76nPud1WRXDXfv7+wghoCoLTGdzstSyjf52eSKnzhE5bvLoCNOW+Ec1IORR7IjMU1RTqFNaCIKZJaVUxbCkTz1VwL7N/kijAz66/RJPfqpW4pzD9evX8cXf+yI+97nP4ejwEM9+4Fl813d9CpcvX0ZVltjd3cViuUDPxV4zvw2CIrjEMUSirYK2VBHHBz9Uj95bKMixLZnn4DJepKXm8+luzkMvMJibIjzIyWyiIyxPrY5f5N/DiArAGhsTgOQ7wQf0XceJNqSYFMbAcHgnu98AGGhleWOgd69f38NLL76O57/6ApzztF6YHGlYECHXROUVaeJKJef55tYWzp8/j52dHcxms8g9ncMFon2L0F4Jf3wLLdeah+XOwooCGPi6Mpa0UZNTsWkaLJdNjOWW+xOmxYODQxwcHEIbg8l0gtl8ho2NjdiH27VTK7TX3vzYwzt4b+htzmNiQ4a1pZ+QvPkBeHjb4OEtDXMbhq771bQKeHje4Fy5t0ZNo/5XVYW6rjGZkCNLTE0AsfhsvsiRvaIllTiXQ665qbTsMnkfzd53UrtdpMhJ0QX5va1vOZZKr2U+BKzOwXVmNHfy2L4Oyf0RlYnjaiLmkE3ciLOxkLmcil2viZzQWUFilQtZNTqfRt97LI6Wo818MCPi2KR7y4V5+p4Itxyvj33K/h6H6+bHjMGIfEzzMc//zq2Z8fivi7iRnucJPoEt8TB4AOtbvhFH5XDNtY9rpxoeAdKDC4GpKrOJEkDCS8wTSpft0GZYYZrgPsIicYCVioVtjTH4X75rE//v/7wPdz+q+d6mWQ38zx+8jsMrbbQgQiCu3sl0iosXL+Khhx/Co5cfwvnz57m6DWC0ibwIbdfCFj1gyig4AjP8wZAVodi8S5Xf16Gvd+fwOS0tBMSx954cdF0nlU0QBeOdhJ0dt7EQJ4eKxamtLWG0wuLoAMZYWEvVVMQFQZsqC8uxMAdFt7jWo3cetipRAjAqZUEqBdRlicPeQ3VceCEYcm5DQcgLAWBr8yxexSt448qb7ESk97Vg2wGI0SPsiJMFI5gzRWBx1iPv+jlpVJ/xBom1IYk2169fjynjaU3ehc9i1MbVb2TzcAwTDTB0H3B4eBiPaduWEzZULHQg5xNSKKVUjDeX65FcokCAyKVyTLantFMvtIHcebDKQUJOmOSF77o+PiAR2lIGSVpeUqioCEvUWuPimRr/2w8/gV/433/3vhf1zVtpgD/zUYczU4WbbTvQHrRSmExqXLhwAR/+yLdhOi2IiUwhTrC6ruG8Q9u1qLyD4UUFsHataBNzfQ+rqoid+nBC7Ej0LJ0yAX7i7WQWWfBcl7PjpIrEqjfWsI+9VCa4RXOjwhWIQruwFsYo7DYN5vN5zB4cPBM1/iMRM3V9h6brsFi22NzZgo0l9xBvtCxLmGWb3aZCCJS8pULiO9naPAMEg6tXrjOEQOtMG5Vp27SbKP4d5Xi8Xu4YJbqFXGinyIvEA14UBTY3N/Hmm2/GEEFJdKGxO3aIT2x5WbFcaHvlo+UU/Qve4/DwMArotm1hygJKUaZ1vgGI0JaQQXmm3mfVepASd/xtghpOLTySt0H0yPiJikmVeW1XhmxswvCPUoSNK02/tdb4gU8+hk88PUHxgPDtwip8+pkSn3oiaR5kQKhoBRAjXInZbIK6qkgTQYIvtCYBO9zRR7Z0HhYxwAkCF0MYHT6CWd5KWwddxL/z57hmdQ6Py0329N46J+o6qCf/K8SNPAwgsrGZLVXSEcbJJEMo4E7HQSKccjhE+Jrz8+fPQWV3ooYPLzaB/eImIkgNEj2rGo1VHHZ+rQ2lbNvCCtYoHV9zNyr7/4R7vs1rIBvn0fzIv7USORLWX/tOtfKA4bMGmGBOqYS5H3OqMcyjWZ5kncigstv35dRr2qQ1At71cK4ffgbAGBsZ/5Q2CFojKA1owNgCVgEl1MCjm+/82hqKa1UKtqDd/s984gya5ev4vVf9fdW4Cwt86pkJfvg7a7hFC2hD5DIeoIKqGlZpbExrPPLwGZSFl2AZGGXZgvCoaqDrGrjGwrJjKUX+MbWmouiRgECcy5osleAApQw7aBNFEP3lgeAzR9Tb16JeN578xy2kOzhX+j6903V91OwIWqOPCKYoYEyBoqyi9qQHNKVJsB/XaLMRBSHAK2Lzo6LBHaw1MUSM8O1kgrvgoMEqs1f0fIJKopKkMaq6gjLkxAuuQ+gtTGU54SZAa6A0GoUKMOhRBIUOPbwKUPDsqOZBLT0uXDqDb//kh1HUgLYOwXdA8DFBhB4HRdM4H6KT1ocAzcQ3geEcL+PNlAzSd/kcUDzmmuhQM204jl9uXQArKQPrhLSEPw4InrSO73mECH+1bQvX9wAU2q7D5tYWyrJk+gLph2fHLMmNSVUBjOkbBVABZlIgxAXmeU5FS+WEdmqFdr44jFLwzsH3/fggGJsJbWMRtIYXjy+HFxVFgcKYgXMGyGJH5XRMb2rLAn/0GeCxC3P8n797iN6Ft5QtqRVgjcL/9MkNfOL9U1A5MAulLZzz8F4Bnjz3RhlszCYwl86gKhwoKULDwMIFqrpeVUDTNeiXJLQ9kPoXNEj4agYnA6ADYDzgA4ILVIkDklGXKmwrRaRC0OZkqfgWm0JS5lR8JGIp+Oyo4/4cap+iGa9tQbYkha4jvuy264BAiXxKa0wmBkVZRuHtnYv0qdQ/icsVIb7eIyDavLWGNspAMEHXthSiV1AEAllJVJFGojkcPAw8NHQsCzfctwJgNKq6hLFEAOW7Dr4oiM7BBwQfoA0JbasCTOhRQqFXPeuunlEP3oBKj4ceO4vp/KMktHVPa8w5KFVAQcN56gttch5WG4AtFq0KSCgdtAjtQMoIX0Yp+b6C5mcBJcWUSdjmWrdS2f3GObJqQQ9i3EdzIJcdAgk6Dq08PDyE0RrWWLRth7KqMalr2pCUYoHNFWg0rcmqrvncBF/2zhEsC0AZYfYjoa343Ce1Uyu0U2PhuuIMYgyWqcqSx1rzDkkDrliga2NXvNNRBORSBEkT/84nJ/jQ5Tn+xX+/gZeudeh9OFY2rO25AgqtcPlsgT/3R7ewOcsxF4XRqozLVGtihVMqDA6TZowCXEBwa8KlAhgySjG+6SaRlEaVftNXQtRq3jpAstqiXwLrNOGTWsD4qY0Fp9wKMNTEQnavQ305CVmZVwoUEZALEK3HFVVWBfYxdwvRzCRqxHvSwAYJHQqDc8een2Cmi4NMBEy2W4+OJVspirR13VYBRWkx25jG2o9pEx3ei/SQ03miditXznsxmJNqmJgj9xHhSazTnu8ShgLEdFn7/hiqk/Jtsa8nWE+ibSPzKxwnBGR23G6GvAeENqCV4XRSMboUQwUUFK+VhlYG0+ksxlPmsZVaGYyHU4Y9vpO2eKS3FHZmBj/xJy7gpTcb/Nev7ONLLy9htULbr9e+tQJKq9D7gI9emuL7P7iJS+cLdKanpJcg2YlkHhtbwAcP56hqiOt7BCU1BNlBpcgD7nn2T6YzXL91E67tIanSQawGnYiI4EnDCSHAmhJQOrvFrPOJxxPDJOi33m4XBjXGvJM2u+67KhOo6wVoCIi0n857eMcihYUE0YRWVD3bu2hSe9YenXNoOcEmTwxZF6I27BlfX+4pO1Qw9OmMig84ibHmYyLhfgiIVYaGaiVvxKSMCKEYQT1ExC/hf+LrsNaiqiq4poVWFGKqlYIPCkruGR2qusC83gGCQYAFguXxYFw8brYyjmR1UJSSSfcbu7r6TMbhfiTADabTKQJAHC9c9mxdYk3uQMy1aYm2Qhgi4HkQgnMOfe+jr+jcuXOwrNx1HHrZti2apkFZloPnLhS95CheffYE63BUDfOYK5WrEOvbe0NoawPXe7heymWp6FQy2rJzzmBjvkGatmZNe7RDhgwSAU/ENNCrG6iKGk3A5XMl/tfvO4tF6/DNqw1eutbihSst9o488WFrYHNq8PTFEo+er/DY+RJnVYWgAKd97IvEVysoKG1giwLehZjc0HUtlVKrLJatY63AoO8c9VdpzOZz+Bs30DcdFDSZZqwp0X17aNACRQCCVyhsBUCnxS33qGRkAJqA5r4I7Ag9xbFNanwYaKEsQFjwkADz/NzHZPk8hpF7Oi3gFBYKtF2HvuvRceKELPqNjQ1UTN7UB8+Zb32M7CCoqgO0RlmVmHCVcVEAKENytZZh7BuvV9Lc0yiKAKnrGu2yQd+nGGsRJgKthBCgwtCiU4qsMNK0CboSod1LWCI8JKzVeY/CWtR1jUXbQYGwV60V0dJw31zoMJ+WOLMxB2ARvIMKJT8vGl1xeqeC0VIizIHETwqvy5/9+LnLOkuJNgqz2QxHh4dYLpeoqip+FgV3Jv/GGnwU2ryhSbKMXJOEtZQ461GW9DzPnz8Pq+kebi2W0cexWCw4kkTFDEhrDIw2HD2CFb9YdFoDWZnD4fpa194TQnu8wGMLwwdpBALJfsZCamAK5fbz6LNcj8sn5aTU+OCjE3zgkQo/gGTUBgCQFGDF/x2TBS3mYt5HqSZCuzrVBPRxASdNQkE0s6R1jFGjwYsgpjo5tmJvJUB9pWhruuc0ZHcCCWRXvcvjV695vLYSZf+of7kJTIlTWZHe3DTWQi6WtOe+J4tFnr8kXVGM7yptZ37N9AYG83GkKyIgIDncPPKDxt9Ze+cZnBXD1gLh2MOBof+Uoio28tWV8/DBIqTo1DxfwvHjPxZK+fO4E6sqP0aE47oqNrlWfVxT6niLcPzc85A9wxr2mMtFHKF5lE/cHLJNOV5frpX/fQf46akU2vmCUCC2rkEau2geo6yre2mkQwxx07h4BAsNKXRLdlMSgoltLX+eUTAqWq7OOYQsGEOx91xpA2MLtF2Hpm0xmQZcuXoVLjiUkwqmsCiLCkVZo7B11Lh0sJhNZ+iVAQJhsV4MCM6SDIrcl4LxF7YEOia7sUAWQ4Bkc/A6eWtDenJTPLC8COLzU4odpHJ9xfGuuUBjmEOzwGKh5VybFh4fTw7oEqSZC7QG9M5BdR2CUiiKElVVo55MogbZ9h1BKoHoftvFgjXwkD3/e2tCSeq8JwuL+yxx9MErMrNl0wcG2DEENglkhbQMj4A3KC04eSAtsSgsEHzUwn1kMZAn31O8f+tRQUPBQKEAQMUQFCShTQQYEEBwEU//O26iOOdp65PJBAf7+zGWe1V4yzWp5d/NHZDxbjgfI4+rnk6nFBVUFFGbF59XVZbkdGZWQuqnRwh6yCWiCbILIXA4Za7ciExS6LoWfdfBh4CNrfPHjsWpFNqDxhNYKBJDeosegNFR27jdghp/Tg88QODRFY1Ejot4q3yQTH+lVMxDCCEkDzodgOA9nHdQBWsFioS21gbaGFhboGlbLJZLbHqPV155Fcu2QTmtsXP2DCaTKaa1x/b2lDepAI0Om/MtFtoUbxskRMvTNuQBGGWgYBGURmEDuqaD8xyahGEKb4DcR3Jh3o+2qnkoiIGulI7ySA3q+JFE6L0jDg2khUoLjqAK8XMsl4sY7y5FVouCzGGBEaQSeN87+NDCmALTyQz1pIbhpIiu7+APD7FsOoQAlEWJg8PDzJ9ycovGsUAfyGAiIJbH6/seZVVSQg9nCDrXwXkSmdEKg6JYYh4vcjwqPpdl3gxHstxRGJrMzsIaVCioWo32RBYWFAcUyfzs0TuH5dJhwtSvtCE6aOUARRWQ5Dkp5RgWYTzXi3lx8nPPMf5c255OZzBaDwilkpAEQxI6hux5xuplLqSMRDqnwCECt9R1jfl8js3NLS5OoDP/ATCpaqJW5WeQY+EZEQCM1kT7zDIg6l/0UKJM6poGR4sFur7HxUeOnyenVmjn+BRps2tEiWhqar3QPjamM3097tQrBmE0WUP2veH58wW5cqXs8PTd7EgxwdgElyyu5XKJw+UCPTym8xmMtjC6RO8o81GpwEQ2BlYbUICJypSxEOEX1ssBaI67JWshqHTcsMurcRp32k4yj1eeQ35c/mdmYUUrYDTs5Hzi+RCSFj2m0hQYRDLtnPdQzNrnQ+CxJDpRG6ukc3Zt7I8eYM3j5587UWnzVoOJkO6Hnj1Z/Jlg4mOJNCpEy204VDLHwuj9vF9po5AxHeLHAfnHyW4hDdz5gL53KBSXY88Uk+yK3AtOEopyOM3p20EDw/FimC9/5usgUGDtrBzeN7Xc+Qgkhr6yTBp2PKdSMTqI+MizWPHcuskgu9WEnzAgsaNrky/lpHZqhbY0gSXkR1oIKV2286RJWGNXFnjeVh0mOpo34yUp5loI4iFeT1y00t/sf6kxp43O5oGG8x0MNIyhhA7nPXrn4AEsmwZ7+3vo93Zx/eZNaG2hVYG6nnHNxwCPFmcuPISts+exPbqymLIaCipo+oGGNQWWoY1ZlMcvrxypu7N2Jzje2u8BiAp/WF2I0bnIC9H14nRDlOZiAufCXhI32q4DGB4qi5KqG/HSI+evw7JpYHlMtDKYzeaoqwm0sVgsFyOGt6G2fZJll5zgFBVUFAVcnzaXyWSCtlnCOdIemyXH6w9GJ2VOjpWN/DiCPhyb+hRnL44zaw10MNDQMdpJ+t31LZyu4HTAb/zGF/DUY4/gicsPQWuLoCjOPLICctKVCNAQAA09sNhu20Qxj+NG915wsd1xAYEA5oYZCVsAkV6173uKEmLfQ1mWqOsaVVXFn/F8Gj83gkoqHB4eIHiNMmMmzAE6xXPU9Y6Fc4dlu4z8Rw3H4+OEeQG8B4Q2tSS4kwaeKmR0XYeu76PGBGCQ4ps/JHlo8lC8UwMhACCa7tFUUqvY+VjLAhBhEkk9dt5RZqbR6MTVo4Cud6ishrEljC3R9QFN5+BCwNHiCNevX8fNvVu4tX+A5aLDctmjbftYpNfagD/2/T+AD3yoJhEdcpyNDDutNNATP7KGQWE1gj8ic3o0p9TY5Hi7Wkg8GIJPj7UhwSipoGofF0xV1SgKSoaZTqdxQbZ9j7br4HzAYtkCSvNCnqCqa9IsncPh4RG6vkfnPIqiR1kSpLI1n8MYi2XT4NatXU66MScK6HVN4r6JgtWiLCkjUyhV5/M5rh0t4JxDVRXYc31kjguj2OsQfITvoiWRDWKAh3eAdj1030NVlmEkhbKwMM5AOR0tMrmVtlugMzU67fF//J+/gh/4vs/g4QsPYTIpEYIjy0sbBJ+gswgyBwDg5COVCM9ir9asPcTri+ANKFjItl2HuqqSZcHPUyrOj5UmUogoUkiK7U6n01hsV4owkL8g9UUocZMiTVbPdFLj5o1rMMZgyoV6k+aftEZyXHdomgYHB3u4tb9HfhKA/REKVT05cW68B4T2OjON2kBg3oO2R9AKkjk0Ehj00CC0ZyttoBnKZFaZrhpyXHM4oYNKCUGyAYUQKNW263G0WODW7i0cHC5xeNDg8GAB6ABlgKIEDg4OIzvcwBsTBA+VyAHWvLWElSFipEBuvai062C82Na39fATss6MznHM2/GjNc8zRYR4eA7P6roeReHjJi6czSGQm0z1HBPP/CIAOTmLouA507NwJA2VtGgLKHI+lmWJ3hHeW2bC4rgxSVEM2Q1mQkHC+nKOZyngQYqkXjUlx+MbEo/IuBc0/4SzxadjFPt9XIqGyBtFyRAW/sbr17C/dwhCFhI8oiS2P8vSTI94uGZObMccJtnMjsMux1E5+YgMlC++7zEkYoyJ1dHlZ6UM4ejsFGljaD6MrhW8HwTT5HNR4rtlI9a8UZS3kUWnXmiL4KQJP4zZTaarJM8M23ixjTWBQbheJjCkwAKlhwfY4xYrcuVUDf6m84zvI6FiXdshtB2UNiQgvIc2GpcuPYpqMsXFw4dxa/8QTdNjsWjxyiuv49qNazg62sdkVmA2naIqywzuYA1MWbIMoJkBkRx3mrMrpee0GEXacyoywkBw32lbEWYrwlnlK32wOOWZeB8QvIODi2F2+ZgZY1FPbCR8ksUeAHQcS60UpRBPpzNaXC5dp+t7NFKgNQCT6ZRqALJz03uPpmngfMDOzna8TtLwhpreWiUhwg/yQjIYFZxHDC0UZ1iMvc6wc/HfDMcPvA8Mr6+JC5XGwxgAhLEaSDxQQGktVA/ABwbN0oklztj5gOlsjt5r7O8tMd+oMRCXsgOAkrWiwB4eNWhjjTmdaghPFgVtkodNEze1QfTYCPOWakJ93yMAsRLOdDrFdDpFXdcAUsKSROeM55u8Fou7bZv4PYHCgk/FxHvn0ImQbtsY/18WBQxXX1dcJaq0DyiN/bd+67fwcz/3c+j7Htvb2/i5n/s5XLp0aXDMa6+9hj/1p/4UHnvsMQDAuXPn8I/+0T+Kn//6r/86/sE/+Af4J//knwAg+slPfYoqrEj7V//qXyWP7V20wYIO5EhyPotXZu3FmAJaG8anM/M6m+S5k+E4us0A4jgBELUyH8gzLdqwaK0SWCb/D0R1PtcVmZVk+nu4wIkhUFg2LdxyAW0LtEeH6JhX+P0feBZP9j1cAHOeKLSdw2/+5u/id77w23jllZewfWaO7a0tzCaTyPYma8HoEgYaOgDOdUiRKgkjBUiQByVhlKyFiYJ1l3J7EO/qk3ymYVdrz5cLZYAId3rn4PqeiJ2Y9tIwd0xVV6jKip+1wmK5jJmAy6aJPDN1RQtXogkWiwV8CGhagkwKPt/G5iZDL1yppGnQLpdo21uYzWaMeUuGZvJrnNRkdsZNnOeO0IMSKZGCVXnFJc1WUAYn5BZfPHeCFgLPS4oOIgFW2ZLgJudg2ZxXCKjLEnpJWqyGbNQ8zy05AvveYWv7DPpe483rB3joUj3YeIS7BUxiNehZpvzEPq/BoLNBik204r7vcevmzUGEiGD/kpEorWlIuLZtS6F1GxuYTqdcP7WKAlfOQZXhi4E2ThsxJfmLBXR0dBhlirWWNgd+JtoW6PseR4eHuH7tOmUqK6LAras63lZAYIbO6sR5cs9C+6/+1b+Kv/f3/h6effZZ/Mt/+S/xN/7G38Av/MIvDI754he/iD/9p/80fuZnfmbwvvcev/iLv4i///f/Pt7//vfH959//nl87GMfGwj2e2lDgZrei+9n2PbYKxwba1QnLbTBZMu1ATFnY3UQIJc8CV4ISWYP7LiBMhI3BUn6MFBRYIjTTBwrW1tbgNJEfgUDKIOu93jxpdcxn81RlCWqeoKyLImYaORYpFhb3q6CbDOJ5TChIbmEzjadOxTYYTReg/fiM2PUCSoKi0GUQ/Yd7yXmOvGfU8FbDRMCRcsUBYwhE1SyHSXOVvmUECPpyFprNE0Tj5HsRgugKEpo7aAUnydQBMVySc7BPGJkrDWepGXL+EXRlsErJIhS1EJqw0EX5/vJDyDJ9uSEzftGv4nWtxNcDCp/3lqIoALKsob3wHLZD74/6Nfgb4UwOurYyJfU0dFaIdjOctnAdUk2+f0JJg0gWmOSdj6ZTKLTsWmaOO7iCB5r2VG34z/GpQpjFAk3mT+LxQKAh7FmUE0qIESSsQdSjb1tW/zkT/4knn32WQDABz7wAfzTf/pPV4774he/iN///d/Hj/zIj2A+n+Onf/qn8YEPfAAvvPACXnjhBfzsz/4sfumXfmlw/I0bN/Bn/+yfBQD8lb/yV/DJT37yXroYG2kXOXXjsEWH4gkPfB1WBvAE1oDyq5lVwwVKM03+GtafS06Y3JwPCOhEA9YKbXCQOqtaB2hjUZQV9HyOxf4N9I75SDTRVzrX4+buLm7e3MP1G7u4dv06tra38f73fwDnLuxgNp0Sxss0k2mMSCNSUDDaAkEcW1mtQt44VCas5Q7vJOhvvKkGn+uYYXWxjpqE6RGWT9907FjSxrDDkBeN1tCGtKeu6+MYW2sJHhnAGJo15xaGC35WVQ3L15Fn1fc9Do+O0tzQGkVRRljZBx/Tw8c1Dk8YlfRntomJEBDNX2sNy/fjOLooD33z3nME6wpyjXzTo+Qs6lfXdRDfV2AtOxpOiiyepDkDKjKDcfo7PM6c3cZkVgPaZ/s4fZ7cnirKXVKKfNyO145IbvmuGSaAS49pM6BVle/K767rBhY2QI5cAJhOp5G3JNfO5fsR6sieRb5BUNx3QNe1sSCCCH26x1zYk4JobEFROdm80EoDipj/hjDualPhXjxwWfPe48d//MfxkY98BH/pL/2lwWd/5+/8HZw/fx4/+qM/il/5lV/Bz/7sz+Lf/tt/yyWUgM9+9rP4u3/370bB/S/+xb/AtWvX8BM/8RN47rnn8GM/9mP4N//m3+DMmTNvpYt/2P6w/WH7w3Zq2m017X/37/4d/ubf/JuD95566in84i/+Itq2xU/91E+h73v8xb/4F1e++5f/8l+Of3/f930ffv7nfx5f//rXo4Y+bj/6oz8a//7Qhz6Ej370o/jt3/5t/MAP/MAd39Arr7ySKk2zfW1tiatXr2I6neIDH3hm4PBZLBq8+eabuH79Os6c2QZ/kT70YbCrCoZInnRAYDrB0owxePzxJ/HC157Hwd4tHB0eorAWm/MNBCkCnJ0z91zLT+/I1PbOIzgHbTR0YdEiMEWsQW0tpjagtg4z2+F3fvPXYbXHpz/9SSgYdL3D0bLFZz/3W/j1//5ZfP43fwcf/SPfju/53u/Gh7/tg3jo0nlcefEFNE2DyfmHMbn4CFBO8NRDn8Bzr3wBFgaV0tCeGOUI4ytw5Y1rWC4bbMw2UZcVFBS8d+wwJTMgWq8j03udE46UvqRVH+f4zfUK53zMWqMYW4c/9n/7k/j1//pfmIGPMhmLooAxBkdHR2gl/hUpYWLnzBlYS+WhxInYdR2Wy5acQWWJ+XyOjY2NqIXt7++jaRrKjux7WFvGeoV5iFlQwHK5xN7eHp588smo7RmzCo+cOXMGN2/eHJneY7iIYnuvXLmC7c0NVBXFJV+5cgVKKVw4dx7f+PrzUArY2NiAVQXAc5T8Ij45zUOCPQ4PDohoDMBDDz0CbYlPvp5vIBgDrxSWbYeXdo+wt+jherJaoB3+5Lc9hX/3pS+jCDWsn+Hlr91AXVhszyf4xHdcgtIHQGgABIRgCWIDZZMqpWCUhXeK4f7V5yxtbahsQLo3hjO+/OUvYmtjI+LSeX3O3b29CItsbGzgOz71vXjztW8O4AlZh1prVFUV50vSwBWk6IRAb0pTZfimaXD16lWcP38e3nscHBzgzJkzMNFX47E4OsLRwSHeeO11zOZTlGUR4RqliEoZoBJkxhZ4+sMfWxkLabcV2j/4gz+IH/zBH1x5//DwED/+4z+O7e1t/MIv/ELMvc/bL/3SL+GHfuiHsLOzEwfcnuAZ/eVf/mV8x3d8R3RchhDWnvduWzRtgBg3Te9TDLQRngUgmV8jhyD95td8gAidwFJqgNmxY7Pn0B7nXeKbzp1oYoZJFWpr4mc6gExYrWF1iPzelbUojIPVDsaSs0vwyGWzxPXrN/DNl17B1TffxHQ6w7Mf/CCefOop7Jw5g5KdHNYWkZqTTOrMhAsKIaiULcn2rjbk9HLsFY+sZck3ddtnIOOZYomPWZhAXBwrUSIIVLwiM2NlAQIJX5QokbKsYKzlseZY965HCCpiiGTaGigm7VKaqrssFouM00TBGIuiBJSxHHlQDJzXUKnGoDip7qXFOaD1AJ8Wx6NzS0gstQ8expCZ7r2PqzpA5qy4vcdgBGPlgTlC+CcEDwSuHakoYjVZ+w55oYkAIj3Y2JxiUljMZ2XaxCGJPSkDKoFqHlDJQXucwb8WIhk1pRSqqo6RQEZp9I74T6BUhD+MITpXGcd1GPq6KJHjrpkfm78WQRwVFx9ipNp4c5afxDx5+/aWHJGPP/44fuZnfubYG/v85z+P5XKJH/uxH8PnPvc5eO/x1FNPHXvO559/Hr/7u7+Lv/7X/zq+/vWv47nnnsPHP/7xe+1idMjIDgql0HcOZZmENvEGlzHUJ2qMDOilCcUZXUomNxjTGy4qvjDtoux82Pcerusjvi5aglIU/2uM4WoYZpAIUBqKxXUhIFgq2QSlqLIIOlj0KAwRR4Xg4QNw69YuvvyVr+A//Mf/jNnGDh5//Cl84pOfxsOXHsXWzgZmswkQKKNOKeCgbVH1PZQVa8IAXsE70CYRvYIk6E1BVdzLomTie84SC0CsvH1HISTibV2vWYvjZlDiK3D6fVmiqiuO/iGBOpvNorAUzVprTcVv2QEpTsquI03dWhc1c3I+GjhP0SRd1+FoucSybWGNjUkyRVmhUFXEJ6NmrFgw+oCuIytAogjuDNNObUVoqCQYjCULom3b6CztnUNVVpz1yUJ77NyGzt4UxzW98i6g9x7GC1OkhzEBWmlYDjnUGgjao/cOkI2INwyEHhcfOYdZqTGriNqYNlePQiv40POSUTRnGPdPgm39pr0yY6KcGZJvaa2xubmJxWKBbtlAQ8UkMGNpDkh2Yx7SNyxTls53XOigfCb+D1njsrkaYyJ/iXxHNklrLHPEuLj+hyyBXOv1WIQ/tXsS2l/5ylfwX/7Lf8H73vc+/PAP/zAA4MKFC/iH//Af4p//83+Oq1ev4id/8ifx0z/90/ipn/op/Ot//a9RVRV+/ud//sQJ/BM/8RP4a3/tr+GHfuiHoJTC3/pbfys6DN5KCzxBRNPOVUOiljSwNhHBrDSeWNnmCfa1ZxNsLKRIm4yE+m0Xd3u6Li04q5K2J+FpMgEqS2GDvXeANVK0CoVW0EHBBAWtHWksrPEvlktcvXoVzz33HJ546v149oPfhve///04e/4CoAMofcTF+FTfukjhSr3OORRI+Cp2IJGmrSN/dK5g34GyfcdNhLZkM8qP9x62sDBlEcdKLDGp0yeRIzFczhiUZYWiKCPxk3MOy2UDQEXzuCgKTlNXkctF7tNaKoslVbbzzSJuNBJZkWnaeer6utjh22mQ8djstcwbUUTEfDdZBEV8FnFfXHUP54LRR6FB9UYTBEGavGZt26sAH1iDlfMgkKa9McGs0pgWcl3ewBUAOIlFoQ9F8clCWE6KrDkuECBvVVXj6GiBrncwIKctwZc2bszidJRxHJ9zGKVzvJZP7yVFQ561nE9YAsnMSM/NjEMz1z6PByS0P/ShD+H5559f+9mf//N/Pv598eJF/ON//I+PPc+nPvUpfOpTn4qv5/M5/vbf/tv30qUTGyUkcDJF8Lh69SqOjhY4OlqQBsEPZ4tjb72ThYY0hrnAjgIuGZ2D64WEnQK0MWgARhsYmzi7iZTIwlrWtjnSQOlEzkT90IDSkdxeAvdDcEDfACrF6mqtUFYlNjZos7t54yZeeOEFXHnzGrRV0AYoCgXVHkFrhWJrZ2jKBfL2J84InqASr60NvG/4uCGvRZbvtmaBqdERiH/l+D5RmAokwiFnWsMWlu/PRDMzj78FsiLNOmUPetauxQzXWqOsKoo0YYrbru+hmpZM6hgDTdim9yGmNCutuOBrdlfZwk9wBr0eV64ZjMYa0zxNrzD8O1v4QKqSIxtOMsdpwxFBSIpbHpUUqFJNNu4BBM1F/CNypsrP8FlppbL8KYq/pogiMUBZCEMjIKsiNDhNZonxDjPe0E4aG0mnl8/ytYYQoK1FXdBcMIVl6MyujO268R5fN3+2443FOR95S4QNUnxbnhPTBn6arGj7euF9Z6rPqcuIXH3ggnmVKEuLEDy+8IUv4OWXX8Yrr7wK7x2efOIJvO/p9+Hhhx7GcnGElh0oQ+1arZw/OiTlswy+tNaiKmtYSwtKVUTfSIHzMulUrJJD4XRM6KhIuxXKSKM1vDIAa0Nt10H5DnAN3PKAi4EWnNmmsbExw6OXLmHRBnztD76Gl195DR4K1aRAPSmxuTXDVlXgwoXz+PbveRSwOvJpO++hAwk+JVW9AQAG1lYoCo/9vmehTax23oVsHI6bdOPP0iIQDVngENnQyrJEWVUwVtj2KEmp58UhnBHgp1XVdRSU5LBsKB7beRjToq5rFEWJejrD3Acu0tvi6GiJIyw5dK9iP4fFfL7J/ZRCzyY9GwTmlMGAp0YWr9Yak8kkJnNQLPGQSfC4JgIims88VlJsQKhe65qqfC8WC2hrAeeIIU6pKBgkyUhCHvu+Y0iDlQmOX4+KAWc50mZBTkodeBYEDyMFeAF4r4hzXRuiiWVfCD1tC8DC+4ZhM7bYPAtaZbPNebhmx9b4yprmNeN5s5KxFqukrCpsbGygKAtOwKFnOrZ8xhp1pGr1w9qpw9cqVatZNkCg8MnZbBZT0gUGIcs08RQpbaJ1LteRjFdRASl44sTpcfqE9rqmFJG6W9bQXn31VTz//PP42te+RrGvUHjo4kMoiwJdq2PFGNYjkAOEwwk01hyjuhoXmfakmWlNQmUyWSWDGSzikGJZYxalNlk/iBtceYfQ92iWDcciqzi5qqrC9vYWFld38eabb2Jv75tYNA2m8wmm8wnOnd/BQ1tzGEOJJH22EANjneKsZRsTAiWIiZdS2HMcW44/xsQL6eNcixEogoRwF8euKEoYa1FWJScDEQf0crmMCyQ6+hhzr6o6QiveU6RJCI4z20qKvqknUTPtuaYjacQKdQ0W7jqa0vG2xsJW3lMqlquSha8UbTqLxeKenZFABlVk0FoqfpAsjqIwCWNFGl+qZclwT98xjzhp/0VRoGBe9qRpZ4khIW21ivFWrZPJHwIrGEpznzIlXVFRBHk4ot4E0bQ5o3AIsq3f0NZBJ0orcD2FmBAlxxlrMJ1NYySJ4RT9dfHP6+ARsZiAcf5GkgECtcVxLApOrHLREhSLLWrbOufsGTs77xxgPJVCe2x6SBRK13V48cUX4b3H1tYWnnjiCfRdj3pSY39/D/sH+/CuTztyYOSaoYCIGfqMB0TbNNEysykEDtETB4XrINoGgEgikzshBBKgpqC9o4fuA7zm4rw+1T9UtgCqmpNgaEFaa7C5sYFHHnkERb2Jg4MFDg6XWLSs8WiPZrnEUWGwWCyzRB/BYvJxpI5GGEiJYzaWMEEyiONL1kaHZiBC8gF4jj6Ry4mJbkHaiFZqsNhECOf4YcEmr5D5kAbqBqnGZVkColHx+PZ9j6Zp4jMWPFsEoiQ9SIHjlabk1ofZg+lYmXu5NjfcxE7Cs4/HOlO6vygFAgMBaZMNzG0NRRuwOHDBY1xAEkIozMxwFEy08uI1+SfwrFUaihO88g1a0JsQgKNFg27hUKgJjOY5GiE2+Z6sAY4cWRmd49sYrhiPUc1JVVVVRegoOorj9VfHOj/nuvMLTwhZLGmetV07OE9MuCksnHcwXiOEodUgSVvj/mfw9xoPxLC9J4S2cw4bGxt47bXX8O///b/HbDbD+973Pnzm059B27Z45ZWX8Y1vfh2PP/E4zp89SwVZpYILRzGEUUx13zOLWzUdOIQA4jcwRqMsCuKzqGvs7u4OtGXeDiiiwfWEvbqelwoJDNNzWJTSCKLhKqrWXpQVClOimBpceW2Cbtlhf38fmxszPPH449je3MHB0qHtArreY9m2eOPq63j9jVfx2c/9d/jFETY2t9A0LfTMR2xHmCKCDwiOuVwh4XMUZud9DwUHBQfCv2lhBi9YEv3WAFzwkeMjQSAd0VFqYsWz1qKoKtRacwgd4jV9GEaDGM4Enc4IGshN3KZpEAJxItvCYj7ZJFInplvt+h7d0RGOFksURREXdO7sVhzJM8aueWaN5lliCpTPaSMQZj4N73t4b6AYIsjN8+Pm7FrTXAnEQpqz5rGiTYt8IwqaYvSPFjS7vGMrj+AuEWaG/QLJt2KhTEx7HGTsIlCIrFYGCm6AWwdPuHVQGt4DV9/cxdHeHsyTl7G5oVFXFrAWyY5TrH1LJIsUYb692F47Xirpp1prnDlzBn3fRxKpmFORCe38PII9R/9HplXnEMZyuYzWXdv20YIJoI2xn0yws7ODpmsJVpvNOF09OSjlFif1BFAEQxprKBRYSf6H3Mx7UGiPm/eEJzdNg9/7vd/Dpz71KVy8eBEf+yPfjqZpcOvWTXz1q1/B9evXsLWxgflsBqeEg5uqSQitZ16lmQLw0wKQh951PbQuYLmu3HQ6xd7eHoa4Li+QQJqRCDTxs2utoTuuHq9ZcLMkLG3JHMsG08KisAXaQAkdZ89uY2NjAxcvPIzOa3gQB8mybfD8HzwPjx5HR0dA02J//4AmeaZp5yGNlEXPkykEKC3aniw00fq0KGWQgr9RW5DTsdDuOuISbvqOzdoQyZrEyw/Q8YvFAo6jPUSIlBVQm2nEMJPQBvo+QStaadSTGq4PzOi2QNOk6BLxL8jvaA7fsd6HDKNODrckfAkzFufq8Hur11infY9NaDG7RZAn5yYReEEpeOfRtC0kGkScdIqjX6qqiqRXYtmFCFdQIyEWewHybGRetKihat7iaa7s7R3h+pUbePTCw5jWJULJAjqqkKJha7bgcqbIO2tj7Th/fzabrT3+OKGda+Jj+CU6b0OI8fqHh4dYLtv4rGxZROw6BMrJ0MagrCrsH+zDOB0dk7LVUbSTZzZFE8naRCG/E4Dk1Avt/KHIZN/cJMFsrEHhC2xubuLs2bM42N+PYV7NcokQqJpHl2na3jnCfQM9hLIoYmx1FCxlSaanRB1kE613RK9JUzWZ+9ZSfT1DnWYHJAntAM0aNwltMecl9lwxSyHVA5QHT9KybZc4WnZ488Z13Lh+Dc1yiXPnzmF7MsW58+fRdh2KMORazqb1yPefPokTnAV6vGoICC7EkmSpKkiCdWxRAJyoI/ci45fq/SFqk5rj0EMg51+evRYjNcoSJnuPkpo6BDZngVS9W8IrBQbJb+9OuFPSul+N4821qxw+kYV+p7DIccdQdJOLtLIJOwVF1vAGSBwiPoWSWoJCYkEOxThPVO/UqAjH8H4VO2CH7guBPlI+RNt2WC4W8N6Cih2r7IxpPOQ7OGFM7mBAEqp3wjlImRDocRVWAbCicedwnFjaSinyi0E2ZXKGyimNTpVzfOaczsfaWIO+T3HgUDL/Aoa9O76dOqG97uEVRRE147Is8YH3vx+XLz+KqiLh+swzz6AoLH7r87+JRy9dwtmdbVx78yoJCvCU1io6ZEIICN7DaI2t7S0I3adoPjs7OxyXqbjEF3nkOy5tFMizRELaGBRVGUPZoNOSMV6xBqui0CZNMsBqwCqCcGxRQFtKuKA5EOD6Dl2vcfXKm/jmS6/if3z+s+gdpVJ/+tOfxhMPX8LW9jb29/cweegCn4uVeh9vGlAiuA0C2wFJM/FQICeUOKS6tkfvezjfRyxQNLqyLFFUFarJhPo8gpWI4vKIUE+tURYlqtmEkzUoWsRz1Mfh4SE7KylOe3t7Cz4ELBct+r5De7TAsmljbLVSKiZWhEB1InW2yHJZdC/zLdfWJAY+txDidTMhdZwTLH8dIw94Hku6fcmVwMWxqLRBUZaYzmaop3W8TswB0BqFYNcSrRAtJDUS1HxPjGdrpWAU/aawUzk2KRPeeyybJfb39/HGG1dx4VwJo+dwDlxcWU5N33diod1NubF7aESgJj6YMCji3bZt5Mr23mOxWMQCzkum7iW0jxzN1hgUE8sFsglIPGTHrw8OVVXF0FTnevhQUDUa8BhrhXoyxd7eLYp8qRVgshpCLFtu57g+dUI7b7JIJFNJPLuXLj2Cc+fOsqZV4JFLj6AoLP7tv/k/sDg6gvMOt27tDrRgY2jiGzEjAzkap9PZIEEDQIaRDk0/55lbxHtAUzZkxZqQhLflWprxOsILyHCvgB46eKjQA56y5LQ26N0iajTeefjeY3d3Fy+++E38xm/8Bja35nj4kYv4zPd8Gh963wdQFAW+/OILaXIC0OxUk8m6qmWLRpA5bQTlVBTZ0rkeXd9G77q0sqoiZDSZTEAUoyAYJIOdFFf2risq8SXcxsvlMi2ozOEEANPZjJ2R+2h44XnvORKkiLwkMr5OIglCsvjv3Ehf3+S5CbPfOAVfjhEhsU5ojxdsbk0YPmffdRRDzpYJbUIMf9Q1qrqOc1KEklZUwiBdM9d91xTgiP2i2Ow4J5APFEEdhO0mGOHm7i76/iK0Vuh6FtoqJIMsE/z3rGXfSVOIAhfgdZSNbyodlopYLJdLLBYLHBwcELTBm73E6kentVLoXYBeEjRGwQ5kXYtvYwB5cV/KquR5OvRtrHOGHtdOpdCWxZNrNTKIYsJQVhzF5kpwfB6ZIU4fEfrGaM4Oy1NPiX/j5GlH+6wtbDRnqWq34oVmSVMfOU1WTOkx3gnSgqITQyv07CTp+x6Hhwu8eeMIN2/eRNu2OLOzg62dTZzZOYPpZAorSSvWjkxXsCDjLEk24fJFnZI82DErWc18f2DnnEQpiHU4hkFCkILFSSuU78g4i9kKIH4uTkR5rgDQ9y5GMUjkST420RQdzBHq9L1b56tfzBfq2LGVH38Shp3HKY8XsEQtjfna41zVJm5MA0ecXCsACQRLJnnUBsf3yM9PsQk/OCIz64XCIMBDqzxbmLUOhfSar3q/5PVwGzrmmDWCMLeOxiGkmjVkPRrHMSYuLY/ljslOfN2QQWUSXhkGvc4SoIKPAv24diqFNoCVBSK4VFmRVrq3v49XXn4ZxhicO3cOZVmi61poTTvr1tZWZqryw2NczzmqVuJ6R6WCVBp4ud5wQWpsbGwyTwELRFZdBpmQ4mxU8ihl8WbYKIT0CghKATCo6gmMKbB7cADnehwd7OPrX/8m/q9f+W303qOsS/zx7/9j2Dm7g+2dbTz88MPE6IaAnZ0dKAV4x3XqQHqXZFxqyQL0CTutyhIIAV3Xo3EdvKekCe8Bo4uIu8/nG0PLgbVi5xwODg4YnrCwhUVRWmilUE9IC/GekmiII8RGTbmsKkxm05iO3jAb2+7uLfItQEUHYw4PRJ4UsAxhqyUK77dopucYtjgMWylPxs9MMHVRIMbcFzk0kisGY0hFKbrHo8NDyoDk97XWrBUWrBQMhTDJ6wSFCD87XTQdMwZKjA4w2iP4HkrZVHSMndYhOGgLQDkAHcqKxtN7B8MbtjDlAUy7ACDWj3xALYRAmHP2WsYxr7nZNA2uXLnCfSLcesbEUgoYKABxQ81hL7YybFkihBChO601XN9DMVmZUhSGqnnO9S5E5seuF3ZPB+1PHpVTK7SBoeB2zsEHj8JaaK1wdHiIV199NTJ/nTt7LpLMCy2nOL+895AoVsHCyPxmxxcClckaCe3cDzGdztb6ydeXVBxBEvGYlOKd1B/J4rOcyOFweHiIV15+Gb/6q7+OnTPbeOYDT+PjH/8Yzpw7i9l8TnDRskXnemxsbNCZxVyjyxD2F6goqdYgoc29JyuESlM1TYfgNZMxOcymGxxSZjGbzQb19fLK6E1D6ffWFpgz74dgwZLpuFwu4VsS4AJxGEvhaYeHh1gsFugbgmAOD49ieKUw/sUNAyFVbY8jm2tOYq6/NRGS49Byr/HJxTkxFMb552M8ewCfZMcBiOXspEalbIplWULFlHvQ5htnD2QW82vW+FQmrNfMR60DtKZNXCmbZif7VBAUlA7sDHGwBQAuRad5QtGU5eMhyNvdEWnddQtAGD9TJffEZFsct3/z5s04d2r2veRQ1mqkSXY6ntsln2+5TCGlzlNVJGHEtAUFHJDFTWqZDyFm+fZ9D/NehUfyJlqIVhquHzqHdnd3cf3adWgQcVSuMUWoIhPY+fu3w56yDklHhgsVgqWunmf4juIJn+HJg5AHhjCCCAfCEbe2NrC1tYWNzQ3UVRUx95s3b2J5uCDNf2IxrSvSlKSPbAl47kgu7lQGj1C/NFOXko6umeNFKEV9FCoyXonZEFArgizw+JIFko4Rjz4UERgJrKLZkTOGBPLnlCCak+3x1UiQu2vj+ZCbzCfNlXUCfOUY+iC+Xmemr4VcRudMCTSySSXoKwCScZ4pHCKs+GwMddCrABXPE1BVBeYbU9STEsYw4KKyjXIAkdwnHTvba8dWQjwkX9NYHasxnDqGQsZjne4hHSPsfQCyMD+VWRg0APFZQSowDVkFjTGw5gEV9n23NNGUNzY2UJYldm/dot2MtbL/9J/+E57/6vM4f+4cdnZ2IncFLTg6h8JwQRujAZXIdwLAGqmOx6zDImNbM7MGR4tWxudSgyNC9o9jqRXxQIs5WFiDs2fP4E/9yR/AxuY2zl24gO3tLRRFgaODQ/yHf/8fcPM6wQmX3ncZH/vMd2FeUmSF7xy0ohTpzgEAx+wqCStTKIqKWAuhUVclbMlaiQh0palEWttBInAMhycaYzCfbcBNpgPqVXEcKk0kP0VVoqwr9Fykt+07dAc9h7VRiKM1Bew0OX8FR49mrFIpRlrlm016JhKKeMcb8HHPVB5tpp11XRdZG8dJNfkckUW+jip0HQ4u9+c59LSqa6ZkJcUjVf3MUtKz8ymoCI2IKJP4+pCL8EAYdmEUCktEUh7J4nLOQYOqjQc4PHLpIs5tz3Bxp8ZsXkDpHtZoOEdRIiS0PRMnKfjIW/lgW06BKmMhVpBE1lhjKH49QpVDhWL83IT/WkIAF4dH2NjcBBiKnc1mFP64XKKqhMo3rWLP0J/n5Bqb1Yys61Wqi7ydeqEN0KKYTqcoihL7ewfoe4eisKiqCl/4whdglMa5s2fx8Y9/DIW1sZCrRGsoIKVda9HuiIwnX7ay6PJFCgz1iruZoMNQrGggRydPAGnDEqdNmi3Rrm5vb+HJp57FZLqJejqHrgo4H7BY3MB/+9X/htdffxNlXePj/XfgQx/7dmxs8Vj1PZQNsEajZ3NWNAtyzGgUtoBrKROvLCvUs+kA2vCB4lSPjo447M9H+MMYi+lsCkChaRocHBwMYmJNWaC0VYz0WC4WaJoGh0dH6LqUPDOZzFAWZeQHEXL7gbYsQigAOQdEHN/g7klYp++vaub5Yu84ykOEeN7WadZjR1buDwiZ0BehLZZJUZZwnSOCL2WjYIqbgmDtcRNQcf6kPiR4RJzJ/BLGKNacSegGJbHIjhE6wrUvXDyLef0QJnoJqxyU5sQTL5zzniAUBUAZjlp6kKh2Gi9R3uRywneuNVmGEhJpM1ht3bmkEd0zWYyOwwXl077vMZlMMn4SFetxKkXPzAUfqyBZazCbTWGMwWQywWx2Mh31e0JoAzQRrTXY2NiI1WqkVBR8QFVT5qI5obIOLR7ykN/O3I1txVw9zogbnyT9ikePPUQQM1cNPiRtuEBdV5FUqGupuKlkdoqzbrlYIPgcbJHFma4fMpMYALMSUoUbpYaRDiIkqR8iXMYaI2KcdGLOy7UYn2AVHkNh2hOTNEVFyDArBo3WiIGRxhr7+gDkxfg6t9PYTmq5Ju69j85g+iydX2sNFxxvToRtiNsjv9b4GWS9pPeATDWQ74Ljtfl8IR0/nsVaaxTWwCgNHdzwRPEbQ3gQWT/vuWWdXrdeEjSyHpRRWGUWvKPLqtR30eLlXDnkJ5/LhikQiAJY2TFR6TFcCOWk9p4Q2uJw2Nrawvf/8e/HbL4BawweeeQR/Nk/9+fQLJZQAC498hC2NjcZH06P1yPxEFDpsD5qfQDiLtqzp1q4IYAMi+QZP8Ym6QT8ax2sgsDp5Bw/zfCMaNYEXeiobWutURUlzuxso64qHCyOsHftOpZdj+l8juVyia3NbXzsY98BbTS+9LWvwPcOljlGSkPRAZ6dsr04TArFeCdpurPJPJrWzgV0rk0auSL/QaTLZJNR2mKxQFlTCbDNzS0EUA3EruvRdw5HfoFm2cZUawXN6e0TFvAqlgfLNxeAJUzIBUKCHATvj8MuqiXuDR45TvDmEEld19Hxmju08pZXbM+Fq0Q2RPqELuUaENE+VYEvywrtoomYfRgOymCTO+4+V+H+EGE6+aeVgoEWcj1oYzm9XUfzHwgoC4PQt4B36DoHZpNHYCggZPDLfcO21zbC4nNoSoZeBKto2pJ4lSzstLnmzybHnkUp0d6j5XqlBP/NYhJUHE22ljSAjfkmCltEOSDVs0RwW3tyicVTLbRzDLDve2xubuJ7vvd7MZvNYTRxbP/wD/8w9m7dwt7eHqwCNrhIK58hCgCJflgul+hdy4sGCGLGIqVL50Jb+gHJQjtm0azTwIJCrCSiVYBSAdCADszfAFF8dBSUFPZVoSpKKF3h+s1beOON17F3tMCFixehOPzwu7/703DB4Vf/x6+x0KbzlZYKrhJMUiI4Im0y2kQqzMIQr0oIQNs5LF2Hru/Q9i2s1VSeyxRU6ostl6OjowiDNE1DuHVdYDIlwq3lssHR4QLNwQEajgipqgpFWfCknnAdz+TNH2gy7DxNiv7QeTyM2uDPBwL89prv7VoePSLXLMsyRgWMBULIFm1+L9JkrLquo8SjZROTO4h3XMNamsf7XnBWNbhH6Ve81XCytRcGx2X3BkrO0UpDUrG0NnEuEh83mf+20HBMH9B3AdZULKyZtRIcbjjaRB9Uy6v8YCS0AfK31HUdw0glZHPtmuTf0fGtyLZzrodzHmVpMZtOV4S2+B+0pvJnk0lNIciMY8dKSACRd53QHnDMzbeurfPkQ1EMtpjdAUTnKIkKotUAacKG7Hx5fK3EVw+umU3zoO4drTsuXed4maIihCCvJRnIMx+E64lJMCCgsAUmdY1JXZM2irSEhwZsujO6vh8U5E1m8mriQTxCEZ4nTHNilUgx2UH4lBpBH9m5JY59/PmaC64dr9Xjj9GQodZ9dGw7SdvOf+fHrDteIBDZ2MbZlDnGLRsXXwnHxTuvg+kixp89ZTnn+mknnpXs+NFvmTXBh8h/wz079hvrX7/FJlAFTniEa/GRVSf1sV8fPbsVeITPRYlPw81BOhnlx+hn3VxZ1069pi0DILte1FraBrd2d1FWJb761a/iueeeQ7dc4ru/+zNUDT4OHA1kXntwe3uHP2InB4YDrYV0PYK7qw9jgC/G/1IjRUkDOqk8FA/u+EPWlmJFaw1bluh7IhQyXOWkbVscHhzAlJUYudjY2IS1JeA6zGdzWG2g5frOQ7GTxQeBZAiKaZoWvutgPNCDypIFReW7LEpUoUbft1zNHRQ9whhexR5xSRfuO4cjR8x71qRs0cl0EgW5MZwxOmJRlPHLF8RxYXM5LDCwoE54HnfajhPIcs2cWyXWDRwdAyBZcKOMPK11jE9XSiE4z4RmiNV+ZMHThsoaMOP76xyl4mSMSmcEZvMJyGIveABUYk4piSLKIGSvkFj7LJbLHqprsVNPoGCoOg18hE4UF00IAG/+YwT9wbR8rMcaswKNV1mWkR4hLw3n11jN0aJjDFshpcpLBJVkWws8ZjRT/maWOfTQ6dn1HWVDvtepWXMsGkAk2Dk4OMQbV65iPpvgueeew6/92q/hcH8fTz75JC5fvsxCJO2kQp0qQlvCzrRWrDWmJAZtODxKdt6RNjaeRArHCRBZUJTAQMLMM8W1aD+J6a8oS/SONpfKFvCgRKCDgwOcOTdJQlswNQTMpjMUWkPL9Z0DlIEGkfpA+hqAtmnQNw0KZQHvoLSFKUtMqxraaigNHB7sUyy8o4zAAIWy0tE77r1DgMLBwQELKQdrSTDFyj7Z2OSTWqIqjsNoT9J4s3cwFtr3IrDH38ufpxlFIIjQzh1UY6G9WCwGVWUkZX8+n1MmaFFAK429vX0sl00U2oKvBh/geedVWiOPjBnj5CrOaxE5GoqD+RKMQo5PGEApA81CO0NdOE9GATAIwaJZNOjDEu5sDQvKdnVwSBVseiCjgcifxQNp3M91m7mEWcr6lBwGmXNjh/j4+4LxyCoktr+k5DTLJerJFHVdY7lcouaqSaJle74u+adoLnTM+a5uo/WfWqG9TvOiBxHiImqaBmVho0BumzbGaOctwimCgYn3N3c2jq9/P28mmmB0Zlk8AZkZLmaypw1k2JkQizZYZVjbbdH1LStUPmoKAC3qoDiVnS2JNCQiLKVDAaLpaybBovXuIVzLY/NwuGkh9lcBkYMFWNVI8/fuaRiPdymstlUU6E6usALJjCMIxj/yfv55/r0kJIaJQ+vG5p7uafB1mVVDcDBq5PyeWvkO/bRdB3RLHgMFhNv0L+4A93G1rLncSX1Y9xzWfeeOfB48dJLxqFQK/82/ml+PNgUNrW8Pi0g7tUJbmlIK2nDaNQvspmmwt7eHN954A+HCeZw/fx7f+Z3fiVdfeQV1PcFyScVYKc2UhJJwFfRdl4iNlKLSTnokWJLbHgKRjrMe1wmyFRweIS4JOoqSG/JjCbogvLcqK06xtwgVVcioqwrz+Qxf//rX0bmAyWSOF198Cb/5+Rq963Dj+g3c2t3FuXOHAIizzcMjeIdF08IpjaCJpa2qKkzLGiYAXUulpzwC2q6DVUChLCbTOeA9AldB94HilQ8PDwdmZl3XqKoq3octChRlMUyEwNAqyX+vo69MAl2xxnOyJn4/nI/Z2bLr0HOxtiB/gqOFKVEgwl0TQsCZM2ci1apoezm+vVwuybw2BqUt4ZyP1AACjcSSZiL0xVkdMuHOfdMRDhmNXTZL40YbRPPWUNBktRtwUgyglGiaBjoovPLia3jz9Rfx7BMXoWzgGjWaif5J0/AZDYNagWXubxsL4bFzsevI19OxNSoRYcTto5OvJvPdJKxyeG6tND3HvkdhKiI2swUKa9G3HXxB+QSx2Ilz6Pl6BJnQhm+tJb75E9qpFNqDh6WpVBJxjwQ4H7BcLrG7u4vXX38dVVXiwsWLuHTpEr7yla9gMp0QHqUIp/JswhjmRwaS6QooHLoOFgXxZkdnj1yc+yMim/HA46AQmcT0sWehrWB4nYUYJpUtL0XpsloZlGWFpm3QNhZ+5qFNwGRSY2Njjj/42tdgbIWt7bP4xje+gZs3b8L7HtffvI7dmzdxdLAPANCgggXeOywWR3DKsNAGzu/sYFpVCG2HpW7R9g6NFBtQCsZazGcboAxm4sbOOYoBmpSz2QzTaSrT1rN3X8bwOCgpf70u2oKefTpGFmA67jZwyFuUHyznEALHLBdlFNpaG/S9Q9e1A2gDoIUs9J+SoCQUoZQ1R0KyLiexwLFEpQCcLs8X9t5DF5zMEvRQUAHRB3L8jSfhHw2pkEL+YAAllpxCFNoqKHzzGy/jy7/7O/iRH/rjsIEuJZZdUB4wKQNVhLa6DbXAW21jeEOPhPZyscByscD+/n7k13bOQVvNvoFxWEAiHROmc6UUjNbo2xZ9WaESOuCiQGmJy1/CX6WAddd1WBwdxb5oTZV3Clu+tzMicw0DSJtjYLiA+Jk7Kk3FAw0MQ8rSybA619ncXs8dkrTtk7S5HDdPFzpZeuRmfvL8q2iK5ZEFRhvYokDLJEw0YXosFgtIOargU8ad9w4hOCBw/TxFKftyLa1J8yZHWYDynuPYk4YpX8k161zAAIjxsVoRmnpcFtrwvu9kgd+dEFh3zrt1j63v19BRmjbkIRQCJMES4375R+agZPLl8cbj2GESgmt6rbKpG3Hk7LDsOznsFg+K2rb8P4ZPMnikaXF4cATv8oig7DzCChj7+mAFdt7WwWq55TPmN1/Z4LP1Fo/LhpMUhPUWoiyOk+GxO7f6TrXQpqYGiyKEgIJhhNdeew2bm5s4OjyEQsBzzz2HsztncO7s2RgVMm5jjJZ4SASXvdtJuOb4uHDUSFMP8StKTNwg5btsjDLou4OYeKEUMJ1Ncf7cOTz88MPw3mNvbx+XLz+G7a0tVFWBD6j346ELFyj8D8Crr7yMerqDzZ2LMNrCFhVUUaBrG6JiVS1sIKikqIDCezQ9EJRC1/c4ODiEURRXDiDGoUqsrFgpNI4eHnoggAajky0QsVTiMN1mgo8hljtaEHdpradzDrFsERASkQAgRoBUTNyVV47v+z5aJBLXHkJAwYWhRWgXtoxZc3JfYk1YZvYLDAGmeSq0BwB8iJpmvNmATAvIkr9E05bv0gngfJfkvUK8Hp2RfBt95xAqctSTPBfCBcompkmsgeDubsDvsgmEtA5Kc87h1q1bcH0Px8WA83hp7/2Kjp3aUEkxPK/pmfbx2Uk1HMkTyaNTDHOdSMSQ9y6WOvQImG7sHHtfp05o54tVhEHf9ZEqMYSAqqywXDZ46aWXsL29De88jg4P8IUv/C4++OyzeN/TT5PQ5skcd0YAQaVrCF7uw6qXOW+D97OFfpKQFzxNEJGgAgKTNimtoZhGgYR2gaKiArUHhy36voJmnH0+m+OhhywuX76Ma9du4eDgFp566mmcP3sO21ubuPjIeVx6+CGqEg3gxW9+HecuXCahbSyKagJb1djvPZqmA5zDrCwxn0+hrUUPjb2jFk3XoW07NIsWWnlYA8xmsyishE86euaD50xPPyhYmzvYBg45lcZxXQQGWRlD/DqxrWWjeh+VO4EQtDbxtfRZNijhDZf8AIE3xLcCpDBUUSzkmKqqBok3GklYyz3LNWOhXraakmBlWtoQiPpDE1a7Atmlu4rmf7QMokB3xHUeIQa6Z+eIQ0QpAwWLrukRpoYVB9KwgwqgSUuhovTdB0sYJeOZRx3JjTrncPPmTYrg4DGPRFEB8C4penFkcg07UFCD5fwDay1c38diHEVRwDsS2gK5LBaLSAVdFgWKoohRQ03ToGmWVHWp73HuwvH3dSqFNrBqsg4cWqxFC7bUdx0Oj46wWC7iw4I4/IBRQkm6jgKbfxF2yT4XNGxoJ9K7AjfQG4Npqwa/5eRhYNmOm1IpgUWSVuR6xhhUVUlCQ+8hhID5bI75bB4LGtOEpeOPDg/Rtg2kV5IUo7WOE1U0DK0NT1odx8o5h6Cy8mXZ5+JAc5x4gEzwjjHqoWN3NPZYf1wcszXKm1r5OxNcg88zzR4jH8W4HyEdlZ9H/ha4KrIOIiVfrIM4xuMggp8EJ3AM+foA14jHZpZa1Kjzr+RiOhdGo/sT4S3zeAAFqswKDKnKS26B0E4RVk6uxue6g7bOWrpbSC0COwyRGq1jv+MGf8x6l/OljUwg2BDXXuB6lFopOKQw1fwZA4hVo5IVmji2nXcr18/bqRPa4/AwIOF5CpSyqgCcPXsGH/nIRzCfz6GVwvb2NuYbMzz2+OOYzec4PNiDpNwCgBTvJacKC6gQ4JVHcu6waQUFKMeWIb0fyMWHoOgvxQtLwSAaj4prNAYSKSoL3SOhKBwOir8L+NBTVfmigLIl2i6g6zniNjgEeGj0OLOziaKs4JzB2XOPYHNjE/PZFJPJBIeHhyg7mgovv/pNFNMZguoQlIfzDbS32NrcROh7qODRe+BgsYRuOygWKtZoTKoSjhMxjFFMBpVkiA/J5Mw30VU8cfRMwecQ7Q8h4uwRPuEiyGPpLM7ciLxG+aTiMYGfi+Kxv1OYixYjvwiRUSNei0pH9SgKi7IscHCwv1KXEADFpvMXJWbYGoqVV4NhyYRhCOi6NtbVbIULx2uYYMgiS7M3M+zUYEApZltRwd4Mx/WQ+a0Q0APoYZSBDkL9Cni0CFrRHACwc+YMHn/sMapCZAKgevShIQVCCeeIPIsAHSHFB6RrB+b7EG05bmg8ztYOyonJMWMe9LUbg/goeNSU1uj7Dn3vaFUbC++BYAIKrorV9w7OOyyWC/SuR9d36LsewVMFrLqqAYX3ZvRIPuAIiaVDqQBrSeN5+KGH8D3f89146aUXMZlMsLm5iTNnzuCpJ5/E5sYG9m7dgrViUslCowotQSmazN6zgDYACiBwyJYC0eoED/Ksa/Tg7ygPKAcdAO0psSHwZ70OsCHAeBLYOgx0SlASA+e/8D/nOhSFga8q6KLCsgtoOg8fFBA6KAUY5XHxwg4u11uoJpuYbpxFYSrOOAx4+cU3UFXU9+f/4DnUmxvwaomgPZy3MN7i3PmLWB4t0TYNlosFDvcP2dwvUFQVCmNRlyVCRSFnVKQ7S39WKprpEiIlbaUI6uhZhiDCNDBM5DIxLCfh12K+8EvRD0Uga/7IKRU3X68coMjEN3Gsx8JknWARqymw3j7U2AML1slkgrqucPVqVtKK4Q8A2JjNKRGLPzPRJE/9TpoaQQ7eezTLBZbLBoeHh5QFa4jH3HhDxSiUzsQKoAzDbbGvotQMFQQh4upDoHFCC6V6GFNAOxO/50IDpQMMp9FfvHgRZfCo6wLGOgTdoe0WKGxNaydoQBmy4EIAgkeARlAns9rdayPoxsFqQ3CcS8JYYCiE5AQnJSjEjRUYZkQOYDsWLF6l+qWL5RGqtoMCKMuXHZOzzQ0cHh7CHS3Qth3ao8MIaRXGwBpDRZnLkizY92IRhKFpzTiwTFTeIeu6wtmzZ/Daa6+irmvM53NcvHgRs9kscookDCwJn0Hcb/xfFniebCNcwUKyrwBF2GwSxQFDsZLhjFw2Jg8JHAqS2CMqLWVIUjof4IL0SrLYAsqywGw2wWQ+Rz2dQSvLZ2jRdz1EThwe7qNplwjKgyhoHUIgYpu+7dG1PQIU+p7MXm00LPfTaE1KXRZVlqyd47WpdQ7I45vATWGgOQ0+jl9XopTGEYyfrIGbSIM/7trr3ueT5Np2hMGoSTENwVZzLD7GqI+KSmtk0ER2f/RdcYIFjuXu0fcd39OqwzVtmtlthPRbrNDxHTJ6lc1OiV02iHManmxERdmUVVVhvjEnIagdzXc4QnXYKqGVJPDC3cEjd9sCkFkSw/WrIOn+2XzjLo19IesUCjJasmetwHVV2ZoUS1IhcnTTXAzRAa2UogIS2kBrRQl7KlVjOq6dSqGdN9kVY7KAUtFLK8kddV1jZ2cHVVXh6tWrcH2PqqrIqxs1ENZts91WsxkZJ59gkSFljYlJrhSborJoGaSOUIhKiTTCXzxsOU64KuQUdNSQZIeXSAHne1y7dg0vvnwFnTOoptuYTjcwqSfY3pygdz3aA4py0MbAFjbej0QgQBGXSMvVWKi6WEBRMAewpn4l0qoHuyBPauMrr6fukvEmgRQSYHJfW2Rv47lRsAOqKCjxIvZxDYYvgl0iTSTWXZ6J8OlUFSVuiENsHZPgOBRtsIHx64HzkT7h4zWUMtDaIueYU8qwkCMYbj6vMTE7XLav5+8bmkdI6wigKBcV9Amb5P1pYwd32vTJ2pEq7H3fU5kvPr7rOkqQyaAKcTCrCPXImKZnlY+3ZFlLUXFxSMtGrpRCyVErhIl7BBcQ+h7TE+7pVAvtGH0B8gaDNR7JRptOp/DeYzabkWlXlvj955/HzRs38T2f+QyZnVnMM/FWJ1NJawUHCuNQmeYgQjvXiwmUCZn1nnZ/wvcCQSYhw1bXzudVoQ0kFj3vQqxmXhTkCHO9wyuvvIIvP/d1vH7lOop6ExcuPIIL58/hmacex5mdGfb2bwJI3L4ARXhodqxAKSyaJRbLJXa2NlGZiu7RZMImcCRIZkvc1bN6S20MTvB5M2FMWpV8yBEPLLSRCaq7afHcazB5Ce8ShyRAmaBURakYOLgHMb1IwjUvhHx4eBgrAZF5bTkaYQIpNDFwqI3amG8jD4UTkimiTKWqRCGwY1EFaG1htI/zl75j4D04zM3hzJkNTMycitcqCjs1xpJfL3jWPg3gA7x3MLBI6v4DaCFptjI2Xpx8DE8cHR1FrvOKI0gQEI+XyI+VTS+oQb/JRyEQFmndbddhsVhg1rQRJ6ekMhWfR8HPQwUg9A5N06J3Hjsn3NapFtoASNZGjy+gtGTJJS1IqnhrrXFwcIDd3Ztp4ucRDUiLS/BawVpzoU3aspiByfRSClHDHs/V5AST3/Fr6Y8Vc176RGdQGO727P9BCAFHRwu8ee1NvPLKayjqTXhP/bt4bgdbm3UMP5OY06AS9CB9EI3PGBMJooLikDwfsh4NY6SPa+Nj3pLgPvarYXgMF6LlXkLGexiYcWf9SJrbEKZZF92SR4TE+Ot+NUqApsDQHJeUdol2IuGrYgUmCgukfudJOeOInPj3mvGWoVl35+I/odBGHwdL7p9C9zzKqsSsstAqm5PMhyNQVYIZVXzvTq2ye50fg6iNzAIWrDqf15R6r2K6/XHXFOQ0OaOHcE9AIgrzGSxGESMcitz3xGDJ3/eBNrO8YMi6dqqFtoTlxcYvjDHY3d3Fa6+9irIscePGDXz1q1/FRz7yEfTOoWlbVHWN7sYNLJbL+CzEHBVMMU5EWQsDbUulyR0FNkjbGACLyVQVaOT4Jt8cTyTZuQH2AFI/+TNrLR67/BiWLXDxocuArjCdbqCqSly79ib29m6ibRcAgGfe/77/P3v/1mxJcqUHYt9y94jYl3NO3jMrqwq3AgrdABpAd6NJDG9NNIfkWGuGQ6MZZSaZZEa9jUwP8zqS6RfoD0h8mBfZ0KQHPdAomUSRQ45450zfCHY3GmhcC9VA3bLydm5774hwX3pYvtw9Ysc+52RWZiIrsxw4lefsHRcPD/fP1/rWDa+8cksmtPXpcho0oGrdsAuRDiIaTd2n2Uo9JvdjmgzJO16590lNCYZPl/noIt9YxyjdHEsAV/euwbnM6KPPtnK+ku+mjwWbXXINI8g8TkbLSOBy9IMOIVa76fukeYUQpEJKpUUsiqCTYuJtA1Wcp2TijZQiiX7YhqC1RAMDJmahVGAmkzXeeANQ9KhCDLp5Go0IgKGBcFAWem5mMyyWyySgqa82AuPo+Ah+EF0cgThl86Sk8ZQ3ZBZqBdYmIc85h7bvhnMg5jFar1Zg74UJiKl3JzwOB+2FBO2xqlqqp6oW3b17F7/7u7+HN954Az/72c/wve99D9/4xjfQti1Wpyss9/fRxsRSxYWBqFZ6zzCGJRcDVA2PBgYWKiXePXPVAEzMKTyAaqZMn/AYuBlq+MlqfiHhAYljCyESMBqJxlIvsq5rfP1rX8fnv/BlrFqPdRvw8OEhPvjgA3z7D34Xb//0fewfSHDNX/xLfwE3X/s0rDMgS0J/GKDr2jRJrbVQ41NadCT5T5L94Kk32vqLiz+i4AlCKI4sgVs8JhiMECXAx2W1x09b/q1BXaX0pJKzqurqoaCFOE5OTiRSz3sYIzU5rTFomjrxz4E1O5wkVu2hRWtlXqgr4OnpaazIIpF3e3t7mM3n2NMc3MgaKCA0CQ18rVUqNslYnYfTxDUgVWlCNIJbCwSfz7Pxej66+FEEcg52YvQecezPMGJTdO8ValQFm3z83t6e+En3fYrcBUQCPjw+Erc83w9cBjVPDpFcV3+XsZN3uV6vMd/bSxkrq6oCr6QwtV4rMGOzXuPhw4doNxt0bYcqBmm5mFxqV3shQbts4ymhXNVms8EHH3yAL37xizg+PsE777wjO7H36GJYq48GifJcVUUlQpIzLx150nTfVHAX6XsxZLJ8V4ikCjjqjjZ8gO0PaQBReUsIKbF8qXYKyF6/dg1Xr9fwMDhZtXjnnfdwcnyMw6ND/Ozn7+JGdxkA8MrtV3Bw+VLi7qAgEeICJ90ktHsFxUEY0EnjVnpMPIrHSHlefub429YLjkNLKnOrXLRDzdVrUH5f009Qjvf4s0n2CkBWwccRs6VvevmvZp3TKElrCZWrYKoqUVcpXmCgvus19PoSUi0JqjYD43tVVeBofC0Da0rf+fJ3HT9DRrjpZIspvS84XY8MAJ/4g4KvL0ddXYw+unZTtjGlofMyf5Tna1XX4rZbVYkeFTfNLo5h8Y70Z8oVKUrdIEB88306RPEGjKHUzrl84Xq1Rte2aJxs8C9tPm1twyXGyB4RoroeXDrApUuXcP/+PfzgBz/A4eGh7KIhYLFYoL90KV+rMPSYGA6cM44UAA59yWVYh3ZCZpDiNvG0b8OgDRChAOwSo6ORp6oaGGPQth2qmYt1bgMMVRKW7xnr9Qrvvfcu3n//XRhD+OVf+hxu3LqaxkSAj0XaJgITo/d95AF1gQIZKOLTXnD9PZqL37hFlZvVkJvHHCh1kiFRIRx9dMkkA8sln2zkOyKUG++jtingTqkUYhGEBIogdJ1I36enp0kb9L6HczaeK7y1K3Ji5DsJQIRYi7HtWvF0ip3oe4++Fz998eaAFKeI3hFp5Gi4zybQG/HhIMmzkxgSAN6LIddE8D45OcXm+AQVKswbA2d1w8qbJ2f4e+xxLvt68WOjJjuaaxRdLMvPk9/2GPxH1yuFiWQApuydpucNPNjkbKjdQr286qpGVYkbrnvZ/LS3XmTJI0IipFTqqaoKt2/fxvHxMe7fv49//s//Oe7cuYPlYgHvPa5dvYr9vb0tY5JUAlcVUiWGIokjA4iBDUHLMeUOQWIi9a9twGIAgfI3Bds4OChjtkazWMznS1jLWK1OMa+XABNCIFQziaQMocfh4QP8yZ/8Md7+6U/hDOGv/o2/hJu3bwAAmnkNGEaAR1VXCCzPsdmsAQM4xFSbJqfnVP/h3NOnR4+QAuxAatsaHZRbp7YAgMjEjWxIUXGMTN0N2rtk6SnJK7eqqpIBMbnjxTtrMqm7d+/KojcG1khB47qOgSHWQl1NAZ2DBDKinos03eH0VKLstDYhgDTHm1q8gdq2A7NI4ABgKfrQFL7fzCx0htxM7kdaksvBmhbk5Qa+l/BrZ2SOfHjvPk4fPER7coDXX72Kg4NGUo0g+qpDXP3A4ghg8HSCarSNXfA885YUa6wFYpqBobFwmOcFGNZ7VPe/nIwuuweuViscBKFkcioCFF4osnVpaghrLGbzWvy0QajqlzAicmeL604H3lqL5d4e9vb20DQzvPXWWwAz9pZLMAfM5vMB16XGnLJy8vYNFIhz2C7TGJoLNZxQQIf+UkjfE5SJqqUZMMRPG5DkUYZ6dJ24hiloa9Y/ZkbbrnH3wzu4++GHuHJ5H5/73Ou49eotGZMUei6BMxzV3FLS5iTRjUfgbLD+KFx3Dloh8e8d3VNkmR30hkqTydI/eidqg4haz/Z4D55i9DxD6W1879JDIUna8XDluTWRkLMGTV2l+WWMgSuSUWVKRO+UfYqVAtFrKljUdZUk91w4OBv/VNwYPiKrKCnAJ3o+rBb7iIeLxG4AK/1brVe4/+AQB41Dd+Ny2lzHXkJpjB+DGbnIHJp0v0y0yPDzRAEWUvOYJlKALv/engdIZd9U0qbBtYYbSNpZo8ReVxlnnHvJQHtK1R4sKhYjTTNr8Morr4CZsbe3j9deew1d16KuKty8eWOQu3hwHcIAMHng8hPvgYmQZrkCBkcSUHjWYXvJl58Pn2HrawgwW+sAEwpLdayKEQLufHAPH9y9h5/+9CdYzGf41Ouv4saNq1juLZMnQQg+q81gePZg30kSGyomcZzsY5Xz6cnYF2ksFBANR2wctK3grboRb2lDT6ZRAQaa5RBQw6NN77FpmshXm0hllJwFp/O1qC+iDlfmghYJ0Q7ApUzWRSQbbu85Beoof2qs3aFEFPEGBFhLAHkgGtwNxevHOqXeSy3Wk9PTnChpRFCmzSKma+Wz3aVG3Xn02TVe++P1vNulL7+3Ugqf7kcG/MAM33WpBmoftSwOXNxPxl2TgQ36dYFHfCFBe2y4Gi+e9XqNg4NL+Nqvfh0hBLzyyiu4cf069vf3cP3adVy9ciUZE8pryPyTxE/aQpR7xf23oAxioTKj9AGUShE6pWSFM5Tz4DeNlNxlhNMmhk0DgkNdz2DYY9O1ceEKCPR9wHe/+1384R//Md7++U/xxTd/GV/9lS/hM59+Hbdu3sDRiXjJdL5DTSxCUgjofIuu83Bmg8o0MFZUQgsn3D9naSWatrZ5/CfYspYxbhqbGr9PmaHKLZGS1G2gCbjkvTAkEdLZCvtuzWLbWCqtNG7NZrMkNLjaJqn44OAg+TaXZI+J80RC1Xucrlbo2hZ9zNus81rBWdV6LV0FoIhWlSRGvGmlvNbREYy1qOsa88UieY/IeRohGhOmxWRariaAOjB38doG1lhISlaDdtPh6OgEd0KPTfs6yEiCKTF6huSvbUjWhYGP9Zku3i7i2z8GwtJYW25q+n70TWbtllPagT46JWzfY3g9ZtmkgvdYrTZ47733YsUrCeDx3sNSzO5IBsQ557beL6qD547BCwfa2qaAG8gUx2zWYLG8DWbG/v4+9vf28ODBA7z26mu4fPkS+r4dnKdO9HpdisZEACnH9oAuIBH3BjQGhuDLUTKkQl3d2aK6OvUxEkjKwoQ36H0vQqUROoF9wAcfvI8f/fCH+Nl7b+PXvv5r+MynP4XPf/6zsI5xePIgjo+PuY8BJoYPAb0P6L3UviufX0Am92nsd3yeFPNkm/JIUdrGSNOhPFYE1ZB0kWQq62m0UmIDshfBQNKOfR98RwBYIlN9kFJl68268CyxkQKp4ZyFczblLy/5XL2vBHVkSdtGkBdgzsAWOwBNqaqStqTPCEiStlHaTQSR3ktE3wn6WBdTN8Y49krtEGUbyBOfB7kprZEl5GnJuqRtANUsMl6MJfTES7PShZxcCQNLzdS271DVDeZzoG1bcOE9JIFKmUdPRsnCYHtWe2FBGyheRrE7W2vFKGSlzh6QAyCWyyWkNuIqRS2pWs0FjTF4gaJfY7hXR6k6Lroh9xtl6LRGuDiXC/olYVB+HkYqzJBJwWJbIAFtH8QzIbCExuttmrrGwcE+3ph/FlevXsZ81iAKWAWfjgQUet0QAUC9Gbz3Up6sAPCiK7JZnAOAj+YxUr7LTHSkQUlNCRAlqAYjORhbBQsGimjIJwsg42fU3MlT5exCTBcgNgdZ5BzdLHOUHMNaA2aXJGwbs8RZIz7blO5d3jmTcwNA8j5H6xUU3/aGWs5RSRCVv5Fo2EASsi/SYzfg38vLESklFa/1GJvlReaObkTTgDt6ukIg0vHRijfj4wsxcKAFC3hL0jTn1LhJSUgEYqqAtHazl8rAq+RllrRTYyQAkpqEFqenp6jrGgcHB3DWpVJDt2/fxr1793B8fIybN26IX2ridrd3wQFkUpm/YgwkqrSr34AEFaQQcAqDRZPPGyvrmiNNJ3pJp8h1m9kcK3+Ek6NT9L6DNS6qbYxLB5fw+c99Fp//pc/i069/BpcvXRYJzzAoojsZQkCA9x1ganBMaRk45oWuKpwenqCqLSzF4IhHBOCP1sabY/yd1NkvxOCmKA0hLwMd72xgG423iOCP3bPzNIimaURV7voR8IS0EYYQcPjwYSxDpUbDDCR13aBphnUlK+ukAjtRAopI3efhAZKXRIhzuY1V3qX6OKXj04atgBfD1AP3APUQXlv6zYHQc4+ePKq6xnJvidP7d9D3EmzjKkLyroz9pXgt4h6AA+hsw1s5vhcBbAOK2lYO5U+cc8i1SrfqbMY+SuGQJtkR9PM8b2QnomKM5FoGVc2YhxmMqyRvTN8l10trLULfw0S7hbUWJuYiz5SUbma724sP2kmNMUIVmFx+aD6fo4qWWgJw6dIl3LlzB0dHR7h+7TrIxl09FD6/5ZzRCaRpQndKbEOgIShgxH+5XFnl8RMAwPlAFbZVCyAQrJOcvJu2TZKC7vDz2QzXr1/D1772K1g0C1jjYlRekZUwbVIxaRAkNFoMaaKO+xClRUkc/ozbeGML+XdS9d0Ur4mGZ0b3Niillc4tpfKno7I750DYpkcQP+Po3bE6XaHrWgT2CVw0MZS+gyThkYEzUkmZBvOHsjJWCAxCZ8j9NeoyezNQkvaHTT9TKTvbe5ijGy0Y1kqO8EPv4UtaIQ6pghtzAIKHFFcwOB+GH73pChn7R2t8y8CTY3Seukq2bZsyK8qXNFqrea7IsyF57NgqZgltW/jgEyUSfABbG+kmqZoTSMWLiyVaeyFBe9u7QjmCIc9VHqcSWV3XmM3nydIPYPiyGAmsOf6elc9yh5we/tG6Qn7pKjXHaxduJUSDMwcXG3wavUdEsg7FuUib1P7+vgRJUJTZafBIAsYcq/GkmpQxfwQyz6fXTI/zdHCuuP4UJVK8vyItYmKlRtco3QKTZF2q/Tr25ab4EftcGgt1/un4JVdSDmn5ayAGEcEamyIgbaxcn+mP2McdnVTwKQFLvIsMAFcY4EagRZoETd53SQsq3WHS/C/IAgPUTYXFcomr165g1jRx2WTjvD4/ius/ahtTntuge9Y1sxl7ijJJhZa7Lob+jxJ6Kf+cHmi3RKyaCwPiOWINprQE9SYZG1jPai8caE+5w5Xqj++9BDkUVZrLoILLly9jsVhgNp+j3WxGiX7SJdPf2RcbyQ4+TAaaf6h43ZS+L42QQ6mQ0wRhjCd49tDQRWAAY9C4OU5MhU3b5txRDFhj8ertV3D12iU0tWQzo+L+uoi7vgX7GuwsyADWGbhKFrsxskvkIrQWMJSkdVHJ6SNRDOe3kXRdAncaGx0tk5N4JTDSkmfluPfI3j1PXtLWzH4Ax4AYkW61co3v+lT2SiVR60wKrVaDL8U5RNG+IM8l7n+6UW25kCGvCWOA+WwmOWoIODk5AQeOniuUNxjOLqqpsnu8gbMG1mVaARxgYEEWOLi8j/35HM2nruPq9SsgKzlXyEQtgClGUcbnoccD7kHj9B8UIn38kyY3GPkqf87Rg2O9WqFtW2zWaxwdHSUKSl0wQwGsojHxiGLJG7SzIkWDJTWBc64odiHrmWPukkAyTpXTwiRntxcOtMetlCRUytEw9HK3DhxgYbBcLrFYLOCsQ1eoRgPg5iFcaFbmSQplgubQoghT3417v/UJ5y1hfBuCQVXVMEaMrSKgUwRtwpUrV8B0AGs72KATWa6XCib4DuQ94BgwDGMJ1lKStglZIhFfbQMPn5eNLpinJnkPR15/199UeOYt7aSMfwyj62hSqe3N8bw2loy2NDjOldlLSZuZkytZ8B7GFdIvh0Q1VLEgBTPDt1167G1D49BjZPBtAhvEqu1AH3J0XgnYFIFO8yqFaGTUJGXGSJBNeV2pYAQ0yzlm+xWu79VYzglkPHwfYI1qECr45GyR/JE3+EIVGA2Mzv/0/MVZA9COEnS72eD09BRHR0dYr9fJMydeOUlt6jlVXqscd2MMjM3avPdaN7Io0ow8N0CypuqYe+S89sKD9lQT6oOxidm1XJVDUNfrNdq2lcRQflv92V4ShbSQ8EqlzQgo+utAoC7O4XzOKJfUgLrYunl5P4qJZpK0lSeaurZlQ04O/5HkmFky63sPEzxMEloounZR2tzG/ZiSTR9F3btIywCRn1vD0fNB8QBCygOTKCaoKXhqN9HNK9Mn5TNlQB+28aMlL4TCCFaC4dh9rIyWVDqOeYLXLCZEuvzovnmOcP43btgD6S1OjDHNMLVh6QaofviDNA2jFkIAbNQAqAiqKTZxdZvNL/FJSNnbsy+55Kp2y8Xh8Xk1z3UfvXmgua9DzmRZBifteOytppsRxvN/NAf0YkJ7mUICP7+9cKC9JfmAcuBA/GyxWKDre3zwwQe4e/cuXnnlFbx6+1XAAe+88w7u3LmDuqrx+uuvYzGfb6mb5bWlMKnkGDGs3h5lBrNSLjYYquDyPUdKQYr8FkZKlNN6GGep9h0grk8YWFshsFThCNF46EMAhSBcJskVfOjAsaiws4SWA6oY6nxyegKuGyyXB/DsYaxUErdE6Ps289lxQL33AIlHQAoYempStg6bvs8y1CaPeU4kZXRwAJawKO14Oa4EwGqaVqmBPrrh1O/A4O2Um8roMA18adtcwSSEkMq6rdfrlMKV2aeNVqVyHWtj1bg4BFxR8Uu9T4BKP9OpmznamEa3ABYO0YspSY1yjRA8rK0kP7S1IlgUG6Fukl2/xsw6GCt53UMA2BCs1bzdQkuZtA4k6OZRgTsbTYs3MEEFJe+aNCzRoB7zrhwfH+Pk+DgVlSAdR+ZEZSjVUcYmlK30hy/jOdQtFshunjoHTk5OUNcVKAbazJsZ2HtsNqtodJ4SgYbthQPtrUZDSYOI0DQN2q7DgwcP8NO3foqmafDKLQlp//DDD/H222+jrmvcuHEDy1iSjEqULK4t0XSxqvSoDl4J2NsZ/2jiR6tnB+34UPUboOFIUiFJWsMsftWBQ6yEIaDtnAEZkT364MHBR6OSAUJIGdk26zVc12GPJMeIMQZUOZAnyT+iBs4ol4YQYFxkyAup/tm1DOCDseViXBlArMGpvw8bx5Gnc5ytHqFLxS1UcpNSYTm7m+YEadt2ADZjrxI1QI7V8jENszXqI2mvrMZitHbjDoNeeoygebsdmEyiB+X7OEeJ0XctuPEwVqgVKVtGsMbB+00S/PNqNHhU20fqI589w3jiuXRjU6FjtVrh4YMHaSMFpBScAnairgqj+xQvPjTKMzTYqMwBo+9Qoyy9D7A2Zvera3TtBqenXgzSXKRR3NGeucPWs2i7/Dl14gPAZrPBgwcP0PseJycnuHf/HgCkUlDr9XqQ//bs60eJOamPY3Au/uUCSEoepDxfpe/yNB7P1CiNJ74uulNhh4qdQF/+1T1IVbVMj4jamIEn36d0IUxdyIeMnvfpNIbwoMwxHUAZloqoWXG5pcX/cvE5A9mkoCDCQ6+J4gpKN8XB3e7TOapFSY8AmRbZPm48t4qNBgOBcjAig2vg4m9Apb2S193if9OU0XmiEZCi3UF1nWKedl2slhOPH/dPN1UezPl8/tSP9HdiTRf0U3mMzletsSnue5vkwpfsMsYMaJDBz457yvX1aYZaz7BvGdgZ28AvHkJmq+jEee2FBG1g+DKz6kpJXXnvvXfxO7/zO2jbFj/4wQ/wL/7Fv0AIAVevXsX169fx7rvvpqQ6AHZMnoKjI8lfAchSM4iJdOSDgZQ94AYZkDzP8YejBBKNNMpX6ytVTlN9p5kZMARjjSR1Z44RjMMxCLFSinh6BFgjBicfI+20Mvjx0SHWq9O4FOUnhICuF5/VvutQ17VQo4FhYIqFbsYY8hQageEg6rVNYy6BSDbrM4M9TmW7EmZUTZdPDSPV78xjnXU0Tqg9DYwR/4tu6juUc7TwBiCCQelOVr4nDU03g4U82BWLeVjcaktrmxo5iq5o0q+6cjBkkrSp0rqCOaD1E3v43qPvejhTwZoqPpMDxfdvrOzyXd/j7v1DnJx06DqCVGOnPH5UakCPJm2PddVxK8E3hIBNrDx179493LlzB++99x7ufPABAKBdryXvynyOxWKB+XyOpm5QuwrOxFJhyN4nu3o0Bm5dl8mLxNmoSYUkaWu+ESJC3dSoYvHgi7YXErTLXbcEXSKkCLAPP/wQ3/nOd9D3Pd5++238/u/9HkIIuHTpEq5cuYK7d++i77qhwYZH1wZECkmgnUPfM3gMFxMX30ddHdlwaQrpY2gyGy9U5ejS1axwZgyOdewEtbSfHANiNC2nJQVt5d6k76cnJ2g3mwFYMavEIsmK1AOBdTPSsUnP9eRbuVFqgidEx0VpWpJVXftY/59BGEN9Rsc6SeeqSk9IgMCkkH22hJRAVeahSnlS/Wj7Dip5qW82gCJSdprG0E18AIZndKd0s3PWwRDFNL6l50mErAh+wQfZ9PsAa1wCbSIr857FAMkE9N7j4cNjrNY9uh4gfUc80Qcu39/ZLT/dGc9XrHeNZjw5OcGDBw9w//493L37IR7cvw8AydmgaRrMZjPMZrOYxtYNNKHSkHmRVo6jbiJSqi8noSo14aqqYZMr4MXai89ply2OlFZjN8ZIVGTMtrVarRLvWNIRSYUE0g6pLS2BgXFEQ1zHN5+EgkJl1PvFX0mBfdiIRtemLBVoP4kKSW100y2wQKFWJmDP32XKRZ5BJrUaYLa6h8R1PuGm3gfiD1uqqGVHiz+LPiSXzPg9F+A1kJYwHvP8d2KFJoxSxY3OfPZS+ysl+vJc5a6nXNW2bza89llN3e7Gz5Ckv9hKd7WhLYcHwDjmllXLW683WK83aDcVmKs4H8pJW/SbAQ0mepxWxlqotqCUiHqDlNz+WKAr52r2HdcBK3qatGWc+44RuW25D5KAs5NCecRnfuFAe2zNVZBV0NEduKoqvPbaa/jyl78MZsbJyQm+//3vYzabYbVapXwkKpn74POCT8YNwBFLFVNwktQIDGIPw0I9GEPRfVDVuwzgg/fPDBPzYxgg5nXVSS18dVBOOZ4s7kUSQuuqCn2sXFLXteR/cAGVMeAgl0MEvhDET8JZM9BSu05UYRGj5UfCnhnB9wjWoaqrKDEAtcuS1EdZfI/atvajuDoCPCRXs9oFTLIP+ORhQQhRqwH0TahnCUFpjd57OEtCF7CYKc/nHgvQLw7VcVEj13q9hqtysQN1p7REiT7p+x61dcNr5hG4+GDtaNZa9N7j9Ph4sGZmswWcq2BjjgxjCGQJhgnOWjitWqTV1skgBIb3jI3v8Gd/9g66VYv29AquHtwGkYUhD3APCYMfzhGeAtX4iHmTkQ9KDp6ZU07x1WqVgNprIqzA8EE8N5qqRl3kG6/remCbeeRZW2ywww/zv+UGHWI/gSyBCxsnQXHFQ+6wXeT2woF22ZKaMnrRm80GVeVw69YtvPnmm7h//z7efvtt/OQnP8GNGzfALIEPNuaiHgNRuXAtRDKVwp5ynImgjeAlqpAIHccqHySgrQpYOYU5An/afSl6phQSpbr9JekFqiILPeJjZrjKVei8eJAYQwgakk6AZ/EMYUigBBvEsmjDfBQUQVsTLfngwYZR1Q6rk00BnNHh7ywJ9Ik1Gvye3gRFH3f2Mc1pNHSZPE5hCrRJ/NSNJr9ClHLB6EOQElAkoC78rc/v/yxpu+xlMYfU9avve3Co0mfq3cCkATCSR3uXtvUkmjEG3HVYrVYwkbIRNd6BKAeIKK6YgJhRUEEbSctjFvfSvmW88+4HCJseJgT80udfQdNIzm3Jwz2txZRjpd/IPTItxMX3Y0Pj0dERTk5OUvi5JamtqY4FprIwTopNADLGGkH00Ud3+jnKvvqUqXG0OZmx7e383rywoH2WRKR1+gCRfGazGebzOTabjUxgY7BYLLat/JNUQKYNBum0k/qrIJuPF8k0cs56yEAxF30qOUZEOmCkVcr1EpeS+6eAPuQpy++3H6pQnDE9cfLnwwn29EBlunGhnuT78nhsaPQkEdT1Sybls+OxrFYGQgkbY014ygNAjuMsGVJBuOw6vqBHEminTSMeo5TF1Lwr2Abhxx99sxwb2RPFELQvw9sTqUtbFjO0pb7E/3SdR6sRnMBwbusIa/IuvYA+VDGnZbyjphdyH5XS0QIRaq/J8zLPVZCAo6GRJK8U0OApR2O0Y+z0OadcAQfnpzHexqQtO9Xw6jvbCwvaQEFjpA/kn/39fZAxuHv3LjgwXn31VXz1q1/Fd7/zJ7h//z7m8zm+/vWvSzX2yHFr21q03MEiUgmxGfYwxNB0oVLVwmQY4JACaLRjCTSjlMfBI0S/ayCa3IyEJwQvlUDkfE2kLhPMWCkfZYxDCEIJ+OBBJFGgKUCnrIcoIkwaI2LEfBT5ukJ9SIBHVVXo/XGUxEX61M4/fQhnAD5pLXo3z5EWsZJ6VIr5ELzSNiCwid4lxqIfVHL3YIrRpMiRdM66mMFOAeusfhVf8vZHhAgcyTjVpXerodLee1hDKRCn6/st0DgPJC7SFLDKIBICkl9/7zvUoc7Yx5H6I6ByBOfKjUc+l3MZIItLV65gvVrj4cOHqWpOgkaCzN0ktBR2Ho55TkI0D1PMjBeEBum6TqKYYwmvZH8KAT7m7lBJ2pBUiLHWCb1jxhozRc3zo2iGcZufeCd67Ww36JOkPTyOQFH7ko3nfN+QFxq0y6aqOxFhf38fxhDu378PZsbt27dR1zX+7b/+Nzg6OsKlS5fwt/7W30JT1dkVh/NLSC+IGYQ+GTRUOjGQOouGZFIzQ5IrxRh18e4o6+NxvJZCXqxWUswDgzwR+94n6T52A4q2AgoZtEMI8Myo9PhiI8uLJd9HXeXUCTHklSugHUFFxmUoFW1f+Gm1kPn5eC8ffMyTYmJaUHmAPkQIJkIgyV9srYPvy02WEcjmjZNFOrPWwXdrACz5Ns54LiqpGkwMgySckU3VmEiPyBlN00S3uxyRR0STixzYzco8atPyZKS8GeJ8ibm8oVKrzi8AzhEqm3OkID5niFPLEOHg0mW8++BtPDz0ObFVOQ4cY0/VhzvdoogCJY1G1Go7PTabNQ4PD7HZbFLaVEPicSPVeyrYWBhZ1ijFzX3bMyNrD7l/j7cZ7hJTyvwqedOZarK52PTs57WXBrTLJlm4XPQ35pT0vKqqJAmJoaLIZjbV4vvKjnzaeLBqRZClBNqM0XfxX6MqPSNTI4UKr31JgtyO1asTnkNIiX/y3cqeDr0Y0leEaYAa8XTbkYWjh3oKbdoZr1w2kcuOqVqT+x4RAsmDGRgEFICDVA1xRApsv/epubD9SdRNCvWXeZuOSEcXgsDYiL5rFKZuPnZ5Lv/ceSXKgST5WM4nlBu6jv0oNW6hpAEgVHU0Yho6Z4MpF0m+UTk+3vtkZykLGetPGZgiQkVZxqsYiacuSOxupfF04lsg9juN6jl7x0sD2hy5MiJC13W4eesWfvM3fxObzSYtlF//9V/HvXv3RJLse1SzGQhDiWe82AhZTUw1ACE5G0AGbKLvtbGQYBkWOdw4wMRkTUFAQ0J+u3h8hRC5bDIiBQZG9lQhk4zOyXAZgcI6h8XePlbrNeb1DGZuUvpJXSjKhQf5DzRJg7NWCpCqdBXzRhgDOGNhrUEfenjWFKdpNLZg72k0IsCSeHoEEIJGQlqLEHnqPkIys4k0iOSQ7jiONRECm6i9AJ4BZ2KAjY+LX0fKWBBCBN4csly6z12s37GEFTN63w/AuWkarFarAnzkveeam3SBjfBRUUnub51N4dvK8foYiMUo3T+zFqipcYlY8vpoQjGI0fr6jSugboO5A8goCAtXroXfKfNuie/Vn77vsdlsBp4ganQM3sMQoanrmMo0j22Z3OnCo/ARqaY8Nju+0bkSKR5rY6qJGNoOIGkKwXcI4fz+v9CgPTDSAdA/uq7D7duv4Part6X8U5Asa3/+z/953LlzB+v1Gn3Xwy5s4h91kY7dk4ghFaUZANl0l857SbADg0AGzri4YENU163kG2aWhE5EqK2TFwcj3GwXw0WsBThO3r6P6pSCtnKDiAtA1Ou9/X2cru5if97BGIvQe5jACZxzEAJHjVVBO/OCgHLnAcZYuMrCOove9wic1dvIJjwTRpuIYYwXQAs5jJ2MhWcgwCXQDgz4QGAjoL1WBcgDlgmWAMtCXwVjYYng+l6iPOP/DGnBiFAkZUKx6V2w36AUVNONaI+maQaqsWz+RfjzhYZUF/v5BydqjcSFbz6fyxyLc6Jt25SnhKGly6K6gBA3coAoAGQjV0/p+Bs3r2FZWTQmgCwQuljvkgtjfcHNKYgBOSjm6OgIq9UKp6enWfkjwmw2S2W6rBpw49wtg5Iu2ra56Efc/Lic8/l3jWHIvHyIoF3F52UYJ6KBMaLpn5y0W8Wxp9oLDdq7mgJbM5vh3r17KW/uvJmJka3rsF6vY5WXcZ3G3JS2yJpYljVzVKN4KgTELM4k0iFFvo0pxIrs5fEQKb0Ur3TTKG8cn6WkZdSn21qLbkSP6NXGm1k5TVKg8GjuJKMKDSmarQFRCf2p6aNc/AwlfQbQdj36IFuNJ0Dc4y3ABps+j59j8bG3YHDoEIKFIwJ3HSxVyBWPtzeis2ips6i07BUyPCZ7KUVtUG8LKK8y/nV86cl29jvKf2tO50HgT9LKdt8nkkBbF64qi6ap0ZipLS2L13KfHDdQerAoyHktuEGUxqn8e8wDDzjqs8bmESXsix49NTeSFsJDP3PdCJXWyR5EZ7cXGrSTVIycYlFfcN97dMfH+Df/5t/Ax9DsS/sHooZ1PY4OD/HX//pfx82bNwcvgpDVVgFjE2u8AV59nU0FmtXoyEhmNGvQBgkxZ8MiYSt4GwlOcCCsQehNJUnnyQDkY0WcCPJE0cgYHfYDF5gii8yQeI9UVYNTj2TcotLZgoo0pkRASnKfKR9wEHmVsgESxPAcsN6sYWK+k8BlDo3oC/00+UOG5P1UT3fSkl0Wbdvjj/70x+gCwwPRb5viO6ixCpWUOyCgQYcKHRz3CGEDslLNZ95u8ObnP4+D/b2E20LxKgQ8mj962sYZyUMghJCyyOlBOV+MmH+JDEyMaiVSWXO8oKOK85gqfi57ZhAYCQjLbITJFhMIUK2DdFhEwxTBmwES0cRawv7BDLOILmQMDFkYquMaBIIPaDetVPLpAtbrdQ7xZqn2YmPEcsm5T9EgU8ZENUQ+u6bjUnLzmbpB3Jiyp1ARgWos6lhImF9GemTXYrKx6nFZB+5kdYp/9s/+GU5OTmCtxa0bN3H16lUQgD/+oz/GV7/6VVy/fj3lDNDrhxhlJcqgeCVI1J0AiDcVTDNH33l4IrC16NTl1gC2Btae0HqgsoA1LK+ZRHUAAQAASURBVJ4iTGBbIxigJ6CmyHmzBOMIjy3Rj5JLhDEQ0gCQEVc1UAPvZXFIwERWCQg2Ga20DIIOG0VwZvZg5DqRxgpAhOCxXq9hYtkpcSekeN6TfZeTjRlgL2p51FbkY4t12+H3vv1dbHx0CrRCLQRy8LbGKRYSVMPAgk7Q8BourBG4hSfhuC/3K9y6eRN7e8sk9TIADlKBpcTHs6Cy9ATSo6vKSXi3FtkoNn/1MdbwZxOzv0m6Tko54Qf3SBrTSHS+CEXCGkgj75E7yeVsYeD9GLRjIrPo4pmXmPRZ6pHKPILxsA442JtjXudnseTgjFxbXPgCTk6kMn3f9nj48CG6vgeHgKZp4GJEclPXA+m0zMY3GIfRc40/33p+5On6UQPCCtIsfVJuGpoTyHufPIW0jCGzuOk2s5kkdOPz19ELB9pntaxxZjXs+PgYR0dHsMZgb7FMQTVHR0fRl/aMBcCIBQzk6oOwaGPQs0cXBNq7Xo4zJFxr6xltL2vBefmMmMU4yUDPgPEejmJEJ6m0ne+tRhy964BvN5qnY9coZMl61xMK9cJRdY5CLrMYQ2mUn+KZtSIgI0mgAEAIgXF8ssLaR48QKzaBQBa9CTglC8/RH9us0YcVKl7BhxY9WRgwqn6VNuhCZtruRVqUQ5K2DDyhfHD8TiMfw870rMWlBjRW2gKSil18SuU75cE1dvU/UdSD2+6IzBvycoPrpqNIJ1tMzOYkw12yt4BG4IoYqu9TyH4f11vyHwcGUvWgZiOwBc67PTQu3s48u3x8XfO8Pd7DPmSjv0re42OSt1dcw+c9wQsH2lMvLed2kO9CCDDWYrFY4Dd+4zdw9+5d+L7H1776NRwcHIjFuvdYxAII4+u6KLUzMwKZpIarEtfDoO2BH/z0XRyt1ugY4CBRmIYIoSJ0bNGzgSUP5z1cCJgT4DnAE6G3BvvdKa5fOcCrt2/llzlenxE7lG/OAGFTTmMQSTL7tHB8mnQUN5H0dPGaAzgk4dm97+ADYDyjqfdgYu6KugSgoir602kqwwpPrfcKTPCB0MMhGAMYi6oxUqSWLMjMwX0DH4Qia6oFZhxQs0eAQW8ksdGsE8OQbMJCB1FabHGUmKOrGc4mTsc9j4AYmDFr6kKVF19dNpw2Sg13DwngoySLDNxPpindM3wUjhK83CbOBgbYc+LkTdzwfTxEni1kI2ZGdDHAdjmMnRk4OTkFoiG8rutEGWnen5LDBrbzkJfjMJa2E42zAwFJ/Wt3H/KRm2KEtVaC3LwU+FVPoYT3lOtHXmTTeeFAu2z68owxqToIxVJAVVVhvpjjW9/6Ft59912cHB/jb/6Nv4m6rrFerTFvZtjf30cfKynr9QCgchV8TCLlKX4HpRqADhabHvjDH7yFd+/cw6r1qGydpIYWBsHVYOPAvkPVbVCHHksDbHyPHoS+qnDDP8Qvf+GzeOXWLaFJhCPBFG+maBshG4YcvI9ugmQQQg8X+XDxSoiSuyGwHwcMRWmds5QNA/SbFqH3IM9YLJwUP47Jt7gYn6feWLxvGBYaQcYhgjYLFWKcQ7OoYUIPJgdjFwgnFfoQ0LPHrKmwZI+GPdjWaO0MgMF8E/ONgIRnDpIEVoC8lwEPDOy2T+9sSXjwAbPZLKVq5SDXD1psl3IFd/E4OO9m5wH48L2M8V7vqZSszqfS/1lBO3BA8PnztLmTeFER+wjcWZInFpe3tt2grnPgy+HhMZwxmNU1mqZJCdqIKPHbcp9CK0wGzJFmWRwTCk0mkVM8HgMVcpAkXHmMx9kMp+e9PqdULWql4nrMKyN2g9wX55ykD3jZQXvckkIbJ6m1FteuXcNms4FzDjdu3IC1FicnJ7hy5UoRWbWtzmTNdZteYBB6Bo5OVnhweIyTTY/GNYmnXLMBqh5sK4SuRd2tUXOP3jDWXY+eCH1Vo/HHWK82ERBHDzJuuuLSUwrobPMjtN3ngYg1cVkCiGQDCMHDcKxlVxh20xg9baaEda1t34hZEl8xGcA6WFfBsrgBsq0AE7UiMJwzqNihYitpnW0NJoLzTgokR+qFGUWg0642wTef+Qi8JTWWnhu6aSaPgjMXciFhbrGrZwNAMihyDtEvAX3rviPJVEZo+KRKrajBNfUvAW0+tu+9OPZw1ixSrMMj5JfOzzPlvXMOCI6l8TNe3JlvYfLe0oyJ0dKJ2sqbjm6IiTYBJtbssL34oB25a2NMmjghBJG8IXlIrl69Cucc7t27h67rcHx8jA8//BDXr1+PydHrrZ1cVFrlqxS+kf8lyaYXyMI4i2a+TOkYPTl0sPAg+GCwqOeYmYCKO7Cr4cigcxXqfgVXVWKQ8j2YCTCaQIegIb6MnB2w9Fn1PsSQ7qz+DqzqpGfzcCXGf1T91ecTbwEBNDJikPJBQ+qfEa9NBGIbQTuXvop/golhK4fF3hyvf+ZGoj821ODDt1bouAUz8PprV3HFLDDnA3gw1tUcIIP99gCz2QwgSRlQliMTLUTtBTpmF3zuctijOlwCk6scfC/l3urKJumrVw2RRCLfdbvH13FGLx6I2phH33cIIVbZIQ8YC8mhEyV/VjdUlvdCBIIFB+Cdn38A4zt8+vY1XF46WCMpBogYhuQehiycdahcFccak4BV0iBnSd/l9yJAnG2vKduTtMuUAK4bkshP2a1xcP+4cUhWxeHmO9VeONAeDz4DScUkSI5k7z36lcdqvcatW7fgnMNiscB7772Hhw8f4sGDB3jnnXfw6quvYm9vL+Yqyfxarkiu7nEAmAvXXipA28HWNRb7l0GAgCg16LuAvu3R+R71coZlTaj7UzgYeLLobIVZt0bdzCRSsm/zMyl4pIncI4DhKE9wZyv0MTc2p76ppJPBXl2GE7Gii0+NmRQDLCCTLgBw1khgABPavk/rXqXEp4nf8txWnoMIZGQKk4EEchigmjnsX9nDL33ps5gTIzDhJBB+cO/nWMeIx1968zZu1QF73GPjPVZVg2ANDvoey8UsAqsBswEpbcHRpZIIne8Bo5VXzn7grMRkus5WbhBI0dQNWkjt0sqZFDuwOT1FqKrRfSaArfhtewXsbioZE2X7gGwoHm27QdM08KEDgoGxMWVrCiLLmoB4twigh0D40Q9/itOHDzEzX8b8tatYzqMkjR6BxJvJRsCu6yrPoTAN2mP+egzWU5L52KhHo+/S58X1zmsXFMqTMFd6bvki/D7ZyuJ1iAjGSVK380qPvXCgvauNwTx4D8/iLzubzbBer3Hvw7s4OjrC8dFxSqq+azIAEGmzvIe+0vhhEJMSyFiRmAGgD7CmAvkeLCygTN7KwnIbpRkLNhUcO+FS1fq86+HUIlZ0hkzkZNN32fAiIYxZEiiF76L7Q6NUQRHkST6WWB5f3nu0pgUMhoBJFB/NGLjaYf/SAgsIBW08kvpNxmB/f45LNbAPj3Uv8yBYi/0Qc6EnjSOS+qNoSEYcwkH+eh5+P+52wWEONDTajiMo6ZHcIjFEw5c1Nepn6z767qe/zXEAOVd8Avdk5MDWjTUwixk4Pj7F4f1DrNda7Tx7gahhl6LGZmjac6KUrqdA9SygTZJ2KZl/BJvLOURTfDO6AY431xxck/o2dRWiQXTyrvZCg3b5UsvFkLjXODbvv/8+fvjDH+LunQ/F1cgQrl27hv39/RRiPNmYQRxzepSLtsBuYwxcXePWzSuonBQ1OEGFdz9coQ2n8G2La9f2cfvSHFW3RLAGngxaY3Gtc7h8+XJUnSyAECvObD+nKvFiyIkJ/c8CemgK0qgOJy0hVsgJIUqSLHp5XGjWSHJ8pVZCLLqQYeJpA3fWbjipOZnmCfBg6gHSCjaSq8LCgqlHQAcOXYyGDDChgyOKhRPiE3AhpbG6PeYNIqjUR+c9cfxW1f5RwvtQlHWzzsJ0ZpAoX8OfL27gvfjYD7RzlVrjNXSzUF9iua721YBS+tBie2eVHSS1AAeDEID1uiuKT0gOEqFShNrSzWHciq04G0IL+m/c963zp6iRHcD9kb1xLnCqbmj5Wan4XPrknJPqUC8zaAOqTufBMtZsufH95Mc/xr/4H/5/ODk5wRe/+EW8evtVvP7667h27RqWy+VgUox/N6EA7fidYdb0DJLbYbbA5994BctFDWMZh8HAf/8uDk8ZfrPB669fxxdfu4K684Aj9IawIeBq9wqWdYXAsdJGtEDXloZ9iKDNLBV34ANAfRLA81jof3MWvBBYivrGnUZTaXrvAWeFEmGp82KMATnJQSKLJUhAgNR+eVastvRbQWIA2kBAB48WTB2MDTC8AWBQ2TmYOgTeIIQWjgDHPWzYoDJNTF0r11a3PA/JC2NIkvpoVXEOEdh2PHFp2Bv0WqmR6A1SRsVVVYU25ooG5ars3ocC9M5qPPjt/HeRj0p2mjiGaoDfBu3oSpfUC+GoExYWgM3BwPcGJ8dr+D7m5mHJW6JpFhS0Sw+tNFZRotekSjKVz9geabgmzjgwHV8eVwp1Z43YxAXTumIugtTS5px9y4kQvWLy5q3XAMTtsW0l//1Z7YUH7URVqGP+6GtmxtHREd59911sNht8+tOfBhnC3t6eRGYV5e2nFgNxmNq8ocI8kYF1Fvv7cxzsN3AOsB6Yz5uYoN1gb9Hg8qUFmg5ABfQG2BBwuZMcGYi5hyWrXe5FmnTq6aBgwiZz7alDE30sBqmcbINrR+TnQqUd5kgur3J2O2sxXVzSGR3HxS/Kv1MAU0iSNqBl+GIecxYgpuiipmbNJEurpD0WABWd4jsgjBPFTsNl+ekUHyv9y/QIjY4bv7wtyXBqXC80njkCM0nalAEt2244T+gpDl+BnSGgHTMrMiNWes/307EoKaIxZ50uq9eOthLG9Dx5XCn5ojw2sFuHedRb5/vR1syxOge2Jt6wvfigHVvyyyz+1kEiSDWWL33pS3jjjTdw69YtLPeWg1y9O1+a8lVAKiBLFKlOZhACLDxmxJhxgPUBs+DggtAOPgQYBmowlmgRPKNnA3I1Ku7hmEXKBUGlHWYNlCkwBAQiB7I1JCNgmzhtAaIAUC5rkB8oLsL4nNZYuZP38ZqiDnPkzMkwyDBC6GPuE4oSljCemubqaTUGJDUA8linx4B4vDgGqsCoA6EKIhEbBoz+L3KHEVrA3MNyj8AEwwwJF4mpAyRbSb45KGY13Nr+029bC7n4QPM9Cw2SaYNS8op0bFLxwwjg5ZiPotInCJzspnUWfuNjjcrRnkCyKaZ+I5q1KaY8YA+igKapMJs3USPRGWzB3Eq9UgTR2IJPlYa0Z+kZoSTedLso4D4JDfB84i/SaPF3RQ2K3l5kCIYN+i4W+96eJHBVBdN1n9AjQFprw8UTC5eq295iscDf+Tt/B5cuXYqqaitO8cEnYCYQYAjBZ5XHQPJceCCmAJV7GYgUbtGjog32DeOAe9hNB1iHJgRQkIVhOWDBHtf5CG0f0Joata0w5434RINg2cCjhycvEqC1kRKRoBKCgbUNbL1EzwF9eyoaAsciwuzBscafFPUVzwejBso4T2rnYCA5x2sWTwEmI6lmjYFFgHUBvV/De8oVeSIpboxuLU/pXRKhh/RJ9uG4PCJ6VAZomLHwjL0OqLyBJ0JrARssHBzYSESoYUipuLCGDbLduNDnDQqAJEEqgUvU9iEZUUrSw88TF0syh4y1cMxYr9eFQBBAxiUhQTdha22MthWpV/Jxlwm6ipwcpeA9gKlpyIqhVfGEMNho6tphs1mh6/qovZTPHwD0xXkkWosx0fPDwxiPvYMZQrcfDekWIAcyFbxfybqggNnMoWtFcHG5Y/JcQSflRULFd7fzi3ddvJ1FnKQ5k8ZL/rYxmM0QAcZis1mDWJJ0lVcmMmjqBdpNh027ObMfLzRoDyWRrPYPXIci511VFb7whS8kOuTw8HBotMyXGF1RWqT08hfRgEUcYCigJkbNATb0qI0MPEXu1DDgmDHjDuSl/mFghoOH0Rx/UWovd3NEniwEAQUDAzIViGykDzmrliqSU4igkxRVUVHjVZOkHWKiIjKg6CJIECmbYkKpwNFPOq+veL3tsXpSTUbBFNfXBS3vSYyODMeMygPOy0YrWQ5jiilSsxDiuHqp68lGft/Zd5p8rsQaIIP2AOSLf4yR/N593+c3mbi08omGOTaSF0R+4vHAgLaGfvpB1GU036ygH0CF90jeINIZkXoqe6o5x0PkvokYdeXQNOKqqJK26DWI801sKT0RfJx/A8Yn3jGSczoik88zbml9Y3TRM44995qTn5ajXdgxSqopJWSTzc33OfHceJ2IE4Q514bxJDei57pNWZ2JJFx2uVzi5s2b6PseDx48wPvvv4+7d+8m6WbXi1WaQTm69Hnkz1UODMwxQb8Bk80LtLBmJ2AtFmqeA3nRbudfQJwccaLGSEXP4VzgLHpcSIr5/sVT5hMi39vHOoIpZ0I84OmSI9qf7WALpV0lFa1BiJU6g5EiFCq4qdSanj2BLV14AT+J1vd9DrXm/O41+5+Oo4nRmefRdI/a8nsaRimODkqpfRWUOIRcJT62EAJ86BHYI7BH123gKoOmqcCRLqFYyFrpIQBwMahm0nvkGb6Lp99y3EPf95BsnXbLM8gYyU90Hj3y0oA2kKXs8qfrOty8eRNf/vKXsVqt8NZbb+E73/kOfvjDH4qnRl1PhhwPrpkmokw+H4JE50Hg0DPQhZhv21RRqoiucyySKwiRdhHpVevfAUgJ4YmKskrIYE5kUpSebjJ9nyukD//NGob2vwRaDU/nkGIl4+cmST5932Mdy0HVdZ0WtjF04fwJH6lpmSvwwEjMDPSe4WHRk8OaJRFUTw5d0GMCgm8jZxxB0FDxDp9apwfGxc1mk7xIgg/JUD6uYmOtlchU3naNG/ggPwbG6ZjJHMj904hf2QQ1EIRhLaH3Hn0R/KEV3Lt2g75vEUKH09URZnOHg0sLBN6ASICboRXTHZgNZrMljLERyKYf4HHC2Z+/lr2B1us1rDWoKidR2QVwV1UNMgZ+R0FnbS8NaJ8nad+4cQN93+P+/fv44IMPcO/ePYQQtlyRRhfNzOUIyOOHMvFZ6hBKylabVadodVfBW+oHKGeaox7Fk2FYn7DoRBTOKXKbEejVAj1S2/MA5POzZ0AhaYOHQnapvnNA73v4EGCNRQ4c2Km8n9keRaoqmGIARR3F+E8IMcc5DHqGSNlkcmX7JGlnLjxHlz496W5MWXjvtyRtArKkPaFZjaP4tq/9qG2cD2TAT4iWGJKZfVrSjuPpQw9mD+aArt/AOYOmcWD2kboS6sRYCW4Ci6RNL6CkPbUCKFJIInyZSR98G8PYz9uoXmhOG8DW5B+Ddxky+tZbb+Hdd9/F/fv3ceXKFbz33ntgZly5cuXc0FLljgEFViAiMxDZ6GSwJJVyCgMSI3kLZAOMFuMFUi5mHt4zVpFUajpWwlFDzpSLI85c5cktsmRHEi2rgBPSdYwlcM9gwzgPsJ/UQiz9oNUKr1c2xqD3AZvWY9UG1FbAe7VhcT8LHrYQTJP3D+dw/Y/at52fF7YU0UxkTvZ9H33fy3SsMm+UHlGqTs8v77Uz2u8C+6f2hZCl6s5r6gMzuBczY9NusFqvAQCnp6foEcTw7bvoH2LgvAOoBhKYS53R8jqAFOs4z+3uIwe+PNVWCmpTXxWzLP7qfR/xwaDvN6ibXMGotLGd1V540NZWgnbpSK/V2JkZ//Sf/lN8+OGHYGb8uT/35/AHf/AHuHXrFn77t387crjj6LQIyFHi1nvYKEmACEwWTE5yZMOgAyOQON4xB1gTQ1chgT8+gZFkQZOMerHQb5Ck8WX2QX0OQKROZ2JqS60ooyA82BDKNvzb0JBD1WOIpFPsga7bwPsalYnVWNoWIRCYYzUZuhBePF5TOoeEytH5LUoLw7kK643Hg+MN7hz1cE2FzgMfHnqcnq7h+w61mhXi4mGIJhPonI35I3c903OlFte2LZpZBWsNZrOZGMEBVE7yj3Ckx6QwAG1db9jO+1s3PC3Dw2lj8LEK+rrt4H2AqzTrnkRvqoH+/v1DAMAHH3yAjj069vB9C2ssKmPRUI2D2T4cG3T9CoE7aHUkCS6R+zf1HMbYlIZ1Cqyeb9AetzE25CZJuORdWysFIo6OWswXs2IOU0qzcFZ76UBb699p07BhZsZ3v/tdnJycpCjIt99+G13XDfIZb/nLqnEu29eTGx2RUh0mStriHhgo+96mKl2sUrk0QlRFkUssARhIXInWIKUllOuNQRrlvNkljY2agnzJc5fCOUcemYMGreRqLNvkxdNvOsGV3DDGYt0FrDY9jjcBm8DoAuFkHdB1Ldj3cMkWTOlMcYN8ev3m9J9pSZuZYWMO7RBCorckgX4oBIZhHx8P1Ar1TjoEIFdC30R3V2uyEV7zj6xXa5ycngIAjo6P0AWPNnTwvoMzFrV18LbBzFQg4xAibaL3Kl0ap+iRjw9A725T86iMiFR6pO/7wZosbW1ntZcCtMfRZ+OItLZtsVqtcPv2bdy5cwd1XePatWt46623BufpAin9RklRWw7I90BWW/u+R9t59DXDGcK6FVXd9z3KYGg1DClKDgC0VIXj9aWKO6L6qRhOQ7CO1AkxsktifqKz8VV5krQ55HEQiSBKjZy50aIgyFNukf5JnLZEOe4tFtgc9+h7j/sPDrGoG3Se8eBhh+B7VM5gOYtqeWJr5WHLPBBPo79R+QKwXUZLDR1lDm2VvDzOBue0Zw9e0uCIQT+G51J6flHjTSrAUKWUxLqxqYYjm01d1zBgOFRSlcUYVMZibmdYLBaoyGJ1aJMBO/ekEE4or0fV8KaAq1x3zwWwj/a9yVYsODXsqidONgDLxYTLFiHEnVP04qUAbSADt+bWLmkSdfP7y3/5L+OP/uiP0LYtvvrVr+J73/veIJViAqvBpDEgDiAu0i1GEDVRDT45XeHB0QYzV8E0Fe7e73B4uMJmdQJnYuQdS7HToIVdAamxF4K4DPY9KC4YfQZDhOA1h4UYevJ60EWov2MISTzw1B5Q2EkqjAu69FXX45yrULlKqJi+h098rSaTekot8dFDDp18j4oYr99+BSdv38HRao3v/vAtvP9eBR8Y94826NenuLQ3x6s3r8BGI4DmJjeGYJ8qr5PbOOF/13Vg5a+tjamE5buqqtC2G0kFiwnyY/C+x23HZwxMlYWTflWoArBc7mGxXEb6SLTAAAFUG2mdS5cuAc7CVJKjxgBwZDCjGa5fugbHwOn9h0K5BZZIyMjbggiBs0eUJkKbogaeC5B+hDbE8+GGyUkqU/wZ0pDOWsya+ZnXf+lAG8hqiO7qJycnePjwIb7xjW/gzp07ODo6wqc+9ankfjWW1HOLlEYqbVJCn0idYMambXG67rDuAuY1cHzqsVq16DYbLKriJXOWtgmalIjB0SVMrMs5P4UhkuhDpVGokPCRF7Ry2ql/ygsXhpIxWjE0RH0IjhwTS1lrYubB0i0MT5fPHvRWw/P1mcTAePXKJVTvPkD7cIV33ruDh7X4Cp+s1zB1jVm1h6sHe/HdIBtUMc4j8vR6r0Cl70kiV5GkXKGbdJwlctUn3/+n1OL9xTWN0TQzzOfz1N88VSi99/liAdfUcE0NIgaxRJnOaI7Lly6DPCcKBIgaGuU1k20T0ZPiqbpcPuPGuhYydTlcGNOpCUxM43xWe2lAe6opAGpO7bt37+Lw8BDraB1Xg9/uxTJ+EfqxvKomFitdrVucHJ/gYUVA1+DocI2ubWEJWMxqOFtkyKNMbyQWZqQuZre84pzxsxUHJMEqTSAawPXkc01+qpseIjWiKt5uA8zTaEwxz0NxWwMJGV7MGuzNZ1jMW7QdkgdOZQ1msxp78xrLeZV8XfM2O9ycnnabVPcnhjG96xQlN0XhTNkSCNPvQktfIRnAARRpY6WGqlI2Qp/Ea0UpWw2oUmnFFAZvdVM18D0jtB0OD4/R95LZbpumERCfKqv2XFEhU+0iUyWqrIyhcX7wrCMaSzf0s9oLD9qlVA1g4DZljEzQS5cu4fbt2/i3//bf4oc//CHm8zn6vpeyU0BKpzn2HkmuZ1FSS3m0Q4A1jOtXLuNo3eFwdQc/+clP8OF7DRZ1hTsPOhydbDBzhNduXsPevBYXL2NjGS8B1eAlJ7RSMmoMSlGI3gOwSZXmEAD2IOZUl65Ux6Sp4W60gOJzJQhOOEB58rEHmOAqG9V7EpeukF0Tn0WTZTCUXipDmBPhUzev4N5hC+tmePeDBwjdBoaAg2WDV25fxaduXcNnXrmEyjBM4EQBSf+fbiBHOeLq2geUnk1hICSUHibqDTS4XjISDjfic9voVYkRNFbhYUK7eYC+78WDJH4uWkCFxXyJjmUNNXUTc+CI0CHJuAwIFU5POxzff4jvffeH+MbXv4xrV3QOA0BcRyRpfmezmXjHTIDVcwvak008baYQXZeHahUaLKdrVJ0WbFWhedn9tIEsUY8BXEF7uVziypUr+O53v4v33nsPN27cSBK4njOWBvLvyvcWi4YDiIH9vT0sF8cgZrz33vu4by1q53B06uFtg3qxxLXL+5jVlajrKlFHy1KIyaKM0Q0mc/K+l2TphLzoA+dUnoY08x4KbJuWvnZMs3SGiu16PWtjvb9YS1Cl7WezvnRz0bSh0qwBGjK4fnmJW9c2WLeMe/ePsGolWc9iVuHmlX3curaPm1eWcOjSJivPP9YYnm4ra0TmuSXflUCVXO4SPfLk+pg3K7mnNQawEiXc974QUASSyVjUdYNZ9Ix0lQPDxOyWBCIbCyQ4bDYeDx+e4Gd/9i7W6w7MJs6PTDcSiSdUVVXC6z/Djf/ptV2aUMYcBe30lZJ9Ucr+hB6JbZc1WiXX+XyOK1euoG1bHBwcAJCivyXIT3HbmRnOoCVTmDGrHeazBvOmQWhXYvyMOSdc5TBvKiyaCjbWkEuGv6075H8HarU+Fxcc9PhcLvuIrQ2msDGOTqNpGEu8ikjngcvNsOzvxObwVFTeeE2WHhtizGqL5bzG5f05ZpZhDbC3N8NiVqFxRjL7cTQCpXf2CJLqY3Uz2xmUO98K/CroAkJ2CywlaqL8RjKNxo/VewIEcMfzuqDozrsC56k7FAxYPST0s/JfbfK847iDUtuYogWfhzbc8Mq+FYgwsQeVuJNtBaUwReemU3gpQLucEFrkVz/v+x7L5RIHBwf4a3/tr+G9995LEvZXvvKVdMxU2SeimHePJSzaxooylhgWHjevHaBnxmq9wZ3330O7XqNvWywXB9i/fICrV6/iU7cuYVEbgD0YgGeWUGwvyfkZSFZmmRyiHRAipwgTK11EI0+UtPXXUiMondqyXZJ3IDeSkQ5RjSs9UQCGDz3abi2lsoyRhEGBY27lp7fAROAcmg0Ne1hm1Ohx62CGWW1x9aBG33UgAJVzuHwwx6VFjRo9yHdg9knCIXpWOR0yb9l1HQBxnVPjo3E2UyI+BlZp2DMXfv2pPb50mmi4eC+KhXolv41NGipiNXEfDeI5RYKKJyzp2klh20gB60CwthL6JObUyfcGEHNqN00j6ysM6SHt48dZAtf1phtbVUl1+67rtmxVQHQFNWfD8gsP2qV0V+5w+rn3Hk3T4OrVq/jGN76Bd999Nw3o5z73uQFob7c4aSP4aUi6hEkzrh4s0TPh8GSFk4f34DdrtH2HeVPh6sEebl27jJtXlphRBwRx6ZI8JZy8NESdlGormiyqbVs4a2OeEQ0MkbBjlW5UFR2QHwPQVeDeQQroTDOjc9J/GIE92i6gtnOJ+IpVfJie3iIr2KPYH5W0vfgMc8DVvRr7+3PcvL6faAcKBIcelWE49kDowRSiAPzU5ezyCWSDiNQcIAs5z00Dax1C8PCBUVOkx8gIqE0s9I/Sj0Q2eaErhAq0hR1Fj5DSdJogSi4RNcMAkazjZxJtKRc3JBXcCTpXyz6IR1TatHZI2x+vNqZHhs+gtoycFmP4PiV9wUtuiLxIK8G8bVucnp7igw8+QB29P5qm2X1yaRbOVwQxwxpC7QzmTY29xRzwPRwBy8Uci1mNWe0kjD0aMTVOJ9EsSf1VDM18YGAGBTGeBc07aobnDXuUAXcAUGOjlD5WgsPi08LLIfu9M0wVASCEHF3zlNdbcvkbUFKQ/OVgOGIg5ibWTcyyFD0wyZA5pLeedqe1H6oxacv0iHRB8lmXEialLI5n9fFRt8p09RFXngSceBCNzxlPMEIB7vJfawl147C3vycGRpo4jXOujVJ4mALsjxeIy3hmynCkOUCzYub3Xj7ZJxGRsZUDMVa3vPfYbDY4Pj7G97//ffz0pz/Ff/gP/wGXLl3C66+/jm9961sjS/3gwqLmMHL2sxBg0KOmCgfzGq/fvIy95nNoNy36rkfVLLBcLLFcLDAzQM1iSGMPkLUwsHAUpT/OzHJgBkfDX9d2aLkDwaL3HsYQnD1LwafR7zt8z1UzMQXXmTYRio8n1Ejogb4H6mUFAqHrO9S2fqrYJzRCEFAbcIECxjZ0cAwYK0WOO7VbEMNwDwMPywHW5GRTKel86vfTBgeKEpfcVwJoWqjLXV3X2MQivyHU2VjnexhbDZ75se6e5nLOBElReGAUhX37HtbVssmYOCfKIU/bf2F3oQDmHnv7DRp3Fb/6q7+CvYMFtACw3FfPF1//MpPmVETkx5MeGWqnuuE6Z5JffsroGAKocC8m84mkfW7z3qdQ9p/+9Kf4gz/4Azx48AC3bt3Cr/7qr+Kv/tW/OsmtibRXBKKHrKoTedSGYRqH6toBbl3djxIy4INUT7EE1AQ4AmxQrlncpkSZHBr3Agcg5quWMHjJv+05wFkL5nrQP9oC6jPAKAnRQzop0yuDVEWivnsB7aquEPqAdt2Dm+qpQ55GMaKoAK/sqgkdLGJEaV1FhAhwYBD18m5Y06LG1LllHchnRJMYk41vVVVhvV4L7UCEqqrRdZ3keAGnSMXee1TsBsrzRwG0wNFOoip6pMRUAvTewzpE1UCAG6aszxkl9CgqMqkPjsdyWaHea/DLX/oilstZBO0yS6W8P0M2u7B+LMH5/JZ4bYi9IETQTrnTWaKid4Xwj9sLD9q7fFvHjZlxfHwMQAxDZdTaarVKxslyYhEkInEKDilSJIZYwqONSjdAH6PNbTwOMQBECuUyjlYt/vRnx/jpO/fwvbcf4v5RCx+Ebrm8X+OLr+/hU9dn+OytBZazBghIKtcWTo9/5WnG7ULLpbheLjabI+bOW3RPO6IPpMbWuNGwFCdD9Log6M8Z1wAeC7enNvWd2hmGYzE+zphMGaBYyIkG29kKbo2n3nI8ZmK2Tj1LKtxc3nNw++kNnqLR2jqD+TwWERnbOWI3zgOp5xXIafAfHs2ds0UA3aBSxPOOebOrvfCgra3krUufbVU9iQi/93u/h8uXL+Ob3/wmfvKTn+Azn/kMbt26he985zv48pe/jNlsFidzKNx1QuKJVd02FKuShw6GAioQmKU+XmCgJpvyldgQwL5F5zv8+GcP8f/93ffx7R/eh7WEtgsIozn73r01vv/2IepK/LZ/9c2r+NbXruOzt5cxl0Pc02OxVk3qVAjMOiKDhZ0U3Ui85jJX0bAoOp4caYC+7RA8w5g6JjXy0YsF0zT/E2wUqSOD/AgM2ftsvH+AB3drWC99t4y4xQqoyDuMuchBEe/4LEj/iH0WLap0M9XF6SqX0pOGEFDXNVarVfpMc5VsNmsw1zs8Ki7OyScfdxpJy8jzV7XP+WIZgUWM3YGzF1VIcyVK4sxg9ICpYCyjbgyuXd9D3RgQefjQi3srhLOXt3X2THleQXu7jTa30XeKwyEE9L1HVRk0TYPed/DkBYMKzfGs9tKAdhnIUObTtgWn9u1vfxvf+ta38JnPfAaz2QxvvvkmiAjf/e538eabb2KxWKSFBEjuaY6qtbg0xXSlJDkYQuhhEOCMQWCb4u2cMQBLslbLPT68d4T/9v/1p3jrvWN0XlTIzu+erIGBdStX+70/vYv/+MP7+MytOf6r//JNvHbVQflq8bxTPSBL+lkqLqrjxGvrGsmJeyK4k0pxIkX1vkcIBGcJZIVqELcx4KLg8ThNxppiwqdyTAgcAhwRDDECpASWIVkwYvAV0JbNM+5i0QOnVPOfWt9HHkwK2jYWk1a30qoSHnsM2n3vi3D2qTZ+gKkHytL6kDdG/jymDS3971kywEM9mQBIX2yMlqQAhCCufybAWkZdGyyv7cGSB4cOIYK26EIGYCn2+/ExMD5+SxQJc3Q7DmiaBu3xBtwX7+MCQ/HSgDawW+3Qyam5s2ezGZxzmM1mCCGkQgmT10ofT0g+LPWpUSTzYkD8mEMAB49//Yc/w//9n/xAahueU4V5qjEDbR/wo3dP8H/8b/8Qf+9vfgp//nMYqccJb9M5g8+nr7w1gQZ0JCIFpKr9LsPmoK9jdfoxKJPzDqdy2wgAR1A4q2/j7zlz+2f1sfRomHr2XeORn728ZVaxh7crcyxvu2funIeFujN4lske5fOEkdlRkCB9n/8ubQo8OFL6ZohA8FtzZ9zKcXy6tTqfRjtLyh62HO+RXY8f1d30pQHtXRxiKfHMZrME2EdHRwm0j46OBhPZlFJoMjFwqlcYYi4ODn00PMpPHxg9M4x1oODxj/7FT/Dv//gO2v6j57wIAdiEgP/rP/0z/OiXF/jW51Ry01JPKk1ug3G5rHUCBZ1MJN/GuvLQ/ApkxIhUmehT7KU6e4k4JQ31xJpqChhOdiYjQSDxScGa6pMTn8rpXUFFdmgWNpX/HnXbvKgrGnMRMRspOmM0iEbelfjdM8pULjLXbPLr5jA25nH6DZiCjvPVhxyzEFLgR13X0UAYgOhrrceWm44Y0kIum5c28pxGIXPzKAX9wV45n88BlpiIMvjtRWkhBPTeY7Vew5BB3dRCM/oeFsMycudNwk9AWyUzogTaVVXh+Pg4cdhHR0fpmKwy6gJXvi9zfRzVxOA9gvfoO48uMDof0PmAQMA/+ffv4Xf/9AG6/slOzE0X8K+/e4KTY8IbRZSZ+P7G+cAAqASpUqo0UUkoUoFSGdAuq84YgoVFXUkCfAXtBB5RDXQu1wEsN8mSonqUNqBxCimFxbVBuHyNUCUgECcJsQTlTBvpB8BElYgn0tK8KECorEDU9z2CDyAr0nEoxsoYCxDB2j7ndZcK0HETiEh4Rtd5BOxTfQOJR1DbdQLaTQMbXdJEbdf8NkKUxJPAAHwIMFbBeXDjIRWl7yodkDed2WyG9WqVErU9qnHu+W7i1uf7HqenpzERnayhkm7N6+Tsq700oK1tKkxWm7rgtG07UNPGfqT6L7OAgmENeAmD71SXVE8SipLuH3z/wVMBbG1tz/j9tx340m18fvIIyv/sUuGnTkmIP5Qan7m7Fm//qvDNkYNNeDZxWvmvHEdJAxkounpAxqjp7lxQ2t51Tun1M0GyJR5/OMY5aGj6DCDR/sV5edOaupsey+mepVjME5vaCFrT/X00uHEIqK161I9E7YISknwrSNpquuKk0fV5azv6t/Uyh/Vpdz3bec/7UoH2lMRDROhjEqevfOUr+PDDD/H+++9LuaSqwnw+x1e/+tWUiaxt27Q7MjM6WJjgYRBg4XEZwHqzARknBsnKoXIOMzLoA+POww3+8b//4KkBtrbOE37//hfxF9ofFyQOkJBpR6i5uvEZYwdzTqVjZvHbIAIsSYHSru8Qgo/BAip/0USVn+H1nmwjMBkMaz2On5G2fs8QR8PnHXz3pFoJWBqyrMVeXfS1l++NlaK+QqPklMLpSgPQH3V8x53PehaKHkNSBMGiquvk+opCKyk5bdXWkD7TtMIO9++d4KE/wvroEG985hb2lg5CmcRUB/DQ2pHGSEDR+vR0pwb28YqI3G46tkQkpdyKTH5DQXByJx5e66n29DlqJVCX6oiCtvceX//61/HBBx/g93//97FYLOCcw6VLl/Drv/7rA9A+PT3F6ekpTk5PcXJ8jJOTE5wcn+D05AQAJJrN9zCGUDuL5WKGS3tLXD7Yx//tn739WAbHx2meDf7h914bSluRy40jsXWOeicov6qNiGLeCR/5SYKxJKDdtZL72UqKq5KPPcsf+fEW4YjWSE8Sk3cpeKdrU/FjinNLVX3Ce3sslj+hJhgofuOaB32z2cDFRFFqqLIRtCVHRZkYX/liXeiIofo8Qu/c/d2PoEnIsq3GORfvXaZvMECZO0QzFqIEc4L49DgADvc+PMZbP3kPf/xH38fx0Roh6PlCJ4IDAvdAzBffNA3IDIv8pl4+95I2sHuU89haJ6Bd1xXqut46ciop3VR74UH7PNW9VO8XiwVCCGjbNvluG2OwXC4Hx239RIOfTrhQfKdqoTGEn7x7hB+/c/jMQJth8M7RHD/6kArjmz74rnOyOrw9D5UaUaiLC1azsxkzAI6hS9lw0/xoUpPy2EXPlF6gHEJTcqc5rKYAmuKp5F+tvVLepRgqHv6UNo4ze1t4f0y1qVzvoJzDPRnxJq6bByD+w2Unz27lslB3s/KZkr1H/7vzOQmaIEp/7zqP9brF6eka3nP6LkvpOtc+ygb+PLRSGJr6Pn8h7rWAVvuR07e1//PaS0WPaCtdikrjWNu2ePPNN3Ht2jXcuHEDJycnKbOeHqeSiPo2d55BUl0XHCTVJsOg6z3AAV3bwdkWxlr8w3/5Y3RPwFPkUVofCP+fP7L44l/TwrAFmE3giETdRcBICyumnyXKbs1gqO9u73vJl+KcGKVMGEzMJy0p5a1wNziN6ejc8qfl94VJ84n2NfVnpN2pNA2IpL2YzWGtRd/3qOsazjrMZnMcHx8JzWYoGXVl46R0PWOkuPT4XiXITkOi8uLDzUK9VFCeHa8VBvQI8mYBmfeAAQfCZtNjs+6iJ4xoORK6n/vtvbwlpQxKA/XU+D2/wH6xOSMCHseiJuJirCHsg3bOc740oF2+8HEVGp34bdviV37lV1BVFR48eIDj42NsNhtcv349GSadc2iaJgF3FzxC5xH6Hn270ruh63p0rVAJhoFVG/AffnD/XMvwk24Mwu++ZXGy6bFsxot4e3LoorHWDk1GLNyqVJ8HGJJXObC4adXWoKoq9MHDBQtrzjYiPT6gq+SyLScrVAfEZFtUwnBJCUXgG12T03+fThu7mKrwsNlscLC3D2st2rZF0zSoKqlmdO/eXRhCpE80lYLkUgeKTaBA0zSvCyl2WxAcPme5FspAn+xHrLRMLsomwjMBzGkjBRsEBjbrDqenG4SewMEAbGGMG4J2CABJiuEyTcRHo8+eZbv4XNHnCpxzpGu1noH3CAGF/+Rke+HpkV1tytDRdR1msxkODg4EgPo+ZVsrz1Pp21oLZy2cNSlxfDwKzAwfAoIP8L3Hj949gTvnZTyt5izwgw9iiCxlENvVm7HRqgRvwvDLMqjGxGT546n8NDjJXTJ2poFG8JtYgykAQyqZpW2KItipAT9m02uX9IiCpbr7yUIfg9i0/rCLlp9u09cgRIAZfU/YDaL587z5hcBJa9u+w3bLdTI/JomjCLsnxQXYKaIczwGUG+1ZK1PaSyNpjxtH95uqqhBCwGq1wre//W289dZbWC6X4ChBeu/x1ltv4bd+67cwn8/Rti26roMxUk0EBqIzFkEPVd3AVA4aJUHMeP/w5IkE0TxOazvgR3cIv/apcibx5K/Jeh8DVUQ1Lg+NMpURymS9WUctRHK4nGzWsnm5p7kAx9K2QMUwc8j4u4k0ooPrbW9WT7KN+f1c81GadSJxJr/dLaOtSfRT2/VojHofFGWrNCH7mLeP1yvHZsoPWqr45DzpWo80HrH1TNpPlf6F6JciwVVTYT5vUGMJV1kQSRARGXlHY9c+AGlN6aY11kw+fm3YbxX4dHPuuhZkivJiUzvvRHvhQXvKGKYqYN/3WCwWaNsWDx48wL/8l/8Szjksl0u8/vrrODg4wGq1wve+9z1885vflACA9Rrr9TpRKlVTwRLBkkHtZCE1sxnYGpgI2MSMn7z/Z1vJn55V80z4zrsGf5eEOGBmMG1NKTnWRzcsayWrSiFEMTh6Ckpek+AD2tMTINSwVjwAHty/B2tlHHbxk0B+F4+uCo9FnCEVIH9r3oAhcOfvh989q9dS0nLe+4FtxVWSRlarJGnOlBAYYEoUQte18L5HXVWQ3NUqpQrg0hiw9Rl5WGSAk5pegGKxUYTgk1Cjnjjq/jfe9gRgQzIsWmcwa2r0ywXszKFuHGAY3ndwJlpDmFEq+kQx5J2GCd3SfT92bRuwKdolAFlnsomJFxbLi7yQ0PDCg/ZZTXlqlarv3bsHAFgul7h8+TKapsFqtcKdO3cSAGmYLxBrNFoA1saAMSo+d+IkFa3/D0667Q48w3b/dEx4aBvJn5HeGCyUgVpOSXJT8LHgtInlxTttfMP42o/TBlxN+SRD9lpADEjVZ/VL3TBK1ZYHZ57Zdo3kmedMPPM4XoBHnw20iWIMuURNUq48n0PF48p9VNs4h+Lg/L1M29HTpVO5uPD2aBARrDOonIWzVaoonzZqjPvHaUMoee2PJ1iPW56sKW85htqWClL5bZ89q15K0C6NbZoK8/Lly/jSl74EZsZyucRXvvIV7O/v4/DwEIeHh6jrOvuTJglAEu1bI5K2egMMJ5tIq/0ZWfueRetEgJZE9UmN3iYENINbWQ4LccHrviQTLIOgqHyA9/3QqPIUqJESZ4c9l/wqeQvi4vFS2v7RdnWRJfJk2hQdofNE5yHHMPW0yUEpA0qeS11nwJrnOr2jYT4QBW4C4JW22Lq3FtrNIBLlCzjnYMoNgoAUjDVltCC9B4v0jx6XLs+xP7Mw3qOqDYhEO9NtVbrpBn3TwJ4yxP+FabInwVoD73t0XQuAUM8a0WpDgOWLFcR+qUB7bPiRdJdSjX2xWOCv/JW/Au89FosFfuM3fgPWWjx48AB1XWOxWKQMgMp5hxBgnExAA0qJX4zJmZsBgGDOKQX29FtlgYja8gEDU1GRPnoCmK2SR6waODxL6L4uOGvFFa33nYwtMmg/eWlJyoqVxIf8Nwz+ltHPm4u8JZtqcZbkyOMkinqsnvMQoLSlYq+9z6Adfd7V6G2M0CObjUVgH8+PVEvos0smZY6UgYja6riJQuDQpc9pLjMognYlNo0E2iyJt3DGBpeA2wPocOvWPuaVQ9gwZjMHMr2k002bqYUhBwSNjJRxUAeAMnXEx7ONN0oARoLR+l68RshaLKu9+FkP49xFMPvlAu1xU2rEWoumaXDz5s0E2rdu3UqGg+vXrycDgk4sTd4Dw5EGoSTnkaKb6t8EXNlv8O7d01/Ys15ZjIGpTBY1zfuPDh+px/k4DccuI7qelmpLxWbDTIONZyw5K2+/xYKUraAOdrUpKfnx27Z2k7nu7fFT2gBUpAUYeGtoH7H1Wd48U8fTNYc0yDBnjim4VVXbpefbozSeU5GxxmxeYX8+Q18B1nbQTT/3TdIhMLLdQzenvu8HY/B8ugBuU4y7/iw/13ftg5fc4lHrkU2Tx8M02V460C4d+FUS3Gw2CCHg8uXLACTjmE4Q5xz29va2AnLS7yhYq10rn4Ff+vRlfO/t+zjDNvfUmiXGV16J/MgEaKD4RFXkqQOyK1isYFlKdnS24fFJNoqGVCBrM7vaJP3NBhwLVqRrPo6sPT2Uj3yiStohZBtLDmeXnB3qyaF2hOx9wiAy0Ye+0KJQPPsEyAN5k9V7+xDgg1zfhwDvxxVuABTugErhgIt5RcPbDFNjF+tmxLKogOScw2q1Ko77xdKKT7RFvOn7HmQMbAzUM4bQth71lo1gur00oD3ll60T//RUJODbt2+jqqqUKIeIUNc1rl69OuCrS1e2ECmHcm4KXRLvE38+d3sfTWWx2gzB4lm0ugLeuOETP5mlNYZwwVlVZ57e7dNmx+L7L5wkwcagGgIlCWl83pOUkAgxqyIo0hzja2fw2MVky09RmaKgUR65Te4K002j/Dm+CJ1DTdMIPRJ8KnJbVrEBOFEGIQT0MX2qLnhrHJi10ECWrJPtlUp9Iz9nGUTj+4C271Nq1q7rJUtf4XYXggRTYXDdsgoQhEpB3vmtRTTGi2YqrJv0hUOhFcS11jQNHjx4MHD7K/vwfIH4xXft8jn6vgcDaGZNTBxF6PoegRkXYfJfGtAu29hY1nXCxV67dg1N0wz4NGst5vP5QF3NIb8Y6OJD+Xv4++dfP/iFGSN7D3zhhoduJWqkSo3Sf7ZU6bKVEpauUTWSTUnau8B67FXyZBoNc5EAYKJYt3AKkjMpUoLM02sT1EICtliNPGSgKo3lkqtcEnIBSNScjJ/Nm7BgY7EVadv9HkpJO0Q3WDWKZuFErs+FHWN0obEqk4gq8Y5QoOfykC3IszFgbQzMzxdQP35jyJwXt1ppkueeUu3NizzrSxMROXavKjPQlZN3PHCaQKpMVp4vighuYxQcLxvCclbh17547UKGhifZCIw/91mPvUb+ukgbJI0aXS0dE9XkLAGhqDoynJhPupkBPRXfYfE9Dz4vnyFLnDl51PCsp9nGIculIOC9lxBnawbHpJwcMdtfepIBL82xos2Ie4//KX3D+75H13bYbDbYbDYyt3sPkNSqbJoZ5rM56ii8aA6Z7TRa+XcB3zy21jqcnKzx4MEJgmd4L3FmUmBD5o1spcNN3kTvkRcFpMdNbQyle6MKD49SFOSlkbTHC0ZBu6yCXf4oHeK9x8nJCfb399N5g7wMxoDCkM+W5D3yQkontN/+Tz6Fb//gLtru2RHbzjL+i69NACiPleX8ecJsFCpwiNXdtbJNrA6jxqPQyeZW1zVAeGoeAMQMywH9yMSYpbYyy5+YujhKoYCBpnDNT65+Pvppmb71yTUeSJrDEHljTNL21MitaRLm8zm6rsW67zHjWbpEKXSk+RhvNI5i1AyUXdeBYzWlrm+FWwXBuRqz+QxN3WDuHAgGddOgqmsYI+kZiAg5J5Xy23kcE0HIBGcb3LnzACYELN9YwnCANYzaOXhWt9AAUKSo4jOVRv7xepXn+HiDuToyGGOEComushztCBdtL42kDWyr5WNJu5S2telk353rVvnhwZ0KNNRJTfjca/v47O3lk32oM5qhgE9davH5G2LgmCI8ttsFFkbpBVBwjVJlWhy7ykl4VrDEoy7EUlYGsE2JAEO+O0kzxU9BB+Xrlhz3o7SLnzP0pc5gVAoPpaRZStqDRV16lkBBO3elpO8IsmGoMNL3Hl3MqaN5dbz3IBCsc5FXnkmmwZhVUCXDs98VgaK3lDEWJ6cbHB6eRimbpUo7mdjPoS0hbV6Fu+JZ4/e8NB6t8Ys0fT5Kv0da6xGe7aUC7RI0BhFJlIshjI/Tv8vdPy+KTIuolKPXRsGTqizIzLh1df7Unm/cLDH+l7/24TZ7c5G2w5Kd3JLGUl78sQXvOtXG76D894IdE8OWXA1pdLc8JLIxkgefy++lEXPqiEfoDs5btFPPN6bh9HeRwsJg/MpNz1gLa4YUynhMvQ+ZBom5ctKmYAwq5zCfzbFcLLFYLFNdVFf4hA+pMEDdV3clM0rGTiaEABweHuPevQdoNz0Ak3LZ5P1S1ggPL7IlSA2v//wAt2pOj9IdxYjynYlxV/LxX9TG81LRI2XggUoeWnU6hID1eo35fJ4oEB1E/b7MF5GAHjr1YkUOuVlU/cpcAox/8+338D9958Nn8ry1BX7rM+/g8iIyjjQ2xp094cZGImMMfOiT0ckYsf773iNUPuVSqOsam7ZHu2mlwvYTbgINAcQ2gXL+Rv5l0io2BppISmE5wMTvMiVCEOJEnvrikXiPCyAc6aUywEbnp3MOq00LQwLMGpkYovtdVVXwvs5aTSF06AbadR36PvLXwad5X1UOrnKS0KlykfrIgVTGWpB1IhUXvveDeP/keRSfP4I1kYxgYIOuA3729rs4uv8Av/alX8H8xgzWVPChSxofkVJsSPcxRINNnyPVM/Yieb5aKUDsbmkTHlVz8l68dNS98iLtpQHtcVNJWyULIkr5bUsPkZLHHlMkOvYKcONwlbIyx/3DNf7BP/nhM+Ozf+0zwFdvPgDhcpRuaMglPFbLz0NRWhWpkFO1HuccNm0/KWk/GWkp16AZfzo4YosCKb5XqXBkiDwvJeZHa+U2uL1hDiTtsC1phyiJ2TOMdTpv+95Ht70Ore/TOc7ZlI1RpWsVQvq+F0AxZpgQgDWaUmY0jWi2rKPETwMheODBgyPcv3Mf63UHYA4yFI2RhQLHItik/mM4R54XqfrsNhZvzjiSi1mqwxWUkg0XdlJ4KUF77PI3/n3c1HofxrshiwFSjZBpOqv0kXgJxt//R999Zi5/BODOUYB7lWA1hzfnb5kVojRZTcZzNlJfMQtXGaT1L4l5C2AEkGEE7sHsi7WbqachBVD2sOzUxcGSQQhkcrRjYTQtnhCGozStFIwSJcQxDi+A0oKL8jvTaF/bYcMY3GlIrcjCHD6f8soiXSJKw3ljU8O3c05SK3hfSOFRQ1QeO/6v7z2s9bBGk+srRSWQK6kFDExwMNbAWIuqqmGdg7EW0PcMRCRVSkS1kOLtsPDVwo1zylaZRRROYyl9NWAv2oGzBMDHOSem4Uy+K4iT8N5x2Eppu8xEOKbTxkLAL0YKP/ueUx49hsQQ6XsfqwSJlpEG/JzN6qUC7fKll7QHgBQ+W/4NIB3Xti2ssTBR5VcV18Sk+mCk8C+ispI548fvPMCP3z16hrUhgT+7B9xvl/h0JaWo5NGHnBnBwJBDH0JOG+sqsHPwxoCNPCOYYaD1HxlsgN73ABFsVaHzp/AMkGWQFenbe7+1qEqKSsZ5LO1q73e3QAYb4xBIqCcb3cZKFlbzojCXpZwiraM0VvR+kZMsPCs3PtpSlL8nGuRMigO41eeBCq/sAatmoimBO5yersDMuHnzJjabDZqmQdM0mM/n2KzXcXETAnsQCXUh1zYgGKzWp2BGysHddV2aqy667rm6GriXGWvgrJW8JtYgECWtg43LdJNhqf7DBBiCYQvyFqH36D2nsRKg9yBIDICBg4FDZSv4ltGvPZqaAEjhZ6YeICu8LgPEGtUZs0OybB7z+TwZtnd5ID0fVMmjmQRVS3HWovcBm/UG7Xoj68g4mU6Bz9sHXi7QBoY731jS3uUhQkToux6+yhb8JD1FEWqoNA4rmf/j//Fnz742pCf8j392Dd/43ElmNQaTXCW3GDatH1sLNgZB8ZQZmkGvNBx5BBgKIAv4rkVgAxjlmYf841jaTkarx2gMwBfZ6aZS9Bu9/9b8L5ntqPYzRYnTZEFnpAgwonUiiZ/lHCGMN5rydCquoSk4vRf3SDV8e+8TaNd1ja7vUPlK3lco097mFKZ952GoF8+Svsd6s4ExJnp9VHBVhfl8UZSNy/QLolCnZdkIAs5gZMmb87smGBmnoJXfdZwojQcpqUIWliyCZ4Q+oLIEsCS0ggkAYvEGVntC5kv03lVVoW3bCwdrfVxa9pIxMOBkdzBGjMvYmq/T7aUC7fNcznYBtjEGHv3k98COgY73Oln3+IPv330kK/OTaAzCd97fw7pfQ6ROKjB7d2fGrpBb30Xwys8cDa4kmenKje8ivOTwnVxgkMbvMCFIglw5bHz86PvBMcXfgx4onwEFbt37ykT9iLRBzmfjQ/b9N0V/2eS8NyWfPAh86bpoIMyZ+tRnO2mI0Q6TDJEAmnhcVVWD4tOlW2F+F4MXuL0PFeNGqiogm3MnNQwgUiSS2/vy5X2g28C5mBeFijSvev0wdWOkvk8ZH8+iMZ9le9QNZPwMMoc0YC/nnLmIBvHSgPZFBrl0XSsnR1VV2KzWjxXl98OfHcJZQredluOpN2eAnz6Y4/bV7e8SMCOqqKxh0+L8j8hfRvksWvItNPKNSKUviSxyzsCZWnzafeZqx/fTzz+K1LTLhW78fINbGIPgfZJ4qRyDJMFGeNriSDly9rbYA4JIoFFrUF9+DZTxvYfv+3yfaCdQ3vrg4CDNJ2bGer1OlFJd16hqLSdm4Koas9ksByzNZpjNZsnzqTSmm5iIiGzmgqmoTZqCcNLfu6W77KPt5QejdcTy7gkxxzckhauxwJd/5QvoT29jvqjgqh7GMPpEqyBK9Ryrvg/Lmi0WC2w2m8H4XNQd7nlt5Vwz1sIwo9usUxSxBhURUUpXsKu9NKB9kTYlGSbue+Q7e+Z1it9/8s4RNu2zTxIFAK0n/PRehW9+riy/NQ5IjoAVO51crJDV4MTLxirSoUhDmyMjCVXMT66eDqXUMPQKeEaq7ki6SXUJKQJ3/L6sIAJSIMlgC50XxAMgL1uZeU89N/q2S9cxxiCAMZ/PUVUVFovFQAhQ0HcuuuUplxvnX1VVWHerFDWoP/q3JjkDRKIvhQ+iSIk8gkfGECTF9Kxjl5tqNRSp2OhGaYBPfeoVmNChbiyci+f7CS2pCCVW7wp9ludBon6STTU0EwtQpIRdyIUwzgou0vYJaMe2a5Ik3+6khW+rL5MqTTz+e28//IXVhgxM+JP3HIANSlNdKWvxQGctFmvKVb19Tjxw6EcRJbqymvi4XXQR8khffxSAH997vHGUgVG5NEA8trjtrnvq8/V9LzVAzTaVZIyBsw5Ujc/OUbfqXqr3Uol57Oqn1xM/+QAHMVBaZwdSNnSDwZDmSUUpzFljuJsOyyMTqY+RXE5yINIkNwAowFUWFTjVP8zkFMfIyeF907uhYYGIqf587MFczSPFJpqShn1CjwzbeYOhO195vC4oXWyParW+f7R57P4+ifbgVFy1SgOUthzdKH8BgDNSFRyIxq/4v8AMChy5yWi+MgYUpKgrEVA7h9XpJiUHKqU1Vf3TJrizbTHLj9XK91R6BI3pL0YAWeWPx7QIEqetx3ddh7Zt0bat7GvxWPWFNsakoCIS8Tbz1bEc22q1wmazgXMOV69eTX7T3nu0bZvuq/12zgFcY9NuUFdiZJzN53DWikdTKo5QUPdxDDabjVR6j14laZRJU7junst5DItkVXlvgFp6CdFlzzAAD6IOe/sVZq5GU1t0nfiZAwSOPv0GDGs0vCk3AqFpGgB5zvxiXfqeTBtonIUA2HUd5iwa2PHx8YWe8aUCbW27pOop+iMZgfB4O/wvujZkHwQEhfKYmhBDA52NFAgX9AFnQSuOg3g3mriCgxrIrBUJMlgY43ZIvE82L/KUFD32XCkl1nxi/i6B+cR1y785iIS92WywXq+Tac4Yk8rREYn3g1IaHD1F2rYFOkqZ9bquS+DunMNsNkPXdVitVglQy8RRhErGFrJB1E0DSyZVME8l1Ab7DaNtWziu4OJ9Bs+Ei2URF2qkDLnJ36jYyDoxiAHqMV80WDYOzgFtywieAUNyrTjWakQdG3/ruk79fyFbMbd8tLM0TYOHDx9eqDbmSwPaZ6nr4wU/bkaz109cc5JSQZ6IElzwi2vODCmA6ZbV3qHb48jjQK+jAK5GLOaE7KUvth8EiSiYstLEE22aL9466qnxnVHt4JHKjgjwPmtazjkEZMO1/oxTHaCIFtXPxvzleIPRRE1jjpPTOA/nM0ONxtv5TMpK6LkPSBv4I0WBbvtQTh82ZTRUCZ21A1uEmx62ZYv4OIP32NidNRykz8H5OS/yrC8NaF+kjb1HABlMrSyikWuPkvtWakOuzj3uabUriyzhqragfBogCYR84LRO1usWs9YDLLlFOAKYaBuSsB0wCIFBHGBhEYJPP957zOo5Zs0cq9UK8/k8gVAe2+GG+Tht13ljw+eUtE+Us+aNF0vJy9vIMfsYFh6iuu6cw2KxkKi24HF6epqotfVmnSgLY4z43yL3pa7rJEmq5FuWGPPeSxrg6JGixygN7EMZuESycYSANiaF6vs+bZrGGMzms1SNpqoqGGuAws99V5vyoJH/8nQ2hOSQTjCmAgeD0ANeKZS455soXRsQ2HspVFFqS4O7DfvycW86/0IQ3SWnI+CEKxdxdvgEtIs2lrZ1kKuqStKSSpAXBZtf/vQlfO/tB7ig48kTbYYYX74trmliZBts8QDUQOWTdLNpO/RdL+DMkIAKMBxZLewNgBB8DEchzUXuwRxLZjmHpmlwcnKCpmnSmA0liYtoAI/XznMPU7e80k+6bFpWDYSYzrTDerVK+a5nsxn29/fhWQyK6/UaWi6s7boITJTmjnp4aLRiyX9rf0vQbpoGvvdoN2IPUeqDAXBc2MlGwQLkSrloZKR4oVRY7C3Rdp2UuGLOtNcj4KBKg4Dy/lNaJ6LNRKL7NNtfCLHcBKmQTQm4Q9+ByI6u8/Hlrc9qA60+/i/bWLL3yCeS9iO0syaLcm+PM6E+9+ovrjZk4xifvxG2bHu09UvxbBGUCZkDH/mJbH0XFcAEdjpWpeZS3mM8MS8ide86JifpShbVdPyUtD3+bte9hOrI9y0jEpUGUUOuUkC6qRsFRsobSGmEHW8qZT/L75LUFXHS0HaVk1IzNMZk6d2aFISTxn04cI/QlHsenzQ9hiEQTtZrtOQxv5IzPVL0Rprarge0Ds7feD/ejUbPx1tr5az2CWgX7SygMTaniHyUyfSFX2RtyEB485YU7lV3KkCwjUi4Tu/7kQHOwcQfzwwiB0KImoIBgWDgoMl/CIB1sqS7vgVI3OBKTw2VIBRQpCitVBl/VNU3P8f5AF+m19VW1l4sj9WmFIP3HqH3keKw2NvbS9+1bYuHDx9KKlNDyfODmdGkdKMK0gRr7FYQzNhLKdEpyfXPY9O1UI8fZkZd1/A+YL3ZJPpGn0/zlmhMgVzTpkopsolMJ92fms+DTQUG4svnkWV+tWmI1EgEceULBu0a+NM/+j769Qn+87/5n0AM4ZLzhWMOmwCdh/LLMMKUk0aidM+L1IjyO1e6JHkNXaB9AtoTrfQqAIYDrH9fFGyWM4df/+I1/M537+wwvj2dRsT4jc/02GtoJFHHf2OuCR88YolsADEvAlkYOIj7lgRnaIInceWz4ioXsytZI3nz+r4DdAEXKn8J2urylrjaRxyTUh4rvR9K6a3cLNSjA8V3IYRkp5iiRtT1rl1v0NQNqrlLwTAnJydYr9dYrVaJn9472E9BEnljzF4yBBpUZSnHRY9V0E4LmcUdjCLIhiCRuVrcwHsvm0GUrheLBWYxUrLz/eB5kx93NCZfdMzzuGXQHkvbzDLXMmgT2g3wJ9/5MU4e3MVv/6d/AWSQQZsBzfVnJsFYXEg1clSTRk1pJh/bVrxvQBKsKX11kfbSVK45T/UoF9n4OKIyAnDiu7MmEQO//c3XULlnO9SVAf7zr3XxryG9gQHUDQ9xVQVjLKJ9JEmNGZGKHx2XeG4OTz9fCi4+GfYDWRKZHtvi/dD2Aj5rOY89K0pwV046+XSne5cpT4d9y/3VlKQ0AN78c0angK1rDbS94juVwjPID8F+6mcoMZ/fj+kxV7Dn6V2WuehmlBw3PdpNVx6ELU7mjA7p+F80Cvnj0tQRABjShY/ynJ9I2kVTlX6cEnKc0/dRVfo3Xt3HG7f38YOfHT6T9KyGAj53XX64qMSieUPERSymXLUm8tMygW7cfAWz5T7a1sM7oT6MiRYvGEhlF5OMSYRoBe+FHnFuBiKpyKGUgRrGVJqoKg0V3DUWdMZ3u56Z0hPqewSGfHHJT2sJLk1rmmgTJ0mX6sphVtdoNy3adoOHD6InBzMW85k8lzGSt7rocXmf8l8GMLZG76Jtpqq2EIDFcg+978HBJ46byMBag6puQMbChxCpL5Wy1esHwCNoiMN+jt+G/qVPHbOzkwGCwWYd0LeM4AFrxVDKHBI7k3PQD8epHI+6adD1PU5PTor58oK0wv7QdWL4V3rkIlrEJ6BdtLKsWLnYp1Ts8wZ3DDv/27/9S/hv/v7vPRPQtsT43/11lXI0h4hSG4BnBQmGs2YgPN24cRPe1WhbD4KBpfjsqcpI5LXJCvxzgDUWHTy6rsVysUygXUaQOufSxMzUiEpfH13dzdkHtyXgUnrUfzU1at/3WK1WyQVwPm+wmM9R1zUMEe7du4fNeo2T9aagIBoYa6FOJlt9mdjcNcHUrlZScrrZGWNAJgPuYrmHEKTAnTO5eo3msmAAPgxpPUD6+NGmXRFohSLbX/q2yHHCBpuNR9cyQg84C/Re6iBaUyR+CkBS5yZa3TTYxKCkxWLx8adEipZsHdZis9kkO8lFN9SXFrR38dK7VJVdng9n3gOSmvWHPzvEj989wtX9Bu/ee7o+2448vvWZP8O15U0pUxlb2ev8DGPaRJL1dKaCh4C5gEnKiyc/qVJAIYKxbmalG930+O5ujyEFjk8f8PfDdzb2uphqJc+9RRVEusgYA0tGigWUjzmBKwPJOx5ylrfMWdqcgLEFECVopWyiLzjx9PiWG9m5njPxYaaCbi4090kl/O10Bcp/l47ewnFvp19VuulxNIPnuRFlO0x+11m4+UTSLtpFpGN1dh+nYGXOVcbbtr2Quvbjd47wj/+nn+H3v38XzhI2nX/qvtpNRXjz4A6+/sp9EN2UxcxKbRQLgEU60wXGBdhdunQVnanQwuL+8UMAAYFZ0kWyFbqFbPZAYIChQEeoXAVmJD9o9QbQ6Ej9vZSAt9flGbYHTE/sMSUBIHGiZa7q0vXOWgtnXcpO6L1H7yWUvIv+1oYI82aGWdVE41gV+4CIODlroX5UJpFKXjQhZ9mY8kIqXfa0gpJWUyLEorvjRU3bknsCguLvqqrQNE2au7vWAW/9rpGy/kwii+IGTyQ2bVsxrlzdg597eA8YE+cOixeSlJzAwJA8bs5JpsOL+i5/rFp8nJKOlWII255FU+2lAW3gfOBWekQrigy+c04iz9p2KzdCec0PH6zwf/rv/iN+/O4Rul6s5c8il3ZTEb71Kwt8xv8ZrK1hQDCRo8m+zEhAY6xUmfF9DxTGxCtXrqGjCqcd48MHDxHYwwVCNa8BFMCNKCHE4AlF/qqq4TtG17awMRGTGvp03MTlrwQhLoD77AWq4LZNP2zzo+oy1nUdTk9P0XVCGVlrsVwuUbkKVeVg7RJ912HTbvDw8IHk/4jX3V8uUc/mqCqH4LML4cA/nT0sOYBMpkFo2NcAFOXKpqUqBW3NJa25XNT9zSQtJoALSVj3XL1m30c3zriRVHWNJgScnp5ueWKUAD98A3GjB8CUKxdtQztB5kUccwO4inH12h7CRgJsTNzwe98lQ2YurjzdnHNwRfTxi9Vk3DSro9pVUuTwOVzWSwXa4zZWk3epphyt44whKIxB41/94fv4B//0R+j68MzqQVpDqCzh7/2NV/GXv9Dj3/2r6OGQHkro6AlFfPJvax0COdigVEeZKjQeqdIxb5+v6l9Z6KAEqV1SExVpYKe/H3LSuU/Dd7DLQ4QDD4Bd6ZvSHc8YkzYg9dwgRP6RbN78ontf8GJgQ5Ssz1VsC0PHlI1kPEbj38sLcfFZ8kjY0QG97m6ptdjUp/oMALTNZedDYj+jodEYQtNUYFOLBB49jVK/0912A/fUpvZxkLinvMu2jsF43g4FyvOe86UGbW06YKW6ssWxIUfClU0X1j/473+Ef/nt97Dpno1kQARUzuCN2/v4r//2G7g82+D08OeoK4e68HxR6kMCYfJkCMxR8ssLSk4wsLZCXVtcu3IDnV/BhxbtWmrZkSE44+CDSOgEK+o7AZVTn26hGlSyVm8cHbvSK+JR25ifTs+jEkvbIVckN5D6exaLxRzeN4k/9L3H2q/RbtpBbpTZfD7Ii1S5CmBgsxHfbB3QEALavgMIuHL1agFEKglP2EdGj1suUqWOlBIxxqBpmlTZBMySZ2QHcCbTAotXS2kI1/D5KdpvR9dGRlzdoRMrP3yG4l1aC+zNLT77xi0YvwHIZ+490mp5hzmDBhsZkC9Cbz7vraQntVGUsLz3qQSdD2dHT38C2rHpgpmiR8rJo25r5WR6VoBtDVBXUsn51794Hb/9zU/hC7f3YHGKbt1htToR0K4qKOWQws1JuW1OKpisH8KgljkbWFNjZme4ecPhZHWI09Mj3Du6C+sCnANM5dAHybGsgGKMgXFWQDuqexJFyKlMlm6GOVHOeDFeDMRLiVrPVRVzFZM3caSA9vf2UNUV5rMZAKki37UdTk5P4SOPrZxvVTksF4sE2iY+X9d2WJ+ucHR4mKTszWaDTdvCWourV64mGZKAOLbboclJIh21MnJTKZ3ZbIbFYoEHDx5IUFIsR2XOkOc1P466JqrGo7lOdFwGY3nGOJegLRTJNuhAtYOYAthYYP+Sw7WD11DBA+ii64p4HIWoucnRO7h11TxGfuYvAnBLK+hAIzNH5yEAhHPKGn4C2kU7y3KPHd/9qz98/5kA9qvX5viLv3Idn3t1D5979QDLWY1oSQQg0p33fbTaF14diBaiwaNQcgHbXgTRtGQMKlOj6ioJOY+CFqt0rueXm0J0xFV1T8OxQ9jmm8+TtM9SM3dRWPozLi5MoIF0740XyVWDaoqyT8YYEEt1FZMvLsfqcSwbUd9ljjaN9ejXoTR7Pl9fnlNWMykvOwVbW1eOm/QU7TLu11l9OeMOI3JD/iKSdMTzqkFFAWg3wzHaErDPoMQwHJPnCbCnaKspu8rUeTwYte3nC59w2tIu+sLLsOvyHDWcaZkoZsa9ww3+u3/yw2dCidw93OA3v3YDVy418CEuEBAA4VX7vsXx4cMsaSfpTvx3Q6wRQknGKaXbYvlR9A6JtcednWHeBFy54tH3Eh+yWccitjZeP3it8RrZg+ydEQIjxPSlmvEPeHSKpKRFVEJOgHbtGjgEOGslZaqCcQRWDgFdKzQIy8UwaxpU0TvBWQvrHAyAzXoNH89RqTb4AN91aOo63dOaXA2973qQIVD0MFIO12A478a0/S7+XcenNLhueZsksmsIEOPr6HelV8KAK9cZUAglZXDS+e8ln0+5O/lzueEWVjMwtQ8MGhGhquvkSXNRzvcX0c4S+LbmeSEwaYEVpcFCCGKwPaO9NKB9XisnxBRouwK0dRL9/f/nnz6zZFC9Z/yf/9EP8H/4X38ZzAaSmZOi0cyjaze4f+9DXNmr0NQVwB6SIwQACIFDjmJkpUsE9EVyjs9qHEAWHINo6mqOylaY1XOcHK9wcrrGycNjGMtwkdMOhdotRs9cjNZ7BnOPo6Mjkd6jml8Wb90lmYw/V+qq3WzQdwLcyv8FH1A3DRbzBQBRN1cnJ1itVlhHd7u6Ebe9yjksYtUYBmBBMU91j5PTU5yenMD7HhZGwNsYVM5huVgmI2WYNag2G4TA6NsWxkqUKExU6yMVQmX619GcmsrWVxolyxzLJZgyJIGZFGXIEqmeW2ocpZfOpCcGiXQ8tYEOJcciInh4EJjVJ1u0LGXitG+SnVC1sxK+hybJ3KU8ds1sJnnLY3GJ5xWwy3Ef28PKf6Xl8bTOIviQKMS2bdGf42720oD2Lkl7pwozkoLU91YX0I/fOcKP3z16Zl4iPjB+/O4JfvzOMT57ez92XsFA8ll3bQtjZjHxfjpkp80fQAbrNA45E5zSJCAHaw026x7WdJIj2cRzWftAuT/lXeJlt/Np51aCzRSHOQCjID9Ka6hxTWiQHG1Zcue6qTjnwCNJX5440iYsWQ/7voPve3Dk5511IlkXAGwB9L2HpwyqUc1IY7s1tyZU6fFxYwrpzDZ6uSWoTkna4+uXXPv4s6l+5jmT/87SNNJ3So9lWV7BeVvaLC+79Xi6cU244E4B4/PSdnkAaSv/MkQIlLMcAoj1NHe3lwa0L9rK3bKUeoyxg8/+8e/8HF3/bH1Iuz7gn/zOe/iv/raAdvAehw/uo7EbrFen2KzXqOwyWaEBDV8eRirm9ZWU4wJQomGSTdTns+mrrhosFgZXvUVAB0aPEFr0fUjc8dHRMQhCHaxWa3SdBIrs7+8LlRADR9Rbh4gmgm0yFTLOhocIvmrYVN/rEDPz9YW/qzEGs6aBdxUYjMo5KXJLhNXqNPL06g4Y4GM+lqZuwM4BgUFVDWssqmjcK1V9yW7I6LsONc/S6CVxExCf2zTgPHDVK1u5yDWQS8dq10aXbsiIhs+C7JqwY+iGNpS4h1LvuMl1DKRi0dhAln3V9S9mwtFhi94azCyw15gIQpE/03tRpNMSp0LFf/O9q6rCqutAcc48j5J22ScJyBIPkDFlpU2pLdUmyAd0WqSCWebhGe0T0B61Ma+nIC3uY+Jdstp4/MH37+JZzx9m4Pe/fw+na4/9JeB9hw/uvI9Lc8bq+AgnJyeoq1fQ1DWMidFkkFDryok6HZgHC0M56JzwURYoQwyLmT03mM8c6hpYLC5jvTnBenOC46O7aNteUpMg4OjoPvb39rFcLHF8fJJU9GvXruHk5CQXuQVSrmeNnhyrv8yccjMopVJXFWbNLLnD6bWUv95sNmhmMzR1jdlshuViKYAWtQMF3OP7hwheQLrvOlDMmmdri8V8BjDgux61q2AMJSpKAVGiROWCm7bFPIRkZUiNSDwBCCC6mGqvFBIRoW3bQdKtclwG45Q0LgHvtAEW4eIKgEqbpBDzszE7HmIgMYxhcCBFu0dMJAIQgYPB/btrbJzFsrFYXq/B7MHUD0h9jSolKq6oldpN3rzqusbp8TGerXh0fhtrLmnTNZLAq/QA2crrrhstc/QW8in3iNB0n4D2I7VdC6tcND965xjO0jOJdBw3Zw1+9PMj/OoXhevbbNbonIlh2H1Mum+2Ja3CcJW0+LRcKEaoxc+4+JtjyDYoVkIhMeBxj67fJFU4sEiVbdulSarukcYY1HWNk5OTgbeGHjfFtep7UApEfb2ZR1JjQY9oHmwJT7dp4RNUupT7hCBlwtgHMVLGTcM6C1vHggUgIIhUb6KEPyhcAOmHUWBWbhlUjG/mg7OUuc3Vj99V0pLOCOEutcAEHGPOgXigi+8qr3Z+yxQHUM6aQY+gnPZm7eEqoDEiecv9OB0jXcvcTqIF4jFJiSgorudRwtY2oLS2t+6tTbdsasDVdz2VkGvcPgHtUePx4oyDrcVamRk/fvcIm/bZlw8DgLbzeOu9U3z9TelnVVVwlsXYE3zKl1E2orygVbnXaWGMEb8STiiTjpPfRMJS+UiXqrUWTd1gudwTEPeM4AnMYpw7PV2h63rx0qgqnJ6eIngPQwaz2UwonAg4xpicv7qgc4hyVRgfK5h432O9XoNDBmAAqRajGg2dtcJPty20OK8xusGI9wdI3Pty1Rg5l1l4RWZG13cxlSgno54hcZk0xiQj2TYXrM9BY3Q7s5X0SM7f8ugVk1I/iuuWkrbeQ/oavYkmsELumefHWBTIYMxxY2N8eOc+NrMa2J+Bby3EGDuag3rWWU035zFl+Xy37YRzWzaLYrMlVTcQ7T4XCNv/BLRHzRe+uAPvkViYNYSAP3374UdMdfkR+heA7719iP+CpRL4bNagqnpYQ2Dv4UzMUaEGwshXB85VaBC8KLoGcLYCe4qcpUjLBvHL5BqoizMH4VSujsE+sll4z2g3AYEfYr1a43B1BGst9vf2MasbPHzwUBahtZgvFlIF3nu0XQtnbOKK03/igp3NZgAYXdditZL8IZv1BicA6qpC3TQAkNwJrRVrfPBimF2v1ui7TnKhGBO5xICmbmI+jwhGceMwlWgtIsGLJoMg0aOLxSJ5Q4jASAgUK/ZwSEmQPEa2ERSS4g5DYyk5a57lzWaTNoqLSJtjUGPI5mOQN0DNa7KV9Cxt1hONYwX3LSqlPFrApu8D3nrrHVxbLhGuH+DNN65LARAy6EMHikV/AUigkintKcNmjGzwgXkrF/nz2kQo0L7KRjb2TNNNTDSfvBmJtvwJaF+4ldzU1OIwJi+y+8cXr+f2NNqD41aMWsxwzsKYkAxgCQxGi5AVgBMyDlXT4SNnamSo2WeJy5KBsSLlA4y+DyB4VO4UK16nxFoKpJ1mmIsud4kWYSTPnHEPDFE8FgAC1mtKdAaiG5+Cj0b91XWNvu3QsXiN9H2Htt2g27QDVXvWzJKvNVAUujBAX8wB7z3YBxgeDpKMWzTlDhJrC0gP/dhoPMBnNqUx1M2tXPQX8irBmCqR3zUZ1aTUmuylU9eWjXv6EbapgOOjU8xgsN6bJToLyeCY78fFOcNrRK47GpPVgPtxaeOCzFMaQqLGVPflaVfjqfYJaI9ayRMOF0tePP4XVKhXW9+HBIa97wAbYAgC4FHNDUGlPOEKUzYKjpKz8oghgNkMJhESrxafH8hGOP07Tje5coAhA+cIi8VCDCzRwLherxLvrGDUKmUxqhozaCT1K73vQcaA2SdQBgwMBLAVdBWMfN+jKwocEAjOOqAS7xGVtFNRXIg02nWRf3cmUTZO3fwCAz5yjiGAo8YyBp3kVxKpEY4UCphl/yuA6qyFWXLaTdMkD5uymtJFW6mOJxfIc6TW/I4VcHeRGcXnnD9ruzWIlnDOxOyx43PFBuJolJqVEG0oWaDQ+pbPM2gP8IKzIwON+q2gHIIH1LYDRhd9tHvfx6LMZ9/vE9AetXEkGoBkbbfJuPXo3OKTbNZSSgLUdRuwIxgDzJoGhgw4QFKqNg5BvQUK7wVrDEIEnb7vEbgCaQ1Lo3yj0CEK3cEjWvWBJDmSgYGUs7IGMLXBlSsVFosl1nsrvPvuuzg8PASBsFwu0/ipF8mUMS2DGYMRUiXzqq5Q1zWqqkbTMFxRAg4Ajo6OsF6vsbdYom03CEFArrIWtq5ROYcmpdQN6T0SAdx6bNZr9N6DnEHT1KirGov5XFz9AiP0HocPH6IXyyuqugYFJJ9xpSYFryMo6rPJTUfPt7vp/Ov7HpcuXUq/lz7o2nZJcIPGQ057nDhqV0teKJgwck4eLzdbnR7C3LyCZmZhTHmeGkIhdJKxCEX2QAKBDdJY6VigAMPntZkioGrgfRYkC2QZJOVZPETW67UEh8V3s2lbQDeqM9onoD1qYxABttXSy8sK791b/6K6iMt7dXJRC8EnOVo9JgDEPNflciv09bQQx1IikgReLlJO/9EPovQG/ZfivxYzI37Nmu70dNOCQ8ByuRxI2pvNBgAGnK3cvuD/uE+bpbEm5ZRmS6iihK1SY9u2UuXdWLTtOr2z2opxEsmVDjEfShi8677v0fUdDCzqWtz8qqrCrG4AZviuT8ARiDJspfHL6XtLk5sOqVauP4smGc+zEMKgtub4+ykQO8toOfbE2Km2j7lrytRh+XHSucpKNGD0fQsihnWloXK0ISttUk4sFerL8S3u9LyCdvYayf2ccgnUuRoCJy2z9z2sdajnDbwPIEOS6+eM9gloT7TSl1W8BQQg9bvPv7rE93929AsxRhoCvvDaAqcnJ3FxUKx32KGO/r0E6XNIKTEpewjIJ+l6ZEQyTyBdgLjijAjX2wspXyv+KJUbVfHlcgninBlRKQzNoli6vCmgC92hA2tznmsi8cVmEr9WpR2YcenaVVhrMZvNYKyFc5Ll0DkHY60YaVkkbO8lejRJRCSFB+bzOepQgw2SP/56vQb7ILRGpCdCCEWSei6Gcjg6OmasfOyIHjmrleA0Thf8OB4k4xdXXn+XgCJ/TADrOc05wu3XbuDa9X3s7zdiltUxKMrUEcWshPF/2Yd5m/83RtIJbPk7Pydt4PJHOWWAUoBM2XVVPKVkzi2XS3gOcNZhNptH1pIGnj1T7RPQHjV9AVpdRaQ0wEWJzXuPm/sGlSNsumeP2rUjXF0w7nx4B2CZBCcnxwirU+wtF0InGAIZh873gJXAoL7v4NjBwUHkwpA8FdquMDKxSIyGKMW/kZi6ocCchfZyE5AfCXGXXNC3bt3C6d4p1qsVTk5OcHR0lKSNsrivuupp5RYT7+8qzXMd0LUd2s0GbdvjdLUeAM3tT72OOgbTBO9ROQsiuUdtY6UWCug7CcDpui4aUqWa+nKxwHJvCSJCF6TQb9f36DYtTkCwceNezufYrDfYbIb3L5VZjvQJKLvqKWgDQ5CckhzHgF3XNTabDdq23QKri3iTJAMrhvkxxn2Zuh5ByziXqVnLPpRct3DRVWPw67/xJbxyZR9X9+cAWjD7RLfpRmCdFa8bih8nLQKDPYKZUVUV+q57bF7/qTcGGAGgHBugknTXdZEOyakUZvMlZk2D+VyA2joJGLt/+DCtybPaczgCv/g25v3EqyAvwluXzC/MGNkHxo0DxunpKQgejki4sL4TtT5J2hq0YmHMGRVjNOAifVIsQhSwTDRco8OrpCPV+GYMsLe3J+BIhOPjY2w2m+QjXIK2TnT93Brh3TWplPdeEkR14sa3Wq22jGlqpNxsNgn0ZdO1ybDDIdeLhIleIyQUxHw2g3UWm+hqF3xAt9kAgWFJ/Lcv7e+jM12StEtjXVL8S8la3wHF0YyAtEtSPIvSGBfmuGiTc6j4/WxJW78f3IvUynG+F4ezBq++eh1X9hosKwPQJnvTlHQRKBrdxsEo2xuTVKU3z3HpsaEKpe9d51ofhm7EFKm35XIJsiKoNPUMDyJofyJpP2IrJ/YU32eMwd6ixpc+tcAfv316FkX5FPoGfPlTC+wtGngvvsFqAKMC5BQdNC1rtmzHCzFApEnyR3yjijox5Ji54Ls550ageKgxpfxF4zWXwrLn83mKRBxviDrBo4UKHkIDKVDpeQqAmnekfEcDrwjmVBAgoBd+3VLqizFmUEyg6zowpIJ460XSbjfiJlhbBzYi7at/7aBiOzTIJj6DsQOg1LFhoAyKnHi3Q0DVxZsi5c6QiMfXOe97pX8UHM7aDKa+m7p6Cks3QF05MfIaBo2SH8l8BEA5H855V3fOwcdUBs9bI0CihwubA4A0x621cLW4paoU3cSAs2RkRd7s5b1/Yoh8pFb6yJbGHxDBRGluPp/jr3/jFr7387fQ9c8OtZ0l/LVfvYnFYo7N5hR9zylnc1U5HMwP4IyL9i6RUDyLi1GSaEojEzH6vgOzSxOFYj4NCZbI1n6CSqoBnW9hWHn+qIEkFRwoDU2uqjAnwo0bNzCfz3F6eoqHDx/KvSL/1/c9fB/B1VAMcPLpGdLzx2RP8/k8ufQpP+5DAPU9jEGMzvQxVL2HtRKkoSppVVXo2lb8t7sOJyfH6HrZTDwYx8fHskn0HlcOLoEgbp62EpBTfpIipVNVFXwfi7POXBoPaclDfqudBa7pulFaGwPWLiPk9Pd5W1VefuwDvqvJO2JgAL48+lePZTgLHBzM0JgAw16iwaLB2hDBx405BPEMYgk3LTYm6Y8pNp+maVKqXXWBfF5aWlcmCw/MjLZtE721f+kAdV3nmABbwcakZ2p38gVnr2X6drVPQHvUSst96VnBxEnlrqoKX3itwWduLvDj906eSbCWIeDTN+b43Kv7YDLo+xbBt9DcIGKIy0UGOEragNToS1INR6NjBNecQc/oAETqOnIhPAQCpRg0A6DeTynuMSdprZQvKyvYHx0dpe+V/iCIPzmRSL4KyDnE3IKogXOV1G3EkMbS350z0eAYrfPtBs5F2mW+QBOBex09b7pYhf309BRt14EJOD09lc0gMMLeHjhK0mNJmzCUiL33YjEwkd9PBjiGhm5fFG70mcd5WnZpgOfx2/r92KX1IqB9UUMkQebpbO5gfQfjGVPW+qxNWIDCkHSZoGqEMns+6ZHS66rsX9/3KbXCcrlMwoL4Zsv8IJKyf2ARiFRIMeZseuRsOfwlaqXlFxiCdubkhtLM3/ubn4Y7x6fySTVnCf+r37oFHyXLqnKxjuA8TQqXyoJFamPop5c8GtSHb/B9mntc/pnAPYrOIEOJYxy452ka1QtIj/P5HLPZLPsd6w9lgNb0qza5MWZeFSSBNWp8lH7nABLnpObjbD7HfLFIIe4K5Ov1Gl3XJdfDRL3EZ3TOxQUXXeSgdTXDJCed6ZEdoEKUNsEp0C1bSY9on0u/36njyn/H15Kf/Lca10vaZXxu+fdu6b08gSNNRxG8ACQLYzwEiQk4+1rjS8d3SuY5K4CgMs3EV6UBGMBOjUbHC4SBEPCJn/ZjNHWjG07oocWdmXFlr8b//Ddfxf/jX/0c7VOkSWpH+NvfvIpFxViv11i4CsvlHuqK0NQ9wpJAm2NU3THQ9wgBIEsxYaZE42kiGhNBmyPnYa1BCKX6zsVPBlQEKQRhyaK2lZTXikDZdV2UKoVCgrHFZpYltbppokuecNKr1QoPH4rxxUQuz0bDzLh+o/ddAXiEvejtoU2L2VZVBTcTycw4h+B79F2LzWolxXjVP9wQDg8PcXx8PFwwzmLhlkCQnCLi021gTIXQ92AOMKb0ypANtOs6MBEW8ZkZHD1phtz2RZou3DLsXMesXNC7wLVsHL2B9O51LJm2Xq9TsM35htEijeuWMVpRWb0/DHwPVMbCgOG9gXGimZGmaNeNpCwWXFytNL8oXZDcLZ8n4AbAHAabYukFpVih/HXqezEZZAONbrCkZfo+Ae1HajrQW1FjPPxeX9Bf+PI1/PzDNf7dn9x9KsBdO8Jf+spV/Lk397Bpe3gG5pDox8WywWLGgGsRTg36hxuU+WKZOSfvU0okLTxOdMbQ97UE7Di71DYpbhlwsAOxKQQpIBAYsESDyjllU+m5qesUyi73QVILnbO578yJKhHDaxbbVFIv/bs5GteappHc2/M5wB6b1Qp920rUY7zerGlwenqK4+PjGDnpxMXQGDRVDWJG1xFC2ydgC9FYWuahQaSm2pj3WwxTAEJcxJSNwWU7D3xU41itVmmuXcRPefo+2UCs4K+b4nlSXXpIzrTbjjvH2xgEjzg/tHjCUMrOZ+RrnUXxPM/0SBKAiqbvTudw1hb1lCyim6iFDQqBfCJpP1ob0yPlZBqrLvr93/3N1wDgiQN37Qh/8UtX8Hf+wk103QZ1I7Ubq6qCGdAGgKre+tmU6Yv5DIlv8GEhTl2A0iQyiDRuHK9CfdedYcfErus6ZXATiXqo8qd81hDXPJ3Qve8H70ZSeIb4nDlkuG9bdIOQeZGQFQBKztwaG6+f+V9fcI1aVELvW/ZT98Hkpz09UpODOeWxpAs49/vR05LuUsnL5z/vXH02NS5PP4/OKoL3AT//2ft49folHCxq4a0hGsrIifTse4/W3PNkfNS2a2mUuDFFQ6U1UVxokJ74nPYJaI9aqogco/jKppzseHEZY/B3f/M13L7W4B/+2/fQ9v4jGSeNAZwx+C+/eU0k7M0ay+USVT1DVc/gmga2IhjL0Koh2ufGKIBmMEfiZCVtpIVNaybVptPNiJQ5Hj3AaDLJIgRABi6W82IGQuTn+pj/2qoL3Ai4jTGYz+e4fv06Tk9OsF6tItfMicuuqgqLxRzWEEJYiuufD2g94+TkNBXp3TvYx3JvDwRgvToRqoIZ1jk8uHsPbbuB73s4a6NqLi6ERBSl8gq1q2CdhXcWHIsFV1WF0/4YVeS4k595keNZ5wDH6ypoM4YLkIguHBFZcqFdLJ9WVVWq2D0lHZeuj1sLv/hT076WKYjPbWwxzreeL6xSfIjj3+P//Q//e/zP/sZfxpe/+BnUbgaPNZg9QmAwVzAUJdE4ztmeUgYe5XtJGgP73FEj2sa8v76nvu/TXCyBWwWbEEIsCB3tOJFGCWMtf9Q+MUSO2tgANP5O3XbKRQLIxPqLX76G/8t/85/ic68sUDsa49wF7i3S9RuvLPG//1+8ga9/rsGm3aDrWtR1g/39fVy5eiUCeBX50jwhsoo1fq3Sx4Ayw9swz3P2Hhmekzs3vqQu+Gj8sy7RFaVhctdCMzFq8uDgALPoxiVpVNuBL3fT1FgsFnJcLJ7AzFhv1liv14mjns1mmMcMg733Upuy73F8dIST42Phg2MAjzEmbSpi0KzQNBXqAfeYeWTllPNmYLPhElkyHM6JoW98QSuf20qjuPbzIpzulKQ+ZTQtDZEXaybRI5P9LaTtdtPj3/+7/4AP3ruH4AnWiqdPYA9mn46b9tEuZYPhBj8u7PG8tCm7Qunpswu0xxp8WW3pvNfyQkva5aQsVdDxZ2edmz1IMqCXlZMHxxPh+uU5/uu//QZ+9uEG/8O3P8B//PEhnCW0XZjMVWIIqCuD3jO+9sYBfutXb+BTN2bwPmCz8SAwKiNhv6ImQl2sYwvg0BcLIv8QR846pmOVpEUUhSNOQBI4oPc9GgBd68HWg8mCKMCQpKPSRD75gUcqno4pVKXOnO9oZLfG3zqbvEE4BDhnJXUqS3a9QCSV0fseiLx1CPK8+n60uk021kmaVg4h/ogEbEgKMdTR91c2saxXnMUZq1FvADhUzKNytUXGIHtMaoKtgmdO9xydOiEsjIF22MWdpNf4CaQfFDUl0s/032ITQg4rl35z2oz0XvpbIuOYYprbLmliYuQlcT9Vo934viknCYrnyH0ox2GXx0t+hvFfUxrCxXDg/GPUK4i2hj/hTdGXMWU5pit18z9P0n6hQXtX2/XSSy5qW9KWnBp1NGARxDOAWVItDq5mCJ++tcD/5j/7DE42Uh7szz44xQ9+foKHJx16z3CWcGnp8Obr+/jUjTk+fWuBWSVeK+t1C1c57F++itpZNBVhPmvgYnAHAbAcqRFu0XUn8N0pjGWEmKCHQoAlwLAFk0PvAwxIqBPjYRC9Chxh1bXYnDzEEsDh/ROQEwOmqwBr5adxFsQGgAHIgTkv1IzPMdjHGFnI0XMiQIoJJ2wbcO6E+WIJYyzms5nw0d4j9B59u8Hm8BgtydF914HqCouDPTFk+gAfxPB6fHSI1ekpunaD5WIJkMHp0ZEAvQ9g0wNB6JTZbIYD58AQqfz9998HWBLROpgU4u599LwBwD7A9z2qyqFyFm3noYFFJDsfQAxLhD7W2JQyuOmht4B2mAtQR2Obu1aq6OjoCE1Tg1kjGcvz5NwgE1mlDFgyme4ihUKOlYw45rvOG74KJ0jvLAAmABwQ2A/AT5+A2MKSA3uD0PXo1v9/9v6k2bIlOQ/FPo+I1ey9T5N5M/M2VRdVt1BAgUTzHh4fQIxopMjBE03GAc1k0FQj/R39BmmisWQyCm+gR3IgySTIRABEFQmARaCKVbfJm91p9t6riUYDd4+Itc4+mXlvXcpkWRVV5+Y5u1krVjQe7p+7f36AQYCzCfM4g4yFNS2Yy5ZAKVZV2OXfpPdlwUXVA6qS1DRNdp7eL1DLUaI2wHqMv6lWITigRFLjkkDGCm5tBJJkBngyBiGmhUDn74vD0liuszq+vsjKL6XQBl4vuNfmvTpjyBCatkHccwknqImT8nkLQBaRrJttZ/Hb3z3Hb3/3HP/DH97VFtgphMx7PcqEuabB9uwC277FpjNAmqHVrwtbQwLSjOCPCGGAIekLV9kVbNuAYBGjr8zMBKLE71vCPM7YHxlmuL0ZYJ0DiNBuCLaJaBzQ2IaxcCGcAjTFHQt1wZBsd2tEoyv4+EIjpZKU0wnsETcbpBAxDwOm4Yjb4wHjOCPFwALJe7TnO+x6rvA9pQg/s1ZyOOzx6uVLOGOx7TegmHA8HBB9yEUMWEvnjNbN2RnIGEx+xmdPnyIiwSagBSEZKRaQSvXxFCNiiKBGIlWmGTk+GWBnKhkhWKq1LHW/3dVo60b5szJ/eahSjluvLYMimPR7YkFV6lsWfEkTWAiZRyQFDsGjLHVkPcncqEaPyIKbFK8vVp4eOgkGSA1SNIg+Yp5GGARYA4xzQNNamMTXimIRJlTPUQ1HOdjL89UQ5OujXtbjetcq+KZbFtpiLS1hKa4lGtVKJYMYAxaFmpIK75T5gvw8v/aev7RCu/aOA3dN0lN4X206n3p/oZff8/31PTgigfKEa3wnhznZynPOEAWtvp9iyNlUWb/QvVlt/GU/WYvScCxmIyswAyggUQDNMyL42s5q6FIEWYsUZCzIoOyfVA0CldfkT1YqVuOiWrpiuCEgxJCTdHjIKAu1/NzVT/2MtRde42U5FLBUIudCvx7G2Uo4nfJBlNdyVIhcN997/TinzOiMKqxgj7uflHEqlki9TpcFp4vikUd6AbHwjbP2Wgv4yhmmcEW6M2/yK1EWKnkd3em4PCBxP7uOy8ypdUHVdypRXMabltZF/Rz187+JSGnZH3wtSX0fzn8HsrqDh5TbLtZAVtLuv9/a//CmyJ5fSqH9prCaWhDUg6pmak1kdN/1T0We1NdVjYGjGIzEF/fYvvdejhbougbWas3BNRsaC+zhsBen3WpVGBY4uXJNFTYVY4TilHH2ePb8OY6TlO0aRpCxDLMMAGgGGY+uYRpTYxq4ZovGbdC0DfpNj7ZV4VeZuVSsdF3imuBz58CMRaC8ePGCy+RETht3TQNyHM/qpTr5PE0Yh0kK8GqYH5c422w2XOHGOSBusNlskFJECoGzH6cJwQfc7vfotxtYOSQ53d5yvLnqpYaTbZAPkwhjHFzXw19fgwIfYmp5UH6m4uyVmYI6KuvDZekULporD2NZe8qAqM5ZTnNeOrfU1ObLK25d1EBSWlQwzWzb9nkdFmGoB5L2nQBItmeVDUo59rqk6Scw3NJ2Dp988jG6zRYhAk1rRJsvgh35+trXchiXMRGK4IrfZbfbYb/fv1W8tvoN8o6Rw+1tfVr6fm0Z63V1fYshq4/Blkt1D46eMrlAc+b3UUWkkhOqqAWpa/q69ksvtNeTUre1N16FdiY3r95bX/+UMwkop6ji5jqhAGd9PXjwoLD1WREAyeOuysAm7jgcgRAWSlytnWrMsnFNcXTECAPGFT0CXr58hSkyN8g4jQAMQgrwySOkASlNcAaw1sG6Fm07YLe7xCZs4ZoGTVPoT+8dcyBrz3dM20qDu7q6gjNcmaZ1HDttwIWECUAyBn7mOpAhVBEQKcFIIYSmadBYB9tzFiZSgp/GHJni/YDjPOEiXGCz2wGA8JAbxDBDs7A5rZ7DI5Vek6yFazsW4DHAJIafqoEXrLeyNEQIxyJVV0K7GqSkQl5MZokhL5/nyIuUKp+Lfi8pUdf6sgrQyPeNlcxIZnmUSMhFZAn3nKuox+QRasKobB3J06rQNglta/Htjz9E120QAtB2JFxTqfryUusvy6A+2BK08IgKtM1mg5ubm3u14VNtvSzXCsObmkaS1f2rteL6KlRNud6DDGWahEW/V1awWoYpcc3I17V3WmifEp5v+9lT2rZ+7qs0vU4dZF9rW4VH2ubTWKNEtDcJJTaTvx8R/cyJI+MIGyNsKo4ttQpTbbJV18ovyE2CD/m7LKQMUjIw0QDJIibVKJEriCjTHRM7KUQSYVXdONHqMWCea3Nn8Vc6GdTJl3UyqV+Zq8dU81LjngBHxKg1g3T3UK6tnUKytWzZYsDSZF1rbECBAcomvI96dPGt8tA1tvUW0Fo9yIs51WtUa0FhCv0OoYZ46i/K9e4Ifp6F/Hr+aFlclIpmfHZ+hqZxcru0+jm9hxYwFGSNx/xiFmr6GbV0l9ci6CHy/+um45uqsSGBi05G/aS7Mud10Gvd3mmhDbzexLmLE94V3OvvNFLS6xRbWj3odYiWCjf9TE2GdHZ2lgV3329yuS01eZGdQyo9AsbjgOurp9jfPsPtq0/x5LJB76S/snAiRGiT4LLV4rGWtcdEABmLYZjhNqxxPnj4AAk9IhqOzCAPUECMs1Q55+SBYRgQQsDkJxz2Dk1j0bQW55LkwuMpWl7iuoz7/T4TNF1ePszp5nklCx5KibUs68SBlRJiiDCWC8FOw4DoOe66EdIpP89AArbbLfw0YxpGzOMA2u/ZyKdljUSGGyKmcUTfdQx/hMAp+CnyuElqfYwJ4zihzbBErNgR+fmMJBHN84RkuSal6t0K6hIMU5GmxORS8txaJ1DXTy2c6sNF12u5t/YHIugJpuatkL5FwamUfZArC/U4Ho4gRFjrEMMs11HnOkmEB8GQBRl1yhssnap8GwPAGmCzafEP/sHv4fHjBzAmIYQZhACOHNHorKIAqZDW6ymsU9cQVUmoENHbY9tfv+lcrLnf67k5jZmLzCDAWIOmcZimKUOqRV7wfLDvKUG5W4B01wJbtV8aoV0PRG2S1AL3lDa2Pgnritia9aSfrYV2TWAfQsDhcMjYnPLs9n2Pi4uLfACsYQPW3MrvKjDGwx4vnj3FqxefYX/9KS66D9Bv2yK0tf/c0cXzxRjRNE7C8ERojzPOt7wRLi4fIFGLhBYhBliXYEzENA1c8fw44Hj0GIYjxmmCOR7hnEHfN9jtNjjfnVX9LQ8SY8pcHzc3N2iaLo9DhnMkpDJ6DwLDHSYlICrtqgOCxzSMiCGhsQ6t0LT62YPAXNtXxwHH45HxfuHp7jqOGtEkFWstQgyYpon5mo9HzmRrGqSgY8N9ij5inGY0vdWFsRDaCi2ACNM0wnRdFtplX6sqzq+FWLjCfQgZW1+vx1MOV7YOlg5RTa831kj0ia6YCC50kWBlu6vQvr3ZgyjCGocZswhsPrOyczIRyFKmC82RUYAi/9WhSOg3Df7b3/9t7FrHQtvPsCaANIJIxyFj5rym2eoqe1OJsvq+F4U9ZaF9v1Bb25NfX+PW8V8fEksn9F0simU5p+zbSmiflD+GFhtFLxXjr+K037qtBfe6asipiJP1hqpfr1stmGtYpHBFnzo4UnZIRRFe0QcEYa6b/SR0ofKdlKoNVf3cs3bZ7FfTUwnaTcYyEyKs4aovub/Wwpiyq0PgEKYYYk6l5/qLdxdzCMral5abr8KCSISfdpr7H5f1ARNyxMxyAgGNc85zFyPSKkszm6sxIZl057As9xWhJMK2JooqZnl1KEJSk1HtRX2ur4CqrXHeU03lRVkz9e5fDUr1r6xkJrJaXPtUB1fQVV5nyP9Skb0A2GHcty2sIbAvhj+YMk6z7H+xWsq81JWMYoywleLxNq0ek/vH7xeHUFIqUT7lenfh1Ndln96x7t/ioHnnhPYagz4lVE9hR2uHgNJiNk2DpmkWn+v7Pkd+rIUBAAzDkDVxY7hqym63y6/pNVXrvn8xstDxc8BwPHBx03nGdLjF8XCDeTzifLdj3oyMn6ZcRaYW+mp6Gq1MTlx84Ppwi+3uHLvduT6gsPkZJJ/1cdGKOxBZ9B1hmjym2eNwOKLveHzGccKXT5/i/MEDnJ1fVjgl8rjMs8dut8PhcIBrHM7Ozyv9KKFtWwx+hg+BIYuZsfvbmxs8fvQo5/KMwwgDZuQDILwiwCT0q97PaNsW0VqQaKEvXryQEEvApwjXOMBI6afKEglCDBViBFnD9SrJYrPZCjwGSdm3+cBxjiNPhuOAXdctEOcyG6dbHYIXQszrjav3nFYCTq1boJjz9ZpamPTSJ+saAEzw5H3I+Ds7JktEDQu+yD+AEGhBPsvatSXDiJIcBs4WHwxVUp1hg/IczM0xYZoGHA6HItwEHsmVXwRCXD/z/e0rnJDrb64OB5J9UjsKy3wkic+nbJmcwqjHcZAKUUttm044Yuvv3dfeOaF96lRba8+qsdXZVYpD6+QoQZC1Fufn5/k6MUZ0XZexWZ3UENjUBlg4xRixFQL+ruvw4MGDvCBUs9Z73+uASIzlzrPH9fU1huMR8zTCxgmHPQvti4eX6ETo5HQFVsFYW8yHiSsCW4S2DxHX17fY7s6wO7/QW7K5azglOUGtAOYK6doOxrS4PRyRbve5ukxKwDTOePXiBYxrcHZ+AdV09LmGYcQ0zbi8fICrqyvmEYFWdeHPNW2L4XhgP0DwGMcRw/GAF69e4PLBBcMIAKZhgCWDIEUQnHWIIWShPc8e/W4LEnKnEDwL7RRhhSWxTR2sc2iFx6VQzHKJNh8COmvRGIvONthud2gaxuCdMi2Kue+cQ/JcX3JzeYHs2qw07XjPptTxTSnB+4C27WQuwkIQvG5dqw9F0/j1vRp281VUgmtYaMeYMM9+UYas69psfZVDI2bLTDHpFBNgCNY4pJmtL2MIjgvSFNqEWhvNRmGJnjoc9nj27Jk4mEt2cdu2aJsmC+23sUCydVCMta/c6ggaIsoEUEDlkBahnS0IZLLKZW+IMAxHCeNjxUmCgCQW4LRv7XXtnRPa63Zqct82qqQ2s+uB1AVU44+LMKDq7zUUAiw30qmNWOPPy2IAATEEGETRwgKcLTl4d6ziskeql2khBHjDNgV6oNU1qsZ9phwex8+x3Ej3F2C9yxtxt28FG846ocQIh7gMsYwxLQ5oQ5I6nl9TwqYCL/ngkRJgXNGU9JCrY+A5VMuA5FDXn/pwrZ+hptSsOcJR7nB3NKpnVC17AYwtLETcWYNvCxXwZ08LsDowcfWNRZ+zyX7nw6sXEgvyGAC7+kw+fKpkMlV2yvoWGlwUWKEWnqe04Nc8Ne63bX6xltch/4VT8wtUFv1KkdT5WMMov7Sa9jr+dT0AdQXqU7GyKiwBYJom4WkuuKchg77rEXyAnz2aqtKy3uvRo0cAkCtuaNz1euHdd3B474WDhDVZP3suLGssbN/CAUhxhp9HbPuOU8djAsEsnBu59Bctw6PUYTmHiFevrvDw/e9hd3YhH2WuihCYEpSgWHRJ0AnRwzqLfsMsfaxta+UZWwlLZJyZwNroNE24vb3FZsuJL0DBWdkR2XL1GwLTcfJbaNoWMQXE5OAs90sxdKAUrJ0lAcdah2EcMU8jCwTJtORyZz0LZYlMaNuWKTINoXEtuqaUU3NEoJBAIWCcJoQU4WYnxWYj/OwzO6ARrUw1qKyErcuwr3BgImGVBGvAQTI2x3FE13UACNM0o+u6ReGH+hBUAqiSwFHWfVE8VvtB1gG/VCA0hkOqA6oS4kSlgrgxzEHjZ6ChBtMYcROPmK8nPLzYYdMyZBViRAwes58wTBO8j5jnooSEMKOritnq3Co1bb1PaoVp/ZynfE9fB7tex2VrlvKyrWkwqMoMVsG8dGjU4aU6zgxLLQ8i88tWuaYOxTvVNKpDP6uheDqY9emudQQ12oA1MMKm7+HnGeM4ZsGswf8A8OTJk4VzkSqheZ+GDZRF5r3nKIvrF/AhIEXAkBVeZ4cmidCeBuw2PQw8Y9Ea98wwqxDYACDGR63ERicJafMh4PmLV/jObzzA+fmDPCYhRvgwoel6JNGGQuDQMEOEyc9cGd30sMbhi88/lzJhXE7MiOYIKYarmqyGS15fX+PXvvsdbLfbouESC4S262AlC9E4m3WltmsRYoRNEa3g2FFCKYHCEz1NUw4TOx732N/ewM9eNPaA3vXY7baI4LC7BEilbBbUbdOi3Xac7dn3SD7AjyOm/QHDOMLMM6yz2J1tsd8fMfs5C23S9QTKcNVC2dO9KfBVcb7aBVWsrq1hGERo447QVnhB140KkcJCuYRMUlpWUGGY427Uhl6LlZf6dd1fNp9BhhxSArxP6FyDcQzwhwNeHm6xcQ227QYxEYLnw3UYR7y6usIwjhiGCSkBjbNoG06KMtV+0X2nZf+0qQC9n3/k7bTW+15Xpa1WcGoOfb12SsiEaPmey/Mwf1//rceSoaaqWo1c1xjOzH1de+eE9uvaeqJODejaOXlKuBaTucAfKrgBJs9fx5Keggzqe64hEY3t5g1HIMXBCUI4E4EUOKJBwGwV2MuH5v8sTTpZNIKhWtvAWoVHCtfEQlssg5jH0pgSArm+/to0JaIMqagAWWoUInjWG1GUvLxZUJmdWAubwginGLUPAT56Nt1TsbCQEgIVGKXAWUtIK8WEQFVST6oTPVJOwX+tScs3RgYyFw9Xnq3evLoWyiG/pCK4e4vX0ZXeXcdKE1u+UrEwphqrzSBOPR3yEuWyalxmLCJMHmGQELfEh0Ook7GE63yeZzDUBqTEVkoNG+qBU2cQ6+uvc8yWrn09Lfttr/VmcGoZdfbV4KxfMnjkvgnV1+v6ePp3jT/rxlDB2/d90dyrTd91Hc7TOVzb3MGsTx0O62yuunHSSpAiADNrjOPE2ixx4V3rHMiw/kyIQPRA9DCUNDa/CGgkJMRKSIEjQVLkCFIy8DEhhASQhbENjJDVK6QBAkLQ6j0kprBGF9hsVltnuSCDPLcPAYWrebnBzy8u4JoG8zzn6vExRYZ18mmSJCSwQDLGWszes1bbdui7ng8rLA++2XuEGLHdbeCME5Y+dlK6xmEcj2KFaPYof3eaOEpot9mAAMzjBD/POB4OsAmYxxHj7QG9a1jYB18ss7QUKncaLWlo+cP3O8kIyGnPqlVHSaFvmuJAB7AQcDnCQ7FjcTIqvMFnDDMR6o24GHIx2+tDA9CDzAAUxVHMjHW574mhL0sWxjjc3L7CzYtXoPGA8eNHCKHH1dUVpukaIUy5zidHTbHV56xB4+76CxSW1BqZ+txawacOKHh9Wx46b2q1Nax/r+vFklhKuVKRNCU6U8uG5KDWeqaLw1l7J4ejPr8xhi3N17R3TmivU5PX7+mGCCHk6A/9UaImxaGdY+zSWZdJmVTj7TcbdH2ftcBaEK/hGRXatfakh4gBSYQEhz1p5ImxFn1nkSzBe64AYsgD4J+UJiBOkJy4ogGJqRuEjpM1R4JHREzEnNqmQQgz5pgAcrCug3VshkcR+iq0tYCCsw07PylJeBtHEThn0bVdFiR+9tk8F6maD7sHDx7g4oKxc9cwxWuMEYaK0OaDlMPQfIgwzsFYg2meMM0TtkjY9Cy0630YU8LkGf88u9jBWoZ5GCO02O62uL25BoG4cnzGGxOmaUTXtnDWYjxMGMYB0zxjnEb0rkGYJgz7A/pHTxhmCXERTaBzuTSfWbumGrtGcT5qgoy2eiMrJKBCe54nzPOE7ZbhN1U0agiuWGhLvmmq1meKMRezILBFGCV2HsCiqo9SKVhLmMGO3JiAGEr0CCTMj/myG1xf3eLT//JztJgxDL8GH7Z4/vw5pvEaMc0wBmg6DrHse8ehhUggLMew5vjRJBvdO13XIaWEaZo4m/aN7RQ+9fq2HL8itOtDEgAX6Kjmf/LzosSYypHNZpOhwfUBiRyBUu7t7OvF8jsntNcbSF9bv3dKI69NVI3VzjCHmrhpaU4DyILybfu36As4MYU5PHwOG2yI04cTqJpkvUoU3mQx71VpNHU2ZOnPKXMrJTHtyaB2htQMJmpdcOOwPo155nGoHSdqhguSXmG22up4d6CkV2t/CraaRBtNGf9NooEDlTOqfh5U0SREGWZJYOzRWnNnPShakYWgQB5RCh7M0wyXgDB7BF8nilR3Xq2jk6Zt/dJbLJNT/o/1gaAi/pSD7I6gIgWfSp8BdqonursPyrOsrpzNsOXD6V5geoMRMD7PhR44KXlYZ9BgyblDUBhlHWFxN9lMlZ+3wayXfX771+/bK6fuuZYlNbRZ3+O0I3N5rwWUYl7/TO+c0FbhV7dayGpCS42R6Xu6kPSkt8aWtHVjXntOvw5D0/cUpx4kZZqzviDJID73ARDTlVVUcXJlVRQ+TDAmoXEGqEjV1YTNQlOkOROvC14rZvPN7QGHYcLlg4eICZhmjx2A43Hg+OyUQGQ5pTlpvzjxJipbHBkQsZk6hYh5nrLjsXr6O+NRQzD1YRRCwM3NLYiYYjVKzK4mfkzThNn7bO2kyFCFPruxZgF3gUhgoupwBZdzss5CE82Ph4P0KyF4rtJiidA6B2sMkmGB7qcJxhk4azEMAwBkqt7asisKwQIBLocQVsJBhEJMSa6b8rjM8wQiQtd2yMkYmRIVEk5WDmmNYpG3Fxr8WvC0bYNpSvBhFuiFYTXFt8kI/CNmU36kzB0CObQEeoseMXn0fcPMgYggSrDOgODQtEqIJv2Lkn6PpTBU7VYPL/1d8yeU9+bNbb0fTx06q0+cUOTquc2O3Rjh56nyoXAiUNtyTVNV+pxr4Noua9p32/I1Vh5+yeARL6FS9cmtTkKFO9QLr7j1XTyPcdBUeZHVefW6dkeTq16PkctozeOE65trjOMkWLbPmof2Sw8XYAJBiI7IgLkhIqbpAGuArnVIIcBIGFYQx1iiJHza/PmYOB3dGguCgfcRr66ucXOc8d7jDxAiMAzM4bu/vYUyShtyCD4hRcBapmA1ljB7dbZyX9umxTzNzLtRWyBiitctCS5OliNKdIGGwGFgr15doW0czs7OcHtzBWuLxjmMA+Z5hm0cjLUIcYavhLZ1BiGGzBlClhOEYi20U0TwM5rWcXX0lHBzfZ2FbEMOSAmWDBccjhEwBsFaTNOI3nRo2pZLzhGh7Rr4yS+siEzwZCqhnVD4XlZrLSWuWjKHkA8QTZmfJo5Q6iTLUuPYQ/AiMCEwUIGC1CqsAULVFmsopO87xBRwHA4Mvcj4gJBhtRi9lF/jwx5k1BPOrIsxIYUIRA7dC2HCbnsO6wgJHmQDHAysNej7FknWII8ToD6a2smqWrvyfqjQ1j2y3+/vKGZvbm+Pba+1eyUaq2FV7z38NMpcGTRti812k+ULh/lqzgGdFNqKedeWlOZCvK69c0K7NlVqB4YOSq1Jd123ENr19w0ZxPXJKLigfPCu/XiiL/V1NSFknpgxT/md6wmtrQJxB2UMkuS+HCokfMMp5slnzDRmrStrQtCUWUAN5WnmVPGu6xlVVEw6BNGukqS6c7IEIBoSGYAUm5dkCCm4EEKsNOf7tO3ai7WEUNicntE1Daw4omQE+OALniGVrD2ylqfXq7V2hW6K01E/dRc6U8cWgeBccSazVsvdZ34VzlAkQwjec1akMYixxBIvIJvqUV+n5WUhIdaYCmyiApXU+QVEBM0bTAKT6flIeeLvb9nKFMioJLAoF03pqkJ49TXvAjL1gya4zK9eNHaO47dVvwWwSVjMz3ofav+0z3Wcdj2P60PwF2mnoNX6PVXA1KpTC061axXcap1EYCFjdKTqZ15AL2+Yv3dOaNeeWm0akmctk7+rs/FUCNUdfFKxY/29fg9YrGDVBtTZ6aUaeBQzniuGhwzhqJd5lppwm81mma6bkKk8QQSSMBE/jzAGaBuLNfyVscsat03IAkCF+zQFzHNA22/QdRuQOCKdFLwFJTSuY+0+GhjjYC1x+UD4rOE2TYfCi02oObJPNV2Tlf8cMSaJnGGYKMQIJ4ccgWCtQ99t4OeRoysmphcwviLsr/DOJfQAKP7urAUBnFKcD19wKKIMlgHYiZsSO91CgJ84mqTfNJxARBbjPKDre7imxf72WB4uVSKIUIrYgDMn5eStOocckxxjkHh3FtDzPKNt2CFu5IBba4ELLBRFc0P1un5OqRbqPITZezQNF0RIkWP9a46MaggBomX0iMBkhnhdPLi8QPj2R/jgg4foegeiiM2mxfHAzkQylMeDh4rhNe3zWhirBaqarVrG9UHz5nZKu309nAkUa6nmGNJ+qdW+3Wy4upG1aBqHzWbLlAjZRyTzXR0mtVAuYmU5V29q75zQVp4Qxa7rjXzqZ41X1a0+bV939tXavbUW0zTl5Ih5njmErEriUQ+zmnjzPCOEgIuLi2xmq0NO/kHxFSaMA8MjrmtgDEqyAwhBxHZMCa5Ed4EMEDwfIIZ6HMcJwwxsdxfYnl0ggu/bdh1UQ9puz2DIwZAFkgUQEZPHOB9xu79BdBG73blobOpZt1iQ/4uCqcomield9FJOLx+nEcfhkLmHY3TSV4KxDue7cxyOPCfj4QjnLGZvcpWPWAntgpdj4VhtGicOxhFIUW+PxlpEIlACHKWcPTnNM1eFnyf4YYTZ7eDEUpumGRdNg26zwey/RE+9aMAybyjiImuJzgj2y5/Rg2sYDjmTU03reZoxDgMuLi5EaJtFKv96vZrq4ERiSCsljszRPozDiOPhmNdeCAGuceg3Gz4gjbD/YbkPYpJXyDKGDj0o2TrhMDXggw8e4/0H5/jo8RbbHYGMx/nFFsPxWiA6g+ADQCLAiUDEhF51Qksd0qgcQE3TYLvdZqv07TBtXf0qJ08L8FOCshT48Nl/QUTYbrfo+x5d12G73bIiYApzJ19TZl8PCLlmhlogFqCsgzyHEpv+JrH9zgltndQa+jjVahNI/143ApAEElkI8Hs0SV1sqmVzvDWH8ynpjJq5a/NvgZ0DdxalhuEBEidMmrKsE79cIHceBAoN8N8hRIQIWOeY8S25fH/e+yzkrGk58y0SEgJCSCBPWTMEKqsDp6ARuXOqNg6Bl20qcEWMkSvoJPXG5yuCZPPaiTVljZNem8RrLbv8KnAAGXazRaWzLVpX1o2SOMYi15WMwSOqUwwFnkgxgCSmtkSjULnbiYkoxprOPb+uOKlaf4xbF8vtvqSa2pmeTyq5eZJDKR9ZMeUoJS7kzIqCFnpYjPkKoigjqIdgsZL4C/wsm00P17c4O+/g7Ag9KHNf1cqQPqqTdL236rk0xixofE9lFN9v2WW78/SE3NPWkSDe+2zJqeDlsMX+jsWu3130gugEmlr3bWkBvKm9c0JbF/nrsse03SeAafkhAAUXX5A4xZjLWul7XdfheDzCzwUCqU14TRAwxpRakCiTlSd8tS9SZJyZkHB9fYWeEvquW5jNCQKnYLlAMi4JQorA7XGPpunQt41g1imnvJMKVWJWPmsiDFn4OYFdaYJ547SwzEJfPpF/Xyxa/W6EDzOur69FgDBEhMQQxna7BSLfzzmHtuHxGscRfd/nTDuAoQfXNBjHgSGpwK8ZEQwpRjhrkYJhaEdN0pTgJS46xYTgA6KYrNYQXNugtQ6padG1ba5sY6XKu5dYf5UhTdNyUQPv0QiHChJrq2GacoUcHStA0+gLZwtX4eEkFBV0NSqv/5q8dnjekiTTTNPEB00IrM3KPHnPTuvGsQkfY5Tf1wKD8o860+4kCMn8IQNL7A/oc6IZr0tjTD6YS0SNPFNMi3V6nzW8jgirqSrWUWD3wQsLzLhqClHW8dbarOVY8kbWnTUGG9G027atrEodr+p+fFPZAys4pOrPso8LXeLe9s4JbRWE97Gy1W39uizT5WewxLdijBiGAeM4Ypw44aNO6Hn8+LEUp7WYhjEL7povYrvd5uQdXYCKm7FzA9l8FLUXcfYgGwEEPP3iM3zy4UNcnp9lno+UpFCCTeX7LC2yFkWJIwC+/PI5+u0Z+nbH2LaPSKZg4Ebufbu/hSUHgsXxMAEUuTrJts2wjUZJaKgfCyKD9ZqMsRRq1ZENkak5v/jiM+EcP8eDBw9w2B8wDiPef/QYVy+fIXg+DGOckWLCfr/He++9l8cNYLy66zvs97ccU52YidBK5mScPfq2AUXmEkFM7FyMEcfDkccwRITjEU3fwTYOrmnQdx0a69AY9oOQNYiQ/njPFLG5RByHKk7zBBgD23RcLJiYu2Woigur0wqAZIdy+bNhGDAMA5x1zM0iEA8hSbVv3tkGYO8oiVBIkrY/exz2B8zTzBzOuq6JqVada+CaFp1o4bz+DYwphzBIqAyg82prJT7PbcG+WXj1vcN5Z+Eagkkc7dQ0HI2TI2pUwRRwPEk6V23F1HvXGFMRZ/FnVNNdH36vU9JygMEKDtX9qZaHyoS+79G1Hbp+g77rpYarg3W2rHUqPhyqNGdjxKI7cVDEWCtWy4NQKRHwmucA3kGhvfayf21PcuLoCf51qWFnFr7jEYOwyNULYhpHUNst6Cb1OkDB6vi05s1bV3cH6sNW+xDzUXw87gE8ZKcHCuwRUbT0EwAFIA6fYRjgdg9gup4jWgQD5a+Wo2ueZwQkEFi4giKcM2h7MXmh2gPJ+VJFXGjXdZNnK1V3PD9TCB7H40E0TaBrOxz2B4lsYQ+8wgTOOsyRzXt1KNtqwy4iC+QQNaK9ppTgbPm7kjwIfkaKnOQ0jyOMY14US4TGOXRNiy5njLLWrKRUMdf+4z4412AMEX5lMWmUikITda6Ak3t4P2M4srbvrHLZ6NqRvZxSHstTTlcV3EqepY3XHMOHbsEzk/LaAMo01ZOozrP8XoZMSow1AE5Jb62eJfxtY7JmmZe3yrfFdeR/Ky0bwJ0SY/XeXmvHdTv16qloEOVFUcVJZYgxTCCmWHrm4UepJKX9Xj7Yqfst5wm0VhDrHf9LJrTf1NbadYxc2TumiDD7hZmk6c4pxoVQzSeyYq3GZEcYwDixags1mZRet44PB5CFtmrk2UKQ/xJE+4XEek8zDHG1FMaVWeBRonyKs7SMZXEkQkgJPgQchxH9ZYtuc4am7blyiRXM0FrW6AwLUCQDJIPNhsMJyZRCEtYaeD/nCJLs9F2Y0PwgC+UhATEFzPOEw2EvHnc+JAyYpa/vuorFjgWcsQ4uJsFnAxrrsNtxQWJOQ3c5QoThA04JTiEgeA+KxGn2IWKeJhgp1NtYB2qYvS4A6DYb2NbBruL4eVT5YYg4PBIxoes7EZgswIMPgKTBW8OkUzFGFpad5ADkpBVgHAbGzyPPV9Pw2NYCv0aWsg8gVD6AaCQKh2EEhd/q9b6gdYVefoXDVfskybNyCnsB0PQr7AmQTNnEHDkxAORU8PBCImiOQdb7OQppQYMomncSKLBKGa8d/aqJa5q7Mldqdu0dQU3sk4qKNcseHoYxwzbWctx/23ECk7FGNO0eTdsIVTBlquP6HnogkQyN6id3oaa6T+tOfrX2Sye0VWvTk9qLWRQ8F9+tPevzzOalW9G5KueBNQZts+ESTLFsQsY+S/1Hrbhea1Z6cnvv8+Y6HA7o+x6AycENjI5IJEiK8POI4bCHNVys1o+zaJAGCHlbQUQ8O9iMAaKBDxHHccLLq2t875MzXD58DNecc4HehrULJqbiPXN2dpaTa7abMyQE+DBjf7hGv93AEGEcj3CuWAyc+1Ew0ijwt7UlhjohwkePw3GPFy+fY3e2QYqE42GP0ET03QZds8tMcBl/bRoYUBbCXdfi/c0TAMBuu+ON17T8zJGFcd918NPIYXspMmQ1zTjuj2gcC/m+69C2PRrrYM/PYZsGMIRIgJNSbpwnI8x+YKhnnD0SgIcPH+Lq6hreBzT9BtN+D/ggxX15bpwx2Gx7bAyTUo3TiHHkqITr61doGqaHtYZ5ypkGVxJnZFY16kY5OYZhyNp7jFwMQ9dcXcqutvAWTk5jsyWUkq6bHBvCVAnSBx8Cm/bGVGF7FpQMUjQAHGIwmCdgY1mgExxgGoZXwGuBFRCpjJRFXPFxICgfDT/1muNFFYbNZsMl6xyTT/k1qVOu58nPowyDSkdwdX3DnPAd49Ob7YbXjnDCWyPZ0Y5hMsjBxXCgRilVgjylzFoZI+CaUvVnIeZ/QYENvKNC+75QnlNmFPNMhJxJqWXE9G+AcXI95Ws+kiyo4pI3Qc1P1bT7vl9EjQC4o2nntHbta/VLzfcRQ4CfZ3a8WQufi6dS1qoXyQ4EcSYxjOh9xDBMcK7Fpt8BtsN+GOFqTZsSjAFca+EpIvqEtu0Rk4eZgRs9+ECYxgmAJi6ZvPuzpiEVvguUKAZ54kPxeDzg7GyHeZZybclitz1D23WYjyXUKiWwkLHsgEshwnUO3YbLjbHTjhaatjWcch7JYA6eMWsfyhgmwILgrEPXtsylDcA4g0SEWSEWyF4Tp55aDiEERHCYZAILt5aE6TBGuEnpRy3IMSxR0yjMklGnGbxN08D2tmjEWQlWKKdAPRpzzeGlE1JUzNrleP+aWU6x6oxMyPPUq00x6/Ve4axShSFKv0iydJEIBIMU9ZBWiI0AaBgc1er9CrZdJbMU3G1hFa9jpUtSkEFMywxJW+WDqtUc5fABgGEc0cQGbcsc8F3Xs2/BOSkjx00PugyPplSq8uQDrzp4oMoWO+T5sMFCWK+hz6/a3kmhrQtOT2flCmBu35CdBikBXlNSBafW7LjarKxhkXlmMvq19/q+fqgZu078qD3Wp/B3juJQUzbBICJFjxQDurZlrSsp5zVji4YIQVR0FXQJihlaHI8HHI4DLh++BzLM1Nf3DUBTlgulf1VmpVn2TZ2u/LtqcbyR/DTmKAbFt9dLkwAJo+JkEqZyTZnUyc8zJsPQQtd1mAmYp2MWyM46+MA4e0wJu/NLTv8mjt91lnljTAMcyYh2Z2CICzQ0cpA2ghtrYWTCUpjUMFXiQckIcP5ZzD9rwl3XAtZy/HOIGdLQxBYjXN9GDnKlL1CFoF4j3vNhU4edMgxSmP7atkGKXISBLTwd9NLXdcvrLVvxKs4pWxLqCI+BwwWLbCr9Y1pdXgtfPnsOf7zBP/jdTzIGTgCs4SLIauXKUC7G+tTfa2Gu604Pp5R4LFShqvcjW2mcMauWhDEWbcvXOz8/lypGmwV9RD2XJOdMjhTTEndAdkLW60R/1zBe7TcITJlwYh6+TnvnhHaGPUQQe+8xDVKhW6uweJ+dH/Vn17HRdcQHEWEYBlxfXy+C/NeMbEDBzVVga9kyPbVrTm+9j1bUWYQcCQ4evQcwI/oJwY+4OD+DM5brRRrhUgZvYM1UNMYCMSKKWW+NwYtX13j+/Aaf/PpvwLgek494sNmB6JgXlF4vSnKGljCLKeRNxaFiDgkQ/myma+37Hq+kqnaZj/UM8Z3G8YgQZrSdQ0weRAZN64BAOBwPGMcJHzx6H61zGIYDPr96yVEclk3aYRgwiCa+++BDPP/yWTb7t33P4ZAdsL++wgwDZxw2AltZgbh041kJe2ONusSyK++FPkiM7OpNBESSpJPElKXqkgsx4uz8HE3fYXd2huNhxDRy1Mj+cMsHg2HMVGOYLy8v89jXHNEKg/D3Z+aZMYqx80/bdpzRWrAnsZZY+OqhCqBU04GUctPIIn5Tvq5/GxhnAUPwwQvtAQNumUFRsFwjHDQ/+uF/xN/9zV/hv/ud/7UccjwmbdsL3W5NSxxBFd5vDFP11msMtIzLDiFUHEIb+BgxhwAXQ05a0z3EpFIe3rNDu2lcjq0GgI8//nixJ9fx1rkYR0qY8nVZcCfvAbCTuvYT6Hq31sL7kNe6axuODHmNgvdV2jsntLXVCS5c8fmQ08uVo1cnqRbYdYx30SaFl8N7HA6HRaLMfeGEwFLTBpCvWQtsfX2tKfBnCTEGQeVE0w4Bm67jzDVNO44JRJqYEIUDW9ZISkiGj6jDccDt/oj3Hj3GVbQIIcFJzG6q+qIaFT8ba/3MSVG0HmNtjjwBkjiHnDAEVs+W/7MYGXg/I6YA5yw0c0+rfw/HCQYe1lg0TYsYudpJiBGNRJGE+cBFD2RsD/tbERBtjkV2hhiPhmhZEmvdSbildAXsTFvymLAAocX8qoBL2YopeKZ+KyGh63v0mw222y1iEMf1OGKax6wttm2TfSN93y9wZ10fKqjGaWKe9dnn2OEcPWMLnKLrrR7nEkW2pLIlIiEGyy9UzyKhfhL5EaQoRUwaZ7LUSJUP/YvPn+Kv/uPfZOGk2rO1DaxxCHHOcIKurdpaWUAhSFg6tMuzWQldVIGv6yLPUUo5ekb3Ko8RwyAAH5QKsdSKUhJLIls1qRQ1KHJASLfuCTVkhW2GCm0iCRBQ0+MXlN3vnNA+HA550lQY16TxQNHG1amhP3WMaA1l6GQp9eJaEOv3lpOfsmCoEwPWnzk14fX7qs0QEvw8YRwOOW40f5ZKiTBDijnWwoYzIAEjjpUWZnYADJvZxmQnSu4f6eZUpyJfEyhFdEOoDh/BsbXy9KlnS1Btg3mWQwji/UoopOAkiRmE4zDASHp432/yXAQI8yFy9zgiI2s5DHW5vuO5sRaN+iOMXfZrAeuyHZsFiQipGBM0GzQCCIkAJ7S9pNEMrVQFIjbNjYFtXC702zgHAju0GKoxi/WlWXf69zJigjXBKPi4MSVWOB/46+dBpdgp7rOC4FSCpAwXirBVWCBxNSDvPVtU9Tzmf4uADpGrL9UYrobQcSGLACKOFOL1kfK6ubMP9N9KedJ9lJWfSilaw42asJRSQt9v0HUtuq74lrRvqt1nzD6VPbCIIlNHaCrWCcOlfhHckA96Y/Jar/fUN9HeOaH99OnThSar7hDVoJUbRCdbTSblfABOn/xKoaoCQQW+ZkGeqgnZdR289zgej3jw4MFiYWlTzUp/L/fleF2kCIMEi4jD7RVePHuK9957gL7rWUNOyFpSiAHWOiRl4SPLoYwxYfYzknFo+zP0u0s0h4QZFvvjgKZtQeI8zck9ZESbl8PAWMToASRsNjv4mU3mfHiJwFIIihf8cm6yxZA8bvY38HFC2zoWlMTvwRi4xiIG4NmzL0FPHqNtHB4/eYKb61cYpxGJDLq2RZO4/iAA9JtNFhDH/QF+nLBpn8Aah67tGFZpOKNRs0hlsKseEmBMcbyFINVa2HEZI0c8RENo3Q79ZgvbNHBNg7PzM7Szx3GacHVzAzocMIwDDHGEyna7RZg1okgc0IKJjuPIWbSrDFoiLoRhrSvObdn5xhgJzzSST8A+iByrrweuqYQiFWsBMQotNmc8+lQODWuYi8WnhON+j/1xwjAFEdFUkkBkPkEMG0zThGE8snZPABGHZ3Zdh3mecH39CrtdLxZkKnHOZiWGTInZri3aw+GAs905jLVwDe89Ta6apilHZHVdlzXppm0yBt64Jk97TEAKQSJoSKgKlpi4/h2qMm4Kk6TE+5OIQ1Q3/QZtJwWAFbtPSSCqtyW3erv2zgntm5ubLDR0wlvXLDIla9hDT+XtdpuJ99cwBRFlIqPNZpPhFX3/VNmjlEoV5zrJYeGgqFodJsfvK6acYMQROQ1H7G9u8OGvPUTTtMV5lB0mibFuRIFMCEgGKQVMPgJkYRuLtt/ATh5zMJgmzwUBFgV6xeJQzVPMXN3wbduKVuUrASNmYbX49XtlUFg7iylimAYkBHS9ku8LKmw4dCrFhJvbWzx4cImubXB2do6b61dsGYDnAUQ5iaVtWkTRsobjEWHmYr5kDJxr0LUNp2wDOUt02XQsCSlRxqsBwMeIyXukyHHcyRBaEFzbouu7HNdL1mOQquMpsdO777do7BZd2yFQiZWe53GhQQ7DkLMldV1yvDr7T9SHUq/NZUx/RqN1qJdrK3+uwDhAFbpW4dtGNPeQEoZpwjjP8D4BsCvHZkQptJGYjGueZd5Vf+e4c2dLxXletjLnJ6BFjYDSvadCm/cdc8gY8QGp0nA8MtOiRmVtNhv0fY/NbosYUw7h072o65ODdIRCtVKoitAulketdKWUkKTcGIfwtmhSk7X2ppIxCrvdB6N+1fbOCW119K2L7epA63t1NuIpnpJ1NEcd/5qQcoZefW1VLQlvnqC3nUAFKLQySIoebaNUnSrsShMLT5AG2SBkcHt7A7IWm20PHyLIOJhkJLLl7jLI1ymvSL+57yFqYoLNm/2upx8F2MzXEH2N9D010OVZVEszBNc4doJNEx9comHZmARaKbAA0SqPTCABfY76MCzDU/VXNnEKESFxKF/MkScWrmkBGJjE8IxindPs4czERRyE8MoQcbUbTfaphC2b+AzfqZVQ+FNMju+vFYzXQmjyn6UwrcYAJYqjrM6M2jNyTATWuAWeYWwECQkhCg+8CnmcgmL47l3f4vxsJ0FPCWxVacSH7icZZ6QclLfea2n1JPr+OlBALVy1ctla7gpFhLWoEfj6HhooECW/ImRhrAdggYhUYGsSXs7erORHSb5bwpsnW56MGr96+/bOCe22beG9z7HRBOTipQpVXF5e3om1rsN0Fo4n0d40PGgOHrvEDHtkDG5eXQkb3LLk1Jr7pL5ere3r9WunV+4LEYgSDEWkaUCYjgjTgMvzczgLBK9Va4p2zCFJMS8DMhZIhB//5L/go49+HY+ffIz94OGaSyRnsT/ssW26labPJjDHpHB/Fo7alOAnNqe3220+sEq0jRfWujYLDJUzLCADrBXhAN2IBFBk/qHEBP27izMcjkdOcydgs9nC9D0wTDgcj1z70RV2QujhKdlBZBX35NdiWs6pES0zeC/hoBHTMCCy5xJOrDPXddiencO4BrP3mPyM/TRiOkbQMGJv9lI6i+EVax1sY7HbbdE2HSwZrjMZIo7HA6ZJ+aUNnnz4EcZhAmAyL4iphDInj5iCW1PxMyRA7isZTIRcxYj9XuoNqcI/cxgpGFZRgW2afCDPISCGKBZRwOQDQmSKXEqGsWhAuFAiEjxAAU+evIdf/43vwtkEUGAlIwU0rUPTunyYQ6K2YCg/yX24ryoG8zzjeBg4ckc+r/wz6pjVg65pWzRZaCOX6quFPhku8OEldT3HU8s9Q1TqCraYQoiIUjTZSlJW13XYbLeIMeLq1StsNv1iX//Xau+c0Fbnn2rSADCFMTt7jscj3n///XxK186NU86z+rrs1Ch0jABw++qKJzeEwroGlJChe5oK57qm4amJJqG9ROSQv+RnbPseKUyI0TOUANGAwfAESz3+h6wBEvDF02f49q/9PTx89Bj7Y0DftQAs5vnqTr+QkAWcNeUQUY2MiJ2QKXFMsgpCS8UkrMl3lo0TawzTcyM7sojLTukAGkNoux7XL14xH4gBLi7P0RAncLy8voKxBq36AeQwKePJhypDp3x0KIlP1ob1gARDAT5GDNOMZImrwMt4mKbBZncG17aY5hk0DLg6HuCDZ6GpPglrGee2JldGal2D5JV2lgmhbm9v2UKRsZlnL846myMdirVyouZmrVRAYuWpItjPgl2FtgiRBKCKFBKQRa5p+aAzhDAH+BDhY8AcEnzgKBTrlPGvCG0+KAOAgIvLM3z44RMYm8A56hz51FQJaQvoUeA3fT2/tmqsDIDDHqvXz8/PM3xycXFZOIAWse7lkFhq2sw+OMuBvW4lnFNIpTyveSvEUYZ4jndnZ5jnGc++/BJMiob8PFkRQp3w9ou3d05oKySSyrGZfxR/rr3V+tlTHuy6JdVkVkkymUSmdjbQ0iR7nfHzuoOiWJ8Rs59BSGiclcUuP0qpXX0hAcxDYiQFeQ6wrpEUdYsQ/VJrWz37ki95ZZpjac5qfHkkA2MlPnw9HtWV1TFD+WIRai/q4aN3Zm2UQJZDymbP8dxICa5pmLRfdolSCWQzd9VrtkZTMXmrTDUtYWaMgWtaJAuQZSGW5NrTPCMScZhhZIcp5RBB4clYRIRIRaKYgJAQPdPaqpAx2YFYDvDFGtTfq79PACBlVhQOIi1XzIdvyvOqyTSUYSUeYx5nHxNgeI3Pc0BIESFpyGDVj9V86moxhrDdbfDgwUX1Xv21JTxVs+IBp/dBbRWtrVZAU9w5E3QxVnXvBIbI3CPSamf50hLWf6Mgexp1xkyIxeophbqXsE3ZmxkOOjVvi8f/agL9nRPafd/jeDxmrzKhmPZt0+Bst5PwK241J4i2Uxovh8wxbla/f35+jpubGwzDkB2SWeRxhsqSWW4FlZy6d3Y0EYFSQkozrl89h0HAg4uzjLMmwzBNCCXuFbXAJcIwjLi6PeLi4iH6zTmM6zDOE/pkAGLtzhiCsWVz6xoyVGr9WbGiEwBLFjHwAu66DvvbPbPqUYe+6wGw43ah+AGy0D2O45ERjMShdKrtJQowiFkb9MHDtVJiChHXt7doCNiSwYOHDxBFOwaA4zDm+oo+Rh43sNCKRAhgpY4trpDDDQkE6zjut7EduvMzBETRvDkDdj4O2O8HxrUNX9M1LYyVqIKogqtUL5mmEePzAY1t+OkSGI+3FrvdboFB1+XwSjhbFIGrg4jsMCtwqDrqIElUxDBQVFEh6eVqZfDsQbNtg4RtTt5jGKccNTP5OUemxEiAsTAwCFLdRvsdo+c1aplr45NPvo3vfnQJ5X1n+IThOX1ODo+TZLIga5aqPUBLbZutDbtQBhQy0UQZgLJ/gPJ35MBNxfILgePcAeBwHDhprHI+juOUw1iVg6RxDm3bgUwpcxZEUO8PB8CafBgmIlEk5LOBC4WYN1jdX7W9c0JbPe2D8Bwbomy+urbF5eWllEzi9jbp6ADzLxDRgkaVAGy3W9zc3NyJKGG8MWYNH7gD1528Z7mG/CROqjncXoMQcbbbcnUVw+FgxKxCS5NXNEgiNilv90dsd+douw3ItJjF3DVkQJL2nLmuc5ckaUK3vAiOrCNJP9u2xZV/BUqJuTtaZkrjSIG7ClpMEdM8Vspb0Vaz+0e0EDZHHagBECOub17BgdB0PS7Pz+F9wEFKQU1SYMA5hxATXLY+hGRJxt/HhFmyVHWuOtPBWQPXtdienWEOHlOY4Y9HBOH2GI9c8so2DrZt0Gx6OVATEClDKSp4/cyJWI11sEIY1fUdur5H23XZIgAqDptFZh2VBVMPIg9+diqutfMkKHPSCvSJNXrV+SDMfIBFTAE+JExTwP4gGcMxwgePpuvg2oZv6FRg1TYR5GBhXnJnLd778DHO2scAZhHckPUp01pbaIYw+yVQk9YbRNYZ0w8sixAXFsOlogOqcgXk+z6U0mGthllOE6f/V9+dJy+WVJBoHd4fbdfnRKZ5njlRz3uM4yBWYDlYYShj6AxdxeUc1e11xtNr2jsntFVrAcTpBeR4bOVXDsBroZBFI11sUcz3YtKqQFYPtpbfkq+tL7P4/ZTArnG/0j8WktM0okFC25RMPjX5VatO+mliQCCK4POzR9f3IGtZ/zKsjVFMWYNZwwnykMiwxQoqWZus+jiF6SxU6MrSDOZxko2qYExOrlmZk1kggTeRfMp7Dx9jDssz1sISJ9LYyLweqvkU7hRJhLIWTsIxiVVkHivRwr3EtrMya3J2IBmhP1xhzOtwzbpmoCbSGP2uzGe9/u7AAjqtKHN8B9e+0yj/1N/lbFZIvHmq4rMTJs/JIZNi2EGKLMcEm4CUlF+jwAon1IzF/GgIHWK5v85jtmoLRnLy+e9Gk1R3O6FgES3Z9jKPPZZ+DH0fUO1bM0/5cLHWIIGjqmom0Dq0MFYKn7JPGvEFlPvcJ1vqftPin+VHXi/J3zmh3XVdhixUIz4cDnj8+HGufqGmE7AUnsXZtuSdIENgErEVOQ0Ey9v2SCnicDgAQOZIWEMgWdCJwF84K4irZeg9m6bhzQ4AKeLl8y/wwcMLvPfgIRA5iSJCNXmT554xN144TH96xNXNLb79ye+g6bYYfYJrN5h9QEhSaKDSYPhfK9fUfnISBQlvd4oJjWuYmwIcxeJMiY+d5hHjIBESFVzDh1XEMA58PZPAGYic9WeIDxmN10Zcal9d38FEPoxevLpaQAy783PYii3ROSeJOg3DKCnBEoEah65rsbMu4+uznzHFgGkYcJg9lxsDH/jkHBqysE5KjUlUShB4AlRgLF1PbVVODjHCgoW2cS47RzllXyzAzMan2llAZYqUNZQLJheODhXwiWw+v1PKvITwieAlemocZ4TI1sY0e4yTh49SxDgo5zSnrZPl/nKI64CUYunjQnEhqGOXeKkyp4hUrlEmQGscNv0WMU5MYesKVk1UnI0J6+oyKfNhJ6IFr32StQ9wApQK7HHkilEJ4lCurOk6GccHJo9j3psG27MzsT4pZ1J773F7uy8RX6LJG8McOCFyFFUn/O8hGOGZ55J2SgVQlvHrhPrbtXdOaNd1F/WEPB6PzOammLMssJiWp3ZtrtaZihDHQ4p3w/WMYWEbY8T19VW+b33NWmjn11f9JqJcXxJg/J2IWYkTEq5evsCHD3e4vDgH9PRHQEKCc7o5VGjzHeI8YziOuL3d49GTD2CaDnOIcG3H5D3Ro9914HjaeiOIIFKtLWkYITt+AE7Rz0JbNpUxBn3XY5pHzPOILIVqbTsmTNOYy6LxuSAYKAFBGP8M5D0dHxCT1PuAMM44XF+DrBUTHtjsdug3GxyPR47ksRYgA9s0MJHNfiIIRsnJVAlsOt9c32AYRuE3GVgwOw4dc9ahcQamkwOMWGgpMRflhyhz6SRLEgDiNEutSoMgxRxiSjkbEqgtLEifqqo7uoYAGaO7+CgLbsauS91GFtwxJXgfMc8Rh+OM2TMB0v4wYJim7IRNhlO4EoAQEpqOEJMDmR4JM1TbLsgxoPaXXEIODIC5XIiBdqvFDCz6foPb/ZCryhefx2nuHVkwkuTC2Eyd7ZzvSyWOWxOVhmEAiODaLmPfKZUiEfM8A97DGI4GadBiu9nwnDuHYRhwPB4ZGhsLlOYk69JZi6Z12B9mEKUFvUVKDKEaokKuhV9UVJf2zgntHKsplS3UaVFiRKvPAjmL7pu45ykP93pBUqXln7pG/r5il0q8jhJbrOT0lJbc2fl7+kpSqIGdIyDltrbQ2raq6azH5fQSS/k+pLUXJRIkb2NTDszFN5Nq1QyPWJX/r+OsrA+5LMip+ikf1Q0TFTLRDZRhGBVuJZIgQqk2E5YPwf9JQMaD1Tq6b+sVoVU+kzXJCkKpzfM1bCTi6t71qJeugJXFdzUmPSHmD/ugLJYcaxxCYg6VKLh30mdU7VwhMRJcvBoUxaao3J/PY6ZvnX3ElBK6jUJulE0lQsWEma3Mevx0fOvnTbJvC1thbb3qXOo61B+FLPVqtXWszVpXIDdV8nRdVJi4Hir3N91fZsEfoz6J+r5FAan/Kq/kX98gjt45oa2Qw6NHj/D8+XPEEHF+fl402CrlvF4o65CrfJqjBOXr+9kZIhOih8R2uwVQatrVWZkcTcFJOnpQ6LUU/+z7Hjc3N7l/MUWEacJ0uMVm06NtXJZXrIWZHNERUyoRE4ljZzWlmLWDFlPiTMZ+s8E0edborGMoAsXBo0RRtdBXXJ+tE66FqJCQtYVy1gpv8jTNeeGWueHq68fjEedtmyMRErEmH3N5NGR0IFXaujoTYQj9dgPFmwHg+vYW5nDg5AvP/Ck+zJg9Zzfy9xNGP2P0M4Zp5GcUbRvWwFELEzmbEcTRABrCm53K8h4TAlUiTaraRMGMy2aVAxYqfFggTNOUOUhS0sw7PkBrHhuF03LkiGj7tNr6sw/wnjlm/CzJIDFhnD28Z2HtfUQEgSm+LTMskjgvCdA6cxETUnKI0cAHAlkSi4jFud7UGgsDBySLm5sRez+hQcDZJ48yPIKkmrZD03RZeYopwlIJsVtYoRWOPM8z5ilI5ZyYHYoZFhFBqRZ1jBGbzQa73Q6zDzgKLa6ubfV3PXz4UK6Z8v1ubm6ywFcZYK1D15dC1euQv5Q4gqttW4zjmNfsHedjbW3eJ7Dfsr1zQhvghf7w4UO8evUKMUY8OD/H9fU1Ukp4+PDh4nNKLr8e5KIpMi3l2vGWNWgUob3ZKBNd4SRQoc0Zgi5bADXMAvBiUIrOyDFbbNrOE4bjHn3f5lBFIsBI2rHWhFQFSB09MUXMs0dKJDHaDdLEQrvte6SrW0kGsIDxOYeSNUNTaY1F2whaBDixs9cHj8PhNhcvCCGgaVmYz/O80JQBIIIL+Q7DERcPuJBDEMHG2mHJ7NPnVEGh+h/A+Gm/2fCBKlL15vYWMUa0fce8I0iY/ITG2ErAcfGAaZ7EzODoACthhdZZ2GQZ005MFKSOLNJiD0gwQvyfeDHI/BEXB5YQi5TXiwbelXC1EMIiRJTXDKAJMouIJhHYgDrDWdDVWZMJYC13ChjHKUM9fg44jhNiAGvNxgDGAmRBRgoHk+GQSIk9B1lQSEiwiNEgRJJScVStiQIjUrJAMtjvR0y3e5gw4fvfeVQJbO67UuPquq5pcGOUYrqUL50F9DRNGIeZrSfBmrkABPOYKAMhwPwjuvc3mw2GccIg1X1AtIBILx88zFwvXEHpmIU+kbAEOgfnWlhXWTQqvWWP6TjU1eFr+VCmKX5jEMk7KbSBgkvXglE3zCk+BwALoVz//fqWsjDJGlKNzYHxzLte7xP3Lx2VvzkV2M9zroUnei80tlXDC6vu8H9INEiCcGZb1qhSMd2KKUZZsGVJqRrDondL2Iex9QArOHrBxVEE8Oo5syVQ368aQ3aiqvBe4SZJ+pHnZQntZLNZPqtKer4PkVbsutszxaZFi02q7uf74s7vtdhMFW6RtAPSCXYbl/EzVVJQ+fz6msvXVFRGKd8Wq7UaY4D3yBEgPiSEwA7HkDS7FaBEeaaTjuPiRxxtlRZfR/Kk5RIA8vUM5sljGmeYUHikea51ZVE+6OpnXMAdqhQIjs3TYjJFAdQCQtlLmSo1zyktsktr/qF6+k5Foejr+V95u4Y4TqA4q+9+Fdlx6iJYjvGJ9k4KbR3ks7MzpJQwHI/sGCLCi5cv8fDhwzsFDNYTWAtuZ23W+BZxlwQkzJyUgISuF+dTiAiTR2MaUDJwpkGYE0KTEKOWZ1LMsCwC5hlJAEUQPBqzx358gZfPP8d7l4+w7c+RQoNkmA6TiKMueK1oIsUMUATI48X1c0Tq8PDRR4DZwocZ08y8CpaVLOSMxKQLm7V3SgEwWZTyO2RACTCye1PiyvDbi3NwbPaM1HVIicu75RJZIhAJFuzMdIjJcAIeWSQEcCy4B+woWKUHoWVLIBkYHmzWRIVTBCihhn3XZ8vBNqwBNY2DphAz34lktiWGNzSzlGQw0uoA5BEl0YCL1h9TEGuX+8D4uJyBUuVHCfpj8Jj14LYWjVg9280Gh8NRR7xscj2YeCVBAlRFYrYYPfFPIPhwRAgTwnzAOHUsqENECKwlJzQIrkWy8n0JTdNEG7JyMBqS4rwGKXFkTEBEJA9YQqBCL1BH86RgQdTAxgZfPP0Sw80VGpozXq3wV0wGiSxs0yGR4Thy4vuFxOGGc4gSJ86hokZCLPvNDv1G5sWw1RgTYfJRrDtez/PsYWyDrmvRdBtY16AlgwcPmBEzV62SJLmXL19VDk1eN13X59dY2Fseqaj0w3IwZIWpWFzFn2KqT9aKzzehY3N754R27fTb7XYAgKurK2x7pl198fIlzi8u7nCD3HfqElHGabVSy+LkNjNCZNxUq2LEGBHmADQMYzSmgfcR3ifERGyiomhkCmlw0VreSJQ8GnMLP77Aqxdf4Lu/+fex6XaIwcEQxzlnEyxS1npCmkEmADbi+fUL7C6+jfcefwjYHXy8xexnhBRhnC6jBI40kAVMQClKJc8I5WWRFP4ENtVjgJ8ndOI5Px6PEoYYgRj4x5TwMyILIgcixkujvMYwgJQzowTEgAQn6mHLSUTRyXhRzmSrTAX0bc8CIggjndSsDEnLRDGuCtlozjU6yQAp9/FSs9QoI419hzj5UhRiJiQgRSYUIoEsDJhrpErokF6j2/SwrsOm77Dd7DAqTSiWcEd+EQCSCG1wDPHoHW5HwvWUcBz3mKcBfrpCnHdIySHBgEzDGXzWgFzWc3lvGCAhIoQBZBKMUVjEICZCjFQJ7QDYhEiM0+sqyUeKtyDTwKDF8y9fYbh5gc7xgUWV7IogRGKmxCRXyYTDMWCWzMFp9pxtGJmLvus6dJsdurZlSgFCqZgkQjsmFtrjPHNl9X6LtmPiptY1aNoermkwDGOOCAFYaDPGLdEjTYOuqzlfNHKKxytHCakKo9CHvB6EQsFWh67ybje2hDN+E+2dE9p1U/No7WCsK1yskxyWoW+vPx11m/N3K6sdCgFUm2UZLLA02yucTDjZoHl8KfJCdlYz5qjikzjdK4UbOCyN0LhWlpqEgcWkSIAY9kX4LZ+tbuUz941T7XgD1gRYRXgoV8edFDhJsGFNX3DuHF1yCmopceAqYNVJVzaZwh7yI7HDuc8KsSxs/1T1tfy9QIgqUzhHMqx6eMcZVQ2jhlTmcVssHqyaYj3sV/ABmENiMqcYuXZjLEeOyaBFNQ4K98j4QIv/ZuGjY1BbG6n6L6o+Lp+JQDm1O5pQPrKafpJ7plTDGgXe0HsUPFggTsu1KlM11suIDPmsQCEk8dSKKdfznZ8sqVO40FjclQfAonRe9Uz6sfss9VONVuP2dds7J7TrCbBCn3h5eYl55Gozbdtiv99nL/M6FKiO6ighRzFnQi283DFJBWzBAuUy1jqu+CJcDa5pcJwncVzoZlc8VoVYVbFErj9PY+Zfdo2TVHOOY44aCmiXFgMXb+WEinkKsLbBZnuGeWLeha4zOB4GyQCzd9Ns82GDk4u5iE7e4NZy7T3vA/wcoFwRrmkwz555u12VFGIMOkl1ZxwzlsWs2ojE5Rok0Va4wLB0ijW3U0JcXlo/TwF4lvMHsXCI1Ammx1hpd4SwSqMMz5T4YIDrBtZ87bqWoqSH+3nGCMCkVXk63DWj63BR/kzE4TDgeh9xjBY+cHSQtRaWGiSopm0UngaZmPtNxHg6EcFSC5sTXAziXCy/OuqHhV7Ko1LGQFcDw3mgAOuAtrUwpigO/CVOdQdxyOrsPQ77A7wtjt6madBUlaOaps1lAFNKSIEdw5y0omuPsWvXcrUarUC1FtCHwwHjOGKe52wld11bDoUT3CBrubB+T5sqUhw5UoXByke0oMQ32d45oQ0oRmWy0H748CGefv4FUkpZaBMRttvtnZPydDytakPL91NKIE15TQZhKhlu0+QRE5f8co1D3MfsbS4qSMHGEYXYSvFAAqZxhPcTgIS2dUzDmnhBsCAIedFo41C0kIW2sQ12u3PcDDOcbWGswe3hGrvz3UJo1zG02sNaoGeubtEK+R8jNJUWKUJoLlloN02LaZphmzbzcjAMIEKbgJQ8h9KZLApFkEawHc9Qi0ZNqGiLCXc2QnZA0jLePYmAJdzdiIkBV0Fwqs2l07RWklUrTYQQ53yPEALmacrCZ7fbZfNeo4XmecbLq5eM+/uA6OsICulMPsRX60OHBQmH4wFX1yNmw5VyrElonAPQAJBMRK0Tqv6Rag4tKZuhZUxbGkMUKIceUK13EcxQrVXHQwU2+yOsA5rWgIw8Wx3CCXXA8jofhwneJpiGuccbKVRcarXaLFT10Jv9jGEYeE85Tj5zDVel2u12i+/n/UmEw+GASeZHo0e6jotavM6aViO4ji5brh+FSqvqVEQZXtEDEvU8fwPtnRPap7RmLcCqr9VZVev2uhNW31+9AjW/Cy8v3flOFiAEnDL1y9WKhlJgnEpgQL4vgmu9iIhU4PI96tJMxvHfMcQsxH7RtsBis+lYhDwqjE/Hihd6rIahElQZKqoumF8QTfjE9Kh9UI/swpt/YrxPshxXL1AFW6gA4EsWgaDPe/L71QGimztFDX0sPDWqEKREyKV7UKER1cXZuckUBtbUikZZh/Jwi5fyj8h0I1AFEcfd19r1m1v9QYbyrDUwzsgBsuxz/XFOvqrYCqtxWsKZS2XkdXiwfv++qLB6v5c5Ex4Y+ft+eXD3XqdaVnBQ78mlMvJW+03n7TXtnRPa0zRljhEAWWhzDHXCPM05EeRwOHBtv+oUrVnETmKS1XUBgxSJw7BixGF/xHtgudM0DW9EiogIHFEAdtDwJuHrxBg1kiknW4gKiJubK3g/4/x8By2GYMWRlLHJak+oFj5PM66vb7HbXaLvdyBYjOOErdvCuSZrqnfS9VGEk47HwvJIqZQDE/ip7TounaWVe5JqPx2OxwFdv4VrkQ8J1cITRgEEKshBENnl/kwQz2fZQdXhsEgyycJP+80Pmucxcv8NSOhUtfJ7lS1byS7V0jmpKGKepnyoGENcHcU5NM4hCJWB7rl5mnKoZha2MSKFwMktCWhadlyHEGBsLXDKpBaYziA7gsXJaqw4EkGs3YIPogyPCFlWOfRF0yb+PJkC0KpQ18FNFTRVQjCxKooslAc24dsffwCXZuw6s/g8jyH7JhJF9BuxsjzBmQ2MI5AFmkYihQBJDPIFbnRO0uAd0w9E5ESlGDnm3XuPtm0zHFr2aFkrSyjkFLyWVn/jjY1EWeP7M2f9AnI0BjlD6xtq77zQztmKuy2XTzoOGRbQCiKuIpXRia5P7lqY19oBESEECZHyETc3TBiVEhPIaLhZSkEKD0TWNGJZUFrlnfMaRBuTCIyrV6+Q/MR8I5RgLJMexcSRFix8VHvhskgGwDjNePXyGufnD7HZXIDIYRgO2J5xRqZaa3qg1em3pxJ/9JnWWqRmcU7TlJ8DIE6i6IHD/ojdmUendBiV0J7jLNiksqskxQD4+ndmtmC+i+IBWWinahtq3G6U79HicFK6XvVHRAlPTClVwlNjh2POzhvHQUxdQt93oKZB2zSF2yJGzBNTd07jiHEc2TkmgjYgIMweSTLpNluObgrBw5kGtIhL5z4UvmcOdVSz2zgHsgmEAPG+ClzB/NrGGhhLnEsjr6vQliuDygks76tVVzDplHQMU1YUSqFaSARKwieffBu9I2waLGCfpOsZCUQR2+0GfduB0MBgAy4xF0Bk5XlZAGqBYwDot1u0DSteZ2dn8HPAMIxCkTpjFry66zpst1tcXFzcUbbuCu3y+mKNL35/O2GbUsI0zdjttnCnIMdvuL1zQntd/BMo5PRWBlEFcalesYYYCoalbY2TlcaaR4qlUIJ+Xq6Y0dj7JdIKBpAF4/0MEyOathRtALFwKLDCAlwAAMFQPdyuFdL3At1k8xC0+Pt1La26XeP/nO3pV3CBYX6TMCKttAwVoLmyWGXNV8CW/FdfkbFbP+jXaDUksnjypFq1cGIIDLL8SJmbhcNbHdFEHD2RNOHFw1SHYLKitVccGXzd2jQvMFD5e/0MKmTFwYgqAqSCQPJPpUlTUSUWg3ByGWhUhx4mKd1dujIvfddh2xhwqsKU+50PU4EHjeXYFosGSA6gIFm96shPeaxjNd411JlilU6e+LOqNJza/zpPdwX5yY+ebG9ySvJ8Som7EJDWkVHfYHvnhPY0Tbi9vcVut1tMVNu26MS7rJola8olQ7KmU1Xsu268j5eTZ8hxHCtiJbR4W+SNpL9DS20ZaICYTDnfEwFIASl5BD9hPB6xaQx2u62k0moAf5ClbUrsMYrH2s8B+8OAjz96D123RQjIxRvmeUbfdbCS3p0EI9XdaCSOmYWr1e5LO7EQE3K9SGsdYlSOccMlulLpV5L3+n6Dw9UrJAqwVnXjInUYSgEghFhK4Q+pasMbXMmCVDhUXdROZ1lThLFi0lRp0pQFNRd6rWY7a7fONuikOK0K9xg8huMR0Xs5TBP8NGMcB7Y+RFvMZdEcwU8zUogSdaMbPrBglH6XSBJ+ICOUh0GEFwzz0liIJWkakGtyTLwxFmSRIRDK165GSn0sMNmSjFF9IUXByCa+qh5pfejxvLQNoWkJSveu0EWMIR8TCHPePwlA8B4JAYlmpFQ0YS0UkRJzXpNla2gYRiBdIQRWSmKKOQqqrgmrc677sRHGxYXF/LYY86qtAxa0cWRaA6SE4zji7Ix5iNJKhnwT7Z0T2lpqLFdjF8Hd9z2QEobtEdfX1/lEZvIZ/kzTNEKyVIR2jXHnRVtp4852SHEGJ0GIJm9YKHO1b4iXWUlmtOSRKcKC+eb4GskjhQl+Ao77W2wuz3B5fs5FVeMMH2bEOLOgJoKzDkmEG0OChHEOuLo54Pfe+wD95gKzT3BNC+8DMI7YbrZwjgVy8LyxjBDwGFKuDoIznMiQD6qsGUL+ZXjG+5BhqBi5GLC1FsM4MpQjeykETtDZbc/w9HlARIBtbZEResop7CGaV7FVYtYyY4xSo7HWGLM6KR0smyxFLnPFxVoDc7cIt4g1BEGtME9jDu80ROj6Fk3LGP12u2Et2gfc7m8wDgMGf8RB+5kSYpVUMynvhWDn1Fg+FGJC17a5xFspLl3Mcu62Rn3wuPjslAZ8DHDE4X5t08FoAopeiPQg0EQsGRCYrJ3KwCAlWesh8RKU1/hSSspVKFKL3pJk7QZ0nUHfGrQuAV6Kb/g5zzkQEdMkhyTz5kzTjJg8IvigbCQSZLvbcg1QAJPwgnjvMY4jbq5vpV+EpmsXdBVrrm39HFe4SQvI5b4ivG/b9Pq5RmkIaNsOXiJcLi7OWCmMEfarnw2vbe+c0FaimTsaceWdBrCY3LUg1nbHJKr+zJ8vqt1q4lNlfy01Hf6upIZkrTBm7C+BzesYOF3aOSdCpWCMBcDVC4vzEIzPeh/RNj2scZglgy+Jpu+cK1hwSlxRPEci1M96Go9YL/J6AecoC1DmTV4DH9ZyiGCqaVmJqk+sVnlS7TMtvlMn1+SvVu2UOUzVPKD6VbXGhTaWNUzkCuuInHSvDI9BwhxVA68pQhWC40dgjb3GzwvcxI46ItF0M1ywii+vz07BuXnNCr+GEba+PIwFoijPnJZDvLBGTsMAelCi0rLXLWPthqt+1jkOTB0SZT1Uw57kEKiUIRBnPWronjJi8lgKERkY33epyXu2Llpyt2/FN1We765wf13UWP3ZPC61ZZ1K0d8QwklM/Ztq75zQBpCrV9TYdErsVd9sNtjv9wBYwI/jCIAnVmM5gfsnyMhmytqgmKzGmuwA9WHmlF01ybOw5Z8sCyQqgoiF9jgcYExCCjNevniJi/MdznZbERAcmcBaF6cc8zMsF6FWJ2nbDcgwT4MPEV3fgW1mZkbTYgPc35BD96ZplvjS4rRZYPtgeaFYLkkcsjKoHQ4HEMkho6n/MeWYVYLh/xkhyk+qWes5pFq2qR+r/C7YScHmVx1bvrr0LeimTYUMHwASETO6WYvdbgtkASaMfTFiHEY+WCML6uF4xCi0nyws9DARxydxdElqizaYHBMfRZzY1NXD8qGnz5Py7yoYmI+F346SxFW7YZeDFss1INRVNU82UZ4Pa4BkVBlBtlSWB2+5Nq8DA2cbiego/YnVDytRAUHIpKzM4XbXI6FDhM+CLiUsCnPHEMVXJJSpTRVzvqKwVYfxct4L1W0IIf+ukThfRWi/rjH86OVZS3jh14VhXnuvb/Rq/3/QiLgSOPM8l7hPjYo4v7jA7S2bWNM0ZTpHay3GcczfWTsoAeSQthhl05EmmUA2/EauO6IX8qhs2KeAlNhkNVpPLjLXiCWOINjvr+BMQgwjPv/sp/i1xw/x8OIczhKgFV0sYKzDPOsm0Zhr7uvheMTsI1deNx1CNJjngO3lBj4A3keMxwPmOEJLSHESEAvJcTyCq3kYWNssImvKA+kBwgRIuuG22y1evnwJIq4Qw1mAgSu3k4SaCVGQNZZJijT6RawGAicqKTxSbssjWVAQEfYqe5B1p8VGqWEt1nJZuE5yWBMZBAAbY+G6BmebPsMos6wj7wOmccLhlq2fEJgfYxpHzN4LDs5C0xhC17Rcybtp0CjbnLMMAsSIedK1VPBlbSklnosUEcBZofx/JTJivgzMEvYWEoKFCEK9ThWmhwIh5dBBKGe6kaK5Fo4ikklIFjB+GUETE0NRSX0I1dlgyKJxHWIkppsh5CILIbC/ZBxnGbMJrgFgLZwlXF5cAIa5TfQAnOcZt7e3cq+SZEPEPpPGGQllXGabanTQWstNKWWtfZqmnFyjSsQ6xPd1rZYH9We1tBxzf0/3BCR8c+2dE9oAD66vzVZpKpxtVflaa8GpKbuGT/R7tWaXIy+qz6kjE8Cd+6rgVqFSY5csgPj34CdJ3Q4Yjgd07SO0bZO1HiKFcIqQVnIevboSszvbAlI3MMbEoUhIgBQz9bNnbFcEcpSMtxiqcC4qHC21WbmOHtHPaCglY8Kq2YqwgC5gqihCK1u+QpNIPoPKBbmYX+kgodoUFZSNjAkvv5VS/na1WZW6lIVl03DqtMIYROysDd7D+ylzbOhYR1k/pZdMPqUwUIblHI9/XUasbvVLbJ0VOKJEAoqFJ6Xl6p+Ur8HPub7DApbAMt6aFDunzH5afY9j27UYsFoSua8gKRSdMgVsQg23QCrmCKGSJSRRkF3jQJY4j0FgTQBS5zOKMtTmcnqGJPt43cmqr2tFS60TYJlA81oYtHq6u6tv+X4NDdZFLso91AL6+lr8ur1zQlsFrHINtG27MKNAHJ7k5xnjOHLccuI0VI4eqa9V0ZWmbJvLpmApkZJsWEpc4QNA2zWY5gm9bfnz0LR6cZjEkIMFDJgtD9GDnT0Top+QwoTGOTgJ2QNCnnYWEqZsXu4iEgGH44CYgIvLh7C2QYgWoITjcJTSU4XkHRLxYkUTAZjOVKGfGALmlHIURHHqFV7y+pDTTae4+8XFObq2Kea2jL8SGhFMYcvLkofpU3V0qKp3WJyTMici2Nat+CmESEmSRFTjstZKdBHfNsxce22eRuz36qiSmOvjAX7muGEf5gJTiOXgJA6b1wtvXi1+cV/oqP6twr9O+Kh9LIxZJ6yFq0JufLLKoC5wojpOuh6zu2OKKFStkvCj8JEerEYzEzPytBaKQJgjfvhXf4Vvf/AIH77/EBZRypvxOt1stmLpMAOlQmeH/S0TQQn3u8IgzjWwJgLEBYHXWnAtFOvxPCW0db7XUMUvgITke63nlRXFlOVIlFNMKWq/qfbOCW3FD/f7PTabTfZI1wO8O9vljEhrLbz3OBwOufIMwKYWZyiqCaYnasEDUwJSnPNGsg1vvn67wdXVS7RdI86nBGddJsCZJw9DxNlpwuQX4wyDgHke4OcDYhjQNS1a12SNXjXyaZ5hbceardR6BPGCvb6+gWnO8P6H34ZrenhPIONxc30tBPNA6zbo2z7Xc9xut8ykBqaXjYEL4c7zXNjbZAwSWFCpAKzjVNUnwCGJAU/ef4TNphcoA1m2aPV4QwRrGqZzlcZ82yq0mX9bBTyHjlHmcKGF1lfSzLVykK/6nmLEdrNF4xyaxmF3cQYNeTze7jFOE4bjhNvjDeZpzhYY45QB3s/ZDLfWoLEOViJmtB4hQZJaqPgC6jC0/MyWTws/M19FI0WcWZBwqNwp64KMyZow+zhsXnsKF6k0SgtBraNkQHIoEiS8NbKzjyNHkvCg80FhRGjHCgMnJX+Sa8dImMaA/+n/+n/DH/53/w3ON2fY9BHT6BGCR9f12G0vYZ0DUsA07zHPI6ZhwMurF3yoZMHKwrlru3z92spL+r8EpFgO4UWlnxNtDZHqiNYH5Ok09iVs9bpmreVomBgyBFMfvuvr/SLtnRPaKkg07OrUZDSuWWhd8zxXjqna7KLFyVztiWyC5njrikjHObssKiunrS5KDTcq50hSDw6n70aPFAOcsRw3rZ+R7kUxM2uAgRVVDqPqHLDZ7JhTWTSxaZ5E8BtQo7S1vNjbrssas7MWPuO/MWenqfceIECskwXWjTrlmg+Xzabn0MK6k8vZ4vnKiQgEpOona+Qk2qHOj2yEVGChuukmVIwzhhKxAUgoX9exThoiZsfZiyF4jPMgv4dFBIhGJLEAABJFkMAfCosBhYpAh6XWAvnAQhZEy3DSMj7Z0a1atLzHfy4FQE6subdRsdCzABfLReEM0QhTwTYWAEgR2CcunxjD/vnPPsdvfu8TzHNE15bxBwhN06Jp2LKLmBAkXnschcqATCZ70uIDa806ZsG91Kjr8UX13hpzPoUtLyDM1fXepi2tcsowGe8L7u0v4ty8r71zQhsoqeveexyPR2w2mzsmkrKxcbQDC+/jcYC1Tf4scHdi1+YuUGOJqo0rHCMk7eIcIZH6VjQmntkASlxtPQWP/c015mnEew8us+nNGqZs0wRJeqn7wFBASBHHYUKgEYfjALx8hSkQjlPEOI1iblp4P8EFA4AF0DgcASK0fYdxGLiogwg6jYKA4tEydpnbO7E52PddqZNJAT7w2McAtJ3H2W632PXOOiRxUmZWOgCceCRmfCoOM3n0ItDyc/P35nlCHX5prYE1HcfoSgKRHjLzPGF/u5fXA46HA4bhyI6wOC+EabEICvFT1rRzOau7kQd8tBTYJyUt+MuwVo3hquN7uZ5UTGdcQmA2dnZyxAi/G2PS7Hr5eDnwdNz09QTKmiqFBI21F/dKNYKqnRQtPovN6kAiMqBEmKSItDEG3s+ypzjZ6ng8cqFno3g1R3I1TaPlpGFWWHW16xYH8ymYpMaVNV5bD9J1BNl9vqr6mkVO3L3PKaGu12HIkKFH/d3c/fgv3N45oa2az2azwTAMmOcZ2+0207CqidRvNnjPmFyBuWkaXF1di1Zwl+KxblmgQ03FpYnFC4aXf4wcRpcPjZjQOieVXVizdoiwiAjziGdPPwfB4zsff4SubWGrRawarLVNxts50EAIjbzH9c0ednI4e3WNZzc/Q4BDIAMY9r471/BhYLhKu7UGN9cjQgx48N57uL251qdkbg5r0aoWJFBA07TQJAuFjdq2Qdd3uAyXOAw3GIZb7G/3cHaPvt9gu9lIMWIemrbpEFOAnzyaVsyOBKiwRiIYWGS2NyHlAoqzLKaCCx+Px3ygdV2LtmnRdxu4xgEJmMWH4f2M6TjhsL9FmAOi9/BhwjyxteUR4VzlQCQjUS+UtV8Oc6ugCcN9U3nJjjtVYxVbj0B2TBqE2TOXCSBZulO2XtRhW5RsFaUpR48og2KK7A7h+G4eJ0O2wN0cf8LYc0pA4hh5PwdmVE1yffmdCJz0BXkvJq5+oxZf0vBVPsyMMaBocDwcc+jnMIxoGgvnCN5HvHp1xQqDs7AmgCiCjEXXSd1SUUwKXg9w3gIU+wMIC9gJwCJSRAMBNHS35hmpNe1793K6ezCcEtx3G+U9PwwDuq7NymDTOLRtk/ftQs/6Bdo7J7SBIrg5XKuY99qICK5xmSxINyhvap8/A7wey8qGOi0TE/KmAwnkERm3VC3QcH1I5lbgUD5CQooBx8MeXUO4OD+DMwZrjZqvL1quLGYV6CFGjNMMiwnDMOEYbpBMA7gGtjFoGsaAvZ8RooeJDOlMU3nuaRqh3CEWyAVSm6ZB03W5orxG3EQhv9Koi67rME57hMgZbLORFO88jqw5WWthYOBjYnM9qZbFY5MFVRbaKe/fTNpZHah+VvgiomsbthCaJsfOq+/CzxML7mGEn2cmcELgaBotG2ZKSrUzRYDz2PPMF+d2yqhO1lIpLSI+8sEvmpohgxBnzlCVvs1zbdZXArue/1QcoHk8pAspQYjI9DtUfb9geimSxJpHrtFZVzrO31palyY/uFKqZlU793f2vtK0vRRDsEhpxjCOSAloWoemAawlOGdgQVx3FMtWw4r6Ct351F1Io05u0dfX2vHbCO37fr+vqaatSptyqCu/TBIs9ZtSut9Joa0DrVwiwzCws22NbRGw2+2EpY4dCAqprAP3tRUHpWJaZeGo9qubgrP+JEpC8GmIaZpjnWUyY/C4vblGYw36toHL96gXjfJFy78ixYg4Qeb6+gab7Rma/gJdv0EMPZJxgHVIFCU2lWPCh+MRMUScX1wwxahoJX3XQYUlx2obMf8jgjjjNAswxIjgowgdAzs5GPC4MYdEBz9zsdaFp11wzmkeEacjkBy0QCpyYdRK8KhGGRISIgIFOGsBFNhiu5WkGHFIhhgwTSNi5BqLNSWBwhp+npEQM5yWkkNA5OK7EulD9ZrJj8CaU4ELanATtczLa8MYg2gMTGSYJAS/sMwWh359CYWDUskOzMUw8qf1kEPONOVx4GsmCccLMYrg5jhqUnylUgS57lFSlaASlglrscOWT4K1hMvLc2y3LZxTx2oJF3UNPx+PKcQ6pbye39TugyTu+2ydzv6679wnkFnQLhNklu/dhVgWYkX6wFQR3zw+8s4JbYUpjDGZHOrVq1fY7XaZhpWdQixknzx5gmfPnuNweIndbodhYEeU8myroK+D960tTkfNRGMMjwWI95GLlEaNy23Qug7WOCBqVlqAQURjCRQTwjziy89+jk3ncHm+Q9c0oKSnNAvcKKnozDmdZOMSyADTPOHnn36OR48/xObsEc4vHqKNPaIxSIZwGPZwkmY8DUfczgf0/QbvPXwPdlM0+ouLi7KpbWFeU2dcTBF+5uiGGALGaSpWBAHvP/mADyNjcXGxw8uXrxZlnsQ0wW57Du89rq+ugA0LYM421Ww/AvNkcB9C4PvGFBCjR9t1HAnSchLT40cPAZDMH8Md8+wl+YjxVT1YVRMapxE+Buy6DcMdxgjBlcYt0+qgL07tKEIzAcInU0L81syGGpsdySCYiEiEaR7ReKZ07fte+HAimgai1YrmDWRoJvooEJfNh5FCIQlFIdBQM6QqM1F+V0sdUeq8S1k3k5giF4mJywguQyzFSuDnyVh5CAAimtbg177zLbz33jn63iDFLUI4IIQZ1hI2fSfTTjCmWJYxr4elQF2H9K339akQylqjXlvW9edqOCVGDy42XSJQ7muntHagRKbo2iBQZW00QsX8NkfT27d3Umjr4KuD5/b2NkeSZJwabGruzs7w6tVV1rQVUtEFohEDdVjRct5SNh1V09ZMNXYO8cayxhVNOxVtxhLHqcYYsL+9xpNH5+i7Bo01gOfrL++pKc4QLQyiPbOm/a3vfozd+SW6bgugZbpQAobpkDVtHzyGYYKmqlvlrgDQdz2HukVO4S48GkqEFDCOHKqmdAFBqrGnlPDk0fsAGGLg1HkW7qL25SFr2w5OHFWy1KEV5fmxSkAfo0iaZcfc5NZauIpuV30WKUVM08wV0kPANPFzdm3PTHBUIB+QsOVZLnfFB3Phr1gLjfIGzyFW770u8iA7bqW0mkanAMUivCs0VJun/GxkDFMd5M+WdacWCYJAMjEiBtawo/ggNELEgMMUTVJHXxToiaV6DbDod9aPx/U9GWd/cHmBjWjabdtgGHiMuF4oH8oFJtCO3jFK3tjqYIC7AQH89ylN+z6nI3Bfmnk9vkuBzX/zu3yIcPCXfDxDJeU7vxLar23ZmZE3ksZQTncKJOhQNk2DzXabE0bUqdD3fdaweb6W2YF1DKZqEgA7/Nq2kwocHO9M0pcMiQienVLAcb/HYX8LZwz6rkXXtqLxFI99tUdRG9BEBB8812dMgLUNjHGrZSIHj1CuWisMf8HjcNgviLS8n0UbK5tDNU61JGJs5KBgLc9JKjszJiKPTfm9LsdUFn7GSKNgwkQIctglSIKHCGXWlA1itIiRMwwJzFIIAMcDF6AYhwHzzJmLmXgIVG107pNGhij8UNZPjXZUkMBqX58SAHld6H+pxmcjJ6Wn1wv35UUpX0fvSTJOGdfW7NPAsAti4qxWxakz7LGkGlZoQ/0qekwmMEujKPdlzOT3VMfUG35OMgkffPiI6UgJSFqkI4dOlL1Y8JhTbX0IVu/co+mu8WRgVdd19dk7dyTcuW4tlNetaORs8eY9Yso16vurtXRfe5s+rts7KLR5sdRhdl3XZTrW3W4nnyuDc3Z+hkSEL794mhMdXrx4gffffz/zUANKWlM07pQ4/jpmIcfXa9seF+cPMQ4DvJ/h5xlPHj2UUk8JlhIQmIY1+hlffvEZnn/5GTZdi0cPHuDibAtEqUAuGykEDxgLTY5IKYDA8d77wxGH4xE+EJp2B+s28JG4Nq5o6n3X5aQJ11vs9wPmccQXn3/GBWjbFk++/TGOA+P51hgQOMoEhnHtIHBJJ7h3EojGGD7kDoeD0I1WGX1guGAaR7Rdl4WwZtoFz1aJQgDTNLGzLBGQAhrHVbm7vpWIHk7zn6YRfvYYj0cAwJdfPs2ZmtPEIWfnlw9yJA9B46nZqlmwyNkipAS9qdoyzv/UpjqVJg0eIRbaiRBighfNtHac1a0+LPh3KoKXAGMJFgbOUuZ2CSEgJsCPE/tPEpBmn60WIiaEInDWITErKlIMSMFDHeXqYwEBbWfRCJ+JUWFN6z5KIpFJMDbgj/7od/De5QWv1TiLwLaZVqFoulFkdq3Lo/rMneG9M878+bux2nqPU/kZ6kyuv/O6Kjb1PWrNvtA3I0eraMKdXq9kBjNVrzNWHjXduf7Xae+c0AaKI0GTWZxzuL29vTNJ/GGg7TqcgfDZzz/N2vXV1VWe+Lp8UKbXrDBlrExbZ1sm+j/sMQ4Tgp9504lpaAhIxFp2TAG311e4uXqFxlrsNhtsuh5IvizppDi4etp1wfNBMfsZ0+wRE/N7G9NgVseU7HpnLYIUW3DCwjf5GTfX1/CbDUMZ4HhnoIExXNtQw6xgSziWMSUGlv/lzaDMitzlZcqw9x6NZIqxcDCi/YlmHVmrDj4ixiKsrNHUZscc6YYABOYDmTz8xGxwtzc30AIT3ns41yzCvlJU3JKtJrLMeJj7+bba74m2dk7xa5WWDXX+gQ9DHbdTOpgOcnkh/2YMwUQuiqDKQ4wRiTi0DgT2g/gox5SSK1XCX7G1xDHqiAGUAlMp8LSgs1uG0qouge7GaRsDLjdGCd/95FuwCazxV5p2CIyH82FYa9mqvgPLBy5r+3XtFO691nTvDu1dLX0tN9+k6SqmTpTy+srWz+rwTqkkBX2T7Z0U2uskmNrRcDwes5Ox/qwxJqexK3GUhgvmjX/HPMtxHEBVkJbALHdd1wEpYhI61mIe8obx84jjzUv4MKNxFp3roax0ilfLE1UFFTg+Vpd/Qszx6H2/AVmuZLNe82pSJ9G+rHNomppMh78wjWMm8s8CphorEGWBqJh4HQ9b80kjsUPS2pir2/B1SMxt1X7ycAqcwdZE1GLBSFJUYJSkpICpYoXj/gvbGxULoMZ9tf+s5FEBIZfTeb8p+xU23337XrNmM5Qmn9NNTgp5qFaL8m9K9ZRKdIheN1WCXpyG+rvyr/DBwc5LnlKxMKyFFgBTQdt3LYxzUhqsEGplp/tqSLRG6eK9ejNQWfvqr2CBqZDMepyWsMq6rUPyFuOHu4Rt+t6bnI3lnqetKc2e5qADm6kbYgzZGa2JZzU7Zj1Xr2tvC5u9c0KbSxSVEmKasNCKs+zp06f49re/fYfNr3EOH3z4AZ4+fYrjYZAA+T1C8Hj48GHeiDXsovuOuLYT/CynPwjbzRbWEobjATfXL9FYA2siCEwO5ecDbm9e4q9/9BfoHeHsrMd7lxu0jQVxuQPGDAW3dK1DFDO7FqJz8Pjy+XPsDzOefPARXLMFqEFMS6uCsyiNVCHnA6pxhUQ+iEn36uXL5eLJwkUsDWvRdR36nnldmoadT0RA2zqOgZ5nzDOb7V3Xg8hhHCdsNhFJ8PQUAWssNv0GSOp8NNhuztB1Pax1GI6cDBNDwGF/i/2tAuABx8MR8zxxhXQA8zgBRMwaFwN8AMI854MnQYRjRXhEcnCog+yulntqfZ3+QDHta4FSf4Cf10jSTZ11Ow4TCAYa719EHku8FIGYtVTlQS9heYDAIok1eqXbSynCh1JYA8QHp9E46caisQads2gbLQRs4PoeIQI+JvjEztoYeT5NKpFGCgk6xxVaDDFckuGxxE5KtWhi4tJjIHGeBroDR6WUMiSpSUm1Alb/nRkqK04RFaTrpgL1brmxJT8I6yVKTVG+r5XeP//8c1xcXKDrOtzeHvDll1/i9vYGNzfX+P3f/32cn5+hkSLEqmxwrP9pi6xeP2/b3kGhXaqzZFyVSnLF1dUVPvroo8XniQyMM7h8cImnX36JeZ5wfnaG/f5WzOmH+bMLL7JsKiMc0VxyDEACurZF2zo4S5jGPZxlPJtSABAQ/Ihh2OPnP/sJfu1bH+Lh+UM8uDyHM4ULWRQvALz4U9CNq7EnjO/e3FxjnAkffPwQ1nWIVLEaStOFrrkUbdvCWZeJkTRqYi9cxsX0LpqhFdKr7Xabx4M1aXVIMhF88B7Bs3fRuQZIzOkdBVNXk9gYg7Zp4WNg0x2Eru2x2+4kjNDgeEwYg891F1OMoBgwDIOkRBc6T2MMkkaAkOC2KELhroOr2phfAyI5ZaLfJ/UJ4JhvJAChOEIBSbIhOUDkGqsDhA+Whe4t56msRRHaiJUTMiZOHtKK6o30xXB8e+csusZi0zXY9i2sMzDOwrQthsljnALCVIpfM++6RRZwMmzWSpijraKc5DmI8sfBWY6mEtxLPbu2ellbvmvdrsdcLayapuJU9IhqvyrQVZm7O2dljdSXqIt8XF5e5gSzq6srPH/+HC9ePMMf/MEfsLBOUVLZOWErxYiU2SxPrI2vuO7eOaF9qtWOBGMM5nnOjHvVpwCUE1WFWEpcW64wsS03Pq3us7iv4NeNs6IdMd43jQccj3sMxz02mw5d6+CcKUqtXDebVlSZ9rpJiRUqL04RSBYjd6zSsrOpLL+q1VprK9Vics4yG2BKMJHfS/JctrJegveYDYfTKc+CcmoAKA5H0TJKCbhiSnNSS4s4Txka0OLDKQnXufcIfs6MfUgRRjayOku132rCkhdGwHrXVVDT8rUK+nmTmv2Gxo/wejx24TyTcc3WG4plqNmuhUyr3EM1+iwPE3I0iD6RIeHgcey8JkowDcFYToZpW4vWWTTOwjlJejFgx6LegyRlXW6a09wXz8MRPDfDAefbHhuJm1droRK30rf1K/ePEbAMuaz38XJMlpElb4tpL++1fK1+XQ+BlBK+/PJLPHz4EOfnF5lrxzmHm5sbnjuBILn8mRfiuGU/f9H2zgltxZvqgT9OET/++QE/+XyPv/n5LW6HzxAToW0d3jvv8Lvff4wf/NpD/OC77+G99x6ibRo8/eKLHLJ0dXWFhw8fZhYyzRfmDVMWQiapQWKtO81oLHBxvmHOheQRwoAvv/w5nj/9HDfXL/HJdz7Cg/MddpuONXHSDW2Z4pQijCOEFJASm5pRnKwAcHV9g5AAYxu4ZoMEh0QWxhpE+KzxxBiRgsAQJPX8yCAlA5cK1rfVcltA+RcQQc6XU1pbOh5BdIMQIy4uLvDo0SOM44SUCI3rQGTRtj0IHtevbnKBBZZHBm3b4/LyAa5vriXDMmE+HDCOU3Ya7ve3GMcBxwMTPFlDaK1D6xxIDlIAONvtsiD0wcshlVYigrXXmGJ+fj202Gq5i4Xqmrrv77ufL0J77f+IUSrAiGaoTZ+XhXZAZoNMlOEUcSeIMCb5nTLxWAgzQIAzFtYAjbFcNcds4BoL1xi4lgATYAwLbkeAMwRnCZYSyASQSbAuws6RYToplAHjBEEqFgARIYSIw2HAz/7Tj/HJr30bH3/0flEQdFyFl4WUAx5Mn6sHro6jjhf7kZjCNiW7YI+sBXOdaFNqcS417VoOOOdyeUHuu2bq1vPJfavndRgGnJ2dIYSAf/tv/y0ePHiAjz/+GA8fXiJG3gv/+T//Z1ZerAUSYbPZYJpGHI9HbLseZO/nP7mzlt4g2N85oQ2UE+0nnx/wP/3ZM/z7/3wNawnTHO8kJ/386S1+9Lcv0LUWs4/4o9/5EP/zP/oY0zRmx+Tt7S0ePHhQBl3+u5zwE+ZWCrAG2G1bWDMjBY8UJ1xfPcOzZ5/hcHON3/ref4u+bdAY9kirJkVEmOcAYxOMJcwpZt2KtTG+xX5/4Phs52Bci0QWyERLQjebknAlsyZIZskLXmvmfV/i2OsWQsAsFUi4MvYkTHUB0zzDOYsPPngf+70y13HF+cZZIHJRCi2NJrME17TY7oDjMDB17OwxDKOsWULTWAzDkaueD0cWUNaBTGHY04Ny03cgIvgYOVImrAWwzppsYsmnVrxbBeOb2usE+Ou/I8x8kfmqa3hkniV7jpQRkg9nTehXAcgaNC20YYZlI2LwIOFMsQQ0ltA1Dl3fo+8btK1D0xsk8gBFWGKLxSCBiInLuK8B1nDstajwfMgTF9NYuDugdVZn/Pxnn+LR5QXw4Qdl+cu4agQFkUJAosErgdiq5WzCCgLRuVQH4Bom0YCB2jHJt08ZB18UQ8EaaqkOmkrQp5TE2ci+sr/4i7/AP/7H/zhz8BAZfPrpp/jss884gMFYxJgyh79+V++jB89rBfcvo9B+dTvjf/c//hQ/fXrEHHgzzuH+gQgx4TDwov2//8Wn+NMffY6PHjb4X/2jFpc7XlXezyIkrJAkie6WIN5hypgjoWQxapyH9zP8dMRwvMXsJ1hr0G86SXGWDWjKpLHWeN/ECqqZOMyOeUKE+S9Vyn8Nh6DieRCgmk5cP5uv1WbSBWZIMvqyEwgwpt4gkM3Itf2ilEJjLfO+8WdtLWlmZAGZQdC6kvyKNSZDNLUzON9/2e2Slba6X/6NijNrbczX7W1N2td/bPlmvXFZa2TB7hWmUefsnS7p8+jn8mKAIQPXOLQENNahcVYc4Mr5IZEpkkau6eRypEBHsI5N0tW97H4qPYgJPnkcjwPm2efu3G1rjTat1t/yWylbF7QQrq9rX+X9dQRKUXJ579bFgDUSBCi+sWEYkFLC1dU1rq9vmBs8r6NyrxJS+tqufaX2zgnt/8/fvML//n/8KXyMuAfaem2LCRjniJ8+m/C//T/+DP+LP3iI//43znFzc4MQAi4uL7JgIiKkXOS3lpZcfdrZBC0hdnvzHFcvv8SL559jOFzhwYMdzrePuf6dYYFtrIGfJgBsvi7XeRFoQUzD2Qd8/sWXaDcPsNmdIxFXX08AEkmCCos+EYEquA1KksPbNyVRYoFcsj1jTAJJ8d+26dE0HeZpBrUc0ue95wVdHSgp8gbZ7/cgohyNosLKGn4tBo+BgM2mQ2sbNKapBHYRfCrhGKBgDWkTI3M1K61nImhcubUWbcsOpWBNYdBbtfUGr9tpk5dOH4hiQUCwdzXpx3HExcU5AGAYmMgLagmxZJQTgSELpj/g12MCTCCk6NE2DR5enmHTWDiycKJdWgu22BBY0wZHMeny4tR1L+LZgKhAI0DKGauc8l8luERgCh7j5PHpp1/gNz75HldSioKBQxZ2TlkviWgpJZCtUuvzzPE0huAZulOuIKIq0e1uYlLN/aLzkZUNGe86uSaEkDn3tSpT7Uw+Pz9HjBxOq34uAHjy5AkOhwN+8pOfYBwn/OQnP8F/+A8/wrNnzzLnSYwR1rmsWHEG8jqT+nQ7hdmv2zsntP8v/6+nmPzXkNarFmPCFIH/85++xBevPP6Hf3AOYwkXOF8OftJ6jQAgCQrgbEfWniJCmHHYX+HZs8/x2c//DtuNxYfvfwff+vAD+GEAGc6sNJYJi5BY0KiAS1CNoxYQnCX57PkLfPzdJ+j6MwCW404Wa6Kq80eqSauZ8NXGRLVckwquyKapz8IuBA/XEpxtME0zGseHmfdh0bGsUCbgeOSN0bYdV+SRaxkkNI1DCBaGgL5v0dgGNkq4JpIIFrAjjiTtXTCFeZ6r0mRGhwMAISYPayyca5htMFokWzDXN+KOeJNmV7Btfd5sQ4gw9RNbd+oY5zEVsi7E7MxlyaZZi6olA8gRFoz/O2dwfrbBWddxFcgEFr6I4BqjHgQW2gkBSirAcQ0soPX6uaK7wAYx6XhX524C5jlg2g/48ssX2N8OiEGftVAQlBgRsWqijCPFvAbWB51aSSq0Nfqjpl1djPbKSbkW2nU+AcBCu+s6pFSKgNfO+a3QWnjvsdls0LYtpmnCgwcPMAwDPvvsM9zeHvCjH/0Qf/3Xf42XL18uHJZ1P2yVyPW69raOyndOaM/+K6qPb7peSPjT/3SDlAL+l/+Ya0uyQwaoTUjVhLTxngoIYWJcdhyQYoB1HC+aq9JkQVq2uCgjVbubuaWsbcp9rRVRkij8qnPSQniIwH6NsFEtdfGVk5+R3/VaesAkDduySGnKB4z2eQFXEOWFWodnlpBK2YzVHevog6VYxPI7JFBNOvGhcvuTG+Wb8PCX3qw0SQFP6/tytZVYpkVV4Ara0kNX3zeqwCZkIa5OSmNEYKcCfVSAhmjU1eEj792BXU62+nu8LvmQocXrgOK35Q559kgP7RIRtcDKqdx+LQBP9mj1mfucyRpKWF9Lte+a4Em5+Od5xn6/xziOOD8/BxE7GMdxxPX1NVJiiuG+79H3QrTmORt0nuc7Due3ab+UmvZ/jTb7hP/3fzrg2++/xP+s73Bxds4LNkb27oOrfas2RxTQNMD+9go3Ny/x5Zc/w3B4CYLHhx88wfmuQ9938H4uSUAETLNHMpwNGABmAIRSa5b+GGPg5xnTFLDZnsO6Dsa2MK4B5orFUJxdirEbcFyX6p6vx0cKYRUR7iQjFVOWk1mQJHomJTRSfkwhJb0NF8gNaBrLcFAiTtao8OmFxiR1Mp0xom3KwSgFE+pQRXXKGUO5sssw+bz769h99vILx7nGBMcSi3xfqzfTfYLk7oZTq4zHzEjcnNIhAEzNqmXvMn6qThMZal0jRImjQxoLHxQysbAmwVmgdQRDESR8IpYAEGvbAbNo2Kqx5+OgYrkBNHmnCEMjZ8byWa11CCnwOtycoXEMbVnbSLTTSlmAydwnQERMHkgFulpe2+Z5Uw1Zs1/rsa7xbnUWrudCteimaXL0iL52dnYGLVGmVBcXFxf48z//c+z3e8zzjC+++AI/+MEP8Mknn+Db3/42Pv30U/zsZz/D7/3ef4Mf/OA3cXFxjs8++wz7/R7XN9d4cHmBZ8+fY55nnO3OeNQq5WWtKLy99cbtV0L7LdscEv5P/49n+MG3Nnhwfs7agghtLb2ljkNjIpwlDIdbvHz+FD/76d+CaMLj9y7x5PETXJxtQCki+IDWlaQAX6VtpxRhYZAQWavOWhcL7WEImGePzWYH6zqQbUC2QZoFN6TElW9E9U4JUlyY33/T0ijal8AqVQz2QtuiInycrbFiLigRqwzS4JkTu2lsFkQWdnFXFrxaADlkDF1W/gkNsGwEtVyctfA2IgQu56WJJ7VWrwKbKi4ZCARQP9udcaFyWL1ZYPMzpdWG1cOlFtrH41E0uU7CEOWcAmAytFWiixpnEChCuWWsAZyV8D0khjuSZ2ZH4r8jAsN5xFEjTCrFky1eDihEoockVf/j3hShaKxFShzl1PdbONsAia2skMNLFZriY8LoAYySRVlHVeRrVxmOqg1771+rua6Fto63Cv6maXJyjQrt7XabteRpmmCtxeXlZYY8iAj//t//ewCMZ3/44Yf4y7/8S3zxxRf47d/+bXzvez/Ao0eP8KMf/QiHwwH72z0eXF7g1cuXaNsG5+dnZc3Ssl9f16I7waD0q3Zf8yHh//BvvmAzP2qNROWZnhE8awJ+nvlvDa7PZmoFhUSubn7qR0nrua2hERGAgbVW59oqqSbfZPF5AAvB8RrEoPqGtuJZr2GL+gIFjqhrHIqpWn1G4ZF1J0klEZbOIIZGxCZYaSZLkGRlN1BJVLnfzIcIwqVQvfejC4GsWNB9799/v2UrgvzOdSqsTGct3flOfRioJsw/BZuu/q6im8rn8YZHvx9OUwWicQ6bzRauaU5+boHupPp2pw/I+mA8ebnXwXuvgUnqsD8NHRyGAbe3tzgej/lfY4wUI2Z4b55nHI9H7Pf77JBUTFydlJvNBvM8c+hqpf2fwt5P/b7e469rv9K0v0KLCfjZswn/4W+f4Te+fQEiYL+/4nqDnh1blx9+gi+++BTOEm5vXiHGGWe7HZz1cNZhOB6FljWCUsIxb1LmZtDyXsYArt/Iiaw1CovYf/HyCi9fXeHRex/CdGcANZhDRJJKHCkDh5DvMYRT0Mzlol4vrvxWSgAVypu8oRIPiC5eDYXabDYwRFzqK7Bzy1qLzaZDCB7TPGFLfXVfobjM2hay1ktE7A5TyKKWrUTMaJe7yQI6iiCutWoVd3WVdUTOXrPWMid3khjoe+Z+DQtlZRSnZdo6mgTIRK35Qer4ZY7rrS0XBTAUEkrgaBFOeXeWgBSFOSFKCa+IGGeOP0cER4EkUEqcpFULeTD8QvoAqQgZQwyHlEO3Ei4x5SApIoPd2RZnXQ8z/Q4++OAJY+25VNdyBBIUfqqglwoOU4unPvjr4iM1X8s6DLCOhValRpNnVGsnInzwwQcAgMvLS1xdXeGHP/whbm9vcX5+jh//+Mf44IMP8L3vfQ/Pnz9HSgnf+ta3cHZ2hqdPn+Iv/uIv8A//4T/E5eUlrq+v8Zu/+Zs5yuQ73/kOnj9/ju12g/efPGZun8bl/iw5b1bQWrWuK4P93vYrof0Vm48Jf/Knn+N/86SHcxY3N1c43O4xjSOsdfg+gKdPP0djgRBGpOhxttuisbyJhuOIeZirxAkm+VGCKOdKbcazbgsDhjPY9FThRHh1dY3nL67wu7/3fRyDRTIOPmqoGBY0FSzPFAsG1Iv/Gn1F/i2wAUxJI85QguDDbdtmod33PcgQZmE/AziUsetZaM9+XikSHCEA4jgHiyLFy3MlAAEAAElEQVQsrAoO3aCp9E3N+vpSWbNWDDilGkpcUOwiBRipgxmriIR6w9RQSfVi/mctx+t+rA/EbGkILg0sk0Baoa3NYy7XTSp0BctnC68S2jEBZCWblsNLkwBrhjgKhSdLBXslhhOAHBaq48pRH8ptk4W5Hh+pPC4Zwq7b4HKzxXubS1zuGhizZt1LCysoSRSMiKfFGOnY1VEeKoBr4bvWoJWaoo4QYevX56pTeq0nT54A4LJ6P//5z/Hv/t2/w3/5L/8F3/rWt/CXf/mX+MEPfoB/+S//JZ4/f46zszM8evQIu90Oz549w+FwwL/4F/8CFxcXODs7w/e//33M84x5nvHxxx/jpz/9O/R9i+Px13MlpRJCunS2LtZLHps36djcfiW0v2JLCfiLv73F7XHCxa6TTaSLMOUPpSRZh2RgqYGzyvAnacqozP6c7MDaSxJIRAu5FjihaIyF+tQBUTU5bUV7Xwqet8fQqFbU77xXNIdTmhG/XrQtNks13KtwZOTraYWT5T7OT7KIrln16V70I19H+Vvu06EVfrpfQDPcclKEV73Tm9791NKKqYX53c+sn2cNVZ2CVACIv0K/U8Eh+SBLi1WUncxQi0VD7gp0tday77aUHb/oWziXvYyrT5VDKIM9J+b6Ta1WGu4mx5RxqRk+NWxPI0Smacqc+Uo6plr/KHS/9f2stdhutxiGAcMwZOpVdWxytSbKdM/LviArEG+z994KYsOvhPbXas4A/+HvXuJ3PzkDIWG73YC2m1yv8NGjh6AUYS3HxyJ6GATZTBGWhENaVq4KOGNFe40e0zRgHD0Xr20aSIAGQoh49eIlrHE4O7sAyIoGJNXMDWuLMWn6LjudrBGGv9o8fm0jQOhCF+bxyixVs9Val73w0c8IyS+IiPq+wziOmL1uCmX84JqC3rPDlWLBsgHl43bijGRBw6Q8pzDL0nNtWvKNVli7UbNcv1dDL9Vz1uNR6fgCi5wew1OwExFlP0iOWr4TIbF6HlQhoUkPQDammsbxQWiYQ7ztO/RdA6d0CKKhK80vUokZQuJ0coZH5PccrlqSsUTisCCixGsrKlMhRMtPsA5oNlxRRysLKX4ekxAmkQGRhTpOi3rJ47FOmtEx1LFRR6IStxFxivg4jlnbVVqDs7OzTMP66tUrfPnll7i+vsbV1RWur6/xx3/8xwgh4D/+x/+IDz/8EN/5znfwrW99C3/zN38DAJimCY8fP+aiG9biD/7gD/Dnf/7n+OlPf4pGcHutTqPRKB9++CFubq7x4MFljifnMFzeF1GiaU46sKuZ/1X0yH+lNvmEH396g08eJ/SWhXbXtrCizT1+9B5C8Oga0WeSRwyehScxj0OMiutxJiERQJbg/YxhPGLyLzGMAygZtE2DIHif9wHPnj2HNQ4XF2cApCisIJbGiOYYJDOLmEfCGEj6RImdZQ1rJa2qxpujbCKFLUpYXgmlUzKteZ65ZmWIaBor+Dyh7zscj3v4WQVnlDsnNG2DlDy8ZypYMiosIqxxcCK0U+kYstBP1e5fYagEjZWPcAviw5QjaRbOonSfNq3XNPUf5b5LkOaecby7GeuwtgWeT8jja8hwEo1gQVwxhbU8aw2SBSwZbDcd+q7l5KSkCkKSYg/xjh1GycrvBCZuqgR7tu74E3q4skCNmXmQ1y0L7c4RXAIoAAkFP4/Jy5oxOXIkO34TSRnMdIdeVX+0IInyYTNWzNruzc1NLoQxzzO6ruPSdF2XI0VevXqFv/7rv8bPfvYz/OxnP8PTp0/xx3/8x/De40c/+hH+6T/9p/jt3/5tvP/++/hX/+pfgYh5TJ48eZLv+0d/9Ef44osv8Fd/9Vdomib3S7Vzxb73+xv0PcOm0zTCGJc1/xjUIkc1xvkPUR7o3rVSt18J7a/RYgL+7unME+fY9LeO04YBDjkjJDjLKcFceCDBAHDEadSskSQQOWT+bKtkUA5kLKJflitiRw57s43tOe4YACqtCNWnT/9eG8Ar2fNVW0LWHtahcCnFLHjYjOasvWUctGicpji+tEPZkhZVmMRZpp+5owcvXiv47BsjSFCNwSl8Bicsfqq1owraWV7sja2cFXc17FPdKUBZ0cB1szNrYQnhq8+wfPUK7slE6XJ4A2AK3vT6h1gma5WLGqptkPsUgfo1uvtySqs1vBRkSpug1l2dEFML+xIyWqo6aRWq6+trAMjXco4LFux2u3wYeO/Rdd0CBtH4eSLKZFF1Ug7zbXdopCbp226oPNdvCY0AvxLaX7vdDIKPXWzROLvgrFAnn5qPKUJMTiAlTkfn4rXgWoWi8YaQAHJwTYfNZodxvJXwPwLIIMUAP3vc7vd4/PgBzs4vMY0exm5gXAsiToPXcl7GWi66kHBH8izlwf2LbB0/W73Bi1Y4HJzEm1trgZnDHdumB1cS8iBirg0TKnFHvE856YE3VtO1K+iGR65tWtGaCZZc1hxL15bPQGSyiawOSP2MKHesySpskvhAtG+zeXTwKsujbqfCutR3kUVbKvU3uaalg1IBG1syDR0oh5hCNHMiZGc1a9pc0k2royMfjEVZKGK0Pt0UBhG3+CJahDIcpYdUjIk5tfVQpCL82sayVh98dbdCNczGUZCu6SEuXCeGmDYY4CIXlX+kbbmg8zzPuLq6wt/93d9lEqcPPvgAFxcXuLi4QIwR19fXOB6PuLi4wPk58wX98Ic/xKNHj3B2doYPP/wQP/nJTwAANzc3ePDgQRbkH374IT744AN47/H06VN88sknWcv/4Q9/iHme8b3vfQ8A8P3vfx+bzWZRxSqEgLOzM1hDkgRUFBlOMDuhEJzYcm+jZPwqTvtrthCYYW+zYVPMZuZ4AInrc6QUEQNHh5hkgGSQokEMhBgMYjRAskhwSMnCe4jQ7rHdnSNFvg8n1hjEmDDPHjfX1+i7HpeXDzGOHsY6NA3Ha4cYMgWqFRIkiObLXBJqmp5QH+9pa01QYZKYEicINQ1XqAEy5heCR9M6cMkr5mEJkePZMxwENveVxtJ7v3BKFizXoGvaTAtbU3OqoFs3hRCYpzugRCQUtyZBSqihaGn3m6h3N1xRECuTH3fN3HxtIAsxAPlZmXSrWCC1Iy0fjvp9EYTOFhIkZ61keGKBYZc09tXBoslWyYASl6GDOCNrtEkfULX3XHkoC23mdp9mrZM4w8cJoOKYJ+JDiBksufo75WeUOqNkqtqeZa0pB0jXdQgh4OnTp/jX//pf40/+5E/wJ3/yJ/jbv/1bzPOMy8tLPH78GMMw4MWLFxgGTqq6urrCn/3Zn+HRo0f4vd/7Pfyjf/SP8vWvrq7w3nvvYRxHvHr1CkSEjz76CA8ePMDnn3+O3/iN38B3v/tdWGvxZ3/2Z5jnGb/5m78JIsLf+3t/D3/4h3+YcW2AD96Li3Ph0Z4W81xXpH9TOxVfvm6/0rS/ZrNGoQyTtezFlGTFbxnrWhNhVrW8kAPwiB1BxmjaeLlklISclFiLts5JCFYhOoLchaMFSK69bqn04ZSWnbB6jRb/5M+IUFHS/trJos6+mESACEadpOBCvYBLAYCSWl11E6CKQlWvr2+thGk9XvV36qdUDV+F2Z3IDYUX5HOVfnwHgjnd6M7nNV68DFsFe8Ua67znyitNja2EAosUneF+WCzV1zglGPJL1RrVgThxPRCQAisSoXVADuerx6zMUErLd5bPQ0BcRjvluHGZR+89DocDbm9vMz+IYuEKV3AB6Cn/fnt7i7ZtM/yhxFyKgaulAABd1+Uokb7v8xwdj0ecnZ3h7OwMKaXMs7+OYLHWAnLf8vSL4UI2W+4f/De2Xwntr9ke7Aw6RFiwl74scmRzmzFCCeFTpj3wP+JLQyTe2olVEi7ISxFkHUL0PEEmIBnCzXGPF1dXePjhx3C7C8zUYEqEhgTPTIARjY8gFW4SkOBK/xJBk2VUsCzb/VBJxkmpxPDqN3Qdciox0+I2TYtxHBkWIeQiANDixMRp9o1rWMDHAK0KxDtcChxTgnMW6ahkR8t7ll7wv/o/jmbxUrS4LsCQqv9yMYYEgxCrDM76s7Ws0/dNiV3mN0pMOK06FyUsNISQHW/jyMWPuQUYxDwjXDlFhoF47UQjVeqTgQHQmYSz3sBboDWEbWvRWn5Pyytwik6UZJj1IZwACkhIiMQVkhJFHqWcRi+HDKkwFYVBnJgubHB1dYufvfoMv/Hd93Gxa9G3huliYZFghFKBLSruRYFO+C+hUKbSrZon5uXLl3j8+HGOHPnDP/xDzDP7k3784x/j+9//fnbo7nY7XF1d4U//9E/x5MmTnJre9z3atoUxBj/4wQ8AAM+ePcNHH32E/X6P58+fw3su4D3PM7788ksp8OFxPB7xySef4MGDB3jy5AnGccyRLFrYA5DSeCHJGk7yO08ir5X1HNzT3qyM/woe+TrNGuC3v91hI1lmlFJGHQAW2lmrIoNEDpEa+dcC1nHcoCME4iy+CICMywLe2AYhToiYQG5GpICr/RU+f/Ec73/n19Gcv4fJtJhgEFSbTgk2HyQBKSaOGyCLiBYpNUCFcNbbp7RK4qxNZFETjTqsKk1DsxCz0PYJXdsBEQgzC23EiOgjFyhOBOa+MGgb4duITGbEgpvpQ4EgQtsJbWlcKH6lC3xA1tc1xuQak4WLWgsn6yUITdcjwWAOEcWwlwtH/Tz/MPFSRLK8EMjanNCUUuJnq26hTtkQPMLkMQ4ThuOE43HCNEzS8wBDHOljqJTLMkZ6TBbROESw/8NEoDcJF1uDB+cWFxeE895iYw1c4tQaPVBC7rVaHDU8FACaETEhmYBICZESyFgkoixwIyVEEwHjARQSLhd3eP7pAX/+//wbfPrT57i9HsRXQ4jJIqYGwTeIwSJGrqgEFf4C1XGIq9DqVnCC8o18+eWXGdtu2xb/7J/9M/zzf/7P8U/+yT/Bj370I7x48SJHnVxcXICI8G/+zb/Bq1evstatEItzDr//+78PAPjss8/wne98B8Mw4PPPP8c8z3j8+DHOz8/x6aef5vju/X6P3/qt38Lv/u7v4rd+67cwDEPujxZCACD3muE9H7haOYmIcijwnXafgH6D4P6Vpv01WtcY/PoHHQxuszmbas+3yL0iTypzUxERsMYLpOw45M+I/qequIiRhITZe0zzjLbfgmyDmIzojyVtXfuS00ES1TflO6eqb2vNOq3+RVlD9+rgSYVT8aYz6nMqg00gjlQwPsX/FuF7q06U+N3KWr/TO+TnVOgjR7KgCGI10wu2bNgCSGqIrO5/Iqphcct6+Gr4phqX/CMHj4Z88mVURU95LAkJMPJOXhuUrR2OTiJEAzhHsEZInzIdJFWIyjrJSj8ifaXiuKzhu7VWvIQ2AEoW8xhwfbXHOEwcspnq+WC9f4UxVeN0N+B0HYWklhrAIZLvvfdejsdW+lRtznGI3cuXLzFNE+cMCHyibI6Xl5cAuO7jZrPJ94gx5lBBxap1PSs0stvtsN/vASidbljMrSoUbCgWWK5+nrtzcPfPN0HfvxLaX6PNIeE7DxOGl/x3EtNYkyWWyRXVF0UzTEpmr9EEWRoWIcELgBd9SlxH0YcIY51opo6Z1MDl0mKMMNbkA2G1R060t7DDqo9lUVDj91KT8PrmBsdxhJWK6EjMXHd9dQXvfcYkOVWbMIwjts4t+f2IKmchMibOdQkLrnlqkZff2Q0HiPAlZpJbcygvBI+EcGm194zMyEMrDMLXFNgLulGFI0SxdvnhsLSICHaCMpYfYcDjY6zFWdsiSgm8tm2zUzJHWhAAiWWvIzZ0uQBS4BcEaxhaSvnB67li4Um0TJuv5zTfBNV9auGdKliKKq8DJYQYMM8Dz70oGjlXQKwFMpptWZQR1kYDW0di8GumomYZHg4H/PjHP0YIAZeXl3j06BGMMXj27Bn+9m//Fk+ePMF2u83P03UdLi8v8d3vfhdffPEFXr58WY0p/zx+/BgAOyLPzs7QdR3meQYR5QiTv//3/36OCf/ggw8yY+V+v2eor3IUv8lpqPv4TZ/7Ku1XQvsrNkPAf/+9Hg0mDDnrixdhe5IbocQYcyu4lyGArIWKwToKISXGtcn8f9n7s2fLkiu9D/y5+977THe+N+bIjMiMnJDIxFBAASyiUFVgUUU2KRabaqpFUZJZSQ9t/dL93v9AP3abtbX18NDWL2rrNtODRFIySSRVrEINrAJQAzHnPMR8I+LOZ9qDez8sd9++zz03IjIBVMmAcOBm3HvOHnz7dl++1rfW+pbBWcX4ZEJVNRiT0+sNUCbzdS9FMNXWooMqT9gHFjQjFb5JNwo6xxDO8x8FfNQFzVS1VoVwdxj29vcig9/a2hqr65sMh0P29vYYDAb0++Lw6ff7NNYymU4ZJItN+qY6ySYgCTBaAbotO3VWCTnl0zmCVulotaE6qdTtXCIYfcvznOl0KkIkQFvOoR3RtG2deKI1RlKnsM8GrN6nStdN7aMp/LvWimF/hMnEgTwcDoMKHYVVaDo6jx3ONqB8hAvtpulcqCTkGetCpqlTvrxaK7TD9FseiujN+PB4ibEYnts6gTPE+WlQtsWnrK2Yl1NJpDKhbmhbE9QYjdJ+rJRXKBw466hKgb6MkesFmtSyLJlMJhweHvK9732P9957jzfffJPf/u3fRmvN7du3+fM//3Oee+451tbW4jMNBgN2dnZ47bXX+PDDD3n48GFHYGutuXLlCgAPHjxgY2OD4XAYU9c3NzdZXV3tZENeu3YtCu1Dr4SEeO5lBYbDogpCvYn1P3967ZnQ/oQtzxR/5/N9nOdqBhLzb1FAnm4hckBFkXpaJw7aTdR2nKKqa0nSURLmZUPqsVJBwUvM4XAR/4vrLtigU33itniKFwxlWcZQvH6/D86RGUNZlvR6vTiBA0904HtI9phOFEcYp/Ym3f53+3D2cyxqQ53oifj36dTp1OiRaJ5T1n1yzeRv/2OtxXqWubqpfRcDaZGO0Q4hw9KYharkYW9I++u1/DSMMAhmpQQlJtXI04slcNFyfGv5xyr5prVRupq2cxYb6qT6I1U6Zqq9UjqIkq8QFJT2PaQlxYKgPDk54eTkhH6/H2lS9/f3GQ6HMWokbPpFUbC2tsb+/n6EMuLzKOEIAYkeCdEkQVnI8zxi5yHTcTgc4pyLmZdh7E+NX4S6WsGdQifw2Kn6idozof0JmtFw41LB9R3N4b6Yva1AVJ3QrbZ5bMtreeA8s5ywkDXVnCIfYIy8ijjJlQjrxkLdWA4Oj0Eb1jdWcCEZQmnyoodDajBaNycG8jkFSAxuSCGOtNuBBL8j4dMlmkw8uvKEZOEHhwxG+4wzH0ONQEXD0Yhevy9FTp1n86ubiAWmLSxY6yGQJbr/0hauk9KchtCcLp5MxNgXwxNPV+VxiXBp7x2sCXG2hopCIqiVP0U7hckytNHkLqOvAvSj6Bc9tE/5D9Xs0+dot/EUomjHQqKBWnVY+2dVEBN1ZPCc36sdYL2X+/HmeYhUSZ9zcS601mCguHUMhgVbW+uMRkOJ8Ik+jTB/NNbWOFdjbSWUw1lGf9j38fkCHdy/f5/pdEqe5xweHrK6ukqWZTz//PNRY3bO8cMf/pAHDx6wsrLCiy++yMbGRnyG4MB8/vnn4/UWIbfwrl999VWUUly8eJHhcBiVDiBCZcEZGc5NFYdFqKkdyPZX55wv0vzJSo49qT0T2p+gZQb+t39nIHwKzmOV3oxXjkjxmai5YmrHSs/yeZ5lzJuKqio5mYxZXzMtV3CieTZOoRrHvLLc333E9rmLXDh/BacknEop6A9G1HVDWdXUszoueeeEU0Irg9ZGCIYy5QvnOpTRXa3glFgUTT6FWOJvSlLStdb0+316Pgts5nnFw+LY2NhoBZStfeKNYlZWrWbqbQ5jjMTNegpRScZwEaJNtfIoXBNzNFRjz7LMc3CLwAoZkaHatvx0Mca2qG5LRav89a3vo1aKxjURI5/NAwRicdaSaYPRhtwYBt601kbCHgPPiUBiGuUJkJpk4Tu/2eHA6SQ81MMbSsnmLWx8ur2WFyTaxwgH7V3mncfSTSpLEgwkXr+DlUmClnOdz4SAynN923BPx+ragMtXzrGxsUpRKBorXPHghGTKWeq6FKioLskyQ1H0WVtbjwJ1NpvxrW99K0IOd+7c4Utf+hL9fp/PfvazfPvb3yZkHX7zm9+krms2Njb46le/Gh2LITkrz3Nef/11/uAP/oCjo6POhhyckgC/8iu/glKKF198kfl8Hh2eofpNSJMPWY/BUgzXWlQ6UksjvlMnxbedd5D+tNozof2UrcjgP/61HusDSz0DWRYtM5qoKmkomSdmctHWjd8p3dJGptlwKmCZAWD0pzXWMZ3NUcrQHwwJdUmUgiwThrzGx5UqbyZ79JBQ5FUb5TPgvKh2weJONFROC2+VfrYw74ITD49lGiP8DsGMz31srAIa65No0vJeC9dKC6+29037lUID7e/pv2kLUFTXAanasfaDsJi5uHiNYFxErR1i5aCmaST12gtG58ujCYmWpuj12jJvVpIuTtPEus71A9YdYIY2DTzMIxenHCRKtFL+9xR2aHH87nMtmuyLsNFpEC3i0fFcR54bhqMBvSLHaAuu9lO9uyHJxtlgrYxFgCbCOhiPxzHR5f79+8xmM0ajEZubmzEqJGjk/X6f8+fPR1KnaG35FPiNjY14rVRop4I38GqvrkoW43g8jhp2uE5KgbCY4RrfzxJhHOan+AOWWDinzNdP1p4J7adovVzx9dczvv4Zg7Mh28lGcdLurn4xeueNMbp9N0pwselkysnxIUdHh8zmU9bX12U3diFaxC9MBRZNOZszmR+yvr7FcLSC8XX4nF+1ed7DoTFNLkKSYBoDVnvzWaONiMHGOnCNlApEycbTgo9UdUXIpFQ+q1IMANXFJON/VVyUzllJYlis46dkowoOrBimFWSoa+GRyWQilADas7W4dnSNkfCxVGMKra5rSatvGmxYMNaR54WHkFJkx7X4fyLwUOJAk/A/nzSVhOY1zsbjiqLwGalyXKpp51lGZkzEqp2fE4kOJtfzRSLm8zmVT3UG0FmGMTlZFjRpH52UwD5RiIe+J1eOOrr3d3QFS7qBJS8oeaMBTgrXTk9Xye0cNcNRweVLOxS9jMxYsJbJZIw2Hj7rFZhM0TQ5dS1Y/mw248c/fgvnhJZXa4nqKMuSw8NDdnd3UUqxuroa8eSQmj6ZTFhfX48OxclkQlmWrKystIlcWnPt2jXm8zkfffQRZVlGitcULw9hgUFQp5DHMsXiU7Ww6/8U28+d0M7zn26+UJHB1183/Me/6lCu9LkWBknNbgW3c+kysDRNhTE9fAQcCphOJ+zu3ue7/+4vePDwAVVV8uu/9htsbpYi5JU3kz1hvXWGg6MpB0eHPH/9BTa2djB5P4nPzhgMC/KkEEOIocA56kYwNds4alvRNBVNXVM3Ja6Z+/0hhHNJ7yfTGdpojNbCZ+Ghgcz4xB+AyNanfDKITx5pLKPRkNxrUK1mIxENgbqiTUpoNUphSSs4PDzEGo0zmtzTsQacPs9ybFNT1bVESCTvaT6fU1aV4LLex6CU9tErg7i1OlzMyBQIxK8rv1FUjQXbyLhVJcoRsU2lNVmRk/lwMG2MfKa1YNpKkWsjmalaYTIdk1oCVh/UYmstZSVczCcnJ8x86rXW4kzrRQrS9h0Zo33SRoPRRgjJcJ5ir7Ww0tZqialVsnyuhzFaFFg64N024OcB+56xtTXk6sUXWVnpoZXFNor9/Sl5z9DPe6yuDnEuEEvN6ff7vPPOu3zzm3/IZFyyubnG+Qs7vPHGGxwdHVFVFW+//TZaa86dO8f29jbj8ZiTkxNCDPbLL7/MG2+8AcD+/j7Hx8dcvXqV4+PjaLl++ctfJssyvve97zGdTiNzX9jAyrKMIXzheVNO78VqOel4xhjsJzjBZYzaUMkUOvlJ2s+d0P5f/fp1/p//zY+oahsrmH+appVUVP+nv1bwtVd92SbnPAIiEcHIr6eba01Tojh01HXFZDLm3r173Lt/N9JFSiyv65wvGpqiLGuOj8eMVlbp9QZonfnnEuA3y3K0CyFuEkYY7m9qqfheVw22Foa8oI02tS9VRRduqJu6rZAe7W/wmcst5OCfydFOYuds4mRLri1xeyhtI7Rwary1jjiiUs4nNgYiI+IG4KzyIWjdl1s3DVVdt4CV0miTMciGvpxZu2SC5ps+XxD01ofuhYLNCmhqSYfWmUEZTeZN+yzP0Ua0a6xcJtMaWzcSrhjipxPHXIB9rGs1u6qqpKamdRiTeWiplyhoKZTRvU6yR8fPw2+LBSzasxfawhx2rj3Sb38deKo9sKHf77O9sYJ/wzRk1E0t3No4XyfReOtIRUKlmzdvcXQ4ZTzeQhu8xSmMkaEK+mAwiGXsQljebDajKAq2t7dpmob5fB6hDRlHifK4cOEC29vbkZa1ZXqUFqDJNAFnGez2E2PRiaXTWj3uJ4JIfu6E9tc+f4FrF3L+r//Vj7j1qKRu3JmaxbKmcBgNlzdq/jd/p+DStsY1lZQJI+DOzmtMNgrY1qHjNUdjaOqaWVlycjLm8PCE/b19Hj54QF7kXLp0iX6vYG1tlSIvTllQMmkkOmQ0WiXLCpTOESegBmVAkugRAR6yywJRlNeytMYYyFWOUoJtG6NwTTe6IsygtDKI9YK48bquTZe8UpGZzUZ4xEXcuhO+Z8N4AY7O8dGRlght21hqKposI9RTxDmqWiwFHZ4tuUeW5yLVvGavlEKbVrDitekliELsh9bizNLeWZnlOQaFzZyMixfYeVGgtO7g4RFCoqtlOSsCurHWO7BthB+CIBLfRBYXtQiSxvsebHweGd9A7WvF6RgUONU+S7tpypenZMOi0ucQp6E8ROfLsGGGE1OFURsHytI4i7aOyXTMfDphNBqgtGNeznjnnbcBQ7/fZ2dn29danLK6usrW5gWqasru7m6sLxqSaKy1nkVzEMPyrLVsbW0xmUz4wQ9+gHOO4+PjKHTDD8gcGwwGvPjii9y6dQtrLdvb22xtbcVxWhTM6b+p8O4Qjy0cuziH4hAHKKv7elpo6ydoP3dCO8syLp9f53/3H1zj5u6M3/vuPt97/4TMKMpqufatlSPTjsbCjXNTfv31mi++vEKvMBgkXEkKwSrRdJVDBy4Kl8bLtgIozwoOjw559OgRH37wIT/8wVuMT8aUZcnzz1/l+vVrXLlymZ2d8/T7g452CkFDzekPVtnJB/QGK5i8h1M5DoPSOUplVHW4N7jI6QAgQkgp4VzOybGukR/bCESQaMPh1oPBkMZ7zeu6itERQTg7Ql1AqZxitIlOmxDWFz4zxrSOHa2Q7Dc6Dh/jw6FC7LK1lulkTF2VFFlO01SAj/uez3Cem3g2n5FulL1ej36I2/XQiDEZKO01fYmmUZ78KEan+AeXVGcjDG+9HrkxFL0RmZIiF5nJsDiJ/DCG2mPMET/2Dlfb2FgOrW5Ew6t9vPZ0NvbaXY1kKfr5YjT9TOKHm8Yync5oaonvrusmlnKrq4rMFKCkYkqWFaccXosbB3ED98LXC92uRuliqrz2kTXyaesbcMphlPZy3fq15tBaoMCmsezev8/B/kM+94XXGI+P2N29z+/+7u+D01y+fIVvfOMbvPPOOxwc7HPx4iU+89ob/Ns/+SO+972/YD6fs76+ztWrV7lx4wZN03B0dESv14vVapqm4dq1azx69Ij/+r/+rzHGcO7cOa5cuSKQUq8X109VVWxtbfEbv/EbfOc732F7e5uXXnqJX/3VX/Xj3HSE9uL6SwV1LKOXBAzENZrAJX604zGpX+Cngo/79nMntI3RsfzVc+f7/Ge/eYHy1za5/dDx4f0Zb9064XBc01hHZmDUt5xfGdNrdjHlTV594QJXzp8TLK5pREggOKfSwqLmQlBuEvvacdYo0WabumIyPuHBg13ee/89ZpMpWmleuvECFy9e4MUXXwTAOQPRBMV/5kBp8rxH3utjsh5KZ4AG5TVtZZBMtbS+YKIKqcB25zU1fzxILUaSyRYy2LI8B29OChVs66gJE91k2k9EA+b0BF/qbbftRE417e6YiYlaVRXz2YzG1NR1Cc7RK3KauophbC45D8BkGblPjAhjZEzmNVwPU3kIpI1s6C7SoOU6a1F5Tp4XZFqw9F5RdByRjeyWcUEqjS/f1uKeNtnshHFOQssk9ldH7vGoaQOQRDAQNG0XrZq4EfvvJRTxdHXzZDZGn4Df2RdaAt0oYrBT53svxJXqXkNr0bRFCbCcjI85ODhgNBpQlhPKcs57773rsTUZ2729PabTGaurKzz//DW+850/5cGDBzRNQ6/XY21tja2tLZxzMcEl1bQ3Nzd5+PAht27diuO3vb0djwkYdEj0un79Ot/85jcZj8ed7MmzIpjS35dh1+HvRWGdjtep6/304Gzg51BoBy2i3+szbiY0Tc2wp3j9Wp/Xrw35O19ap7Ez6mZGWZ0wmRxxcjJmfOIoZ5tsbKwxGPa9ZmJRgWwo2jeWlgQngBPdxVJVJQeHh9y6dYv9/X3ZQK5e5fjoiNl0Jh51n2qcIBMSz+21QnnJGp2J40slcIgLVXAA2iUp+O8ijqkWl3M6g1LroNU4g0nnEGFoG8+hYQNVqoqVaiJin2isymc+BmrMwCURhHJIEV5cJJ0frcnyTIQhsnC1588IkENIJZf+60RjUp1ddHHROdcZtdi3oshx9Cg8cZAkJKlTacjOdQsDg2jYOIetG2ornBy1lXj0xraFGDJfjkrgoCzpO3Huhu5GAQFRSLdV7r35HeZhZ950etti+W5hboQ5sKAwBFqGdo6EKuvKI1X+XWdaoDYs9+7d4ebNj3lw/x7TyYR79+7x6NEjrl+7zmxWURQF77//fixkcXIy4cFDoUBdW1vj+Pg4Qhfr6+uxoEEogBDmxblz5yjLktFohDGGy5cvs7Gx0aFJDRtlwMVfeOEFVldXOXfu3CnM+qyWauGphv3k89v11QlFZMkaPOsSTxDwP3dC2zkpnLu+scl0OmdWVRSZxdowbA3T6SEHhw95tHeXupmxtrbKpcs7bG+8yKCXURiFxgrvg23QOJz2EtYJyY3yhO+dKt9egzsZn/C9732XH//4R2gtpuGvfu1vcv/+fT766GPW1lYoivwUrmqtixpX3YBThrzosbK6gjK5aMqeRMpaEUxatzSwIY4WTi/NGP3szeCQtBKET5gnWVFgnCO3jl6yCKRkmEy2kKadpmsHvo6iKKJwns1nERIKGKPWmq2tLfIiR5uuZz5U3Q4sbr1+D636sf6grTNx7FlLVddUdcsrYjI5R5ss8pOIz1jeW4zL9s/jCNiy4NX9fg9jNINRnyLLpQAzity0RS7ie3IC1wQCKUCyQeuGpqqYT2eSeON8ZRPvlAxO2qKQKJEQr93GIYOx2vOd+KK2WlhHnG0EumgkukjOESFurUVn3lpLKGHx0EfIiAxC+0mQqo3WjPPvxYjSYn11dD/ARc+QF+Lz+fM//zZ/9u1vs3vvLn/v7/8t/vIv/oJHjx7xm7/5t7l79wG7u7v8D//D/8DnPvcms9mMDz74gNFwjaquuHr1Krdu3WJ9fZ2VlRWuX7/OwcEBk8mE/f19qYnq58bnPvc5Xn311VjooN/v0+v1OD4+jtmLgQvbGMPOzg6/9Vu/RVEUrK6udjTx0898WvNOhXZal3JZS52Mqb+ormsy3VVSfpL2cye0/0//37/k/dtH4oC0NSt9ePW5gusX+rxwsc+gcFTljPHJIQ8f3kOphtXVAWvrI5577hKuqbBVST0ZS1ibEzY+5UTbDhoPkGjacW8FoJzPuXPnDu+//z5ra2s8//w1XnzxxZii2+tJxWaA5D0npli4oibLCvqDEagsZkKKnthil7JAQ59Iid7OaAsQim7jyU1mRHgsYKMS/yrn1XVN7TXoylnv1JT+i4nqMd2qZj6fM5vNorbU7/ejlrSoaUdoRUv9wyzPyE0m0IBthHfc6pgq31gnWTu0Al953HURekk1JOcdm6kGFWs0al+YWUwFTGY8xaoUKbDekWi8NSHyUGpl1r7gwnQmIWYWH0KW+Wcpeh2LIMT1x7CyoFl7zd5aK5EpTl6sbMoSV6915k9J4BP/XrtuROLzPnY6JC04S8NXHaeva+GULBMnt20abt78mPfee4f7d+8yGY+5desWR0dHvPLKq2RZn8PDQ370ox/x2c++Tl1XPHr0iLt372Kbhs3NTQ4ODphOp4xGI7a2trh58yaHh4cx+iP04fLlyxH+TAv2Bka/0O9QR3I0GnHu3LlToXvLBO+yiJEAmaWwXyrwH+eYDD/WWlG20nH8CdrPndB+66MDdven8e9d4MP7JUU2praOz1w1fPnGnLUC1tdXMTmsrAwp8rYquhTjta1c8zIxONhrr8GkGmqKQWgj8cGhLNHR0SGHh4dMpxNPrpOeJBEAIc5X0rHba0sSjW7xCi/UXexDOhlTgX+G5HbtIcuiR9oHOn1yOEr7rD9jHM5K1IOzFtsISZRVBmXkGQRjbheRUoqqrpiXJQ46hD/QFb4d504UdC0MY4xFN0lWaqfP6rFyKoWGOp/Gzzws4PFcXKvVNtZiKaXSjddo66qK1ofRBrJQkFnmgwlx5Qt4/xk9AxJtUNHVoJWKpSyUfJju2Qkf+Nlgaiug/Fgl0T1iNcUB8cd7xscEEjPaSKx61nDp0kW2t7cYHx+177mquXPnLgcHh4zHE8qyYmVlRJZlXL9+jfPnz7G3/5DDwwmj0SgK1tXVVVZXV6nrmq2tLZ5//nl2dnY6STDh97qul4b0hWdcxnMD7UZ5FtyxDMtOMe7F7x/Xgk8AldLDLfS189fjr/tzJ7SXNetgVsmwfP+jmh/d1Fza3OCf/K0Rl87nDPt9Bv0+1lVoZX3CiOCRsSJN1II8nq0kasQ24kEHjVaiPfeKHhcvXuTcuR2Ojo54/933WF/dYDIZU5bzqLEKz4bnAPFQh9CDisYqBV4UymRY50P90KCNL8fnPBeNF9CdxboMy3X+UI11DQFHaDkHSWLAaV1YDoTXO8SDG7JCYRpx/uTWUhphozo4PCTvleS9AYN+n9XV1bgZVVVF3dSMJxOU0oxWRmxsbHQWjJSVynBWYBeyTOAFp0FlaCecHdoYqeriT9XaZx+6NvIhjoVSUrYrCjdvXbgW7hGfYjeEzxiDbQKfi4pUAWVVCTzTSBKOcw7tRJBqpSmKXCwjfHiXT9xRXiMWzhCzPMUZYmWgbjx7EBryPpR2XVjUa8AS8tlu5GnoWXiusGGf1hJl4wvPFL8LyUhKo5Ql8wKvl/coMg1a8fWv/U0OHj3A2Uriq3XG8fGY3//9P0BhuHP7LkdHR1y5cpXNzQ1u3HiJLCv4zne+zd27t2MEiHOOa9eu+UpFlqtXr3Lx4kX6/b5kjvrkmeCgbLllbEcbBtn0ZrMZw+EwfhdaCA1MLcnw9zInY9gAwjGxmvwpoa+QtdLCb3VtRcHh8eL4CVB2bL8QQjttDkVtFbf3cv4v/03Bf/4Phnzjlwoxl10TwQdh7PNL3wttlIrhXBDg0qCVtK8kyzLW19dZXV3l5PiY3fu73L9/z2sGnt4RiYFuZYuKpphSYqIL6iGLRZLfRPiElPIUFkkMOp7q9SeaQyvM0tZqBVFL8E7ZAF/gk3nCNaq6YjKdUFhJwRd+5EHMkDw5OaGZinNyrMZkeXZKwwmxtrIovOPTfyd8zX4j0ZqssdR1u5DksXzCT2c8/HfJRy0MtdwsDn/bBFoIGl7tIZCqqmNZqVwbMm0ospysl7dFDQyxfrPzFAEhS/Ss95T6DjqhY14D7nTTBYKwIJrbDNegRZ+616LkSDdoAtmW6x7gnbsaML4DmcnIjEIZeOWVl3juuavc/PgDX4/RMJvN+fGP32JjfYv9/QOm0xmbm5u88MJ1rl93nJzM+NGPfkhZlpFjxDnHzs4O8/kcpVQU2iGJJiTPhLju8P5SjpDQgia+LApkkQahO/bp8LrOv8CpDeBJ7aeWEu/bL5zQDs06xbyC//e/mPDxvYbf+Xt9VFKHK3Uq4GRSp/oIBLRi8VNJYe71emxsbFCVJTgVifbn85KjoyOOj49ZW1tlNMw6EEfHTRQFi4dE/E0Tdk6CYoyHV+IxLDHv/OpWXmuSHeoxk08tQgyyYUmpLJ9Y5K+XeZa+LMswmUReCN5YxqiT4LAMjspljh9jTGSvC5EGWOdhGf/uojBLFkMUUN3+ijnfFUHLF5CKwx2cjQ2Cy+Nx5KrpmuJB+ArGbXwcs4obcHfUQv9UIngX+qtU1Pg7G4rrHBKeIm6mLLznhS0qzg8RXEsevaMCPmbT74x1Mm7+g16vYDAcRH6Qq1eusLF5ntFwNfJXK6Uoyznj8YS9vcMYxhcK7waNNgjVkLWYppvLYyeb9IJAXhblkf59Fjz1WMjqE0IiS6+ZiJSz2qLKsaz9wgrt0OYV/E/fnqOV4z//+8M4osZkEovrK5qrsEBtEKwiuLTycdO0GGSe5WxtbfHGZz/L+Pp1xicT9vcPODk54dGjR/z4x5Lk4pzl+rUb5LnQdToXPPVOMEzvvHAgFWycz1KEBFs8G7NshVvQpttFK6ROJmrZ7ZoNWkSg+PQTSWtfTb2hrCtfLFeEVb/IGQyGjFZWUChqB3XjmEwmUgg14vASojcYyMIO3v7UJO33+8ymE+bzmWhUVYkCjNJoH4WhjUQIiQCVa0QGQf80USg+YY3JJtfGlzfOa89NQ1nXlNOp8LX4ZBfrlU6tNb2e8e9AhWqIccMJwjfgw8qPYRDyKu2aFd+EQrRW33Oh+w1hjS4VRorGhd3bh2mqBB17YkvDCmUUIqYd+xVEv0PmCTS2xuhUcCkUPnfBWTY21rl48SK3bt3itdde4/XX32AwWKWu4a233ubb3/kWSikePnrEW2/9mI8+vIkxhi984QtsbGwwnU5jkYPg6zg8PCREYASisVTTDXM7aOnpfALiHFtsYYNIN+AUVln2+yI9wxNHOYGf4ka8wGv+aRTwX3ihDSK4/9W3Sq5dNPztLxYRt7U0XmoFWCTCe63mEitxty/SmEyKgY4GwnFQ1vzZn/051lqOj4+ZTMasrq2wtrbG1SvXxKHm14FKBJyKYA0EZ2Q0g6OGteytdydWq9W2MEhg4rPWc6qk2AFtGGAME1MahWSU1p6LQwFFIfhwURQ+5dgwnddMZnOOjo46CymQQvV6PYFKmrTiibQ8z2NkSdM01JUk12TaRBKmPDcYzaksNUWbNqNILA/aPqRjEi0mJxWBlFbQeBikrmlKiXypypKyLIV1LzPozJAXfZ/96X0SzrMCxlcTslRprbWQbbiosAYNWJ12UnYgsGTx2/hMOsbFx/dOSwD25BaiaZI+nbLQ5EGctX4vT68tgtu5OlKpPnz4kF/6pS9z5cpVjCk4OppycjJmOBihlOL46IgPPnifH/3wLV5//bO8+OKLjEajyOZXlmW0xkL1mSBgw9xYJrQXcelF5r60LWZALmLZZ32/dATTObVwTBu1kpjHS6ygT9KeCW3f5hX8v/7FlC/eyNkeedM3mqnJqCaTW4W/F7HQ8ONTt60xDAYD1tfWvRe8JjOZYLuTMSbr0zPL3p1bXB8LpqzXkv1nCmKUQbLsRHgsCOX07xTRjosBqceYTvoAB4lWUyB83WIhpPhh8NinE3+pMFrS2kUpAlwrwIpFozUxu/OxLQF+l6H16fOk/QlKkMSe+0K/tLwoUqRWL8U0WwzZv4clC1jFl7SsN13zHhJHZHzvp4CPzulBy9f4CjLWIYUgQsEOCNmzsofL3NCq3QQWRyb8FjagdNOxDTiP2StUjK8PMdTWwuHhPsfHokGH0DtjjBfwG4xGo5iinkZmpPDZWT6HJ2m76Sa97LufpJ113Y6gX3Jc4hL2x9to7YQXfdZGE9ozoZ20qob/83814f/4X6yS5T1qKmysw9gKUEXIhjsrrCwxHz1h03PPPcf6+jovvHCdR3uPmM9nHBwc8sH7H/Dyy336vSFRq8Z17xfM7I65n+7uOkK6zkmEgjEL8aQa8NVuIGjY/tptYiFKaayv7h7KhwXPfJHnZHnBaFTgnBWa1KqksZbpbBY5j9EZTumYVZjigWmhg/RJgmbc6/V8VqVhc3MTnHCf2LoGQiZkndSbiB2Pm0pr9QRn7xNC7Hz/mkaw99l0Qjmf01QV/bygZzRF4cvBGeEecVp1FqXRGh0ibLz10jQWZUJomZ83/h0Gtsgw5nEsnBS2CJEPo9VVsfK8ZeUCJu5JeKOJrw1ZLpaMcprZdMZsOqXxFZKsayh6PZxTQENdhQgMQ79fCG940ofO+ADOz6nG1nhfOrOZRTsHGRRG0x8MWFkZcefWHcp5xfHRCf/qX/0bykpi/P/23/5bvvjBCq+//jqXL19hdXWd0WjEycmJkHV5no9FoR2UhVR7TudWCmOEuOqgSCy+63DuWXMhFfZPo2gstmjFqdYSCD9tlAu+r4HSIdzLhcV6ZnsmtJPWWHj3Vs27dywv72R+8IKgXHxhLYQgi/f09dIJcv78eS6cvwDO8dHHH/Lue+9x9+5d7nKXq8+94FWZoFK1cEbEZtuLtn3xcAkqNYelR1ppHE08R/Sr1kSzntzamDBB241GnIb2VCUP4XfIGI1W0BrqumJ8cix8xVVJ7TWsrOiT9/oxCSIsoDTNeLEFgStFFAS/XllZkYII1lLOZ94hVTMvHXWMFgi9buEql4xfl8+4fS+LTrlAhiXFKubMZlNs3TDs9ciM8Fpba9FG4IjaL7QwAbSSzEnro46si9ts8soSs76zcak4CNZJtmSgAAgadoTNknNUIhS0kqilwWAAVlGVVQyznM9nNLbB+BR655BC0Y1FqcJvBm5hErvOv8FybOomzCqq0lJrR4ZCZZpeUTDo9z2vdc1kMuM73/5zUHDt+vP86tf/nqe0Lbh+/boI1cpSVQ2TyaQjMNNwx2C1pRmJ4bPFY6AV2qnVt9ietIl/2tY6RtvP0j5L2TuWCO3WygiUEme1n27FgJ+DVtXwz/5o2i6UgO1C1H4jfriAeXWa1/acJ10KscChYnT609n1o5AO5lO4WHKISo/t3jSNcul0Jrmqc+3J7e9BmNsoxIO5G8h4wqSShIZQoJdodYRFlzpgFsdn0WQNDtLuce2xbQx7C0toH3IY+nfGYBC2qXYMli/e04s0eRZap2LatyiNU6gqPpfik637LuzR+jUimN35HqVOUZGKD6CO3NJBCBhjyHyV8fAusyxvrSASKCfFieNjJc9Li72H7zybA01jKcuKeTlnOBzGsM2QKCOV07O4JuDs0LlFeOSJo/cErDk97qx5+LhrfxIhHo9dFAenNO4QhbX853Htmaa90KyDf/vDkpP/hZiOrmlwVSt0BU4QvLBdU2GRyd/h37puqH3BW9AM+n0G/QFra2ucP3cOrRRr65v0+wPZgRPzWSlJmY7ESDqI1hZUVyCfB1xMOYxP4pCoilYjb0+AGB4eNM5k8cxmMyFryjIGg1W8mI8bT1VV7O3tSRRHXMgKk+eRBVGZrMvJsmBqBhPROcdsPicvcs+3EYQlcesRsh0XGd3AoY0Ii37f0pFrSmMbr4FrOUZS6sMgBO20FVSdBelEm8zzDNfk1ChPiqRjwksKWWktTjiJ8nDCR+OHWqMlRjtuSuKobI2a7sYcnlc5eVZJREq0RNUmcxijGQyGEUqYTMZkmeHg8JA7d+5y44WX0ErCTHu9nLVsNWZlCkmVVMA5OjiksVIMICsMTmsa1abqh60+5CZYWwu9QDDfnaZpFKWFqpxw585dbt26xRtvvMHa2hqDwYBvfOPXaZxltCKCvKrKSCecZZqmFuGVzpNlwjZAC5+0nXVOoA1e5nt4mva4c7LMJApdC4uE+6WQTZrlGZ4zEImdef1P3NtfgJYbxVu3G968aHC1oamaaGYb2l2TRGgLFpxWYw8VTyrGY8kA1ErT7/Ujv4I2ho2NbXpF3zP8IRq+XNXfx7YYGUGEJmnfILiv74+JxVJ9cpAXEB13oxdO4IViTPbA8zRn5HnhNSZJSS7LuQ/hKzk+OsIYTZ5lUnk8Ey3YGSOVW/A5hKpLb7n4t3OO0t8vEPNF7dq3UJ298M4qpTJQovVr1ZIuBU2/sQ3ap1E3yHO22mQ6rikk1G1ZlmHzHFybVq9RWB1yDuXMmIFnFU1dY63wL2qNr1yjqZo6jnlXGCXWVWpIueCMDaXF/N3CbuPv2x/0I//GdDbFGMPx8TFvv/0O57bPszIa0St69Ho5w9GQopcLcVGWI1EsUM7mPkmopOjnOD9m1gkzexDaQc9vXE2eGYzyvCdobKOonKWuZuzuPuDevfv89r//D1lZWSHPB3z1q1/xfOIVZTWNdRzBCauiU5Hg65TTbuHvRT7rJ7XHCfrF6JCfVguWoKzHlHCtZSpMIZtUoKd9e1x7Bo8safPK8c6ddjeM4u5Jc8Uf1ljLZDLh5OSEk5MTptMJx8cnXuNOYnkhmrKwACl2TO+FG3QOc2cgAwLfyC7uYYzHPMSiVgxtRZrgKFl2/8VrLIdnlh/bLqqzzdinuY70zEUNWnYlPzahRSto4V4df8EZ93fdM+K/T7nmWzQqgYs+0fmLmqh8PplMmE6nMUZdvrNeMNoIIYmPoIWXopWQPGeig5zqVrAUlj5YHG7xRwx9pRnn+2J8geMgiNJnsEuggMfhzz9NIbsMHvkkkMyT2lK/zaeAQpa1Z5r2ktZY+P6HFf/olzKssjidYHnKtXwhSUvH/uRkzPd/8D329x5Gj/jh4TGvvfoaF86fAxR13TCZTNnbPyLPh/T7o3ghB75KTsBGHRKBHCZ+W+YsCMlYyD2pNymVZxoaaxkMhig8A1+q1gXh4R8npa48OT6OSzWYk0Zrz+XQ4syCawdIJxVSy03dcD0QzV74SdpjpIpN1mrotEkSzm9C1lmPzabCQDQ45zesrt8hOIFEUBktlg/Q0YIc4sQKRQfCxtIW5m3fvLUWX8AIhYeLwi0tOLzZqxVKGymMGyyfRGh0QiN1y2IojjeH9uXaWgtKUun/4i/+AhR87nOfI8sMvV7BcDDk1u1b9IqCixfOn8K902aMkThzb6E41dIkqGCduRZqM0aTjqn1aQxKK3r9ES+99CpbW6vRgqpKy1xXNK7BuYbGhpRyGYOmbvycVkuFaBp1tGwuPU07K4U8RKL8pEI6hf5SIRxgsQDOnYqYWrACpP5p/Oux93wmtM9oe8fWF++SBRMWaxConfm/8N7H4wk/+MEPuXP7Y5xzrK6ucfv2XUbDFX75y18GBDqZTWfcvnuPS5eeby/lBajWWrIAlQdEnO+HSzR/hwiDIEic81i7HBcKotZ1JTwNKizcNCqlmxEZceem4cTzQjvnGCXOpX6/H4VphGbwEFHKpxKf6TRuGJIn5nOxPtJNMDgYxZMusEDjy4zhXMxQxCmyrPD3sLj4hhINJoFBopBUIVnIJ+RYKUistAivmLAShLYPO9RZl69CWP8cWOHhUFr4ruO9HJ71L0MZI3tK4qRMhbYQhSkIvzvno24kEkX7Y4UKQGpZfve73yXPc778y7+M1lAUBf1Bn7t37nL54iWGwyGt77Qr/AI2rkMik7WgGpxOKESV8o50i9KOPNNgmzjdbaNwWsaz3xvw4os3uH79MtPxmLKsvLBXOBWc8F1Nu4Xw9JlcIOmcfBqtfPH7J2HarSP7J2+LkEfi240QiXPdKJfW8tGnfB1ntWdC+4xW164dPz/p08C6FAZIhR6I2ScJBp4RL8skfM42dBYtwq3gIvbFme9Lhe9P3TAxmZ3rMLQFaCRqFAHliRsBLAq0LjSwfFFEWsu0T0tauqhSwZ3eY3FRKeVx6JA9aGXkbSOshCk1p+lkvC3piHK4pfnd7SCnX6Ubl2K55teiGm75LYPGqMLUSe4V73H6JYfwUelT63+wSaUarbXPyJXxm81mNEnoo1Ji+YSSZioU7jhjTgXIK8yHU3069Uu3lWWFshplFYN+hskyjMmZ0MJVcQPV/l34W8k4Lb/uMgf24wT0okLwNNDa4yJOPglm/qTPnVu+6aSbV/S14J4grqU9E9pntCwDnRuMNQgFiZMKNrRe/MxrB7LIbNxWFbKLvvzKK6yvrbK5ucWDB3vkWUEwBfM8p8jziD8utlA9JC4q5aWFS2J/UeAsTWNp6oa6lKop4KEKWwsxv48QUDpDqaTPYUIlm0CIq07D/WL4WxS6vpMLgn7RnA1tUcNLHTJd+tG2D0WRM59NaZxUzZmMT2IVF3DMZjPqJI3d+QQTE6vheMGXZg4lginVckTrbs10k4nWXFVVdHDaoPl6zRsArdFx0Tm/SWusz6QEJU7RAEkFNMpbSypAUY31bFg+nNIzCda19dE1hQ/Zy7H+Hv1+n/F4TOGJmJzzSRso7t27x/HxcTugSwR301jKqqQKkQx+HNBKQtGS96q1wIIu4iFysY8+uo12jkGuef2zV9FViXMzX3otFKNQsjacZEhqpaQKFK0DMp1DqWBL59FPIkifFh75NFBJOrdTPpOI4dPW9+w+X9jS5V9Hu1mfbXP4vn/iXv6CtLWhQmcaZzMoVQxLClSkGkWmjde8XGdHBRFIr7z8MpcvX2Z7e5s/+qM/Jc+D0NaCxxZFx5seWoulhsUTCum20IhGPhN+joqqqphNphwfHoELxVC14Ik4qqokywqcEWy8I7TlpkArtMMEDDHaZVnG/qWWQvtZuqi8oDvDNE0XaHrdAG3kPnplfHyEbRrK+Zz9/X3JyDSGPDeRXMj6Dc/6Qs0R1hAgKzrRAkYblkmnGgnh3yC0c5Q2IrRVG7pojME1kpRCdOpJmKOtZZx1pqkbgQW0J7kKOLBz7abXeB4NkN8zXzGoiQJbNrTZfM5oZYU8zxmOVuP49Xo9JpMJVVVR5AV1U3rhymmhncyp1sJxzEP9Tu3fSVI0OH1PWiuc8lAPbaTRhx/dwc5Lhr2cGzcuoHVJ3cySjTKi/x5mcgIVhaS1aM0sF9TpZ2f5Rhafcdlnyxx+AZ4761pP21KLMST/BLhN4LPlmnar3rXjFCLUHke9AM+E9pnt3IZOJnIYdJJK7HLc2YILiqJHv9/3pPDGwwmtQ/Gx2ELisQ/KcLv4wSrntexGokNC4d0k6zCdJNbHlS8awiqgBx3opP09FrA9pWUTzdyfpJ3GKYmCQh7XESrGOGvBtI7H8F3okFq8EGnI3PJ7pxstyW9KJTCF6n5PcuQSEXPqLxd/WoAtfT+RudG3YOm0vOIuZkgKFt2WamuaRjJSm4qyrOJG2MkoTJ43cF2kqeI6dXwtGCUBtlH+/PTxqrKiLisyP1bWiU8lnRIt8rJsri+HZc5qP2kUySIE+KTrPM0xj2/Lny9cMigJ6WdPg488E9pnNaWEN6JRYFoWNTF9JIbXNk1nkqZYsEz2VmMOu/BkMmU0GviQwDErK6vCMyxewrjLRswvvM2ofVtm85LG1lgPe2hfFgtgMByg8E4mrWicVAKv6wqHD+CPURTE/oZmAt2gczF5JtTFDNqofG07Vrd1sqGohFehHcouu146Vl0TVQEWk2XkWe4xbRF0kiLdI/MhZL2FTNKmqcnzDNvUUg7MShX0eSkFXodD4XZR3jJK2eJicoOmM/7GCHOcRng96rr2USSaEB8uzy19DwWAtTKCw7vTgg6Pi0uFdtlw5vM5Ton21+v1GIxGWCtc3sWgz2Qy4eOPb/Lg4aPI0/7FL36RlZUV9vf3+Zf/8l+ijaKqKsYn42iFRH+1lSQtKSAgsEtZVj4iRzYB64hzMLwnG99VglEnG7i1Ql2sfSITHVum3eA1yhekbn0QAtMF7efxoW+fJqkmtEChsHj9sBkuWiCftKXO5EjN7GllwcOUTVcit5FCHpLC0y0sKEhntWdC+4z28NCbwEboOK0CvwoFFkGiGISQyHV3TZLQOSfed5MZIVaaTimKjMlkzMnJMasra+RZ7rV6TUOLhwbnoXJ+A/Ce/OlswswnRZRlxbDfJ89yjM4YDUdRIGsNddNQNTVVLQ7PoEGGOF2BfdoJ3Ya6WZ8F6HCukYroPlElZAA61+KyzklYXJiwTzI9lwttaQKBJNdR0O/1xGIxGo2jqYsIfMh1alCOpmqobRPTqiezuUALwwFaC5Wiw/rCyl1GOWeJvNIKgbCaWsIci7xgPp/FzbylWXU0jfPVXORHa+MzWf1zLbJzKkVtG3GuAtP5DKeg3+/THww4f/48xmSyYeUZb731Fh9++AHf+bO/YH19neeee47Pf/7zrK6ucvfuXf67//a/pT/osbm1xfnzFxhPxpF7Wt5Nq6kfH4+Zz+fM5xVKKbJMNPrGJ4bpRGg7GzacsOGmDyH82tCgQwKgA5wG1foRlMLz4AitbxMVAPEjqBTPPWV1dTf6T9NS3ps0QuVJCSxP24KgDolOWuuY0Rru01R1wk6p2jR+n5RmEws5WFmPa8+E9hntcJxkEy461oDgFFzWFKFmYXteZiSEbTabMRj0oqaT573HTqAIiyRwSdM0nj60iTHLzrl4X8FqZcEpZ1HW48vBzk09j48xT+MW5KKCKJ8sWWBPaova9uKYnoou0a1DMWyIkjqv4nO2Wq4X/p6d0CVRJrZpsAl+2Vqs7b2SXvhxlIcN1lJ7nIzb8vQhL8xcerV2/NLvHN1/0zGQTarFl7MswzYNU8/al2VZLCARnMRHR0dYRqxUqzH2PFh4Qbtto25avFyEQ8cM6Py9HNBojwnw4eL8TSNDOr/jlQA6S+MUDHGW8H5abXjZ3Po07WnOO8vxvvh5gP3SUf202v0zoX1Gq2qH8/G6onEbr/X6l+kFhk7jpH0zvkbkYNCPJZauXr3CfFbyne/8GRsbq+zv7zGbzfjsG5/3te5OLWG/cMPkaTWgcl6ifATBoN+XUlfJTzgn+nt8VIK1TYuJJ1SWEC+Pt2JjNEYQPLLgbNSKOjBxgE1SrfUMOCR8lmbnBQESIj8CZ3WIXV6GLRpjUFEwwXQywVpLWdUtdOHLojlraepK3pUXntY1sd9BswnboiQ2GUxmCCnf4rg0sT8S1yxwgnCQiMYYII/gUqqbhD+mkYgjbQx5UTD0McLb29soJSF8H374IUcnJ2gt8M2LL73Ew0ePePjwIV/9G1/l5s1bHB0dcevWLVZWVrh06RK9Xo833vwsO+d2WF/f5E/+5E9RSvHo0SOKIqOsSuomlO0SOCMQlRmjO+8jjAPeWrMpLOKrJwUpvL4+wgAbKyPvcFX4mu3iZ6GNuOn4KpK5/BO6RB7b5H46Rim1/DWfXmAuuwd011Na3COuFe2hJ+fi78vgmWAVPa49E9pntMz4hWdMJEDCOJQFV7VCSRsNrhtzmmcZm5ubDIejuDiuX3+B7/677/In//ZPWVsfkmWGjQ0xdYfDoceHu9pGCOGyQUD4FzybzRgNB/T7PXr9gqqswYFRPvvNOZoQ34vgkXVVeS4LuX7TtKyDqQagvJBXJEV7vdAOPCiNs35z8BqXVjh7Gu5IccM0jTn9PtSSDFEr4LmpvQ9ACgiHCd6OTUi+CYV9T06EJqCsKope4WlIQzEAibCR2pWyEcVCsHhtNgh4h+fMls/D4pKNJYsKs20alDaeXEvjGtnI67oWvm0/onVdx8rt2uKpSXOpbLSyAsD5CxeYz+ecjMe888479G/f9puB4fzFi+zev8/9+/f4p//0P+af//N/wccf3eT9999nbW0tzp9vfOMbbG5tAYqrV66glGZ3d5fV1RHT2YSqDjUaxblZFEWYaTLOeRadjql1Eyh8UaB1Brad65tbqxTGsL4yQhuFtSKQlTJYK9BhnucRSjNZwP0VwjniPLS4XGNN18KnEbLBaZtWOEq/+0kE96K1GaKRgJgFHXxQ/oZSDq8hZqHa5PugmCzykCxrz4T2GW1ztQUilQoOmtMvWaFaGuzwmV8UwfuvlGI4HKCU4uTkBKUbhsMB1lr6/V6CYaXa5NmB9oKJibMxywxNLdBApNpMLhVC3gK/cxun0CY/LHuuJXft4r+0MEJ87iUa8dIrLUAh7QLwffGXDZBPxPeTthjNYhvxBtRNTWYztHWohJc4Lp5otThwbf+VUkQaUn/hWNMxfT4/FgudQfkxts6XHQvC3X8mbIVB62z5oUEyGUPo52w+pyGk3GuauvYYtKT7Zyaj9hSsWZbR7/cpioKNzQ0pJF3V9Psy1yQbthfrK7bWTOvwSoVKHMz4eF3oRIWH8h8XvYyeyaRAhErPWRifMM9cmvX3dO1pw/0ed/5Z6eqL1t9Pqn2fOf8XrxvGOtGyP0mkyjOhvaQZDa+/kPtqIRqd5WivjTV1Ta58DK5n9lMqizsnyCK8dOkSg0E/LsyV1TVeeOFFqrLGZI7BoM/6xno0g9v3KsKrdRIqrx16LYaWTzo4w5SiswjDbt00FWVdUVYV6UIS7cMlnyW/tx6lSOYUnG11XdFYS900DIZDccgteP4XQwbPWgyphhGKLeR5Mh1Vy+fdNHUiXPDl1eSaQbvp9XoCaeSGPC+8tqvJMtsKJy9MYz8drTbkVHSQhecJxZ2V05Boz0H5NFp7yAXvWJRxr5smJuFY5TBZRlYUrI1WPUGYJcsz9vb3uXDlebIi58dvvcX+/j5Xr17BKcX9+/e5ffs2dV0zm83Y39/nL//yL5n4ord3bt/mxg2hYP3hgweU85L5fM5kMuXChQsMhwPKsqQoCnEYeqtK68A/00YQySv3lpb/TsL3FEplno/EDz7t2O+c26AwhkFedMRwKnsiRu9aThuZr2YpNPKTh9l1rxXgkWURKD+pti3KxXI8e/EzaOd8Wgwk7UPIiWitoOXtmdBe0nq54saVHItoWyYv0FmOrWrqxkbnizFCPJ9lUh6r9mZNv9fn+vXr9PtFFNqbm1u8+eaIl268xHR2TL9f0O9LIdzoVU6dZfhwMiT0rPa8FSjtF56JnmetFHjvdF3XXnjUTMsJZe2z3nwYmlMKo03EHAPmHTzaBOGG4JLSJDlnPhcek6quY1kwwYeTsmYLQnvRAbmIdWuto3BJmyIQR+UoAk7ooxtUKzy0x8GHg0HEl/HYc8siJ7h5JERUrenvrKOuLZkOBRYM1gkrYp7lTGdz0ZwpBAZrXZORoqCpRVDXVe03t9JzoTvyfo9er2AwHHDlyhWOjo+ZTCbkRY8PP/6YzyAbzre/8x0cjr/7d/4Os9mc+/d3ee+996iqislkwu7uLr/3e7+H0Rm9ose777zLFz7/BfIs4/at28xmMyaTCQf7h1y79jw4xWw2pdfrYWnnrGwyOtlMWxw7cLI4J3QIjVWoTHlLAkIYTPjr8tUdcm0wTmFnZRgVzzmCH3eHwvidNpSuC1mW6d1Pa9CpNfZpWoBHglKw7LtPLbS9xRBK/YXxXCawU+7uNJrFOReLUQBkWcFg0PfhqWe3Z0J7Sasax8vPp04L3XEeyGend9XwW0gzNiYILYnd7OUFa6urHJ8U9HqF14JSLXuhBRkeDwjaYGphBRHiT4nYrJPIksb6jLv2VXc0rFOxDK2mnU7EwGPSNI0PdQxAwdla9uNa6qA8KxpFeSHSMePT72kFiDEmapNO+bj6BQfP4/sj2a4oFUu6C/OaFYc0aQUjvOD31g5Nq506iQ8PET3hOibLyHs9Mk+liiLW1FRac3B4QJZljFZWYqz7ZDKJY1/XNfv7+2xubmOMYTKZeN7znPlsFq2rqq4YDIfUZRUhFuOhmFSra4dj0XSPb7+df8lop5/0BwW50tDAfNZmtp7StGlxbOfCZymTzyebO0/TnmZ+Pc35Z/dJdUZk8dizIqQWr52+k5Q583HtmdBeaFrBV14vGA0NJOFTYVcNIVXyhZiTFodKvMez+Yzbtz/i3Llt+oMBRdbrQKghVEtMReM96y2e294zCAk5WWvRkluHhcXRYGsfzue0/O7hlV6vR14UDHAoncXY5xaaaB8l9D1oJU3TUFXtQmy89u6SLMyUY2GxLZug6X1CCynyogkpAge2UhLhkC666IwMm0nnukQNOg3T055Lo67rdoMJ75OwYS6UvfIavSSdtFwjdV2LRWMM66tr1FUtP3XNaGUFZx3HRyf0+z3hsDaavN8T3pA857vf/W7E6Z1zvPPuu/zdhbHo9yXiaDSS1PU8z3nllVeYzec8/9xzEns+mbKxseEpcjVra2vkeR6zKLe2tmiqBoXz72w5RJVGLgR2SOU38mgl0QphtYBXC0ueOBet83MwiHilk3fpKV07m4blySwbP3lLIcO0nTUmnxSeeRJWnh4TxjRo1yHhTvki2Eopdnd3OTo64pd+6Ytn3vOZ0F5oeQa//fVhm63kQriSCGwdHDlOLD7tF7azDZkPKToZj/nud7/LF774eba3tylWeqRSuyh6OCdCz2R51D50qLKSaLkQis5qtDJkhiiwhTlQUoltY3FWgw11KHOpPFMI+5pDo7MezlnqRvgmNKc1gqqqKMuSsiyZjE+i38n4UDVHIDWqyWzzWK3gcVVDQlhUnucSDTMaEaNYvGATjXEeNdiopS1dKGINGWMkU9W56AiWDSjg+uF8qUYjWq2WjyNcpHzZsVzivD38VM0qdGYo8pxz58/z6MEjZtMZ8/mc8+cvYrRhNp2ztbVFf9Cn1++jc+lDWZX8l/+f/5JzOztsbW1xfHzCd77zbaAVnsYYVlZWKIqCzc1NSbbp9/nKV77Cm5/7HHmW8fZbb3P7zh2qshLHZJ7LHOsV5LlszNubO+AcTd1QVfOYbZdqvUolkJPWVM6ire1seEprH2kTLAbl14LMl6apsVqR6SzCbcJdgvfVQNN4el1/f+2JsZqmaWGTpxSSy8JHH3dcOFbCXU/PxcUalZ9Gw1/U6BcdvEFJCp8rpaLzeDAYcHR0hAQqrDCfz/nww4/4i7/4i2dC+2mb0XDjasaNq4JnS/MvA9VqCnFOhMXQhQnquubg4IByPo+Mby2Y0DpHUt6MxViRduK1oW4BkgnfB61Xkm2s1Ed0rTZjsowiL8iKAufAon1Sp41O/JDSHlpISInVwH0risJXOvf3jrzdKTc3cQEuLsNFjSSd4F1HkR8tJZmRdYvjLG8LcFUYs7al49X5JEIvAn2kC90fFbT8ZGyUZ68rej3h305igLMsb1PRBwP6gwHKmJgef//+ffI8ZzAccnxyzN7+fmdsAv4ZFnXYdDY2N8k9ve/t27cpipx+v0+W5+RNI1CcNvF5BoMBOHzkyTQZj2VzLBmfZMwCUtTFOrpDHzbTeFzyfetct/F6HlVagOWe3D6tc3LRSjtLKH/qyJHE8FjcUM7Ct4NzNPprVJtEVZYl4/GY+/fvP/a2z4R20vIM/vf/ZBRJoVLOLWWUFGpVDdbVNKrGauuL5IYJ2prfdVXHLMT2BYbElobDw0NOTsbkRZ/19U36fXE+hPmf4n0uqVoj/cxxOKpaNMosz1G5QpGBC9SmBcbkno5Vx6QP5YE4WU8W54VOoByp5nPqugLXUPjYXa21cH7kGdY55gohqGoayFrs/5O0FMtrN7Cu2DCZ3K9xjqwofBq0wyTaXjfULBQCVt55GbIibZLWHU7QcaMMPgDni0wE6eJQOC3HWRQra2tC22oMP/zRjzk6OGQ8HjOdTNFZj9XVVVbW1yn6fU4mEz78+GPWNzdYW5XzynnF6soaV648x8b6JhcvXALg+HjMcLhCUfTZ2z+k1x/Q6/XZ2Nhkf/+Qxodz3rl9m4cP91BKc+3atfieb7z0EqBoqgaNpvRl7UICkNCjQvtw4R0IHKictzuUwamMBkWI8tf+dzlLIBfl5+KdWw/YXF3h4s62P6Lxc9XhXDp/A4tlujEvgi0/mxa03mUCNPh5fhrhfqEtwoKp8A73HI/HPHr0iP39fay1rK6ucukSPHz4gKoqOXdu+7H3eCa0fevl8Dv/MGNzy/rogcKzn1ksFpML8YszDZUtqVVFoxpsI9XBlVZSfwnAWebzkqaSclRaa3B13PHruubePQnpyos+r7/+BsPhiDCFJeVDzEipyJI41JSi3x9Q1iV1U2IMjHwST256EKIaTEZLjKSxzRytfcKMBu1EYNuy9DShshBnkxMCN/OgV3hObRPN5cZaploK2TZ1DYUFlWCTrfLWaR2HrXMdWCVk6i2oahT9Hs2hpXGO3mBE5QAbeD4EM41OHG8B1U2NNhkKqKqapmqoqpr5rPSkRjqo5V4w46lUQ9+F9c7XLMJpg9WKRsH58xcwxjCbz/kX//1/H68xGU+5fX+XK1eu8pu/+ZvkmeHO7n1+/w/+kJdffpkXX3iRixcuMpnM2N4+xxuffZOmafj+D34MwIOH+2xs7qCU4tatu+xsn2c4WuPS5avcvnOXg8MjrLV885vfZHV1lXM7O3z+i1+QjTkz/I1f+Rsop6nmFQbN5GQspcNIfqIvAAL7ofFx/Vjlsz1znM6plfEskpCjsErJ3wi/i/KFfX/0vQ94/vIFzq1tI6zZNY4qeHSD6wDnKq/6BOVDCzQCPxPBvajlnhXyVxSF0Psu+GbSc88qABy2HbvQ+0WtPoVFtNb0ej3u3bvHRx99xB/8wR9w6dIlnnvuObIs46233mY2m3Ht2rXHPt8zoY0I7L/1Vc1vfNUQklFSa885J2tdA8phaUSUKxu1Yp9e4U8gVpAJjqcogJ1EdUwmE/b3Dyh6PdECo2Uf9PtU8vnd289wYzKoy5iSbDKJTe4VfQCUMmhlEqJ/3YFYvGySvngeE+2nQl3XKBxGS8p1kWexUGvq5Q40sJ1eLpjHcew4/Xna2oIP3eNaR6DDBCdqsLHlKBaXvPMvTjJJAxGU9dq8PydxJvu33d43GjVeO02EX38wQBtD1TTcvnOHotcj7xWMT6ZM53OGKyv0BwPAMStL7ty9y872DtOLM5yDum4YDIZsbYkmtbG+CcB0OqPX62Ot5eRkTGMdeV4wGq0wHk+iI/XWrdtcvXqVc+fOs7Ozw3w+R2nFhQsXmIyn2EYciXVdCaueVvFZ2pfT/qu8li2yVcbFKYNV7aal4juzoGwYFQD2Hx2xtbLahot2BLOH/FSwFFPAUSXv8Omw5E+qCafzL2jaixDGk6I00nt+UnjlLMFtjGE+n7O3t8d7772HUorRaMR0OuXgYB+lFBsb64/t1y+80M4z+NUvOv79X5uwu1tircJag6374Aw4i6vnDHJLrhwZIhQl1rWt7Rach9JamCS0qqo5OTnh6OiI/f0D9vf3MZlhe3uHXq8bo+w6gkk2kLQgb1EUONWQNYYsw0cOJFRyzslC8VhLGhdKXVPWDdpasAIbpDGsEnstOOSioyYIN2MCwftCuu0T1tVZkz51uAairWVxtNbaWPVE+nN6cZZlidZN2GHRWng+RiMSRkK/mfp313VGdblTer2eZwkccvv2bVZXV8mLgpdffpmskLT4vT15nyGED2BlZYUXX3yRBw8esL+3x3NXriZkTtKH9fU1AB4+fMhoNKKqKh49ekTTNAwGAy5cuMDKykp00r7yyitsb2+zvb3lsx3reL9Um2yjPpKwuo4vZvG1JfPWa+TxUN/X6LJIznv06BHnttYTn04iFF0CfwRM7mcOhpxujxP2ixXiF39/3GfLjkk1/PTaYX2FY+7du8fBwQGf//znuXz5MpcvX5Z5leccHh4uFAY53X7hhfb1yzW/8Ut73L59wuHhHmXZUFeOap5hrQbrULZic63PzsYqV8+fx2jhtWis552gFYwQrOauE2Q6nXHnzl3effcd3n33PTY2tzh//jwvvPACo5WVuKgCz4jSQVsBEDihsfLih8Mhhc1xNBjjhbb2ERB+AVnr+Q/A49a1RBPUNccnJ4IL+zEImY8ARZ57HgXV4QOBcG1FUfR8WrTco0UqA+SwxJx8jJYSTNC6rmOSjUSW9DrEUlVVYVHoPEtM2rZIqiSiTP0mZxiMVsjzjKLoMRqtoCMvOhHHNz5Jqe1P08FAg9BcX1/nX//rf81zzz/PSy+9xDe+8Q3Pm9Lw4cc3+cM//EOpFuMthvPnzvO1r32N/8f/7f/OxvoGr77ySkwEcs5S15aLFwXTfvfdd3n++ecZj8f88Ic/ZD6fs7m5yeuvv06WZaytrTEcDhkOhbMmz7MYwx1+mtp6bFq1vBdYn9WYxuUvvA8vTx3Oa92tgzl98a4zp+Xj9z94n821EVKHOBwffBWJNRT+7ig1Z+BoP6O2TPCG6jVppEdoTxOhsnjNdNMMxwRFwjkXQ31/9KMf8eDBA37nd36HwWDAYDBgdXWVwWDA+++/z+7u7mPv/QsvtD+8Y/i3/07z4sVjHj3aYz4vKUtLOdM0jQht7RpsNaKfaTiHwA2E0CbBeZfBAEHbAYEdjo+PuX9/lw8//JAXTcbFi5fY2NhoswGDNhOxR6JyEsPh8EJaWKXRGklpRyB1pVqu63CBABHUjXBQzKbTFlk0kh1Z19IHrVsa01Oatr9k8HTLJFVdJWpBoXpaszZdPP7EU5p2KjDC0Kjku8ZawbF9le0BbWHlvJBoj9CstWifWt3tY3wJgK9w7qsP7e7usr6xgVIq4o5lWTL2dTlLX1keYDgccvXqVfb29jg6OqRp6s5ids5Fwqj9/X1effVVqqri4OCApmkYjUbs7OxQliUrKyusra3R7/ep64q6rqLQBiIRmKYtxBDeQ2umpynbC+b8ghYd5q1LM0DDwCfjf3BwwHg88Xh5fG3J/YNLOIFgkr79dbdFTXtZSOHTRq2cdVyY12nY38OHDzk+Pua1116L9wtOyul0yoMHDx57r194oV3Vin/17S3+s996yGi0Qq/X0DRQVxlNLdqvdpZBTzSGk/GYvDfwEIbGOTF9lEoEiMcLq7Lk6OiIsix5+PAhJycnDIdDbtx4iStXr7K9LdltHVNWyeSO4VgKolPHN6XEq+/QWFtJjKwVbSsgFkpr+r2eTz+fRw5unKPIcxHaSkKPZrNpK6iNaPRSezFxJoV7+/vLRGw/DRbBp1mMsVai71+Kd2ptWupUl0QlLGDmQXDkeS4p9llOnosjVXvhL5eWUL9YpKKz4UpMca/X68BK8/mc3d1dHj16xOq9e9y6dYvPrK9RliUHh4e89957rK6usrm56UdDwGKtNdeuX8cYw/sffBD7W9c10+lc7oNsDKJFZ7zwwgtRUw7Oq6ZpmM/nHsqqY0p0+vwqEdIsbJRtQGkrLcXB3U1LbxVkb4YpJ5ZmZ09TyfE6+nTjvRILjlbk/7W2ZWF/AX6D0/kET4omOctPk2Ln6YYQ+ESyLGM2m0nY52BwCvPe3NxkZWXlWUbk07Smgf/x28/zn/7d3MfGZijdo6kUyiqMVkwPH0JdcX/3IcML64JnmzxqUErR4spOuB7G4zGTyYQHDx7w6NEjVlZW2dk5z+e/8Eusr6+xsrJK5rXsxorWHBIaovPTp0rLhGj7LKYdzKeCbdY+QqIqmxgrXGQZJyfHHOzv+zJkgvOuDIcE4qk8z5nPZ3Hi5nku/CJV1VoL1rVaqpJqJ4E4Kgj1aP0u0Vae1EKmphSIGHiuj/CdhLW1QsoKRKI11lmJYKGtszgajegPhmR5gVImJs8oJVl7Du2dt5nwg3gBGJy2o5GYqlprqrKMZE03b97k3Xff5fDwkPl8zmc+8xmODg/56MMP+df/6l/x9a9/nddefc3j1g6cCIVf+/rXuXnzJv/m934vbnbT6Yy9vf2oaa+urrKzs8NwOGR9fd2TZEniUqiIcnR0FKkEQs3M0JTf2CGUCGt5yV3gktGhKo0IlZDBqKPgVQn03ArblmlFSoppWt+AiQU3vGDEgRKHuwyBh2USvPuvsgUBela5sWDhLqNCfZz2HT5Pw1bDfUJhZiBmqPZ6PUajEVmWsbe3x3A49ARnrXBWSnH9+nXeeecd3nrrrcc+1zOhDVinub/X52C8yYvPiSAz+QBbKbBSdf1hPWVyeMjJyQn1jo8aURop4SXwhNbBFBSNraxKppMpH374IXt7ezz//DWuXbvOyy+/HAmX6qTaSii6oKADPYTkjzT2VSuNUy1mVpWVZOfNKsHOkAiPcj7n5OSYPM9Ea9UZRZ6Dh0Zk4iYOFF/NJKSVx2UbzF98ppx1iaYt7awJ/qQWsMW6rpdq2kGIiWDoOtZSTdsRtNYRWV54ru3EzeaI5cS01pKQlDCvpWFZmZFCzLWnRr1//z6PHj2iqmuGo5HfZKRK/Dtvv83f/3t/j8uXLxFHSck9XnjxBe7cucN7772HzsJzVkynU7a3JYokaNrb29usra0xHo9jvxYJjxbj2UMLQxbwaEkaWjxGJXPItfi1ai2oqGl7/dzRxr2H+6jkeouaNi4R0qnh9VcHX3fa4+CN1IJ70rmpVhw2gWWCPPDEhBY23kBPEDTtQNGQXn9ra4uVlZVn5caetjVW8cffG3HjWtma3hC1COMJ8cuyjEZfGs7XIb/xJ08nU5qmYd3zRJw/f54Vr8WhutwZ8e/OBHLtBV3AbaXatskUYBNs2XkqU9fBpcNiNMZEp5tKng/azQZaU83FxRevQlyOibC2rn32szLXHhf2197PdSZ7aEFbqT1JlQ2j33F2hetoSahxLf9K6J2TzmKtpbIV1jt3haTfxpTuPC/Yvb9LVVc0dcPR0RGT6YSdnR2uXbuW4L2Ovb1HPHr4iJdffpmN9XVyn2hU+4icuq7JjCzY4WhEWZWdbLigaW1sbAD4wrtVp1J6J/Kn89a649sNDlnMsBXNP0zMU1fwjkZcO69lTLu+FD/ScdyvXXueczs73e9kWsplVbJl/jWhJIuacDr/F+fhUr+Uc51/w7tYxKmBOJ+C0JUchyxmtyol0NtZceNaazY2Nnj++ecf+0zPhLZvzil+9H7BrHKMckmpcVrjGqBp6A8GjI3m8ORIcr78IlGB1x0ntKZJ293dZWV1hZdeeonzF86zMloVSCTLCHix6qgqKmpUgmsSJ7tMFEdV1eztPcJkGq0d83JC7tOd+/0emRYhZOsaENrWTGv6vaJNddY+alaJhpkKkHCMc1771CY6tyxBuFbSLSVZd0Z3BegnaWlkSF1Xp77v9YroeKvrOsJHSiuUU2Cl39pkGCfx0YO6IcukMHPsqFLQWKpSnLGNs6yvr7OystIJn1sZjviD3/8D7u/ep+gVPHjwgOvXr/Mrf+OrWOd4++232d3dpWkafviDH/KD73+f//U//g+58eINRsMhWMtkMmE2m3m4p8/WzjaXLl/izp07npmvYHV1JWbkvfTSS1hrOT4+jskeQRCk+HWYDMsMGedNjYipmpYhMYUnAoSltW4TFP0XXSjBR51oFc0YpVXnNf/dv/tb7Gyux/co46y7zkvVbhN/1cr2onBO1xZ0Ne1Y3m7JuSlUkvLVl2UZrbM8z6M2HQR3UJYCTzbA+vo60+mU2Wx2SlPPsoyXXnrJlx88uz0T2knLjOLjexmvvdgknjdJ6MjzHJTU8WuXkGvNRRdMV7x16Tg6OqLf73Pu/DleeeUV8qzA+pTkFOU721udarotZnZyckKWabSBupmj+z2MzgUCAaqyoqxLIbVSoknnycTxVZ5CRzt0kC3dqGjRbd5aeOKu42aR3OqTQCOLJmfT1KckUtBW4oJRybnJhqc9dl3XZSvoFK2W7TfJUB3GOhs1nzTssCh6fPTRR7z//vusrK1y584dNjY2uXzlCtY5Dg4OuHfvHtZa7t69y507d/jyL32JwXAYyarKsmQ6nTIej1ldXY0hg/fv3/eL2AgToB/z8+fPU5biMJY4cx01wjZBanE+pM2dcgC2Aj6lQ02vQfdoD6sE4d2+pO4p6Z0/+9nPUJhkhINvI141YDZLuvxX1FJLbjFMb1mcdnpO+G7x/CC4g98nWIMBvw5O5VQDD36TwWBAVQk8ttiMMZw/f57V1dXHPtMzoZ20soab9zSv3bCtGU7A7cR5VfR7zMsZrg679On5mOc5OzvbTGcjNreErS0k4UTc0LWYsCiDaongSzHGNv417O7GKFBZW5FEaZyWjcTaJkInUuVGtdcJuE8w+7Q6tZTDszsv3Jumkbw212J2SnW93ItaSfdZkmsvxQNbLbHrVdfxukEwtwuoRZNCNItzHlLJcrTJPJzltao8SZ33Qns2m3Hv3j3RfCAm0Fy6fInBcMitW7dEw1cqOq7S5Afno0vqusY6RzmbobPwTiQctNfrsbW1hXOO4+NjHj165B1hvdj3dLwWzfbFMU7HN4ydJAUtKAC0QmrhKqSSuMWzk3mQbOp0IJJ2o8xizUeXADLtPOvc4PRt/8qF+eK8O0vRSOfwqVBU2lDY4EwMvqGgYZ8V/ZFq5Uop9vf3WV1djUUSZrNZwpFzdnsmtJNmLbz3sebf+9WMxolg0kqhM412hsFowPb2Nnv7j8gZUOiRMOvpLGLfAKurI770pV+ibhp6vT7rGxvRyx54nxqvNTfWYTLJaOwSoCtPbxk0YOIEMcZ4Kk7hi+jlmXjylUErCTWcz2ccHuxjXUO/10MuG6RcqIqtaZwVetmmmxgQYAVnHY1tmM7nQu5vra+Eo9GZifh86x98eka2VFCJJuKx5SSpR5jzssikZ5RwwDROLIHGb3zzqoqbSdHrMxqNyPOCBw8f4XDi+B1khBT2xkoY3YMHD/j93/99BoMBeZ7zl3/xl7z00kt8/gtfAAXf+ta3mEwmgGZtbR1QHB4egpNakLZuePTwAUdHRxwfn/Do4UO+9vWvM+gPmM1mzOczNre3ePPzn+OP//iPef/999Fac+PGjRgiWFVlFAzBqgg/WdZuUu3GfVrQN41AYUortArFixvPsScTKDi3U/xbIBDtHdvh4NZJ2ViHMl4hiBEn0od+H2jAVj7uXTmh/NUtGZffEZ5qPvysWgqPpMlbsCwXocWuW175Kh7b6/ViEMH6+npHyw4wyDJHYiqw19bWODk54Qc/+AGf+9zn6Pf7TKdT7t27R1EUrK+vP/Z5ngnthXY0BrTG1uI7d37SKTR5r8fK2ion+ycMMkU+HIpTLvA7+KXQ7/d54YUXfBVxkZNRGEdNScK3qlpwY2NaRr2O1pWoKQHqCB7poshR2gqmrZRglEY0+rqqmEzGEjLXy9GJiRcXv5Lq0ErrDh4fBW8QjI1l7gsVWB/qV/QHhPqIoX+fpC3TtrtJQdLCIgjxrgavlVuBeUJdzjbCQpIUil6PXtHHIfBWlmX0ioHQmRaS9bm7u8vh4SE//OEPOXfuHL1ejzu3bvO1r32NGy/doPT48twnzQwGwsSYmra2aTg5PuLe3Xs8fPiQW7du8Stf+xpFIVpXVdWsrq2ytbmJc47d3V2UUpw/f57RaATgCxWI5ZKWphLrwpwS0OkYtr9bcbqGKjvRadvVzsM07CAgqp0PQbsO/pR0vsiUaGdknsuUa0pxTse6vXKGr5PccQUvzoIln/10WwpvpL6C0NKxWcSug8Cez+cRBun1ejKXPP1ullhVi3M3vV4Y40C9q7Xm5s2bvPbaazGqZG9vj7W1tWdC+5O2uol+FyKxTRC8SpPlOXU9ptGB8Wy5+V/VNVVdeTPYOxYCLOLg5ORE0smzgrU1IXx6qpbgk60p7VqHm++3bBIq1gbshC/R4phReIbn8L8HRr8guI0vQGydQ/vohxS3a6/T9jPeb4lJv/h3eJaQzagWPscLJJyjbhpUXdPYJlLOEjSZoo8D5rM545NJFE6TyYTj47FsjF5Lmk6nTKdTiqKIjqjxeJzASsYn6hjKqqLoVP5RrK+ts721xXQ6xVlLkRdsbW3JBpn6LpwIzwsXLsTEinDPMA7OtQIzHbwUNoLWMRmcZimcYv3nmdEyN117JaU8yVdSgb7FnB1ugXOlK2dD/1TnfnXthEdKte/4bDm8THCfJcx/uu2s+Zd+ljphUy08OIuDwE0rBKW+h/Q+i/da3Bg2NjbY2NiISVuDwSBmuC7CY8vaM6G90IyB2mocBmUk3rnx7GlZnrO6ts6t926jVMaaqhHyqG5Fj6qu2dvbY3d3l+FoyPXrL4DyTjwnWYtvv/M27773HleuPM+rr75Gvz8Aoi8oakuQVGb3OGPgjNZaC9WqEwxeY3DWxqw+Y1SsI5guRkWbYh+EpE2En8kysjxnNp+jvLDsD4ZoX81HGy24rc82bJq2mMMncUSmLSyQ+XwuzkdvYiqtY1ZknufUVcV0NmNWzmWhuXC+weQFFy9epLGOe/fv8/Y77/DZz76J0poP3v+Qjz6+yXgypqpqfvM3/zZ3797h5s2bXLp0CaUUx8fH3Lx5i0ePHjEZT1hdX+PixYsMB0P29vY4t7PjKwY1aKN54403GPT63Lt1hyzP2dne5o033/QFCyofh99QVhUoxb/3W7/FoU9TP3fu3EIxYxGoTdNiqEIS1prpISwyjSkPml5jS+q6oSwto4GGIExcm0BjvR9FKVA6FNslauVSA1R7fFqBForgylqccuLMdkKWBnBy0lAYTZG1SkJoLigSKRTzqWbGp2+ttSL9XQwpDWMach0CR0jAqEMWY4iuCuMdxjxw8yyb86kDNPQlOC8///nPs7W1xVtvvcW/+Tf/Jl77zTffPBW/vaw9E9oLbXUI1gneK4kuKmbNaZMxHI2YzWf08j7C/SGTNd2h66bh6PiI23dus7m5yfXr1/3VnYdFHLdu3+K73/seYHjuuWun+hEcgNJabVoFTc9j3BoXHXCeERPta86BIzNZp6jv6fsIkU2c0F7LNlnGvCylxFmWMyx6mFy4tYuiJ1EcqjWbn2ZpPg7vDnh9VVWSbp+cExyQxmSS+Vm2GHDIzlNakxcFW9vb7N5/wN7ePj/44Q/5zOtvYBzcvXuP733vuzx89IiTkwmf//wX2N3d5cGDB2xvb0vSVFWzuyv49Gw+Z8PXW+z1+xwdH7G9tUUo9aaV5oXrL9DPcr79p9/i3PkLrK+t8cabb3J4eEBVVT6sromhil/+0pf4+OOP2dvbY2Njo+N0Chu0zCXbWfTBVHfOxXqaYROLkS8ITl/OSwb9vi9qoKKTMSrCQZtLQmukAo3EtzdN0zrgvWZtG+sJo7TfAGTMp9MG1YdBYcSZvby63NkOx78CKZ4K7TSkL/UbhM0wOJglikgE9nA4ZDQaneLBeRqNOBwXrhne440bN+j3+3zrW9/iRz/6UeSaefPNNzvW61ntmdBeaFXYjJVQrwYR46Jp6IW5aouetmMcnETC6hd2Yzm29UQfHh5SV3Wi4YbF2r0OUTn2sz41Q6HVZFxAXsLqCAvexvCkEGoYolgCzBK07ZQ+UgRo5hf4oiloPMafpN6o09EnaXuceZp+HxxAAU6I33nBLRZGa6qGz4HovbfOMZ1OOT4+5ujoSDRT7Tg5OaE/GDAYDJnNSg4ORLAGmGIwGLCyKox+zolWVteNt1g0s9mMk/EJWkshXYAsM/T6fVZWVhj2BwKfWBtLsaWp4GGsU2F7lrm+iK+mZnPQ7sJ1AkyV2wzbNNQBcgkzx7mOzFwyfaJz+sz3R7slO0e0rI6PT9Cux+pgFA9on0nFhJ1W54ig419Z68BHSxJaUgdisHzSz1II5JNYkWnkSVhjQdMO729tbY3pdIq1NjrCn8aR/0xoL7S7u/Cd7zm+8oWMxor5bZQWUnkFykBvMMLkBVYRv0+j3+bzkps3b7Jzboet7W0prOucTxKZ8q1vf4vJdMyFCxdiHK4xHneOacbBcdgKdXFCumj2dgVD0KJkUzEmYz6vKMsqTp7BcEivF0oshRA5EXLzeRvGluc5KysrNI1NHDB9T7wkloX1OI5TRE2PEGLmnqxELS6AgLvPZnNGoy4XhFYSbtcWAy7IfZZZlgmMsr2zgzFCyPPBRx/ygx/8kB/96MccH5+Ag7fefosvfvFL7B/s89577/Otb32Ly5cvceXKFSaTCZcuXeLixYt8+P5HKKU5OjpmZXWVi5cuUdUVN2/e5PjoiKIo+PKXvgTW0ssLtje3+MLnP4/JMnq9Pkf7B9TW4+1NI+PUWKDi6PgYrTUrKyuxgDIs1/rSULMgRLIsi1pfKlSyLKPfFEzGE5w9SsY4XBs/f8IkdXEDjH4Q7zewUWA4vGdbEpkIUTuW6Vwcsd//3vd47uoFNtZeTiyFeId47TA3/rpiSFLq39CCBTccinM5bH4pDPI4CGSZIpIeE+CWEH8fnfh1HR2YX/7yl5PwWUljN8Y849P+pK1u4L/715bXXsoZDWqUEyIohxJuEKMoen2ppBIcNB4zDNOzKivu39/l2gvXWd9Yx2SGqiojW9sPfvB91tY32N7eYj6r4wRqsWFZQM666BWV6yu0p2GVu6U7cqvhaCU4cNO0Kbd1XVH0etGxahMhEZI6wMMlJmc4kEIHxCrnedR6Q+1LqSLjyDIT8XqeoCWc1cIYlGWVjIP/zodKTadTUBqT5QwGQ199XKbwxsYmSmsODg64fecO773/Hu+//wGT8YTGWj786CP+0X/wj9k83OLw8IhvfetbbGysc+7cOW7dusXFixel3uKNGyilGI8njMcTds7tsLe3F7lHRoMhr3/mde94zMnX1tje3JTwvrJkfHyM6eU+5M6GomXYxjE+OcEYw3A49Jr86bT9oJWl3w8GAwLB0crKSgw5axOiFNYVKIQ6IdWbl4ULQlfrVMl3LUVAqxR4oMTzzViqmcyVd959lzyDz756Iwqvrmxz7T9/XRKbrtBeFLL9fj9aMItJMen50A0ACO0sh2NVVcxmMyaTCScnJ1Foh/fR6/V4/fXXWVlZQSmpGB/itJ8Uq/14DsBf0FY38P/7ZyUdTSGJsMiy3Ie7dV9uIOMJE0QvmGbz+ZzxeExmxLkhxE3h5PZXFa6sul+GxSOp3IsZXss1gQAhOCewjbWWxjaRLCnAIW34nsc6IxSkIoYZF3NyP9fRzJa3RSggmJrhJ41Pbwnp23MVbehf4HLIPRyS+THUnldFQqoEBokx5ARekiZCIeH3Xq8fYapQjNkYEx2h/Z5waYcK6cKt3e+YvgG+aMMqz4hUSMYoLZqxWA4rPEdwgqXOrzBWiyZ7gO5Sbfr0ln56jgSn9MKB3c/ihCRaedLvRuCghXf9dO3Tbe4/SVuER8LcWxzXs+CQZZ+1SlEdBW7lcwZSQZ1eI33P6c/Ttmea9pJmLdy667hzX3H1ooS+hUw862B9cxNXO5zycIFrsUMQDbSsaqT4rI50nLdu3ebdd9/l2vXrDAZDsixnMp6DdRL1gWrpIJSQ2uOFrTYKnEyaPMtxVnZzVWjZHFAoZaT4sJKwNuuglxcMhwPmVcW8KrFjcNZRO0C1sae9noQlxlBB5VA6i4tVkieEgKmua7SRRJ4mwW9FePn+n8I4uy1dAGmB1UXCJO2doiG11zYWow29fuEFeZuEg4LRyiqf+9znMCbj3/2775IXBZl1bG9vc+fObYbDEdeuXfMwxSoXLlxgb+8Re3t7jE/G7O7usra2xvbONkopLl2+xPbOduSzzk3GoNejrirqeUVdVbjGkudSR9MY7QVZuzBlwwdsK6BTTXo6nXYEyHA47CRSpaZ6GioYmoswlfJUu6VEidDldU7FjWwyafkzH10SraVQGzNMRzlbqjbN47NJti0oTcTy25yE9N0vqtpdOOVn2YKvZBlFa4gMCeP/SVqYr4EJMjiJ0/kbnJrpfVNWy5OTE6DVzoMy8bj2TGif0eoa/ujbln/yD3OauiHTEvtqgdW1dcppia0cgVzJw4aACO2qqqMmY61lNptx9+5dfvzjH/Mbv/63YvWXXfVIsGFrJQPS318l2k2IJghfZHnm08kdeVF4eEY0LecdikYL33aW5QyGQw6ODimrmrJqJDEFibceDAaxDiKA0iZaFjoh1BEeZ9HfmqbBZCH0y3aEdqSnTdbGMhMy1bLDpG41FM8d7qxsQFp7B6GY6r3egLxoK8QD4jfAMRyOeO0zr2OynM2trfhcm5tb3Lt3n6tXr3L16lWUUqysrHDu3Hlu3rzJ/fv3uHv3Lg8fPmRlZYXNzU1OxmMunL+A8dXoT05OcI1k9dSVmLPlbEY5mwsPdp5htPIhckjIXEdotxr1fD6Pmt9sNuvg1uGdpO8ltLP4MvDCMstyZr7yvEaKWuAWNlQ//hJ7lPhFnIu85O3lHalBnmkTBbg2Hq7zRqiltTrCmQHL7mr6AS/52QvtFLJYhEegxbKhmx35JIdgqmEHC/rk5CSSj4WQweAsXtTSQ39C4taiBv649kxon9Gcgx+83TCd5RR+lMJUMyZD6Ro4TZ4ORIxsPp8zmU4pipzJZEJV1Wht6PV7KBRVdRrTfJrWRq646JWXGthScstZ7wbyQk1rjTKmjRLQojl1zbPHc/iG5096cQZOmSzRhYl/lnnZZbJb/ryxn6o1Z5UK8Ee4cxth0ev16Pf7WNugdcbKykobyeNcxyQO2rpWOpLVp5BQe5xYLzg/xq5lfFvW/zAS4T1hJRNlERtNterF389awKfGkQBDLUAAnbFuhyuFOTrRIelZ3hpLx1f+HyykQEPqTl3n9BXPArW743aWY+9JbXFM0+ibMze6T3GPxYiQAIGkcNeytuw+qTb+DB75KTVj4OPbjldeEM02EC0VvT512dDMUy2l5aUuih4XLlzinXfe5ebNW2xsrLO39wjrLK+9+hrnds5zcnLCbDYX4aNTFreAK8gSiKCLN2FxjjzPqaowSRRlVXuOa8V8VvnFqch7ffJeD1P0GA5FU0Up8qyQxee13DzPo6kcHJ6CgdtW5fcWBUiSkXyeVKBW6YLpjmMQpGl5p+Acstby6NGjjqAKccWhuAS0fVXBAkh8DKHj6bIoioLnnnueg4ND1tc3+OVf/uUIRzx48CA69CQaRfgg8jznyuUrrG+sU3tscjKeiFBXUFc1YqZYbFXR+LDAyWQi57s8xtAHfLlsGuqmpm4adG07ER9Biz5//nxHYPf7/VNFlZe1KIQU1FXDfF56npQkc9G1wtbZNv5bKbyjm/Z4j3BrJeF6XW1bxZ/Q76tXr7C5uS7OyuAD8RwlctmfXJN+mhC4J50T/l7m+A3fL7Z0E0jhrACDhCSnlF87xHYvKgXhessUlrPu/7j2TGg/plUV3LxrefVGgavLqHgUvR7zaYlDJoGIWhe1syIvuHDhAn/8x39EWUpl7f19Ict//cufZWdnh6ZpODg4jAsoOnpIHVk2CkMXgEfEpKvquZSS8hq7mH6K6WQOtNpmXvTIcoFIrBXhNxgMxLT12Y22WcQeU20lOCZ1FM7Gk/2f0urig5zWHoKQUkpF73jQVB49esRoNIqMZ+E6aqE4Q6DHba+7MNmTyZ/nBVeuXOXo6IiVlVW+9KUvsbu7y927d/nggw8YjUaxRmPmMfPtrW1ee+01qlISeOq6ZjKZ+vfjJLTT755NJdXtm6ZmMpkkDtQ2nV9pTVP5sK+yxDQujkOowg2ws7PT4XZ+UuWSxSZZuw3zUoT2YDDqCIIuXJH+HcLyWqENaSSTi+fFc50S/wFw5fIlNjbXwNl2k/V1Uxfv9ZO0TyO44bTgPdMiekwfAx4eojuOj4+ZTCad7Mk0Zj5Yhamm/6T+fdL2TGg/plkLH3zsS1ZFpcRrgUlkyeIrV1p72sZ2soi2mTPoDTBGSn+FF9xOmmUv0Z36qs3CTEysePM2k01r4zFf+T1sABJpIXHfUetamEBhoruzupUcF39/zDFh8of+p0JuNptFEp0utWXX4A4hh49raehZWqYsEMuH8QowSNhcpGJ7Tr8/oK5O/IZIxOuxVpzBQYR5q0WgattZpO2mm7jxVMsDk8ItQEerXqaRnfWcMStUqU41lAChn3WdeI920gBtsli8yKnWwjkAvX6P3PsSTk8RWRmLWPpP0j4tdBLOXZzjj/s7hTpSxr8UCglzJ90cUgjwaYTyp9nUngntJ7Tjk9Q0dGE14FCeZc5GARxeUVH0uHT5Cm+++Xkmkwl5lpMXGZcvX2ZtfROjDUVeMByMWFtdlfAyr9U62oUHeAFMvH6AGsAn60yngPPwQ06W9aNDSuKYezilyHs9z9+tcMmkagUM8TPixFvAB9NjfDulBSUTOHBkhGyzjz/+GK01L7zwAoeHh1Ggvvvuu7z88stcv36dfr9/ZuUOtQAXtAJB+UQhiW82JvM8HCVlWUVT9tatWxwfH7O6usrf/Ju/wsWLF5nNZgyHw1gS6uT4mNlsLvSzINwuSJpJ3TRoXNwQjNIoz1sh/ZN3NJvPxQnpCh8NMmDIkL5pqTuDoyqM1dO2IHwC+1w026s5VVmS5wUK3cGQwwYkzummI2BVe2EPu1vP5+I3c39EnN1KUfRE0z53boNeJoUfcILxO691E+G+ZO18whY2l7ME7qJwXHT0Lfv9rLFOYY6gVQdBHYR1mK8h4iTAfIu+hxSr/lm0Z0L7Ca2uAafb+ed5cYJWYp1DR0EuregVXL5yFaMN08mE2WzO5cuXGA5HDAZ9jFYUeY/hYMjq6iqZyQRv1EowUxwSQ+XnfsQnZSEFTLGqa5ppIzHEeUa/N0DrPMaBO1pBkhf9uCAdkuKeQi5hMlvfDxVKiHmNMUAj0ArjsJmAR9/DoPjv6rqOrGhFUXDnzh2MMbz++us8evQoYoxvv/02Fy5cYH19PS7GFGrp9jFN94+3i4KsqirynCi0JSJFFtvNmzdRSnHhwgW+/OUvebqBKcPhMC7ao6PjjlNJxt07oJoGpxVGgckLsiyPQjsVMPPZDKcVuYJiMKTo9+n1e6z2BmfGWIf2NAI8EByNx2NmsxnT6ZTGST3KIu/5/AA/PrRCK8sMZV1HBsL0TjIVvAZpHZBYgB3ho+j5zebC+U3qsmQ+naGjk07oX0+L6U8vuD8NxLAIjZwl2NN5n0aDHB0ddcL4gmUUqFnzPE+qCnW167Pu99Nqz4T2E1pmpIJ1R4hAFGDh7xRiUFqTa81wOCKw5I1GPpNNi7c9mORFXkQHZtdxk2gHC31anChKhSxISV83WYbOMll8nl1QeYxVWUcasfs4c9zLq6cz82gXR9ho0qa1Zj6fd/DacN/pdCqx34/x8i8+fwpJCAZ72nSV71qu45A4k+c5w+GI2WzKbGYJHOXOCne49XHW0r+FvjiJg1cec1fRkZw6JlTcaEN0SgjnOysletkzL9MuU1M91QCtszjtxKGc9mVJO1PQpX3y/42HRveGivM1yzJfi3Q5jPa08urTCrgnCexwzSfNp3RcF8c3WGnpOlHJu13W75+Vhh3aM6H9hLa6osFlKJWhqHG28UJPC72lhkUvufMhYYP+gEx7Dl7dLU9WFH1WV9ew1vpUWjnXU0bLMvAC11urwpfsnR/D4Ugwc+V8tEGOMbkPR5RsTetaZxJKNp+AeWsFOEtDEwmw5P4SmSHatOlsRHFxxud0PqQu5YV23tQ+LZgODw8BOD4+lg1N4ROPpjFuOQi1VltZDBaTzwI0UFUV29vb7O/vRwtA6FOF4+H555/nwoULlGXJ9evX0Vp7Lu2J581uCIUGhLa0dco5FTDtFodX/nWLYBfo5/z5Cz6iRgpgmCJHGY3pFZiiIMtz0cq1+kSCyTkXIxUCIf+iYFHKV/h2TZxjOrH6wtgrxPGrUBit2znQ8Y0ElC4I/WBShut0qxT5aSU/TsrW6UA1+Sm06tDXxwnxp3VKnnXuYlhe0K739/c7fwcnY6/Xi5t9+Hlay2iZJfXTaM+E9mOaVnDtag9sLnHZzmFt7TVJLWXGNCglktiFmo9OoguGwyFuMGBYStFX5Uu4OyQ9utcrGI2GZJmJ6yQo8KF+pFzQ46pOkh/yLGO0skKv38O6xofCaaxTaJ0TC/NaFyEdHWARvPbpHVF1XaOzVvvVxsR096ChygTWUSDHbjkXaULDcS0RUReDVkpq4tV1zdHRETs75ymKnLquopkf7hmOj5VGIiwiTmGlkBj4yYTpdMr29jYPHz5CKUW/36OuRcANh0NefPHFSDj/yiuvxH6PxxOapsbahiwLQtuSacErZZwUTSPFWzNjqJVw0QQBaJRka16+fDni0/1+n/XRAJ1lYLT4D7ywazMQz8ZgUzM7JGWFn2CROOdidmSWZfT7fWorxailmLOnBPDXCVBIXdWEeqFinbWVlVqzno7QDgpEsBhTCy++20AJrP2zkuLmAVf0E/sphPkySySMyeNw7MVzUugjHL9MaJdlycOHDzsWbID1UvrbRYXiaYRxuN5PU/t+JrQf0/JcceVCAa7r2JGWwCUKutpFa7YrgOy0U0Qy5bQ3NdsiAu28XuaRDxiuEq0qc1gXaEo1zi4IgqSnbe9U50MXf33Mwlp49HQSPglvDMIwCOHgQAssg6LZNJ3oh9MtXagiWFLzFYjFd60t4qLK8zxyhsxmMwaDAc5JzG2gxOx2+PQjB8x88YuQSaiUpui1xPXGGLI8F6GtFTa68B4PV6TjGcYq/ITnDBmjiwIjhpkFgrHUF+DhqgBfheOf1JKrdJqChXe/7AiS75c/exzfJ/YkOedp+r0wH58Gugj+kNSpmArquPE9pcb8SX0Un7Q9E9qPaU0DL1xZQ2FwtkJhUcqCVSiXobHg/E9iNgrnQ5jy6pSQU0ooMBVBACoCoGDDQtDtjt7yegiFa900oLxWXHejAQK26JzDZCaenzrxohYetI8EkLQ2aLNa4BUFCn1KsKQCGVrBIWRLMq1u3vyYLMsZrYw4d+4c29vbPHr0iO9//wfcvn0HUMxmE8bjMdPpTMi0FpJKUo/+ZDKOzIWz2cxHioiVEGJkQxJPv9/n8uXLAJEaM0R5LHJQpPG78V8czld5wTkp4OxB/rCIrW1onCPz1XsckMXKIym0Ezad7vwK7zREgKTEQ2FsgyNMKRUjXICOmR4toPiOukpCVJ59HIxzSdEOb/0ppXzyWLe/yuGpWdtkq/HJFBgwHk/RNDjbgO14SpKfRaG17LPueDyuPc4x+TgFImi8aSGEMGfD+kzhj8Wq6um1P4nW/LQa+Sdpz4T2Y9qbr66xPlqnqRuwc1AWrZ1MUJejFVjX4Jz2pmM40yUxvXQWu3MOtAeuY+Xqtlm/UnRHaAtOrlSO0ZpZWZIXRnglmlDqrHsfayEvMp9q3cgBfvU6oHHyHA7VgWLEU27Q2lB6czrguamVkDpvghALAnPQ74OD27fvkBc5m5ubvPLKK1y4cIGTkzHf+ta3I/dKKFYwHo85OjpidXX1lAneNA3T6ZS9vX3m8zIK66LIYyRNmt0YSJdeeOEFoBXas9msYzKHMUuFdoRkcFgnEIhzjsbWGKPirqi0FPV1NPT6hYQIOk3eWywX1dpoLpyrutZK4NYuy1KKLXgqzyBIwrj2er2Otrxo/rfwVSsY42fKRwz5iKC6aVCRR0S3hmOARlz7DNp/Vlc19BRHRyfAFodHY0Z9g2oar7jEu+I6QvtsQb3YHqcpPy4q46zvFufSIqd2ENTW2ugsDuO+GHmy2L+ntVx+2o7JZ0L7jGY0fOOrF0TL9CFQwrsnJEkq/k5HE4agrEQ7+nRzAoM8zbtMARfltSDnzw94r1uYM+G6SiuUDauRBBJJJuKpyd9+HJMmFBGvf1ILJqVtLHOPU4dCuYEH+uDgAGNMDK0KMElVVac0+vBvcMRJGF9Nr5djbattpmF0QYMSCtY2Ey68o7MWvFrQFZe+iAQzSBdt+Fp7Lo5lwEH4JPQj3SgC3BOecTEmeFHzS/u+vNNnva9IvBCxanksdYZcVSw62gNnTl3XOKtRi/d6GuwjQRZ/EpH2NDAddHHxxx2zGJm17F7LrvOzgEHOas+E9hntwk6flaLm/t1H2MaxsaHJikI870aWZFNXiWbTXfRijdr4ddSEPbMaCJ2mdTaeHf4FcK7NaHSA0Tom8yitRdC5hkWNy+jMa+n4hBOJIJF+qIhJOg/PaB9JkAodEUKttrFIhuOc85wlWSRbms/mzOdzLl+5zO7uA3bv36ff71PVNUeHR7z11lv0ej1WV1c4ODjgK1/5CoPBgLIUhrzBYMj9+/e5fPlyhD5CGKC1wkUujIDCZZ7nZmn4YBDwgZclVOdZpjXJ2KUL0MVnXzzOhCwbJ2/K+o0TlMTL2wblOUo4QwAGPL2FQxq2trY4Pj7ulHwL1gLQCRV8XHNOojeMMv4dE+elQCcWrVrhHByRCkXwbYTrSJKMUA4HjnAinCKshABNXQN5xw8TxwzECRt2/c57Wr5RPK3gTX9/HFyy2J40himGfdb9P4lf4GfVngntM9p//o9ucO/ubQ72j9Fohr3LDPI+uQahma6pqjEBPwbnzUgR0BpwrgFPTxyY9LSWSt1exxKOBy3RBYJnJ0LbiNC2KJQxuFrMWqm+XeOclWgALWROTVOTGeX/VjjbxAo1wkPtq3I0Ie7UY6PoqGLHKjTWkueC1cpPtyjq6uqqTxOvmEwmTCZj9vf2efHFF7n58cf8+Z//OW+88QZ7e3s8evSI/W/t88UvfpHNzS12d3f5whe+wPPPP0+eZ2xublKWFR9++BGvv/46JycnjMdjqqqKAss5F/lUisK1zreFRZQK7FQiaK2jaZxq3FqHMDCP/RqNjc6+VrBrDE3TmtY28B4rJTwltka7QGQVBir+J/oR5vOS6XTqIZCara0t9vb2Olhq4EQBovAOAuOsyApoCzqH2OnwTiUEVTaelhgxRLO0mDbR+enxfIS+t2lqweuNweEiB3RVlaD6XkDH2bHQr+57CPcWkS2WolKnrauzWmpJLRaPSLXkCC0m3z1OaKc+mQCRnd7gT3/219GeCe0l7frlEZfPrXDrg5LJeIbGkyo5jUYiPhTCV+384nDLEmNcMEWDMG/5PlqH12lrMmi+wnLXnhs1QCWVryNMkpwbzm83geWGejw2Ypjhb00ggjpLm2kxbEPg0w4RGUZrJpMJDx8+jKGA5XzOeDqJYWrzuZBoXbhwgcGgz7lz57l//z7j8bgTYVKWZQceSDXQZc/RXaiJRneGuXvWootobBgTEhTJC+JUtjTWwy9LR7o9NlgBofJ3XQtxVnA8ptVpFs30ZcLitInefieWXkjzb1VptXA8Dl9pPe1ygE46jxyPD5ufTfvkz2u9mWfNuSfBMWn/lh8Qn3HJBnZWtMiTII+zoJHFjXJRcP91tGdCe6EpBf/0770gvM3aYBvL8fEJ77/7EVevbLN+4wpGKzJTkJmCal6hexKCFyEEP3lbvgYv2C1YQsKL/Cs0mCqAyFikOktTN6CEB1uq38hiCIkzWmmv3SivTSeCC4tU0wnPJGau0MB6E77xEI3zmpg/uG7qaKoHIdvreRa5eYlzlqLoMZ1OePDghNu3bzEaDrlz+w7vv/8+v/qrvxpJ4R88eMDBwQEHBwfc271P0zQURR6Fk3OOyWTK5uYmu7u7PHq0Fx2agZh+sSJ2+56WC66zvPXLPu9q6eF6fsNqjxKoyblTcihi0s5R1TU664bjKQVNIwUPhMuiLfQgmjXxGReF9bI+L3+GrrBOHcZKed6+cI6Hd0KzVuZJqIgUj1MtZOKi4Pdfac9jDrGcXiqiO7AMDmKyjYpj2YWkwhgvbkBnC9jWWSxtGe9HyiWSRo2cFVa6mI37SWCXv+r2TGgvtBcvD3nuwhBjMnKTYxvHvfsPuXfrI+bjl/jMSy+RKUWRD+jlfWbTKbnJUJny4XLpwg8mtizextZYq8BXh3EOdJZhlRBQ4aSIQVVZptM5ShtJSzdaynrREtNETulQOca1iTFSQ0RFVVEpSQ5RRooIkBlspbBNWzE8aPRpnTupjdij3xcK0f39Peq6Zmtrg48++oh33nmXb37z9/ncm5/jvXff5dvf/ja/8zu/w3Q6ZX9/n48++ojJZMLBwQE//PGPYpZiIEuytuHkZMyVK1d4++23uXXrVrJR9GK0RGoSh7YMewyLVIQfBKHR/bxrPbSCUISKLHK/cD1EgBNYSi8KTFrteV6V4MMAjQrvRr4/OTnh4cOHONeGJErShiy/UEIswCPp8yz2NRXc7fft2DSevAk/ZkZrIp+ND/cLrWlqFBqtMuGaSWQ2ieUSlWLrMMrINfGVa7QiMrxGK8SK4hAxdWitHuf7YFFOqkEtPtfiRpX+vuhMTrXjtOJ5sP7KsozFL1J2ycWWUuMunx9t++vWtp8J7aT1cs1/8b+8gXMW4VgQrHg2nXFysMfR0RhFhlaglYTFNXU3XEya89dIzU5JbXcqpPpKE01FdXQT0dyauPAgmSSJFofy5aJCrLTXalpth2QhesdTSKXWCme9RuUXZniGtM5dCK0Lk14piRcuy5LDwwNu3brF9eevsbe3x507d6L5P5/POTk5YT6fM51NOTg4iNdrHT6ySaytrQEwmYw72CK0iygV2GeZuk9qp8/pQg7BN7HYOpCLahe18pBITIJJtVxaoV5VlVSSR1EUp8uIhWd9HOa6KLy6z9Lqui619sL1RLVtn1mwt/Z5VXsV+VfF0YkwSTKPugKzPaczeinu13kOEdz43IQAxSx/ru7zL8O9z2LYSwmgFosRLGtPclKmz/y4fqb3+Flh3s+Etm9FpvjHf+sSayMlTr5qzmg05Pz5HebTknK6zaVLl3FW0TgrRPmzGcbOycxYhLdt2AQm4zE4F2k8lVIe7gBQOGVwiEdI6YwG7TPnNLVtqOsGa5XnExHnz4IxKRMnKZKQWKCxhfp9WkGvVzCbz5lPJ5RlxcpgiNEGpRW2slFwBE04RDjs7e3x8OFDjo+PuXfvHsYY1tfXOT4+xjnH1atXee6555hMJly5coWjoyNGoxGvvPIKN27coGkaHj56yPd/8APR+LOMtbW1mEQShPSlS5d44403z9RuFtuioynVwFKnUSqvWnbCVjyF+punMWMnUJJro2wkJFHoR6uqimn6jbWxaIBwkqQCkBilkeVF1PrS9jSlphb72OL2jx0kcVc4iwqUqfGCQSC7OIfCBuRlOgot2nCnH7CxsQHAcDAQ6E4wNn9ZFc8n/t7CT3GiKlCuPfZp3rlSquN8DFZODDMNFLSeVTJUk4kVj7SOdAOL1w3JWWfdN/Tvk2jYT/NMn6Y9E9qIwP6Vz63w5dd7NHYGzjCbl2xvb7C6us6lC5fJFKwNB7jGiNNtMuP46JimOKGcl+SZVCe/AlJarK4wCb9O0wTKU01ZO7TOUCajtorGiSA3WU+yEz2vSX8kVWesjYAH4DUga0FZjGktAieFIX3Il5M++WIHo9GQ45Nj9vf22Hu0z4svvMDqyiqNszS+sCzA+vp6nJx37tzh/v377O7u8s4773Dnzh3W19d55ZVXePDgAdZavvC5z/OFL3yBwWDA3t4e9+7dY3t7m69//etcv34dYwx37tzhf/yX/9Ivph7nz5+PfBphwXzmM5/h0qVLPkSvXShBu1/GGQGnNafTjkrVbpw+szBNnGivFfTEoFGJw9l57pFcG06Oj2g85j8ej9uXqzX9Xg/nBtRNQx6AW1rNNMSNpxl4YUEHfP+s9nhHatdCCH4U5z+X1PYGhyPXOoaYai2bjVPB3xHgoTo+v1IaZTWhNG/ox+XLl2SubKyhXUU9l2LHWivPP97mL4Q+KtrCHW1fVTzurBj0RUfhIgNf+DxEGWktBUgGg0F8z8GZDXQsnHBd4wtcp4liy97HYn+e1Jb1/6fRfuGFdp7BV9/s8Q9/fQXrSrF+naOuHf3BiOGwYG1F088KjAJna1wT8LKKzFU4a6m90AaYz2Y0VYnRrROn5anWzEqLyQqMyZg3UFsNypAXMuGVNuS9EElglvrh24XawiWLzHraCx5jZOLapmE2lZJJTd10cL4woUICDAg+enR0xP379/nggw+4ffs2Ozs7zGYzJpMJzjnOnTvHuXPn2N/f59y5c0wmE9bX1zl//jyXLl3qlPQKC2Q4HMZFFz7f3t72oX++oEAi2B7nlEr/XcSsF89bZBFMrsYiLBIEvXViqQj9axtjHWKVUQqViWYXLKD0air8zwuWs4Xv2aZ7etyiRZDsDwvP4K2zYLkEGCQKzQjgtFqxEz5sp9p+h8MULRyysrICyFyp5yFXIfbKa9sq6ZeKP8HyiZCLe7wAPMuBvCi0oa0AlJb/Cj/pOC+OZ3g3aVhrekx638e1vyqc+xdWaGvxx/Hbv1HwK28MUKoRJ54VnNhaRVXNUVhsbdAWcs/BkBmp2r29s0WBQWsPHzp56b2iwBqFVh4e0RIREjSzg6MDVlZyev0+qgFLBtqQ5QMaK7wfJi+EFCpobKH6gmojApxLJkr43crR8r3Qq2qtOTo85PDwgOPjI7TWfPTxxxwcHnLjpRuMRm1Nwd3dXVZWVlhZWYk49NraGq+++mo0O/f29oROFuUzGiXbcWNjw9dkXImVapRSPHz4kOeee448z+n1ety4cYOVlZW4mMqyjNpN4OAI7UlRBS3WKIMQtPRlpuxygb28tQiwk6QmH4oYNrherxeFc1m3ZEPBCdZ2sPPPk+/7GDO8CwWlOG6r9ItQbHEysVKEQrepKw8vWNBQz2vyrCDPemRR+C3ALkk3olNSt38v7Wd0QDrPPZ5eoz1GLcGoU0w6/J4SOWmtO4U1Uh9IWhUoOHwfh0Gf3gDb+6XtaebMsu9/Vg7LXzihrZQI6+cuGv7Tv5+zvqpQVDjXYNFgLc5lWKeZTo+xjcHVGU02oMgyhnnOcFhw7vw5tjZXaGa72KaiaWqqcgog/BmuBixKO4wJWBxUTcPh+x+wurrG+vo6lVUo00ObHJX1KUupLqO0IctlhYhPSYMTU1VoUhuca+lLAzxia+szBvNOiN37H7zHxx9/zN7evi86/MesrKzyxV/6IoPBgOPjYwC+//3vc+3aNV566SU++ugjBoMBV69e5Stf+Qp/8id/wsOHD3n//ffZ2dlhmk15/733aJqGtbU1nn/+eX784x9z/vx5RqMRv/u7vytFb53lK1/5CsPhiLW1dX7zN3+Tra0tnBPip/F43DF/re0SOC0zMRfDvlJHovZJRIsJQSl00kIiEARVuFy8NwIvWBy1dcwmU7TR5EXB6uoqICXIpvt7mCwjyzPKcoZzQ8AnxdANp0s3lGWOtcVnW3zOgGW3OLEIOGHXDVBQiOgUAVSXlrKcM51OsFYiLKq6BKsYDVfo94YUZ7DYWWuF13dh/YDw7nTH8SwnYvytA+W4QB2sWu05OA9TPpgggEPFmBASGmCP1Ekefk8LTiyDNBYF+SK/zpPgqqdtT+Ov+KTtF0JoKyWRIXXjePOlPr/2S4bnLjlQNUqIpr0X24KVdHHnDFVlaWoNTYG2Bu2g0RnaGAaDIZkZUB7PKcsZVTVHK9EQe0WBwgANSoOUgJTUZ1XVzGdTUNDv9cjQ6KyPNgWYHko3NI1f3NpGbU4RsMV0wYYF4WOJrfxIol7rZNNac3x0xOHhIcfHx1y6dImPb95kNBpFR81kMgHgwYMHUaAeHh4KP7THsW/fvk1VVezv73P16tUInwRNOzgoJZsy5+bNmxwcHNDr9/mNb/xG1LRfeOGFDsRQlmXspyyW05r2MphkmVb0OMXmcYstQATphcL/cBLRU1cVhowcCdNDKZS3DLQn1mpsWvFbsv26jri2L8usiBSrPxs2Wf6QS3TJeJ+mbnyhCakgP5/P0RjyrOjAUIu3SpNswj10qmmf0ZfYywUtOva9A9MQteuUinaZvyJo2r1eLxaDXiYYz2LoO9VH/11KgnbaKf3J2uO0+59G+7kT2td2etBUhOzwlZ7i0lbGay9s8NK1IaNhTcMYZyvvLXeRXbVpfNkuZchNju4ZyDOUK8h0jyLLKYrcp44rhLdShIxzDU0jeOzDh7s0dUWWaXr9gpWVgU8fllTiXn+AMT0cOY4MnQ3QJqdqnHjscdgaXyZSYZ1CKStJNChxDrk20y7Lcom/zhWuESeSMRkPH+5ycHhAlkmlm3M75xkMRNvNs1xS7H21ljwTqOLo6Jjj4xNmszllWaGUJs/F4766usrKygoffPABeZaRm4zxyQnOCbHRaDQiM1lcWFevXmFzc5OiKFhfW0OhqCvJAkzLZbUbUWje8ZWEwwj6sSDkJATiCW0Ru168T9SzFz5B3qsXIrapkw2kdfhJzI8SZdSKYO92U8IsTabba7sglH2vnItPuuhj6PY5Rctd8mOlwEYyRk1dUdYVtTGU8ylVNaepZE5KKTqLbSLTDSEeXdRe7fUYh0/l8gU8ZLxt40fMOflcQcpa5vx7cWGwvBkosGPjxyAlPpPzUq05jfIIsEee557zJo/QR2rBPKk9zom4qBSk1tCnFdw/q/ZzJ7T/k187R12tg8dHy6rmYDzn/KU+/cygrQL6WJtRNxVVWUniigWnNUWekWUFo/4AM+xjTEGeD2nQZMrQM4Zch1JNDcpYHBWNnVHOxwD84Af/jvHJmNHKGtvbW1x/4TkGfUNe5BSFYXNjh15/HccIS5+8v4bONOODPYzSaOco53XwhoFSWFcRKLCtNVEjUErTH40oej3yLAMnUQFlWfPu+++z9+gRZTXnH/yDf8DW9gUPmRQM+0PqssaWFpOLcxDg449uMhqt8vJLr3J0PEZrw8qK0KU+d/Uqs+mM3/+932c0HGHrhnv37lE3Dasrq1w8f5FeIf0YDvt8/Ve/hkM4VIbDEVopJpNJDJULYX9aiWgIzaP2OKyvxOIJs2wjz+84legS5JcCHw/fNXMDXttqVm3VFiHx0mgFBl9v0XkNu6mYzaaMx2Ma15CprCO0tY/KMA6oG+ZV1cZKywGYzJAXBRoXyMsFuvC848p5IjAlY3XaSdpOhZYHvSZMCI1DuwycxTYCy83GY04mY0lxaWoR4rMpg/V18ryglxdMxhOMQgJOnfX6h5TXs97iMRrhjncG7TK0UzSlBQw0znNfttm58hrEEekcKCduSWctta1pmioqHNbq+Fwhdj11IqaO5YBbpxj24woTpML2SfHvixZbKC+WWj6h/SyF8dO2nzuhHSe3a/EywQ2cX9QaQy6JJTXUc0mKsNahjAKt0ZmhlxX0+gPyvE+vP6J0IkwKpTCNDdITpSyOButqmmYOwN27tznYP2JjcwelNJcuX6QoHDkGY6SobJYNcPRw9NH5EJMpaovPNnPY2uEaDTp43G0Mh+ssaqfIsh793sAnweDjvKc8ePCQjz/+iPF4zOrqOsPhEK01s9mMIito5hIJ4zJH4bXpvb0DDvYPmUynzGZzlA+hUkqxsbHBxvo6+3t79PKceZ5zdHgY42FXV6SyvNGGIs+58eKL5L0eSmlOTsZMJhOqssTSLcYbhFfyFju6pQLPXe6ioI0aFsmB8VeX/L2It4a/05qXOn4fgtWC4La2oapKJpMTOll+QZg6h1GepNdasSQWtH+lpSyZoovR62T9Ox+mstyJ2toCKkI23jwkkAb7zco2gKUq50zHJzTOx/NbKxFNSlFkGcbAfDL14rWtryPatPYbj4UMlNMoMnGGO4WtvdC2ba+i1eB75Fwbry7vTDaUxsMe1kkNU4FbWuEayqcNBoMYbbMIYTxt+yRa8qKvYRH//qSRPT/L9nMntCEsqe4ANk3jqSRB6TYIv9frBXmONoZeIeWp8kyK8YYduHX74P8OXm5HWc45OTrmww8/5OW/AVVZopWiLEv29/d5770Pee65LTY3N8iyNmJiOp3SW11lOp0xr2Z89NFHXL/yHL2sT7/XZ2znaC3ecEneIArtgPkN+gOOjo44OTkmz7MYRpflRawHGMztqiqZz0tu3bpFv99jNBwI/30yQa9cuUSWGe7cuU1VCdZsMhPLc0UMUQmue/78eYxfTA7Hzs5OpGRtmgbKEpSOeKX1RPwdDVgFh513vIUBJxG1AXeNsMlprUeF6wYrf0HwhT9TaOLU3AnCRqkIEYRNInVs1XUNThyRAYft8H548Sr9RJKYPBwhoYTLEoPC5F2EgaC7E7jOBmCF1Abb1NR1iTHizwAfaokI87Kcx5ncdepKBm+4hfJ9dmHc4j0V5bxkVpXAhg8bXUhyihue3+BUuwGLdpwIdkwU2kHTTqM+wjteJnyfFCaY/p7ykFhrGQwGp661TOh+UiH8V6WF/9wJ7SCwHQgRk9/Fq6rCqQalLXmhybOMXq/PykoPbcS5aHQeY6MzI1qx0t6EDdAdTrzpjWg7VVlxuH/Ixx9+xD//Z/+Mf++f/B8Yn5zQ7w05PDjg9u27/OEffZvf+q1f5uWXX2IwGILTHB0eM55mvLRzjTu7d/n41kf87u/+9/wn/9E/5dqVTVYGffbvf8QglwzCqqoJhVUnkwmz2QznHJub63znz/6Mvb09lIKjoyMuXrzIZz/72eioqTyWeXR0yK1bt/kX/+Kfs31uixeuXcfkUlFecFXFb3zj13n/gw/4N7/3u5ycHGGMFMvdffCA9bVVstxQ9ESjX19f55d/+Zfp93rYpsY2NV/84hdZWRkyOTmhLMsogxwqhsyhk0LCgSckwXetx2hDMeEQWaCUpxM9FU3RLhjXYh4dB1t6bFjA6XnBcVsnlKsgnCPWSUSOJCoJdeu4LHHWxcrvZVkKH8yCKW6t+CkyYyhn0yiUbNPQJKZ3iGyx1vqoisUYdRefTckukiSa1Nj5lLqqqas5KytDak+vsDIaoZVg3NPJJOLMRrUKiZCE2XbTURLj79Fxr9UDKPb3jzl4uMvf+MIGs9mcfs/zrbsG24g12LhGoC3EcsyMEV9OUZBlnk8nyzFZETfrFKNOCbTCHAntaQRjqjGHIhwBiptOpzz33HOd9x7u+biInv85tZ9Doe28ww7v5JBJ0TQ1rlI4VaN04cOGckbDEXnRw+QFmW6zpZwTfhGHolEkxTtc8IrhnKQvT8cTHj54yJ/92Z8BklwzGq4ynUy4fesu3/vB23zmM5c4f/6cr3EI0+kMOzsmywuOjo75+OYt/uIv/5J/9Nv/iKwoWOmt0tyWkDXJpKvixA6VYKy1DEdDdnfv89FHH2Gt5eHDh8znc1566aWYmhv4FyaTCbu79/nTP/1T/qN//B9y/YVrAgkl7fXXP8PtO7f50Y9/KNmRWpHlGcdHR6yMBhgTKFlhNBrw4osvkmdZ1KKvXbvGvJwyn087hWizoh/JqYw2CwI1jV5o4QeljCfST3FH1WrUj58IwOlFvqjdLjbrM/uC1htgEqXkuQVtk6IMtnG0xYnF9DdF0d7czyNUCwfFggZnRCmk4Y4SeRL4ZMKxi1pkQ11XlLOaqiypyhn9QRE3pV6vh1FQacENA96sVcvWZ5uGlumxtUIkYqnp3Hc8nvLgwR4AZVlT5HkU2nXT0NSWxmvZSgEGjFIoY8gyw2DQJ8sL8rxH0esnQNgCdPRTCpVLqwHN5/MY2pq2s5Ky/ucqwH/uhLbUREyLzRp6vb5M3lyEdq+X+wD83PNvhJeWeo+711UBnCP86zU6ZxmPTzg5PuLczg4A29s7bGxsUjVQVo6DwzEnJxNOTsZRgOZFAaYv147cCQ6UZjafc/jwNpPJhMZJ0YONjS1x5jQNDx48kDRq4M6dO/R6Pba2tqjrmtu3b1OWJUVRsLa2Rq9X0Hj2waOjIx+ud4WNzQ36gz4oiUVufNiaUtDv91hbW2U6m8asM+0r1GRZxuXLl6OjaDgcYpuGmsAwV1GVJWUZok/aUD6lVIIet7CDDKmL1kx4d4vNudbcTiM52u+efp6crbB1wYhUY7O2reSitY7zICW3CvH4ERoBlNLiYKQrmOJzkQhkL+TjOCTPahsR0E5iQuNGUdVVB8IJxY9DaIbzeEfYFGV9ND5mW8VxlWfw/fGbhThO27FufMUdCBuMUMxqpckyhdZgPM+J9hp07jd6qXTUEoYte2GfFGJIYY8wtnG8bFsoOSRtnSWIwxz9n5uAXtZ+7oR2JM/3wfd5kTMYrTFaG5DlGrSVSWQ0JsvJTeE5qw1pRGqKZKvECaSQCY+rwckC+vjDD3n/vXf5+te+BsCvfPWrFL0h01nF4dExn3vzs/zBH/5PnNve4bOvv0GeD9kabZEPdnBKUfR69Pp9GqfQWc7uw0f87v/4e1x47jyz/z97fxpsW3Ld94G/HPbeZ7jjG+u9eq/mCVOBAEgQBAiItEBQJCiaot2SbNkth2Q5Ws3o5hc7RAe/dFCiHKEIf3C3QrKtsC0F2ZYnhVuym2yxBXGC1CQFEvNUqHl69eb37nDO2UNm9oeVmXufc899VSiQrKdCJXDr3XuGPeTOXLnyv/7rv2pJO//pP/PTtF3HzZs3+ey/+CxbW1uUZcmXvvQl3ve+9/Lwww+xt7fPb//2b7O/v8/Jk7u8612P8/wLzzH/6pygAl//xtf44pe/yJ/56T/D4488wqnTpwBP5xqatqUotgnKcfrsSd793nfxK7/yKxwe7mEMjMcVENjYmPJjP/ZjbG1tUVjLuXP3UC9qAqmUlmM+P2S+OKRpWra3d0S8hxBLk0kqf+c6YFnoRzjmGUwdeH59AFbho4fo87ORzzrZBOmk30ykqcVjZcMzMAoD45hod9kAJ0ZRIEMgIQQxRDqmpFtJfDJR89x5n6vepDVdaYHiylL40C4E9IqXL+XLokerQhSYishehESC97RRObFpalIxZlnIWyblRoQhSpqmpnMuQjW9+ZeqLI6mbQhBKu4EUpFfHeMAAs8oEyGS1AkIZDOfH0rFGqRyTdfJKcqixGiLMRZlNMZE2EHrKAMA1kbdFy3zbdjWBf9y/6iVGEhsic+dOP9t2y4pVA7x7HTMNNaS0NQ6eORuYIjcqb3tjHbbdr3IfOQLTze3mW6OsaVBGzAqmWcFwRKUGvhFqQ1XXNkoQkCFGFXHAaLsd+XyZS5fusTHfuAnAXji8SdAGQJGJEwfvo9/9I/+J65cucZiUWPLLaYbm4w3TxAQNb+irCTUow239/b5//3u7/Lx8Ue5cfMGTz/9ND/x6Z9gsVhw/do1vva1r/HAAw8wmUz4/Oc/zyc+8YM8+OBDXLt2nf39febzOZubm0wmEzY3N2IAKvDSyy/x3HPP8Z/+pz/HxmRMESvPON9JhhwQ8GzvbHHf/Re5eesG83oeVQILFIHRaMT3fu/34toO76TG4fxwlkuSLRYLDmcHzOaCaW9ubkadb7e0JZfJsez1pCVyiG+vwgEgsAErnnkKINp8/OHTXO89rU5NCUCmBYGB8e2LA0utSCVp/MrEWJuKAd8g4yJ+TxYRofFZKzS6nqq5Ctv0+LbsSNJyFD3IyEyZz2ayA4tl5yDgXMekmKKtRaFY1DMxTipBIuJ1pwWy6zo6Fws3GFlsVPpsSBmWogDZK6lIH9b1AueEa9+5FucNxsgOTIL4FTbmMoiAlJI5o4IkssWe9369gV7uk6OBweHOLN1L0zTMZjPqus5a8ENve1gRqHcQesXHtEMZnvNu9rjfdkZbBOVVrCUYifjWSMZaxLeHPo5st+P0CNmUL7UQQqzJ6FDeoXyLW8zp5iLB6qPy22QscIdQmBQojbGycIxGcl1t26KtbG+TiHxRlZRVmQdV07Ys6gVtyrbTKfg4j7rMxMEqFWK6KP5Uln3yj/OOVNosTTjxJERDYzaXQq+ddxS2EE8VSU221jCdThiPR3jvmC3m9Fg+EI2YiwwR2X66jK+mTExIgTXx1pIBOJZbS47/5evNJb9Uj07199K/0DYtQUXK5ADqyhyO0B9o1dvOJ0+BEJZx9hQAttZmT1u8NKFCZCpaCNE7TdfWB7uW6Gortx8GjBjx5gcXlbf8sU/jglBYG2uBerxL9yWL3lAp0TmHIsRMzX75UkpFtsaghFvcHaDVcp/FztEaJtMK10wBWciLwkRRsjjHtIqa7XnNgLxTTUc7msiymq6/+oyHwejh38O4yWpfJxhriFkPx+VQwGv1elbbKs79VnrjbzujffL0GUAy9KwxaGMpykqCSEKmzYU2pMzSAGUNCYOMliN5Wb5j/3BfMh5dh18ccOvqFfauXeWxB07RNjVdW3PPmdMAaOVjDoXGaMWoqrh44R4m44qbN2+yo7fZwGMLS1EaTp48wZkzZ6jGFfN6zsHBITdv32Q2O0ApyUR8/vnnmM9nXL9+g7IsqOsFs9khL730Int7t3GuY2NDRKzGk4rZ/JDpZCIeTix9ZqxGqcCrl16maxc0zYL9wwPe9+STubxX3c6ZbFbc/+AF7n/gAk274IUXn+PUiVPRoHpmhwfUi4a2aanrBfPZgq6TyYMSI5SCpmlxMbbA+S4avyIHiCFpXgsWbAave9frWuTgIEJf81Fxr400zhvXr4NWnDxxElsK3t4bQ5Wx4uXWe37J6Cb8FwTfF40LoVBubEwjdBGEE49OqAFN16FCoKhKvHN45zC2IMmOFrag7VqKskDro7ooAguJRy0Qj4+GTHDkrmspjI1Sq4GdnV2888Ih91JVRyiqMbagQGsjui7IcUMc4yipaj+uKqqyZDKe9H1AWjRkkRUPXHaWRQEPP3wPuBMA3HPPCQqrUDhsUWC0jUwswbZT5aZlhD7+dlzMgt6IJ/gjGebEAhl60el7yQvP7Jwj2unyuTTOm6ZZKqC8arTvZnz7bWe0d3a3I2UoUfUUKEPUXMUvKVOrgQ8QvZg121bnBKdtmxrfNXQHt7j0yktcefklHrtvh66TIq0nTuzEc0qAEjxaKcqi4Mzpk1RVyf7+PuPNWrbaMUCztb3F7oldMcZtw+HskP3DfRaLBUVhmU4nXLr0KrPZjL194WO3bcPBwQGXL1+Olb0dm5tTtne2qEYVdT1nMhkPJk7c2qvAtWtX2T+4wcHBHtdu3uDhxx7KGZGNq9nY2GRze5N7zp2l7Wpeu3yJUydP5u3zIibe1IuG2eHh0ra0rCxFUWKsiZ6eGBxjrQSwlMLSezgpAJkniTIDl6wX5Ide1lOqxEjSyzzql+zt3UZpw9bGJsYm6l0MXIY7KWQMnjUZDY9eoo7l3kSgaDKZyKX5gLFKRPw9eOMJTSPa1DFz03uPidCEihi48x0BMcphUNl9yTjEIJ5g6iLnKzuYjkk1yhj35sYmbdOwUIrFQrJMldZRnMzFOI0SzfLksZMSMhW2KNgYjyisBOWTg7IKQYgB9yjlMBbO33OSaSVQwomTm8KC8R3aFP080iHDiesM9rH9Pzj3sPLMfD7PeQ2inzIkGuis7Dfkd6c+TQZ8WMUGyAU4Vs//r0N72xltrSXQsUQZUim9VgaRWpnCyQPJeFcAFbFE5x3tUNIy9DoNvY6CvG5yiltI9iIhMHGbNsBrM1QgAZ+U2m20ZjweZaU8CMznMwIhZotVTLsJZSmBwWokFLNEFSsKi9aKpm04PDygaZvs/U43puzsbNN1rTBKFFSjKht16asASuok7u5uR+U6KUw7KkZoLV5K13ZCo8zeERmOSSXNltgKA2Rg2YSumShh+XXBdJ0UPfZeOM4rEq4peLcq+JNPunqKZCDyR4dGZjkIlrzQlPgTXPSGY1LiUrUXNRBdyuddh54fvR4i86mLqfDeuyz36jpHKAcQAAlLj65HhiLivcXAow0pccaDKpbwXSn0MOS9R8807WgSNBG3E7bQGCvJVrlv4s5E1tUh7DTAwkOiaTI4dvTl4yI0VPVLO7TkaSeju/xM+t+PgypWoY/jAp2vd5y7rb3tjHYm5a+CoEOPesgHCSJ075ynaYSu1rUtXdtk7rELjs630QvyVKWlMBqjAj50EQ92/UIRkghS/FeL922MpipLjFaE6D0pyVRHqUDnOzY2p1y8cIF/7//473L65AkuXXqVW7duMhoJra8sC+aLGVtbWxwcHvKVr34ZbRSzxSHlyLK5OcUWmhs3r/P8C89y+eoltAFPx3vf927G04rD+QGejo3tCQ88fB/l2OK1eH7aBJxvaDrPxz/xUa5evcb1G1d44cUJ5UOPMq4mXL5yWZJc4kJXWENhNVBltTuUJFNIFfea8XiS8eYQF76Em6pc8QR6YDVEfRAxlou6YVEvcJ3L0EIykgDTjWlMpKhlIbJ2KRFHqQGxbrD1TfO0t68CTYSQYAuhtCWPzzuH7xxVaXNCioSpA0YVcWvvMi2ux6qJtL+Qg4jJEFlr6JomL0a3ZzPxsuOFda0YrlFRopXCpl1kHslKdpZK43xH5xyT0ZjpdEogls+L2axVKclkASWp9ZE14iEHTbVKaoUOo8H7FmUUuzsjylKTIXDfoeJzyt2nZD8r/O5BwJ/8gCUBJzpDmba4hvmRWoJKJG5TxvOopZ/jEnAy1TS+P6zKvhoQ/tfFcL/9jLZdf0vRr2UZEgFI+JmnbTtmszmL+YJ6MRNPEvGiRpMSo0WjobSWwkqRgxA6QtTONjFRJWQ6WoietvxrjKYopfK1Dx7nuszKUkoyyabTCQ899AAX7r3A7RvXaduab+Apy4JTp09y4sQubddw6tRpZrND7rvvAtpA3cxp2hHTjTG2MNzau8UzT3+Lazeuoq3C0/Ho4w9z4tQOn/vc5yhGMN3Y4NHHHkZZ8cwBtA240BCc40Pf+z38zu/8HpdefRWrLRfPX6C0JdevX2dcjbKucVmkTLeY1YckOElavZPMyLgT6VPYB95s2o6k/VBI6d7x2YUghYL39/PkHlZtB6lXKBBNI/obCSdWKpZwk6DmID54ZISodNLIcgukJA+VaWVd2+LaFu8qyfB0HmtLiqrMOwwftWxg2W/XRucdXaIAgoyL2nV0bYt3jtu3bxGcz/IA3gvM5ja3hA9tImsl/0944EorulagI2OlhJaJWLr3TiiwViRl67ZDpQzOuBNFLZdi884TFHjfoZRhc6ukUIkOCyHEyjHiFazMthSP0EudIPcfK9g3NU3dCMwTKXvJw06GdigclYz20FjnM67xnNPrQ8O+ioMPP3snAaq7qb3tjLa0HqYYcq8FBon4XkY1As4Huq6XCu0faFiG5UiDZXhEYayMRqM119F/Oa3ww4h1GjTzxZz5bB4nS8JrW9quzd5IWZVUlWhf18084+jG6JgUIwvBaDQSA6IU2kpdwq2tLbx3GCMBqKIsKEqwpQSNeq0IckAwBCLzxVJWRR7wwm8deDqolUkkcp09VBDi9zqUsksTeBmmGmzFozhW0rUYbp3hqJcFER5RSgJuqxP4TkNlcO7lb0StksGETz9BDaCFCENorWOtRUmS8iGHuwfXvb4ieDJUPnru3idu9MD7GwTHVjnIMoblfLI4DhTwIjSXLkVFZtNSAD4+iwwhLsHQ/Y5EJRhkeVKs7c/ggzgvwYFXELxASUSqXpbmXZ5z63D1vv+OPvfhe0OmyesZ3+OM/PA4667hbmhvQ6OtVn6PgY2IT4s+g2CybdPivRpInnqCdzERwKCSl6AVxggrxGot+sk52AgXLl7A+26w104YejSC3nP79m12Tpxgd3cXr0TxzUcD+Y1vfJMvffVLTEYj5osZL730Al/7ytcpC8sLLzzH9RtXuffCec6cPk1RFnz161/i1UuvMJ/PCcqxsTlmsjGiczUPPHQfxhq2tqc8+OB9nDi5zWK+YNHKlltbuO/+e1GFoxpZFq1UlnGxoGvna1TQmKA5nB+we2KbRx99GBMK2rbm4GBPEmtM1PAm1eZTET5SEdvW/Za3bbh566YkBBVlxu/XRBZwbSdJG62wTvLyGyP/xoguddKnsFHHREUaXtu2Me4g0gUau7zoHjnvcvM+JbdoVAwaFmXJdDplOpnguw7XthRFj+saLRxsHRO66sUCUxRMNwfnUoqyrDIMJIu4vHv9+nVc28p9aQ3BY6xhNKoojBXqp3M438kY7jpRTIzB367rODw8ELaUDmxsbDKqRvIMooCYUZZ6scDaMvLGJVPSI/Cziwuycx4Vi0UrNMG3+TpX4/TymcETjMbNeUfnWrzraNtA14DrAl3nSUqJgUDn28yGGZYRGzI/hpS91XTzO7Xh+8PFoH/OR9klafG92xNs3sZGO3kD0WhHcZ+6aVnMZ9TzRFXzED0niUIXWC1iRTIJFBjRs9aA1WCyMyLezfl772U0KnutzcG2PgSpD7m3t0cIXuooHg6yzwI89dRTfPWrX2VUjZjPZ7x8eMBnP/vb3Hv+Hi5depUbN69x/vw9nDh5gqZpePmVl4TBUc8Bx2Q6ZjIdsbd/m/seuCA89fGI7d0JZfkQZVFwMNsHAtrChYvn8KbB01G3c3zoPdnO1Sil8cEwmx+ws7vF1uYW8/0F7aKmrRu2tjZRIWLanYtaJCHrSGvdCyc552jamrZrGY1GUbpVD6APBh6Sx3UtdazUfnBwgNYKawyj0UgMtS6wA6OSOjtVFO8TK0LcFQy0uodxsjWTMqM2VoMS5Twx2lLgYXNjSnByjYqwJMZf11JUoygK6rrGltXSsRWyI/PeZVw7wbDXr1/HamESjcoKgseagtGoYlRWNE0T9WaESpiSmBIFzjnH7HBGUVhGVSE1OkcjyTytG8qqwhrDwd4+1ShqU2sthR1IhlZ2eInhY4zGY6Cr6RlIKzNNaVaD+j5KIrRtF2GPhsXM0TaeetESlJdUd6sISnYFJjJAEh3vOKz520k1XzXKxxntYTuuCs7d1t52Rnu4Rcp8zuhJZAhksA3t8dUBJJK2/JC3pqQKHbGpmFDgnMNoQ1GUA7yMI7vH0UiyxXJSxuBalZJA0ubmBsZoujygQqSajaXiSExckH9lkI2nY4xNokKeorD5M8ZqytJSlSX7h1I5RLisJiZmqCyIFBIoqRIeqfHBiZG0aZERuEgmgwa/KvS03FLXQa9eN+zj+MQyMydtlZcgqgylxPPq3uM63hdahV3UylLey6YOn8PK1edrTFCI1kYWGa2jbjVLxwiq39Ut4/Y9TCG1PdM5k0PhCbq/xqExGeK5wS8bnfTZhGf3xk2CiUu7imS8ju2tMPgjLMfwYxDROS/iaQowKkIgMl6CixrZcUFKUGN+7vEZB2INVK9j7ckVGGjl/vvLf3Oe73G497D/hvMw/b06ru8m7/ttZ7TbWM6qJ+U76sbhQmSCuBYVJ05hCworwbGEXSolm7dEz0v0KSBC3ILXjUcjdnd2uHHzJk3n0Kbg4HDONtC0jqKoJFU3gNaWj33s45w8dQrnglQxGQRFHnnkEUbTiro54Ow9Z/Gd46Mf/QjaeO69eI53vfdxvHK0rkbpwP0PXiSlbQcc40nJojmkcw3aIskNFrquZl47WrfAhbanTSmP9zUudHjVASFXelFa2BBSnV4gk9DB/t4eha6wRqL3yasWT1P6xofE+HAE56PmRiFX6T1dJ4FCW9hsHPCBg/19OtflpBQQmGA6mcQFTcfjDGiFKyZbq6RcJ95e0v4O6TyxKdL6e6cJGBdsrQUqMzbygHVUsINF3A2kid22Tor7DlT+wtIRk9KfGO5MDUE88KosKIzNOiWJ6pc8Qq01TSt890oJW6UoS6ropeqiwmhFYfUSrc8YGxkwGmJ/BFmTc3BeYLwYn9BanJpIEzRaCiAQFLdvHlIrQ1UYNnYqDg4WBN/hfUfXBpyT5+xxcXHyEFQshixzy+PyAkbcHR2pQsTRQGJqbxRfXlrsBkY4HavruiPfGVaruZs97red0a7rOm5Xa+bzOYtFw+GhbMtE/wBGpcUoEfIxRrLWfHZ8ZChro/rSULGF6M0G75mMR5zY3eX6jZs0rUfZkv1DSTFvWkdVWToX04m15Qc/9gla19G6QFGUqCjGoxQ8+sjDAmsUDms0wXlO7Oxy9eorVOMRuyd26ZyjcTWFtTzw0EURmapKJtMxnetYNDNaV2MKg7FgbGBR17R+gWrABanQIxHGgA8Njg5HJ15a8nhMFMUKCJ3RB7rWs7+/x87mCdHfRvB4TZRpjfX/ci958duLwlJFY9t1Ek9obcOYCXEFJHjP/t5tmoh/ayX63VVZUlWS8KOUojBaKp0EGCKp6bxaqZhNmfSdA4W1vVerk9+5zCk+ntMtrAitABuoghjSEBfz+Xy+pBznXaCoKiabm3JOQr/likG8HpNV6QxACmQLhGGUpiyrnFDTU9YMbbPAGitsn65lVJVU1YjJZCLa1AqIFdKFGWKywU4/gZiHEOQKkuGWbpTPuEFOQmE0Bgtec+vWIRUlm+MKdioOD2q6boFzNfWipW0dnZNFxlgdF9sqQmJgrcb5lpzGrpIs2/Fe7KrBXodFr3uOuXjJivFPfyfnbvU7abG8mzzr1fa2M9rpwfbVROI2DR8ztQab1qUt2fL2EI7Gx9XgfR0x8KZpBEclZF2Qg8MZWhWClweZrLaweAKt63I0P3mBVVVhK4stA029wCMa2mVVMh5XTDem3Lp9S+4FTVEVVFVJNaoYT8YcHOxHrFTw+aBCDPVEQX2dmAG+X3jog0L9HSOzOYiBy3yCxOAYdEpveo59EANvNUmaRgW5aD+HiRXeOdlCDybbUtUgRa4XOcTDl64hIViJgTC8r6VrO+bik/e78n7yQPPfqs/Y66uihAz/hIG64LD1PP6wVCwhMU+yN6hVLrrcGyNhpFhlhS3kxJAbYzDRs5ZnN/BO1cBopQsnLSh9/w2BnDQwE5d+0DF4B4umoUABU/Gsnc98dReps1prlA/5FtPzI+5w0pKVridBX39YLI07wSyprcPG10Eiq9+5Gwz5285oHxwe5O1xqjgyGlnZlhFAeaw2kSGwMq2TVU4vxcCicy56o/EbMfFBK6mpeO3GNWaHB7zw/HN84Efhf/1/fYZxNaKwARuDmydObnHy9GnOnDtHUZa0QdHFjEIx4gGFY/9gD9d1VGWFKTWOjoPD23RuQWg6mk6jTKALDbQOPXcsmjmdawm4KA+qcC56ynkDrCD2gaeNCizRKNNPUEXCtFX+V+kQWRtxb61C3DYrvJOEI+j1QWR+St8ZpWRHow11XOAU/YKVFpHCWmwhCTFZdzlizz0p53UmTJBAYEpZrlIiRv92/2yTN5wefRwPARWhAVnIc3qIUpl6qOKYEG56CSgWdRMLSgQR0orQ0tD4pyBl5xw26msDWG36rFEt7JUuhEz79D7EDFRHMS2pRiOqsUBwKXjngo+splgcWMViB8ZGCqKjKEpA9LZd8Ggl3Hmdqq/HBTqoPm7hfYcOGpTF6jFf/PIX2RyPec9j30fXKQgGrQzGBCpVUBQqxgBUTLpJQlkBYuUoWdQCkAKZPaa8zmAOIY51wch1Rvr1PrNugRiWk7ub29vQaB9maVZRHjOM7SgyJOTHRtoYAy8mJcKwOlgQwZ4iGhEVoiZE3NJdu36T5194kStXLnN4sMfPAP/wf/h/Y5RmazMwrgqmkwkPPnwf3/PBD3Dm/L0UVUlbEw2tQDFSJcext3eLrm3Z2trGlgrvW/b2b6IMNJ24R8pKlptrwVHnSjZKIzh6xCR7x1Fw+aB8hoKC9v0WPviMafeGHBQGqZ5CLoIgA9pjdAFB+kbp+JkIs6gBZqyNoYiT7XA2I/laIWewSH+WVcV0Ol3CEpPRzrBG76IPntEy9pgqqXRx+6sG2HG+szWedg9bKNGiDkFqLaZXlZI6ndF4ONcxGk1iSTeLD3ukxKGukySZvCOQM+RsPqH79d64NUYwfeUhmAidBWGNxASetnV0naOoSqabGxKDicB0IEoF6MTZB4IYbWNshjuKssrZv3XnKAyiCW4SbBJwMTCtTSQ9Oo/UcrRYM+YLv/81NicT/ty/9X10TSxYrBxFoUEZlLKAJVFxfOjwoUPjUNoJ9IZkIvfsk6MGen1g+3g2yPC9VSmDddzudck1dwqq303tbWe005Z1iGnpuKcOIXEwh3N2OGjSfjthkWrJQORvhGXowEeR/INYTWZv70ASHBT4ToJus/mcJhuSfuAljC4o8TiHkXesTEjnO6FoRXjBYLJX5FzINLK02Q34GOxK1Drxnnqz1cMiR9twS9x/Rg8nSzZDccu4ZAR7A5u8UgaT4bgJIXxnHVktA8OaUKuESQ6ewTqMI0mjDrUqlm4r/x2O74Elhks/Pob3A73nZ0zUjgm9MTh6jOM9OaUSJEFePAPDYyV4I8JNUSseL/i0BIWH43iIH/X9LrUp5ZpCvP90Kf1TpT+GCst/ozk8nGNCr1kuOxKZK1IBykDoKa0qj8lwxECvjrFhf6zyrI9jdXwnbR21ML0+/Mzd1t52Rruwgrhp3cvIJ8hjgO7lf47FPcmOYG9woqHsuoa6XlDXCx588AG2tje5cP1evvKVLwHw0Y99kHNnzzGpZPuplGL31BYnT5+k806i61q8kFt71ymqAnRg0RwQ6FDW40NDCE38bPKEgwQRk+FVgYAG7fIk1Gmy6SCwRQafowh96OGPtCapIQSbLHCInknst6IQFoj3Dq+8XFPqw4FsqmTmCdxDNrLR61Yr8FKEI1S0HmGAg6amVdJ2HnrNa55YnIDGGFrnYE2gaamtLMjDCdyXEiPuWMTD1kZH4+qPrBei4ie1I1PzUWY1LZWFLZY0W1I+eFGULBZzWbC1VHqRjFCN0lKuqygV1WgkZepiEM9FFlTSS2FgdJz3dD7QxbVLa01VVaimQ+uALgpcu0DgL5NLlCW9lrS7kH6KP/FZ6pzQlDQYYn8FZEwuTzF6YHHY/+kzIT+75cdz/N/rYI91r9/J4K5zIBLrJsNgdwF+va697Yx2WRRLFCLxBntPJBmX9F7+TP7GYHsf3ZvkCXkCyouG8Xw+o65nPP74owQeZW9vLxcN/dSPfIwPffB7USHQtS2z2Ywu1JSTis63OFwMFsKNG5cZbUxQBm4fXCfQYYyiCwuCb8Q460BQyRCKrgcqBdo8aAcxdVppSXRROlu5eFvCnElGE0y+N6WHBixSHPPElQlQlQV4YYEYI4VcVUj1EuWcvbBPMnwJJgnRIEgcIMRgFXEXpECu33tsMHnLD3HLGog4c1wc1kzIgJzTWsu8riMkEGAFPkn3tm46L51TKZRKCoUis2u1QQVP8Gq5b5GiBERxrDIm1nRdhy1NPrqU5JL7yxAJUFUjbt68QdPUwoIxRoy2sShtKKsqJvJYbBGLT2uNp4v3bTIUBuQ08aZztJ3P0qVVJdWRjAdTluzdakEJhNU1UnRZ6d5gp75WIWnGACFqn9BLB6RYAPEzPsMO5PeXbPbwz7DeCK9WkskfP8ZgD9vQKz+urTPaUhTCHpFNuNva285orxd9GSiQDN7KhBEVvdOlHXfvfgq2HbIus/d9IshkOs0rdBIvOnlql3PnzoATCuLBwQGz5oCgxQMasjy6rsE62R20XY01Svi0USktZOMc6OUu/eASQ38zkYArk21l0C1NmrztOOoBpc+G5T+FYyznGCa+rI+w5z+Onpv+O0fOPJyQg59vZ/rkXVFWcYuHXrm/tceNi0XGzodvMPT013wxLj6rxQ1Wry1pfkj/HTVQPvSFgtPikTSjbRRPGu4Z0/NfvZfk+A6vIXOXdV8Lcwg/yd2tesTLfwtbJS1EeRt3tD/6AZY/mxAtNXgvGfhv17N9vc++GS/5jUAvd4MH/rYz2utbGPysb5nphhoOufRu/5vywjUN4lEaJd9o24bLl18D4PTpUyQczxglRXFtx97hHnsHN9k9fw5dGKwWTnHnF/JZG9AGibDrjqCE7RGy1xMxTtzytakep1cDg7x6vz1mRxINj/feTz7Rm0jecBJ/Er7trF7QtQ5TFIRO4AzXOozdyPKceiBW1OPQcdEToLOv4RknSRLRGk6IEDERH5a3zz1WvPxcjm9Hnya9vVz/jZAC04k6J3ogco0+ZjxC6zpUXUOApmuFApdPJ/dZlD57+0rBeDxic3OTtllk46C1ZjQaC5/ZSH+EuCBW1SiWzIvlxWJf4jwp8Nl0IhvslGgzpT41Rcl4bPIOBBSuc7TO0/oQdUl09NalQ/xgEZB4hYyTVJz3/R94nO3pWK7bROgoOTz5m37NGExjTA9+93nxfCsM4ao86xthj7zVBhu+C4y2dHEycv2EP2Zjteb3sPJ7wHUNojWssEYgiqZe8NJLLwJw/vw5kjSlsZppOcZ0cGPvGpevvMKD73kcU1RQarrG07iZqPCVQSZCzFbzoctbzKD7Oosp5VyuTOXkGIElxKCINGi/3c9GOXmewUOIhRlQoiUCqGBEgN+JcRLHX2iT+zdnLOY1OhT4zuM6R9e0VKNYi9Mkac9ezlTEpGLad/Ss2raNhXGPN9rJ6+71THqqlyyYZskJTPeYPtMfZ/VhrzHi+Z0w+C3i2LGQb0A8XpdV6ciCWE3TRa4+aFOwGb3Ktm0ZhxAXUjmnMGQMV69c7rM/jWE63UCoj6avwBIX67QQ+kH9yQRDeaBuGvAeTaBVIUomFJSjEWU1zfC99462cyzqBseCpm1RysZFUYNyGa/P/Rh7S7xz+MQnPkQVPW2tE3Q0WFQJkGIpw10hCjAkrXlpqwZ/8Cz+GOCJ43jad3t7WxrtpY4fPhi18jfDid17crL6Zx9geS+tBDtO/GENOIQHO5/PACJ2KBM/JeFYDB5PXS+QklOC8Sod8F2Hx1Po6JSpFMtPFVGSKl5YgUnE69LK5GtnYHiWWz+x+m4Ql7PPh+y/GXIUlhjgk7Sk5J1IYd++skheQtTyItH3dM+KX2V2rMUvY7f7I5P3zpN5Hdado61Lrx3nNa3ZkSVcdqVJAV2XRZsCgOoxbB91veUQ8n1jDGVRHDmawBWGokyCWmK0h4yJ4RXKgir95oNH+aj8HjnzSRunLIvstde1k2xV7yO1r5fhPQojDcCXdGoVOHlqhzIlzeRxSl4Y5I8evuvxF4gEcPo35RzHBROH7Y/DmA77ed357haD/rY02kfb0JClbXp6bzXFZp23nYavfErKbEWVtuBQKIyC8Ugw7aef/hYndncxymCNpapK9Ej0qatxiTIBT4ejISiNthHesBDoldcSk0MofIpktnMQMhrpAdJx1HtAZSwg+DjwQuT4xvdkMMaJFhQaHbXrjXiZIUTJUoO1EqwpbYnrHHVMEhEj0gsxDa8nXZOJiR7JQ024almWWWK0N+gpGLhaZkovPaIwOE8KwKWyYF3nYjHj9c/09VpPW5SzJA87KUKme62qiqIUwbC281H1EBbzOX5rG5OvVIy/1pqNjQ2aRgpPLOp6JcU9GTcV2Thy3m4AN4EEEI21WFuADwTf4Trx+Numw/kZTbsCLSlZIEJQaFVSFCJdO5DwlmrsMfCeDYTyBDqhGyrpR4HpotRqGLo60YPO950gkVU9jz96b/q4Jlz79Trtd3v7LjHaaeL3BqX3nNbgnax6i8nrkEHZtbUYbRPAtzKJVWBzQ7C+f/V7v8e73vUEk2oiNR2nE7arTYrKMNkcoa3HqYbOO4IpBRc3YApoXO+5Gm3yZfVc7JB1rFFiTIm7g2WgVg3uM+F0ktRASHCIAi/Hy5l/PhkWgwoWvJKMOtezEMqyZDKaEFzg0M7xsbYhSkSw+qKusfeisbBFSddKBRiRJhVDNRqNstzokpZy1FYOwS95QJK12OPd0j+BzjnqtqVzDh0CTdtSaUmwWvus17bYnyoFX7ve6/dx56M1tizpmgYIAnkYQ9N23Lx5i8IWhBA4ONjn1OnT6NAbOqVEgGp39wSHhwcAHBzM2Nne7EuQZcaLEs2YqE7ZdL7PFjWygAorZETwjratWcxndHXDYlHTdjM8+zlQXhQFSoluNd5hTSE7KBVFvtKuQMekGu/j+pF2fS3GFDFRWBNoyLj00mbGRW87QBgY7PS7koVIvOxBYPWPkbGRjLb3PjsPd5JmvZuM+dvfaA+3aOThEX9Pfx3ZG3KnCR4iBUxIBsKP1UrohgDXr1/j8PAQ5cXvsNbgw1RwwcJEhTVJJEdJxW2liViL77eX8aL6jery4pN/T2H5kDzdwU5CLX9Urr/3wEOqZznYxubgm49B2RDibYrqnWzxS7wJ2CaW+FrTTzmoE71DUeHrPZy09c9lyo7U7euhqWwUovHLmHe+pxCL4fbsllTya+nZLfXfKoRztHfzC2pgVCKjA6UIPvJ7rc36YkmnZKjtPVxQlZLsyKaJYlrO5WP215wMWSrg4fuFTsfsXCUZj1K6TLzetjF0KuqYNy0uQlkpbmALEb7ShJg13J9n2BN9P8XrTpK92Ygjf0cZ37WfJW4Bwyrb5O4wgO9g2v/atTfycJancTLx3nt0CMKuQH6qsuSxRx8DZBJfv3ad22YPozVFYbjfX6RVLUVZkPDuhBempB38MobY15pM17AM5OSrTJ5ZIMIecSHKB9PCLxawGtc5fOejRkuH3phKxRQgBEVwEIKjrZ0sPF7hGhWrhPd1+0S609BEA5nAp4SXD4ODYpRkUgwxbblE1c/3waTpq7gPjHgMxopQkcvHqmMqv1SsH0fYwA7dv6U2MDFr+nPZwBJSwkgK+CpsUUhFeBW58Xl3ILsNFa9rNpszClBWZcSgVTZ6qZ7pZlQGbDuXC/C6SCs1xophrgJlF3ccSvqs7TrCYoHzHhVE+rbrOpQStkgZwIW+ys86KmzMfu8XuugAaKVFvCt54HHYzec1zgCbxaCPhn26vMu6c0uf/eM3lOvgkX9d2nex0YblwaJWfkvYYh9oASBEQ4eLySKSLr4xGfPxj38cgKqsePH5F1ksauq6ZrGY84H5k5y+cIpT957C43BK4ZUkwaRCBM51kvkYT+2dl8SGbNBWrjNALH4WL22w3UzOTpLlDCqrstWLlmbhouZ4Q1WMMFVEXp2W7Xjbcbi3kEQSrwhO0daewpRSMFZJco61Fu8C3vg84aWElWQQOideutFRnF/3hrZfV3rvS/DWniGRjLYPKZVeFs22FcZGkgY4mB2itWFjY4PJtKSwBaPRKCfsDwOJrzdN1eA8sluQCus9rVEoeq4TQ5mq44ixLETaMx7r9q1bSMV6C2kNUXLjVUzCOX36NLdu3oxsDoUykpjT1A1bu9uCmduCgODfUmbM0dQ1i/kCl3WvpfdHZUmhNMYWuLCeypbYOJCkEESlz6edo9HgDaFreqcCxd7eIZVVcGq6NFvS3AgrL92tTSm1EkM56mm/Hv3vrWrf1Ua7T7kZPihYdhaOjsCkNSxBIflgYS33nj8PiOHZ399nf/+Aw8ND9vf3uHjtPBsnNzA26obEgCIxMzKJzmeB/iSziXCl13micnV9unneD2Rp0JAIIPE14VZ753ONzKZt8C6IcYbI0Q74LtA0LSGSf1XQuC5gtWyrFUqYXSrR7GLfKCVRLRCIJU340E+KfiJEOGfNJD8yWQZwSIJCnPO0Ucy+bTusFWNUliVFUcoC4F32ktNTX+q/YZCO4V4m/bYCHygx/8YmiVTdr+hDTzv0O4Bx1GdeXS2SCNd4PObmzZuDwg0hY/RaC3ZdxcLRqSyY6vr7b7qWQktpPBsxam2i508P1/SJPwOQKBruXqZB7l2hssplb7ShaVq0X8V918NMa7p7ua2898dpJFd3fKvvrbJI7oakmtS+64x2UMRkkm+3qSN/Jnpb8gyNke48f/4CVTFif/+QxWLBfDHjwoX72NjYpGm6vuBCHBxC4xWVtFSRhojhpmuVj4svpeL7+UIG+s0q6USEgHMQvBe9E5fgkEBwYJTBa1ChFa64Eo91MatjeaiAURaiGJIKmuBk650MsNaSpee8R/vEvw3Zk5TFSHYSXddJanXbDkqc9ccZGhbJ2ks6H7Jld66LBjrqn3jx5KtKjFkKBhYxVVwpCVaGdSvC6z7nfts+vM7c90qeVwh9lZwQr91HDQ+Fiop7iqZpONg/YHNDWCdqJdhljJFCBsbQZohDMZlM8N6zWCxo25aiKGjbvgKRjnUlA3EnoxI1M7V+0RnuM0J0AtKYkuCuk7+1Si5FJC/Jgu09HBzMufHqFTYnFTx+bumo8sjTzvQ43DoMfjjmM398bVUNMLXhnB62u8Vwv+2M9v/jf32GyzdmWKPYnloeuXeD+86UPHhuwiRBANHirmZ6r3ULoieSdDvwARVEmlUrEa/vopErS2GPfM/7P0CzaDk4OBTJTTwnz+1y0Oxxc359oM3Qa3/oOMkb10gwyitsrhsYeo8aRbL6iRmCF0Mt0rFRu8MFfNvRNh1t3VIvGlBaeOPaUKgKbRxtaGnmHe1CPNZb1/elvFZRYG2JUQVGWYFp3ELqJPqAshpjFNVIKn5rE6t+eEfS9+hrc8o2tGnEIHXe9ykXSmNtpNBpTR2NkzGikth2nVQfn8+jTKg8j8KWFGXBJEIMJ0+eBPpAm1KKzvnsGb/RpiDXYpT7aYXxYS2p6K1SokgYggQR2+hJt22X65AWIBVoAsxmM2azGYUV/Q8R31KkAHJRlpw4cYL5fM7N27fY39tnOp2wu7vL3v4+h1FueDqdZoOaoCmLpSh6ZpNN3nFIKVhxXKgYLgwBVNRxSfVGVXpdAptt6I2r0QblDV0b2Lt+g69++RucPbnLD33s3YRgIhgWN1V535kWjiFenY7pV15/a4ygUmppARy+nlP879L2tjPa127XXN8T/uvlmzVPv3JIWWg6F3jyoU3+5AdOcd/ZyZLBXllPSdt2tTTglr2HBE0mzncIYLV059mz58DD4eEM5z2mMFRbBa9ec1zZv7y0FZd/4yKScukH7wtcMxzg6aqiR03UJo7ca0US9gl4B671tE3HYt7ESicWXRh0IcEzjcF1Pg/exbyhKsFqMZzWWKwSI6O1YK7Bx0VES91B513GszOcEP+TqHli3Npcyilh2f3CJRO9cw5bFH3AjT6LMtX1S6wJrU3WqB5PJrFfde9l+6GU6vqd+uttxxNrZcihlmvu4whJIW+pIDEqLnCyaNV1LWntSfBpcDVaa8bjsdTY3Nd0rgOlGI3H3Lp9O8ZFFrKQ2SgTgMEYnVUQu+DRgORArUBAJBhtuQ9y36cNEjGdPbvZkGIizjsOD+dcuXKdIlfgSdvNPhWt3/kN50uCj4YSsorlZJv+mv442jp4ZCgrcFy7G7ztt53RXm0+wKKRh/P5p/f4ynP73Hdmwn/wqYucmFbxU3EQ5YEaGFK0Ei6sBi8kgy2ZkYJjvvbaazzyqHiH+7f3eeH5l6RmpVU8/r5H6DqXa/aFxKxIjJGgYt5ITHxJhiJAriQT8ca0/SZ9Noh36LwD5/Au4DqP68RwawylrWIg0GBNKVmUSmG0xSiTg2yjakRhC6wp5PPKZHhkqFDnnFRKCaoXH+o6J3Khsfo2kCP02vRqdVIAeDkLMnk4LkEo8ftJmCspsAEorRlVkqqdzp1w9SQBwMCMwHqDvdyG3l/fekyT/H7oLXl+HknfYzQaYW2xpK2SONKLxSLfdxIXG57dGM1oNGJjYyNXuRGc21CW8fkplXddy3fIwAAOYBGVpG3D8t8k+Vcx1MmDT9g2apjDKvfpnCg6Gp3MhjCIgg/RRqdvpNkSBtez8iRSf67v9j/ydhwEInBdLxfwVhvode1tb7SHLQSp/vLsa4f8wi8/xZ/9xL38wBMnyK7GkcHVv5aNdoQelFEYLRi00pbOtXz+C1/gkY//eyzmDd/61rP8s1/7DNdv3AAd+Cun/hJUHmOkqK9ShhA0bedQyqIU+A5UMCKaqjQ6pqu77BBESCdERkj0rL0XA90sWppFi2sdXeMxpsBoi1Ujikpno22MQYWA046qGGFVIfKswM7mLlqZLPeplYnJPDoyRQRjVdpggnzP2oKAYr5YEBR0bYuLrA4d6WZVNco6JFop8Tijt5MSacqqYj6f5+Cidw5jZXcwHo+zMdRGgo2J9w0QfP/0eq94faDpTgMkDMaA9z7ee5LDVTkQqnLRXEXXecbjkrK0sZpNlRX5ApLxaa1lb+82bdsymUwoy7LHtqNdKIqS7e0dJpMpi8WC27f3aVsXC/+OB2XpEhwRx2deUFS8RvEytOrpl3kEqViRJkhsQCkdg+NxV+QDTnksEsvwbXIYFE3dYc2Iwo7jsVKgNwbQddqBKHrudu5clqGR4Wdef0n9w26JPbLOaItg1ztG+65q3kPjPf/Tb73MK9fm/PTHLxxVfVtRLlNHHAcZ/OLdSbrxK6++CgiT4dr163z969/g0qXX8Mqzt7fPZGcUjWE/wcQwhFzMVcUUcp3E8EOvuzwMODKg+hEUwQXapqNeNHS1o20cVaVRhaUoLEXynJOn7yVd3kZPOxntcTWBDLEkmp1MRKM1+BCDih6UQ6Nz5mLXdaAFK+xiinZRFmgjmLV4oTZnniWYZJhkk7jXIch5JONPqHTp+8ZaiqLoaYErj+bbQ7H7Z7z8bxwGEaftJ3CczDqxRlT2htNuwEZmCdDXbDSGWwe3SSnw8eBLTUdPezVDNGWhpuzQ5MvK5aZlpr+e/uAqO9+y5vT0UUJclHQ0vvS7lRBClK/MQBwgZcqMssueNlEfJkCvMBmLMiz1bdYnXLq+t8JgQw+PrIPH1tWhvJvad6XRTq3pAv/iazcICn76ExdyqSeVPJeh4Q4ZGZRAVSBKZUppr67rOIzlxjrnuH17jwsXLjIaTziY7dPUDUVnMaXJ/Nj+iOTzyFYVvIuDPPSGQ9rAcCtiOrq84J3ogxirUcFiTYHVNnrLEepAk7RHtDICg6hBlZ+ERab5lzbJA2+u67qIf+psbAPRCJgCa4tc3MAWRTZmKkEKisggibcRg7EqGnNtxMu30TiXZZmlSYEeP+aoiRXHM5ruAXWr/8jrmPTQG6nVKTukKgKSRl5VeSFJany9QeqPFIKkr4NARvPFPMNF/YLQ485pkZvNZrmE3hBKykk/0ON3g+tW9BDA0vUP4Ige0x4i0r23HqJEAhEyqEYVm1tbTCaTpQ5axsqHT0Wlu8+Lx1Ez/dYZ7nVGO43nNnLm78b2XW20AZrO8y+/ep1zp0Z8/3t2Vib08kyQVGxF1zmwGqMtPkiB3fnikEuXLwEwXyx47vnn+aEf/jdomoanvvVNbu/to8awtbEh6cgmgFbZYIrhlr99EN2MkISkkCSafj4kw6oEKgGCdzSLlrIYURqLrgxGWbSyGGUpdIRlUDEdWuAdW8UMzZQ+7ZL3LhBAMnFSqFY8qMViwfaOyvjsaDRiUS+om4aRHjGalFI8OXqV2uioFW3iQhcyrc0YKyyGKK5vy4KyKCgiFGKMGMIiVSSKBiWp6vVZ32IsBW7ptUMSvS0/xNdpeYGK30/Yuoo6JErFiudKMR5PKItKdhMqabaofC1pzCRa4Hhc4UOgrhdcvXaNEydODAKTy60ajTKjRFLSmxgY1rkfllQE49rtYw7BaoBvqWVIvs9SzZBKLNPnQwDnMSGAlqouJ07sUnjD7tZGPIzP30k7gGWlydWeXTXQb53BBtZmRKaxlopl341Mku96ow3icf+j33qVx++fsLsxjO6HJTciecZSfUZH2pfHecksvHX7NiCaE9euXefxJ55Aa03TNswXc8aNeGU+pGruMX9hMG50FNwPTrBFySRMUMhge5mj8xFHDOA6jyktha2wukAFgwryXY2N+KzCBRG31xpUTAZxwQ2OSzY4vQfeww5d1w0ma5BB3raSTq2EwjauqhzUSR5LwniTlobWWihqkT2SitaWZRkDjeWStzzcsnrvCSqVuSJDA5LTEvL5+r/eeMs7jGzM4g4rbw3kuGVZQSmYtR9m1w2ClHLdCCW0KnKF9bpt2djYyOdctbOySOmlbXwyqOs9wAEOcsfWu9pDTzsFt1OAkyD8+sSj0FoznU4oKdgYV/lcKucWHcXP7+a2Dh4ZBo7vVmgEjmolfte2znl+6Z++DIRB5XJ6tyu3ATwy2Oo75zIuHD+WI/Vt12XPUbaK/cToJ0o0kAIq5gm6vM3uOSPpt5QIIwmVIWPRiYUyNLzx0INjDo+rls6wZHDytjxh0X33JMNsrc0BNwmYIV4xIffPUCsk4dpDw2GMiXhwz7xYsmSxT+OJV57L4GNLsEj83JqPp0XgThM0PaslKEGxdF2rFMb03iqckWCQhHe3MVjbB8SGP/K9KsIvOet1cL3ploas6NXYzPp7G7y2dB9LbsHSvUvwt2A8LqjK6OsNN6Lx+jP7ZOVe8sW9ji0cPpM38ny+k3ZcYs2Q8pee2WqG5FvZ3vG0Y/MeXrw854XLc+4/K9HxVGUj2/A4X13XQRBmhjKKdt5Qt7VoEwOoWLlbC5Nif3+fM/fdJ1zcwZYrBN/zYqNCn+9ky1kVJa2v43Z8WOSAaIwFm/adx7WernWiLdJ5vAqgI0XP6yivmrOSo9ftUIhHLxh3qksY4RZC9lrFC9OSIh3noU/Rda0pyhJlDOVoHGVAdVzAVNS3drRth9Q6lM9XVbUkhTmM2BdWRJKIx5C7TroqCOTBepM9XAiOrLf5j/VGoKdYstzfeVGx2ZENsa8gHMGbw+D7iR0jyTmiR11qjfc1+/t7nDt3jtlsxnS6kQOC6UqNUZw8eVJqjM5mMXU/EIJe6ru0G0hp6Gpw/rxTyEySfHcZeusX14Dzsv2T91RWAiyMZjyZUm17smZflljtKyn1vbOMa/e/rzoMb11bl8Y+9LTvVm/7HU970DoX+I3PX18efKvPTUUNh+QNa4XzkjiSPKgQoQMUdK4TaGQ8poxBJ2Ni8d24/Rz61MF5VBAtk7Q97ilscgG9Vx6LDDuP78TIio5ITKOOdL30WYEdxUAno58878REUTGZIk0sn7x3kuBTKgjbZ+aZwlKNKqbTKWVViXrdYBfSdh1N29C0TabzZZZFND7Jy64qocsZa/IxSLZURbw4BzTXQwVH++zNt6HnnCh+w7EAHAmKrhrNoSHQ0YBrrZjP5wA0TZMNxDDWqZRic3MzL3BpEcjcdyWMHq3U8jBdAyfdyUNMTkmIkEgeaUqgN6XBWs1kUrG9PWY6LZe+vLoY9P/eCdt+6432KjSS/n2HPfKvUQsBvvTMPvPaMy1FuS21POYjbtcnfPX851Tz7+rVK8wXc65cuUxT18xmB2gdt8UhebYKnYKI0aCmyis6gC2jjx+zHUNMbQ8+xKIDYqS7piN0gBc9EZNZIr3XqJTC9+ivwPQh0LNjBstUxm1J7mTELlV/+/QZh72UcsR9UzAqDKGTIp9YuO2phmVfLzAvHj1IutT/2YtUy6/37y8/qAzrHDnWqvu9amoVKckqCXslvz4b1jVHOGqGQt/PA83ykJJRvMs7n65radsaCGiTpqTK/6QFra2bCFENnwX9sfPTWb5KGXKrBmh41ak4QdoppKIasT+DFDCQBSzWvARQvt8HJdhNKZZ7aNn/5pi/3qrWL5b99SSjfTdAIevaO0Z7pVmjeOFSw7submRPL0SjpYJAGphAMA5vHagRZakYVWPqmVD+PvPPfo1XXn2Vf/aZXwXvePmllxhVf4KqsLShQ3UGYwrA4Lp+Gz1vGhZNTVEUFNUIjZWx3Sl0EOjEd4F60dLWLa7z4IOkmQfNRrXBuJhQmBKrpGK66KMYXOiEyqsFcOhZBjCcZM5LCnXaReDEFGhjcE6oZ8qYKEvqQEUtkhhVTep73ntsUVCW48wgSbh213bMFw1KJWzbiOceFEoNeOwDaEQWih7TX4NG5td8WljpF4/h5yAseYeZf0163pBLvSlIRX4FJhoeZ2DyVaTreT+AHQIhdBIM9h6tPN51OO/o2oUEMoGDg1uE0DGZTtne2iGooflVjMYlIUy5fesWI1MJqyfuhkKIgWW6pV1biOdHDXnmPfqdASalQVs8GqUDRmua0EkQGx3htRJCgbByPEG1QIGmkQUdIGi8kvJ0cugEmzi5mrxo5D0lfbLNW9NSMHJY+k4plWmYd6vhfsdor7Sm9bx0ecG7LmwNApKxCC+xXqMO0XB7UAW20JRFSbOQ7e4f/P7vce3mnM997newGrzrKAtNWRjarkM5LSJMyhBcrxRX1y2zRU3lAlte0s9lXIc4/hWhhWbWsjhc0DUtCs2oVBS2ZGzHVHaE0RaNoXUOTB/4St4fpK2zZPyFgSftgo/Qil6aX0prghONEaG/ebrOY2wY2Hxhbzgn2szGSomxlDBS16Iv3rb7NI0E4cSLHEAaS8yLfpvfwzHrve2h+kUyUvHL8TsDr/2Iwe6PF1SfFpK4J2L8B/hwMvxDXzct6sncKllGVDT4hIBWAeclW9S7BmtEoXA+PyDg0Dqws71NyBix9EFZFigCnWsJVJGvHstvyKHRuHjOfoeYHOW0IPXmvPekZaGyIquQoIEuVqMJycsuINj4SAJKdfGuu/iSGHgVNGFQkKM31EPseOiJv3UGe+hhr8IkKb5yt7Z3jPZK8wG+9co+n/rQWZZhA/q/Q+iHXRBjbm3BqVOnANjZ2SHoMdubI0lFjxVIkqfjfci4eNdCFyKNMDJBfBgk1/hAcOJR+87H76m4TRbMuv9XL5myPGFjZL+3Wz3euJqAEb/ZB9xCkkYVvZGkG6IGeLsa/J085zxdY6ZkKubbF8ftMcR17ciUUT14uvzeqhf9RtvRSbkOQMi/L1n6wZsZAln5ZhwgUtsTglc4+srtgkv3TJrEPW+aGlPYuDiQUIs74vTLAdcAmZs+eCOsmsnky/fvpxVg6QwR9nDes79/SLFp6J/usvHNgMgqfrTOQC+NxcHLf4ie7TrM+vU+d6f3h9TTN3LcP6r2jtFe024fNiI8FAefUkpggyCRc+eT16Wj/rNma2uLP/WnfgyAT/3oj7J/uKDUiuAdrm3Y3NjCmQBNTdN0ONcK66NROOSnA0IHXgfa2hFcl4sVEDHv4KEw4r2GpManjMitGsGOQ5Dq7UIu8DjfolRAG9BG+NzAktFNLWX0iRHxONdJtZu6zjixtRZbSLaiaIgkTFS8lKIs6JwYqPl8nhXq5NpkwCdBpSGPe7kdmfnf5vuv14bb9eFLfbo60cNOXrYZVCKHJNoVNcqVz8Y1+F5Cdj6b41yHd44udPle54ua8VgyC6tKJFzn8wWvXX6NM2fPYm2RGTjStTozc7TqtcZ7quBwJ9GT7vo7HDocEauPiTVGaxEcc47OB9HHCRoc+M6hCsVi1vD1L3+D973rIlsbFk6Jg6Pz+X3C3lbOvH6heavbMOB4XPWauxEagXeM9trWuWEQiVydWiFGe+gtOu+wxjCdbvCDPyjlxj760Y8yWyxwdYtrG9qmYTKZMutqFJq27ajnDfWixbcKhwZtUFUlcIkLdI3DNR1NUzNfLCAmvymlqLbGaCPGurQlwUVvX5tokGV7K3M7DsoIX0oeTvybfnD22/qIJQdhySR96MWizkyPxMe2VgJkKlLhkmHzIWC94+DgIEuSAlknO7FGVhNnXq8N062lfaeG+5jzxP9mmCLDGwPDOPhcjKz2lV4i9BSCp64XNHUtSTWukZR8Y1gsGtpW+qWqKuaLmkVds39wwImTJ3NBDTmDQmkVs0NFJya4dUY7efxh4O3mq2S464prbM7uJEgcwhHQhdBEFUjNSjTzxYJvfO0Z7j27TWU38316iJ53f8yjj/LuNH53Mtp3q8GGd4z22mbNcKVdY0xCMngySmXw9lxdKRFlUS7EuLyK/41VWlK0HlBJRS9DDFLPMVWaCVEnRLbLEkySV5LKX1J+W8F4w7LHmKASQl9ZRVrE6QdwiPz02gz5vozB5gSYWNEmb9nlM4n+ltobHfzHe9vrt6Xrvv+Hsm3NjJOQyTXrDFHu30Dur7yQuy572yHuynyMHxxnEIavd52jKI6mUKuYPtvzr1evfQhU9PDHELVfGtEJ8guDwGzC/AIMNUO898zni6gdvnJaNTgWw3+H13J3GsFVWuTqGHuroZB17R2jvaZtT4tcr0+8TqnGIhliCUpQ2Tg3dUe9mHHt+h6n3gv7+we4ECiUwdqS0pZ457GmYHNjm8JWOAPeaKpqgkcCOMEaCFJItT6sRTeEglEZlfiUmGmjisgKkWCRTgkxkcUh3kOXJTeTx+18hw9ipJXqF4/go2YFsFjUWaKz67qMX1dVxcbGZhZIqqpR9AZ7XWLnnQQY49hOkfhkfNZlQd7ZIC9P9n7SvL5X/qZbxHYHTmr0dAfnDbL4CW8batfROmHqlFXB/v4eXStBuiT25J1nY2sji2vN501/Sg/WFNm87u/vA1AWZbwk+Z+1RSzd1vb8++gp+6Vg3zBmAENpv959iDBaWph9QMfdWuu9oB1eYY0lBEW96Lj82nXaJgYp48FVkNhLwva9bPuGV8JbbbCPM7ZJW6avndl/fn2s5+5o7xjtlaYVPHp+M3tSSkHXpUksEXJCj4nZwjKbLTg4POTSpdf4HuDw4BBlCuxIsN+qsPguYKqSjfEUTEFnAt5qppNNAhqPolPgOiXaFPOGqrSiJBfxY600Gkm5T342odfY8KEffN47qWYzGLDed72HqHqWgfchl0BbNE0OGDrnKIqSsigpq4qNzU0mk2k2vMm7hDhhs9Z2j1UXqQoNvWFeR6W6qybJwItNxjvvWrJXGrVjiHEL5wQ6qiwHBwc0dY1GMRpX2XBvTIRG2jmHVgdLp7NRGAulODg4oLAF21vb8QPxM4Wla1s65ymiQVcJ5gqDJU6lf2MalqKv76EUOiHuEcJJi1BKAqqdBxfQQXB0gqJZdFy9cpOu7Y32cGETox13m8osgTIr/v1d0UIMqKcA8LC9ntF+q8fqO0Z7pZWF5uLZydE3BuOuf2AqTyjnXPaQDmczjC2h8zTW0JYFje/QTYlqK4rJBOc8SRuEBHYoomHW8ZWoH6JMhFGEVqZyEEwxFHgKEX9fAyoeuf5keHzE9PzAoEK/EKTMxYyn5gHdH3pJJyJajzQpli5BqSWDvc5wH9eO98jvvH290+ePtuUEnghGDA/W7yqck2ICiAKicy77lD4ygVTKfGWwUA1ZIINDqwx/iXqfDynxSCyuUgMBrDvBRMO7XEEljjOdGVLpoel42uX+zLGRVc/5yIHXQDdvgbe9Oh5Wx14aj3cyzm/02H+c7R2jvdI6F7jv9Dgq+MkkNsYQnASNQoCuExaH0YYuphQv6obP/f7v82eBz3/+i1SjMfODQ5QPFFZTTUd4Ywi24JF3vZuzZ+5hd+ekVKuJFT8KZSmUR1lDaSq0kRJTRml00CIKFQIak7e5kFLNIw0xskHMwFiExIiIXGLnPa5tcZ7oubl+MKMoy4qyKinLitFoRFmUtE2LiYqAXddFTy1+R2s5pvcx+/H1ccA3PuiHYOsfVruz4R5ELGLmZsgG3DmH6zpms3k24q4TdkhZlGxtbqCCLHYb0ymBvm8zVRNh4LhYkkhn0FzeT8HfYROVvSld29F1TcyKjAtter4rC4EsQn7QcwM2e/DC549MFG0UwUXoxVakItDBe5QRiM0WiqIwWHtU/SKQPHC19Or6vr47sGEzLN4xaGkXvU6b5G5o7xjtQVMKnnxwi5EVj9dFnNcYjXPkAE3XuuxJ1l0XNZIb/uD3Pw/AF7/0JabTDV598RXausYaKCcT2hDotOZPOkX5PRNO7d5D6ASpUEZjVIFVwum2tohcFZW9MNlmB2zUNUlmdkmwiGicSdi2eG06KsXJTjjQdB1t65jP58IQyEEvMdobmxtsbW0zmUwobMHerb3sYXZdhwvkazPGSNV156Mwkmy7//C8kdczsn+YLbqnqX9jQFEIFh7ftrRNw8HeHm0rmsvWWoLzhJHLBlgYRVPmi9mgH+LeSWmMkdJt8ir5X601rhOaZXKUUwB7Op2yv78v+iB5Q9VnT674lfF93y9DyXEHMdRRtwRiQd9O4himHKOCEeinC2BFxtdaKEopsrHaEsmR133md4fBhtjXcTyvtruZQfKO0R60wmh++HtO9+NuXYSeo/5D8GIc08OXyWAiJdDTNg3FaJxiXDKZgqQgk9kXkIwgcWIPw0ZD6YjhYJLtNMM381UOr3M1AyyEwTZ7cLxU0zFVYRkGDIdbyWQw+mPmC8iLw7rt6Zttr//dVcbCnd7vf19NnFj+dk+RyzBS/nH5dyAH9NKxjgu2LvfhgLWwcoXJi+93QG8MHhne4nJ5L1Jm/sqrb+x4xmgmkxE2c9WHbV3fxYs4sqj2u47lC/vjb3cKgg/fW1eE+q1s7xjt2LSG+86Ouf/sdID99u+ruHVVysRyWAJLaK2o6wX1YsGFCxcA+JFPfoqirLh9/QaXXnmFr3/tK3zsE5/Ajic4U/DYu9/LzvZJusYxmUzEOEetYaNsRKwtegBKZuR7yGCJYydlWqZSZem6fZD0ZR8U7aIeeOQKgpQF29wsYxBJvrOzs0tZlRRlyWJR0zTCVJASY2mBUSiVaIEBpZdWlOgZ/mELSP5hTew74MFqcN0+REZGoG0aFvV8oKjY0bUtVVlGGVnDPMyAQNe1lGVJCIG6rqU6kC1ydXU5dKBt26yYqJSOVMkYT1CicOi9lxhFxDS0VoQgC8YRQ7O0JvWQkoybgTENvSENERro/EIqE6Gw1ghrCCQ9XUmS1vbOlB/6Nz7CiZOb2FxsZ4j3y/l6i550RVYX0xWg/S1sSvXaI8OWDPU78Mhd3gqj+ff+5H3RS15eWUOGAnROG09YsikMdb1gsVhw8eJ9APzYn/oxMZZNw1e/8mWuXnmNP/nJT7F18hTYimq6xcHtQ5p5g90ocd6Lt+xBK0lh1liy2A5AEEHVoIbCP9IUMlesFW0Tnzxpes9+Pq/puhbvA2Up5byKomAyFTZIFwfuzokTGC0lz27fvp2/MxqNcpV2YwyJ7+2cCEhB74GId7ksJL+ufTuJNa9vtF8P+379cygURvdwkzArPG3bsL+3J9V2Yqe6tqXa2GBjOgWgjYWM21aMdtd11HUt8FJRUBQli8WCJAvQdR3GxJ2Z0nTBidFWicuvYrZtz7QWox3wgzJZPV4elsxhDiYKUIYOyWQOjbZQQ7vgJPNRGwprqVspJq3jIqYMbO9u8skf+RjTkUKFOp4kRGcjLeRq0NOBoda2tOG4TQ7AW+dlK6WyvMKwJaM9VPu7a5hNvGO0ASit4t/+oQvsbhbHBCEGW11UZhekJltlR1WJatv21pYozTnHxuYm1lq2NjfZ2d4h2ApdjFgcNtShWYImQp5YPSRydHN5HB2gnzBD+CMcea2/n6RjbYzJt5PSy4mGISn2hRCOVqz/NtrrDfo3ksTwxrenw2MdfffbWywghKRh7fHpuYSQjdrqMdNY6Y2BjBlRViR7wmrp2fcB4zvd3hE2yur76Xgkg53+DlnQKiA8fLTIHTg3UDBMBmoAWShET3tzc4oKC5ECTmdRq8HPdPZ0Mb3Tkb3su8T+HYX8Xn8M3g3tu95ol1bxsfed4uNPnhFvViWh+0AXt6HGGJEYDS20bWRNRJgiyPa5qRtG0WgHHwdzH/uJrAMHOmB1gdai8idVn4WfK8GnviRCCD5PnnTMtKUbaoSgBL1s2k5qNSaetXeiVaENo5F4hEoRPb8x1pZZK8R62fN2sdZhGwvvpsKzRttM+UsGQ+AYlSd7nvApcHcHOhWwdrK83mffXHuj35WFTTxa8E5lXRbnHOPxCBON1DxWSQ++5zeHEGiaJvdR27YsFotYAKKjMH1l+RHCMJFje5qmxQU/EONa1nRO5lfgFpPvaZhPkG417bwS3OKdI3iHbzq60NF5x6JtMaYU6KwLeAVeCdfe5JqkxDJ6oE1alHyfDxD7Ior3riAf6/Ds1N56gzj0oNfBIMLucXclRPJdbbRLq/jBJ0/yZ3/4IsZoyqLK2LJSgbpp8NFoTyYVyi1o3GyA3xkIHU1ds1gsGI+kTJlPbIwM8Sk619F1DqU92hRoY1HaUDcdZVmitabtnKSHx++EIPCI4OcuHlPjuw6lbJ7YRDijaTqapomUMTlfURZUlWijWFtgrXjWRVFlLLUajbIL13UdddPQ1DVFWVJam1UEe5VC3+tt5+Q4WVCkyrq8PGS1rApDraYP/+G178yNS1tjpQCvQElNzK7rmIyqTBMDT4jKh0ZLtXmR162z950q0nROFlM7KijLisl0gomazSBp64u6wXmH1kYSqbRa6h8Vw4rWmpilGAsrRMOjtc7OsYbs0EoJsY6ubWjnC5qupWlbDuYzbFnhvKJpPeXODl4ZuQZTooNCeWJWbCCuL/ggu0o5hRrEQ9JOL+/tVp7FMQHJt7DdyWibmOy0jlnyVrfvSqOttWDYP/WxM/zwh+6RCRoHfq7mHT3HlPCQDPWQvkX8aNrypknmnFQrDxE2SQBz2rImfDwFm462gduUGSzLk0C2uz27IQ2+lN2Y/k0TKtEIk9GWYrE6p6ono52O47ynAKmQriVd/tvhXH87nvFxW/23ovXUSeK/PWY8rMsI8WmEHlpQsFIDtGfqpF2SjrU7rbW44bNPQQiOLnBqMNZykDfusI4awxAD29F8xt1A8H1xZVnQOzAG5xRd6ylSgDLBJPmO+uaPcZ5f70lnpGXwwdXw5FvVhoyeYZ8frz751rfvKqOtFBRGcf/ZCf/Bj9zHdCxBoMPZjPm85vSp01IY10tqr4sTUBvDM88+y7TS3HNqC2OLbHCt8WxuTNna2OBz/+rLADz9raeoRiMOD/Z57rnnxPsyhrIqMaNRPG5BVY3pmlombyyGK+GbQFw98twRD1yltUQMa3C0rcNFI+2cAyUGWiuNLaCqRkwmY8bjjczL1UZHeCZG0PNElcQbhUAoNnO7xaAMF5gwXIgSZc0nbvYbwwbvtkmRjLD3UlIr2lq0FpgkrUPCsrBAEHGoYOiihK3yisl0Ckoxahqq0Ugw5BAodIExYqx90+YsVJRiY3OTlBhVliWj8biPL9AHEYcLhxrgESEt2JHZ4kJPTwwRHpESZ6L9PplMMEVJ03k612RIRmuNUzEbVElgNnhF23i6esHGRKOUjf2VnJmQx8ByUyu/H10I3uq2DsJLcFeCIu+mICR8FxhtraAqDV3nefKhbT7xnl0evSDVQVwQOGJ/f58rV68xGU9p25au7fDBM5lMsIVQur7yla9w9tQ29134PmxRgpIsQKs9O9tb7O7s8I2vfR2AL37hC2xsbXH50itcfu01FosZtrCMRmOK6YT9uccUBaPJlFuHM4pKau0p22c9Ou8haTRDrD6j4sRVtJ2j7RzzuqGNBkBpzXg8yQPOGMt4PGE6nTCdbuEjRid1G/tK4j1GTjb8SX7VZ0+t97TTYAbwA88vH2e4rV8xzKvBnuGx3vIW+p1GwoQTE8boVAwTiHEBhRRuVs7TtlJGLAQoqoqiLOm8Zzqd5oW/a8TLbbtoSFNfaMXu9g426rQURSE7HJOkDPrrk12SEW2ZIdzkPa7taOqG2eyApmtp2w7vHUYprNYUpsAUhtIWFKMKZQv0omVRu2ywE6wXYh1TyQZWNAvP7OCAabWF0VHIKiiSqVYmShv49HyHi3esgrNktJcA8D/2tsqdX21JPjgZ7bvJwXjbGe1T25WkFJeWcRG4/0zJ9733Pu7dLTHKs1jUJCqUoCAqVgxp+iorXRsDT+PIFlHs7++zOSnzwB7SgApbUBYFi1hde39/D7Ti9u3bzA6lbqSKHq7oTbeSah6DV32SS7qL4T40BSCzUyOvhlTg1+dUep3OE7d2vW6IxRpLF5K2hs4YaTzYUlBweAyFzMN1+POdEMs30+4mr3w4j1WM7IWVfggk+YBewlZCDLIAJhjKWisV6n2b8XDvlxcvqadZ5ud2J5KFwHVpSx+v14dctq5z4m2nKjlojTKGwtgMryhrwRi0cX0gUy0tEfnmQ5DCGU0tQfhVyuny54cYyLJnnY6danHeLW117EPvUKyLvbzVLJO3ndH+P//kAyilOHXqFH/wB3/A/v4+j12YIBmIUJQlhTGE4OlCS1GUbGxuzx5MSgABAABJREFUsls3jMYj5vM5h4eH7O3tsb2zzWg8oigKDmeHHM5GdM5x/sIFNkcKrS0gEqibm5t8//d/PyAR/rquGY9HnL/3PBfvuxgZBC3josT5GqsLVKlpXZc9ugDCw0bnOoDJGxavKeLVIeKWeZsuA6woSzY2NqOXIMVfjTE452jbJpcM07HGYzY2fTwxe8rDAI1SUjvSaLM0SHNqNIHl6RnffwNG+K7aeqoe6un9RIEsiqKg7dochMsaLAFRQqwqUIkyKTp6xlqatqPzHt05VBAPvSxLlLXZ4E6nGxRFGbFwCX5KC/m/2T8NHtd1tDHImZ5TcIHgPD4KWSVJ3BACJsIc1hqMNTK2hjGMgbHyGSvvjdds1lDPGl56/kXOnNpkayNJHmhSEk3IAldrOjWsGx39/b2V7bhsyOS03DW7wEF72xntlNxQliWvvfYar712iceeeJStjW1GVUVVVhAkWNj5lqK07OzsUBQlmxubXLt6jdu3b/Piiy/y2OOPxe1twa3bt5mMRBrz0ceewDf70OwDCwprOXFil5/4iZ8AxPM+nM/Z3NzgzJnTPPboYyzqBYum5tRoRNfdohyNMIWh6Vop6WdU1m9QCklw8ZF65j2Hs3mkIEV8tBphbBHvVWGsZTKZsLGxFSespetkB9E0DXVT58IKsrtoQIlwkVdgEssjYZNBkjgyhOG6mMIcM/XiJO/FjvpoPBzvSN0JLnmrmwJIu58BFCKUz5K6afLi1HlH5zxGi0zqaDKmKEuqskRr0WIpipLZYiGQltJMqhHjyUQKHY+nueDy9s7uEn7dBxhVjm0kw+2do2tb6rlQCbtO5BOC99E4GwprsEWRd4RJ8zolhgWl8Pk5E5+nOAmi5KfyvSul2N+rufbaTb7w+a/x7iceZFJtxbcT9VCM9vqlu9efX37vmKjmW9DWjcFVTHvduH2rIJO3ndEedvJ8Pmf/4IC2bfPkK4oC78Q8agTTlgw2lz2Ttm05jLCGsUJ3a5qGtm3xwbOxtUlz2FK3B5nXW1Ul9957LyB/O+ewRcHG5gb3nLuHF169Er1cOQcRLnGhH7xLmhAx4Ji25CnyLwFIMbI2eQSRJiYGvIj86wKlWrnmpJURYiUVBIslBrak6HafJLJuS5iKJCx52vn3VXzyzU3G1eyzVW98NYFl3XePe+3bpRcOA6wJUhA53aiUl1gh8VmmsVWUZYZ1E6XSh4CPgU35nHjmiWVSFoVUQx8YjxCN7dK108Nizrmo+CdFk4P3eK1RFlRhMdpgYiBZBfGGVb5/NQgcRsZIgllWH50iCos13Lq1R9u4HCNPhjgt8hLZHnbiYHyEwai4g9bI6y3i68bHuu+tTTy6g8OwOn5eD/Ne973jruE4b/5Ox7xTe9sZ7b/3q6/Qtg2PnH+Z65dbVAez2YzS7nOwd8BsNqepG7quofMt73nfe9jb2+P69Rs0tRg5qeE3Z29vj5s3bwGaumlou4626WAkg9WHgI30Pa0NtpDRXJQlxmiKQmh2SQXPxch+gIhTCx84JcKEftcq8I0LdK2L12SjIVZoW1BUFbYohbNLj7HWTU3bdoNjuyjjKYyYgHjQiU8t52IJK08/SSsjhCC8bSP3oodfjJhnUiOKm2r4Ngz3cCL+cbV1uKSwaHoWxNDoJoOktZRcM9YKjKU0NnKuZVEPwsFXClNYppEVorV42tVohC3sEkSxdF1Lf8XrimOnqWvmsxn1YhGLLijRPomQllZSacZErn+iqy6FSgYLrEpFQ9MzTH2RAihBnqh3Du8chS0k8WZ43Wns3EWBumE7ziMeZq4mj3pY3m1I+buTs/BWtLed0b6x33Ll5oJnL83R7ODZZe8zr/GD75mzWdQ89Y1vcXh4SN0s8KHjwYcf4urVazz77LOcPnUGa6Rg7f7+HlevXkUbi/OBw9mcum5YLGrCdlTsi0L3KbuxrMRbHY1HFPOCclRRVSVFIdlVTdtQ13U0Av0E6Zyj7VqwhiJmnrm2o2s9i4Vk1W1ub2XYZ7wxxVgbazYWMXgqSTGH8xm+k+zLyWQixkMTt9kimdq2NU0rNK+Uep/MRWKTOOei9ohkSPquYzIaM6pKlImYeDRmPnj69P7UjhridcZ51Vt6PW86taQL8UaN/erxEsQznLQJOiIaO6MNTdvhQtJ7URhbUFUjqqrCGhF2apuWznvausbPF1TjMWVVMaoqNsfTfvGOujbJiCdrOgg5R9lV1bNGlCQsLeZzbt24zu1bt2LAO1AWwgaxSXgKqaSD8rHmaFxrVEq9TzEMKcebOPg5nhLP1/8dYoJJi3cd41GFtYY+ECn7DhkGdzBmK4vF8l1/ey2NoSSJm57tkAF1nHEdjr8hN1trHTOT1ZHSeOuOte7YSeb19V7/wzD8bzujnVpA4ZAH8NSrHc9cvs6paeBkc4364AZ1Pcch28vFYsHe3h6j0YStjU2Ukoc4X8yZzWa0zsdIfFQEy45I9C6VAq1JeRfG2FxyK/GrfZAUYe9c/l6aICkZJmWyqUDk2Yr2R9t24uFZyagbjye5sK41hQwuYNFI5fOubemaNkIlNg6+pLomacgC1QwG0TDoHwd0goScc+B6GVIVg4/ps+nfP0ov5LjJc9zW8/W2tMPP9q8NYSFIC0/+eNwdGWPEaEf4wftAW9c45+k6h61Ew1obw2hUUZaVyAFEqIu4aK9c1fJ9Dp9HDHrWiwVtfCY2jiujNYW1S960GN9Bfyz93Y89ElTC4HQqwTD9i6mWpI07iOMfs+pvLY6Rb2dE/FHttl7P2waOBBz/qD3q72S+vG2N9rAJhguX9+FyeDfvPnOLc/Y6t/du8NqlSxwcHGCMSFKKQQ7cvHWLmzdvUVYjfOgDEs45ghP+tNYmHtuzmM/40pe/xZ/8np/kytWr3Lh9E2skai+UwAm2KOhct+RlFUU5SJboJ7XK8In8FEUpDANbgNI4F8B1QsWK9C4Q3WOCzeJAXdfSxqCij5Ovazu6tkMbOxg8fSDSRYaCVkrwVmuo5zUhUgwTLpqwyTRJ/zANdzK8Q+rV0jM9ZoLf6TvDa1vVSE7PtutanOvQWjGqRkAMRFYlTSx6MJ/PabuO8WhMWRYYWzAtCkIA5wLVqKKoSqpqlIOByxeyfmEJcWFv27Zf4IOnqRcsFvMMV5VFkVPnjU7BwDX9Hh9TGlMhBElciAY1J45EPD1EfNsvMUECo1HB9vaEs2dPUBSJMZJOEf17pQdclzXXkeGXN+tj930kxzn++d5pbAw/u7rTWnesb/e6Vq/tjWDt6XNvFCb8rjDaqYnQk+Gp26d48v7zPHDiRb7+jW8AYG1B0zQR3wu88srLvPTyy7ROSmgllbema8B1UtPRWJwD13Vcv3mLf/K//W/8yX//5/nWt57mYHHI4f4+r116jaeeepqf/Lf+PKPxiEXT9MJLSjEZT0j5KFppQipBpXXUJ7GgNKPxhKqKeKjStG30qr2j7booKCX3YY3BW0vwHXXT0tR1hGUkpd5oTdMEbFHmgrRpJlmtaX2gbWqs0dlT75o209zSQAeQyu4qe3jfTsBvnee8muiTtsDDzw/piKvvZV2UFZhlmH6etsEJBkoGu207Dg4OWdQLjNZsbW4ymY6wRYExirbrmB0esre3T9u27OzssLW9zc6JE2xMNyQ5Bh13XRptjUAicScUIoxE7juW/vU+0LYds/kh9aKO2HUXU9A79g8OqIpCcHGjKawk+DjXZWGrdLTkEWcueczyTef3QYLRznuUEe0afAAlQWsdomhU8GxtjRhbw3RyP6NKA0M9jkR9NRF+QcrnkYKfKR7QW+vV4gyrbaiymSCK1JLTsPr6sGDHcTupEPqCBun7CQZp2/aOcN5xnvpwrA7nxfAzq/e2GugfxpHeyLz5rjLaqbUu8OUXG2anTnJ+/iLj8ZiNjY2MPQVg/+CA/YN9Ng72KctR3iZ7J0VbAZTWeAfOBxaLmmeeeQaAm7duMW8XFBoO9mO6eyEJFqKaJtxqECMbBpMgbdNlbiXjI1iqiYkyIFvyznU0XZe9bDGwCoUEC5tGvMa2bVgs5vjgUARKW+CcQmmzxvhJD3gnKc9J5D8p3yUDoBOnOEQ2RfTWhh7fG4ngD19fN9nWfWfd54aD/420YbZbOqb3jqZtWSxqjNGMxyNgJFCUkf73XgK0s9mM0Wgk6eDGMhqPqaoRSplsktZK2arh/STfNKCCiouHp21aFvWC2eFhNAaAd7RNQxUzVa3WWC3nck7GTHJoc+gxPssMyeTXYmKQX4kjZIgm0ffk/aoqqLSmMNsYqweh2gHUskrpGyBAg6jFd+Rlp+uB48fWOsO5rq0GGdPinc5xJ6/9uNdWx+ybhe5e7/q/K402QNMFvnXF4jbGPDoKaG1oGglGlEXBdDrlnrP3cOHCBQpbsrOzQzWqJMEiUu9ka2mYLw45nM/ZPXECgHvOnePSlUtcvO8+2rbhlZdficp7Hp04sTHYVFUVizoWco0BnZS8LMH93nvInmGCIuhFiEKEQBofdZ+dwzkx2hAoCovIvkJhrASZYpCrLIs8EZPnYa3N23GlFDYmJDnXURRp2ASSIxX/4tit+htob3RLepzXM/z9TpH/xIxJmH2637Is2dzczIvUeDxmNBoLG4MghSJCLNpb12xvb7OxuUVZVr2nuwIQh4ExzdcXr6FzDqMN8/kcH/Hwtu1yZfeEmWsg6KiHMbjXECQbc9AzJM0UklHW0ahqDT4Vxxg8o4yW9JTAFLhUKohHHyTByOoKYwZg9/CGVH/+9GJInvbg+t5IW32Wwzb0plc94W9n0U7HPg7TTsdc3aENP3en8XoniOZOxvwdT/t1Wufh6b0znNu9zKlTBQcHh1hjKKdTTp8+zZNPvo9HH3sMrQzPfOsbTCvLPCY1KCesCozlxq09rl6/wUOPPALA93zwA9S/V/ORH/gBbly/zgvPv0hTtzR1gzEdtjLRMGs2N7dY1HPapo1MkwKNBi+evNIGjBQZbp3oW9ApoNdxhqjX3bbMF4d0rehOWNN7HpPpKPtCRmvUwuMD1IsZo6qEMupmx0SSxB4JQRJwqqrCe8msHI9G2XOTuTrY+n6HkPaqp3Qn73s4AdK/aZL1QdO+pNQQajk4OODg4IDFYkFRFJw+fVoyY0+MIkc/MBpXbG1sxGMGJhsT3MmTUn3dhyiqVVAUFcakMnG5V3IT4Ugf9UukOScyulVRcv3aTRaLRb7mopRdTFmWECRAHbzjsChQcXHGGJzvufY940TYPCI9IB6zVkkX3OOS5636K9UxpqGQwKaJxlcTKK1hVGgKramKHYxqILRLd5mdeCX4tkgKi3aOLAbpvqVi+6rJGkID6XmtGufUhvDCalwi7ZRXX88MmZXFYHjsJGMxHF/D+bUKvSxBhINrX3fsvm9WFtzBPXw7GPp3tdEGETz64uUTPHSfiVtRSVmeTqfcc889XLj3AqDY2dlB+zbSnxwqJ/EY5osFh7M5uydOAnDu/DnG4zEXL96XRZeSp43zFDFFXSmVKXcuwi7Jew5pEq542iF7kNGBUpqgk/CTo17UNE1N27ZUpc3aF0VhBYdXCZZxtF1Kxfb9VjYO1CQCD2RPlGQwBtNODX75TkOQ6zBuWL/1XPWQVj3p18MW67pmPhd2UFVVhBCyp53YNmVVMBqN48TyVBTxVpeqLjJEH0gB2uHfa2CBVHIMyNIJicamzUjkWxP9DAi+NyBhcM/JaEu/JGhEkcrBCY1F9962iwHHQff0OjxCGRzmMBqtsEZRWc10UtLWDb5bk9odFwIZq9H5Dr3XP+yL1xspd3qWw8V63TMeGsLhd/r+Wt+O87TvZEyHnvfQqA8N8yr2vi74vGrwX6991xtt0OzXFdcPVcYPE97ZdS1d2+KJD17JZw4PDymNk8kU0gYYmiZ6ICpxMyXoVxQlqWSVivKYQJYylVKEKZU4tuAJIT5wRQ4YrkamW9/Jljpi21qLHonIh5pYuUbnxUCaeF5KSULIurYuQJI8VqVSKGmIiwy3qUcn23Ee8+r2dvj+cYN9HfaY/h56Yumau67LUEj6vNaayWSSqXtN03DlyhUuXbosbCJrOHPmFONqFJOT6O93yfAsvxayoeoluVKgs+t6vZCmbZb6PonuJ+2StHnRA3DFGIOPvHmlliV15f6XdzoZqAiDPUB0BgLCCc/eqIqhw+BB6Wj6Q4ZNlp91/HUgetWfYfihgQrgClCytPCvQFnpmpOj4pcWqT6XQByOfoz29NZ+fKRanamsXnpvPp/38JPWRwx9up7VoGga/0u66msWivT94yCP1Xtdjc3cqb1po/37v//7/M2/+Tfpuo6dnR3+5t/8mzmNO7VXX32VT3/609x3nxS8PXXqFP/Nf/Pf5Pf/xb/4F/zX//V/zT/4B/8gX/zf+lt/i1//9V9Ha81f/+t/nQ996ENv9hLfcPMBvvaK4r5KSkUV1uJiQsPh4QHOxy1WUDRtw6VLl9jdqtjZGtE6mVqg2D84AGKB3Zj5WBTivbnO0TUNFE0uF+Wco9RW8MxWqpbkJAgfhKuNyIQ2zSJmWRra1uWBO1vMWCwWUsqMgDGa0WiEUZpUvTtpX8iElX4WIanAPCoTppYGkNY6Z8Klz8/n88zOcNFjE+PR7wBkkH/72CLIgHXOZY8yZamtejAijxHibmPZ47bWZmNYFAXz+TwHDheLRd41TCYTzpw5w8bGBiEEnnrqKV548UW++c1vcfv2bXZ2tvnID3w/p0+dwhZWgq+pDFkI8fwDYxOv0cXFN81JjVBCm6Zh//ZtXOdyopXWmrOnz6C1PLPegKRFy8viipi4siyZty1dXMC96z34xNIbkvGS8FQIUlleo1FGKtz4mHOQ+s0YEbnyrgVtUUFiK/gORYlkh0ZMPKQ+74BU6HrIZ0/e+3BhSz9LTz6/tgp7pGtLjkKKIeVkL+/zIhyCOB8nTpxgPB7nMdx1HYeHhxwcHDAej9nc3Mxj6OrVq5w8eZLRaBR3osURw6mUygt6MuypaMhQm2Ro3NPPanblUF5j6F2n3exQz+f12ps22v/Jf/Kf8Hf+zt/hiSee4H/5X/4X/sbf+Bv83b/7d5c+8+Uvf5k//af/NL/wC7+w9Lr3nr//9/8+/9V/9V/x2GOP5df/6T/9pzzzzDP8yq/8Ci+88AL/0X/0H/Grv/qrS1jkH0ULKJ67GjhzRihZWpvMl62bms7FCaqE3rdX7zEuN2FrJAM5HqOupSL3MAtKG0NVjeLg69Ax/RifypIVWVYzP7ToqUrlGQ+KHsaI+GPy3tqmYTGfZ2Nn7YjCWgpbxL52ON9lvDO15LWnLfrqFnQ4CIkTabgVFIXA9DvikWWq3ZvnCAy95NWtYzwNQwNxnMeSrlWofJJVenBwgNaSBbqxscHm5ianTp2SRKr5nJdfepnPf/7z3Lx5k7Nnz/DAg/fTdt0RqCOdK0Fc/Tvpmo/cFM45SdSKnPq2bXP9TaVUNhp5l+GdmDSlMvZirc3PnXQl2ascXGL6RcW+GnxAxUzJ0EVD6BPuG/steFTwqCA7seCTpnuCPfqb83Eho7+apdan7dwBYmA9XpzhwGiQ01hM2LP3nsVikT9b1zWbm5uMRqOl62uahv39fQAmk0l+7+DggO3t7XjvvRHuH1mPhzdNk7301PfJYA/H6J2CjOt2ksPvDI3867U3ZQ2bpuFnf/ZneeKJJwB4/PHH+eVf/uUjn/vyl7/MU089xU//9E+zsbHBz//8z/P444/zzDPP8Mwzz/DX//pf55d+6Zfy53/zN3+TH//xH0drzYMPPsj58+f5/Oc/z/d93/e9mcv8tprRCl/KyltVFefOnWNUjaJ3Gtjd3UX5ls2tCbMbt5Ye2KgS6pePD/S11y71EfkQNSHiVsy5DqMN3iePLXpXsRZh/2Bly2qMZFVKELDFGC2cay8UtSFVSSkVtSESZp5eO5rgMdwurxtsaSCtbvGGn81GZrAdfSMe9ir8sS5gs/z7crCRGCiT93tPLbVkGJOXprUWbfTY12VZMh6PM25/7do1Dg8P0Vrx0EMPcfXqVSaTMfv7+3jnh7Z6cH44zhjJ2PA4L/z5pmslB4CQn5GP23W5z+W+CRHnGC6yqOW+OfL38I14UAUE1fdZMt5pMZCfeP64e9DE0pikn8DNG7ew2nDu3KmlfugXaI/3kLQRA10E+j0EqeYjp+6VLMURd6iIog/HYXJ6VsdaEuUafi71gQTKfQ4uD43g5uYmRSFyD8kBTBTf27dvY61le3s773im02l+jmkspThPupb0YyMldlgIuK7rWOdzmQM+nFPLffjttTdltMuy5N/8N//NfGN/+2//bT75yU8e+VxVVfzUT/0Uf/7P/3l+8zd/k5/5mZ/hV37lV3j00Uf5xV/8RX73d3936fNXrlzhzJkz+e/Tp0/z2muvvZlL/LZb5wJ2eo6Tp04xHlX80A/9EKdOncIag+s87333uzHGUxWKL195lqaucV2HKUtOnjxJW3c0jVDk/sVnf1tS2r2owllj2IgVTGb1glFVsnANbddiJhuUpbBGXOdQRirTaK2w2uCxOG9FK8U76nrGfDYnTU4XIQyF0PJShmUIkvwmqcdyjyEvNJpELxzqNwBLW9O0ZR8O9mQIRU82Djrfb9PFc1+3FT6+DaP9w8IQyRMNIVVIT5l6CqUMg/VCqpxH7fDDw0MODw8JIbCxsUFVVWxvby9NsNFIdNIXiwWf+9znePnll7HW8uf+3P+B5557gStXLvPcc8/RtE26yFgeTILD0iI27OWZKdV7ZovFnIPD/VzcNwUFC2PB2Dipo9HW6oijKkYh9ks8lzEGdEbK5e90bDUMjmoiZy8fL0E3BKSMmDEY5fE6YHSQsapkDHWAIWAQJcyvfPlr+BZ+/Mc/CU5BSIFPYdU473LlHhdpocF7gou/d2LUvQ+4IDIOspg4eY7oJUOYxuWQfppeH41G2TMeMi+qquL555/npZde4tlnn6UoCk6ePMkjjzzCfffdx2w24+bNm5yItNz77ruPS5cu8eKLL9K2LY899hjee3Z2dnjsscfyuD84OBCWT1UxnU4loS1i6cYYtra28jhtGtEWun79eo6XlGW5BK+kcZqgkVW9lDfk9ITX+dSv/uqv8p/9Z//Z0msPPfQQf//v/32apuHnfu7nuH37Nv/lf/lf5os/rv3kT/4kf+tv/a3sof/u7/4uf/tv/+3sbf+lv/SX+A//w/+Qj370owD8x//xf8wP//AP8+lPf/p1byS1v/w3fo0rN+ev/8E17clHTvGLf/Vjb+q777R32jvtnfbH0V7X0/6xH/sxfuzHfuzI64eHh/zVv/pX2dnZ4e/+3b+71mD/0i/9Ej/xEz/B7u4uQI7wHtfOnj3L1atX899Xr15d8rz/qNvl6/vcvHmTwlqu37jGaCJb6rpuObmzhbUQXM1n/vEvc2pnzP0XzmDHE4IL3Lpxi1/+pf+e/9vf+d/4Cz/6Lh548AH+3T/355gfzviNX/9NfuKn/xxOF9xetHzwwx9n7/Yhs4M5Z06c4aWXXmBvbw9bWsrSYqOnHayldR113TCbHUowERUDaiZ7Ol0njJTRaMTW9jZaaZx3WE2GXlykBMq20uCCsF329vY4e/Yso9GI+x95nOuXX6Wuaw4PD7l18ybQMy1u3LhBCIF7z9+LtrL9U1qq7wCgEqOh9xLXMUFWscOhdz0M2iyXY0ssAkUqLJu8/scee4SXX36Z8XhM27ZcunSJ/f19uq7j5MmTbG5usru729drHOD1+/v7/IN/8A/Y29tj98QJfuZnfoZvfOObfPGLX+R//B//B/6L//t/wcWLFxH+c0xVZpkp4Jx42oKzStLOfD7j9u2bNEk9TmvGo2rw3MTDfuD+B3j2+ecIXjzXHuaJiSk+JtAEj+9arl29StMsOHPqJJo++BlCVA9EE5R4sl6BVwLR4YPwyxNMojSzw5rDwzm39/ZQ5QhnLZ01OKUxQWHRbNiS/+//53cJzvKz/9f/E11zmxBqHn/iXp76xlMQqx81nXjaovWd6ooGfOfwXdRxD0RP28drdHFMLyvrJc857YyqqsrvVVGHPCVDpfE0nU75nd/5HZ566im++c1vUhQFJ06c4MEHH+QTn/gE165d46mnnuLixYs8+eSTXL9+nd/4jd/g0qVLOOd45JFHuHbtGmfOnOFTn/oU+/v7vPLKKzz99NOUZcn29jZbW1s5Z0FrnbNiUxB1sVgwm83Y29tjOp3mZ5niFcaYmEFrjmDyKXiZbOTDDz98rJ36jgKR999/P7/wC79wLC7zr/7Vv2KxWPBX/spf4fd+7/fw3vPQQw8de8xPfOIT/KN/9I/4iZ/4CV5++WWef/553ve+973ZS/y2m/OI1nbTShp4Xeft7/7BPgYH3ZyuayFEKpiXPMONyZQ/8YkfBOBHP/VJdrZ32N7YZHM84fs//GEm4wpnKuxkA6XBB0cXCxuUZcVoNGJez6kqC1qwb68kkKgiK0SCpDpziRXQNi0ztyB4T9s0ss01GqOUMFC8xzGoKJ2gkXisBClkMaK4nUu43BAf1loLRtu0jFKgM9LGRObTRCzzjfX3kMK19nmkFG6G20cZ5AJBLCL75REOD2d5C3vu3DlOnTqF957xeCzVzUejJTwx4Z79tlWqGomao2iMvPjCC7R1Q+YwZ7gi5MAcJOgmsJgvePmVVyiLIi8w49E4xydSko4knwgbCcAoTUdPceuDzUf586m/mq6jNLZn4gUgqIRc9PERHdkeQRZ3KQjdsWgabt3c55WXX+UrX/kqoSjpjMYZTbBWjHZQVF7x7DM32d05y97t29TzG3i/AO5lf/92xsSVEY3wwlpGlc1sJaMMRsnfxhiCDhHhCkuYdrrH9G96LkNDvvraEB4JIVBVFWfPnuX06dMAXL58md/4jd/gve99Lzdu3ODVV1/NgcorV67w2c9+lieffJIzZ86wt7fHF7/4RS5evMiP/MiP8OUvf5nnn39eKlg99hgvvfQSt27d4sKFC3zP93wPJ0+e5Gtf+xrPP/98DnC/5z3v4fTp0zz00ENUVcWlS5e4fPky73//+/Mc2tnZwTnHfD7n2rVrmZEl46hfsO7U3pTR/trXvsZnPvMZHnnkEX7qp34KgDNnzvD3/t7f4x/+w3/IlStX+Nmf/Vl+/ud/np/7uZ/jH//jf0xVVfzn//l/vpbPmNqf+lN/ii996Uv85E/+JAC/+Iu/uBQN/qNu1qhcukkpJXUZI+1qPu/QvkW1M1wnuJzSCrxHK8NkNOLJ974XgO/94AcxxjKdjNHK8MTjE7wt8LakKieCxXqf0+FT1ZmD2UEODrng8a6Lhi3kbDqtNePROAvfEwJ6ruh8oGujcJQheoZh4KnGybBmYqQoO5ADKG3bUkT6XMK4tdZ4JFEoRrPEaEP2rrUSJkxPZ7hzG7JFkscyZICs+gMJx06Mj8QMWCwWhBCklNdodIR5MgxaARmnTOdN2Y2u6/DOsVjMuXLlitAHB4HB1TQZwduJi1nD9WvX2NzcjLrTUJVlvIeQ8Wcfn2l/TzH9PAwYMOnZEXNjSBHDiA07hzcm8rhZJmnEdTPQnyZAr2vSNOwd7HPjxk1efPFF/uBzv48rLJ1WdFqhyhIbFNaDbhyL+QRNxWw2Y3awj3cCP87mM3TczVWjMTYWrh6Vo8iLtlRFRVVUWFPI2LIqMmQDRKPNYOeyiu2uspaGfTYcK+L8iNzEuXPnMh79xS9+kf39ffb397l+/TonT0oC3M2bN/nqV7/Khz/8Yc6fP8+lS5d47rnn8vGfe+45nnnmGV599VUuXLjACy+8wDe/+U3quubd7343ZVly+fJlPve5z3HlyhWstZw8eZJTp05xzz33YK3lypUrkT66w2KxoG1bNjc3WSwWcTc259atW0vc77SrvVN7U0b73e9+N9/85jfXvvfv/Dv/Tv797Nmz/Hf/3X937HG+//u/PxfDBXkQf+2v/TX+2l/7a2/msr7jtjMtB0bk6PtCTxLPSiFc17ZboIMEkrq24yQwn89QSnNTabRStJ2j2txBBQNG9K6BWGGkz3qUKinCp4U4mYleWnRpdArWkOymMExCGESl72Aw5f4gqJ7/OlTWG7JiVoMkKhou7xMH4Cj7Y9Ug5b5bwz5Zd22ru7YQLU+fSKGQVOmQU+6hD0TmfhsY7ETVyvUy65q9vb2sM7K9vc316zep65pXX3mVg4MDnHNUZUXbSjWjVe/nCKGE3vinHUJR2AHDYmBo1vbQ+pYNeAr69rY7vq7ywEy7Qh9iQDB4gol+bOxbW1gqpZgGT73oOHFil/Pnz+OsodMKpxWhKLCI0TaNo2mmnL3nFFVl8V1JqiQ/GlU5aF5WFcZabCHZt8YYKXlm0k/0mFPBHp16YTm7dN2ufeiBr3s9tbSjSmMhQbGpKv1wR1fXdQ4WVlXFZqwwlD6TAtknTpxgc3Mz79jSM2zbNsMgp0+fxlqbA+ACqdZ5oUgOUQghB7zTmJpMJktGOwVb79TeyYiMTWt45N5pTtPOYkzEaiORI220oYz4fb1YcPnyNdqFQCqHs0Mufv+f5alvfoO2adE+GXbHk9/7/Yy2djHTlmKyCVimG2OpPGIt2mpa19K5DmUMykSML0iqffJsdVwIUrPGMB6NMx6slY51IJeztJKxTJlkLgTZJi8WeUAC2bMWDemKWeSA6wh/hKBonXijOgvxm5xh13XdkWu8U1vHjU3NDKiOh4eHUZ8joHVBVVWMx+PMtT19+nT2UIYGG8jb0eeff55XX32Vl156ibZteeCBB7h48SIf+MAH+J3f+T1efPEF/vv//v/JuXPnmB3OuPfee7l58ya3bt3i7Nmzvfxm2pbH/yTyRlWVnD17ltdeu4RzRnZaEev2zglzREnmoTjfPZUxL8QZxlJ5DIYQlRWT1xChh6TkobRCY6UIQ9syr2c0XUfrO4IKFLagsJZxNWJjsxLFyKKgvtDwwP3388TjT+CNwSmF09BpgwVsANsFWlewsbHNPee3cE0BQWIYFy7cm50OY1KMw+SSZFopjLIYLXLCykSDnR/N8rMfLrKvR4tbpYtqrTPnfmNjA+89m5ubVFXF4eEh8/k8L/QA165d413vehfnzp3j9OnTvPe97+Wf/JN/ks/9/PPPs7Gxwcc//nEuXrxI0zQcHh4ymUzouo4bN27w5S9/mR/4gR/g7NmzKKX45//8n1NVFR/96Ed59dVX+dKXvsRv/dZv8SM/8iPs7u5S1zX/7X/73/Le976XCxcucN9992V20fAeX4+z/Y7Rjq0qDBdPjXt8yUSWbPLaQvR4jcYWFgi0TcP1K1eYHRwyn824des2AC+98LwMlP0ZTdPStY4LDzzMljIUKMqDfaaTbUajCcZoKR6sNZ3r6HwneKKW4FWIECA5vVkMYg7cxZJhigHmGaSu4TDom7zNZLRbJzKkdV0vlUNKnNLEiU3eRzLO3keaYaaaxWSkINQv5xzKgPznjbUhR3f4mhRIFi97Pp9z+/ZtvAdjiuwBJQrX7u4uSi2XERve+3w+56WXXuLrX/86X/rSl9Ba+O7T6ZSPfvRjfPGLX+batWt86Qtf4Id+6IcoioIzp0+zt7fHwcEBZ8+e7TM08zWSUA/xNsuSEydO8NJLL+CdwRqLhD0iVm0SjLSmD2IyTIiQl0oGWm5A+id62z3lMK7lGgnmOcGtZ/MFi6amdi0gWO94NGJzusHGxiaT6ZTN7R1ZJDz4DwSC1tlo15CNdhmgi8Rqay34CTpyv8+ePU3v+iePWZHzMgOC2wc9tM9Ld52ez3falFJ5AU8BvclkIlmk83k2jsmRuXnzJg8++CCnTp1id3eXra2tJVjt0qVLPPHEE3zf930fk8mE69evc/ny5SUxtaeffpq/+Bf/Ih/84AcB+OVf/mUmkwkhBK5du8bTTz/NF77wBW7evMn29jZt2/K//+//e461fOhDHzqyIA3T9o9r7xjt2DrneeCeHktKeOK6plWEQ7oup0c3TRNlUMmDwxhDYQNamRhITEG3vqJ2S5uN4LANn+WqEcqvpw+GHg6QCZACWb0nl7zsHDhUvTDUkPMaBvDIsOXtZT7+8CpWoZKj3vNxHvXydffwjJwz5CSLxHENAYyRWpnp2vvj9N8fBlkXiwU3b94UvHU0YmNjI2cnptR252QLvbOzw8bGBtZaptMpbdPm7e3RZ7AMdChFZgak68mO85Gn17dwpE/7vgGiVvnglPE7nXOym9OAl3J4INz8sgwobwjKU5UVVcwFSAJisvgoiUsbFY02uLg5syhsgMILZ3vAkCfJr2qdFPvSMx9KTfX3lP+b4fc4Lu/QJ8f1Rd9fR59HyjGYzWbM53MODg5yXdXVWNow0WUIBaaWHJmiKPL8SJ9N7yXHRsblsj5PhtiqKkNyaeFIMN1qnAV68bCzZ88e2xfvGG1ksr3/4V0mlYVIipJgmgTZJPru8QS0l2QZ5zr29xqef/ZZVIgZlXGFHFcl08kYe+KUQAXacurkSXxZMG8btFbUiwXzWYP2BzjvWNS1jGsdPSlFxA4TfS70DITI0EheVz9xYqJK8OBVhjpS5Dp7sxopPKtNLgCRvPK6abKMacJflVIcHh7iOtHVGI+qbJxDEAhIxIYkISbF3d54/6s84dIC2LYtdT3P1K/JZMLu7i7GWIwpGY8lc3VINU0ZbEkje3Nzk9lsxvPPP88//+f/nI9+9KN88IMf5MKFC/zWb/0Ws9mcl19+hRACN27cpGla/sJf+Avcd//9zOKW+saN69y8caPvW3ojq4b4cryPorB0bSuLHyEq8oUMJSlCqtLWL6o+oLQnrK2akBzZNAZkp9W0DW2sJhRwaLWB1YInnzh5ClMYdGHQVpK0rLGMq4pqNKKI2Gy/UKgMWwTAsIw0C2weABcx6fQpj+iLrHREvvA1i9HgPGkhWIXSjmOjvZE2n8/5+te/zle+8hVee+01zp49mwOTq4V3VzVNhudOc2aYFZz+PogaQ+fPn88JaCBp8tZa9vb2+OpXvwrA+973Pq5evYoxhrquOXXqFIvFglu3bvUxjsE5007wL//lv3zsPb5jtIHCaP6NDwgfvI/xRN0PBlKQkTonWZI1B+0hL730MpOqYjoZi840MKoKphubbI43qMoRVTViZ2ebg9axP1ugtWIxr5nPGnyrUMbiwlDikVzoQOc6kT5CIxJNX/JeVH/lCYeXiiaicFbXdX8PWlFWZfRAxOgVRZFtbPIqsyJaHFCz2QyFKBYupeIGYmqyHKEoilzf8I22YaApYYfz+Yy9vdtSaCDqhJw+fZqqGmNtQRZvykpzIQeIZrNZNtrz+ZxXXnmF3/7t3+bHf/zHOXPmDI899hhf+tKXmM3mXL58Ge8Dt2/fpm1b/vSf/tPCDLhyhUuXLnHl6pUMex1nTNLLvdHu6HcLUTky3eOAg5LXtTAQW1p/hniOyFhSiqZtmc1EO935Dqs94/GUIjIoJhsTRtMxRRlTrxPMlry7fC/qyAKb+BxDEEYpTwgOpcPS6/nfbJ/X3Iha+Tj93uzNm+c1p1GSw/Ctb32Lz3zmM4QQePzxxzlz5gw3btzIMQkgG+E0L4ZyELDeaKfYTsLHz5w5kxlIAOPxOBv1p59+Gq01jz/+ODfiou+cy9j23t5e3xehF7h65pln+PVf//V3jPadmtaK+89OuHh6DD7R144yIPpx12/NtFaMRyXjUcVoVDEajwEYjcb5pyrFuxHKXot3ncgK0mtnJFaG0qmWYG8Q81WoHgvNq/Ngdx7ih9NA9LEIb2KYyCG0BK2MibxqSY4Z7uMzc8QYSY+Pv8v3DTqyANLFHJmifRzt2G1/vuKwrIedJo5AN3ZpO9//CCtBdiIO7x1gZZKFHv/OwUIl6e8pkSEdc2O6wWJes1gIP13Ek+IkHWyF60VN2zaDY6V+Eo+zNwLDm1/pjPjaAERaRVbW91DCsoNomQTv+kVKaSk9F0CjsbrExgXY2iEMIvGXtDtL24NlXZMBjBGSyOo6BtDy0wy9x5AueOl+05cGsdXB22/MbN8pUL3ahhrp6f4TQ2h1wS2Kglu3bmWn5uDgYAlLTk5LXdcoJbvWpmmW4Lx1sZM0/5qmYTqdCsQWHYkQApubmwDZsx+2Hma9s8PzXW+0C6P4i596MPs/QdIcBOtzMqiytysWlaAC5cgwKrf42Mc+iDUlRTGiKEVo5rEn3kNZlRRGtqVlUaC0o6kPme3fpJsfUpgpdjKmKzRocL6lbkqCU7hWo0NFQB6e8zE70HspeUXS3o5c7AjnuFjUIAUJfZCK8aPJtE9S0JqyLCjKCm2kaLAbSHw2nWM0qhhPJuzt7VGUFRub0VAHCTqW1UiYJANIJvGPe9xbWr/Q9IpwyRgJBLKgadps4K21bG1tRRzxXNZvkKBSFRNchJO+WCw4nM04d+4erly9grUyEb/5zW+iteKB++/PwajFfIaKfHetDR/60Af57Gf/JS+88GK6Utq249VLl6hGI67fuMHBbMZLL7/CPefODQyPygY6hKNBxRB6XWcfZKFMH3Le5XOlYwE5sJhsKvF5huAHZdEauk6qH4WgmYzGTKfbFNZSVgVaV1hbUFUl4/GEoipjstNQXW6IOavhpcivIWAVBB/ZQkBQPr8n3x8EyRI0kv3yN4CJDU6r8wj6zvztdH/PPvsszz77LK+++iof/vCHOXnyJBcvXsx0zaGBvffee/mX//Jf8uCDD+Kc44UXXmB/f5+dnR1AAtsJrnjooYe4dOkSzz77LPfffz+j0YguMq+G0qp7e3tsbGxkSeCzZ8/y4IMP8rWvfY2rV69ireUjH/kIX/nKVzg4ODiyCH3jG99gb2+Pe+655473+11ttEur+bc/fpGdaRnHmycgGKHRhpDHZ+RHR2wb5Skqy/bOiHs//H48FigxVlbRhx99HG0UvmtRCqzRHC7mdM2M+f5NusWc6cYWxWiDtjB41dE6Q1VXeKdwQVNQgVngpfoq1lo673HeSTIHwjAIKajpPXXTsFjUWd/a6ILReEQ1nlAWBdoIHasoC0Is+xR8oPOONHHarmOsJ4zHE27duo0tS8rIfY2XgjF6aReQtZCdi4lJvfOuInQjHrEZGLlA1wmVb29vLzIwjJT92thga2src2fTOWThkGBp17YxVfwW587dw9Vr1yTV/uYNvvHNb6CV4tM//ulMZ6zrBUQaZFEUvP/938Pn/+ALXLl8meQztp3jtctXmE7l3mezOa+8+ioP3bi5NG4k4Lkexg0hYKLAUYhGW6mICPs2lv5S/YGG/w689VQ0I6VGz+dz6sUCYwuBtcoxu7EK/ObWRvaeVRyivS53n7Rj7DHGUSGZvUoMqQseHWMmkkIvH5JnIVV90nNlmByTrl8ND3xcSyPwzRnso3z+wPPPP8/Xv/51Ll26xKc+9SkefPBBtre3l9Ld0/fuuecennrqKd797ncTQuDzn/985lgD7Ozs0HUd3/rWt7Jw3QsvvEBVSfbyYrGIapv9TnF/fz+Xr5vP50ynU+6//34++9nPcuvWLUajEZ/+9Kd56qmnMg88XVcIgaeffpqDg4PXle74rjXapdV89L0n+YF3RbnJBPqFcHxchaOvj0YVPlg8BdrI4CiKAm3AxQmoY63GZGDTcXTWmtA5gcaF5KiuRLuHv+dtM8sBxsGVJvgmp/ymlO1IHQxxvx5WJ07efesMreTMydRNSi+hsqvR/D45qT+26IX3GtdhWDUlUhsT46MvkXZUz0Z2FT4mMsxy+v18Ns/b4PRa5q4PmCTeC+QzivoRqf/KsmJUVcznc5JSX0p0EDlQBoaq7+tVb2lIK1ubLLQMTOQ2ZM1kps/gtQRT9TBRhEEK+Vk6Fj3vu3dtV69jtV8TZLFiRtc60GrltyFUlr6gjnx23Y2rwbV9p9S/BHWkwHVKnklMqaRbAmRWSQper47hpOiXpBKSpvdwjAJZpz3Jt6Zs4pT4ldgjTdNkSeAhA2XYUkr7H0lG5L/urbSKj773BH/mY+eRoRrrM0YjJ3zYJAIf4cAgLA5jLEqbmPAx5+R4m5BYFGn7m+ZJjPijFNYWmWZVVZVgxt6jiPgyMhCauoXQibpmZIr4gdgT9CwJ4VwnrQq59ul0KsezBqMLbGFlYg/kLQVS6VGMZbpTTx/sui5TnnyEirJhTuZeLVeoTi1VOUmdkRghSdoyDf6NjU12d0/ExcEwnU7zZBu2ZACbpmHv1m3+2T/7ZyitmUwnvP/97+frX/s65+89zyOPPspiUTOfz9I3GY9HXLhwgevXr7O9vcM994ziJC6pqpKDgwMef+JxbGF59tlnGY+lLuSJEyf45Cc/yaOPPhqNcY9fr2KZwwVrPB7nDMxxjHMIxWxZBjdR51JJrFQcYVgNJcl/7uzskGRKjbGMx5MI/RRLux7Z5SxbR6U0imHJrnWwThLjUihtlsxy2jWI0RocP467pZO/EYikP+u38dnjW/JU9/b2aJqG97znPezs7GQPGwTueOSRR7Iuyfb2Nj/6oz/KqVOnsm7It771rWzUP/zhD3P58mX29vb45je/ycHBAbu7u4zHY3Z3d2nblrIs+cIXvsBzzz3HbDbjwoULnDp1imeffZbz589z7tw5NjY2uHbtGt77XIMUyNWVUl9673nttdcoioIHHnjgjvf7XWW0tRao4t/+E+f5yLtOiCGK23jvPdYAMVgnWGTCq4LokEWjrbWhbeccHjg4vQvRaIeMWcaJISlsBMAUBVpbQLw3FRNSSJMT4Xx6vyCoLlL/et2Fof6Cc4J1ihH0cTIXjEcCa9iiwJYFRhfRH15WzPN5lq/yu+Nr6CNGu23cEq81SVsPvYbew0zeYiBKPlPXUkEkYbRlWbK1tcXu7gnOnDkti6HqObPreLUAbdNw8+ZNfu3Xfo2t7W0eelgEyL761a/hvOcHfuBjLBaLHLEHieono33ixAnuOXs2q7WJ0T7kXU88wc7ONr/2a79GVVXs7u7y8MMP8+STT7Kzs5OZBMOxlK4rGe10jePxOD+fodGWFHffL+6xDfn+i8Ui65ePRiN2dnbY2tpiY2NDFuRYyizBLsuB0GN2iDrBGMc3H4RSqvLCLCNHobMxdi5kZyb2Akfd5zWG+8hL4ehn3kRb3ckko/2+972P3d3dzJ/WWrO7u8vjjz+eFUe3t7f59Kc/zXPPPcdiseB973sfn/nMZ/IY/8hHPsJXv/pVfuu3fouvf/3r2WhPJhNOnDiRtU5+//d/n8Viwe3bt/nBH/xBNjc3eeaZZ7hw4QLnzp1jc3OTq1evsrm5uWS0hxTDtLO6dOkSDzzwwB0V/uC7xGgrJQHHi2cn/Ps/ci8nt0cDvHrpk+n//d+x9UQIwU4yNBGDOqvjUkWOavZs4vdUNpSrX+gfYF8CdbhdTgyAXgRquKVTqocXZJsm/0p25PJd9te0rq+Wg4WrEfJ1bdXTTNcr2/v1295knAUGKddK9qbSUmlQV1VF17kstjMebCObpmExX/TFGiIHN8mdVlWVPf30jJO8p3eOaiQKgcN+LYqCjY2NmAXXURSG5a3/esMzlH9d7qdh//glGGVdwlHa1ieoqMz86nS8NQYyBkePSlu9sTZ8jnf41DF/h/VvJ/jkzUPYS9d23PUNFQFT4lSCG1JfpoU37WCqqsI5l+l6qU2n01zdKNWiHBZf1lqq3KQkrbZtmUwm+bXxeLwExyS4ZEghXG3J+x7uENa1t63R1grKQtO5wPsf2uGHP3CKi2dHAyy19yjE4MWgjYegQvYmZGspwRdJ1Q5YUxC0IdAJvKFElrJLVL1YNUQMbfRG45a3KMueKhV3lqIVoiirEUrdjllVLQSHc1Ea1bXZnTJGDShdRTbShRXaV5JQdcr15j+yTNZNxaNUJ2ibjr4UVD8ZAil9vT/uMLMrKQYmA5kCganCR/JYjZHEHvEeIzKqek78fD7nG9/4BtevX2ce9U8+8IEP4JzjypUrnD9/nvvuv58nn3wSkEn22muvYYxmMh5TFCVXr17lxIkdrLWcOHGCvb09DmezfK+nz5zi4UcexnuHtQXbW1s8+eSTaK1z0lEKODVNw333XVia2Ks4aFqIkghQyopLxrmNsgFJVlYpxcMPP8xiscj45xAGSVmZPa6+qsnRe9jrjWFY+ZfIkhoYjXztq17zwHhHZ0XpdO93Muhr3vvDQUHWn23wDB544IEcVHz55ZezDMMnP/lJ9vb2eOmll/Kibq1lY2ODixcvUtc1W1tbeaFN8NTp06fzmPvKV77Cc889l43uaDTiIx/5SA4+JlgGJEV+PB5z8uRJlFLcd999nD9/PlfESbkRw3qTCWZ8I7j+285on9qu2JlqHjm/wf33TLj/7JRxmVgLsd5f9JYSG0G831i6KRmlKMejlODNAaHSueAxpqBTiV1iIgyhcX7gaShi0VSBG1I2YVFVy6yKEBNEFFTVSIx9cHSuA9/iXCeBjMWMgCRpjMdV9rzG42kcSFKd2xQFPoDrPB7XG9uIY3tSopBcRIJBkmFJmZB15qTqrIUMMklcWFYFXHovanPPZrOcqGOtZXd3l42NjYhjbwC9XOqyIVK5ZNgf/MEf8M1vfpObN2/mxIRRVXH58mUuXryP97z7PXzoQ98LSB3Ab33rW1hrmE4mVGXJa6+9xnQ6pigKTp06xfXr1zk8OMiG6p57zvLEE4+JmNNoxO7ONh/84Afz5ElCU0n35Pz5e5AiBv14GwYe0z1Np9MlqCMZj8QESUL5qc3n81ykYWNjIwvrD6Gi4YJ21HAnhW+Wd4ohjvmlHZ3osns/rH0Zd4tHdlSKXLxXKbQyENxg/K60IwvImg+F13n/TTalFI8++iht2/I//8//89JO5cMf/jA3b97k+eefz9KsicM9HoveUErtT0bbGMPZs2fZ2dnJePkLL7yQvezpdMqf+BN/IgcPrbWMx2MODg64dOkSp0+fzgvBgw8+yCOPPMJjjz2Wd31lWdJ1Xb7GZLRfT3cE3oZG+//yZx7OeNEwEWLodYTQQwM9BCA0rqWdXmYL0Ad7BniiHwTaAkOPtR+ZIYiAU9t2EeM1RxC99OlliMHFaw0xGBnRad3rag/hECBWP1E5TXp4f8MeWNeOMEB8yPd53OQabuuHjIchoyW9rpTK2/xhkHGYkJAWkPQzm804PDzMWHjSCRFDWDKK3jDIDmG4SGitOTw8pK6b/z97fxZrWZKl54Gf2R7OPuOdr89jeIwZOcRQlZVZmVlVKlaxxEEgKAESBYEtgUB3AwLRD43utwYa6NfWSwv9piepSYgUKQ4iq1RVZILMmjKzspgRmTFkTB4RPrvf+cxnD2b9YMO2c+657h45RcEzLOBx7z1nj7ZtL1v2r3/9y78chkvuYgQVSZLQarX9PcjIBEKVqijLylO6XKDQbPdoT2ixOo67//Bew5czhEEcpWxxIjvOEOL4tYj5zx7qhC+0RWz8OBAd/h3AFHNnCuIi4SpgGUPJrnL1/EmPtYd5noswQ7PZpNlskue5twFxHPtn4LIcXZvT3NF6TssG8B4x4KEOGbx/Dl4x7KPUOxxZltFsNv2+LqPXFQx2Dld4j6Hz8plg1CNanapqmR4WezbNahTruoSWEBFxnDATEWUFWknysmKWT7m784D1F2A6nRj8SibMZgWHh33eee8d4kaDlbWN+gWeo46Zf9IWbp1Mx8TSQDdxnNDptL3nlaZucAkPHZiBKVhZXTXRf1FLiGqtPRMFnD7JfPXrcIkP+MHnDKnS9YwWLuecMXXMhziOLaujbRIUKqOr8mDnAVubW1YhEX8Ol2nmXorXX3+dZtNIzW5ubvLqq69yeHjIW2+9xXg8Jk1SNjY2uXHjlk2tN9fkqmGXRcnq2hrN+/f57ne/S79/xGQy4t133+HatafpdbtMx2OOjo7QWrG62kOjmEwnRPkMpCt9ZVLSpWUAOTGw+nnNT3LuM/cCO82Uo6Mjb5DDpXGv1/P7bm9vexjEbXdSW3ZeO1TN9yyY1BPdYuznwttazXxAU7gDz91j8GcAUtfXdeKlH7/YH6MtrjRcn0d2wj1//jy/+Zu/OScclmWZD0Rubm4CeAcgDH5fu3bNG9Own53w0+rqKu12269Gw1WWu6YkSVhZWfHPH+DFF19ke3ublZUVhBB8/vOfZzqt4y+ubW1tIaXkwYMHPP/88yf2wS+Q0T7uJTmPx82glWfsuSTbekBGnlUREScpiIiy0qgqIs9n9AdDrl+/zheB8XgEQLuVkRdj7t67x5/+6bd56ulnuHj5GiAsjh0sUYXlMkuJpmI8HtBIYi/s3my2gyUz3nNwwutlWaGFpNXpkKY1J7uqKiqliGMj3ekGuNEx0nPLd6gTZaqq8thsWZa1LKioFdGc0Z5MJp7Pura2RrvTod3usLW9yb279zg42Gdnd8TGxiZJUr8ULuV8bHHmJEn40z/9U18u7PTp01y+fJl+v8/e3h7D4ZB2q83p02fY3/8mg8HAGwnHw87zgq3NTW53Onzzm9/k3r07VGXB9esf8PWvf4211VXGoyF3bt+yFbvXUUoxHhsRoE53xfaDMHQ6e60ulT0cN+FkF64qnNFOkoT9/X2EEJ454Dwuh12DER4KS5+F51lmwJdh6aGh1n4En3ycuRWUqA22M9rSK62G1zPvFBu825xNVRoZOQP/OCB2ff7H5WeHnnXolbp3uNvtkmWZN8zumTgK6crKiudAu3Jzrt/TNOXFF1+cg/rcT8cC2traslWJYv+OhIwqMB75xsbGnDLgL/3SL3n5BDDFX5xnH6pYnjlzhqIouHXr1kP74RfCaC/OzIuYpNnGb03oemg7mp3J19QD3q2WzVLaCB2BYTJkWU31yvOcg8NDprOpV8HzU4j9Izy2ALSu0MrIuUohrLqd8wzmk2uMl1uirZiUC376weQG4EK/LPPaQiPkDKHDwxebM1LOsLskBSkMBTHLMmQkUdpoOJgsznkZVgc9uEj90dERvV6PXq83Z9wcfQuYZ4JQTzbOK3JCWEdHR/SPTGB3MjGKgUkcU5UlM+vpxHFMnhsFuMV7rI3iPBT0qOYTmiyUE050LiMzZCuEadbL2Bvhc1q8hpNM5PInvrhn/TOEM3SwzZytP+lEy6Br64W7nzW+SIC7u2zNcJ+HXLGotd0XmTfOCDpsGWqDnue5Zwq5Pl/U/lBK0el0PKwVvj9ugg7ZIOFkEV67e77ueoUQ9Hq9uX5xHrfbxrVms+kdmYe1XwCjHXS+X9LU40xGtdcIeANdKWUrxmh0ZQxTRUkpZpSlwcWlNEG/9z+4zvUPr3M4PADg9dff4KVXvkQj6xAnKZub20ynM8pKkTYaBskTJiNSC2mdGQGYZZgUAloQUbMIqqqkKBweWpcJA4wgVVyRFwazU1p5NUCtsXzv+o3x7BlpCq8a+MfevgtpCYPxykhCZV46J2ZTlqWXc11dXaXVannGSLfbpdkyfHEpJK1mi15vBVUZeGU8HjMcDNnY3GAwHHL9g+u8++47PP/8Czz77LMej44ik9J+584d7t27x2w28zKbvV6PwWAwN7h7vR7r6+vs7OzQ6bS5cuUKL7/8Ms89+wxxLHn62lWaWcZ0NqXIjQyum0gaWdN61XWdyrA5upaT91wUIAoNuhtrzuNyq5gwS89lxf1Yo/nH3K++WIckz8c5tAavU6aNppkMvqvPL+u9hPBjZT72MY9xO8OsKuXHp3FKCqOZrupVivNgF+MiroX5Cu45JEnik2bccYbDoce2Q060EILz589zcHDgJ3qXLen2D0uEQf38nSfscgDcc3VetauvWpdYOy5U5fZb9vvVq1f54IMP2N3dfcgDfMKNdr2cF2htSoZppZD2rrWuS/s4AXkzYLWFFYxx1hXosgSVI9SYoqjQSKI4oarg9R+8wZ99+085f+kMAP/+W3/C1aev0umskTaanDl3ntF4bHQ9Wm1jA4WpgqOFKeGlrdE2wZSMRpJSFZVloGhm+dSnw4beWxRFFsZQqOHIeL6qQkqTxaiFoWqpyuiRuMnLGG1JJCVlUXp83Xn/QghTUaeKkLKkrJSHQIbDocdlnRfhXqw4jpFR7Adtt9tDytgo82lBvz/kxo0b9FZWODg45Ac/+AH/+//++5RlxdWrV40olKW8Xbhwgd///d/nvffeYzKZcPHiRc6fv0AsYw4ODoyusR3z6+vrnD59mps3b7K1tcnq6grtdpOnnnqKTtsUUx4NB0zGRic7iiImExPoPHu+RRw3fH+GBsO91FmW+aSgEHdeNCpuPDWbTU6fPu1LUYVshjCg5Y7xqJd72d/MGVP7E2EnXjsRL+zjmCYhBq6pta2NUJqVhdL2byMJjpTz+QUhTdAF88Ox4H5XytBfy0LZib+grGZUZUFemFViVVX+nxvj7u/5whg1Tc4Ekltette1qqrY3d1lNBrNqea5ldj58+d58OCBnwAcxRPMpHDnzh0Gg4GXcnUBxytXrvhEGqcxEipRugQaB2m6Y5/0fN33rn3+859nd3fXa3Gf1J5oox22ZXGbgCjl4Qbzh/MO6uWbk+4UlbLxF4NvKw1HR312dnbYPmNKX+3tHfjEECkjsiyhrIwBjqKIyrI83EWZZa8wIk9RhLQYaKnrgqSLMESogRBFEVgutb9mQo+qlse0i4f6JRcnp2H45bqomQ9lWfp7c56GM2I+KCMlTlHOLUvj2CwZXZVspUxl8KOjPnfv3uXoqG85zbWBy7KM0WjE4eGhxybbrRaqMjhjVZb+ZhqN1Av5mJc5Y3t7m82NDVsrMOH6++95SmKN17sqJEb9z923GxPAnDF/HEqWOZ4x9Iu87kUPfbE9DAp5ZFvESkLMw/5t/tRgNdcNo0ZbRUJzCGWgajQQCcuq0lYTvI5b1uNI139DPYnVMJhGKebHcFlSlYWpDGSNtvOK3aptWQGP0AA7xsYyyQPHhV802s7rdmX2wkC8C0I6aqbbz2mGtFotI9xlKa0uMcexohxVc3HiX3yObhwsjoder0eapnNe/rL2xBttrbWtImKhAlHzIavSKY25VmHlzUz6NibtXCiJyDSSEkkTlUuKaYNi2mA8NkyRre1tXnjhBQDOnNnmzTffZHvrHM1ml1LVS2qlKqRo+OtyuoIuuc0kxlSMxiPKaVnTlaqawhRips5ACqFqmllVQWJffDsmZBRoYAfpoM74uuaO4fBp96K5ZBC3xF9ZWfEJMC+99BLtdtsbqDAsFkURRZHzF3/xF7z66qvMZjPefvttPve5F7zxdwkOb775lh/sZVma4OPAePVf+tKXSOLYQBqVwQWjKGbQH9Bb7bG1tcW1a9c4ZVPU3cs0GPQpi5xm02SquZfVlH4yHGRVVWg78YXLdMBPRmGw9qS2+CJ+UijjYR7Z/IYP/3pJ6NKPfSHAJdfkecHRoM/d+/eNPK+9dyEjdGVXpRK0kmRpg3PnTtNoxAgB3U57zlutyUUGvgsvUmuJ1iZYacZzSaUKqw+uPHQXQgxOzGmRQur6CeqJMWR8hKJOblUUGm13vZ1Op75f6yA4eqAQpt6kc5jC+INLnnKrpVDTx+nHTKdTRqORX1X5gtDB6jj86X4HE5R2NSdPak+80UZbzAwzkKIost5qRZFXSFEZzQUb4IsTSRSbJBgRpQgRE4mYRhwRRxDHFVp1qaZ98uEhN996m6zZ5NKlS3z9618H4OmnL/NHf/RH/NIrX2V1dZOydFQ4QVlWxKmkwkAyWiiU9XaFsHzjquDo6JBiUnhHSUaCOJ5PhQVspqXRo5DS3FsUV6RaI2OT3aiVJkpqsSIjMsXcoHXN9Y/jKDvvZjAYeL7p+vo6zWaTt99+m3/yT/6J1xie41/bn3EcMZ1O+b3f+z2uXr1KWZb8yZ/8Cb/+67/OxOoRP/fcc0wmE771rX9Pq9X0ntLtm7c42N8nSxv89l/5LZI0YTIeo0rN9tYWSZKwu7tHb7XHxYuXWF/fYGVlhcGgb2iXScLu7i6RlHSsPrh7sZyHFUcxZV6YSumSOW/OrRycATipuRdy0ataXBqfBHd8IuPullFmx/pYCz/rZleGhOcyHvd4MuHGzVv82Xe/S1kq8qKkLEqvTFcWpVGfVDFra+t84xtfpddtEkWCbqfNhx9+6D1X5fAUNErVQT7TNzFGydJBQyCkJpIgpMnmdQbQGbBF+Clc9YQTq9NoMddQf+Y47y4Ld7HPV1dX5wLtjm9dVZWn7TnnJeRru/R358y45+4KHSyDdFwavFsVOM/cBd+dl95ut3nmmWc4f/78Q4fAE2u055YkWvvgn2Ce9YA0VDlTf9HuJwxbQ0axwWOjlEYSE8eCNNFARRUpImXq9EWRqYTidHB7vQ73798nt97qYpkjt2p1y1O/3BS1t5bnM4q89B5SIiJgfnbXgLJaGi6IpkLDIYRd5p7swS0KIfnJwBquEBZxS0hHeyqKgo8//nhOVxjmmQsOR7x9+7Zfqu7s7BiP1xrP1dVV9vb2ODjY5/LlS/6cLqsyyzLOnDnD/v6+KeVVaTKrxOdkWNvttk9MGY+HvgrNbDYDrYmE8OcPn4mQ8+nDi0FF1xYFrMIxFhrfEAsPt1vcJmzLPlsOjQQGe66vl/3hjrP4SX1dZVkxGo25/2CHojB0yTw39LbZdEZhi89KlVAUislkRtYw7wHAcDj0BqmqanQ8FMRyRltKkzlsBMgEUSxQUhDHDhufl+YNx2TYH074zBnG0EsN+97FD0KjHbJzQi9ca+23c88iy7Igh6MOUIe0TKcV4t4Pl3fgcg/cOHbbSSn9JOCgHSdP4O7BiKitLXn2dXtijbZvdtBGMrIQiZFhTeKERtokilKsjBNSQhSbAFzSaCBkYjwBIW2ZLXtA67kIYQoKKIuTOlhgZWWVbrfHzRs3KUuI4xSttK+6MpvNIIoQMjWGNYAxtD2+CQTGXnM7imvBmnDwOc9JCG255mamt+tg7EZzE0fY3EBzA9sNMJdq685VVRWdTmeO+ZCmKVtbWxweHtLpdMjznOvXr1Pac8VxwuXLl3z22GQyIY5jnn76aW7fumWKGQPdbofxeMThoWA0HBnM3kIxs9mMwWDA66+9xmAwoN1uc+7MOZ577llOnz7tA0hHR0f2hTPLbfMSGH56ZeMAUFfXDlcYk4mBuOIkhYUJzolTDQaDoL8f3n5ihsdDD05gnJdg4tS8EK0Mv7zIC8rS4PeVjXkoLRjPckpHkUwFaaYoy4o0SWg2W2hbxDofV7RaHbKsaZhIuoYYnNFb5mnXYzTGyCHE1psWyAgiaRhKRjkzgPyW9N/ixBayfJYZ5XC/pd0YTLDL2D+hZ7+M7eEMeBisdpRAN1ksw+Hd+PPCZpaS6GAgBxE9rBDCE220/YPALNOVFszyAqU0rVbG6uq6EX+yTkIUCaNjLQQikigrPSmFIBZBwoIyiTYyMpVhirJgNBp6H+bsmTNsb53m+6+9zgfXP2ZjY8syOswbNxwNaDQT0gwzcrUr4mQkT51n3LDeQJLEaNS8wRZmijCegKUfJQmTyZQ4qcAWvsXimE6Y3WDbJliorYcQ6oQ4PnOn06HVaqG1ptPp+OVkmDbfbDa5cuUKd+7coSgKVldX+cf/+B8znRkPrdPp8rf/9t9ma2uT7e1tBoMBKysrfP1rX+OHP/whZVmSpinb21tMJmPu37/H/t4ep7a3EcLoWbtq6v/bv/yX5PmMa9ee5vzZc/zGb/w6jYYpmgxw985dsmZGu23gldh6dEmSoizzBQx22el0AmnbksFgYFTZsgz0fD9PJhMODw/Z3d3lueeeO9EIhC+5+9u9hO7vxX1PCkg9FNueY9bVBkf4lYD2geOqKj3Fcjwa0+8PKApjuBWCRrvDLM9ptdukjabNqJEoVdFIGjSShCRN2b93SLvZptvtocmpKjNWNjc37X2GRs+cd/76bWBau0QUbIFgK5UgF52QJbe9xJjCfEX1ZashF6NZdrxwhRVys0OudqjK5zRG3H7h5K+19jh8KJuwuGKqyQL1at8FXnd2djxU8wtrtF0TwtR5dFVPtAYjJG8qe2tlAimR6w07biprpn1BpbkHIKw3GaF1vQQCaLXatFptdnZ3GY4mPvAjLHZdFgVJo/KULGGP7aU2nactHU87wdWL9IPaD/J6oBqP2AV2RM0dEXWCgFsoOIctTCUHw+5wqnIPS6l22GGv12M0GnmmxPvvv89kMkVGscWXB2xvb3tNCK01Z8+e5Xvf+x5KKU6dOuWVAIUQTKYTM+jB1+LrHx3x0UcfUZaFWToKOH/uHBrhC/OOxiMQEMd1MAvhViY13OM8Iveyh2wYrQ1VSAZC/+57xwn/Sb3oZbDHsmPOQSrz37id7LHCf/MTgdYueWnKZDxi0O8zzQsT4xGSnoypKkWcJKRZZsqkyYgyL2g1W7Qy81ymg4JGkpGmDfKi9O+Bkzkw3nYNsS962oZyYt6imsRkKCnGATneP8sgqsXmVpbOCC4z2sv6ddlnyyAsZ8AX91uEYQDvPS9CKK6FHroz1i7YH1bIUUp5jP6k9gthtMHRjgw0kqbpHBtAOO8lHHkLTetgbAkBUiKimDgxnq7SlTcMjTTj8qXL3Lp9H0N01Vy5cpmNzQ2TjTebkmalx3518NI5GdQ4ilFlKDYk7LbBBREMAmUefqUqv3w1A63mzzroZDKbEok6Xd0ZTcBzW6fTqacghQO3KApfwDSOYzY2Nuj3+/R6PVZWVnjxxRdNdqaGnZ0dhoMBBwcHbGysMx6PGI+aXLhwnjiOGY2G9PtHSCHZ2Njg0qVLfPfb36EsClPLMol59tlnaWYZ21tblGXO6dOnmUwmHBweELlVEtDMMtI08S+Sm5TSNEGrBkLDZDqhyAsmkwm5hQzQtahQkRdGztb3m+m4VqvF6dOnH8kgCYfPMpz6kzQHccyb7Pk4Tf2rprSBw7wwuL2qSuNpTyZMJ1Oq0jCYWs3YJHRFMe1Om0Jrur0eadZCRBFCRKi0Ims0SNMGjbTBYDBiIqbGKzY5uoAtnHDsck6655BY6sio7ucnnwiXxQUWvw8D7Sc9i3C/EGZZhE0edo7F7xZXBcsgG7eaC/VH3D6LFMbF9kQb7dpTMayNsqooK0VvpT1H4xF2HJrqHWaPxaYBdCBpGsXIJCVrNkw9SCuhCtDt9PjqV36Vb3/nexz1B2it+NrXfpXt06fIZ1OGgwFZcw20MrQnjU9ukZFNAW9kDGYjpJyv4O0Hir03pTR5YQxQUZTkRUFWGaZMpYzXKHUtDD8rTOUXrRSRjLxBcn2xs7PjgyXb29uW41xH1sfjMe+++y7PPPMMWZZx5coVfv/3f5/19XXOnz/P3/pbfwspTY3F//kf/SPu37+HEPDU1avcvn0LKeDrX/9VGo2U3d0xw+GQKIq4dvUpzp89x7/4Z/+c8WRMEkc0swa/8zt/lfF4TJYmPuB5dHTAwcE+zVabdqfLxtY6Kys9ZOSKFJiHKoVJmkjimDJtMBqNGI8nnj0SRvTLsmI0HjMr1RwPvdfrsbm56WU8ayw1xClsYFkbFoVzskLc1a12jscjloxbn/atlw3F42NTa8bDEcPhkKOjI0ajIVVl6KK1r2vgtqzVIUkbxI0GSatN3GwyLitEnFiIRSC0DQhGEY2kwb17O1SzEiljHBMEDHNJi9rk1p7/iVc69717px6nhbCIWxWF/bjMoLqVlDOMoQFeTId33q8L9LsxEhryRaglhFdC2CQUkVr0yN05nMGuk/sqrwK4rCBI2J5Yoz33EHWtFaCVJklN7UQPLWjL6LDFCPy+zpt1x6T2EYynHXlP21XPBkjTBhfOX+DtH73PdJYzy6dcuHCBdqdtjPtsZlXjzBJWB9ElgUnyiKPY8LjdoEEYPjfzg11r8/KEiQgq8MLDgVqpqqYmlRWJpUuFnraTQ3VSp275CXXQZH9/nzzPSZKEtbU1zyLo9Xo899xzvhp11mgwGg05OjpkfX2d9957l/F4zOrqKnHs6myOkEKwtrZGFEWmSGpRIKUgiWOuXXsKi28wnU45ODjgxo0bRt1QGVkAMAWWNXg80UFPSZIYPXC7snB9FL40cRyZyS8vmBWlV050AdRms8n29vZSj2lukC189yhPO4Q/9PGB5j+YZ4jMrwbdMy7ynOlkwqDf5+jowMM/SZKQWspaEpsEpEazSaPZQmYZhYZ2twsysgZYIIhsoWlJEptybLPxzKwa7Tbm3Ira13YXPb+688bVrWSX9NcyDP9RMNTDPODFvgmhicW2GEtYpMCGRncRp16ESRY968WJJTynmwQcBOmS0OAX2Gj7puux4vDdZQEC7YJ287vOrVCV1jYVvqSqcqp8ihCa7VNbjCcX/axZ5CUySllbXaMoS4ajPpPJiCSNSbMMj1vbizK0vHBKMEVubeEbe25lC/KqAMezr4k2gag0TUHWNCdHh3O4o9ImkLKysgJaE0cm9VYI4YOEDvtWSvPhhx9x9eoVz9AII+kff/zxnKE31cutWJLF47c2N1FKMRlPWL26Sj7LGY+Mot+5s2fZ29szPGob3EzTlC996YtcOH+eZrPJwcEBkZVHjYQw6c5lSRy74Gv9bBYfuotFuMQj1w/uPGEASwhJHJvCu804mast2Ol05parjx0wfIw2t/8xq328qaqistSyvCyorNZMVVVMxiOKIkdKs3JQVYWycYfYes1aG36+9O+AOZUQAmU70xluQwaxE4SHRYwhF/Kke/Y+98J9LtlSSIxm/JK+eERb9KyXwRghBHESjOH2XdzvYYY+jBksu5aTrvdxYxmP0554o60t9QlqvDj0RsE+dGWrbS946MYoYoy1rlBlQZlPmU0GzCZ9mlLz+S98jitXLnoC/mg4YXW9zdWrV1ldW+Xu/dvs7j4wBr55BrTCa0OAqQIP2OwOwHg4pryZQgFlZYR2nLdrlm8KYSlTcRSTtTOQETKKKfKSo6OjWuQojmjZunebm5sksdnHXfPNmzc5f/68Sc6JTObhv/2330TKv8KpU6cNTSvI4vp3/+7f0Wg0eOmll9jZ2WEw6JsSb6nzHCKef/4F3nzzDXZ3drhy6TL9/hF5PgMNX/7lLzMcDvnOt79tGDJpQqfT4u/9N/8N6+vrtFpN3n//fRoNE39o2hRhp208Go3si1k/Z/ei+mW6MKsWHc1DIe12m9FoZES8ypKqUqRpg2aS0l5Z8dlxLmi5iGUbqGN+qJjjn7zaf2j6+9w+pmKSn9HNAPXxhPFoxGRsUvsN1GPomqkTpookKysrJgtYWzjGahdMZ7lBpB1Ug9OmMcYaYWisCmllfDE5DNKm+GunNunghhqpNka4vqFlRs9NhO5ZGL2fx4NHFg1cCJMsnseNg2X0wdDzDeEqN6FDDWEsCzg6p8YpOIZVZxYnhpMmiEUGzLKJ42HtiTfaEKwohUsT1wuDqfa0TziC+c9CIKWt9TcZj2nFmrNnTqNPnUII89DzWY4QERubm8hYMp4O2Nm5a71aczxwqKjzsWuIBO9p13CIM9gOpyuKgkpVpiakiJCJ8bSTRkalNEVe+vqGRVGQZg0yW03Dle2K7cs3GAw4PDwEsBlhhrr03nvv8corr9QrlcB7ef/998myjOeff57hcGh46sGAk1Jy+tQpfviDHzAajVhfX2c2nVFa9sGlS5fYWN9gPBrX+Gkj5ctf/mWvT7K7u0szMxXTS1tg1ywpA087eEbuGrWuS2wJYSib7neXQeci9XleWIOjiWIjpO8EgsIEj0dpjjiDvTiEFr2sx/OuFgOQ9TXksynj0YjDgwMGg4Hn2K/Ya86yjCzLcOwRx4hRpVlpuWcUOi1eM9t61TCvP1JXMKplZx/ezMhedquhkXzYJPfQoy8xhoveccj7PgmmWjSyYbZliF8/DnTzqEDn4jWedJzHab8QRtsvl+zveVEQz2akycyYSqXRCiolrGykMZalqiuZC12BrtBVTlHk5LOc2SxnUk5IIpOA41J6P/r4Y0bTkvF0wmg8YP9wl9FwyN7eLlEc00g7JLGrNegCi4CjBpozAjUlL6Q2xSaNjNgaGuc5TadTSm32VZX2JY+UUqSN1GcNSikp8oJpNfUCSysrK4Dh3jrPKhTbcc2l8V66dInpdMrHH39sszeNnnjLFeq1nqHZx7z0RrNB+vtdX1/nxRdfJE0TprMph4cKiSCKpE8GCqu+AP7ZaM+6sc19bj9ysFFlIQX3AiqlqSpT2V3IiFZLGS/fBhpd8sOyF/WTsEFOXA77Z10/4xAcc0ZDVSZwXpUFqqr5vJPJxAuGOWqj4w/Hdhyac9nj6/pcHibQgcEQ85uZqI70sImMItY3NihbRlLBrEbDm2LBWa4/qPvgODTxqL58GJyx6MWfFIgMv38c9shJ+4fnWuZNP+oaw20fNoE/rhF/4o22wEigCmGywCIShoOhr9no0Dq0sIE6kyWmgbwsvUcidIWUkESCKh8yGvQZ9Y+o2GF9bZVW1mI8MUUQfu93f4/eyhb7RwfIWNPtNUlSuHXrBuKNN/nb/+nfpd1qYiq+a5SuMPrcbq1vgkFokxQzHA4NFilNZmbWahJJJxQlPaZ8NBiSppnh3aaGoO+DbanBapPYBKUO9vc5PDjkxo0bvPTSS1y9ehWAL37xi8xmOTs7O4xGNjtR1kvJLMu4evUqcRzz5ptv8i/+xb+gf3REf2DU+q5cuYK0SQej8RAhoZE1kJHgzNnTZlmsSoSA5194jv/T//n/SKfb4WB/n0G/TyNNWV9fs0ZIWs+x9no1RpXOBWkdLrosTlEUht6nqgqUQql6ElxdXSNrtmlY2CWJTXC6YfUgFrFN83foJS0Zax7NqF/w0LM0cJsCi6PXHrV10bXZJ7eruOFgyGg0ZDabekZLZFc6ThrX3XfDyeHGsYXarMwBto6NEEYEqqrQLoHIwQfWaLtJTwJC2oLOScLnPv8FRG6SaOJY+okBi4+bvgn7wfVdzaUGkyGr9XGD6trDsOdwm/D3ec99vsDGMkO9zGguO+cyaYPw+kL4JRwri8Z9EV75abQn3mgjjOF2y2SpFdPZzAdpJOZzgaHETWdT8rJEo5kF6d1CV8RxRNaI0fm0LpOlBvS6HYTE4LXAD37wQ9rtNe7t3qfVzrh89Sxra236/QGjwYTWf2VE9y1KhtHTdviWu+za057NZt7jdApoziNEW3WxqmIwHJKmJVkjQ0am/FKr1TIiU0nsj6m0YjqdeSbGF7/4Ra9HfPHiRYbDIVorq4g3L/7jBOdXVlbY3d3lhz/8AUkcMbUVy/1yXCvyfIYQeDhjddV481qZgNjZs2e4+tRV7t65w+6DB9y/d88yWUxNTFfyy+Hupn/Mst9k4QUvFu5Fcctu7fH/qqyIhMtq05RlRavVZm1jk26vviYAEc3rXM8NJTH/+8OcxaWenSAQql783q4f7AplYpkgh4f7jMdjr7LYbDa9uFC4AolcUWcpjjnC7h+271hYplsiaw3FAZEQiChCRhHnzp0nrqSFfxZx4nmj7T186oQXZ8Dddu4ZLvbpMoO82KfLDGxoFIV/zsdpgY86ftjmtHS0njtmeM6HHWOZd77oDPw47ck32raZZXWtE+CCB8aqSxOUsZ0ZWX2FOIpQ0nhEQgu7zDe1F+M4Jk5SylHl8eajoyPAaHKsr6+TNBu0OxlnzmzR7WVmYpiZdHatlDGIceP4CtOa1yRNbYqvtHrP5oUpi1qlTooIIU0ppG63S5pkpI2GVxDz3gA2lUEbWly/f8Tu7i63b9/m6OjIp607St/t27fZ2tqi1Wof60shhJc47XZ7rPQMtOBU9CaTCfv7+xweHNDMMpqtlqcEaq2ZzmrpytIu+12/eSz5hIEtmH9Ja2lQRRmqq9kXJU1TKllRFQWdTsfIeVqKYyQDUaKHWOHwhV803AujDIcdLB4uRETc58oGiCfTujhzZbPjcstJd7SwWmDIVUoRC8ZKs2Di5i7U92XgMc6Pu9pwi+AIQggajYRYnRzvcdCLPbyH/cL+mz+qnts33G7RKD8MRnHbP4yZcZIHvOycJ+0ffjZ3XI4b/7nfgzv1n+raIZt/JosbntyefKOta6wQNEIKX+27KApiGaGo/NLUvBARlVakDTeQFUIrpAApNTJpAgp0xe6uqUQ+y3PeffddXsVUVX7llVfYOLVFu5vR7aXEkeadH73DW9WPSOKIsiwoizFxr2mSQpyd0SC0eawrK6sGy8YwWxwXezgc+ko7adag3e7S6fY4naYkcYMojohtVY85mUulKStTDPjdd9/j9dde45vf/CYvvfQSaZpy6dIl9vf3ee211/jjP/5jvvrVr3LhwnGZSCmlVeqb8txzz/DsM8/Q6/V4//33eeqpp3j7rTd544c/pN/v84UvfImrV68y7Pd59ulnqKqS/d1d7ludhSRJEPZFX19ft5WsU78SgvDFMBuampmGaePiCGaVNKvph+ArmlRVxe7ODhcvXya1K5RW2wQ20Zabb0DcH3+Y+bdOeYNdG6/AONmVH9oIh7XilAcPHjAaDowGRZ4biEIIu9JIfXq0AEuPlEQystCEOajHy7WBj5ydFBIkArSpN2qyZyuEUmAnOOWv0giXaUwg0txDxNpaiwYRkfRLBXsr9epg0biZP+fTy5WFqELDHRq9xQDnSQbZNcfgWIRCnGMWxoGWGeFQ8GnZuXzQNkjECRkmrqO0XTXNm2vb//7RC2/BxfxWDsCqWZ8Ph/t/AYw29VIZYQawq/dXFIUd0HjPzldXtswMJCgUUmugQquKRArQTaqyYJbnlJUpUnDnzh3AyCs+9dRTPP/5z9HpNpFxgSqnjAYjbn58y3qYJXmpiHFLR1BVuGoWtFpt78ULoT2uOZlYjFMrmqrNyuoaXSvpGEeJwUtlPUg9zqfrggZ37tzhvffe47XXXuP27dtcunQJMEySDz/8kL/4i7/gt3/7d2xl6+PeRL/fpygKzp87x4svvshgMOD27dsMBgM+eP8Dvvud79Bqtfi1b/waV65cZjwac/bMGYqy4GD/gN3dXU+Z6nW6ZFakynDFK2az6ZzkpjMEbpktpBnmLlDqMlKHwyGTycR4iFlGu9OhKkt2dnbY2t4mazQscBsHHo478MPH0aNtem2gHURjrn8Bo7UG1k04h4eHHO7vMbVVUWJLcex0Oh4Gk1IiFgyd64vw2pRdUSICaEQKhBLeM3QsJKEd1z+s3T4PlSAE7XaDpoyYLak3q90Nhp/p8PeHJ7eEbdnK6lGeNnAMCnHfPSrw+bDrOuZVi5o55VZFbvIVc+Z6AZwK4Z+5b4575MdX3MvbL4TRBswScWHJVj8YfezFOr7M0dYjFH5bKaXhUWsju+rqJbY7bTsBSBsElRaLTsiypkmQQJpqHyELwi+XzEApVUVVuWKy9YzvIAQNlsaX+hWCEK5CjTmWq4MYJwnjyZgiL8iaxiD0ej0vDuW8nAcPHlCWJVtbW7Tb7Tk8OWyj0Ygiz1lZWaHb7XoDnCRGROrUqVOe71xYLROX1KK1SewRoi5XFsWRTUOv+3zRA3Keq1OVc0FFgDhOaDQUrVbL9rcJmk4nRjbg9u3bPPfcc0DDHqg+ZhhgNA/XXMHjGZtl34XHtvABhoZYlCWlLbM1nUzorayZCjGiZsokcV0UtjbO9amOsQ7C02odunfYpabfzzClFq9Zg7bywALQC++BNv+EWMTC3fLw5NksnLh0sK3jkLttQo92fr/j/fso4++vO9j2cSeOxfMsGv75vnfP9qRjhnZl3mRrC7nWxyE4zsOv8RfCaJsgpPMe6o6MY1NwVltSashQkEJitLcxOS/WMzH0OrNsjJOUybSgKCqStOHLBF29chWljUag826kEHQ7Xc6eOcNwMEBHTXTUAFWipUALu/RSRkS+LAoG4yG5LeibpkYmM22knOp1ieOEyCoAmuBdwyRALHiMN27c4K233qLX63Hjxg3youC/+Dv/BZ974QXKouD1119na2vLK4v9wR/8AUmS8Nf/+t/g0qWLdDrzmLYzotevf8DR0SFf/OIXuXr1Knfu3OHg4IDV1VVeefUVzp07i1aKdrvNvXv3GA5Hc15jb6WHtFh8EteFgGsYS3ojD3WZtUpVTGdTK45UMsuN0e71eqxIycbGpmcrNJsZH17/kLfefJP//fd/j1deeYUsa5oK9C6xQkq/esXDGcs9tGWBMfO5208jhJlUDLNCWsNtA6eV4mBvj8ODQ/b390iShFNnzlGVBQ1bNkspRRRHRHYpHtkMU/fazwW1AOGuTwcv/aJdwSTSRFJSlSVlUZC6+3ETYX2Xc7sKIVEVWDRu3ogpjZYaUEgZ2/wHdwgXEKyzd2ud83D1NG9UTzKui+yQ8Bm4cbM4CSxi2Yt/LzJCfEzLsp9cCzMr66pGwgavFyetwJC7Z6Jtv3qfTLvOdUuVBTP9i260HYZoQ/dOmMk9HCfZiq71cd0yXGnlFrtefMd5K1JI4ihhlpcUlSJKUp555hkAzp497TFI76ULw1PeWN9gMp4gU4FMI7Su0DpG2yIGWpgiq2VZMhmPGU/GTKcTms0m3V5Es52wtr5Ou90hTY3XqH1ml5wfPxjP+Qc/+AFbW1v88Ic/pCgK/u7/4e9y6fIlJpMJZ8+eZWVlxaek//mf/zmvvvoqX/nKr3Dq1PbSRAqtNXfu3EYpxVNPPcXZs2eZzWZ0Oh06nQ4b6+s8fe0a0/GYGzdvsru7y3A49iWgVlZWaLfapI30mAxl+BJHcWzkXO13UkrKysBaZVWZykD2u1arRbPVQsrY7w/wnW9/lzfeeINvfvObhhWjFNo+ZxlFCwb7eHs8oz3vSfkanF4219I6y4phv8+D+/e4deuW58aryhQe8AkhkRljKih0vKz5ucJdiwuKHL8LwIwvVSmqspb5dePT7SWQxrH23rlEK4GLQ7p97En9JCul9dR1YJCo67Eag1fDXMs87ZOaM8CLgk0hbBE+i8VEqJO860WjHU4cy56729YbcZzsxNzVEmYSuN6HeRjFX8NDVmontSffaPs2v/jwL2vw0z88v0+wjKbGEN0qVCltIAmXhG4NXNZsonXMLJ+hhxXTYoQqphweHDKdTlHK8IaNG19nWuoqh0KZ7DWliOMkEETKSBvpPMbpDKoTQ6oKhsOR9wa63Q5CCM8kqSrrpdpUdZfS7WpCQr0CaTQaCCF8Yo/LsnPNBfEajYZlORg4oihyk4FovRLzYskaBokik7YfsGGW9Xv4Mla2erd58c3LniapSVG3Ox0eHdEfDNna2p4rtmrkak3ySZ7n5EVBM1qAfObQETtNPwS/NvdUj6vgG8BO9pWm1KWZlO0ppK6Ngrs/d36zGrRwiI1gncRE8JccGGyJRTUsjDHn1dk/pHQV2AODWff43O/hLQ1GI2YKOt3OfH95Y+bmvdqQGS9U1ecNAoJmeMhjn59kXEPHYdG4L1Zycv2x+Nkyz9v9XIRnTpwkw2tcAlV5o+/65CH3FF7DJ21PvNEeTys+ujfg4/tj3rsz4GhUUlWaKBKstGOePtfm0naLq2c7NCIb6fYzrjmGKhVRFONoVQpBVZbks4JGo4uMUrSWKDtIz507Q1EI7ty9y2H/gLv3bnH/zn2oSrI05vyFa0hihDAl0IoiZ5LPGA0OiUVELCSplKytryNtMkMURaSZgUfStOHxX1VVCBlRFCWHB4f86Z/9mS+N9dWv/irNZosXXngRpYzROzw4pH90RLfTZW11jaeuXOXBgwcIIXj66adZW1tjY2PDFy+9f/8+/X6fZ599dq5e3vlz54kiU12m3z9CCMGFc+d4cO++XY2YrL6iKGg2Mzqdrq+cE8cJcZrMeU7CArdCWh6rNsJOR0dHzGYzprOZL7DayBq0Wx2SNCW2K4RvfeuPuHfvHn/n7/yXrK+v+0nGBSUvXbzM/fsPWFtb4+yZrO4/rSwUFnqpoZdVj6Wwir0x7CHjwHpX2hS5GI/HHB0dMp0ZLL/VarHaXiGOY5qtJu12y0NPBqYzQkxGzGmBDWHOhhShXxZ6chpE5I29i60rbUKM7lhJkhhMvSoCvL12YOaNlbCOScXrr72JmhZ84xtfJWtKU+EJU+lJAMp60MJ6k0prW/Ci8toxJoCnCCdkB2s42CH0fJcZz0Uj54y5g87CbZyTEqpULhr2MsiUlVL6epfLdNNDo6+1nQp9zKGeFN2xl2HyjxNUtX+cuB08wUb7xv0x//b7O/zg+hFxJMiLOiXdtQcHMz64PSJNJFWlefFyl7/y8jaXT3dqyEmDqhRJkhpcXBmqT1Up8ryikbaRMkVpYaiDwKlTW0ynivc/us71j67zzjtv8tYPP2B9pcNTV87ZgqmmSggoirJkMinY2TkkSzOaSUq32WR7ZYV2x4g8meW8MWpm2Wy4zCZLztCbDo8O+e53v8uDBzsIIbh69SlWV1e5du0a+/u7gGGHDAdDVldW6fV6XLhwgb29PT+gXDEDV/9vb2+P+/fv8/TTTwf644LTp0+RJAmrq6s8eHAfKeD0qW0ePHjg08aFEGQ2GaTT6VlPD0pV+Rp64VLWYcx2/eyLB49GJtM0TVMPwaytrdHp9ciaLQC+973v8YMf/JDf+Z3/2CvzCSGYzqYIKTlz5iz7+3scHh5y5swZIhl7yQLXag868DkXVmEnNm/ALa1yPOTe/bsMh0Pa7Tbr6+t0sw5RHJFlDZqtJq22ufYoqg22EMYIuv6wVzHn3DqjEV6XcDjy3Da1UReYFdTMrpz8fbqVxVyY3h3cjP0f/eh9Zv0xX/3qr1iDa42295SVX4laINdqopQ0m5mXTjC6OTX33I0np6cTQimhQXSfLcqmhkVxF4PWLkZykoa52zakC4ZV0x/HcIdc+XDltMxoh58dGzoL17YMRgnbE2e0j0Y5/8O/us6NB2MKq1RWVie/cErDNDeG47Xrfd78eMClUy3+7m9fYqWb2HFt06bBrXv8kj9rtkmSFCFCYRrNeDJmMBgwtZ6e86zarRZJHKMwXkxVlaDNC5ukCWlivMeatSEsK0S4mmc2GcUY8EjWlaEPDg68IBJAv983Ht7qCg2bcNNoNJjNZrZauUkT7w8Hnn7mChgcHh56g+kYGk4YHrBqb5H5LMD73aBWStmYQU2VcstzoevMuLDeHtTVdZSV0fM6w8JQNV02aJwkxNH8iz+dTj0V0bWqqhAIWu22r8X38BailIvjpjbm9d/aG0hT/WbmRZyiyIhbRVFQJ5JgSU8Al7gji/DY7nN3TfPeN8c+Db7wx6s3WDRsDn52MTKHxArnqttj5XnBbJaf2GM1jmuaUmb1IqLYQ3k1FGZw8jDwvBiQdLix7xtxvJgA1JXZl5X2cp78opKf238xeOkmkmXe/qMw9/A6w7/D/Xy5P9vCcyzu/6hzPXFG+7//Z9e5uzfiEaJsS5vWkJeaD+6O+H/9Tz/iP/3GWX7p2VUAxuOJWf4JyOKEVjOl02qTPvcFuk1IEoWyaeyj0YDv/4fv8/rrr1FWJRcvXuJLL75Mr91itddha2uLvcGI/nRCv99HpF2arRaXLm/SiFLSOCZLEmaznDiZmYoW9jmWZcXHN24ynU5NZfNr11BKs7u7yx/+4b/lhRc+R5qmFEXBd77zHV566SXOn/8qjUZqKW9w+/ZtTp8+RSNtcP78ed7/4AOvmQ3w3nvv8c//+T8nz02BXpfJuLe3x2QyRghBo2EU9+7evWsgGiHI87wOLOa5V52bL58kfFJEVRr4pKhKmllGlkX0B31m0ynaKtdtbG6xvrlJo9HwBryVNclaLZK04eMJzWabqlL8yZ/8KWtr66yurhFFpjBvFEdcu3aNnZ1dDg8PLZa6UFrK/GH8zTnA2P4W4tjOq7b/yrJASFPf8tbNmzQaKQjY3NhgfX0NIczkWlYlCFuMmRpuCSc2exlgfAPv/+olBtv8Ic0KULtrDsNg1sGwm0aR9LAVwYRpJtxwYhG+C3SlGA2HTIYje321gXWiXkY508oxaFOQodlq0WgYud0w3V4pE+MI1QLd5L0sTdx9v+iphp7tMmPnxL/quMq8UV1dXfXHdvtOp4apNR6P5z5317asdFk4QRyL0QTn85m7wb0sU458HJz7iTPaRal+LIMdNqUgV4p/+q3b3NoZ8598dZvpdAJaE8mIZrdBlrVot5psbbQpJ3tU031muenw8WTID374A9588002Njd56aUv8mtf+xqtRobQmkazw9FkakqPDYe019q0mxlb2xdIRUIkBbEUfPjRRyR57XGDCcTdumVSz9M05amrT6GUYn//gG9961v8tb/21zh37hzT6ZR/8A/+Advb23Q6HdJ0lWeeeYayLLl37x7TyYROu83p06fpD/r0Vnr+/j/88EPef/99ZrMZ165d44UXXkBrzf7+PgcH+0SRpJE2EAJ2HjygkSZIISiUKUrqlPXSNPVUNseFdh55WRgWyGyWMytmJjCaCQb9AaPREK01vZUV1jY2aGYZ3V7Hsj0EQoFIYtDCc46bzSZVpfjud/+cr3zlqzz1lCaKYDo1STpXrl7h3Xd/xOHREUK6atumvJb2qyfhLLTvi2PvkHeE3SAzmbVRLJlOxty8eYPNzQ1WVnqsr6/TaCQ+td/ouNgELuprF9ReoINYhAiN8wnL6mC/KjTaujbdwrrRAlPKzsgn2AxgpWzAsL530xceGkcpxXg8Zmz1y91chf0ukpEVFKuvsSgKVtd79Hpdsiz1n5vJEn++k4zySXh26J2G2YxzfWL/djGNEG4JJ0bH3AmP4XTaR6PRMc/fGdhQrtd974x2+N0yOMb9DCeBZRPSo9oTZ7R/mi0vNd95+wCA3365C9qwRSIZ+YcUxw10HqHE4hLNvDZRZOowtlstsrSBriymZxMpnJa0Y1fEwnFzYZbnyIlR8UuzBmVZ+DRtt8zvDwY2aFgxmUx80QPHCKmX6pHXWp5Mxr6GYFkWXiwJoNPpMBqNvLaIu8aw0ovD87TWlFVFQ8dzwZO5pZ79u6pqL6rCiDaVZWW9tboUmIwkURR7LzSKTEp+kpgahloZNkk1myFlhLQa5uELOZvNmE4nJEnHe4Mtq3/iYKBjzV9+DUscf42097zrF6+yWGhYI7AuJeXqDYbBzsXF70mr4UU8PejRpainXvjpN9fz2wgH+R2794UdRf385qvVLDMw2kzM9tgy0Ms57nnWsQKHxTuP1m23zBgvwhYPgxEWJ4XQM4f5FPYQMnm0VvjJ55u/x+P3sXjtJ13/I9CRz4z2o5ox3IdcOtPla5/fQiBoN4zgkIyNFyxEgpC14cqaCVeuXuLuzh6nT5/hypWniOPUSFrawbK6ukLSadPZPkPSXifJusRxVEvForlx8wbT6YxW631++cu/zJ07t/n44485PDw0y9Ci4F//63/NX/2rfxWtNdPplNdee42PP/7YG/DpdMre3h6t1jk2NjbY3t7mT//0T+j3+6RpyhtvvAEImpmBR772ta8xGo0MPlsUvijA4eEhURTR6XRJ4hpHV6qaG4COz+7wbqdhMZ1OLXPB8Kun05mvXHLu/HkmkwkPHjzg3LmzlDZrUFWGqmeCQsYrnkwm7Nx7wO7+Pqura5w6dZquVQJsNDKefe557ty9yw9/+AZf+cqveE/76tWr/Jt/8wccHR0FOOfi09aev+2aN5yYl66y8ILDz90EuL6xhlIVvV6X9fV1u7pJjfZHJImTGJUbmqfWtdqHO4dSlTeQ8hFv7Zz59F5ajX7PX7yx2nX2Iv45YaEgYY/jCNo+sCYEcRQZHj+1/olrZqLExjRMUeXaQLoM3UWIwPW7m03mjVx4X4ufPy7mexJW/LDtgTnt9lAvZZkhD2MQi/+WwTGL1x8GTxevRcp5b36xfWa0H6PlpeKf/LtbfP3lK2x0G8TSRJYFQKUQMkY6zQ+g0Uy58tQlbt/b5fTps1y58hSJMEhhJAW5rlhdXWU9y8i2zqKjNlpmZqDbZalWJpvx3v37lGXJC5/7HNevX+cv/uIv2N7ept1uM5lM+MM//ENeffVVlDICRN///vfJsozxeGwSdCYT9vb2OH/+LOvr62xvb/PRRx/S7/dJkoQ333oDATQtFv21r33ND6qqqmx17xFHR0dEUUS3awo4ODH+qipraIEa54wiU7jXGBVjtEeTsSkcMZkxtfh/EptKOqPRiAcPHvDKK6/4YOhHH103WZ9JgktUmUym3Llzl3fff5+LFy/R663SXTEZolnW4Nlnn+Pu3duMRiO+8pVfYTKZ0Gq1uHLlCkdHR/T7fVzRAN885GEZCoHXTvCjqowKnymOPOLBg/scHBwgI0jSmEYjpdvtsLGxRpaZyu1KlyYgmUTks9JCEgb+0HNG1GZ+ugzNE9pygw2IyH/pw6XCJbzgNW2caXeYvL91nA5LjatLG2x3Rnux1YatInYJQYFX64zPvJe87E7q6w3vben9P6YB/iT7uOZWz4tOSCi65ldqC4cMDf3ihLN4TSEWvwgJLQusLrYfby3wC9iKUvH/+cc/MCLzoQA6AkEtJg9mwDtOsftndJyNGqATe3KVwOvBAgjQygRzZrZSidG31kynM8/BdnBCv9/30qYuCBh6DlAPNBPIq4MzWmubONMgSc2qwQUPW60WnU5nrvpN7UG5hIaaETH3YgQD0LFBzD9FtYAxGt527IWshKj1SIrCQDyG82tYM9OpqbYTVvNx92r0RxqUZWW3KWs1RJsiflwc31mzBY/H9qOy1268//IYTOSOFbJgwj4C5z2HMIHrryUAzEnYZu2Yn/Cl+81uuMRQaf/5kqSPh0CqzaxBq5WdfG1Bq+e/R+G0Dn9/fCz32BFO2HeZl/44x3rcbRfPs+hVnwx7zMMiy6CSx1kZfOZpP2arlOb9m0d8cOuIZy6sB99EiDhBqtRnLZsXu7IRdTMwD/b36R8e0T88REvB5rkzbJw5S7K+DYkOnT1GwyE3P/7IB0WGwyFpmjIej7l//z6vvvoqo5Ep7np4eMj9+w9YXV3j13/913nxxRdtUK5iPB7TarWs0TaZkb3eCr1ejzQ15ceuXr3K2uoam1vbANy5c4c0Tb2xLsvST1JOC0Nr7RMa3ITgBpq0PGstJbPZjL29PaSMmM1mKDC1IHs9sqapsOMmicFgwEcffcTBwQErKysURcGNGze4efMGa2trvPzyy7z11lvs7e5xsLvP2uoavV7PT0y93gqntk/5v2eznFu3bjGbzeh2jY52mhru9mw2q6vThA9Z1AGusiyZTiaMJxMKG0PQQBpMxJubG3S7bYQ0hYyrqiRNE4zWSOU9JiklURyRFzlSmDJhbhLxp37I2DvpuxrzNhuFmPZJ+8SRib/MZjOSLDNef7CXx4GVRgszUT///FNU05zayNarqshi944g7qiws9mM4XDEykr72AS2GJxzn8/f2ycv77bsuI9q4T5hDdZ5xtPxazVz7uOd5yTvf3GieNxJ4zOj/QlaUVb8iz/6kP/bfxkYbREjohSZNOYggqoqrayqGQx7e/vc/Phjbn70EVEj4ZoqiVstVsuCKFZzRns4HPDO228zGg6tcT6g0UgZjYbcvXuXjY0Njo6OTKGBw0Pu3bvPysoqv/Vbv8VTTz1lJT0jfvjDH3ijLYTR51hZWWF1ddWnsD/11FNcu3aN0upR3L59m1arRbfbpdPpeEzPrQZkJKnKwnuU5tj1YJN2ea+1gWsOj/pUlSJJErJWk6zZYqW3wvbpU543nmUZR0dHfPDBB+zu7tJoNKiqio8++pj79++xtbXJc889x2uvvcb+7h5JlPDFl16h11vxRnp1ZZVTp0/bv41h/vjGDabTKWA8cZdwM5vNaLVa3tB5vjQgosjUZywKBoMBe3t7hj0xNgWIe70eq6srrK2tsbW95TnYDx7cZzabkqZmVVJVtc6uqYtpam5mjcwbbRdM9i9vwDCYf4Frr/z4i2520xCK8/mm7Zfuqyg2FYxmsxmRW6kEcLe0ZdC0xkMdL754jUhpCp+g5sZ5iRSJWSkZNqMPwE6nU5Su6HSyE4Nvj4IyHoVxL95naIAfx3Ne/N4Z7sVgtTvWvGf9eDb7sVYnn9DD/8xof4KmNHznjbsMpyWdLJmn84aDCsO9Nd6osBjohNFozGg8JlYNJuMJ04nRIYn0YpDIcH8jW9uyKEo/aJwRdQNHCGFffs3a6irtVotWq0kcG7igrtJjUvcdi8Qdw5WumkyMcVsGA8y/cKHHNM9C0KYjPLTgWBZVVdlK6pGVbzUetvuH3a4oSs+MUcqUOxsMBjSbZmk+Go0Yj8e0m23vxdYqgCYQ6TBIpSpGo1qHRQhX9kzUL6W5YGPsnEIdlZ90w39mH22xZ4M7JklMEsfOyfTMEWM0bFWkACN2mO4in7ceOKGRehSLIIBXlm3n9tfhHjW1TylVf2X7wccHVQCzAM1mRqzh6Gg2f8DFy7bHNuNN+TEU8pvrrMbjBjP8uWiwFyl47hwh9uyae0cW93GtVpOsjx9mXS4ztMc/Wx5ktFsf+35xr8Utws8fuuziM6P9iVscS975eJ9XnjtlPtATpuMBs8mA6cQYg2ba4PTmGp9/7ilKJXnzzTf40z/7HtPJBIlmNYm5ceMGR8MBF649SxR1iWSGlmYwtjttrly7RrO3ipCSGx9/jFKKtbV1Lly8SL8/YGNzg+fkc3z44XUioSnyKWdOb7O7u8PtO7cZjyb0B0MuX25y6vQphsORnQAKvvCFLxDFMePJhKzZZDqrq673ej0jl2pxbNfmJDUtx0WIiEjG5EVJUVS+Yriws1mr3abT6RHFifH+GylpktJqtcmcJrg2rJcsa3L69Cnu3r3npVWLomQ4HNm09CZ5XlIpTbPVpN8/olIVR/0+m9sbdHs9tra2uH/vAefOnkNpxRtvvMlg0KeqCqDizJktGo2IBw9us7m5ihBGCiCf5b4AwTQfe35yVZW0uymtVszaWhspI5rNJu12RpqClMaAG2+1IrJVkcqiQAhNnGQgKkw1mxJEhYwFcSKt5MFxQ3AiLOANsAheeCf+a1cLumaDAHhpPm1MspASGUv7nKZ0/H72BLbSusYyWaQgiuqiCOYaKrS22bM2pqNVcCcSdGUCkkVZcnh4hE9xF6CVIms26XZ7mDJ/5rJd0NxN2MsmtkVWxknwgguGL7JN3LE2Nzc5ODiY615nsGdW4+ZhbZFFE3yBn/xCnvwS4Cr8VOh6KfQ4PvdnRvsTtlle8d6tQ155/hTGZRkxHR0xODqknJjlbquR0Ty1yVqvx4c37vLv/+x7/P43v8X62hpPX7vMepJy/foHTN6c8lf+6t+g2VpHpm0qqRAiotPt8NwLL/D0s4rDgwP+zR/8AapSbGxucfXqNQ4Oj3j66atcPH+OB/fvIoWimE3Y3ljnu9/7D9y+c4/bt+9ydNgna7U4e/4cezsHoCug4su//MvkecloOKbZbDOdzvz9ra2teTgkHPy+9JdPSgGBJIoS8txwvvM8ZzAYEkWmluH6xjqrK2t02l16q6s2IOcCkIYiVinFaDSi1Wpy9ux5bt68Rb/fR8qIPC84OhrQ6XSt0S6olKbVabN/uM/uvsHLf+Urv8zq6iqnz5zh9dd+yF/9nd8mjiP+5b/8lxwdHlJWBVoUnL9wGoHgzp0bPPfcs0QSdKXIJ2MO9nfp9484HBwQRdIXF97YWCVrNEitVIHH92MQmP7USnmj3W42bYHjimarAaIAFMgCREUUC2InyRuoWLs8RCkiKuvNH3uDvSvsXnhpfzFxBCFqsEdrbPKONexCIGSEjI1xn+UTQFuBKmp3WZiizBEghLQlxgxUYjJBS7Qy41wKM3mbxBoZHMOcuygq9vYOUZVZpUSxEWVaW1un21uhTuSvg+rD4ZCiKLz2R2iYl9HvlsEuJ2VWura5ucnu7q7/3jW3AnP1OBfb3ASyLHKrlX9ERq7B9Kuod5q/dpZ/IR7BD/nMaH/CVinNG+/vov/K02YJrEz2n4EV6rTkOIkR0lQhGQz69IdDmq0WlcYEpWY5g36fMs/Rla2QbV+MKI5ptdtIIWm2TD1LpZUXTNJa00hT2u0W7XbL46FJmvg03MFgCEKQxDFp2jADUldE0njTe3sHlFVF6rMDzRAKZU1dm8MKObYwtLi9+2c0QyKtPWSRtVpzafL2YFSV4YI7LZUkSZhMJl5fxIkMVZVb7toz2nqZeV74z5zU7HQ6tbBLymQyQdsXSQCtZmbLzOUoVaGU9PovZVFQFDmz2ZQkiTC2wRQkSNOEZtYghDs820TXMIKDPmoYwDIkbBVGA2c5FKEWdBLOcJ7kZwXG+vj6eXmiTb3dwrfCeNOOYuiA/bnlecCoEcLAgksJKdZ99rZMBD+FrhOhisIafEmR51Q2MD53ubquROSw/mVGexHacGN1UawpVO9bZoBD3Dqk8xnYK5n77rHw8cVuCZGruc59WJj4+LGWtc+M9o/Rdg5HHBwcGSM4GzCeTJnNcob9I8Bg0lpo8twILh0eHPBLr75EJE2CwqVLlxkNBiRJzJ07d+hsnqPZM8FNJ6fpIIYsy9jY2ODw4JBut8sLL7xAq9Wk2WoxHo+5fesWL3/pJdbX1+uqMN0uV5+6yqUrlzl3/rzlRk9I04jE4twykohKzC1FwxYuRRcDO7N8RpGb7MyiKLyRbTabrK6uWhqfCdq12m1S9xJ4q2vOe/vOHd58603iOObu3bvs7+9zdHTE6dOnuHjxEt1ul3fffde/gKurqxRlzs7OA55++lmm0xn9/hCA8XjMysoqOzsPKIucra11Xn31FW58/AGrawZmunz5CkqVtFot9vd27dLeTAqOj5y1G0SRWVm0WpmBcTyn+wSc0q5EXNanyewUGEatwwXwx9Ha6nsvEWHyQS/z1+MPSmfT56CVMCPRFGJwcRBl+eL+2UYS7eAIbfVBhIFSDgcTqLSduDQmkQYLuzgPH2/ko0iAMBRWKSIiaYWyImF0Wh5ilYQQXmfmJHhkcXuY19wOjfZJ28/x9Be+X+bNu5+L1/CTUBZ/3PaZ0f4xWl5U7OzsoFVFQw2YjsdMJlP2dvcAIz0qpWI6MYJQOzsP+E/+0/+K+w92uf7+Bzz37POUFvu9fv0Dzlx+lrWtCpFomxkniC0rod1ucebMGXZ2djh99iyXr1wmigSH+/vsPrjPB++/z699/RucOnWKOEmQMmJtfY2nNjY5e+48aSNjPDYaJyu9DrKZ+cwvl0YeCvrA8mBQVVXeA5lMTd3FqS0w7Fgga2trfvJAGJEkx2t3x7ULacqy5Pr16/yv/+v/ysWLF5nNZvT7fe7cucfXv/41Pv/5FynLgj/8wz8gtyXFNjc36Q8OuXX7Jl/72tcZjSZMJgbaGQ4HnD13jlu3bzHLZ6ytrfKbv/kf8Sd/Itna2iQSES+88Lw1MnD9/euUhfG22q2OlaTtkXUauIrqUYSvZTnvMoHXHhGmoINZzleefRDFkd1eYhL3TSKREHVfzsvSAlpbQaUTvOcT27zh0LpCYDRBQgkCV0BCCFucVhudnkXmhcBAI0IYSufOTh+dw5XLHaBCCjf5gEIjbfaOEMLQXmOJ1KAjgVYSrepkktlsNj/W/DVbwEdKms3mMTGpk6iC7riL3y8TY3LbAktxa3eMUENk2bnMz9oHmdvmkz24H6t9ZrR/jBYJbGX0CqEL/1LMPIXLLvestkeR52xubTCeTNFa0+506HTaNLOmzVw07A8hNGgRBJM0sWV7zPKcJI5ZXVlF6ZKjwwOTrDOdkcQxDVsMQAhT1aXb7bK1tUVRVgxHIy+ruki/elxPIdzOGKaKMkhuMYWLDXzjdLMdkwRMsQbv/VjJzPF4zL1791hdXfVp86PRyGdegnm5ZjOTXNNoNIhk5CGUojABS8Bza/N8htbK8qg36XaNtrbW0G537LJdkdvVAkDWMEYiSRML41g4g+Mvfviyzn0ua453vTKxfWe3kV6/w7BMFkjizH2w5OWvOdJ16SoPsSw5hLneGgM/ppgdns5fWr0acuNjOi3QuT23dhORj3vWGK69EuE+lOanDHR5lhBHjsEdiwqA7vOHGe3wJ3DMW15sy75flqm42JZh5Cdt97NqnxntH6P12jFJEqMqQSIaSFGh1IypXe6a9F0nW2kqlLebLSIpmeVTlFI0sybdXo+j0Yg8N+JMEvBjyb6gcRzTbGaMhkNjaIqc//D9v2DY73N0eMCrr75qklHKgp0HD2hmDaIk9ck4QkbEkcmETJLEe9WmaK4xnLB8kDl6XGlTt0NPpNvtGslYbVgibYdbLxxnd3eXw4MDszLRml6vxzPPPsN4YiarRqPB5z73OaIoYjAY8M477/r0dyGEFcMy0rMrKytkzYzd3V1GoyHjsRGGAkPny7IGzzzztE2mkWRZgwsXLpBlKTu7u6gqJ0kjGo2U9fU1qtI8o2bWotnMSJIYF/Wv/7nnQWjZamNi/xdHMVoZEayay1z/E8LopWttNGPiOPbl4ownGfnYxMPbckw03OthdDlH+/P0Nv/34v5OGCzixse3yEc5zz1zmarSXtHPCHYZj9yfR5vK8zrsw8WVw5JbDLNMTwoCnmQIQx71I7Hnh3y/aJAfRv37GdrkR7bPjPYnbFLAM+c7pmpGLMkk0IiBipHlOssoRpe5Lf4b0UhTVnpGEGo8HqOqik63y+bmBjff+BHTyYSqNBWyI1823pSBT5OEXqfN0eEBk7Ep8vu7/+pf00gT1tZW+et//a+zubFOPptx9+49Ou0WWctUuzk6MkUQMgtfNBopqU1Xz7IMpTRHR0cPHchFUTCdTn0NSZcN6KiBrVaLOKqVD+eOJQS3bt7knXfe4fvf/z4AV65e4cKli/T7fWZ5Trvd5ld/9Vdpt9vs7x/wP/6P/6NVGDS88o2NTbSGmzdvsrm5Safd4datWxweHjGdzhgOTVp/msZ0Oi1effWXLEQjabdbPP/c80xnE27evIVWBZ1ui/X1Vc6eOY0zfiYhJLFBLhc0rAONbtUgFpQcDdyjkSKyVVQE+Sw3MQ1MiND4xBIpzKQyGZu+TNPUJ+YYuMTKtT4Sx16M+tWfCn/d9eRSBQk0i/rTVVWhRLBCsDOQlAJUXQP1rbd+RH9vwO/8zq9TFqqWKZWJXz2UZYHUrr8CvXFcVfqwVNfxe1wmMTC/anm4lVxMgAnv83Hbouzqw8/3iQ79U22fGe1P2JJYcPFUmyiSZlBHMRLtA1EACIG2MIfBFaX1cM3gdoJFjUY2l8gShpy1fQFcko7T2lBVxd27d+l22rSaGWfPnkWA1zze3GxbgxBRjKdW89hcgwykJ8NyTMtamMAQ6oe4YKcz2N1ut+Yv6OPhs9F4zN7eHrdv30YIQbfbpSxL8kAydmtri16v50Xra68LzxkfjUasra15hkme57bv6oo7cRyxsbHhK8vHUURvpYcYwOHhAeiCJDUYr8FNnYepEcLg8Eqr445s+IYGbBEbicPAHRIprATtsg61KxTn4UZRWBhgyTMIbO9xBzw03PW16GUMj3kffOG2DBaNN3bi2L0LBP2jvg28m0B5DeeHk5j2YzZcpWiN8XQWLknM/3nMq11Mtpm7phPgi4fR/B63PWy/Txp0fJzJ5hMFm237zGh/wlYpuHza1PaTQqKpUBgObLtjCglMJjOyCJIkNbUlpeTdd37ErZs3TcByf580lqyurvLU1au0W0205bKiK1w+8s7ODnt7u0wnE7a3t2g2M1SleO65Z2lmDdbX1kzCTmQqsbRaTVN0IEmsJoQxEibhxbz52gGRgRcTLqGdjrbz0JxhXVtbYzAYkOc5Z8+e9RF+rU3x3NlsynQyZVaYwGQzayIjadLAJxNeffVVDg4PyZoZr7/+OpcvXyaKIi+GBcbwrq2tUVUV/X6ftbVVT/0bDge2JuUK586dQ0hBmhqFQMBndXa7XSaTCQcH+0wnY4SlDzebTdCJSSOPYxxlTwjH2KmbgONGcxlgXG+NqxdoKt1HSDchWlxXYCZObb3fJGkQRy6gt9ybfLzlfmjQQyzdQRx2O+n0Msw3ToWxlFhwWgam1mHHtWGXMqyf6VYhJuvTIEcn9Y/ry+CYJ97L8uIGP4kR/qRtmce++L27pvD66g2wTlc96Zx87T+eu/6Z0f4ETQj4/JUurUYt31gBEQIRxaxvGtGl/nBI0jMFbZvNjCSS/PEf/xF37+0w6Pe5eesmly9d5NSZM3TXNljp9ahKk7WnKwCBiCI++vA6t27eoD844srVK3Q7Haqq5Ne+8Q2EMHzwwcBIrEZW97jTaRMnDaTlF2tdMZ1OapxSmeBdOCZdEg3gCyC4AgqdjmFWnDlzxlS8mU75/Oc/72mCVVVxeHjI/sE+uzs7HB4dsb29zfb2NmmacvPmTY76R/y9v/f3eOvNN7l56xa/+7u/y9//+3+fJEk4ODjwnmYcx5w9e5aqKtndfcDqao8saxDHEbu7u2RZg9OnT/PCCy8gpSBtNDh37iwAq6tr9A/7bG5uMBj0GQ6PgIpu1wRGe70V0CWtVkYjy4wNkdYAVYaiKYQ0ttx5oGFQbonRrl9G7YvzTqdTkswY5KKsiGJbFIGIJInQVu0xSRKvrOghDPGwl/jRsInGBFnrGJvltgs5Z7QRhhM/nU6pIgUixi3vnGfs1kxaa6TQSAmRBIFCC/O8VKVMcQRhsmM1lWG/2InKHEKgtayvMYBNwn50xm2Z0T4x7f8x2qOM7+J1uO+WGeeFIzzi+59d+8xof4KWRILffGnb/+0COOY9kGS2kECe27JSVmJUSsn9e3c52DdFZ5132Wq16HRXIE6tMTUJCS691xifAUWe0+t1repexdmzZwzbIs/Z37nvB7uDEqK4ptwpbYyE5xq4C9YBxhgM0rIsvQSqo/NJKWm32xRFwWQymdMLMXKzM0ajEQeHh+zt7ZFlGd1uF6UUg+GA2WzGlStX2NnZ4d79+9y4ccMzBKbT6dwL0m63UUrZxBhtCkNIwWw2tdzpFmtrawjhpGaNHG2j0aB/NKDZbDIYHlEWM+IYWi1z/YYrLv0E5zHrhYDjcaR4/tMwEOXfe4t3C1Fn7QkpcNV3nKEMA49SSl+U2fGoDR1xeRDuGMwhjI/rUI3wch1M4qCfMMfGHUVKAxNVVOhApW9xcnArM7dimfveYdh2UqsdfqtL4/su9NznwKWFpJTljKaHrUB+mjzpT3yshwRGl/19IpHzE9r9z4z2YzYp4eJ2i4unWv4zpTUSlyYsSRvGaE/z3LygWtNpt3nmmafZPZrQWx0zGs9YXV1DaRMEjJMGzU5MnCmoSgQSVZVMZzNWuj3Onj2L0op8NkNVymKmGq1rjedms1lXRrdvhQZkFFFZLDxJEkzKsUKYHGzADKjxeDyHdbdaLV9jr9Pp0G63EUIYJsjhoWG6yLrCutObLoqCBw8eeEGora0tptMpBwcHvPbaa9y6dYu9vT2Gw6H37uM4Js9zf8z19XXKsmR3d5cHDx54/fCzZ88SRZKmLWiwsrJCJCOPqxZ5AQIiKWmkCXEEcSx8ySuEtBmnbvpSwbui7D+Hh7i+WXgvF1/qY5iKMb2xrQE5mxVEcRJsZ0W+ZF1X0O2jQ2smlpzrUc3D0cJPSOZn5GB3KmUzbwMGibHJjgJqVm/hFCal5MKFc4x7KyAUSpXWwXB9Y6yzCeHIOWzJTAFOcx7AME0eh4X+MBbJz7s9lpdfz1I/9qrgcdtnRvsxWxJJ/uvfueRTq533o4T1JEREy2Lag+EEGcUordjc3OA3f+PXeP/mA8bTkkoJLly4wGw24e7duyRpxpnzGc12F4oZQqZGh+HgiDOnTrGy0uPKlcuMh0NjWjSm2rdWlLagQhLHJFHMdDYzng9GZS6OjBxonud02i2EMGnFJHWquikKvF/fZ5KYmpZtE9B0NSKFEFy/fp179+6R20rrzvA4z3w8HvPee+8xGo18qbKjoyNu3LjBP/2n/xTAG+OiKPzqwAUWpZRcuXKFyWTC9evXSZKEBw8eEEURX/jCF4jjmLXVFb7yla9QlqZk2dQydsaTsWVxREjRAiqStC555QyK0XUw/VPbBBtLAJAR3srVAGVgjLDWShLyuJ3jroC0YYoej0djWq0VDKigTH6kNLUTY0sFBZNS7nFtf8D6dHVzxtDjHMF3wnv73sPHYO0KgdIaVTkZXWHHsTYiZbgJWJgVQlGa+7OT8ssvvUg5zZGypCxmaJ3bbqgFq7QyZdWkjFC6xJWHc8baXo09l11h+GDl8mIIi0ySUG7h59FOwtJDWOz4lz/ba4LPjPZjtTQW/Ge/do61bi2M7pesduBqIUhS831uOc1ameX5pUtdhoVgVmgQCd1ul+l0zHA4Im1UFs82njYyQauKfDql21uj3emwurbGrdt3KCqj6xHHEWjlE1YiCzVUVTVHp3L4oPG0YyrLXAmbSZ6oIQoppYc32u323At1aOEPpwgIeFzbef37+/tkWcba2povLtzv93nnnXdYXV1lMBgY2qN9AV1ATCmTELOyssJwOGQ4HHJwcMB4PPaJQgCNzDBm9vf30BqfIFMWBY1G5CVThYhI0shwirUzH3LhhXNGGNP/zrgEBtN7fEs9pxoUCEOZThrW8M0X9rDerOPwm3Oouee2+HyEWDBqi5FSXBZjbSbrVUK9zbysr/Rp7HPJKYGn7YzWqVNbxpALhdJlPcEFKxLTbP/quq+Fmyi16WM3aSy7z2XtUcHZR/GqTzLyD+N8h98vbuc/57jJXoR6flbe9mdG+xEtjQVf/dw6v/L8ujfUYnGw2kBMkhijrRWUlSLS2g/cVjOjUjNGkylvvvkWw+ER08mERpaBTBhPZzzbWSUWMVVRMJtNod83UIY06niRDJTUwI8SJ9TkMw7B46Nu6yiKmE0n5PkUVRZUSPKiJE1TVq0CH5hCCQ0rmxo2R9czfOp9D4GAqeDuYI1nnnnGYNmDAZ1Oh8uXL1MUBRcvXqTVanH//n3efPNNwODQGxsbDIdDptMpaZqysbFBVVXMZjM2NjY4f/48aZoyHA4tk8VIm2ptgn8umBfFsfU0jVGYN3QCpY1JrrnCagH+sJiyN+buWQeQSYBhz3nedm+ES4G2lep9LMEp6WlbXT5Go30fV1Vl539n8JZrOs89dHt6f3xr9kNYOsS7nQF29xNFEmU515G9H+PN6rnttdZkWQqJRIhAczu4GimMJ+9iJq57LOQdkkcwxjy4AeaNo/Puw/aTcK9/0vZQ9scids3PxdH+zGg/qjUbEa1GzF4/Z70bW2PhDJp9TEIi48RAHECpTLmrLJHEwgTS1tdWKYoD7t3f45/9839JEke0mg1azSbvvvcBZ89f5PzFy7SQ5NMZw0Gfvb1DkrRBs9VCRhFpZL16v4yudSTcT/sxaBPxd+Ot0WhwsL/H/v4eVZ5DlBDFBgo5e/as5zZvbm76BJpFr+PUqVNMJhM++OADVlZWvNHe3t72DJNWq8Wf/dmf8eGHH3L69Gm+8Y1v8IUvfIELFy4A8Oabb/Lv//2/x2U7PvXUU9y7d4+VFVMN5tq1a5w+fZqiKNja2rKrkin379+3kp0RnW7L1pFMaLXMtTXSFCnnFQqVKjGsBoFbYCjlsu+q+g1znrRWaF3WRsU7he45hx63CjbCG90sMxTPPNc2Ian2fBGaJInJGhlKVT7RyRWxcO2RHtoSaF0v/com61gc2QV/NYI0jShHQ5SOkJmJECqlqdDEot62UoqV1RYxpoq8kMcjiVJInKSrqozR1s7r18GYFXWiTXilizCEyx84iX73Sb3nT9KWnW8pfGNvoQ4SL893mLuun5Lj/cQZ7SSRSAnL8hV+nHY0Kvnd797nd797n7VOzH/8y9v86ufNUj0M2CCk97SVFpSVQse199BqZkRxxGw65Y033qTXbbOxvka7lYE09LDZdEqjmVOVxtPuDyY0Gk2TCp9lYHFCby6EG2RLCtaKerkL+EDleDxmOhpBlJA1W6yurrK6uuqlU13QcdngDT3tUD6z3W7Tbrf95PH666/T7/fpdDpcuXKFsiw5f/48eZ5zeHjoU+mdpz0YDJhMDC1xc3OTTqdDVVU+4ebo6Ii7d+9a2dWEKBZ0Oh2LtdsAqi2j5e4d8IbC/F5D1YtsjHkbsvD5XFDNfqjVsSil094w6nG1p71wQbWnrZUVlbKUP5ynzU+taXtON07CYtTSxjMUql5XaGN4cXEAaVQQs3ZCKmA0Gh87h0PYXTGFGqcOrkO7cWr7DwHC6E0vhRl+hkb5p9dCWIb5Gw63+hlc8xNntP/+37rK//Cvr3Pj/pii0if15Y/VDoYl//Cbd/hnf3yP//ZvXeHidtNzWs2ANyczWXtTWkkLIotZKsFoOGRnZ4dTp7ZpNIy40qWL5zk47JsEkkGfNGujKk2jkdLIK6/Sljrv0V6LsIEn870CKh8kVapCC0OncxVZyrK0lLk2jThGxClpIzsGhTi2RhzHc2XJtNa0220ja7q/7w3S4tLVlBWrg7Wuyvrdu3fp9/vs7e1x+vRpT707deoUKysrxHHMcDj0/HCttS8sDPiVQJLEPrjozmn6w/1/0UuixrSFgZJ8NXq/nzy+69y7Zgy0mLtfHfy/vhaHZy8T7HfbSCnRlZ4TUgqAZLSqJ+TjfUxtIBz+ETpyC+PdbGHeAzNOzH2XWhhMWwZwSEilU47z7eRlDRxVegjHXYL2dtjOiPZ4ur6+uRsMHQt97FgPy4R83PbThFNOvo5HX9/PapJ54oz2Sjvl//K3r3Hj/phvfn+H168fEUeCWX5CevGP0Sa54v/9jz/gl59b4e/81kWPlTr3vt3usrt3wGonM4aiKikLxZ07t3j99dd45ZVXDO84kvz2b/823/3z7zEcjbh540OQMVmzw+pKDyFT8qIkL2a0RRelMVVSImNII1v+apbnRiCp2TQesJBEacre/j5HR33GozGTyRmarRan05gsSRBxioziY1DIzZs30doo6l2+fHlObe3s2bMMh0O+//3v85u/+ZvH8D6TxNKbS7ufzWbs7+/zgx/8gI8++ojJZMKXv/xl2u02jUaDl19+mSzLyPOcO3fuMBwOcVTA2WzmmSvdbtcbCFfrce6lEMJnqIawjqvVGMkIVyV9Ni1pt0WNehDPG+k5zDX8YB7v1tYoueuQkbD3UvhJ0tFC3YogjmOU0kzyqaEDEhhn5hGYE6HUuV9q/W3tazu6YwpUVV9vURSUZUGlFIWCsioRUa0OKYXE6jNSVSUFtq+tL50kDfJpnU2qrcFV2iTZCG1gAind2gRPfbUVQ4+tcrATSpgvsFh5xrV55tan2z7Na3jijLZrF0+1+K9/5xKjacmHd4b8w2/eYjCpHr3jJ2jf/dERt3ff4//6nz+FRCNsECdtZPR37qOVWTI7z+vo8IBbt27y5V/5KodHR1RlyQsvvMD1Dz80qdf7e6xvnSFOMlrtHnkJSk+YLaShC+xglqZ472QyRmlJ23rlUhnFwNF4xGg0YjKZUhQ5aZKQNDN6nTYybqAtDu6gE4D9/X1c4o+nodkXZ2VlhW63y/3798nzfGmQxlEBnYaIg2Q+/PBD3nrrLbIs4xvf+IaXcW21WkRRxJ07d7h37x79ft9XKxfC1FxMkoQsyzwWqnV13GjXALRt9TLd9Jeh+imbkah1TO1ruyU7SxyoZS9n6DVqnKduJpSYycTI9npPW9fGx9AkTWzkuCduQZbQQX1IM1s7N9v1Tb0q8NtpZ4iVmVCqitL6GJGfICxsYqr6onSFqoLVgsDDUccqJM6hctp73cJ63k4CwBtsZ5AXrnEx0Stsf7mgEX6qMNYnbQ8XnX0CWpYI/tW37//UDbZrt3en/Hf/6APv2YDJNsvzwojr2O2UqpAWx+32ekgpmeVGOS/LMrIsYzqZUFid7jiJ/XJcqeNptc47cdBFaCDH4zGz6ZQoMp54t9v1sqxRHBmsMvDIXH0+wKQ2L1D6XHPV0yeTydw2iy9ZlmV0Oh2PUzcaDdrtNmfOnOHMmTNeH2QwGNDv9xmPxz4BKMsyn9kZ6iofM9Da9YH/ZKnRnYcZQuPgNtDWc6wPVPu9YQu87MX5AfxEarzByges/bMT4XbBIXE4eGCs7M2cRDdb1uf15waHLiujeW7Kd5V+5eMokW7MJUnsnQEdGNy672A0mtA/Ghl4JdDTnr+eUB3RrkRw0Imev+9jK5nj9/dptUd50O59m0PS7M0tXv2jJqITroBHzQhPrKft2j/85i1u701/pue4vTvlH/zb2/zd/8ikuKeNFkf9Ya36hybPZ8RJzMbGOlevXuX+/fu+IvTW5gbT6YSdnfuc7h/SW1ml3W5xcDhEa0WljICTiGKDK2qnDKe9V1tVyvCbJxPSNKPTW6XZbrHSWyVNG3S7PaQtByVkRGXZElJKRqMRH3zwARsbG+zs7LC+vk63253DuoUQbGxssLq66hNsluGPLph4+fJlHjx4QKfTYXNzk4sXL/L000/7kmQPHjzwKfPr66bUWqfT8Ti6S9xxqoLzTdi6hXoOC3ZSqLVVNbKpIF1dAx9/0FoF8Q6nsLjoQc8v42tr445fV1QXwiSyhBmeWdagqkqiKEZG0nvc0rNbzMTnVjWm7JmRIJgPBi+e1/Z7AN+Y+zLbFUVJZbNn85nVlRHmPrOsQZo1aHZ7NCYV0wrGVYXSlT+vg1yEEMgIPr5xl2KS8+zTV9C6hnpA1NKsqkBIhRRQUYG2ZclEjGezawKjvqzAhPAQyDI8P1zZPcob/2nCFw8LjM5DdI+1QHqM9gtstD+6P+K7Pzr8uZzru28f8esvrnDpKkRxymQyNZF4ALRVf5N0ux1OnTplFe5GgCm02+t2uXnzFtPJiLIqaGSpcSi1CQgpXRFjhfNLZZXpTMSqskv+6XTGwaGhCWoRsbJmmCG97ooREdI2XVuALhVaC5/ReO/ePQD6/T69Xs8PyHBQupT2o6MjHyx0LXyher0e29vbHB6aupbdbpfNzU0uXbrk8eu3336bwcDokmhtiiN0Op1jL97yF6aGioJPjv0GFhbRMmCPLPN8Allc+7yWG+yToBKNo9WFcgKupJhSCldhW2CUSkN2TpqmqCqoIi6Wvf1L3HvmpxJ7e5SlsrICJbOpk641/PbIVkJaWVlBJyVMckajqfWUa45ovXKA3b1DJv0xVy9dtGqG8562sHGbSApDcFIufuS+D2IA1vNe1sLx9jDj/Djtp5Xcsng9y68pnFR/9rjJE220/7///PrP9Xz//b+4xdd/5SWj7Zwk1tupEEDi9LSLguHQSJxqW3JLCMiyhqGxyQi0RlVO3yHQiQgGRFVVVgPCaGhEUUTaaNDtdIjThseCIxn5F3EymZDPpuTFjPF4RhTFnhPtEnMcluxS050Eq2tOm8R93+l0jvVDq9VifX3d65eYausEuuEGanG0wbB4wqNeNudN1h5o7W0S/OY86mMGIjAGWosle4e9HH4bmsdF75cap6GGZKSMUJXyMFl4hVprT5yQUqKq5QG2ZZzh8HcPjWl35ZYPbQs7iGZiPHsBWpc21dylkpuJYA6t8YFCt4/2Ou7H4whhP53kYy77rn7GJ+514oRtj7Bg1Jdt+5PCLcv2/8sQBH1ijfa3395nmv+UyNqP2Sa54pvfu8HFOGFlZY3prDDUv6YxppGU9PuHvPPOu4brXJbcuHGTVqvBqe0ttIZmK0MrUxQYG6xKkphKKYRS2GInTKczZrMpVVmQxBHtdpP1jQ1Onz1ryo01mrTabZI09W/GnTt3uXXzBvfu3eXuvfv0eiv8zb/5NxkMBh6j3traIo5j9vf3uXPnDtvb28Yrsy9RmqZcuHCB/f19D38sGtwLFy54/ZLJZMJoZFYUw+HQ13J0fOzxeOxphw+jyS3zboQHsmu8um42bTtgevglvzeSEh/W0daTDTDZhxkjbSubGwNkxaa0kXiV0iRUpWnCZDIyciYNx1CpjaEz9EmSWE2PWl9DY7TblTaFMELmhAlGO1jMMHRyK5Max5GpGdpIieOErNkhiRO0Vhwc7JKmDaLYTOaCwht4cAUOtJGYss5+WSpz/Dw30A2SkKYHhtstfZBYh1+hrTxAzYhZNvHNlxur+3jeID/MQM8/m8cpPvDJ2qMmVEcQ+Hm0J9Zo/+63730q5/3//d6P+H/8zYR2p0telMzygnbLZD5KIRiNR9y6ddMbygc7D7h6+SLd1RWiOGFWCbSuKPKZZRiYF7FSCqlN5WshBHlRMBqPKW3l8cxixStr60RxghYSHS7pgN3dPT64fp133/kR739wne3tU/zGb/wGo9HIG+2VlRXyPGd/f5/d3V263a432lqbCj3b29sMBgOPyS++IFtbW2xsbDCZTLhx4waDwcBXnNFa+9R5V3bLGeuHvbDH27ynqx1oSh3wcqsTsYC5m7TrCjVnfB7mKS5+7zDZAGN2KyH7zEzF+4SiLIgruQB7iDkD5dX+tJozOEob7r/jyvt7CgLQBhabMslNBfhGIyW17Jssa7K2vkkjTVFaMZ4Mib00rZzDzt2xDUWx9r+rSlHkhipoqjXVIlHCwXfaYdDLAm51nMAznxa3+ITBuocZ5U/HEz4Z7vlZXM8TabT3+jkHw+JTOffO4YT9cUxsta/LsvRho6yZsb6+5o2U8zCjyNSSTJLY1OwTkjzPfRBOW7ikLAuUNsSsKIpoNDLSOCJrZqSNhskKtFrO3pgJwyYYDoaMJ4al4VLQtdaMRqM5o+Cw6iiK2N/fZ3t72ws/FUXB0dHRQom02ktyFdVDIxBFUc1csTCIW3KHxmfZi3jS5z8edji/vWN1aG20507arp4UlkAiy5oggB+YY/4c39YcR3qjHVxFQOFTytDwysrQ8ECjrVY6OGgs8kY7SRKk7euqqkx2rq5XMfV5LBQU9K8gNMZmtVGpikqZtH8zMSnfJ9oFC5Zi8PN/+4DowlcPY8ksfv6zNsqP46E7+u0nPm7Q7z9JyPKJNNrffXv/0Rv9DNtffFjxy6fXGe7fQlCysbmK0IqLF87z69/4Bjt7IzrtNs1mxtrqCu1WkyxrgBBkJCgi9vd26W2cpaw0h0cDcjWlHE1QWtDp9Gi3O6ytrdNqNgwjoJHSbLVrIyi094jKsuK1117j5s2bFEXJ137164wnpnDBu+++yxe+8AX/Qu/s7LCyskK73eZb3/oWcRyzurrK/v4+N27c4IMPPmBnZ4fJZOIDbk7+dTqdsru7a4sTpD693WVJAt6QOK8b8Ni5y3pcpEqFXre5P2fQ6j53RrWmX5kiA8axtct9AQ42KcuCqgKlnN52aE1C77o22vX7bD533r0QEVpb31SYqjCuQnme5zSyODAG5lpkVMcaGmmK1syJNTn0RClt1Bm1psgLqqpEa/w5ZBTR6fVIm20j4pUmgEIrI+PbPxqQpDMjOBYloOdrcLrzgQmQaimMRrxSVKpEKcVsNmI2HYNUqCJHK+cQ2QlEmyIQvtcE4KEn57d7kilLLbff99EV0X/R2xPJ037v9vBTPf+79wra7S6j6ZTRZILGFIw9dWqbV15+Ga0VzWaTjY0Nut0OWbNBo5HQamZ0O22SJKZ/dGj4ymlCpSry2YzhcMjh4SHTWU6z1WJra4sLFy+xfeo0a+vrNJpNEOKYE1BVJe+88y73792nqiq++KUvcf78ebIs4+OPP6bRaPgX5eDgwNLVMr7//e9z48YNhsMhu7u7vPXWW7zxxhscHBz4WpKOHz6dTun3+z5JZm9vj6IoyLKM1dVVut2uD44qG4CdzWY+6BmWPIPlhtslgMy99HP3GpgFiwMftw3awgqVvX7n9Swa7ePeUG1AQtrbcQ/cQRDmPIUpyyXE3KWG2H0STFaLE4VSmqKsmE5nTKZTxpMpk6n5V1UVQkpa7TYbG1tsbW3bWEHXanoLRqOxWWWNx+aaAKe3bctp1BdlV3nSZjEqVaK1Is+n5MUEVwRBWaM9D2mE/WeLTgRG2313krl+XOP8l4HLfbz9fK/pifS0b+1OPtXz39wtkVFsPCVdvxYG0kiN5xnFZFmTqqoYDoZWI6RApi1KLX11b2Oo7BI4TZGRtoyOhCiKLR5qjIxSiqOjIyql0EKitCloK0WtABhFEWmS0mkbTvR4PPYwBtSVwUOda6cfIoRJ097c3PRlyFw9SZe4Ef5zbRGvnKvasvCyhl51+HuoA16rWIuF9yWETeaDkobRMf/ZcYRl/oMaG3d/L/MSj7+wJp3e8Ov9vsFVAwbCUg4bFt5Au/vUYKiegdqdk30VwrB8kjTx5ew0bv+6z6SUhi0SuWcClkJd97u/pGUBQvOz2WxamWFj5HV9U8eAKh+OW2qDAxjmMY3vSayQRwUpHzdo+WM34f9n/1xcpZ20z8M3eZz2RBrtvPh0l1SzUpM1W1btz8bPhdFxaDWbnDt7hrRhCv/uH+zzztu3ODw4ZO9gQG9tndNnz/PSK182ani2yvdKb4VGs03aaJE127SaLRoWUgGTmDGdTvjjP/5jDvt9lIbpLOfFFz/P888/h9aaZrPptUGeffYZlFZ861vf8rUgAc9eyLLM/10UBbdv32Z1dZX19XV+6Zd+ibNnz9Jqtbh586b3zNvtNisrK2RZRqvVQgjBbDbzXGVDQ4tpNptztMJlL5pfsi8Y/0UjuZxHC2AFj4TAaVSHL02tQW6O6fDb+Xd80YDJub/nIQ+Dc+pK0UhT8iJnMp544+mgE7QpXZc1MorC0TolZVVRFKZMnQ6YFFVVEcWRZYI0SWJjqF08RAgjMDUeT5jJnDiWpgCvkDQaTRCJjY0I0BXTfIJeyGYtqwqCyvDKBhYjy1h59rmnEWWFkKBUgdal7QFz37GMKFWFlgKEK3hg+suCVkEfngyNuObG4HyC0WfNtSfSaH/aD1lraDQylIZKW2xZCKI4IssSTm1vs7K6RiNr8vprf87rr7/O9evXuXV7n9PnTvHSy6/yta//BlEsjf6wlHR7XdY3TrGytgG4rLH6nEoZb/jP//zPuXPvHmWlGQxHJEnK09euodE+vTyOY65cvcpwNOL27dsexjDHqfna5l60r/147do1Lly4wPPPP8/h4SFHR0fcuXMHKSVbW1tsbm56GKTZbHrsOs9zlFLe0DiYZDgcejpgaHQXjbZ7nlq7NGlrCAJvx+HAbtXhYRXqwgYO0zZerDYCXG4i0AY2EPO1H9wVscxo27IK/i/nHSdpQlmVNo0/9NDBpHQb6mRVzey1SypVUZQliNwHgx0zoylbxFlMu92hbet3uudVlhXj0YRhf4TGKPG1spSGVXCMU6fUCKqcofv4HADXp8oZbbv4UFoRBTTDq1evkEqJEBWVKhGqqu9FSCIZkVelhesDiGRp4HbRYM/76stiGO7zz5ppT6TR/nGiuz/d8wNCIiOjiFaWpSn2ao3GLJ8Z/Q6lmM1MNlokJVnWMAGgqvS4o4xMJfE4ToiThDiKwyHuf3MVzJVSSCGJE0FRFKZ242RCmqRobfBnIYQRj0oSj0uHHq0rHdbpdEjT1NLXYv/PsUHq0lXz//zV2WW9M7yh97jsxUTPIawnL20f5qgtybbT/v/CYQOenjfPOZ7v04cOoWNO/yL+baaHeV7yQy67jpR6I28eSWSZN3V/+33CfpfCOvzhc3B1I+sArb/0E/p2HuW2GH0ck0RGJRENeuFeFp4ajtpXo93HR6zW/q4fu/0s+NefXvvx7dMTabTTRDCZfXpGuxELm0a+gSrH7Oztc2Z7CykFRV7x2vf/grwwWg+6ytnY2ODU9hat9grvfvABWSNlMDhkXVW0O23OXjhHu7dm4BDbzHLXeJcu4PTOO++wvb3N6bNnWV3f4A/+4A/Z3d3lB6+/zvnz5/ngg/e5ffsOGlN81lWeKYrCwyNVVbG7u0tZlnz1q1/l6tWr9Ho9nn76aVqtFkVRsLe3h9baV1x38IgzyNPplKo06oFZo0HTYvd5nlPkOUeHhyYophTtVot8lns9Dq2UoT0GkrCGr16XEnNtGa+79nytITO+o3WDjUKgtsCu8cHtMYXFyu1kKbwXL+q4pGV+YM8wh5sKEBg2R1lUxmtH+GzSoixIYuvN2kt1cYaqqoiThFRp4iih0ciIopgkiQ2tM4198tEsL8jzkrww0q8CgYwiU8/T3k2SxkgbdDR94/rBFSIAGdmiEcIW47Vm1nzvIKX5/hYiNsdS7rhmdaK0cS60cP2vMdXu62Cty9bEsVbqBc5S7zo0zotSrb/oXvcTabTPbzZ57/boUzv/hc0GGkl3ZZ3xULN3sM/WxjoxkryY8oPXX+PBzi55UfLcM0/xxS9+jqeuXub5F17gH/0v/wxFxHBwhNKKdrtDZ3UVEWUIkfhz+NRk+wKNR2PeffddNjc3OXPuHFeeusa3v/1ddnd3eeONN/kbf+2v8fbbb3P/7l3AwB/OaJdlSbvdBowB2dvbYzgc8uUvf5nLly/T7Xa5du2a1xw5ODig2+16ml6YJFNVFWVRkDMzWZF2OV9VFQcHB8bzH43Jsow0TWlmTQbRAFf5RGmTDLP4Yp7sYYXGuoYqalujvSHWukLrEk1lEm403ji5MOE8tc8dwWxjEnWCz32A0p5QmFqhylLlEBBLkwlZlCVJHNtAntk+5LkncYJWJvXdwR/NZuZ1YJSq6Pf7DIcjiqIkLwqvhpgkDVrtDIfjR5Hw+Hl9rfU9YA29YajbAsM2eFoTWIIJTTvWjqE21jFMbWmJFVESM2ec7V92KsBBVrXOSz0hPCqxZjGh6HHaz8u4+1XMz7E9kZS/p88d18P4ebZnzzXRQvhkl8LymZVSlEVJZdXtijw3gTkbuOu027RaTbJGWqOoUhJHsUk7Fm7JDceX49rLb7oBnqaWXjcZk6Sm0EFeFBCwEZyH7DxbpzUipaSZNb2nmCZpzVQ4wTPyQbcTcMjFwJJnOATVcR7WHJNm/sZP/sBl6c0b9NDSPiwotuR7D6Us7rccYnnU4t8XYhYugzKaUzY00MY8BLXMQjh4RDjWjjiO+c/f88J9Hjvm/N9VpShLhZvcHo5PhW2+ULJw9cWWbbkMLuPRBv1h7S89lPJJujJoT6Sn/cvPr/O7373/qZ3/V55dAQGNZpvx+JDBcIzWMBoNuX/vPutrq/ZFi/jqV36FixfPsrm5jtYV1566itKS1ZWe0dQWzp22cqIKxJIMOjAv/jvvvMO9Bw/YPzxic3OLBw8esLOzQ6fdQamK0cjof0RJTLvd5sUXX0SIehn/pS99yVP4kiSmyHMm47FJsllZtRXRjYdWlSZLczabmYxOu00ZTB7j8ZjcFnEIg5AOG3cCVEaVriBJGyb46jzROZvjPMiHg83eIxb2pUcZIMQajcgWYo6CsmUIV07M9GX4TyDQ9prmetxzta22hg2UimDLsipBpySuSg0CJEgiplMTiGy12/RWSsqyQsrY394sL+gPhlZZD7CcbN0ypcoc5VNYeqhGz80rAknIJ3cTgNKGEYRdVdSpLzX/3NFVQbC71yfWktOn1pAy9TZeOHaIMDCJ6XT70znTFiZCuKBwOPnUGP4iVr/YPO+ez4KST6TR3uilrHWSTyWVfWu1ydZqC0ROo9lGRAn90RiNZjQccu/uXTbW12g2WzRbLb72tV8ly2IiCVpVPHPtKRAxzU7PqLQJYVLbIpfSrOfwSteEMNzqt99+myhJeLC7x7PPPsfe3h4PHjww5bqUqo12HNPpdPjiF78I4I32yy+/zHg8Ntrc/QH5LGckxnTabTq26O90OqVSirIomE6m5HlO1shI4oS11VWfITkcDj0P3GVIuqQTqPnarVbLVtiZkGUtzzvWShuuZH2Xj+GRW9DYlcTC8ZydYBQIKYkil+q9XKBqLilESAQRrjqMwxCEv7aaphdJV7DWfOcqAiW20IGZHAQiipnOjM57u9Uy4lBKI2XMZDxlNsuZzaZMpzOiJCKJjYpju90kimKqUvmJBudpa1CW0GJgD5Pc4rxVX3lGKaMyafsUjD65liBEhCsL5sCOnZ0+ooCtDWO0/Uzqs0Btv1uDLeaeQx0XcL/WK6baaLufJ2VEukl/WRJWeIxwbPyl97R/zPZEwiMAz134dCCSl5/dxi3CpTR0PZcyrK0OhcEsG2S2oouXP9WarGHS0uNIHl+1av8//9M5nkK49GlTsLUsS6PoFsk68SUyFEKlTC6clNJXX3et0WiY67Nlw8AEBxehjGWvw0lL3DBBxBnqEEbxKnOB+P3irDRvqIPfvaNsl97HDLo14N7+GgMnpTMQ81t71kV48LnDWYDFfzWPy5p7DYSf9Px24RG1qqEa07eRLVrs4CKbnKUN19+tzmRk/9nxFfbFwmUd6zthJw3HS1+4e3+PYZtOc8aTacD4EPPbh3NZCEcJ/OTp1BPrcfFkGtSfR3siPW2AH938dFLZ/8M7D/jPXu1SaSBKiJIGaaNJUZZkrSYXL5wnTdvcun2X6TQ3mtgaBKZAQRxFaAFalRRFThylxDbII4T0lUKgXoGC0bB+5tlnjYSrlKysbdDr9eh2u74azJnTZxhcPSKfmSo6rhq6CyaCqcZuqnBHdLtdb2hNUVjjNbrSYE5TxGU3DgYDD4W4RBpnkB1Wu4yyVvnSWGUtTXqCB7Xc2GANluNmm74UmICtkBBFkiQyNDoZSaJI2ALBkffE6+BdADYuzBXGLgkQEWiFRlGVylSLKTVVNaUszKTYbGbk+Xjp5eqAZz8aT5hMZtZTj319yWarCdpebyx9urupiLTgbbp+CSYiF1hUNugqhFnxCCkoywoXi1Vag5ugfR8bqERruH79I4pRzqsvP++pjK4b6q7RdQeJ+lPvgc/9Pdelc8/WBbMX4yQwP/k/qj2pXjY8oUb701b52zkq6HUhiROiJKPRbJEXJZ12m/WVFc6evYgQktt371qjLQCF0Io4ilEYLLQsckRSEjdMIoUZhwuLI+tddjodPv/iizz77LPGc4tibt25w8rKipGFlZIL5y+AUsymUxLLvz537hyDwYDJxKT+Hx0d0UgbJHFMr9fzL1GYJOMMdpIkJsXZprwfHR0xHA5pNpu0Wi3P63Yv3SLP2LWqMgY7z+tiDP72liyFw1VGvcQ2BsHzr+02MjLnTVJJGhtjHUV14YXjPOoQz64d93kn3kAmzsgURc5samh400mOVoJG1qDX6zA4OvDXNe9l18v84XDEbFagNUQyRghpFPuSzIhe2WoxripOVVXEMvGTm7HZDp82VeG11eJWqnIhkcBoS8qiROkYo4tT4/DueA4P1xreeed9Rgcj1H/+N1l4PHPNedrzjzh8ZtpPFOFOodF2tFE3VuK4FtvyKf6Pabif1PZEwiOftsrft989xIJ33hOtbEq1KXLbotnMSOOEYF25aC5Q2kr6CEezOpleJC02vLq6Sq+34jVH4jgmbTRAmOo47XbbiOfb4rOugK57cUwA0Sb2LDA7nOh+SMEKdUacgTdSovqYFskyVoDD6Zfh1MthmGD5fWLTrvvtNRpee/1vgZExf1Z/lvAUxiPEG0itDeauXTq8Vmil5+7fn8PhBwv/d+d2+8xrh1gYKYosbBL039JbDyAJ94m7Tvef1la6ty5KsOwo8z0B08mU8XgSBGnDMy55QoFh1kFHLgbO5/4KVlSLjJG/rAb607qqJ9LT/rRV/t65NeS3X1lFI4iSlO7qKkf9PomATpYhRczmxgZCSOJIYpI/lCn+al8FCRR5jmyUNNAY2sj8HBvCgwIzuO/eu8f+/j73Hjxgd2+fKIp45eWXUVZHW9kkl729fa9r4lLMwawO0Piiu84wZ1lGHMfeaE+nU4qi8PxsI4ZlNLobaerZISZGpT227yqtOKhFCMlsliOl9HolYaDSvbpuYjn+/jqDUBfndZh1HAuiWBLFkCSSOBK2CozD0evMwbl/3tC4IKSp1qKsUS6rikoVRgVPlbZyS0KaRkBEkRvoYTqd0Wy2SBtpcLnanzfLTEJTURQey5Yi8qsgVxJMawcNmIctpDT6ILgVTISitFdsvNmqqihLjSvEK6xHLaXRFKmUhUwQRFFMQQhJmft13G5P9sAMQeFxEYeFCOoKQPjApNZ1dGBuFpybGYT3qOM49t60m8hCeOSzxBrTnkij/emr/E1ASBSCOG2wtr7Jvetv0RCC7dU1kkhw9vQpNjc2iaPILGG1Io4lVWUMdCQiJvmUqDD1FYM1LsCc8XK/RlHEzZs3+dE77/D6D16n0oJXXn6Fr/7KV1FVycbGBp12m/7hIUfDAcrCKmma+ozINDW1LfM8ZzQa+SSclZUVwBhzxy5xrBAHhTRslqUUxjA00pTSKgVKKT2tr9/vB/oa5qV01+Cqy7v7Ke2KICy3JSyfbz4jsi7Oa+hwppBt2hDEMSQxlkFivW8Rec85NNxCRLb2pjVgstaFVqokz0tmsymT6chLl8ZJRLfTII4bpIlgLIzW+Hg0ZmW1Q9qIvdHycIuUtJotAGazGa1WlziKESIibWTHArnu3o3XbSquG30m45ErXWLEVs2ll5W5VogsNVD6KjhRDKgKKge7xAitPKSSRGGxhBp+0pgVy3EPU9gJxCXk1KtHA3O7lcayPS18ZWmgZrIpvdxCuCqqn/UvtuF+Io32XwaVPyFqBkmSpj6Q53QZGo0GceKM7/zSVmBgbrPsXoAC5ugBiwChMQDD4ZD9/X2iOCWSEaurqzbrLkZkGYeW8lUpo+sdJtdIIVGW8mUqyEf++5Dt4QyJM7COkuW0mF0QEJYHmlxfaF1zxF1A8+Ee1cM+13MOs7CTRySxtTWV/9z14SdZeTuPVylFVRrxJAM5mGOZxJawao0yCTNSMq+m7fD2Wg7XURHRNfY/x6ZhAVMHajEsEQwF+3/lMkHr1Vu9b+j9WoPoU92PtyiqIbBgb9+Evx77t2PYPAQOmf9bzxno+n5rqdq5PR8SqD7p759NWw7e/XhnfHyb9UQa7U97JtbaecSGopU2GgHNrn45DF0vBE7d0jn4SClUWRp+rIuGLRkVbnBub23xzDNPmwxIJNunthmOBoyGmkaSIoUgsRxtZT1lJywFeKgj5FNrXZclAzyUobX2y9pogQqotWY2mxkYpSxhPDbGzh4/tdVaQPjzhffiX8xjz/Jk42LPTNhBwupIC6E866H2HrEQQG3YdKDch6PdWdnUYubEtSKarSZlGVNVBUpVTKYTiqJCChM4M4FaI/RUa6BoS1Ax50/sZFWWpTdYJnvWFcMNcPEFb9OtDpQCVRXk5RSlzQohssY/jmNM8WK3onCG0JXBM/CTm4ic8Vzs3atXrzDbniIlVE67xfd1+FxC+G7+KNaFYZnZd3TVLMs8F3symXgozq3UFuuI/mVtP1mg9NFm/4k02sZz+PQerhAmgw4Mi6OZtagsdzeK5JxDWFPYNLqqMMkNwo95rSqqPEc2M3v00Mhj7tN6ekIIzl+4wNapU3z+C1+gKMzgPzw8YDqesNLp0mo2DebcSNHWEOzv73uM2eHbWWakPafTKbPZjH6/79X+nC63M6yRzciTQoDVg66qivF47CvU5LnRio7s/kmS4HohDHaGGGZVVc4ZrPt1jkESGjFjcuddPNPfUSQMpDK3S40tG6jFZp0Km1puoRJVmTJf4/GUIjeecxzHNNOGqeiSzxiOhoyGY6SYEkUp7XbXG+04lgipgaqeyO3zdfK3YT1Qw6DRCKH8BBpCBC5IJ6U0cIYydMPxdOTLgzXShEaakaYZVRVqhUtbacjENUhS0EZPWymFtkwVj27YvvrCFz8PhSKKYKZLoFzyDGxsJigv5p+Np/wF97/QnI6Ku7+joyMmk4k33sDcOHky2+Pd1xNptP8yqPzV3pwV59F4T2/O49PzRniOKgygjQjQ3EbHj+JblmU0W03iJCHPS+7fv8/R0RHT6ZRmo0EjTUnjGBlHvuhvqKLmDKfzfPM8x+mahJ6fo/IppRCBZxH6wSE+mec5IopI5wJLtbbGHN4756XM49feONuThQZg3hQ4QyXqLywWPr9HsByfgxHqw7iSalVVw0QmaBZTWR3pqiqpkEBkJx5TqNkUPa/Cw/nfXGKMh0GE0bJe5m2dhOlqjSm8W1WUlTHacTTvpdf71L8rpZDujnU9MufNrWkrKz0iBUiNy5Zc3sJVojj2f7vF0j09tGabKwS9jE3y82wnnTccVo97HP8Mf0LE5ok02p+6yt9W0/4WgY5BJ2StFYhShtMp7Uazfkm0LSGl7dJRO2OviPWYSMcI1YAqA5mCCJgI1kLmeUGe53XdRRvYE1bOM8saCG0KM0RxgitEW7vztVFw7I4Q5zZe8fEEGU8TdFQ/T11TvuKNCzKBgSriOPZYtzmIZcUEHrKjHIYTVLBD8Hc4+l3/aT/RqapAKWnuVbjleWT/BR1ol/vCQSOBN26ClxopNVWVoynRugBR4jz5VqtpzawJ6qUNSZxohHQBTfcvCNLp0BBXNlvfFPHVqrLMHqOg527bTx6q8kiZ1iCFptlsUamSqqxM0FBjKZrmugwjRBLJmEgqtK5wKecCUxtSCdNPEszKRJgJpN1JiTVoSkSkTBDTjlF/P37iPTnr0Qd8HwM6CI122D5NA76suf4L/9bB5Piz4JQ/kUb76XOdT9VoP32+Y5fAEUInoDK6K6cgLtkfDsmyxBgDrZFaEFau1pUyL0ykSOkTK0VUSihSSNoQu5qQdmAImEyn9I/63Llz1y61Y7JmRnelC2hTFb3ZNtmVMkYQoXRhsXdAa29Ii6KgKAomk4lfshqZUDMRzeHN9u+iLJnZYrOlTcBxzBJHBXSVVrwSXehB1Y7znEfI3G+hAa+YX45jfmq7tFclCkVZGOErA5FEQIYgARI7WVSAo5a5JA4rayQcpAFCaoTUFNUYVWimQlCqJs0sI0kTeo2ulwhASCIpkFIjRIlL366vsZ7sfAq6LomkCRxW5QxdlWYFIiXKsijAUEAn0yllWeAQwDiOaDYbtJs9W7E9ZzodG9ijyClLiKOGheVi4jiiUtqcgwphRbOkSEEoFCVCKi9dq7ViZS0jlQKlZ4i4AsfukRVaO2EvZ6jsfVqvWyDQvham4+s/PD3ExQTc6s6PgMcw2D9Pg25Q/BruMl2wGJb9pEcMfy5vT6TR/rRV/n7p2XUbL3TGOCJJm6DHzIoShcZIPtkkDPv45xIVtEZSInWO0Dmo0tCy5rw2Y2Iqi1EOhyNyK/daKUWjmZEkdpmuJVLESCIzSSw4sWHWmTO6DsMOA4XLIvpKKUpX5MDWhATm9g+5tvaX+gXznhr+HE4X5PjQPwHT1qIOutmXSCmFViXoWjvaTJDO0w49YbzRDr1icx3G21aq9CnkZRmjdFrT1ZJQfMpBHBYnD45X30+oYKh9kNBkyCp3F3OTo2GtlJRF4Sn7xiN2eLA5bT6bAlYHRdlbtprYJvYQBFuttRHBZ8bY1teUNiIakWAyUYEHjvmpA3aKf5wL3uXcwujxjJobM4tG+6S2uPr7mbdg+NXeduB9hJs+lrctTvj9eHsijfanrfK30QsgDLsczJot8vGM8WiMUhAJYSleNSQy34wXrO2SOHEem1ZUVcFkljPLjSzqbGJU4VyAL4oi0kYaULXs8bWVKV04X2iUXYKM85RdGnE48EIIBfA63o7eqJXhC4clyfxdhfj3T7Rs/KT7LuLk8xDLfKX2+SYjk/BiskmN0XarkDojNISb7PHnLnERL5dzfxdFDsxnl5oMSyOFazxXA3u5JCxls2yLvGAyHoMQqMolpAgPsRjP38mLKDQVZrFTonVklVQrnLiT0qH7IIIxGiGI0dZsaGU+F8I6HLYL5qUBLDSl7SQmwio2JwPDIUU2zLoN27Lx89MIVD7MyM59N3eaR08oP632RBptgL/xK6f5n/7NzZ/7eb/2xbOM84pWGtmFkzHOK701dscD9vf7VJc0SWKSJMwK3MzVLuNPi7raijGQU+IeCIznmOcVu7t7HB71OTg4JE1S0iRldXXFOK1SICND7TN0M+eFWO2GuXAhHsYA6HQ6dls9x1xwRtkFJQeDgTfWzjjHcUzUaHijnQRUwBDfW2RCVM6b/Il6/mSj7Cuw+O8Ui0a7/m7hKmzQsdWUpvKMNvtEVpWx5he7QygPOy3ej8Gn7ZgQc6dgOp0gRIyUkcejy8plQSYmuzOKLafdjI88zynLkslkyiw38YM4ik32ZxKZhJoY0Ob6ohiqqkDrwvyuclRlMH6tS7SjEVYKqYIFmcJ8p1OEaFgsG8oSwxySCaWPxTBn1LRfbRgcXVCBcFIJtUZ5uHoTQni6aMigeVx8+Ccxko/j2Z90HQsLxp/4Wk5qT6zR/uXn1/lfvnWbaf4QhZufQfv973zM//bHFV+40uO3Xtrk8imjP5ymDQTSKPtZ3HaO2aDt/+xHPhSntWEouGW2UlSVZjqdMBgMODw8pN1qIzuCLGvgDygt/hxcm7b/1y5zjto4O6Pt5V0f8oK4eo8uHd2VHXNZbZ6W5kSZqF+ApZoSNW3ETydzr8txOxre0Ny9LbZ6OqjhpEV+xKNeLCPgVKsZ2s41lMQFqGge8lk0APV9zl2dELYAgvA8fq2V9errYxodG6P0aIKMyuvBFDYRSqRmtRRJYbYVoIJkWq+AKDWm/JqBjLSlRHqYhsDwaqy3bXTFBXURDq1dNuTCrfneNtMmzhGZW9HMT5KLq7la6mCRBfMJ2kmbP+Iw9XO0HyxCHo9xzp9VYs8Ta7QB/tu/dZX/7h+//3M953hqBtr3PzjijY/6XNpu8t/81hZrWUylIc8rDKZqhOclgUHz/3eGxb4MSjMZDylVTlFFTHJJWRQkSUyv26WRNjznVyyzaHMx7fkWSqsCc5XZnf6DUeErvLdjgnuRh08cbj1//rrNGWERmMyfAxNAK7xu9fFTCUKDXn8W4ubLrk/X6IcUx7yr5ceynyzZ2BSHMCsSz7TBSMcazjY+luDS+J1nKqOIRtpAoYikNCs4Pxkaw18UClWZFPhKzSirGVARxakFaSoDe4j6emucFm7feoDUsL19ikgmCAq7TYTwVXsWupG6Uk246gjzEjzOrw211I03rY22jVvFMbfvz6F5iEcveYvmR0w9oRx/1j+r9kQb7cun2nz5+VW+8/bhz/3cWkNeaj64N+b/+Q9u8F98fZVTQjAYTUEmZpGulH1pQnlKZQI8oi4iq3TF4c4D+uOC/rikokmadWhlTVa6PYOR2yWkE1ky3pLz5Iy36CjAiro2oYM1Qq1s97ljkfjkGFEnwiRJYnRGAq0Q930YrNSuM9yFuGuz3GAdMA8ery0a2Yc1o+VSVe5lUhyHRlwQzl3tPJSilPLwVWhwlVb1C1tbpBOuN4QNQrjKGORTp04xGc8A6WMKMhI0ZExZWXpfZZQEy7K0MIv2olxZo4HCMEqkFJi6vpZ2mc8YjUzMQ1UKGSuQCmRF2mhRCFCjHBmnFm+2vSOcNKvme997i2Jc8Df+5m+TtjJLZQQhEtASVQn0AuTsC0GgkZbwVHnGkPX2A8bJaDRiOp36FZzjrjvWUlgE+aS2FOP+hKDbXKW0wBC78nVuMvvZ+NCP155oow3wX/5HF7i1M+X27vRTOb9SkCvN//xHh7x4OmMrr/xyUhMYNtt89prNcjQfKqaTEf2jMQeDGcg2a5sNWq0unU6HoigtnuakQG3FE3tMERiOZXbFpQ6b661fCudhu5fJGeU0Tee8bJeA45a3i9CKDk8eeNrOcD/0BVj65UP2EPN/mOta7gMJe11GCe/4984p1CwWU7YHlPjPBfNeGdZTO97ntQ/rJupWq8VsVqKVCd6WhTHUjqesFDZO4ORxDVxm5AOsJADgS31pUz0HrVCqpMinzKZTyrIkTjQygbgRE9miEBqrfULtW4Zxh7t3dhn3pyglECJGWLPhRKLUgqftVgb+aHOsHDeB43fSWpPnOdPplOl0ymQy8ePMwW2P035anGgR/Jw7sz4+CYTQTX3qn63H/UTqaYdNSsn//T9/mnOb2aM3/hm2vNT88G6DG7xEFKeWo2tKg8291cJhobWovQBQFboq0VVBq5XRSBOiyA2WecxvEY87hs8tWfa7bVwAyEmvOrjEGegQCnH7nZStd+zvh71QQsxfVeDw6oV/OIx1qfGeP7/TqJ6/Lj23q8dxFx+Fd4zF/Gf2+mq/+fhLanY7eVXgApr47Wov1OHaSlVeARKhLU5tsOrYYtvCGr/KVjqaTidMJ2OmU/OvKHOiWJBlKc1mSrPVoNls0MiSOr0/oCga77j2gLWGsqooS4MxS6E93dDdw6KhrPtahxviDHT49+I+jkLpWFDhd4+MPSwa1PAmwn/MA2PLQLLwGOHnD8uQdN+f5CT8tNoT72lDbbj/4TdvfipQiWtFJXi/v8WfXY/59WeN1GdZlUTSZAm6TDaEBmkSb8wCU6CrgnI2oZxN2d5YI222kEnsBYyc4Vaq8gMHAVob0SOXcff/Z+/Pgi1J0vw+7OfusZztLnlvZlZm7dXV6wxmAMxYgzPgDLYBhoCRkEAANoRAQKJpp5nMJJPphaIe9ALKDHqSzCjJJJMEEyiDUaI0IGSSSGIlQAI9A3IwjZme7p7uru6urqqsXO9+lohwdz34Eh5x4twlK5fqW/rSbt5z48Ti4cvn3/f/Nr8DtFKkDYUInIR9dHQUoZZwLKjhARpJk/eEc9rnd41nKW1y0Xo66i+1VqmNny2uBJhy0qrL9BeYlBq4Zx+c9YbBtVfxeVbWjGp95pIyK/9JhL9tV0KzLqOj1g15XmKMpaqWHtN29SOLPEOIzEu8wrnyCQtWU9dLlzJ2Psdol6YV4VwCJ9MpW9sTrNFkBcjMYpVgaQRqpYEGKQzG5wwvlEIYh1UbY1kuXe6V5aJyc81zDWutKwYsJdiQjwTiJpBI07GXrPWZKyHUyxGiLYAcBIMh4+N5SaOGIAub/P80dFkJ30FfG9Cx5D7PyjD5mWDa4Ab8L/3xt/iFn7rJv/s333vhXiWBag1/7T9d8PveGLGdOyangvQSJ7mjoFUKAYSwbF2zNRsjshwjJI1n2n28ODCtQE6ComU0tlWFw/cAy+Wy4xcb3AGHfK7T61IXvudPYv1zFMG7ZLR1EYB2/ZLkwh4FRuN/HJax4fpLNLGjaIvBcyzETdBtmK33hMtSKL2/tsSZAboMX+uGqloyPzvFmAaEC4TJ84ztbIvJpMRaQ16CVBYtLM3SIqTH+UVStizVIYx1Cabqxnu4tLOmw4w6Wlz/9XrzzPb6l24lpL7xcci3v+OFtAFjXoM3rkBXm8ebJ8TzWA/XHh7p09uvTPlf/vd+ir/8x9/gxix/KW2oteV//Z9UjjWEbTpQZKZBzXKTPMukk8RNgzU6Rs6JNZUzZfrrJaoE+CRG/nCyWIAOBJIaN1P/6k1wSLqw1qQK0f3tNGvRff8BPXUILklpDfnpfCcSrTgwmPZsm5wzRJ3mRAgjeShEXD5e4zEt0Wv0OlTSMjoh8FBIMG56g6KS0ec+BMYY6/J4101FVS1ZrRYsVwu0dobI0ahgNCoZjUrGoxFlWfic3t4F0I+99M+I2Rm9Tp9qCSGwpSzdPQNvbtENP08jvNKWNuvvd86c4SWTVkLp9GPbT73+hDXmJ5J/z4OG5vDzcuG7Kn1mJO0+/YGv7PEHvrLH4+OKv/1f3ucff+PJxsX7rEkb+N59zXcfwBf3HbRhfdRYanW3JnhZaCbjgkwadL3ANAsECitdObNGGwzCR8qFCSeRPjTeLTQf8SZc4VcTUAJ/fnA1m0wmsZ3W2o66ehkKzH9INR1AGTzHuqpUc7m2WC+VGu1zHGWhFS2U4XZOH+XUaWEqDaatD7/NRul+UKrGM63AqH0QjQCfkrVyEM7EBcK4TTqnabRjukpiTI3WVcSuXfV67arNFFDkGdPdbSzG+3wDwjIZl+SFQgiDVO6hGpfGJsskWSZZ+sAfJbIIiyjhNvEbN3bIZe68QEg1NIOlwRqXUMtE6Mm2DNq2dS+lUAjpqvMIFGlipbTSetA2+kLCeZ4jl6WLffJb6Kpvr+kILr4nXgZ9Zpl2oP3tgsVKvzCGHajS8P/9LfjSH+sqO0EqDPwgWOGLPEMJi9UVVtdYUSPIncugMW4BqDTIwQU9CBxPjGxEJBhc8twUDnHtcBtGP2Xmeepe9DjAN54U6OvBAn244pn1f1+Cc5XJbWSwyc9a+oB+I85Z4FeeMIJuFRkBtrUHuJDtVhoGl8/bWuNKp2XSVxuqaXTFcuUyOobgmtlWyaicMp2OQdgYhGNM4/J6KxfWHjUG8EZNh42b2uVCkTLWwonjP51OYjrwVGsJOUisDfPNe62ENxbOpyZUe0cI2uCcYUm702MDUNwnkXYve22qMfY1gE+DtP2ZZ9rzleY3v3f0wp9rLfyXPxCcVYKtAgLDiAsrLOj2CrLMGaNWywXFZIzMWmE1YKLri6HzV1RvbcKwum5LF0/KPiSyFvrbg142XS/6jLzTUjZ+t4a1xCscQ2plY4/LrhkCbWyH7bSixVg3ILJJE8KuZ9cPhaMJJGOHXijpG4dj26SKjJN267rCGEnTCOq6cqlbrUYpQVFkGCMxRnkYJItFjdvoSpUwa/92IihdLbwgBCFJYhrfiDGG7Z0phVLkuez0X7+HOlGfvg/7cytmHjF0HIBS6Tre1bZpDzpzbqOG09eKNs/nTccvjUGLdu0NteV5svbPPNP+re8f8Qy0rqeiTMF3HsDvf91n+xMCJRUWS21qFL7OooDGGqbjkhs7M548us+tOxPG420M2mHXgLUhYMGtPpssHPBMygeztGW26EjSEd5IjIqputg3DEEXdwxM+6Kpv8nAdDGljHXtrsnxAKo6qU7rofN8Qzt4cx9+CTCK7a3E9O9+W/pqRLiFiRJnNAx7yjKF1oamqVBK+HzkFaenpxjr3P6M0TGcfjItkLJ09gglKfKMTCmUIuacCUxSygF8FlfcOGT3U9LlHTcee5bCMfSqrvnCF99AWZjNSqSCpvGdKU2MJ9CmTQSVlldrnxbmSHDDJLoOhtzr3QRcyeYuRGd0BvtZ9ObEgADzrElsHP/n++jPPNP+//yTj1/as6sa3nsIv+91P9mFU4+1kVjt5cSQQ8QaRkXObDLi8dEB+zdfR0m3KF0prTBpEygjkSOFEBh8NJoRYGR8ZmqITLPM9T1CUqYd7pn+7niPXJIJP53Kuy5RDf/tNiaLy+ncKfywdnYrpa8F/HckyKtSwjxSPmJtSLsHOKZtrfO31kY5b5B6yXxxSt1UPqDGMB6PGI1GFGVJWeatO6aQsQpRlqtu/w90r5MSHTN1+5ZL3mQNDsYQEoFENw2vvXqLSZmDFUipCcYQEeYeOOO438hiMQmbSNsJ03Zl0oIbqqOmaTqufumccw8L6uRAFw9NH8ELYdyDUvZzfuRnznskpR/en7+U9K2BtIVvfNQVS+McTRe6/6CUDzmva+fWZRMMsZda1Hmd9FXWhHpq6BrEcUV6Ma5+4Vmhn4a4UYuo26B/27ZO4ibPvZSXQlDl2zjHKDOK4Z9WQB/YOAbb2oUSnKcINE3tfrQzMroxdznRiyKPdSczn3Y3BNi4nwGvnVRzsOGJcu1457d/b7eh4p8h15nRwN8d/+pOX7QPceH4tdcsmpjXZohaKI0EY0o8qxKkqfND25ZNnk9DJNL7JX9f9F3XOym95nLPvQp9piXtv/fPHj47+9dT0sE8mc7WxHmpVI5tLAKnUktrGZcFejbhd0/fZ7U8o2mWGKl8gV4FQiYSCr52IziJ2iXCtELGxQUiWu4DBSt+yEEyBIOEz0MSthia0T16LsYcEf4LJbDc3wInwTaNy93R4rhBCruoLf1N72m1grAR4NPuJcclTKdjjNU8eXJAvsyRfozG0wIlS+8CKCITn0zKmDNbKVcFySqcB5Ef8+hml84JEYKKrJOIrXRdFgRZ67WyRoO1FEWGVKKHyw/3gRSyhWVsGAPXz9Yza2sdTn9yekJeFBhdU9erGAcQ5mM6t2RiLLCxEEhv000w+1Rb2jRaasMXUdcSguC7Hm7UbtCtW+ZQ7MLzps8s056vNP/8vaOX3QwaHeaj+z/kT5IyaxOoWjftyzzDjEqWizOaaonRFVaMcMl3pMdKE0m0YzAkGqSihGLXseWwaNJsf30p6DxfbX/Ghe/94ia6W/CxeHHUmBO8/1wtuk289UkYdlz10bWt+1U5Llks58znJ9HNsihypltbUcIucuXtFjAa5VF7cLC0Z8IB201g+1bCTlWCNre39ZG3rWVQuKhFD7Vs9LkPPWSTvOIy0WoSeA68PQVL09TMF3NKY2nqFVW16BTbgN78SLTNkK/HPbc7FwP2LezFEMWm78N2Lr0QYLwtI54vgmbT/h68yXOkzyzT/v69MzIlaHSf4bxYUpLeIm7liPW8z253zzPlIubqCpW1uchE3xgziP32zxmeeJe1ul8GFul7m6y1aoAnds4Zgq4TVbVtV4JGB0jCq9ERj08gD9cV7rq1R5zzWuvfDZ8c3yG8REdTSa+zLthFSfI88xGoyvtnh58Qwt1jOJ0/LAHxbOGjtCf931ELke3foR87LyC8lqKRRnhjZTqePU2lI4nb2PftzZ1RFEE0rIa0Cxdv4kPYsYgwiJS+WqMTkC+kTXAM0GlPel5/U7mM3PGsQ9jhM8y0338wp6pfkttIQtsjTdXUFJkkV86DAOu8RoRUWIxPxWkQQpFJwf7eDepqweHBI16Z7bsFEOR1vyClkD5LnPHeBzamnTRYZHhGMhHd9cEgqjouVyldaJDsndu7mGhU6px9yUk9iA8PUdAcwBi3ObvEUQGasOlpRNFUJEzO7YTJ4kw3vFQ8Tz+f1zaNkKm0H1xaXDDMeFSyf3M/FjvIs4zJdOyz8QX/bQUBQpApM2jb7tLJKoT0/tAiQEIe4xAAEilypKgBEaVWKZTzIJESCVRNxZPjmoyM3Z0pSmp0HfrA3V/gyucZ6/N2C0nqUuq8ZlzzyjLHItC6Yrk0WB8Jmhoh0/kmhWila4Gvb9lK2FJIVz3HF1Zek1s2UAgmG6IQCTo0x1PsOnhrfWL3wSvSZ5Zpf/fD06sF4j0HElje2a9otMYZ/JM0lLb13dU2pM50md52d7aYV0tOjg94VVoaY3u8whmOXMrVVOJx34XiCxCe0d28guQScO0h6k/oy0oSHSRik1XwXEqZ49AA9jcYAQYaAtMeOj9gCZ0LN96zPf8qsJDbLiHViEK/OwZclDk3buz4/he+0ESeSOVuw7EWjK4S6AHSqu/WGMewI37tz7OCGMkpQIqMGOgSNijpE4xJ50baNDVnRxppMiaTMXmm2/zkMRzdOmbv/czdY7sbnAejKIrMF2ZoaEzt5P1k019z96Nl2oIuU5dSkkmF8oU8roIvX8S015l0siH68dO6eeZGxsvQtWPaQ7tjOB6OWWs5PG0Gr3+RlEvD3a0lxshkgTmK3ko9yEAgyPMMu6rQTROZy1o+577a+gnnVQefPIdvXmof3HTSwPH+emix2U0v1We2bSdGVX0TFpK8Xucua4/Z/JZraEXvuhTCavcFG/HRUMQ3BMd0IS8vMYuWoTmJbwgWi86ea8fDaBKY4Ma3cbRaVdA0Lmy+DNeGJ6STodvfnX4JfZN8ncIbsSdSqCRqZf79RCsghOtEemzgRTZi1xuO9+GnrvE9/fvpvEKGcvVcla4d04bewPcoMG39ssVswCCZ2kdU9R6zSYm22hkLrc/9oGyyJNxslxJubG9zdHKfxeKUpl4iMpeYXhuNEBkhXDoa33BYYiyqbducJGmxBP+geLzlb13HN4dQ+MUuSM7bTC9KFulvXCLhFFobtBFkyklvIYN3gAaezdM33cdLufFz2towRs5fO7TbpYUd0kYEMoTDdjYwL/V2JM4w6ECAhoSgdfvDp1a1EfvviABScO/j+6xOKmaznFE+IQuuF0LFZ1rjMHJnEw0TIkjQhhgL6fs6y5RLsmBbCTr0hW19Ot1byTD3nUQdmLYU0ie9St0RL7uuLzqvX/jCd0fqXE5fsn8xPOXa+WmvZQPbsBjVp+DNf/I1wfz4gLppQIpOCSuTbCqdaSIEO9szsJrl4gzdLBFoXKV27Sawr9tnbMBwvSQX12k3AGeIOmlbk9/xaBCdLsHsXqzy2H2ywJXNEoDWIXlRYIbpz7CE+AybQlvurF/2zLVBCMhzFRNEOQGDXsf720lXRb1lvqnBrJ/bI2Hc8bOMWktbUzIwzPA8F9344P4D3n//Aw6eHFJVTcSrQ41IbKgTqRBkCcN2z+lI5F6SVZn0PufZem6bUBcvtFC0OdxjBsrMR4DKAIvEO/R+ng2FqZ7+nGfMfJ70KWBdz5aGmPSQQWBn+nLSsgYSwB/+kkIb46VdO8BAg9reFWdDSk2Bwxw3Gjx6x1sUQHR5VOezGP7cb39qNBLJ/VIh0qYqtIj/hu6xUbnurb24V/S6aBBa6f0V0tyeTy2j2PT6w0Eb56vi3fcKTDo8y8bzoKvyd94mMsukL4OkStJ//vo++4oZH/s9nUq5rK8hbQxNo7tuk53eonev7pi3DLv3Pskn0bsboR2i29/h+Hrfb/LmWO+FzcfdmIQf9zDLRneUzqB2IbZ+OzdRP7AtHDuPrh3Thu6kG+oQIQRfeH3WCaN90XRjpnjrVonFGQt1Y7yKamJAQWDm0kuKof1SuGCMyaTk8aMH1NUSgXEFXf3SFAIsxgs7Ii446xPoX4xk/piTSFiA59VGk5Qea3es52tIuoy0d845HSYoz/kZ3PKS+/Q+JAqGS+FqPDzSansePEJIicqc94rWDcY6rxdrjfO99pK18MWA0581INs/txtLkGwlooVBQvGNTqk7KVFCEHJg9TfLPjP/ZJRqm13mPhzteTlKGfkmG9x5dO2Ydjpofdc0aLOJvX1nSpG/vNf/01/dRaoChKsY3minEgY4Qwp8BBnt5HeYBwKYTsZMJiMeP35AXTumnWayBge3uNwkAm1N4j1x7YZ9I4XAEWuFr2JDLHe1zuCeFyb5tIzbM7uU8dkeg7Y+qjHBkNPrh4GCdkcTgWnjBQasV/t90I11+ddV5sLsg281+IAlYz1UH6CQdiMRaxuLf9PIuG3CDH1bRFtWrPVRb5m38smsJOsMe7j/Pil1GXWrEV8dghkyQq7FMFyCcV9LQ2RKQ6qGtZZ37k5fWmCNFPDTb88QzYmLfLQubNwKFTUxIbrTQdCdIko5X966rmKkmSCorqkk+XLokz49vT6+0tOS7w53H0sqaDtEIoQxrT31k1EKFT3FhdEQlrTXAsL22mlb7rWW7Crczl3YVT8i5+5LjV0JM8sysjzzni09zZWhrULE84TfTNr+7Wo5KcN2v1sj7BAMBRfPrTZe4DwN5oKbeLoIqggQztPSEPO+iD4zIlc7GZxf8iiX/PTndp6BCnV1+pnPbzMZFai85MbeTebLiscHh1GoSttk8blBIq7tNIfxeMRsMma5OKGpl1hdu7OtdkURbJufOMZYRg3k+cmUnw5KYYI2h7jRBm1sImlfTVK63HM3UWBWfbiD5HP/+/7PwDNC6HmnhFefabkiv+stCjguCOHqPyolaXSbsc9ay+1XbvLmm6+zt7eLymWsYBMNqqHsWExgZttX9u0R3iApogTuvU1EK1UHaTrPc/9ZReHEB1L+WIN6m1yQw3Gt9aWq81x7pt03YASmbYzhl37/LfIX7EaSK/il338LITOyfMze/m3mixWPnxwQLFYdw1WIfhNteLK1hslkxGw2YXF2QlMtsLoieJCEeoNSKp+z2DOMhGn/+HLtSza+L42CY9jGQSTde6UMtf+sIRpiHRexk/OYduoB4hmauICJR/9NsXZtt+U9VT4Y1kSweRiktIBG+DBz7UuYhXVz9+4rvPPOG+zfvEGWJUxbWFJPjxCavj6/AruWCFTEu6WvMt9n2oFxO+8S1RZ1oBVqXkZQy7OgFLYFWsEqaNuXCOm/lky7j2Nv8ih54/aYt+5MeFGeO1LCW3emvHl74hiolOR54SqUNE1/np/LB0KoszMG+aKwPZwtqNc2SFPxxs+f+qjfJ9kj+rJmZDwbb5pINL1GrUXVp0p0/8PgGJzXfxu+E8kHm/6Ex7WG4dTDJvpexPnbMuTh/u02OCKwIVpS2F7PpO9po8CQ9pG1lqLIGY1H5LkvrtB+6SXy0LE2HidAdTaR/0X8r4U8aBlwFxrpj3uAUnrwTGK36ud9/zQIJudtLk8b5n7tmPamjkgHNuxsTdPwX/sjd8lekBtJpiT/xi+/6Y1jEoRkNN3CCknVGO9H7C3ygfxED2pTDCxAkCvJzvaM5WLO/PQIgY5VtpU3GrW5NoKE9uOtYl6dwnxw72+twJh0Y+9bDvrXPUsKftV949wADLJWv/IiSuER6DK4/nt6WASLkpBn0m34VmN0EwNYrLFYYxmNCqbTEUUhyTJnlATQxud1J2HeHRe58NwWMpECMiXIgmSdZ1GiDnUt46UJDfXGJnvVp5n67UsLGod+vwgiuXZMO6W+a00/5Whd12Ss+K/8/G2K7PmysiIT/LlffJXdWeGXiwCpmMy2MUKxqjVNY9Da5X1OmY0ILnuA8OqUEpArxY3dHZZnJ5wcHSBsg5IWpVzRVmNNxG9DZRIvUP2YM+5NjHbo7/a4tbLDtB0z8VXYO1L2ZRb+EN580fmq95PCI0Oue1cYJTt03YCnQ4I/S+GZdq6QQmNNgzGhgozEWOciOZ6M2NoaU45c5XaVBQw2MO02WMgtt/Z5wTde+HmopJubWa7I85wiwiBZh2mnt7lM1r5OVwxuyM+Ghgyjl21T4D+pABmOpUzbXhCtfa2ZNqxDI/2MdsYYvvrFbf7Fn7pFmav+5c+Eikzy8z+xx89/ZS9KUNY1DqncArG4IIbWbTUwkt7E8HheUGWLLENrTVPXcWF0lmy8R6uOP3eGvYHvPM0yWocAzpOOk7/js7t9MtyAAbHu3E7ahDVfglJ4pAUOSMCQteOBGXaM1KlUG7lan2En77YhSCS42YW+6qQJ9qiHkhKVqQ6eDLQuewm84to60MlJ+4UQMcOk8IUEnKEx9MAAsNaRUNcDUp4XDXqvXJFZn9fWp0m6du1c/jZ1bjBA1nUd1ZGiKJhMJpRlyX/jT73CdPIBf/vXf8Sq1ptuf2UqMskf/Imb/Ku/eMdPVGIh4SDrTWc7YBY8fnLEnb0d8rzncS0kCNP1dDEuAGd7NuP47IjVag5oBJogtVlfPTWtXvLZoP7kt0RoxILRzoNEWBd85DLdhbOeI9kgI33CsQjw7trBcO8Unug0gPYt/U2E88MWOCOkQtLUDcLgU6x6+SFkR5Wt259UCmETBz/rtUEhHOP2DFrhg2F89R0hhU8raxPdop89vt/u3osP9sFAd3xKKMCabZNdA5VSUbZwdilffegcunZMG9Z3LWMMSimMMVRVRV3XjEYjptMpe3t7Ma3jf/NP/wRv3d3m//i3vkHdmE+UVMphd5I/94fe4Oe+vI+rAtWTF62gsYLt3T2kqLh3/yP2t7cZFypWTY9TOkjXuEPGumCavd1tfvCj+2gtwDYI24CQWKQ7x1vpjW1xsk/ZfH4Kuuy4CNokTe4ya1wOEmuMc2/2X9igiTzXzkkX41VzuV8E8qbSeR+/Dt+19g23PgxCWJQLpfVlxRTLeU0mMpfP3RoPJ7k7SaG8YOAZjvXSs4UQzQsKIbzKL92P9FK1e5b7Ed4wGuJ9Q8udfGFjs1OWfX4ffLpJSIn0zBm8xqF8fvSQi1wKcnk+W752THtIzRiCRMBNurIsI8atteaPf/UNft8XbvK/+ve/znd+dEjd6Cvl3ZYCskzy2n7Jf/2X32VvawQ+CXx/QYVPWV6Q5QXL5ao1lIYT4loMklEXHijy3FXhRtNNtJPitC08koAzz436d+8Mh32Kp195cSZSZwrP2OQnbdBluPVlGr12i4tgnHUJMvX4aWsYdd9j+DHCvVj65SAmZHuzMDyzfb4xFhvSbHsvF+eS1su7ThIqLlpm63J3eA+QWHi49QppcZ60HFnb1E0j0Yk32HBO/14bx+0q+373w/lK64bvOl43Ccmw1o27sVjLHLhO145pD7n+BAkboCxLJpMJo9GI0WgUz4MWTrl1Y8Jf+Tf/IN/8/iP+1j96j3/6zYdkUrCqhxm4klAWGU1j+Lnfc5c/+fOvMpIrrJYYrZ1KSJBEQhJ1L+ZZQVGOKcoxVaWpa+dFkiGwUdIOHi/BkCr8ADtPkelkRKUlR4dPmN4YgVQY43xg3QYgeuv5OkAllxWL05UrsMYF2UR3tTUu97z65pKbQzw3/L7kjhUY94Xndd9XSVchxwnexmuluYMrvGCuNRwdnfGNb3yTL33+dXa2SsAJOVJIhHJotPK2mVAl3lVPkmSRaYMIEffY3sj43wmTPDei8UXRM9K+0qIOKVPWWsfvg1fbRd4j15Zpp5ZZrTVN46zis9mMnZ0d8jxvrbX+/L6j+1uvTPhv/8vv8qd+ZpvvfXTKvScV37+/5PC0ptGWTAluTAt++vM3+crnb/Llt3fZmkxZVAueHJxwfHiCsZBnJUL4NlmDFCpOWCkU48kMXW2xWFZUq4amMWSZT7GKCwjJcuUjpjRC+FJgQKYUO1tTTuY1Dx58xJs7+yhyjAGZ5R4qcRS2AKz1a/fHTL9co6FF3cN2g2ZinFzn5kNYROlPgvNupPP66zIi3RDGvOmaqzKs9bavb9Ip3uAgCyUzyjJHCu/vbxuybIZT3CxWQtPAwYND/sO/+R/x3/lv/Qrbs1cAaBrtc2u3xRsQAqGkyxEinVuqEgHDdqw6aDsm9fCIGnIrvQu6gSgvjTY9/irLx7jMLi73t9d3ewE1ocSZNufb1K41005/tNYx6mo0GpFlWeeaofsYY2iaBknDO7czvvT6hD+9tUVd14CbVFJL9m7uMtuZInxyeCEEWZZFB/82sCWdpIB10rSUOSrLXbY/4xI7IYQ3zrTnhyT1keEIZ+Ap8gwlG+aLOVhXT9LaNsewiQ90bXie8mSkhHfa3vFns1UMiUAX39nakOnPXxE8HWIjNyKoFxy3vSYN9LDYcLwjWQ98twHMXYOhOie2jek8NgT1BMYouiW+nPASSxZEI+RyWfPhh/d8Pm13rUniHgQCVwxeekjEbQoh17XzUAkPbvs/tta2kMra24rhOqaXo6uO42bqBuylX1x85+B6GxK4xeMJvj30nCG6dkw7VTHCLlYUBWVZkuc5ZVmuDXj6d9M0NE3DcrlktVpRVVVM1B4YfZu4RtA0OrrqtSqeJM9zx3LDxoHxkEYr/VlhET4LnZQ5Ozt7rFY1i/mCSbEVpeHgcJ/COGl1j/FozGKleXx8jG5qVGF8+LrfJmw/Eu7Hna6is/Zx5UR6s89I9433vqhvbe+8vhRuBz5/kvZter+oczmILfG2kkJitEnUeDexXSh5RrWqWa2c0CKFQqmMLMs9Vw5h8T4TX4cRRXadCDKdbNv+vGGG/MkY97MnayMsfyXqtzkU0Hb3vNzNrh3TBvfydV07zE1KxuMxs9ksJqIJEyB1DQyfV6sV8/mck5OTKFEXRbFWNNQVPhUsVkt0Y7CmnX5SKSaTMdBGJRovATs+HHz+LFYIjJXIrOSVO29wdnaAsob93S0/MZzVvWlc5Flsg1/X0sLu9jarSnN48H3q1YJ8NEWpwoWNWNc2KST4VK+KLlv48aIrttx2mba1tJGnEQf2m1oUSZ+WGfRX8RAcMsSYDevvdbFO3t+O1mkTfORdQv2mFVR2N6cV9apBiQwpFS4niZvveVYyn6+Yny0BUDKnyEvKosQIn6wMTZarKPWHLo0xA1HadvBJBKV6DHmt1aIVXj419JQLKH0/pZy7aYBy02Ob6FoybWjhDSmd1DsajWIF5vNC3bXW1HXNarVy0IiUlGXZ6dzIOAUuuY7pGlUQHuOL0WeWkP/DPynajUKuZyEUk8mMw+OHVFXCazw3sdblFmk3jlatLwq3GVWrpYtQCwES1uOHl2IGn5wG79znJglcchWT3Hm3HDzZcwvHItz/AuEgKeuhAOgx9f7NUgz4IrqspJ18Tquj9Jn2BrgmusOFYxd2Rm8TCkE9VoLQLbSBlwKFcO6miuQ4nnFnNLWmrht/XCKFcv7aWLQ1YL2AQByCbltsaEKaZaU1wm1i2INv+JKl7aAxfBIKODZc/n2uHdMOO1aAQkLGsPM6Q2uN1prlcslisYjMOvhv91WzKJlbpyJqbairGlU4q7rz+hUUZUltHeRSZOFaMAR8K4FUpGI0nmC00xKMMSAtfbeqFotscUhwKTVnsynL5YJstaDMp8klgfnYuEieHSzwaacUUmqPtbBVYOrw/PskZUimd3yI4T/tOF0spbu/3OwIVRzxMF7KyP1hlMq5uX8LpbJYvzTLMoSU6EYjMn+XFBIZeGL8bXEbhNdyLoIGXjqD/oS0KS1rkK5Tr5GLUJJrx7SbpsFay2QyYTqdRsbdL8KZeozUdc18Pufx48exQ0MB0aA2BnwcWhzKWpcgvqkbFoslo5mDRMISnM6mLLCcHZ9SZKU30Ei00diQINgKjHVW/N3dG/ywaVhqTdNoVGZ9EF0IowUhWyaNFa5dUlIUGbdv7XNycoTNxpSzfc+kRax63bbMAM8nZP/lU5B41xmhlK6vrQmJenzfx1zTPS2mw3I+KcOwgO79Heg8lb/L+mxkc6FV6Y5+3moX7U+Sp0QikTg4w+Ly3sS14uETY6AoRrz77ufJ89KVxgPKcoQUgqqqKbORFyS6RsYEJGmPxOdLQEdN8DwNOF6deF78OFE/D1JfqwhOD2ka5k107Zh2ykzH4zFlWV54foBETk9PO3l9Uxx7aOIYnPueNqaTWjWAJXmRU2UZWjdYiig124QpWO9HLYSkLMcYbWlonLuVDbpkPL2rynrYBGtRUjIZjzlZrSiqVbe9vlX+iijnWx8S2AkgPnfdX06Cu/A+z5Rs8r8j0fveEoxioc9IFk3LBluNJL1ZX168QCrf1BDR//J8upxQKXq/e42w6XndWeCOJqlR/fnBuyHdFsAlM7pxYw8lVUxopFQG1qAbHRstCDEBNnlm+C9ojWHzaJt+VSY8OFab6Nx79/uK9eH2bY6G2c7tBu69di+xJmn3jY+pl5vlM+byNxqNMMZQFEWH4fZVq7Cz1XVNVVXRjzvUpEupP6HaThcIZTFWu6roxoBSMSw3V4pMKacGWolB+lJRoXKHAGuSkkyCcrIF9YKjs4rdGyOUZ+rgDYm4+pHBndC3iEzCbFxw9OQUXS2QtsF4a771EQ0h45rLpBayPvRDTMJfgvXZO6TGC+jd4flSaHvaJv/Zay7d1kjPSLzBzW+QxoAxAmuEc9UUBmx/sfQXaO+7S79zyuif3W7WvmkqxXdAtzVJ13bwc4PAoKwhBzKc5qF9lJ61FoTGUCMyy+7+NrOdKeXEsQ2lFLoxNE0FjH1L0nccYIieWbtEU2Z9T3zWdJnNYNMp6WusCSzJu13Y/nYeOa+2xlVR8pVqjA+aa+oGY43bDM+ha8e0t7e3O9Jyn4IhsWkazs7OODg4AJy0MRqNOn6rfSk7qDiBaQsBshTUdYVeNhitQSl8BDDjoqTOVwjpGDYmVKfO2+zHxiD9gDZGsr13l/npMT96OGd2Y4tMuYUk8EmfrEVmoaiqr8RjNYUS3Lox4wc/+hFVXiCbJTKbYHB5SBBgrEZgyUWOjgViNfR2dhGfp9pc/cJ5v7Q/qYr7IrFGgYuxDmWuGn84tCllSgLhp7g1ArzBTOEXSA42Fx4p0p5xd3HZ9F6dNgy+czieLvB05W/qq4uSbfbl3pT8/UWTtDOU9gpQhAXhNmctXVpWgIwGaQ251Yx9HpzGCqySaIs3flfUYk42znnrC69x60ZJ5udLXhboZsVyecYuW4SkTzZpm7EGgfR1ElxWS4urcIMklhHrvO0G/Fcgfem9ZzPjuiM1JGq3m20foAqMOHX/bb+1cSiC62SIZm6ahmpVUdUVi/mC5WqJbpxNTfgo0nI0Prfd145pBy+RiwwXxhhWq1WERPo+3Of5hHagByXQlcY0OhYvCEswU4ospF617ieoS+n/AoHw+Go52WZZaZ48fkjwInTJ6JyknbbBtcslsA+Stqnm6NUCYRpEz5UsSNpdaTXeMfkscGC6bPmAbWsBvkDsY52iphLeLfRJWCXhHQN16zA6vLAraTsK98k2SE+bAZh16i/6i677hCxI2ERLSEqXrZVc80xVuH6zGKTVSAyFFSjrMG7rYQBjDRaNERUyV9zY2WV7S2HqFUCUCOumGnjXMA4BgvIAlHAbiYP1wPaMnue8ZP9VPhGlwNLF4fL9B3bnWB9MivzBttBTiAuwxtA0NXVVsVwuOD09pWkatNYtLPtZc/m7iFFXVYXWmtVqFaMkA3Z9Get06kkigvXbb9khe2BaCUtI4SX+FqNusbFEbRZOhc+LgizLqJuGpqnRuUIJFSc7kKyPZCF4hlWWBUrCajlHZA3I3Dlzh82h40WR0pB0GJ4SFh7riEnnvGdPF96zu/p6F4nO706QUW/vWQ+USA6I3vGr7lkdfr9JQr8cbZyionenzmAlxsvQfJsIDZZYXMMa20IBIjChEP2Iz72T1CuFdj4Ldy8Xru3w665btev0kFDKRu2oK1EPUoxmaf9c75v1a4XoClnt9XZjXw5tue35oW9EzF+f3ivFptOCB8GrrWmamGnUWhuh2BC85/K2fMYMkcGzI/hop5JzXdecnJxwenoa3WvG43GUpPvS9BA8Eih8Dp1stOHs7Iytra1wBs5AqBiPx1SrBpeu0rkSYrUzZEIMajBGs7W1zWqxYD5fsFwuKHOJysd+knvPB69q2sCIpVP7rTDsbm9TC8mTJw/YKXeRRYYgxyKRMnOLyhjsxolhk//TY1eRND+dFAyPjpm4nNr2PMcN4Nm966exz1r2lGcZspZYbfzUbee8sRpttKuq1EiU9zzSjWPK0qdwdUqkm/dSujzRJs2wJsB6WEsq4WsG2e45rDPZ6JppzdqavOjNoOsLndz1Qri7H8wzxOj7BsUQib1cLqmqitVqxWq16jDwlILtLf0piuLcdl07pn2ek74xhuVyyfHxMUIIyrKMhst+pNV5UncaSYkQXuV2cEufpJQURcFqWWNx8GmQdmMbPV5ncW5UeVFQVTVVXaF1icidxB4YTGQ0XmqSQQUDxuMRprKczU+Y6QrhceyAcbo15d0Xh95xYy6O/ueXSU/XDvfOrfSY2Ic20Jr4/QnoU8a0e68mlXKR6LbfKX49GYM1FmNcJRvA15DEwX/eztEK3SJK24lwCgEoCbi0uSTW4Rl3miflUq+ZrNXLXLN53XttM4E8wgbVNrGVquu6ZrlcMp/POTs7i0w7CHlKKYqiiInrUulafdaKICyXy46bn7W2A4mEggh9yTo1Ml6WggeH490h1LxLAR6JqF7YVBJjBUTF0Z0nJePJmLqpqZvaG448RCIkLmMgtBhhi5wURc6iqalWCwQ+ihKLCepwovH3snSmb7ZhHXmIZg1+eIlke78vcUHYr9KN0/HzdQz48nDIeSc9337q6EBrGNY5V4UNDNpc1507thw34L4nJ3NKpWB3TKNbJramjdkQcRoYnL+LTedWGAj/tPPgyYT5286gJwKUf64/4P+0Sfs23PoCAW2T5L4CgKUAAQAASURBVG+8X3Vg1OF3cCEOaVcDUw5tCX+nsOxV/M+vHdN++PAhr7/+eoRJmqbh8PAwRjpaa6PBse8l0qdNxsxUdQz5TVAwPztLzwLhGPZ0OuXho0dIqWLZsxjJKJy5MOBjjTZkRcErd1/l5PRDcgWz8YxMKoRQPpNgqLIe1Fcbcx/v7mwzr57w5N7HvCNqMqmxGLRxuKQAVMiTOfzWye/0h3aNdISjl824z3t+AncJAq6EkE5yNMZVC7GuKls4c8N9L8kIr9S+Z0ddeVWc+9zWVz/WECPLclTmcrUHLazlg36+Ssn3fvdDpkXBu6+/w3JRo2vnomZtyOUiIywSWtAWGWkcjOImIZ30AjDIuDrQhg3/JXNSEG01caPo3aP9/HRak0jmemTOWrOYz6O7cPjdOgi07zQej5N7dWHVVIC8rMB47Zj28fEx0O6QWmvm8znHx8eRYY/H4zWD4ibvkKFdNv1sjC/pJWG1bOGRIMlKpShKGSOdpJRucJNJF1R1AWjvp7l74waH97/Lssx8SHuAYYL+2WJy3jCNACaTCZk64Oz0EIFGCpfH11mu3TI53zidSky9BRKZwSbG9qLpavCFY0ZtcJExrYQkOq5+T/N+Lx86ugzQ0O2xduI56Q/fP6GiTKigFOaA4P79A7Z98ZBqpcG6VA4tfOBc/FKIMpV0o7CR6DUXOQBEZj7Qx0F7PX8mPP3YiFZN6ODXAbcOmUAXiwVVVUWGnabQCEnqNtnErkrXjmkHLKkoimgICEZJeLpOOo8SOSFagmsfqBNUQ4HP0yBkgp2L6H3SzimvKklJlhfO8KNdppIUjzVxMbirbHI9OEysKDLqeolsKkRm4iZykXwdP6cuMO2tk5PEhi9eDrlFm7Ktc9rnIQRrHWzUDoHv18F3GjrWYwb9AAz7svtmiFkF6db9Dm6gSkqkdG6UKZzhJlfrf71cLsn9bY2xrgakr78qRHAEoDOng4AcIeCIyfgWmWGX2kEtdw1igb5nycV90Duj97w0zNz9tJ4gwSsk5CtKseo0KG8I/ui/z9PmUrl2TPv4+Jh79+6xv7/PyckJy+USrXUMnEnzhkBXyr5IPVmDS4Q3GliwwkY16PT0lJ3tbYIrnhCWra0tViu3iWRFjvDpMLWpkdYtIyUl2AxVlky3t1lVNauqxmJpjI4GR2OMK/EkZcuwfaZAgWE0Kri1v8Ph4/vMdMF0Z4qSM0LZMY1OmFRnhfn3skS85VwaYozPW+IcaO/G71KYIHHL8t8Z46qvGGORwiYQiejd4zLt6bfpRffNee20kWm6MxOZ1QLGOMlwDrBEKl+FndYWYrE0WnP//kNOfWK0um7Ixy718Wp5SDkqffGPcGP3QKNdAWFwxYPdffWGzdE3q+eVcf4b2/jMdHm28Pbl4M/UiaFp6hgxvVotY579kB8E2ya6Ch4fwesjQK+bcOuUhhwgPnO5R+bzOU+ePGEymXB8fMxyuYw5SKIkHCrP9DrxafIfOEzZJY0PBtDFfM721hZpQdbJeIxuNPPFgqwsfPIoi9Zuwbu8UAKERMmCkVLUVRNzmri0lw4v1Mb4DGvClYWy+PB497gyz9jZnnJ6coAqdpnMajIFBokR+Nze571rUJutF8+Hzn2ZUuRTMj8v4QX13xhXrNYYi5SXAReG2rFpE3ma+30SuhxU1ObV89d4z5A8H6FU7aVG0Mb6/DfuTMfbLQcHhywzN8+bRiOFK1d2tqjJ8oyhdw54dzDYY13othAqNjkwvz78eKH/dnv2+ruKzYw73RSGvtO6oa4rlsslp6enVFUVcWsHiQom43E0KqYJ5ob9xdePp4VN0jZe9K7XjmlLKaPr3XlqyXkRj+fRkMHAeXW0cMJQovboM+6wDtyCiXcg6qQBMkGQ5S7J1GpVkZX5AESBn/xBzxQIKVBSkecZelFjjWfQHs+NF8ZH947FtW9735M8fxN88Lyl7KFHi94nO3hilLeDtOlx1tbDrZXIrQgQwtBDe+8Zv9okaQ9c89xIDP9pI0jRHnSW2fZUBw73UAY/E/3cNMagMuVz1/jr5JA9qM0S6CDAoXaKCNK457cMa1B4sm174jsNaMibjHpDUvWQ77S1Bq0NVVVHD5B045BCgK/M04c+zpOoN7XhqoIiXEOmXZYljx8/5vOf/3z0Egk5SII/duo50ilqQHci9CfF8Hk4qEMJ6pWr+F7XNULKuFYFkOc5UklXyQaDMUHyUE41F076cJPZGXJ2b9xCmBUPHjzinTdmkdE4DxIXZtw0NYUauWuMIZMZo7JkZzrjg48/oF7NkWiMaVx1EYTznji3F1NG3mc+ovf5ZUjcfQik/12qIwcu7YqqOhzbqaDOC8AbaK0/N2C5T8VkhzaMtL9eAuOO1LatHTW3kQvpID6HT0usadx5semOuWqt2d6eIbRP15CBypSH6SRag9aGTGWxaG9Q9x1zDM1wUB4eIuwz7uFgmPAaw5tyX1Ifciboe3WECOmQNK6qKozxSZxMEtFojMP8iwISCCRPDIznMet+O1IakvIvYuTXjmkXRcHR0ZHrVF/8IHRMYNrBmhuOpUz8MtR2dDvJBJaVl7CbpukOhiWGqEb3KS/lSCG8tAJGE6UPawVb2zc4O37MkyeHvPMG+PR+RLnJGhrTUOYCJSSNMSipKPOS6WTMajFH10skmsY0PpeJbBfsRuNaYDBD54jk+MuESK5KgQkFpuXSBrjISBLIINBVGeyLYMiXoQ1jOiiEe0lbuuyTTkuTWK1BKC99A95rSWvNdDZBey8pKQUyUyAVWJfPRWtLnoU82a2UDp4h+WAcIS0hoKwPC6TYcoeBJXvpEH/cJGil9wkQaTheVQ4COTs7Yz4/826JHn8PQTAh+6f/Ha6/iiGxv5kMQSGta+NnjGmHKMfUCNCnvsR8WZejdfI5qekOhMP/gsdKW2VaCuGNPGFyJSq5l0As1qerFGRZgRCKRpsouQRjS4rXObXRM3NvIFFSOanJWpq6RhQhdKcvRXY3oFbqCbfexLj7n18G09rEaAP0tKkmTRKUBFECHD5307OGnnteO18WU+8x7MG9Os2ybTe21lrLaDzCBE8sFRikF0SCtnIOOSjR90jo90RKHlyvybVdn+vhF+vfIg18CdBl7SXskKzJuSImQNkF0MdVmfazpGvHtO/cuUNZlhRFEV1yguQbvEdSuqiI5hClu6WbCA7rcoYYsMZwdnrKZDpFSZdPWylJURZMxhOWdRX9Ny0WbZx1XckMY2qwFikU06095qenzBcPqJoGqUDJtmSYkK6CjfG1+cDSNBorYFSU7G5tg244ePyAW6+9gpTOZ7uxGiGC0Sj8DC7TDd9tgkZeNGPapCkkmkDKieP+ElR2l+421PjsvutlF+TTQikvirptE53jrUYVIiJtyOZoDRavgVrhtRHLW2+9QebtHKNRARiqqqGpLXkuAOWTRDmd0SZeSNJDIggQwlI3tTtvCMK2CQP1WlIMounAd0GA6QoiQoQ8ILYDgdR1zY3br3Lvo49iHmsn6FiKPMcmkEcMgLnAde9p6Cp2tD5dO6Z9+/Zt9vf3sdbGnTTQUIenuQwuYxRYC67xO7hQEuWxc2st8/mc0WjkmLZ/TuELDJ8u5klVeB+paCHLFcZPZCkV0+kuB/lDFquaWjcURqBk2OkdHhmYtrMzSnTToDJXn3JnNuO0ajg8fMyd140vXQZWa3f9JogjrotNEAkbjr1Iuvrzw9A7TcVFhQaIxOLVl43vO0SfdoYdaHhDbk2t1ldkB1cYob1GCOlKtHk97bXXX2VSunlejnKwNVVV0zQGa1zisw6iYQ0hJa4Qyn8GBGhdIbBtLpP++gtQCMS2ttJ2Ok6299t9Dn7VIfgl5AH5EvDg/gNUJnzuD5cSNWDUnUhFKaNKGxjtkAH0WdBlDZPXjmmHCKUYrbgBq77IlegiQ+R550Nbq9Jd6H/5QISgEraUSA+J2i6EQsoMpVyqVm0kGS6xj8UJRCLVMzsNgjzPEJWlqSuc33XX91r48yzp4bBk/aIIJ8VvhqCR5KEbv3tWlEIgFz1j06LuXmdt2LSHsdLh519lwT7bxf1smMWmewxtXO06UJnzTAKHaVvtj3smZ6wPYRdDqU9F++gN+2MrYYvO7/PeIaz1eNQYtHFeIE2jXaUYYxJ7UjveEDbxVqjr/PgTzpOMP4nUPEgX3OvaMe3f+I3f4P333+fGjRt8+ctf5saNGx2n+H661rQa8pAlt28oSHfDsCtbupK6UoqzszP29/c798uzjMlk7CaPy8LvVT5nyHT+worgh2bJKcdb7N28zeMnjxFsUxRbfhIFta7FCMFEDwndaHa3dzlbHnFwfETTnLm5IHMyJT0WH+g8BpiurJctXV9E5zMzE8If8cnlrLM5NE2D0Rk28xI40IWALrM5XBVWedaUjtHmNqRbcswFjzOQC2HJlIAmeFS12UFAoK1BKhFd/vIio/HQyPbuDawxLJcrVCYoC0WW+cpK3ucbEdaQb4uUrnLNBuk1QCJ4mCVsDsaIGOAS1vBqtYoueiEoxnp7TIBJsZZR6bw/ZrMpQrbJnDbZwIa8UDb9fRkaYu5Xvc+1Y9q/+Zu/ya//+q/z7rvv8tprr3H37l0WiwV1Xa+5922y6J43UH0KGJsJBkQcFHJycrLmr51lGZOxAGOx2qW6lFI6FQznWiSlwgqL1RorHNO+sX+TR/e/x2iUsbs7c0zbWO/ipwhWnXQBNrVmZ2eH+4+PWZwdoeuFy6ctBCoboXVbDMG9wXlS81Uhg+fNuC4j0Q8tjtbY5PZFt1k1tXbpAjoqx3kblU1+LtPWF8XIzxvD9FhPAxEu6ZgQoJSAuvX9T5m2sRahWgNkXuQYXWGsZW/nBsfHJ8wXJygtyLKSjKzFm62TvltXVyIkMyRYBkhEeAElMG4hsqhdBobdNA2r5ZLFYsFqtYo5QYBYejBAHmWRAzCdTbq9Ym10DU49V85jspcP/Om92yeEV64d0w4SdbvTPl9yfqa2A3n03YwAsK1kvj5o4e/Onb0hSJHlBY3Wrq5emDC9M4f0TRmCAACt65hbm85ZoXCwv2PwVU7nYfjKDiirGyu0vwTqoyHpVyLkI7cBgYpkbUgj6m8Sh2WgE9ae13/oi5e0uy3bxLjT9m2Gi1pDn0exbfKGce6tS5xSqiidh2NOOl4vaxfR9A0Mu7/PtfCVdf7TPu8Htk2FmuYCiZI16z7fqS94286u//ZVbVsvmq4d075z5w5/6A/9IVarVYyOdJNKRqYJLdSxySWwz4A3kSusm+THdheR57nLM5LlvlBn+/10MvGYm0vrKhJoIlrehcRahcpHTGY7NNpQN5pGa7J4jc/6F90ORWRIoRDwaFSwvTXh8OAhOypnnI/QTQPkpPUT19nxVZnPZSXPF09RG7La7UciBNMACBrtvAyGJe0+pe+ZMsA+c/o0QUkJ04pH+uNlkQKUdD86CB3Wlw/z/2sNVeUYotaWutYsl07azvLM5x+RVPWKul4xLguyzAWWhZ0xGIIvRKv9utO6QXuI87R2kYp1XWO95mytjRCotZbCl+wL3mJ9b5CUUgHqss4I6XVPQ1fR5Ifo2jHtV199lZ/5mZ/h61//+hrTBsdkQ3Ly8HdQs/rqUH9ghoIApHSRiGnfCyHJ85yqqsjyFeVo1JEeptMpZz4Xb5ZlbUUap0W6Se0ruKt8xHS2Q2OsY9qNxmQZ0gqfuTiZhAIQvkqNdZN5XObsbE85PHjAZGuX6WyXpq5Blf7SEE58Gdz6k0IFL5esCaW0lO9nJxk2jfFpWuHq+P1VYKOXQf1Npj3eOjr6GSAsyjNuo302SQtgMP4cbRyjBmi0pa4Ni2WFsQaVZb6wdsbB4ZkvxAFbeYGUCuONlgKHixsjHMzBAAzhF0JgyHVdU61WnBwfxxJeAeNOkzKFSlGBWYf89efRJrhiE2N+mqCai45dha4d0y7Lku3t7Rhgcx42dV7nn8e8L6Z2srgK7Z5j+7EKE+q8wYtxe0IglPNvtdYli0rdPYRtc7Z1mpmogXmmaFYuRDdiuhBx8C5g0odqUtew9Lx4l7W/uxvY5r4bUluHcMJ1m8MGtbrfqo3d27YzYK4h8MJo57PchT4CBNWVUEUKpZxLz45hX3bB2x7EECvaROVg/T4CcNkXhjfhoJ00Okjaxhf8td2b0IM0rEXaoTnq27F+eXxX57ZnMNrBIkGiTiEQYI1x9/++jG3qvHMuuv4y+PbTftena8e0b9++zWQy4fXXX2c6na7VlOtn1rrI6LCJwrnGJghfvNxxg6qq2iKdfrEIYFSWzOdzZxhN7hk8PwJTtsIVDMNKdnb2MNZyeHjE9mSSMAwRV5MIHyEy47IsmM3GfPjoY+rVAtvUSJGjjQXh/Ms78zH2wadZcvYcSQRoaNM5XRKyVclbpmKo64bjkzOXK7rI2NrapihylBIY4yGVTmWbHke8sK3PnwZbZNlgcxjabJ07X1nk2JMFAhklbkLVdJ9f5OjgCJjy8OERubLkRYnFsqpcTcRcueT/ebYFAs7OzlBKMSpGvuq7c8ezYnN61uBjvVwuOD4+xugmTu5gMAQ6knb/d7jP86YXjW9fO6YdSo298847AJ0sXSbFkXuSXAqhXETxWiF8ytSEUxIkOBGT0LjvfQIp4/Juq6MjTALTgIsYMxErERghEdZFpN3Yu8X8+CGPHx/y1quvJbZCEY1FQoHR3baMRgXbcsb87IhqeYZpKlQ+9YvGuCRWqeQeNo6nZjZDqvjTUSr9DEJXNskgJ5LsbhuaL6WvsOL7OMyHVdWwWC0AQ55lZPkIpTzT1i65f0hJMMy0L9o40mteJNbd7wTRa3oQuz0zVJJRWWDNiesrKcDgEo1Zp+EZDQ8eHACv8vHHB9y6ucW4HGGB5WrJ8ckxucrZ29ulLAvmZ6ecHB+jpCC7kVEWJdYnOhMKhFAM5Y92sEjNyckxjx8/whpD6XNWhzSoqUTdt1tdxTPsqkbI/n1eNF07pl0UBdZaRqNRLOh7kdoz9P2lpe4N9xZCoE0SJpssFBUt7eEerK3lDgQgBHleACLm127v1l+IXZJSOr9so+PP5YTpZ8N0Az2te9T5D+DSe0vw2W2hke6Fbpw0LjWBjRpU8HUYlFdtu3EOfLtByn1xFFCQwS4PB5MNLhrm41glfSZaSKmpXZTxclWhtUHILEJMWjdIXLRpmknTCRcmeWCroQZpu82g45vmpe2mrrFAbtq6qH3DYj/EfBMDvkgCfxY49kXXfdI1cO2YdiAhBMvlkuVy2TnWtyCf50VyIVnrawR0J4B7jsLaiqbRrFYVZSmdwcc/xoXN5hjtqsPLBIO21vlgWwVWuDSWo8kWxwcZq8phegiJojtR3VII6V39YrPOxLg1m6KbirOTY/bHt2i8h4BuGu8n7l+pZ7NxUWFi094UrmINmNxw/nk49uXO6zLdeJrt7Z8iYagiuIs1MeUm1hnD8jxnNLqBpcbi6nNWVcN8vqAotp0rG7a38YZ3vqzkfFVI5RmSWPvQokt+oKyPlhXWIqx23iMYL11LV2zDk7GQF65G5OPHB2zPSvb3b7k4CGtRWc5oPKFpNPPFEmMs09kWAsNytUTlLh+3kGJtU4swJS3jVUpFG1BRFB0tWcp2/veNjS9DEn6mAsk59GwLJn6KSAjB2dkZJycnnePB0b7PMJ6mdqQFrDWJzNA+O8uy6C++mC9dRFj4XrpcvGVRoHXjDEAiweMQmEb7JD0SK3Kms12ELFmuGlZ1g24M1jhIRXjoJdTPsyknwyCw3NjdQtdLjo4ek0vIlNtAmqZyrCf0hwmJ79uF4xbtBmlyAIsQyWYyBEM9LeN217bPdpVVWuYdEz+JrjTmNh3rq2bXLJcrLy0KiqJkf/8mt2+/wt07d3nl9l1Wq4qT4zOsxQUkSYmh74FwWaYw3EfPm2znpzt+UYHzWlqIFsQasJpMgRRecDBu/oSa0sZCOXKBKfc+fsjh8Qmj0ZhlVaGNY9qT2Yyq0ZyezWmMYWdnh9lsxnwxp6pWGNOg5DqavW5bcuso5AUJxXIDI5dSdBj3Wh88R8adzu+nFvqekq6dpJ2q4SFaakg17/tip9dffgDOV7EsYI3h5GzFd+7d570PT/jt7z/mydGSVd0gsGyPFV98Y5t37sx4586E6bjo3d1JuirLHfMwXpUXfVjHMzVCqEzC8IAiz1lWhqauCHkhgufEmgAZJLFz+8HfP+L5XTT7aSbxVXxkr7oe0w3DGq8hicRFLPNeIzgXTI128IeUTntpwXO64y56v+F5Mughtb8db9E9uH41Yv3MhNzgy/iKfjIkr2hpM2NWVYVudAxVB2J+neD1kfmIxIbWQ6fffr/tentEulHTwalbwSqdaW2/xPu9RLz5RdC1Y9qBpHS+0nmer323yZH+WQ12wEHvPWn4R7/9iG/88LvkmWJVa+e1kdCDQ3jv4zlFLtHa8tOf2+WXft9t3tgfEViwqyCZUY5mzLZ2ODw6JtvephzlyUQPi0a2UIEUYCVSKna2t1k8PGF+dkxTL0HmSJGTKZ/HhNaP3TlkBLW5xRyv1AfnGHz65/UZ0XkGob7LWLJUST8aazC6jh4ixmqyzM0HMRHkWUFR5BRF7hlDe9PpdOauMRargpSaMuur9MeLlLQv84xhg4bz03ZTJs8zmhp04+o4hjkmAGs0uQ8Fv3HjBqPxGIug1hqkIi+ce2peuJqsuRLMF0us0UwmU4x2niN5Hgp52GgcCH7zgUlHaITrz4ivQteSaQcsrCzLKGmnDCM1TvZdAq/8rPCTMJonJxV//T95nx/en9P4SLtaNxvvYSwsfZTZb3z3gN/6/iFv3Z7yl375NXZnEovCUjCd7VLv3eThw4/ZGo3Ynk6xVnsJ2zFXKZVPF2uRKFewVgpu3dzn4/sHHB8e0axOoRy5BZEpGmPiEpYyw+KYXGSog8xqEyNKguqTjbGvRqYbZ5Dc0jEYCopw17bQTwvdpN/7b41htWqo6wZwiY4mky1GI1ckoyhGUbVW0gWWuEYrdnf2MKZxzCUTRGwgQiSCiyMgU4jqRTDty2Dmm40N7o0smYRRkVFrQ41BCqhDSLiwaNMwGjmm/cqd28y2ZhigqjV57jZBUJTlGBesYzg+eIIQht3tbY6ODxG1YDQaQbCVeI8fIUTsVjcnbKw+Benmn7z1Oev2Kt4gP050bTFtaH04h/yynxV18GBr+du/9kP+yl//Nu/dO6NuUgz2cmQtVI3lex+f8Vf+vd/la79z6O8hUVlOUYxYrVYx+VV8Fwte5+8ZzARSSMqiACxNs0LrmpA3WYpwsT/bSzvxtgmO3BNyBwCBVir9JB4553udXGD8S7oj1PoLXjxB+yrLkrIsyXMXYh3eGY+LK+XS4XbsEL0+bdvX/XkRtIalxi5JG7CpMev9F+0XuPdUQfOw4b3bikfWOjdRgNF4FDVZY93F0m/AUkm//pQLhmm0j/49f/11bCmJBwr0GfTwRvis1/dVqAPBDfxc9h4XTaRrKWkHcjt/wenpKUVRXOgO9DQUlU1r+dV/9BFf++YhVXN+2OxlyBhLZeD/8Q8/5t7jFf/aL9wgy0rK0YRlVVM3DY3RKNu+k2sItGlXBdiQF8UwLgumkxGnpwdMsh3UqAAyv95tfI++dHw5KS6l4fM3MfKnhanS85pGY60GwkJ3lYLKUYmUgiyTjMdjV2BZptWKXFvnC5cg/+OPHrJcnSElzLYmvP326xSlT+wfX8kl9m8l1xdnhNpEIvm/S8FAwRqPs7SwhMDj0UKQZxIlWp1JREZvQBiEdDfa258x23YaS1GUbqOzipP5HGsalITZpCTLcwSWxWLlS+gJqlWNKlTHUyR4+VgRKqUT8fGucT15h3OgtxdJL3KjuJZMOwzyaDTCGMPjx4+j2xC0zCh1wH8aC7DAgYDWWv6f//Aj/sk3nlA1z3bwqsbyj79xiLCGX/kXp0zsLmfLBct65SAXK1HKJcfRtg1xdwmjghHNYjFszSZUdcOTR/dQ45uM8zFCCiSKAJBYraNUFepZbqaL1f5N3iNpmHEfBklznA/nOG6fHwxgIYmQEJDnBXmeM51MmEwnPmCmDcZoS8z59gvJ0dExH374If/4P/t1nhw8YjTO+dKX3uXO3VvkxTi8DUHadP7M4Vi418tjHMN2hw1jI8KbO5za5XAHJXyATQGZFAj/nlJINLhgMNEg/Kb32hv7jIqMLBOMRrO4pp4cHLFcnqEkvHrnpsu9YwzHpwtm0zHWaObzFbN8Gl1KpZIY46E+YaNHS547u42J2lJX8Ipa4Etm2i+Sri3TBqIhI8WwU8NX+vuT0Nd+5wn/5BuPnznDDlQ1hv/8d45446bk5z7v0rRqY5yxjTCIHpbw16y9kzXkeUZZ5JzNz9BNjXPx8uWgwmlDjNhu/GMdMwHWvON8e/qeA+dtlJs2i3a8wni2x7XW3p7hGpDlWawXmmXyXKmsqipOTk+5d+9jHjy8x3Q65vbtfW8TIcFHknn0qWHYCUUmRjfC3/bPDvgHLmOkx0akcNBGQF3Cqc6l2s0N4f2rJ9OSXAqEBaVczdGmaViuKuaLBUq6VMmTssACdd2gpEJbV8s0SPGiB+m1/tp0ioy0LzKsnV0lkOVZM/kXiZ9fO6bdZwqpZJUO7LPq5IOTiv/gH3z43Bh2oKqx/Pv/6IAvvzpje2ePutGcnJ6yv7UTceyQ2S8wcNFj5GWRMxoVPHx0gNYVOPnJlY2KT+oyp/ZzHwo4532jFNo/vK7hbPIe6Z+XUmDQKfznCiXnKKUoClc02eUPUVE6C/du72nRuuHRo0e89973+eCDD9nfv8lsNkYqwXK54qMPP8KYW+zv72LRCVOUA+/46YBKNlO/bWLtL5d/XXu30DY9q4NRXB1T5THto6NTMJqmqjk5XiCExHoYZLWqyJTXmoSrtejcJ4WH71zkqa977Z7fGZu2bVK4PDzhnKHz/v+S9o8xBYNTMGAEL5LwXR8mCZXa05StV5kA/5f/+Ic0F6R+fFZUa8v/+e8t+JWfep3F/ID7Dx9yc3vXFbgWAmld6DyEEmatX66xMJ1OMFgODx9S13OgBivJshKdoqLtfwMISFsNfp1rrcNPfY8QaJl1kLzbIsctE08XZj9trjFOMg64J8BkMvGYtcvnHO6R56qjUgfSvrhxVVV861vf4p/8k1/j8eMn/PzP/QK7O1vM5yd881u/zW/91jdYVZ/n1s2bPi+Mh54IuUjafhn+/ClkJlFz6ALdUoJSIKxGCuevrbV2X+ACWUbjIlhBuPfxQ5Znc85OTnn08AnC148cjwqq6oyyUDRe+xFSoVSORWJxBYC1tkjpJHtrrNsIcbEVWYwSbnMCrXsg9Y3uL5delK/4tWPaQxJb35ix7kL0dCP/w/tz3r8/5wXxbIyBHz5oOKh2GevHzJfLDk8IDgRuTSaSthdI8jyjKDKWyznGOFc4MAgJsjPHRFSBu9RP09onkTCEgW834NvpeAy5Brp3N34cW0k7hVvyPGc8HlMUI1cyi3YDH6IgaQebx7179zg6OmF7e4c7d1/h8LCgqmoePXrM3buv4Bzikn7eqHEMb2QvmoZaNWisTJNugYdFXHRA8Bxxx911WaaQ3o5wdrbg9PiU44NDHjx8hMoyilHJrf1dmqZBybYGaxCM2uUpOt45lpDevdUWU/hyHUrzBT9ekqfIRfQ8Jf9r5/Kn+5nzpGQ0GkWJDdY9JAJddQL8vX/2kFq/2ElTa/jH701B5GiDd2fT3q/atJPbOny6H2YvhGR7e4u6WjI/OwEM1vhSZoRF2zX2XZouOLXf70EjGnKJSpl1+Aml5IRwYzqZTJjNpgDen3dTYdb1hgU7hzGGe/c+5ubNW3zlK19hb+8Gs+mU3d1d3n77HZbLFfP5gj7kdBkj7KeBUthrvbWic6KIRyxKClSQcJ1LUuzLuq4Bn9vdP0OqjO2dLe7cucXujRuMJxOyPPd7uER6+1KsLlO6FA5aN9HNLbRPJil0w9/QJp4aeLnPFF07SXu1WkU4BFyukd3dXebzOU3TUBTF2u7/NPj2fKX55+8dXeRS+czJWvjGB5JffG2Mro+p6hqBRVmnckpZYG0LNTimbZC5KxillOTu3TucnZ2guc/W9i5NU2GsmwpOQfUUCzjA5fHadfzYtXtd6grfBwNiX+IOqVND4nshBJnKKcuCra0pWabIMregJ5MpUipawdqp3i6y0TEOa4P2BXW9QogCrTW/+Ztf55d+6Y/zUz/107x691XKUcFec4OtrRn/+//Dv8vjx08IsEiwEjh1/ioj9/L0eBs3nJaC1N1CXc5vXwlXsCBXirJQrFbt+IfxO5vPAWdYdPlxBFlR8Nrrr/LO594CFPc++iHV8gxtDMKHso9GI85OTymKnK3ZlIODBw4nzzKn6Vni3x2mrRTSb9ygINk4uwBP+tIBKL9+nP3aMe0hSbssyzVJGz6ZCvP9e2dkStC8YEkbXLKneydT9o2l0ZpcCW9p77AVvKy9BhltbW1x/2CFnZ+6c4wmFGBtnSTazHZOWrJsLjiwTn0PHXfLbr8HRt00Ted4em4qaYNPkOUl7aLIyHM3hZ1r2ForCKH4rdHStSmVtD/++GP29/f50pe+hJKK4Ma9vbOVSNq+fTZsa6nUd7XN7EXRpWdmGBes9z63SCGc2x++Ejptgtq6cpK20amkrdja3uaVV26yquDw4CGmWbmSZcJF6gZJO88z8iJHNw1GJxG9HlqTUvpoHfc8mWzmqT4QTePJvHHz7en668eFrh3THkpIkyZLTyn4Afepz+SG6P0Hc6r6BYHZPVrVlgfzKXe2x8znC8psSubDfiMGmVj8HVkvyQinidhTGl376Miiw6zD6Yh2oVhLIpUNUVLn3YYIOjoMexi66FIYv5TBO88QZ6zMs4KyLDoVS2IL1oaqfbYxDatVA95lbbWqYjRfmvlRRCOsk6Znsy3G49ZPu928wsZzXp+0ffMyaE0KDa59bNCb/AEpBUpJb8B1RSBCbm0hZEzlOx5PqLOKxXyJMSfOBdWCkKCNptHG54H34+9TsgrRwnYpdNdvU5gHKstQvtp6nBfQuTa9yYvo7afB0s8TEq9yv2vJtJumWavCnGVZNF4NMY/AwC/bed/98BRz9XF7JmQsfHA84Q++ts/9B4/YmpaMx4U37HhLpLUu74jwSqR/LyUk29s72I9cJZtqOacYjSOsYCM4kr7c2nJKflIKBYLtepg9Q9Z/uwaNaK2p6zpWGHISdcF4PPbMVaFkTlFmrp5h0IIDs+001YBwz1gtaw4PTmh044M4aooiA2FjpGQM33aNQ2vDq3dfY3//podWvAgujPd02NQP3T55MTTEhjf83YOFO7CJcMbGPJMUuUCKBkJWSCk9BOUY8d7+Teqqoqk1H977kLppMIDKoaorVlXFaDzFGIs2GqUEyufR1qZG2yYyXoNFkXgQ+dY1TeOC5LRmPp+3QsDQW6aRwGtnXR+6lky7X1IseJAEpnyRw/1lGPfR2eYEUC+C3nso+auP3gD7OqP/At65afjJu5o//EXLrSkQrP9euAoRjw5aGGO9a1XTVJR0PTjWl8UQDX0vOl8NwSJ9d8C+h0fIQd40TZSAi6JgMpn4VASu/FobiR5w8oFmeYuqqwNZc3Y2p64rtGnIMhf4IZWT5JWSLeP3t7HGsrOzw3Qy8zcMjDqFRj5NjGHI1LiJkfdTtLbHXWyDRCkf/JKIr4FxA0ynM+p8xWg0QusabVwO+FzibRGaPHeBNcYYMiFi4WBjNWYtF33Q6kK9Uzc/cp9DO4U+N0OcL8928KLo2jFtrXW3oK6nPM+jQWsIKgl0WUn7ZWDZfTJeTZ/X8I17gm/cU/zffgP2p/Cv/Yzmj32ZCFU4wdBJokJKxqMR2roafKPxTTLVfR+3VIcS/4v0pAFqU26mm2Qf8uj7aqd5k4ui8IxUxZqAXfgibU+vTwyOIZiGRrvEWroxfty92xmOIQX4RylFU4cKQ0V8MSEEOzu7jMdj/11GzGEoennIN/TFWjNfEE9pPfQ3nxEb5v2h8YE0sqcNuR8f5JKURK1rx5iNhzCWyyVPnjyhKBSrVYWlb1R0qREQuIpJ4uLuSAWu4ayPm+mypvMfN7p2TLuqKg4ODtje3u4M6tbWFgAPHz6M+GjwUAA6ny9Dmfq0TYe2PY/PLP+bf6T4a78G/7M/VfO5/ZoiH6F91kGB4ub+PvL4lPff/wFbO3eZ5pN4F+HFc9MJdLFPJVT2Fz+0xkXtccqwkSqlGI/HTKfTiGOnlUrWfXW70IS1oLVhsZyzWi04mx87rxMkShVx3LWRFIULPgrq93w+5+DgiNu3b/koPccsvvjFL2LRHBwccevWDTzP8f9dpUM2+jm8NAq5R5wG4aVYa8mVRAkvo1uLS/8b4CvQ2mlGJycV1lRoYxiNRzx69JDlasFkMuHw8IhRkTMej7BN5VMuGMoyw5iG5WpBJkWE5QLcFIUm/zs4EiwWi2iwTul84esFAdwD9Dz9tK8d0w6Sdt+iPBq5lKZpJRsYNpBdhnamGfcPVs+kzc+e3PvMK8v/9D8c84c+L/kf/XIrUIFgtjVjUTc8evwDmrpqxSe67KUfUn4pSk7dZHxMvULquo6pBrIsYzKZMBq1aT833avzMK9FWOs27vl8ztHRkbdvZIxHM8rCJygykOcKIcAYlwd6tXLwSXTr9hjunTvOPfLk9AhjdnxZuMt3xaebAtsOGoF7eSUVDnr2PkjWRKZtNFjjPi+XNeAk7bwoOD454eDwgNlsG4ymLLYpipxKN+DjCLJMUdUN9WrlbRKJQdemLcMfF2R5/tQRyy+Dnnf7rh3ThtbA1ffBDtLTVe81FEH5+ddmfPfDs5dmjLwcuXb/w++W/OjA8u/8qyvnbWwhF4JCSka5oq4W1NXCXxOs8zIaNFOpMtruB+alSE9PKGXU6TEhRJR+g7E4SNZDY9d7reiHrhRU1QptgsreeMhFoRQoGVIXpJK58GMnuHXrNuPJ2D/PcHo2p1o5V7/F4gRtalJlO7i/rddp7+EgYT+JjNGuuw0/6/UdvVvcsyxpQFBoY5CwQ84a99nGWDvvQioMmTRIITBIsA6LDtLxqlqCqDHWsL09oygy6rpmPBqRScFsOnX3CU8U7eZgEs8tYwxSZdElUzpA27VEiLXC2fFVn3Hn9eG7wSf5aSTaDx0XwyF+HeHADc8V/sLWyHo+U7l2TDss7tVq5Wr/JWq1UspXzCB6N4Tz+waxfh6M1KgmpeTN2xOKXMaKM59uEnz/Mfxbv1ryV/9Mg2g0UyXQo5xXdqecHtxDBIMeDe20CIvM+yWLkHND+FAMG/l3KBIrLUQLKCkmamNEYwhJDwEX4/E4MuqAYYfNdR0SackYS91oxgqeHBxQVzW1z6ttrWFUjj2rdX7CFk1onhAS3VhA8Yu/+Ivs798kyxV1s+L7773Hhx99yHe+8x2auuL27Vt86UtfALwtxBowntv1RcR1f4zk6AYm80zA14QpB6OhZ5mRaQvrObQPU+88VGKFC8CyWiCtphCGWa6pTYE1Ln2r1kvykXvfR8cfIzAUueILX/o89bJmtVyBMWxNRmzPJigTSku7GIIGVwpO65pyXIIQVHVDlhcgHGAuROs+Kp06tLYOBdHdKXZfmIPWz85nx9NTc20bA7HJGB/cQF1sgHVeR34jWjNvpHPb2o13TenaMW1wHVXXdWfxA9Gw1WfA/YREQ1BAf/f93KvTT4Ux8vIk+MFj+N/+Q8X/4Bcso0ygi4wb0xFHp09QHooQaEBhrZfQrMGKwLRbBmUTJtGd0uHjOpYd8GutNUVRUBQFZVmys7MTmXZKF0FXxrg6hgAnJycR/gp4eFmW0RhqYnRniGR0NTmFkPzkT/4e6rr2GlrNx/fv8bu/+22+9rWvYY3hy1/+Em+++QZEudEkEuxl5oBIfr+IOZOysb4NwPVDkLRbkl7a8+sCTSYso8yQ14ra+LzWtiYr3HVH8wOkhZ2tbV59/S56qVmcragXZ+zvbjGbjBDWS9qibUvQhLM8p9GCRrs0rbbTJrfJCC+h9/OOpEKBO9R/z/77XaLXNnqkrD+3d2V7hgg5UcJxO3DWptuvM/Yhuna5R9IouyEf4SzLOhF26XfnUZ+RjwvFT39u+8cM3xT8/e9IvvewhTFcWL9GRyPPeVJEe8bwMRuRlMAo0wrcSqlYTSj1ELlM/0O72Ou6ZrWqqCr3E99OiMTLZHgDFl4LSDeT1JtotVpxcnJCVVXs7e1x69YtdnZ2evj6gMx8KV78nBm2aH8EAz9BAu993+VFrVumEIIkq63bcpJ+G4/HPrviyPm4+37UxrBaVSyX6zYk4Q2cbqycQGV6UcwbXy+BVzZ+txGuenraxKb70cauaUEg7DYzFRT7vuaWdr044/z52vu1k7SDF8LJyUkMzAhQSJ7nbG1tcXp6SogMTFO59jt2yPMhlbj/2O+7xW9///i559J+1vQ//48Vf+0vr0DA3t4NPnj4hPn8xH1ptVdTfZWQAM16/+jWTudXPj49akxb6vpHGx2lVyB6hgTtJ8AgAdNOaUjTCQx7uVxxdnYWJXatG/b29hBCRC0qMO9wXcqcA6VBVsH+YYzm/v0HfPvbv8tyueBP/Ik/wXg8Zntrxs2b+wRmL0J/dCS68+dAC5Js/PIlk5fMJUgryJQrO5blAlk7VEV6X2nn6QHvvP0OuZKMy4JMSWo0xljmZ3POjg4pM8Vbr99lPMoICq/bDCRCSMpyRFUtWCyW3NglbvZxU7QOSpGJzcN6PFwIEyGSdr5499awRp8CdurPxbDJBA0kfVaEoTp8AnRHA0/yAA08byghmr7AUHZtmfbZ2VlczGGBZlnGeDyOyYdCObKAdwep4DKeEtZa3nxlwpu3J7z38dkLS8/6ycn5df/934VfeBe2t7dodI1ZOUOkDfg1xiWtT0K2nUTg7yLSY36BBHnbSw0p0w7RjWEjTWt2Dm2S6TMCOc+gFUdHx9R1lUAejoY2gH6SqnB/rVumHTZua+HJkwN+9KP3mU6nfPWrX2V3Z8dvFvNEUhWfEkb7bCmMtMurLcgygcoEIc5VCenXizv/1bt3KfKMXOEDccAay3K54uTgCZmw3NrbochnvnCC7TBtt8k6oy+EKdQN+kk34cC0U2t3R3JNXX+e5v0HGHbsGEuHL2xSDPtaRdpGO/CMlGGHSODPHDwCdBZjumiH1GfoGsuG7tUfiPTvv/zLb5BtyNn8aab/+z8rHFYoBXmetdVdbD+MPZUmO0p1RFFi/5k2WAaIxsaAMQfcOh2D1uUrQcaT8QuTuaoqHympO+el129cdJcg127Thsp7bcC1PeDt65im4yHnP2cQitgEjz4zsht+zqEUPgkwi+jOA+v7yZ0nMVqzXC45Pj7j7GzOcrl0mLiSqLCJRqbXPkeINrFTHMPobnMONGe7+UoIbU3a/yxobe6ITfNpff6mf/edGPoxCil8GPiTkud7uF07STsEYoDz112tVtFjBOjAIuHvNDIvtVL3GfvQwNyYFfz5P/wq/8F/+vxLjj1LenQmeLKQ3CwMt2/d5GTuMrdZU5OpErA+X3KKvzkJKaqlfiVaY7HGYLTBNDUqE6hcsrW1FXHrYBgMn4eYdPq3tTb6Wwem7Sa4Mx47jHldqunfZ8gjKLgDQpv2wMEtDbdv3+bmzZs+yGfm0oJ6Zq6kipXIrQnJpz7RMDxDOt9ANnx+F//t5l23SGmQKtSEtBjd0Gjd9l1jODg64v7HH7E8O0FYSSYztkclu7t7TEY5eVHiypC1LZTCFaNerWqssV6CNi3ikGhtKomqVUpFrUgIgTUhmZXEWB29MeJbfEJopK/xpXzBbWqpsCYQQuGSYQ3cy/OXwKy1Z9apMBnWR1mOOI+uHdMGonErLPY2SxsR2+6ncE0lxD5DuQgu+bmv7PHho6Wvxv5jg5Pwn30v48/8jGF/f5faHLqDpkYK43KVWJexxIb1LUJO6ZCe1Ls1GYPRFt1YqpWmEBlZUTCbzWKQTFhwfUYKmyXiuq45PT1lPncSHLhK6+PxJKZkDdduuucmjUqp1mvIWstqtQIsr7xym93dG5RlyXg89gxeu41Gqih5Wu2Z2aUZw6dpQz/PaOcxZWGQ0iUdc5kNrXPVqxusFwS1thweHvO97/2AR/cfMBmP2d3aYuudd9ja2mZ7a0KWBxgs3RAc065WNdbiMlTa4NXS7VAphEvvCh1PL9dSgxQuG2HT6Jh9sN0hns2OGnB213aRwGPp/dsMkaEYSXq900QNumlY+dw6wZYSBJoAG47Gk3Pbcy2ZNhCx7D5zBqIHSei0/nWXvX/6+c/94qsAfO2bB6yqy1nDXzZ94yPFf/VntNNOfD80dY0qGpDBBdBDFcHICE7Vpc0dEiQPKQUqc4sw5AvpwyGbKNV2oJWAU8baMmLfMrHOlN33lxnDlom0m7KIBlOlFIvFkuVyQdNU6MYFkZRlTlH01dd+8qVw/yHm+EnpktLzuV0gurdpAeRW2o4ir6sVKQUxN3a3OW7jdtXYXTUblWUoDzM5DFrEORNgBilCxaJWMJLpPWkf1cetNxmq4xwR+Jxe3VG5jK1q6L6DWpz/v29eDO1IvdP6czjY3Vz8gIzoQPtzPtx67Zh2wIhcaLIzcOzt7QHtLrm1tcXx8TFPnjxhe3s7freen3ldXdokhQfG/Xu/9Dr/u1/95zTafMqNk4LvPxIY21AWiunEVft58vhjtjXMdgoEylfBdkE1LlmQxeiapqmwViOEpihLijwnz0qkUKhckhcucCaFQlLDTJ/ZOje+FfP5vIP7GWOiAbl1E9tUN7BL4Tnpggk/2vsGSyHRjUYJicqcS+LnPvc5Tk9P+frXv863v/0tjG4YjUr2b+7x7rtv87nPve2lOkvM2dF9Ml2G/awxlCHm03/GJgYlep/70rbrF4QGaRCiIc8lhVasqoY8U7jqMU4KLoqSrdk2t/dvcXp8jG5q9vb3mU7HZJlktVpS5oUrzmFDcQWFzQuqqsIaQyYdNi698BCgEqx71Gq1cud6eKHvJhrmS7t+Ddq2RTMu3asbNv3I7Dtd2gL1wRgf2he8QIA1Zp1nBaPRxGH+PlJXSDf3QjBgkVTeGqJrybS1dvkkTk9P1yRtIQTb29vM53NOT0/Z2tqK0nbqXfA0JITgT/wLb7E/WfLX//aPeP/+nFrb8+wqL5WWjcBaTVGUTMZuohw8eYhUI7Z29hwUEpi2dWHfxhjqqqGqVmA1UhnG4zGj0YjpZItRWSJUSHY/bJwZ8hYJ+PWTJ0/ipA9GzODfnQbK9Jn2eWPW31wDdCalQkiJrpqIk+d5zttvv81HH33Eb/3Wb/F3/+7fxhjDrZv73L37CmWZ8847byGkoC2GMPTs58W4LzOZLjvhupqAxUTVXuA2ZCE0eSbJc0VV1WRZTqhyJIWgyAtmsy3efvNNfvTDH/Dk0SNu7O1RSAmm5uxshZnk4BOsSRyTElnO/PQMECipMNoglDOIa03HahmM0IEp9se6L9kCHuMWhA3mMnQR0x6MaPWqp6UNHlutVh3PKSFEnMv5qGA6nVKOSsqyJERYGtp4AZV9xgyRfVpXrYe9Dc7zPOhbgM97FsCNWcH/8M9+nvfvz/m7/+wB//y9YzIlqGrzqcpVEq33tBuWbmpMKLbqsUwrLMa0XhJBvUVYlAoW75CDWYVI93Oe20IgYcGllvSh6jXnpdMN56RjczWopKWwWUgpWSwW0QAmpfLeK7ULw/feNqlvzXqjQmMu+/TnCaOI3lfJZmP7Z3YPCA+PCF8Mofu1+yNIieCZjxRg0gyRrfdK39gfy4vZYQEnzI0+idZq+UwNwpsgkfQ7B/sYTMCrsRjTlarTOeggSNXCIVJFSbuTtkvETxvp2jHtVAILCz2EtKf4dVEUMV0rrDP3cCy979AOfx69+cqEf+Nfeov5SvPD+3Pevz/nOx+ecXRWUzeGJyf1J33dT0RCOKMt1lL43b2pllSrOc1qicklWoC2hsXKkKnCZcwbj5lNx0hpyTIYjUryvCDLVJc3nCO5BJW3qqooWYcQ9DDhI/Y3IKEPbcYXGY3jNYRK4wJrbDSSNnXNyclJ3EgODw/5o3/0jzGdThiPRnz3u7+L1oazsznbO9Mr9vanaLeOlI6L65fg+RkYtcokUhqE0EhhCUFU0MJai8WcosyRSmK8NJyhkFIwHo9d32pDlpGgCpam0YxGOaNyRF1XKOWqGDlpXBGKVxwfH7NarQieX0q57+JbCGJglTHal0u7WmI4d5/1td8mLnPt1tp4ad8LGlpHvxspJVJIRuUYNWndW1XmmbRSZFne2eDcKIiu7/UFfOXaMe2UMYdOc6pw1xhWFAXb29sdV78uLtZlOkNq+GWluEmp+Im3tvnKm1v8iZ91z2iahn/7//QtFi8x4dQoc0xbN8ZjldBUC6rlnLpaImWOxlJbyWJRMyplZNrTyYg8l2QZ0SAo5Lp7XUops10sFhGiCqlZ0xza/UUT7hmO9WuBpkx707ONUxewFv8Md89QFaWuNcfHxx2m/Rf/4l/k9u1bGNPw8ccftUx7e0qQSZ8tYv08pO3zWhgkO0OaDVAAQgZNyrv/Ce+jbVsYsaor5oszysLBWNYYV7HG15mcTCY0q1M0mixz6XDD2DSNRsmM8WjEcrFAZxqlJJnKEFJgtIPNjo+P0VozHo8pisJv6m7zkLJNT7FardDaoFSeQJ2X760gLPTXvdskLEa3/tVpWbxwflm6XDqj0ZjJdEKe5REWcXEQwzn7HRwVkBbLRer4j19UyBUoNVQMfXdeUd+LVPH03Kdt26v75xscni9Z3r7pJn5qqXfVSQy6CZic9fCJWyDOx1ZGf2sXNCPj4hnqttSingYWpD99Y+FQAM4nocv5k9iODcQYw2w2Y2tri+l05ph8L2/NRXckOB9frPW+GApT1orkxx8L3ji+rYJ2TIWHRzokukWAldeM0jF26n/AytMG+Fv0Ntuu80vX0AhhE29fZn29drzNL9cldug+698b28J2fcbufmQMzMpUFteHWyPnFfO4SmuvoaQdOiSVmheLBWVZkmXt66YYdZDIwyQ7796flFGnzOgLr0353r3FxRc+J/rJ17yV3lhn3Qf29nZojObBg4945c0ZqijIspLJdBeVFeRZTlkWZFmQgNddxII1PYxDKEyxXC4jPllVlVOjPWyVTmgYXjx9O8OQrWEIwgpXBbdGbMg94phNm5a3mx1yNBpF1Vhrw+Mnj3jlzq3eZv9p4MRXoaHdwxubo8uG9mc5b508kxQKFj69AT7AqMwleze2efutNykKye6NbarlbU5OTjisV+QSXruz5/pUWaTMI/4rgDxrobC6rilKF6WrjcuiaIE8K+I5bZ51CAw7TUYG7RzRNjipXl0uTeeZMcZL8AFXD256rm5pKmQEBh18rgNfge68TOdPFAD936kAtYmuHdMGIgMODHI+n7OzsxO/T3fLITUc1o0l4brw3Xn49qbdOgxiYBJf/fIe/9F/8ejZvfgV6Re/oFth0Lf51t4NPn50zMf3PuDma29TqBnFeMSN/dtYb2GUuDzHLiDMDvAtG9835CA5Ozvj8PAwZuULjDHFsAOlG1sfBgnUZ+59SCSOgfE+v8Ff3H9fVRVZ5o5VVe3HRlEtzuLiG4/HsW1aGx48fMhbZ2+2C9E9iQHrXOyHTyVTb22CSfNSxh2Sf7nNtMgEdeaKIiBchXuAIhfc3NtlazqjKCT7e7soFMfHxxwfPEZJy/6NKbpaIQqBlGNMY+J8y7Mi+ms3TYM1DldvjEYJhRSCPC/85moTu1S7QQ8xbYuL5hWIK6WYSDW98LfWmsViEaGQ8XhMVowoipLZbBbx6bTG6SYNvmN47X+XDsMFXPtaMu1AcdcdcBNKv7+INnmfXMaj5Dy6uVOyO1Ucnr3oYBzLzanl1haI6BHivgl5SIzWTiX26m+e5w5qC8WB8cCKCHcM/3c3xBQSCYWVobU3bPIKGTJepovpyrCJl7jXjU1pqszWdSwsrpAKYbVadb7zrfTXtZjkBp+Djd+8HBK9z377senWIyJc0sIjwbmhnTNubmRRS80yFcfaytazIvHric8XziWlt+Emm7AQbZFhkeYGX98k4/Wi/03ypk8Js6VeTa7dDiLswh+JYfE8+HRIoMPNPXedGDwnpWvJtNMFHVTxPg4ZMNng1rWJCQx5lfSfdVWmnYZz/6k/8Ap/4+9/dKXrnwX9ylddCDHC5YIIM70sMm7u3aCc7LC9u0MxnpAXOda64giR1rRsl4NEW021aqiqOjLpAI+kgTZhom/q13RDHPq8cTw6u8jwdWHMXJoDl+ogVWOdMcmF33/ta18jz3PquubOnbvcunWbcjTCeRwHRb9l3J9OL5GUkn4TaV+FvwWhrg1WIkWGwCCEIc8EUpY0vrBvXTWcns158OAxlhqrBdY46XZ7e5uyyJhMRizOzgBDo2uE9bCUcOvPGsuqqt3zhMvJLX2cfGDcSimP4oUIynbdnacRX3WfHPL/D9AdtM4Lo3KcJBPLEg+TdT7RStCJBO83rpi752rNvJ5MG9pBtdZGLDVduEE1T4uFBitxn1Ko5VkYxUK5LSklf/D33OJX//OPX2DZMsuksPzCFwwYCRJkgvuNy4LJdJdXR9uM9m8gshFClmB9pBzOrU/0NMDgbtXohsVyyfxsyenpaUd9DbkVwt+pJtS/V/jdZ9rhd2Cy/fGQycI1iRW+n0ktMO2QnyZKc9Kl7J1MJuR5zt/5O3+HxWKBtYY/+kf/CHfvvsp4PMElQQqeFIlBd00KvKqU/Swl8iHsOqUUx27PsQlUokSOi5K0lLmkKEfMl268qqrh4cPHfOtb32S5mjObbLG9tcPdW3fY2ttja1IynU6oV4dgNU2zQglJJhwjzLPc5V1f1S1T83aGsF6FAJU5Lc95+bX9OcS0XfKoECB0tb4Mgl0qNQemHYSM3d3dGOlrNJ2KS2teSwGhw7qC0NIZ+d1reA2kJ4RchsdcW++RIaxzyA1sk4tYoD7+3ce90/POa0f/nun3/+a/8tYl3+rZ0L/9ryxbLNt2J4mr05gzGY/JYlpSx4gEOB06Gh1b1c4mKmRQj9t0qk1Hu0gxwE20aUw+iSG4P9ZpII8xJmZiSw1LId3BwcEhk8mEoiyxEUbw0MGFzMGyzhyHSHzCn/PuNfD1UBM7Xzom6D7Z6CnSarEOi14sl8znC1bVikb76NIsi8Y44YtpBJdLcNKylN7IG7TgHuzkBFHrK+JIL5mGxg68UqI5XFbASufTJmEh3KvjlqqyjXO47cr1jIOtwXEzz7mIrq2kfaEa3TMI9BlwauQIu/4QBjsEj2yCTIaMnsYY3roz5atf2uGffvvoKd/2smT5w1+s+dwtDTon+uVaCLNKSVfBpVrNGZkapAKhcDUinXHH4taesYamqVit5uimoWlqtDHUteu3tB5nkF4CU0wXyBB+nVKnvwnrNlxP57tN1wGxyEUqUYXiwkIItNGczeecnZ0hhOBLX/oyZVmyXC4xxvDmm2+yWi751re+xbufe5vRKCPLf4zlHh/x6j77HwTCSqyHIKQQZMqQKUstXcUYa5ykLaXL4/P6668Bmsl4wmwyZXtnhgIa3bCqKvIix2hNVa/IR+PIwF2x5YZGG4rRCIurF5ll0qlywsFtWV54YcCgjXGGcOlgvYCxW2t7c2HDZnUB9dc8uGyTeZ53eEZInmVs8HMZSB5FVzCMxxPeNOjQcAEzv5ZM+zyG2Zcqw7F+54bPwYk+dem5aEO4qF2ppBkYyL/+S29w7/GKDx4tr/i2l346b+9r/vt/ZIk1QWAWcXK3bZPUumE1P6XUK4TMQClCwV+3ShTWuOCI+WLJ8dEhVbWirl1SnzwryTKfWyFR+1KIIvRHgIrSPkrHIR0jY1xxYelFmWBIBGJCt74Wk6rOAQ5pmoYsy5jNZkyn0+gKWlUVxycnHB8fMx5P+Nmf/Vl+7+/9ae/updne3uK3f/u3+Na3f4f9/RvsqW2y/LK+9i/SGHnZ56xDIy27E1gkSkKuGorMUCntWJMJxmTY29ulHOVMJqXL7qgUkoyzoxOapma+XDAdl5jGcHx0yGzsmLbLBqgwS0ulG7a3d7DAqmkQWeEYujVo3bj891qzWMzJtCLkSUi9gUwiyYpEQ7gqYGyt0x7CRh3mYoxuTIQPfKIra1qcvWsz6N53iC8NCiyfZabd9/h4mnuEz0+jymzaUfubRJgQ/9a//hX+nX/vm3z4+Fkzbsvb+4b/xZ9tfcJDnERMt0rSV9YlvMcYLCbI1tFw4oTzNmdIFSvLOHc+KXKyrOu615eo+316njdOZxx76nHnXJta4Qd6wW8STdPEPg8Ra+A0ByB6uOzu3kCp1tdcKSeNHx0ddYzb1vPjduMI7e4MwTClEPjT8vTOvTfcpHO4LxF2G9CfE8GDwwf+B3AZBOR5zlRM2dqauBSuQOOzM2jjA2xkjvDunxEmSOaDMW1UqjUWa4WLoUf4RErKl75z0nSqHAz1RSplhwRY52l0Q2s9jHl6nRA+6le0UnVYGbE1IgJnQ63zpuved17DaaGT8+laMu2UUmyrb8gaqszeJ4fxFoPnDE2E9Lu0Df0J0ncfC/f6n/zKu/yNv/8hv/6twyu+6WArAPjqG2f8j/+kDc4BLZOJbe23200svZqjVOakbaGoqwWNFlQNNNqFKzvpGqTKyP0zpZJrjPfSLR5g7nC1jTdlzqmxKhQTDoakgLm2F6YagVvsv/3b34ih9l/4wruU5YjXXnudDz74gMmkZDab9J59XstelKR9HvUaKFhrtE24ovV9ovx8SQPQjHY5Say13L//gNrnkbGNYH58jBKws/1aLEPXJPUP43oAEAKV5zRpFKVn0AKJynKkVA4akW30bed9bPtm7vr1d03nZF3Xg2tfCBcSP51OQXj2L2UsipHi/f6C9vc6PocAD6GEvuYT07Vm2qn7zpDaXRRFlLqsbRMHpUbHsLjn8/m5+HhKfbw2bUM4PsSMQq7gv/TH3+QXf/om/+7ffO8TeZWUmeUv/OQH3C4fUjefJ8/bPV4ynIzPJHhltTimyDJkloOUrJYr5suG03nFstJYK1AqwwJSuUQ4BI8K22XA5zHj/vH+RpseS8cvXXCB2QohoiF0Pp/HPi1LFwyRFmcYsvwHic/lsBD8g3/wD/jggw+pqhV/4S/8CtPplC9/+cv82q/9Y27d2uPundte+BdYYTs8sDstzsNYn8VqPm9DsL3P4cflJm8dtEXEh517kKvCooRASSd/N3WN8tCD8UxYG8P3v/9DDg8POTudI62iWS3Ymo555+27PsmSoa7dnHE/rjXGCqwIXilLqkaDUGjjAr+EVOTFCKmWrhizkkglvcTf2jWsL3og/LjqJmTUXIfjwOXoDu6oYX4FN76iKBhNJtFjxIXnu1B0gkE09LrH1IMWGL4T0kOPAudc5P82Vndw+P7o2QHe36drzbQDDTHb1PVrk1Qc/r6MP/HQ/S8jbQ4xLIC3bk/5q//dn+bXv3nA//vXPuLg9PIZAfemGf/yz874PXsPOHhUc3K89HkTQt6D/kusi90CME2N1Q3WavD4YlO7YJPFqgEkZemMQkK69KwIgdF+IW3A8Pr9+7R0nsE39WIJRtFg/Q9wSDg3/Z1KcEII7t+/zwcffMBqteL09IztnS2mo1GESM5jxq201w8MWXsTOqLiVUgklyXXd/s1VbzbH9s5ftFjhOPtPvwfwBrH8K21nJ6ecnh4zMnxKQqFqVdITPStHpoP8S8PO1jrDXwB2gBcNKR3l4vrQxCABhK7xkWUPj/kRgnzIxUC0qLOIWLXFd9oxzDqCSIBO/p7b3/I4+8Wbkm1mvalz3+Pa8e0z1vEm5jIEANPpfOQIwOC1XvdY6DPfIdCVa9Ogj/wlT3+hZ+4wePjJf/020/4zgen/Ojhkqo2XnWFIpe8fmvMF17d4ue+uMvNmYBmzurkFJWXWCFZriqUKp1k7FVe4RrG0ExxkoxmtThlUTWcLS1ClVibISW+RqPy1UaEX1TO20AKgRHrRSWuuvENnhf4W++eKQYZ/L5Ho1GUnkNKzyFcvRsA5Bh7WZb+GYKbN29y69YtPvzwIxaLMybTEUplsSpK6E8I3gRhY+xLuM8RHrkQlrGdP133+cLNUXdPTo8fnFEv9JuUCuGtfipTLJYrDo+OyLKMGzdusL29Sy4Up8dHlLnk5PSM2VgicSHpxnrwTUow0s0fX6rMSbNOehdSRdYolWOY2oTai84Hf2AVurlhWk8Sa10a4P4cCzED8UrpN/QsoxyVZFmezBcR11q4Z7ef1v5Y36CeAubbRNeaaafqUMCv+p0WGHbIVxIopE9NK+GEPBp99T2FQMKxvvp+Hv49RG7NBwnYsr+d8ye/eos/+dWb7n6iNVwIqxBIhJUoC8I0iGzEeGuH/HiCFYqTszOKItQ3dGWfpE18ZNuWIgjJ7mvODh9zMq/44P4Bd994l+n2HpnKEVkOIkPg02Bag7EuZ4SQ7WbY9xgZovXw8M1wShib1O8biNGXIVAmyzK2t7c7CamGNmdjDMvl0icFaiiLnPFowmQyBePa8NZbb/FLv/RL/I2/8X9FKcn29ozJdIRUyvWW9dkRraDRhlyFxNEeG48MW57Dt59mMV+02Q3BLn6TFoBt/GmCTrRUyqSFyxEtcZCXUgrpmXae5zx69IQffP8HTLdm3Lp1h+2tHco848P3f8TZ6QmPHj1mb3vEuFSMyilagxKCTLkKOFmWU2AxFrLcQW3ahjwjbncxWYOQklprB09Yg26M6850r/F/aN2d06enp3HzDt4f4/GYsixjZSQhM29odJV0VNYy7NhztrsJh009nadB2Et5TVgHocBGn0elbb8Mj7h2TDulPoYcGMGQJ8d5UmAqOV9GKty0yw5J4OdTFIni3LGxmTbmDQmqdbSaC4lAIfMCmTkcrqobz6BbRz/fKFKjZFjkwUugrpbMT085ePyI/VuvMtkyDg5RCourF+jSuXrVObCoHiZ93ntvgkv6kztqBxvuEVTewJiDNBV9a3sbVKpJBWm7LHNyrxoH2t7e5u233+LJkycYo1kuF3zu3bfWsv0JAlbbk7rWjgzRUzLtDjbSH8Vw3/554Y/QH72xSSRtZ19r/6VudlJK6sYVKdje2WE2nbG3t8+oyDg+PKSuVyyXKxptgMyXKguwh4+sFQF6aKEQY31AjRcGXJ52gTE2yDAEQ2XLNNtsjv101HW9Di0GW1WsY6ryK0nDLfIVRaf1c84RPM6n859/7Zh2n1mksMiQF0f/99C9mqbp+Gf2DWNDu2W6015Vyu61wv++aMDTTGHOx1ZYRVGMmUy3OJ0v2KkaF9ptQ9aMgQkXVwVgNJkSlEWG1Q11taSploiySJ4aLmrVyKF3HvLg6W+Yl7UDDL69vy5ErMVovAE4JGhP4ZmBQWvdIKSrSL+SS1arkq2tLcqiYLlc8eUvf4XlckGeK/b3b1IUpWMkQkTeGD8nHfocQZHOc4Y/9yGaoc+GPuN2W4CNmkRktMn76Npl5suynNnWFnleRPzaGFdUd2dn5jQzqSiKEY3WCDSZtAiROSxbw8f37zM/m1PVlRtDlVEUOdtbMwoV4gMc/CQJwtYQg3XHbYJ1B0+x8Xgcx7ooHQTiXPiGUyKcRwKBie5769r7kKCW5ijp84wWYrt4/l9bpt0PqU6/Sxdveu4m9TwkOwrnpow7PT8diFA6K2CmF4Vtb3gb2kHcZHDx74QLJXc4qwShsDZnPNtlz7zC97/zdXa2dtiebZN7FdNNFBdVZmPbjLujBK0rylwyHReYZslyfsxyPmU6moFwxUh1kHZwk9/l++i2NcASfbgofNf3sOl7hfTHYwjTDueMx+O4OIMRCdpMj3Vds1wuY97sEGQT5spyNWexXFDVFUJI7ty+zWw24/j4mF/+5X+Jw8MDjo8PuXnrBtPpFK0NeS7dEhYu/3QYEdc+n9/j6faiCyjdbFOmG55nsT6SqsXYLY5J6x6v0bT+RK7N7myBMWCNQMkcQytpV6sKayxlOeL27TsUudvEtAbdWKTMeO3VN8gLkEownpQ8fvAIowR5ZinyDGk0plryO7/zLQ6PDlktV84V1xq2ZjO++IXP8/rdO04aT4QhpRRSDMRPCAfpuPF2b6GUYjqdsre3x2g0AmA2myGE8gWou+lUh9wAY88GbR0bg2ouQ0OapoNLcrC0PuyXmCfXjmkHSiGRy0i6Q+cEJhLcxvoFZ8M5bZBFe/xZSdodti3Wv4vtX7tSYoUkL0rGkxnzxYqqdpK2lYkkItYlrKjyWYOSijxXWOM8R5q6QngDVpQxbFBPuxL8JnWzPyZ9ifwiiXuTsRlatTcYmfqSTYhwraoqSkGppF3VSxeO7w2T0+mMIi+oqop3332Xhw8fcP9+we6NmZcsW1hCgM/T0iXn+nUVrn3Ouw8eXZc2W8y1f+X6ppoet34s24CR4P0hnKRt29Ab3biNMMsyppMZIGgajTF4DUSytbWN1QuEsOR54fBma+L3QjoXuoePHvHkyRMWiwVZltE0Dbs7O7z26l2nvSWStvLGbvzhznr0B924t/aUPM+ZTCZMJs6vvsgLDw6ta4OdngzHUk2KVN9oJe3+nN4E+3VHKtHMvAB0kbZ57Zh2wCaBaHwKngPpbtc3FvQpDEBauCA1qg0ZH1LqM4tnT2Ltr3QpWkAJiZAZUhWMJzOaxnB6tmBvaweEboG5RKUPBVOdn6kjJQQ7WzNMU7GYn3LDapw/tsYa4XNIuNvJOInXJ3CKbw/ZF9zzh/srMnrae6bnh3EKxuOwkaZV3sN1Ibw+zIflchnbElvvg3P29m6Qe3fBgydPaJqGyWSM1ponTw6Yz0954407sc8vLS5tpKe5tgdzXTjnUoaT2A2MRZuGVV0TfKmNFejGoLVj6K4wgrvelRlzGuTZfI610NSapjrk+OQEjPN3l8Kx+apybqJO+3B2lqOTYx4dPGY8HnPr1i0XQCMkTVNT5DnHx8cxpLxTeQoIkbpx7lu31cR9U3gkviMcdPSgbi9uWq8JbNFuZV0agv3CUNgIgK9TKvDFxGoX2L2uHdMOTvNpyZ/gwtWpbuFV5bB4+wwkTJLgsxm8E4IVekgqTwcgRFuuY1fPiIn7XTklKduJC5CpHClGFHbK/q27LFYLPr7/mN2tPce0hW6lGN8+rTVSuVqQzv7j8ii/8fodfvTxY5YPK1578x2wNcKCaQxZ7lQ8aywiCwZbHfs2aCupahtfI+mPIUbeNyb7P9a8QMI9l8sl4/E4BsnM5/M4LkEK39raommaKHEfHh76zG0K5QvKa2NYLBZ84QufBwR13fC9732Pvb099m/e5MGDj/jo3gcY0/Daa6+EqOvQPC/x0a7VK2laF80RO/BnmgWvS6IjyoVGyd7fLkR/VTUcHp1RNxqtLcZArkZImWPJUYWk9DaNvChcEV6huP/gIcZYqlXNxx/dY3k2ZzYds1xVTMcZ1mpOTuZYoRAqB6GYny340Y8+5Ac/+gG3b9/mxt6eKwTcaJq64vj4iPe++x1ef+1VMp8y1/Wvh26s2xAisGe6hlXHPBO8WsoIAxq/jvu2rz5sl8ggHYEIaI2lrlHrkB8BRjGJHdhlS/Rm3U5wT0hlrFTG/jmjf+2YdvAggDaLW/jdNx6mSc9T6nd+Wqy0b4QM5w1J2v3z03t/chKd3+n/8QlB0s5KptMtDudnVIslax6uyesbY513CA4HdRK74MbuNj/44B6LagnGGZOElS4SzbYzuu890rcjhL4I2kuqUl6ub7qbYCpBK6WiphXGK9T3SwuqBlcva12178Vi4TISegOYAPBpR2/evInWhidPDnj86LEv8jul0Q2PHz9muZi7BS1S5njeeH1S2tRHfYYtBj6Kge9beMcYi24aFosFq6qJUMe4FOSZQGUZAon0ftWZUg7DF4LTszO0NqyWFffufYywFiUFdaNBFFhrqKoa8DBLkLQPj3jw4AFvv/02d+68wu6NGyyXFbquUVJydHTkNuKy9ehxgqvttF8I1/6wHbk3FBEqib8jlLGuDa+5ngriZrsmWYv2/vHYAOTnJO0uXGhjOuR2swhVkrTWZPn5UdDXjmmHAr5B0g4Mt88Y+p4LQ5Sem0ZLpYOw6d59ZvTUXhGDB0XndzJtEobtAz28FJYXY4TMMbamqhuK3DFnYw2CNOl7kBLCJHT4ppSCcVmgbc3J8QHT3RKhFFkIgvDzNybS6S2E0C+b+qPP1M/bENNr0nuH8UjLmpVl2UmzGRh5uF76vBJZlpHl7QZvjKXxC2p+dsa9e/domobDwwM++OADRiOXh6JualLs10l2wd9/UJEeepP1Q5um5XnTqCPZ24Fb2M6JXS0m5JLRzqtCZJgCjAZhFcZAhvDM1yUGOzw84vTslKqqyOsafHGD3d1dlBTsbm+jlOL09AxBg0SS5UVcQ8cnx0gp2dvbazVh61z0lBBkuVvHxkvWzvgYKgatA4RRurXdd0x/hmIC+utVJAy+s47Tzg8aqm37NG4KgVH3NtFQRDpN/5omHXPeSN2sl0N07Zj2zs4OQrTJgQLDHbLebqo40ZfIpZTR17Msyw4jWi6X0Wk/de1Jq908PdO2DBuwhPfR7i9L66t2uJDyWhsUAilytrb3OXz8hMV8ycl8yWhLoKSDAbJkjrg+sy0YZy1SQJkp9m9sI4/P+OF73+bdL4+ZbmWMi5LGOKxSKYmxrspJwOj6QS1A9KYJfZUuqH5FmjVjZdgckoWY3qfxkqK1lslkws7OTgygCfUeq6qK+ZEDdObGCpQwTCauoO/J6RzTNHz88cd87WtfY29vj+985zt881vf5M/+2T+DEJKzs0X0LQZXoSRGGlpY8+rYNM6fhBLB8GKBPjAV0Ma6ZE7WbWZn8xXz+ZLJeEael0iVYa3g8cMjqsowGuU0jeHk7Bhe3eM73/0OJ6cLjs/miLygLEeUxYgvfOELjMqC6WRMUeb84Hs/RKB5/dU7TCYj593RWH7ww/cpxzk/8eUvs7OzQ5E7ifzs9JTdnR0mkwm7uzcwnrkVRYGS1u0kRnegESlA+FBza3HBZ9YVZNbWeq+WNloWuvizTZhvim2FbJaDlDBnEZ/v56bujqmbXxJrG1arVSx159aGy+GztbUT/z6Prh3TnkwmUVpK3b36TPsiKbt/brhHsGwHCsw8vV8wiIVjQ9j25R4cMYeWogtJX8pupQHhq8to435LkTEazZCqRFvBYlWhZwUhuiwlFzzhLPxOdHTeIEoqZpMxy9WKD+59xFufWyBxSZW01lH91NHlr1sLM10cQ7BU31AZjm3us3U4KjyzrutO5FuQatJKOsEtsCgKn73NYaSYui1DZ51UdHR0yHvvvcf29jb37z/g0eOHTGczBILVauWkaxsMu0MQxKeLQs8Z7Ri2MZa6NlRVw3JVs7MzYjyeUhQlFsHB4zOMdu9pjGGxcKmDH9x/wLJuqLVlXFUUudNYbt++zXQ6YVTkKAUHh4cIa3j91VcpihFYy7Je8fjJY9546zXu3r0LUpJlCqxltVwhbwiKomQ8njjYwxiyMkeisVZHQTedBlJJsAKtbex6EwQC2wZSQStd9wOkOnAHYM/JAArOjuPuJ2Nl+T42Hr+XEmMkTaOpqprVahWFPWthNBrHepjn0bVj2kO1HC/DKFOvhvRYuD5l2iFUOkj0oeP7rn9PDYmE57q/wlu0QneERdYl7fZV2+Q6rmiqoixHjEYT5vMlzY7C5G6SrmlyeH4d/znKMkmRZxS5oqmW1KsFKpv5tgQ3QBtbfRnf9DXDT0L9MQywjRDOR9ZeML2NaVV56EJbaSGKrpbVryzkFnme54zHY7a2tliuFvzo/fdZLJed6jzd4egu/vT+a9Q5FubOeW82rH2lxzuau7/GMRN3mjF4Q2Ng3O2Pw6mdh4fAh3X7vhPCVVwH2N7eYtQYagNbWzNGozFFWXhDG5EH5nmOaRoWiyV6Z9ap4yk9pKKDh48NbW038k7FKNOfrEGjEfFjAE8Cbh3GMqSj6Fxte0CLte0gXWL99gWP/ng4CV9HF8cgsGQqwxZt24N9pe/lNkTXjmkP1R/cxDhSyW9IVerDI1mWMZlMODo6ikmIdnd3o1p+enoar4Our/aVJOxINvnpS3BdeMQJeeEdwKB9GLDCWBCi5MbeKyip+P73vs3N7VcZlVuorKAxEBLbCxuwepssXoHVmsmowGxPubE95vToEQJBXkyQduyt+QIhXVsFsrMJ9o2QqVdJaiQe7IUeUxVCYNCdxZsy/zAHqqriyZMnnaLCwQCZQlqtVuSSlWZJjorVaoVAsLOzw927d5nNZmxtbfGrv/qrSAU3b+77ERF+y7Je8jbEBnrMWMjumJ0/7lelzRKhTcbUWrw7o2a10hhtMMZttfXKUleWvJigVIHrDUFZTtBa0TQGVaqomXzpy19EI9FGUExKrFFYGzwqLHiobmt7m8XZGQ8ePHSVborcMSrh4LhRWXJ8ekq9qttsf8aXF9OaMmZmDFBF317kilQLIeOysDacJ5HS2ShWq1X0QGk35Q6b7+x2wUvFnU/nmcTj7fpuhTYHcbj2N5ydnfnniKjdlYUrcbdYLGjqmkZrDg+O4lydbG9tHM9rybQvwyD7uHVqcIAuzh0kbWgNW4H5TKfTCJEE2GSI6T8N+eSTocXhYPfv/nv5IrxOYvBMGwsiYzrbxRrN4ydHLFc3McaSZQrTtAzQGSA9kw04HIA1lEWOtYbZuGA5P0apHKtXCJE7qAXlHcmciBXc7oYwwTDJ+4mfziPnBeB7Jo7NZltF0zj8MFSn6W8OYXNvXT/d/aWUKI9P1nUDQjCdTrlxw0VBCgF/6//1q3zlJ77EW2+9GTuuoxmFxW9jh24cs2E6j3FfDBelkncqtRodCvJa6lqjG4sxzjWuaUA3kGUFQmSECMk8L8lzy6qqyUTr8vfqq3dB5WgrkJlgudSslprGr4fA8sbjCfWq4vDwCU2jKfI8voJUkjxzNSR1ox20h2tjTLKknDumNS5sXiRvZ/0/rEV0tOTAe1t7Sticge7aT3qwg0QmGtS64bL9vHY+wdXQbTzL5Yq6dvxjMpkwGo0pRyOKLKepG7dxVjWr5dxp7JPPmPdIuijPw0T7+SeGdtH0uzDwAS8NcEiogHGeav/0L5NCAAEescln3+bAyGiDT1LoQCDdN8Ilcy9HY+qmYbmqKIqJv6Z9DrR/RpXa31tKQVnkLOsa09Q0dYUqvDZgjbMIbTC8pgsmDXrpG2rDBnoxvLQ+bmkARlrXM/UW2jRW1hgaGzbgGifZOU1gZ3snug7OZjPu3r3L/t4+s9mMTcw4bHzdUNahd7qqZN2d120/tWPY9ZhwY6i1jkxba+PC061L9uXGTRDLY4gQ0i58IQCF1quODURKJ6EbYzg7nbNaGqrKoOuGSklGRc44n3U2R+twt+hJgXUZElufaReFK4WDZUajUcy4Z23yjkI4ST5583Bv63fQsBbOSxjmP8A5mp4ID+gsDQtWxBJ1QWt0tzRRgwfh56SIZiKtNU3dxIRvQTvU2mu3F2zu145pX5a01iwWi5i2M7gGBuov8mCcOjw8ZDKZRIb9+PFjptNpx02nzxyGDBOXISvcpO4mpWk/O1bbynfuCdpZvK1xcq9UCOu8WTJRkJdT7r72BkcnT8BUbG3dIOQfcfcMTMah2a4CtsPKlbCUueTm3janZ/eplqecHj1mZ3/qAhcsgHLqraXDlFMNSAjBcrmMm2aamyX1JNmk+QQ1WcoWxgjfzWaz6KvtpJpRZ4xTCvcPGkHdNCxOj3y+GucFs1qu2N7a4vf+9E8zn8+5ceMG737+8/z5P/8rTGcjdne3I/7rRkPiUp4mm6DwuVmel/dIcg/XDyYyaxe34Jh0U2t042FhA0ZLjHbYtjQCaxVS5EhypGcNFijLMbqxPHp8QD5qECH/daaoas18vuB3vv0tmtpHTVqBbmrGo4LRT36FLM+RSnF4fIy2rhydUoqqqTBWkynFZDxmtXJG4sl4TJ5lMBrx+muvMRlPwGoas/TjFni28TaIMOcMVuPb51Uf027kq9UqYeAtbg7d3CDrwkLLrU3sZ7DatOmbG50IILTVbrKM3e1d1/9as1wsmZ8tWC6WZCqkDc4oS0WWaVomv5k+00w7GBSH8mn3mXbwGjk9PWV/f5+qqqiqitPT0+he2L92qDLOVcg6jp2kYF0DSwavMdYEpdExfKEwtsZKRZaP2L91m/s//AhdnRFUuZY/BlAQN0lNwJ3dObkU7GxPkMKwqhYszo7Z2WsQBCnDY7t2PZtZ6hUSCuMGmCTtr9SXdq3vwuK0du2e4LxFTk5OotGpKIoo2Q+l1w1jpbVGNw5/DMZLleVUdc10OuPunVf5ja//JnmR89prr/LKndusqrk3VIpkG6X3DOGl1nZbfX7kAQPbQgtaNzSNoWkM1aqhacCakEfE+V9bIzBCYI1CkDu4K4aoWJeqtmqoa7cZKj/XlXR+26vlkh/84H2MsSiZkauc+fyM6XjE59/9HIXXTM/O5hhrnIublNSNgzuklJRFyWpZoZuG6WzmpO1CcHP/JmWuqKulT/3bE1li7m/nYWLwSLwLDyYkjAo5Z/raSYtZDxsUO8eT8603Mta1iwloqrojcDj//xFZljOdzqKQt1ysWC1X0R87lMDLMh9sZvjshbFDq6qk0UZDVUs2RUT27zV0LN2h04HadM1VSIgQPuCfR8u41922RTjBn7tBSkiMl5nPfmetpqobFNL7F/u2J7j5mtaAk7qLLKMxlrpyxQOkcrX9+l3ZN+yGY+F3MAxuuqZP4f2GILCh+/Q/pwwtvbbNWZPYOLQGmjhPRqNR9O/Osoy6UViTBtIMtxjbwlbPkrrvm8IhOmHaOuLDbmxDP+DHObQrML+wiYaNPHiCRFWMZILQNC5rovOicakTiixHNzUqc8wSJeMG28J3MBo5F0FsN01vYLDpGIU2d1loC6UFEuFYbx2kcFF4nXi/AY1uyA7jdBivAdqAqojoAQMhUZaJ45GWNAtpfPuxCMnrXIquHdMOHX52dhYLu04mE7a2tqI0HDozuNhsWtyB+jkzgpSolGIymcQou2BVD+r+Rqf8y78N0NY9af/v4c/+s5ASYxpcgVMShwKJFJnHIwXb2zscTabo1QmPnzxhb+eGq+8I6KbBVVtxC015DxIpLdY0gEZi2N/bQR0vefDkITv7R4y2JPmkwCTP7WsbQ4m8tre3OTg4iP0bmG96bRiP8F3YIAWtxX7ILpGOd/gdco4EadxaG6uJOAZs0bqhrjXGLBGyQKkcs2N486032d7acpCVFBgPqWjd+DwtAmMaZ0EQQWNpjVlXo4tw8N4ctdoxa21omjpWNtdNwK4dfu2gHIW1TtLGSq9pKqR0Pv7LRc1o3Lr2udYEf3viOxmjOTo64kcfvM/rr79OnhdkWc54VPLowUN0XbNYLBjlWcxnnWXOsK01vPnmm2zvbKO1k6DzLKdpNMfHxxwdHTkRQ1iKrBugFD1GoDOvhMdNrFPHIs6dpmhuz3UxCkK2eHc/nXNqb7HWpSIW0icnE5JMZGRSkZcZcjyOuLszPi6x1v1ug8xkdBFONTGjLUa4KkfWurQR59G1Y9rgBmA+n3N4eBg7fzqdds4Ju3nKKAKl7jtAh4lA6yUSCsXWtXOUd0Yp933w3/1kBsl0sfbvI7rH3AyPmKaUbU5kfFpN4/Hx6dT51M6rMw6PjtiZ7UAuYr+4dxOeWTshXgjtfGmts/Dv7syoasPx9z9iMT8hH08pve0qSDuhL0P/pkwbXJ2+7e1tHj9+vAZNQTdasjUakTDazWHy4fr+OIbN+vj4OG6+ISJSSkEm3KILyaQQjQ/wMNy9eyd6lUAwZjetlmVDDdHQIAmm8ZLcJ5kHqaF4mIzxTFo3VHUVQ/l1E7Z8iSAnwGHWuh+BQogMJTOU1AgaqqomLzJUZNrC48hdrdQYw8npCR9//DE/+wd+3gfkFEwnI3IlOTk+ccxrawuVeaOizxCoDdy9e4ctn8tcAFnm7A5nZ2cx8+JsOmY6KVPVwDM346XlJP2B9IWl6W7UqcQb5oMzhHbhscCww9i3mopBW4dmu+hF5fDoXJKVvq6kD8N3goFj/qGM3WKxIM8L8rytlBM2E2uI0bSxzfL8sb52TDtIUmm+iU14VcjkN8RYNzHcTefCujGj717Uf37/Xh11d9MaTyQdgJCYsrusW4w1ta63ngEKlZfIrKCqa8eMSZmff1Bn7vggHb+AlRAoJSlySVOvaOoVmMbV2iNNup82QHhJLbz7ulaDCM/tQR2s95U11vu/hkfYeG3LwI0v9OoLXugmYqPSS2ZRNffnu2Z4jwYvLce0BN7gKvw5WJjP50wmLUNapwjqdMZOdA61antnDDrX43Baf76Nn4OLXHDpw/leG2db8HJy8P9xx6zoQB6xhd6/OO1X54YnYm6Qdi4Tgd48y8gzhVLSeZrSnlfVFXXTkBUFVricOMa4nNZSKrSHb5arypUna7SXvi2rVYXRxr+n9O+SQDVhL7e+b3xfhO9sDwYL3h6xNJ3DONYgszUXVOtz+Qj/fL9B20Q6D+2wPgBIBHgx+RfU5vB3Z6r3f2+ga8e0Dw8P4w4HxAomqRQWJOm6rhmNRmuS9hCeOmRUTL0drLUx8X4IGEmDfDZh4+dJ4sKmE8erg+6LcAc6M9eAEq5wL6ZldFYYaqtdBXGpWOoV093XsEg++NH3ufvqgsJjnVI5qVwK1QkHdovCuSNJAZkybE1HvPnGTQ4OfoQQNdPxiHwsMeSu0IK2xGoo1vnjWutyLjs/YEFd62A+6ySvstZVP3FMXiCsRYR3khJdN9RNQ+MXiwnuX0JE3NWahma1pFpVLObzOGZCCLbGI3RZoI11hjUpsUazPJ0jwRX4HY/RDlHi+OSQm3dudcYnz0uWqxXf+MY3+dy7b7O7s01eKIdpCoO1we/Y4ixMQWIMY9hqD26Vp3NkaOWGkGwiFBIY92op0FpgjKTROcZkWFsQMWwEzmffjQVCuR/POBpTY6UlyySL5RmjcQY293uoRSqYjJ0XSdjfm0YgyBmXU2bjCVnh/K9X1ZLT+QlnixNG5U0+uPcRxlpmN/dplGKlLaYy7G1tI5Rk0TScnsz56KP7HB+fkBeZy8Xd1Dx6+IjpaEyRZwgyl2MkbmZN3NyMcfNKG+trUjoJtglrUSlGeZuC4ujo2K0ePx/StM15DOZp536Am6wxaKOxJjWmS6RcoFTmWLF1uVWUyBgXzitNCld8260Jz7ytK67tJ0ScBtJ+xhJGHR8fc3p62vHRTZk20GHagbH2Q9D7FAa3nyUsDRAJTHvQiDEg9Q9933nmBlzTdv5ONhGLZ3pOCg2BJxZDbQ1SFqAUq9oy2blDozWPj36LRbNk4ieKVAKJ8yKom9pXVg/MxS10F9pcMx2XvHr3Bu9/8HWksNzefwWVzbCZxCqBbjS4lFWAJFM5IeeyFM61sGkaz7Ddj3PzFmCce1UsJBt4mnDFHeqmoq4qVjGQw3NXXHsFgGloqhXL+RlHT54ATrobj8ZMt2a4UloWoxRWCJq64rRuEDhD43g6paqdenx6ehyl8DAseV4gkHz7d7/D3v4NptMJ5WiUjEko6aXBamDSY9AmGULPxEXyeY1x+1ASa71XiMb6KjCL+QijXW1QEzd70c4BL10HCVr4tKr+S7RuQBhULlit5jTNpPNc6fNZn57Vzm4B6EYgyBgXYyajEUIJGl0zr1bMF6ecLebc3IOPHzxAZhnvfvnLNFIhPNO+uT1jrhuOVysOjs94/4OPefL4gNffeJVCCVbLFffu3ef1u68jZ1MEOe0WFA0nEY6ra5+psKndOxlDZRqm0ylF7iJiwyZ/cnKC9HCGlDK6hqY8o43cFR5uqqlXDjqpdR3z2DiYzvlYK5GRyQylMjLlICanFXopvAm8QXSkccK8Z12r7NO1Y9p9izNsZpSXpT7D3yQ1X+U+6XWDMEx/4K70CusnL1aa79475kcPlnzr/SOOz1bUNVTVz/H1f6j4ydcMPyPv83YFW2WnhYOtEsLhe7lSKOmMOnW1pA3f7moBfVQ3MBMnhcgINRAw8WDe9+qrwPe7tVjhx1i05b1SQ2Vod4vrNpggkav/H3l/1mRZlqWHYd8eznQnH2PKeaqqrq7KqmqgBxQaMxvNlkgIEAgDniiSepDJTKKkP6A36Q/oRQ96EAyU8YWAmQAjRbHFBtBAAz2gJ1Sja8qqzKrIjIiMyT3c/U7nnD3oYe21zz7n3usekUN107HTPMP93jPuYe21vvWttdIc3gJChtze6OPvCH9L2dEXCTZoYJ1DUWTxPbynEOn1usZ0Uu4elqunSLj3djuZYIXuxzsXP+Ou6idkFVEQDHq/9zdbOvzOHbTo4+FCUKUa3jTo42D+SxJqsEBrm1iDk1ksACCkhNKaoJDGwCzXwCyP71yH8m8qbCZaS5ikSAE8OdfjHAi+G0q7ICI8ws9FFmkCfUkBqTrLVwxSXaSsEf63s6S7fkvpvJvwJuB7dSv7UE5PRvjBGmdEZ9tePWjXTmgrpWJ+AcathoEd6b+XadapQB0ex99prWOkF5te2xIRpVUyfpLt7sMlfu0PHuNb759BK4GmdXC9Rxhj/gT40VOPX/ve76JtC/zc6x7/i3ct3jhMtT9EWqBzNljdEkpnuH3rNlY18NFHH2EyvQOvNBDCk61F1KDJkQlIpWKoybpeIy/yKJS9J6eehISzLs5iIShPg3UWQpIgyLM8aLadf4Kdgs4aPHnyBPVqDZM4lTpnkaFUmky/AmHceZ5jtV4TMAzaFKTMoJTCxfk5np2f4/z8HO+883akAN64cQP37t3Her3C8fHPDEagW8CkefNGlgzCUK76Togydu899Z91Hs6GEHTrEiFD8bC7ZxftiHH+A9S/EUPvNiz2CTnnySENBN5xDu/nERfWGlQcQQrcu3ePomybGqcXz3BxcQ54j4uLCxwcHqAaj1FVJS7Ol3j26Cke/ug+bv+FX4DV5Ph98OAB9g/2cPv2bYxGFSajDKvlAmfPTiGVhA95dZq2gbf040KwDb2XBoSA0gpSq7Dxk7XGeWfKokSRk0ZycHAAzr3OfcjsEvZfMFUY6FhMMqx5JiFw39uAo5GdyvmPEIV+Kvg7zWTnYF3arp3QZiw5allJXmtgt9bMZtIu4bwL3uCQdvY6D49JmSfbrIDPq53OG/xXv/oh7j5aorU+4HK77+28wHJtAAj85gfA790F3j6S+C//qsVRiNRmbdhxMjYhoGWGW7du4aP7T/HBjz/CO1/4GkReAD6DzkKe6YCNO2vhIQK9TMA5i/W6Rp7n1Deh6KuUlOze2S4vtZAS67pGaxoI4Si1ap5Foc3jzP+a1uHZ6TO0dQMBIE+q2nhPFVpkJrsCsQhCuyiwWK3gg2YuBVVsKYoSFxcX+OjDu7j/4AFu374Vsc/j42P88R//Ec7PT/HzP79DaMckUkgEd2jR6djNxTguttOsW+tCvcYQ3RgE6+XKQIKh8u3iOLpgrfTXRyrIWM2WSiLPMwAWnPlQZ0CWSUgF3Lt3H6t1jeVqhYdPH6EscxLSFxd46ZWXMd3bQ1kWOHl0irt3H+C7//aP8Zf+zJ+FHqkotL/xjZ/Ba6++jvVqhYP9CsvFBR7cuw+pqG+EANq2gW3XcKZBa1Zxs8myApnOoZWCYH9Sol3nWR6yEHZCm1lfXL0ofe8U6xZCRQFeFR1Xn+BSH6BWE/QLAem7FAB9gR0H+8UM50H7ZJmM/hS3lKSffvZ53xPYLFf0SWGaT/O83nv85ref4v/6//o+3v94gcZ4vOg+4b1AbQS+90jg//QPNf7p99IEOb0nBSCQ6SxCJCaYxbtMfHb+8O8xkAND2MlH2dYJpcBfYRM1CWoYsnNYc/KBpBz7NFzPusCL7T1dV+U78jXChquUwnK5pFJcdY3FYhE2aR9riJLzu7vP5jiy+c75ALd2fvLOiJqcCwUL6KdLo+oTeKDff2J4yV7fQyTvuOVJhlRL4mmL0DM8zxlY6QezAWRNKS5LFjRTgKyu1hgsVyu0jYvQDhXjUCiKDFnGTvwuJWuntfaz6vC/rBjJtMRgwJWZ9RMhuKQfoqwYDNU2tlc4oSdjKAhJoi93+r6oHi0xOWYop563XTtNm1scRCm72nKh45qm6eW7SM/h47b9ve13DrIBgNVqBQD9HMvoNPrPW8v23uMf/cv7+M0/forGfPp7WS9gDfD//E2FH59Y/BffDNFgQkIIBQgHD4dMZ5jNZrhzy+DB/R9jdstherOAdy3gGY928Bx1Fxy6zJ3N8wllhzMtMq0ADlMHmbjWWCwWCxRlgZGsoDRpQFmRx7631kYs1bRNtHrKqkSmNPIQaMPj31qDCgJlloPFl5AiaFEddxYgBtJoPMb/91f/RzjvUZQF/vk//+f4uZ/7Obzxxhu4efMmjDFYLDjLI/Vf4gEI/3TOUmrslAr3CloZCWTaWCi9Z8gdYn3UvK0RoOXL1LEhZr2rbVNmNqFD5qBrncdDlBKAcKCIP8CjhXUNTFujLCYYjacQUuHmndvIck38Za1QhPWwWi2R5Tm8Fzg7W+DhozMcyilQyaAFa+S5gLM55oslzp5doK6bUDxYomnX4BgEkZElRxsqORLzvITOMuisiL4G41qY1gCeCpacn59jdngD5+fnnQyQZGFxgWrCltNUwh0TjDcGGa3vAU49WHafx5K/dkI7xaLZvMmyrKcFM2Z3VTrQVINOKX+pMGehLYTAYrEAQEJ7vV73rvWTE9gnn4nATlttBP7p9xQEHP7zPx9YKdGkB/JMYX82A7zGt7/zPlBWmB4fw9sQdQdF2rcMnPiAORtLnPosy2I4vJCCuLUOYPqftRQl99LLd1BVJbKMwqOlUoDqAp5YuzaGCsN671GVFYo8R6Y1jLVwxkahrfMcJUY0NkSToQ1eiITfK5DlGUaTCX7jN34Dr7z6Cr74pS/h137t13BwcIA7d27j1q1bIT6gqz0pAubvPVsnAogMlyGu3TGXSKsGpU41Fsaw0PYU3ehB/GtHMJMIG6hzLmjS6ch1Wn+3cWwcRB8PlBc2+TkNqwCgtICUjgKGwEK7RmvW2Ns7xnR2iNF0D+NZGTfmZnkBqSSMd1gua5TFDB4CZ2dzfPzgGbJJjukoRzkaoSgV8kIAPsPJ06c4PT1D3bRUUFgCdVNDICSckgq5IoelzhSqqkReVsiyAnleQIDgsOV6iZVbRfx6tVrhFQBnZ2fwnkrS6SxDXhTBehOQA6tPSt2TBZx10LZdBauun5M/vY8W5Gdp7V87oZ22vhnTddrzYsu7mCJpSzeILtpKbh2oywbv0w7qb33n5DPTsLe12gj82vckXjuy+A++BLDwEaGytFYKeU45J4xpCb+Wqf7XA1WTTxNqYgh66UJROlM4JhoKGeK89yF3eNfiWCR3jZqRJPzaBYHsAh7cUfDCozHFMFyPn4QSHi1gDPF+1+t1/LF23G3oPe2aTewQVMR/x/8PIB2+J8MjKSzCn7u0cK2MPz5q7UOv5rCJXs9uZS6Jzim87fR4iucse1QqTGcaeZahKMrOh9FmsN6Gd+FcPwRXmJAZL10/1hhYGwJyWtqIpehgKykllCAmi9IaSsloUXNUK9FEO0gkdbJyX6ch6mQ8yp7QTsclVe52rdMoJsImzWOUio9dfrF+318tC66d0GYThvOKpCR57ow0H0DqKBxeJ+3kyzqcNW5uSqlYJWMYlPN54Oun8wb/8Nfvf24Cm1ttBP7+v1b4xiseBxVlEiTMV0EryrO9vz+Gbdc4efwxbt95jYIKBGAcJdvxXoL5GizSiVZHuCZFjRFnm5xklAOjqsoIqWSharoHnQN0DujJZIKmrrFeLdGs1tGUJQ2JzGynHJb1qsuFDFosUggKSgoV1du2RdsajMZjAA6jcYVbt27inXfewTe/+U2cn5/h1//Fr2M2G8MYg8ODQ3qfkPiFhJ6MArvjdxBcREUoEBxgIUeGocIE1vn4bz+ykQVQyCESSoIJuE3bnNvA7xk/3jEX2TKt6xqzQQWVssjhw32sM5hOx3jzzdcxqg7hkKOuW9RPn1EyqLDBrldrNNbAw8E6h/2DA3z13a9D6hxSqWg5ffjRA5yfn6NtHC7O5mjqGnlZQOc5qkJB630oYSFFKOQbNhYPh8a0cGugaVvUdQsghIp7F2vG0lyj2cfplbOc0sZGAR/nAykkvNmk8AiAWBvystZZWJ9tu3ZCG6AOt9ZGqg9/xpN0tVrF8mHMGhmyO1LNOf19mHcb2BTaWmusVitUVRWv+zwZBT9p+wf/w12YT52c6vlaa4H/2z8T+D//CoUWSyUhhUKmJcoSODyY4ny9xuOP7+P2rZegdE7UKx9SqoqEQSHItcj4ozUGJC5ZCyVtWmcKo1EVTFwbx8wm4cMstG/evInlcoGLc41nT58Sm0BKWB5vRRuoOQ1MEvDjEJcXXkQNvmkaLJcrjKdTeO8wmYzx0kt38OUvfxnee/zar/2P+Ff/6jegM4kvfemLODo+DtfigApHxWaZCe2Z8ifgPFH2WGgTDGIp1WfbCeoYcg4S0lTKjCARH6JNSakbmOq99mLWXZ7nId98AvGFQ8uqgEHIg24bzGZTHOzfRNsqnD5b4fRsiYvVAvt7M0zGJapSo2kb1KaF1xrWWhweHeNn/uzPQi0ECe1cwViLD350F9a2sE0LrTJURYUbN46QFzlGkxKZKqEkbXzC+cD+WKNtG9TNEk3ThnmlAa+hNTk2o2MyJK0CgPF4TBCbVjFpVKqNS9Hl7knX7jYWWKdlM/QVRf9Wv9ju5neOVdqupdAG+pXAgf4ETWk9z9u2HX/ZgGyjDn4e7ccPl7j7aImfkMyG9QI/fOzxw8cCbx171v2CmSyQZRpYN2ibOmbNC/KZlkCAHBh2SM3tQY/F84DtaQTSQI/U6ZzpLArxFIrpUTEHv4m43rqF5pzrCs4CsX5fVVU4ODiA9x7z+RxChpzQBadE2N1/hHH3mRldhjkfnY4krDlikfc4GQV1TA+AS+4XI+zQ64eNno4YPLoNcUuZOIZCIizlqVxdkRfxfayxXY5pYwFIOO9imgHvKdnXdDpDvVoEOIPmD1UoX8EZgzIXKPLgLwpjq7WIQhvBUctj3LFd+I0FpOscqx3nmlq0rLesae/ZG9k3UXrrf6PT+7BUylTZ1bZegefhJe1aCm3m42ZZFgNt0sZc3TTo5jJ+Nk/k4efcUqcngOhc2071+WzbP/2Dx2gv4V9/Hq2xwP/njxX+y79CjjXviE+tBDCdjrBsHNbG4PTkMWYHEkVJOS6kZEjDomkbAD5q0AIeWklyWAZsWAji5Rpjo6ffB2bJYrGA9S7CIyxMRXAmVmWF2WwG5yyMc1BBQ+Isf2VZQmcdo8R7EgQCBA8whU+gW6x5nqM1LebzC8xmM7z77ruoqhKtafDTX/4pvPLKKxGPpuuGPDCew/S5Bz1M69C2FmUJNI2Fsz4kTgIocUtYvT7g1p5LgLGQCnIjejp3YCCDRhtntxumuG7aUgpfRxOkvtUNF0HQaBuD1fIMDx6c4uTZEvNFg3xU4fT0BKulRlXdhtYaFh4GHq1toUSGYpRjckugHOVwTmA6nWFUlYBwKLIMRZajzAvs7+2Rr8RZzBcLKMGAUIcbkwY9Cm9HmrZ3KsCjKm7oG22Lz4nnA+P+xCrakkMoQCmbGDRpyzSnX5BR/Zzi4doJbc4p0rYtiqLAaDTqTTxmGDjnYn4B/jxtqaDmSLrh5+kgc94CgMoaFQVpH2nyqM+6LWuLb71/dqlm93k07wX+zV2JVQtMyiBohYeSwMH+BPNVg/PlGo8+voe8GKEoKsALKAlYQTBI3dTI866qBwSl5jSG8pJQNXeBpq5RNw1FUkoJ52gzPD8/p9wkYVxY+5WSchbDexwcHuLk8WMY5zEJ84AZBOPRCHmWQQgPqTSsp5BwDSre3LYtzs7OkBdlHLuiKNA2LZ49O8VLL72Cb37zm3j33a9iPr/AzVs3MJ2MQNAH19NUACyYFWIJD4J3JKibhiCNet2CUqWC8ocMIJFOq+YET1wdKIyHA+V+ik0Mfu/UN3Z5dhGorPH3LRJm43RznLD+LC+g61DZR2ZYrVs8fTrHd77zHuaLBsYJvPnOO3j86CGEsHjppSOKVJWAaQ1a00AqjdGkxPHRCFkp4azH4eERylKjGhU4PjxApgQoLlYhzwSaeo6LszNI0AaspaL83Uohz3KIMqfg1lBg2jvypSix3aL23kMoGZ286buL0JkeFFGpZId5c3FgEY9NZL9nQKULs/9koTCXL+hrJ7QZX2ZNelgXkI8Zwh1XwSXPwyTp0YJ6ic43oZTPQuv+4MECWolLIx0/r5ZJ4AePgW+8imgqCkkpOrUm/3tdr2FtS1IFXci08y5o58FHMHD4ptS1mDIzevTpc0o01U3vlI8vpYTSKlZT8YmZzxspM0p6zQMQvpdEjBem9yDoB1RiSmuNvb09oprlOaaTCfIiC3MPna0bNGJ6Lw84BOcWYvIma/lNulwhDDz5wNDpJANrgfw+/OCIGnh3XP+3dJY8D1y3mfhMhDwx7EqmiMCmqbFcLrFcNfAgYdm0DeDb4MSjKEGP4PtRRNsrSg2hgdYFq7gqMR5XVLAk5HF3xkMg0DmtgfQOXkpAAkp5QNFmQqwieioHBchQEQf2clx5YKCw4dI7dOtSZRgk9IToGDkpG2h4ame1bF6Rz9oRdhXbtRPaPNGGxXb5O67/lwYS7JrAz8Me2Racw1r8MKf3Z41r3320RNP+hMDsQasN8MMnAl9/xceJLgFY7zAqCxzsTfHkdI56ucCqmkOX++Rk8lRcdjwehbqbLUxjg0USMquFhMyr1QoenkzyLEdRFCGUmorKeoiYqJ9N5ejLCFVCIERI0WlCGHwbMVCIzbzJvNlrrSnoIs/gvMdiMceXv/xlvPTyKxiNRrh//z7alsKfP/jgfeS5hs4k8kzh3Xd/GuNxRXi4MfDewnmHmkOdnUdrHLjug2fow3N6zqAZC6osQ2lVxWBRs6+G3ns3PJI4BnZMv23UVIB8FAz1saBWUkMKFhsK61WD09NzvPzyy3j0+ATz1RrHN2ZYLmeoa0qRLHSSu0MJeOFhbIPWKWQQUFqQoM6oZuXjx0/hTAPTtlgv17hz+whaUiET4VykAGbBwRg32TAHqA85g+ImnMndMuwDPiQWtUj6hjJRUoen1goLbCHoveBFvNZV2fo+abuWQtt7j/39/R7dDyCYYxnyKg+jIYeadjrQKWMkzU+S8j/5O36G0WiE5XK5FRP/rNoP7s3xHMyjz6VZL/DtB8D/8l2CRgSIhuWcxWwygtQlHj56jMXFKXRW4LDag7MNjBEwrcfh0Uvw3mGxmKNeLQPPO4cM2px3lGwoy3PkRY7pdBqL9HrvKXot8SMANB7WkpUjlSKMWwpK0dm2WK6WlC5WdOPNODsLNO9pk8hyoqOVZQnvPJ49e4ZvfvObGI8nyIsCv//7f4i6XuP8/Bz/+l//K6zWSwjhMZuO8Prrr2I0rmBjwVfC/Bfzmp80BtEAgPMh13IQzLQJhqhT/gwi0MxIfxPwQR6zwBDBSdnpac9jzXW+ltSs53lOUB9n3hMQ0CqHFmFdeY3FfI2HHz/GN//cL0LI92E+foBXXzlC2yzw7NkFVqsVilFJML33EDrQKc0KjSmgcokslzg4OoRpW9TrFe7d/wjL+QWWyzmenZzgF7/5szg+3MNstg84C84kKX3nxETot07HJROHrawNZSvAWF0fqPj+KWssTfTmwyT3jjZOCWaUbEudIVmkx88+q7V/7YQ2txSv5saYJrcXoeNcxh4Zfp86OS+79vC7F4VMzhaX0bw+/3ayDL/0XoMYBWWhAW8ppLypAfgY6egdQQ3s7DKmhZIi0Kw6U9MYQzzaAH2wz4BwRRnTqgKdOZtuqFyViM1ya23Cze6w2o5x0PdRRKHuiV52+/ZLyIsiRmjWdY2zs3M8evQIFxdn8HDYm00ohN5zJfsADQEwvVzKKcSR4M6xL9npiCB/+PnCv5xcPE4ZkbxV+hkitLRLGd+AA5LzU2uRFM0OHgEEjHGUknY6QVkWUEqiqgqUZYE8X3fnM5NF0JWcs7AJFJZleSzqsFyucHExx3x+jtNnp9E6zrIMcOSMJuGN6AwECH/uWgqe7Wge8f70bLvTTdDGzjBU8ivDI4N+o31wt7z4NO1aCm0hKMXmsPwXF+DtkeS939gld13zqu/j5PY+Zq7jlKG7JkPaXpSG+CeBZffvjxD9LSAER7xR8IwSHof7e2i9xXJ+jma9hEMOrXLMygr1ehUWtAvV4RWLTHAISl4UVInE2Igx0yECxhrkKkceUm0SK6SFHERJEmWMjudGQtjEJPZU2AFBevEtRKi0040b5ayxWK3X+MEPfoA8z6G1xte+9nUqytDWWM7PoXUGax2aJlw/AtudsOut/BjZmD4Dq4/0OwnWVPCFLz1AOWA+2VxgpgSB7d08VsGi5Oos1G90pJQkNljplZBYraiQbZ6H75yDdxZalSESle7nvIP1gPSAcQ3qVsF44Mc/vg/TNLCmhZAS1ahCUWgc7E8xm00DG4u7spspSWew/dF1MYYJnFIlqtvBfHKZVBZ0xzKV0Id3Cwm/hOwLa5/+8vlAI8A1FdoqmMZDod22LebzeSTbcxAOczjbtt2qfTNOOvw9dWimRWQZHuHcvEVRbHHqfPqmd9Yk/Mk0LUO+ZYEY6KIzFRa9x8t3buFHHz7Es5PH2D9+Bl3OUIwLHBzt4+GTE+LxSomyKGgJOQ8oSufqhcRoNMbFxQUaQdGtJGAp3Saxg0qMKirY3LYt1us1ptMxjU8YlyxsCHW9juvIWot1vUZRl8ibBlrnkFoFWIaWnJQSRVmGjdcCyLBcLmGsw+npM/zWb/0WXn75Zbz55pv463/9lzEalZjPz/H7v/dvoHWOpjFYLtfEVQ9lS7xLlltP2BAMAhFC8APsQUK+m4ep4RirkYcrdMelQuryllJROcJPQhBjQpEjb7VcYjqlqEjnKKRcq1ChyQh4C0ihcHFxAeccyrIg1oU1cM4gz0IGSBZ4ltL/whs0dgW31jCtwe/+m9+H9xZFkePN11/F3t4M41GB27duYH86hpaCCln47o3jvxEf4U3NJ0J7V+muvrqcKm8pHMp0yI5p4+Lm5YWLG35Evv02H8Fgc/yU7doJbe58NqW5sdZrjNmg+n1WHOr0Gjzww+ip57nP8x6/N9Z4eFrv/P7zbgejEAATGRahLz2hq+NRBXiHul7BNDVUbqEEhUKbtkFrLbIsVLFOiu+yYaszcgJaOygFl2jdPM4MfzAdi8zeDuaw1kYjloSKjZuqUp3ZG1kAAtCqbyEZY9C0RBl89OgRptMprLV45ZVXsLc3w9nZKX74g/cgpQqZ+KiUWii5jZ5ATRa39zIxpyUJHa7GEt5mYx6ICOCGe/RN/VRwd93WjdNGS2S+ANUB9QC9Q3q874phMNQlIGKaWp1QYwkm5HejhyOHnoPwAs4ZGAjUNRWsADzG41G0lMfjMW7cOIaGhw8JxkT6IFv2p+iYFV0a364f+hpwTzNPtONUKUutGo4R8EE1p+99d/qWto3N86LyYNiundDmGm9DqIGLIqTOQz4mdT580jYciKZpovad8rw/y/bOyxP84N7iT8QZqYTHT992Pc1CJPAC54eYjEfw0MiUQJlrKOExPz+DFB6ZklBKBGEtKJxYdIEjAiLAH+SULIoiOoKLvIAUlGNmhHEotMr5rDvhngUIw1oK2lAhgZRxNgr/OE2i7A75VLQOgVouZPFroFSG/f19fP3rX8fe3h4mk0mycdAG8+zZGabTEaTUcN6Ghdvn7G4s1kjrEz0BkGL1mwu8k7TbsOxhSxWUIVwXt5QU5gOxblKuNoAYEcm5fYqiwGKxIBrk/j4AYDwhXnxVlViHHOtSADa5lnUWWmUhJSsJ6YODPcxmM0zHGtWoRNs2kDpdO6mOzfMPUcum5Fw+kZZXwJqhX2jedcqBMW2icHWwpxCdVq6VCnN12wLsoCzvtwvsT9qundDO8xyz2Wxjkq/X6yhIU6gjDaDZRX0aQibp5Gctjp2PAGLCfL4XR+B9Vo4Ibq/dHCHPJNbNT572l2vgzWNDDIjgeWeqkwSZqFoCN48PMJt5SC0wHRXwEnjy8X2ogirPKK1gXKhWLTUonamNZcmq8QRtU+Phw8d45ZWXovY9nkwhQLTAfRzAWoPFYpkoTAKQClVFLJ62bYlmGGCx5WoNAYJVRiOgwy1DoJQiv0TTNHBtCy+o4vfh0RjHxzfwN//m38TJyUksb+c9QlFZi/v37uP4+BC3bt+kxS8snBCQIi05xwEzANH66N6Cc14kGOpmC4IklV8pDt5r2+cc+wjiOkmBXb6L62PaMqjfKgjtPNeBWz3G6ckpjm/dwPGtYwghcHR0hL3pHrIsw+rxI4po1QqeraHgl6gqKmM2Gk/w6quv4aU7t3Hr1hGmEwmlPJarBbLxGMIBzokACQbrJcGkybEbQQrwJimTtTskC0QBjLCJWEryZa3Der2CMRY2bFr8zDFfkRDIywxiI0d6v4/7ofCfjXZ17YS2UipGI6YDk5YeS9vG5N3Stn0+PD7dQbnc2VCo7zo+vc/w8+HunrY374z/xJyRxgHvHBv4UP0dQBTaXA1dSo9RWSLLJGoL5FqhdR6r5RzTsoTmPBahVqEQMogj7gcRnHom0CeD5uI88iwP2i8VO3DOw7Uths4mHTIC8gatAzSmmlDFPaqyYFUzwipM93LeQ1gHoIUKmQTfeecdfPDBB1itVt1xIX/IfL7AeDwK+a4NXxibi5sFSLivH0phkfy/0wi5dXBIavan97hcSejefYATx3noe/Aewwn8CBwFnGUZzhfnUEphMpkAAKqyhM+7vvUuYMNArPfoPGnfWUYa+3Q2w8HhIUajEUZjCfgGq8WcsPQerDF8keEH4Ua7sh4OeqhbcjyGNlrmXP81hdqI/sfWSu8C2+8hknH+DNq1E9pM80pxag6qYUdjaiKmbddnu9qQf53SCbXW0Zxn52XKJvkstO5RofC1t2b4gx/8ZEPZhfD4udcsphXhlR0E0Jn4QngIT84z6Ug7O3n6GNarEKLsIUA5RySjAt6BkyQRtsz3k8iLAk1TU07tPAcnXeI+V1LCON4cAdZWtc6iDyP2OTubPDmnu0cXEB6hog69k1QKSioUZYmiKCNbhQJ9CiwWS3z729+Bcxbz+RwABYqMRuMEkxbocmoz9EPP2O9YRKy0/21iaodPdurgvc3d90zzzXHsrrsTY/NcUNhCx4CT7ksfhJxWCq0ha8eghQ+CtixyCAEIGZz4QHC2CngnYaxD21CEaZ5pZJrStM7nK5h2hbOzM1RZjkxpiGihcK/0N6hUp93WL2mjSvFEPXTeAy37BkhPz7SGClRTk+D60SEZ7i3DmNH8chEu2ba82aBJ+/8qWvC2du2E9mg06i1QXtjz+TzCFMMQ82FLYZFdwrWHB3ou7tnGz5i9wlzk9Zqiw+q63njGdPBYwCulOsfaJQP7V75+jH/3wfnnnks7bbkC/sbXbRBoPiR/koEKRrmkBSiBlJYAtIBwEt9573uw0Hjj7Z+ivMiwENBQkhgLlCyKFrRQlHpVCkBKhcl0iouLOYyx2D8kPjCXGANok2xWbW/BeO9QViXKqoLOsoCZU7/rLMNqtcJ6vYbzAIWOCAASTbNG24b8NDnRCifTKfb2DmJSqr29PUynUzx58hT/+B//ExhDuW5effUV3Lp9B3uzKaxxCFElUVJHDdYPVjCCZOuU7PASoNXOirrbTu4bMpp6193Rer4I0Yf+unNF1DhVEWh3sX8NnG1hbYssVGt69Pgx5DMJ6YE807hxfAQlBZQSqG0LSK6pKENfG9jWExNoXKKsMjRNgydPHmO1PMf56QlKlWEyHlNpOCEJ+fCeois9dxdBEUKAAmA8RdU6P3Bih0YJwdYEgTgLawx0lhFOrzXKooTSCkrrWPy3bdsuojrsHVKE1MLKwQgS3I6tivBwXYAO9+km+SFN/3qVQnfthPY2LTbVtEej0VaYYltHXdV5Q8HNWl/KXmHtmrHBNBFPb9Ggv/Cet712s8Jrt0Z4/8HiJ5KeVQmPt254vH2DGAZC+Jh2EyBog01ZCdJEFMlCnJ48gYNG9iWa3KxpCylIGAXhxoVSw9qECEmg5ufPAlVz07ohBopDKlW8pzSgvBjJAiBBxJBJywwPIGq6hGWSBialRpbnKMsSk8kkUkWLoogw3He+8x20bYuDgwO89tqrmE6mqKoR1uslOmmbzKWIVyefpXMtVRkjZMN/+xeERgf3GbQoJAZzPRXcPIc3ruwDo8I56FDceLFYAoLGvSwyHOzNIARiIQoEZzPbWtZ6ON92mnamUK8s5vMFLs7PMT8/x2q9RpHnKLO8exO/aRmnlki/Ezebczby9HlTKrwHsgxaqRChWyAL5da89/1AI99tcJKttC3dvLmWE5hnsN4vg2jTdu2EdtoYkuBE+SlcAvQdih0Pc7sQTz/v8h93nG12SPExdV2jbTsPNMMiZeD+8j3TsPj0uXc9w/AzIQT+V7/8Gv4v/9X30PwEpLZWwP/+r1ACJ6JvkdCN9CnvCbNEBwNIQcrRZDxCYzzOT59iduMWhNLwzgDQEFCQUsDaCAaQ8AYLcg4596jrOgZPcZELdgS3bYtMZAmnucvAyOOQ5pWg8SThLyACpCORZXR9L0lAZ1k+MMfJAuD0v7dv38bNmzdxfHwDQsiQDIoyIHrPY5lsDhuCdFOIC6Sa81Ao0PV46uxe61dr2kNs2wfYKMJ9PnHuCZGMj4/1GaEzSKUBIdGYFtY0IZ86Yq4QphHG6/lQcV2Q5nt6+gxKSZimoYIGECiKEkVRRJ5+AwclyYojX+xgPYSepM3Ew1uXrG3XgzM5+ybnL0ljNxg2s542cIS1mmUa8DT2G2XIdnT181j1z3Mst2sntLeFrnMUJLM7Uq0hNUlS52E6uCx4U0cEp391ziEPmlhREN6plMLZ2Rnquo7n5om2dnp6Gu/BEApffwibpM871ND5fffHGf6Tv/QS/tG/uPe5wiSZdPgbP3WBg9EevHewAdPUmYaPpZl8SJHZsXOkEIB1ePn2DZyeLfDBD76Lr0wnyJWiclqqhFCScGnLiICAVhkQ8HLhqcCu98D5+TkODw+R53l0fPE4rFYrqqYjM0hJjjulNcbjcZwHsfSUomyAzlGkrLMOSiiUVYm8KDAejaGCIzNLeP+8roqC7r+/v4+/+lf/Kt544w0cHx+S4DEWQiq0TQMZ5p4xQaeP8yuMc5yzneAeOrG3a8wphoJ4Xvec2+dCt1l1Ak0m57RtG6s7UVk32jidc8TRDveQ0mE0KnB84wjr1sJBwniP84sFzs9PUGQaX3jzDUqjqhWUlXDBSWgdoDxBaloJLJdLvPfeD3H37l3MJsSKyjKJ/f1D7O0dQAlgNZ+jhkNVZhiVWbJhMV0vVPLxRL20xqCtTfibiQgCR7fuwHvfs7qNMSHi1cS1LSXBdEVRQEAgUxL5aATajulv3jipLmVAslKIQ2zLlkjnpEpfb9yu4PBeO6G9TTvdpWlvZPLaomWn2nf6L+/GrO1prTEi7hiEoEm4Xq/jwmD++Gg0wtOnT3uMlVQDfB5IJj2Gz/+Fn9rH/afrUI39c4i+lA5fu/kMP314DuAAnEzfeQ8tFeGHLumvoGpLgFJoOI+92QR13eK9xw9hTQP4kPVOZBAq1IoEwPmipZQh4U9nzVhjsVpRdW2uJMP9orVG0zSo3Cieg6Chs0DvLSBB3HAXSleZ1iBTGarxGHleYDQexyrdLLRIa0Z4Hh1ztn/xi1/EF7/4RUgp8DhQ3JQiLV6ogHt6E6AO1pq7hR1Gd2Dup/MwPvKWtp1dNBTy26y03nihg5wYv+XyXNE1KnzUtCE8slxjMhnBLRqqAxpKpi3mS7QhOlZKQQJaSGLIeIQkfCJorESLfXY6B7zD7VtH2N+bIstGqKoRqrKCsy3apgGcQaYAUWUUQh/ohwlQCYCDrVxkjVlrYEw/4pnz2fDmyFY5OaJD+gFBTm6Ook6T0MnhJiquttKHbZumfZW2fe2EdtpBjGNzqtQUm9uFa2/7PHUQ8nGUrrLT2qheXY3JZNJzJqa4G2Pa6X3Sew/ZKGlLr7OL5fKf/MWXAO/xm98++Uw17lwDX39phb905xTGKjStR5Z1+LBnV1AiiNik9wCEJzGspECeKYxHJdbLBWSWQ5UT0k5iIdwORiAvfQKPCAknHWCxsRFzOlVrbaykw8JWCJA1AMLfffJ8QpB1QxBIhkxmKPKcHJdiaHwHTSo84bAiirUWi8UK5+cXEAKYTEY0B9Dlzu634XhuX+z9z9Jn6ah522xzHo9dmCkLCNthUrEvy7KMgTOZTpOvdfeSQkCF3OVSCBhLRXWllJhOp6iKEMLuOYnpAH8OlhmUwP7+PkZVDiEc9vb3MJ2OMRmVqKoKxlrAeWR5DlgRK7l750LEpSCLLTj6vBSxvxn64GyA6Vpk2ZCua6VkTMvL+F53Dbmxnr3nghcavJEFwBvA5SSCoV8rhVIva9dOaANdZ8zn85iKdTqdom3bGFnHLe3UlFWSmo6sVfMxVVVRuaogJFarFRaLBdbrNY6OjmLRYH4W/uFrpBp1yhBJG2veqaDmvy+bCH/7L76El44r/KN/eR/Guk/lnJQSyJTA3/3FKb5xS+DBhwVWdY35ssV0kkFrBUgF6wwkKJUoPRtlXCOz38dakWWmMJtUePnODTz6+CNM6zXuvPYWiCpl4UwL4RUojzTRzGixh8RPXpPIMA6r1QplWUZNm8uNnZ6exspEUnHEo8RoPIZ7/BjGUoky613cdNmpmGUZtMqRBcelUipIlwBLDSwhrVUsK8d+jPff/wCPHj3EdDrBZPIm8ryENS3aUC6NG206A0w5aSkU1gmbfuFpfpRtAp83VBbaEQYZzCEuvwY4KCHj/N7b24tUyXJUQmcq+AkCtg0JrSSKIsPIAvNFi9XyHKdnFyiqArdvvoG96RhFlsEb4mPDsx0FsjxccO5piS99+UvItIXWQKZyKjmmFcZlhvWqhhKgoDnbwNsWq1WNer2I2nJrDAl3D+gsh9I0hqMRp/N1PbYRM0JYIGdZRgEzeY48yxC3wi1CG6ANp65rojYqhbJQcUN3njB1KdTGuqZnSfwbg+ZcUvx6R7u2QhugaLnlcomypKgtKSVOT097Qjs9J9Vy+YeFNztlnHOYTCYoyxJlWaKuqWoH49cAYomxtE4km11AX2inzlCgv4lsW8zbjht+/82fPsSXX5/iH/zqXdx9uERrO4fV8zQhKBnV6zcr/K9/+QaOxg5+LQHxAE27xrq2GI1yKHDyedKkJQuSoGiwtuKD90kriVGZ4fBghm//4McQShPtT3o4uCDcg4MNwXEE+kgGLci6LsqUrR2g48W3bZvgwGy9CORFQXzcUGTWBZxDCtKsJpMJqqqCCsmQGA6hJ+/Pj/BIkLJfGaltWzx69AgPHz4K51KhYzK7G0rChOczgYcmddg7dn6+fRy3W43DzwkaMHBSRStyOptRqT7nuCwlumRHrOQIaK2Q54TL13WDxWKJ8XSMmzdu4uhgBmFrKMt0SoDjFgX66SNeeukOJhOFIhcwbeD2C6DQwMMHD5FrhaqawFuJ9dJi3TZYLFYoS6p607YtmraBB1BYj6JU0Eojz7PohO5gjy6tRRpEVZVFVxpQ9vtowwpHB71onwFFmBVhAXjn4aWP8E1/jXdjlo4HO0uvyil1LYU2gEix44nB2leKgQ6ZBKmgTk0Uxq2HMEfqYU+LBA+hjPSzYarWXfjX8Dq7Fl16j/S7g0mO/+Pffgd3Hy7xa3/wCN96/xxaCTSt2xpHQRQtjaa1ePetA/zlr9/AmzclFGpYayCFRFmNISGRlyNIrQFpEorfIO1lhE4AluJCMLRE9C54h+VygVE2AaRKFjTpOd57YGDWCtEVorCuqxjOGyt79UUUDWz2qh5LgOAUohfyQk3zREPsxiCdczBhY8jzHDdu3MD5+XkU2pwC+NGjR7hz5w6YwpiM2OYAhH7qC+BtGnQqpFn4bw/m6Jxz/fk9nHtaKwhBfHmtdIwa3XxcEZ+R4Y26bnB+vkS9XkMIgbIswmYK8mlIGcY9CdwXIFA7RMC6cL26rtHUBuuVhXAeWgBVThkQBYgo4MKmDDCrR3c86KT/nOss5CFbjN65C8KTkpzgQ2egD452wyWGQp/S3u9i0WlWSnrjNoA/u/ETgzF+8XYthbb3Hqenp1iv19H8Y+338PAQFxcXcTB5AQsh4mesFTNVjDQwFXEwxsoXi0W8X8EOKyAyQthpwQmj2EN9dHSExWKBuq5RVVUUBENhnzpO08+HuPw2fJyPe+VGif/sl1/DqnH48cMl7j5c4r17C5wtTKjyIrA30Xj75RF+4d23Ifwc4yKH9AKtmaMxLYRrUCmN2y+9BiUEpntTKLeEt0u0Zg2lcypwYKkCtZAhJSZDe97De4KBMi2xNx3jYG+M2ja4/+EHeKOaQeW0eDKVE+4czqWahB6mNVAKEEohy0Uwb1toRVkO29bAmHmkh4kQZimkhNYZyrJCVY2CYKkwGo2glIZWGmVZIcsKEtpb4GESNCLcp8V6tcJ8uYx5bn7xF38R3/nOd3Dv3j386Ec/wp/5M38GT548xd27d/H3/t7fQ5ZlqGtK+8pSa5gyNNW+u82DoYhOQ+sEZ4C+AgrCwmDof5GyPz9YeTHGROf4ZDLBeDwGa4iTyTj6ANjhHPaxIJtCXxiLJ4+f4Afv34VFhqwY4fbtWxhPR5CShGxRaIJdhIBWEsaHYrrOQicwmPceH3/8GM+eneDZ03PYpoVWCgfTCb749huQUuH8/BymXkT/yI0bN4IQDT8g1shy2cC0htgjzWpj0waAyWQSNVshRCjy3A28MW1YrzUWi0VMUWCNifNDeUXO2rLCwf4hdU4QyEoy/GR2bNqJ6zTCVZxPZdemTu3aCW3unPl83hPCHIk4m81wfn4eTSVe5GlGPv6OnVuMlzJ+zZsBa81ZlkUclJ8hdZTxD+PaZVlitVpFp+SQSQJslkNLF2J63fSdh59z896jyiV++vUZfvr1GX4FgHShsrc0gKIqIm+9dgt/9N48WCCUGc+0BrAGRVXi8PAAVVlCVxnq88do6xa+JQHkAThnoOBjYQQm5XrvGWOAkhLjqsRkXKI+m+PJo4d49a0aKisgBWUyATysc6RhBXwkZdfoTGO1WsKYFm1LU9gG1gIJYwrAIRknIRWQ5xR2Tpp+jslkGp1tzjJla0fl7N5iNliv17i4OMf+/gHG4wm+8pWv4Fd/9Vfxu7/7u3j06BG++tWvYrVa4dvf/jb+7t/9e8iyYHJzetYtWnxfaA8X9Oaj+AA7RTmOziLpX0uEHCgyWpBpZF+WZaiqCvv7e1GYl0GRIO2VLR9+CBF/t8bh7OwcH374EUaTA9x+eYKDgwNkhYYQYT7InDjaEFBCgOrTI+YdAShM3sPh5PQM9+49wKP7D1GvGmRK4+bRIb749lsQUmIxX6JZLYIzu8Jstg9jarRtAyEIW26NxWrVwloXqZz8nnmeR4ZXWVJxBlqnvnNiM5xpLNqmwXq1wsX5eYRCUr9UlVdYr+uoYISRif3OG6hSfZbatsYWEzs2L2vXTmizwGUhxwudO5Ez/aVYZIqtDQMvhtcchptuG4j08yFmlbYhhJKev+37bdDJNmz7Mgil33zUhiP8ErA4IJRMyzII7ZHlBaTOIHUGSA2pNHnMhULH+kgwbSBOPpGu9wB95FmGXCsoJdDUK6isQqYKULIp301bD8TEP6xVBg3a+45FkjranPNw1kEq2VNauNAvb7AMiQgx7K9uFTrnQn4NwsHbYLXxZsvwGGPqZVliNBrBGIM8zwPXmehu1ttEW+aXiyMUhe5uR/PQ1E4/79gKaWOaYofvd1Xr8zxHlukAj1wdQk1cfPIJcKUhSmGbhULLoKx4jYNrHVyjMC3y+E5KSsAynCOClku0vcViQdZwSDolsaJ6oWE8ve8YQkpzEAzh0sYaCtwRBF8opaAV4ATV3wTQs6jTEQB8jFjmaGUBoG2b6B+hvu7Hb3Ryha7BaV3jAohjlNxpy7rst6tD2IFrKLTrusZ8Po+aWer1tdbi0aNHIdkPYdtN06BpGnjvI++XMU6GVThvCdB1/BAT4+8Axm2zqK2TeVz3cOnUQbmNnz2kIqVYO284w2jKIQaeblbD52MYzqOP4Zu2AZSHFhJVVSHXFTJNVL1cZxBKAUpCVVM4YSHNBYxbQTpKPSogQwIpj0wqCOl7ssYHNsn+3gQeQG0sHn18D0c3gaMbFZxvIJFDSMYpHYSn6uudhtr1L7ODCGftPgeAqipZ74GQEgeHh2QK5znyoqAIvkhVRFzJHNwghMB6vUbb1KjrNZarNUU4OtLMmIHQNC0ODw/x1ltvYX9/H2+++SaapsHp6SlOTk6wtzdDluVktQQBmgpvIRSkZAgsrYw0zJvhkznHxgtrxF0nM5THygb3DVmMJcFCWgf2i44O3VSg9+Zj8qsxDnXdINvL4Z3AaDTGjRs3IbMC3jucnZ/CmBarizPkWmKcfRlQxHUu8gKL5RIClIvaNS1UViLLM3z/u98GvMPe/j7efP11PPr4BPWihvQO67pFkSuMJ1OgyiA8pT84O3uGtm1gbQudUZ50ISjLZ1lk8N7BunXsk+hkDH0JiEjVXSwWaOuGUjKIbg06ZykHe9I33LRQtGFIidY0NI5CwCUKVeSRJ5vxLic0HSsh9Q6Lj+976bf/E2yMNTM3OxZ3DVr22dkZXnnllZiBjylibdtiMpkgz/NIAZvP51itVjE6jDHuFCNLHZapUEzLl2mtsVqteoOVOj1Z62MNLhXqQ3ogH5MK7G6CyN7zDKGZ3mRJNxDmy4IqlUhI+MyhKCpMxiWqMg8KhI8+FlmOoHwDsSxgzQrwgA6QhHfEh4YK9wdpx85RqRPngelkDOsczhcLPDx5hNF4CnF8GwIWUjiqvyeAQB6M9EHWRrTWaJs2Urj4fZlJ4Bwl4GfLXgiB2WwWzw1nIOY7HmhEACCkRNs0ROlcznF2dhZD3CfTWUgA1mC5XGE2m+Hll1/GeDzGSy+9hPV6jZs3b+L8/DxEw1YB309vlcJblGgL6MZxaHJ374mOR8zDklw3FbjskOe+IWuAMf3OOkrnUP9efc3RGof1usFsjz4uyxEO9g9gIFGbFvP5BVarJZ48fIBcAO+89iqqSQWpFVHpwjMrJdH6BkqRY/rDjz7CzeMj7O/fxBe++DYKPcazk3Msz8/RtAbWeVSjMRQyONOgrWvM5+cktJ1FUShIpaF1jvFoD1pXIC1axXXEayxZBBHuevbsGeqwKQvh40YmhEARkoRxH8a15Bx0w8E5hnK1D+QtjSUGbbvQ5v6Xw4sM2rUT2ow1A9ux3hS7Tr9LtWUWjqngTNsuPHlXS7XedOIMqX/bzhuyWPjzXbv1btO6f13wpgEH30UmEz4fHFS0mahemLWAD0JQEuNDEjYesVofYJH4XvxcdL5PrsO5HATIwdO2DYQOaVeZERGB28333AZDpePqE0mWQmXJVeJ36TmcLEpYwrDZUdbdl96B30spyjHCPg4WlOzA7s+Vrl92TZ2UhUMpaLcfh+4xts4J3qA667BzxjGr47IW+zb852yXl55vrUJgEqxHYzsfEkURKmJlJP0shSBoP2L1PmbiU5q1fhn8RCHdgOzC/rkPhaCNXIbNfGhVh8wtGxbD1vXq2XlL1FI+ju7RMZC4oEK353ZWmnMO5JDpIML+IO3u7OGavUqmXDuhvV6vIyzBA8hQSZ7n0eRNy4GxM1FKifV6jdVq1RMGaZInoKP3DTs6PYfhFiFEzHnBWOp6vSb4IPw9xM248QbEx45GI2itY8UUfpbh+akWv2tzMaaFsw7Gt9CFggzXu3l8RKaz0igyRQE06AIyELRfwrVzZPkIZn1BTkPhAW9pMSEEGThKtqOVpoK9QRg7b5BnEof7Uzw5PcN6eYYnD+/j1stvw3uCESQ0CUxerKwReqZhZnFXsNYiz3MsFgsURdFp07zBYBhtyimuwgbjSThSGl9i9qzrVfjcxXnQ8XppkWutsbdX4uLiAqenJ5hMpvjRj36E8XgcakfuIc9zMrO5fiK67YtbWn+w71/p1xjlZ4eLhg8EJIwlNhBbYuwc5zTAPP+5b9LpMDTdN4UGYdnr9Rqnz56haQh+8s6jrCrcuHkDZ/MVatOGAssrHB4e4GA2xWQyhRcODsTjz7SGMY7SuWoFZw1WqyWq0Qh7+wfY2zvEuraYTEdw1uLkyVOMRiXKMgdXpxExCKiELzMQfdBD6RxK0jq2AUJh7JwFbApXkJXpIpulKsvAOurmCo1xt2Gw0kLXoAO8d6jrGllWIdmXk/ts36A3/CjYlAHb2rUU2ky3444fsjwY804nN3uPWaAbY2LEXVmWEfcG0vy4l3c0QxgcIcnPw/g2PyM7OYd4ImOS/D5lSWG9jx8/7i3slBLI92ScOtXy043GWgPTGrSuhdQlslCH7/jwgLBBIGhDHZ5KURYIaqKCUBlUVgJCAyIsEjhIIeAFOwqJjqUkFR0AKCugc5YSAs0myJRAvZzjxD3E7ZfegAcJBSkUjPNwsc8Rn4U0xyxqNEyrXC6XoV+Hm5VAV8rLxzfqLRvvYIzFcrnEfD7H2dkpRuMxJTvSMtI6uR+FoKork8kUi8Uc5+dnODg4xEcffYQ7d+7g3XffDYKeFnZa4Ybx6OTu4JdJmTJUPGGbs5n3K3oDY2xkhXQ8dB0jG1mB6J5/Y7qG63ZzmpsA8Z7X6zXOz87hXGctFEWOshrD4hlOz89inuqXbx3jzq2bGI9GWNUreG8hQcUFnGvQtiakljBo2hZlVWI228Nktoe6thiPSWg7D1RVgaLIAe9A0YSkeVPfktVmrIHSOYTQ8E7AWgchQjbAsC+LwXsxNMgViosyj5ZJOiZD4UrXIRYML4emaQL0xRgVnX6F0bvRSDn590xoA5ebF88DZ+w6bxvsMDTP+ffLWABXMUpSAcwLna+VQj9D+Gfb9bZdl4+XSkJLyh2cOjelYOMyFWo0mdjl5Z0jTd04NHWDDBY+S3nOAlGm+KQfgknMWq6UgqqVtICzBta0gNZxswi6VXKttO/7kFG6UV1mjvKDRAeeoxSzznaUzwhLJX0mucTOoLEWm+dFz0xXKpjrkt7Aww8EwuVj1h2XwikdH3uoNKSBQykveRiCzX23cadkfqWwTndOl2eGm7MOzja9IDN29Oss4zeM7ysDdNG7MmuuoM3BtAa1cGgajm7lgwSioitEjNQUQkC4ZEMaXtt319+wIUT3AP01NZj96foS/eOF4CR0ydh6Pub5BHf6HFe1aye0eQFxE6JLycqTnJNHcWMcjp2CcdIF7TilD6awA/8ME7wMBWh6f+99pIMxA4GfMa0Yn9bbY417uVxiuVz2tPYhhpv+pBZBGiGqlEJZ5V3msiKHYjihW1/d0hIAIGNRAtu2qNdL1KtzLE5OcP+DD7E/zvHKzUMoLtQSThNSQQofcpHwpHQhAIcW2I2jA5ycrXCxXOPJ448x3b+BcrRHXN5UUPKi4k1A9BN2nZ+fJ5os3a8nEHlhhE3JWuIsr5crtG3AaoXAar2G844cl5KTCKmgMXMekk5QSCnwxS9+EbPZDOt1jRs3jnFwsA8AIWcH4cerZtUJ255C1eHWQ03QuXQTJ2uDuNYGxhDHmFlPDN8QlY94yduE77Bxn3HwV13XGI/HMT+8F/S+ZVlCKw0Lfh6B07MzPHj4BMumhZcSx8fHeO2129gfjzEuqZq6txYeDl4KStOqFJykohUqVygk5eCeLxbIszMsL5ZYLy6wnC8wn1+gbiysBYpMwLU+KhzetbSJ+ACBhXnhOBgovHZqcXvbKT1KqVCdJvm+p9jQddPNsdssg0M809EK4XP4WlyhJ24sUYnbAL1fqF07oc0aBpPgU2HLnZ+aQCluzOezUOTPUiE9hCJ4QaQh8dyGkEW6ODiwYz6fRyYL0w+FEJHvqzXlrjg9PY05TtJyZcP7boNKOCiAeahZlmFvNsVoNEJVlZBKIw3h7uGayb8eHtY7NMZgsVxicTHHs5NnuHv3HtrjGW4f7AGZjEoRgAi1WGeggrCE73IyOABHh/uoa4tnZxc4efIQRTHGaDSFg4USwTvvEb3qLLhUkvuDzPI6+h8Q8MZUzfGDzYiDrs7Pz7Fe1zDWUtmseg0lJabTGepmDSFY8/SwNuRESRajlAJvv/0WZrMZvve97+HGjRuYBXqF0jSfBIClX3QbvEgdgR00wnOW549L6IciQE60CXdFjbXu8uEURRFLoqXz4yrBzUE36/Ua5+fnsWAHPZ0HQjEIxvPpFSTOzy/w/vvvw6sMN2/fws2bx3j11ZtAa+FbA1MHmqQg7VNJCa0UjJTw1kMpCRX47IvFEkpkOD85x8f372O9XELBo2ksnAsFsz3la5dKwHp2iAogBHgFwwnsAxHhOX1iSXF/KsVWZt/BT33FlmDH6trEoMm5a4xFva7BUArPT3KgspX0ySz8be3aCe1dkAS3y6AJPn/oVHze6286jHY/w7Zrbbv38JrbMMfhtdPNJr02C/Gh+b4tGpAFG2uF3vtY4NVaCxuhiCBErUfbGvgsB2sSPl4nUb3DNTsD2dPC0TIUD2hhrYGzFl2kd6qdDE327v3SPk3zksT+DM/hw0OnG7Zn86DrgHj9bQ6jtL85pw1nfiTu75o09CxDUXZxAd0+sh0eSW+1a+z5nbpAD2L5pLBIety2FnH98PwpLJT+pApBFP6pARauwQwP/vHCbnmh0J/oC0AhAOe7hE4cMg4AWabJunMO1oqdCipZYBuj05suqfM3vrPrK23ek8P0eQC2tPWt7f59LxvTTyLMr53QBhAFE/8+xIRTuCJN3gQMca3tbShUhwJ6yJce4tCsufNz8O5fVRWqqooL5uLiIi5OdkamkV1D5yLfI9WueRFxeDdbEqNRCZ1tDj9TnlIqmbUOy/UKq3qN1jSwpoFtWwipMJnMcOv2bShb4/69B9h7+1VASXh+z8EEBkKJMmej+aiVxmw6QdMC9x9dYH5xhqwYY7JfgXJKkDbr2BRGJ7C4b1kLLMuySzPgSQPVuutn0xo0bYPVYhk3DyotRtCDyri2p8VytQzMAYDZHTy+IlC7nHeYz+fI8wL7+/u4ffs2/vAP/xDWWsxmM+RFgddefw3vvPMO8lyTthcqgHfBM+mC78Mj9NxcZ7SFlGQFjkeTUFhZQmmJ8biMATPphrBrLrvABuEqLewc57nXNA3W6zVVd0m2WKkkpO007el0ildffRX5aARdFHDO4dGjp8ghkEuJvaqAW1u4UHpMBIewFAreM62WgljmiwW8k8h0hpu3bkFLj4NpBSkFlosV6pXBdKThHLoc4MnSi7Cc6H+Rbsrcp/P5HE1do65XaJLAt7j5hzd2Nlht6IeYpyue11v6Kc8RhkMu91u8WLt2QpuFYiqYmT0CIAq/1OGSOmBS2IGvN7x+et1tbRgokz5Peu1UaEsZIhBDgdT5fB4xWo6qZKHNuDdfb5sGznlSOLx6f38/smHIQRUExuAVhmvceQ9jLS4WS5xfnKFuagAORSaQC4nJdIbbt1/Cs48/wv17H+JLb7wMkVMeausspPIxCyD1Gwk64QApydTNlMTedAKpCrz/448xPz9HVowxO7hFlCxQNW9jiZ6lEPi5yRiUZQnviZZ3enqK+WIBB4+qquLmZI3Ful5jsVjg6eMnFCFYVhiPJigKSVTFYCqv1yvM5xeYzSZU49J1JeGEYO4u4B0J7du3ZyjLCnfu3MHf//t/H0+fPsXh4SEcPH7hF34BN27cwEu3bsJKC996OGsS7S6da5vaN2PYTdMgzwoURYnxbIxqNA6ceiCpAnZl4znJ1ZWWyyVWq1WcZ95TrmgdyrSx3eRBnHTLGr4QmM1IaI/3ZjhfLHE+n+PRo6eYFDlmVYVbB3uo6zUEbGRvSCmgpIJJhLa1Fov5Eq4VuHF8Ewf7+9ibVHjp5hTzsxXmiyVsu8a4PIKXpEhoJRCLDgDwgRIoFUObQ4ne/T2fz3F2cgpj2zi2PK4I9ETqJ17HdJ6Ukl3D8frsp0rlspKdXKE8870ReL6B2tGundB+0R2t7xxIrwMwRnXJ3XCVRjO811XPmmr6bLal+VAuwyeH5laqjXM0Zy+UN1RxoTdJIIsgWCmgwkX+r7WWYAvhAU85h5VUVPRWKRjrYKyD2tmfG28bfYNSSqLWCQHnDEzbwPsuv7YIz7WrCSE652ZYbNYQzOKCg5FN4ZRl4pLNLhagTTbuHuyc3AvJ57RBb1o56/UaUqvo3CNooQvI8Fuv6SNuvQ0S4XeUkvJFa61Aabp9cm4fNhpei59xCImkVts2pSRlSyAZt25OBZ9Na9BKAcNh3/wsAWpL4REef6U0+QmC4zfLNbI8CzTYFYyxWK/WYRhSTTpdfwNBjW6NOdfBQACVRSMoxtLcjx2GbSjc1jac0xsbRf/bHWuA2/M7J6+d0GYtNJ3szJNl7C11Rgw24PB3PzS9b24lk2NHPw+1dH4eFp4car1YLCKDQwgRq9/wNbhYgxAdS2K4kFIhxOk2WWsfj8dRUJdl2WMSEN9VRoyVF4+DgzEt6roJNRU9rPOwraEw9SyHkkAmPHTQSLJyjNH0EJPDJX78+AxHboy9vQoaDhIUDONh4T05KYXUQfeWEF7CtRSAk0mLV1/aw3y9wPzsIzSLI8h8CqUqSopvicGCiAsLCBU2uFC7sLUtslwB0KhXS5yePKEoO6XQmhbOe0glMd2bBjNdYLVagov3VqMRcq1hlIazlpIWCQkb+OcSAsJ3DmxnLUxTA85huVrh333rW3j3q+/i2dkznJ+f492vfQ1lWeH733sP77z5JoTzobJJN4aUhS/Q3QxlK+T5kmaZlFJChQRNZZlDa5GETXdCf9hYONd1HXn/zBRhK4+ZJ0PntXMObCgJADrLYEIpO+/ICqvrGh8+eADjXPB1WDxbzlEvLnC8PwksIEB6j9w5KFAuGS+oOK7Oc7zzxpuQUiFTOSaTGRV5dgYPn5wBRuL0bIH3v/99vP3mnWBlSUjf5biXAnDCAjCgqvEK8D4k+7JYLleYX1zAO4cbL72Gtq2hlYTIishqUkoH344nrd2TutDbYLiPvQcgw0ZPg9Aagq+UUnAmpF+I2ka6C/C6Sy3kjWHb2a6d0Oa82SlcIKVItFYR8LU0epC1ExEpVp2mMrwDC2zmGneOmm1sk1RrBhCFNjNFOEKNMWyGQzj/CZ+/Lfw+dSIxe4IXOKehZUE9DJnvghQ6vrKAgPMOdVPjYnGBk5NncI7KHJRlAS0VcqmQaQnYFkoQi6IoJxjtHWNmPN5/cBcyAw5mFI5OSLSHh4UDLQqpMlpXghygtl0DwiFTDm++dojvvvc+npyeY724iZGU0DKDsICyQbipUGBXbgptbxtkuYYUHuenZzDtmuCgLIPzQFEVqCZjzPb3YFoD07RYnM+RaQ2b5xhVIxR5BtNoOGOi9u1AqUUj/BSYON5YtHUN7yyWFxf4g9/7Xfy1X/rrWCxX+Ld/9C38h//hr+Db3/4Ofvu3fwv/8X/0P4ewnZONF7KUHGFLNL7VahXHnPwROcbjMVWSCVYM5bkYhqJv1yI4p/zFxUXMo2OMicFdKU021cJj3hLOTS4EdJZDtjSXnfex0PJ3vv1dFFWFyXSM8ajEyclTKDi8dPsI41FJ2Lsh4a0FWVWNJKFdFQW+9M470YoAFBbLBVbLGicnZzia3sDTkzn+4N/+O/zH/7O/CCkywEsIp4P27iFhIKWB8xYU9hKYL87CtC3mF+d4+PAhJDy+BKCp16HqDsGFDh5dZSF2sJNi41kOCIRkYuzw4TUehHbTQqscSuWw7SDYJh2l6ItiP0nnc3sen9q1E9qpeZe+fKd5d9FsKVa12boF0LOGeTNID4PYuN9lv6dY91Cwb8s1ctV7bmOgMD45hFP6kEyKn9IG5JyNDJG2beE9RSZ6xwyBkINBdO4pIRWUzqDzAo2xaA05nmRv8qWmY2Jfx77zkAIo8pDxzrUw7RrwBiLEbAsg5DZBFF7D5jxFwYlgQrBwVQGLZIFJDjUCgnksfKAKpmXT6Cm7d439zvAKj5nnwr4LjMfkJMy0xv7+AfI8DxZUuiA3obK+xZcqHbKHN3eLe+P1Y3+m10k39vQn3dBTx246P4eNg4XSaxtjUDc1VJbBO3o2imbsynuxps6CjAoqRyUeRZ7HLrHBFHHOomkIK7bWYbVa9+evZ0nKc8HHn3T7Si0HJRL5kDBehOicj11i4PS6vdEKH3WbGcNpnN5g0zLfLg86XHyjq3e2aye0U+ZG6pTrtEwWhtt3wOHv3Ue7MKc+BLKrpYKZcUB+zrSgAr/Drh2aJ2AqrDl7GzEldKSfXXYNbs75WIlnNpvh9OQ0LuqyLIOjclNTZ6eZDzwulWUoqxEm0z00TYvHj5/i5s3j2D9aaYSEx+jhtjI49yQghIfzFrPpHhoj8PjxY2TlDUg9hRQGQOcEJJcDWwxAxzO3aOoWzlqChzKiw0ERj1doRRp2a6AECdbpdAoXkhxZRyXUmFmUbqyUBtTGzHDcFwQjdDk/pBBw1oUE/JRt8ODgMFAaN1k/rFmzAN3b24tMHx7LNC3oVZoYZ63kcR1S+BhC43+HtD6eY53QFoEJQSydpjVh3jpy6j59itdefQ3VeIzxeISqyuHaGm0ThKzoP7NSEirLURYFjDE4e/YMq2XgnhuLulkTzGI9TOOhMoFqXOLg4AjGElynQlEH3k6d9UGRkKAyZhSFKsKGx/O3qsq4ZjKVUQBWfLL+xrl7TYsIK/JxlBK4DSkrChIcvlMudg/Z82PZ3K6d0I4OpKSXGDLpBDEJ7aGGyv9u2wnDUdjWwVctIl6M/CysCafsEe/9Ro4IoK9xcWOhCiDmVKmqCtPptKc5pbTH4TN2G5qPDILZbIYnjx9DKgWdaVRVCedEzC/NvcElmiAk4f9CIcsKjCYT7O0dYL14gPsPnuDo5o1QF5DMYBIEHvAO3gl4QbkkpOKE8g7GGhzuH0CqAn/47fexf/gayuoAQhpQ3RMZPfuASBYOcVSMB9brGsIDxwf7FLikJJnyQqBpW6zqNUX9jcYYVyNMqjFWyyVsLPbaCW2Go5RSaBriX3NSMe7fpq7jcUVRQEgJ60LlbwGMJ2PcvHkzcrj5PB7D5XIZx388HuPw8DDmw4lslWR+8pjuGldmH83ncywWi0jzHArpHq86Mc1TmC/eUwg4SxtQE4J6rDW4uLjAw4cP8Wd//s+hGo/IeaglvG2wvCD2U5+X7aGkQlWUaCqL0+UFTp9d4OnTJc4v1lgu17hYPsNkUqEsKozzGbJMYDId4fjGTZjgGFeZhPUGCpQT3VkAUgGS6IQ2aPScPpnfk8qqkWaf6Yw2B391tZg4+bc0zkrYNA20zlFVLkBq/Tq0288Femj5c6jc105oA5dDI0AKi3RQSd984fO6Yzbu0Tuj367ScLcJZaBbRMPvhubu8HPWmnZVmb/sMzKdHawlAdI0DbKcKpFISdGMDv2cGdQttIGRIiUCXY6YJK3zqEOCLe+7yEH0+oxQ9H4uC/qXQrCLmLiLKFkOAQjvjk8Rl3A6meweEt2GJqSg8mVCQhoLeOLfsimvAt/ZRZyxE2rOeUjZRbMOWRcpOwPoom1tjL7z0RG8a3OP8IzvKssw7/x52+aY2sjB5u9SR3TKSBq2bRomH9VXBgBjyaE5Go9QjkbQmqrG5FmOJs20SBfu/mZIwVq0bRM3w+VqRakaMgmlNHxOmjr34XDI4+yJH27v4xQ2BBDwc87R7uO1Ns/jm3ShOcM7CNHNFQ44e1ENOtXcr2rXTmgrpWLB3BTcH+5mbFZ3bdeQbB7DJh+b6DuPfgGgaui45JbikXwch73zAmf+9bANLQ7+jIIqUhZBHa8fedwh54JPNjpEjSRgniA3rBQSEApSZRiNJzDLEdZNhpPTC0wnIxRFHhyaIs5lhjnSBUNQjIRSAmVR4ObxMZaLOU5OnuDWnQNIqeHC5GZNJvZxyDvRNoY2j8C5pnwTHnXbwHoBL4CyKIleBoHVcgXbUoh9pjXqukFZlVBSIc+zADPUhPVbEy0lnl/wHo0gBor3Dl/5ylfw6NFDPHz0iCyitsVsOsNbb70JIUQvpQC3vb09MFOkqqqeVTicS0NlJIVrWPCzsB6yQtI5NoS6dqVhaNsWuRAQSiUyt4MOpSSrjDY+Gtz5fImL+Rzr9Rq3bhzQ9dknISir5fnFOT66dx+Ldo3aGhRFjsODEnt7e2jsHqpRjkznyNUY1gFFWeLNt19FXhT0LNKFqEte2/x8Xeg//ZUoG0mAFL1fZ0mQRdApEN3GlSgnl2DVUoo4rlIKOOkhXN86YsHcKYpDK/752rUU2k3TYDqdRtih015DFBs7o2SXDIo+dxE62XQQDASwBzDQsoYLaptmvW0x8vfpokk1u24yyJhuczQaIc/zDSgkbWmiK/7bWko9enGxQNPUsYYh51/gfBNCdH2woY15ZpzQESpQ1iQ8pnv7aJZTrBdP8fGjEyilkecFUcsEQohwFzTP24J3CJxpipCsSo1X7ryMuw9OsFi1uHn7NSipAOFhHSCljkKL+ousp/W6RZFpFEUeTeO2bbFcLdFaj7IaYTqboSqJrXNxfgEtBY4OD5DnGc6enaEqS2RaoywLnJ6ehmLOK5Rll5p1EsxsDpyaX8yR5zm++c1v4p/8d/8t7t27D9O0aOoGR4eHODo6jNAFVbyp40Z7fHwcoQuGMrZpwGkeERa0xhgsFotYgSmNtmVMfDgXeb4M62tuy2PDQTYslF2Y93QxCaUVslBrUmmCy87OLvDs9BmsqSnpmbeUVx2Ui6ZuWlzMn+G9974PWWjk0zGmkxsYjfdQlBWyKghlBzQ1YCwwmozx1a9/EeWogtQeQlpAGJBfRQLg/DkWxhpKgeApnQHA+rSLvHx2HIuwebfOBupeHzIdKl6hF4OEcOBsfkoprFerRKHyVFzEpZBWch3fXe1F27UT2n3tGgA2cb9u19zWUujhit1vQ1vn62+HJLbhkvz3LsgkXVD8Ny/GNL9z2lKTfZumbUKVmLpuYEwTWCbk6OIIUboX+vNKCAjv4QWZGRHwEACCAyjLMiidAVJhXbcUxegZUqH/sYbK0Ej/NoFaphSqqqJIM7sO2Dkf2cfYh+9HzARmhlAhWmstrOmyHBLXFzCtgSMied+JLTs81BjStrNMx3PTijBUiMIAyHB0dIR1MPGB4E/JyLS3SXFoVigARNrn8yR2SluPvRE42LyJsObey+G9ZT7wdXZZhWlejmTEuz/DJkCKI2mzTdMQ7m0pbsC0NgopGnqHtm2wXC6QoYQeUQxBWeQEs0xyeG9grAW8g1sTh3o2q8hHIhwof3v6LsFZCjmcIolVh0RyMs01Lf68Zc0nf27vo7gQkOZM4afpd/fzWPNXW+jXTmhzSsqmacMnVG2bOyriTR4R0+wm7WBX3dp3mwJyW9vABHdgh8Nz0gg1PoYzt6XY9fOk3CTGQ9vDYTmoQgiBPNPEmw1loa56JwDwUcsIMAkAD0laDAClMpSjKSZ7hzg7fYrFqkaRr7E3KYlSJwJX3vsoxNmEFULCO0vQlQeKLMNsMkZtgCeP7+P41kuQegQJBa5KohItxnugLChfSdMSg8IaqoIzmUywWNbwzmFxMYe1DvWKcpR4OBjTwLQcWOEgIGNNQ++73Oad447HB7HEGAU3Kdy5cyfk1lb48MMP8eDBA1jnkGcZ9vf3MZvNNiCtIVyxrXFOEB5LHluylrpqSvysfM62cd02P1OFh52TnFUymQA9PJzokRI/unsXOqON7OmTpzCGLB5jTIDVgiXlqb/GoxFefeVViFwjG5coqwJCAsY0WC5bWNdSUJdRcFagMQJ1o6FzsqjY2koFdPdrgExE984qcLLTUmkMz+2SkZsfJzi14D1LUKrK2Kcd9MHAH82VdEw/mYbN7doJbQ4uofI/ObTuByB0zsWgtequvp+UjF+Rmd7feTcxcHZA8KCn2vAQMhmaWtsWkPe+tyg5yGY0GmEymURNLGWZ9J5osOCFEGiaBovFAsvlMqZmFQG/1UWB3GVb81ZEIdL/NHYD0eKC4BYCzgkY56HzHJO9Qyhl8fjJKc4uVhAQ2JuOA0TikSnKO8H4dWMclKRq7sa4oE1JjMoSNw73cHqxxN2772G6N0Y10ZCiIOEPCSgOyac+H40nWFycYb1eY11o2LZFUZY4OjyCd6dYr2uczk+DwKMwd+NbNHUdMVnS1gn7pjH1ffaF6BhKPB7M0siyDF945x28/lqLajzC7/3+H+Lho0c4OTnB8dERfumXfgmvv/56HN+0v9M5sm3+uJDnZLVaoa7rmJqVc7Nv84sMk5UN59xw3qTWA4DIKuqORahiz5xtyjPzR3/070Kwj0TbrDGdlBiPZpQvRYWCz6EEWJFlyPdzfOXLP40WFq1waIyE9UDTrlGvazS2BSCgVQXfEod/vswwyjWs93AWKHUGGBc587S0GeMm5YKtJS69RjnIw3tCgDK9h37mKk3B95EiGJ2u3mnWQoTbxSno0CUBo2PJV8OwU3eNdKPoxiXZFC5p105oMya4XK6hdedI2NYIJtmEJIZOhs1dsh+eSibf7pSvuwR3/1no85ShwAuNPefDHCTbrjG8R5qxjbX4PM+R64y0a8ma7uC5tpnRsWf6Zim7cBwAIRV0VqAoR3BeoGlNsHo6HJyuxWd1hmp0GIcbaS1RFDmyVY3l4gLWNqAalHzndDEhanHeE4fYGOrHwnsSbIqChJqaolHD1gNOWOSs6y6EtHhFH8IaQnAMq/DGP51M4bzHdG+Gs7MzfPzgAT7++OOQVa7L+b2LwXHZHGEoJK1zui2QihWHyyCRy+Yjvydv9EkXd/M5uqUFTp89C7CUgvcG41HRwU2qf38pJVSWoSjGqF2LtWvhVwauJaZQ27ZoTAMa6ALCUypgY8NMjVaygk9YHemzh9/i39xPNlrgSV8PN7StPTLov9hH3QndOvKDI4n4wMfv7nOGJP89g0eUIvjAufPe553m0mnG3aTlCMl4NDY1606Qd3UTu2un2jWblnyPYUsHLcU2mQ1CFalFhELYubHLmZm2OnCG+YdZBalzqre4t1wjYs47BDcd0yWdcl7AC9K6iB+rIFSBvYMj2PUcq7rFYrFGmVNEpWWLRAThLbrgDaUUBBSNEwjCKQqNIpdYLs+hdIlqNEaSdCOMjgAXVtBaAV5STmspkgCOJaw1yHQWojU9PByadUulzpyJjjvWhJWUgRlA2DH3yHjcQQbe+4gf13WN73//+1jXa+wfHmI2m+Ktt97E7du3Yya9NAPkNgd0yq/n5hwFsnBuHQ7E2ubTGI7l8+DkPGdTx7gQIqE3EqxF1mWYh1LQeitL3L59J3GiOhzsTbA/G4egoLClexZgDpZZFp7YPT7kcXGRPKBAhQ08hASct6hNjdZqnD55jCcff4wvvvUGRnmOTEna+L0j52CYEd5TpXeCcWTMvMf9sqmnbEZIs8297fvIAgmyQ4ZAHYLc+Gze9K8cgudu105o53mOyWSC+/c/jpxJziVAVZwlnO1YFTHPryA50O10LLhZl2Dzqb+Tpk4ebumi27arphGaXbh4F1zBGHbKKHgeJ5X3Piad4qr0vPjSawghktJf6L0PJ4AHwCVA4mT1ydE6YCreOlgIErQyR+sBLTRkPsGdV97EvR+9h4vzU5ycnOHOzX3ITMGYNs5i6ywt0MBIyXUR8WkAGJU5GltgMs5wdvoAznmU5RFlCEIWj5OCNgvAIS8yABYX56fYm01R12t8fG+BpjFQOkNRjCBFCQgP51qYZoHWNNCtwni8F7F/rXWgs0nUdYcnwzuMx6PeGDJEMb+4wK//+j/H05NT3Lx9C3/+F/8C3n33q5hOp/hn/+zXYxBGVVVxbuzyT6T+FmMMnj59GjH1oih6UZIpQyg9/zKlYQilpd+xEGesnhNLCdFZIFJIZHmG6WSCl159jZ6pyJBrINeK8opkAqZewXKSKU8xAd46SOlgfXB2GsoR0rYGzjvoLAegCLtWgPEGi/UF1qbEd7//Af7Nb/4mxn/zb+Dl2zewNxtBOAeHlvEbABLeE5OErRDG3GPfMsSVrID4u+9Q6X5fiZ4Qjpqz4DGgPpNCo5MVAkO58WnatRPabCp2k9f3hAC3OKGjpp1gVuHfzvQZYk67HTp8bf7uqkWTOh9ZW8vzPBYtuKqlZq73Pia0X61WUfCw5p46qC6LABMgeT0EQpA4DSEEZe9jyyWAe947eCkhlcZ4MoMQGk1rsV43hIELik5kZqWHjzlKfCgpxfQ/CQ+tJfJMIcsk6nqJIlT2Fhxs4zvNSoQBk1E7bsOmarFcLOAcUIikkLFwgT+O4NegyFlmYZDGJ3rjZEOwz3AMeFNsmgb37t3Ho8eP0JgWo1GF27dv4+bNm/id3/ndHtUu9upzqGHeU+QqZ2tMIxmvYhsMr7Pt3tv+ZRydc2rw2pDxmM46PNg/QDmqkBcZypz0G+EdYGqY9L6ewDAXsV9BxdBZ+XFU3EAK0rRtyDLovUNrDazzOD07x927H2KxWKE1gastAViuDUr1ItP3Zadp+t6JSO4zYlhqg//tw4FD4ctQKfcdQV9DiGSz9cf9+cfw2gltgDqDgx9IQ+iH6G4KaP79isUThRNP4O3nbBPWPCmZopUGx7CmxTQ+Nn0vfZSwWDkTW8oMYSECdFrchhmOzo7wOyaiZ23Dd+/ZbRBDPULEY5yXYdFpVOMpzHqJ1brBal1DKUQzO0VK2bihhdvdWwDIlMJ0MsLTZ8/Qtms06yWKkQ4PyfhqZ1UBiNoow15ZpkEccElQiDVwzsCYJoQfC+R5FilyvNjzLI+FcsuyjNx2Co7pNnGGBrIswxe/+AVMZzNkRY79/f1oNb388svY29vbOr7pGLJlxJp06vDkY1MIrj9uu+fw8PjL/k6hEp67CG/caZmdluoB1E2Dpm0wdzWE99BSYG9cRJ9At8lQWJb3DvASEpJqR0oJIxVswICDuIX3nPPaoWlbVNUIN27exo/vfoSjwz0cH81o846WcHgX381XWmt55G2n091vrOPt63rTB+DjWkg30aZpoEsKr6cpmsqbPhd8s129gV87oU2LVGJ/fx+LxQJt26IoQpJ2L2BNJ9Cc63iUqQBB7/ctIFd0JgR6WIIBAv0Jz3+nWdYoqQwt8MlkEk1d1rS3ZeYbLkYOGknTbTZN0+PopuZz+nuP3YI+JBIdM+FLLoYghe4JWi79leYM9gDgKAucFQJK5Tg8vo1cKdz/4bdxOq3g4XGwP4IQLkY0eu/hnYd3gGlt1HscHJQEqjLD7ZtHeHryEOvlGRYXJ8iLAl6yAADgDZwn6EtKYqjMZhOaDx6oRiWUzOAcYA05Zut6jbpZY72eA8LGyL6UdlmNKjhPv0+nUyyXywBB1VEbLwqqAcnJnX7pl/46Prr3ET68dw+vvvIKDg8OkBcFfuZnfgaTySSORep85vGjHOYOo9EoWkgACYWqqmICKHbysUC6zN/xPJr4tmN4809TAtN8oe8FYVJBc/ZYzhdYLhe4ODsBnMW4yvHlL7wV568KVowPLCSqTSGhhESmFHKt4QBiInkK5PFSwsBAwENKKnu3d3CIL3zpq/jN3/593L51jLfefIVSskpek2HN+A7K0VpjXFUwIdkVQr/R3HMBBmTLNhXaYosIZ8WFrTwZoFeqML9aLlAVnc9DyqsFcadCba+GlbZrJ7TZTC7LEovFIjj6VDSHOu0BiB0keFB8/BusYSZKaFQ407+jc/JqvJm1bMa0mUZWVVVS6Xr7AhvikHw9Xuh1XUesNK0lyccNHU3M5GDh3GdhdFg2OPRX9KdufMwh1oeOuw2pUY3GcM0K67rFat1g1LRdfmbfaUU8NjapdM4mZyYVJlkFeAvT1mjqFbwzoET3fH8u0IuwIInfbtoGAKAzjUzlaFsTQ9PXa4p0NLaFaXXEbTtIwCPTWU/T5pBx3oTZCclCSWmNt956CzrTOJ/PiZNdVRBC4s6d2xguf37/NCc6M3y4pSwihm62zYkX0bKH52+bX0CHbfex8v6cD6Iy0EuXODl5BrgWZlxFRo5IWFacu520ZypHpyRr2woKQGvRFbwABdMAVGigLEc4OrqJj+49wMV8EeRdgDl5NngOm6dPlJRADzbd6Izu90E3+i2f8Te0ntihHFIptIGZlDjLn0dsA5ePIbdrKLRJex5GmKVjkgrbTc1643L9cxLZRZfenkkvnehpWkxmg7AmzE6SK9/K9xMWpXmRgQ7L71en2VyU6efxdS5Fhi5Dv333f9a6QweR7BSA0FBZgeneARrjsFzVxMVW4do9uFDEfNkUkMwj5OGdxXQyxrqWWC4u0NQrQFq0jjMlthAyQ6RhhaF13sNbB2csrLChMkwb5ohCXmTQjhyznPwI6GoBUn926Ur5OyElsjyHkhLVaITRaISiKKECPXO2t4c7d+4kfgk2jRGe18ac1svlMuYLSZk/6XgxPMJCfTiuuxb7i+Dd25qUEjZYh9ycJxbfs2fPcPrsFGdnZyjHUzSh4k41GsHUS0BQAjItAwDnO4gl/hsmj0ACmzmPfrRxZ/Fa56C0xng8wa1bt1GNRhGq63KibM5Z37tKf7324VJe3MnBiHpM0npvQRadlOSYZ/YIY35btfXB822xpne1aye0GT+rqiJqQB0c0DlXAMSdnyCVfkWbK+4Sf2PzccggYacgL0AW2KPRCFVVRU04hUTStg0OYVbIfD6P92M6H2uCKVSTLuhUw0h/J+xvt2DusUkSqyIVYB6UYtWxIxEhP4hQULpAOdrDy6+/hY9+/D007RpHN/dRlZoCakJVISlEmPTocpR40uosHExb46U7N/H0ZIm7d+9jtjeDQ451S0/e1guUoymkJhgHYVydtWibFm1dwxkXqqADmdYoigxFmUEoYLVeoA7VXTpmkUOWF9CBRsmOTc5ZPplMqEpQVUHlOZTSyPIce/sSeVni8OgIWaAQDjf0tm2xWq1QliUePXoU5yhDJSm7hMezqiosFos437axQ65yTA439PS84bXYz1LXFEGLw0N4UO5qJQU++OAD3Pv4ER4+OcWyNhSCXlU4Oj7GxekTwLU4Pz/H/nREDBDTBsFHMICSMsBiDloLaBl8DusWzgs4SNrnRPAhCaAxFkVZ4sbtCb7xjZ/B0dENWM/ZbELAm1CwYqiQBVUggaTYd8B/k+IRTcgoH7b34UCTFoBWCo0JedTZSv9E7fITr53Q5kbCUCZQSLLr+c10rNS6Aet96gfH9LTt3Q4L1qYi51cplGWJ6XQarYDhjn8ZPMLm83w+j8dFOlPQ3NPNg6996XXj/y95hqC57EbbyNQlrDIJmfESQmiorMTewRHe/4FFU9dojUPhaOHH/mOIJlSwoSx+QYPxpGnPphMsFi3mF2eo1wtY32BV0+nWNBBwgb6dWBLew1rqt7ZpAU8bS56FCEcloXKFdbOK0Eee5yE5vo8WW5ovhB3I4/EY0+kUVVUBSoFxSVUplFWFg6PDDaYIN4a2AKoMnjqLebPvDwEJ0JTRMfSl8JhfpX3vavxu6T2VUmjqBm3TpWPlJHpPnz7Fk6dPcHp6BplVgBAoyhLjyRjrxRnatcG6ruEmJTzkRkKqsLcCIQMkV0aC9/AuOCN4IEWnaes8w3g0xUsvv4LxeNxTyPi5N2R2uGG6NrhF6DB9rh3907vYQE7wu3Fl9q77r9KzBw95Rbu2QhtAhB+sbeCcgpQImh0fsQ0aeY7O7cG/mxosa2SpBs1UviGNb7jg0sb4JcMgaSHWVCBv09LT77e+Qk/j2o6zxkUAhlECDi7SBZLgn72AFwY2wrlSYzSeom0Ezi/mKIs9yi7Y61I2JTmZVAdLkckrkOkMs+kY6+UCQlfIsor63rYwbQPpCebwzkKAMFAWFlkMSJExdL8rncU/HjKMG2cHbNoWSpMWnYVj8iIPG6aKmxq/wWY/k+JgTGd5cYInYJPhk276u5yMQ8d3OuafBhIZatx0vbQMXnftyWSC8XiO+bLG4eE+ZrMpRqMKeU5FOTIB5FkW0uBunWVxtOHDZs0l7RghSZWAoP06TzTO6ZSKLgAiyUPShYgLjpbsHDCxDmTan9tw7u2Cu/uUu8i57nckChJb71Fgs6630Qk7dpdL2rUU2jzxxuMRPBweP76ghSpkTB/ZLVAJeBvTgl6pnYj+4mlbExcWD/5ySdW9OVCGnYwMhwwj3jYXCZnJq9Uq/qT5l4dUsOH902tte580DwLL+62ahaPCAeEPIBFNSnJ2NEr4r6SE1ooi2gAIKDhYWEc5SoQqcPOl13Bx9hgf/PhDTKYVlFZQEZrx4CIHLjFTKcqNTE8JgelohDdeexnv/fBHmO4f4+Ztyoth6gXWUkJmJRbLJdrWkPMraDw6U9BF3glASRVzpOoctNZRKs+iICfgyekp2lAcoqxGGE+m5I/IMighkGc5dKYpmCPZ89nZBieiCe297+UNScezLMs4Z3mzYE2cU+UC6MF9vXHyfbbSNjrgLlhk+PnQ8mNeeSvaYMV18+mVV1+BFRKtA77ylS9CZyWkyjEe5dCwsE2NvVEJpQF421cuhA8VkYgt5J2D0hK5UMgzBcMGmJJobWAYkSREaw1q0eCV125hMinhhYLKKtimIb69Jc2cjGla311fF/E906yOaQ4hHkeBNBdMB7MP7HCyPhxFcXbj063N7UoiwPS/F91jr6HQ7nqgKIqg3XTBErwDckJ00hS3XScVpOEYQbt3KrxSM5UHuGmaSOGrqgqTyaTH/71KG2IBzMyQi4uLXqBMSgUDthcAvkyDp++7jNbDftvefNIrIjJAvLdxkiqpkvwdpEc5APACSmrM9g/Rtis8fnqKprUBX04DeDwWDfDeQ4EfPBH49scSJ0sF4wAlcxxOPH7qlsVLeyM8ffZHKKoRiiI4Ik2Dtl5BemC1XAQclmpA5lpDZRpFgBciS0URPdE7H5/FOgcdYKa6rjFfLZHnOWazGZn+4zHKqqI0c9SRGGpL0dD2IdADFLzD/gim9TFDhNO8An2+b9u2PaE9pIJeJnD7Y70bwts60gPBTdBQp2nzd4eHhzifr/D09BwvvXwL3mdojUeeCUg3hW8LlJkEbAPvOypnz0fiiX/tQyFoLSW0lpDOQXpBOgPt4rRhCKKhGmtwcGcPmaDPpMxhEVKjetuhVek7o0995XdjAe43jk76BAlak3zfQa+IcF8qZ8I+c4lg3mWj7W7XUGj3W79AQGdoDRthUNHOCX6EdOB8J7BE5zTaVvORgym2VUO/rDH+nQbhXJY35EUxy8Ebo8Plesvo+c5NZiF76/uslK6/aOVJCKWhshzVaIx13aCuMxQZ5Uh+/7HEP/mWxr/5sYKWQGMAO8hX/uAM+O59hVwDjfllvNmcwY9X+CkgLHwKmJFCQCtNyauUhgwMkO55+y9Kjx2SXrlQM1AQO2QEIMsz5IHxI2TIHZ32fW9RUp/SGFq41nb5vBPnbfrvNt8GgF6RgtSqGgYAbWvPA5NcBZ11fxMFk4LCOpGhlUJR5CF1Kzmnm4Y0XcdFL6SEtUPtnv4XLc3gZESwUCiTImUEpEir3tnh3SkhmNJkgS2XDaSnZ6Xc6y5o26w40D0ZHvF90DlcebD1bum+FDDctHi6/tuIitxAQbb1fTjoimV97YQ2J4FnHJMz5DmbFBJwhLRKyaYlogyLGGTIu0HbZHd9XjzWEg1qva5jJCPnHb5161ZMq5pGv22DQdLnpooyFxET540hLci6bRP4JI6nROR2L3/VkaL72ydQDOe0pv4NjlDnQwZBBScBiRzwBYrxHm6//BoeP3kGbw0ajPB//6cFfvhYEjfXC7TbfXcASJCvWgBQ+OGzffzoNz3+1cPfwK+8YzEqVlCCw95zKJURgyWwEnjLFoJhoaBdA+C4+rpuYYxDURTY3z+AyqheptbkRNbsk+C+jt0mkn9JgK3Wa1xczInOZwxUGDtKaOZ6MFfKo89CHu/VaoX9/X166jDGRdHVzvwkhRO2tW0bRjo3tVIQUmK9XqOqxgQpAqiqHAcH+6gNQYur1QrnFwtY02BS5hgVZG3ahtka1Oedlkq2mABl2DXOAnAo8wy1tbDGwliXnBOsFji0tsH5YoX9SQmhJB58eILbxzOMRjmslxBiTVaxR8A16BpVRT6Q1hiU6NYhC3GGRLxzPduyG+Wh/yhYAB4xNJ/yq7eg1MO6u8oOaAvxiPRnd7u2QptNHuYv17ZBl+vWJQJ6qHmLwe9DraOjArFzkDcJNncPDg76IeMDrXTXczdNg/Pzc6IMARELZ1rgEIb5NA6nvqK9oQZsHJxaHWQRdhg3p+jsohNDhKOQJB0jPpkjK0Y4OLqB97/3AN99uo9f+yCDcYB1Ly54PCSMB77zwQm+/yOFX/6KwZ95u4HOx5Aqh1YFuEo7Wdldnc0YBMTrGpRiNlo3UmI0nmA8mVDQBAY1FLc+rogd5KxHXdN4rus1mrbF/mwvBlQxdZCfJ76T7yJ2mV3CnwshYpEPzt+9CxL5JG3o3OR/paKSXISxj+J+lRcak8kIh5YmUtO0WCyWqNdL5HIPoyKkBQDDgpt9x6FYImraAlkmoSQgQdYTaZ9hFAXh39Y5rNYNJlWOTAJPn8xxtDeFFJoqEQ02CLabs5wwbZvkjxFbHqzPJcHg900tnNcEWwrEwdeJZZL267aNdtt9trdrJ7RTNgeAONHrdbsh5KJZGhYsnZ+aQL0rR4cDa5OsNfFCet7q2akWzSZwGiiTms2fxYLcdg2aZFt0CYaFxODY4UGJvSeSvouHxmcnqUgymbjYShf47Udv4Hsnx2g/gbAeNus8LAT+hz/WeLJw+I9+FqGiSroY+9aEtY4EtfCA0KHSDKUZVZogFcZvaZ4MNq20NzznTCFs3FqDJjgTU0hjG0Vv2FJhuYsjnIawX9aeF98efr6xTsJ84Ory6WYN0LtfXFxgPr/AarWE8JTcaqmA/XGVvByf2h8Lkcwn1iOkCPQ/5/vrMbVOA6ulaYEnT07x8u1DjEclpGK4aWBBChErNG3VeFm52AJCbw/XiZeNEBuP78b4bFGOPinT59oJbapYk4XoKtIS9vb2sJivAs+WzK1uMQKAIOoW+hkBPeMmAaN11sI0Bsa0UIp4s/v7kxjmPKyIvgu2YP425w7hpE8AYlRjShkcLqghF/eTCfYhJDIUcNuO3/Z795kAmYkUMSgglYZ1Bs75gJZIQBf47/+4wHdPjmHc1ZGgL9JaK/B7P/LQusbf+PlQLT3UDHTwsXCrcw7rugklzxTKSYnDoxvIdIaqJMcxpfFE4GtzS8ch9IMn9sx6vUZTk+PYWBMLyGZ5DqkVCmt7gVQpD3ubAO7yWHc1Hxk6ybIMxhgURfGp+mubwNgmzBi6Wa1W2NvrlCLKROpQN2u8/957oVh0i5fv3MGDB/dxqhUOJiOaE6GUXCiVAc5JLySV5XUBJiHGj0WmBIyTaAyL8tBX3kN6Dy88Wltj3VSYr2v8i9/4HUxGE2S6wuFxDq4io3xg8AQ9hNeotds2vW5NhFCdrTb4dtYX/a2kCvBIDa0zpCIhImriMjgq4PiXtGsntGNFktAZUgqMx2MIwZhrl/uAhXaXftMFvHvQmWGBWmepaGmzRlkWqKoS+/v7PUGbtl2mK0fXrddrnJ2dRTbBeDwm3FTrrRFvl2lf8Vk/QdtEtK8W3CJxNcYrMAMiaINCSlhHFD4HQAmJ3/n+Gr/5/fYzF9jcWgv8zg9qvHS0ws9+oYjv4gFyUiFU+W5bcpAJh9FMYzbdx3gyRpnnUIFaxwn0mR3Td1b7mNffWYembrBcLnF2dobWGEhFEbB5WUAjFAH2HQNkG8yVjh/Db6mAYAFOsQf2E4/3izTvfWDYIITQd/eUAvBwaJsWH3zwI6xWa0gpcfvmTZw8fQoJh+aLbyNX4fkTx6MPkIgAIESSnyT0rZYCWokIbXkEa8czi9+htS0aY7FYNPjWt76Db3z1G3jpzss4PC6iwsVjxvfqMiVuW0sdJCKCL+sKWybRsml+SUnKVtua3sYcVaK40LpxHY77VfDI57Ny/gSb936jswS4CIAIbI+hOZjiXiKelRpF7GRIq8sMHUGXabypdp3mmeDzhtdJBfZnBZMMW9wEfF8c05eIH5JF25kgXW91ukjEJvmY1GQJzt1nc4v/5tefojGfr7BpLPD//p0LnC8sK8MERUWNNmDDRY6iLEIFeQUl++kEdsFKPMdaQ6XUeCxdsuGL4MQWg59t7TLu9FALH17n85gXw8arIhXYAPWFNQZ1vUZZFMgyDSkE8iyj+qyqK+zL77MBMpHU7sERIig7UggqbhEOFxjen7j13gPjyRh1SFjVrd/uDRLsI5zc79MdLx5lBa+BVInbesoOeGSbtcZ9gi1HXdaunaZtDOV0mEwmYCYI4CMtab1eoSjKbsfjZOkcCCEGgykIV6vXDaQEqqpEWe6hKPJYrWQbf3aoZVMq0Dr+8GAxlxvoQtL5Gp/nguzsjV1tl7a9edTwOOEd4AWs53BeBakU/sH/70cw7vMV2NyM9fiv/+UT/G/++i1Y60j7FQ5aK2R5hqPjG1BZDq1zFOUYRVlCZyF4JexisbpPwOMhRPRDrFdrSonbNAT/BJpmlhdQvqNpRjQ9LPytG4Hfnu+dte0UJmPq56eZG0PzPo0fGFoAQgiI4Kshn4vvyb3ziws8uH8P77z9Nj5++AjnFxe4desmhDdo6yXm8zmqgxkUF2AOKm9ka0ShHFg94IRUlN0x1xqubaNjkHwQ9Lt1Dk3bAFLgZ3/u5/H05ATf/f538e7Xb8NBBcWh862Q1aDiuVS38XILdcc22z8m7Dk8vkoprJbrqCCS/sJ9zFAXIoTTWXCC9ZtL2zUU2pRngiCRbtGVZQVjLC4uLmJipdTspQ4LKUGDaSUDDcwJh7ZtkGUaZVng8PAQWvPi2R7YMlx8XBV9Pp9jvV5HM5fhkKE29jym76eBRViRFsm/L9qG50QBHh7HOQMvFIRUuPt4hQ8frpLosM+3OQ98+KTBh49r3NxTaFoDeIMCOYqyxP7BAcpqjKwoIaCiBiY8cYApjiN5Q8HXJf78arXG+TnlMhdCRLxac/CGADgcsxNKz6chp6HsxphIAeTvUqfmp2nbIJptgpwcnz5UMu/mmvPAYrHE48eP8O7X/iys8zDW4ujoCHAtFhdnWC6X8PvTuE4C6tD1ETcWemE5KSGhJZBJiRphXAQg4KIy5VrejHN89Wvv4rf/1W+gbs4h5F+B8BLwfE+Ogu6SPPmoPFySGGrw9/OIdrbq+5Z0gGMcoLVIPuvSA2yTI7vatYdH6EMBpbogm83xSSER+tt70TuOk5ynnOnLFk1aiYQrnaQm03ABD691mZf/M9HCL5Hz/jlEOGsEbIxsaNwJ/u4B/LPf+xitffHN5dM04zx+47sXkFL0okkVOwSVotBjKTo8daDqsPCisbQwrUE7GEtuPSgEnw662GZmp+P+POl8L2vPw+3vBHj3GWHBXT5vSqNKEleAc4ekaRK2PGfPN7MJZTBjT0DEvCVAgNyihQwS3AHjLqsC1Yjy0kfLCMOxTNaN6C+B3YpPann3/+7Lh8EFMXzHzet+Up/EtdO02QEwZFjkeYE8b6InnI4BpMxAhHkBZxEj3pyzcCDakPceo1GFMoQxp5NyW0tD0Bm/5mjHVOhvM3N3k+93L7DnWYDb2nOIZjwvzrb1emEMFusW3/rh6ZbN8vNt3gN//NESf0fexvHRAfIilATLM+RFBSnVMKVK0Pb62mbTNFiuVrGAQloSrKqqGMiVhqDT5QYLc0cHbLOw2HeyWq0iM4k1YylltBaHmfNerH86TZrXTJqRkv/m5P5KKTRNC521qMoCbWvgQbDefH5BrCqpIATQNg3apsXe3iQ+Jz9/1OLZK+KDk1EICB82UAdICBRZhmW9JghKWIjg1HXeQSsN6x28tzi8sYev/8xXUWSEeDqvguwOduQgulZJDWcthEr63V+S/XPDJN1cG0Mh7eFB1bFEt4/A9/uALTyRTMIr2rUT2tYaNE0X/guw0M57qS2F8HAO0Con8xgSrbNQXGXcW3jHOQQoNH0Ukt3vYoVwY6HNpcBWq1XEv9PQdn6WtKXP/HmyA55bHHtEPPGq6205FR4eP3owh1YC5iesaQOAlgIPzhzefP0Io0lFgSICgRFBrAihEp8pNiGCpm1wMb/AakXpXa21mIZ8MszkAPqatgvU0jhXrnj1oeXF116v1zHSNv2+KIrPjEHC92atnuE6AKH4Af3OZn/TmCi04UloLxZzmLaFEuRAJKHdxGfvAq+6fg26OQnsoDhFKoAXUAIodAYFUF4RAEJkMRdKnhWwrYP3BjeOpzjc+ynkQaJ5H5J4iTRnpOi9i0vWN7N7LtVkOMJyR+spT8IHpcUR9MHgNnzEsYf9n1zpkoe4hkIb6CCSTpMl3IrD2nnCdI7KtPHxHMnnkkk2TGYvcInsjjzboXk7ZIbwM/+kW+eNH2C3vvsskOV6035n4+ABn2YeEbj7aImm/QmB2YPWGI8Pn6y7qFLZdzZvNh/SXfg4fnEcXTcXUsfd5gbre5ti/I43hsE526+BDXgk/Zyj7tLrfxYY92UtlmLzCUUvwCHGkvVBycw67J3WIAm7KMzAAgw9+cRRqt3wBEclw03exxNi3yLMUQFkuUauZZyzcXFG3nO6MXKB3c133uzv4e+bKk90YCNd19vyk+yee88rA66d0ObCrBcXFxiPx5FMzxrEwcEBTk6eQUqFoiiTHU9ACk0/ihPLUAKi1lDhASkFDg72r3wGXoSMY3PwTRokcZW2vm0ArzrnhVpPTqeTdzghn1cn7+xHMjUpXasVAj+8P8dPiDSy0ZwHfvhwhaxIMiOmnrC4eZIccc5hVa9jod22bWHdJt2Tx3FYBcg52+HOgkPld8Mi6bnxmZMkYcvlMiYl43O4ClIdKuoMg7quaukmkQp8hlnSGpQUak+fZ1lGRalDeH2RK1RlgaqqML+4QFlWODo6gtYCBwd7GFc5yrKANw28YweipMLAUlJiLu8BLyKTKf54DxmUqlyrmHSLU/UKIWE9C22HZX2BrBpDZjmcp8Au4QE4E/OXEH2Q2CNlWVLpMkUpm6V80U2vE8rptOIraK3hAbRt00VKB3iE+h9IF2EayX3l5vkCT/k/icb0KE68lLYsy7C/vw9rO3w5QFmgXZ1yBSiZIc9KZFkBpclzzyG6QKodX/4sbL4yNMODx4tlZ5HRS9pWL/cnEORb9Iud3z6PYzI9jzDHrpjA2aK94rzPt50vDLI876lMbJ13TlQA6PKYX1xc4PT0FE+ePMF8fgEAkEogy3WMREyFHv/tXBJ1+9z91p2fXlNKuZF7mz/npFO7KuNc1VILj4stsHacFqDmClBSSuR5jqZt0YR1lecaVZmjqsogtAvcuXMLSgEHB3u4ceMYZVkEwcg3pqArpTSF/HuuhBPENfsVPP0oCGRahkAbwq/pIEkZWwVh3Yt6Dq8MVEZjy05m7wFjQ8rW4NgESGg7T6kMSGhzoYarNe9tY9b9Tf/SZkf+kG5j7Pc/F3xgByfPm6vatRPa3IxJ8b5OS1FJot1Uy+Yf53zIHSzQIWyIpjGfx1rZrhwQ28zfbcL1kwjcz1Jwp/p17x7g6XP5dbc8ycYnw9ScP+lmLEuC/tt61tSCsLW2S6Gapsj1iZkgAmbbx6AvufmnfPXhpsBtWEjjs2jPw0rqa+ddQWmGHin8vys8nFx9x++MxonBBx18J7nPB+fz+AEImyVFSjrn0YYMgbueoXMY98d2+Cjpe+9q277qNsVBxZ9tiCyez2/E7drBI1IqKKWj6UjFZjsMS0qgKHI469E2LbSuIEUGITIY53F2RgUHjo72kedsipZUdDZoJUJIGGPR1C2Wq3lklnDWNtZKeOC2lRi7jNIH9KGQPwm8e1fbjgKKPjYpJaHgntQlpT4jSOcTNq0FnLeQQnU4CAAEa6eu16ibFsa0MG0dYC0LpSTKsoBUVMqK8jwzzpr8oPu3RytDGLuBhvW8jZkirPnyPGLs+JNaa8M2hEU65YYVE8SBT/OCCwCTyQivvHwHs/0DTGd7EBA4PXmG9XIN4RwO98aBrs4YQrAykTpoU5OHoDWClgTgLDKlYbSDaltYIMAmiqy50PkWBuu2hl5LGGR49PFDjHKJ11/eh1I6yMpOSGudwbQWLvOA+rTra1OT1lrBe4emqYPg7sOPPdgs9YInbtNd7VoKbSkV1usaxqRacIcjVVWJ1apBXbfIsymUyiFFBtMYPDu9wGK5wGhUQekCWUZ5lHlnpjzGOdrWYLla4cmTxwHH071Umyy0hRDxc9bK0+CIXSXCrlqMnym+vbXxtRNrhdddgK/jGhucISSZoa2n59wfZ3h0Wn+Oz3p5O5wWcM5C6qQiZfDsO2sxXyyxWCxQ12uYdh2hLKUktA5YuPed0OarsMAG58fob8hMI0Nw2F2mdm9zWPEY87xLqX2cQ+PTzIMUhuG/mULI17TWEssmeAit6efUmEzGeDUvsWyIjWVah5Onz7CcX0B6jyqXqPLOBwAIOFBKAak1IJL8PzyZvKMEbsLDWIc80zDeQ6kmlnCTggKmQvwbrDVYNzWEk2gh8IP3HuBgVuDNVw6hdUbOSOcAyp4e8HkDZx28JmHODk8ax6vhz6HzWDDC40hot61B3awRGSS9vh9a6Kmlcfnav5bwyJDClHwDgKvZsOThYyn/8Xpdo65D1r0weulCZJPZOQdnO+xvm/BN/31ebXkXhLLt8xQDfVFtnPOGpPlDkhvGn47eKnr/0P17xmXyZf9Z33l5AvnJ5MqnbkoCX337MPzF8JbvjaO1FoZ/BkmadgVRPY+c3ByTvgb+PDDXNocn8PkH1/Q2n/Q89AwVCFCtTaUom6LlYLLWwERKIv3Qeb5/wY05EwRoMlYUZNMFLfUOD7+ncKVzwHK5xmpVx00twpys1LIjNj7XC7QBrMLP2U0K35MXl1woXoeyHvLz/HumaQM0IOxdn8/nODzsFq0QAqPRiLzInoIB1qsa52cn+K3f+n00TYOqKvHmm69FgW2tjbX6Tk9PoVQGYxza1kS2Cp1X9RZBqg1to3elAzoU7ts0qG20sM+/pYvpcm2Rj/egrH4AvcerNyrkmcS6+cnT/opc4QuvTiFECEFvLZq6xmq5itpO09QQcOTwkmWXTwYIgSUsPBBkTjdGwBbB53wvliNuiqzCXdFSZkcW6lVS1ZiqdxxzxLdlhHyeNoRxhgwWbhRoQ7ELSirYUOy4aQ3OLub4+NETnC9qtG2oJeks4BzyPAsOUwvvbLREuFciNh0fg2cO5egg4e0AKEihoFUOhI3AOUv8ekFQi/egNQmPXCvcu/8Qy4sMp89ewf7eLEBXnZCMWTl7fq0XaMHyEKmgTtQfHsO+ozgV9gMNHQh+FQtjL3+Wayu0y7LEek2RVIeHhz3nyWQygZQazq2glMZqNce9ex/jv/tv/3vcvHkTr73+aqzmLYVEay2qqkLT1Hj69CmEoEnE+Lm1tpcEihunWE2Lh6b4YUrtShfqUMgP3+2zEdw7TLNtTaTCOtW++rwS5kuwzgCQoHz9ZvUnElgDAMZ4fOmNGRXldoQxnl9c4NnJaVx0VJhBIMsVJLLextoJ7S0WU9Ach28WYRGRKl99b8AuWGP4WZ7nVLpstcLh4WEPd+bvOGXri7ZtlMNtlqFUCgICxtLvlIMEaOoWT5+c4Lvf/T6enpyR408qvHznDkbBx1OWJVbzi34AEv3WKd2im0+Ag4AFQsAbvCMWiVDIdQE0Kzjv4bwFAieb1hfQGAcFB5Fp3P3xPZxNJJ6evI292YyCqZJ3SplcoTeGQ7S7scWANIKyPwtSODU5aeNfkWxYlPKiuRLTvpbwCNAFAlhrNsyfYZFc56jy9fn5OdbrNayxvTFggcvc67ZtYUIqzlRrHgrTNPEPt13c3Bdpn0SrurRtVwD4bvFfz86hnkmbCvHk7+R6VS7xtbf2ngtS+CybFMCf++oRxqUCZ1Tr5YNpyfnYsR06yij9PSCARVhgO/48bBF+imt6+3j3mSj9TkrTLqT34+/SsPlP2ra9T+/56MGSeRc2ZEfW5mq1wmq5xGq1CooS1YPsQUvpNUVQPuLFfe+ng+z4J/C4GMBGvyd57kUXAiiSs64bUqa29Ps2Zai7Wt8qvgye7Oa7Tz7f3Zf9ucIKmov/cgrhy9q11LSBrrOc81it1iiKvMdikJKoSvDE2Tw+OsZf/st/CQcHB7h58ybG4zG8p1wmqVZcliW8l0HTloAwsajBcGCZS1vXdXRGphrW0Gl1Fc64q30qAf4J1vs28RQdlT5daiHARAj8tW/cxL/74ByN+clBJJkW+JWfP8T5+RmMVXAOaBsq65blGYQgTVqGXOuphh03Y+93LsLouBp8dpWm9CLjxfAcxxyk5+Z5DmNMrBf5eTmmne8wZiklFJL0pqAAnOMbN5AXJQXYHB6izDJUZR7ztEgpSTsOzXsqrtAhRyRxI5bNlWwEqOKNUMh0Bi0VrHOwvsOABRBSrko4B9SNxetvvA3p53j48BHeeettqDwDkCTcUrq39roHwwshJemexCl908/pD7aQEWJEOl9KGjXNQltll4vlaym0U4jBOYfFfIks0yHKkRakkhJZlsO0AqNqhDt3Cvztv/23oCTlB5nNRnC+RtO0VDLLk1d9NBrB2U6jZOcVT8y0VVUVozOH3v6hkyv13APPt7A/qbPzk7VUE+m3UAcofuvjYqLgAQ/g9ZsjvHazwvsfL34i6VmVBN5+qcTxpMHp6RPUjYC1CNCWRhEiJCWnhRBBn0s3USDRcFMromOSwPepcqkmum04XsRKYuisaZoYqJVuLDy/Tk9PP1HpsW3zJb0HwDCejUJIKRmrsdvgtM3zHAeHN3B0fAN7e/sAAOkdJMiCJWaIgrdd/hF6wfS+lvBr70F5OywgPKRQaJ2DUAp5lkOrDK1vAW/AhXQBQCsNWAVrBda1wZd/+quYn93D3bvfw8/97M8izzJw5CO9h94yDs/Jlo6QSJg7qQUWtf3UeiLfiHOU758KZ1BR8PV6HYV3nmfQWmGkRsM79tq1hUe4Ea60mVgnFbJSKRRlidu3buHo+AizvVmMaPJcosx3GdE6aKVPlRo21n4uSwqV/p0+259s65urPfgEOxSRBDGJxh+/Z9Cf/tNfeg36U7IenrdpBfwf/tZtmLZB09Thp4nsEBpHGcdR9ADozbZplNOnG2MltvTPDklw1TgPN/Rh43m4S/im1tsnZRnRuUGYh/eV6bz1XdbB8XiM6XSKqihigjRaP5cEl6FDhH36YdS8+QGoziTz5DcnJV3JgyyAyXSKqhqhrptBCcHtVi7fJt1we33Ve3RWr5Nb8zW292A8jpNdkaA2MV0CbczmuXj311LTBmhQODnUer2Ec7P4nfesxQh434YitALWNVHDggWcb+BFVyGdO10IdqI4aK0j7Y/Dfrml+Ghqcn8e7cWvu+k8ueIOfdOxv8L6z0FJH8AhwizJD2cV/s5fehn/8F989LmWHCs08J/+osYYp/jw0RNYrzCe3YQROYRUUCoDhErMWQ8R9BcfE4R114uRsUxzEOiO9+iEfap19XD/RDA95zhtg82GHOpU6/6s2jasN/6gr0V6T8WubdNgNhkhl4Bt1vDGkKbsXKcN9wRjENY+wY/D/72QoZ8FOPOfAsjvYFuUiiwm6x2clx1LCR4OBoCAFS3KiYZU+xhVX4DMCzipIHxXp9J7Aa0yWGtQ1wZti5hjXekMXdIpxtm5Jc8nbFwWXX8hTHdmwRAkwl1gjYFpG1hjIARQFBmyjHKr5JmG0gryCp/ytRXaPLmttZjPz2HtMbzvEusQYwBwfg4IAamB9ZoDQDxMGyZUUMC4+oW1FpmW8IKyvuV5FqMvKfCmL7TTNJfcnpc58Lztky/abffbda2QujICIZvX6ES1AwSVcwK4uo+HlBrf/MpNfPh4id/+zunngm8X2uOvfUngr77dYP7kQzz+8Q+RlRPcuXGAdVvCywxQZViGVB2cUvBKCA840cT3EkFwxBzPkInzrOP5IpSp62AhPmhoVXSJmJ4X/kpZF1zFhoXoUNP+LAT4EHIjzTpYlX4goZyDaxvYeo3j/Sk972oO7x3SQBknUq2Y/lVxh0shCdkT4dyHGoB3Dq6tMVUApIf1Dq3nERTwwsHAQcJBSoHRYYmj7Bb2ikOoagQnBJXBsyy0JfKsQNNcoDY1nG9RVSNkRQmlM8LxBStaJnmqHICkoZRxzydRwZWKFBUJF8JDSQHTNID28F6gaWs09QrOOmRFjrwKkdMCEIqsGZ1dPjeurdDmie2cg7FdwEQ6pwlvdYm104ZjktSbwYBjRwJpkoijNYwm2/YM3C5brOl3Pxkutuj9M/w4/TNdVtuePj73NoHPmkewbiQk/tYv3oGQAr/1xyefqeAutMd/8CWH/+zPCVhnYZsV6sUZIAAtLbQUcFLCCxni4mT3zJ5Ttvb0po3fIxeX5Rc7mRIzJKaKilaJSD+l6zznBj3kTm84Qp/jOrvm0/PMNxHgiGTKd7xqT/ChdxZ5lpHW7XgNJZBSsL5EOuWSOSNiZwVsTXCKVhGr2JDS4KCFgBaAgof1PuTY5isBjuItoXOJapRjbzoNFoLv7gEAnhzQxMwxsK6BdTl0zHDYXTfm0Y7mUneNS3o93o78AmGDchSF6wPDhrR7QZTUIP2vGtJrK7S5sUayWCwAIAYocM071mbS9JfANgG7qc3wpsBYd13XvYT1qUZ0lcDefs8/7W3H+4BMXylVgBXoc2MMKBeJwt/5K6/itdtj/Df/9EO01n0q56SSAlo6/Be/aPDXvsCbLAWfaK0B77FcLCGLfQjhg+kqOzEsGe5K32v3u+366/NoqS+laZoeVRXo5vcwwGaX1v0i8yudl9FKSL5XSmE8HuP4+JgE+BXh19vbi8B0JEk5OVXtLNKx6iAcilRujYK1HlrxhtBZP0JKTMYTKGnQGg3nWljnYS1pxLInC/rc8nRHvmzjS8eGFLxu7Hy0lNKN9/n64d8LoZ3nOU5PT1HXNW7fvh1MTYumaaPZ2TRNzEt8WaRiOun5XB6IxWKBg4ODeA0eNMbWU753ilNuu8/w/n8aWvqMqeUx7BOmL+WFhnMCPtQV5E0yLzOoXOEvfOMWvvr2Af4f//g93H32jbHlAAEAAElEQVS4hLEvFlIshEeugC+8foT/7c9/iIORh5SUI11KomfmeQbjHM6eneLw1m0ISYEZnQUloSRx9b33gBQQMZCmu1dn3CfS/cqh8c9z0O6zwwMwBLJYLLqNCF2hAY6aBLATjnve5pyLQWGd0LbRCZm2TGc4ODgIZdtscDpSE6lq3j3JjrsO+yjtt34fCkHvWABYLBfBeqO4SSEFhCMrq25qFEqgMRkyrYPCLyGCyJNK4/DoEPVaw5g1PBwePnwMY1xIMheCb4IjFYLgMesYLk2efotFDYSiK0oHWCuPm03IchULRoiwl1jXL5O4q117oQ0gJpOPoatAxKdZyKS/p84Xap0wGWowqdAa5u9OqX3bhP5PBgb5/JoQ2C5kk74SCIHJnlLeSiUCXY5w7v1phv/d334DH368wq//4VN86/1zaCXQtG5r4QQlPIoMaC3w8296/I2vO3zlz/8FnH/7vyaWgAYQxoSDqIwBmroGIt6cOpaGOTYYC0i07U2Da+ODy/XFFx/nbQFZXFQjbWkO7M9tg/cD6IvHV1K6iOl00oMUe+sj/L9XLGhYOShx8PZk9fAh2MsgibIbMZh4ehg7+BCkQgFwEdnwADuQhQjZO9GAWZ0CkoR08GF4AD4+W6eldw+7XaniOwpBVlyqmKW0YIaeLq+ktNmuvdBOaXreeyyXy4A/00/aibuEaEoFGl47NUuHyeqBrtpJXddRexmasH+atOkXbSS4BwJG0GSnfgacJZYBLbauaCxVIaEJ/drtMf7zX5litWzx4cdz3H20wHv353h8ukBrHbR0uDkTePdl4J1bGb5402JUIE54KSS89IEdwBizx2QygVi1mF+cw7Y1lCwhkMEJFbVtWthJ3uNLscqfbEt9Jm3bbrXEiqLAer3eKTjTY69qQ/iPrgcMtV2AlBTmj29Q1VIP3WfYvCdgKzphESw+cGBOtwFb51E3LbxtsThf4OL0Au+8+TqAUPwkOC2BrgQhCWzOue/J6oqMFlZEdm/Rvb1JSEjp0RoTHJuiN5707yD3uLh6nK690Aa6RO3eezx9+jTUj9TI8yJWV7/K886OCQ6PT+lWPBDL5TIezx2vtcZoNIqbRcouAYBdPNs/jS01+1wwG2WAFlKNVQgJIZiLSjhh27bIi4Iqi2cZ1s0azlO5VgHSvCUURgXw06/P8LXXR9B+gsXZfZydfIwfv/9HePcr72B/NkNV6M65w88kFLwUsInG6b3DzRs38OTpGd774D5efvUCpSogdQ7rFSBocbYhOEoItqiGi2ZTYAHpAr1s/D752HrvY1Ioa20sPcZzxnvyD0wmkxg+DvThvWHA1zaLjz9Pnffp7+ybiH6fcCpXckLyHZ/TE9gswHu3fG6MqcfJgfeQSqIQEpnS8I42audcyOMuI/RsrMVitcLpssaPfvhjvP/9H+LVl14BoOE8ILyB0goKAs44eE/sFSUzEqZcgUjo6IuUUiZDOuhD1s5BWruUABSwWCwxsZOef4v6iDjb1KUM11EunMvatRfaPDmllDHxjjEGeZ5H3IrbUAvut934JB/L9KzhdRhzHGLC6bnbzOE/LW23syVotb4TZt2xtHidHybHCkmzwsQNNbbBuGGwF0lTFxLVaIJ6NcJyVaM1NnrhA0jZE0JCSBhvwjPQ56NqhDxfYbmYw5oG3hlIhAUpOHmXJ26s8MlbbRuDLQI4mRbbRy0VVi8+riyguRDCphbcFUTY1a5SSIbHbjg1ewcA3A/GtOQTUHqDQ96J2W1zpn85n341FOwiPYrwOAkBxNzmQZqS6szTB4CH8w6t8Vgsazx5coof370XqlKF+QkPFQJ2GGcmTTspDuyHmvV2rH17X0oIQYmgtmnanbUJKHaMC/Q1gy3t2kdEcktr4FF5pA7f5s+5XeYMHArUbQJtKIDTvCPXoaVa2bZ36rmeAiSU5zlkEAi9sOzkpOj0AQtuQEqNLC8xme1juW6xWK2pGniKf4Zn4gReHapIP1opTMYjrFcLNPUKIrB7O8Q1NePFQMZu27zTn8EL7+yJSw/c2Yb9yxtgfEQheo7u57nGVfcbzukOdkHcbNP7C0ECvIvo2xTM4eqDf5/7qcJ1fG9D7pg0iawTLMM7XDvPc0il0RqHs/M5XZFhiBQTj9BH/xEZD4/9AQeu59j1+1Au8A+vkVS5EFEud5sjw4pXj9e1F9qpGcnVZcqy7GknWlOx1o750J+sQNq5/c+31epjbJsXACeO4r9Tz/yuTeBPY0sFdf93mpTdgu+EOWdDnE6nwSlICY7apoazlP5WCEG5rq0l01AELrUTUFmF0eQAt19+HSfPFnh8cgbjDbE8QmFUAAGGsSGJFwDhIaSEhECV57h1fISz08dYXDyFQgvhbYRWwtMDgkzsmJAE3bUQFmqnITE0c5UAGgj4F2x9FoePGQp5PJRSyPO8J8xZQUnn87ZUCikGnqYMZgWG+9M5C64y7+FgTOdwV6EAwv+fvT8Ntuy4zgPRLzP3dIY71q1bA4AqFAiSAAiAIgkO5iDIraGtkKinkCxLinh67Re2w6GQHZQjrLbC6rbdLT855Gc5PIQlh92y5ZbbjmjpOUQ7LLVsskWaIiVxJgESBAgUCijUcKtu3fGMe8h8PzJX7rXz7HPvrcJAoIoLcVHnnD1k7tyZK9f61jQajTCdTlBVBcA349bxOAq1jRtVVAdgNNIkRqwklBOUlRRWYDYa2lQoqwLTYopufwFRkmKSF7j40oa/m4wUIOtsg1YyZpg+QX6C58a23keVKZtzwXcMjAmLxnqncfbHg3dF60brg4s13/ZMm4ikaZK0lWp6dMzm1z2c2qQSoMYU6XiIY4fnv54ZdRvN0yraziNJmzbFhqStmUpraNwcs4Q1MgkVIU5nJe2GhAI0GBCRl7SjyEnaA+TT0Yyk7XrLrsKMilpLSy2S9qtE4QYPNGs00jm1YbeZ7In3/SBJPDx31lhm1fj6PTXbF0KgKHLm3RK0cyB8dCtkxz5SytlCHM9sCFYa2lhJO05bJG0AvlaZE9OJQfP+10PJc90HG7h/OoKTalip3jjpfk1JOzzftnPw098xTHt20h6ct+EgSGQehdg2p3llq6hvb0SaO3awQqg1+CrrK13UEhhN5nCNSFZHjxaV1oA2AlGcQqgIBtJa49uiA2El9kYEp7DuYWkSw+gSVZGjKqeQXjvQtXTucFH3cEFfbnp0Gp9ulcXzZ2zLrU3E5xZn0jNj1MLUw/vMaIHuPRljUOnKM/U0TZAkMZIkRtbJoBQ30jOIADXzm2nZWEXGe70FA0Vfm6XxnPYshJWuyTjYovkYWM0362Q4efKkrxMqJS86Uo+vEMJL1DMwj3seKXix8Nnx4whLPf6zWrvW2mt5xhiQ58hh7Oa2Z9qkktALohcj3cvm+WyJQomN/96K4QZQyXQ69W3TfXzWM9MMsHklqmm/VsTHkFfjaWCejEVNJhN0sgwL/R5GwwF0WUICUFJCeV9tJ90JCRVFoOWphYKIYuQaKLRE2l2ETPvQIsJ4PPGwC1HkXAnrlAXOowACaRRhud+HzifIx/uYjHahpIaATTsaR5Gr/s1cFA2VsTL+fkIam2ZE4lDm50bslse6sbDdOJNBuyiKmTnbVhVpFnsWM9/DeUgQFn22BkYLRVXaQjOklS4uLaK/0Ee/38ex1RW7OZd5g2FLMMkysEMcnZrajdEaqDTiSCGJIsRK2awlHrICAFvf1EiD8XSM1bVjeOy970HqygbKSKGsDEptw+GllIiTCEoJFMUEQOVgPzeOwhUfFgYyElCRrKE8pu3R2NL3yrn0aWN8cYMoiqCU8u+RvF8s5Ccbwksb3fZMG+AqClcfReP3o9JBDJ0WTZu/NtUdbLvujSZph9KYZ2qeaVsqigJxHCFLE+TTqVOrifExJuKkDCmUMyS5CjlSoSJJO8kgowRaSORFYaPHAonaGjqdlMRQjkgpdNIUuspRFhMUxQRS2MRWxhhbToupsRyu9qh3+MpfI0QrhPBI0uYQHM29Wc8EM8NIDiK+UXCcm5iuDUirq8J3sgxZliLLUnR7XahINXJvB9YavCJwEr0crf3mrySlJDD1nGCNF2WBXr+Hs/fe6wsMSCmsZxPjC9azCS5/Sm2roT8hBSAMrNmDwynzutqSGhc0nk7wYYIBx9APojuCaRO14c88i1qYaP4walM9gfYKzBReHKq2ocr0RmHibfBRU1ux0l9ZlshdVR/68xI2ms9qHJ7HRtWm6hQSEApp1oVSEYaj0Rzcj22oXN2GXcPdTgYpgfFoAPLB5dIZNyD5i/zzBPp72L6Z/Wo8E7l1/JuPM2mGYZWkNgYd/jX6Nmd+ccEmnIe0WcRx7At6ECQF1Lnj+Z1ngQrXdtA+9W42UDKQsGk83R4qjIEUAkq4XvDdlsZO1OlYlZLodjPXG+Gr3fgUsEpZiMdYH2rPcNlk4kzWy/SBxkJJ6kqyPwiw+9AGK1w7bOxb38os3RFMm/udcskQMF5FoQoh7XBFc3DbVE1SXwFgMpk0rjbGoNfrIYoi5Hne0pc3BoWSWPiZSxWADSQajSfY29v3KrWAy7kAm5OkKpubmK6cgQcCGgpGRDadqkxw7PgpxFkfL125ilJrr5baRm3VE6VseLyBfae0uJUETp84jjQWuHrlBUDnECghYD0jrPorAalgs1m4pcGa0IYv2CZ2PnNy3TH2d3QiBsCl5yRJMJ1OMRqNGhslRSZyKIW8pbgtpa2Oqe85O4d7j3BmlOc5FhcXsLjYB2CZoHDeO3EcQ0kFmBqeMbodWw9H7GDxaBYaEUZbw6PWiIVAEkWQgM1/UllJXzqoAULZuSKBJItx+u5j9tmMQBR3IEQCbWwpuixLkaQxdJVDmxKmYbC2AkWlKxRV6e0qfPy0MSiqCpM8x2g8djUzp40nNACiOIJyQVP22vqd10E98+mOYNpEoXQC1NWSpZQ+TJjOmydtt/1O6itQwyN8YaVp6iVPOnYzuPnrjfizNa329SJVSmKa5xiNJ/WzirqghDGmkWTIGAMW5AhjBCCU/1tYXEEUp9ja3pkpfkoT3mZnszcRQtSStjBYWV5ArIDdnRuAKSFgcW2jK2csk8x61jDv1+00PvH39OrgJXxcCW/mQgFJwHzcSYg4yPjdRnyjaNpb6uCeTpah43BhX/EHBP8JgEMCN7FRze1leICgONSSdiSldfXT9XwiCA5CWklbAlGisLyyANhToVQCISLARULGceQKElSWefqNuX4eGpeKecn4Dc+9C1+Npiise2bwDNJL9OEcqu0nB9FtHxHZhuk18VgdTND59ziMQsbFfw/9Zg9bTK93KfzAvjnMDjDWS0MIF2IcnAbUGJ+XuZghiRaLsBi3ELaqSJykyIsSZdSsFGTV5kB2MzUD9wZQCZRlDkTW2GTAdopG/0R943mPys8wzaYbn2/hVc4TDgBr7CZNh2tvvrlbnDs07xobMTsupWRh1vUDk5baqNTE3uGBkHb9ylt+BMLXQF81w4GVlJDeJtGEigzqUHeyXVcVkBtKDqXskzgvIgqcsW3Vz9BIImWMj66kcanhVYkojgBjdTZjDOIkbqTAAJqJpAQbn8Pe3G3PtEMKpRFjSl91hk/6ekBn7xEyVD7RqY2iKDyOLYRwvuFqZkK1Sdw3Ix19K6jNEMkhEgptrrRTUyGhIl7Ytc5TQd4kMC4cXgK0LLUhaU6hMhVElCDt9LG8uo6tnT1II5AtLdlbOr9cBWU9QQxgqsqm2QSgBJAkEdIkQhJJDAfbyPopojRDYUoYLdzmULdfsyxrgCIsFR5D9WgsHx3cKn4djjExZSKeNnVzc9PDHfQ7CQZtqYWPaoikdui7Zb6WfKyDZ8w2b4wBsL29jTwvfP98PurQxgC0iNUN9s6oZSN1rtUQcIUEBCIh0M0y6EkOU1UoYROUCSFgVITKVCjKApNigmnZASAwmhjo6QT9jkISKxhMoZQdQ0qRSmMgjWT2CUrBYFCWef0O3J+UCnGc2Co4kU2jG0mFTtZFHCeYTiY+kpNr3VKqBl5+EN1xTJuIMxkfSeeoKZ23L8I2xs0nfVmWjRqR5OYTqrGvdwY9j+jZ28pdCWGNPLIyrhirgpDSlvUi6AL1s0tymzIOmTBOmoGVfgw0jBaQKkaSdtFfXML+YIRumgFLtRhmmYjyLMBo9wdAKIk4UohjhTiSmIwGiLMpkg5QVLY0mjF1sqFWfd1y7NfEcYSECl6cgyASYwx2dnYazLnb7TYCxELB4GbaJYnZS48MBpBK1ZK2MTAuydb+/r6zKVAf2gWemfbYaDZX2uHaDbSGUNL54SeYFCXKykrJVqJVEMJm+xOokJcFCufYlefAeD9HFveQxgpAAakUpJIwpgJlfSQt0MWBOeHCVlYne1iltU86liQpskyh0+m4fO4p0iiGUlbyLp3LJDklcD6gMVuAvI3uKEybUwibkAGn3ROiRQY4YHDphbT9zpnc6xn+OAodxAzsop01M9UeIzzviOEntLXk/4RSSNIMRVmhLCvvGWDPqqU6kpU903KnKSWdQc+GXNtNRDevR319/U/9LG1d9LBMA5Ksz3+52V65xBz+0bx9tQSABsozB0a0XiG8n4fcye2MBLB4ncUg8CJxRkDw4Br3u6n/rNsfe3/+dZCNwl5DtpBpXuDG1jYm0xx+NrqLQjc9G4WqoSvLoI3rOxU1iOMYSZIgZVXoSWALw9bb4Np6DFuHdobuOEk7hEBIsqiqCpkzsPCsdDZyqv36kOkSo5ZSYjgcIsuyRiIqpRTSNG20Pa9/r3eGPs8QCTgvCxgoFfl1ZSVG+0yV0c7wBwdlaLcUuQxBxh+Hd8sIGhWStItjx0/j8osvYT+bYJKX6Lt7KSksA3aLKpIKtLiNse+008mwvr6G5y9fQtxdxuLKCSfFkwR5MBBNLmcBW583SiD5MYS7D6M2NZkYNEnb3I+apLeDN9LDbSn8nBomsal2SYO0lVioYLOLQnUpCEgbkN5OEdzf+nlgdjQOg5UY4MsqpFNUYZJkUNJiwwpu3UKiMq4osbD1I8eTKYAI1ze38Qef+DS+//s+iOXFs4CQEDKGEApVaeeQDWSaIp+WdgMQApU23pDY6XQQJ4n387fvJkIcJ859sI7NMI7ZkxZjvZzqMYdbBwAapc7a6I5h2qFXiDF1VjjCBbMsQ1EUrRVC6Dq6VxvxhD2UlJ6TlNIn9zlox32jUTguhPFFcQRdVW5RGxeQYJm6AixUzCaraV3mgK92bjTiJMNCuobhOMdoPEVO3j9esjJeyrd5oI0rhWWvT5MUKysKX3jyORw7eQ+kqGA0IJXLQtjARuYzkaMz4cPvNY/CjZ1L1tylr7XVYF7xd3PTRnBR/1ZVFXRVAbFl5sbBUkZ79cZKmG0M2xsn6YfwBMwZVNP8bFwud9R5UBLnvSKF3RagJCotYbT18xcCMEJjmucAetje2cPnv/AVvOddD6O6/yxswQK7EfG85EVRWrc9YaNCiwpIkhRK2sRznW4XsZOurVQt/T1IwraKpeU33J4WPqM9hkNxpTsOHmlOSMZkWl2dZlWWeR4iIbX5xJJEFF47Dxt/PdO8Pob4dniu8f9vPr9dry3jafiZjjMLiThOAUjkOSvxJogx0LnNfnmGJy3WaXSFsspr7bn1QZ0GXmMuc0kc8O0gCufJYdDbPAP2rdJB9yJoicYvDI93Z0E5o/uRNgX/HmvYy4+XaY5zEzmj3DVkCObnGZeHRPkLOURG9/R9d32c5gWm07y+K4Mw6T0oJRFFCspBIZGr02krqdcwCIdDiGFbTLxlTMGC6QIj7GHjd9sz7XkTsjak2dDnosiRpinI84OCNHhgDb/2MC+Q8XgcMH9bhaTb7Xp/8DdS1ZqDaHY8JIRUyMvC2tslBWHU5zRzwel6dYqaodtyUnBSMmBVcYmiUjh5+h6oOMWVq9fcdQRbGlhHK1dQWNfZ2KSKoKIIURxhoZ+hKifY391EolxMnPfzNY2+0jPaZ+PvmaOxnI76W3AGu3dbe3zjaatIc1Rmf7NE902SBHmeOyZHBy3/W1xY8FV2hLDbL8GO4fyY31A9J4jVEXRQg97CfzVG+3jGssjRSTP0ux2YqgBY4jDvbguDaWnzAnX7XSwfW8WN7T28cPGqzXsjFKSKkWZdTKc5yrJAFCksLS9ieWUZq6urOLG+jrVja1heXrVStvMK81I1nMLg8rUIiwH6/nPM3+Z2MSyHztHez23PtDmFBkDCrIlpE3TBmfY8IyT3AGkjqgnJKYoidDodX4HkjSBRH4VmFqS0TLsoS8+0LWYHz5xNcD28FEVHjc/epr3p3nqZlJXE8fXTUFGK65s37E0E4N3yhHUzNJpFMYKCGmxO9V4nha4m2N+/gUjaO0Nrh3+3M5km42vDZEXwPTw+n9psJW2MNmTaodHs1SAKt47j2AaN5HnjuIBAv99HFEXM26UORAkFnHnqf+gvz/h0/Rlc0rZzRsJ6ZWRpgm6nA+gKRtt86UI0mXZeWKaddTtYWl7G9s4+Ll+5BqkUICSkjJBmGYoiR1WViCKFhcU+lpYWsby0jGNra1hZXcXi0pLFtOOYbaCCdZK9NzZf+IZPftsHuRe30R3FtNvoIMPiy7kX3S+EPtqKJszzWHm9S+EHbzpNFhweCy+tZZQAKqB/DT9TQEUxhFReSuEZ//gtRBsjNXApBwzKInd3bLl47nPxU9uYdd0ON1oelY5ijH41Nny+QcwzkrfDI83Uw3W/D+hjAwI5ZK4fcIjPMAHh82o3L2QBVMRHJdDrWTzap+Z1km4UxVBRBKUsBKIi6Ys9SMVgEAaFHPo+GjuQ0xbmvOfDlv0dY4jkFA4wGXaKIocQBpHLudv2InjgQejbzc+nsPiiKJAkSaMdbvwMN43bQvp2BiWlbKRZ5Sz8FsKgajPa2ZQ0QzWtSiuEzRmiqwIEpBgHewAKQiaI0y7ipAsZW2+caT5FltrcL9b9zDjDkgGMdJK3yxiiK6wdX8XW7hDbN67h3nsKSFGHbEu32DUXlFxSIVpQBNcczuwDJu+h2+b54bwiRhbmzSG4gaRauubVJFss187N8XgMqSJ+EBDCY7yAQFlWNtWuY3BNOwc8g6T3FI4iMWJaD22YvxA2CtIIy5KVgJeuO1mGcZHb9ARSw5gKRpcwukSk7ByB1Hj7ux7Fcq+LYyt9QNhskipKsby6Bl10IZW0WSqzBEJGlklLWG2sdaDYCwa8z1DNr2uMWwjpq2fVm6DA4ULDHcy0+UQg42BRWLUvZNp88nAXt9AoyaUUIYR3j0qSxP/GAyAoOQ+/d1v/3njkpGEVeXjCK5CidqM0zlXMjg0F3tB32fB1rw2MChAxkqSHKO1AKMu0J9McaeLycXuBymYUNALQkDDGGYi1xtqxFWzt7GFnexvQBaRiUYTBv56N1ILbzZNp8OwZ4syZq81hwVxi2nEcHygVv5Jko1JtO5NpDhXF/CggjPOesN4XZVkhickoN5vThwbCGNPwySaYzH5mv3tJujmGUtgaRKD55QSALEsxLnI7l9yc0rpCVZVIYitAGVnhkbe/DYkAsphcAgVklGJ5ZRXS9ABhrxcE76G2sYQZCXlvG5pW63jWCebKsrSeN6jn7GF0xzHtea52pPq1HWuTgPmCabsnLxQQXtcGkYTtvVGk7lZoB83Np5F/gkmvLdaCxmfD1FnbRi31CiGhZITIMZBm6HVrT2GjLB3rd7mT4XJEK2ncxuFPh/D+CmEvZ+XrNgS7ee3NQx1HMeC9mpt7zWSb87thGxLkdWGZe60l8PcV9Lm9MQhTj7gJLyA4gWk6QgDC1AyPJFvJ8ms3/oKbJkmEWAgoRWfQpqmgEAGoAFG7o9Z9rT+EQMzMRAg2ayFsugT/PK7fjbl+yCu94zFtoK76MZ1OfZRTyUpatTFeTm3nUBrNME0rAGRZ1sg9MO++b1RqU+vrBQ//L0lvwqm4mlJuusx7lH1P+mFxEWpaADJGr7+EtfUTAIDxNLe5t510La0oh0prVNqwRWkDIJQAulmKhV4Huzs3kE9GgKlckVibGJY6WjMp139T9/uo1HZquMmHGhoV8aW0qzy83DT61S6IvJJE9yatEXDBZJ7ZCKRpgk6n4yIIS99vei4yCDfuaUFoNwhNTJ0b7cgdD/CyeH0f1wWjbVrTNI58wV+Y0pYHcxsKGVUrk2NajmBkBRkLVAYQIgJkDAOFivH4OoGUgfEFoW92s7TPShuKFBJJYgt+62rWRnAQ3ZFMu80iT/m0hRBebeEJeULD4WELJE1TTCYTX3qMX5tlmV+cwOyie2NDI1Z9DJk2l378oiNpQzg5yWiX0N4ApoKuSoulytpbwGigqiSESNBbqJn2aOoCIIR0+U4EoCmRjws9Nva4LQgLdLMEC70MOzs3bMFfXXlPEjJO+vwlhnKZAIBg/T6Ijs5E/Rgxpk2JzHiu7BA+eU20Mq8diQbTpsor7iCSJEW327VMu6xmihBT2S6CRgg+od+4cc5GWxIeLmAjFoVLB8BwKsc/rdJkvX+SOEYcKVgHsAJCwAXeSB+MU+kc03IIoyqIGKgMABlBiBjGRNBa+IyAVMi3fuabLREo3Nys542QEnGcQGtbd7Mx0IfQbce0b4bhhRN+fkL/mydubAzvwXFs3pfXA5Z9q14rbdoH0MTpDGpp1bDrZjRKY5z/qsWfCfdugBFOjeXwiG7DBhuwDf3uwp2lDZooi9xG+UH7nnKZ7mg0XxW3kmDgx8LGq83QFjLiee/ltfYyahRf9u+4lo69FoCj98uP2hFtBmbmG2fixlVnp5wz1u2PtLr6KmugpJzZVaVtfpHaUop2JnowqNf6O8NOQu2K5srNvMM7DtMmaoM8KNsfWXXpdzo/ND7Sv2GgA2fYbcakTqeD0WjUyH1C93kjuPodRkKIOqeIMTU2zB6rYXxx/FgAqCoLCRR5gcFwiChOkCQJ+gu2WopDLaFdWlBIy7TzymB7dw/HFlcAOEiF805SxR0zkUKgk6VY6HXx4sUbWD82gkAJwKq/nh0JeNU8iMd72cTnEJ8zZVkiiqJGsBelDuYwymsVnGWbcCMiBeAEw7KqoHQE5VK82D5bQx/h20Rthns77+2mXJUVqNi2PY9J3Gz/NW4D5KzVHrNFnK23kEEaxyi1waQsnAQOWOjMQTu6RKFz5GUOMQF29oZAadBJIqyv9AERu+3A5uCuN3E3j+dbIptjB+YdI+pxIO2e23zcHnMo3ZFMu03CJYyZMO026QdAYyLS5KOMXtwYxhl26NrX7XYbqTV5zpKDijG8UcgybauK0txuSFKwubKlBYftNW5il2WB6WSC8WSCne1tqChCt9fD0uKCC7IREFCw6TMVjLRMYloabG7vYLm/DBeT49ELIxyzEcJXWJcQ6HU60Fpgd+sCiruHgLBM21DSKeGSIjnYRRugTugc4przVps49Bw+1wgSSZIE/X4fSins7OxYVzs3946SHOqVpBAarPtaQpsYymaScV5Xzr1VNAsD+39NvW4s47b4dz6Z2hBxyqdibEShdRulArgAH896Q7ZunBDKGiaNRprEKLWGGE9sRRsjANQbSakL5JVEXk5RlhU2rl6HmVZYWehjfXUZQOwYdgENj+C8bPJjArSmtDjKO70jmXZI86RpOkZS0DwIgM47yBuEUx32Ov+cN55R0jSYpPspOINBF/SFPWZDO6lc7cYKFtt2RJI5SVzeOGWAvGgadilCsrWvsAsoUhK6KqFZFB2citzMhSKaffW/eoTe4+D1caZmu3vyeTQPFgFqn35e3GDe/HqtYLXa7dKSbmE4wiVnqnFw3lHUFg2mZbT9Ca+CNdtnt2JSAE0I43+XTttrSMgBw6fCGUZXthLSOEcnSWh22Blgwpc+Z13OW66mKW03cG3RmPwH3KRJtx2m/XKISwZ8sczL80AvgFRaIn4NhcWHRAsyrBJCn9/IJIyBMMYbb2i5cPXXYtm15FWWBfJ8iuFwiLLIIQWwuNBHmiQQsEEdgPOyqO8IqaxkVwmF4SS3qLQ9VBvJYCMmyYeEoBiLfUqsri6hKMbY3b0BQLtMcXVYfSuyacIN4TCmKeaew11AtdZIksT/KaXQ7XaxuLg4k/7gtYLR/GZsv/n28zxHWZSWKTEm3e/3AdRxD34zMoB2mgT9QQgkaYrFpSWkaerXU8N9ELOwAWPXAQJt88coKRBHEbIkgTCWBSuhUFX2ShXFMBDIixJFWSHtdHH++Rfw3HMvYJpraG2LYgihXC1JFcyII65RB6/R84drm9ZBqEUcRHck056HG3PcOXHhrZwBtxknaZJRAAH9xks/Ua4GjmdR8vSwnFR43huLTP1nE394A5AQro6fH9NaStZaoygLjMdjDAZ7yPMppBRYWV5CJ8sgBDAcDp0EJR2qLCCEgoxcfnJE2BtOYUBwBjwzMQBKXYEMVYCFR4QBlBA4fvwY8nyIra0NCFCub+O9SFqftMGzzZw/TvPfJc8uSSmCO50O0jRFHMdYWFjA6upqozwVP//Vnite23S7HbU1mUyQFzmTjO0zLy0tAsZgOp04nLYOfS954dvcZljMsgyrx1aRunz2ZelyTgc+380ly7SSproGU5VQwlZp72YZhAuGUbJm2lGUQBtgMi2Q5wU63T6+/tQzePLr38B4WqGsBIxRABQilUAK5SGW+u9Io8d73OAxNLZ2Pydp/A6ER17O5A0tu233OsiCP+/YvNzcoXT9ejBA3vz4HaHPjUnacgdjpSOLb1auCgm8tlNpjYo0mXqOOx9ft6EK6az/1KM2xsm65P6ksP7F+aBEUUzd4qGO1l4ktdTexKjJBa1Ww+sW5qBEM1BbOOZhik+aG4cZqcM59MoxctHKS3TlmHGg2UdRBIhaCOFdDgUfIYQLF4+hVA0D2fcTBkqxjcM0m23CIPZaKS2jhv+Frzfp3Po0tDBIVITRaIxISJSlhkkI7JLWuAmaD27mtE2H2VGrP8x9bcLNZ3PYiZ5uO6Z9FOLQBp88NlWinYgEXfDjbYuArguP0z2EEJhMJt6DhNqP4xhZlmE0GgWZwt6o1MQbhQAMYYqmhiaMUxGrykA4THE4GqHMpyiK3BmjlMu+qB2kYrO46aoCpAaMCyc2tSdHkvWQdHrY2duFXOhBJLHHvwUofYDtgy2MAAgjoGSEfr+Lnd1N5HmFqpwiiqw6XDmpnNzXjBFgMHrw3De/4c6bTyGzJqIUCKE30mtBgl4qajhnmk+R5ikqXfliv6RFCreZVlWFonDZHoVApBTiOIIQGZTzNkmzFCpSyLIMutIYj6euQInxjQti2LM9qz8RfiyEz2kTxwqRkqiMDYypK8nY+aNhnWFUHOH03XchlgqbN7bQ765ACAWthWXizscfxuWgwYH8+qCRBG0gAKVnhS+QcJSb3pFMmxOf+MSoyXpPObEPqsFHTJt7fhhjK3wQ/DEYDLC2ttbwz06SBL1eDzs7O55p8yKubyxqLiav5PmgGI3K6MbpVVkBzgi0t7vn6zX2ul2XzN66YFpDocBoMkZVVjDSRr1pGLdI7SLs9JYxHQ1w/cYNZJFArHqIXPY2ISSUkDCwEIkwgK5s1fhYSSwvpXjhhZewvz9BMR0jjpT1fnFMwBgXoAPVXFSCPVBotAyJYZttBm+AwUisIHQ4P0lza8up/aqRY9jUF+lKZY3HYyRJYvOhOH95IQTSNPXQRlmWyPMptLFBUgsLC0jTDFlm/6SyQTNSSnS7PQhIbG5uoSwrv0lQmLw37hqgMd6kCDi3PymU9VwSElkcIYokdGmr3NS2JotZlxqAFIjiBG968/3IxxNcunwVZ+9egZQKVSVR5bnN9CcjaC2hjfWvvtWVSoZIAC762nrR1DDTwfRtps0nI8MWw8rWoTp7FG8P+o0MSPw+toaceoO7+B0sXco2yMeEEYbOHqArp85KUFkyBMZeKmjQ9Nhw4xnFUHGMyWiAsnJue16qASBI1W7i1NJhn8ZUKMvCRczVXggzK9PAQiKCVFnOsLk3Q3Adif2HjNm8TbvNtvKtgNTIbQ+oa6m2QTLcWKq1DVqxkIUNaEqSGGmWNoZKRcpvTIRlOxHf3ZxasS/BMNTG9otZGZw3CWlqPoMkASnO8EdvTwiBfn8BY4g69YRVF2ujM/EKM8/S0TZgdZd5u3RAStKo+HkHc+47imm3STZtbnvziu62UZtxEmi69bVNbPIHb7v2DU/B8xhTLxa7SI0tElGVMLqy6jQUlBIO17QnWoGkrolYlgVKVbh6gBIaBpS2Icm66HYXsHXjsmXa9XKEgXHMWPuNAC4c3S5MjV4vw7TU2N/fRZplEMIaoYTDT4FaQrqlt2Us/N72qsP3n+f5jMeREAKdTgfT6dRrca/lvGng6e5VUqbB6XSKLM38PiaEQNbJvOG02+1CSAkVKW9g5QWviUIBSgrLaoEWuwB/L6j/9WcbB2nAII4kqsqgqEoAMTUGGJprwDSfYHl1CYv9LhazGCpyxXqVcpK1va8xB9tK5pLrXOghplTkojHLGdvAPLpjmHYoKbcx5bbgFj5Z5xkmQyORMaYhMYQllwj343BKmx/4G4Paja8wzQhPX73GFdgdjUYo8hxGl8iyBJFSiCKJKBL1bY317jBug5tMphBQSKLMByZQ3oZubwlS5zj/9QHyoqBwDHsrrVFqDSmNSx4EWGbuAmWMxtJyH1pKbG1ew8LCApSKYaRd9EIA0ghAkj9JKIGHC/noxkIAjfwcADAajXw0JGdiCwsLDYbOfbr591eDmnPU9qnT6UAIgdFoZMdMKM8E+/0FKKmwv7+Pfr+PJE0tdu2q3vs+80ZEXViA4B+CDYCmZB2SDVtnhmOXw12YClmqUFYVMC0hDG0WBD/ZOTCcDHHi1Dq6cYSF1ObRhjBQUQSja63BGA3zMpzuQmgsji28NJ3aQuCCZaKcR7c90w4NiW2wRuj7ehTIIrTo8/vS/TgTD89p8wrgfeDnvRr0WvmEzyC9TostyxJFWcBUJbrdzKnGrmiBY7i16is95q+rysMdVnW150RxjDhOURSlLbrg1GMPYFDSKAEItugsYmLTdKZphJ3BGFVVwjAM3rfHF1M4bqb5hYfmMHHBHgvmXEg80RKfCyTZfqsgNT9n3HeSlsNslQAQxxEq5zYbxzGyNPUufQAbrhkYqYZX+Pi0GyFbe2knGBmRjXGQGxBWJqXoVuOeodPtYKGTYiF1G4CbKx5T91i6n0jz+2Ab4A/m3j6tu1qLFEJ6QYdDJ/Poje6y8LJpHrwBYMbY03ZOm0+1x2CZJERZA0OyZa/wBse2myTCP774DNsoIXxhVDvOwhv+GmvLeR1QoVitXdY7AFR920BCKIWFxUUURW79ut0RgFw4aTmwxeHaSZIYSRJjMpk4zUj7hVQvKE5HYSIhTNSer51+o0VMmzifE9xLqU1IeLUpxKqpXa2tLSDc6KSUiOIIWSfzhvawn01GbHOsTCdTy9zmap8BJhKS3aHrd220s5UIKNUAUNgrteeXZW4FCVg8XTutkIpSA7oxDUTw75GIQ22oXYtvZv3fMUx7nlQzT1I2xjTCiA/ykeXqHBFn0pT2lZL+UBuAVTGBWRX5jU7EHCkMQaDG9q3Ln3aeBh3EceL9acnYyFeHFAJpkqIsChR5Dl2Wzm9bQEZUYkxCqhjH19cxnoyxtX3D/W4XpFIKUjkDJ3QtKbsw5W43Q7ebYX9/D0WRWwZk6tSnBm1Ffw9ils3jxAQAzDBeHsRFsA+vZE7nUMAX0Nzk2zJJvpLEN5TGExrrHTKZTBpGXEBDRRJpmmBxcQFpZt37QsNl2O/xeIzBcGCZNk+ixoyVB22dNOd0pb1TndEllALiWCBOJCjblS09J71fv5TAJB9hmo9hDFBpm4tdaw2hqMyYBknrDcvGDGtpE+5qYY4LesRfyFnhKLLAbce0jzJ522AI+s4lb86I25h6KH3wf8NFSTmRw35yL5VbeZ55G85B5xy1jcOum0dWuoYTqxEY7+rx5ZPW58yuT2E3dBKoNtDMPmAPETZqIyQ7XZuEfxoUnxCCvEj4/evVFkURotjWCeXMxDJsgmyCDh4FyhaYue4w/2zfbgBhzZO0b4ZezrVttiCtjU0c5ces7rOKFNI0sbCXZM/F+0OjS5BZUYCCamYgEXf7ltfnN3pB/9Z+IhDSemkoWft6G3cj+iaETYBVVqXvzwxs6TogvE2jzcbF/tj38FzqHWmAtq0DBp/RbY9pE4WY8WFYbrhg5hkhQ0YdEmF683xykyTx1Um4keJWFtatXvNKS2lG2Cx+wjNrJicJQAiLIRutnVodHaBi0sYnXPY+jaKYIooVBGygDeBwahEjzhaxbzYxKQoUWkLC+dhDwCYk0S7DYPA+tEBkJFb7McrxLibDFP3lBFrUT0DVbCywwjB3xsPtsaZTIryXSruwEBK5gk4mEw+f8WPkORLO41dL2p5ZL+6jFDY1QSUlirxAEsVAFHvtpnEyfWNrkLD7qtLQVWk9inQFGSnUabvZRuDu1Q6YcH8hQqoFhBaQ2iASQKqAsSsfJmFs4WZhixpoo1EZiaIyGBfAcHsIXU4h9BR337WASGgIqaFN5QyiNlKS9injW6Y+cHmYQ6f2OTTxDQiHm0s3P2Rw7SzdMUwbmJWWgVmMjvsFh3gTqYg8B0QbcYmEFlkb7m0DCroYj8fI89xHUYZ9vVU6iPnzYzxa8+ZzWbRsZrCTuCk16hpnlBq9boZ8OkVRTKCrGELZqco8ad21DmKKIsSxgNEVBuN9LHdSSCNtZj4AAhGgMnQX78LlixuoJgOM8gidRELBpYE1EsYIG+gjhV9sEgK6FEgR4dyJLoa7l2H0BMvHVlFCeynI5yUBMQViJoTXNv0K6KgRtqiwctLmPPySGDEFZe3u7rrkSzWlaerzawN1NsBXwybCNwa+NmgPjlQEoy3zHQ5HiOMEaUrzyrlsOq+hhtukG4NimmM4GmE0GiGfTonNIskSG8AjbDEM4WaF8FqSE2PdhDKANT4DgCDvIANoG2gTVRpCGMhEYjSyiceU0DDSzkuNCoXOrUZXVtgeAc88u4nR/h5MPsTxtXcgygSULCFMAY0c9q1nqGBcRKOGkMpplVbrIy3CFXCHgPF+2bRubKUlBYEIRksIE0G59Lbz6I6BRw4yOB71PocxsnnS9LzK2XSM2nslF95BGkJIISx09A1jjp0AgBE1W2tK2/ZzHEdQSqDSzoDlVevmPYkZCgEmaecQ7hrh+yohRIw4XUBpEkxKiaISzsdWuuoxVpoxxrnuceFRCygjsNKPUU73MB3tQQhjxWhXhNDUbLhhaA1HpPm7++QW6lHgLmLCvFQdFwLa8jC/msQFHL6hE3wohZW022sdCv9PCP9orZFPpxiPRhgMBshJ0nZRkq51d7l916L+qe7f7E++ZWEEpDGIYJBIASlIW3KV2oW1V2hUqIxGoQ0mBXB9a4QrG3u4fHUHVenmkBCQsoIQBYACtHnU0IaAYX/EXht9Ey5lrCBGXkvbFrw/XNK+7Zg20I69AUdj2AfBE/NU0tDAQpZ+nviHn8eJ55A4CmRzVOy7zcB62L2pDzPuVgfeR7T8BWeI5mcKnKADHrsU9QKvz6/vKSldgKG6j+3V7rNOB2maYTgaeQmMO/A1rnHqqhA2kCJJEgACla5Q5CyBFA6G1Dws4tVlksebm1XzudiRFgw79OMHHPbujHpt7+nlUtvamTcXePGOdu8o0XiWqqowmUwwGo0wHA4bOXm4F9FM+wf0t5VZk/3CHdeGIDZbH5RfSO9eODHertMK/X4XUgJb21uYTKcoysql962z/AlnYrfX18UN7P8N2+TBvrPfaSNzUZu2BFrglthCtx080gaBhEEz8yY6Z55lWXojITf+hEybY9G8sghdRwyc8LuiKBxjgMe0eZ6JNibU1n5b3omDGO0810Wu/vL25vXnKBRqE4BTk/39rate47nomLSQh4FLw8okM4vluojBqoKptJeciElKGWF19RiGyuDqxnUs9lIkLg2nzZlR+z/z5xRKIhYR+ouLEPIaijzHcLCHZHkBQrowHHosUgyY2CcdBGCDLwBazJS/BLDMQzKDHG+few/Z6M/Sp/ulP/IgybIM29vbSNP0pgNrjg57zV4XtkEQjVI2iIaCfto2JEpRvL+/jzzPvRZB2iaP8GwL17+ZfrKWAdiCGiqyRu8sydghA6UIylAwFfwaPXn6GK5dvYhvfvNp7OztIktTKEFBc25zFhJCWE+VKHKeKE6SNtp6KAkJbxy1U8ZK5f79S0ApiSiWMKZylXJm/d453XaSdpvEeTPUZr1vux+XIEL3LGKqhDdy5sSlJ6C9is1h1CaVzTvnVuCgm4FWjkYBYCDIW4TldeBtC/5Tfa1PzGV07avNrrVYokS310PW6WJ/3+Uh8YZB1NJ9MH60uaZZ6phoiXw6sZK2VwraNQl7RGB2uFzh1hkJa1aabXunYSQtUEva/NxXEyY5SOviknZRFA3bT/hslIjN5kwfYH9/H+Px2KbidRoOLzzC22/rE933oPMsWSMjYDftSJGcaty7FY02jbFRtouLfUhpcP3aNUzGExe0ZRFqY+yf1698PUzhJffa0wT15k54COr5TXNLKYm66vvBMOltybTb8OuXwxh5Iqna4l35rHzEnEMJm1vIadLyYglEIYzC78GpDboI+3yUc/mzvJppPpubxuwzWz/4GGVFwTLciOU+O8ncpup0C0Qpu4iYdNpkbhJRFKO/sGCrtdOmydqnx601Dfj20jRFHEUYj4YwuvIIpcfehWhuKo2Ng2GswZA2ZMA5GhU/RhpfKJVzSfS1wrUPhIZc30lK5f3lDHs6nXqNgdZL2xxv05YP61OoAdcHUOPO2vg1KusJ4IpMe89u628uDHq9Lk7ddRJCSUBIF8ilYPPSSM6WvRE1bNz7tDhhZKZ7TmOTUnimfdg7vS3hkXkT7Ci7Npci6F5xHPs0reFCybIMURT5QBygdtkinI/Op6KtvV6v0Rd+LZfAeeFfzoS5tB4u9oOYPpf289xWHFFK+QCf8Dy++bwcsgvGMj0qORZHEbIss54Hg30IAHEUo6oqt4kplEXhMEjhkiRFiGIgSTT2h0P0hUTa7bk27P8KZ8XvdPpYPHsOWSe1rlpVzVutQ0M9NsMp8I0rwLPXJZ66muLa7oPIK7vYjq9cxwNnxjhzcgF3He+inyWQUsE0lqmbO8xESVXEBRs7rnHRuNC/bVkloyjCeDyGcBsJzQOeCphgvFdj0w2pDR6kTSSKIuR5jsFggKWlpYbQUhQFRqMRtra2/FrJsmwmDoKEIxKGQo3vMIhzdo04zyCjrYdHWSGJLTQZSYVCG+jKAELbcmTW0o2qmkKIHk7ffRIfevwDLqIzglIpLLxWQUCj8jCZsPlJXJeobd83B5N4X1gAlCucnimKIhRlDm0EDA4OtLstmXbb95thPuGi4gsEqKMXOWZNhhR+PmfcXBohookXTl4++dpw6aM8R9uk5gyD94tvEPzcl8MIZrQdQ1KXVROl26jSNMXO9haSJLEwo5f8pVNra3hJCAklBaJIY284Qpp1aoMTPZs2EFCIkhTHlhYRYQqUUxAKI8j4I4Bnrwn8p69KfO4FgUgCeQlURgCoM9DtXCnx3NUdJPEeysrg0XML+J7HTuHutdQ/F0CmJz/6MIHcJVrO4sRdLum9SCmR5zmyLPOMyHtsuDn2cu0PR6HD5gH11SY+mjaOGUM5tW1qgcXFxVYpm5g20HRBPYxCIWq2rw6aouImiWV5VPTXangGUtVbcGVKQBgsryzhrQ+82WX8U5AyBknktdEQHqKzbXs9C40Z4Tbx8BURdKOURF4cDR657Zg2MCuBEoWSDv3Gj4VqHUEHVIWGGC8/l6AGIu5NEu7+1D6flNyNi9oOVUTevzY8u22z4udyfJS0B5Lw2rxa+JjcLM2o/iD10d0TsF50Hk8k+KkCQlZHz0gQhvsspVVPSzfudmw1YhVBpikioaDiGFJXMNqGvDsPLWwODf7ZH0R4blMgrwBjBIoDhBttgElux+dLz+3hyQv7OLPexf/re+/Baj9x0AnhlbO4N0njQjQX+GEwAMEjYYoDIawBO/TYaNOs2uggJtx2TTiX+H3oXjR/ee54OocLJeG6nCcxH9Snw/rfuL8U4IIraT5KKaAs3ZwE6hSClulWVQkhgCRLrKTtND5yy7Nn6lrXMqZ2UzT1tKWZX+d3Z++cjUddBAV1ab05dNsx7aO+4HmSJA1iURTeGh45VZ5ck4gBki8tnUsTczKZNJgzSUUEj4SUpinKssTu7q43xoSSL+932HduEOIQCN8YKHhHCIEsy9Dv9307k8mktWL8vPaOQuHGKQRgre1OkjLWgySOY5+XYjrNkSZWmqENxS1jSKmsqx8MICWiOIHWBqORDVefTgvAVFg8toxEdRArgyTRkBOJUhgU+QiV0fhPXxH4Pz+fuTzcN69JGAPkpcH5q0P83f/jGfzZ7zyNDzy4bI/xHN0QsCWqAGDWyEiLFECjYhGXso0xGA6H6HQ6DQFCKYWVlRVcu3YNRVE0greOssm+nPfJiQs4FPQzHA4bmqWUEmmaYjqdNqCdUHDi40OCBIdMjtLnNkFHKgFNTNvUu2YnTTCYFpBOAoaxeVPs5lthnA+RKoWVlQUs9CMkaWQ9TLTzCDIaQpSg2Np60wbsFCU7igEaAVqqKZZICakkVBxhMp1AFoCKZ3ONc7rtmDZnVgcx7HnEJyLhq4Ctzk51HYlpU7IcbtAD4BkgTwREjLSNOZLLE1nSw+eY1/cQj6ffOOOmc0KYptPpQCmFoigwGAxmNpNXAhoJidRHO5nhNRjyvS6KwuaRtjcB5ToG7OR2sDXgrtMGmLpK90VZAkYjTTN0OwpxBEDkgM5hqik+9YzA//4ZiUkJ3AqzDklrINcav/3fLuHKjTF+9AMnPbMG81apq/eQruF+DzZmejfEqOg9kVDAtTMpJfr9PjY2NvxcPCqc8EoSnyNxHPsK65zJktBCmip9PyhBGj/OIcW2OTlPM7Dtk/0CNk+15Z8AgDSOIfxYw+LTgDMdGuTFGGncRa/fR6cbIZZ0b8AYaZm8YJpgYw26vgp4DJsMjOTbDRLsRe3IUBQ5IAySvAkxhXTbMe15L/ZWmBA3pgDw2BwtslA1ndd2KGWFHhucsR8GeYR9Cw02IcRCx3lABlDj8lyye6VoniptP7jnMHARiSRZVS0L0AMLAOqoMyGEK19Vj20Sx3aRKos/WkOPxDNXcvxP//t1jPPmPV8pykuDT39tCzDAj37olPcmAAXaBGqy/xa8y3ADDudT23i+Wl4/h9Fh8EVZljPzic/BtnuFa2QehBKOyTztQjiG2jhm/P+sQdyKyPZ8Bl0IQetHuyIbtrqM0bZIAQnVpEU1G2B4tjGN481QfIpJsLCJlBJxkgAwM/lmQrrtmPa8idzGPMMXzq/j/tWj0ahxL66Kaq1nqrFz9z3O9Gmh5XnuJzFQ+96SmsxxZtqFgdqjhePfbRsAPS9BNlEUod/v+z6RGkvnh0ZUuj4ck5sh3g/XM/ebAISrGWjFFnQ6HQfROCnNQQxW5qH7WCcrISRkpFCUJaQCqNDNysoxJEmMLOtAKUCjwD/9rfP42Bc2ea9u6VkOo7w0+PTXt3BqLcX7HlxDjWub4K8m7tfP5xqNGVDPF6DpzUTH+Jw5Cizychn8PGbNNQSlFIbD4QyOHccxlpaWvDcMn3Nt2L6vTMS03Xk2gDaBSUoLe9i1x653m0YWR0iUtJGOxkCpCIW20rOKIlTGoCxzjEYDlJ0E00mOcjJFr7MApQAliblbpiuU9VIhKVubEpTG1cD4uATh7TK21JjWBYSUSNIMKyvHIATQ6XUPfA+3HdM+qsR7EJ4NNJOTU6FPwqS5qkfqfcg4Q5iCFiaF/PLdlNygQgbMpWBuxOTHOW7ONweCbwhD7Ha7/j47Ozsed4/juFGzbx7zuNl30Bh3kGRig02soO0wPlMnQZpM3DOKuiIN8TpDk13acPOyqlyFdUsLi4vodjoQwkDrAn/tH/0xnr8yuKl+vxzKS4Pf/tRVPHDPEpYXVINF+2B2Y7z0x5nOvFwiYQqEULPisQGH0aspkVO/iWlPJhN0Oh0f+QvYvvZ6Pezt7Xmmzec1vw/XPDnTboNU5mkk9nqNykv27i04uCKOJSIlUBQVTGUgIx6RCVRCo9IFJlONqjIYTwtMBmMk0QKEsEzbtUgdcf7eVoqvC0QHPIceQQjn911CCMtHFhcWIaWwBY8PoNsuuKYN570ZCmEFft+27zezGOh8LmXxY9xA03bveW1xuIb6zzcUapOw94OMSq8kzYN3hI8cs79zDLfJvJp9sv62znUripDEMZIkbdxDa4O/9o8+85oybKKy0vg3//XFZuAN6k2L09yxmSNwtHmQhBpdSLcyR9uuP+rmfdD8BnDkDYaeJ5Ss563pubg29Yu0NV3XFNXOU4MAOHueabwoAwNtDEqtURQlxpMcu3t7yIvCe+bTefDfD+A7LWverl3j1qZBWWoU5R3m8setzcDNM6MQygDgmR9JrTwZVBscE7bPDUgUMJEkCdI09ecLIXyQC/ef5n3iz8c/k5Exz3MfqJNlGXq9HsqyRFmW2N/fbyxCCoUO/X1vdbMLKWQmVom0mGC9QWloAaRphul0ivF4jKIonepMKm3tGTMZT1CZAlqVWF5eQa/fx8LCIgAgjiLAAP/0t76K56/svyLPcLOkNXDx2ggvbIxw9mQPbWH6wOyc5Kl+CfIA6ncxnU4xHA7R7XYb9yC3v+l0ijRNXxNp+iAibXI0GmF5eblxrZTSe2BxaA+o1wgXKPixeRJ22C/+uaoqsvR5LbQsSuSVdQQY7e8hlsAUGsJYt1C6Z6VLz34rYzAYj7G1vYvNKxvYvfE03vGOt+HsmRMuaZlxleFru4s2lTWku01AcDuOtlXiAQkphY+StiH+Q1RlCRVFuOtN88f5tpO0b9WgxiGHkHETIyQvD/pLkmQGjyQKJyQxTCml9zghoomaZZmXmvl1oWoc4nlVVSHPc0wmEx8qnCQJFhcX0e12oZTCYDDAcDj0+DzP890m1fB/b3UsORlYicI4iEBQXmEBJEmKKLLqcllVPisbAOdeZd9rXpSYTHNMplMsLC5hdfUY1o6tAbC5nZ95cRsf//zFW+rzK0VFZfAHX96wwTU0tkzWbpN8uZYURkYaY5DnuceCiYhpR1HUmhrhlaR58yMkDo+0zW/aWNok+FD44RrvvELHYR/5dXZMyYNFAcZujlTRaDIcIhKUZ13DmArSMVi7dm3QTWU0RtMpdvb3cfXaJr7yxJO4sbUNOkN7YzhJx9aAyYOuXMca7xmGquVUmE5zDIdjjEYT7O0Psb27d+D7uO2YNlH4EoFZK30Ig4TMkH/meHV4PGzzIAqZJO8bNzge5fnCZ6sL5NaQyTyN4yjPc6uS26Hj4CwxhumigvmzW0bn8nEbuwhIWlOR3WzIDlBv0gJ/63/7o1vq7ytJxgBPnN/FaNp07RRkmzzSPczM/GwTRjg8cjP3fCW1qXnfeWQnP05Czrw4hPC3efNzHuzT/M1BDy6xmBR1alYV2c+RUlBe+jf8Rh7NsMxfQkURxpMp8qJEFeQObzyHMY1XXa95W6nJar8FClcQma9TQFjf8QPotoNH+C4+b1K14cltzJ3jw3S/EJdry2xG14SBAXQOz4hGRMbC4XDo/bW59Z0/jxB1pBzhuwSH0H3H47GXurXWHoohFZz3NfzO23k5toFwXMCZBrttqStIpZBmHezt7iKOE5CdlsaqrCp0ul3EaQfZwgL6CwsNQ9fHv/AiRpODI8leK4qUwItXh3jbvTaVbHMIZhkxnycEZxEunCQJOp0Out1uY6MnyTXP89e8KHQbI+VzJYoiTKdTjEYjLC4uNs7rdruYTCaN8PxQuyTjYzhOlOKY2pu31um3qtKYFjmgNaJIIc0SLCxZOO34sVWUQkEqheFkir3h2GlHLjVu5SAcIzDNS/QXF3Hq7rux87FPYntniL3BFMdXqeCvhfF82l0Nl4qYigC7ZFp5geFwgiKvbMEILTCdFtCVgTECUZRAqdi5/s2n245pz6N5UmPIoPj3EGMjps2lhLbNAWi6HoYSBzcI8vMp8i2Mcgs3EKAugmoTKVmopt/v+1zFg8HA34eOU3u84jf//mrQvI2SaZCotLYFCLIM+eYmMibFEN5XlQqLi0tYXF7B4rHjkAINieTf/f43XpX+3wrlhcaLG0O87ewS6qdsbuoh0+bRkfRetdbodDrodDro9Xr+WhpLijScZ/h7tWkerkzJo8bjMRYXFxvHut0uqqrydh2uLdBcb3NjpfEqy7JV8wVm3VW1MZhOClRljl43Q9rvYvXYCgDg2LEVTEpbaV0qib3hEPYdOTtV5YpnGCAvSywtLKDX6WNnbx/be0PsD3IcP0Z9tFK09Y5yNhhRa5ICArqyEb/7+/sYjcYo8xK6NIhUDKViRFGKKEoQqQidXjOBW0h3DNO+GZrHaF4palN/gcPxeC6RHKQ2z4OG+LF517wS1CZlCyFgRFPCbp7PvCFgVVohHGyiFJTzZVcOFvHpUmFwbWuM6zvjV6z/L5e0AZ69NGBeBQACH5J58BrX7Pjvbflh+Dyg88LjrzVxIaNNA+Bh7LzfR+3rQdfMQI5wWgzNIaa9Kikhpf3XGr3b5r8FuS2aJ6CURKfbsZqpAKhajS+AifA2wuJlgmHtVeWMkaYxP4SwzN0G/dxh8EhIh+Fe85hVmP6Unz9PguY0D54JJWVexYYMOeHE5ouAfL4ppJ76URQFdnd3/QKXUjYMpbwPYSQnD2F/NTesOtMZ0zCEwxglYKIInW4XpSsUm6QxOt0ukjhBr99Dv99HkmUIpdf/+/MvvuJ9fbm0OywAQ/PDtLIE/h7I2GaM8SkGhBBea5pOp1hcXLS5vpmPP3llHMb0Xs57PQpDpShIIawPNnm1cKgDgDeetmHSXBMEZm07PLVDm12IvKh8NkQVYXl5GUoCaRKj00k8hCFgEEmBJI4Qxwo23apNuVtVFQxskV4BC4EUZQkNgcf/9ON405vPYHG5A5tfpLKZ+oQTqFwAGPlsAwJV5Yr/Vgb5dIpIKcQqcm6vClJGtjhD0+NwLt2WTLsNmw6JT+I2w0ebMTCUDg6SENoMPrw/FBKfJElD1QvTVvI2iNFHUYSlpSW/uHd3dz1OSNeTx0vIsPmzUX94wqIQFnolSVAF9IaWIZ10qRBLgU63i729PeT5GH3Zx+LSMhYXF7G6uuqi3AQoXxrRE8/deEX7+UpQWZHKTBbIgw1uFLhVVRVWV1d9nvbLly83KrzwItEAfG5qut9RmPfNMu6DJFo6xqN5CdMmTyyuDVIOH37fkPnyhFEcEuRaCNc6gVpwoTGMogjdboLl5RVkaeyjGOk9SACRBJI4QhJHoBzZ1lhYASICFTuA1MjLArFU+M4//Z1YWcqw0I1sEE6Vw0bMGGg9tbCdlDBVSYMHow10BVSOafd6PStQSQVtAAEJpSJUufUoOYxuS6YNvLKq4WGT/KC22owk3PgS3odLJTPqXiCdhN9JwuAS+q2ooLzv/PkOU7+PxAwO6YLvNwJ3y8gu9Da/mvOXdg9v9zWmSPH31H6Ox14PgT1IegxTAhNxJnfQO74Vhn0YhXOU/05zPLQV8TVw2Jw8rL/zoEByBKD5I6WBEFS1APAJm4iJC1FnZ21rx7n2dbtdJIl09Ubdjci9023OgiUME8bHw/psgH6dSwHhKzLBN37YM9+xTPtmmVgb1DGvncMWDlnBw4TxAHy2P75I6fcsy9DpdLyHwWBgo/7IOEOGHe65Qm2Gk5oz4raN4pWgeWPc9MO2U72qrDsUDNDr9dHvCywtLWFxYQlZxg0ztXEHAIw2mOavD68RTku9yIXuk5TdHF8+LtPpFEmSeGMxef7QeyTpOvR/BizD7na72N7eBoCGlxBRW5u3QqENhr/fMF6B5tRkMvHBadQH8nYiSIUfI5onnNBc5zAjrZM4jr32Gbto2ThWwabZHIOqsIbKTpZiqoVNTULT08D7agshAWmQVwW0iAEpoStAm9qbTIgSQhDG4QQP13gcxUjixELcjkk7L28HiSsoqsh+SGHf255pH8SE5h2bJ0HeqqTK70uTtqoqn/+D3zdJEn+MJmRZllhcXESn00GWZRgMBh4OqarKY9cU5UiTOsxFEi6oec/L+3+rC51j53yDM8ZAG6cROOlFCekChAoYI9DvLaDb7WJ5eRlplvmSY7MdhDPq3FIXXzWSArj/dK9mFvTB2P/RuNL7mEwm6Pf7HjbY2trydgb6XQjhYRJOlNNjY2MDQojWyMjQNnKrNM/4R4IIfeeQxmg0QqfT8W6lhHl3Oh3s7u42Ekfxe3Li83U6nTYwcYIZAaDX66Hb7aLb7bqNQkHIIHReND+WxRRVkaPTzVCOc5TGOGy5XjPGVFACMEohr3JoKBgBVBUs9g3p8nKXENAgAE8IZ1Q0QBIlqOIKxrgMg1LYyEtjYISBQAWhItjKTndYuTFOR52k8xjTYdcfdF1IoYrYZl0P4ZG2+4ZJhMLozbaAhluhW8U+b5bR06T1OLcL9SdXRaWUy6XN7A5wpj2Pa95UN191SmKJM+tZw6vAC29sTENbCs/oF5alo3cbuooSwzwqjPBqUSgkcWgntP/wPh91fYZrp+1aDodEUeR8pYXfLBt2BeNCzis7pkpKW4JMhP2x1/n/jHbysc0TYiN74YyW7fiKh4RksGME97ePGPSzhW5rpv1KU2iIBG6dKXL4g9+XmBVlSuPnU4UZWtA8KjDECts8W9pU5vAzndeGUYbXc4mRtz0Pg+d+4XQPrTWKvIAQQJzE6C/0kWUdZGnqavOJGTueATAejVDmOYo8R5pEKMftlXe+FVRWBvedqvOEGGOxeIn2Op/dbtfnjiGDYxs8oLX20BiXXHlhaPqtaextGs9vleZtytxASETfSTsIoRSa2+H8D9sjWJBrbuQDTjVGyWjb7XaRpmm9HsCnjdPwHGOdTHKMRmOMRiNUVYksizHKCyitIX1iQBp3oDIV8tIgURGKUmM4KrB5YRPLy4vodhJ0uhISEsJoX/dRgK437psEXD5uGMbMPbOmjfoOSxj1WtDLnfhCiNYAG8KlCbezRg8LfWxubmI0GvnoRoJZOB7IGSelf523+DmMclC4Oz1vyADaIkFDxh1KgHQPgodIchxPxkiTBJ1uF8fW1vxzWX9Ybi6q/x0O9zEaDjEZjXHfXUt44lmeN/tbR0IAb79vEb1U2dJoMNDG+m5LASf9NfNpU2Ivqvxy0Huj8ziTJgw3DLKZ985u/dlm3UXDzZvaJ+PocDj0dSOpT1EUzQQLhYICzc0kSfy55CK7vb2N4XCIfr+Pfr+PbreLLMsaCd2aHYeVkHUFIWy5r8loiq3NbUx1DhFJLC73EY+nyEubo70y8BK0gYUyqqpAFifIS418ovHMNy/h3DmBY6sLiJMMceRSL4TjbJyxEhLGMW3CtmvHGk3ZHcALS7fRbZt7BHj5KmHb9W2/3aq03abm8cyBXN0D4BftvGRUR+0XX0C8H23XH/RsNzsWbVKVb9tJjOTHq5Sacbvg41WWNmtbURR45E3H5rb5WlOsBL73nWsINWU+UqG2xt8vD+fmrnKc8YabbAibzaNXyiB5FArhkfDYQWlaww2LQ4Hhc/Jkbs1cNEQOfjC1ZgdQ5GkJXVFeGwtfSAnm+0F9sPfRxgIj2hiUlcZoNMV0kqMoqCC1Y8iNrDoAGSVr95D6d/q/lb5JBD+Yb93WTPv1Rhy24BJ3aCSkiTiZTLC/v4/d3V0AdnGTX3eI89H96Tupp5wRzINL2lTokJGHbYTXA7OSXLg50GIrigJ5nnvvgeXlZZ+RMNyEeD/yPMdwOMT21hZyV0cvSRL8d4+duel38WqQlMCZE12cWe9QxnAATsYScoZ50Xhxj6E2aISIp2LlJIQ1QFLGv1eLDrJXhJsI/VEdUjIW0jkA0Ol0GqHp/D60cU8mE3z5y1/Gpz71KXzsYx9Dnufodrs4duwYFhcXkWWZL6jQNkcBoKoKFKVN77C9vQMAmIwnkEIijmJEymp+aZy4YDdrDDTapmwFbOUZqQTyssA0z5EXJeI4w/MXXsT5888zbNvyZOmiLOvANSqaEsPAeakQZOKBnMPxbODb8Mih9EoacLhlnbsscQmBG+H29/e9ZM29CyiQgRizZCo3L33GmXaapg1mfBjezaPPQgba5n1C13DXrzbc3BjjYQClFNI0xdrampeU5nkSCGGjA/cHA2zv7iCWApELLDmx2sVKP8b24FuLa0dK4n/4vntsf2F9f7WxkIiEhGF5s4E6j3aaph6r5sFW/FwhbOpeKhW3srLSOI9wcfLWCDfpV0LKDuEW3seQadM8ieMYRVFgOp36ftF5vV4Pw+EQk8nEpyWm+5AX1XA4xB/+4R/iwoULuHbtGt7//vd7hk2bQsiww2ctyhx5McV0OsH1azdwfP0URsMRpFRQsYSIJaqiRJal0EJhf38KmBLGCGghICI4GEMiL3OMphOIQiJJO/jiF7+M1ZUuPvihtzegvEgplLpEWZSIY6p0pRDHCWAkdGWglITxGafAjO3flrRvig5j0m2Tts1oN++aNuPQvDYoeRCv7n4QHDLveQ7r32Hnt53TxhTmSeZtDJzj6mmaNiLl5vXHuj8WyKdTW0ZKCCjn0vXh9548sM+vNiWRwJ99/DSWe1H7mmvRhrh2xTfEecTrJobviNzg5mHOrwTNu89B7ZDraRtMQn1u29xpfhVFge3tbVy7dg2XL1/2ggnNmVAzaeuv1hrapQkgDa0qK9eG9RohIUVJW51dEFRhnOO2AIS0cQWVy/kupcJgMMT+oK6SRE9iPUVMbZR0YjjlFbFwDeu3w7kNZlDBGfq2pN1CB6mBRIfhh4ddSwt1NBp5FyXePjfaHSQV0/lh36l/bVJ32zkhww2lPZLu2zacMKMh7yNfzJSsX0qJhYUFb/0PmT//ThIoeQxUlba4t3JGWHfqex5Yxv/5qUuY5C/P2HYrlEQC7394FX/qwRUYbV3CLCRCC9PilBSyT94/pFVQgYNQagRmN0P+HvhYkaYyT5N6NWje/A/hvul06vvG5wUx3RDLJ/x6b28PX/3qV3H33Xd7DXRzcxO9Xg/Hjh2b6QOfm3meo6yszWMyHTlDYmklXdiiupGya474MoyBFDYfiU2XStqhtlkphfUCMa6t5ZUF9Bd6SJIIk2mBNDHWO4UVvJBuE6DvaZpBm9L5YwvLoWmOOIn7MPq2pH0TdBjzPCqRZ4SUEnt7e43KI1wyJet5t9udUUHpXH5NKPHwSUwLgUtpJJm1aQJhoA5fVJw4XMIZEoeAqE8U6aeUwurqKtbW1mxCHyYtkVRGlOc5BoMBNjY2HFxUWBzT5W4gqrTGT//A2Vt6Hy+Hkkjg/Q8t4Uc/uA7AVkDxYef0Lt2CVKouDwfUBsj9/X3/PXTfDI2OlH+GiI5RIqk2X26iW52v8zB2Trw93r6UEqPRyHs+caIgGJqbNL9oo97c3MTHP/5xPPTQQ/jABz6ARx55BBcvXsT169cb7YaSvBA2EnNvdw/Xr21g68YN7O/t2bJsLro2jmPEUWzTphoDl/MJkZTodlJEClBCQwoNY0pobY2WIMhLSayfWsPqsRVk3Q4GwzEqbTxDt7m5yZOlZuKdThcCElVpc2gbTZi2hNFHez/flrTn0EH4HT/nVonuzb1B2s4hnHde1kHej9BXluOHIZ590OI7CAIKVfCwrbYx4Woq9ZPU23lwAL+mLEsfDh1FEVSiIEH+rfX5Z9Y7eN+Dq/jjp7Za7/nKkkESCfzE48t4z1tXG64ifgyM+5/3DJiFSAB4JnwYbEa/t82FMHXB64UIHuFuf0Rt9g/+fTKZYGNjw+fkXl5exnA4bBhiueDCiaDF6XSKosoRRQpCCsRuo7ewiGWYxvB3Yhm3zdduXPF214Y7bqyTNdI0QZIlMJUt6qyNcTpWnc413PC8pxA7F6wNcg88iL7NtL8FxKWCNn9nytw2GAx8xjI6p41pzjM40eTnwQ2kkhdF0ZCc+eKna0Lpm7fBNwR6Hs6AqW3+rCRZkZdI2zMQFEOh/BTOHxoqrTRjfApMmyYT+H9+9z24eH2ES5uTI7+PmyPb3qnuAD/1oRT33ZeiRAUJ47RdF/nGN0zy9GL4Jn8XobYzb1OkMSbIITRaUprWtjn1sp44mFNtG3obpEbnE3MuimLGLY/cPPn85EZzKuARRRFWV1dx+fJl3HXXXY12ADtmlAq2KAoHpbkgJGlcu8pHJQph3wcZjEttYCqbYySOIigJVBoQRlvMGxbqEkLBGIGyspn/Tp5ah5QaaeaidwUAY1OzEkZtebDVtqJIwYC/Y8H+NYfxawDfhkdecwpV3nDB0m68sLDQqGIC1O6AdB5fRCEcQW2Q6klMmhYAFQLm7QI1zko+scTAw/B5uoYkKVqchMFTm5Q/paoqrKysYH19vQGJhIud1OPhcIgrV65gZ2fHex6QW5ukrGoGvlafihRUJAFh8D/++Jtx11r2Krw9g24C/Px3D/G9J76MjhhB5xNAF5BCQ0mH7/vQeyvRCQhAm4amAdTwCE+CxDWi0GagtfbaBm3ofGOloBUa7zCI6uUycd4/oOk1FN6b54Unl7zRaNS4npgyVWwSwkZA9vt9fzzLMnS7XaysrODuu+/GM888g6tXrzb6RPNtMBhga2sLV65cwf7+vg/GydIMcZpAuX7YvgNaV5BCQAoFXRroUkMYg04SIYkElNQQKBFFClIom0JVRtAaKMoKo3yMNz/wJjz86APoLzjXQxUBIrI5tI1xm3f9zGlqN6hS2xhZG2xj4RF7rvt80Ht4WW/xDqBwAYXf2yg0woXnz/vMpV2SPuZh1PPabGu3LWiDVNawDzz/Bb/fPGmezuVSYAjH0F+apuh0Oo0yU21EuZFHoxHyPPfMit+f+qFnxsYak/7HH38z3vfgauv9b55sGx+83+Bf/Q8abz4lUZUlqrK0UXbGVdnxBifCKd2mZDvr78bfMz2vbykYsxDioudsq8BODJJvrK8VhVoZ3yhog27zeuF9pvvQZkYbEUnf/X4fOzs7GI1GM20bY/3/J5NJY95IaYtBK6kgRTDnHGTlIQpjg2KUlFDCVmq3RQ0IimtqQ2VVYmllCavHlhEnLkFVA3KBZ9r0p5TyOUxqqdoZN70R89vwyLeE5jH1ELekycbzSYRMsW1xt92LSz588VCILwUikN824elkaORtHIStcomLLwK6lgxJABqRavMqltC1lK52PB77AhG8ik/bWPqxcauEY5M//l2n8b4HlvDP//MLt+hV4mCdBPg7H65wdlVDG8uEFpcWoKscw/1dLK71AaNd+DKVoBIeuiH/W/7cVNszJP4u2o7RPajIgO+pMY3Nvm2M5/1+M3QUm04obFC62LbyY+RBNBwOsbm5iaqq0Ov1fIj68vIynnnmGXQ6Hezs7DSgMwomooAjsg3Eceyz/Fn42Wo92hgmpRoPsVEeEGNg35nRSOIIRVViUhbOvYTWA+CZt9AoygJ5CWRJjAqAMAIQEYyuHOBhmbOhSEeXunUOdzjSO/g2074J4oyR080uhNCwSIxqYWHBn8NVacq/3Ra+TMdo0YZwSLfbRb/f9+kxiQGWZYnxeDyT05hDMaEWQN8pYCIMpqG2KdoxjmMsLCx4aIPn1AgNUGQ0unHjhoeEyGsm3EAIKghxYTB1VFcao9EEJ1di/L2/+DCefGGCj/7hC9jcnc1h3qT6mdd6wJ97V4nH32LHJC8qKBUjSSKcPrWOvdEY1zcuY3X9NIypYIy0i1pGDs90Y2hIyooaGzUxM74BKqW80Y6PFX9Wcoc7fvx43WsHT/V6PVy7du1AreyVprAd0uzoWL/f93lI+HOR9iWlxNbWFp577jlcu3YNa2treN/73oe1tTXcc889+NjHPgYhhM8lTx5FZPeh/Ca0qfV6PSYRGyjnCVWVFSLncKRNiShKURqb8yOSEYx2Wf9khW4nRWVKDCY2ZwmMAqCgNSAgrQ1FFBhPx5BSo9+NAQ1IIyFlDF1VkLD5tQ0AIzSM0BAKgNAANIQEjK43Dkrj+m1J+ybpsInOYZI2ZnKU+4cLikumvB0OZ4THw/Y4AwxdqNI0nTH+JUniA3dC+KeNUYZ9Co/Rd5KESHOghPcU8Rb2n0v4ZECiZ+12uzP3D8d4pp9OxTVGoyydsVVIfPd7zuGHvuutuLY1wCe++CK++uwNnL+8j2muobVNi5lGBvcdA952qsJ33q9xYoV8iGlD0pDKQEmJhX4PO/ubGI9zSGET5RtoAMopwlwym+3rvJD/g+YQ30hJ/efvjUMNNzMnj0pHGn92Lp1P0Y1tGgSPQ9jZ2cGlS5f8eZ1OBwsLC/jiF7+Iqqpw/PjxhkZG2TBtpr7KCwZcY9Vl5bLrVY13AWM8ckFjV5KXjzGIYwUVKSsZG2tUJKCDsvcZVCiqEkWlXE4SgjiUNUZCQgjtXT4hDIQveeY6I/hH4fj1t5n2q0bzsN6jXkPSE7m1hZLtQfgkNwDRAuH5K6iCB0EjvO1wQR+GldN1bdF2dF/edwrD53kh2saAnmE6nWI6nSLPc69ZtPXH9xd1CSd2EIBBRZubsYs+jlOkaWp9pCFwYrWHH//uN+PH/7t7AD2BKYfYv/I8dDmB0CU6woBSafrFJISrCm/bMTCIk9gGz+gKVVnAqASQB9k56men5yethjQQYkjhOwnfGzEZ2iDDAKy2GqNHmZs3S/PgFi6YJEmCzc1NL1UDwN7eHjY3N3Hs2DEP51y4cAFxHOPUqVMAgOvXr6PT6eD06dPo9XpQSuHee+/1gsDGxoYPi6f53WYnIdgDzm/aj4N0uLLDtSGkLV5gcRQICCghECuFiuQBCEjDNl5U0Fqi0hpFabDx0lXEUmJ1aRHdWLiMjhKAzV/CGbeQVrBgownCtg+jbxsiXyaFDOso5wM1wyZsmarY0HEpJbrdrociQsbKDYy02CeTCbTWiOPYe2osLS01og6pDZLg6Y97pRCFWgFnKnQdb5+k9m63i7W1NaytrfmkQHyB0wZF0vWNGzewvb2N/f19xHHsfbjD5ySpuc1YI6WEkBLT6QTTqR2HY8eOYXXF5qmIY+dqBQnICLU/rERZGUDIBgZqF7umgYCMXN4IIVDpCr1eF5ES0GWBfDyErgj7BIxx9QJdxKYQ8KHS9EeJlACbmpXGksqMEXOi98W9gQgKoRwu/H3wwK15m+qt0jwtLNyUuQGy2+3imWeewfnz57G0tAQAuHjxIj72sY/hpZdews7ODvb29vDJT34SvV4P3/Ed3wFjDJ566ilcvHgR73rXu3DixAmcO3cOjz/+ON7//vcjTVN89atf9S6ElAKBjJZ+Y4RAJCKXntrOcW1o/gLa5Bb60AYSCsIIh1xoSBjESqKTpt5jz7j7kKGx0DmKymqro0mFP/qjL+Lzn38CG1e2obWCEDGksMFDBhpC2j8VAVIZlDpvCB/mYAG7Ht9bfYHfpoNpnuQaYtIUEUYYMb+eh/m23SeERMiwSIul3+83JG3ePu/jYfhnyPDD3zgzMsa6cXW7XV91OsTHed8pyREZH2kDCY2yvk1BEnCdBhMAhGMUZVW6TUH70lO1pE1UF2W1Gdec0iupOKtw96+NVDa6zbneGYMkjm0xWF2iLHIYXXlMvYZHSDOg8WpGu9IGyMcorEQUMlz6TrYMgpL4BntQPo5Xm3g/CK65fv06bty44YsZ7O7u4tlnn8Xu7q6Pkj1//jySJMHp06dhjMHGxga2t7dx1113od/vY2VlBefOncPZs2cRRRGuXLniIUAfdNXy3KGkDT9/maTtYQ1Sh+zMUFIgjkhLBcDnBgy0qaB1hbLSKAqNF158CS9dvIL9/RGMka0Z/IRskbRv8lV9m2m/TOLSTEih1MqvaVuI4YQjtTfEsznDJEYthPAudbx6B50ftk/h0PMYdtvzcH9hDsnQMfK5bYNEQsZPuUQo78ZB0n6jTzPYqf23dC54cRyj4wogK+UqXouaGRvSGgxQFCUm4zF2dnds0dwyUFed5mzb0Z7pE9yQZSm63Q5GwwGqqgS14q4OVF2Hi7bYNPiGHfrDz5NsOTwSEk8e9Vozby5EcDfTqqqws7ODra0t7O/vYzqd+s95nntX0DRNcfLkSe+rL4Ro1EJdWFjA4uIiFhYWGkx6/nPyJLkznfVakP0Oj3Ebbd04oyjyGDb9GYdxwxfxNagqjaWlFUgV4dIlu6G47QF+EgnXnkvjWtFGD5ortgMz0F9A38a0b5LCyRFKx4edD9SBK6E0FUpW3W4X4/G4UXqMM3ettXd94p4a9H0eGWN8PggOQ4TEPQBIugPqaEruekUbBknX1H7IdOhvZ2fHRzyGCbN4m/yzlawklLA+txZTtExrMpkARqPb7WGh37cBFXFkRRq4/MVsH6kqg+FghL3tG3j2ufO459Q6jq8sIksj1y6BKRKaxkLZAAgpBHRVYWVlGSpKcPXqZaT9NSTZontO+GhN5XVrA+s6UMMJBI8MBgM/F3hBhBCO8H7HrlINBUiF7zbLMv9uuA80f883w8z5ZjHP4EjwTriZk8Y4GAzwzDPPQGuNixcvYm9vD8888wyEEDh16hSOHTuGfr+PpaUlvOc978GTTz6J6XQKIQT29vawtLSEXq+He+65p5HSlmBFLiR4Rm6IoUvnhs02ZZclSkmbHrXSpt5ltUZVGkgl0e1kELs29zakgi0XZpm6igAIoDIG+bTAfefux0sXXsQf/uGf4IN/6h3oZB1oUISsvbVUgIpssYWimCJRqRMqSGuc3e5D+rakfRN0oASIdsbXdj1nXm0GI7oPSaxtie1JEqOIQ8LAe72eN0IeRBwPPaqhiuPYQO3xQQw9yzL0ej0v6bf1mf7G4zEGgwEGg8EMJMIZVRvTtwfsPxRcUxQFirJAmtryVL1+3/VXgDyp6AkNAK1dMqr9Aa5d38RwOLKwStCOcHCM/03U49XtdrGwsIC93R1UZQFuTOLQjW81gMaIuM8198zhEY9EHHpo8zoCmoZN/wyvAIUS/0H35VoAQTkbGxu4evUqtre3MZlM/OfpdOqhvE6ng3vvvRd5nvviH5TKIE1TrKys4NixY1hZWWkYYFv7IixM5Y81pjjBFXUKBON/dloOgCSOIURTQ+JzAYI0V43ja+tQKsazz55HVVbung7SE3CStoBSdk5qXTmPI3vsqHaH207SbsNd6XeigyZbeG07RmYaUgWdQ5N03qQOX0rILNtU3TZog+cSIaPdUXILE4PnKVLnJWwKr+WTlavtPBf2Ye1TIATBAVyybDs/HAellFVVpVUtK+YPnCQppATiKLEGRTCPDXtDQBtUWqOsCkynE+fCp9Dt9VEag9FkirVe6qttW0cCm9Wt0gJ7+/uYTnPkeYGqrBAnHWgj0O12IADoqoJQNhRawtq/BJOeHHLeeCaghkRm5hpY8qEGfMbS7bpCspSnGUBrQFLbxjwP0guFiYPuEdo2OM6slMKey643Ho9x48YNnD59Gmtra7jrrrswnU5hjE3ROhPFyGw5pEHS3KccK43Se+RRZGwKXA9vWfSZntiPvxHSjqyh6ypIYerrDABjz46VgjaAMRUMKvtmhQ2a0TCojEGpK6hEodPLsHJsCbaGr6ljHY2EdQU0kCKGkhFyM3WzhNY9B9fm023HtOfRraiFbUSwAEk5JNUYY2ZU1bb2+X34AiHpM8uyBh5NWDHdg3xUqfTY0tKSZ5oEddD9+eKjiieTycQHOYTugG3jw/tNi5L+kiTBmivES3hk23PTdZRHhDYPuu6oYxU7qccYjclgjLKsXBY2YHlpBVmWIstSRFEMq0Q6acoZlnSpMRmPMBzsIZ/sw1RTREmGU2fvw3CwgyubW7hvpQOSfzQk8kqiMsDOUOD/+uNNnL9W4fJoETn6UFGCOJZY7a/gzUWFcyd38ZazGZIs9uvexeIBpgJgCxULx0xow+Lv3LDK3UoKCCibo9sYRCry7F8phYkfyxIyikHMvNPpYDAYzMBb4ZhyzSdM9jVPqg6FIvrjeWaktCXkhBB45plncOPGDWxsbGBrawuPPfYY7r33Xpw9exb/5t/8GxhjsLKygpdeegl7e3s+Dwu5iwoh8KY3vQlra2vejz+KIhw7dsz79AshnG++03UEY9iy8r8DBsJBVBAJjHRZ/EwFiYrYOWA0TCUglIA0Cv00BXSBKp9CKEBKDQ0NoxTy0kCaEho5Ogsp1s+u4+F3PwQkBpWwOWlgLKwCY2CUQRovIk8NhsMxNOw5QggIf97MkmjQHcO0Xwni2CJJjFxS5HXwgKaE2naf8DtFyYUwDGes5BZGi2VhYeHAXB7UB2L2g8EAu7u7WFhYaGw48/oXMm3uJULtU3KgNkiGM23yEqHNjjQEkvz5Rhb2haQ3q1YWKMsCZalB1T96XRv6LEQtYTdAEWOzuBXTKYb7e5hOhkhiIIpirKytY3t3G+PxANJUbt3YZD7fvC7wu08IfOlFAaPPoTQO2wSskDQFdqbAhS2D5OkBKj3Eo+cW8T3vWMeZEx0nadlFziyZAGpGydV84ziM1ShsLmZj+QhkrFA5jwchBLTRVttwRlLyUiFY7TApmdoLNca2edA2HzjTJkGGV5YxxuDy5ct+zl24cAGrq6s4deoUTp48iV/91V+FMQb9fh83btzwQTK0mZPmeeLECSwuLvpwdSltEQ0Skrz24vtWS6x2Bmg/pvAaiaohCZdMm3w9KhhACxfhKJDFMSbTAqLKASWsBwgACIkKFFhVYqHTxdKxRdxz391A5NoV2t3LVTQSBlHUQRxNXQ8rGGEgrWgOmMM13zuaabdJEUThJA+NYiQBc3ct7qbWds/wvmH7bTmHeRg7h0R4WHiI+7aprGSBJ/z5KPhkG8Om5+TM4TBIhjY4btDi2G2IF4bjRWNgQ5UBFZE/svRQSA0x+Nb9vbS21duLvEBZ2srZtg82Z7IdDysTV7qClhKbI+AffzLCc9eBojLOLySu+UFA2gCTwrb7xed28cSFPZxd7+LPf9/dWO67DG4Gvo8Eic6MPXt83pQ/hTEm4Zh/WZZIooTvVn7cQql43nxsg2f4OfPmB11L64Ak7TzPfcBUv9/HwsKCnw/klkqaWVmWWFtbQ57n2NjYQJqmXgsk20Gapo0I0GYHUUcp1mI188iYHUcTHGoAE+7lWHjM2GRTLg6AQ1zhPbSpUwmQe6jdJHjuEu0yC7JN1dj0vVT15jAs4I5h2mGAR8OohfmwSThJSMqmNJhUYJQbXmhS8nu0RQXSvWlyjkYjn3+E+kr5pweDgfcKWV9fZ0lxZstT0fOUZem9RHjIer/fb6QFncfE+eZCuYqVUh6S4Qmd2q6lHBGTycTjleTNQNfx8ll0Le8LJUHqdDq4dOkS4lhh7fiqg4QSdLs2jec8mEVrgzwvMBqNMdwfQlclhJBIswyR1JCyQmIyRFGMSkgMJ2N86mIfv/HZBGUlfDTczZAxQF4aPHd1iP/l3z6DH3v8JN734BIoaMc+3qwjmh8/bjyDgfUprj1KDKzrmHJ1CEejEdIkQ6TqOUYePbxwNN/8eaIw0ubo9/A9EHHBgX8HgLW1Nf8MxhhcvXoVGxsb2N3dxQMPPICVlRV89atfxe7uLlZWVhDHMU6cOAEhrN/2hz70Idy4cQO///u/j263i5MnT+LEiRMoigJnzpyBlNK6ZTK7T6gdzKwD1n17jP4Ccpsf5QDhtpuysMbtNC8RTUsU7l4SAqXbzIUTAoq8RJpmOHPmDJI0s4zbGMAUzghpfbvj2K5jO34SMBJaC0RSwXoYHexEcMcwbWD2pbYxqPA8TnQO5Tmg3Aj0G6lrrdJAcF+ezpSMLuS+RPcgpp1lGW7cuAHAujnxfNSh8ZI/E92TsEKScLMs833gSZ/Ce4SYODHY0EOlLeufMcZjkISlkzsi0CxSO88LgMYniiJ0Oh3nohi5zctuZsvLSwDQYtCkd6VRFCXG4wn29/ehpECWxoijBEJYHDOOYpvMCQK/8fkOPnUhw7R6ebYPO75Arg1+65NXcWlzih/94Bn2fA0c5wCi9wnPsEHynhv3yWRisXC21rlbIEndtEnyOULvjrvsEYXvJAzy4oZHgsnonT799NMeGjlz5owPrBmNRphOp8iyzFeUH41GeOSRR/DJT34Szz77LHq9Hn7oh34I586dQ1mWWF9f99paq0dNi3HXDl0b42bHWkebadfu+dKsawsjKIWi0p5pG+cmSBtcWZXIOhnWV44hiV1ojQaACtaQYTNBKiURRQpUJ9KAEkUpF5BzMERy2zHteVBB23kHHT+I6LqQ2YWVSOjco96zTf2jdnioLocTwv4T8+SQCN0nHJuDiC9ULhlzSGTe2PGkUTwDYRtjPqwPQggf6r67u4s0TbC/vw8h5Nx7EvygtU2dyQOQaomrxoDt5hjjs5dP4enNLvJXgGFzykuDz3xtG4DCj33nPU5trtX45kPXH2ffUZvtwXkTBcdIGOCYdUgHHWtvv7mmuE/59va2t2vwLHsAPBSysrLi7RoU0k6Mv9vtYmlpCSsrK+j1et44G0rWYR/qcTlY0AqnnH8yQf45c7xrjPP6EQJKSqCs4AByezlrly6nUmLG0D2FlbjpmgYEzz2EDnqSmm47ph1SGxNsU8XDa+ZhvVy15LmLKZseUBsUeZuhVB8yUB7KTsdJCu71eg0vDc40Q3iEDJXj8Rij0chL2NwHmqeF5X7X/Df6TH0igyf98cg9Pk4Ulj4ajTCZTHwgDo/SpPvThhS+J47da62xubmJL3zhC9jY2EC/38VguIvvePs7W4y2zfdUViV2dneQTwvoyiBJU2eMAgDt4AoFQOL8zjK+cV2jOGJx1Zsly7g3cdexDO9/2/EZPLRBojZI2ueq8WvBHlQp6Q284Tuk6MG9vT1/jxDfpnO5gZmOt0VoctgAABYXF5HnOfb29vCJT3wCSZJgeXkZH/jABzyUR4x8bW0NH/zgB/HCCy8gTVNfMowiY8+cOYP3vve9eOtb34okSXDy5ElIKb2nEzH3VsZKu/SBdHStRimFgp630tBVhUhJZFmK4WRq348Q1ngobbi67YeFTkfjKRbiDJUWqEogQgSDEjDaVldC5SEvYSQElMtNc7Re3jLT/sIXvoBf+qVfQlmWWF5exi/90i81arcBwOXLl/EDP/ADOHPmDACLe/36r/868jzHL/zCL+DJJ59ElmX4B//gH+BNb3oTiqLAe9/7Xtxzzz3+Hv/hP/yHQwNFDqI2pk3/HiTx8d08lE5JagujDglX5QEPbRg6lzy5hB0W+SUJl1dt4WW6gNlkPVprH5gwGo08tsndBkMVmC/EsN+kklJiesKk5/l3k7pOVeaJSXPMOTSQzYOq4jjGdDrF7u4uPvOZz2A6nWJpeRGVLvDYu94duDiG/QDKqsL+/gBFXiCJU2Rpx2GWpQt6sAVcNwcVfvdL5lVj2ER5afDbn7qEB88uYrkfz0jHrPf+GYCmEVGImtdLqTwsZ2sS1nOW6keSSxyXuu21dbKvNiybG505kcACAP1+H+PxGPv7+/jc5z7ns/J94AMfaMxbpRQWFhbwjne8A7/7u7+LpaWlxvyaTqdYW1vD6uqqt5sMBgMvfFDirLYcPGy4GmTHKzwo2k+m2zj+L51EbeEozYS0GNDaOXg4AcRpbkYbGGHn3GQyhe5ngAZ06aBAVwxBScrkR5uyY9qQvmjGYXTLTPvnfu7n8Ku/+qt44IEH8Nu//dv4u3/37+LXfu3XGuc88cQT+PCHP4z/9X/9Xxu//+Zv/iY6nQ5+7/d+D5/73Ofw8z//8/it3/otPP3003jHO96BX//1X7/Vbh2Z2iTpgyCDeaoiUbgJzJPUj9KvkClyTHLeZkMLkEMS89pvk/Tn9YUWfLhZ8L5R+yEkws/hzDjsA9/MwmceDocYDoc+N0USxxgOhy7JE1Bb5S1D81kHdR3oVN+XYAnST+26+dcf27Za72tARaXxG79/AR/50fv9b0exp7gzG9+4rwHX0Pi9Dpt/bcfb3ksbJEhS8nA49BpYFEXeUE+bLjE9Cogh7Y28r0gL43OcM+mD1h5pIHyDmzderdcfODjuXG21MiWlTRI2ezcPgxhY43dRVijHOfJRgXSl7/aLBi4CwUJ1haB0w4cz7lti2nme4yMf+QgeeOABAMBb3/pW/Nt/+29nznviiSfwzDPP4Ed+5EfQ7/fxC7/wC3jrW9+KT3ziE/jIRz4CAHj3u9+N7e1tXL58GU888QS2trbw5/7cnwMA/PW//tfxnve851a66Gke5hueMw9GaZMESUrJ87whbZNGEMfxgeXD2hgfQRjk5RFqF/OYJknoPHiGpKvQu4M/awgTheNF96WIRx6a3rbQp9Mp9vb2vIWfpwglaYuH43OvBf5eOOyTJAm+/OUv4+rVq3jve9+Lfr+Py1cu4fOf/xPfjlL1+FeVxmg0tHCB0VhYXJhhBvYBrBuWNgYXNsZ44VqOIwo5L5u0Bl68NsKLGyPcs96Zf6KwkZ+UIwMgQySRacyb6XTqUwnYywmrrzPg+StNHdVK1/P5zz2tuBsq5UknnPnSpUu4evUqLl68iIcfftiH9W9tbWFxcRHHjh3D888/j8lk4gOxptMp9vf3MRgMsL6+jrvvvhv33nsve2zh64NSEBn1mY7PQCT2hBmhybB7Hkw17s01GtJqiryASlN00gRxFEEYg8prbIAt0KuhjUKlBaZFic0bY7z0/Eu4/MIl/OgP/WlIVRuetWPwWZpBa5tsSkWRC6c30GY2NQEnYY5qKZtDWmv89E//NB555BH8lb/yVxrH/uk//ac4fvw4fuInfgKf/OQn8Yu/+Iv43d/9XXz4wx/Gv/gX/wJnz54FAPzkT/4kfu7nfg7PPPMMNjc38TM/8zN46qmn8Jf+0l/Cf/pP/wmrq69UgdZv07epSX//Nz+PT3/l0mvGtAFACuCDb78LP/dTj712jX6bbhs6VNL+vd/7Pfy9v/f3Gr/dd999+I3f+A3keY6f//mfR1mW+Mt/+S/PXPtX/+pf9Z8ff/xx/Mqv/ArOnz/f2o6UEj/xEz/hvz/00EN49NFH8cUvfhHf8z3fc+QHunjxYmsOD6I2qZkoDPulY9y1iVT2Xq+HpaUlH65L95ZS4pvf/KZ3C2wz1rX1h7w9VldX0ev1sLCwMJOak19D96UosfF47JPvkFE0hFM4lMFrOxKc8aY3vQnPP/+8/304HPpUmByH5P0gOGJvbw/Xr1/HaDTyiX/4GEdR5F0ikyRpJPvnhjDqF/mj/+2//bexs7ODn/3Zn8X6+jr+6I8/g3/4D/+/+Ie/8o9w5sxZLC7afuV5ibIssLOzje3tbQDA3WfuwcbGBoq8QBwlSGLrdgajIUyJ0STHHz9x+TVl2IANxPnME5fxtW88i7c9cD+ef/752mtAoOGnbSrtBDQnhXkVujYijyZjrCytot/vY3GRMg3a9/r88897TScM0uLaB5fdSJqmPDU0D7Ms88bH9fV1/P7v/z4uXLiACxcu4Id/+IexsLCAKIqws7ODu+++G1tbW/gbf+Nv4Bd/8Rfx8MMPAwD+zt/5Ozh9+jQ+/OEP42tf+xre9KY34S1veUsDihmNRrh8+TLyPG/UTeXzvgEFGXhJu2FDggElaSIwyRiBc+fO4vnnX6jnAmC9O0AStnCpDAS0UCg0kPX7SDpdvPjSFeRliUJrjHQJKWzKBK0NIhVDQkJqBTmN8blPfw5f+fyX8Ct/7+fQyRSkLBHFQ1Q6x3g8wpXLV1FVtnZoN81sqoWqgowk3vzIO+fOn0OZ9vd///fj+7//+2d+Hw6H+Omf/mksLy/j137t11pTgf7mb/4mfvAHfxArKyt+IKMowvr6Oq5fv+4l7evXr2N9fR2/8zu/g3e+853ecGmMOTDF6M1QG24YqlqhesUNhAQ5EEPMssx7iHC3OMCWubK4q56xvodt8IVB96aK6fOgHVJby7LE7u6ud+0TQjS8VkKVmG8eXD3m7RAj4JXa2xJBGWM9S3jwjBC2kDD336ZzfY4I0TSgcn91ylzH82rTWFy/fh2XL1/GhQsXkGUdfOUrXwEg8NBDb4NSCvv7ey7V6xjS5dCmSjhSKJSFw3xBOLDE+StjKCVQ3EoEzcukSAm8sDHC2x6At49R3CVA85WNOeViNmBn0b0sPBLmfhHC+k9zP3mg6RECwMMqJJxwKI7mW1VVHvag6yil7NLSEj73uc/hxIkTWFpawoULFzAajWCMwalTp7C3t4cbN27g2LFj+OAHP4iFhQV0u10cP34c3W63MdcJ1mtbM/PwdwjYHE7B2qqHiZh2CwlRu/Wxn6tKA9KmEpBSwFQVymmOXrcDMxyhrEqXYMp52SgHkQCASyImowjTosTefg6lMmQpwU7W8yfLUgwGI+jKrrVIAsIF4RxEt5ya9ed+7udw9uxZ/ON//I9bo9EA4HOf+xx++7d/GwDw2c9+Flpr3HfffXj88cfx0Y9+FADw+c9/Hmma4vTp03j66afxr/7VvwIAnD9/Hk899RTe9a533WoXW4lj1UDNzNpQIjKsFUXhU5nmee7DyOm5ubsUgAYzn2fxpjYJG6eqLeSPPc9QR0yOcolsbW1hZ2fHJ4znuayJ4bZ5elDfwvEgPJPqTXLcOaSiKHy9P0qxSkUQ6F503zamHS5MClXn7maEt16/fh1PPPEEXnzhRXSyLp588klcvHjRj83+/h52d3cwHo/dc0sMBgNr7EoTaGOc/ywsXiwEXrw2Rl7M8Uh4lSkvNF7cGNU/ML5iUM/JGpd1fy6BPp8XkVLI8+lM7hti2gB8Rj1uM+BMu9frodvtejsIGRKp/JuUtmI6p+FwCCklFhcX8cUvfhFPPfUUXnjhBXz1q1/FN7/5TVy/fh0nTpzA/v6+v/ZP/ak/hUceeQSdTgfHjh3z2ft4n4lpA7PCRpuh9XDM2t0LzMzHGTzzyCHSuoLRNh+JEhK6qlDkOXqdDiKlIAj3th7ZkBIw0DCmgjYaWTeDihTyosTufoG8AOBC1wUs004zOy+t9mPzn+AQhg3coiHy61//Oj7+8Y/j/vvvxw//8A8DANbX1/Ev/+W/xL//9/8e165dw0c+8hH8wi/8An7+538eH/3oR5GmKX7lV34FUkr81E/9FP7W3/pb+IEf+AEkSYK///f/PgDgZ37mZ/A3/+bfxA/+4A9CCIFf/uVfRr/fv6m+zYMgDqI2CXgejNJq2AooTNbT1l64URDTCqWgtmu9h4RjrKER7zA66By+Qcx7xrB9Lim1RdYd1nZoBOM+ubRBcp/vXq/XCI3nfbJt2P9pFiLfGGsAMALfvDJ8zaERIm2Ab14aug6JOX7GlEq0rnpDFMJuWrcLHmGKgXlE2RdJayPjJc8TMx6PvQsoULv/ZVnmy8WREELaI9W/pDmaZZmfwyTRc42U95tL+ofRvHMav8+4AB6FTP16jHF5Q+jeLV4scIxcACpSSJIYhrz76ogcqzVJW/6MXg1t0Yc97i0x7YceeghPP/1067Gf/Mmf9J9PnDiBf/2v//XMOWma4pd/+Zdnfu/3+/gn/+Sf3EqXDqU26Zo+cyKXNY5hp2mKhYUFP5FIIqH7hkya8iRQUduQCFogVZQy7tlahvNzUhPuTWk3yUMlvIY2gHlaBIdFwmO8EgiFy0+nUx+NqbXG/v5+g2lSv6lNaiOU5EP8lBgC5TUBbLWezc1N7OzsYHV1FW9/+9uxurqKS5cuYXl5GcePr+Hhh9+GT3/6M9jbs14Iq6urHp6KnBVeG+0Di0hzcB2DEfb47vBgK/2rTbvD2eIWnhxkEkZIWrW/OT8srFQ05hRg3wHPT8PHnxglzR/yg6foxre97W247777PNMdDod46qmnsL6+jizLcPr0aWit3Ts5jv/4H/9jIy8NYeBvf/vbcfbsWSwuLno4hd4HFbSWUvoISaI0TRvaXmNojsjE5/vBzx9z4xixUsrOFUO+8QbGaAgYKCEQSQkJoPLVeB1GAwNIiULnWD2+jAcffgBxqqCULSZM704IgTSJrJOgqTdee/AOC2Nvo1BqDKVTTiRt8KjHLMs8AwMwg7NzaYYWx3g8bs0vTecR5EJuUr1er8GAQyZM/c7zHDdu3PDnUKY/fm9arDx4grvrcaYeSsXckLm8vIzpdIrJZOLDisuyxN7eHnZ3d73kRHkl+CZAIcg8CpI/B50TRRHG47Hv9+LiIl544QVsbW3h3nvvxXd8x3dgdXUV/+7f/TucPXsW587di7Nnz+ATn/gk9vb2PNPWWvtAIq0r6FKzGpgu4EnQWApU2tgSU99CGk7CTcMj2v6br0XL4BKBpjYnpURRlI3UqPQuwjnFNRPyq1ZK4dOf/rSHOy5cuIBOp4Nz5865dLcCGxsb+PrXv44zZ87g+PHjAKwQsbS0hLe+9a0+kGt5ednDKZ1OB48++igWFhZQVRW2t7c93EV9JSEhZNpUMo3gLj9CwXoluCGk+jwCRWgXbCGa/4IK9lIAkWOk0t3DGAhjC/5GSkFpwdLiSgClg1o0imqKY+sreNujDyDOFGQkbC4oXwLNVsWB0Q2mLcRsIrGQbrtyY4epgW3nh39AzdwIFyZ/17bMeiFxrJa+h+3R7/z+B0nZ3MOCNIF5kuxRiffzIENt2CYPouFjdbNt8zGm63kyfWOMr6hOPrudTscZw9Aot9Uch9Ds1J4qV8mb6/MrTYNxhR/66x/Ff/hvL9U/8s4HUvZhRO+qvlX9HkONjx8TQni7Cvn7c8GFb8hUPZ2IjJjUBmHhtFZ4oWc+h7lNp83bi7SwefYmLiB4f5qW9TZz3eyotZ8X3sPUiLiAaBYDbmnEGI0oVuj2OqBCvoL1wG688/p58Ly8IyRt/vL5iyWJ1xt03ITj5bMoy948OKFNWg/VUqDJdIWoK6f3+/2ZHBrUT+5hsb297QNvuKEyXIzUPy7NcnWYn0Pt8KAXMlxRm7TAdnZ2vJRUVZUP4giNlNSvefATESXJL8vSS2LT6RSf/vSnIaVNcp+mqW9zOByi3++j0+miKErvQrixsYH77ruv4aZmmbREmlrXQgGJXq9rA0WkQaSsR8BSP8bGzrS1f68VGQN84ss38Ikv38Bf/IEzePRNKyCpsDF2DlhtW86E/QshfHQinxfk7UQBOHEce0mWtK5HHnkExhgfxQgAN27cwKlTpwDYefH4449jZ8cae4F6jhljcNddd/lEUffffz/uvfdeX1WdUgPTufZx6irtJG3zNZCmaWO+zx8/05BMj4qBg4Enwv2vNvrW2DOMsBFRTuUxukIkJRKloKeFDT93IejGvTeNCqWZIskkUtVDpxdBxZZra1331q6dWeHusO35tmfaNDmIOVP4LL1cwgFp4lPa0X6/3zDEtElqAGakEWozlJy11n4SJkmCfr/v/bFDowsxRn7t5uamXyRJkswwZd4fztBp8fI8IHwDo34RLS8v+4i0GzdueBWaEg9JKf2i55sKPXc4Rm14OmDV36IoMJlMfAL86XSK//pf/ysee+wx3HXXXQ2mPRgMPIxETJv8eWlM8jxHWRaQUkBKgSxLMZ1OEKkYCwt9bG/vQlfWLzdSAm8+3cezlwbfMmNkSP/bf34R9564ho/82TfZmo8hA2Lzi5PW2m+ie3t7WF5ebhwnBr25uelT6i4sLLhsiZZpP/bYY+h2u8iyDC+9ZCX/69evA4CHL77/+78f/+yf/TMMh9aAytMVnDlzBouLi5BS4sEHH8SZM2d8dZnxeNyon0ptaq29ATSMSaD5kec5Op1Oq2DktQonxXKGLdwmN+/VOtGmkYCL3Pf8PWAlZIs1u2xOVYVYSegohi6HLq+IRFlpD68AFQo9Qa/TxcJyD92FGLESgNDQru6kFAJxZEvi2TGsk4IdJmnfdvDIQdQGBYSwQOjuFErM4b/zVLc2CZi3TRIP3Z/fk5/Pc4q0Te62PrX1p01DaFM9uYsg906h9gmO4BvCYRRKEnx8eKkxANjZ2UFRFDP+4kSE61OK2iZEA3A5hXuyhAmTAOCe9Q6S+PW1BC5sTPA//fo3GkyOMM822wURjee86kc0FkA9zwnmMsb4IKrFxcVGsikaM6WUj7cg10LeTq/X8xI+pVYl4YLmURu12VWoj+G8bZvH/hjmr8fwnnXb8NPlQOncmIYbphTCul4a1rL7DM8XNIQEolhBKvcsrqftTRxdcrjtJe1wodKiJ8ZBKh03OnI/0ZBCZkn3D3/nubVJbSdDWbfbbRQECDcRmsS7u7t+YXFXwzBfBycuefONJcTL+QbQ6/X87/v7+z7gh6Qycuuie3KYpe3Z+Vjza0iFJ6PhxsYGvvzlL2N7exvLy8v+vvv7+7h8+bL3Pd/Z2cHDDz+MZ555BleuXEWWZTh37j6srR3D3XffDaDeYMKNRGtXrVwxQ5RThc+d6qH8FgTWHEbDSYX/+V8/jV/6iw+1HifJLGQApDWF74WEEJoHtOF96UtfghAC9957L44dOwatNW7cuIGrV69ifX0dJ0+enFk7jz76KF544QUA9YYrpcTb3vY2nw+bYA8uYXM4hAtBtJnSmuTzlIyZtCba4gWEEB7e4LZGc4CU7c4AKJzJzNo8jDHOi0Og0lSLE4AxiKIYsVTodjsoSo3SaAASUkhoARgjrfdSVaKoClQaKAEHnyQQsIJPpUsoRS6upStIfTjddkw7lEaAZlECYoKUmH1hYcEzau4nzV/iPOk6NOTx82iCEQM0ps5xvLS01Gp0JIZGTHtra8snRqKaeZxpcwmFL4K2oJ5wgyB/3CRJfOgzYCVdepZer+cXDE/RyZ+ZY+/UfttmQkYpShyVJAk2NzfxqU99CpcuXcJDDz2Ee+6xBQK2t7dx/vx57O7uArCuoO9973vx8Y9/3CXQX8H3fM9349SpU1hbOwYAKMsCVVX6CEp6hqrSUErbBPYwXBhCL43w6H1L+NKzO7gJQec1oeGkwj/67Wfx1/7s/a3HtTagyE9yFSOBhDMeIYS30wDwBkIA+OQnP+kZ6d13343RaIQrV67gxRdfxLvf/W6cOXOmsRFWVYUPfOADPrKS2lJK4T3veY+f0/v7+x7a4K6zPGkY3ZPm9GQyaaw/OmbhsIK9zybTB+CMtzXXpjlbewsdRLNwBPf3F5CoyhJFWaIsK5hKI+oqxHGCxX4PO3sDlEUFIW0NScCGwFc6R6kLTMspyspAGIHICCQqhRCWhVdVARVFqKqiLhJ+BDj+tmPaRAcZwvhE5MZHznwOUlc49swZFGfc4b2IuRHsMg9eCbFm8qYgXI//zaO2jYv3l7cDoLGBEPxBftfcZZBvfAdRW99o4fLnnk6n2NnZwfb2tnf7oz5MJhOvaZDP+Gg0wu7uLgQU+n2rzhMDadso3Ai4DvB/ate57/6O43jy+V3k5euMawN4/uoYX7uwj7fdS/k3iCkB9rkIVrNHPbPCrLARzhsyNEspMRqN/LumABqllB9bIsK2KeCNw2e08VNRBu4BFLYdQh78XpxI+OEbURvNXQsEWcw/OJeMw04szEzrvBaSpBCIIuUhOap+w1MSaK81u7B4bZAoKidmr5ABDGS1hoP7dtsxbb54+aQihtHpdNDtdhu49UGudnyiEdQxHo8bEjEZcEKYgBgO5eMg96d5bdGEJymFIBtuEOWuU9TOQTg9faf+0HUEVdCiBYClpaVGDUcusXLixkyOPRpTG1Dp3vwcSt26tbWF1dVVjEYjrK2tYX9/329MAHxeirvuugtf+cpXkOc5VlZW8K53vQuj0RjdTs9DOnlezPSLPbjXSobDIbLMVsKpdIXYGTjPnOjgzHoX568OMQd2/ZbSv/jPF/CPf+ZRN4cF7IJvRkgSE+dMTgjRqFYURZH3DBoMBrh69ao39BJz3djYwFNPPYXHHnsMp06d8u+NXAFHoxHSNPUMejAY4NKlS7hw4QIWFxc9rh3OGy6I8PnC58h4PJ7ZJAhSo8o882w53hkAASs+VMomY2PttcG1c2M0jLawRZwkEFIijlya4iiGhsZwFKHSFaaaGDtgi3UqaG2Z9TSvcPH8RYx29vGh9z0KLSQABSEkoiRG5arjVNoa0dWd5vLHmQkvBkoeD+S1wRk1D0bgFDIrck/a2tryE5kkdGKuRKTy0SQnaGC2AG3T/XBvb8/7wmZZ5r0nuOrINwwKomlbGEAzmRVBNQB85FpZltjf34fWGqdPn/Y+taQ2t0lIXM0NjxP0xLPKETO5fv06rl27hueeew6nT5/GcDjEXXfdhSeeeAJFUXimsrCwgHvuuQcPP/wwnnrqKYzHY5w4cQLf933fZyUWIxEnEYQAxuNJY8y5ZmFhHQuX7O/vW8+Y3Pohx3FkJSJj8P/+7+/F//KbTyF/HXJtY4D/67Mb+DPvOQHuYWBMGClYF4km176Qaa+urmIwGGB7extf//rX0el0vGeJ1hoXLlzAH//xH+Nnf/Zncffdd/v7DQYDDIdD7O/vY2FhAceOWUhqe3sb3/zmN9HtdnHq1CmcPn3aY+NENLfDIC+apyQckHdQCDF2Oh1sbW3NwIB0r4YRU9RM+Ci2JzrWJvhYGLVCWVRYPWZjBdJO1+YdERJGCERSY3+4j6IqMJ04AVEoQEQwooQ2AnmpMZqU+Pznv4aL51/A+9/9CKjMXRxFSNPMMvZxjqrKAUjYKJz59Poynb9CFGKu3DWJwsUp4dO8hErz7kmh5Daj3KRRPDdU+0JMkaT6efcnSIQCHTgWyFXMNihgHkzD+0VtkFGH+kMwDNDMrdLWxlHGiBPv93Q6xWAwwNbWlq8QT5gl9YkYTJZlWF9f94s6yzKcOHECp0+dxvr6Cee726xGHy7IWjqFV/mlskYix/pgAKwsJPixx+/CtzjWZi791y9ca3xvPucsE+KwBIDG3CdYand312uaxPjIzfPkyZNek6E5zwUgXgt1OBz60nbcCBoyWbpXG0MlAatt7rQZ60M6bF7OO1cI4YfPrxF2nl8r5ObqeEYcxYiUQhIpREpCSivUG0MeKRZfNwYw2qCqDLa393D16qYrC2dTxEJISCXdHHXwCzTaauNwuu0kbWJ6PIqx0+l4Jh066h+EDdMkJVyZJi5h08RA6RzysCC1joydoXQdLihi/gS7KKW84ahNzSRmzu8XPkvIqCk8nWAcgmIo7DkMc583NvMWiMf6mCTF+xrHMba3t72h64EHHvBS21e+8hVfcf3BBx/EeDzG1772NayurqLT6TAoJIeuDKrKqp1cyuL/hhK3lbqb5ceMadbifPTcIv7d6w/WBgAUlcFL10c4c8JiyfUzAmR4I6MkMGswf+mll7C5uYmqqnD9+nXkeY5z586h2+1ib28PL730UkOwoTSsVP9xbW2toUnSeY8++qiHB5eXlxvQCNHNMFTaHGiNcqGFPLDaoLk2oUsI0WDA/HeAbXUGPk+N1hWEsHM4SzOkqXUzIo1XoEZcyOyplLCMW1QQBI8IYQNu4LORIE4SxEmGa9eHWF1NkGW2oHQUxVBRBG00JpMSaRoBnQMqGuE2ZNocWiDPEMpRTSp7iKkRhZOdiguQNZzUPgosoag82ih4lCAllSLsnBM3hJLqTiooMXleAsoY4yUiYupthk5SKbl2QZN9MplgcXHR4+v7+/vewMP7x8cgHA+O93GJnzNIvsC0rvNbpGmKq1ev4umnn8aTTz6JH/uxH8O5c+eQZRn+6I/+CJPJBBcvXsQHP/hB/Jf/8l/wpS99CYCFSk6cOAEpbarVoqhgdA0RaUOStq3NFzIuJSUqUaGqStgl5LBKx7SFe57nrw6RxALT4vXJuf/vL13Hn/8zfT8HoyhBVZXQuvbuCTdtek9f+9rX8OSTT0JKicuXL2N9fR1/4S/8Bezt7eFLX/oS/uRP/sRrWuQbv7GxgYsXL+Kb3/wmfvAHfxD33HMPBoOBPwcAvvd7vxc3btzA9vY2Tp486ZM83SwR821j2rQWyDOG8m+HQgGHZOq5a1xpr6bG51r1ATkUjWuZti3gu7i0hDRNEMfcq4wMhWRK1IgjgTiWUApAAXhvFCOhyRgJIOt0kWU9XHhxC93ucfR6CSAV0jRDnk9RGYPxaAggwwIOhuluO6ZNDIN25SRJvE80x3mPei+qFk35iMl3lEsddfi0JYJEeNa+sE2aWIRlE9xCPuKEKbdJ2tQG/cZpnmGS8lnT5sXxbR5G34YFhv0+qA98jMNgjtFohL29PWxvbyOOYx/Q0el0UJYlhsMh3vKWt6AoCly5cgUbGxs4deqUx7rLskRZlDCG+4lTvxB8cB8Fqa78OYJngsGL18YoXoceJETnLw9b4Lfay4F+40Tn7+zs4PLly4jjGJcvX0aapj6XdafT8ekKiLTWGI1G2NrawqVLl3wwU+jOefr0aUhpMwB2u10Pc1DbB2mx87S4Ng+SEAcPce0GIxa87do0yfF0oJa06Xmsk4GGdAm6ojhGmmY+3ULQU+8oYvsnHKRBbTXOBAAoFUFFMQaDqU1UJmwmbqkUpFR+jWpdYaa5gG47pm3zU3S84ZEz6zZMjYh2cgo60Vr7IrkkVQNoVcU4hEJMN/Q55SSE8DgyhfESJBJewy3sHNNuk4jpOWiScUZNQUTcfSrEytv6SZOa9+EgonB5Km48HA4xHo/R6/Vw11134YEHHsBoNML169extraGpaUlnDt3Dru7u7h8+TIeffRRnDlzBvv7+3jzm9/sS51Rfop5ydr8uPjAH9efvEClK6feWymq0+mgqqgog4QwAs9efv2Es7fRDksja0wzU2VVaRRF6YPFtre3sbGx4T1yer0eHnzwQURRhK2tLa950XvKsgyTyQQLCwu4//77ceHCBQwGA3Q6HTz44IPodrsNZkyMlewEi4uL/rcQsjpsvhBJKX3pPNoAAPteyWBOqWO50NBmR6G2Z1gt608oaBFsSOswjqPZtc6fxRgYaJRFgSLPXcV2m6HPCC/Hw8CgMiWWVhZx6vQJqFj6zKva2Bw5cZxgob+I6WgMIVTr/OZ02zHt48eP+8EmTwie55kzIHqJpBKS5wYxbzLI0X3opXIJ1BgbzTUajTwkQouBRw6G0sF4PPapRUkFpDSYRMSwyS0LqEOzeYBN6ENNz0Y5vSmXSp7nPoNbFEWNTaJtY+PWeb5hcHgnlP4mk4l3gSSJeTKZYHl5GQ8//DBOnTqFkydP4vz580iSBG9961vx7ne/G5/61KfwpS99CT/+4z+Od77znbjrrrvwrne9y99/f3/ffQ4Nb+5f98X22fiAk8l4CiFtoJA1vNnFuHn9GqRQUCqGEviW59Y+jJobSl1ZqBYYCvT7PaysrOCzn/0sXnzxRWxsbOD48eN48MEH8cgjjwAAnn76aV+mbnl52c+Nvb09rK+v4/3vfz++8IUvYHV1Fevr63jve9+Lfr9vE2+J2sgJwGuGp06daoS8H0TzNMQoivw6otwpNOe63W7DBtMYFw6TsFB2u8GLcLo0cPvRaOTX9/LyshfySKtQzsIoAmZNk05rjel4gulojKowkFHHSdCwwoCrZFNWOU7ffQJL/UWkWQQRCWhhnGQfodPpQa0lGOwOIAUOdT297Zh2lmXeSg401XX+PWS8JGmPx2MvYZPhkl4kV9U4nktYHE8Tyl0K2yYyBZCMRiOfS5uwO07zpGCiNqmD/mghEaZM2gC5hPHoyrCNNqPmvOOcaFHRs0wmE4+fr62todfrYTwe45lnnrGBMkLg5MmTUEpha2sLSZL4RPt33XWXfx97e3u1J4HtFPWEOmRLQIFDOFZdV5FiroxsPkgBBXqHr2MxOyD76Lrxri0ea+MQ9vf3cfXqVbzwwgvI8xzveMc7fN3VLMuwv7/vmTBJlkVRoNvt4vTp0/j85z+PTqeDJElw9uxZDAYDn/mPS9qEP3c6HR8cdRDTPmgeExwY5qIB0IBmeHQz748tWgCQG6ewOAkEM0rzvpGgxnMN8TSyfl3hAMFXA5Vb98bYdK1GCAdr12tfmwq9hS5SlcHkhWfsdopKqChGR8ZQKoIUGkbfYX7a8yZG+KKJyZLEQp9p5wXqyULXEHHXJprc3DNl3sSlSUmGDwANiXweteHK9Ewhdk0LilTlKIp8fzlc0iYp0/dwowuhEa6lhJI2hdsXRYHz5897WOOpp57Cgw8+6Isr0BhMp1NcvXoVRVFgaWkJxhifA4aMvG0ulXAYon+tjGHoyuaKIPuDkFRdfjCToItUWqVep/5+jGhcrY921HC9A2z2Sook7fV6OHfuHLa2tnDjxg1sbm5ibW3Nu1FeuXKlUbaN7D/dbhf33nsvTpw44bUzDiWEc5ULB4dJ2QcR1+JCu0kbZEht8++EafvzpJi5b9v6oLUbPhsxbOOEAQiBqiqRFwXKqkKuSyipkCUJirxCBQMYDaMBIZ2x21QwsIKDypStYhM7CV4qGF0ybJx4zcFjddsx7TZvkPB3knIHg4GvGk1EEm8YKekZggv1pcm0urrq3QnnFTima6fTKfb3972E6ZmKm1gctuFMsc2IScQlD3JJJB9swoIplSaNCeUU4deH0ggZlTimziMy+bkEJZGaScESf/AHf4Bz584hTVN89KMfRafTwZve9Cbcc889fiwGgwGefPJJjMdj3H333aiqykMZe3t7DenKtuvs9kY7/1i+wTiNqcihtd1Ql5aWAAFM8wmuXbvmvYqEEJCCMhUKLHUjbGx/a3NrH0RSwG/AZDBbWFjw0JmUViggF7777rsP9913H/75P//neOaZZ9DpdHD8+HE89NBDuHjxIr74xS96/JtycFN2vg996EM+tmA4HHoNDZhl2qWXNNuNofTbYQw9iiJfdi4M6uL5UjwU4jBwOk9rDRXVsYSe0TP4k2vDlLWQvJt4TczwOaqihkrzYort7R2MxmMYoZCmCaSKkA9GmGig0pXVeoyAMRWgC1RmijTtIOumWOl2kGYxtABklKCc2oyJSWQl/qq8A+GRo0wQkg6m0ymGw6GfCORuxw10dH54LTfitIWnt01e2iz29/d9ma42SKStv0chMqDShO12u97gSW5htCGFKU/bmDZ3L+QLJBxjvnFkWeajRZ9//nmcPn0aSZLg6aefxs7ODrTWWFpaakja165dQ1mWDUlbSuk3t2A0yEYPLln5FPSG8F7j+2NgMJmOMRzaDZoMXbWHAXD/XX08e/lbV+j3MFpZiNmmXqciIN9oKeHtMXt7e+j1erj33nsxHA6xubnpS9Str69jf38fzz77LAaDwYykLYTAysqKZ9T0L73vMOgqlF5vRdrm64x7HdFvbQZ9bpD3kCcwuwaZ4EPPQ32lsHsK4OIMu21+09yaTMYYDgYQKsFyZxkiiqHkFEIbMNwDMNYl1UraQJJE6C+kUBIACLqBx8CllNBC3HmS9jwiJkUvjiADbqSkSdfGRLn0S658hHfPg2Q4Vk6eIsSUeJ7uEKoI7xdifHxSkURMn3niq/F47HE7aqdtYbVpJOHCbJvIdD75pxtjo+qooEGSJL7KSbfbxc7ODra2tnDXXXf5dsqyxPr6OiaTiZcaubQ1ywTmjLXW0G6BJ0niJr7AdJrDOPw3jiMIYTcgW0sSrjhygjPHu0hiiUn++gtlB4C33LPkS64pFUFKhatXrzL3Vvg5tb+/j2vXruHKlSs4efIkAGB3dxdlWSLLMnS7XQD2/JWVFbzlLW/xWiIZN7kvNFHorREeO4hCeLJtrhMDpox3nFmTJsc10fD+BsYD0NrNB1PVhnPa5AD4OpahjaupdQLGaBQlRQwbTCdWG4viCELaCkhGCju3KgvXSSk8xuF5imPg2gASVCzBhrMDlducnBBypzHteZI2VdAYDoeNHL928dZ5PIBm8AvQNDoaY3z0V5IkrRXUOaxB0jylPJVSYnFxsdXASJg60EzgzzcX7jlCfaaET1R5xxjr0XL9+nWvEdA9Qo8Q6i9fHDQGXALisAiHTpRSvgDw/v4+9vb2UBQFBoMB+v0+Njc3IaXEiRMncP78eaRpioceesiP9WQywdvf/nbfJ14jkiR8ep+2SoiwmGENZgMAyqqCdtcs9BcghMJoPHLpXe2zdzs9GBiMRyOsr69jd3cfg9EQ/X6Ksydfn7m1iT78ofuwu7uJ48eP+5qZn/jEn2BjY8Nj2vfddx/e8Y534NKlS96w99hjj+H8+fN4/vnnMZ1OcezYMYxGI2+0fPOb3zyTuY9gihBf5nMHmC9k3CrRHB8MBl6wIYqiCN1u19eu5MIOv5b6V1UVKl0hd+XKSCMmAWNpaWkGx6ZnpWhTu3FVGA5HmDqNBNAQ0mqxMLCl65REN8swmIwhBZAmMSbFBFIKKBWjKiuUMkdRxSi1rcouhYDREaSKIQ2gUSGKBHRpJfSD6LZj2vOIAlgGg4GHCggO4bACZ+jALH6stfYvP6zt2CYhk0/sYDCAUrYIaq/Xa1UDOVMMYYi2z8R4ibER5MKhH4oGBWq/7DZNgjNtjiPz43wD4YEOWZb556EiCuQORptkv9/HjRs3sLGx0dgUy7LEfffd559ja2vLwzlhKL/1CKi9ReDTlFpJ25eNSzKoKMJoPPYJpXq9DuIkQVkWyPOp87IYoiisltJNIjxy7xK+fH7nUPX0taYkknjzPcfw1a9e9Myrqiq89NJFPPfceed7X6HT6eCd73wndnZ2IKXE0tISvud7vgfnz5/H1taWz/VCmH6SJFhbW/O1HMkPep6UfRTmfBRoch7R/SmWINQAkyTxfQxz+Nh5zYzRWqMsSp/SgpJP0ebUVsKMt2lMvSan+RTD0QiT8Rgqkuj3e0hchLKUAnBagMDIFvxVEsiNK94rYUyJSttNpCIExfYaQthUrcYUUNLmMTlM1L7tmHY4KUjqJC8ELskCTQZJ39smFjGrUK0i4t+1rhM/8UnGmeY8FTGEJfhnfg0xKIJpSPIgSYSk8Hk43bwxCyUr/qcZYyQYJooiXLlyxee6vnTpkvf/BYDFxUUfVcbV+ZWVFSwvL3tXRGLafOMK3TTDTUsb7a02Xp0G3adWi+37lT7nsRTSpnQ1NlLN3lfiu99xAl974fWXW/sHP3AGZVng8uXL6PV63qAWRRF6vR56vS42Nq5iOBxiOBzivvvuw8rKCk6dOuXnAXma0BpYX1/3qRK4F1WoYfHPbbAEMN/3mtNhUjlvi+YB36wJHgkN5yEebtgzRHGMbqQaaSzq5p1NxEMVluy8qZC7oCybKsBlJIxU7WVkyHPJQBhjjdrCwiJ+DD1KYm0nBtbf/urGJoSucHr9OJTwR1xZMvjQ+3l02zJterFFUWBnZweDwcCnaKXjHFMODRttuF2apt7iHAa3cMrzHLu7u17KJFWU7s1dpEIJJlwYvD/8L6w8Q1oCBaFQm23qH92XfuMBC3SO1roRbED3pwW+srLix/J3fud3vIfKl7/8ZXzXd30X3vnOd0Jrjfvvvx9nzpyBMQa/93u/58P1qTzVsWPHvPZDDISPEw9mskxcAELBwKAsbTQaAHS6GSIVYTicOI8goCwqxHEKpeyCr3QBJSSMVBjsD2AM0Ol0UZUGkZK498QCzpzo4vyV109ubSmAH/7QWQyHQ3zyk5/E9evXcc8992BpaQndbhdnztyNfr+P8+efw5UrV/DSSy/hR37kR7C8vIzFxUVcvXrVu7YBFo6K4xjve9/70O/3PYTnIYWWpEyhoNDG1Pk7OsyFdR7RPcgWw9dHHMc+MpMbyDkOXjrPGqM10jRFJ8vQ6/e8L/Y87y5qGy5r5GQywa7LQmnDyjWkksg6HQg4TyajESlYLiyAWCkoJSG0Rlnmbry1LSQtJAwEKg3kBfCZz3wZ09EYP/yD/z36XUAoQJsKSaqQ50AxKeb2E7gNmTYnmoij0QiTiVWTuVoU/huqZPw+AHy+DGLE/Dj/Tm1SBXOOpXGscF6fOWPlTLsZulx51Y+YK39OSj87D4MMJZSwfS7F8xzbABoQUVEU+MY3voHBYIBut4uvfe1reOyxx7C0tAStNU6ePIm3vOUtAICPf/zjXkq8++67fXV1ksDp3rxoL20Y3s3QVwkxqKoSRWENQ0kSI00yjIbWI6XSVnq2xmKb30FrcmFUGI8nUCpGkqSYTgrAFV/9qe+9G/+ff/vN101u7Z/+f7wZgEGeT/GNb3zDbj6VLQ+Wpgm6XevKN5lMsL29ja2tLXzoQx/C0tISpJS4dOmS90MWQvho2Pvvt2XMyIOHNJt5nkwHzddQGie6WaybwyOhlhUWcg7b0lqjJH9ybXHpzMUENIUjShRGbhuNHng4xCYnszBdJ6vTKhvDqsrD3c9YI6ItaWdtK3GcQWtY9z9IP2vLCnjmmRcw2N3Hn/lejW4GGGkAUyGKBaQEzJ2YMIp7SZCxLGTQQDuUws/hDIwzLSIuhRAkkqaph0RC75Cw/fBe1CaX+kOi+/JcJZzhhYz+ILiHtx1KTHwBTafTBi5eFAU2Nze9hLO6uop+v+8LPhhjvUjW19cBWM8Fyj9CajqX3tv6Nk/DMLALAcI0UtjyaDrAKb6i9tUNn1VrjUhREv6pu7fASi/Cj37nSfz//tuVbzlMcvZ4hu9483EURYnxeOw0KuGjdSleYGVlBcePH0e/38d4PIaUNokT5bgmv3fOlPmcIQqhwpDa7CGh3aNtnd0M8ffD4UwirnlxgYOEDOUgsiRJoFoKjhAZAwdFaBhtUFYlylI7Q3hd11IIYfPZ+GfzPqauD77nEASRoMbErQ2G+mpQaYM4zhBFU+zvD7G8mNp5SrYZY2CqO4xpT6dTj6fSwPMwW15Gi+/W4c5N0h25CXa7Xe+F0eYqVJYlbty4gdOnT/tKG4R/87B6ui9d32ZQ4RtFiGPT7k8l06gMFD0TzxJIzC9sM4RmQrdF+iylxObmpo+wo8xw+/v7+PSnP42dnR2UZYnHHnvMe61cvXoVxhhcvHgRjz/+OPb39/Hkk0/i+eefx5kzZ3Dy5EkIIbzKPhwOG5sNZwr0DLxMmvVuKJBmMdIsxeKiNSyNxxOM9Aha22AZpSSiKIF0OKYdQytlCyEwHI6QJl1kaYadrX3ESrsFp/Hu+/u4uLGEP3l691uW+a+fKfzPf/4xdHsZNjau4vLly3jkkUdcAY4x1tbW8JnPfAbT6RRLS0v4wAc+gNFohKtXr0IIgeeeew5f+9rXoJTCmTNnsL6+3vDZ514WRCTg8O/cU4O+t+HTXEAK6SCsmxMxaMpDwoUFas8m+6rTDpNUzsPQ0zhBwgzw7WQAY1CVNsJxb38Pee6wfdoA3LNEkUSdr9wC1VZ40EBF/uDSFkcoNURRQleUrc/xh8oAusJkUmJ5eR0oY3zzmxdxcv0+dDvKMXltiwgXB+fBue0q13BpC6itzhz/4nSQgYV2cpoUZLhpY3AUjQbAl+8il0CeG7tNMpn3WyhtkvRB1UP6/b4PXSb/aMLv2vrIP/Nn5uH6vF3y+d3Y2MCNGzcAwGdc+/rXv47Pfvaz+OxnP4u3vOUteMc73oGHH34YZ8+eBQBcv34dDz/8MADghRdewJe+9CUcP34c586dAwAf7k5h7qFGQpsWfw9AnY1Ra40kTrCwYJm2TYY18ri3EAqRqqPceBtWWyhBGdZ0paFZYITWGt//riW841wHSfTKuLPdDEkBfNd3nMRUx75G4o0bN3D27FnE/3/2/jRIsiQ7D8U+97vEvuS+VmZlVlV3LdNrVfV090zPPgNwAIEACBgF8eGRfGaUSaYnmUxG6pd+SGbP3i+ZSSajiUZSTzQQ5JhBNIAiBAyAGRDTmJ6Znl6ql6peat+rcl8iY4+7uH7cezxOeN6IzKreqrNxyrIyMuLGvX79uh8//p3vnOPY6HTaKBaL2NjYwPLyMhqNBk6dOoWpqSlsbW1BCIGlpSW8/fbbqNfrGBsbw+LiYk+OHFKK5EMAkv089D5/PkkwG//+wwi/lmVZPYEwXIgKSGOC7oOMpFwuh1Kp1LOrM66kX6k48ZbX6cR01YrOs8KhQcvm+eu7O7cwVFElmhBQEFH6VSvKu63CMDa3oyo1YUDJvQLkciVkMkUs3V9HEChE4etR0FQYhgj9wTnJD5ylnaR8kwJGTOkHI5Ak4X1kYdMk4NcbBMP0a3O/BYVbohzjNdkWg7a2+7m+KYQvU9UZz/P0riWfz6NQKGB9fV1fnzjb9XodtVpNL5hUqJcUtQl5JLXH7D9t8QkJx40w9lCFPRO7qzSM/gddi47rteKjBUvEbBRKeGXhf/b8GI7Oh/jjv70HP1AxTv7JS6iAP/vlPfzZL+9htJTGt58uYzTemQjRTYk6Ojqqg2XIeUc+m2w2i5GRER3qbvb1oDHZbzz2e4++k2R570e4Rc93hhQ0xsW27R4nJRkchDmbxlnC6AIQM1SCaLH3WHAa/e7fdt6HADFDJCSkkBHUwY4SgqCYmEGiIoMlnclAiABKCUB154/jOHCdLxh7hGNcQNfSpgnKedjmwzEtPW6ZUcQeCUEV29vbmk5I1ioVSaCFoB+NKgkj5G2hNtMgJQWoVFTnr9Vq9dAJ+2HnvY6Y3krrdC/8WJJOp4NSqQTf9/Enf/InWFhYQC6Xw/379/H0009jbGwMP/rRjzSTxbIsPPnkk3j11Vdx8eJFKKUwMjKCxx57DEePHtXZ/Oie6Hqm89N0jpJFlUql4LgOcvk8PL8Nz+tge7uFofKYfs7RM4qLryoFhEpHFvN7S6dT8AMf9XoD2WwOQaDgdTyooA3LcZFKZzA6VsThw2l89elF/D//5AKu3NmG54efaqj7eqWFP/rbZaRdif/Vrx0GcB7b29vI5TL49re/iXa7g2KxhPPnz8PzPCwsLEBKiaNHj+pcIplMRqc15dAZ0Ish8+dBr7kxY44jfo6kBXg/iptfnxSu4zg6kta8DhEB6vW6NhxoF0z1GymnOhUqAKu4TvOlWq2iVu3CilJacBxKq9pbeCGypCNXolIqNrYVEEqoUEIoG7blwnED2H5UUT2M4TghBIQlYMGCVBbCQGF8fAJZN4/q9iaUshAqAWFFKVpF2UbG/YJh2ty7TAOCnDA8F/AgpwkfgDTAedIcoJvasVKpaEiGwoOJl0yDmSt004rpZ9XQQOaQSCaT0YEV29vbaDab3S2cEZVp3k8SBMPvJUl830c+n0cQBHj//fc17LO2tobTp08jl8vhr/7qrzQN0HEcHDlyBL/85S9x69YtAFHkWTqdxuzsrM6NQbgq76MkBcAXPUoD6tg2iqUCKpUAzUYLzWYjfk5RFZCoH2y9JQWFMigALBiHYJGW30Q+V0aj1oTvB1CeB9uJYK3R0VEEoUChAPyP/+uv4srtdfyXn17DL99fhW0JtNrhHn7+j09anRD/9/98E6PODET1BtLpNM6cOROPwSr+4i/+AtlsFkePHoWUEjMzMzh06JBOi0sQgjnuuCRZ4oPGaZJ1/TDCnzlx/+v1euKcIJ8K8dTz+byed9oQSyh2rNsYhoAFNBtNbG5uaqMsk8vDtuMdObrzXikVs/ricaSPQORkVBICEpa0YVuO3g3RuIvw7sgSt5QF5SsMDQ0j4+bQabYAFUVfWpaEm07DRgppZ/BCd+CUNpDMnR6kpPl7SVYGVx5eHBZrshX6nW+vz/pZI9za5PfCYZpBi87DwCT0XbomWfSNRkNHzBEbgRYSqpdJfUS5SKhEGMdH9wOLcOGLCcFCCqzQQ3SF+AjGFtEppaLAB0XKWncJlaUKoVQUUixkFF4sHFsXW43GTLc9x2aH8C9+70lUa1W8f+kG/uiVdVxb2bs81Mcp694wnPw30GhEC3aoFBrNhi6rl8lk+i6CH1U+jnOQDFL2fC4mReYSa4jGBPdZkNLuBsx0524Yhgh8D7aTQqh6mVZ0idg+RvcvgxXY29K4b6MUrFJQDkoBoSJlrVQ81gCE8f+WDTiuRCbrQFoE41AQnIqcGgPkwCntIAjQbDZ7lAZhsya9CRiM39H79NNut7GxsYFSqYRGo4Fqtdo3nSP/vhl92U/4gkFBD1QqjO6tWq0C6E3UlBSh2e9e6NzmjoP+JguG+uv27du4fPkyPC+KyBsbG8MzzzyDlZUVrK2tYXFxUWfNoyjQw4cPawVOO4ydnR0No/BFhW/V+RZZqajyDjlWKeVrGATYppqGSsCx3fg8tqZmqVhRQ4RxwScFhTDGHLt9HaooG6DtAo4HCGmjmBuB7WbguBEDSQo6Nvo+lIVsKo3XL9dxe/3TVdiRCHhWEf+nf/sW/s//3VNoNht45/y7WFhYwOjoKGZmZnp2hTyHe1JxEOqLfmJa3ya8R++bTKdB84mf14RjdDRjvGi2Wi1tGJDkcjnNCiPKp+nD6PYW0IqhxCg/ewdzc3l4XoB0JjY4OKwY/xcpYpbEKTpx/CG9tBDCB8Jol5ayUkhJwPYFQkTpV0NS2CqEUB4s0UA6K5HNSuRzQ8jkrCj3dugiEAqBCPbUygeOPUKT3RyIJkOCH99PTNybIh0pR/XOzo6m9O0dbbW30qb2EBxAzk2CRQCg0Whofi4lq9pLaZuWSj/aFtBbeUZKqSuoe56HlZUVbG9v48SJE7oK98zMjI68JKfszMwMnn322Z77Ja98D5da7GYlmJg6sRuKxaJOQ7pT2YHv+QCihDxApLSljKuXRLwARLZNgCggItS0re5CFSIMfVi2gOUIpNIWhkbKKJaKyGZj2iji80VZqgBh46/fWsXfvl9D5zOrUCawsu3h//Wnl7G+uYGLlz/EzOwMFhcXNbWPxidPwAV8ctbyINhlkHBFbcKSpLT5OQkiGRkZ0bRXc56aQmX2tra2sLW1DSBKMJZKp5FKp3vmriAcXEXQmhTkahSI1GX8oyQULITKRxi2EPo1uDKAKwA7jKAQoawIpoOAr0J0lA9fNGGnO8gPAYcOl5DOxNzu0EUYOlCwo+o3A+TAWdocVuAPMSk4Jum7ScIHRFJEVtKg4dbrfpwxvO1kzfBcJdwiTfruoHt5EKiEW7oUhu+6rs6B3Ww2dcJ6qjZDiwi1nXK0mM7E/bSNf8Z3MZxbrL/b9TTF34299WRpGbdtwkx8a2xZMrasYpwktqjoEkpF1tfqZg3/9s8ufoYKm0Tg3NUqnlp0dMZJXiiA/5hjc69x1O9zbhE/UEv3Of6SFoGk4Cv6jMYiz7FDwmul7hWFHJ2z32tOIAAIEtFV7qJPo88RRUlKYaLqoGzv+p8QKqIHxp+pGE7RPwPkwCltblWQkFVKZHwKQDGdhXQsWX980BNcQPBBUlCMKXzCcIXMLUuuJGkrK4TQXn9SngB0WDc/J59MSdc23zPbytkpADTU0Wq18NprryGTyeDMmTOYmZnB8vIyLl++jO985zu4f/8+ms0mTpw4gbfeegulUgkTExMoFAo6NwtVPTHb2G8xE0LohPxSSg2JAN180GGcV4IUFD8HD5oCeqEX6lO+IFHfW5YV3ze6ChvdRYD6u9Nq4f/6g7fg7RGx9mnKD17exv/yu89EFXoAnccF6C5SdJ+ckz1o4TSfF98p7rUzfRDhz4Y70slxr5RCtVpFqVTqySwJRLTH119/HbOzs5icnEQul+uZR7VarccBS3OHxg2dj66/173tuk8FQCgIibicXcTbllIgnXHRaYc6ERTiSEk6exgG8P0ot3YYCkgloFQUYCMgIXfHJ/XIgYNHiB5mrtqUf4HXd+SKzcS7zZWblCVxZHl1m0HWrqm4zQTzHNqgRYXwR8rbTbxnYlBwJkrShOPXT2oPF150AIDecrZaLZw7dw5CCDz11FP47ne/i06ng2vXrsH3fSwvL6NarWJiYgLnz5/Hhx9+iM3NTe0/SKVSPbnLqW17YZ28QEWxWNTQC4XCk+VPWDfvC9Oq4s9HyigJPuVMIbydrLRMJhP5DoTUVlS3q6Lvf3hjDdeXqnhE0pIAiFglVTWJUpyjnSttGnN0r3xx3kseVgH3+3uv981dFb3mycRMpf3222/j3r17mvpK4vu+zmG/traGer2ujS2eRmHQbiRZRO9LUto0XmKlnUo5kFJBIEQUn04h7tE90XyLsG6BMJRQKoJcIPZGBA6c0k5STDRpH2Q1TRJzRR6kMJP+3k+b+eDhg4p/9jDbzX7XpeP4hKFoNOLKUg5w4lhTxBi3Vug8SY6rvdq21+QZdJ5Bwi1EABp3JzpZ8uJrXjtyIgVBgD//5V14j2ChhP/ys/u7xszHIUnP4kFglH6yX2vdhA2TCgh3Oh09TkkZmqlmH0Qx72fsEaQmRO9YJxAkmksqUurm+el+4ujHVqsdpQkGWeJ7z+0DB48A2PWgAOhETiYMQmI6w5K28zyPCVl8/HN+fW5BmzAL/w6nDjqOowsrhGGoHUm88ChXRKZS4vdrLix80HK+OiWHJ4t1bW0NtVoNW1tb2sohy3ZkZATtdhtXrlzB4uIifN/HtWvXsLCwgLGxMYyMjOidDknSJOeWBE0ymmCUpB4Atre3dV9QKgKeEtd8hiZsxP+ma9++fRvvvvsuvve97+lnQRnwCLfUj1MAnY6HdqeNza0Kzl3exB766DORzZ0OljfqGMo7u4wTPjYfNsT80xBuRXMKH9Uzbbfb2NrawsTEhM46eezYMZ3bZnJyEo1GA+12W89Pgr0IDgV298eDGEHaydFtNVQYMYikFUNRloDrSggZQoQRxh0GAaIiYxG1NAh9tDsC9XoTd67eRCGTxsljR6BCCSWCvRh/B8/SBpKdFwSP8BBYMycFf7BcsZFCIQXXbDY1tkrHmwrThF5om0oDjsMllB7TcRwUi0XNg6YAGkq/yr/L29uPPWLivVyJcadhPp/XmOja2hru37+PpaWlnhwq5LHP5XK4dOkSFhcXcejQIVy9ehWLi4s4cuQIRkZGNMTTbrd3tYX6hTuFSWm32210Oh0dLGHbtr5/WiB5HvOkXQidN6lfuNL+0Y9+pDMSFovFnjJzPc9PAu2Oh1qtjrcv3o8Lsj6a8ur7az2Kz7RS6Vk/KOzxIPJgCrD3e5wKyse467qa6rq8vIxWqwXf97XS3tnZwYULF/Qxm5ub2NjY0DAmZTg0g9uA5PFBr5N+dkugLWaoyFa2JCKlLUIIoSCFinPbkA4Q8INovNdqDbz/3iVcv3YLlpQxVLJ3Yd9HeBh+NDE7/EG2RoO2b5QXgV7vZzs6CFtO3nqJB2p7v20qPx/Hds3jeA4TUqKUfIoCighOkFKi3W7r0mZCRA4+soT7DfJBuH9Se4HuYmfex362/0nbXCDCO2khSOqPrhOSBWQEIW6vNj+zjH/7kct3agAejKmRNNYGK6n+53lQSGa/z9CyLJ2ygRKjkXMxk8nEEENLn5NnhDTvcz/X7ae8+xzdM4/1Bk0Qq6kPrh9TSJVSqNcbuiQeXWavnjlw8Ag9oHa7rXnM/LOenAKqm+uCtlN0DH/w9Ld57nQ6ja2trV0FQvtZvXxQEe5G1jtdo1ar6YHCa1CaPNskKIQfR9cj695sIyktx3Hw3nvvoVAo4Nlnn0U2m8Xm5iaazSaOHTuGWq2G8+fP44UXXugJqS8WixgZGQEAFAoFDeeYi0xSiDz1Ay0QVLABgA4e4rAMhzw4xEKKlc7Jt9RCREyUTCYD3/d1Mdt8Po/JyUlcv34dc3NzGB0dZeNGAoiS6Xc6Pur1FtptD57Xwc2Vzqeac+RB5e5aUz9vcwdi7vw+Kfko1+DzkoR2gW+88QZ24koyd+/exeLiIo4fP458Pq/nI907QZafxK6C4LOedovID6JCwPd8CFtAShuWBERED4ElLZDHMgxDiDCEEhZsx8X9pVXAV/B9QMWOyL1w7QOntEkowZMZjcgxUWJpkALlCaG4ojCta660iaLGv2tanHQenv+Egh7IyWfbNqrValwqK0oOlU6noVS3hl8Sdk33Qm2m48hKpsCfYrHYc98UMee6Lt5++22MjIxopS2EQL1ex8mTJ7G5uYlz587h+eef7/luqVTC6OgopqameoI5stnsLj60uTXn908LAOGOy8vLGuagREB0X3SP1Mec9UIKnCauEBGTolwu64ktpUSxWMT09DQuX76sIR9+XoUo8KLZbGJ1dQOAgG1ZqDY/c2L2QOn4vYwR03/Qb9f2oBYyXcP82ww3f1ChOcYXZ9u2USqVtNIeHx/H22+/jRdffBEzMzOYnZ2FlFJb2pQ0ihtqD3N/e4lSirkNyTiJxrQlJCw7Yo9IRGkSbMsBsbjDMIAIA6g43/vdO0uAFyltCBmFv+/VVx/7HT0CYjrbuHCFMuiB7geOMCfIfqQflGFa4tRWc4L1g1pMRW5uCXkuZTo3wR2tVkt74DnWTE7Ber2unYucKkf5i2nBMvu8X9+YliDHo0kRm87cfn3W7zMAPfdKQsny6Z7M7W0YK/8g7Ka+VUrhEaJmJ8p+huDDKrAHHeMfpxDfnwp9NBoNXVaPw3okpr/H/OyjWt96vKCXEtr9LDb09HWIQWKye6Lj/CCAF3O2oyo3ossh7CMHztKmB0blrfhDIiiCrFFe1IBgEqDXyga6QTAANFdaKaWLpJqBNkk4LeGjZJFQ3mNiW1BeaLIsueWxl/Lmg5FjeNlsFq1WC8vLy7hz547mqh47dgylUkkHqczOzuoAHjp/o9HAoUOH0Gq1sLS0hFdffRVSSiwsLGB+fl7nPSE4guh0Sc+Dwxh0vwSJkBVMuDltb5N2L/x+6f55agLu4PQ8D8vLyxgbG0MqlcLw8LAO2Hnsscfw2muv6cIA1Nee10G1XonKTnV8pFIuAAnbsmDt5dL/jCUJjhrkR9gLh96Pckuy2h9GKfLv8UWct7FcLuPJJ5/UUN9rr72GS5cuYXNzE0NDQz1t4VDngwq/pqkHdrdb9ETlRrm0Iz6267hoBwrwvQi/1qwkFStlgSAMMTE5hZHhUbTaCtlMxC7ZSw6cpU3cW54/mDqdUjmSJWfbtt5em0ob6C4AxBwhC57yczebTa34+jk76H2OBysVpXGliubNZlNj2Rx/pmO5VczF3PLyAU+ec8/zcOfOHfzpn/4p/viP/xg//OEPsbGxoT9Pp9O6mgw/Z61Ww5EjRzAzM4NUKoUf//jHEELg+PHjeOqpp3RebwC6rFpSpRFqC/Uz5UJ2HEezVprNJnZ2dlCpVKKc2fH9cypektLmcBdX2rQQ3L59G+12G67rYmwsyrk9OjqKJ554AtevX8fa2poeI77vo9lqYW1tDZXKNlrtKFFRlMPbxVC+f26ZR0Fcp6uwkhSNOTY/qsLuJw9jkfcbxzRvAGB0dBRf/vKX8f3vfx+5XA4/+clP8J/+03/C6uoqxsfHe3arxC55WIqjaQSxT1ibARUKYmZDCAkZh7BLKZFOubCtqCINEEKpIP6hAtUCvh/i0KF5jE9ModEMtZG9V/cfOEsb6DIiTGuZW9d0HP02LY9Bg54UBVlpg7bp/eAQsiS5QueUvqRrJ7WFt988lkLvW60Wtre3dWQY0fFoUJMjlO6J5+/OZDKwbRuVSgVSSuRyOeTz+V1KlLcpSWnw3QEpYeoDcsxSm8znY/YlV9qDICHCzcmpS76CfD6vKYYcEyfOvGWpqC6gE+WEkELg2GwRV+5VH1ln5KGxzK73+o0/872PChkkXXe/x5iOdXMcc+dyPp/XfppqtYpms4mJiYmBydpIBlvMyZ/tHsPd4+MjIkhDCI1xE8otpdQ5SJRShm8x3hUpIJvNIJXKdKNsB7BOSA6c0uYrtImvAt0CBWRt08DmyibJGqEVn7bshKeRpUhbfmoDfYdWfrLWaYBRBjvP83oUtbmAmEowacvGlRm3UgmvrtVq+MpXvqKDdW7cuIGFhQUMDQ1BKYXh4WEcPnwYAPDhhx/i9u3bus3lchmLi4twHAfT09M6PJ0iJKktqVQKpVKpJxiI+oDnbHFdF+VyGUEQaGyS2sonLvUbv1fO4KEFkzuWAWi8PZ/P48iRI7h165Z2qgJd2IVSmN64cQOPPfYY6vU6mo0mHMeNtrlCxrh6dB+HxrJwHYlW59EEt4/ORP6HpMU7aRH8pOVBr2UqaRr3QRCgUChACIF79+5haGgIi4uL+PrXv456vY7h4WEMDQ2h1Wrp8W9WRRok5qLxYG22gbhAcJTONfaH+CFsy4Fl2ZBCIESoYRQiBpIrc/7wIeTTGWSyAhD78x0cWKVt5lmgCU+MDFImBJFwBZ5k2dLnruvq/MSe56FQKKDZbOqMY/x4GnTk8HJdV0MW9XpdB9QkRToOcujx7SPdC1mvlO2NIigbjQYqlQp+4zd+A+vr67h79y5eeeUVnD17VvfLxMSEbvvrr7+Ora0trUTHx8eRy+Xw+OOPa4imWq3qKEpyGGYyGYyOjuL+/fsAehc36iuCG4aGhrCxsaEtXcoXTueivu50OpoBRIqadikc1qLvhmGog5AymQyeeOIJ/Of//J+xvLyMU6dO6T52XRdHjhxBu93GBx98oCu8NJtNuKkoSRcUYaMOoIC58XRUUfsRlbOPDQHo3akAvWPHTDuwH9kv3PFRFoSkXRn99n0f5XIZSilcvXoVL7zwgi4gvbOzo6vYNBoNXUibs7TM3eh+4KF9thqWdBGqCLMWUFBhFEgT+EFUfsyyYVsSfhjE9rdAXBISoYow8eOnjiLnOsjnJYAACmFPPvAkOXBKG+hldZjWs1lYlmSvh5m0HTehkn5bUX4tvkjw6unc0ux3/b2Eww58x+H7PqampiCEiGrjxcmnSFKplC4aUalUdP09WmjIcqcdRVK+cimlnjB8l8MXFTqOfAK00yBLKmlrPOh5mJALF8uyUCwWUavVdi3GUkrk83nUajXs7Ox0mTWBj5RMR+0FoJPeQyHj2nhyoYS3r23jI8/3j1mGCw6Gizwn9EfLsUPSD+oyjxn0N39/fxDE7gUnlUqh0+mg0WhASolsNotcLodMJoKEarUaPM/TY5X7g/a63qC2796tRGOhi3UI/Vp/NTa8eZHf3nNCox9KAYViHlnHgmUrhD60HT5IDqTSBrrJgXgqVgDaWjZXYpPP3e8BcgvPcRzNukin0z1WDGeKZLNZ/Vm9Xtfvk9ONjn9Ya4UvUlSEeHNzE5OTk8jn83jssccghMDq6iru37+PhYWFnrp6nL3ypS99CTdv3sTGxgY2NjZ0342MjOidA1nPpiLkvHjCxSm3NkEgnuehWq1CKdWD6ZtsAb6I0W+Oo5PVT8fThG2327h27Rosy8Li4qJeSO7cuYPp6Wl9zUOHDuHChQtYWloC+TocO7Kqo4UdUR58UHsEvvX0CN67WUHnEYuM/I0XZsCHjrkro/c+DkX+MLLf65rHUTTu/Pw8Op2OjgFoNpvY3t7GL37xCz12lpeXcfToUc3LB3bj5qY8+OLGFLZi56W+D+M+JuOJ2kFFzAQQIgpTVyrKqx2GUQ1KKQFYQkdLDpIDq7Rt29ZWISkeeogUFAP04qRmfg6uDElBEDWN4Ift7W3NxODhtMSJphwXtIXb3t7WkEgmk4HjOOh0Oj0MlSQxJ2ISFkd0xI2NDVy8eBFCCAwNDWFmZgZSSty6dQtXrlzBl7/8ZZ1rhCYB9cfXv/512LaNe/fu4f79+8hms0ilUpiYmIBSSucVIcybYBCyxmkn4/s+Wq0WCoWCLgtFkFC1WtUQDtXbpGdGOZ9NJQ50oRAAmnZJ36W0q3fu3MG5c+cQhiHm5+eRy+XQaDTw4YcfYnR0VCttygP+3nvv6YU8DBWUAmzLgoi9+9S/lmVhdjSNufEMri838IAowycmaVfi7OPDCLG7OAewOznXIMc5lwdVtB+ndU9zEYiC5J544ok4V0cNUkpsb2/jxo0b+IM/+AMcOnQI4+PjOjKZ8vdwxZ0ECZlO60Ft6dvWUMX8O/K5IIqCBGBRP6s4rCbyTkJAIggiECRUCn4QQSVCAhISYQgE4e7cSVwOHOWPhB6WGUkH9ObuNTGvQeczj7csS+fu5qwUOo4WAYrsA6BxXPoOb0eS84iLCQUkWU+E51cqFY3zUdRfvV5HtVrVVEMSXjhiYmICxWJRBzKQQudRniYEQtflCoH6nvqJ6HuE8QNdOuAgS4jfJ+8f8/kRzOT7PjY3N7G+vq6teaUUKpVKT5vpHiuVCmtLXJZVRHUDJdvLRkoJ+P1vz8B+hDjb//1vLER9g8EKyJRBxkES5LSXgntQSYIok44hZ3i5XNa8fs/zUKvVcOPGDaysrKBSqWBlZUXDfnvN5SR5qF2uinwfHEZjvJIBRBA2f+lbAoyj/QWFR2gCm9nmCCOj0lmEryYNVL5CmzCK+R4lmQeg6XvcGUhwAm3j6ftm4qKkicKtBbL6uXAnKbEyNjY2cP78eUgpMTY2htXVVfi+j2w2i3K5rJUZOVX5vUxMTODJJ59EtVrV0IlpvXU6HW3ZcMlms9oKpwKsnuf1KHHuXDTvnS+K9Nt8NkmLxurqqrbkqV8vX76sq9/cuXNHT/aNjQ3cu3cPAHD8+HG9K1MKEJCRBcVyJUNFRYCFFBgqOvjdr0/iP/3t8mcOkzx3vIS5iSwQl7DaS/ZrFPDj91Kq9Luf8WEe3+8z81p890vBVySVSgX379/HU089hdHRUZTLZUxMTKDT6WBlZUXztvvd+15tGSzCeGn0j1IIAx/knLSkjHKNMEgkssCBIAwRhgqtto/1ZgvlclQ9aS+b4EAqbVJgZl5nUgrE4KhUKnqbza0y2vaTsuJWNA8UAaA/dxxHLxCe56FYLGrog9gYBIlw6IUCAWjbbiquQfg60LVobdvWyZEqlQpu376NX/7yl3BdFydPnsSVK1fQ6XQwNDSE6elppNNpreBJqdL9PfbYYxgZGcGbb74JAD1lv6itVEiAmB8k5XIZjUZDY5CUoY2YIITl8+RcJGY6XN4HfNEipU3tAYDr16/j/PnzOH78OIBoR/PKK6/gpZdegmVZ+PGPf6wzxb377rv45S9/iZGREXzzm9+E67o654uUNsIgqjgiRMS6VSoKaxcyMoeePzmEe2st/OKD7c9Mcc+MpvHffncuVgYhYNTL5DsekqRgk35WtYkL9zv248TJuV+G/qYdH59zKysruHjxIn7t135N+5S++tWv4uc//zkuXbqEZ555pq/T09yl9oMdk74bv6I3IONMfXzBjBz/HmzlQwoFx5JoK4lACagACEVEIxVKwgt8+CHQaXawvbaOL+Vm4LqR/2SQHFh4hJSrGaWnlNLYKw+sSIIc+LbctACToAEeqk2cbEotyRcAjtdy5WRef7+WAB1PgSqdTgfVahW3b9/WJcAqlQqCIEAqlUI2m9WwBFfYdM1yuYz5+Xk0m03U6/WeEHeg6+RNClunvOVSSp26lXKGc0ubK4akXUbSPfIfMwVnpVLBnTt3tF8hDEPcv39fsww2Njb07mp9fR03b94EAExPT/eWb4sLtyojiiZqWxxIIQT+wUsT+OrJMlz704dKZkbT+D/+wyMAoB2QCoOhhkFifq/f+HsYy/SjKHVu2HCl3Wg0sLW1hfn5eQwPDyOXy+Hw4cMIggCVSmVXcrKHbdvu+2W0XCDejSkIpeIHEUMkKowtbTqH0KwSjp+E8VjueAF2dloIwthQ+KJa2nxC+76fmKKVV5EhhWJacHs5bkiBSSk1bY5b+b7v73KE8nb0e38vK4DDLaSsNzY2kMvlUCgU8Pjjj2NpaUnzqik1qeM4Oh9Jq9XSljK1gS9k09PTCMOomgw5S+lYYpEkYc3002g0NMZIfoQk30DS6yShxTCdTqPZbGrnJwAd/TgxMYFUKoW1tTW8//77GsaZmJjA5uamriD/xBNPYG5uTjuQtRM6/hfNspAbVow4QIp7EjOjafx/froMP/x0kko9d2II/8135iAQUm3ZHgt7L+HPq1+/78e3Y57r45D94Ow8pTARCnZ2diBllMExab5yw+tBDSKjJejtbKoBGWPYovu+CgMAYRQVqYSGvxn5JLqfEKju1HH9+g2ceXZuX4vvgVTaJPSgWq2WDtUmJUnReQA0X5hbbwSRmE5Lbn3T4CE2xeTkJIAI193Z2dGKJZvN9iwKfGDxLSun/ZkTifO7AegdBCVCqlQquHTpEo4dO4bJyUl897vfxc2bN2FZFpaXl7G5uQkhhG7bz3/+c9RqNbz44osYGhrS7Wi32/q+n3rqKY1XUgg8tZkgD4p05P1BAUibm5t6Z0GLi3lfSQmOaFHlOx7im1PBYzqGolAJ+jh16hSCIMDNmzfx05/+FM1mE+l0GidPnsStW7eQzWYxNTWFkydP6uINFKAhhYwqY8dpNKFiJzZEVE4qpgAqUphC4PkTwzg5k8e/+693cXOlCS9QOq/bxylpV+J/8/cfw+GpHIRQCPy42reIttPmgsEVqqmkk5QtP4YbEpxRlQTX0XPgeX4exro2r8vby+mlZASk02kUCgXU63Xcv39fR7k2Go3E1Kw8eA5Ajw/qoRS4UAjhxTsvCSktQKk4MVSIIOgAKoRlCUglARXh2kLKGE4JASng+QpLK2v46Su/wN//jeeRh4MwHJwG+MArbQA6Go8eGre0SQmTY4uvxMR44GIOSHLKkeMNgK76DkCX6urXtkHYm4ltm1g2XYuU4dbWlo4gGxoa0sqtXq/rhcu2bbTbbdy5cwfVahWnT5/W9wGgxzFKND+CXMgKJygoKYCBB/c0m03NreWK3VQepoJJWrioHQS71Ov1nrQABNeMjY1p52+z2YTneUilUhgbG8P29jYoadTjjz+uAzYI/hFCItKDnPQcRlQtIaBEnGFC0X0IhBAYKqTwL35zHpfvruHPX1vCpVUbtqXgBxGWuVsUM9oGK4zhvI1f+/IknjsxoRcK+ka0PAz+/n4Ukqmw9zrWxLYf5Br7fd/EzU1fB6UG7nQ6mgqYz+cHJm/b725ikPT0kQgByK61LQSilV1FtSMRRnBHnKMkgt+gf0MIhKFCrdbA7dt34AcBlLJjHKW/HEilzRWBEFHGN9NhRhOerGEKAOGOLlJMZuBN0oAIw1CzUSjSkbfFFHOCcAue3wc/Pw9Xp9SonU4HS0tLWF5exsbGBlZWViCEwMTEhE4Sf//+fUxOTmqMemlpCcViEYVCoSeEnLeFJ3Hii5p5D5RrxGy3GZrf7/n0e3b8vumeXdeF7/tYWlrCysqKfjZnzpzR+UY2NjZQKpXgui7m5uaws7MDABgfH9cQFj0jwvN72mLugGOGQORwYvceB0tE/SCgIHF4LIffew64ffcCqmERHXsCl5ZcrO+EaLUDtDstlDLAWM7Du+9dx9Thk6jLEbRaHX1Zx1KYGVI4PpPGS0+No5QvIIQT80MM34qKYRzQ4rerOx9IkqxcLqbzjhs6FEhlhtEnialI9zKMePs6nQ5yuRxmZmZw9+5dtNtt7YCnepBkdPSz3Ptdl67R7/r0dvRd6nfmV1Aqfk4Rpq3CMPaNqCj7XxwhSceEsQOZ2uv7cVbPPfKzHjilzRUqOdsqlQpKpVLPw6BqLtVqFa7rIpvNolAoaEVEVitZdzQIaFBy1gYAzQ8ulUqo1Wo6MRVt6XjbqH3ma3Ow8OO5w5AUlBAC29vbePXVV3H79m2sra1px83c3Byef/55nD9/HufOncPv//7v4/z587h586bOlT0xMYHx8XGdUB7oRiLS9Wjg80WDRzLW63XNn6X2Ei+bTxy+e+BOYPIJkNBWm65NwUwUPLO5uYkLFy7g9u3b2NraQqPRwJkzZ5BOpzE+Po5Lly7h+PHjyOVyeOmll3D37l0MDw/j7NmzPYsIlUaj++KLjKQqIwAoEZBCABVPF4WY9RI7l/woKScsO4NiaRTidhvT2VWceDyF3z2TR7PawdrKNv5v/+4PUCoMQdhpbLz6M3x/8X+B//5/+Le4+8b/F57fRKvTwk5tB3a6gHxxBMVcACUCAFY8wS2oINqCS2lDhR4AhTAMIGQ3stZkidC44lz7QQaCqZzpM/IN0TiknDpcSZqY8oNAJYP8HDSGarUaxsfHcfbsWQ3xlctldDodXTqOdnYUE0BtpucMYBec06/fBu4ERPc7YRApYYUQSgRQPhAGAVQQAErAkjaEkPAQ59cGAOUDNiAsC5Zjo93qwPdTyKQHq+UDxx7hyoMGUKvV2hVkQw4tstbS6TTy+Tzy+bzOYGdCAPy8wG5Lu9FoAIAeKLy+YZIkOYX63Qu3/qm9mUwG7XYbN2/exLVr17C+vo779+9je3sbtm1jfn4eUkrcvXsXMzMzOqXlvXv3UC6XcejQIV2dxlxEKISYFCifxNQ2OmYQRJIE7STdn9nH/H7pnlOplK4TePPmTVy8eBEXLlwAEMFEhUIBa2trOgp2YWEB29vbqFarmJycxMTEBIaGhpBKpTSjZ/cOIulZMUaRbrwERVBEGLiEkA5S6Rz8IETH8+AHlBbWRaFQQKVSwd17d3Hj5g3UGw1Ud6J6mIV8HplMGo5tIQwDeF4Lvt+GCn3Qdpt+ehSu7tPktKY9dzBAeSZBU0lK29xxkTPa9Af1WwweRMzxRtJut5HP5zE3N4dbt25p2I8sbYqGNMef2Z4kzL/fODVaxtqluo5FFTGOVBhZ2WEYsL6KrGcprfiREcOEwZ9SRhVswt1xGKYcOEvbtCJMJWAqkkwmowsZkBArgSdG4ufl1gVdgzss96qasRd2aF6LW7hSSmxsbOhtf7VaxejoqLaOO52OxnJNq6JcLmNqagpKKY2zJyldkqQJTFthnp0wqc+Jl87vdz/bYH4t6lN6Hpubm9jc3ES73dZpYre2tvQ1h4eHsba2hna7DcuykM1mMTExoXnmtAhzzveewhczDWLQJjf6LYSEUjFkIi1ksjlYsoF6vYFiugghLNiOg7m5OQR+lBjo2NEQo2ORZbi1uYnl1XtotBrwlYfyaAYCiPi+dldh82ditq0nFwbry/3CFUnWsbmzNKGkfgnC6Lum0n8Q6fcdPrZ4PdObN2/2FIIul8s9489sU79+GNymCApj34i+o1ikcMwcsR0btmXBsSVEO4is8FAwmkk8t4RCJpPCzOx0zDKLnJaD5MApbZqUPJsfbbMpExiJZVkYGxvTwTFAd1Dk83nU6/UepWZGJZI1TsqUlDbhzXrrlKAk+q30/HNSkLQNzeVycF0X586d0/DNxMQEnn76aaRSKXiehx/84AdYX19Ho9HQsAUFthw5cgSlUglSSg0XUcUcvrhxS4VvlXl7CoVCT9Fdfv9C9LJzOMREQu+ZCoMzBQgSof59++23NSzy/e9/H77vY21tTff18ePH8YMf/ACnT5/WOSnOnj2rufJkFZKT2NwWKxVCiDisXpDDlWAjAT/sXXyi5xkrtkBBQcKyUhgbm0KzvozllVWMlcfg2mlkci6+973vorJdRbPWwdlnHDx+7DEAUQ7zX7z6M4QIsHhsDuOTU7CkQqtRRT5VgoANgHwkEkIAIeWniC3u0Bhb5q4o6X0u/aA5y7I0nZJgLDJwhoeHNQd/Z2enZ1f0IJK0y+Kv+fnIQHJdF5OTk1hdXcXS0hL+7M/+TFdQCoIA//Af/kOd656nU+CwHL920uK2l2EFRKlYlYoK+/q+hyAMECgfqVwWlu3AtiUq9R0EgY8AIYQj40cmIAEo+BgZG8bXv/ESisUiLEsgDDt9rwscQKXNHVdAt+PNyt30GaUF5UJbcb4yJ1kSPJ80x/KIlbIfK4ckydIhpULtdhwHqVQK9+/fx+3btzUH+ezZs5icnITnefiDP/gDVKtVtNttbYkQj3xsbAzFYhG2bWtrvN1uJ17bVLD0GVn05LilRc1UEhxXpM+pj8zzmf1Mx9q2jWw2q8Pzl5aWsLS0hEajgaNHj8JxHCwvL+trTk1N4c6dO5r2VSgUdFh9p9PRFEUzqKo7gQFu1er+EIjC2+OJKmRkKWlqn4hYJUpJCMtGvliG721hc30HoYoscTeVwqlTJ7GyvIFqpY7xoQkMlYYAAEtLSzh//gIsR2BoJAdLCgih4HutyOoSIeL8cPGiESkJgOy12PJXe1uTgyRJaSVZ2tRfuVyuxx+R5Kx+WEmCDfkOlxJDra6uYnt7G0tLSz1Gym/91m9pQ4x/LykgzLz//spaxNY2/04IFUbvBUEIPwgQhAFEXJXdgh09nTBEoBQsKqFHvB8RIl/I4vHHjyGTSUMKD3t14YFT2uY2nAZZvwi+fvgfx8DNrZ6pdPrJfrdlvC3cqiVrnoJzKOxcKYVyuQzP87C+vq6TQNm2jeHhYbiui7W1Nc2ZnpiY6IEGOE69l1BbuMXDM/NRfhchxK48JMTOIYetOSmob3l/0rFSRtncCLMslUoolUrIZDLauiaHJ53LcRyMj4/HGfvCnjSyPPTdfCYa8uq98/iz7t+RlSsiKEIw5U5KW0SWsJQWhLShKKNbqCAl5RJ3kIp57Msry5hElMhrdGQEmZyL4eFh2LaFIPDQaLZRVnFIffeB9PDAI1tf9Ux0cxwliTlH+hkNFEBFilKpbpg5RbnyndYgH4157YdV8PRsy+WyZgVR9knuHE06f9J97l8UFKN7koWtwhBQ0fizbAsKDhzbhWXZCIWFdCqFjurA84krDp0kSkFBWgKptAspSXcNhpMOnNLmtCOe+5pyZRSLxV3fMScvKUf6LtAbGWnS40zF3g8/59cyr0+WO7dchRA6AIQiG9fX1xGGoS6f9YMf/AAnT55EJpPBoUOH8Oyzz2JjYwOvvvoqTp8+jaGhIbz00ktaubZaLb2FTNoNcCYFTQ5eM5Iq/1AUIb0mhUpCfU1BOATf0OQ3KVmkWImeKaXEW2+9hVarhXK5jK997Ws4ceIEGo0G3njjDYRhqOs90vMhxgixCXgKWaIw8h0SXzy0kgPiyRR5/6WMHI6hUrBllGc7jHHM6DcipyTC6Le04bhZWE4aIWw02z4sGcB1AEvaKBaKcKSLlXtreOvc23j67/13uHv3Dp577jQmpsZxeHEGuWwa69tVLC1tYHLmKKR0IRBCAhGLRJGlDx1gQ5xtcyxyloT5mbk7MscvPX9KDEaBTGT8rK2t9ewuH7QCetLCCfRW2DHHp5RSz5Hjx49jdnYW7XYbUkpcunRJ00HNOq50X3y80VgwPyNJhpk4lBe3JQQsCRSLUfZMaUu46RSEJRFCYHR0GN76Ftq1RjyvorFjyQAKHlzXQTFdgO0QhGhhkBw4pU0Dk2+BpZS6tFc/5clXZ8LpgN3FEehYsj65lWJu8ZNwa369pLbz7wPQBU2llNoRp5TC7OwsbNvGtWvXsLy8jLm5OczPz2NhYQGtVgvnzp3D3NwcisUixsfHNRbNc7GQdZQ0YKkvuMVKXGkpowhJStkahqHG8blQoQWaZDz0Pqk/6Tqk1G/fvo2NjQ2Mj4/jxRdfxOzsLG7cuIHt7W29uJAiIUbNyZMnkc/ntVOWW14mlLXLwkSvBaTCyLomi1oKiQDxXpgcf6RAY+sLQsJyXEjLhYKFjhfAc0PYdpRjOZvOQMJCo3ET77//HgBgY2Md3/uVb2LxyGEMj5bQ8jrwOi1sbW1oBgnFaSKMWyMZCyLCZoCEXSb3UZjPNmnnQ2OaFmoeIUvPk/K7VKtVPSZ4ErCPKvwcfCfGFS7NAXo/lUppA6Farfb4tJLOnbRg7aW043e18lYqzrkeKkgnStiWzmTgug4NC4QCKMLBRqUKkI4JVeSYlBGV1LJd5LJp2HYU8g71BWSP0G/+QxS8pIfDhW+pgd3KOkm5JUk/TC7pPboGtyooQ2AQBGi1WloRETd6Z2cHqVQKo6Oj8DxPZ0JLpVKa+kTMGMdxdkEDZjvMzzicQNYx9Y/prOT9bVqv1O90nqQFDugybkjREI0sl8vp/CDpdBq2bSOXy2FjY0MvxqVSSe+weORr0o6IXzNpC038kN73RMKrGJXU56D7AYSwYNku3FQW7Y6PTCoAUgKe56Nea2CnUsPW1hZSqchROzY2ph2ueiwIETk//Q6kHUBYXbim0fZxY7WBWys7uHq/jkrdQxAoWFKglHNwbCaPQ+MZzI+nkXaTM/txhWS+5s+DO4yJM8/HhQmL8HNwGTRv9gtT8GdIiwuNrZ2dHQ3TUVRskmG2HzF3AOwTADwbpYiqHQFwY0NDkr4Q8XreE4DThdMEsVAEQImnVKzpxRdNaQPQ23BuwVEFFR4QY1obSik0Gg0dAs1pfHy154OUe6H5Aybcl1t5JGT9E0xB2DV5ty3LQqlUwuXLl7G6uoqNjQ2cOnVKe/Fv3rypFfY3v/lNVKtV3LhxA6dOncLIyIje+h0+fFhbwrQAcOvaVGzUbjre8zydmIeiCKlcGlfGlJeEHKN8G04MEOp3vgvifZpOp3XJtnq9jvX1dXiehxMnTmBsbAwrKyuYmJhALpfDY489hldeeQUjIyPI5XI4dOgQstksHMfR1Wl4nnDqb2oT7Rr48+g+OxUHshB7JIauhOy+L4BAkUNORtQ8RDCKFwSwnAxy+WGMjx/C2sYWBDLI5S1sb2/i/fc+wNUr17C6vIqZmWkAwHe++y1MTk4gnXKhwigHcyBcbPrj+C+v7eD2dgfVpkDTU2h1QnS8KKdFEPZi2QCwut3Btft1uLaEHyo8sVDAN54axdx4Ro8vvkukHx4ARhWVeBWiIAh0GgASyufDmUEPi1ObCtl8zecpGQ6U98b3fbz55pu4e/cupJT4xje+ocdcP+ufRywnCR/D/J47nWicqzCMq1Ll4LgOXMdBOp2CZRMXOz4PACkVIr59bJULCWEJQAr9WRB68P0UhJCwxGC1fOCUNg0yMySdKoFzSMO0DpVSaLfbaDQamn2x12AkBQj0bjM5c8K06MxVnJQ2nYsgkZ2dHV0irFwu68RTS0tLmsZ2+vRpvPbaazprX0Qbis41MTGhrXCCKGjRMWmIJp5I1DjCMylEnJw9pVJJZxcEoCcRDyoCuowX4k4LIbRzixZUyiNBTJ7t7W1sbW3B8zzMzc1hdHQU165dQ7lcRjqdxuzsLC5cuIChoSFMTU0BiGiWlmWhXC7rbbLpbKVFkuOcXIQQsaNPaaYGsTSklFFdKMRWkyL6nYQXBlAySgTkhyEc10U6U0C5PIZ7t+8hn+1AwUK9VsfVq1fx5rlzaNWbOPHrEeXv2WefgYgZItdXFf78gsS5G1OQGIevLIRqtwN9UGX4UAEtL3ou71zbwXs3q5gbz+Af/8o8CmnZs4ui1wQHEgySSqU0hW5nZ0fn+ODOX2JrUN+ZcOHDCLfuqX1cgfKFlydhu3TpEur1OiYmJvDUU09pn0a/tuyX2dW7IHXrVka72iyyuSgwynVtQFl6JyZ6zkHO4ph9I6SGT4QEhFAIQx9h4EJJCVhfMEckibm151YzCVfcpHS4g87E1pJem+fjkoyJ7f6crkXpU0mxtVotCCF0NB0p96GhIZRKJe2Eo1Jb3KIni7kfJDOo32iiELZsWmJ8F0N9TNtnwphJqG20++H3TefyPA/NZlPfOylVSuZEixWFrReLRb0I0fWUUqhWqz00L/Oe+913z8ItyLlIn8azS3X/UuwTLbzSDQQELEjLgRAWQgj4QYDNzS0EfoBsJoNsKoMce37rtRD/6icC19cBL0C8Vf7o01MpwPMVbiw38D/84SX89kuTOPtYqcdXwxdxep/7Mfhz5nBh0u8HgToe7n56DR7P83TEMxlm5G8hS5vvLPr5lvrNab4bpe8Txu84NixpdVkf5MWm78b/fN9DqKLkUUq/H42SMFQIRRDvZCrIpV2UC9mBfXAglTYpwFQqhXQ6jWw2i3Q63bPlo+MAaKfV9va2VgaZTKYHZ+0XMMC3mPzBkzUJIFFZAV0FSeXPrly5gsOHD8NxHKyvr2NlZQX5fB4vvvgi/vIv/xInT57E8ePH8a1vfQuTk5PI5XJYX19HsViMqWIR/9r3faTTadRqNb0Y8evyv8n6JKGMaY7j6Ao/xG+mXQDR90i5Eo96e3tb50Sh+6Z+VEr1YOtBEMB1XeRyOdy8eRP379/XmD1hvNeuXcO7776L2dlZOI6Dl19+GaVSCU8++SRefvllHapOz/Cdd97Bc889twv2IqFr89SdPc8SCiHiythgOS+UQBhESX+UiH0kIraewjD2CarYcpIIQwkIF3aqCCdVgIKDnVoTP/3pK7AtiSe+9CXMz87hyOIilFL4yUUPf/iqgh+oPlkBP7qEIdAJQ/zJK0tY2uzgd7420xNxSv1D0BjBhKS0ub/AnAvmbuZBFXKSXyRpTpFRQgYFAKyvr+t6oAsLCyiXy3j77bcRhlFtycXFRTSbTQC9lZFIGfOxmjSXafdNSj+dziCXK0c7SDcFN+VCyng8xSu6iolESikEYYBKZRue19HtD5XS9NCO14bwfQABLrz+FhYPzeLss08M7K8Dl3sEiB4ubfdc19Xbal5Il4vv+2g2m9jc3NSh6+l0uufYfk4XINmK41YuWSf8h6/+xKa4deuWtky3t7exvr6OTCaDp59+Gu+//z5WV1eRzWbx3HPP4ezZszhx4gSazSby+byGRcjqSKVSaDQaPXlXSPjgNeEfCrqxbVuXTPN9Xy8AhHGT0ga6FXOq1equSUaLJqUKMKlY2WxWV5354IMPcOHCBTQaDaTTady5cweXLl3C9evX0el08MYbb+Du3bt47LHHNH4+MzOjn+HFixd33Q+3DPnOhh/DnmRkA8WWU+RqjIr9qgDQulmpaOIoRbq662iSAqESgHBgO3k4ThYhLNQaEaPH83wcO3oMX/va1zA/P4d/+1/ew79/VaHt4xNT2Fw6vsKr72/iv/xiReevKRQKOpVvPp+HUgrNZhM7Ozs617gQQju1kxY9bgR8FHiEngm3jPkPH3MAsLW1haWlJYRhiJmZGYyPj+PixYu4cuUK1tbWeowv8zrEjBoE6Sil0Ol0dL52y7JQLBYxOjqCQiEfOyC7TkUF6GAbpRTCIIj60POiRV/1Bip5vod2fP6333oXt27e6W7l+siBs7RpYhK2asIi5haOgm5MxWaes9/f/bZX+9l20WAhnKxaraJarep2UcRiq9XSeHyr1cLQ0JDGIQmvp9qTe7UtyQri3+MORp6nY1DfcKVIeKR5TVKyAHblPOYLHCkJniubLCJqDzFIhIiyvlFbB1l5vJ2D+6PLBEkSEW9te94jkJsxSKIfAcdNw44DLQr5gi5/5jg2fvBagJev3EJncM77j106foifvruK2fEsvv70lMaGzedtjl3+nJOkXx8nHZd03v2IOW5oV5hOp3XsAM0XKuT8oO3h84EWeVL8lmX3jO/doyHesQUBfBXA871dpet0+hrwkSbQasVFtMMvGKZNDIuhoSENi/QbfLSlp4xvmUxGWwtkXQC9D5E7Hfl2jX9G3yFrgOPEBEcQREEJ/ZeWlnDhwgVks1lMTk5ieHgYW1tb2lF36tQpHUBw/PhxXL16FUtLSwiCAEeOHMHo6KjmJHMrmIQzRjg2SfAJyfDwsF7YNjc3e0LoubPJLN9G90YYNFW5B6Ksh7dv39b1/AqFgsa46frU96+//jpOnz6NqakpLC4uolAo9AR3UFKg06dPo1ar4ac//SnOnDmDnZ0dTE5O7lq4zEV60OSNPgtjrraAkAIqELHTUUQlpISCFIZaFwIqTsspEAChQBgAfkdhdHwGKdeC4wj82vd/HZMT45iamsRPr4R4+ZJC2+9vLHyS0vFD/OCvb2JxIoVy3tm1A6VKQ1xhkQzqw70W+SRJel587vHrcYVJ/g2a4x988IGOop2bm0Oj0cBrr72G06dP97C56DrkdOdQH73mqYqz2Wycn8jVr6NxFuHUUfre3nva2amg5bXQ8iKmiYBAlOVPwJIWaFMVQSk2Um4WO5U6arU2BtiPAA6g0ibLuVQqaUgkSWnT1mhnZ0fj2Pl8vuchmlnCOA5mDmK+deNWK52Lb/X4tsxxHDQaDayuruLDDz/UiZ2eeeYZ7OzsYGtrC/V6HY8//jiWl5dx/fp1FItF3LlzB++//z7m5uZw6NAhjIyMoFKp7FpceBupbRyXpLaQlMtl+L6PRqOBzc1NHQrP+8JckPi2uNlsaiVL4nke7t27p63nQqGgoRSllMbg0+k0bty4gWq1ilQqhbm5Oe2LoHbQ9vzJJ5/Ea6+9hl/+8pcAIix+fn4+0QrcjyUnYrwaUAgRQiJihpDDKHI0eRFuHUcjRl+MHUoqAFRUrUQpIPAFOh1geHQyCqwRPr79re9ACoXtFvAffhyi/Slb2Kb4foh/9xc38E+/O66fKTF5OHXTtL75fOi3a/moEEk/CItTN5vNJkZHR5HNZqGUwo9//GNcvXoVi4uLOHLkCJrNJi5fvozTp08nFuowqa/cCctTM2QyGb1DihR7xNBRVAOSOx/j5lZrO6g362h2WhBuNvZ3xMaNJSPfSBjGBoEFx8mgWm2iUW8j2GNcHDilzTnP/fA1HuVnOq322gLScQ8iptLnCpzzRbPZrHb8UZY8CiMmShsPv+UK1YQG9oJneHvMicd/HkS0oyXB2pJS6so5rVZL+xxMpgo5ZdvtNgqFQk+ir3w+r2GgTCajg4cAaMVu0vz20+aePomR7O62l39O6rrLMOEKXJFjUgEQEtKyYdsubDuyzrPZLMLQx//01218RgZ2j4QKuLvexr2NNqaGnI8MWzzoePk4JCneIQxDXeWIxlk/2MbcTXNfD80zusbu2pNEM1IIQ0CpACoEwoDmeZQLXQgRIyK9Y6n7O6ozaUl7z6o1wAFU2lTAgMKtk7ZbtVqtR3GQVcitaL5d5MmOkqL66DUfGFxB0/coAIWcOuSkazabGB4exm//9m/j7bffRqfTwezsLE6cOIFUKqXDdbe2trRj8dixYyiXy5rbXK/Xe7Z/nO5EbeFtI6YG5RSh+yVrndgdnHFD995PKdu2jVarpbMLUr+Qw/DDDz/E9evXsbW1hfX1ddTrdTQaDQ3vpNNpfPWrX0W73cbly5fx1FNP4e2339ZpP1988UVMTEzoKMgvfelLGB4eBgA8/vjjKBaLmj3Ddxzm8+yL60N1o9iIPQLJUiATPSAKarFsCSEteIEPSnzvdTpI2Wmk0imUCiVk0gKWFUAID8pr4NK9Om6sAwNo1p+q+KHCa5ca+L1vTu5ytPfzkezHIPgo0s8/RK+pjTQvG40GLl26hMceewzj4+O4d+8eZmZmUK/Xcf78+R441Nw907ggii29R6mHqapVVwfQHKdXUUIwzwtQqzXhez4C30eoPLiuDTtlox1aED6ioRMoKBl5r0MVwBY2hLAAWJicnMHQ0DDsPbTygVPaZI1xRWsq7Wq1qhUGKXlSRtxC5wmnOMZF5zHPbypt/kPWQLPZ1IELFKXpOA6Gh4fxm7/5mzh//jza7TZmZmZw4sQJlMtlHDt2DB988AFyuZxWzkePHsWRI0d00YNGo9HDJyVlyaMCuVCAQBAEGB4e1oO5UqlACAHXdXtwTXIO8nvjwpW2iadTpewf/vCHWF9fR61WQ6VSwerqKu7evYt//s//OcbGxlAul/Hiiy/i2rVruHLlCn7v935PK22lFJ5//nnkcjm0220Ui0UMDQ3h6aefBgDNKCF6l6lgOH5Jsls5IKJiaSYt0LWI4qAIFUdMqtjKsyQ8P+J5hUFEl3PtLFKpLIbLQ5CyDUgfQAeqWcFfXqjAewSsbBKlgPdu1aCki1TKMj4z841/8ivNXgsBp23SHG+1Wrhy5Qqef/55WJaFP/7jP8b09DS2trZ6Amx4NDTQuwAQQ4Qw7Hw+r3nfSWwZaqaKI2g7HQ+VSgXtVgu+10Emb8NNubBdF34jRBQ8FSl4ysoYxtxAISwo2JiYmMbQUBnWHsb2gaP88W2Mue0ny5L/JmW7X0fLIDHP0Q9q4NstsgKpXBbBBGEY6u0/LSi2bWu6HTnmOLY8qE3mIsPbwoWHN/eDl5L6iuPa5jVoESDYo9ls9ljClMSKciQDUdpPwrkJAspkMjrtKvHDKbMgYbD7gXX2Df+o+D/ueBSMwkn/ErBSaVmwbBtCWvqn0VF448be+ZI/bbEtgVsrUXATmZAPMgUeFErjc878STp20HloXpPBRfOBoA2enGwvGJCeHWee0RxNakd07YCl/g30j6DzGddWBK1Ff7B+Vsjlskil3D37/sBZ2mZOZyDqPMKKeXY6npnMxLM5DDDIwiQxnTJ8QBEUIaXE0NCQdmyQcySXy2kFPDc3pznHw8PDqNfrePXVV7G5uYlCoYDZ2dmevBoU9ELX484VahN3iNIAJ/hISqlDvkdHR/X7Zt4V6g/qJ35+2qpSBSDLsnQ6Vrp+NptFsViMrJF2G0888QTa7TYOHz6M999/H5lMBhMTE5iamsL777+vueJPPfUU6vU6pqenNZ+eEhdR5sLh4WGd25k7sbgMYjVoCE0BFmSUZZWeK0I6CKEQkNKGlAIZNwU/COPFNY1a3YNlKQwNjSCXKSCdSgOWgFLEvBC4tNqBbeGRsrQBoOOFuLXSwIn5InpJaMrAYT8b4Xg5H5O0AwyCANPT01hfX9c7vfX1dT1+aBzSgg9AQ4Q0Z6WUOi6BjANTYZswTaPdRrPRhN/xEXgRk8RxbUgLkJYNIGIR2ZYNKTzwqNkuxq0A4UPJFk49uYiZ8aG9MrMeTKWdZAlS7oSNjY2ejHAmxsVfm+Gr9F6/1Z8/XFKepLSpRNfQ0JCGZGgA5nI5fY35+Xmsr6/jgw8+wPe+9z1sbGzgZz/7mQ6qefrpp3UyJzMToQnTAN1BTseTkic6pOu6WF9fR6fT0f3HA4lI0dP9kBLmDlXaKXCuOCltoJvPolQqYWNjA61WC08//TTS6TSWl5fxr//1v8bExATOnj2raz9S3pPTp09rZVyv19Fut/V16VrDw8M6KMrEW+k4njzI3HFwJ66tLA1/QFKMZDTFlBCAZcN2bOTyBdRqNQShh2y2gEajDiFtDA9F2LwlLUAKqMCOLVcbV1Y7aHcz4z4yEirg6r06oo13GP9EIrWFmCyflvMxaddM+X2CIMDMzAxu3ryJ1dVVBEGA1dVVTE1N4dlnn9XObdd1dZ58mpc0lqjQBs2JpLnE51gQKtTbHWxvbcNrd2ApC6lMXPhAxQQDJRH6CrZlQUgfEEpT/YQSkJDxez5C0cITzxxF3nUgvmhKu58Tgyfzp228aZElrahJfz+ImFsvskhNxUoKhzDuer2uj+t0Opr6RhXYOfd7P3COqdD0Nl7KxM/Mcw7aafAFjbM9KOEWXYuXKMtkMsjn82g2m2g2m3rRIGudtrm0EJCy5hYzZ6o8CD+YK+7dHQWtoYRGt7vVz8lq9oMA7Thft9CQibW7GICgYgUC791swYyzeFSkUt+9moj4PypgvB/5uJ2TprI2nx2fN7Tz5EUuqFI7343S9/g1TFiEWFqm0PXCMERA490P9LgQIsq7HsFnMb9EiBjy6MFD2C5GASJEJpuCK/fQ2DiASpsLWZbkdCQqXVLyKBL+UE14gCu2JIcW/y5ZmwA0/EEKmY7hKze9NzExgUajgffeew+e52FiYkI7WIaHh3UinH5tMS1NspQ7nY7G/MhBSZYr0JuqkithoDdREIdFSNLpNKrVKq5fv461tTUNP505c0YHOQkhcOTIEbTbbbzxxhu6Wnwul+uJxGs2m5ifn+8pZECT0eyzfjkwePtMi5vEXKy4JC3mHLP3PA/vvvsu7t+/jzAM8au/+qs6JoAUBsf3o2sD6zufMTF7gAzKGvioiZknxLIsTE1N6dSx6XRa87fb7TbOnz+vM0KSQUEBXSY3nZ59EttIKaX1SMf30PRbEELCcVzYgtH1FHm0icoXp2sVgGVJ5iMRgIpLl4WSiEl7Lo8HTmnzSUiOr42NDe3s4pYuV5amwqVjAfRERwLogT64ZcqDa8g6dF0XxWJRU4jMwWBCLzMzM9ja2sLdu3fheR6mpqYwMjKCZrMJKaXG7Dg8wel8vI3UdgqHpwCBfD6P9fV17VmnPuEiRLcgMP1wq5YrpWw2i/v37+Pdd9/FBx98gGazCdd1MT4+rjnmUko8/vjjaLVa+OEPf6gx63w+32Od1+t1HD16FI899phuNw+AMNtoBv0kjQN6Ppz+x3NLm+PHLEHFdyW083n55Zdx+fJlSCnxwgsv6ARelN+ZHGP8mfj+o6sY7T3SgT4KYi7ENA8sy8Lk5CRqtZqebxMTE3BdFxsbG3jjjTfw+OOPY35+vkdpl8tl5HI5zZJKugbQC5fW63VUq1W02m0gbcEWEo5rwxYOhJQgbnZUSzIK0JJsHNi2hSDOTSIg41wlAmFgRa8V9tyNHUilzZ2AZG1zBTQIUkiyoPl5+8Ev/DW3Akix8FXc3KLx48laowFJDAly7vFyYeZ1+wXYJMEihPOS0qa2JQ1W01o1rXyyLuv1Omq1GhqNBhzH0QsMHZ/NZnVyeo7J83MFQYB8Po9UKhVhxgn5TwZtW5OeS5IkOZj6PXsSWrjIP7Kzs6PzmvMFJOmcKgz3pHJ9llLK7XbgPwpiPsd+89Z1XZ2Dhwwc2qGRdWx+l3adnLHVrw1cn3ieB8/3YIWImEGCs6wE+4FmkfT15yoRw09xoWClulZ4HzlwSntra0sXdq3X6zpPM1F/zJwZphLikEhSYAZ9RscDuxUGOTmIM86TxScpE14qbGlpCc1mE08//TQsy9K8Y0qPalIVTUXDBx4VPCXFT1v7arWqFwhzIeFWDOevc4VPRSZ4cinLslAoFPD8889je3sbzWYTy8vLunoOEE0Syq1y8eJFbGxswHEcDaGQgic2Cyl27gjlbTTFXFRpovHdkPnMkrB6c9GlPnBdF9evX8eVK1dw/PhxDA0N6e33yMgICoXCrvYRxNNuNVHKSixtPXhujk9apACOThc+62bsW0yYSwiBzc1NZLNZlMtlrK2t4e2339ZGwPT0NEZHR6GU0rVMy+WyLvJAwscGNyKoiAgFx1mWhZTrIhBR3U8pZI8vRGMhMf9GyujzUFGcgOiySYUElEQQCDTrQLPTgfA6KA73fx4HTmlTfulWq6WTxxC1jyxtgjsIAuDbX2A3j9eMLCQlYm6x+Taq2WxibGxMb7/ofbJMuZKs1WrodDoYGxvDjRs30G638dJLL8GyLG0lkDXLt4SkTDjGy6MBm80mMpmMpttVq1U0Gg3UajUNiZAHnoTOSd52Dk3wcmHEgaV7cxwHpVIJzz//PFZXV3Hnzh1cvHgRTzzxhO5X4qIfPnwYb775JjKZDMrlMsbGxpDP53XbqfgDTzUAoGdnkARrmM8kSWnze+TfNRdd+k0VkCjJ/o0bN/CTn/wE/+yf/TMEQYDNzU386Z/+KZ5++mmdJpZfq91uRylOd7axOCpx6Z6CGmBFfRbiOhJzE7nPuhn7EvNZkUW9urqKiYkJ2LaNixcv4pVXXkGn08H4+Dh+5Vd+BVNTU1BK6eLE4+Pju4JmzAWcxt/Ozo6uZkVQiuXYaIdRqlZLWFB+FDAT4dh03phOKCIlTbpDQcZYNgAhoZREEADVaohWpQWvXseR418gpU2OKw6LEKbaL1jElCQYhDvATOvWVPIAtJJLsmZJ6G9qJykspZTOtkf3QYrGTN5D5+mHwZEy41n6yAloYtX8+6aVaV6DO+boM9d1MTY2Bs/zsLm5qfFo/h3HcZDNZjWnlhxHpByTfgZJ0uf8GSVBPOb7/frUFNr5bGxsoFQq6b7b2trqqfrOzxGGYWyheZgdlnBkiE64N0Pg0xQ/UDg8ObhayqDdzacl/RZq2p2RIREEgX4mhUJB01u5v4ITArjw8cCfH88JpMe+6hoDIYug1WE0KqZmUx8RaE1MEgalKCUQ+EC7HaLTHMwLPXBKm7L2UepPE0vmsIL5dxIHm97n1ixXYPyh8wTtQ0ND+gEn4eGEjVGwD+Fv09PT+hw87HqQAqP745Yp5U8gLJzq/JHiTEoMz/uI4+O8f+h6UkblwDY2NvQCMz09DSEE1tbWcOPGDRw+fFgn1adrZTIZPP7446hWq8hms1hcXASVUCNaH79nc6FIWjTN9psYftI90m7JhF34QsTLz9H3qI+llKjValhdXdUFK7a2tjA8PKyfbbvd1oWQXdfFscksAjQTn+FnJUIATy6WkU3Z2C+t71EUvrNZWVnB3NwcstksDh8+jFKppHfbtDMEdi/o9J5SStdCJb+MZVmaIUTHSRkzQXS3MU47Y/fxnXwgRG8vx0QTCIGOF2Bru4KtlWUA833v9cApbao+Q1Um6CdJ6fGVGtjNiiChiUvnMrnCdDwPxx4ZGdEDhHIecCUSBAFarRbu3bunKUedTgfHjh3Tyorj6lyB8/YD3S0iT0jluq4OOiHKI8EHvGyUqQj5OUk4vkd+ASklqtUq3nnnHRw7dgyjo6M4evQoLMvC7du3cf78efzTf/pPUS6Xe3YoxWIRzz33HO7evYtyuYxnn31Wc2wJ2zd3EBxP520cpLDp86TdCCltug/uu+COYFr8OSRDfWzbNjY3N3H79m0NB83OzmJ4eFgvxltbW5o3nE5nkHUCnJrawoV74SMDkTiWwLeemfism/FAQs+VL6g0B5rNJm7duoXnnnsOhw8fxtGjR5HNZrXDkbOkkhg+QJfaR451cliStU4/lm1pu1qw2H+FKNe2UhE7RIqYgWV1KYFK0bxDrLUl2m0PKytruHXlGoDn+97/I+zPfjhpt9s9ZHoeQDJIzC15klPLtPySvg/01kYcdD1KIEWDj5gTVGexn3Lq1wYevq6U0iHpRH00edf8fEmwgXl9Oi/nK1O+bwDaEddoNFCpVFAulzXsQULJsSiUf2hoCCMjI5pVYvaliUX3k6Sdj4ll877v17c8GMjEOM3vUy1F+s2TVVFaUIq6ixYIG98+lYH9iKAjUgJz41nMjX8+8OxBwg2Ler2OUqmEiYkJTExM9CR92k98Bj0/HidAC7rJv4+/jV6oo/ecoHHYm3kb5ssgDNFqtXX1qn5y4CztVCqF7e1tZDKZgfhvP+XcT7hVRufhTjqlup5pSmLEr0vCr0nn5FFYNMmJu5yEufFzAd2dQJQHI6MHVqPR0JYeDyrqB+/0ay+3/CmykXYK29vbuHLlClKpFBYWFnDr1i0opTAzM6MjIglm4Jb97OwsMpmMDsThmHDSYmHKoMWz39+mVcYhMW5pE3uFknJRxW/f9zE2NobHH39cp9AdGhrCV7/6VTSbTdy9exenT59Gq9XS99Wb69zC4mQOh4YauLkRIlSfrc3kWBL/+Hv9t+GPqiQtuMQEIfiPgmUA9JTym5qa0umM+fjqxNGtfKyaSpquSX9H9DylsW0AcXbICLfuGb+0KEQnAdnLQkRRt37gIZVyABmg1RkMoR04SzuTyWB5eVlHO5Foh0Gf0O9+WDf90APkSpssQ9pG5/N5ANCDggemAL1VYkiREu5O2HOz2USr1dIUIw6/cGXPMWayCoIgQKlUQrFY1ItXq9XqGcQc3uH3wHnafLCZjlCllKbnVatVLC8v49VXX8W1a9cAAOfPn4dSSlPiLMuC53naCqVJcOrUKRw6dAitVisKVojr+/Fr88CZpAXMfH7Ux/w4DjFxpU1jc4+1QwABAABJREFUg+APek6u62o+fCaTwfDwMFKpFOr1OjzPw8LCAl588UX8+Z//OZaXlzE1NYV/9I/+EXZ2dvD+++8DgL4fyspI/gkhbKQzefzjr5XisIrPTlxb4HdemkY57+598CMoZEDQfM1ms3qBpF0c5b5pt9u4e/cu3nzzTWxtbelzcAZWs9nE+vo6VlZWsLq6qmMreKY/7u8RQkbFDoKusz+KdIygEdlFS2I4BFBh7JxEnJceQFQUWKHTaSKTcyBkgFpje+C9Hzilbds2Go3GLqxqkNU26Bhzi823UdzSJssMSM40SMKtBHMrzvOj8KhH3jazLfz6BIlQhjLKfMctvqT72AvyMfuM47vNZhOrq6vY2dkBEPkUlFIol8s9mD7lI6drUb1IytRn5uDuZzHvd2eUdB7zuSZh4AQnEfuH+pLaWCgUMDk5idu3b+t87EePHkWn09EKgRZcbq1RwIRlORgtpXB67BYc67NR3K4t8JVTQ3jh5HD8DicZs7ceMRn07LnPiGebBCKjplar6RQLptBYbrVaOhcOGUf9DTz95T37SpmH7YL8FIIwgG1HCaR8/wvGHimXyzpJDE1I04ID9qYwmcosCQfl2DENlEHf5e+TgqCMYqbS4srcvAf6m7NVSAkRZZDT+kw4hON6JsbHdxl80aDUsWEYYnl5GbZto1Qq4dSpU9qKpgozQGTdrK2tYWVlRRdaNamFHDfu9xz2wrP3+zzNxc5cjOk3QSF0/xcvXsTa2hqWlpZ0cBClJCgWixgeHta+g06ng83NzR6KpW4fotx5Mi7w+vSsD5Ft4O37RbQ7n26u1oXJDH77KxNIVNafEzGfGy3+QkQ5bizLwubmJpaXl7G+vo6NjQ1ks1ltfSultD+JO/A5a8vcte32a1EATdSP0bHJOkLpfiZnenzOOA+wsBSkDYxNDOPx40cH3vuBU9ozMzOabkUdThF8QG/1CrJuk6xpziSh4+g7ZI2RRVYqlXQVGhKOz/KAGII2aIAQ1EC5OEzcFegqaLKY6ZyEA5dKJR0IQ4qTFhNqe7eCtOoJQDHrKlLbqFoPLRa0/azVajh37hyOHz+Oqakp/L2/9/dw7949ANBpMSmk/fr16zh37hzq9Tp+93d/F+VyWfcPwRFkxVK/Uh/TfXNIyJQkS3kQ9EV9ylkDdCxdu9ls6vB0pRT++q//GisrK5qf/cwzz+Dw4cNwXReTk5P6tW3bqNVquH37Nsrl8q6gpeh+AAgBy3YxOT2DUnkdY4eewF/+4iq84NPb9N5YbuKPf7aCf/DSVLyHJ0cayaPBbOkn/PnSMyV40LIsfOUrXwEA3L59W0MiY2NjWFxc1M7yIAiwvb2tox25z4fmNo1/blzQPIysZanN6ChoJlLaQkawh1JRVZswDBGlJImK+obaaakQKh8SgOUAtgscfWwOEyP5gfd/4OCRfD6PYrGYGKnIXw+yzJK2zpyrbSp3XnjXFBO+MC1tvpj0U0Lm+/ycpJCJ0tTpdDSDxsTi6LtJsBE/N78uCeHilmVhY2MDQRAgl8thYWEBuVzEPmg0GrptnU4HlUoFd+/exe3bt3t2PvzeeqzRAW3ZLySSZKGb75nt4MfRYkgO4du3b+PGjRtYXl7G0tIS2u22XsByuRyKxaKGQIIgwM7OTs/Wuud+oitBCAu5fAFB4OOf/f0v4b/9qo+UrSDFpxPi3vEVfvHBFv74Z8uc9MBEoM8Hj4yYY5iCYIQQmJmZgWVZ2NnZwbVr13Djxg1sb2/rXNkA9K6U6LAU12FShJNgOrKou2E0ACWKAhTELjybWeD8fyEAFSl7IQFpAeWhIubnZwfe+4GztGnFNZUjiRmqvh8xFQyxC3hKxyTFQtGHFGDBU7OSpNPpnl3BoOtzq50iCek9OkdSJR5+niQ4xIR+6JwU0WlZFlqtFpaWlrCysoKtrS0sLy/DsizMzMxgdnYWQgjcvn0b4+PjunByq9XC5OQkxsfHE6lWFOxQr9d7LHyzffy3+b4JQyUJv0eymnh6XkqMzydsq9VCpVLB4cOHMTQ0hDAMUalUNCMnm81ieXkZ58+f186v6elplMvlXTuG7jNUcU1BwHHT0bQXAi8ebeNL0wr/j78McWvLQRAKiH3kVf4o0vEVfvH+JqZHM3j+5CjI8vu8SBLkx+MIqtUq2u229kEsLCxgZGSk5/sA9ILLF1khhJ7jqVSqhz7cnVfR84QAK0jDaYMhdg/HeBFU3Z2NUio+QYRnW7aAvUdF9gOntAmn4hYchwZ4RBMpv35ibsOASBFTCshsNouhoaGe0kT8WEpatba2BqWUdr7xc5ZKpZ681lyB0sDk23pymBSLRc0F39nZ0Y4+viiYljqdywwOMqmRZMFnMhl9jbW1NfziF7/A9evXsbm5Cdu24Xke5ufn8dxzz+GDDz7Aq6++in/yT/4J7ty5gxs3bqBareKJJ57AyMhIT+EHaovjOMjn8xovpsnDhTNdkjBpkqRFmCYyOZrIMUiwEWHRtVpN+xeIL76zs4M7d+7ga1/7mmbA/Mt/+S+xsbGBZrOJ4eFhnD9/HpcvX0Y2m8Xo6ChmZmYwNze3awwqpSCkhECAIFAIlUImV9SUv2a7jWJK4n9+/Ab+w5+8jjv2M8Do08xc+2Sk4yv88U/v4/hcEeV86hO91scppoEBQEN+AHRFpJ2dHUxNTeGll17C2NgYhoaGdgVoEaTJxxeNCRqf9Xpdw5nazyQAIWR3d9SjuEMEMRyidoEZMeMFIaQUCP0AQiGu0K7gOhYy9uDnfuDgEaK/ceH48CBLO2nbbP5tWtoUbZW0feeWNgVh8HMJITS/1LQozbZxC5g4wJSKMgxDHXbLOdlJzrb9Wtp8J5FOp9FqtXDnzh1cu3YNW1tb2uKWUmJ2dhau6+LOnTsYHx/XlMdWq4WJiQkdqm5anjxXRBI8ZLYx6VklQR6Dvk+TjyhdqVSqx8qnv7mlfeLECRw/flyzC4gOuLKyggsXLuDixYva0i6VSj0FJfR1ozd0nXfHSeuoSN/3EYQBOp02WisfQjh5iE8JKvGCEP/+R7fwebKyScwdFAlZ2q1WC4VCAY899pi2tM3xwhlCfL6YljZgslcEMa3Ru0vpOiVVQp8SoELDNbLIY4gECpYNuO4XzNLmD7GfAuz3PRPH5ROdY8i8SngSVkwWMU1wqhRDFp+pwEjRcgeZeT7O7ybrgIIB6H2z/eb98f7pd9/EOnFdF5ubm9je3oZSCtVqVYeq07VrtZrGAoFuFr5sNovh4WGN2VPAAt27yQmn1LV8R0B9noSvD8K3+bFJFhm9XllZ0cmEgIiqWKlUMD4+jnQ6jVQqhZWVFd2/UkrMzMxACIGVlRUcOnQIqVRK0/5GRkaQSqV6Cgzz+4EQCIOo3qSUFhR8pFLRc6zVG8jYWeRyeYwdfQ7r2Xmovaq7fkwShsDtlQZurzQ+N5n++gmHL8mgoXlBC+7q6ipOnTqFer2uF1eulPn4445/c0cKSi5C8Ej8p+oZm1EMpIrhECGwW5Hr4yWCEAgCwPcHW9oHTmmTgksKzKDJTsqF553gwpU+fY8XxqX8zxTxZ1KDPM/Dzs4Otre3EYZREV3aMtfrdRSLxZ7rpdNpeJ6HRqOht+wE3XSzxHW0ZVgqldBuR+GutO0nxUfe7STYhweZJC02QITvUoDO22+/jbW1NTQaDUxOTuJLX/oSnn8+yonwH//jf8Ty8jLq9bpOykUsEEqRSVhvq9VCu93W2DGHiIQQGB4e1nUieY5ufkwvnri7JiSHf3jO8aTvh2GI119/HRMTE5ienkY6ncbly5dRqVRw/PhxjI6Oot1u40c/+hF+7dd+TVvnX/3qV7G6uopz587hW9/6luZjW5bVE9BEVhpvlwDgBz5sK6pkEoQBiuUIY11eXsNwfgRTk1PA/DSw8elOSy9Q+Ju3V/FPfnXhU73uwwpf4OlvPrYphYIQQueU39rawrVr1/Czn/0Mp06dwvLyMkZGRvS85tRY8g05jqN3gr7v95ST69lBAbHSjixuxRyNUdsCCIGIORIGsS+DoG0ZB9vY8LwQLRXCDiUwgEBy4JR2kiVpKiYOlZifJ1napPgphSrlqCbOp/k9CvGm1ZwX4+Xh2iTE/OD0Q6AXEiHaom3byOVyaLfbWhkSb5hv6/ph9aay49cBoBVvOp3G6uoqrl27hu3tbaRSKZw5cwaLi4tQSuHf//t/rzMH5nI5CNHNTZ7P57Uib7fb2vokJWdeO5vNaqze3O4mWdV7Wdr8mfB+4M/41q1bCMMQuVxO3+v9+/cxPDysFfmdO3d0xKQQEf93bW0Nd+7cwbFjx3rSydKzqFQqybudePLCtmBZNgJfIJOJFq+dnVrkb0mVcGX70wcqlALOX6+g0faRTT0iiVEeULjCbbVaOlYDiJ57vV7H0tISzp8/DyCKWp2cnITnebtoffQd8oFwS1sbFP0eUmRORy9jR7MKFfuIvkhzXMbHSQSBgg/A3wO0PnCYtumg6nfMg5yLKxK+5UpSsAB09ByHAjifFOhdXLgDjm+reZpVboHTAkA4LG+D+cNlEIZP7cxms1BKoVarIQxDFItFjI2NYX19Hdvb2zo5FBV4WFpaQrVaheM4uggA7XY41ZFykCSVS+uXaY3/3u8zM4/l/UyTLwgCjI2NaZhkbW1N1xbc2tpCrVaD7/soFouo1WqoVqvwPA+pVAr5fF5j9rQDImvN5GUbN9TdJagI05QW2UwSQRDi8nII+zOakbYlcHO53vOe0gj8o4N3J40Dc1wTU8uyLGxvb+PmzZtYXV2F7/uYnY3odByrTvJz0XymnWzy+Ota24YHDFHmvugQxY6F7k+uvGWMcQs0Gk2srq4P7IMDZ2lz2IP+Niex6RAzhW+1CZ4gLHt4eHgXJ5uOo4ldqVTQbrd18QVy6lG+jsnJST1AyPlFE57joe12W+PLFPLt+z62trYiyyzmZ3OrNKmqC78voOtp59YJsWomJydRrVZx69Yt+L6PY8eOwXVd/OEf/qHmZB87dgxnzpzB3bt38corr+DMmTMoFAr4zne+o639VqsF13W1QuPUvtHR0Z7+54VVeTv7PbN+QkqZnh3QW1GeF9w9c+YM3nnnHbz22muYnZ3F3NwcRkZG8Oqrr2J8fBxKKRw9elRb5LOzsxgaGsKhQ4f0OSlPDLfEkhZL6mNp2wgFoMIobafrxjCRcNFqd3B5xUfb/2xygXS8ELdXGjg5X8Rux9qjx9VO8ltRv3ueh4mJCdTrdVy6dAm3b99GLpdDqVTCr/7qrwKALtZBho+JWRPMVq/Xe6Io9TECkUNAmZx2Ym/HGTcRV/ElDnd8BPWuFBaEkggDAQELd+/dx70bN3H6iW/3vfcvpKXd73v9zkUP1LZtFAqFHkXJjyXFW6/XNZxBFDwaGDTJga5youO4VU9WOVnslACLBhLhcNwZCnQjDftJPyiIFiGKWlxfX0cYhpicnMTi4iJu3ryJe/fuYWNjAwCwuLiIkZERfPjhh1hdXUUmk8GXvvQlAF0GDy8iQJGPrVZrV5uoP/tBU4Pupd/uIekeaQH2PA+Li4sIwxBXr17F9evXkcvlMDk5iXv37mFtbQ3tdhuTk5NYX1/H2toaWq2WdjhOTET5p3lKVgpoomubu50ogCLKQRKECgoSlp2OW2bD83xcWhZ7VuL+pCRUwNV7tc/m4h+TcH9HsViE4zhYWlrC66+/jitXrqDT6eCpp54CECV141HOQO8ul+Y95U7nUGpXmNXcoz4kQClaY4Wt7WrBvxfBI4BAGEYW9+bmDq5duzXwPg+kpT1IaScpBnptWuD8IVGgSc9EjD+jLTdFy/WDJ+i8SQwSws8ITlBK9SRtJwVIx5rQDLUnSdklKXW+YFCFFQCaESJEVLtye3sblmXp3QFVSCdsfWRkBPl8Xmez405AU4HSb3Kq8nbTjoJbyuY9DIJM+j1zE4Ki/qUdDqWypYx8k5OTaLfbuuDwzs4O2u22vjf6HlntSc/XbG/UkN3HkU2WTmfheT62Gp+tRVupe9DaR3xGq8fHIDTHHMfB9PQ0MpkMJiYmdDUpANr/Yn5PO44NeIRb2XocsqhIbT0rvkvpBUHMp9u9fvSpUtA/g+TAKe2PKlwhcJyS6GFJSpssyM3NTU3g58EkenscK45qtaodYDRIKCyasGQqlEsDhyqoC9HldpPwATZosSCLQUqpAwZyuRw2NzexurqKY8eO4erVqwAizO/atWvwPA8zMzP47ne/i3q9jhs3buCFF15ALpfD7OwsXnjhBRw9elTnMCGWDMERQBczJEW9s7Oj83MA0aKXTqdRLpexvLyMVCqldxCmdcNhL/4M6Bo0yTg8woNqiPqVSqUwOjqKQ4cO6bqVY2Nj+M53voNz586hVqvhe9/7Hv7oj/4IuVwO+Xxes3vGxsZ0MeYHkZAbAY4DFffPxMQhVLbuw/M/W0XpB4++ou7n4+CLPOWBKRaL+I3f+A20Wi0dCEc576vVas/iyw0tOhf5LEZGRnp2UnFLEnZ5tOAZbQ6jEHchmKWtRBfvVoAQFsJQQCmJvdTy3yltJkkODXqgxN1Ngh4oMxxVnCAlQcJXcMuKisNSyS+udDKZDCqVirbEc7mcVtiNRqMnx0iSJc1ZI0mKm+cGpvsiZsvq6ioA4P79+1qhLi8va4jmu9/9Ll5++WUsLS1p7H5sbAy2bWNmZkbXoaRivUQB5M5YgmBM2iPtKnK5nOa1J8EbfPtqYvemkua7IFosXdfVk5QWxbGxMbRaLb1oPPvss/ibv/kbNJtNHDlyBJubm9jZ2UEmk8H29rbObthsNhMt7UGiwPwlloUgpgmUh8awcvc6BAIA/dP6ftJiW48eds2l3+6R/uZzqdlsIpfL4fnnn99liAGRPyKbzWr2CE8iR+OXnP6O4+jjtB+I2gSlw2xIF3f9AL07QymYPieSiSIOd+yMjEuPDZIDh2l/FDG38SR8y2S+z7FbM2jEPDf9EIRA56DPiRtKGC+PFDTPybdw/bBd830akKRYbduG7/saIweASqWirfDh4WEMDw+jWCxqSIGnAaD3zNzfe/WvGf3ILRzuyd+v85H/5m3j1XKCINDBQpRaIAxDFAoFXZUGQM9ia1kWRkZGUCgUdvWlea9JYyOhB3QwRZd3AFiWAyEkcs7gPMqftJRySQvGo299c0nCp3luEfqcslhyp3XS/DJJDPpz8299XDfacdeYACl5OofJKIGG3wbJgbe098I6zeOSLDxzy82lUqnowBDqbLOyDEETdG46nj6n37SFowxzxPkly5Dnx+Y0JB4tOchCpcXg3r17mJqa0pb9jRs39LHvvPMODh8+jNOnT+Mb3/iGztlA1dPJCibaoW3bqFarPYmsTGyQ2kAKniJFyfLn/cqDhHgCJxMWMYVj4bRD4tWEarUafv7zn+tgp/feew9TU1M4ceIEXn31VQ0/cb+FlBLf/va3USgUemiWSeNnfxI/H0H506OdRypdhO1mMFus414tj1DtvVh93CIFcHQmKSKSFMqjZYWbMAmPcaDnT45iiiPg45HoncViUadpIOHziXa1HCrtGl/ExUYX5zAWuS7WHWEhiixrRfcRQqgoWZQCkCvkMDE5NvDev7CWdj8nFp+UfBD0w4prtRrq9bqmuAG9vE9OyidMmRcf5oMvnU6jWCyiUCjoEldUoZzn+6XjSUEOopuRUBso+RMlvKrVarh//74ekJcvX8bdu3chhMCZM2dw9uxZnDp1SkMInKNMMA7dP1fa1Ea+I+AhxXy3QQsiZ8OYEyTJKWkuTNwBSjlaaLFrNBp4++238d577+Hu3bt49dVX0Wq1cPjwYaysrKDRaOg+onuQUuLMmTM4duyYXkjpOg+utAUU5d8UEkGoABUpbTeVg+24GM+14H5W1WwcibmJ7Gdy7Y8q5vigZ0SpJLjQ/CH/EUUT03no+/T8k8LYo/ERq06h/9Os9t7GAVD0fnd/pe1yFdECRay005k0RkaHBt7vgbe0B8l+tt90HFcyPA/JXhaguV3jSigIgl2pWul47t0e1M69YARzMPu+r0PsSeFT5XAAupJOo9FAuVxGEAR64aDae6bi6qfA+kEGPNTcPJ4cmv3C1PcSPtlIYdM90C6Boi8pCCqdTqPZbGJzc1MnyEqn0z2pBEw4q9897tG6yOISGsrU79uOi5lSDf6nkydql/iBwuHJXK+h+GgZ1wN3OeY4536efuOzXq+j0+n0FC8xz8UNiN4I6n6tJGyEPWAh0GOMg8Mr9En04zgW0pnBXP0vtNJOEjMoh7DfWi3isKbTaZ1KlVuXJnTC85+QYuTebbICSEkC3cEWBAEqlUoP26NfVBZ3Ppo4MbXD930d6FKv13Hu3Dns7Oxgenoahw8fRqPRwO3btwEACwsLcF0XH3zwAR5//HHcuXMHd+/eRavVwvz8PEZHR7Wy4wsRF44lciuI+pb6UAjRg98JIVAsFnX6U54B0ZyU/J75NYXoVtkBIsipWq3iypUrOHr0KJrNJmq1ms5UuL6+jpMnT+L69evY2NjA2NgY5ubmMDo6qnOC861xv3veryhwTlfMeAkEhkfG0agFWBzaxJXNEahPESIRAnhqsRiFsCugaws+enj2IPiPf04LNJ+j/PMwjErJUQAcDzjj49dxHG2tZ7NZvYBLGTkPRczJjlvCfqK3BV1TEK1PRa9FtHILESAaFR6U8FAaSmGk1A0+S5IvLDzST0z8lByE9XpdP7xGo4FKpYKtra0eShkXzlog646276S0qRYhvzYdSyWvyFocNFhNihsfwITt0Xmr1Sref/99vPbaa3j33Xd1O5aWlgAAc3NzcF0XV69eRT6fx8rKCt599110Oh3MzMxgYWFBM0r6wTK8XWbfAhFuTQEp/H0hBAqFAqSU2lu/FxTBr8sXBarfmMlk0Ol0cPPmTczNzWF8fFwn9FpfX8fm5iaOHDmCO3fu4OWXX8abb76J6elpHD16tKfQKy9U8XB4NtDl4tKkpuyIQKk8jFQ6i6PZD+F8yrPSsQS+9exgHPVRFa5k+VjguW947ANJGIa4fv061tbWdI6gpF2xbdt63qfT6e64VwoUGMNao38UU9xSECdfsEUR0OkBEQLwAeGhWEphZnYYg+TvLO1Ykj3Bu4/hWDSHOwbhydwxx//mJdHM45N+P8g98NcmNpdOpzUHlahwhMdnMhntWKRBS5/zyLCk6yT9nXRPdP9dq6W3spAZAGSeY69rkHVM7aX843RP6XRaZ2j0fV8HB1EWRapGlLRomBbdAwlvthI6PQWEhJQWhJQYciuYH/VwfS2qYPNJi5TA3EQGc+NZ4DNwgH6SQjvlRqOhDZhsNqvhEOJpm8aTKRzj7rHq0WuoMFoIvQv+pkjCm3QQUxd2sRPKFnL5O6VtCHfu8ddEyt/Y2NBWFyVPN+ERcrpxRgMfFKRAzFqO9BlF59HgIHoS0B2IdJ1enK3LniBrmELvi8Wi5oB/+9vfxoULF9ButzE6OorFxUV9/vn5eXiep4v0Li4uIpPJ6HwrVAfSdN6algy1z+xbuh/K+tdut5HJZHruIZPJIJ/P96TQNRW7iTETwyYIArz77rvY3NwEAF0v9NChQ7h69SoKhQJOnjyJMIwKMlerVZw8eRJAxAQ6cuQIJiYmNJz08FZ1r3QdUUI7scI4Zt1x0wiQgrBSkHYa/82XN/E//nAiqn7yCYtjSfzj7/GahI+u4jbHOR9zJlVTqYgJlM/n8c4772BjY0NXUjp79ixSqRTOnj2LWq2Gmzdv6nHPDTEAPYYF5Ya3LAuWYhHNmuLH/1QMJRGwpIQlLUipACGhhIBSlGBMQakAYdiGUjYgvuCUvwcVzuslUUpp63Rra0srWU7DI0VMx5NioeNMpd1ut+F5ni4iQEqJrGKehYzydvDwdT6AOZxDi0Wn00Gn00GxWNSZ6agg79e+9jVcuXIF7XYbw8PDmJ+f19bHoUOHsLa2ps8zPz+Pubk5TT9sNpt9FZm5m6D3uHVKEy5JaRN7g7ahFEJP/cL7zwxDVkpppf3+++/j4sWLCIIA09PTmJqawmOPPYZz587h2LFjePzxx5HL5bCysoJ6vY6jR48im82i1WphcXFR9x3hofx+PoooBQgpIlhEKZCv1XFdhIELaaVg2Snk7A7+4XMN/NHrWbT3SIj/UcS1Bf7B1yZRzn92AT0PKtyHxMchLylIc48Cod577z1cuXIFy8vLcBwHZ8+eheM4eOaZZ/DjH/8Ya2tru8r0AV2olEMlVLk9ooaaOFYMYjNGtoj/l0LCItbJru9FDJJQeQiVj73k7zDtfQhffZOCXR6EhcJ/c/ycCyluOsb8TtI56TPTGuFcaPo7n89rJ5/v+zraE4AOSKEUrQSf8JDzvfoq6TW1dT8QUdKk5AuWeSz/nNdn5IsjRZPyUmzUH7SzyWQyu6oRfbzSpXz1QhExvCYlpLQRBCFeWGjhG8dDpOxPxhno2hIvnhrGiydM/JQT0rpt/jwJH2MUTEb5dIiPTcUR9kypy2SQA5qT/brHmBRA47tGV0dzN9yVc96Uv7O0E4Q70QhqoJXYtBrpGNOSpmOAXiYJCf1NVDReV5C2ddvb2wDQgyUnecpJARJ1j0LiKV8K1T0sFAqwLAvZbBbz8/OoVCq4dOmSrtQCAO+//z4sy8KXv/xlnVGQ7jGJisf7JAmH5sL7gyyjer2Ocrncw48mBev7PlKplMbVaYKRX4HoeQBQKpXg+z7eeustTE5OYmpqCo7j4OLFizqH95e//GUUCgVsb2/j4sWLGB4exsLCAlqtlnb6VqvVnjJuSVDQw4oQ3dJjgIKU0bk83wOkDTeVR6k8hmqtBcdy8fsvBBAQ+K8fKHjhx2dfRQp7BP/gq5P4vCll7j/ic4ErXs5aIuf75OQkzpw5o1NNvPXWW7AsS6c/HmQMUbIwisXoOV5PB6H/J2ofpZPi85YUMx0sY+tcyshyr9WbCFsdTBUn+vbB31nahpjMB1LaZG3y7TIpKdNhxfFpYm0k4bLESjEVhOM4OnUkL2lFUIi5Zafz+r6vs/RlMhkMDw/rQB2lFIrFos52dvjwYYyOjuLDDz/E6OiodkSeP38elmXhhRde0CHulNnPDL9PsuwHCe8PWgTr9XpP0AKAnjJPADRkQoUgeF5sKl1WKpUgpcQbb7yByclJfOMb38Cv/Mqv6PwSSim8+OKLOHz4MLa2tvDBBx8AiFLMUli/67q6ICy3dpImdBKGv6cIYnv17rg6fgfCcpBK51AqjaNabaHZaMESCr//godvHboJCx4EPhrILWUURPMPvjaL33npUAL74dEX01jiSttkfQHQSnt6ehrf//73tdJ+8803cfPmTbRarcQc9PwcPBkazz+klOpl+IkY+opBkeiY6D9iDXWNH6VdkzJ2RAMC9VoTKytfsCIIH1VMy2oQu6Of0KTu916/gcePNS3zQW01FQh9nyeIIqgD6Cancl0XtVqtpy4jOXCotiN3xDyUomJtSvqbL3gmw8TsJ/M8SnUrAZE0m02dNrZQKGjlH4ahTo5FiwFZ8HynxHcSSePgoS1tzRLYRTHQIqUF23bhByECWsgE8OT4Bry1d3HB/wa2/BKCsKsU9nVpEdH6Dk1k8Y+/exjl3GBH10ETCmKjsnwAdBk8cjAOEj7HeHrfaEwYFnaCKPZ/77ti108QhPD2yB75d5Y2duOw3JqUUurcBJQQneAKEnMic0ZDkmLljBLCXE1cjXO0AfRg6SbeTSWvHMfByMgIhoaGdNEEc2tP1vrU1BRGRkZw48YNdDodDA9H2ObZs2cxPT2tizXw7/RbYHhb+ik18gfwMmzUL5SLhJ/Htm2Uy2XtAKZKOrRjSaVSWF9fx7lz5wBEzA/apXQ6Hc2tnZ2dxcjICNbX13ussRdffBHz8/PaaUVh+UAXU++LXz704hVCKRoTsofLG4aAkA5yuSF02iE6HR9KhZBSoVgqYGY0i5nN/4SXht7FTHodCD24VgjZJ++1FEDalbAtgWeOFfG//e0F/O9++wiGCinIj8Gp+lkJt1ZNZhGH37jzkJ674zh49tlnAUSsIs/zMDc3h+PHj+tjzXgLOi9FQFN2zt04uIBSAlTJRvQoY5rzApaQLPKduNsCKpQIAwuNho+tzToGyRfG0t7PJOOTkcMkmUxGp+Lk1WhMLJuEhz8DvSs1rdY0qMhJwnFvUszEhiBsjjsTebAO8UypHBrhwObCwgf17OwsdnZ2cPnyZXQ6HczNzQEAXnrppZ6cDZzt0Q9PN/u433ukFGm7ScfV63XYtq0ZM2T9DA8PIwgCbG1t4fr16xgZGdHb01QqhdXVVbz++uv41re+hc3NTQwPD+uiDsTNPXz4MGzb1kqfnsk3v/lNfS6yvk2KJjlKk8bRw1negU6UL4XswTZDBUjpIpcbRrsVot3yEaoQriUxVC5hdGwUH3zwIzyZKmA+cxuv//n/D//sf/9/QZiexof3O2gGNjpeiMD3MDlawPFDecxP5zEznkY25UCBFFt8b+H+nG+Pmph+Hc7cojFOjCyutJWKKLrPP/88gKhC08bGBhYXF7GwsKCPpd0bh/1o7FJRbzIyHMdBj62t82kLRGh1lymkHd9cL6hox6SUgIJEKCw06h42NgZXEPrCKO29xJyMJnOBT+p+W/1+C0MSXMKvm+Tgo4fcj61hDl6ga52bCjvpHgkSofB6WjAo2X9Sgv+9Fr4H+Zz3Yb88JLySD3HaCdemhFC0uNB9kAOTsigSW4TvEqSUOp+3WWjZ7LekZ/dxsUo0YCIAyqMspR1NYsV3HRZcNwXP8+F5PqTtI+jUMFus4eTjEl877GFk1Mby6iY+vHQTL3ztV5DKlQAnhbahm8n2+3y5H5PFnIv9FlAOEZIPhFhCZF0Tu2SvRdiMxzCvTU7IPvvNyKdBx+lEUwIittKDAPD9wQvq3yntWOih8m0xRQzmcjlUKhXt/OJW1n4xbxOCoeNc19UpJIkJQZ9lMhk0Gg2diJ2EHJS0iORyOV19JamyOV2TV4m/f/8+tre38cwzz8C2bV0qjRR2EgTQDxLaj7Vp4sZ8N0HQk7lzoXYppZBKpXDr1i0MDw9jenoab775Jur1Oo4fP67vr1qt4sSJE1hdXUWr1UI+n8fNmzdRq9UwOzuroa6RkRF9j7yOJYeCuPSDmB4Y3xYq8kypmAzGoQ0hACWhlEShUIJtR6XdHCsN13EwXB7C008/g0wuD1+FOHnqBHK5LCC6XP1UKoXx8TE0GnUoy4VrOTDVR6j6oeGfDzVuLqr9DCn6rNPpYHFxUadkGBoaguM4mJubQ6fTwfXr13Hv3j0IIfDEE0/oeIWkXSXQNQ60z6WnaAGp49jSFtESqQS9343C6T56CSiqEWlDCgdSDk4Y9YXBtPc7wbhTjpQcr4QO7MaqzfPT+2QtA7uVtomXU0Iq+r4QQuev5nkvgG7hXKKmUZ4NcrQk3Svlsa7VavB9Hzdu3MD6+jq++tWvwnVdNBoNAFGqWbqeyRjhfUNt3M/ugnYTtJXlStt1XZ3bgxeSAKBzGSulkMlkcPnyZdy7dw+FQgGvvfYaarUannnmGX389vY2nn32Wdy7dw+/+MUvcPPmTVy+fBlbW1tYWFjQBZKnpqZ0wi96xvyeOMZtOkU5jvogSlsgpvxFHRL3TRfTBiQUJFQoUS6PwHZc7OxU0Gm34DoOxsdG8ZWvfBWFYhEKAqfPnEahkNftDnwfmXQa0zPTqNaqaDSjzIymLu5H24zk0VbcZt9zCCvJiCCa3smTJ1Eul3Hnzh29gzx69CjGx8fx4Ycf4i/+4i/wN3/zN5p+C+ym9tI1abHn8KBWzoDGtCEsRIrbtMzjDIFCxHpcAkoiCASEciBFCtYXTWknwQYkSZOMr9J8YvLzmKHi+90em9dL+j53hJnCt3WD7pFw9kFWNlfCBDcEQYChoaEex0pSVR3znpKckRwiehBlRvffDyKi37Zt66RdlmVhZ2cHnuchm83qdnc6HV2yrFar6WRPlFaWrkeMkX7OVXPb22/cfDThVnZ3P60g4DgupJDwvAjXllLAdVwMlctwXAeWJVEqFTXWGu28IgvQdRwEgY/QCFoi91h0f90WMFOCpTp6tJU3l6S5zsdiGEbVicj4ITiMYMRms4nt7W1sbW314OLmuUh2s5i6zkbAWPYE7/XEIxj3BIiUvAVp/V2NyH0JWVg0CAg/pe07WYZcoSc53MzX5jW4FQ50A1LIkudWBMEHxKGmYwguoEAZM0yet4GscipES7zz8fFxXXCBO9z2UlhJmL8pZt9w5Uuf8++Tw5UK53JxHAf5fB5TU1N47bXXUKlU0Ol0UCqVUKvV8M4772BhYUGnj6UUsmNjY+h0OlhYWECpVNL5sWkiJ91nUnBQ0n32MwoGSUTXtSGUBQGp0Uwgck+K2CqTwkImX0Rjp4ZqtQEhRiGEAoSPUtHFwqEJlAtp+IGP989fQBCE8L0Aru2hVC5jfGoWVroAywog4UHBjtgJsAAltMUfRYXEi3Ns5ZP113WsSQhYEb3wESKc9PONmO+TU3FoaEiPyQ8//BAvvfQSXnnlFZ2emHLQeJ6nKaM81w/tDAmuixzlLoJAQUgFKULoDhLRoidjSESRrwIKtlAQYRhxS1TMHhLR85BSAdJDoZSGaw/OuHgglfaDWHtcMXGlTVYbWXic49yPy7vXdWhrZ9amI0u73W5rShEAzajIZDJ6u86TQGWzWeTz+b7KVQihFfb6+rp2unC2CF1/P0p7r4UpCQ827z/J4ZtKpRAEAarVKkqlUs81KftesVjEzs4OUqkUWq0WRkdHsbS0hL/927/Fb/3Wb+HKlSvodDrY2trCiRMnkMlkcOfOHZw6dQqlUgmZTGaXRW8yEPiOo99zfXgnpECoXEhE21srzjcBAAFCKBEZBLa0UCiOolnbwOZmLdpmixBSdDA6nEYhO4dqtYlLV67hh3/1t1heWYOwHcCvYWHxMJ574cs4euJLcCwfEh1ApaGUhIIFFcaFc0SIEAGUUBFrgRQzOcoIGlASUkmEMnxkrO/97KC5cUQGCjm1//Iv/xIvvfQS/uRP/gRHjx7FmTNnMDQ0hA8++ACdTge1Wk3DoUA3zw2xtqggsOvaqNaaECKMKhJpxR0viMLSzmQBBUtEylaEQazCIyRFihBKSgilIKSHodEsstOFgX1w4JT2R/Xsm7CIlFLno05SYPt1yO21xTa36vz6nOXB8WWCRUxFyXcCZFkTlkcZ9vL5vKa78cRI++kfEyLpd9/7fZ+UOQ+U4TsSYoAQK4TC2z3Pw/p6FD1GVUhc10WhUECpVMKtW7f0bgJAD5UrqU3mjoDf78chpBi7eZTjZ61fCQ2PABKdjo+uiauQciVcOwUBCQlgc2MDS8vLsN00ws4OiqUC6vUapAi1NW3S0VisXvfagm3xVXSoUOy9R1gGzSt61pRql+ijAHD//n3Mzs4in89jbGwM+XxeG0+ms5PPxW5eGwth2IWUdJ+yVKs9bdI/Ma4NpXEqobc3IZxUCrlcbyUdUw6c0ua4NNB/0vEJypUlhx843syZJf1wzr2EO+Tob6W6dLtGo6FhDxKythuNhs7+R+WwKBAgCXcjrjU52yhnAn1OWQPp3vajhPvd037xbJO3Tq/pGRD8Q85UpZRmf1iWpXOnXLx4EdPT01hdXcW1a9cARFVFzOCb8fFxTffj/Z3Uzo+62O9P+DU53kxjMe57Sfm1bXi+D9u2YFnRmOl0OqhUKrh85QqEkJgYn8DkzCyyrkIqbePu3bt46sxZAAoqDCF5YC1t2Xe1ixgP5ntmmz9fQs+Y6HxKKZRKJQDA2NgYTp48iZGREWQyGYyNjWl4ZGxsTB9PjDGgt3i0lFL7DSJnoyJ0qTufFGD2X3R89HZ0XAjo6jcRULVXMPSBc0T2cyaan9NroKvkAGirlOhz5LSj4zlr4IFxzRg75tg4KSnLsrC9vd3jDCErk/JnOI6DUqmE4eFhjWUn3TPl6l5bW8P29jZarZaOkKRrUlUWXjrMPNdeis1UgP3oV3QcLY60GHILhtpFVEYgwvDPnz+Pl19+GT/96U8xMjICx3Hw85//XHv/ifVSLBZ1P1IY/sLCgrawkhyP/PfD4NQPKtx25TxdquhNWVuFkBCWDWnbaLd9+EEXM220mlhZW8drr70By7KwsLCAr3/ta/jN3/z7WFxcxAcffBD1X6gQ+D6isliEm0pARbQ/fv1eq3D360cDGHk4obTGNM7HxiK8eH5+Hi+99BJmZmaQz+cxNzenWVxU9YYrbQ79EYuKdoZ6vAsgwrHpJ26EObbiZxJFx4aIFL6I4CsJOHuY0gdOaQMPhjMDXQsY6MIUXLH2YzU8jNImJcfPYdKJ+LmllFrZEvOBtnv9supxxc252fyanM73oPeR1L97Kb1BitF8DvxYquW4srKiAyJWV1dRLBZ13m2gWxOQR8LlcrmeyZeEyfdr80fZUSV3AHpo2Zy5IXTYc6zY9bVlT7uFUAj8iMa2vr4OIQQKhTzGJyYwNzeHQqGg854rACpUbFvevS5BIHs2GIDqEyb/eRK+WFMsRD6fx8TEhDZmOK3XDKAxd5LaQArZEzT6M3oG5hjrXSqjd7jhE8Emco9nc+DgEaA/3syVBv+bW2GkGEih8bJVgxxt+xHT4UnvcSuZnI08n4JlWSgWi8hms4m5EeieKRNZp9PRXm7u8ORbuyTnjdln/dpvvmfei6kIOT6d9JqCmBzHwcbGhsaex8bGMD09rWGclZUVbG9vo1KpoNlsIpPJYHp6GkBk/UxMTGByclLnK+Gl4ZLuNwmf/yRlLz0pgBgjkXBSaeQLZdTqTaRSLtKpqJ31RgOtdhtT0zOYmz+M8tAQlpbuY+HQGLKZLEaGR9BsNOCmanDTEpkMsUSSQZGkdwT/W4ne1eZzJKYxJqXU42VqakrXCa1UKtjZ2dFjCtiNi5NoXBsebMeOQA0Vxko7LnjAKMJhGCAMFbwQ8IMwglSEjJyX0VcQWechhE3tHnxfB05pm8466mQScwtPFicpynw+D8dxekK5CWcmpUpBHw8jpuI3U652Oh1dq5COt21b47NcaZsOs3a7jc3NTU3tI+uTjiPlTZQmbs3vt+10PC80QK+TMhPywc/vlfqTAiBKpRKKxSIuXLiAO3fuoN1u4+tf/zpOnTqFxx9/HOvr6/hX/+pf4f79+7AsC5VKBcViEadOnQIQWdqzs7M4duwYhBA9zlezr/h7Sdb3JyVUxaTrjuqKVF2YBNJCJlfE8PgU1jeuI51OoVgoQKkQW9tb2KlWcfzUl3D8xEl4vo93L1zAc89GLJn5ucPY3tqG70tk8j7K5VkI6YIUA7nB+mPY5nufQs2zT0hovnIGCI2XkydPYmVlBb/85S9x48YNVKtVPPPMMxo+4UaaCeVF6ZIDpNMpQET9Ki2BMIyofpaMwuJVECAIQ7S9ED4EvBiygpBQFiCEFUEniMqNRZAJ9iwzdyCVdpJTjVvWfLLyrTjlqqCUpaSMKN+FaSHvJtoPliTs17T4zOAWUowURMLf56+5AiRllclk9Pf7Wfb7abv5XX4//c7Tb7fDX1O/04RKpVKoVqtYXV1Fo9FAq9XCxMSEXqh2dnawubmJXC6HdrsN13UxMjICIFr8yuUyxsbGtCXe7/kM+vtjg0MMEcbvns80s6NrbVu2g3Qmh9VWG54fxIpWod1uxdzjYYyPj2M77hOllGbOtNsd2E4L0m5HFpxeInpBGfrF2SRdITz782llk/D5rZTS2SyHh4dRqVSwtLSEmzdvolqt4tSpUz36IgkG7RopCrYdp7RQ3JErIo42XTMM4QcBAggEodLHKwUIGeWYif/T14hqh/YfhwdOaZuKJSm6j1vZZPWRVc6pdTzbm2mVftxWmRBRWlGyEGmbRpKkqOk1YdeUPMkMNTct8ofBsfn36dxAb06RQcqbdgkcBqJnQ3Srzc1N1Go1FAoFZDIZnD9/HoVCAcPDw3BdF7lcDhMTE5ifn8fm5iZSqRSmpqYAACMjI3BdVxcw2GtB/SzgEY4s70Y3u+8rANKyYTtpeL5CEJCxYSGdzsBNpXBvaQXtmP5IIeuO66JcHkI2k4FlSYShH2Xzk2FkyqvY0he93JWDLKYfp9FoIJ/Pw/d9XL16FVJKzMzMaLZRJpPp8fUkwYZBEEAKhUwmh2arEVnYtgMohSD0EQZ+DJlEu+SCm44s7UChFSgEUiIUAhBCE0wEBFQYotlsQYY+MFzqe08HTmkDSFS2JGR5EudXCKFrJBKrgoJfTK8xPQTTan8Q6WehCyF0wiYhhI7i4mIqayCiKG5vb6PZbOqIQooq5BRFDskMqkGXZCGT8HZz656gDg570KJHu5VMJqND7S3L0kWGAWB0dBRbW1u4e/cu1tbWNOvj3/ybf4OpqSnkcjnkcjmNcX/729/G1atXsbi4iKeeegpAVIFGCKEj2/oFQJkYPN9xfVJWtr52dCUQxY7SpSoVORmVitR2AAHppJHOldBoB2h7AYIwKhNWLpeQ36jixs3XcerJp9BstrC5GfkBctks5ubmUB4eRqsdwOt4CHwP0vIh4QAIIaRF5rzRuoRlRJD3NAlOefSFj1OKV9jc3EQ+n0e73cZPfvITHD16FM8++yxOnTql6bUU7s7pflxveJ4HKSQmxguoN2rwvA4s2wJUCN+PilVH6ZEdOI6L4tAwAgi0/AANP0DLD+ErIIxpgwIijp/wUa9WseW18fRCf6V94Ngj5vbfZAmYCoceDOWgpshEjmHx7z9ooqC9hLeLUkQmpUU1j+d/U/5osrQpIOejWtr92B6DrH7zN/2QpU3wE/88m80iDENsb2+jXq8jn89jaGgIFy9e1DRIymI4NjaGxx57TL8/Pj4OADp7G6cwDrKyP3VhlzTVY5SWkz6MQjWEjCxtPwjhB10DIZWKyq5tb1fQ6XjwYj5+GIZwbAelYgmZdDq2tAMoFUCHrIuIIyx0iA39dKET7oTUT/7zp693Cc13miNBEODWrVuQUmJychInTpzA6OioNt6SHNjcAArCIBrH8XlVfDzlwOFJ0XK5bGR4ZDNwHDumYfbOSykiS7vdaqG6Ux14LwfO0u5nAXPlQ+wEXqmCqr8A6KHHAbvxrU9yO82hmyQHIYcXaGdgYu9Jwhkb+5GkezShBI6X02t+D7QQkcW9tLTUg19TwA/5C+gZrK2tIZ1OY2xsDPV6Hevr65iYmIDjOHpXNDs7i1KpBM/zNGf2QaM6P1VRpB4595mNsfhdhci4jdSnRCqVBSDQanfgxhGwtOuoVCpoNOtIp6PiESL2faRTEawSKgmv04bt+JAWW0h77n0wUKISA28+H9JvDAPQ469QKOj8O8TnprlESpjOxZ3vQoieHWsQBLBkl2qaSafhuCm4RCiIudiu66LRjmArJWjnGvVzl+o3WL8cSKVt5o8wFU2j0dABGOl0Gu12G9VqVW/piblhwgtkpZJy2C/rgretHyZs4vDtdlvj2jyKkqTRaKDRaOh2U/IoOj85VZPunztVk/rIbDOAnmo7SbsDSrPKAw4IerIsC41GA2+99RZWV1cRBAF+/dd/HeVyWfNkO50OdnZ2UK/XdUX4L33pS1hfX8elS5eQTqeRy+U0y+QrX/kKXNdFvV5HOp1Go9Hoee573c+nh2Pzi4cm/hD/LyBUl5YXxgpbCAfF8ihCpVCpVJFJp5DNZTExMYFTp07h1q1bqOxsYWioBN/3YFsWxsfGYDkOXDeFVKqFRr0Cx83CcTMQCBFCIvJzSX0lsatFusHs5/OpuDnEQbtnAHoczc7OYnZ2VhfFpkK/k5OTOh+OEF0KMMGPSim0Ws3oSQmBTrsVUTPTaeTz+QgGtB3YtqMRJitmp+3UmwgCH0EYM0gAqDBkrwePzQMHjwDJypG/R1YZp9YRjsVxa/q+qVA/Cld7v+3nUYpJuLzneWg0GrqaOy02gyrW0Hcf1spMYo9wZopZIALopo0NggB3797F5cuX8eGHH+p6e9lsVlvirVYL7XYby8vLuHfvHiYnJ1Gr1bCysqIrYdNCu7CwgKGhIQ0lPYilzfvk01XezMre9Qi6nxFQoSCRzuShlESz1UYQK41CvoCpqUlsbW1ifX0dmUxaL+z5fB6ZdBrZTAbZTAaddgtB4CFS0HHgEhIbkKywP5+6GkDyrpte0zgql8sol8va0ianPlniJBSzQdBjtLuLxp4AonS4saGUz+eRyWSQiXeFiImeUgqkUqnYCAx0yTcRNVYHWH3hLG0Sjl0DvZOU49eEP/WLgko6L3/9MJM+6dwmO6XdbuvSSOZx9XpdQzyEFSdREh+mHfyzfng2f5/3FXdU8l2K53m4e/eujkKrVqs6oIHuMZ1OY2hoSCd74uH7tm3DcRyMjo7qgqwAelgig9r9mVjVCULoMbE3tGHAsGUBQAkBpSQgJNxUBkGrjna7o8eGlALFYhGTU5PI5tLI5VPaCVur1dBstXQYvBB2TPmjflLoRkR20e3Exn7OxdQBXHzfx8TEhM7Nfvv2bayurupkZCMjIxo+JWXNd9o01xzHgZACjnKQjiOVRcwMARmM+if2J0EBZADFY4HmUVRabnB1+AOptJMccGS5SikxMjKiLVWy0EjxdSdGN22qqdx4VOHHqRAo+hKIOMmlUqknXJ1gmuXlZa08iZUhhNBWZxIGbzpn+U6iH7XJ/Js7Fulv3j88BzFFOEopUalU8PLLL+PJJ5/EwsIC7ty5g6tXrwKApuyNjY3hxIkTqFarOHToEIrFIq5du4adnR1ks5Ej56mnnoLjOKjVajpfDK/xmOTH2O+u4tPGuKMds4lpk40VpWOF5aA0NIbV+5uoVHbi9KIKtmNhYWEe0pZoey1ksxEr586d27h+/Tpu3bqN2fk5HDl6FJMz8xDCB5QPSLK0ib0CkOLeLXqJ+dyKEEJnwTSNolarhbNnzyKVSuHmzZv4D//hP+hkbEQJnJ6exszMDKrVak++EUo34XleBO85NhzHgrQs2LE/TEoJIZnSFhE6FgRRcWchJaQd1QNFGLOwUhaymQxS1uCxeGCVtvmawxq5XA6NRgOVSkXjsbSqklJKyv2cdP6Pq62cZUFe7qQFIQxDVCoVja1RoQaiNHHWSD/h2B61YS/Ho6mweXuSLG3uhGy327h48SK+/vWvY3x8HJ7n4fLlyyiXy/o8VOhgZGQER44cwdjYGNbW1nSGwlQqhUOHDkW85Eajx8Nv9qV5r58JW2RfktAuEVndKs4cl8kVECqBRqMJaVkIwwgbHRsdhZ1yESJAJmPj/s3b2NjYxMWLF3HhwgW02q2onubsHARCQAXxb2Vc//OtmAcJKU8ONZJ4nofFxUVYloXl5WX84he/wNTUFEqlEkqlEoaGhpDP57GwsACga6hRxSeCS1zXRSabQToTwaxKRQE1QlLmvu4vhe4cgRAQUkJRRTilIGWUltfZI/nIgVPaXGHxrUxS7Uc6zqTxJVmlHHb4JLbbSVYirwBP7wHYVQdyL8WVJPtxQj5Iu7k1TwO81Wohm81qtgcVbKjX6z18cjqPZVm6GjxFRWazWRSLRb3LGORTSFLQe/XHp6/QVdevR5cWAj0ZnAT0AVJakNIChIXAD6CUjPS6CrG5sYZGq4lU2sLa8jIajToymQxmpqfhug52drZhWQJQCmHoA5aCvl3mW9T5oFUvqmqq98+jDFq0U6kUdnZ20Gg0MD09jUwmg2w2q2uIttttPd/5uKP557ouLNuGFLKnf5JmUxAE6Pg+2p32bkgPAEQUHWlZErb9BYNHuHOMVkWlFIrFot7ebG1tacofx4Xp+ySDlBk9yIcRjo/RNfkiQQOEkj6ZvOZcLteTB5tgCaLPJfVJklMmaSdhYuJJixlnniRV8qEFcnl5GTMzMxgeHsZv/uZv4tChQ9ja2sKdO3cwNTXVY2nTfS4sLOgCvtVqFWfPnsX09HTP8+zH4KG+41vhRwXP1tKPiBHjzET1iw6UsNw0LCcNabloNFpIpSxIAXh+G2+89kvcuXcXQobw6lFFlUOzs3jqySdw+/YtXLl0Ed/7le8BykO7VYdr5SCtNCAk/NBsTtxPiqntz6umjoUzycgw44U2KBbg/v37+P73v4/Lly9jaGgI3/3ud/FXf/VX2Nzc1L4v8iFRvIDrusjG0am2zXLuxBZ03AIoFc2JVquNnXoDW1vb6Hhe/FlUjkzGu9IwDJFJOSjmUgPv60CyR3h+ZuL+uq6rCwfU63W0Wi2tXJKqjJPspbg/Dkckx+A5DOF5Xk+yK7oWsURMJc8dgIPazNu+V/uT/APcujbzmgDdxaNSqcD3fRQKBTz33HMYHR2FEALr6+vI5/PI5/M956TEWBsbG3j//fexubkZbfHjzGye5w2MdkyCsR4laIQT6JIPIPM7VtxCwrIdWLYLYdlodTwoFUJKBRV6uHrlMt4+9yZef+21qL82NjA6MorTp08jX8hj6d5dpBwbUAF8vw1KSrS7TwjnfsQWuI8o3OdCrA8+RnK5HDY3N7G1tYXTp09jdHQUo6OjeOqpp1Cr1VCtVrVR4nmerhWbTqdRyOcj5e04kEaiNN2/bFPV8TzUG01U6zX4gR99poihIyAtCaVCOI6NfD6LQXLgLG2gS88hRUDWoZmToh/TIElB8b8/CeuNKz4aZJSmlV+b3xOHbsz7+aht7GeVUzuSnJcEQ1FbKPWlZVkYHR3VlCpyoBLfFUBPWoF8Po+RkRFdo5Mn0TLbtp/7fHQUdxdDJsZA9Ec3+pDfjYqtb8u24TgptNsdBOkAAj4qlRp8rw0pBXKZLMq5AkZGhpHP5eA6Ngr5HEZGhiEkEHgevEAhw5cN1W1OsvF/8PBuc0xzhU6fk6LPZrM69zbltCfnumVZEGQcCcHYOOxaYYggjPLGBIIzneJFecCYFHtscQ6c0iYLlXLjOo4D27Z1qC8pPZ62lUMVJiOCn/ejWm6mw47eMxUihdVTmS3CgoFoABWLRc1pNq0HruTNa5sW8V7ORy5JjBMOudBCyaNMP/zwQ1y/fh2Tk5P43d/9XSwvL2vmy8zMDEZHR/UWtlaroVarYXx8HCdPntTZ/SgfC+2MHkQeZOF6GL/AAwuj2cVXZf+ztwS05RuEQCZXRHl4FKur60jZLmzZwvl33kKjvoNiIYvFo0fxxIkTmBgfx+TEBLLpFI4/dgz5XBq2BdS3d9BohSiOzkKpAFABACt2SibBIIL9/nwrbo5J8/krpdTc/1wuh1arpXdyjUYDCwsLmJqagpRSxxNQbhJy/gshtGNXgRkSoYLn+Wg222i2Wmj5AZqeh44XxVMoGeXTFsJCGFdvD1WIiJ4p9uzyA6e0ga7VRhXLyeHQ6XR0hB535pk0tqQJnKS0HlZMq5pfk5S2lBLVarWnOjtZBVSRhQ9EbiUADx6tae4u+mHgpsLn1j7Pqx2GIW7fvo1qtYrJyUn8zu/8jt6KAlGSqFKppL/XarX0sYcPH8b8/DyAiPpI6WZ5X3weJWEp3PU/RyyVUgihkM5kEBRLuL10A2PDw7AEcP3aJbSaNWQzWRw+PI/nnjuLUqkIx7IR+B0cOjSD0fFhWJZAq1lHrREF2EAFiKrAW1G4/MDu/Pz2NZBMV+VziXLXp9NpTU6g1BCTk5MYHh7WDsdUKqUDwbTyj7ZL0QIbgdfR3yqMKwy1Ua3WUG93EAgBH1E1Im2hRx7liFWi9u9DOHBKmx4MWXtkAQL9nWv0vQeRT1p5cMVJmfT4dfnCw5Xmw1zjYe6Ft4/YIuTYpaIS6XQaOzs7GocmayaXy2mncL1e104Y2vlwXN5cRB/EIn7Ye/tEhNMy6LfgLwdsl6UFy3IQBBFlz7KjJETlcgnSdiNYyiaOcBRWbVsWXMcGEFdPCXxwVH2j0sIblzdx9V4Vd9eb6Hihdpq5jsDsaAbHZnI4e6KEkWL6oW6537Myd3xJ30na6fb0SZ/nOuj7prEVhiHS6TQymYzeiZPhQyX9iKjA8xElthsRJBKGIQLfh+f5CMJu4jJBlWpEBI/0g6TCkIgF/VXzgVPaVFmGMsdR9jsK8zZZIjwvAUnSQ/k48mj3s+AHXZOs0Gw223NMJpOBUkpDPRzH59fYC+Puh10nWdv02/f9nrS15JxxHAeVSgWVSgVBEODYsWM6n0O73daMkJMnT8JxHCwvL+P8+fM4fvy4Tt5DuR7IYufJvczF15RHRkH3kUhdJqRgEoCAjN8kx24UyB5CwHEzQLaAdicKzCjkcjjz7FMYn5zEdqWKze0KiIetQgXbEki5NqR0IRHC95potZpA6OGXl7fxp69tYavWJz2vUmi2Fa7cq+PKvTp++PoqhvI2fv35KTx3Yvgj3b85HjlcYS7MST6nh12E+439druNubk5FItFfPDBB2g2mygWiwiCAENDQ7puJBEYzJw9vQUiBJrNJtqtFpqNJvwgjBZZIZBOZ9BRkVJH/Ay7Po2u81kAaHc87FQbwHCx7/0cOPYITfBiMbppqrAspdROBB7RyAv47kchf9xOyEHno0FCzjsulECJqHJmZfZ+spcF0w/P5udO2rmQ0vU8T+PT8/PzeuvpeR5WV1dRr9exuLgI27axvr6Od955BxsbG9r5U6/X9U+z2dTURuqLB6FZPkpKnCtswKDZARFVTEgIIXeBJrabQiqTQ8eL+j2bTePkicdw9vTTOHZkEfVqFYgTTqkwgGVJOI6NlOtAQsH3Wri3LfF/+H9v4g/+61p/hd1Htmo+/vCv7+Bf/OsLuLlS/wi9kCz79R/td47uVzzPw+TkJGZmZrC0tIR2u62NH6rJyq3uweMpovXVanVsbW2jWqui3WkDQPx9F9KyAcHrCHVHA0EmnuehVm8MbPeBs7RJOF93ry0TfTbI6v0sFAANXFNRKdWlM7ZaLX0fZv6Rj0P2sm6o3yhLX6VS0dBNNptFJpNBp9PRTlVyAFEhVZ77m1+T/0665qD3Hhbu+aSlxy4TzMmnL20ylbSfC4CAZdlQoUIYhHDiHBX/f/b+LMay48oSBZfZGe65s1+fwj083GPmEAyKQ1JKSRQpKSuVmch8KWTVe0AX+gGvqh9Q3aj+6C6gvro/+qeB7o+Hhwa6v/qrC50P2cgsqCpVyElZSiUlUVOSkkgqOASDwQjG5EP4dOd7z2DWH3a2Hbvm5173IBlBhofvgIdfP/cMduzY2bZt7bX3DoIA5VIJnBvMFJlmy2aAEMD3rp7E23dnPnH7B6HA//wXH+C3n5zC//l/XMnu61MYb+OMh08L4pp0DirnR87unZ0dFAoF7ZicmZkZO4nQ+0aw4B6jQuPXoxO0Oj79U39W54v3MUwOndKmzqYlOikEOwgjT+7VeXevMg4CyatkI6XUBYUpeIYszTAMsbm5ic3NTayvr2NmZgb1eh2zs7MaT7a523ZkpelFp23m39QeGpTmfgTbOI6DIAgwGAywurqKa9eu4erVqzh16hTOnj2L5eVlXLhwAbdv38avfvUrTE9Po9vt4mc/+xk++ugjMMZw/PhxnXyesiySENxD7bjfz+dBCjP+RxpIoxfLUgJMwSOMc0jJICRHvTGDYRRht7WL2UYFBc/F3Ow0Xnjht3SRWcYAIYWyvIXE/+UvC7ixXYQ9IXwS+cW7u/h3/48f4v/4JytjGT2mAWRT6oD8oCjbl2F+T36qPAOGxIZbzGvlndd1XfR6PQgh8NWvfhWrq6vY3t7GX/3VX+mEUY7j4Nvf/jZqtdpIvnrVZolOp6PzcIdhCJGWfVOUwHTlRD7LdCYljFtIUtgSCQSEkBgMQ8hoOLH/D89bkIrv+0iSBK1WS2OvhEdNsub2gxU+LbGvMW6QAtCDhJQ2WdhUdf327dt45513cP36dWxubo7APyaTZBwzZFx77H4ihW86Huncvq8cYbdu3cKrr76KH//4x/jwww8RhiGWlpZw/vx5LC0t4a233sL09DTq9Tpef/11vPrqq7h586b20lPFEPP6JjvGTkXwMIoEFH49xpFFipWneLZSwpnSrk01EEYxWq0WpIzhew5mp6fx7DPPoBBkKQGkSCASgf/TX/q4sW3kwPgU5dqdFv6nv/hg4j72GLPfNRpTeatDc/zSd/aKbJKYFvC4lZnjOOj3+0iSBC+88AKeeeYZVCoV/P3f/z1++tOf4kc/+hG+//3vo91ujyRDozZJCXS7Pezu7mJzc1PlxEkSeL4H3/dVLm2e+syyC6uIydQxSVCJkBJCqqjfdmcyBHXolHaes2+cw4P+/rRx6oPIOOw4z3IQQqDT6aDVaqHVaqn0m/0+BoOBzqdtD86DDu5xHvxJ2DZZG0mSaEchsUcod3a/34fjODpvca/X05Y5YYREpcpbAdxLux4aGfNI8iqek3tKfa+2uK4HISXiJE55wdC+GkZpVpnqp//3jzk+2jbP8unL7c0B/pfvf3Qg+AyY7D+ZZEjknXO/7w8y/s2VJBkftLqjsUiKncY5TSZxnOiAmfzEZSy1qkdhsYyGPabOfUojnCSHDh4ZDjPwf4RTacg4hfBAcE1L8ZjLfpP9QQOGeKOvvPKKXor5vo8wDNFsNnHz5k08/vjjqFQqGrawQ9rHsUDG0aDMtpph6pS3oV6vIwxDtNtt3LlzB7Ozszh+/Di+8Y1v4PTp0+j1erh06RJ+53d+B7Ozs9jd3cWtW7d09fQ//uM/RqFQQK1Ww7FjxzAcDnPr8tkv8v0uPnG/RfeypMRN0vpOqjW0lGBMaqyTakbWG7PYvrONTtgzVLGETASYkwGkV9YT/PCKSr5/v+UX7+7i5afnsHKsNDKObPhjnLFkW9STYLC82p/2qtAe4ybDyYRqCN4zndvvvfce1tfX8eyzz+rc7lNTU3j33XfBmMphTsaS4nWrQD7OlXGiCA4OtGORIh8ZB5ik9ZPySwCgTOaMMXDGkSn6ybb0oVPalFPazCCXlx/j8yA0aIlvbQ5KUtoU3fnKK69gc3MTg8EAs7OzmJlRjqWbN2/qunSm0jZzg5svyEHaBIwOejoPYc5BEKDZbKLdbuODDz7A1NQUlpaW8Nhjj+H27dv43ve+h0uXLkEIgdnZWbRaLdy+fRu+7+PMmTNYWlrSVk0URSOJoOyXzlTUZo2+h1voORgTZKqwM1YJUf4AKTnAXdSnZrBxU2JosgukVPg1l9rS/r//3eSEQ5+2/L/+8ir+p//d0yMGgLlKNCfjPOiNnrGNa9M+eWPBNjbs/c0fk+1knsuMKwCAy5cv4+7du3j22WfheR4WFhZw8uRJ/Pmf/zmmp6fx+OOPjzjRk0TqiOtCgZK6GQ5GzgDmQBdRZqrkhJDquYJBBzeR0mapdT5JHvbRv0cmKed7WYLdDzmI4rQHtjnwzNSklHmMwsaJf26fa9w1Pk7b6VgppU4GT1CIEALFYhHVanWkKpBtfenCp8WidrTmMX0+jTZ/rmXPbe53fwzccdVLn1tDUG175TLQjw5yvk9PBqHAP727rVp5wOc0zpCw/75fzz3v2lTFisaw7/uoVCo6cRspeDOftmqjidNbbdYIFduLepi7pcdyxnPfZVMOnaVtF7O1l9qT8K4HgZfmtcEM/zbbGscxXNdFo9HAl770Jc3XZozhxo0baLVa+PrXv46VlRWdMY+CUOzlJ+UoyVt+5lk2JqxCPxTG22q18MEHH6DT6aDRaOD111/H2bNnUavVUC6XMT8/j2PHjuHq1avwfR/b29s4f/48PM/TtTgpGZadxIvaQH+b2x52C5shKyyGkRAb9Q1LAVCW4iJCCEiW5alg3AMcF5I5CGMBjyvL2tE4qcBfvP7ZvNJ/9fO1PcE34/wzpPAIoiCjg8YE5dSh1aKd5I3ObTsybZaIPZ7M9pj8f0pc5jgOqtUqTp06hddeew21Wg3FYhFTU1MoFAqQUqLf7wMAXNeD40CTHPKtfqTPk0MifScByBQ6Uf2RsfcZGMrlEvxKcWJfHzqlTY4wKnYLjHqi93NK0j73Q0z2BQljTHumgyAYUdgUjWVWH/d9X1P9hsMhfvd3fxcnT57Uldhp0rJpgr7vawU5Dus222S/EFJK1Ot1MMawurqKy5cvgzGGF154AX/5l3+Jfr+PZ555BlNTU1hYWMDi4iLef/99BEGAOI7x2GOPwfM8DAaDEccOvcj2C2r2k+0AfdidkeQ0zLaleKZkACQ4A4RM4QDHAdJoSeb4YI4HcKW0HQ9wmcrHnEBioy2x1b2/zsdxstOJsN0OMVMrjFixtuI2V4lxHOtcQOSspu2kyGklRrCYGWRFFECT3rqf45PGOrWhUChohUxK+8yZM/je976H6elplEolNBoNHYFMDnZVxzGDIIUgf5Rh8EACQoKnk7FIlbbGrRmDFAKSZdyhcqmMqX2U9sNtuoyRw7KUNj3YlUoFtVpN80WJ/lar1bSiJkdh3v1/0j4xFSvlFqZUqr1eT79wlC6gWCzqfaSU2lFqWlkPc4Tjx5ERdWpTCvYkJ8n7PouajIXYs9z+4fufLR3ytfd29t0nz/qmcUXGxLgxcS/Qi/15HBxjrgDMfD4E/dF4ppWqadhlRIe911UbrD8OYGyoaNZHrHINkF+Md9IMbH9/v2QcNEOwiFnLjmZw4mUTjtzv9/Gzn/0M5XIZFy9eBGOqqEAYhtja2sJjjz02kq6VlPs4CAIY7S+CV6Io0rxvohwSj7rZbIIxFXJ77do1lEolhGGIK1euoF6vY2ZmBufPn8fq6qquoN5oNFAoFPbU6zMdi7ajyRRztfTQihxL9DJeaCO4mdJ3plsSMJSqU4DoYWu7BX+6AKfgg7EEYBLv3vlsbbD3b7Xx+188BmCv4hRCaEe2slR9jRvTZ/J5DAaDkaIF9srQfI/pfPYqzIbVyMInKZVK+vxJkqDdbuPUqVNotVr40Y9+hN3dXY1xnz9/HjMzM5BS6hzbJIzZuliOJLRVbBGhLWxlgTNN2WSc6XSsAgKMSexTbezwKW17yZ9HA7Jn3AdlwZmzuikUNEBWqZkxL45jHe49HA7RbDbxD//wD/jGN76Bp556CgCwsbGBu3fv4tq1azh9+rQu9MtYVlyXrPA8PNukGlJhYVo6khLvdDr6pdve3gbnHL1eD++//z7K5TLCMMTbb7+NCxcuYH5+HrVaDWtra5ifn8fy8jJ6PcV4yKP2mQmvJkXYfZZO5E8skv5TP/pP47eU9DorvJuxNFBKAFIyJJKhUm+AYYiN9WtoVKZQcIVS2lzi+tb9CaQ5qNy8O74YNWHVVEGqUqmgWq1qC1tKqZ3TGxsb2tgwx4Q9cdssKZOBZBpIxKoyS41VKhX4vo9ut6vps+fPn8eHH36Iv/u7v9P0WiklnnzySa34yUAZLU5iTlJMQ2DqGaugmfQbDZvI1L+h6ksaEAsX2MfQPnxKm2SS5TyJofBZ4KXjMHbaZqYtHQwG2NnZAWMMxWIRlPK02+2i1WrlrjJsDD3vGnkTm4lrx3GsLW1TyRNvXEqJbrcLIQQ8z9Mvk+/7KBYVRkcV5g86YU7CJB9OUUtk7XiiPjcS3+siu4zof+r1p1BoVX7MQxhGqRMrk36Ez1SG4SjHH8gf22YglrnKMp3xNoOKzmE7yu19bcmDSqgNZrK4JEl00ZRms6knEqq4TuPfpiSSpT1Rd9D2kXYa95L+nap17DfED63StiWvU20l8FkpbDu/h7kUBKAV4Ycffoi33noLSZLg5s2buqLG2toatra2dMFic2CRwrU50PYS08w/bmZJvHHjBu7evQvOOd566y0AqoDBnTt34Hkejh07hmazqZ2L5FhNkgTLy8vwPE8HJJAllOdkpHbZz8mGix5qsTFOMOtvme2UOrXIyoZiYYN7BXAvQG8QQ0iucm2nDJPP2j9rXt9kBVGhASoxRz/jlK2d0dEcq/bYtmE/gttMlgrh1BQAAygDgphM9K4Vi0XMz8/j+eefh+/7mJqawqVLl7C1tQWqYPP000+nKwCVK0QIg/JHPGuk+V+YKtCs2py2E/rRpiur7D1wUqdzsk8SxkOntPNmaPvzZyl5SopwXpOuaFqzUqrkUR988AG+//3vI45jXLlyBdvb27oQbrvdxu7urrbKzWgv+iHLwqT/UXvI+UGMlWq1it3dXVy5cgWXLl3Cs88+izfeeAMA8K/+1b/C1atXEQQBvva1r+H27du4fv06rl27ppV2FEU4d+4cGGN6qWk6Iin4yVzu5iX1MnHLPEfSwytSKzkpGVgaI4fUqmYK8AStwhVNjMP1i3D8Etr9CInk4NyFyxzE7POF95sVzMkxXalURkr9jXs/TaVrGjBkvJjXsCETGvuUoY98M8ViEcViUb9j5Dgna5/iDE6cOIGvf/3r2hj6xS9+gV/+8pcolUpYXFzE888/rx3pSRJCSjMoJitloSARtWrijgMWJ3SjYDyLjITS65CJgOO5YHAQ7bNiOnRKG8i32Gg7yWfx8o+DBfZTRmRh9Pt9bG9vo1AoYDAYoNVq6RzUlPiGzm2e37ZY8tpk4oI0gRDksbOzgziOdakwchwVCgVMTU2h2WyOlAKjyYBq75FDZ1Ib7DY//FDIwYUxgkfI0jbuO1s1K0ubO8o5KVJFbiiKvU6xBysmtmtHQpLT0ay2BIzCKHn+KPouu0Y+9zrPcW0bJsQOAbK8OWYSKppMpqamUKlUsLW1hWaziY2NDV220HScj9w7zKemZ2OopF/mM2LWvmb/Gcp8gm/iUCptUz7vL3+ewgL2DsIkSXDy5Em8/PLL8H1fe78pf/XU1BQuXryoA2BIsdsYt22ZmC8ZALz99tuoVCpYWlpCr9cDYwz1el07EpMkwbVr1zA3NwfP8/DBBx/g1q1bulINnUsIoR029jMYh6vT5JT3Ij70zBGk2DXRw4xXN3uNaYmf7iMMhxaAOEnApIDkDqbnFlAoFJUCTxKAAy4HwnurOPepisOVM911XQRBoDnY5XJ5IhxCz5uibPPeCVKWZrpekyVFMCONO8ay2o50jX6/jzAMMTU1pSurE0OKDJ7d3V28/vrruqD09PQ0vva1r2lOOUF/eWSHEaOM8o6AxjaUP0NSyebs2ZODUogEg34fzTjG8mx9bD8fOqVtP8RxSvuzUuR2e8yaiLYlbloecRzj4sWLOH36tB5wnU4H3//+97G9vY3Z2Vl8+9vf1iG45OU2KU/AaHEIao+pyH/0ox+hXq/jwoUL2gqh/CHU3jfffBPf+ta3EMcxfvGLX2BtbQ3nz5/HV7/6VQDQA5smDbMNNi5pW+d5y2QTLsqb4B4GUVgmA5gEGCCMxBP6BZepYc0YpGBIBOAwBxISAgmGUQQmE0juYenkGRRLtRReGwIO4DmfsdJ2FFZcKpVQrVZ1hkczp/04i5gxhuFwqI0Dc7VMY4ZYUPSZmE2mo56qqdP1KV5gOByi0+mAMYalpSUN01BiOXKyb2xs4K//+q8RBAFWVlbw9NNP41vf+hZWV1dx9+5dHfxD18wsfkXto7ZzphPsQkqR/qTvGsgWZ3oVBajMgcOwj16SAGcfIaWdJ/t5mT9rnJQGqO1UMUUIoTnQhNvt7OzowVcsFnH8+PGRpZ458POcjyTm/W9ubiKOYzSbTRSLRTDGUCgUtNUtpcTu7q6eFHZ2dtBsNiGlxPT0tOaUk6LN69v9vP2TIJSHXljKEAByK6FrK5v+MzYIqbQ6YxylcgWO64Gl4dEMDJUC0A0fyF3kSsnn2mIlOIR4zXkkAPszYcVAPsRpO+jzJgByvJMl7vu+xtZNnjZBHGZgD6CyhK6trcH3fTQaDZRKJSwvL+scO7njU+o5d1To0UnbB60m7rz2x1GMOJr8EA+t0v68vvjjYBB7ENtKlTim5OW+c+cObt++jX6/j1OnTuHEiROQUuLWrVs6bJ2KAefhhDSQSeHT9kajAcYYtra28IUvfAGdTgfdbhdLS0soFAr6b8KsT506hfn5eSwuLuqXzsYp6bp5L6rZD3ntHNdvD62kL6xWysZ2aVACpVSlwpI4VHQ/LlEoBCrnBQI4kQPP5+BJCAw6kADmqhLr7c+un2bqysdBLJH9ClZQwA0lZCIGkn0cjQ2Tg03Hk2ObvvN9H7VaTac1pvgCALq6unle01BKkgSlUgkXL17Ezs4OZmZmMD8/D865Dmc/6DjU45hWlLSa0pY1jXNBQyKdn/c//6FU2vvNxuM6/n4rhrzzj082M6rgKH0pKcvLly/j0qVLaLfbePHFF7GysgIhBN566y0Mh0PUajX89m//NgDoF8GERsgipiCHdrsNADh+/Dg2Nzdx48YN/NEf/RFu3LiBnZ0d/M7v/I5W5n/3d38HAJiamsLzzz+vg3DCMByxZsz225g0PSNa+lL/2Mqbtpv45UMrQgKcgisy80tKmTqfFBDCOIOqViPR7w3BXAbH46g2yigWPRRcwI2r8MQQvN+G7HDEMsGFBYm372im9wMVxoCnz85hcXFRB8bsR9MkRW0XcSZnJTCab8YOnCE4hOCKcrmssfRer6frlhJDhHKMkBCkkiSJjtadmprC7/7u7+K1117DysoKzpw5A8/zNA5uV8+h0o/2yoCcimb/cMZG9DbnTPkjBAOHglQYgw7GGSeHTmkfRPF+HizuexXCdOn3zs4ONjY2NOY8NzeHbreLra2tPUySPGVnOlMoOAYAyuUytre30el0UKlUNNZYr9e1k5POXSgUMDc3h2q1iuFwmJbBmgxFHWS7vQze79iDit22vBXBJObCQWE220Fl7JEulS2oIP07+43U2mZIkhgMHNwBXM9DoRAg8BnchIGFEjJyUz5wgnPzAoHP0f8MIJLAd/D4KZVgCRi1F/NUED1fStNA/g8KyBrnrLafBylzGpNm3VKKwqQxnjfx2z4w3/dx4sQJvPfeezrfDx1PSdn23KAhI+PY3I2lTB9taZv3oCCvg47uQ6e0D5PkKRAhBDY3N5EkCcrlMhYXF9FsNnHlyhWsr6/DcRzMzMzg+PHj2itu8qPJWiEHEQUcEPa4vLyMTqeDjY0NDIdDzM3N4bHHHkO328Xm5iZ2d3dx+vRpuK6rl7WDwWAka5/pXPo48lla1HmsgE/lvJDgzIFkApmtRfcplMkmgURIJFECSJV3pFwpgbsOXN9BwSvAYRyKks0B5kHwAiIngJQxzs8liD8jR2ScSDy+0sAeyiIAgMqgqVVfnCSIU6YIVZoyuduT+p/Gl5na1cytE0WRLsHHGNPskP2eoxnfUKlUsLKygtnZ2ewO0jFNkwHdFwWkU2CNlNn2jCEiNReTAqUII+OMg3FF85NQqwyO0fwmthwp7c+xmAwLk/3x0UcfIQxDzM7O4sUXX8T777+PGzdu4J133sELL7yA06dP4/HHH9dca8pjTRQ8z/NQr9f1UtKMgHzuuefQ6/Vw9epVtNttnD9/HmfPntVFhKMowle/+lX4vq/LhLXb7ZHlKzAZosq7R5I8OuL9lEmK2QxIOijlcKLSdxiYpMhFkQbUAEAMipCLEoE4SuA4HgoFF9PTDbieA8fl8H0HHAm4EAA8gAOJK9At1BEMuygXBL54MsHPrjmpcngwwhjw2xfmMVUjZUMTE2Ar8f5ggF6/h263i+FgCMfhcLijg62IZZIn5DCk1MuEQVNKY8o22el0NCRCfh1gb0Iyc7zSCpYKH7zwwgsol8sjz48Khvu+D8d1IGFkWkytZTCi9QkAfMSxrGpXZHi9FBLc4el8rf4VfB+l0iOYmhXId/jZlLG8bZ+F2O3Ia4+Jme3u7upcCSdOnECn08GNGzdw+fJlOI6Der2uHSj0EtjRkYVCQQcMEN4HAMeOHUOtVtMJqhqNBlZWVtDv93W4/PHjxzXdipag0ZgwroPc0zj5rDHscQp9v3aNvad0iZyxc+l8igQmISGERBxnK6JiKUCpVESpWITnesrSppefuZDMQ8R9RS+TEv/NFyL4DzhDq+86+BffPJcqWxPqMQEfJXGiKhr1ej10e12EYZbIjJhQeRAIMLryNKN8TT421VQ1WSx5VENTSIGTf6VYLGJhYQGNRkN/T+0g39JIMFTqWCS+vQSNESL2masqDvP5M8bSsmTqfI6TvYvj5MjSfgjEpuo1Gg3s7u5qK5cgkaefVnX6Njc38e677+oEOLR8JH43OQ7NicB8MWq1GpaWlrC+vo7Z2VmUy2V4nocTJ07oqDLbanmYfAT0ck5SvrZjibaNo03a56f9x4lSyuozLeWRLuddx9f5OkYUDrEOGAdYoo1YnQyUMZydkzg7J3B5nSMR9/+ZOJzh/HId507UU2YM078lAJEkiHSVIoFhqlCJEmhSU4HxPhgg63MyRIh5QqlcgUz5f5wxSSytTqej6a60ncZ9tgrInrGZ8ikPwTcoBereqJ/0NijWEFP5tP19Zt1DrbQnDYCHRUzYgZI5nT59Gu12G1tbW5pTeu7cObz00ku4fv06Ll++jF/84hf40pe+hKWlJczOziKOY5TLZZRKJZRKpZEMa7ZH/cSJE/jiF7+IX/ziF5r2VC6X8aUvfUkrcDMhkJ0z5PPY56aSNWlek5yR5uRELy49j7zITVIU9LzMoCZbgajqLOrlJGeZ5/koVSooFStp5RYHjktYr0rdyRkDuAMVLpm5utKiN5CM4X//jRD//j8GSB5AEKnncvz7//VzWllLCyKLogjNVgv9/gD9/kDlj06dja7rZkmWDrjqoudIMEm328VwONTh6VRodz/rOk+Igrizs4NTp06NUA8pf0kWCIeUa83TLI2Gk5nm2NTaNoEiIYSmAeoxJKSuYOP5DsrlyZb2oYVHTHmYrEBTTFqcKdPT07r6eqvV2mNp3717F++88w62tra0FUIKn7KtmbQquhYwammvrq5qKqDneVheXtaD2cyw9rBI3jjYb9lsr0IOMpbyLG37OPO8lPaT/A/lchnlcsmwtPVBWb4RZlh3NDyY+m+6LPGvvhKi4N7fybPgOfg3334KM/UgawsMIyCd4AaDAXq9LtrtNgbD4ciq7yBOQlvMyTEMQ52xj1ZQpkV8LwaEaWnTdUg45yOGDi1z1OOgZ7GXFwTz+jK/PXqLlHA4h+8/YoV9D1NQhr1SMClORG0i/BkAPvjgAwyHQ5TLZaysrKDX62EwGABQ9SfN5ei45b0QAr1eD9vb26hWq5p+Rc4eUi5mm+h8ebm8P68yTrHacMi4Yyat4sbh4IxlKydTaROTxy8U4HleenxW6Dc9gzq3OhmiMEQcDtDttLG1vY1ikIAbNRC+/pjAje0Y/3jZxTD+9J9JwXfwe19awbe+tAJgdDzQKoz8HWpc8IlK+l7HDSlnOvZelf/4Z8Q0M4rqVNrKWz1DiY+TLXjkkSLT6QSPpX9NPMehVNo0C+fl9HjYxPSm04sQRRGCIMD09DRWVlYQhiFu3ryJ7373u2g0GlhcXMRzzz2H119/HceOqfJPMzMzWnHbFqPJvY7jGBsbG3jvvfdw4sQJzVOdmpqClFJzwM3lKlELzTwqn0flTW2mlQexEQhTNpWxrcxN2MNM1J83WdnlsbJrC816UCsVtf/MzEy6rPfg+wW4rmFdG8K5YieIRKDb7aLd3MXW5gauvP8u5i5MwQ0cFaTDODgD/oevCnAI/MNl/qkq7oLn4Pd/+yT+x//mSWT0NZFCBIrFQRVh4jgG4xye58JxXSAdz3oCVB257zXNvqbnRpklbXjl4449eu5BEKDb7QKAjlWg8+rC4UkM3/U0Hq2RbcY0Eyi7QejPnHG9WqJrcgCu44CP0AbHy6GFRw7iDHoYJM/ao7zC5XIZjUYD8/PzcF0Xb775Jvr9Pur1Oh5//HG0222dM6RSqegCpZOuIYRAu93G2toaGo2GfjEoaCKKoj2wiIlhfpoT5P16duOwbFPyVmx5MIl57yS2sWDCXGYgiFAcMJTLZVSrVZ0Nj4+7b8LkpUQ4DNHtdLC7u4u1tbW9kahMVWn/119N8L/5SoTAlXDYJ3s2DmcIfAf/2z+5iH/zJ0+PtVaHw6GaVNptXc2Ic46CX9hjuebl4DiIEFxBGLbt0Py4QpY2UWTt70y/BsleWMTwcxjfMCg833qj9f0cZPICDqGlbcvDbGWTmFYeoKxh8mb3+309kFzXRaPRQK1W044TIQRarRYqlUruuaWUCMNQJ4Qn7uuxY8cwNTUF13VH6jrSMXmK+pO+NPdzgp0ECR1EJtH/JsEoowpbKVbH4eDcgeNkjAejpXsUgEoUJRCFA0iZII6zSuFe6qdQz5DDTfnOgHJOSinwO49LPLuU4P/5ioermw7CBLgXHjdngOc6OL88hX//3z+Pac3HTq3fRCCOQwgpNIea7kuNidHalWyf5X8eRLUfo2TctoMwUfLGMK2GbPF9X2XPTIx3QRJlLy0Np77RMJf6y3Cm0ufUeawYQMppSZRPk89ty6FT2qYF9LAr7LzVgpQSnU5He9/X19dRrVYRx7FOdnPq1ClUKhUsLCwgiiJcvXoVS0tLAEYrrxP+uLW1heFwqMPRFxYW8LWvfU3TA7vd7sggJkiEBjfBJR/HY/8gZZKCJckLuJBS6qAk+mwyQ+y8LvS9WWdQwVoJCgUfQVBIU+iqF5OqsWS496jRJVJIbGd7C1E4gBAxXC7h+T4q1Rrm5o9ht9UEZzFm5+YRCwEGlc8iiiP4rov5Osf/9Y+GeP+ug7+65OKfPnLAIREmLDdXicOBguciSgS+fHEBf/L1czi/PLVHoVIYeqvVRBSFiJOstF2hUADjHI7jgjGev0Iz/XQT3tdxjtxxzvSPK2RN93q9kcIe9F29Xtfl8/R16SYY0geXP+mYDtrUjam5+YkEwBxEUYx+PwIaj6jSBg4PTGLKcDjUA2pjY0NbyIVCASdOnMDCwgKklJiamkK329U5SoC9VogQAp1OB/1+H4Cy4qemprC4uIh+v6+/G+eks62Uz7vkKW77xbf7ysRSbdZMnsVmKhQTElHVyNVyXlEn1euXJeE3HXoZo08IlbKz0+lg0O9Cihj1Whmu46BYDFCr1dHrrKJUcMAYV0mnoCztOEnguy44Z0gYw7lZgf/DNyO0Y4afXG7jyjrw4aaP2KlCSgee52K2XsLFczM4v9zA4ytVVEoBcp1jDJrB0el0MQwHiOMIvu9nsIXrQlnk+Ra02Y/m77x98va/H0KTUV7yM6L9mQYMWdqj6nqEkamYI6n1rWzq0fslyztJBMJwcpHIQ6e0TXmYlIkt49gN5m+TD0wDicqQDYdDNJtNCCF0XhHz3LSMpdwPtrPThkTy2ma/YA9TP9/LpE59PA6zJ+vMzBpHfUzPyHU9BAHTCi1/4shee3W8clzGUYwwCgEwONxJ83CniiLlPCeJQJwkqRNLWc9MIq1HmE4i+jCVe/up4wmWGzG+OIxw5sknUa7MolhqoFQsqRxUAABSIKpt1AeccwwHw8zZyFSWOlUOjacZ66iPjfvU/x1M9oM56Dtz4ryXc4zb31xt7cnsl3MtBhW8D4I99rsvgy5IrgZldYvcycKUQ6m0iRKXV+rqYRKboUFiVuwg7Nr3fcRxjFu3bmFzcxPr6+t44403sLy8rKERkwVBFjQ5Kil01sxrPM7aAEYDVOwB/XmDpWzFTPAFKSCzaLB5P2Z5KxPCMCESgoSo/4gvTOHUgMqGqJg7hdR55qZ0NduqTHF3MERRjF6/j2azqcaxEHAdF26xCAYJhwOMS3iej3p9Cnduhuj1h4hiAZaGk0sp4XkuJASiRMDlHFwyCMnApESlFCCoBlgoz6I6VYPnF+H5PsBJ0co9vjEKQHFdF+sb60jiBEJQ3o4CPChHqpNa91JmxoVWdjmOO/M53cszHe2/gyn5gwiNiX6/P5KDhHxHrqfeQQeO4XgWGptmTI7V35xzbXU7jCr7AkiduAgjAFNj23ZolTYlS/q8KZB7lTxLkBK8kxVA+HYcx7ryzIcffogPP/xQJ6U3z0GDsd1uo91uo16vj1RHD8NQlyqzrel7tWQ+T2JCGKSQaYLPUwKm0qb+JaH96YX1fX8kmRGteoibXCqVUK/XR84vRDLyN6CgEOUrUEp/Z2cHMoVmpmpVeI4LziSSJARjEq7roVKpIIxiDIcREiHhcgeAgISA6zoQcYRECEUlRBrBB4mg4MOr1FFZXEIiyuBOAcwhlSCRWf3URnXflGdmZ2dHT3qVUnmENUNsCCGSPX1l9t/HkXGrUBuisvfZ73ym0JgIwxDlcnnkO8oGKISAwx0DApFaaatrA8DecUW8Et2+dIKUEoijCFJMTtV4KJX2YXJGmmJa3mQVkgVOSZ+azaZWMjMzMzoH8HA41NWkKeCBjstz5pjXmdQWe9+HdVVDMq79+y2j2+22Vt70ned5ekLNU1h0qey5qp84jhBFcVYX0yiHRXiozBoBQFVpBxjiNK/HONHXllk6USb3WtQZUpMmZ5JCMVjSFZh5/+N9BGPePQPfNhXYpPYeRCYZFPcqpDvoXs1zc64yE8YiUhlyiV+d1yYYdycBlRxMXyX7Jc0jJsuhU9qmx5+spYdVzAGX5fAdtfKI0eA4DhYWFvDWW29hamoKp0+fxqlTp1AoFDAcDrG+vo6ZmRkUCgXcvXtXW5hU2MA+t/3Z/JvgGWrjpGMeNjFhE7oXs+4gjSkbx/7Nb34DxhheeukldLtdeJ6HUqmkk3bZ8Ep6NQCqD6Mo1hbt9vYOwjBCFMcqCyONY84gpFKgIlFWtMKIOYJSGcxh6Hb7I6wHCZWYinGm4l9ExnRwOAMTCZJhD6xQApiARAIGJ8OepcBwGGEYxhgOB4jS9L5qLAUZLstTpSWz82tShW0FU3j3Pgp1khGQ58g0i0N/EuOBVgpCCF0X0jQEgyBAnMTY3unBc7ysPTK1spl1ayz1B0AiEQkk44qOGYs0NCl9vqk/Yj95eDXaGMlT2g+j9WdaMeaAJwVCiposO8o/cuXKFR0Y8+KLL+LkyZOIogjb29saq97e3tZVrSm/hW3Fj1O+45xy9vGfZxm3sgDyl/BkcZlK28SzhRB4//338f777+vn4bou6vU6pqamUC6X91i/2jGYCjkwhRBoNltodzoIw1ClHQ0CBEEBDKoEWSIEEqFyVrMUhvCDIpjjot8faKVBcAZjqtSVTHFTMvZ4amWLcAjGKL+3xU2WKmS+3++j2Wxht9lEp6OiBX1frSSySjNmBGhmM9r9LUWG4X4SMZUzvRvjnOf3KqZj34YIC4UCgkJBvYfCeAfSnxF1Y7ZFCgUXpRi2NNqaTQr7t+3QWdqkrA/DUv0gwjnXvFFSFJWKyhJHtfcoCU6/39fY6/glbb583hXxJJmEo+bdt6mszZVEXhIiUuhEmQzDUGOeZj/vuY5UQTMORxoYE2dYsN3G9H/TfWcyMxgYXNcHEqHPo1feqcWbWcEak0k/KUWirUTNEBGQIoGIQ+0/kXS8cU/6vgxs1tQ8eRPkyOrMaNK9wpn77T9pjE8a76buyJsECLLac72cT+P2yP9WGQQen7zfoVPawKjX/zDg2mRVm8EcZNEWCgVcunQJGxsbKJVK+KM/+iNUKhWUSiX81//6XzXWvbGxASkllpaWUK1WR144+8Wy+42sSRvnM/d/mMTk2dJnEwqx8Uu6f1qVANCJ9qni9+rqKuI4xp07d3T4P0EiAPb0Jzm5im4Rdzc2ERs1Dj3PA7PGcPYMAMY4HNeFRjqYg9rUNLrNLWztNLF0YgHMZ2BMKW8K4OAS4HDVNiFUmas4Qdjvwa8l2tKOohBhOEA4HKLfbiKUDhLBNGY/EbJgbKxuspXmfgVsx8key92aVD8Jjg1k7DNiT5lMISB9Rq43EtIumdT3z8Y5ILmxMiBYifZNJ+xCuYSq/wgWQTATID3sYrId6DMNKFLa169fx927dzE3N4eXX34ZQgjcunULr776KmZnZ3HmzBmsrq7qfNorKyu6viNgh1ErMVcr9ktg4tn2/p9nMe9n3KRuBk0AGIGOzOIRFPofhqEOYBoMBlhfX8fi4uIexoHdnxIKdiiWitje2lZWdIqT12r1PW3U7Yeq4u06rraQGXNQrU5h0G1jt9lGHCcqF7ej9hdSpo5ElmamY5CJAIMKrY+GfUiplDaDQBwr2mev28Hu5l1wvwLHK+RkvbMtWRAmM9adNnI/n+AdHWdo2HDivZ7TZrrQxGzet1kQQSttLkHlxnKdiWbbaF6jZVD6P+MMxWKAqWptYjsPpdL+vCuPT1OkVLxRYioEQaCrW1P1E/oh646UvnmOe7VOHjbrepKY929PVOaEFsexrrMJjOL79JJ3u909sIp9LSEERJzo88hUyWUYNAdjRq4XGOpRewhZ9h1jiqrHOIRWVnRtS4GyLJiDTiAhIZIYkoUQzEEcq9B5hblmFzeVYnY/BhrCsjZ9XJk0rvIU9UGOo/3H7bffsXm5401/GQUvjUZFUsftw6QBYD4QzpjOSTNODp3SpjJEpmX6MCoYc5DRjE/3YiqNfr+PM2fO4NixYzpXyOrqKt544w187Wtfw8LCAo4dO4ZWq6Uzwj377LN62UfXsge1naOExHTG2W019/m8yTjYx26rlFInu2eMaSaGEAKrq6u4fv061tbW8Ad/8Ac6D7brulhaWsLm5ibeeecdPPvss6hUKiPKmz4PBgMMBwMM+qqCfWNmGoVCQUMYQgr4vj/CWJFCIAFSeqeEZNLw4zFwh4O7AbhTgADBPRxMSiQxWeMMLI1WVPct09RUAkwytHe3EIo2hsKDlAGoFE4QBHAKAZizN4ozr4/N3yTmOLKZGB/3WZrno3OZ7JG8/Q96XnpmxM7qdDrgaeSpSXAoFotIogRSSCRIwF0nrUpjtCt9TaTIUiEkhP1boiYG5eeYJIdSaZPX3VY2D6uYS2VgNLR2MBjg9OnTOqWq7/vY2dnBb37zG/y7f/fvsLi4iGq1iiiK8IMf/AC3b99GsVjU+YKB/EFtW5/UDrNN9KLYbf28ykEtM1LEVGiCJqj19XW8/vrrePvtt/H7v//7Gi5xXReLi4uI4xjvvfceBoPBCGZO1rXjOGlypTba7ZbOdlcoFJSSThKEUagzydFqSEhVjsp1OUyeL8EljDtwvCKYU4AET7MCqu9o3HCmAms4T0lmqXJhkGBSoL27g24IdELALzRQDMrwXR+FQgCnUAC4uwdypGHDGEYmpzwjIE9xf5KxYhoVtgVuyse5hgllkdK2U0EQ86of9xUFUwhw5oIxFSCl8/lTe9N9GFOMHfuVYxLq2cr9lfaho/w9DNjqpykU/UmRd7SNCiVQ4QMAGoM1Xxh7UE90Mu2zz6ctNksj7+/99tnvM0keHsoYG2FOELzU7XbR6/VGMGdS8gSfmNYgLa+J1peIBEKMOtBGoYdU4Zl9YfeN/qHnqPJ+cO7osHfz3ghTlcozmT3DlGgiRIw4DhGFQ608GEbzPB9E0T7Id+9+XYtZ95sPj0C/b+PaoSc1IHtgo3vA2OPAsNKhU9omGyAPg3sYZRx+R4NpMBho6y6OY3DO9fI8jmN0u1385Cc/wZUrV7C1tYUwDPdkqpu0pB3XpoehRuRBMFKyqIrFogoJD0P0ej1EUYSPPvoIt27dQrPZxNTUFEqlEqIowo9//GPcuXMHgHp5zR+qWUgOS0oZsLm5qYsCkA+Crq9ogmo5PhioiFW/UDCeDVmuqu2qgEL6jISEZB4KxQqmZ2bRarUVX1tKlcSJ8TTHRZoQLMVflcJWlVMQxwh7XXRbOyj6HJ7LwIntMMapZztJ82C0Scd8EjmIcfFpXGN8PnllaasVkspvr/ppNCdPRrUETNgkvcLo9WivfbT3oYNHTGzrMJQbyxPzRUmSRAcAkDVHShtQ1vVgMMCrr76qoRHKK2JaEjZdaj8lPsmx80nkID6Ij/tMx8FlpLQJ7tjZ2UEcx/B9H9evX0cQBDh58qRW2nEc44c//CGWlpawtLSkednEzSalXS6X9QTQ7XbR6XQ0nOL5XpojBIYz04HHuU4zUEghPpkup6UkZSCRxCJV4ExZ7cxDIahienoOu9vXUfQZGrVARVMyDsYcCDAdlOMwnlrTDJwBMokw7HfQbbVRLDhw3FTJy9S5mWMHmquCvH69n/JxceuDCo1DUto2NMQY00VGklilDogpz4p2FgP6waU9KIQAmKmXTGdlmmDrUVPah0UOClsAo1aOlIoSSOHrVNORMs6ZkXn7WaEHfREe9pWM3X5asZiZDsMw1OXaGFP5W+jHtNgp22IURSPQCE2oZq4Yxu1nDCglnABQ9D9SmEyvsdU++nfKOEHqaPQ8D3GaeU/pD1MppCJHN6k9JKRIkMSxwqhpN903+WNh3DgZZ2V/GnKvVvYnua5prJjZCoF8qmx2nPF5zD6jBorUz1Ikj1jlGvL+m9bjoyCMMU3lq9fr+MIXvoCf//znevvx48dx9uxZzM7OasVCy3ezn8yBaTo/H6QFZXvxbRlHqbO3mfi0uc1mGnieh36/j263q0u4dTodrK2taQfj6uoq5ufnUSqVUC6XceHCBdy9exevvfYazpw5gyRJ4Ps+nnjiCayursLzPNTrdXQ6HURRBMaYZpvY41KnuU2jHlWxhAKKxSLanbay4l1nD06dKVeJJAE4dxEUKxgMhwjDKH0HqM+ARKah7+mjVClCVV8UPAcOE0jCPkQ8BGceGHPAmQfFaciTw7WCzRMpFaWWYMgsYyYAqaoOJbHicssxkYwmTEv+hcyJyzSXnnOOwSDE1nYT843psW06dFqN8MI858FhF1LajUYDL7zwAl555RV897vfxd/+7d/i5MmTePnll/F7v/d7Rn5nfwRGAjCizB5kH9p0sLzPtpMwT0mbkhd2TpOYaQF7nodut4utrS2NO+/s7ODSpUs4ceIE6vU6bt26pTHvarWKZ599Fmtra3j11VcBKBjK930888wzuHXrFq5du4Z+v68LUpDSJoex2VY9OabbhsMBpBQpFBMBTMLTqYaz++DcARiHABALgDk+SuUa+v0hhsNQW9tSKvWa6MkhW5FxxiBFgsB34UAgCXsQUR8yiQAh4HCqDC+tn8Mpef4dSpBGqQrUs8siRD3XU0yfMStTxrnK80I/yKx1c4xz7qDfH2Lz7s7ENh5KS/thX65/HDGVGIWudzodtNtt5dTyfZ11blJVGlPy+vJ+YNifRPLal0dXtPe3LXpi3FC1+SRJdC1OZQENNMZJk16SJOh2u7o/yZcQRZEuhpAXiHPQPqFk+eoEe27c/ANSMjDGwSm0Wiret1plM0vP7nWAKewbgJRK2QsBcIPFkvtejVLXDut7Z9b6tIXxNMNhYlNF9ux5gCsp/0SS5isfJ4dOaRMOORpu+2gIcdQ3NjZw5coVrKysoFwu49ixY0iSBG+++SbeeustBEGAubk51Go1rWTsSjS0LKRtD0rGccLNz3k8YPM7Oo+w4ASTWlcoFHRWPXI6MsZw6dIlXLx4EeVyGWtrawjDEMPhELu7u2g2m6hUKjhz5gzW19cxPT2NcrmMX/3qV9jZ2UGtVsPMzAyKxSKCIEChUNAVbfJWEnn3JKWqUMM5V2k8ZVYablxfKVqeA4kEYA5KlSrAOHq9AQr1itYhijecUf2IdsgYgwOJYsFDrVpEp7WDWr0IzyunjIhH6z0yhYwgqvFpS6FQgIgEep0eXHgg5cxYVhdTGo7czFGZGQsMAEsr2BxkdXvo4BGiWOVhh4dZaNk/GAxw9epV/M3f/A3OnTuHb33rW/gX/+JfIIoi/PSnP8Wf/dmf4T/9p/+Et956CxsbGyPBI8BorUhiOjzI9LY2n3o/itg4zJ2UnancTaVdKpW0FR1FkcpbzTlee+01BEGAWq2Gmzdvamfu5uYmtre3MTU1haeeego3btzAwsICnnzySfz4xz/G5uamzmleqVS04i4Wi3ryG8e4MaEokQh4ngvH4Sq0PL2PKIpg607qKaW0XUjmQjIHtVoDjLlod3pAGvcoJe2X8q4ZIBIBKaQKnWZAOfAwXS+huXMX4bALh/JeH2I4ZJzQRGqWLrTTtAJAMVDP2SwMAQP+0GkF0m40syVmUdsAZ1wxR4RIHZHj5dBptTwv76MkUkpdpqpSqWB2dhbHjh2DEAKtVgt3797F1tYW2u02BoNBbtHSvM8PmjZp49X29Q/ankmKchRPVAq91WppCh8FyphFkF3XRbVa1Wluq9Uqms2m5sdT4V4yGkbyc1vXH7dkZhYWb+Osubeuz8fhusri09a56fTKDG2tTBTOKhVP3HURhWGqOGyFvVeBZyuEh1exT7oH8xnsjQiV+jmPHasH6RYLetqvLw8dPELRgXnY5WEXKVWuiJWVFbz88ss4c+YMCoUCtra2sLGxgZMnT+LEiROo1VQWsa2tLQ0j2ct2sv7Mbfdb9HJxn8k2TxGbE7X9vYn1074bGxu6ogzBI5RnhBg1Kysr2NzcRBRFOHPmDD766CPMz8+j0WhgZ0c5i6ampvDMM89ASol6vQ4pVfrbIAjQ7/f3QDSjwRZ770cFh2X8ezMVqr43rWjp3qWKdEz52JVKHd1mH81WF3Ei4bqKq537FA0Giu86KJcCrG9vIYqGkDLBaNa6R8cIGqc3shJw2ZgiPwI9W3WccuDai/1R53ha/Nd4vq7rwQuKE9t26JS2nXPkURGyBCqVCp588kmsrKygWq2i2+1idXUVN2/exNe+9jVcvHgRhUIB3/nOd3D79u2RCQ7IlJ+Zcxp4sLi2ScuzFbHNSTdZLwB0siUAIznIgVGH0s2bNzE3N4fZ2VkAQBAEKJfLOjimXC7jiSeewK1bt1CpVPD000/jJz/5CUqlEs6cOaPzkx87dgxf//rXcefOHVSrVUgpcfbsWVDF+xFfAWfpS53eJ7K2031yziGg2tjr9bTDk/YRQqaWmaMDNxIhwKCy/HHuot6YQWt3A5tbu4hiCdfjYE5KGaSMchI6RahqlkBQ8FCvltFrf4hw0IMQERxuW9ePhuI2x51p0NCKikONJcd14LpGOLuglb5KzkXoEo1Z13EQJyoXiXE19ewZR8EvpCul8XLolPajhmXb4rougiDA1NQUAOgQ936/j1qthuXlZV1Xst/vT+yrcXzpzwvstBc2ODhk0u12MTU1pe/FzJFM1lS9Xkev10OxWES9Xker1UKc1m0MwxCAckTNzc2h0+mobH1Solwu6zwvk+CZSUIYt5loP229eZYML9WUQQ7PKwBgGIZRGpxjpVNN/0tjefRWh3N4roMkjiBEDBWSndenpPgPn3GU91zMcWazrlTWRCLDY4/fQa+uRs6/dwXL6B/n8JzxgTXAIcS0ySF3GLC2exWyBMgZS2XI4jjG/Py8DgwQQugk/uaxwN5AgHGD+H6JadVMou3Z7SMr1S44bFpMFB7ueR6uXbuGVqulqZBUMebUqVPY2dnBzs4OTpw4gZ2dHXS7XdRqNc0kkVLi9OnTKBaL2ok5OzuLRqOBfr8/kmRKt1H3I9OOwHH3Y8I4Kj+JRBSFAGzHrATMv8lvyF04XgC/UEKcSCRJxkm3J1+CRiBVUQSXcxSLAaRIMOh3ASTYUzfSFnl47W/qW/JP0BgascSBFMZCComQWjXgD+2YhP5sjg9yWHqeg1LpEatcQzlwqbLLJOVzmIQmKLLuyAnV7XYRhiFOnTqlsWzCS/v9/kQHHcELD0JJ0z3klQKj/agdTo4lQi9VGIYapyfqJ5272+2iXC6jUqngjTfewOLiog54IW77s88+i9XVVfR6Pbz00kv4h3/4BxSLRczOzqLX6+nq3M899xxqtRoGgwHK5TKKxSKklGi1Wvp65gSi7Ks0HJ0xcGQ1H+0xSi99kiQolQL0+10MhwONuY84Nhk9J/W3kAzc8eEFZQTlGoZxAj9JwDkgkhiO4ypYRhIFUELKGFKqnDWe46BeKUPGETqtJsqV+XSpr5/S6POTh5NbYvt2yBgkyKpQKMBhjuJnM5WHJEl7gruOXs1ImmjT84qEJlpLaQsJwSUKBQ9T9cmY9qG0tO3q4o+K0DKa2A7EWRdCoFwu65qFxE22M/0B+NxMcONgj0ntm+R0pomMJobt7W3NniGl7TgOpqen0ev10Ov1MDU1hV6vhzAMNbZM55iZmdGRt67r6lJuxHkfy7VlTGPZY++DsvelnG2ASrxlFdwnjmvuwHE8OK6vnJTCXHUaTsWRlYz64Yyl8JlAHIWAEcTOjB/Yvw+xtQ1k446eP20jS9t1XQ03cXMlpB0YLOso+7xGcinHYfD9RwzTphfmoNFnh0lIaZsKIwgC1Ot1fPjhh6hUKjpE2/d91Ot1vQS3HX2fteI+6PXNZ0wYsLndrM5DFpLrupidnUWSJNjY2MDy8jIAlUdiZmYGw+EQ3W5XF0EAgFarhZWVFUxPT4MxhtnZWZRKJW2JmQFKNjS3F+aRqZMqn0USJbFWDkKqe6JnRM7DEfgIqU6Qab5sOHD9AIViGc12BwXfQaHgqlSrOsNJ6hQ1aHzpIgCVcgndYYJerwO2HzQycgN4qDV3Hu3O1iPmcyYWDyVo6w36kAzwuAvOFBQywruRihvPXJ5rfGS50Se381AqbVoW3++l/edJTEVhOk1qtRrK5TL+7M/+DFtbW6hUKnj77bfx1FNP4fHHH0ccxyiXyxpGMOEIkgdNm6TrTXLi2fdKcARZv2RRk8OQc677wvd9nD59GlEU4YMPPsCJEyfAmMojcfLkSXQ6nTRpk49arQYpJTY2NvD888/rVKwnT57U1zfTAphUSWCUjUPtVLpt9DnRZEPQVRxHRrCNh1KppPZno8cwMAgp4LK0SorkAPMQlGqo1GewdutdVMoF1GslONyBnf2JJnrGM0t7erqB9q0ttFpbYIhhW4fG0UrDyNFN6iEd/Hl/3mQvBTMzAiltgXoWKiiGVlprdzfUJOuVwB07741ao8RJAs9xwNKVHTP7T9I1J7fv0CltPQhzKDuHVSYxKCjqb3t7W1vV7733Hp555hk0Gg29LQ8qAR481W8cYyVv0shjj9g4uKnAKfCFc65XGbu7u3qMOI6DarWqg2oIOgGAXq+H+fl5nae8Vquh3+9rH4LpeLTblGfBSYxOOCRkdCgGC9SSOfXTRFGkltvmI1GeRIMJQgE2BfiFIro95RhVfGxlpu99J0b7VhWBFhgOB1AV2qW1H9O/mJT5puFDZHXvN8ZNqziDFdMbZJkfLUmStOq9cbA1bEcmBGKdMLsNkzvv0CltU1mbL8VhV9xAvkVMyuTixYua6vf444/D8zzs7u7i8uXLOuT61KlTeyzsz6OMs8JNJc2YyqpHlrapsBljWFxcxN27dzXfms4LANPT04jjGOvr6zosvVKpjEBJZlkxuua4cZYHl5jPSiJ7TlJKlIpFJEJAykSzVShlLHM9cJiTQBpc48i0zqAyphl34Hp+6pxMYTNIMGmi0urqEhkOK6WEw1X2PwYgjiJIj/jdn8/x8CCFMZb6NhK4ngPqE8ZVMrFEKDhO+ZYEhFCV7UnRO3sscGjFzh0HUZSg3R6gVhzvjDyUStssOfYoiX3fjGXRff/8n/9zNJtNtNttnD59Gv1+Hzdu3MCvf/1rNBoNnD17FqdOndJ5FiZNdPdTmdNSlBSwnV7VZMbYlD9KTauoUyqfNeWLKJfLOp81Ywxf+MIX8P3vfx/vvvuu5mXTNU6fPo3d3V28/fbbuHjxok4ERRa8mTzIdHBS++lcZnSnqlhiWVh0z1IgCtU9OY6DxvQ0JCTiOES73UaxpCbVra0tVT7Mze5ZKW2hczlLAEIwcLeAoFhFItWSPIojAAIOc8HgqpSsLHNOZm2W8JwCXNcBZxKDYQ/MqaeUhXGK+3ArdJvZE8cxBsMBKl453QFgKfsoTiKAM0RRlKZAkOB+lL5TgOf5ehJlzNFsSs4YPNdFvxdhrd3F0vwjprQfRTGVF5CtLkiJU3L+ra0tzM3N4d1330Wr1cIHH3yA2dlZ1Ot1fbx5LhuC+CxkxCrNsVjNz+aEQ5VmpJTwfX8k8+OxY8cgpcTdu3f33OPU1BTCMMTdu3dx5swZTE1NjVjY9JOXd2Kc6Dbr/NSjEieJAjY4R1AMwBgwHKpcKEExMCZTARuRkMQvA2WWA1zuwvF8SCgOcCIEOAQ4l2BMZsenhjcjx5lUEyVP2Q5JHMGRE5yRKTwz5s+HXmzjhcZYEqd5SAzEyHEciFQLC5FopZ0IASEFJNQqRiRUVQgj5+WcYxgl6Pf3ZhM05dApbeDRVNx5ytVUdkIItNttbG1taUuV4JJ6va6x2v1WKQ+qb8fh2bafIm8/Slp/5coVdLtdHdFoYs7EDCkWi2g2mygWi5qXXq1WNRRCDm3CMhO91N3btjzRz4CoGUgzvwmps7kRR5yl+6vScBJxPFqybFR5ZAEc2XaZfZdG6lEdw+FwiELRNyY6Bpnir6O+BJXD2/d9FIMCut0OysUYroeUd5xdJ2sMDo3iHuc7MWMX1OoqDUwzbpbgkSQNdfc8DtdjcDjXzBHBOAC2Z+IWQkBCsVP63d7ENh46pZ3nDHpUxIQTbNw0iiLcuXMH7733HuI41rmgAWBlZQWLi4sARgNqbK7x/VTYeRQr87OppEcy51nPmXOlqHZ3d/Hd734XCwsLWF5e1vdHk1uhUMD09DRmZmbw0UcfYXZ2Vhc9poK9VOxXCIFer7enX8bh6vSbAn4UY0SZx3T9KMXEATV5FisBpFRRm9vb2yDetFIQibbsSUuY6QcUi4QmWgbH8cCYBLiD6ZkZRMkAzeYupquL4JKDg4EzhihJ0ux+DhIRppa+g1gCtUoFUcKwsb6K49Vl+MXUeXrIoRCSvFUmrd7iOFbV7rMvAKlSGkRxhF6vh3IpgO8X4Hk+hoJD9oeKLuhycOakfgyhq7gnSQJIiW6vh+3NzYltO3RKm+RRU9x592oq7iRJ0Gw2sb6+rkuSqRBpoNFo6GjJz0twzSTJczab31ENzN/85jd6JQGMWkyu66JYLKJcLmN7exvFYlFbuVQL0nEcdLtdDIfDkTwipphGgt1voxXuM+aGEAKxscQmSESm2f16Oz1IKeC6jp5EzXqddE4dOcpGbVvGHTBwSMZRKpcRdrvoD0JwzsBFFsyhVgCGkcOYPlchKKAUCtxau4sktiup2P3w+R4vn0TsidnzPJ0CQqZ8e6K6U+6aOIrAeQm+76EQFBEPsrzokgswV0WlSpmleiWDIAxDdLqdiW06tEr7UVLYeWLffxRFqFarOH78uKaUhWGImZkZVCqVkSrhpqIA7t3Ctq2Te/nenmzzvjfPYS5bCc+mSFAKSkmSBGtra5ienkapVEIQBFoRR1GkU6iaDtBxcIjdzkm0UvN7KWWKayrxXBcuV32u4ItQWVxCRUFKCDgOB+fps4gTeK6Xts+arEyqtKT0r4r653slDISDMAGEcACZ4dUydYzKFNgmZc4h4XHAdwAZh5BiCMghGBwwuKBAaqpow1hGY1QX5+kElbVvtGOMTfsMrbzVzH77mvvnrdQmnTfvOqOUTcXWYUzowCQGBskAx3V0LhsFrXlwOIfrOvB9F77vYqBcxRgFkdSzAtTzgZxM1D6USvtRVNjjVhakhNrtNk6ePInjx49DSomf/OQn2NnZwTPPPIPl5WVdFovYFaS4xr0s9/IyHVRIyZkOVJpMbCaJmQ8CUEvTXq+HKIrQ7XbR7/dRKpV0oqef/vSnOHXqFJaXl3H69Gns7OxoNs3m5iZOnjwJ3/cxHKplLClaKoJAsAxd33z5daALG80HblL9kiTBYDhU3G/XRblcAU8ZH1EUYTfcTTFtZXWbfZvECaIoRqVSwWAwQBLHYCwehYkYAEUaRiIYODgAD9XaMWyt30W/3UUUBXBTncAcQHIV7yjAAelCKSABjyco+QxJwBH3W5DRNpiogvEKuPQhoLjrUngAS8B4AjABpHm9GQjGUYopK7Y1mjeD+N+f9dtqK3ub60/7qB9oPnYiVE4X5V/gCIIAruugWArgeS5cxwF3OKTnoRqXETJg0O6mkyQHkDqVJQOHB0gXUnqqXyfIoVTatnzel/uflky6z8FggLm5OQ0V/PCHP0Sv19Oh2cRnJkZEtE9x0QclkyYNesEA6IhOUrJhGCqsOM3E98EHH8B1XQ0Ddbtd9Ho9DAYDnfea7t20skeddHsnRpvNkifkSAzTKEvXcRCk4fTUZiocTHUlTWXR76uVQ1AIEA5DhIkA58LAtSV1FiRSp5dk4HAQBHUkiYt+XyJJPHCm+MIcUqcR1UokzfTnIEHBdRB6DCLsQ8ZdQPTAeACAgYOScDmplW1mAjStR2Zsyf5nMFX650tsX5AptClJBJgEhExUf0OtUzzPhee5Kfsn3VkCBRcoFn0UkwhotwEkxjSWHs0cKEs7/Zkgh05p5zmFDruMLt/yrW36LooitNttdDodnYdkdXUVg8EAi4uLiKJIe8jvRcY5DMftZ/6d1/5xmLXtIKXPGxsb6HQ6aDabmJub0/UyhRAjOa9brRZ6vR52dnbgui7m5uYwPT2d5fYwfuh6eZ/NvrWtMZOnbW4jCiJNiua5JjlXJz1f3U/ZHpCSaSYKYwyO68JxXERxDNdR7IXRI9J9ZXYNynFCjtgoChE4BgxiPhMgC8YcVwR4nIa+B79m3uT4aa+qbTaSuepTfzvpM2RgzCiUnE59hs1u/JVOUVJRMlNcClQVSPW/Okeh4KFaK09s46FT2o+yjMsnTdsJw33zzTdx7do13L17F5VKBdevX0ez2cQLL7yATqejo/8+6aQ33mKRIznPTbGr5dgOOMoF7roupJQpPQ740Y9+hDiOcePGDfzJn/wJisUi1tfXMRwOcezYMZw+fRr/8T/+R3DOsbi4iDfeeAPlchkvvfQSlpeXNc3PZoeYKRHMGoF2elj7GIJEoiiC67o6jwllX2y323AcB3NzczrEnu7ZXJqTkjcTYVH/jTwfOarIGCkVyVAslhCVy+i0u/C8skopOtL3IsW5FWARi0Q5JTnH3NwcojBEu9lCUJhXMAhRC5X+T/Vuqr72jBlpfWbW9rSw7Zg6i+PGoM3dtx3o44wDk91jnss8nxmdSs5B2ub7AXzfh1/w4TDC95laaHDo9ATkG5YyVeeSQ0qOJJbgDOnzYZAQmp8PnmBmrobZup97zyRHSvuQCCln4mCbVi4NSiqQcPXqVayvr2NrawvXrl0DAGymNCPCgs3IvvvVXmCvZW0qSfqerHb6nhQhrRwA4O233wYAvPfee/iDP/gDlMtl7O7uIooiVCoVXLhwARsbG7pm5rVr1/Bbv/VbuHDhAo4dO6ZxcGA0aRa1h7jf1Dbzpad+3+N4TNvKOdfQDFEHm82mVsSMMc2ZN7M0ktI2YSCz//Kdn9lnzjmYIMglQH8wQF2UAGRtVIqWVjvKEkyEAEu31et1tOMYvV4PyoMoISW1D6nSpuo4SnmP5XPnyLg9TCU7bgxOclrnJT7b79i8VZWUKuKVIDPH8eD7fgphcTBk7BG6IXUOum7aH1JZ2kKoeU/dW3oAo4AngVqtiFqhOrHPjpT2IZFxUII9kKWUqFQqOHbsGHzfx+zsLDY3N3ViJBsasTHd+9Fu0/rJs5roO4popGx+g8FAFx2g0mFUACNJEl1JZnd3Fzs7O5pNEgQBpqenUalU4Ps+HMfRFi0lirKvPen+8+ARADrhFPUphTbTJGSed5wFaEqecyx7Pqmi0Dh1+rwTAZ7mIXFcN3WaKeWsz75HJ6bnSfsz6Q0h0so56bcjIiXLMNxcGf+djZpMGmu2op003s2xZFvk444xJ1vz3GbkK+WwcZ0s78jEO5RqQqNcJNwsTzaym8rvwjl0fpJxcqS0D4mQRWBaZOYLYNY+fPrppzE9PY1+v49KpYL//J//s84bTRVYDmJhT1JieUyKPAva/o6UGb1sdD+cc114N0kSuK6Ly5cv49KlS/jKV76CF198EZxz3LhxQ1eo+fKXv4w7d+6g1Wqh1WppyuOJEyfwjW98A7Ozs6hWqxqeoLqONIHRdaiNpjI3YSizPFiSJNqyLhaLKJVKunjC1taWvmdi65jnMJ8X9ZMJFw0Gg5GMcnZZPcZUalXGGUQSYZgMIcMB3EIBtakGqiUP3PGM/uYZg0M/b1VdHOA6ne2tnRsIBxEYEgAJGMss7fxRYpqeo+7IvUcoi3NcIJe5utFnt4yKcd+ZPPlJ49lU1mRV0/OmFZLruvrHcVzV92nvZXh++iwZB8E+UkpEiQpN7/eHcL0CwNJjpUhznANCxOBcwPEkvMnVxo6U9mERGnRmdRpbCZBCOXv2LE6ePKlflL/5m79BqVQCoJQJWYMftx2mEqPr21aQfcx+eCNjqqQTVY9njKHb7Wp45+mnn4bjOPjbv/1bXRvzqaeewne+8x3cvHkTURShVCphZmYG8/PzmJ2dHVG4ruvq9Kd073Z/2pRD837NpTRZ2GTVUwrXdruttxN/3L5HG68m+IcxpqMiXdcdSVKl2pGCqkiftZSIowhxGMH1fHiei1LJA2cxJGKFo7LMLB9Z0DMOmSrtcrmMMByiF6nQekCACiOY7kwpTTjbsPz134YY5jVLLfq9Yfqjk70tdO+mkWL7Q0YuacEf9nnIB0F+CNrXdV2USiUUi8V0os2moJFpxrgcI0AbRPcEwjDCcBjCdXxFs5RG/UhISJmAcQHHlfAmM/6OlPZhkbxBmvcbyBRNkiTY3d1FsVgcqR+ZZ/V8HCVuLz0P0lZzP1NRAqp6DP1dLpf1S0Xnd10XU1NTOmCGajcyxlCpVLTip8krb3K41/ujdtI5zKRUdnCOfY1J18tTVkIIfX4zGEgfAwmR4tQy1aKu68IF4HIBx3PBhIAOwFFhIUrhCCNA3WojZxwMCUQSK8qgGUyTnoeCaUZazGw4xWKsWN8eRPJWI/vJuPFrrlLMSYAmTZrIKR1Bdj1StNR8Zp1TQIoYIpGIE4EkIecysUXMditvZVZyTAXvTOqXI6V9iMT2wJuD2oxy7HQ68H0fd+/exd/8zd/gzJkzWFlZAaAUI7Ed7AFtyzgriMRWjnn4oT2pmA7Q4XCoaXIA8LOf/QytVgtCCLzwwguQUuLEiRMAgN3dXSwvL+PLX/4y3nnnHezs7ODb3/42Ll68CClVIV4pVUj79vY2giBAEAT6PsnqNl/QPAzVdIzSUno4HOo+KxaL2tlIzk06B00gJuZN92xCHbaSJyXS6/X0aqPT6WisNd0ZQqh0rhASnAm4nodafRYOF3C4hO8yxJ0tiFBohUOsD5W8X4XaONzRDjXOOUpBgAQRup0WipUKGDFZRKJIKynUgtR63Gtp7xk56f9spD9NoT6wy8eR2M9nklI2Hb50XnoXyP9B1FDf91Eul/W4o1JiWTuyOU3h0Ny8JSQiQRgNMRyo1VU4jCC8AFHqExAiSWEVY/ULBsdxISVHFAGDvgDK47naR0r7kIg9iG1LxIQser0eOOfY2dnBP/7jP+Lf/tt/iyeeeAKACjopFAo6O5ydHOleZJIH32aJ0H6mYiR8mRTaG2+8gdu3byNJEiwsLMB1XczPzwOAhh6eeeYZrdxPnDiBs2fPwvd9PP/885BSot1u62o15uREytFU2HkWmjnZEAY6HA5RqVR0Du84jnW1e7KOiXFgwlbmM8lzsNn7EYeeoBXzWZOzK4qU89H3GXzXRb1eh+MyMEexE/phBzIegNJeMMV/QCJFCrEIOHAyG5oxBAUfoZDo9zrwi0M4XFHShExAcAyM+MZRDHuP23Lkk5TK9rQpoDR2qHyc2Td58No4B+ZIH1mrOGL30ORLSpuKXphwmDreupWcyYkoqZ1uB/1eH4P+EG65hjgWus8kuFb2Ks86h88cQDLEETDc5107UtqHWPJgCHPwUkrQDK/LwthtrHacs2fSNT8O3GAqLDNLXrfb1cpvOByi2WyiWq1qByphv57n6R/K+EcMEbtAQd59jOOPm22kY8k6J8iCcNFxfTJuIqDz7ofjmvvm9RkIo2ccjsPguMqpyBwgM8hT9kIaPUOgiF6eM7bHw+i4LhweIY7CVLHbExnS4w1nIzPDTtKdqD8OcF+qKZPZOvci9irGnKjps3IyOvod2HudNHCJZfep8sAkkLHKpB2nDKGRyZml9D4mja4jZU+lltXnKIrRiyIA42l/R0r7kEneC0/LMHOQcs4xPT2Nb3zjGzhx4oTOp91oNDSfe2pqCsPhUFdpuZc2mA41c/lLL469HKZjTAy4VqvpfNc/+9nPcP78eSwvL2N9fR0/+clPcPHiRbzwwgsAlKVN93jy5En0ej0kSaJTsvZ6PX1fjKlsfuR8pReUc45qtaoDYGjCMJUtOaqSJDH4ukwvtTc3N0eUgAm52KsgUvDmRGHuZ+9PrBGqRkSOsyRJlLPR9VAqFuC5HjwX8DwG7rpp0V4BCAHXCwB/gCRKr89UcVr1PJjK9cSYMgTTxEX1agUSDFubG5iaPQHO0+yEjEJD8ia4g22z+4LELHRM+5nbTWPCNC7sc1MeEZMZQuclRzE9n0KaWsD3/TErwPQu9BwpEQ4HiIcR+t0BwjiGlAICQjO5CkEBpUoJg24fTCTgjFY1Skm7jgsGDpEAkB7ubmyiubGBC+eez+k/JUdK+5ALvRQ0iKgkF2MMU1NTePHFF3H8+HEU05p0U1NTOsw9CIKR0loHFRtLpHbQd4Th0t/mMaT8OOeoVCooFovY3NzEa6+9hn/zb/4NCoUCrly5gu985zuYmZnB3NwcAKW0SdkvLy8jDEMIITA/P48oinQyKcLZh8PhSNkyAPqa29vb+qU2HX6kXEhpBkGgswY2m030ej20Wi3UajXd1xTpmMdsMHFbeiaUrTDvOZLSJuVOuOxwOETZ8eC6HsrlMsrFEhwXcBwJxiJAJnol73o+EBcwACCFUBagk1EtFQFFgEmmFIsEqpUyoljgw2u3IZIQDlH+oH2YqSKzFfhkhxqdxDQqzGdB48HOHW6nB6CfvNUTbafJlnLsENef8OtCoTAyCeQLjVWWthuIwiF6vT5au030+kMwzuAHPpy0Twu+h1K5iFYUgoWqRifTWRo5HMcDBEMSS0A62Nps4up7HwI4UtqPhBwUd560DDez1Q2HQ/3S5CmST0NspU0vDeHL9AKZocR5zikppVZ8ZP3a6VbNl3rcCz7u3LbVOy7jn72fDYfcy9LehFVMGIbaSXCP6i/6Uct7hwOKT81GfggeyZbkFBnJ8vWrBBzO4XCmnGhSQBLZTdFUYB6o2pzOEFJ9zqAX8+YO3A37yn7wnflM6LmZ42tc2bi888rU0SohIFgKhVhwiEz7xBwDGfo0DutX25JE6IllnBwp7UMmpkKm3+YSkpSalBKdTgcffPABGo0GZmZmUK1WtWLo9/v45S9/iaWlJczOzqLTmZyYfVw77PYA0CHotJ0sKgpmIeuHnJBUGuzNN99EtVoFYwznzp1DrVbD7u4uTpw4Ac/zsL6+jmPHjqHRaCCKIp29z8YYaeWRR8cjxyQpfHNZHQSBtsqArIRbv9/XVnsQBHusxXEYtgkBmJOLaemZGH2xWNTfFQoFdLtdSClVDcsggOf58H3P5t1Bmc8SYE72g1RZpQpYQkAKZWlLrYjViVzuwHUU7S+J+hDxMO0zmYWt23S/exDznvNWIfa+5n55Phd65vQdYdVUPg5QMCCxhw6a2EwIgcFA1QeN4hCh6AExIGPlbC6WlAOXOaqyOk3YcRxDCuXklaBKRgycqVUVk6poBWMqg2A4jCf215HSPkSSZ23QYCNFKaXULIZ2u40rV67g9OnTCIIA1WpVB5P0+328/vrrKBaLWF5evielnWddms5PCg4xEzSRFz8IAtTrdZTLZQ2juK6LQqGAN998U1eOP3/+POr1OnZ3dwFAK+35+XmNy3e73ZF22cmfSGmb1vM4pd3v9+F5ng60EEJgd3dXX4OcnabSNtkwtphKm5gL9JkCiAClnGmysCEAghSmp6cBnjrPMOpEpGIISqOKEcXtcgdMSEBQcQYJCIZYUri1OpfLOTyHgyFGHPWRJCpJF+MCEExdw9TzlvU9SUwozWZ3ANA1OvNWRXSs7XeQMiuEIYTQRQlKpZL23czMzOSuesathMiw6Pf76HQ66A966EVNlP0SfMeH5xXgcxeJFAiTUNEmUzdvEscp1c+wxCXSyFXFm3eZC84YRJJgOJycFvlIaR8SMa3I/YRSg5LSIpwWUKHSBDOQBTke4xsv+7FNxkEKenlvvMTEAiGGCClyc0lLCZcI7zXhA7s9k6y0PNaAuc38bCoN+u6gfZUHTZHYUX4m9k4wVaFQ0Mt713UhWQp/EL7MzAApqXBnISETgThJoSI2hiInJYw8rWCpc9LhXEEB5Bw0+ie7ktTfmWe2ke6PK2a/TZoU6Xt6JjQmyNI+yHMyz22+K+aEL4RURSWYSh/ABEEiAFIaJP1Q5KlqXHoN/ZH+Z1mk6hg5UtqHVEzrlj6bGNvu7i56vR7OnTsHAPjoo4+wsrKCH/zgB5ienkatVtP5qD+O0gayVLF5DiMgWwWYTIxKpaJXBXTdSqWC559/HkmSoFgsotFo4L333kOSJLqow/Hjx+G6LqIoGrFI85QwkCn54XCIUqk0oggo6RQxSKhqO01uphIlqIkohrZSt/vfnKxIAZvHUT/QhET5zikLoxAC5XIZzz//vGY6AJkyYKmDzBgJiOIEcRSh32mj39xA2N1B2N7EwkwA38lybxM1T6btY2m+UQYJ33Uw3ZhCv9+B02mqU8skXdabHGbbGbm/EWGvzGgb3e8kMS1r6kvHcXSeGlo9mf263/lociQO/nA4NHjdiX5OzCvD4x44y5JHMc7gwAHjHJSLRPkQFCQlBcCM/TmjCU5FmpbKAWZmGxPbeKS0D5HYytH0yJsWKOcc29vb6Ha7eOyxxxDHMa5du4aXXnoJ3/ve9/DVr34VL774Ivr9vsZb8yz5/ax6sugph4f5IpLCJkuyXC6j0WhoFosZJVipVPDlL39Zc7LDMES32x1R2svLyzpw6CAWGAVtDIdDXZWe2kzJo6Io0jz2SqWCzc1NzTohqy0IAr28N/vZnDTyHVoZZ9iM2KNEU3SOra0t/OpXv8Jbb72lzzk/P4+TJ0/ixIkTur9MQCJLIqeA5jhO0OsPsLvbwvbqGgadLcjBXUxXFuEVPa20TYUNnV1DKXXPdTAz08B2qwXwNDmGSMBoWa94JBYP+QDCKGHSaLAVjTk7J0neM6WAFnoO5XIZlUplpAqQHYqeN57N56Tw6wHa7TZarZb+zvOU4vc8H57rgMUSTKoUrTK9H9d11V+MqYfBVTkySFr9Oca4UFg2S9tTrpQwf2x6YpcdKe1DLuMUKymMYrGIVqulaX29Xm/Essh7SWzFbTMt8pbcuctw4xy0zDcpXSSO46BSqWgKIk0kdAwAXYF91IM/uV9Ma9cUOrfJETZZJWZhhv1+TxJbcVA/mG2KogiDwQC9Xk9fm0qlUVvVyQBFALFhJ1UsONFh2ynPPIx00iID58hIyJbS5YzB91yIJDGqs2fVWuhQkxthftZQN224R7FXKWa/mftQH9Kk6hnZlw5iZdNYpfFPFndm9Ih0fDCAOwATKjyGVip2u0HTHsu2MN0joztCFQcOgslp/o6U9iGScQrUhCnIKpmamtKKcHt7W1tsTz31FIQQ+MUvfrHv0tQWWzkTjJBHozPx6XK5jHK5PBKdZt8XQTq7u7u4efMmzp8/j5WVFQ0PUMi42WaTeWDCLfSZws3NtjHGdF8MBgNIqarj0GRBVrppWQMYsQhNhkOepWha5kBm3ZOSef/993XO736/j5WVFUxNTcFxHLTbbcRxjJ///Oc4duwYyuWy6h8oGFqm2jEcDjEI+xgOB4jjJF0deKhUa2BJH+tbHynomqkUoVq4KgrMDM3KoHI8l4tFxPE6orCffqNC36WUpnmv7hOpbhoLm9C2fBmnmOkZU79SRkWyqMkZTIEy+koTJlGCV8ifQw5M+p1VFTKtdTVLmSXH1KSlEkbR5SQAxh3oGpBIA2tSC1tKoVc4jCWYqhdRdObHthU4UtqHRkxIZNx3ZKkNh0OdmhRQCpQgghdeeAHvv/8+fvCDH+zhIucp00ntIUzYzLEBKCVFaUYLhQJmZmZGcozYDj36e3t7G9euXcOvf/1rvPzyyzh+/PgepW0uqSkYxbyueS8EgZj3SJMIwTm9Xg/9fh/NZlNjomaOEjrWbCspd2LJmH1F1zEtQGLHELXvrbfeQr1exxNPPIFut4uzZ8/i+PHjCIIAq6uruHr1Kv70T/8UL730EhYXF0efgwRkIjAY9NFs72K32YTjeHC4i8DzUKs3gLiHTrur8kPBgJJSQJxzqsYitY3oco5qpYQ47IM5qu0szVUiRALmUr6ScfYm/bbsb5nWvRmzEstT2vTcaIItFAo657VZ0MIc93lC3xFM1mq1dM4Ys8wbTQiMMcRxyv0HU/g0HOU4JP62FBBSgHGWYtoSnLlaaTMwCCg4hTOOWAwBKdLEWzGmZ8ooLVRy26vHy8Rvj+ShlHGD1LQKgyCA4zh68JNVStF8nU4HjUbjQEEH474bhxuavxU+6I2kWDX3NbFpcgz1ej0dLUnnNul7k/rAbKOJK5vXMV98OncURTq8eZzCHnctuw/ovvPgEcZUnnDP8zAcDiGlRKlUwuzsLIIgwHA4xNraGnZ3dzWOmzVBKUAhs8hSlRuagblc462O4yJJ8qEvaoc0sA6WMiEcnmby06sZma+j93SCeXLaxOxNE8eU+dn2V5hjaCTzoXVeu79N34IdNZkVPLCTiFGnmC3PbjNDlxTupFccI3e79zikuf88z0ExmJxQ+0hpHzLJG/h5ioOCS6IowszMjMa0C4UCzpw5ozPXTU1N6TSgtkUJZIEh5nZ6GUznD+GCZCmRhWRmUwNGHZCDwUA7/og1sbS0hDAM9cpgMBigVqvtCZKhVYV576bVZb64dn4LgjUoeIUcjmYiIduCM7eZDjVbQdCEQBWCAIXHU1WbUqmExcVFhGGIa9euYWlpCVNTU7qPSqUS6vU6arUa+v0+2u026vV6lq0uihAOhwhDlRK2UCiAp5a2QrgZuOOiVKqgPxgg8DlKqZJQS3uCNdRnzgzHpJQolQLItByWFDEYF8qJJjMNz6x0paMDVP+nrpWzizmOCKYwJ/lisajZIeRstFc/44SeT7/ft1ghkR579ooqOzZ7zoywaZndBzl0ZaqppUwhK2Hk7aZzUVuQjQ/Vfm5MwvlypLQPkdiWk42xmvtRdY4oirC4uKiDVIIgwIULF3D+/Hm4rovhcIjd3d2RtKJmtjwzms+2YGngA1niHwpQWFhY0EUKRl+MzIrq9/vY3t5GFEXwPA9TU1Oo1WpYWlrShXbJIWfnCAGg+ebmNhIT+rHzfhPE0W63USwWRxxaNBHZkXmmVW7CO7bD0/M8BEGASqWi7zMIAty5cwfD4RD1eh0rKyu4fv063n77bbz44ouo1+t6JVKpVDAzM4OZmRmdZrZer2M4HKDf66Pb7aHf7cB1OTxfTQ4UASmFBOW7qFRr6HR6KLgM1XKARCTKMQmAc6YVOCEaMtVOtWoF/Si1DVOlzZmy7pUjlGulbzzUdEBmvxQ3RcLBKPZvjiN6hmYKg2q1qtkhxNWnleJBFDY96263i93d3REno2mt07MzJ13GMnqm0tnpdzTZcXI5Mr2SoJUP/Zh9IqQE444KbkrizE8y8S6OlPahk/1wZhJTAZtJ3qkmHmG6Gxsb6Pf7OtIvb6lqnz9v2U1KlV4cUoSms8gUKaVe3lOCJsJ+y+WyzuI3KSfKJBjH3GccF93Eo22YKM9qt/vB3o/aYysYwvj7/T5838f09DQYY2i32zqaj/Ynbjbl1KagKJHCIWEYqlUT8+AhtRTTmoQQiVY2rushTmLESZI5HU0mCTRMq8zFVA25rguepGHWUmSG84jZbJ9kpHcm/mn2E302HczkK6ACuwcRe8wCGOHc02rKzMo4TnKHk7agR1dXQAZ9jMORqP+EcXIFP41vw5HSfkTFhDAGg4GGGyhVpa0kSGkSfxXACBZuOvjMHzMjGy0/p6amRgJIbMy71+upqh+psqaX06zfSJCJfayNdY5zFgIZu6TX6+1hr9Ay3LwvOyjIPBdtp/3Ma5uTEwXjXLp0Cd1uFy+99BK2trYwPT0N3/fR7XaxvLwMx3HQ7Xb31IKkPq/Vapr9Qgo/jiK4KXvCcfmIQmRgisUgOBzXQ60+hWFvA4NhqBRGak0LIeE6DhjSwA+mVRE4ZygXiwiTdHWTxHB9CZcBYSI1xE02ZkpcziAAy1VpZdwemdzIsk6SRI9Jx3FGJrH9JmV6TqScCRKcm5vTuLXtT9hfzH1SZcwA5UnM2VtD2BJgIt0vTeSlv+TgzINIGJrdHrYHXcxNHRvbgiOl/YgKvSCu66LT6egglWq1OkJno5wNjGXRf+QgI4aGCb+YSg+AtoZJ+RUKBczNzWnL3a54DqiSZ+12Wyso4m4Ph0PD+TZapsrE2G1IxFaydG+0FG61WiPpOQGl8KvVqi4dZlrMZnpUG4Kie6JzUB9S1Xei7b3yyitYW1vDSy+9hDt37mBlZQWtVgu//vWvUa/X4XkeWq2WTjFrrkhc18Xs7CziOFZ5MFJsG2AoeAV4rgOBBBK0CmEA43BdDhZF8LwCZufmce29G+i6QCKzZydlAsgMAlBfKP3iOg5qtSq6A7LuQ3AmwB2GYSxGnIuSvHKpFicuM0EwAOCkVctNpW1O8ORMrdfrKBaLe/wKef4Js99JYVMfUbDY3NwcBoOBZuvQsZMwcZZpX0OM/s09CGqVQr+RZPuq3ADpAoWDcwdxDGxuNLF15w6efepIaR+JJaZVTJXKAYxYH0AWFkxONNu6sQe5qUjpb9OCIguWzmXDG4SzD4fDPXxo2vcgsAe1LQ+qMb83naSmE5UmJNt6z7PY865j/k1cYhP739jYwO3btwGoEm/FYlGvLmiZTs4x+9zE6zYzEMZxrIoZFNLAICERi6xvyUkGxsC5g0IhQJIIxIazFnvgLpD21ct433UViwTQ8Ej2KKRxNbuzzc6hgxT6a/c99R/90GqPImLtZ2L3ufkd9VEYhppvT9tN48KOyMyT7CsGCSNrZNq3Y0caM+AR/XmUUqMckAyDQYhWq7v3HIYcKe1HVGwONvGVTSFFzRjDtWvXUK/XEQSB5h+Pw7NNmIBgDLPwrb0fWUVkOZL1Tde2+dV5koe3j/vOvkdSjub+BMtQ28xJzmy/fe+mlU8KZzgcYmNjA+vr63qSfPLJJ7WV96tf/UozRlqtli6uvLS0hLW1tZH6kuR8XVtbw8rKiuYnZ21TEAc9Y6VMUgUoUt4142COCzAHQjLEiYDD1HZFDCFWQ4Z1SygWBOccLmUnjELE0RAOK8LhHhKMQ24zaCRvB1Nh08ROSrRcLusMinnP3/bTmMV6Cbc2S9ERJHYQpsn+sp/L0ICAGMDS6CfGFEoiZdbP5BLodnpYW9+ceM4jpf2ICg1eUlhE+bOtFbIQf/nLX2JxcRHz8/M4d+7ciBPQfAFMal/GE1ZUNhvLpmNJcQ4GA9y9e1dbkiblyqYc2krYVqhARh80r2MLwT0m7Y9gmSAItMI2GSYmBGJbhibOT07eVquF9fV1vPLKK2CMoV6v49vf/rZKqQrgu9/9Ls6dO4dCoaCVe6FQwIULF3DlyhWUSiVMT0/rwKjd3V1cvnwZ3/zmNzE/P68cyYxgIpVrhDuAmwYXKWtZIBEMTCpLm3s+GHeRSIZBGCPwFHziOBxSpBATVOpQnlrcSZLAcbjK2Q0gCnsIBz14rKgq4giJRBKqbUAllHfb2KptcqasTBNCI6XtOA4ajQZKpZLeRuMhz1lI/dNqtTQUQoYH0QNJTLjJnnwPLlRkIl/UvaWfIcGYyphIGHeSJCrZlGSQQmX329nexZX3P5x41SOl/YiKPUBtS5OUFSmqzc1NBEGgHXZAvuI0xYQ0iPlB+apNq9RU8oPBAEEQaPaKCUGYGQP3k4Na2gBGFAaJCQvZ7TWdrHnXNVcGVEqs1Wrho48+AmMMx44dw+LiItbW1gAA169fx+7uLiqVio7I41zV8Nzc3ES/39fPiJb6u7u7o4URWObWE0KAO1wlckpxU0iinCmIhDFVAFhKhkSo5PwKOmEQImWHGBpWWYYqBwnBIyKJkSQR3LT2YWroI+vGTGnJcVapSTSxJmXyo5jVlCY9fxpv1If0fEzetfl8R5pxoDGlPxntzvo0//4yS1v9KamgD0Z6JbXAh8MQrebk3PVHSvsRlXHWhZQS/X5fVz8nnvKZM2fQ7XaxtbU1gnvnWZqmI4lyQFAocB7M0O/3dSAN4bmT2rmfErb3GQfj2ApYWZKjRXZNTva4Ntl/m/vHcQzf9zE7O4snnngCt2/fRqvVwvvvv6+VMUU7VioVHD9+HBsbG6hUKpiensbly5d1UeIPP/wQnU4HGxsbePLJJzXjR1nTIlXGmruhuNBpVjkwDiQsg1a5g1KlAiZCtNpdFAt1vX92o7rTRnSU6yrl1+20wd0qSlVViowUT9bZxjlGn47Rl9mFTN8FVZWx64zacAjlhadVHUEhxHSilc9krHr/8ZR1iAEZMZMBM+kwBVmpSTMdX8jgLEiZYvvUnsmn+3iJko/koRfivppRi4BSQM1mE9evX8f6+jp6vR4KhQJefPFF9Ho9XLt2TVOw6Dx0nJnGlV4gWtpT5KOp4EhZNptNNJtNXUzYXLra4em2tTtJbPaIeYyZFpWsYZOZAkBzyc1gCzqX2RYziIf6gfahqu/nzp3D7/3e72Fubg5ra2v4wQ9+gGazCQA4d+4cqtUqZmdn8cwzz+DKlStotVo4ffo0PvzwQ2xtbWEwGODVV1/FK6+8gnfffRd/8Ad/gNnZWQBQkX0ya5NS2CrcXCsuzjWdWkoGcBeNmXl4QRFr63ch0u+SmEpdUT+kViSNESkR+Apm2Lq7jk57F77LIJIQkInCa6Uktl+qYUyFmEJMdBWLgw0oyK5araLRaOzJ0meOG2KGbG1t4c6dO9ja2kpZNNCOS1q12WXLbNkvA6AtoysHlrMt+0ZKqRzDiQTAIRIJkUhw7qjnkUInMmXp8MlNPbK0j2SvtT0cDtFsNjWDwXEcLC8vI45j7Ozs5FoupMyogAFNCuR8JLaDeU1SjpRoPo5jVKvVPecd12Z7qTzOos67z7zJIy/sfVKwRZ6lbTsoqep3o9HQ9MlOp4Pr169jYWEBgKpXSHm7i8Uitre3ceLECUxNTWF3d1ezHm7duoWtrS1Uq1WcOXNGO3WTJBlRGNJkS4/cD32vtGlQKqHfa6Lb66WZL1JIB0w7H9M7TTFZtT3jt3cRDgdwOIMUCZDyu43D6IJpRGXqhFMcQIOtMrr6onFDxsG4bJOkuKkEGE2yJqRyENhj3BjK2VM5E7W1bZ1bArrij3GMTM8r0uUPKWpdu1PDLamfZ58mHyntIxmxtDc2NrCxsYGdnZ2R1KSLi4u5ASV26LiJO5dKJe3ItIWWtlQdhxRkXttIJr1ck162PAemSSWkbIBmThMS4qHHcTxSZ9MUm/1AWDYV342iSGcLrFQqui9J6S4tLaHVaum8I2YO55mZGT3hnTp1ShekJWYLwQOuo2ClJCFnneJEj7JdAHISqhwkHsCdtPyYUiJ7YKhUmasjGSSDLofFGQARI46HYCiMMkRyFY9UVr4JmxifCbO2YRFqP2NsJE0u5Vuh52Qyjg4q9+aEVO1ne2YmO5GteXPQ/a4KJXDAcMzqvZgEd4DpmTpOnVmZ2Iojpf2IirnUN3Hkt99+G2tra1hfX9e5MI4dO4Y//MM/HIlCNJWfCXsQG4VzjtnZWc3JtuEJoq5RoiSzLqSdywTAyHXtSMiDiqlwzbStxJEmJWlKqVTSeUjMQAxbuZksE0BBK9VqVcM+VBx4YWEBzzzzDC5fvqzZI1/84hfxwQcfIIoiXLx4cYRTfO7cOVQqFSRJgq9//esaBy+VSiNJv4KgACEkwjCC47kABESSBuVIpPAJVVFxkAgGxwvAHA+DOEGcqEwgruNCJBEczlL7mkPl25bgjgMhhVbaLgeECDHst8F8H5kXkiZaAmnJbDefWWphqw7UY0LKtLp8GoVrWtlCqGLKZpAVjSmzvNi4Fdg4v0ie72N/SbEfKpxs37MWDpEwAA44cyHAVRIu0PhWzkkGAdcFzp5bwXS1NPHKR0r7ERdSkmTZrK+vY319Hdvb22g2m9riNqEDU+xlqEkDJEublJr9IhEmSYo9L7+Hed5xjr97uVf6TRMJ0fJICdhCeKgZgGO3wba06f6JW01RjYPBANVqFYuLi3j33Xe1pX3ixAm8/vrrCIJATxI0QZqW9pkzZ7SvgKrXZL6DAIgFkmQIr+BDSAEhJRzKGicMGAIqFzR3PIA5iJOM280YzyxrpqxiSQqW8VRVkaUtAZEgjoZwCxpJv6dnYorJ9rAZStTH/X5fpzlgjOkcJCZuHWtc/l4V8b0KWdkTnJxQ8xiTKoNfmjh75HsFj5ClPYXpylE+7SPJkXF0PaqLOD8/j0ajASFUfcerV6+CMabD3U3LmJSf6cDLK6JKSi2OY61wzMCQPCVsKlpTQR7k/sYpdZs+ZitcU0yueN71zRWHWe07DEPcuHEDrVZLc9VpCV+r1UaW9qSoKZvd3NwcqtWqtvypOg3xyQkSIRFCwOEOJAMSbZmaS3PawrSTkKW1Cx3XQyEIMAhDBD6Hb+aS0ThHhsuaOjkICmAMGPR7qJaFQWsgVgSQKXLjWchRDNeeCPOchpRLnVZxtDo04ZD9fBr3R1IH+RiqjIRy3lImQMFGj6NVCOUodxwG5k02Ro6U9iMqZNXY1m2320WtVsPp06fRaDRw+/Zt3LlzB//lv/wXVCoVnDp1CgB0oIKZjMdUQrVabeSFImUXRRFarRZ2d3chhNA5SMylrUkfJDEtroN6+m16IR0PjK4IzEAh+7pUBszm+ZrXoCrxtK8QAjdu3MDPf/5zVKtVtNttNJtNnD17FmfPnkWj0dAWI6Aof7TqGA6HeOaZZ9BoNBDHMZ566ik9AbZaLT1BmhGpSZKg4BcgxRBRHAHgABMQEgrakIqX7TAOkcQQAFzugEsPhaCMqcYMdpotuCxBsVAFUuWeiAQMLpAqniTJymgBwMx0HYNIYmtrHbXZFTAGCMbAJYNIlbWEglMoGlCkiU7UxDFKb6O+1xXmjUl1MBhgc3NTF1W2fSUmq2fShG3Lx4HZAHLNEqMm87hKKQ3/pKpnDyEghVLgiUhvHGSoCEAKxEkEMAnP4/C9yWr5iPL3iIppWZqDPAxDFItFrKys4KmnnsKJEydQKBTw5ptvgjGGubk5AJnjx6S40UtjJpmyr0nBD+12G2EYjgTR2FCDeRzw8V6wPAueLG3zs7laMK9NFjSQ5dK2z0lWNMEbpVIJg8EA7733HjY3N7G6uorr16+j1Wrp1KuUZwRQObLNGoXLy8uYnp6GEALHjx9HrVYDY1nifoJbSJRfwgPnjpp8qGkMKexhOBIJdmYcjDtwPR+lUgW9fh8DgogY9j4DMAgxuq1cKoEzoNtpZRF/SJWxceSoBToZQCHoyn5mURTpFAcUMWvnphm3Wjqo7D++rHGETPmOEwllRct05aH6P8u3TRa6SPPEOA6D501Wy0eW9iMqtgVMSqBer0MIgfX1dSwvLyMIAjQaDZw6dUorl+vXrwPIyjxRQAPhuHk5shljOhEUBbFMotLZzqE8it8nFfMFJ2VMBRfM61BIu1kp3lQuZlAHpXkla3hqakorF6Lvcc4xNTWllTYAzMzM6KRdZh+Ss9G0Iu1+odWCkAKcOyqTXopdQ1vaxn2rI1MGiQO/UECvFafUwdSSMyzIDGoY7T/PdcAYEEUhkBb4lZAAIzglvdqeZzaWXrJHzLFg+kXGwXuT5CDHHFhxE7wjs/40TjLSWUSlzByzWZcQq0fh3YCQDGKfeedIaT+iYipMot8BwBNPPIHr16/jhz/8IZ599lmd22J6ehqtVgvNZhN//ud/jlOnTmF5eRkXL15Ep6PCbn3fx8zMzJ6CCfQiNJtN7USifBLjLCP75TEjFfcTe0LKs9rpMzliCVtvt9sjRSAAlWN8dnYWjuPo8GgTEun1emg2mwjDEJubm/jCF76g2SJPPvkkgiBAq9XCf/gP/wFPPfUUzpw5g4sXL+pqQVJKPPfcc1pRz8zM6HZRybO8+ybIxvd9ZaVHMTzPR5wkcFwO1/GQRANLnzBIySGgUqm6XgH1qQZuXXsX/YoPpNeFUJi3EOmEBgnJeDoJqLZUyiVsNzvotJsQMgZEmg42RZFINZP1TlZ4nqk9LkSdVjU0RoklYrKR7ORneXCY/ezzrj/OrzJeRKqgub7fUVGKOhEJpFR9o9rrqM4QQvkgJMC5BykZkggY7nPVI6X9iIppsZhL7ePHj+Pq1at49913IYRAvV7XJbB+9atfYXV1FT/96U8RxzHK5fJIDmrP80ZqPtqMERPHrVQqYGxv4iVqW54DMo8nPun+zGPyxHzJzbqU5XJ5JFTf8zxUq9URZxhlIqT7HwwGaLVauHnzJp544gntMDxx4gRmZ2fR6/Vw69YtncFvZWUFGxsbui2nT5/W7a5UKiNVaPLgGBJS3Mo5mbFiHKjtSZq8kWm+NWEXCipxXA+lcgWDwRBhGKVYM1PUQMHTaD1VQiwRzLAslSOSp45IyARSCoWh74H+97eszWeRp7wJWjPhEPM5fxJo5OMdZ8I+BuSz5zal6heoyvWMiTSVNoMQioqpkngpamYiADZ+yAI4UtpHglEl6LqurkPImKoMTnlBWq0WpJRYWFjQwR2k8BhjY0uHURbBPKVrW8Wm3E/Pf56DkpgtttIgPJUUh+u6mhFCfPPBYIBut4vt7W09EdHqxXS00udKpYJWqwWAMOnMP0CW5EHvnzGWskZUDvDIgHCy+8y0rQqSoTU6AxgHdzO6nO+4yLJDM20p098mIKAgMtUfnCfjw/k0PGAnkRrPGLKfj13wgva12Uf3A0rb20jVfk3ZswJqchW6/lopcgqyYWnqPymBTqeLYbuHk0tzYy99pLQfUbGtNZJisYizZ89qHPbq1au4cuUKbty4oauI/8mf/Anu3LmjX5RSqQTXdTU1jYRenuFwiNXVVR0Sb8Mik9ggdo6TcWK/yPaLP04RmC84TVI2C2FnZwfvvvsuSqUSZmdn0Wg00G63tYL/6KOPEEUR7t69i9deew1//Md/rANyTKHkW67r4vz58/o6cRyP0P7ofk3FPcnZ5jgOhoMBCkERtVodG5ubQCQBxtOcI0ohmFV9JBjAHTDpgMFBqVQBGEe310PgltMAGmJ6SO3AZGlkH0lQ8FGvV7Hb3EG5FqBQrkA/KQO3VZImr9KqLlN0ZkAVTYymv4UxtsdQMAsamOkG7FXafpPfvcMiSPtGQEpOhEjzjLrn1KcEYAKMKzNayhjKc6CgEiY5GFwkCcMH73+Ed996B196/r8be+Uj9siRjAzYQqGA48eP4wtf+AI451hfX8elS5fw4x//GNevX4cQAl/5ylc0o4ExpvNm2IwR03olC9ROeUoW1LiXxlSs9yIHWS7b1hkAHbpvKvN2u40PP/wQd+7cwWAwQLFY1BBJGIZYX1/H3bt3sba2hvfff19Hhfb7/REFYtbaPH78OBqNBoAs77bneRoWIQdk3urDdkZyzhGmVr1ygirFl6TKbI/ypL4mGISpSjZgDIPBMGWJZLQ8ScdKIINX1C/fc1EpF9HtdBBGERgnJ9xoyInUim10q/ksqI3mBG3eL61GzNWdub/5PO8VLjm40pbW/7bCzjtCKXhlWUtIJClcAjDO04nMgUyA27fX8atfvjnxfEeW9iGS/bzjttWWtw9ZNVSdhpI5+b6PSqWCarWqk/JwzrUTMi+QBoBOmWk6jca9IAe1jMbd7ySZ9FKaS29SrKZQitput4vd3V1sb29jMBhgZ2cHUqoCD1JKlMtlBEGgYZFqtaoTbA2HQ80KIYVCfGRih+Qp5Hu5X2UNq5DzdAtUqDUAyVJ8mgAOBh1+zRy4fgFgYar8pd5DpDQQ3X0sOz8D4HAHvushjAaQIoRiaGcBPnbxA+i/TIU3Cm/Y0JAJL+2njO8rxDZqTJtIEcYqbmnsTHlXTAiF2ke/hEAcT15VHintIxkRWp67rot2u42trS0dGPLcc8/h3Llz8H0fCwsL6HQ6eOedd/Dkk0/m4tlRFGF3dxfdbjc3PzKJDWeMU177WUP2seYEYL/wZl4LM4CmUqnoQg0AtDP28ccfx1//9V/j7t27uH79OorFIu7evYs4jvHbv/3b8H0f8/PzeP/997G7uwspJZ599lm8+uqrKJfL8DwPx48fR7lc1hGhFF1KVVZMWMaeVPOsSdMi5cyFlEAUhwCPAaZgDCEYmGY3JFAQBQMTDJIVIOBAMoba7HEMmqvY3t7CqflZOKl1mEiVJxuQYNwsFgxwwVHyA0xXq3j/ziqqjSk4ziyimIExHxxOmscuvS9KmESTAoshpZs6Opl2ovZ6vT3l5jzPQ6lU0tkgzXS5JHnK/qByr8qdSQYwV01mkkEykepwSkurFLWEgj4g3RTHdqASR6XPT3JwKZUzUgIyYYjDye0+UtpHMiIU8EJV2inh0cWLF/HEE0/g9OnTuhp4FEW4evUqLly4sEdpSym1A6/T6Wjcm5TnuCXwpy37OaSkzArHmjUsze8pEvTWrVtIkgS1Wg2PPfYY3njjDYRhiH/5L/8lyuUyKpUKVlZW0G634bounnjiCfzjP/4jHMdBvV7H3Nycxq4pDwkAnekQ2FsGKy8fC32nFTsYGFORi3EcAiwGmAOFuWYYtEQMCoCBZJDSg+QcggGVqVkM2ltoNttgQqq8IkiTTAmZGuQCAjGIv80lQ9H1Ua+U0G1vIA4XwfkAEh6Y9FShYTAASWp/U2IlZa2zlFFhT6zE4KH7p5VfoVDQlMs8psl+lW0+fcmSRGWrC1o9EHbPwOAA0gGEA8a54tBLxRwRQqbZXNMwm4QhiY6U9pHsI7bSNF+iUqmEer2urWQqWkAh16NFZUfPR0mPgMlWz0EU9v16EantBANRrUxi0ZASMJUp56qifBAEI0rG933UajVdMq1SqWg+erFYRLVa1WHu4yaqvG37QkYMmbNRJCmUwLIlN3KZaHp5LxkDd5TFK6WKopSO1Mdo9skeCED1ncMdQMpUCSXZtVJYZQ97IkUFBlGCD+8McGM9xAd3utjthIgTCdfhmGuU8IVzc3hspYHHT03DZVntzXEO2dyuuQ/jhnqDadsaYHmdzKzfqkEA8sAUmrQ5gsCfeP0jpf2Iis2qICErOEkSVCoVHWBDsMnm5ib+6Z/+CRsbGwiCQDNNgMyLT8607e1t7WQzi92ajAC6JllUdk4Uk9lhswLsbXk4fR77hCIIKcGT67p49913sba2hl6vB845FhcX8c1vflM7Dj3PG4E5nn32Wbiui/X1dbz11lt4/vnnUSqV8IUvfAGXLl3CzMwMvvzlL+tsdMViETMzM6jVauj1ejr7n3n/efdhK528ewPISScw6A8QFAOIREAktFhXdED1DFK6mWS6erqUgOf6cBwXEgxRHMNNw/cdx1FKFsoqdBxuODKhIio9Dy53IKIYw/4ATsCRxApacVxyOqvrMIfhxkYPP/jVGn5zrQXHYQgjsScKcGN3iPc+2kXBdxDFAl+6cAx/8NvH4Rrj0/SP0NijPruXeqIfX0yna8YYQcafMZglMnMIC/VU1PNggEggRATmSEzPVnH67OLEqx4p7UdU8vBfYNR7X6/X8dRTT+Hs2bN47bXXIKXE9vY2fvKTn6DVauHUqVN48cUXR/JMA1lV7N3dXQRBMFKB3caqbbaJ+fLZSpo+572M4xSdfZ/m5GCm9Lxx4wbefPNNbGxsgHOOixcv4pvf/OYIpkrW8vHjx3HhwgUwpvI4v/feezh//jyWlpbw5JNP4nvf+x4cx8Hp06f1Mp8CdLrd7kihXpI82Mi+D/v5mX3kOByJVIWRy1NFRGGEYRxCsszZ5TgcKghGbZNgEIyYGb4K8ABDHCdIPAnHBRyXQyaAkKryCueUXjS10DmDxzxNwQuHQ5RLDLEUkCJGFmkjsdMO8b/8wwe4sdFFlChFHiXjreVESPQGKgnZz36zitff3cDxaQ//8hsLmEtXeDRxEU2QcHAzC+L9FTayatnjaGTZb8o4ImXqInbISSwgEYFxoN4oY+XU/MQrHlH+DonYSiuP13tQ+px5HCksz/PQ7/fRbrd1CS1yLtrQCOXdoGveT7Epe/Z9jBMz2MW07s0qNvTiU78Rz5pwcIJIyJFI9EczmRFh5aRQAOyBRz6NPhq1OAlGEJq/YV/B4hmBOMOcO6o6uzSDQuSYAyVdHK7jAikkps5I96aew8/e3cb/7f/3Hj5c6yKMqYrOwUVIYBgl+GhjgP/5Ox/hF+/t5EIk98s3kicjgJHOk82wpwyZ3jsPZEoVOpMAk/B9F5VKMef4TI4s7UdUJikMehk6nY7GsWdmZvDWW29hdXUVs7OzOHv2LJaXlzUDgqzfMAzRbrd1+SwzHNy8np3JjZS9CRPY1jYdn0dZnEQjzPu+Uqno9J67u7toNBq4cOECisUifvnLX4Jzjq2tLUxPT2uY4Mknn8T6+jrW1tY0q2R6ehp3797VWLjv+3j66acxPT2tg2+I9ug4js7QZ7No8izscauKvHvknAMJEEUxfM/DcDBEFEYolok9wqDyXwilUFPuH9PUPwd+oYRqtYF2uwfP9eEVAlW0WGbcNpFGXgKKnkZmX2O6ASklWru7qM8k4Iyn6IHEf/zxHfz0nW2E8SdXqEICYSzxn19dw+rWEP/ty0t6LI1bpdxX0Qo67QgpMvhIbQA5XiVSWBD0PNLMiByKT8ISzM3XUfRPT7zkkdJ+RCWPFkfb6QXodDraIp2ZmcE777yDDz74AN/4xjfw1a9+VYezk3DOdV7oVqulq4XnWT+m1UlCyoyiAe0gHBJqnx0cM86xl/cCU34Rus9Go4GZmRmcP38et2/fRhRF2N7e1nnBOed4/PHH0W63ceXKFc0imZ6extbWFobDIaRU3OuLFy+iUChoGh/lIWGM6cCbvBqI5v3ZUNJ+qyQnzRJHSaMAqGAXlkYKSoWlZviqaX87kHDg+yVUKnV0OpvKCQuo5FNwUkuQUr1mbZZSQDKgMTWF7U6IdnMXSPNwMwj8xY9ufWoK25Qwlvj5uzvgnOG/ffkEgM+CPUJCFjZyFHb2I9MISoxAeEpxK3hbYGa+ihOLtYlXO4JHjmSPmBxlehEIs4zjWOeNpnJaVEmFrGUTWhnnTJuE105q07jt+60c7L8ZY4jjWNPtCLO2MxSaUiwW9cREea3JoUnnlVLq6Eabd31QxsM9C6EU6f90BaOHR9uBTGerZ6HOwdJKNnEiIKRAxh+xJnjNSjHgEVfBI0kcA1CRfz+/vItXL2196gqbJIwlfvr2Nn72ztaeVRu1977KHlqM+WPvmNcHxjamnombQmqT5MjSfoTFXIbnfTZ/B0GgK4UvLy/rlKSrq6sYDAao1WqYn5/HYDAAAE2HG6cwx9HebKtyXBvtVK10PpNSZ7+0JnYdhiGuX7+O27dva5inUCig3W5je3sbjDFMTU2NKORGowHHcbCzs4M333wT/X4fzWZTp1+lOpPER7dra8ZxDAoisVc3JsvloIp9FEYRaT5zH/1uF0irAkVRBN9VDjsJM1qSfGdKySQCcN0CSuUabt36AMMo0TCtlFTcgEHxvtP+lBJcSnDuoBgUAdnGoD+AiEPsdBn+4kdr901hk4SxxHd+dAdPLFdRL7u6Px6c5CnpdLvhsCWGCfkpaaJUGQABKY38K/tk+TuytB8xybNCxg1y06kZBAGWlpZw5swZnDx5Uivtjz76CFeuXNHKu9/va4fcOCcRWeTjItjomgSB2FW5SWmbgSdUMoz2NQsBk5jXjKIIly9fxquvvgpAMWUajQZarRa2trbQ6/W00qbJgfDtnZ0d/PrXv8ZPf/pTvPnmm3jqqacQBAGGwyF6vZ7GyslBaSptAGOVth3ib/fHJBFCnaPgF9Dr9iCFRLEQII4iCO0foCJgsM7LldL2ApQqdbS7fQzDWCl0Bb9CsnQSlEBmuSuFwzlHMQgghcSg14WII/x/vr+GeL9s/p+SRInA//fvb+zxBdx/GWdZZ/0kze/UzKdXORLEbVdBUI6TRkseKe1HQ+wXO09h3utAthVFoVDQFdYpyX+n09GpW8kZZ1Kx8q45SQHdz6Wt2UdhGKLb7aLdbutJgDGm6XjE4TbbQQ5JzjmiKNLwCAXQmBa+uZqw7+fj3tvYc5gfOUMisvqXwihaAGQ6N68NjHFwx0npfel4oYljNEIkO1cqasJRiuj6+hAfbYTYJzHjpyZCADc2erix3nuAeLatrG0IhI1+lXMEWdvmEUJkDJxxcgSPHMkeZWDDE0IItNttXTpLCIHXX38da2truHbtGpaXl7GxsYF2u43nnntOW7J0jnFVQfZjfJjcbjuJkz2wzUnCTvNJ1DuKahRC4N1338XNmzexu7ursfrhcIhXX30VZ86cwYkTJ0baSW1aWFjAM888g5MnT2JlZQWu62Jubm6E+pgXom+eIy/NrF1ObJx1bTNnRicFtQCPowh+0UXBL6Dd7CFJYjiOsuQ5suK8UqofAQnOPXDmgSc+/KCMKJHo9AYo1ktgPFXZUihWSCqOw8G4isJkjKFYKKBSLOLvf91B9KBo0qlEicQ/vrGJf/X7Kw/UEal6PSVop7S9TBOnnHZG4fs8hUKE2jU1bpjgkMJFHDG0djvo7LQw9+UTY654pLQPpXxSizrvfM1mE9PT05iamoIQAj/72c/w4YcfYmdnBwsLC1hbW8Pq6iq+8pWvaEVtt8dUvPY181YGVJGFcGJTQRE+TOckhWwqeAqjdxwHhUIBlUoFgLKyL126hGvXrmFnZ0cr7WaziR/84Af41//6X+PixYv6WmbblpaW8MUvfhELCwtoNBool8sARqEXs53mhGWzQsy+sB2V9sQ5zsqmfThnEOBaafNSCUEQIElixEkER6S5taWRsU8qXDqRDL7jgUsfjPsoFCuIEol2r4fiVAXcUcfJRFnj+nk6SgklIlYpD4ICPL+Ct29LyFyu8v0TKYE3P2yiHwqUA/ee34GPLdpapsLGKp9KBmIoZc3SZwNAh/pzxwVnDsA4ROwgDoH11RZufngLX52gtI/gkUMu46y1/fYxRUq1ZDPLaxEXm8qHxXGs07QeBIO1r30vx1Cb8to+jvJlQhVSSg1t0L0RLa/ZbKJUKqFarWpL3Qy5LxQKqNVqOjqSUtXazluzjfa9Tvpsy8H6hBn/m5OkORnoE9JexvHUZ8oqdFwPQgJRnJnLWYhOtshnjGn4lkFNyuu9Mhz2IB2BmbgOw0drDw4iyS5jWNd5MLfuDqb/zjZlB0gBDIcR2u3+xOseWdqHTMY59sZZHnYdR1NMzjRht4wx7O7uol6vY3Z2Fq7rYnFxEZVKBe12G81mE4VCYY8j8V4pWebxefdoB+eQkCKmyvCMqWo077333kiukSeffBKO42B1dRU3btzQlebL5TKKxSIYY9je3sb29rYOXQcUv/vYsWM6f8lgMEAURdqqt/v6XidIex8TWrGZNNl1pNacDAq2kFIiiqOUyZIyYNK4GH2e1CkppcoSKJnia9enZjAcNtHu9JAIIIaAkzJIVN4MYzUgs+sHvo+tgYMwebBWNkkYCVxf6+Kp0/UHeFUTDpHWj7HVUNQaboLC47lkYMyBlAytZhe3b69PvOKR0n6ExcSb80p+kdKmiD7iKd+6dQszMzM6nP3UqVNoNpuaLlev13UKUnLcAaPh2yb2bLeJrO6R8lgW8yQvopKOoc8UZr+zs4Nf/vKX6Pf7CIIAjUYDf/iHf4jjx4/j2rVrePvttzE7O4tSqYRarabLpm1sbODSpUs4ceIEjh8/Dimlvrft7W3dLzSxAaOpVW0xJzAzN8ZebDq7J/PeTPhkr+KGxkkdx4WQAlGaZpfyhQgpkOZ/0ikxMqq1C8CFYC6mZ4/h1q02ms1dxAJgUuXhdllaBd20tCHTgD+JUlDAzZY/yph4gCIkcOV25wFdLUdRM1tpy72HMOhoUSANVpIMLnMhBbCz3cS1qzcnXvlIaR/JHrFxVFIMpIBJWRcKBf0TBAGKxaJWYnm4q3l+8/fHkUlOTFO5kTOz3W6j0+kgCAI4jqNTqO7s7KDb7SIMQwRBoBkjVIyY2DF0PeoDymaYl7XwIO3MW/3kWdSTZNz3nByiUqRWXbZeV6Vkc5hELKWnMQbPL0Bl+0tSKzG1rllKRMm5JQYJhztoDT5bxLXVjR7YtXRhXz0D7i+qqHL629T7Kc4URbFmMI2TI6X9CMt+1h056IQQqNVqOlKLKohIKXHs2DHcuHEDrutiYWEB1WpV72efy66mnafMJxXyHQeVAMBwOARjTFc5b7fbuHXrFpaXlyGlxMmTJzEcDrG9vY3bt29ruGdqagrNZhOMqYx9pVIJ7733HjY2NtBqtbC4uIj5+fk91yTr2l6pTAqlth2OB1XOBxGZOhg5z4reDgdDFIMi4kjBW56rChAo1ggpYqXUhRCqggo4uFcAczxI5iBOAI8xUK5tzrkRXCP0eRg4HM6QiM/GyibZp1LXpyxjLOo9+wBAagQxZqBZKeOHAYzJNJhJgvOjcmNHYoitKMiitnnVpDQpRH1ubg6FQgFxHKNWq+kKIqdPn8Y777yD5eVlPP300wiCYCTohRRUFEU6RatplVKSKNrPxNEPYqVSO3s95YA6ceIEtra2sLq6infeeQcAUKvVcOHCBQDAL37xC/z85z9HFEU6inNzcxOcc9TrdVQqFfzTP/0TfN/H9PQ0vvWtb2FxcXHPxEawEYXAmylC7b42hZS6CQ3ZofB5Ts19n6eQYI7Cs124GA4HGMYxFo7NoN1SK4mCX4CUAgJS5SHhFA/JIBIBSLV0dwtFMLcAwTxECUPgcoAJSAFd8ABQVD+RTgAMgOtweHuryT1QcZ17LwL98SVJVbK0eOwkEqq8m0oKRc5eyt/icFXJXU22SP0NAo5zxNN+JGSS1WxvN8VmbdiWLylFKmRASoqUU6lUQrvdRhiGKJfLWgHb+Yzt9o1zjn5czz9Z8sQjHwwG2N7eRq/XQ7VaRb1e1993Oh0IITQbhqx0z/Pg+z5WV1e1I5Osb1tsGMbcfhA2zkH2s48BxrCBUt4ZYcnEGqEc02AqGhJphJ7pFCN6sVnbkHEHqkJ4toSna9hjxbx7xhgaJWC1deDb+tSlXvYekNJWjBxmOIH3iMEuUTAKMzeN7ETdyjnA9kGYjpT2Iyq2g4/EdEhGUaSrtpBlSCXIjh07hmazie3tbTQaDRSLRXQ6HfT7fVQqFZ1FDxiFPWw827YqD4LjkhXuOI7OMthoqNSgzWYTW1tb6Pf7OHfuHO7cuYPhcIiLFy9qJ+T8/Dx2dnZ0DhIKgXddF4899hiOHTsGxlTuESroEATBSN9RXg8zXN6+p3EQyLj98+71QIo94/pp6ENZb+kKRqTbBZTiYJSHJGORAMTf5kgkwF0fnh+g3w9R4g48DjipEtctMpSQWtlLPHlM4t01QH4GbGLOgPNL5Qd4xZEpa4zyJltcQMoEYORAN5W1hBARHAdYXJrDs89dmHjVI6X9iEoeKwPI8mKQI464yGaB1ampKZw+fRo3b97EjRs38OSTT6JarWJnZwe3b9/G6dOnMTU1Bd/3NQfazOFhQiSm880OBad20Xd0vFlwgKzgxcVFRFGEW7du4ebNm+j1enj55Zfxp3/6p6jX63juuedQr9exsLCAU6dO4fbt2/qeiQVSKBTw5S9/eQS6iaII/X4f9Xp9xLlZLpfR7XZ1ZXDKnU1OSjO9LMkkB6/NDPk4IqWETAQkEnDG4LoOhEh0AdlESGPypUJYEmAphso4GBxEIeB4AQpBBe32ALVCgMAbtdgB5fAk56WqsCVxbg7wHYnhA46IBADf41g5VrrnVcwnETWJMWTRjhKj5nTay1JAaKWd5tMWgMMlmBSIkwEcT+KxJ05iZXF64jWPlPYjKnlUO3s74c1miDZjTBewDYIAvV5PFzsYDAZotVoIwxCcc+0QAzKr7yDc7HHfmZAEnYus+WKxCMdxdD4UwuGbzaaGTnzf14Ez3W4Xg8FAR1qSwp2fn9cBRP1+H3fu3NkTMk9QSh7bw1ypjFO+46Ahu/8nyeg5DMjCsJpHaIKScOxUyY7kD5HmiVVZMceF43iq9JjQzGzLmmT6M53x8XmBRH42aiVOJE4tfHJL+yAroFGLOr17o280oST9QM9AfcdU5j8p1PdSQsoEjEvUp6qYrVUmtu9IaT+iYvN8bayZMF8qk2Ur3EqlgmPHjuH8+fPY2trC+vq6rs6+vq6CA86ePbtH4dlQyUGdbYVCQRfJpcRN7XYbq6ureP7553Ht2jW9T7/fR6/Xw+XLl7Vle/v2bc2xXlpawt27d3URg4sXL2JqagpSSp1eFcjC4MnpaDsLzZVCHn1vnHL+uMp8HOtEFShIWQhqi7amwzACA4PresZxMJSLgk4EBEQSIxIhuJQolipwOIPvMfiFGFmx2qyErTqZiaYD1QB4dnGI128XYGm2+y7PnKmjVHDG9uEnFgYwydTEKJGuTNQXhPnvOSDtaz3MWeon0G00J1nA4YC7T7cdhbEfMjmI85HEzJdB+5qORN/3dWFe08IVQmBubg6PPfYYXnrpJVy/fh0///nP8YMf/ABxHOPKlSt45ZVXNCfaVs62NT8OAyZFxTnX4eKFQkGzPDY2NvDDH/4QgGKFXLt2Dd1uF81mE7dv38Yrr7yi4YC33npLJ716+umncfXqVayurkIIgd///d/H0tISpJQ681+n08FwOBxJJmW2nWAQ4q3nPQOTRWN+ZzsxxyXUGie2s1hKqfjYnLggqkq643DNqvELPgCeYtvkF0Cq6AWSJMJg2Ee720UkJOqNWSyfPIvlk4+hVK6CaXqDNYYkpcFVRrzDGH5r5UC38anLkycre6C0T1MYDJYVoCJNmQPKL6KUNOXDTiEQ5I17oXwKLE2tQCXHOOC6gF+YPA6OLO1DIjY+bVvO9zKAaX+ysu1oSSklisUiSqWSzkG9urqKu3fvQkqJ3d1d7O7ujg01n3TdcfdGhXIBVYdRSoler4dbt24BAFZXV1Gr1cAY0yXPbt26hUKhAADY3NxEFEWoVCoaNul0OpBS4tSpU6q8lpTauWiuBiiM32znfpY2tduEXibd4ySZZIGrk2KPMiVnVxRH8Gi1lKh9dS6ndGmuHGEJ4iSN8PQ9+EGAaqUCz3PRi9YRx2zEojavPWooAL9Z8+y9Hoi881EbX74w+6mdb89KcM/Na6Y1MoBo8vPVsAlUgqn0Shqx4pwhJzh5RI6U9iGVPMVtf09i8rQB5RgLggCe5+kIQXNCoMAassgpeVIYhpienka/39fKm1K05rVtHHRA2+0w9vfffx+O42B5eRndbhdRFGFubg6ACq65fv06Ll68iIWFBbiui9nZWXS7XQCjVq/neTh//jwWFhY0r9ysIG/2D91/GIYj/UWTmuu6I+00ZRLf+uNh1/nfm7pCWW5ZhZQkSRAUHBT8AqIogeO4UFHtCRIpkMSxTt0aBAEKvodS4MD3A3DHA8DBucpfIhEb6/xUTTHjXqREZ8jw2o3U6nzA8taHLfSGMYr+p0sWN8erJjmmEDWnoJkUMZEsmzDVfgxgWX9kZ8gUtoK71TmSGIj26bojpX2IxIQWbKYCOfjyLHJKpETbfN/X4enkcKPzxHGMVqu1h1lBCvD06dM6pP3mzZuo1Wq6liRJXuCMCb3Qd8PhUDsY4zjG3//936NQKOCf/bN/hps3b0IIgccffxwA0Ol0cOnSJbz88su4ePEioijC2bNn8fbbb2Nra0s7JxljKBaL+Na3vqXbadL+bAubqH5U/JdWD1KqWpDFYhHtdlvz2O1nYVvk4+ResGz7e5bi2VKqSigwrhlFffi+j3KlgkFviKDowXU5mCPRbrfQi0NE4QDlShlBsaKeOQd81wV3HCBKwB0P3PEQiwjM5WBGaRXOOCRLn50E3ltj8DgeeD5tQAXWXFvt4onlSm4unf3EhLXyxitjDALG9gRwuKtYNEmiHb0KSqIljWKWZBXYjZJv5MhOIRUpgChWihuNCfd5z3d2JA+FjMO282hlpLhpOwWWFIvF3POGYYg4jjUMEQQBKpUKhBBoNBoYDAYaWy6VSigWiyMZ8MwJJRefTdtLkASxSq5evYogCPDFL34R6+vraDQaWFhYAKAU/M2bN1EqlTA/Pw/XdXH+/HlsbGzoMmCmpX327FldfYYmoLziBWRJR9FoTgtirpiBRnliY/n34nOYJCMrKWSWLnkZGVN4qlkEIg4FCn4Bns/BHKDXU8mVkiQGdxgKQQHVShUMAjy1/BgUdmunIFDXVcKZRlnwwSbDYHJA332TMBK4sd7D4yc+HoNk3MSoHb4giEgpY7WoYdo1qxgiNK7VEZmTkhgmRpZE0/qWXFnaCZCEe5owIodOaZvL6wfF1fw8Sp6iznP40d+ksC5fvoxyuYyFhQWcPHlyj9OQOM0ANI2OEirV63VsbGwgjmPN1LCpcfvBIqaiJmtfSon19XW4rgvf97XF3O12cefOHQBKEU9PT+toxyiKdJEDKSUWFha005AYImZKVRuXNttK9223m1gstrK3+3a/cZgHq4ybXM0Vk77GSMQdB5AoRes4KJVLupjEnTt3wB0JxgQSGcPzHHAOlIpFFHxf4d5I0RYG8FTxMO6CcTfjdZvEB5PixoB31jjEAy6AQKKy/HXxey/Mjw1S/LjCmHL0ykQ5XwFAgquQdJa9X/atZ1wbUtBZuzIfgbLGk4Shud1Ce6uF02eOKtc8EmK+4HkJjCZhq6Qs/+Iv/gIzMzP4rd/6LSwtLemIQwCaTjcYDHT5rmq1it3dXfi+j5MnT+KNN97A6dOncerUKbiuqxkkxN2mNpmKycSUyeL1PA9TU1MolUpotVr49a9/rbHz4XAIx3Gwvr6Ot99+G/+r/z97fxZsyZHm94E/91jOftfckVgygQRQG1Br19ZdZLPVTVI0kt3spsnIntFwJJPZmMxGNqZ5nKcZs3mRmcb0Mi/SzIgymURJY9UkJbWJZC9UV9XU0rWhqqsAFKqABJCJ3PPm3c4aEe7z4P55eMQ952YCBaCKiXbDRZ4lToS7h8ffv+//bf/Ov8NwOOTZZ5/l+vXrbG1tURQFX/3qV5nP55w+fZrPfOYzJEnCfD4PfZECB+2UsTJXcWra+Xx+pBCxbCBx8d53S5JeZeRsGzblM2Wd+5nSGqPc/HV7PfLOgDztMD485Jvf/Cb3du8ymY4Zjw/4/Bc+wxNPPMbFC4+TdXOSNHGRe1GVFUjQaQeddbHK1ZwUGHISogp0DJVhZ/KLFZT2xoWvPG+jpEwP1mIqsa0hNTM7ejdJBaUt0UqhcR48aOspEFC+Ko2U6XSZ/WxwAbTW+E1Wo2zKfAo/feUKL73wIn/lr/79lf38S9B+CFsM0Mv47XaLJe0XXniBM2fOcOrUqSOSpYBqHN6e53nIU721tcXLL7/M+fPn2draaiSDkn7F/8b9bXtppGlKr9ej2+2yt7fH1atXg8tfWbryVvv7+7zxxhuAA1AJrd/Y2GCxWPDSSy8xGo04efIk58+fDzmwY1e74zSAZZJ2LDlLGP0q75Fl3jwP2uL7t+y88TnDMcJlowIl0unmmBLmiwWvv/46b127yu7ePXZ3d7h48THOnj3tcsak2hfKsg3JEKVRSYZOaptH8NNuS9q831n2jray8nVNbWMU77jF68OtZbEduHkyYdOK7lk0McpHSsbeJfVSkHvrJO2yhNu3dvnpTy8f26eHELQ9uXbE/eaDR5Us8xhpA2cbUIfDYZAg33jjDU6ePMlwOAzGwKIogtQh0qgU/D04OKDX64UIyslkEjL7LQvVjkHaWpfhTwyPcb6TLMs4efIk0+kUrTX37t1jbW2Nc+fOhd9nWcZ8Pg+USpqmPProoyH9qkjDx0nCyzj22JAo/HBscAQa9oBl9+C4DaF9X1bdu/Zvl3rkQEydslgU3Lp9k0FvRFWWrK2NQJ1ja3uD/YMtJtMpu7u7TKdT+sN+FLWhnC+3dRtAsSgoFwuf0Y/Wo+QNbv6z9Bcc+ZEmP/9zHmtdsUADBIEhTRIqlEsbYIEkocaeepJsC4vq+1ZvfMrbIIzBbwbHuw0+hKAt7YML2G3pOvaIEHCMAUMMbgCPPvooeZ5TFAV/+Id/yOc+97mQbOnw8JDxeBwoDwHXZ555hlu3bnH58uVQ8FZrzbVr19je3mY0GtHtdplOp4GPlqAViXIUKXptbS2AvPDho9GIz3zmM1y4cIHLly/zne98h9///d/nmWeeCTUq+/0+t27dYmtri+3tbbrdLn/zb/5NwIW4z2azRlUbqMEv5olj6dpaG9wekyRhNpu5BzaqTiNGW1idYvWdSNqxJ01bE5B7GqcICKlVLaA0ZVkxXxzyL/7Fv+CjH36OUyfPcOHC45w8tU3eyVks5vzLf/WH/OQncOnJCzzWewwlZclw6UNVZUnQHO4fMhvvkVQVRhm0eFBEj5gUSdjsW97ae1tDfVfb2iClMq74w32w79jWriGa5zlZljGbzRiNRnS6HUprmB6OMcaS510qawj2R3ABNKZy0rY8e2mKMT6lq/XUiNJeKBIh5gOXT/vnuFP/hrfjJMVlUmYM3AI229vbwSD4wgsv8Nhjj/HMM8+Q5znz+Zz5fB4kb3EVPHv2LHt7e9y6dYunnnoq1JK8d+8e/X6fwWBAlmVMJpOQREmkbDFqCt0ioB33v9vtcvHiRU6cOMHu7i5Xr17l9OnTwUsEXOrYyWTCcDhkOByGGpaLxYLFYsF4PD5ixDuu4IKAZqxVtD1M5FySDradICoeQ/s3x91D+d0yWutYiks55zI3JstsOuOHP/gB25sn2Vzf4uTJE3z0ox9mY2sDYwz/w//3n2BNxf7enitFRpzcCqyxJChm0xnT8YR+x7msNYxtVvhZUFg+fMbw0g1N9QswRmoFl84Nag+PtrL9NlpZlsFIXZZluA+xkIEpHAD76FIEtPEuf4FZrz2zldIoiYSM3AETnVCFsnUfQEn7A+w00gDoZb6qbWBv12k8ceJECOEWg96NGzc4d+5cWKyxwaYoCrrdLoPBgOFwSFVV7OzshJzWu7u7aK1DtGLsISLeJ/KvBLLEfY1fy0Yh0vFisQiZCJVyqVTF20QeNDEUrgLmZdeS9/FcCT20zL0vTdPgkdKWiJdda1k/Vl3/QSV0OcwYg9IarTRJklJWBq0VeSdjMByQponzK1aKzc1N0kRxb+cepjIk1nHaVVU6crqwmLKkKEvKqmI2r+gnScu4V5Pa1sKTJw2dFCbvX9Wv0FyWv58vYVT87MhaL8vSF0jWIXYhTVOsMS6TYtm8vxYbuUFaTzvV4I1VKKsjGsRiMaSpotvNGAy6HNceOtD+ILv5xW0ZSMTcLDjQlOAROf5zn/scL774Ii+++CJf+tKX2Nvb40/+5E/4a3/trzEYDFhfX6coCsRlbrFYcPLkyeBZMh6P+e53v8t4PGZ7e5u33nqLtbU1nn766QbYihFTyphlWdbYEOTBiQEw5qulyMG9e/d4/vnnAXjuuedCweH9/f1wHgHuZTxwGzAlwEYoGqEoOp0O4/E4ZAoUiVrStIo6LbRFDLrvZE3KJhXfm3ZFIDkOQCWOXy2riixJyPMOOkkoFi7l7ObWJttbW3R63QAVn/zEJ7lx/S1eeOEFPvUrnybp5FRYDidjzKzCzEvKgzmHB2Pm0xn78z1Gj2yTp66cnIB3vB1eOlVR/IKMkVVluXBuEDbO2p3uwVtMh0isgriJLhYL1k6uMxj0yfKMxEAx6LKYLSjLBSpNndYhl7UOjF1CL/e+qgzBeGCtD8QBYxf0+ppTZ9Z44uLZY/v4lwmjHsK2zAAJTQ5XJE+RGqQ9++yzbG1tcXBwwDPPPMN4POaFF17g7t27oQCCAEVZlozHY9bX1zl16hRnz55lNpvxs5/9jG9961vs7+9z+fJlfvaznwXDooC28MWj0YjNzU1GoxG9Xm8lsEpf5TxFUbC/vx8yCgJcuHCBtbU1jDFMJhPG4zHT6TQE0LRbPA/tuYqNp6JhzGazsGHFcyob37JIz+MA+37GxmXV6pdpIkErUFAZl+86TTM6nS5lWZFmGaPR0PHZPm8LwJMXn2R9fYNXX32Noiix1hnCpvMZk6mbv91795hOZ8znC/b29935g3AtHhF163fgVx6v0Op4Ff/dbkrBc0+uM+zWLqrvpAeyyYv30sbGRijykSYpa2tr9Pt9Op2cPE/pdDKyzKcgVrGLodAjPjEX0WZrHS2ChMBjMbak01VsbPY5feb4fNp/CdoPWXsQo1csxcXABgSDoFRWl2ovwj3HkqMAi4DknTt3KMuSwWDA6dOnWV9fZ2Njg7W1tQYYimQtKuf9pFF5kMTdULhmKRcGMBgMyPP8iM+1/D7u+zJPjvbr2HMgrlm5THr+eZJBLRtru/9tmqVtt5C0sYl21NF8vqAsK8AVK66qislk7PpNnWu70+mQJmnYiMqyChqDuMwlWpOmzuWv8Bxvu6nIewTgbz9n3vdakVmi+I1PnnJ8tszXO7wdYpgXKk6elzSr1ytKoZX2HHW0plrL2EFyfL9a39qINlHQ6WSMRkfL28XtoaNH/rK5FqvWbX47y7LgUfHKK6+QZRnr6+ucP3+eXq/HyZMnefzxx7l+/TqPPfYYjz/+OAcHB8HdCWrg7/V6TCYTfvazn/Enf/InPPXUU3zoQx/i1KlTnD59mp2dnRCUAM5gKFVtYkpklUtcHNwyHo/Z2dlhOp2GwB4B7aeeeorBYBCkYaEqYuOjFGUItROpNx65vhRFEPAXHjvOLx7PpVIq8PIy3/G8LxvbgzTpgxg54z7JeWVuptOp2xgzi6kM16/dJElzNrc3uXTpEpPxIa+++lNObG86n2LXc7Y2N+n3ehwejClL4+b3cJ/SGDKTkCYJg34Puhsc6ilvHBxSVmWICHRytpMhtVaOJjGGp07CkycMP7n5/hgktYbHTvU5f6LrChxrNzdvlx6J3VAHg0FD8+t2u+H+Kz+HzhCf1BoZkoq1BmF3/0302nq/bg24ajYKN39KWU6c3GC9d/yO95eg/ZA1eaDbSW/iJmAr+Tq63W4AFgHVM2fOcOfOHZ5//nkeeeQR/vW//tdHeGGhEObzOVevXuU73/kOjzzyCE888QSf+cxnAEJJLuHR8zwPft3S33bf4ybANJlM2N3d5eDgIBRbGA6HrK2tAXD+/PkA7mL1b3PicRmwVUZI2WDiDUP+BoPB0nSzsQF1GU/+ToB7WSRr7AYoraoqplOXFAoLs+mce/f2GK1vsLG1xfnz55nNprx19Qr2M59GS8Y55arUdztdppMpVWVYTJ3hOOt2SXSHJMnodjtoPaQo+4wnE8oo+hPqkJFAvfm+/R//yoL/05e7LvnRe9zSRPPv/tZjbu6xaMR18e03meM4j7xszJ1OB4wKRl+tnNeH0nJ/VfC5Bm8cVlBHSDr/d9f8PTXGJwJMUAo2Nkb0TxxfueYv6ZEPYItpgslkwsHBQTDc3bt3L7jmHRwcUBRFSNUa13Bsn6vX67G1tdXw35Z/BaDlu5gSWcVhi/FHpGbRFnq9HidOnAiAvCzJk/TrQeeh3WJapO0zHnu/xOeQMbX7E//7dlp7E2g36ZfkY3Eb25S9vb1Gv4bDIZWpGHt/9tiLYTabBaObWM+U8iHsMi9eQtRKDLMVlWl70KhwZnm7PYD//WcXdNL3ltvOU8Xv/to5NoaZv3S0Wb6D8x23wTpArs+scPfbGotSPloy/kGIqxHrpG192XB0RymfT1v9paT9gWqxO15b6pb3Ii2KpD2dTnnrrbf423/7b/Mv/+W/ZDqdsr+/z4svvsjjjz/Ok08+yVNPPRV8tePzCgg/++yz/P2///eDFAwEUFFKBclYPDNicG2/Fle+GIC01gyHQy5dusTf/bt/l06nE6Tq4XAYqsy0favjBFQigQt1JHPVDrqJNwpRiyV/SlEUjMfj4GYoTcLrZZOLQTe+N8tAeJWxMQ6gafPx8WY4Go24t7vDW1ev8ZOXfspjj14gTTOSJOWpS5d4883LXHvrNkoJVw4oeO3V19i5e49zZx5xErhW9Lo9VJaSoGugUZokTRmORszmcybTCetucF7Vh6ryAfBhLJZfv1Tw5p7mj17UFObdJ7nzVPGFj2zxhY9sNyjAB7HrLGux335sxwh02JFTaqbTObNZQbfTo7LWlX1MZe5c8Iy1kgWwpkGgwpjSGWyVq8uZJFHGxGPaX4L2Q9bawNAGbSCAivhg37p1K1Q1/9rXvsZwOGQwGPDKK69w584drLU89thjzGazUHYrPneWZVy8eJHTp0/zp3/6pw13OAHtJEkYDAaNPkqLaQBxJZxOp9y9ezdIuWtrawwGA9bW1rhw4QJVVTGbzZjNZgDBI8VaGzaSZe580i/ph8yDvIc6sMJay9raGr1ej06nw87ODkVRMJlMGI1GjXmXKNLJZHIkwOZB2zINJnZBjL9L05TBYBDm963rV7l8+XVeeOEHXHjiqQDajz3xOLPFjKtvXQXlivtaDyhXrlxlb2+fUydPuXwlOqHT6WIThTagqnBBdJLSHwxYFAtmc7GXgMTOSx5vlNRAdF/9e18ouLs74bvXtijNu6fY56ni8x/e4nd+9VxjXlBR7vi3ec62d1XbFtQ8GEAzmxUsFgVrgzXG8xl4eqZOVyUcCe47rZAyY8ZWJGGjgET7vOj3cZl8qEHb1quKd7Dx/hvdYsBa5vInoDQcDrl37174nfhPiz801FXZV11HgLLb7YZ0rNJWeVy0mzxown/HOUnaY0jTtJHAKe7LqiYbQrsfy87RkK5ougYKPdI2MrY1iPb54j60KZx2f1ZRRrEL4Hw+D5443W6Xoigpy8J72ZRMpzPGh2N6wzyQF1VVUBYVZWUoCsN8PkcpxWi0FgyK8YNi5f/W9VFyh1dlix7xtjer6lzT9bzD33r2Npv9OX/y6jkq63JsvNOmNWSJ5nd/7Ryf/dDm0jn8eZtoOGLDkXmv761z27PK3xvhqZd24ahbZN38OpA7ZKEoDFVRAfnK/j3UoO1aDdwPc2sDgQAp1BKm+Djv7++HvNN//a//db71rW9x584dAD7zmc+EeolXr15lbW2N+Xwe3OnkGsu4ba01H/7whzl9+nRD0m1HOkr/4r6K1Cw5QqqqCtK/nEuKL4h0HBtGYy1CvD7i66ziz+PNQly9er1eAO2YEjkuslLokZ2dncD/x+248bc1jza4y2vxXBFfeAnbf+aZZ9jf36MsS/r9Ptev32Bv/4DXLl/mU5/9OHmeMxwOuXv3Dvv7h9y7t8drr73B3ds7bKxt8NTFJ1FKU1bOx9tdU+i0ei1tb59g/85lUjxlE/xHpEK5ctK858QVYE3F2vqQz1yYszl4kz+/8TRXbi8oKpH4317TSjHqp3znlXvsjgseO9XnwtlBVIU9StvA23vyRTjp9Xrs7e2FmqLihw94/tpTkBaq0lJVLmhGa41VLoVA8K1RCuWL/4pnicxtouv+KRKmE5jcO2S8s8+ZM4+u7OcHALQ/WE0WrCzAuIyWuKbdvn2bxWJBr9fj13/919nb2+Oll14C4OMf/ziDwYDDw0PefPPNwBd3u90joA1NsJTkUQLSsYR+nCRkrQ0c9ng8Dlx5v99vSNxCY8Tub+3zSsL/dlTisnkSEBaQlzFJlKZSKlS+kVqYy4ohgHMJE1olpnqWbRoPyrm2NQBxR5xOp1y+fJm33nqLzc1NTp8+7V0yK3o9lzhrOp9jgUsfepIsyxn0++zs7HD71m3evPIWX/3qNzh/5lHOn3uUj3/8k+yP9+q5Bp8r20XvWSxaJ2xsbHLzyoukNvAmAbidKxtOAoXo84rhcMC4mGLmt/g//K1tbu11+NPv7/DDy/skiWJRGMwDAnhZWe7sLbizt+Bnb43JM01ZWZ67uM5vfOIkj53uv2MZTe5Lt9tlf3+/ERlZ37voeBytEUA7caBdNQQoXXvseIpEcpJrVZs0QTObwq2bY25ducWvfukDCdqxW5KK3x75Xlyg3t5ZG79+X9oqN7UHaW0vh9h9rN/vB6lWVH8xHOZ5Hq69ypMh/k6Mdu1rrzperhkXJIgl0Bj82pLnsjE+yDy0+xFfa9X529delij/uOu/nfsVjzd2UywKV4DXHSO5V2YuZa2qDa9pmpIUBYUpmU4naO1KiRXFwgOwcvlI8sxF9OUZ9hCwEvpta3SSR0dpkjTDWELgTfMZI1JqmxSLo46c1I2pePx0h3/0m+epCsPPbs147daEn1455N5hwe5hQVk9GIIbC7OF22i//7NdfnR5j8dO9/nf/tbjbAzTB1aylxmG5R7HGlvjN7hgpLr8mKfLglfICo8RWUd4JsqC1JI0BhaLiun0+HpjDx1oJ4krd+RUlLYPzgejCTjHgCSJbpIkYX19PfhX/+AHP+DcuXMBnL/5zW9x9uxZHn30UT72sY85X95utwGq7RBvkYIXi0Uw0MUeFMsAS9KyinEzDr4Rw+UyykfeH/egQZ0IKwb+GFjjUmNS41L6NZ1OA2eslAqBQDLuqqpC7m6RfuNNsQZ9Ff0tvzfSbHC5U5RFReVdyba319k/OODgYJ+dnXtsbm5grWVzc5Pbt26ymM946aUf8+ijj7O7s8+1a2/xpV/7EkVVcHCwx1/84Hv0uh2evPgkd+7c4cSJbdbWhnQ6KWuDTU6fPMNkMqGqwFpfflb56jQKqjSBMgdlSDtrmKTLwg+n1CWJggRIrVP/lfXGNI3nrjWphkxBWk1RxR66ykD1ybodPvT4iEuPjVjvZ3z5K9eiDeHtNWthUVpeuz7m//5fv8zvfukRPvehrXckURljQk75e/fuMRqN6uhI7cC2KisfOKbodFOUkuyHtfcMPozdVbGvkLJk1ucpx9MmkIHNWcwUuzszrl/bPbZ/Dx9opxpjtHNajxQ1aOH3EkH7YcL3tpEsDh3f2HCpOQ8PD/n+97/P3/k7f4fz55069o1vfJNLly5x6tQpnn/+uRCw0i631Y4ALIqC+XweXN7abnXtJgEz9+7dYzabBQOo0BLxuaW1gXeZ5hGDdjvBUhu0JSR+MBgET4yDgwMODg5Cbuy4In1Mp8xmsxAhJ9ePNzMTuE+hCRQQVfVe4s8toF0UEoZuGQ7XODgYc3gw5tbtmyRJwmg0ZGtri36/x87ODi/++Ed8+pO/wtUr13jr2lt8+CPPorXh5q3r/Pf//X/HZz/7Kzz+xONcvvxTLl26yKlT2zz15KOUC42pEsbTiZNurc+IoSpX8EApqjRFVZmDllxRJT0WOEmw1KVk0CC1PhrQOtfBUikqTw8kiavQnlZTdLGHrrqoLKeki7HwB1+9xjd+fJdF+fM/gcbAwhi+/JW3uHZnxu9+6ezb1kqttSHXzMHBQQZU/GQAAQAASURBVMhwGXvxVMaBdr+bk2YZCh/1KJSRBZczUe5sBcrgtjiF9WDtNroUZTssZop7OzOufdBAO+TRXYbCsfGr8Zt3dKH3FeVXeUas+ry9UOOaiMJxA8Hw1+nUniKuQEEVQsQlL0kbAOM+xLTB/egFkdiFFonDylcZ8N4OD7zsuPj68blXeXAcl2ukbYiNz1H3//jFcXT+nISqfD4Lrev5LEvnEVIWZTCM5nlGp9shSTQHB5OQe8T4VKzau4+VpSsN1/PG0Sxz+VqyVDNPLIuZZTE3NHLi2Xp52/CpBqVdoYQjz5A9IhgFT5QAZJBosKbEmgrxGf/yV6/zjRd33hXAjtuiNHzjxbsoZfndLz3yQL+JBR25P8tS8YK7Z8GF1FlrqWetJQXGypZSSELyJvfvTlFVxm/Yq9vDB9o+tNQot/PJM7oK3B6Wtkz6bCdWevXVV7l161aotj4ajciyjG9+85ucOHGCM2fO8Ff+ypdI04yDg/0QLCLGt+MSI8l1xuNxMEq2m0js4/E4GP9Eio0jJdvjahvklhkZl/VJjpNNRCgYcDRMnJ3v8PDQURNR7uT2uWNJejqd0uv1Gv1SyiVocgmYIMvq/C/GJ8qPh9fmyZMko9frkmcdrHUb2+uvv86NGze5e/cOSaJ54/XX6fW6PPfcRzEf/jC9bpfLly9TVSV5nrG+PuKHP3wBaysODne5ePECp8+cYnNrk6eeeopev4cxFWVZsFhUFAVYmzgJWeYb2dAcn54qhUJjrGU4HGF8rmxTGWwiBsvIHuC1DK3EZ9uSJgnD4YDpeILOpgy78M2Xd/j6i++OhL2sLUrD1398l3Mnunz+w9v3Pb5tS5EYhDhYCwhulc4TxNWLVB506+3LV6VpaFoALrrUVdr0+VFUiWUOOkWnJWl+fDLyhw60tdZolaCV8ZKCWfpAL+NF/01ox/VbVHhZdKLiS1X01157jRdeeIFHH32U06dPMxqNyPOcr3zlK1y8eJHf+I3f4N/6t36DK1eucuXKmwGwxWtDQDsGP1nIMWh3Op1GClcgUAoHBwfcuXMn0DXyr7SYE45BWSTf2DMmfpCWpUUVjUJ+I9GcEl0p3jT37t0LLn29Xi94v7RBNU3TcB0JAY95fa01o9GIO3fuYIwly/LGppEkTX67qX248/R6fbI0c7xpVfG9732P27fvMJlMOP/IWV557SckWvNbv/VvcfLkCQD+4A++TFWVdLs5m5vrfPd736EsF1hb8cVf/Tznzp3lxIltTpzYIM3AmMrTWQvKQmNMLlHsKA8o9RoySLWVyliGw3VmY7ceTOX4FIsBpUPUnzEWlSiUdjSlMYY00ayNRozHhySdCUVe8j/82bX3DLClLUrLl79yjQ89thZC3Ve1tuYlxZFFoJDmNJ8Cgvueo0OswUesR+kAgp4BWJ8oSiUe5KsgkRtmKJ2TZAVpfnzClocu94iKFpxM2QM1v+IeGMh/AXj/drk5aQJcRVEwm82YTCYhHWeWZUynU6bTKYDPa11LoG3XPmnLDIExbbCMIolLjMUBKm0AfjtjXXVc3IdV3HjMUcZRcMsokfY4pf/tc7YLGK9q7WOceuxAQNTuJNFMJlPm8xll6fj36WTCZDImTVP6/V5I9iWbdbfbZT6fMZ/PKMoipKyVjVtrqZjiXM+sreuv150Bj+B1H73U7LSQOiGTAHXrxzJbDRDMspSqdHTY/+tf3qZ8UD+/n7MVleG/+ldvrPz+uHu9TPs7koe94SBS0x8yh+F1/KpxSgsYlLakKeT5Byz3SKISrLbYxDgOG3OsC1FDGnw/OvhztOO8J+T7eDxigMzznBs3bnDq1Cmee+45bt26xY9+9KMQEi6BNgC3b9+m0+nwxBNPNHyX2yATA5scI8Vv2zk+4uNF5YxTnMbjiq/X5hiXuee1DXpN7w1ncBQwlaAhKYUWp5oVz5p2n+NWg6kbZxvkxXDp+uJq/Wld85Vxi+fWaRoV4/GYGzducPfuDmdOn+bxxx/n3r0dV5cQuHbtLa+lpOzu3mM4HJDnGU888Ti379zE2ornn/8Ym9sbgCFJFGfPnqbX6wAVkAT/YK1DHB6u9ozMY1Q/XOwUXgAyKHq9IYvJnh8jOKOajYSjKEeKNY4kUIoszVgbjti5tsudGwtevzX/uSIj304zBt68OeHNmxPnx72italFoFEgxH1uWSycp1SS+E0/8NTOLGvxjiIenWs/osgWEIDd0bg6gf4g4dHHTpLpJ48dz0MH2lonpBZInDW8wmUl+zeRCoGjQN0Gphj42lKigHan0+Gll17ikUce4dFHH+Wf/tN/yre//W1OnDjB7//+7zMcDvnRj34EwPXr1zl//jznzp0LEjHU9EP7T1KZCmgJpSKJ+ds0h/QpBm2hO0SCbY9frrMseVLbwNj+vCiKsFGsr68jlXN2d3fD8ULTyHXaxqjYyCrAHs+NHKu1Di6LDtCNnwPP7VL3Nf59p9PBmDkHBwe88MIL/PCHP+T5555nc3Ob23du08lzup0Or79+mRs3rtMf9ALH3el2ePqZp7l+3QXafO7zv8LW9gZZlvic40OHKT5QRnh1N9/Wo0sVaBEbryWkkK+rv26sot9fY7y/4+6bJUQAag9QTtNNqGyBNQadKNCKTp6xub7BSz+9xv/vdkrxgL7Y71YrKsuffv82/+hvPL7ymBgj4ijieB0Y4wLBnPdQXSRBfK2dIc2FuAdPEpcHwFFINrJPKgVUKG1JEhitpfQuneHRR9aPHctDB9puUTojiFYuv+8qyTRW3azM5n208raV/Je9yaKSwgH9fh+tNePxmF6vF+o0Cq+8WCzQ2pUV293dPUIBPEhbVsYr7kusdh53zmUeH3Ke445vfxZTF/EGIJuePJgP0ie5/jLqpek9Eh9PBNpH+y4BNIvFgslkws7ODvsHByFsvxOVWCurkqoqvbuiSzg0Gg0pS6dRbGyss76+Rp5nZFlKmiaee5dAEBsoRHFyEP9hZaPQ8qir0QhJktRH+B3VHo4MzdYfa6XJUs20gJ/d7R397XvcrIUfvLbHZN7MaQNHPXnk33aiLmlufVco76Hj5lAKIAhwE4FFNNjIo0Qp+c6lC0hTRd7vQHY8LD90oA0C3BqtExILWh99+NvSlP+U+6L2L6itogni1l58IjWWZcnNmzeZz+cMBgOefvpp0tSVmfqzP/szzp8/z4kTzqi1sbER0pDGwLQMKOXcscQsuZ0PDg5ClKX8Ps/zcF7pbwx07essG2e7H+1jhKuX69V+0y4/uPSzHRQTS1P349PFKFmWJbPZjMFg0FhbsgG2E21VlfFAmrK+vt6Q5n70o7/g4OCQxx9/nLfeegsFvPHG65w5fYrcl4D7zK98hiR1ftyLxYLKVHR7XS5ceAJTGdbX1xkMu2R5SpK6KERH0TgpOS7Bq7VylcRDcq4KMXEpVWfxcxy4k6qVTsGm6NRRQLP5gk6a0EtTHxRTG1qFCjBV5cHJAdluuUWiLSs86d7TliaK12+M+fAzy79v03SyodfNSc3ONmPQaavcmBeqg2SN02Ss17qwxnluK6GfwBpX+FclCXjgTpZsFI1x/Nwz8UvZlDeWOGutGDxWSYChRbvgL0tre0eIlChSYZwPZFkTVfzKlSu88sorjEYj/sE/+Aesr6/zs5/9jC9/+cv8/u//PufPnwfg5MmTgbONQbvNFcfnlrwkRVHQ6/VYLBbcu3eP06dPh+OUclGZAqrS5zbVEdMTsUfIMjBdJhFLJKO4OWZZRlEUHB4esru7Gx7ELMvC7+PoyRho22sl3jAlFet4PA6gLf2PQ//rcyjKsgpUzGg0Ct91Oh2+8Y2vk2U5/+Af/ENu3brFZDLhpRdf5MknL/qHOeHjn3iOqlpw7do15vMZVVUyGPT5yEc+TLmYk2YZvUHPeTsEG5hBadDW5QFRvtBskmhXkLY0LChRJMEnWyufWtS4RFGmMlgLnTTHmowkdYbq8WRON0sZdHOqhXiZONdAwayqLEiT1MG5Vdwr1iiqX4z/w6IwvHlzcv8DqddeTI/I8hP6r9dxhl2RtEOMSABuMfhWXtNx/7pN0Z2sqiofZZmiNGSppquPB6CHFLRrmkSALuZkrRW7dw0Ib/v87253H+ya95EAVzUxvO3u7lJVFaPRiPX1dfI8DxK4GNCkxFI7NWrcYiNhDKbW+ofcA3j79w8SKSnfLfP4WPa+/XkM9ALe0k/RCuLiDKu0lvs1WVOx+6P0R1zEmsUVmnlOpF/g5mVnZ4fBYMhoNGI4HDKdTDk42Kff72OtC5g5ceIEa+tr3Lu3E4ygrnRcn3KRobQizbyw4nrjruf/15greT60HBc/E4HPITqN/5EO3iMh6+HSuVPBmIkYKq3l6sEw8mV+f5ux8NO3xiu/X6bNxgnP4jVXHwtH0OCIZ4j7s+F985riw638dXTyAQPtekKl6jQhQgzP6OETwdtmHBjtl79MbZnEuWqzib00wAHZs88+y40bN5jP53z9619nNBpxYvsEX/zCF7h75w5XrlzhmWeeaUi/saFt2XWFJ469R2LD4WQyCUZH+Z0Lwx6FKMu2sS8+fzvAZRl9EkvlwsVL/2NPljZ33XbNWzaXsfGznS9kGWjLdYUims1m4Xq1neAeV668Cbhsgh/72MfCPGZZSq/X5fHHH2M6mXDlzTfZ3FynKBZMZ1N+9Bc/5N49l+9ic3ODbjcnSXwRW608HWKcARHrgFeJ66tb727NO88WpeUZcaq7R3APUD5fC97GZj1FQkKaOUl7Ml0w7S1chj4vPLvsgK4CC8qp+nLHkkQzLt/nMu2ttjdeHbjStnHJ5rqsWU8H1WvC4ugnEbW1f68Jm6fCB9Y4106lLEmSkmgFNsEaRVXAvIBhZ/UYHjo/befs7vI2uIWpSNLE/2lXHcJnSnS5AdzfL2tr0wYCQDGILeO2xS8XHKB94Qtf4LnnnuPEiRN8+ctf5t7ODufPP8Lv/r3f5erVt3jpxReBOuqvLYW2Sy/FvHHsHhUnlJL0lnFL05Stra0gjUsY+zLwFLBbZgySuRBQFQ+W0WgUfJPH43Ej3Wun0wk8d/wncyTjiKuWxBtSPM9pmobEUTJH8iclyiSlq8zV2toaN2/e5Fvf+hb//J//c775zW825tzlvR7w0Y9+lM3NDa5fv8aZM6fY3t4kSRT/65/9a25cv0aSKs6cPcVg0HMJ0kzp1naiPCCXWFtS2RJjS7++xTdE/LId160Ti9Li8me85OjvsfxfgVFQGVAqo9NxybUODieMx1OXnE2DVSZUanc0i69chBOXsjTB8osF7QfJIBiv/XYu+IbgYt1eJ5y189Bxcw1VeG+Fx9aKJNUoaoxK05xEO9rJVLCYwfTw+P49dKAdlpoADrWk7dRBtfS4AID1V7/07X6SdgywJ0+eZHNzk06nw5UrV5jPF/R7fR57zEl1+3v74bf3k+Tj66yiGJRSISFTW0vI8zyAbhus21b9+/HY7d/FPuBSHFg2DgHpGGAflKZZtjHGQB+fS67fzsMiSYju3r3L1atXuX37djifW6PaJ/Ry1NVsNqHb65J3crSGWzdvMptN0VrR63VJ08T7gXsOWeE46yD1SYi577ObqfAnmmhMpdSapgrcrHhF+FRcJNpJn0VRUvj0pPirEj13YY6j9+kvFrNJ70M9tNfqslgCaaKt14BRz2v8Ppwb0UDq70IhX6vBKqrKUhbHP3cPHT3iWjxo5SdLYb2EGjJ1xSZs1fpZTXn/UrRV9ES71ap2FoBFAkzW1tY4d+4cH/vYx7h3b4ef/OQnXLhwgaeeeor19fXw+yDBRobZVdJGm+eThS5GyrjYbmxjEO8L8eRYxWO3eUY5r3wmFJAYFqfTaeDkBaCX1WxcZmSMryEtNkqumv/YMCy/6XQ6rK2tBRpINpHBYMDZs2fZ3NzE+KrmOzs7YbPZP9hjOBjS63U4cfIEd+7cJklc2P3FJy+S5yknTmyRJDqArfZaYwweARvEItgCEPeVAxid+PmwpoE/bjyebvHcrQFQDjYqKQBgrGdWWoDmPSPqzwybfcXNgyO3431r64PjQ9njFttulgkySi2TeWvgULKTRtNufKy7zJQxTgNKrGZ8WDHZHTPbG/PEhbMr+/VQgnbNabtJ1d6AInMc86C1oQRPP6kHELRjsHxvxfL2zt/2cGgDiAC2GBSlSG6SJJw+fZp+v48xhq999au8+rNXqaqKL37xi6xvbABursrKUBZNWqMd0LPKwyNOiTqbzYK0HRt0BNTEOFhHETaz68WSuHCLi8WC6XQaxihJm7rdLrPZjP39/fD7WLWVwBg5XzvpVJxXpc2TSz+zLDuS3U8p1Uh8ZW1dQCJNUy5fvhwk/aJYsLW1yYc//GEee+wx/uf/+X8C4MqVN+n1unQ6Gbdu3SA/9wij0YCLF5/g9dcv+9whJ/jc536FwaDHYNAny1x0IxZUosG6BEbisaCUcpW9wVOARJVSZG1BkljSzI0Bm4B1ASQo53llTemeHTQYhbGaJHHAV1SwqCpKY0gCH+7Vdyv5VIzj2q2b84+cS3nllvUuiO9v0wouPTJ4oGPjFL8xUNf3XxHz1SBStzMNOAXHqzJhe7WYqgLxk0dTVS5da6pS7t0tufLqLW5deYu/8usfKNCuJYp4h3RqmvbSxRK1+IjFd+kXrc/ffx6lLfG2pdPY0CZ8qgCUJEN67LHHGB+OuX37Nnt7e5w5e4aNjc36/NZ6KUkW3dE+HGfAiyXQZRIt0ODNV9ExbRCXz5ZJ0QLIEhyktW7W9mvx88fNa5syW2U/iDeXuInU3ev1wkMuARndbpfNzU0uXLgQNorDwwPncZJoptNJyNi3tjby2RZP0u12fZKvPp1ODsHQGCoPtmwz1gEtETd9ZNBe0hYPEuWDayyeN4kpExVYcWFVjXF/1l8/Eqo951sH8xj/2aXTmiyxzMv3H7TzTIcw9uNosbi11+iSIxDe36sn/nfybfQ763h/PK+vcBkCrbVYrZnPLHu7E27fundsnx4+0BagsfYI3sb8tjG1K+C/SS0GtmWALd4cksciTVMGg0HjmH6/z1OXnmK05rw4JOQ6BFdooThE5fawECSMusVh7PEGKaAqSaqkMox8L4E2ksNjGZcev18sFuG8EtUp54dmjpFVxsv4AWzP4/3yZ8fHSJ4S+e0y+uXw8JDr169z7969qG9OMpMcKKdOnQTg1q2bbG5ukOcZV69c4fFHH2U4HHD+/CNsb28xHA5IEoVOMu8FJcgaUyIyFtF85LjVKdMUyt9rheS3loJZcg45Q8zMis9Vt9dH6YTJdEY+7DkqpLEmvbRubeC9nz5lqMwvxpRWVpYnzqyWtJfZLdproV6b8r1/L2HsUrknSOKq9dcau8d5raHwQTv3q97zcIK21wtFwpAlpxSkSmMTUfXrB2+50e0XT2ovA7Bl+TFirrgoCvb39/nmN7/J008/zSc+8YnwW6UUm5ub/Pqv/1WuXbvGj370FxhTUVUlSeoc/NNEQ5YwX1TgQcAanzdYKZSqaQfZ+GK6Js7aNx47v9jhcNgAy36/T1EU7O3tBclZfhf7IItb3WKxoNvt0ul0WF9fD8UAJDvhbDZrJGxaJRXHcyqvY2+RZWAvTSI+JfWsK6ZbNgBcrnHr1i2+9rWvkSQJh4eHjMdjjKm4cOEJD9aGp5++BMDLP3mJj374I8wXc7733e/y6U9/kpOnTtDtPU+/1yPLM9LUuQQm2oKRKigevIOcYqmDN3Df2WSJsuTlZa1ItCJNnUeVMvXGrJRCaU3lZRoVfqkDtTHa2EQzZXdvn/Who6mU9ZuJN44mSUppiuAWOEgNz50r+f7VDPs++kEoBc9fXKffOd4S2l4jsS0m/ryeVNXaFmOw1n7+jTc0OtdMV60Ggu1BifBTUBYlZXF8uOhD6D3im1JBbRMLr/KcngO4Vd4DtVV9ie3m/W2ta9/PmyMGvclkwltvvcVkMqHX6zVU/G63y+NPPM7jjz/mIxRF0vYShFboRPg6kZ4kd3BsiFluvJMNRCRhcYuT76DOqhdzxPH3MQCKMVU2B8mZInwy1C5/4iHSBt9lUlQ8r8uk7Ta9Fkva3W73SK7leByTyYQ333yTvb09dnZ2uHHjOru7Tu0dDJyKvrW9BcDdu3dZW1+j1+1y/fp1b7Dsc+bMGbZPbNPv99DapTbV2iXPF1tMLXHLWOpsfUJPyH0Nn8scBHDG04Y2gG1D6/BHy4lE0u50eiidMJvNqYWj+KHx8yjX9RTCX//QnPR9Rp4sUfy1T55c+f1xnlhLP18q0Kno3/Zf/bvw2+iSSjmjpDGuNuhx7eEF7bi15kArp7bFu6hIKr80bRkFeR8eLjbA9Xq9kPTppZde8jREnbFvMXc5QM6dO9egiQRwY2lZmm7M0+q8JPK5GAIlh3asHQjvLl4fsXuceK8IEGdZRq/XCx4Y0+k00DoxR97uw5EpXaFRrQL4NpctHi8yp6+99hpvvvkmP/3pT5lMJo3fSei8BBdVleHqW1c5PDwIADqfzQDodHL6/R6bmxs89tij5Hnqj6mFDa0VyKZpY2A8ugaW2WSshRhM5djw13CF9XYNmS8rJ2iCUN7pYtFMZnPpaTh7vfH5T/zaMRgunDScX5+j1ftDTWoNj53u89ip5WlZ7/fcL6NH6rmMspHLWIFQGMHPlwppW8M26gUkt2EaU5J3EgbDDmvrdUWkZe2ho0faCd1jFja4pCnt6tUlFmudROmMKuYIUP2i25FHcNXOH4Ftt9tle3ub7e1tLl++zMsvv8y//+//+2xtbdLtaopFwcGB88v+9Kc/TZZlQWKNAbvmu2tVEaUwpnSLEtuYs5gvNsZVOZeCC+PxOHhUyLnyPA/lueJxCGAvFguGwyHdbpcsyxiPxxRFwc7OTgAFAeu4IPAq4+cqA2RMycRUj5Qek+t0Oh329va4efMmf/Znf0aapmHT+Z3f+Z1Gvu7JZMLNmzd5/vnnmU6nFEXBN7/5DZ595mk+/omPoxXs7jnJe2N9jRMntlxBAyoG/T5aO8nLUuGmPcH6HBY1/eBVR++qp8ChADHA1q3mu53BUakErQ1aufqNRjljpvP9Ntiq8sZNn1dEgvz8fA7XN5hMdrhzb5fKQqq8QZLarbasKqxQllphypIs0/x7X5zyf/3D/H0Ja8sSzf/utx6/73HxJr0KyGvhws2nZBKXvdSZ0pzPtY84cu+VRpHUXiW+JX4zLqsZo7V1Tp1ZJ2N2bD8fOtA+0mwTuJUTFV3q1mCU/EV28N1rArYiwfb7fXZ2dnjttdeYTCasr68BrtyUUBaPPvook8mkkasajkYAyvkBKiOFCmj8RposfnGDEwBu0yASBSibQ0wzCJctRster8d0Og2StlRCFz/tOJx+VVtmBxDQtrFkueT42F5w7949/uIv/oLBYECv12M2m/Fbv/VbjbGLpN3pdEL05BtvvMH+wX6g6YSP73Y7DAZ91tfXsfYJsjwLFJ21Bq1cHmxbRTx2ZCCOW1PSPkr9NaTlQIN4HFbRMVYEoJrWiORowNEjKM14Mmv0CIEy5bxLgq+hwm0KieLsVsqvbL3Et+99hMK8d0JSnip+90vn7ltqLG7L6Dr3eayt+X/93IhC4lgpmQWCgVIFnhugpoxEozKmoNNNGK31MLPaaL+sPXygLQ+avKW5dOMboiPp1O2wK5IkiU/pL0gAd/fVBgmnDSwxlSEBK0optra2OHPmDJPJhDfeeB2t4eSJE0FlF/c5WA68sQTa+H6JF8kyDSBoNt7DZJlrnEiqsStf7M4Xe47IuOIiwG0D0SpaJAbq9mftY+MxxdeI620++eST9Ho9lFK8/PLLjXB12WjW1tbQWrG+vsZjjz3Kiy/+AK0UZVlwx9d9BDhz5jSp56sFsH1vvBwX57SIiVBb/2tbEB5ehEwkK1tMEbr39YaMcNoN4d3PZZKgk5QkzSiKkixVJBFrK8Uf/DtCOLdy9/5DGzcpehf4wY0Bi+PLIr6jlqeaL3xk64GK+sZtmZ3GtSbtJPMVMfjYcBfq4KfGfbO1Rw5K5sfNSZIqev0Mu/EBo0cw3sdY67CQ25JUUK19MVJpSeIc3+2Rlf8LpEviLhzFSoAgdaZpyszzpEmS8OyzzzAcDjh9+hT/4n/5X/j0pz/FRz7yEZ5++ml6vR5VVYXj2zyunHeV1CHvl6mSMR0hwDsej9nwATzSsixjNBpx+/btEFUoUrWA+Ww2Yzwes7+/T5qmPqtd7wiVFYN227Ol3d/YgCmbQXsOZA7jzUG8Rra2tvjt3/5tsixjZ2eHb37zm0GTkA10NBpx4cIF0jTlwoULPPvsM3z96/8raaqZTSd8/etf4/DQhQZ++tOf8nlEFKPhwPlNKxdlqCICQel2frwlmkXgVWN6RDYskfZqPtYlLXJ5S7RP6h9+amK+36Ksz+jnT5vmPfLugE6nz3gyJetDnnUafTDWeahYbansAjQkSqFIGHa7/OYjO3QHI771qn1Xi/zmqeILH9ni7/3auZXHLFu3sgbaNUDj38gG54KGhBNRAYhd4kPRLlrXQHlKFqxRGFWRKE2aKnp9RT8boLc+aEUQInJpFdTWD7Yi0Q5U5AE1Ryy3vyTGyWAfWm5Ik/6Ll0Wappw9e4ZOJ0cp+K/+8X/J9raTvMW4J+AVUyEx+EmATgxqyxZ6m3YIXY4kbaFA2v2OU8FWVRU2H/F4mU6nzGYz5vM5o9EohHu3fcPbknN7PG1KpN3PZU36Li1N08DDX7p0CaUUV65cYTKZNCIplXIeOi43uebkyROcP3+eXq+L1orFYs6rr/4sFFC+cOFxRBLtdPOgMjcl61jC5uhny0ew4n2thzrwUXUVlta5FbrxPj6lTlPSNCfNOizmBVWng8qXdUODqpz/sadkEqvJswxlK/7mh0ueeuQE/+1X71FU9ueiK7V2HPbv/dojfO7D20dAM4xuyT1f5lHU/E3rWBVxIv6zJupY4tqbMcUU7qrjUNCJIssV/V5OVy+bxLo9fKCt6gQ1Dwq3TW5zWfXxWrV58Afm3W81h1a3ZYDrEtw7UJbgmieeeAKlFHfv3uXg4CAkNWq4iNVXCmBcc6uthdx4wFf3N+aMxcDYTnfZ6XQakY1Seise47Jsa6s2ibgdd8wqb5J4k5KNazab8eabbzbyjOzv77Ozs8PGxkYjWb6MaXt7mzTNmEwm3Lp1M2QfTJKEkydP0O2KT3lTiQr3pMEl0wKgmk91ty42QEJ7oajo/5ZaaHFqvvK8eUwqyvx5YLEub4YKhk73uU5TOt0e80VUM9O6R0U8RxqkjvI/tIZO3sECRTHn1z404JnzQ/7ff3ybN27NKCrLir10aVPKufU9dqrPP/qtx1kfHA98xwkb8tnRz5dgwrJNNdgCBIViW0TkQmlVdB/kebq/Vv/QgbYkhoLm8I/umvUN00pDIvktKh9yHB93hBnnQSb33WgNdT5S++U78XcWrwulIM8zX9DVRT+eO3uW3/u93+OHP/whL7zwAo899hiPP/4Yw+GA2nsmUpnx2ci0SPGaoqgaIKdafYxbW1qXB2QymaC1DoE20ra3t0PGvPl8znw+ZzKZBCCXCjSxoTIuIxZfMw50iV0CY56ynS9FgFmOE28W8cQ5ODjg1q1bfPOb3+TJJ5/kYx/7GNZaXnnlFV566SU+/OEPs7a2Fm10zp7wqU99kps3b4Qgpscff4yNjTW63YzPfe5XwubljOOVW1UKTFX6ddmkMup/W9z2UhpPsXqNxhyIRqmEJE1JEpdj23mp1MmetAfe0pRodNg8ygo6nQFbJ0+zc+cNRt0OW74ijyvx564hyq8IVNZarKnY2txkZ1qxu3uXc+cLtoZd/s+//Shv3FX8q+/d4gev7ZImikVhWOa6rJULTS8ry3NPrvHXPn6Cx0/1wYYkQ8c+pqs0M3FXjbWseO3HxsiwkdrWPZHgJ6Ww+Ko1SByA9rdQy7YJ1nm0NewJK9pDB9rRxrXMXnb0eBzQo3QU7NHaiVkmV78/wN3mjdsLTXjeGsCspxec6i05pD//+c/z4x//mNdff50bN25w7twZtB5575m2i5x/3JR412hcfuCmpH1ca3tegEv2NJ/PGyHt1lpGo1GQxMVdTpJCCb8tG5f0Ic6tEp+rncyq/eDFcxc/oDHgygYSlyXb29vj29/+Nr1ej0984hNYa3nrrbd4/fXXefTRR0PxBdkQRqMh/f4F9vf3eO2113jppZc5e/aET/aU8vTTl5r+4apWmq0vGgtRZGM9Cmopu3HXlhy7rLUlcQfcidZo7TjuOn2B+16jMNY6P/9I2awspHmH0WiDW2+8zGJRui3fmggwI0k7PJdOSBgOBtyb7jMeH2Ctj77VlgtnR/x7f2PIwazg9Rtjrtye8NOrB+yNC8rKkiaK9UHGpUcGPHq6zxNn+/Q7muZe9uBi+ioj/HHRsbZxjda/CpoFEOpc2wLS1qOzUhKx6oOcAHsfeujhBG1EDQa306+6gR54PT0VG6pqXlHdd+d7b1qtggZVzY9tGT8rr4Ubjpubhvo4l7sjWTovbflMJL54Xbe5v+br5WgugTHtMmZxv+P8220j46prrmrLDJPtvsdNgFo4dXkv0ZjT6bThyz4eT1gsnES+sbHRqM7jco3Ua1FC7zc3N+h0Ol6wiOZUmYakJp+rI2Atxy/5rP2lisOr7ZEjbONO+876BFJHtNIIDZsavA9SS1IqI8mPWkKO1l5yt4FdlDXltCKX+c5GNijrz9PPUz70+DofubDOX//MabeZhXkTqgcks+E7bas8ieLv2619dPDQCRSWzIL824R5iOkfdy/KwmKrEl1WbG2uLl3z8IE2BpTb2YTdDtUyIinBRv+T48SgB6CUoarcTmmtjX6gjt6x96r5y8nO7zvWOET7vJfOuyHjpi9c2vB7Bkqv8nc6HS5evBiK8bpTNrUK+b9LkaxRCZRJ4oI9ZIErt5nF6UvlWrIyYw2g0+kwn88bZb5iW8JsNmvkIXG1EWtXQOmnjC3my2UeBGSXUWGrNjj5jXh/jEYjer0eRVGwu7sbamteu3Yt5Dfpdru89tpr7O3tkuc5zz//PGtra+F6e3u7IQe21pqzZ8+yvb3NI49scfr0ySAQSHkBS1XTBtbft8ZtjkFpFTVS37dmiyG0RZ+I+KvE9dWCMhhbEm/fAtqJ17zq02h0mpN3+iwKw6I0lMaSqQTrhZ0kTVlY7+7pJCMXH5Gm6E6KwrKYTcAU6NRilaIoC4xNsJ5KCJV31JHlv3S8buORfq4G87bAEWtf7eNijVcpl5fFf1tfQ5mI37CADne43lh8OghUwB3QWKPZ3y1YHM6ppjPOP/IBSs0qy6xtxw3fqfq1n8IwfeK3LTfORaVBfWPaZ3zvRfAjtEhr1cYGQ1fiakaaHpWiBfjyPOfs2bNUVcnRqiZtSdvlZFbaqc9l6EIt5TS4vlbfhS6w1gXaTCaTENQjYC8S9WKx4PDwMHhoJEkSfLvbNEf7Gu25iOctlqKW0UzSf6FexHNlPp9z9+5dFosF4/GYu3fvUhRFcEu8du06h4dj0jTlySefbHDp47Ebh1Am29vbrK2NOHduM7jzNXY374ftgNugjmQNXAXSsfQdgTDxv/J6yVqNclq7+1B5eqQEEgeYgba1fi2o8DOrNInO0FmHorKUlaUykCnlOGiF0+gqb8S0FrRCo0mThDRPUNZSFDOwVeixqSr39GpvDzmyaa1C7geXpo5qiE2hYNlxyz2Q4u9twBhP0KFsbQPwo8OGiElwopEGq5mMKw52pswPDoAPEGjXk9xUU+oJbx8HbfK7vim1ulqf1iIGlfgq71uT66vYHc1SVY4Lns1moW6jSLZKKfb29kjTNFSoCRrEMU1oFUuTOjru+KUKe7TYoU7uVA/JBi2nHcxzv2u223Gq7qoHVSJIJefJ/v4+h4eH7Ozs0O12UcpV/REufjyeNKgSSYUr9Eq8YcRRqsrviAqwsUofNr0WDbGUEjmmKVXjwxFsO+4ErmMxNVgb4GtvkXBPwiT6d0qTpBnGQlGWdPNatY/DemT64ydTPIOKYoHKKpS29ZfRWZYNKnhTtRbdqmW9yhlBXrf/jjtHLSWLJN3qbpAQj867+0U0Jv9Ml0XFYl4wn68uPgwPI2hjAFc0U3Y77lNM1M2xmzwXYCBSk/u9tco9ZALux23271pTyzcY3+FOJ/ch3HWui+vXr4cscfP5nJ/+9KesjUaM1tb49re/zebmJufPn/fcsqeQvIQWHJFU0wag/AaVpgllpVt9WfF0qNpLIJZoxaC4v7/P+vp6wxuk2+2ysbHBrVu3GlGS7XB62axWSUfx5hIbKmPVFmh4iPT7fbrdLmVZsr+/zw9/+ENu3rzJ7du3+cIXvsBwOOSzn/1sqIrz0ksvRRuiK2D8gx/8gNlsxoULF8jzNKSIlTB2rTXFYkaa+YhPnJcGASBjN784AvLoulhOd6xqbTolOk9w37MuH0+SkGXWeWuYer1bb1jUWjtXPn9dY53nlU5yRmtblEZxb++A4cke4spWlaVnYDSWCvEFNJUhUSmDQY/NzRH3du6yRpfuoEOSdjBG+UP9c2ylP0uG13pbbyp25RS1gTk2hIuGt0wrk8RnStyrls6vfCdSdIJgklA23oRAZUqUSiFR7O9PuHNnj8nu7vJO+/YQZvmL01YeTRK/vMXpW+Msd201KJKM3msRWy2XMoWScDSCC3kW0H7zzTe5desW+/v7LBYL5yly8yYH+/v86Ec/YjQa8bGPfSxUUQlS7RIqqd1SnXgPg+OCU2pJbBltIQB8eHgYPpffS03FsiwbhtS4Ynp8vvbr+CGM5y3+PJbiBdAl1evGxgZra2uMx2N+8IMf8PWvf53vfOc7XLt2LfDWly5dAhSvvXaZoiiChD4ej/nxj3/MCy+8wI0bNxo8f1xouCjmPtNiq+iutRAqeYe7fMzdeJckhogkVkqT6IQk0ejEqfrSB5k/t8nW1zYWLBqlM/qjdSqr2D+cBC4aBZWp/GViCdnTJSh6vQ5royF7e7vMZ1OsKUNOoPpaR/uysj3gcxlrQ7IuxFAeg3a8loypaTSthOJYJk0rvzlF31s3dwrnoSNTb0zlIrhRHB5O2b13wM7O/rF9fwglbf//lmoovG+TFVkSjEGbDogXXOvmvB2B5x22tmQrobLSxNtCVHTxYtjf3w/Jlfb39+n1eiEPtXRaagw2xxBL2U31VhbgEUk88O34hbr8yZHjloUItzeoVcagVe+XHbvse3lI4+8PDg4Ch15VriSYFGmYzWYsFosQpDSdzphOp6ytrXkvk4rxeIxSKgC0zFFchzJsHpE7XL2q6vVaL7X2vMevVy28WM6sj4v/L9tqDYeeGvEdksjIZluevUSeFWssSZKiTAKqkhEdWTlBSw1fWJ+IK6GcFCF1cDi7in+tCIbblt2iOX4cj3zfjS+6UmxgVLVDwtGUvUdn4Oh71Xot4A0yL9JXJWtA1eM5jpqR9pCCtjqG61qy+OK74bmo2JPEJb6xtUBEtGACd/UuN+vl/2AUrYGx0+2glPNbns/nQbV/5ZVX+NVf/VW01nzjG98gTVOuvPkmP3n5ZT7/+c9z/vz5YBxLfG6WwDPGxkTlH/7WHLoFrXwxUvfQujSetl6j0fliaRdqt7/5fN4In5fjxMgnm9CqzH3LLP2xIbDtnQI0PEWstSHZU1mWfO1rX6MoCtI05ZFHHuGTn/wkly5d4vbt21y/fp3t7W0++clP8cQTF9jZuce1a9f41V/9Vaw13Lhxgx//+MecOHGC4XDI+fPnUYqQjhbqIg5Vp6SqfD6TyEEk2E8aICWgs2ptHQfYR2YsupGx9CpqfAJKkWhLmhqSxFVZj2MWwFKaClQSzpSmGbayzBYleXeAThWZKqmoS9VprfC+PyQqEfEc7cuQdfKMwaDHlatX2D4197SRy7uigw6oAkVijFA2cZrUGOwUykcaugRVTftITMk17UKxoOY0sX6/3zhWqbpYtAlUqfzeU1qSklXm1WqvHWuscQFU1nuZOC8UEyRvyfOf6OPp3IeQHqmB++he2+SwlrZIuo533F9Enm2hQmQRi5At+UQk5ank4nj11Vc5ffo0Wmu++93vYq0LAPnOd77Dpz71qRAEAjiqQy27/bFE1mxHpNcGhSMPxurxyAMioC1AGlNSsb/zsqjHWMqKv4uzAwo4y+fyEApfOZ/PQ+BMVVX8+Z//OV/5ylf41re+xXw+57nnnuNLX/oSX/jCF7h58yY3btxAKTh//lGU0ty4cYMLFy6wsbGJMYaXX36Zzc1NLl26xNmzZ8P9kMIIwoWaypV1q6oSa0xLKHs31tbyNS3k39EWgTYapTVpKvSIp2sE25VyKXmtCoJLkmRYq1gsSrJOn6wzIM37GDSVxZen8z+3oNGeBXKSvbWGPEsZ9LocHuxTFgtkg5HUydBcd3LP5V4WRRGqIy0WCxY+onY+n7OYz0PeGjluWZxAnM640+kwHA5ZX1+n12tm24tBu0kJ+ntnBaz9vFrPZ1tHpUjWQ2cjqEBZtLYhqEkpX8P2Pja4h1DSjvRMb8So7d8P3mIwalIlsVTqd/Z3r/vNPiBL2F8nAsk2fytpTmWRgveTxoG7uNHFfLEzMi5XtcUVstGf+2oVLXG78dvmAygg2pZ0RGJuS9jH0SHHXSuu/9j25pCHPU7Pe3BwgFIqUCTiURIH24hNodPp0Ol0ybIJeZ4fyT8iUZXy+9VG3Fi8kE2pheONKV02D4Ku8b/RD4MK7r9zHGD4LOZZg9ou11L1+WJlVcpiKaXJshytK1Kr6vMu6WXQ4GiuB8fvGqqqBFNhlQkgB1G+6qgtK/PmRdmgHUhOFRG64hw3sTAm38U2lFXRtEcHF9MicDSV83EaUN3SLKHTyTDdD1zCqDTIikZB7IvaOCx6sBst0B4Chq6KtgvldvyIMf4mHqeR/rzNq0sWsKUJhpm43xLooZRiOBzyiU98gq985StkWcZTTz3F5uYm62trjEYjP7RaSnEPpm1cT46J5yV+/F3FnwhMRUM8gjCuxdxxW8WUPCQ1x05IaXp4eBh8omNJOa6Q0+b/YpCP80aMx+OQ70R45rIs6ff7vPbaa1y+fJnnnnuOw8NDDg4O+JM/+RMuXrzIaDRiY2MjZBvc39/nzTevMh6PQ+DP6dOnsdYynY45ceJEKOIbS4LD4ZDZbMp0NsOYFJEiacy/DX/Hb07HLTaz4pjo3NTXdLdMN1EYUMqiE9CJQpcKhXb5SFBgtCvw7MF6Op2RaOgPhuTrOdrMScwcbeZYW/kgBzdeaxWmMqQ6RftSXG6YLh5iOBywWMzZ3d2lM+pgEoNVTgPQiZNEtXK1SxUCxEkDkN3oFdOZ4dXrh7xx85BXruyzOy6oKkuSKDZHOZ943XJmQ/PU+SHDXr3RxlWbYoCP11wdsNbeQhRN8G4CuZQ31Non21U+LYA1WKVRquTM2RFrnZRyvHnMfX4YQRuN9fH8qxmQYxZ/xFXLgqg9H8Tqfwy98i42pZ3frbjmxaAl7wWghsMhzz//PP/Zf/afce7cOX7v936Pzc1N1tbXGY1G4XcCKEkcdaeWYm74DvA8pAqUivDY9c+aPHhbE4h57SzLQm4RV62lPnY4HDKZTFgsFo3sfstSscYtBnDJxyK+6nmeN0qBucK5A+7evcurr77K3/gbf4PJZMLly5f5x//4H/O7v/u7PPnkk2xsbNDtuhwuBwcHvPnmG4zH4wDkp0+fZmNjA2trSfzw8BAJ2y7L0keCzljMZxjTA091KeEMwtwJaPtAG9V86O/fYg485q3bNoEItC3R8Q4Y0dbn1pb1pyHk8TaeS3Znmk7n9Hs5vdGQzfUczQKqGbPb17DVPOwFiXLBNqayJGniqrlUNYmpFQyGfYpizt7ePUbJ0IG2TlEqIU0hSTVZljrQ95t5nndI0yykHnjt2gH/09de589fvEmWaOZFRdXKNHVjZ8YrVw7oZAlFZfjsR07zd790kUuP1kAp4NzGiYZtyR4lX5vAfVRLdSlw8dSQDZ5EFg264vSZDfTWOiyOTz7y0IG2OLDdD1KXPfxtKTM+Vj4KRqP3ubU1g9jAJty28NUCIJKfWiTDuAVJ4W1qCooIhFdpGqpemKvGEvPO8efLypw9SDvu3kE9T7FbV1EUIXw9zkcuLl9CgQiVYowNZdzkwXaUSBrV0zzKv6OOCLTS69a/qwbXGNExBymaXifyk1ijUksu1yBDkP0ifGotZolsqVVNNSVJilYWqyqUCBfSL2vbV6iN1/56WZZCkoTfKnEt9a9jKVgoDK3dv7uHBf/PL7/Az67uUZSVD/JZDXyVsUzmLjjq6z+8zrdfvMWlRzf4j//hJzmx0WtkgVwymTIqoiFw/IO0+v7GQk+aalJS7rf8H0LQ1kG+MCGpZLPdDxRiLKo54wSRgLwwhKney+KS1oea11noBFgEZKqq4tq1a7z88ssAXLp0iV//9V9nf3+fP//zP+epp55i0O/z2c9+NkTwNdyllgBd2yuj3rBE64grAcXgpFoL2DauF58/z/NQ8Lcsy4ZUIwYh4eDlHO0qNHG6gfgzpVQjF/fGxgZFUfDGG2+E/CFlWfLss89y7949FosF3/72t4OP9oULF5hOp9y5c4eNjQ0uXrxIlmXs7e1x6tQpRqMhZVkG0Hf5wY+WU5N1UxQF1ljSNMHYyvnHVxWJUmDbOUa8f7PX5prr9EE2smU8eXv9N1Z39G99fu0lbZTCGsuiKKhMiSkgVTlp4uotbm9vkXdSut3M5/K1KJ2SdboU5RRTLQDjuG8FWZKCcec0ldsUNYokUWxvbZINT5P3t+n0TmKTHugEizOMaq1IE02iVUQ1pPzZCzf4L//wZcrSHJGqH6QZC/Oi4qXXd/gP/5M/5T/4ux/lr336/JHjjhjhlwok8eYowVIWfGpWYyusbccc6MDnKw1J5oosH9ceOtCu0M65H1WHCttSzB6B9oDlUrZ/Q7y4hduWGxdyT1un3LwXzVqoqrLhwZIkCdqr/QLaV65c4Y//+I8ZDAZ88pOf5Dd/8zf59re/zZe//GWMMXz+85/nc5/9bOCIa7qiok6G32xN67iH44jmiMPNw3EieIuE1j5HizcU7UCMpNIEsAW0YyoorsMY5+mOryHJp8Sl8OzZs+zu7nL58mW+//3vs7+/H+ZCQFvyZA+HQ5588klftOBWsA1Mp1Pu3bvHxYtP+oRSXWazhb9OQaeTt0C7Ng7HOU2s8aBtKrTRWK1bUCzry9xX2lqyYqJ/l71uNhU8h7yPdqBl8PSIM0xWBhZlQVEtsIVCpSmdzAHPye0T6FT5MmhzXH2yjKzTpZqnmBK8Ach7pmSYyrkTVpVBpXI9zYkTWwy2z9EZnUapEaRdrEowRjl6Rrn0S9q7oxpj+f/8Tz/hj/78TeZFtXSMb6dVxlItKv7zf/YjLl/b5z/47Y+u0Lhr99+42ej/7gnwCbJwVXusLf2fd2MM9KsXcUyF1q6ifXa888jDB9pO+mtKDu8EVtsGoab3AzEV+J612ibakmEjblYKBghADAYDut1uoAEyHxSyt7f3QB4YMRAuPb4tcSw9CcfOSyzNH0kjq2pVuJ6H+/c71gyqqmpUf7fWhrwsUr7s4OAg0EdxSlgJoZf5k1qaZVmSZVnwKplO557iqSPqlg1egNz5JUs+cOcZUWs6q+0v9TlX8FBuhMtmJLLBx9836bX4dRiBqn9VG3zrYyXDXZqmqARsCLt3PtIOifz7dheWKABKuTQJWZ6R5RmQQZKCSl26V0UgPcWP+7/8n19+1wA7bvOi4o/+/E2UVvwHf/ejrW+PW9iRBnMkPWv7r3UPlNCVYmg4fq0/dKDtnpGID/O+prXhrAlK7SCMldI3NaAkSSJUHaZ6dxdN+3qxK5IAmTGGmzdvsru7y8HBAU8++STWWr72ta9x6dIlNjc3+bf/7X+bc+fOceLkyZDuVMboDJFSGWX5dWX8y+atdouqqHwRU8fZ2vqJb50nfl1VFXmeY63l8PAweMBIy/OcTqfDwcFBqMwTz4eMQc4HBE55a2uLt956i6tXr/KTn/yE3/md32E6nfLqq69y8eJFdnZ2uHLlCt///vd56qmn+PSnP81TTz3F9vY2RVHwwx/+kG63y2AwwFrL2toa3W7X5xpJWSwKjDmsc1D4TWLZeNM0ZTqbkiaa/mBAVU5DEE+arsrk9wCb4gO31ZJ2fUnl1SMV4YnbWKrKMp/NUbmm2+nSSwd0k64r3ksMOp7qQeOiYpLAS2NkSVjKokJZRzNqralshfXBL1olUBlsUaJyv0mtsAH88bev8q/eA8CWNi8q/tU33+CJMyN+87OPR+vXUpbumsEguZKCAjd4969SInlLUzhnZK/haCgrS2nuHzzz0IF2VTlVzNXbUA0Qib0alhnJ2hLHsl0xeJQkFm0tvHeYHQwwcVVwvPp87do1rl27xu7uLs8++yy7u7v80R/9Eb1ej4sXL/Lxj3+c+XzOoN8PVIGM2xhDmiRh4bV9t8PoG9SHlwqpfVyNdyVQ/oFvLEnVTNrUvr5ItPv7+2xvbzfG3el0qKqKO3fuNFywhMcWCiHuo2Q37Pf73Lt3j5deeok/+IM/4JOf/CTGGH7yk5/wa7/2a9y5c4ednR2++tWv8vTTT/PFL34xbCRXr17l4OCAXq8XQHtjYyNcryicBD+Z1FSIeLZIObTYL1xrzcHhHsPhiOFwyL07NyiKwhndyIN4bW34nwO91n14sLZC2l4iZctLsc3UycJAWes51oqyrJjNDJ1eh26/y/baCXKdkkT56V3TzT+d1sCtXGlgyduRaPdcKq2pTIXVPo+H1lBV2GKB6up6PQndhsViuLs747/4Zz9mvngPHzwccP8X//xHfPLZU2yO6qyF8qxIHnv5i4Ls/ZG2VpBUCcqgGm6ZtS85OM+ssjQUytImzdrtoYuIDHRzwz9bGKcWYDfWeRPg6xRSR+PJZDHWh/sjbXTD3IWOGMuC/U/odvkg/MS9F264vpaqT4ADqclkgrWW4XBIr9fj8PAwJOo/ceKEq17uJdq2gn10WayWyOp5cL8MfWq4GDzQqUITrWFZHhIBvCO8OTWYrSp2IFz/dDplZ2cnRMPNZjM6nQ7dbpc8zzk8dPlCYn9slzVRBRcyOZ/k+BbwjnORO2qjPeB6g48jM2UsYhNpUiqxhrJkSpvLxH0Wrc76r163RzVzkV6bFwhfyzWsZNbDG54VSZK6KNI0JTmiJbhziteWkXO0NK/Ym0Yk+nq6XISkbXgUHU1k9v/4b39wrGfIu9mK0vCf/jffa3zWvNfLF/pKcla1j5IROuypKktVGsr7jO+hk7QXRUmGJtcKSV5kMd4o6R96ibSylhBgIBMaL6ZlXCC+MIDSKJ1SJc4XNPbGkKOXyPJHP42pMGKJ1lnJU52QJu42laXzPMiznN3dPe7e3eGZZ57h3LlHWF/f4K/+1V9nOp1x+/YdDg8OfKi6AuPMpbIRJFrRNKGuooSWQLv0VSvnMVDVeIAKXqf1dD4AFy0eJALkQi0IhSL0DhC4/DjLHhAqogulcerUKc6dOxe+39ra4tat2yRJwjPPPMupU9+i0+kxnxfcvXOH6zducOvWLT7+/MfZ2NgkSVKqas58PnPuZ0BZLrC2QmmZJ89Xe68aY6wP8fZangWlchQpptIYk2GMM645hwqZa08rNCTueHHECzS+Z6tUcxP9RgBW1HFVv1ausoq1rt+LwrCYl8yLElulboM70SEbOroqUfGdrZsCjE2oijnFfMHhvXvM9u6higO2R3kQPpKkXv9KgcFgSbA2cUbaao6ppiR2iiuKkGJJUb7fP72yz0+v7L0jL5F30ipj+emVXX52ZZdLj226zyqXYlWF++NmIBbt6jumsPg0wtbgov0cfQQKY40LWVcJ2A63rk+pphNSazl79sTKfj10kvasKN1ObF3sv7UKgwuLFSt0aNZV0ZAHDKiRTZnGn1WSUtOQAKnWdJKUNPVVlKlTbXrlJzyE7gGPHxjCcSI+KYgWgveQ0K7CR+5d/oqiYDqb08m73Llzl1u3bvGhD32YJ564wEc+8lF++7d/h8PDMdevX2dvb8/RGEphTQWmAuscIt3DU1u0kTwTraai/gZ4UA5flNY+p7Dz4XU4oLw/b1PDWOU7LW2xWDRyQggYd7vdI8ZKa20oEBwXUzh58iQnTpwIlMYjjzzCxYsXAz9+5swZrl59C1B88pOf4vwjj9LrDZhO5/zsZ5f59re/y8svvcIXvvhrnDhxKhRFmEwmTCdjprMxi2KGsSWJtp6jdMl+AvVjwBiFIgVSrE3RqgM2w5QJpsqpqoSqcnk5TNggU6AD5GBSJFcFMvPx5If1Y4ASx89V0R2K3ysUCYo0/GH9HymS0MYYS1EophPD7m7B7s4CU2YM+iPOnD3B1voGw97AURsx2xhrjSZhMbMc7s+5fv02167f4ubde1TUWJUmiR+ChcRitMUqVw6wqkpMOcNUY7BjsFOwc5Sp3CNoFf/8K5cpyveWFmm3oqz45199zY/XUlUFdUpdE9Z90xNdPHIEg1KwGcpmWJOAB+rSgCVBkaNMn6tvjPnJi3f58V/cOrZPD52kbaIw28bW125RukRoEyDLmgcgX3supi6aF2u/XtaWyeE2fCPvlapd9LAE/1atNWVRslgU9Ho9ut0uaZoGSVNc6RyFUYOD8upqzerE14zpl5rjjOXBuPe06JFYJjxy/BLjZN2FtveFa7HkHW8ANcXQ/E2e56SpC3KRKu6DwSDMX6/XY7FwOVlGoxHdbpdEJ5jKMJ1OOdg/oCgKtja3PBUi1/KZ7iyEohHet/ao0nSU7lAhcZBHrpiCsM0H3T34VTjDqmVkib9cpn7bFhUi61SHVSYsbLzBVhWUpfuzaJIkJe9koYa4cK2NbvkbL5pGVVbM5wtm8wW5LkLV8boPUVPCAyvw1Ig1FVj/F21Gh9OSb/7oBu+TkB2asfCtH91gPCvpd5pl/OIla/0Hziivoifc39eQX9t91lDtrQaVMJtWHB4uoPyAVa4pqhK7mNPv9ZxlGkfsy4KpjK2BV8VqjZdolkWUrWjOuylO4RrVloseYHXkCYxolBbnF3O2nU7eNG4lLpRXa80j5x9hOpvyrW99i+eee47t7W3yPOeZZ56h3++FsO3wiEeeINYe1TiW72wygiVAjCglimVLUa658pyRa990Og2bTszhO6BdhAxtcr4879Dv90PEopxPDICj0YiTJ0/y1FNPcefOHbrdLh/60IcwxtLp5D5rnyLLUrrdDmfOnGaxeIaiKMjzDFNVGCNzVNf4cx40LhxbeUrEdalJXzhAtxhrSFPn6jebTciyBKUNxh7l6huVa5bdiiAb2BVrVLVeu796TdV3Sbrs5rWkWBSIJtjv9+nkXfq9PlmeQ3R/280YQ1m5IKP5rKCYTynKil6vz/7diqqahvsS6Gxn7fRj8XpaSBxmqMqC6cE+SeI8LoyFyiZ8/6d3SBNFUa7ozHvY0lTzk9d3+MQzJ5cIafH7VTPl7tnRGpI+6x/Wp21dgFqgkuO1iYcOtOfFgtliwframrdlGzLlIhqtsRRVSap8RWjleKXQrIdwmdljRXX3rRiY3A2I0z5WgHh8yNFN3dJSg7ZIdbG0nHuPhKqqQNcRkWma8szTz2Ct5X/8H/9Hut0uzz77LGfPnuVXfuVXSNOE0XDgfJVNC7SNFNWNN4zVgE37CC/EBc8ApYixx4c1HX8uVecxliRLUlBXUrNKPhXxp57NZlhrfR6RNTY3149I8EKtbG5uorXmU5/6FN/73vfY2trib/2tv8Xu7h537tzm9ddfQ2nIOxmDYY8LF5/g7LkzwW+7rMQ7JLbwW5RyQUWVNXSSFKOieY3GrJUP+zYleZZgTMl44vJ0GDvHmNLfg3g91MURaONCrNFYC8an6g0Hx2uruYUaY9CJbK0+AZmX+GazOdPpjPHhhG63S6fTZTQakSY5SRq5WjZGR6Mv89mc/cMDDvYO0cqQKMPa2jpXioLFZIxONLbyoC1aoxJSzWKNwVCS5h2stRSLOeX8LnnPoHRJaRbMCvjxq7fec4+RVW2+qPjp1V0+/nSbZ45v1DFrXtnwp7WniwDlc4obKqwtMHYGeu4DiFa3h47TNtbt/tbTAgKMYbHE8xFU+yN6rkukHubaBw00DwnS+tHSZKtanf5yVYtBPE4QhWM2PEg6j5HhcMj169fZ398P6Vi3traCUS70c9W1/Li8Au0/O/qHtc4VLNAsQelujtnWY1smZbe9QOS3khOk/Zs41akYIK0lZDeU+ovxvCmlguvf5uZmSD4lFdGTJAmZ/5LEaUmDQZ+trS22t7eDW2EzL0pMNeA3wua4o0mNMNYBs/N5LkkSFdEu8YPu4wWopeg2SMYazQq9p1bBl2hONkh1BErEVIbKh+OL3SBNM/K8Q5amPnWD3K/Q03B9ay2VqUKK26IoMca64gjexS9cP7LdNIcQZza02MpQzOdURUFVFpRlQVkUvHL14H2nRqRVxvKjV+/e56jm/Vz2fZC0gcYdDWuhQqkKpT9g3iPGWiprGc+mdDsdZ6hFeTck7+ur6imug0eWTbVqvTuKtkHi1BrtK0nHUYUrm1qudkpkXp7nwj+AUmR5xt6dPe7evetqFJYuSu/Tn/40BwcHXL58mW63y8mTJ8jSlNJK/ccmQOIZtyY7eX9JO54RgSwt5w4Ek5y7Bqf7bWQyV3GCq5gi6XQ6Ie+2m5cO3W4n+v1yuSNNU9bW1lgsXLi5Uq4i/Xw+p9/v87GPfYytrS3m8xnz+cJzsg5cnU2keS/Fe00pTZIoic4OMxLUXosPVzcu10hZOi8Bbeh0c6rJ1FM90bzb9kMaeBf/VsDcc6Urp7RNVCmUT29qcbly3LqR5FmGJMkYDod0Oj06eTekO2246kVnlejQbq/L3v6ejzx1GmKqFUkCqAWdbg9TdBmPx3S1JlWJpyJVWEBKuXgKrbR39VMYU3KwP6G0OWlufVGdjP3JL4AXidrO/gygtZ5bNyJo1O3v/VZpbV0gvC1NK0t/kGPLimQp6NftoQPtEkNpDbuHB2xmmkznQa0FJ0kY41Qz+X8IwvFSdX0vWjflyNNS59eNw64DpSE8uZwn+qcd2SeAIHlFer2et0qDTjSdbpednR1++MMf8urPLvPoY49y+swZ/s7f+Tv88R//MdevXyfPc9bXRmjtq2BHraZpXNWapreIWvJKRrikWV9YQjsPF2sc9xgzS7EU3o4yjaViAUVx4xN/aMBLwYNQYED8p8WfGlRjo4xblmWcPn2a2WwWyn7duHGDyWTC+vo6n/70Z+j1uhweHoYEU9a6CjOSxCfunzEuLafWblMJHi0ybtn4lcXYgspUGFNQlAu0Vq5Cy6jLZLbLfD5vSOumcrlQEO5ZpPy2q4YCImmt6Z3jjbYGH2bu5ydJnZRtLEVRMp5MQ+qD4XCNPO8yGnXI0hytpRRa5IdtCTl8LO4ck8mEbq/Lrdu3Al3X7fWcZ5IyQMJgMEKZMTs7u5zcWCfJEioJxFJuE9QucTfKakxVopSLML596wbDBXR7CzoDRd5dizxtfjGtKOv0yHWL15xtvY69xbxB23ufWZ/iNohAynkjrW/26OWa9D70yEMH2o62tcyLBZWVGFpXs85FYkUy5oqF0KZCwrkJMlXjfglgxH7GqsH11rLKcXyvAIT4KUdfkCQJs/mcu3fv8sYbbzAYDjhx8iSPP/44s9mMvb099vf3fWL1yE1O1oVaVpw1BoVaSlPRd0d6a6PAn2js8Swt0yHamkdbG4k9QmQOBBBE85CQdmeclfM0K99I01qHHCwOiBXT6TTkZzl//pEA6JLUCWq+nzb1E11D6ySEMx+ZR3lA/Z8DIweEaZqg8BW448085O5Y3cJ6XSVQQOMe1hRJnbS/MoayrFgsCmazOf2+DVRTorMj4xQjGWLIACpjKLxAMJtN/Wbq0yxgXYEDpMhxxnw+DzTl0bmsCxpgXJi3NZU772yGTuZkPTfPiT5+ft7rlqVL1tkRobpFmx1pokG5+9g82tLppGhjyD5ooC35Dox1i2teFgwSkOBQpZOQeUzoA9cEkt/+4giPSgBvhTE+y6Bo2jGvIFeM3NiAUGAgBgvJO33n9m1m0yl5nvPoo4+yWCy4evUqV65c4fz585w7d47tra3Aya5qNoxxOSG0amyxhByEPm+IVChUBLbxOO/nQaL8hiQFC6TKjvy2nZZ21UMh9IoUTyjLkp2dHQaDgS9UYFlfX6csC7rdLrOZ0BTGUzmE18t5eYVCgmgk37JsbE6rMtZ4I2MJypJlmjTrgAKtLePxPta6vCta6yPRf83XMdXR/l4+b0t90nH32qIpi4KirKjKiqJwG0in00Up7V1Fs7DxNTw85KoGFpXzo68KxXy+oPCaiQB2LD1bnNDT7fapFn3G45tegKi1K+uv5ZQk94BoL1QoBf1+l8Viiko6rG9pFIaNYcbN3Trl7vvdtta6x3x7n+do2e2M3rpnCYbDLqaTkt7nfA8daOtEo4yiqEom8ymJhlE3Q1uF1T4aSbkwZGsM0Qb6QHB95NExAvxNjwgHAi79ae0zW989MQbV6Tsha1EtQhssFgveeOMN9vb26PcHfPzjH+c73/sub165Qr/f5/nnn2d7e4ssCr8GDz4eTHXiVORmaPGDbVDhaP9biwds8Imn5GF1QZISOBJL08sCbUSaljqKh4eHnDhxonGMpG2teXkVgUs9FMl4uLOzQ7/fZzab8cILL7C9vc25c+cwxnD27BmMcdGV+/t74Rpuk62w1njjW60Z1RXJnS+S9QKB1knY9qy2WFtSmZLFYoa1JVme0Ol16fX7FMWC+WLGzo6jE/qDHmlUaV5pC6qq6RHHs/jXskB98JYVF1KN5N52Ely9oVmjPMWhXHDQdMpiUWCtYjAY0e0O2NhISdPMUyJJWJ/GiFTrqRtTMh1PmM4mjA8XWFPfm16v6ykjkeadzqBJWFvbJGHGT6++zKPnzgRkckKV9bHuYbckzTSlcalXNzdHXHlrh0VhePzC01QYnj7X46dvjX8hxshEKz76pMuPc9RVs62wR5sn+OfFZyiUVNHyL2JzcvTIyZPrJFaR3IcKeuhAW2m36J0XSUVRlhiTRZKRSIsy+SqAW00NuHY08wHR/bD1s+3PIb92RslaggvHx3L9kRtTg1rTDdAB9+7urq8innLq9CnKouD27dvcvHmTU6dOcf78I4wPDyJJ+xhp+1gDYbPUr4v0bMK78v+rvUiimQ2b01FNYunVvBQtHgxtHlzczuLWLHjj5lXmaTabhQLHt2/fbmTsGw4HQUre398PPva1sdHW98yr9PUaUeE61thAs7m5UI4CsMbly7YlqVUkqabbzVHKUJSWw8MJ/X6fLPMVvQMC2ej/rUlGaK342BgYFEKvNPRG6wDfVZ9fMJ8vUEozHCiyLI+qGdWSfNP2KcIFFGXBfOZ4cEUSiiAEKTvwtrKhKvJOh6LTZTabuyru/l4fIQj9XDuNzT0z3W6HslhQ2ZTExyk8capLnmlm9ynF9V60Tp40ypE12jJGJArAa+hq9QNS/yu4oaDXy1xCrvsM8aED7URL1FldxLUoK3SWYZWuowMjibFu9+OkljQRMaPfOeCViD5XCPj+TERNFcQpWGOALcuS2WzGrZs3OXnSOfofHhxQlkXYHY5EFy657v1dE6OhHdvlKHFUgwe6z3mP2TQWi0WjMO+Ky/r767w9ul3npbBYLMJ5syzjzBnne72+vh5C5SVopr05ND1s/HWIps/fZ8HSOlrSAbWlQiknfVZGoRNFWS6YzsCaiiTRdHs5ee6SLjU3svhBlmx50oMjo6fOqUMAhxjIF4WjaCrjwDdLc5RyLnxZlpNo0QT9Ft2Q8PHeJQuqylAUC4pFgbHGp0XIGhtpzXnX1J6WKFCvKViL57VtyAEkww29Nk4I0grSxD031vg0CyRcPNOlqn4BYjZQloZnHnegXd+3ZpY+sRuFNxytSlQLRK0NWO6hVRwj34T20IF2J8sYT6beE2DBHJgkGVneQWtNUVWO3Va1q16gDWDJRMft6IxKAngFIcw3SURtTagqBbZy+TmsaIPNHN6xZ4cUpQWCV4NIz4vFgr29Pa69dY3nP/5xPvGJj/NP/rt/wmw2bVAtEKo/1ZKgcXnFtadxYre2VSNsjz4AXfS91s5lSyvzjqv4xAA2Ho+Dx8hyYLcBtBcLJ/11u13u3LkT5gCg1+vxsY99LCSbOjw8ZD4vwu8lKErcCcPZo+ozR+dAAF9jTOnd5koqU6A15HnK1vY6i8WURTFjvpiwKA7odHN6vS69zoAs7ZLovJHJzXmmON7X4Wec6jSecVlpKoAgVvkizQlY9/lk4oJm5ouCQX9IrzcgSVOyNCfLcnTi3ACNKcM9RLnSfFZZppOpLxoxpygWWDsHrM97ngbbC9Qh8FrV5fi0jvKb6NRVhTGGLJEamlI+rgISNApTVShlSbSi381RlFTVHFPOUUlGv6N57uKQ7/3s4IGA7d1qWsHnPnqWYS9bmm4hbHgoXHKuVZgRa0fW44ZQI27ejNij7zO+hw60k8hdyZiKsipZFKXLgeDBy5skay+PBwab9owu/13su20tVKo69kbE4FR7R9SFbwVURNK+eesmJ044rvbw4MC799WSNjhu/z1rSvrtKRJVf+h8Ue9/ira0LRRFHOhxzK+BmscGnOquVChuLJXejTEsFgv29/ejXMj19WKOUu5u2Jpsrc47Scj6zR4P+ALapf8qpdfroHSFsQvGkwWVmZNmijTtkScdEp2hSCmKRW1aoHY9VSqhkVZYDLtHJxDjNxF3TH2/F0XJdDZnNp3T741I05xut0uW5RHIHOVi3f1wBsuZp0Nc0YaKJNXkaeIAOSwAP3+eWtG+v0olWOU3ApUEQeXIRSMhX5wCtIbMCz3WVLgoYwf0v/HxLf7i8iGL8v1D7SxN+O2/+mTd5dheFFqDIFza6mckSpvROkC0n/u1hw6000TTyTNPGfj8CMYFFSjtVDdLhfgRx5PUoJz8B01eO5rV+wBTTZHYIx4ddV4LsZgrV/CjZYCUYJM8z9nY2OD27dtYazl//jx5nrNYLOj1eg1JMV5MKnphjQ1jrkdz9OCQetVGS0u1J6kx0ABk8SFCPR1HhbSpCaVUqECz7FgHlBVl6XJmzOdzL6057UZymcTUWFWZYOgNUXdWeHA5dz2Wmupp0icyB8ZZIim9X3GaJWRKB3CZTMdY677L8wyUppPnLk2ubvqoxxut7LGx+m1xkr887y6NsMylFK1WVJVxBlCJhFeaPO+gVEKaZiRJGgyp8V2KvYHKsmhUqXdrVApwxPRR8wERkUfWs8vPIsFICd1e33lxLRZ004wQgBU9e8prDjW/a+nkKZSK6XRMdzhAKXjiVIfHTvV47caEJUvkXW9aw6VH13nykfUl364CgOWSdv34R+srPFdOC5+MFxQqJVeKjbXV0PzQgXavk7M+HFAsFm4hlhXTecFkvsAqRS9P3YOgnAuXqQzOOarZVsnTxxMmHoSsVAZ3qTohluo8paISlCYAs/i6CtDFRW8HgwFPPfUUN2/exFrLF7/4RQaDAePxmO3t7ZCvBPx1cWqdAFCESYDnvZeO5j5ji3aB+DsXkKGDZmG9mt/YIKJNa5nPtmw8h4eHDIfDo32x1hvVphwc7jE+nIBSQbNyybVcwQIpsiu8d1lWVJUhTRNcSHmF1v5eWNXYPLTPfyw9NLZCDEXWurDvsiqpSseld7od+v0Ok+mYophx+/ZNRqM+SaoYDvt0Ou7epqkm1dbzlrKRO+SpqookFQk+qgQU6BuJbFThN1qnDuyMYVHMubdz6Ko2KUUn7zEarpFmOWlSA7fLMihIKTSGW5fj8dhRKvM5VeU8ZtIkdUZHNUdpoTRqWk0r5TIAetQW6qasDNoqkjRne/sU4+kcrWDUH6C8f4n2aWGV0iRKUxnjuHCgwrC2NmA8Lbl79xZn+xskSYaymn/0m+f4v/03r7J4H9xIskTzH//DTy79Lt7wXGu7o9bz7O658hqUR5pG+TG3ld28MUZXKb0s55Fzq6H5ocs9kqUJvU5OGhnziqpiUVaUrqAhkg4y+BT/HPd/lRTpgKjOZNeUVNyfPKTt4wSgxJsiz3NOnDhBt+t8RS9evEin02E+nzMcDlvRmE1PlialU0f4vZMxNzIiNgfbnIcIsB/E6CmgrZTyoLGcHnEAVTAej9k/2GM6mUQ5M9KQAdGVBit83u1FCJ5RURJ/E9kxJJVv7b/e3GxCJJs1VKakLBeUVYHSlixL6Q+65HkKWA4P9ylLR310ujnDQZ9ut0PqNQEpqBAni2pqFvW9CRu9TGpMayiNUg6Iy7JiPJ4yHk+YTKY4X+wew+GIPO84wFPe08PnJgmbqnIb8Hw+Zzqdcng4Zjab+c3CbYI6SQKP3XB5a2hZKrx3fLvbFPqDIYvCBfP40dFYj+E5FPc3JxL0Ohl5ljCZHGBNFcSEzWHG733pDHn6ABzcz9GyVPF7f+URttd7jc9Xa47ttVM/5zZ6q1rf2+j7g/05u7sLDvaPD9l/6CRtD8ekiSbxIGmsK8hZVhXGOqlaHgRPU0aKnmvBtTqWMG1EKNjGP0f64F6oYGgQMImpAHeIaoBWnIdDQrfl2LW1NU6fPk2WZezu7jKZTML72L3OxfTUSXjaremr3foOT9q0ByrjUt61K6h4KhqTdvRBdP1Yql4lecffyzxJXUt5P5lMKMuS0kc3Os2kTsov/7ZpqHCnVV36q9kPTzu056keXqBlrDWehskpywKlLJUpWCzmKJwk3+t1yTKvOflgoHplRWBH6xZ4qT/eMGROm46orq9lWXljqMslkmU5aWproA0buaqpr2jNWlNTIvIXR6LG1wxpHkKfY+Cp3x8JRtKavNNlvzQUSVE/X+21Z6MM1BZcYFJGmlYcHs48BeapSQWfe3aTt+7M+caL994TfjtLFZ+5NOILHznhu9u8J8vbfTaRaGNTyobnTDyBAObzBWZhSO3xsvRDB9opilQpenmOqUoWtqKwhsPZFDT0ex0y66MPVW2BF0K7TQmsWhIhJbBadiPrc4rEnabOkyT2cJDXAk4CUK54rAPkfr8fFvnFixdZX19nNBrx4x//mBs3bvDFL36R0WhIVZU4adAG4E7S2kMi9Mxad1xLoox67sa35FOJq7CRi6MC0MpXstHYypV2a9ibWsDdDrSJ3ydJwmKxCF4kwnPfunXLbzYOWPr9PrVbJT7fRrPmpFPzbTiv2zQhSdIIwK33JKmjZOv+SpHbkkVROM+Gfo9ev8uiWLCYz5jNDqjKMd1eh+Ggw2h4iixPSFJNmiYh0g/r+PA6r0lTGzHWRQhqCSf3XdBJSg1YjiZxHiJTJpNZyHGzNlojSZw7Xp7nLueIsQ3DYRBUsJiqYm9vP9TQrCqDMQ4stUrc/Qw2CR1WS5w2oBa4IylcDP0qIUk7rK9v8+bllymLCqMMqdI+etbn/PHnSHSCsRW2MigNa6MBRWV5/eoVKl/mTUqnaa34e792FhR848fvPnCXpeVgUvLmrQmPPrrkGbEPpp7Xgp/XKRT+/vvKR8GI64Ka7u3sUU41i94CWF1u7KEDbZfNADpZymKeUGpDZWBeFGRFSmVtGHSccSyWHqyASf1l+C5uy2HvaFPKJcdxxp26qrj7rilpizFosViEIrTSTp06xfb2NhIcsru7y6VLlzywVLWVPtAfNQgd2ViO6Xhz1HbJq9axWjvEUS6bnLfzLeWu26/bErAU5hUjq1BFe3t7LnoyT+j1crKsE2wE4Xy2ec147OIO6eZZJHTXUZG0j/pO1xRWWS5QWUKWJwyHPeZzTVFMKWYzikVFr+cKMvR6XYw3RIqffvOcgUVoCJx1oEsrx4VKcFVcRAp1a2c+X/i8KU4j29zs08k7IUufLAMVBIT4Wk4LmUymTKcugZSE1ic6qamUqB8CzE1DdkwruXmyXmq2SpPolE5/6FK2lguhvl0zFtAoK/ESbpzWc969boc8nzMZHzqBxLsKilyqPHCfO9Hly1+5QVmZd804aYEfvTnhJ2+9wh9+6w7/8T/8JCc2ekcPepBzyXjlngt4C+FjJfMfTA4nzCcKbY6XtB86TlsetERrb7GvpQzHdZbBWOZmUmPDooOG6qegHXKK/6itIDaaAIIAM7XELf2RxR9z2VBLisFPeYk6VlUVg8GAzc2NBjeqaPp/xw/qUrXuSOLsenBWWf9Ho1JSeN8YqyzGeFbssq7ft8Wc/mw2C0bFMFeRVNdoS+iWeNwCJstU+dpALFSI8YbMupJ6nmfoxKUOXSxcIYMkUWR5Sp5njqpp2KJUBMzyoi0ARHqNjdafrfNzyJHGWAqf7KlYuFSyIfd1ljftJuFazetVlbMJzOfzwFvLvNa/XbrkojmL+i2UTvv4oEW4CdFJitKJpye9r7OqwV4EjLrX9XMjKQZM8KJxRyhPv3z+I9v8X/43l7hwtk+eqne05paPFRal5aXXd/gP/5M/5Y/+/M3mmpEONj85MhHxGNumJNs81H+yvF5r3B5CSduSKk2306EoFpTGMK5c6tBFWbI/PqS7tk7muUGVpGB9CSjqpS75AurMItLUkTXaVveVUo2AHcexK5zhqDaCOW42bURBTqdTjDFsbW05PttdALyBp6oqptMpFy48wSOPnAucq4BSohVY6ypd29ZDKSNQevlmE48p+n/zs+Z79/Dg3FVcmfrGQ9dYpJHEv4zTttYGSXs6nbK/v8/2tsv5IGp/mmr/IIt9QAzODky0j/aTcQoglqVx4EGzvqRI+rUfcUVRFs7DSFs63YxuJ2ct7zGeHDCfT1jMx3R7XbqdlH5/RKI1WZr4gsmSJVCaQrmk0IAk1HIPpwmVjgiBFZJhsN4l3XdlaTk8HFMUFaZyNMpwuE6SJM7LI8tcvhGRiLVqZKu01oashovFwufBdvRcp9NpAHe81l1zXifWGp/lyc2VsQLwOgCxEyJ8sA8plU3o9IaoypWVy3o5mc5IlM+d4gFb+Oo6bsKgtaWbp5TFjLKYk3a6ztFRxSH7lo1hxn/09y5y5caUP33hNi/8bP9dy1FSGUu1qPjP/9lfcPmtXf72506G6x6F4OXAHdMgjuap89jU2e0tqMrvSR+wcmNud4Zcp2RpSpaWMHceAEVVMZnOMKN1T4FYr5ZJ8ds2QENsnnSCdwuy2wwK9cKT3BJKKxfsosBa3QD3Np89n89JkoTRaHQk74b4H89mM06fPk2eZ7WA6f9NlHbXVjUQxZI8dkmH32mrd4GGpEZ4mG2tBkZjOHKaiOeWXORFUbC7u0uv1wsVbNI0JUk1Spng3RA0qfD7OKGUA0xjDaaqSD0/7IJhmvU4fe/c95ULmtEauiql08kYjvosignjwwnz2YQ03aDfG9LruxJprkq3DeullvhkTSW4qve1RhPXFBXQdtgV5WK21hkNK8tkMmM6dVL22miDXrdPp9Nx7nwePKOb0hCZrSXYCqbTKbPZjMFgENLdHqHQYi0NH1YexH9bnzROjSvjtuKiaDBGkeddjKf8yty5+KUqcwdbT7PI9ZVs9Q6WszShLFwFm7RTUwyo2qNe/v/o6S6jXkaiwbzLlcnmi4o/+vMrTGdT/vZnY+Bua09t8a6uyUmg4LxYGAGL0yKsWyMfNNCWm62V8vRIgtIVthIV1FJWFVWiMZoQ0k6QgOJT2eY9qRk1EI5xFcEUPzutL9reI+5SNrj4HXUTdM1EuaGlvJmLGrN1fwI1sTywxal14tGwTDKoH4MjnGuDz5SDos1OSYRpLGPHW150riWv43PExkNjTJ1f3C/649yuVMMQen+RSyqu47UrR3WkaHHzq0qqskApV+TVZGmQ+GtunJpeaKj9qjEbUN+XmMZSQovYeim6TJSWojJUZYULlnFufkmSev7aFU9YtRU7esmGoBl37dZGTn1rVdz1xj2vJduj97S5LrRofzjAT7OcyiTMFwug69aIsm4P879uSMZ+wrR27q6lLzvm9JhaezVRP5SCb7y4wzde3KF4j0pJzouKr/7gNifXEj711Fr0TWw3qtdnDdaNF34Jy1rFCz0uJW2mLP1+h+PaQwfa1rgUl4lO6HRySmtJZpXPwuZ4wcPJBEyXpJd7jlRj0SQi3MSSBG4DqCUkoT/kuNVSayi+6lel0wJcFfAYqwSYZrMZeZ6HhP9tTnsymbC3t8dw2Ece/qqsvSVio568D/PS3pDCZtKWDh40qD8yAvprhYhE0/bCuL9kLyAmuUCyLGM0GgUf636/770cHAWiVeoFUdkwkiN8prXWURDWpaYN0q01gQaTCuDOlmDI84TBoOeONyWz+YTptKCqpiSpy3mshh16/R5ZnqCUObLBRbPSHLvVEPHkcq9MpXxsvcZa57nhkjUVjCdzytIZ2Tp5n34vIUlSssxx2UonYBPApQFuCwEHBwdMpzPHhRcFgJeuvXeLjtZ2G4zDhuTS1Srl0xqHAdU5UpzQbHwkraIyTijIkpy19U3G+wtu37nB6e01p3V6Cbu2M9RgrP37NE3Y3t7kYH8PdJf1zXOUxoB2hv2qLAOLtHtQ8OU/u/6eh7gvSsMffO0GT57pcnIjdyyQEtpD5kQmr4549mp6AHNrQJGGDVSnmosXz0Ol6GXZskuH9vCBtnerSrQizzIKY0mSObaS9J2G6WxOqjW9bk7mdzyr6kkWaV24NqfqRSAt4G7i5Xa0NaXBGlhdQimx8IvLjwkZ7vJOhyQ9emvm8zmHhwesrY3cQ2Kc2h+uJTRDkJpUCzzrPsn4LEGBO9LX48BWJFMRxmLQNkFyjc93PHDHEracK8uywPEPh8PAw0ISuGzpqo5yQNfqp/UGLOVTqVoRYf115JjSJ0ayZFmHbq9DnqVYs2A63WNeFBQLy8bmGt1uh04nI0sT79pocQVZW9REWwq1OEnav9eJQle1Z4epPD/vo+asdVrV4XhMWVoUmsH2Or3ewJdb03VZMRtTQnJ/3NjH4zEHB4fMZnPEVdKlhn07j75IhSLbylr22fwaGpj7zojVLU3pD9dYzHe5/taee3y0gsoGramxNkSYsA6019ZG3H1zhyQforTCFh60lUTfut/81//qCuX7lGy7rAz/5F9f5z/67aeoEcB5vdSStm5I2iJ/1VoUuMhQ0Mr59J975BSpSsjv4x7y0HmP2HpG/C6mGgEqUEu2lTHULGPrQbPxp/XrtsT6IMskoumIvSwCnWCjbGne66W1lIMXhfKqFLbl7gZLCY/lXiPRyyN4bZcd1vgssokvGWtTOwi/WUpn1HOwqsVct3TPWvlNrEmo8L2ct47co54zZK5dEQxrDUorktSXA5PN0Lj51okmTVyKgSSpXTPrjZHmNeK+h4258WE09sZEYC1UlavD6IJnnFbhrp0SajgqvWTOvN7gA5OKovA5RGp3SqHU4nl3t8v6v7g7NvzVA1x+j5RPrKWkG2Gfcm+0dyM0xtXaFKANRIs6yiLImnFFPSR5Wq0Bi0+4MYbXr4958+b7k48EnP3hyp0Zb96ahOchbsGmHX8WvZaxqUhwc5qFDn/HtYdO0sZYDFUw8qRpwsZwxM6icGlZtWZRVswWBdPZgqyfkmqNVorKFm7xNQBbBS1Rgk6NuGStWMRtyTYGEAFtkQxdUIMJ/tmj0Yi804lPhjGG3d1dqqpyBX/xtQyVC982kinoASTkaKLqw1slCgPIRgJy20gliw4BXVNL3PLvMqPj/Vq8icV0SZ7nkSse1L7W0Yi8pCUGXGOqwDtrhTNAGoOlolg4jlppRaeTMRh03Roo50ynh8xmljSF4bCP1qATS56npJmjFIwvTbZyrpcO3RuWbeU3C+/pgQtJN0YxmcxYLFzIt9Ka4WCIUhlaZ3Q6fR98E0u3woOrYMB1HiIuqZbL0peQJG7d1HRIWws8qhUGfUyyHar4O/leNAwvYYYjapogy3ukWYeiMsyLBd2qQ0d3Gjy/G4cNG6tSiixJGQ4yqqqgLOaYsgSbYquKyi5YFAWVrfjT796ieJ9zbZeV5X/9i7tcPD/CUUfRNOBS0VqtRdLzSp4rSUeSokmo8EUzlIu4zTuQKUjuM5SHDrRdMVV8UihIk4TRoMv+7i4VTq0qq4p5UTBdFPR7Fo3LCWErx6cJYMl9UOHcIGq3bUkey/jjhrEpqE01cDtQqusbVpWrH5hHnJaouQf7+2it6HYdoFvjPETSLIPKvv1c1gHknbtWO2w5mCpXPM8htDmAdwTax9Iq9+9nTOnIvwLaLspRwKI5nLjAgfIA43J9gysa68vMWUNRzhFj5yDvMRj0SRLN+KBkf38PYyo63Yy1tS3yPCVJXWSkt/t5ye94LaHZQXyfxU3EeFuJ+1yplKoyzKYLDg4OSNKEbr/L2toWadolSTqo8Lg2N1BrxWumzrk+ny8oipJOp+NdJTPANiJGH6zTAqirjmmgVfNzT2GlWReddiiNZV64zIsq8dqsloWjqauUuyjMNEnoZznWZ3Z0OUhcceGycikNDmYLXnrz8Jj+vTfNWvjha3vMFiW9jgQeiWBXb0Boca/1tJEx6NTZL6gspnLGVWsMeccBsr6PxvDQ0SOidMXcdO1J4g0m1roydca4eobhVw9+BSBETi49ZtUqss2NQCQM8VGuPTAiQXhJbu1Ga6vlEd0CsSp8RH8/So+s6POy920Kx11L/vdgrS2RrwLBuOhu08B59Pg4UjLoR7bpnx2SN3lwD9F8qqYSHB1S0wpHNyQVbVRLR7fk/dE+G2sxPowcz4dq7/lUexLppb+1ELxDJMnYMjuG9LP5y2U3dsnnnsMIHPIRSTyGd/+9imkDNyYxvlZeWwoq7DEaYli31o3RmrqPOkm4drf4hVVqTxPFa9cnoZ+hzxDmrPVps9mWPPSAAPQQStreQltVYRdPMAx6XbSC2XQGyuWBWFQVs7L0Gp6jSBKlvS+2VKSx0ZryUofoQkrxtrz4A6eqIPF2cwWLxZyydGWxMh8J6YI7dIgMBKf2Z1nmU78q79Nc+q69XTqiXlBJnCUQHaQ3lKOKGmcNO1ZM3BnXJyDV2gU/eH/rmHte1b9Vbn9AsEdMJxPSJEGhMc4BpLXilaueoqyvguIKsirlpJiyKiiKubNxZClr64MQaVdWM8aT0s0pFcNRD62VT6vqc9TYSAVG6JkYhGNQXb6ZOIk6QdwkhYOdThZePtMkOmNza9vlLslSnzukmY89aH7GGcXmswWTyR5FuWhkPUySNAgCS2Z9xfv2sQKSqvHP0dP54/zYlC98XJrCjSvNGY42mM0LprM5vbRHolKspxKU+Nf7dSfXUkC3k4M17OzcYbCWo7MeSZox6vW5Oz6keB+LIsRtURjeuDnmw48PZBJoiGP+Aa+FJtl88c+YQYzuSmkWc0DfH5QfPtD20rXzrtdIIYJBr4PCMp86AKysZVFVzKsSXbmaflkwotX83DJpyQYuIDo87sMqcCICOu924UB7gTGWtbU17xlASH4vwTTgQTtNMZUJBrGyKsPrtwPasYTtkhr50frcFtI/P6DlJwkblmxwikQpKq1RUdXuVWxJ7J4Wv49BRvjp2WwasvoZIzxrPPWioVQhK1yWuQCPylYsFnMWxZwsS8hUwmjUpywL5osFs9mE+XyKUjAadBkMeiE8vQ4rbopFtdS97I/ljAFuA3D5RIowrdPZ3AX/pDmDwZCNjRE6ES0gJeQNkNvhXxoDVekCsnbu7VBVJUopT4ekLMsXcv/W5sP8p/KxtUu+tq1/Ja+7oqoKEjRJ2mE4WmM+L5hlc4puReqCkV39SaXqcRKtOwudvMO8sOze2yHvbZMnLvXycDjk8o3pL6RCO7jl/9Orh/yNz5wK3W30PxI+3Mpo0qXWGlSiA6AvFo410cmRSzXaQwfa8iRYa0Pch7LW5yJRiJeUqMRCkVhrsboV/yiILOkTI9W/Kfe0kw29/S4HekQ+82MQvlvUZFaq4vXYg4hCewNpK2ti8V8lPsW/bKnl9ujjHXKfHPltPaa320Q1ljmore3+zG0pHfneNv5ViojmqHsjXhN1Cl13XBIFn8SXaGzkKnqvmkcINxsN5Mi/JkREKv+A+3qbOiEJa9FvqLLfh38NVWV9sWITqJ+2d4i05nf3mfQHbYo6NQ9g29MQZBQFSpOmzqhYVfdz81DyKyzOLlXZmirSifOwShLN7sHiXRrMO2t7Yyn1t0JICXjhx6TqRFH4b6Qt5gVog840wWi9pD10oF1VtYEn1Yn3GjDkSYLJcrp5h0XlgLooC6azGUmiyfOMFCeBY60PGXBBBRaXu8R4asRAED3UUdwIUu8ytV/c+jxHE4BFWuAGlaLy1Mjh4SFroyF5mqKsdSlQresXhD3ogVuk8CLVsqWr8kCFvBBhrwr1sGgRJv48/o0hqHxHr9r6xNoVx9bA7IJ1DNPplNFoRFXhg5CWjYrQYWsNs9kClPOyyTspvUEWAPtg/55LL6AV/V4HpTpopeh0pZiCQgofuPkQKbpNIyyRspc24RZkUpMwjk7eJe+MSNOMLM0i/lo0Pu1qLgKmMpRVxXQ6ZjGXfNqlj5RMjsxnrM3Ua6+55h6khX1decpw2bxT39Oa/3ZPUpp2GI22uHt9h07ixiheIjqRijyi3Un6A1fwd2trE5v06K6dYbS+RZL30VmPTp5TvV9+fitaWUmsgo+9aHJ2bt4NPuAMXM4R9wTpxGfn1BpFwk9feZ1c55zYWOPcuQ9QalZrKgeuWLLMga8yFWmeY/OMXidnPJ9RlRVVaZnOZuSdnMoqjFKUxucVBqzPI2yNM1yK8FQveRsW3zKAhqaEI5+H8Gwr+a+j3whtojWlz8Z2eHjImVMnA9cdAlhWVDxZih0xM6NqOFA6wVRVWGzOF9y7SISNSfnIUbGMi4shtUISXXq54XN159o0ibwW7aO0lslkwokTJygKQ1keRueJ5l3SdyrrI0wnKO1c9Xr9AYNhl6pyJct2790LqVT7vRFpljpjdWK8XzGAT4mKorbZy91vRr6tnPDmQAnYlGhm0wVra9Dp9Bitu5JaYf7DOZyngfK2BmMMi3nB3t4+s6krDaaUpttLgyYhni0yt7EnjqQDMOb46ihLm2q/aGz/EXUS+8gngMutPVrb4s1X53SzPKx15QNlyrK2zYS58v3c2twgG2wyPPEoOl1H6Q4kHZROSd/LAtYP0MSlWnnhp/YDdpKQA21xfFDOm8S6JylJ3KZkbYpSCa+88jod3WNx7hH4zAcKtG3NvdGUgTR1cIR4IZhAkRicSuKOrhNFOsNhUFUj0brxWDY04aP88lLO+T7CTsNr5Agt8zbOFfNsdY+WMJERtAbRqk2viBTUvmCTMDqOR20Dyf2a3Kva512uF7uiyfl87T0l99+GjSV4UbgDw11OEhXUbdmvVvSkMc5GsuRVh6/crOqUA9oH7+iQICyqDCSX8pu7WxN1tRkXgNOMJq3niMbv33Hzz5ME2oTiz/XZj/yk7r17jpywknoj8v1SJTTnKkmdLSfPUiee6sSH/b8Nl8v3qM2LWhNrMB7Rvhs/RkELX7J0FvMFqJTFfZKnPHSgXRbOENXt9XwVFUOmE2/YM3SylDzzmd+wIbPe4XhMNhrR0YlL71ksqKzPbKuUkxjCIjG1hBlKRD3oQ6F8wQKvIkUUixXqAzBlyXg8xlrD+mgEEDjuUA5KOWk5XhD+Ek0IXbKuxV2xstZvRO7zJMkQflWMJUY2wngUkYElblp7L2+77IFa/oAto5dEYpTZTdOUoigoS+tdvKzXpkWFEIPjjDR17nobGyMMLoH+fDFFTyp/vGW0NqST5+Sd3NdBVFHCumX3MhBXoc+qwQs9SIsDchQSxdntdgP/4LSc+prGlwUry4rZbE6xKCl8PpY0S/1vIltIw6h7tErQskr392/R/T+iPcm8NOfHH+zGYBVKpWR5H61zjNUsitIZiq1CK5dlsy5G7fupXHFhZRUaC2UBee2ge2d3wvU743cwnnev7U9KvvHiDr/6sVOR1mxrbTXetEXrlpziWG9n83SSccUjqI6H5YcPtEuXJL7b6WJLJ3FluXbRkNbSyTO6WYbxD3lZGaazGZUxjPoDOpnLLVyVFaWtfE0AZ8T04lqwpGtNrUE/QJMHpzJVkH7renwekH2azLIsOTg4IE00G+suo1jD4BRoCxXcvEJFnAaOODCIozflpbH4IKTI5S/NkIddKTCVpfK1sARvtB9LW9JSSjmeGI22Ur07SmDlDjoyL5KXWbSJhheJl5AFtKvKqZUONW3QFyyGqiqYzSZ0uylp1mFza42yXDCbT9nb28VWc9LMSWwbG2u+SroLEY+Nk3ES+pq6kXmKwVA15q5uK0BfDI/+PJI+tNvrOwC31rktelCy1knSi8WC2WzO7u6+SxCGo41cOTNxIyxavLXrZ7suqZQn0w/s26xY6czvN0DV2HXrtVPPhELrjCwboJMOxmrmi5KuzxdvrA6aReinqcC65GrKKLQ1UC48aDt67j/9b7/382kQ70IzFr781Rt89MImo14aaao6bGk25IbxVauq0pVWS3C1bBNPmRiNJcGY42H54QuucbPkKSXvOeC/UEilGAd2AjuSEc34nVKMKNYn+Kld/GpJdqmcKQt1yUJatbhqbwYHytb/xdRIuiR51AoBerm62HiAmh8GEqHh3dD+q+ckUC1KHTlvLdUd7cJqH+2lH0e9rANeZMOS6L+msbf+11KnH9WJeIFIhr+jxSea/W3TQc3BNOd3+Vy5b1RYMvVPgkrkR+bfxoZYRfguBIBFaQ7KqgybtPK2j+VRqKtB+Z3hnGyOK9ZXGGfzext+I0FDjoKsTF0Aeukm17oNCtugVV65sstPr+z9wtz94lZWhn/8L173nHaTJrxfa9iDvB+3ug8sP3SSdrfbJfNSGeCNLxlYJ8mlWtHrdKiMYV4ULo+IdQEZh+Mx1aIgTxIypeikiZ8+67xKEKzykG3je7TcFa/tdgXiEVGzfnmeo4qCvd1d0izDAmVR+CIOWThP7YgvINQ0gAaeGHkY3HGSNyJ2lQt+J0oFzwSA0sQ1QQCl67Sm/pEx0aOrcFKol5OIq8+L5H8/aSh2w2sfK2+zLKMoCrRO6A96TKdTJ/0GKd+lVc2ykc89U7G3d480VSgMw0GfNHVgnWepr6ouc1kXQXC0R2N0QUqKOIIVQEnjd0ebrf9ROtAjrv/NI8vCeQ65cPSCxaIMVWEkYrOxGama8w9GMWQstXbwzjhgu+K1vK9pEtGmJCmX64RLfWyMZjTaRFdT9vcP2Bx0wWqM8tqBp/9CQJBya8tUFVVVYqrCSdwY/tmfXaYo36PE2W+zGQNv3Jy4QsAnXV1TrWpBSKtYY/PbmL8NLmmdqwi0ublBroaM1norruTaQwfavf4AjGFnZ8dZZitDnncgcZWxdZLQ7/WojKNFrHU7ZVVW7O8fMtEJeZqyMRqRZh1Uop1HiilF5sYx0Q6xjUiCHOVw24AtgJRlmcsV4gGi1+mgLOzcuUuSpeClyrXBkNzn1V7lGicct1wDRNakSadxFLStcnnHgyYBIb2l0u5HLne1wki1d4SLDyOrS30pPzdKDE9J0GJWtjB3DlrirHQyJgkYGY/HdDodRqM++3s7lFUZgZ2h080YDEYcjveZzSbs7NxmOOzT63ZYXx85g2OiSRPtJVS5N3X/XAZB37GIBgmdDff2fkrqKuCW1gbteKtULBYl+wcTxofj0D+nGSQt0AZjqwAMjpJy56lBWsZSUyVHgfg4Sb1eV/Ghta7Q9jdXPlTd1vQNKVWl2dg4yfTgNrv37vDY6RPYxD1HaZphfJh6MDqDe/YqA2VBVS7QGA4nBd968dYvhZQtrags//qF2/y7v/kY0Lz7KhiKffSnqp+fqqqobIlNLCdObtNRAzbWR8de66ED7cQ/kM5oJ/kmDFjJqEbIQ6JFMoHAI1ufraUykpMkUn0tTqLxr2Mb/9uVYOKbKpRNURQutlC5fBQq5JyIfve2ruN6t0rmq/0naqkx1P3z9JL24drOWCmSu5xBNoijSvNRl7/o2rUYuLrnS7xvhB5JEkkuFBnVvKSZZUkwVJaVSzIEkKUpOsFL2Kv6FU7mxrwMVI+kdmyD2zKw9mtG2fqctjX+6KXzEnEFLlwRCPegx7lpjvfOaVMgS3XAqM8rjotrTIb/H6NB+HXUoMvC8nW8bpblzFRCUZT+l5GETkxpqiBouKt6F1ljefmNXdJEsXgHXovvVbPWJZCazCt6He+0EH2v4gPDJxEXi6XTyemonDT/gBkis6wD1oWEz6Yzlw2sLEgTHyhTlWigk6YMej3K8RgTpFgHYpWxjKdzjLHkaUKWJnQSz4NbcN4jouo2YiijV0cXd/ywhQUZcayj0Uj4F1CKNHCuqimtehVrlVuheJbUIpGKOlfziyFQKOq7ShLEk6UyrkCARqIJ3ZE2jFmoEBXmoTIVxrtOtktaHUvytQyoYSyqds8EF4wwX0zp9TpA7gtKALjPx2MneeZ5yvr6Gv1eh04nd0UHgjuf732Y//qadSSabNbxphkj66oxtTn2+HO/I1qNsZAmLkKoLEqSVBGKbXiBoyqN54F94qpEBY2upkaIXovW0+5UTfHUXi9vp8VgHa/tmhaJ6SNr3BoM2oDgEgnd7oBJkjKdzjAYEl84oKoqzxrVWqNoi9rHS1RlwfRgjxdf3WO2+OWgRuKWJoo3b0545rGR0xjCc2EQETAIOLLmJIkdFdsn+nRUh2H/+Bv00IF2p9sFY8m2U27duMl0OnHFcvMcZRVVVZKkOd08AzXkcDLF1MF/AbT3xhPG0yl5lrI2GJD0u6RKoahC7mh5nlc9v+2wYqDB84oLn5MQczY2crd4lfPd1SjvEqRZLBYRT2yWXid2+ZMXQYWOVH5w4AwqRJTVoJ1iK1f8tigN1tMi/V7PG29lzDb8rnZZctF6Th1MSdOUsiwDAC9t4gPv1J0wV2HeNIHrBKiqkun0gOGoR5a56EXXn4rpdEZZzuj2cjrdjI31QeCuEw/a8R0TLUwMvda7psXqvgBp7FHSvrdLBrXiM1/dRCmqErKsC8B8UdDViTOaQgDssqxIdBI2nCQJlgNk81Qqmn/bpMvEd7jp9mcioJd2nPagIACOn5PwXTwnAiUuiZlKak3W+lwxkNAfrLOb5ByOx666jbeVlGXhCz04bjtI2JUlSV1iqbJYMJve5S9eO/ilokakLQrDm7cmPPPYGiESMqzrygt6lQcPB+hJAO2Cc+c2yVRKfp9d9aEDbZ24qtdpmgcvA2Mqwqq2vnircknWa0++Wh22QFFVwSWrrKoQEenX2f0pyyWt8aAI/xwBrvCVFtBpAlXNQR7nfdJ+H2T/gMQieEcBAH7hCB0in1tV59EOHize0NiggmQ+kMfY1ry5red0WYsBL4zKn/zIeGhOsxTaTZIueZ4F0BZpzflhuxqInU4e5mRZRtu2tnKUy657EDyNOMI9LG9LD5PNyV1DwNVUpjVG0QJA6i9K/1X0/1WtyWX761KD+JGOLj1J6/Mlbn/Wi8JK6nTqo2tRriGAnyYpWmkvWYuFpPZvbs5bvU1Y3HNcLObcO/zlk7LBUYs/uzbmt2QMgQmLNJOoEHa4m1776/ZSMtIPXhEEZwhxKlev13d+rsXMpTAVg4BHHIWl3+uji5JFaZgtqgDMKIWxltJYZosF44ki05AqQyfRZKmTgOpW34w4YrABUPET06IUYxVd4VRMHT14S/Not1rTEBlDqXiP1MdWxlBaKCpXrdv9dsThwaFzMSsryqoE4zw09FSR5ylZoklDBWRbP3gBcJt0wyr+NdYKGtMSzZWLWK2nymWuc1LfYjHHmJI0Teh2T/h8IT3/vhMKIx+9dAzSPgmXlRvQkjAjIIm1FP/jY+/FsuvJNic5N5LEPX6z2YxOt+M3befSmKQJWZZTloswF3VMUW2jkfMet48cL1X/PM36/1y6CKG4mkZkwkZlrbON6CSl0+mymM9JE0izxBVFCHYDeQ4UlVQIsm7Dvnt3l6I8vlr5L7LtjYvG++Cg0Jj2mFJyr4W6U2rp/thoDyFoe17MWkZr6yRpyltv7VEUBUpr7/7nAgKUhfXRiGy+YDxbMC9nVMYrg4nPyVFVjCdTyvmMTEGuDeuDPoqcVGfRblo3V45qeai20CGg0MoXQPVNAiNEO1A+6ENycIQhLtkE2teyyuKqzOMhXDeOLauKhbEsFgWLovAFgk9y996OM+BWDhy1clz+olgwGvZR3Zzs/8/enwbbtmTlodg3Mmezmt2e/va37q3mVkFBFc1DEggET3qiEQLLehFS2OjZfyTzFDK/CHAQoR9qUIgQDitCFj8UsmRjWxEGKYxkgaUXPCgejURXKqooqr19d9q9z957NbPJHP4xcuTMOddae59z7znn3rdx3rvOXms2OTNzZo4c4xtdUQDOB6Kq1jPCDTJH0QWbLF563O3K2JkYuU5E645PKYoCQAtGjfliFtoHXLz4LEbjAlk2Rp5ZZLmFDZHgomjPHJ9EAdtSWCEG5yaTsEgpF366ZdC9ly7MK5GJYXhPTk4w3Z4KDEAEY8TUczQa4eSkhnqlWiRxbljeb4r3Szt1jPttTXUEkatdW9YQeOLkPaXnU42Izj/ZDDkZc7E/ZvhWRIY8hKCdL2bIckKej0GZFY49NCuVQrR+7xzeeON1gD+A96uLSRvTnun7SfQ6BKHIiQ87x/6SOl2f2bPzR7Q7LABZng9yC4adP2psJWN77TysadEjISSisGcWjtMBnhgwDDdyMWpXz3wqEQfjwscqb6MOIivtDhNcLkqJs08gkpRTTLjStP74t7PrSBcqs6hFnPdw3sWMJ4BkfPc+EGMghLSV7ODqgNQbZ0avjwrv9HqWELh1BHsz/dMx1o9EjHPMcK4JhF3qi5EaMyHYpvcu0lHptSxAPYPAWz0u6Kyy4ZrhC0mIqfSZotKtaZoQ/KuDAwSHz+JNPSci7vo15LC7ObF6DFo7dfNg4z0RDuoEDeKkExu7zAGjHQ5CUp8xou9wrUCXtDqXVU7s2WCwx3wxw7RwuDN/fxLtTCWG2PU+BLLeliuVtFOivuEZD6Sl76fCHOL6yuAZazCdjuFcg6ahENheimEJglMYwig32BkXaLxAIo3zaElil+g6cSDUDMxaj6ZqsWBCaRmZDZ5egRtuda/sRWvTCakEeEiswvIIUoDo31R5oZxVmADJAggPin85bDYChxBgQjhZDjahIVv3ghmNF2VX7Rxc4BAaIokrHir3RHAQm4pZ4+CrBibPkBsCBUsLH8RiC4p98+xjvk0xrzSxvabXYuGkItDCjGidE6AsghIy2SgsMayR6HE6hnlmYhyH9cZWCbyxslMMoZF+6Z/h5HNWSZ+p4r8u6OCOj/CegaTdXpJyFBbOtTBGTC85YOGpDmJTK7WtHYetbQ9nNuIpnaSxue6kT8lvDRUcZq+cSRtrDBwbIBsjn1zE8dJhPLHY8RY+qZINJGxC2JxMMDXN4LEztnh6r8Ibd/P3pTJyd5rF7aY330JfWDNDAfE9MgBmg1u35hjZAtNyhBC5Ym05d0TbswexWF0wEUye4cLFPdy8eQuubbA9ncCDAmFk5JQBGZAhwyQvUDuHunU4ni2wbBktZBNwEKLdsEFTeVBTwyxb7OcW41GJsrRALlhbwxmIWFKXIXC83kF9CSPJDdysclKKZwOANYBHg+h6HUV0IXn6n/oEBr5YQj+SkELHAIeIaFXbYOkcqrrFYrlE7drgSiy4oXLQSxgNLgJwon7zjHpZY+E82ObYGZdCuEMsBTCDDCEnAw8vsRW8YHV5ZkFeIBlWsV5FXq9ZycWSwwWCJso3E2K/iFeZNQSTEWzmYbM8JgwAgFEplgeksVwYYUzTEKppSTjXDaz+RgiEhEDR8CD6RCy8yf41PmwqhpFlcp3zbXi/0nbPHpkljMcFmrYSKxmThfGU3JadCei9UC4flZsphLJauBuzKKB070s8L9Pehb6RzkGfynYAulgbIIbJDBpvgXIHo/2ncP3mW5iMc1zZsWjAYAuwIXhiZMxiPQUDywTLDEKDy7sZnqyPkZsJKvf+4rYNAR98QlOPUffh9LtsvowAlYLBbOB9hldePcBWsYWrF0d47LHNzzl3RBtQWECKsQajURlx0nSxEhiGGJkByBKKLIN1gjUvDdAQS3p7dEHdGYTWebBjgDzGALKCkTHBBw7bgWBYvAmFKAuWqZ6HMp05Kjy7QEKdWCULS+9Tsdl24lXg3DoyH9zR1dYXYubHIX9RSw61B5aOMW+diOTsEeKnRXTSkTy8F1M7LHaxcnCYtA4Okk/ThIHhsKFI8oQQJxx9l3ZKYmYAKbeownRnNx1hJ+rES8koA2QZUBSa4UWmcGb7NvBdUemkr7jr5H7u09geUVqlbj0eND2dwE/d6UHFIZaNXqvWFjHRQnq1IWSZCREhu5DBHUaaBrXqnjGEPFIpr/vdt0haNV/sYzupVY0qG4cDoFBcGktEpaQUYvEwgCmQldtYNDfQOgNiA4YLXroMT4CTSQULEzhuhoXHuDR4evcYLV/F+60UucHTV8crUhzHb8pMxANSWDjt46MKKEvsTRM8bU05d0Tbe58kquWw7g1GoxGc81gslsiKMhITHwLXKJRBkNjKZVkARGhaj9p7oPXibJJYaBAkaUJVNwAE/8ZOKWEnMyFofWFTCZtHdJdmBiccdm/ZR85a+XMhpOwTGhE10xQnC0PMjxyLvXXbNFjUNaq6Eq9Lz51cFh6c8oiGKBAUGwiwhIpVQtq0LZbLCsgzjHIbzAS753KgfAZGFKKUbqNh7NZQPuGK+1EBZQ/R7Oimc+U2aeyQrubu7+ZJf3p5p/edVRKkNrx3fV9lWaJtWzRNg7woeztDnuc9Ze4qrNEji/0zaxTW91KGEsb93K9WH70QsAEu8yF+CJHECLp8+TKmW5IIQayU1AvS6SDFRCG6kRdFiVE+x3N7x/jKwe6pVjOPurSO8ey1Sfils7c/7xHmcm+WhzE7unsMGueo9x1OI83nj2g7jyzEz9bByLICOzu7mM8XuHN4iP39CyiKAtZmaFsPhNx8HiEzORF2trfROo/GOcyrGifzJZq2Re3aDuJgoGpF7J8vl8jyDB+4uodZVWNCBSTVlYIYYUITAGgoSuVPEjvoVCwlG0yAuMuSDnTxrUk4SCGaBBgTFIxA6z0a57FsaiyaGvNlhSZAIsrtUcD0U3vADJKlxhoLMhbMkjW8ahgwsoAXiwXQNmhHI5R7O2HD4w6S4bD5WQsPn4QE0CKmfGFQgthNIchO0n90BDvLJNGusRI+1to8hiKQC+O2gbhY9CWdSYiHrM9Zpb8Y+3Wk16wpRprK3kdwf2dnB1W1BAPYznMYspFHnUwmUUrUWC4pN63EjLmLfJiaWq7zmt3YK+pbyXReqDKmmqpsHaHkAI/FtFvc2e0zGM55NNUS3jXIc4Pd3V3sX9jD1N2BcXdA7OO7Z+/BEM9c70WvRBDpY2trC7eP53hh91W8dPhxvEeJ2NeWUWEwKTP08GygY1pYk/YGD0/nwphLfJY337yO5RZw+cI1/LEi2r0UXDq5jUVZjlDVDZbLKuRBlAnqPcPYMJnDOrfGwGYZMibY1qH1jMzUcNTZPis9aNnBeSccais2mk3bwnMRuXIKZN6gi7iXwiNp5A4O7VYiL+2UWrRPPfgnPAHBLV0YaMGoHQtXXFUVllUVIooxjM2iyeMQUCAAlgiZZLhNTOI0HoTUadgjz6zcGc3IEJ2QOnfrvrTIUTvOnXmgPptklDz7/nEkXLb1oMS9P4Y1VdQhgT466WGTHfMQzkiJ9yZqsOHckBb2TTHiBZHTTuooyxLz+RLUNukNAMQ2PQ26tZ7rXa+c3MRpb3LWGkIm/a5spo49R6QB0VdnK/ZeIm9yiyIvJfDXzhbsrAKdHEZ9DsX318Vp4QDJEDpDgh17BzsTgzsn722OyLQsa4dXr8/x1JW9wZn++iJDQc8uc0l7fnJygpJ20FR/zDLXVMsK3nuMx+NkmYi3oQmcIzNCXAcH57wytfCsSXtNILCiXMgyg7LMQZZgW0LtJPKYQCsmLkIlvk3bYllV8D4LOCzBEsESJLIegEjNuCNiCO2V/UNtLDhyrvqKOdSDwGUjcKhCpCWxQ+0clk2LumkFgw/PVCDGKOSQZVEBBgCTsoS1FjaT1E7sPZw1cAED75xeRMJY1jVy5eqClQppWm4GVAkTHQwCQR3i2TpxpW1CiNUaRGNey/NTBWBihRMWOpJzXf3Js9cSn3cIp9zXbUPohuMxDU2gwa3itkcCj7Rt29mtryXaHYFLCbWauQ7vOYtgD3/3mIY19/Tv1fksz2lbcdACBBIxhlGWOfKyjDBXCuuBBVYzpG7wyehxF+vGGsLuhHDnZM1wvEeldcD/+Olb+O/+/G43NQZDLUYJQxPdznz4FEEolnNHtI/u3gUZwpNPPhWOiEyS5SNkWQ2wQdt6EBo0jRNgQkUUK0lUQRbGi6Irs4RRkSGzUzj2aFyL2XyBqqpQ1R6ODSjI+kpO5lWFummQ55JdpMxzFLkkIc1gwNZE93kwB0ZW+GeJqhcWn+8cWMSgI4ieGtQpcNgwEoCodh7zaom6aVE1LWbLCo69cNiMYFkh9tmlNSisRVGWKPIymNABl3d35TojGcA9s8SSYI/5Yo62aeBBaIlRNQ0Oj46xO90C5RmsyST4EcT8L8LmJPCGa7sohkDgxDyico2C2ChdIhSZhbU6kRmeW4BdJ10kRdVgETeSLbebA717NhHuey/U7QKnlOH5LuGuEFohZkWRo22bsHmG+kPUwvF4jKqq0LYtyrKMRFg58O4jG2NMGh0+XU7UzdQgxczTTDeq8zEh2uQmYq9/FQ5Rayj2Hsu6BoFR5BY7OzsYT0bIciNZg4gBa8E2A7dNB9GZTJTcokMHsUBo3rewwRs5ywzePnj/ubP/wYtHmFctRmWm+nsprBspw7ELTlRiWSM+Hz4GBjsr6u+5I9qLxQKAwh3dYpVgNBkAgneMVr3TAq5K5GFghWYbAoJlhSESYpuHNGA+Q9s2cG2DBmJtwSmnAKBu5FzjLQqfxQ1BY2B4bV94tnKwACLnrIvAB0WgQ1AQkonPiqFVycCDRSnatqiaBlVVYxFwUsT0U2Iuxs7BkEVmJXb4uCyRBUeOqeYrDPc4ZrTOospzLBedqOohLvCLZYXpeIocFIg8Qlxt8WYMLH7S3yCRkIrPCQyUcNrWSJwKiX4nG4dy2uvZ25SDXT0eYYkVuvMoQdGkjUkXJN2UBPun5DrltInoVHikgy8SCxrugmyl3rTDMsSwtf5Uyaub6j0pJBNphgG0bfBayC3G4zGm21MYGxTObSPSnM7P5NmGTGBUArofjACUsFlj3lehWbVYA7z89gwvPDMCkHLUsmLZ+5iAhMh2uH+iizirnDuirW7g1XKJLM9FsRhpd4dyAugIBquIwiEBMOBdovgDR+9TApBbi7LIBD/3mZjCeR+y0XRTllmCnjdtKy7e3sE5E1ysqcuJiATDjkQsBOknglpUiH15cH4J7W+8eAdqJp4meDd638UkBktsbqt2zDmhyIyEflWOHkIUJNkBRcIt93tkVtyuJfVVcDhiwDmPummC56QNkgqjz1UiYM/UDX+ANZgQJ2svDKlJCZDeJsTde8HOk1DNSEc+tcWJpoOshLtPubs1wsnh04nTBluf/rHBBtFfvMP7ObG/liiUWjZxykpEU4IN9In6aURgs7kfVn6nHP1QR9Fvi5ds6wEesdZiNBrBEqEscxhrk6051B30Emp1osOikIGhLpQBQRy5JL5MgfX+xu9tqRvGa9dneOGZC4MzgTFRrg2hjxBjAGuBy5f3sDfdwnRr8yYLnEOinWUZfNvi4M4d7O3vw47H8B5Jpuf0Iy+dWaiAAwCS0InsXRS4PTFMlsNYEeumoxxlZjApS5y0GZZVhaau0VQVgA6tbDU+h/OomwB7gDs8mUS5lod8hUUhm4z+l5E4usQNJWjkjcbCZsayqjBbLFC3DdqmjXh768RphYLjTGZsTF+WFzlGYHn5BKB18IFoN4uFjBNBYmsTAEMYFwV4MkGWWcxO5gAY3jGW3OLuyQxN6+GYMB1NALRgbjsCQgGnNoFFR2f7K5CmiPXW5shtkHYIAHywAuorZp0DyDDYCCdmjUoAieNSj6AO5c2+aeGDL5uIfif5iTQnrfXsJIEtCHVdYWS7bEWay1KU5uvarNyxzOc0ybPCG6m1yTAzENBlCxpannTn3VrMNYVfvPdomxZN08IzYTQaoSxLTCcTkVStQVFkiQQc2mwzICtgzBJix+4D4wCRdI2FdzUAsbZh7zAelbiwv3fPb+NRFgbw5TdP8OfSORj1OtIfYnFDct7BsAMZj7wgfOIbXsAkG+Pyfn7KE84h0bZBITafzbC9E3xBGYnvdJ/b1rFlZgmCFOm5WF9wcilRBkMWZZ4hzywKz2gbC+clh11X5GV5ZrCT+B7UynHFMS2JaV1RFCgKRlGIQ45GQxPlYpISy3s4VkebAIkwo3Yes2WFqq5CbBBZEzHIVMADJT+mEO7JaIzCO5CXeCKInoqAb7ooZWQDzp9Z5IUkE2Aw5rQAMwLe7bFY1iCyyPICk4kNDejwRu3DkCdS7F69Aa21yGwWML0gTkLehRJtiQdDIZN8F7K0z3MpVMBYd7ZrTUpcT7v2QRStP8TU7uQgACEbDxuJc5MQd2tXzff6kEbyhLCxp9z5ejhlQ+RJrHLnCs0wnw6zAGLCJkQ75GrNc2xtbYlHLGnfJRt80K4DZEJgNOW0QxgEL45vpBty2OiZPYo8x3Q6QUYONb//SNjRrIEGZtD+6JwSqEm8nCW3qsTPySzw9DPXUJDB+Iwuvf96/C5L5LU8h4SoDQALblo0dRvgkw3YYLJYVKFCiehNLJSCyAZIg2ENIc8sfGbBIU1QltmYWR3oFokq5kJtYEhas9Z7UOtATQvnxYvTGAPPwQ6ZNMZ1cBR2Dp49Wi/QhNd415xACcqpWdspb9SuOcTI1huYQ98QhexILJk9yMs9lgwym6EsCtTqUUkKWYjlSlU3MMajHw8rZP1RBadil0FcFI4qyYrOwKb4lDqG6pw0fI26L9MGItxXIG6COdY9ex0hTxpwT3S+v5mktxpr4F0IHsUcIibKWZFC7AYooz8G6+CQ0+CP0wh7d00XS2R4jUJxokiToF0gi6IokGWaoFcdyZJhiEwTB6Upx5dHoJjzUnUosS0Q888iz3B1q8FrR+8/EtY6bXPHbW+SvVTJznDIshC/54+bItKQAVjEtdnRCdraoRhPcXJyhKqqUJbiGUkknINzLpqVtc6FlE4hJgYABOWO8U6IlwuWHyyEYZwbZCgwzg3akYg108kIy+USbSN57cAMr4B4IPde/7YeDTeg2sFWTRc/wxBGMMiMlQBNIeEvA2ibCnXTig12XaH1Do47h3ciSdibWbmvyCQpgKWgiGwaSQbLsgEQd5biNuKTDPatcP3OgcmgLHLk2QjWGBwc3kWFVhY0G9StgztZwHuCHxcwo0xRPOErLUIoUkbbNCDI5lYWZSDAqxYK1IO0fKeNZwP2Yp5p1hL3IW58GhFOCfiQ+x5eu66su2dTPQpvBHhGTRstoSxLVMsaJyfH2NnZR8rUFkWB8XiM+XyOoig6T150kFEHX6RceBfSN1V26X36XSGUFOrQ92CtWGrI/u4SDB1BvyFRIrOsQFmWKIoC5WiCPM8DtJNsxt2t4RUZYVpqiYmT56LrARlkxoBYGC/J+RnabcRWe9sW+Npncrz22VNezXtUJN68+hooYyR6GO9E7JdXLwmZYRxat0C5tY2MIRL3afU/7A488kJBgegZy8VSCHRW4OjoBM61GJUah4SQZcplUMTaotF7j/MkEPvkI4vNgJFbA0s5OLdwgdMelQXapoZrOeJXAJBGevMgZRnhfYvIewYrCzIGDQzyLEPmcozJBJtWxqJuJOhTUwu8YYOnGiIvJ6E9jUGZFxiPRhJhJHDWmiyWRQ6Vu8LKUp7KDyxa2DlkpoTNc1ib4fhkhtYFScIHhWRdwTNQWsKkzGBAMBTc9IlgrIV1BgokGWNQ5Hkw46UoKaTmezr+UZIAZPNiIM0FsMos3ivMcS/X3A9k0ulK1nPww48o2/I8Q101WCzmEULTkmUZyrLE8fGxPCEQ1s75Ko3L3KWz02u1pKnI0mvT65S7TS1P9J627WA0ra8NzltEFlmWYTqdYmt7N1FaDsctETchSsa2cWhbhywLuC+CUtuLR3Jmu2iShgxya2GLDN/9Ddv4pc8uTn8d70HZmWbo4L1OfmeV4IN0GfYtEDw818gLwHoAZ1jFnDuiPVSkqJ2xYGK0ch5QLqTjWuRggsWG86mHl3rZEXuE3OARErAkkAn7HN67EJ86Ee2j8N79hf6Ob1hetw921q1rQV4ceVyARyL3FG8KjjxWzPkyzdOnnLTCHYoRDz6x4whcbkpzvBcrkyCB5FkmViQtow2KKt2HxGLGIQ9mjt1mIqK2Dfbi0XqmJ+JvYDNYYQVC8C5CL7s5+l6P6nW6viSEpMOTEpF29dmbOXDdkNOqw/EVDjMs5KiISx4dn4841zQ1VZcbtCPGndKwD4n1mp1cPzw/JOyneU2uw831GlGglwEOyUL2nTgQSfe7ceLAoXtuUS0r1MtKUvp50YdQgJ1W2gTq1bM7arA/JRzMzmBNH3H50JPTjXs8K/exRkJ0zgd6cjo+cv6ItqFo2+pZLDfEdjvETiBCltmYPzJVyNgQWwE+tVaATCDHYHJgZwHj43Hjaqk7mVDj3CCjEjweRWVd1bRoW0l82zgxBew4R/VINBHiYMdoyMG3DBOcehTbFpG0kcznzDDRIQKYjMfIswxFZpEFZxU4Cf0J7wD2yBkRMzTWQlhWFXmDogiImc4ZkgnbVTXAgM0y7E6mKLMSs8USx81CpIMQv2Vei7Z/ezIWpS0ZOBYFnLUWpihgCBJjI7G7Fq9KRLrcJ5XRihsEq+KAxDuHiJ0EBpvOQeXe+GMZ9wHgeg+F1nxfB5OkJYmLEhWSUtTMEUDY6H1IZ8fI8wyj0ShISOs3D723737OAf4zkcAq9NHFvVgPqfQdd7rsP5IwI1h3EGEymaAsS5TlGHmeh7WHpD4dF1lT3jOausFiPsNsfoLZnetYHlxHmQuskFvxGPZO9C6ioOUgfXZRBNm3uHXrTfzZF3bwc7832vCOHn2xBnj6yqR3jAMHaAjBRqu/aes0mS8qlAQUpsBp5fwRbaKQvRngVgIktVUVuBlZ0JEYRaIdvMysBbPaOKdF7LfZUVDi6W7PIB9w3UR7UFhCYQsYm4MZaLyHXSxR1y2qmuBYiK1n1S/r/YnCkRkOLK7N3sGHuBTRyiM6mnQ2y4YIZVlglOfiTegB1zq4Vtoo+LWXDN9IOa9uw5GA/MFWWjc0iJOEb1txfLEZpqMxrG3RNA6AOjQJ9lk1kpGkKEpkOSEL8UTEuciKjbqS1ERKiH+om9S65gMQ0F2r9E/3Vc+BAZcFQvdArpMHxve8vtwP1HIad6/EevV5vfH2+m5lMxFutkiyL/U3jCiBDFu9BuZI3duHHpND6xMAwYTQx9ekGLaWsiyxu7uLshz3ezuUGoJ8yQGnns8XODw4xPHtA8wPD7G/O8Z0UsL7HBlRTMZtjJgBUlIphY3k6PA2ntuZo8yeRtW+P2JrM4BnH5uuHAtcYJCgE8kjFCJCVbUgmyE/nWa/TxOtvcsigyT4cYfVqQiaiqHrF5iYH6FbU5uuA0n2G2bBuhOM0pBqwGWQrQkmbZlFnqnNdIbMZuLSG3IaGqI+GYmQTCpWdyK9IdGmZ6Fu092YLBb0IZFExE672XVscCSBVxBwcILamcuzrcYHgWw43jNaJ444XZIF6hPe5OmEIDJS2p60HR0LToEdF0mTukvTy8NKSXFylUz1k8JSEXLpjXH46EbSRdhabRcG7UgD36/c1H+PcdsK4WejIlAfrzoB0zEbaV1D7lr/bnKuWXecB3NCv3ep+jplpaZBy/M8bgarXHtXv/ccnLBaNHUTsXEiA2Mz2CxD0zadHboOOa0Zbu5qt5kFe4f/9usOV/r4XpWv/cA2JqVFmjIsrp10gqaCXUjXc3x0gtlsiaY93Yfg3HHaLixPJoCs6cEg4tQSxPDAPXe5GimIjAmep8QSIXMMJPWRCSFTZeBbdFp1qasIM45ZY4YAKPOodGucpDRzLCZ/zgex0bng0ejRwoO4TnrW5/4V3sizHKOyEKJtjGST8S1cQDmIgZwAk+YgZA/2Ys8O9mBKsFKj7vIAI3h5eo+MDAwD5Bx83SA3OQpjMB2N4BhYLCvMlkt4dmjlFhzP5wA8vM8xzk2wORaOPxrTrKW2at6obyb8q2POVr4wEL1FnSCeBNZwLOjM+7iruiORyTPT78MFc39gy71x7R0XDSBw1WLtM5lMUDcVjLWShFprJbEwAYJreELAU4x8HeYMdBYielxjl/Ra1oNEOq5YzfEyK67oWSZkY29vL4Q4HthvD4aqbVvUVYXZyTFcW4vJqncYjcawu3sozRLX33gRF7anoK0JAO4INnXzvltjknVqf28bR28cYMJv40985En8py/ON76VR1GIgP/mm69CMvoksiGxrCUGyGSyARIjMwbeEby3IJT49O9+Gpf3r+GjH34BTzy2OeP8uSPaYXhk3tiQ7kvN+qJlBoLLeeD+VGnpXDBR6mS71KuPmIKvYogBQgCxTOrgqwgAyAL+5rzGjSaYLAsQiJXkBExwLFlwmla058u6ATEj+OEALuHFOBE5kcAhWYbJqESR5cishauWsiic3JwbG9KeKdEWCxnF1tRdOIprKXPIAs+wZ+RWcoHDe4FJAvY5KUtwgEXmyyUY4srcMoGXy2jyVdhCMm4jURjGhZ0QD0Jn3x5HlAb/KqvcUQf2GtOly1BIK74gpxHee4VT7rWsg0qGv5Wz9ACJPf14PELT1AnBljaLDXQRzew6U75w1YBDVs5cLU30k3LGXcqy7r4UUlHrkNZJ8l1DElJ1MhEoZEed184obeuwXFY4PLwL19awRrwjR2WJ0uygoCW+/IUTNLU6dnF876xsd+yrbM4GjN3tCdhfx8nJHD/0Z/bx+i2H129X99Smh1GeuDTC01em6AAMShZtkDaNONyBJbOVawnMBoQCf/T5r2L2GOPpx54HsJlon0t4BEiIEBQWAZhC0P+46Dfdi545Ve8cd5YkSgBj7BDlZIafBJowJKo0g85JU0VBUc5JMJwsmOxpTA+NVWI0zGs4ZwxpBr/EiqRrRyRuzF07E86zhxKsG8Nk3kXNafKXgGBeSMHdGhHiYCASC83knvLVESRgRROGZ/UFInD++jNFrJOdDDR4rSlkMXxqes06CONeynAOba4jInPdpOjVQ+EitcH2a7LWpjbXm2KKvJNyGset3Hpms+jko3k5Y3TGlTXSt+GWhNKduWC0yqJgnx+iVvqe1KAu8xvWKen9ncT243/5GTx58b1RShIBf/0vPNvBHevmwtpXRpJujQlN49G2IgWfVs4dp40g1nsW3JWUs455GG1wy+X44uMEDZlfKARb6qAVudV7RtO0INOECSw8nVF8NUwwE2CVCIMyQN53NMSxRC3z8pe8h/WMgoCssPBswTnAbCIn3IYodwCHZAAao9uA2MG3Hs6IazqxsOUZhRw53oGCglEnuGQKoThmkSGg4KTDHSEhEyIROhlLSwYUzCgNEQpLmIwKOD/B3fkJKhfyapLY2S6qCsa1yK0BrGZm72yxddxUKaxmbLogOxMwaaOJ4lKyObMBvOQXjIBX7FfcQnA6gb4fQngWXLKO2NCGv/LdGlE4Hh6ehDDCjJgGjwjb29s4ODhA0zSRg5bx6oJxDbHsFBJJj6XxRoZFvTIVkilGpcSsybLonj5sf7qReO+xrJaoqxrz+Vw2IefkvtzCEAelK4FMBrIFyORwntE0LuT/DBV7xKQYRqKuQXVVzA3KIsN4nKNanKAYj/Hjf/k5/N8/9Sb+0xcOT3k3D778xT91FbvTMnDNfUYg+l4Qw8NFBsQ5D0sZiHK41qKpDFyTAfzHLPYIECwrkgVqjJoQySCqyZLGkNZJnGVZxP5sVK6knIeIemQaqNSWhfVC6NBQCpxoTHoL2QgU24Jzgus6H6LDijhYkAFCcCCChSfxIGRmVFUlGc7BKPI8KB3F6UUIOsMTwYQkASYQbY3Vy/CBI+/bukYzO8RD3eYDsfsmJnAbcHsm8dbTJL3WILcZuMgBApb1Ai17SQPFhMY5ycbdEKbjEhnlIcmBQiAcyV/qhqClg6qkL1HhhdDu4F1DbGJwqRj6NgksmPauw5MfNCSSPmdTWb9pEInEkuc56rpCUZSD84TpdIrDw8Oe9QZzMkbDVvCacQzH1RRw+AzFsVXpOJlMsLOzg3I0ks16hbOOYliv/mq5xMnJDIeHh8gyUbYXWSbptpjF/JQIMFaIts3hnGRFQlHEDdshxPhOYnpTFL0citxgXOaoljPYfA95WeKH/uxT+I6v28P/8V+/gsad9i4eTPnIk1P815+8ElaxSeTclCFBkPJd3GS988htCYNAtGsD11rAn060zy08sr4MROONsMDZ1aTafa2M+hesPiZYXkSsPHLk4YMOwhBupOMWo0UKOkVhx4n2IZ8+WRjCAbwimg/HpN9/WiV8SfsV+onQjTVRLyCohJBlF0K6xnyRpKCA8v7hacmzqP9jLbCRNk448jAiypnHG8IPhSYoDn/4rIr46Wc4JB0EFO1SgA3fVmZUFKH7z1p9dv++1UTGq2UYV+ReSoplp3i44t9G/64JE6vfOjhEIRHfU34qg0BJEDStgUJMG2ZEY4Du9KbVKLMnC272bYiFI7cwnr02wv/pv/8oPvLk1j2NwTstT1wa4b//gefQidE4lR9QCb87gHhxlom38Vnv7Vxy2gBWJ5eKbgM8MOK2JomiBvRgUM0KIt9FuagfDiZowrHqM+RmtVghhGzUXomXAzsh4Ia7Jc0A2IdnkSwWXUyFIXgf4JsQLJ8MAZ5DdEDZ440SchZvSum7/OOTBaS0mMPvznKuO8HobMAFaqIgljvANTDwIJsD7EBgZAbY2RoDyxbetKgXalsO1G2Dk/kC3jtMRyVMboXzUHEXirSH9xH6EjciMgmdSz0hVQTV+gB2IUcmSXwPGavu3v5fJPWkrDknx/XvcDENr9Fjp5lspfXonBIlOLND2wo85L1H3dQoyyz0jxJMuR9ydVhSSGR4XI+lSkqJztdEwjydTqOjzGg0Qp7lgVGgtfWCGXVdo6oq1HWNppH6nHMoNX1diKcjxQBGzAAtADIZLly8hKZd4vDwEJd3x/DsghiBGIvde5moDAacxHjf3pqg9Rlu3Xob462rGE/EI1f0V8Df+oEP4uf+pzfwG5+7iTMs6e67fPjJLfzNH/hAzOwT9IsyRvE9BwaHZH6xlxynynHphmmtxeOPX8OlS7sYnQHLnzui3cdHO84tYtdYQ7TTC5PvqS4oRjpjBLd0Cd3qQbAwvfs5UEITvPMYAs+wc/BtK5YdIauLvEoR9SW4FBBmKgwkOTA5JyZaJBYn6koOL1PDJkykjc1keO9ilEBASAkHItwj2r3xk5Mp6ZK1kwYYcuAWAHlkIUu8IYGKdqZjONOg4Qr1/AQqLjZNi+P5As575HkumdX13QBITbv0S9iTBm3jsIkqO6N2BsEyBRwTUpBhGM+BYPd6FO8b5lZcwwYNjq2O1iqh30TMhwS7Oy/hfRlto1izRHAsy66tQ6K9qaiVyDr39HWYt3MOVVVFJ57pdBo9HY0xUI++tQ5LYTirqsLR0RFmsxna1sHaLNYXJYSUayYD79ThKseFi5dwcP1lHCxnIHqsczAKuSI5EG0DjZbpkWUGO1sTeOT4ystv4bEnluJ1qFEsQ+apv/ynn8Djl0b41//TG2hbjzU63vsqRMD/4k9ew5/5hit6pKMPKvF2GtKE8ZBNUh3bZI16wAgc+/jj13BpfxflZsMRAOeQaK8rOm9JNQBDToEIxH0Cxnpt/0KxadY6uX8u3ov1y7xvU8vdMylK7JH1JXUtH3D/cckzr5AKSq/gyLfKvZRIDjqf1tKidf3g3pipEjFCPOFKIu4SGQfLFu0TA52kEUwhKTSMSFvPPZLW690qc9dbF91FwYIkcjGDfqx0leOYK1yTxnLpHjisoTdbVhZoes0qQ0yx/XJeFNLsNSFBSL4RQh1IvshOIanEeJPzzKai96zjxFMHHt0corXKpvoC8xJjiUTTQoYJoepMohtKui96ku7hyLI8MDcugZfC03trsV+RwnHOKTyy2loiwp/82EW88PQ2/m//w6t4/cYCtepo7qMYEjjkh7/3Wext5StxndYxQRsHD8PxB0bjUjL8/HELzTrkdjpFzdohXS0pu5dQck7/DZCFiGEGnqhfe3RJF0rpmZHaylJKvFkJHiEjAluEBezAPpM5ywwflE9Gp7MSzIBza9OJO/F4hdJRooQ8q/trCgMhYmGAXpjgfRs47cCJ+RalNdgel+BmgqZqxBnEWngAdetxvKxgg2doptYo8KAgBSistCL+q/S0psUcgzp13LfiwuwZbIZmcg7ojCXB8GEDGc6VAbU5dfyGBHu4rXaG4xIe2CPL5HtVO4lN03iYwIUul0tsTX0MuwAgSCkFmqZBURRriXbKRa8j7mp/rdcqDJJlGYqikBRhAZrTbvdkhlDnfDaTmPWNQCPe+eAlySEnq2LwavnTzXUQJMEGLMAW5WgCZkJdN2hdG0LuqgNcLnM3vh9R+KVMArFDWy/R1kuYrBQ4DdRF2ARjbyvH//4vfxiOtvCz//4P8NkX7yKzhKrxGwl4ZmWD/doPbOO/+YbLeObqJAoMOhviWo7SKwOQTUFULNQx4LCddAeAyIPIwdgWzz57AdujCQYRAVbbdPrp/zmWjpPlhCBKuUeuJIEUEqE8qV1M5rz38CZbw7mr2U/Avn2faAsUEBSS3kmoRpLY2YAQxlZhlFCTdy4mEjBQKEXMFNV8isPMiORLF6/2RDm78M/a0dggJogpIAIXqu0XIxKbia2p4uajrITNchjX4q4/DnkPM8kK7xz8fIksyzEugVEpyZZNGFMwI8sC3tp0hCVFE6LhYk97FxSVRGBNfhwjISJgiallvJqAJq7hTCB7xlzRzWHldCp6bfornpwCSXhQCHzvnEdV1SFEKYOMhfeMxWIR4oN0ZqeS6ajAcrmMRHu4ud2Lud9yuewR7L29vSQGdre5xHCuyXP078lshsV8jsViIUxHniHPCwDUU5pKujIdb3l/BAOyQarxFqOxEO2qbtF4h8IAgHDwxuZyPSCKTNHeAPAwJsSvZoe2WaJtlhjlpcwfIOpxIrvCjA89vY+/9t3PoqocXn5rhlevz/CVN2e4O2vgHMNawu40xwefmOLpqxM8+9gYk8J26I4K7AimsJC5phCiwJAu6rgiI8AMIhukv+D1aRhkWhjb4LnnLyGHRX4GmXrHRPv3fu/38JM/+ZNo2xZ7e3v4yZ/8STzxxBO9a95880183/d9H55++mkAwKVLl/DP//k/R13X+Imf+Al87nOfw2g0wj/6R/8Izz//PJgZP/VTP4Vf+ZVfgTEGf/fv/l184zd+4323rc9PBgx0zXW9qZ5w2LTmmqG4rgPfHRlyZP1J3nNYGNRFWmGvcdw7xt6DjRHihgQuSeTsDl4JE0r7H89yN5F40P+Ee1hFJCjCDR3hDHWncE9ojzESnjYLYQRS8ZgZASLpYBK1mSEdswQ6WGlg9+S1Z1NROnLaGBB4SkZkABmAQyirjQtnHUuWeHnqaFO/hRoKod+uZH4EWEFN2jQ65JBQprkf5TmreR/XO7x0XHdatD4xy8uii3r6zOFvxcydc9GBRgn9Jqe0zSVcb2wcdOc92Kxbs+uOyNwyhsDeJRntB31Y05zJKMPHntnBx57ZTnmCPpMTnfHQEeuVKcD95ZtcMAw9p1ZV/SYxQB7lKIP1BHIbOKdQ3jHR/tEf/VH803/6T/HCCy/g53/+5/H3/t7fw8/8zM/0rvnsZz+L7//+78ff+Tt/p3f8Z3/2ZzEej/FLv/RL+J3f+R38+I//OH7u534O/+E//Ad89atfxS/+4i/ilVdewV//638dv/RLv9SbSGeVqDDj0zt+Vi3rOafuO0XvytWozYzOQUUcC4RIefYSd1snKkk8Di3qVqz5IFsn0fkMEdq2CfGKwyRNuGvhQER8VEmg6wolRzaL92v5S6VjlIwIK58aCLYHjHewJKIfQSIfGpKM79Ng3zuvaviahVB7j3ndAMbA5hmyPLxfLxxL4ocEBa49c2RyhZPpS1GsKypGTJQKfWgjSELcdvBHfywo3a3O3OLTezf91V/pxo2IW7etzIvxGFgs60CgQ90kFjquXY2Gn+c5yrKMRDhVSA6xav2tIV01ZonafBdF0YNGhnbbsS4SjrKqK1RVhbZpcfnyZdRVBWaOykbxlOz6mwq4cUPurhBlMQPkCbnJMJpMUS8muHt0BLMzRZlbScPmOeL6PeiPpX15luHSxT20zRInxweYbu0AvrME6r8tndQSOuCUJXGPpXNY660zUn+CZBGxSNSdIM+QWJ4tQA2MFac/zw7AZozkHdlp13WNH/mRH8ELL7wAAPjIRz6Ct956a+W6z372s/jSl76Ev/SX/hL+2l/7a/jiF78IAPjVX/1V/MW/+BcBAN/8zd+Mg4MDvPnmm/jUpz6F7/3e74UxBh/4wAfw+OOP49Of/vR9tY2S/xRn7Xso3csH6Ii2H3zXTC8c5k0glgljHMADtCHSXeMkjnbrfXTlRoA6bJbF3Vc5F3X7bdsGzkmYUzWh0r3bhmQCYHWLD04wDGURIoFS30PlhxmrG00cPzVh5MG4hTZ6Eq9DH7xOW9eGzPUhgRo7kG9ArkaZWWxPRtjZmqAocpC18ATU3mNW1ZjXDSpJigkyOYgySV3pE2JEFKxmghhKsmHIE7vtSd4MIcbbDjKJ9+g2zBjONn2nSuj01Q/nQgqpbCqDudGX8+JYeSf5A5tWrESqSkwiF8tK3JeZoa7hPkAmvacwoyxLjEajJPpe/02m2Wl0DNU6RMzxxHFme3sbFy5cwIULF7C9vb2WaKtikiAQ33K5xN3Du7hz5w4AYFlJnI+iKIJpn94f2ZYViUj7IbHu5cNMIJtjMt3CZLqFO4d3JQcpEM1e1bFKvkNcvZli1p+rly+grmY4unsb4BZgiR2/IjXGjaMvIZ5eNl/RoxjsIaGNW+hcEP6xm0sEIwHngoMXcwugAagCWQ9QA+dPz8bzjjjtoijwAz/wAwBkYvyTf/JP8Gf/7J9dua4sS/zgD/4g/spf+Sv41Kc+hb/5N/8mfvEXfxE3btzA5cuX43WXL1/G22+/jRs3buDKlSsrx++nPPnkU++kSw+07O/vv9dNeMfluWefeSj1Pn/l0j1eeW9BiFbuunDl7IvWlFSKvxeJ/j6MNWRzTb9YQH3dpknI5aef+tp7qy88fHt7G5/85CfvvSEPoORZhgv7F3Bh/0I89tGPffSBPuPyMx9/R/eNAex+5P7u+dAHnntHz3roZVICmJ56yZlE+5d+6ZfwD/7BP+gde+655/Av/+W/RF3X+PEf/3G0bYu/8Tf+xsq9f+tv/a34/Tu+4zvw0z/903jxxRfXPifNVzc8fj/l9ddfhWtDzkVW8GBNN0/FLNNwkOF3hBnEptJmEjqzyPtGlfv7F3Dnzu0QQ1gwNgmW1M9arcaihigqFRU3c86hritMtveR2RzGEJbLSrjttsWoKKMdriQ46BxfnBeOlIKXjXI70cU+WJAYvzoEz37gWbz00iv9wQliHFGn/JRjmpqYMRoVyHOJDy7choGHBdsMLRMaxziuHQ6OZ1jUDaqmBQEo8xzbkzEubE8xygxKS0BTgeCDoxBH7TsRRftaipyXiJu7exdxeOcWQAjmUk4+xoG5hjEeNgOyAJtKxMegQGblpiF/fSHP682RPlfeicI8ONfnsJlZYokHvNrXWZSkNLLjE098LV5++XMQkz75eAaqqkZV1Xj2mQ9gPJ4gz4u4PpbLJV566aWeDXSKIRtjJDpf20bOW13ksyxDnueYTqfR8WUd/hzb2TSomwZN26CqKlSLJZxzeOGFF/ClL3yxbzuueht0FisCaXHH8abQDYtjmCFGYRY4uv0qjg/exM03v4SPfuhZXNjbQZZlcA2DYGFtEaJXOoAcbObhCGg8cHjs8JUXb6L1Ob72678FWT4CU4GaS8BSkM4AJsLzz34AX37pxZA8uHttazHt5I2qKagJF2nqbwSdjfdBuiAG2QxsLDwZ3DleYtEwakdoyII1Mzg3MFxhWua4vLMDLCuUNsP2aIQrpzA5ZxLt7/me78H3fM/3rByfzWb44R/+Yezt7eFnfuZnkiAyXfnZn/1Z/IW/8Bci58nMyLIMV65cwc2bN/HMM8LV3bx5E1euXMHVq1dx8+bNeL8ev5/Caz3FzmKP+otNiDb1zou+T4iXsSGhgV2/oTCLy7YuGu9VtBcCEU2RQoAjodWiTdds8o4b7OzuoSwKkCHUVY3bt29jNjuRlE4hRCwQYjNQiJ0ciWrnDKEbWIzZAWBVE7k6Un0ShQhPUNgMxFIluD87DxgPBWQMfMRQc2uxPZ1g0bRwEAehpmlQty1OFguUxsBMSuS2QGZzeFeLg4QN9shg2DyDCxACI0Ldsb1ecWxmiDkYwkISKdlAk+GGIcq4Gx3mgIOHXTMasp8Fdg5xbkQrCWaBcJwLNszOo1kyWoW/Ar7d3atmovLbGAtrMywWC2RZHqwyOpw6hUiUsVHiHCPrOYfFYoGtrS2Mx2Ps7u4iz/Oei3rsSYKHK/5d1xLw6ejkOAap0mQeAHomh6vexJFKx1FK55ZCgmQEKPCeMJ5swzU7ODg8Qt04iZZjLEBpsDMEIhlCJQTPycm4hHdLVJVYkMgaEcYiXd3rTRL67dv81lfv7TvqJfcGWkG6aamuwnFgCihebEhSIL7y2qu4sLuL3Sef3NgC4F3EHvnRH/1RPPPMM/jH//gfoyjW58f5nd/5Hfz8z/88AOC3f/u34b3Hc889h+/4ju/AL/zCLwAAfvd3fxdlWeLxxx/Ht3/7t+Pf/bt/B+ccXnnlFbz88sv4+MffmcikpUMnBxgt05A5OqN02Gf8iJ91VEpGew1G32IktgS9SZwgqt01qvgBhHstxJ04D1yVWhh0neuiFG4cAU76HzFvSGquZJxilckCTMeHB3/jce44Syjcz4DaXhP1vfnIiIWGZjRpnYPzYZyCy7JU1f2Vsema3+H02hcdt14El9izod6h1+6IRQ/7pe8Q3d+Evwb0daWj141ROgeirb7zguN6xTrjqMd+a50Eik4r8qyu/jRM6+Z2c29DV3NBzTizrqT3Kafd1DXquhadCnftIDOwElk3BwdzNe1HamnCgHhRZjmaxnUhF1ZGdli/jodEAGTfhqiW3RwejvLaSoaTAzqHO/qB3id5+OBrv9267vsXcnJW9W+LxQJN3cS0c5vKO8K0P//5z+OXf/mX8cEPfhA/+IM/CAC4cuUK/tk/+2f4V//qX+HGjRv4kR/5EfzET/wEfvzHfxy/8Au/gLIs8dM//dMwxuCHfuiH8Lf/9t/G933f96EoCvzUT/0UAOC7v/u78Qd/8AdRSfn3//7fx+gsR/xBoSSCXDhyf/ev1CfvMg3SpMGblKscvkQOiVk7c7iudIRPREdjbBQpXZg4DIKxWbI7CHdflCXGkzGcdzC+228ppvpaP3coOb554g7u4U48JASnGgK6zORdn2WRM7wPbvRhXGQyyi/nPUZFDscQaEAHNjh6VFWF3AD5eAQyMi1ZCSKJUtfDhI2GwUb5Jm2kiRIFxzPBnpdF2RW9MIejxOEflZVp5WTyfdPW1RF2DXPQekbbhkBZrUPrJD6F574ymEgyncg4IiSelngUkVjGa4UAl2WJuq7hQ1gAfb73HnVdwxgTlZaTyQTj8XgtZ50WJdTL5RJVJXCcOkYV1HlMRqKbblIJcT6Nm10dNEEKLSxgLIzNMZ5uwXnJNVrkWbQGk6TTSuwNnG8BphgGYms6AqjF0d07KMsxbGQmEyuO9MHvsOjsp96vrt9qnNDzeE6vD9IwEYE4KDvYYrl0aBvA0ENI7Puxj30sWoIMy1/9q381fr969Sr+xb/4FyvXlGWJf/gP/+HKcSLCj/3Yj+HHfuzH3kmzQiWaYiAeOOP1DHd0WjlHRJLCKkzamICA+q7XylN770LM7sSMK6ky8E2AkYw2zrnoCswkjgwmKwBroqRurRWC7RwODw5iEB0bRMUBE7122fT5QSVANLiGMZyO3L+gI97hr3cBCiAPQ3kEgGxIy0YENK7FdDSCsRmqukZdEdh5sPeo6lriezuH7elEglCRAcPFDNyNc9JnySMWggch5IsEvJHc8965GEtdrNotGIALMb6NUbvtyPiFHoZQvr1EDECfARh+T4mWQDFirSJp5NrWoWlatG2ARJrgDcdIHw5rguNRIExEwgl7KxYbaShWJdqTyQRHR0fRZjrNsl5VFSaTCabTKXZ3d6OEc1YSBSXYBwcHqOu6g7fyTKQj1o149d6uzr7LOg/GaVg0gZQ1FqAcJiuxtbuPxnssqwqTsgyQIYuTls3DczyalkMWe5kT+3vbMHaBWzffxN7eBZhczOZS/jiCJSvveX2ZVw4vvTXDqzfm+MobJ7h70qL1jMwQ9rYyfPDxKZ66MsEHrm1hPMpiT32QHDmNexNEUJmJYQN0GQgZmHPMj2vUO4Ch0xnVc+cRuXl68D2dX6kr/CPSXafwW/s8NSdiRvTGW1szukWb4C0qUgNiDtjj3wlRidRlcg88Jel16/uQwNxyLOGi+zx4R655eN2KQNFxFymMkFZHUBwdAIs7dsY2bHia8kztlh1ao8HJKRBtpawM5x2sxqoN9XfQiUouKWTSwSQUCKUS61OXKqXiq34ZctvJr3A+mnsyJ16wLJtF+NtJ4NSPvTEg/uqMRERdwo60iUTRdyE9p+9BOfMsyzAe9+19N8No6EEiyuHneQ7xJ5CNYd3gnVancpkbr49jIswKGYssL+AZaF1kb5K10VXMQYJSNq0oJG53tZRokmAOmz7iPBq0JM4f6tUMvHJ9jl/+LzfxB8HVvW5WA01dP6zw5TdmKHKD1jG+7rldfNcnruKpq5O146DN6E8pkRrAhKYVs9A03MG6cu6IdmKE8U5rWDkiChgSpYmRzCsKj8iz5F+Nc6BWFqkyRtqmG0d4KdSfiGm4zLZ1Ef3ShWytQV7kgiUm20GHmq/ngHpde8cDs25DUOKonGYgTAREkIp9uFIwxwzAuCjQliVqqtHWNbx38AQ4ZzBfLJFrggcQ2oDheyDEZBGLDO2+4sLz5VIIoWtB5GGtBCEiykIbHSTuQ9hMJYBcZ+EQ+zjsZ8JdRx1A91fxbiHOQQHtNAQvwzvAOwJziJcBfQcE1UT6QLQEeutvfkqE27aNhDrFqJlDgoxEAb+zsxOdZ1beGXVOLkMirX+ZOXLnWZYFiHCV6eGwE/Y9SrlPIDfMOR03ybcaNmM2IMowne5gsTyBJcaV/b1ufmu9UZEXnFUg8F2eW+S5QVXNwb5d/z43zH+96uCkxr/8j6/i1RtzNGGjbU9JpOAZWNbyHj/9lUN87qW7ePrKBP+rP/8s9nZGsbO6YXdWaDoGwZegBY4OZzjZXaKpPE4j3OeOaKsTReTwANyLGLRyXZhsBEjORmsiPCIOB7JlCgceXkNQGPmQbboDTvq7tLUdyVWuSBei4pJVVcUdSEXgLM8w4lJ1dSHioE84aRHvN2KKvG4FbaLka4h05LwTLDkQH5l4Ht4GXFu5f88ASdxk71pkZLA7HcN4jzkxjuslfMtomVET4fD4BFvTCUZlAYYJY8lwMEKwvUPlGsGBOdI9HBzP5FnOocgMyiJHWY5gqASRA7gJHJ0PLuOp5JQu7n6y21Wf5ZSzVaLq0TQerg0SgxP9BHtG2wLsCewtCDY+k5kRGEk452FM2KgshWxDnTNJ27ZomqbnGZznOcZjgcuOj4/jcWstnnnmGRRFseKS3lcAIs6z4+Nj3L17NyotVaLT7459cn8nqqjDS1qnPisSzHi4g9xksxP8XoQnzfhiYWyBvQuX8NpLN1AtGM899WQMRWwtARojPZpIqge0w3icY7G0mJ8cgH0NEiO/wbvrJMR4LBDV3/zCIX7u194UJ7h3EHubGahbxotvz/APfvaP8Je+8yn8V19zRSTiAJdYm4tCmr0kf/IE7whtA7z99h3sTS9iMWvxx4poa+EEtKSN2S/SG/pf9KWmkEhKsJVsJWhA/9npmciFoOMS0HHIyp1Ej69AuGV9dF5lhrqsMJEoxmWwYQxW2jcQ7xXGTbn2Hg2XXkapIgHNO5wQnZjL/fv0hHhLSmKDIrMo8gx1MFEU7lckjKpuMBp1m5wLSj2NBS4ehR7GUI9o100rMcu9A0GCHnkOeCdYkkvEFtNKWymOs+/aL7hOhJjWjW+nhFUYJHDYKnkMrETSEKvgELYgCmQCG6WGDOvc1XU+qo11GrEPEHPAlMveBF8oF1/XNRaLReSws+ClG+2vQ1KJXmAy9DntOHe1Q6esubR/0m5EKAtkUZZjNI0Dh3714T3ubkL6TjmEaSW0bQ0OiTnCE3tMGGJdoRfM+De//jZ+6/N3ULf3yuBtLt6L1++/+ZXX8OatJb7tkxdkdq1dpAihDYDlosJyKUGrTivnlmj3d/4OCj299AcrpvgisZ9WM6yYlBTAOkXLWk63t+Gnk0kJW3eOAGTWoK6WIAoOEOF6ImA6nYizTV2jLMrQt/4zFa1jPbWWy76/0t+kkro44Mkq6hmVQDQQvyx1E6QC5xi5IRSZxaiUiHU6RI1rsazrGP/bJ1ncvfdw7FBzK2CUKvUAtN4DgUg2zsM0DstljfHIBmWtjRQ+EtoglVOqt06JdmxV2tewjXqxiFG82rWSxMA5ia8iJob9XJQSOyMZT7LJsygh1HqeYG3WUy6mUERRFJhMJnCtKF/X2V8Pi9pv18GMT7FrJfKpdUhqSrpOcUnoUof17LTPmmaEOGdjqAVmABK/xNhcrKfYo2kdsiDhEQDNnNFloNINmGHAyCxhOh2jqhZYLucw4/04/mBOjJw5Pvff/Ppb+M0/vINmIGS921K3Hr/1BzewqBt82zdeXuGsjDEgT5GufOADH8C1a1eQZacP4Lkj2soNc0oY77WkCyrE6TVGQqZaY4VwG4JNJyqz5pbt2oAO0+2IXLd4mV3kTikQbOVwiRkWwo3OTo4Bdtje2oYBB6sI4NLFi3jjjTewmM9QFnkI1BPSgEUKxAFjT737hqJi951XvsWbet9UuOxz1FYINxNaJ5liyAJ5ZoWQhgUF9Q50HuMsA40KsBujCTEsmBnLuoYHYJcVnJMRlEUpnLgnhssQM/8oBFU3khGEPcCNh3M1CHMYM0VZGFjKBFYK9tretfCah7O3kIcrN4WBArEPcUSUSLchlkiESQaxJjrJzAb4LihoQyheYxI8CQbMCpmJF2PbtpjNZtjb24ut8t5jPB6jLEpsbW2F3IpdSrJNRbnqw8NDNE0TnkNxQ9C69X2IRVMyFgn81q2zRKKjxJ2lR3v0unDQEEzEpAmuFU7Z2BxZOUKWF+DGYbGsMM3EesUbhoENiRe42/RYJCRDQJlbXLy4i5Pju2CaYm/8BJLFtvJW/9MfHTwUgq2lcYxPf+EO9nZyfPi53bgRRkmGEROG/Kk/+SexO51gPD6dLJ87oq2lpxw5Cx7ZcFq5alU+EnX22b2bVPTqWZVE8iYvKTkTuZIg98WpHDgGIuG0m7qGK4vAlSjMAIxHIxC66G0rYTh73o7cWeelkmVsXJ8z6lmLhC8U2fX+6Kz+Fk5b82cKFOCgNttgcbaBd8jyHHlmUOSZuPJLSwWzrhuQcYFoh7q9bEpsxc8NTrckobjROQcIbpCEZVXD+Qk8U7AfDxEAg0TAHnHD7d6miPZxu+O+Uadi4szowsuGoFRKxNW92UQ2XmERDS4mT1OOmPqsfpQMicSO3zmxvR6WLMtAuUHJZYgIKRj0WXBI0zSYz+fRpE8dbnTNKDHXexS6i286sXwidES+w7flnfWFy77EQug4zE7KkI1MEihkcERoWwdvbTAj7UvPUcEPjXQpsbAn4xGaukJVVwlcE++MdRwcN/j5X33zoRFsLa0DfvV3buDxqxNMd4vQfwR60o3FE088jtIanBXU9B17RL6/i3rSrQi393Z3gl9r0s5YeushddHtJnaMBxHFYp3k6b1KuEXi00/k0QjwTmKNSLwFdYuVStRxwgW7ZOlrMjlJuWZOnhae/I5gu9Nu6i8mdS5JvTc73hNiusfCGedZhrIskGUmLmxGuD9y0hQIR5cRSCxTCOl2qOFZ1ZHGM6OpWzSNQBdynqBR1/o9Gu5WgrVHQs0+5HHsYkinURnZcyQ8YbtPet3NR33WEEJLcd7OrDQdV+59VkxPE1y5X68oMpfLJWazGZbLJZqmidi1RvdT3Hxd3cNXn1qKdH1Oj2NDSbfGlOnRVdoR7/FkgqIocXR8DLCGIk7GYDBmWowhjEcl6qZCrcp8ffTg4p/9j689dIKtpWkZ/8Nvvi30KJFo1HSXCEhCip9azh2nzemHg2mc8QD3F0F/ZvUnvyFCFsydrBG74iiI8/p7iLpYIBogXl1pGWngq0DIIldtYoJbADBG8+5JYKA6y+GaGpkNm0e4dnt7G0SEg4MD2MzC2rBBUTdJFW8fkIfBOJw1mqv9HS7KSIIY4mhjhdVu2jZy2TbJdp9Zi8Y7ZESYlCV2tqc4ni9QL5YAWYnLEQJPGSXYEPd3MuoWru4zIQxpF6UcmhWobRmzhZjD2UmJjMK2wRSy2yTmdRFDUu6eQ70BhvEQ78Y2pAVrRfvvQphQ70zcDCgCZAbgDrcWSN2EVFrUiTVMUFNEgHtzRU1AU8gCWA2ktimOCAAsFgvM53PMZrNYj2ZbVwZl6HWpf9PnRuORUL+PJlG0Oik2lm7+cahXxiVsbESSnf3CJZwYjzfeeA2PXdiHtQWcbwO0qERPYDgT37qHzQz293fxyusvocUxIqGP7ZTy6vUFXnl7do9tfjDl+q0Frt+c4/LlKZhEv0AOYCt5IbMMUC3IaeXccdrd7jsAMc6iU8lIddYiNnLanetusmEnnJXeB/Q5bUqODxuq/J5y1sppm/DbtS1c20ROO7YNA07b88qL7mn4VzqZdvaMcVlp9/BAajwVXLHDR7z8EvEVgiGnnHaRZTHanHrcqaKQsY7TNr1sN30CkPwdcNriQZlwvui4dE7xobgzMzQmiSRmEDNO4baFy9bgT5JOS7nODsdOY3EPOe3huPOa+SfIhI6Hpk7rOO1+dbQyz5S4Kqd9cnISOe00W41y2kMufoXjXpkKq+Rl3bHT7o/KTkpd+41w2mWBo6MjgBHj/PSlx/47lQ2PMB6PUDcpPLL67F/5/VuPjMvW4jzwmc/fiq9fTf8ACWRmLQZK8fXl3HHaQiQRccFYNJkmDYlunyuxERYhtSoSpog1oHmwn9Uq10wI5V40m/awqIikizIV1aO4TyTJcFmCzY8mk946F0uBLMYuEa4nvaJTQDJ0B9cGK4d3xkCmDU6Px04NBoA4EG6fLEbpi45h8OEMXZQFmBuD0lqUWYY2MLqeAIKEC6DAaRtD8ISY9NeQZksBxmUhtXqGq2ux2Waxl268w6JtUYwsNCqmgSRYjogSd33TzUKgnvBxgHOEthXvN5/kO5CA/AbgLlGw4r39cYuvtjewjMG81Fsi8yBzaT6fR/vrnt308H1p7Sx5JjXxQerOfhoxXle6Jq+b8Dh9LvH6i+JmT0GyIh17A5gRYMYSXjUkEIFBL0cpR6kKYQA7BeyozGCsx3JxF6PxBIZCYgwPnCwafOYrR/fV/wdVXnr1CFXlUJY2MmkAABbsO4OaVm4u549oU0cndEi8DwJUOBaTcCJ4ypEsEM1raMNH8pkyQKom4x4mJbUpt9ZNSF0YjhGUYsMZTV2IUzKdQO65W/BEyIoRWudx++AudvcvgqAmY4Q8K1CWjKIoJdNL6yVtl65hZhhjY4xjjR2hzz9lBO9hkIFIsZDEFQ7Fw4NbhjVOiCoRPHl4HUfvJY4IMcAtJkUOPyqB1uFkvtScHxI4yQZYJBAvGJJ4xEbD48pCvbQ3hSGCqxucHDvUlQMzoWodGmIsLZDvjFAQwcIjCx5zBABZHrvtQ9c8E7wnNK1YibQNw3uDtvFoGwJBsuwgEHaTWIlwzOSp46Tjtomy+URf0R/LLMvgvUfTNLh+/TouXbqEacigcBrxVaXjzZs3oyt8WZY9k760nBZMSuJHU/rKQ3+S/q3sUP1Ca4+zEGoieBZPViaC9yXI7oKyCt5s47hukbU1pqXEoSf2IHZiHBCa4FkCTgkj4LC3W6LmFncOXsYT4w/A0giOc3jH+KOXbq+4pD+qwgzcuDHD009sITOQ/kgXsFgChQXM6fGizh/RTksk3BE+IGzaxChwcB3BpqjBlws6zpGRBMdZW5dGQ/Mr/EW3HiiIhN3xVHwmMrBZLra0i2UiOkoxiSJJw3f2NxCpgyJWSmu5uQdT+nALc/A6ZB8CYMk1mopBFKYyMgSPwuYY5TnaPMNSayNCbqhHtK21IiZnFsZa2CyLRHtrXMIQobGEaj5HCzHea70HO0bVAA2FeFOegYB7k3rtREPgDl5xnuA80LRA2wiM0rRA2wKWshjTRKh3Sgw7yKY/Rvc3+KlCHACOjo6wu7sLoPOS3XSfQirHx8dR6ZiGZE0x7E2lUyKv648euT+OfbWx3dbfpfCzgJ2A7ARsRli2DrVrMTV5kJJCQgISnY1CKggRHQGH8SSDrxxms9sgPAlDRZS+/v1vvPTu2vwuCjPw5vUTPPPEVHRZuuswoWnED/KsWXLuMG1j1OC/zxJEn/+E20wVLtS7FwNu5HQcIcUD49E+y79yT1rWC42deExEqKpqZaEREcpSMufoszeZew3vW/df9/zBR3evNafWftJx8QqLDPqWbCIKPVlrURYFyrJAWRQoijxsTBZZZsOGapEFG3qbbqqBKFojiV7zrIu4ps+oQ55NcXKRxqrFCQKhVu80DfTkXYj7HVybOeJiw7FaP0uUeebB7/5YJe+Fuo039YRU6a1tWywWCywWC0myG70G+/OvaRosFosVbHotJn6vZRM0ovM8/aydYaszrgOIkHyTs8ZmGI3GaNoWddOEGNtJG1IGaFCKXOLPV9VSlJeSWBKHJw1+/4s37r/vD7C89sbJgDwJ2PP6G2/g9p2DM6WAc8dp53kebVHVqkO4C1mEbdsiszYu9ujpaEyIYzxUvtw/axqxSDJg09mxyslV/nwdoU0N8K21uH37Nvb29rC9vR2vsdZif39frExCbOV1ZmDAoA0PvRCIIZ56IeWSupPH8xHLZ3gv9sKj0QhZXiJVPqaQFFmNGx7uNwS1ltFoLmWeY2s6hTUZmrtH0UWfmXF0dAwa55hMc4gTi9TtnCpACZ4t6kYw1LZFgEgYde3kGp8Q+7DxdKGAO1kict6EQOyGnpanl5Ro6+bMzJjNZpjP5/DeY3t7G5PJBLu7uysWIycnJ7hz506cPynRfr8WRmC2Sey1y3KES1eu4vj4TViqsL9dIETPjnfEOT6AbbZ3drBojnHwxi24toE1Dt63+L/8jzcekrR57+Vk1sBDFJMmQGmOgf/vf/gPeOFDH8LVy99x6v3njmhr3IRuEqcKm8C5WCuEM8Anauan2aTviwsZ4h/pKUP9EMz3WVIu6eTkBOPxuEe0jTHY2trCqmkW9e4f1vmoCnu11QZSk0v5liYt8DAkTh4l2UCsKbitd9HrKJP3kzpqaGRFyZIjOPhoVCapvEJb2GOxWGCcAUQjMHfR/dhzzEXJEK/OtmW0jsFsQiAoL3NJeECojrUjwkO7Ce6kk/DzfotajKS5HefzedygT4uRXVUVjo6O4vwYEu1HOQ/urfQXkjGEPM+xs7OLt157CYu8hWNGTkOf3VWbdwAYj8bIsgVmJ0fBusfjpetzvHzj9Eznj6K0LXdwaJBMPDM+8wefxbgszwxWde7gkdQ7q5uYgxgKgfvqpDoKSQXQI3hy1epy1LJGwu3OKQQxXDDcPTMeS+8hNffq2quYZmr6lZYU207LUGR+dCVwowo5rDQhLFDmbmxXIC2G7qudbkGQfTGP5Pg7eaLg1OgWfTfOXTuEU+/SmnmNmeIZziUWI171yIRhZLkIG6lEQLETHXrdg6zOfg9DmG04d1LJKzXT02v1OvWUTZP+bnLGOa3Ea1I06CGVHswVmSmDzGbyXnwHpHTvsa8piHbu4V2ZID23bQPvWvzyZ4/RnBGM6VEUIdbJdyAyXv4eNKTnjtNWF1zVuqsWXYiEeOCxF287S8Kt5kGhtdY2NTB190v8hNhKfAVNttqrEN2LSu9ZV0+WZTH903K5XAlsv729DWMMTk5Oos2zOvhou9Owr2u93h5oIYC76HqaiizYbAFIMnt4hubYlLFxPfqmyZR14xUrHyGkBI65BPPgvMMh/OuoyLG7s43q7hFa10heRhMINAwoKwB2cOzgHcsH4oZetwTnKBJwhoU1BUBWlI/xlYWMQaxK4BSbZYCd2C5G0nL/462ctHLWZVkiy7I4n/Qdp0R7NpvFIFBqh62b/7qkCmcVgaeAJCTkAy9EBmAHDw6cJMGaDOPJFprGo64BDjb6FDfMsBkrMh7wldxmIA5Q2dYUs+NDVE2Gz7yyeM+hEUD3ehOcMYSLI2PQevFuPmuanDtOWyezTlThRtSjjGGDXbPKt6qdtyHo0iohe2dvORLtFYz83kvKXQGI0dmGZTweYzQa9WKRdDu3j1xXWu/DLJRo2pgpKCO7s7EdXtnf/kfIpzodpETdg+BgZfmCJLc7gLABA2DvYEiCVU0mkzB2KdcffDRNBsDCs4FnQuMYdcNoGrEOcS7EOW6DyagJCRXIyif1eoz96jhthJ4wr0pG9zyOAymLSKSHsixjVL5h3A9mSVGmuSPj/H4HttlpeegzJlWUhmPGWJTFOHqgdpqLICdTmgoktJIR0wFmWYbxqMRiPsNX3qyQ2YfFpNxfyTPTJaIOTSJDMRfAWeXcEe3Tw1MmZnzUJSml9DjQ+y7i2Popmwj3/adELlbrvTfCvU4cTuEazTQyhD26GCm0cu608rCId6w2yYCuYh8pts2dJXMk8ZrRvoerqO9i+M4h8gj78J3jQ2lA/K3p7HiVYCNZ7Grt54KzTGxnCKvqmSBGWF3QJ0Ln7NP1l5KOKJzAG+fHgyopUU/LukBiD+Rdh/4NIcQHU7qx6sM4BnlegIxFVTWy0UszelxzYhQWizWSDKNtG7xyq0XVvA/YbACTSd79SCDCyWQiCucz7j93RHs0GokVQiIWEih4z1GEIrNMFF+ZsSH2xzozqHt5ybwR3BazNNMjql29a0wENxQl3nVd4+TkZMUSRJVUZVnGYEZqdXAW1/1QCkOytUC4bI03DY+gxtNFjxDrmjpaFzhssAO4DZy0fMSL0YFcC8MtDDvYwJkQy3lLHvAtwB5FUErre/QcHIHIBviD0DrCsnJoWqBxhKoCvJdEq85lIFMCKOCcAVEuHDplMIGDV3ims3gZDAQYmtD1ftGRVLehRTfutm1jKINhmc1mMT2ZQmLrdCHvjyLjppKw6gkk6BjB2Bz7Fy4jL0a4fuNWSP0lG6iELBH82vs26DokuTMxMCoLXL64h9nxIb7ytnvPHGqG5eknt0HoEABmkSg/8uHnce3a1TPvP3dEuygKFEURxUGlpyZyCLJ4NMeeNes9xACsUY7dXzEDgh2fcw8iENDnvIkohtQcLkBrbQwAlHLjaR2pkuthE+2OSaaYwcW5Li2a6vsptK8jZsppB8I9+FD4wDuQFyJtVJhmF4ynZDFQJNrdG9SYJUQWrUf8VLVH44DWEepaiDY4g/NCqEGZQCSUhY+FxHIeENUoqaXzqS/A3/9Y9jd3fb/e+zjX00JEWC6XcM71LEvWKS3fH4WCZMOdNQVk3jADxmTY2dlHlpW4fXA3JPs1wcNXa6DoXGYSPVGRZ9jb3cZ8doS7y/eoe4NiCHjsqni0CnTmItF++ukncenihTPrOHeKyMPDQ6hdKwDVoISzHLXKp01cTv4dlvXKwr6otu6elfsSs7V7Ken9bduueMOpwlKq7pR2Q6ebR7lgdZNMkI41F/V/dgSqD5+kYqSG2aeoIUN3Dw0MwCKDS706Q5Ua+DsotCiI/yYSdwkFAIAkyUEiuEdLhtjP1Ye+47LOumjT93RjX+fote6e90uh8M/6psn7yHJJ9NG2bQd+rehIkgEPa4sQEpkQxXyc73khwpXLk7UM4dbWFKNReWYV545o//Iv/zKICN/5nd8ZlXi+bcBgEAvxVPgEkDVvTBeU553StJSj6x8XZaS1XcxioI+VD7FsPZ46y6QZeY6Pj0FEPSuSLMuwu7sb4RN1c9aFnMIlD78keBEHdDd4Fnovgeq786seeoJtR1ADWlGMiIgwdqSmf8JpgyRDDYAQ3lZNIFW3wJAofFYsQxoHbhyMzeFYFPk2G8GYEiBCURYoy1FIbFDj6PgERZ6jDMGp5DUlkgIr6eZAb0gPv2tNXqrjICI453ou7qfds+n3+6foWxVdhQ8wiWopplt7mM8PcHSyhGcDxxKegIwVgg/A2sCwhIxGxEKwywyYjgvYh2T1cr/luWd2MCqtKNoJYkRiGASHFz7yAWyPt3FK4iEA5xAe+c3f/E38xm/8hmQzB6LDDLOHxgyJRJu7xTW0e11X7mfCd9yPbgx2ZQGdVW/antQC4OTkJDEhlJJlWTT9W9ePoZXBwy8dwWJGdLSJCskBZ8QJ5KNjJqS9I4Ip4SYW07DOIEAWvI34uMAkSi07xbBU7jyjaRzqWoi2BoiyWQljC1hboijGyIsxsryEMTmOTxZYVpLVXZIspPFghpAIekT2HY/i4N5UR7FJETnk0lOIbNM972VRyEyLzhCJU2oxme4gy0rMZksFyIRoU5emLYWCEOqzRCgyg3GZY6to8F4Xawmf+JrLSCUxyTTHAHk899xTuHr1YsiytLm8v97eAyiaOmmxWIhtawhYNFw8RGnWxn5JRcz7WXjUo0OdOjsq2lbq2azhX7dY9a9y0kOFpEoWKjW8Z2XNUGns5FQBu2nslRLqEHT4d7oV3NNje/fHW3nwHPTfsXMebetQ12IXv6yWqKoKdV2HjDUhuQQpsUlY7ZV+nw6dnVXuB9K4V8uh9yNMAgxHsXvTROLWbmwG5xIHlCEyomskrYXE/PPpnVnUf7xX5erFMa5c7KTjIfyXZ1mSxHtzOXfwyHd913dhsVjgS1/6Ej7+8Y9je3sL3rfROUFgERYxyvv4or33MdD6uy/ddiCCXz99mShNTnuSQiLd69O2a1yVqqpQFAXG43EPy9zf38fJyQmOjo563nNAh3k+7CKLDJBNSY9KjJG2tTCmHwpUv0cLAq0nYJrdsW5Z9wgxECNSeO/kl0pQeh1LfXINw7U+KLpEqZhnBoYB1wAn8yMslhVm8wWWyyokc/BYzBdwrkWWWezvbgunp+FmewpJE+GT9Zz4/ZWUYz6NmVBHstMYjfcdwWaEMMUBDuHAcwc9g/OieCyKCS5evIqj4xkMWexOt4I6Qt2a1MNZ1NXsfQzceGF/F0/sLpG94VD794bkWQN8959+PPYZ0LYbgCXjk7nHKXLuiPa3f/u34+7du/i5n/s5fOhDH0JZlGjqKoqTkWiLzC5KJ10I5t1xRZsKQcz/vDVwTp93VgAhWsHXFR7RCG9KtIGOA9/b24NzDjdu3MB4PO5tFo9qweriSQLiAgjplUjieZAq/9hH71UAAPuo3CMz5KuV7KZ4ccdRAQjj2o1dx53L/UIIhLgZAJImzoIyA2JCU7c4Oj7B4d27uHX7ALdv3xb9QJ6FyHGEyWSEC/s7YnNOBhytdRRu02zBPtluHgwsdRY3PQzjMFREP1rdxr0UBljjvadtUmZK+lIUYyHaJ3dRFiPsbltwMP8ThZJP7gpwqEwk7O9t49ndN9H6967P3/qJi9ieFmikcXFjogDKc+thw/w5K2juuYNHRqMR8jzHbDaTjB3ocyV9W+l+eVALa6V+le3RhzmG3GK8PFFiAavckRLodTGRh4426T1a16OyJOm3u4NG7n3zCGPFFD8Yjtpa7S/6WJU0JrlTWWCK78F7D9e2aJpG7NxdyL6TKhVZI+/1+7UJ1tpoMfMOy1l6kP85WY1oWbsKV96dwCNZVoTcnN1myGtqSdcxMSMzFtMR8OT4OuhBvpD7KL/xmTv4pV97HddvLQDVnuqMDCaPTdPCte6PHzyyWCxw/fp1fPnLX8aNGzfw9NNPxXCtUhjcl8Kl6Ip+SO+UgGhF4v3mVGSbSioS53keFa37+/u9Dcl7H5WSStiHiqeHb0UQXNED16uzMNUVcIBOCDTYRAaRFodjFCGHTpweXtbx43qxmgvaaKdgDIE07r4xuHPrFu4en+Bk3gTO2uLq1Su4eOkijBVo6uaNGyjKHMGXUpI8eI9Opkg5vWhHIgz4Oxzv9Samm/Ug6YatttqpMjuFV94fJUidwfTSBOWiJhOT8BIWeT7G1vYerr/1MqbTCq1nlMZIDBsv3q9i8wyAQko6yPhkxmBvZwd/5vlj/D8/f+094bidY3z5lSO8+NoxLl+a4Du/7SnsbofQCGzQ1B5f/crr2NvawdUrl0+t69xx2svlEtevX8eXvvQl3LhxA/P5PIa2tBpHO/gsx4mr0CkeNPfZRzQ1/GvnbLNy2WoNa7jsoiiwXC5xfHy8EnCKWXIBKtEeOuLcH6f7TovG3OgcYxhihicWJOr91sdppQ8aTS8h2ukHgYMNttQ+OabYqI6tWgwpHJWm8zXGxFx8hgh37tzBq6++ildfexWz+Qw2y3D16hV85IUP42Mf+yg++tEXsLu3i6LMZUMCw7Mk+tUEwCssUuzXu5tTp1kXDYvOLd2w03s3Zbp574sE/iIywYzPRH0AmQxMGbJ8hK3tfRzNlpgtKrTOg6yBh4fzIa0dK0MSHNuIJJG0Ndjf3cG3vLCPS+WRJJZ+L3rJQOsYb9+Y4f/1C1/C5790AEIGZou6dvjqV17HzRt3ziTK545oV1WF5XKZKLfURnlVYtayEVUeQApnOS7E470KNQZz5wfYwTQJ1V5bZ7/uIawx9H7U0ilcHxWR7hfu/TuguEOlHRJF2+C/NAZ3d3F6rMuovr4hm/rdD+kKQNKjhQ8RwRoTQwNogCZrbZJ0NUAlOr6U1pYWSv6+e2Lx/uGQH1w5e3aK7sDYDMxhTaeMyOAvJctQoweIB3SO77z2R8iz95bsMQNt6/Eb//kNfOq3X5dQD63HclGjrtsz7z938MiXvvQlvPrqq/j+7/9+PPPMMzCGcPv2Lezt7SGzFq5texN/aKb3MAmcEgOXOPL0OLGgOEnbM5zS2r6iKMDMuHv3Lvb29qI7sypbR6NR5Ljatl1xd36ohSDtJiWpndIwctxOrHnOomMUCXO6FZiY/LeTlkJs7PRJpBHfCIYBIEgdzPDBDV44fY+LFy7A5jnmtcNkMsFoNEZWZGiaCq0T3UiWGUi8COFgW9eiqSvYPAumparg1iYZWDJxy3o35Haoo9ikUEzjywyVz49Kl3E/pSdsBnMPWRIdwxTILjxbjCfbIJNjsawwLQtR5hmDNsCfFKyNOISWlKkolhlFkeNDz1zEX//mj+Nn/vWn0bj3dhxax/jcl24BDvivnt/H3bvHmF+o0KwG8uyVc0e0P//5z+OVV17BD//wD2N7exvMHm+9fQM7O9uwRY629jBp+qWBguxhTmiNf2J6i61Tig05dLUwGTpLAEBZlvDe486dO5hOp5Eom8AhqpiswYUeKdEOY0om/S1/PQDHXoLaEwv2mHDaXek4VMJgAyMjISyNiRYmwU8ywCUdq6V6BKOKxQDbeO9gOGCf7HHp0kXsX7yIpYsUFyCDupbcnK13sJmFd+FeA7Rtg7paYpRNRLQHofU+KM5MmGcmcIa+3617KKkTjf7Wv65HpLqSesMOifZ7aru/pvRVSB0c5n2XOFu+i5MNI8NkugsyBrNFhf3tLVgjnpRt2yIzmo4OYO+CPtqETYxQFjmeevIJfNMnnsZv/+ffwKff2ELVvrdK2rb1+NxXbsJUC7R3jnByqUJdnX7PuYRHnHO4cOFCTITatuoN1Z/83ZF+eSAmUT1puCM4IkVvwmnS4+sn09DLbRiqVY9vsiLRa4b1bXrOOy4KRwWUQxOXx7o52axWnt1V0rWVep9BZJLwoEE9UJKfKjXDuxhwoHmehah5ZUgobCMu7kM0NmN1XFfto9cPAfUH4h7KWdLe0EEs/QyVkj1LpXcxnxmbYcGz2r3xnvT4KdBl/36DLC9grA23dxtshEaGdbNsDUrAy7IAEeF7XjjGd318jDJ776WO1jE+8+oxli1ihp7TyrnjtJ966ik89thjuHHjBl5//XUslws89eRj4SxH7mNo5ws8GrGREWy2jZHPKdzPcIEOnSwAmdR1XUf8Nb1+a2sLs9ksbmTp4n7Y1iMbzwRlkWMOUfkScVjZJAylHuXJ9J3JsRTPFvov93fvtjvLzDC249qNMUBwmiHn4BhgatGScHfOe9R1SDicZ7CZhRUqjsySBPbhHSyLDNVsBksaZkCjz6Wbibb93W2EqQWR/t5EqN+vJSqe0akBJPBXyHTE3TXee7i6BZFDRozcFHjs2lPIC4/xiMAkCm4TKuozYxRRuqhqIuXaAWMN/tp3bOGpyyX+r79yiNbxexpUynvgTbuDb/njGDDq+eefx+OPP44vfvGL+PVf/3Uslwv8b/83PwRAJrmmaooLN5RHQrDD7MmMgbcWnrkXQ2RoSZGW9NwwbdRyuUSWZStEe3d3F845zOdzOOdijPHUvlvre/BY/rr6Au4ciKXnLt+i/tdPGzCUPDpiTIG76hiTwfuLzDXHjYIChs7BO1aJNrsGrm0landmASa0rcNiMcf27g6mkzGm0zFGRYnMGhR5hjLPMBmXqJYjvHj7NnKbBYsUC0/qKKRNuX8PgHUbq5pvnsblD+f0Ju73fuZ71Cbw5nXSY4QG34fZd6JivWe9ZXp4PHML51osqwoEhzK3KCcjPPPM87CFA9kGsxuvhflioAkqQGoCSB3BTjSV+iYkhCvwnV+zjY8/s4X/8y/ewIvXazSON+uvH2JhAHNvcdLiTKHs3BHt8XiM3d1dLBYLHB0doaqWPVOnd8Jp3su1G6/ZwGCdZs0CrHJVp5WhaZ/2UYm01pe29b4W7X0qsHjQ4VTZpMORKux61w4IDa8Q5b57BHeUMSqyhu0e1rDSWg6miACYDdR0LA3KlGU2JJsQKwQJuG/hXdsRoWReRQki/DrNqWPT+J4Fk5wGe531rEddFJ9fLevXotJaz50dvDEGo/EINndgU+EkfaNhQQ1DeEUUpS+s9Z55cSvD/+F/+Rhevtng3//Obfz+iws4z5CEzo9OcvEMfPbNu/jzlDR0TTl3RHs2m+HTn/40XnnlFTz99NPY2d5GUZSwNgu2nB1nOTTRe5TadSGcIlJ7z32OYM21ShCGXHGWZajrGovFAltbW70NSk3/VAm5rn+buLF32bsNnQnHAwfkmUNiglB6m86meu+3KeIOT+qIAQDGwDNLBp2gKIQmrMhycb4ig8lkCiKDxbLCcrnAwcERJuMRtremuLi/CwJgrMXOzg6IU0443SgTtPU+mr/JqWad/uKs++7n/Np7AujchV64/6LtXke4RTlMEgzKeXg0sBawmcH2zjYyY1DkFqOyAGUAbAOgDVBUiN4pNXVQSDLeZDQ9RvJMiC238g6GDJ67WuJ//a0jfGj0Vfw/PncNiSb9kZWXb5+gbmsAm2GSc0e0j46O8Fu/9Vu4efMmvu/7vg8f++hHMR5L5D9jhWivE+NWcdSHUBJaRkSwVpP2upCbcD3x1GzuKdHWthZFESMa7u3trRBtjU9SVdUqN0gh3vgpqajeOUFfN466vDgQbQi2TYFjTsTv9a8h5dnvoyWhn863YJZxqUPQLiKD1rUwmYW1GWxRwrWMDIxyNIZrW8xmMxwcHOD69evY3d7B5csXcXF/B4DUe+nSJRzcvoO2baPljsJAHSepn1SKWA+DrfudQgv3ogd5kOarapvuMFwzZ5eh/mW17WEuOEbbiKVT3VaYTCSV2s72DkblCNZYMd00FUALwNeAsYALjlOqDtHxTobaaGqywXAYY0WXwRKPu3UtTk5O8PmXbsH4S/Dm0TsjZZnBm7cP8IEPXdt4zbmzHnHO4ebNmzg5OcHOzg6uXL0SAqTLohH73UesrAnrVYhE+ACRCPdN+vqLep21QFqU6GpeyN5jQ/3vxBPu3W1e1Ptw77ecTyGFnkKRE850YIrZQaA6TskqHNInTg6GR6eQjCrDkHL1JG7UqRTEQMC3l5jN5pgvFqirOj6ESLIkqfjf2RXHDmF46LRyP5Yj6T1nWW70x/H+3m1qoXKv1w+/p4R7eE36nj2L+z1DzPSKokA5KlGUJWyWA8YGSUYwbIHa0L1fba/+F3HIAUClZIC7OQkwXNvi1mIET+8NP1s3Hq/fPjr1mnPHaed5ju3tbVy7dg07OzvIMrGqEHy7QlUtcO3KVYkBoupi7jCzR1WICAZGslYEgpTo1GPpEbcNRFyJ8mw2w2g06mWsyfMco9EIs9ksEvXTvCUfFuaZIo1KMFVBqH0W8p1aR5xeEwBsSkiiNLszV4MQaIQwF8bExAxZXsAB8M4hY8Lh4V0sl0vUTQNjLdq2AcHg4sVL2Nvdwe7uTmwfe4YxtjeWPd1C2qANjT0Ny06lorPezcOyHlnXnndyf6pfUa5bNzr2FlmWIy8KjCclxuMC5aiAzSw0El7QQEMUjxZ5UcLXen8IWQAfLYTAai0VGCDpQWyXcz6uQ11b060tNKMngfl74/LvmfHVt++ces25I9rj8RiXLl3C13zN1+DKlSuScd0SXn31Vdy8eRN37tzB5f/6MoqyALiNuzqAGFznUShr1MHGW5EOpB0exCE+SsKhaCLXodmftlkT+qp3ZMpZF4XYpd66dSvmlkzPDy0S1lkB3P9CXYUC+oXhPeDJB6uWDlvUllHEUDmpL0gp9/R+UpGcI57tIdycMRbsWjjvMZpOMFsu0DYtCgdcf/smbt66iTsHd7C/fxGTyQRbWxM8+eTT2NudYndnAkCy3yCI1hwwbXk/EvLXGBPMyNZzmZsI8mm6h3XvYx1ksW6Tf6dlGN9mXTntOTp308Bt3nvUdQ3vXUhWUmJ7e4zxZILRuECWqWNUJi9dw9hYCyADKMNovIWaPRrn4MHBT9aH+mXGGBPgP2lk2mK0rUdeGBhjUbceZAz29/fgsxnuF4J7kOVofrp3zbkj2tZalGWJS5cuYTQaBTOsDMvlEkdHR7hz544sWjJd3NoEZ36oBHuAacukGkS100up4zRTDm4d16OJFeq6Xmm/ekgO6zjNvPDdLvaum7Rm7iecNeMex1uTKSjurwMTq+oLvyouI720O+8TrhvM0VnDhciLGozrzp0DZJkosbe3tzCdTDGdTDAelZLdTDogCjGknPYqAje0qBmWTe9DTeCG16bnN517lGW9nmj1mnSNdRmYHMh4GGNR5EWIAx+SS4QX2b3qLlOotZlAJfFxySgnLyEKc71mhXYQAtwiuLgo7Q3Ojmr98Ep7hsH4uSPaZVlgf38PJyfHODw8AILeeDqdYnt7G6+99hqWyyWKPA8vFkCw3mT/CLjsQNEUCgAGYm1fhxLPb+KGhzEoqqqKhDotW1tbWCwW0aV9KLL2mjhYXA+udIrEVETusHzuAH9opJJVyIhE8j0dJg63yaadLkJZvRITW+I0ExGWVY2qbrGzQ5hOt3Hp0hWMJxNcuLCPyXSC7a3tMG6EqnJo6wpt3YAAXNzdiTg4gG6DWX2TG9UpPUhlsDEPOe+zNt1HVe7V2krPK5fNLP4JWZbBmgLGGlhTYDQqkcVgTsnmHCsKZ7yHaxqc3D2GqxbgtkWe6IrYD5W/gwr0lyGwZzh07SJo4un3rhBODxp17oj2dDrF448/hlu3bqIoCslcDsbVq1fRNE1IxXWMLMtR5Hn0kiMIxgXVWzyCohCdukVvcvZRIppGodPzqVUJAMzn8yiKpsqxS5cu4a233sJisQDQEfuh9cgmZde7K8N6wobDHuQ1vkZ6SjkmFUvSBRx5+MGS1uP9Z2U2g7VO8oglCtHGOWQAsuDFeDKb42S2xOUrhIsXr2Bv/wLG4wzjaR5SkmUo8hLsPWazCsdHh1jO5rAEXNzdBZFNgjSFPnCf8Gj6uFRHAXTvorvOrBBxZu69K/2+zpLkYXHbQ6WipvAbHk+vTWE9JdTOOSyXS+zs7GA6mWIyGcOYLPEr0KwzicgU6S/DNQ7VvMJbb99ERi1GGSOfZiBjQOzhWw9LFprKiwEwddndtcTx9C3IZCEQGOPCVoa3Ds6OtvewSubnp59/RO14ZCXPM0ynU7z++uuYzU5i3rVnnnkGo9EITdPEBK1ZlsGo4kthAwCR3T2r9Jmoe78mUpwur90Qq4w6F3QEfajo0u/pwmmaZm1GG4WK1sUq2VQezOLv+wMqaRUhR70V9XlY5a2Vu1LJQMcthUBWnqjDK16QNIyfTBKUiDV2N1HIu1mDGRiNx8gyi729CYqRtK9pAXigqTyaxmOxqDCfz5FRnDHdv9pm8L3NI6zqD4amcsN3P/QyTM/p/cPzD6K8G8V1VDpyl6ChLAtMxhPxVtXr0iwlERpJ5rxntK3DbL7AKGNYGABZMu6h6PxIJ1Mn7IEMwTvRdxjTcdofe6rEF15fwt171x5YIXjs2cNTrzl3RLsoCkynU1y9ehXHx8c4PDzE1nQLX/nKV3Hr1s0uDRkzsiwoHmkNgVqVyh9w6cTnFP7oFkHwyEIfgwbWc8PKNTdNEwn3EC8vigKj0Qht224MJqXXK5f+MDFShhIkfU6yojbeo/n1+sf7nHe6wL2Iy3HBynNUp8AQAr413YLNSmSZRds6OOdxdDQDHzdoW4eqasBeOHNDhKOjYxj2yEKsCHEU6kss68Z3kyXGOiK7yaok5b7fC3hkUx+Gys/0dzoeRMGUryyDJROtqTu8HQJ8K34M3rVomwVcvUBdt8iyEnV9DN+0uLhXwrOHiQ5AJgKQFLlsFu5bjymzYNKwYoznrpUocsKifvRjm1vGkxdOv+bcEe3JZIosy7C7u4t/+2//LV5++RU899xz+OIXv4S7d+/i1q1bmM/n8N6jKEosl0twgCgE2nqIlDrZCCJey5SkIbO9mCLDRbmOa0oDYKmjjQ1eegqRKAGeTCZgZhwcHMSkv5scNR6JQitg+7I5rBezQ2tWb1xTaM05FyEEAwkYpAQxxD1hwVovXbkMkEFZZGgbj/liiZu3DnAyO8ZsPsfJ8QmYOTjW7OGtt97GlYv7KPd2wCTPUSsfiRMu75W9EtrV0KipIjntcwo7pIl6081Wx2nTpvDOrH7Wl02Kz3VxUFLoZFiHQiPGGEwmE2xvb6PIiwRKkY3PWvQ22KYVKWgxX2AxOwR8DfINRqMt3Dy8iWp+gGef2ofnFvA+SFaatszF8fXegzIb28Pew1AuEhcYJsBwH7yao30v2GwAng2+8UN7p15z7oi2htXU5L5vvvkmLly4iLfeeguzkxMsFimnnXT/vdC6B1HfgMCG+sGckjkTJ9yaNg5NwSQUbRtF0XTxaiTANBazLrQHbaOuXOw6NDtFpwm62IcbxSZR53TIYYW895TLHVRDRNFs2nvGdHuKLC/gW4T34HF0PMPBwV2R2O4eAmAURY6t6RjHx8e4uL+b2Lz7Pqcd/jltWg057U3WQbEvaxSS91JvWv/DLuugnLQtOtd0LhpV3kJMPNc10XmHpmmwXFaYncxg4JAZsa+v6xaz2RwSKEreQQbh3jl51xGH07FRLC4VwMKzpyPgG58f4T9/ebm2PQ+rEAHf/AHC45enp1537oh2qqix1mI0KnHt2rVAxE8wOznBZDIFQFgsFokSL+UY5Cd1a/3scsrL7YR+XqMQp2AJIZYFOr8UNtk0aYaQiRblKqqq6iU+UPgktdM+zX393ZWEcK0ppJdQusiDKG1Uv9C1G4w+MexVtPrkhGQFJa8B2HUt0wUcTFCMMTg5PkHjPOqlx3LpsFhWaNtWMgAZQlHkOJmdwHuPk+MZJpMJJpMxyrJA0zQQD8pM2ksK4wj0gw1c71CK0v7eCzFeV8dZ12+C2O613It54RDaGd6j86/HMHFYA9Rt4m1bwzkP5xiLhUB+DA+bWRgQrGFYn8MYseNu2xYZeQQ9JthTJMZqp90b2zgO+g8AMNq2wXI5w7d9sMXvfRVoHqHlX26B7/26rm2byrkj2hrqVEOV7u3t4Ru+4RtQVRUWiwUODw9w+fIVgAi3b9/G5cuXe2Lsg1bc9MqGTcAYAtjAWoO2FfM0IWAWxnAPMlmHF2rRTOzOOdy9exdbW1u9PqkTjv7V4+usVt59lpOzNgPlfMRqR9zt0/sS8tsHrE99YlR6huszmyGzDgjSFZJFG/YKZNbilddex/Vbt3D3bg0iCxvmz8VLFzEalyiKDC+++DIWJyd466238eQT13Dp8iXs7O7g5GQGYyTAvs2yuNt77+HYB2V3P/3XadYj6wheqnBW+ORR4tpDfFrbmUqB6yyeUjM/ZkZRFBHPluNAtPQkScTrfIOT2QkWiyXmsyW8D2EFiMSdnRg5AOMNbFYCsFhWC0xHBGMsDAx8K6rLLDeoXQsYgsksmoB5D2EkHxqyXCzw+uuv4eTWTVwoHsONxQT8CKJ9WGI8fwl47oKHOWPtnTuircRGd/PxeIwnnngCRITlcolbt25hurWFuq4wm81w9epVmXw0GKiHrohMC8VJm+4Xp3Fd67DMdDEvl8v+EwKnnWVZJOwpLLJJFH8UhTnl+MMqvt86er+6vphgPaJSDqc3BCJuyODo6AhvvXUdt+8sUBQFJpMJLl68iPFkgr29HezuTnHzxm2cHB3h6OgI0w8/j+l0inJU4vDkBGQIGWUBT01DD3iwRosjhQFW+7eOWdBjKa6d9kuvedRlk/JxHdEebv4S3jbvpMDktcv9MmZVJdY5R8cnMJQjz3KMglt7RiQAiOeE027AnENSdap1khTVmRgCVE/ZV5B20l/T1Dg8PMD162/jQ+Y13MS3PxKinVvgb/6ZNli3/jHjtLXUdY29vb3g3XaCnZ3tSLhfe+01NHWNul7iypUrEq8jKI/SEmGSDc9I0MeBBShOpzuKgSTwGtSiIZn8Q+56E1apJVW4MEtGG80int6nnHbK4T3YxZ/UtYZLXsGdOeU8af1N4U4O0AM2XJEep/iXgkOOEGmOEf46K5KyKLG9tQUyE2RZjtGoxPa2SCrilFTBsyhzMwNMpiNJSZY8bx3Xm0JjxJtm0ma4YpPklxKdhyodbmiT/t2kDE31JsO2aYAzYwxEZWjAxPDcwvkWi+UczrUACZEnWPGnIB0nWW3EhDzLUeSigJ+OCQwrY53MazIUobiV2ceJExeJUvrk5ATWWlzYcvio+yP80fKj8A+RVJYZ47/7VsbFqTTDnPEuzx3R1gl8fHyMD3/4w7hy5SpefvkVfN3XfRxEEoPjM5/5DJxz2JpMsLu7iytXrmB3dxfGGrD3fWpwBsf9ThnyTXi0wATBltU7CC7bmedtMilTTtoYE23Rj46OsLW1FWESQCSQ7e1t1HUN5xzKsoyEPm2XcuGnKcZOH5V0ZE4bpTR4kIP1XUTGeGv8TZDoIcmpTcB2VEJ18a0BAN6DnXBeFgQbCMeFvT1kWYF8sgPvAZtZjMcjzOYVbt68hVu3bmBruo2r165gb3eKa5f3MBmPut7GXJJO4DaIJYTaHwv8th4TPkvKSbnWFL7SCI5Ds7phPQ+CoK+rN7W7Tuei9x5NI3lZNcZ7lAwIaNoWrXNw7JGbApnJ4blFVc9RVQscHt0BhaBnk8lU7KhJ4EMNHuU8ADaYTLZQb+/gxq03sLN1FZMyg/NOYpawh/MtMishK5xzGMbI9hzWuxFopqqWeP311/DYtWu4sH8BTz5R4Nbvvojb2QfR+gfPcZcZ47s+4vCdH2wBhJju9vTnnLvQrFoWiwUee+wxPP30U7h161bcpY+Pj/HZz34Wf/i5z+Hll1/Bndt3gpcgq1biPWhtt0jTpLHedwtiaF61joPR65TYLhaLuHjSa0ajQGyYV8Tss7DVe+/P8HPK1QFG8L2MCOtKx2VFwn3G6yKYzmJEOXrltA0FxSewNZni0sWLeObZp/HEk0/g2rVruHT5IogkRvurr74O5z12d3fw1NNPYm9vC0WRxb2E9b8ofw/3fuXo7q0MN8t1hH04J/TaR1U2KbKZOfoLEFGE5FT56LxD3dTRn8B74czrqsJiMcPR0d14b1GILbe1GjIXAAjMYh1SlCXGoxGOju+GBN4ezD6E2DViux025lUzRIXmfPzdNDVu376NPM+xu7uHa1ev4Yn69/CxC8cPPAkwgbFVMrYKxqdfBeZLhgm4/mnl3HLaOqGNsSiKAm+/fR1VtcRyucS1a9dgjcHFixcxGo8SA/8Ni2qDArHHSG4g9qeNf8fVivimi1MJd8pNn4aDrrNCUPNBhUFSZaNmtFHzwNMgmXdaqDPoi3+jDjBe1FE2hUjSsYmEj9e3h5NjTOhHPo1VJ8RSMWUEboUTuIRIJC0GWteibVqczBrMZnMwA9vb2yjLQsR1fS7JQte421JPJu9rzVzSzeOdQlFDWGIdMU+vTTdlPfZu3utwrq2DPdKIfsAqZJd+mqYBeQNvCd7XIpno2h08N9BqPSJMGJMomvNcLE28S9qXzI0AffTaG18hhY2/e2OqMC3LAkVZgL3Htz5+G3/qE8/iX37qEHXr4c/iFu6hMAi3Z4R/818IRZah9cA3P8P4b78F+OBzm+87l0RbxX5NZru3t4dPfepTOD4+hjGEP/fn/hy2t7cxHo9x8cIeJpMJRNPNCm098jbrAlP82VoPTWajfUoX6TrllB5Xbnq5lE2qqiqMRqP4nCzLImRyfHyM6XTaMwPUhTN85jvo2eA3Dc51QIdw2ppdO4F+OIVGMPi+imSttCAQZrkrLP4QUIgY8M6jaWpYSyDK4L0PmWoO8frrr8E5RlmWeP7557G/v4fJdIQ0p4Q6ihzfPUAbHEecFwsmcZiSTUs3oZW2bSg65kNJyAcnHp0vvU1kXd8fYkmV2AqJtG2Lra2tlbjubduibhrYrJtni8UCBktYZGA0KEc2KioFtursukMkdOhYGmNB7DEeTwG/g6qqYniKnJTVFiMZAAEAAElEQVQTV6lTjRNMDMUUts9uI3ceoA6q293dxcX9C5hOttA0Dbx3+K6PbeGTz47wD//fb+DVO4zWAw8CrHBMWASB+LdeAl49Bn7mmzZff+6Itg/YoYYjtdZga2sLn/3s53B4eIDnn38On/jEJ4Kpn8HR3YM48UU3+HAneo/5DEU4MynKmah9sVpW6OQdmo1tItp5nuPk5CSKqUq01eSvLEvUdY3lconpdLqClaaelg+GaA873kemFbbYrDkf3rfu1+pxGTu5P3YjEHHltJ1rxVQs5OtcVkscHh7gxRdfxnQ6xRNPPIHHHnsMeZFhNCokTkVokYjwEjXRB6LdOk6UZmFzhTlVmOv1NMG6h5JWmjhA39P9vJ8HqXhOpUGV2uq6hrUWk8kE1lpUVRXjxVd1hZK6LD+LxQJwNYgtQA2yfAtlmQVi321W1logWhip8tgAZFCWI8CP0bayYTjvUFgKViLJ5q8c/IARV8WmpobTeTiZTLC1vY3paBrbT0S4uJ3jf/dtLX7vy7fxay+PcHO5j9waVI0wWe+2MBPqM2JVnTuiraUjaBTzIwpOtSs7uQ2Y19BzkMUzq6+VV5OxTeLl5rfVO3PK4uqJg0H5aMhFp4N0jZ229ocWBalSSM8DiFy9KrJOK+uUpmfBKIkQvZ7eUvpFFiNHyWJTvR13zquMq5zjwE8TOg47YM6eCB5Ay4w0Lwl7DxgDhnDdy8USdVXDkAnxs8VSxLNDXTdYLAjjMkceYlaIZNDh98rVpwrUwT69Mpb3QnhT4q25KNdtqnETGUTh0zqG39cR8vvdqNO6nHPRXyJuMmmd4THGGHlfHLIJBbwpbrLoX8+s8FYCvhEBZJHlYzgPNI3HJDPhJh/qCw5OSV0Rd+u0EcnyFIZJ36HNMjRtg6PjIxRFhpPZDDv2Lr71qbv4+Nc/g7v1FC++tcSnPnuEg9nD98Y5h0RbxTEHTQP19ttvwhjC1atX8E3f9E0Yj8dRqbFYLCLHkuc52qaGd7IQh/hwujvHSfoA2hvrCETGGEJuMzjj4+SK4lxnaBroUrfgneOQD1MkjqIo0LYtjo6OsL+/31vgGjxqOp1G8VX7KvevOkzcezHhM6DSvZ0pESuZoDqitmX04toPYJQhUt0xTn2CIymkgMIYZEZwy4aABRiFd8g8IWOCBaN2NUwBeHjcPVzg+ptv4fDgLrZGY3zouedw4eIFjMcl7hwdYLGc4c4h4bErV7E9shjlhNyK3XDLHnAOmbEAGTDb+ObCCPTaeC/crhJqZS6U47tw4YK4ga8JP3D58mUcHx9jNpsBQLTeGFobrWtLOp+Gx89qn8JqGrddITetL7dZnMcEoCwKwAujJKndJI1Y2zLyzADWwpAN+gkC2IJh4FhsiKyR6zkrsX/pSSwqwuFRjZ2xBVCHjdrA+xYmbNRGu+HVZZ7FR8NqIDLdciU7jieL6c4WDo4O8bkvfBYX9vfwpa9+EYeHd/E1X/stuLQ1xjPbW/jcK0vMq3frkHZv5RwSbdmRnfPIshzMwO3bt2EMYX9/Hx/5yEdiIlYiyVKiYUtFzKMVJVLKIWiYzzMX3b2Iwp1+TP7G3wRjLSwlxInQa9ewesW+rc0D7imhZ+u6jpx2SoSzLOtlah9q1t+d+Kwc5mmTeKAUYsA7oHUM64MVDTgZFN9tWGtYdwqaRwYHO1fZDDNDsCREuzWylJfOYysokgwzmFswWTgwTo6Pcefmbcxmc0zHUzz5+OPY3t2GJ0bdVpjNFmhrh72dSxjnBsilfkMsaWa9g7W5EBcIF4hEMdlZKtwf0U6JY5ZlvYBgw7K7u4uqqnB4eNgp9tboQjZx+PersBx611ZVhaZpIiOkcbKViEdpIcvl1XtG6yBhdMnAtQITILH8QeC+mQ00+iUMgYwF2wJbu1dQzW7jeNYAMGBu4AkiXbGGj6IOgdbNiDioTXQzkw2CKAMgm8RoMsHx7BgvvfISquYaXnvzNcxPFviu/YsYZQV+/Q+P8ak/OETVPmRoNZRza/Knk9xai+l0iv39fezs7CQTOBCv4GiiCruzwpH2OBIoromOTqWFTvmklww42iGmmTanJ8Ku4fM3mYq1bdsTr4HOiiS9b107TnvG8LvijmsHgJJPr/R/pxx07+g90JEu4OowVrnWopYXpjd+Yv8rMVvyIsd4NAr5RS28d5jP56irOuCmHrP5Ak3Txn1Eki2EKI0hH6V2pPu+nhieNc4p0Vav1k3JB7Q+zR2a3n+vhHgdnHLavSm2Pfxs6hNBz1OYGhJ1z3sfiPs6/KtbPLHLgrsgz3J4Btp2yCgk735lbibtCg+zWYbt7W0ZYzIgArZC1iLnHOq6RmYzjMcj5FmGg1mLn/3V64+MYAPnkNNWEVIVaePxGF//9V+Pq1evxngHuogJwIX9/Riy1RiDS5cuYms6EW1yUmdaNlluPOiinItyWMNznPDbRF2uyA6jNzE7x/HxMSaTSZQyAMQQrsfHx6fGGnnYVgjDZ0kMbIVTzhJZlLB1hEA2VA7EyyCzJnDfDO8dWtciK0cwzgGtgyELYyxcU+PNN9/AY49dgzU55idzZLnF0d27+MrLL+GkmYsDji3x1a98BcUHn8G0vIyiEJNAQ8DJyTHKkYGxAKzg5NrO1CEmTVQxVDam7zz9OOewtbWF6XTasxrpCF1XplOJFHfz5s0IfWmSZx3nFAq7lyiPm+Z7ys1r/5RoD61f0k2gsxCSuVg3DVxQAoINvAvvUaMAkGLmnT18sDfCzs4eDm++gXlVw3mGCdcSAGNF2mnbFhTgw/j8AKwxM5gIOzs7+MQnPoG9vT3kRQEig49/7dfiretv4Pbtmzg4OMDly5exPd3G1vYEP/0f7zzyMK7nktNONexlWeIjH/kIvumbvgkvvPBCX+kIYGdnB3Vd480338T169fRNDWyLN9Yd4ovPuxyKtdCq3y2Kh6lj52HpTEmWpKk7VYpJMW0tR4tm/r57qxKNhdmDgkF7nN8Vy6XMVBlqyHhpDkQP5tLeiph1Ezc8G7evIHLly7h6aefEqV1ZnAyO8ZLL72E27duYzFfwDmH1157DYd3j9G0QnQmkykmkwmqqkLbCDeu/ZEx7NtWnwZHpYRVLRf0Mx6Psb293YMa1r2j8XiMvb29SOxTt/J1z1n3PocE9rSixFpN9sQhxt7TXNL71fpETHDFXNIn8ci7tdARbQ6c9nS6Ddd6LBdVnDsq1BkjY6X6AO1TdBcP0CIDmG5t4YUXXsDO9naEnz74oQ/h8qXLABD0Qxfw7LMfwFvHBi/eqHFGHt4HXs4dp60lFSkVBhjG2wA6zsAYg9lshrpuQrojRAmqm2ydqPUwuezhYtn4LBLucp3oq03W+9XRZp24O+T83vMSoARmhZ5OU/z2j5ASZyAu8Ljg0WH/6aNIxS4EDtQa5FmGoshRB9tjMmJGmeUZbKb2xyp12d4GqZZGsXX3MVWGRC7FihX2uFeumEi8EdcR9tM243XXnjXfT8PI15XhtR3DcVowrPXAGUAhrZwg1845ZCbrbukhIpwcH7a1g9S6i4A8RHwcj8cAHEblCGVZ4hf+YIbmPUiWcC6Jtk4gDUpjrY0JbSeTiVyk75+Avb09PPbYY/jFX/xFXLx4ATs7OxiXJWjALSnkYMyqqPcwShp+k8idihJIWzysTeGUblOaz+cRHkljGTMztre3MZ9LMtF0UztNHE77/iDHQThtL9Ykxg7PIslhH/7l5IwudjmixNoYg9xagUPYw7tWXKfZgzjEMgmmgmVRwBpCUWS4fGkfb77xFo5mx7hy5TIuXLmEvBiBYHFy4ThYSlRw4wnIWuRlKXFdWo/WO0BhOlqFPZSYAuhxwXpN27ZRgZznOfI8x2QyiRmH0nexznZff+/u7sYUe+r9umncU857+E7vhfCfRrjX4e/C3YpTS2Yz1PMFGMB4PMHJsVig5HkeLU5kbrhA2NU0V+s2GI2mqF2L46MT5Ds7sEb0EWQCVGYsUmPqgMwIwGIs2DOaRpIqbE8q5DlAQVK7cuUKbAYslwtcvHARebmN333x0SZJ0HJuiTbQxdZWI38N1apcki773d1dOOfwla98BR/+8Ifx1FNPYTwe9SZ/JNqgHjF9mCXlOIiQen2jz0J0x8QpoUuMqot6uVxGj7FhmU6nUVxPReUh1zXEXLX+B5VLUp/nvYc3AMOuMkNdV4P8m97fnYxtJbHuyI0BOYA9w8PBs8S6ljRTCNcaFEUOYwhFnmFyYRd/+Eefh4PHpcsX8eTTT8MzoVo2ON7fB5EJyusxMmuRh/yk1V3RERjvkamLO/rEVMMIAH0vVA345Zxka1F4Zzwe48KFC2slryFhTTHy3d1d1HUtsE1IZr1JQahtSCWydXN9iE+nbbifTVzwbBmdLMtDyjaP0WgcoSEKE18lJO8dCGq+6IISU0xMi3IMbiqcnMywt70NC0gAL5IINMZ2cfMjw+0h6QbJwLND0zrMZwtUuzXIWGTGIMssLl26hP0Lu2iaGkWW43Ovtshs9f/ntB9UGU7iIXF1zsG1Dm3ToBwVIEIvznRV1b3rh5PzwdPqdQR4zaQPOjlRtNG6W04tCg8NSy8K23vBOgDorAIYEV3gNeMSFI7y/9AIMlwy6ILil7rpMUt0N62d0b1TTYGlOoG2aYFMoJE8y8SBw7rkIRT/KHxBhiR7ihKlYRc2jPFwvnZRHzv4Zd096ta+jqCn96dEfVNZ17b7nRPvbgNPnGt69fQtkyjRT8tRiUPSGht1N9yvFml0sbSuaE4IWSNqRdbT/xgDY3MADGMsXryxQNW8N2vl3Cki04mrSpjUM6yua9y6dQtf+MIX8KlPfQqvvfoaTk5mKIoCn/jkJ1HXNV5++WVATdTW1OtaMesydH8uxO+0P3HhDcJKDuES4XodAO7FEtGkvhorOM2EA3S5IwGRTlLrm2H9qQis3+/Xlfq00sEjHp55lQAP/qZtkwpiRSI+g2HJoCwKsSgInN2irtB6DwRO2Acc9IPPP4fxeBSJcts0yIzB3u4eoO/CWBwcHIDZYzwewRgCILb1o8kEZTmCDcTDJYu/w9lpJRuRSizz+Rx1XcMYCb9w4cKFGCdnSEiYxUTx1q1buH37Nk5OTnpSkupytre3sbe311NoriPiqbv2JoVpOtb3+87XEX9pZ0gXZkWJOZ/No413fyOT8A7xY03QdxBAObZ39jGZ7uDWnQNUidK9mxsdofZe5oVuEqrGms/nePHFF8WLGgrDiGKcPWCNhWsdPvfq8oG4rb+Tcu6INtD36tPFoZrsqqpw8+ZNfOELX8Cv/uqv4lUl2mWJb/jkJ9E0DV555ZW13JqWtlVcbYi5PtiSisyagSVKEehzEt1G1QUTUqiBmTGZTNC27QrRJqJeJhEJjuOjmDzsuzzD976vwyvfTVF7Xb9B8UTJpzuWuD1rPSyxTKwJWDWisIJlVaHxPuDmBOfEbO6Dzz+P8agMhAJomxrWGOzv7soTjMQ7Pjg4gPceo1EJY/RdWYwmU4zKEtYKzOGdC+1ATwQYbpx6bLFYRKK9vb0d/QvG43GPgOm71fl869YtzGazHkFNibZCgJr0eQhxAV1ygpRBGUqqQ27+LK59k7Tb3S8f5xxsliHPC8wC0e4rUWUTFmJNIayuwCLMBkCG7e19TKbbuHn7NuqmgU9t9TGcwxy9LTUwG0BYBKK9DKEvJP6PEGxmgVGc87hz8t4p7s8l0QZWFR7pZFssFlgulyHD81J+B0VlD0vDw1MySuVIKM/ZBI9SkTEo23CGuKslhT/W5ZwchvB85DBJYr0RVYtDEfce7ger5a3CSIhQRzrcYiEk0EWkp4wE810FXrx3cCEwUqqYTvl/IuG40/FWonOvJY0Lk7qgD4u+y/STbqjpu10Hga1TJp9WNmHpD2qNKHHV9ddtLKsS17p7jbUgY+FcIpGk6ysS596NUbdFADxLxqcYF13vDpukZoVvH6EzzbCcS0x7yCEq92CtxNb+wz/8Qyzmc3zd130d3nrrLRwcHiAvMlx/+22MRiNcuXJFFEVeMpGkhNE5F+03333y22HpY7gptmmtlaA6cdZxp4wb1pJwN8OIfYCEY93d3Y3BovQ6APGYjtk6HHT4/UETeFkgHb7dDUmfv+YB98R6hNQvUoiyJYMis7BEEPAIaJyTQJ/WwvsW7LxkT1kuwI5gycIaizwXC4Sju3dRscfxbI67RyfY2dlBUZRds/SJzBiNRvAMOE+o6hoZLEzRX2rpuKWY9M7ODsqyxGg0io5Q60w1mRnHx8eYz+dxo2nbFgcHB9jf319xtrHW4sKFC5jP52jbFlVVrXhV6hrZBIutK2dZjJw1N4T34Bg8ynugqqroHHRycgxjMolHQxpmVSaF9w7EDAMDYwqAcnTu5xQ3Y+88dGuNYVoDcTdkYDNxgjJGnKzImADNdQp9ydK+wBtvvI4b12+gbZ4GUJ7at4dVziWnnRIaIoqmU9ZalGWJz3zmMzg+OcEnP/lJvPnmm/hP/+m38P/5d/8Ov/7rv46maXDt2jVZCFYC/wDdBHTOxbyLalf6sMsQJgEUHll9fsolqxisJn66SO/evduzIkk94nTRauwIPZ/WneKhQy/MB1H6YjUSJjXRM6xjXlkWpYrcYMlQYw1hlGWwQQdBAFrn4AmgzIKJ4LxH27RYLhZo6koSxXqPLJf0VYeHBzg8uIPXXnsNX/nKV7C3tyep2noNIHgvRHtrOsXW1lY0tQP6nGkKT6h5H5FYMl28eBG7u7tJxvJ+xnOdi8fHxzg5OYnOLE3T4Pbt22uhlyzLcOnSpVjncrlcG4dE/RnWWYZsKqedP43ga99S5gIgLBbLEBsnR9PWwVlGvSuFmDK7GDIATDAmh1GiTRmYTKfe8F5CC7CGbgaszYRoWxud6YwxgVuncH03yZq6wfHxMf7oj76A3/7t30U7v3PqmDzMcq6JNtDf7XUCLRYLeO+jN2Bd15jPF5H7UHOsdZ6PfeJ0f2LvxtKb00EcBK8unLWTf7MlQu/e5K+K970mDGCSRw6PrClRNEb37ghAlxhhcH06ZnIhdHzkfr1Lg3F2VzDrvOlnWMmCLkTikrdo6wZt00aXcOd8sqnJo1PvQCJaeZfrSqpwltDBtkegU0hDdTU6R9NNYNO8BdDzUhxizStKu6RdD6KkG06vznSeQh2ghp6jjP4tQ8iJkIaE0uie/SFYwUWSZ3ZaklSOSyGRuhGzSY1RVDbX19T5aMq5hEfWTVh9AUCwlihKTKdTfPKTn8TTzzyNo7uHqJsaTzzxBJgZv/u7v4vHHnsM21tbGJcl0sXfBV/aQEcfQlEte5pDMvYzgRCGVh1AHy5K3YWrqurFowDE+Wg+n8dsN8M29J6L4Sb2bjuJSEV1fD0z6JRnpGhR1870Ah84MXGwaV2L2gmQ4sBo1blG8WhDErbTO7i2weXLl7CoRO9RM2O6NcXTky1cunwBTdvg1u3b8JXF7s4WijwDkXouZihHJXZ3d9A0NZq6gQucbGqLDYjLuSqDU8cnLfoeiSja28/nc1Hehc0hVU5qQmf1SejGioNXnxSdx6kEp3FMNuk1Ttt8NhH+s64X+FGi93GQphhI3NG7/JAxbRk0ow0A4qBYzJAVI+xfvISqabFYVtiaFKAgcREke40+EwE6STeudBybpsZsxnj55RdxcHiAo6O7KIsRPvLhj8AuruLO4T1184GXc0m0gf5urS9BX06e5xiNSmxtbeFbv/VbMZ/PhVDVCxARTk5O8Gu/9mv49m//duRPPYXt6TQkDe1iJLwX/TDUz8yeaO/kO/UJq0I4auKVWpQsl8tom55im9PpFE3T4OTkpNcGoG9lkNY1XOTvnohLf1Ki3WUN1OU3lEZSLZNubAxm8SQ1IJQhmH3jGEziEdl4H+y+TVzU3nuwb9G2NR67dhW3Dg7w2htvoCFg7+IlXLx8FVcu7uHGmzdwcPs26nmJsiiQZxmMySKOPrYWFy7u4+7hIQ7uHMRxJuoScwCyUWpkuXSz1Xefvp/FYoGjoyMcHh6iLMvoLZkS4MPDQxhjMBqNeu9Cpcs8z9E0DQ4ODqKOZuitOYS8hhz5cF5sOn7mmxYRBzFoKgNkSN47FDpJ3yeHDOoeWV4GgUryQxqToSgnuHT5KhZVjcwCO1sjGK+ZiiiJ2SLzRCFOJmXsgnMXe9R1hcVijv/ymf+CmzdvYD6f4xNf90k8//wHcfLGHj572Kzr0kMv55Jor4M0UqIihEoITar4WSxnUVFzdHSE5XKJtnWgHq7dKTMeqGXJQPwbniBSopzghL3rlPM/XfmTEt5UAab3pI4YaVseKEe9oaxA1ImI21fRnl60mUR96xPNPSn1qVYAUUnVCcehz96jCMRYuDsEr9oRbCZYd1XXaBoriit0jSRjYJgDQewHd0qlPgA9SGRdDJj0HSgsUtd1lJKGimG1tU91O+mzFCZJ25Q+63445QehiObBl5RAdyW16JF3160BjXhJIGNRlCM01RKtjmW4laLCWB8m9/eFNflXPVLbtsV8NsNsNkO1FK/q7a1tvHH4iETsNeVcEu11mF0a7eyDH/wgMpvh93//9/Ftf/pPwwXO87VXX8f1G2/j7t27eOqpp3D37l1cv3EdTzzxOMgZsO/MyTp87tH1yxDBUJIn0qDLCzCASDYVIrHL1lx+W1tbvYWqYvpoNOplszmNm3rw+HfH3TFL5uszLeJZMcpAqCLoEX4zI88sMiVWABrvUbcNRmTixuxTosniNl2WBa5evQJnLcrxFNWyxou3X8bxnbvwdYOy3If3ki1JMwdpscZiMhnD7e1FSEOV2aoUTMPlDsfTex8TWSimqvcoZp7i2nrPcrnE4eEhdnd3exy+XjeZTKKiNIXCNulw1r3ns4j7unkx1K/odikpySiZnxWICNPpJGxkHCURCsTZswcxQCFhghNzIGxt7+LVW2/Atxn46gWRDEmwa2W4FGrs2X+F9hpDeOmlFwOUxNjb38XOrkT9e/LJJzGdTnEwX5za94dZzi3RBjocWzkU5VK+/uu/Hl/+0pfxK7/6q/iWP/En4JwEuf/yl7+CL3zh81hWS3zv934vXnzxRTjn8M3f9E1ojQXBd5m8VflzanaWB90vA2sQuSTnvKRK4mjsttL/IadMJIlol8vlWtxSoKMRxuMxlstltEwYKjbXEe0Him1DvTkNjPFIszp2y51WbpMQrJAgTYQArTDgGaM8x7KuxR4XQONaVE2DshiJswYznGtgSWKeMDuw85iMR5hsPwkUBWaLCod3T/CHn/sCCmOxO51gPJnCM9C0Lcqyv6Qya7E13UJZlLh+/XoM3rS/v4+9vT0ACKFIpS8Kaem7Uoebk5MTHB0dRThrMplEoq12zWrXrfNZTef0HiXq6nDjnItQi3LtZ3He97tJr4PN0r8kbycQbdlcyrLEcrmEMYSd7W0cHd0Fs49WHkQEsiSQCEyAziycI1jKsLd/Ef/l00dYLg28fwLwHjCyXl0rm7IhiJNOsCoBdZuMMYTPf/5zYvJZFPiar/korl27FuJo76LMSyzr+T2PwYMu55JoA+snl7p07+zswGYWB3fuCGEPotDJyQnu3r2Lpm0iF7JYLILYG3bqFSOv1WMPpKypMuq446QHOpTkdAAhXXzKna2zIkkdO4aOGg+ao17h3OI/3XmFSFiwn5UeDglKuDNBjkhNQ4KU0mHinjnGvdYtQJ7z/2Pvz54sSbIzT+ynasvdffcIj/CIjIzcNyRQVYmuBVWFKgDdwwG7m91ko6Up5JBPlHmeV8r8D3yiUEZkZEQo0i+gCAWAdJMDdJHo6gIKhdpQWVvukUvsEb67393MVPmgi6nZvdcjIjMyK9ubmuIZ7vfaoqamevSc75zzHe2PQZsSbmmrBWnKeJrbzNIB3WYT1W5ZTN+Ek/lx1mXMeFhuK/QDuMoy8ygDXHMWotOIwyiTeZE+dfjLO+5q1w9hkhAme5g2f8xn28POF+HHGhACKRzzoSRJYjtm7prYmG239ZorlLNfECcpWVaQSRf6GCo1oaUMJXZSfT5HCdBsNmlah/L6+hqxbCC0+MzqQc5rZ1JozwtbchN3Op3S6XR44vJlpq+9RhRFvPvhh7z++uuMx2Oefvppeks91tfXaTabTKdTrl27xvnz50ni2EtKjak996nDI7Xrh1o+VFPKXXsQph06uwaDQQXjBIfbtuj3+3M4yD+9Fi48szrnaGo6PFB4GMQ/HzYt2R5kTGBzPVMvUiKBAnyxBSElFG5jCzZHeyu0RhWK+7fvsHd4zMHRCZubmyx3Oiz3uiBMbHGeCSKpTWp7NFvOzNEC53lOs9mcSYAJLSQXuz0cDn1MdaPRWEgeVXdAu3E7OTmh0+nQbDZnBLPjnGm32/4dl/kHD7aeHjQn5q3DejSL8LCF/9SPvBAuD8CG/GkXSaP9/DCTxP4pIiBG6Zy02SKOC6ZZZqN63DXLTc3h3CbT2FwjTVPOnTuH3tggTVO63Q4bG+uGEleYew8m+jMtL1ZvZ1Jo15sTVEVRMB6PWVpa4sUXX+KZZ54liWN++ctf8hd/8Rd88Ytf5Bvf/DrPP/8cq2trdLtddnZ2eP311/n93/990l4PLUEraSAJrYlmnBuPq9PznwMgigyG55/NahxOSITa3LyFFS7sw8NDut1uRYCYydpld3fXj1s9FO3TF+Kzfon698LgIcEndjyUMsVcZWQ0a22SZ5JIkkSCSMDUatm5UiAiDC0fpdB2/1otXRcF71+7xs7BEcPxlFdf/R3WlpdoN5ugC076fQQFggIZR6Qisfe2GKww2Y4uNwCojGldmE0mE/r9Pvv7+wirrbtwvXnC1Z3noj+klBRFYYtaSw9/hMI+TVPa7TZZZhJHnAY/r8rNvL8f6i3WBHXYjNA21k9RWHtVYy0dZa0UE80jrHCWMkJj+FzcOwITbRLJGCE0eSFotrskYsJoPKGRJnadUPounNBGYChMJKooaLWaPPHEEyz1uvR6XVZWVul2O4b9UZp1/86dScUt+lm3Myu0FwkrF+LU6DZIkxRVFBwdHXHr1i1effVV1lbXuLi9DeCpWh05UIBFzHi8a7/ONVkf77MF+GAwgx52MrmNbDqdzoR3hVmUi4VmvT+PJ8IkACaC/+mZY+b0wm90Dk4xRnHpLDaOXG+M+6SaMqIk0OYrd3Jaa5/+yQnjzITOdbpdWmlKNuyT5QWozBAVKVWBzFykgwvPc/PwtLFyDkjnV3CQ1TwNeJFGK4QJLQwjScIWlgcLI03mvccHad6P+u799YL/B98CZZ3P0i/jFJPQvhJO2bZmr0RpQRwnSPJKNI7Drv39PeRW3j+KYjqdDisrK6ysLFsOc6vhC9BKc+3e5DcmsOGMCu3ThIzWZYq2FJLxaMTa2hovvvii/346nnD95g3v+HnyyScrGG9dSJUL4vFEVDzofGHNfsNu5gTNgyER12coEzZCHgoXzeDO6XQ6DyTP/9RaZYE94LjgVwuLBgvRCQeNxAjuOI4R2dRopmgKrU0UgrNU0Cb1GbOINXgqhG63y3JqKrVr7bBX49zVShgS/eEQtKLdNlq170sNN62Pp+Fyn3imvxASqXOC1JWCRQ7hJEmYTCacnJzQ7XZnyKccH487v56D8PgjgxY3v18K4yREYKqfxzGGl0T7HG4hhInXFuGYgLbvvtXpoaaKk/6AleUekYVVvLgXUKgCHdlNwMItSZqwsrpCp9MOxqXg5GRAvz/gcP+IX3y4+pmNybx2ZtPYQ8Fab+PxmMl4zHQy8eF93/rWt+xE0AwGQ37wd3/H/fv3aTQafPGLXyRNUy+0PfOavV7p9KkK7U8SVRE61SqKiBBEUhpSdkfZKgxVpTfxmR+i5cxnKAn2Hce2K8fmmpSS1dVV4ji2rGefLvNfKMTC21R/r91fVw/Q2mbRCXwFb41LzoFIaxIpaaSJ/67QBiIpc+ZAa0WhchNJEptK3qPRCLRmfX3d0LdaqtTJNEMISavdodFsMZlOOTw6pD/oAyZJw1HEhtpsHc92Vs/h4SH37t3j8PCQPM/pdDq0Wi2f8OLGql5dJhy/cO63Wi2GwyG7u7seGw+Pi+OYdrvt54JTaCrY76Lx/4TNWYzusga+MRusg/YGA8N1nySJiZayjqRyDBTOg6G0CRRRRKysbNJodNnd2ycvFIX1X7ibCekym835ShUIAa1Wk4sXt1hbW6XTaRufiDYFn9944w2++93vsnfym0mqce1MCu0HtaIoDGGQNUG73S4XL170pnGW5dy7d4/RaEQUmVJDcz38weJ4GCH98Sd9oMW7n8AEnne/+qZVF+LhOSGpUXj8PJa5x7lwT+v/LAiyaOPzK97/5a8p3CfaoycuqxSLcSrc+3P3sFwhFhJxFbsLOz7NRpPlpSWr/Zk0aHC8HjGFUkwnJq5a24gIrUO4Z8FTWMjEadouY9I5iRdVramM0JyxjKKIPM8Zj8dziaSc4A79Pu7zB7VPak269Va5jJ3gUhr7xFvFjqTMHjRj4dp3ra1NlTZaRHFsNirteGbqSoyqQGFCmBDNTqdTiYPXWjEajTg8OOD27du/kRJjYTuTQjvUJERNsPrfbVREo2E4SNbX13n66aeZTqfcuHGDvb09Njc3vTB3nvzDw0OvLbmFFGq87vqOL6F+78f7nHMWl6gTlobHV3FQ53gKi8jWj3fJNvMW/LzjH9+zLtj4HvUs1x+7uKUQpsivKL8vM+dKj4AZWwd/aAt/mMLJjUZqhIq9iIMyzHilSDumx8fHhi3QZUCJsFvlk0ynU/r9PsPhEOWyMC3978OO5zxM2mnzjq7AxW7Po2Fot9sW8pl/v9McivOe6WHbLMmX+dSNbZZnZWhiXliHpGM9dJVrrEC2f4MgjlOEjMlyawFb34XvoYA4jiwe7uIJzefCvnwTuDDiw48+4uj4iCiO0Ggi8f8X2o+9OfzPCaa6FhyypLXbbTY3N7ly5Qq///u/z3A45B/+4R/48MMPefbZZ3n11VdBGKKe/X1DzemqvMdxjNImLMktMjDOijgy5EEwPyxvUVsYMVGXzRg+jfqGYb6cL7jrmq2LKnCFIOaNY6vV8nwki1KsQ8hlEcPcI7USqZi7MT3K1T0vsi09FkeSViMlkqYOpNKmArfCVEIxDudyU8syk4zT6bYpCkUSR3S7beJYWpwU+sMBeV4gZUTHJr2MJxNu375t6w2W4+aeJYyRHw6H7OzssL+/T57n9Ho9n3ATzodFDsf6O3BOTudgTNOUNE3Z39836diTycw4ra6u0mq15hbIcK2+lua1R920ldIUhcbM5tIpGEUShGY8HtJoNkiSlGmW+eSpPFemujrgKL+QEiEjNJKk0UbGDUaTjNwShAkhKenBNGkjRUijcXtFD2t5AFk25ej4kB/+8IfcuXObtJGglaKb/uaq1sAZFNqhBnyapu0SIVzY0/LyMpcvXybLMu7eNansq6urnDt3DjDZbo6sp6JpB7+HmGxdQD6stjTveeYdZyAS5pjN8++zaMG7EK952pcznQ2eWNW0F0Eyn1RgV6GNBf0Pv3PFWr3jUlQPqwkRKQSJLKu8G0jAYcXBWIaatoA0SUAb8iJXsd1rg1lmY4lt1IIdU1PaLS/Z6sJu1zTtwWBgErm09lmop0Fa4d91wV53NjtHpmMIdJtveO1mszk383UehPWw8/RhmjGCapCNu57A146UUlooytV0dJuYsAuu1JBBEMUJQkRG03awio2zdi2OzMbt5QLBdSiL/N6+fZuTft8yBGouLU0XWrOfRTtz0SN14ez+nSfcwqwxJ3iXlpY4d+6cT36YTqccHh3x4QcfMBgM0Fr7ZJvNzU3A0Ugqvzj9vT1W+uBJ/SgC23+P8GFsqr6gqYrvuqURam6hU6yu0bnMvSr0s/hZPu7ind/0gt8f4nDXBJWQLoNpR1avM3OlcCF6wghuw0jhdwHfWu02SZKiCsXB/iGj4ZjpeEI2GqGyKe1Wg83NFTuXzLiNJ2PiKCaWMVES+ys6yC2KIv9v3TI8zTfyMN/VBXCapj6zstvtVmBEwBYeSL1Qr0N+83D1T9qEMJufn5+UzmNBGI8eFIHAbSS2KAIgcJi3i9Yx/CRxkhrnpAIduTuYt1sEVamElf1amYiio6Mjjo4Oub97j3PnzrG5sUGv10MIwYVeRiMRjH9D1djPpNCep0mEE9BpIw7LdYukKAq2t7cpioIf/ugHpGnKYDDg56+/zg9+YP6+evUqv/zlL3nttdfY2NhAC+G90i4lWnsstGyPU5iVmr4gchCJrjLHzUjtBdcBfLYclIV63T0czhmmYNcXrxs/l9BjP/0YTxZ2+uHG6wFbocc9hTaiOBKSNDKZkUKbqIIszyiMeYSMIsunHQhADULDxvo67XaHPCt4/9r7HB8dk0+n9NodxsMTlnodzm9teLgskh2Oj47RhUn8aCflcovjmP39fZrNJsPh0G+MDt6AquVymmVTL65cdyo6CK3T6XjOmeXlZa/Nu40iTVM6nQ5HR0c+pnxe+bHw/uE9P04zUViSoshACUOChit8YJzheZZT5AVR5CoPSYQwpcFMkoydn7mxahIZoXVEFKU0mh0ypckLTZoYUNH1OcsytIjsHAGsn0sVius3bnDnzi3u3LnNK7/1Mmura0TSWCzbSznFb6oUO2cQHoGqsA5NxVAYaV1ykTjhnWUZy8vLnN86T6tlvM/TLOP27dtcu3aNO3fuMJlMePfdd7l//765tjDRBsru8uF9jbZt/n4YR87HaVJWq7SHbR4ePK+FmXkVZ61dDGmazuW5qB9v7vl4n3GuvDjlFjOHhyY+ZfSIDAROYSvYI4x25rUxG/LhiD87nQ5pklIUir29PXZ2dtjZ2WU4GLK3t8/B4WEAOxnB7Sqd5HM28el0CuA1bZfJ+CBN+/TxKkcg3MRdHL7TtOeVFIvjmEajUSkS/Cjw3sdpUgbWBW4NlTS3cRz7oAHheWNqsI3D9t35wnp8ZEQUG0270BqtA9hNmzA/F3giKAMUiqLg8PCQnfs73L13l62t85w7t8nS0hJCCloJ/O5Trd8YRHLmNG0oCxWEjppQuLgXHBLllBqFKTHlGNhGoxH7lliq2WyysrLCxYsXaTQanJycWD4JCagKJqos/mluWvbtQbjw6W0OhIJ14YhZp6vBe3UlDO5Bi88Jkrpzs9Fo+LEKKUFDRrpPonHNk8TVzdf/ZszfWdjbG8Zu83QCwF9dY81hbThIhEQIU9nGQFwaaSvZCAwEqpWxpHKb4pznOYeHh0RRxNJSD4lkZWWF8ajvCaDCEXa467yAgzDuet6mPg/TfhTfSHi8mxfuvY5GoxlqAudcD4sihNd7UPs4Pg2zVwbzxm6eaEcrIGwEDiSJyVDWNsU99E2ZRBsz1tq+QykjkrTBNMvJ8wLDFelqrNr+VlwlgkmWcXi4z+HBAZPplGba5OSkD1qQZznTyZSTkxN+/znBTz6A6WdXD8W3Mye0nfByZnw4+ZyQiaIIrRR5Xvh4TCmlyb5KYhrNlKeeegoB7O7s8MYbb6CUYnV1lWeffdaHwX300Ue88sorgPFAB+laFEoRSTe8j7Pu4qxGG7mqI4Fpbe71YAHqhK+7niMY6nQ6/jMpJcvLyz7iwcUNO60tTM2eVy7rwW2+wFbaMfzNP7xyVgVVKWEWrRWmKo3wmpRA0IgTpoUiV0YDK5QmV5rIcTQ7X4E2UNd4NGJzY41bd3e4cfsuSZJw8cJFVpaW6DQaFPkEKQMBidXqI7M5uP6FAtU5fx0M4b7/uBufO89Fj9Qd4S6cUGvN3t4e7Xa7An9EUUSz2fSZsHXn88NYUx9PEdHIKEJhBauUJpFGQxQldoNJ6HQ6hiMlkiRp7Otzaq1RxZQ0jpFEZHlOhCCKG3R7K/SHE9I4pttueUVKa42IzHvRFv5CCPonA371i1/xzjvvIiPJ2uoqN27cpNloUGRGA79+/TovdXpcWtnkwz0zRz7LdibhkXoiTKht1zG/kN3Ma9pxbJ2M0O/3uXPnDlprOp0O586d46mnnqLdbrO/v+9jnYWoMq/pQLg+LsjAwy+1y9VrRz6onXbceDz2lcHL60tarRaNRsPHEIf1DD9NE1prPSu0Tzve/+YcTqXJjXaat7GmDJ5aJtk41j9zRGB2K0WWZ/R6HbJsyv37O8RRzPr6Gtvb22xubtDtdb01ooN+SFG1WEJLKAzTe1zzxG3Ci5pTUAaDwcxxLgTUkSOFtK6hwH7sEBgEwhRchAiY8ZtmJuKl0UjJ88z2W9jSYOanUEWpsGnjjpQyptFoM5lkTLO8Ilw1ZeKUu5lAMBlPuHXrtkmuG45otdoc7B+ws7PLzu6ut7zv79znf/XykOSB1TkefzuTQruOxdU1BKeFhvSmYd1DMBwTTgNK05QLFy7QbDa5efOmdzTFcczu7i7Hx8dMp9OK0DYQTCBoH9BCzejUhTEHFnDn1739aCp3P82hFGppbjMLm5TSxxO/++67HB8f+8Ky4XXCez2aEHel3Gqa9bxxEE41quHrwbXc3waW1pVT0cY6kbYupMDG7vt46nKQHUYqhQk5c1QFnW7bh8gVhXFe5XlhNzw7FgIPtThtuz5G5hEfrxCsXy9UVsLvwkxYd56Dv+bFZH96m7KPtPav20WJAD681f3gnsfGXrt+K+ufyHOrjElJs9Wm21ui0WwhRITPYBDVRBt3L1Nbs0Wvt+QLTcRx4qN7jJVpNvyVNvxvv9ahEX+26PaZFNrOsQPMkP2HiTdu0TnSpJDfYXt721e0XllZ4Vvf+hbr6+v85V/+JVJK/92Pf/xjrl27xsHBgcc0lbKlkayD8rE3QUUDklISyYhYRqX2YHrCoiiOMOwv5GeeTCa+vFUoVKIo4tatW/z4xz/mf/qf/ieuXbvGaDSqVGz/NELCwuacTvOeqC7CnSPLLXDlPE6A0JpWo2HMaTteWZ4zyTNEFPn4a6WqPo/xJCfPciRw+dI27XaLvCgYjyeMxxNGozHHJyfm+NjBHcr/HVpfoUA8zfn4sJpt+K6c0K1/F1awiaKI4+NjhsPhjLLQ6XQqRaHddeuEaY+jaa1QRY6nWhXSwtqRSZTRJjsyigSR18bNJillbAVoTBIn5EXOeDJmNBkzyXJknLJ+7iJPXH2GjXMXiJOG37/dM4Sbg9aQpA3On9/iqavPcOHCNq1Wi16vR7PRIo4SGo0maSMlTYzF+c0X2/zBb/U+U8F95oS2E8J1LbquaQhRCnCXXBKSx6+vr3tIoN1u89JLL9Hr9fjZz36GEMJ/d+3aNV9GKsQlTSkyq+SVEOun0pzgjWpmdmioz9OSQqERsv65wrBhk1Kyv7/Pe++9x3e/+13u3bvHdDr1eLbrx6J7PcLTVJ4LZodunvXghXTtMqW2Xf0qiRNiGeGoW3NVkBd5oNLZk9wYRRF5VlDkBhNfX1ujkTZs1SMTfTSdThmNx/59aGEFsxA+e2+ec9w9x6M78fTcvxfxlLj3HDoj69mRQgjPLOjWhvs8/PdxNYe1+1R/34+ybqezXCKbpe59EyJCishUJIoMH/Y0M1BIVhSIKKa7tMrG5ha9pRVklKCd51GWi7Kct2ZjW1le4fz5LVZX10jSlGazRZKkpvxYkpLECVFswv8iGfF//NY6337lsxPcZ84RCdWJVYcb/IIhWPCBhiPCY+xEb7fbHBwccHJyQhzHZFnGYDBgd3fXp/66Gn6raxuzi0bjvdSPMunrmtcs/DDnuWvHL2YimS9knUbluEjc77u7u/T7faIo4tKlS4xGI05OTlhfX/fjVbnvY7YwyqSJqpPVPZ1fghXBLbzQdWfY+AKLNZu/lXaCwFSx0Sqfs1NoD3kA5HlGnmumkynD4z55XiCELOGiYG4BJiyT6vt70Fw47ZjKnBXVKJH6Z/P+dtq9g8PqMJeLIqmz/NX7FPqIPo5AF+6lGGTbvzKjAdv3ZgVsnmeWM6bqXFW68K8riiLre2mQJJIotuf7yC43b0rcvJwbgkjGNJstOp0MpXOk1ERJRBKbjNilpSXDo95qm9h660v6P3xrgyc2Ev7v/2mfLNefqnPyzAltr+UEpn+93qHBw8zLCkPWQCEjE2ifWTL7NE25fPkyP/zhDzk4OGBpaYmDgwM+/PBDfv3rX/PVr36Vfr/Pu+++i1KK3/v6N0nTBpPJ2F7TJaQsAKMf23MbZ04kJcpxaFBV8sOFFcZdh2PjNqXj42OWlpYYj8fs7u7y53/+554X47/5b/4b7ty5gxCCZ599tmJKf7zokUXPFDp2KbVnu2EJ5g2peWKb72if1yxQIbE0rYI0LuGkXGvyIieXIKOYLJsgtUJEkZPoKKVIhCQSRrgdHR4znkzonwy4ff0m08mYbq9Nq2VKiildVDTVKI497AJlhIf7PXwfcxkl57S6c9Ddb14ZMxet4taEqXhuiiwMBgM6nU7FJ+Iq7Ozs7PgQwEX3r/flUZqhA5BkhSKKpfk9NyGZ5tVpkjhG64KT/jFJEqG1RCNQuSbLc/Iio1BTWs0GrVaL1uoqaZwSx5o0yRFyihYjCi298DYwTKnUqMIkYrVabba2LrK+voFSORqFiIxmP5lM2Ns95Omnn+bihW26vbaBvawl8O2Xl3j1iQ7/17+6z3t3x2SfEkXJmYNHgIrQdrwLdU0jFGRglTJKE9LBKkmSsLm5yZtvvsn169fpdDr0+30+/PBDfvWrX3H+/HmyLOPWrVt89NFHABYbL/dvrxV/jN33YTVWszBBBObvaQso/D5MtAireWtdcjz/7d/+Lffu3aPdbvNHf/RH7O3tcf369UpxhI+nXZ+2yJ1Y9kAks2+wPLR83mCDDC0PSuQjkRGRE3aYGpBFYZxXvnakY5GzYxRGgvQHA46Pj9nfN+MwnoytltesjIUjoJJRFWMON9DHQbIVXmved0KISoake89Zlnme7bC50L/QtxH2/3E1IQUylgYecZg2IEzJCsAkKimtGI2GxJG0HCCuOHXBdJp5wrNGo8HKyoot7dYjaXZAJmgiA414izoMw3TavaSRNlhbW2Nra4utrQuc2zzPxsYm586fZ+vCBa48eYULF7dZ39gwdSNlwGciBGvdmP/zv7zI//5rCS9dTokjQfIA2EQK87O90eGZ7WW21junHn/mNO16q5uI/vfqUfbFlbh3qJF2Oh1WV1e9pjkcDiu8EWnaYKm35B2R5f3c1cu7ivKOD93vR2kO//OblNmNasfMOrvC353QHw6HHBwcsLe3B5TcFI5ky2XY1cdstk+nC3VdB51rfXJQlocAKuZD7VqEcro80DFUhMcb3hZb5lcQLOiqDm9gERkoASaSxiQimUID7Vabpq384yJ35j6PmLVu3PcPAys9CvQ0DzYJvwshkvpG4vrzaTuXCUOcdPmeSgAM/5vWymi2ubWQpYnkiOMEIRoklsLVw4TBJi6E0eKdZq19gDYeRiuPttCZLSyspQkxjGREq9kitpaHEKq0/tyV7d8XVyT/4is9snSZt+5MuLs35fa9If3h1LKASlaWGjy/vcLzT6zx5Zcu0m0nKKHRD6B+PXNCu47zhVmPUMevTfaU0mYxO8eaC/PT2vAxPPnkkywvLwNGcP34xz9mMBiwuXmOe/fus7W1xdWrV5lMxkA1ucH15XE7cBCO8Ki6II03XZcFWmflhx+HcDxc/8J6hO+88w5vvvkm165d8xS258+fp9ls+vJsu7u7PjQqjGh5PI9YJsR4CKE2jDOYtn9A+0+grDssXGgQShPJiDRJGGcKtLm2UgoZRQih/T2lMDwWUkgaTeOYfv/992m327SaTV544QV63Q7tdhMXwibcuIYe0QDecdWAYDZO+5M4JUNBHa4BqBKDuexHrTX9fp/l5eVKP9wG5WLP3ZyeJ/w/SVNKoVBWbip0IbwWrOzmZyBtTVHkdNptTgYTJpMBzWZKq9UmTiLiRNFspKRJbEqVuQ1aAyJCRglJ2mSaTex9S9oJB6GVs0lj/KKWlEpE5pso5tz5LbqdLlGcoJl4K6zItWWCtIWl0SA0jWbE5YsdLl1eRcuIvJiSCEUrTbiwtsqSSOmkMd1WqPCdPqZnVmhDaXY6mKMyof2Oa9OYNb4WIpTYbhzHbG9v89xzz3ns9s/+7M+YTqesra2yt7fPc88+z5NPPsmHH73v72t78yk+Jz4qou5gcv30BWYXrH8nHMKsOMc/kSQJH330Ea+//jpvv/0229vbrK2tsba2RqPR4KmnnvKaeKfT8UWQ53Fuf5xnK9+jtmWkQv4Je8wj7g2OPQ7MuZEVXEJkRk+ybHNSRghtsuxkFCGjyPCjS0EjTWm2Grz17ttsnT9Pp9ni6tWrtJoNpNRk+diWxLLJGwumQAg7hNE78Gj86/7ZaoI6VBic4pKmqT/eORun0ynD4XAu9a7Dvh/GX/FxhbdWGq0LA0NpJ0hFGV+v8Y5IpXKarSbDUcZ0mtFsmkpC7U6LTjfBUElYSe2GUAFCIqOYJE6ZWkxbK+UdkY4WwXxRrisvtDFVbaJIsr62TpoYBtBcWWgNTa4KUpEaRbAC49muWI1eSOdr0aRpQiNKSdxmOt9JM9POnNCG08naK15uXf183jkhXBCmxSdJQq/XQyvNZDJhMplUFoU5x18kuA9e2pzmvJmndc3AGswKBa8zVEzDmcvPjEn4u9O0BoMBQgi63S4rKytorRmPjTXhiIXqFkV4jUdt5aZaO7f+Xipqtaj9W35XuZTQuBCeYGQqce1aGw3MLTlhj8FqmpPhyMNBzWaThs0OjQMno4tMqtn3JRz2CBvNx4FLHmXcQ616XkKVE+xug3ns1iLgBqRck9VxmhcSKCNJksTEsYGqZOR8DWYnFzqcE+ZHa8vC6Yaq8iw6OBarCLm48eoa89YIpeKkg756KMdfOZwIJWskVp6cnJww0ophBETmcxFHrFvuo3ntzAltZwJOp9MKLl0XKIJZYaUCM9zxazjT8PDwkGaz6aGAra0tXnzxRW7euMX777/P8fExr/zWS74PxplZoCyJvjf1P65Hck6rO7JCjU1pW1n7ERd96BR755132Nzc5MUXX2R7e5v333+fd999ly9/+ctsbm56BjsXq+3Gb15o2MdtzonrhErpDPQidfYci1fObMA6WD5aEUnpQ7nAcKJnWUaEIsI4JWUkyaY5w8GQG3d3mNqN6pVXXqEXcLTkWYFT77RSgPKVwcNQxXr0TvU5Hw0WWbTZh9dyc7l+bfed88Oc2KSghsXlwczj5eVldnd3ybKs8t28+3+s922hZxlFKC0sJW6p7RaFIsvGqGIKwmjb7VaT8+c3SdMWaSMljiWF1siwYpMDmGUECqaTjMFJn0g76gBDPeHCPUH4CK/qJmgiTjzs5TR1jAVgrFmIYmkzat0kc3TFurxm5bqQpgnf/cH/l6OdXaIiR8QCEUuWVpb41/+bf7VwyM6c0HaCa17NQwgWjh9AUfkuJJUKo0hc2nar1SKKIi5cuMDLL7/MjesmamRnd4ff+/pXgVJoTyYTEI9u6j5Mc4KrFELmeSLrNHNCYQbrnblGNe0/FLrvv/8+3/72t/n617/OhQsXeOONN7h16xZKKdbX15lMJuzv73ts9OOY9Q9qbpMzRPYGHpHWelgkIuoLBEKdy/6mtIdHtD1HK02WFyCMloU0zqdxPubw8Ih3332Xdq/H+vlNnn/+eWLLXYIS5FmG1gVx4sZTIV20QoBlu1YP6wsF7cf1gcyLCAo38tCP4WAx1/r9fkUoO0y71+uxt7d3Ksd3+N4fxVFanmMT3QrXP9AIw7BYaIND65xImvnZbHXp9JrW0jRMfbnWtTlhfxMRaHxuRa9lk5ycdq6dTAjOIdxgBSaKxdK4ChO5orUGaTZ6jSG2KorCWmllkp3SCiFiKow0wgj8JIn56U9+wofvvIuaTBCxIG7EbG1f+C9LaJtojip2d1qrf33a4nGCybGjuXRvgEiWuPDx8bGf9PZNh3f4RM9X6y3l5AwfKlzANazAT84H96PZbCIt41qj0TCQQKOBUorhcMh4PPYE/i5Fel4URH0RVxd9ffMsF2517O0jaHfsLCzi72NVNYNhz5Pu9kLCRJCI8hNzjRJjqljTUSSJYkkcRyRxbDQzS1jkeaDtOIva88xr9bn1cdvDCvh51o97X2HmcHjNOkXvo7ZFQQDl89ZhCWMFWdvHvCMpEUTEUdVJWrprtH/n7ppOM9aqgDwntxmrBLQLtZ4yz0kSvsVyKtXXdOURwAUIuC/cMtUBPIK5RJ5nKK1oNFKQZh7lCxRO186c0L558yZPP/00wJwJUhafFdbxVCHURXuukrDMlsMwpZSMRiN+53d+h/F4zA9/+ENu37nD008/w1NPXeXkZEij2ebf/7/+3+R5zle+/GXW19dotRqWg+TxCewSP6tqCUqX/BDGLBbooswYc3ifLk+pLEqHbxZFwTe/+ftMJhP+4R/+gaeffopXX32Vfr9PlmX84Ac/YHd31ztvn3zySV566SW/yMOohfqid4u3unBDIW/xQv+M5j0VhUIiSexrUwSwlz2+yHPjCARDgi/LgrGO8c84qwoiIUgkSKEwZX+VIcaPXOy5QCOJkoRur8szz1wlaaa0u10gMyWsrNA2YYOmrlViCykIbblfhAJRVGCSeeMRjtXHhZdCobtI662vC7cmHNVuXeNuNBqe3mCGlOwh+nP6M0nQElUIVKFMpFCWUQBSQpxEdLqrxJEkjmzB3iiZuY/Rf8v7TKdTsumUyWSIHh9ycO8OO3dvsd67Yp5LF2hdmE1bCLRUaGHna+TgZW0FrXE3uigXaTMsC6UD2a2Q0il2GmU1dOFIyawxEkXGMpMKIgFpGnHlyjZf/uIXGA773Lp7m/5weOqYnjmhfevWLZ555hlgVpMJtQojs13cptsmy+iHelktF/o0Go149dVX+dGPfsSPf/xjjk+GvPa7/4hnnn2Ofn/AxuYGf/mXf8VoNOSJy5fodFq0200KZcTCx9dZ5rXA3LKGmbYSz4d0qdwshoq5V4MOaiavw6Z/7/e+zne+8x1ef/11/vW//hN+67d+y1sXf//3f8/169dpNptMp1O++tWv8tJLL1XKkrkMvId7jrBf9RR9029VGKErJRBZL73DGIXBQ/M894lNSRKBNlqaEAItcnsPI0wjEZFEIFBopBH8qkAIUxQWBEqbIrHdXoenl9sgJCISQEbhhLa2fgutQSniKAYUqsjMs6DMqtXlcpsHgTyKMHxQe1gt3jnYH0ZouwIZ9ZqiYTttk6g3rTUCE1KnLYOiKnKKfIrGxGQ3kzbLKyukSWrY9kQ8o+U6AEPglLCCaTZlNBrQPz5EDffY27nH7r3biKe37Vk5aBtGKiW5UGjLhy60IEIilDDRLQJAo4WlqrVBBip3a8Zs765fJjnLQClCRlaJN0pbJM08lcqkDyVpxNbGRf7pP/tfsLtzj3/42c/41VtvLnxfcAaFtpt4dZpUmJ1QRkAthkjC4+qhU0YLlzaw33zXHwwAhyfiSdork3aOdntae5jjPDZXD1mw95u9xunwiHt+BwM5s7nRaCCEYH9/36f5uwXvNLF5/X0YrVGI8t9ZgW3+1c5p5FCQ8Gv7/CW0FRxbf792EXoUxF+tqv2XhcYsNpxIb+3mAQQTdtUQUIXwTfUZH1UefzoRG7Mbdd06ClsYNfUwztJHthK0i8l2mr8Zd8MTb4mZIsPoV74tXSorRlsxAhaNViW9sNYKtLGg8txsotirmPnr/taVd+nnRB29I4DSwmewS8r4RuyY2pP8aptjbAsgjiO63Q79kyZpmhDXaAjq7cwJ7aIo+OlPf8rXvvY1JpOJx5zrEEk4Ub2ZKKoTOMsy72EPJ3Oe52xvb/ONb3yd+zsH9Pt9fvjDH3J4eMgrr7zE7//+71v61k6N24RHX7WP2IIp7bUoKec4CcNJOEdbMhwWMRcubJFlU594NBgM+Ou//mu2tra4fPky586d4969e6ytrXH79m2efPJJr43Pi5CAKu/JozTnLCyKwiRQBHtPXhSowmjZ7p0WRUHkstmiyEpNYJ6gtdLYaH8icFIp6wawAk0YWE0p7WhJjGUjhIVbJLG0tK6qwCEk5fZQxYx9Nz4l4fyg5sYpTVOUUvT7fVZWVir9aTabPoKq1WpVzq87Ixdt2vXjnWBXhUIVhmFRCI2MBL1ejyg2NTOTNPGKEdrCW+Hktb8WRcFkOjYsf9OJx7ObzRaR7HKYpihjGgEGphiNTmi1esQyxUSmmOrsKIiF1d+doiAEQkRGcVCmBjGE5cpcrkfBeFKY+PZIehIyoUo72ysfOE7zAhAcHR5TKM3K8uqp7+zMCW2lFD/60Y/4J//kn1AUhTfpQuEcOs2cKS8ERHHkP3fmokvdhlKgj8djLl26xFNPPc0HH97gJz/5Ce+88w7379/nv/1v/098+9vfptfrsbtzr8yqk9KGgn16QjtQOr22KYUkilxUSLCAKk7A2TEUQpCmkgsXtmg0Uh+HPhgM+M53vsO//Jf/kueff56rV6/y7rvvcnh4yM2bN3nhhRc8Ju74yf0CtQs75C1/GMEdCgKlDXQjdFzRZYs8p1AFpTPNmMmFFdpSSqTBMEJ/lfc9+c3OCmFqG7oQZgwNNiMpbKiXdtcWhtO8kSYIClQuUEVWOlB5eCH9cSIwPk4LNedGo8F0OqXf79eeW3gmy+l0WuFPd9+7az0oBDE8Plx7eZ4znk5IkphGnLK0tESz2SSKY7wj0m2ooiQLI7h3URQMBgOGwwGDwYBW28TRt1stGg1T9cYUcC6F9nBwQpI0zH2k0dCVUuhC00gShLYORaVB2kIYaJRyYKSh33U+JaUVWV4wmkxI0pQ8iii0QooYJUSwQEuroixEITg4PEIVsLLyX5jQFkJ4eOTRHCYQLqy6KegEtrtmmqZ0ux3Pv+EcdAC9Xo/l5WUO9vd4lMX6iVp4Wa9NllJpkSBYNDZuEaZpSqvV8kJWKcXJyQmNRoNer0ev1/MY6Gg0movVPvKjnKKtaQ9h1K2DOqxl35/z5/uVPnO38uNgU3PwiuMLhHJYyyCDck5oq5UrpZDe1D5dMJ/2vJ+15h1qzPNgxHlFFT5Omz23ur6ktPwulkek1Kzde7RQhn2dSpdhuuEP2ui1bkMtI5XK+ylVlD+F8U04x7IqCiO0lTB8IEqgMHCq09aNdu4saXueNti8lz9eRxJoLajPXAc7jcZjxuOxhV+r8fD1duaE9ubmJpcuXfL4qkvVDSdendXOaYGhVuBitYFKFISLJImiiDzPuXnzJjs7OxRFwR/+4R8C0G61kAI63Q5xZGO9i8JqB5/dWHhPdyQpConWxcIFV9/gnPbSbreR0hQ9DgvRrq6usrS0BMD169e5ceMGe3t7ftzr/Mx1R+fHrYKitSnGK5VGoLwELYrCZLz5ZzCLVClFIebxllhQROBhEw3khbILTlKoHGUzcnyUAWbxCRH50lNCCAYnJ0xGI0aDPmvLPcODkbrKKiUW69rD0q9+Wk3rkgK2DuGFHDzu3QkhPH1r2G+3XubFgoct3BSco9tgyhGNZkqn17Ec3nGFOTK4QukrUKbPLkIkyzOTxKYVjTQlshmTaWIt6hLVAsxaTpKILCsYDk4YT8bkFAYN0aALzYQREonQkkwKCgnKvX8XFBQZgQ7aUv5KlBKgJZ1ul2EhmeSmXDFIpDBcR4bfW5DnBVsXLjDu9/mLv/h37Ny7x/rmBs8899yp7+7MCe2trS1Go1FFeGit/QR0SS+hJumbkAaHtBqTI41yIYCh0I7jmDzP+eijj7h37x55nvNP/+kfA9DutNGqoNftAnaiFspg5pGc1+1PqdksL+tIUzZTz313WnNCu9vt0u12PT8FGKG9trbmU9vff/99rl275oV2SG8bLtb6wg0hqodtSmvyQhEVCqmxcIVx+haFQno1uMS1QRhsO3RO45xFVqAIg5fnReEFrUnTN/cwscIusQKErWISxyYbdDgcsb+7w62b13nqymXWV1fZ2FgjimJCXnCY1Vx/E83x8YRC170PZ6nWK8T3ej2/dtzn7lohFObefSjM3dpxcECWZV4paDabrKyuWGej0VodR4e/P5YHRGMhCsVoOGTQN0I3kpJWu0WrmSJjw2nu+OWFsvSnEpzQTlOTZzEYHJEXimlREKeJxcEUOhNIYmIZM5GCXEMOiDhGZUaTj9LEaNbaKGWNOCVJGqTNDkvdHvk4p8jGKDRCgsREowgLv2V5wfb2Zd761S/50z/9f7CytMw3fv+bPPXUM6e+uzMntBsNQ4Tu6kLOM0PnwR5hCyelu0aocYTCxt0niiJWVw0WFUmLZVmuXW0xLP2Zm7zWnBSLNdp5ieDuObXWXusJx8yR4ns80qazuzJlodCuX7N+n0dpfhw99IHHBudBJiFE4o6fNwrCj4MLNayNint2Iau3sHCK0RxzH7mU57mPl6/3x99zwft45MiLT9jmzf86eZQ7Lo7jmfJkH8uZHPwIISyXSKjZFzNvsnK+g0Gs76TIc4giXEWiOLa1Jam+b+e3AFt8QRiHsfHB5IjCbAy6UKgcJBqkJheSHCiE+V5Z9kwK5YV2kRfEUhFpE8Zoil5Yy8+5IEU5llhIrdlqIaOIo6NjWs0WUsgZZ2+9nTmh3ev1WF9f56233uL8+fPevA9DmuaFL5WOsio5fVhVpK4VRlHECy+84CfzcDik3W77890Ej6KmL0v0WTfnJDHhUwKl7DMskGBhHx0c4sbPRYQ888wzfPDBB9y7d4/j42O01jzxxBM899xz3Llzh+Xl5QqlZ93puChz8rRWN8lVUZgwMV8NpoRE6uf5bD8l8eXYLcYprCNRuIQrrCXgScLKz5JGwyxaLTgejTg+6TOdTjk5OSGfTkAItre3WV1do93ugLBRJsrgnHUF4jcJj9RhDveOpDRc4S4DFvAWa7PZ5OTkZOH7DD+b53CEskqPY4ZsNt19ylBNXFwl7jW5jTFjPBrbOWUEbZLERNIIPkfcJXD+CIyiJKziIg28BhBJaDVTA3MWmkIrRGxgLF2ASCV5psimxknY6fZodrsoIrDp9ljMXWMs6SSSRFFKkraI4hgZuRBYOwauyLPtq4wl29uXEHlOO05YXlri2eeeM3w4p7QzJ7RXV1fRWvNnf/ZnfOUrX6lwPbtKHQ72qGPVhpCo/Ntp0fXiBoDXQr/4xS9w6dIl+v0+JycnbGxseAFtHHPQbKZEYpYL+rNo3sETCWRhwv8Mz/ZiR1loyjoT1/0dRRGvvvoqb7zxBvfu3ePGjRt88Ytf5LnnnuP555/ngw8+4MqVKzzxxBMV7NKPb40Lo57E9LAtLwpQCu3Z9WZcvoDNEFU2xj4uC8WWzWhnUtiK7UChXeUaC2OosopRFCUoLRjvH3Dv/g57+/vcunWTC1vn2Vhf5erVq6ws9YgjicBANnnuqE3L5/xNwyOh0A4je4QQnJyceCIsd2ySJHQ6He7du1epH+oEkGuLhLZbb3me02w2vRM7iqTfGEGhtfEnOOFqICmNsgL7YG/PEzOlSUKjkZLETXOOCPhH3IakrfdCCmSESWsH4giSToO8sKGbwjoaNZALYpEw7I84GE9ASpaXltm8sM0kU0hhCkLnWtusHkv5qw12DTE6TZHjzIT7aeP01FqRRLEJZ7TY/VNPPc2T25f48pe+RBRFtFutufImbGdOaLtJdHx8XKmqEkIeD6vx1jXxEDZwn/V6S2RZXovlFpWFgP/0s26lYK5Hv4T9CfW98Pu6k8o9f7fbpd/vs7u7y/37972TanV1lTfeeMMT/J8WBXKapnn6O6rjqcE1vA1aRhr4X7T2UFH9rqIyGo7XGauhlZmmoVnrQuBGoxHHxydsrK8hhKDdbpOkqdkEchsWqIO+zBnnT7s9zL3C9+KUFfe5e//12pOPct/6WnKhtM7nUq4dXfkHF8VjLZYsz1FFbt5jHCPttQwUraqLLBj30t9cRgdF1jlt9BdBDsaRiCARhvZVWw91HMXGIpDK1gkVRFrb2hnWQlA5SgmUlhZKEeUzmEHwz2/mlaaRpsRpSrrc8902hTgWb+pnTmi///77vPfee7RaLZrNJmmaViZhSFNZh0i0W9VQESiegL82CYtCMc1MmFuz2TRp05ROrnDCzzPdP70WpsuXE8Vouao0Qee08BlDs9dpWw7DHgwGNJtNvvzlL/PCCy8gpeSXv/wl4/GYW7duMZlMePHFF73DCcr053AjCKN2Kk+wUHALL3i1x6DL78oxNhuWE5ouNMy/D1EuZBkJH2GACMmejDltGNkSU4G+v8fxyYDBaEIUxfR6yzRbLTY2NlhfXwcERV4YpoqiIJKW4vc3YWY9oIVCNLR+nOB2USThsc1mszIngBkIcV5zmr1Tqhyvj+0Jdj/EI8/OMp5mJvs2Nwk4zUYDrRMEkKSxrRcZPhSVfigFWNzcWASho7owzkHTA88eqaVAYmLCpaWDNTLAziXcBmCTb4TlYBeRLR4tbeEO7X0bUhqaBEehkRcFOzt73HrvGvloRCpMxRuEoNls8Xtf/8rC93bmhPYvfvELvve97/Hbv/3bdLtdms2mj38EZmhEF9GJhlWtw4o2ocdcaxgMJ8RxTKfTodOxDoSK488Kbqe6feqCW7suBHeyvMqxRiPJLe1vqIW4FmKToWblSrA5isujoyOWl5f5p//0n/LMM8/wxhtv8N3vfpdLly5x79493nnnHb7whS9UmRDthpll2Zx6mg+J8Qpj6joe5MUOq/LZtVYUBRSFMb0jactHCQ3acGZLWfgqJzgcEii0IYBKk4S9gyM++OgG12/cZnVtk9WNDdY2OrTv3GF7+xJb5zaYTsbmeW1GnsE2Y7StjuSVr1OskM/CGRlaUVBNeHJQ2Gg0qkAfzsqqC+08z/37nNfv0MITwkRsOUoEEwuircZdug7dPDk6OmZkCZTSJKbdahFZJyL2vEChNU4/DZEwBZqLQiNi4Qng/BzTCq1zC1sKy8cdmfcfQaQ1kTRRH0We2cQtLKeIxqRCujhyVzjD7DxSCHNvpUwSlsRwsyPIplMgZTrNuLFzl7/8n/9nDnd2STHZoSBY39z4L0toHx0dcf/+fU8XWjfp6sLhYRZImNUXNhc9EsemisYiLMqcpz8zRdu52GwnjbstwOqFNfEfeJ3aWIVYv1uoFy5cYG3NQAO7u7tcvHiRfr9fSXAKrQ7TpYd3PtbHvAplzD53/XxESa+qta4I8/C5qlcJ/rams5SSPDfFEI6Ojuh0V5AyIk0bxHFsLLtWk+lkbHF0w1jn+JfLbbQqwD7rVsecQ2swFK7OHxE2B2u4NRXi1fXr1u/nvnNavQ8nrGgXs9BcnuVMJlOkFMTS3t85GymYGUIdzhvD3CiELeIsy5uZWWGzZcE6CaX/Tojyp/qMwsMpWkscfZ/9CKENkZlTiqrjUkJvprr8mPv377N75y4pEpUXaCHIHlCy78wJbaUUr7zyCpcvX6bValU0OydkoTQJ61qAw55CYRNq5lWvu7YOhhqJTmCi+cXh6EI/o3Va17QdrCCtk9SWHi1xbaeABBN0Hr6d57mHPs6fP+8hEzDhlpcvX6YoCnZ2dnxKtEtECqMNfD8f44CUgMic77TRuLUWOE44rPMycvPAXkO55y9PNoJYa5rNJqura5w7d84kFwkZwC/B/aycds9X5AUkn6/lFkIi4Rx2/hlXWi5sThmCUpk5bUMO/UDzIEkoceYizygKxWSSUeSFj/lvtVqG1yWJAvPQwViLNl8AQzjl1yOhwxWbsqD8FYQ2TH7uWFONXWOoDxxzn40Xdxidz38tKkqZkNIKduy/oS/HYNara2u89NLLDLcv0UlSdKHQQrC8srzwncEZFNpFUfDtb3+b5557jqWlJZRSjMdjH0M9mUwqAjucPD4pgKpgccIq5CwBp2mb8CMIJm8gtE2onSTLjPMk4jOIGnDmYqDcO4GttfSV2rVStpgt/kC3EF1kgBsjF3kzmUzo9/t885vf5Ny5cz6NX2tNt9vllVdesWbtEfv7+3S7XdI09VmpTltz7dGjKOZrxdo+RAk/WFOW8rkKJYi0xCHiaGPWxlFkakVa7ahQCqUlQkpDbYv2XCPdbo8LFxOefOop0kaT4XiEVlAU2nKmV1F1GUUopcnyjFZtuf0mNO2wObjK0NmWWcKObrff789YBY1GwwvzBwntOgTj/q6mypt3oZRmMp0wHk05OjpGFyZbstls0Wo07ToCoQ0saSity5DKUAFT1sIRQhLLYMytlQg20QW3kZsizMp5JbUhropkQRQpyxtlI4qko4aVKJvliFAUqihXtjAZs46BMNy0HGtmlKZsXbzIt771bWKlWOt1zaYBRP+lRY8AXLx4kdXVVZ/96DIaoWpy1yda+Td+tbvj6xBJiG27ZRpOxKoTkqrm9im0uhnqAJLwWcx3wXNS8jpUIYSa5RB85zawra0tzp07x3A49NpLHMesrKz42PjJZOJTn935oQUzr++LmhdwARZvvvAf4zkpKgMdQh2h07n8SgpZcz4a3akMAXdcIib8s92K6PWWEFFEludunZsfr/xpbzIboVQtyVV5pk+hzc6H2RYmQIXv3AmWef4eQ5MazZxTh8AW9WnmXWtwyU+qUOR5ZjYFpYnjhHa7Y5O5jGqscpdDPgvDzFMApBAVUrDy/sLOF7vZe1DRbujCEa6FEJu2AjmEF0ss3iXR6AACK7Vv7TEUJ8jb7TYXLlygFUVsrix5u+FBq+HMCe3l5WXPSnb9+nUODg44Pj5mfX2dRqPhTb9FwqmK9eF/rx8bYn6O87cyIYINQCttuSs+3Wevt3C+uFsLhMX3qnG6ri0SKO7YRqPBE088AcB4PEYpxZ07d5hOp2xvb/POO+/w0UcfcXBw4LWsEAd9EAb6MM+kXX9EFX82nCC1Xap23rwWyeq7UZbGIAo2N6VMybWj4xHD4QA0ZNOM8bi0IMK7mdhgabWt+TzVv2lNex45FFTXwHg8tqF5pWUacvIIISqc63P9EMGccuyZ4/HYrEWVUagpRW4SWZRSNBtNsPfxOLQVroZDZv59gjuafzRoy+qotTbasHR4vERpV9Mx9DpojBM5R6mcQuVEMvVoiIdQsSJ+ZnO0hRPs/HTp+I4sKrLwiIMZ8yxjMJlQjEdsrK1zfHLC4fEhzz771ML3duaE9sWLF1lZWSHLMn7yk59w7do1lpeXefrpp+l0OjSbTYbDodcawyYCYVZY7hIhSgEdOjWLovA8DC7m1F9PGO0NMHhoMY+w6LNobkIKpzwggFhKirgkygoO9QuhzurmFkm32+ULX/gCShnu5SRJ+MUvfkGz2eSVV17hP/7H/8i1a9d85pzz2rvNsu7gevQahAZbnG11R1/pfPULa0ZAmY05jiNbK9LY3XlRUESCRhKhhYU9Ck2n06W4u8f+/j4A4/GUfn9o7hfuH1ajiiyu6QRVOL713+f9/Wm1+sZZ9zGEMMPx8XElwxXwDncX6ufm/ryNeF4y1WQy4eTkxEQj5WMm0zGT8YQkNlwuvV4P0EjKOqvamjJxYhJvDDvfPAXD+ix0sLlTOjVNVSGQIkJReB3ZOCNLi1mrgkJNKNSEKG6YbGKtiSpeEwPPICx3izDXKLQySZNCIuOIwlkTGPlSFFOmU02/34fJmEm/z/HuPu3f6XL9+k3efPutU4X2bzYt61NonU7HF5+9e/cuH374Ifv7+xXWP1gMA3jzvXbduhOlqmnLGU07PI8aVPJZNL+AXG+Cv6XlBq7E1lYglPmERkKYeOXNzU0Aj2W7WpEbGxvcvHmTe/fueaE9Ey0wZ9zrf9cjGeY+HzXNWYdPO0cYVta1CAS4zfgEb0abEmI6UL9MBZQ0TdBaeUzXER8ZJ6Y92GHq7jlwyTizUMNnOR/mjWcd2qg3rU2txVAgh5p2CBnOe5/z3qOzOlwo6GQyZTIeMxqNmGZTtDKZjmliqkMZJ7G3ryohfmH/3UYNlO/CHOWPDbNvQ/iitEIxaxXzvrUuULow2r4/XARXdcIYhzsCNhzVXthEpFTzCUIfUVHkjCdjDg4OyPOC4+M+d+7cmfsOXTtzmvbBwQG/+tWvODo6QkrJpUuXeOKJJzg8PCRJEpaXlyvHnzaRzd/V75x24TC/VqtJHEe1cxRZZoovGOefrsuRT62dLgjcs1k8c645Owsv+AgIO9FCBjfnnD08POTtt99GSsnly5fpdrsopdjd3eXk5MRqTyX2+CD882M8+BxNuto8DwU2cEC7hVWFRxZh+kIIEhtjfO/ePQajCePxmI3NTZI0teMaQVSUQttpmfPNg7n3eBiM/3G0RePvhFscx5XkqHoLaY1Pa+GaCouMOHgljhOaTWikDZIkrsWEVFsRQjq17mvvqCiv4PZrrYyz0IX1mRwX68kIIHLnD8IWeS6KHJnK0lIWJgnGoB/Wqe3CAu2ZUjjHozveXbf0IYSO3QGCo6MjTOWeU4cSOINC+/333+fv//7v2d3d5YUXXuCLX/wizz77LG+++SYHBwd87Wtfe6CzBJxnvQzzA7yZ62hZi6JgY3OVRsPQuzrTq1CmioZZxG73N//7jNZj2ZwC4ExMUVazcVmCEGoeNjvNUpO674QQXjtyQjuKIlqtFnEcc/36dX7+85/TbDb54he/yPPPP0+e57zzzjsAfPvb3/awlCsU61o92/T05zGYfKHq0JZ9WO9cquhPAYRhtTLHbaGFxbSF7UuJaTsuGufRjSJJp91mqdvjV7/6NYiItNniueeep9PtgjBZo1oaXBRlitOifvOa9qL7OkEaCmZXdUgIwWAwYGVlxUNdUK4HB3nNSz4LW2hxueOcAhDFglarSavVMvCINEWRneUkpPSbK0KTF5mdn6VJY1+PD7l05wggEuZdKJWTZVMiu0ZVoZAytuRPdp1Tlg8rVEFRTMmyMa0lwxdiNmBTBlpr2wfDQmUUOvvoUkaBdSIMm7aMEEKST6ckkTAJXkLQ63Y53Nnl1q2bCKmJYol4AP5x5uCRg4MD3nzzTX79618jpeTixYtcunSJo6Mjdnd3T8VQQ9Pdm1sB1us0bbegldK0Ws1KsoG5jrJlzgJt8jezPuc3YSb2fK1u8a7iFpqLuXaLUAijKbz33ntEUcT29jYvvfSS17Tv3btXoQ8IcU5/14fczcTML+UHYs7nFp06VUAaZrjSnDbnlM4v97kQGJKiNOX+/fscHBwwHo9Z39iwmralCogir2G75Jp52uhv2hG5qA/huw036XoLlZkHtRA/D9eS07QbjQZpmhJbTXvRNKxg53hEwi/VEqEUVkFxCTK2EInrs3aatjvRXFHgaBIMPFIow2zp4q7duco5mz0s4oESD4lp97sdZymcpi08qVxqM0OPj4+Npv0QEvnMadrnz5/nypUrbGxssLKywnQ65a233jJe6WZzfkLNAq+3OcD8z00UZXE+wGvY9fOc9uGiSj5Lk/dhm5vw8yqOVE1FZsYmdFRNJhM2Nzd58skniaKIy5cvo7Xm1q1b3Lt3j0aj4elqw1CyeSFpIXRSb6VJLBbvf5UvqjCP03r8u8ajnVRFtvCwkVm9AodkFoWylbO7nDu3SZykdHo98jzn5HiAKqbk0yGR1CRxRNsuSIWyEQW17gbPHf5df+46Jrzo/NPaaVEd9RZ+7hKjnIUZtjRN/Vyfd+68vs44KW08tQgc9+DenAvBoxSI/nTtIitBiDImX9hntSq4Eb5WKs9b3ha2cNcsPzd3KArla8f6IwSUsZ0GHvGQjLfkzJ+mLzYBy+MwAfxm+yYE3L59m/v37zMaDmY7GrQzJ7S/9KUvceXKFdrtNlEUcXR0xHe+8x2eeeYZVlZWPGFNuNOHAsu1iraN9SxrkFozHPZpt9ssLy8bx4j3UpiXN7GESktLXVJfMKCYccp81q1ybwvdhCGQrnk+BSEqUEgIHYHZnI6Ojnj11Vd57rnnGI1GtFotbt68yfe//31u3rzJ7/7u7/KcLZ/kqgQ5B6bXTAMfge+Drjpvw0k+X0TphX9ptMEhg8INcRz7RR9HgsDXZHkmhDFTlVXatGA6ndBsNrlwcYvVzXPIJEJEEePxmHv3bjE4OWQ8OqbbabCxtkbv8mWiSFHkOXmRz/TRCUHXn08yN07zEdQddouUlPD9uuPS1BR1HgwGfvN1x7XbbYqi8O89vMask3AW2zahoDGxhQ5wgo1QOJfMfb7PnkbX1Qcz2aiRiBEII2hljHEgZ2idg0mdKS1nDKlTLGMEpogBVn5rK0SVUkwyU8w4ThJMQo3dSoQjgwqe02nv0lTL0dpAbZFMjSKgCl9yTGvDa6IsC1Uk4Qc/+AF37txhd2/v1Hd95oT25cuXWVtbY2trixs3bnDv3j1+9rOf8dRTT9FqtbyQeBQBWppdGgWMxxNfJmne9u00E7dBCCGCNPbPh0ksAqG5KJGixHmrXnf348IeL126RKPRsJmfGTdu3PBFEr75zW+ytbUFGCHlzqlbO/CQGqPrG3UR+HDNRRH4e2Jj6IOwDx89UhkMk4oeJw2arSbrjTYiglwV3L57yOHBAQf7OwyHh6wu92g1Gmbx+iIKxYymXbdy6r9/nGdbpK0/6Lywhddw/htnXYbfNxqNShm6R+mfW4eRlD522h5U3qe29SK0hRvKZCd3SunGsELR/akLTIkxRT0mzODSLpbe8phobXm5zX1yi+/LKAoSp9zcUVTSAoRHZSrPLK31prQ2BFWE0TglYdZHH37Izu6u3eAXtzMntMFMtL29PW7dusXe3h5XrlxhfX2ddrvtjwk92VCa5qc1p52njbRGLVltjkwpzLT7tIX1xzF9oSy7NHt8iOUuFgTuO0cidfPmTQaDAd1ulyRJyLKMu3fvGoL3ACYJNbIHhZ7N/07M2y9r51Ca0HP6bq/i16Go7wThc9vF7ExeNIwnU0aTCf3+CVJGtNptksQQ7GutLdtf9RnDPizarBYJ3wdBefPmwMNE6cxGTFXPcZEeYa1UKENdneU6797zWh1CMdXLS8knKr6E+slVyOX0DUkDypB4WeHr3qnGpMKXvgt/VY+sOd+GcJaAsT9NH/1cCfqqS1zb3wQH5IgSg/dSwWjrjUbKhQsXGI/HFKowBT5OaWdOaLvMtZ/85Cf83d/9HcfHx/zzf/7PeeGFF9jY2ADKSZkkiZ+QSik/+RaFezku6fW1NdqdjvE+OzDNOySw0MgScRSVm7ALD/qcNDe5PA9J+Mx2IoeLeR6HhNbaj9lgMODg4IA///M/p9lscunSJZ588knu37/P3/7t36K15mtf+xobGxu0Wi0mk0kli87dx4VUunvWHcePvvWJ2r/uES2Lmx0HaR1FZmxKs9ePB25MnCNas7d3xO7+Pnfu3mV5qcvy8kXarZi7tz4iz3OOjo7otruWIrSo7QG6EknxqNr2PB/DonNDH8S8a9SrB9UtKxeLPh6PDXmThceSJPE0q2FB53qf5vXFCVyltKckjYT0G61bTqZEXkny5KI75nk23DKMosgK/gLBlOOjPbJsTLtjaF39Fex8QxueEy0EWlgtXRgO9KKAOE7NWtdGaPu1bHlQjBZfeOFvrCpXQMFY2cZpGRkYTlvydqXJ84y1tVW+9a1vcv3GDY6OjmatvFo7c9EjWht+iBs3bvDGG29w48YNvvCFL/DEE0/4UmROaIdaw8No2kqZqJBWu02jYUsczRHEk8nETG5v9n32yTUPbLbbrnbkPHwzfLa6NlbHuqfTKYeHh/z0pz/l4OCA9fV1Xn75ZcbjMe+++y5vvvkmw+HQZ9DVNTl37ZkQxKB93PGrmKvMbspWd6oK1ZmrGMHtNiylod8fsrd3wN7enuVdWebC1gXvoBuNRn6+zYOfToNHHhUmOW1+1bHs8PP6pjnvM+cHcL4I1+rZro/S5/A+jvQJqDiFq03X9t26VeE+cuNgtGwoGA37FHlWmXfaHuvu7RyX5b0seavSyChGyChwi1rnaeltxM8PguQxr4AboS2DDcv7T4qCdqfNCy++wMWLF7h0+RJPPHH51LE7c5o2mIFwNeiKovA1IQeDAXt7e4xGIx9iNM9zP89cDEmRvPZX0ZwU02lG04YAmmnj8qcELhb089ScoJqHL4Mbh9mMNrfBuY1vNBpxdHTE3t4e586dY21tjUajwfXr1xkMBkSRibg4Pj5mf3+f8+fPL+7TAwXzQwjuAPguEQ/hv5uBI/yxNXwkeMfayYxggRY2Vn9paclULooTOy6m5qQPBXX3qd13Xsjcg03+OY87BwJZ5GQM3/PDYt2un66MXP0ZXFWfRdj4ooiXKtxzusJk4WbwBms4N3X5WgLc2zjTFZPJGG1hiNpssOq79J+4kgYCbdgblbLhsRItJFqJCkTjN5PKowebIH43mRkb1/f9gxN++vPr/Oq9PT64N6HRaPCNbyweizMntJ028Pzzz/Phhx8yHo/pdrtkWcZHH33Ed77zHa5evcrly5d90oCbVPXohfBzRy3a6/VsgVcbBmQdjEVesLNzj8tPmMgVDYZzRJjUea2sEP+caNuuF1JI4koKvmlV7asULu7H8SqnacqtW7e4du0ab731Ft/+9re5ePEi7XabP/3TP/Vj9uqrr/LOO++wu7vLP/tn/2wmocPdL0zSmBt58NAASYlN1pt/tyWiRRlzW9oX1XflNG1TkUbrguFwwHQy5sUXn6fbadNspCbW2BL1h6W5nMYaPlej0fDj+iABWrdCQqEXQlf1DdaFUNYtyUW+BOfrCc9xEJjjIQlLkKVpytLSEnt7ezPWa33M600phRICJRRShO8dt0Niqtg7C8nAKBoblSFKKMYoRSYpx5RUVkiRE4mM/b17xCJjfW0VXzDYdlE63msn+O2XSgvyQjEZG8IoGSUoERm4QxuhLhzXtiboh4N3hB1Lh+mY+ai0IrZ0zff2Jvw/f3STX7y7D0pRWPjl3OqpU+HsCW2Xtbi9ve2rpLdaLQ4PD7l37x7f//73iaLIh/+Fk3eRw8g5ldI09ZieTxKgFOzHx0dAGdqm7C4NJYb8eWoCPONfiEUaaCQ4LsBE3Y8zjdM0ZX9/nxs3bvDuu+/yJ3/yJ6yurnJ8fMz3vvc9XnzxRTY2Nnj66af5+7//e08nsKiFAuPjb3A1HLuiMc/GS2MFxez96n8HghvFZDomy6Y88cQlg1mjiSJBJGPiSJAkaXklYUzxUGi7cXiY5BTX9/om5sYq/K4uhEPagfBaYd8qT107x/k9Qhpe1+I4pt1uL6Q/rt8r/MxBI1pqpFehqzCIF+LmL5xaq7VGCzN/3TcmXxyEFdsChRA5/ZMjljopvW6nulFhhbYGtIvYcHNFUBSaaZYjZIIQMdiCvq4bIf5uERXKsnIOCpElTGIeiP4g48//5iZ3d0fkucPFHx6pPnNCu66xZVnG7u4ue3t79Pt9lpeXPTG/w2QXaTohHumKkdbjad0xhaox1/HxMdhPs53mqDrlLNxKmvX8G8fv0tISm5ubHt+cTCYsLy97LS2OY1v8OPHkXaGzsY7rnm7yB/jHwlYuZgfzVM+tPl3l9wqUUN7DLdLKnUU5DrooKDJDuUka+2uYHwOhLYIK5gneh2n19/EgWGTRd3UqgVCbDz93Tnun8CyC1sLrL+qH1qWfwOC+WAlYdQTPIA8OzyovZAW21YBteJ9WBVkxxZccC5g2NdqUBsNtA8JvBOZ3W4pMxjjtXnscbc4a8goCJcw9Z7zfeneP7//4tsXSZ495mHbmhLabfM1mE6UUOzs7fOc73/HMWV//+te99lcUBZ1Oh/F47Iv/usnlMsEcI5nj6Q5J/d39ptMpk8nEbxSG9KZkj/tkWuOn03zGmDZxypGs1v1zC0h4oVR40xnw0IZSigsXLtDpdHjqqafodrvs7+9z9+5dvvKVrzAcDplOpzQaDS5duuQTnty16hBJaPJHNdimxC8X4B5znnJeq25cYkaglAs0HC3L2GePEBKiyDzDZJIxnU4Yj4cc7u1w7/4OK0tduyEJG4ssmWaZt9DmQRWnCe4Q6gAqYxMScNU3gjBMb5GTN3Quh4yV5YZTMjWOx2OklHS73Upfw+daBLXNfxf4e0eRtV6VkczCarNKWQ1aRBTaJpCbiekvolWBiAWm6K5GoplmIwbHOwitSCJJksQ+QqhQJplGunAUXAk+jdaCLFdoYhrNDpoIpQzniHFA1jeVeQVOdEWeaA1/9+NbvPnOLnmxeDwepp05oe0GyXH8Hh0d8eMf/5iPPvqIJ554gm9961tsb2/7cL9Op+MF7zxOYOc5b7fbno+7LmhcGS5nHsZRjCry0nTT+uFkzG+oCYQPhXIwgRfcgMMW69zInjRrY4MLFy4Qx7EvR7a3t8fLL7/Mm2++SZ7npGnKuXPncDzcLtHJ3HPW5A/D/arY6yd60EDz9h8B1VT28BusI0lUUp1tYlIkkRIyq133+4ZW8+DggCSSlnCqTObKsxwVVgR3V9TVBT5P460LbV8aT+uKQK5f1/HAz3M8hoI5HPt5Qt39hMqJO94dU39fp7XyeUtr1ghtKiFvUuIT06SUqEJbZcLjXQjLEwI2bFMrhNAU2ZiT4wMEiigSxFGZN6F0gURay6p0QTttOy80CEmatoAIbYW2jGrWBHqe8TazEf/gJ7d48929Tyyw4QwKbSgFSqvVYmlpifF4zPLyMp1Ox9cvdBNZSum1kVAYh5hexfFoWyhoDM5bLZJQmnqf0+bNuGq6vv/itFNPMYMdNYDLjnSCxmHZdcG/6PqLzfkFffska6F2rutWqVkHfaMEi9ymPBj0mWZTplNT6CBNG77aC4QbYRUeqWuzlft8grlTt04WQWKn4drzjnebg1snHhq07/zj9fX0v83Nq1CV20a1LlPcy281whZhLoqc8XhkwhJjkwwX9tIkSzmL013IWJdZZsrIJWkDhCzvWkr3xX6q2lC8fe2AN9/dJc8fj1/rzAltB2vs7+/zzDPPsLq66omLAD744AN+8pOfIISg1WrxzDPPcOHCBTY2Nry27bTrJEls9e1Vms1mxWx0zZAmjZlMJzSb5h71ReIsuc9T9IhpxinnMFeAKDIOIa+4ae294ebP+rOZpIvpdIqU0peRWl1d5ac//akvNfaf/tN/4tVXX2Vzc5Nms+mLyYZQgNMehagW/w21zUXS+ROP6oy0sIFfutTBnaZvIgcEcRyhVMEvf/VLmo0GkRSkaYMrT1xhdWWJZqNpiicjSJKYyWTqScvCFhKZhQ7DuvYdCsd5kSThOLnPwgSeUFMPIZr6nA4ped37EMJEhrj37PowHo85OTmpJETV26I57+AuVRQmIkRVIzscNCItTmI2S6ctC7+mpNAksSQSCqk1Sk3RRcGwf8idGze4uLnGylKXyGnWYNn0ND4PXWOZ/DQaxf7BEVkOmxtbRDIBGSGJPHyjtEKWkYLeijO/Cq8QnfSnfP9Hdx6bwIYzKLTdBDk6OuLKlStcvXqV9957z2fn/ft//+/5h3/4BwAf8tftdtne3vaTXSnFaDTyIW3r6+szUQ3h4smyKdPphOXlJYAatIDHjj93raJUO2xSoLUhuIJFIrLaJpOJOVZrbz73ej3u3r3LxYsXSdOUH/3oR3z1q1/l4sWLXsiHhF0hxu208TqnhRPaj3vfc5ervCK7P4hwNQbNhHIazvV3332HtdU1lns9NjfWuHB+k6Vuh0baZDoZWYEXk2XTmcxSIYTnbalj2fOguhCfnmf5hecBFXrVetTOPBjG3cc154QPraewP6PRiIODgwoEM09In/aZsoqBIU+CKKr6L3y2ogYXfhoAGoAmlhJJYbINVYYuMsaDY+7fvcPLz1xlqdu2MSV2TKUw/s6gW15oa83R8QlJ2mVzcwMRJSAiy0ho+bRtJrT2gt9fxcW3APAfvn/XZnw+vnbmMiJdCx02oZY8nU59yq1Lp65nernznJY4L1PSmYV5nqMWTNTPc1vU3VBwaG2cOqW/Z340gNvoQuzVhQO68Ws0Gj4xaZ625675STa3EOSpt4e7avgeH3y1MOwxTROS1P2eksxh7VsU2vcg4qgHjck8uCpUQObR4daPXwRJ1e8TviNnLYXa+Lw+LBLYdaept6MWdKPuiQj/sro3JlZbMZmMyPOprx4vHcThxyAUtrNQR5Eb7T9O0pnuOBhG+86K2pfms1v3BtzfHS+oafrx25nTtF2TUnJ8fEwcx2xsbLC/v8+dO3c4OTmh2+3y5JNP8tprr/GLX/yC4+Njry26Cbi2tubrTcKs1jOdTo2WsbePRvnYbDBamPocsfqd1oSzAjw8EmFltVnoQAijAHOjPuoCO0kSXnnlFT+u3/zmN1leXibPc0ajkd8UpZQVJ3AobD7W88zBobFhWuYZQjPW/e60zPAbJ1Cc7uQxLrCcJUu9LtsXL7C2sUG72aLZaNBtt6yWHRtIZDzEDahTGOrC02nD5fjPCrxQsw6dj3WtvQ6RuLEFPFwyD0apa93u3/D6LoLEXe/w8JDpdEocxzMKzqNuvkWRI0VZPCJ0+JaOyWo/DV8MGA4ZBSpHqwylxlz/6D0Gx3tcvniJNEotrFKKZq2VhTrKhB1dOisYjSekbUmvtwqWD1uj0crQvJa6RomTCyew7bh9//X7FI9bYnMGhXZoavf7feI45urVq9y8eZP79+/T7/fpdDo8/fTTfOMb3/CkUqGJL6Ws4NjhdUOh3e/3OTg4oNfr0uwGDIJzVIWH9ap/5i20MoFISnSk/aYDTubMhqKFEQeh0G40GiRJwgsvvMAHH3zAdDrlq1/9Kj1bMMBxs9SFthNCddP/8TygfZZQpLvncd+EG7MTDtoJbqekaQ+Ddrsd4jSlt7JqBAiCSAgSaSpzR0KVM8EK0Hk0pkmSMJlM0Lok4Kpr2m5sQ0Ebfu767Y5xDkNXhDjEpcONoH6+a+FnTkiH3OdghHbI9PdxBTZAoXISyuxbF0ZnhLZ5D8hwXRnKUymwKLcCctAZWk24deN9hM559uoTpHGCDHBmc7ZCEKFRJjXdbdxagJSMxhOWtKDbW2Hiq7tr0AXSxn2ruWaB8YGMJjlvfXA06yp5DO3MCW3X6qZcURS+9l0YEeJMeHeOm4Rh1qNrbrG4axlNVM++t4quNycD73PSqsI38P7wYFP5tGu6MW80GjRs9RYX4lfXHheZ5nXL5iHvPvdTHV4jeFT/uwi/DPsQfOnJlIX9yGqedr44GKkoFBQFkaQmZMpwxTpk8Lg29LqFEsJP8xzJp92z3sd57+PjvaPF13LarKu7OHuiHSsfZhdoHNaaUapgOpmgVUFki3yUkSf1a4aTIeiHh3ukj+s2/Q3DETUBEcrM9d+/dUIUiccS4ldvZ05oh9qgC7vq9/tMJhPSNOXJJ5/02s7777/PK6+8wuXLl011Cutpd3wLUMVZtTYx2YeHh96Z1um0iWtZlfUirp9LDXtBcwtdSl3GAgff1SMEQtPbjb2rI9lut7ly5QqAKdxqN8qlpSWm0yknJyccHx+zvb1NFEVMJpO5yRlh30x7+PGsbJ+6mq5eIpk17onqXf1/5dXcfFBkec7uzi7ZNDPx2sMRKpvQaTc5t7FOHLlU6VkHquuHgyzqkFAo3OqQRV3whYqEg6eiKGJ5edlr3Y7UyTk0nUBfhKmH89618DznQHVwWai1L2rz3q2NT7IFlYWJYHJKF25Ts7iWlAitcUULHPe21gW6yBgOjrj2zhss9Vp0mk1aaZOIGCwzYxQHSWSm5C4upFBryPKc4WREs9mi2Wxh9HhXNAVMQeigoIL7x8Plpj8f3Tkhyz4dkrgzL7QBL7QbjQZXr15lNDIefSe0HRTizFOnaYf4qsPysizj4ODAp2J3O21/TOl9L3Ck7v9ZiOvS9g+sjTLTjjkCItSW3XdO8DgYYHl5mfX1de+cC4WUg6pu3brF1atXKyT79XBA38052uKDWohUz4+s1U5xDiyOkp3NaVxUMG97NW34kPf2TxgOR4xHY44ODhkPT1hfXSGREZsbS571scTOq1rmPAWh3uqRGXUB7zJ3J5MJKysrPlx1ZWXF0wo4DnN3zzrcFbZ5fCV1x7FTioQQDIfDCkSyqM3VzkW5zgol8DEuwshIz3OuwdRbVMGr0BjnY4EqpowGx7z/7lu88PyzrK2s0kybSBGhlSFwi9NSaJtnBEFk1muhyPOM45MTmq0WjUYLx59dbpyW08R1sIKTux5p3rl+9NgdkK6dueiRutnp4AynEbhJFWKrURSRZZkXRmGSjGtuQTmNJsQT5wmTh/HGf66aqPwz+/WCZ6kLmRCWco6vcHGDi203QsSN+aLxerAJ/rArw3kg5xwfoidalH/r6lyqNxfP7xyMLkO0KFQA/Ty4r/MghwdtTIuOKy2lEmsO4b76OQ+CTeq/z1tfp83zec9WPSB4Jha/zQctJbM2c2vlZcSxJI6jspTcaRd3/bTwhytiHMVR7Zz6BUTtp2yHJ5PTO/wJ2pnTtENnFpQ43+bmJkII3njjDQ4ODmg2m2xsbNBoNDyh1PLyMtvb26ysrABVrX0ymTAej+n3+5UNoI6bmzbfEfn5btXFKKWtnq41qKrzbJ4GPM+JNRwOPVVpyGl+48YNfvrTnxJFEefPn69YKi66YrEAfzT1xfsTq8hG7cPqQVUO5NkFiTAxKsdHR9y7v8PR8YhGw/DSLPeWQOX0Om16vR5CGM3Q+0BqsIMQwjtuXbKK01gXhZrWx0lKU1jCJek4KMrFZTu4r9ls+pqOTpEpx7X+iLNEUHXM3P3tFJ1FceP164a/e+tUF2hLezrzngWgnQJmoAnDAWKqxWgUKp9y7+4dDvbuc/7cJp12kzSOLU5ubSch/GW1VrZ+pwjCrAVZNrWc70+ytLSMxU4sfKZsAWh3gkQI59MKNjeg+BSwbNfOnNCue9bBCNOtrS0mkwkffvghd+/eZW1tjWazSbPZZGdnh9dff50rV66wvLzshTaUmovjljg4OKjQs4YTPs9zf069PS5n0+NsFY0r+FwIkxkZRdHcenXh+M57JmepDAYDz+wXCu233nqL7373u1y+fJlnn322ci1XEDkMLav29+G016C3/pg6OFIRDW5123P8OzRr1oQS6vKKAs3h4QF3bt9hPC3Y2rpIp9vl4vktmmlCEgkSCVqNybPcC+2Q2jZ02LoIkvF47P+ex00dZuyGUR0rKyueH8e9I3euE9rtdrsitN17qjsv3Tnuu9OEdmhRhXj7IsdyeI+wFaog0hKtZeU9C1dnVQhAUuQ5kbS4t7JvVRXk+ZTbt25ycrTDExfP0+20SeMIMsDW9nS8JGD5uGNTQqzMeDVRYTs7O7z00mssL69a+MTcx3Bh2/evQYjIzCBhIBo/RwRE8acHYpw5eGRRc7SqdfzZ1X0cDoc+cwxmzUI30UNz3mQPUjnO/ja3D+6lBjBx5dzTMM3PsoVp284BY5SJB/ct1M4WjfXJyYkXHmGW3kNvbAsVbr3gy9kgTF392n86//P5rSgKm5gFwgrGtJHSajZppA1LCVBeef5cqUIaDveuj8ODoj4cFOLm+TzN9zSfwLzhnBWup+ELeLOmqgoEmjWBgJw3uKdCQ3VryGq8WoNWFFlGlk0oipxGmnjGwPo7DTfpug2ltCt9pkmS1Aj1ynlOZ6/2SwfdM1o5rPYac57h8bQzp2nD/EQEV5T0y1/+MkdHR6RpSrfb5W/+5m84OjpiaWmJJ598km63689zZmgoZJxDrR5GpCknW64UiawOrVEefvMC+WGaW1ZSCGIp0bLUuIUVPh72df/WpJ1zBGtt4pOn0ymvv/467733Hj//+c956aWXeO6551hbW/MQiotCCOGtGSiGcNSrTTNHzuqg5JvDtC1Wre0C00JQALm/inVu2RqDmgItFK6qjVb2GtoUOrh04RLLK6t0Om1AkRcZSitQGUoXFGiULGlu52miLiSy0Wh6bHwymS50xoYZpnEce0hkXvNOvsBnI0SQamIHtJzJVL6rbjDVa/tl4DYbe5LTx4XfQ81NSiRBWwXYwBsOU9aoYHJVBbxWmlgIIqGJyBHkaD0mm55w46N3SGVBa7lLr90gkSCFQkUu+slFfFhHrJCQF7Z/Zm4cHw0ZjTXLKxeJGkvoqEUhIrS0HN1a2OI4bv5kNi3eRJULmaA0FBqeubLK2x8efCrOyDMrtMOkGCklo9GITqfDH/zBH6CUYjAYsLu7y//4P/6PbG1t8fzzz/Pcc8/RarX8eVobLo29vT2PATabzcq9yn2/NB3zoiBy5iLWOqu/vc8ZxK2DJ3E/kQAtI4g1eWEywaCMoTU4oT1fG2FuNssSq3VOxyRJ+MEPfsDrr7/O22+/zX//3//3vPjii5w7d64SQjYejz1eOz8SIch51FRjsP1zVDyL5pzwMK2twBa2AreksILbSxntxHiOxlSqwdGEWoEtkDTSJs+98LytIwha5RRZQaEKimKKiKxYkqe/8G63S7vdQSnDiDgY9BkOh4HQFha2MpmWzWaTTqdjUuYTV5tyFoOGMjLDRTyV/hj3soU/TuvaRilCfuvqdimE/cyGKxfaOedjvz8KjRF2mA2/5HKx4ywUWprSYdr1AY2nwtWY3zUIpUikSVqKUAgxRekRo/Eh77/zSy6eW2NjdYmVbgtpiZ+I7bvzm4RRPmIERZYjbFFrreDgYMBwrFjbfJKouYaOW+TKhL+iFVIDKgJtMBIVZT6WRCEQUUyhBFkB2xdWSJKIyXQWXvyk7UwK7XpzmpvLdHTaxuHhIYeHh74QbbvdnmFYK03g0ulTNd9m9b6qNrVIL/zNt7me/UDmldBIReIFF1hg5toW4qLT6ZTj42MODw8ZDoe0223a7TbzontCTbveX1GPlvCdDbp/2nCH6IkItCb/cQmxWPcTfisILHRttccoimi329a0NpVrtOW/cKFpLkfnNGe0wfFBa6cJW6Fa2jL2u/K+Dg5ZpGELr9aWHCR+HJ2mfcpYeYepPU5Yjbo+B+xE8Np6/Q3p4P+V0yp9LYmWfMKarh9VQhrSWkJa5RT5hMloQCTXaKQxcSTR2jgpvWqvsVSs7v5mLongGbMspyignbYQMkaLyO3PuC6VY+NHBptEj0CampdacWV75VNzRp5JoV0XrEII8tyEAw0GA4QQXL9+nR/+8IdcvXqV5557jieeeMIf74T1YDBgNBpVQqhCbLAaS1y+0iqJziNgtZ/DJoRAuKw/sIvXPU9Vg/W+u0DjczG8f/d3f0en0+HVV1/lySef5I033uD+/fusr6+jlGJ1dZWNjQ0jAGtRFuE1H30PFNXfA+zV9bl+OR9pgBGi5dESKQQ6isjygrTRoNPtmvmmNEJopIhI4ggRGY1smk8pdIEuFA3rlD0tgQig2WygtbbOSlVRAuI4IUliWq2mz/YL4ZZ6KKAQmslkyng89sk13oIJNq/QiVg9v478BuNkv3OvxG/wOrgwJe+4kZ8htmb6HYmISEYI4Y51uxxW2Lq4aKPTogu0Njwje7s77N2/w/raGr1ul0ajQVGYDVMjLTugRrp3HY67cD4EA2mOJ1OUSFldWzNbtgYhI0vpIPzxCGmFdRTgQ6YQcJZrJtMCXcBzT67y5vt7jx0VPbNCO6xD6LS5yWTCyckJWmveeust/uqv/op/9a/+FS+//DJPP/00UOJ/eZ5zeHjoK9I4/NBdL4wC8HhdIMy9w1KGGVf/OQjuqokshMG2XZEIjbZaoNF6pE2GKRc9/jwwGmS/3+dP//RP+a//6/+aV155hW63y//wP/wPjMdjzp07h9aaZ599lpdffpnXXnutgsE6geR/Ktrng1uoCOLgKv8ThiqWarQzmcsREda0lyYjT0RMJxnNZotlESEjiUIhtNnc0igmlhChOOrnRvsuFJ12m0aj4SNjFhXVaLdbNJsNlpa65LnLdDTzyTkaw+SYOkZezVjVjEYjBoOBj+YpN+AA5opKioHZCk5uc64K4+pv2JhoUIX2GLV/bwhM5Ebw7rQ9R0qSOMGrsxrzDjDasYc3RGFgK52jySjyCXdv3+T2zQ+4cvk8q6srNJspWVGYMFWzC6AsqiepbmpCSqMlK5hmBcPRmLSVcu7ceaPHa42MY6b2eQQRCml4TIQ0wluUozDNFNNpznA8ZTTO+Z0X1njnw/3Hnsp+JoX2XLOfMhnChZ7t7OywtLTki/2GYVkOFsnzfEZgz7t2HQt8EEvdPPPw89CcEVsKghIWOo3eM7yCsy5cy/Oc27dvE8cx6+vrbGxscHBwwNHREWDGamNjg+Fw+MBxfuQWwialineq3C/zIcvD8cLLpFgrXVakN32k/NdqjJGMjLi3mrILZTztXQsBUkZBYkxuw/siL7TriTIPijRx2aZuE1x87zmKhdZ+3Hx1l5nB005tqV7P/ytqH2o/0cINOTxIuP4IJ+iNJeOwKY2pFjUejRkNhzSbZZhkXuT2RThsqvpr8MCgDUykFBTKFAdOm01Gtji7dDCSnRHGFyLtNu7IrcztVKHJC0VRKPIsZ3O1wbn1Fnd3ho/VIXnmhLaDQupCA/BediEEq6urbG9v0+l0iKKI0WjEe++9R7/fpyiKSvp1PTY1vFf1s/JvJ/xN1Y2QWOY/rxZCPE7rqguFRQLWxe+6au2uxmaz2fTx8F/4whfQWrO9vc358+fnknXVHWsfd3ubxSTt7+GzAlpp63wTXvkTCGQUIWSCkDFZLoniFFHAwcERo/GEbDqlmI5JtaLXbrK5tmKoP5UCVdBqtirkZKf5A1yrw3J1ErNwfFxzyoYLYR2Px54sbdGmobXbyErtuxy1RcLaDmQgEJ1zOrRTlHbwRoCNB1CaFBHSc4Dgua/LJBtloSeFKHKwWvbtm9fROmd1ZZlG2vAbpJSuQk2E0a9tMV5dmzvaCN4sL7h7f49Od5ne6jqIiCiOUCIiLwARGyiECI1ECXPNPIdJnjPNc0bTKcPJlCwvmOYFWkdoLfgnX7vMv/3376Lyx8dDcuaENuAnqNMyXImkNE3p9XpIKblw4QLPPfccq6ur3oT//ve/z40bN8iyjK9+9at86Utfotfr+erhroWm46xTstSylVJoWdYkqi6Wz7MQd3i1sBwqmggDjwiMRhI6Gf1Z2mSNhc/rNsqNjQ2Wlpbodrt0u13OnTvH1tYW/+Jf/At/nAv9c4K7CrvoYBE/SgsFjnkWrY0gcZLbv08MtapWucGow0gZESGjmDhJiaIGCk2cNBGZ5s7dHY6OjhiNBkyHfdRoyPmNNVovvYCQJvlDFQXdTockMXw4IXvcacko8zav8Nh5502nUw+HuDqdjjJ3XpFfrbWJUwtGrK75OndddUyDTbpURg29r8ZHgngYW5RXEgIDWQhJbIW2lBIhBVFUvicXqueFtjLUq1k24L2336DXaXBha5NOq4UQBg6KpMOyI7SWZkPwkS1ld40Ij5hMp3zw0U2eev63WD9/EWRMJBooJZhmCpk20NpAI4oIKY3wnk4UJ/0Rg9GIg5NjBuOxySCWkm5nCRlJet0Gv/faFt//8Z3HBpOcSaFdN/Ec9uzM2SiKfNFfF3edZRk7OzvcunWLLMs4Pj72gr6eru5aOPnri6d0pn26z/r4W9XL7/DMqgk7X9OeZ3rX44idUHa1Ny9fvgzgTXiYbzJ7wT2nt/N6PftYp7wID8Q7612XmmeA0Qsf4RIBJuJFIBiPJgwGA4bDPuP+CdngmE4ztXVGpTfpPaFSuX/MjGF9HGehg9Mew5zniM1cVaaQ9a/ucKw7H+dtCCUsUn3/PhgjdGjO79ns+6ng3dJvFFJIt7VWzjfhhRoo0LpAqZyT4yN6nQ1aDqcXVpuWEl9LTBv1fcYX4l+voFCa/mBIkjZpttpoIc01tMW1rbautcXAkWgkRaHIMsVkmjMcThmOJ2ihieIY3XbPLHj+qVX2jya8+e7+Y6kVeSaFthOyzjxM05RWq0Wz2fQTsdPpcPHiRYQQ3Lp1i93dXXq9Hi+88AJaa/r9vo8Zdlqfu3aYFTkXI3SWtdU8Heb1OYGtH6m5PjunnZACHiL0NAyZTJKEl19+mfv37/twv16vx/LyMtPplDfeeIPpdIq2gm1jY6OS5GT6Ibzz89HxkZoI0IYz2Wva7v/2JUlhokRwTlDMV6PRmIODE8bjnExFjKcFk9wQRE2mU7SGc+fOI7NlNtdWaKQp0+kYKaVJvBHgKqaA4blIGw2Ojg5ppA3iU8L36uMaKhKOtCqkYA1rOzq4qc41Mm+jWBwf/zDD/GCBZDB7x20jiUVMImJAI2xaupDWGYoyIY5FjlYKLQvGw2MGJ4ecHO3R67bptJqkaWI5QYK8gfKOHupxPhow1qIWEUcnfQ5PRqysnaPZ6RElLTQRhZYoLdACCmWEtNKS8aQgU1OyTDE4KRiOx4wnOUpLkNa6V8I6LKV1hwi+9rsXQMCb73xywX3mhLZz+LiqHVprVlZWWFlZ8fy/AKurq7zwwgtEUcSvf/1rfvazn/Haa6/x9NNPkyQJf/mXf8nJyQnLy8ukaerLQc0T2jMmqvWUG6pJZTG9B+qCn5s2o2tbkzeSEiUlCFf0t6StndecxtdoNPjH//gf8xd/8RfcuHGD6XTK7/3e73HhwgUGgwH/7t/9O0+UFEUR3/rWt3jppZfMPQIn3iKr5kFPo/2u6f42qcrCbgIlngtY81pKiSoKPxJKaY77A27evMut2/dIG12SRpu40SRuNBkNxyRJxDPPPEM3lrQbCe12g5OTI9qdFqury/beRgMUQjIaDUkbDe7evcPy0gqdTpd02Zatc8KnZsmEETVOYI9GI46OjphOpx4OcQU+3HjVYaYHjeGpztLQxVjTYLUZLKPdiopBYc6QAhlJH2OeEpEgyfIcpZX1JZgq94iCOI7IiilK58gi5+joHndv3uDenZtsb26wutyj02wYXdiYhB6SQWO15NBiMb3JCwWR4M7OPkf9KVuXn6K7vEnS6lGQkKuIAhMhkqsYRUShBEfDEccnJwyGEwZHhY1r0RQiNvfWxmK0OZTGZWl2FH7vd7dYX4n5/o9MGbKPWVHv7AltKEP+3ARPkoRGo1Gp49hoNFhdXSXPcw4ODrh+/Trf+MY32N7e9pl5jq51cfLCYmwRSoFT4n4PWwB4Fid/3O30hRuKbYutBgv/tEeoQyXO0rl06RLHx8d8+OGH9Pt9/uiP/oh2u02e53z44YeMRiNfRciFZc6zZLT3ZD0Kuj17pHYOTS90rEMNxyAX3tvcL5saruWdnR1a7YxOT9PUgnbSMFBIHLG0tMxqKyW1IX+qMNzqjUaz1g/DxQ2Y6IdGyx7zgCepzSknuMfjsYdDHKRX30xdON/HbTPomM06qXxcx0vC8+zvzqEaRREREZGW5BQ+rd08l3U+SnB82Zqc6WREv3/E0cEez1zeppGmxHFk4RWzMbt4E+fvrLx92xdlN+rhaMJgNGW7t0zcaCGjFFNQzMEhEUoLlBYUWjDJCobjKf3BiH5fIWOJiCJkEtsbGmHs0oC0v6mZty88u8ITF1r8x7/b4d7umOk0A/Fols2ZE9rORCyKwjte3CQOm8O1h8MhjUaDbrfL5uamT1OP45idnR3a7TZPPPFEhXXuQd5719ziUtr4nj9v+MjDC27zt1tsLpkEFj+7E7jufQA888wzxHHMaDRia2uLoih47733uHTpks8sdJDW/fv3K7St7poPE3HxsM/uMWUCOaRncWTnkG21Wmysr5FlymvaIooZjEZWy1Ls7e7SWF9BNBJkLIgTF7pXJTASVtiCKSaglWI6GdPvnxg4w0fRGI9dXdt2ESIOGgmrLZ0WIXLa+6pAvs4KATSlc3nOmTO/+cs468ZCF2UpPxlo/crgxkbqWpmvTLk2oVHFFF1kTMYnDE8OGPSPSGLBxsY6zWZKHEsLgOjaXlE6PLXSeHoC+/wKyeHhMUQpnV6HZmcZZINcRxRaoERMoWGaK0aTCVmhmeaa4/6I0SQnVyCjFFtZ2MAnVhUwUUaRnRM6oOUzfVrqNfjf/YtniGnzf/m//TuGrJHGEbnSFA+xp55Joe2KmS4tLfl06brW0Wg0fFUPJ7BfeOEFlpaWOD4+ptFo8N577zGdTnn22WeJ43iGejU010MtxuCuwgsspRSRnA8hLG6fLZzyYHPZhp9RVg/XqvQfOIFed6I5ayeOY771rW956+X8+fO89957fPe73+VLX/oSW1tbrK2tsbe3x+3bt3nzzTe5cuVKJbbevEMHMTxsC0Vy8Kl3Nobp3LYAlcWAlVLG7La1BldWUlqtDpcuXQGRMM00J4MxP/v1r5DCVEa59t67tOUzyOUecbth62RaQixhfRx2Ix+NRgC0222KIqc/OGE4GtJqtWg0GzSbLQvpicqcc45yh107gR0K7kW49KIoqPJfE+7oRs3MZUuIVNOcXTS7ABMlY49XouQQQRtoTUYmgSakcHXwodQQS5MCrgGlcpLIvI1sMkTlQ44O7/PBtbeQ0wlL3Q7bzz7JSqdLEsWUrksd+JNAoomkoRfQOkeLwmdnKhHx/o07NLvnWVs5z/LmNsQdpipmWgjitMG0KBiOJuweDBiMJgwmU4bjjFxrQJKmbZTQ5nmFid3XIkLGkihKQCiUzv081NpYrHFsfCabywnPrd5nqZfx2lf/Mbd2J/z6g70HrsUzJ7SdJgJGg2m320Fxz7I554zTxFutFmtra15LiaKI/f19er1eJW44NNvnxWzX+1I/rlwoLJDLn9y7/PhatYNusblKP/P6Woc0wuK9V65c8RCV1pq3336b69ev84d/+IdcvXqVc+fO0e12uXXrFnt7ez7iIaw/aITeY3iyMDpEhA5JLB4bhvtZp1mU0m51ETKl0ILBcEqhjxiPx6QNk3J+eHBgHNidJlonxHGpMTuHpru/m6dJknjN2Qhh4TcKSHE4vDvPKSaDwQCtteffrs/RR2nO4VpuYuWYlNwpbvACTBv3udF2HexUcf0KkNLxq5TKi3fUK42IpE9kMfkN5hrTfIpWOZPxkIP9HVpSsLbSZXV1hYat3+gtJo3JoKzcWoNWM5q2FoLD4wFbywmtzhKNVo9pEVMUUCiQRBTaaNfD0ZSTwYj+aMw404jYWAvNOEE5DhQ0SjtnvY0+8eMYhkyWETLTqXFEry23+dZrT5Wy4QHK2pkU2lEUVSZy/fvQ4x5Sgu7s7DCZTNjZ2WE0GrG2tsbGxkbFkRPyisy7d9lEqVUphZLap/lCIA7/8/FPGm1bGDa8B2HbYXPj4iIc8jyvsCW2221P43p8fFwh6J+5zkML7AcPbHlEqH3aH7vATRKe6bNEorVAaEGhIvr9Ewb9EzbW10gbMQJFNhowHo8YjlKWuy0be24ZJ+01tVKeB8S1MIlGa01uaReMAJZmE8EkzjinuMtFmOdbeSSh/VBzcN5BViA5WeiEpyijboSNEikjV8romfIahgLXJsEjUKgiI8tG9I8PmY4PmYwGdFpNeo2UVrPhxeBMv+yfXqNWOUJov8+4UOmjkwHNdo9me4m01UVhNOxJphiNc5j2mUwK+oMxk2luYAsZEyegpUTIKGCYFDbixeRIyiiq9E7aTU1jxknpkrxLWgXBGHr2rP/SNG0wGvb6+rqvMFPXdLMs4+TkhMPDQy5cuEAcx0ynU379619z+/Zt7t27x/7+Pl/60pd4/vnn/YJympAzSR0kMJvgUGKEXmhrbatduINYsFA+T5q2aT7RQ5jJWfjwMfNc4THu93mx8oPBwBNxXbp0yQucjY0NOp0OSilu377tizDPc2o+nCiqLugZh6ZXeWehE6WNk0pTCh6lCqaTHJkXiChHyBytY+7dvc3e/hEvPP8MjWaCUgWDowP27t5B6Jxz6yt0ez3SRoKhLyotkf39/cpzucgZv8FNJn6TcxtJXSC7jc/NsbAE3qJ36IdA1Lar2inVMQs5Q0LpjB8n87vFxbVCRtJGiSTISFo+FyOwhC6Ftom/LkxSTGSOiUTOZHxCv3/InVsfcrR/mzjSnN9YZX15mXajgXTwi9dLpQkLtO80iszf02xEFFtsWwqmhaINfHTrHqvnLrF67jLdlQtMaTKcZgyGGQcnQ4bDI6bTgmmWM5lqlJDIKKXRTCi0Bi1N2o+QRouPIM8K4kgSp4lnBsQqe9pWtgFLK2BHU1royE6E0nvKYjj1zAlth5+69HSHq4bfh+RRzsmY5zl3797l2rVr3Lt3z/NhnD9/vuKYChnoHpT4oAkgEotpfd6ckY/SpHDaQoBfPyRW4Xi13YYZRjE4Xugsyzg6OqoUm6i32fSaU1pweiWCwelpeuYwfw+3pzpHVlHkKA1SYdeT5uTkmJOTI85tbtBopiiVcyg1Nz94n0EsUVrTaDbsogw2NUz9zNCacGMK+Min3GbzKlWSeDmIodlsevw6nN91/8qpwyMM+GssPu0dZzPJN4YUm6rgtgLb/R5AFOHzRJFERpHFmUOQwG0aGiEsjS2RgUWEqfk4HQ84Odpjb/ceS90WF8+tsLqyZDDs3Ln9Zl6eRUGsgFQZETHOz+qyyQ+O+zx1cZlWd4W03SMjNunomaY/nHJ02GeaFdYxGCOTFJnExGkKhUIVZoPXQhhHo7CVbwAZW03bZR8JELqMJFFKGfxeVwuDo09z+JbtzAltl/01q/2W7H2Oi8GF8jWbTXq9Hvfv3yeKIjY3N2m1WpycnPD+++/77wEfRTLv+tUPyn+9oBfgsssCy2rm/N+kXC8nUPUzTxYVQEXmWF+jZCGWWteY3SYZxzGrq6vcuHGDvb0972BLkoRut8vu7q63cjwf9MOY8oH6WOqF8zYAZjdSD9IKC2W4DdpohQgTgau1otNqkvV6CG2cXUoVRJGk1+vQ7XZIUud0cxe20TTWYgsLdYRatMNFpdZEUYyUpdAOYZTw+MpzPRLoXwIN9Q14Nv9gjgZv/y9MiIg9R3pIR9riEAiH6bu34ZQeDbrwG0WRFwyGRxwf7TPsHxNLSa/TodsxhXpDP4OYydR0amqpTDg2VS1AacHxyYANoNnqEadtprlGD6eMCsnJYMJwNCXLNcrSAgpACxsJIijnQiQQhbAshG50dID9l1CeUdpc/2ycvpSkaUK73S6hQuFOPv39nTmh3ev1vGntJp2LBHB82k6bc+RRGxsbXL58me9973u8+uqrvPzyyzzzzDP8+Mc/5oc//CHD4ZA/+ZM/YWNjo1Jn0pmkM0kfXqsweJ+vLUmEiP4zKcwZrldd31SMxqcBrJZXj6Rxgt5pEmFCUrPZZDQa0Ww2ef755/nrv/5rn8Y+GAz47d/+bS5evMgvf/lLnnvuOZaXl711NFe7+hittBLCXUCAtAIzMjSsKjcYaxQJozkJg71qrTl/boPV1TWEzimmJjkkiSMuXd6m127R7XaQkV/FgIHmRjbTttGo1hEMnViRF9Bx2bdgfEMNLfTbhI7fyrNShTz8MRYqKuG7KoVA/bjKGAaat7DXRwgimRLFZgx9P90lrCrs/CNSFwgyH30znYy5d+sD7t27RZ6P6PUarG1v0W6mdNttUMpsBsL6F6yaa/jMy7F21Xbi2EAzhRBkSvH+9bs89RVYPfcEreXznIxhdHLE4eCIwaggL0zYnRIpIjbVmxTSViTTFLpARhGxiNDSjYmiQBmnpNCGqtcm1Glh1r+IDL6vClM1J45ier0uW+e3WOmZ7F9kKT9Oa/9ZyI9HaY5Fru6cCWGRwWBAnufeBO90OqyurvLRRx8RxzFPPPEEr776Knt7e/ziF7/gBz/4gU/4cJSZdZz0NO0mjNd+eB3o8w2jSCmr5PaUkTLhoq8LAChDBpMk4fz587z11lv87Gc/4+c//zm7u7ukacrKyorngXF4r73Nx2ozEEj4LrQ9winYMlj8lgPaMLK6GiUm2WOp12FzfRWBNtpzkRNFkrXVFVZWl2k0U4+Lu14URWHYAOtV7gOBUwrmyBY9SH1F+0VV2sPnOnUc5kJO1hJFz918RX0H97iS+d3f0VkINs48pNm1NdWRIvjB5g2KAijQakqWDTk63GVv5w5HB3ukkWRtZZmV5SWaaWIqzWgor0hlTpRwjembtNmIGpMcs7t/BEBnaY201WOcaQ5PRuzsH7N/1OeoP2aSaZSIIUoQUWLhHVMOTSllsjpj6Si10UKjdOFHQnhhXvP3iBIiiSJJs5GyvLxMp9P13z/Msj9zmvY8xyAYr/vULhZnYkopOTk54eTkhMlkwpNPPsnGxoavEymlpN1uc/XqVV/5wyWAhM0Jq3qkinM8GM1c21pz2r4YZ8rBx5ZEn6A9bHTBPGPNVKG3i1EIilrc9CJNL7xvnudIKVlaWmJra4vhcOgr2OR5zs7ODlJKDg4OSNOUtbU169B5cNMLfp99EudnKL/WXnAa4S2kxFf9Fu4chZSJuwKO3N9EfeQkaYyMpEd8nVnt4Lk8L3xJMTsqwViZv8vhmw83LRLOIZ79yGF/lELDDcusYiLqJ5l/ZMkKKWU0R+CXlAHCY73CboJmIxsO+wz6J6ALWs0GUaRpJDGRdPr0ohEJeiz8qGNAGGObTaY5x8MJMjZQxDSH/nDCeKrICo32cIgR0H4Ttcs0soLfWA/mOZUEXWhcDVEhsZtEaVNYt4EbQNtTIw/yQtFqt0nimJOTE0bDvplbkeTc+YsL39OZE9qLQsUMdeaI6XTq09rjOObatWtcu3aN3d1d/s2/+TdcvXqV8+fPe2fYlStX+PrXv87u7i7NZpMnnniCg4ODihnqFqRzDLk3Zb4za9oE+JvQHu/Lmts+Zxq2m7fOSUWZUOOiFQoXvhTsWeHYVByX9vx+v0+SJFy9epU/+IM/YDqdAoYT5q233uJHP/oR586d41e/+hV3797lj//4jxkMBoaT4hGa67P73T0TPsLFAY/g9GiH20dSIJPYOiIzb/ZqrWimTYpCU6gCx9esipzRaMByb5M0baA03gGmwVKmDm0FmbbR4MDG9GK5KKohcacpzosE94PyB+Yd5xgLsf3FR2e4g0t+a48CylL/kFbDLi1RfxPL8aIRFGaEtUJQWI15Ckw5PNrh9o3rHB8d0G2lbG+t0WgkLHVbNOKIWAiMziMq0tu/Q48sCMzqUt56UDpi7+iED2/dp9HdBOBwoNkd7zNRDbIiRouEOElAWCtGCpAapCaKTEHlKDYO1SiOEEhLk55TqJxCZcRxRJxIZFRuTt5FFEw1J7CHwykXLm4zHQ5479o1PvrgA7LpmFaryT/7F//rhe/tvxih7UouKaXodrueJvTu3bvcvXuX4+Njfu/3fs9nT7oolI2NDb7+9a/zb//tv+Xw8NDHE88LcasvEKMZGm0uLKyqMdrX50w8L26iXPwao00oVWKrlN/gtNe5YxGY3pPJhGazyfnz531dSIC1tTV+/vOf8+6777K9vc2NGzfo9/tzqQgeroUxDq6fWKFd1yQpy0cJE94YxxFFlpMrBZEEmwwSx5HhybbCxzx3wWQyJk5ioiRxtev9XfMsZzyeMJ5M6Xa7XtN25duwGlgUlc8pRNnH0JoL5+BcyOORnJGzMJbLLhSu88Etyvs6KAwfj21+4nJAKSi3Lbst+kr32vyrc4aDY+7fv83R/h7dq5dZXVmh224SSQujCOtSwDoghbm/s0yCJ/H/Gh3YwCIngwl37x+yfuk5AAYTzfH4BJEIU89TxMi4YWAQrdFSg1QIqRERxKkkSWIPkWoEMtcm0kUXKF0QxSVsYvjYy7E1Bpl7j4awajLNWV1d40gpPnjvHd5++21GwyFLDuNe0M6c0HbNmYmuEriL+AjhE601rVaL5eVlrzUOh0O01nQ6HT+R8zyn3+/T6/Vmak+6ey3WaEqNyWnkhuRdeOzhQctr3uJ8WG3q8bVZ07g+nvbT06+iS7rWMPXaZT269xTHMd1u11svThOXQlJyYYSSxFvctVZuNqF5bVhAreAm0Gid0yzEdOe8X+VigrU1d22mZpmZaO6qXd+0cUI+TKhofbxOb24cqlj06ac85MSrmPbuXuUYmzqOLtpFVF+J08rBVjw3Nqb3CdgEmnE2IB8fMxmPSGJJu22oViMpLQZuOzEz/TSe51uUIZrmX2HvbHDo4WjKZFqgiFBW5GlikDEemPYOUzt+UpXwmLS7l9DBbMJuCW6cFELEFT/PzLJwG4+FjZRlQ0TgU/rj2HDwnNbOnNAOJ2yWZYzHY/b392fKLTlekKtXr7K5uclkMkEIwbVr1+j3+/zu7/6uD03b3d3lvffe8zHGTtC4eFooKVuDjnjz0qVfO6IfKVOv1SlnRtX6vih87rNuWgdpwW6fCTaRJEkMraavHzn/GZxQdpWElpaWfBWhZrPpY7iHw6EPBXz66ae5du0aSil2d3dNQdskJs+mti9ucVrxqPWM0Hbyqf6B1pbpTRVBUka5EbmfSESgolrSirDcK8IKfM3U9mltbY0kiQ3u6cYPsyiPjo7Jc0WSpBXLw/lZ6jDS3Pfhsdsy9tuNej2apJ5QVL1qYOqdprULQBvh52Fee0jII+JwXlfpSNvKQEaWG0gEbRKTDEySMR4ds3v/Jns7t5hMxiwvtdnaXGGl26GRRETCAB2FUl5PdwUTTJ+VtVZcQWkjGc14mIxFLQQf3brB7uEYoh5TZQRiITskzSZKpGiREEWJSX8RgiiWEAmTWh8rZGQ0biVyUwBDKFBl/ofAzOtWu0EUS49v+z1MlD+CCGkjSfK8sMochqq1UCwvr3L1qacWvn84g0I7bI5T+/DwkFar5Tl8odR6t7a2Kn/fvn2bnZ0dvvjFL/oFdHR0xO3bt2m1WgwGA++odI4lN3EXLRIhBEpXOVFKg9GEWn1esZKKRm//F2LT7t86RFQXAm583TtxsIgT/E6Yj8djoiii1+uxvb1Nr9fz2aubm5vEkRXaDsJwA7dQzvmdBifm/bMpbRNXnNZpn0uUoWqRkGCd1s7hKgQURQ5EoA1HSZ7lRInpdxxHOMXThZYrrekPBsRRXOFfmRnjU5yM9ecqjy0nUH0uau9AnT804dgtxsjBxF57UjszTj493Qpsd+9AaOM4XHSJZUtyBDnZtM/+3l1u3PiARpKw+fSTbG1uEOMqO5ofZS0VHdzbcdA4iKZqODgpKUFE3N894mQMOuqSaeOIVLJJFHftxmvoVYUSnu+bWCBjjYgFhuvNOBtdB7TVlJ37wcXoS1sqLcT0S4FtoCRpWRtVoXCeA1NYWNPpdtm6uNgJCWcw5M81V9g0jA+uaxFOkIQaj8s4Ozw8ZDqdMp1OPXFUr9ebgUXmtfrkLx1LYu73n8dmrfvaB2H/y2c/bRxC4eF+r4ethc7ck5MTT5t7cHDAcDj00EjZD7d2ZtPl5z4HVkMV876Z85iB1u2Eo4uI8MIAu2GIUisHA6WNxmMm0zLCSKmCPMv8ter39/c+xbKqz18x8yyzG0DtAn4Kai8q5t8jhHCcKW807HI8wv567dsLJ035p63xaH/QBXk+ZTQcMB4N0aogTWLDhBhFJW97vW9uUzJPGXxjNy3LL+I0cm05sLNCU2gBIkZGDQOJAIYs2exCpZUT/uD0AhxPd3hPN5/LDT9c4WHfnHWkg/HHW3p5VjCZTBkORyxZGVOP36+3M6lpG1P0iOFw6HksHH4aZqI5HgzXiqJgZWWFLMv427/9W18e63vf+x7/6B/9I65eveoFjpvYIQudw1/dPcLJL7X0WmqJ3YZ75udboHuBoU0SRBQbQgcTyij98ypVYLLhyudxP25TdBmnIeGRsiRKr7/+Oq1WiytXrvBXf/VXvPXWW3Q6HS8YBSBthlpR6Ao85WKqT2uz0GhN8FuSL7QmlhIKkDKi2WwwnAgQhs0NEoSIiWRMGidkGqZFxv7BIaNhn+VelyuXt4mEYDQec3R0VKk0b4Rf6Yh8aFPLWwShEKt8ycNMIefU9Bqsk1BB8wLcSTC0F27hMc7icuCEK8SLcAK7QIoCKQvy6Yijwx3u3b3JyfE+sdRcurBFq9mk125ZqFB4pUFriG0ZL1/VXQNCE0fGglW6QAhTrMAwvJgq7ONMcTAak9NENtqk7XOIdAUwmramjCcv8oKdgzF7R0Pu7Z4wHE1RWiEjQbsds7XV5txGk62NJdJIUuQalVvypyLgexfCIOneAjL9ltpYKhqjUeco8rzg8OiIO3fuce299/nG17/M1vnzbGxunPruzqzQ7vf7Pva36Qp/2u/cZNRaMxwOK7jr0tIS4/GY73//+z4R5+233+a/++/+O5588kkv/MPEAXfduVgiGDPeBueDI/eZrYzyuWo61N+Cj7VGe7PQMBm6zdCMaxFopFUIQCllealXZrQJRzf69ttv89prr7G2tsaf/dmfsbOzw/b2dkW7c8LOse8BRrAot1DgtDENBbeRgbo8w6hAdnNwpr8RtpOssPJCgo4QkcFC02aTtCjIxgXHx4fs3LtLtrHOE5e2kRKyyYST4yNiWdKnhn00m9xDvJNaq76f6ptyju9HuZhwwrv+lavkg9mQZVQ10EtOdTz85Pw06AJphXYsNdNizMnxPrdvfsCwf8zFC+c5v3WBdrtZiccW9o5aQyQN7a0ujFbr4RlpHcIKw7qn8Q5IpSMmmeJoMKUgRSY90vYaeWoiM5RooIGj4wlvvb/HjdtHSCnJi2Jm0zs6mnD37oA4lih1kye2e7z4zBqtZtveX/s+lyk/FvzUjlfFbWmglaIAcqU4GY7Z3d3nxo1bvPDCC2xsrNeUudl25oS2S4cOCXPm4nxz/gU8v3aIfS8tLRFFEdPplMPDQ1ZXV2cchfWQtnqrGHSB9ims2VqHI+Zdb1HEyGn3/cRtAd7uhN1pERaub65/LobXa2a1Z3TC34Vnuiiebrfr36vTVgsbr11aAAvwWP/b7BZkHk3Xjqk+byjchYwQ1jGrCkVRZORCkSnFeDJhOjVw3DTLKOxmUhRqbmr5Iuz6Qe+4/rmwsJX7ug5dPY4m/D2lpRcON9DgXha/LetGWgckCq1ypvmI8WhInk2RApI4IrHc1JGMkD46o7yz33x0CdN4uMFiDSW1gSidlVGMjCGKE2TkIkUiq4nDaKz4+1/cYP9ohCq01YAX5wBoDVlmZMqHN465fuuE1eUWX3p1iyQto2jcuGhXpHjmOrOJZ86HUyjFaDRGKcXK6tLCvpw5oT0cDun3+5UCp/XQvHrcayhAXajfc88951Ooe70eRVHw1ltvcePGDf6r/+q/8iyCTsMUQvhMyTodrLuXExomFNF6qmvcFA+w7j/zJgAvB+wzxXFsIy6M1uue1/gPnOlfjomrE9nr9bzVUxfwaZrS7XZpNpu8/fbbnmXxqaeeYnNzk/39fZRSLPV6rK6scjLoI4Xwm6sRjMYCcOa7rkEJs81SC9h3IwSG8wMreJSpqY1WqELTaLVQk4x8OOXkpM+gP2E8njAaT9CRidFtNGKOj09Y6nQQwMnJCePRGKmFEfoOGxfCJ9U4eKiKpT+ozRf4wlo/s2+x9kmwDtwaUNpBG9XNVAhbcSVpIGU5vkmc+K6Yt+60ThePrUBPgYzx+ITdeyZSRBUT1leXSTaWWe71aMYJsdsAtImi0M5a0yamuYRh7DgJjVK5L/FlPjWORxE1SFtL0BasNZZp7mky2hQipdAJ3/nhR/zPf/OuiUr5GOtNaygKzd7BkP/P33zAKy9ssn2xTSwjIhkZG0Hn3nqRUlqr1MCHiTTcI1EUkQHnzm3yh3/0bW7duss7/fcYj0f88f/ynyy8/5kT2qPRiMPDQ7TWHn8O22nRDUKYOoDNZpOnn36aLMvo9Xq89NJL/OAHP+Ddd9/lBz/4AV/5yld8kQUXSiiE8GXOXKigaybsy95Pu3BDJ7Sl69jDgZG/wWa89cJCBRka7QnuS7ioNP+FEN7qaTabLC8vL3SyJElCp9Oh2Wzyy1/+kr29PV577TW++tWvsry8zC9/+UuTdRrFXLxwkZN+HyEliSxhLyd4SyF1uvDz22gAU8lAcBuYxKKyStFot5jkglxNOT4ZsnN/n4ODY3b392j1OnR7Hc6f3+TkZMBoZYQU0O/3mU4mxmiXtoJNzZFnuuA2jhIjPp1etQ4D1Z1z1L6fc4XAUgoTv2xQnc/yFRgcu5GmgPKXjKPYKiCFoVS1ESIIV9SgACZAxmR8zJ3bH3H35gesLHd58solVpa6JJZ8KXKQFyZeWcvI36colClZlkRgcW2N8rHxGlk6IEUMUYOks0wkE3Rb0+ydoKYJmUj48Vs7fHTn0FRj/4TNCe9fvbnDSX+Fb3xtzQpoDFRn47u9jME4pUWclr4NDesbG/z2K8/zH//6e3zw/vucnBydKrTPXPRIGA0yz2x/kIfe/Wtq+zU8udF0OkVrXWEQXMRzsvD69t8SHim/80rhgn7Ngx8WQRIfp82Divx9gr7N/X6BEAoTmpx2Pa/PjgVRKeU3zWazSbvdRmvNdDolz3MmkwmTqSkOMMdvNv+ZdPAMwXNUjrNHCGoirm4tYaKSxpOJdT7bz4qyTmOcxMF7NjCKF46+J4+iSYc4/exH88zvhZerXWquNair79Np2hbFC54jHJ5qxLxLW9daofKM6WTEdDJGqdxsilISB07Zcj7U+y78T3VLmt2UjDUoLOZuLZooRsYxMkpASH789iHXbu4zmT4aFcKDWqE0H9085Mf/cHP2SzeGtudlj81vIvCNZdOMolDWl7K4nTlN23GLAIGnfnGrm4JOW97Y2GA8HnN8fMxf/uVfcnh4yMrKCv/8n/9zH5ZTx75DfmTX5uHNYQSJUmXSwrzl9qng1B+jOQXWaBeFSWW3v8fWokmShDxXXghPp1O/+Zm0beEtk5CT/OjoyG+ML7/8MpubmwyHQ9bW1njjjTcYj8cIIbzWGgnJ+a0tFJBlgSPSwgLlBkTpL/AfBM0LsVI4oAvLQlfipY6KYDLNuHt/hw8+ukmnuUyj1WZFJJwMxzz11GXWN1bpdDtc/+A9pIxQSvvNPk1TI0yo4vx+fOdo3aHgnucgrO708wTe6S30rfgNTpTavhDCMGGirSBRNuPPXLvIcgQQS4ygFvZHmzjsvBhzeHiPvXu3mIz6JFJzefsC3U6LdqNBZB13EkOtqmzkjpQOe5ZEcYTWmVmnXkCbY4kMfg2SvIA4TYnSNkl7GRE3ETIhEoJmp8fPrw9499aAQn061mxRaN55b5eN9TYvPGeiP9xISSFRuM1bBtqGsezzLOO99z7k6OiY5aVlnrp65dR7nTmh7XDoulZXZz6bJwyFMJwYAOfOnWM4HLKzs8N/+A//ga2tLX7nd36HP/7jP/ZcGCFE4rLa4HRtlEBglxvGfCz7YQX2IqfWp9WKokAmMVJrptOcJE39hiVl5usYTiYTer0eS0tLdDodj29DdTMLK4u/9NJLvPLKKxRFweHhIX/zN3/DrVu3/GeDfp8iL9i+dAkFTCYuvd0t6tJiMHBOiWk7x6NrGivHneC2JoUUwlMbo0u313SScW9nl/fe/4Dnn36ZTnuJRlOye3jE1auX2bqwjhbS8LTLiKLQZJOMOBKkzQQlpS+qUMedQ5gu9H9U/12Mzc91qD6guXlY4YTX5bqRUlqlpHCACYLIX72Y5sTWiai1No5EqaHIEORoNeLo4B4fvP8WOs+4fHGLSxe2aKYpiU3198GEWqOKAqU1cZza/VUg7QYfrg9l+x3FRoNGSwoFSZwSNdqknSWQDYSMkURMdYPv//r2pyawXcsLxd/96DqXL/Zot8BpY0IKlyFEhdlRQLPZ5mS0z/vvf8TJ0THb2xd58cUXT73PmYNHYDGc8CjNcZY4OtewkvRkMmE8HnsNMLzvgztX/uoES2hmzmuhZhY+V/3zR2q69lP/7hGbW+Shuevw71kzuBQYITTiYt1brRadTsc7N51/wsV1D4fDIGKg3o8FZv/inj/UsS6XsigURV6YMMA4JopNlaQ4jn0RXyGNjhUqChVN+ZTuiBCLqonhECzwySr+3+ox4fXCcwKcy5+jg9/L88p3KC1EgtWmwz6VvzvlQ6GVSaDJphPyfIoqckARRYZ0KXZQ2YKx8EBVoJE6K6/+pFob1rwsyymUTfKXjvbWzLk/+95d1KcssF0rCs1f/80HC627KhRU0haMR2NkFJE2UlqtJqe1M6dph3BIGBXitNFQs3B/Q6mttlotiqLg2rVrvPfeexwdHfHaa69x/vx5lFL8xV/8hccvW60Wv/u7r9mYazmjRYatDPUROJrLEiKxWJzpyUPqSZ9O+/+x9+c/liVZfif2MbvbW315vsYekRm5Z1Vm15ZZxWJ1d1X3dKvJHjYIEiIBCtBoRhAkYARphIH+Av0kQYQAQQI4GBECJIEi2BTVMyCJbqIXFrtrSXZWVldlZmVGRsYe4eG7v/3dxUw/2HLve/7cI3KrSkW1JTzD/S33mtm999ix7/me7zkVcbXDMglFRg8iiiI/p2EYUasbTeksy+h0OjQaDZ90VCbgmHkaj8f0+30f8NLaFLx1lMq33nqLzc1Nzp07xxe+8AWKomB/b59bN28ymUyIKsp/bj6lcB6022aLeUM40W6WvNrS2Epn+QoDc7TabTY214mjBpNJTpblpuKJg2OEuRfGkwlxkiAxXqTWLug8fZWrSUHuVPP6WB3J8ffEnFdPGqT5RmCDuK7qixurY1W5HasTbVIqBy39IhFHgfldZUhRIHSOVimjwRF7u/fp9Q4Y9w/ZWO9Qi0I6S23jYc8MQNkK7YEMymfALnxZlhu2igalLRYtJAQhSkvGk5zBKOX+Tpd13WApbNOQEQhD8fvgTo/7uyN+TjYbrTU7u0N298esrdaMTAKW3y9M4NE4K2ZHF4YmOe/g4IArVy5z7twZWq1fMpW/Kg3PeWllmjE+rd21KmXPGe0sy3j//ff5i7/4CxqNBn//7/99lpaW+NGPfsS/+Bf/gjNnziCEoFZL+PKXv2TPeRzHhtIzdoZKSiOOXzXaWlteZ4V5Yfb2n/18PW7TWvsbLwxDsskEhCCKQrLcCOlEUYwIAiaTCWmQ0ul0SJLE71DctXFZjOPxmO3t7Ska4N7entd2efPNN/niF7/I5cuXef7551FK8dOf/ITvf+97RqMkjI4ZbSGkF/wIQgNRPM7z6lKgXZzBL/YOLgglFDlxnNBeWODM2U20Cjk6HJCluS9TFQT46z0cjUniBF3kFHmODt29RsWLpFwk7P/KndR0HyvfeOR4BPiCDlPfqHw1sM5LVbBKVIy2uyaBNZq5yjAmwxw3iQI7towgUmido/IJo/4hd29/wMH+Nu16zFNPXWKh1SQJQwKkZe2V1EK3wwrsIqu0yXpVWpNlqWUcKRukAyx1UmkYTXIOuwNu3rlPUF8jamasBJHpp5D899+9SV78/KBDMAJXf/XODt/51gWv3id9IB6K3BQnk0Jao51zsL/Pt3/tb7KxsUp74XSj/UTCI5+kOQOfpqmX0jQiQEY+tNvtGhaDhUjyPJsKqrn2OPBMlUVyDKHQxz83e9x5Aa2P1j7JqjANyzjxLPea89RmYZHqjsdBI9XdkINKiqJgOBx6KmCj0fDl4dI0RSs1NUkfZRaOffbYNOjp9xzEIKbHJmQpTZDb5B8zB27rblPAqwvxI1rVzApd/phDlvCEh0j8Z9xZSx++3DU5SGT69ZPuz0dDbhU4xVVp16YIRJFl5NmEPEsp8gzQxJGBjoJAlv1zUeI54xc+vlCZMve3A2K0oChMKniWK1uQQhvo2M5Of5Tzxk+3H2faP9WmNdy4fcQkLaYWy+qcH3cldCkPcIxnP92eOE/bZdXBNC7nfndG5ETs0j6UjUaDr33taywvL7O8vMwbb7zBnTt3WF1d5cUXX/Qe5M9+9jMuXLhIp9M58ZjOcylPUv7qNL+FEKeVs/lcNGcOvAhXReVvd3eXBw+2eOa5Z5FS0mq1ppJonGF2sYLBYMBoNCJJkikvL0kSL2Fb9dKVUrz33ntc//BDRqORl+v01xi8cayec2YA9n/lIzPr9cqp3UDpDRaqIIojNCbdPs1yBr0xhwcHSCl4uLXLZDKm0BkIQZwk7uBIIRFhSCHKc5eGq+Jh2z5oH+jQlVkvjdx00PFRgE/1c3OM5JzAvNZGqkAVBUoIo+1BQRAIhHZFDUCpCagcKXKyyZDDgx2OjnYZ9vdo1Wu0apu0GzWSMEJY+VtJ6OErc05pDX+5mzMrob0e0qrpoU3euhDkRcEkT9ndO2Qwzhlnis2zl6g3FhAyMtsmIXn/5h5hKMnyT87J/qgtkILtnSHnzzYRrpo7WAjKFSbWTMYTojDk4sUL/OQnf0Wns8S5c2d44cXnTjz2E2e0Zz3c2aDksTqOczzkIAhoNpt86UtfYmVlhXa7zZtvvsmDBw/Y2Njg1VdfZWHBpJl+97t/RrPZZG1t7cQ+OQGpcrGwD6/3OJV5NOdU3TmpffpskdO9bofHK62NHG1Y0imDIGB7e5vvf//7rG9u0Fnu0Go2y/Jrlf4qpZhMJuzt7QGmEHPV03YxhapBB7NQ/PSnP+W9n73nNWWmXChRJoVMG+3pcNnxsZqAl/eig4DCGm3nKRsIISeu1VFaMRwNSdOMw4MD9vZ2ERLu33vI1sNtRpMhi+0GSb3mPXERSFNtHJeBpyusFfcg4712Z6S8d+/7XL3mpxtrhzt7TL/iZc8ubifSUQtFQYGQOVIqwkiCKlxdNFQ+QgpFQMFk3GXn4R3u37sFaszFC2foLG9QT0IzNuucuHvCxB+kLYprFmBD+XPJRWZXYYy2hTSlMX5ZmtMfTrh9b4dcS8KkyeWrVxFhA2SEVgIRCK7d7TJJyyS3n2fLcsX27pAL51rmntIVvr40FeKN0R4TRxFPP/0U/90f/EsWF9q8/PJLpxrtJxoeOYneN2/bN4tDh2HI4uIii4uLhGFIv99nMplQr9ep1+u0Wi3a7bbx+mZw8tP6Yv6YPq/zMB7HEH9ySORYz6h6No+LM0xpLWColoZHbXjJJ5V9czsLR/+bhU98SrVNfQd8Yo25BmOfSTYTl5/ymJ0BBDv3HhOYPwPTHZ29FsbzldKG+7TdlmcZeZaZdOQsZzyaMBqNj8sn2D6cGiwUx/sy5Y07mMRae6G9g1p+3i4I885RDv1kb3tqCnT13rTn9P1xC4JhimhdkGcpWTpmMhmRZylhEFBLYsNPP/HZKAftuPB65kb0uw93Tq0plCLPFakNAGstSJIGQRAB0k6Z4O3re259+bk3reHB1mB6J2hbdUeVZTlaaxqNOmOruTMajU499hPnabs2C5E4SlnVq3Pvu9fNw2f0Q1ZXV0nTlH6/T6vVQkrJ2toar776Krdu3UIIwcWLFzl79iztdtvgdSfcmw4WmIIKzDv+b+0TbT4fFWtOam7uDKYb+AWn2WyyubnJzVs3SZKEzvKy/44zgKPRiMlkwnA4nKr5OM9oh2HISy+9RLfb5cc//jE//vGPybKMixcv8eyzzxEE0ogyOXlT+30fWObxwnUlPGJrCmqFrugna22r2gjQqqBWS2i3W9y9c5PRIEVKeOryBSZ5Tq5yFtUCG+sdlpYWiKKIyXhkpDnN0Xy/zKI3Hbx2Y5CVzs9CI8dHcErT2oztODBs5qqYxlwrswJa+x1i9bvCpqib70wYDnsMjg443N9C5WPWlheoJQHNemIq9xQKtDAaLpY9AaWUrp5aecrFwNb98eNwTs3e3gH90ZjBKKXV7hDVWtQai4RRHaWM9kiW54QyZO9ofNrsfOZtMMor4QT3rNtlVRtn5MGdWzTikCvnz/DqK19E64JG/XQ97SfO03YGwpcCEiUOOxv0mg3ouQBkmqZsbm4ytjrIzqCfOXOGb37zm7z//vvs7e2xuLjI5ctXWFpamiuC5Joz2tUU+6rv4yLMhrVQjuHnHUCZ1+aNSQhBFMVEUbnmLywscOnSJd577z12d3enaJWuDQYDjo6OGAwGxHHsiyRXGSCOFhhFEa+99hr7+/v8h//wH/in//SfkqYpzzz7DL/7u79LYOUFVOU6C1Fe9xNX0OOjKT1xytJWVJgUhulgdCMa9RrLSwt88MF77O/vIAW88PwznD93hs3NDS5dusT5CxdYXVslSmJypcgKRV6U4kSOWjcPlnCK0MfnXZc/2oXaOPZzrDmP3Hrh/nPWY/XOhPPitfa0P/+8uPnFGG0hSqPd7+5w5/b73PjwXVQ2YHN9mcsXz9JuNJAaVF4glEASEAhT2d7A06Ysl/egcd60SzxyfdX+c4VW3Nt6yL0H22zvHrKwvM7GmUtsnr1MmLSQQYImIM1yE6T8FPRFPklTRfU5tvCiHb9WpmbotWvXeLi1xcb6Kt/8G1/nxReeo9Wsn3rcJ85ouzYbAZ81ILMPRTVQprXh4zpGhDMsTvSo3++TpilhGNJsNioZmI/u0/HEj5Pfc7h3lYo1u1uovv7ptHIHchq8ZM6LZ3uEYUi9UbdzMzk2Zm2xcFdX8yRWSTX20G63ybKMw8NDtra2AGi1WmxsbBwf98zcHzN5c6ZnHsI9PU6owg1mUZHEccR4NKLIDYe41WqQ1Ey6fq2WkMQxkaUjOg+xilzMASOmPGtnIN0XPCzh4RH3lj5msB1sIuwxxSzMMwPNPar558idE6epB0plZNmE8dhUoQFFLYmp12omgaZySvNTrTJfZgMfr6RTLlBCmDE7yGySpkwmGVlWEMU1kqRBUmsgROADfj5RK/jFmjdTeow51720SaPRiDSdGDh2adGqh55uSJ5IeMQZ2SpLZNarqbYql7pqvN0xJpOJT675/ve/79OuXZo2GM7xxzOcLihVTV/+nMIjAs9lGA6HbO/s8Oabb/LKq68ShhGd5Q6Hh4cek6saayeXCyYhZ3anA8ZQ53nu9VyuXbvG4eEhrVaL73znOzz77LOsrZqAbxgYfrj3rO20TQd7mZpKb9gcXIVFD7yRNC+YaiiqNLjWVc2ylCgK6Swvc+WKpp60WGgvmh2SUqSTCYe9IYP+IYutBuurHRtAc4G1Eis2p/q4C+3j3yOz4krCjtF40I+XyOXzCqz1ydIJCXDn9k3Gg0NqtZCzZ9ZYXGgRhdLTMQ0EZBPVfYHHWWcJtENCKrBQNc2/P+gzmkwYpRlxXGMpbiHDOvVGmyAy3rXSAkSA1oLhcESt1qCzkHBvZ8AvqjXrZdC1OnaB4cjXazWuXL5EIuGdd94lnwzo97tkeXbyQXmCjXYVrpjNgizhh2nPrgqpuNR1IQSj0YgrV67w4Ycf8gd/8Afs7e3R6/UYDoesrKySZQb7nqW3ncStdq9V+zvrRX8em6gE+7pHXX7yk5/wT/7JP+F//V/9VzzzzDOcOXOGhw8f0uv1/XeccNT29rbnwLsAI0zj/UIIL4erlOKNN95gZ2eHpaUl/sE/+AdcvHjRZ4uFUUheFF4wym3jS6hFUSpbzIxh1pBVHyghKFRB4SNY1tNDMZmk1GoxZ89scHb9PIEIkTL0Zc9GoyF3H9wmnQzZXFul1awhbKxDKGWNtrv/FNWFxQcWfXfnGHQ974/Z8VU/NrM996uUedcFCM15T7nntE0X1wVSaMbjEW3gZ+/8Fc1GyMbaEuvn14jD0CTsFAVOCiqQ4VQ5Lq1L1UClDKWwKoflnxO3GEvJwcE++4dH7B91OXfxGZoLqzRaHeLGCiKooQnJC2ETbjRH3R5Lyx2+cHWFd24cfOaaI/OaEHBmownalAT2C5gAiSYKQlrNJl/8wsts37/HX/zFX9BuRIShpPXLmlxzEhY722aN5DwIIs9zbyy2trZ8weCiKEiSkuEwc7ZHnnuqH8zsAB7LcM/zXKYXpfLv8meWrTJvh1DdiU+dzo4lz3O63S4ffvghvV6PolAkScJkMiHPs6lzF0XBZDLxweF5zBJ3XLfgSik5ODjwSoGXL182afH1BjCfb++w6OoUiul3T5zF6l/eG/bHMvOmlFE3dDBZu92iXrOpykp7qmKv22MwHE4VlZ72MqfhgFLEakZxr3odYQoimb12uvqe271V36+c0UN5x26x6ninv49295Op2APQ6x2RTsZEoTQQURIRSFd93RyvFLw97X7WxwKS1fs2zVLG4zGDwZAgiKjV6jSaLcIwRooQo6ctwHr1bkf3zPklkvgXk/wQhZL1VYdNV6+1nRUbzF9oLxCFIXu7u1PCaae1J9LTPg0KedzvzmKxCwsLXL582WZB5jz11FO2OG2ElCFBEFKrmYsUx8kcI145hzkD5c1sHjalTfAkwFS0OXUTPOfNk8c6/WGNRuiTHyJnr4wDZr0DT7Mz36vXG7RbbRbaC+zt7nH79m0mk5TOcoeiUDx8+JClpSVGoxGj0cgXpJjVhpndhbjkKK01KysrvPTSS6yurvpsSPcA1JIaWZoxciWiKlM5veCpCrYrjHHQAi2kh0WkgACF0BqFdIJsnkWBEEgRoJXtp1BoUXB42KPXH3I0GDNKU8Z5ztJyh5WlBVaXF4mEQGpt4QUDuxgRI9DkMEd8SStFlk3QKkep3EM9wg7FfVjY64gw0p+ub8YA4o2g0squXhIZhoRhDVNZPvSGvQqSOPxcUBj+Rl7YnJaCdNKn191h2D9k8ynYXFtmsWVkVoUqsW+zqzUd1vbHvCk9tu/rbKIQKOuBm5uu0DBJCyZpRm84YqJi4tYKa7UOSWsFEbUoiBEiRGlBoTVIgSmMYJJ/8iLnmYuLv5DEGjAa2xvrDYQwtRBwuythQqtaaKSEd995mzs3rzMY9Gk1YuIk5lG+9BNntKvBuZPef9T3AR8519poIq+vr7O2tuYlQhcWFmyCjSAMx+R5Qbu9CECtZgJyU87a1PHddtF5l8bWZEXh055lEFDd7M4dj39pdstf+Yi9WYQI/JcUikpC8dxDam2wXimN9KbRys7RyggxLSwssbKyyurqGrdu3WY4HLG4dJtzZ8+SZxnXr1/n5Zdf5ujoiNFoRK1mlMuqTJEqNOUCTU5rG+D8+fNsbm564Sk3VwITkJxMJhSFhUcwuiNGt0KUg7GVTowovyydQGk8NIUmtkY70IpCRygKNMJrcwhhivvqQoBSaF2gdMaD+/e5ffc+9/cPaXWWaS+0OXvuHOsLTRpRSE0KVKHINRRaogtNEGibWJFaUSTXRysmVBSMB12yfExRTEwik91aa7/NF0gJhRVQCoIA8hBnEbVUaKFAWvGrQCJkQBDXqCUtorhOnDRROZja4ebY0gb+hDIwiBAalaamz0wYHm5z89rb5NmQF1//+zxz6Rz1WkQSR6BsghiSwEo+aK0oyFHWWBmFUm2gE2UqpkudInRBoQRShmgpyVJNd5RxcNjnxt37dNbO0l5e5szyOnG9jQxichEjicm1otCaIDTwZqGNrkeapzSbMa+9vMlf/Pj+z00wCsxzffniAnESmkW1MNCSViDDwMZLCoJQ8Kd/9sds3b5NLGGx1aRWbwLRqcd/4ox2tc3Djx/nd/fd6o+rpFKv16cwWKWMNyqEJIoMVOLYJO44UyyMExYTdx5lf0p7fPJ3nIkV7nPMM+565t/q6ycvcCVr2GztSw0N8704jkiSGrVanUF/gJQBaZbRbDZRStHtdj2enaYp9Xr92Hnm4ffVv1utFmfPnmV5ebl83XqeTtfk+FayxESEmw9/WuttezNeOuhOWlRrURk7HlVyCm1mMVNopRgOhxwcHrKztwe1hHqrSaPZpLO8TIxGjYeVY7lj47W6pyVVrQemFHmeGv2OfESWZeb+8kkjpgWBIC9MHcIgCCCLKka7MAZbFsbLVabQbSSgiBICFc0s8+VfjnkiUAitQOUIXSD0hHwyoHe4a9LXgcV2gziKzDicMy1mHSfjaZvxlZ62C4MKsJVu8Net0JosV4wmGQdHAxbXQsKkRWtpDY1R91O2+IGyTkggLARkA5iFNeZ/51ev8sbbD5lkn261mtNaIAVfeGmtAieCUA7ukTi2jBCw9eA+Ww8fcGZlxShnWuG409oTa7SnsM6PGNybRxecTCZeKGgWk1X2AX7zzTd57bWv+terbIHp85/uGZeY+mN3+Vgrz3cc9zWLx/SCNW1QTcdFRYdjOByyv3/AeDQGBFeuXCGKIhYXFzlz9gz1eh0ZBOzu7npoyFVfd6nLJy2Ss5RFFxBuNpvkee6Fo8Iw9BxiwxWPaDQa/jvl9SrhncqIpo2xXwOqpcC0//F9EuYzha116R4oU6knpF6rsb62xtr6Kp2VZZIkIc8LAmGzQgvHUnEaG+WxVVUYSBv51izLkEIQRxFJIilyi4sjrcyn6WcQCF89XEqJLGJrDDVa5gYekcp7uVoIEKHVFLGKk1iDggahKsa6wND6CopiwsH+IUU2oN/r0m63CETDXkNbxJmK+6CFzzcor7WbbyOdK+zv5h60zHQhyHJFmufsHw5MYoqUrG9s0m4vkiR1a/gdnOaCzMIualZaVkpTuzIvKPKMqxcWefrCEu/d3P+5BCSFgNXVBmtr9ZnXS26++zcvCjqdFQKluHhm0+wqV1bY2Fg/9RxPnNGeDcTBoyGRk75frejR7XbJbMqyK53lmtPD/f3f/31vtM13S0W7KIoqxz7u1Vd/d4k4Zm14/L5XmRiuD9UHyAW0ZGC8RneTV73V8juawCYbTSYTtre3ee+999nb3UMpgzcnScLZs2d56aWXQcDh4SFvvfWWDyJGUUStVpuSpQWm+ujGW8W2jXcpWF5etjzWlGazSbvdtrCRabV6jWWbeZnneWUx1R5GQZhH3XjLVUtuV1RVXVA12AxI1y9p2STpJKNQBt/VGm+wFxcXWL2wxMaFTVrtJrWoxmTYBwkLtZjJJLcxAQGB8TyN8dd+cZLClNsqspzxcIQMBHFSp16PKjCWMYbK9k8Gwl9PAYQ68QtPQWaNtvl8oUzS0CgtTDk4MoOauvnQBYFQSBRSF0BmjLbOybM+D+/dYNA7QIqCjfVVmjZjr4TwpN0nOO6+8h43QpcwEEai1BhrDYX1vkUAQjIam4LJN2/dJUia1Optnn3uRZLGImFcBxFg9LyNNKuLubicWCkkoQwhFmRpShaGUFf8r/7hl/gv//d/TPEp14ac14JA8uvfuuh31VOsJmH2VkEQIIVkMplw6dIl9NlNnrtyhWazSWd1hY2zm6ee44kz2p+0VQ1o1TCnaep5xNOLgHm4x+Mx77///szRjkMkumogZs5X/dsb9+r7VXv/CFtehWRmE1GEmC6UetoxtDaZW71ej+2H22xtPfRskDAMabVarK6ukDvmRK/n60DO7kxOWjxnF1dH0azVan6xdNmT1SkIg9Bj5Z6vTelpl9MkPGqiBT7+p51jPd0btz2quOyaIi9MqTDrLQeBqV8YJzGLS0t0lhepN+roAoa9gkKXKoi+I0Y1ygQQ9cy1t4tEnmckgSAKzdhCC42YeTE4tsYZwvL7kY6tJ6ooCECYgKRCk+eKrCjI8gm5yn35LoN2mfF4L9vDGQWaAq0yet0juof71Gshjfp52u2mvV6lt4twY8NAJRLfx+plr6JcQpgQpbYp7nmhGKcp3V6Puo6oNSSdzgpa1nwMwp+rWjLEToXD/sNAoFwGNJrVpTr/+d/5Av/tv/rJZwqThKHgb3ztDK1WBZO2eFC1NqQL7heqYGFxgRjY3NwkiiI6Kx06neXTz/OZjeBz0D4O37n6nap+SbXUmDMqSinu3LnH3bt32dra4urVq/7zVWzvhDNxGkRiHqzAuYvlZ4876nP7f6z2XwU6cLiwO9f0uTHeqcSzOQBu3LhBkiRsbGxwdHTErVu30FrTWVnh4OCQeqPOxsYGV69eZW9v70TBqGpfZvtdTWqqFksAk7xUKvu5m7/03t13Ti3kPHfKXZ/KnYd2KedSQFHCKt7gKINp51Ywqt2qkWc53W6f3lEPNeiTSMhGA5r1Jq4wg4O8rO/vVQnL17HBWMO0EW7ORMlkdjMnp9ZzY6zd+36Y2q0VpipMFISMdW70QFQFLNKYyjMUQA4qZTjpk06GDPtHxJFkcbFFoxYTRUEFk69Q+uxORmDUDP24pFn8LDBkiiCg0bpAiBCNICs03aMu/cGY8SRjYalDrblEvdn2Xrij9WmbpCOqsJ+rYFGZjyIvKPICtEJIzXe+eoGb97v8ux/eJM0+fUZJFEpefHaZF57pULixuwui8Gwe8/gpICAMI5aXlxn3unx44wZaaxa3F9k/3OfFF1888VxPnNE+3VA+3vehYjgx2xmX1t7tdllZWQFgPJ7w/e9/n+vXrzMcDvnN3/xNAFMn0G6J9SnUunnNnbcoCnRgJBynojSPwMKdd1yWPnPfdWlnGlWYAq3gKqtP0/AQEhGYzDZXBuzP/vS7fOc73+GZZ57l2rVrvqrPs889xwfXP+DKlSt85StfoSgK3nzzTe7du+fn0x3f7VJcQYnqnDtlPFe9XErpYRKlFEdHR3Q6HSLrwWsLqbjsyTAMyfPcevjV+aq2cg6dYfMYvxBIKQiDEPLUlsCSUzi4wdOtznRRMBwMGI8GbKwvsX3QZ3fvgGvXPmAhDogFxAK+8pWvmrEUClSBkEYt0FS5cVrhBaEIQRoJ2CRpEUdG0lQVOVKGmDRtvJmUQpaGWgjIMkAY6AtTR1ZpZWVApWHU1EJ63bHZNeQ5gWUUCTQBOUJnoDOyos/B7l0O9neYTAasLrVor23QbDRo1hJCt1AiDXVU27+sB6lUbql3yoQereEuCk0QhuiiIFeKOAgoNIwyzQc37pLmChnGnL/0NFGtRZQ0IIjQIkQTGDqmWVoRFi5yy5RD+Iy3DcNxRhCEoC3sIyX/xe+9hFKKP/nLO0w+RagkjiRfen6Vr315gwyzkytsCTVpg/daKbTd4SprY2q1hMtXrnD9Z+/yp3/0hwyGQ2q1Ghcunf/lMtqftJ3E8XalsiaTiTeQRZFz585tbthVsvS0S/W6kxaQk0z5VEKMoSocC6qd5mpXPe2y/zOfrwQ551IJRQmNBJafffPmTeI4ZmNjg/v373P79m2WlpZ4/Rtf5+A/HnD+/HnW19e5evUqt27d8loh1TaLXc8ya5y3PLvwAJbeVzDdXTHlaTudmHnzc8zJnvmYsH0IpOeR+Pf9LAoHgysv+JNlKa1WjQfbh3SP+jy4/4B8oUksQBS53bUEaJ1519jtwqSo0B/tuqm08pCS4S87mMZ+zy7CVb/beJ0liVtakMMNwbGb4tAMxnva0nn4LvhYgKvzOOxydLhDnk84t7bI4kKLZrNpjLAbxxRWZwOCQiAobEWxUhulnFMDMWmtrIGHrNDsHR6hlKTeFCwsdQjjBiKIoZI84x0gXYUZZy6sdXCKvEDltpCFPXsgAv6L3/sCz15Y4v/6L39MUWC58x+vBVIQhpK//59c5ZkLbQ4mGUIZwMcnRLl7nSr0ab4fhiHLy8vIIODDGzc4OjoijEL6w9NT7//aaM+0YxS9yr9BEFCr1RgOh/R6PR4+fGiDUpE14mb1HgwGUzisO+7xNh8iKQ23+9sa0UdhI5Xvzr42DRuIY5/1i4vFKR2WLYThjHc6Hfb393nw4AGra6ucOXMGhOD27dv0ej2/mIVhyOrqKpcuXZpSNnTGepZBUsXcZ8u2VfsWWlW/LMsMG8UvPObzDgoqudzaj8MbuCqmP4XvlwwSrZXVrXac4uldTFWAqdVoME4XGA0nDAZD8jxndXWVTruBKHKy4ZBJmhJFFr4RFjzwu6CZbbo2HpkUwkMQtpN+x+GgBmcy3abbwSvYZBpHo5tKjdfY1x35rrCwhkmmySYjJuMe4/EBWmc06jGBjEiSyDAepvYd7uQuKaYaN7HXxo7XUdxUFZZD0Bv0GWaK3jij3lhABhH1RhsRRCBNYV6EMdaOYTKtYVL90X5OALsgGmxbyxBhYxFSCH7ztUuI9Ij/7oe73N0ekFUUGB+nCWHgkCtnW/zP/u7L1Osxu0cD7LLkP2MviL1alSmz8Yw0zQgCSavV9BLP9UaDy1cun3r+vzbaM61q8KpenBCmFFa9Xmd7e5u33nqLN998k5WVNV+I1qnbPXz4ACkl9Xrda3QfN9rz4Q73ubIMWXn+KWrerKdY8V7d3+5Bnw2uShma7WTFm3URfhlIlF2AxuOxKdgbRjz33HO899577O3v84/+0T8iz3Nu3LzJn/3Zn7Gzs8MzzzyD47O/9NJLXLlyxRtZx56plg6rGmdncB07x33GGcrQBuUGAyMq7+YbhPdQ3U7ITY5f6FwwUUpDdROSIJCkWY4IIq/r7D39IjMFsbQmy3MCpVE2RT0MpKtJixSwubFOo9Vif/eI7a2HTCYZL7/0Eu16jfGgz879+3S7A1pNSGo1RGGzHCkIAgOLlNfOGOwizwkCCzWoAheGdEFDZT25ykYArTShW5N1ASKgajOclnWhCoRSSK2JJCidI9EEQiPUhEF3l+2HdxmN9qgnAWsrbTrLbepxjSgQCG2SspyFU4UisNnAqtDlvRY4tgSm8o0uGVFaGPqhQnHvwUMOhxmDDFY2L9BsLlBrNJFxE2SMFgGOl62FREgrwCQMa8VBfH4Rc5RKZbxqianmHoYRDm0P7A2zuVznv/4Hr3J/f8wfvnGHN9/bJgwEk6yYWzghkKb6fF4ovvJch995/RwXz7UpCJnkyjKyTKxDYYLQwl5TacsSCY2nHRZFQa/XZ71VZ3PzLF977XXGoyHrGxtcfebq8Q5U2l8b7TntJM8wDEMajQY3b97kxo0bvPXWW3z7279hU6zx2XndbpdGozHf2H6EPmhbfunjtJNgHvOe2UCrioH3W20pwWaDpmlKLakTBCEbGxv84Ac/YDAcsnlmk6PuETu7u3zwwQcopRiNRt7T3tzcJAxDxuOxl25155ndCczGEKIomlpo3PxFUcRkMpkSm4LSt5qlLh6bbQFKaWRQ1h0MAueZV/DHosAhAEoZvoLSLlvTBIaV9fIX2m3CKGFvYPRGkEZzvVlL6B4c0Ds8YjyZmMVemrR5rU29ySCYuSfM/hmlCgJpPO1CVe7DqWtZBqndTsB4u1af2sMSwhptrPdtziG08bRNMNDBBzmTcZ+jwx2Ggz1qmyu0m23WVpcoUoVJvpzxtK3mlcPXtaUkujnWQnq2jP/Pxg80gqNul71eyrAIuPjUsywur1Cvt8i1QAtXhUb4RBpDScHfqyVuOAsDarszMBmm+GBuOd9RKEkiyTPnFnjuwhc4Goy48aDLjftd3r11yGFvQl4owkCy3I546coSV8+1ubxZo1mLzCLor4W9jz2UZbVdtBm7D9ZWPG+lTO5HsNhicXGBy5evkKVjzl+8wLPPnVxqDJ5Qoz3PQH6S4OQshLC9vQ3AuXPnWF9fZzQaMRwOODg4AAw8ctJ5q/DLCTFF/zkPa88zcu7hFOWNat4vMTP3+ak+2ON5vM3e9+4zg8HAU/WiKObw6Ih+r0+z2bRavwFbW1sEQcDy8jKXLl3i/v37QJn672Ail/Ayj8UyO7fuvdnPudc8hFIYjXNfRMAeLooikiSxDBIbB6gc23ne7pyu8rXWygf3/MbdLbRQ8twFJphk/yiKwuPMo+GAWi0hjJPKOZzRtXBTpbiCWcxLlT/vaTuww57DLS5aG+9RYPne2niNTC3oFh4QeBjCARqaEhZxRQUECikUSuXkacpkfEiWjomjENGsU09MkQtt09OFKEPZ09i8+1t5iEYIe+9iFkOlBSAR0gTv07RgOEgtHBIhqRFECUKGtmfmajggp4I1eBNYgg5VOFN7yMZpmU8mKY1Gw3a5jOVEYYgqcrTdEbSTkFee7vDq1WX+LufRuvD3TyDL3W6e5ZW+2D7MaMhMIVuVhaR0wMpPHHV7ZKMxjUaDLApIKvfQSe2JU/n7qB7tbHMT5gyPM0JVz/sHP/gBQRDw27/927z22tdYW1tlNBrx7rvvAnD37l1v2KuFTKeMiP8xN3T5U14wV1lkNsOsPEJ13Ga7LYScKuPljaYycKfShnOsDPBrqo/bGx3gzp07HB4eEscx7Vab9957jz/+4z/m7NmznD9/nnqjzr//9/+eKIp46aWX+L3f+z06HaMbPRqZtOvxeOwLRUgpiaLIG/TqXLgf5yFXdUccm8TJuYKBTNJ0Qr/XK2EC21qtFsvLyxU1wQo0gpkbGRiSnUnEMdelyHMPQUlpCvDKwLBnFJIsLwwTQEryIvOe22Q8NiZFwPaDB6yvrHDx/HkCafRPcqVJ84IgikFIstwm2QSufqT0PO4gcKnNCiG0hU000hYE1kVhCi4IQRQEhGFgsFpl9D1Mco65hlIaqAJtjivM4EEVBAICUSBFAaQEIidP++zv3OP6ez+le7jDUrvOhbMbrK8us9Cqo/MUCYQyMNCCU9MCwkAghUapDHSBEIpAGnNbFBlFYbXRhUTLABnV2N475OadB7x3/RZRvc36mUtcfvp5ksYiBDVyHZIrSa4lhZaWcx6gkRQK0BKlLVvErBBT97pbScIoQinN0dEhRWGpopWMyFajzmQ0pMgmUGQEFIS6INAFUhdIrQnQSF1YtpCy2i8l0VGjENKVh3NQprCsMbNAGLjRLf7VHby5/tc+uM7W1jYbm5ucPXuepaUl71Cc1J44o/1ptFk4Y9b7u379OkIIvvCFL3D16tO02y2yLPUe597eni9TNo83/LgLi7Z4qvMSHvHpqZuiOpaqhzl9TOxWFX/z7+/vMxwOCYKAJKmx9WCLd999l+XlZZZXOsRxzHvvvUcYhpw7d44vf/nLPkM0TVOvN+LYHlVWyLxxV4N8sx65N6QVkak8z+cWnEiShGazaTH0EvCvwgrSG3DH53aVz+1/dkstpEuMEeRKWThEVMpvafI89Tbj6OCAhXaL1ZVl77MrrckLhZQhuNgCljPttN69wXHX12zjfdajLyRsUtzNd6Vl9FgxKF0GSwFPh5y69lVP3Zg/oDCedj6h3zvg4dY9RoMejXrMyvISC+0m9SS22th2Uavg2WDYEw639Z62RTAchu0yARESGYR0ewN29w/Z2t4ljOssLK+wunHW0PtkRKENrU9p43EbmpxjjzgnR3inx43T/uZ/D4IAjWYwGJq5sdCQa/UkIU9TVJ6hVeFksyyp0J7RBqW1LXLh5rB6Zwl3fgdJCStYVrUZ/rTTkB8Cth4+5KjbZXFpieXlZRrNBpXHd257IuGRT6PNMkeg9LrX1tYIw5D9/X3Onj3rucWOv724uIirNxlFEVEU+WDk8a3PtHFxQSZzvuMe+mw7/l5pkKuLT/XcShsPEWekKl2qbu+hDAjW63U6nQ6j0Yi9vT1fuUcIwcbGBktLS3MXu1lsugp1zOvj7NiOQybCU/vMth8LF5rjh2Fosdw5C0Q5yOOLsreh5oBag/flzdtIIT3sYs5fQlQOLw2k8CJZRVEQhIGl8BkqnEeF7TmrrbpwVO8DYU5evjY1NvN7USjSNKMohgwGIwNntVqV6+6gAYVSBXk2YZyOGA0HaJXTbDao102ZsNCmWZc+JR4imp7PKkihfXcGqeanDwI+3JW8vxOw26uTK3PP1YPzLIZLdEeCN/7jMjv9nLS466Bg4khwfjXhmXNNvvbCEp2F0N+fbth+7v1MaQsF2b3rFPzo4CQ7kW5OpbDQD36vW8559X4rIRd3lY5PRAm3uW5VnQWNNnx2+7pbQwy5oUYcJwZ+cc7CI6z2XxvtE5qDNaA0LG7r/+u//utsbW3xve99j+XlZfb391FK8frrrwPw0ksvcffuXfb29tBas7S0xP7+/lRCycmtrEJdaI1Q2kMkDqs93kovy2ytxdSNq5VjU8jyM5a768bnPm+qpAdWqMgG94Rg88wmcS1hdXWVP/iDP+Du3bsEQcDi4iLf+c53bEX6gMlk4vviPGP3d3U+q5ztqiddrR1Zhahc35RSDAYDo4RY8dKxEEez2aSwZchiW3i46g0hIKiMy/G7wT14xhBrrUmtlwmA0gaWsF4XSpnMSaWIpDDSpFoRxwE7u/vsHxwxGI5pNBu+Mnk6HmFkXUGrgjAoxxlgttaBlB4nLvISKhIOF/dp9GWRWLRmPE45ODjgwYMH9Hp9rly5wpWnGrggq5kjhSYnz0f0urtsPbhDkaVEATz91EXqSUQ9Caknli0CSBGCEiiBFYYuFyilTLVxs9AIru1o/uAnIW/cjgglpDkUxwLpTaDh7oRjt/Foorl2b8y1e2P+9Q/3WG6F/K2vb/LVF1bMjsXh/jhKpvYLqfN2sX+b/UpgcXG7u1EaAgOf5FkGWhFIs4MpVG7nC8umMp6+VJVgYsXEex49mIXOPGw4bXADWbrc/nK8SilUYZKENjY2addrhGFMFGpkGDxyT/1LYbQ/ThByXjVxt/V/5ZVXODw85Ac/+AFf+9rX6FmM9YUXXgDg8uXLPHz4kG63S71e59y5cz5I+Zg9xnnMpXF61BjN95wxNFl0NuyknFE3iR7YbL/qbsL97pT0lNIIYaEBKVjudFhZXSWKIkajEbu7uywuLrK0tMSv/Mqv+EWt6hWXtEUxhVdP97v0wGfhnVlqYBiGZGnKaDw2EMLM9ZFSkiQJw9zgkCKe3qZqi4Oa341r52APY6CcQTIPfKE1UjvWBQRhYIwuhYUmDDzh4Aq0Igolg8GAXq/PODXlyWr1GihNOhnj5FmVUlChNwbSGJVAWBxaa0oqosFAVV5Yz95WTMditVqRpRmHB0fcvHmLrt1uX1KX/X1kNikayFHFhNEwY+vBHaTQbKx2OHvmsoFLspQkjs086MLSII2Hqp3N8ruwAoFgbxjwf/rTiA92JWkBWgtOl/h4/OfxoJ/z//iju/yLP7vP//z3nubSui3Fpa1373dHAA6CcnAcgMQUoXQ8b7sjCgPL9tIEdo6LQvuFXXh3WSB8aTgnPFCacK2NFx14LRjn7RsqqdIl/OaaYYUZ+G1peZlWkhjVyNic85fOaB9jS3zEVoURTsJgHW+43W4zGAyI45jFxUX/mb29PfI8t6ySoecXVzFb01l3UKZfc9iddsppM17lKWOvHthDCFNwgGM0lJ93AcN6o0UQBIzGYx4+fOipe2EY0u8bBkkYhqysrHhjV/WSTzPKp7WTKIAnDBIhRCVlfTpmYLTMT/r+vD3+7PXQztn281fOpzsGfkFEQJLEpJOUQb+PlpI0y8BufYejsS0QUPa/tH6nz0V1Ptx7QpTAQJqm5FlOluUcHvQYDAcgBPVGg8hW+ilhDfNdY8QVWZYTxxFhYLTRHRYrbAasN/balnVz5y+nAxD88bWQ//b7CXkxz6v+9No4Vfzjf36Nrz2/zD/49kVDM9S6nE5duVIVp9jtpMIoJJRVPRxBGASgTcA/nBveK1eo8lGtslfsO+I4aFJ9X1jszbsEDh+hjNtMwy+ntyfOaH8azWHXs14cGG+7Vqtx4cIFXnnlFW7evMna2hpPPfWUr033R3/0RywuLtLv9+n3++R5ztmzZz3OPfec1T8qxlwrTSEcgwV8BZoTrm3VezZaHxJX/sndMFXoB/Aa2EvLK9TrTW7cuMF3b/w5/9l/9j9mYXGBpaUl3nnnHa5evUqz2eTXfu3XGA6Hnjft6trNT+SZU8vxEbi3O04QBP49d5xAGh0YF+g11YPMo+Fkcwf9AUqZqi/BnPPPTp62AdNAGk/KVWMvrIvqMPJClX2R1gBIKTizsc7Ozjb3tx4gkxoZEWEUc+78BT68eZsQTRRILl+5ZDwwAkQQVsZmk0SUplDG+3MMAzc259U5vrHWiv29XXZ2drl9+w5HRyOCwOQRXHnqadbX1y0zyKj32eUfgaLIUwajHmfOrFFPYtrNGgIb6Iwjk+TjA2+hTWoR6CK3Hrvpy//9jYQ/+lnIJP/sjPVs++HPDri7O+K//h8+Z+MyZoYcbASYNHk0QkriOKHXH6DBqBMGpa/cbC9QaM14MiEMLCxhHrLyeQETT7Aqfdrj5MbTl9Jlr2rvUbtrJa1RRlneuJCmYLRzCLQgimLCKAKDsLmE5FPbX7NHTmhV7xZKo+FkRzc2NnjmmWe4f/8+y8vLvPDCCx6D/eEPf0i/32d7e5t79+5x69YtXxDg1DbnYilrLE6m/s05TAVeKHFi6eGWaqV6MDrYu7u7gKm9uL29zX/48/+A0ppms0mr1eLGjRv0ej1qtRpf/vKXCcPQB1onk4kt6FvWxazO27EdRqWPs0a7+v3qZzz+HUjv+Y/H43KRwmyL6/W65zefzFgp4SR/fAzmb7woAws52VDHdXYMENMPa7SFYKWzzNHhPrdu3OD996/R7fUIwpC1jQ3u39/i5q3b3L17zxoFaeMJgQ9KOuOsbZAQi9OW9DC3Icfj7Vprjo6OuHf3Lj9+6y3+6id/xb379wmjiEuXLtHpdCyF0adK2n8VSmUMBj1WV5bZ3FxleXnBGG0JcRQahlFhBJ6w2tVClpVztIb/5v/705+7wXbt/u6Y/8P/+z2DsXvYx4zRq+lZHe8wihlaTXbAP2MCsyNRGiZpVmqQ2FWpZKvgDbn3pys7JSGEZyXhPoa7/4UX7BIu0Q53z5tjB0Ho7yUvYvmI9tdG+zHbrHfo8NNms0mj0SCOY7rdLoA3dK1WiyiKGA6HQPUhnLnRhVm1T2aKlJoG5v3HuLIzTQjhgyuO2aAxRtVVpgEjWBQEIVEU0ev1CIKAZrPJYDDwHGhDB0ymshcfxXL5KG2egZ+lMTo4Ziq4aw1dEIRTae2+fx4vtA9UecJye6vdJ7TxiswJYWpFdQUIzLUIw4CalTio12teeXAymVTYIwGTSUqhlNfFKC3IccNXGkiXZGV12ydj+v0ehwcHjEcjiiL3C2MUhbbYdGiMLLpy57hxm4UmiSOTLi/LSipVg4KboXLS/BH+5P2AP/zBrV+IwXbt3u6Y/+e/u+3Hp61+uOmjHwBg0u1d4Lmca7vw2l1D4ZKfwHjUuGfSfLb6/M17Av1hZzZ0zqj7qjVS+vuzDLpPH/9Rlvuv4ZGZNuvdudeqnqMrPba0tMSXv/xlzp49S71e5/vf/z7PPvss3/rWt/jiF79InudsbW3x05/+FCilOD9q09qQ8wulEYG24ZBpZK3sc0UG1d61hTJbxTCMKArFnTu3WVxapNFoUGs2mUwmfPjhDQBGoxGra6s8++yz/OhHP2JhYYGXX36Zf/Nv/g3PPfccKysrBEHA+fPnkdIE3ZxRrKarO5jDGdVZiGKWylcNRlbfry50DrKSgYTMYLr9fp+lpSULY5jWbrUQwMHBPmEQ+pRxR+EynrawD2XZZ8OvBYRAaRiPU2rNBlJqlJIo5TIxIcszo28hJPVawtWnr3DmXMpEBKREjCcZN2/dYHV1lRBNoAvu3L3P5uYqnaU243RYemj+SpZxD2V1LIQNOCoFk8mY23dusLOzzd7uQ4IgJMtyNjc3iI+GnDl3hqeevkKtUUdIU84KXEq3oFAZoEmSmKXFMyRx6PYQBLaaUZ47RkhgaHGYNH8NiECwO9D8374XMsl/fjUXT2o/fPeQb35xhYsbjak1VaFM3FELdAGTNCXL86mIhgghqSUMhn2yImecTojj0ASVRQmNlA64MfjKys0KSlsBNh7gDK7GGmqzmAZSmgCzCLzHHYdGfI4sQ2mjnmBVdSkKOG1T/tee9iPabGBMCOEDd+12m5dffpkLFy5Qq9X4yU9+AsBXv/pVXn75ZV555RU2Nzd58OABME17+yhNO4hEa06SkqwGKo2RL/WgDTYLYRghZcD2w22Gg6GBeqKINMu4fecOYNKMl5eXeeqpp3j77beJoohnnnmGmzdvsr+/z3g8BmBjY8Pzth0UMWu0ganXT5rb6hzP6pTMw8VdJmGWZV4yoOrzuZT7ND0u1OW81unAgS69ocq5x2kGMkAEgX1gy35neW7YB1pRS2IuXbjAc88+w7PPPMPq6goIuHfvLsvLy6yvrbG8vMTW1jaj0YQgjG1yXuV+qBgHrQ2t0O1ilIXHsizl3r27vPPO2/zgB9/nwYP7ZFnG2pqpT7m+vs75i+ep1ROElKX3aNd4B73ESczmxjpRFOC0RwKbbFQmEEmTGIRjMCmEFPyf/yTic2Cvffu//H9uTHnWJZ5d3oNpltoFrGwiEESJSRkvVMEkSym0NtTG4xsMwL5msWxdgdfMV9wXKo6IlEgREAYhYRARhxH1es3szptNarXYwpZGX90tErPij7PtiTban2TbPg/GmLdtd9scwGO6cRx7itssN3sek+Jx++eSOR67VU4lhImiT8Zj0tSUD+t2u1NCTwDDkckga1oP3GU1NhoNGxh0mLCYNqRzxvVptXnz4849Nb/WPXKGXjqIQOtjD6A5yPSvU5g6bivstEcqmOac/pkCCqbYrxPJcsybMAptkQarB+4feLdYnTx31QUtz3MbPxjbQG1IFBkoSwbSpMiHwRy4xVmi8i9ZwViP31Pi2O8a+GAbru+Kz5Ql8lHbOFX88N0DTrjCwMy9MrPbk4EJKpe7m1lASc+75MyadOOJ299xABxmt6KNSFieG6aPyxgej8eMxmOGlmVmkqMevSL+NTwy007aws++7x4ih/Hmee7rFbr3P/zwQ7a2tnziiTMkVay1WkW8ypYw53dccScapFBaGPaBNSRCTHuO7uvSJs+Ym0kSRzF3797j4cOH9Ho9PrxxnSg2+iFFobhy5QoA7777LpcvX+bq1at873vfY3d3l7W1NX7917/NmTNnrXEXVsEvr6SEH99JVOmAj7swzS6W1R1E9T2nZzIajYDp8mpO76TVaqG1Ii8KP7eOleGy6ITFp6WUhLbPhTa7lawoSLOMSBrWClLauouu/Jyg0MYDplAQRsh6yPbDh6TphKeeeopms0ktlBCFFHbHpLUkCGPQLnA7PTa/6NhrWBQFeZHT7XbZ292j1+tx9uwZLl26QLu1QJErdg6PMMkzLpmmDGaa3QSgTUIHSIrCcsMRoArr3lWsurHmPhCK0Pz3fxU8gn/9i2n/9vvbvPbC0tRr5n4zz1kUB2gKhsMBrVaLwGHIEprtFkEo6fe7jCcTClVQCxJzX0w9/yZKaNh5FVdYGy87lEFZhFmYRCgZG6bT4KhPOjH0TC3Ms6NVQTMKSfsDAq1pxCEXL2zQWV5ipTM9ltn210b7IzZ3Ed2232lA53lOkiRTn7tx4wYPHz6k1Wp5z2Y2acdxnedR4ww+rSqBKMsiweDaYspr01P9E1bJxlUtCcOI7e1trl27hlKKv3zzL0nTFCEEa2sbXLx4CYD333+fTqfDlStX6Pf77O3t0e/3+eY3/yZJknihpfF4YgWBwlON7Ox4Zz/r/j3JU6/CJdVFwZUXc3DN7OLhjHavd+QXVof5e4415W5BSmmTLCRKmeSiQhdMshwZBQRWQ8Q487asl5UizdIJSuQIpanXm+zsbBMmdZ555jkTNwgExCGF0mYbrAUyiCAvq83MM9phIC2jwHhpvV6P/YN9+v0ez1y9zPnz56jXmhwdHCEDQBoNEBMBm14A3c5dClOMoSgUUWIWf62cB+qKKbj7yc0X9CfwH2+JU3cFv6h20MvY66asLE7L9jrDHUUBWiuGoyGNZsPWqQQkNFoNwkhy2DugSBUFiqgWm5Jqfofmo8Jed949pW6HFswJ6EppnKX9SUrvyOxq07zg4OCALE2pBwFpr4/QBbVAEEhFFAaPNNpPNDzySdrjbverBsmJ8zuVO6cnnSQJ4/HYa5TMQgsnHffYeXw0u4yQlw9lKcNp35j6flGYB7+wXmeWGYM3GAxxBRvc59wWzS1CRVHQbDaJ42iKwnca/PRpQFKnXYPHha7gBAhHl9rQs9TO6n5YuziCeTpnsE5dOrEON6LUcI7jyAcbdRVcxnKw/XvTcZMTBuwXoziOK9WSciuSVdiAYXXRr06QOz/lAPy/s3N3/CvXHoqy0MLnsP3Hnx1WoodMWdUq28g1bYOJLljoija4z007T/iD+imdnbMKvl1+z3jdbkfu7rPCqjZCmWxTKGVZLnoOvDXdnjhPu+rpVbfnH6XNo5fNe9+dw3nLX/7ylwH40Y9+xNtvv83+/j5xHLO5uckbb7xBp9NhfX2dxcVFn/Jd5Uyf1k9hmQ1eh0SAEk6AvvS07aftDQhYhsTW1gPyPKfdXqDT6bC0uMRkMub+/ft85StfZWNjAzBiV+PxmDt37vDaa6/58mplUYcSD3Vyk9WHYR7/+tOiAlaP5eaupNelhGHk33M4/NHRocfgq3ooJlBlZ04VqCIHIanVahSj1Kcfp1lGKAUiiiEIQRlZWyMCVC6TUoA0bitSQhhKkrik/k0GfYIoRoYhIpCEUYzSJa+9KEq5AVd0obCLtKOXrq6t8sorX2R//wxhILh58xZpmtE96NLLhozHQ7J0QhwJTPq2DebitvChL8QrsWqAJrKG8LeQ8bZN8LHwlV6u7wgmZXc/d+2DuwN++2vTT4HJ8DTIjyoKJpOxCcYGtlgmhg0ipGRhYcFTYXv9Pu1mEyltMWVZkVmgqiXi8g/srg1wQR/jcRtGzt7eHnEY0Wq2EDJgNBiiopirVy4zODhEpROkyqjVaj6j97T2xBltKB/axzGGs+1xPeyq4XYJN1/5ylcAY7T39/e5cuUKly9f5sqVK/zLf/kvOX/+PM1mk5WVFb/6Oo/JGb/Tzl+FSLDbMZOsYSAU7znasatC20STggcPtsjznIWFNufOnWdpaZGd3W3u339Ap9Ph3LlzgDHak8mE27dv89prr3H37l16vR7NZmm0zbiZ6rdrs9zt2TmdjRk87jxXv+vOV6VQpmlKo9H0i6wQgmaziUsqgpKT7lLgfXyuKFB5DkFAvVZjPMnJrZB/luXkocGzJSEKUIUp0itdtXGENdoAZs6jMCCOI0gzxpMxvV6PMIwJwsAEDInIcvv4aUovC0rmiNKAtAHNgLX1VdoLNbrdQ9579x3effc99vf26R31WdxYYjIekWUTojDGq2PYWglC2ErzGpOhh7SwiK2J6SEVc0vh6yZqEJp3H0hbzODz2e7ujL2SnmsSgQygyCEvcvIiw1E8ja5LGedYWFxkMBgwGA7o946oJQlRZHTEzTNU2VH6+7q8ft4ZtxRKQWh3WYK9/X02VtdoNlvUajX2dvcQCJ559jmOdnbJRkOK8ZBa3VznXzqjPevdfdqshtnjVf92cEIV63asDCfX6Tje86CARxpttx0vd+Iz74tjF3x2QZDSMAxqtTpJUiNNs6ldiStGPJlMLCQS++1jWVyh9LZPWhBPY3x8nDbrwc/SBcvsT+HnZh5d8KTmPFInkemaE+wycraiSsKo7MDnwy7m+6buY5alBGGIEKYGJ0UlmaNKPzxl/Ebzpk6ep36H4bfyGo/xR2FCEMSenz33eHNOV92vGf+xTM45GJ7Ytc9FSzPr7c5sOKGEN7SepZ9q/zkpg6kMUu94VCdJg3CUwioUySz0hofTwBTawF6/KIpsgFmQJDG1JDFFoPO0lGf9ZTPasx72p7k1P+l8Dqc6ODhgY2ODv/E3/gaDwYDNzU2UUrz77rs89dRTgAn0vfjii15j2wXJgJkbqqwGPmvIDeOkyjSZhUdMc1BAnhVsbGxw7949er0evV6PF158kcWlRX7607fZ2tqi0Whw/vx5Njc36Xa77O7u+srq9XpjxuPFFz7o93ue4hiG4VQyzWnz9Unb7KKXphmTyYRGo2ZvevOeCQILRqOhX3TCMCjpgKqYOk4SGz5tkWvGRQHaYJLj0YhmPcKltRsDHyCtwfQTgzbVXAqTKl6Mxhzs7bG3s8P6+gUjIjWcsPfwHquLVjclkAhVGgzH8Q3sbklrk+LsApZxHHPu/Dm0hqPDLr2jPoejQ3pHR7zxwx9w8cIV1tc2WVlZt8d02HsJleBHYtUfKfnYWiss4EuhChSQF59fLxvsoqsFs5sBZ1pdcPDo8IDGZtPcg3YB1jZ4GMUJda1ZVAWTNEUpRa2WEFhYzR3a7TLN71aWoOIwOZqp0cMxMZJGvc7S4gJhFNlnQBGG0GjW0NmE7nhMZ2mFOJoOps5rn+PQwsdrVWrYafoTn7TNHrMoCvb39wH49re/ze/+7u/yjW98g9XVVX784x/z7LPPUqvVeOeddwiCYIrLXcVbp87hpCZn3nPQyszIp/51H8/SjPF4wpkzZ6jX62RZxtFRl1deeYVvfvObLC8vc//+fZ8AdO7cOZIkYXt7mzAMWVtb5+LFi/ZGLY+7uLhgE1hST1t0NLzZJJt5nPd5c/hRWpWdApCmE6/lXT3nwsIC9Xqd4XDoefQGNzQD0hXWiRCCJI5J4pgoCH05ryzLGA6HU0VptRAIGSCDsOKZWzwTTZFn9HtHHHWP2N7d5f6DLc6cOUNSa9AfjLlx8xZjpz0eBMhKbMPviALjmaMpS10JQZIkXLx0iS996ct8/etf57XXXmOl0+Hw8IA//+53efedt9nd3UErqztjb4iyoo3pq7HLzrAYPN7JiTqoJFc5hSqz9T6vzcydRDgZVkvAA2O4DWavOTgwz6i/99wCLyRRnNBo2LJ14wmj0Zg8t4H5StUa4aJINlJrRNmEn1dczEO4CjrQaDRYXl6i3W55yDIMBa1mnTgxcsf1ep24wkA7qT1xnvYnbY+zjYbjHqPzagEWFha8IQiCgNFoRK1WQ0rpMwjh0RmS+oRAchn8qPZ31tt275vPRFHkPfrxZOzZIrVajfF47KlzURT5RcIwMMIKFFMePwgC+7Cf3E6DND4tb7vEufWxxAQXrHTJE+7HsrmOjQmsEatojZvovqJQlb+dV+UfeLeiAdplF5rFNc9zChe/iGO0LsjyfEp7fHa+zFHdQmfNhAaEFY8SwuDjIiQMQlSuPTQ3Ho9NUlReTI+taqPABFGF9vdX9Tab1e5Aw3IDHhzNuwqfjxaHBhrRYgYisYYV7CJkn1GlFDooxylw2jyaUJV1XT1MIsodCuUhYR4k6d8q35DCqEg6V8sdOxDG3TdkhsBLzp6GkTxxRnseVe7TxrXnHb/KZOj3+4ZUPxgwGo1YXl72NK0oirh37x4LCwvekM5L3bZHN//YZBA8NUxRFBopFUHg6lCWBtIF2+I4MYGvPCBNU1rtNotLi/zwjb/k8uWLLC0t8cUvfpFr1675xKB+v8/i4qLXThmPjUhUvV7z0XTXV6cj7hT+siyb8qqr45ld7D7udTmJFpjnJqV9eXnJB0w9VzaOaDQaUwWanZckpaRQRemRKk0Sh2R5xGBo9CS01uRKk+Ulc0DY61aowtQasnipynM219cZpimHBweQKxqNJpcvXwEh2Nvd53B/l9XVNWo1s3CqoiCSwrIUzL2glCLXemrBEb62WmlpgyCkUW9w6eJlWs02ZzbO0ums0Ww2CWRgS2oZ4yxdoKz6jGiN0zN0UUghA5PEpUHIkLwQPLuh+dmWqNbG/Vy1C2t1PKZdiTugsYlTJilMWHDh8OCQxaUls8OxKe8GPjIZkgsLix5azERGFIXIwCggChet1ZXKNPaec969r0dq/avRaMzBwRFZntndqGZra5cYSffwiMFgSJwEhFEwN15VbZ/zTc/nu1WNT9Vou/Twra0t+v0+a2trxHHsDffNmzfp9/veaDsjW/VMHe7l0mhN0N8ExMxFLzz9T4iAIAh9tqKpWp4RhqZPQRgwmoxZXFqk01nhBz/4ATs7u9Trdb7xjW+wtbXFjRs3ACPT2ul0eP3118myjF6vy9HRIXle4Iq3uv7FcUyn00FrUFLC+gABAABJREFU7QOtVQpjtXTYpwlRzduhZFlGt9u1qeLO+1bWaMe0221jCK3XWxQlLKWKwho2YRJk4phGkhBJidAKVRRkWUaW5YZPK6TXqs5UgWf1WP7thXNnWV5cZH93h363S7vd4rnnngckWw+3uXnzFmc2z9JomLJbRZ5TVvE2BtT11eu4VxQH/aKICW41W22efeZZvvrVr/Gdb/8mF85fZLG9aDy7wlW7sbLQlt2AZYU4OViHwToZUTDFdUUYUijBhSVN/Dl28Z4918ZluAotLLXR/DhCQBzFRBYz3tnZNaqVhTKfd/8JgRAhy0sdGvUmWZozGacUudHyUZbRUwYsTZUkp5ntjLVRWRReg73fH7C7u8eD+1vkeYEqNLduPeD+gx12dveN7HES2kSg08f6Ob4M///Vqh6gMwzj8dhnSlaDoi7p5uMYtSrryEEf894zBr1cWNI0NRKhYchgMCBNDZ66uLjoy6iB+Z7zoPf29vyCUpZvKptL9nD9/7QZIye1El+fhqdKPN2F70t8OAzDKYhkFhAwa6OZVCkN9COFsOZNe8MshINGbIhLO8lX7XHjJImJotBWTAmIwohGo0m3UKRWe9yxctzp3biqbWo3oh2P26SqGy9PI7QklAGNRsNg7Qq63X5l8bRY+LFZ1Mde07idiyh5I/Y8lzpGfe7z2l57rlNBsF1zQWJnjMv4RZZmFEUZ7xLV/9v4TBAEZt4LR7+sNgdb2cWvGqiknHGtjcKmKbycVnS9hckt0IZW6mrASlndJsxvT7zR/iygker2f5ZyBngjcf/+fUajEefOneNHP/oR9+/fZzwe0+l0PKZcDUTO9vc4nc3S14Tx8vI895omWZbx8OFDNjY2iKKIPC+4fec2vW6fbq/HaDRifX0dIQQvvvgCW1tbvPfee3zpS1/ihRde8Mb37NmztNttxuOx91SllHS7RywuLpBYZTTXvzAMSZKELMvI85zIR8dLquFnFQiuzpXbZfT7fYRoEdtyW2Dw93q9ztFRCcpKWWbJOSaJKhQUBYGURIGkVU/oD0bkWqClZJKm1GoJSRxTKGPBpOWBl7CLSVip1xLOntkkDhKarRZ5nnPr1l2yLGNhYREhhFEoXK1bA1vYOasW4hVW1dH83e0ecni0y2jYJ88nqFzTbLS5eO4yYT0wanWjlK0HDwmCmE5ntZwv41PbnZuNd1Aa6UIpU+xASPJCo7QgLxSH+/v0BwVKh7x0dpkf3ysplZ+X1mlFrCzMCeBpt5iWMQdnTKMoYtAfgBbomia0z6MzuFpI4iih1V5gMhyQ5wWTyYQosFV87BxI6cOS5vvChEALB1MWhZUzloysGFtnuWMWfUuUqNVqXL58yQTIXSdOaU+c0Z7FTz+qpzdr5B/F93aaFlVP023JP/zwQ5Ik4Vd+5Vf45//8nzMYDFhaWmJjY8NT5qp1FmdrLrqAYDXAVv2sowsKIZhMJly7do21tTVq9TqF0vzsZ++zs7PD/v4+t2/f5otf/CKXLl3i9ddf49q1axwdHfHlL3+Z1157zQcin3rqKZxOdtVo7+3tWg8y8tzzkjtcQynl2Rvuvdkkm4+aWHNaMzBCuVMxnlHI4eGhZeZEhKELBode/8X1KQylDV4q71EVeQ6ZwS+TMGCx1WA8GpuMOikZjcZESUwY15gMe0bXXEhUoXzwUukCtKTVqPPU5UuEQQJako5z3nnnHdqtJqu2xqYpmrHqjTYotCoIBATSqOk5TW2EYG9vj+sfvM/2zhb9/iFFptncOMvK0jrtuE2WFXS7A27evE2j0eLSxctTOzmlC1PZxTnvwj0jRtYgEAGhCMjyAi1CsgLu3n9At68QQZ2vXWzzzlZMmn++rPZ/+vpZ5lk6AymCdMp9WnhYI0lqHB0eWUMOjXrde9tmhyVIanWiMOThaESWGSw6XlzA1W8Ft/gbPj5om2RljLiBtzLOnjnD0f4+/X6fer3BmTMbhGHE/fv3ybOM9kKLqxfPEUWxh7FOa78UmPbj8LVP296fxjmufn/2vcFgQJZlNBoNdnd36Xa7Hn6o6necFFyb7Zvbmlc9cLdlL4qCXq9njL0wwZRer8fR0RFHR0c8fPiQw8NDJpMJnU6H4XDI4eEhAMvLy77WYrPZtJ56PjV+X+1mzjhdgd1ZGuLsYnbaPJ/Ujs+/iezMwiOuFqZ7uKp7TNfHeXNceuyWo+yZPcLyucsElcJCRKJKwXQwiSV6aItbhUFAs9Gg0WiY4hOqoNfvoVRBFJssWFdTtIRA7PcrwV7vxWPS4Xv9PkeHhxwcHLC3v0+32/VViLQyhmIwMDKfHAv26nJe5jAetB2Pybo1ioSj8YTxOGUyydhsK57erNvK45+PVo8lX32u4/uvK7+5pqf/BCAIpMl2zQuKwt63/kIabzuQgcHA7ZwYOKWEL/zcisq9WAlGaiv1WqvVLERinK9arUa9XvcOZSAD2u2Wp44+yp/5pTDan1Wb9RyrXnJRFL6a+Y9//GMuXbrEyy+/zEsvvcTdu3e5ceMGd+7c8ZoeVZbF7E6hmo3oHijHfHCvTdKU/f0DHmxtcdTtEgQB29vbBEHApUuXSJKEnZ0dbt26xfLysmEXBAFHR0cEQeDZIw7mmA2yupqQziOv9jFJEr8QVQ377Dhm28f1tucvdPZfzAKWZfmxxaLRbBLFkafbubGZsVq7qzUUBUIpQimoxRFRGFgWgvFI+/0+QRj5YgxCuKAXFgM2wSmlDMe31+2xtbXNQrttkrD299nefshg0AeMSD8YTDMIAo+fTt1PSjMamblvNBpcvnyFVrNF6LjcCIIwolZvMJ6MyWwWXoVcXC5UUAk2mspGMghBBOQF9AZjdvYO2N7dp1Zvsby6wcr6JvXmAv/5b2wQBp8fo/2//E+vHntNQ5lkI0xwFY/Vu2bu26IoGI9HdLu9ckdbrpsIIWg0mtTqdcIoZDgakuYZhbaKf5UFVkox9QwXSpEXGWEYsriwwPr6GqurHeIoQgiTfZzlRnL3zp27j6WlDb8ERvuzwFNnj+8MazWzMU1TnnrqKeI45o/+6I94+eWX+bVf+zX+5t/8m/zsZz/jrbfe4t1332VhYcEHydwFr3qsDh+vHrvEwQ2+5h7oe/fuc/36h+zs7BJFEbdu3SKKIr7whS/QbDa5ffs2P/3pTzl79ixLS0sEQcDOzg5RFNFutwGTbu+MmoNHoigiSRImk4mvFOOaEEbjw/HQXdCyCo9AqRPySeh+7vuFnpfuX1KtssxkR5bX3pxzcWmRWq3m1RbdNfPCSYDUGp3noHKiQNKs10hshfIgCBlPJhwcHhLGsa0xaOAFj3NamCXPM6/At7O3y4c3brC6ukJeZNx/cI8bN29weHgAwHg8RGvlvfvCsjmqi3KRF/R6xsgvLCzy6hdfpbPcIYpjTDV3U9m73W7bep4ppuaWmDLaFtr1hkxpyJUmiBKQIVmh2TvocevOA27euUdzscPZC1e4cOkq7aUVIlHwD791hiT+eKXzPs32+vPLXNpoAjZYjLa1Iu3qKQCnKy+l0ceuBBvr9brdoRoJYrPQY3c3zs4LFpaWaLbahHHCUbfHaDIxC53TI7e3mQteOwZQUeRkaUqcxKyvrXHl0iUunj9rKgsJ4e/F3d0d3n33XbPzeozH4onDtOHTCT5+FCbErNfnDF6r1SIIAra2tvjGN77BxsYG6+vrHibRWk8F7mbx+NnxzPPCtX09zwuGI+MxjMdjpJT0+31cLcswDH3x3nq9ThzHjEYjr4XicOrZLFJ3HkdNdFv6anM4tzPUJ7VPyiTRerqqyEneuxnDNJSjtSaOYz+O0luXFFUyidagjcqSEBCFgU+WEUJQ5IpCZQYOqkIj9hfTR2WPYfS2J+MJ/V6fzbUNtNKMRiMGg5B62AKYSv2Xlcyf6XsKP/dxHHnuv5SuUo3xKMMoIqtmzFagF+9pmggkpSSsgZfQtvRWmjEYjhiOU8IoodFsk9TbKAIm/Qlfe6bNXprwh9+/xeQXVBXh3EqN/9F3LlG9I3xhX38t8fGAcuCuCZ8jYSo6Oc51KX+Mhc2iOCbPM+RE2jJzagrG8ke08KVHY2x2aSADanFMLYqI44DR2ECPQRCgioLxZEI+THEc/Ue1J9JoV9tn7WlXz1F9yIzqXIOzZ8/y5S9/maWlJQ4PD31RBDACUx988AGtllH/mkwmxzBIswCUxtN53c6wOo3ser3OSy+9xM7ODsvLyzz//PMkScJgMODBgwc8//zzuPJno/GIM2fO0Ol0aDab/saF40a7On/u++PxeIqdobXJPGw0GgyHw6mA6uy8fFzDPUXNEmL6+cPAIk7gP52kSClYXFyYXnwoA6dFUZjv2B2Ae98Fk5wfGUhBGEhCy8s2HzZMkhCTgm6EQUoGQSClqS0pYGd7l8kkpb2wQBBI2gstohDOrC+z2DCc4SgKjYG3afN2wD51HZt1pzVEYUSSRMRxQhTFSKSpiGL/K5TyOwATqrWzJtyi54r1YpgTmL6OximD4Zhef4TSgvbiMq0FQa3eRIYR2hp1LP/4f/p3Xgat+cMf3P65G+5zqzX+t3//Wf/3FBwy05TWSPcZbSAosLeQtgWN7dUeDAZopUkSk6hTbTIIiOOEVruNBkbjMTIyFW5moScsdKItdVIp4+yoLOPhwyNGk4w8NwlyURQRt9ss1GNTHekx2hNptKu40ifZij9um2e0h8MhS0tLLC4u8swzzzAYDPjRj37ED37wA77zne94j+973/se3/zmNzl79qz3ej00EdiK5nlOFCVelKler/t0ZQdnLC4u8p3vfId//I//MUIIXn/9dVqtFgcHB7zzzjv86q/+qqEhPrhPt9vj+ReeJwoNLOKOAyW9cJ7ioIN9er2e997d5x23u9frec8cphNsZufsY10Xix3qwv1ZPoTSZgAOR0Oy3BS8BQz2KAUBAUmS0Gq16Pf76FATUV47KQXY1OJQmgcuDgLi0NRiHNuAn5ABw+GQdi0mjCLIJ6YDymhsh2GEsHKuNz68AUSsr22gooj19TXicINLZ9dJMINo1GponVIUuRWwwhjxogAiHC3PGJQazWader1BPalT5MaTV9qc25VWE7b/jkOmtYFCnBdYKCz7JUTIgKPDA7Ye7vBwe4+VjXOsb5yh1Vqk3lyEqIYSgYEWZGDwXCH4n/zui1w+u8h/869+QpYrn0jyWbbXnl/iH/3GJZOyjp4y1rOGW2OgJR24GpDa64MLgdX/CAkCs/AdHhySjlPW1mPQ4ZTdDsOIel0QRiE7Ozv0en2CKCGJE8v+see0Oy0TmC/jW+MsJx2NeOedtxlNMsIwYmPjDEmSsNhc5sr5TUO7re76TmhPpNGG4x7dowzEaUyQx2mzW3GTRh77yuAffPABg8GAmzdvUqvViKKI8XjMgwcPPL/5WD+YlpN02+coiqaMrEkzr3PhwgW63S6Hh4f+mOPxmIODA86fP8/KygqHR0ekWcra2lmajab3nN0WfZbxUTWuzphXK/BUta1dEpEz5KVBnZ776vFOe/2jeuiu3JPZNVT1j/FC9tJmrnoIRRk8eOo4/hVtNSPMj86V96pMsNaygITzsi2ubsu8aQFHR12ajUXqK3VG2qjGtRoJy8vLBHnq5047vWat/bndFtxCq2iNz3J1GtuqwG7Xy+IJDq+emd2pIJzWWN11A42kqWGdHB516ayfo95osrC0DCIiFwHKzYoUOFFZAfzm1y7y6rNr/B//X3/JB3cOSfPjSVifRqvFkv/y965wcaNpdiEnGOspw13pR+nATb9mdoQBRZYzGU986r/GBqUrgcYwCgki44ykNmCfzFHls+iTX8iN7IThee/u7jGeZCS1Gp3OKkkQUG/UWV5e9nTER1nuJ9ZoP4pffVqbZyCqBmh2MZj32SAIfBZirVbjwYMHSCl57rnnWFlZIbSZicPhkOFwOMVxnh1DVXxKSsmNGzdYWFjwZcxMhRwT3Lh48SL1ep3337/GpUuXUcpAJwcHB5b5oWk0GoZxMpnMVUJ0i8MsLc4xLRz9r+qNu+84znZRFFPZkh+nneaNH7++5XWIwhBhueatVosgLGVsA8uh93EIgcWvRak/Yk5gDZrwC9IgG+OyI934tVugKjQwKQSTdMLR4SH1ep1Wu0mzWefo4IB63cgZFHlu1PnNycx5NSVWKoTvFz44Vu4gTcJQgzwbcP/+fYJmhBaabrdPs9UksWygqZkXAoRbkgR5XpBmKcPR0HDQ4xpra+s0W22iKDGftZWRjEiW0SVxlzMvCkIpWF2q8b/7X3yd927u8q/+9EPeeHeXUArSXH1irZLlVsTffn2dr73QeeRnZ0+lbQDWlYsTUwtZSaF1sEkQGNrqYNAH0TRGugKfmXvIUPgyC0tmeYYGo/Ejy3vIJ0VVnt04NtpDzVabRrPF4uICtUDSatb5KGbqiTTaPy9YxLVZ1odLrun3+yilaDQa/NVf/RVxHPNbv/VbPP3004RhyMHBAbu7uxwcHNDr9aZwYCkleWGiyWFkLpNLrf3zP/9zvvGNb3D58mWGwyEffHAdMEkkr732de7du8sf/uEf8ff+3t/12Yp37tzh8OgQgJWVFSajMb3xmCpf2I3FGbBq1XgXaCyKwqbBpx5fd4ZNSukhktFoNIV7Ox0Nd/zTApaP08qCEM54l55TYheOnZ0dU8IpCr2xDcOIZrPp+2K0R0oVtjAMEZZfK6RAioAkjlmQEYfDFIocpRVpWpDnCUUQeFhE2OsWhAHDbpfrH3zI0tISq6trrKwu88H9O3SWjaTtZDImsuXGlFZI7XzhioaFxdkLrVFFubPRylQ86nRWGPYn/PjHPyYNcsaTMQ8ebLG6tsbCwkKZXGJmyI45APsznmTs7+9z595dknqD9sIyZ85fodZcIK41QYQgA5QyhjsIQwKF1aGBSZYiLOYvBTx/qcP/5h+2ef/aTW5uTbizM+b61oijQU6hNEEgWGyGnFut0R9n7HUnPNhLSTPlGRtxJLmwVuOZ8y2++twyKwuznuwpq0Al1KHdTSGlyfYUGhm4gs4Gzw7Dkl5pnjGBUjk7O9tosUaj0fCZy56Hr2BhcZG4lrC7u48AoqggEeY+C/PCXiftITswwWOp69TrCZcuP8VyZ5V2u00zhloUloqZ2ocxT2xPrNH+pO00g/84UIuU0gsoFUXBw4cPuXTpEk8//bTZGtvXh8OhqdJsPzs7DiGMbjOq9LTv3LljUmqtET88PKQolE+Z39vb48MPP/TlzQaDAe+//z7j8QSNYY+MBkMPc8wucFXO+Sw046ryTDMwSn6qC35WOaefdnzBwAjM2UGaB8VVah8MBuacFWhASkngFpPKLsF5yIGUCEwZLov6EgSSWJbJOcbTnk7Rd90x1U8EWZZysL/PhcubNJsN6o0aWZYhpdG1UOMJhTXajiLmPGoTeDSets9erG717Xnq9TpCCh4+3Gbz4CyD4YD79+/xhS++SlJLcIl75WEMbOJ43UWhGI7G7O3t01kN6awmdFZWQcYgI7fHt0uJ8dKNAqC5tl7rxRocp8290Eh46WLMi+cXCIPYcsAFBQVCarQo0GSAssJOcs61FMcusDPsJyEHJz31rviDFOVE+ntRTMc08tw8R2WS1vGW1BKEFF6XRwo5lT2McGwwfMJMEASIyMSkzEK+QpLENBNBiEbMFtQ55TF5Io32bPskUMmj2mlYqzOyeZ77JJp+v89oNKLb7XLv3r0p9T9g6kYR/gEzzRmJJEk4Ojri7t27bG1t+T5cv36djY0No/zWbLK3tzfl/a+trRFGIVma2rTbk1sV155tYRiSZZn3tqvz6oKl1QIP1fF8lPmb37HyewZS0NNvuN8txJBmGVFuFA8dEmvmsOaTcKIoNvKcUhDgwQrjbQfGUw20JokCCl0YASEBaaEYFwW1METnBQpFoRUBEMUxy51lms0acRQgUcSBJJKaSBQUTAiwcYm0R2/QZTzs49QGHfNAoNBCIwNYXFoCndJs1NFK0Kg3WFxYpNNZQitFGAQsLy2xvLRAvZZUoB5w+IvWkGY5B0c9hoMxhQ5YWF6j2e4QJS20iEEkaEK0DtAEaEIgwFXPcd5jlmZEYURsd4IOQklqNYaDsbnHpN0V2R+3QzILyFTXZgzVcYPt/j3pMXaRhePfnv9pt/ZbIAMhJDIwCo5O3ClNU+I4tt9wDCPDVKrX64ZDrzV5YeiC7l4JUaAKBBIRmISuPM1IkpqndWoXGZZYeYHHs09PnNGuen+zxsAZoioMcdrnP8o5Hc7o/nZCMEFgmAZra2ues728vMxbb73F22+/TavVotlsUq/XjXh9JaMwDOzlsfbVZSq2221u3rzJ3bt3efDgAZcuXaIocv7Nv/nX/L2/9/doNOqsr6/xs5/9jIsXL7K+vo6Uki+8/DIrKyv0+30rkj89hurvs1zt6lzVajXDvtDay4u6liSJpy862KWKC1ahkY+7iArLoS49U+OtuuCPtiLGMpAMBkOEkCwstJG2WK9GsLy8wv7+Hv1ej5UVg1+GMiDUQBBQoJmonDA0hhyhadcjNIpiUpALQS/LyIWgtrhMMRlBoSm0kXltLLS4+uzTNGoL1JKIkJx2HNAMNQ2ZktEj0EPgMmn/Hndv3EIVitbigsGRhSDXCiGMXoiMBJevXEFoRRQGqEywurIOyghJ9Sdjkijm6lNXePryJRYXFwmF2REIiae95UrRH455uLOP0ppavc7Fp1+iVm+RNBbIgwUQdRSmkK9SGiEjQJJlCiFDn8be7/WRQtKo170xFVKwsLTMaPLQVIYPErSpK+93PcakBsbD1voEx3LevXG6C1qRVal8Uk8vDO6zwslImHNpQARGdztOYq+9o7VmeXnZesx2wdKaIIjorKxycHBEmmWocQoyIFSQKI3UOQUKJRQiiRmOJkxGExbaS4Qy8MWkNaEJZPs8KHGsQPFs+6XMiJzHQf4szuPw3izLvEBUt9tlOBxy584d3n//feI4JkkSn2TjjuW87Kqn7bZjtVqNg4MDbty4wc2bN+2Co/jZz94lTSdEUUir1WR7e9trU0gp2dzc5PLly6STdApTnmXOzPOyq6+5lPZ5wVNXvLSaxOLO8SjWyGw70ahr5xmVvpVGVZ7MMvCUZpnR4RDgttxaY+teStIss96VRATCVPC2papcTFAKCIQpjhCF0gsKpYVilOfoMEQFEiWhwBSJi5KEldUVWq06SVx62onURLIgZEKgRwCoyRFH+1v0u3u+AqXzABUKLRQiECx3lumsrLC4sIRW0Gy0WFpeYnW14z3tlU6Hlc4SzXrNPNx6+vnXGiZZzt5+l6PeiFwHLK1s0lpaJaq3UTJBiRoFNQqdkOvIetqGwoZ2mbgwmaSWqSP8jxCy1NrQymYoWjlZl6mIuxauNJjLVKz+zL0jTnj99E+e9K3ZR9ZAkdKTCBytVuuytqb3tKWk0WiaYhgasrwAGz8IlCbUCqlMsFlg2CbjNCWp1YwypNKgK8WdxeOP8InztJ03OpsaPq99Eu/6tGPN/i6EYHl5mf39fY6Ojrhx4wZKKTY3Nzl37hxhGHomh/sO4MfgGB5Qwhwu2NdqtWi32yRJwpUrVzg6OiKOYzY3N728qqMeAnPLXM2OY16rfqeKd6dp6ktdueZqYA6Hw8fGsh8Fo/jXZw1+5TafPY9bOIoiRxUaV8fPXRO3wJiCEoE39Eqbbby05zPFbo1udWgxa+fFoc2cSo1fZJXSIJRNaS6MIKqCdrNGFAWgc4o8Yzw0aemj4ZBaLUGI0J5Pe9vmGA8CM9cSUw4tCCPA7O6azSadToe4ltBoNqY0S8r5KHXETeGEFkEYU683TDq2ZYqAoKgoKM4qcU8tlNqIKBmlRFn9kNermU20cn2Znw1z2j1Sve4zfTrlWyd9oMo6qr7mYjfO4crz3MePjouOQWzropp5KGzSVnk8aY+XxLEx+bm2bCajiqmZIFCIPKO1sUIYSuNpn9KeOKM9mUz8DeOMZ1WSE44bhU8rcOnwaIdju/MEQcALL7zAW2+9xVtvvcWbb77J1atXef3117l69SpxHHN0dDTF1ZZSemPoGBsOz/7Sl77E9evX2dnZ4ZVXXuHixYueI/3uu+9y9uxZXnvtNf7tv/23FEVBq9Xi7NmzSCnp9XofeWyz3GsvJG+rxXQ6namKNbVaDa21L6LgsP3Z+fp4zXlis9dsulSbEMLy2ceMAml582Z+pQSBpF6v0Wq1yLLMZJlKiQwDsixFo4njkFwVJilFS+pJwijPidKMSZYbGENDr9enXUuIggiBKR+mVWEDUob9gYLzZ1Zp1iUUE7JJn+0H97j0MuztPGRleQkZxBRaey0UWalVWaDpdg+RSOIoorbUQQtFnEScOXuWpbU1ZCCJa8a4aLTVSzHG3VxDo5dRrzdptZYJ4xq1ep04rqFlANKwSiZZQRAGU+JVnjIZBFRLojmdF6NaV15bV96t1+vRaDRmtGcAfn7srsdtVYPt7mGX59But/1u2TkPGmi3myRJzGhsAs9pmiGEKVsWSIkMTGJWrVYjEIJAQ5EbumW/36U/OCSdjMhGAzaXXieW9UeuQk+c0a4aS5jeln8WrerNz/Kqq304c+YM7777Ltvb27z99ttcvnyZp59+mhdeeIG7d+96nRBn/KpVYaoyrkEQcPHiRQB6vR4rKyusrKz4DMU/+7M/Y2lpiaeeeoo0TT22vrS0RJZlXqXv44yzOh4wi4krVFxlvkRRNAWzzGOnfGptBtqpnsMtnoYJYAtJOKMuTbm0Wi1hMhmjVAGEJnnEetqhlGRFbmREgDgKiWwGncjKdPDxZEKrlhjYQCtUkSIo9dApFChNZ3ERwQSVjymyCUdHBwD0e13ObJ4jDBMOuyMrD6ttsoXw69RoNCQQNm1eGLQ2DAOWlpZYjmM0CqUdmwF7XaQ3sgZ3NuNeWOwQJXWCMCIMQgphhP+xMYcAy4RBU63aYhgX5U7L6dF4apxtURQZFbuZnd1xB+nzY7irsS0n85umKYPBwDtFlQ8jgFqSEAYheaFtIecMt/+TQqIDaSUe6tTiiBDodSekacZ4PGJvb49Br8uod0iWfRVd45fPaJ/GenjU91z7pEZlVqUvCALu379v6sDVajz11FOmWEGthuM4u62806YG2N/f9xW9a7XaFC+60+mwtrbG4eGhD/hVk1mEEKyurlKv1z1kNG+s88Y8i3FXX6ve1FqX2iduDNVjuCo31fmYh5XPnvORrco6mGmOagWOxmeCXZPJhCSJpoy8lJIwCBn7GIcLW9lzOCxT+BeQQhAGAZLMpoVrlLaSuZ53gkEAbNFfY/UVukhJ0z7puMug3yWwdLNmo04UBp4RI6yddl6pK4OWTsZIEVgiYgW7lx6sMd5hOkaKkEDaxRO3L7HWXwgLiQQWPy8pkZpyitw3ReV1XcFhy2Srifm0CxDb99xPdeGehQ79ZFeu39Slrtx3n3Wr9qsKRwIeJil527Zf9j4LLSSolCLNcn9dgiC0BYIzJkC332c4MHUnPZQbhSwsLhpn4DGG+cQZbYf/nhRo+zQv/ixu7Y5dLSAQhiGNRoM/+IM/YGdnh7W1Nf7W3/pbXL58mbW1NYQoJSJHo5EVzTdY4F/+5V96RcDf+q3fol6ve8jk1VdfJYoivve97/Gtb32LtbU1z+Rw/frKV75Cu91mOBxOGe7Z+pSP06oQh0uRz/Pc88zd4lPdRnc6HXq93rGCv25uPtbiWvl+9RUXuDV82cBWFBHE1us/ONij1Wp4xT6tNVEU0mjUOeoemntGK9KiAANvo4ocobUVgBIorYiCgGaS0B9NyAoj5pVj6H+BUqbmtxCgC3SeY9YxhdYF2XCPvd37HOw94HDnNkttcy0vXThHs1EjzVzlE1tNHkWRm/JnKKPDDdBqtrjAOaQoFxhVWMqhKtjZ2aHVWmRxYZm8KMpFTLrAX4AMYoLAUB0LBcrFBXFSs+4+ckFd06+8KHeycRyT5zkHB/t0Ost20S7fq9frXqfdLeyflKn1WbaqoXaOiZM8cAVNHKVW+liDERWr1WI6nWW63T57+/torUjCiLhe56A/oLDp/e/99B2kCAmDgFo9RilNu73A+c01kiT65TTas/hr9fXPurnzOaI9lEG5t956CyEEV65c4Vd/9Ve9lw14BonLinQqfg631lrzO7/zO1N87itXrpDnOf/sn/0zL7nqjuluvqtXr3qWR1EU/mFx/OmPYrS99rTWPkXd6SlUg5FVj6rVavlEm0+fKz9ttN2xHVQjhRFIcpzyfr/vq9I4z8/U5DPYr/mZ1upWSlnPV3g2RCAFSRQTIMgtVl2gyZUiV8bohtYr18pUWUcrtM4pJiN6B9vsbt3haO8ea0tPAbC2ukKhA4oitYFSu8G2mhUuKaTf7/mdhEZ57RAAlRsZWKUUR90uUVRDSIHKnfa61UOxnrWUIVKG1js3uL0zzib46epTurnFB+bcvR1FEVmWMhwOjkFkrnaoW9ydEazqwn/eWjWvwN3HVabUZDKx9R6nk+CkEMSRKWmXZrm9I818JHHMZHyAVoIsK7h+/RaNWp1Ws8HaxgpaKxr1OufPnyeKQnM9H2Gqnjij7W4smMabq++79ih2ycc590mt0+n4NO8qBOKw12qKd5qmbG9vU6uVgbJer0ez2fTYmtPDaLfbHB4e8uDBA6IootVq0Wq1ptT6Pq0HZBafruLG80qRuYfUBYKrY/xU+mN6MdW/8qGb/qygzOCTQuKy5FzA0ixGOSoMMAVJ3CKDZ5A4MqAUEAYBWQEFVqxJWRmD0NAvpbbmUWuKIiNPx2SjQ1Q2McUVGjWS2D1+pc7JsdFZyMQwWPTU5w0kYQz4oD9ikk4Yp8MK3382plP+6yrX+NeFKP/2lsONW8w5lvuo8PhvVZfdvee88c+qwPNn1ebFxbTWPmjtFvLqXeigsySOmeRmh+NEvBBGZqLdbtOo1Wg26tTrNZTOiKKoEgd79LPxxBntMAzZ29tjYWHhVIM8a8g/zg1VXZWrbbZ8WFEU/Oqv/ipCCNrt9hR1yBkNJ9Dvqsn84R/+IVevXmVzc5OjoyPefvttABYWFsiyjDiO6XQ6vPzyy/zoRz/ivffeY319neeff57z5897nqlLx62OcRaqeJxWFYiq6o3UajWGw6GXjK0+tE4sywUD3XirgdVP3kqvGEqqp9YFjmXi+jocDECbNH6fnC0ES0tL9HpdBsMBYRwSWsPsSiFqrShyjQgkgRBEUtKs1VFqjCoycjTjNEUKTTOpo9MCVEEkQBQp6aDL0eEe2/evUYsFK4sJjc2LLC203OwSyghXIR7r9QNENnuuKHJK427xZYxuSZqlXP/wQx4+3OLh9n3OnjvH4uKyZY/EFtfWGK61QGtpXkdab90piRvv2lSnN8dWFEgtPfVvOjHN6HfUajUODw9ZXFyk1Wr53UAQGCdlMBiQ57m/N5wzcZwK+Itv8/pW3R042+IS4rRjZ9qFvNlosL62yu5RDyElmc2qbDTbtJpNXn3lC8RRSByF1BsJewf7NOs1u4N+vGfyiTParpL4p78dP71VvTznfbrXtda8+uqrfos4iycHVi7UGe1ut8sbb7zB17/+daIoYnt7mw8++IAzZ84AeHii3W5z5coV/uRP/oTBYMDVq1f5rd/6Lc6cOeOZIs4Drm7pPurDMsuMqWplOz6286ic1+rG5dL0XTUdN0+fWDBqLvxlxuk8O3O+cqEYj8ZEYeTpae69drvN0dEh4/GItm4bFkWFoWxgB5MFJxGEUlKPYsZBxljkoDVZlpMGxvtSqkDoglBqRJGRjvv0Dnd5cOcDzp/bYL2zwZnNDtILThRWIc45ASZwaYoV20o8vljx9P2stCLNM+7fv8/16x9w/fr7NFstk0ClNXFYTXISKG2wfilDCu12exbDxhhr4RdVk9hjLqesLLjK99PtpEyl8XrlWpj7wxlx9zxUr9fj8Pd/Ec09p7O/g2FsRZFR63NGGzCetBTUawkyCOiNUzINmXVYpBA0GnWWn36KMDCfFdJcvygyGDc8EhkBnkCj7RImsizzMMTPMwLtWtULd4G/KmQBpfF02y+3TYqiiKWlJR/EcTTGWQaH1ial3QUgW60WSZJMBQQ/br8f1eYxAmZZKm6Msxhg9Rgf55oY8zO7TT8OiVT7J+1CUfht+nQQuQrj4K+LPbZnRdignMYq27lEG+Onei9NCLRSTNIRpAPydIJEU09in1X5USuaz86TUorRZMx4MqY3GFAUOVEYsrCwYHY80eyjbSkpwg7AMkn0zDpgFjL/DabNiOYks+L0ycsEsfI41bl91A7r82jEXXP3iqv0ZHawboEXFmUy91wUBqbKe2FomcJtjTCaLak2qf3jyYQiNzGX1lKr3N6d0p44o91ut1ldXWVvb4+lpSVfqt5zZvn0gpKnHc8JJjmPt3qhHazgKpg7j3VxcZEoitjc3OR3fud3OHfuHA8ePGBvb492u+2NuKv3mKYpL7zwAru7u2RZxssvv8zq6qovkjBL8/u4u4/Z+aviky4JqCgKDg8PvTCWM+QOg+92u1N9OYnd85g9OraTNF5pucBJaSrDh0GIlpIcwXg8NoGxLCMInZ62OVCtVkejyfKMOAgQsvRypZSEQlhKnyYQ0KglDMcT0tQEKNEalWcMh32WQsl4MOL+7etkg32SSNJIAp5/5hIL7QatVo1AKB8YNUwEx2kvs2KFcKJRwsu1aowTMBwNef+DD9je2WZr+yHNqMX58+d59rmrXLp0iU6nYzBVK+jvDLYQAUJo61UbbF8p7Yveam2MunAGXmNktTXA/OsmhKAoDCVuNBpaj7sMFDebDUB7FtFHZS79PNtJuL37qdfrpGlKt9slCkPq9QZBFHonQgChFCwttjkcjBj3RywutIkjwwgbpQUPtx7Q7/WYpGPSfEIg4MHdkKXXvkJkn/HT2hNntJvNJsvLy9y/f3+KcjTvJvksbxy3Tddae40OpxrmoJDqTiAMQ59xtbq6yje/+U2WlpbY2tri4OCACxcueLUxl/aeZRlXrlxhe3vbQzCu/Jg7Z9Urn9ceF8+f9ZSqC4Db2fR6vWNpy67P1e1m9d+PZbArrXocI62Ze/ZIrhRBbLUtlGZUgXFkYAoluIexVquh0QwnA2MoKw8qQhBIWyNSGyW3ehKThCFxIJkUBgtWhWI8GhEuNyiyCVv37zI6fMj62hLL5zc4v3aWIDSOvBSawiqBSbBZl1VGtTmv40d7GqA2ZbJG4zE3b97kw5s3uXnrJt/4yje4dPECz7/wLPV6HSlDG0C07HEbaHRaNtrqfiitjWSqMAbbdMFpiYMorB/pp/34vWIWh4I0nTAej2k0phNt6vUaeZ4xHA4oiun74fPUZu/FeZxxJ5Y2GU+oJzXiJCGsmFG3uLZaDUZZDnpIq9kksDTeYpLz4MFDth/uMBj0iOsBAoUoMr7xK69AUnsktP3EGW0Xwa7S06rBsUcZqE9iyE9KDJh93esQV5pSivF47LE/JyBVFAVpmvoSZe6zVWNVZZS4830Uz/qTLl5VilwVNqli+E7j+tMLPuo55qNses5frp9GbmD61nfeuanIfdJxKmfW2pYhkz6oabIhNf1el16vy3g4QPrCwJIgkARCl58vTz5zhpNblmUghC+wEdoKNrVajcTu3oIgwOmIGPjjOBauvftdAWUrgIj/tOOCnzLZLjbgGDjl69NxkHn32UnMrlln4qTPfVbtpGe52lxGqLEx030vYbPKnkObtHittI/3JEmIVhl5kZEXhefBh9HJRX6fOKPttKRXVlY8KX62cjhM41Mft81i5dVjVxNYqgY0CAJ6vR5JktBsNv3ro9GId955h52dHdrtNq+88grj8ZijoyO2t7f523/7b9PpdNBal+L+QjAYDFhcXATwnGlnHGcx50/SZsWsqn9Xt5Tj8RhH9XJ9kFKytLTkYRwHC83CLo/VBNaDtMav8iyVwUdrVC3f3RkcFyjrdrvU6mvlIW1/C2UWyLxWEMoAYb+qheEyYyleAkWRTqiFknYjoT/ugS7QKmc8GfL9//hjug/v0du5y+tfeomNtWUW2nUkhacP+qrrOPaBMIZWmmCmFqCVUfcz3rWh3m1vbzMcjjg66hHEMVeeuspzz7/IpbMXWVlZtjubUiVSFcYEG3RDozBKv0prOx5hBuiuo6vRpavLYmnGq/dSlYLoILLBYMDa2trU/eeqJ5md5WcrK/FptNlYi2NNecjN7pAn4xH9niTParTbbZz6ocsRcBucNM+JZURRKG7cuEEUx5w/f45aPSapS4aDHlv37tPvD5GFIgkDOrXFE/v3xBlt56F2Oh12dnZ8VfR5ONWn1ZzRqhYwqNZIdFxpF/By9KjqAzAej7l27RrXrl3jzJkzfOELX2AymdDtdtnd3eXixYssLi6ilGI4HPrjDYdD2u02QghvtOfVfPykRru6AFRfq54D8IpobuxgFqrFxUV2dnb8TsIZbQcjfYweTXmEDg922aRVo+28Smc8+v0+6+vrU8HMagC7UIUpUaUBKdAClDCLj8CwJlQ+IQkjhIiROkfrgqJIGQ97vPnGD+jtPKAuUtb+k2+ytrpMsxEhVR8jx2nvhypE4PB1IX1autKaUMgKdCLY293jwcOHPNja5iuvvcbFi5d46qmnqYeRLforyTKTpBMEkiKfXhwM/U+UnravGYk33K4Awzzv+jiEYKiWjiFULTjtFuwoikiSxFJdP3+wyGyb3aFWd4wOlw+kJB2P7bUsaDatWmIl3uLCAkWWo0JFkSnu3LnDs1efZXNzk80zayQ12NvbZdjrMxiO0FlOPQrprJ1stD//M/gxmtuOO6/r80Tsr3qqVSOvlClzNBwOpwKXzjg7YzQajbyMq9spVL3pqlf/aYy5euPOGu15C6EveDuHRTJv5/GR+/OxvlX2D8pAqKo8nFUWidbaV/Y5zpfQ/kcIE5QMpUQVGel4xKDXo8gypIBaEhNHAUFQxYSro3BwxCxgMmeUopQ7jUKzKCZxQhLXrC5N5FP0p7p6KohkcW6cnvVsm4ZG5l+36d0mHM92dF5qVYfkUe0X8bw+riNXPgcmiOt07pUT1hLlbsWIj2F2OboUfYuiyBQOtlCucwjMR08f+xPnaVepcE5MaTQa2eBMSbGrfv7jet2zmFvVILutlDtfFUqp1+tkWcbR0RGrq6uAYT08fPiQvb09Wq0Wo9HIK+itrZmt/L1797h79y5KKc6fP8/i4uIUDu7O7c7zSYzjo8ZdNXRu4YiiiMFg4L3WqrcNhpLoePSzKfcfsQfHXnFwgNczdgba7lNnq+cMhgPqGC0XgaFHBEHI8tIS2ThFF4q42TaepBDIwBxbYoNNEiAHoVhdaPD2uze4e/cW199/h85ik865Dhc2lmi3GoQSVJ7iak7ik2Rs0oYGVJk9p9GV/oMQkjCMWFru8PTVZ9g8c45OZ5ULly6xvNxBigChzViVDSoaI2GdglnIXIBT6nPevUZNgdlaa6oknapDUMWqzd/Cyr6aYx4dHdFsNk0ZN2G8epMNuMD+/oGHoz5vbdZBmfd6lfniA95pZnWF1onjBBmESAFFkZNOUhBWNCpXtNsLtFptavU6SsFknJOmhjrYbLaIhEA+ohTgE+lpwzRn2SWZfFZt1ji6i17NInTehpSmskeaphwdHfkbIMsyb7SPjo4YjUbs7++jlGJ1dRWtNffu3eNHP/oRN2/e9PQ1rbWXkKymC59mtD8pNFTdLrrzuN3AYDDwhVFnqV3tdpt6ve7hnU/kcYtpprYxgnYRENXCxCZQVsXOzcIxJE0zG6gzlswY7WXyPGc8nphEGQABQRigVIHWCokmlJpAZ0QiZ2WhQXfvIdd/9jbf+/d/wvJCk5deeJZvvP41Ftp1AqlRRWaxY6Ouh5AI4TIELXtEQTG1iLn0cUkYRSx3lrl69RleffVX+PrrX+fypSt0ljoIAtBWV6Zw39dGbnaqWgzlnt1h2TijPWdXoX21TH+tZume7sdpdbvksDwvMLUknYEzRns2O/bzhG+Lyn0z+7obe1WKIQgCBJBlKTs7O6TpxO/QBNgYiSmm7dQ6jdFuUa/V0BrG45x0YrJ3G40mtVr9kRDSE+dpu1aFSFxG2GleddXIfdwb6XG/V6XPueizyyZMkgQppa/64o47Ho99Wrprs57PL7pVb+55i6R7wKvt4/XdbUPnwyWz28xjLB4hKGwiSPXs7kGc8janjzjzr+Fa53lGNhmTZxOETaJp1Gs06jUkY9TcpJTjjJFZPoxfEGXpbUdRYfWZG8ZbtgbX9VcpU3g4CEJktZrM7PlPulUdlC2mX3vcVjorx8fiGCSzz9lJcZLqe78o4z6vP8dYWbrKJMmRMqDQeB6+2fmYz0ppoDClNDrPPUXXi1XpR4/1iTPa1dWy3W5TFAX37t2j1WpNCTXB8UDap2X8Zm+02UxIh2kJIdjZ2eHo6IijoyO+9a1vcf/+fbIs4/vf/z5f//rXqdVq9Ho9vvvd7zKZTFheXuaZZ57xJP9ZnYTSw5xWXau2jzrOY0ZvZmzV8cZx7FkE1UofzhOv1Uyk3S1YVdji8doUIQ1nUbTFb51uhmFplDorhbJqfjjltow8N8bFJ6EJgRQhtVqDPM0YTVLCODSBSGUU/iQKdAFaobKMQb/PX771I3bu3aQVCX77O9/imacvsbLURuscRW6w70DiedACQKJ8xGpaPExpV93Fo+cIGdBstBgOx6STDFM53Kj0Fbkx9+kkYzDssr37kNXVNdbXNwwLxS0awgocebxee/hnaoa1weutDTEByjnYddX7NkFfYfnamTdGVZ0dKSXNZtO/V2V1fR7abOJQNTY0zwt3fzv55V6vx3g8IYxiJoViNBoTxTFxkqAI0JhiHEdHR+RZTq4ydve2GQ76jIc9JmlKLE+m+rn2RBptN+GOCvf+++9PyUPOC5R8nJtnnjGrvl71PKE03lEUUavVkFJy9+5d7ty5A8C3v/1ttra2ePvtt/n93/99fuM3foN6vU632+VP//RPuXz5MlevXuW5556b0hZxD4Yz4G7Vd7jhPPim2s9PMtbqlhFMNfY8z31VnepD6+Q62+22l2w9aUt6al/mvGb6VRZn0MpgrWFoHoKsMFF+E8yL6Q+GZFmOKhRKSg+vSBlSrzUYM2Y0HtNO2sYz14ogAKEUQuWgclQ+pn+0w1/86b9jPB6wurrC/+C3f4PVxRZJCKgMJTICYTjdOp/2rpWuGm0DVZTaHhohpA2WmmIOzWaL7e1dJpMUISSBNOJYeZGiBUzSlIODQ669/z5CCDY2NpHS9N3BLKU/r9Ec8+0tzFJK0ipVqiHCrGBUabTdvaaU8kY7TVN//d33Hc3VUXE/T22W1grlGEsYaLrACYCQkkYYcHR0BAjCKGYwydFRRBIb/nyhpV3UFIeHR/R6fcaTETduXSfPJjSSmPEkJYiN7O9p7Ykz2q65KK1LrJllNHyUCPajaG7z2mnfcRfb6VH3+33C0Mg2uqDpaDTyN4vD5bXWtkRWzePX7pjz+vJp7h7mjWVeqyr4Vee86q3M00Z51LxWt9OPA2F5YENUqrLM7PuVj+i7c5ZBSyGl0SmZQXvt5hatclSekWcTJuMBaEUShSwvLlCvhQQUUKRlhyrd1RgaYaWTUx9xZxMzX3YLc1GU+h5al3PiqqsMhyMLo9l0dF096tQp/Xcfp510Xdx7x9g5lfiKa44p8VFhvcd97j6N9lGPLwS2xJtdHANFXhQ2ICmmnoeSFaYrpfBsPVFztGM7n9n2xBptKLfrZ8+e9Wnds5XDZz3IR2Hej9Oqx6p+xxU7iOOYu3fv8vDhQwaDAdeuXSOKIsbjMbVajeXlZc6dO8fDhw8Jw5DXX38dpRQrKyusr697xogz6vMegJP6+2ka8pOMp4sj9Pt92u32VKamECYVuNvt+r9P69P89+Z9ds74qVCuAGkrqyilieOELMtNYeKVFQs5CoTWxFFClhfkRZ88Lyy8AZICQY5WKb2jXbr7+xzu7fHFF58xlXqWl4gDEDoHCowQvkRoV+g38Oi1M//Tncbj9B6xsd5voTUHh0ccHh7aAKorAGzYBEfdLlsPtrj2wQccHh4yGo0o8gIZSErmtemTkAEyEBiIBiuiZVQFhRAIjY9fzgpzzbvPqiwgp6MzmUwYDAY0m82pzzvVx1lZg1lI8RcRp3mUc1aNIU0tsNrsW5LYKPzFSR0ZFaSYikb729uMJznDUcpoNCYMY5IkoNlscenyFQIJi60G9XqdKAgJ9OmkiSfeaCdJwoULF3j77bd95Yl53sHs906CPE66mU67yZxxSpLEJ/rcu3ePN998k4WFBd5++21vtF0256VLl7h37x4XLlzg13/91z1PuygKH5B0u4mqN1ttDm/+OHDIo9pJx6xi2N1u16RXV6raSCm9iNes0Z+3CMzDzo/j2rP9ct6Ktnoh5r1AmirlRaFIanXSdMJkMmZ5ZaU0oFqQJDUyGxzO8wwpQ4JAeKNdqAlH+w95cPcOo36fr776EvVa3eyCAjAFyAwdMAgCdFGgihyJgwOMWVbHzLbFkqfG5nZlir39ffb29w2ko5zglEACh4eH3Ll7l7fffgchcoaDIYXTWLFnVNqwSaTUZjxCkitNoSq7CVENsNlCyA5fP2F3NMvMSZLEF2JYX1+f+k6tVmMymczNhH0UTPlJSAIft1XPN7VzrIJM1jFIanXiKKbebBHniu54zKg/5N69B3R7A0ajlCKFWlKnltRotRdYP7tOo56w1G5QT2qEWhNxOuXviTbagKfYVbcn89qnsbI/ynC7ppSy29ghjUbDJ8ukaUq73fZFEdI0RQgj0u+MukuuqUbgT/K0P61xzTvuaX+716oQTrV9OipvJy2eMzGFaj+tAdKUsY08z9Ezi4CQgSkIbDFdV7XGlCYrUEVGlk1I0zFFnrHQatKoN4yBFg4pNu5qZUmq/H/Gy64YxtmxuH+1NtTOPHP6LbbX9tpXS2IFofZb9ePzVVlsxWzSj+0OU9hNpZsn796qrRpXmYYkp2mCn7d2kgPn2ryx++VOG4hEWk38EOkXJlcIIc1SAkzwVUgTEK/X6jQaNRrNBlKDKOanOVXbE2u0q8YjDEOWlpa8lkez2ZzasrvPV43f7AWapbCdZrwcM8IF2lyq9v3793n33Xf9AvLCCy+wurrKcDhkMBjw1ltv8dprr5GmKQcHB5w7d857LS7iXhWb+jze+FAKBDn++GQy8UwBN88ugchBQtU2u8DNb6fBQc4IlyDDsW9rbXQwpGQ8Hpt6hjZoiYYgDFlYaJNlI5NpGEcoNaF3uMvh3kOG/UNajZiwkRAFIMmRZsVAoXyYr1A5QitfFd6dWzMtKOT9NqWmeu6yNlWh6PZ6RHFk8w8kUJBmGd3DI5N0VShefPEFPrj+HgJLL5uSerVJPRbrFtL48WZT4p6DinnXIMSsoZoOpgox/ZrB2TEp3UIwGAxtseqSFRFFEc2mqR9qng9zH7vF3D03s+3zxDRh5to5ZUiHTYtAet56s92m3mwDAQEhbZtDIsOI0XgMKJJQktQSsjxjPJ6wuLRw4pmfaKPtWhzHrK2tcXBw4GsvzqtM4bC5edswZ7SrFaVhdttetqp2ttO3/vDDD/nhD3+IEIKvfvWrfPWrX2VlZYXFxUVu3brFd7/7XZ577jnG4zHb29ssLCz4cl7VCu9VLHj23J8FFPJRm5tPxy13GZLVPjsdlf39fZOVOBPIOm0rLADmZI2ZuXHGBoSobsFnF+Wy4K3J4pRTRjsKQzqdZe7ePTD4br2Bzkbs7zzg1o33iWTBxsoqnYVFkhACcqRWCIxedWENcJ4XhJbyp/KSsaGUQAahH4/AdFxrhRQaiTDCTkojpbn/Dg4PqdUSlpcWCUKJygsmkxE7uw+5fv06q6srfOUrX+XmzesI4QK+VuNElOcRGIxeCwOtyMDi2KIyj24itJ9x+56c+/v01bGwkIZut0ccJ1PUzjhOWFhY5PDwiCCQvkhANUBfVQX8PNzT89uMF26KixqbEobW6w5ZXFqk3Vqi0WgTyYAolBRKc9Ad0u0ekqUT4iBgsRYzSScMe13gl9BoV5sLjrjKyo9KnZ5nMKqG8rTvuX+rBsJtF4fDIXt7e97TbrfbLC4usra2xuHhIfv7+55on+e5l9l0f1dv7HltFr8+KZjy84i+u/O7HcfszsVx5k9aJF17nHmvnHn+MZj3wDugYl4yiEZYoSNtS42hFErlpOmY0XCArAVEYUCtFmNFULG8kPJfYamH3hvVfis91V3v3uryzQpC4eCRPM+R9YTQVu1W2iT2TCYGNgNszETOHGMWJ3fwSGmop9+b143Hv2fMXJtvloqT5blc4tvjQC2/iIDkR2uz81JCc+ZH2hJ3DVqtFpGUCKFJM/M853mBqMyTUoZ5clr7fO6vP4U2i/MmSeJ/XErpvO/A/BXd4XCzBvmk77vAoyvEcO3aNZRSvPrqq6ytrXH//n3eeOMNABqNhpV2NJmQURTxK7/yK6ytrdFut7063exi4y5ytc+fl5tcCKNFYlLCx3Mx9ziOabfbJe2p8t48nZiynT5GZzSmDCRVyMxybwNJEAZMxiPyLEVVtKCFDQo26glCF+zvPuTe7ZtMhn0W2006yws0GjFhKBBCWW1twMquam0MvzNfzmQbWMItamXf/M7MLcra8aPx36nXawyHA/b2dul2j7h/7y6379zmwYP7XLhwgTNnzuJkawFfdV5rI4BV8r/N/Lp+mNqU2vfbI/wzXvbjNrd7FUIYHL4S23AxhyCQ1Gom+7daT3V25/rRFu2ffxPCaGf7v5nesSOMg6LRNrci5f79h9y+fZfDg0NT4zNN2d7ZptcfoJT2EsIntSfSaM8zrPV6nVar5XU/qung1e/5G3rmJqlmU1aPXf1cVSDKZX+1223a7TZ/+Zd/SVEUfPvb3+bcuXNcv36df/2v/zVaaxYWFlheXiYMQ6+1/Zu/+ZtcuHCBTqdDs9lkMpnMLY5aPWe1Pervz7o5o5ymqdf/nr0utVqNTqfjq/C4NiuaP/3QWk92Bh4qYZHSTDoPz3uNlcCbYd5IoihkOOyRTkxQscppFigWWw2kyti6c5P33/0Jw/4haysLbG6ssNBukMQSQUEgTbFWrXNUkaNRxgDb/hhn22yhZSARgfQMBMBrx4RB4AcjMOJUxjBIWq0mvd4R9x/cZW9vh2sfvMe7777N9Q8/4PkX/n/s/WmQJEmW34n9VNXM/Ar3OPPOrKzMqq6qvmcac3X3AN1AT2OGO9iDWFD2w8pgF9j9sgREICSFpKzwy+5nipBCfKEIhQtilwBxLLgHCQIYYA7MzPb0zPRMT5/V3XVlZVZWHhGRcXmEX2amyg96mJqFe+RRmVmJrHrdXunhdqmpqT19+n/v/d+nuHr1JYRQx8amNjbSRJelVchSoBKFUhKpIqWNU+zej0rcnw8mTcPF07XalaJ/FsLx3ndRqlLaMYVxc2W4yOH+YYqhzl7pP1IpN0naZ5hmGdoYprMZh0dj3nrrXV5//U3u3t2yzJ3TCTduvMfuzh5lqVlaWjrxus+d0l70YH2lc1+7cV7200myCD9uDrDmNZMkIUmSQP50+vRput0uh4eH3L59GyBEi3iHpVKKs2fP0u12A6yzKPLlWRrETYmhnXmWtoetmvcW92nc5w88Ed3nmQpRKX4pBWVRWM4OXQEBHuZIUwVoJqMjDg/20UVOK0vptFukqXIVSmwqvL2srpRxwJGrP0RkPsduUxvC58aTMeEYIUSwuJM0IS+KEEE0HA4ZDg84OjpkeTBwtAH+jNF4NfVx4s9nmySqH0Nrjouf/JrO+kUrz9jno3W96IMQ1knqsyWb53tWpakDTLWh+l1Uq5QKHq36osgLhsMjhgdDGwXmfh+NR0wdgZmvzL5InktMO3bWQaVcsyxjZWWF3d3dsCSPMyZj+OMkB19T4ft/vdWbJAnb29shhO/UqVNorbl37x4/+clPEELQ6/VCXUU/oXz6059mY2ODbrdbszS91e7DAmOnnr9+E8N+VsQ7oHyijadr9Urbp7YLIYIDyj8Dz2nxUPfW0NfeurPnK6kpJWcNtbKUIp8xnRzRTdrhrRNolITEfc6cXmd1uUenldpq6sZSoVrnUzyhmmCtVuqfCK6xKfbGYc/b93Y4OppSFgZQxEFfHlOWUrK6sszSUo+9Ysr7t96n1CWD5WXWVlfpdLtIpTA5jl3PxnYbA0LZNH1bHCLqAfdFSltVXmOx9eDQJQK3H0LiceuzeZNE0W63au9Vq9UKzuqmhd2UZ3FsAwFOCt+1X/0KtLGFvUsUSWrva2tri263Q9Zqsbq2yspyn8lYMRoMkO4dyIsCaC265POttP13X/qr0+lw7tw5trbsssTXXfQxpR7v9phcM/TMKxrvFIyvB4RlXqvVYnNzk6IoOHXqFCsrK5RlyfXr19Fac/bsWdbW1siyjO3tbTodm5jx9a9/ndXV1UAp68+tlGJlZYX9/X2Ojo4YDAbHaFGbbZknH8bAT9OUsiy5d+9eqF4SE+2ApdH1EEnM7+Cr/3hs1FJhzskknCPB1xdZfAL/DLEK2yWVdNttZtMxw7JgtbPsynBppClIE0gTyJTh0pUXaLckrVSSJhYWcfktjga1ouW0F63+MgY0FY6tqZT29Rs3mU5LkiRj0F/xLQcBEonGYubnzp7l1q33GB7u8/qPfsjpU6c5c/Y0n3jpEwyWly0mPQGZJGiwL7+ARCYIJVwSDS5KxQTMVUobX0wJ2vgobavAtdEYJMdmwwXSNCA8x7oxmn5/CaWSsBDqdruMx+PahG2bZ2qK/9E415+8WBpgqJ6xodRW6YrUEqdNphMK2aLTsXE77777LhcvvsDq2iqD5T5ZJ2F0dEiZz4JusdnbvYXXfe7gkUXilV+3241oFMswwJqW+f1kXmRGHD89Ho8ZDoeMRqMQPXF0dMSdO3eInZQ+BltKyfnz51laWqrVUPTnj61R/9siGGHePXwYCjtuo08gam73EFLsvGkuuR/G+goGbnWVsMXuXzn4/JpfKYkuC/J8apW5i/4QRtulvMCmGvd79Dod0kQ555PBVilwcSEmsqkjMN1+dWML4cqHESzqw6MRR6MRk+m0waddwStCCHqdrh0HUrC3t4cxmk6nw+kzZ8haaShf5qNHYl4V6VPUfQsNAcax9+ifVbOPmz17/3EUP3cfr+8zeOPz+wLcNcfdnPM8a1J3lHoHc6U7jFPmRmvKsnB/274fDodkWcZgMKDf79PttOm07cf3Q1l8hNPYYf6LPRgMQnZhv98H6pBKDIH4c8QPJXY8pGkaLEfvQLh9+3YILdzd3eV73/seFy5cQAjB6uoqZ86cYXt7m93d3WBVG2NClIWnMI2v7+O9veX6INEsz4LEL7BPtGl6xz1Xhd/fSyj9FSIP6krDIg3Byxj/SByzYSHkyCFoNAifMm4CJi0x5LMRiWohlLZOxXyCQrPU7eCLckkhMNrh9AaUqBJlLLwgI5zTK1DQQmIQ5KVhc2sLLRRrr0C726fTUyRJilRppVCdJezvSRvN8soKF85fIEsSzpw9x2B5BRD44ZqmKS+++CJra+shQ89XlvFOwLit4RlJCR/Aop2nXP1P/v3wqyU/boWo6HpHo9Exvu1/IyS6bet49EyNIBw8pPGTlXDvsQ0XldJwdDRif/+A/f19kqJgKgSzkeLll04tuuLzp7TjwTMvc1AIwZkzZ9jc3OT27dusra3VFKBXMDHe3cS+/TLO8yz447vdLgA//OEPmUwmgXr1G9/4Bl/+8pfZ2NhgeXmZwWDAO++8EzinwT7wg4ODkCF49uzZWrRKlmXBMvfwjG/HPLa/eZb207Ja/EvnJzePbY5GI4QQtQnJw1Y+rT9uo5+gIJpUqQip4jv01mVZeiejxXZ9mJty4XeWC7t0lqVDnE1JImwm4vhol17at5a0npEf7pOYnFNrA5v1iFXSk9wWDxYuEgLHla2NtpiynySEpVrVxqBVijaCST7l+z96Cy0Un/0K9NdOM1jqYwyMj8ZWwetqUjHGoLGT14Xz59k4tc5kMqbtakQiFaXRIAXtTpuf+/mfo780QKkUlSQYoykK7az9yjWK+xZSy4Vtvw4WeOWSrfo5/j5/PNXpS3EZj4bRaNTg0Na0220GgwH7+/sBCvOQiP8ej6tnRQQ2Fd13SLwKTpKEmRv/WZoxK7Q1CqSNVmq1WrTaGSqBe9s7bG1tcvv9W5i1VfR0SiIMP/+zry289nOntGNZ9JBt/bo0OEBifHjesYtwY684vVLyxEjb29s2LTpNOTg44M033+Tf+/f+PS5dusTy8nKwmj0RfFmWYQnpMb7mfcTRL36p2WzrfGtnvhPvSSrxedCRx+vitvttfrXSbKc/xt+/x2CD0omcQEKIWghdfVmPK3Qgal594blBjH2pMIY8n2B0G2MU6IIynzKZlLx5N+Wt25of35HsjgR5maAkrHY1nzkPnzgNr5w2tBJ3X17hCcDIgA0bJEUJW/f20K5GZKvTY2mwTFmUTCd5gC88AuNvwxjDUn+JgRrYibH04XmysvKShPPnzyOFcopYUWgTamX6dmGcMo5htmCAV5ZhWJ080lCJ48CJEm1cgQUDSWLfGw8hNqHG8GyfIYUNzO2PKlpEgosEkkpCYeESIX3UjCRxzuHxeMzR8IjDw0PGnTaz0Qipj+eQxPJcKu2mUmg6Jr2C7ff7gXciy7LawFhUFssv1+Pkgc3NTUajEZ/4xCdYWVlhPB6ztLRkH8R4HEL5ptMp4/GYzc1NpJRcunQJ4FgtSa01k8kksOH59idJQpZltVJkXppOSW/pzrv/J+3YaU4GMaeET2zyKxe/f5qmoRqPxzrjiJ4FV6r/WSOpbmwyBul4NAwGYc1ihPCEULZIwvDgkE4vQZiUN2/s8T/8T3t8652cRMEsTyhN/Zq39xU/uWPIUihK+NnLkl/9nOHl09iZQodpg+HRlK17u2xu7TCaFqydskWd03YPZGor5GCr1OAKICjhMW0/Jqv4c0Iupqg0vBAQ8HOOwSIVmiQQTnEHCMv3nv2R+jT44OIpAvx1/DO0RTuKCF6stnuDpyiKY4RSzzJc0oxLt33uvNPGTpbWMLCfdrvN4eERW1vbIEuGBwfk+Sz4uHpZRjv5iNWI9HGhzTTZmLwpyzKWl5dDJMny8nKY7X3nxzGkTQ+2r+foHY7f/OY3uXbtGr/2a7/GysoK9+7d48qVK7zzzjshamIymXB4eEie5/z2b/82a2trfPGLX0QIUVNkXlnt7+/XokhitsKdnZ3aPceK7VmwSuKJo4lpA5aJzq1QwGLXnnf5xo0b9Hq9sKLwy+lQDDbEFXtHoL8Wc5bx7pkZG+6XpBLjIAe05clGGIQuUGiKfMKtm28zLQr+zu9MePvODIeCkJf26vOkNIKxq3fwzWuKP74BL50y/K2vSQZtAyiMgNvbW/zBH36Hn7z5Fv3VU7z6+SsAdJZPgYSiGFGgEElmIY+iRCr7tksBKkkpTYkujcPNEwyCsrRUq8E6lhY7N8aF/QEIhZAWzke6SixaYoRV+tXqwPUfXhFJ9LHh5H+YlzdQhc9KaYslg8WzDw72WVtbcatG+7t0dAGDwSDEn3c6nRo0+CwTpMUlBMFOWHmeI5wRWJaFnSy1xkjrT9u8u8ntW7eZ5VOOxkdIKVgeDNhYW2d5qcf6YHHkCDyH0SPxQ25ivF6ZxZa2rxzedIA0syJjh198/jzPuX79Oq+//jrD4RAgpKJ7S9sroNlsxng85u2330YpxQsvvADUM8G8Avb0q/46QLC05ynlZ8nL3oxq8fcVW9rNfX0Jtpgbxr/8tVqXtdtsRBeYBf3gl+QQ4djafrT9V6DRZc4fvZ3zf/hHB7xxa8asiGGWBxNjBLNC8MYdwd/6h/DbP7HRIghrab/73i1e/8nbjKYlvcEq4CxtlWKEQiMRymLiwe8aWaT2Gs56FhKEsiF58W1HWHTd0o7qVFJla865i9p5HrIHok/cbsN0OnEwiA7nFUIes7Tjyf5ZtrKhrheEsPBbcJxj8OXa/D1YS/uQrc0tbt++y8HBAflsRqvdptvtsra6yulTp0+44nNoaQM1WMBLM3wojsYwxlSW3BxHXjx4YoIjKSX37t1Da02r1QqkPcvLy+R5zoULF+h0Oty7dy+0q9vtcvny5ZC23oRF/LW8cmsuFeMBHjtIF8mHYXnPw8v9KkcIm9q8tLR0zEEcF0jw9x5PkvbkBFzb46L+mpUiiCx9gjEOISyPgGGDVdyHR0P+298f8q0bGxSPAT0qjaAs4L/5Jrx9d8bXX9rj1p1tVNrh3IXLbJw+j0icQ1alNiPTFfsttStS4FdQ7tb8PQoPkCKcc9FGKyCxrN8e3jDWeg6oUZjUGpCTnxSEREqDLiufAR5SWuAXuZ/EVrI3XvIij+pD2nPEUVhNeZYMkqYsApHicEqfD+Bn4SzL6PW6tLttkkzQ7bZZWx1YLhYhKMsCSBde87lT2k2Ps5cmf3aapvT7/VBo1GfsxdEjXrxDzFuKfgCmacrrr79OURSsrq4G5Xz16lWGwyFf+tKX2N3d5Vvf+hY+AuT06dP80i/9Er1ej3a7HSYLf40kSSiKgtFoFJySXkl7xbe2tsbe3l5QfrE8Smzzk5DYBwDV6qYsS/b29lhZWaklEHlre319ndFoFKr4+OcQwhsxaOP/rlb08+5ba03iEnK0dAk2xn6kEpjS1no0Zc7f/50dvvt+QqEf7+JzWsDvvaW4dv2QYvP7rG2c5Rd+8TNcvPIKSXvF7pT2KEtDIcYURjLThiQRJFlKOZ0hjVXGpS5dyKHCoNBGYoy0+Dczi3BLgdBeYUtUklDq0qXJgxAKRIIuocq9d7VIE0i1IDcVeZSNW38UixtnfOQkjufE0zdIKeh2O84Ctefu9XoMh8PaChOq1Zb/3jS+PmwR0gN2fvVtEG6sERyu2sXM23T+wWAJtbpMfzBgaZDRaSf0OhmZzlDGOidXVhcr7ecOHln0UOdZ2p71zxgT8FYv85ZlsaXtozlu375NWZZ0u12Ojo4A2NjYYDqd8tJLL/Hyyy8zGAyCI7Hf7/PJT36S06dPhxJisaUdOzib7Hf+Pnxo4SLSK79f87gPU/xEJ4RgPB4fS6bwk22v16tZ2ourDTV5IBZPRsI51Szw7WOtCdj27/9k/EQUtpdcS96dXOTdgzWSdo8XX3qNC5euolIXry4zjEjQQqGNtbQNLk494kMJlraQ4KEO/PdwsxU0hYu/pmI8FEhsGKLf39q6IexPVbCgObFX50vTGW6pAyrs2ldw8Wf35/fcO/64WD7ssXuSiOaE5oNztAlRONXkZ8dfu91iMBhw5swZLl06z4WLZzlzZo1ut4OUYi4DaSzPnaXtnVeweEkXD4JOp0NZlgFLnRcXah0KdvB5AifvNDxz5gytVovZbBYs7aWlpcBxsrOzQ1EUIdPRY3Y+xKk5OcSWqae1bDr0vAKMIywW3eOiMMan9SLMC5dUSgVnZLPQsp8MY+fvQ60OAh5SRYoEDRWHR7hnsLk34R/+/tETU9hejEhJLn6d7vJNWu2ODf9z0MM0L5yydfHdwoe9uVh3qpRzcAaFv09jcWHrUNQ15W10DKnErIIe4xcR9OIPi/04dnJb1PvzoLf6b8ehFYNBl9ZZl6Zp9UggrF79RD2PbfOZkWjS8xNqaKsxzgKv+8QwVt+kaRZoiw8ODslSQTsVpHox30gsz53SHo/HIfZ50UOPB9aZM2coioLhcBisO680fKq7L6bbarVCpInn0fjSl77EZDJhe3ubf/AP/gEAL7zwAqurq/zgBz9ga2uL0WjEpUuXGAwGHB0dBX7hWGl76x2qhBNPJmXZ20TY5hNtfBihT3E/CRqJcfmnrbD9CsVH5bRaLXZ3dwP/C1RFU33fevrc5gpJLHSOVWFu1bIbdGlJ5oVxVpGLv9K6ZDad8P/47X2KUvNUFp0y4dr4Zb68doaSBOPil3f3R6wsZcikhZEKIRRaCwpTkCYJ2lgWQpm4FHh3OrtwkAipEFJi0BS6JJGe8MlgCptCLaVyS/aw4AhKRQerUNgqNsKv7iLNtEAW+YD8xBATgNkdNbN8xuHhIasrqyFCBQgUE/fu3Qv+j7hw9bOlwCuKAIOojfWyLEmzKjrKw61KWZZPpRK0tpDsrds7CDTddsrLly6TQKAjWCTPHTzi06Ef1DpbXl4my7IARczzXHtLHOzAWnI13pIk4ROf+ASf/vSnuXr1KtevXwdgfX2dCxcu8N5773H9+nVms1lg7/OZf7PZrGZtQzUohbCMhJPJZO79+LBFb7k/q4Q6UF+txKuEo6Oj4LiN9/XOYQ8dHX+O939x4yM8jlhFjtg9jNG8c3fMe/cM+im9BsYI7u4bdscpWiiMY+M7HE8xQiFU4hyMFr4oPcshzkntW2+q8zmwx1rWUOMuMYZwnBA2mcOHAlpxxwdnZwWnxAq72eOLjIL6vVqnW/weeZ9EWcaFMarjfKxyXPDj2VLU8+R4+4wx1qkbvc/eKLGcI7aM4GQyYfPuNrdu3eX27W3y3GX/3meMP3dKe1FVGlisyH1ix3Q6PQZbeGXjE3Ca1rv/O01TVldtCNfR0RFKKQaDAWtra6yvr9fw8JOcKXEbvfOtibdDBSMsgjyeiXApvwTH+wh823zkgy2X5V9w//F1A8OL65bxIrDNzalKE7z4Fcpoua6FAwcAUyLcZzYe8pvfH1M85e4pSs03f7ATTSCAsZzjpdYgFbnWFMaghaRAoIVlBPQZldWRjjtF+ELCPjJEgrHK3zKqWJbvvNSUGEpjIZlZoSlK0Cg7iQjr1PTDyE0HIbrEfux1/fbYqyDCb3XiKY/4CAHKTVR5Xrjnd9yvEdMSzxWz4DP/p8cnc09s6ir22EWrpCbtfBWjyZjDoyMmkwlCShJloc7JeMxslt/X0n4u4ZHhcMjy8nIDn5vv3NBahyKzb7/9dihI4LmrhRB0Oh1WV1eDsyS2xONQtZ//+Z8H4I033uBnf/Zn+exnPxtgFZ+qvigcbl47/XE7OzucPXu2tr+nkd3Z2alZ6vG5ToKInqTUyZPsa6zLwr3REqUsH0WeF+zv77G6uooQIKVVL51OC2M0w+EhaZIhUGAs5muM5bAOpbRqjjosDKI9imurwEihSYTBFBMEOcJMePvdt/j+++s8SlTEBxFj4PVrB3ztZ9fJHMeyMKWlLy1myLTN/iSnaEl6rcxZwCk44iHjEoIAlNJAjhAlUwOgUDKlLCXCCLubFJRCU5iS/dmEsbHsf9vDMUkrIW21aHW7CGELCgujEXKCEjbGOBGCAomPPKb2b+wk9x44r6AlRtiKOVJJMDbRx0ZMFRweHFGc1i7ixVmnzlnpk2ue5fjsIAYQxpKIGe9atSsVYWzUjxISXUKel+Sl4cb7t9jd3WU8GtFrt2ilCZ1Wyvu37nBqdY3uuTMnXvK5s7R9qviDZE95xdvr9VhfX2c4HAar1ldc8bHQKysroY7jPCWYZRmvvvoqALdu3SJNUy5fvsxrr73Gpz71KbTWNaX9IIrUO2WGw2ENZvDbmk48f0/xhLSoIsyTlNgCE6KyNCofmXQ+g8JF3GinbQE0WSul3Wk50n5n7xlvL0vi2GQdQ0vGYdfuI5EoBApBIkDoGVJPUWbKv3r9w4OUkkRyZ3sSVKEwmsl4wjQvECpjNCsYl4ZcpkyR5EKhZUqJQmPD/ew9a6QsESKnwFAiQaSUOsGYBEjBJewUxjDKc2YGpgb2xzOG45xRDqXIKEWGFinIBOnybiQGhXeoVdZ9XXlHn8aqz9PXWrIka323shSBYDKeoku3+nIgu3QV5H0W7L8RShuCcVKtzAldJIywIZquOEKpDZvb93j/zh129/ZJXNHfdqvNzvYOw6MRQp5sSz93lra3kBfFdC7C43wkg4cjvNMs5nueZxHHA2symQCEFPpmzPDDOFSa1/KhgfF2b5l46KWWOchxJR1f/0k6d7ytcdyBWImd/HCOXo1qLssd9m3brW1kRXwBqn1jqS3X/VLeMf1ZGGLG1u4h393amHP005FZXnJnZ8aV89YJW8EkgLDOxqIsmeU5pSlReJaREoG9F+kKOljfqiE3tnCDEaAKSamdRSahFAUznVv4RTgoyRi0MZSlJs8LVCIQ0ipYvGEiPMNfHXsOUIRTUF6p+6AdH2IZiqZFTnQ/YSuVhLwE6ZWUg2E8mVrznalBgVF/zkEkFmx4PCJCY6s+8L/7vg1QnRSYwkaTAEwdd36aplA6HeWOjuHTk+S5U9pFUbC5ucm5c+dCFMg8q9vPin4ZlqYpFy5cYDwec+/ePVZXV0MldL9ca3qzwVr2PtPr7bffBmBtbS1g6/46j+IwjImWjo6OQs1I/2DTNA2JNkVRhGxCf3/xvT9dZ6W1oGxIonX6JUli6UkdmVCr1aYobFq/paNtkaZ+OFrOipXlZUZHE/LZjHa7Qx28tAUK/MsghMEXqLWJDvZl0DpHC5s6XZYz9ne3+b/+ZoE27Wajn5poDTc3Z2FS8mnelvhJkpclh6MJ08kUFSHZllbWKW1RvfBCwBGAESRGkZFhCmOVgjKUoqQUJRNjkEohRIrGMCtmFGPBTGv6gy5ZIiAxqCxDGIMWgnw2pRSJyyo9GS220Tkuuc1zlYskvIeeO8dGYUkODoYgIM36Qc8qpej3+yG6yP9Wk2fMAA9OVymDIrfhmoI0SRnluS36LAVbW3fp9bokScJ0PCZJUuckFhRlaeEk+RFT2mVZsru7W3NGLoJKPLGUt6pPnz7NtWvXODg4YGVlhV6vR7fbraXYNsmjPLF7WZbcvHkTsKQwPnvSV8nxHNgPY9nGMMdkMiHLsrAa8G0eDAbs7Owwm83odDrHHJnNkKynAY8Yh3RYpW0hoSRJmEXwUKuVoXXhqnXnLmqkssyUhP5Sn6PDMXlR0BZOaZuKy8ESPkVOYQ9sO8Vt/yzAFBhhMGXOT24ecns44MOysr0cjgsSWYV4BmY4BEVpFepRnqMcfaw0BmNKPCOhFHHsPowdnaDUko7soPOSMi9QCZSiREuDaLdRWceG/2HQusDMDONZTtZOkEKFCvVGWzy60BqktsDzQvGmpnP7Rl5Wb1n7UM/pdEaWKdKkxe7uPu12C/qE5yiEzXPY29s7Fqv9rMMl9agzH+KqMHriuLdhZ3eHldV1ektLHO4fkCQ2Nl8IWfGy3AfZfe6Utp/VJ5NJKJDr5X5LDx9u5h2O3lKdd4yHJHySAFhl7c8TZzI2w97mncvLvO0+xX2etRy38XEkJDyMcl/0Eonov25PXPhHULjxder3Viluu4y2/NPGexlr57QWdvy3vY7HV7Xdrm2UynQ24ZvX22jz4SpsgKKsx+XbPnHYcRRuYYRAGOPyaByWj7XLvaKzFnoDM/ImePAM2g1esfhCB8atfkpdUmhISoOWFdd2+FABtb73rEXoDREL4NiMy7rSbjruRWibGwta1yIm/k1R0nMl8t3E4u9Za58Z6VP0M5KIk/9+kSPwHCrtdrvN0tISN27c4PLly8ecdTE21rTAu90uZ8+eZXV1NSTRLGL78+XKvJMwSRK+9rWvAQRObX+9+N+HkdijfnR0RNsxgcUQjU++8RmUflXgrX9/7bqj5CkoLWGLnOK4GIqyQEqBMTI4eQFarTbD4SFKJbRabVflRCCEIWuldDotEIY8H6MSZw1KRWkKd2+ur3xVdK1RgJAGbXKUKimKCfv729y8/R4/2TrjwYYPVRIlWOpZ3pgszZiaGVo7XhWVWueVShHGUckaN0FFKwkixZ2q3PKDlwIlM5QyJKkGaVBSo4WhTBQqzUAmFLm2xrO2/CCj8YiikExTgem2SYxBKolK06i/JJE+DkWarWJW2AfgeaVt+4SwIZx+clZKIQWUaJLEOqPHzsDyWLDf11MgNzNj7xfH/DQl1BMVVUKTjCYn46ZYKSVIabOc84KyMOzt7XPqyhq9dgthSvpLS7SylnvGi+/xuVTa3W6XmzdvcubMmZoV6iUO1fN/+2NPnToVqoB7azue+f1nOp0yHA4ZDoeBD/jLX/4yYBN29vb2ghf8UfDk2BJNkoT9/f3gYI1XD75YsTGG/f39muX9oWWSucFqTBn+LnVJmjiif+1pAQRpmnF4eES73aEsjYsysJ8sc1EkuuDw8NA6ypRAypSiiK1s76zEXlPabUbnKGnI9ZThwTavv3uAEqcpnwEDbqXfoudqZWZpRp4XTtk5NkRlHYwmaqwNicRaafg4Z6u3U2WrpZgSlEwtomEMpcVMMNIwNZCkCYYEnZckwroLS50zmYzJC4HKJWmqaCtFJiUyTbGP0SkfUU2UtjyY4yyRCV5pW2vSTrxC+JWErpSwsFE/SllIYOqVNtUKzGciw/1Xqh+umOBA9a95rZ1ukrWYtnSTUYkxJQcHQ9rtDktLXYrZhG6vR5al911hPHdK21uZPuIirpJyvwceB/YvghniUEDv7Y0LL8TyOAZZMwLFTyjx9nmVPprHNieeh5GHVf6xR71aVdfph3wTYkdpWWrSBrlZdW+mdo45IFP41y7aNWBhkTyfUhQ529Me+RPmGHkQkRI+eXk19GdYGWmNlBXXNFRfa5CTDcAG3F0LQEiE1DbETNpsPDunaYRSGGkojUGpBINCKRwjoO03bTRCS4TWlFqjpUAjUFLi4zVFpIihWsGF1aSDdnxsfmhahazgV1H2eBmuvUiePSXtpfkOicZvVR/EeydJgo9yTJIE5SBAEkWrlaES9dFT2j7xxFM9egfjPFIlDz/EAyO2ruclq0ynU3Z3d0NIkncM+nC/1dXVEDIYh+k97OBr4nqeIe3g4CBwjXjxiTbxysEn1vhJ5WlX/Ygjc7zEjG9lqRFCOsdXRlGUHB4eWseUPYPt33aLUpccHOxhjHWOaeGxewcRABibyZookC40Toicrc2bHA13GR3usltcDGFoH6a0UsXls91Q/qzTtrBQXhRMZznj6dQZArZCjQ2g8xmf7r9CBp5wAySyQKGQUpElbRKprKNTGlQqQQmmpSZpddAoknbJLDcwK0gKW1mlFICRHE4mlErRThIGrYxEWqsdPEZdwYvNd0SAi8+WbnLR1sWAH9PGhWUbZ3xYeAaoTwBChHBbbxyFMfwMrJSs1JW0p0uwKTW1Ta6CjeTs2TOMJwUFmvPnz9Pptmm3U9KeIBUbZIn3hy1Wzc+l0s6yLHD3aq3Z2NiYi003j4PFkSZeEc5mM3Z2dsJ1POY2nU7J87ymtJuliB6k7Yt+82GFBwcHbGxs1Pb1ztNmeJ8nzrJkNfNpL+8nj+IMqtLS61KWhVPUfuUjSZKUJEmd0j5ifX3dwRy4STELyt7yEmukW1rbq/goIQ2mRCUKqUuEKYCce9vvM9zfQZQTxuVLD30vT0KK0nDlbAcfBd1utUizlKIsSaYzpnlBWWpXDEHiqVh1YPHz4YHVGJByhpSCRKRkSYvMMcklCSStFKkk01Ij0gyNJM0NB8MR2mjyRJAXpe13LTiaTNGJwmjNylKPRBuUf5zCr3qqmpVeKv+nV746lCrze3mFDbh47FmgMhBRqJtfQSZJEt6nZqz2syDCOXgBMMY6jv2KI9qvKAoSmXD69Clu3LyDKQznz52j027Rbif0Oop+JyOfFhR5OedKlTx3ShuqWdo7Mz5ojLJX2P7jceXYMvAWrf/+sO1tXq/5e8w62HQo+nY0Y8g/yAB/EA/+w7xEXhHPO0cc2mjvrb7dQyTGryuDxK56494djUFjdEmZT20VEGNjX5tFeT8MEQJ+5tUNuu3q1ZNS4CuqKylRUlK6MEAPNVgHoCd9qqIRvOKWSqGEQAlPbeuin5TvP4VyhREslYD1H0h3vSJUqAGjTeDJwEd7+DhOqrmiwm3jfo2daD6bsj6ew9ag644PjHnvxAOvVp+WXhfR+HM4VaWqPdZdNcquBC21gqdfsPQWUKTGFlF6gPfpuVPa3sJtt9uBBtVXRI+x7fspyrj0l6+2MpvNKIoiRJXExWmb53iYdPVFEg/UmOLSR5JYR1BliQ8GA/b29uzL77i2/TmaYXZP0mLxIV9xVmq1vK2HJnoIyU96o9GIdrtNklSkQSpRrKyusre3a63RBLeE9B9IhI1UECZH5xMmo0Nu3byGEgWrKz2WOinJ9Q/fSksTya9+8TyJEiGNXTnjVSHI0oSlXtcVC8gpijJEZLSyDOnGnHEK24/DTCYoAQpFW7acg1Bg3QEGU5ZII6wydrHf7TRBAZmUHAxHzAyUxsdDWOteSQm6SdW6SPyE68cZNXg+4ONAIhV5WQbno9YlyvOJOxHOUaqNfnqK+BHFrhT8qsj2M+CioVwkDZbhsChsfsLW1jbTo0NaCaSqQBrN8tKAU+vrJ17ruVPaYDuw1WoFpT0ajeh0OrXyVs39m0rMQwo+m3F3d7dGIDXPURnHZn9QhR23zUeQeCt/NBoFlj9/T0mSsLy8zO7uLlrrWqhU02r2yRyPyypvinDcFUWua7inx7iLQqNUGiZYv4qw9zZ2ZPiJsyTtva2srrC7t4N2fCSl1ti0bpc1J0EKgy5nlMWYo8Ndrr35Y1584SyrKwNOry+z1jPc2X9st/lI8tK5JV4800EoC3cAJEGXCUgT+r0u0zRlMpkwGk3c5AftVpus1arGsVRIpUizlBSJNAZpJEqk6LK0ilC5SuBG26Sa0oDQSCFpZQmtRGGyFtNJTpkX5NpglFPaLjLEO3VP0pyxy81EIWu29JYdw0pKV0leIJVilpd2sWRsYYT4nQoTf2SVPoviV5Cx0hZChmemlAq+CIyhKMqgtGeTCftSIUyJyWcksuDq5Rc4e+bUidf88F3pT0jiiIq46ICXB1Go3vrz0SJesRxzvsw51zwlGIcMxvKgyt3vF/NMx9bzIkrLR7GsHzTKJHbYLpqo4miC6rfqOrGUZYHxXCF4aMCmtYfJJ/pvPWrEWFikyCnzGWVp04fTRJGmCZ88p1Hiw1MASsL/8t99mSrCxUtVKV5KQkRBnODlYQzlLOv4k0gbu66U/ddzOTf7XUQwhncYSilJlERF/M88Iowk5ir1CC6IfvH3u2giEMITjT0k1PhQe39QmRNB0mxAuMfKz1OtRA1FWZLnBdPpjNl0doxjaJ48l5a2t5B94dytra2QgJI2Y8oiaS7lvVW7ubkJEOKum/HdTWX1WK3WxuQgpWQ8HtPtdgNME7eh2+0ymUyYTCaBi+SpO2+sUXFsNeKXjJ5Qyw9kq5Rtf9uY7ZZLEhJWgbhT9Hp9JuPcpfQrG9PtN5Y52swYHexwb+sO46MDLl86x9pKn267hRDw0ilNlsL4OD35U5G/+DNnWBskGJ+p6Z+LLmvxBjIRYBQiS0mEDKstmzsgXay0JSOSAhTaJuG40DzjKtQE9nGPeyPQRlY4uKiUZ6/dojCCSTmjxFZ5NxprAYcJ1If7NZVK8FLO+c1+t9aoJazyhRcst7aooEgAU+VQCPkh5ho8sET3Pt//Xk1SUpAqWydWyRQlEoQumY5HHMxsBao0Sz+aSttDCd1ul/F4zPXr1zl9+nTAgefJvHCjPM85Ojri5s2bnDt3Lhw7D16Yp7Q/qLJsntPDC0dHR/T7/WNtkNIWxrW15w7o9XrH2vG0lLhX2vHfNgHGclvYkEk7yn2mJNgEoV6vQ7vdptXKiF+G/lIfo0cMDw5otXrOonQX0DN0MeZw7x53b76LLnN+6nOfpttOSVObhffKWUNxsmP+iYkU8Jf/7HksJ4qwIYlEStune2NjqRWKRIDsdPCvfQV3YfdXzkFptM2GNFjF7TNhpeffs1OCdNRTwoDlgHaJ8VKw1OkwLWE4LZzSttCELkvrgwxDMXIsLrjXKrTPF8HwuLVBCOuI00aTKIUQ9YrrceJbk+fnWYweicXaIW7FCe6xmeAvFgLSNGFlMKDX6ZOlbXQ+42Bvh8O9HaufsuyjV27Mi1e8nrcjjryA44psEcThqV5P2m/ecQ8j94vQaLbTJ/PMi4rx9zxvQmli2/MiROLVxqKVxP3v5+Tfq3PF12XOvcXXtBCJlD5Cxnnn3T5Gl9bJk88oihlGF7TbGalLYBBArw0/+2KJ+BAgkl/45Aa9EDHSNMlcP5vqBZcOA06UIlWKRCmUFK4aj69J46xp46PPjYVATACW7HmpVun+d3+Mt7aVT8hBUAsAN/Vn1BRf8MxPQPOd/Cf3Tdge7deER46ds9GDH464lSJzVgKi6vtqGFvDSyUJaVQcXEkV/FbqAfIpnkulHTsEvYNuf3+f3d3dhzpPk9p0Ho7s/64F/zu5H9Z7P2la2v7B+vqRBwcHtev4hAVfHDcOd2y2NT7v4xbbHuloWXGWmqj5GKAixvfLbiklrXZGXsw4Gh1FmKx17iRJRpa1aLfblNqG9fkElaODPXY27zA9GrKxssz5M6etpdqAGf+tzxekDxY2/9gkSyX/9s9drOGbcSy7NUwtw5st3qMRRju7WCPRKEoUhsR9JBppSvvRhS36YESlzIUrQqCNtcK1wZQaoR2Mom1cO7pE6pJUWlw7RFG6YaGErJpN1f7q+3zxj86Ov8oBbo8ywW/hs3yb83gV5vnhq+YHFeMGe1gtRIrbGhRF4BISUnJwcMDe3h6j8Ygsyzh9+hRL/aX7hig/l/BIU2mvra1x7949yrLk4sWLJx4bK+R5Stsv2eZZpHECSxNueRTIJD6/D+OT0lZjPzo6Yjqdcvr06bCf1posy2i327Tb7UDQ4+ln51nPT+alsMrYZj36vqyu5+lsbRtwL61CKUG702GWz9CHB5w+faayzmVCminabUO3O2U2HXI0K3jr3ph//cZP+Oa3JuwetdHmEu1UsbYEnzowvHwWXj1r6LZtu65uaK5ulLy5qSj1k8dJlRS8dG6JK+d6GGFXbP5ZBaxZ2KIHYKuhe3hDAtJYx1Qo7ONTwDHWIjbG5hVJa0HLyuYF/wxc6TFdFAihHNZd2OgbA6IUtGSHREhnqfsanMYqbVNSV9RNpV3vxzDZGhMKDUvpcyfKyPK2oX5lWdgESh8bjlsxKklRlg/tXKwAnCcn8flFvOKLJiihbTarFJAXBaWZhfc3n2l2d3eZHB0idEmr1eLChXN0u22XTLbYsngulXasNIUQoWq5J1xq4mcPco44oWURbLA4cmLx3/Pk+PKyDl/4ELl5CjdEGjiWvw/DUrnfPVZtil8vm7Jta0dq93J7B5i3yAVSSW7em/Drf/g+P7xxSKoEs+IWpa58FQcz2DyCNzcN2Q+h0PAzL5b86udLrqzDf/bVKf+7f9KlfAp1IRIl+Bv/ziuRK6/qgzpMZPcI+0R4sFfYUkQQk/f2+uNNpTpF9K0mHlUyviRWdZyHI6p9xbwz1OTkpyxqe1QrvcZupmHIRBCah0eOwXgPoJWf/HQ854rGHGuX7wVLx+oLV5hgvOR5jsIgkoSsZWlaA9HaAnkulXZTkSZJQrfbRUrJ1tYWp06deqDUciFEYP6bTCYBfvDbmsrzJGX7KMozniia5/G0mIeHhyEG3e+Xpim9Xo9p4LDQT3WpWWHXHi6aN3E14AEslavvV1vYd0in0yVJbJ9v7435P/2//pi3bu6RFzaluziBsq80grGlteAP3lH8yXXFS6c0/9lXZ/z1L5f8nW8opsWTe72zVPIf/fJV1gdte68Ofggd5P/RBmmpCe0LHmHUGB3t/gCkpG68aAhVgiQVDu5tQSFAiZjVpHKMGne8ccZ885r3a0MzMsgP37C6MGa+zhXV/dXgEVFZ/s+kuBlZOArEAJcKgUoU2jgOGZfwtrW1zd7eIbPZjDTNkNg4+t2dPZaWunTb2YmXey4x7WaQfpZlNsxGKW7evBkK7M4bBM2wv06nw6VLlxiNRq4IbX0/OL7crYe56Vrq+YOKP2ecEGNMVSsyyzKSJGFvb488z2v3nWVZqDDvnbAfNDb84UUgpQqK22Pb8b2EjE1lSflLXdQcqfd27jkyIcNv/NF1/sb/8Tf5yfVdZnmlyB5UjBHMCsEbdyT/2/+2TWkMX3tN00qejCLIEsmf/ew6f/6nz+KKyWNLDDvU2VQOP1O6F1z4aA+rQKUFQ9G6oNQFGEuEJXGJRcZ9KAPubBwRl3GTYFh5CYly1enxCsXySFnF7cLxEMKSURkotSenMhEsI06cOpq5CHYStgaFrd7UGFPx1+id8vCIMRVN1sO+Q09FIuPaF3zQ2iYE2XJjifVVOKdyqQveu3mTa9euMZlMaGUtWlkbXRru3t1id3fPwkUnyHOptOdFXPiU7/F4fCLQP89K73Q6geZ10b4nnQc+mJUwzyHpX8bZbHbs3N7Z8SDJPE/kJTh2SjFHydZQQSrnnG8XzGY22eD//j/+gP/b//B9pjNbzfqDSGkE00LwX/9+gkHw9U/y2BV3lkr+3Oc3+Pf/7FlrPQpvrtYhgyAmVlhN7NgERVslHTU+c6zh2KD3UsPG49aI6ChRHT+3nQ/SAfE18SupBrzRaFf0R+33hxqfH6I+N42+8YV9pfQQDwhnjEzGY0ajkV0BeyMFGE9sPdT73fNzp7TnRUd4giefdDMajZhOpw+MvSZJQq/XI01TptNp7bxQvXCLJoNHjR45STwu73Gx2Pnqr+nrW/pMzua9LYozfyziS2c1hnK9kc0/7MdPSGVZ8nf/fz/mX/3hdaazxxtgPS0Ev/VjgdGG/+SLJe3EPIZsSU2WCP7Dr1/mP/yLVwFnITpA2upcD1R4ngrwLkQ/uVWPxS63hUs0ER4mWPDxEjjHhbu+/8WaudVexpJrgXEFNiOHOTaWen6PLOqnyD8R/1rzB9UPb5g2YeO80NVnV+as2OPvHjJxq/H+oM/a2hr9ft/y7KQp2hgODoaMx5P7Xu25U9pwPDzPc3H4pJv9/X3G4/GJFmc8y6dpGsqPHR4eht918IzLEA/elDjU7YNKPPg9FGIL486OQT5CiNDmOEa9ec8eBnq8Stst/WvWR/RCR0VpfQCEbzOAlDaG9Vs/2ed3/vQO0/tQVT6qTAvBb/zEKqu//VcKXj1jyBKD4OE8lAJQ0nBqSfOVK3f48mc2yFoZXiUiBUJJV0xdYqmhFLZElz2DEBY60SUuVNI5YKWtGyilsopfEM5rqm6OFLWwfB0YkG5fY0MvhazwZUtzW2IoAV3hsdjzaTQl2uGx3jHoLX5/jnnKqslYXh+T0PhunBKKcHDAGVlJdexDPZFnQwI+L3x0l8183Vjf4Pz581ZxLy3RarXQRrO9tc3BcHjf8z6XSrspXjF55enZ+uLt87578WE6sWKeZ6k+Tasgtu7jKjqx+DbH2x7W6l8EsZx8kLOZaxEIpoZPzrkjvKUphGD/qOSf/sE2s+LJhnhMC8Hf+aYdF//Fv5Xzn//qhE+s7aJESabKKuOy2VoBEoszf/6lPn/1a2v8z38uYbS/CZiQJFGzcgM6IPBscNXfC6ATCPBK8KHEHz/xBczDFUsQtUtSzaCVpR2gF49hRJevnlOlNOdzizQbi7t2xK/SmJSb3+tid/bVd+qRRide8kMRs+B7TUQd/vMlEb2VLR03/GQ6pchPxrPhOY0egWpQxIPD11Mcj8eMx+PA5PcgCrfb7TKdTjk4OJhLGjUPalgUVfI47iteBUyn04C9x+JjtGN8u3mup1vRpjHEQ2hCpbx85MTf/433T4wMeZySl/B//m3J//4vjOiaA371lR3G+R2G4gL7+jRv3YW9kSEvIU0Uq0stTvcNN974Nvubb/Gf/qX/nP39XW7dOuTo6CisarTWvH/rFv1+n5WVVce14aM3oiUGMjDZ2Uo1JvTJXKXgj236TQSucnt1bFXvpqGso2/HptIAq2BhEx1j7fOkau/Dig/t8/huyOKMAgKefTk+nQncRDrHD9BqZWAUea45ODhgNhmRZSnnzp9jZW31vmnsz53SjmOr4ygQsApubW2NW7du2QB3l+ThZVHcttaa1dVVptMp4/HYecHryTfxdeK4bn/8B1Xccdt8KTEhLE3s4eEhZVmysrJSq1MZZ0dOp9Nj5FLxuZ/Yy2E1ifujyo7z9psxAikSvPrQpeG9rTHvbY54WoycpRG8vS357vUp+7s3WDt1lnMbq3xq/TTt3jqoNpoWuVEkaZskaTMej/lHm98m31OsDAZIDLs799i5t0Ne5GhjQy1/+MMfcvHSJfqDZRKVEqI3pKjKrwkV6EulVKGHbG9ZCKGymp1Sk3U1arvYYFwKaAVGWZ1rucYdRi0MHk43xkIo7v+V5e7+FlLCffmsFynt+z/AsGJ01Kx+aRPzrZuml++ZksYUGxY09lfh/QguhtIYQ6/Xo5Vp9nYPuXv3LkYXrC4vcfnlywz6XaRaTGoHzyk8Mi96BFyadKtlCeZdos2DnqfVapEkyVya10UK70kow6al7cuQzYsiiek7F1naxxIX5mz7QO09YVtl20VwgYHf/tMt8qdcMj3X8Ftvd9nbHyJlSruzRKfbRyQpCIV2eINXZp1ulyxLUSohSzM7PlTCdDKpVTC6d+8ew8NDtKHGtxyccljrOiAVooJKYhhE+4hq4ZWyj7C2/ef/qWASA8LUlPc8WKppbdfwDAhticUPi+PjY9EzMydssyf0Tk8f133M0haPb0w+fvGOguavpr6HsWMiTZPAGDoajZhOpiFze2lpqbmAOibPpdKOnZBNZWSMLZAABKgDFkMY8e9ZlrGyshKcf03LfN5k8UEH2bxzNBWth3jmhTN6rhK/f6xQarHSJ9z/B7uPSPXUTuGTrt2LaSxz3Xiq+d47+3NCBJ+sGCP44VaX7vJ5uksrZK0uBoUxMli8Xkn6ZKWN9Q3W19f4zne+w/e++13ef/99Lr9wmSzNOBwe8vbb76BUwmg04sZ770GkiOaNS2N0XUktmPKaXVNXxjX7O7S89lP8hxDg6F91OL4OqDxJEUJU2HUTYoyU9rOoqo8HRkWTU9zlwcFrqSgODg7YvnePw8NDVlYGbGys0e8vkSQyIF8nyXMHj8wL7o9Fax1oTW/fvs36+noNNvASz/J+e6/X44UXXuDNN9+kLEva7XbtuvHxfnn3OKzteUo6jgbxk9De3l6tDFm8bWdnJ4QFzqva7q/RxOsXWeIPLvGLCBV+7ULcEOjCuAgJyfW7IxIlnhqeHYvEIJY/ycapddJWB00KKEojKTShCgvYZ//SS1cxuuAf/8N/yHgyYW1tlT//1a+w1Fvi2rvv8ju/87u89Mon2L63w+b2Dp+88qrtj7KgKCqye+vgtpaxZ7gSCMsnYuRCCznoh7Akn4eEe6jDGTLecNb2WvZZK3KjbSUdARhv11NLrHl0qVZUTfEwY1mWaGMC44ZX5v57w6v6jIh7T2oPI1q1uO0SCabEaMjSlNu33+XevX3QipeuXKK/1KXTymi3E3Sp0fdxvj+XlnYssfL2CrTVamGMYTgc3jfRJlZePtNwMpmELMT7XfODK7357YrP6S3tSbQ099K0tONJZNGEclIyzsM3FiqrrXI44j6CKnZXIHlvc8wsfwqkIHMk14J74yU63WWyrIsRCoPEeAIlohRlKVlbW2V1dZUf/OAH/Oj117lz+zYXL14kSy2h17vXryOVYjSe8P77t6Il/7zx4MpqNfTb/L4P2rkKv6ttXgCD1FbxAZsBUa0moisQ732iNCCVh5V5DsegqI+159mQeDzPa138GMMzxxZgHg4P2d3ZYTQasTzos7a2wtJSl0RZRsWPnKU9T7xF6j9x4P50Oq0V/b3fOTwu7sP/4rqTzQnCH9c8xwe9F3+NeELxThvvXI2Z/aCKfvHWdnMVseg6jyQh2CC69wiBreIZfIiff+8Nb74/fGoOyKYYJG9tagzKVngBcLUSq7fQ8nSUReFofwd85jOfIZ/lnDt/jiRJLdmVtqFdq6trlidF3+Po6JBWmjknZB3S8GF9xmhXrMBvilFpqLS17eSIYirsZ2rO3+MiwvHR+aLv/lCrQMyD6eNmMx5QwkSmY4PiOFxieEDF/cA7fjCZN71VW453RIzR93o9VlYLWmmH6WzG/t4BRT5j0lUkKqGdneyI/EgobQ8BeEVtyzZZ59z+/j5SSpaWlmrHxGyAUClcj2trrUOV99jTDYTvsVJ9WCUYK/e4Mvw86Cemj/VJQ81QxlOnTnH37t1AMOXvxycczZtw/H0/UuhisL78uSLiIxfW56YNpEsy0bpk/2jxCuZpyMEYtMkwWjgowb1AwalnwJRMpmM6nTaXL7/Af/hrv4YuCrI0s5PjZIbWhtWVNV5+6RNoLXj32rtsbt7h1MYGvW7XVtBx2lGbAqWEpb7W2kJHxipw/DXBGtiRgVxXvFbJmfBnhUsLj4+byjnmix0YHKbtwkkEnhLWnU83MPHHLJ6R0ugSU2pMYhyu2yBLMyZE2Dwzzkgz7w/3kEwEkrj3EWkJo86cOcPqyjrtVovh/pDbh0P2du6x2u9w5vQpLl+6cOJlPxJKu2mdxpb2/aCO5vFKKdrtNtPpNESSeKUdOzXjQfe4B9k8/NxfbzabBTgkll6v5/iMi5pSnlc6rXktf08PKiftWV+BOLXtcUGtPzC3yAeVQoNGWZ0nJbjyWIjKTScwFEVOp9Wiv9Tj8uXLUGryfMbe/j656+Nup8v6+il6t+6gteFweMDK8gAhe41OMrbeo3GVy2G+oows4PjfY7sEkJsFezYw74BgOyPA3aMweED8iYlfvVpoyIS2N5X203ZMP5CYOoRT2wS22IQTIQS4d63f70Nf0Gm12N7cZmdnj7u37zAdLdHtdO972edOac+LQZ6HKyulyLIsKN95yilWuvGxnU4n8HPH544t3iZ08STioJuOTu/QabL6+bZ4fHtREYfm/o8q1Qo1Om+E0ZpgDlbU8QKb3q4+ZC9LopytKZydakx1P7Vogarqymw2c0o7R2vN/sEBs1nO6uoq79+8yebmpoXh0gSVKJcyDjX4KFJSlY3mrWIvIhwWVKyx6eU67OEN8MqPEHsQrEVuJ0od/AlOUbr78pZ53MR4hDzI6HjY0a61Pj5RxePwAeCXR0RoHlk8Ang8yqcJkbhp2I0ZraEoNOMjSxqVOm6jVtbCGFtMHFoLr/vcKe2meAigSe7UarVYXl5mZ2eHpaUl1tbWattj67WpxDY2NphOp9y7d49Tp06F/byF6zMt/fkeRZqTSPx3DN3ElnKSJEynU9I0ra0AlOPx9ZPNaDSi1WoFGGfehOLv/9Hab4gTaQAXLeK+uyrrgeZTF3ZJLg2rSwl39z6kcunAcjcDkQSgvSxLB5PIEM0AlvynyPPwry5LdGmLN7z15tvM8hmvvfZJfvM3fpNbd26zf7BPp9cha2WoxNKOevBeShHoEZJEoXXpltX2ajWnl6n0fcxWXiHfXtGboLYjFR8UtPL0uAZKozHKbTMaJQRKWIYUo6sJ5EnAxTFvT7OIrxQVx461VJ8RWOREMW7BYMsJGSrjSLuJPc8Nw+GId965xnKvz1J/iW6nRYIdP3du3+a1F1cXXuG5jx6JFXCsuNM0pdvthrJdTbwY5uO5Qgj6/T5pmjKbzWrhc15Rz0tzf1SZ59D0fzeteA9/NFcOvh2+FFm8fR400gz3e8SWN/52tp6wsdlxkolV8BopNK9e6Hxo76YU8MqFJYxQ1vmIDNzIth9j48/yf+ezGePRiNFoxHhis2Xv3r3LeDLh3LnzvP7DH3LtnXcYHR1ZhZ0mFgpR9VC+uJydhQoiBdb4xL/L8Htkjzefp98u4uOE5YbRnje7mpAEJtSZ5MmiI7Y9c4yHOHCgdiPPqMTjwlvV3sFQccobiqKkKErG4zE3b75PUdpSY6urq/R6PXSp2ds7OPFaz72lHcs8JeSpS8fjMZ1O54EVlef68OnhMY3k48Kw52HizciUeZOD1jrwkTSx77jCzf2cjB8sNruJzFbYZHWtyj70DHJXTmdkqWAye/ogZpZKXjjTqwJfBCGqI8AE3kFnKrvTGuI2XEsKhcEwHo25e/eurXyUbrDskrL29veYTia02+366j88x8qhVVPQNXM6cnp5rSpqv4TvNTGNf50iFwjKUtt6jsZGpPhq8GH/5oxx7LxzNj7AaxBHPpnmecQHGYNPQ+qd4l0z1X/9qqfaz3Lgj8jznKWlJdrttqWayBJyXaCSBHEfv85zq7RPwmljZTUYDJjNZty5c4eXXnop7OcjToAa1OCP7/f7nD17lq2tLQaDAb1eL1riJsew9A+iyJtKu6l043YqpcjznJ2dnTAJ+U+aprTb7QCXwPGQv0U4d7MdJzcYbLXZ6m2PX0hP5i8wSGMQFNjokpKXzwibaPIhSFkarpzrU/r7lzau1r5+JljdIRxNuFqLAlJpI5LSNANjuHXnFm+89SZnz5zhhcuXufrSVe5ubvLee++RKMUXf+GLUX9Uq7QQgeS31vrc1L7GSiEKsmiI639/tH8k2qHewlK/jsdT8tyuwITWZK2EVpbVJoRHl8Un8CthTy0sZLzKq0dMPTNRI0B1T/ORdKM1SNvrdkK395OmKfd27nE4HPHy1Zc4vbFBp53RziQHO27lZE4OjHgu4ZEmxAF1ZReLx3n39vaOKcR554uPW1lZYTgcWkcUdX7t+x3/oNJU2M3f4vhx/29RFMcShzy2H4c7znNWxuedBxk9UJu9iqhgWPfFEkRZnWdxYWNKW+qKAkxONyv55NmCB6IBfYwiBHz+6oBuO7Whd9GEGENgxmjXbo/zOow4UaRZRqvdwmDY2dnhu9/9Lqurq3zytdf4+Z/9Ofb29rl+4wbvXLtWu7ZX2rbKSZxYdB8l1fR3hR9rd3Z8u5tzDAKkRMiEWVG4ivCAMSRSkiXJvFngsUrN0m7MEGE95tvwzBrdzYnVvzf2FxmBWEmScDgcMhodcfbcOVZWVhgM+gwGPVrttv202scvEclzqbSbcpLSiS2cZjhcU5pQQ5IkNRw7hi3mfX/cbY/PP29yajp3/PZm4s2i8z6yEzX8a6Lx7JHVCIkVfm8HOaCZjI/44osjlHy6b2iqBF/7/CnLeBfM3BifrDBKIIoAsWIwgdmvP+izsb7OuXPnWB4M0Lpke3uL8XhMmqQsLfWP9W99AnXXOfZ85vdJ7VcBIZjbd211J9X3eBXk4BFtvM+HQCswFzZb2IuLxstJ2Er0Xs05cc2Qmj9LfYhyXFnP3cuvdgOGJcA5Wv17OJvljMdjZrP8vvPkcwuPNCVWonFkR5ZljEYWYzo8PKTX6wUGrpOUlo/XXlpaCsu7eQo8vvbDir9+HC0yD4OOOUVi6MNX2el2u0FJKKVYXl5md3eXoihCZZt4ldD8/vDtN0DTYmyW17LqQgqN0TmCAqMn3L51jYHc4+yS5NawG2UmPjmREi6f7nLpVJ9S57bCi1sN2PvXlLpEeSXmrGKvRkpdQpGjnfX9qU99ikuXLvEzP/OzbJzaYGtrm1//F/+C/cM9PvHyJ7h65QplqZHRErt6rnHxBBPmipraE9UU6P8OeTZzHlUMZQshAibviwwbIRjPZsyKMlCcZ0lCK2s5ZdPA0B+j1Io8U72j/nJpmtZ4fJ4taXS6dzGE/rW/+zqQfi5Vyht8AqUgz2fs7O9z48YNsiTl9PrqiVd97i3teVh2E+cVQpDneSiM0Dxunvg4b48bx97vmEnvccj9rF4b+1kvfQaEyShuk5SSXq8HVLh9M7LGy6OXIWtm0XmV42ojuqrkUggbpGFKoMCYGdvbtxkd7fNvf+IGqXo6GGYiJX/1L7yIQaJNScw37fvWRP2jlEQqEcp3aaMpdEle5szyGS9eucwX/swX+Atf+wu8dPUq49ERf/gHf8D21j2Wl1e4evWlkN0Xesx4w1qEj4ZQOmxOFPMxA/YkO7xpjcfXMghmeW7hEae0E5WQpcfTqT2K/rgkju7yoHu8cowzjp89mdemygnp+zgOW/SQm1K27qeUOHh2yJ27m+zv79+XMvq5VNpzw4UiaSpTb6HG3BzzsOR5IUk+NntefcjHcQ/3a/uiYwNz2hxL2d9vbJU/zPkfTKrlYs0qnLNUNhiKYsZkMkYIQ5oq1pYMf+0X9WOvlN6ULBH8+18+x+pSe05/R/UR5yrYuL9MsGA9zJAoxd7ebqA7GCwv0253UCpBivrKoyaNP+MesDUhRShW0NzHs/h5hCU+qefirp3bQKkrioFYyeDuve4MfXrK00N5fqxaY8Q5J6P+PuZ7eUooSgR4HBdTPYPgVAXrL0gSpFSMRiMOj45CYRWlFImrZXuSfGTgEZivfIHAxXH37l16vR7dbneh0o6tXiklGxsb3Lp1i+FwyGAwCMfEURmPMwTQz9ReGVeD2V7HQym+2IPP+IwHglLKka1bEna/BIU61HI/rvETWjrntypVWhjjrD1XRNeU7O3dY2f7fdrtlJWlNstLHT6zMuXGZsJvvpEyLR6/ssgSwZc/tcqXP3kGIW38dKJiGMpgY8kJ/Ch+my6rYsMBusKgTcn+/h6ddgfZX+Ff/stf5972PS5cuMAvfvkXuXjhIlIqWq12sN6N8X1sI1Sk8opShr70gFM85WnXo8GxGEGmc0VUk6eUkhJBoTXjorARM8Kug1JXt9DqbVe55gnK8bBW29gkSVlaWgrGRVEUTEbjZwrVvp8ICNg1xlBqzWCwjNb7vP7663SyjEQplFCsra6xsb7K+kcdHvHSjLyIFXer1aLX63Hv3j3G4/ExpR4PqGaK+urqKsaYWpX2ebHVj6PtHsZohuV5SMT/7lcAvkJPURS1SUQpRafTod22ZbP8Ofz9+b+bWaQPJ/MVt9csJiyFNYaSg4M97ty5SaulWFnps7Y6QFDw135hxi+9Ujx2iztLBL/4qWX+ypfPIWWClAlCJq4fKlNaiEZ8u4t6KcuSUttq5VXfWit7eDjk6OiIvJjx+9/4Brfef58zp0/xhS98gTNnzrhC0S1XM9Jjze4Mph7bHsf4mujj/9YOOtHReKhnQjYlWoUKQak101mOqxtjrVs/iQtAyJPsyScmQggSV9O13W6HeOYYRn6WlXflfxCu5qMroFGWLC0tkWUt3nnnHd54801u3HjP0rQur7C+tsbq6vKJ5/7IWdrzojlipeSjSOaRLs2TGGooI+urKY8ajdE85mHO4e93HnQTK/rGUY1/vRtsHoWRqPlg/P6BaD+s1ZueMoMQNgtSmILZdIQpZyQCMqVIpUAJAdrew1//hZwXVw3/1R+m5KWt6fiooqTlF/lf/Nk1vvTJDYyRUeMfUA24+6mxeggfylhXlT7M0n+EsCnrh6MRAljutCPTOHJe4/DykGgh5j+a443DVy0UgIn6SsQHCV+uTNiMyOhcSghbi8GNWV+gNkwHfoI5duXGGDEsbKuofRFIpchzm12qksTGu7sJ8/DwEIEgzVJ3d7aT4yCZ2jlrDTh2xfvI8buav8e896Z6Vzw8Un3suPfOYKUkaZqSOT4gH4orlbQUByfIc6+0F2X8xdaytyh7vR6j0Yjt7W3Onz8/93zNZBQpJaurq5Rlye7ubu3cj9PbvShZJ76GT64BO/mkaUqe5+zv71tmsejYJFVkrZR2pwVC4KFtuxwWYcluXIp5FThQ1xx2v+oX481GIdG2oqxVH0KA0QihERQoRgg9xuT73H7ne5hizMW1LmcHXZaUIik1CoVX+n/+tZLPXiz427/T5u1twaw0NYV0PxECUgWXz7T4679yjkEnQxsFSFuRxpSgja3e4u5GCFlh14BxRFICGwEQoAstkDKxkSRlQZZ1SLMWCMlnP/d5pJL0B32EgNlsyu7uLr/zr3+bFy5d4hf/3FdIs5SyKGwdSinQ4fk63m2Hi8Y2rwiNqki3wjPQMbzixjk+69TeoZYJhUyYas3RTKONQBhNIkp6maQlQRlXDFiUGGmTpaq7ji36pgqrJgFbGLixehC++IUJz7e71OP2nTuuAtAa58+ft/i/lPz+N36fwWDAz/3cz9VXsDKKKImXK422PLjCjo85flf1vwWBX0fUVzf+/qSxE58UlgxNOJeykJbf/tVXX2Ww1KKVtWilXUyZozKJuI9Wfu6VNjy4ldvr9QJccO7cuWORJzA/g3B5eRmtNW+88cax6/p9HpfEoU/zImM8i5/WOhQiHg6HxyYQlSrSVkKr1UJrERUecNhteAncQKvW73hULby8pvG+CDBCOAzWKnBhBFACJYIZSkzAHFLmu9y9/jqn15Y5d+Ecp5c6duIoNUplbsowaAErA/gv/tKMa3cT/j8/kPzRDauIp4WcS+kqMGSJoDTwuSs9vvZnTvHi2S5WGQpsPS9rshldOqhGY8MTRbip2EmHs4ClqAjFtC4tJi6gNAVZ2iJNMkDw2qc+xXQyIc3s9jyfsre3w2/91m/y8z//8/zin/sKSZpaZ2CprYPRGKRwTHxaI11ZsKbbUkRWfRiVAT+xxRs8UyHYCdOYAutJSCiEYmYk45llnkuEIcHQTRWZBGW0ncATjRE6qKnYwl1kh4Yxik3rj2OsRViZuBNJQafb5e7mJrdu3eLKlSusra3T6XSQQvLH3/oW58+f50tf/GIdqquNyagxj81WWqTwfW+Xjd/s+yKE5XUR2LfJK22b9WsNoHa3w0svv8zp9S5KSKZT2N6+i0zFfbXyR0JpP4j4GOY8z0OSzf2UfeyQ9Knr8Hgt7HnXa36fJ3HbPYVoDIcIrBWkEoWe1QvKwvHh6g3tgJqKCBqZs7yvFobx+Rw0glOSRU4xmyIxKClIE+dUDQSBDs4SRBMIvLwB/6s/rznM4Y1twXXzSf70ez9idyQotCBNJIOuYJAc8OrldT5xaZnBYIkkyay17Nsl4iYvpvo/Pkk27MragfWs2m63G3oun804Ojri4OCgBlnFq77m0JkbQURdYdsV0RzrsLES8Y/MGujWovefQOQqLDT1wEh208KNhtHx0sDeCq39BBCKZed5ztHREbOZj+SS4Z08UWpNeBIp79UkfuKkMOe6MTxirXL7NtgoEjsetS4oipw8z5nlU2h9hKlZYTE0AhFckCR0u1329vaYTCaMx+PA03E/R5zn9PCFfmezWShJ5q/xtMRb2X4S8n/v7++ztLQUCv0KJKlK6PcHbN69FzkgrWVmrU4f0+4rqUTL3rACr5xwARrBpmMLaRFIYTQYjaREUiBNwXQ05Gh/k73NG5w7d5615SVarQ5451yoyxi9I27ZKZRVUt2W4XMXNF/85Kv8yos/xqiUrLuMyvrMSsGt2zuUpJYKVSgbmSGr0l7+Tde6jO7rpGdWHzdxOKXt88qB6+P+T58+zd7eLgcH+7zzzjv88Ic/5O233+bipUu88MIL7prCrYpsW/z5jQsPM+Z4WKaHnE5STV452Nv1StkpCQOzImdWFJTaWtFSSBKJmzzdjOb73PdA1C1xWbJ4AgEHXSBAh5ghoFqhBCZMqcjLkm9961vs7+9TFAU/+MEPXMFtxcbGKbIsO+YzaobfftDM48ctFS+Mg4jcr96nUeQGqSVbWxPy6ZSDgyO2tu7Q67UZj4Zc/NwnFp77uY8euV+8tg+hS9OUXq+HMSYobZ8Gfr/BME9pQz3R5WlJ3N4kScJsvr+/XyvaAIJEpQz6y5SlpRgFR1ksquWsEMKFuzUL0oqwzA29697esIfXjUaDKZCUKKe4J0dDdra3eO+965w/f56NjVO02h0QylKjSgUOYtHxFYUIKeTGhVDZjQqBotPpkbW79JYGXL58lVbWtrivsJSnRsdLdJyzr7SwiNBOWVWW8jxlMC822E6OVTjmbDZjPB7b0lKrq0gpefvta/zu7/4ev/Vbv8XFixdrSts6s+Wxa1TWWP13393zJLaoQ8/FkIKwE+I0z5nlOaVxk7yQKKlIkyTQsgoLVtVLTsaKe1EbpOMfd95Z36vSsSH6cny+v771rW9x7949iqLg+9//Pjdu3GB3dwcfCRVz4v8bIdFL4CNxDCZwA81mU2azGVtbu7z//l3effcaN27c4J13rvHOO++eeOrnXmk35X5wh9/uWcdgsaUcQygeIgHmRpE8/uXafFlkccxPtPGJFLJa1oW3s77cbhCF1k9ec4o2l5A+ndfHZGtMWVDmM3RRgDGkSUqikmDlhvPFp5nTfbHqEs75KaRyk6VydAQVWU/jwA8kD2rVecdwnudMJhP3mdZCKieTifu+yMCYA5EsvL6pfavvFa0UhLBcKaYqViGEjymef8rYsq6ddU5TxLwd5/+EMcZVayFE2FjDaVK7z3mTZzjvA/bb4xcTjJnw7i3oD9tEEyLUwqcsXYYsbpV2MhT03MMjD+IMjDvcp6Vvbm7W4ITm/s3ojSRJWF9fB+xLGEelPE2ZF1PuHZI+btvek28/rKwsMzo6ssf4VGb3AhtjbG5FWGI3CXw0IjD3uesHLFUjcVmFpkSaHJOPORreY3f7NpicM+de4MebXd7bTfjxXcXeSFJoQSINq1345FnNS6cNr5wt6bZsWndpSmt9R85CRELa7kLaAZmByBAiRaoUESbRSnlbjF9VUIk7VX018eCTfDVZOhjArd7KsmR7e5s333yLNM3o9/tcvHiRu3c3+fa3v82nP/M5fu/3fo+f/umfpt9fwibzVNdvTrTxyqYeXujgjNp/I6eqPwaBEbba+6wsyMvCHa1JVEIrS+1zx123Oq29r+iKNYvPVFdmztiPVyT+PrTWoe58nuecOnWKF154ASEE29vb/PjHP+bVV19jPB6T5/lTX7U+iMQ9Xj2NyMPgDbo0JSktMdTOzg7D/SMy1aKdZbRbbS5evMCFCxuWnfM++P1zr7ShrmRP2kdrTbfbRUrJrVu3uHTpUt3LTTX44n+9Yjx16hRgOT88dgXHI06etMQx52AnlMlkwnQ6ZTKZhInIK9q11dVQLUbrwmbDYbMAy7JEG41Uli/EGrQyUlIG8H8DRhI8icbYklHCIMmRZsosP+Rw9w4/vrHHG8NLvL2/QiJhVjTjrwXv78OP7giyBAqd8LMvlvzqZwpeXi9ASIy0IXsAyJSs3YOsCyYFkyBkhpIZUnrmNI+3R9WFHNRScY00FGRtcq7HM/vt1bP2GLII3DRFUbC5ucmPfvRjzp8/z2CwTKvV5s6du9y9c4df+6v/Mb/xG7/BlStXHPmYsv4E178Vv3a8orBY8XwHaVNxUx3vfA5GCLQQTIucXBcgbIRDmkjarQwp/BPUwXL0k1ustL0z2qaURwaStFY8BmTwUZjwjkG9GLUxtiD1mTNn+OxnP8vZs2f5u3/377K9vc0v//KvOPa72TOptCtxfe3HcARhKTeBp6Vhlufc277H1tY9ElIuXbjIxtoa586dZnk54/qN93jv+o0Tr/SRUNoPIs3swqIoFtZPnCdC2PRff64PwynSjC5ptsFHkTQlSSo81bgwr9ok17iV+NzBGpvXHrfNFu21sMi9gyl/5w+63Nz/NNpYZ1W+OCeJ0gjGjhP+m+8o/vi64uUNzd/4asFav2qatma+1b5G4suFCakQ4nhVlDjzMNZ5sSJ8kGid5u/x8VJKplNbXKAoijC5+4ne+xEqeOQE8Tr3xB1MM2CE+KiKd87Z4bWJ12HrUjos+/j4Xej2PLar8f9v/HpyRJb3DQ0Gg6DIJ5MJsLhYxzyZH830JOQBzx9N7kabUHxbuClQJYpWq0W326bdan3MPbJIFsU6eytpaWmJ4XBIkiSsrq7W0tcXnc8PrKWlJXZ2duj3+/d9AI9Lmok3zbZmWRbCqVZWVoJp6XdLU9vOPJ8BKVmaBX4N68TDDT6nAqIXXlizHFN6Y865r0wJpkSYEmVm/Mtv3+G/+xNNqZNHolw1RjAr4Cd3Jf/rf5Lxa79Q8nNXZiwD2zv7kA1Y6SvssE4ASbe7hDEjDg8PaXfaNn7Wv0Sh88CI+sppXr/Ob1M8jqylGxsAN27cQAjBpz71KT7xiU/w9ttvc/fuXb70pS+hHTTxpS99iaWlpTCpeoVUrzVanbueTlOBPrFC9p/wrPw2YauwF9o6cUu3TUlJKiWZUrbclbFWtRaNicIc/145OatNwq3WfLeFqcEv6QIObPtpeXnZZooeHtJut3nxxRfZ2trmm9/8Jqurq2EVO6//n5a/6IEk3LQJNx8XhFZSsjwYYLQgUy3W1tYY9PtkmaVqXVnpc+nS/MQ+Lx8JpX3Si9fc5q2hwWDA3t4eZVmytrZWK7zaPN4f651Og8GA9957L3Btx7jkkxxgMY7uw/281d9ut0MR43PnzjlaUZuubCDQcM5mEwSGTqtFMSucY09RFDoQGYVUYhfXYc9htxkMEh8VYBA6x5icf/T7O/z290tyHcVJP6KURlAW8N/8geLNOwX/m88b7mzuki2dZkUrUE5pm4Sl/jJlCVub27RbnaiWo8RHUTjNFizPh3lGsTNaiApm88/gnXfeIU1TvvCFL/CZz3yGnZ0dbt26xS/90i+FXvja175Gu90OpEh+AvUZrkFx+9WN7e0YOQ3/ja3puI1eqRsEJYJca3JtXAq7QSlJlihaiUKUEVGYe9724PlONr+vcP1pXBQNQlAUpb22b76HVExV/UcIwfr6ekgEu3jxIq+88grGGH7zN3+Tz3zmM7UM5eY7Gz+zJpz1ZPV5E8uO/Q1VR0lvIBhLebu2ukqn1aWVdTl1+hT9pS6dToJSsLa+zKDfO/Gqz73SfhCFPe/3JElqfNSxBdtUwM1z+/TxeYPqScuia3kM0UeRKKHqlpGzgGwlcPeSm+PpEdGVCLZcw1kV+fYwWvOPv7HHN340dgr78cmsEPz+tYzl//EHvKRKitJ6TI1xuC8CpSy1p9GRwqnhDE30d5HM74n7TcbT6ZRWq8VgMGB5eTlER6yurqLcamdtbS2wMdrnt7gF3tJuXs8r7Mr8pcKbG7AIVDzd3iL0Y7sK06vfcrhe7N/xuzQhItFYwc65l/g3IQStli244JPAer0erVab/f19y9ExhwvoGEz3VGXx9YSob6+wfytpkqJb0G61SNMsGHvGaJRUJC117JyxPPdKe5HMU7hesVkWtozDw8OAqzUrmy/CMoEQs10URc3r/TQUt79GbN17a99bbQcHB/T7A9IsCxEPfuBkWeYw/dJao4iw3TumdKjaTcCB/e0LIRFGI4xGYfjmT4b8Tz86YvZ46caD5KXk1//wOl9/bY0XXkootI03tux0gBCoJKXXW3IOSINSLmEIq4M0OmRdSm9Zuo2mprxksHDnW3Z1mKwoCi5fvky73Q6FJ3q9Hqurq5VD0Z1jMp1itHbKy+YsKWWOGwlB2br43znKKuDaQXFXt2AcNDKaTClcBXZtDK00IU2Uswg1ddUcSWMIV1OeiyASFlf3nOIxFi+VsjHhxlnmysaOSCl59dVXOXPmDL1eL1jely5d5BOf+ATT6ZThcBigI98nH4bf6CQRDeMlzrHVxmUlK02n26HV6tButcEYDg+P2N0ZIWVOlrXo97qcaQ+OX8DJR0JpN50WTRzbiw/g1+7liZMkPP9083h/jvg8npPbJ9n4zMqnMchipQ1V9RlPIKW15t69e7TbncBTYsseWaXdbvlleomSNu3bGNs3RZmjTUlZanwlciEAra11a0CKFGkKpNbsHeX8o9/be2IK28t0VvIvX0/5wqcEF0qr8aSpQt3SNGNlZYWjoyO0LlFJikShsXHKpSktBitASdWIhmj4CET4T63P7RioQ2iz2YzXXnst7AMWOjtz5kztN6kU49EownZz58isKiIZrSFRVg14B6/HusPMEqkJv9QpvVr1sJak0JZlcOboZY3WdNoZWZJY4MvxYxhxjLfvuFVNpbh9tRYfPWJ9w7LyFSUJUxcOmybW52AjVyQ//dM/TZZlwaI+e/YsSZIwHB7x5ptvhmzJ5mr3mRFvXfuJ0q1W/JPRpaYsCkSqWVrqkaiMdqvF4f6Y/b0ht2+9zyw/Ynl5wMXzZ+HMYqX9LMfQPFFZpLj9tphf+kGq0jSVfzwBzLvmk5B58eP+un6br2dp23V8IlNKUWdgm9f2Y6hpsPiqlaHhv/qXdyjmEDk9CSlK+Pv/eg8daEZFULBSSEv1Ga1R63djgnISsaXttzfHR+N4v0+12qiewdLSEp1OJ0SN+AiJulhe62qsiNpEEUe6uAZXylNEqlpQU9rNdhqHOWtjKPxk4LBqpaQlpgoXqPpmkXjmXa+4YwhG+2NFta8QItDKxMcKYUnX4n6y0RQ9+v0+ZVmS53mwtJ9JcZjgotaZyGeilKfrTdDGhgEeHY0YDkccHY2ZTWcnXuojobQfZFb2y/44drTdbpMkCTs7OzUSqeZ5YyUPhIgTn9Di9/0wrAN/X81CCZ6cxot/XdvtDlIlzGZFeKG8pQ7VvcpIqQhwrHQGowuEKbl+54h3N6eUTym/SBu4sZ3z/be2Qq1DACFBJZKslblQK02ginVYr+VWiTVeXRaGPzaeqRDVBOkjQTwRktaa8XjMYDDg4sWLx86ZpRlHR0d8+9vfdpQDNra8mmyjZyAjZa71YrVaU3AChKQ0UGqDc13Yaj1JQqoUifRc3E7ZChs94rkP4w/u35JKSWugFGBJAUx1rOMAK4xGKBnoZ0sHGfj3xI7LgmvXrjEajZlMJrzzzju0222MMbzzzjsLDZMFHXCf7U9ajIOz/J8Vt31Zara3d9i5t8PB/oFLerMr3/2DgxPP+twr7VhZzguF8/v4l8wr7rIs6fV6pGnK7du3w4sXY5fNYrp+W5qmnD59OkArfv+ncZ/xPcYKxHNY+N+m04mNFLHerXCe3tIAlWRMprl1bIkqbt3jj7bKS8QY6DBYKUGXM4TO+Y3v3CMvn+4kVZSGf/qN95jleWRl2zj0TrcTYu/dNOMiHXzUjwhVtUJI4LHxYqp//OKikeTiYTA/ng4PD5lMJhRFwcHBARsbG7z22mtVZRh3vk67y/7eAb/+67/O9vY20+kkJPr4tPw8z8HDL8LF3Z+ktKnfD0JSGENeGgp3r0pKsiyhlSUkShDYXtxM7BVzrLB9WH0Z/a0FlNIq7QJjv0sohKGU9pPrApEqSCQlmlzbjMy4qPZ0OuW73/0uw+GQ4fCQ73znO/R6PbTWfPe73w0GyCKDqRnN86RFnGReh+kMvFPYGnGGvCh4//073L51m+2tLSbjMZ2OHaNbW1snXvO5V9pNOWmWbnqivaKbTCbHEm1iizw+L9iXrNPphBf3w8bf5sVuV4k29bYlSYqUKiiDZghVc+kemREIYcBoRpOcP333aJ6P7ImKMfDD64ccjNzqRoCvrK4SVT0vv2qvAcDHDe1YcRunpGvPPRovIsK64338ROFhNh9JUm+3VcSz2Yzbt287JX/82RyLWqKxemvCz3bngJMY5yy0dKxud2EVt/KrpwZ+ZIQP7qys7QoG8VXiq2rxft/md421rH1bYlrY+D3RWrO3txfoWPf29kKuQ1xkZB6keVyeitaupAGPVb8bjxhWLI7aMBqNbbbndEZZliQqcQbV9MRLfiQckTAfww5hTi66ommh+m1ZljGZTMiyzPEjL7ba4229Xi9Y294r/iTlpIEc4+u+fuRkYpOIQg43jjMjy+h0uxRlDhibwu4Cuo3RaO2sGCPAWGJ3IRxXiSh54/YQJcVTt7QBlBS8eX2PU2sDWmlamzg63S5lWTLLc5IsBUT4nwyK+aQ2e7eSlWpCI+CZTV9CvNoRQoQXcnl5GU8zu7W1xZtvvsmN997j9OnTXLt2DaUUq6urzGbVpC8d82EYv4gAlRB+aeLfxh6DVdp5WZKXZXBoKqHIktTiS4621kjpLGiDxiVUmWM+SLvd3VuhSwt5YNy48ZevVifWeHft14bBUh8pBdJU71tZlgyHw1CdvN/vhyIjviTXotXyhyPu4cdzp4dwnL8gWAjG4CkfCgedLS+vMG2Nubc9oz/ooxLFbPIRLzcWyzwr2y9nmwMhTpDodDocHByETEl/rpgvuxkOKKVkZWWFg4MD9vf3g7J/0tKckLzSiPHrXq/H4fCAosgd74jCh8CpJKHb7bCysszO7i460aSkSKXQukQ7RWyX0tZi0CZHSWxtO5Xz7p0hs8LXDn+6kheat27u8dOfPO1oBUxQFssryxweHnF4dERPJVbROq5wicJI0HlZ6zuIVxle7O9xaJ+FnghUsX4MVD6EgiRJODw8ZDgc0uv1kMLWA3z33Xf5Z//sn1Hqkk996jW+9a1vAfDZz36WPJ8Gq92u/Oy1bTxz5TQ1LnVRIh3vR2wPW9HAdFYwnRW2UpGBREi6rRZCRxOvkuQYclOiVVJxYkvHh+3OWGAhj1meM5lOKXRJURaMJhN7XWMjUXTpk7CkzQI1NnhyadAnFQoVjRMPD0ynU5Ik5dSpU5w5c4bpdMrm5uaxDOOTjKenJ1Zxe2s6Qr3ihajdJgVlqclnOYeHh1z91FWmkzEH+3ucOnWK8XjE6PDk+rTPvdI+aVZuvpjNmFi/bE2SJFTVaJ77pBm+5XgEvJPlaUpzEonvy7P+VVlp9X2TJCFrtUKigzLKJuMQW05R1XJHDmSVo+aNOzn6AxTf/SCiDbzx3gFF4axJQk0WslYLObbQg4c0hA+Zk2IuxSg0n/N8a7t5t/PCQoGw7NdahwXOwcEB7733Hu12i+XlZba2ttjf30cpeezZNa7i/nu8r4Xx/6ntSunS142zAqWARClssQq/6JIYYy1n73QM2eei6lEPeRS6ZFbkFp8uCsbTSQQRacqitNdSkjIvnIUva47uOFrL4tuaLJO02206nQ5gDagmnv3syPFJ/fh233O2RF2e53S7HZS0999pdwBDmU9OvNJzr7TnSRMqaSrUajlqK62nacp0Og1Za4uWaM1rtFotMpfA4hXgh8FUFq8EhBC1RJujoxH9geWzDm2XkiS1mYQ+pKyCi1RUSMDxKgirrDEl08khu4cFH6bnfu9wxmw2tZNJhNGqRNkqNlK6VavXRHa5vkjq4+O4MhYiMgQcQBFDIvG+SZIEioE7t29z5epVNjc3uXLlCsvLA06dOsX58+dJkoT337/FYNC3z8xly9loEVNriU1rr54v0SLHGBOUtwZK7TNH7bNTQpIqGap+GmMo0YwmYw7znDLNEGUBpuJBMQLO9NbZPzqkKK11PStzCq0pcBEivl+NIHFJQEIIZ22XGK3RguPZk8aglOLGjeuA4NatW/zgBz84ltw27xkdj+F+eoZSc46sDRPvVhCuGEekc0ajEUWeuxBAySy/v374SCntpvLyv/lPkyckTVOktLP97u5uUN6ec9uL/+492/63wWDAdDoNy+MnrbTnWXfxvfnteZ6TphlGa+5t36Pd6SFl4kv6kiTKhjtm1jFSmhKlFUK6iiYYy5ONo16VAmFKTDnl6GDTQSPpE7vP+0lRaEZHh2htKWeNsHSxWZbZtGE/8UiBkJJSl9hq2cfHhZd5CiMuMWYcJCGVQpc6jKPmaq7VaoXSWd/5zne5cvUqP/7xj/nSl77ExYsXOXP2DJ/77E1KXfKd736Xr3zlK2AEptBOeVsrLVFRAeaG2Krr1bYaPJIXzPICoR1JlFJ0shSlc0BTmJLcaHaH+2wNh+isjSlm4B1orhteO3uVW9t3iTSStcKFQGRppLOMqzdp0NqQCMlsOmUyGlMKaqyEvs+SJOGP/uiP2N8/4Hvf+x53797l4sWLfOYzn6kVj2g+qxiO+rCkWoeZMKb8MlQI63PB6OCQ3NnZRQoLWXY6CXkhA1S5SD5SShuOK+5mFEi8jw/hSpLEFtyczRbWqZsnrVYr0LWGzLbo+vOw9HntfBCZp7CbE4v/uyxLlFSUBsbjScAcwQ06KUkSUEraqhrOy584S8net6X0kwKUs8a1KchnI6Q5GZN70qIkFPnMZhEqO8kYnKWtpK1f6GChQIYEIbKByCF5v2dgjAt1jFYfPrwrPt6PtSRJQmbq5uYmADs7O1y4cIErV67Qbrc5deoUW9tbbG5u2uOFtd6FqKz4eiMWtS1WIbZNpTY2o9Xdu5KCVEpLo4vDoNFMZlMOR0eYUqOLGcYxEsYBhoejkS0OrRQyUbYWohQkSQqiikRRwp5faFtooSwLG1USQS3xOyGl5Pbt22xubrG1tcVwOEQpxWc/+9kHeieeFmziMewwZqA2WbnGUN2lI0Jw0JQQgslkTJokpGlCkvpcio+V9gPLsZCqSMn6LLaDg4PAIxEr/XkOEWNsBtzKygrT6TRUM4mvdb/2POwAjC2NeRNRvJ+tkiJtNEWeo1RGXFOq3W4zGo9t3HNSvfw4SEAKQGuEKCnyKePRAaOjA5Zay+xOF1eTftIy6CYIAbN8RltmjoXQvlVKJbTbbfKZx5UrTNp+IgW58BnFr2f9VfUnW8Q97THZ9957z3JXAy+//DK9Xi9AViurq0zzmY3GKEuEdLCUn2iaqzWnNJp/CveHwYbY5VH4qTGQKUUiVVTZ3U01whZKQACJRIkElPPxRJdSWVo5XJWyA0L4Dw608Rzf1eTjqw55n4MPS/E+oxdffJHBYJm1tXV6vR7tdptLly5x9uzZaAwf79+naWGHtvt2COb7RFzEiIWGBCX23VOJHYdCCBKlaPfs6j3LEpaWOide+yOttOdh2bFDxFvHQghWVlaYzWbcvHmT06dPB66O+NgYJvG/dbtdXnzxRb73ve+FyjiLnIRPSpphZx5bBMdmeDRyE5NN9bYvrmFldZlpMWM2GtFpuzqSzgpVUiCMwegcIXOm4wPubd1iZ/N9rq5mvD/sfSjOSCng5fMdpIDDwwOydA0lE+d0tZmRyyur3Ll9GyRIZanovY6KpTkZ1/mt50+I2sznXffP2DuBv/GNb1jCIOCXf/mXOX3mDGmWIYTgxctXyDLLejebzWxhW5WgtY9scasd4UMvCRqjwuodV7WSjju7ZDKdUWqraIyGTtamnWRIoy2m7VcIicQogVYClSUkeE6SakIHaHU7VvlGYYdG2ESbykErwkQgpLKWPjZLssRgRMVqOB6P0Vrzla98hcPDEbPZjOl0SpZl9Ho91tbW3ORVuPf0+HvzKIbOB5foffbfo6QriYWipFLkpYVQW62MtZVVhBa02i0uXjyLFAm9XpdO6+MiCA8sMS7W5A1pt9vkec7+/v4xPpF5Frr/nqYpq6urgSlwnjwNxd2EhSy9p7e0Z2R5DGnYtnQ6bZsNWZbBGgptdh9jSgSacjZhdLjP6GifSytTWrcIFWeepmSp5IXTHWtpz6ZOuTmfJJb3odORlFojtQ+Ni5JKmP9MvZyoFMQ8NVIXb2m/++67fPqTnwLglVdeQfmxYQyrq6uMxiPu7WwHw0HKhKIs3LUFmAqma7QQb2s7qDlY2kWwtAUYQ6ps+ro0xueHWh+ms5iNsEx80jkqm2NUZSmIKK3dVEC6EVWvBvTJv1dUcE1lsVbFtK9evcpkMkVr4/wQaXgmR0dj+8gaywu//cNS2H4x4aOogBpkIpzvh9L2b6ISOu020/GUJElYXh4gBGRpQtL+WGkfk3r87cm/eUUefyaTSYgqeZDrAHS7XZRSwZE5T57koDumfOyv1rHjIgDs78ZrYwyQpCmtVstGzSTSQg1GuwiSAoHh6PCA8fgIowsG/SXOrJcUP3git3FfKUrDi2dt/8bZiDh+EV8010MRYdXgjp+ndOeFgto/7H+8JRnvP0+80gK4dOkSK6srYVv87Hd2dtje3ubevXtcv36d8+fPs7GxHkWoVFLB8ZXXUYR21S3joMX91/A5PjY8xaqHMQLEEe8n6sfU+sP97YZSdWS4aB2C9P0D1uLe3NxiPJ4EI8pHcp06dfrEdzXuT+sM5MlKs19EfL/xlOXsA4zzISm63S6pSmi1MqbTnMlshjEFSmhOnVtbeMmPpNI+SZqeab8c9sx9nkAKsGW7on19KF3Ti22M4fTp04xGI/b39wPhu98WSxVaJ49tu5/Mw9djz3rNEereOKVSpvkYOakShaz1ZJfX3W4XrQ27O/skHYlKUgQlRTFDiRmJLLjz/nXGR7vofMyVFy6w2uvxsy+UfPNdhXmKEIkQ8PmrA3rthFIXTMYTZrMpSqWkWQqmUrBZZqNntNakSgWYoYj6L464eTztE+S5pV39yle+EiJALLZelcx9/Uc/4t3r17h+/QY//vGP+cpXvsKZM2fQxiUK4axYbYJ1ryIzv8pe9ZOEsAdJGRSxkgIlBAr7ERBYAEtRfYyypFH2xPX7Cba+qKsnU8HUcfRhWNV4xW39cSa00XPcbG9v88d//MfcuXM3FKRWKmFpaYlf+7W/6qBJU3tXfUQO2NVMWVaFlp+41Iz+uqIm6ABLgQuCPJ+RJG1OndpAYA2g4fCQnb1tDg+HUOa8du4XFl7uY6XdkHjWj5VfbGmPRqOQGTlP5oUV9vt9ZrMZh4eHx643Dx75IJDJPIu96TStXnBJWRQUuePrcAPdD70sy+h2DJuzLUxbO/vNYtlGFMhEs79/j9nkgExpNtZWaSnJX/rsjD++0WF2QtHexy2pknz9C6esw8dAESWyVMrC/qsSRZlbljyPZzdpSOf14QcVP7G/+uqrDIfDaoOpnIC379zm/fdvcfv2bQ4O9vjsZz+LUjI4U40QVXsDhu3aGP5bWd7BunWV542w2YkhhT8+InIWGrdvQw1VTW78G77PgYli6zuML1NxcHulDXB4eMj169e5du1dDg4OGA6HDmZcD/1nDDWj6GnVYq2LOAYb1iUCgKL2lmWJUoal/hJZApPxlK2tXXZ29tnZufdxcs1JEr+EixRkPDCUUoG3w4f/NR2Si8TzJnjLIo7nnmdtP5yc3PbjItz/HfYpZWQlebp8e1afap0myoaD6QIpNIaSopgyGx0ggVaW0W1VlV9ePq15aaPkjU1F+RSsbSnh8pkul09bzhQ/4ZZFSVGWxLEsQgrSNMWUJUVR1Sqs9dAJuHVYA4e/H0zi8FLPDw22Gnun03Ex3hbOabfbbGxsYBx2PR6PUSrBZ59WFzd1HR0iPGLARwS9HX6yO1f3Ed3LMWU8RwnP+9345UpkdZqoeQE2ECdDSJ51McsyLly44PxBKYPBMlA5hONjwhXnPMsnIfFE6fF5Hz0SvsddKxxFgCY4UQ8PDzFlzmxq+Yn8il7dJ8fhI620F0kzZM4PEh++d+fOHbrdLtPpNHCKzLNug/dYylDd3b+wPnHHi1cyfslnX2gZMNgHaHX0vbLwm+cNk4X0a1Tj4oZLd6+GRNltElDKFv3t9TqYfEZeTui1JbqcMRzucvPdn5ApQ38wYH1liUwolLDX/Vtfy/lb/1hRPuHKNWCt7L/29Rfc0tyy1qVJyngyRaoJna5l1hMClBL0l5bYL3ImkyPK0sIFttvqNJ9QWeCBx/oR2tfMBRgOh4FrfXt7OxSuHU8maK05deoUV69e5Y03foIQkjsuwaSYzSjLIuCjluzKlx3zmHfkWNUGoeyKSqqa6sYmBNUJz42wxW4sYT8B0472mPOtIWL+DqWxyTXeKNBaY2RluAhBSGZLEsX6+jpf/vKXXRZpEqra+Ao2IJHu+JhN047lJ6+4583YpjZdVpOixeQlJi9CgZQb719ne2sLow2ddpdOr2MrZJlmkYy6fKy0F4hXeD6KxCfZJEnCeGwpFT2h+UlWulfknU6nlmgT8yjMg1Ps39AAzBa19sSt/j5C5EHtWtYpV+YueSJEU9hdlVQYZWi3MkazCUWZI0ULI0pm0yM277zP5Qsb9Hsd1ldXkGiEsJDDqWXJf/TzE/7rP2gzLZ+ctd3KFH/ly+cYdC3WaecjiZKKfJYzS+thLFIJ2p02h0NpSbC0rYe5KFTPL/nDdg/aPqLPQWsdOLaBUP9QSknueNuXl5e5evUq+/v7AOzv7XP1ylV0WVDGYHL4N3LKzbm2RUcqdWIhMsfQ2Bg/FXXr41N8ceuEsLCCMQ7eEcJOINRhyH6/z+c//3mWlpaC9X1wcFALvbSfyhflrfsPQwKC7hcbfnkBls3QJXV5/H1ra4vr124gpeTM6VMsDWxMuhInVw75yPFpL5JmcsxiReqW1sYwmUzmRqAsksQF1PulcaywHy1y5FGWgg6zjihVRaSQ8jynLEqrto0IUGiSKKyRXqL1jPFoyGw6dgT6qeWGgICX+2756islf/6VnFbyZN6kLJH88s9f5kuf9N52ET5+Ugzhm177YqelYP2YCnsMEEEt5GFB1aEPgHHPe97T6ZTNrU26nS5SSvb29jg4OGA0GgU6hOratl1zz13fKbS1BiOcqNwqnCSMz8andh7i/vM47/wJ0J9fIEL5reY+fiXqCddiRX6/bMH4uk8+/C86/4K+rPVX0Cl2NZgkCa1Wi06nQ7fbi+735HZ/rLTnSFOBNyMvVlZWKMuSO3fu1MpweTHG1CpH+3P0+33OnTvHwcEBk8kk/O6VSoxvKx/RYM9+Qmsbr1C0TI6VlrdUtLb3UBSFW2Y6yMDBJvt7+4xHY/taGRAGEiFYXurRSkEwZTza5fr1N7h3733OnF5hY32FpW7HKXmFQbh0aUOiEv7alzRfe1U/dsWdJYIvfXqN//Tf/UxwbNkJSYCQJCqjKAz5rCCf2ooh3ukoJGSt1FW0ySuHMLH7qP79g4iPRgFqYynaga3tbf71b/9rLr1wiSRJ+JM/+RO+//3vc+3aNba3tx03B/jxoHUUQRGpB7+PR7Kts1EgHQGYp5yy4ZBlwKbtR9TmooBHP4CBIBqfmtR0uuUBL4vCprSH8WmNhr29PQaDAadPnw6ZyB4+8b6hmPTMi1XsdWPraUrzioFywCVcVeGLiixL6ff7nD9/jhdeeIErV65wamODflhVLJaPlXZDmgrb/xa/aL780c7OTi3RxksTv/TS7XZZW1tjNBqFRAJ/7uZ5Yijj4eT4yxU7Pj1HhoUFKqXtB/vR4RHTiSXq95EFUgi6nRZpApgZs9khm5s3Odi/x+pKj+XBEu1Wy/nEpA01MzYyQ0pJmiT8tV8o+E9+IaedGJT8YGpQSmilkr/ylYv85T970SnbJqZvy6Lp0laMKePizA7dSFMbI1uWRQ3qqJTU40VG563aYtnf3+e73/0up06dQinFm2++ybVr17hz505I6oqHVTXO6s88VKWxV8HDXdWkYbdbYyE6ft7NikptPx5xU4mQlKUOBY19X/gSbd1ul+Xl5WO0D57tr7lKtU19Fri1I/HwiKnIyHySTZIkVh+sr3P69GnOnj3L8mBAp9NGqZPV8seY9gOK7/A4axKsZaCUeqAoEj/b+vCkZkz4XDEPgGmLJq4+f9KpX6vuLYrx2mD5++gS99IqJZASRpMxaSLJpK0oLUWUTk14LYOCscpF8xdegZ+6WPJ/+Z0Wb23BrISHieMWwhZfeOFMl//4l6+w0ktr93W8l2zWJ0Y4/NjUrEAPj9heMLWwLI+7NmVeMsgHFSmli+G1lqSHRfI8Z2VlhcFgQLvdZm9vj1aWuRVU6VYNCyZ3D7DGiEqEaVclwhwMZNwSpDl2OGn0meof4ff3cMqio0zoV+0x7cjBK4SNGplOZxwcHHD37t2g1JVSdLtLC6FEb40/Damm9HDj9p/G++r3iPUHgNHawkDOT2ZXDgKlZHC4LpKPlXZDmkkp/jcVJUJ4p6RSir29PVZWVgKJlN+/Can439I0DTUCR6MRrVZrbgUci8E+vLUdnytui4VCVMBwVWLDjkJCgr9uqcmnUyZHI8eTYgANpqDXTpmlgrfff5dT6wMGvTaDfg8pw8I64MZSOopSF4JWlJZOdK0n+C//rSlvbUv+v99X/NF1hUSTlxI9516lsKnpRWn4zEvLfPWnz3DlbMeFV1WeeoQvGVb5742xVc4N1ortD5YQ0kIEUkGapbR1x/FMG6TWGOKCxfUkpzhk71EUdm2CicZXu91mNpuhlOLipRf4vd/9Pe5u3mU8HvPVr36VF154gY2Ndb75zW/y+c99jnPnzjGbzZAyppN1bXROPREpYOF6RLn9rKI2FLqgMLbsGqK+spJRlIdwfTln/X/CzUbfhafhqn4XQpAXBVrVE7+UUpw7d45vfOP3uXt3k5s3byKlCs/iV37lfxbeGQ/v1fv4wZ/H4xaBsHiinwcxbjI2kbFmMyJns5ytrS1evvoy3U6Hw8MhvV6HdrtNt7Nx4nU+VtoNOUlpexIpn1IrpQylo5rn8GFI8Tm9E3NpaanmXPITwrHMxUeAR6xCqP8tpXTOHbsiKIrClgbDoAuHvXtlrzVFXjCbTOh2bSUNy3NR0GklHCWC7c3bfP4zL7O+usxSt4MotKXexBUXkDZU0TgiT+0mByUlRlhc/eUzgr91FvaOcv77332D7ekad6dr5KJHXlqMfbXf4uq5HhdPd3nxQp9WK3EvaVXcIO5bIQTG9bkvYpuolLwsbExsgzPGOpQ1BoHWVnEj65Nn7Bf4INJcwscrI08TIKXkzNmz/O7v/utAR/qFL3yBM2fOIITg13/9X3DlyhUuvfCCy6xskCY5Re2xfa/QPYIiZN0OLrS2xXajY731brlpKrD7gxiwfuqIbVAhBEVZ4BkVXSehlA31297e5gc/+AE//vGPybKWa5vgF37hi6yvr4eKUFKKY4rb9/eHDpUYr0fcqs4V3zDalhvb3d2l2+3SbrXY3d2h1UrpdDOWuosT9+BjpX1MTlp6efGK0CvDZiTI/cQT4DQ5to/h4N6avM9p5xoXkWUUn/d+iTtSCNDaYcAGEdH7WIelpY+0Kw0ZlIC31vCT3bw2O5ze2e4URYkk54XBkJdahsFqwkuvvURhEgqToFpLTHOD1gISRaw2Fz4ne6Fw897x5RWvCSx8to3xKmoe7PE4oZB5xmp8HSUl3W6XXm8pTCqe66Yo8hBJceL5hLU2g6HdhEf8mBBR3McxDKQOuvjNcx/pnPuonSXeIerDpp/Ijxk/qS0tLbGysuIs1Cz83nxWx+XpmdoLn+ccmMn+XhmEQthsY1WjvDA1A2qRfKy0G7LoJY0rkSilaLkaint7e6ytrdVwN3+e5svvB976+jrj8ZjhcEieVy+jdxhWlseDt1s0vhss4bpx1262K162xX6mVpphyoLDgz3WNwYgLTSCyBGipNVKefGFSyx1uoGLuXT4t5RWERttlYFd1trzqyRFqMRrUWalYXd/yPu3t+ivnKLTW2FpsEFpJEYkCJFSliaUNpPYQz0+jtEYIStYx1RwkhAuvcTYSjLKWOBlMhkjhHGYoYMMlKI/WGY8GjMrStpphScucih/EJkHrxhjKxu1Ox1eeeUV0jRx1ccTRqMRb731Fpubm7z44hW63V5F/YtT0Ma4lY61Og247EQ/HiolLKUtAqGFre9YoimFIQ4NlsYWLkiEQpSaB3Y7BDN6zjY/efrJUkoLj0QrGCkVKJtT8OUvf5lXX33N/W5XWFJKTp06Bdgs0piedb7f5sOTyntg/xsieFw70zTjxRdfJHXlCMNxwia0nSQfK+2GxNha/LdXyh6barVaaK25efPm8RhaJ83B41/W1dVV7ty5E4oFxxzetfT2R7sBfHx1sDCNxtdF9Jamn9m90vbtb6UJk/GMo9ERxuQOJMyBAoSm1Uq4dP48WWJILOWfIy7yyUiFUxh2AvNGh1QKIVXYNpsV7B4ccf29W7zymZ9msLxBZ2mV0tiyZkImuHqwwYh3NxgmHKex/K9WSVtU1vW9TWLyHNfTyYRECbLMvxXSZav2mUxm5NOczhx47H7P9eEej5uEYovZK+1Wm7UrG5w/f87VDEz4xje+wQ9+8APefPNN/ubf/JuOwKtS2uGc8cpK+D9F9V9nffvycKXBKmx0cEgKd7Awtqq7QtpQFMl8Rfwo9w/4ibU4prSrsfgzP/OzkTUugtKWUnFwcEBRFBHLpon2fXrOyEVSu7ypUvmlwFVN0qRpxsWLF0nTlNl0FsF8tvLSSfKx0r6PNMOImg4+yyhmKyvP8/o2w5L8bz67Mk6/feQ22pM+8tGeeMifRriIkTLPESkIoQENjn86SRRSuEy6mnVlgqXnJXwXIuDMpTHM8twWmJWKJEmRSYqUiWOaixbn4Z9KK5kTbtd7Arxr1J/Cw1HaK/zo1bIFjO8Pifl/Y8fkAyvweLcmChadx0ZPtKxiLUuOjo7QxnKRtNvtE+ABP7vZB2Bo3mU0TryCw0df+/sh6m+PaS+2XufDUzHfiDi+/wJnrG+f/906zHEJbHarlNBqdR776uexSDxpztnsYTqwYbf2HpMA2YXTaO1okher5o+VdkNix1M8KD3ZU+yUUkqxurrKeDzmzp07XL58GZgPsTQH+GBgK28Ph8OgwD1E4ieERxantawz0xPVaIRQkXNJOivVUnyG5ZwuSRS0W5LdrVv0l3t0uhkmPyIfH1JMx9YKkxJhNGVZ2KQNoCgLfLONM/e0w+UNksLYGoWj6Ywb799lMis5ff4Fuv010tYSqBaIxCp3bR2bnutaYDC6sFCLtIV6wdShAqIVinsGpS6xRX0TxqND0lTQp1dBLQiSLCNJW8ikqD33Rcvtuf6HB3wsvq3eoe17xzvmhsMh/X6fra0t3n77Lb79p99mfX2dz3zms5w7dy5wsc9mM+sbkdJOphBWHRYT9dOct20NGI1yTnStC7SwTuLCaBII1WvQNtIkERJTavggY5FIn4mKTla4SUk3JkYhbBjtcHjI9vY9vv3tb2OMz+A1fPWrfz5MYJXB0wzDfFpK3RkXJ1zOj0kpJErZEWDJ5iBNBLPJjLIog945Gk3I8xHnuusLz/mx0m6If0E9P4h/QePMRT9AvNLe29tjNBpx5coV4P4WmDGWqtUYw61bt+j3+9EsrMP1HpdIIW3VE2UtqEC/6jBgrU21JDMlShpUptjbvkOanKLTWsZMjihGR+SzicPmrGIodUGWKuu81AVpIkELW2rMTRzaGISQlBpmRcnhZMZ7tzfp9AZcfvFFOv1VlGqDyDAiRZvKrpaOZ9qgQRcIJFKmAerRUfSDtRSthUaURASGLE0YDndptVNis8gISLIMlWRINZurjJuWsP/toSVaNRRFNDm4zWVZMhpPGAwGgVP6T7/zHf7yX/7LfP0vfp3V5RWEgKLIw8pOSWkTZITBR9QLIYMvw0Ao2otzdkqlMHlhJw+ntCO3BsKAQpJISV5qSB9+LMZWfjivmyQ8pl3mee198gq3KAp2dnZ48803+af/9J9ijFXwZVny6quvceHCBZaWljg6OqquV3tnnqLSNs27rMSy/VW6InG5jLPZDCEMop0yPhqDMaRpgjGGyWjCsBjDxcVK++OMyDnyMJilt8Cb+NyDHOeTbO4X+2tMMBwfWOYuZxt/CeLwwGjwGYPWBbPphLKYYXSB0RqjS1vI1zjXVq1NcxoYt9s5oSw0YhWGkIoky6wDSki3z7w2xyolnG6xRKgNJiq75ZyYJlL0fknuoa5FyvjxLMlPPkcV4eLjwe0k7mskCiGYTieMRiOKosCH9h2TBVBMcIZDVZnGbjjWTB/219z2KM7ZsP8cH0/tu6hIoKbT6TFuH2NMINp6nEbNo0o9JDeC9BYfAMTj0IRnGMocGk1RnExC/7Gl3ZDmkrgJicRx1H529zHcw+GQlZWVmtXcjMv123wESr/fpyxLxuPxsaK/j9p2qA+o2AoJjjAhMQi0KV3VFP87jCYjDva32du+Taer6LYkIp+gA72ccCUKBUokNh0eg5Sgbb3p+n0ICdLykYwnU+7c3WTj9FmWltdod5fQKAQSjHRVwGWYFILTkdJFisy3dKW0kSQeLwRLt6q1Q1eFK3JbFAyHBywP1mxki2tnu9OhLDWH+1vWgnWrrEVx+4/6fDxW3KyKY2Fb67ydzWYsLy/zuc99jvfevxFC33Z2dvj+97/P7u4OV168bMtVJTYr1CJdbnJz2HHN3WAbYPvJhyc4Q1HX3JZVfyZKkZsTJoeHuffoXxvWJhybYN3S9pz1779/i8PDQ375l38ZpVK01sxmM27dusXS0lKIIvHHPWviI5jAQ0Ng4TxLuQxQFjntVsuVLrTBDaPRUeAlWiQfK+0FEg+EGGf2CjqOAlBKkec5BwcHQWnHit0fEysBz/g3GAyYTKz15JX2B1XcAhjNSq7dOeL63RFvvX/I/qigKG3Ex/JSyicuLHPpdI8XTrfodxJ8oVghDJPJEVubd9jdusXyoMVKLyMVrlySAZDo0iCFQMmEQs+QQqMUdhIQColw5bGcc0zZWpSj6ZTbdzb5/M/8Av3ldVrtJXJtFba1NAg0qVZh+0gRC1f5yPHqQRGegxCScqodHGNDyGzhYdcEJSiKnOHwgEF/1U0CFkpotzvo0rCzNQuJUzE89oHD/0yFXVvlVOdS99Ebvo7oysoKP/VTP8UPf/QDVldXUcIq7W9+85vcvPke/86//Ze4ePGii0Yw4RrhfAKICKaEALQ3MmwVHCOtxa2DlRtgcctHrhImeRFO/ThWG645SCEpjQ6Ytl8FSCnpdDrcvHmT0WjEf/Af/Af22WjDdDrl7/29v+eqsvsoq+qea53wLEn0PpelthzgWJirv9QjS1OSxJJIGfhYaT+onLQsPgm68F5hIWz9v3jDyceJEEUSYo+J7RnvUAkI9EKcMHa83dgc81t/us33rg1JlGCWaw/vBrm7N+Wt9w/JUkVRaj5/dZmv/dQ6l6+CLnPKIqcsc4wpHTRSuKW0s4iaXeUaVst5cytrH+JnrVqFQVIaSNIWSdpCyAS0d5yJKIIhwnurU9rfFqwoiK8/t89d6n5RJ8kXWCVllfzTeOmPOzb9zzZsUpOmKVmW2TR8p7A8j/t0Oq0ZDvF5KyDJ1K8UnlH1m3+kts+jNsWQUtyfje6txmMFowSfSe3C0TdRe7zHzuUVd1HkGK0ZDAZ0OrZOqeewL8vS8d0set4nj4NHk/h88Vv4iAZWZIn7lXxZOtbD8mN45LFKE2MT0tDuZCAM29v3eOmll/DFv4mW875STDyEpRSsrg4YjYZMJlPyfIKSqcN4BUK5F1Ob+4C4sHuY89/8y/e4sTkmLy0eWpSLB642MHEFHL/91h7fv7bPP/v2Hl9/4SZtDuglE1bPLbO+lNBiitA+WcZyRiRJEiqzSyNQxlrXxqQYodAISsAom1Qjsy6tTNEv22ycHSHTFUq6YNogEkDhcshrOLgvxiuEQiMJcS6mnhZtoxK0c14at6103WYt6iRpoXXJbKaZzUrSVCNdVqeSkKWCdtsWJrPLWBWRej28X6Ep4gFeduH6VAjLYX50dMSPXn+d3Z0dNu/e5fSp01y8cJEzp8+iZILRNlFDz7x6lehiYu9YeMUrMC7YWgHKQKpBigSjE2alolApEkNiSqQpSKRBKShMgXKlf+d4FvDF6QQar6v9UD1unRsSZ2UIbRCltvHjrnOl8/MIIWi1WnbSd4lbRT5jf2+X/tISvW438LdXE1SzPx+H4l70zsVgj6FyDthxBq6gsSHEx+P+Thw0JBNFlnU4HB+Sz3Im43FYBX5cI/IxyfyoAYMQmk7HxtW+9eZ1wEZg2dWvjJ6YtxxNsBCkFKyvr3Dnzk1m+dhGZmQKIxTSCITyZZ+sAqmbKNVw/ebrO/yT37lFoQ0P4Qut7sLArDD86NoOP34n489dOOQXr4558cIZOu2ETEwpipJUtkBIinJKmtqJpShLEiORRiDteptSKEopKLUAlSKTNiIb0G716SczTl9IENkapWhhTIoQSaUUTB6Uo4UmrNJBRIRS4RFEalCboKRDT5uyNlmmqSVmmkwmzGYlUmqr4IUgVaBTQadj9/Hxs5Z/3MMvx8fDw0h9pRCtqaJzSekJn+wq7HA45O7tO3zn23/KZDLhV37lV/j0pz/N8sqyhd1KQ7vVYpR7IihNWUxspXUpkSJBG2w0j5QoIDWGTIORCqMTpoWiaGUklAihUbokkbbsXEGBJHVJSyI2qjF434NoKCgfjWIdz/5WhTEoVxrNaI0oLRbvwxatc95SPLTblp9dlxopBPlsxs7ODoN+n6VelzRRSOHfjwi/rz2WR4UZT1LW8funnVFhsO+6N9IEGsfH48NpXTckUoKSJKmi2++xdW+HnZ0dtjfvcXiwhzGG1cHH3CNPUOwDtKWEZCgfpbW22WROvJsnXmr6FWnMJxGWvG7JGq/+jLNp4qWvMYb/7vdu8/s/3GFWfPDlYKkNoPjd919kzC5/84oiVcKWEEN7AMO2QvjB6O/OWVAew3a4qhASpM1ylEmGSiRZq4sQCQaFcU7IGKyw9x5eQ+JFerR2mb8wXvie+uW0CMUDmhOwFHF8fGxN1QCFR5LK4q+ud/L5qsliNpsyHo0py5I0Tel2uzaMsygRoqCVZVgLz1adN0aH5bcdQ15rBjDD+Rxs2Kf2E6P7+PQmGeCRCmrxEAdUPSTcj2F6NIIQMx7tZ8JYqUN6VSfZ63kaXWMsLGQLaU+ZTiYoVfka5vaat9wfWR7gWFHtdZKTtrnFT2oeUgWb25DnOdPZlMnUpebfZ0n3sdI+QeJ47HkJFypRmODAkywvLwOwt7vHqdNr1tFVA4BrQzgo5v5gQF4UHB4dkaZdpLOwRSCzq1SVbYP99//9e7f55mNS2LEURvEnt9f4e9+a8de/mBNqo5iKU0SX3pZy1qEwIWZaG0OprXWXqYQkzVBZC6kSpDIupX1eTcaY2D5SwI8posaeylqwo9GIJLHFYisnmKDT6TBxxXX9/r7/vQX8qMk1J7WxOb6KomAymfBn/syfYXdnl/FoRLvTYTqd8p3vfCco8OXBgJeuXmV5ecNWc0c7GAsXwSDDsJPYiBrlY9+NweiSorBJLp5EykexqERZ2KkBa8f/DXPRnO4w0fMzuNqTWEjEGGNnBUygb7CY/S433r3OjRs3OBwe8s//+T9nY+MURVGwv78XCNrK0q2iSsCNyQ/sLH4kEYtuvybaVLVmZZKSFwXvvvsuR0dHJEnCuXPnOH/2FAJYan9c2PeRxb9MPhbb/+ZD6JJEMZ3N7AshJGtrtk7h1tYWGxtrFa7tvfN4iwZvamCAlZVVjIG33nqbfn+dJLXLfaH9a+HD9SqF9oc/3n0iCtvLrJT81hstLq8ZvvaqBelLtwS26feuaJUwLgNPU+rShv0ZGexylaSkrRaq3UHIFKkMKkkcZ7OzyDEBHqyHVFYWiecPeViJJ1kfwZMkCcPhkHa7HaoQ+eiTXq/H7u5uoNWteEyq8eDP5c/74LLIOqzzqFvrekZRFHz1q19lf2+P0dGI02fO8M//2T/jj//4jzk4OCBNUy6cP0+WpiyvbFi60mLmwh+tIaEQuPgZF+1jq7ILYfHisihDzLfNkHTHKUWikhByKRa2HuaprArBEuFvbVyMf7A4K0KzJEnY3z/g1q3b/Kt/9a+4du1d9vb2+faffDtkgrZaLV5++eWgtKXEkooZ60gu7+PAe3Li3+lKRwCONrZ6rqXWlh0zTRgfjfnJT37C0lKfQX+Zs2fOsr7aR5cGoT92RD6QzOMXaW6rRS0I0XhhReAemc1mBEOC+pCuIIVKfKRAWZY1CCUcEWMDwN5hzj/5nVtPTGF7mRaCv/sHbX7qwpi1HtF6T2LwdLQEnNNErTcB4rFRGUKpAJ0I7yGLVIE9tb+As+KNtxYrOXbHj2CEC3GcrMj/7mtpVr9V9/PB5OSGNq13D9+srKygpKLdarOxsRGYJff29siyLHCzh3Nw8kQSxw8ThTJW6ybCGj6cx//sjW5R7VZ/IMdHr2l0oIf5XGOC0gYbDjebzdjd3Q3JNVtbW4GDfmmpwnpPsqjjMM0nHcM930F9bGkSjDTf/1prxuMxHVfEud3u0O/3beGQvGiesCYfK+0TJF4Kx7O4twZt6JFysaaWSAmgKHNGo0N6va4rNkAN4ArKzimtJElJsxbttk3wKIrSOvpoDAj3/f/5r96j+ICk/A8qeQl/+3da/Je/mhOrVRxeapMkLL8H0mbZlVqTa83haEKrv0pbpdhlh2VItKx6JdoUjobU1Ccms2jQfzCJV055nlMURaDG9dulVC5ywZDnhXOM2eNj38PjVAZNyz226Hd3dxEI0izjrbfeci96B6UUV69epd/v8+716/z0n/k5slbqziHBOVG9S1AIz/YoLAeGqZSnLsvg8DVCIIxddQgRGQzBM3NC/+Kn3IqMyuJn7rgK7wr4taX0tRQRnXab9bV1PvWpT3HlylUm4ynDgwP6/b5jPUx55ZVXWF1bczVWqyt/0CIVH0icneFxemMqupaQYOP8JVmWsX94yNHhEWurq2ysb7DUH2CzPackSpLehzbgY6V9gvistVhp+8QLrTV5XpKkKcYUeFIigDyfsH+wT7vTsiFlwlZG8U6IUmvnvLQQQpq26LS7dHt9ikKTy5xWu+NitytHEMZw/e4RNzZHjxQl8ihSGsHb25K37yW8tB4IPO0LLYRLWLFcCjJxS26tmc5K7u0eMDhlEEmGDeuzhPYry6u8d3gXIQxpSojQEL6D7M1yDMv3DqBHVOBxBqunHpjNZmRZFtj/kiSN4oJHKFUVkvXP3dOCflD8NE7QsqWz7IRSlmVQ2nfu3GFjY4Nut8t3/vRPOTw8pN/v0+l0+OpXv8pkMuF/+O//e371L/079Ja6FkyTEl1qytI6kI20HadNiVKSxCcdOeVelCUeBNH4mHqJ+P+z9+fBliTZeR/4c/dY7vLW3CsrK2vpqq6u6kajsbAXENwAqElpCDVBcExDQRrIhmOcoYkSZMYhTTKJMqNAUWYjmUwLSdGGozFukgwUYENxBoSAVoMGghxiIxtNAL3Wkl1dWVW559vuEhHuPn/4Eh5x7335MitfZnZWnrJb+e69cWPx8Dh+zne+c45QpMyQnsMX/+56QjZaz8EqDwye9rrbf1O4aTweU5Yl3/d938doNCbLcqyxNLWrtVLXtU8ocvBReDwsdMYsHdvjl0XPJX6TLOxCChQu6/H22++ysz/h3FNPcfbsOTKVoxvDwcGUtXHJxnh06BGfKO2eHKX2RAfjTKZtil/V9fLiQ30JkIFUWZykuiUqt5at/+wffuka9SH86+OQWsP/57ckP/H7fUW9xIsOAcpYMRDrA5GuD561xKpz4KCRoPAWnWnaHfcwpTjmJHr9HiW1mFMLzVlIIlmY7wyT3U9Ztt9Qq11Kye3bt2MAcjBwcMnu7i57+/tdS9NDT50x9h6M6FAXEwzWJsrUz8mOl2PboGO8/8HlD7EWkezE/9ASIjIp20cQA/Si9S6UUuRZzokTJ9jePkFZDlBScbC/H+GSza0t5vM5B/v7dzm6D1dC+QKlFFXt6uhvDwYMBkOkkEzqaQwIS3n4BH+itFfIMoZAPwjlumgDuEa24SHI85zd3R3Onj1LkS+vsd0+OMLj35LNrS2uX7uFmc99JxY6ymtaaX7rzZ37gK/enRgr+LVLcDCHURlP20EhViOUBGForFusbu1MublnXbajULjEGRdQFUIiVfLgJzS0iEWy+OAnb+9awjFSzyng2tPpNGKlYbuiKKL1nTISlgWm74f0A5Hp53nu6m7MplOqqmJ7exshBAcHB0wmE4QQvttNTqhlHYwJKVRUqK2edtTGsiiYNcazGjR1U1MIgfFkEyGlS97R5u4A/WB0inb6Bvgw4tkhDiI8q8Ia39HF0Gjj655b9vf3ufTGm7zzzjtorSmKgitXr3Jie5str7wd+iIe+DNxJ2lNjBjliYlETaOjZ6Gbhtr6qqK5whpoagPD1e1rHn6prEdU+nW101fsYC6lgz2E8g+ye+AGg5JrV69Qe0szWCmxroNKg5jOopMy4+zZc1R1zcHkwLmsIXIv3G365pVprMn7oCWT8PVrXrFYE3GKRjfITGGlpNKG/dmMd69c581LbyNEiZAFkOHqd0s/VplTLsZdvxtXGRNLAGfpyVAbG/f3Ydb5CkkLM6VKO9T42N3dja51uOfD4ZDhcLjA5Q7KNcuyhe+OKmkdk3BeobZ2Wk89QHLD4RCtNXt7e0wmE86fP8+LL74IuA7zQrhmt+VwgLWuC43RTjlmKthkrcksrEFJwdpo6DJYjabRDfOqom402rraLlIqVBaUdguDpBl+y1ZQp/AhxM+NdXBZeEUfUgh3rtYVUXLXrqnreUxuunHjBj//8z/P3/7bf5uf+qmf4hd/8Rf5/Oc/z6VLlxiNRm3jbCkXKKQPh/7XCwLHyUvU366vbIXWmu3tbaq6YuqrNgocG2ZePWGP3LWkltWq7yPGafF1EFqDJFOuGavxE57IgGh7qXQSbawLHg2HQ4w1rneeNYiYZeXkrasTqvrhBFyqBl6/Bp+4ACEKHrLRkBJrnGtXN64m9N7+QQw+WoS3+JzbHfpGLoCjKS7Sn/v3QVJrNmWQ9O+za1rcbTeXlgJ9P9TDw86tr2gCFc5a1+lHa81oNGJjYwMIdZkFZ8+e8cW0AG9tR/aHt2ihBduEEOQ+DdzhsI6uaaxqbUNPgXQ87VXn7o8Y9t8JJrdzfOlCG5gjtAuYMSbyma21zGdzLl++zGuvvRYrL85mM/b396O3E0vI0s6Th6Gs3SUFL86fjLDt4CSepdHu+oI3p7WO27nF+vDzf2JpL5HUhYaWfqW1jvxZ93IrYph4MbCkHIXn4OCgU6jdb7z0eCFl2wWZBuwf7EFkOxuksHzj8u5C8acHJdoKvvyeiAHDUBTIKW+oa8N0WrG7d0BWDDh95imGozWsFdSVxooE1xaConQPYcgijbZgL3Zwvy43drjx+1dKxaSp+Xy+wPGVUkZrrv/d/VYKKRSX9ghNFwqlFBefvcje/j6XLl3i1q1b7O8f0DQN4/GY+Xzu8W/iXIqYvIsM+v06IyNTrtpfaIxc1zWN1iBcedwOfLWwuC6XoPCDR9R6p4uJVKnHEY+TjMds5uCgtbU1zp07x/PPP8+rr77KaDTCWlc8KvWi+ndkkZJ7XNLFMJcljLkv8BWKl59XCNyGQPdh8kRp9yQWI08oWKG3YF3XHBwcdFJrwbVQSrHILMvY3Njihq8rsHyitwHM1jWG06dPs7Gxxo3rVxCmQQmDFJpMOn72w5RbE4FUriCTFQaERSrXkWY2b9jZnfDulVsMhht86KVX2No+hbGS6XROYI8EbHs0GpHnGVU1Q4jFZqztxL57SKQvwZpJFURRFOR5jlKK/f39WKExKNAsy9ja2oq0wPsp/azKULo3ZMwFSZVSnud813d/N9evX+fXf/3X+da3vsX169eZzytOnjzF/v4++z4gKXDde7Q2rVdjra/9IciVpMxzch9wxcJkOqVqGldCFxH1fKhhHhUyi5ZzpPgJMIIWBhFhcZTxWtJgrvE9RwPWG15SSnZ2dplMJpw+fZqPfOQjfPKTn+Szn/0sJ06cwBjD7u6u84h89mc//vCglHaIIYCJBk0ydd25+HFU0i2Wor8B4OqYWJpGU8+rQ4/5RGkvkVWWdlgFg/WlddKf0LbV6aSUlGXJbDZlNpuSrsZdFZSwTvzDMRwOKYqC6WwC1hAeGYH1tUEenjQ6nKZNXhJjLY02zKuGg8kMlZdsbZ2gKIdYK2gaVxMj9dWzLI9NkR+E9K3jsFAK4Urq9nm+4R72GSZhX/eqEJb9LlXgMTDbUzpSSs6cOcPM9yPd29tjOp2htWv6W3lKHMRwQ/eabZvVGBRIyEp17c8cJGeFwEQPx7aoVQKzdIKNvgOO9fMiznRLZEykr8440j4zyWgghPAebc1wOOTEiROcO3eOZ599lsFg4KCT+XyxkcQdYM3jkfRY3aBv5/pE8J5apb7sPK0v0XqYPMG0l0j/oQypxWVZRmytdZu97WHbmxEYBsa4lbOqavIsRwRKVHwSWgkPVJ4piiKjLHN0M8coyJTCWlAPeYnNlMXiqt+J0PkGy97ehL29KdN5w8bmKYbDtcgcaRoDdZNcoRuxoihiwCl81qeLBQz8flADVgWpUk8qve8h4Bgw5TAH3m+W3bLfp8k06fetIWA9PGd46vx5Xn31VebzORcuPO3q3QgoysK1iKsqclk45Sx7CTLCF/uyLltXyqC0HQRijHVVG4Xzhkg5yOFcj3rpIpw3bgEx1uHj0t9Xi+816uCTtASu84Tcoh68B601s9ms4wm3mZz+kA8EDrmT9K3ooB9c3RVrFVmmyHxPSFcOI/MLqcJo7Y2c1fJEafckpfOF91pryrJkOHSppgC7u7vs7u72GA3uhimfVWfMHvN5xcH+hM3N9YgF9x+EEMCREkaDgvl4wMbakGa+hxY1+dBhq1vjjCu3D3edjlO2R67cqTYVKhsCEt1Y3nnvOvsHU2aV5rnnP8Ro4ywyG2CA6XSODGtbUPQGRqOR70qtvXJyTBmnGI1fBA2Bx25MqFx3d5JixX3XPLji7jxcBmFg56SLdMieDLWe36/0reoUFknZI6n3ZozL0Pz4d36Cj7zyKkLA9uY2a2tjAMZrY6ZTF0MpMkWhHEtHWEmode3qnzuYROIYQUqGutuC2hgm1Zy1QYkQBouMJVlTFZRcCQvYn2itFwu+25GIAc9QBx0czVX5TjppckyWZRR5yS11i/fee4+1tTWqqor1VkIyUnz2bMv86Y/ng5QQgAxeiv8UcAwZbQXWz6vGNysONV4G5QC0YVbXzKr5ocd5orTvIKmVFWo9QNsSyC6bt0KilPttsLTbCR7+7fma/q8skxR5RllkztJuJIISaxpefnrAN96ZPJRgpBKWj5536erWwzaux6Rlf3/C3mSONoL1jZPkwzUcGRsabcA2RJDT/zLP80idA9xDTWqFeoXlK9K9X0npfu5wyyztriUcgpVRQSwJmh1VlvH+g/St65ZuGs7Vbae15ty5c4xGQ5d6nxhkRVEwn09b70UpZMq9C+dBYFzQwiMenotNZUW4T4vMjCVnT9+6FPQUl7VttcDOuaT4vomfSinJs9bSHo1Gjqs+m8XEpw7LBjrj9yhJXOysb+tmLSpzFRTDAq2Uy5Rs5pWPRTyh/N2zpA94UDJBQsF2Y42zRXxaOoRJJCmKEiEEe3u7nDy56RqqtneRtkJ22hfEkCkYjwfMb+xTV5amyjDacPFURplLptWDp/0VGXzodMuhruqaeT1nZ3+GVAWjUYHMBkhVAK6XI0IgpPIwiUbJLFph4WEN/PbQa8ZxtcNRkwfRDer7uoZF7m6rXuq6pqoqhsNyIWCpte4EKu9V7qS4V/0mlaqqkFI44yH5SirXsLcNalqMtEgblH6YbW2t7CxTqEZD1ThlYSy1brnUDsLwlvahl92L0ohEbdvOabbmise8A/beh42UlAwGA86ePRutZqUUJ0+eZHNzk4EvX5oqxfezqN4PcddqWbbCheWvahoGZQnSNXvIVIbWmlu3btHM5lTzOdI+gUfuSVI3NWQvDYfD+L0rRj9kb/cAkecoqaJrbY3LkFzf2GAyOeDty2/zzMWnyETbySZadUnKqrAabE2ZC86e3ua1y6/RzAWSCpnlXDxZOsv1IUhj4MNnXYBEyozbexNu3t7n7Xevs7H9FFvrJ1jfPEmWb2BEgbbKKZHMtY2aTueMVI7KAosAlJI+489Zdy2enMDYSSTnKHbfMllmhYV+kdbzx0OlvOHwdOfhX19fjxSzUMXx/ciywFmaVJOWphUiNCdujYfd3V2m05zRaBzpeljIs4zCF1Vqak0jNJlv+2Zjc+TWiM6kYFSW1NqyN5lhrKCqG6bzylXmswJrQArVVupbKb0gb2KCyIjXgxUSFb6wFgVgA8Ut3H+3rzx36ezf9V3fxde//vUIV73yyiusra0xHo/dPTMtrzuMb2qJH78CT/dvWLb2Ou9JIQ1MJgdsb21jhIrXdPvWbS5dukQ1mVIWJadPbB16xCfskUMkfcgDRSyIa3uf+wp3toeZAsLdECEEt3duxwYBnSnUcRfDG02mBBvrI3QzpZ7tU8/20c2MQdbwnc8N3q/BedcihOWTzzWMYwq7YDav2Nvf5+q1G6isZG19ixMnz6Iy1/MxtAiTUiGkoqqbBWtSCOmDrKkFnLi9vQfg7hHtRbHJIpC+qqpmNpsvWOODwSCmkh+n673M2oTWIwkym82YTCbuXPzpW9wCqDLl6kp7SzsYBvG8gyLzrzzP3Pj742ujHe0vsEdSS/suxr4P/oWQpi/O614+ELlwjv57pRSj0YgLFy6Q53nEus+dO8eJEycYjUYEPvrC7x+apR1XpPTDeE6BFTMcDlnzsbHMkxquX7vOtWvXXI/IJ/W0jyb9lTm1bu78sIagkZ8soq1rLJWiKAom0ylSSYoib6d/2DyWKzPOKrIaazSjQUFTVVhTc3vX8s7b2lnrDxi2yxX88Hc0ruKaMRxMa2bzCotkY3ObcjBEqRxrJcZKLC5l3VlPEmEdK8H4aH+wvKR0D2LTzFllP/ShkuOQtGTB4sIiOpUB3y975G4kXchay9sdez6fMxiUKF/zxnrDoShK5tOZw5DTfWGRQnagEscwEWRSoAPDwbhiX9IbHliIdaCWxBz7Ejwhiwt4WmN8uVef7BOgLoMLUhqDNQaluqoo7Fp6mERKGUsOjEYjRqMRgUb3MFkjfXJTWOwikyxsR6tfjNHQNJBlTCZT5vM5eZEzLLZYX19nlHj0y+SJ0r6D9B/URS5oaACraRWPQBuNkFCWOZvbm1y5coWmOcHpU6dxyST+sbEWQj1qUYOtwdTYZsq505t8+dI+n/9NwZffy1FSu07rx6jA+qKk5cXThhdOG+rGcDCd89Y7V5jMDCof8sKLr7CxdY6iXKPW0qVCywwhHa4tZAZoDiYT1jc2yHM3oQXOpR+Nhty6PfHZYm0lqQiEOBpJJzvwXiSl1bn3jjsupYNoQqZrXdfRsoPWoyrLslOj5H5KWp87/duds41ccRdXUWhtuHXrBqdPn0aVbbp9nudsbG7wzu4+OnPzUUqX7IIlWuHBSs+kdIk2hbt+bQy2qZlVmjKTHaUda46kOHpyDa0Ct658gwOrY2NeayymaWhCB3aAWmMal++Q59L3rWy9AiFcRcjTp09T1zVvvvkm+/v7nD5zmqeffpozZ84iVcve6sMkDyoo2TmW1xe+Gm7X6xCOaDCZzzFCU4xy3nvvXQ4OJmxubnLh/HnGwwEb4ydK+31L+sD306Hd38a/PCaLiAXns9wppp3dHYbDQbI/2jiYdbCIawqpwTbcuDXlv/pf4bV3h9Ta2UYPo5tSLuEnfsC5zNpY5lXNjZs7NCZjc3uNM2fPo/JNLAXaeCs7Wtq4sqzWUlV1dNmDFaKUpCzz1hoTrZLuiHWB3vv5EHbPwym+wCJJlXtwy/M8X5qE8yAkUCJDA2mtDQcHB7G9HTjbVilF4emhoUZ5KiKYhV5pS5yVnStXrtV6K7vRmkK1SpskmCgSiztM304RKQux2Lu1zpIGrLaYusHUTeSlWK2x2lnaEZ/32HZqaa+vr7Ozs8PVq1d59913mVdzhqMRZ8+dQ1r5UO5JK91B7qN86T1wnpKkaSoaa8iHltu3d6jrmrW1NZ46/xTDsqC4g03w2Cvto2Jd/ZV5WZZa/3P3gBOt5r5OCRZNoPeEhJxMOZfWWZNOUVursU2F1jP+t9+4wn//c1dotEWbh+f6lZnl//S7NSfGMPPZjtNZRV4MyOWAcjDylrRMrP9uynMIIDorKHYqdt+IUNK2J8EX7/ue70P6CSzpOaSeVGiKkCbSBMW9ar+pLJtj9ysoFs5HypamaIz21L5WfbhywIK6bsiL5ecda2F7Bo/jw7vz1Nq4xtIpRKhN3D7cQp3UjUmhEqtNJJDEBJrgRAlX70UiyISMSTT+l4T4kBSC2mj29/fZ3d1lNpuR5znr6+uMx2uRFPCgIatVEo/fxlK9tE+D7VNwLN5Dp2XDLMOhevLYK+33KyFjqa+4Q/EoKV2CgJSyTTP3rpF24XcGwwHXr19jOpszm81Zi50pNAgNpgI9o6n2+Os/903+4Zf2mR+eyXrsUmaWH3xZ8/tf0jTacmvngHevXGM6b9g+dZ7BaIvBcAOhhhiRY6xCI5Ey88aWHwspwMrYRdsYgxIyQh5F4S1tX7yphQdaQmQ7jcM9eP+K3KUTO+tea4tSLqlnZ2eHwWDQUdJ5njMej2MyVZodeTdyVOW9aBiIyBcP+HpVVcxnczKlKIvSN5F1S+TW1hbz2Yy9g3021Xo0LKzViHTRtJZMOBbJrenM0QOFYDqfk2eSHLc/3WgMrkiaTBbSat/V8w6KKsAn0rZlAnLf2CCTinyoyKRECelr0Rs2imEM9LoxCkF/13z59ddf580332Q4HHLx4kVOnznN2XPnOH/+fBzT/iKcesTHLcJfdLy3/kORrGLWezcdhgsu/6CqKvK84OzZsy5m1BgycXhi0BOlfYiECbCsLKdLnGl8goKzDHTiEwlcoEVIPA2rpq4q6ti0M6gjA9SYZs5//3PfemQU9g+9rPnXv2eGthnawv5kxtXrt6k1PP38CTa2zpDlY6woMSgMCutrZofuNdCOYZvAYghoqMOTszipu1iuiHze45KgzPD8cK3h4OBgIblBKcVgMIjK9H7BNMuUd/+z1NoP/SwDF7uuK5q6oMiLqLABl0E4nzOdTllfH/s52iqPuPhZd93B2pUGjBDM65pGlyjfJsxqjbaaaj4nE+1iVSdp5alCyqRCSAsKMpVTSkdHHBYlZV74LEhPebOSzIrILQfn1ahMUTc17777LpcvX+bMmTOMx2POnDvLmTNnOHnyZFxEwzg9KtIaGLH5WoRPBcS5LYCmaSjLAVtbW1TzOVobbPZEaS+Vo1g9KY922XfLApT+204UwkJsseUyKTecxWMdU8Toms//8yt8/jd3qR8Cbh1ESUEuDf/WZzQ/+LKmqh0Vbl5r6saSFwMUCiFzX1skwCJt2dVVEqLmqQUUftF/8Ls/pA3Y3lfK3yJ0lvLy+81720Sg96O0wzV0r6U7B1dfZ7qdlBLd6KVlPIXHvqUUvsFGd462QJYf/7BAhoBeXERdkJbMF9eylkwqQkru0FNa23vnoSQhkUqipHLc8cxRC5VUKOEtbSEW+EIpGhbuw3w+Z3Nzk+3tbUbjcQe66ozsA1ba4XAirn+ppR23ikZH2D7oEou7n0Xurufg4ICmqpxnU2WwvbHy2B9IpX3UGxwe0GV1DIwxGK3JMvcga61d9h+AMFirfbKNm3ybm1voRvPuu+9y9sxppDBgajBTvvz6e/zVn33nfsG3dy1CWAoFLz17kj/9u97hxJrAChdUvHbjFjdu79DYjFNnn6EcrqPKdVBDjCxotEIo5WpcWJHOYr/vEDV3nWICEyPQEoSndIWH1J8RoYi+8BFbay2uKcTRryu9z/1iT2np3fgg+fs4m83IsiyeV8C0B4MB8/mcuq5jLe67Gmd3lMXPO1G8wGyhpxCdxW+NwRrLoBxwcHCAMSY2RXA0O8hUFlumad345sQqWfiEV8IGJQSZlUjP9tDW0tSNq8MiMza3trFFA8oFFHOVxVtw4fRTidFuY/EnkZx7Jh13XElJ7v8OMSBhhacFhmqConN/qmrO7du3+f7v/37Onz/P2XPnsNaxaILntkxCk+QHgXNbHxuI71mcotZ6i1sIhoMBtw/mHvcXnDp1itl8zmuvvQbGUFc1hYLvuPjplcf8QCrtVNIHeZlrCqstbW0MhczQjQvcqBhUczdJ+XZZRlvW1ta5fesWN27e8Ps1WF3xv/362/y3f/9bD1xhK2EpMpfp+Lsuav53H6v5+O//fqZf/imiehGS27v7vPPeNda2TnPmwhk2tk4z0wqrSqzI0IASyj1whwRNlZIxVTwVKUQsytRlbqT35O6ZI8sChKmVnP7dNvI1Xlm4xqshOBS2KcsyYvP94Ndyjys5/uIZrjjv8F1X6QTjofHHLovC1WpfIlIpX6HQKTeL6gbIAuznA4IO3vNz0uKP4bIx19fWEXmNyFwiSJ7nkelxZvuE5yW33X3COIardsq56491Lt2SQGNtEo+Dfxr29/f56Ec/yoVnniHLM27fvh0x6z69L/WUHkbBqGXSFpNzVndRlt6jcOe7ubVJff0Gb731FkoIJgcTFAb4ACvtVYp4lSxzn5fV7W1fuIcg/Z23ItNFWAQrRAjqqkJklv/Xz77O//pr7z5whS2w/IEPa77nWc2HT1vGZdrJ27nHWhumswpjIMtKB41kBdJXjguMEYfY+QdOJK539BNDUkirFPsSgmyOWZNFbNZa26GY9eWoinyVxbXs83CegZOdHqNfrGgZa6FDHljiMov0vIOxECzs/u/pQgZuWxFxjWBMNE2DVGnTYvedyhRNXbXHWwExOYjEh8b8vA6t5JRSCGkQwhklCkEo4aV8/MJdgYNTpBAEuifgWSXdTMjusVPF60YhPFuhxkrazUcpFRf/cK+Wz4Pjt7JXHcMNcxjzZZsvdmSy1qKyjLIsyD/olL/3I2l1v2XfRT4sEqHSx82R643RCJyLqIVxwZjBgKvvvcvP/sYN/uFvXn84GLaAaQPfc9GzOTq0O8l8Pmdnb8rlKzewMufMUxdZ2z5DMdrEqgEChRYZFhm7bgOuO7vx4dgEKQHXzaeq5mSZ71qfNPAdjUY0TcNkMiEb5XFx01p3LTNhYWG63+FSEwu4E70Xso38h85DFsqyjK2stre3436stYxGo6S6Y7AJLZHfFlWuXTjNo6Tgh9BVOMfAbnG7d2MmlYhbDoYlUkhu3rrBydMnkcr3dFTOohubNd67cpmizCh61L9Y6wSBAsaDksZaZrMKpCugNZ9XrA+GgEAKQyaVc+v9OWbGn7UAbS3C2EXOdvJehr8T5dVRX9aPm7Q0Tc1gMOS7v/u7qeuavb091jfWGQwG3L59m/fee4+XX34Zay11XXe8ZWdktSP6YKR/rDaL1RiDUA7PN7TPRdM01JXzMMtywKkT25RFfsfkmie1Rw6R8JCHDLnUwopKW4PwdYHbqIMrXRqsANclxJWbHJQlX/iNb/GLX7zG/CE16bVW8GuXFNPaAholhT9/QAjmVcPt3X2+dfk9jM04cfoptk8/RT5Yx6oSsgGGzDFGaNtTgeu+bb11nSrtYCHVdeXPoXUch8Mhrkt1g0B2A5P9AO9dyjJuNhBZP8on/1jf+sp1HJoxnU7j74OEOiTx/G3CPbfJghL/7r96coin4Kzl1hIXfvVSSpJlCgGUZYFUgp2d247va5M5WxQMRiNm8xmNbpLDJ14MjpGphGVQFORKRY+xrhvmdU1RlpRZQSEzCpGhtEX6Iv3KQGYhs66uiLQgjEuvUta9pH8p152uk10Z4ZKFMbGeVVHy0Y9+lLpp2D/Yj59NJhPefvttiqKIUEnn3sqlez5GEckLgsJOvYb0fobtjDHUTY21ljwv2Nra5sKFC7z44guHHu2J0l4hqYW2Km3ZJc90b0Tybe8T5+7tzyw/+8/3qZoHjIn0JFfw9attPbagQquqogqBKJWj8oIsK5AqJ7JFRGiARrz+ZWppFeZr7eJDdsegke3+0ad6HQaVLDA++syDnnUbfmNM21cy4K6Ot6/a4FK6P7tsFLr7De/Tf9NtHN+6/VsKgUg+i6+EIWL9otNlw7B0sQpD2P80vQcCB5G5fpOiq5ISyzk4PgH2EOnfyW8CUrDss/6YhHFMaaCT6YS9vT12dnYIVNv5fN4Z1+61hnu4eOn3U/owlkjgwVUbd0BUDz9lmQvOZ1l2pBIJT+CRJRKwygCPpNX9wvcxiCUVIDqKSAjQuvGZjwLto9l5Jvl7v3rbJ+E8SEtgUeY1vHZV8PGnHH4ZcmEuvfUOVSOw5Fx49iW2Tp6lGG2CKjEix6KwQvrtnfIwNuFV+5lre2ohuPrWWirPIgkBLamUqwYoehM2Gi7JjD/isPUDj66dpcdNYzQ/7NTiquYK36ncsTT2dndZX193qfge0hkMSjY3Nri9s0OeeeZMH9de8j59oAXCmbhelJKLSjl4CMn1pwoqzM+6dpXjZnPXZNplQ4YD2ej5IAVoEfFWEeINfhgGWU6hMpQAKxwnfIYrXZAFKxnjSqsGTDu6V+5v6xGCqPp7C61I3rlLMp1YkBQSK93MaZqG2XzO7u4ur73xOlVVUZYlP/qjP8r+/j7vvfdexLgDkyel4bYB3eMVS4KOda6wa3WH04mxMOMWn43NDcZra2xtbTIaDKlrzc2bt3lu+/TKYz5R2j1JH/QAb6QucTo5nBWucFH3LpindeOwcGup6ppMZrx7Y87bNyrMkRvtHZ9oK/iddyV/9DudAgsZjN+6/B4qH7G1fZbzF56nGG0giyFG5WgyTGgZ5p8HKSShM01QTpE7kFitKUxRVVUn4zCwDqRYtLg7ejoG8MLboz2UMaCcJP600It74qQM9bpdrz5rLfv7e4zXxmQ+0GaBQVkgNta5fv0aUhSRpbAsKBnGIE2mEP5/UrSNBUJNkaCE+q3Rwn5SZoZjhjTx3OfzGZlSrm1VMnrGmq7nng6qd9sFUOSZ684uBAavNI1rjJB5KxptkWm7sEQp2xDEDIt359YsYss2xjVS78FBd9oYdKOZz+fs7e3x9a9/nZs3b1LXNT/8wz/MZDLh2rVrcd70SQJ3ctruq6w8VnvN7Vxr9YbxdcS3Tp4ky3KsscynFXu7uxzs7sGHnijtu5Zlruvy7dxEAxaCTaJjb1q+8Js3qPXDhUVSuTVxlq3WhroJE0wghEKqjCz3bBHpsGv3Pb4oflAmPSBIiN51J1/5EVrGIHEPbdsAoNVwQe7eOxHhhA+VZR6Bu77YvzJu2kIk6ULU/i4e1X/m3veVdvydaI+ZHjtd4PpQSvtvCqm4lPC2OXHwdPoLyZLxs8E5aruzGz9sHYZUYrl2AEEb7swShd2xYxIPrLsSL5xXANysNTE7NQQc5/N5rMj4UCVFc/wHInl3uCT4lHBPS+iO5CilT7qx37WEiR6US5/zmWJnrU5IrAnrMses/30uBdNZxb94c//Ycba7kUYLRFZw88Yue/sztoATp89TjjYYr51A5kOsrytihKQxoLE4REjEaSqVdB1ErEHJzEFFiTcSJPPpuZPJhPF47DW+m7R5XjAej2i0ds3KhEwUoe0ojSArMdueCAI0Epo2B23Z/jawKTIpyIsM3bgkm6auXUKID1iG44KbF4FZ1DI9uso1/Vv2fh8s7Ux5nnvy6u+jsy9rI+SWKUWZFzRVTSXnVPmconBJSMZaysHAsUqs7VTSi5CecEWdhDVkmWQwKNmrnNKwwGw+J1euqbK11mUzds7IRsUfP4n3SvSHeblKs05pxZ6W/hyNcV7Z8889z9bWFtevX+cb3/gGb7/9NtPptHPvbW9s2+s87geu78a0i2ob6nADJGWohd9uP5vOmE5nvPfuFeaTGWBZH5UcJk+U9iESlE5Q2qkyX3DDes+XkhIbKH9KcOndA5Tioaap9yVTApkV3NrZ59qN27wCnDj9FKO1bbJyDZENMDLHMURcYofBOOtbtLaFkhLtH7xMSY9T2oUHSSmn0A8ODjh56hSt8rDkRcFoPObWrVtYFE6PJUCwtx1FBBHvIDa1ZkDIVjG3lmz7sEe4SwlfD8Uw2Z/RNI2rY63UwvWEkq3BMu9Y0cnDG0ZqAaXw+8ukcgq8p7RDELxPV7SArmrHnpCKsijY29ujQlLlc/LctXizxjIYDmLLMiGkXykEeJVZ54MAAQAASURBVExcEGo/G3IlGZYlu/M64tKz+ZzRIAPlioA5CCUOa4wRCBnOrRffaRHu9jfJtyGmYIyNAdc4Pj7R6bnnn+PE7gmUUrz22mtcvnyZ2WzWgSn74/7gRKxcF/o4u5QSodufAcxmc67fuMFXv/o1qtmMjbV18gtPHXrED4zSXr4SH00O/83RVvJvXp1R1Y+QmQ1sj1z37UYbtIdtsrxAZYXrRCPaVlNBB8aGvWE8D4Et+pZQUJSBE51KwHOjO05vt8J2rJRV8IE/WAzgpRDFKunDEylO2k/e6MMT3WJiXYij8xvrxyoZLpFeSw8qWThHfz0ECCLZd5qGHwsviTZL0cHNdtVtIgBcUohIgQwbG23iuIfh7+/mcODKxutsN7Q95d27VhEHIxIBBoMBw+HQNWvQeqFUbjemkHhoxyiruffh8yXHj96ju06DS2Rz1+VKBdyJQfKBUdpHlTsxAa7cnPDz//QN/sU3rvLWlQNq/VacMEUuePGZyzxzAj758jpntks31XXDa+/MYvDuURApLC+cnPP6m+8w1zDacAX183INmQ1AFSBzXOajxFrhM+LwHUY8P1nIiP1KIZcq6vaYEoOhrhoarcm9dYV1tT2KoqDRBiltfNQ79MC7WW+TsRY9hdinCabBv7B4lKXryh4SbfKi6Pi8gW7X3/cypR3PfQUtX0hXPCnuKz35FlB2b00L8fi1ACFdTQtrYT6bgVCgBBYdzWHrWSQxezWEDfxLgi/zGlg9bnGezSvMKAepwEisaLvLdOAv4XyhLly4QhKzu01z7zNlHA/97NmzNL7F2Ec/+lG+8pWvcOLECbZPuBR6Yx+hh+oQCTEHITJc5qgrT5ypjDzPKMqSM08/zdbGJmdOnzh0X0+Udk/6D3aQf/jP3uZ//Pmvcu32bPkPrWU6t/zWa9f5LeAf/Np1ttcyPvfpU3zqpQG3Dx5y4KQnZQanhhO+9tpbnDl3ga0TpwAohhuIrISsBJlhrVPYLklI+QmX1MtWLfYvRdd+6rNGpFQIbagqX1vbGpRHSLPM9SFrGo1SWZyYIUkhKsHECuxbsy2nmvjwt5Gx9jz6LnVfabu6HQ762N/fj91TvNGOEC7JxbE+Fhf5PsTRSt+9cP/099Huq7doxev3cQRv9UopGAyHVPOKyWRGpS0yEwjlFLrFNUuwMiMsCcYmtRmtCzPnSjIQhVOk3kKfzGZoO0IoiTUuAzYoyr4REoO2YfFZok+X6XQhhO/gHpYVp9DKcsDTTz/NG5feZH19nZdffpmvfvWrnDx5knPnzvlFoluD5FGUwBYRxiBzv9hLCVKgMkWeF5SDkhc+9CE2NzbYetJurCurqFmrtnvr6pQ//zf/Vyazu1e6t/Yb/sb/9h4/9Y8EZfZoTajGwFPrM15/R4NQqMwH1KTCP+3RKnPi/l4wIIMCRLQ86DuIc+O7VpkQi26ht+eislzmhy/cy7s0vFIlm9a4AGLd6vBK8eVVFvXS90cJlorVQdUODr7qGgKm7KtPIiWduB5hTi/ZcQiU4ZN5km0CPGTBs4Y6y/LCX11kq7dwdYYm5RwFTnr36qQUqKJwrBZfTsJaS5ZlsXPN4XIYCHOf5Ki7t+mmnSuPc28wGDAoS7JeXkhfPnBK+04SHh6tNT/zj6/yz17bf9/7nFaWafXouHECy0dOT2iqhtPnLrK+fZZytAmATTIfjbWY6FLj3GyPioQWV+7vlkkSpqYQEmuXRF2Fsy6qqqYoat8ViDiP8zxvKXXhoW/BEha09qprDHBFUP1LmB/Owhaxk4qQgrTYUcCEtW44ONh38E3TUFXzO2ZxRgWZwjSdEVqNiR7GiEmPmZaXtcada1mWGKm8wnZsDxGqTVqLEsIHJH1QNngy4SUEeV44fNW4BWre1Mxr13XGCLc4A1jZzosA1XSQHQ5fcNrvbRwNFzvx5VqFZDwac/rMGbTWfOMb32B/390HQvyA5V7NI2d1+9MxvlyCC74aGt1grSHLMspBjlTCU/5WK+4PpNK+k7VtjOE//7uv8c6N+QM8qwcnmbS8tPYOt/cEzz73Emsb2+QDZ7kYlQM+k9NGzob7oXUPkyXQIJ3bJzuKzjil0EFM/Xc4lz/LMl9bu3AWU4ILByzZehik82ALu/jkx+N2v2uDWe63ablOIVw52CxTrs2Y7xguhARvXacR/6Zp2NvbZTQauzZf89kdlTYe3122hej9sWw/q1z+YN2nFROVUhhc4a/BYEBtLUZYjDSOruihB1cjO1XaEtAQ09UtSkBZFMzmFY1uMNYyq2qKXDIeDjBSIIwPfHp4BiGwwhJLGySXtwwcsp2XGycZs1VNTKGXKmN9fZ3z58/zzjvv8Nu//dvs7u6ytr5OCFKmsQQbsHsrHlBp1u69aWfs6m2j52Kt84iEKxmR5znDQeFLGGsOU9of6NojKb4ZxBjD//2nvvHYKmwpLOfWDtjM9jFGUA5GZEXpaouAfwC7FUmSoH9HnKV2mO3b/8ZbVEmZ1n7gSqo2iWeZnbZgrS1gxl1GSf8M+nBIaCLbpRd2t7fWpRwbo9G6iWVbl+03nkfA1f1LJBq8v5ylc3CZlb2Ku93Z1iEcSOXiDkJ0eeNLdtp9n1B2+guSsQZtTDsvRLsPK/CVHv3S6udP50KXyFKYp7eFEPjaHBnGmNj0IbBkAmyTWtrd4TtO77a9uHj/AqYfn5rFX8RvbXrfw5x1NWSeJNfcpfyPX/gWl6+vCDY+BpJJyw9/+C0G5RnK4QnKwTrSNzQAHFOEEFRaopjcX0uVeCsrYAwbmh64ZgJNU3e2tAiGwxEHBwfUdUVeqM63h8EGwdIO+LeIbrwLnKZUvg5Vz7TKsq/irbUURY7WrulvXdcRMimKYsGa68MfS06yOy7xepYp6uVQeGqBd5k5XokIiYjX5D63xlmvWVC6yQKRFndy2LGrXzKvGqytXVd03VA1ykEscYYEL8zPBtFVmB1se5XiXnKNcY756xFC8NWvfJUrV68gpeTChQtkeca7777L9evXUb7xdijP6sYt7Vm5/NjHKf3b3EqaQBWBRJrGdZ1/8823fJd6wXc88/LK/X9glPZhgZ4gl64c8CtfufWAzujBSy41nzn9dTaGhu0zFxitn2U4XqfBtmw0oXwBKfc0x7lniWnO4NzrgDVbD2aGkqxxV9ECaj+TUjIoSnZ3dymKKsTAYqBrvL7GZDqhamqGuC7jWIglUFdqABvxF+GVT6g9HTqYp0rbGdYO7ml34fnDiQdWlgVaaw+LzCO7ZDwedw6/aFQuS+VP/ZYWPOgWG4tmbHf/ou3K0uW0u33E5gNCIkTLgxdCoK1BGJC59HCE9Ri3QWIcG4iwsCkGg5LJdI4raSCpmoZpIzDComkVsqGnlBM8xCZ/x0nRe/4SBLqzGLUtyZz8+m/8OgcHB5w/f57nnnuOty9f5s033+SFF17gzKnTjMfj2BRB+Pm5NAHuQcgyFZMsIO05tg0rmqbh9u3b/M6XvwIG1oclfPqJ0j6S/JW/98bDPoVjk0IZPnriCheHlxDiIuVgyGAwRqoCYZo4sdrS/omlkppN8QFsP+9jl2GDpQ+MaAsftYkr7R6yLHNut0kOKmyiIZIjLDHtIiTQgxRSPDvWqV5YxBet+bTOiPXF7MP+omKADr0tXM1x6YsF48NDScLfnwXr1qbWNdjkZN1PW5hLCDy1s83iNL5JhKVfTcdJXHShV+kvSPgwnSndAYtxpnDPEovh9q1bzL1SXltbQynFdDplOp2iTR+qaiGLe5Ij/cyPZXrcYH3E78WyK20fIUH7zHniw/7eAViL6tM8e/JEaXv5la/cZFY9nKYExy2ZtHz3+X0+c2EHbS4y3D6LKEZoz9vVSEJ7x7b4Va/Dugi2tNOe1gcGg5V9JInHMPFf3dQo6TjaUuCbwHr30RhfFlX0Xqv3LYTwncBD8ktog5VsGy0wjyOmCsN2QaEAG+Qqg8LtSym1sN3yE1p4XP049r/t76ldbPpYd58pEd9Hd9sglEAZb81pixSuR2Rd16hMIIVq1YoAg3CNLCxIYymAUsBcuHopBmisoDHe2woLpBU+BX6RridsAqH5sW4XC4swoGQbVAsB7zASUkhXQVM4a39tvMbFi89yYvsE5586x3R6wO3bNzl5YpvNjXWSZeOBWdhWhMQgN5aBiWNEAv0I15ov8KusNa5JhABtDEpI1sdjLl54BikVUsLm2uCwwz5R2kH+wa+897BP4RjETagffO49nh7fJF87x6mTJxhvriPVBo3M0bbt9eh+EbjKPVvRK23dVzmHPhzL7G/rK7e5JgNVNSfPM6dscYHITEoUIhYRchxeSWv7JftLXE+Be0ayTDlmiLfSI/5rvXIw1i8G7odaa1eTGQht0FJrVQqXSp1lWYu3GkuyyQrpfZsGETvfL3VJllxj+1laKTFauIRaOU7RCWOpa5esJKQrTjRWImLSwbzWQtB4a1waw1AIhgJqAY3V1FZQW0ml3aIafi+sjEpbE+ihXhFbr4K9h2RlosgcsE6m3ZhY4ax5tzy7uaiUQsksjv/21gk+9urHGAwKyjJnOBzwm1/6ImfPnMacOQXCGxM29d6OQ3O3HqARAmVDpx6H+Bu/9hsPV1kLCuk7zwNaI4V1jZSNJhOS7Y0tPvbKKxghKUrFxnixvWEq98we+Wf/7J/xoz/6o3zuc5/jx3/8x7l8+fLKbff39/mhH/ohfvVXfxVwE+4//U//U/7QH/pDfO5zn+N//p//57jtf/Af/Ad89rOf5XOf+xyf+9zn+PznP3+vp7gg/YSI8PfNvZpb+/V9O86jIgL4t7/vGi+sX2cyaxDZgOHaFvlgDKrACuUsLI+Ftr8SLQOBwEIgeQaS6FXyEp2NWgsxWovhG49PpywAEsUUEjwCT/iOVjbdr6Vv7xZqdMvg6oujPcZxW3/9oSZH5rndoTWbH6nEPmz30P/P6arwbwdd6kgyFHch7fiGuEI496A8hZC+E4/x3kfcOr7A6fFMQCYESoTl2VnirgxJO9CLS473XMLY9GASm2wsWN5uLCxmgi6drygKNjc3GQ6HrK2tsbW5yWw2pWlqWiguWNqBv36349iVJVM8ufr0JqWj2F50gJ66N9q3HsNb3QLKImdzc4vNjU22trbY3No49Lzu2dL+s3/2z/JX/+pf5SMf+Qg//dM/zV/8i3+R/+6/+++WbvuTP/mT7O7uxvc/8zM/w+uvv87f//t/H2MMP/ZjP8Yrr7zCxz72MX77t3+bv/N3/g5nzpy511O7a/m1r9x8YMd6UJJJy49+7CYnigN2mwGnx+uMRmtI4fppPywJUETAmOfzOWtrax0rMtQhSTmt6W+XS2v922jOHfGpTbXPPUKhR5Pj23lMIU8k8LnD+LkaMf2RaW3+WIMb11ItzzLm8xqrLcY3JShFERct4+EkQoW+RGF3I9L9EwNXkrf9sqVcuj0EOqbjcDsM+5vf/CZ5kXH16nu8ffltTp08xWg0jotTxzF8APDIkcTapdMw3KumaRBCkecZs6pmVk2Y7BsuPr+6CcI9Pb1VVfETP/ETfOQjHwHg5Zdf5t1331267T/4B/+A8XjMyy+30dAvf/nL/OAP/iBFUTAYDPjUpz7FF77wBSaTCe+88w5//s//eX74h3+Y/+a/+W+WFsy/3/KNy+8/6/FRkjKzfP9ze5zSX2Vn94DRaIPnnn+Rrc0TKFUAaol1eHyyTNlmWYa1lslksrB9WZaMRqNYiApafLef9dZmPnbhAxu/v8O5BSttWaGMhyh3G0iz2sRiUtCOTZqGHyiLIRjsjhN/4N5jEFJQ5DmDQYmxGqs1el6xv7/PvK6pvSVrpO9yo5NektYplZBcKgNWgk3cC/9lLJXgWRXJdQe2jzUubX13d5cvfvGL/M7v/A6/+mu/xj/+x/+YZ599nq3Nbdp8fRHHblmJgYchqUcVsjfDWRljqKo5TdMgpWQ2nfLee1d5/fVLh+7znpR2URR87nOfiwf+y3/5L/NDP/RDC9u98847/M2/+Tf5c3/uz3U+f/XVV/nCF77AdDpld3eXf/JP/gnXr1/nxo0bfPrTn+Yv/aW/xN/9u3+X3/iN3+Cnf/qn7+UU70revj499mM8KCkzy+9/qeIPf+QaO3v7zKuaLC/Y2NikKAe02YrHJ3dSOJGNYe3SDiQhoaKvpJfJygdzxc/Cw+wsU6dIOkkxx/a6N+lDess+b5M7Fn+feimtNS6S79qYQGvpOiWa+YCrNRYTyod6znf4kUmOkSADyVHS/bbqC5E0h2bxPjqYTEZefF3XXL9+nZu3bnL16lXeffdd1tfXKcsyLBf9kbs3pX0sMHhiaLQfAs77CTTORjdeJ+4dfor2Dk/Fz/3cz/Gf/Wf/WeezF154gb/xN/4GVVXx7//7/z47Ozv8tb/21zoNcI0x/Ik/8Sf4M3/mz/Cxj32Mf/Pf/Df503/6T/OpT30KYwz/5X/5X/JLv/RLnD17lpdeeon5fM5//B//x53jfP7zn+fv/b2/x1/5K3/lDqPy/uRH/tzfp3nIbcCUFL7h773/Ps8kf/KPfAf/0qeevY9n9kSeyBN5lOSOSnuVHBwc8Kf+1J9ia2uL/+K/+C9i26Ugr732Gn/iT/wJtra2AHjrrbc4deoUP/mTP8nLL79MVVWcPXsWgL/4F/8iFy5c4DOf+QyXLl3iD/7BPwjAL/zCL/CzP/uz/Nf/9X995PN6++2377p/3E/85S891FrXUlg+ctbw+nUXobf26Mu9EJZCuT6g/5fvr9i58SZ7B/tMZzXnn/kIo/XTDMcnkfm6c2cFWGHRlPRDGs899xyXLl1639cTEz5km+SgejU9wMFs0+mUV155JS74wrM5ptMpr7/+OqPRKHaHWVWP47nnnuPSm2+CdR1UAtNjWJQsK2LdrzpnrWkzJI9zHiy5retbp9m7fe197bb7BPtkGj9G8/mc2WyGbhoy5SrJZVlGrlxquJACqZSvMyNdUFrm1Noyr2vee/cKs8bSWNDCUowKBmXBJ5+/yHs7u+TCMU6Ern3JUYHRuhNoDPPZSuFeHv22xiACBS7LcV3qLFpbhMzQ2nAwcVzsmzdvcunSJaazCRsbG5w+fYoPf/jDhEzV6XQaA+Fam5UeChxhnnenx1IxQK0yMmNQ1qCMBgxWgJYCK1S8L5lQDAcD8qJAS8nVnV12JzN2D2rWxlsYAweTOd9443VG4zHPPH2OH/rEcyuP/b4Ckc8++yz/yX/ynywdmBdffJFf+qVfiu9TS/sXf/EX+amf+in+2l/7a1y5coXPf/7z/A//w//A/v4+f+kv/SU+/elPMxqN+Kmf+il+5Ed+5F5P8cgiQkDlIYkU8Bf+cMU3rgr+v7+d8evfVOQK5rXrmt4XJSxF5sqrfu+zmn/1ExkvnILZHN7+5gG7+wfUjWVtc4vR2hZ5sUalXblVF8zWHDdEcpik8yU2z02Uechg7NsT/bobnXkXPHTroQBzVL5ubz/HPCzLnpVln92NLdX+3AXkUkw3JAdprSmLvGXsyBX792wHKQVKufugtINEtDVUdROTk4zwdUZEoLyIjvsfOC2OZBhiDy33whJCCYmWTE7LWMN8PueZixfI85x33n2XyXTC1tYWzz//AqPRkNlsRl3XnXFMuezHimsfdo865JI+PNLCOa6KpGE2m7G/v89gOFzItu3LPSntL3/5y3zhC1/gxRdf5I/8kT8CwJkzZ/jrf/2v8z/9T/8TV69e5Sd+4idW/v4P/IE/wC/90i/xh//wHwbgP/wP/0MuXLgAwJ/8k3+SP/7H/zhN0/DZz342bnOcUuSC6fzhKe0yAyy8cNrw7/z+OdNK8PqNjNeuaL78Xs7NiaTWkEvYHhtefUrz/CnNi2cs48J1S59VNTdu3UZkBaO1DRAZUpWAwliBRUXmQAxlPCC93X9w+gq6rmuHofoWUkHhBIZJ/+FbptBa8kBIQQ8JPKuYBI9W4PF+SRrogm6N8izLMcaVyxVFiTVt6dyI8UeF7qiOZZGjjcY2msZop7x9wHNWVQhf3jaNlQgRMixtF8O1TpWHlnUB2w48x0B3TFP5lVLM5xWz+cx3Y59x48YNLn3zEhsb6w7X9nW229/6BeSB2SXhOpZ85dkjaUEpIXyglpBx67Dsra0tx6Ra0RQjyD0p7VdffZWvfe1rS7/743/8jy/9/G//7b8d/xZC8Bf+wl9Yut2P/diP8WM/9mP3clr3LBdODfnG5YMHesxWLM+f0M5hNK7r9aiETzxj+PjTFX9M1EiZ0TTacWuFq4vs+jcqLJJaa27v7vPV197k1NkzbJxYZ7S2SV6uYUSJNRlWBivL+pD+8dH+llk6ae3nIEFRTyaT2Asw/S4Uvdda37FvXirGGIxnTjircDWX71FgGLxfSWEjKSXStNekfNo9QlAOBuzu3AZgbW3NM0mIi5zF608MCJdVur4+BuaIeU1VabQxzD38eHt/HzMYkA1HKOUsD4uDmoQ1zooOiwHhOEFhh847rn6NMcbBIwiyLKfRzksqfNPinZ1dJpMJO7u73Lh5k69/4+usra3xqU99kg+9+CHMbpjRARZpcy0fmETaYj/c2P1bed6/lIK8yDmYuIXohZdeZDgaUeTHlFzzOMlLT6891ON/x/mGjn/f/uMfpDZ5oC2cBJ5EhDaW6bzi2o2biKxktL7F1okzyKy1tEERWodhH9xtX4Urprh3Xdc+S7L7u2B5r4IKln7u4QETmSff/kr5bkUkFm+62KnM4cSOGyzi0Nho5Ro3v2zo0i4YlCVFlpNJFSl54V5Nq4p5oz2LT0VGSP+edwr9JresTcYS3tJ223XOWSlmHpev65rZbMa169d4/Y03eO3119nb30OpLDLM233fqd758UjKzln4zlvb0dIWru+qNY76ur29zcb6+h0t7SdKG/jkK4c30jxu+X0v1jGLLfpNJPM7cRfdW29JCJepdjCdMa8b1je2KAdDVOayHa3IsFJhhcTYMKllyu86NkkDh6u+D0rF1ao2C98Hy3sVtr34ULZjhyVR3IubLU14OALF8P1KWkFwgY7X+/we9h6t2hQkCYkqQdn2700btPM1MkS7P4BMSfJMkWdtISkgQiVV07iGv/6zPkyd/huqDLYHD9O7S2FMf6W1ZjabsbOzw2g84tSpUzz99NM888wzjMdr2NCFJ9np/biXd/XrZE51hq+zSLn/uS5Jsl0kBfE5qJumU3lymTypPQKc3CjYXssfQiq75fTYcG4DrPAdSDzEZyJKK/zEbiezUjnGSoyVaAPvXbnOZF5z8YWX2DhxhnwwRssCS4mxJcbmGFd701tYlpWtwe/n1fUCjP1iR8F1n0wmjEaj+F1Q5mtra8znc+q6ZjAYeMXeBtfCGKbisj19aStrcF14lksfJz/OwNVhCmTVd3d9LpaIWYf9WmujxzKfzwlYdWBYhWO4wK8vqeLniMXGNGuEpKJhNm0iT1tby6yu2ZtOGZZbWK0x2rOvLUjr0tHDvtwpepvYGmSsJ5N4ZJ49FOa9wfHDb926xRtvvslnPvMpNjY3GI1GnDhxghMnTtA02l1joqhjs+ljMktXmT2LQFxq/QukdIllmWq8h+kSk8qyZDKZkDcNg+Lwk35iaXv5w58+91CO+2/8rpm3skOtXd/TL1gsS6zKsFKDwFjY2XMUv5OnzjIYb5AVQ9fUQOauo7rwwciIJx6vpX1UZROCjVVVLdA0hXATGdoHMLXAFpIx4nHbhaFn6PSPfqRz/HaQuBj2rViIdEulVEdRm172ZJhTIYs0VK0TwpJnGWWeUWSZ6zHpD2EsNFozq2qMlGgE2vabNqezTSTnmAIJ/v+ya2k7OMbBOZPJhGvXrrGxucGFCxf48Ic/zKuvvsrm5iZah1ZybWPp92VpH3FqLE+i7T9b6fPbLpBSBgqss7SzLKOqKv8sLOmtmsgTpe3lk6+cuOMKd3/FMsoN33P2Ovv7u0ymEzwg6wNErRXitsZbytLXN4bGWPb2p2RZQTkcobIcIZRX0tLxbj2iGK3suLfjgwGOmhGZWuCBipZKsMQPXwT6PimEflhuf3bxQU4YJY9KuvP7lb4XAwk04a9Ra41UruRpu0iKiLUSlWny8nFrKQNEkrlMScAa6zByrZlXFdq4AHmsM+17kUXjIwTpBF3FHWyJcAreUwrWeV3XKKU4deoka2trkWsOLfTTnXNto4t7H1B/CdzFk2L7f7Rzs63r0hoYobeqC7rnHBwccHCwz2x2eOesJ0o7kX/7j7zwQI/3p77zK3zja1/mjTdf471338aYBqMbMBblHy7XhSNQoSRCZsxrTaMts1nDN996h9HaCU6deZp8sA5qiBEFmhxDhrbu98rXzo7K8QEF1VdZPH1l6eowVPE34JJkguIOfRmP/CBaX3cjYS88zuIqGXat1DBUoY7HbDYjLwrysmAymwU2mktTDzRJa8FqCAFJq8mUoCwUo0HJxtqItYGr92xqzbyq2Z9XXN/ZZVI3kBVoFCYxGDqGgwz30B3HRWWctFRN2+K9wP7+LsPhgO/9Xd/Ls88+y6lTpxiNRoQU99BD0i3G3bZyD1JsYukv+zbMQ5eHICl80lieZ2xsbvDWW2/xzW9+k2vXDk+2eqK0E3nu7JhPvbL1AI5k+fTTN9mwb/POO9/i6pV3uXXrJtaaJGuwdVdbqEQihKJpDI22VI3m2rWblIMxG5snUcUQZIElx6AwKKx1EErcF54lcMyK7G7w4eCu9yGStEVYCo2ki8Dyh8Q9PK3SfvylG0D0YrsB37quybIMlWVUVR3cN6enYzXAxOqObA4XjCyLnFFZMihcgNhoTa01s7pmdzKh0gZUhhFBYaeeYhub8aanP0Zyup0Fvg3KTqdT8iLnQx96gdOnT7O+vh4zsNNErBiCjQr7AXtQtvNP52PHnHGLooBY6lcIV/99NBpy/do1rl271qmIukyeBCJ78q//wDO8fW12jM19Lc9tN/xrH3mDK+9OqOsKWc2ZVzPm1RylSjfhkucnhDfcPLdUdYOxMJ9r1009L5Eqg+RhCat+sHBS9+xBK7E7wSXBvV1VPCqkw/e52v3durSNxeAiMah79+d2v+SwBex+WIQpna6/u5QdEiTtZr44AokCjHCd744uZSzNKqV0cJ6nndZaUzWagSVCJNZKXAau2196jC5Jpb1z8Xw8jJLnOdPZlBs3bnDt2jWUUjGTdm1tbaGERnvdh4/ZHSV5WA6bJQtjGIK5nV2lln9LMAjzL8syNjY2UHnGeDw69LQ+UEp7Mte8+e4Bb12d8NrlfXYOGhptyZRgc5zx4tNrPHt2zL/zIx/iv/1/v34Mitvy7AnNf/QDl3nztau8887bHBzsMakqGmu5efM6p0+dR0mJ9sk0MVAjHMyhteH27QP2pw21ljz19HOM10+g8jGGHG0URkiQiroxIJSrB2EbhGwxtUfB+gxQTZ7naK2ZTCZsbm52vh8MBjSNyxg7jLdtEdEyTBN63Eui1Lc/br1SrG/EbEF5D83FRlrLVkrlk5XcHNJa0/jaH0F5SB8INDbEVhxbR+sKIVzzh1IpjFeSgyynMgaNZdbU7EymaOD0eNw2UbCNi8GEhSAEOcF1wDGunZmUMtHpvhGGMTR1xfb2NrfeuMWv/vqvcf369VibpmkaPvWpT/Hyyy8jAwTDg1mIe6h1/KwLTrXn4bB3Ra01Qma+/Z3nvAvFaDzmOz7+HahMsbUxPPTYHwil/daVCV/44jX+xRs7ZEpQ1WahQNSVW3O+8fYBUoIxUOSSXAnq+1L9z+3j931Y83/9/gk7N2bs7tzmxs2rjqJVVVip2N3d4dSpp1ywUTe07RGd0rbG0jSWvf0ZN3cmGJHz8oVXGIzWEfkATYbrr+2CkY2xKGkRSmB04yL/jhF3CPb24CUUk1oWgMnzPGbFHa2WSCt93vNRuOPfjmLBNSJIMOMUeQhWtstaFLEcqLEOPpLJdbsU9IBvAwKMaRDCoFRJriTWL565yjBCx1rdk/kcKwTbozWMVC4ebIzvP9kNkAaf0ODqxMTEVa8GAyymdcP6+jpVVfGlL32JqqqYz+fs7u4yn895+umn+dCHPtS5tw/Ee+pMFZt8lsA/ieIW0jWUNo3xqRJuB1prZKYoBwOef/4FslxS5hwqj7XSvrVf8bd+/i3eujqh1s7yOKwEqwW0JzDM6/vBY3bHGhXw5/+VhudPa6wOWKv21KjWqkm7jIglvlmI0gshyfMSK0v3IAoXsLS2tTYcW8S6fzvnczhccD/kTkoy4vTJdsEq7u9nOTvgkGPTXlk3iUMsXakeFDxyL3JYzZWVC0x6yfhL9uyMdhytD3LHna1cxUVnRA2uDZh7lylFbV0zMny8xFhDrTVaCLSUKNHCdSlFzqtXP8tb2CCeig1BO1eFcDQacfLkCcbjMUVRRIx+MBj05lkPz7gfEMkRvrrjPAqLqO0ySIIyRwiM0dSVdlzK9dXNfR9LpW2t5Ve+cpOf/qV3aIzhATS/6Z8BIDg5hn/tezV/4GU6ln1dVx6TMxjHbsVYjdYN2mdEZTJD2zqii9YKdnb2uXlrl6wcc3p9nbxcJy/XQBYu8GilqwooXVKD65XoHwvh6kIYzwjo8gsevPRrkYRAZIpdW2spy5K6rqNSD4WJ7owRu6ekxW4PB4UeNSP7bheTlC2htSY0BjBaR7ZBWZZ+HC3j8TjCU268bQwOCmi71wdPDzBNA0KR+S/XRkOYzWmmhlzlgKBqNLf392E4whYFMpNYofyODERDxbFEXCq3jAuUOwWfGOPPeTAc8fLLH+Zz/+q/ymg0QmVZ5Dm/+KEXybOcqU06ID2C67CxJja0Ft67yVRGkRfIrMAguXX7NtPpBGkaPnLqpZX7euyUtrWWn/nld/inv3ODqnlwd08KKHPBSxdPckq+w7/yXSUXNl0naVfLwYsQ6KbG6MY7h47aFJW2D7BkUqF1HS0la2DvYMr1m7c5d+EU2yfOMhxvo8WARmaeLeKYIliBsm4FF4CICsBgbYPLhnxwAbilGHSPq621btth0SrzAI+YlN2wZLFZOE5qoS5s257D4yIpT9tYg5QKKXxtaykQviDXdDr1sYIh1urFMUgog76mkx9b0LoBSeySPioH1I3hQMzIhKLB0mjD3mRCmeXkKmOQuQA5IUjc4YP78xYCD5/7ILxT6kJYiiJnbW2NZ58t2d7eYjKbMhqNWVtbdwk11rFY+vPmYUv6vAM+t8KkPgWZUq5WvMrQVrC7t8ftW7fQ1Qz4ACntn/vV9x64wi4ywWc+ssmP/K4xH/rY9/Lbv/zTnF7PgLrVGMnDoZRCZZmPgjcuIu9bbEXmSD+WIQKNzZJlOVK5kqwOOPQPbHQ2Y/iyFdE+KMcLjizKUR6kTgKIXCz20yqlw63iLiMhwbXDdyId1MdfOoWben+vXLNSxe0+aH+XbBa71Evl+kb6cdbWKe/GaIxXMbLv2XUmoYf12v/FuW+MYTqdoLVbtIuiiC8AawwmTSAMEyTi24vX7j4/PiV/pxnWzlFLVc2xQtMYnJdtbUy6WSWPndL+56/dfqAKG6BqLP/0qztkEv69j8Gp02cRcobWFWDIlCukI7BIBFtbJ9jaPMHN9U1u7FynHA5Z29jk5KlTFEXh5pw2KKkwwrmzKlL6FOubJ5DZgMYIGoRLoAmwQUheCLN1YSgeEUukl1gTSrGGOiRlWUblHcq2BndeqT53O+4UoCWs+R6DAVp5nAkkqaTFk7Isi/S7tCBTYJU4w7d9D65+ifPSAszkNKyUAiMsWKclcyVYGxQIscb1/X3Xtd1aNJb92RRrDYM8I8eihEDKzLmMNiTdADaJ3rQa1hW4ahr29vb4+te/gQVGozHPPfccw8EAJQQHkwkhocg1AfawipAYownpLMdlffeZIxFJEqKz/gR2TjhPISWChqaueOfaW0znDVVjESojz3PWN9cPPe5jl1xTP2CFHaRqLL/85R0+/6vfZPvkaefy+Ewzp0SdJSKBjY0tNja3WFvbwApBUQ5YW19n+8R2W9nOGFdz1ytj6QOOVkjG69uorKQxAm2Fzz7z2y1NKmit7EdJOhF0r5gnk8lCMSOXNZbTZsy10q8IFzWABYGMbqkxJnVKHsXhuG+SKqksy5By0apOlbb/BKAd405gz4cS42Lg7kEuYVTkbI1HFFI6ZWItjbUczGfsTSfMGkNtXQgTqUjnpqE7M2NdEgFSSYw1HBwc8JWvfJmvfe2rXLlyhcFgwKAskVIwn81jWd+0XVxgwzxI9Gu5L9J+Z7zx4NLXnWHVNDXvXL7Mm2++yWuvvcZkMiHLc7Y2tw491mOntB+mVI3l//H3fotbB61iWcKdQApJnheUgwHD4ZByMKAoCofRLdzz8HAF+lpblpXIeE02Df947DBs0YkrHbO1facU4v73bfKH6DBoUmm72Bx6ZLdNsl/3m8NT6R8VHDSVZee16nwdLuz+bmGgZIPWgF2573ZfSz5MIYbedBPCKclMSpQUHgbx2LpxpVtTnnYLvPRmpSBaxu3+2+uVomURpZX8tNaxxMGD9iJF/83CB6mkGH6ylWdHqcwV9VJSxbm+Sh47eORhS90Y/qv/5R3+7L+i2l56gSkBzjW0gu2tkzz3/EtsnN6mGIwZr22AlPhcB5TM0MZZnFJKZlVF3TRoa6mNxaBA5UBOrO1AX231p45g8YF5+BLSkB1+OWVjY2Ph+7W1Nfb29oi4/ApMMhSEQjg3uds1pY/VPj5ik/+nMFEsi4DDerNMue5FBFikHRsV24YR9Gg7k+yyzwzCCqSFzfEQOxUYZi4lXggaa9ibHCAGJRaFwFIoSbQ5rIFQnrVj2beQhwtCPotSitOnz7gUb2sZjcfUVU3TuGD9aDTCShMV+cK5HovY5NWD6S2kZ9AxHKxFWOcFnX/qKU6eNmgyRuO1O3atgSdK+76LNpbX3p3w+tURL550kEXr0gcrRLC1fYr1rXXOc8El+QrXeDfcWCUUjW1w1VQV89mMqtFo67jmIlMgciDr2Set+l4WSHrUFDa4yRsSPmazWSedPX149/f3o8JZJe2D0eIgaZLNo2hV3y+JeiK873sYIpQFWPyt1hopsrbYEuAa9rKg+eIQRqUt2BiNqI1h3tRU1qAFaOOYJLnyrcWspwZK4TEDCE05hGlr7Ah/7lJJ1tfXuHjxGbIsZ2tri+vXb5JlGaPxmKauOTg4QGvNxvo6JiQNGRORGHvsdF+78JdI/g/tfQjwiIPu3Lw/99Q5RFaiiiFVVVNXTYwZrJIn8MgxSN1Yfv5LVYdaloABYF1acZ4XFMWAPC/JsrzFcIPCSQLpJrEsuzgg6Z7bV4BH/KruXilI8mhKP4sxSFt3pGtp391+3c8fTYT/OCRZrGjhhvu5fwgFkER8SRGCiwEeMb3iXSLCe+me+nuGtldoqAc+nU6ZzWZUVYUQrplD+BvcbtPuPX2ILPXQ3v9YLJlFqdNwp02FiKyxPM+RUh3pnJ5Y2scgxsIXL9VMtWI9E1jtMrtErC9swbrecKgQjpEIMkTstOI7r1jn5zV1g8pyhuM139Q37T0jaCl9yyztZDvf2eVRVdyhOFTTNDEoK4TrFxmslSB9y9kxI/ouaRcmsOK4Ef1HS9IiWoKQFenSzgNGXFU1RZHH5huLCs3xnvqLnQwRFWExOKbI2nBAhWWOoWkcSj2dz7HWIGXpykIoQS4U1joYJTAtQiVAEmaQlJLRaMT16zf4rd/6LXZ29jh1+jQ7OzucOXWWS5cucf36dV588cUI9YCNSVgPNBoZZckMi95JKDtrUVIyr2tsY6E2NI1BN5p8eXeFKE+U9jFJpgRvXJN859MCaywC5VZ+64MpWCyqnWRIpMicq2idC+WwQYkUUDcalWWMxgVI6RJp6LvEHjvv842W/vvo2Jqp9bNMaaep7J1U/yW0PxGicLZV2saGzEhPvfwAKW7XP7Ht7aikaytW1zVlWUalPRiUyJQOmHiJILxy7XpA0hc0k54xMswzkIKp9sljwiWOTWYztNEURUalDVJk5JnCGI2QSYBSLCptpRTj8ZhLly7xK7/yK1RVw9mzZ9nf2+O5zz7P7du3uXTpUgziW9pMSxAdb/dhi/DnZzwUpKSintVUpkZTeUqkq6V/mDyBR45JqsbyxlWX5rUYFmzrMaSgRqtMFoNrIUKe5Vl/V+mWtPF5fwRrEdYvBDhL1L3u59XeX+lb1NB1Z9M6E4tK2w+ISLbrQy5LYH2PJj3S47JK7hXuScezpQAu4v6290fXBg+61hV9CqVbA63NeYzufmrr/04ADLuwfPZC58lCvr+/j9aa+XzOwcEB1lrquo7NMx6kdML5cRDEnW+E7d4ta61LEFrBmlomT5T2MYk28Dtvm4j66WDxIVwkXbiXCyQqAs/aiYv0C4/jaq25eesmFlzpUpm0EQPS1kyBN7BcwjRLj/XwJbWcsyyjruulFf+KovBByyahptmFfURllIxLi2m6Xz06V398EoyAqE96K1MKQYT3Nn6X9OYk/CQk3HgJlFLhKgFKLEUmWC9LxmXBIMvcTBOgrWE6n3MwnzOrGgeTCBWfDStaaz4o+RCEdouJO+T3/q7v5cSJE3zrW29z5coVptNpci2+o7xX8ou9RY9fFo/k0f3EIHDMGYtu6s65SSnIspyyXF0sCp4o7WOVWwe4hroIVwvbBABDuZdQIDKISlsmqIanX1lomoYb168Blu3tEy7Tb0Fpt6kKy+z4rm3w6Nz2FPJIlfZk4goApUp4MBiQ5zlNU0dFtEppt3Whg9LpN0R4DNX20iBWSOZoe0EKlivt4LmEbWMcwBsbiNQbxDf+dT0kra6RGEolWR8OWCtLRkWOwhUr09awP5uxP50zmddeaWdYK9HWgo/TWBzrRCdKu8Wq4fu///dw6tRpLr35TS5fvszBwUF7bUKA53OHfTw60qecmk6tHQBXvTNnMDi8nvaj8/Q+htL4tN5u77jgvnehkWUSIuHGGGpPg8vyLLF2VkffI2Nkca+HHvNRkMi17cli67E+nLHCooooSVsK9xGC9O+bxFB0qgjSfxPXPB3H1jNZlAiV+J8u43wIf8xgdWdSRJgkCTGgjfYv49lQceVtMe0VEmCSzY0NyrKkaRpms9nSjkZHlVVJV3e9n+QF6TiKNha67DAdI6KNx9yJQfJEaR+nWM3NWzvOipYuBd1FyKV3P4O77kqpGh1LnYGPMDdNw2w+YzAYoLLMT3hvQST39tFVwXeW1DoO+H3gaqcP1sBnjqYKPYVJltG6QnArhUceQ33N8uU5KINEzfqxcRSztraLMa4ZQQqDRONgxRof6n5o07QQi9FgNGWmGJcl66MRuVJRsVdNw6yaczCZoQ3xeQh+YoA3pG/o3GhN02iKouDs2bNorTlz+gyf+MQnuHnzFltbW7z44ksxSBrmj3uMjvZUPBD4JHiFPXjOWouQgsFwgJSK6XTK9etPGvs+NCnFnKvXbmKsxMoMK11nGStcCVVjg4XiIItGGxA+Q8y4cpN1UzOZThiOR6g8i2nBqaN1NLs5Xe4fHRUflEZQIMHKbnzFs1SGw2Es0xp+24pdCOb0WRDu1fZGfBylc10LisvG+eYKk4mkm7n16eb+h16ZAr60a8DEE+tduMSxRjdI5bJPjW6gaRhmGRvDIZvrY4rMtdfS1jJrKg5mM/YODlxtHiRWKodrE+CNDKUyhFI0WlM3NWU54MKFi5i64cLTT/P93/97uHr1GidPnuI7vuM7vNHaKm2n/I97nh9tFrknL9QgsvFRFMIxy6SUDEcjlFIcHOzz7nvvHbq/J0r7mEQKODfeo6pqVyuqA4t4iWZf4oKGt951cthiW66034o1nTarp+gq/+zRkjvVClnWxWaZUkqzH5dZmW1krWdRPoYiIosj/ZDYDzLI4kK2jMnUdefbT1vcJMQNpE8cyX3BqvALY13CTdPomDDWA3FIIQLHrrCRr21xHteJEydomoaiKFlfX09Czv4cQgT2uKTFolZ+1zl6a1rHD9KCaFIpLJamceyYw+SJ0j4myTN49pQiy0qu3bjJvGpcKzMh0NY1P0iMGWdr++amraJ2xWOElNTe8lRSxQL3glXUvUXM20kffXv0JFh/Qgjm83mH+te1DM0CZ/sOewb82KbK+zGR1Xc1DcB2Ixrp4pgGg8GjSj4QHkLXMe6bxhQIFnIXFw/pOJmQDIuCQVmQCVdYSgiojWZvMmFaVS4QKR2TxHg7xtgWqpnPK4qi4JlnnqEsB5TlgLW1MS+99BJbW1sY47jmxrhnyvXCZKlCPZ4yBv3jpKi2YMGvSwLAw+EQlSn29/e5evUa8/mctbW1Q4/2JLnmmKTR8LHntzAzw7fefo9huYYcZahMYuo5AoP0DT6Fn5xKKYR2LnxjGlTmcGyZKapq7upqZ451Yq0EKzDGxv10lXX63ib/97j5I6qxpG8IIYRgMpmwtrbWCTSFtOY+jxsOeSA9fzZCAMZixeNVh8Qm6rL9MHhrJn4ecH4JHa+kaRqyTJFlLuFLCgFSYGrjSiIIi7S4fS3hcXcDm+D5JhRKsTYcghDMq9pl82pL3TTc2t3BMELlI4o8xxhnmGQCly1sXdLZdDqjLAd85JXzDMsRICjKId/zPd8TWS7VrAbhA6FF4eppR+jxcHl/8+Doz1Ga6COEqz2Sj9Y5mNdcu36TS998i421DZ6/cP7Q/TyxtI9Jzm4pttYGSJkxnc3R2kQLbyEhJLwiBpu4996NNdp4XKylcC2KgF59EbceuIcO3Nd2Oa3koUkf7gjX1se1Y5nOXonO8N0qcePrFqpHITPuOCQCF8lanV5pP9PRfxi/CxmjMT8kuQ/t/Fx+zHSnKdoncOTWTCky5bxD6RcNYy1VXdOEVmFCRJZVn+AT6mWvr2+QZRlZpiiKgu3tbQaDgbPMg9e1AhJbCZXdLzni89TlZcvYraqua6bTqcscLQ+v9PdEaR+T5EqQ5SXD4RpbW6eYTOfs7Oxx6/aOC/ZERZrigUkgTQrXhFc4y7KqK6fEgqVoPSIb+Nwpx3sBhwy4Y7/s/KMjKQ69Ch4Bl9Yc0q+XPXiHWk02YKTpPh+h1eu+S6uU06EKVxwqK0opvfI00TJNFacLQBoPmfQVn3Sd3W1vVsXNLLmUlFnGqCyJWbpCYARUdc1kOvWcahGTaQIRv1Nje2F+C8fHjk0QWmv/UZvlNvSI9PM7UCInkwMODg6oq5pz585y8sQ2eXY4APIEHjkmmTeCcjBGCUGe5Vx59zKYmiITjF94GisBEaxn1+tRG43yE1ZKgTauPOVwOGTqK5tpo9HCd2HBFZ7Hu6OxDmWnRUuqsEV8/6ioqlRZQ1tbW2vNwcEBW1tbne2zLGM8HsekirRgfBrY6e83AAgO015MGV5Wx+TbW3oBa2vp85mbpkF4uKmqKvJM+WxC7X4ZI3sagUSqHNcc2n2hjbcWlaKyJh5RxIJHDtcuZYYoSsyaZXZjjrEWqRTaGCbzGcZUjMZjRw2UGUY3SCERWAeZBMWdmPFhAdGNoa4bBsOSRjcYk7St9vj7owCDOVYUyNLBf1ZAnmXcvr7D7f0Js/mMl156kSIvKeWTJggPRbR2fR1lMUBYS1U16GZGo9JouzdnYhzHR+YFIEWEQ5RSaNNEnM5aGyND0TKir6gTZRUeongMOg/Ag5LDFGM3CLYcHoHWpbwbK9uParQ2Oz9NYP9H4eG+XxKSXRCi41mEaEaARALUZoxJ2ByJCHwabzqHwjH8R0K2BoNI556HSHwAssiytpiZR/Ia01BVPmXeQwUBngmeUbr+dCAcb1mbOHcEgfZnF0936f29H/e879cu22NabMtBnG4u11XljDGt2djYQAmFrZole2jlidI+JlHKJcyAREjF5tYW86lCN1P29/dYG+cMSwUYV83P/849bMSKayHIU+SFtyw05OBnNC3NKpVEeSdWz6ptHjVJE22CcgkWdVqmdRlO2be2u5JQAsP2j/A43I101WQLEUjwWq7tUhPK/UrfIFknxfkD9BZ5xTj6qlv0uhx3IT0+HX/jlZZMA6MgrCvSkEnFeDRiVtXMK42VAowrFTyZTBACyjz3TbD9sX2ijfTVCQ8ODpjP58zmM7CuxsigHPQosau8rQch4ZjJJ3Gutu+tbdkjjVCooWsAomROcYfzfaK0j0m2Rq6+iJA5SlnOPfU0uzs3uH3rPa5eu4KSW4wG667Cl9WARcpgQQrX2NRojMeth6OhW5nrmjL3RXawmGi5pAooVB7pK+z4WAGHu2APWtIHKw02prhrmPxFUUSF3PaOXAxKxoeWULM5yZh8rKAQOlHC1MqUUmK0TowCCHMgUxkGD5N4hae1YzUFjFpKidSuzFmjG5fV648llcOytfbQSAirCNeU1ylrAdYgEZQy4+TWFjsHB8zqHax0Ro3Vmlu3biF9+js4poo7/4w8y+N9vnnzBlevXufGzZtsbmxy9uxZNrc2mddzpNYPH8hedXzhPRJC0NR5jJubmww2BEbl7NzeI89yttfGhx7iSSDyGEQKeOn80AcKXaBmbW2d4XCIVIrJZEJd1y1c0cNYg3uYfhY62xgfsAl4Xevzt8f3vRaw0Y1ctDj7n8UATi/Atyrgdy+yaj/LrONViTappZ1ud/gxDrkeu3Sz+yuWZUN+X6ULjq36bhHjFrTV/GKgNlrTTrm3YYEUWw5jL3yzjnYuhkuN/qN13ZOklAwGJUWetxCIn6Oz+Zy6aXy8oT1Tx6BSvuKlZTqdsbOzw/Vr19nd3cVYS1EUSZu0ZA4dwYu6n/P7MBF0LW1wTRDKsmQ0GrGxscF8XvlkvMMLXT1R2scgRS65eGaEJkeTY0SBRiHzksFojXld02iDtQ5CEUjf3lQQup5q3Mrs7rNhUOZYa5jNpu4h8La0q2bSaYkAtLi5FaHSoAPB2wzAu3MZj3Nir9q3lJKmaajregEGKcsyfn+0cxTxFXBQ21NC9P/+thffmk6EoEkIWgfqpJsJRmtX3EkIrNGxXVhY9WMFSkSvCJn38Pzuvd2Mss5SVpA05PCsEWPJlWJtMCDz3zRCoIVk3mimVY2Oi4VEWMGgKJlPZ3z9q1/j0qU3uXnzBnVTsbO3wxtvvs5XvvZVZ6Ur6ZppG9tbWPzZHqKg721+L3mO/EIkhAVh/LMZjhEcIgMYhG8iUc3nrszsZML+7i63bt049KhP4JFjEK0tzz21RSVcB2pkg7Vz8uEGWyc13/j6P2c6rzFGkKFQQjrf0rh6CRaojEEJhUGjTcP6+pBK1+zu3GL7hC+J6aY8JpSVt8LXNsEpbOkVtpUoK4PKQhFqTDxakuKQ4Jgis9kMKSXj8bjzAK6trTGdTlek/Pasb5z34yg7PplEG4SUfvELLsm3r8YWK+IaxnrFFYqVRcXt+NOm0TTVnDLPkUKgm4bSdwxywTOwVnkDwc2feKgYfHQNECSAtQn7I1D2hEtmwiKMYZjlnN7c5Mq168yAuRTYLGO3mtNM4ES2QZFJ56Uaw+b6Jq+993V+8fOf5/qtW4w31tjc3uLm3k1+87e/SJ5l/MS/+++Czaispa7qaHmHa+17Zqkndy/S2vJu7ggfgI1TVJgAypEJ2m6AbpUEqxHCNfDe293lt7/2GrnMaeo5O9csfNfzK4/9RGnfZ5ECPv7CJsOy9Gts6FenyfIBAzlmXnlLO1q94XHAFye2aAu5kM6CtpayzKkmhvlsGlfstqJ2UNtJXWSBh1hcbppEuokjgmX+6KuogOHXdQ104ZOiKJjP5/G7RQlWkO1+5D8zwdo+vtN/YHKne9nOs+62Uvix0BpVlk7x+KBkytpo/Tob51C696AYQxdJ4QOJQgT6XdBWbnHJpUSVJZnfjXbgNXOtESGt3St9YQVlUTKfzvn6V7/G3mzCuaefYrQ+Ymf3Nm9eesMHqiVGudo0GEvU11IcamG/P3FzTEQV7vVygD2DJ2K7QI31wFEoZess7auc3NpmPj1gZlfNaSdPlPZ9ljxT/OB3n2bRbXL/uKhx5qP11mF1wZuzohMgcynDLqU4z3KsnXuooAuQpunDwkMifRHewhIE7FEsnOKjJmnVv/Qzay1ZlnV4x8uz3bpxglThpBg+0eri/g7LA1wRFs65j/V7T2yZhPEMY72g4KJ/H3bRRchFVyMlVmx3fEUywEIIyqJgrmvmRvuyxE6apsFkBiMVxlomBwdU8zlFUfDC+XOceeosp8+dYbg2Zm9/n+lkwq1btyjzkgD9pNnFR5G7ZpgkYxIu1ibjIuKKZ5ONg9HhLHKlJPXU1UwZDodsbGxQlznKHN4+7YnSvo8iJbx0cYuLp0fJjG7/sdbBFXleIISjK5EmPFi8P+swMaMNQkGW54yGQ67fmjI5mPl+6qFbTXeyBQ5ocG0dBumzDLG+V+TiVH4UOMohYyy8sixjOp1SVVWn2L0QgrIso6IJn0W+sfEW37JLsmFsbIziP+qL13FJuOfGGMqyZD6fd9p3xYScBJe+kwps7wOeIkhcCK23TkIphvX1Ner5jPl8zlzP47lMJhPWsoI8c0HOm1evsbezy9raGn/oX/6X2Tq5TTksmdYVa2trvHP5Mq+99hoXn3mWtfF6rF0TGoikcyrIqkD2+5NUQS8bF7cgKenICTLLODjYpWkaTp06xbPPPotpKkSz2GovlcdOaatjr6G7WjIl+b/92Pewf/NK53ORrr0WlHTdZ6JFI2itoPCACDfpBY4GVeQ5WEtVzaP7ZQMeGw+URKg7x/eTxoZ3q+VhZAauenCEEJ2GCKmEIv7L9pF6Hu2H3UcqsiRSGuDjLFHxLo61MYY8z2OSx2K26N1hv8LDLvEnySGth1gEwjFJjEb1gsl1XaONxtgMYy17e3vMZlOKsuTVj36U9c11rLDURnP71i2qquLatWucPXOOtfF6Oy8SnvYD52p3LrsdCGOMq9QpJEhJNXcGydraGtsnTiCMRtTTQ/f+2LFHsju0nz8uKTLBj/7epzi5OcTatGaCTbLKHbaY5wUWXI+4OLlbxQ4t1AG0Fo9X9I4SZIkUrPAbUnsoycCC+M0qa2kZdS61Rh6WJR6OvdhPr22eEM43/JuOXWdfyw5gbQt/P0aysCjFoGL7WVqAq+0HuTg74kwO83FFwlZkn9p2rkE6vEmupHWwX1pMCu/9BFqrkK7OtHtOYDweLyzURVEwHAyoqiree//lkcfqnua3ba8X+iOx+rNAs+xv4zoH+ef6Dqfy2Cntf+1f+jBl/mAvq8gk3/fRE3zm1ZNAD0kVNtrEIBEiY7y+iTaW3f09jG2I/UJEi29LQaReGW3IlOv+YY1G6xpjGogckBDMlNG6MEYTaUUem4k1qP25PerWpbW2U6Y1QCHB5VVKkXumQ7e2dqvUVz2QTkGZGIyMxbce2NU9GhLKAgSPJiQzhe/Ao3YcDR1uYSdXYEpJmYTZfdq8hy0ypRiUJWujEZkPGLYUT1BZRp4X7O3vY4GnLzzdSaaSQrK1tcXp06fZ393DaO0s2PBcPBBD4+6eoSzLEVJG6AbhENGmbmganRhoq+WxU9qf+dhZ/sD3nKfIHsylFZnkMx87yY/8nmU1cFOLo1Ws5WCEsZbpfOaCjbaj5uM8CMFKax0R36W2G6xtIPld2n3FQTCtdQXWY+BdS+pRVdf9hSRM4Pl8vmD9K6VWZkRKD5OtrEdiE8sT0ljR4ykrbngYx6Bsl8EjR58rfagpYXF4aWmDxsF+WU5ZlN7SNq2l7RddpTJmszkWy/aJE11LG8F4NGZ9fSM2+Y0txh6I93Q3I+NESUWgCVrv5YVM1FgD/A6LzWOntKuq4v/wA8/xfR87SZEd312TEspc8qO//xn+6O992tP6UhRrFRQhKfICY925QudnhMypNFwYvpZSkquM2gfm7mRIdOZtZzVot+mwKB4xCVZHSKLpT+hgJYZtD93XIdcev7jf0+WRg11ayCJI8EiCsu5beQHqsKJ9xe8EMes2ftrBv9NZ3McT2vfBMyKJ0KTKvyhdxuN0Ou0uzv78s0wxHo/dXLDts3fkUbnvMY0lN70DZba1b5TKyLzh4RYpibpDlb/HTmnfvHmT27dv88OfOsUf+d1nKTLBHbyNuxIhHH79wrkx/9G/8RE+8+rJJbcoWe07KLMEodjcOoluDLdu3fYlWr0LapzL56yOFt6Qnm89KAvW1obs7txEN3OksM7i9trBFdpxiQ5O8Ycnylk24VxiRTQvj2ogzlpLnru6Eyk8EhR3nueMRiOAjlsffrv8ukTyPSQZ3A/InX60JHQCms/naK3jIniYpIj2YeoxxmSMwWr3kjgeN1ZjdRNbkin/ksIVWGu0odYajeXEyZPkecHly5d9017fTAGXIDQajnjhhRd8D8k0y1V0PLFlcZrjmfui9yKJRYX1ymKNw+mHfg4PBhnDYclgMDh0748de2Rvb883/Cz41Ee2efXZTf7OF97mrSsTam251/tT5gJt4OMvbPADnzjNxbMjb12vpkH5XDD/TuDS1hXj0TrvGcv+/n7P8mstjtZaEFH3F3nOaFAyneyxsVkjpcu+9F+7reN60cdnu5ZOCFreSR4mFTDlDx/WEAG6mPbd7D8G5R4i6+hhipSSPM/Z29vrVFNMJYB7R5GeHe8+8wtkiLE56qnxiTwS5ZWwFCKm3EeoJrOsb6yjMsX1GzfaIKXft5KSQVly7qmnYnOM9DweXp306DPE/3dgS/84DsoBZVEhgKJQFEVOdofzfeyUdsrJFEKwtZbz7/3oS3zzyoRf/OdX+dIbO2RKUNXGV8hbsg/cIJe55Ox2yXc8v8HFsyOeOzdmWPTdx1V7aP8MNylMWRGYIHFS9+lBdkGjCtwEVUrSNLULNAYrwfmJdH/U/1us1NRHwdEehPTPYVndiPRcg2u/StJt2ySP5XBQ/D7ci4c/HO9LFpRVV4csbBv+XV7S1K7Ky+ntqN1/COp2x9l7ej3Yr3MOnS1dg98szxmORmxubrggnq+MWTU18/nc8fi1V+bikAtlcY7FM0ss8COJ8MFVu/qpE/5qV+7AH1dISTkYoH2DYm00MFx56MdOaZdlGQNU6UN98cyQH/+DFzmYNXzzvQlvXZ3y2jv77Bw0NNqSKcHmOOPF82s8e84p6FG5xOpYmISH2KzCFYbxb3BoVIaUBULlIJVLBLGuw4dSyrFChKGFyJ2VksmMYVkyHjZcub5LXU0xtsaX5enZ1dZjaBphfTqwFD52aWPJiFXXlT7wD1Ohu/Fog2MBAlEJBhjYI+E8A30tSHpdJrjmtMk14bXMwnw8ZXFhDCybNEYQPBfXZaUlsC7bR3fvvq8pADZa04DPE3AlFBw7KnKefFMAgTGOmx+wcq0165ubXHz2WXLfG7KqK6bTCbd2brO7s8NkMgErOHXSdYOZ4qDGVdTPhyaim5shhKBuKvIs4/z5p5hOKnZmE8x8ykunX1i5m8dOaYcyjUH6CmdUKl55dp1Xn9tAiHPx877SOop0HbFVW4StQlMEhRBZLDdprFMk1oKQwsEdwtCnmyspKfOcQVkwm16naeZYE9K7U4w6gUFsi2FL0dK27N34uw9RQg3toECWKe0+BptyjvtFgYJX0g12mZht+W0wJO9fltgYYZz6XYGi0l7YySFzPsZS/Dz03dtDWrnwVnuwxAVOmTvF3Wa1unxfizaGtbUxw0HB9tYGeZYxmU44ODjgxo0b7O7sMptOGQxcl3aluoHp4zY4jvoo9T2PQDHVjUZlOac3t7h98yY7t3aoJrvAB0hpL+PlLmZ4LQkd9qzL/mfLfrvK9ujs392p9o1wFrcQCiGUb/mULhjt3ry3HjWtEJLMN0dIA4sBHklj9SunU3pqPaW2ajwetPSt+/C+TbxoJXXtD7tvq4+V/BvH3t4dkHsneUirwVKF5a+rPzz9VO+Fe9Bz5JJd0d3ILlxvKKkk4vswz5MONWIRdmxJqzjsWymmsxm3d25z7do1DnxNkrQ2zQOXO9zbZX64gCQBuvX85vM583mFXpIBnMpjp7T7skrp3r8V+ChuYyhPGWyLjDwvKcoB0/mMcZGhFBijPd3HdVwXKiwiYBpNnilGgwHz2QFGV4jQYzKEd0SARdzvlJRxdgTrBUBKFQvUpzjmoyRBaYR/syxjPp+TZVkn4JRaiVrrCJcc9bqcJW9xTVjaim2PrfS0SIpfB5ikaRqUUndM8lh1AGttLBUbmR5C0Pp6wpdxdc2opZUUeca8dslhoTt83WjKPKNpNNIakII3Xn+N3/7y7/DlL/8OFy9epCwHDAYDtja3fciihR+sf47imfUMgfSzBzH/A0avlCs7G46ptUHP5ly+fJmDvR1K8aQJwoI8DIw2ZkSisChUVpLnA2ZVhcZnRhntecmKTnTSgm4MmVQMBwXVfIoxDSKtip0GYPz8k0J2JmWYJA4KEMlPH16a+jLpJAH5f5VSMeiUSl9p9yldqyQdl9Dj8HHX11GClZeMcZo9Gsbx/cyJdCgDjTUNNrowvEFYRwPMVR5pfEJKtDG+fDE0WqON8zTf+tY3+Y3f+HV+4Rd+gTfffJObN28yn1dkqlvPR/Su8WHO73DV1orYhDgaFNYZVLPZnCtXr3L9+nX2D/YP3d9jb2mncqcbdxTLrOM+Hrqh+8f6vyMCIgRYgZQuWNo0Ghutga6i7oPPQgQsDFyLMpMCtIdGXTqKELCPiIY67J7YZIKnrIa7hXO6x7BLt11ItElpAY/OenbPsmhlHkdgY9FTEZGxkz4QSQfTaEiIzvR1kLiN1YqtD2o2TePocXnOcDhkMBhQFuUCHxuZHq89l6PNkfstXbg0FLXoHz9TymVM3uFcHnulvQrfvpebdHe/SWlSIfolwEoskqIcMRius7N7m43RBsPSOrjDNz1wVkMAMULCDWANw0GONQ11NScfKSrjCvoj09Bna0WaxtDEFFmHp4eg3KPImggPVwgQukwxVzgoVKIL7KAgIWsyJF9AVxFHqCUQsZLfpsWSkpDCB0a6XoeJlncIBFtxtwt8a3m4cXet9bpWcDSFERjKPHfQoBBoY32VP+Pa5RmX4q0rx9V/5plnGA6H/O7f/bsZDccURclwMHC4sC8cFTrnGPQxK+S7FzcOBiGcRy2Fy5K+cOECO7duID9opVmPKsdLZbN01Sd+pnputhUUxZDBaI2bV96hPuUDD53mBmJB6YR9DsqgtGcM1yWVtq77tZQJo8VbptpR5uomdH+RIDKEYGl9jkeFsw1dS1tKGTvVGGMia6QPj0QmSC8w2f67aGG3SQ8fNHHzZBXWG8b0XoxyQQtRGeO4IIRK8JbIpsCznYo8Q3nKlLaONaL9uRhcd53KK+0LFy7wkY98hE9+8pNgBU3dsL+/j7WWOlHaVljwMcqHO6cTWCjxGMOYSiFQRc758+cpM8nBzvVD9/aBVdpHlcOZKEkYPaHd2fQ7YHHGC4RUSKlotI6p1ITAYrC004cqtCyyLnXXWutJ+KlljQ9Guk+DpS8I9Ln0eo7DPT4+OSo8crSAUjoG6T1N8ZBEwX97DdVSWRiX3vp1ZKWWIHjLDfDu2LYByCU7oh3phfzdqNhaizxQELMsYzwek2cZRlu0cHBjqNp4L3Jc2LdN/1j26MW4givLkBe5q51/iDxR2sch1vZmtLeyfdBBCkVeDCjKMZNJRa01BosSFmu1fzC8kpXCWQ2+A5/AsrGxhtYV+/s7bJyoXSxeOGtba42xDUY35FmOEoqsyBkWI4yxaAN1YzC6wVq9PG35IVvbrYVmFh4mYwx1XVMURYddklrkfVl1PWHfsWStkS0W+kGQRHGn8yDP88RTWfRO+ivYshELIRkVvEuWY8pSCDIhqXE/sMbdq7rRVE0DQjrY0N+/ra1tiiJnbW2N965coZ7XGGPZ3j6BMRrhvUpjTbRs3a5XK/MHxZyyECsRtjrb0pgGM5syLHNObG+zNXqitI9VunZFz9LuWLZuwmprUUKS50PyYsTBdE7daGdVC4PRFmkdyySyQKTEWGdJAGxurnP7oGZ/fxdtGqBA4OhEjW7QukY3NcIKZKHIi4L19TW0sdS1YXdvgrV1h+4VpP/+2JMTFiCgLuSRMl4C5rqs4l+fZ3zoMaHz0HQt+A+G0o7KzP8vlGe1tu2/ab0HKYT3+qJH6fdxyP7bUGOABfGFz1rvJtABlZCOQeUzdoWUVE1DUWsXg5Htvd7e3qIsXVGlK++9x3QyQwjJ6dNnMaZtR2d9276Iyy+Fyh6Uwm4XP2e0yQ67pWka5nrK5vqQUblNwcahe3vslPZh7vNR5O6V1KoH/XB4BOEgEhNSyxO/02Ij/ak9L6Jr6h6wBq0bZyGKFo91WOGi8kqZJ4dZnave309ZFiBMP1+WMJP+9qgMn+W/bz3uhf0mfwvRwl3LcPD+sR5FOcpzEFXrUmZFO7dF+j6FVQgBXnoDG/zCRTt94Zx6/w9Wej/KYK2NXkBT18xmM2bzOVJIz+FPm144jsajdndWzV3XNMLVgb9Tbu5jp7QfnqRWX3+6iTjfhXTsaiEzhCyQqsRY0EaTexfVqV3Psba+jgKt1h4OB+ibB0xm+0wn+4giR2QCqTKGxRDBAGsNunaYd1VV3L69gytzIinLAU09991vViuhh6WQlp1PyiVeNvGPslgvjUck3xmjWagf8AGQZffZZRm6tPAu/Joq8iN4NXdc/F0MR0qBUo6xov0RbDTuBdoYqqpia3OTb731LV5/43WvlAVCSH75l3+ZT3zXJzhxYttfVNjHo1N22IWrbDSeiCwmRxgA2N3dZbZ7i2e3P0Bp7O9HJnPNm+8e8NbVCa9dXlJM6uk1Lp4Z8fxT/WJSqVXW/bN1Dz3dzhduEiiELBCJ0iYTuAJQODpQwHG1IUCOAstoOEQ3NZODOdPJPrkYkcmMLM8Zj4ZkmWscure7S1VVzOdz9vYqLIIsyzlzdpPpxNU56UMkaUAvhSeOU/qKOLW4Uyw7xbrvdt934ue6wlQCDocTHz8RrfLt0yCNsa5ruN9C2249c4SIgbSlO8Yuva8dsRYwKJGhfO5CFcsNOwPHCjDWKe3t80/xpS/+Jv+/f/xPeOrpZxiPxwgh+MpXvsbFZy9y5uwZd35e6/cP+XAVeMsaCVTIgG8bTyrY2dnhvbfe4nd/xxOlHWWZVfHWlQlf+OI1/sUhZVuv3Jrz2uUDilzSaMvHX9jkBz9ximfPLiuhGDjXLOCA7UfOQpC+S4UJEEl6rvTtQfehVF1MrPO1dKVfpVAdK1Vr7SyT0BXjiPhveoz7ZXkvs5bvlNiUBhz7v1u17WH7XgACPGtnZRA24k8rT/HbShYhoMXv3ZgtARn8WHTnp/BhnORLD4+EyZr+Dd17EIKGfVpmuG3hfJRUNE3DwcFBrDliratNXzeNh7/EwrO0Sh6oN2mXPK8tJgo4D6ef9duXD5zSTuXWfsXf+vm3eOtq2yCh0atvtrEwq5y18cXXbvPbb+5w8cyIH//sRbbWVnWb6Lrn1hp/oxRC5KytbaINzGYzRvkAJTOE8YEUlf7W1W0QuIp9J0+cYDASnDi5jVUDDJK6qZkctM9FU9cugu/rdeC7ghwcHPgO2AVN08TAUzzje7BojyLLLOiF0UoUbKjoly4+QgjyPO9Y3mHb8Fnfe1hcDJYuh4+MG/2gJVDptNaJIgz3KbCWIAB38d4F/OJ9xm+dinUQiZQqGjzB2DAChHBleOfVHKUU29vbfPzjH2c8HtM0mqvXrtM0DTs7O2RZRtVUEYo4Tjkaat8Va3zCkl8zncPiMpyVFBTFB4w9chQGgbWWX/nKTX76l96hMYZ70U3WQtVY3njvgJ/8O1/jj/3ep/n0K6fCt6SR8xjGsQZtDZl0SlvKks3NUzT6gIPJlM1RRhGaqlfWl8oWYF2CQnCrlISzZ85g1YjtM2eYzCSTyjA9mDGvZi4xQWuG5YAsk+RZRpZlvhSsYG9vj63NNaTM2dnZicGddAxDMssqGt29yCoYJj1uumCE9lf9c8vzfEExh+2XBTZTSdk8/qzitpZDLO3HTFr4q/07UCybpvFeYKhdE2CGtIV0KmGO3/2iF21w64LvSilE0y4cTdNglIz3fTabkWUZp8+c4dOf/jSDwZDJZMp7V69S1zU3b97k/PlzzOuZpw8+ehm/1hisMIgsi9i2U9oWqRRFWRz6+8dOacNhwSf3/md++R3+6e/coGrev2VlDFTG8NP/6G0uX5/xZ55/5ihnSFhi8zzH4orihECjsEliDVGtxJ8K3GossgFZrpC1QPpu69poGq1pmoayKLHWwSUCHDTirRf3ULbW9DL63P1UYH2q19JROSQImlrpfRrXsv0sw+p7W5Eq7BD07ezTY7Zp9b9vF+bI3cpyr+TOUJTbqg20p9LvdtNNxkmsda+4HGTXhcqdx5ncdz9f8yxjY2ODshwgpGIwGEQ6aLyXh5zz/ZSjLFc20JZS1JTekFnXuEHeIVfgAxUqbxX2zfuisFOpGss//fIN/p//y28nn/YHv6X2WQQIxXC0QV1rJpOZu6nRAHSuaZgSrdXjZvV8Pmd37zbvXn6bycEeWtdkSpBnOUVRMBgMHOyhZLT7HUPCXbdUssN9Dso77eaSWr73Ovn7HNm+cjhsgQ3c4XBuKZ+6f07CW2nLFqHV0npC1rq4QniFM3mcAZOAWXffEz2reD8ijSOYESJ+HD9/P8rR19gJ8Ii1+MqLYaF0m0nhmhBrrdnZ2WFycMDu3h63bt3kW996G4FgNBrFufsotrVonydvLMjWowmJY9Xs8NojHyil/Stfuekt7PuL1QapGsPP/+o3+adfvpl8mrjhwr0sEoOrAbK+foL5XLO3t++CiH4bPO0PK737mpa2FK7d0s3rXHrjG+zu3KRp5r4dU86gHDAajSiKHOk7j4TawsZj9qEl22FKOxQNer/wSKoM+t1o+rh0un3oopKWXA3SLmJ0ridV2neke4VF0BJKO7tCReniKh5vxQ1ESzfclz610voAo2g3drIkyN4Xm7yWb+CyIPEQTZrk4wwMZ7QIhGviOxhS1zXXb9xgd3eXW7ducuXKVb7+tW+AgPX1dedJcu+GxvGJdU2MEyWt/DULIdDaUM3nTKcHh+7lsVTaqUUW5NZ+xU//0jv33cLuy7zS/Mw/eofb+zV3js5IsrzAGEvd6E5k3clquMAYTVVXHOzv0dQV1hikdNaIUjJi2Kss2XRS98dqlTV7N7LsHiz7/jDpK97DoIkU0ll2rMOlHYdQu6KvaO4+3PTwpe8pLWPU2OR60++CBKzfrWF3hrXi75Zs145hyiBJPl3wxJI65yGeo9yi39Q1Ve3orLPZjIODAwSCPM+ShfvQ4Xlo0ln8knsTys/aPnWtJ4+l0l4mf+vn36K5z2yIVdJow9/6+beXfxmhPFeTQaocA2hvVZioMP3mIlRbaxyDxLqKZ1mWUeQ58/kEgeNxt0Ed948xrbXiqvs5GMAxBZqI/6UPS9+Cded67+qq/yCmVneKm6dKN7xCYDHdNgTNwr7Tc+wf514WnKMsJv1jf/uLjYt4P1B76Fisgr/vemicVxMs7bCTGIg0BmxbfvfkyZO8/PJHeOONN3njzUtcu3GdD7/8YTa3tsiylnnxPqbtfRchXAjXGIPxz3HA78Nza7RmNBpx9uzZQ/f12AUilz1037wy4a2rk3tiidyLGANvXZny1pUJF8+M2y9Efz4LZF6ireN+IyRGW4T1yTSipVg1TRO90Vo3rgj8wDA52EUITa4EGusKBQoHrTRN7R8GZ6E4C8SlAtdNg8DGtlLhYQ0QQyh/+n5pcH02SFDCga0QjhOUctrvL7BHgpIOFlT6WVDO6XkGTDOFSw4/SaICSmtrp7IkzvbYiMNW+1a5jcwSh9Ytemy9pb0zjqss7aVj6OGZUMEvZAwaY10pXgUZjllRVzUXnr7A932f5B/+o18GqRiNxnzyU5/i7LmzFEXBbDZZcQYPVxwEojFGIaRBCYUMiluA1g2bm5ucO3l47ZEPhKX9D3/zGvUh/OvjkFpbfvGfXwPScFcH4Xb2jXCYs7Hp50Rcm0TppWwHJSVKKlcYCuuL0/mHKSqgXhDQHzuwRoKCTC2sZZDIUa3Po8gyy3rBHe9BK/3zWYWxHwnHXvxRVEghWLsAx/Rv3mMgR/UUOrAZKxKgelb2EaDuZKKHJyF4laKzQKTxDCklRhtGoxGnT5/m5q1b3Lp1i4ODCadPn2Y4GPr+i+lTdjxypOmQAPoxbuNWQm9pdwEnay1FkbO+tn7obh87S7svk7nmX7yx+8BdJWvhX7yxy2SuGZcZnSg9EG+7EOR5ic4L5lXtMOmI57mba/FcaR8Yk1JB6P9oNRgNVhOKYIb9u98k+wq0Ke92WqNXWpb30/3vK99+IDK1htPjhqCl1pq6rsk833yZhH2kvQ7vTnl3z/d+LVKPuqSeipQyNlBWyo110zRImS0UMAN6WuvexitiuQSDQXYW8rqqydZGKAlCG7IiY17NqOuaV155BWNhMBi6vIJq7hkoixDfw5aOcRIx7DY4L4TAGkPd1MwrgFXJeh8ApX3pvQMyJQ7NdDwuyZTg0nsHfPTZDaKVTNv2ylH6JIPBGFuPOTiYUQwyMmUBF5CwuMLuWaZiFD/LMjQSJQWYBmsqrKlBFL43SItdW2GwGHQoCelhkvlsRtPUnZrV0FWw90N5pfhyCmlorSOGmcImgT0QzkF7zvl0OmU0GjEoB8TKcj2LLMW/oYVJ7kZWLWLQqqVHSx3cu0RqnLdgpZSUZcmtW7fY2Ngkz3Om0yl5rlxXpD7UFL072/ls1YxZHLfg3bn9SJ874BYQV5p4OpmSnzlFoQTaNJTDAbt7u0ynU37wB36A2bxmXrmg/8HBhKapGY+GGN2gjXkEcO1+0NWVqA2FsRwk5DxnYzTVvOZAz4HNlXt87OCRfrT8ratTqvoBgdk9qWrDt6708DUbXHHh/xQolaOynLpuPHshROwDTBA40zhrWUiECCxUS+SrRVqWxw873di9JSpcDeOQsryKmXG/LJV0/8uCjcHS7sA4veBogHICra+/7/7fq9qNLYNekot2Cscu3y54td++Kjvx1cMnvfELcYC6dq3p2g73fhvRTdqOtMgwTp3sGbvwipCCTeCF8IfHzbuBUItuGreY+wQxpZSvG6+5cOEC588/xalTp5BSUtc1dVUn3tbivTwWDypc+sKuV+Bqop2TaSwB38QkjP8qeewt7dcu7y8Uf3pQYix84/I+f4heNNgG0o/7tyhLmnnJZDLDjjdIIzoLfNMAdeNufKYk2rimB7JIagj77aKeMcQnxhpnuQfYZJFqdf8kxa1TJdpnj/SPHSCU0PBgMBhQliV5rxXTUZT13V7X4w+PuMnRrTfjv7G283lY2JeNxsLCHiONRxy7JDKZVIT3CswFQpWPvxgPlX3ta1/lrW9+k8tvv4PMCxptqGpXZGl9bYwUa/684ir76EkwDNqnFa01ZV7QVBWzan7ozx97pb1z0DwCx+9PnoBnO/tjPF7HNmvcvH6Vp06cRpTC4dT+lioZlHjXkpESylKh6xl1NWVYbMWgprWmV3AqRETcd0VRkOc5TdMsLcoE3DdFnibUhPfpZ6mSSIs+he7rUkq2trZYX1+nLMrOuaXJNCkrpa98jiYiWtppgtHjI+l97Je97d6PcA+qqkL7jMWUHbKwZ+utAnHIRglDuRfqjla78Ji0bizSunreWhu0N2U///O/wNe//jXefvsyX3n9dQaDMUU5YHNzi+efvUiWKR/3cO33HhSYcNhVQ5cIEGrcGGt80pxF64YsHzE7qJns7hx6rMdeaT8MLHvx+IlJ4UUIAcJirSAvSvK8YDqdO+NABMvDKXbpH4RUbQd+Z6akw+90HY+wagJZLMKn+KmW2L2ULdJXVnfDNki3TReAfmo8dHHnFEpJLe08z6Ol7ShhS5ZBsbyw1V0HJJPjr5JHLch1r7LKw+nfn2AVwnJwqDtW/u8IlYjOx/HYAXIJWEmET1pLG+tofqF/p7Xw5huv8/Wvf523L1+mEZL1zW3W1jd5qmk4c/pUzD0I8OKDFrHwqC8++62l3X4VFkttNPP54Wnsj73SztTDfcCyCMG6mxfmY/wIX2heZa5XZHDtU3za2uS2i/h7KQWDQekSZeoKXzKekMHmFoDwEAUEvKVXHQbPBsXdx6QPk2X4eCrLlHP/+5RZAjAYDCiKosvN9v9LnfZVQcc7ncvy6zj8t4+rhMUqMHTSqokR4hI96Brb+7c/rkuUVu9rh4f7X4vli0hd1xzs7LC1ucWZM2cw1vLKK68wWt9kOBxz8uRJTpzYZjgYOirrIxF/SND/BNYM0j6Cwgfd3YLzgSvN2pfNccaVW4djRMd7/JzuxJUtgAgYrLe0B8zmNVr7gKK0COPrhliLNRorFFYIl4AjBZlSbG9tMp9PmezvcuKUwVqNtQKEct2ppfUEfg9wW4sKdUwEEU5YZm3fD+ljzuGzDve2d/y0rvPW1pZjjQwGzm330cKgsMN+mqahKIrO4nKv8IZbOGys5/24i6ObtYG64XCItZb5fO6bSlu0r5PRnSe2o3B72pzDFXYXurOiDUKnAV9jDEpIppMJb136Ji88/zzD8Yhndm7zI3/sf08xGCJVRpYVDIqcPFNUVeWhkQcryz1cNwbxOZDtxlIKDwc5L7Gaz1FSPuFpv/j0Gq9dPngowUgp4KWnk4zIBMsOd9cCmcpQKqdpTGSPgEtzdX9ZsAYbqv4FhScko9GQya0DqmoeXcpgbVtj/CFltPCtP6/AROlbv/cCJxxVluHQywKHKVtkOBwyGo06uHuKE4Xfplj4ndgvd/YYPnhWNrSLaVEUNI2OtEyHwSb48ALisRyMO+JRw8ETxkdymGBpVzW3bt3i5IkTIAXjzQ0+/p3fSZYXWKCuDU01p64q5rPJ0Q//ACV6mAFqEiFq5a47eDZl8QGsp53KxTMjilzGjjMPUopccvHsABFW2/hN4icZ9z5NLHAND1oMUUR6YPJ7b+BkmcJojdY1YaYKHC3QCEOLhifZV2I1bnsv+O8yWRXE7DNJ+tsGC1spFa3rZaK1qxte1RVFUXS2O8o19HnofabJnRT3st99u4j1+FL/3PssorBwCkhq4ixer5ufS3DtznsPBCSGeeerAI31xjXU6s4yxXg8Js+gmE4Q0wnXr19H+EDlfF6jhIvxlEVOU9PZz6Mg/jI712/T/1tLpiTFigSyII+90n7+qfFDC0Y22vLcuZF/l4YR6XwmhEAKRZ6VGO1LkWZtjN0FVtpbLaUPtAjLeBQ6q08Bi0RgfZKKER7j9tH/tO+I6xnZYtfLJvfd1aa+s6SZj8tqh4T+eFmWkec529vblGW5VHHPq4r9/X329vfY3NzsZEqm0MtRPQd3Hp1PVm97x709irIqPO2vXUowbdGmyWTKfD5nPB5jRVDgcrFGdbLbqPDpK3DR2TwGJWgXCCkEtTHoJp0jglw5eHEwGPL00+cRVjOvK27u7vClL/0mdWOZVTU7O7ucPXWKs2dO87GPvkI1n2AxDx3VXg4PiSQYaeP4Gc/q2lgfLflNK4+90h6Vio+/sMkXX7v9QIPJQsB3vrDBqAwKJ6ypInnfBm9Ck19rgnJTLZLSRVS8InITsihydFOjTdsMNFhMUkgMOgbtWpUN1ljMEmsrlaMEH48qhynP1OoNRaLyPGc8Hi9iyn6yN03NZDphd3cX6FYnTJX2smMf5ZpWnesdwmrftiIS7y/EGUKcoNKV7xaeL7/+6OYf9VitdOe0XYDOlHRNPPI8Z2trG2sqhjeHCCF4661vMZ3XTKZzrl+/Tv38c5R51rbPe6RvVgsLpfEZlWUMhsuahbfyOJFQV8oPftdp8gfMIsmV4Ae++xQBFukqa4j4tgMzEDIjLwY02lA3hqQah9Pa8V+v7v1H0Qq1xnO7jXsJPxWsQIRXOKzHVu5VIa/KLluWzHIY1zso6Vh+EyiKIrJFllv/zhqvfdLNsjKty45z2PuFa/CBsACTpPu/pxGzyesRlD5bI4gQbXExa7qLfivu04VLs26+Opip9RpjjKbzaxercQH38J2fP1LG8whVJ6u6Zjqd0tQ1SinGoxEnT2yjtWYymfhrEHe8Wavm5KrxSL8P4aP2mQqn3H7XfcaT9wEn8T8SWCQ21nfRT+ppw8WzIy6eHfGg8iSkhItnxr4sa2gZltywKAJBDqJAqSHr6yc5mDfsTuY0VmKlBCEBBSYDK52lKZxSRoJSmfvMaKyZY5hjRI0VBtcLWCHJEVpEa8oKE5MYjkLjuxNv2V1zt8vNMis93Y+zlhvm8zkHBwfM547hs729zebmJmtrax2FHPY1rypu3rrF3t6eyyIry3j8lBMeeOErLeaV1+Puk7WgdUiy8Zb7XdmTj6Ik85DegpoUFnNBXWIBKV1rmnlDrvLI80/3GKRVzgo3713npfSYweBwLwtCIinAKHRtaOrGP6caIQ15rkCCzBWD8YDKaG7v7fLee+9xMNlnbTTk4oWn+e5PfIL5bMbldy77MsYCkIcq4HgN98icsqFWfVh0MD5g6/q9husMx5BC+PLQEiEUwgqk0SijyTEUKsNYweQO8bcPhNIG+D9+9iLZA9LauZL8+Gefa83hhUc9uEbCK+UMIQsGww3mtWYyr9GBGijCDFfE3ldhwvueesLiO17UWGosjZ9A7hgSN0HA745uedSjymHbp6npR5GgHKrKdR8J9RbG4zHj8ZjhcLj0eE3TsH+wz3Q6RWsd09r7CT39QOMRr7B92XCONlpUbbT/8ZQwUm3mqq/DrjW60SihEky6P6uDUg5j6JV28BBt1+GIShuBEM4gCfEcKSC05lPKVbeUSpKXBY3RHEwm3Lp9m9lsxqAsOXXyJB96/nmauubmjZs+mL3subvPo2XTwm+hGfeiSxVqDIWgqlv+3W+EMSiryYRxY424Y3etD4zS3l4r+GO/7zxFdrwPXVko/ujveYattZS24603oOs+dR2nPM99H0fHoEjd83Tb1r10/6pMoXzBnLAvh3n3rtVj28vmcgpn3ItCP8wiDwo6vEI9CyFcN/qyLGNdkVWdc6x1KdV1XUdYZBmOvUpWXVPn8+R5C0Ha8C7uPXq396+o1oOToyuysAj3KZR3XAMDr7RzTP/v0t96XnZYZIN3ZL2tLJPCaLgGGOPxmO0T24zHY0ajEaPRiLIs2djYYGNj457m791Lyyl3AcX0Wjub+UHrh2cT+FCIOKd0o5lOJ4ce+bEPRKby6VdOcPn6zHdjv/8UwCKT/MFPPctnXt1m+Qy10YKLcZLALZaStY11ruxcZiY1QvikEysIXFWE/10w/byFvTYaMassuzu32RidAGExukHIzFnh1iAFWIyDu33H66NS46ALbSxTlKli7lxxEmBMvy/LkqIoHI0rz2PXkhhESvYfoJQbN24wnU4xxiwo+GVu8L3WDbFeYVgbEnRCIPPOOOm3q4Q5KVw3jXg/Alcbuo04wm/g3mMj0C6OLiNQUzdthTuBIMtdQN4YS2Mb1tbWeOGFF8jyDIvkueee5alz5xkMhnzsYx+jaWqKovCdmgIc0b3O9N/+36uyalPvzW0jkEpiTNPCZ7JbBTHsz+VM+MiWarF7g0XKLCYtZSpj5/auC66/9NTKMftAKW0hBD/6e84D+K7s9y8yVGSC7/voCf7Pn/sYly5dXr5RNEJczZEwPyzuYRmNRjSNpq5ck1+jQ5CizWDssb3BWgZlibENBwf7rPtpY4xGquDquySboECVzHrr/tHkMDZJ39LuByUDGyHgzKFg1Xg8Zn19vYNHp/tK6YA7OzsdSmD/GP33aRr+XV9r77oeR0nHOEj4O1D/QjEpKVePQzqX7m6knKUa4m7aGJpGxx0JgYNHcIaHMYbhcMT58+dZW1/n9s4u586d4/SZ02AFL7zwAk3TxJIH7lru/t4t8/QWPTSX3BbiHiHPImwfccxkH+Ga8bGDYLSFBtxSSabTKdeuXTv0/D5QShtaxf30qQE//Y/eodHmffWOlNJh2D/6e8/zmVdPrZgo7Q1rv01uqr+hoQGAiZHnFWJtjD5bLCpTSGlcT8h++m6LwySndW+T+U5ymOUdglpBUWRZFutjp1ZMPMOEAhb42+Hzo1h292b9deGo1ioL3s3jYWYfNjZh+qbBXOEx2aN0Ob/XmSWiUZHUVqdbBCzMHdesoWAwGCT9RUMwPA1Ad63qVXMsff9+JF3oHXyy/Pu+BIBUCIHKFMUHPSNymQgh+MyrJ/nIxXX+1i+8xVtXJtS6+8DeeR+O1nfx7JAf/+zFHoYNyS2Mfwe3KgRzjHUuEsYgraAshzTGUjfGBXSEq8rXLgTdRgfhERmPhjQartzcQTc1We66gDjeYKjb27+4u3u8Ugu4bxVDYsV766xpGmpPyVJKdTDroMDzPI8TtO+2hmNMp1Nmsxk7OzsIIWL242FW//2SsGg4eOTxhUb6lra1RH68q5rnlKGDShJ8GxYQo463c6SDh/8JtNGRyunwbNEqZY/MTCZTVCZZX19nOFxjNHKJKGHeaG04ODigrhv0HZLqVuUOpHMrLBLLPje+HG1q1Xf354PYwmeMBvzb22suj8KJUq7n69bmFkX+AS8YdZhsrxX8xB99kbeuTPjFL17jS2/skClBVZultUqkcKnpjbZ85wub/MB3neLi2ZIjK0ARY8h+/z5t11gkrhmCNpZaO6XtghPhx5GCv3C0wbBkMq85mOxhmgasU9r+EBCnhiUxQO5JVinL1AoK+PV8Po+KOsWvg8UdXPD090BnUaiqioODA27fvs3a2tpC7e9Vcr8UuvMWBI7G9sGRcF9C0SghpK+NoYhqujfE9zLm0akUHh7R2rmvAoRwi7sIC7qB+XzGKHMMoywrXVuyRIwxjsOd8PjvtMD3lXEfWltmsISgfvBCotLuX1w8bFepCxwsEiASV+lTsr6xzvr6B7xg1FHk4tkR/9YfepbJXHPpvQPeujLhG5cP2DmoabQlU4LNcc5LT4+5eHbEc+fGjErX+cVxMnsSTOkjSigaA8T2Q9rYeHNc0NJ6WIQF68ZZPy7xxLFG2oBlKMWKiIB6C9bcYSKTbLfKKln1u2B1pzBIyuVeVlmwf4ymaeICkJ5H+oAts/qPyig5TATdhSTuK4lLpMe6484eUVk2lul3IUAZtlmxk661zd3ZBV1YAbCBSreEYOkilxEOCZ5B+H0/BvH/Z+9fg21JsvMw7FuZVbUf53Uffbt7GvMAZsARXiQogrRJEABNmiLksBmkCVt+ypRCYf+wIxj0H8v/HOHfinCIEaYirB928I8UlKggRUsyqQBBiSIJUCQBUAABYoCeB2a6Z7rv85yzz967qjKXf2SuzFW5az/Ofd9ze9049+xTu55ZmV+u9a2Vax3aB55qwhGVGTy4j2InhLDeQgNXylfyc/kQkFBVux3on4G2kvnE4ke+dIof+dIp/tVnOtMmNRL+5BDBAZNn6OiFNjDwDEwmM5BfY7Fcop5OYKPWAUkixRwcHkJVE6GqLKwBXL8KBX7Zw0bgl30k1C+A0TWfZo+mIuFhOqyPiHDv3r0UGSKOR9GUy9C+ErCdc/j000+xXq/R933KQSI/kljqRYj2SwhFwpHKutFx2iMTtfcexlaAIXi33/mT3yNvAPmWAwAQOudTUioQwah6oN57mHhvxlh4x2jXa0wms3RuuVdJ63sdRaO8f90W0q/lO13Ig32oHiW1WD1zGlyaQjJyk/FWJO0vkQdMCHN0vYNbrdDMZpjOtldiBz4D7RcsRYdRoC2OimAmWRAsPICmmcL3HsvlGqeTJp2HxeNMxWCgUCfSWsD3LbzvAQTQDkAvanmZEOnZnZHbBrl07Lt37yaQFpNTfy5FDzLnHB48eJBAWoO2FJ/dNZk8zYDd9ozpB6+10vxMMhZFktpQ3u2e9tx4F3xYezGA3vvB+YN1Nsy/Tog8sPdo1122PJEdmd67lJ1QjtW/x+51u4UhxQnc1pqmge+XVBK7RlTwUYXjpJSdOF49vHPo1ms0swkmk88ckS9FeMdfVG7d4tNiDuWV2NvA7W3pBBpuhfcmSC5iqcyuvk/7hwEY9MVnBzS5Z01RCGALuI519l2cuGjQwklqyuNFOx7HJIN2/LvQIG+SZL71evHtYxEYo2205f0xEHK/K/ouTRoYgnZ25g25PopfMm/ezy4/zPD2nm6i36o8bGzarijlSTK2xQ4fymeg/VyFt3yOQuKGlBp2iCY34JnQM3B0cor1FXBxeQV36xTMJjtFE9hTLpYQeT9rgElTwbsWrmthrYOhSvHrfhBDokOiwq1tahuDJys65thAZQ7VTmazGY6OjnCICP3QdR26mAhIkkhJLLZw4xrYx/jt8rzPS1gBxauYOF62aPBKjl+iWD1j97HXbffQJwmrWEAYMda5shbWWLi+B/d9yNHBHp49yJNaqq6vHc5Yio7+KO9zG5jLdl39SCxE+TtEFalrEoHEIiO9Ajo7LINmna/lfbhWWGw2BXvGk0fn+Pzs9tY2+wy0X6KE92YCTEfQ1AF5joGjkzPA97j/6aPIpYbYD0NRO85eoeTjIIQSYpNJBd936PsWxvUwFJIpsWgh6S6eHnjGgLuM9jg52e8B1+Kcw3q9xnK5xJMnT7Ber+G9T4tuBLh1NsCXXSX9Oc4Br6UMIiRM/iyWUgLu4VHQ3L+c57riAazbdQCweM7KVqishe8dfNfDcEzC5D2YCc5sgna4D/ldLr/fQVyMKCgSPSIl58r2AELQQHD+c15uP7AmtakcLWE/VJaYg2XaTCawsyNcLJZ4/PgC+OAz0H5JskfT3inhZVtrQcagHyyz12SINs9ZT/Jx6a4De6f2jv9t8NlPL7sGgB4sY4NBf9b8tfyUuUnCsw0jRMoBue0eri/jmuTAKrmBxPY+QBO+eKxNSazGLeckotFOmLhmEy0ZL05IdV1EjT/5FIb7bN7rVgZmJ02i7+dpZfz4MAJ5iwM7tA1FI0YcqT36rts8lZLPQPuZ5ZojWNfaG5yGQLComylgKlwulmCYEMsZV6XpsD/NUxNCOaaTkyMsry5h6ivMjmJqSIjzs2TUns0RqTUY0X4lzK+kMAaPz4yu67BardD3fdKeu65D3/epzFgJ/tqDr7/bNtiencoYHhs8/hwtmxuG2lHGgM3a4CCX7QzecEg+m9M3IG3b9/G8YRoIRW8B7zzIhVBWTyGKJ2SRlRC5MBiEZhhbQTk62Wy553L/Ms5bR4/EI/KxavqiaEznqSp8CueLBYsBWGNQgVFVwDc/+giXi+Ves+4z0H6JkrSLpB4LAIQfIou6mYFMjfPLJZgoLDRgH3sBsmbNSJ0XxKhri7PTY3z6+AK2voSlwGIj5vjN/ZBQoP5TPUMJ2vK3gHbXdRtUioBv27Y4Pz/Her1OebTlnNPpdJBuVQZhWVn9hdAjemyrtslhfx5gKzzX87/+ayAlwFVVhbbPFEBIIX3NjjPS1xKYRcd41/WRHkH00cT8070DOQ+wg6EwcZo4Fth7xDyuYbsxKeIEyO9tV4532T7qTI39L6wKHUaShOPy4+W/hcIcH2AyCSSfgTFgIlS1x7e//W1crdY4mu32B30G2s8sBwxeLj9u2tgMBG07ZVQ7LKWTODlC6J+Fc2t45wozsexdecBsO6eWXWF1Y5RFBrl8HgF2HUsrmrYcJ3zh0wLyIfzlNc+IcuAFU3dYQu5Nl23tNu6cLtM9jCHyYfac+HIYw3BCvdhMU1M5YoS3aqPPEmW0jz4p22mTqdkRFjqY7ML9i7OSEOiRtm3Rdz2wu9rYZ6D9/GR/RxkaVFFbAMcKMwCsCZSIrVE1U/TOofceVpakI79kKuhXYwzmsyna9SO06yUIHgSv1AFCrqJzPdlHNejv67oOhQouL1PUBxCWQwtnLSsdZXm7APW2WFh9HXnW5xkdcohIBRv7cv2fr0S2RQYBRTQFkIy2jf6h+92OVxUAG/Envl8yg/C+fGaCNRaMTL9Jf6ZYsOFZLbAxS1JTIxqw0wcaPn+eaGTUxkgSz/AUYrt5sG9wtDvnMJ/P8d777+28x89A+7nIYYCdwDoKI4YMsYcBg2EBsiBTo2nm6HqH3nnYqgFzH0Fen2nIPR4dzbFaLjCZLWDJAV6BtqJhcgjS9WQs/lVvl9Cl5XKJq6uQyF1A+fLyEuv1OvHeAtJChcg2cUImDlWdW7aVq9T077H7va7mNdQT87kSPXJDhQqALS0p7b8YPTbJMEHZuLYd+yJC9IhjTisiKysVclR8duzt1lbo++D/0CyVMcOJf/89qrst+rGOHtHb9E+8KiR18uY5N68RnKohAZncD0eNLYB2j1vHx/j85z8/ep8in4H2c5MtHYWHe4wqHYzoNIxx3GRgbAXPQ4pBf9IcNSPzb6FWpGQDzBzhVsL2KWQXCMogF/pDZ4uTBTNAzhtR8ofPY3n6sznGRIYaftK8irDLQWDPTRDaTi8l51ryzZR9a+S40VNli1G0aVb7hsiRkRNwofmrfija/nUpsjHALn/vPOeAD9nnKOLidz5erlFVFpPpZOc9fwbaL1GkqzMHc45E0ybJRRIiS2xVY350guVqjUldYdJM4X3YX3cgTp04dBZJoQl4ONfG84n9CkBXxR72+WuL1nR1HKto0rIwJpVAo1BaTLSYUiPSpucY6I4NIr39eUq6j2Lb5qX2DdI3U0oNc/M79Xf8PQqy286fPhEcM3rvgpYNmdBjuxa54QOwB4tHqsUIxRj8QaGvuz6X6wMwUASk365Wq9F72xazHe7LDP72Hui7Ft7HCcOU4F74BEDJ/yThjEQEjv397OwM8/kM+9rwM9B+ZqEtn0e2SgcTDdiEcki5Dh7AMLDVBKdnt7G4uo9JbXF6fArvCdYYZDZRrbQKqjaMCd5ogofr1kAdUmkKsHuZJBDvYw9XDWxymprfA3IVdtGuBbQlT3bXdYkHlW3y9xhoi2a+DZgPDdV6FhmjVQSshKm8KYr1mIz5EQLYAGFF35A31u0x5pwLMraV4LxH13Pqj6DATYtdkzToNIn4UADYe6UEiRM8FMPuijhn6VvMoWwdAFxdXQ3eb6lIlEmiNKUnq0T73mO9CpatMQaNrcAIVI9YAgQDZqcsAcT7DJOJiVSQ9x7vvHMX8+NjfAbaSsYcLLu275dd+yotbEQzkX2SphxHBSNEkFR1g37t4JwfHKMt883zIc72HBNHCbd4PYg5pA10tMgYv63DrDQXra+xCYrXM2mf9Rn2nTfOhcP3p+349IkHpvvNlH3PJu+Pi04Z+19UWFIbRfqcfeayGXGlvDQ6D7lx4bdZX2MwOJA02LSJcoy/5uS3pQYeXEv5UXSEU6b2islNk+zlvaWvyoo2+Y+mqVFVdsSiG8pbBdovUsZSMGVmLmsbBgSOGkECKhLTSfKMGFTVBO2iR+ccQDaS4wzmQH8MO4ycnnA8n8Nag8XlExw1dwP1Eo5I9/BcnneE5yudgmUYn96+a8CMXet5atL7RF9HY3ZK0coMK+14A9Vu4a7DZ8lrvbmMe8vRyEU3NiXDcDhH7z3arg9aadSW66oKY2cEvEIdRgXM6gVJNaSqqkLaBwoKkFh4GsBv3769UehAF9gY87fon0D3hYLZbduiXa/RcD0wqzdSi8n8pRWU+Jje+1Slx+/x63wG2s9FMlc82MQC24nDAJFJFSu0QwdEIGvhWwJgMZnMcb5u0fZ9iN2mKvnamYeREz7m2iYi3D47xaojPH70Kea3vwCiOk4QNPDpP2vk2pilMtbhJeRP7y8UiD5+X3zty9Rid1FC3vu4qMO+ED79VUvibH32mRgTyn3plKeyb7K0RqJKRiN6whcAQk743nVYtS3E2jSGMK0bmKRpJ30lXM/YoCDp0lLxOnVdYzKZoGtbVLESjCmKb8j9v//++xuho6UlqJ9Ttul+6j0wm02wWCzw3YsLzOaTUOYPyiIbUbzDylpdBScsGqrrBkRmg94p5TPQPkD2h46NbS+dVBHAaTwpqmgfEu9hbRVqSPo4PRMBrKpjpHlCACacpKlrdM5h1a6QCuvFC8i5k65zDSC8jma87/sxM/RpzvM0+11fwnschL4NvucbqW1rydhygA9kx3eZ0cgUiRQEyMdHq8y7BNrDeyn4QXVNQwbGBmC2EbRtrMwu1ZNEiZjNZlsn59F7H7Eow6QWCjJ4lVo20TsD61b3GqHTcrukyZKAbWGVIm8NaD8PHnR7p81OqngmAHlwD43tfAwQtTd2IGKQdyAYNJMpKjJ49/0PcDqfgCk7M2wwVCFJXnlwXsJk0mC5XmJ1dQlwD1lzxtKHyv7zmVxLmAd48VZIqMwSVrIG0NsxTkb7F2ljE1C7eESnIitIJwxBOfbbDe03derw29gQ9z+dTgNomwDimqLbV3zjOhJAWxaEhSIO2bKmfOOjdFHh3RKlwEvB4O1y40H7ui9DtKny5W4DbGZ1Dd2pQHmEM6WvU5/mvFih61p479ARcDKfYjabYnqrxt1bPwz0a3Dv4XzozDaaX5SUbwJ8rkF3dDTHxWKF8ycPAe5AFCYE7zhQ41Q6Qj6TXSKTYsqOHAdWXmNz8xvTWgPPBm3bYjKZbvguhiGSI+2RLMIArsyxsLUhOA/0LiaCQl5bwJEKFPAL4JjfgfgXiDnxJ3VVwRqL2lZhVSXlMLx0K8W9l9sPFXG6yqIez5KbJoTdekiIrkkcNaVjpV/liUf4dk+hovwuufGgXcrTRI1sixGORyJTEGqCiJzWhuWstss5UzrSaIZXVY3ZbIZqdgvt8hLL88vksBxMQUnBpnTeuq5ABLTtCog5iDcOUUV+n6cc2vHfFC44OUCB5EAC8qQ72Pdl39xLFOFxc+GB4mlHfBphc9wu8cvquKxX66yB+neeCNKPOi+PHEPGwJKEvdJug2ALDlxXSDQx6JJ0lOeptGN5pOpLaltQCj4D7WvLdYE9dabNbwamXsi90QG2QszxGb3dQVM2YEynM9RNAzIVgJBb2xgLNjZq13kayEo8JQvUEIXEZ/DwvgP5HrAxnWTUcugNAc1XLdviwd+USed5ynjsetYXDLCD249fRO1aNomVmsJEhcIgwOkLIPZztX9QdLc7EzhpsM/02BuiJybmUKmpXbeBNpKwG5J8QmXIbZ6Mym1EJvD78J9x2iJlY2+TMr54W2RDNglJcRWZpyaiWG0mdDiOOaPX6zVsM4GtKlSRf5tOG1R1hYqAygQPurEWcBXI1DC2BlcVyDOAkGhJ5+5FBGSwD2WaLAD06PsVyLdgM0t5fMN/Ph33mewXHbzFzPDOgSu7dRK/EZKUjfyMsihKxz0zUwLI5F9UYyxQGIPTJCjznuE8w3kXFQ6DShaapXBYn2CPwSmvearcHq9bZqkPaV4ZVD2fDF9j79oYg4uLCywWi5RjR6ww50I4IExc9LOVp87Uqvc+0EXVWxbyVwKy7kC7gLsM67mORiWBfQ8uWvzi3/5N/Le/9m18+9Ml2j6DflMRPnenwZfeqfAHv3ob9+4cg5lRVRWm0ykmkyZWUO/zvXoDxBBB4ehizBQSxcIctHaOmrbJmjZzD44USWJlo3Z+g+HmqWUnCCcGbDz38m6+qdSu3hARpZixMYZku5bIWO88oUx/Qb9UihHy2BPQ1t79dFalaW9cSbOT6ua2rXAdHHpAZMyYhNqmQdPWE3ugSvQ18pjNrGZsLQoTW3Bm4jN6RIte5bRrH/171z5AeAG/9BsP8P/9xY/w6HJLfCUzli3jw++u8OF3gV/4tUvcPq7xZ37q8/gTf+hOdnoOHDbIgG0sYoW81NERO7djREcNEEICPayxmE8nWK+XQNPCVj7kOuGsNd7U6ivPU7ZN7pm7vK483VGvXjgqBLlu4oYc8FiKfQaI0fdCBYQ+b4yBjYvB9OmSrxEIfV2lTpA34TlTgGG3aOVuAW+9tF3/6H1LLCi3EeUl8yFcL9+1cN2HTgbJUD9AWXwrQHubVj0mg5jR2Ng6TaN+8d/43gJ/+W98Hat298w4Jo8uO/x//n9fx1/9u7+L/9u/9d/DV7//trpB6bYVjKlR1TVa+FCJJs7ExprAgzFnxwsY7Hs0dYU7t05xef4IXJ3gaHonxY4yM6wVLelNBJBXIUNt2rPHINvfQfKmAjaiFUdomiblQ4+bEe27rGVz1qDz4cn5kuJDiAjrdomud0ljtybGUTNyjh2hXziGuVJYuWgrm+tKcngngY6MSZ2SgzDeg6IujQkLWCS/u/xIFkqZmPTPIGBA0aY+lgK0MRmabA9J1CJVau2GBRJaTapLIaefYB+t4+3yVoA2cJiWLfuJbFul573Hf/AL38E/+s3Hz3xfV6se//b/8x/gT/zBz+Mv/Gu/L/NyokHHWNN4c+oeA4/O0pkhC28Y1hrMplMs10tMujUIXuGOUCVvKIC8Ytlqmt9k4R2aNsUl7iintkLLjfsmmpwJvXM5Wx8CtWeNiddLfFTQPpEjSIK/KCtSSaNmJJU8abrqTWmlS1dPEmBu23YDrHWxaf070Z5Ng6apN9IKC5UpE9iu0RaeSya3klbZlBsJ2mMc1r7IDzkuhXlt2d97j3/nr/4OvvNgPLXj08rf+cffxte/c47/x1/4yaAlAAAbuN5jvVqD4TcVOxZeLKMIIZQdm0xqPLlYw7keEpIkZq78DFcCfwbiuyXTVqzwZHezcfH7zRSJd5bqKhq0RWlIThUQUJSaS+dR/zHFaCr2EKNF8oVgoDjFdlYbUgiid7Bsk9IChPUI69UaxJL0YXiv3ns0TYPVajWqSWvaJD07DfOS6GK/sj1jx/CBD/KTUNr9ILlxoD3mbNhWgmgsIqTML6DPw8z4d/6j5w/YIl//+Bz/57/09/Hv/sWfDojKButVh8ePnmBee5ABDBPgTHIomqiZSHxnbQnTpsHZyRE+/PhbmN1awBiGZ5d6h8EQsD+T3TI2mJLGuFfe/IaW8dNUNRbLZVr8sZliN2jdTmXQC3l2Qs5ootxvAYPlukXf5+gQawwqa8DeB1tQaxicnZSyunG9XsPWFqayqQxZ17V49PARXB9L20WqQY/nW7du4dGjRzsBVWOHxo8y73t4ft0Wec4xZAAb+XMoB6T6LFr1GO5skxsH2ofKWOPs07L/g7/zbXzn/osBbJGvf3yBf/ev/jP8xZ/7MQCErndYXi0xPzUxspA2HB7skVDYEKGuLGaz4Ijs+zbEdisT7brFtN9W2e2Mvg5wv9ki4GSNQd/1g2mIlblBWZXO44jUtCWf4+/e9Qj4H2As0CME9BJNkg4LfV87GYkSMCN+xz7kdL+6ukK37kKNVe4HUWPy+erqKmnJY9q0iAC21rL137EV4L0batociHlDZkgn5SYaa+ltXwzv6aC9bpDsiwoZ076ZGV//+BK/+BuPXvTtAQB+/p98G7/24SdYr1q06xbrdo22awPVkZCCEj0CDPU5AsFSDP1jD+96bGp8nyH3taQIaQj9qGjDm9ik6plLn5BXVEmp5whg51WMcjKCJD7znP0zxuTc8sPoLMVJR/QWukYcwsWrSde3KlGU/OgqNBqwtylx5W+9b0m/bnD4vIk3A6gvnCOilO2L7HorNO3rhvGV4r3HX/4bX3/u97VL/u9/5Vfwl/4PP4Dzx0/w+MljNFSB5hPUkwkqY+Fi/UiqCJ48QDmNpTWEpq5QGQb7Dn27RDXj5N0P9ZG2FajN3O1nEmWLM5qfsfL3myKaKvDew8ZMeW3XoeJYiFc7ukvN1ktlGgDBLQ4Xq9szA2RyYWdDMXwPRbOLmwexSIitUlWkMamrCkxAveUV1XW9VYvWUgL6eDBD0NK9l6yasRwZ+4OtWo5RYOaAA94K0AYKT3bhqNwXUfKPfuMhVt31w/qeRZatxy/86n380DtLLK6usJxYzGsCN3VY4h4HQubGFGdGFPIJGwC+R9+3qIEUp73PO/0ZcO+XUU37Roo8Y05qJNO9ixXRUzQTJOiJ5IjBGcQVHkLhwspGiX0ysoBscES8srZwgBRR5Z0fXFuLNRZkCajM6Ngfy/O+S9vetU005Iwr6WIjY22kXErh9Nwnb4eqUMi+lVHMnEKCvPf4z//RJy/7FgEA/8U/vURTNyGxe4wr1cAspZW0MyM8RPivrqvgnGnXEO8+gdLsP24aPgtJy+rnzZbRiZyH3zPn/rJn3n+jRZ4TGDrm0ttOluzY0QLDnHZIYYOUiQBdJxVy9qIraQAkUIo8iYxLphciNSPX3kaDjG3fR5nkNtETwfB5tWM2RaKkfYbJ4lQT7aVFRN460C5fSBne45xD27ZYLpe4urrCx5+e4/GifyX3+mjh4KszvPvuuzg/f4z1apm800QWZGxY6MAxxtXamKUy9Paz02OAHR4+egDPDobCfmMc4POTG4xequVCFMHLtb5elXjOSYzquk7VX3TMcpAiV4/ytzAzXNxPYqIlEoSI0FR10lYNYifXRTxQWDcEdH2gR+QqEr+dx/jwOfS4H+O0D9Fyx1ZKAkHJ0+ewxm6khZV9hevOxw9rUe6Ttwa0x2bTMZGVUev1GqvVCv/oXzx+iXe5Kb/8TY9bt27h6mqBtlsH0AYQ8gvngH4i0YA4gfZ8PgPgcXlxHgYAxTCkAzrGZzImORTipmvXWtLKQwRaQUCby3jswoLT27NGLjnkO1GNg9Mw1kfMwQDjVps4NAlxcY4CTlkxma+/SX0cggFb26GgWQZO2RjmmH7MrvOP+9gOvZ+3ArTHGmNsuaoOmJd6c9/8pH0Fd5zln//uAlVVxeWtkiQKRV/Opqf+Wwqk9q7XRtk2O/atl7JZy2iAcnWdaJZJ83opd/kKRMx3Ck7ABHxFkd+xttuknCnTI0pkQZleSJP00BEs05NA0lyFAnwGpSTTXeM5SdJTbMEUfQ4d3bX1/kefbXdPemsckVoEoJ1z6LouNbaAddM0OD09hbUW3330rVd6r9/43hqz2S30fQfn+tjhGcaUztSQ1tFwVGCYcXZ6ikdXF7haLGIx2pCch2Ns64vhSG6WFl9qjPJ4vtQyi+9vkhjVBnVdpaXnVVWlCuJZMtcPRqqWZIhScjPHjHXbpWA9Riz27B04pmkNyknszKBECyYhKdUXIC7kHjFJ2z5kBi1DfPcFJGw6IGmAHWEi8iCykS4xKeJG59VOzza4l/T1Xp3qrQRtAey+7wdhQ1VVYTKZYDqd4vj4GJPJBG3/annLdceYTKdwrs9LbL0HRZpDTMngkdf3yjg+OoI1l1itriL/GrVDz8C2iL9nkpuDWBuhXVsc1m+DKJ8eKluhDyUKAmhbG6q1s8BvENEiE28tWgIRvGe0XQ8ocDXGArGPl/Z/XrSSI6YYMnFmrZV13pE9orXip9HMy8gzAedEAbGPpcjyJDKetjbH2MSRvBe1bxxobxtIY4NMV2kGkKo1S8woEb3y5d7B5DMwVQ0G0DuHiiwkBMQopYLBoWYkJJNaLGgKgF0fNW0TzS9dRgt5lpfvSrUG8TqpfzMGf6a/kp70wmSw+GKHpjQMw9rMq75x3K7Bu6HqZbAY3sP47m+0G0G90rHoC2bE+GLpJ0WmzIL2ZoSiBcIOxIXuWy6sLZ0ItDqWWTnzBP6MCXUZedhhn6sMjarNUTDcmumzoGNx7jvFkYdEkNw40BbRjgatUTNzMusmkwmOjo4Gq6VC+a8KdV1Hs268lvJLew4QPCyOz+7BmQqPrxa4e1qBiWEAVHGICIQ6MgAsPGoQDGoYTAnwqwswWRg7hTMybMKQ0ZkRwqcwtIwaSsP6fsNU9mlwcTgf4PG6rZUfXxQxLrIQZKsvJHYIqbxSWSF9sYUiebMQe2zxSJjc44SetG4bHrnvYeoqU0dx6jcI0RxwPsCytWiZ0TKjR1jjZYkxMQzjO0g2yt4ziHOfClRL/KFQp5IiPRI0WEJFwX9DxqCZNLhsQ13VCvXOZ90Xp72jkeApKkcQJiez8SFwhJWFO7QTmBkenA1eDseMBpwUcuNAu0zmIlSITrtIFFIqTiYTzGYzNE2TQFpEBvmkseiXrybkDwAmjYFHhaPTO3C8xvlygbu3TyHhUBYUFtqwAcPAkYmzuAexQU0GUyL41SVQTwFbwRPBIHzPNHSyccpTkoslCDRL3mSGVMPJ32St6OVo24fKLvN36+KqHbcecCuoiJ5DciRrTXakbRy8qXe9caI8g6QcfcZaUEyTYKoA2hygV3aHpAz2IIAMOgY6Dj3IO6CugKlhGC+pFkJooNU6p1ewl2nu5Jg3IMgKX0MGddOEFZfs94L200pSe6IlEbTm3O9zimUvdz44No2c1LYc67sWmQJH5MZFj2zz/MqiANGytXa9Kw/BD3xw9qoeJVz/vRnAQF03AIUEUhiA5abJDiD17EABmejEjLP+gOLYcnwho8rjK8Ch58kjb4L1kE/crnkV228Qt71d8zzcUhk5KwDFPWPYz8anNcroPPhu5J2VV6OQrvhp7vc6MdsJdaNWDZLjpe02KUS9ZbjoJu+4u2TbDdS0Ratm5gTI1locHx8nzlroD6FCiOLyXIk/VdrZ7/3KXfza7zx4Zc/zI188Qe8c7t55Bw8+WeLJk8fw/oPAZct9xlFgjFAd2dqYTCY4OTnC4vIc1ewU1fQoct3h/HkZsB462zTlVwtOTzsIgRxHK+cRS0q/a/135mt5cMyAJFJKwdM6tN4ESdokAQP4lElOwmWZghrI2fmYE0plqlKqv4AAYw2qKuYuKXjzBF4b3w1j5LV1LSG7G/f/imUA4hHn88pQk/xPsn2X3EhNu+s6LJdLLJdLtG0Lay2Ojo5wdnaGd955B7dv38bJyQlms1nKQaArTGv54z/xhZf+DFp+6kfvwPUOd+7cBRmD8/OLmGhHmVsDB9uQrphMJjg6DqDdtesILkr3SQNMS9aMNuXN1CrHBoJQZ2OhXGMOTtLfyaT3hrbHtSVpgcN2YdaV0cWVlttInG1ylKSHEO5flKqNy5H8N27QbUsUpUH79YvuUU8iyoRabZqLn+w+y40DbSBTIVrTLtMzlpTImDAz3r09wztn05f8BADAuHNS491bEwAEaysAJiVU1/dYduvkpQZiRjQL1/exynNOLh91lrhjcfkY/vC69PtdUUFjUq6Ae2HCw3tQeH49U/tNkFEn64iofcr3kxeJZQtvQMkga+mbXXL7ON0WUbTLn1FaWPrz4YB/vQGSz8sDZSDe1UHNe+NAO9ABJ7h37x7u3buHO3fu4OTkBJPJJGnVgDJNkGfnUnuV5ex/7o996aU/BwD83B95D4ZCXoaqnsCYCswJEgAmsIsODFnCriI6mMOqyPlshsXiEl0f6kUqvxI2Ol3CcErfj2nhL1vK5cdjg/G6ICnOat0PUjKkAwZv0jKv+zBvmDAPAWY4IebPwllD7VOGU/Zdn/LlgABrg1Klbbuxt7ftfetxLNvGNPcXK9cHbrGWDRmYlOc75k/ZE0Jy4zhtAeejo6PRQay5TO/9YEWXzh8gi2/W6zV+/5ePMK3NS0zPyqiNxx/5obMAyFUD5gnIVGCf4zoAhnceVWMAMiHHNoTmCedp6hrzGeFqcY6+WyOs2ApcZAJlKt2a0QnEbuAMepmAPRZzXWpHZRjfNu1JvitFQLrv+2FsvqoZOH58nhT5LQBtQPn7iFIipBCdFS2/SM15pY0nTtvYxNV2XResPoSQUrGExZcn0SD7nHHhkhm0dS7sp6VHns4vcf237z3DUARtE8IUOVKURAD25Gm/cZq2zLTicJRIkW08pRYN5jo1q3MO/+afev9lPgb+xPd/OuAJgeisSCuvwjfyP9HQ9BKhyBsGszQss80yTHb5JsnWBTKFaMfi2PZdMgD9rfELZYbyzXNe3+R+vUTis4FEaGzsI6AbLDMqfNslDw5FtcSzbWubPfTX2ORcjvMX2vZjXSgZvNv61/b+ItEnu+TGadrT6XS01luplQ2XnQYtWxyX4uHWyaS+/MEJfuIHj/FPfvvyBT8B4wfvrHB3toZ3Hbx3MAbwnjCZzHFycgvnFwvYoxmquoYhGzpATBXKpOgMDs6NUMnGwPsObbtEXU3A0FQRlHakJWv0Axf+K5Rd4Oyc21nEeezYsciRbVp6wKTsA8iA8PTP88aIekbRtHU4LTOHmH9Fr22cghnOx3Su4AxQyX8So1EOcMgRhuswmqbZ/wivMMJnyF9rBcAD7AE2iSraJzcStHc5H/SLkwEu2vTV1RUuLi6wWq3Q933S0iVE8H/zJ7+Ijx/9Dj56sH5Bd8+4O+/xM9//BMslw8UkUSEZDWE6PcLJ6W08eXKBeVVhWjWwpgI4rkLjsFqMQcmECpYHoWkMvGvRrq9QzY9DR4FBAmPNlWM4eErNct8zvGhw1zRWuqrSqMY06xK0yzCxEqg3AZ5HH0tKZrEGmxsmA4uPCKm+TIwMMdJ+YWs6rrROGMO6kiZRXhihmaL9wsN7kPMmCzKmUn4WeTFAPmIJMsNYGn7FQlUyrLGoqv1WwY2jR3RljcMGYxadREpr23Kuqqrwf/lf/B58390XEU3CuDt3+HM/cp7+Zu9iLmMAIBgbJo++71OmtdwDtCoU/pNBQwTYUHssFPktzN2BKCXn0EoazyLbzFfNYe+jtV70vQDjE5eOOEiiaYGbKpthHeE3l32ykGiVZHjeEbm19x7G6ZHw1fbokefef3aerri2up/BqI3ALanu900iNw60x0QPLk2JlGFhy+USANA0TVraXporxhj8X/+XX8VP/ujd53V3ABhfvdvif/77LmFtpjQuLs6xXF7BGAuCwXQ6x/HJGRaLZUr9GCTHxQ5CziLsWiKcnh7BuxaXl09A5KM+zopP3N2ZD+vqL54nKIFc/y5DOfedRywsOUZMbX2+wXkSIG9q+H4L2N8EGbQnZ+3Xew/2wbLp+z4UJNjR7IxCYxYPeBGdonbefk/AgB553cMqg8WrQpArq6JmQl+rY/WefZbDWwfaQUv1m50HwGKxABFhOp1iOp2iaZoUJqiB3lqLf/Nf/Qr+4s/90EEJXnYJAfiTX36CP/6Dy2T2WxN+Hj96iKvFIpZQspjPT3F26y7OLy7RdRm0xcSUWVr6r6FAkxgC7tw+hXNrnD95EMP+omkLgOA3tKRtNIPeZygvnhZJVx/RwnU8fgm227R46Q862kBW62nQTufS18VQM2dm+Jf0/C9bdFuHtxyeU4BaInA4rTqlyCYNV5GKyzb1rVj6jnUqzUTJ7Y/KMTROj4xFjL0Iuc5ZjTGR/pAAiVqBdrjHpmlARGi7bue5bhynraUcVOWPHrwAkpa1zZkFZMrlv/m1T/Ef/p1vRm3hWQYr4+9+4wwdL/HVd5ZI/nmiVMxXtgV+vUGv0k5m5UZ57JVjEfH7uq4A79G7dnDtEP5HyFn5aHD48OGRv9m606uRUvsexBZvcS6OxRSPAfxwW2wrtWnAxxa73hzZHgkB6Dag5CIJPsYc769/hT2HtMrgCuLQ3AW46fDt9Mg22RcOeogMGftDDhCL2CROXktaI7BltafIjQRtoUGEl16v10mLcs7h+Pg4USBjorUsOZe8WO89/pO/9zH+wa8/eC4FEhgGvQf+/jdneHBF+OkvXYEopL1crZZYr1cxP4EFmQpkKnhPcD7Gp0IGTPLYoPB0gNljNm3gfY/1qoehUPFjZBylCYAZgFFg95qYn7uiR/TkK9SH1ppFxFqSY8S8luojh3PoQ7DfaPobJeMPJ5OlT6ttt0dYJwovE3Ob++gPAwV805Es9MjYkvYxbftV01cD65CEvqQcNCpU0dsI2kAw3ZbLJVarFS4vL1NqVq1hl6Ctv9OgrTWxv/b3PsI//PWHz72iTe8Jv/npBIaAn/riJeqqxtXlJZZXV3Deg2wFgwa2auCZ4BzDOa8890Glln4pSrf3HvAOR/MpvG9xtVzAUliEwxwmg22aAqsfLbtx6XoDY0zLKTXgbd+PbRNnsvwICJd8t07F23XdIJ5/13XUnQMYzyh5I0X1q2STKRBy0fozRCmftt5fJjSJQEn5SZRkKoWj4Tc+SQBD0NaTs4gOSNDH7uo7+vzXl93vXmhLa22gjRB8TSyUEzsAFuzDgrldciNBW2ZfHQ2yXq/TjKyjQsZkzNEFAL/4Gw/xD3/9Adr+xQzO3hv880+muDvr8MP31uhdzIjmGWRlgBgwEzzHpbA2DQt5egT01sYbo7IWYIZ3fdBzuNh/Q/ZoQlu/PJzbLgdaOaB2geC2waedzRJjn25PTcJ6YtARQvq7MiwwPN1mhAQnR66iCCRsEi+OU31ZwoK4oxbXWJaQQ0Qdw0O9O00MAvLYbMdSmUrHjihar0/7Z0wZUkclw7p7/Nw40L64uEhALaF7olXLoJbtWogI8/k8eW/LqJFHly3+4//qoxcG2CK9J/w33zzGF886EBhXV1f43ve+h1t376BpCLaa4OzsNtgDV8sVmuM5UjgrZQgWR1kYEEELryuLurJYrZcwNI88dvj+VSmJWmMqt28bbJqjFsCVAs2iRTdNg/l8nmOCleUk15Tzr9frVNlIOyWvM+AV23RDZXOyCpYJ4LwDyZoHKeszpkUX1El659EvtMWuGu6L3NfDvJgjfrSIpq3f4etAkaQcIwiPPbAuiFBVFs1k90KhGwfa9+/fx3q9hnMOVVWlqILJZAIg0CZt2ya6RAavtRZnZ2e4uroaAAAQGvav/K1vod/DNT0vcUz4L3/nBH/qC49wfv4YH374IX6wbnDr9jEmkznuvfsBXL/A+fkFbh3Ps1ceSI5JQhxAHCJFDIBpU2E6qbG4PMd8fgpbTRBqiOjCYghHDzr4y9VUtmnc8k6stclaksl3tVoBQCrMLFWJ9PHa+tKpeBeLRZqoj46ONpzVY/cS3cVRAc2c9o2ltVnbEeEJq6oCx/a0NoK284AtaIn02wTONnZSOZ+hYDkO9lUO/m1AK7RM2l9JVVUDeuzVatupt0S8QbB2TbRSGIBnmIbQTBrMutnOs9040F6v11gul2kgSaED4StF0y7pEc1z6thdIsK3PlniW59c4SVhNjwTPlnUuL+c4B3qcHF5Ee8ZMKbCbDrH+mKBtutU1MJIx1Y8JBAyqlWW0PdRq4TStNNpdDoqbDGJh+d/GtkfpbF7f9mmKS8ZmNZaNE0zAG2hSsTyErBPFe6fwYxOgB2B7SaC9lgAnnbOS/gpF+ArAD1KoRSORmIuSouK3yDsPHg/lMMuNb01RmmN3bP++3lr3zs9IcLnDzaGgwhhEZytdi9lv3Fx2lVVpcgQXVkdGDqrStBm5uSY1M4rIsIv/Mqn6NzLNaucB3794e3YqTyulldYt2t4z5jNj+AZWK0lfE+ANf9kKyGbYJMmaKGLy3N4F+iXMbAnOXCvI64cFIdz2eXfJS85NuhEU27bNmlYdR1qAJ6cnOD09BRHR0eYTqdpAtaOZSk3J/1jMpmkVL4SI6u18PIe9g/um0uQpHYQp3fc5jnGukcqoh+hKsLOwuHm48UXMGjjwicigL1NtjmANT2y75lejhYulnB8drUdsR0C1dPD7Vlcc+M07aZp0svSEQNjIWEi8t1sNhto2sYYXK0d/tmH5y+d82UQvnU+R8eP0LDHoydPcHQ8x9F8htPbd/DJR1/H1eIqmOMEkIkrxLwUGDUwCAtwDBEcgOOjOVbO49MHn+DWre/HbMaA9zAWoaDvtUTSZ+oOf7gTMh2xA7DFSagdy0JvSLk4mWjv3bs3oMPK6AHhqzVVIjKZTPDw4UMsFgus1+vBecacXboNkt93C3jcBNFtkKwvSO4Ph9VqhaPpDJ3r0Xc9qkmT6I1AQSJFi3hk462MEmLxv0Bp6hgBbpkAeDzcD0DqAyXVuevZXozI+ZHag4iTTsTsoq1rAtXUdmjXq51nvHGgva0+nF4FqQeY/iy5tXVn+sZ3rwKl8JI1bQCwBHx6NcUHpy3W63WgQ5jRTKbwDLRdyEscHnGo+ZL6HUxPRJCrsVotwU4qqgMbQEtI60cKRjdvUd4gcTCVg+tpNZhtpq04nbSjWFaszmazpHWPmbwC4PJb9xNZpZZD14ZgItfeeK7UhzRFsoNOesNFNOXUByi/E2MM4Bh+oGnTxsfUjoojHwhzyC09+Go7p12OZfl9XR77mbRt3e8DYa3PPNiNmdPCo+y8jv97hvcO3m+xVqLcOHpEN/42Tks08bZt0zZtKunjvvW9K7QvrfjBUDpPuL+MVdi7LsZvEqypQKQSvatOE4OJNro5IwBVbatQK9I7yKLk7MGWNqMD6JFnk13c41jiLvE5zGYznJyc4OjoCPP5PDmYDxl0u/ZpmgbT6XQAznv57jRZpqfa4HRvkqS+IRInbj2mnHcZTAvqQ/jccOhYDx1q8oPjBu0/DM0MhwwnVbGSypQVYxPy8xB9x5T+H8efka2qK+2/rxunaQObL6SsCC1m8nK5xGQyGXSKstDo175zAf/isGunMAjfXUzx4yYUKe66HmBCVc1CFRsYuEhvEAjeM4iq5KAhEroirHCc1A2mkx7LxQW8axFykBgYQnrG1Kk2AHuTCtFOt+gyivdwuJYz5m8QoBanobU25YOp6xqTyWSDAtmVekCea9d3Uuno4uJiYJ1tJI3aOBjp/n1cpRoqj8hqt1cz4T9PkUkr0CGaBgpWnuR88Z7Rtl06Bggrex0hAzhlUo2T0rA5wGQfUkBWTvSl9azfk/izdJRQaUW/fEpL3//QaRsKlWQf1C65kaC9T0Qr6EYSs5SA82TxbLl6n1UWXZhAApAFTdskTZtCRRplMOV8DmFZsRZrLSpr0XctOIYCCj9IqgMRbRz6XGVsoOgBJVEeXdcNQLmua0yn0wSwWg7JF7Pru6ZpRuN9D9LM9nDazxKZ8rqIBpgM2WHLNk0bzLlgwp7zE+3aR9FwzDuBTfaRSX3be3kRUSP6fseGULrc6K2XtMp2ufGgPRZaJi+s7/vksJT9pOiBaFmvgsvW4hkw1oD7wEGLq6ZpJphMp1it16iqCayJTrbMcyCsipROG5L1GiJMmhre9ej7FlRVCGXICrpFm5vASOWkzW4ZNKnhtjEuWGs5etWibDPGpAgPsXx0NNA+GeM45bxj9yVijMF8Pk+O6nIi0OA7oEHSqVgCAW4mPwKxr4IQco3H5AsotFl1oDoqF03Yjpuhr2v4y+8z/FcC95hDe1uc9rOGee6W8cDPNNnocSrfFT+75MaB9i6PMpBDgZxzaUGGFlmUcXV1FdMpvtrRZwioKgtedZlCYOD47DZcv8DDx48xmb0DSxW8k2og8eDYP9hzwGwOcaAnx3N07QpXV5c4Pp2i931ynnEyORmWdEpOTvEigDJbNxx+MtBo8B5K0xQYatR60pRwvKOjo0EEkOQ33zXQxgBbzGidb2RsgNd1jXv37uHjjz9G13WYz+eD8+qIJKFupKGjYpmcSzcRsyV/tjxcCKG08HUdFrR5BxNBacBfMwMUQNqIo44REyONA+euNmT2oa8XhZh1HxNNW/whu0BbzgE8Hdd9DXfn4PrlN5ntfstyj4yZQ1rDk9/e+wFYiEhpMekIZ0cVPnn8osqL7ZejxsNakzUTIngmTKYzTGdzLJ/cjx1uCKABU1UZqMiXGSJMJw2c69FFR2xIHJU92OIUEuoknK90bg7bVDblzre7K8sAc85t0FSygvXk5CT5H2SF6yEy5kzUA7vcR/s6ZEWkDPZyEth45rHr3lDU1n0JQKRFIuWmkjYJOGeqTnzloROSTHJbCJF9zSfH7rKEtK9k7J3vcoQ/q7D6/7qQfsjeNw60x2SMv9IDWX8n5p5894Pfd4Tf+WjxSpyRBMb7xyEvBkhYCwZZg6quUdU1Vus1nPcxXns4SAZMhQLfyWQC7xy6do0YOYvsJEGiVSiR27IoIpxhIHqExc/bBp3mrEWMMQNnsCx+kRA84LCBJe9Tl4mTdys/mrMWzVtPBHJ/k8kk0Wd6ZewYgCtPZGgnlpa6Oait6SxCyEwXJPYIY+CiA1Knt819Ke0atsmPTmo2xpMompfT8eOrHseojn3OZz32n4kqIa0l79l14DDirFxdw4l040D7kAGuHZHCqcpxTdMMBv6X3pujqQ1W7cuPAqgN4/YkpJYlOwED6B1j3lQ4Oj5Bvz7GwydPsG47HM05liUjEMdKNCTcWvzhQF/cuXULj8+XWPATSG4ScUQaE1O1sjiHGIBPZn+SZOUSUCQJ0lRCqd1IVAgQQxDrGkdHR8mXIKsWSxpkX3SIpGK9vLxMhZm7rkvvVZvBzjlMJhOcnZ3h5ORkQKkZY3D79m1cXl7i4cOHmM1m6V4G4FWa20Dm518oX/pqJDsBKb1nzzF6xBgs1msYG3wRbduGFaa2iu2FpEEQGZAkctrQLQ8ALhqGp26L9NGOSCBP6mN9ahedulueUpPLmJ2oTEZIBTAWSVPKjQPtUsYGjmzTCylEtCOSmfH97x+9MmekY8LdacgJPj2eBmBgBhmLZjJFM51gsVwG0xRikoqozH1JvQkDZT6b4f6DBZxfxm3ZbWKMVMPJ/Fpuo9KxpLWGcSk1VJ3kSaya+XyetOttzsJ9ACh012q1Sisb27ZNHLQMYAHz4+NjTKdTHB8fD7Rx7Yxs2xbTaS7iPGZm5+bggYPtxor2mUTrgoxB33VoqklI1DQyrpKVqJUqKkH7kOvnE+o+sS3gQH9fOqP19pcj6jrM2sWq/bR75UYurtE/WsZAYFtubfl+1hj8+FfO8LKVJgLji2dLzBrC8ckpTk5PMZ1MU6xsGDwGRCaCuQDtlg6YaAtCHSNGnOuDlqzGDkdv2pCXA7b1prxYAqOAJdqnTlQvoXuTyWTgXDxUM5XzSZ50IKdXlWtI7LCO55a/9epHOR6QvoOt/UdkAD55PtwAgJukaQ9FJi9A9xEJ/cvx05ukWtYsxyY+2c7Ftvi5MPe0dTSmgEEfp+6x/Px074k37jXfo04gpp5rnAHCkFzZSCe1ITde0y5FUyHWWqzX642qJhITLFrin/yJ9/DfffjkhefS1mIN8C/deoTZ/Ajvf/ABjk5v4/jkFuqqRtf3qIhg6ga2nobyY45RV+KM1JAbwD1wHcGcPZrO4brvofUM9j1MlVGb2aeOl+kRDudgHT2iuVwkoA85JsJ1JVeIgKwsF5/NZphOpwlE67re0LC1ZqQHlZxrtVphvV5jvV7j85//PO7fv5/uS+gVvawdyINbnIzLZSimLIt15DLG0ADoNTXAEZyN2V4FxTPfPG0ISJNUCaIUP0ubXywWyS8gOUcUbA/oDdAG7b0TsjznZG568dV6vU4KwLbCF7ovSS6alzaxKswuAwJT65AQRp+B9oaJLi9QEsqUZcekI4h86b0jfPHdOT787uKlpGcleNyddTiuFmia23j//Q9wfOsODFUACG7dwlYGxlawVQ0PpHzE4jYUuJXOIN8BhEkTo0e6UHKM8i4RtJG17bJ38fDPUkL75iRdOsmTpkOOj49TZEhJO5QOxPAIeR/vPdbrNRaLBRaLBT7/+c/j/Pwc1lrMZrOkSVdVNQBWHYkiWnrbtnjvvffiNWKCejV56+vmxRrj7y3d87bGuRGSISWAcn5n8n4lU2LpA2HWeXLi7xHfwJgbN7WrquKkaTadbln3KT32t4H286ZH9EjcsUMhEbAPmERunEKwTfsZE9G8xnJr6womAPCv/6kvoNrjDHteYg3wx758gdl8julshqqqwyuVDi/mu7FomgmcCzxxsFbFiUgb4EGIq8mQHTVhgZGu6pdn/lKZBgqP/RbdSLRhsWok9lrz1mOm6Vi0SEmFCNDKwiitRZda+TaqrATlYehnniR08V8tuwZWogVuILGd37tsCP/JIhuB82yFSd8Zmv/A9jG54+L68HSdsQk/X2nzWloJKBWCFy9cfB5y3CL77uet0LTHRKIUlsslptPpADDEGbVYLBL43Dqq8XM/8zn8tf/6xZYcqwzjZ77S4d7tGe7c+gB3776Do/lxKO4LC4qmO1mLqpng7r33sWo7nF9c4ng6Sx5pYwxc38MTwVDurCaC9tFsCjKM5dUlZs0JiCKVEBoBZAwoFv8NfJwHkU2Gnfc+aVlhgjBgdmAXnH2u92lloyR6EnpEclfvEgFNqTJ0dXWV6nxqLVwoEHmHu8K+NAcqpjQz4/z8HMaY6HQUrSxEEunc6nIsIEUX9PlLp5dH0IlujsqdlIIohgwMwlL1qq5BZlifMXlRtAYg27coots8J3oyDbfBSbHSkUGJUgMN3lsZbiqVbXRmz5cB3hvZC0kpgixlyD4D7Q2RF1tVVUqoX4YCTadTLBaLQVKa//4P3cZH91f4h//80XOvxg4ATUX4A99f4w/9ngp93+Fzn/sAp6dnmEymWCyXYOIQIWIMyFhUVYOz27dxfv9jLHzmohGdlDIutMkpjzmbTuDYYbVaouk7WJtjmFNnZy8eRuSQLSRelxFWTYaBGQaiZ4+u69G1gXaSZE9nZ2cHm6P6XYiz8Pz8PL0Pie2WSQBAorjGzq21du3PELpjsVjg6OgoZgzMuS3quh4s/Mkcu0HX9WH1p8YntZ/cRliUdHPUbp0mLDluPaGyNvQ55YfQ/o+shefzXO+6FI3M4TgtY611hIj0Y90nSuelXg/wwkXG0pavpEn23c5bAdq7QKJM3SgyVjyBiPDnfvoDEBH+wXOuyt5UhJ/+0Vv44z9EWK9XoTTYIAROSAvOHZ8IVT2B4/HipkAeOAM+MWopxjK6rgUKx8g2kY4loA1wXHTEAIXBYONkCEZavCLPsSvWWtq5zNzWdV16Nj0YS9qjnAwO1ZzKa2rR9yvOtFLbHH+O0Cap3+y9i9dbhpQCsrqofBxBu43KgaJHNh9+k8cuvy908p33JPc1GgFmKE3q22iuFxHyV7h+hl9gS39gzt+/bZr2rgcu+S9xZpQJgkTTlgEt2+S4n/upD/B978zwH//X30Hn/DM5J60hVJbwv/7jH+Bnft9dLK+uwj35HtPZHGQsut7DmgoQM84SXHTMnN26g4+++dvwHFfvcZ+f0eQBElKExpSQjnE0n6Hzazx8cB933vt+mCLHijiZglYa0kYGcIvPGz93zsG5DsYa1E2F49MTHB8bEEyKJiijQ0phzvHTy+Vy8E40Ny7vhJk3YrrHRAal1rBLh6ZOZ5CAOb7nqqqwXq+zEwwAfNA1w6SunkENyNBGBmxu1gIbYKgsphBTznldvHOwdeyrMnFFNkQ05QGNpZ23I9eS3kuUi0xoy0lktVrh5OQkjVMCoalr3Lp1CxcXF6lPCYg751DXdep7+/rSmOwh+Ea3ZeVp5HkjPWLeNtC+ruiwNN2hdL1IoAB8An7yR+7iR754iv/33/oGvvXJFTp3PecTEVBXBl/53DH+T3/mK7h9EjpQfdZEHtljUtVgJvS9h7VVGgTGErwLZurxyRm63qHvw0ISOCAtOk/aIaW/Bcjm0ymWrcf5k++GkmMJdLK9z4ipoUFgz2Dn4TxCnDgD7D36rsN6vULdVLCVwWw6w2QyRVNn3nofcElER9u2uLy8HDgbJSxQkkiV72Ts3NsiUkrQFuDOTs3wrD4mMhrLKChROmGQF84k2ccz2OiZfKvu9eaJ0gjTJoQJzhOrqIw8Vlhp3GmMlSfJhuQBt8BJu5b3KZNrtrjCxH56eorz8/MUHiig7b1H0zTJT6JL0T27jKyYIJnQpf2GezByX903zb+1oF16keXFiWwDBC23Txr8hT/7Zfzup2v8wq9+il/98DHqymLd9nAj2rc1QFNb9M7jD371Dv7Hf/j78JXvOwF7N4jdTA4/ouGbL505kGXnlF46Db/eaooaE9K0eueQwvyA1GOEH/ckDhzF00Yuk6M2HSiQuJDFmr1UiDZLhQKRH503JN0Hhu9Dv5enHWjl+xdaI5+6eP8HXkYAQz4TEXK4283SurWEZ+Mt9MhQk06YNRBFuUDcKMMJYpcSsNEPGCmqRecSGosUe5r3so3EGSRW26ZRj3yl07G9dfTIdTgq8UB777FarVIkgpYyVGwTTAy+9N4c/9b/6AfgYHD/qsKv/dZH+I1vPsGjixa986iswe2TBj/ypVN8+YNjfOVzRzie1WlAgyhFbYSMe4TKVFGjjYtjOORWJQrOPhfNzrqqUDcTON9h3a4wMQTAgL0POR4i+KfVW7Ez13WNurLo+24Q9mgQz+89vGsjoHv0jmFsA2sq1HWDylpYY2BMoANsRajqCk3dDMIld3XAvu/Rti0eP36M1WqVtGu9erFchi5ORFkBNwbu+v2WA11PFmVYnwCuUEJyHQCoqnrgWFM9RK4G0Z68l0lOst7dEC1bIkGiyMROiImiHIO9S+/KI+RpZ8WpBOdtoM8AgXMNpFl7CC06BEf9PuVHU11CjSBaltZa3L59G6vVCsvlcpCOWRQ1WcUp530e7bQhrLBpHLXTvRvaTdXcONA+RLR2VVVVWmF3cnKysV95jBZWdl+gHCr8xBffw+95v8b/lEPRgnQeFnzOiwLSCCAanMcQwVY1unVInWoGoWNhxZ0X/quqUdUTcLdC264xmYYICI4kIhHBi7YTb5cANFE77rsOzodY7XQrnuFdj67r4X0A9d4xJlMDays0sQp6U9eYTGpUVeR3DWCsTQOtBNLyb2n3Bw8eYLVaoeu6tMRdIk8kAqCMGhDQ1gsqxlZVloNb/+g6gsLXy/mNsQm0yxA21UMG77iMYrhJIm1goCBW2hiRLvIyUZpAp7GX2hqD85T0SLZOtEN81Is5uBfdJwagLd/H+zo7O0shfo8fPx4cIwqG5Kl5kZIpkG0TgwfR/uRobwVo73NOCqe66/uSGw2fMWh/PU4PC/Xa9QLjt+LBUTxZAoRoklpr4RSQGcWqDH+L7kIDp5A4/ACEitCczVwiA2MYhhnWWFhjkyZsrGjEJt6iuq9r8fs00Kh1SoFSQ9a5LUpwvC4FIceWk8JBx8q9q78GOiE/PXXzuslw0gLyUxdRRwMlMqbQ2tquJJ1ZbxkaLhi3lsr72pgsE88YezvRwHIb7PtCZJO+y37XkTFfPPNbR4/sEj3wtcORmbFarQYvUTsmSy6MBq1swFH7HesEAy953JY6jlSU0RMDBcdh72KMNKTDGjAiJRCjFwxZ9K7D6ckZltzh0aNHOJlGDRVRb2GAY4FfcWSKXm+twfHxMZZXS8BeAgAWV4vQw4gwn8/kI4wNGr21NWpbw9oqUggR8Gj7FDUGpuIUms1muHfvXkqtWkYH6GRTugrJRhSCutbY36WWL+DvvR8sfSeSfuIH+bTlzRcnj5Ob+ppfNCC8WlFdMkqmTDz7ED1S2UwDYAsHjd1RIygnBP29al+Z8JkZ6/Uaq+UKx0dHYMqjlCjQgcfHx0k5Ecek4MFz17IL4l4SRmkLcGP3eK+0p1rWjQftsUGtZ+6qqhKfqvcZatSbuXjzBbZrVGOJX0ptUS/9DaAdFsX0zkedOECsMRaOfdSCfcg9QgTXtjg5PQN1V3j43e/i+957Bw0BYAHs+DwUQRtxpR7lSi3L5RKOAmhfXV3B2Ap1I6sYg6NRwg8JMXEUxwEzMH+vB1QStjeZTBKAylJ1WbYuYF2WJRP6RMfhSjuOtXl6Jwrsu65D3/eYz+cboO19uO5gyf3oE25u8d6Di0UdN0XKJ9LqC8dq9DZ+BjZ9DPpEY9bS4MRb2q+kvkTW6zXqqsbx0VE8Rx6BsgJW+kuiKJGryT9vGfSXqDzt7RMjikgpNw60r+sNHgNmZsTK59tNlVENYciPHCTlrJteNO9b8ELCjqCyNYyt0PcqPWWiybX5qUhtBA2xqmLRA8XNllnuwk8FMoFbZw/AD6h4iIMT6pJb2049s46Nl/A7cQ6XdEnpMCrf9b4BUe4rE2fO9pYfppyoA5ino3deR19jdM83FMs3tWwkCkJbkoeOPt06uyYDGuzE6keNG4p5anwI4TUFCEv/EXAuabbBfWmFTd0Pqy0DhYyLj1Gh4XTckMLTlOVIc2IffN040N4UHnwugUTMJSKDR48ep0UC6/Uafe8ip6uXXxcDUdENiRceAKX6IDxdRrXBLZLwfHFTBQJTMDv76ItnGBAqwIftQI3Z7ATL+giXiw7Ox7hsYoRVigxij5oMTOQQfdgDtTW4dXYEnk7QHIVk/++8ew/GBCflbBbyd9uUDCh2ZALY6IGjAQ/YHFCFNbFFxPKR303TDBbZlBEjofkz/VEm/9JOzNKpqFdazufzInIo8PzL5RKAorM2YGnYtzD4S1NmXH79Rol+bv2WDXLGOY+Qg8RWVXSmkXrm6KxkoIKBieoDU+jfLLsSgXjIU4vCnRkojrMngyBjF2iaGq7vcXV1hYfG4vTkDFVdhXUGnAdVZQPk3Tq7hcViEWg53w36yi7xyMULTDxnlgz0EnwgD0AUi2RgoCINDjcA7GeVa0SG5rEe9IFHDaD98OGjVF5KkkVJJEEQnzjl4MyjOKuGbxNox15GwOBapT9HFOFk6iVNlUEMVETwDDgweo6pLsnCoAazC9ou15jNbqGZPMbFZRsWvyBwzCAG2IO8Q1OFkKywbIdhwWgqg9u3T7CyEzQnofL4vffeC5ETAExcIBLuy6RbZwJk2fpQ79gkEMa47DFeTz7L0ndZSJPeoNKMZRWjhAwCm5XdRQuX3Nqlli4+DOE6c5iivEuPq6srTCaTzHeyVy9RPX0cmAMIZw50FnhjSnvTJC7VgilA2yK/N8cMsgaWImhvgF/s0yDYODh8/MkgZiJwy1VjF47jKSQ7k6Viwe9ADIAMJk2N5XKNVdtive4wmc5hrIUxNKBqhB65c+cOXN/jsuvQ9V3cdwuvrR5F8nlT+AN52lJKTfxb+oVuAxl/IewxHhN3MWBU+EzTHkhojHENkCivjiQipYHrFqTBx9CXwnQ6wqSObhFzSWiYrffKKseInG1AIFK8rlgCNkYshB04zggSwzI0McMHQ5QWxVgbOl9V17Bk4oTSZ0oFoi+J2hOXFUMGVt7rWZTKbQ5GAAnstVlbZnrbpSkJmGv+e0zDYs6TRHnOghEqL7DDh5L9AOrbPa3xekjue8IR7baW0meIn0Y03VgUIU3u42Mr9CXKmwsuvNgbYkEzEFbpOgfngv9HFw/WIhN5fjfjDkJR0MZGc3oCGQdbuh6R6jMDCnVIsUjf2uOHfLtAuxQZsHquFzNb86iyXTpHzkOiZ9osrAC31Ox1Vx3ypPlY4b2C07FcEsvq/BG4jUVV15jN5mi7Hm3Xo55UwfyMndaLtmFMGoWieRzPj1DPg6ZN0INySAekMRB7KMV76bsuaDPMsCaYkJ5z+47lui6fuXwv22SMmwSAs7Oz5LDUDi79o9/p2dlZStGqgZmZUyRLaRXsnBAOeK4bI1sei6RDR8tVeGYoftkYAzIq/orTIUMoJ6gI0hT5H99jCEV1PiYsixqDZBoEWVxenqPvWhzNp5g0zagWPY8Oy/V6jVW7TtFCybldPrZMOmki4I3v81jJY0gmrjHVLrVd/J9od/8H3mLQ1o6w0FC5MolzrpiJJQQwl6LSS63LhpaXR8W1NgfxJp2gxbEHwwDFCinvfcirHS4MQyFN6/zoGOt1h3XboZpUanonOOdhjIUhE1NHhfuqqwrTk2PY2VzOnrVmVtxPerhCQWBG27bwzoM9o64A5xmOc/pbSRylLZuN51ET5OByhVYsn4VGke9v376dPmseXBbt6LJy1lqcnp6mc5T307Ytuq67XhjYTQVoLTy02rTTW+KhUxhdpPv6vo/JzsKuIVQ19/ugnISTiNUW/ooABg4rBDnQIew5L3zi7OMgY2CrGoHCJjx58gTL+grEZ5g0zUg/ZhwfH6Opa1wtl7j65Hvw3idfioR9lv6TvFpxE7CDtj8G3IjauCiG480rtvM+fuStAm2hDkoutQzvk+26E+r98wm3X4d17y6/xyahwmMAuVco2V6ShjJ40IVJRTonl8chT1oh5lp723lwAKdNshie00MGcPQRtD2siYt1omYvgLxrmbCmLfZpGXo/va9oRwBS9IlozGV8t0wmAtqlSPjhoXz8mLW08fKv/W5fM1Ha8Nh3Wv9gZsk0Ftsrf0cjmMQF9xdHIPRWtWM8DylTlcEcop6YCR7BV2UizckyIDVPAai8OVXqo9qxLTTZ6HsfGft6DGtNe2OfHXJI9NtbAtqbHNrW2OotoFBql9khKf1Bz8gx54K64kZYEUbMpfjSI5wmPjoRXshaBRHS9Z1nGFvh7OwW1u0azarF8QlSkD4RoXCiB+pF+p93YB9XhLIDyMYBQYkTdL1D2/foncPareF9qOTOHnCdj7dIYBfSxvZFaF4ZuqeXqItV8yzxsnpA6Ws20TQWcNagvU2TlqLB2toqJ/Z9VI8M+F2T982SAKICfiE5JMW47SH9CObos2E1GYQxqvTUeN4cgUMEIObT6V1UTMT/om8DQF0Hh+hytcTjJ08wm00xnc2SpixjI/SRGmdnZynjn0QWMYcIIBnkDOT+GscpxYkgcd/Rwih9J4dYYpo23SVvAWiPa3a79imdWpoGkb/1jJwHsJjnPsQ/P8WAFQ2CABA75IUsGQhCrUrJzEcJtO++8y4+/fh3YCuDWwxUHEqGCSfIMZGRNwYkpq4hsOvBPi42YBduOmYPFPu1b3ssVyss2zUurs7R9etgqgKw1MAai8oa9NaEogxxRaHO2ieAWcfcJaLpyOIWzTsf1E6F6MlWziPWR6k576rEvVgssFqt0j0CGBw/ZpmN3Yv32eoicZ3cMAlKhBj2oe37voepKhiK1WEGNEEEYOUk9xQjSoTcDjvmKBIvIXMht41nRu9cAOxoNGpKkgho6hrO9bhcLLBuW5ydnaFpciQQyfqAyqIxE9y9exdPnjzBarUalBlkAKzCSE0V0gTXVRXnqThLeBm3sS0iBRT6Slgwt1XLFp0M+Tl3yVsA2iK7+WNgCAS7tOz8R9YNSj06/96cENKxAvzqDvXdRnV6/NqimSTtMqwsdC54z0eeLl5L7jd3RGavNAEPfVGZKIQj7rsQZtd2LcAeBoTaEmAZhApxsT1cQU/oIr9lFIeAqi40sekjwOCYfaK1bp0hcN/5xKehndG7rrlvggkW2U1Rtcd6qu4tuX2FRhNrg+L2oIzEvTPvNgiZIHXSpH8zYsnNAO5iwWQXJbLmi+B78j7TI33fx3UN8bzSP5AtMl0vUkcopdh/olj8Q0VIUTzLFuzIkkF8rPGGY/8zeuQg2a/dZdDXDhgBX2JKvTHQI2Oa+MZFB2ZT6MMqfCleI2z3yfRj9lHDkNwJFrZuMJnNsWp7VG0FwESlJpORgSYxcFEbkO9d38O4UAuRXR/SsnKLvnNwvYfrPbouVKlh9mjqGhRTshoGrKlgKcTEAjFGN4KzzvEhWrDWXvu4IELok5LG0BSKTtV6CPe3820qUJeBKcvo5b71ux7zgxRn1G8xHZu4UYwHjt0ISf2rnGzDOxanJJhTvppgeIQJctUCx/M6RCCRkw4PIJwzLNThoPFSKicdNdjYvwX445iUPtM0DTwHZ/njJ09wfHSEI1nmXog4IHUWSUBVyKFAK3of/DcOHMNthzTbqCU2NvGPAfYBffqtB20S+wqk/h7WjszOk5EQsPROcphfShcKbJ8zCy1aS9bAo5ZGFIP6wzVc70LHN6EMWGUr1M0U5uQMV6sWtg5hT957EIcMfdLJyVh4DpXTZSD0XQsji1S6NdqOse48FpdLtOsefe/gYUIMd2UxnUxQcxUmJ88wCOlYRXMiQ7C0WQm71HBLoCz3kaiTqqownU7TZ+1ALDv5WLSJvubYMcLDdl2Hi4uLAU0zppWPO02HoK2tkxed8vPlyLiWPRRFKyrACxMvgZ0LuWwUaHddiytPOD05iTnIxeoLx5sYosqe4XzorzImyBh4JwpBUBbCu/EptNBWFm3bYrleYXF1BX7nnQ3Qlvc4m80wnU5xfHwcnrh4BiCEBz558iTk64GHsTWs0QM5j/qyT+fr6RYrWpAItAe332rQzoNu07TJg3TTfJbfVIT/DN/NiGY+fhPjs/AG4cJiiQ2+YwXGtqrROx/zpmSzURQXmaBKooi9h/cuf3YeruvRrtdYrzt0nQNMyD1iKqPA2ADkQTABsL1wknFQbeGdtU9A12gUEBeRGn7MPHAKaoqlPHdo0utr4HJ9qb5+7XOQmF2bNBwPuNo3UXbffAFJajsnSkS2G8qhqhTbvJfvdZMrjUcsz7A9ci2kc8zL8cNzhHEBkDFwbZsSkYXTbPYfG3PBlxFF4RnyuWVthy+pkuKY4fFDyQrfsH3ilyNnzPJWg3aWzdlxmwyjS3KHHdOqx5o+dRaloe+6K/kRx0bQZINjQ2o1xpK9IGMxnR2hqit0nUNTBTrEKC99uGa8O+EE2WN1tcAJgIvzR/Co0DuJaa7AbGCqoGWn5cmb81kYiPH3rlbUWrBQIiV/KOAsE4QsmrHWDiI7ZKHMYrHYSHK1T8MV7loq5sjS+H3Uy6Hcup6gdlpdN0B0a1gb4kXgI9XgHYzvYY2BjxpxbQ3WMYUEM7DuurCE21iw6xL+svfJDg7gnS3jsDw9aNwmcd0q30vcT5zfANC7MEUsFgvMZrP9ju90qjCArLGYTWfwzuPi8hybg+A6LfV0M/lnoA1AkWJFwqHxvXWEQtq/GJXRRw1gjN+6xl1x5I7rCoilvypj0gIWIoLnyBVThZPTW7DGY7Xq0RxPYEx4ydz3oeYeGN5TmnSsMfDe4fLiIe4BuP/pR2gmJ6iqIxgzQVVbmAqo6yZECZghdZQfOpzPwCQn1OCZC9HUiXZAlqF7si1VRVfALgPu7OwMjx8/TjlLJpMJmDlxlPpc+hp932O1WuHRo0fJWapLUI2JvPvtoD3UtDcyyb3ByJ3sNNrcqp+5qmr0XQvvPeq6Rte1sACa6VGIrLKEprZYtWswAAeDq+UKR9MJGmPR+zXIBgXAOZf9McaGPh9TVTnvAGPCwhoiONeFvsExOsUQYPIEXtc12qhpP3j0EO/ae4MIoYH44v3GP+uqwsnJMSpr8ejxI3jP2B6luknDDQb/plE2tCq2yFsF2uXAHY3G2GNil4CS2Y2Rl1ycQga7fLXJdWWQinCfmUTKuUrCi5V7FaclAWRQNxMQdzm1LAyIOE1L+nFzJItH164BAKvlFYgaGDMB7DQsGUbUhuEh2evyMypqKZmo27vdGJ8szzy2XYBUnJaiHYsIuAqoCw+++X6xcR0552q1SuCqY8ivI3myYUVHDfaQJ7vWeV8nofLTgLbImxMPzQxjDZz3oOSQjFaUoXwQA13fg3mS251ymoT0NwE6l0hiSiT0T7QcIDko5XqiZAk9IjHZpSTH5uhzh3M1dQPXuB0Td7pllO97aAlgK3DvkrcKtHcLF79HWnPbIRvbdX6Qcf4MGJrZi1WP3/7OJT786AL//JtP8OiyhXMMawm3jif44R+4hR/43Bxf+WCO44bQ9S44ZkBwllGRw8R7HJ+cgbjDZDIDGQuQ7lycOrXQr9HQDBQKgL4LC2co5p1MhQ+iW3SsU8sJgxUZPfq0HYivIzLghC7Rmm5JY3jv0bZtAu9c2GCT7hBaRGoDjvHjhzoQB/xluGsIH6UjSN5UvN70guzZnwguOmEnTQhDDRaSA4FRWYNJ08AS0CMoHM774IgMJwj7x5lvYxIUTlzoOM4BrIKTAfI3nc9aSbi6ugKAtG4gySE+qK3vMl/nEApNXRSHdpDPQBsYglreuveYXRG43nvYAwb91z++xH/2Sx/hH/+LB6isQds5uEIB+PjBCv/id59gUlv0vcePf+UEf/zHb+ODuxN0zqO2hMYyXOVw770PYNHDkoPBGohOxqDYxIGAALEhrWWokFPFW22XF5hOj1BZQs8hRItsDR+L/2YAEqBjsGQzkfmAcwpLkbHPulNv6+SiIQFINIpw4OU5JVWrpm8k5wkzDz4vFot0nKyOlCgSraXrSBe5j61VjIZ3ntoine8pJq3XQfbd9WCiQnhPXd+j7zqcnlToXAvvHLq+BZkKTV3h5Gge6AUGHIC+d+idh/cIUSExisSamHcEiItc8gpI6Q/sPBwi921MDPkOyaQkp/lYArhHjx6h6zrM5/MM2hzDFIXz0H1SAX8Z5hfvaNhuFFWiLeD9tL3hM9DeKjygIza+1R5lBVaAgvsdk+eD8zX+8l//LfzOx5fo+rC6sevHiwsDgPfAch2+/ydfO8evfniBL7wzwZ/7qTt457QBKqAhxunRMSx6+H4F7juwz+DI+iblGeNvWdvg+xbs+2RuUkqQpU074TGHZ8qRyEN+ehd4l8A9JqW2vG0QMDO6rkPXdYlSaZomXUeWtAto6xwkWovXtSr3gfP4vehjrqNtvZ5C6v8gG/Z82q5pLVesIvXegyzDkkFTV1GRCN87n1NDwBhw7yDzXGIfCzo9EiiJbiCSvsLp2zw2N9/ner0OqxsHBTC2vC/dD0TDH2ml8PV2Llv7tbLlAPWQn9EjB8mh4CGSQZBVmsawJe4QZ2tZ1hpkserxL771BL/wy5/gn37t0U4rbPf1ga5nfOOTFf7SX/8Yf/aP3sMf/ZETGAsw+7SmUaJLDOUOzAAMmciBR0vTB5MVANarJbpundl0zs8rpueYdUiDoa01kk3aQQ/kbdRRKfodDbh/Gl5LgFg7FXWkinyu63rAX+v3vy2+/KmERdt++lO8OTLUtq2xKXoEIKRqNhT65GTSoG89gq+R0fU91p3BvLaAd0FTSU6jyOdF7WIYaMeDOwAw6Cs6vFRbbbKIpm1bLBaL3A89w0hunEjFSNw3GOi7Dqv1uujfWUMr+7SmSp+HvLWgPcZxabkOoJTC3sP5HpYDSHz40SX+81/6CP/tbz4AMzboj6cV74HWM/763/8UD84d/vz/8H2wX8HFkiB972AR0kkaBA4cHEKy+sgmGjJwvsOsCdrG5flDTI9OITlL4hMBiAAfjsp/kNK8KVw3dPbh4hTdnmNtHc6/u601x1y+G71KchjdgsSH6+vM5/ME8snMjt/rYsE6UkWfT9/32L2LcsUMqAWy4/JG8d2MbYUFAICZwOwGCcH6rgXIoLYVOg7udUsGZ8dHcJdrrJbh++VqBec6nL17LyYc6wFDcUFNEEsUKA/vo7+FE4BT7JOy5kDAVlc8Eq26rioQh1DSy8tLrFarNJEbMjDWDLIASoph7z0uLy9xtVgMok5KymwXUEswwtPKWwvawDjPKjIWgqa3j4qixpkZD8/X+Pf+0w/x4ceXaLvnhNQj0vaMv/drj1Bbwv/up2+l9CHeMyxhkHQeiJo3Z6wg9qiTpn2Frl1HN07mZbUMoTxsIUJcyh8BS02KA0fdU06E26JOym1luJ4MpqqqUgVuIkoDVESWLWveU9Mk17nPoZYXtr8dmnYWY0I5LaKQ/4NMWI5OjiPtBkybBlXVQ3pU23cAPKyt4IwB+1ziLogah+KTGVDOgRrRTa0ncq1pW2PBNhe80AnCxMchFlt5nvV6jVXMz76rbwyiRPaJoln3yVsN2hsDUlBMuGxgwNeNgdeY1sXM+Hv/3X38h7/wEXrHKbf0i5S28/iFX32AL961+KnfU2F9tQS5DsY6eArpMaNbRJ4m9RExOAHAmlCrjr0DSKJFYpY+pXFLUGIIQdHlTqN2iacD5+ctYxSNAGup+evIFL2fyHWoHKGiCKUvYLDnMzzZqxE9BjZd8RE0WbReFR4KVm0ZTBCr0/H6XHQ5RAABoI1ieVmrlpgWCgWD5eYKyNZ3BjNi5WmKTL9/0cxlopfPkppAjh1SdZvtlfsQbbYBCuzZuOtxeetAe5tpHv6IAxclYPtYris09GCGjQ4FitwbM+M/+nsf4+//+iO0/ctVr9Yd46/8nU/xg+/cxerRpzg78qAJUDVAZT1ANgJuqADCoTIwQj6eoFHUlmDJw7sWqEKe7WAN+2JOC8PGh7Lw6R7y+NkNcAdbLwdKCbzltcoiDNtAWy+Y2sfJj1E9xV1FPns8ZvzNkeAT8QocgW2KYU7w5QB0fZf2c86lFbXse0zqGtPGYzJhrBaXCBEZBk/OL3A0naKyFfqugwnOGoDDOCQiWBNCSyVvd7gtH7ko1b+0X8dW4MhNynsU2mNwDPL6AInrHkwcHFJY1PWwjB5R3i/3k/xbH5+8rButt19uQiabp5YcQxty9qbGjEIyn3PoEEMvdebQ5IcZ+Pf/xq+9EsAW6ZzHv//zj3B+foG27UKyJx+LFBBH1PVRg86aM2Kka2WCNs6+j5OQjz/A5jAVjTJrOKGFMrVUyjZa42lln7Nwl89Cfo9p2s8TZN900C6mrYOOEDBzagFLsNaQALiyFnXki1M0FgjL1TpMELE0nnBuum9p5SopWUV5MMT9xSLWmramwiSCSCcJYw4ZCLuuw2q1wtXVFRaLK1xdLdH3DkS7a5+O92lldRzQitvkrQHtMceiNonIUAJjAImPI8p1IcsfawjW2PTzS//iMf72L33zlQE2EJyc37zf4/5qhvW6jbk0AFmlGI00pNWL7Ac0T1PXIHisVyvIBCWaFgDhPtJADseVIVDjWnTp/C33eZHAtm1i2HZPu+SgSKNis1YQNs5D2Nz2Okk0MkeflGQHvX8ERDIpl4uJ6RLSyaLSYEyoU5r8C0JNxB8GxZzxanDqm1LKR7qlPIjjLiPKQ4pz2oIHlKORwo/dAOltCsHYtnJ8bLTlNfSWt44eKcUaqxrfDWiRBEiEbEIZEwL+ZaanUBbs0fkaf/W/+gjrF+hwPFQ6B/zyd09wt/ouJvYId25NAEjsNcM7D2PDM3jnUBGlJQu3To/Qs8PD+5/gcyefTxOXLzsm5XVywuGqr/C0fO3zclSOiXY86sFXOi4PuZeD7zO2XchtYmHtvtwlh9AuL1eGzDWNvFrFz3Lwh1TGApbx5Pw8xcH3XQdbRYqOGex6NFWF43mFyycWXgoyG4vO+ajNSrGyQH1IUWDvGdYgHMMjq1cVfQnO95iUDXXniBOEjkDS79dYSWgmpx7y38BmZJP8zsxInvWChf70+vJnoK0Gr/d+0CETBYJhSJn+TBQWef+//rPfQO9ej4HGDPz6x8AfOF3j9mkducLoSKTMyQVHY+YZAWA+m+J85XF58QREHIodIEebDIXS/yMZSQ+813Et5UU7MXdFDj1vYUgaz7CiT675JgG3yPbXHECRAbAPaQTYG7Rti+l0GjhuF+qKSl1HSX42aWI4XQRgZoRl8FETTzaizBeRriREKsO7QtEq7yvd3sbT5Dqsm30i0WbQRYo3raxR66m4/OCqNLY453C5cfTIdfjDRIGYEPhPIzTIGEjrfkEg/M5Hl/jw48uXEiVyqFQG+PhyFh2owjtDdSLGWI+q6wqGCH3fASohfeIjtVMl1Y3ar1fr9nueok3V53XubefaH961ccDApBen5Nb9sf/710I0/QAopmIzrYNMwESx9Jc+jdJcK11EGWGFpPesuGxRO8ZBWTf1IEBDX5B58+/iXjeeU433Qb+g4TGH9L3SKf207/jGatrbHE96kFsyqOoc7mN5LHcAiuOimaXe3X/xS99B1796WkRL2wMfLybo3QqSmS+4dTzIRLqDZel59rqfnRzjcvkEy6tLeN/BcA9FhKhPMk5d0WHf7ORIzyL7LATPHsxmL2Afltvk9RKdULS8d0nctV6vcczHUVlC4LTBsGCcHB0B3mMZi3is2xZEQDNp4Pou7Es5BFC0bAHroL0KdRLWKIx5W0T2vYNia/T/IAP5M7gSs3/t6Y6/saC9T0SDtlbzWIdoayrfNoCrVY9/8lsPxnwdr1Q8A9+9OkHvr8CIAXvsEVY6IkWPhGR+YQ8AmM9nsPYC7eoqmJ3xmCS680b9PYVxJUXmNWuMFyjX0ZZYJaPaRX9cR3t77URp1iLiD+q6TlG7of+EDJPAbDrFcrWCaVv0vUfX9+E4opBDm8N+oU5SDFON58+gLcq14p+vdet7aDkq/9j37neTSQddc0TeStCmYv7VnUw7IjdlU4X82nfOUVmzM9nTq5JlHzKX9a6HLYkwBrTFIJ3IUEzvQADHzH7JgZIOlrzg2zvt0wDPKwcpHv4x9nTlPe7mnhOspM+HgPwrb4drSR4TyQobsVDLxVbpU7T4DMW6omTA3MevYhoB0aKjdi5XVZ7B4e3oCxwwp6Zzx2sW/Ge+zw1eXffxMU490zEbt6HOl8IdWduz2+XGcdqllCE8wy+HTWkQYjlDiP/wZ9s4+vCjS6zb1w+wAQAU1kE+ubhQnF+mRZKFAaQBIKGMlQG61RXYtSDyG+avxG9TCI+IFqRkgnh7NO39XHpeSTrgc0eOexGc//OV/fdWRlVMJpOk+dZNKE6Rue9g/cE7VJYwaWpMJw0CxebRO4flag0yFqaqQvY/5sRvO+YQDkgGLoUIIqreBpI+eFe458G+lozLO5risHc35ncb9zCNy40G7bG4yyzx1SsNe+/PyDv5jW892ahM9LpIZYPjZnF1pdWDNMunGV11IEMU488ZfbsKvDaNOZhkaXspr2ljvAA5PAKFg4KwLZ74Bktd14mysKoWaOZJPIgdLAGTusKkHibrWrctyBiQrSBhchz/S+pBUhaSAYlQzWYzydfo30/xGp6O087WVgJtHttjt9w4euQwbWVIc6TdSX+//fxANo0eXbRPdZ8vQ46nwdSTunhBAwHKLG3D1ghhViHBUgd2siDiULmOzvAaAtc2+uLA28wmMzZN9QPktWuPgeyiDUe+p+HzjK0e1ApsjtSKZ43g5nyw6NKSdQY4xqDKIjEWzUn6+B4ZcMnbHOcb2wolZXDcyElKQN7Hoh0oN1rTBvKLH5okm62UmLdtIYNRWdIdLIQxvV5RIyKGgK9+rgZMhYePH4u3Boq8y89KSHmKnXNoJjVu3zrF+ZMHaFcLUFx0JNydZwTth2gQ6fBah6kdIgcOdv15bKVjnriijsl5ld+oafzaN1vJDez4NllyQdvVBQYqtfLRudCnLBEqE5yLTRVitpuqivS1h/MOy+USq/UavWfAmPBDBsyU+rU4wYOmbfK2LW0ebpWTb2YQfz32tOq5MPb9ztYZu+74Poec98aD9riMUSOKZ9simioRsRsevtdDmtrgq184AYzF4ycXgM6BHSXFDSe+G/Ds0NQ1zk5PcHHxGO16CfLCaccBgpK71NbNa49Az02usyYgLALx40C/yZzcCCGiQc7pDNocQTv4kKroR6qtxaSuUNu8atKzx3K1wqpt4ZiTp5zJIAQMRgAHAohzSWrul+saV9vPemhfEDf3yJkOsLReT8R5zjIYWAePjqG2VHJY0iVunzSbh74G4hzjy+83CJrxMKGT7hhjTkNjwmBzfR/C/vQ+BzTfLufOLs3nVcroYhqMD9Dd96+2jxz8uj33YbJf0wYAKnwc2Tob0pZjLUDI5cJszMWtrRSOWfdSOgWxHBXDkR1Pksf8+m09Sk9twY/UKgOoKP1GZcuV599sn33AfWNBe7fZmhvJUIga2ehcow3HxQ/ww1883Qyne8VCBPz4D5xgPq0BYwEyaGP1dnHmDMMes51hiNDUNebTBuvVJfpuBbAUBg4/Ej0CcKoI82aC0WFyHd1tl/NbV1B5U9vrUI8FAcDIxO19SAssi2PgPcj1MBwW2dSGcDSforIEsA+pgeHRuR5XqyVWbYfOc+jXVQUmC88EJguQjbSJ0B5Q4B5+yChglG3blAz9sOWD72qEbZq7phGf4f2/ZnDzfOTgZewUzLMNfKbi9/YL4csfnKCp7Z4dX67UlvCv/IH3ImCHn7bvo5YSoIc0bFO2I8iEoquz6QTtcoG+WwO+jxpFTnAvAyOU6rqZ5v11RStKpYMtcLRvNmADu7FqMKltsbTC8+c+BO8A1wvRgcoQ5rMJrA2qBLOHZ4/e9ViuVliuu8BtWwFtA8+EWBonhAUiV2HfGgJ2nZl4w6G4oxW2uM2GsdfPpuTcuOiRfRLe2X5TLxMHBYGQrLOw51c/f4L+NXJGGgN86d05vvTuEby7CqFPxsA7D67Ek6o6bhgaKo1ItkCAoAlxTN9ayqgxcriH5pVIOVhKJ+q+6A1FMhXn0XuM0ELqKL0q8s2W0jEn/2cahCTag/Mq0HIMyt6CnyZm0jSGkFZAKMvZe1URJwKxkJj5Pnhw9oOfiCVtcTyah+wz6z+Ihts3T6bG24gjNN3+9e7xRmra22Qjdy4wjKIo5YDZ8Gha4Se+evcQ/8FLkdoa/Bt/8vuj06ZGM5liNj/C4mqJth3RtuNA8kUnJ2LMpw2YHVbLK2THbeDIKVooaYEN3lS+9vqy/VWPP78sRNrW117/RTUHSEHla8rBO59S3nZdFyrYRN7aIAYusQt5SAioDeHkaI6T4yM0tQWzC3lbAHTOYblucbG4wrpz8DAgWwNE8IhgrrjzIZm5h9UYcNd55w2enlGuy9sh5dHiiDxk/3G58aA94KtUexCQckgn4fimdPxQ+dZH5H/yhz9AXb36pmwqwv/sp7+As+MJeg+QqdBM5pgfHeNyscS665JpKo8ulcg9i7VAsW0Ys+kE7HusVos8gVFMaBTXunsfUruK+b9RbfWGyUGAXUSIhJ9Na6z0o7x5wJ0Hh2YUk0ogYbHehQo2FNYMOBertSPkcbcAyDsQe1hiNDaA9unxEeraBmtPQN95XK3XOI+g7WACTQIDzzGDTsx3Dwz9guFOo6008o52yWFsyqHkEcVwxfJkh/E1rx5pnrewZmyvMQh4O9hsPUts3y9/cIKvfO4Y1ry6QddUhJ/80bv4yR9+Z3BzZA2srdC7PqVpLc2CbV3NWgMww8XipqVsw5jgRH8znJODQVtQX1qGoEoKlGI76MiBfPbyJNe6r9dJDnI+lhZE/E/6AyDtrb4v90doJmssrA00CZmsZEi8u6Ru9QmQ97etvKK9zzH42fbv6ZjA4UrMfBbddfbd480D7VJYfyhbY4Rn2ur51Z1q83X9H//sV4PH+xVIUxH+yI/ewc/91AdhA5lQbYMIzWSGo5NTPHlyjrbtAsedRpI+i7r3aGGenhyDfY/F5fnA+tCOyEHCpKBug0dq9b0Zctg9X+ctSxhbXu2nvCaqjXSbvZltF4Xjf5FrBrLWDTXRsUIo9j5UVPchWoSYUZmwrD3QJMeYz+ewlU16PRNh3fW4Wq1webWMdKAFGR0UoLRZAUg18Y7Js43gw47O73fE93HAu7/5oJ2Eh5xi1Kw3AXibtr0ZypV4cQB3Tyf48z/7ZUyalxdJYkxYRPNz/4PP4ed+5nMBQEEgCto1w2AyneH49AwPHz/Buu3EGI0zu3KrSV6H2C4GwNnpMbzvcX7+BGJYcuLBPTxkNSSnNmJsWUDyBsh17nTTVtEAHNuD8o+R+OMRGuRNba+hZNY4OPPCc0vPSBV7TOH/iGF/BkiRJASPygKT2uLs5ARnZ6c4OprDVhU8AZ7C4ppV1+PyaomLxRUcYwDayf+XXoLeiGIbABwO2E+rZQ8l+5aue8abGT2iO75+UVskw06xnbZ9M3ZJxs/8vnv4+InH3/7Fb7zQWpFEIazvi+/N8b/92S/g9rFF8tCHPSBaBplIj/R94AWlKQ54rKqqIj3S5T6WZMSbkpor7DyMGMj87auUMcAcfK+26YiSwTLn5OjaMsEn2kRp1eGLV/78zyI5Zc3IcyeKaOT7+F1owgiivNGh4qnzBGgMoYJBZS2sVLZBDk9l5pBrWx8mWjxRyNGl71m7HeKNpWJmcYZ52rcjr3UAPTvwIwWWjAzIfRP3zQTtEZEwnqfXZHjYKeJZdfIlIsL//s/8GNrVFf7ur3zy3IHbxorxv+/LZ/gTv/9dfPH9OTyFQgVQ9xQszVDsgIyFrSoE7zpi8p0cCbLpIAsdjQxhMqkB9mjbPgGU1qvzSBSDTfI4UDB5o5PzTQYqAFufIQWYKSoAQCxVNwRuZkZlDAwNS9e96TL2BNL/Eiyp5xTwTb010kYMyeMeV/D6WJosctp1XePo6Bieluh7D9eHKkxAyAy8bluAHSpjUNtYeIEZzFvSJsuckRR+3gxMGHnGp0OP52s93XzQ5mCSbbyOQhPaexIMHSr5NIFuSH8T4V//U9+PL743x1/5W99A7/iZa0cSAT/2A6f4o7/3Lr7//SMcNXW8Hx78BofFLp6Dx94YoDYGVDeguFLMeQ/yHiZWBZdQrGzcBjAyBMwmEzB7tKtV1uJFe0iYzUiFqH2EbY7A/YYBdtJ5Rib2sWcJoGxAKv4rVEOyMFJ3VMCZeVATcRdov0lttk0SaBNgyKSQ0qoKNUiZGUwhYZQ1hN47GHE4eoZPoG1hLKExDerJDN5YLK9WWPZryOpHz4zleg3vDBprUc0aVHVQOLpuCNraihLMTiy3mmBFng8VMpRnpcBuJGiPm7M8cKJpSVbbxusRTzcPzrFxrAojEvljP/4ufuwHzvDv/Y3fxocfL9D1/iDPdb7nQIF86b05/vzPfhEnJ3XoQFLHcvRcQ14xnik6H2XlouQhiZZHeag4b4AA7JDahlm/3nwQrbKoj8pZOXq3I5TDLjl0Acw2GWOG0pmewjxOkQSaF1WArAtCiyN33/mv+2yjz/LCZAsdtKVfcxxvIGxMWOlUZnjfpA9mKeUb/AEwVSoAnDhpDr3ZeQ/nIt+dHOOUDWEe/IqfFdlSRnXsGqxicY82RkGJjRxanCZZrocWD7lxoG2IwMYMBnjWELP2J9XW90s5LIazsN7DuTCr970DM+N0XuHf/l/9EL7+0QJ/6x9/F//0tx6hqkxYFDDCnBgTnC+98/iXf/A2/sSPv4MvvDsDg+FYzE0PiHbPAImDJyKCRxereUTaghuA5zg6eQ+9t7hYLHD7uIYzdXoGo56BTVxdFgdEUxvMGkK/fAQ7MzDVDB4W7EN7kjFwUkOSgL7tUVcNbF1jtVrlCtvPqHU/XwedHsGxig+iRcYMq3jTcMuUKBDtgA5aNqBy7cdwtWDSm3TmcI43t6LPsM8rdUB9ywlI2TNyWV2CJQs2Pm0Bh5qlTKHUdE8MF1VaRhizVkDRezSMSOM5HFcG1aRB44HVeo2uc3DOgw3QM4O8x6Lr4UwVy5dZ9Qw5cZonqfyegZv12xr01fGiBUxD/BiGHSoKVf0fLAwDD4JLo3fYM/ah0o0DbUkFOXB+sYsji1OnqIw9ALQLTZDzktYSsJkZfYxnbtseLq0UJHxwd4p/42e/H//aH/s8vv7dBb75vSv81rcv8OQy5FGoLOHsqMZXP3+CL70/xw+8f4T51MJ1iLHVDBgfEURr2gbEQZMGeXjqwWgBDmAKtmA/BRzj1q0voe0XePTkHGdnE3gDABa1BwwbcAReZ2PuBjCsB6YTi5MpoVt8F7aqYC3gMIP3NvCNlUHfdxH8Cd2qw+R0htlshouLi1SJ+7WpMM7h6cLn+C4JsBTjgYuxaTSVoYpAh9J0JicgikeFQrUUAL64tCu1vsFENFQIrvVIeLFatoobGgKbuqoH0nNrK8/CoDYW3ufnE5rOGhvOTQxWQVdp0mQAzsHG/sncY1JX6I3Fuq7x8HGPy67F2vVgsug8o2ePFXdYcYVpbXEUK+GAOPRxF+7B2SrOMQyJKguafVylaSg+LyNoWGV8OcHTMFKMB5ar1spyXLcHB0WHDHrOC/z0Yvlt3LrIjQPtki/U/4vpssEp0gjtwZIjYYQPGWlTHa7lfeSOSdSHoIFMGoMf+uIJfuiLJ/jZP/TejmeQxDp5HqakyGitIHcF0QZDIV4CxbzCwb1SoW6O4NZXoYoNucQxpsfhPBSZkDzw1hIqS/D9CuAuFESQ9oq8kmZWJIObMSbx5fsiNl6KjFyS9I+wQoN+k/uKmORS/CHVEx1M/AJum9fhqLGLQjp2L6NfvBZSaNqDtqQEOKkvUVjxF9o1rrAlyou7Npi0TOsl566c3usam8FBbmyIDKlMCmAN5+IwEth5GOdRWTt4GwzSLzZYpFA+nYF5Fb9Xnbu0lLjs1/HGFZGIjR2idi+BAdKegzbdMzxuHGibsbLjPmvdkpnODDSkoAWkDqRelMQk6/MRmdGGHcSebt7FwcJjA3vneM7dP+1OFCvtBI1wNpvhfMlYdetk5sshlP6LBqTaPmkmmE6nuLi4QHPSopoK7WSi9RIcbmAOgF1MiCHBjx/1JbxyiQ8uVNmY5TV4HqM17c3J6ObKbitAv9tt79h7n5avy9/Mm3nqcygcoFlflnNzHp+TpoGbM0xVY+UdOudC2TET0iv0PbBOZHr4LW/YMWADJ5YnbIOcEzzdBEUtXd2nzPJpEqC8HdIvor1AQhIhavQGZAnCqS2WS5X5MShedbUblm8caNdVDW/i7Ckmjx2uRMvxk0PzVBaGgBmG8iB2TqIhgqUUtK5x7Vx+l8lnDoGrfI+SVpLUBFDyZUrl52Bi5sFDkZ8lEDEMDE5OTvHovsfV5QJEJnD/iF5+I1n9EOKnKJu+8/kMfe/w9e/cx9GdL2By7GGkckg8yFoDdiGFJpEdAKCPyetDzck+PafQV68U+OL1paLKGHDr+HKK5n9qny0A9aLpilch8vyDbs2BCqJoVW0uDhpO3G3bYjqdpr85TvSQRVqsqQK5SDgPgwH2YBPTA4NxNJ+hnkww6xweXVzAOQfnHZgJvuvQegf0Xb5/Q6ir4Mtxid6K/oekiDGIMw6wFw5NnigDtSdxQsfwTkj/kMihcJyNClJuHx81bYPHF5do2zadxxiD2WR3YZUbB9op7nMQtkPDQQcMOaeiI+ZNlD5vDkJK5tAYgzL8m/cC95gmKqcu4Vqbk+Pnyp0rADehrhswMzqVR2TAumrwVKetqgp1E5yKPlaxSYoGIvhKqJYAsRqsG5E6T+mQfB7gnmLNFRAPnItEsXzcyNtOVJqAdonZ29+uRCDFE4wc85pZIIUc0vTit9Dvd7hMn3N46aBfZEWHyvGWDucM6ErTrisL2AowDvbKxncSQJbZwzuGLJUwxsCwgbUygmT8UtS2Tb6ol3uKfSYCuhineXEVkKxx5P4UaDQrH1OIo+ZBRO1quy5UnFc0nC7RNiY3DrTXbQvv3KDD1JWBNTZbM8CgJ+pBpbnwAV2iQiwywA6/KDti+pj73DVED3Ia/6rcxJnB8+xhYBLdYawNHROEvvegamiaamondb54XGUtXN+FvBC5EcJ1PMOQD/sag6qq4ZnRti3quk5tNYjmeRVUidCXRVPqSKLDoomivN44+5xlOz0i46C0nJiVXyn+ds5t+DmIgpNRa9qamdDdLVwqvERDQdM1CIvOppMGvetBnUHnekjQAEv/88GL08cIr5BtkGBMH6xqyuOYokIXRp5i2VPYZtivG7QPoOIaY1uEr7JjVbI9xjBGa1FPpjBVnUGbDCZNLoY8JjcOtBeXl2HJtgrtm82maBoDC5NfvoCHC6umEtedNCrhd0OuaSOaa8HXjknGv6fVDpWVsGGF64lBa8chvapUkgkpU02iAOuqAdkajBByODEcS62FKh/pTD60Q8jh4FFXNZqmQbteAr4DwQ/uxDsHcB+dchb1pIJzHsvlEk3TpLYSXltbQq8DJyz0COmBplnV8h3zNqtprC9sWk4vQl5GKwo9CAytHs8MeJcmPZmQfdJW83vuug4+rpTV7S3KREENo/yLKOTTJmOD70pMPrI4PT6CsQb1eo3LxWXgt5ng2YZ7jOGAUjzharlM5xRLXN611Ei1FLTeSmu+zqeqOD2yBh3WP6i8O3oMD/pTLmhsrcXx8Wnqf4I99Z7EczcOtLuuQ9flOdBai6ZpEnglSgPygaPVojRb+V5vT9bxIZriUNNOivx1R9dWfmTLtVl47Wwmhr05DyhQ5OgZwoPH6WlwYYlMIWNgrIF3PULBg9iKYityzHVsbMxzYkMa2L5P9SPDrQ1B+nUB7EF0CIANoCV5CdlBO/x+7MzjkE5bvnsW1H05rbhd0w6AhaT0ZA0aabueuEuLK5xZ9Ys9dyLOyxwrH+iHSVOhczWcd7Ama9ueM1XKADhq2kIT6uElqySttagYISyWTPQZiiYWrEvvGQ6cANx7D4Yb8vXq5PkaPtWkrSrGWd2gmUzCpBf32Zcs9MaB9mw+R61AWzpH3/dh8Yt4kU3kjxKvaYoRGFqcEEHQ587GqaOiiELJRwJDzH1qpfuakr3QFC262HkMoW4mmEymWK7WmDRHIFmjw5kqIRkUyJMcgTCbNmDXo2tXoBnSYKVkWgIxujtECniH+XyO9XqNvu9D8qnXSBJls6Hx67eX/z6czbnZvIluq3JFa9IyOU9wzJkWsdZGv0hwXj/NvC3jjb0D1MIZ5kCTNFWob8rwIYVEOVWS+p1xWB4iWI8cVlgCBPT9gFVjF5QUz3n1JUfawwtVhESLb0hYXEMZG6IjNDhKkfShXfJ6jaTnIHdu304RC8wM5xzW63UCj971sMbAVhZ1XWE6ncalsYEOSG3toRxskbs1BsZa+PiC9g9PiZ1++QNZJ+WR1WezoxO061t48uQSJ/NTmKYBGaGI4mTGMSYcAMMA7EAE3D47Qd8tcXXxBCezz8VKIiF00srCpdjRe+fQ9x2Oj4/Rti26rkNVVamDvw5atta+NoFIJr6No4q/X/1zvHJRZn2pSYdtDut1C+ccJpMabduiqipU1TQAfbEGnoEty+LDe6msDVqu6wDDIQwTBHY+5h0xaGoDS8Cy7bBoXbaOlbXEIOWOChqziTSNB+CdRx9DWE3fZ9COVRcYCNFTnGlUOfPocBcLudS+o9PSWIJEK5s9cHHjQHs2myUTxXuPruvQti36vk8AYq1F5S0ARtM0QFWBJOKkaHEdCQEgesk3rzsEomI1HA0m9uvLAdhA0A5SGtxB6O6Eugmm2Gq1SFkA5XupOpL0khguKBrDdNqAfY+2XcXv41mNDgWLQBjbvmlC6JKOGnid4rX3U1xjGviufYLcRCjf9d60j2dM+3auT5p227YqA+JIq/K2Vg0SHJBB2yX2me9kDgvBjIG1hFVdBf6bcooF1qNQadyZGQ2UoPRXjQVG7Zid9uEhdvWjgb02ZE3TNUmSi40zdBty40Ab4kgiCeGyqOs6aNRVha7rosYcXq5o4oGPYxgTM7RJh+Kw7BQIM2oqHLpL094Y6zSgyg+S0nTDcD4RcB0a8cU9JG98MPuqqkFdT3D5OGg+YyoBIR7HITadELT26WSCtu/Rrlf5asopK0eLk9cYA1dE8YyZ1q9c694DEiKHTTYHFL16AxF927tKccnFvvpHHNCS+XCwWKk4fzgn0jsZvxcfKYThOYJTXRQPRmUNJnWNGbIT0YMj7QE0ka7TnLQ+18DHFa6ceHqt7CDSicM+tIWjJ6T1H2KduKhM9sQJcywAHM+2tMCNBG2KzgkTTCdrcETHmM1n8D6G/kTapO87LK5CtIn3HnVdh0iTuoGtbXqRVV0HXo4Z3jlUVVgey263uSzmz9NpluVasVJXH3YqCRfyg2sRENvBM2E6O4brz/Dhb1+i67qo+SIdD4SFAIyYbgGB66+sxa2zE3znkwus+kdg3wOxk1lj4HtJBmTRRYcUELQqnXOkjLx51YAtXn4ZcmWLl/Kq7/d1kIEz2UiWDIJeXNP3faIjiQiz2Sw5pXM8fATTosn3TaDBLxWWsLPJ1IQxAIfcwGDPmE9C1NMUFYT+8N6jjQ7I4/ks0JyxUnzvQuIp7yXTSvncWQ+SnqKBXqJQ5PNmw4XvU5ZChP63Wl2ha1dwrg/l1gA01uDzbxVoRxFHnIUd1ubznGiT1Qrouh7r9Qp932M6naKua1RVmE597GTGmvSCQ9RFld7i2Aqw7X9f6wlG/t5Klo0cTeqTyfRIM8XVch0zEm4OkZTPRJmMEjbp+gdY+7isPyZDSdEVnGkSiqFSEnqZzv0aatrMY1rSq59Q3gShUX4DafWjUJHz+Tw6IXOMtoR9btirOyyf5BMBpQnDQ2u+OZVybS0qU6GqMkXnnIPtA2BOmjqANfVwMZmVdzk6SrTq9Kzqd456CdfU9uyufkNRyRHQ7p1D33XowUGJitlBXf2WLWMfk8GCmQi2AYwtJtMJjAnOM4nHdK5H2zKc83HBiM/JbhAS3zCXIJT776YWeYgBPrjjwV9D45HHdtmQwRXTYbJst4rOnJALgogyp0352PCbw+Rng9fGewdC7NwpAmOoPUuHd84NBmg4/6svjjB27QQexMN22yUlUXnDpZxo2Q9pEO1oloVVwLAf2Fg6bJsQYWt+bnEm6jBMAhIlJ+9CwJMjZSLRUYaAKt5TbQ0cAQYhA6E1lJNaCb0DqEkk85uiEPlKJfGl4EcioWc3Wy+0i63SLFPb4DBljpaDDePEbuRPGsqNA+0SHETSQBXAriwmNMGdO3eC09K55LRcrVbZYVlVAPIiAGMM+r4PHdBUgHfKI71xNwnMnx9EjXeIEHLkw6IYprhKX2A35O+1pgLZBraZout7tO0a0+ks5GBIZ5fOFzzyAMMYCmFU7NB3DuAOBAeGi9pJuJRnD1sbMAxcj5RPezKZJEdUegoVcVDyky9S0nOqa8qCD/392wTG1xHtbHTOpZ+0OM0YVFUV10YwVqsVlssljDE4OjpKvqXg0PeJzgSgFxRmoTy4Ah6qUEG1cjEtZGOGJcAYGyNTXKbBiFFVoQ8eT4Omzb4KVAdL9Et4RuG62RfRIMLJAzm/SPoqWKnjPZkTp50itchgsbiEZ8akrsE2tEdTvWXL2EV28sgkS5cJzaRO+y8uQ/KWtu1wdXWFpmnQNIy67qOGEF6Mcx4Uk81wjDsdpH2Ue3ghTzYO2kOOm9JWsTGkSrsxFYyt4ZxH1/WYTpFAGuUZ4mkJQF1bAC6WTvMgeIA9PIc0pT5OHDYm33EIC53quoa1Fuv1+tVq2GVUUEHVvGrt/00RPa6EchAaTKw2ay0mk0kcKw4XFxcAgPl8nvrDWFsrZTluKL7DIGnE2M2l/m4J8MQwHFcqxvOJpj2pJMe3nNwkx6IX4I5RUDpaTDtS62osEd3O1kvtRgAqW2F9dQkHRm0N2Abl6a3L8td1Xeo4YWZWCYzUfpG5HBxrjEFd12gmEzjnUFXVBheXqkJHTX4rMCvt+7qAwFp1H2gdBYfIW3T4ovMzxLQM9NBkMoPzHv1YlfX4NyXGMGtWVVWhsg7degUz8yGglEldMFo3hGSRTCYTWGtTe5ZhYfqZXxRobkQnbJPNeXe3lDsrimwbwfUmirZay3enLRb9Wao4MfNgYVVJG2bi8jDZcBDGjcNl40iTNMGD2WctPi7OIeYUbRK6rljFHFI7RDolLXpRZw9Wd1SF1PjZRuuUXxoZZOxR2bASsjIm8uMhbHGX3DjQvrpcgIzBbDpFVVd5tV5qM1b8lAIQZjSTSTh2NkN3fBwcFdETDmQzuq7r5CU3wA4i7lkHq9agt587Za9L4BmiZtjFzscMYyt4b8Bkcffe+2i7B7i4uMTtW3dD/8nNkE1AFboFAMdHc/Tc4vGjT3CruYWqapLjkmBBBvAu5CGhqsLV1RVOT08xmUzw4MGDNHg1CLxs7XZjjlJhac+TxBq/cilvnmYf2isDeFiOXSV6RLTr9XqdlJ2joyNV8FjSHbsAUruWCquXlfllDX6KZxYtW/wzKda6T/4aADCRUjFeO8kDMEtSKVDO4MlGjY34XfwKxvVDnnvP60ysTmg8wBOOJnVWWDicfrMmwFBuHGgLj1pXFazM8MlvwflvCt5eVutNw0qtcAx7j/V6jeVyiaurq0Eif9EcQy5qkzrLqDwP3N7ZGTKwJ6eMkfsJqp8HYs7jYAaent3G4nuf4Mqvt14udbDkZAJm0warjnF5+Rin97rg5CFCqLATNGzPHpUxMMYmv0Bd1ymNQFkz8lUstimvV/Ltn8l2CTyvDnWjwbgQ0F6tVnEV5ATz+TxZXnq5ezjBrg7OxV+FlVaMucG0G8hpgH1QPtL3cax4l/YN+luIisrAHH/irzDKCpPUO8W1086xrjFCLAFmxrTOeBN2KashbcqNA20gvNy+70FtmwajIeVM3DOTAbkzijMyF+3tD+JAufj91BKpis3lvqokaUlnK40kdFZdEiykT3We4dghUBqipUPNAbmLhuf0oUZk1WPZrcHe5Wuw4vST150TtdT3/WB15LZOuUv73hY6eC150YqtoqX2zrU3SPRiGiADj9a+N53NnBpovJ0OHDlKDyvvCZHq0O8i/S7BnxUsi5q9cQ+ac8wjnEb3HQppc3aw/fpy40Db2hC+d3F5nrYREZq6QV3XmEwnaKhJiWcGHal4kaJ137p1K+Uvubi4QNM0B+RfVj3yaZGbStY93ShGumkYJNEp6JyLlajjUmIGmA2MqTE7OkPb9ejdKpiCnErdRsCNy4RN8HAThTDIo/kcrSN855v34folwB3YV/AwiVIxcOF4ANPpFFdXV2jbFnfv3sX5+XlyTr7UiJE92vxYVrYXcBd407ntIMP3Js5IaUPxA02n05TKYBDmqaJBjBkv27f1ykqrzzHew2gNzb0TxaoxJnMccjkr75rjpIN+6JyGG147+SuyBWsSDu9bCZvfvQ6LFWuY9YSRJoHtcuNAm6yB71pcXV0N8vfOZjNMpzPYyqCuKzBHz+820AYSBycg3XUhquTs7Ax1XafitdoRE+/iOT4Qsra9rYcrTZsohPs552AkSJ8JzodzkKkwnR2h7R3QrgGE2FRJBynOGIpaSghrMnA9YzqdYto6XF48huvXALsQagilTSFneWuaJoV73bt3D0+ePEkm8usSqaFjjJ8LqN4UbN4pCtyYU9ifaNdCiQGhD5QVbUTLzqtjr3HldIxA9vaZljhk/pNxzpziSDYoQJd8XZSMgMFt6ZtMIXs08AdtvWfkGcLHcSUx3d77dAIhT/atzL15oI2YxNwY+BhCIxW0ETVQyT9CAEwVKrpI7OXoOVOIoMkrudSb2jAPsXvc7nPCZc1EHZN+yzUUP1Zcbzschq4aPOIGbAyc97GyhlgGCr1peCylgRbC/YYFj/X9beaWkMlTJrpt9NILB/M9p2fedE9sLCpR9z76HAVFJW9ryMkOY3zH+sTYuZ8LTfQMMlhkomgPTYNsu7dtt5v7MI9/MXbMQCuGojjK48uXqb4aGaTESGmUCzJndKzJln3acdLTt8wxaRJh7I5CwQ0E7dpaUN3AHoV4atH6jDEgZqyurnC1uAQQXvxkOo3x2IE+yT2Lk2OCKCwYEKdKWlyjnFcCTOHEEAsKAAaVWsZM9e0DUcP/eKicHEMw8CQLAXJuhzDI4txOuUL0ZHYEhxaL1QpHzTSmpgVAUqIsc8/MCOkj4WEMYMnB9yuwa2ErwLFBjnN14TqUw/wA4OLiArPZDFVVYbFYYDqdpvPrXAylo+p5AlNeSbfl+2uqydsWcsWTpT4wwA7WO7we1sZ1RK9uTQuS4vNrynCXk1lPeND+lAPkUKe11uLTEYmr3hSz5x6G+ou6/2sIS4RLvCkmnQY5X2Nfa9w40LbWwFCFuq7SzOtccEz2fY/VaoXV6ioBxPzkOHq3CXVRmy1rkhY2rvKazWYpEkLzZxKIHyQ3u2gh4sjcJhrU5e98rrHOkV8zRTMtdX5CDnVM1EoAb6KQkraezAB3heVqjVk9zfdsTNKiU2w3OAIxR57bg906gHYdc5sI2MLHfbMj13uPq6srnJycwBiDhw8fJspnaNS3AAEAAElEQVQpXHLTenlxMt6eL1RrFf7yBtAmZCiF6cn7HYu80f6eMeopWZPPm0oc8R0e4qsotepD9z1UWM8eLDeWT3idc9440M4cMNJAMZKvtvBiUzSpWFZ2dX3KD52rsWQaQrTrtm33A4zG3GvK8Ny8HbPHDwZom85IkIKr1lo4Y9H3bs+zDNXFEJdr4NnB+35wFeWE3zChdYL8FFapJr2XKWOvJt/DASMc4/e8YR0UJvu1HnMEfMi8ulzkpCedHRRIKQPlY5vdn9pNbZL/RijC8Z3lGhhsH04XtHlIeS6Mv33e5MyGf44cs0uGffB6IHHzQLt4TQClQp1AAPC6VmkirYHrHa4uL3F5cYE6RpkcHc1TKSAgLyKYzWa4uLhIi2z0ghGCKe4imkEHgNPAwbKxvyZaFQjE83vEFV8mV32Oj56822G/sIjRgzA/OgX5FR49Oced01sD37WcnSgkzXKeQVUopFpXIU1rt1pgeXWBataHC5EB4OI8mSsHCdcpVo61Fvfu3cNisUg0U6mVafArOd7ryuYxu88xxiPv4mnlmF3UVV7AE6g2ACoBmZxDFHKVkwMmLXkGUaotWNIyr2qh0jYpLScylJ7BlzHeTzEHHTathv38tnd2/csO5dpNHSaU5zHl7g9YftOFYuiPDVEjk8kEx8fHODk5wfHxMeqqgncOV4srPLj/AOePH+Pq8hKu6zHIyUFIoUxd16Uc3BlY1L47VnntA+4NLXvXa1YO0NHzxrAoKY0WLLSgbU/nx2imczx5chkK/WpGjURjyVaInN9WFmdnR+jaK6yuLsDsIsDENojXlcGpnbeSf+Tu3btg5tSGZbGEsk32geahsu0au3jXbfek7618B2M+ClmgFPrJyLBLfKtkmov9QRIWpWOLPDFbeONXKWWbEEFVOMrbk/PyGufm4veeOwGrn1fqR9hyWd7ys0tuoKY9PmiATC1isE2bWTnNpHMOlj0Mhyo2AmbCUZfXyVeIp9Ia8Z5BdTgYZS04nVFGNMX7h7z0EFwkmrdELvjoDAkRMwa9y1kK5RqjdysTEwh1ZbFe9SFx+5gdv+P59IDVZcgO1RafpzZZatWlBve8AXGXpr6x7bld9UXIUNN/eVfct72I2ZZxC6g4a/nuUF191zd7yOhB2+zat/hiz73dSNDWEpwdXDQgp/+NNaibGmQItrKpDNDFxQVmzqGZNJhOZ0nzJCIcHR2llX6H2jxlBz8InHg8NpsZIU+C51j2OSZ2gtAbBKaY9Tqq2AYexC7maIhV09ng8moVFt5Eo4vluuJUNAQLC8BAIkrOTk5w/9EDOJzDULh+AjwWR6QZaFVSuaTvezx48ACTyQR1rAgkTtrSoTWIyHkOMhY9shGuSSZRSvtAaex9am0yh2USrMmZ7ZKFJoOVh447SWrkmQfbJS814nPoRGavk5TpdqU9uXge7/3eIrZaxtSDQ5+8NH7LQn0vogW3q3Q75ABj4MaDdpYM1PptG0Nomhp1XWE2m6JtO3Rth8vLyzT4ppPpoCGPj4+xXC7Rti3Sohfev2Akx1/v3y/si3x+eQoOfCi7ANohyU2I9vCxQjpT6JQBtIOKEUA7xFcbeBhYOLa4XCzhfAna0UxjBpGBNQaOLMAOhgxOT46wuvoWOn8eIkngcoNy5G6jJq25beZQoePy8hLvv/8+mDm1Y3gXZqNtXjZfSyB4qUNoh34GDTgbvK1ycof6m3nQkuSAJi5i1DOoGUUfQEXt2C2UgtyX3MtLkc05b1TKSCjPfvRehTJ6lgiSQpfd+f2u7U9zB/uagjf+2nOVPYq7yFsB2gOucYeTKUSNuDR4nHPwiW/Nx8nAyeZ9cb3i+rs0tl1RCGngb1PmCWrwx0EvQyAOMNEuKVaODv8MDNmYSyRWGNnVWyiPV6JQMonjUvdiAfzGc4+1gdYQD2mbQye7XVJSNLsdnM8+QSTA3n5HG/umz0TigMicnr7H+F71atyXJgPg3r345xDZCWWHqqZKaS7PV+bsGT038/b3lTZse65rtP/WXfPVD2m9twK0gcM6U4gQsQCapBWuVqvQESJ6UoxECd/n5FE6pE1zfmN8rh5sMjlkp40yr5mSuUTWDFadmaoCATGiAIm+yfRIiBIRPSaWIo5aN6MyBvNZhR/+vR0m8yMgRTWEo4JGNExZaihWwWFGZQkgj3a9hJlyyndilX1X0gcSajidTlM2xlJL3IxT3wTZ5yYlGCJSZuKz8D49i/gBwrvxRcZCDABD422wWAJ9ZOKUibFnHDxf/D69T4aU6pZj6qoq+tybK8/rCa5Dl7zJ8paAtgKP0a0KVKoKxoTMfp988gmc95DQOoqabQbtNtaLHII2F+cc3EkEaXFoShFUXbJJJgxLJoUd2rpKCxmqqoI1FtYY1LZKprWxyktuZEFNiFao0jchMLGupgCf4Z137qJ/8hDchzStzntUxDETouJMveT5NfCOUVUEbzzWqwWm85Di1vU9qiqsvizBRJ5XQiWvrq5Q1zVms1lql11a2/PQtsdk45qQephA37rEPTMB1lg47+B9nnjDNj8AaR8tutBsOorCRGsupAH18nzRkhryrJQ+CcgTEThSL1VVR6Vh96Kt10G0cq7fYfIxHIjah7Azm8B9GEFyGOA/f4ts/Py7n/JGgvZgIG7VRMa7gORWEGBmFg5ycIF4ah78HrsPbf7r39fyvCu+VIPf8EdA2ySTmiNgj4G2rWpYYtQ1sLh8AtcLJ41hX9Rci9pkIu8aCv0KA3vY8xjFd183nO9pgXvsuPIsQfHmUQ28zPWy7SSsG7A4z7BpVZvq+yLhwvR3+sjXQJcc3ELxVGO0E+X2G2zPX6Yz7brkFhLtkJ32H3dNhnr/9vzq+IB9Dz0ncENBeyBx4FA5MGJH0kBaFvGsmxogg7btMJlW6RzWBA1YNMr0s6OxdRFUSRYv5vVggY6aEAyp7HlVBmhrQvZBEzU9I/uYqK1FoOUI3gSChaJ4ABBVAHmAPOrpDIgam7EhPwmzTwxbAiKPpF3OZjOsfYX1+grTfg2YScyoFokYxUePhUjqhPnbawY+f4Bi3gLgigbq+z58MgSFO8qZZtP+3itKK3oUgkWSV486F+kUTX1RpknquoFzOa5dJ9cKKRD6FGFjYhK0XHPT4Jpo9dIk94HNbWH783+/r8GUtiGZqX4+d3fjQTvgV8EhltqROMhUhzLGoG4aMAPrdYvJZJq+s1UVgJswAOwN40ldV0IEu65LlTyE7pAK1XnVZkhQpXU7pny+9Fs+DxQ2SuFNOROKJKYJ+4avK4Q/GPV0DnZdeDZrQRyrrBsEJ42kJovtU9kK8/kM3Boslxc47lcwtYG1gVpyinuVZxrQR8wboD0G7CW99HxC3HZZReERBSCruPBKFlllSiTQRM4HZ6wxwSoDB27aWgFSQl03IOrhfahqL7mnbagSDQCYTELecR2hYq1NuajXayjQDjl1lotFLpKLHWl7X4FIWyXQRq6grkM4w7MeTo+Ecz3H+0yfolPi2lJaY9fbf/s3b7umDYxq24e8ImOC081L7bh8wkRZ6EiP4SUzYJc/JdUh+Yc1aEs+Yp0qMirK+Ro8/CzfE8IxRu9HADEl4EYqXGBA1kbLQUy6oLmloJmNPi31/gjORV6VOfoys8aq22KbY3FbJMe2yJPnKYxyAqBCE9/lzQ9t6cv7SsxI1tLlbyBr+vJZvhOfhrz38H2ganiwb+TNn2P8+lNLUvCfTZMctOCOUxx09oK62X6MTCjlDTzLxfecj8sdNzcfIjcetAPulPzVUBJfSZQ0ZkbQajgWKdUDjQjRWVkj6dgD9mWYE0KcjyGnyRGm02nSLgWgtbaZIiq0X6J4yQOmc/St7+sKFuH1O8DYkN0PsuCBA/NNMlnFFuHYlgzMJjOs+g7nl08A7mO8trTmcMKS9hhLwSpRGHr78xQN+OHz5vkFBCWrozGarqG0D9Q71RSX5AqRiTwk4Qqa8aNHj1J2SClmCyK0fY+u69Nz/9qv/Trqusbv/bHfi67r8eTJORaXl5hMp5hOw0IkH0MsiQjNpIFR2vrrJJsTLw8mqHK/Vy+vy30cJjcetJNE6iCB31ANClykMXBxYQUDqcr0crmMFSYAdgxYgjEWdd3E6JHx165Bu+97zOdz3LlzB1VVJcDWoFIunBhbdKCV3tHhyoh0xgZZU2yycZ8esDb8AIEWAcNSzs/NcTk/qQc9OjrCZXeJJx9/AnCnQDtr7JIQSsBbLAmJnhHQlnYeizsuNe7rilg0mVoZ8tr6HUkSp6qq4jGRM+ZccUQcqDr8sm3bGO8enL5tu07P8q1vfQt3794Npdp6FzL1kcF6vcRyuUrt8Yv/8BdxdHSMH/2RH0O77vC9732Cr3/4Ic7ObuGD7/sc3n33XowyMqiq4FPwkZ5JxalfA/wes5R0sYxRq+qF3rii29TWwyKid8v2+x6nTXZdkbZ8HpMbB9olXJFGuC1cduKG5S+Krrfo5BE+cXBeolD9RbHZZYfUGrdompPJZOBkAjLfWzoiByp2oW3r5932krPzrBgo4eGgCJQh75/aSnftnHIHEYANEbquhUSED/mbzS46RomMgec26uQ6UoLHrvPodxT2lckzhtOpV1DSXOkcyucgvLUxJuURhzxjTE0gzkm5/sOHjwaa93q1xpMn57C2Qtd2alIDvM+Fc4PT1w/0kZcqiSIBdsPSdhkYP+X8M/ZQA0pmyz3t2Ty25qY8bGOXDYN9682NfjsYGWpYbttvm9w40C5l0PBau2ZEB458telM1IOQ4/6grL3ppEe7pKRLDgeipxiGo8AeF+pE0AjoE0e5QVhEEh/cJMAEYLKLixSWe0bmtPsuctqhXiTFSQ8Yr0iTbjNeR2vXyUEn911QTE8juu11hMhGGxVUjlgBgQYJrUgc370CWyBE3AAh/ex6vcY3vvENNE2Dz33uc/joo48wnc6Cc7mucH5xgcvFAuv1GqenpwCAvg8pbSUGfzqdoqpr+FiIwtrgQwj1NSsANkUiacXj9ZUBsr9E2Q6gTy+HnKl83uf7/DcOtDeJAR7+EtqBZEm3fM1wjlMKSSDng+j6PjrlKOWj0PUOt4Fw6XwDMuCPmf3Pi88diyYQDZsiYKdbY4RwM+FqKVau8QAqQp7aJDtJoA2qJlA8XbcGuANDeNw4ERIPqJEStMdqRZaTmqZMnkXrHrbv+CIecTjribjrukGFHQAwzoHjPs6FtLS2blLt0cePH+Of/bN/hjt37uD999/Hb33tt3F0fApjKtQN8Pjxt/Gdj76Dvu/x4z/+4+E6bQcpaddMJqiaGs2kQR/5fltVqKoq0DDWwnuktLYiUlzu9ZVtwLVJVBz+FPuBcPe5nqa99h2zy+59Pte4caC9S5LWBuSIimS2BuAGyzZAGm9Myyu50vK7bdfeBjxjQEKkLAE1+WzQP7JNOX7S8yADNqK2TVHbFjMtLLNWdqm+RnG7iUQiyb/iogYfMw1qs29Dy91sy13f6X2uI/v23/Z+uPy7oKwAxOXkynLiodXQti0eP36cokDOzy+wWq3ChG8IbdemZGQSsSMx2hT3qVAN+lZSEJTlMQipe9XOSNXtxu6FpFON+Cv84ARZQjcaWsb6jy1q0oZ+ux+2x6+9e+O+c+4iLdX0ta2b7sjHD7xloL0znjXGUm2a0OMmdTBbK/T9asOhOLavfC/a3DaRwcjM6F0XPyMsn44UjguetAjYJYpL1w0/Mk2RNyHkjwnEJjjdyMFUK7Src3TLx/jgbqBKhLcO6VgjMKk2NGTg4raqsvCuB3sXrhNzlozRTGVblMC4bXIMt/P05uWudt/l+BSwXCwWuH//Pr7whS/AO492vcb5k/OQl4aAD77v85G6oJwBsuswmUzRdTlFwa//+q/jwYMHybdhTY5hPz8/x2q9wi//8i+jqip87Wtfw0cffYQvfeGLIWWBrXByfBw1+hZN81YN3ddIXr018xa8+WJQjjU6ZTDPGmQs+USEstJIcCramENjAWB3ekwNBCUlUJ5XnFjee3SrJXrn4ZxH23fonYPzLhYuYCCmZoXPGnVYBRlX5ylvi2ELYpNB2wFkPOpph8XlJ1hd3McHPwi43qG2If6Yorbu4VEh00nWVGijw7JpavR9C9d3MJVQTwbGcAKy8lmFNhFNUvjakvcvHbNPQ5HIdbJmOuTVyx9dTVzKyT169Ai/8iu/gs997nNwrsfF5QLf/vZ38ODRQwDAnbvvJEfzO++8g4uLC5yd3cLR8QmWyxW6roP3Dj//8z+PO3fu4N69e7h16xYqG4afcw7379/H4ydP8Df/5t/EbDbDxx9/jG9961v4oz/5k6iqGnVV4+7du/jk00+xXK5CObxBG70KzvjFyG49Ve91yLZSARv7fB3ZddzLeQc3D7Q3SW0A2Ym4S2MrY3PlY9quTOgwwO1ezVnzsRqUwuk2qQIBGO89+i5UkO+cx7pr0bsevXPonIuhXh7sAmhr6ocpkdfJIjUwMD4CNwxcBO0JOVwtl7haXKp7InVPyKMoUkY5siI4ybyPq/xkxzHXfGq4/Kz7gLgE7UNifMfadHOfoaW+4V+IzyoW1Hq9xv379yFhgW3MCf748ZPoC8nJvnQ5urquE/fMzPj2t7+Nuq7x7rvvYjKZJHrEe4/lcolHjx7iG9/4Bo6OjnD//n08fPgw0ioGxlhM6pBDMSxoUomXRlviVclu4Nry1vJH2rnj/qvsbIxN0L4ezB7S0i9+berNA+1rioS4abimBHaZZhBHXV4Ft92kL7dJBIBzDovLS7RNE/OKRHaDQzJ4z7leIjOjb9vg8Erap4E1saMZAnsDT9mJKHccdo6gHf80sCAYIFIklQWIPKxlTCYTrKPW56U9YuVvilwksUnVcCSnXWUNjqY1fLsET1YwjQNTHye3YfWSUvKQYVgb6SXvIWGWzHEhDGsrCM8BobQzkhIQp8mSOSXD6rsODGC1WuPTT++DOeQJmc3mmM2P0Lvvom1DigPmGAZpbHynEuYpy+MDuK9Wa1xcXOKTTz7F8fEp3rl3D857nJ2dwVYWP/qjP4q6rjGdTrFcLkPMuAltQCA0TYOun2C9btE0dV5g8wz00cuSF3+HuzrH85ja9tkAn2naTyUGgS3Y6MelQy0CinMuaDIk7gOOFADgvDjY5Ce/NKnwvsshFK4R7qWpK3RtGPx1XcFQyMYnUQjeD+O9iUIKz0zRhJwX1hrUXCFUq+G8sAIIoEwYHcAht1/OVWe9B5EDW4Y1J1hdhtwqPTPYhMrfnetBJlSuAVXwMX6kRw8YwqS2uHsyQ794BFfNUM1vo6M1PBM80wDAwDGcME5S0i4EH9sjOOQMVXmOZBNjVnxY3GJCRurtbols1YxNqNnaQbKSnAug3fcegIOpHGpTgb3Har3GKQNPzs/xW1/7GhjAbD6HMRVu3bmL9W/8Jh4/foLjkxNwTBxlrIVnDnlJ2MFI6TDvsG47PHlyju9+73v49H6YBH7oh38YXd/hg89/H47mc/zpP/2n0fc9fuVXfgWXl5cxekWsF8LR8THIGDx+/AinJ6dojJVeP94or5mUr+7poXTsyJdhc7z6dr5xoJ2cZnzYK2TmsNIvAqx0K9G4g7Zaci7h213x14PPQAyPa7FetejiikgAKZGU8w6MbJJLzK5OLKU5V6nZCFVWkcgO22Agw1wYdQRwRwbGNDmxk5o4mANkmsARgaNjMroqUVmDWVOj61bgfg1DDkAPhgUzgaiCLCjJLZHbUtrVqqIDurZk4LOo4DKwE7THfo8BedDoh3HgPpVsC5eQxS/rdYuHDx+BOeSxxtRgMp2hdx7L1RpNM1ErLs1A0xa+OWjaYSJYLK7Q9z0ePX4MxOucnJzgnXfewQ/+4A9itVrh448/xvHx8UYGxKZp0Pc92raLE0N+/mcJi3wu8pSXHj2s3Ei7vnxeF31NZM+93TjQpu2K2FNFIOTBLoOi3D5MBrXrPCExVAVrN1OxWrZpVV3SrFV+knGqQSPYNR10g7NkZ2t6Dsp6Oct/keBOi0qI0NQ1lqs+FjmO9x9PntpjALSx9mVaIi/0k34/+YDwyGqyimA+Fo6nAbiM7RbnsjyfLOQRa0nypz+4/wB9FzIeSr4PyQ/z8OFDrNdrrFYtvvPtb+Px48dYr1aRRsp+D3lv3jOaJqyAbdsWs+kMpycnuHP7NqazGa6urgBgsCxeHLJAjl4ZFP2NFpeEFEoys21VtT6Tmyc3DrTDAI+0h/DGW/YcixEufwtgJM3JxFBdFnrFD5yHxRUG55BoBJJQOnUdIgonVvemc5HsCn3TE0u83H56LYSZwCMsqDFG8oJ4ePYh/7bJ1wwas4fn4GoxYFRVhfnRMT7+5Lto5qHyjeT2BstqR1MAqCB6+E9yt4iWO0prGEJtajjXBcAHDYBOt9ngfjGcBPX76boOx8fHmM/n6PseVVVhsVjgN3/zN/DRRx+hqRt89av/Er7whS+l9Lm/9Vu/BWbg/PwcH/72h/j6h19HU9chz7jJIZ1NXcPaCs55nJ2dwhiDi4sL3LlzG9/3wffhS1/6Er78la/gP/lrfy3cS9smq2q5XA6srbquB88p/ejo6AgcrbSqqmCU/+J1lkO65meyW24caItmFkQ46PHuPABt1ZU0aBBpLrTcLk7E3Vq2XMfaqNEyUpkyIGtUUCC5baXl5nVE27z+kM3Kr8maduLolRbLkW/noV4fNO0mRUvEu0m8eeCuI2jLOnhJ+5qeJYO4j5ZM+dgUIyicqqw1Fnmy7R2UoC3HChj3fQ9rLZbLJT795FN84+vfwHQ6xQcffH6gad+/fx/rdYsHDx7iW9/6Fh49fIizs7M4kURt3mVNmzk4eYkI7brFfDbH6ekp7t69iy//wA9gsQjhot4NNe26rhMVpi0txDa31mLSNFiv1/DORb8LXm+THxmwPwPuZ5MbB9pBIyxN55waUu8nA5koQM0GcMftY6AdRHPYxTfCj3P5ZQGI+Q7DPYw4zwb3dKDs8MGq6wGSNMpEPrx3PZyrgdoGn4vQQXG0GQY8yWNFx5tXNTKFi1ZXznQF0vcbi5cTsHKkT4pc5cW2bc5GrYHrwhIuptgFkLTay8tLXF5e4s6dO1gsFnj8+DGMMXj//fdhjMX9+/exXC7BzJhOp1iv17C2wq1bt/DFL34Ri8XlgDKT+2piUrDlcolJMwEALFcrNE2Dq6srfO9738Pv/u7vDlY8zmczzGYzWKlIFLVsyThYUj1VVYXFPTyEwW1O8ddFPgPsZ5cbCdo+JvrRDi3p9KF8k9vCEQ8lRXGomobld+Gz/I30twBU2UGHoJNpEs8MUtr1rthvdYfxnJvUydgiosEEEHNEhUooBlXVAACulktMG4P59CjQIJwdtEQGZICKDFzMF93UNfq+Q9f38M6DKwFdccoF5A90QVzynm49P6u1BsYaON/HcMhY7SQuFGIv12ewzxVxUvvFSUNAu6oqHB0dJe636zqsVitYG9Kazudz/Oqv/io+/PBD/OzP/ix+93d/F9/73vdQ1w3+8B/+SVxcXODnf/7n8RM/8RNwzuHOnTt48uQJPvf+5/ClL3wRP/Ev/36cnz/GRx99PGxjY3B2eoa6qnD/009xdnYLBIMH9x/g9PQUn3zyCb75zW/iu98N4YIAMJlMcO/euzg9OQkcOBEmzQTHR8eYz6eoK6vaLUyU8/kcT548yesE+NVHNVxHXs8p5c2QQ5DhjZJd1AKAUe0sfYch+AWTd5jcKJ8HBWhrhXovoTy8n8RC7KZZnqdIgGGgawyMCfP3ugsArIUi/yyUiCk0Pu9yfLk4K8urSbtLHHiwNpDOI5OYj1E0w9cn1lP+otS0S2ewLBWfzWaYTqeYTCZpu3DCjx49wte+9jW0bYv79+/jk08+gTEWX/nKV/DBBx/gO9/5Ds7Pz/H/Z+9PY227rvNQ8BtzrmZ3p7s9yctWtChSsqzGsiXn2YpjJbFR9rMTpwIEgSu/AiMPCPwnBoI4CRDYQfIvCBDEBQQFxGWg8oAkhbKRF+U9w1Xwi2XHndyKtCiKjSheXl7yNqfbe69mzlk/xmzXXnuf5t5zSZ5zhnR49157NXPNNdc3x/xGp7XGeDz2ftNXrlzGCy+8gK2tLTsppc9zNBxCCom93T0MB0MQCPt7+xgMBtjZ2cFrr72Gl156yVNKWZZhfW0Nk8kEmaVW8izDoCxR5CFhVTzhF0URklady5mSU6dpM8h2FmHdrxEiJOBu90uW4RE/nvKoQQP1q/gEcFOqpet+1tmlV5YZHZf9lhyL0P7kTrr3S9Y/3QJD27a9QMBHaWuAjdvIxWaFo5qiFnSNf+FcsXeIqxZk7DHp/eeSfdLn8xkGoxLGGDRNaJ/rj6Io/IRtjPFuc851Ms9z7O3tecPexsaG376/v4/pdIq6rnHx4kWvqa+vr6OqKjRNg0E5AAlCWRa+8pA7XikFbb0+3GTh7n08HqMoCpRlic2NDVy7ehVEhAsXtvy4yXNeFQyHQ0+3lIMSFy5sIct4xei47mgZ0/N8PhzyYWrrB1FOJWg7Ny5vgPI0a6qFu6UlGxP1gvbmztdHjzjpauDAogdKSqU4wE5rNJvO8X0eEOl90sJ1VndM97ufoaANAj0ynWI+yn2lFpdxhAhQuoUBkInM8u8cxTgoOPlRUzcoBgahiER6P+6yJAUnmLJLfaU5p4rzNnHHKKUwHK1B6xa3br2NtfVHAUOYTxlI8zz3GvTGxoZ/tnfu3MG7776LP/zDP4RSChsbG3j22Wdx69YtZFmGjY0NXL16FZPJBFtbW7hx4wZu3ryJ/f19fOITn0Ce5xgOh/joRz+KO3fuQLUtLly4ANW22NrcwqVLl9hzZjTCeDzGfD7H/v4+lFIoyxIXL170qVoff/xxz0+vr03wxOPXMa/mGAyGvoPGoxGefJL3a1XDOUwuXsAnv+uTGAwGUEphNpshz3MeJ5GXjVckztniMyOnDrQBQEqBpmnYjY0IUMZjVOzDGxvInCEwFrIajTOQdYu4kvUeWXhZnDZ0TFkGxsc2LvUd5jllBl9Hj8zrCnXT+P5wXhEAR/UZY4A8c3MgjDbIshyCCCqhVUIqgPQ+bH/yDVlXOS6Z1V2RaK1RFDmU4skkNiq6UmZu/9Fo5CfhO3fuYGdnB3/yJ3+C+XyOq1evYm1tDe+99x7yPEdd1964OJlMcOfOHdy9exdKKWxtbflK6I8++ij29vZAIKxNJqiqCuPJGGtra+zBUZYoyxKNzUXiVilra2veo+bq1au+ndcfveaNo+wtxBPUoCwwWRtD2dSuRMDa+homaxO7srDeOURAlHDsYdJp5/LBkVMJ2g5cXcUWV7QFOPzSbJFCMeEk9uzx773a9Art2HmReC+VTsMO8zIeiiqJ6Ybov8nliJLkRd0VhQOJYGwNlBARIYsqt5iIs44bEWvacWt8n1hai4GIQVzbiL+maXD79m1bTzL3vLSU0lM577zzDowxmEwmAIDhcIjLly9je3sbRVFgbr03AGA+Y68LpwHPZ2yglEJif3/fr56apkGWZcikRJ4xvaLaFsZoaAUMBiUmk4k/F8D0iPP9LosCRVEkRuq4T5Px5IeF8ziyz9dp01p3xl865lxfHiQfdO+SczlYTh1oG3AWNCE5nFg7vzVnoJICSjH36rQ8oH8QxwM89quORRBHqGVSephymlXX2yQ+b+z+Fu+TUjMHe7jEsmxfPmXkv4cAnsxSZBCSAa2xmQWNMVGuEPbeyITwB3L+bA7rHg7HaAxhd3cX44sGEGEV4gDL8b3x/cdavOORjTGoqxptq2z7FLa3t/Hbv/3b+K5PfRJbmwOmGtbX0TQNdnd3AQBf/vKXkec5XnjhBVy6dAnXr1/Hl770Jbz66qvY29vDO++8g+/4ju/A9vY23nn7JrTSGI9G2FjfwMsvv4zxaIyyLPHqq6/i+nXOj33n9h0888zTGI/GyLIMr772Tezu7aKqK0AbXL1yhb02tMJoOPD98eQTT/j+K8rS+6T7lAXWewlEGObOoNiysmEnLXLl4AygW6ZaoJ0fO/ejFIK3AQuTwrmcXjmVoO1c/rQNfAHJRFvkQqhkk0QdTqN1QTR9v7n8IE4cOLkAi6R9nvpwNTssc9yjlR9FVu+famjhHxdSLtn1D2yIdPm6vUui1f6EkCDJ1IaxWbkcTdDOmcKAcQWAU5/qGLS943X8GxEXVNAaTdugrhrWpLXG3t4+vva1r6GuKwhrAFxbW8Pu7q73vf693/s9lGWJjY0NXLp0CZcvX8bly5chpcTrr7+Ol19+Gevr69jf38fdu3eZiy8HmFgvkqeefBKTtTXcuHEDTdNAKYXdnR2MhiNsbGxYg+UeZrMp2qaGbhUubG0izySM0RiUzstDYGN93U/arc/lraHbEITkxsYQzk3V+bnDZjwLj0krxdSTMQCFiVOQAITztz/ntM+KnDrQBmA9ImIyAIkqsgBwK7xL3HfPe1O3XmGaRB8IoN11PYyBy2vVJkRC9t/KweDdpWVWUyvdScQ5I9hjY7dHf+lQ8Zv3iU2orF0Scf7vQP4Yy1On7eRrMZXA6B5ygXAhXXBxgILT2cZ9yRNHyMniuGSA6RBXsKBpuOLPdDrFfD4DYLC+vo5BWQJ2O6+C7BjRGkVRYDgccBWZ7W20rUp46yyTfI7BwPeVOyZ+/n1dT1G/hn7v7sgTWdfXXncibuOzCCIYIvZhl4srtXM5nXLqQNuQAUmCsst3Z4GMPUbiz3EQzirfbq11kga1b58s4+4MUWwxN7yoecJwOLuyeZyT6tonst5dbD/nj5bwpWGFYIpJK2SCueqgGTNcs8GPjbxaAWtrG9iv9rB7d89zsNqAy5BZTX4wKK2bnERR5NBaQekGbdtAa42qqjCdzlCWI6xvrCHPCwgiDAYlhLAJo4iQZznW1taQ5zlu376Nl156Cd///d+Pz3zmM9jZ2cFXvvIVvPDCC7hwYQu///u/ize/9SbKssT3fM9349q1q3jllW/g9ddfRVXPub4lGWjd4srVy7h65Sq+8Y1v4A/+4A8gSGB9fR3Xrl3F+sY6CMAXvvfzuHz5EjIpoFvg4sUL2Nra4NSynvrRaJraA7hL6BRHTnbHm6OPHJ8fp250k9mCG6YxyGzgUNu2yIU8oTFzLh80OX2gDa6onnoXGLg4IgfUumOFXyV9nHaXe44jGB1oxzSAiYp1xtyuUgpoFUz7kIMkHF9q7BeX1lVIC9rO8EVw+p1fvdgVg7GeJ6PxBPLuHNPpzN+xNtry0uRB1/k1j0ZDGKOgVIu6qVDXNeqmRlXNARhMJmNMJmsga5x0+UuIAJllGGfsB33v3j289tprAIDnnnsOb731Fn7pl34Ju7s7qOsKX/va13Dv7l089dTT+MTHP47BYACtFW68fQNNU0Nbzx9tNC5cuICr167CaIOXXnwJRVHgmWeewYWLF7C+vgatNT75nd/pixoQAZubG7ZOaAPAjRGNtm3suIpBNDZApxNzAO1FTyRnGPagHQFzJiW09aTJCwHgHLTPgpw60E4k9lQgsBZ4iMP6Xe2iiuVIX7jutnR7TI8s7r9KO1oVXHPY/eNjlk9O4ZzSVkLxKT8XLxId5XzgCTLLUBasTWshIIwB0/wMuk3ToLbZ7ABXBIEnze3tbUz3p74+JoCE/2bwDvw6ibif0xVUbPCbTqc2sKXwqxg3wU6nU8xmMzRNYwNgcmSZ9JGPRVFgNBpBRmlxnYeId2ek6Hl2utaYrqfGUQA17XlPj3gKy957VFA6vt65nG45faBNrOWJzGqzMIBJExSlXiH9hXZjwyXzp20vPdJND8rn7WuY01L5cwLwPYbI40hX++9Kss15cJCANrbQAYDReAwSAvvTKUZ5CQKDuPA0UmizhuNwBdbXN/DU0xOsTdbQCokMGpIkCBJV1eCNN76Fd955B1pzsMtoNMCFCxdw7ZEr+D/+j1/DZLyGa9cewd7eHra2LnTazbUX67pB3dQYlJznejAYYHNzEwDw1lvfRlVVWF9fg2pb3Lt7F2+88Qa+9EM/hMceewzf/va38dhjjyHPc1y6dAl/9md/hrZtMZvN8LnPfQ5bW1vI8wKf/vSnfbj6hQtbXCaubQGjoXXrNWJhV2utaeDKxTnO3T0LY1cqbgxpHeUcj1Z4MfURu1XG59FW4aDoGedFDqU1qnmFgemdYs/lFMopBG1e7jqumlUQywV0NM5DUSNwEZHGLqe7GnWfv+yys0VmukMoRUfht4+uZVlAgbBB5HyNwWgMQoXZbA69FvKHk7AFfG0CKE4q7oqzESZr6xhvrmE8mqAmQEBhWA4BSOzu7OOdd97B1772Ncznc1y4cAEXLmzimWeexpWrl/Gb//0r+MhHPuKz7THdEEQIYg+VpkHTtBiU8NGH6+vrAICbN29iOBxgMhlDqRY7Ozu48dZbePrpp3H58mV885vfxIULF5BlGba2tmxubE6d+oM/+IMYj8fIMnYZ5HSoBJkJ6JZD1EF8TW2YNsoLnjgapSFJ+AmdhPATc/yceQyFe4rHXhy9mxquQxIs0xONm+U5ZKvQqtm538gZktMH2h1h7QRwIXx+aUmLPtHJcV77di+S6feoitbHIZO00/D5y4HOWM69K2rTSS91435ABNpSSpAmdvtLGhi42O6sxMt0AUPs9leRQQMDSRJFPgBgsL+/DyKBTGbW8Fiz77EB5vM5qqriyvNNk3h28FzLATxKa84fjWD4HY1Gvt0yyj0thIiSKrnKOgZFUXgXPgAoLX3C9Sfhg3b4HAZ1a2mVqOdibj/tTffVLNnWkZ65mKLx5Lo6WSAlx9rgdaecHELOjZUffjl1oK3IcL5nmzo0DsXml0yDiG97mcdI14XO8ana5igJQO4qtcC+TQFoPMhbzlfARmb6a8Cfh2jR629R63rAIB5r8UbApRocT9Yw362xu7fDQO45YwtVtklcwYZAIkNeDDCtDe7d28Y3/ugVzLUCcomnnnwaTz75DKqqxh/90R/hM5/5LMbjMe7cuY07d25jd3fP89iz2cyGkhtMpzMopW1BYXYB3NzcxGw6xXQ6xcbGBQghcPnyZXz84x8HAHzkI89gNp1CCqZSLl68iM9+9rN4881v4c6d2zCGAfvpp5/CX/qhv4SN9XX2wJAZcpmBrEYryAVkAQoGxjBou4hEss/OFR8gA8uxG9+vCS/PVkYo1cLFBzjPIvd0hRQJxscTt6vwThQqsrtGCKtUnGf6O1ty+kAbhquk+CAPkeSfNd4oebjzkSAOhXcvbsdI1NWM+KNJ/6WeDHvxObo/dc59WC+Xo4mfPixwW057tIZq/y529/dt8yNKiaLvgAV1iaIcYK+a4972PfzmV76CWdsgG5Ro6hYXL1yB1gZ//Md/jL/+1/4Grl9/DH/0x3+Ib33rDezt7XrvCAfabcuftWbaAQSf5Gk+m2G6z3UVhRC4dOkSNjY2AADPPP00bty44bPsXbx4EZ/5zGfw53/+EqQUePrpp1EUOZ566kk8/sTjFoSZIyYiKGU4ylMCqnU5vJWfsDnPd5TzUadAabEZgIHWLl+7hCBONqZaBQjjvU90pDAIQZzfPHq+ztbCmn9UJzIaLBwZSYmr6Lmcfjl1oG20hjIaLss/wSA74DZjQFymeZul7IjLr2a8MY8bkpIL4V8X+BOMVOFcq+9t1dL2sMte02kXdT4Jm0ekq711l+XRlQHi1ADzeYWmrtGoFloQ9vb20LQNBEnUdY284Ox5g3JgfY8DT+tcArXW7GlSVchHEm7lL6VE2yq0qvX0iSDy+UScjEYjn5RpPB5DSlvFRmaeUimlZLrEGEBzjpHY8Gc/LNAfHQIt7pC+nlr8fIhHFBsh0x96Vlt9XkHxYs/bLXqaeRSJxj71DHFPsPWsDPverYMM5ueyWk4daO/s7aJuaxDA5aFI4vGLj3UG0fLjF8Db7hu7o8UDrcgzXv62LWSWR9dYQr0gfiWjTz2TxklpT10/g3gVkBclDATmVZO8+NGeVq1kIyRrjALbOzv45quv4tHHHkVtNCql8Kd/+qf45Hd+ChcvXmaNURAGgwGuX38cdc3+2aUtzXX1yhW88PzzePvtW7j59k0YDXzm059GNZ+jms8BAHt7+9jZ3sHe7h7qeo6BLXAgpcQrr7yCpmnwxS9+0aZOlXjkkWsw5rsAABe3LgDGoKlrKMGh5zAmSkzV5adt4iprxBZkjYkujW/QuTlIJ5qApQwxAULa1Rktglbi9x9N5NzF5M9BgiCk8AZLR7sIITgmYRk9Ej26Pq+l40hPobhjyapgtnNZLaeucs327g7u3LuLezvbuHnrFm69+27yu+MGDY6muWodQDuWIs8BGKim7XH967jyJcqWJRi8n637Hu2eaHsPTjxA2H/iduZ5CQPCfF57VSptA/Pcxrr7aWMAIXBvewevvPJNXL/+GJ548glcvnwRf/zHf4zbt28D4JBvIQSGwwGeeOJJVFWNuq58wYCr167hE5/4BEbDId6+8TZeeulFEAHzao75fAYiwt7eLra3d7C3u4v33nsP+/t7UIrd6L7xjW9ge3sbP/RDP8RRi5nEo48+gs985jP49Kc+jSeeeJy16qpGU1VQTYvWJsdieoHBNQS4pJn1yAYJkduHDDhvuLZ5xl0yJ/KGTK7Cw/sRpUFV3X41Jo0DcKI1pw/gRGcqjAljIKQECYFWtZbeCismdG2T5j7HU2SfoegaiaGjR5a9Y+d0zvHl1Gna2vq0kjFodWtLZQWlI86ZfbiZ3r1g7j+U/CaIoDSSFy45bx9/7gyV3esv9bVNl78HTTj3I2S1OGP9gtPl9pJr2v05Mo852HxeYDabhSrtzuBqvTpc1ffYF955ljRNDcDYKMkKde0iDOFd4LRWUeV4+Mx5a2trPiKVtXvmpNum4dwoxgGz6Acxs/hc+uiF+LFyxR4NbfcRQuJACST4wbuiv7j0gldJ9KxiEiysmBbFmyr6Lxx9SAbCajnH4xOVUwfak7U15ANOyl+3DYS5P3BbpDJSrZML1vZXtVk8U8xnh+3xy2g66lHgnDtnO8by0itFHe0ouSZJCJkjywu0rYKSErmQYT4hSrU2wbm4J+treOzx6yCwG936+hqKPOdgk8gljYE7RPE50H7v3XfxtRe/hldffdXXdfzqV/8QO9v3cO/eXWRZhkuXLuHChS0URZ4U7QWAF154HpPJBFK6ep7W08dI34PspeEmI+3b0xXX5yHQhXvPa+GGJ+vWuhLObSpZZ1S9sHXJV3x3x9tuS0iQ2EvJc79+huDZmYSAzCSklrYavITMMt9SN+Gxzt8BVkHheRPgFtbuMgdia48OsTTqFtR7wmVRvYcrXH0ufXLqQHt9cx2N4tzGVVvDNIerUh0YyiW/E+DV9kikzEBUQ6me1K0L+3fUfv8lAu7E4yQszd2+scZ7pOCb5F6ow3dGvwoJmeXI8xJ126LM80CikaVGtM2zYekdkhLrm5t46umnoLXBoCyRDwYM2hQAyC0upOTMdDCcw0QQ4ebNm/jqV/8QX//61/H8888jyzL8j9/+bezu7sDAYGNjDVeuXMGlS5dQDgpkuUxA+1Of+pTNcUKhwo7WgGSPDfjJAsxjI9LyfX+G23T95P3YjYVF6+YnCDBKoalr7O3tYTqdoWlqNE2Ltcm6N4bGfa5tX7uujzM+pv+GLhNSQGYZpNKYz+coBwMUfnwEOsYgrawkKBS2cFckIu4T0xnnq4ZPZwjHCddi7d952XQnHl8tPr4cuQjRD1cF+Q+KnDrQzqSEsX7YnBgq4NMy8oHlINi2v0arZwL8i7FwttigiACuLlDDsDvA8kkiaom3ifqdTbTXweIPsy8TRRsXM4pzrhAhREI/JO5+PTROlmcYjYbY33fGMpkk7Iq1VkeTuGT+eZ7DGIP5fGbLxAlkmcR0OsV0OkOWcXXysix9YV6vrdn2cQWZqL0m6LWxRr+QVyb+TIg72c1RFmgNoF262RCp6JI5tW2DpmlsWtgeMLLnTtZriefQEpdOCpGS3rWvc1xMHXlj58ITCpKuFQ/JZkSD8EA+esnFV6WLcJ+XX/7caOnk1IE2e6AJr9HoFelUlxzeO4hddGTyK7lSW7gvrcF4gAnXWuWBEh2JwwJ3Vyg2WkVXN5CQWYFyMERdN1ClAooMzo/bgYMgAU0EDYOmqVDmOa5cvoyb+h7apsa0abCxsY6iYJCdTMYQQlpPTI3HH38cV65cBhHhc5/7HNbXOffIhQsX8eSTT+HC1gWsra1jNt0HEWFjcw3ra2vW8Gs1VwuaQ3CwizGaCwPYlz8uQuEmy5h9YI2zWxvUeOoEALuQ6tZq0Q2aukbbNJBScMGItkXbNFzBSEqfy9sBt/M+AQDTNW7btnWLQxPxyoAoBOp4w2YH2Ni4O/QRn/Hqo+vfT+TSDgR+JCqQs1Jcv8Vs48I60nRSziZeR2ahPefGyOPJqQNtIwAXeqiNYZ/tI8oyGGRlKX25XE7jOMDhMIORPMcNBKYzAPaC54mXmCC5D+2DiB0gYGz8n2uJRJYPMBxxIdt2VAIowVVswovJ2QAFNDSaao5BOcBjjz2K3d057uzt4d69bVy4uIWyLCClwMYGpzHVNojk2WefxaVLF0AAfuiHfhCTyRo2N7cwnU4xGk1QFJxrpK4qGK0hJSEvMh8dCCDJM62UArSGzIXtVS443LatBz5mSYL3gwFsBR7X7whBN/bpGK2hmgbVbM40yGyK+WwadSMhy3LOXigl5gCM0dBG+arpvHoBDNLkYq5d3SLF7tGSIE6RC1jaZ5GCk1JiNBphPt+DMZkH7Zi2cN/defnk7gyLVpY+MSAftWuirf6TST+H++b+jsdOd/9zOZqcOtD2cEZ24X/EweGZZEppgGUar1iytOuNlEybuPDbQUtA53Dg94rVxoinPPxSknr6h+kRKTMoq9n19iAFblxrDZkRBnkJKZlWUar1hQ+EIAwGRcIPTyZjDIdDEAEXL17CeDzG+vqGNSbmkJL939umsVo0599OAMYETTRZti975NHChIhCEqaIckg8NCyPHSiQFk1d+2rujqKRNiApUBNWq4RbLQU6rIfrWmqs625395pos8QBQ0b30xa9HjIefFe3IW0PH2jifX039awIexaBi546i/ucy8Fy+kCbInBLGYBjSmTEgSuiYLcBPqub1ofz5ljGq7q4ynTf9LMx5D0vYu7yOEpL5G3LV7ZftCEImaMYDFFV2zZww2arI6cN2ohTNqfB+IATjaaaIc8ELmxt4bOf/gwuXNjCoCzx2c9+NybjMYxiD4xLly5jPB6ibRWKIgcRce1FTmriE0Npxa59nNbUvuXRct/RUw4cKfaYQLfIl+uxsL/vO6NtIqu5B+m6ZtdDpZSvG+lKkMWg6XzQjWLNtq5rm8d7EDR5AMoaXwN90C8OaNkwHVZfTdP4lYO0NT1d2P6OMWiaFlVV+3JsrGUHYyHTLc7XG/65OjrHffbPG24fd68p8E5nM39MlglecUTGV7dvYqQ0/IxcKbVzObqcOtD2qz9CcHm6D0m0VwKU0sgyNyE4y/3ROO3Y8OLmFXu6+C68Zgr7mzM4da33LtfygTebaDYU3VzgH5UGZFZgOJpge/sdtJajVQaQgpMUaU3Wk8K+yFoBWoGgMJ/voSjH2Ly0hc9/zzOYrG0ikwX+6l/+y5hM1qEVByE9fv06SAJty1GRBKCpKggh0bQtbG4l22DW3LMsYzpHMfBJIsjMgoRtDOf2cIWYeYJIGOsF+4HFeG3Qtg2m031UVYWqqrG/vx/1P4Mzl0wbIs9zT80URYG21SDNtFFVcdDQZDJB27R+UGqlIQ4A7S6FQOA+F0JYn/XaTh5Mg0gpMRwOuWydLe9WlgWXaxNuQnO2HYW2Ze6fqRa+hrMNOPol0DAxqPN3okDj7Oztcz9rg7zIsDYeo7BG5T4NXysDIwEBYSM8D0PMnEtXTh1ox29Cn6Zt4t2OMF4cNxf45ygJ1NFZmKS5IRNhOE8A7BigF6mPxEslMvQk+3X5TCAKOrLL+IivZN/gLOSPDr/ArzqMgYv080BoDLRqkdlw9atXrzKHrQWuXr2Kpm69YXhoS44Z3XIAjA0nZ9rC2JULwB4miwDg6YkVqxs3KXLkIpLlfNJ3XtPUPj1sXVeoqrm/jpTSe65IKaI6oNZtUYSISJfywE30QLpqOsxgSe83rPJ41RFPOuRdC90KIS6NF7Rn+O3a9q8D1nBcCtp9f0GDZy7e7U+i3+jfS4kgKAnxC7rUg+ZcEjl1oG2MCRbxBzQAGFCtJqpUQk1GVz4EPZKSeG5/IQUkMi5HYCKQhg7LfHJ8IiXHuntUWgPqEPfrGIakJbFICJEjywrUTcMFkskAppN/3E5e3M+KNWjZosgzjIYlxqMhVNtAG/bmaNua07kaY0uU6Q54MY2gje7076LXQbh/44HClSDzBuFe3ijkGmlVC6005+i2oexKKdRVBa0UBBHKogAojtiUvsSX6wX4yxCcC6N7Lp6Dtju50mUgYiOlBb+uETI823AVQewlAsAWiRgm1xqNx1DWoOn6oaoq/7sD3HjC8uPPJuty+8b/drfFbV1bW4s0dQWlNeZVhTzP0I3idNy72+YiWM817aPLqQNtDc577QyRPSaeI53P7c3eErCuVY7PjbXcg860qDkB4YWRIiCV0+CNrdPIKMYQmdA1oAQYlGrAkTBL7jFC6hBrqYEYbCAhZIGiGGI+n0O1rV+xuARKZAAibg0R0OgWWtWgRmI8yLG+PsHm5jrqpgIhA4xA0/CS3hguupxlrEHDGEAEkFaqhSDpVxYuf7mUEkYr224BYTU7R1EwILGm7FLoOhqF7LJKGwsubYvZdMY0SN2gms+91phJBmchBEajcQS0DJyWNIhWPeTtGa4IQ6y9ei0VXEnea7cIwTUy4uXds/WAZxc6UghfpaeuamACf4wxBlubm15D3t/f91QKRZOOM5o67Tz+LRR+iNLAIgV3P+FYuXTpkgfg3d0dNHWDut7H+voERV5wigfbBy59gfuulAoTxTlwH0lOHWh7gDPLhkIEtAtblp1zUbMNpzs461mfVh5THYIEjEg9AgDAdLRLnTQ2TBpM3dgz964COjdjkhOF7faaQkiQkFBtG5VYgwcQzvlv6RE4MGfjZCYJRZ6hKHKrsbqMdwZCOG3Ogj85WiVqhTEwZKym5iZDnm1St7WU/w0gH6ga47b7+7M0iNY+GKaaz0OOFGMwHJQQRMhEhrwT1chnMXbFwA1xfe0ALR4nsZ0jTl3apWf6KK54P3fLRVF4g2hXirK01InGdDr1xY0dEMdGwdil1AG2C7t3RkwP1paCisHbtaosS3+f0+kUlanRtK33P49XR+5aSdIrd2/R/a5arfYdcxbl9IE2cBjkOpIE7rS/SkgY0MuuGS8D+4iJfr62e2h8lmMvLHt5kRgcJIgkILi8l7GTIDnrrnHcuwGsxwgZArSCamu0TYW64nSqo1FhqRW+BgN78JJ2XgxE6csYNy92nXTAHN9EcD8LBkcH0tpwVj+lmb5xnhdGaVvWjJfoeZ75dKpZlnkAS86PMDGscmdzATacozuW0N6YS/bHmq7RL+0DY+keBuLFXDf8fARABkVRwhhAZpml9kIEaZY5UHbbCIKspm1rY7rUr27F111VdsUZad1qpW0V5noOIoK2NIgxJtHuPaDTqjOfS5+cUtDmf5wit2q3ww4YISW0Qc/LeBjQ7m+gf0ktnxtrk8ZwUd0uUHtgIscrR+045NUXNe2wKiGRQSADRMY+0lqDYGwuaT5GCoHWFzDgsllGcf6Ver6H6f4Osr1djCfrYJJKgyD4BQYHafhUqHDctuNX49CXQCFoz4E6eqLroWD3J3at05qrzezu7fpJpKpqb59wS3P2IefgIdGjVcbgGIfNa+2eO1/befDkeY7pdBot/W2/2v1iwA5ujS4RFfwKxtFiIWMgT0p1VUEbcCpgW+CBVwMGsMbb0XiMwXDIvtv2vK4dUkqvgMR6gaOA+Kdo4iRCSPvq7ijlvV1UpvteVTX22wbQBkWeWRdFNuTGE6LLFX6WtebjyOkDbf8O22XZyp1T4OpuTVhoIl9HkL+nO/QPvEUNunvtZNtS9dlq3kFpdUpvet0lg7+X2jHhQ9xTBJsThIT1MND2ZQ7npug4AmvcBoqNfG2NtqnRNHXUR9bLxNaZJJv5jyeroG0TdbRZWA3SAwX5PlrQSE33abJPcl1XmM/nmO1PUVWVBzlXPEEI8vSA62NEE2fyFLqG08gDwsDmvRYiytEdVnxhlYBkYrYf+rd3hGCjQC0NIohA0kYc2h34/vLkecWRlJ76CByTvxt+TrGKYHdxY2+FluMAWUppCzXXMFpz/9rJaYFqMgbkqaajyUFUymmWUwfa/sV7wCKI82z0+WMnyz0vh2nEUXT95eKXnIe86gFnA6zl33lkGG1AgtvqYcrxztAQlPFxgjiDn7E1ETtUhjs9kQuscK2NDbum51/3ktppwqRuak6MARqbg7tpG2jdQrUtYJj2MCYks/IBKNTR9BbokMWJ1pXYDdvSe+wDE60NpAi/iwg4DwSfiBfO8xykFKqKK/cQZGLI6+PNl9pj3Om7X1a1J7IrxO12eViapvF0CQCU5QAucKlpmihlbVhPHfcNOKvAfSpBmzog0flwOOmMbyEloLVPpB/vRJHXwMI5ll72cPC6VBO3L5fTTv3LaYIOvFoiTSp67Q0EAAlA2nqRgNYtBDLmrg1ryQIArAeJFPBBN0UuoQ1ruATH1WoAkkGXmB7ROlRqMUbboBjr+WLcksKBZgjucFLX9UIuDq01dnd3sbOzg6qaA2QgLXeb57mPvARsqS44/3hh/dbNAhAEwIspgrTf2XtE2L4Pk4g2xhdh0FpBWKgXJAApEjB2/3aNq3A0EHjiGQ2GqJsGO7vbKMpyIY1CDNBdHrkXtBeWlYs0X+L+p+1kLYDYh76ua8xmM8xmM5RlibIsub3DIXZ3trkIRduiKIpkIjmXo8upA+1YHuTAEMQv+YIhkgInuNwv/LD672Goks7lI/A4ynHhBBYUk4mO7ITAJ2PXM+MpCK+MWZ7W7g4ShEwSasNBNnFTCAbGccDJY3Gg3N3m/o2Nj/DUSFfLBuDBY39/H/P5HEICo3LAxsU8h5Tu4oEaSCb4iL5IgbRLQ4VnHm8kQtfFJwFiPm+Urybap3sf8ed4vzzPoY3B3nQ/0C8dmm6R709/6xX/sBzv1r9bUAoQNHITQv2bpsFgMLCTZIGiLHk91om6PAft48upBO1ly9rV2ueCypGcL4zP7u/LtIaQsCr52QLAgb6pBjA9RRcIsMV0HR2SZgV0L0Tfy5nSAN3fwmY26qeRdkIivNhxoiWtPfDDGORZhhrGJ1Wyb3nv3ZK/cH8qWlY0+RzdlYwDgG7Pe85WMM8qLA2SnhNHIlL9MU6MXXBYAFJKefdMjoTs15rjMdS1EbiJaVHPDc/NZyu0tFU1n/NzyjIu/hvRDstAMTbm+u/+5mxsg3+cvF2bKELStkHmGRtFbWCN8wl3eVgcHUKWVnTuhN4f3tkQkL5Ty9q9XCE6e3IqQTuVvtfgGGfpvDidH+0yuftb/0ALzGi0Zwdsu587B3vAcwULfGEAROzC6jvqbaH3OAD8UlapFpl0vtPsxiUEG960VjCkvHY+Hg6wt6+wv78HbVoQcr5X60GAGJy95h2FSUeKI9nzA+zt0XofYPIRjH6qtZMjc6YEKQXG4zEEmI5JwcBRLcvHRQqswdc5Bg8fRVnXvjapr57emWSEo37gDK8REBl4MPT0HqvyMAaed69q9rt2fPy9e9vIsn2Mx2MUAy4QkefBCNnHb68UOykrbY3KRicaslLKZxMcDIfYvreDVjVoGs6Hkuc5JhOO+mnbFrWt6iMlIStylHmBnZ0dD+6TycSv1s7l8HJqQfvBLb8WX4DFZedB9Ej3bOG4ZXKYKLFAVaRRa2aZatt7dNoyB/iGuP4lKGhawgUx2grhzODawBrBhsKyyIG9CnVdRcZDe2K/GnB5pt0qRADQPpIxbpmnFBwI2iX8Mk2b/Y3JR+DBudOlU+SBfZv0VJe+sP9xASxt27JHh9W6QxraPq453FfKFVvQlnJhUic7OTvXOWEn6un+FEKw54vM5EJ5s6TNh6QkjN1XaZWAtfvj/CfcstmMS6zVTeWBuCxLm7uFi0ZUVYXJZAQppQ8OSvvkPB7yqHJqQTu8qF0eAFHpxrAs7H2RDaKd45cwuG8BAJEACZHU6Fu4KBx/arqNCJczEWl8GHK6Y5xLtLfu/XUZIrcqpkDjuJ/dn8wy9k1vNcpSRLYq3oPvRELA/maYRiG0MMqAjLKatuA/E/IxG2gPTkBMDIT7Jm8qtK+2X2XYXNjGhDqI9rk4AyMsxdOXnNUb+Ox5E3sAHD2U9iIRomruBrBFCVi7l8gos8yRRlkWweDmuG5QmqQroksQc+j2Pn0iLxuQBLJJK+25pBQo8hzOGMj5SACjFY9Hd00KxRMoWsb0gbib7F2iMOMTTOlAjURjTgoBLSVyk3GSMcHVNgVZP3hjQnCNNmiaJgmjd/QJCN7XfKFdK16BVSvTvtVF11bQ/f3DIqcatN1ruWwpfCi9w74wPgigB5hlJpHlGRr34lhMdgOQB5GwQB3K9SZtIedrSxE4hWre3YYzeAAGCmz94rOyNppq0EQBoJJ7820JmnmmDSQBAoR8MEJjBPaqBqOxBAzTLzLjgAkYgpQFYHLWytCgHBAETWHqKYSeQ4oBDDIYFLZZ1qcb2nYtwUAyuBJ7oMDmN4GGnRBs2lGhASMgIHzCIRfEAtjc0nkJKaQHbnhDXTwGCBCGaz7arT6fOPhZc3eIpC9n1ZzboTVz5ZJTjI6GIxRlEQFS5tO4ShE8YojXJVwY2Nk8wOsVF0jFibTcMCBoo6zHhkDGxYJgQBiVAxRZ4Z/3bH/PA5EBvDbu+OVYszeA1ZZN6BrbLY6acVQYEThJFtxiKUw2eZ4hywSMySEEV/ARxHVaMylhygJFngEwUG2LndkMo9HIU3m7u7vIsgx5USDLcm8jkJltM+AVHevnE43h7mq3H7RPo5xS0I4fbA9o9yu6K8+UaF6dY/kFlr3Rkv6S1PGC6N8p+bkPsB1dgM7ymjw32F1u9k9YAJJ6fwgw5V3TZFFAwaBqFDSEj0gnKaA1gxEhh4C04KGQ5QSBGmj3IHQLIQADCUIGY5SdmDQA5qqNu5pFTm3AOacjbRkAgxcx5y0MBaqgk9wokxlXV7ed4ANP+pYarh+jrcb/RH4uc79xEQIOf8+yDBllkHmBclBgNBohz3ML3NwuSTzBhN4FyISxGemAHbtFtO4wtnq6sTlfbLOLPEORC7Rao5rPUVdzH9TDFdAlpMxscevASztAi90luz7dcREFKYNPOxt4Q0KyTLpw+DRToRRhMiWwe2arW8xmM6ytrSGzaX/n87nN+52BICLffXujfskT+oYscJ9lg+UpBe3lEqVWSqBsldYdw2AY6G5ppSNtenG/he89g81r2b4hy6mRXo2Cwm++xQbJwA5xj92Fv7te4AaMXdZLmcGYToKivo7yS2by9+qoA3cdno/C7xbL/HrItZ8cYHcvEf0b79/NEUIU30t6juS3vh3A/L00YuE5uVUTgxjz5VmRIS9CJGCSaMnfW1jF8LxkDbELV4ant2IwZeOfsudlPttdwxbFsW3K/D2GCS1LtO0uaMf95vufKDVsi6CxAyk4e02ckGzrPg93nsyu0GIPEsfDs8JjFvog7vu+57HYhx8+uuOocuZA+2gSuWkhGkydZO+uEnecJtUxlEe72ko9vLOz1UT9i+OyqIWl8MoBTPH1YqCBPS/nk6hnNWazKjQQth8iztXSyT51qVIt6qaxL7qxhsfu5cnG6YRz8T1Y4DZRY6KLe9czwJf+AoCmscVxpU2fqrsTJ0dCdt3wYuG2s0eKtGgUgxxfr0BZsueDyARIsAEujfQLE0nsUZTLDEaphbVQuHoQpRRaa8hrrKFzNJqgHAhkuTs/n5v581CBho3GTgsOXi+rlArfSx3wBUxSTDle2XBAVO9pkj52tFGWZT7HNxFhfX3dptfV2NnZwWBQoijyREngVYNYGM8p9ZiO99OubZ+D9jHEa092DDlNJHbhOgoFs/w6/bAfqBb7HUGjQUQNJO1dOImJ+JGggXrNnQhFUaLaB2pnMOIdQuM8HWNfUMsFa61tHm7ye6STRPfGHHtJgdLvAK7bRAgvpbBJiADnGgirIYc0ralW6CYR5c/rNDsnWmsYmyrX+UM78HX1GCeTMTY3N7mryUR932mvdZvzmnbGE4Fr2ypRWrFnRl1hNmfgljJHXpQwJlRcB8i7ORqjE7B0E0iXBvGtPIBiYDBU8JGqnWNc/6w6R6ytSyl92tgsy7CxsYG6btC2c0ynU0gpkNsEU11vrYM0aDdRAUcr/fdhlHPQ7ojpoiGwqP7G33uNH9F6GOlyb9ngSy4Va0RL+DtmUYJ2nABHZDAN1MsiCPZdP+xJEDJ4RIRrBhBGBD7dM/plLqX3snC30SafgsoxPgYuebc3RMXgkVARnn1aDDTicwYgistxwWqogkJFlVzExYJjsDIJiHQBuzuZ8sQdGRxNNMFRt03KTw5KKSib75s56lAKzHSoqHhskKfWUioo9EXUsOSYrsT7U3Ku5cdgoc9ibdhJHFYfR7W67e4+4+CbvnMnrY2O6zsm3q/v84dNzkH7QAn8JKKXz3MCgDfWuGVdwKE+dvYwV3NyNFU9yzLUdRtMbQ5MEIA45XudUTO6YvRiDwcj3IXAvGo8oDrt2sOuCf3iNDIpBDIpoHULEuzdYoz2YC+lhDatvQp5pd3AQBnNdkoYCMQJ+7lxLgdInPQptINXPTLLIDLJ1c8pLOFjv+Omabz/uQMObQyatkYuMgiRAnSWZZjNgs9yaPvyZySQUiyc+S8KorENa5oG8/nMJ7uqqjlgXIEJ4wsLtG1tVxTGU0nuvjgbo+kA7GJMQb+ka7oUz5ZTIKvEactxVR5jDAaDge/v3d1df421tQmI4P27nWG3W4otapVta6qRnwU5B+0V0sEzu40iHpbFLf3SSiX2pfXfTrittBjGvJrjW94mB/BFOYQBoa4b+14vP8YbowzTJFIKTpJEUZi73ZGEhFEtuDddLxmujBO9fMKfmNsD45bpDNpcYccuie0kSsQV2l3+c2HvxQGYA+26rpOAGH7pNZRuoYZjZPEqwoK2ceXKegphdHvQT9jRM2C3yC59wdGDs9kUs9kM0+kU+/u7EMR+2DzBcWl6X8TBpGlseTxqvmJkhOly+ge1uQvcxtyfRuooi9hbpSgKP4Ht7Owgy9g9cjweYT6fo65rzOdzDAYD30/dczr6zo01t/0wNMppkHPQXinOSzRaw9MiCC71HqH+/Vdf0R5/iH3DEj+0w35IOeHke0SprGyBMzrZJT9ZVytjrDbuwLRLoJP1EbZVS4RBSEqVrkEW6JKu1g841/Z0Y3SvoQvSpW9sMEsOJXZbk9ZN0wBRtJ/yE1OfcctNSmFyNg7Z/D6+f030LG0jtdas3QOe+hj6zzEfLTwYEfHEBorzYsdL/vRRLz5ZN5m5tvTt0+ncqB95q0kuktJBiyN1lcEzPjb2tnGrIIBXYg7YfR/EYGwnE4NuEeh0oj2tmvcZAu0un3oI6UFQruDCEWMCvPRzAzC8zBZ9qF9bf9ASvU72JY/FscEpLwkLvl3c5ag56y8tc8AQlA6+4Y6HTvhT98ku/fMsQ1kU2N/fw2C8jqw0FnQMSNs1CHHgCs8HZLcFjZg1bnbUcQq+i3DUMJB5BlDIuijci6418qJAWQ4Q8mdzcBMn2hIoihLD4QiZTdyvtcF0ysVwlW4gILzh0fWVVgpFnkNpjdls5jZ7QFucRBw/H2iWuq5RN1xH0eXm2LhyHbdvvwdHOw0GBWcjtKCf22sqrTCdTrG23nQmlHDdVNNMwT0dLTHl0ZeWIUyi/rEfUeJVRJdLdt/H47Hfvr+/7ymVjY0NtG2L+XwOYwzKMuRV8asc4uFmtLbZI3solFMK3GcItIH7hc+gUUd5nB3nmoC2P+K+r3ko8YpT1zgXv9jdQW3scZ21BFkPEAPkgkPQteWGHe9sdwxar28Eu+rlUqLIc8ymU2RlA1kY+5JpZjhg82/7JkSeDsICu4n8iDUcVwLA5qm2yaeULXsmBbv6aW2QZTmKsuAsePb+2fDV+rJXo/EYo9EIg8EAxhjcvXsX+/v7UKrB3Ho4+P4w3PY8y9HO55jXc9uFVgMVqZa9+HAsN900mM3nmM/nPn3sxwDcu3cXw+EQeZ5jMOAQeK01dKu49qJSaNoGe3tTtEolRlcQ4oDY5JrLZfk6y7WVYne++xjCSqkkJ0q8AhqNRuza2LbY39/3z2YymeDu3buoqgpt2yYFh90k4IKfeCJepEVOs/vfGQPtWJaQAytmZ4p/N/0BEovn7lIBh2ta0GGXDbwAlcnWJZyea8Mi79f3ApP/tz93R6xtd04FXt4LQVwYGLGqHOITD3yXiHzL/Io+vhubY8R7YEQ0lBACUqSRfG67yxPj2hBTEgwuTF8s9vkSP+BOH3iDmAUUrQOf3bYttOp6gsSUAfz39I8vxHlILNVkDGgV+C5s7mrT4TksUCx2+XUYTnvV76sAs2t76VIl3b5xtoglZ0snmKhJp5HjPsOgfQiJNFiBYHBME/CHQREGmnu3HLI9YI27w/Tw2YOLWxjoBkIsMc5Q9y110wR/5tByTnZhXIAGtAddSv5rwoQAgUxK5FmGtq28t4M2GkJyyLPWxmeK44o3nC0wdGXoR7/FhHYSOFwdBCivkQNtqyCEQJ4X3iAppfR8t8v5LKRAVXEh4tl8hjzLYWCst4JNmKQUBoNBQtmwdwxC2wWH4BvfRnYnbJoGbdOiqWrUdePHi3H1HY22FeBHAIDJZOLrVQbQN973mr0wXICJpbAQJocjGeCWzc8dCWC+hDpZdYlI8emmGXAUSJfbnkwm3iC8vb0NrTWKovCUCHvVVBiNRp7zToDfr3TZCKy1ca/uqZNz0F4pBjCBIxYUvES0jpEzLIHDtlSOrG2vaNLiyclzjyk9Es0bC4eYyDbJPHZoOn83EAzcEJEBK+JEOm1xFAEvcyWatoYxCiANAw0hCz5MN9DKgISNorSJmwxpJFqn6d5yoHpkxs9BReHYrdKQEr60WFz5m5f8LtDEYDqdYW6j8waDAUc15swns590G+gwOACy/RxlGBREaG1UqDGsEdZ1jflsjuneFNPp1Ht95JLdEWXGkZwxt+vd9vzkBxusxNQSe2G4Isuhv48zpnrHw8LjjMbHEZGvC9qx1twH2q7Qcl2zy+P29jaGwyGKosDa2hq2t7dRVRVmsxkGg0GvlxRH44ZkDS598LmmfYplOdy6X0O4eNeC3xX/Urn/ejx8UAMo0Bd9p4y9Wfr9V92AN97LoW+a8ZqtA65FnsJrf57TttcXJDgjHiJPC7eXw33T1x/p+jZosemVFwyrEew4SmGZAczfU6d/HJ+P6HvSiHAy5lLtsVwswNiQbAZ8rdLyWl33u9jDJW5n7BHkx1rnd2NcnvJA17h7XhZM0r3+Ath3hlJ3yFC3q+N9k2l1BWnYQy+5e4zpoGUeIO57bG9YJQZIamgu82r5sAH7OWgfQYhCBRXm19yLQ5bjDRouVjOO99EIpNeCG8wEQNuVgIEgBWVUR6uixdmpo4m780FIGEiQyEAiswYhzrLnd0xY58BbF3mOsiyxu7tnDUf8k6tCA4Rls1Y22jHMEXx6w2BgVABWn6zT5jElIkjBQ1hIARPRQkDIxeG0udggNhqN/IsbtD94kIy5VLLtdftlNhyb6RGNqmYapLU0iFbaFzUoy9IjoBTMp5NIbzb2Yw68trDPVSWThgttL8th0lchony1+uGu5+TogBWP6kU931gqrA8gYxDuKhJxqt3xeOxpyJ2dHU+VxAUWAPgqOc49cEE5eYCM5AdJzkH7COKMVd6n1w1gXtt3XgDyUPZggZt6PgqvWXpLO0lw+tNITFcTYvU1gIhrMFkqQYIogxAZmrZFnlOym/sPw2kAizwvMChL3Hz3HtqmsfQLLJVBEAIg4ur2WilQljlGxs8BrJG7LHcW1CxficibQEibfU5KGDKckMlE4eAWDFy/ANxPRVH4Xtjf3/dLbgfSTutTStmk/tJz4lLKyO1PY386xXQ248ROSqHImJopcq5KLl3GPBLWT9skmmzwUTaJ9i1IQJmW+8Y4t8EGVVWjLIeeQtLGcIIrb6Q8OIqxz0h4eAB3q6YeVDSwKVZDPHDXqNgXCOMnxCzDZDLx4Ly/z+XUBoMBhsMhbt++zdGsWmM8Hifad8yfn+ZAmzMH2od5jLEWm5B9lk/02sKB5wj0w5EasKQ9/qIrzrF8oKbnIFrW/nCzxmq1nCnO+t255WwvL8P/IRKWHom0H+txYsKOPZc2fjJwnh3JstYg+JYvucXDeDvE3gq9Hg4rzuHBvFUAwWvWaTku5+URPFZcnUeCQDfr4QonC3/fYV+O3DyRVVwkxwW843HsKUUSe5L0rQpibb0vOdSq4J7TIGcOtI8vjq9lrjYdLHb5G+VZOPnWRJ+tZhNf22lqq8/Ar348sWg2P4JLpAhkeYG8KDm0OBsgd2WhItjucpqZlCiKHE3dQBsF514WG41cEQSn3Sqj0WqNRrXeqCeIOP8IIv9z+8eBNG7Fw1GFBIK0+3ECosL3R1zhZjlok19NOb9qN/k6f2Pndjad7of2ACiLgr1QjLEVazKfBMlP3k41xiIoBsCScHEAylat0QjLf15BBOOro7McxXTQ0Dtp7dMDMGDbkxoeXd/2cdUxcMc+26402fb2NqSUGA6HAIDpdOr3Hw6HydhPbRinS85B+xASqABASkLbqhS07W9xasi+MOoH36YAl8lLADtwV6TOtPXQ4HgJX6AgZMcAIJFlJYpigPl8DjXKLZhbTYcCbNsNAAi55MrbdV1Bq+DKR4I1TSGYGnEgqbVCq1pUTYNZNfe1NnNLMWQi4xJiFCgnYwyM1tAmgDYniwpJhrIsTTYU95ED1C54EAkImYFs0Eee5zCGU6W6EmJEhP29ffYesQURyqL0ZbkcX91drvNfuFZ6XQdWGdq2htGcPAsGSb4TplJS2ovPFZ9vNTh3tdjjKhkHgyJXqJciS0A7NtD2ncMVTHBeJc5zZG9vDxcuXPDP4datWwDgefDYvzv0/bmmfeqlj3/r28e5ty0z6nitKnlRH0D73H9c3UcHvFG7DjNMHfXTfWmMP7eFH5sLWcXlqRBBhONSnSZpwoThDIKw1+osD8IGY3wRWQfGHphN6tZGsHODAZxveCzufoLmuvw5LjtOiLACWNp/lqYgE5b0LleLa2m8Fglt6BtPdn8/5qJ7s+Mn9hCJ2xAfx59X3ubCPZ8U99tHPR31WvGKCEBin4hdCWMarXuNuAmL7+eHU85B+5ASa0h9iXvYPpamCT3p9gTQYj9hpZQ1+MVgtow/XnFuuHmBi7XmRYmq2o2Mr+68ARA9QDkFXpPXCrVWgHQcpELbtCDdAkYDWqPRChpWY8rGHIBi+WEupGsAYSuoCPJFdcmEibDICxC5AKhQELn7Yjswj0tvdZfTRTEADNDUlaVzAKPJUxROA4QIBs5U2+30ecJJ9/O+7nhjDKqq8vm1yXDh6KIosLm5ifF4grIc9D+3JeNuGXie9Dj1tAfCZNwHlg6Iu9viz0VR2Eo3GlXFz8UFPxGR9+aJS6OdVjkH7UNK7AqmbUpP3h7cxbrRXyf5TriXgScQfjnatoWLdA4vJuBAJNFAUrU3ApYoURMIWV6iKIeY774HpVUwNlqrrAF7Lwgin0+EY8rJe3AE0NZoW4O6qiCMtkVrGbSzgieHYjBAqzih0nR/H6pp0ZoWmlpkWc65sqXg9KvGVm8HMLCudeyZ4gAwZI6LNTCXwyLeHmuxw+EQBIPZdN/2mwAJ+NqGrsxZ6mbuvD5Cf/c7V/T5zdtrWCP3dDrjtLaCVzGjbIyyLDEajVAMhsjywNUnRvNDyEkDdndydNtgDFrlquCk4jjs2Kc9PlYIgcFggNFohJ2dHVRVBWMM1tbWvMZ9584dlGXpoygX7u/Dq1gvyDloH0L6jCYLiBxRDc7ftrtLQivcd3tSzwpvSTeL5ayOS8+wkUsktScBRMv+LufhtqU8cmhv3E5ti/i6icdqXFJAQgZNGJY6icu5RX0dA7FNyJ3QDKG/AgB0+zKlF9zyW0bgg6RPvWZIjl+P731Ff5owOca0FgyivNBR5XSba5wQDHOZnbSSHu8bbA9UDli1rRBviA3WiPQ8tLhvvI97Bo7ndtuUUklaCe+5s6wfDlp4dibBhyV91z1oQj0H7RUS+x6TzTJnAL90BdLOdoMq5UIXI9WO3I4IWIjY31mZoO27sHq+rji02uWYa6c18zb4fw0IMsuRO6OiNR7CabJ2H6dxMw4JdhYkidFoDEFWqxUtjOV/syyDMAYCBjAKjWbN2sxnaGwwCWu0AlQUTBGQhJS5zV8SzH3C9388SfXz3N1trl9daav4O09U7jmHyuTxsZ2rHNjbsHmxnQ14kZ8Ok3BZDjAejyBtXcpyUCKzRlZB5J/cAzGUnJB03xFaeFaGlQyXvGrJM4yVoTzPQUQ+O6Dz2R4MBv632WzmDZk+oCoYYUIT3ueuOy4mnIP2KrH8o/MqAABljHX5CwnaYfgVcgEbSrX+FEQMii5o4/5fMj5Xq7hCt9OCXQi1cPRFz3WSZaf/D2C9xTq3zrlH2OVvgNlsDtVajw9BMDry5LBHK2MgbbSiFBnW19ZBQljXvwpSZiAhkeclJDgzNhmFeVOhaWvMaw0zm/ILl0mUeYEyL7iogvM6IQppUsiREoBL5eru0/dWBBhdb4nAYRc+94d70aWUnkLxXiVdo5gIE5hrz0HPjlzfaiAwBcFo657RcDjEpUuXURTB8yLLcjD/43znKdL2T1JTPJqmvWyS9C6xMTiDV4eHOZ/WGmVZIssyXzKurmsYYzCZTPxEu7Ozw1RSUSSuntzzYRXWnTQ/LMbJc9D2sqixxZ+jpKI9WlZqTFnqJYDDDvtF8Ut7TzGkFvPYc+Somn0SKGNBgIu1k/UekV7rpM6RbpVvjIcuD2R5xppPCGs2fuJiPwsB58Pt83YwmQ4RGfmEEJCcZ9F6vUQrIN+gRZqmS96k9FVqhIwpGrfvKs8UPs8KDpuiDXGnmbhVMc2U5ihxvHlZ5pF7nFiYtBZS5/Y89u7zPUnpAl+vx8ahXoT+SShORVBVVWIcdhr4cqrk/QXlBzWxnoP2KqHIacsENzRh/XHZCJn64iafrTpr4IyUR18OLZzT/7sI2HYvxIOzj3UGOsO3E5xDZIHX2FqMUnpOO9CysYYpo7PaYB0S2Nq6gOFwiExKaD+haRhNaLUCQQOGK8KQFMh0DkUmWtqyH7Qgsjht4LxTeAWzqj/7kIG3LesTvhdCXK095eR1CtyHfvkWJ5mFCQHCTkbBx58BKU/uw+sDtvACT2LuWZwUr32S5z66OOOjo0NcrnJnLxkOh17rns/nnP8FkeJjxUTLzQ+Llg2cMdA+6mOJNTNtgl+0m+21aiFl7vcP2cdsLgXjlq6aC8PaF/+40gVwp00wyNjt/CNrkNwapmcWGFgHzOnKwBjNRQIEAZpAMoOQOZpWezDTGiDJJbwMDOc5IbdOF55bv/bIY5DDCZBnUFJAWd5dK6BtK0BzpfbheISCuACLtvgjBCFzLlzgH13X9ZdmSCXosN37Xq3mMe3Q+slL21JfAnE/WW+HnhXXIsAtauuxy6Hb5tZyhgAhMgDOxTA9u9G8D9nnEBtlT1aT/GCAmgNstxJy1NZ8PvcBVuvr677qTVVVyHN+R1PbkF1d2SyUeZ6v9Mv/IMmZAu2jinv9eICEBxo8Chad+VPxaqnnvh+UvpJqghGgL8GkZfolOW4jbrM7BaXpMheOJiAkAyGQieGUMByOoPMcWhA0Of7VuhRq9tGGseWoBEGTozfJ/t9EhsbQPmYezCEU3ZjeWty+6rk5W4bzFArUWEyTxIf00BR9jJtrT++1U/oluCt27sBgAcw7JEjvPS2069DyYAF7pcth0qf+P8kPrn8cJeK8bVzwTZ7nqOs60cD9GO5ct8ttv9/S5+HUlTMB2g/qmZBd3mZZBmMMmqaFlKwVGXCuCiDy144AWyWBKffbkEVDY+Bo+w6IrpuM0kXw8Tk5wq/hz1A4lQ1Zt/DmgcQojXlVoW4bTMoabStgMrDGbQwbFTMBYzLACAjKgOgc7mG5JnkDrunwtw/4Reu6TxIIMsvALngEaaMd7dzrFxZHvIpveD9oWfrGAlHTNAva4VmX5BlF/eI8gJz3iEsl4QDcGZe7fShIPDTQPsg//rB2qDMB2kcT1khNZwp2S1iJ4CXCeY0Lr4lXFafrdMYzrTmtp5QSdVODKDWkHLllbpB6rwX3oPlzmm8h/t2SoE6MCV/Juc0FA5ijgcj9jxiwjCcmXFV0/gun5QCf3d0p9qZ7EMN1VGhgsgbrxRY4zSshzwpoQSAyyATQkrY2A54YnMcNjPbh7SzCP4cHLY5u0iIUMi7KAZTLp02uqnuwJ7gVge9IdD/Hk6UNQorKv3UByN0m52PhJT9/D8/XaMMBTIgLU5wN6dpvXPIpgPOWu6CpnZ0dDAYDTo9bFNjf30dZlkn1dwDeecDRme+XHHUyPjOgfdhucZrU4nanWlFiKGIxyfe+kNw4E9+R2t33QBe0bG5XYp330m+gTE8Qdkuj2DoAabBAA7gpwbII0NqgbhrM5xXXSYSBMfblsvyrFAIkJQQZZJLQqsqei/s4DTTQUdt6b7/3dkLf9O+8wDx3PHCYt85gTAMT3XOyzCbq9MfC2r4jB2tZ/rQmTexPq27+QwjchwKq5CF1aY20X5zxGuBaoK6cm3PddJp4tw3uD0b7vn+/5SCi68yA9lGE3dRSY1fQaAM/1rYt9vb2uKio5dPc8bE7mfc4eUAjgoDk3MfXPB3tEVMDOtKmbZ09ISDI8odGYz6rMJ3tYt4oTKsadVOhqRpU8xqkCfPZDEorbF17DA3lIOSsPQsugMCAZzVWOJCihZa5Tx5GH+ALFQdOLfCcOhin6qr29oyDlrcrhbDIe/ftZrU/N776TsOncjzN8ZrzoZSOcrHIT/M75wDb9aH7HnuSACEBFR/7sG6iX44yts5Be4XEBgy7gb0lbOmpqqqwu7vrATSujKJbhdxHSKr7okWCWE1UpIEeh5kMurv4LH4Q0KqFXy1omx+COJQcNkGTlBkESahW4/ade3jzrXdw994O3r1zD+/dfg/b27vYvruDUTnAaDjA1uYWHnvmo0BRIoMECdaqma9tPRuuXKkvoKNMcRC3juiHvrwVxxVnWCRE1IgFa6U1QITRaIT5bBcKJmGX0rPcP13TpUtYO2wwn9d9O6cG8vu68odLeEEZ+rpbJBiA9x5pmsYXVJ5MJpjP59jZ2cHFixf9sS4U3sU/vN8T4GEDfM5Be5k4piF2s4NJgLxtW+zv73vAdsnZHRB4LwBjIMVi8veDZNlD7IK1o0fScwejVrqt/zoexlypqNjmRy7XBvswT6cz3LlzF++8exs3bt7CWzffxu337uD2u3ewPp7g4tYW2qa15bkkqGAjrEuTqm3lFtZ2dbcxPDHxlZP764LbUYXNnV16J/DKqSESPvFQvGwO3HP3LV/xsjmleBk71dGy3DV8QFMETHatF4D7kHd+mGZ+IKXbXtOhqNxuUR8WReGNuEop5HmOqqp8oikncQ3RD5Ic5GN2DtodWdVdnj+LtObBgNNkxgltPLhE/g5HBZrD7t8FleNI4j1C1kebyNIZAhASZTkAkcB8XuHb3/42brz9Dnb29kFC4srVq1hf38S1q49iMhhifW0Nly5exHA4xKzVqOvKA3Z64fRfsgbOiNFGiEQ9Qp+g7103S37rstvBvVFKyV4rDsy94c8Zdo/a6Yfbf9HlL1Yc0n/PlHT5bUIyocX95IyUsRdOURTe7uQUrTiK2SkH76ccZoyfg3ZHTPTfeDDEs3FZlMi0gspzFEVIA+npEUG2wEswvoXAm6MNiuTaJkwDXQ3apLjjbyY16kVaJYLWKwX59yDLJLTNayEzCUkGIsuxubkFQRL37t3DV77yW3jz7bvIigGeePpJfOcnPoGN9Q1MRhOUMkMuOP/zxYsX8fqNt1Ht7UIKgqAoutDBsctvRVyGzFi3Qm9osv8zBJ8ga9F3+5B96f/bv3pxnina1nhMNW2CUWFVIITgNcIx0LPvxQyrHRMZutskHFtzVBNg+8KFtZ8VCZkCWQTxe8bGbemTR0nJ48/1497eHoQQmEwmvpK7476Puvo9SUme8wo5B+0FWXyAMfC5ASKEgDAKeZ71LtXCuVIt4L6XYkcZYH2OBp6fj3ajoG3yQBdQ9jNr3hKDwQhEErPZHK+//gZu3NrF+tYFPPmRZ/DIo4/isUcfw9XLV5FDcOUZbYBcQhuNqmoQFO0luqIFTB/sYxxvG+7jQdGOsRGyD3S7LmXOSNp9hl0d/UA5TOMJfq3hakXGk23af0fskdOE7xFdRbRoF3ArX6UUptOpzeNSYm9vzx/n0rp+UEDbywHNOQftBVl8FWNt11hjpFsqk+gp2WQWfXGBBwDY3ZauPJ+BS3tJEd8dPFs4G58AQZD2GpsDbWMIJKyhJ6J+Mpnh0UcfhaK7yAcjtErhnZu3oFqN/d0phnmJIpPIZY7h+hgEQlHkYJcqDWO6XjQWQp1HiREeW7o0xsre61D3B9Fci/1BlrMPqQiCS9iqCx9OYsqH/7ukor2/dlihJePLTWLRDUbrr86ZVnHZfT304UJ1/xwNfHpXEql9YJnXVtM0D8g54MGKo3RWyTlod6RroXaaTmz8cMtnN+67Zca6XKQ35D3IdnpAid/g7kThiiKk0WMMUAIkCDkRiBTIukdkmYQhiYwESCtkZEBZhtFoDKDCYDjCD3z/F/Hya29he3cf01mN//E7v4c8yzEclLh84SIubm7h4tYFPPHMk5BCYG04gNYtjGkAEKQoOPMfHJA7y6OwnoAMZ8Jp3bzpgVIBFLmDEHHxBWGNy8aEl50kJ/qK6S0/Fo4McrGJKc7NqhEKLbs28bWapkl8kAnHue7y9gT5cAG2c4v01W5gQIIgIWwULU+2cardGLz39/eTCjfHTej2IMVN0q5Y9TI5B+2uLBm7SfCF87Bwhyz4053swydQB7SBZeY3bgsP8ETrEALzSuHld6Z4/eYOvv7tXezOX0FVN5CSsLVW4rkn1vAdjwzx0WsCZVHCVDWKvMBzzz2HFjnefPsWXnnjTXzz1dfRNDWkIFx/5FFcf+RRVI9U2Lx8AflohMGg5MIRpECkETfZZU+E9dhwd0FdVzpCyMh6DEkPpURbdasJCA1Vxzm07XajmO7xLTqa70a3FWFSNQu/+Rba6y8s3wkgl4nsjEo3HsJ5gPDEFpwAQPAufV3XwPl8vpC068FlBjq6pPam1XIGQTvVSheFX8guz7VIdzhumCLDXz8Vclj/y77r9TYPWBiEK07E8Edh4H7r1hS/9tVb+ONX7iKTAlWr0F2R3bw9x9e/tY0yF2iVwScfI3z/kwaPjloURYm1tTVcqFpcrRpUdYu2aUAEbNjiq3fv3sXdu3dxIc9toV0HdzEARfw6xT4ZXc7YgRT53TvdsdBHfc8v3WZnAY9/zKcrrdlrhlxQFBd80EZzgQfuUpthrwvcK1jujnG460radzMuvejicjm6jn3JF6mWZdTIKkhY8tshgoLeL+l6j6TvRNC2Aa7x6T3AssxTJAur4BO83S411ydOQVgmZxS0D34q3QEQa7bBBYwDZwQWebOEAz8GaHfFB1J0KBe3TEyUsQ4VQiAIkeHeXoP/x5dfxes399EoDttt1PKlmNbArGLA+Oq3gD95cw2PTnL8/b9EeOYjJa481uCp76hxb2eHwUUp3LtzB9946c/xp3/6Z1BS47Pf+3lcfew6pCDvkc3pMF2eVaf1MhA5Lds51DkWyrh97RnuyyhpZ4eI4WJtTBCatkGZZ5BZBqUVsiyHavmFlzayjh+DhcojNoIs45P4Xi+cxHhDWlXNMByWEGIAY4Tvr9it9Lga/8HbcIxzn5z0eULFrnuOKnEGRiAUk2iaBtPp1NtmhsNhUuGG931wUcvHFedbvkrOIGgfT/oGjNPIXTBG3/4nYZkmLOYV7rt2PNH81ou38b/+f99AqwxXhzmiGAM0RuDNnQF+7r8I/NQXxvgLzxXQskTdttBKQ7Utvv7nL+HP/+xFvPHGtzDaGuPj3/UpZHkGItaiU7etADmGEHC8o2t7/jhlNe7bmyTRuwX3U6sUhoMSUgoorSEzCaNbaP8ixVrdca64fIUUU12uak9d14lvMcj6sieriaM05MPNq8S2pXh8x9tjAyMRoSgKn1vbAXRZlnjvvfd8sWTA2THel9tK3mV9QM79B2sdO6XSB4xueyKH2ecYsrCsj17S2MPBad+xFk5E+I+/8Rb+w6+/garRxwLsWDQEqhb45d/W+H/9D+Z/XTmy/f193Lt3D0SEza1NXLp0CXmeQbUtlGr95LbouhbdWrwU95QIpZuAhe8H3ZV/DgbO98d+jb+lk50xnEo29r5ZJSb6W7lf51zLvjMNk5bN4o+rJoyoBUnXHaZlq4TQfRYfRPxfNSHGWQGVUksKcT98OWg8dOVc014hXYojNha4F1tawxAhBH8sA/njyCrn/3SJzbUcY7AGgP/w69/Cb/7pe6jbBzswqxb4P/+8hcEM/9fvG+Lu9ja++Y2X8Xu///uQmcTnP/95fO4vfA7jjXXs7u1isreH8aSEzAyMUYB1OfT3AuJtiAouWBpBkA2u8exz1D9HaXREh7jJI36WLmrTVWOv5hWyPINqBepKeS8FADY9bu8levXe1BaS7uFyP8eGSuZiha/A4iiwyGoSPhFAh+KdjzMm73c98+Akfl6O73fjPPRhCsJu/yzLfPQyAEynU5+qtWkaDIfD94Ua6QPsgzjtc017hXSNHH1BNCR8KERy7IOmRUz6xi4sDZ0m4dzDsizDb794B//9T26hak5Gk2DgrvGVr9fY29vDG9/6Fr7+538OKSQ+/sLH8alPfQqTyQSz2T5ms6l3ZTLOJ3vBpyPShl3/0aLl//gSnlSqvYbJNuZIlVLIos9uhRD49eO2yYFzen33OXZDa5omKTvmx6E/ziwowKdZHCDHHDaABMy79CXAE7GLgAS4KLDLFRQbKD8IchB2nBHQDgnmY/EviF+uByCJObLVZ14tq47vmwgOOBvQ0bWEBTVh/8i2/e5uhV/+3189McB2UrfA//qVKd5+bx9aKWxubmB9Yw2j8QhSCEjJ+bO1UoAOZRQ89eFzdsfuFQ4cncHX/W78t/uVrs9HaJMLtLFAIAS4bqRvXXpMIp3n6EPyu1dcJWH8ATGIdye4/s+rN96PHJb8ebjSBdsuldh1AnDaeAzux0mbHHrDBdr1/SUfV/dcZK84aISfanokBgfuWJsEyYJ4l8sE4L24nCbTtfAHA1Tw1+bt8MvrVDO7P1570aDpPJgJhgSyTEII5yEiPOD833/lG2jVw3nBmtbgV/90jO+UDf7ql34Qj1x7BNeuXIVSFcbDHFkOtPN9oGkhMgZCZQjGkHWn8L4iADWByjYEY5OTGLJgbkIfHEbS/jPemAn7erhLxa8hWYNU27YYDkvUWW1tAT0TTHytGJwJ0b5uHIj0OVJ3fMSeRpx7XCm2QyhtrM94SBBGdqD6SvUH98Yh9vlgS+yb3TU4do2TDjQD/SUSQ6QLXHKeQ0eV8CT7aLtFO4yB1ZKZm7PttZQg2ULZlEHTWY6ITMYx+X+ZP42d2Du8XXTcci3Ydbp8IOB8eAnhz0SETEgY7z/M2795Yw+vvr1330bHw7dIYEdtYNes4/s+/z0YjycQUqJppxiUGfJCYHd3BrQthDEACXDuJWF5bMfnGgBtBHgZDIT9xdbYDBh4tDaaxRdr8bPVvCSDo9YaeZ5DyAxKxxp/evcJMC/6ES35HL47Q7Lf6r8IWw1eQxmDzGN7ei989c4YPqWy3Ccbfrvbj+eyFMhdZfayLDGbzVCWJfI8RzRvHlpM9N9lI8OJXvjFtdONKwFDEpoyGDp3+UufQ2dsU+ffPkn9te1pjvBwu+6CfYbKYwM/LUZmfvl3b6B5wIbHg9uR4S3zUcxnM2jNEFLV+xhNSi6Q6yaQhX5LoQcxMEWRf6tpiR447OtHpwQH6nzBC8M/m5jnjrj2cKqwwvKUSrLLUWeXZfmhyWtlyY3EX91+K4fOfQD6skM/QHNEN6bCyUFG/O6Eedx76ozinl8CxPddIlksHYABZwK0g3R5Qru185B51d7Z5vkvS05EVuv4c3fbgS3qAPiRwbszSvbnLf7g5TtHmlQeiJDAHfM4fu3/92Woeop5VcGgwXd9+hO4/vh1AEO7n02CdGhziun8e3JCYIOV1hrGV0UR3oeb86QwpcPLb6cxHf5Nj5/3oivf4r5EXHiitUt53p7uZxxfci4diXIFIe17R5XITCZJpo6+Wj7c5LxsL+eRpA3nouEUFavfjTMG2iw60qS6wtVp+pNAOa6RxU0AiwNCqcXyYqt8vY/mabLIlcEDCPCNb+8ikwJNu3qJdRJCRuG3v/YOtl//HWzv7CHLDcaTIdbW1jGeFF6R5rzQ4pBY9xABybqGaa19zU9hQ9oXgjpwtGnkIDDoNTY6bwjNgUvOrS2mx04ieOu0SR8gO6pEyPBsj01vmsMDd1/bOHlalMDsgBfjjHiPwBvoErDurLVXvQCBS3MHLv62TA4KzOnn5sIfJf8D0gFCyTlefXsPVf3wARsANGXQo+uQmUSe58iLwmdXY+26p38XsSoVinc6OkD1Rc8t2wYEIDQw0SR9sMth6oe9CL6rvq8SP+4i+8RZhenEyLhC/LPodFT3OSfU1/FbdaT90ut32+f2PKdHFiWmRhYAmD0HuhRHX2rVrp90N30nXypdCnfBukuNBBA53K0Qn8jf00tvbOMh2R97GiMxuPopfO9j2yCRIcsMnn/hY9jY2MLdezMoFfpHCAHVqzN0tZaHZ2AjUFStxljPAoKUnAfkcO6ZS4wmWBwD6b82eMZew3kCueu2bZu4qfkX/FzbPlCWadFSSq8UvH99GCYPImFdeM+y90hHFoxV0efkhaLF0FYXAuuisOIXrjv7d7W3ZYBNRMn5FgZXbH1b4mYWfubj7+71VPB+iELlJn7wB34QG5sXIKRCWeaomxY33r7r83d4rrhrUFsqD+eFIuJivm3bwmjjVwlC8MpBG8PeL0c7K7wRqvN84zEUnzZeCThvBxcA4ieOcwp7pbgAJPe5T7FiKkz5SOaTb9TiJrLvNrvs0qFcD88MPcJC6eJ16TLr6MvXBy3pafvtzc4VPz5GPSTf7GWiITEYDlGWJYSQ3t8dWDbdpNkLkQB594gH39d9E273M5FdaR30clP0d8BEs8qroW/fVIlYWPevbte5PDRZ9tSp91u/M8RBcmY0bd8pfbTqgveGc3oP2+Pw2fh7ov10rhVr2F3DZnxMl089utufazwg5fv7Ahe5wHQ6xdtv38Jrr7+Mxx57FBubW1hbW08S9jjpX94na6ATb7NvBxj/HJCzJsZjYTAoMdvfSyagw7UsHRd97mirxg8RoW1bzKu534//bCGOc8BeKoTVYMhGwAdHjRyHyHP2E0Nst2jbFnWzerV8xjRtK/xmJpviF0hrzu4GE7a7CEcHPFprnzKzj+vsvoTdUFl3jq5hLD72wPcxMaTyMRfWisP2wonIpbUM+/tTvPjiS/jf/rcv4w/+4I9w4623A2jb/YwxB7xUsTbiDEuEk0zI76JKAXAptjyHMeyxMRgM2avElZJLuaslsjhBxVRYXJZuwUAWUSdt22I+C6DtSlIdjmM/w0KLClQsbvK7L8+R7jkP16zo+sFoqrVG07aozkF7xVIUSJbvbNBDT89bzvEI78dRX6b+3VdoUslm47c9/+QG5Pv0VAUBzz8m0LYt9qf7mE5nmE6nmM3mwQVyqatlLIv3fHBGhtXSnUTjlzk8/3iijAzClh4x0fHxxOq0855hcyzpM1YrqyS4SjYM+LYNZ9af5GA5SNOO97sf4D4MPBCtbo8ziJ5n+bPSC6KUeiqQfWuDwSI8SCm5aojTrl2Sendk8q99gkbzAzCGc0hobaKny8YHY8BWYyESPDuuAvXMoxMU+ftTZbqQBk9eBO7evYNb79zCd3/2c1Ctwbe//RbKcgDAQGnuP61jnrZvyAdN+/0EJa0VCEBRFAyah8q9vHg/MbXhJDVmu/wrKV3mVnZ1VeH27du4ffs27ty5g729PbSqXbjOuayWZLULc+z37EFJ7L2mLV1zUH7vMwPaAJLx7TWtsMUDNhBx1hAwBEiRgUBQrQu6sKBtl+uxF7XTzP2fNlCtKw5rgRoM1kbblJL2s6MADpptl8l3XF9Dq96fpO6tBp68oPDee+/hxo0b+J/+p+9H22q89uobGA6Gdmmv4Fwqte7LYJdwPnAA+CCA+6DVDyX7Ge/dA3D1k0a1S+o1Hv76XSrE/etqeMbtFEJ4F8T5fI5bt27h1q1bePfdd7G9vY22beAK2J57kyyXforE2QUePGqvOiN1P1OKRdro88o1ABZ438XfV4z40LPs2OCZlGg5ZZKLLJV00ERL4KO+cZ3dYyAYDzJ89qMXHrpDAcHgoxenGBacVL6ua2xubgEA5lXlfYzjAWmcf2wCOpT8dafWI7erpyOW0iNYXOG4774WZ29bKP14CBA97FI8bmfTNGiaBm3b+sIIRzGJnjnpXVyfwItxlFO6CRs9hulDnuJMgHbfq7+gdfW5fkU8pdJs+GHXL3juqW8p02dUWsaZpfzocqPJUeRHv/AY8uzhPlopDJ4dvY625Wrt6+vrWF/fwObmJtbW1qy2OEM1nwEwyKSAFHHo7mHlIcxGxtFaYVLxhmRz/OezbAz0GSKBsNrL8xyj0QiDwQCDwcDXPHT8tjHmHLePKskq52FpOLFx3X2PMYfHWSZXO/WdCdD2YtKPy9ysnJeIcxk2xqBV7ITPPDbB6C4vG507Wt7GNRvTYIoQ+Qak5ZLuV555dIKPPDqBPEaO4OOIII0L+Tamt/4cTdtiMBzgwoULuHDhAi5evIStzS0YY6xxch9kNHKZcVrZAwEw1iSPdz99bnYrr6gNjDX2OS8XfjYUVgdHbM0yD6L0X97utHpnPynLEpPJBKPRCOPxGIPBwFe0cW08x+zl0gfMsWtnn9vuMa6y5HOP2CFNSKsyEQhSSJ8YbJmcGdA20b8GYG0q9ho56PiONtPnZ33stiXL8wNt0Ic65//yE9+B7CH5bEsy+Nz6H2M2m8Jo47lY9+eSMKm2hWo5L3a/hmN6HhSQBqvc/z31GQU7O0TjI9aAO/sdkgq5n3YCVvuyZeTcnwfr99uS9oEX0/m8uAo+roRHv2xgLG5dvs14fvsg5e1sgPYhnkvsNxtm3vC7lBIUuX05cdpTfLxzyUo0oc5ffN3484MYTABwcb3E3/nhp1HmJ/uIy8zgLz91C5OsRl3XNs2lxrya48aNG3jvvfdw7949bO9so64raN3CwEDpFtooXyJttTHy4YhvAUWvI7lyYwZFUfiqRGF/kx676vwHgCxRMF7Hx/jxYBY5WT9eDnOD5/K+ybLnk2CCS/t7wAr5bID2ColpkbZt/bbED9a6XgkpEgUQSFO4upfZ+dMqpRa5R6RA7YJ24mAb55lyv5rUD3zyMv7ip66cGHCXmcFffK7F9z1ZIRMC89kMQkgorTGdTfHKK6/g29/+Nt6xHg/z+RRKNYDR7PmgNTIpUm3D/9OjhZ+02OvGWrUQ0o+RwWAAKaV/zu6QowB2HEiVeo/wRMGg3Z//mUwISOq6BZ6j9ir5YBhrF0Z05OLHWTDBoH1AoMWZAO2gQWHl4I5fBMcTxtwzdfy63b7u2DjCTUec6LK/+Jrd6/e1y99D1C63f98xRISf+itPnQhwF1LjL360xt/+XMWJ5ImgVOvvvW1b7O7uYjaboarmqKq5naBcH3GqVtfqjv7Yec0cmNOR370uSHYjUONtvH9oA4AITE2SZrZzlQe2OIhXeMtWW4vbzxG7V8h6KNn/ncwCrsewjJ5h6nnsrtdSusJ0422VnJncI8uErHEJCBoywI7uIpNe8/VZ1gBQBKIOoJw2DQSQdZqzA4Wud0gXAIjIFxpN03Auf4jxeZP7iq75U3/lKTxxdYT/5//+Olpl7qt2pBQAQeGvffIefvgThEwOMBoOkWUZqnmF3/vd38Nrr72O/ek+7t27i7W1NUwmE4xHIxij0aoWBANBsVFvlSZkkn+OXn7g6CJIwIhF42GeF1Bti6ZpT/T6fRL78sYrM37GD705H3px78bDtQn0j3Omt2yFJMF03Co5M6DtlpUAUtLQgoCjR6qqglIKIpPI8twbfmLNzNUOcS9OXddomiYBzzg3ifvep2XH36Vky7H7k1Lel0dJ3J6/+Kmr+M5nNvGL/59X8M2399C0GkcZr0RAkRGeupLhi498Ax+5KlFVI4wGY2xurKMsCuzt7eE//qf/N/b299EqhRs3buDKlcu4ePESLmxuYHt/D01TAaQhCdAEKGML9lpxzAgttO1BJKxfLa44Lhf2takyiSvXAMBwOEBTV5irB1tkYnHiJe/dEOd1F0Kg1SqxmagH3JbTKH2KTZeqipWkE2mDBWzhv1vljTjSWggJEhJCaAh5XtjXdk7nhY+NNyYAcNu2aNoWGQFkAVMIEZV68of4c7uXp+vO1WecjLXw+LM7xk8MEa+9StM+isHy4nqJf/x/+zhevbGH//o7b+P3v34bmRSoG4W+IEopgCKXaJXGdz+3hR/9ngt4dH2Kl/9EeNAgEIoih5S8Gnn9tddBUmA4GmE6m+LKlavY2tpCURTAvu0PO1a5H50K7QwxtnPjhwNXgf6EtWx2K0r6lP31+XOWZayFJ9RWj1eJ/y3I0X3wY3qm323x3HPkwciD78c+TyfT+TcIgWBE7P53To8kL8wqkGvbFnmeM8BIkWi6seYson534Bsvo5umWQDp7rVd3pJ4Ce6MSm7ZVlUVsixDURQB0C2dcz/eJc88OsH/8tc+iv15i2++tYPXbuzhpTd2sD3VqOsWuSRsTgq88NQ6nnl0hI88NsZkmEPoOebTCsPRGE21japurMeDwdbmJp5//nkM1zYAAoqywDNPPovLl69ic3MDdT1HnmcoiwzatMxtkwanCfDcB04yi19Xuktk9tAgnzvbIPhpG7BRErRYIONBEaV9dJhXFiIu3u3Xti2apvGTx7kcTx5OcE1QOLqThNO6lVFeaVwlZwe0HTXqLPAAa9jRzFdVFba2tjAcDtHalI1a6yR0uGmaBLSNMd4X2T2M2WwWrmv36QbZON7agXJcGcf9TadTlGXJVVO09oDePfdhuO+eXsFokOO7nt3Cp5/dBBnCZOsKpu9tA9AwpGGEZuCyqq8BQcocG1uXcPP1WyCjLJhoXH/8On7kr25iv27QWmPj2mgdWVYAMNjdu4vJ+hrG4yHatgJlBYxwFWy8nw5OCnziSTM1PMZ9x+OEc8oYNA3fO6eMMchzzj/TJi/Vg9HSFo3KYaXmxoxSCkZxpXghBOq6RlVVdhJ5f5KEfRjkMCvVB6ttL06ivGAjmGjCF0KAfdQszmiDeV1hNp+vPPsZAO1gwOl7dDFoK6WQZRkGwwFqa1xUSnltRimFpm4WoCXLsmRgxJkAF1rToT+yLENZlsiyzIOB49ebpvHRUQk4eysz/G/xv32/xdf3HRL1kfPjMJG2S1hM00Q2t3SjdGKQW5tMsL51GUZmaDT3nUQOpTRmsxnu3H0HWSaR5xm0USCj2aDryevO04kcRuKYm549V0oXoPuAO+zrVj78cjGtZj0QDJjrpvt7wVcZjdPfA3DH240xgAnJrEIOEpwr2z1yeA+c90EoeElpY50alELbnHlO2yz9aqLvznOjbVvMpjM0qoWyFIfzDgH4xc0o0BnuuPjFy/M8oUtid7HYqOQMTXVd+2u00WQxGAwghEBlEy5xTmd+zC474PGt4I7T7/DEnnpzXjXuHuy+JCCzAkZzullvLrC0wc7eNvZn+5jOppjuVahmNebVHDu7t7GxuQGtFarZDMO1dZCwk5F/gdKApjBlRMhNJ+894mwcSinITAJwnzO4bHwPMu3AKnHXUEphbjUwAqHICxRF4WtInsv7IQ8S+EMVnYNG9xkA7UCJxJ0ca95O8x0Oh5jNZpjOZtBKQXU0HSJO0VnIEFKcZZkHWyeTycRz1rGFOm6P+3MadewR4H67ePEi6rrGzs4O1tbWGLh1cFEEwkt9EHB3tUxBcTHZsHZwLniuuY42aLViWogyDEZjKA00jYJSGlLkUIbQNg2+9eabeOfWTdy69Q5e/ebruHdnF03T4sLFMZ548jo2NjexvX0Xo/XLEAJotY5s6tHDiVVt6kwqJ6QkGcOBC3652jTIiwxaM39cDnIIKSAyGblzngxwxx5Fbpzs7u6iLEsURYG1yRij8RiD4ZCX2ec2yfdBDqdAOCo2JgE7vwKwdjN9cI7vswPa1A/YTpzGPJ1OUdc1a1oIL0785zjsLMuQ5znm83nielUUhee4Yw+SuD1xBZI4+U8cSj8YDLjU1HyOyWSSUCQ6iprr1p/su/9FsWDoNGiHkQiGN6fZsrHR+nBYTVsbQNn2SEF+ebe9fQ+33rmFb3/7Tbz44ot479ZdtK3CR559DHVVsaZdtyAyEJZ6gKUhPBfSobRiDD9pcS+Y946xXkbxc6EF97CTmklc3/MYms/nflXHmnZpNe0PwFL/XHplwRlqhWica9peEv9eApxawstck1AWbrnZBW3n2SFdXujIm8QBbpcvXWYgdIZJAB7c3TExOFQ1G5nKskyuI23aVbJgm2IyddAugC4QsI89I2B/IMC3PToGKa/tvFfYX8/98e9KK9R1i5tv38T29ja01njs0UexuXERBOD69csYDocwhukgrVqIjL1HYK8J670RPyo4A859sCLH5TW11v7+XSWjOPCJnyMCRdRz7nhcdGWZZ1HXpdCJW9k5Dycphb3uuSHyfZPl7KvzFfH/jUcBwT5fxy1aLGLQXj3QzwhoW+Od/Vd3OsW9NLkNpnEvpDIasGDN/sUGAsEA1LZtoh0PBgMAwa+7z3E/BmwhhNfK+4q8bm9vQwiB9fU1GBhU1RxN22I0GvkJRGvNwT6Rf6cB+D22gGdN11Zj5UIEPoDc88SeD7FJnAgGymra1ngqJQgZjMpgiCc3EhIwGm3TYG9vD7/7e78LwGB9fQ1/4fu+gPF4DcPBAJNJiUuXLkJrhb3dHTT1HDIvIahAGKYcaOBa49vufjvkcvT4EnP4vBoSQgAKNngK3ttHKZVQYNx1D07j7a6OhBAoyxLj8RiTycTSZZxcyHuPnCvcD1kOrlu6aGYnr4z4XwgwhqCUZjvaOWjHsrqLHfUBYAG0m6ZhlcqWuY/dAZ0WvoxfXuYn7lz+gOCPG/Pd97bvYTAosbY2wWw2Q9M2qKoKZVFykIejLTrnjdRpO4mH6zvl2sFkWL7Z44XrqQCdxgO3gICEclo2Of9hXgVU8xneeP0NjCdjjMcjPPORZ/DItUewtjaBJIPGtNjd30dVzaBUA6MVyGNN8GAhAsiE64cbwcljdvzVGJ9xLfYIyrIMzbw6tPH3oPiAg44FAn1XFAUGgwHKsoSxFdm190E4R+0PvjAtGS2E3X+s48PBY+pMgPbq5THzCwd1lT8HhST1MTgvCznvRtfFL3qsVce/u2Myn4hJeT/tsiyTgJ84v0n3uv6PE2mkyy63u4m/RMBOjmo23pvCa8RCIssLCG3QtC0KmUFI4ZftW1ubuHb1GoaDoY8iJNLBnmg5bFbwTS8QM7fe0VMeAGB3+7s7ocW94SYkRM/JuWpW3k6RziR9WvdhAfsgY7LzWjkPXf+gSKLuBFn2uCPDv3Mj9ZspvGMHyZkA7SDcyb3+uj3aEFmN1BgDSYI3EBsaAe5k97lrEIzP7/5iisQbFCMOO/4XAIbDIbRmP+e2bb3ngFYmoWicxwkQXAkduJAQEFJARomopJSWIgkatYMgpTS74Ali7p8IkNagagwXOZY5huN1mGoXu3tTXNxcR1nmGE/G2NziyMjPf+/34uLFixgOSkgXRGNCzhbBirqdHAKX5wxvlklOgJo5wIOXpMeRFCytwVWyu19cocj51e/e27bPefn5jqJddzntMGaCN5FLXFbXNYDQZyJ6fufy4RA7uuFyaBsitFpDGQN9wAg/9aAdz4PLvEYcaPe9gUHrgjeaHdawtex7F7T7tG2AJwcX9WaMQZZlGI/HmE3n3pe7rrn4gAOVrqeLkBKkBXLAUz/eoGineINwTfZKIQiXBtUYbxzUxjLLJFGWQzSqwnxeea53UJYYj8Z47LHr+OhzHwUZgrD475+FdQURxHxsV68IgN2ncZgHygKsBlWK6CoNY3gCkVIiz/LEZgEsB+j74bmdph9PyDxZN/D907VJnMv7I4el7mj5blyJ/eABfupB2y03GAyotz+S/rbgnWhenSUrL91Xd2yf5hQ/Lv/dGQujs7tGOc045rpjA6g7b+yB4mgaX5/S/UUA4LVmY0BG8mrCgn7bthCCAEMwrYYwAtBAqxqQAQQZEBSEzJBlOYhM0ICtluxoG0kSbdNCqQZ1NcesnmNWVbw6IQPY/CPLPB+S4XuSXHaPEIUJ1HlxeHNpYlg+8ZYktJnr34R+OekmnMvhZOFB9PmMuO3xJzvpmu5+/XLqQRvocMcd/pfIkat2Xz4gXd5GL61BmjM70c5NANzwwmvWUAWHbcAEQPAPR1B0zvAYnU+uWxa7AIu6ahBr43mUQrZ73zpADQBAKQOtW2hjq/SYNBnW/mwPAoAkAd0qvj0BNGgBSRACyKEwGE4AqZHRDK1q2DQpCU3bYD6bYbo3xWQywfb2Nrbv3cVbb72J7Z0dDCdjPP+dn2D2RbXQlAEoEIyOB8hiztYTERdIxZOOhpQM1FJK5EXOy9joeZ2E8Bh0nkas5XP64PpYnPm5PEw5WGNOMJpsrIMJqYCXyZkAbcDxoYvb2XgbadZ9Rknb/yFpf/qbx3Z3To/1xh8TH9Y1gDkQV3F+VEKiNRMRqqri5FWNSnKXjEYjX0TXa9I2/L7VCkprOAbIVY7RxnpDIEPbah/ROa9mHrRVpViTJqCVCmT9glsyKIoSQowg2wZaaUBoCEFQFlTm8znG4zGm0yluv3cb3/zmN3H7zh1cfeQavuf7vgCCgdYKRqio03pWHFF/0CEMxg9K3AqmVS20VuA6kWG7MXrhuT5IiXltN6E5eqRpmqSd5/JBlUNweRQ+HHYsnRnQdrJAW3g3s+Wd26VDYt6577CjGKHiff3nGPQjbwQH3l0wd3SEc0WMQVt7jbBjeE3gLxQTFVJCgkGbMrLGVwNIAixoC6MhsxwCOSRygEKh28lkgqap8c47t9A0De7cvo29vT3A8KqgKAoQcaa8TCqO04m6Knj0LC4sDR34ChxJlj2nuM8ZnKOVkqUr4Omu4z3r4+wfPne9Vc6B+/2TRaQ1S39ZdRS8d9ZB2YnPDGg74xuRXX5EHgvu964WHcBUR9pz0JS7L1XsHeKvmfCiqTESWB4x51z9nDgjIud6TovCVlWFqqr8Mdr6e7KfsQBZ//M4iZUbNVJKGBBz1wAmkzGkEMiFhGmsdwQZqMxAu9VGo5BnBKkzFAqA2oELR3/h+efxzjvv4ld/9b9gPCqRSYlcSoxHQ1x/9DquXLsKArC3u4NSEda21mAMAcZFWAaKKbgjUrrpBMS794Ut7J8/baGNZkrEZoEM1YzY20aI1dGI3OWrW74K0GPvEQDQ2ixE4Z7L+ymLNNkBT3vFWc7D2BNx4zt++VcZFYms8cmkBx30osTWfiexa19Xu+67rtOgASR8NZFAJjOvTSulfIk0r11r48PzszxDZqMu07YHrZGreXNbh6MhMiFRyAxoAbJujjozaIkt3O28RS4Nck0oTYvKlhczMHj66afw8svfxG/+5m+hzAlXLl/G1SuX8fHnX8Dly1dw+dJlwBhM9/dBkn3OSbvAmgDOy8xsJwncyXWI+1qpFoCBtDnNgWAgBly+6wcbQt51D+1uj//O5UMqPY/usBaSMwHaS4MWjP0PE9sWpAEccRkbX+cwvx9XO2Iwjz+nfzGYAMZ+l0llnLQvAjAElz9nPNUMppYe0Zo1bZ8+0how66aJVhHAcDDA2toaNjc3kUtgfZ0L+w6HQwwGA+SWHlE29W0yTA0A8ovEE1n0d/s+AUUseoM4m0PswRN88pcHwyyOOW/xWNq2LkCH88Tn5XOlScjOwfuhS8ouHu3QzmKy+/TONW0rXS+Rw0hMncTniV+uZS8akGrXCTXRbRcWl8epIQrReUKZMpcnhUOaA5g61z4iAkkBYQ2WyXWtUY9D8ZX3ipnPZ2iIkJEENTbclgzaTEMLgjYE0wJaN5jPppjeuYkL6yGY59q1a/jCF76A69efhCSFyXiI0XCItfEEFy9fxmgyAsDVfWQ5Z+OrSb1nKPLS4R+i1cGCwfIBSqLGB25dSM4RU81nyCRHpg6HQ+hWQakWeV6kp1llH+lRCA432bt9+N+maTzlZWIUOJeHJsfvbh5bXknE4akR4AyAdmxo7KNBDmPGWcU19omz8sfHd0PcY61tmfTlMmEf6qBpO7AM15Ip+BP8ZJUG8hjP6zdN41O9VnUFYQBpCLCgDTJoMgUtBAwESEsIo1BN53j31i2sDy+gGBSQQuDy5cvY3LqMT37np0GmgRQEGI39vX2MJxOIXKA2DebzOQqbqjWouFbzhw5e0SamrxxVdVLo1Dc+2O0uyzJMWw2Va+QAyrLEXE2h2sOFlB+XyYi9R/g7t8qBth8bdG6Q/HBJOgn7sPZDDJRTD9orxSlTJsWB5Vb6rufIUZbHQfq08+7n1Y1Or9M9R3IeihbmK9q0eAnO80cW9Cn6Lb6G1kylsCeO1UopQyaBatagrms0TY39/X0oo5EVOUQpEiNwuOjJMNbL+rtve1jhRMtYAgSRp4YARPRIeq6+1ZL9hr5nt6wty8cVPDXlj11x7+dyMvIgpsdezyUcjNunHrRjYHAVSRC/YMt6iJYDde/u0fa+JE7LKBWXxnXVueNjXJO7HirxPv5f95lSbxMhBGL9kEhAWq1+MBiwhx8AIRmsQECWtWgAaAhIU2BAGfSshNaGtXMpUEhOswpir4pXXnkFr736Km6/9x7apobMM1y4eBGf+PQnooK1wjqJuHSwtvP9Y4j7hB6KMuncDmP+WkgJ1bbQKveU1Gx/yiuFnuPT8XJ0WHXPiwsxxNSbAKBRVRVGoxHTXucGyQ+tMBloo5X9ttVy6kE7ERNAXDij3Iouil+8Zdn03O9di39XG10m8T7diMblWtvybbEoS3kgchfruwciAZK8rSxLEAyEIWSSfI6QLGsgtIEyAhlKDEWGtihgDFDXFfI8Q+55aO6vV199Ff/9N/47Xnv1VUjJCXKefOpJXH3sGsZbGxHPTyBD4LJjnXQ5Eeb5yWnpHd+fUOfCLiJRCPbeUUpBWZDmbIvUyUHy4IUnt7S2qFLa56M5lw+/OH8IXvUfPI5OvjLpB0E8X7oCoP2vB+/7gZIl9tWuh4jdlf+19EcAw/g3YVOpBm8TECDsdp7sBMgm4CcBaK2YE7fUqrF5xqfTqY+0FEKAwJrjdDoFwRVbgH8+DN89VMYxjMjHEv/2hH9jj53YCLroPZKuch540zrOJ4uKAKU7exAw0YgOEbrxPvFw9197flvatvv8+9BKt8/QvR9aeaPdmAks3zWRM6Jpd/hEZ7XldfnSo1Zyxd0rLOFHD2zZCtpl6W+U/BO+GFjUdCRDoFQoAhcGSrKzugFRqCzOJIWAEAQjdEiwbwgSAgQBCUDrFhAaxbjAfrUDmWeYjA1yCNze2cFbN2/h9Tdex1PPPIkXXvgYJpMxprMpmrbBS1/7Gp54+kmMh0OQViCjIEjDQHOJtyS/SDDYhEn1ZMSvuqI+zPMcgjK0rUGel5AyByCRZZwvRWn3moW0s4lR1ff70fWjEFDjzgUIIWEkUDctlGYfG4PYYAmbUpefuyNvQivtXib6TMvB4mSsDKdDlvWNDW3w0t3HUYj+OVBYzbvfVsmp17QjgiHR4uymw5/nhDS9g7jyeJ+0Peg8XBONAgNYDwxB7iEbwGiQMfyzIXCIo4awRXYBgIwAQYJIwhCgSEPZ2mXSZMiRIQPBaAUIg3JSYL+aYl7NAW1QGIG97R28+e038dobr+HpjzyFH/6//DB+4q/9BH7kR34EH/vYx/C1P/tTlEWOyXDAoK0VhFYQRoNMx+aAvr+TkeCFocFZCwl5VkCIDKrVKPIBpCxAkMizAgbC5nUxYTFgePIJ7Ydtcyde/zBtQegDNxcImYGkRN00aDUnI2PQZvsAgQANCAMI75lgHzfCkCdj9zGchtflVY/B+yitPnNaNhaBOb4n168imhwNAaYzhN376Azd2gAu0G2ZnBlN26Vl9YYtPzJ7hqRflaea9kGfl207bNBN0uIVWnq6u+ncitMW00GVagXGv6QeCineMzqBW5L4OYH8OUCAzKSPxgQYDDhpFHOuw+EQGxvr2NjYgNYaw8HAh9wLIhjNKQIO1qKPr/MdxngctnW/u8IWCClu4UDS7WU6/3bEROc9QluWCdkXPNqS/r70wOVNBLCwIF267VwWJXot4k0GxAu33uyUaceGld7qDj/1mva59At7RXR40EOKsbRSnhdYX99AVTdompbrVoIr7UynU3z0ox/FpUuXUJYltNa+vqEz6lVVhf39Pe8uSEjBywQO66FK7NOf2Yo/vsgvXJV2WANlFgKbes4VJt8Hg3zO4O0mSmcETULb+1ZhcMbS/tVKn+b7YdeET6ucg/YZFXIGxWWz+jLfZti8JhAo8hKbGxcwn9eo6ob5VmMwne1jf38PH//4x3H16lUMBgMopTAYlBgOB8iyDKptMZ/Psbe3B2O052Bj97bYDephioueNcYgzzOfz9x597jAKSklMhuVamxjyS8bHnzLY1uJK4TR3e5BOxITgbYzLMcLToPVc/ZJPIOTJbpOt5wReuTDJ0dZLq/mxRfXt+TRMU0Fy7+Fo5LvZjEXiCAByrIo6MRWdtScv6QsS6+pOpfJUPHeFqnVbXRxJmyOuoI/SelSYd2MjSRSDxLnRrrgunXERh/m+fcnjWIu5uDj44l4yc8nOGmeBcDuXXmh2/NH74lzTfuMSmC03bdYuuaosF9wBbSVeSkDjIAxlmc1GsNhibXJGDffuYnpdOq9ILQ2GI5G+MQnPo7ReASttf1dA+A6jCb1cUgG+MMqgdAHhk6rddGIxhhkGU9A3TqfYcJ7sNBERMnTcHnUu23uMqXwKwHbx++zf/dZBewD7/uQK7Rz0D5j0uf7TO67+0IGrsJNAqDkuHCX+1qCKIOBgDZgTwoYjEdsfHzzzW9Z+sP4ai+T8Rjf/bnvxtpkAq019nZ3YQwnrDImVLFxBsDgRP7wfA66oB1/N0ZHoJ2jKEoopZZy2ich7uV3xZ0BJJG+vt22v3z1JK1hdHQvDxA96Qh/p0WO9LyjFSvQZ/BeXs66K+f0yGkXE6zSSzW/3s12mZ0s4Xo0YOdmZgJmZJlEUWSo6zpJnKW1gZACa2sTq3m3UK2KwAXWTQOd9j4cQOz61y/rr/j3JMveA5RlUZbU2cdldgS4l9zqqS/zX6C4ovXLA6i5eSwgXu788qGRVZOeDYGI16h+nPt9ljkbHTCeTj1on1vA+4VfdpfoaUl4vv9v3Is2/StxEI7RhLIcQYgMVVWjLEcYT8a4fPkSnnziCaytTUAgGwm5j52dHdy5cwciL0CysOlFLRtuNAyIR/wh+fmTEpffxf0lLnYWULMsY6Oq1bSXyjGbHIJrUi8UQcJ74LiI0+5xvGvf5EMLaPPw1jDnsiBWD/LMyCEewqkH7aO4sp0lcXyoEIa15UMYrtzAYiqAAAgYLTEcrkFIwnQ2w8ZwCxsb6zBFhun+HrY2N0GC0NQNdnZ28N57t/H2229jZ3+Kja1LuPrIE5AclQIDZQetxCJzF/tCnyxwx9qry2LoUtc6ACci5HnOFdsjT46u3A+v3Z0IXBCPEAJ5nqNpOIsiXyho2Vq78njBKOnz58DOh/EctKoNx279ufQJxa6XhDCBWu+jw8DV6Qftc0kkTmrl/rq40oVFr7hRn4GSILMMBMOVaAjI8gxDDLA2mSDLMl8Gra5rVNUcs9kMkBmG43X2FSd7bj8rYBFZPMXzQLvjEBJRNx1xlYIORY/E3XYMSaIrLS3jJt64q9xHT4nZ/5pwokTTTpS7nvnwgfHe5+gPoNO9CzaIw8k5aJ9SWZWTGbAao9O2M9mJ7uM/oiWAFJ2bRIbBYAKhGwDEiaKaGjvTPdy+cxu7u3sgCGzf28Nstod5NUNTN9goCmSZTXeqW0hZQBCgeqmRGLAfDmoTAIoAOcsyO5eEghZcgMKl1n14BAMRIZMSqlVQlh5xFJfzE3cRwMrbNGJjMhDn5vWY/yHllj/M4teP5vDj5xy0z6hozWlGhdaQCafdZThjjTdwpFobCBCkKDGZbEHXUxhozOsKO7v38O6d23jr22/h5tvv4L337uDGW+9ifX2I9Y0JHnn0GkaDIcq8QNvU0LqBhIKUGbSi0IpkIJskpPykJHjXcPAM0w9MhRjra55lmfc5z7I88i5x2m3s8WJbbw2sR8XFvklTECHPcsznc9R1HblhcpSrMeF5NqoFmUA1EZHNSfLwvF3Oshymjw3QSUuwWs5d/k6BrMrzvYxPcG5gS3N9U88XS18QOUMdu+ZleQGZZQC4YG9dV5jNpphOp7j1zi28+a038dprr+PmzZu4d+8elFJJ0A27F0ZJl+y1IsjDYbWQBychR7rjkf0vtpFC2PwpDrDNYisX85PcZ6vs+aQQMFpDK07mFfvThYIJfWMCPX545H3Ak7StD8pEGVE3p9X9r7ebiL1zDC1JcRD99yhyrmmfQXGGNjaquRDyrqa94niAQ+DBQTXDwQi1btG0NV7+xsu4fe827mzfg9YKxmgMBgN89rOfxqVLm9i6sIHrjz+GCxcuIrM+zlU1h8gGyGVprxBNEu7tNvGGk5XY9U8IwVpQZ0ZxXDJFNTpjl7v0Bk5GQnCNvY7zctHap3TtgmNfZGvc2q50LQvnsloO/7TTsXEUt9Fz0D6rYjiHiIbCMP2h87mzxIcBkQEJCTIaRgmsTbYwNRrz6Tb++2/+n7h97zbmdY0nHn8WWmusra3hb/yNn8DGxhqGwwGG4yGG4xH2pjPcun0X+3s7kPkAWTmCS91hQJwQNlIiH3TypcUuSYstu5JoMIBK/KY5YZOUXKaNw/Lt/rJv8Rr36eHbflB2QqUsp21zemsYQBtO90l2YiVnhrTTidbQhiBWLLJPnRb8EOQo/eVKAMZ8trFGBTqE3/w5aJ9RcZq2I4gTRZvcK75sURe5LRlCnpeW2wVu3HgLt+/ehjIaj19/BsYYFEWBZ5/9CNbWJsiLHCLjupB1y5p409RQqoWjSPqU/TCYH5KmbeBd+wgAGQPjeCGQLQ8nEsPkyuYdsdmHcRX04fPGwBVuiL2DPOXEW3hC1AziiwFE3WcdaeTnCL5SDrdyMQs/xp45q1ZAXTkH7TMiffUmiYjd9HiPzhE9S/sIx31WOyFhFNctbNoWzzz7EVzZvwJlFLa2NrGxsQ0hMuR5AXLgZk+d5TnGoxHapoZqG3BujJ4LJvPHSS/We5IwWd5X69b7OTMvLwCC1bRX2AdOSGKNmzLhvfkoekYeku1kw3nC0ucaKqUu9q1b+ZzLyUhsNTise+U5aJ9BcVytEAJN0y7VCNySDYDPjcAAqqG0Ya8TWUA3EnWjMJvN8cW/9AMwRkMphTt3pphPWyhNGA1HIOG8QgAQYVAOcOnCBexM91FXM0ArcN4T1vN4eW8sqDjjWFSz8WR6xwOcEwIbIuu2gZQSUkjMqsrSI4TBYID5fJaE7J9oC+2k4jT8uq5RWo8WIQyE5f+15uesjPa8vBCSl+Y9Te3rVlfs7By471MM4LJqcnBa+p4pY2xlm4MH9zlon1Fxif57DSDOrmXXcN2lunPHM5Y3BbhWYtMqfOSjTyLPOcT66y+9jrX1dbQNJ1fSUIhf/yzLMBqNcGd7G0o1ETDbNi6a0fBw4KNLxYSIQiEEQGRD1zUAzvQ3n09XRkUuyyVyP+JXS4r71efytisTY7i+PSIajHuVcDiHP7fEOedHFmRV16y03qY/ei3bLP62TM5B+xRIfw1JWvge853uhXc0R/+Ju1+NZyvIhZ4bruACAEorKNUiyyj4Es9m2NubY2d3B01boW4azGZTzKoKRVFgvDYJoOOGsBvAC0aZh2wicxOXY4UjHpg9NwwgEbxHFsLO7Wlo8XkcJIdJWuU07bZtoZWG0bzC0W0o/zaZjBHq8AAHgXBsOqB4IljWzu7xvSdFeKwrr/4hk1U3ssRUsAjL7j0y4bADcPsctM+geNAWAgfTsBFoaa7NLmUGAa591yqFIssBEqjrGvN6jjwXyLOcteg7d/DWW+/gzW9/G3t7O7i3fRdvvPEGvv3W27hy9TK+85PfiUvXroKTMLH3Q7ikAIyCIRtQcMJvu4u4NFEdTON8oMGpZ3PAa7cOGAeDAS9xV9AjB0WoHkecr3tVVRg0DYwxqOZzTKdTaKVABIxGAxAJSOLiwAye/e2gDrAetrtPHRifoHhPqGiDdwpI9lgu56B9BmRZ4I04opUpzhlNggBtNb4sA4jQ2qxzxhgIEijyAtPpFLdv38a9e/dw794d3Hr3Hbz88st4+eVX8MSTT+LaI9ewdfkSgreCs6L1GUEfjqbtg4c6241ONW2Xc9y5/PWD8snRC8IWGmZNmyeRuq4xnU6h2haC7POxk1EfX++kqwE6g+u5nLw4uvGw3X3siMg/+IM/wE/+5E/ix3/8x/F3/s7fwVtvvbV03729PXzpS1/C7/zO7wBgV6V//s//OX74h38YP/7jP47/+B//o9/3t37rt/BjP/Zj+Ct/5a/gX/2rf3Xc5p2LlQWfEOMCQ2jFWxnbtNGjfoXfHU4Jwdxuq1qfqjTPM2xubmJzcxPb29uYzecACFtbW3jqqafw+OPXsbW5ySH1SkW86+Id9BUlOMkKLM7Vz16RVwK2tJiOPW4il78+3jrVotL2r/q+KIt8vtPeq6rCfDZHVVXst2047S4XRgiHkf8fn6+PQmMLBYAl/ZsWhEh19sQTovuMorHjzHD2LCf+LE9CkjfEdDcs7hPID/5zOejdnolCdFKa9s/+7M/i3/7bf4uPfexj+E//6T/hF37hF/CLv/iLvfv+/M//PHZ2dvz3//yf/zO++c1v4ld/9Vehtcbf/tt/G88//zyeffZZ/KN/9I/wy7/8y3jkkUfw0z/90/iN3/gNfPGLXzxuM8+0eI+PzvvAgSEZhM3lkQCUQfCV7hwoyPlx2NBpG1FpjECWlxhNJpjOphiVBYbFAKPxEM899xykLPGNb7yCwbDAYFDi4x//BL7whXVsbW3h6rUruHHrJppqDq0VhGR6gsuXwVaMZxqnN27lAQoDrIaUHJLvcMRPTFLAwKBpGjgHaEGErCgAoMcQGRUoMObIFEm8P0VkZ8gzwpTUzs4O2rqBzCT3l9HQrpqOfT5kmHvX1nJAlhN3k5CU0torbFSlMZ4OA6Ud70G7rw+xel2RUCmHs7t9YOUwayh/v3bH2CMr/MAZMhd+WyLHeg3qusbP/MzP4GMf+xgA4LnnnsPbb7/du+9//a//FePxGM8995zf9uKLL+KHfuiHUBQFBoMBvvd7vxe//uu/jj/5kz/Bk08+iccffxxZluHHfuzH8N/+2387ThPPxUrqp8vC4HK4auxJmd2Oph0clwhSZijLAaq6ZjdCo1EUBa5du4Zr167hnXduYW9vD0IIPPbYY/j0pz+Nj3/843jk2iNQbcPJ/I12VrvE4S7VSk5WgkGoqzEbtgEYjoZkqpvbuswQ+SDb05W4as5sNsPu7i6m+1O0lts2rp2s9kbG5zAmRGSMdsmmAm3mSpQtrhIObPNhbsyB2GH2PYVCnX9DoNTBxx5L0y6KAj/+4z/uL/Zv/s2/wZe+9KWF/W7cuIFf+qVfwi/90i/h7/7dv+u3v/DCC/jyl7+Mv/7X/zqapsFXvvIVfPKTn8StW7dw+fJlv9+VK1fwzjvvHKlt1+Sj/vNjTzx51Ft7ILK2efngnd5H2bgYPl+7fj35bXPr2rHOeWXrUVz5ji8sbP/ejwHfC+Bvrzj2h5//kWNdM5aH0edbFy75z91e+vTnrx77vB/7rs8d+9j3Uza2rrzfTTi2fNDe0Ue3gI9ff+RQ+x4I2l/+8pfxL/7Fv0i2PfPMM/j3//7fo65r/MN/+A/Rti1++qd/OtlHa42f+7mfwz/5J/8Eg8Eg+e0nf/In8cYbb+Bv/s2/iatXr+L7vu/7UFXVoVzXDpKb6gYUOCT6xltvoZ01eP7qcyHzGVgrgunxKPM/HOmSiaxtXsbuvXePf4L7kLj/vEuf5iV6nE9jf3/fFqQ1uHtvG5cuX0aWS2xuXcC9ezc5mMTyuFxFxjrjkbadRoAWIEPIQJBmhtn0XWzffQN//uJv4/Fr1/DEtcegUGJ3t8bu3hw333kPJAzatsX+3h6yTGJrawOPPHINb996GxevPIKrjz6FweQxKAygTAEFgIQCkQYZa1gD8XI/Suq0vnUl6fOD3OUO7kcNl8HQ+HU8ZzCsZjNU8zkMNEbDIQZlgTKXeOWVb2A63cdkMgEgIk0YfkUT0yeubc998rvx0h/9bhifncjVmC/XuvXPVSvtIzNnsznyXELYXCNSSsxmMzRNgyefeALj8RiDYgCSGe5ub6OqaoCAzQsXQ2pZrW3eEiSrKa01FBGMXVG4e1jfuoLtu7fczfSPwege3OdFzj8dsw9DHsQ76nhqAlNNzk7g7kYjtRnZ4nxek9bglOYqKzBvFO7uzXBrex+tJgzKEl/82BNLr30gaP/Ij/wIfuRHFjWh/f19/L2/9/ewubmJX/zFX/QWdCevvvoqXn31Vfzcz/0cAOBb3/oW/vE//sf4+Z//eTz33HP4qZ/6KfyDf/APAAC/8Au/gCeeeAJXr17Fe++9589x69YtXLny4Z3N3285zFLWGZ3iLZ4SWeFdoo2GJI4ONI1BJjOMRmPMq3lUt9BgfX0Na+tbuHT1EcznU9y9cxffuHsPd+/ehjEtti5soiwLCCK7tI8LCoS0p8y/n/ximqNE2ShK0mWeZsmyHBXmaJoG5aCwXibMGUspPaiFVLlp9GbsH9+V7m9x1OOCoc4ARmsIKbnfh0NkWcpPSyl9taDxcGRtA0A9r7hykCCs27YKIdC2ylIilpASoY16CbAuo6Q9f9/5/SQCjD7sEhtuDyvHNu387M/+LJ588kn863/9r1FYQ0wszz77LH7jN34Dv/Irv4Jf+ZVfwSc+8Qn8wi/8Aj7/+c/jD//wD/FP/+k/hTEGN2/exK/92q/hS1/6Er7ru74Lr732Gt544w0opfBf/st/wQ/8wA8ct4lnTuJk+E5WDQUf9BHbRfy/i/GIQbzd3x/EKUozaL3oCeA8HG7fvo1bt27h9u07mM8r7O3u4d1bt/y5nLvgch+S48lRueZunyTnsv8LGjBvl1L4/ODO39ue7b7a2u9ZYRLNPElYFd1DWGnxqqmrxXf3726P7+Cwd9Hdr8+m0m1DHOi17O8DKx3jIXV+4pAxCrtGM1mnPGTQnQ643WNx2i+++CJ+/dd/Hc8++yx+4id+AgDzz//u3/07/If/8B9w69Yt/MzP/MzS43/wB38Qv/Ebv4Ef/dEfBQD83M/9HK5bbvVf/st/ib//9/8+qqrCF7/4RfzwD//wcZp4Lk5MSo8EcS+939FvTyHfvVjCQ7X7zRhAGQVBElleAGaEpjVoWzaqCCJoY1BXFW7cuIHf/M3fxLff/DbuvHcHzzzzON699Q6+9uKf4cf/2v8M1Srs7+9hvNWChAaRgRASxma/4GhMjcN7s7rbP9oLn2rKQQtyy3xtCw9ktugDuysSynKAtlWYzabI88IDKdmgFq2Wt2MZmAohOBlUTJ34SUL6/aSUMLpdoBqkEOy/bX24M5mCc/ykpZRobS3PoshAELbqezQKelwTk8ha1253P44ispRKt5CEdz09JRJWHj33ZLr7uO3WH8si+mHG97FA+4UXXsDXv/713t/+1t/6W73bf/mXf9l/JiL8s3/2z3r3+8IXvoBf/dVfPU6zzuVIEoF2RO4zp3mQL1bICqeNgSSCFBlEUaJV2rov2aAOo9E0Dd577138wR98Fa+++hrqWY2tzQlms3288a3X8D//+I9Ca43ZbBZViA+A59pqwrxyYhIv4S0zY0Eb3pvCGMOgaYsQsE96gTxvsLu7EwGZ7y4GtQMAKvZ/doEzLt+JT4Vr3S2llB7QhRBobTBmVwPXSkH5YglBa+b2wLt7ugyM7HEibXANr7ckOLf5MpuTm5zjx+M+CyJfjvIkokI/aLLyzVnygzEI/XdS3iPn8uGVsNyMlqb8i90jGnaRduD+XfBENiaKMecscmR9uB32K62ws7ONwaDEZDzG3arBeDyGlIThcIjZdIasrJBZnji0gHltSlphWfeOa16fQevggJUgx9f4AkiGJX66h7EalKAAyvE1u2C2vC3GW7/67nHhftx5jbcu+rqWMCpYL4gn67ZVqOsKgjgHOtfCXGxCygF06JTYt3zJXZwWCaPTpGB72LHUOSx8WX38OWifUTF2Wu/yoQ5w3ee0YJXX0ywgG2ijAPvyKw2U5QhS5tDaQFotfjbfx1e/+lU8//wLeOyxx/Hbv/Xb+NSnPgWlGmxsrOGVb76CRx9v8dgTYw6gEXxc07YQkr044umCEGHFMZChGxziAG7BKOtfKvL8P4mQWU8QQVqNNs9za/zTfrXgqtl7YDxA03RA3Bdh6cDXJ+0i8lq+4+AFAlCT9fZomgbGWMpCG4xHYxRlidZokBR+X2009vZ28c7Nm8izDBcubGFtbQ3FoPArDkHE1XHiydywUXShrZG3kpOYDjmdRsmj3g/5VRjnrTnc8eegfdqF+rXRRNvrzaYXoyJ1foNHTs7TLGE0QWtCng8hKLOVywEig6qa46WXXsTnv/AXQCC8+OLX8LHnPwYBg0wS/uzP/wzFcIJHH3+GExsJzi+slIIQnIyqc/UArkd88RdCsCkwuybaZ2H9kdAO5EuLkaUuYu+RAKZRn1t3vLgNfdI1ygWgt+54kabtrpMY9ITw3jtCCLR1w658EIAxGA6HGBDQGg0Fl6KVDZb70yneffc9ZJKQZRJlWaIY5J7UJiJbwcc9C9tHOkZx138s2qSRl1mWffCNiyckfSPV2Uy0s0aeFKd9Lh88We6bvHoQeE4zVqY9e0LptojrJiCyfgfNNctsvcQk4x17hhR5DiEY3AQJZJnAcDhEXdfMz4abQYBLt23xPuhA7j3ebzlYdlf8bpu7T3SMbU6D5t8X6ZGeFqTnPqSWmYC2n6PSKEbvYaENNDFYxmXIiDiRV9NwAQe7TkoMrc6lj59J5kgTb7mI+wCgJfENACINe1n+jGVeK8vkvrTxBzgvLCGhoh+P3s5EMYhsAgfJOWifcunCWnjZnUWfIl472g+x0SrCcZAfn4IIJK0XgDEgZJhMNmDQYm9vD+V4DY4wJUEYDAfIsgKj0QjT2RQb6xNcvXoF+3t7aKraamEa2igYUpC2Gou7D859Egx17n7c7xT9Diy+8B7w+MCkb7xfdKTZMlCFQJ6maSBIoCxL1FWDzLr5AUg0bSTnDCsVp23G7Ymv7cSDbud5ZFL67R6ELVWj2pqNWcagVQrSVokfliW2t7cx3Z/i6aefRqsVNABNHDBjjIYyXO1mbW0Njz9+HbPpPsooIE5Kn0bKZg60zz+a1LX1JoKxPvVujIhAwcio/X1gvGzbB0UrX2xFqsQcT5gi0Um6gNVnO+EUPOfyQZJ08DMwCbHKH5ul9zemTyElu8Fx2hCJ0XgdMIT9/X2eGMjSJILd4kbDIRsfZ1MAwKXLlzDdn6JpagtKGsYoGHDhXE+cEgMGIYB28kKblAbqC2Rx9EHy16EjuvftJzUiNE0DIkJRFIErjkDbAVTa3xRNfofzO+4DbYCv5a7TNI3/rpRCXTec7W8+x7yao25qaKVQliV2d3Zw69YtgDiSUrUK2rCGrTTX9tRaYzwZ49FHH8Xm5hbKsvQPXkphJwgGagcabiIVcF79xoJ22udx+48CwImr4wdM7nca6TrWBsw+p0fOpUeLXgCyoDyDTLQcdyAZ9o6+9ZEKhCzLocDFEdySzwFdXVfQmrXNpmmgtUImC+RZBil46a5tRGRgW/sv55wiui90PyasfhEOAyROS3aGx9BHkbbVmST62t2nOa6iS9zz8XOTbUestTv+3F1fCAEhJYSU7O4XLb3T6oSdawlhKRLJfL1dZSilAbhUrz3ttMsx8l1iue8l1+nee3yvD1riM94P0B50bNcu4raa/h/szxFwJ5P96mudg/YZkvil9p4Ksr90a99SkCxnaTpQztVdBIgyjMcb2Nm9jdl0Zl9mjbyQeOYjT+NrL76IalZhe3sb7777LtYnY2yuT/Dss8/i0iVO4NPUFTJRggSnFSUH5spACNZQXJCLuyfXPrfNpZzVOgJDY32tKQKw6CaNcdxtdLxhI5tSLdq2RVVVGJYl8qLsaMOWKSayVWxcOLnN62FL78T8N7cvBt3FaNb0uXFK2NZqxVprVFUFgLX8oih5VSAEsiJHnuUQRLh18yayLMPaZMjGYRBTHNZjRHeuTQDKskSWZ8jyDCQI2/e2Uc0raK1xYesi8iK3dx3x+u48cZvB/ScsF35c75EPCj1yFDmosnqsWAdK73D9cQ7aZ1B8oAa59JyAH0YGS0ZccInzBsjYIkUCAhkmow3sQGA6m4H1Oo08z/DMM0/jT//kRdx+7w729/bw7rvv4uqli8jEdXzkmY9g6xJn0GuaCqJokRGCB4pxwRsOGASUcsmTAsOnNXPnTFlwRZc4hwZr5ybxNU+0WH8rtmy81tCGowTn8znm8znKokCe57bQA/cLn5vbVpalBWoNIQitMnBZmIQAOFe4a28K2nElmhTE+Rk1deONtlJK7O7uAgDW19dRjgbI8xy5rbuZZRlUq/DSiy/i2uVr2Nzc9F4dZIsTG+08yAPIuomHQVvCELCzvYOd7R1orbGxvoGBKOF7zLBrIzmvZfKf7L1pfkYUJtGYvorv/7S5AR5qpZF8O4ioZDkH7VMiizRBx2822i/ZN/IiiP912qOxG/ll5NfROXRRcg5WVV0BgdjgJoTAaDSC80flEGyyvDihLErIzBYH9hVsukN+if1+4SXvH/hdYI63x8ZM7dzjwIDTNWz6Ca/TT+73kOCpr02H1xhj/rv7F7fFrTyENYRy8EzmixoAwUja1eaW0iQU/NFdrhWn3a8SO730r9kOuPXUvXGRRjqq18mDksM9sWjm7x8aWPwxfD3XtM9lpThgAQL/2EePLL6Ai8BjjIHSCpKE16yKYgiCQNu0nmstyhxPPvkEdnfnuPPeXcymU1y//ig2NzchJEFmnC2QCNjf30M2WENWchi8cSWzbIuNCQmbui+5u68udRK7JPa97A4MtTFo2gZGVwEghYQBA99kMkFZltYAKyOaKWjKRVFw2S+b70MITu9qACilE9D3FFWSflUnvt7OdQ/gnCdFUUBKLu02HAwghEBZDjAYFpaLzpDlufeCuXLlKjY2NjAcDvl8dmmhtEr6Rxsd6Bs78bSqBYiwNlmDhOAiFlH/SSHhJnaXGZCIAK28h45/HhFNBbf/wqhLn8lBrpqnQ8jbfg4r56B9CmXZIHcvgdO6HN3gwNDvF39yCkScMMoqBU5zzrMSAhpQBmUxApGw3hWsfZdliY985Blk2RD37u5g++49PPHkE7iwtWE9IHLvnbC7u4PR2gUGZiIYrZEWTwm5P7oudM7lTtltXRc8u/73NEDcV+5eqvkcTd160BBZjizPfZUlaamTBLSZ6oeUHJAym81gDGySJgkDjiRUrfJuet3nAfD+DuzbtkXTNNbNkHloIg77H41G3J6ytMAJyEzYSFJClueAMZDG4NrVR7A2HmNQlLyKkfwcW6VAGa94NDQUq3sAbN9qBWXppvW1NQzzErpVzPfbPsukhDbc3+SoNsGGSz/ZkEh4865Xz0HA/UGQI7WiV2FevMuFXRztaHp+68g5aJ9B8S8PYs2zO6hWDB1DPctAe4Tlk40FVwK/zGVZYjQeo665kECe55CZ9AqYNgxYSisb7BG0Y0RLR887H3F5HGuZfYDt+sBpncYZMbuUBMjytCFXttc041VMYqREdH5YbrunfSadPON2OU8OGdEgeV5wJj+tISTxzEHgAsS2/UVRIJOZzxiYSgwmPaSGYcY7ExLGUi4EJME1sTcLRHhu/sz+Qw+a2R0eFo39wWHLbV8k3iPxz6uniXPQPmMSAwtP6wrpCxWWsWzEs2kjY/cKRKBJAMfpEFjV47zaLlDGGAVDHBZd5OxNcfv2bcym19COhwAIVTXH7N0GO/tTbFx5DEQ2BBx28hCLTOmi90jKPbvvseGrbVof/Rcb+nxgjaU3pJA+L7gGB6/M51zcQRB70ZRlyaljjfY9J4Sw3iO2b20fGwMYMEUQWIKwSqiqyucSd6HeWZahKAoGasGZ9ITgCFKXzIkjS539wGqvFHP0PFm6KvJErPF7msg+TyEESBtnZgjtMzYxrp2kJpNJkhJWKYXdvT1sb99DUZYYDocoh4MkiCb+L/c7FqTvGX545Gi2CidB+ehuOVjOQfsMii//ZIGEteLEpwJdvYSpDrudLJjar8a4IScBYl41z3IGE61BkoGoKLlYxq1bt7C//xTqzXUQAbPZHHe3d1Apjc9c4uqLRLDaIlMzwk8O/JJ3czH3BdS4IBwHhnXTeL7YTV5Oa+XvTG+YPFAVVdOisd4j9qQQIGxtbXB1dtdGEYN2MEQ6Q6c2xmrj9t6M8TlC5vM56rr2ID4ej1GWpf9XCsHALYSnZIjIR0gGIxbZauwGzng8GAxglLJ5XARcXSDm2gOHDTf5UEfrJzbOCiJsbGwkCcbapsX2vXt48803sb65ga2tLZ741iadcZPmSOmOqaOsmj6YoH484O6Xg89z6kC7/6FaNyTjzCbLl0pH6XpaNoC62/uMX0e4zqHasvSXg6zubsBR53v3LC6JEkU/k3ccia/G3gfMZQqv2fKPWnFgTV3XVrvko+q6xnRe2+fTv2TvtrnrIpZQC0ACFN7YGIF21/3M0UXOoBYb0PxxBr5eIiH2qIGnL9z1KG5NTPl0qJBuuxBNKKz5W0070nJdp3ZZqtBrlpoSwgbH8P7BsAmvWftFVE+vc6v5HrtV5w2MjcbkZ+n4+O4ziRkSt4Jy/bGShlshfd4kXXMe+V7oP37B0NmlChfVYXcw3DNHdESHwPMfA51kc8OY8NlNtuntnEF6JGXP4lfnuEPk4Uj3UR2lrd0B1D2RGxTaLnV1REwaCH+MocB7uthElz4/WuQCJlAs7I0NkDDQGpBljmJYYjavMBQ5cpnBtBpvfut13HjrLRRlhpdefhl1XWN9YxNXrj6C2/d2cO+dm8glIISCMTWADCR4iGoNkMm5HUS2FEDooVYraKUtN241OzjPDO6ALCsgMwvetoAAkfPJ5oRLRmuftc4AyDJpwThEQXoAJXf3TqN2k6IBwNQQEZcQICjouoWiFpqARik4H/PRcIBROWBtX0rkgxJFWUAWOWvBglV5IwSUdUN0BisBQiYyCHCIelO3yMsSwhqOldb8/ISAjldFxioxMYi7Z24AQ+zLrU2AFh0pPQLs3jkcjbG5dQF5nlkKqgEMbD4UDkhiKqmTMcNq8AauiLIDLldpqTuIXSvSidn/QrQw8A1heXKrjsSYseoQr+IYYwtd88ynlfV2svv5iqaGx2l4ewJYEwSM4T7WhuA8arpUYFdOJWizUOcvFdO79fAacKJFHXiWJbP9Ma99WEnOFwEMG5gizS8iMw0pqw6xP7YBJxdK70BaDcr4YzRZj15BkMMC5WSI3f0ZymICWWRo6havfP0l3Lh5E2sbm/j9r34Ve3tTPP3sx3D98afwzddfx7vv3UKZA5IaAHMAEiRKwEg0LSGjEiAG1+CgxtIohdZ6W9R1Y13aJNeuFAJZVmAyGPnkR3U1CxrW/5+9P/u1Jsvyw7Df2ntHxBnu+M1f5pdzVlZVd1X1VN3N7hbVHJpqkxRJGLBAQ/CDYAM2YAN+sP3s/8BvfqMfDAiQLMuAJUsiQFItiCK7CfbA7uqq6qrKyszKoXL6pnu/O51zImLv5Ye1p4gT59x7vyGHm3dlnu+eIYYde1h7rd+aOEi/LkYcggi6MCiMQVkSiEbIBTJtdMwj7QCBSRASWTHg8XyQhWIHRot2UWPhLBo4LNhiMp4AADamU0zKEUxRQBclWuWNpn5TCXlSWCs0zLDOwx/MKKBQ6hIgB9s0mJ/MoGEAI7BHGzYnLdCIJa9ZMAuODQbbAJPJjLCARKKSRE0GyZLSzgQDQJsCGxubuHHD4eTkCMyMum5AjmHrBvPFHIcHh7h65QqqslwSmiw7tACcC1K8x/9ZtmTp69WrNGoB7DdnNyCBn1H0CZoSQ2w4Obavsvkfq/QEpq3EH97CIaQQjuYCTptG3mJJsUtQrOFYwzoF65QEhoFhvrpMG8gVFlqVM+ExaRXTP8/56z4/0T36E33wIrzyxwSFcMQ95YfMiBUZWJqOQfxTSkEbjbaVqEFiBbDF8dEhTo6PsXPlKg4OD3FweIT5osG1K2MQKdT1whshGfAMr+uqoABiYYbhnmFReNzYOofWtuITrQByDqwNlA6+1DrCN3DCkHK1to+9Bhx5WVKkzvtk/As/BfXfu1ayMEfHFpYdLGyMKDXG+EjLErosUZNk3pOCA8HASN7f22tJlMpCxOhDx7BNK5qC53vi1eEhnuVJ0BdXo4YS7imbd+rjMA/gjzHGoKoqzBcnMmM8Lh9qaTZNI+3hUDsy5RkP3RQ8jfIGRfiiM03DuVhuE4IWEFZNf/Ukf/L1RPHYoV8AZDCr3zaCwIME/wSJmVLy8XTNDh5FYC8grRcEE11wpr2aVg3dMKJ79vPPeuRZ7vNsoZxuC4aw0fxzv73D+otQWVWYTDbwaO8IbSuMV3sPhrIs8Pxzz+Gb3/gmRtUY3/ve90DO4ujoKE5bZ8UICEM+uIZjuD37m4vrXVrs1kqQz6iqon82M3mfbSnAu1jM0bY61k4MJDxNgYhhjIm4bDBQDkl7BK9+Iws197uIMUY2uHwD8OJXYUqYQmFjXKEqxTBbVRIRKl4eTp7PS3ch/ang3n4jIJINyWsHzMIs5/MF9h8dYDLdhNKpziOCNoDAbweeJxglA1dc+o26/BOpEk1RFJhOp1BEMZ962OTqusaiXkQf9riZ+WdUBBifqCpsGOKvLFJ97PvezYkBVgQVoD3nE1ZxxjiHJCPKLhOZrx/PuPFmN+n1Vcf903cVceq/APGQ59KBucfn8n9jpCl7fx7lqwJlm8Aq+koy7bPttY937nmPWse4nyXTTlM110eGGHY6Jq4b7/bWPSZhkZPxFNjawYcffIK6FeOi0RpwjHE1xuuvfw2j0RRv/fRt/A9/8AeYViX2Hu5BIRSXbWGbFtp4xsAOSpdQSYAUQ6dzcE6Yr21aVFUl3h8QqbttLeaLBdrWwlqH4+Mjb+AzMRe2vBJjzt3VlNZRSgW6kYuiVFDULARHkujNoiiFUQbjYkA1iVCNKlTTCbZuXI35OMfjMQqlAL/JkI8OlbSn4tTtmOGsA2nvAggFNFayJrIktTo6Psbdu/dw48ZNCbDxz9NaK/3U1xbOSBS9jYJR0W+uPuJzNBqhrIxnwon5ExHm8zlOTk4kt/dk7CeRQ/BWMkqDs+AikVZVTGcQoAZGgCpUZIMaXgOBd5/kFBfASQ1B2APyTSBs+vkxARZTSnk266sNhRwxgGwOHrZS5OIY6tgueTYOGzmkClPYqKClLS5ohuzEDVMF102vYa2hC8m0V7kQdaTJFf0SmdMKjtk/L0l+nQac3kZ0GXZXkRv+/ulSmLzLMEknD1T8d1nqWNU2rQ0KU6JpAj6cjtVaY3NjE9evX8d7776PTz/9FAcHB2jqOhoF2adv1QAC/q6DgS8OTlCj5bqOnUh6ntHGaiyNBpEshra1Kf+1KrrPQslvO7jeaaXSAsrGNN/k+h3CjqG1QtthkKnvtJIQ9MlkgrYRlz9tNBSngCTPi5C2w9QPQMrGFzuACc5JxOVi4UPwOyp+Hg6fpOalDTqDefrPFS4WIAC5tWdYWkFTKMrcTfxkrUXrK8KnE7O+zLx4wrcKFDWD8F3/b3gfTHypXBdiiliAh4TlQVolrKw8Pjyrn5NLdtDQXxw+dMcDCPg5xykdRo1PsZ5eSKbdp8difAOD/Swl38+aVkn5tGbH6ntEIaqAXbhE6wKmGMXk+mHSbm9t4eD4BB999BE2t7Zx48YNvP76q5jNZ5hOp3jt1VehlEJd1+DZDNUGiVHI67rWWoEkPIwQQr0BSada17VIYz482zqpgmiMjsUaiFRWTCAFrXRCqwc2XXYMpZNrFnuoIopxQfr2cEHbtmjrGlz4AB+SNLjW2Y5Pdrw+Mkw07qPBMOc3IIRqM3JPBZG6yRvyRqMRdnd3YYoi5g8JAycumFLUId+qz0IBZum7WDoOPjwCcwh842CUeNYYY7C1vY3xZBzTuYIlv8t8PsPh4RGUMSjKEhubm1FSJvLPihCZH3LlhJzdsqtFxhogiqwzxRwcNvrMnTM7JzDb+JxpN+p2ACcm7bz0H/AXChpX7Kt8JWTMneRCzsNfqWOFSYeXIz51bL4STDunszLesx73pG6E/XPPs5ieFg17+ybqhnF7yCJVlPKBIz5gwzkYXYGrDSwWNaxtEbLl3bh+A5bv48c/+gn+xt/6m3jttVcxOznBRx98iNu3b+LlV16C0Qaz4xnmNePqdTHSBNWybmuQUiiKCrX3FAlBL1opzOdzzHyIvNKSVlRrjcJIsE9nLfoFp3y7+1GU8eUyKVVRNEJFX28IBi9tZGilUFVjNE2L2fEJRgERAEMbI/7Ms5kEu2SrN2DTkSNwgiACGxAtwecOaVto0lKUAQQowsbmJm4DqMYjgLwK7hikBXhq6xZa+8IGK6rj9Md81ZwAfEbGsOlByTWdhS41QISiLHDj5g0URSG2As8p54saDx/u48MPP4QpC0wnU7zy6hhaKalwnzE+AYK86kHkXTURd7ew9YnviRciQqIuBONrNqbpATMtUsYoIGFLeb+zdgStJ5wUU6VlG0Dc/DnTJLwkbV0LghKoSjHYAY4cLFk4JWPN6ismaYeB6asqsUORfhyaihwVruwiA2KpZyX5LTrvVzLyJeihe9EzanNPTozOpO3LCtlh2S9Y1Wle8vEKvNJQOuScTpL2eDxGYQrc29sXKWxrCzdv3sB777yLqqpw/cZ1KFI+6KZGPxOcc84bJGXBWh/pB8i4W2tjlKFhBnyZLHH5k6meJFfnq5QPS9ar+mypU+KAJZUjFC52IUOhH1elFFzbgn3IepiUAouETg6TgJegOAXEjIEBnw3uaIokBH86nYohlp24JGLgGTNh8DwRhsmrSMhxWgGhX13I0U3icz4ej5cyMlortobDoyMURSErLm6CsjEGjU8FxucZtweI4ioNFXLSXOH4iGkuc9QGkpNKFlzjr4M15dAoe/kBSNK9H+M+TwgLpo/LJ9tqdw6AQvu/YkwbgHTEKknicUTZU855aoz2M+PY56G0jSX8Li2PpHYGxkPwoRdQWjxOnZPsdjs7u1g0DqqoUJgCRmts72zj1u1bKMoSjx4doBxXXpJPnheCQMhkt07ygNSNVG0py4RNh3wcRWF88Itg3DFsn7sL2n957h7pM/kQGCLMN3mdWGvBYJHRiGDJeSOUWx7rnPtF4+eytBACf2LxirAJ+ao12nu/cGgnp3FKhtR+27v36Cr46LCRziauVIIXSK6lVFYh3s+X8DfcXBuD6cYGdnZ2QESoytI/j7Tv5OQEs9kMSilsb29nXcMJWmKOzxsiRaNEm20mHbgJiC6JsXcjQ+UEzyBdQyVuiyDwDwpz2ebtnPPl8/zNo/EzP1V61VkLZpttLkk/WEUXk2l/DnRmSfsU+qx49hC/WE3CeKJxTymwk0RTYiRUYIhkJ5KfBlDAFJWPUGxQFSVeeOFF7Fy5jmt7jzAejUCKcOfO8+DWYn9/Hx99+BE2tjZglYZR/nqQqRwk6rZtMDs+hnUNqqrC2AeoEBGqSqrKpAT+wsgVCTxgOUmdRMpLovJ84U/OwIaYM7AsnYZQ8eArbkyRsHkHQJNI3koCSqzlDifJpW4ET4NMbc+GQaAYEq+LwBScT/mqtUZZlWhsKxuVUoB18VbGGJHAT9mo+hpVCDgJEmnUWgPTDhKwjz61LuG2zjmf8AsIybWKqsTVa9dARGgWC4HUlGhEtm3x4MEDPLh/H2VZYntrC7n75PHRUQybH41GmG5sYqwLke5VcJsEnG39d962QTL21jb+oZxAaAjXdkm6V6l6kNFGvHY8U1eKJBiJAUWi0UgKH1GBHItB2JRmkEmnvD8SfdvaFrZtJLWxYpCzoPU8+5JpC1HvXW6oWZZCzkKDjHsNNBIHdwmPeDYkQkHCjGK9v979KahwXtroyX1ymJ+dIdxdcFcNpcS/yXn/q62tTRTlBCCRiLXR2NzcxLVr13B0dISjoyMpnmCWS1IFw12ojciQSuNFkSRtrQ2KsuhIj1qp6JUSuFfENnP1OHuewf5awcD770OSquCFIhJbwsijpJ33olfN4/v+7AlM3f/GDChDyS85SoGSWMu1UjVeIUnSDAnFd35zyYOF+ptRUt9zaT1sb6ltsZRbDlsQkMer5h4xwQ/beBvDZrOJ2bFGu6gj7MUA5rMZDg8PMRqNlvqpaaTqfF3XUhEpMlAVy6gRAWzzuZ16MxmAc60r72d0JGRCmt/58RF24t6s8YybvBgfJPjQCOIE+XGAsNil9QcG+CsqaT9JNrDHP3P5Ok/Ed58pXNIRpYbvE75n/4H6zM3LDBx+DheRIr9FWYEh0jH7cOi6XuCTjz9BY2u0tsHB4SH2H+5h7+E+Tk5meOedn+HmnTu4trmNxXwOogIgByYDhoPWkp6UYVGWZWQ+gSlqleVRiQaj5EM+9KBRJe7r0uH3AQgh/y3+jUbTkJFPJ6YZDZxIEn0U8DOWyAywFCZg78anlDwXvHRNAdZhoG0anDw6wIbZhTYGIPKFiQMjBgKoGpjmWSlKhOgyrqWtOwHyiVnFrwKmkMg5J+H1SonROGN8pAij8Qjb29soffARsj5WSsdNom4atB6CIiLMZzM03s4xHo3ElZJ8GgaP/8eiEaEcWwcHSpu68pteiszkjiYmODxnKyG5LUoRieRj7vx9Auwi92BoAK5t0S4WmB8dQ2nAEACfDXMVXVimHemsRqanTM+U3z4N8qpg9gH5N/m3gaGEwAnnbKywLZ+dd53THjbRUHqE6XQLjhnzxRwbYwuww9HBAb73F3+B3Ws7eLj3EG//7G20dYuN6Samkym+/8Mf4Pf/3t/Diy+9ikd7+1DagvQIphxBFxpFWWA83QQjQQKALDSttaizvoiBqK4cpT0pJBCEVtd9XvLRhxQYalrAnW7LmHduYCPylWOcbCzaGBRFGVPDWmuhtBFIgZ2o2N5LoHUOPvVGdEt01qJuGtTzBYqyQFlIJKXW3l+hlVwX85MZPvjgA7w0HmE0mXjPGZ9ki73LpK8E3zo7+ExD83R5ZiCLVMw/o7vRedE0RG8GvJkhmyI7B2etPHNhZDOqRoJFkwQ0be/uYmNzS34DogQNIsGwSfKdnxzPMJ3WmDgHbQz29vdxcHCA2WKO1159FZNyIhueSxtp6TWzoijQ1HW0NziG2AtIlB5jjMwdK2mFmXwJOGuhtVSpX7QtFCSa0yiF2oqGUxUlbNvGjdu2rWDj/vmD9F4owM1nmB8cYP/uXRRGYVKV2NzeGhiRRBeaaXdcfOKXeHqi9JeazrOl9BiY4+5mGFRHLwGBRNIuyxGYGzRt4xk9Y7FY4OOPP8bJ4hgff/IRvv+Dv4SCxp3nXsCtW7fx1ltv4a8fn6AwBY5nM5AxUAaA1lBF8kiAT+c/lCcE3o0qNs9LurL2h587Rn6ukKrz76PU3OtFeX6RNoMveL6xaZ2FxGcbQz9/BjF7abRFXS+gFMFpgZqUh1qcP79tGuzv7+N2XaMcjcCAjxrMM3H4zcjxyuc/Fc9b+U3W/gAtIKVJ7fs+sz+enZPqRUpDmaQFkFIYTyYes8/qS5IYWqOkzSJpi4eSzMfZbIaDg0c4OjlJibIyaCps7AA8dJfaLD7Yzt/KQxiU3P9ihhrHIB0kbYl8JPJ5Vfy8MFqjbRqv3QXtzfdMPl8BuKZFM59jfnwMZxRKdsB0OjxGni4s0+be7t/R9AnJSf9U6nL5HBg4e2O6Vxu8y8BqcM9QVJellT/b6TfLF2fH/Ys6irRfnwrVaAx2DZpajDqHB4fY29vD/v4jlCNJNPTyyy+jNBVuXL+FK7tXcO3aNclRwSyVW3QJaB1TfTZ1jbmeA8Sd8PPAVEPFmRwP76IeXcYLQvdz94EzdKi3UWUUNI10delbkbJTVZnce6Vt28hArJVIRucs6kUNIkJrLepWfNFFozAoSyQNAIjYrjHJWyZgtoyArQ7AQUvfhU6Qt0u/B1hpDUTEGVPuXzfBMl3mHlwdw+YSjYLxP/8MYRxYfM6LssRoPBZtpiwBJcJCWZWYTKZgv3kzp52orms0nsnvbl3B7OQk4uiBuWufbhcsMA385ps8SUQMT1CcBiF9Vt4QGvok9KMiFbcyqXwUWkWwdQ1uWpSkYJjAdYt6Nh/s50AXkml3GXaagP0p9yzhi8e59tA5z0opWNW+wfsFAdubGsNEZogRSEfYxPkq4AQmg53da3hw7xGa4xMQET744AO8+ZM38c4774K0xZ0X7+BXv/ur2N7axXS8AaMLHJ8cY2d7G+wctrc3AbWBxikcnMzBaLFoGhwdL2AKg6IwKMsC040tABQL4oanCGlSxc4XvB5CThBE17zootYx0CU5NTKrjGHG/vK1LZXRS1K31pLpUGsNYyQHCLxhcubzcQDCUA4XCzR1jXruK7lniaCC58x0OhH4iSQS8uH+Ho4Pj3wJsgpEhLqpURQlHDuBIIzpaCTLG9OKidAd+nhu3wAbfI3JYyUuY8wyZ0LebA+XUApkij7dkPB+yy4y7cbZeJHgw83MMFWJqTEYb07BjlGNKihjYOGwub2NcjzCdtNAF6ZThOPw8BCffvop2Frs3nkZ9z79FDdv3YoQl2YGeYzKOift1AD75GIKBK0N2EfUgqT+JmwyNIeoT4bAK8F3vPDwCsHnleGk2c0fHcKezLBZlEDbwh3PcFQ3a8fkQjLtPg1pfl94zBlfPBQnboYq4L4BwqS42IAQcqwwnmzAOaBe1ACAvYcPcffTT3H/3n3cuLWD8XiMb33rW7h29Qa0KtDWLe68eQeT8RjMjPFoBFYV0DCcs2hahuMWbdugLEu4qox7snhriBEq+AsHf3J/BIiEUbisvHvOtNN3y5L5OhK/YZW8Kfw1gitg2BycTylLEEYdmLG1FicnJ6gXCyxmUnoMSJh5qGDjB0FgEqUxP5lhPp/7mpEiabfWoighkXbOwfjM/P2KMk9Cg9cZEsQz7SN6xWQQVdiYRIoV6CFJ7AE+UvGZmdlL192ya/DXH03GKEdVKq2WaVyLxQIPHz4Et9LnhweHuHX7dsS6nXOSI91DU3niK9u0As0QgVXyUjFEHZ977V0IrY/IhGfOpFIkpfZFMYL6387n4EWNkS5gYTFfiHfMOrqwTHtQ2uZ8CSPhbhn7XoviUYIxTlvKQ8vji7RJDCmzAGKOhMHjYzcGaYoR8i3nMqgcK2k6xcdaJul4PMbulR289NILqKrSS6AGRMlYV5YltJbUpsdHRyjHJQgiVZNmOFZQSgrfysJITxIknuEHTi2koO4j4d0Jjz0bdSXOoNrHb2Lghw3Rj/6OgUHUiwXmXg1ufO1K0QhUVrMyueXlkZ9ho1RaoSgMCl0geKYk6RexoO8SFt/D7cOTcPwnfRmmQ/w666Ihn/Y+NJX3yfLftAqdhzKG/FtyN8M41yjfDMJRHOceMugLEMl3Mpmg9VJsUZjYRmslNbAuC2/MTmXdmBknJyee4aqYYtYUBUDisSIFnxUmWxudrJBN06BeNAAkxYFSwOa4lE3UWiwWNdiK9qG0gdIOVFWS8XENXUim3cmVEQZvgMuukrZXMeTTlnR/Wp6XngV8s3JzSWDt4I1SVgcC936XYIWAymV+xz6lZcC0x9MtOFaY1y0cCLeeuwVlSky3tvHDH38f1ajEdDKF1gqLeYPZbI7t7W2MR2OwA95/713cvmMw3tzG9tYGHDkwNJgraSOnFJ/SmCRdJ3c/xFDnkGIzliCDzJWI/fZU/+yyHUi7A28zUPh0riGfhzGSyW80GuHg0SNYKwZJ8gzZOYe9h3uYz+d4+fVviX9624IIkubUuzJqrWME4GI+9wmixFtB+dzhhTbY3NgAaZH+iqKIjEv5e3WG/Umk7dilaRNYdc2w9sL9wyYkx3qsV0n7nPemkTHIE10hYtlhnhLJfAzpTvMo3QivEKBNSPNrYYzB5uYmnnvuOcxOTgAA042NCPPN53O89957MEWBjc0NPPfcc/E5rLX46KOPsJjN4azF5uYmbt68ia2tLRAzPv30UxwdHgEAXnvjayLps2hXh4dHuPvpXTRNDWMUJpMRNl99CXAOzbzGJx9+Cq4bVEqjqkZgpVGOJ9jcmKwdhgvJtHM67yRdJ0H3mfyzhi9W7DXP/Bq5tMNZ1rGlIIxcskbIzObFMiKU1QTMCk0jBQl2drYxHk9w9fp1vPfzd1AUBcqqRMifXNc1JpMJylIMkQ/u38Pu9ecw2dzCZDxCCwuQATCGtRZNW6Nte1Xku9hGbF1c/JkEG6CS4OdLPems0480/B4kBqoQEQnIpmCMBPo4djGsXHlJzVorkX0+Q2FIelUYI0yXOWohIXS78TlVlMdUCcKgy6LA1vYWGiXlxELFdRD5dtmlNbDO73wlZRpm3K/OwLS7n5cDesR4KleOATYdLSAXHygK6GFWxjS65OEQeIzZa2FB6h+NRtBa48DnoBn5nCihf+/duwdTFrDO4vnnn88M2w57e3s4OjhEvVjg2rVr2N7exubmJogZB/v7ePhwD845vPjKSyiqIhpAZ7MZ7t9/gPn8BFVVYHtrA1CvAJBK9vsP9sCtQ2FKVEZysGyOKly9srN2KC4c085VwSXqQpwZN+spZWv4fBZEuJJW/bZ2maxiFk/ItVdXweBYSqyj8lKQlLOOohX9Ga7vF0Zc0KFvvUVdKSPZ5nwZsrIssLOzjel0AuccPn1wF4f7hzh4dIijowOQ1phMT3yQgoO1bdR281Z0ME1/W5cFNTAvJ11C+J6ygVzm8Z1+Sf2Ri9rhWI79EyIg53OJ2mx8kdscVkr+wmVMYpVc0lSH0YV2djD3nsoPpL5P5wEd+2n3tJVjeeYNvtNHq1dCHyrp/5Yz7s5Gm/dB77b55puf21+/+dgHTTC5YaIDPWmtMZlMoAuDsiyXYJ/ReAxnbdSewrgBQDUaYTKZiNHTuyOG1mtjxD2VGFVpvDCSYLKyqqBrMYCWZQUQQZsCpBI8M0QXjmkD6Ela5zjtjMf0BK0vPA1CQAGsDO99nznBE7LfOJNsvJgTPzMAH1QS+9xzTAWANIpqirLawHxeoyoEMySt8O3vfBvjyQSLxQJ/8Ad/gE8/uYeDR4fY3twEEWG6uYm/+Xu/D9vWWMxPMNnaQlSHIalhNXTGWOWXpmkkf3bwcPGqs9Yhe6AcFxZvWGRRa4hZCUPPJcw0/yt1D/17jx2LtrDA8fFRTBMb8OVwniIJ8Njd3fHeChDXRhLoI0jignu6yCBiweGA2zvGeOrVaF/0gSkLkQ4eGzEXNUB6dRa7x6H+BpN/32fWfT/38LtoBf4fSu+ly3zYewY/xaIBznXGkIEkhGgtUBUAQ4S2tXGzlJJnUuJNEpMpVOMRXnrlZYBkLNKYiRH4zp3nUS9quNaiKktMJpMI9dy8dRM7uzsAA9Wo8vYIER42Njbw3PPPY7aYozCEUVXInGGCKQpcv3EdJ+19qKLClStX0M5mqLSKJdtW0YVk2l1p7HNrxheacuMOkEmVydTjf8iDrMN3QeLJLkjw2LFAFGKc0zDFGKYYoW4sxlUFoxVIE1595WVYJjRNgz//i7/A++/9HAePDvHayy/j6OgIm5tb+Pv/4B/BudZn9MuZZoAhCEqZ9C1LSa6wmHMDYMdQFv8GTSPq3J3r573V+eslt8SogteBRdPU2N/fx2KxQNu20esjQkiKQDDY3NiMWpAYYym6w4WADHZS0IGZo0EzPgs7VCE3h9+ccr/syBhNYtRShzGU8XryhdGHy/rUh0/6TFt+RPqbaz/hDXOEOuAZcdBogm96R9L2/RcMt/DvtdIdL5wAPSnPqG/evJm5HEZFEUSEq9euySboJMLWeEMxiLC7u+shQQKMVE1SimBdi/FkgqocYVYvoBWjMEmjMMZge2cH5f1DqHKEza0tLJSC9tDYOrqQTBvIJ1JE4PzKycHJx7pyOj3nYmvPyJng2e9EPf5xnnXGS296tyaKZY2W1OIcLsk+x3Xm5x55iTt61ARJJ1PLjSlQliMpNEuJoWujUc9q7B8cQfkFpbXG7u5ulIiOjo4wNSNUPqNgr/kAevgnJaNpX1ZeKV92pMX0kEsGzeygwKAD82hbhbZt0DRtzOcdpPtkfAuYRerPyK/WDGwSPjO3Su5uuWufbxWddkJPpey28elJ68vXPn2JDP6ebdBDx3S9e+SIoImFyUxMcYiY0znR1tHXLOI4yrwOJc+6wow3wCqO147XIkLdNnCWsffoEZqTExgAzajEukD2C8+0g5q1DGwsD2y+CFYRLR1xXs4/5NS04l6rOU3neoO/xZnTF4dlksVk+kC3Jl10rPCMhuCl53Awx7JVzEFqcuIOpVTM3wAGrCNMN3ahwZhMK2gjAQYKkgf75x9+jD/+k7/AtWvXUC8ajKoR/vbv/R7ufvIJHh0c4Aff/z6+/ovfwXg6BWARapqIFNTFekMIu4MvCeVrNcIvPGsdSGso52KF9qUeJAAuBdgEnJq8UQ8eAmnbFvP5LErToRhD8HKQYreihstmFKLqUpvz3C0qYtLc8fbIDafa5yNh6xLk4Zm4PE/K8SHPQktTM/jWP6a08ljUh0gGjkitGZjvBICt7azeWEqtt6FGlJpTtK6klJVCv5ZtqMMblarWSmpVsE+M4KXrEAgVQ/8DQ/bnsUyq2J+kNKxlsEMsCRe0H200JOkZo7UtDEg8rTTh04d7eHhwiB+//wG4aVAqwpXtLTz/7TdW9umFZ9o5njjEuIdoSfJ8eq0659H9QPtl+WH9PXoTm/Ilkl89SQ2sfKY2r/JxirmV35nBFlHqCFInKYIO0rvXLdkRJpMtVJowGjPIzQBuQBBPiYODA3z/Bz/Aa6+9gcV8AUUKv/Hrv44P3v8A7737Hv7yr/4Kz734Im60twFIIqUAywwx7VhJncUrJGiZzAzLQFFoCWsIElZPo8jNecFdLVQcD8a+EHU5n89wfHwcQ8mDAbQoCvHj9XUpY59xCsWW+1EU3BQIFiGku69RiIFSqZRWNQ9AcWET6huv4sbbHbvPil2vMkAG6uDha66T91l+tbXwTpjzgcnCJ4TqPX8Yz0AOfq9ThNYXWgibOGXXkzkPMCwCKK9I6n86wNcx1XE8JW83wOxgWaAaKAIrwsODA7z74cd4eHAIDcZIa9y6dhV/d02fXFim3aEMKukszCXoYU01aqA3u/oKave3Jbihr2WvnHNZ+3rXSE/B2dFdSTrBgX11MG+1/zd2QJfRB3ae++PGoI1eW0KIdBbaIM/mJNOe+CYXIGqz9jJAHIvcTiaTaJVXSqEqS1RVicV87iUdlvDtxIUHnyu4WklEGyNIn4Mubh2mlutPKck//LOFrHSCWbcxh0UXmgkMtvuKV/LqdJC2g0FK7t6dl53nYo7XZmbvkcKCyWZtj42IT5Qk7S6D662B3v1Wa5urWesqg+TyvdN3Xbe+gcXA2W+84rilJiVsLBdNwkrlziH5Ed1LhuyFzMP90V81YWNZLRp6rSoI7GFPUQRdGJiyhKlKaABGK5jyK5aaVVSZbPJ0eZr8id/lzLw/B1ZP7A70MAywdW9K2bc0PAGGzs8DEYavnnxY5XhO6ltoOFF34vljHAHsvT5y46P1odZxMjODiWNuCYAA5b1MWNKfNraNEW2FKSSc3FnYpoXSFfRIQekTtPbYY8EtHBu0TYvFfI433ngDSikcHR7h4OAA48kEV69dxYMH90CwKAqFenECM9IASYpXSSafGKzzsIVRBk3bgsCSpjRCHTZbMGkR5ePekba9hmHbRqIX5/MIhTiXgnpCibNwlQCHDPlGB0aa5mhKyK9IIc+ozxCJz7XWe5yIK9r9Bw8AZty5cydo7BEu+TLSs5b849iGtZ//lgsffg+lgbXK5HlGwubkN0qMPcyAZfEtLEMCQ8Ex0LADQQGmwNXnbsONJ9itW2gCSqVwZXNz7TNdOKYNZLsjd7sxylVBx47f9/fGdB51zlynyC1TYJK51LP0+7pv1WoO32W1qYmd7YIA9NXQYB1XHCXtvJKKhYt9E9rf9TZgX26MwZBottZ6rJDEW4Ido7UNmsZibCqUugChhYOU23KuBaDQ2haLxQKvvvoqjo6O8O677+Lo6AjXrl7F7u4u9vceALAoNKFezKHLMUgXAHyuDyRJzjmHpmmhK6l4zmBMGL4EFiM9VmLYoeMIqWp30AKC8dDaBrPZCfb29tA0TRQGBAJJ4fREna5eojz1K5GUrHLZHAwYdxiLYPyyTZvweh/o0TYNnn/+eUhFQVoSBC4CPU1mHuWN9KfLsPNj+w3gpJfkyllg5h2NOVwzV+DCSSTz0AHihUIEVWhcuXEdZmsbDWloRTCksDH6iknaAOLqSUEHiSmvUkOjO0S4RH657CpL8vggM+5K2rmhj9FVIYdhEl5qUm6tDr8BnJ0fVHzOJooXDrJrBDjDOcBReO9im1ubeWpQkuWTN5bHkh2EcVsH65PrM3yWM3Y+NzFFbcExi6SaJYRX3shmrUAnWmvMZjNJdGSMh0xEhmmbGuhswtxpV+zb2BcDnh/rqKdq5e5pAdtOQkCXASdoBIP3XBVcsqTw9e4NhKRK7N31fFvyc5dVxFNo/cFrfz0DJ131rP1jqD9wj3e7Va2Qy2aa56qLhWpFPNCcwIDDcgqbPuXneu2IzzAO4ZDQHAeIcdwYaGWkYANJoYd1dDGZNvoLCkDEDDpHAQiTikRdXTtTEjPLv+tf1nW+STMmMpWciVO/aemdpY6psPPbsmSdpcWEN3JRap2LC97BWYdF06ANMEYrqUDv7LyE/Ud78fyw2bCX6UI/Ka3FLO+t7vWsxqgawRQFWnZY1DXq+Rwbo22Qc1JabD7Hg/sPoLDAjevbYFYYjUbY2dnBT3/6Jh492sdkMsaPf/xjbEymuHr1Cn7j17+Lq1d24FyDh/c+xmRrB6UZiZWfXWT8QDBEiutdSJbPQKygIpul7x3Kx0OeSTa3kAM7Mey2lT5iZp8TROZV8K0O8+us7piB8QJZ8V7v7RI29KZtBUayTuARpWC0idVQtDaxhFUY22eOM3yZaUnY6bGC/oY9cAlG0NATM3d+jSl0JffOzZLyJsFPSoQQhkLrGE5rOM1olZRGgyK0av1gXkim3TEEdZCJ/sj0IJHgUjC4Ak8FM7LvVh/b/0XUrKENpcf8T1mUQYKOzQ+4GwAwSxVwbmGthIWf1DPUbYO2bWOWOQDYf/RI+k6Rl1R8v5BnNgwpZ2WleKsijXpegyFJeFpnsagXWMznuLp1E+28RmtrHJ8s8ODBQxSmwe1bV+CcwqgSpv3WW2+BSLIA/uTNn+Brr7+OF164g1/7tV/F7u42nG1w//6nuPPSa6AqrDrvTeLx3OA9slg0MVMbQyTVhIZ1xz9KPVGLQMcrhVlctFqbmLb4Xi/nyDgrxWK/RJ1plgf9NH5cbNP6YA4D7fOzKFKAVl6j8lLihQNHPlsaWpOrjsvNTFEiDxp9cA0E4t8oHniDMkiBlZSCaxyDlQYbhiUF59ds81Vk2h3qScUdBDuHKXIpuucgnVTRgeEc2GE7fs/ZNi4Mun8svHq1fO2OVJC5eQ3NKob4lEKRl0A5igbM8MZB55k3x1zDQ8/TweRyEQPAvGZ8fL/BJ3dbfPCpxdEJo20ZhZnjyvYhvvHKNp7bITy325+/hNa2IEoJjIzRmIzHaJo6VW7PmNrY59Vu2wbgBE8MQlyUGG4I4hF8eDm6rOMJ0wPC8oWXclwkaT7h14Fh5grzGuo1uQOBZLmuHXf1tBDernw+Z601KBukIUFg8IbZI677eem4/vvPkDJl4tTjVn/TvUKECofWYThjTd+ENoW1LHNufXd2jZihTZQJDlk5M1AMUltFF45p57gtM/vQar/r9XAriovOd37PCN+VYfKd0xMtD/5SeyhNvSUVKnxeMUtan3rUWakXKEEcUskkb9vgOuy1Kzl6CSMiRSjKEiUBY4zjcTu7u+laygMIBHz4yQL/6k8O8KO3ZtCa0DQcAxWELO4/OsZbHxyjLBRay/iV10/w+79yE69cL7GxuY26trBtDVIKrnHY2dnBL33nO/jZ++/hZHaMpm5x89ZNjCcTAISyKHD3k4/BirC1sQliC7YttPKQADuwr8mmlYJzkqOjqipopTCbzaCnE2iVGFzeV7LYHIiGw4aJCFVVSVrOzF87zgXvNx5p7WL3d/eGUeccnI+enM1m6UBFIK1QlhX0aIyRKVCYAqUpMJ1OoXQhWGhI8r/6lpd0Zsrxkf5u1ee4Xdc+ZO/7Y9GdG2K4D7xGEQGWopTus8rAUWLgq+jCMW3nxCsi1crznRUlpogZxP8Q4BSdBWxwgici0/f/kmdkK71CqP+e4/tlqXzoKeQoC8FTW9tivligqaVmYN3UglF7aU2pTPLqSOReDiQx8imjoXzF8qosJBWoKVCUyTVud3fXY8aizj08XOD/+f/5AO///ARNK1J7a1ezCsfAvJa+/9M39/C9t/fxys0J/k//6A7qxgJuIQzHNriyu4tf+eVfwns/fx8nJ8eYnSzw+qtfw2QyAUFyQrz7wdtgBXz7V34d5CxgG2iDrMp6yODmcz5YKe+ltMbsZI7xeByreveNzQiQUk+my3NlSMJ74wvz6uwcD8PFvs6X8xpS3lvFMepWUrMG4yuIYAqD8XSCqioxGo2xPZ6iNAZGGxRVhfF0AwyplWhb72p5VkD9ktZQwMgoW+2cseusWHGu5XhMu59mLF3Vj3fgKwQoQyAfesyQpFlSK5tgQZ61r6YLx7QBdGAPYFnNSlF7mV5D3aOiEa4Dofh/Pa/Oc01375d8nMN5fp8YtFIPXQEQVdn6VzQixlfmox2eJd4nMLQwLUiKo4bH9WqdUgpKCxYcmLY2RqqBs8Mf/bv7+C/+25+jbR2ywLEzEzNQt4y3Pj7G//Gf/BS/dWsXb+wex3JfUk2kQFEY7z7nXQbZYVEvpPzWYg4y2qdptXDOQoce7RjgujizMEa/lCgx4nU93oddom0EKyq05yev7YcUgBTmQN8dNVwvjYuGNpJT22gD48eIpIoVbP+mmXDwRaO16VuBQcEnPM5Zn6hznVOQoZU0eEBi0P1jOlBJOCKLi6AYPJU3lNOJnXuk2feVk7SVIjjOsE2lwJSk5riPZfBl9Hh2rtNhnATYRBGHEgrObkBi8Iu2ifUKrY+ksyEnR28CD84vnynKgVL7FKCrArosUGHck9D7Ri25cifqLOCiniGUWsNo5QNBsuf0f//L/+7n+Nd/ch918xjcukfWAdY5/OsPn8N+M8IvPzzwhXwFlnjjja/h1u3bWMxrTKdTvP/+B3jnrbfxwQfvwBTAtZvXURmFo4N9VFZhd3zV+7rCSyxhyrN3ERRJNuQYIVLeTTbh5eFRYw6QuKFR1LT6gy8QiV9gzsH14ZFsHNjvKSEYxzkHaxvZ6P0mEly7dra3E6MuDHRZSDh8WXlGLS/btH4+Exwxgu9v6otLenLKWXHOX/tgyPLb1RQCq4ThhHw9HKJzkObxIM7So4vHtIMoAmReEL5vPK6k0a1S4ph9UVEnmKOXrqQfM4bIQWqSDyLx+PecIJlFU6NpGyzqRfTOaG0LMRAm4Hzl+IT0fsbEDHhVVaEoZDGb0sSK0PFC8HMiu0xgPlHq9rsVKYLhLM1nDuEA+H//d+8/NYadU+sUfnj3Cv7TPzzE//7viBsbyOFbv/hNtJbRNBbvv/sRfvC9H+Dtn/4Ub7/9I3z3138J129cwajQ+PjuQ4ytwu51B2YrTFd15RNjfD5j9v7j5NOhsoJtbWoMIUrR0WjpO4m93tuPSBWDoZQOc9bJVMlcBIMBNLTHWkbTiPteay0WixYODkySe3ljMgUgkFRVVtDGQBUaFhy9YXTLPkOiQruogUKDtZJyW37TcBw2rS8n2+6vgfM+xdI6ov4Xj3fdcBL3ZN+uM8CQZJef7gUEPzfYQQKrIMFS7EQiV75U31eSaa/EmCOjzQMTkoTF4GjcCoWzQvwqdTCNTM1Fgig4w5gDwwjJfKxftGLs7MItw+PDwridMGYFJcxHKygjBWOTUWw9MXv/7fxGBJALNmtKfQTgD//0Pv7VHz99hh2ocQp/+v4m/uWPgd/7FkERMJ6MYS1jUUvO6Pl8hsPDQxwfH/s8IgqKgLZpxJMkh0ayLgheHcxdWGtoFVM4YZB6x6/p5mjwpi7bDG1I6T+9r3y2wwZIqjCFuBMaDTIa8IFJMsYuwV2+6nsQGMQm2mvcE/Dt/lzs9+CZrpFrd+tgkQw6XDkO6/r9tIac1uC1v/PyMTxw16zvOzNmqOOoe1x00c3Pj/Hy6+nCMe0+9sgB+806w0Uh22dJs8JUbdv6ROgZRgWsxcpsljyaAWAXqNsGDECXBVRhUI0qBOCln91sJdP2kjYpSXlalIX46+pQrSVn/uH9MDg42PzOZBLud39/hv/8v3nvmTHsQI1T+E//DeOXX7LYnQJts8B773+It99+D2/95Oew9QIvvvgCXnv1Dt74+it4/rnbABiHB/twVML5qEpSqfh1YNhFUaBpaljrMBqNxPOmbVBoje7S6gEbnsmGbH1hQ9dKQyk9UAKKOi6NwVVR7A9WssAxx3qRZVlivLHlsyYydFFg4quoiP+39iH3SZJzTtLYzk5O0MxrwDFGW5uS6hO5IfrLm3vks6KnoYPkS6bDl7PdevA+hGjTyLX2EPcQUXD/vg+69enCMW0XUioiSTouBIn4jSz3ibbOom7FK2NRL1A3DdrWeszJS0pZsQCAYnAFIBWgA4QSFs+8qT2UIdJTUWhoPdTVDB7m2gAYTqukxmdGsQBndKWV+C5STFDkfydODCEkREImrf3f/rM/Q9ueCaR7Ymos8H//A4f/6z9SqBcL/OTHP8K/+Bf/I3721n385q//Cn75O9/Ed3/1OxhPC1RVAQLj0f59OBjYtoYxpWeuqb2heMLBwSHa1mI6ncLaFk3DMN6/GgEa89SJOWXJPFgYI6qsdbHGJfU0G8pyWjvHMad2XdfRK4SIMJ1OY23B6fYOoGUgHDOMv0Y1qqCVBoPFzRMB2mIoKJwcHWH/4R6qYgQzGcFQlTYYEIyvuj4EMzyOtJzTFxl0OetMPUv7VyAqS+dS5z2l6ceZ/NNpHUX9niGCRtDCrOWAdsvLeS+orxrTBlJ35SlDeWn6ymfrvTEsC5TRWnGxC5ITcwJBwqIN0ASR5N0N71UelAGAtBSyNUURa/112tGX6PvPoWjljAu4epdymZo8FpfnSgin8NJp775/hJ++vx89O541OSa8c4/xzl3GbmVxcnyMhw8eYO/hPtgxptMpbt68CaVtEIPRtgKPsHMg4o5WTX7VhMRKwUXP2UbcQDtqO9JmObDZBQ8AgSAyD5KB5+jCIClPCZDmScCnq7IEjNhYrHNQXqEJG0IepBG1MBLf83pRw6gibdS8gmkl9OVMTGjVAZ/NLPjsaN1zr1Gke2gFxX85/pYLdMPj0vHsDpDsGSC8VXQhmXZIYC8JiiwOjo6Qd0goK0QA2InU40jgjJHRXu1cDqzJr59+CYOWMMrxdCyuWkUBpUWHT0mb/DXiP4/5jFnL+pcJ8rfkIs5FAM6mRlr8YMY//5efoMkNdZ8BNRb4p99j/Ce/Y3Dt2lW8+tqrIPcpXnzxedy6dUtqJkIYNBOwMZnAaI39/Ye4dv0miBzYtYhlUBk+dwiij/XR4RxipxAoIs9WGDe+YByOhmLqLEWtNarRCG3TwubzphOSTjHr39QbwKWCzQhFUaIoi04pNFJpMxUDZzaW5LcIz7Vda9E2Dca7I8mp4rpz83HC6b8odHZW9ezpPJoJZa91RzIQ4zM4qLskfENysveOZuC04bxwTDvkKrbWCuQxX+CB2wu/esEq4ctaGxTGwBQGZlzCmEIqjgRpWi7qzw+dmvxuczSRPMC6sb0ZPVeCOh5R4gBt4Cw8uw93pH+HxANFwZOgy5jDzUIEaJhCYXIcH9f43l/t4zMSsiMxE/7kXcb/6rcNnr/zHH7lV76DjfH7+OY338DLL78sQTG+DxUYuzvbqJ3Gvbuf4MqVa1Ck0NgWI7mYYMWheg2A8XiM/b0HviqMlPhK+23SimJkIxG0Mkh9LH+NMZhOpzjY3wdCoJbjWN09ZCQsfaXuajSC9r7lMRWrbD9xESulQV6Ms9ZrE0rmDCm/z/h52jYtmnmNjY0NaKVFc8gm3jqm/STQxmc1HR63jcPCypNdO0rRZzhWyj4uHxnb4X8K1WyAxMAdi60lcgKvWjEArAleAy4o005GJYE86qbp4pGeOxERCohXhiZRU40P9IBWfpF3ByVXhYURZAPs35gidWs3l28m7WN5knXuxJG/pyOpq6QPTa6g+i9Npcxq1v/tnfePJDT9M8KzO80C8M49jZ3xCNs729je3sTm5iamkymANsPwgbIwaGuSijaZv2u8Ene1IK1Fa6IlppbBWISeaLO8CIMxMRQ/UH53zGGYcFxRFKhGVVYcQXzGQzBUV9vONDYOBZL9Rp+Ps8evjTFQRN3NNZsETwPDzi+77nP+XQfnHfAEWZuaNeJA56P+mlvVxv6ayhqVNygeu6r/aKDPw3fBu4zjgUnX7ZbHSpI3gK4dIiIop3fGhWPaAAAilGXpjUAltCmzHdFHB3pmEFRaYwx0UYgFn9IgBFw4UPguVsIYWBnD3X76YJy2w/fzUOWTLGfwazG6ge/f//nsmXuMrKLWAv/ff6fxn/wqSypSTrm98xVNBEzGY9Suxd7hIdhZEExMzUqApC+wFsZon6dbsvMFrSpcM6YqCLfIFz6n4BuPHIFImLFIzhKlqMN9PSxSlqX40HvGmny8u1w1BEN7X4J4jTDHcpdAgVAkD8l0MoEuS68Bpit/FtvsWSXPz5ue5qZ1KjGiy+XQmsr7LJvFCA4RTCm0nT1cq5SCOsOAXkimHbBEpZRExekixs2Jqh0oeYKQ9x8LzLybJ6TXk4n/y3kBdvCHpejLHpQR9Z8zPkd27JLhUThRwtUYYE7Z4ojQ8SFP58nz5zk33vzZ4WOFqT8dIrxzD/inP9rF6+qdWLzWK5FJ4yBgZ3sTs/oA9x/cg20bFGUZg5UCI2vaBlVZgAHUdS01JrVEgiL3COLEHONfFpzRZEnomZNXiikKFEajqkaoCmHUQaKOxmgfvZhPEiKRomOgV4Br/BFaa5ATH27nHJyfl0ppKFaYTCZwOzsoRiMxnMNfKw7aENt4urRK0v6iMfNztWfFA6y6BvXfD2i0+UYaBD4XTiDPG0jmQWstnKOo8QnTPr348oVk2gTEhecYgPdtJg6qZ8A2l9WiIAXFTyvXAi8t+L6IG2srDjnMD3y1crD4bMuSAdEiKDxnF5IZvAcR9g+aU678bImZ8KcfbIF3b4H53fQ90LEZlL7mY71YCCySDUF4MGYnxl9I8qihXusHNYS/S0f64Rfbh/apUU2UrAOOTSGcnLu93Vl+1Ov7Lk4Sv0hlz5JNxRiNsiqhtIbA38M77OOw7Sdl9V8kxn1uhn2Oa5z2/SovsCUJPIPwUrm5oE1SxpFW04Vj2qnEmLz3FQJ7u2TqLOox7ujGs7bfAldmhOxfhARHRUYQbnwGgHDodrHd1E9Y1D+6W1YtPEe3FJm/mnAhxK0fBHuK4eOzoMYp/NneN/DXd99FNTJgZcFsvQRNfkgMKlNgZ2OExckhCqNRVBIKLjycvbQr7nPW1mIQVBqtDXlDFKACFi5btIICWPxjxf6X18T080hpTKZTGG1QVqVAadpkuY+pW7qqbwuB6HiKnZ8XqeqO8/dwQSp3IoULBKNhygrl2MFCYg5sBtqRn3inpQg+L51Vdv+iMOxz0zmVkw7ckbDIFRBknhEQflb5tccEJgUHhTbIhFFVXva1H6KLx7Sz96F0FEcpp4cCcgZhID8mMWAA6xeES/JU+BtgjWxsB1p3OnVa22Mi/eP8nTsaQzYjuvdmQIoDyETS+osRUWdZ4cf49/B3t+dwuoZzFiCBCGAlucBkNMbz1zdxvPcpjAJGI58L3Dk4llJoxig4Z7FYHKEsjVTXqVsU1ci7DxLAvuakN1QqVrL1qgw+CYqU0jAFYWf3Coikco1ESor9wwFpH4+YVm5KlPfKqSgU5LljWsE7/OYAoG6hmWCggMKgnE6hyhItHBpiWIhGYZS/nrUStPOUWehpV/vSMuxA53iAwXJiMQu24Klp5JM4SHDQcCA/v6zTcGTQMlA7wIbYD4R0BQRekd890IVj2n0K3iRLxOnNioI08uu6gfULsO/2sxzRdP7pnZj1mt/6NGQVXXn3wKgZO1sFPr03P0frng05JtydbeLjI8YNslIxHqGHJelToQ2mkxL14gS2WUiFHiD6mwPwkjbDuRZGV1CkYB3DgERrAYtrtuPEuAGPP+ZVbYTIJ5yKG0T4nnKdzTN5Wt4Ak4MnQfkJpSTVn//dvw82CgaUI1+8QUEbMZDXcB33sYDjd91Jz0inHHuWS531dmtz5HyWnL+jbp/xxmfQuDlqr0HKDhpy8lwKzg+SuVPBMaENjL4jVJ52uWSDuQABAABJREFUzy5keKHozAEHnz8y8LnTG69u4ouSvsI6wr/8qVSuAShWIyel0FqHum4wO5kNuJF55hokHz/zxTDo0f3cANk7zn+1RJHhrFnkZ5prUeFJ11l1FlGIkGREC/ESRBY2KkSY5ZK+DPTkY/UFWapPj4LvbMefOsNvz/f6atBLd6Yoiy/GVGAQ/vLnBY7mKSTdsoU2BRZ1i6OjGfb3932lFyQIgyCFAkTEiS+tdao445x4XDgWrxMf/Ril19OGvfdbvgn0gLfuaT1//+SjzJ3PIbYgTx7l2hZwDorIh++nyNuQH0d1vFUu6YtK3NXLHpu+GCv186JLKRsA8OpL0y+EMTKQ0YS3PxEOGlOfKgUbJO3ZfFnSBqL1PUAdAKVETyRLJblOqiiVr1pCS2p9wCMei7K2ZX7g3SdI9xWbZk/S7vyecpXQE7Xrkj5LyoeJ+1+ckb4CTDs3xD2mpM0rXheEJmODX/qFnZjm9POmRQP87G6SPufzOd7/4AP85M2f4r33P8DJbB6DZ05OjgHAh4Rn+avhMWfnOgw+d/UEAo4cLRiD7RnCZM+Sy7xLvLxIe5J23kZmSSpV17W4Lnrsfei6l/TFpxQW4Tff8MXAsJ4Gt104Q2Ry8ns6V/tCOaI+Q/o7v3sT3//RARbNZ5s0aogcAz/+GGCf8vThwz382z/6U/zgL95EURq8+trz0Magrhe4f/8ups8Hpi21LIOhTmsNa73boNJZSl1Ed03hkACCFH6Ose7UpKSzzLo+Js3xL6mwmOW6zlm09QKL+QJjApTxlTGDeJ1d0rFbkjMu6YtHYdPOC6YsZyE6XSK8gJL2gFT0rGbzBRJyXr4zxdde3MEXxPsP+8eQgEhmnMxO8Nbbb+N73/8B3nr7HRwenUAphda2OD46BACEGpEcRRefqMvnCAmQQ6QcxKaeX+0pUvT5pWz4zX/AkDh8BzCzL1G2QGvzMr7drH4MxKyUl/QloczTKX3Rf7eaviBL9OkS9f47jVZ11NkNmBeD/s//8a/BmC/GlGgs45NPP8XP3vkAH7z/Mdq2xfPPP48XX3wR169fhzYGbdtEeESMcs57zgmDjlV+/BDFvNr9Afff5VnXVzPmPpSR8oysTS7Wdw0dmDqUnWedldTCvjBwSviFjjB2sWbgRaH1m2iwrfTZdtC0vnLwyDCtcdda+euTWXi/jHRtZ4z/5T+8g//8v/7555ZAKhCxw7/51/8WP/rRz/Do0QHKAvjbv/cf4Lnbt3D7+SsYj8d4dO8ePvr4EwCAcy0cCMZMYCV3AcpCYe7qOI5t20rGPl86LFSHYc4ruz9bFhj0gb4wEbD24EHS1DWOj49RzxcYtxM4n1cmJBmikDNHHuSZtvmSnpyEUcuYO8eSEyn+dj4U9ivCtC/prPQ7372Kn388w//wR/c+V16wUbZ466dv40//9AeYzRb4zrdfxS/8wi/ipZdewHTDYNHUWCwWePRoDwDAzsJBo/ARiooA0hqkmhh94pyTheELJYQUvkHK7hT7e0a0WhSg8L9AI62HRpoG1ifRCkUtOhWJLkXtLwQR1kMbHak6M5Y/zhL7YujCnwkNwBo+Cm0t3PEVWxBEhH/8D+7g5TuTz60NCoyr+gGU0rh6dRdXr+7GNKt59fNQdAAAnLMIZXHzP/LW5xKJOmnmXhfeJ2xiqT3PqjJMni423Vu+C7m5i7L0aQYom7YZ7Me5M+ElfZ40NAJM6ERVM7yrZscbqAernXKfC8i0nxbm/NXCs3MiIvyHf/sWCvP5PB9xjQ9//EcYjyf47d/6Ln7rt34V80WNeV1jUTeoGwelFHZ2dvDinRcAAG09h9YiccNn23MsxQPCKhBM23toB+ZNlA0nn2tIu2lel5dapyBzHgm5lFnMy2n+a6UIVVVhe3sbO7s7GI3GMUd353pLBq1L+mzprPaylPIZIFjnYJ2Nv+XHfmUNkct0MZnrs6TXXtr43O5tWeHtf/ffo6pG+MY3XsfXv/4a6qZF3TZorIW1DkQKG9Mprl+7Jue0jeRMitn7Ak/LAImYZySIP5nG9RnRSqndM35v0kRRFJhMJlLIoyyjdD20CVzSl4VkzDgr/tzX/M7CtC8gpn1+CXhARnrsMy8KTSYScPNn39/7jIU5h+LRDzCpgK3NLUzGEzStFEDd39/H3bt3cXxUoigVmDiKHcwWjMx42hlCD49kkYQxkIg6qESHhhjsk7iPBpimL2l3UBLfOCIGiKC0itGRy3j4V89Y/sWi0+ZCPjo9iToTJnIJm87Avi4g0348upz8y/R3fvcm/vJHjz5TTxIFhxfwVxh98xv49re+g6vXroA/+hhgwp/86R/jh+MxFBzmdY2r13dw58Vb+NbvAm1bw9kGpEdSCR0EF3N6yLWlkEGnFHNHag31PJ+1DEvUDZ0Xf3Jf1IEhBY0hQTPaFKJO2xasKLolBgMqMX+mmsIlnZdEImBK89A6C+vrQ/JjjN0l076klfTynSleemGKt989Emz4GZMihx16iJeuOEzGL+K1V1+DKQvs7x8CIPzoR3+FtmlQz+fYOzjGa6+/gF9tfwEA4GwD5xoozV5aCQw7idFaaYQqM2D4LKpSao7pGW9M3P+YFeDoRWmqYCAngi4K2HoB61qADLry9qWo8aUiP8yh4Dj3vj8rfUUw7VPoCe2MvXiHzufHfT1z8jfqP2b/3v+bf/wqzGdkkDQK+Gu73wPAqJva+yCLhGKtw3Rjiu2dbezs7mJ3dxdb21uZ94hD27bxhOBhokLCqOwB2fV7mbN/T6foV9vBl3seAHlgTYA2OKm/S9BLz9vFOoemabqGRkrgzLPyaLmkZ0sBAQuOTI+z3i+cpD2M/eGZGW6GOvwiLafdnRL/+B++iP/iv37/mcIkhWb8+y9+hO889zz+8F+9h48//hiz2QylA+pFg/l8jt/9W38DV69cATlgXs+xs7uBm7euAACaeo7DR/u4Ot6Fc43U51QlyrKEtQ62dVDQcOw87GAAiP+zZV+B5HHnyJlP43SfpUkSqsaL++JsdoKjgwPcGI/kN58X3LESSGSFu9glffEo2Rol2YJlzuCR81/vwjHtS3r69NvfvYaff3yCP/zj+8+EcVcF4ddeqHGn+AAvvfQt/E//Y41PPv4Q8/kcgEFdt1gsFvilX/4OXn3lVRSqBKiG1oAuZNa3TY2mOcDVmxbsBM82AIqiAJHFvGmgSUu+ddsC0AI1sIPjUDLuMcyM57BZi3R+yjkkWsN8PsejR49w7eYNAFLogBSBXLfS0iWc/WWhVGjbOdcp6nt6/fUuXcIjT0Kr4JSzunh/jm7g6y7fFwKJCP/RP3gR/95vXHvqxRKqQuHv/NIO/v63LZSvu1iWJYrCYH9/H3t7ezg+OsZoNMJoVKKqRHqWqMEGi8UCAOCs5B5JOTA7eEOCE4Lvdp/Omn51AE86k2ZFy/2dZ/mLxxBkI/G5R4JEzf3jYmPwTOfJJZ2X1swGEsPjkivqOcfvwkral36sj0eZT0P2TuoV/i/+wzt47tYI/+V/83M0rYN7AqFbK4LRhP/177+A3/vOJt7/2SF2dq+ibmq88OIdzE9m+Of/7J8BKNFYizfeeAOTyRgMh/l8hp+8+SPMZkewrsELv/wfYTE/QTnScLaB0kagBJ+PxFqLtrEYjRQYFq1tAFTybMH/OXLM1W0eSgh1VlE3yFmd8/3fEF6vSLxe6kbgoJOTE7/9iEbQtuIOqKBkeJj729MlfS40sOGjPy4E+Nw2gmc//qhdSKZ9ybCfPoXA6d/+tav4zjd38f/4z97Gux8co2kZ57GJEQGlUXj19hT/h3/0Kq5vl2BuMBpvYHtnF3XT4M7zt9HOF/gn/+T/hUUNXLt+A7/3P/s9jCcVAIfFosZP3/wpHu7fR9PM8T8HMJ/PUJQTuLaFMQzWQO1aOKc8pm3Fc4QB27aSETD33ugUQzgHnYFxDzL73mcVHUYIbSMaxGw2ixuDY0ZjW4F7vNfLpZf2F4HOOGcoHSub8CXTjjTMsC8n95kpigirJ+OVnRL/l//dG3j3g2P89//qHv7dDx5CK0LTMoaQB62AstBorcN337iCf/A7L+ClmyVS3WqC1gZFUaJpZzCFwXgyhjEG1jKKosB0OgWYsVgscHh4hEVdo20a7zECNE0TYYVV8ieH/0LhAkCY9VkhjlU0wLgHq92AOvdZdc9uAeJ48urb584xA9VwBoOEVvx+KfCck7K1ErxLKTr7S7jXMizW02i56wJ62my8cEz7s6Uv82aQ/JfPTql2ITPj5TsT/G//41fwl3/R4t5Dwt5RgZ99uMD+wQJtwyhLg93NEr/w4jZef34Lr9weYzrS0EbBuRYyvQnMhPFkA7u71/HTH7+NrekYL738Iv7RP/y7aKzBxtY23vj66zg5Oca7P3sXf/5nP4Rzc4zHE2yXEm7/6cefYDzZwuHBHjZNiUJpEAQj18oXCbbOY98sCaa0gdIKbWsBJr9szqM2nLP7AMHUgQ6TV0o8QoKB0bYtCISyqmQxkxK8PzNeOXde89UlfSa0tKwYgGh43CmCQb2/ZzdjfQWY9iXq9/g0JD3GmDwwE5gYoxHha6+Mce3KdbStA88tqGFcu3IFxAI7FLpEaxdgeINhvL4wy/FkA4W2+PTufex+7RXcuX0LV3dvgWkEpUtU0xHeeudHePPNn+Cf/4t/ht/+rd/ArVvXsL0lTPuTjz/G7edfwOHhPkYb2zDVCICC1gSnhXlLJJr1ErkUTNBKAey6M+QZcsOYpVDraGTUWgO2jU68tm0BAspR5f3NIS5/LrklOuegKfmgL2Oo52/XpZT9eJTpLCuP6RiSgUw9Opt0ndMFZNqXTPpMdOb1GVS/Ib/g5Hcc0oM6diAwlBIcVvEKqMBzmTBaSmlobTyGK4xsa2sToBGgDGA06rrGfD5H27YwxqAqK4xGYlBsW4umaWBtC8fCmMnnxyZkOT+iOtv3MhnukJWMLMMoz0RnmpKhvQRFClrrrHXPLklUJx/KJT0xrWPD7OeN+GivGM9ThuICMu0+XU7GJ6XOgs69zPz7sqpASmHRLGBbxsgUqAqDk+NjjKuxD2RJ5yUQIlQoV3AAHCtcv34b1gJ7+49wdecamB0Y4vr21k/fxnw2x1//67+D73zn29jd3cJ4VAIAtFb4+QcfYPvKDbi2AbsWpAsQOyhSqIoS9aIBwKiqEta2aFuKD5KiGp9VYWP20LcPU0eamW3bQCMx5tFoBAZgygLkCza4nnYS86V4CTky9x5WvTItbI8upewnJ+L1wTLc+yvvzw9TXkA/bcayFHVJT0od451/E9b5qKqglMKirtG0LbTRGI1GODo6QtvajiTXZ1ouekcQGAo3b96BtcDDvX0orQBlAbRg1+LNn7yJ2WyOv/U3/wZ+5Vd/Gd/4+jfw8kuvABCY44P33kNT17BtDbY1FBgEJ/mpy9JjxcBoVMHaFk3bePc/gEj5vCTPqP+QmKjSuoNpt23rK9NI/4zHY2xubmJ3d9dXaeeepiPh+aso/JYXjOgf380Fjm7irCFD6CWdiWhdt9EwZzqvF9AFZNpPg/qM/7TXl5Uev+25bBDye4QcweSj95xznaCW0y9KKMsKzISmaZMl3r9m8xnYOWxvb2E6nWI0HqMsy3j6oq4hRrqAWYeNppsSVSnKmJaL/POzkjXFxbrvR5I+K6WgjYbxGkosDJwx+n4+FfCwFN2p3L7GSyRn2Jd0fjrViHiOyXXaoZdM+5LweJtPmqZlVUJphaZtoLSCY0l2ZAphOqGIqSYFAvmIxOAjHUybBFIGm1tXwaxxMlsINk0WpByUAuAAow02NjZgtIIixI2iaRporVAUBrOTYxwePBKmzU4MjQHnVgRTGLS2hXMWAjWIdT+vcvOsKBTuzZmj1gKOxExCJBkJTVFEt8QcKe3k447SG8frD93zPMz4knE/O+r37OP09CXTXkkXXcoOdLbnWIeLVqMKSivUzcK781k09QKmKMAAbGsB9hF/RLA2JWgiAhwcmABSBju7N+BgcHg8h+MWUBakLJQShmpMga3tTRTagJCY9mJRQ2uNsjQ4OjrA/v5DEDEIFnAW7FowWyhFKMvCGy3lXKW08MvPIP1szrRDPxpjvPQNwInjoTYaZVWhrwZ0GHAIic4Ydh/y6H93Sc+Gzq+lndXBb5m+AobIs9LApD6tT7/M64CzN6fMn7wALQMdqIOZPTziw7F9KLhjl2GrkhPE+3HkV84aIhKvLkoACs6xXCPenzt1EkPinRBcw+ygtYZWCtYugEaMjiEXyVJ+j3561me8BweJ2a1FMPNfMgNi5mkTr3UO6kMk64yOl8w9ozVdsTQWj9Ftj+tpfylpX9JjUR51KCWxRKorigLMjKZtxQuCHeqmlnN8/Ubt4YhwvniQEKA0HGtsbO5ge+cq7j98iKZeRGjj2pXrUCD88Pvfxycff4yf/exn+P73vw9AJPCXXnwJ49EIzlrUi7l4kbCVe3rohAiom0ZSY7IYIJ210Qj4rEllRsFwP2ttlLDFHqBEQ7HtmXlBbkjMbQv5b6tw68uIyMehx+mnzEKzypP0DJvmJdPu0EWCPdYT4XwKWnSJCwYvDhAs+4owYngsywIOjEVdYzKZwDmHxXwOgMVThFn8jzOVncHis0oGlg22d6/j2vVb+OTTTzBfzABYMFvcvv0cFBT+zb/5I/zsZz/DD3/4Q/zRH/4hAKAsS3zjG1/HxsYGXNtiMTuBbWowtyByMIpQlsK0F4sFWisSuiIV4RvB3J8tSYSmiu8BwDZtMpJq7d38GLZpO+fmklmf8SqlOgZh18vmRUQeO08wyipGfsm4z0Y8GD+7iodkq22d6/8Z6BIeWUePq49+Seixo+iSHVGu0/EZTu5mgTmLwS8Z2VaEsUSDW1FUKMsR5ouFRDD6c8ejMYgU9vf2cHx8jMODAzx8+BCAMK3pxgaUl/idtXDOQjMDxDH60bKDtc4jPBEoPj3P9dOg4Ny+IoFUcqeUkclLpfUuspbJ5hDI0G85015q4oDt4kIy8TNP/FXP7sfmsRfRqmueTpdM+5LOQUMSREjDhOhTrLVGURSo6xogkR5b20LrlEkvBNiE4AKG+GqTMiiqMcrRGHXborUWzjkYIjz//HNwzqG2x7h//x7m8xl2drYBAFtbm/j0k0/w0cefoHGMajzB0cEjbO2OoBWD2UIbBdtY1HWN0XgMIu39yIsY1fksdSxiDxE5YdwdQ6S/MTuHg4MDaK1QVhUcklNJvM6AdNz3t+6/mBl1XaOuazAzjDG+QMQFZMhfaBrehM/D+S/hkQ7RitcliXSGZLfMBEbHLBgdEayTUl7VqMLJ/AQghi406raOkqMI3NK3IvCqxLR1idF4A6PJFhZ1g6ZtYK0E6Hz9a2/g6197A9evXcMH77+P4+Mj3LghlV2uXr2Kd955B3/wB3+A48MjjMoSDx/ch2sbEDk4W8MYBWaH2WyG6XQLShvUdQPl4Z1nLm17DxXrxPUwMNqiKKB85KNtW9z79FMcHhz47wRWskFR6QfBAGCSlAF96TuHREI1nJOTE8xms8i8h+iSkT9L6k+y8/f1paQdaY0adPEh7g51fRiW8VNa9cH7DCtFIK1hGzHwSR6SlJQpqf0cIQNmeYEIShfQpoB1qTQTEWFrcwtbW1sYjUY4OTmG1grj8QgAUJYVDg+P8Omnn6JpGiilUC8WgM+FAnDUBKy1MEUB2zZwNvhqP2Y+7XNSHtkY/EiUUpDcfwLbLOZzlFWZnZPOX9lCz8D7YetAcv2z1sJaGyXtfrsuHLM+07r9HJ55qV1djOW0Fl0y7Us6H/UwPPGzlgRRRVGgbRsYGGit0CwaGNJQITycc+bA2aUIgAKTgrMMUhpFWWJnZxd1Y3FyMsO0ugKGw2hU4fnnn4dtG4zHI1y5ehUAcO/+Pdy9exdXr1zFg/v3UZQlXnvjDUhGvxZKG1iPrYd8HsyAc16yZO6lznz23Rc2CQ6NYYazLjJWUgpsUy6UkGNk1aJehW2HjcI5h6IoAIjHSnTRXHFucOe8pM+OzrKFXDLtM9EFk0Aek8hLxZ3eUApwDG00qqrCYjFHWU6gTYXWHqMoDbTWUL58IzsAyjNIEqbgnIJMRY3GtaiMQTWe4tatOzh69Cm4PcSNXQna2drcwC9+8xfw8osvQBsVoy7f/dm7eOutt/HX//3fxXvvvYf79x/gV37tV+FcA2drlOMx6nkjldgLA0ByUlsn/t9gFt/tZw2RhICiTLK11kE5BqyDbVo0TQPnHJRWsK2PFh1IBOU/+MtSdoturpdwjnMOk8kEzIxHjx5d+mQ/AzobQk2DPn8U/1lPl0zb05CDTv/dV4YycbAPjKSqHL1TiHylGRuxV0nTKr7J6PCY3LKWvEaYVcS4tTGYTDaw/+BjLFwdTy7LAtV0F9vbmwBxzH53eHiIg4MDbG5s4ujwCPP5QqRKdnBsQSr5iQtTS2bVZBT9jKjn+RX6hJnB3l0vMubgpJAz6Uw6jlJ6fvk1kZDGmMjAV3mHfKbM/JnfaqVe8qxvfAo9/v0vmfYKWqeGXtIyaaVgTIHFYhF9hI3RgJcqFXsRNmwIUeuWYgpgYVAhsAQMjCZTAFJZxrYWinwuDpayY84z5B0Ak8kEu7tXcGX3CsajMZgEfpmdnMAyYTTdgVJimDMmVINR0Cr4jEPUgGc26MnQGcPOOxxLSX6VAtjc2EQ1GsG5kLq2e6VOOtZTIJNwfGDUQ7h1gEHWuQJe0mPS0uA8ed9eMu1LeiqkjcF4TJKOtZCgkLIsQAwvcUs6UoICIDlAHDGcA9ipaIisCuMTNzG2d66CoVHPF1gsGkyLEUiJh8rR0TFaW6N1FrcBXL16BS/VFi++9DJ2dr6Hk9kJAMb+3h6qRY2t3RvQpkLhFCxLGlatC593xEMj7J6dPxWJxuGCbE+IuU5C6lSlFExR4PrNGyiqyifWiicDgYnnrn7+MweIJ6YV6ErbQbK+xKifDp3FPZuGldInpkum3aen6iz/5aP46Bk4l+ceWUVKKRgjDDVAFlJGSxhigCHy64hnirwLTFtSugpYUY3GAHw1detABUVJu2lq1E2KbByPx9je3sb21jZGVYVFvQCYMZ/PwMpIHhMiaE2QpHoSLk48DDE8C8qfX6ZZ10+HSBJFTScTkNYZU/dHZFg1B5gktHug/TnjDuesMjyuos9C8v485PonvedZGHYuZGfbb/btilacMhcvmfYlnZ8yXFU+epasJI9Hx5+YACKGgpIUrURQGshZVmDhBOpci4gwnW6AWovZbIaNcgOajDdoskRFHh8CEAgmlCKbzxc4PDzERx99JAY9RbBtAyo4MusQik+QjUZ1H+kZ9Jl/YgrQiDxzoOj3zgyljUjWyLFsZMcOGx2XbjkQcGO9N8q6XCSX9BQoSSSnH5Z/cYahuNSVLunsxAz00pfmOKjWGk3bSqVwJUn8A45rjEHbtKibxp8XCvwKwB0qx7RWGDtpDZDG9eu3cfXqdew/3EfThORR4rJ2795d/PjHPwIg7mz7e3uYzebY39/Hhz//CH/yx3+MpqlRGI354gTsMV1tdCeUvalrSDGEZ8u1XUhStdStgrETRHI2VQltJK2tIsH4nW9fgDecc5nUllxeVoWma1/cuK5ryXVuzFqmPeTvfUlnpXOYtUNQF8IoDmc0yemSaV/S2am/uAkd9ZsURR9jkIrSMiBMwDoHZ4Oxj3uX9L7auUcDKWxsbGIy2cB8Nhff4uBzzIyjo2Pcvfupv45UtmnbFrPZHAcHj/DzDz6AsxZKE9q2iYxZ3Aw53jt4vDxrCgmzhoi8hwh5SZu0QvB0Cf7t6diehN65zjDTziVtay201mdiypeM+wnoGXXdJTzSp6+Qpjioli25K/Qka/9P9F4IjMUzYlIBZgigXvBLTmW9nA1SrRRFkEI2DMD5KyowK1hLYDLQxQjTrW2Q90YBO1SlAYExn80BAIvFHItFjbfeeQtQwJVrV3D95g2UZQlnW5wcHmA6vQ6lCiioaLRjzgua+WfnTmf0qItHdkyChCQl8dA58NkMCfC5wuVLyd7SOotmsYBR+TmcydHrJudwdub8SWQ4VBy7BNHkd+gGPXWx2PV0WoKpzsbzhBytHzgUArbOTmGuZe0IvtPxWpz1ezhOpdtkUNfSWuqhWsHFlJT0qgJD+c2YKT8tjcUqumTaX1HqG8GG3y9L1gDBsQIhqO0SDQkCnPNJoUhqLwqT0AAxWttAF8IQF22DShfe7U4DzoFhAe+mx6zQtgZ2ocE0wXhDYTKZQMHBwkK7FjubUyh22Lt7DwCw/3APBwf7+K/+f/8VNnc38Y1vfxO/+t1fxfb2Btp6hvuf3sWNq8+h0IW03Vo4JoAVHHw1eI+rd9l4zvYUOkzOrzaOGw6j6/Etx4VAS6coSsbkGNrj1goMxxbz+RwPHzzADl9BUZbQhemozOwscuU4GGUlC6JUA1KeITv/EjuBL6WmFJQx/gm9xw4IpHSn5c4/bniKs6rj52Hwj0tDGH7usthtifRdd3MKKWu71e3DBkVe4wN8JCqlvpX+VUhV6Vy0UzgwFAHkfe1l3sv1w1iEGaSZodnBsAgsJIafiDy6U3r8Eh5ZQV8dpfA8T5qhbRQYGEBZhRrlJe28JBZIwToJcCEV4Ahx/yMoEDkQLIicF3QVrNNoGgWgRFFNsXPtOqgspCwZHCajCooZx4dHAICTk2PM5jP8u+/9OaCA23du46VXXsJ4MoJrGzzaewDYBsKiZWGxY78ACSFDCThjypH6slT4XcmLTzveKwiEoIaAGMizdztm1E2Ng6NDLGrximHPSuPVeQVWGmGX5d/Cxhqq3iulQUrHsWSEogsUmRvz4F3ORJ+noho1vEHq98/QxtzVa+JxlB+Xb9h9hp9f22+Y0W6AaM8IUraK48tLZ66jS0nb01eHSXui4Q9DamtHBfXwySqPA601GMKYdUjCNJDTIybpZwcHOSfi47YFO+vxZw1Sgj8762PhfZHfyXSK69evx3Zvbm7i5ZcrXLt2HZPJFLPZHMQWzjGqsoRzkmNbIBxhVkoR2FHy3jilu5JCTNnf9EtXyhu6QqdjAYj/dvi18YbaIJEHJT732BENJse1k9QfAI4+VEFEfpNKgEDXnrDuybPx6/E9XvVo2bEJUKIIv5zlzksmlBzJGHRF7I/F0G+9I1agKtLdPb94DnOZ0rnIZ8OyEVE2a+rdIwzuirlyCjO6ZNqXdC7qqqeehWUMIpQYm89PMB1PPd7t/a99WLvWGm3bwjmHxlqYsgKzgmNCXdcgdtDEmJQGhipoUnB2gXndQHOLcSkJn56/8wJ+86/9FgApefb666/ha7/wLVy7eQ2TyQSffPQJJqMSWins7u6irudQZg4zGkErgtIayhRgZ2NwyzL1IZL+Cs8X6vnkzODPrpQSLxEWN8bwHRHBtS2cX8RKiWoemEiHMatUUd5BGHwoSBGgA+tYIkuViilbY1tiiTIN59o1LoHL23qEFUjYcu5g1N+4umcP91eeCXH5t357kLWzf9ccGun/NsStPevlEOLPoCBl+/vKmKkU3ZqNAds0nnIuJXicODawazweetb18+iSaV/SY1NkVZxKV5VlCTSScH86niIYIvMCA0SEtm3RtC0WixoVaTATrANOTk6gCSi1ghpXMKoQzLddoGlagJxgsE5yaL/xxtcBiGvczdu38Du/89tgME5OTvDO2+8AWxuYTibY3NxC29Q+CyH7kHYFrRWsl7gF1ukv5iGVemiBnY9hy+aXFrn2THs2n4vC7Q2GwVsGgYkyxxZ0S4bJ9Vz4PXcl8wycXQpl7zNk8WdPkZSxeAIYcF6KpJzhhb/Smlxm5M6n5XfofNftt8f1GR8+b4UYffrV0B3XLPEAO6wyFkq/oWekFxAsBNtIq0L/D82n0+mSaV/SuWmdG5jWGq5xkgY1SBR+IiNKcypKttH1jBQUfEEAZo99i+ExSC1N04LRoB0xCMZnFpR82leu7GJzYwMnJ8c4Oj7G4eERDg8O4Zoa9aJGUZQYTWoUrgXgDUVIjC+GfIdnBHfW0jBPeIx62p3ApMQ4GSlhFPnq9p0cI8ikuuELe5fBLtPMb6dUdO1ZGsPlT0u6/8AdAwa8jigys6XzPchLvp1+t8o+LD1hvK9/iHChzvf9yNvVPYYubx5qPdEad9B0ckKowiaWdVw/o1/s2vSckcmvulVGl0z7kp6I+thqVVU4mR1jNl+AFEVhQny4ZVJqFYI9NIqiBCstnhxQGI/HaJsarqkxn5+goQalYWyMSjx6dAzlZqhUic3JLqpqhCtXrgAAfvM3fhPQCm/+5Cf44V/9CA8f7mM62UC7mOHqlV18+9u/CDIFdDnCdOsKCl3AshQGENjBorEWWhfRRLdeSlsnIQ0xnOxvxGPluLquURYFnJNc2oUx3pfceRuBr15jLUhpcZP0krFcjqPZQGsdWUaILrXWRVzf9GARAKkSvD9HZZsGM4vBNBvnbsKrZfvG0qaeQRq5hB8TdSFABsEG0gMPlrgmJcnfS7BiPO3X+gxY8mnQQ6YZZBsqhU71QgexpFgI0rT1QogKTQ482sMoDMARdVmxtykEo2nnSXn9jAt0ybQv6bEoSEl9KssSx3yEuvFM23njTcDCGYD2zMUH4NTOQbF4YkwmEyzmCgs4nJzU0NQATFCTCsfHM8AeYXsyxsZkB0VRYnNTKrx885vfwMHREf74L/4Cf/anf4a79x7ga6++gf29+7h54xpu376BnWtXsbE1B9jCaIKzjNY6FIWGtQ0YDloXONvSWcW0h8XS6IsbpeUEX7RtC6N1rKKujYEihca20EXhjYfC0I2Sau1Ja6GoISgPaSgANjJEjjhwKmuWGKjwDs88/CMJFs4RvgmyK/eea+221ZOC4zkrP4e0B32Gz5n03bkDgpieX3O5TWuk7MEPof3hH/ZYvf+YAfZJg6DOnfJEXQEbRxxvr130kaZzoDgXj2mvevhz67GXFGgdHLIqAk/edL+LTALe8EUM8gayMLmttT7jHqCUhlKSOwQgmKKEZY1FvUiqtTe2WWuxWMxxfHyM8XiMK1euYGdnFwoO4/EYx8fHUSKK1eEzaZoRfMtTcEnHwEhYVnNXYgddNV7WKgHkBo8LpLXGZDJBClZCtuhXM8LwXcCyE4iyWgLOxwLxvFAIgsBsY2bA4AUUE0/l0jICTx1eeM6x+OH7DZuy54rXQzKW9sPnk8aAuLnkEnpse4dxU/y3A/Ug33iGxjK/Xvou91TpCyung0PdUeCwQcZdcvmg0/j3hWPa3SE61wZ2SU+BtNYiYQdDGAkjVEoKG8Djt3XdeDiA0TKDoSDV0VsQhJmPxhMU2qHQstSuXruJg70Wn9x7G9evP4fKFFJgAcCD+/fx/oc/x3vvvINv/cK3cO36Ldy8cRvzkyPsPbyHd956E3/tt38ThQHms0MUoymCBOmc9dkCJQRiyHWrt/T837Da1kkK6ZVgW3G/87E1kgcEhOnGBl7/2tdilXSllCR48kxca0kj67y3S4QvlBJ1PGDymYuZc+ztBylZFHwbtNKyIQaV3jGsk1QBbdug9UWVtffJF/hBgRThCoC6bqEUddrSZ3DOOdi2lUyPXjsITJfZ55lR5Ddo8vaOZFztwwZRMyDy2lp6Hg44CXLYheLe2tvCkKkWAYcJd4iwDMP6zZwgXRWMkUGzgZ9DISQm9EG6rCN076woztvBJp1CF45p9+mM/XBJT4miRO1jbzgwQQVoo8CWwdahbmq0TYumaWFBkWk3TYOyMCiMxrgaYVQAmhzYLbCzexXzkwd4+PAhWmtRGgBe0t7f28NHH32Ejz78EH/jb/4+fvmXv4uNjW1ws8APf/g9/Ov/6Q9QFAZGEer5CYrKgtgHmbCDczaDA9ar/ugcdQ5iWbCps+RPwKbH4zFeePFFAL5iOxFs20Jp5ZmaQtNIQi5jDNq2jZdyQZKNuG5gnHKjxAjTGCkin5DKS5TOwbYWrbOo6wXqeoG2baEgyawcGEpraN/etm296yBFBp2ngWWPwzeNFFB2rWg4Aa5hZsAzfeUTWsXXEFQCgDw8oZRCWXL0+ul3aswWuSQhU+/Y7j3SppMiTeVc/4rYuY+ApPTsyWE0S+0Q/mTaiPIbVZgTS006hS4c076UtJ8tdYMacskk11fTsUAQFCmq0lDCLChIaZFpq8T0iWKkpSwYX7RAGzABNjAIf6/WWrRNg1FVYVRVqKoKhSkEp1Ya1v/etg2YjG+7Q4hsCx4cEQpBT7pLPYCOlLaKMjiF8+/6lwI6zFQMkBbraMnzw0MdA2UH5TYrcOQORJF5pgSXtMhAffg+pQavbV//mTrj6aXQnGmTv09+LHowSdb6obt1fsuzpyQpvQt55JfmME68/tGCNgLlJLIdDsF101rrNSeBg6JBlSHBYAFhC8J9gJviXPObTODya+jCMe1Lena0jFuSn+kDvxOwqBcolHhCwIWAEYC0xmg0QmFL2NKClQbgY9xB3rtEoSgMwA0cE4wyqEZTjMZTlKMx5nWN0jTQpVQXn89OcHJyjF/8hV/E9avXMCpKKJ9TBH5buH/3EwCEaryN3WsWjQXaukE5mYoRkLvMMsEkGbb9BCJBzoSUUj6XiJe0XXL5E4k11YkMuH3bWr+xZRGl+fVCx2f3M0a0F2ttrOEZDJ5N00TGHKATgbcUtCaMRpVIy614nzh2SxXc+68OtsxZFR3nPKYdjHqBaZEw7h6Tzq+VY/ktWs8ISSrUBUm608/yj8/YAu6M2YD07iXwJazc/yjM1qG1DvN5DaUMAIJDG6Vy5yxaJVkag0Cvywqm0v5ayVqiSXlthbPXGURsT5dM+5LORcPhwz0igElyaejSR98Fpg2CJgIqisyDTBEZtrUyiZXyhYKbVkRIZVBVY1TjKYpqhHldY1Q2GIvzCObzGeazGb72+uu4srODsigRpKsQefzwwX1oU2Brm6DIgZ1D2zpUahKlpexJe3+BToTEefstquaJETkkVd+xhccNPPP2eHXGEAPjJaIsgtEzUKVi83Jmp5TGfD4X2KksYySqcw5N20ArDa11dH3UWkMxQ5nCwzIKi0UTU7q2bZvU/F7q3RyKyN/nRkbjtanoxUKe+XLPXz7TAPL5ljQs8oy5N0pBUI1Y/WkjswyRyLeccA1If7etQ10vQCSwVOua7DktrCIPJMl4V0pDl2Vk2OShlWAHSC2/ZNqX9IxoyEOAs/kWc0tENd91YJN8AUZcNSx8Lxklw9IyfySSQrxFWUqxX5uur0hCwYMXBZjRti1OTk4wm8/keyeMmtnBWQuwV/kjNAKczpWD9B1wz85Pw2vvTOsxx2Iz5tvBprNbDbrADbW9ywTP0iTON45e3phTN+wzUD4H8qv3oZpVjHupvfHCvc/Dd19xhfR93lehV0M0qbUtJKiKJAlalMQtbMiaCGHaztnBXaOvVax+oGG6ZNqXdCqtcueK3gKcEpoCjKIsMB6PMFvMUJoShWJYtmAnEjiR6i4Mr9qHyjIBAqibGhoEIo3WttBKYzTZwM1bd/Dw7kMYKrC9sQUA2NzawM7OFj5473289to3sbWxg729Q/zwB3+Bd97+CZxtURgDoxXALY6P9sF6jMJUcK5dqsjjW4ZzW4nW92ToOFhnoweBcy6+7/d1gD2cczDGdBhwyB9iPWzSbbq0vWna6GkRoA2ttVQG4sRAg+Tbti2apgYvRNJU2kNXSMwzZ7rh+yVsPPstGCiJgVYxyNpkwAuWhIwx96GfjgtgD34hSht93nXiWneW8UqWi47HCjpsHHXTYHYyw+HRIRQZgBSYbRD4Zb46G20CjW3BRKjGk4BUR4AkePOsbt36dl8y7Ut6IgpMO2J/kCrsmIzwaO8AG6MpYog2A2AFVl28MkjliFK6TNpF02BcGoAIbSOTfTTewM1bz+Odt95DVYziAt/a3MDO9jb+7E//EgePDnBl9wT37n6CP/63/xYff/w+bNuiLAoUWgFscXK8j2qqYEYVrA0qf9egJZRLsP3fH4+Jhw1K64wZZmXEchuB0RpNK5kKyzIl2grMl5nR1g2UXpbeiCh6mIQ+Dv1tKOHYOYOVGpuzWIGIjEZZjmK6gXVMe0mazzwr2HHMNZ2f4zzj7vRPj/GfKplm9zs/JcgrbXxdSduxFJI+OTnBkWfaSnl3QxLDqtYarq4Bv5HM6wWKaoQtxzDxioFpUxz7x6nYfuGYdm42uqTPh0JukegC1tGBBzTGQUk+Z4zpvVIKRVFCYja6ld/LogBYqtkcHh7h+PgYTVMDEHc6Y4xgtgQ0dY1ibL0nQ0hRv0r6WS1t59IY95o99Jir6v+FzUcq/DxZmvsQwMGMDvadpM9lTtFleMG4l0x4lB3XYdrMwyO1tIFg9cLkyDWj8S9vV94GxjATzzOurGtH0naA7mBJnxCtggGTnUGEkHB+0jCY0+SOcz/ePs2v1P7h2XYaDn/hmHafLhn406XTpBmClwALg7ZthKmSN1qxWpLSAICd7aDEwavCGBMXMCkNcUDQ0OUEVTUBg3A8O8E1ABsbU9y8cQO3b9/GX37vr/C9v3wTzs5w/fpVvHDnBq5cmeL2rVsYjcdwAO7e/Qg3iwrTrR3M5rUYiCKz7EvXQ/jxEPUl9P4vPtw8+qSk4x8dPAIYKKsK1aiKfeRsSpiVS8rBBxrIvHI6ferAxB2m7ZzkIycA0FnGPzC0MRAzmgZNxtHLxBQFVCZlK6mXJeOjvI83e6aVPWlwXWNmcMxBsyxRBwYY/Jo72SCl4d3rBeiE4Cv/cISkKTvx9G0vMwDGPSPHVyJwk20covkUphQPEmIwpIxeYUyshaOUwqKuxbAbhZfEpLVS0dc9Jxoy5AzQhWPal5L2s6NVDLurznqmDS0RdT5kXCktTJvzxeUxTGu925eKKjMhRArKoiRlYG0LIg1TTVGNJnAgHM8k//TmxhR08waef+45/Lf/9I/w/gcf49atMf7+3/t9fO31V/DKK3ewvb0Bxw6zxQJ33/wZNnevQGtG2y4AFL6Yrm8f9Rn3aTTMsPuGthh0gS4Pe7T/CI4Z2zvbKMoC5N3grPNRg957JMAUwZsjMPFwUaWUeHh4ZmhtKyXdIKH+rhXclQ1793dBXEtVgEmiEouyiB4mZVl6g7KHsrI5YLR3MxyARnKgOf7SkW6RSaseEqMkiSbqMjfr2thxmigrlpydw5mwHhhy/MjZD7kWmBWHCMcFDSy7dKENqqKENiUcLByLf3ZpCjjffqUUjjxjVlqjcZKDO2AhWtEg0z4rXTim/cS2oktaS31f3CVGLqJkdly2aggAU5SsOjIsI3FzTjktOusqmHlIwxQFiC1aL23mIdSLxQKz2QzWlhiNRtjY2MDW1iaKQqO1FkpJdXbxIAnQiF/83mOD4v2WeiAu7yB95a3rfMr5yBJPS0cTkZQXcwPMb6gFlPlEZx4m/bEQeESi97rjsQIEEtE2C2pK0ZpB1e/7UqexWrHwYjeIKMycn4/Ylj5eHk/utTXUwMyPSE+UTZah5iyjQssHQHyts60lgWZh3vpQe0ASdwUtJxjQ82Ia/ftJxGovWKl3xGl08Zj2JT0zGlqYg3BHkLz8ouwpxXL8wOSM2KVKvzvnQDnmSRqgAtdv3MbJ4R5Ojg8BAO/87B188N4HePPNH+P2rR0899x1fPMXXsbLr7yInd0tGK3B1kKBURUGo1KjbWY4OtxHUWzD1rzktfB0yac/jf3V/bVtWjCSR0iXdycmnUMkzgesAGIsoyxda7hn0zTQOhQ3EA8UrZR4ovj8J0qr3mbhYQGI21pXW8hD/f0mMMBnyF9mEFii+FQRXukw3bifMdDD9/ssPUIY/XkWnodD3dH+JtsVwSk7p79VxGfhADVJ2/NQ+9h/HrbKQ/r7PdDXWIafbjVdMu1LOjNRb4J2JD5PQZpLARDZ+R3UM57QARNEPc5/5ugSJ0n8DYAKt557AZ980OCj+58AAH7y5k/w53/25/jpmz/Dr333N/H1b3wT3/2N72I0KlEWBsZotIsapAlVaTCuDNp6hoODB9i9eQXz2sJmuTxCi89GZ5COkbojMq7stLppoDKPEOpwN1rq+3Bc8MpZCk33xzfNAlVVQLK5WhQ+vF9r5fFhgSac9zmOHM7f3vrkVKG9HU+PjMktdVUGhXR+yqR1mTs5ZOHPyZ6ney71FJjMUBq1ssQ8gWAwzLW6TEvqzE2I26fX1ny9mSTFM3utheJ4yHsFDpGi/h7sJA4gf4ZwHZkHysNSg1vaQGd26ZJpf0HpdDbw5HRWlnSq8bHHuAFEVTL7uPqeGQAZVfQg3gxObEJZVlBaS7FfSETk0dEh6rrGZDLClSvbuHbtis8JkWqeBAlJmJZFW9fJZ7bj6EtdxjrQ8LR5dT+nL8KfHhMOx+Sbn/+u09f+/mcdp04bOH3Ox0Y2v5TfI9w/HJs1q3O+BMJw5x45s+1rTl3YAl0jH7ob85KU3X2gdELwilnbA1g+ItP6koSdoCLqnxaGfqnvM0k8G884ZoSUjiA/rQe3UfZaplX+RYkumfYlnZnWBdnkRBBcVPtgEGGcBAW9FvtMb8MCdh2JKEpNZMBQ0KZENZ4AkMrszz33HF55+XV8/Y3Xcf3aFRAcVLgGEuYIMHa3t3DcNHj44B5eeF1Ba8C6LuOI6nv/ebFqwS0/Sx9/XXEYdnd3QSQ1NjuSqJf+ltoQXNDQrebuvOGyaVs0bYPJZAJmqdk5qkZQWnJehJSpgHjNOGtzbpT1OXuIoc92RKKEhwo62kHvQZeHPHiMhB5a3hmXWFe8frqGIp/dMNokXDxOHDHy6yFxYoS/DMABpOTcIVbqYZHoLpndLmgNyaCaniGW0UM4Jl03+q338fvhoV6iS6Z9SU9E/Ug4QNQ/rTQKz7TbVvIuS15mX8oqx3ij5JYWqzBuL3ETSUI+x5JTAgWYNUwxwni6AQDY2NrEy6+8jN/47l/DdDpBVY1AsKDItMWaTySL+/q1XRy8/zHu39/HqDIodIO28Yve33fYVLQsES5rGklz6H4OXyUJO/y9fv26Z9oVau9brrzOn6EdHUjKeUaitPLqu6jp0ApNU2M2n+PKlSs4PDzEfD7HjWvXAfi829aKDzv7JHRBrAw2yJCYihnO+v6Iar1/FGc7HJn95hEMmemnJfFZ/uUul6J+xyJPL4CovRGluRLtuewypk3RYMkU/NPhmbwPKGKGYys2kpjtcaAUG6RWKVxw/fOMPWPaXsTu7NDap5oFQmBTfOxocCaimBdHNuhsc1lDF45pr1Kov7T0rBr/mPjLMn498JufeUqpKKnkN1xSpT0TT4dwgg/SCs3gBp/jQSloLVO4MAbT6QQ3b96I7mO5rJUgCqHKB+I09SJWtEmS3zLFVJq+IadK292eWXrm/ndBwlYrXMH6IeSITe1uAIFCTclUOMF5n+HECIPfNsKzdTai3ONEmJ9S8OXjEpzS2VGC540vGiDXSW1Mz9L9kG9xHZbdn18DfRIl5igRZ/fItQV/fh/7J4g7nlzG9yX7zTocm4XhR4m40+LkT8S98QhHRNkku38cM0bqU3+ddXThmPYQnW+BXdLjUmcSAhiNxrDOYbFYYLwxApg9A9eJYeULk7y6ijSpAySC+EdUTSKD0WiKze1dAMDG5iY2plMoHZV3MLtkoHIOWoVUnQxtNDY3ppi3QLOYg9jCaNWpRpI/S7jQkkDNy8xlaMKdFVKJwSPoVgEn8j7J8dCucTIxC2C+WABglGWJxWLhCwYUksCIJLjHEeHo6BC2bb3PcNBqMqk7g13Cnqn8Qbs37mB/by/rICQjXb7DDj51+o0SB1zG/bHctxFb55QvJfSuY5F2pS6DtJMjdOOlb7bYuPo8Hh08gnMtFIW5qCDz0nvaIFQycmC2mM/nqJsGzCptFhy273ygwj+xM/O9NR6i6JT5sIa+Ekz7kj47osjcGBvTDRzuHeKkbXB1+wokFTJHHBQelxWvruD10JfkwwII+YcJzApKl5hMt2CUqLs7u1ews7UBrYLULtZ+bTQYgLUNVFGAWbDrsiiwu7MNXYyxODkCwaA0JbRK6rdjFpXV16j0cHF8xhT1102TKs8SWOuA7B5WcbbJBfZorU2wDGc8ID8VwniDJGx9vU2QtHU2O4HWGqNRhdnsBMYYlGUhqV0LAyIFdoz9vYeoF4uY7jW8nGtjIietjc8Zwp7pS2Ne+fq3cffuJ51NK0I3kRH3Nrk4ScJzUT7ca9m7nxDZ9TjbVAikKG54SmfMkmTuEIWcNg53XvsW7t27C2YnVXnIR4Lm8B07gJzXOBiLRY26bmH0yGsuDEXdzVIGmyCwHi23O0Ah0uIB7Sv0wldN0l7WQi/pKVLfH3votzCRjSkgeapDsvgVftBRDPWLPY9HxvJb+aygTYGyGgEAirLEZDKJiyJXb0P61Y7HAhHKosBoJCW9CAqkV7CNfkkY6v68+sf8K49ND/3uYYXodRAkeGloumaAK3peH7Ed/mOARUJxg5BzJeLD/rimrrFYLDq+3wDgXCvV3MEoCieFeR37CMykHC3mc9/8HtPOPFZWGa8j1MOnsajQRauv1/FbB6B1ty8Fnw+VceT8erEAw8m4Q0nmPqjsGXz6ACXzpm2977UKjJo7EEx60527+Tzs/OzbPcyfvmpM+5I+VwqGGmaKQRvWq+VdSlJTNMiBlvI3L107ugaIOgsS41HTtJjN5ygmo8666STx4VARxoFYoTAahQE+/vhDbF+9jenGBIh4rEqStGf6cu9ME0CPf0ecMgEEffQ7Ss4uaRV1XaP2uSrG47FnOMsLt+POt7SJCbOumyYWBg5h7p1ow8hg5R/tqwjlncasRMsAoI32/ssOzukMsoKvbAMMcp7Q1IiVLz9PaE/SSVbTcAZB8fgI2k/ugpmweESG7Z8OAGCMhmPyaYVVlLI7bSN4SVugGKMJRVFAK+OPXx+MlTKWdL7sKFk0eMZ6umTal/RUSUHBehGkMAaOpUIK4BeQn7Dcz19Ny1M2l1kSw1aAUmDWYB8dCQCzRQN1cIjpqPCYtBjOUtkuH93HDDjxBiiLEpVt8ec//Ct8+1emuHLlGti2gPec0FrDkU8fai2UkQ0isHUPBHUNdiypN4OE5dj5Qq4KaAEojylnz3lycoK9vT2MRiNMp1PApcAMpLQinX7JE0EFBtY0DQ6PjrC5uRkL6gaJm4iygJwUel2WJTY3N6V2ptfhc+8UKEKoxR4qu4eRmU4n3XbF4JR0jIz7GpWf83NWU1+aDzBOen502m+9CyPFvCzcmXNlUfhNXBi3UhrO5XYEAiiMkoP2BY2rcgSlCg8D5aFGST2K7oGDGlnyQlFKgaxLhw1iact0ybQv6anRsleIN/z1vEeWjFdIUjZFVpgrmJmbmZcQEXHugAU7NHXtVd5wdMjPkUlfIQybWbKtaYWDR/uwbQOtCK11aXeJzQ2qsL+uC6HRoR5ghhmEZ4oQwQpJOyPJYT1PniPR22FI2vZrO/ZVurDkfW5i+TDnXMqDHcbDu8UFPJh8WbfoCsipPJjzN/PZR6B1bvzzWRizx3FZRGHeF2mL88+Qj3/sI4V02noILjHt5UjRgGXHeZXlLM+1OMk6KXYKUHiuXmdTmkfChBWUSq58+fAuKT9dFSz7IkFUfY+fs0jZwCXTvqSnRNRhTPIfswRuiBTjUva8DMqj+Dmf2KvCWoRE5fY4pZIp7Bg4PDqGVhp5Udxl0YXS9yw1GMejCm2zwOzkEGU1hZST8hJplIz8Kb2WMny2vAw2yKVgTVmhA3SbE/qsaZoODhyuTkgKeFdo8zh73EOcz6YIlGUVCxhI7vEiFddlt9wdDARPiPjXAzupGO3ZqLd3+efG2bnROakT6r7CvtInyn5P84MyQ2XwNpHvPbDmpYXQjytmZubFk9+PM+yasu8VhTE8a6Sn0JNlW7+kS4JAIh1ruMednXNQWklFcGtlQnsvh1C8IJQaCyCITMnwCr9wfC9eIc7jlAZaSe5p6wh37z+AMUVkUNEVjhIDD/ikc7JQCqWwuzVFPTvEo4f3oOBgFKDISRkylsi7YMjr+Klnn8lvTiEC1PnkTUabpK6H4zmVnQLgMxLajHGnvoz5RaKhUD4733fh2nXTACBMJhM0TRPvX1UVjNayAfg0uYHJRSk1+Gt7hp1rRkHKHiKO58ghQeXv0lk5djbGpx3ZM3QGP/SciSuiZcZNqc+JpIixwEc6FjXWWqMoChhTwBgTjbjh1Te05htxGNvOb+HWlGZ4UBaNVku9swZIinTxJO2zbldfFvqSPM+yCxN57FTCx51zHttM0irLYchhDNEb06Tv2N4oY5Qe3yYKODNwMpv5iu/hjKw1XpQJeHdgXooIVVnAtg0W8xN4z165O4t3QTR+5jht/DdJamG5BYYpvsGARcJbg0iV91Ve4TwP4FlFQdUPR0nBWdkgC2NitZ7AaMAcA0RC1GIumeaZ+yITCo880I4uM/RS/xoajizNbnjK+Tkl/33ufDd0jEAzWTv7rfLSdRwaSt4jaYTDRtuDeDJNLu/PgK13V0LeuDSdJAiMZfLyiuMH6OIx7Uv6zGjJcBgmcjYBtRLGYZ0F65SnuX/eEHWdJbr4cGTrnoGMRhNMJpt4dHCEwkiS+dwYFJ0YgAh3BEa6ubGBum0kzStbMIL07xPXewk9Bb4s90CMsKNUYZ6dE3iDQ34Qf3wH85b2iHRnepJ8gI+6BrJgRHSeGQeNJjEzYUah+AGR+DE7R8t9gG47QrfmkX358HSHKin7YYM+PxZyHmAgtKHrpRPhthWQSOc+fby980BhfgVgKoerhp6Ne+flt6M17Um1ItMcPXsfXMIjl/RE1JewpcpJWvCmMDCFQVMvxFo/MI/Z5xXhfA10j0gqac/gxF7S3tq+hivXbuHDjz7BfF5DkYZWKaOdQ5CCKLYNbAE43L51A838BA/ufgLnarBrAF+RJEjH4n0iCzmp2D6ogwDrnBjiQDCmiDh+2wrEYrTpqOxK+SRN/jqTyQRVJXh0MHw6dlniIY6MMffBbppGfLG1id8pny+7KIp4fSlEu7zc2XEs/hs2HKVUJ99zbvzjpB4hJPOXcU9DI5tWkFqXxztcqw+lhOGNkNAq7BhIpdJIgZQW20nY4DAEtgj0Riq0PWsLqHNfsBhVHWdM2+MbDiGmFpDNnHtMNxlCM7k8e/kC1oo6SaUumXaPzrv3fxHoy9LmztTMVMQgfWglrlKtr3i+bKpJizWdm8MEyDDDJHVn6CUAYDSeYjLZxMHBEdrWxsVIEbro3jcYSolF0rZtg5PjIzDn1Wz67VyV2D4s+BSkIpJ2KqygM4Yd8WrvghYMhkHSZiQIibLzBBXKP7uYJCrcM2dmKTd3alOunaS+T88U+i1BPqGflyXNvhaQGHoOF/Ul0Ozc/ItzEPeZKWTzxBCO3W9vvyHxberjOH8Hhnpo/oZfwr8DMzz7m81cH3173h64cEybBl5fVhp6lqf5ehoNpN5CSXieTEilFZRWyQ941c17DKIrp3Qx0bgnhMMBFEWFqhqjaUTizZlRZwPI2kbxag5lWaAsChwdHkgEJxhKJeko4aSdVmTPnPohGMUE0/ZRhh7KkDMTIwWA0WiEsiyzcPJu1wxFA4ZQ6sDYA8yRS8t5B3U2mxxeIPTGb/m+eWcvbbAc+rM/D9LfHObqb86pjWedlUmazluWrt+HNBS6106jnm1VGdySS+tZKPygQJx9CBtyppV07SCpE8gfnjbS0IqzSdsXjmlf0heDwmQsygKmLHB8cgzLNhq3mIQZC6IQFlbOaLJFFiTLjmLaXXiT6Ra2t6/h5KSBRyTQtm30UpFMbiGvsWDeYgdygGuxtTHFxnSCDz98H/XiBIoctAJIcsL6yi7SnJA/hYmTS57qVkkP0q82BYhULMQbJG/l840Dkkt7Y2MDo9FIVObs+VdBBcHNj5lhjIkbRe7mF2gZt816uQdV9Dc459ImmJh22kSCjU7gFw1ARaikw6zzFvjfYrW0JYlCrXyRUnG+BCbtmMGkPKQkYx20jdCufsQjewhE5AiviUSjM6LGk1N3U1imzsalKM71dKE0a4kgXj1dxedMdGmIvKSnT0EwIYI2Glor1E0dvRQ6ymLgERykkvzvaumrJ2ijLMcYjzdQ1xbOSsImdg6aVUeKD3qAouDZwQBbjKoKVeWwv7+Htq0RwpcJnikg9wjoMkFGMjQG9zNZwBqkCNa6LL1nYsChIvdkMunWp/T3xZK2kN2VU7s0qZQB0GPeS/2VGYnjlTwssIrB9zeL0I3OhTaFy1DEy9cxtbPRGg7mOVyYLmn7ljYElhg1PfQ5YmY3gTD4kG0vxAukI9fPPKIAVw03Pb9e1989jZMKxvLOtU/vv4vHtFc981PBAz5DetK5fxZ60j7hIfwuu7ZjhGQ9yUDZXVrh4DjHY1b4XE/vfY7HZR9JQ5sCo9EEbeuwmC9Qld3mhPB0wcadhylkARWFQWEM6qMF2rbxKUt9bouw5DKJPy5aLHdjHyrwX3bSceYResnI14V1cp/g8N55MTUG8AR1nlO9x2QwzERdyq4b2+CfpgeJWGthnfVFfUMwkRhF26yOpvWGVABQRerstKFGrrVMHRRjEC8b+C61McyZvCKMtZJXRiEk1pJN0oUq9xwySorhWMyKCqxE6h0kCveE78NcrOBoZzhtMeUFHsKRKkrjOYwCnLb4LxzTHuq+z4L/PQt6lvvMM+0TIqkYAob2wTXWNlHaRCYlybLRGRNWkJwPefIegNl7bCC5qgnM4iVnXaIabeLq1VuYzWo8fLiPO89fyeAMBU0GYAd2Fo4smC2IGEYRNicTtC3w1s/v4eT4CJPJBka6BMMApKB0SFkS1NsUdqJjsQffXl8WlpHyXRARjNFhxxD4JCxiFkndsjDCABkopdC0rUiXHqduQ6XvIM0rAhTBNewDRAof5OMiswpSXrynZ+DO2U77wgaxWCzQ2jaWLnO+QVrrjttjXddRszDaSFWbXFHyg5d7GEXNIfv3PNQJooneMMI8m6aWzVbrZBQlndkSgKBUNHUDa9sYAKVGRWTM5K9NITK2B8nJMbSi+X5+LDFhf+E4f4L3iM9E09tQ19GFY9qX9PlSHtDAQGQ2sti8w1QmtQxP1b7ksWIq5+qoMiiKETY3d3D06CPAtSB1tXMVpbR3L/RYt08IpAgYVxVmlcV8foLFYoamqVE58dmGT88ZmrUaAghcOxepU78opVKQyxL0QCAKTBayUSgFW1sonYpGSCCNBaFryIqQi2cESzh2z9eSmWPZq37/1nUd8XfSCq13ZdRO0rQGats2eq84dtDQCaMO/QDZxPLnjIFG/U46A3V9yoO0HdpjJVAJoSoPIRiR4/2DpG0lwVbIOVJ5CGN5puUiQmjyaayVI49eRRS0y4DgnANWunBMuy9pf1ml7EDPStp+Wv1yKgPjxLw5HB8hkLwhQ9lGlgFDisfKxTm7D6BQVWMcsSxggSBCO9O6YAhUEdhGkEaVIoxHIzR1jfl8humWh0HiDc6hww2hQL2ncVnfBWgk/u7PUzGtqIdOMkw0nAcgeozkcMq6PBlLv/cOC9fTRkP78ltSPi6hs0VRCpRkXbpGLmr3P6M7X2L/n3GWZ6FB6Rphk8uuq2J9RgKz7v7mmbZAPTm3GBIcAFDQloaOCyCJvF+ZVTjbm/obdZc8sz+lOy4c076kz49yRuIcfHknkXTKsoBjRusstA7ydbZovBjDAWcYmryB10cmxggplSTgXOHa9Vu4/+k7mM1mUlDYSN5tZsByWlhEIv85ZrRtA3CBwhR47vZt7O8/hGXC1RvPSfAMQmi6iUFAHIIk/PNG3+aIp/r7IPFDx5KBUCnxXqnrBpV0GJyHRSR6NEmzpjCR/9dN4zUExEx+gQkURZWy8znnIyINrG1iH3eiCNENEgqBQ2EMy7JEWZYYjcfimQHByfPK7zvbOzg+PkZdH4gGowQY4t64Dto98mEf+mEVUTAsE2zwm/d9IFkJNUbjCbTSHlcLsFrcNgAAk8kUbVt7TNpveFmAVxCoGd4jJQga/hqMBOBx9u3aoKB4DRFcFOnkYXIOreOSaV/SU6ckUQcIj6GNAcMn9tG5bEWd8zofBtdvPrnTAmEvaW9v7wIgLBa1zyxICJzaZ1SNdSBFsPFFGmBgtMbVK1fw1tvvwrGKG0fwIIkbCQdG7VvCWb6STJ3OZbPQJ8r7bitKEZHSNsnSrYz2LmxytlLiGeKcQ2vb+F2IfgxMIqRJTZhvqObS7cSO7pK5+vXV86IoMBqNsLmxAVYGDIpujCFacjrdQNO0CPtskKz7uUY6RlEMSZhDrVsmjsfIQOTBSxSwd5KK9lIIQtw8Q3QiMRA8mKqqionDUpsS+803lQ5w0kfueg0cchVc+SRLBuuz6b8XjmkPRtzF3axPQx224rs1qu5yG1bdb+jeKyABz2tWtjr7ofN83HuCgQWy7jH6ngvLJ/SdlDh+xyzhuZ1uY2mDNkYqhDvX62mROtLC5m7/9a4lb1MWwE5ryN+rKKFNgcWiwUgrKfSKIJW7KLmyX/zkMRQFKVWlFQC2aBYzmHEh0l1vVFVqOhCly9CGlMxJIUtIhLRZWGdR17Xvc39i1nXIxj7g2GFcyDPQPKCn0xfBWNBjxP28MHH8fN/KBkWd45VSYKXi82mVMtMJpp6ukQ9EF+xK70MgULcRUf3BqUTLG0/AyMlfw2hxMx1m2kHrUB0YKV2Qsw3I3zBoUURZsZowqOQ39fDdUnPjv30BXAQIL0QwB6VgDeQodAGZdtS04+ja8APQGXFCNuh+kDrSUTaX0nvKpKyzSAbLRNmbDo45cFxkMNlGT9kayZ+XOQtP4XRO8Gntn3sapcQ8PQWOugIHkY/4Y4byLlQMgoU34GmF0cYGamuBukZVTaFIOJ5m+KAbzm6SmHeUGn1INqDhuAKz8wEtXlpVDCiCZcJ05zpabvHJvQO88Pw1lFqBFKO1i1hEoWHvR80aGsqXnSJMKoNJpcC8wN7d93D1+degigmglE/+RCBWME5JAn8GQAotCI7gawhKHm4NgFBAOQI5kg2BhWkdHx3j4cOHuPriqwK0hNJsbOU6EFc1IsJ8vsBsPkdVVVHtXywWKIsShfJJppwMrCLfZ+zADpkfS9xa02YQNRVODsvZnFeKBNYijVDVPM9JUhTBD10iSDvJtWQCZbNULroiZCW2bTX1hCm/Bsn/I3NVvJUmkxGM1mCSIgfaaGmaS5O/KDTa1kn5MG180WLvIugZsDyOryHp0w87v/lTbLeftL4fOfD1EAwkuzjiLhzcMdkBsCiVRqUsWm79Vbv1cIbowkVEBgYnjMy7nhFgiWHJd2r28sWT/ULpMvzwW5KA0q673nhyBmZ+Vs6J1I4UUNDZk+JEie3vCcj5uQN7V/dea3b5pXaHRij46EAHJq/a+0RKwsgUqvEYjbVYtI1Me/J+yorBZP25oap4WlyOAzQhfe6gwCjAbEDQwsT8M0IRLCmMt3Ywmu7g4d4RbCuMRhODuAHQgolhQXDQABkoiLHNABgVCqNSQXGNg4efgts5iCxALus/gvGM2zgFBe03KZlnTvtngZO9hAnKEjT7ypOOMZud4ODRo6xfFZjIF9QVhmqdg2PGoq5xcnICABGeaJoGisS/2GgN7xaTavl4xp2GqxsclLSNfCy7YqxS4r9ujIYx2vuyaxifrVEbwWRdrAHKafz6d1g53/vuccOUI+WJYaYgqSC1agWMRyWqqkBVFihKLe+rAmVlUFWSRCswauWrF8Uc4sRgtt4WI18pX/w3IfYutpmCJBQ1MT//KUj4XnfJ0tlEYYQdSqVQkIJiRqgrfRrAcuGYdqRcVM4G/HTiuClm35z/3ufhytl98lDt3rJac6+B99mZvPTNeWn5WXj1T1iadpRCvJdqQ666cue5KPvTTRU6dJ4xBUxRwFoH64LklK5J/Wtz92NhjERx1gtY28biAdGXdt2wLI3B0DYrUm9IncrZkdxb2AEWCcmfgu91HtAxGMyD9Rtwv83rEi0tHb7m2MF7Uva3/8quufRTMDLy8nqgpXZwuk58pWOWW5V0x64bYtaeuIed3jedluQeIoltx+vm54hLbIAXT70NgAsIj8TB9xZx55x3+k9VP0LIMQCwlSKnyhs2ojU3Vy2jWpjUsrVtGHjXIc4nX5SHs8EeClJAZ+Zl1abic8vf3q2W3qd8EesmY39yBRU0j84Lx+UBD+lGnDWdUBYF2DlYeGOaVyktW2h4yST0L8k5DClXxn5s5FoMhvWloVJpL2bAwgGksLm1Bduc4P2mxWLRoq5aqFJH6Sc2kQgg1Uu3CezsbIMOFT699xC3jw4xMSOoUQVSHPmGA0MFBsuiISgvrbpMHXY+Qk/pbABJ8mdvbW3GLgvwUhxE//nk5ARaa2xtbUmFmnoBIinIG6CKvG5jDml1xo9z+Tof16HR9+IDB7/xTIwgWpp3eYrRVS5t4en7fIl611tFXf/ss5IYfa21UXkL5+dFj8P10xrqMn7ZN3r37/Vzik+geK0+s+Z88/FYe1kUMI31l5SKTOqUR7ywkjZBFnqIhtLk49S8iqogMCh87cKYBSDT6shfB46TqxOfUWqnYcEinte5h79PvDfHQ4YEz74E3RccaelmAyevanbG2FK2suz0jDn082LEqDrPsMJzKSKUphBrf5us/YCo1ml6U+xflbchfh8a4uLmFPNgIOQ/Jkw2NrGxuYm6sVg0LZrWCpwZOyf0D0k0IQTuDDamza0NjMcj7O/tY3ZyjLZeQKAGF7s1Pic4qtYEn4KV0xOljH/d7jfGYDrd6PRrf+MLTFsphY2NDTjn0DQ1mqZGWZY95nIeZpbTgISeMezQ/uTPnelt2bif5f6r183Z236e3CZiqFVw1okBPDs3BNb0M+0BWOrTxKeXN8T+/frXWN8+xJJmgdmD+avHtCPjzb6hHoM87XwCuo7yOePkTPjl5Zd8z2ln771W3e+079ZN1VW/Rdbfs3Ympp/+O42W2j50Snz+5QMoiCwY1lTyZ877N34ODCLeiJfG2d9IFozSKIoS1loJtFn1YAOXUUpBK8Fxm6ZG2zQypgiv5dt2VPfsQShqEUCsW8kh5DzLd5G1Q3KMdPNk9xlkfzNd+XiDTPa0k06/bmjLafd8FjQUUbr2ngNdZa1d2f4+w1136eTEsHyTJa0Cy+1QcTzTCafpHhcOHpG148A2+MQKBhos/RoUopcBZvnMADl5H8RbhkjiAaHIGUj4vI4RDH8YGA5ObzplPoNgMzB+uZqZL3RA7NpRGszYcZBk+0Yf7r3Lz4iLPMnBwkBcJjk6yTIXJN0w98ir40GgjUEnDHHH8k4fiZl31dcuk0YaCIjJz1kLoszQ5qVo5yxaxyBT4LkXXsTB0R7YWWxuTuMgMpxI2MxgJxVqnK/ErUnBwWE0qnD71k08uH8XUAW2dq9LoV8UgFIgl7YPgP38YrANzyHeJUqpmMCoXtTQRlTyoizhfRG9X3aaUIvFAo1t0VqLjY0NMDOOjo5AlMqSKaXinOwzrD5GGzaOYcbWl/D9xuqZiYruftl26Y/vR2F2ISuvZ3WY34B4EKWsx9EUlp+nA9P4DtLKIAgvoe1HR0edFLY5xBSuE1MGUCrbFrXLfr/1njP4fVt2qyMlQTBGeRuKBtk1gTkZXTxJmxlwDLaCJWqlxaLuhAlrTkxaoBLEzyr/DHnlmZ7j92eU2hF24fjKmFN+/oBkvnyt5Y+8/HUXf+z93jHMUPe3/jlD0nc0qnioIrwPKSb7mkiKVks4OMfjEzMP/UTIPM/yvlqS4CXpE2c+37nHSssMZQrcev4ODk9m2Ht0EHs1aha+PRJY488nL/n4KuY3b17H3oN7eLT3AJpbKNdCw8HEfJ5pUyUw4KRdwc9AjI0qrudFvYiV0gsfbdgZM98pi8UCi/kcdV1jOp2CmXF8fAxAIhWrqupIg6fivTT8W86Aw1j1GRd5wSe3BYRjApad2zSkUG5KVhXvlcMrGfzXwXnPRUMMe/kowdyNGH2zOX98fByLTki7u6llw+c86rTzLP4rx710BL0WhsCoVQZao8T7RyvltbnT6eJJ2hkFRhIXezQOcJQGu8aSbiGr9P3w+/B5aUDW61NL0ke8Vv976svLckcJ8ksTPzKkDPcdhjy8HBzvc7aFspYp9CTiKGmvuHr2hEgjhCUNIGxyHck7aqB+awlMP7t6MLCSUiiKSr7zCyti/f1HCF9HBizMxxgjhXNtC9u2gEnSGyWlLH3Xe+YQzOIcw7aNhNX7+o1524MEKrwgXMGP/QATjQx7zTyLUmHnedO1h71NsGLQ6KxT5cyU91V6jGXj3hANMcCzQTJJUg45z1ddf9U98s0n5DMHvP0sO6avMcrTLV0Qse5CBq/QKc9y4Zg2kUREOeui1BYqYlOYFNlOqQKjTjwyEadrPp71+ulQtufEge2M6wCHfMprDLnXDQMCiTDDRr4gGkxUkRFYsocOwCiMARzQ1g20U6AsL0T+oFFCZ4C0MBjJGxKMnBZa96AmJjjrc0prA4URaLyB6cYOFNeYzxuMJyFbnqi9ClIpnm0YV4KzLUgpaKVQFAbjUQFua+zd+wRXb08BtnC2Bqjykpv8p7yqFCMlPWNkBo6Oj7C/t4fZ7AQ72ztQxqBEcl201oKJ0FqLRV3DFAWUkRwkh4eHYGaMx+OOOr9qU+zQIMNOP63cxDLMODD+jveDXwMhy5/ybmtAlxnmSyUGpXWEpHwTfvx11YGCckNz/jy+QfVColCDrSBoCwHjDu2MtT21BsDREy0kxxJhsI0xBEppOEikq7McdS14TQVYMV5e0CqMgWqsBNacwrQvHDyiQDBKR9U7SNrBOLgEf1Ds3iQtsvcmYTE85XhXruY/cwrqd8bEAi0Fy5xxM1ktTK0/P5bJ8v0V7AV9aCfvS4VkBGbHEqShFdqmFq+eTB0M57BP/8mOASfBIspLehLVJuXBtBL8OdoBGLDWq7bGoCgrVONNTDd2UFYTzOY1goRJILg2pDfV0bOEiGDbNkrahTEYj0qwrfHw7idQsCC2cG3T6UuGCAjGvwRSIxBpMBiHx0f4+JNPcO/efRweH6NprR9SaW9QwVtrcXJygqIsUI1GqKoKh4eHcM7FOpIBWurYP84y7r1BD95Q/XHvewetkvSBIabN2ToZhityepriT8gpsvx9EAJkTOqm8e2Tu2utY3GHHKMPYyLFlp03aLeYe9iqrmss6lqgrMUCi7rGvF6griXrYe6ptOyhkjzR4DVAYwy0yr5fQxeOaSMsQF7GWHNaIWR0Dzj1Xs+WeXcVqwF1DVj5cEM5R8I1OJNKzuMuttqg0u/PKHv723pmGiqG2wGML39ETipibgRNY8lRnVwy7XqmHOoDaiNFAQRX7La308ZeY2RD93X8ADT1QhgDOwxeKMjcnCrKBN9ddpyKGwzeDUuYci71BYPgkmtafOQVzxBhlNg1nwmd5pXx5G6KiYKUPQwz9nuckqQctYGztiFNUF7FVPyCDFrb4NwKgkqSNRDcYtPXXzF4pK0bFMrIcwcjNtLgdGrxIcPCwgLLUOKEAPpjs+/POtRD+PUQo+9PNKLQllM4ZTplUHJaavhp7Y2vPG8dxU0gVgHxf43SMRGPIsnhoYjTLb0RxhQK09EYzaLB7PgE5UYB0l5y5+SfIJKOGBgVZcmJskldKCUhv5yQcK3EowLKIuBcSpWYTncwdxaz2SGcdb6gL3nDj8wHTQoBmy6M5PIIGPjV3R0cPjrCo4f30RwfoBhtw+iJeHsQQSriaNTzE1+dBxhvbEuItzKwTYOyKrF7ZRdFUWJnextlVflK6oEJpHk5Go2kIgxknmxubkaf7DjkmZTeHW9OB6yjgMd6F8R4BYIPROu+Vl0teLEEL4u81uTZmeHTYtyr7xs2vuCFA4hBl5nRtm3cFMP7vpE3L8hcjSuRzkkBro2xAaSkWIRI9pJFUGuD5P5FPZ6SuLYioDRGvJjOsEgvHNNu6hplYbwqjQ7TDljVUsUPouQCBjmHgcwzYJlRr2Pc64wpfZUzn+jxyuTbu4S1r98u4kQYEjQ43b9zTK+dFP9DhBII8IzN909kagQTNkgIjgcgls8Sps0AOxilMZ1MMHMz7O3vYXO8CdKU1HQItqd9KlJ27PFE8hNbXM+IFJRW0Ai5TaTdRhmw4oilh77d3NgFNzX2Hj2AswwY6U9DgkGydXKufzZjDOq2gWOGAnD9yi7a2QLvP3gX9dEjFGaMYjxFDQcoA1IKRhGO6gUW8xm4dZhOd6RfdAF2M1SjEa5evYKtrZ2IS7vc8wVA6zHV8XiMw+Mjub9S2NnZieMmGqScE+ax/ObimFI2xtSbsfmcd9b6wCSORwZBYVXQSR+TlmRLOkUeE/Xm8+kMOUilq2jInVFQubz3urDMutseHh4CEKYKINa81Fqj8dBJgKHCZhSgElIKo/FInlspkLUImVOYGa1L7RqNRjFdbtb67N/4gFAgVIWBhk9u91WTtNlm8rHfBU+dO5mqEq9zzvdnoY4xp3//yJT7lHw+ga6ElTTzkNx/+UHjPh/6ovPb2aWcYMDN3Z1S2zNJh0lSk7JIbTmFZEeSVhSd13Lbc2knPScoUy+Z4o/sJdfuPZUYJUmLZJsl7QkMsC/ZRKbnF6m4Y5G4GNoW7POQ5BoZkUR2WtvKquPIBuNzm6JAWZWxEo21bVZVp7uJ53hyyjmSfNLzJ5RhkQ1+1WhGjWnd/HsMWuUF1bn3ANPNv3/6hn2KMFBuNwiUp7gNAkgfiupTEOwUUcTAQ4ranGlztpmkTS+7XqYtBVkxfB8l/CwZ1Sq6cEx7sVhgakcwvhicY/ZZ6IDAwDONpYv5BwaACE9BZEDuwCd5wMs6nFcuyUsTtXdE92N27aC6dgXnLvMd1IZ7/DlcI8hUMll7mxl3/xIoaiphg0jnJ98QAJ0kUKQoC6wRyVnixJ1kS/MSu/EBBWCp5OJnfoRI8o5lZjR1i6ax0AYYjwmkpRBr2KQ//eRTOHK49fx1BFONwA4KDA1jRlgsGijlUFWi1rPlmBg/9KNIXiH/CQB2GI1K3Pj/s/fnwZZld3ko+P3W2nuf4U45VWZllSpr1FBVmrEpCU1GIAnEIIQs+9EyYBMBNB30o/2HIyxjojvA7SHeH93x4tlEtB3GGNpusPGjH25sSUYCCRA8SQiESoNVU2ZNmVk53bz3nnvO3nutX/+xxj2cc88d8+bN/WXcvOfuce199v7Wb33rN5w6gWIyRjEeQSRDjMoS2XARaa8HBjAeTzDenKCf9kznpjU0lyBhAmKEtK6HRtswXgbx9+wmQpVCkrpMdLKS5N90BoHswgQbwNGX3iQfbiybR1OueJG0rHdFhl10Z5P4Zo8M29s6D5qtCfdw+nliaTQvSmS9FG7uAUAjh4rWGmVZQmmN/qCP4XCI4cICYK9KWEOILUeoyNJ2oxBzrNCOYH6F91ISIU2kn9zfaqLx6JH2aBN6eRG9Xhoc4xP7RTizyH2OfqP2YOracNJEhllZQDirE0jmeOCmWSHUyriVHUMvjJBUiCFCz+wsdPt+MFc7pXrQjul4WoYWzt51eTMo+gwbWWpdQbSORBQGtNJBToluh7RyBguASw1BwuvHWZIiTRKTOlVIE6VgJ5V8ulW7SGtGPplgc3OCNCP0en1AWkvZWk4vXHgeGhpn7rkLgkwvbYouCAApknSA8eYEgkx60TQRllhNQIxLKFaqAnCZ18hIOwuDHu49ewbF5gbybB0iGWBjLCB6GTLRgwZjtLmJyWgT/ZUeoI38ULIpjJvKHlJkJu+K/Q7LUsHRNjP7fOFlWfrhuatO4z67t9/JEKoswbAyEs8iwCCDcOUY7RkTYwlvFmkXRQHlvUeaiZfqlm7d0t8rwq5gyvHqpD3JC2T9rDJijeUMJ40UZYFSK2S9HlaOHcNwODQBUkpBuvqdZJKExfct7sRcXnSqvXYEm+xVEFIrsykCxJ1mabN1F6sMTMg9nMFiRmXddGt3KiLJgtB8GGfvGiyRWBVxi93x/LDWNcp2FOG8tZ6bo1EAuyMF4najByd1zLxkbhUsIgU0nNMfq/5UumutxOKTXx66BGdoG5JkYa1vhO/NvEQlpJbVE9iP+SSHhqoYd+wv2HiSKOtny+4lqlx3IKkwajX3SQqBfi/DpLCBNqpEqaLMejCjDRPGH4/N7XUKgEhAl1El9kiHdXfF3QPpiupGlra/c/WJxx1hmpTR/uz6eR9UidZFAhLNkF7maU3Lfu3eHdzYpiG/tBwn7oDaRr31c7n5Bmb2o0ghhE8h4CIcBUn/nLqmxfKIXTD1ut1ozhs8qD+T7ThypN3v9VHmJdC3PRkFWjDvsBuKoyFFwE1yzDqBt2gDYe8cljxD7xI+1kjTEK8tRuuGwfYSKomVohUERA+Ce6ooPGOVC+VwHjJ+wD6DhH2ZfXBNNGkJ2BJU1vIXRGDbSrD1ABEEYoYqje6rlbFiWBjrmzVjPN7E5mgTk/EIy8tLGA6HkDIx34dmk4+jKCFTM1NvvFcEpLWO7jp1FxRMYANgZI+NUYEnXyzw1Isa33h5CdfXe9AgpJJwaonw2N0CD50EXnuGsWQq7HqLyOuc1pLs9XrYHOcYbaxjrCV0sgzWJVxuwMWlJfSzDMOFxYgobOerAJApaKCVte4BT4Sxh4aQprCDkLWJwNrLv7Xs1viCZ2L6aHC6B4kjpjjHd1WCAeoUtHWbZ4EQ1ftqbSsqx6+SMRH5id1eL8N4PIEUAokQ3pvEWeQMEyhTaoWlpSX0+30QEUK8gpPgKG4Awjsdflfey2hTjj4LGPfSUqk7j7SHgyHyyQTQi2boQcYyc18iCWEqWsPoCGbUaR86UX04Gw+YW7nF87bVCxDDFxa1UoI7QWzdgG0aWWs5VgiXQ95vIBA4w1XcCFF6rg3syCR+iKLftnIXvKUOI0OQtFqwlYec5S+kKcfktWmCiXbUMATkai4WE6jc5N4oiwJaZkhlClWW2FjfwJUrr+D6tas4d+4csiyzpE3QrLG5uYm8KJH2zOSiLhQECa//3nvvvVCsoRTjqRdv4nf/5CV84b9fRSLIWMgMAKm/3otrwNdfJmSJRKmBbz+n8YNvUHjgtKmJSHbSKZ+YF7s3HOLqlTVsjksUayP078rAuoCZ3SQcP3EcUIxekoHZJtUSZrWGk2GMDqyUghQS7usWkUUtE+mTSjmSYDazCNL1xDBZAN395krHX8e0EWA16tGPMKLnxMkwbtwaW6xAmGxzLnEul0eQCabr5ruZgGxKLuGzqB3XS0nWO+fUqVMAgH5/gKtXryJJJbI0QWqfI2brU09AYQNqjh8/7knbTWQauQoI5lAgaLPYmlc1uSgYi/6uWuMS5lksqJLLpA1HjrQTKZFPuCE5+F7NbzntoQn5R9rXxkfbHqZqeDWrP7KLraVbbX08pA9WdmQ+x51/JGq40YZ7sJqiRXNZ7E865aJAVtsjd++iDsUM/cwDq62+Bw3rCmizAlqNdzLJsbm5aZMqVU+obektf2hLVGStvX6/j1dWN/E//6ev4ZmLGyhKE0xTzPiuFBM2jZcXPv+cwBefF3j4Lomf/c4Sp5bDdRsCF7adBXIGeqwqb2GaZhCJcSUsCw6TjLatWmuACVqbeyBEPK6KEudPcbdrR3B/c9JJXVM2W7VJCU0ybzwT0YiqZXDa2sbtyCS7kVSmHc91FFx7Z9z6LMsAwMscWlcTXjlZMtbynSxSOS4BcZyAX0j1v6v3iCs3Mci4jChNq54+mgCOJGmbXjOfTGx1D2PuuIwN9cK2TvckV4QTjZW+ykrbMCeWSvyi2sO41QvYqrMh1L4DA9DWCiZUdWtHjH6vaocV2uwseuPXIVx1lfhC4ApEmH/aWgEgMyIRIEAbt6nSVhJPpAQLhuISrBmjjQ0USkGBMRwMkKUJEinAWmG0voHRaGQkkoiAhRDo9/tYXl6GIGC4sGBc3cA2ehIYDIeQRYkkSVGUGtAErUuQAjIe4lNffgm/+unzKJWGmv3Mt0IzYVIC37wo8Hd/M8PfeUeJ73rUyDcg02n0Bz3kXKAoGUsLfSTSuALCdVgMKB1CZrQ2X5rSjEJpuIYlSWJGddH3LWSorNOmwdaNBbLPpF8y9RlrWATwZGJ7U+/1Ea+HG0yxqecZn6dGcG4fv71NzbpVv7N9wm5/zyrvF9W3ZnA0pyKiTt5UAyrBrDGeTJCmqT9WYcPaF+yz2HBvZKDu5xGPMth26LGBVH/j3LEYNpRdmqAxPSUk3+HIkXaapgD3MN7cNHlqyXgmeLc1NnmzjVHKUHady7vtdU0EXcx8GVbLAvm80Wbr6VLItM/xLHMsmdQfYgER5dtw75nZVtsHx+vG9rEwgzK2y6laZ9X9YvhOzLfLfpaesgWIQgpWEedgmOQYrW+ACBgOhwBgS2EVuHjxIiaTCRQzzpw5jUG/jzSRYK1sJZgxiqKwlrY5t5TSvxzHjx/HYNCDTBNoZhSlGY4uL69gkheABMZFCaGFyVFS5vjVP3wBn/j8eeTlDti6BsUEVQK/8kcJzl9R+DtvM9+BKjUWFxYwURsY6wInVhZBqQDrEiwkBDtLXCGRiRlZ6BJIEijNmOQlUBTo9XrGygNDq9LffZlI/3VUJAsKk8ls5wkAE+ykrURVxzQLtkpwYgqJxD/O2tQ2Tzt5i94dz+u3CJ4SJtBGGOms5qs/bdJxKwI365vfbyyPAOE59pO99qLYj5iMZ9LS0hKklLhx4wZGmyOsb2xgaWkJSSIBYdLjDgYDnDhxopLCFXDViExAl7tnri1xeyPhBO62Ve8ZzNwMASCBLJWQklBM1Mx7ceRIWwoBLWWIYnJWcsViaev1/Nft/3K9pSAB5b+Ymt1SHe9UjuR/zTA5qseK9kEkbVh+E9E+5L771mNSdAxUdG4/zo2Wu+ty+3rL3bbHdWraZqnSymjSQphSTkQEVSqURYHN0QjjyQRKaxR5gVRK62FiSL3ICxvaHj3sNg1qv98HAMiEIj3XTAolaQrFBA2FUikkYLDS+PXffwGf+/q1PSHsGJOS8Olvmlzsf+cJM4pIU1PwVxAjyxJoQSg5Glo7a9MeQ/vl1vp0k1guVD962an2YNVJuxUcPZQ1xIZG+7pgkLhl1cmSmPzMn7EvuG9C7fwVK3NG5xG3pf3SGt3JdHlxxnHAsK6q1e3SNPVRiwSgVKWdILaFKWyEZ72sm2tW8O4KtrSXB13761wxpX2mka5gxtY4cqQNmNunNWNtbQ1yPAaW+8anEpaznIZltUXhHl4G/OwQgGC9xpOEBGLtv42QqBGICR9OWojXuxfRbuMnmO16jciCZ/uffWOEY24zI1U9h5vMJOv3Cdic2+6CgVQkKNl6MBAByvoSl2UY/vWAMs99RrPJeIws66HXy5ClGVRp/FY3RyOMN8eQicRwMIBMEpN2FcDK8gr6RQ6tGQuDIfq9zEgorLC8tIxB1gdrIE1SS8wcqgCRuSalzISiZo1CKbAtYKG1hiIXlcn43Fev4LNPXkFebneYPR8mJeG/fVPi/hPAdz2ioEozgc2scfPGdWRLBNlPzNfi7rWQkSaqMdncRKGNH7YrLlaq0mzq0qwK0SpiOMxaNxtV06Q+EV53O3S7hG3Iz1c4vZyj5zr2tpjkuZ28dhPc1DhfawtrktBsVDuh0PmZIBiXC8W4/Iagl2BEBe8P1wH0ej0otWA6Jc0m7wszer2ez6zYaDOaE57mmKEDN50tV/YytyVYUAQ/SAHAkETW3XP2XThypE2wuW1LjSvXrkMLwtnFB0waT1sWq1DGStNKIc0SG4UkbEJy86CbhD7mixEQhszZWb1B6y2iCQ/Xy0r7wIhgswIwoc5aKWOtCVv1g5V3HypZ+zYqrSzz2iLE3orTIO3EDesfoq03DLGp+m2tNlYAaQYxoZf0QGWBgkszdNUlyrzAaH0D/UHfEMgikI/H2NjYwM3Vm1i9sYpjx45heWUZC4MhirJEnudYW1vDaLSBXq+H5cUl9LIe0iRFL+tBnhEorQ69sDBEIqXR4Vmjnw1sFCIhS/sAzKw+axPIIqzOmxfGF1prbY4FgGBSqGoCSgJuro7x737/xX0jbIdJSfjXn5f4tnMSC3IME3BT4vLF53FKJljsDUyQjjbfUpJIsLPatMbNmzchsx56gyF6WYaiLEzObF/QFRCJhNYlmOHD1oGYPOtjwm3qwUbTqBCN6/jqx2HAlg+KvEdImDwtbHzRneIRk/ZoNIIbEvrOqEZsbX9vz4vEdIRuHymlfU7MqNrldVEqyi9kDQI3SelyjbC1bIfDIbIsw3A4xCuvXMIkn4CZcfLkSe/q5z1GyDzbRLI6uHEGXJRPprICkQnn0jxbmVaQnbRmhpQCif2ZhSNJ2k7a2NwcQ9mhB0XWtOnYrKWNkB/a7W/0ORVkBg5fugl5Dv/K+OQc2hBLMv6b9GKhaYPxaY79ONlr6zoaqjr6BwwZErMdEZC3pI3LokvaFL3sbCzZREiUVAYryZZkMwm2UpAw51KlQj7JsbGxgbWbN5GlKfq9HrIkRVEUKPIc+WRi6h0K6S0WZ60Ph0Prt2sS77gcwZo1eklm7w1BKzLucD4SkmzeELLhw+ZFVP5FsOtgZIdf+cQFlFvMsu8VCgX8Pz5N+Ifvd7ecMdpYR1nkxn7ikBUQJCJL21humUxAQkImhKIsjMtfNLk1fcgPRA9VeFIqRORG2FXPGkOIdscpaNB+ZJhTtLAu0cTncT9FWfrnuz5xF66neb3bI272ko+zzrUuK6H+ldz31ZM3OikXMOPyiTCzTxqVpqn3GvFFgL3BHowxd6bKlGw0UonFJvedmQjJyCK3768pdbf1/ThypM02sU6/30ciJVRZIB9PjLVqv9DxeGKJZ2JTX4ZIp7IoUarS6LFpYob+aWqIR2uUeYFJPkaapEizDCoKgijLEugBG2vryHoZEhkmMAwRFSjLArLfN1FyThqxwQmqVEhlYixvIaHJELsEAaUJtRZE0AQb4ELgUkEVhRl1WcvNhdtPxrnxiy6Nl4VibUKnWSLfHCPfHGOyOUE/60NmpndPZYp+1sfy4hJIAcuLSxj0B8gyk2oykQm00kjTFFmaQUppRg2ug6t0QvARZQwNzX5aM9K0a6MRNomahBSGCIBovXkJnr04woVLIxwQZ0Mx4VuvAM9ckzjVT9Hvp7h6cw1lPjHeIxLR98w2zNmQyWA4ACUpSqWQ2wY7ogjJrZy+bP/ajhVt92/foyqP+K0dednvoCxtEiwOQ3wnnbCdxHOySZ30sizz6WPdlxpn+mvzrKq2z11/fDXTLtNMisbn1zqBtnU+kzS1XjiwnWtVoiEKgWHu77iw73C4YOI4lDLPu5C+GpK22Srjx3XbX5M/b/Nq3XvjJJJZOHKkbSbGgJWlZVzNriAvCmzcvAk16RvtkDVG6xtYX1/HzZs3cfbsWSwMh+j1+yjzAjdv3sRoNMLGxgZWjq1gOBxgYWEBxCbt68bGBm7cuIHhcIil5WUkCwOfl2Q0GuHeY8Arly7h1MlTQL/npY+iKJDnOYqiQC/tGSkGxltDKQVVlijGOYZZH4lMkJCEspM5EgJFvgmZSJM61NTHgtaMSVGg2JwAALKMwYKgtEZe5Li5ehOjtXWMR5tQZ3OkvcxEECYCG9fXMN4w1znsDZBJE1wwyPpISWLYG+Dkygn0ej1jMWdOg9YYDIZ+oiaREokw7mqmwxRG89ewQZFsOxH7srHzzCEwG6s7yhcVSDtJoMsidE52dKIZ+MyXXkGhdvjG7BC5Yvz/nkzwf3zXAAoK33r2PM7cez9YFSDJftBTlCVGmyNTtoyAleMnMSk0RpMcZTHGYDDwhXmFCJNezssinoAE5tSyOdD2dCvNkbLLfVKCYTyhCitHOQJxPvEappo4rEDn0pU6VhVCYHFxEQAwGAzMsXXIr+KuJ76uapPIeNHUJ0zdqKFFugm6sfbPnDtuf9BD2suMBGFvnsuq6NtBgaRjMicinDhxAnle2ILKi0iSBEVRwpG2gkaSpNP6mm3AHcAV1CCAzBRoIk3yqFk4cqTtJvp6mZkAA7O1tMk/dJPNMUbrG1hbvYnjK8eQWguysK5sa2trWFtbQ5pISCI7rAfy8QSbGyPcvLEKVhpZmgFZ4i34fGzIc7S+AbVyDLpMQMI8gGVR+B9bwtkOeWETDGlbAou8b7BNDQVJhIKNti6FhNAMJgKR0U1VWQIMaJn4qLsiL7A52jT689o6ji+vYMCMrMeAFpiMxxhvjk3OjlL5+ZFUJpAkzLUBPgcGpPDuUiGhk0siH0J6DcVaC08bnd15E9hLtu8iwzmcu2Gjn5EX1hoHImPRSEkbkxJPPrO6Yytnp2Am/O/ngZ94R4Ksl2JztGHLpikT9SZMJ6S0QlGU0LqEEGbEVyKHGo2higKDwcCWsOKKpe3uYX2izN2CncPd43DDnA7NMF+RmXi2OWUjC9ttC65bh/bIZDIYLiwsYDgc+uNC68Yxgv+2v2QAxsDQkfVcJ/t4eVinvcUdHzNJ0pCoCW6iL7Ky43tqf7t3l4gwGAyRJAWklMhS4zViEnZRaH8IqrWSyxa3fsb6IOO4CV4zsk7uNEvbP6TM6Pf7WFSL6PX66GW9oIMNlAna0IzhYIhe1jNSRsZYGC6YmycElhYWMewPjObLADITMLK4sIDhYIhBr48kSf0XnybmG02EKVEV+0c7N7l8PEExyY2OJY21MBmPMclzrK+toZ/1bNULiRKmjVwqrK/eRL/fR384gDZPI5TWGG+OMdkcmxcoSSCy1HhrpBkG/T70wqKxnAdDZL2eCfuWAoP+AJKNpdzLep6QgeYwmJlBbLxNgtTOfq6AfQcUzdZTRN5Ay8NbHaa6IXlY5pZ72R4A8NzFDUhJKA/Y0gaAVALfukx43RmBxYUhymKC9ZurWDx1EkqVUIpQFCXSNIXWZv5jc3MTZWm8R4QrzEvWHa92j811EzzjbIF4s+n80Fzq5iBcNsE0TeE8d8i2pU6A7Im7eqbY9zlaaNpldWT3W9RJjgkQBOLqxc4ibvM7kHZM5sZ7xLUl8EAz6CW+nuZ9ibP9me/LGBKCZHS81ls7P/x8hJXG7OEENX3b6zhypG1yAmiUpcaxY8exsLQETkUlDHWxP8SxxRXcdeKUTUxkcj2I3gD9rIeiOIZJPsHicMG4stnJApX1Mez1kcoUg/4AC4sL4CzKt2B9hTOZIoEAmSl3gBnlOMd4fRMbG+sY9gYos8znzVhfX8fGxgauXbsGXShruQxQsEY+nmC0sYErl1/BysoKjh07hmzYB5FAqUqsXruOzY1NJIlElqRYyPrI0gSDHiGBwPJwCbpUOLa8bPQ+81RgKFLoojRyjbX+ANPTa/c7spCI7TCWQ64MZmN161KDhHnglTajBRNhKiyJOyqv6pn1CR2O3iSyyaDchKS1AXH+8ghFcUBidg2TAnjmCuENr0px9u5T2Byt4aUXz+M1J86hLBjjQmNzPMHJY8sgMMbjEa5dvwqZ9tHrLSDNBJLMDK814MOV405SWJcvNxMwFyhMFjZliUBOzvJ0P4uLi1BliSRNkfiCt0YM6dt5DCJRmRT3G9lzONKPCVHYEa7fg+OriZ4B3+tUpZNZn0ORiChRgD1kqLgTRzS4YJjqfXHutb7To1CH0/GBu0+lUia/jjWUQpvkjkZBVQmL/W+CsbKz9A6TRxyMpT1Anwg5Sk9KzDYish9Kj/meWkpkaQpmjaIoMOj1IYj8jDInCbI0hVYavV4Pg8EAJcFMXmiNnpUUEjsx51OiaoYulZnE3JwgH0+MpW2jMcejTS/XDPsDkCXDkhVGGyOs3ljFtavXADb+zbCTn6osMd4cY3NzhDRJ/Sx3IqXpEDSDe4ZoF/oDMxy2T6oUCZCZCEeqaWh+ptvcMH/fnKUtpLATjOahVlpBkp2MZHjSrh4r2ITOAAvEbb8zd05r9QkpAaW9Bc5gPPXiunNLP3AoJjz5ssAPf5vA8tIiLl3bxGZxA7CJqspSIS9ypFkKQUBeTLA5uoneMEF/QSK1E6zByqrKAo54jUcBt8T/tWOalV0n7lgycD7KpfWccHABHmayNEHdYm2ztH35tHi0EL7kqCMG6rXE3abV9raTtmtfLLVQlA2tzROlbmFX11Wt7XrpPz9RqUNO81KFaEU/8EBzdLolphC3EHegPOKGcoBxVncJjJjZk4qrHlLZL/py3basta9BGA9EjY+1LYdDQfdzk479Xs9ow3aoRoKQOblCafSyHjL7UhARBv0BtNKYLE2wMFxAv9dHmiQgFuj3eigXFrGyvIKFhQX0en0fmCJIYDAYgNhII2ma+pqLYJdESNgJvPh6wzB12nDcR4RWrt8dG40dKkPPeG3lNjt3zLAy1hlde7j2Ehp/drP+5kaBW4nrI3OtaZoikRNbu0GBSEJKgSxLkdtAE2ZGmmVI08QmA7LjBW8lRtcdjTjcDZpqxQUpfLakWiESQ7buL1M6K6nIG+5eCwDSBqq4USaI6q9M5Xuuf4/ueLMvIByJo2cqkHiT0OvHpniHeqNm2sFx59Pe7dXllNDGdmFqlquefzOi63Tzb+ZowbS587xHNPtK4e7L1EpDkgRTPCFiEu17C4EZpX8wDGmXZdSrRuSVpZkhZIa3mJkZmdW0Txw/aQqH2s6DASwvLWPYH+D4Soler+eHX0IIDHp9HFtewfEVUxnDlOJKoKAx7A+xvLSC40srSLMMvX4PIpGeVPtZH+UktxMpAyQisRVdtEkKRa7KifM1NZaui0QkW0nGX7qro+gfrjCI9Nt6E9AtN22JUwe4jjNsF6YpY0mkTVx06naSJKaklWsPM9Qt0LJjlMpc6/LiIlbXCugc0OUEiRhCZCY0em3tJgBGlqZYXl5GkvWRpBJkC+ACHKJwAVOKLfq8tSfI/GhYnu4/2+EbyYG8R0s8QRdHbAKBxGJStdMX/lzxyDVqxcw2Ng3UqFeach1VVz53HHvnbJ6ehmgdHafi427PGI8UFGvzHjF7wmZ2lv7My9keKo+/+S5I3GHyiOcbuC+BKpY2a/YRU3GPh6hXdeqrUiFXRDwJ4/yv2ZK2CxBxlvXicAHOPc4dM+0lQK/faC8RQfbNfgvDBa+9a62hYKx0IQQWB+aYiLLDeSt9YNKEer0PoRCs80YprQuacDnDdY0Y3JPIkZVd06HdBGObpR3u9yzEKiL8W89Wl4ytc3b3XQgQBaFAyt0T2W6QCPOc9Hs9pKmELDRYlxAJQyYCMuvj6tXLADPSJMFw0IeQGZxfo3smpJCV6/V+3ggTlHtB2lVULco0zeCIwsszVH2+zFdd18t9s+13VR0ZbUsm2EZ7K2tq5OtRGVm077PV8f2IG0AoBeJGE6YsHfNWXdF8IPjXAMDWk5DAESTtgBoZodqT1lbVdFe7P4V1wXC0IlzjGJEF2WJlNtqF8OTHQ1i2FqUfgUXrGfABOS74IR4BINo1blP9uhvSUP1zfSgakbhZzd5id8d1lkhlpBofh2r3tnaHwqdqoIiRFQxxMwMrCykuX5/gVuH4giMzQ8r9HmCyIZohiCoLn4SIvGEQhjJOt65YpBF7++HyNgg7/s6m7cdtZBa+wCAztM0xWAJrPEf+cPO0tZ57Ol7Tvr+Rk2ojhTk6hFlSTd0F0JGvM9c8E1TkoJYUsKhkNZmOyi6R9Bc95+awYeYmTKS248iRtnCO9QjkKWrDOxeyGnww7Rfpiqdy88XRvsMlgASYrI+rDTKp5HXQDMXslzEjFD9374klf6W1ieiyD4kqVfQyWf1d2deZGaw5qprhRgnherXVEpiDNuYCYeL2ub8Uc+W5mlY1wxCyGXH4kQrBDq+lT8lp2hady/RC0fmddd2EGZYqgML8gBQSnJhzEhEeuXcRT9+iyUhJjMfPauOOWZRYWlrAcDFFQgqKSigFbI4nWF5aAEj4++Xc+wRMxBusjuwmuKUNzgLsyKhVYtg7MEx0rHkvXMdR6/zjb8hZnTXic8WGzToBtkUemiS+U5u0fTQ3zTCYNuFYOWJLp+bHlCIYQ869L/ZYcekHYrLf1qX5PiG6R9Evb91vkTBqnkyAtxXIvyyOqKtflPsS4p7W7mn3iW4J2URRCL6q9iRwAyftvSji0F345P3ub7b5OGK92Mk12gbXgMNntz27vwGwr/hijhFyUsdWviF2aA517GZY2l4HjP+uLavex/jFpYjM6xb/nKRD1fbVzxy0VWPZ3396iCy9NY9tlgIPn7Hh06wx6PexsrQIQRoSCtAl8skmBv2+yX7o0hgw2yAceLmqkiMjGhLHk6/7CWYT3OP0antyL4fEo6HKOLHershaN8cFwvMYjrNz1I/VfK5meYjEbd7ynpJ7jynikPBdVI+/w061PkhBbGnX73Y7jhxpu57Sw3aHFSkkIuv2L7KaF5ntw1z9qZKUOe6U43D7dvWHjLm2jduudp5oob8WZhuAaF+4qpcGeUu+5RCNz2F4yNO3n/lstZNO1F/ZzeovU/17i61Pc00P3LNwSwJrAKBUwKtPB1nKdTJlWSDPJyjLHDIiYCHi66q2eVp1krk6u8rh6vJB+3cTdwatxFszbMKxpxNdPJk3h1AQ7Vg9dPPdatmO4oW1Nm9Bxm2uhPW/53uiaMrnxhnR9p03DkX1pvMWd9zgyMkjpoyVnZ0XJru0z8Bmb4lyFbt9b+q8SkI0n9ZsiulGhOKl5ugBcu5SuhLgFvJKxJ1D3GOHGoiWZL3FWZUx6mRq/KUDmbFm43sNY4knJkG4T0IFS3j+EdJmz+AAQpXHi107Kao8DbKZadmTrgu0MdceJ/eP/Hm58VT6S657ksB9T/7+uu/ItD+REoVWWOwleMNDK/jzp25s0XHsLYgYf/UBjUFmfLJlkgIMaFVgc/UaxqWESIZYOnmvyYdBAjLNjPKpbQYW1n5Elud5IC0OUXtKza5a0tq26H+2/9Uepdr8Q3XkNY3M6vpv27aNEzijqfK1z6ChduN5Ot15srZt95JD9Tx+ZEzhWE6CmHUd9fXSFV1m+IhOIjHriqIWbG+U0T62aeLoWdp+eF8f/tUkBHvzq8udJSgafaUrHsQwFq0bRrpjtEktVSu7SlKuwGtddqheS7Q/h9DZWBaJrWzTOQkIkiYvN5t2E9mADj96cAnio59a26vthyX3EGquvfta8yX3cC9YzUAhVDux+IKDxcZhe6sBm7JqjPe+5S6kB+xFkgrg+95Qmlwv2ujapmNTGK3fxPrqdYxHaxj0TFk2Zlh5xF5DbQRYloXnuZgodCXibl5Ez1Z9+DTF6o5/x9hKYpi6Te0Rdu+S+dnD3rU2KoiGbdHzRpX3tfIezyDtuj5uThd3cq5Yxbzy1XauO7yNdxxpx6jrXHVLtor2h7LtFrZ5n0xF5UHm5nKnI/qFVXJvtNa9cNOug/1/lQb6DqluBKF5fVv9jTl1VzcJ6Y7B0ee2bd0kk78jFN8m661ChPvPDHDu9HDLCh97BUmMh09pPHyXfWVr1y2IUJY5imLSeCjCPZj+sMTPRZ0cG+RS+XOHHZd/PByBIZLj6seM27P1Mz/1Sgm+068aOGg+9i02jDfEIkkm2BlUeSapldRnY+45hMbFzfP2zO4gzN9RW7ZowtEj7Wi4r9gk0QeqQ/hKpJ21bOKhIgO+BBQzh8rh7uEQIljj7AgxWPVM4fknu71mbfJZa+VHACScd4FJgwkikBT2+MYjRbh2xm2wv+JBmgts0NGL7oiybu04Sxexp409ro6u17XD3Zf6uephv26dGZ63P6gmGrDNBor2Nw0x12clk0SQr1YNaPzo+161ZbjvXiGVwM+9dwKC0amlTLzEJgRh0JPYuHkdq9euQBUTCGsxlaWrqqLgfM0ZpjxWXCw2dFjkS2ZtB9Mm4vxz7qQqtnIauwlvK7VVCMP+s8WiCfD/zzIAK+dvHzjWdpivE9gNKqkTZm1XkS3jkY5LCUwIo+nZk54G9eHOVtjauo5x9Egb8ERTH8LHniMUbWN2qY7tPGlHP743d5naYFzy/FccO8ZHljQJsi+KGVqH4zirIeiAJqDEmJiOsBteFdT+XgSPmGgIyO30GHt8xMt9kiiuVqWvSyBxPuI2+Ie68iy6FyL2+20hbdsbBqPLuE9KQXZyj3F8McFH3n0WWbK/MkkvYfzEO3KcWnLtENbF0RCOEEAvldgc3cTazWvQZe7bra07p+moNFyaWgY37p8j7WlVX7ZCnUim+2vDzJXoGkHFVjYFurYLWmmvTU6Yr7G13/sAimS5afJjWGeb0/KcIzLo6tttX8ZqB8ej4zlwNEkb8S2g6N/8O04RJxCV3t3yMHGVjKYWZ7erDeWaD0K9IwhXwtjigZzSNkvF5t9sE2TOR8lp6zzjrO3Y3oNPldv49tcdx3c8dgq9bHbY707RSxjf/boC731tKBDQgBkgmYKsBOSTCVxuEeZ6bsPqyKhxqCl6a5Mk5jFl9wAUnndPZphPSmjzVqkQJHbH2dsmTSutIWrLPNfhRgMzt53jq5jd3qpH0lY4kqQdPyTC1ih0VqsrR+ZyXcc+2/7u23VVQgw306UlJTfhYR8GF5hSt9CNK56x0ISUXoLQ7pwU5BZlrXGX86ByQITrciQZtN6YxO06GwDjgl4cVTu5xXmwuDByAI08E/CnpjC60M4HPQyeAfhqTNUvI35X4rWxlWaqDbnq2kDwpvAjDWZfy09K8hLTR951L97/xP17bnH3EsZ3vU7hx9+Wmzax9qMOrRlk62NqrSAIOL6yjOGgjxdevICyLPwVmglUArSGlKJyXXU475GdWHH1F74+lK9bkc6ir3g1eSkNtjO333e0H4k4BsIs356c4x4I7Gm/Y0YQ1mq1UtB2T9DW0cwzetl7zP7ujyRpO3jdleC1veB5YRCGQX4JYju7+UXF7nphFxchWTkUAt96DVtIX7gmeP0FC0DruJitfRh9a6rt86wetTGM6lwkaI0kImvO+QrH7RW1640JO9a3mbl6z6ZY2vEwuznYqI6TDaHV/ZeDrSpt9RwhqCId/eSHXo+PvOdeZKnY9eQkQaMnNX7iOzT+zncogFzCfftNus7OetdorSEIWFlexLCf4eLLL5laobYTTYQlbR+BiC1Ju1LhZR8wbU7CfKV14q524CKW1WIyn5PQ9o327PPH0bu5k3NVZau9lUFitN0vb4BtgSPnpz0Vxsycf5MK/0R3MmJTIgK35EdowmwzRxNapjAiYvOx8IGvq62vn3E7qA3d65NaW+61/fPM3KoiLcXL6w+8+R7e/thJvPbcIn7tkxdw4dImSsUt92jW+UwyqBPyOv7Hv6bwyH3HzELH1bYdsUDhfhMxpCQIabxItC6tZR6T4vTrbiXw1j1MB8iNRsSGR/WpqZ6dmge13zXX/q62pHqaadiWJbrNB2d7Vm589+Z/CKadwyyufiO7Mbp3a7EfSdL2t4RbHmDa4msMO1f/bP3sFb/2Q8SIh1nVFZW/RSQjNDw+YAaskVLSOJ5fJ8LkpRmeu/za5Kt2CNuRuN/xseJHtH4/zUMXt87IK+TPybWLdH+I2t+Vg7eMKKLNBAFkCDoVKViUxvvB7cWMEwsZ/s8ffhjPX97EZ758BV95ZhWJJOSFbs1VIgjIUgGlGG98oId3PFxicuEvIOl+rG4kOL6yDM0iyidtC9zaqkSCCBAEgRKDgcBmziiLVRSb16H6PSTZMqAFoCWI05CXgwRM1gL7PftgDQYRtxC2y+cSllaFOETL2621xuhPa5PXxX1jzKb0Fxxvu9EU+xztRirR/mhtEsK82HOLu9EfNd/f7SCMImrHnOuA2z1riOswn2fvf+RIex5rdifHnPX3VssN5hu2VQg4uhhH2NPYunHMulUYSSlu8O1qy7RNN85sYzR8rC5vLqsecb4RSfs5zW9BQCISKLLSRSSnuDOcO72Av/2BRWzmCs9d3MCFSyN868V1rG4UKBUjkYSVhRSvvmcB99/dxwNnBljIBCajq3jueh/rkxGSUYrjKytgNi+TIIJiS9hEkGxdLokAlBj0Cf0xQxU3kY9vQOdL6GWLYAWABQhZxW3T5PVynZj9TQxEqVmrV1XLi1Opa1PNWuHz4NTkM3OvzEOlNFspyXS0GiHHt9nNusLCDdvJ5sOJ7vcuSHtfsOc9wT4dc8sT3Wmk3TK0Dyv9f1PWTbl1897PlmNspwlmg9qLUDtmtU1UXVY7RvhIzeV1zaFx/BmNbJEuqPZHyxGbh2xYR1sNHQOp+8nmxiHDkmEvwWP3r+DRc8v4nm8PHQ2zyzUeWU7MIEqQpCmUVijLMrLVGHFeGOP3zL79DEPqxoeboMoCqixA1r3PdIsUdcDNa2x7Yr37Y7S/F8tqFqC32mM3PN9ef4le/XBunYCLztWtnXGb9bortHznOzpM7TlpTnT70+3tebbeY8px5j/HHUfaHY4+nOVXTWFapyi7dFoH3mLUyyTByVNn8MrFSyBeN4FQEZEZDxxHns7qdC4zhF7Ww91nzuDKlctQ6GFp5W4wjLYtiKDJGNP1sO7YT9dp9m2dnrsehplEDhOkGs4Kr7sNxpOeMTEzMzY2Nvz6opggyzL0+32f6MrJIgfnNdFhHnSk3eG2giMRV0y2aR3OI8O0Q8oEp+66Bxeeex7FJEepFDIZyFAIAWL3t4ZmU6XeOCgRelkfZ8+exZefPI+SUzzw0GMAJ4DzdPEKchVGtYg9McJVRHwOH7EHhmJlSdtIREKEwtX1nzbSJiKsr69D2zwq4/HIl7pLkgRS2I7xsEkgHTrSvh3QWTrtoKYPYUV+2g7ROIkjSVMAttybUqj6EFJzJ9gJRduULMugVImyKEw0JLSXYYJnUvVvHxnqlT0KMoKVMhD57XtCtkq2jzLlqoVdd1erf65Gz4ZOYcrVdjgk6Ei7w20HFxzCzBB76dNMAhAZlo+dRDnexOWrV3HPXXchtYWUUfFP135e0PromFB7Iiz0eyBWuHL5ZSytnIWQCkQlcqcnAyDBXpjOixxwJcuomlOZ2HmtEFi7vDoMzcpPXDK0L37sLOuYvL1/uAYgDDEXRYHFxUXr9y7Q7/cAMIqiQJamIDvhWq961OHWoyPtDrcdnDwibXRpE80Jy3pkm51erLoxkgC4j2MnzmB99RpeunQZdx0/gTRJjUFvGdfkiXFpNCk4UJJAQgILgwEKXeLiS88j6y0hSQcAJZgweddDkShLxsAkz0HkrGUFdyrA9gss4dz+TPSts8zND8PINHU5xN8NR+TaXLdSChsbGzh37hx6vR6EECiKCdbW1rC+toaFwdDPG7gSW3Fkaodbi460Dyk662YKrNA7zXskoH1icmsPCIE07UEmKSaTwmrIsceHIcyqlB7aQiAkiUSZMybjTWiloKWp+6lBptYoCKRDOTpjzQI+/Vgt2pSg/Xm41g44ndzm8G4jVRepysxmItTKIFJKpGlq76X2WSJnzQp0z+Wtx5EOY+9wREHB2nZD/+lZ7eJkPE4ntsvcPwpFLDQSZINFpL0hSsWYFApFqWpeKs7CtYRJAmBT2JYAHFtaRD9LsLF2A0WxCdaFJd42rxH49sdFOXzkJ1kKbXVp4+gg7YmZ3HnYVjJyhTfM6CFs5yotKaUgE1uNSelW98QOtxYdaXe47RB7kLhyb5XkXhEZtuXHcARmlodUqJqBkjP0hyvoDZaQFxrjSYG8KKG8GwcDpG2Eu4aGBpEEwxC3BOHk8RUM+ylWb1xGMdmAVhMQFIJ7HvvOI7TR5bAWXqrxko2YEiVnDfJYEmlNGmWrJCmloJSx2rOsF4JwCBBSgmHkkDQxk7FKabi82h0ODzrS7nB7gqpEHLvJOQt065F81YI1lCwgZAohE0NiWkPpyMqmsCX8//bMdnWWppBSGA8SVYK1quzjm7ilVONkl1nWdrR1fD+i7Xy+dtQ6CILf1qf7jTqAeoBXh8OBTtPucNvBRRkCkbZNAiQ0KkkCKwTUzJkBGKvbJhcxFjMnADHSbIjjJ+7C6s01SCIsDYfefY/I5OBgn2ipymqCgF6a4NjyAtbXbkCmKdJeH4QEwrr61b0VmcOP42c3nep05gZ7VvZvBtMQRLhXVE2C0Fb8w06nmmjQyOukLRCpw61DZ2l3uE1h60laYnG5qr3O67wvBIHI5L02RMVeC3cTcloxTNSiBFMGiB56g2WcOXsOr1y9gWvXV815nKQiDGnrKHw82KsMCcawl+Kuk8dw49plrN+8DlYTkCVf0ZjpCxWHnOYcfkIloaZdbsg4aPL1NKIEgggSS1To2lR9r/YczlLP8zwEE9G8hTA6HBQ60u5w+4IC93lpoEaG2z0gQ4JJQMgE/cEQk0mOvCjsOiDIIlGwS+2MREAiBXpZiiIfoywmFSudKNrYnTf2/Igy+sXH5so+8bqqnGFGABTM+Wgf73vCTuoJNVXdWVtL8HU4NOhIu8PtDafLEvmcGW2ywTwwBjpBswBTgrQ3RNZfAEhgYzRCqPBjEyzZwhZuMtBVBYJmSCEwHPShdQFVTqCKMcIogMG+dmTc4TjPkUDas2kz9h6J78n0vbyjIIfgnrCbQJKEcPgOhxMdaXe4reH4SUphpRBXfo19QIwb6rtKPq7gc+w2GGQIiVILMGXoDZYxXDwGpgTXb9yIwsWNRwaRgExSaCYraxiyBmukicCx5UXocowi30Ceb4BZAbZ0mSpLsLVofbFpWK8RV9zZrEU8xRrDSyjejTvaZypxt0yI2nYYv+3ejr+LDgeDjrQ73JaoW4L12n5e3t7OMd0Pmyk5mWRI0h5AApPJxHllwwW0VNwIrY7uXPkEEbI0BVhB6xJameLAzvmEWVeNZAr6tLe4wzCiMXEZWlxDvFEL11cpu2lpxyXRvH+7Xz9/WbEO+4eOtDscCRgtOSbuIC9sm2ZIgCGgNGG4sAwhM6yub0DpUCtS1shNCCPPaLYWvCW75eUlEBg3blw1RaUJPitgPMXXpkZwo+H1BVT7POeVsivOXI0adSMPV1y4w+FER9odbltU84kIL3XEBVK9j7OvpFyt8F6NmLRh4iTBkMhLgeMnzyLJhrh4+QrKsvTltpI0BQhQ2niRiERAJIRSl5CCIElAALjn7BkIofDC889A6wJEhvBtvenoYiLi9iOEaSRMiP3Uqx3V1sTNzMatTxtdhch4xghBSJIERVF0xH2I0ZF2h9saPv6DgqUYCKyF+uaIZzH7C2gN9AcLIJliYzQ2bnfelTAuOsBeT4/D48HA4sIQAoz1tVUwB0tbRLIDOAgvRFX5gtvkCIqvqk7U4fP0SuJN10Dzf8hTXlnfKSKHCh1pd7jNEVvbIWfHzqVXF90iAJEAZCbnFhaXsL6xgclkAudXDRvaTkTWj9p9NquEEBAkkCQSvSzFZLyJIp9AKwXnZ14/s8sdOLNvaURTbj/6pdXrW7hqQGEUQ9VepMMhQBcR2eFIwE2YGYlE28lEFx45P6EJWLkAAqAMJEsMF4/h9Jl7cenyVQg+hoVBD1w669jmnWaTDVBKaauum88JCwz7GZYW+7h545oJ4oEAJf3mCIDsVCW3jBBQ37ixq7f0Z8FNdDa2IoIQEkmS+ORZITd3NdKyw61FZ2l3ODJwvtqeXLbgmCYJhXBxk5tDGks762FxaRnrGyNM8txs6aQSm+Mk1sZd9CIRQQpCmiToZQnG45GxtLX1JKkHynDDIa/Rvnhb/2tOLp1Gui7Avc3S7nD40JF2h9sS9bDtMA1HnryjrRvueT5vSM3ydLzmogpdAqksG4AZKJU2mfJQC3+xDbD0F9YSIU0TDPp9jDdHvkp7HU6mDsRaJdg2Mve5tefi1xY/b9cJ+HkBE+YeSo5VO79Z5cs6HBw60u5w26JOIgRACmEDbULa0bnVEUf2ntQJGgIyG2Bp5SQKBUwmCuNJEXltwLv5EREUa59K1QX1LC4McfLEcVy78grGo3WY3No6cvkLIeWh0fHvLRs+93bMRu4QQkArXakJKYRAkibec6TNMp8+udnhoNCRdocjA4Lxjxa7CAIxPidxXhEBKTP0BovQmlAqjaLUFcvdky4RtPGhs1a3CbLpZRkWF4YYra+hKHK4ggjTUzFt37t8CyW78bfrVCqFfIWAsCXc2OouHUEfPnSk3eEIwUkllryFCJGENGU4P829OegVYDKZ8gaDBTAENjfHtpCCPSv7uug2fwlHurNxAZQkMRj0wKwwmYxNilYv7bSV+KLWjw16puqelVSrlY6leYbp+bxb5Js5Jjk7HAw60u5w22JaWLWLSEylhPAlvGYRTkRoWoGsdEHCuf0lYEpx1933ASLDpctXUSqNOEe31gylDQ1qZpu6VYM1Q5BAlqQ4feoEWBW4du0KpGBAKwCWPK11rrWOfM3r4Ohn5zC+4gJasw0Wqt6DjpoPNzrS7nDkQAAEGR/pbflsW28QVxLM8JgE25/lYycBSnDj5jq0qrndRYE3GmxkEoR8JFJILC8vQmuF9fWb1tKOpInoOLvzM58PJvqTQzV7r/BYP3E7QumM68OHjrQ73JaoJ4iKB/v1IBsrN6NipTZY0btI+OMRRVIHBIRIQEKCIFCUZUUPdkeHt+ydBQ0fIZmlCQCNsihMdKSXc5odgD/ePkLrZrHh5vl5akM6v+1bg460OxwhhCg+4bxIKJIaqBaa3co5DFOzTPuJOq0BphQyGyJJhyDZw9r6BvKiBJEJorHR7JBJYtKqevc/dzrCytIioEuM1lehVRHlR2kjzv0k7ZAYSind0oG5zWoqe0fShwJdRGSHIwnnqy3I5O9Qfk095Lvdrc3oBezzboMSyKQPmfQgRIqrawWeXhV4eT3B1y8muLoOlBpIpcDxIeHRuxUeugt49AxjsW9Ie2HYA7HCeLwB1gok6rQcvDr2lbLtKERrHWna1XvRqSKHFx1pd7itUM3sN81ChOFcrw3PcgHksEP8p/uDgqhCJHFxrYffu/AAnvrKIhIBFIqgajlUX7pB+MbLElkiUWrgr96v8YNv0jh70sklgNbKKCmACbahvaHJRiX1GduFKE57tdy8p15yqh2/w61DR9odjhgC63qZhNlUl7F5NGbtY/YDmBgM5Qv6XlnL8eufuoLnLiUo1BIYhFK3HctAMWGzMJ8//6zAly4IPHgK+O77JaQAymKCVA7tCZ3bnwsjN93E/tGjOU9ZlrbAL+BGFo7B44K+HU0fLnSk3eG2xlYWpRAEZgFhQ8+9Uc2BoKZDg0H4k69fw3/6gxegNMMcZpuBL0yYlMC3LjGevvwAvuNuxpuLCdJezPpBjw+Fdbd1mrlRkUf8ZOocI5gOhwIdaXc4UmAwiGOrOfIkASGEwVT92apBKYbCtNb47T+8iM8/eRV5uXv5QrGRUv7o5QeAL5T42HuslevzoEzLpBefezahTu/EqssrRSDqR4/b0PH3oUPnPdLhCKJKxr6ijcsAOMVrxKwSNuET43/93Mv4/JPX9oSwY5Qs8cdPMf4/f3Qjam8I1Gn3095NG7jxmYis94iqbkoEKaXZsl7HssOhQEfaHY4k4iT+vhRZhQxn5P0gwp98/Tr+5Gs3kM8SrneBQhH+8JsTfOpPzwOoZSyshabvjS9H3JGZ30qphq85YJJukQ/+6Vj7sKEj7Q63FZpBNc11zeWWCKPMfDNOgOtrBf7D77+85xZ2HXkJ/L9++y9xYy1HU76IMgBiRpD5lCbGqWurHjfuNzXWhW3m80DpcGvQkXaHI4G2ggZuuZFIEGX/a0ueZH+I8CufuIBSHwxhFaXGv/7UyzZmEhUf7WbQzYzRwVyo7l+diAxIksSv73D40JF2h6OHSih6VLFczM5FwgDOX9rEhcubOCi+Uppx/vIYFy5v1lpStbT35dwt8ggBXtPuSPtwoiPtDrc1Kl4fqNuczTSl0yQUh//256+gUAcrCxSK8ek/v2L+qCRwmifsfmeI70Gc7Aq2c3PLXVs6qeTwoCPtDkcSMcc5gnL1I83fTRIaTRS+8szqgXtMMANfeeYmNic2Veu2wth3zuTTNO2kYWl3hH2Y0JF2h6OF2DiN3Y1j178pEslzL28gkbfGMVlKwnMXR9vkx921dRppS6tpO3fAjrIPFzrS7nBbYVZxWa79TVXWRj0HCbmcrdbyvnB5hLy4NTpuXmhcuDzC9ily+8TdlIiagTdAJ4kcVnSk3eGIwyZFQuDn1oK1AL714joOyGmkAc3m/AeNNmIWQtgKPLqzsg8hOtLucNuhbVjPzFMS+ofPsY9yG3GvbpR72s7tYnWjQEgUtf8yzTRL2lSyN2lpp9eR7HCr0JF2hzsKszxH1AF7jbSdn6Jivx4c+ZHHO3DLsimYJXVUOzYKJcfmbThP+Zl7pw7bQUfaHY4I6j5xMe2xSxEFIoKUwjNVXFlGilubHUlKAkFDoISAggCDWIBhfqZZ3zulPdeBBS8Rcw+lTEAgaM025KfDYUJH2h1uO1St5TqpRAHfUZpsZlNWSwjz07bPscV0X9o7L1YWUggoSC4guIRgDUCAIaEha8Qd+VlP0enb4C1pW0CYma2XSIgUNRGRBK3M+fdPqums7J2gI+0OtxXqATKxpeySPQWPEL+yum3FT9vviUfuWcStMrYFAa+5d8EWQwhFf2MyjdXuSjN3mf+6Lp2QLU7sFk+bvG2iPUVAh71FR9od7hxUyKc53XfuzBBZemteiSwVOHd6iCbxzaf7TksQNW07oGp1xxD1iMgOhwodaXe4g2CJumKlB1J88O7hLZuMVIrxwOm+bVv8WrJt6OzkUW2+6zEh18nZBRsBRtOOCb/LPXK40ZF2hyOCNlKbbqVSzZBlBob9BG98aHnfynxNAxHwxgeXMOwZsrRhQDP2aHNtnG1hx9vNizj3SIfDg460Oxx5tBNVNJEXsdJ3v+UupAccyp5Kwne/+SSIZlu31VStURZArvqeT/vcOJ61vstytn96x9mHCx1pd7gj4UO1/RLz6dyZBZw7PYA4oDdDCsL9d2V44IypzK619iH3vq3uLwJAZmjgW29i9ysTtLEmHX+ONWzXkTEzisKUjW9m/pvPet85ugnLnaAj7Q63N1rf+/ZqLM1Nm9n+GIQfe/85JAfkRpImAj/xXae844sLuQdFLeP2y6w6PlbT0LZ9jhGTcWzd774S+7wBM52nyU7RkXaHOxLtJG5wfDHFR959Flmyv4SSCIWf+qE34MRi6n1ZiARcZtaKgOPD9GvueWjSXp2Qmy59VYt8mjzirfcdXV2H/UJH2h2OLhpsw97n2OTWNsuqP0Y5ftujx/D2x4/vG3H3EsbrT76C9z1xPxJpKsALMtGIulJ0ILSNnZeH/du5owsS3p2RiDxRu4rr7lh1vdx5iRRFUZFL3L4uje2Bz8x2mImOtDvcZpjlFRIt35JnqHUbH9JCAh9599l9IW4CY6HHyGSJL379EjZzVQ38YTc1auQbdu4tcQOj65xlac/SpJ0U4vJmt63fnlwSJzHZxm4dtoXkVjegQ4dbgeBdATDXw+INWQoifORdZ3HPyQF+63Mvo1R6T2pHMgjXNghf2LgHX/31L6IoSrzpwWW87y2ncd+ZgY1I9HQdmsU2OhFGw2azkV3HUYcTrsdby7XlsWXdBref19g7HBp0pN3hNkSUVGQHcPKIEASt60cycoCtjQ4C4TseO4FHzy3j337yAi5cHqFQUU3FXYAhMBobPflLT9/EV55bw7nTA/zEB+7DscUEOtawiSAIELHW7WQP1hW9W0SuL1LKSoANYGSSsiwrxQ7aoiKllNBag4g7heQQoZNHOhw91AimqssGC9v93Qxot9Z2xGMnFjP8jz/8MH7uww/jrY8cQyoJg0zsWa4SZiAvGc9cHOH/9mvfwh9/7bolbVgJhN2H9p3BFT3aYZalPcutz2nac7n81dvUEfy+orO0OxwNzE0U1bwbVkL2qypKST1wRWucOzPET3zP/RhtFrhw8Saeu7iGz31tFTdGu7P+HbQGcq3xm3/wMp5/ZRMffte9Pr81WW3btVczQzNMeildNiQPZq54j8S/43qZ7n7EcOu11uB5JiM7oj4wdKTd4Y5ETFgxNJpudMQmC5+yvMxE6PckHj23hK+dX8MoB/aatfKS8fmv3QBI4IfffS8AR8KGuLVmKA0oZmgAqqx6gMTXJqWsFDYWQiBNU0gpo0LHVd9uKSWSJEFRFEhEuufX12Hn6Ei7wx0IbhBVc4soALF1M8Iff2MVn/v6TeT7VKUsLxmff/Ia7jk1wNsePW7HCAywBjOgtJkYVcwoihJuFKGUqkQ/JknitW1H6I6UHYnXUbG0u2x/hwodaXe4jTGvJOH9KlrWuQlHU9uGmaYqAfHya+s5fvOzLyMv95fQ8pLxW599Ca++d4gTiwnI+1ATEghoCUjYajy2MzKTh4G0pZQVa1tKiSzLKsvi8PbYKi/LsiPtQ4aOtDvcptiuhhxv74JrrKYd7OrIP5rgP4LBrM22BGgwfu1Tz6M8oNLtZanx6598Hv+nH7wPqTCEmiQpMpEAQoCEhJTCBNpElnM9aVT8d5IkDUkkJmcpJdI0xWg0AnN2INfZYT50pN3hNsb2idv7NyOafLM+0FzZyvlCO1GCLcED5y+OcOHyaE98tueBZuD5V8Y4f3GEh88ueHlDpimETCBkgl4v9RZzmoayafWEUXX3P7euDimDy19naR8udC5/HY44okhCnxFvWmIkt20gKZ95g0Nky6e/fBnFARdLKDXjj75+E1kvQ5plSNMUSZIgkYmfUKxb2fMkjpq+LoTEdzhc6CztDkcc9Sx+9b/iHB9UXUUEIuetAYgEGI1L/OUzN/ckuGY7YAb+8tl1pINlLA0za1VLEFnvDxEkkLaJxXms5Tj4xlnzce6SDocDHWl3uIPQJqdw9TNVF3k/bmuhP/vyCIkklLegLFmaCLxwtcC33XXcLrHkPGuedZuIJzKFEB1pH0J08kiHIw+upzSt1UoEAK4xH5uVtQMBFy6NkBe3RjKY5Arfen615kfuk5HMjVmVbOqf26Im2/KWdMR+cOhIu8MdA58bulKNPLwCbDMyVSIA3bYCYNb41osbOCCnkQaUZnz16athAdflnr2B0cbjSu0dIR8mdKTd4Y5BJRo78nf2Fqafs6S4oJfd1xDY6kZxoG2u49rNsf/ss/ztMVxnFnJz7/05Ouwcnabd4TbGXoRWzzqGZ3j7W0DdAi07RlnqBk8b8p4uX8wjZ8Qh7R0ONzrS7nCbYvfk4izt+JD1fFF1hpQHXKm9jiQRNqsVVxob685KKWitoZTyP1pr73Pt1sX7rKysoN/vI8syfzzAWd3VNsyqO9mR/v6jI+0Odyicv3ZQCKd5bseTfscWUly+nu9/86bgxHK/dXk8YViWJZRSKMsSeZ6jKIoKeSulkOd5hbRdWLsjbQdDwlvkaen0kwNFR9odbmPs1qqrW5EUPP7YEbZP0wQAeOTeRTx1iyYjpSA89sBxlEUJJg1AmElTBrQqW0m7bmXHRF3/7H7Pay23bdcWcdlhb9GRdoc7EgRAEEFTNU8H7BTkNMo5d3qILBUY5wfv9pelAncfk3jl6lVoVr5zMdV3QnvqBQ5iInW6tcvg56rYONmkDmdp77JYUIc9REfaHe4YGPKKfZFR07Srbn5tePDswi0JrAGAotQ4MdC4du06Sl1YQgZUCUhpO5soQ5+LaoyJ2lVgB1Ah7Pins5IPNzqXvw5HHtU8HDEpBZva+3C3BOHEFD3sSbzhoZUDr5lIBLzhgWX0MgFm3bSmdbt1XT1GM+tfPUfJNH3aBoW29mfbr9reYTfoLO0OtyH2hiCM9RktYHf0OBdgtJoNyb/3LWfw5LM3kZcHJ5GkkvBdbz6DVCaQgiAhjJDDgFaAFLG3x+wfB2eJM7OfqKyTdt2HvZNIbj060u5wx8Ik7QsFANoQBJXAVufOLOC+M0M8+/L6gaRnFQK47/QQD5xehCYNhkAiBEDCdCQaEDSFbGcsc5JJmqZbk/YcmHUfO+wdOnmkw20GAmZOFW7vWE1Oiv2fqz7c8fl/7P0PGuI8ACRC4Me+636f4ztMKAqQcFGdopKedZaFHSPOMTILUzu1mhTTSSX7j460O9zBYBBPzydtZ/ai2Pew3bHFDB/5a/ciS/aXoLKE8MPvugcnFntw/tLCeryYkr47t2xjjxFnZdfTuraleW1DR9QHh460O9yxIIb3uDCkwzX7nXzhA1Bk4dtZube97jje/viJfSPuNCG8/fETeMdjpyBsZKIgEQUEsU1yhR0NPGLfbaUUAFS8S+Lc3BVLu9ZPdJLIwaIj7Q63N+IaBnuRkI4ZVPcaoZZpSesa95F3n8V3PH58z4k7Swhve/w4fuhdZ00TXGdh/gjtY26dNN0upnmcxDAeNrN7iHmO02F36Ei7wxHHFIKJ0prKFheS1pD2yLuEIyv3I+86g7/57jPIEmpMCG4XUgBZSvjwu8/gh959FpJElJkQ1Y4pSpu6ky4jThAV14KMg3GklOZetRBxR9C3Bp33SIc7AD44vQrrGiJJoASB2WjE061JF9tuj8dBU37n4yfxmjMJ/tUnLuDFGwylQ3rX+VqoIQl4+O4BfvQDr8LSUg8aBAGAmKyTtOPseHgRXcg2UPfNrpO2q6OZJEm0bPqkZUfeB4eOtDscEUTEXOGwkMifWiYUgTiwxu3cchi/jGr8Hyj0xFKKv/MO4OkXnsdfXDyOr19eQioZk4KguEmqkhi9XoqiKHBu4QreenYN3/u+78SIUig4KaIqWTPXP2Bqn7QV5nHRayXqaYOXjrgPBB1pd7jDUGUc5zHh5htnwVnO1EKSzASCQC/r41R/HR95wwbO3XcWT7+U4amLGZ58OcHVTaDUQCqBY0ON19+j8Ohb3o778k/hi1/870j6x6HKApTB1qZk20kwnJJJsH9aJqdtWtjxdcfugG1SRxx801VlPzzoSLvDHYS2KuVW222IIm1WY/AgIe/jHax7Iol+f4DJJEfeIywOGG+5r8RbzwrQGyVUT5okTazAokAiNfqvPoO1rxVIpTleUeSgLKqb4/RluE7DTpQSh4lBlzlqGwSulPLSh7kP7VZykiTQRTGVtLuAmoNHNxHZ4QhhPt8358EXyyY+L0cluMZ5kbTl8aie0VAmQcrEZ88zO4fJQhGFhAfSR6UNmrU9fnRuewiiqjQTX2kbbc7KQzIvnCtk5Vgcrwvn6nAw6Ei7wx2PmQn+Wz61R0oCTAQhE2hmaK2iiU2zmSNyQ74myZM7RJamSKSAKgswm0CX2JAnCtGQzRZunzDbLOS26EYpJThq+6zjdTgYdKTd4Y6HD/ue4jFSpcVIIok21wyABJIkMylPtYKKvEsIBKUsaQthSVv7I/b6GdI0QVnkJtCFm4E+gupLnMa9fb05DpqZlZo1SRLABt+0ad6VUUpH3AeCTtPucEQwv7XZpv6Sm4msGa4ugKXhcVLd2W8rSEQyQtOSrXYN3vEbUkhoMoUJXA5Uo4ZwfIqWbmV/ZQkhxEzHwplEXW8aTVvZkf120FnaHe5QOFc2wGjKjhg1CLoRZegCaQgMYm1/h2NpkmCSgEgASIBNAV4GwARowdHEpbFmw3SjgEwSCCKUkzGELiFYWz9wQBOjJIYihiYOtrs7+B6hzdL2qVvtqKDqJ94F2NwKdJZ2hzsETg5AzWQMJCoFoVTKhLSQCWxRfgtAetJW3vWOLWFDWKJGCiAFaQIpqweTBgkNCWknFo2bofPd1pBIsx5UTsg315CoAiRTlIJQglAKDUDbQBvbXhbm9w4Ca9pkjuakJYGZkKYZNAOlVj7tSnyc3RH29tveoSPtDrc72uNlqptsobXGEYCEiNUrM4F+Y6Mlc2zkEhjCWuPCbMwCpAlcd2hhuzOiiEkSEEKCiKHKAoKNtR/btUwmbF6AYeodEIgZTNM9tbejMU8jXyEknPcILLlPO+p0At9h9E+HVnTySIcOQGVCLVqKVhXZ+0X7nSvrpZAgIiitQ0Rh5HMdvK5Dj5NICUGEoij8sanl2HuJehWbehANRVp9J4EcHnSWdoc7CnWbL/Z8qBT59Vu3WYnWh7o+0QhDeolMkWvGF88LvHCjj69dTHFtQ6DUhEQAJxYIj52VePAuxpvvL0AkkGUZNicTTEYjMDuyJ/9vv2QEd/3Om8SlaK2sb86pdriF6Ei7w50FKyfUJ9w8SU4riOADbaqh5IwqrT93aROfeu4snrmxgCwB8rKZd+SlVeDrL0tkiYT6b/8V33Z/inc9mGFF5ijLwp/R/zdDAtlLWXi2pR1p31GnVc9N0rn97T860u7QwWJewnGKNBAI+8Z6jl/7xDN4/vIGinIRDMJmMf0Yit16jT95RuJLzy3j3uU+3nV6NRDgAc7TxSlaG5hhZdc7vw77j460O9zRcNYjEYEEBTlgxj7eldv6UX/+yav4rd9/EaXWttDvdr05CLkCzt/I8PyN10Kf2sRfe9OSlbPrs5ixIzlFy3cH59pXlmUjKtK0se683uFWoSPtDh0sXJj4PPqtSXHN+K0/vITPP3kdebl7JtNM0JD4zT8d4+LadXzkXXcjlDnzZ971edpQL4YwrUDvLO+RDgeDznukw5FGI5+G/S9eNpWk2O9RBZnQ8d/63MU9I+wYeQl89mvr+A9/+Io5nfdW4Rp97x19xt4j262o3skjB4uOtDvc0ahPRpJ7JSru2U3vjT/5xjX88df2nrAd8pLxh0+u4k++di20bx91CSFM+L1xOWxiGi93hH3w6Ei7wx2IJvnVkx/5GpBhC//p+nqO//DZl/eNsB3ykvFbn30JN9bzfT0PsMVEZMfLhwodaXe4o9Csr9gWOEIz//y3n3oOpT6Y2bhCafzbT563f9UnIptt2ynqpF0ZgUx1hZwX3czlXqIj7Q53JEwivfYSW3XES85f2sCFyyMcVPUtrYHnL41w4dIITc+R3QfdxP7VbFOw1iGEgBAieMa0nLKLmDw4dKTdoQO2Dg5x4S2f/vPLKNTBElShGL//5cvRkr09v6uTCbTLI0Y2ClSx07qUHfYGHWl3uL3QohDs67kAONNyNCnxlWduHHhINzPwladXMZqUwBSdfTuY5c7XVs0mLv67vRNhrwYEHSJ0pN3hjoRLxtdY7hNrV1cSgOde3kAibw37JJJw/uUNAIwokfeeICZx56cdQyYSUspW6aTDwaMj7Q5HHnWr0luPaM8tDWp3rrtwaYS8OCAxu4a80LhweXPPCTtGPfeIgxDCR0watOj+nevfgaEj7Q63L+bgrzbCnnf7CkUx8K0X13FATiMNaAaeemGjsZyZ9lQtars/zaRQe3SyDjtCR9od7ki4mpCMasIjX+TXa7FBR1ndmJEB6gCwulHu6/GnWdpSxvJI5yVyq9GRdoc7EoGom/JIiIJ0v82POmCvkTrKxvn3doZvWvkwKaR1+WsSerxPJ5EcDLqEUR1uQ0SEu1seNVW0vEeIr8pOlbMAAOQtmoR02I9J0GnyUYWIp3mPdCUebwk6S7vDHYOYkCplwCquaS3Wq+WqlYX0oJraipWFBPvh7xhr1m3WtiABImE9SwB3f6ph/gflh9mhI+0OdxSmD+VDhqggkaDCQ6++dxGNimQHBEHAI68a7vlx2yztVtKGk0faLPOOrA8SHWl3uI2xNYNuPyCkrmW7AwHnTg+RpbfmlclSgXOn+1Hfsr+9R+W+2YnZaZp3F8F+sOg07Q5HHm35sqdms2MK3iM+j7VZ+cDdw5bJwIOBUoz7z/Qihtwb0o5HHu5Ha+29aICq94ghbvh97FGws0nRThDfCTpLu8MdhTgku1HcNxa3qWplA8Cwl+CND60cuJ8yEfDGh1cwyEQttH5vG9JaWgyGtIUIpN3cfk+b0WELdKTd4TbG3rAFc5AbvPcI0ELowHvffBrpAXuRpJLw3W89PX2DXTRnWr6RerUfJ4/sHbqkJDtFR9od7kjMIqCqlBKIhYhw7swQ504PIQ7ozRECuP/MEOdOD4KEUXFG3DsidfekIR1Zj5qtObszuQ8CHWl36OARVa+pkHYVP/r++5AcEGunUuBvv+8+MHSjbQyNvRttVItCVGUQu7zldNOClDrsHzrS7nAbIrIwtxhd1zXsaR4Qsw5EoEg+AY4tpvjIe+5Gluzv0D5LCB991904tpiaIKAo4qfiI73HIntbJZ9ZqVm38vPusLfoSLvDHQ5qfJqHcp549Bje/vjxfSPuRGi8+9Eh3vm6YwC0/WnqwHtNj857pH3CcZ6zdYS93+hIu0MHj/kJmAj44XffvS/EnZDCm87cxN98+wIIGnCeLm2ETXtDk7Enjda6omuLyBWwDd5FsouKPBB0pN3h9sWuuZIq0gdQjfBreFDU9ybCD7/7LD7y7nuQpWLXk5NSMPoJ4+2nv4nvfOhqtIZbPsbkvXdEOU0GiZd3eaFuLTrS7nCHohlTyDCFbbVmMGtjN07Rv32ICxHe/tgJ/ML/4VE8fPcisoS2TWpEjF7CeO0Zjf/n/7CJx09dARGhKHOA2Obzrhf0ja9gb0m77o8dX1BnR996dBGRHe5ItIWBu2rkWjviNoTJqBGkdVxmBKvnxGKG/8uHX4MLlzfwe3/+Ev7imTVICUxyDW6xjSQxshRQWuKvnivwA68v8PAZBSZGL+tBCEKRj5EMGcQMsJ+BDNdg28CssRf2l5u0LcuyRtpoNa+Z2xZ3Zvh+oyPtDrcXdsgJs7wf/HJbBICZveRQyT46LVqbQorYc6cH+In334vxZAPPXbyB3//jv8BNdRoFDVEoQioZx4eMx85qPHwX443v/D7IZ/9Xq12bYwshQHD+0rErXst9IOzK/K0njIo9baaBK5+iidzKsbq8rfuFjrQ73PFwJKWZoZznRKtHYc36ZFv5JmJOQ1UCw36K19/fx7VvPI/7z47wpkcfAWsBIqOZawKgCQuDFJuVthB6vQxCEPJ8gmHFirZVdNi6/u1Tgd+24r6EiJRbTltPCdBh/9CRdoc7GlprX2VcaW2lARf9RwDEbHuxpS6Ayd8qAEhzDOaKhME1LZr9EgJrYNAfoiSJ8XgTYA325By7inD0szcQQkAIgbIsW6MiRctMaztZd1b2fqKbiOxwx4BsOLbTp9uiAFm3RRlGiZGmpkY1K8MhW85FQeIgv088rWkgpTTyiK/J2EbMNat/G5gVBDNPEE29CV0wzcGiI+0OdxxiinHFbM0EpG541NVDb2ZkLIm2cROEgEwSwHpkxATOfh+7N4XjJGkCEJDnEx+qHiZD4/PsraW9lTwSLO3ZeVs67C860u5w5yGyEB1hK6UqXhMEiizzrVHP5MogMBPSLAUJQlEWJlMeCJqr+7hzEQjEQL/XBxEw2twAs4o0dlP2yyRvcpLL3mnJZCWQafKIlBJmNNEm13Q4KHSk3eFIY56he6tcQNVcH37hlqj6NBvrlKB00HmZXbsca9vPlnyFNK+lUuVsa9qu2usqNo17wZGlzTUvlk67PnB0pN3hjob3HKlIApH80KJhk1sXH6fymXyIeZKmABHKstg6opCNtZtI4x9QFDnCtGUtjH2fLNyp4erWCmc0tfBOEjlYdKTd4chjK/9s75utObjTha0ANF3/GvYvt3/u90we7Ml4YuUMgEiAddwJuAlM43WSpSkIwHgyBqB9VKSAAHGbo/jewun7MQiENE2hNVfXdXx94OhIu8MdhukEXk13CnhDu+I1gilEFaxop2kDzhOEUCpliJmqFnsbhJAAAFWWIQCzvtEuyDKuB9mG1olIclLPFoE3nSfJvqMj7Q53DOrpRrca1sfyyPyIPUIEhLQEbPN5kF3edjYH56WhVAkihql70NJWr5TsnijjAr/T8q2Q7ZGaEe5NF8oO+4eOtDvcWZjCK9UyXmG7nSb1d+ScpilARp/W2kRLSkvkDZcT61aSyARgIC9yT4puQpOtL6Fpb2jjXqLN0gZMZxICj9yFdvrIQaMj7Q53NBoWdz19htevt0uM5rhSBEvbZVhqtZo5nIVIgGEsbXgru5HwBHDeLbvk7HlIv3Kf6s7sHQ4UXRj7YcVeGU9T36tpJ9iDE/tJtcrHPYM/XG3yr41L4oDqlvg/eOs1cu+rHIcj+9tGNZrJyrDcB80Y9w9/DAZBJhl0nqAoAEZwmSN3PNdG5+5nPLkhiCEFQWsFwdpOVuqaJGImToU77pw+220ykda6dd9QfMHo82VR+LD69r4nyCzVFdHnjut3hc7SvmPBLT/Tlm/3Z+sz7c2Rt74qt0z7+HFDzi5nBpEZ8hNJMwEoXGkvhglmIR9DQq5nYAGhJYiFD4xhuIlMk0mEIcAs0RssgamH0YQBYSxoaA0BwMVfahJwTiFSMAQKJKSQJoBSObQqQawBLiBIgYSCRglmQDAh5XSOO1O7TzXrenZ5MXOv0jSFUqWZIAVczwOttdfhO117/9GRdod9xV6/wjs5Xhvpu89BerDWsyUi2EnDullfta6jkHKKj+r2ICRpH6AEeclgNwGpzeRibGmz7RzIW9oaUhCUVsbCZgZBAaQA0mByHQtBQO5JgE09F0sMImNps9bQWu36XB12jo60Dzmo9tNhGqK7NGWizFnNBm0UjupNdpOTRNXjzPg2mJxEYuUOFxFpNW0fkR4TZPMoVg8XYDspaA4ZyTC+JTSzJ2ubSG2TQdq8aeq+2sGant7yDvuPTtO+YzGtC5i3a5jvhd2rjmZeetjZvByHX96UDmToryEizvhsPiTd6tzes4MZWZYBACbj3AbXRC30xwonNkRJEFIiyzKURYEsVYAESAho1tDMvtgu2O5jHVK2kie8dh6lWSWbV8RV7gFCgI2UEkaqt9tUJg863Ap0lnaHOwLzh1pXreq65d22uLk/vAWcJC4kvbRWL5qdQQSnigsiJImELpWJ1CSOyotVpZoduSTWLOtYx45D++v72GFCbXmwvruQ9v1HZ2kfckx9HXfwblSOxVNUUN7iwK3ywhabb8dMbmvSrO2jofo0LxGvU8+4aY4stzp5PLkZkyaB4qaYz15WocqkHkdtbT8Xed9srTU0a8QGLkVW9lbXNQvT8mm3BctUl89s/I7b02E+dKR9hyGoobvFwb6Y2zlbO3lXyc2QKoOJwdabJAz946lLmk6ytZYREZgImjUkAUImIJWAQVBagwTgyo0ZIjeWrDDuLGYpCRAzpBRI0wRFnkPZlLFasYmydNK91saTRdTLKDThCHha5KOzrkMgT5PUnYSydS/ckfZ+opNH7iB0UmSTxp1vdXDZizeNl82aOKydJSZgkoa0vXO2ReQ9Uu1kjHUuhEAiJVRZ2OIMgVTJkaprH82v5McTk23eInVLe5YrYLvF3RH2fqOztA8rphZt3cuXou1Ys44fT0LNbsd2W9kilU45VntsYmPp1NG6I7kp5+OoYmPE1/74VT/A6agc28kZM6SR2lHdxJ/SypZAqyhBTjr3zSE7InD7tjZpztzi0+SRqRJStE371XTYS3SkfajRUGd3dbSj8xptR8dlz9Pcsl8l491Ux4g2JXtGs2x6V6ckCCGRyAxalUCSGgLUgRyVUpiUEv/9ssBTlwhPXhK4snYKeXkSRMDxxQ08dv9VvOr0Mh68ZwGDfgIX/ehkjnkmAOvbOBnEBcdorb3HCDOjLMtIO4/vRDdmu5XoSLvDbYZYU52HuEOl87B/O3HPtkS3Pm9shTIbYmYmCBJIZAKtSwAJIIRJk02Ebz1/Hf/hMxm+eCFBKoFJAajaZPC1EePZV24gS2+iVIw3PrSE73zLSTxw96Jpi9FirOIyn8sfAE/U8T6OwNu8R+rX2OHWoCPt2wo7eWHmcVPb/rFmYwcuaHMfeX79ti6r1JfGrmqte1ZOFf6gGnUZwrdn4SC/aGZIstq29bE2k48SVzeA/+UzKZ6++kfIywTMhGJGoKFmYJwbEv3yUzfx1WfXcO7MED/+/nM4vtDHdu/5NMs8lkZi0p529KqEMuuE22pehxnoSPu2w3ZezqP5prRpp00Sqk2WTTWSyU5EtiyH9beOJg3j1U6fJuvSxzAkZmopahSlQk8mSNIMWdZHnk+QJgn+4Fsp/s0f9VAqQLFqa9RMMAN5yXjm5Q380q99E3/93ffgiUePz0XE1eNwRVoRQvjCvq7YsdYaIpKOmnUzq/erw/6jI+0ORxRNi9xzb41fPKlF27UfhhobVHxK7CSmEAStgFJpUCIgkxRpmiGf5PhPf3kMn3sqwaTcPclpDeRa4z9+9kW8eGUTH37n2akBM+37N8PUnUyktY6q07uJW97CnO5wEOhI+45Gux/Gfh354FHzfuCtxRXjhdEkporDScV9b4srtZkEQRL/6S9X8CcXesjV3hJfXjI+/7VrAIAfftc9OzpGHAk5rfCDz4HSutz7srRsYH93fL8n6Ei7w22HaYRS5U8zcTivh15Am8wyLaDEWddhS9MWGF9rW6FGJim+tXoCnz+/jELvT2iEI+57Tg3w9sdONNbXpRPnGeKsapdT21nYUspKylV3cVJIMFqqtXc4MHTBNR1uK7ggk7pFaCqpt/wAmMnaVA0oaTtfnbDbwmy4st5YnUIIMATWJhK/98zxfSNsh7xk/KfPvYQb60Xr+jja0SWGckmiiqLAZDLB5uYmiqLwenbdghZS+mPMynbYYf/QkfadCmr58ct5Vz8+NHwffnZzqfHfwBTPkQr7BuIPHYQNMWnLPe3JP/wNAP/vP86hDkgvKpTGr37ygregnUvfNNkj9lN3E5FSSsgKOVe3d0sOhwR256GTRw415ndvC9sfdViNOPobsIEiFUIy927avJnnWQTpwPtq1ybcQhSj8+uLPCjIkbb1kyaC1iZLnxQJnn55Hc9fVdA77XG2Ca2BC5dHeOr5G7j3VM9flyNkN9noSNlVpHHbuXuRZZlPKxsjSSSUciE2s3KydNgvdKR96LFd4t4r7OacWycw2vGRXWGCGoTNqMctxN3mRVI9ZovLYMVrwi8Et10ba5hsUMIHuDBMwqhPfvk6igOWgEvF+P2vXMVff8dJ74IohECSJN6Sdp+TJPGfsyxDmqYVUq8jkYlPdGWl+87kPmB0pH1o4Qfx8++yLWtuynF3kJu59cj7ZILVPfaaBN7GIuTcPqYcdUpjK9E3bfvOZqzRWOEvnt3Yi1u6LTADX39+hHFxAv2UGhJI3fJ2BO3IPF4PRM4f3hKv3q+pIfQdme8LOtI+MthLltzd23aQxte2wqobPtpBFnH/3CRiZUNq29etIi+lMBst32ThYzz14hqkJBQHJWhHSKTAzbyH++5ZaWjWjqDdMkfajtCbE7NBoxdSQqhqt9mx88GiI+3bAvthtk4NTN6Hc+0huBlCbhYHVp1WE5F9ng63HLDZrC1xC7uVMIV27UYU+2VXuNza+VEYuwZDkACzwnMX15EftDZiUZQaV9YJZ86cqSxv85Sp589uFELgoP1LKapzCh1nHzg60q5hniKo+3Gu+nnC5Fbt/FNVk6DdTq/MvfW1bEtgmUqOe4dwDlcpvb6B2w7t69sPitiargz57aqKcU1un8iyjqTykGwqmt1k4KmXRtC3iNCUBr7+3A0/yRgT8jRsnTQLmOcJib+zOLCmm7TcG3Quf3cM2rTf2xD1zq19I7RdX5yCNV4rSPqObjv1FptTnAbGzQ64udHuL31QuHZz3FjWVq1mK5g+zdyfeIKyGdA0A501vmfoLO2jgrrTRPVDC7Zrjc/31jl9eA4qmHHcsC5ygYYbQxBF5NOy+6zEScajz7jkMYwBLYT0VqYLdQfsdi4gMOKnkNXP0LbpDJwftNmPmKFuceBgWbY3YFb+7Xq+ksp23CRtX3ihcZKdt7vDbBxp0p5nSLg3J8JUrgsvt8H0LGlhCyAwhHGraiExxFZO2wHbT9I0rJxEMGu/Jnlu+VZWVrfO4NW2i47p100/T5wOtX7K+tnYa9J1t77WQ8+Plu89FC5jSHFrRzNJIqZKHrMs7KnrOBReiBY5D/Vttq7VyugwB+4IeWQ7Q95ZIc2zT4LwHLZ5idn1FR079lSobzvP+SpomSmr77Jjkqq+pGHZlJ952z+DHNwxhPfsCPv4XaszktVD2210Y+LSTbzNkE/Q7PAjUcHWbHTnaJEY7LLlhVtrE51Y7vvP8zzTLorShbaXZRmtNNcrhJgqJdUnMivn7Hh5z3BHkPZ2MS9phwksqnBQhVA8WYcfs8zsF1FSTSSdYT3Hx2pbH6ESvuyPTy37x6Q/+8fsSzCPT/xD0fWZH+LWIxiPDLdNtC7sZ8JYBAiSyEbIm+vQW2ixXNvOD+KtVSiEDFdd60illNWDRSQeJ1hyX7jWoViAkYbMBTAYD54d4lYZ21IQ3vDIqcqyNjKtFz1wOUfKskRRFEHygbkqIyXF3iZN4iab2TA+X/vkeKeh7ARHWh7ZCeKQ5jZMG4LXn78mIXJlXVsAXniBZjSwIQkEt7Mpm9TQPklXXd920qrF6c4ZqxxBZq6GN/vPkcZS2YadrFA7e7SgMsyPLtB/TzYQxveVjtiJK40mUDVmBkGHjk/L8R8I6/22BLhkUlWNOFzZfacHyBLCuDh4cuplEo+86tiWo8y4M6pXag9/10g+9ku3z3LjvdiJYtJhLnSkXcO0IZ9B0KPd0NhZb1tZ51M7gZkvVezmFu/PqDHPHAgvm2sPR8fdup+oi9B1OaYm+2xhYba909Pe84YuW5H9q8sNkWhvAWutoFn7e2UsQGFHCnZ3EiiLAmVZQjND6ZB8tBQAawWtla2daDpKLQgEbSxrUvY4dmxApi7kI69axpS5wH1HUWo8fM8iJpNJRfZwP3GWv/pPHO5uSN0ROxB/S7ElXfl+OrLeV3SkXUPb5KVW7NQMk+MCTuZgM2wXzWFnbH21EXZs0UzbxpFEhRDntqhjEEB1JUyg7Uj1Y4YXNf6fg4VfIW8jSYj4PtmD1Lo+b6U3fL1rbWgkc6p1Mm2/ldZQSkOpEpN84ktn+XsNghCpIVwmyCRFadORFkpBeWuawLoE29qORAQSCYRIQMSQEpAEMJfghAEhoAFQQkiSBCeGPbz11cfwhW9e38V8wvYhCPj2R08jERqjUbh+J3c4vdqRufvsIiT7/T6GwyEGgwGUUnZC09w5IB4whbB4rUJWlvoza9Ax+V7hyJH2vL6n8x/QHTcYty79ZsX4m0LMsyzweQIZiACtY9I2y4HmsVuDdaaev76v+13fPljWxpmjStiRg1wkx0cWPQJx7yX82bj6t9OyNWtjNVuCclqta5WUViiynZJLY2p+QhZtrRRMgiRD2sJq+caaJrCInjmrnwuY+y+FxAff9ir8xdOrmBxgZGSaCHzfO855jbqwo4j4PhRF4de7Di0Ode/1elGl9ppwNfWRdh0qNzi6+hh2BL4bHDnS3i0i2dUPecMMWQARmbk3+6Jq1ggCbHS82vE9iTny9fpobR3PQ+p7A47esbr44Ui5KtOY1nJlu6Brs2ZoamqlYZKqOiJxVq1bGk80VkY8Wpt77WWQ0OLR5mb9qkCCkPV7SHUGZmdRwt5beGkrTlea+GsmQBC0KixpM6RMwCA/CSvISgeKQULAFTMrlbIdlcY9xyQeODPAUy9tHIjfthSEB84u4vSywGg0qhTojSdMkySBUspn+nPrHGFPJhOMRiNMJhOcPn0ai4uL6PV6/j4B8PlLQtCSu7FbaGMddoWOtOvws+VBlyUhQFx945xVopUyocoRabN94b31FZESUyQreHI2f4YzEEgY8jNNmi6hbOPC/LFde9z0H7vOA4Bm26yIpINVHR2jdlTmqCK51kbvjUg7LiIbZ49z62JtNNZgfevdctYoWUcWNeNuADdWVwGYfM9pmpqUo1mCftqHEBJSCIzHY7Ay0Yqbm+NwdWysYiEEkjQFiQQkBYSUnrSZGf3+AEWpkOcFlGIwK7BWQGnap5hRKI1S5SgKQk7ARE3wP7zjGP7Jb42gDiCmXQrgr7/jJK5duzbVW8QRtVLK/x2PRBYWFnDp0iVcunQJ58+fx5ve9Gbce++rcOpUCimlD413GQFNEJJ9F3TIYT77ee2s7Z3iSJN27M40U6poeX5MZBx5S7vusuRfBiKwJ3RnplcP7aPsHHHXT+3nxAI5+0m2msXtpBnXxvp1+v1b9wmk6M9ZVRkCoccjjmjSsqJO1+6b07/dkDrW7c1koGlLTODeLS/6ftoqrrjjKNYoWVliZyh7rEk+scdLTSY6Kx8ljsCFqXmolQZrxmQygbWzAQ1PZFmaQiYZSEqIREIr6S3twWCIPC8AEJRiqLKwVr+EVsq4MYLNOQAj0ZQFhqnGD751gN/+4jrKfSw5lkrC93zbCjJRYjLRlax+capVR9SObJ3F7O55kiQoigJra2u4dOkS1tfXkee5/x4EueMIKxlW362tZMEOu8ORJe0dPzTkQqUJmHGImEymRZ25lyC2GmMXq/hY9eMQEUhTZSKPPOkbEnH6ute5vbbj/3OXhLjKuCFmCU/CkTySF7k/fzjUfPfSt50VyE7cBR9pJ6mw1ZHtPt7Wj0LfiUDSVKKh2iSmESGk78y0PedgOAj3lkwNxEmegwEkUiKRhohcLUkzxCc/pDBzBxqTyQRUKpCQICnAuoTWRtfu9frI8xybm5sgktCqBLQy5WLszRJCQCbCql4ECQmhgbe9egHnX7qIP39pcV9qRaYJ4a+8ehFPvO64Nyjq6Vbjz+aaq509YNqvtcbCwgJOnTqFkydP4ubNm3j22Wdx+fJFLC4uQqkSr3/9G/Dyyy9jaWkRi4uLZrTkjBxU37/Y0Oiwexw50nbWb324PS8EicjytaTCqDzoMRG3Rn8hWItuIqwsy4YF2Wg3qp2BsF+PDw+xGq7Wyv9NgiCc90pjsihIG3VLyJG2u06HjY31ir4cjw4qV0i1sYcbjZAhVuFGA7YdnjAQ+pb42t3UHwkj2wgr37gzxyObnqRwUovlY8egtEJR5CjLEpOygM7HEKORtSYTJFJA2GOlqS2lpU3gjlJG855MJqb1ZCUuraBUCaUKLC2tYGM0wvXrNzAYLJiOCRqSTCdqtGIJgrSaOSOVAKkSJBgffosG8yr+4uWVPSXuLCG87dHj+NB3nGk8i7F1XX9G45GNs7qJCEVR4MSJE1haWsJoNML58xfw5JNfw40b13DvvfcCYLz+9W/AV7/6JB566EEsLS2Fc9Sq3VS9fjri3gscOdIG2np5g8awrfIMNS0EjekeIo64GxF00Xq3TezB4GbqY4kgfqFiq1yQtga0rh2zrFjkJsdxqLRduxuNDsdAoukGCORFYSzzKdZ19d76fqRyfkkMHesrdtRi8ky3yT2+pWDAd0Jx+72lKAQokY19e/0eSmV8souytAReANqRaYJelkGS8aHu9USwsmFIW2uNPM+t97XrSDTKskBZWpfAosR4PEGa9qzVryFkGIyQEJBkSVtrSJLmaCyRZT287+EXcSpbw2eevw+lAtQuakcKQUgl4aPvugdPPHZy5siwzdOozahx+vbiorGgV1ZWsL6+jhdffAEvvPA88jz3x3rlypVKvm4/4kP1XQudcoe9wJEjbTf51zb0q244ff9pckf1QTfLYsvZEbHT/4yrHtlgBVlxK3OTW6GzcMdj3zhBKZznSpAYYEg70jQ8yfoX02nh8BZwrJObCcP2zkbKMNKIzeug8dduodfEjW5NRNBsvCq8Hm/b5qSMihtZ3EEwgMjnvd75kjCWHJXB6iYiYAAUZQFlXfWE9QIhYXoVQabiSiIlBAkIG2INJy3p0FEIYdK0MrmRFiBZQmsVX7UfNQgICNIRKdm93PFdpyMISZaBiPDoicv44Lefxi//QYpnrmbIyxJNV8vpIDKVae4/vYC//b4HcXIBKJtjoQrm1Zm1Nlq4891eWFjAiRMnce3adbzwwvNYWlrCcDgAAJw5fRpLS4sgIuOJQgSB8O502vb+4EiSNtsHb8f7R9pwm+wRCJ1QFKX3gy2KAqfP3Iu1tXVIKSFlAiklsqyPLEvhhoghWi/2g3Xnt0cmgEh6YglEZjRtd51KK7DN3xz7KnOUE8MRtx2xg1lbj5dmx5RmSdDR3cuHaDI1vk++A4DN4QGvKYcJOUMmQivTdoZtlyUZS6x+0hGGQB0hVzsn22mQ28ZY3netnMHG5sjsIwhJL0Nq+zAnhxCRzWdCECwsSdvoSMUQWiORxhpmwJI2g1mgtKMdYxC40Y202VY0hCCbmKr6XQJmdGG8jyQGC4tgEMaTHKeWgP/rD5R4aeE78Zv/26fxpfMSiQTyot36Jmj0UkKpCW94aAnf+db7ce7kEIJLgHPMk0Zo2gjH/R0bIJubmxBC4MyZM3j1q18NZo2vfvUrOHv2LO6771UAgDe+8Y1YWlqEEAJFUZhOUSYdWe8zjhxpe8tvGzr23IduaNEEpTSKokSe58hzM4k3meS2qnUoltrr9St5iJ2LVd1DAoj081rNPiMPGOJ3UXouSCL2w3VWf6y7u1vj5Ik4QjCGkKaNbmIpHrk0to87iugekWVnxdEEbNSh+M6KCNBBFqokXnKacuPeALA+4CQkyCZ/yovCeIBkKZLEFaolJFFyKFYKYBMgQ4C3uJkja1hKM81LbsLXELYL6XYtEULYTsBFljY1WycXEBmNXqY9MBFKpXzn8+r7juOn3j1GwRmeuSzw7GXgyZcEbowMQScC6IkRTmav4E2P34MH7rsLw4VTEMkSuCjNxOoezmu676Cw9/PkyZM4deokrlw5ASLC0tKSl0TOnj0LIYz3lNYaTAIsqlZ2R+B7j6NH2gSA3dC6ZfKjRcduQ/yCOitE2/Do8CCa/Z2/qns43Qvu9GxH5m6iJybV2HKPZ/yFED4UPLbIrUDiLV0dkb+7pDZXuVZt3y+KJq6kcQWTJILF7faJNtXWC4NZVG5prHRQlOLOyTOsGdDBJ9gd26UJ0PY8JgtgLZGRtZbdpB80A8JKUkVuJCiY8HVzD41+7Z8C2xFJSAyyDEwhttORaKRY2e/KdSICSpV2wk76i6Xa42V2iOUpe5/AcLOwzLry5BERFnuEN9/PePOrFD7yZmk7AwkWjKcvXMSLr1zCfXffhSQjPxXhpRfMnuabZsC0Wdvu+UwSQw2vvPIKLl++jNFohIceehgnT57EwsKC38fld3EGhXtXYsKud9z21nXYIY4caZshrwZF5sd2JkGcNVyWpbGz7INnZJASeT6B1sG/NU1T9Pt9SCk9EWVZhjzPvWxifIJR8ZV1RBQHNbi8D2maIssyJGnqtxmPx9YzooCqvCSAs+ZkIv30mSEHijRtdy+sBSmMj3LY36yXaZS2NGICRvVF40jQjjnBSRrOjS8+r9YaSjOUMlKSmfxTRlrQDC2cpm8JXVvL3HdAVp5w9y+aKF7fWDffvTTX4w5grH6zvYQJoslkguzUGSONgMMEpyMY12hBxjKXAmmaYHNzDK2UCS5hK1t5AoXvALxkBJfGVUMwAySgNaCVhow0fiOlkR+5CEFgjRCxmEr0eikmk00kCwwpJEqtIYWReqj+5cxAm6tp/N2553g4HAIAvvCFL+C5586DGfjQh34I999/H5aWFv32RVFgMhkjTVPISsrWcMzwBKDlc4ft4uiRNqI3yS7ZKYKlCiuDFJhMcu81kiQJsizzPw5JkiDPcy9BMDPyPPcBHPGsfSyTuHXuGLFVnuc5xuNNTPKxeZmlgJDheEIIZJTBWKHRtVvidlpsJBAHGSb6LKQh8vqko9tuK7iJSEeGrpMyhK0htAaVBA2GhvGbZoLJ4aEZTNVRgpNY/DIGhNXFXX4RABhPJnb0EOSXWC6CZiRCIpUJemkK7aQb8nOGVeKLrG0SAlKaCWbNwce7MljxswYRaUXtdpPObh7AEHzorE2Oam3nYgnKzn0476AkkSjLwny/wowyyOZA2ekzHo/wKt+f1kitwXDhwgU899xzOH78BN7ylreg38/MfEK0bVEUWFhYMJ3HtNHdjlrYoQ1HjrSB+gMT9fr+4Z7+kLsX3rmPGSMmyB5pmlbCruPsaUIIDOz2Lp+Dk0hiacTr05FlAwTydC+C80JR9nwykUg5NWRoSdtFs1UCJ2qyB8H6z1or0sgUyp8zRuGDa5r3aRpn10ff2lra0soIzGx81W3uEGZYNzqFoizDhKa91liS8TKQ1dbdXJ/mKrl7OSsmede4aHjuzhU8ZHz4T0X7D3MjqDAOIYzGwABTOD6cVEF2ZAL7IeoZvCcPK39MtnMUMeHF7RFCQAoBVbo8KFFjIqLcS7g29Ho9nD59GsvLK1hbW8OVK2NoXeLhhx/BlStXkCTGeKlPVHc69v7hyJF2feJqu/6h3hNElSbxDzOIJHq9Hnq9HobDofcUKcsS4/HYRNFZAl5eOQ4pJRYXF71vtiNf9yOEQJqm/geAT5HpOoE8zzGxOq2UAjJN0JcCWS8zbbJBNY6sAXdsSzxOIfBStzDEZzuIsix8kA7rcM9u3lz195Eo7F8fSlf/ZsuN9hqJoMl0cmVZoixKbIw2wGws+V6vB7KRd6os/WDA+EhUrWrHeb5NDEjP3YFwlS5tS1D5Dasfm7BtJ8ckZjRG5hgmB4fxSBGSjOugI1AKHapJz2q+D3LPlrX4q4M7Mq6Agkx0qJUxAHP9UggUZQFpdWOljD++hLGyWWsQCz8pnCQSvX6K1c0NLJelt+ir9786BxMjdn+tj67cvXbLYz0aAE6ePInXvvZ16Pf7eOqpp/DVr34Fq6s38PGP/wN86UtfwoMPPYiHHnoQRZ77vDX1gB43suh8tfcGR460HSqkso1O35OmcuWWTLXuXq/n9euiKLyV7WQQAH7yxmnTZVn69VJKL5c40u71ehgMBt663tzc9JnZ8jxHXhZI4u0SCSJD8kZPjSM/TRCIEMJY01SVd8AE0tpE+hFB6RJlGfIrO2t/c3PUsGDd72l6aNwhaa2hhYkolFKazmcywapN6JSmKRYXF5FmWUSY0XUQVWUN1F5+Z/lak9ZPzepQt9Hv445hDd1gteugtVs93fuBk7N8GXWOsQoHJEm/wJOeaxOiCUJHkM66hp1zEWZSU9ogIc0a5KQQkGmPfY40a8hEIkkk8vVNaK1qj7PtuCItfiuPjWnrYgJ3v5eWlvC6170WUib49Kc/gz/7sz/DpUsXAQBPP/00Tp48gX6vZyfbwz2rXH/UCXTYPY4sacdwXgCWAsJMOzs5RPsX0jz7IvIAMSvi3MRx/uE42Y5DHAEJwOvf9Zl1t138UEshwVKDkwSUSOMPLIwpqrWCckEeVso0HOyOV1p5hLwVyfZCmUUk15TIywJKFSZTntZgZ4E769ub2O0k1iDt6J9m2zkwoKHBxBCJtb4EgYmhyckg9VGR0aXdMYMmY7ckNj7mdnTh15KTVBA6abLyhZX2Ndk4RwqX4p4FN5Hoyd4fIww33FyGkAStTPu9QhHJSV5kse1kEDQTBEmTQVBIaB0mUYU/f9Tu6KolEVIpwWVpR0pc7aAwH9ykbGUZGov8tTrjg4hQliXW19dw7NgxP5pzMl6pFBA/H65DRGdh7weOHGmTzx3iB7AAETSbklBCkAlusWS1OTITe5q1nyiUaYZMSigrkTgfbOe7aohUIMsyb0G7BxiAz0NsvAIksizDYDDwOUjin8lk4ss7CRB6WYaendQ0OalhJsIEYW1zE2sba4YYLUEqVpFHik0PG700nnsJfvJNa4Yqcx/lF1vRG2qzIpFy9b+wvPJnpBlTIDxighIKSIFs0VyTEAKcMEqycobUvqPxBAhLtPWJMvurJOPY4YoGA4CWNtc2ez43xxMaggilVOaekUZCCgwFR5eSKDw3tkax88hw3jBamw42SVJkWYKN9Q1ToccG+ehII3cTcsbKl9Ag450oBqBkATJZQJ4rZKn1NiKXCMsUMtYkbCekQVyin0gsZxnU2gYwySGUCh2kf/AxP3tzlV29Pz6CAVAUBaSU3if7xo3r+Na3voUnnngCy8tL9jCM1dWbWLf3gr2lzVbrj97BCjq9ezc4cqQN2BcQ1moGABLRBI71XLCTXpvjiXHvUwoySbCwkCDLjCShOWjXeZ57S7Xf76PX6yHLMqRp2rCsx2OTq3kwGHgpxJG2Sy7vdHE3U5+mKQaZkWBkkiCR0qYgtUEnApgUE9xcv2l8kWG01EKVxuOjxWYKCWMNmepAiYBuD67ZVCZl6Y5fLGfd+nEygARIk9RvYrsbfxqjaYfJx2BpOl3ZjY/MNWgCJMiQpj2NFhFpAyBin+JcCwDC5LsGMRSxbyOx0aeFJUqQ9YO2YrogYTs7eO07TQSUKgBpfKmJ4go+2rppG9kFSQLNpt0JZSDZh0h6KAsFtlUREkLVQdWOChjG26YnJZCk0JtjoChsbncOFr53f5kTHH2gqrXtRoNlaTrVY8eOAYDPP/K3/tbH8PDDD5kr1Rqj0QjjzTGGw74ZXHDsvdTZ2PuBI0ja7ZpeXXd1n6UUYJZe03SyhVIlXLi4c12L9b44gg+A9xgBQnCN265O6s7bw0krTgIxOiDsRFMYesdaJTMbyYHZdj4a0O06pY5eGRdQ7l+jmRpjrDHM3qqC6GWtO+rQzOMZsqx7dVTdEVr24XhKjqvbRZcQrjuMCCrNrrimcevyuuePMQJCMYdKs6dpDnDBU2F+wywlANrLKW23ioh8UYzocNXztMgfW8G5djKqVYUanjlsXFLdDwD/TsTPNde/t9o1dNg9jhxpuwct5N0ws/F1NzonXQyGA28hFEWOUhUoRwUm+dik2STyPtgx+U4mExRFYSxjK5e4gITl5eWKhe68TBxRu59AAjbMmYJPMzObqrFAIB/XCXhxJJIlGi9rIOlYH40t2CP1Ck3pZ2KvCObgJy3I+Ubb3ZnBFZ9wc1A/12BlMCJCmqYoy9J/nzObFX0xmhlplqHf72M02sTK0tA2si4FWakqJzz9EuGZyxmefLmHF6++E/KVDGnvBSwtXMEj9y7jgdMDvPZ0gmQ4ux1taCPReNLXSXhpmvqQ9izL/H1znk/j8RjLy4smgtdJkR32DUeOtIFAbkbrNS+gG/JtbGz4F6/f72NhYeA14Y0NRr4xQp5PQCTQ64XAmdjKjgNntNbo9XqmAxiY7GeLi4vY3NzExsYGiqLwWrjTtpMk8cRtXhKrBfoRgBmOU5Q3w3UsJqBEVwiqbt3UXR6ttIjgX+ErP+7L/d9vtLU6npirbOs1aWMZBw+JasIO5up9C8uDde1I25Xqmual0eZZAwCsjYdR1sswHt9obOeO9fQrhP/8FYkvPieQiB7y0iWR6gElgFGBS9cLPPPiGrJUQCnGGx5axnvfehrnTg+3uHtbI7agx+Oxv/5jx47ZnDpmO0faLl2rIBMLwJWkah32GkeOtJ11Gefj0JElE1tGjnSrw+Bg7cQSh1lXra8Xu6bFw8TYaoqtsTgAJv7xLbeeChUXKavnumo1jrydu1uQJ2vEHdnU8bHiKai216ohN2xF7HvE+/WXfNpQ2qVNbTaeoyYbsXzqaJwjGcTdX8v608im+l1N324rCBK2OkyQR9i6vFzdIPzPn+nhqSsShQKYCcUMo1UzMM7NM/jlp1bx1Wdv4tyZIX70/edwYjGbvmMdtftZv7Y4snVtbQ3Xrw9w6tQp7/nknm/veohOCtlPHD3SZo1SKYwnY5Slmcgja+WmaYqlpSVfRaaeyMlZ546UYz9sZx27yUU3kehkELftyrETGI1GICL0+/3I0gr5SpzsQuRc6RiutnklN4ld5qRKp2ebeos1LxFU+bNOvrFI4v6f/VrNp2vfSlREnnmba4lZKW0z0jXnPoAwrxcTq9NynZ9+jGm+yHUPmCRNkWU9rE1ylHYiUmvgD57K8K//ONtxYQRmIC8Zz7y8gf/7r30Tf/099+Btj56Y6ZPd1gnVCyoTEQaDgZcDP//5zyNNU/zYj/0Yrl+/jrNnz+LEiRMAjHwIzW21NTrsIY4caWttSHuS5xiPxz6wJUkSn4xpMplgPB779c4izrKsYUk7ch8Oh/4YLsBmPB7j5s2bvhOIvUcGg4E/niHikA9DyvipZsDJIQRfromIoJx17d0XnTzCFcs6TDi2DNVRnYQ7qpj/Ct3oSYEp8ROkzTm8MCHnCNmRtvOs2I416TKTJEmCNM0wyQuUNmPkr/5Jik//9xSTcvedpNZArjX+4x+8iBevjPGRd92zJXFz9Hfcybgf98yXZYk/+7M/w+bmJn7sx34MN26sQkqJY8eOYXNzwxZNVkjEkaOVQ4Ujd3fjCXanzQFBCqlbQ866dg+sL5kVeYBM+wGcBBJyMrtl7ncYVlfXtWHquoYcECzE2CjjePv6woonxgyztM1LI4SLzI2DstEjmxDbaaGfbPTufQE+GKsiX4Tw7NhryG0f/64vj5tnvJSECa7RjH/5//3qnhF2jLxkfP7JayAAH3n3vVO32+qOxdc2HA79PA0ADIfBMPFeJ3vR+A4zceRI2+VSHgwGGA6H3pfUyRxuaOu0bGchO6vDzZQ7y8Lt48ovOcvbfc6yFMxJpTPo9TIrgQDGsnPV05sTV8bN1gR21NO2uiAhr+NSTASWTC0ZTKXh+sJtccNhl0io9qklK0dEuM5Vn8GYTHJkvRSIrMIKx1JVQnASmavYHmdkbLRqqvbNkDJBmqQoihJ/+Gwfn/za+T0nbIe81PjjJ6/inlN9vP2xk1EDnZuhaZOR4KZfi7vet73tbVhdXfWy4jvf+U6cO3cuGD5uBHnYH5vbHEeOtIuiRK9nvDScpqyUwsbGhnf1c8vr4ecAfE4QIvJRkERUCYjZ3NwMLoODnk+t6WSPfr8HABFpVy1zD8vLcYKdinVHMZHEVrudiHS667wvyBF4kaqWdQxqbAHE97FarCHPJ1Bpv3aUdhc410G7dKXj8dhHsc4LR5IySZCkGW6MJH7r6RXkan/d4/KS8VuffQmPnlvGsUUX4ES+U/J9f+SfDVQt7PF4jF6vhyeeeAKj0chv8453vMOOSDXITrAy4CZgjsTzdhhx5KYMnB8u0D7jX6l2bvXm2DfVbRcjHv7ZDQDrNmdcnQhxBfH6eWP45TUto9VnduZ1+qsNy2ykX/zjY71926JJttpP2zL2Z9meLt5+nN3/RBePqoXYrudPbZ+rvIPq9139HuLovkDgsQU+zetluveLIfDPvPI4St26yZ6jUBq/+snzcQMq87eV9tWe3fi9cJq+g3OjzfPCbWwGftxFQu4njpylrZXC5uYmxuOx16jdJJKTQZStPtLr9XwAgQuc2djYwHi8GdyY2KQ7XVxcsEE6bAJhXJCMiKp7b4E2acSdA7XP8QSRoU3jm02SABXrh5bOKD7iLGz3dbq9x7rMoaQYuXvEQKlKm7s7bEtkCxA0JuTCsdyPs7pDPMCM88cdCwlcuMp4JV+B5oOxmbQGLlwa4cKlEc6dCX7cbJs0C47EJ5MJnnvuOXzjG9/AxsYGPvaxj+G//tf/ipWVFdx111147Wtfba7TjQQ77BuOnKWtlElxura2Zgl4DK21D791pC2EwMLCAhYXFzEcDn2U2/r6Om7cWMXq6g2Mx5smhaYUWFw02y4M+hgO+hj0exj0e5BkajkKmh2oPY2wHWIJBbCSiTFbvJVLIlQqd5nq2BM2MMM2jdbvBNuzsvcf2+tE2O0TfUdlqaBt4iW3FdXmFYCq5elI2kklQJiUrH9/7TAy2u99XUPvwK1vNygU49NffqW6cI4muFHmZDLBs88+i8997nP4xCc+AQD4nf/8n/HZz34WX//61xsyY4f9w5GztIHqy+XkkFgKcXCufu6329dEJFYznxkSZbASlf0qL3VLW+r+u5aH4WcPzUZTh+hm05o5GBluzkO7zgGu4CxH/1c9SNru3IzloTHzbbxfnDR338G1baMivqG7M50iT5E1at9JbGnHRN42wdxK4ASMJhpfeV6BD9heYgb+4plVjCYKw56cehvr1xZLh0VRYDQaYTQaAQDyycSnaWi7XLdsG56RHebAkSPtfr8HKQVu3rxZsX6cr3aSJF4SWVu76R/KNE2gdQ9ZZiyoRAhIm886kdL6Ega5xaGqUXubrhUVz48Z5BNenKqF6/RzdxJvIx7YS3E4pJL2zhEw3iNNjZkB7zniB+/W112zKfhbmSyOtgvEUyVp5+8fW5izLG13556+lEMKzIx03C8kkvDcxQ08em6pdX3cAdWfcReYdurUKRw/fhwA8F3f9V04fvw4zp49G/Zx+x2OR+VI4siRtgtqWVtbq0w8uvqOSZLg5s2byPMco9EG0jTxnibGGjc5FKQgX9FEuBlyVGs6AsEXXOtQ48+5QQdD2lpx9mcaYddn7mt5+SILP54gtPvWjrW9abntwLdmj463161oaqoEU+VdCIr61sirp+Z4EluXFZdBDmkNTA4OaqQucJ/rE+BkJ4Ofu5wjL3d58TtEXmhcuDTCo+eWKlZ03M66zOPC1NM0xfLyMk6fPu0jIH/gB38QBJcaguy7ZvcDOuLeJxw5TVvYCUKH+rDVJWkCTFRcnFdE2kK5MpGQQgYJBGhw3lYTj34oHlsfrcdp2dnts6VGWrXFK58J3rc79hbYFRrHmqWf7w+2PkvbhTZmECq/A0nNLtPl926RQ9q2qVveDOC/vzhGPcPqQUEz8K0XN3a0rzMYer0eFhYWAAAnT5zEysqKL5lncJjmPo4mjpyljWhG39V1dP7VJjRdQQiyVWeEl0yc1SGIQGyqvIRDVl/uNuskXt5w66OI76iFi8mRPEfWSayDU/i9I4FwP2b0bw8zqh7d6KDb3NJqcxQA7JdFqPsyx9GRdTmhrQ32YLixcWsn7FY3jHtem1uq+1vYosvumlwq4mvXruH48ePe0iZBIE3eGi8Kk2IhjCs77AeOHmkDPp+IqzDjqsWY4repJfMepBxWHlwppS8VpezLWH8hXZ3AOFLOISbtir5ngxlaXYrdcgJIOzc/qy2CwY7xo10boetmJq1yDw6GUrcWZfYcUww65q21fWYG2Y2cnBX7/MQFeSuTcW6dDEQdyyWzSLvewatbZWZblGr6KKHt2gH4FK2XL1/G3XffjdOnTwOwleMtwZsKTiUKO0ewZ6O7Dg0cSdJ2L1JcHSYUtQ0JolywQNUDYPYk4ZQzYtYTSrVtZhnLzhJ3dmCdpHcOl7IIvjW7PFwVDc+S/USVCKMGRB9npGaNt290oPPd7Hm3C9uabzSRt5bJtjp/m/Udp29w2TIB+PdJTYnqJP9fh73EkSPtODzdJWc3hQpMfmEpg+tfHHxj9tXWVY6rlnE4uj+Hm8CytrBBTeutW9bTrLHYa6EK0wiy9mBlIrNGNncKfCfWdiv9fWmZjIy8bgAyqVntBKEpDRlGSW2EbKx0Y5nH8kHdLa7R3tqxji1IXLxebO+i9xArC2lj2bQIT1eUGgB6vR6OHz+Ooihw+fJlPPzww/jiF7+IyWQCpRSeeOIJ8/6Qe1o77BeOHGkDYabfuWQppWwebPMwOeu7En3INuiGCAKmXmRA1Y2pGkjAVguNltiAmPgYbW6CsVZu9O7qvHCgajs89wP1HaDVT24nB9ruSQ4IjcFORNxkig+47Qhka4AajxJTY9NsOKt8mPMmcomj2uY4psNs8+p7BrdsMlIQ8Op7FyrL6l4vcSfk8se75WfOnMH169fxyismSOcTn/wkRhsbUErh8ccf93l4btlM6x2CI0naAAIJ+1SrolKXcea+qL+MUcFSrm5pV1cmD3eSeaHFRmv+RU2eNU2acT1c3XLfcGDGVXunVfVfoal/ufvI1u8+1l5Nxxlp3NEkpuvYiTDVqka0/7T195/pIUsJ4/zgiS1LBe47PWxtW5vLoiPueGLfZc0EgEsXL2JjY8PnIGHuQZibGCZwzRH3/+LuIBw50g6yRnjB6hMsbS8WzclpzkfaWHZ7Q4RTbedYFGRjLcokSgO7baLcZ+I+EBhBqq3zMmvnOoQpjVyXweNNpkgdJpudiQ6M5bVpkZHVYwIPnulDqVvzHZSK8cDd7TUk6yNPByEEzp8/j2vXruHmzZuYTCa+CESW9XDs2HGcOXPaV3QyEuPt/owdbhxB0g7pS4lMro7Y26OeW8L8Np/FjBeu+jJyRJi7NzG9L3i8DG7qkJxCbnIxpxm0ZkAGsm8jrK2mRW9vaDTcE7a4rEDCtsPWGq6AcoyYvIQQUGV1A2mDm1xCsiRJplrVzTYAg0ziTQ8M8MWnR1s3eo/xxoeWMextr2o7EeHJJ5/EM888gyRJcObMGV8EoT8Y4rHHH8c73/EdWFpeRlkUyPOJ8cqpec24Y3XYPY5ccA3V9GVnbYd11Z/KAzWnK1Tbcdq2n3WM6rLpE2CR6gKfszgeIXB1W7e9y8paWV6ZzqSgKcTaQn3ZITOaqk4q9Qx67toYlc1aj9O0tP3gqQXxdy9IVEqOzUoW1QywITx+3wC3ovN87P5m+Pq05y5ef+PGDVy6dAmrq6soisLP6SRJgmPHjuHcuXM+QjR2vuomJfcHR46046HqrJfJ4bA/UjH9CEGQwo0aDnvLDw8MIYd6iL4Msr+NFLaqPy6uf6sH52jtU/S2ZbhrEqGbsCY8+fx4T65ru/ja+bUtt6lbyGVZ4uzZs3jta1+LV7/61Th27Jj3KBFC4OrVq/jLv/xLrK+toVQKJET3ZO4zjpw84ooghJ/Z2x/6B8wG6ZA0OVCaZa6o5jkx7YoOmcm8azTcRWrr7CcX+RiTEazbIIL1bIiXmx485J6h6rlUUSLJUhsJWEQFnON9a4moBGG0qfEXz21u81r3Bl955iZGE4WFfvW1J6JK/EKcbjbPczz++ON4zWteg8FggJdeegmTyQSA8cJ67tnncOH8c/jY3/pbOLaygl6vB6VuUXKVOwRHjrSbqI7xnXtdjJpa3TzCfk+scLvHiTstk/UPJrKWjM1m58mEaw2n2qetfFOmL6/KEXPscFBwOtA0V8Y2ixkAOAoxIjsv4OZ6GRWpqu4/H080uvD1tqyP7c+L+Q6fvTiGlLcuy9/5SyM8dv/y3PsopXDy5EmkaYp+v4/V1VUfXENEWF29gWvXrmJzNMLS4iKEILhL2/f35g7FkZNHYjgZoc1SOox6bRs4IiYi4SfCZuHQjx5uNVxnyGxyzMzxHLTLI6Ihj8zyxwcB5y+PkRe35sFzWf7qqAfXxJ9dYWvnLbO6uuqv9/7778eDDz6Ihx9+2Eccw06cb/mQdtgxjqSlHfuZVi0f61VyKxvXglkDfcCNDgiJEEiTBAIEDYajCmKag6mPgrtfG+a/Jtd3mzthQrNLpZBKM3Lhmkuo+9w22ijL0kcMlmU5tTp73WvlWy9u3vIsf9/jWkQhRD32qnIdkVLKF7d2AWovvPCCJ+13vOMdGI02cHP1Boqi8JOzoCNtC95yHEnSjkHR0LeyfMv9Dhu1mzbJSj1KbqHitnYfVcLeHuqdo7aWti/ZFnvizAigAVzSKPIBW1vCaug3Nm6t3uuy/AFVzX3aZ5dXxOn+q6urWFxcBACcO3cO4/Em1tdu4sUXX/SS0V7FL3Rox9Ej7drwlGx0Vuw6F6POzT5p1Jxez/sJH1jmW1F1SyQbJBK8SbzjWtvR7O/tvUy3z7TmjBZVLsIQNGuTT10pBSROo519hoYbJ5rFEoCqxOD2c9b9rQqscShVtZ3T0Ga0KKVw+vRpDIdDv42wbqiDwXCqJ02HvcXRI22Lil80x77KBltbR7eetBF7uTIBwhUQDplInCsZ3OetxxA4jJS7e0y5JmqXjjRrFGWByWSMXpqBIs+PLdMcRL79IrLIZ6dpJVPa7BBl+WtLLRs8acJnN9m6ubmJN77xjej1egCM94gp45fh1CkzWekCb6o4fKPW2xlHlrSBiLiB246nPHFErml+OaESVNMBM91h2ropBkOrEqos4XKXuw5+7lPaDrQtHqAtCpABrCwkuHQ9n/8ke4y2LH8hr0oz4Cx2/yvLEvfee6/3HjHZMgWkkOgtLPjJyLrrY4e9xR1xd2PXranD/UPkntQchgcuCe5qLvLTSiIVFufatYaQkvinDfVtpv34hh0mtHzB1PaH/a1RrVAEIPLUmX1xvjZobf+p6Vntd/XIPUOIW3Tf2rL8OWyV6Epr7T1I2u6NsOX5XNrjyrG7uMg9xZEl7Z2T8CH0BRTWu8G2jSgWSOwyv/E8dHyngsEUOi+tNQql/J2dBs/1EbG5nCNlUc40BsIxzHd47kwfWXprXrssFTh3pj1hVBviYJuyLG31p/Y7lSYp0iT1hUU67B+OJGnPS9jBs+SwEpk3++AJl53sA88UQduu7dehhpqvNWsorea6W3Xr0XmNKKUaduR0K53xwNnBLc7y125px2jzNXdFRaa9K0JISJlEydk623q/cCRJu47pFUXmfbj230Ktn8FGr1fPWvmDwjK3YWPjqizid6P6Fi2HnufnNkD7Nbb7f7q7NSuJUr1wRvCWqPp4t+YeATDsSbzxocUDjz0hmp7lb1pwjdkvXI8bXcQ6NwnyOUhGm83AnenoRn47xZEl7boLVsBO3pZb82BNO6vTDSP/kZaOaR4F++ij4Y5nf+LkUSRssNI2RlxJkvjgE+GSJM3Qw9mcFADhfW8+hfSAvUhSSXjvW+6auU18r2LPEldPdXl5GVprn3sEABLrQfL5z38eL7zwQnTt9Z697Xrv3OdyNziypO3gie3QSiDzwxGOIOHlEUMWt/+1HSgiL0kGTFk4qlrRbal1Y8Rar7dGZ2wfqiEBD5wZ4sHTfYgDcgESAjh3eohzp6fr2W0TkfUKNsPh0Mskbr2RRSS+8Y1v4OqVK+He3SYjsdsRR560gfhBpCA7HCaia33Ag7TRcL+O3bKj7cn/VI/iP1Nke0+TOw79yzbnCGIeQw/N52Can0Nju5agmmlo5tQGfvK7zyI5oLcvkQI/9v5zM7eZJ9Amz3NcvXoVly5dAgBsbm5WOq3SjjyAltt96J+r2wdHkrQrgTVTCfF2QdRWMmRrCgYzQvYRbm4742i309W3Y3dXYW1eMGto3Uy315ZmFWha4k7fnVrAIl7OZqKYQWACTiym+KE3C/Sy7VWS2S6yhPCRd92DY4vTq7DHmQrr1+08ZYgIly9fxmc+8xn8zu/8DgDgueeew9raGkgIDAYDTCYTXL16dV+vp8MRJW2Ho1I5o14VMQRAVuzoOY5z1LDzKyIrh3BL2HWbrzGABrHFpD1PS+M0sADwjlf38f4n7kci9idPa5YIfMfjJ/H2x07M3M4F0bRNQsakff36dXzpS1/CH/7hHwIAXn75ZWyMNnzR3yIvsLq66vbel2vqcBRJe4sX6DAmgjIwuk2cxjN+7qtTqc7SnnY90z1GdtnCuX8OL4JrZKO6EU27n01vCrd/fdms5bWNIKXAT37o9Xj0+CVkcm/vWpYQ3vH4Cfzwu+7Z8THqE5Pj8Rj9fh9LS6Zs2fr6OjY3N0MoPHhm7pHq/T6s7+Hhx45J+0tf+hI+8pGP4EMf+hB+/Md/HC+++OLUbdfX1/Hd3/3d+NM//VO/7F/9q3+FD37wg/jgBz+IX/mVX/HLP/7xj+P9738/PvShD+FDH/oQPvWpT+20ieYB2TaFHBbKCTONVQ3avkSAt7Srw/P9bf/tRtjTpIuQmtWEsSPajmqfG1GWUyYpXdUkYIZWbudUNANJmoGI8FdPfAN/869soJcw5C4nJ4UAeqnAR9/zKvz1d79qrjwq9bZKKSvriAhFUeCFF17Am970Jrzvfe8DAHzjG9/AM08/A9ba7MPwWQE77B92HL709/7e38O/+Bf/Aq973evwH//jf8Q/+kf/CL/8y7/cuu0v/dIv4ebNm/7v8+fP49/9u3+H3/3d34XWGt/3fd+H9773vbj//vvx1a9+Fb/+67+O06dP77RpRwdWA3VUWLFPOOqOKGyD5pZ7hsNGyDuFI1DN2pKM7fwEAWo60fv9pyWFsre9NdS74gtuJsTT1Lx+RZHjHY/keOKRDP/LfxN49qpEoQDN83+HRMat79zpIX78fedwYrk39751jxEnD8XeI2VZ4uLFi3jve9+Lu+4yroNPP/00Tp444fdxHSEzd3b0PmJHpJ3nOX7u534Or3vd6wAAr33ta/Hrv/7rrdv+7u/+LhYWFvDa177WL3N5DCaTie/NkyTBaDTCSy+9hF/4hV/ASy+9hPe973342Z/92X1MQFMlOo5cwaq4dY9gEEKiVlD4K0gl1BhVsN0srspe2WKfL6stsm7W8nnQ1j2h9jehpduq6kt+FFa7s3O2wH2kFoJvkrmTDuK9GQRXLICtS9PJJeDjHxjj5dUe/vNXBf70OYFUApMCUC0ELoiRJQJKm8CZ9775Lpw7PQBIWOksvtd2XoTjVoYRQuXG1ryS4utw7n8AbFa/EtevX0eeG99tF8buKy55t9QZnV2HbYF4l3dRa42f+ZmfwRve8Ab87M/+bGXdSy+9hL/7d/8ufvVXfxU/+ZM/iZ/92Z/FE088AQD4Z//sn+E3fuM3wMz46Ec/in/wD/4Bnn/+efzTf/pP8Yu/+IsYDof46Z/+aXz/938//sbf+Bu7aWKHDrcl1jcLfPP8NXzr+Rv4y6eu4NrNMUqlkUiBE8t9vOGRU3j1fcfw2vtPYHHQ9A7pcDSxpaX9X/7Lf8E/+Sf/pLLsoYcewr/5N/8GeZ7j7//9v4+yLPHTP/3TlW201vj5n/95/MIv/AL6/X5l3Wc/+1l89atfxec+9zkwM37yJ38Sv/u7v4sPfvCD+Of//J/77X70R38Uv/3bv70t0r558xpUWeLFF1/EXXfdhV6vj9Vrq1haWkKSSMC5yRFAYMBX27aLq+ZsDVtbZEvH7sLajVfmbq9HbH1WrDmAoVGCoUmj0AovXHwJ66N1jIsJSihACoAAzQo63tFez1SZtHY5P/hXfgD/2xd/Z3oT57yU4Nyy95a2T5rlRg8s8APf/gP47S/8Drh628yPDtIHc1hDDEgm9JMMb3rN4xDa3CdCCmZTTmxjYwSCiPz6Q31OdvJU4+YGG79ybcwQ2ARTBiABNCHDOs4+9Dh+9X/6Kbz3PX8FJ46vgBkQZQoCIQXwmC7wuns1fuAcgxIjP4w2xvjG1y9gmR/AcPUMNl58ANelhIb9IenvheACwt4vAQI4AUNAkTDPCjEADZAy18+AgLDupOZe9/tDrG+M8MUvfhFEhHvvvRfvfOc78Xu/93v4whf+d3z+83+MheECPvrRj+J7vucDyPOxn5D0hRGYIUVI9Xor07fu+B09IJAQWFw+OXX9lqT9vd/7vfje7/3exvKNjQ38zM/8DI4dO4Zf/uVf9jl2HZ555hk888wz+Pmf/3kAwIULF/AP/+E/xC/90i/hM5/5DD7wgQ9gYcEkr/n+7/9+fOELX8DDDz+M5557Dh/4wAcABB/R3YBQ84yLljt2mc4bByiLxCF60zeym5L/i3w4TahxGCOWCWYP4udo4g722Wu4obYDt11cG2oKgJ/gbWwW9Og4v3Ycnu28H4jqetp8d5VbvhFzTDadBNqe27i1BCmkd1n0c6WVDoRaLnpK+6LmEDuxLSx32na/30dRFP5eDIdD9Pt9SCnR6/eQZilkIoG2dOG172daitcOW2NXE+LQk3YAAIZdSURBVJH3338/fvEXf7H15j/yyCP4gz/4A//3j/7oj3p55Pz58/jkJz+JH/mRH4HWGp/97GfxgQ98AMyMf/yP/zHe9ra3YTgc4jd+4zfw4Q9/eKdNBHAUJs9qXgiEKJNa2Ob2v86Dh7PG/YQbYpLezZHbJ4JNBxvWu28tSVNozVBKQ9YsUJfRkeG8Ocyood/voSgLH4HYvLL48xZkvQVKpZAkCR5++GGsra35GpF333033vrWt2JlZRnD4RAPPfQQyNYwrRdTcHMvcSBPR9w7w45I+2tf+xp+7/d+D4888gh+6Id+CABw+vRp/Mt/+S/x7//9v8fly5fxcz/3c1P3/+hHP4pnnnkG3/d934ckSfCe97wHH/7wh0FE+Kmf+in8yI/8CMqyxPvf/358//d//7baNj2Y5jaltdr7TzATQSKueL0/ziJHFI0bahJFCQFBAi0Bknt2nooLSfhVI+36cUzXwoA3vYUQ6A96WB0VfgKwuU+L1b1DqLJEkmZ46KGHcOXKFS9xnD17FqdP34XXv/5xJEmCLDMujCQEKCLmkFAriHcdce8cOyLtxx57DN/85jdb1/3Ij/xI6/Jf+7Vf85+FEPj4xz+Oj3/8443tPvaxj+FjH/vYTpq1JSh+cQ45iVeCbFD92BqePwdxHxS3t5ba2kLf3taL2/YVzntxbP9zGbdMI6L2hAMba3H+Zu0UsXeJlybQYu1HbTH5vLWNyIx6gcqcTOxLM+3kW7ePbRuzLEOSJN66L4oCQpjlLoFWnued/bDPOHJlJuIAh6MIYV2u4omcnYQQHTVsx5b03GbZpVQKqZStmsjO7+u0iey6dGFc51ygT5IkkartZi1g5s9tmhJBAv1+H+W1m0A+8a2sH30+bD1L7SSkoiigtcalS5fw4IMP4hOf+ASIAGXbPRgMsLS0hL/ybW+BKxABGKcEgil3Vs9H3mH7OHKkfVQR5orI54JwS7112Jk4Tcwh6ZqoyAzU5tCwI16Z9kUQ2qg1yzIorVEqZaMzw5yimQyNZgqNkoPBYICiuApNYwDayBG1087/OEybqbcfLMHmeQ6lFF5++WUAwO/8zu+AWaMsC2RZhuPHj+O+++7D2574q1BKNUlbCl/411nmHXFvH3cEad/+D0ZgHgL8RM+2dgd2YzYeWmx9F8JE3jQ4z436NmQjTU2gSLiJYfkuWhaRsYkmdBONQRabNpVJIAgRVc5pI+xtaWHtVxIX2QDgteyyLAEAa2trAAClzIRomqbY2Fjfchb39n8fby2OPGkfBeOTaqyTSAlhvQqOIhHvJdpkYZdrxJFkURRQmUYqONrL7ml84BC72+2qNdyU39Msg1IKZVl6SxuwXEyRq1/0fUspwFpBa2WnKUObq138DlFrZEy0vZ4Jkf/2b/92DIcDG/9gSNxNOjZLloU8Jm0FFzrMjyNN2kdjVro5nE5lYjXt+kt6OHEYX04THEPQmpEXZtivkypTUaVXjCf2gG3fca75hUdfadbr+yo4XLGag4OgmTuN3AQTCaUVqCzgA8YaJL3LDiZuOML36ILl3vOe9+D06buwuLiAsizxZ3/2Z3j++QvG0o7c/qZVxemwMxxp0nY4ag9ImxVzmDBPZrnpBXB3cd7ZJ0UYmkSud8Rg3T55PS3t7c7JkFp3F0JAs4bWzTZwC9N7LyiXxTImeveR2nPRbKfl7H9XU9i63CPHjx/HqVOnsLy8hDzPsbi4CCnbKYVqpsVReycPEkcvn3Ydh5DUtoOKnW2NHuEDGKKNDqkQdKheTn8zIzpi2AlAXXH9M8biNucO5m0EVzuErNdHUZQoisKf28kJ5m9qSGS+jWAAesoUZxsqvUBz1bS9mFGWJaSUWFlZAWAmQ4UQUEphNBpBCIGlpcUo7L/DfuBIk3YgtqP0ABGEFCAK8ohdfFthr1/qaYTlNezaUo7WldaVrbrdTgl71j7t1DoYDpHnOSaTifXB962L2iJQkbfJTUpqACXAbHOn7OxBmE74xlfdZeZMkgSnTp0CACwuLnrSXltbQ5IkOHbsuBm56Gqnc7s9n4cZR5q0Z8G8sBXj6lCBEJVKc5qi17Drr+YWcgRi2/LWdGH7Y7XuEJVmhKF/u/fIdg88y96l2m8DKRNoraFaSpdxNMfIUUYsM9nntomrxWzltcIIOUp4i4ehei2utFqWZQDgQ9LLsvQBN3EOommdYGeF7w5HXtMmzF81+zCCap/ZfaCg/BxWAWj/7/kOOgGTZDqSGwiadaVTiwmxuftuO56wv+uEs14fRalQllMKBIMAEmAuK8cQwhQJ1qoExHbvtU8zNqWNTf3d+Wo7fPnLX0aeT3ynMR6PW/2vu6IIe4sjS9qHyrLbIbyyQ7bziV6waqVvS9xTLnc3U2d7jTgSbnd5J3ZxRdEkKAMotTb5R6I2AnufPjRQVzUd8GBhAXleICFbtku7rUJ7XPFdcp01GIkU0GDoYgIkvP1bwgyitnja2jjO3g+lFCaTic+8+YlPfAKXL19CUeR4zWteg6WlJZw6dQpaa0/c1Urv5K31Lrhm5ziypN0G70BQsasOP+ovFSEST6wHxFw4rCY5dkrge0P4WxGH88bYHagqU0WnTJIUSmsoHYQvrnS1IT+glxl8ZsIQ9LL9Fs16HKJqO1FHq5TyndmLL76IF198AUWR49SpUxBCYGVlJQQrRZ3zYZ4sv91wR5H2bYvo/Y0lkrob1e2KW2VtRQP4ljaEUmItjng7PmfIf64jS1qAOUpOxRyGTd6TxP4RddBpIlFoQlGMkbL1IGmJjvTH2eVtrpcbGw6HuP/+B3DmzF145JFHsLCw4D1LYg079nSK07Z2VvbOcAeT9qwH5vBZBG5KyEc5x25gh6+5txHYarJVdz/A5PgwC+LVuyGa6kSlO5KQCTQDxmC2s+P8/2/v34MsOao7cfyTWVX31bd7untmel6aGTSDkATGYBuZh1kJDHowWA+LXcALxgazrAkvsV87WGK9rB27GEfYjm/sbuzPjt0lMOv1rr2xNrEI4x8WEIB46wECJCEhoddImtG8enr6dV9Vlef7R+bJyspbdft2T89Md+sexajvrVuVdSor85MnP+fkySw6KMs86DqgCZVqCIqBdnsJ4XgKEWgL18fnzEY/D81Ne5NSWnpkcnIS+/dfhl/8xTeh2RxDHPeyjX3NuQCy1KzI6JK1zg5G8kIE7YxWHHDCRkJByhgQP8LPn7IP0zsvwqNZOkdkMDPM1mMXSqy17NShSz/kdfCoKNFvpObT5q6yQgutYHdLM0Pj5Rlwhz4ieyyQElLohE0EyqxsfyAfysrONx7iz6Tv5catMxhXKhXs3DmDq6++CkIAS0tLaLfb2W39BVQjy3pdZOuH/Als/qmYdUYCg3rgRhpqNpr01Y0Bo7JQyAu2sCanS2ZJCxkYmoS1MX9NTu8MtDPncxjqdAZJrweo84nQWLlvFPWfsbExVKtVKEVYWlpCt9u1WfzcdQRKKZCxwDd1P9wgsqUt7c0ePQL02X3aIWX4zaLH2wgsN5n/7O46l1qhAuG4bEI2qLsbEABwQHK9HiA/iyMLaoCUIUQAKEU6n7YgE3ooAKV31wlCCaZPFBEqlQrihNBpL3ux2s5zYtjBvPxM37HI/Wr79u1oNptQSuHUqVOQUqJSqdgNGph64hStoRSlM66RDC9b3tLuWyG2AQFkOBEOsT3oLD1N7rNoztPCGWQhWdDzzilLXroaeqS43DWKQ42wQWvzapxPuatVQaOx1UfBbNFlokL69c0in9zgJ70ZhkCaxAXKU8EneLlMyq+x9xfl77deryOKIhARlpeX0ev1QJ6lnTkdVa6cjQ7Yg2YFhW2ypI4uhGxZS9uuvipqofaQ8eLT5hv1dX8SzrfMAVXWbNbaWQbFVRc13j6DzR1oSm4/rF4unXG+b4zBMKfHhSSZnKAQt10SAVIGEEJvhFAxjjtd36yXmWc5+oahhJQCSdwDzAIWQWQW2pSFkKzeZ+OOJW7s+vj4ONrtNn70ox/hqaeeRKNRx8TEBIIgQL1eRxiGUCpbyLRZdqtZrY4X+5m2LGhbcaItgAxUsu+XSrHhRBgLmx1nFqaFgJAOdJusbjzdV0Q2NAtYO2Cfr5DQSft5TpeLf3Cm26tZ4kyrhlYeypyJpR1IiNkmr024Fq84bzOcBwhpDWxlHckKAlFUhRQxut0eqo26BWhl60j2DcrVSoQolOi2l3UpgpUvUJat+xTZ0njnp8EirCPSbVP79u3Do48+irvuugtnzpzBtm0T2LlzB9qtFq688kps374daZrl0GbQ5p1rmDbZbAbTpZYtC9pbryF4vIgwC2yEAA27uOYiSl/9u1996/YSvSvLZ+fq1fndsXTX746OpWtngzrsT1KKJEkzPZypgJ/lT0Dn1A6MpS2IkF++AxSPNOf3QO672rZtG1qtFn7wgx9gaWkJU1OTWFxcwIH9+/GiF70od+7W64+XTrY8pw2sZvqygRuWSy8wve0sY7dWK0TOcr0UwnawS1ENy/mt+K7YLB76XZHzf1dJW4nOeZ7bVxTfJ6vf1daxey/3dhKBDCGE1Ft5DdNc3dmJyuLMhZ0lFAO2f3QYwoStbBZ+R2fPnkUQBLj88ssxPj6O3bt3Y9++fVhcXESSJPlr4Aw+IzkvGYH2Rhcis+oiewaeXnJebUUEMvkepBQIpDQefAZyjx66SMLTYU7rmaYpUpVCoT/Sgc8blI+iKBPfijrkAMwH5QyzFRGUjcDwzlvlPUt1MXHWZJ7fjsMiRKVahwwitNsdq0d+XKDcwGzfP/Ru6ATOB04OCLuaOwC6ygfi9ubLj370I1SrVdx22204dOgQXv3qV+MXf/EX8cwzz6DdbiMIA3ud74DkHCQjEF+9bH3Q3gJtoshZJh2eEI4Fq7lu2Q/SF3PpsGeZMRjnALngveRyVVwIyTmgPUMbxXWzrpjiOCFFzuqVCMMKpAjQ68UDBq18OdLmHkktYOdP9K5Hsf29otoeuLJ+zz//PMIwxCtf+Urs2LEDhw4dwlVXXYWzZ88ijmNIGWQV6N14UxtSl1i2JKftxlQwdbD5KZLMhZ9NNc0vht/WNIQ+wxXLpK7Rez+sNeQOFHoVXXZdmqYZKAdkHax5mj6/p+B5SUEQS/ZDQa5yd8ux3IXGHLcb/K5NfF30Ckb+Ueic2jJAmqQ5PazTkN8rsUoiK9Ty8pQbCiwNPiRa53XMotaL2hSgV0QqpbCwsIA4jq2TMXt/lB9ANkkEyUohqX77HNReL0Rc+pYDbWE6q/0Lt+KKGossOX7pRUCYqSwjEDl7CQoTCwu7iEUJBaVSUEFYHh9Z73SjReJz2JyHWQiBMAwRhqF2nop+fdxIA1d//ks4n8bvL5/Rb14RIVWpjmYI8ldk2OiZuect5HySqNbHQL1ltJc6UKkChXrwcil88kxtTVsIkEoNhaYAIaEX5pRx+RiCH8mHlyhDz7l0F6D3iOx2u3j44YcNj51CygBBENgZYFGEiD8L3IwUyaUcfLYcPZLDOPMZ2OTTMScUjUhv5SQETMifniZL5goNv50DuovcOXynI5He3SSOY+1oQzZb8KVwE4B15eP7yyCQ3TmmMLf0Bam2XHZ0VKIqgiBCt2u2PnNCEQsuBaATWgnNj9jFK/mtytZaX95MzXuX/Hl8fBxJkuC5555Du91GmqYQQlrQ5vbqD8Ju+N9mlEs9yGw5S9sVYeJL81MU7xxnKsfTwOFeitvgLsBL9AINAKM76bmyENoRRUSFIX88o/YYiHXvLIUgWwB07Hgqurc7qAzSrThN6rDSbylbWCO9fJyUcoxMBhuvhPMdAPtZIRAJk3tEaD3cO1p9hGUbsls7YZ82U2F5DVkuncsrOLeg2WW/eYNns9lEkiRIkgS1Ws3mQpmZmUG1Wi14l8YRe4nWDGwV2XKWdv+CjWFBai2N6GJbChmIBEGIMIxAaQpSejGNpkEyqyYQHGVwcTuIkCK3YwmgOe0kSex0mUy0BkFPod1UnWXhgauJNnD9GsVAlFmjSulMeXES95cjHI72PF63JiwMsFpfhImsgNSLa4LIcsN2hgimwrzBhvQMK5ASYRCA0gQqTSDMnfLDmz+Irq49+IufeLZ0+PBhHDhwAM1mE3v37kWz2US1WsGb3/xmzMzMQKnUWt38T6nNs5S9TC71DGFLW9rAsN7/QfbFxhJ2oAVBgDAItQNNcIomspSJG1ly0XUUerWmni4b2sZEj7ihiADz8Mpy21muinyn9kFr4P3hwpJnURrLlR2BRDpkMk1TpEk2oPD91jcsjaxGuuxMxyCMIGWAJElM/bDOCkIYuoHfp6k/CYFASAQy0L4MlRp/DhXQ1kXD2PDigjYPvPv27YMQAqdPn8b27dtRq9UQRRF+7lWv0gNx6sRqe5FBmxWwWS4lcG9J0M47sc6joPX2Pa3l3q44ejCYpGmqnWkCSJEiDGRfh9AWjsp1PD5+oYQ7N9/bvZ8b+ieEMBz9YF0uaCcxg4S6aNafBmUCW9oczaIt0TIN3F1CicNKBO+KrmAz/fk2CI9btFp6afDZQRAgDENUKhWkaYqFhQWcOnUajUYNURj21SXn5c703zpS9jwXoj1tOdDujzpwI0c2Z0OxXKqADe8LwxAykOh0OkiFggIhFQrj0URuQcMl0ddEGCwvL9v34dIlnU4HcRzb4xIS1Uo1Fy7mWrsXapAhARt2lyiFVKXOM5jIkXW1tAFYF6PLXAsIGUJAIonTHMXF8C4cJM7ag3b61aoVxHGMMIkR5JyQ3vvvM0IGWd2OfmZQ01kFZe6djo2NYceOHXjggQdw33334ZFHHsFLrjiMq6++Gtu3b8+MJiKoJNG5S8TmAe2id3+pZwtbGrSBS8IOrJvksmKYD0IIPS0OAgQy0KANhVQQUqQY3zZRSjFcrI7CVna73bad3A3t63a76Ha7AHTHj4IIgQwQRdFAZyTlvXDrpy+09c/T/uxoPvzQZZvWrktGbzjucUgRAJBIUwV2MA4yM/j+UgaoViIkSYzUcM18n5XXjw6nPzk65+tDoF6vY3JyEktLSzh27BharWX0um3s3bsXO3bssIMfmbDKMAoz/UeyJtlyjsgi2ez8mchNjLVl5grHResvnrvtInYO33lYFPpX9C8fIVPMYzuFnr+iBQZmGcTlVTjfdlSme6ZQ7n1x+B6HuOSKyvjxIAisz6CQyrZV7DpUV7awc8WUDKZxHGN5eRnSpE4IghBpmiKOYzubKuIZN3KfLHKEbyR9t5yl7S+Fzqa4l1KrtYsO0aK+GS87+7LzTP9UG2PTVLauWRemR/wZgDsrcK8tk9VDtndFgV+Ap+tUWG/9/oHzGgiJwGlUibgOAghjaVuUFZmFSkLZc92GzCsQG/U62r0u4rgLgCCKsj6SD5yeg3aASOmsIEX+/Rw/fhx33303xsfHcfjwYRARKlEVZ8/Oodk8aaNIAL092kYFwtXKpYx+2ZKWdlGo2KXxJq6P+Nmj2WrqbzQGABWdH7Csg7gLKBi42RrkkDF7Dj+RyNMR6yGDKAYBA4yAdUSWPYe94EJoZAHbgLaxrPVts11fMqW5KEIgJGrVOuJeV6doHQqIBz1IUR30O7f17QknTpzA/fffj/HxcRw8eBBXXnklwijC/LlzOH36tLlOU01hEBaGcm42udT6bzlL25V8zLZjJYniZru6RTWXuOEJWIeVhFm6XLTIpuCZLvTwxYMMZ4dzo0fYQuHfhBAQdKmyvRkE9Kzvok7J2ENwwt9Wc6dc5JuzRN0pT8DMSDI+wxE/FCQrOAgkVKzyMyxDreQG/OGN65Jn6M8Nw4NwtVpFFEUIggDVShVpmqLb7Za+1822InLQorCLLVsWtDOaZBNb2tpAMfHW+Z+EcUY2Gg2kUFBCx2u7Dj/X2nWtWFJ0watDCIGxsTEd/5ymev9AE4HAHdzltMMo7Evj6YLQauK0hxUT2Z67Z/9zuIzEWlHPjcErAGSSGl6DAJVKFUmcIEkTRGGUu5JnBnpGpdu2FALVWh29hS4qcQ/o2+CX40/O45VTPueL+zcMQ9Trdezfvx+tVgut5WUcOnQIJ04+71jaWg8OU8wGMON03WQ0yaXWd0vTIxzyt/6c9kWKwnA+M/fqfpeBRKPRQL3RQKPRwNjYmE0e5Uds2DIuknA42NjYGBqNhtUnDEN7fGxsDNVq1YK4r28R132hnqHfYcr3dE5a0639izJ6JHs2CQipI0GqNcRmabjGuH4KzDVChJSoVWvo9XroxT3PnerOCtfeZt268d8B7we5f/9+VKtVtDsdXH755UjiGGfOnOkLPxW5cvN54kcynGw5S7vYWtqklrYvBeaSjnPWC6SFFEj7LC0tFxqwc1EjyJbT51N1ZoMJ0yY2fnsF9S6c/iuDhhCOX0Fki4Ug7P/WR4TIOWwL+WXko4d4Q4Tc4hoL0hmNI3gAGBojeZpXqIY+wzhCoyiyaQpUqlCpVCA505/V+tJzwcPKSmGyvvP8QhoTRbLlQJul30q7hMqsgzCwWdvJOKeCIECSZhZLBoAFmx44FuQF1RMoXJrOn3mVZB9t43UEf4ENFZq/a9fTZuggs3ONs2o0L+dzv/xIW4SBbNkHMkCtVtPZEOPExjjnp1judQCEQBRFSAwNVRgts9qtanzrgPl8590AsFz2jh07cO+992JpackC+a6ZGUxMjGfv0PMn6eMS51e3l04uJSe/pUFb/80s7c3m/NDiLl3OIrc48U4YhuipxEVzbYl5gC2l1Fz2RXh+DYhUunTeDwUEHEsW/VZ1DrgLfl+dcshFX/DSbjfiRreTYl3OX/KLU7QamucOZIB6rYG41zPJqwgCXD9OCcwJQ3PaYRQhTRKzuKbAQi/ya65S54yTzqTX66FWq2HXrl345je/iXq9jr179kAGErv37EEc97LnFAKkONSRn2Nzs7OXKuxvy4I2kOe0vV/gdoNLvSzVFwK0RcKdjfp+tR+Lwv7sH8qoiv5TLsKzOtXspmvNAXTBe7C/ec9WtApxeDBybNzCi8ieZt12rllsP1NhEYWh0VZV44Bzrsq/E763hAwCY/X3z4o4xsQlP9z0w45b1bQNPr+MZnEVJU9n9GnogxRb1dVqFXEco16vIwh0zpFKpYIgkJfWSBp06wG/FboSjJRhRP+siLLmMkxXK3JFlMiWBW2egise3aFMIxNZGtMNAtJloiwV73R6EpCCjA0mnJmERAoCyQwcHRtd/xG5b+sK20XhYAI6nC8Q2lklIBCEemsYuQYf+Nrel9mGzdxVWKhzvgkNVqkgKKF0ThKROc7skhePulmdDvx/c0MIB+gJqQAoDCEbTSy3llBNTGQFKRuuCnL/afpJEJnFK11I9CBFCqQ8g4mgnHvonW2YYzP1T9xeGLgL/D+G0/eNmzRNUavVsGfPHrzhDW9ArVbD1OQUoijC2NgYlEoNkLnXbY6ZbjbbIovi3HJ4xqfj653+JKQ1lDJ/QoHRVCIrpx3QsmVBm6fgSZpASMMBQ3PAKjG7Ya/ZCrg4YK8k7FxSmo6VjeMCAtLwmnrLtBRZatac6efwkTCN8UI8QRE3rXWXaDaa5iStz7AN2S9/xXO872auZbqRzKxTRwMhBZTQaWJTofSWYySMnjA1LaDTcpWYogO0YMuYSJnc5ryQhk8npBJQUYRgbALn5p9HPTHdnRK9MxEkUkgQJIg01RBEWqtUKQi0IdFFIBSQEAQCBEEVSmnKhIQCGdBmiz2bCJhpXVYjOe1tHhTK7wHJmx/s378fV111lc76JyUqlRBBMJ6PxoGmcoYFpksjbNUwLeVEEcHJCU46h70wi4VgZzn6emX5erLtrnh+lpfMmBrczrccaPvWEG/NZX7NnbciCBT+fIEB27OG3Xksrx7kdEJ9mrBFYPJrW4B0rHX3Huuuuhclkn3RoWH5k8+v/L4yhFekrcf+CnXHM+HUiQZXskcLo5vJoU6KdOTT+hSkspPsnSAEZBAiVYTUmsgZGAi+vWMNZ3lp9B6RAmbDYLbIIbK5vi2A+jWj/DMNYxVzX5NSYmJiQutJhDSN7QxX9D1rVv6gPrh+lGXZ9SJ3H32vwddbXbxnyd618NqMyJ2+so1YNGj2y5YD7TiO0et20Ww2oZRCt9vVIUjG4eXmcgbWMtXdRHKBLOrNJuR96090ms0OiDLLEsh3NF4cMtwdh5gVFIRCRlGEJEn7NsS1U3LkDQ4yo7LeIUa3fyGEmSj0p4EdXjvnfMdo8PU+ceIEnnjiCUxMTEAKCSGAIBDo9XoYGxvD61//C4CIoQcVYS3QjS5+JBMfY8qVAMA42otml6vFlbyR8wID7W63i9byMvbs2YPZ2Vn0ej3s2LndTuvSNN0UfDaQM7ILJB9J4XfEQU+38Z98/WQQXLk0kbsKMxCZJbv2XBkDoJH636swwFupVhHHCRKzi450O7/IBo4MFLTVHIYhAIFe3EVY1f4QhSwU1KY4WMOjuBa132+OHj2Kf/iHf0AYhgik3kWnMVbD8vIydu/ejeve8AYItHVeFyEgpbFIC8I7111WSaHn1hr4kVembfCgCACKdL2XRTsNcx/3fP4rV4iq2XKgzXmROaMYb3FVJEXRCRsNzHP8lhPnCs/6YRrE5wxzUQ0Xlh3Z2DOWDJ0BOI5BMpSTyHYPJ6+Oc+L83sdvr/rxnSm6yKzt3GzQxMi5Oa2zdpr3GwC6/YN/s6MSt5v+dFJlKg/7LjudDs6cOQMhBEKzBV6z08Di4iIqlUo+2gR5q7W/LgrWEZD/kZzzC9pyH5u1tj5dRs9k6w/y/PwguscfDMos8mH13HKgLaVErVazu6ZUqhX7W1nlbAaKxGpMMHtCapHWqz2SIlkJS/MuJL15QyACj9/Nz2hWzS84upRpIQQgpA75S016XXsbAZ1SRGScqcZy3ihYmNwtQNzroVJXsLm414GK4Nhqv/+EYYipqSkcPnwYYRhictsktk1MoFqt4Jlnn8H4eNNmdGTdVWqCAODtTFQw+yipqoF1v9ZuXDaYELRjkXed78Wx3ay4G+tn413o2UjMOWCdYy5g+3Xprh6WMkBzfKJU160H2kLnvJifn0cURahWqn2gfLGXnZ6vuICdiW7lgQys2yw7x3W+5i95IaL7ysCtQUQp3TmjIPLqqT+Py9o1cf9mGvBydISRSbJlMiNKgFK2xoXzfo0FTnrjg2q1AkiBbqeN5jYFAQUis7GycJ5/xRmBrxuDCvrytEdRhN27d+OVr3wlqtUqDh06hP2X7YcA8L3v3Yd2p41eL1tgQ4qQOmUEoTT53z0LVdj/9YlhhDhqsuAE37k42CBzQdMHVO3UB1KVopfE6Ha66PV6qFT1DGJpadm2i2q1amf57I9gsI7jOOPCVwBtrtdBsuVAm7nBOI5RqVQQetRIGVhvZBD3SJxcp8s7s5yf3HPcQ+Qd3OIyEKPsOEcgs8DEOpnsCQXT3RV+H6RM0WYG2e8cUsaduizGl4mCjKCRgQ4rs0vZGRT6CLP+p/AHqEHic731eh3T09OoVqvYvXs39u/fD1IKTx99CufOzUE5DlVdz3mwIqfcPNVXoIcPvppvWdMs2dWjkNJA1nY4xUGqUqQqtRRJkiTWR8ZlsmUNZPnjGcj9IAhfh+zfC4zTBrQHXW99FHgJeLRsZIBejQgBBFJ77AufaGMzPpdePEQnIiSpjsHlMGqmRqwTjpgrPt82VDCcmKL5XrzKcaVBRwiBKAyQEBDHXU2bCAKgIGTAD+fovJqGkdfTtUi73S6iKMKuXbssLckyOTmJMNT9L02VcSUIPTCxFo7+Q2niRdus5nxf+ImUMoOjYJA1m04oE3cjCHGcmAVMAvV6A9Vq1TyXHmjYOckgzfdmJ2UYhn0USdG/YZ9ty4E2EaHT6SCKIu3RDgKkaWpHMXeau9F57DLhmaGE6PNeb43h6NKIIkI37mGMlGOpSr3dlrXI1tZm9IzfTIVIQPibQ8BYaspQXkJqAAHsNVyQ/qRypdeqFbR6hHanBYJZSEMKUoR2BXC+cQyaJXhzO6OEO5gAwPLyMur1Ol784hej0+mg2Wzaa3bv2oXe9JROaJYkxpKWQAAI5rB5DcUqBsBh+q9rPVNJsiwFfX9FZkBxwvmSJDHWdYok0bngoyhEpVLFtm2TNoS4Vqvj3Llz6Ha75pwoiwAx4ZtMdRSFDdrMiM53IkIQvAAtbc4+phuZRH9ieC1FjskNF0HitUsbDGA6b1/qU+8a4V27OYepCyVOnnXTcd3prjnFnJdxj0XW9vAQ2H+WwwqY79JxOvaXRSZkzi0pCCQEUqRpkhG/JmrE8C2uvVyiaZmexf2H841s27ZNg1SYAVS90UCUZNysnkEYEBVwqA6HnDbHi9qoQL8F6vPQ/f12gKVNMINZxj1b8HRANI5j9Ho9288qlYrdoScIAszPz1sOm2f2roHIRhUf53vw4MBhyDyw6c2ZX2CWthA6VSWPhq6X2pWiUXojWt4FXRy85Ng2BtvwN57+m0kI/YuvgIwiyVnaaxrYC4DK/Y00qHEu6lSRxltzP7sO1o7cmX8jCkMIkZrNfTmqBNnfoZrGoGGnuL8w4Ogc2pmFGPdi9OIeqtWqU3e6HM2USJBjTOXNjoJ72SqyjggDuuWRGfpz/g6MBbxTvB8v7lKqSimLJS6mCCflMIM3gzxntnRB3zesXO5bpcpy5nasXUG2HGhLKVCv11GtVvUByoLjffFH541mZftdm78r+1nYHV/61XYb/8Z5pkslw9QAmdCufFvRoLcuwSOO61C4HVQg12GjqALIAHGSQEUSAtIMEtJGTXDUCD9YrVaFbMVotxZM1IjmtIFU/7W5RXJ5FTFMG7GLSZwc6Sy8ldzY2BjCIOQL0G530O60MTaW7VoEMKBqeohSKrm7q6EbkAnDj5PVJ7OOjaNPEVKVGmB0ZtPm/1JK7ATQbrdzVjFzz0EQ5ChH/o2xIQxDnT/GPFPFRI10u91c23Etdxe03ftpg0vHfAv3Zb7QLG0IE+Qfhs5UNwOwotF4I4oP1ho7eHJs/gphY0aFd0V+GcX5gfZGcuKu5alWo3F+c1xYQ5WpVyGcPQ4zgnkoCynHCPg+SMtmaEsb0JZ2ZgWaS0VmrWpLWwNKEIaQAkhNHm6jXY5i8SmV/IP68E05Hr34eTJgsmBmJEkSxL2etTytY9VllSwYZpZ0YZ0592d+nv9lVEZm6bqRGn7b5cEjSRJrVbubdTClwcellNYvZgctB4C5DAC5e/LqySRJ+vZt5Wt0nWn/BRte2YykXLYcaBdNQ/RS4Euo1PlKge4M07lR3Oln7pkjGV6IOVWe0uTkfOkRt5ziw0JIBEEICG31gyqWV89ZoOSMJqSdlxAwi1k4ryFhLQ1/ED+fU9eArjWO3DoR2Q5FWQibB7hp2ges9tmczy6oMn/s6pAtSskvcCmiTXx8cHdQ6vV6OowvSSG4TKEHUS6jWq3aCiIA5NzLjVQTEKAQBpBF1myksMeklGYla566WUm2HGiHQahHbueFFVEgKx3baCL6PmWWNq+KfKHIsKCyojhWMglA2Thi/uctVYYZLEXhODqEZBRFNnNyJ8USMggRVWoQ6KDT6UA1IwQC8Pfg1mF9pgQhUIkiSAh0ux3AhPwJY4lCrJb2c2tYgFde+jSja7VmfU1fLoUGp7iXIggMaELlKA3fKnb/svig7FIaruPPt5h1HWWDg+v8Y919a9wCONgQEtb6lVIijCJMTGzT4yQBQiIXAaJTZwAqVRChRFQwILlUyFoxZ8uBtpT5F7bRaZC1iN2k1TRc18IptrZHMlAcA1oDBuVHBacJWZoCKwN34TkCENSfA4QL13mwQ4AEkiRmt11eF587I9h2wKCk6RyCWf9urPg1jzaFwpa2BT9HNQYkDrdlHt4FT/YhuJET/spBl6Yooi74HOajXVAHslxEboSGrUrnnoDePk0pssFmLqAGQWCtbFsCIaevlBIcnlnkfBwkq8GpLQfaxsw2HwejlxsyNMz5l1osCAjmtk3nsL8by9AJm9rgj3TRhW2+zMbNzG2/25CPujzFhYAqQT9voo/sTWUnGFec42DLLFRAIAwjIBGITW4Le6mdlltFkH3I7kKkrLWdnTEMYA/2GBT1F6ZA3OuIlAVQBk1h9CbSFcAAJyJteOiYaR0Nop2NyjI77EewO8MogoJCmqRQigyfrQzdIAwFIQw7lPHeyjgrsxrJqAoQmUUwGWjzTIadoXpgcmYtApAysDH3ZHTlevcHsfJa91a+rtBntxxou6O/MC/Qz5ngTp82q/C0OBRBznlBfR1vhNp5YerDpxv0ccVc8YB6G75GS4gc8t+Le0+Jen0MnaUltFrtAqDVg3IeA7JpvABAKgXlQFvk/vZr5Y5Og8knt89wJs2cBWsu5RA5jnHOLGCtZxhEkDKADKRxYBp4ZJBNU6RK6Q2LXY7arFpEqhAT0zLm1lwHZhaaryIG6eyZpQz0OcYLGoaRpjd40ZPhn7VTsYckTaGIEIjMig7DCEEQIjGrPoUUeRpJZANI+ahpZkI8+K4QqrQ1QRuZA0MIvT2Q+3vf+ZsUvAWQ89iP5PyE2w2AEtyi8x8GS7krYbEzNClNu5xsydWQCH6+XbbwmHO32f/88lFweC2P4FAXzBcD/XRCGIbo9XrWiOJIpyCQkFL/HoYhwijMWZpMZ3A4Ief4UEohoYz3LsvpURZexzHVMPWU+QQynfn+ALQz0hh9Sap3u3cdwAIwMfXSLIfPftAzirxVPqjus7pbuXVtOdAG8o2naH1V/+KJjQ18vIVf0Tu34X5DkKz9VvhwstHr5/yE8kYmCqrRoyEAZJ3Xn9YOA4qUGRemMFsWUwswOTsgBEjoLdLc8DdhX7mjD/QmA9aX40Z0kLbg+tUbVmnnioIIDL+NsHXtO/r4Ghd4eWWgz0P7jkr33m74XpHh5Z/nArhzUqHrQr8bnpGV89I8WPrP6d677FpfVrNGZMuBNlcOr1Iis9ee8ByUAPpeol/pG0n8SSs3AR03urpygFVd8gKSjIv02OBchVmLfJVRO0JIvQ0Ymc88SFiOVyFVhGqtDhkE2tJmKk85J4MQBHlFOY9HJYyg0kRn1xMEKQVM3j9ncF/72/f7C4NuTqRAGEWIzHE/xM+9nsv0/5WBnGs5++F8bnluRJhvebOOvvDSJyElSGkqRDgDkh/YwCsmoyiyg1DR7j4+PVsm7gxmkGw50AZ8MB5saReF/m1EsRtmA45ltsoy1lWjzS19gyARqNBiQ36k04hdXMiKIvKfyf0mABJQihBVKhBmRSQJ3iXF3NCAtm8fk9LOLO3UU5YiEeyYp1UrW/wEBVa2m5CNn8WlInzLmr9zqBxTmW74XllYX5EV68r5zqK19exMvogGgijTLu5zXmhjcEuCtmuC8EvYbELeJ+OicAylvC0onG+FA1VfXMMWtLZXyf6UsL5Z6/GqUpTUrVteCZQUK+bSnTnHFa+wY4rDuUC47dnckbLrAht/rHLuRwLnLqEhX37/nGxo34/IAzVvz+VbyEEQQkg9G3YzKboLW6xT0eV87UfvjThGlx2j3M7vGWs8W7LP5lxfFinjr/0YFNSw6gFjyPrdeqBtGkxqrY3+yisbOTealV1EZbj0K3vOBXd0SpEtYHe5TgeEsEUBe9WSr12OwLFpTItiLByw5Njj4e5jOjYPwAUWvfVviQBBEAGQOvcIY6z1XUi93ZxjObM1GMrQRGx0EVQTRJHJxk2ZkxJDAYPf8koMAY7oKCiTnXc6mVTVpBvtt0iV87nIIrV9VRhKiU2XPkDOf88WYZJVnwCTFzvTv8wiLjruLy7imYAQTjw6svdRBPCDwN1d8j9Ith5oA7bTlaWj2dRizUGTIN/03X7vs2+rj2Sg2AGNssHQ+TkHkgY4Cuu1EN8ci9jOi/q9FERAIASkCEAQSE0GuCxggc1sYYBBgIcCAb0TehRGSJIYaZoigkOpcWRDkXql4s7yCn4dBNqkkNitt3R4HYAcmIVhCIIJs4SzItEDcHcWYicKfbu7OOeA+4OjmzHmVAlouty4e5yP8SyhzCmay41eANorAbHLw68kWw60XT6q+PfyStlolnafFKlHJT/4Pc2ZUurrvFiSjf7sK8mwM/ei6XLGOTlWdoGl7d7Lry63vkX5T0VF8ADAathlMsLJmbNSwwZbfnl6hDNCugt8yimcjFbsn2XkAaywBO+3lcJpaY1t0AU4d+ZpCs2X47+LIcGzTDLQ7jeOBpU5zL1esNEjvmx6MCoTkVlOPPklAiiX85PPzT66jXyL1swqpb8m7NJmt+8z38rXcDL/87pvwXsitt4kpAx1Zmwh9NJ3dihm426mOwmEQYhqrYZut4NamuhNgYkAoXOupynBpnddUSc7jNhjvjXqRmf4kRPsiLSrPblUp4w0TbMJiFOemwK2aCDwy/J18n9zv9s4bYejdq9zqQr3PLac2+2OWVAT6XHUK5e/+4mtyp7Fna1wFMpK3Pa6ZAkeyYWVsj5mj1vrGf3WdQFgj6RYLFyp4o7D201YL8E6V2jOahQSQgYZMJdt9monC5pfrVYqiHs9u3Q8A19n+l2I2mt/mCLr1MZps3YOmPK5bt4Of4FOWaie7xDka4upmoJ36MR2+wDvAmrRgh0hBHq9WMfP8x0KrvWf0z/P/ce/uYuPXtCgvSWsbGtRF230qjug9skUPKv/7tdQH4N4y40muTFqtepyvggixxmZL9uyFoUFFFjOA6VodBUW5DTQMS/KV/S9UP1/B9Akr0/gBBrOJS4bVCpipRO80wvAmI/7AFS00G21UtTOi8IAz6e9DsKN4tWm+eCGC03BbmnQ3grS94rdjmepT6GtQDeigTt6UdvdAmPZUDJ0v81sXEUKaZrY6W0GdAJS9C+cWJ0yK/Oglk0PAgRhhCRR2Qa4fbwz9EBsnG5hEKJRq6PbaSOJe3oIIAVBJuKCStrDQOmnJvw6YErDBUq2tJVSOuUtQ7YZFHyL0w+nKzIUyhx6TF+4sd5A8UDCwpEa7jm+49B1PvIzcRZIIfL3dqmNImvaFXd24JbBMewvyOiRrSIruEysXWYB2x7d+FbxRhQCoMBRD8oe5XgPu+ij3COM8rc2wLGZ+6bPEzJAEFRsBAn/RqQghPd+BSAUEMoA9VoNvU4XaRxDoNgqXL0UuVLzIOqvdnRB23U4mqfLMXpcFtDPmw+6p//d5cFdh3IReLrg6NI1Pg3THxnST5swaPvHigYdVz+fMvEXKZXJlrS0VxrpNp/kTSSR/5+mSMSAqZftMVlGha1sba/m0XxSw+1QRblafMAm5Ckrn8BatbAlCmFSfpZRU8L5vzkijDXoAYt/zcUa0kvbo+bzzDnFQOx+LuKNV+rbq+33K1n1PoD7LWctOFP0joahdbYkaG8V6Xt9ZKlXGzECcINyFyGs3ICkN6i51kaRFbA1Br9BojshRzUkaZoPgDOAKJyVe7w7bx6kB3U6tw6LOW3+hZPu93ox0sSLRChoGAS9AUglCpDEXaRpbKzy7BrLu66RMyuLZZZS2iXp7vEyKoPtDSGFA979lnZRBIhr0fv3KLJg3fPcAaAoHwjPpFyLl8/njRbiOM4txWeLPQxDW66bi8W9T5FjskjfF7QjcitIv62HPJKADZdiS7BMuLOt1FleGIDNop87SROkaaK/OVN72/lhLMQ13WMQcGcigwCVigbtxAWqEp1BBCkkojBAnPSQpIkTbpfRBP5d8/df4xMJ0QfaK1xg/w7bvnyjoowrLgN0v5wyzpzv4YK2EFkuFRe03etc0GbQ50FmEPVTtFhnBNqbVYiyf4449jVsfyyxaPLn24JzHOMLWgqwglBQ7YZPEoa2sNf51/vfc35DgfwCFw+wKbsEAHiHbt/Bl5XtArCdfkEI7vT56btuJv6AMUQrGDIj4KAIo5UwefWRHkXnZzOlMufjaqWMviijUnyn5rBlDvObKyNH5AaWnOvKf5+O30s6WyZpDsX85HVScq7TWzb1c4V+XpbNEOq33sJbUwEeKBrAXilxVJGsbu9ObblVa3V0ews625/bGOxndwjP3iVRCp2HxvBpREV+0HUR14lWtEMUxx4Lo68fJcIPlFmb+rsobPjk+G588BT2Wr43/1yU08NfZMOpnPmY+yzcJ1K7LL//+dnxyFY368b3sU9A+ayB/u/DyAi0N4nY7ulY0Cx6bzyZNw89bttO9XmaSc4ekyJLKO974Feabm45EcjvJegZxMPST0XC+970z376TfYgjFCtNbA8ewZJnEKBENhyDAK7S+8FIATvZWi2G4MqGV6cQeg8pYzT5t80aPdbvNmqx8xCtjtNOSsi3YiOLJwuKyPjnLPacf+6A4QLlm50B+vpnus+C4fzMWj79Axfz8Lct3u8yKnpR7AUOVyLZESPbFrJtr4S5n/ZtLgIBrYe4K7G1u0nDIqFLTTDaKxKgbKyi3lohyzp2zOSwVBbf8oq5BbhnF84GxqS/jgPcQfyMj57EK9c9n1tuhQfK4tKce876Bz/3EGhiGW0iV/mSqC80u8jS3sDS9Gry1lOxuAKZICALWT3ZG9KLISARN7KBoq92u41G1Eu0Gxfl00Eu6Iwd0dLMvWF9Q2tj2ArufBHW5YMAkSVCnq9xJuSl7sRtcWqEEgAQkGpBJAKwka48K7vw9I7w9VwGT0CZNN/bTFnNqLPO68E3EURIWW6FLVhf0cZ9zM7D329ixbBlOnl5h7hmQL/47Lca4jIbrO2WhmB9gYX4X0W0IaVpkp0QwiDAKEMHOMqc0y5aGL9Z6Lf7nb377PnOFbCVuC2hyEFhBBQZHb89q4rcu755Q/ptvPvmjuuQTtEpVpDt9fTO30XXpeJBPTKQ0oRhACgkKoEwtAkEASC4ocssc59nVZ+mjJOm9sL87s6/DBLVzpo4Yn7t+ye/LcIUF2aww/7c8W9hx/lEYZhX/ire40/w+DFNZxPxQXsKIrs/d19MVeTb8SVEWhvYLEgS84R0k4nnh274NpnPxl0zzmxGLDJtdrzjbJw9F8tZl8EA309rW2/LOIQOWdH5f6O5Y2IOZ/ZIO2KQZuQ8bVsHRYvrhHlXy1YGaB0n4h/G6iLL0MOQyVgmwFhMRAXtTXfIl6rwTAsR1wmq7nOHzR86mil8EP3upVkBNobXIpeIdt7bAtxDCl31hwce+Zl8cTY7cimVIKxyMqv2qriJ4zqewdC6I12S/tXGWCXd8g+WJYmoiFVdv9H119R6lwUQKWqrb5et4tapYzvHqTncOIaDH7sMv+eRWUo6PmAvl9GV2TAOsiiZXEjQVznYtG9maooC8krstj5eH+EC6zevIAmDEOrQxRF1srmDX+ZAnn22WfR6XSglEKz2cTOnTsRhiE6nU6OVnH1HCQj0N6sYvqbhEAUhoi4AZmf9Oze4Rj78j/3uyrtXz6XjLtMFJ2/knKbV8jlMYeI9SgppeBMF25z0x/4dSZFABFGdmGNBQ/ntHzf5nA1Qq1WBUDodNuojXP+Efe+uSnBCk9kSbniX0WWVKkoeiQMQ3S7XRARgqCYeuNjDJRukiafAnFB2OWpfe6Zr0uSpDBPtQuSXK5/HwA5XVi3JEnQ6/UsaPPmwwzmSilUKhUkSYJ2u41HH30UZ8+eRa/Xw759+zA2NoaJiQm02+1cHXA5I9DepJKfxHov0fYzzjki7WaoAECC3Fm9PkaEfhd7dhcC5Y+4Frq1toeVjQ3auclHnk6GXXhExb+vm6wweXEjgnKnDfEagkACgqA46ZW9V0aGCeeN5ym14dT3pYwWGeQwLPo87H0GXbNSBEiZnkWg7l9X5uMpihBRSiGOY7RaLSwtLaHX62FpaSm3YtJ9njK+35cRaG8SsawHAN860k6PjP9g4O179YSMC/fLL+sEhWC/xYX6spaXOr3W/dbOXaWQsOmbh3IeQtMjFUOPxF3ADS0s9GKsj5Q5F8scbX70xqCwON8adcHNdzS6lIl7f9bR/1wU1cFpUrmMLE0v2c/uYhqWZrOJOI4RRRGWlpZw7NgxHD16FOPj42g0Guh0Ojh69CiuueYa1Ot1TE9P556PZw5uxsAiGYH2ZhSn/euGKe3igjz3mU/Tank750xfCuGIG/YWAe+BLkILCPq7cP4PmA52geuBzH2EDGwUi6Z/yzV3Zw+1WhWdVKHTacN6nfk8Y3GLgbXQTwmVSRG94P7mgrb+61+jRyWf0y0DbaYheKGLm0PbDbPjcDr29zDn7i6C8aNM3GeI47gPwBm0XUrIpWgmJyeRJHoH+pMnT+LBBx/E9773Pdx2223Yvn07Op0O7rzzTnQ6HTSbTVSr1cLBaiWjYMuBdnFqzPPoZK6/yZnS5uCvr3gq+LRKEYCfNrnoHH1/J4sZcmgDfx7e75gUnlVpvnsWdq4heVP2ArrVzMZzo0vGNPRNN9fD7ivOp5LDEZH/kP+JvONOeZ6KxQOb992CLGNt/1WWZXbqz40U8qmqTEOnLvkCZ5SRUgIJ71NorrIvSXPa+i0P6BfrZIr7aRGKas8HaQZL/py7egDd4v9zyxkkRQ5Hl8celKnPnWFw0igiQq/Xw8LCAmZnZ1GtVjE+Po4oirC4uGhD/dxZwGpky4H2Rpc+7njguUZcw0dknRwuJ2b+ubuE5Cf42fJXh97sgzo2zIiAgK0IISCFQKoUVG7RiTcClMQ0XCi7dBVMqDm//Aryvun/FJQQACk9mJlKFlIYcBUl1/eXLohjJ3hYJAu4JBLnegmiCEoICKQIKg2kQqCX9FCRKQQCU4JEFndNINKjvIBCrRKg00uQdHuACgCp70xQECL1Rm4BQQKQ0GVA6u/22VSp9eACWNkilDAMrVXM8crasubzVy7bPebeIwxDa1lHUYRWq4V2uw2lFMbGxqyF3TN7ZroLaDiGmsE9jmNUKhWbgrVSqdh7LS8vI4oihGGIWq2GJEkwPz+PRqOBc+fOYXl5GcvLy6hUKmg2m5iamsLRo0cRhiFe/vKXY+fOnZiYmBg6pG8l2XKgff6WNhMMPuS5ZZCDV4X2XeG3HFUBsyOKZ2HkrjP8NJHpdzD9TWZmuA4906AgiEsmpNzvrAEm7Ma0ICA1vK0QwtnOSkejKNI3CmWogVtKBFKiG3cRp9xxsgUfQgamTox1or1oNnaFsFK+hNWZdYMJAu/EvtA9/X+VOwYzyBFCoXevUaSQQkEY7pJSPXAJKSC1n89Ur9DLzHNKCYeWyN6+TKH35xUCqbPYJRWxAXMJUACiAEQKChJRfRypAFrdFir1EAISkgSAAAkAiBQI9LkCClIkaNYiLC700Gu1gTQARAAICYUEUiSQIIAkhJJmIBLg/zRdkVn5JHiD4H5euihMzXfUVatVpGmKOI5Rq9VMWYQ0VYam77+uLNzOLVdKiWq1asGXAXR+fh6tVguHDh2yYXjtdhtJkuTKDIIAtVrNAnu327WURaVS0W3ERIMkSYJGo4FmswkAOHHiBObm5rBr1y78+Mc/xvHjx3Hs2DFcdtlluOKKK7Bnzx488MAD2L17N970pjfhwIEDqFarlrIZhgIZJFsOtNdDXEvUFZctXpf5o8jAu2+gsbNZghAy00m499cmsRD5w7npvYCxnHJd0QFzXtbunqM5XenwhEEQQCQSAqkDUj4Vk8k6za77pLSpn48Bwzwqf6ds8CeTno+EoRNEjrgAyAzzhVMKZ8Ag5685T9mDCgQJECBJmvsJEALIMAJBIFUJ9JDKUyQBvm12L017RIE+TyWJefcmPlrowVYP8kyDucyNsbxZQfuO8w82CEz98zhOOwvh43GUUHBJX3lFjkMXeLl98grGXq+HdrudO89N9ORSHUxRcPm8epFnBO7KRra+GeTb7TbiOMbCwgLOnDmD48ePo9FooNVqIQgCzM3NYe/evdi9ezeazaYtY2RpDyWrraTiluSwE7YZ0yrBO4NMGtDRy+48XPl5u5Jy6tmBgS0kABACodN4q9WqPZ+ni2wZpJQCwnClJRy1d/dVPsGFENeWdjQp4OzdcUifkp2TI6FE1hoEo1DRQwphQFGXI7wNaIT3mQdebhtEhCiMAOh4Y4iq9z71/8l9z8LwyAQk/o43cCgidqgaKkxQP1WWqwenntzjPofsZujj4wyoAPrir33no+sQ9IGbyw7DEGEYot1uG+td4OzZs5ibm8P8/DziOMajjz6KqakpHDx4EGNjY30RKseOHcPExITVr9FoYGlpCbOzs1haWgIRoVqtotFoYHZ2FsvLy2i1Wti3bx9mZ2fx/PPPY+fOnVhaWgIAvOxlL0Or1cLCwgIWFhbs7jVFkSCDZhLDyJYD7aLFEKsS38nm/D93TLjA3a9F2bc+q1plx90TNaM5zICQHzh4Qp5NWbNCOVEUlIIImBvV4BwZJ8rY2JjtFAzY1mseCAgp0el0jL46TjylrCO6Q9nwKSTXZ2AtKivjUNliM9c7ETEShtLhqBEzbVeKgIDbE2/wq7+TYNzrj3VnPQQEhOQCYS5w4V/4Z1udBWnqq1KtgKiLbrcHgaZ+Dn6PRHr1pgFtCU2ThUEEpQi9bi836Ggw53vIrE4AuAmy/LdRFjfsgg+HwHFEhxvGxotbfOvVjf7o9XqFi2XciA+22CuVCqrVKk6cOGGt5WeeeQbPPvssFhcXUa/Xce+99+Lyyy/HT/3UT1nuOggCzM/PAwAeeughG3I3MTGBX/iFX8AjjzyCp59+Gg899BDiOMbMzAwOHz6MxcVFhGGIZrOJffv24emnn8Zjjz2Gl7zkJThz5gyEELj++uvxt3/7tzh16hROnTqFbrcLIURhhAjXnR9yOCyIbz3QJoH+bPMlnbxkWt+3q4i1UEsK8Rs1ub/mkDg75lo2melurV/LbbjFOrhuu77H5eQvE7njAg4n6FiJgaE/ANjpYeY00hLHMVJKEbIzR3CeDL9SzDUFEQHWGCzg8Ye3OoYdyPzvWSX7zlt7hcjy4eXuJOBUvm8fw4na8e5rz++3qooAm4FcjzNk3g0DVpqvNzivXqOupnAIEJyLOvVWKLpPLPgz1wkAQTm9+JFcHrlMfLB1LXCmMRik/PhqP7e1vb1nubvXBkGAXq9n77e4uIjFxUW0Wi2EYYjnnnsOzWbTOhSZ4lteXgYAzM7O5kCzWq2i3W5jdnYWTz/9NLrdLnq9HqampizlEccxANiokCRJ0Ol0UK/XceDAAaRpilarhVarZUMD/RDDsr+rsbq3HGivv5RzGKa5r6o01y7mvtl3myFpE825MlAzCPdrrjs3mR1uJGQoEYUVm4S+Wqki4D3uUoVO0kGr1UKn00Hc0/GqO3bu0E5Pt3B+iNzTKWvBbVTxLRzAdCAyg74Zh9M0BQXeezZA7C5gKmsBGRAi48xNWlTyHdjcgZnqIK1nJapAUAtJknrNIgNfIUQugZi01rUTkiaM49m7Hz8Dct/y1w8rRUvZgYwiiKIIcRzb89xZXJqmdobn5vHg8DmmMXgJeZqmOHr0KObn5zExMYGpqSl0u120223U63VN5xke291c4amnnsLu3bsxNTWF8fFxPPvss+j1egCAU6dOodPp4Oqrr7b0xvPPP48rrrgCZ8+exZkzZ6yuLt3SarXw+OOPY3l5GVJKa+0TEebn57F9+/bsrTlOSB6UXCqIAdylKX15gYD26oAV6LNxy8soAqgSMpedUMI7LXddCXAX43ieGpFSQiiTd8Q1Iw0/qsE6Qq1aQzWqIQxCY4Fk09I0SbG4tIT5+XmcOHEC8/PnQKTwhje+EVElyiwxazlTNjsAoPvs+oQ2lUtR2cX3GxTn6+to6STSVFIcx6CoZssmQ29oIzWfv9x/l3bAVBngZ3urGCvTjgPCviPB1iT0NnKNRgPd5QV0uz3vcQV0+gIdvaOgnZACMHSAsV6daAylgMDcW9kpWVG9KdPidYSLEPnzXOoDQI6v9qM0AKDRaCBNUwRBYPliIUQuqVIcx2g0GqjX66jVavZ9EBFOnjwJKSWazSbm5+fRbrextLSEb3/726jVati9ezd+5Vd+BTMzM7lFMWyJs7Xb6/XwzW9+E6997Wtx4MABNBoN3H333TY3yqOPPookSfC2t70NRIT7778fX/jCF/DWt74V9957L37yk58gjmMkSWKfh4hw9uxZfPWrX8Xp06eRpilOnDiB6elpKKVw/PhxvOhFL8rtDOUOVpyrhJe8j0B7jTI03Nj5ackVhT/l6Rbf8h7Oyu4fRsoIIZcW4elaFGlOMAzCvgB/pQjdThcL8ws4feo0zpw5lc9qVnKfiyf5gar49yFKKQRsBirHCioqnx1mK2iS4yuLKLQ+VdnKznYlisIKekJop2LBzSzlwY1HCEgO7iSnHXCDYcpmAGOYAXaJ9VF0neOI9I9HUZRLhuTmnGarlS1XjoX2yxBCoFKpQAiBOI6xuLiI5557zlrf27Ztw8TEhI3LFkJYa9kdXJ555hkAwLZt21CtVrG4uIhz586BiHDmzBnU63VcccUVEELg8ccfx6lTp7Bjxw4IITA7O9unLwC022089dRTaLVa1qHJlvbCwoJ9Dpc2Yn3c/Nq9Xs8OOINkC4K2bz1k/CX8owVt0vit+s/3LTbz/3zEhqdJkbVZEmlReA5fX3QDkQcv7RgT1jFGHNHAVrbUS93ZcdPtdtFO2zaGNo5jXLnzCjz99NNot9tYXl42HRFIU6VThLqWodGTiPRiE1ffCy7DW9pl4luDllqy9AjZ6bW/VMkpRP8xgElw3nmOm8p/9tcSCG+2Zr+JbO/CNE0LqbiM8uBIfIWUDHhLqXntkHn3ouv0lQrsQCbAbvpMJvkYGYo9zzvzPoguP+3+ZTl37hx6vZ6NgWbLenFx0ToV2Ro/d+4cTpw4gTRNrRXNESHz8/OYn59HFEUYGxvDjh07oJSyALm4uIiFhQWcOHECU1NTmJmZMa8pe3IeVFyrngeDrNqz5+Dl6rVaDc1mE8eOHYNSCuPj46jX67jsssus/ufOnbOf9+3bZ5ezP/XUU6hUKjh9+jS63a4F/larlUvnatvbCpTUFgTtiyNZX+xfZycdvnOQlFl77u/MRw+CJDLWEwOzohSkFMCOH6VQrVYRVSqIogqiKMLps6exOL+Ac+fO4ezZs1hYWMD1P/cmfPWrX7UNVIdKEbq9HuI4QY20dRFIiZQUFAGpUoiksdadDrxRxOUP+S//c8MZ9cnmf6RnHL2e5l/JfSbNW2R1a2iilWl8hyf2WoYeZGEX7Nh/AiZ6BOh2ulDKRIiY6wz7Ab3ZQWjNhyRJISAQhhHiJEZY1REYOuUsj+QuvyocGoUHaKWpkUBCJXonH39VYavVsg4+ty79NvDkk09icXERU1NTuOKKK9DtdnHixAk88sgj2LVrF/bv3499+/bhxIkTOH78OL7//e+j0+lgZmYGR44cwTPPPIMzZ85gfn4eSZLg6quvtv8WFxfRaDRARDh27Bgef/xxfOMb38ChQ4dw1VVX9aU6ZdDesWOHXb3IkR7+TEFKiUqlAqUUtm3bhr179+Kee+5BkiTYt28ftm/fjte85jXodruo1Wo2VntmZgZ79uzB/fffj3vuuQdxHGNiYgKtVgvnzp2zC3ZOnz6dy53CevJy+DIZgfZ5yko231rpg1Vfx7gjpNliisvJwqaCIIA0HazTbuPcuXM4deoUjh8/jrNnzwIAfvKTn2B6ehq7d+/G+Pg4AM1zs6UthDNQWasgm924MbdWh1U4s9ZbfNB2P/tRDLnoHNKr9ogUSATZO2WQs84+uCN4gQKAuyejBW2PHrFWrwVu/f8wCAHSQJyvR6ZxYGaGrLwwSaYEpNlEAaQXSmUzpJLKYu6bFJTSeUuE0ANzmqR2VsZ69Ho9yxf7ezC6cubMGZw7dw4AUKvV7CKY559/3lrJzWYTSZJgdnYWDz/8MJaXl3HgwAG0223Mzc3h+PHjOH78OIQQOHDgAJrNJnbt2oUwDO1sZH5+HseOHcMPfvADXHPNNdi7d2+f05k/N5tNm32PV0AWGU28OKher2NiYgJHjx5FFEXYsWMHxsbG8KIXvchSNxytMj4+jgMHDuDBBx/EsWPHUK1WMT09bfNr8+C3vLxs9c82MVnZ8NmCoF1iyQx7NU8BLQoOuFj0fTBfy5lfn/kAdIgXAyLrwLd1c1zk7Pe+Tm9SUib5bGs6VlhaDk4KiVarhcXFRSwvL+sGWatjcnISAHDw4EFsm9iG7du3Y2pyCqdOnUKr1bK0i21UBuH0d//xBzc6HywvpGR1wTyusE46d45kOV/nmLa6PO6MLKrq56cSK9skNGfjPfcT/GucRmYToevvUurVsCnrYigr20KF27oyy5ktuDjpQcQxhAiRqBhCpJpfJyCQoWlg0sTwZ/SHDDSvGoQSUgQIg9DuyMIyNjZmF7uwVeqGuKVpioWFBZtPulKpoNPpYHl5GWfOnMHk5CTSNMXJkydx+PBhzM/PY3FxEXv37sXCwgIajQaOHTtmAZqIcPz4cSilEIahjRKJ4xjdbhcLCwuI4xgveclLMDU1hWq12gfYrB/z3UyBJEliY6pnZ2dtSCHz8W5OkZmZGYyNjQEAzp49i263a5fV80DA1vnhw4cxMzNjB6XDhw9jbGzM8vfuLMVdlDRItiBoa3Fxtp/AGHwVEUEJ7zrPfLbOhIJSio6tztjMW0SlBhx/Jm1FBUEIleq8GXbGLzVZ0+v1EIwHCMMAR597DkePHsXC/ALqtQZ27pzBfuP8ufmtN6MSVRBVIjQaDczNzWFxcTE3jWMFBKTNiQLSCz36n/vSWdm5+1NG3wiRDYyA0BEeFsgyx6xKU4D0QCektlaVM1BpSgjmBRUzzo4Nre8PjvFANkqL/DXCydwXRhGIgDhJIYR0LH19oYDJFWO+SRFAIEEQhKhUIiwtLSKiCLKSQAkFKXTbEAQEEhAy1HHdZvIgA72JgpABhBSIwgBShNYf4lqCbMnyd47vZ+n1enjyySdx/PhxnD59GidOnMA111yDEydO4Ac/+AHe8IY34OjRo7j33nvx0z/903jiiSfw9NNP49prr7XW+Ve+8hUcOXIEV155JWZnZ/GXf/mXSNMUjUYDO3bswPHjx23c9BNPPIHFxUW8613vwsGDBzExMWEdnkx91Ot1AJra2bZtm00Exd/b7TYeeOABNJtNzM3NodlsIooiXHbZZSAifPrTn8a+ffuwd+9eSCnx8MMP47nnnkOn08Hk5CT279+PPXv2II5jvPjFL8bU1JSNYonjGNPT0/ZapnUA2Lp1B5Yy2bKgvVbJjcygbNqZHwX8DyuUWfbLgOvFsKUz/ymNBal03F1ocllI3aniXg9SCgQywLlz53BmdhbLi8uo7qpjfHwCO0ws6St++hUAsiXD4+PjNmdCzulk75uz/4eW1S4oWKtkM6csxx6Q0TjZech4XnPM5mTJzTKcv3At5rIpGcG1ihnH+1bGFl6nd2Un5HcLzyaB3uAuXEs7QBCE6HQ7SIMOAhWAAoKUZHdqpCDUIYMBb5vF12pqRQYSYRQgCqsIg8ha0mwR8uwMyO/dyMK87blz5zA3N4ckSbC8vIy5uTk8++yz2L17N5544gk8+eST6Ha7OH36NGZnZ/GSl7wE27Ztw+OPP46vfvWreM973oNdu3Zh+/btue28ms0mhBDWej916hTSNMVrX/ta++5ZL46H5kHFjdTg8MB6vY5ut4vnnnsO09PTaLVaOsoqDG1kyqlTpxCGIaampgAAx48fx2OPPYb5+Xm8/vWvx44dOzA5OYnZ2VnMzMzgRS96EU6ePIlWq4Ver4f9+/djcnLSUipuhMuws88tB9qUpbvLjlG/re3NhJF1ON2zuKvZkrhCvX7GjsL8/YptLveWZKbAHKFhvtlbkXOhq2a2qIMXa2QnCmPJ5YDU8C7CKbRer2N6ahr1ah3btm3D2NgYqsbSZnCwCd698nLPn5uN9OdTyNE0Bdxyqax0yqqwvvjkzAIvgVoikHL4ZxNF4joyra7mRfT1Nfudcg2Awd7FYGLO2XIe+rOEs40cUzFMpbnlW910fHelUkGjQag1xhA2GpBRXYO20P9AAmFQBYylLYQ0VrZAKIXOZhhIhGGQS8zkR4u4ESXuO+bpfrPZxOTkJDqdDhYWFtDtdtHtdhHHsc3zwWDOlMH8/Dw6nQ56vZ5dhcg0jCtuZI0bRsfXMWAzTcLpYQHYSI1arWapjunpaetYJSLU63Xs3r07d49Dhw5henrarrTctm0bZmZmUK9rijGKIruJL0eEsP7uhgxlETfDGDNbD7T7OO3yCujvrE6nQQaiRSVRyeficgfc2wcx94XRkPhkzgt4B2+lV0omaQqSEoIIYRCCdwnZt2cPJscnkcYKkYmL5cbM/DVgOEshENiFGoxf2aAmpDCRBv0JforE7eiDG2jZ8dXZ9Fl0BOw9iwYT+1lxRIjucIpSkAmIUypz0lmHHacyLaE6XBeES21ot4DpsJJXMeoYawkBQRKCAkRBBBkGIGHC8pTOmR0IDdQ8cOvXo/OlRFGEqclJVBsB6jv3Q1a3QUQ1M1Ao8IYPUoQApM4oKASkgLXE9dTCWKIopkf66zkv1WoVhw8fttTDww8/jLm5OZw9exZLS0v47ne/i6effhqtVsvGXE9MTOCBBx5AFEWYn5+3fheXw+Z3yJEd3W43t4Dm1KlTmJubA6Adn5OTk9aanpiYAAAbbrdr1y77XD/7sz+Lubk5nDx5EgCwb98+XHnllXa5ehAEeO9734t9+/ZhenoaaZriZS97GQ4ePGhzlUgprTUOwM4MmL8WQvRt6MsOT5dnHyRbDrT7xfPYrSiDQb4cxtcmg4aXQaVn9q3+v56+aytLCqk3Q3AAKuC80CAdHTJTg4BE3O0CgLUIeEmv6xSxYVOmAizoSTidyOizLrTHSk8+PHAL8MrFbKAoGlzcmQiUBm3elZ0jZBSZaBLi4/7yGtH3Kb/83flRcDIp2JlQ9p8eaAVJBMbJZ3VnhLaSd7QRAUEYojlWRb05hsaOHRCVcSA0oA3ezUYCJI2NDqRGLSkIwoT7se5644Xy6BBX3AExDEPs3r3bOgifeuopLC0tYWlpCZ1OB48//rh15M3Oztpse8888wy2b99uUykwz8vx1PxOOHtgkiS2jniDAgZel7dmLhzI6JFt27ZZnQ8dOoS5uTkbljc9PY2rrrrKDhxBEOCNb3yjjbMmIhw4cMAOZFJKS/1s27bN6sP6c8y3v4iGrx+272xN0O4ziUsqIvPkZecUnEpOv/PhQqwSRFy07ZsR+DwpUyhFxRfoqV84d0M4IKCFV14FoYkmoSz3gRt/6/LXURShVq1mzpFBUwyjl/UFDCnDWOhrF0siw9aLyOgpLd59ReHH/HHX4hR6xiHMXz5ZQOTjfoV2QhIkIMla2tI4i3l5jIDQC24Uly11+B4RApG9Z+HpBJi6pOw5rbPUmhz5Fssl6dPcjTnyM74iKZsx+dFBHF2SpqmlEfbu3YsdO3bYmGUhhA3/cy1TXs7trkBk4Dt79iyICI1GA1EUYXx83FItcRzbXCauLmxpVyoVpGmKarVq6RG+B+9Ow9ayjbwyoMvWM1MvTB3xPfootIJ689v8aoydrQnafVJcGbrB9sNwJh5XzWc4hwVbm24J0qJCcdHOGJGdxgez7uRnxy7WKvtdGjQipa0kKfRCGCkDxL0e2q0WVJKAGmPoUQwoWO6PxU36HgQBJicnsWv3btRqNdNozSanGd+gPwuj8YobWw4j61EGl5QNYjAOxDxW63on0oNjIKAjRKTeLUgYKkPDmH5O7aDTESVKkXXcCQOwWd/Lc98CoaaRhAIJaesqqAQOYEuzEQIBSgKBQFStoFqrI04ThGFggVgIvZArsD4L43hLU5BUhjMzD6xSHRrCSO/MIGCfL5Oc70RkQ38R2Pgg7Wb6A2BXHXa7XVx22WU4ePAgDh48iPHxcTzwwAN49NFHUavVsH37dpssanZ2Fu12G7t377bx4cw1d7tdzM3N4Rvf+AaICC9+8YsxMTGBl770pXYFIhFh+/btmJ6etoNGEAR4+ctfDgCYmZlBq9XCzMyMTejEW5Uxj807qMdxbAH73Llzts8wrejuDek+twv2/N3d5R3IdnV3ee6V/D4vENBeq/Rb0a7V7X7INXixAuwI5iC9W8HDk1WqKrhg40ATgdl1Rkp0lUK300UaJ4jCCJTEoJRs8hu307HDJAgCjI+PY7txvLhOU1aW+e21yoUPCSwYlIVrbetzOG6bwUvADL4M2myZC308CAIN99Lwvq6zzkkdYUMLCVAUmB1wpLGy9WApw8Ba2JL3aCQCKR2KF0QRomoFidKZ/qSx5jXLkjmf2XkqhAIk8UgOnXlRIUtZBTsh8yeiWcnOWgHnhLW8L4466fV62LlzJ3bt2mVXK7ZaLZw5cwaVSgW7d+/G5OSktaSr1Sq2b99urVue7fES+AceeAAvfelLsW/fPoyNjeHyyy9HGIZ46KGHMD4+junpaUxMTKBrKEApJQ4fPgxAOx1Pnz6N6elpyyczFTM9PW37AyeI4nfLO9ZwPfACNF/cWYhLb7mbQLh/kySxCbRWkq0J2h4a5jZhdf5k1mK+1VqDuIgWWSUbUiZs8bm3zjhE3iubrHrZM1B+YYbIYJ5D0VwdbdiTc0mapoDi+OS8NeAvR9ZRCA3NCarU8LrkDDLutMM5Rnm6o8z5V9hIVz1irSzZ5CbrTPrbgJkVaWTLnNsiq1sJS2FoagT95ioAB/nyx5DtsqnrNHvvIKEtY0qRwOQcEUI7lq0TmKx+QmRPwk+Q0STOMznvzRcGa7fd9dUh5evOzZVR5itgRyFbq7yQpdVqAYBdmMIzOd7Ki0FsamrKWqNsPXMY6rZt29BsNu0qyzAMbe4PXulYBoJ+ng/+7j9vUapZ9/dhB7EySsT/O0yZWw60+zdBGIwAfdyrrbC8KcyzSp/DLgzv86ZJpfcW/Yx4/qU59/HAxebRRtZx9TQwgBSJTfijVAqlUkOVaGuw2+1CpDqOWyllFhDopbzMITKQ79y5E2NjDYyNjWFhcQFxwukjuZrJ0iLnZ3NfGMlFq5hjto6FWepi6AaCjs1WpCBIg2mqUr3NmrXEjdMpkJm1bnKRaIA3ibUciiRrPLqOFCmklCJNdThbu9POQJYE9K5uCoIShLSEbpIAgcByq41GWEMlqABkBlChsJwoPHZS4MlTEg8/H2KuJZGoFEFwDjunH8RPHd6OK/ZP4yUHt2O8EXHFZG3fNRwyJqlQOJSNt/typ/z8ly1VpRQ6nQ6OHTuGU6dO2a3Bnn/+eXz/+99HHMc4c+YMpJTYv38/lFKYm5vDo48+ijRNMTExgWuvvRaNRsOG/t14443YtWsXduzYgRtuuAHbtm3D5OSkXXG5c+dOuzpxbGxMb95hZpJEhOXlZTSbTSwtLdkFL7yxLwM0990iuiMMQwvm/oDlGjvc9tx64WM+fcK8/7CDwNYD7Yx91N/XkpC/oOIEHIAX+bC1/suz3waGv7nXFKnhnMPWNj8OAQ5/rEFUe6gNr2rSimrQ1kmddN5sDdoBBfZ5KpWqXSnGYVQcpz09PY2p6UkoAAuL80gYtE1aLLKgtMLDXEKxHRDIA7gBbj0IkhmnNahKEiCzK7syuVwk885Cav+B1Byrsi8ps8uzmQY5s7fMak9VijjVIV6dXtcm+aIUSFOCBCGAglQtxGkCEgLtTgfJmI7+IKXwk9OE//+PQnz3mRpCCfQSIKV8q3r+3AJ+9PQCqpVnEScKr3nZLvzytYfw4gNTuYlDXspfoOu07na71pHIAAjAcsTMP588eRJnz561oH369Gnce++9dsOCHTt2YPfu3Th16hTm5+fx4x//GHv27MH+/fvxqle9CsvLyzYK4/Wvf73lkX/hF37BZqhstVrWMp+amrI5Q9x4bQ63A3TIHxHZMDs3bNDdoIHbDz+PmyfErROmQfyQSCFEjsf249n5OndnnJVkS4J2cexCMTcN+PxmUZmO5cH9UAyBTcKjD+Ba9lmsM5fJTrOMisk+C8p2J7Ekqf2sy9EURzbK+/em3P91Lbl5jgHYxQ7c0KIoRBiFCKIwK5d4IwBoC9Q4Yi29w5UjcjfO1QtgGq3DmuaBlK/1LhbFcSll74LL9RmKMiGnfhigkiQx0dM6pDIQAkBWZ8q5LnuPPJNi0BbGkldIoRCnsQWMJE2hKNGLeVKyoE2CEKTGoobZyguE2WXg//eVCI+fEYgVQCQQ9+/hayVVQKuj7/WtB57HvQ+fxBX7J/H/vOOV2L6tYXl6ZegyUAI2BFJSkKb22Kp2LWs3tai7GYKfE5r3WGSfCRsJjUbD5uLg2V21WrVpXF0gZXBjK96NbXb3nnTDVH1aooiSKGwHBVRJ0TlFxy9MFFQmWw60+6QQOIpflDKcn1/nenbrgIUF+RKOcHh2xrKlZd9Y28DtA0KAlNLLrAPJEIFKrQoRAEj4HP2LTTqUJoABd6EEgjDE+Pg4okqIdltzjN/85jexvLyMbreLRqOO3bt3YdeuXTh0xYshTKdRpPTCDOFMH72pJAlnluGZczlgZHrCVJQicrbLGly1/XW58nE/Htb9zjMHTVUTYhVjYWkBYRBq0FWZs9IZeZC6U2i9VY1pR/o9CaZHEGnLHQoJJToSZy+wsLxgwFI7EpXSQR+hBChuoZskSInQ6cX4xuNV/M39VSSpb1UPJ4qAbqzwyNNz+K3/9y786o0vxj96xV5Uq1WkKkUSx4jjNojMbipJDAFnJxwjnGrUBUa2ULvdrs2cxzk29uzZgyuvvBJRFGHnzp247rrrbERItVpFp9OBlBKTk5P4mZ/5GYyPj6PZbNq2qKuasLS0ZAGeB1Xmo91twFyO2g6uTtigbRueNe0Ce2H9OY5Etv75OfkvUx0s/gBWxv37tEqZbH3QZnEcdlr6vysoS6/0Abd7WdHn3MllOuS/ui82A+vsmHIs6ixtqP6goIElEGZmEUjNdUo+0QEjbuAmXK8SVABhQHtiAoGQOGdWkN17772Ym5vD8vIyoijE1VdfhauuugqXHdSLCIJQb23F0w/ydHafNQNkT1wawakYcv7ZgWDlaizTICuzpBP26caDsdDAnagEi8tLJpRSh/dp3jl/g1Sl2eIOU8e8WlSZ3NZ6ahaBkEJBIRWpfZDF1pLNvMcWfiAFokAi7bQRJwkSAr742B786FQTvfT8LblUEVJF+Ms7H8cTz83jPUeuhkoTdLsdtNuLdrbV6XYgRQBWluOeDxw4YPNpcxtj4OGUrTyLY2v6qquuQhiG2LFjh83ax/QKOyS3bdMZJrk8ztnB9cuLvwqfyQC161j3uelBoD2Mhey2JXdg8KOvBt3TL6fo+yDZcqBd+OjC7WgZWJCZAhLgWYOUP+DyVw75YiHFB+OSWGUbHZDTd9DLykNixh8L75nsDYYWXgwipUSv00Wn0wEAxHHP4eB0yBPnUmBn3MqFDyYj/IiT3IA4sD4G/b72ysjNEJzZE3PPPJQrRYYLcQdbnQ2Qnyl1QZtEzjLTKxD1svhUKHsfRWRAmyxoC5I2UkcR8J0n9+LHJ7cjUYO3olqt9BKFbz10GkEY4O1vfJGxmI31rJSOMJLO83p+miK/DTvp+LmjKMpZoHzM1gtgrWn3N9eSHSayImcEOc7E1UoRyPo89SBdhqVH/PNesJZ2X/CI1wlzI2OOI87sPWIu2lyquBwQiDSvmfHNBVxXCbCUvmjDDmQJg8z5MmuICSd8NZcr85wJpVBCQZmZggKQQkc9iMClGbIcySkIjUoVtVoNRIRHHnkEp0+fxvWvvgHj4+PYtm2bTio1PYXl5WWcPn1a50uQgJDSdiruGMy1Zgrmp30rRdNY/t1y3P2gbxu0/d2vQhdIV2+JZvx0FkJHAugmPYD0zCsQAewcQWXPk0Ih0NMDbiVaxyxWEwBBCpXNMJx2apOcOaCthEJirPVHTzTx45NT6w7YLL1E4es/OIFdkxFe97IdOhVtGCIMAgRhBPdduNno3OyPLEwb8LmVSgV79uxBkiRYWlqyDjdOV+pvtQXAGhA+9TAo/I7vzVJEQRTJWkCdxbXsWXhwcldNrjfHveVA2xcOS9NTX4cCYc7R4V4tp5mzynWmNeYq84BcHOY2CLQ5EgEwU7ICxyHrp4Qb8ZBzd4Hza6aUrVBUpDNGKEOFhFGkr9c7j0EIvYQjVYTI7M0HAD/+8Y8xOzsLAGg2x7B9+3bs3bsXBw4cwN13342jR4+i3W6jVq9CSm0JJSnvbCKQpib6oqBxcqd0vevu8wOAkDC7lhdvlXuhHDu+ZQYACkrTIUI7fntxT/tGIVCrVACuZ5WtFNRtI5tHpbkBzHkO016UoV+cH/R7ErDAzdRYuyPxzUcuHGCz9BKFv73rWbz04AQaUQBp8mlXRZAzNtx3wSsBXb8AUx78vqMowu7du9FqtXDy5ElUKhXbDvzVgXwPd+9Jng26m+mutj1ciPbjRtH4bTqKIhsJslIE2Vpky4G2diR5FITI6BDmLK11KzjnGSynmQvbgu7IvAACRDa/hI1+8HBG7zJSAOaKNwpw8jQL6LBEtrSNHoIEUuEuAMimhwTSVrM095JmKg9lz+Vy8kZrZslznm0iQrfXtdZRGIaIoopNWclJefylycg9IRUZx1kdOU4qoKwTDZ5qrtTs3d/XbjvlhZBRBe6gah2oFoZ5OBW50EEY30hWNU6NiVztmXdFJt6dAV7gS/dVoNT6g06RJErhL+58Cr9180EI6MyDQojcph6Fg64DujzzcoVTInAbcqNMijhmdzBdjaXsW9p+e11v8DwfeuR8dNmCoM0kAX8n8N7SEIAITB4eABBZx2NJVIJU6QxvSikdgSHy0/xABtk01qMtdkzuw7ml+eyFUqYHYF70IMqXzI8CSJDxo2mqEPdi9OIeFBFq9RrCKLQWrhIERSniJNYaBTLbooohw1iEQJbzYGFhAQBsUnedTyE0sdsN7cUfH0en0zGWtrTpSy3xInxIgj3ucpYcssVJdrg+co3fDmpZeatt3u617ncuxy+XfxPmfwqwi2s6cdeCSxSFZspiaDiOsFRAKpj5zgOyy1uTmQkVB32QVZSEnnOcmSWcOiuh1rLWYA2iFHD0ZAtHTy7j4O4xCCV0NJKrpQdULnBzm+Idx/3zONOen5t7EEdcZuWvJGuxcFd7jcvdszA9UhT2uF6y5UDb+ObtdxKaH+Suyfmmc1aPMyr3KEaSas95Eic560CHQVG2fREp2xldmVs8Z+/hUi1a/B1TjAVvznV/SyjVeS6ERNyLsdxqodVqIVEpJgzvLCRAUhh6JEUvibWNFuglwZxSU9Mkmje1u7Yrhfn5eQAC09PTAPQGCXrH9goajTGMj09gwoC2UuMIg0CXw3Voki+LbGywz+N2yE6nY6eOvBefW/e2cxp613U5OJUFC26lUm6Z++Dt/rVXSZGBq1Joxx2oVIN2vVGzkRS63injsYkdjtIWKgAdzUPm3Sq20dk296xMe1y3gQceFUgH07jrLnGq8NUHZvFrMw0v22S5uMDNER9MkfgOyW63a6kTPm79Ih44r9bq9mmWCykuPeIKU0LujGK9KZItB9pMZbAQEZR0pvaUd5wJoeNvydAeqUpt7GdqVhMqUmY38sy6JlUO2nGa2DJdPSBMLLBzXJmVi7DUBxj1kEBBKgGSEnGSoBf30Ov10FMp6nGMMIq0JaSE4bLTLNac7wuy5VlxAJZpEX9fOg7XcreXsmU6VjYBGQVQ0GmKwDmvirPyzIfass5XdDhn3GY0k9URuUOeDtlft2g7myIFXhxDcBcT5Wk1tzABbTDkFk85+vTrZ+rTWOmdLnD0OQG6SFY2CxHw0NNLaHdTNBvBQMAuA6JBtMEwAFYGvmuNBrmQ4g80rqFS5Bh1z12rbDnQPrcwh9jkdGAeMuVFINCWEO9aAQD1Rj0DDmF2mki1ZZ6kZmkxZRYxgSDNXoza8Sf6wKVrsoDljroAnjts6BIeRrL/GUekttL0DMI8i2Bnlu7uyuwco+Aih87Ix6ACwGzym29ISRyDnPwRZ2fnUK9pWoQUUzIxxuoNBGa/Qh6AdNEEHVaSUUDcaN1k8S5dJHLPaaxr6OXhSgzu1P3ZWgbIIBqKy3M7mOAkTuZJzG8ckqfBO9sEV/HMQAiTtY+fP9OQoCclbCZkQ12ZwlpOndGpYS+2pQ0AoRR46mQLL79cL5DJ+VtWEH7vPkixAeAe8/0kRSFwGw2kfWGLmp9NCGH5e9/xvl6y5UB7duEsur1OdkBob74yqwOJCGfPziJOEoCAnTt32OXfilS2ijCQ1rr2xeXgyCf9ALRjvQAgD9rZEZ8xKXuvwji1UiIkUEgMWCuhAT0VBAmBlFID2k55pLP4McAQ6WeSUiJNTMSJUoi7ehcN9nafOnUKMztnMLVtEqQI3V4PvW6M8WYTYaAz/WUgp/Nz6BWXZCNZuI6Kpo8AmTSkZJ+fFOlE/5Itu+LOajtAYT9efefos46A3Cwtoz5MRA7pDHhm/1uoVLeBMAjN2CPsdUA2I+GInsGAnZczZwWSAUvTL6T0EoVnT7Xx8ssn9cBfyFX1i43AKaA6mNNmcR2WvrNwLaF77rlFZV4o8C+icFyn64W495YD7TjWzjoAtiNq0Da2DkEn3kkSEDQoSWksRSdSIKAgoy7AFqtpgAZvtDXd35hSsq7OvJS8PGKOIX8U0v5OloYxmJbdXzgOLqurTzPA1odwLMLs/hn/liZproMJZB1OCL04hH/QJWXTQbY69S2zxuxa2e6A1fc7BnROyu7pp9ItemZ/YHStbv/c3Hd/hoQ8taPfAdnZWUaLmJFReNe5z+Nb/gP68olTF58aYVEEPPF8a03XlvHQbG3zOe5f97z1kLU4Ltd6/0HPcqEGii0H2il0Qh4twhwjdHodbfmRWUhsuMM2W+XOlF9KiVpQNwnk8785+DPY+lhtGyg4X0EhSVK7EEFHhmgFepwRTAgoZVbkSb1Vki1SCL1QQhirmx1hpK3sUIaYnJyEEALnzp0DAOzdtxc7d+60mdR27dqFJEkx1hhDN46hEhMlQU4dZPP+bBaiFDomo5peTWnqLVXodLI0mHxNFBGiiKkmkQF0xvbCjlbD0iNO1ZLzNztuaCS75lE/VBz3oFLty3BnC26aTyiYAd5M+8lLnmtBnttMGXPOFzgpPQlotVf1iOsu88u8GlFv3DysuODMwuDFGSS5jTCl4AYC+NeUfV+NXCjwZH19esRNwHYhZAuCdmpD5RhYSABL7WVDAZC2hKXuUMudZbMiS5kMYjpkJ6xyhjGns5Ge7NpAOuHt5GKERAnlsUogV0Toxl0sLS8ZIOTxQyfl6fV6NnEUBCACYSMz2EMvhd7fm2B4RqU0eKcKYTXAzMwMhBA4ffoMAODQ5Ydw2WWXoVqtIooiHDhwEFOTU5gY34bZs7NI4gRSBFCULXXnShAkzEKkFCpVaC23wHDJj67SFK1WC3Gc7TwdBSFQAwKp6z/L0yjMtUIviqJV8NmuONa2sIMAbNkEkVnvROh2uoh7PcvJs542cZEipImyM5BqtWpjmouAm+/k3td9DuF6KPWkDyss/rvgkiiVGSgFoFomvkXt+gzq9bodBJnzZQ7cBfoihzUf53u49/N/949fCOHndLMbusfLnmE9ZMuBtgLgt3dFhCRNkKRJvvEJnRbTOsxAeiWYkjrbHHjWK5woAd3huCsW5tlwnHJl0t+kqO8bGVrHOnZIO+uAfNy4UjqPhYTMFZBr3N4tNCMj7Ao1jiJpNptoNBo2lrZRrwNEhi4RWblsWbshELkHIKRJBsy6IevTkiTLzCalTnqaWePZrMbNjc7V3McuuPRHSf36b4jDqEXuPpmoNIsgstc4jjOlFNIkSwXqRgaxnlat3HuwlWb08OpOZNTbBQrxHVpCaQYWpg0xXNSHC9Q+iPr8rvt9NWFxg8DZd2wOimQZ9H0YKbvmQjtUtxxo+6KBwm8QGefEU1ffatbnM3kMNin7yhjKfCaLEqvSnRt6xpH1T/Vcy0anD3WcqUJqELEpRXUSo0AGoFSZqb7ES654CbZP7wAA7Nm9B82xJjgVqTL/4jiBELxzOC+/N5w+aeVIkZNcSECaTQKyemKugHf95urJaAQpuGz+59bjqqovqyM4YOIWR8aiz1EywsxOhI4McpyfikM5yGyAbIBawtWZ78hlZQYCSmYK9lpeGUvAWB2YX1zb866HTDQ4r8jqIyB4gHP3dfSB1LWafefjZhF+Fn+RjW/9r/ezbUHQ9jt7PkcA83TceTLQDix4uFEKhGzXE89eg2+j2dfmvEByv1MWdTHUkxhAdp177kqrogZPqQKEgpASoQjs9C0QUs8YhEAUREhThTRJEQiJV/3cNXaKd/jwixGFoaZAFGluN1Xo9WIICIRBYCgQYTAm44JJwalDiSAInfAvDY5kzGYpDC0Bt9HnKZHMiufBlWCnPP21VVyHdnCBnqnAGfjYcWjKFgACs92B3p2GZ1oAmVh9vk/IyfaFMGlgMn31rjcA2a0TfB25PgyQkR4iXJX27ASeP51rShdV9m3XNJsMJBTp5DDDWqe812Mcx3b1KwM1UwpA9h6KOOAi63QlB9/FpEcA9NEjDNC5PkvU54A9X9l6oO2l+XNjh/Pi8WI0gNLoY0CE83/nlKLLC0nvAkolVxIbZpl14v42KLY1AyDmWIXV31p/dkWndqRNT0/baJHmWNNSMryMX1vb3oq/DK7hbFg5dMcRjIYF1rTVu7B6nPfmllcWaSEyXd178G99wOD+59Y72dp3LFCXYnF0YGbB+Y3Ag5z7DAzaZrAS3HYJM9uBKNBbiF0KefRYq8+4WGma71rPfnbHla69kCC73mW7z1nGXRfdc7302Hqg7VnakrQzrhJWICH17hxJqrO0keF0eXEIZfu1BSLQW3xxqeSW7xCXIvvdJQKys73sfYPw2hejT8Vk64sRG5pCLwl2VyvyzYMgsLQIL1vX+bGESUwfolaroypDVKMIQgi7QevO+k4cfeYoup0u2u02WsvL6HS6gBAYa45BpdQPft7z8PMyXx4EAVSqkKaJpj+kRBRVHL11o4/CCIG7+Iecm1DRvGY4sZY29YMOQ6oGFoDp9CjUcdeJSrN9+4RANaroBUpCIDQDXyAD7UAFz4a4rehByTUf/BdfZIOzzru3X/wl7K7MLsR45lQLh/bpzIYriQ9cPPAXUQX+BgXDlDesE7QoBO9CCA9E7sbG/u8XSrYcaEsKIJW74IUQSkK9VtdTmVRhYXERvPJkrDaGIDTgR3pxhRACgTBbBpGO2mCvvpkAIwOC7E7C6uDwtblfzJEB7cltayQVQilRr9UBIdCmNlSaAhComX30clYpESphxVhzpJfTKbMSlIBKWEGtWkOzOY5IBgjN7uxzc3NotVp48e4X44c/+CHm5uZw9uxZnHz+JCrVCqamp3Hw4AFE1Ur2LMyKKLLgp3WRABQkBBqmzpM0wdLikq4bGaDRGNPJlwxHr5QyIYaR3p7LcOTKWOK63qUDjEW8cLEI4nkH9c2EhDV9s88SArVKFVEQIVEpFuMsL3Kz0dRtRUg72AgIRDLM5ZqRxj+S8f3mvbv2BLmzA54Rmb8CqEUCl+8Dnnh2JZf2hZFEEb7yg9O4fO8260sZFhCFEHZvTRa+nhee8Hn8/l1r3C3fpxpWkovJjfOzFKVovVCrIYEtCNqCRG6qTEJHVYRBCJKEVKSQIks3GYYhwjDM5/g1lqldMAJYazVDB0atfsDg8/mz1YUVKlQ8/5VzhnBYGQAEQbZxbxAEdjMC3g4LMAnjeaBx9AcBgZQIwwCVqILIhAMCegunlgkMnp2dxZkzZ3Dq1Ck8d/RZjDWbSJXe1TqM8gnx+aHsDCM/UtlsZ7nHNLOEMOR9Fw3nLgP9XixtAgfs8rx9EQ3Vd6xvMLVDS5/+7jEBYUIPBZDtCAYBvclxEIQ206FSyiFTzCDuUEU8EPCirgywPYubzxdmgDGW+s+8ROCpY+klsbiJgAeeXMByJ0YtKjunf8WfC77+ux9I661CisL8+nw7zvFBspaFOCx+nu+1zA7WIlsOtLXkec/MXtOxwLZTwSw+ASxAWjqDAY+nus603b4gz9K29yyhQFiXcm3dYzqfhQWNAn7RjYoQwqT/5NA5Mw1gqJJCaMva7AcpIRBIiVqthmefeRaLi4vAa3W5zWYTgQywrTmBeqOB6e3TaDQaCKMQihRq1Rp6aU/vIp7EOZ1t1A2cWHET7sd6a0tVV1SuoymtfxaJsf6ed1/cMDVAAywPZqFkGzj/H4x2PFhqGgrZy81RMEUkSPlMIWsjhJlpiW1N4OzCaji19ZMwEHj6+WVcdWBsVddZn4kH2m6I5DBxzKt59+cbpbGW68sGJ/7tQskWBG1p/hkhsjvPCAiIQBhrXMfChkEIQEdJBDKEFCZSwU7TheM0g7nOTH8JEAVmH1u2RVI6jWd1nTOU4JAxtk6Mpa10/g4pBZI41Xk7IIyFnYG2Xg0pAaHJBW1hhzj67NNQqUIYhpiensb3vnc/lpaW8N63vxdCCMzsnMF4cxw7d+ywO9xMTU0jTmIkSYyJ8W1odZbRjbsmF0lqrWEGbeaQbXy2GfyEkAiDQM9oHE+7zpqYWqvbt8iYPxxUh2UyKFY3fx89Q5HCgIvQjloBZY8JAV3/JmkYmbaTObwN88ZDjxlc9Rn5YdsdALjNZM5K/e/ALuDswiofeJ2kFys8fUKD9rCcMgC7sS1vucXv2N+pvCj3SNF3n5Yp02U1NMp6CEfJFO3A40aRlD3nWmXLgXYuVMw5CjhWHmCnxVIIvTsJc7/giodjkZv/O1SDG+rmv4u1vBrbga1B7zbQ/imly2XnIh2US4rrP+z4CYylvbigd9uOogi1Wg0nTpzA8tKyLbfRaGDnjh04fPiwpjGkRFStgNo6p7gMAsRpD0macZYaoKS9LeujrassrYBAWecia7G6EQf+c7t1VXZspS5bNCBkT+FM8dG/MtM6WvWJVt9+IVgeXpTPsgr1c849cy7T62KLIuDx40sAZgae59cj0wZ+PDb/5q+Y9Nt1kVwsIF6NuFEybpu+ELHZrmw50K5Vqt4RAmQKRSk43K1ZbyJJEwQyQL1StzkmqpVqPlDeWocZNaJz/vN3Bbt1matDtb5qvX0gIhBCmZp76d9UjUAJACI0qg3UKjVEMkQURJBC5wInhwANoC1tYTpJJawgDEM0G/r5wzBEvVrH9untaNQaAICJ8QmMNcZQq9YQBqFd2h8I4xcwdVMJK1CRQlJNoZNICX0fCShKwfkqgiBAIhM0600AQLVaQb1SRxKYPN4y0JsQA7y3rV1+b2dHpr45A58sALG6U+d+985F77h1XtCxFKVZvhYi3VaSBFJK1Kt1Y2ETQuEsVaayMjNnlF2pyw9p3o/WvQaBFEAKkpyCQQAUoF5NMDPVp+ZFE/b5AP2DLW/s6wuDmZ+jHciscPfcYQBu0OKVQcfLyuZnWktstzsYlT0n+5v8zIbDSFF5rgjaiEPYSEYykpGMpFAucYaDkYxkJCMZyWpkBNojGclIRrKJZATaIxnJSEayiWQE2iMZyUhGsolkBNojGclIRrKJZATaIxnJSEayiWQE2iMZyUhGsolkBNojGclIRrKJZATaIxnJSEayiWQE2gXyuc99DkeOHMH111+Pv/qrv+r7/ZFHHsHb3vY23HjjjfjoRz9q8wYfP34c73rXu3DTTTfhgx/8IJaXdT6P++67D69+9atx66234tZbb8Xv/u7vAgAWFhbwgQ98AG95y1vwrne9C6dPn95QerOcOHECP//zP4/nnnsOABDHMX72Z3/WPs+tt95amAh+I+pORPjjP/5j3HTTTThy5Ai+973vbSi9H3/8cbzzne/ELbfcgl/91V/FsWPH7Pk/8zM/Y+v7N37jN85L74upe6/Xw7/6V/8Kb3nLW/DLv/zLeOKJJzaU3k888QT+6T/9p7j11lvxjne8A4888og9f73rfF2ERpKTEydO0Bvf+Eaam5uj5eVluvnmm+knP/lJ7py3vvWt9P3vf5+IiH73d3+X/uqv/oqIiD7wgQ/Q3//93xMR0Z/+6Z/Sn/zJnxAR0Z//+Z/Tf/2v/7XvXv/+3/97+m//7b8REdFnPvMZ+pf/8l9uKL2JiNI0pfe97330yle+kp599lkiInrwwQfpfe9735p1vZS6/8M//AP9s3/2zyhNU3ryySfpzW9+M8VxvGH0fve7301f+9rXiIjor//6r+l3fud3iIjozjvvpN/7vd9bk56XWvdPfvKTVvd7772X/vE//scbSu93vvOd9JWvfIWIiL797W/TzTffTETrX+frJSNL25Nvf/vbeM1rXoPJyUk0Gg3ceOONuPPOO+3vx44dQ6fTwStf+UoAwO23344777wTcRzjvvvuw4033pg7DgAPPvggvvWtb+G2227Db/7mb+L5558HANx11124+eabAQC/9Eu/hK9//evZ9lYbQG8A+OQnP4nXve51mJrKshY9+OCDOHv2LN7+9rfj7W9/O+6999416XwpdP/a176GI0eOQEqJyy+/HHv37sX3v//9DaP3f//v/x3XXnstlFI4fvw4JiYmAOg6f+yxx3D77bfjPe95Dx599NE16XwpdL/rrrtwyy23AACuueYazM3N4fjx4xtG73/yT/4Jrr32WgDAlVdeafvnetf5eskItD05deoUdu7cab/PzMzg5MmTpb/v3LkTJ0+exNzcHJrNps3qxccBYHx8HO95z3twxx134LrrrsNv//Zv95UVhiGazSbOnj27YfR+6KGHcM899+C9731v7l5CCLzpTW/C//k//wf/7t/9O/z2b//2mvW+2LqfOnUKMzMzubJOnDixYfQOwxALCwu49tpr8b//9//G29/+dgBAtVrFbbfdhv/7f/8vfuM3fgO/9Vu/hV6vtya9L7buRWVtpDq//fbbbWa9//yf/zPe/OY3A1j/Ol8vGYG2J7TCzsplvw+67mMf+5htCL/yK7+Cxx9/XO8UUyB2w9tLrHe73cbHPvYx/MEf/EGfTu985zvxL/7Fv4AQAi996Uvx0z/907j//vvXpPfF1r3omo1S5ywTExP45je/if/wH/4DPvjBDyJNU3zoQx/CO9/5TgDAddddh0ajgSeffHJNel9s3Ytko9U5GV/HD3/4Q/ybf/NvAGDd63y9ZATanuzatQtnzpyx333LzP/99OnTmJmZwfT0NJaWlmwj5eNKKfyX//Jf+hpvGIaYmZmxZSVJgqWlJUxOTm4Ivb/73e/izJkz+OAHP4hbb70Vp06dwgc+8AE8+eSTuOOOO/DMM8/YsojI5g/e6Lrv2rUr5/DlazaC3gDw+c9/3gLMtddei06ng/n5efzP//k/MTc3Z8siolyu5o2s+8zMzIau8yRJ8OEPfxgPPvgg/vIv/xLj4+MAsO51vl4yAm1PXve61+E73/kOzp49i3a7jS9+8YuW7wKAffv2oVqt2qiDO+64A9deey2iKMKrXvUqfP7zn88dl1LiS1/6Er7whS/Y4694xStQr9dx3XXX4Y477gCgG/yrXvWqNYPfeuv9j/7RP8JXvvIVfPazn8VnP/tZzMzM4BOf+AQOHTqERx99FJ/61KcAAE8++SQeeeQR/NzP/dya9L7Yul977bX43Oc+hzRNcfToUTz99NN4+ctfviH0BoBPfepT+NKXvgQAuPvuuzE1NYXp6Wncd999+PSnPw0AuPfee6GUwqFDh9ak98XW/brrrsNnP/tZAMB3v/tdVKtV7N27d8Po/cd//MdYWlrCpz71KQvYANa9ztdNLprLcxPJ3/3d39Fb3/pWuuGGG+gTn/gEERG9//3vpwceeICIiB555BF629veRjfddBP9zu/8DnW7XSIieu655+jd7343veUtb6H3ve99dO7cOSIieuyxx+gd73gHHTlyhN797nfT8ePHiYhobm6O/vk//+d05MgResc73mEjHDaK3q688Y1vtPotLi7Shz70IXrrW99Kv/RLv0Tf+c53zkvvi6m7Uor+6I/+iI4cOUJHjhyhb3zjGxtK75/85Cf0zne+k2655RZ617veRY899hgR6aiJX//1X6e3vvWtdPvtt9MjjzxyXnpfTN07nQ595CMfoSNHjtBtt91GDz300IbRe3Z2lq6++mq6/vrr6ZZbbrH/iC5Mna+HjHauGclIRjKSTSQjemQkIxnJSDaRjEB7JCMZyUg2kYxAeyQjGclINpGMQHskIxnJSDaRjEB7JCMZybrIHXfcgde//vU2wdJ//I//se+csqRSLEtLS3jzm9+Me+65BwCglMIf/uEf4qabbsKtt96Kv/3bv7Xnfvvb38bNN9+MG264IXev1SaMKkvcVpboigYkHfvUpz6Fm266CTfeeCO++MUvDlVvcRzj137t1+wzryiXOHplJCMZyRaRj33sY/S5z31u4DllSaVYPvKRj9A111xDd999NxER/c3f/A29973vpW63S+12m26//XZ68MEHqd1u03XXXUfPPPMMxXFM73vf++iuu+4iotUnjCpL3FaW6Kos6dgPf/hDuvXWW6nT6dCZM2foTW96E83NzQ2sjyeeeILe8Y530Mtf/nL7zCvJyNIeyUhGsia555578K//9b+23x988EHccccduOWWW/DhD38Y8/PzfdeUJZUC9AKzsbExXHnllfbYww8/jDe96U2oVCqo1Wp49atfjS9/+ct44IEHcPDgQezfvx9hGOLmm2/GnXfeuaaEUWWJ28oSXZUlHfv617+O66+/HtVqFdu3b8fP//zP46677gIAfOITn8Av//Iv45ZbbsGf/Mmf2JWjn/70p/H+978fr3jFK4au9xFoj2QkI1kX2blzJz70oQ/hs5/9LPbs2YOPfexjfeeUJZU6fvw4/sf/+B/4yEc+kjv/pS99Kb785S+j3W5jYWEB3/rWt3DmzJnSxFFrSRhVlritLNFVWdKxsuNf//rX8dBDD+HTn/407rjjDpw8eRJ/93d/BwD4yEc+YvMSDSuXfiH9SEYykk0lX/rSl/Cnf/qnaLVamJ+fx6233oqXvvSl+LM/+zN7zvvf//5SMOKkUl//+tfxwQ9+EF/+8pfx0Y9+FL/3e7+HWq2WO/dtb3sbjh49ire//e3YtWsXXve616Hb7a46MVTZ8TIpS2glpSxNOlZ2/Dvf+Q4eeOAB3H777QCATqez5mX8wAi0RzKSkaxSrr/+elx//fW455578JnPfAZ/9Ed/hMXFRfzFX/wFfv3Xfx1AeXKlz3/+83jLW94CIYRNKnX//ffjySefxEc/+lEAwDPPPIN/+2//Lf7gD/4AV155JX71V38VH/7whwEAH//4x3HgwIHSxFHDJIwKgiCXMIoTt+3evTuXuI0TXR08eDBXVlnSsaLjl19+Oc6cOYNf+7Vfs2mCFxYWbCrYtciIHhnJSEZy3tJoNPDJT34SP/zhDwEA/+t//S9cf/31fecVJZW65ppr8LWvfc0m+Pqpn/opfPzjH8drXvMafP/738fv//7vg4hw4sQJfOlLX8Kb3/xmvOIVr8BTTz2Fo0ePIk1T/P3f/z2uvfbaNSWMKkvcVpboqizp2LXXXosvfvGLaLfbOHv2LO6++2689rWvxWte8xp89rOfxfLyMpIkwW/91m/ZBHJrkqHclSMZyUhGsoLcd999dNttt9FNN91Ev/mbv0kLCwtERPSf/tN/or/+678movKkUq68+93vtpEUSin6/d//fZvg6wtf+II9j7cGu+GGG+gP//APSSlFRKtPdFWWuK0s0dWgpGN//ud/TkeOHKEbbriBPvOZz9jjf/Znf0ZHjhyhG2+8kT7+8Y9bXYueeSUZJYwayUhGMpJNJCN6ZCQjGclINpGMQHskIxnJSDaRjEB7JCMZyUg2kYxAeyQjGclINpGMQHskIxnJSDaRjEB7JCMZyUg2kYxAeyQjGclINpGMQHskIxnJSDaR/H8jwo0Nkz/ybQAAAABJRU5ErkJggg==",
-                        "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg height=\"3323.355312pt\" version=\"1.1\" viewBox=\"0 0 364.799908 3323.355312\" width=\"364.799908pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-09-06T00:33:03.671210</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.4.2, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 3323.355312 \nL 364.799908 3323.355312 \nL 364.799908 0 \nL 0 0 \nz\n\" style=\"fill:#ffffff;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 50.64875 3283.535625 \nL 357.599908 3283.535625 \nL 357.599908 21.935625 \nL 50.64875 21.935625 \nz\n\" style=\"fill:#eaeaf2;\"/>\n   </g>\n   <g clip-path=\"url(#pc191a97ce8)\">\n    <image height=\"3262\" id=\"image3939d4d158\" transform=\"scale(1 -1)translate(0 -3262)\" width=\"307\" x=\"50.64875\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAATMAAAy+CAYAAACeoYKYAAEAAElEQVR4nOz92bMdSZYXjP6We8QezqhZqVQOVTlU1tBVXdXd1KW4dBvwcY3bmHHBMAye+Nt44oEPw4zPDANjpjEMuqHppofqGjOrKisHSanhSGfYQ4T7ug/uy32FR+x99jmSMiWVVubR3jsGD3cP9+W/NTr96//+7xk9YsC28N6BiGCMwa1bt9C2Lay1uH79FXjv4ZzDeDyG9x7sOd0KEIgo/TZA+s3sAWLI6cchKgphMBrjEAoP5w4Pj3B4eAR4xqVLlzCdTtE0DUZVDUME5xzY+VSGhQGRgTEWAHDl8lXUVY3//b//N9q2RV3XuHbtGv7vf/bPcXx0jGvXruHLX/4yrl65ileuXcfbb7+NqqpAxqAejzCbnaBpGzCAo5NDzOYzHJ4cgRHqScYABvDsQt8AsNaibVt8+ultAMBkPMbVK1fRtm0675wDASAGmAFjDIwx8N6DKPe/96FMg/UdHl9b/s082Mfl7/AMB2MMiAjMjFuf3UHbtjDG4OrVqzDGgJlRUfhkz/GBQ2Wa0CcAPDM8EUA+NBKAZQvDJo6rFoADGxfrTABbGAAVGvDyBD/98/+JX//Ku3j9levYHk06z/QeIBAqWBAAJo8GDT6+dxd3Dk7Q8Ahf/8ZfAbgGYGAMoWUPB4I3BsAI4NBXfjlDVVWwtopV9Z22SX+W7ZXvzjl47zEajfDqq6/CWpv686OPPkLTNJ17ht5DSaueqY+b2NfMvPKdb1ruaffIfd57TKdT3Lx5M53z3uMnP/kJiAij0ejM5QOBz7ykl/SSXtJzTxVjAJiBQfE4M8NHxAAK6MczAwSQCVdx/M9QvCstvAGBMSOtMowAnIaeenaSOhZH1YHyO6eacb7PxArFdoEAzx6GDJx3sGyxu7cL7zyqqsLW1hZeeeUVHB0dYW93D8yMk5MTfHb3LgCgHo0wHo9x4+araJ2Dcw5N26JpGjjvOrVn9iB0V2/vPbwg3Vjj4VWTwjuIaEzKkL7urMZn6vH+aliuxrn8PE5Cn0of65EhfZ6vM2RynVIxlO+NiGcIwvNADbn8lQZiGIMBzeh2hN8Un0OIP4A4vgmGhtd6eTb70AeGCC4hj6Ha9YmLQasRtX6Xglq89wn96vvlXXTqF68ZOvdFk4ybsm5DY/asVAkc7hAxPDyY4uB0HL4T4BloXQtrDYw1YHh4GaDGRnEzMzcA4T7KA3uoupT+GeqA4eu7012uDcw2M1AfrjQED4b3DDIGDITfFKE2A/AMlk6OA3rZLEHW4Obrr8OAYI3BZDLBb/7mb+Dw8BDNssXDhw9x57M7+MUvfoGTo2NMt7Zw6fIl/M3/z99EVVfw7HF4dIilW6KN4gQspclv2KQXy8xwzsG5Nk0+Zo/WiSiXB7mxURym3Hb9CSjmd8ZBvWoiDD0jiMk+TTpmHxc9HyepARkK5+K7MtYo0YNAJq8nXSbYVyUIw9CisXwnCkyG4fNCTIAxgXklJskexlrAE8A+iKixuLZtYYhAtuo82fu4iBPBgNB4B2sqWGux8Jzfi7GxH06fnNKPzjnUdY2qqjqin/cebdsmZiYiu1cLmC5HM7JN6PNmdt571HUNa23v+dIuZoa19sx1q4YwUge9gAOaoHzOs4dB1JGo62Wp00givP14jRp4vZWVhnnZqubwwPeEDCIzKzsjoQbqIjMyBuD8W1rvmdF6h5o9Lly8iNoYGArtfv2N1/Ho0SEePniIg4MDHB0d4c6dO/joF7/E9s4Ort94BX/l//1XMN3aAoMxX8zRctuvU6fOGpn5hGplUgakIAxa6k6gwE1yzR9zhTuNOgwtPsazh2eP1rsCjckCRnG9CN8DolQdrpiu/k9LCb16oLuoSWU0MkRcPHN35NFCRKmAtMgSZZRkVmthCID3jMogSCTFOzwryTNN8UwZCxq5rXvGWd79446R89wv9Svbqc+dlyqmYTHTw6N1YUXwLqAvobZtIxILy6nn0NEWlUIJgUHlwRNGzVoxcxWIIO5e0KutKoCC2NW2QcHuXERmCMr+pmnCoFAPC7/jcygwBpFwXCxr2SzBxqIyFnVdYzQaYWtrCt96XL58GcaYoAAmi9F4hIuXLqGu6yQGlu2USZgGZjwgq3Dr2tw+5qgAzuKX9xFxsI1iku6irsgJyLvYjFLdEhPKzIlkcRLRLF7nvINzwszye2maFp6DWIk42QmEUV0lNMXCWBjojMeORM3pRScUJt/BnbFGyIxQGK4wNGaA0qqlFoXc23BtC1BGD91ekZ8B0UGQPTIjo2SA6o/yIRFQmODQJC+vOy9tYgz4PJhgiTDX1fOsVHnj+keZ0foWs/kMbdvCeQcPDx9NZ8fz4zA446A2xsBai6quQDBhYAUQkdbHIM5GvUVSOujX3UcsADLTWdd/nUFv0PoGs/ksTqYGzjOIGPPFAk20sulH7higshYEA2sNgGCdZQKW7RKOPRwYY1NhXNfYtXvY39/H7u4uLl92uHzlMhbzBWazGU6OjzGfLwAibO/uwDuHpW87zyNDoX8ipGZEsQyMk/ksWLacz6jHO5ycHKt6h8E/mUwTY+7qWwSZ+oDazkqRMciCxPo9kRbx5M0y5ssFmqZF611ojQmT8OjkCBR1PVUcwNZY1KMqvltKjCioMaJ6YkjvIIxPmDo4SALEYXRRZmZBQnBgdjAEGJuelpgYR/2liI2B/zBm8znsZITRaJSYLAGAMUl/TIgIDoS6rsLiIqgz6ueAjKQ2QVTWWlRVFm3lfTrnegxNM70SsWnmuAk9bSSvyUV1iRYzteV9CLFtSoNipqcAa5ftEsvlMkJcmwbTslmGCyMqs9ZiNBrBsYM1cVXizLTySyyU0mrx6oqN3PmeVrNNWhTFhGXTBP1T65Mepmma5DKgaerGMCasigFJhQnG4KDA96FG3lQAM3aYsbW1lfQbly9eTq4q3nscHBzg+OQEk8kE8/kJuNH16zckiWTMWC6XAfnGRQIUXvJyuehNCFtVGPkxbBR9u/CMU7tps57r1aejHihEcFmo5LNpWyyaJVxEoYI658tFfC2E2lYgiq4l3sEYm9EdZbE1qxz6EF6eL2JrepaIlFG3y8wR5XkQMUxkmMR5dDG7wHyi4wrHf5vlEnZKqOs61iIi+Y5IQdlQYKJ+R7ptBTIbcnMp3SREV1QiOHGxWccQy/LOorPT9XtaerSsUzQF6u3X5TxUYUDMlEP9wgVnbWAl6fWhWtH1UYXS8r0RDqA4dsrDMgLMHZdvH4bWmblkhXyp3wOiwtVS1I943L9/Pw2wne1d1NHHyNjAEIU5hueJOKOU2pSfsakowWkiFgxKmA6AQcal3vEmw4WSSkA9Rz+unDT6P1Y+hJopQfpBtVXVLYmv0UKY2imcLQ/KUAaJLo3TuTw69S8pvytKdhsldzHEgBQQlulcT91BEZFYMC6kwwN6Wv19FUOTSV5aM9fR00RUpUHhcam0tg+Vu07s3KQeg8gMwIC1QTMGYRbRUkXqOsosi5K4wp37B+2ZqrK04vgmpC0iGpKXzCx1kiWQNYANFs6WXbBjGIKL7QOApVtidzKFrSwce/zh//5fuHfvPpaLJX7rN38L165dw+XLl2GtDVZGazAa1Tg+CehOrMPCdkSKIiMvKvSnc223zyMgIK3/o2BVza4RijnInTJ7i2s26kONeYi7d3ZQR2Aqjn0QLdnDs5PWgajrlNl6H6yExsADMIrR+Gg591EdIWQ7dZf6RKaoESQDYoU3hqM0zCB4mDjiRPykiFg5MqHgk+vgHKNpG7RNA2sM6qpODtXJVuB9Qo7eeRDiXPEMEf+98+G6gT5fNTm9DxKOoEGv9KwynuW+IWumLvu0Y5rKhfRpi5taZybPl+NlG89hzexTeHEl+soMSjMpLbElppU6ZAjZkfpcQ+fsVG1V4riKr/LdASFYZZN4GayGhICqODGPIOuTFTHA48c/+TE+/PCXODk6wc2bN7G1HdwxMioLuhRmJJcEbeNLgMeIviMc90qPo+QWgJQrB2W9DHVQWeo89L6eEcFrq2+nZA271LVeGBo4oRMyJrtg+Njnyi2G0rKWkWAoKxsEVlU8WSwFlaXq+KiPzAyQSJ7VReTpEVEX7ONi4p0DkUFlq6h35IwyObdRELeJbcrjTnShZ9NbiRFJH9Of5Rjuvo/ng7ShY6g9wPnbVA2p2xjB3FzZKvmNCSpgDspyE5FCCLswsMaESRYLIJkEnNdQWR2ZVzgjDjZi3SwsIHsUi7TugXMkTA658T6Eo1BAZrq4jgUQCojED2bGYrGA98GBdnd3F0dHRzg5OUkm9JPZDIeHhzH8iFO5uUXipFk0jwi2quTJSYdEBFSV7Qxga23SqWnGn9EAJQTR68EVY4WLH5qNZWaRLZxapDXWJjSvUYWswIYMiH1/IA/URxbLWEKujLSP0Hk29xqpGZluUFd6KPFs6EpZWCgZVwpRAWJKyLfq2sQxfwYmJp+l+DWkyD/vpF93bVn+kLFinW7tLPVYhbbWPW9TqioUirhYMQfGznQbbuQAZhweHaV4wO3JtjwxXW+MQUU2qqzCwCE1E+KQhOgZNqbNeVmoBxHG9Ri0HQ0Bi2UyBozHY4zqGsFIEPyhkJARJ8sRCMFJGOFFhfhJD7IGrXO4f+8emBlXr17B66+9jg9+9gGm0ynefPNNOOfw4Ye/wMcff4Kr167Ag6PjrEvBYyz9zGKJC6KLsQZb21sAAkM4OZmFNlmLra2tDpMgCgpqY63IWHFSyxSNIm0Sq85ICkCzYib5lQi6DBeNJ2PUdQ3PHidHx0lsGI/HmXl5mSxRAax0ZwnvKcscI4+VUmQLOrN8Y1cURhRFfdRneSDq64g5iZsMH4aqZ1iysGRQGQvnAjq3Ji4Y8SFyHJSPSRVkcZExP6QXWjeR5d2Wiv/ZbJbiNI0xYXzG522iEz5NN1Wio6ftn1iKmfr4Kl3aplTZwnSfrUSM6WiSBvLJ0QnEs3s6miRUwD53goV4eadaApTWsXRoJTcbetdnnIiGDEaVQW3rYBV0jLZp4cAY1TWm02kYFL7FkFZD9DYGEfUYiqJgEJucczg4OAAz48KFC3jvq+/h9//HH+Da1WtoItO8ffs2PvjZB/ju/+u3YOsapoqhO/pFKfEvrXDGYDKdAgj+ZiezWeAZ1mAyGXdWzKBjqVJwebe7CvXAIDxbT1x85uOsnsIJWdUqOHgxm6c6iVe7FTQfrctSb1aLW3Yvic8a0NciPi98ZtFdGLnGqICPLhmiZzMdcZOing7sQSbUzxoTokQQrJTJMpnek0JmsTIiDWTEqRxydd9twMxSE2MnLJfLjmHAOZeYW0lDiOk0l5BVdN77TiOtx9bHhnSAZ6VqVI/6RykgM4kPZGZMJxM0bQswMB6N0orlOWfMMNYE5edAJ+jVllfEvAED0kK58oqkMNhuUgOVsm4p3idihPgCBY8yRA5bcNnIALTurWyPMQaj0Qg2ioBt26KqqqQ/adsWprL5Tkb2qVIij2apemWW8+l+khb2RY/BgaD77lR41m+7PlRaS7uWztzHUP0vn0lc0+0KFc8V1IgG6n2XzdpovHOqcfJZS+9Y6qcmPdB5xywSR6EfFEstJ6YR/hkaH2ehIfGydMnojQugw7Qel7TS/Wn7pz2ttlRXL17tPYjBcHHVCgzAYH97L3XsdGuKZCCg6LUedWqtc8GSw4iK0DCsDBkEaxfDByVSbkhoTWR2isprdMPjxMnzJyKWqCcJoT8eFRMMEwwDhgmW48pPNk7IGN3AAAwj+gLHvkDQr3mFHmJqHxHzdnd3ce3aNdSjGg8eHuDVrRsYj0YYjWscHh1hv7ZJye+FiVFQ9Jde+czBcbJcpYFwb0CLQW8JE9+Td/DeJd3lkO5B2M9qOpvOo7NqU2QY8d3lMRMWE0vRiyvykeCcStH6h4CUiJJXPkGlKyKKjv9ngZYBebH3YO8wqixsYrbZ6EAcrZFEsNYEr//oL9Y2LQCCtRUcM0St6r2HqWswGbhYXooqMUrspDAON6myTN5SIS59LGmf5HgXAebjgz2xAbNZJWY+DVSmn1nW37luGqnzUHV5/3LvIIPhTQ6UNdbC71/MqzNRFi8NBUfPpoVzLoXjePYJpcl1Yi30zJ0KJ8Tm+8dl1dfHkygrDDCtvEALHwLCyURhMTAwF5kacSgvnGeAWTzTYtuKvoiM2dhsSq7qGhSNDFtbW7h0+SKqusLh4SHo5k3Uoxqjusbx7AQ7e9uoTR1eXgx6D/X1iSmltiK7xHReOAm6Uj+EP0hgN5te3fX73JhdbXBhR2kNisJbfJKMmVh/QyYxDzDScWbODCzyKmkeSbdwVqyvZmhlhVk6BmCXjFXCTUVADK/Ax/do0PglQEH5L6Fwxlo4RmJmou+DiSFv4Ogs3Sa0363GZpNSDDrlBBdHbH1siBFIGfr3s0wi1QhpZia/z4PQqqE0JywOnTF0xcasB51rjNKVGQu2cTiLvoFNUGxzQDbGmKDsXsHMAA7hUmAFyORL4aRpslc/c/cFEjuQCXXmijGqR2hHLYwPWQnqqgoZGiKy8UzwTVd7pgdmOq4kUTGfO+cwn8/TfRIBIJ+dFgT5BDKhvDCkgcFX6jx6iuSEdLW7R3pQWZg0ai2VLhhS98wGusXoc53HQzGxpC8NnJdYVY9zWTr0lgoTrIRkRt6WflCqTXSsTQybAORF1Kj+ywh1fWdE6TGNU8+cUgUBgmJCywLT4W63rwGSqybqqsm76cTe1Er4LFDJeFeJt2dlaJUtrZmx8LzaAtQG6C9matHbZN1KCMpl8gHRxVQp2nnVmiDWiYI9PEg+cqNWHl83BjmP8BbRTwvBdeTCboNls4RnxmQ6QVVXkVkTPDE8O3x27y6WbQPvPKyyVBEQIUKYjN471HWF/f19AIz79+/jz/7szzCbzTCZTNA0S5ycHOPw8BEeHR5iMgmGEg+OiwGlegZUGZtF8uK6egu5fyhdSsfqFfnkENPpcI+VFPqvvEKXN3QOclcUw00wyWJaT+BtEOFqqlJtZKGL/AZEJjG6jsVUmDkjIWkFSDtjgSAOOSKiIsS8uhbetajrCtZEpFgukglxeVgbsscGZ1eD5bLFYr6EraZoXBPev/NA24Jh0LIJ8byEmK4pG4pS2Wu6vJzI0+k0ZCjW75VDCN6Q9U+u0cf04iflnqaL+jyZnSDQkrz3KQFE6Ux7FqrMikDkpGmJK4+JEy6jFopj0oNMjYo4oLMYH00UjQNxmbNVnpDDmTrCU3tHfEwGKUOWomVRMdbQ+vC9JadeYs6ZxQj5v2BCJgyYMIEcPA4ePkQrzGxUR7Qn7TBxwGaLy97eHgDgwYMH+Iu/+IuoN2mxXC4wm53g8PAQR5GZJR2ACSIuB/gRc26hh6T0AByPxx3xQ1t8unqryAiLnjzLcFjFrFYdT98ZoLj4ia5yUo/T5KqMDYyAPTwDJOsYI0UxBIRcoGDkBTT4wPJAg0gxPsrp2dmDnQO3Leoqukx0bi5EM4jkEN8PGzSNw2K+xGSL4SIzMyCgDYoMxza4xQBwLjIcIgzZtoaQSKngl3fd6euoMxuPxyvFyCEd03ndLR5Hmb8plfo+ACln29C5s1BFA7lhgm+SLFthmoQVUluloM4DSMgtdKwWX5lY/eYsxm5ADAZx178qMTLVcDlmCR1mpqZIyuQRuWESrZL5Pban80kM0dR75YYyHo1RVVXSEzbNEvP5HMfHx+nFyMtJSBR6wc59VZKsrmWs3sCVw30mk2XtVeux2nkpuCkQuDNeWI0cGSnqGOdrpGL6zcqBNCbV2GOERQJKvwruTuTkTEGZ+WnhPOnCYt1G41FMImA7/d+tk3LChqDYwJQJXVSkqa9eiZJQkfygbduOUryc6KWxQI5twgzWGQ96Ko1z6q82eXb5nNPotLoOhzOJ7JNWyPiiJRunyqQY+IyC1wnyEyxZiPXNRMbSjbw7nbRZv9+6LPKKmEImHy/T30hYUWVsSGmEoJA2iJa3lCkXWfzhYGwwsGiWSyyMxWQywVe/+lV89tlnuH//Pn75y49wcjLD3bv38NFHH+H4+BhXr17FdDoFmaBQbpomxIAiBKqbmHJ8IM9vx6qz8uWnTObJHbl7/gkPQqFyEgXx0kSRMAybcTUCotU4qDEYhhhscp2cB2yQr0PmFcXqdHtkNBmO71mdJiBbOyNyskQgz4BzgHOobbRmkoizcrv+N/eTMRbvfeWr2LvyGrb2roDsNlzLcROWYIl3TDCwwYcw6nm9dwHxM6N1viizuyjp74K2RcQUlHLnTtgUZmdnBzZGV1RV1UnWKH6NQDeWWoxw8uzz0JNwlShJi5ml5TTlGdyQIQ9RNQwO9AqZobiseHq8sUca1EQamVHn3uDKEUSSnpJ6DRFRh/uJyCj163zGmou3WSVokMI/rQ+ijrUWweAdHCkNwq5MMIS2jfoPEhE7DIqRrUIaHhAuXLiAr33ta7h06RL+/M//HIeHh3j48BHm8zlGowpvv/023n33XUynUyybBTgOvJGNjq+eYa2JLiF99q6tOrrdQ58JEQ8wfO0+MbQgPC4yy8wsiHaEoJcaV6NUK592YuJOBAQho3dOraA0oaV8sFF3KK9/pmQhlUKMMahAAUG7IGpWpitmZhaWPeUCMooM0Vi8997XYKcXgXobTWvhWoaPaoZF04I84GEw3ZrCuRbNcpHiOl3bYr5YdiIHJFWURlgJtStmBki6pyU+/fRTGGPwla98BcyMuq4xHo8BhBx9TdN0grMnk7DzVNu2iZkJ8+i7+mQ6zdi06r2fl/SuU5qhiwvK44ialULsXeoEvImwEF8/58meibqfSmmjJ5IWJTYiNRGHHDcHb0gav4ywZAL0HnyGGS2uI957jMZjTCYTjEYj1PVIrTjB612U9yBaUc+ycBriR6pVqhzudC/W3rjR+bNTKeJnG0wMA4pISEKHSmWbg2LaqhwyFLMjUZQObESwFFwkSF8f/hVkbihYUZnyiNOLqno8yh5MNSDCeDwB1SN4W8MxRcNFWISNJM1kCcnyaCmI1t5TTFog/ZOR2NCnptLPTJBKcsSOxwR5iSpDEjfK9aVedR2D0rq70+p3Gq3T5Q09Y1VdNn3OkA5xUMzMdyZuhOJL+p1EUGCQT5D+MYCkBkk/hstTeYXtTPBIJs6q7lCNaFEK5+xYuWyb5MAJ5JcrFt3K2FAeB/O8a1scPnqE7a1tTCZTvPnml+A9cHx8jMViga2tKV555TquX7+O0WiE2WIG17rsOJoY7TBjFXFofdulMzMmC/1fCk397iyPr1oOMKBYDo8oBp0A9agjq0yF3e0dVDZkkhULZm5zqKfTKzP7NFgCcvURvBOAOmbk8Gg57OUqG6VwzCIQMnIEfWllAMYUs3mFBZD2Rw3XUTYmUUaDMl4YAJMB1WOgGsGYGhYUNu9ioALD1qMwXChEf7jaoqosRqPoFO49mrYBoe/ErK37paVxNBp1AvVPTk5wdHSE2WyG73znO3jw4AE++OADNE0Day3G4zG++c1v4ujoCI8ePcInn3yC3d1d7Ozs4Pr16+mZVVWF9O2UrZwu7hi2WCwSUhK0KOdLy2hnfChGsgkT0mVog5ZmprKhyzpDR1mX8vcwM1snehaUHBKTYjUXIbkVurOG0rWDtGqGdS6h3grdXa3jp0bXFP3fiJIrARxjOV+AXSyAs2um9x7WWFgbdBnNsoFhA9e0OHz4CKNqjOl0C2+99TZu3nwtKWz39/dR1xWquoKtK/DD4HcmOfBT/Tl+0wiHqduBWnwu/PyS6EaUdsHS7d+Uhq4v0XpftFUDiQGKOjNDhNrU2NvZw6geRZflIE5aIoh1GQivpos0lbgTOWT4FpiZg0fjlmibJoh2bQvPbUDLjuEcw4BhiWHtEr6q0BJhXFfpnfsY6M4x86wWzyOLA2BA9QSoxgCNUBkCifxCwbAhYzrsOAXwZAzwBMIkHXsYBJcU8TuUSAEZJyIKasu1xKsKM/v000/xgx/8AL/2a7+Gzz77DL/3e7+H2WyGra0tXL16FX/pL/0lPHr0CAcHB/jjP/5j3LhxA6+99hreeuut5OtYVVXSuwlyWywWWC5DFmnRx4lIKnXVDE5HIcg7WjUuhkjH4Wr3E8nhJmKm3vxXqxo0utQLgA68B4p9M7tCJVAO9QAaFNNag6DUXEvnlJpnNTHWcHolMHA+UiJAfXcyRjJyZeIN4sGdBA8uKgxBPYIrwqcMFFlR67pOg/DChQuIJSdemlav1H7q9/VpqFW1t9sj0i59cDOWtu4qOuV899rcPzIpqqqCiewsGFiyDok5bPEXfsiHFh8ycmJUcGAY9pC8Y0mfyQCTTwunAcPCw8CmyIPSLaPbzdnayjKgiRCsSEFFQDC5LpSNShKfGZJ/iM44lGzAiZmJWKgRv7Ze6s9y3Ldti6Ojo4RcZrMZZrOQSeX4+DiVJQxKmJRMcClT593XRgNtaNIoqWQgpfVz1fw8DTnJsaH7n4S/2+AmwEzAkMvGWtKMQsoBkPVs3UYO0SaQ9bQ5XzIy+UwqKabo5xb0PIExcQpbAgUlsDEW3nk452FMWDnJxd2oYk5+GaiivJWV7+DgAU5OjrF/6SIAQlXVaZKmenNZ2TWN+gIorYAoBiVla7UsHATt8R+24zNkYFk8xQjgIOKlfg6Oi6l8QdtClFbLeA1H67itYClGeHCUCJjADiB4ELeouMGxrUAcEiRUNqgKyBgYjoyIQkbcYIMJSUbDal8BFK5PK3axaPcW8tRTwy9QW/GMMajrOjEc+dRMZDwe4/r16zg8PMTPf/5zMDOuXr2K7373u2iaBnfv3sXx8TFu3boF7z329/fx1a9+Fc45HB8f4w//8A/x1ltvYXt7G3Vd47/9t/+G69ev44033sAf/dEfYX9/HxcuXMDFixdxfHyM4+Nj3Lt3D+PxGNvb27h06ZIyhFHe2AXAbDZLBg1tICsZo0Z3OipGzxVpd+nGMuSqMmSokHRCcv+KreawygUqvs+eMietzXJF/lcYmhIBz6FgTM/mFWp/KVOLZp06k0RnJa0Vs2zt5tLGwUDOY7Vo58EiBmBrawtwYdI412I2m2OxWKKqKmxvb3dM55999hnu3LmNd8cBNteRmaXgYyJILi2iDQ0EnyN1Vlf5VGgyTfTIzELwuIGhgIissSE/GJQV0QPehe3o2MsGxiHOURyT0/ORc7AJ6gnM0sJUALgC15wMBQYmrFbeAdyghsdBVQGOsb01DSFsROH+iLC8rHAsztAc4zRrgKrAIBPTjRWTjX6l/Vn6XItiZaKLIl+jMy2qybHJZIKbN2/i0aNgIWdm3LhxI0aeAH/wB3+AP/mTP8Evf/lLXL9+HRcvXsSv//qv4/3338ft27fxZ3/2Z3jllVdw4cIFjMdj/Nt/+2/xa7/2a9ja2sK/+3f/Du+99x6+9rWv4fXXX8eDBw/w2Wef4Qc/+AF2d3dx48YNXL9+vYPeZHwzh8SkktYJCCmKgK6VUsRGEQVFvC5RX4lW9diT8oUxln1ZAglmRjX4FpgjkulOss6vDrdTVwpP0aef0FxlWRWVuDpoKS2rFxlZ2lsxQE8E8SIyMc0ERRmamxNfprwsExigWnH0CrFcLnFycpJfqOyepISbEqGJiFbC9Nz2UzrxtD4+x/pBnW8ihpRLVqmKEDSV1eup6h7JIixb+SX3iiGVhT4nqBkUxyYlS6WBSb6P7D0qskkaqETBHetKRNHTX95DIRZRIWAXagdNIt7mhbx/nRbdtMtNiT7KCTsejzvqC8lqLOe895jP50nvJLuFNU2DBw8edJId3rt3L2U+fvjwIY6OjjCfz5M+bLFY4OTkBNZaLJfLQbAh9ddiomZg5XWraJ11deja1NcD4q++hohOsWaei4ZeaMFceMWVg5Arn6PyssQIzkkcUSZRCDdCCJsJ+wOElzIejUJKn9EIpq4Aj+Tjk4pRsNo5h8PDQ9y7fx/L5TJC9G57iKjnrXAWGtJFPFkq5V+EvuowHepoFtJftAzLwiNMhT2n/UC955ioIGxrSEYjMyVycGY4TB5MLm0KE9lrjCFmGDYR/nnAAq5p0CyWqExwx/VRlGQgGQHE4ENxJy0viMszYANiLNbE9FEO55w3JLUiLa7nkURE9zUajZJz9q1bt7C7u4uf/vSnuHfvHpbLJW7duoV79+7Be4/Dw0MsFgvcu3evt5+ApKv61re+BWbGxx9/jOPjY/zsZz/D7du3cePGjcQwHj16lERJ5xzef/99bG9vY3t7G+PxGPfv34dzDpcvX8ZkMsFiscD9+/fBHLZg3Nvb68SUhrjlMGckxG+IVjGrcsNgWQxKH7o1zGz1arTpUUC0HujMj6Dq2HAyRl6jH1NiMepNvu7AWlN02vtQJpRv2zAhKKw8060tbG1tYVyNMKomICY0y2ViYOLzo3UFBwcHuH3rFubzebTe5FAZQJhZhNj9Rp2TTitgc+aX3RUyYwKQUVmhGJZ9X4SXJFUWgn6KOexY1DY++UU5IlDMJ9bJBYZu1lVLBmF7ZA+YnANOzAk+IjNGFcLeokGnWSyxmM/CXp3IlldG2AnKMcNGZmaMgbEWDBPaKnl/jFXILI4TEZtVj+bhmd8nR7g/hETK3xp1CM3ncyyXS4zHY3z00Ue4desW/tf/+l94/fXXcevWLdy/fx/z+Rx3795N+09sbW3h5OQEt27dSjs9ySI7Ho9x8eJF/PZv/zb++3//7/jpT3+KR48e4S/+4i/w4MED/J2/83dw7949AMD9+/dx6dKlxCz+7M/+DFeuXMGNGzfwzjvv4Cc/+QmOjo5w+fJlTKdTNE2DW7duoW1bXL9+HdeuXUt+b1VVJeYmaFGsmxrpDRklNMqTOQbkqAlrbbK0BmS2coyvOEED15SXkmJA6It8Z8YkWgQsxRpBZx2kQ53Ehwqs9otOcCPUi9WQJCBb5iTWEt0MBnpzVvlrmgbzxSKLDgNAp2zfWVfvx9E7blB6+GCkyZzXnkIME+LubZ3j8rVU9noU4UkMSd+Tn8YJmYEZMCy3piSOstMTOOraoqHBO5fcVuQ9c1FXIPYlUUaUUk7BpqAYme4TQXmamQ29Ha30XsfgRB8kIuRsNsPBwQE++eQTTKdTPHr0CItFMEDNZjM8evQIzBz83qL/GICOW4VkRb506RKICCcnJ2iaBoeHhzg+Psb29jYePXoEoMs4mBmPHj0K0SzRlWOxWOD4+DiVy8yYz+dpYZfj2r1D9Mlar6b1hkO6tHX9o6+TcyuQ2Vknin5w8ZIGr328ibju7nWl69VUBjazZHSI+yGqFdKJ3gGE+/fv4/hoBtd41FWFyWSCug5JGLW1B0B6WaQ0w0lnxnliUYxbfTKM6bSWn6WkbojVWuuzXGciutV6FQ6Ke08ICnaiILqlEK4CoeQnrqg2x/C5+D0uYGGHBYGEHk7FJgoK7rah2zai4Ax9NG9xspzjxN6FGTegehLHRNxuDgRDVXhi1K8ZAozh4LBBAChmg0UIVNdOqatIT962bfHZZ5/hF7/4BT7++GPMZjPs7OxgZ2cHk8kE77zzDn7+85/jk08+weXLl3Hr1i2cnJzgvffeQ13XmM/nSZRzzmEZpQipg0QOCHMBgrJ9f38//Z5MJtje3oYxJul/hVkSER4+fJhQ3AcffIAHDx5gsVigqircv38ff/qnf4qvfOUrSYf3n//zf8bNmzdx9epV7O3t4cMPP8TR0RGapsG1a9dgjMHe3l5Ck1VVYTabJclHW1TF4KDdSYSqIR+cdTTEnARSg0rcNHRv6Z2/mgYAX/ikNXUmJQ6to6gecaLLYR/8iMTfhwita6OISPj400/x/o/fx+xkhsuXruDq1au4cOECrl+9ip2dHYipmCi4IDjOzIyUnsyDkytAEuhOYWarjAIDV57W6o0oiUgSM7FitUzXyooa9xU1ZJM2K8Q8GrC4PlAM8SJkEbtA7uk9hwcgLQIEwAgiikkRObGZsJUdHBrXwLcupSYyhkCcUqZAQJe8F2MIi3mDBwfH+OxggclsimrrCKbeAtsQJG+iBamyY8BUcZwYGAtYS8G51hCMNagqi8qOYE0VdK0R1Q+l+Cnf52KxwPvvv48/+ZM/wa1bt3B8fIyLFy/i8PAQOzs7+K3f+i0AwMHBAV577TX8yZ/8CR49eoRvfetbODg4wGw2S4yobVvMZrMOM5MNUsbjcZIcRqMRrl27hosXL6YxPB6HNE4nJycJ+W1tbcEYg9u3b+PTTz8FM+OP/uiPcHBwgAsXLmBvbw8ff/wxPvroI3z961/HZDLBfD7HP/kn/wS/+7u/i+9+97u4ePEivv/97+NnP/sZDg8P8Vu/9Vt4/fXX8aUvfQmHMW3WdDpNPnNN0yRmK8xS+k5E6OSaIf5kfcbRH7ikL9Q6sA601qlchtmR1rusIuZ+qmdSyjdKTEvgcCo4MTS5unQMziJo1lslk7uqGyuuOJvNcP/BfRwfHqOyNba2tjCdTJIo0Kk7siilqpwqkEUW6nWDZhpnUvI/Ualz+LmpbhFwltUT/Vf2GYsWzQ7i1SuNiAlDj+4MsCSOyjuXVOnMosbITM8rUVXAcUfvml6K8llin1CIGx+jxhh2RIGZReRFACoLkGlBMTLEWoKtCN6ENNvGh8D4sFeZ6YhW5fssfaeAoLY4OjrCwcEBHj16lPKZiXXz8uXL2NnZSS5BIpLu7+/HRAejzq7opfe+MAC9VZ2IoKPRKEkVkt5KO9oKypRUV0DQrx0cHGB3dxdEhNlshlu3bnWe8cEHH+B+NIgJsrtz5w4ePnyIg4MDvPLKK5hMJjg+Pu4wffEWkLK0G4Z8pvfn/ZOxZuoJmBlZcVEaRJvhMqL+ZCkKGjzVCyddQUHEDPF9Ia97nCmGYppkhq0qeB82Dblw4QKuXL4cYv0M4fDwEZpmicPDR9jd3cWoHqEeBSYnZvA0gBUACc+NYibOhqWerp5s4DkyaCA/tRtCZhAhs3D4YUgMB5z0T/kPhc5qVevVApsejpTUc/UIiAzBtUnfmRakeFNpcMlMJqbxcS0m4wnqyQRmNIYnD0MhVpQYsKYCRWQm6A6Iue4QED6B4VugMW2awFqZrZlXXdcdv62qqhLqb5oGdV1je3sbFy9eTMr/qqrw1ltvYTwe4+rVq3j48CF+/OMf4+7du3j48CG+9rWv4e7duzg6OsK9e/eSzne5XKaIAhElr127hgcPHuB//I//gTfffBN7e3vY2trqMApR5ouoJ+4io9EIs9kM3nu89tpr2NnZwb1797BYLNC2LR48eIBPPvkE165dS78B4NVXX02uJbPZDHfv3sXBwQGstbhz506y1Eqao9u3b+N3fud3cOXKlSQ267GafNP6Q0HobCILEeVddaSEoohkoVhTjtZrFXPqFJJBSrJA9wa8LobjnovOtcGB0zNajt7Y0SQ3Ho/hvEPbOty4cQOzoxPcuxt8dj777A6OT45x+OgQZAj7e/u4fPkyrl27hjuf3UnWG+99TkzJgYEG3UQQtwzllDdCT9/1Yj0lRXX8VzOktH2fEUfVuGuRMDMbcth59iFVDhXMTL5L+T2uVMLYqFTPXrTorwKSDDJ8b5sGREBd2aifYzWIgltGGlsIdZWxsFw22NnZxWhnDzSaovUNiILICgasmUDCnRw7UNTVOe/BLrxH5wy8W8QA+LwpifSr6KyMMdjZ2cH29nZiZqPRCG+99RZ++MMfYjKZ4NKlS7h06RLqusa3v/1t/PCHP8T+/j6++93vYmdnB2+//TbatsV//a//FY8ePcLFixfxN/7G38AvfvGL5M4hQewnJye4e/cumBl7e3u4fPky3n77bfzoRz/CP/2n/xR/7+/9Pbz77rvY2dnpoLbZbAZjTBIzxQl2a2sLDx8+hLUW3/rWt2Ctxa1bt5I+7JNPPsH3v/99vPPOO+m39x5f//rX8fbbb8MYg3/xL/4FnHN45ZVX8MYbb+CnP/0p/uN//I+4du0adnZ20LYt/tN/+k945513cOnSpeQPpy2iQlVH9NODaGCcrVxHIwM59cLOuRUXDSy5fUCiLElq0qfhSkg7/3SYWlFOis0kAyKvEFSwhqWQDQ5m793dXcxnAWLP5sHCdOvWLTjnQgiIa1GP6uTMmCatWv2RJnS3XUP6k24fUOfa8tiTpGx18wkiM+cNWkghs+SIjDxRO+82vaj810VnilgpBbjH1lYjuqQ3yKIaIaTlFkYm7LlftkZmYaGpqyCqmVEdop5AiZkZsggmh5BkE5xFSInzZTBc6+HaHGCuLXei6BbxTnKRAQFN7u/vY2trC8vlEhcvXsQkqjOuXLmCH/7wh7h06RKuX7+Ouq6xv7+P3d1dfPLJJzg+PsZ4PMbNmzdTNIDkRSt1aJIfbW9vD3Vd48c//nFS5HckrWhIALpe+SKKLhYLTKdTXL4cdnkbjUZomgbOORwdHeHBgwfJuCCiqVhUR6NRssqenJzAGIOHDx/i/fffh3gFtG2L999/P8WiarFZ66mB01IAPSXaiNedg84qtiXmxf3dmRBfYnD0DF7+k+k0BpKHF3vhwgVcuHgRy8UCk8kEOzs7CWXZysJY00EAAYko3VF8WqkDCJd9cehs6LmlGTxdx0i6xqDbiOFJ3QKh0REh8p9VvLgjXybNW3+fUVVWqEpw0WhdCxBQVWr7NpaS4iIiTDEq3UzY2y64c9ggQvqICpOKbeh1UIxCoJDHjBGcgGEAqrpOoNKHohfSWTNKunLlSvINm8/nIbnnaIQbN25gb28PRISjoyNUVYXLly/j61//OubzOa5du4bpdIqLFy/COYft7W20bYvt7W0cHR3h9u3bODw8xNbWFogI+/v7uHnzJr797W/j3r17+OSTT/CVr3ylaGIQNY+OjgAAJycnyapYLqiimBdE9+jRI7z55pu4ffs2Hj58mGJKF3HOHB0dJdXMhx9+iKZpcPPmTbz77rvY29vDyckJptNpyu4hxo2hPTY/V2YmY4g7rKO8Zj3aOG2Cl0htVWmiNA6rsQuDlqJlLIpRbdOgMSHtclPFVXBnF9dfeSVl+1wul3j08CFmsxmOj49x//59GEMYj0ao6+Awy/AhpTLFzZ5s9CwvFP2fl07sNBry8SmZmdYHymQ3hjAa1SpThUJlXiEk0cqvGQf5RsXMyjOU+V4CfgwsF0sQAePJOASQ+9yv0VANorgVYqgcqirsHta2DeqqBiMsZhwtmYmhidgtNYtlGRC87DlBDFvbJFZLHwo6kv7UmS/KheKtt95KTrOig93a2sI3vvENjEZhj4I7d+5gPB7jrbfewquvvgrnHCaTCS5cuIA33ngDN27cwHg8xsOHD1HXNe7evYsf/OAH8N7j+vXrICLcvHkzxWT+83/+z9E0DX7nd36nI74ZY5KIenx8jAcPHqS6a10gkDPlCsr65JNP8A/+wT/Av/7X/xoff/wx7t27h9///d/HZ599hq2tLdy+fRsXL17EnTt38OGHH6JtW3znO9/B7/zO76TohwsXLqCqqqRP1KnDtW66WodlBs8MzLdBNQZWTE6WITw8ccXU33mcIBktvZTV6ZkFB0vvXtLR4bDsPBsUu6CIyFxCaNPxFJWtegnmHty/j/v37yflJRFgrUnILKMGisgs1CUELH9e6GvdczZjokOrcDiezye/qlVlCkrBCqlxxffM0AThqk139KXMHQvYUD3yseCfxuCUwNF7D2PDjuXamt29L729fNxQ9HcL6DBFfShUNpTmZwiVA8CFCxeSTuijjz4K4m9dY29vL4muJycnuHTpEvb29rCzs9Mpd39/H8YYXLx4MRkD7t69i7t37yavfCLC7u5u2Mj60iU8ePAg5RTTdRE92cnJSdortlTES/1FBDXGYD6f4+joCDdv3oQxBoeHh5jNZvjoo4/w8ccfY3t7GycnJyly4dNPP8Xly5fx6quv4stf/nJCYLJzlejtdE44vRg8MWS2DgV1KMkYa84Plp7Pc8HUNgU0eQj3Ss1VU9fJywmDZwkDA2clN1T2RzOGMJ6Msbe/h6vXrmI0rsEcdApkQqaNoed8fnTa0zZ7e+WES2gtiW9xwg6VL+gj3LgamWszdqmLHayioDxK1tKmDROtquzw4oscMRAbllEa6fevhyr365PP6HzLyOaNYcalf5fIRo6L3kkWB5nYOuWO6ODatk2bUXetx5yYjsRmvvbaa5hMJnjllVfwMEoUotMLfZb3IpDnvPHGGxiNRnj48GHSHYtl88qVK2jbFj/5yU/AHKIFrl27lgwNly9fToxIx1hOp1N8+ctfxsHBQVLRzGYzEOWtHMM76Lq1SDlyTrd5DTM7q8jDxbhboxRZl1+oLJVOmfy04vvKp3dLCjs2KYao+SYRvPNo/BKuabGsZKMKxng0hq0qVJWFrSz29/ewu7eDK1cvo1mGwbG1tQXnHdi1UmDS14TNTGQwA3zW/HFnps2RmR4kQ58lQ5MiDFFOfSz8KFkxgeC+bzqLxhCvIhPHT2cNi3WgzCySPoopiJIcojlOTk5g4TEej9ChaMhgeLB3UmJQA7hwThao7E4BqTwMAd4NM6ocXKX7qi+WC2rRSRl19lUhCTcSQ4EgTdFHSTpsSdooRifRw8nn4eEhvPeYTqfY2dnBX/krfyU5uP7iF7/ArVu3MJvNMJ1Ok7uFFoerqsJf/at/FR9//DE+/PBDXLhwATdv3gw7jxHhvffew0cffYR/9a/+VVLOf+tb38KPf/xjeO/x7rvvJtcTqT8R4dKlS/jrf/2v46OPPsLu7i5eeeUV/Jf/8l/w5ptv4tVXX+2gWGmL1EdnqJlMJmlcPiWd2eqJqVTAG5c2pCvpjaeNeEHMkiDSg+L4ZTEJQXAwuzvfwruuA2TtawCj5CtU13UyEAAxu0bju4X36hkaogHJs0irjALhi/yOaWHkvHyLii0RzeRvhT496dty+Vn0188TpJScdCnUc9ksMamiAaDbCmlM0vchuo74ZJzQSvtCXC7UH9z5pdq8wngztEuSZmyamqZJMZYamQmTEYW4IDMRvXTKIG39G41G2N7exptvvpm2QfzTP/1TfPLJJzg5OcHe3l6ytIqVUAwVX/7yl3H37l08ePAgWVsvXboEAAmF/fEf/zEWiwVee+01fPOb38SdO3dgrcWVK1dSXTUy29rawjvvvIPt7W1Mp1Ps7u4mZCZ529JbU/NUO+Nq4wqA1ckZz4bMtAZB7oyjq/PWlYC3pvhSLSy6ko6cqLiOrLDJSpg4XhcEBgm3/2xCZCRJgZNbACCVy7FsRojbNFFuB9BZdbV4qoNvERXHfbE4PrOcBKS0O+p4toY+Se5XYqSuMJ6YeHkFc8r1L8fTbdQtQ51Q7em2V9+XxNJ0Jas7tBkpurrEPnRe0kbbThlpLUkcNVs3WcQqW4h8IpImsVT+DIjyWOl0HbrodpWFWotOJYITxqQnrUbI2iWhHBu6PH2vpBSS87u7u9jd3QUQnHdfe+01XL16FcvlMjEWyUwh7hcXL14EAOzt7XXcMr70pS+lWEvxi5P9B+T6y5cvo4pxzQDw4YcfplxsW1tbiUnp3G66HboPh/Txg2mzzyxiSsGcP8oS4uIc+Uw/VKmk7vCXVT3eZRSD4+51m9W/j8YIkg4ImrPFBIAAjImbOAXdieSbEtgspAcLEWG+nGPZNLl+UezKaW+y/1b+tQLErWnD41Ffl5OPi3uJxDRG6I/MbLQBQFwcuiwnilxpfESdzgBTDz5+4WlB1BR5VUqNTEWLm7EujNCvy8USO2NgPB6FcUNSVqhsiFKgvFgQ0LomWGPHo/RMQli0rDyZPcAhKVqQRk2uT0FDjEaOa/FJGIZcK4xKrOWy0YlcL5/i4lEq6svnC3OTfQLEr4yI8MYbbyTP/KZp8Nf+2l9LcaAHBwcdhnn16lXs7u4mw4HESUp41Ze+9CUwB0fzra0t3Lt3LyEuAPjSl76Uzl25cgV3797Fv//3/z7FhV67di3Fg4rvWcmwSsZW0goxc4gdrSMNmfqldNfgs01CzWzFfWKTuzatfxdT5omTv+YBz57j9EbYUDhGCsgAFG9vgdQhc2eDpm1i8RlNmLj1emnMOHsLngatqMmQJa54nRk1Fpm/FIPs8Mreqsfpg4RBramZfEnKe6LY3zFEaECNkEwWRJBMsT66zlRVN8421hjJYJDEnVAY8XDa8xJplRNRH9dMSI6L2AjkNDtluimdubZEYnJcSwpN0yQ/LdFbSVbaw8NDvPfee5hMJsnNSKyFW1tb2NnZweXLl1MKbecc7t27h0uXLuHq1audUCcRhXd2dpIy//Lly8lJeGdnB3fv3k3RAXt7e9jb20vGhyYu/mV/njb3n5jOLIhw8cfgBH1CSIIVh0YxkBQDgqCGJIcKEqC0qnPnnlxiPlGULwA0ThrR0WR3gYDuKBoVAESFc4THmr2XUhYVEvkTpLJMWnWic/K0Qgt0TcL4Y8odIH0Ks0lNln6jdKt6cO6FvKtWfoxhAkcnCFloWGInEbJm+LYBoYI1MV1PWpC48yQZIQxC40JWNFNVMQY0hpwxAXGbwKTxI12thBfVWKNeP67VORbXiZI/M6vcyUTDZUl5Q8YZLaJKckwAKR3QaDRKCn05JyJfiQD1RixElNxENNqUXGxt23b2CJhOp8m95MqVK1gsFrh06VIwlDmXsnbcunULV69exXg87uRWO406KYDOT91BUh5PRL0vKykP7cxQhoLYy/qnHZkAkE+qEXjPaXOKIOKF/GXC4AiABZIiODwmeCEB8TrKCmGy8eXKYKZQy9a3cEyAD+KM89nkHzPYA3rQi1GfwzMkGGjzHtqMNhXAc70ER6vJMVADQnCJSDsywcB4guGQN4IZaZNe6W8mht4iNDOFXKr0grdyhCMjs+nq/KYciBoQtTB+hmZ2CMtTbI23EN5Q2MCE4ZAEeRfqCTJwXOFo3sAZg9HWGLAOIY7JwMAmf0QCwEk9IItY2AKPIpMN79aC02asqr8Uo9FoqlRmy+a83XtCdIX3DKK8mbC+bxVz1P5fi8UiMUrRoUlIFIDkpjGdTpMaRcRS8TGT8sTLX3KZ6W3sFotFCiYXcVl82r761a/i9ddfx/HxcUJq8/kc3/rWt/DRRx/hP/7H/5iMDKVj8ap2Al9QONNZ6SwMN716jn+Uv4vOJ3SGTxNCO1HqaQzIZrXhzw4gwqSUjUU4zjGew50+xBLy84aueJK0ufjaZTH5SPe3ZnUxsAeGkfbMlN3KZQOTwMgKP7PBhVd2URJGFpYCinFQPr4pJg/Ag6iBQQPCAm55AsuMUTUC/FKERHR2hY6okZnAZDBfOngYVOMRYITphVQ+GakrPEYicgYUx5TrFhCdx5AL0pAIKL/le9u2naSOzIK6TGRkwxh+lUFAH9e5+eU5Ov+ZznEmzEwso6JKEZJMHNIW8XWTssTwdXJygtdffx37+/uw1uLVV19NZcxmM7Rti6Zp8Oabb+LnP/85/uzP/gy//du/nWI/P2dkVtCK+UqDJ0+/fWM6fYakwx1u3+MnHdkzGdnyWR78PqhTIho+N1AxGrguF72KCT4e6VISNuoD4BVPLVGbGk3FzSv4VdmxuSRa/XxGRrKkq6F0kt0xFwovX286K/ooshERxaekSdRn7IM0zGPOTH0Xjv4SNKQcXzXp1x0v/+T5ZY6+koYWap0Ce0ifJ/dpBqvdSkajUbJ6LhYLHB4eYj6fp12pSpG2LPO5QGZPhFT7g14ixGQCWZ+TtR/qNqI8abg/Vlcil40MFc8PrWtNHqDhd0a2CilsuLo+Tv2YGfAuWlSR3TXW3RP/5vMFUO9gMpnGqusJGK9e24Su4Lv2ygFdlD6n9VocLetdsTKkHtc+jzo6oGRsUl7ptqFdQDTzKV0jNHMt9XLCwIwxKSlkycxE/6Zdl4QODg6Sc/DFixfxzW9+E3t7e3jw4AHu3r2L+XyOr33taykoXTLNShlSnjHmxWZmiQkBKKdjgMwC05Dym/WIuoO+g2RWTdAXjJFtREqfCMT+0vrHp8jM9FM9e5CkhU0uNqc8m4HlssGoBkb1GIAWg7vi/5NsxZCFrmRm5Tk9ieWYPi/l6u+irC8ZiUZjwpC0AUL7qA3p5vRxcTEpkZcwMwAdVw+ho6OjFER/5coVfOlLX8LFixfxe7/3e7h79y6WyyXeeOMN1HUdsj1HZib1EM+BFw6ZZUPBACn5JwAFD5acY1GhVg4fKnU7naeUz6Tug9NkejGo06dFs4iU+4qcfxpNP40nsZpgq+5bsc44FywUyWm2EEXFcJPEXF10X+25EQ0xMv1Z0pDRYNPnnHbtOgtpeU4bFcpry+/rFPdD5QrCE3eQ5XKJnZ2dlV7/mnm+UMzsVIp94MFo2hZNNPt6MdlHj+5SpZJpjZAp1xKlgT/skPxiEmnxpWOZRDy2USkDx1Zxon6Jnh1c26RdzIfdIeLdDIglmZkxny8w3SVMxlPkXTnTSy2eeRoTWc/Ntcg1FGSu0wRJPbr+at3yNXrSx4RKlKWZyxDTEX8vOa93R9dRCfqzFCc1ipPwKsnIIdfonaK0MWE0GuG9995L8aY7OzvY2toCgJTbTMp54ZlZX12ah6ZYJ8VSE14EoKMS+gr/4af0mJUMNPn81eFlKZ22UK/pMvBXdsoqBjH0NvMdnfcUd9oy1oRsJYPC4sAzGVgugqPmaDxe8bwSk52PtLJdp5LS57OYJ0w1UNY55Ws7NVyBvsqgbb3FXFkvuV6Xqf80eiwZ1irUKPUuM9WKZVVE4KZp0sYlX/rSl3pltG2LyWTSK+eFZWZJS0LIu/aQ+HmH3x0LTllAekFKkc0dd9cerYTwz6Dq7ElWqb9gxMGuAes6K2xfrl+zAAyjMlKLRkY8Q2JVgar0z4QuCJKHLLUooc1S/7pupdoQhw7ooPQnUf9c/s69e8vv59FTaqS1qRir6SzPLF1ISoaq0aC+Tl+v6/jCMTNgQKeBcCBFAABonUPrXYZslLhfb76JMpvRh++9Z6sXAgxN5ueLNqk9MwenWdOd7vnbajawee+Ub5R7Z71rsVzMMR6NUFkJfl/NeKLtD0QWIUuTgTUVPBmEGMxoOZQNhk+lzZSFGpkNxVO2bRvTAnV3cxpCcaWSXo4PPbNkcKuQ3ZC7xpC+SkcJiKFB/y51ZeVvCVvSuc404yrrKjq1VW184ZjZkCDQaXY86bwLqaxRDPfiZuacHiYAPV47uPTns8bInmZtQn+UzD0wshQ1UegRN66PDhfon0xleefQLJcYjarCT2qYoSXTDRk4D4ANjKngYwhU1leFqzer72bIZIiZCXVjMlUrCkvkaVSirHWGhaFjpfVRXyexx3qDkdKlo1zYy3boXatEzBTSudnkvL53iNbt+vYCEimkhcSYZFr11fsvntLrLAyN1N86CgMOyRfvLBVYpykbqk1edPooKEzAGNeYKqSL6HCGFZV7eiy/RDtDjEyu69WsqO+TWCiHeJtYhFfVZbXY26dSjO4/qy/Kln102jP0+RcOmWlKahEWvVkm730ItRHxclCpmhEWQ6UDUmWUtIkZ/IUjDrnD0uTUQIgfb1EI2k4G0r/qoYUezbUNFvMTjMcjVLVVkbAcUaGEGAW0GCKtZBMbG5GlWaEffXLvVFCPWPHKc0Fck4mdmUFW5IfaEWXmQ2SS32Rwqo21LhBZCIla1SYpt6/014r2bj2zNKLbIkYMScw4JAprJCeWTTleirClyCv9Ib+Z+cVDZrTyBzoLr+foNBu0rOmSQeNAvI9MdjyUazQcTpf/CjK0oPeIwdHq38jNzsXQzpZJPLg0LOYzjEc16qpKRuVOdZReK6VdZAaRBcgGYVJiLJ/SK1ylM5Nz2squJ7RWiot4HO4JDQzXdxqrjnO6J//la7I4HWjIwVaYj4x7zYyEmcl9actFa3uhUXruyFwSdxSgK64CSOVJv6xyKn6xmJkwphK6Ig/f9K5X6Am616eCwyB68jV+/miAJyX7CRUHESekdlPpy/IDheX7u774XSQmPxPbjLvFD4UJhQtZXS9QHAr9DBgrOuNkQzF0RfbmIVFxtQh2yiPOvFiuFqvLepzHCrquXqv0y6VRYVWb1rX1hbdmFkM+/M4jHiCkFTlcs7nSdpWl8kkNhuePQrvDFnxV7GvKWWUVymU+K9oSKhmKHzgeDADL5QKj0TQ7ziK71ZR1RlzxmzbsYl7ZCpLSCCRohdeAtP6yt3GLmAfFzDU3QOTKBDZPYWhaPJVnrtK95bE9rK9bxXC0yKcNXxpB1XXd86kTNCb36iB1ETH187S4XMaXyvkXjpn1Xi9lhsZq8IWXFyfFhmKQZy50yMMr64vkmrGe8spurQ0MBN11w3sf0v+kSUiKOfRkwAEqGdnQ8XDGOYfFYoHRqIYtM8YODAxCyHO3bByqegxr66Bv8qlp8M7D2Ag7e0Pk9DEz5A+1Sme2yvrHkZERA+w5QeGhCT/0fAlC1+UP3TOkl9JlDNVNRMWqqjpWWDkn+32exswkzZC+v6yfrvNaZrbKavH8EnXESZZ/MmTIuoRVCBwIg0iOvcCA6yxN66kitcJ4gOH0MpFofVrn9zlJXikYvNJpVtdHHYkM19AK0RRiMPh8aCWqTwNYhnT3utK6uM7quM66eBZahdLK35k5dd/7EFLc5JmreNWLpTPDaZMyTysPtQq9yFzqKRMhJGKsrIW1edAKBk6IYLCPT9NBaQ1+oK4gpH8x2Ds4twy7yadJIory4jlR5G29w2w+x2gyhq1rpGyxj03DY0qjnxKtCJJJiv7Ugti+QhQcQlmrJIWSqZUGLH1/X/Tsl923sHbL7Yq2fWOChDOVx4bquqpukndNGNwLx8yAgWFE6rjS5SSGVkg7axb1F582nsd5qhkysDY7qlLq75CS5/w6RM3MqHu4uIoAsIuB5lWMzWR9Vt2UzH6E1rU4mc8wnkxR1aNgZCATs+FGfdmZeVt/Mg6hltJQoZmZgWTuReLZHUt7oUAvlen6OatEV3metsavMgZoUbPUoWnrvpSrRc3wPVtLNTMbun+ovtqaq8tYy8xeCOV1Wr0kHUyRaSsppAfaWg7cc/RHuYo8y9RBOmetLucBXQaaS9lZBByi05DZ0PW69PiO1W9JWihV6QuIXebCzPCdwO7uYzJjXkNntAOsYxyl6PUkBNyVerji3OOM13V8YxAZo+unue7+TXnSC2cAEBKl/9Dx8CV+K+dTidJwpnH6K0cJn63QU3llTeTVZsHHfz4AsAd7FxkQI2jyB4QPhRydc1gsl6inkjMLkYPJYhjRSOdpuqDzjY4hfZGgJC1WAl2LozEmG7UKvdiQeKa/l2LisA6t3ybtMDtUp9Jqqp/LzMEgY/tK/VW6r9IqugqpEVE3i27vqoGHvDCUxAvR4UgYzgBCUF1AxedL6vfEqtxcpRXz8Z879J5kMnt43watV9TT9XU9otEDQIzWtVjM5xiPJ7C2CvuQiAsEM6wlAB7J8r2yTrpu+XtpNSz1SrpuaVNpdB1YdRnB0dYWW9GFdmr91zrLZPnXPdd/rt5dvRRt9XO006wWY6fTCarKZrSsytW/h1IirRJBRexsmiZn0g0XrHhPkdbJs6s45zNDq/TOQyfKQ0m3HJngikHw3NKGTcjvXm4iQO0QFPoiaa669657FhffefiULiILlyr/HAfmFSubJ+QG45I57AchYmZGkd1arBeTh8Xl06yHQ+dOs/CVDGfT+afLLVlu73lFcaeVf1qdM9PeXB5f9cxVFlMAqOIczQOS/YaPe45IRqjoz2K/5o7od/JL8XIDSpI6pUnWRxScrlnZn4MntJwfURbSi4unCUQM7xmeHQicLJnpHYuOlCTGD0nXx/Bw3qFpG1RVnTOYpmrncbH50pU1eL0zpyyGhsQqbEPt4oY73ufUOs618AohDTFMHSNLcSdWinN70JohCK7HxcJ7K2OSwy3DurZSRCwjMjRaLJHlOhF2iMrzFXtO+g5jDBwHuF5eWJpvVxX4RdNQTWRsyioUJl12muWCmeX2KG/rp1bj54m6CISZAWKl/B9CJ/lejt6opw8XJfpAxU+aHGcYFmBE3ubgXAPAo64q2es5irgMwIPAysIZ3rFnj9aHXbdHozFsVYGlHaRCsTZa2cr2r8By65iZMahsFTOpige974h4zoUECew5+dMRUUpbbojAxoBi5pDAxA3yxrEFad1adBYOYnZulTU2ry0DYuCQK4e2Zg65ZQQRvuvpX6bnXkdDjE8ZAJScD+TZ/xwRrflGHcVu1poh/hou75z5t54nOmOj9JTVS0A63lvc13OBNQKVKqwvfyYFeBKBw+A3RricuqEzjxXii9ZP533XmomBUbJRP/UZukYca4kzY8i6R+5M/oTM0u+sozLhYfDC3KKuMqFjGf/cfyOd+q2parpOGEl85mA5yMxtnbvH0DPOAo46yGyIqw4tRaUic6iwZ4068b7Ub9NGZZzrrheTyjdNUfzo633UtWlI0TkXyEKxRrkmQcEfEEozW4K9C9ky4m7iYTEi0aP03qPsE+Cci8gmuBD4DN90A85a8VxrNXmFWfVS3MR6aKV4n7khbQoypMg/Tc9U6r1LhbpmPHq+J9S9ogtkEUsS0CkMXGfcKJHdKj6zCVUa6olVIMDx1d6/nYY8y8xsxW/v/Zk41LPbwmeBMppXa28SDfVV5xkrzB5gG8XGrOoAhd9BDCIczWfwzmE8GmXkYCiKToGZOQ9YqSgjiZ3LtoGxFYy18BSZWdITrRDPztSGzDzEItmb7J7RNk3yii8Zmc4NpnOESZ8Kg5CNP7QFUtwXtJNsmbYq9Wv81BuNdJ61AsxwFAtNFHlXqaXEAikOs6synKyKBS2pg8x0hyfOPKCsHVLgPdOMTEkHQ7CaNxykaxXXa2iVgvTFoKSU6kptmrj3JSKQVded/kixYHIoDCLoEgV/I3gf/JmYk3VTup5jdZmQkzbGMrznYrJGCJkQRtm6s4+IcjwMTdbkZ1agMmGAVVXlv7qCVssLqtN5+If+NNMbGqMa5Wk3izSGCzFVMGMXzWbqSXLIerMSlclnB52tQpsDZVdDUFP8c1YxrmfaFeMUYqiOf0mPTR3ENditOQ3P+R+yauHhONgZbdxzcSx7M0JhRiWayn0yqcLdjGEvdc73P+aQ0QgKGE7L45xD27YpaWNOxhjq4r1D24bEom3bQCrGzHDew7uwr4VrW7iOX1hov7Vh05mqstC8RzNy6lY6W/9jPyVmxrlOzMpAaEIsbMiWogL4Rd1GIVUTs48b4ETNK3NPB3danzMrCzeAKomWcRVwzoE9ox7llB5y4/NOof8ZLUumSlFkakX/4+tIXjzqK7YBpAlg0mBdrRTbfPSsUswI41LXCdyCx2x2DLDD1tZ0oIiIsjoGMoVYAJCxBUOTtoTPAVX16XWWs2qC6o1vy0WgaRosl8u00S1FNMrRetm6BmibmCU5HPPR+OFccOzV1trwegysCUyMjIE1Nlg6o/go+yWkCA5GZo7eRwbahvLjb3ENAQenY+859y0JewmMpq7rGPSfGWvbNnCuDTtoRYQvmUsAits7nDZiOP7P8jZRDfmBrGNcq5zWnlVRKks7rMa/Zl15iTqfQPniE6l/A3FxTl3b008gDbpVAEezDwy9BULaAzXHE5B+uWjbBhUz6roboZeHpWIcorFW9QnuC110JhLK+mGxftyvsvB1oyWyqCzz0Vob9YIO3gcXC+8C2mrbFm3b9vRg2i0i/wEgk1K+2yrr3KqqSgxtSP8WkKKOLODEXAWJtW2XmWk+kHRt+l1x9JsTvhM6pQOCV/XdaX1bDVlPXkRiGcBRIao5//myn/6KkxpHkhVhFVgRELxJP6+UJsHR/bM8x2C4sNIbRlXVHdGjrIt+iIyDtEM2AGYCjElcmUX8eUIkYmWZ5kfOif+V7EHKyl2kqqqOmKrdNsqNcrUCXzMrzbACI1JGFVUHYaxax1aWDQDj8Tj2Ud5sRURXYwyquu5K6tQNewr1j6miRIztMTERddfzqKppmkGT7JBycMhv5Fk2BGShRzEueVGFIvNFpyf2hjSPYBQOs4LhpNezToqjhfDspPQqJOOS1RkP71o0yzlGE8ZkMlG5zLqOl2kDkCjKLNsGHozxeBJQGQdXjuA8HsS2zcd2oZNTTEOjMGEKImZqtwcRGeuRRfZ5M2m3IkFvQ9KT/q2RXzKOKNJ+a5oZlsYCKau0RmpeIciuruqO467pOMRGUT0WI6iwaZqEMJkZ3DLaiAiNyYuj6OGMic8jC2Fsum8r6aj0ShKTWv/qnnkakGmSP7iC5MNoYbXu5yX1KSEMrWZKpH6cm6F1y1FG1Ai2PZxrAQ66qM5JbQoQS6UgM+8ARkRm0Sct6tfOutJt2irtntFjlEoE1fOwtGyeBiDK88mwpxiYFiVLC+eQ5VWjKf19NBqhqiqMRqPOddbaDqLTVm9SDLFkrG3bJL2irkNwZzHZUEH9vqgErooVRXVJpzDdUc8qadU9py+iq8krTVrdOiO2DF16PEPAs4RWz1OTzdXbReoXzh+ix00TJDGTzWuUrPMMlHJmHNcAQk4ygGAlxIcz72Tm/EiVg821LTwDtqohyLJU96/WmWV0mHuI1naWFjGNMWjbFpWtkkhZVRXqyBS6XgadQtJvkn8G9JT6FkNRDxmZB0RXhbj3pg+oJzwzz3FpmzGmE/KokVlmQnmrOH2OKBoBjAlGGCXCAl1/MukXub4sLz0/ZgOmogOq0WiUrCjMHDisNT1ZOvXTKb+/aCpZEKtjIvI0TZNk9e7g4+L7s9W2z5s26QEi6lrmwlEEC9WTqIViLSLJitSpQFTTLAFPITbTAOwQuZkHszApA8Cnhs3ni5CiZmsbRDboy2AA2HidNhNRwbiAdT0k4nCZEgcIYtZoNMJ8Psd4PMZ4NAaYMZ1OYKuAamSMdjJO+BhjOliT0iiTDSUkucQY8MZAYq+Z8yYiXTG1WxJR171GM1pBecI/BOW1bYu6rjEajQJ6q+vQ+95juVhgsVikTV00oxIRdGjfzoQqnYfn4BYSjA/hXGWtxXK5RNM0yWRsrQ07EQ0wrhKZDR37oqk/xMRaovQEHTb3ks5LhP6GsUCByPTBMy9+WRe3CoIQcfRdYlhDMJT3eEhTkIXz5ZW8aVswA3U9BqCNGGcRM1cxtH4B4igqE3Y2m6Gu6nS+HtUg0xULOwgwRjz0nzZcWUJk+ErGM6DA3JX+O10f9XdD09mDIwPp6tiEmYkxwTmHpmmwWCwwmUxSu9l7IOrRdNiWtqaKuDoejzsoUFtsxZIbGCaD2aVXWsl2T2IpCZVcvaQOIbFnDZ2V0FuPz1Jnps+L3kcPz5fsriROg52ifqmn/2G5rlj1y8Vx7VP0NQPLUzyUgBr7qFLov7lYi944dS6ku7K2inWLf4z0O8V3bkSlcN4dPTJx27bFw4cPMZ/PMRqNMMUUzIzZyQmWzTIxgSRig9HlMOXgXt2X6xzeh+ftMHMWxmiI4CPiFBUOASFTBykHWw7pmJgZy+USQLAeC4KTMTOU1194Unlco77SJYXBqI6PjzEejzGdTnF4eBh1ZwZVnSFomcbjeaTEyMDJgqLPPd+t++LIEGFcj4LDY0Q+jBAidJrP4mkU5rFwLY7WRSCghziRiEAmKPPFq5wQLQRpW0GZ8waAS6XPF0t4rjGdbEURNPiaBUs3dRncCkxU1DZS1ufI3DHGJGX5w4cP8ctf/jJJQnu7ewCAW7dv4+joEBcuXFDt9NDyuokMYgg+rZqjq1RGndp3kNrwOzMAYAiG88Y1gaEw6soGcQ8AE6NpWnjv4JzHw4cHGI/HMMbg6OgY1lqMx2OMRqNevKhIiaVBYtWfpmqxWGA8HqOu6451o3TReJZdMM5CzIihHite2ep3+ZKAXt8QUdj81+jVP6+mq1DZ+R9uFGIBhOfIs8SyuvJp8f0yM5rWgalGXY8RsswGnRl7jlJnoQc8Uz3Vr1ivqqowHo/RNA1u376N8XiMa9eupesODg5wcPAgzr94rw+MK4BFSm3PxoH19Rqa9GexhKZ71He9L2nIn8ZgNqmOMIS6DhsyOzfHbHYC78OmMYeHh9jf30dd1xiPxwm16aB42blpKIZUt7v8S1kznHOo6zpYNp3DeIMGbtqhXwR10RZBu6b3lJ2UL9PWOH37rxKt5eWxj0ihj+TJnS4Yvi2UfcbO5KATA7q55fL56M5ASueDITWJKM3zS/bOAxWiFV90auvqqETYjhy8Htvr+eG9x2w2w/379zEej3Hr1q3gowXg3t27mM1nIXuH8yvnl7Sgc5yyEYCGLu40gTt8elPwXIqrQ/WSTyMKfWNhTVcvptUSWvmvnyOAquNGVfSHvo+IUO3s7KBtWxwfH2N/fx9HR0eYzWYhxk2RcPhy04pnldLwKt8sRZEkXSEiCa0eDL+CdNr4Fo1SCFwurZmhhNOyhW5eE0KfYYg468FtE0N0olNsJ7SGs/ibmLABs8NiscTITDGeTMEwYJhg1URh6T51spd1k8mXJyuAhDhu3bqF//N//g+qqsL7P30f+3t7GI9H+PCXH2J3dydYOmfizA5YCUoXPSQBxlKHp3YrWjCZ0yRkQvf98enorVdEcb81FqOqhpkQrEojtLOzg/F4jKqqEj8Ro4iUzcwJWJUOvPpZpc6tmkwmePToEebzOV555RUcHh5iuVh2Kjlk+XjWLJhDpBmaTmwk3v/Pfgu+GDqdkXU8sWIcYXfwd0Qh4NwhY2vU0YHhxGwR1mSEyNCIm9ObD8zFgBADt5sW1RioRyPkuMzTZv6G9U7SdTdapm1bPHjwAO+//34S0StbYWd3C4eHh7h582YKrwKHbB7G5hTUnW3fEFn6JivPutPF+U2n9ioeIMisrqrAiBMIIpiqRl3XK9HVkFg85Mg7dG+l/TvE8U2yZwyb3IfMuc8WdRBWXJ05HVAvgaCuVKIn9d//8Jr3+FTqJp8pSlWi7r+ExM4orurUvbRLFNifT0uIvIjzV6q0dHXGamKiFHL6c54oun6eVToecRtJ41mQT5+dlpJbbmY+M/Q65R1PJhNcuXIliFxRFNvanmAymeDSpUvdiYt1Y0P6otPsTnWpPLABnXdOrxrLpQOs0Do9vC5rlQdFebwCQueKlcVai+l0mhz6JMK+jO96Vmn9/KDO4CiFl3UMa71W5MWi7mQdEFkK1FEGmg8NtM2fvPpUeHd50jIH/7LlYoG6rlBVQVTxzDE+MydhFKQYkFk4HlwAGKN6jNbHRYyiYy0AZkLYxw6nDax+dZVoWYKCN998E7/7u7+Lvb29mO8LsJawXC6xvb0N1zYdnZj3fTniqS1+52ynMB3tAQEgefQH3864OQoy2jqNaZXP6VVXiaAVgGQy/uyzz7C7u4u6rnEyO0Zd18k3ZkgR90ISxUX6i67HF0wlQ+tqq7rKWxL0I+c1MqBhJ8zhJ55OpWVL9FBVZTt6F0jdGIqhZcQGlrA2oK5rNEvOhg30fcvOOh5Kq6Ou9yuvvIJr167h+vXruS6+SVbMEGeal89OuvBnmDRjSpblQh+GXqgWnZuv9FwzSpk++O3oAXhGkXIQ3gyC8g2rvAFlqbG3iopokTM4DFWDk7I2d2xfqfmkqy3168Hz2AYdpBtEoX4dhtIGluWHCyMDKjpA67JyqvEyOIbBIkpq0YtFw6Q1aAP1icxuFbwdVmIPXCTqLFZPYoZ3LawJcZm5BZ1LI3OI7xbiXBt8yxgU+iHsJgzokZIKGMqztgItDagp5Lzegu3Ro0chGsAYTKbjdE1HXCzG8nnQy9npFPnm1MfkBqQ6F23Jyh8dOy0XZT3n2melsRiok8lOIHGVtqkPkNy7bq4k4DzoTF//9FYYIxtYQBhZzJQRbFRgRB+e6DFuKcL4UtaEYm4s6/STr3ey2MT/BBl49jg6OQKBYCuLra2tXp+fxsik/NiYlVeXPIbSUSD0nExkhhHk4hnGAIYNLBt4J2mPZThKfxdPXSmvD7ctWB4ZIB+PWEgKH+sB3zRwx4+wUxOmVZgCTBYhlSDFf8Pmt8G51sMww8CAMYXHGI4NYAlsHDwWiEGEoCiWguOfsngLIyvYJkrGV4peo9EIR0dH+PTTT/Gzn/0Mk8kEFy9cxPe+95dxfHwE7x0uX74U0W62Xj67lBk4R62odIfkJ0tv0xC8d2mc6J4K65BXZfoNm72CmcnKESLZAUm45r0PD3/GYS4AmDyK4ETlTMHzSBhaGCcMsIeNE5MJgBURQ824uEg/jaZreM1gsNqFxbHDbDYDKKgBtra24OPLNtjcPSaJXGermeLtwsxMmsghvi/MZ8sEw8HVAUyAlaEooEZNyjPXQUExWZgImZlxzHR6coTt2mBchbQaTNGBk6PXuiAuH6NZGLAwAMbwGMGzBSzg4eGpAZTeLDQoRgdIXRIi058Fl1YiJpAXLWst5vM5Pv30U/yX//JfsLe3h9dfex2/9Vu/iePjYzjX4tKlS6kscc94HqjzjkXiUb8Dv3IQg1DggHFjaOTru4vpetJdU5UMKjke9gbf0HXPDokIJN9VPDHSIIxf+23LYlO4ZIUsRCthxZOjznxgJe1w9ziifoeoN2mA/H7EhD/0iNOHS08uGC6JkcSCzjVF//d6bkgi7X3LR7pOs/Ls4JphRhQ907t1CG9MEG8uR9QI2WGH1BAY7pnOURUqpb72XFCGrHfeeywWC9R1CDJ3LoTXhVCe5Rc7t8756LXS4EqLZLqiW86mdSiu6yCzPAFkUjxebN0XR3nokizuyGEYZWxmUBYj++8oxEQRCWzsfHPeGke9gs7vpP1uRAUg3wEUIUS6zsWGrth0nVtVuU5F0yFSYS3cUVg/6b6KCmW1yEp/Oe8wm5/g0v40ZqDoIuvEwPRCxyF20FYVbEzM2JsZhP5+Bmesc6onMjKT1D+3b9/G9773PRwdHUWrrMetTz/FbD7De++917P2ZfeLiGSeMTCxKT3NenfkldKk/lzyMUWCMrX+hUjSCHPvOvne6fBoEHnq9aSuP05pGNDe0sLQNMOS6/Rn8pB+QlEbwhhl9ZSQlWHm9TiDp9vfQyVRXICcd5jP56jrOuwlKeuOrlN33QI45LSrrM2hTL0HMs7WhqEy+sysqiosFgvcvXsX3/3ud/HlL38ZW9MteO9x+84dfPzxx51FTPvwheMej7k0fWH0tIFRBQxzS0Fmzz0N8CHvfVBOU0jstuq606xHj1210l0gPnMouFanO/E+Jhg8hUc9vfqfXiaLAhjd1MZPfERxuaFsH4d2RcccBhUWN5OO94TcyPg2J6VnHaxqFjObpsmJCK3BcrlMOdl0IaUa4VmlIQ/9ofObRBGdd8wmMbProZtT6D45emxhZ+OnCAUlP+UxFuH8yckJHDw8BYY22Zomq1mZ7uhpMzRNEoSsd6aW/E7Hx8edeDUBDtZ0c4kNRWw8rV7XqHAloj/Xw0vdZBc5h/J90Jd5h8Vijjru9C3Iq6s112OZwN5jvgi5xEb1qNCR9nV156FyDGn1gHPBuPPLX/4Si8UC08kEP/vZz1DVNa5cudLfMUnXanCz4pcEbKAze+5IMa6SGMFRsmRmo8k4B/MOKNN1uU+TmBnHx8cp+ZxkNJHsmp09DplgycLXvpOFQOePT2InUEzu85NWpK/y9I/eLPLrnE+SKRz/upI/gumewc5huVygqitUturdmeqTkE6IEFjMZxiNtlHXEpfZbWX49zHGf2FBZs57T7Rtm5jZzs4OJtMpPvjgA+zv7+LK1Stq3IlDsjJY9Or6fNAQMnvS1OuZroyfleCrqqAnzWpSg/KLJBZLFqddod1AZodhRvh0WbtMtnJDV/25bhedz49iT6xi+vrKbIw9V32FKYrms6MGU4zaex9YbG94JXbWK9i5sIN2dzOWKJV0rj1TlQfakN+ffJekjIvFIuXtWiwXKWnh6v58vsDFupjKp8HUemKm0HOLzCKVwpUA9iG3DIl6AL7YAdNR+iqkBSDpWkorV4nCngStYAHpWGIwRGqPyn47VhZyrhppNQUj7FjikTzaopIrPJaSsafDUQGACI495osZ6uk1VPVoyGlkgErRt6xfcXW0OnaPhff2yiuv4Dd+4zdweHiIBw8egJlxYW8P+xcu4OrVq8oy7NG6Nu3e9DzT56H7M0N6D0Fkz9lCkEj7Z2lQyKwU/shoS7au/6LN3doFI21tHy2Gkv9piOHJvSsVqmeuybBlrvMcEXsGLaWFAv5xBxIREB1hJdyI2YETQ4uTX5AcEYLDd0waKRBPKeBPZjPUo3HczCRs8jH43E57Nm+H9918blpn9uqrr+Iv/+W/jMPDQ7z//vv48z//cyybBS5duojr1693Ms1KJpty8Xoe6WnPr5UC+PPaYUI5/i5Qqf8Qh9Pwo9vJnydTK5lSCcP17845VcWVer5c6ONXdACod/Oa6fqUNz4ODYgqRYU674u1jq24VynUJcWVMaZfQ1ZFJB8L9X2DOgKrjUd1XWN7e1ttxBv0oXVdJ0faIXz8LM/JIfHx865vNfTA59QfD4C4OOgBGFfFqPx33mEymcBRcM9w5NM1QJ+RlY60T63eRCn9ktTh5OQE4pskG0IAcbNUmE6G11V1HIoAeCL1jfXobhzdRw8dG8q560JJytSMzEdkFjLMSiqB1aFboa/CfouLZYP9qo5Os/k5OZxtFW3WAq3D6/YHYzab4eDgADs7O/i1X/s17Ozs4Cvvvo39/f2ko5b6WhM2Cvmi1c3PA/WYmXYg7esqnh8KCzMlhT8jWJG885hMJmALeAIcXNff6wvy65GBu729DXHsFe9wIOScG4/HuY4tJ+sm0EcBTwtdaq/4KiYWzM9EqsuT7cPk9hz/jaKmb8HwqGqb3rOA1n7SIo4VDIvafLEMSEjtZj443nvduE6XrPs/vwOt6/Te4/j4GHfv3sWFCxfw9a9/HV/96lextTVBHVUJ+dURbFXBe5fE+ueBVi2qT5vSstR1enuMEr/I/h7SXA/oe6y1YAtQscnJOv+yz+NlCDrTDFVbwPR1m2z/91QZs+jziHp99ZQeiMSUwMh7bDOMWY34WDGnYBAIP3tOs6JzL8cQccqJtnk9dQFdkn0fl8slrLXY29vDtWtXwRwt1a4tSotB/fTFLbRPi1aNmdMccFfRoM5ss/56fqydIjY459C6NsYUGmXxiteJgh2ff8uGHHb1DvNaJ2FgeqFPwLBFelOU1G1zTzkWPygysRDKZK2FrWQPxc2MEWenwGGSCp5zbV3bwHunxG2pg0lGrDSYBSWB4djDeQdjLEgynw5OGq34P3t79Hux1mIymeDjjz/GnTt3cHJygnv37mE+n6NpGvzvP/xDHDx40PETTD3wlFwZPm966gaAYUvJpivteQbs5/1SslXWuRZt24DiPo9G9GHKZcNFpuI/5xWQfZ+ZSbiL6KUCEgoZxbSIKeeGBv1ZGMvQ1C00iOkvMFoR04pyWO+XudGjBylku+im5A47l3sQPJpmAe+avEGGZrqFGw4h8DPPDOc9WudAtoKxVcR5ZXbZEo6dbTzoficKO1htbW3h/fffx4cffoijoyN88sknODo6wmKxxH/4D/8Bd+7cgTE2OdfKnyRIeJ6R2ecjZpaDH9nbOB3rWHegGJ4seJtW9Ck3aOA955U8TATPaoPj0oVgRTFPegANweis8+kiM32NJhnYp9WNRUY5Fw1bEuWVGxNdM5SOp3TpEd3lYxGjk1qHEVQE7F2e7PqJSbIUZtItLPe13pFpmJJBQPYDGK7e6qoX6Ey2cnQuBMhLtMedO3ewWCwG3vUw6n5JfTJA7C5SL0VZU55b4jyQxSmWGcnPzDMn9GUoTMrSHSIU8/mshEMuGVVVhWwQ0eK2yk43GLGwQvQ8Z+0Gjsgmr2agXmdSMp2pHlnoZCybBZxrMB7XcZs5Wu1BEavofRwaRqsZSgPA+erW+TXgXgMAh4eHqKoKr732GqbTaQxZ8wmNad1Y6XLz+egmnw59HvPIMBCzd6pP6Ekw1HnPbhqSlKo3yUqkwlYYsjmEjygtrOw2TMpCbEt6lieyme16Er83/TcajTAejzEajcKxuOKU9dEiyZPXt/RZFSHqzIwtXDOkPglP4Mmi8axcJ3gsZsdo2yWm0wmMVYtRuAQhW3ZM2BhRVQgX46ArMzGDLAeG1hc10+Nw+njv3ic+bEBUD8TfDx48wHg8xte//nXs7u6iqiy8z4kFQMUGIFIFxcxeMrRhqpIvDNQnnXUSiCnoWSNO8ymn2IlnortG1GnH/RW7Oha57lxP3tAik64z/etEL2Y0+uHh+5/Iqh0Xs740RRFscR4gQCc5Y1ErzdHOTaXeTny3QhAAhwyt3sFWKnNIfOW5+7N+hHWdZHEoGFjndW/Qnd2Rr4Pww+9y/CyXSxhjsLe3l3R93ZRPeRGVn8+Dnuy08V5KCsMuYavv34SqwaPPft+dSspICSBMRK+RC2UHSW3FDPem0f/5rYKRWcjzhIl1N7ft3yYiyVOrZyo2TNvIR9JJKjsaBUN4XEr6WoKHj+b3ALvadglmh9GoXtn+VL1Yjuxmb4zswk75wqH7VTXOVO2ByWqMwY0bN9C2Lf7P//k/uHv3Lj744APUdYVLly7F/SVd7sCiSs8rIvu8aJiZ4TnvONKrmxYvlGhJBE8GRBzi6CKzS06oQGJmn2dfaFFCQltCpGHeUESo1MsMEUXEeZbJmAPB+ohbezuYaF3VaC2X8WQo9QcIgEtWSeYWy8UM1jeYTvdDPVAyUoIAbgaD5f0DsLYKllISETOZiQZbQYUR4jQqc5IBYYH6xje+ge9///v4l//yX+LnP/85lssFPv74I7zxxhuYTqdwrevcq30KjTFpM+7nen4+JXoCzOxZFTHRW1YDqsirXnLLQF/X9HmTsJvO5BXQ0LHO9OnUd9XRim/yrgiAdjeVSsYZrUWiHrPj8i51XC4/y3iR8ZU6A8QBmTnfwrAPBpJNitTuEiYnOeRUp16LMdQPm0iiYkUvjQCXLl2Ccw4/+9nPcHR0hFu3boEIePedd1IygVx2FsleMq/TqbfV3ItFffkn+ZQ9gzy4N2jXvI4vaoAHZFSEmKu+DGLvk36iPASRSwQG410LTx5VdNzV+rDEuJQYzADa1sF5Dql/SPRluh9X6AAfY7DIvKrrGg8fPsTW1ha+/e1v4+7du9jf38PVq1dw/fr1Xi6zx3Or+dWjYWSmFaaQlf/5ST0ivnKCSDTqCa4ZIadGGCx5gpa5ub6o1ZBEnolGS6buCn8eFElnnpB91KV9dwTs5TESn8Ka6Txe/4lImR9tYrkeBoymWcBWHuPxKBt0EN6jB8DswbCpLABYLBs0rcd4ug2JFMhtHWhvp33dU+tbl9G+iIYSAXD58mX8o3/0j/Czn32Ara0p9vb28NaXv4zpdJpESjEKGOpuYvMSoa2mQWQ26M+UsHZ4jc9jnwoby7+6wtcQezjv4FmnmC89uUXc7VVWfx+oxqboTNr2JF6ZZjC5ek9xkSNd/8jQI2Dx0Wm2sjbpBfWClN63erltG1wzqnoEUNSVia/ZYAex+tuc9FojOrCqqnB4eIgLFy7gG9/4BqrKYDweY3trC1evXkXTNCl/mYjrzwuAOGt0wtOIZhhEZr3B+RwyrkCcx+Ca1OkMGh7Lj8mx1zGalQr7FZ19luDbQQa69o41pKyJUlDyiXuccs9YBfUPgLi/uvcRACo9Xqpv97AwtJB2nGGreuiFp2d0BM+1Ksth9LrKMDObzdA0DYgI29vbaSvAgMSC/2ZepPr5wZ5lZHbW8f6k29JjZs/LSrCOuiiLlbFtOHvus9BiQnaKfVZJdGVJb1bqzrDaAHB+6houCAwihiHA+xbsYliVpySei/ogZPTIabWJKOwa3jpMprtYtTnI5lPs9Mmr/aq897h37x6uXr0KYwyuXbuGxWKBtm1jkkYfUVzcIzW2X5fxZCM7Xixa6Wf2PHsaA0gcjUW5swrxfI5Vet6o1zcU9HmUf3Z69elYhMO7487viJa8A7OoPFStmNOxEIubLakSC1mNRsCa1EGn0yrFhLpiYP4cHx9jsVjAGMLOzg4AvYlNjqxJ0QPcTR76klZTtRF0PbUfNzFWf54UJpwvXNmDpHIOEfpzaJ42wzP6q29Px/aUB3eOTMh16IRzd8ZMic76Qyahi3NVpvsYAgPsozuhICBA/MVSbUlEs1x/5z08A1VVQ1IaDTRhw4pS71eKKpFiOCdlbJoGy+USn312Bz/4wQ+xs7ONplnCe4/tra10fdK3blKFl5RopZ/ZMK1bjZ49X4ck8IhFLJnrv8BKvRBEKDejFWfaFDbK3esHDm5IXbGV4sO8b2EohlcKU1LKLVJKs7wfBGG5aNF6g+l0J+YyC8d7zBePP0w0I2vbFicnJzg4OMCdO3fw0Ue/xDvvvIPt7W3s7+/jtZs307XW2rSpiS2cZj+POOHnlc7IzJ4jUiOR1RdOTPf5hu2fBzobfK761kf02vm4XNzO3+cq0CzpkTiKj6kKpMyeLPWLP1RVmtbBg1DXE8iOT8OJGc9d3W4Ryj1juVzi5OQEH3/8EX760x9jsVjgypUrePXVV3NL4zvNTsb5PUto20uRc5hOZWb5PctIeT4YQU8xnf5DHNgbtuMZbur5dJrnRdDdjjjt2VqkP7/uVUSt6CWXmBWjbRvYmIJIkBehq1vrfOcwJiQGV3ZlOuvrXX99Fg11ck9JGOC9x82bN1HXFZpmiUuXLmF7ezsnl1QLhFiLX9Lm1PMze965fhr06LuYdNpHWBtr9ywNpLO4ZZxSEs7dsiieiy6nMqbr06VEqidJ2QOPEjPzzmF+fIzRqMZ4XIVt46JlMtUo1seQAcOF6hOhdR5MBFOP4c7Tl52oAT2+un0r70y2kAOC8eFv/a2/heVyAUlFNZ/PO0kFvM/+iYSuO0Y3u8ZLKmmln9nzbM3Uw0qLmOCuO9KzSE9fjDgHQ+uIPmESG9lgV5W2qtqP7x+ldWaBYS4Xc9SVzfGMVN4Rc9clPVoow3sGG8DYKoatn4WEtQ7dp5V16g4Keem895jP5/jOd76Dug4Jnj/99FPcvn0bJycnvU2odeaWl7QZrXEl7ZPoVJ9VHqcEya7lK53rXr2OtAL4SSiDz0PPFFIuFPrZz6y47Mz1ZfW37sFKaOSQy0wy3fbT7eQiOztwIfOGro/ZKXVmDePplMHQbYtsULJcLvHw4cOkzK+qCqPRCADQNI2qe8fZ5aVf2Rmox8zCBAKeLUHrcYnhXdePJx5+ruhJD+hVLIQGn5U9/okIVV330ISefGevyWm1zNd47zE7OUmZeEPigFQ7VRefDyOObRAYBkAVREbqqyPOUuvhO4NhwhiDuq7Rti3u3r2LP/mTP8HR0VGyWO7u7qJtWxwcPAiJLlWyy04iyZe0EQ0jsycQJPxFUmeQxYVU8phxZ6F/NkfLM7UKl/4tUXdVWRvQTUdv9rTQZNbXhedEMbOukj5KFuCet3wpfrKo6c0Am1xFa7D5Or1rRGDOOTx8+BA//elPMZvNEjPb2tqC9x6Hh0cdn7mXdD56MZMzDlA/tcoXWJkBOk2cGHKgfRLvSE/kXmnZ76G4iFamzB5mZI+pL+vLsvDeh+SQpl92qpZasFi+SwgWddsUmFq/7mfXqslnd4Ma5xxmsxkePHiAuq4wn8/Qti2Ojo7gio1/UzPRdZx96Zaxnl7I2MyhtbZxbYp7G77i2aJnceASEYhDLOSoHgWXAyI4dQ33UP1j+JpFVJ12FBcjjmcsF3OYvW21AXD3eeJ9o/uwbR2ssaCqRhZKyvo8Tp+re0VnG+s2n8/xySef4Pd+7/ewtTVNOdgODw9D6FL0OtYRAMHQQk908XqRaYU18/mnkhG0zsU9AL6gCj1HNMiOtP8ThZTe1nbFzDRymFQpjzsBAzLTkWnMHs1yCWv3eswsx2km/5xEznmQsTDGIuePLRe3xxggRVN1vRaLBe7cuYP/+T//Z6xL2Lz44sWLeOON16Nxois9EAAy1HF3eRYXuWeFqk3EmueTSivWGXU5L/B4Ob1p3Y2gBwVHcfIs7xQU0bH6qQl4qiVwzQUSWcDBCCDGCBL3i4jgukOXkwjpPaewoCGT/MqUZoM0jDJ1tAKQA8arqsLe3h52d3fB7NG2DUajEXZ2drC9vXOqC8bzPx+fPr244UzQdjBG27YqzCa6H9HwgPyVpzVdIqcqW0noY5/O1a2rGJlW04fzHh7L5RLWmGiIIMDnK4JOVFl6KPiXzWbzsKnyeALADIYxbW76Grgq3cxRPRd8zKy1uHHjBv723/7buHjxIogA51pUVYXpdJqsmhqB5RRAmSG+dJpdTxWAjqLyRSQfY+M6cB2COn51B8dZWp5GR7ypsjb04YDl+/xLxBArKe2NweWiaRoYYyJTDV75pK5noGOr9xycVquqxmg0Ts/ZzJpZ0qoW6uUzi+PGGFy/fh3Xrl2LucxCnjVhUgDQts0wM2OfRMuXjGw9mdM66OmZ2588DTlypvV5MC/NBmU+obqd+pxYd+nrFNKy5viZaGjWblpEkOdUQeiIadqt4HMZJyw6JVH2l+4h6lrVRuccKO5uz+IEW4ik3c/Vzz+NBCEul0u0bbBWShwmgHTcGIPRaPQrvKQ+OaqAdQPwOUVrpW8RIjJjv/Kal7SOeh0a4jKZY5/ap/ac5JpB+SuY0TYNjKFghOhR4NxiuOCoY5vPFqjqaURmQ/es+302stG/7IMPPsDh4SF2dnZw5coVfPrpp/jlLz/E++//FFtbW/jmN7+Jd999N6YAj/GkMSg9NFtcS3J9XmQp6nFoUGf2/HdVVwxgDqsyF0v24+QZ/VWlpL0iQgioEIX/qTrsU2h41JUKdRFtO8yseK52jg4oNuzKNZ8vsHWhTmFE/ZYV6HO4QhtNkMpanCzneP/999E0DV599VVsbW3h1q1b+KM/+iP81//6e9jf38f29jbeeeftnvQjSToln1luy/M/O58WrXTNGOozRtSrForf0nrUpafY+avkie5F8dJsguc0JQFirTUT94Py7seo4obXPc0hyvEBKXs0F94TayrV6eKoVy9vCal14iVK/BOfM8k7lpnM6l5ZNVfzVnnZkVQsqgxO6rGuUUIzJ4bzLjAEY5C0Dh1xk/PlKMsoKFcHDMDEemQpPKgG5vN5x53i5OQE8/kczjks5gs0ywaudeuf0WnvS1pFCaPrpHB5heiuimlWPKPYjRHGpkf4Y6L4x3C+hYcDI6dCle+E1a3i4u9p1v1p0iqjIw18Fx1Z6MN8rwVgQbDR1YIJYLOi5wqLQU5j4+DaFt65sIdpb6ypOhPgTE4VYH0D45cgXqKyIdstg+BaDyIPIgdQCzKBC3hvAF+BvAnIbHkCW1eoRlO0GIFRQaYAMcNyaCPBgNkg7AFF8AQwMQAPin+Ji8VqGxsy7/p4mGKA+cHBAfb397G3t4eTkxP88Ic/xGg0xu/+f38Xr7/+OgDg7t27QZdHBrKpjbidpO6kLmN+SX0ypeI2MLPsKR+gbamXKKeB0Ocx7QsqHic/PRDGqQkDseUWjn3YF4AQrmDRrcjfeob2ONU77e9pkzB6IemG8i0mPVNnUQg1NJwZGjPDE4GNgaTQTnyJdKtkHIU/7z1c6+BaB/Y+gyGFaDQ5Y8Lz2cP6FuQWIN+gqgLCAhNc40FgGONBpgXFbNgcmRmYwN5htjiGHQXXjBY1mC2YTYhqQPjLWwZHRpZiOBUzY45/oXnMgDE2LACewUzBMZcZDx48wMWLF7G3t4fj42P8+Z//OcajMf5/f+fv4ktvfgkA8NlnnyEgWAMTNzo2IIhzRhnM/5KG6Rx+ZnqFEBl+qIM3VC48BcpaHFUzJd7ojYDLYUKdL5//0HkaTsyrBP8Cd/ffVgEGKP03VOppNZAOHbKM98eQjp/N9QxMTdwV+jIp5+si4tJhuF7ETDJRMJVFO8im4nxLIjKKcKsk0ewUXIjgnapo62pOmy17ZtZ1hYsXLyZDhFg7SesCINV6ybw2pRfPaZYRFL7xZ2eaaLeNXrD502G8q1j980YyuQ0ZWCsbgSCIiijVEwP3rzonjGKVkhaCIIPerWlaNG0blPgJFZlQw/Tu896eqQRGSAO16llnJK0Ho6ik10komRlVVeGVV17BD3/4Q/zoRz8CALz99tt4/fU30j0EyqmUXjKux6IeMxva2PV0elamLKePDmBksYQhaYi7wbtPF0E+mxrG1SR58kvkIxNPHFWhrIaameX8Yt0yh35LBouhbLQ60SZR2PWubZZomwbj8ThcEV0Z0h3i/T8wjlvnQokx48d5R+yQVdE51znHzKjrGq+99hr+zb/5N/jss8/gnMM//If/EG+9/RbImHAPIS4OL+lxqdoExj67UJfk/0CF3NQVIaNYjK4Io8vqiF+lDHb+Gr4AlK0AXUdeRD34ejWDZlSrnGs3crqNOinvfYeB5XvRWVd7CExLcAPM7PHTe3cZHRFhMplgPp/j8PAQzjns7OxgOp0mhicLxLryBhvwkno0mALoRQjxIRA8spNsVk5T56rTy3nRhtBj6N4YybWhpFVxgzJphQFJoLfoiU6rqXZ3AICmCZ7zk8lksB599YEyCjFAZKLO7PFIEKGOytDHJRb44sWL+M3f/E289dZbcM7hxo0b2N7ahvcei8UC9ajG/v6+qulLOi8lZqbDZYb79Hma1mo0R6kj6HYIlD2S+teeXtpzTI+JOAAEFGSC5a4g7/3gzkxDoViaCZTUOZYU8gyKYutysUSzbLC1tZV3ZFphCNC/ksvEoHV+1Z190u2x1nYYtb6mbVsQEa5du4a//tf/OpomxF6+8cYbGNUjuLbFbDbDeDzG5cuXT3nqS9qENsg0qzZafZam9UqGG9mu8N5Vprv4Q9szNXtLlw+VsfrRzyhtWLme3DV860rd1mnXnSGuNIiBuVy5w/mQMKAe2Y6VUb80VvXOzHHDxesMKpV17ZC2jkYjXL58OTG96XQKAqGNm5hU1mI0GmG5XPa7+4tzCHguaXCJSjsVvgAex6LeD3sAAElqeQHa9rmSMrYRItLlrq5rlZJfSBBM2h4OXf7Z06MlnZuImx6ubeGcw2g0imgo677KSBQ54yJqrKoalDZheXwpYygDrEZuzrm0jdxoNMJoNIpWTAfnHL761a/i8pUrp0hEL2lT6iCzYY9j4Hy9/MUwi1XDVHQ6eUtZBCta725Nv5qjq0zKKAtCyn4KAnuGTS4Fm5Xbti3G4zGsteF9SOEYVvwHniMaLwAxw2zbNphO92CsDUzWc3KgTRTvYw7MzHlGPRpFEfnJqUxKhb+0RcTu+XyO/f39aH2N/eACM/ve976HyXRcRNx02PvQE59IvV9EOtOGJgE6b1r00+/08gmDMZU93B6PkTKDDlycg2jQGVMr2d2mc+M5GIvDAtmwZTAxtzV+ZnqSp0yvqhDt0jGUz1+T9x4cdzcq0z0Fb5HAqJLxANmoJV766Zk0JDJ367yKSj+z0gggn6I709vycbTIBvHTw/nTjSGr+uMlZUpi5qYi5aqwk2eH0lKPhClIxCDkRV6uHeZ6LylRt18MmbApyAZ3lswt5BOjoDgvlfQrdVV6xQmb/zrvwmYq8f12RNaBirVti7b1qEcTGHo6Pl16Pkh9RLxcNVeCuNmqjC6/mpLAk6KVYubZaBMN+edMnkE2Bu4KcoCImfFYunhVu1/6+ADUieM0xqCOWWbXjZYkOCn0IiilqqueQDVcRvDDIhaFnUfbLuGaBqO6DmKulBP8RhDW566otlw2aJoG060dUNrM5OmQiJiCHMfj8cp51bQNfDRoPLvg4PmhlTZqrTdZuWY+Qy+gp3zGgLiUPNbj1Ox4qVPRVhGg0PkrqTy/7i9V7FmigRfMQz/ipwGSS0SiNXovTTJpy/tXqTQ01ErLpQ870wd0uMLRuXyuc/COUdUj5ZbRFXHDEemMzV7SkAFAk+xorkXSTr0iIxvy0XsxvD0/X+oxs+QTBDx3klcaEIyOiV0mxsvBUdCqDlnRVwSCsRVs2t6NcAr/6hcdEfKQi4YOBcrPFDVXsE56DjozfWs43Z/+ck3rHJrWoa5HydG2a+I4O5U6sqHvRGFH848//hiffvqpYlwezjscHx+n1Nkv6fGp04sdx1lCb506HYmtwzCfF6lBTQwwh/0yocVMKGa3kfbnaVT0C6Y1mJMZQ1zKkEFd1RiPJ3HjWqS/01BZx9I3EN6kw6RURcKu5WAYCgl5vHNw3sWdzMPDwx66hQGCMjObLxrMlg0mScyE+OP26DRcphlu6fVfficiTKdT/Omf/im+//3vo2kauGjJbNsl7t69F6IA4r4AZ6vJSyqpt29mZmbUR2eKD3Qsh6fA7c+TyjkV/JMUSqNofYtnA3VFGX33eQbU8zME1+gEtZweV7ZglbOdwGjuXNen0kLJGN6UZWgcgrIBJ4Upse8stqIlkzp3XG9iueIKUVX1Y3n/S3mrGPfQcWst7ty5g52dnSRmew4IbTY7gXN7L5HZE6LhtNnJYlkcRzHGe/c9fqDukyZmhlMTIOjGykE31KrnhyU9TSp7xUSdl7hjaDoNnYWNOjhZNU+lqAhLYqQPWSaMIRhSezgQoYu0u/Xw0c9MnGazkq/7dRMq3TH0d2HQovyXbeb29/fhvccHH3yA8XiMk5NjPHp4EEKyYmhXYtYv6dyUmNlQDF2gjGFOY2afJ50q8EZk2XqPpm3hlR0TQMqeKqUNl/eiMrTN3yABee8ASAogi5AHNe+821GkF8p7oSruWLRcLlFFvdvQApgZhVYJMNq2gTFAlazU/VhQaO/++NE0Dk3jMJpswZgK6BgBzjaatduFZmYSl2pjeFJVVajrGtZavPbaa/jkk0/wn//zf8bu7i4OHz3EwcED/N2/+3dRVXEKslf1eknnocGsGYA4xxaT+VngYhsQgRKzCspWf7o4tP70S4o8YsgaufKWgkkZY+DZwznXC8zWjqb5XmWJiMgsuIeclnGPOt9CBICHrerIMLL6n1TbzkLCwASN6e/WWtR1nSyZ+/v7uHXrFj744ANcuHABDw8e4P79ezDGpMSSgj5fhtmdn1ZEAPRXSgBd3dMpBQ85ET5RooynOtavpEsheETlvxdchqx/ke+5kvkrhhnbmVrxLI5JRlAaDlVulTY8fknsI+qlJItFHhoZ0Ys1PFgiM+IXNFP6Va1zmBUdG5jhvYMxAJQ3fWeVSu5EcUGO58Rhmozt6cyGGNpQ3c6iPrHW4t69e8G3bTrF8fExmhhYzszY29vHhQv7mG5txdAuPX5lTG/8uJcUqQK6lqTwt/6mroD2DFIMVWIO1i/JLZVDj8sV8Fdl5Kx7W1mt0JlQlM9S1GGFc3LdgNmEh59j6ypYI51L4lXPQFAgMx93cGL2cM0ClTHgursGM/sQQB4rymmflNAA5xnOA7Yag4wFyGQXkVP7pVsvqVvJnPW50WiE73//+/j444+xtbWFnZ0dHB8fAwhREG+//Ra+/evfwrWrVwGilKX2JT0eGWCIma1/uc/61NcD1PuwX+LLcJGzUWBTkg1VUDArAy/nq4ZsJ7xKzOSemJlu68ERiowsIjPXxo1/dUgSdy7XX1Jspo+JGSMjg1KhPIlRUTK6qqrw6aef4kc/+hF+8pOf4ODgAMvlEgBSTOY3v/lN7OzuorI2Sg4v6XHJAEgwXCiMnbwCl3+dgNo1Zmrt+zNUztD168roHhu+B+jqnjmawTurP3WvleuZ8rk8yLn7J2DktL9niJIYFX/lfpP3lyHYeuzWZVzS1FUikX73nn0Pja1aNHsGAWQDABHCLuan1BXJQhjvZorMTFjz+V/SqnGnz1+4cAHXr1/H/v5+smpaa9G2LQ4ODvDhhx+iaZpkZSdd9kvWdi6qnPPKMhM8usV8Li+sZAYBZgNAdoAc1DF1mBDUnHl8Fw7Ry5iODxM6A4EQApObZgljCE6dX6UiWm/VfMa41JloKMU01jYp66Xi77hHpujm5VbtBOu9z4rLSEEB77Ab8+FLjOYmRDLR2eHk6AjWEMZ1DbDvIkb0URbFceajmEm2BrNJenbzBNJnDxEz4xvf+AZu3LiBR48eYbFYYLlcYjqd4tHDA/zF97+Pe3c/wz/+x/8YdV2FNg5YdF/S2cjIAsYRnmjEczqa2gyidyS8TW86rUysWMGSCBRmm48J/YjonLzoRVglVyw2OEPrKCwcQ8gs/R6YgBz1Xd77ZN3Tlr/TU+2IepOxWMxgDFDXeaveXBMlXSRLKCfkGAwAFZgyC3xcdtFzR4nkvcfrr7+Or3zlK7h58yYmkwmqqooZZRf4+OOP8Id/+IeYzWZxuzmp80t6HKpKxGVt8PAOoRc5AFYcAVeRbJwqCC9Nk95sUbqX8FAgWsvOCq8Hpk7njPC1slStHF5b8NM2KQ2oiJ7Wg3iAoWWVf78yXH5ngGxkAQplBxGunNTdhIWyQK4aP6eGQsVauLbFqKKUgkgU+MlnVr03aW1inMbI1bniBSIaqt/KIPjUNu5cx5ylGtm0xBiDra0tXLlyGc41ODk+TkaQZH1PffAiLJ5fDFWS9VNe+ng8xng8RtM0mM1mAIKOQjKEivK1w+TCiA4ZP9PLV1OFkRW+hGT9EbhPojRgpE1lsWLVLmP6ynfPiqFl9HZOLcTnslh2WcrnSr32ceerjzuHy0JjbQVCENsMU+rZddY4MmHCS0B1R996KgmjCLrPk5MjTC9MMBmHHGHsAvoWw0K6gzmNq8VyCTIWVW3hPIERFmX2fG40VDIx7WsmO5cDwPHxMW7fvo29vT3s7+/j3XffxezkCIvFIm07x+zRtg02yxD3ktZRpXfKkWRy4/EYxhgsFkt47zEaVUmJ2ctqQDF/VBJVyzESkZdiTjnVSvwYMs3Hf1YN/iHft1QgZ/CQnlSOlVP0RS8SJcl7iKhzVfc+QVNxsbJW3n9mGoLMhpgTRRmR0d1qTvueDdZ3EMUxFvMZrNnCaBQCsz0zjDxHw0VkY0VgohbWGnhPIEMQ/eHjLB8lopPfEuEAAIvFAg8ePMDly5dx7do1vP766yD4mCyyxXQ6xXw+S/rfl3qyx6NeOJOsLsLcgvUob6mllbcpHOUpwJ4orOTf6hnlO09MNNm98HgjVdXiieKlwcI+L2SWEWteVHQ1wmoU0PKqd1Og4aSa2qzuZ3Ge5oSuwgOzs60soGLl7BqAilLgvQNAMNZGUVsvjk+GeQz5yol3v+y81DRNkGo4z6fBsuI/L/na2akSEUE6eD6fxxQlbUJoo1GNpmnQNAs41yZl5mg0Cj5DURRZFaJSbpaqf5fuHuktknqx8VNT0ocJTIgKatZ2bnWt3jJOK1x1sZ/P+PkCRukKHrJCUi+uyRcZYxLSUmymZyASZ1omgKNKIQSZ+w4yW1ldNR6CSOjhXYumWcBawqi2AAtjCwaGWFskN1gK73w+X8DYCnU1BYdkQqHuPBDXuYZWRQKU41c+rbWYTCa4du0a7t69C2stvvKVr8DF/P/MnPbS1Bb5XyWJ4UmTSdk/42BbLBZJpq/rGpPJBNPpFrxnLJdLnJycYDabJa96730IGSL0mJl89kVThQ5KS6kyMyUxcWjcs9yrkZhepTl/nkuR/zSQ0vMxSldNXDPkgjNk6VaWY12WV4ztNJSWzwftvvcOrm1gDaGyMZ4xPcP3pOXITrFcLmGsRT0aB0amYjPPSut8IaVtmpmNx2NcunQJDx48wP3798P1PveXzKFVkRQv6WxUZWV8aZHKlH3OQj4rnYhOLJ7sGTCUjABDeqp1Fi1ACXXlNaISSeUMwPBkwy8uHiAt2OliBsXlxx1jvTI//0F7eo+sWC26vdP51IaeTcTH09CYLrOz8Kn6dJTuhQqA1adoxLJxolKoMtX61Do/LmmL5vHxMe7du4e2XYKQkZvU5gsxAL1gVC0Wi9TpWgwkCjFjIYncLCG1ra1pQlZN02KxWCaYXxkDWwWLZ8UV6qoGwB0dHIDOKqY97jVlpBYHOA0zm763eFeTktsmgCGLl6ezlSc1yJ6NVXf1+j+kbULM5pqNMaJv6/S5QmCly4J+z8aY5PEuFvEh14ZUrCxMnM04zA2IOGbKyXVLW92FG+NiymAX9q00dh92PAWRBTOdWyelmW0pVuq2iHtG0zR49OgR7ty5g08//RRHR0cgeFy8eBE3btzAr//6t2AMwSdFL56VofJcUiUipejOSsuMrCzWWmxtbWF3d68jji4WizhIPaoqQOu6rgEi1KMRwP0IgjQY8ixZsRrrgRO52Ur9Txc5yIUhlIbToezXA6yIh37C9GyMzqFaMKPI6ybHQ0eJoTrpLSP6NSQMobuhSJqPkQfpsKWw+IXMEat0q6vqTMwg9mBuocVLUn9IzEwssAwnfl47FvVoApAF+/O9j1Ot6ugztKZpcHh4iLt37+Kzzz7Dj370I1SW8MYbb+DXfu3X8K1vfTMhxtzJL+m8VOmVUSww2gWj3DlGH+vqCUyHEabrfDflS89HB2tQmfwGIkjqKvdXiazhUq1UzUaCMGZoJdJL92fIUfLHc9CGo/QLlzRi/yp9VUawgoEQGF3H0lzoy9Tx0h0jXLLah7DH2HTRneLVCx1sA6KuzcOSGKf6iPIstAqnDzE0YeRBmtnC1tYWmqZBVZmUvHFo+L60Yp6fqrZtUdd12t9ve3s7+piFeDK9cav3Pu0o07Zt8mKeTCaw1nQcap3zODo6DpYoHzamEKfbqrYwMNHCuEaHVpq8UWhxitUyxAUCSMn7KGRMiGlkskUzThqFDIsn66fgfFzmWRuVZzOTJWGcM2OvKgsT98yUq8pFbciyKQr/Eplt5kAbdjMC+5iUseBuIHDMOBu2PsmKBO8d5vM5di9ajMbjaM0kxazPQRt0oyz24/EYX/7yl/Hbv/3bKQVQXYU02levXn2Z+/8JU9W2bbRYTlHXNabTaWIibdsmZ0drLZxzSqzkFKaxvb2N0WgEY0zyqVkulzg+Pk73GyLYyqKyFaZ2AhiA2HTN0gO0iqGVq3uaQIlBEQhhByF2YtEUJEjdwk6lszK0Z42RnY2yCiAC09ivla1gjel0BzOSGL+KmWkx01p76iTuojaGbGJiI5Kn9C4TBINYUMOzgvrf+zBe920QMzkxu/MzswRc17xiaf9kMsHVq1dx6dIlMHNIpV2ZTp947x6Pub6kRJXuWKBvftYGgeSKoSygpSJUqLexadR7MbIeizxHP6Hu80rq6NgYEC40ZB1dN86EkSXUAaSMqX3KyqIBr5ENSD/lLHc8ecpievilvR6G6rCqzmQoipjCuGL5ncnY3UtT683W+Wqt051F9X8cA6TuEeaSlrjevWGsUidDRsdANNwN/Qp0WlicLtqlx2Xbtp1rBRhYa8I51tlfXjK1x6Fqe3sbdV2DmTGbzTCfz5OCfzQapXzmRITlctmxSsqn7AcoEQJiyRGxUhxshRk2TdthmqKnkw0gMoMdCHmJzEX7LKVTYsVK1iqNEijwpqj4T7aE00by2aSzZ5LyNCkbs0Lx3hP/wu/RaAwr+06uKUO/16Zpkr/iwcFBmsybkASSu7ZF2yxRjypYE5EXc2CuydAQFOleiZ1AGJvGGFR1jYYFsZ/nhfYXgSGfM/mcTCZo2xZ/8Ad/gIcPH2K5DKGBly9dwBtvvIF33nkHkk2EnQcMPffj7Iumant7OzGZ2WzW0ZPt7e1hPB6nkAzt5CcMiJnTixJmJ+VNp1OMx2NsbW1hMpmgaRosFgscHs7hXAvnfHL5CAzTwBhhZgay+07PGgpEPUr43UWHso5HBT/3J2W6b1WvlMjlTAztWR+RuTG5pwBdb1kUwoIhoUOE8XjUY0RdFBau5Bigbq3FYrFIyQtEPztYq5WiFoWcdG2Duq5CYkaiGFkQzK3ee5iKgtEnMjoTiwvMzKKqRlhE4w+IOhEhG1FimhkBrrJsir5sPp/j93//9/HZZ5/h5OQE8/kMb77xOr73ve/hK1/5SpBynIf3Dtau2I7jJW1MIWuGc2ktEzFSEJLOdCCkLVTaH63MnqCv6Vs6h3OldX8P51HTtNIRt3eLmqxqINPA9ay/JIZ2lpFPA98GT38h1EVqZ7gv6qOGbhP0W6odhhC0XD8kWnbepxJj2QcDAKQOp9Q/iZSpXjkpY2xN79pNX8tpAqEeyycnJ2iaBm3bYrlscHIyS4t/Ek83fO5LWk8VIQy0CsB4NApiRNwgQsSExWKRjAF1XSdlf1Bg+iReAlonYDvxnoLsxHgg+yZaa9N3AB10B7ASSygy17gykgFR1p0BcRAph0oRKQwZGPJpJDt4GJRhyuWg1mriF1GXwZlPn3qt9L1VDIg6Xiu5pC5Dk3GhU2ZvXsNQxzBulhiP6rBnZlSdBXQeNxbR9/m4MxPH0PJ0Q2zLY7CP1Db1u/QvkzE/n89RVRV+4zd+A3VdY7lc4NNPPoZzDgcHB5hMRjDWaA77kh6DqqDMNTCWMB1PQJO4ohLiahLiMYEcb7YVt8gCgJOTkw4zEx3ZZDJJzrjCyATBiVg5Go0wnU7TYJjP5ynuU8obj8cx7EN2io5IMWZ5gHINCHoUcQ8JDSQiGJiw1yPlIJjhIS14JZsKNEM7fcg9+4NSzDAb6QvVTWHhiZvvlmrMZMVEZDQZict7FL2sppXOssoqCgLapsFyucBkPEJlgwXcE8Axi4YxBi1y5mFmr37FeEwySkl6vvdUSgDSRolrljaJ/vnk5AR1XeN73/serl27Bu9b/N//7J+hbVvcv38fr776SphHxPD8coemx6VK+wylTUmjLlLERu1rNiR6slLC6hesM26m7d4Kk70wRT0YRGSVQTIkjpJ4vGpUlioUdUGi3yBAtzNLGlrU0LlYszzCBRNbPw1OnySc/jnX7d3LCzFtpQ4HrJ6ZkUU/w8iaFEC6D6V/pW9XIIshy/h5yEvabZOzHWuEWCKbVX08uBydJjOuohUMPdVZWf13d3dx8eIFeB/8MoMfZoy4kXfAw8z9vH32q0idfGZZr0FpxauqCmIkEB+h+XyROl+sltPJVvAjq2xakcXKKYyptFrKCibMS4ug4iWtfdyEOYq4aYhgSSIWBLGpQRUnWhAzJe8sR17VXaHFeNAZTiQq5jTanu7beIo0pEJcJWZqayT7jLKYPUDZAEArGJnWl8l7bts2LYZDes4h1w3mAKjatsVyscTuZJLrgf6zo72nw5/CTk6K8T0l9Cz+lOJEXlUVvPc4ODiI4zrUVxyHk3U/ispnEb9f0jClTYCBbmoW0ZlJ5lkdwnR8dIK2DSIjGcJ0Mo3XjcAxk6boyUS0FPcM0bfJ6nRycpKuY+Z0zWQySaJq27aYzWZJkSqialVZTOoxRiOTmV4UMbSl0xgDi7i7efIWHwqpCbugp/zxpKcGAS+aKLBiXnOUFyUddXLwZB/7LweKazQOqGvjAiXMLITyVBt5vWvGZojQLJeYz+fYujiNDLbL9DqNSUwrkDE6zbsI2ednaIO+jZzDl6qqShZb7z3u3bsX9cAe1prEzCaTCcTfkr0HvQwGeGyq5L2sWmGJCNYYuDhAAxMKA9U7B6sU+dZW8Nx2DAP6RWt0JsxL9GNlhgUxDADo5E4T5qhdQ5gFPSkdl7Kuid6MycNwRGom6n96uCSLZoaEuYm6ZV0am80mSO8qkZaDRrsDKzRO7Gn4okKboOtESlk40DQlYua+4u51aRHoPrN8vjitluf0ZNcWy+Beo3wCi6asrrM4aruM7KDUAhpeFl2UfNG6xZUX6ZqUDx+ktFhSVzQcst7L+A5jOCeoLPfSWOX+0y1fn3kpfpYUxUzlWCraEPZBLxUVEHHrc8AYTCdjOFfBszAVwLkGi4WHcy1apejXzEmYmEZs3vuOOCkDVrJwamZnjEnZb/MqT2jaFk1UNHuKnuHGoDIVxvUYezt7CJgs5rjivKN2EFnypBCnWwBgCvoacSVx7TKmYc6rcbZi5U7l7j/5eOensBKVYDIyEMcO3vlOLGNd1SAbw7OiHxdIBfSwbKuWDRxCFoDh6JfJmZkZnydmBFaxDA/jY3YMD1ii4KzKUYyP4yL0TWhYlJaiMjv0NJFkMAaa1sPaOvqGBqYrek8GR8+XmKOfPQziHy/Bbg7fLlDVFmQNmIBW+ZkaBL+xYKEOKoeFczhpG5jpBKhrMBmAJRwKoujt6dtWEukvRS41hcqstbh//z4uXryInZ0d3Lz5Gn7wgx/g448/Cv0aQwAn00kqrruolkvsS/FzU6oyIyuIlZcDcxg4RLBkYbenwWIU+V+zbNA2SyyWLjKecGJrays53QoTWywWKcpAGNR0Ok3irLaAaqYnejTxJpcVf7lcYjFfoG0bNE0DqixsVWE0qkHWYjqeYlSPQpuiykR0PQFltokxBEOdMDNOK2lAhC0Wixmca+BZMoJ4uJgZhHU/MvLvDpPrKuvTf8zBcz3q9xrfYNkssTwKG2NUtsJoe4TKVAAznFN+e4SEGLMFMDCeDPYYxiPM/tgNXuoIJL87irpS9g5EQAUbEBEZWLYgWMisdsww8CEXlw9/iTVFRkGEqPAGlssW1o5SOh/iBuJl4yksHCCCAQGugWEPgxbGz8DtMVx7jNEoMDNPhCUzDAgWhAqxvUwAGXiqMG8dHi2XsLvbwHgEby2oja46aox3aB1f00yPBbl3NwOSTX9u376Nixcv4sKFi3j33XfxB3/wB3j06CGWywV+/Vvfwv7+HnZ2tnFyfJz7HNkYkNgZ6zFzdgT5q0Yr3Y67K3zqaoBEqZpFhjbmMxP9FjNSRloJhwI0A8n500Rc1GKlnNfuHILYtF+aiKbOO7TOoWlbmAgzvK8CQzZ5e7yA2LoK7bYVC27MWa+RFis/OrJg16KNfePg4CN68PCJOQHofHYYWPFd7vHwAIUgaEsWDg7EBN9GCy8xiAmGTRSvZGuO8B8jet2rSUCUA7GJ4wTm0AnJQluIl0TRM14hmCCWk0J06Eyv3I40TDoQVHzAvGMQDIh8QoAhtCwJuxDvfHDwEzNggB3Yt2DvQtaMyPS8PErXP47PgG4ZjXOgqgIigo+8s9OG02gI6a66V6z88/k8GbJ2dnZxcHCA27dvYbGY4zvf/nbQ91qb4TDnvpPnhPf6EpWdhTrMrGPKPwMlhmVyuheKVi8tLoq1cjQaZX1cFC29D1lBhYFp6yWAGNPZpO/yqf3bJpMJ6vEobS3mnAspiNgl/Ykx2rWkEBVF1ExqJ5NQBphhTQWqwiCrLGcFLuvA+3z/er+qKF4KoqLgO2WtDaJ102IyHoeFIe5bStFVxbWtSu0W9HqpHUpkTXViwHJmPv33jc4nifgaCxLH49QvRGk/zJDTPqMKEJIYGq4N5Th2qOKiIf/phHJB3NU4hFV/BhQcQn7Cc0XvaWIbjQkisfceqADXOrStw2g8gYnxpJnk+UoneIq4OaT4L++T74eHh/jhD3+EyWSCGzdu4Dd+4zfw8OEBmmaJt99+G3v7+5gvFrG7cqyptua+tG6enTrWTO3d7M/QmcGyWMG2bdSXhLKc45QXTW+cMplMMB6Pk95LrhEHXFH0y7Z24m8m6YVEoSx1luy2o9EI062tYFhwDvPZDMtmgaYJ4qqxBibmXdO6PNJLtloZyXQnWFXVAOr+ACYZhNAFqWN9KrtX9HlWWd/atkXrfRJ927ZB20YXFsXAnPepnok5ImbYjQzOMBLjTe+WxPs8G2o8czge9YTWhHjZkF3WAxz7zho0TVApeMchhxxRUNBxZEBxUfPew3mGNXXQbxkDwwYeTiGriFA9YCKT9OwBC3gXxPm6quFj31lrUFsb2t22IDLwBPjWw1QGbeuwmDeY7lyCrSrBovrNrGVgq/z3SvcRoLvzFADcu3cPP/7xT7C3t4+///f/Pl5//TV438J7h53tbVSVxcnxcbDsR3Am94vICpwdVPyqU8fPLJOG1OKqwL1zQp0NTpB91Zxrkv9YKSoK8wFyCJMo+tPE8l6hqJxWSERP7ZMmOovRaNQpw8XJ75yD8QbGC3LsBstTh5lFlCEDNCrXqXDaTH9GVG7U655NnB6D20NgQMlxObbXxb+2bbEkAqGJEz/3UcdjHgjuKVFUE7RmOLRHhNH44MiMswc7RZ1bEBuVOCuKHX0ftBiWkS0ROqGsjIymkygl5UVU2kezGRFnlGaD2CkicUxGIItn0tepvhtXdceKqtvwpEnew2KxwJ07d9A0LXZ3d3H16mUYQwlhzucznJwcYzweI8vnq9HfS9qMqsT9mdVLP/+KoCe7tSaGscRssxEJieJe7zGgxUVhEmK51MxSMzMAycIpylft8BnEWaCuKzgfLJgkehdkMTdpJ5jBnJWweWBl+TPO9TD5KE581V2iBpFe7OiNOwO322eiXxOxQ64UVONcC9e0YBevYQY8kuKb4sNF95QCeqLIRxD9FWdmIM7GVrfRJ8bFzLAgWGMxshUMGcXERK+oGqIYEkd0vbU1hZ8v4VzI389KT6axR+gDhYoTw8zxlZxaF9CozpwS0GZQIxATnPNoW4ftqgZA0TdNUkRxt95noCFmI0xI1CBvvPFGTKQA/PEf/zHefPN17O7uYGtrChMX0bqugyMxmbS49ByJ8Tgz8VePKh/j2xgUgrHP0YUdH7GooCWilLKlriu16lByqtVb2cv9IrJqB1vtq6T919Izlf+aHJcNWIBpbE1W0nuF7EIhMgGz+BoO663JTLRaemQskpXOMkESU0Qc5PlSSPrupDBP7Q6fgXk5dTz6VHmG85mBE4Ji3jNgPAMcnVeBsN2fPCNyXvHMEhQG1V/GhDTm4joTIitMHgU+YDmLoIdMTrEuMKzkS5YGQ2hjcC1pMZ1OsGwcmuYEIE7tAYkEzBnpxXxjxjAMC+P0MCboDZ1CLq51cM5GAy3B+8D0rLVgMNrGYbFoMB5PAVBazLhxQRUiSsENkbN8lihYxmVd11gsFgCA73znO7h8+Qo++ugj/D//z7/E3/yb/xfefPMNvPrqDUxjdIAxUxwdHYGtRW0rxbw7TwbUCHzJ2tZTJauloI3BdyvHFLLonoi/SJTA4bgwooysEHU/bQpiXy6XnTAnQW8ShN4RYRUT0gMqPRt5ldTPJiMiSFjNReztZM0Fw1MW2XqrJFGXAQrCUteUwcbyXUiLz70ujnXURg/d9vRsoqxEj0jRaFFQoTx5PWENid75xoKUpdkYg2pUq74nVCaHLLFzABOMWDj1Ow88MkmMur0c9XPWiuXZyQV9XZAoLRPjzW0UeEsxUyyp54RFIbhziKpAEjZ6H5y7ra1Cn/ioChRdI61nDacp+1MXMKfx0rYtjDG4evUq5vMF7t+/jw8+eB/37n0bV65c7ljwiaLahAzYrNi6Lql4pLNf0jrqGQBKXcjjUr88TmiNCNHcHhCBzg/fti0WizlkRfKeC1SmmYQ8C0GvQhS/i7iCgKhE/PEuooos6PSQGWVkFphw9Kla0S9ZTM1MLiGzzkW5XC1eJARHJophlAY9M+DJxwIo+IsxwCajvJzrK4pjnMsWNWC4xgQFPJlOGmzXOnhycC3QKjGPot6MOdwXGL7JO3P7YGxhIDIIBnO2Rqe2IcYvhm/g1J6iH+OCKcYI3y5AzMGVQfVf/t1dgQlAyy5EqXiGsVUcE7ILOvWjAh6TZMzKgnB0dIS7d+/h/v37YGYcHh7i9u3bcK7FK9evY3d3Bzs720rt0V1AX+rNzkeVvAit0D4rI+vAb2TGJS9FZ78AGHVdoaqsQinZPC1JG5fLOebzWSFaShny0sPzvdpF1VAdT2eRL1zTFpNcJrpa+USVonRmwppC24bTPWtRUnMp5iLkJl4tHmBQDNcgesTbmJuLcpYSKSsVTmrAM5IlsRRVZOKSmjRQ13hmOM9omiWaqMN0rgU4xEQaazGyNgbqG5jxBIAHcbA6eufROoflcgEGJbTDcCHVdSsOyRlZM4L/mI9avYTKFHn2IO9B3mFxfAQCYzIegT0AE8LMpqMJmjYYQ4hssIRGatoWy7ZF03jYagqyY8DYGLES/PXAmwVD6v7sos6MyORvOp3CWotf/OIX+MlPfoL33/8AAPDpp58m14xf/9a38NZbX8bbb78VmN9LBvbEKCGznrvBEK0Q27srCneu6aK+KBYVKYSEtLNsmXWjFM90nbX4Z8jFydMV+bxvO0xW9D/Dgc/UqXeHufcigqXMgsGks1pUiCJZ7Cbx3wr1VkwxMh1bGD+G2k5Eyb+vx8iSmG1AVQ4OF2qdAzmHtgG8c2ibEEUBn8NzzGgES1EcGkWGH3f0k4XHexdz74uS3neMNMKsks4SPgawQ50XTqgU9J7RLpcAODlUB/4XkFnTNmnxASNZUJ33GZmZCmRsDGdSm6v4XK9VtCmDkXdUVRWqqsLx8THu37+Hg4MHAILf2dHRER48uIdXXnkFV69eDcYVa2MSyTzOXjK181NyzdAdOaSLygfkhvRPR/IqJfwSPq/LmqAnoFg99fcSMer6JmYWm5T0RrGe3lfptzjPElGH0Qg3ibXtr8qUw3m6mkNO4lqsWOL7XVBGxW8k5GYiYgFkUooiXsTk7nvoMEggKtXzzGZBlp4B8kAyLOQFwEWR27UtCIA1FlQHHVzo9yokQ4Qo/SNz8pT8XcVqzDAhWN4QOObtcq6KbjgVJpPgV0gxUoEo71rE3sMhuFyAGcYHJkvOoWkWABg2MmNEpOedS+8pqNXyWKhshel0C7u7+zCmgufA4FrnAPIR+bVo9atX77qUVjTpBVG7gdR1jfl8jqZp8PDhwxSXub29hZs3bwJgXLiwh6tXrmB7e0uVh84ESgYVZZx6SZtRBfSV1GclH03kIlLIBNWwvGsI6CrwNRPT10oYVO8FY3hQERHIZx8pGeRhegcdDbM8D4iVDAV2ZEWZM9ldQDMzYYpJjCWk5+eiNhuFqe7sYnC/KPChZd4uY41ir6jk4aOIjoxq9FtkMNoYPCm6KG1MISLYqsK4qmGrScglZ8Mep03TBIbIjGbZxD4LzzQmp7whGxAQWQOODqLMHnVdYXtrK/a7hXdtYKySUoo9WteiiTpMgodvF5GhLXF09AgAYzKegClbbZvlEiBJ3R6ceymGn41GY1y+fBV2ax/1aIpZS1g2LZp2AUcEYgfXLqKom8efjDtBudqQNDQ+Rf1BFKzw9+7dw507d/Dzn/8cN268iq985T1sb0+xs7MD51ocPnqIq1evYHd3pyuyKm8APd4HxaCXtJI64UznhrnRqgZkRjZEMii0xa4kPWCG9EBSz6GyASDyrA6DMyYPjFKf54uB1CsPFA0ADJjIzArdSXl/Wed1C0QSxXzwDtP3OO+SOKrL80NImLOrRGlNdezRsojqnJxw5dkhVjCgqHG0IldVhcpYzBB0Y+wZcxcMMgQTfNwouGuMRiPYagSyFqay8K6JYj7DmGiZ9gznGI4A7wFuTbSURpTYxsWHPbh1sNyC2hbLxRx1xajq4C9GUZHvnIOtbBJtKabRZGbUVYXt7V3wKGTq4AYpbVXolBaubeBUkkfNyPRfHkN5IS7frzh3Hx8f4+7du7h37x7ee++r+PKXv4wbN66jqiq0TYOjo0cYj4PvozDBtAAV406ssy9pc+oFmq8VMTUNnEqWs6jAKCd6KjuhioA85JaEcFJZWZjS4iuhq6iXEwltDYoP4XmrmdZQe2n4OClA1kFj6hpBk6WASJ1LgggpE0REw6T/M+n6HOISwn1kMsj1Q7q1pKRmSu/DG4aJ10uSw6qyQT8XGXXbNCGEyIQd6tkF1CSGForvl3zM8U8EcgyyBqbNzCw8n9C0DstlA+eCpZO9A+KCFkdI2NgDBEMWlfGwbGArYGd3GxV5jOusPgjjJ3cnJV1d7k9bVRjbCnU9wphrwFpUbQXLALiG88EgUL77dQtomaNP6wVlG73d3V1cv34dOzs7KQYZCNJL0zQYjao0CDaeay9pI6KH92+vhA2bdrCPk8KIy0A85sG9wSFikEnHZPLqFaowSCDhqqxjSHqlbpJBCXDvDhT51m/q+gFV6ve6aKssrdQXkjqQDAGKASefJy8plrI4PWQx6zybu3o6vwIl+hjb6Unui08efOucEGFwvfApC0rkIQkpWlOlegQMFkVeQx1kZm2Ii2QmACF9ORGD3DKIpCA4ENjEDacrizG3qMmjphbN0Q/A7RLwDiNrUJHoCD1gKwSDTNANGoTca54ssLUP3tqHnV5B4ydwXMN7AlxoJ5FPDFAYld4yUX/PRqT+byAsNDs7O4nBLRYLXLt2DTs7OyFBABGOj4/w6Scf49q1K8lK7ZwLjFlW5nI8kT7M6pMGr/9Vpyey82iHBxCSF3j6HUkmriAvseR5mWScyxvCSB1lKefnkjo8ZMR4GrROpZH84VNqizwQS8W9fKG4p0Eou+tlLseEBsVs9V0bWQIzQye90dA1Ot3Scr7o/JYnWFuHd8cAVSZN+sY5OB/dcgB410ZmJskFKhhbg8iisgRrAMMueO+bkE6qshZVXWMyqjGmGmPD/3/2/qTLdiRJE8Q+UQVwBxve4ENERmZGVWVlzdXdVX1IFv8BD1f8tzyHXHDFw3N6wQWb3Rt2zVnpET6+wYY7AKrChaioigK418zes+ce4Q/ibs+u4QIKhUL1U5kFKxfgVq8xHHboj0f0u/u8j2V9oQweIicOkSQGsl2t0FxdA80WHV2AIfrXMMj8802ZJ8wl47E6c2uK9uxSwiV2eFqPQpIlXF1dYbvdYrPZTMLrQgjY7Xa5Hobe23L3i4rs46h5jD7qyaQgU/0uYkAprHRe7JttemQImFKJaBgf13vmLs6IE+kkjMVV24Z+PtXV0j3W0Ei1uUF5GG0tY6LpdL6cyDb20ZSBND9aEb0dkbhfUDT534yqAATn2ixi+qZwZo65gCWRFI9h4caIKEccELkqKL+oEtQ5WbjCwAEDRRANON68hSeTf+1BhiQFpJPq12pr50RjYDYQm1sPKC5EYpkNGZxstTG9ruu67PStEseoWyfmdha0H5hvZ3bPhQA8G2c2fUnOW62Gnpf+MWB2Sol+Vsl/hjTW1N5bxdj0xxzSzRADmlI7txWLuJgO0czqkkdkM/cMgI7vgZwA9mzaJQW88fQurZhzmVGDvr1/4WlsO96JG4gj8W/TqkHyPAJEnBO+ASCHY8q91rA43yoP5xzAMSBqPCQLhAsYikeao1RshET8jMwY+gFx6DGEA/Y8wA17/N3/9r/g66++whevX0PVCg7SvpKOm4jtBNc0cL6BWJ+LO432Tc+1706BSDO6KGjZOaoGhLEagJlzOisLhqJRKckDLBg6UghP74DKG7LqlgXAHk/PCmZzoAQYHVL6LqltHuQCT4lZ50XJ4n5R6xnwAVyOApKwMhkUM5adBkW5+wRmcGqC1uA3D9zzT3ui5+NnNVI/gaquyGJzoORdj6b2s5JEiB7DUBTmQ0wgogYI0/3GOzAHDIOUIQxR3EFEzxYAjgnMRGdGapzgiCEGDP0eLvTgwy3+7r/+F6y7Fq9evEj9N6ajdM88zumg8xJ/qiLsZEMFoBG5yiHqeCsQPTSm4hJSolOIKIuhRRdsB7+4dszpW0/uTAs9mp4FzMacwER0PHXhaF1n1YGiHabfTY/JRDkrkY3voyt5YiQYiXmZzou1D31XacnG3JWZxNZfnudOMMeF+0uQaYBqrKO0t7YcMZkBy+BgB5mQLaxyjWGqU32BsZEm909B0oh2xhUZ6tBrb2af2SWxNxIlDixmLriAV9moKkYG5l0yZba32IzSc2f8q+fsY3Suc5bPU65Eyp3BGHKsrreiBcg+ip4FzICHuay588aLr6wq8311MhdmaXx9BsDxFCkrfR5Up9dUk9F8OqWHO01jznIaxYC0sHn2qvq8ojganZOlPwVjqzdMYuVo5x/rK/MCxXR8GZxAJbU/Eq9DCMIJ5QcoAJH1SvlelHN6FS4l84tw5FLqKCBygzgchZNzBCdpZyH1DlQNUIo/E1jqJSSRGcmCOs0y+3iam9fWwmzDyLRaeR7XhOwhikHklD4tMwJJV8t8bs5++LP82ukkmD3F7+WDjQZzt5ispnrhVHzNiJN4EFsm51gxdP55P1wHP+b69NiJxowu8SRldJk50SygaFiVAmgMlS7LY2fEK0+vHJC5BzPAyTF0PE7ZfQRlUVoji34SvzbtqnLS9bskQKot+QY+MjikiAEurjzivxZSyL/GSlAJmWUBM8BlMHvMNjZnjHrMvLa+fhMRlUQUVvcYmzjAXp/vdUorsdCjaAJmP5vz3pnbWJHvcWTlrKmwWLiS0VY3mavzs+fpHNncdY+45sHzxyzrHKjNLAo9eyyPjW9pm6HxKJoLPkYcmrmh5cxsD4vomzaBxGJKZt2yreW3lkS6w+EA1x1AbQ9wn651BXAhMFiE6Dp33MmuE538/uR3I4BPhz5wh1yQ7Rw9m5j5Z0mzc4PPnHCGs/oIygrhBzeSx+nuxiAq3FitP6NRUxPL58Sok7PtAySB3nMOvbKoTTuT9uVorrsKo39jACECKYkmx4C2lWyyHKUotYh2YtGMWf+kzseijP/jt3+P9jqie8HgboBvpEITQXLpOefgmkaiHqhYIG0c5pjObfJjXXH2H0v/jssl0qkdYaQKWOhp9HmD2YM05tT+TGfZiAvIjO+syD2+1Oi/UEYjcpgozx9DU42RkIihQQCTI7REum+kepZ4/KdssnAgRHNfhmYRHkLAH7/9Fuu9x7ZvEdce3WorKYQ4om2l7mrTrdCmeFRbd+IhIHvss4rBQcR4BbOsM3ssd7swYk+iT+Zn9qno3L3s5J4/YeYYnxCnygmP7NkjaayXed7W0y0eeB/KmT3ltRVTJoqSuhbvK7GP9QvOBgnbt4nIWzeVRLNowt7maP4hhsFGLgBQMY/rjMWSdqiEjI2rgZVHn/ZhLJaeH/OHz6mMBguIfRD9ijmzT7H1PTxh/ySJZjzizLHil6dUgGqcq03WbgqRYkm1KIAVk05SkiBmQBspwopPWFm1DiQ5xgCpGRCPiKFHfzyga0UczD3jmJxOS1uZayQH5xj7/QFbclitt4irdUqdrSAa0A+MIXJOQjnHlVlrpXWG1WOlAEx9vLTDWYcXQkzWzBHqL/Ss9CsGs8fQc26DH6cZ/znnt1V8P+LkEUlPBcjUmjjT+4l23n7FxZKagJJT5EbjPRA41Vs9ok2e9UoxpdOG92CN0CAvT+QAYpIqSeSwWm8QuxWiyeASky5uOPZSum/Gm5+51C9tmiYDV9u28N7nHG4axjROD1QGLnGDIaRSi4tS7FPSrwzMPmCSjDXhcvDUyc9771HLn2qKT80YPIKzuTvzA506aTId3XnO3+AccXLbiDkcajYawriV1IBJ2TXFkQRPaU+QjBMWZxXkToGahh+pGKq/NdBc07wTUc6ILLVYS/sqko/D9WbFzgXvPph+ZWCm9EvNhI/j8j6ZqoSVgyp3ypbJiYvAfAD95CyecWOwvnIZx2h+faYgcLAEqYt4JrUaWpI0Qof9PVZdSrct7Jvo0JxDhIrGhFyUAFJUZYgREgvqwSEmDrAYHxwI1Hh4crPghdS2FTEtmGlGDQDY7XYZlLTW68uXL6thGcKQUms32YVkoeenXyGYPXWmjM//NWpfGVrgRZ9P3TWm5ggBuXmrHjJnYzma/KU9t3iK2dvm25TQJOmH8w7giBAHOAeEMGC/v0e3WqFJnA6MKwinYG0AkrrWoNUQ5G/nPOIQAe9UogWC6Na8b1Ild1QgZsHM/qj/mn626YH082azwcXFxRTMkkFivfan3TIW+mj6FYLZJ6Szc/BPlCvDhy2dU8KhAlpFtvNZ9DMFcqqvjNI+WRgrsVcbT2Jmm1IHVfeafSCGZNMFzoUv2dCxx7hhWDDLdxqJoNk6avK/2S5aMXOBsk9HC5h9BiQZbq1i2nBLZ3ViJ0CBa25m9n65jfGt5j6J1ZSR9FM+IiRr5vV2kyszkQMQE/i5aTshRvRDkKwZKaeZU5ZMH1mdVhnQTL/nyD6nzfOmFkxNGXQ8HrOhgEccbwwBjFKsZoGzT0MLmH0mRHNgBozwigCUGqSP5xZPsWpzaFn0V7roxa0CUlE+BKCNCEOPw2GP1es1vJcssc5RrkPgvcvFaxwBgcXSeewHONek9D+iX8tFSdUFJaccmoLKWElvqWmarDdTPZpaMmOMOadZjBHecJMhBowNAAs9Py1g9mT6VBPyY3I7PNTyU6gAUNYjPdh+0bVVx60xoHJofkDYSg6zHIMkdHy0131Ky24soHIn+TdbEJ9J1juX+seek9WKo+Op1/bo7MeFHkcLmC1kaLrCk0FyenyUGcPiVt2MWk1LO0YrlfzMKNeGkMSOPcLQi59Zd52smZTrSwKEEKOkBMocl2QL6YcBq/UG3jeJ82LkdB3p2pxr9wxgTCMVhGzqIqAuVah+aRVgZiXjIlp+avpMwGzZ5pgt5/TIhXVy2DhbQnl8HMKp0ZwuiouVM6fuSYAWY4QDo20k7c/QH3E87tEl1wznHHgI2ftjGCK61ueGKYl3x77HZrtF0zYJaCQywdhpkWq2g9zIIjs3BDMGAVX4A8iKf9Wfqd5MwVufdmo5LuP1wGAv9Ej6DMBspCN6In2848an25Ef3/LTzyTzb/X9QwaDCVemn2ogFX2ZKTYSxVfMJbQSMTPC0ciaOSL7djnFXvqmMdeIlXP8KCUD/xPG5oSj69g3zfZtjkktaY0eumHV4YUeoM8AzBaqFfKPO7/WgM0v4IeTFz58X1vWg0islESpHkBIynxQLuNeZfEYuUsMw4Dd4YCuWwmg6R0o9WEs8k2ciefJ3tOKlUrOuRwFYMHMPuMiZn56Or3l/dkSjX4+jtj8/HnTU8ZCFv4pm2blMX9yZB4JoPk0BQw5FmPAEI5SZYlJnPypJDrU0KHMLUVGf+xxf7/DarNF23RQGBn7i4l+ri62fIrG52jFpuyCkQBMRU1NnT1+xCdEwy70gfTr4sz4kQvn427y9Evyfc9Z8D7QnnnikvFyotNflkMnTxqLj+M+UFH8U/mdi6GcuXTUzer+Gn855mwqjsxcph753vmUOtuIejR6KgaY5tt8Klkucc61o86LW5PVZdKT8zItZOlXyJk9Ly1TiyZ/idOppp0euxPYY+cE1dFd1Ds+5fgnMDyNQDRZB8kZ0VS/SN74QwjwjWS00DJymoW29E7Fzce9Xet2MZeocRzTOQto+fq5O/z58/1/CvTr4sw+ET0foJ1lb57tLnN3e6j1+Z5NgQxMIIZJvogMYsIZZ03VmZbHHBHnOMsYBlAcBMxSERR22lpMQCaB8p5IrKYsgeUhRPT9gLbrkhGA4DxhiAGRGcQOlNIFcWBJvXZmTOYAzH5nLZtzujQAWfx8mBau7GPpVwlm4ynBkw+Pb6BqazZd0PPTKd+u52tcyZa4GzlZ8Pwirq8u/06+4Omf9rd1JtWTiNONJylzRmKybT9/LrGSLuX2hzFiahzoyT4/ksaGB237lJhpayjMtGYeZAGzj6VFzFzoJD1ej6QAVP40jcwenl6f/LEIOb1O2zaJA8JU52VIRd/IjGEIcI2X2M0UtqTgaa//kNCisbFgLsPG2Jopej/tpT1eAO5j9HULFfpVcmafjn5GzuxnpA+7X0IYy63OKeYT11SHMxnOjBmcuB1V2R+PRwDAat0lfzEDBJyTZedD4qQqcZ3H4xFN2+aixFLvk8BEGMBwycXDOYeAkPtSjccM5wUgx2Uqd2bjNAFMAs3VIEHZPWShT0m/SjBb9rnH0kgWzIdr7mNOoV8DTH0tYyqRn/PnIiYwYr5I9E+pqG7izIgBNs6mM1osAY8Yc2wmK5BmowSnnvBZie6cY+zcsbHPmaWiS7PnLTP0U9AiZv4J0nNv4h/SHpmfcTuqtFfxklXJp75pXF9RtELmOoyMCPkKxtDvAR7QNQTSuEqXwImKDVWU/+LSwnCI7BAii2sGudQfD7AH2IFYuTxGRDgLsI8epxnrphJzMgA4B+f8+NKFnpl+lZzZp6OfT1b4OaWSOYOJ6pliVsiLS4Q4jUpB3hhjCuZ2gFegiGCmLFpFFUUpIlKEKxgIKeUr1km1URIFHHY3ID5guyIgRhA84BxiALyKbDGAkl9hYEKkFgN79APgfQfnG0R2AFrEdD/nHEBSmzOiT+D2hHEagdUpFwz1HWNm9H0P7xt4n7aGpCyTdEbDbLsLfRj9usDsk8+JT3iDUxbUT3ifx9xrRuCCWBrT5+zYmr5Vy2J220jiHamIN7JqQjku/ZsRhiPAA9oGIERl+pKVl5JzKTLIRlLOjBAiCxdEDqyl76L0SSAzCrCy5Bx7rGf+nF7tFAiR8Y9TzkxjRa3i/1Tb5YtHdW2hRIuYudCTaRICNHFoowxUT2w56b1EMa86M5y6H5W7sKm7KRjLwESMVLYQHw0Uj+GmqnGiAvQLfRpawGyhh+nEup3EZmZm7FwV8tMkxs2Ivu8BBtq2g2TTkTQ76ab1/VItyiEMAAFd26V2OBsSBPNSJIBe+syi3amSeGLxNJzs+BkWejZawGyhs3TKCfTk+dZT9dFkradRUmcDOc++gtzc3ZTUauh9A9bCJnN9zYzSx4OZDWeaB0eNL0UFZgq2to2FPp4WMFvoEXRaN1SBgtF9WVPoaelKwaDoywDRMzFYSswRJv5rc01FFU2bRkS6ufM+giF6KMPGHGfGrCB7Oq02sADac9ECZgvN0kMLTxcvOXUCq84CMMYOsvhmT5t83h92YGas1iujOI9VZljOjqgMQDLMMoD1ag3AQbPLRsSUHePTinY5w6whhlgznRtFBixS5iehBcwWejLZ0J2xI6gVM60+TV1Xq3aqz5wjBoa+B5jRNK0R5czJI4MDM4vODKJnKzzeqLTbJ2KANL/ZzBeiM8OUK1tCmJ6fFjBbaEKPEXtmKxJxArBqnT5m0ZZzCCYCwNbGzB70qkRPnzXUKBSd2QwPaDqOJIY+L5hMxiKJujEW15JCC5B9ClrAbKHHkbFUOudy8Y5cjQgpUIiLP9lDNDZMEhhEkjGWI6Nt2qRPYzVaZsW+3ovBYAL2hz2Yge3mQtL8kHKIMRkPUkXxFOv5XJyRWk216Mr4AcUKSzUHu6jIPgktYLbQo6gSCQ2gSRLERFz9yp9Or10T2gTNbgGEYQA4pcbOnFnJW5vDo7i0M/QDwEDXrXJkAeWz7X3OcG0fQGoUmDUAoFhZi8g738ZCH08LmC10lgqnNXUlyKKmG2W2kCvTOeWr6WJOTq8VGo7uZTzmLTSOU4yLBRRw3ud2pzSyvD6BzhX6PRcNMHH2NRzuQs9Lv65wpoV+FlJxSnP0N02DECJiVG4pQpNqz5JRfemfiAxQBDhAEYzIZe6r8DXjZN2SMXa3v4frWlyuN0AOU0o3yvcjnAa6DyPNMntKzCycmXneWSBbwO1jaeHMFvogyqJm+ik6qqlLRqaJw6oNeoqQHNlSuJeq8+x9gZE2HUSMw+GIGFnEzJwDTVGMkXMSPVT05on0kJhpw5mmz7IA2HPSwpl9DjSJnXzkZWd0OTZzqyzkOC8AWs8N+4UBlawNywkPpy4f+j1hFByePsYYc1/sjSoDqPbB/v4Amkve+FAIF818Km1R6usCbh9DC2e20KOp8tlKRETJEODhnKlilK6orAKagbX+Jp3P4DigP+zRtQ0aX/J/cUrak0FDTZtE+edwPCBGRtutJZzJ+LtV0Qg5jOh5pr5yZtaqa593TPN4tRgAnoMWMFvoCTSnwlcwEx2XSIFzK3ZaFbQGtIgYA/q+R+s9vHcmXU5dMEQrOWWfMSL0fQ9mluK/yfsfFXfHoyd4XoumxpGag/njwm/9PLSA2edGH80EcP5PiYzJsgpMf+h26bKCOYwYBqN/Kk6x6ul/sk96Gll2bPzRAszzgtlDVs7F++LT0wJmC30kPWWVTvVg+jeBEUKP/e4Om/UKXdsmEU7tl3qd6piSmy0zYkwpsMmBXAOGS9bQUTiT9uCZ/FZt2TnnXGXNjMYwMEf6bM9tXf2caQGzhT6Axm6xj12Os+ZO+YaEK9vv7rBer9C0bXWHKpSpaiuBWbJykvOp8IlLP1MN3XNDx5w182kpfhYwew5arJmfDRmu6AEEOrUQp2Le2ERpvyleYcpdlWvGNy/mxhgDvHOiF5uRU3MdSmNNzRbBsYiZRFP1ypC02bmhk33/EJqCFj/oTFviTRcwew5aOLOFPpJMnq8Mdk9XEBEkJ9lhv0fXNWgan3VzBKocdaMWDIF8Dtlp1YuICZeMEW7SNw11eg6ai4ZQyjq8mduVTWEBseekBcwWejSdE5nqxIXGemgW7th3v24biHHA4bBD1zZoW1+aogIWzAyO2jbAHBFigPcNnGuSzTSJmXp+ld77eTkhm9+tohQG9rCUuQDac9ECZp8dPRdXUkRJ4XxQPic6FVg9MQNkDORcgfyc+MXGeqliZs0ZPeIZP8K6OOcgO+HMgORa8pxgNeeht5DSAmYLPUjK3VjuKH9nF9g4p09FRoFPWa2fWwFHxDBg6A/oGnGaJRSORyIDipOsXE6IkXE49mjaFr5pgVyL07hGVK4ZzwsEp/SLIQTR/438z8r5z9qNhbCA2UInyBbrsPGHE2L5p7gaAKddMMr3NdfGAAcBs+MBbdPkMnPee3DKC0YWyJAU+hHYH45omg5NY8VM8xwZ0J4HyCqR90RsZggBIRQwy5k/sjhuYyGeQgtXdooWMPvs6OHF8GTRaEZXJg3JT9aUzd7acnoSm+noTMaNqpmU5z9yVWi3Oq8KgP+0QDCOAFAxc248F87s+WkBs4UeJMuljb6RX5w4jtHhWeL8jz0ARwAhIoQjnCc4RxkQUifS6UWxzhBLZt8PaJoOzje5Rc6fnh81xuMwB1iRJZ5UuNnp+Yvi//lpAbOFzlIOHDe6MlKlV/6ZEZdOrlUTeqRHmOEJII4Iw6HyM1ORTJe/YqFzwpWFEHE49GjaDk3TCqcGjAOuznXog8jqyk6CGcckfkJ7PuI4F1B7TlqcZj8bOqecfyJRrevP1kw1as60P3GZVe5EOa30LbNqvZQbROUkWyFhArsYI5z3RswcA9nz0hxnpr+tX9vYabaEVy30KWjhzBZ6NJ1y9iwi5lh3ZsW8KahYfo65JGcc6fkBNhwNAerSzwBCjDgcjmjbLoVAKUimn7N3/Xg6pRMLMQjIzhhN7DVL/v/nowXMFno0KQdGqN0zYozFmskQUKoAYyxOjRcwg3kAxwDiKPozDfXh4m6bz1X+hkXMvN8d0K3WaNsVeCLGfVrSjLtjstbMRZT8eWgBs8+NHuNPekKMesz5lThJmOIYRseytFm0XVa/ZF3EyHSrcHRJzHQ+FVapz5nje4jGDhwfR6fS/9jvnjkUdKEZWsBsoVmaAzQVJ2cD0HmafPGRNwIBGIYBMUZ0bSMrPy9+61Vf7sEcs8qtPwY0voVP1swK9VTk/ER0ijOLMRbfuNT7MS0i5vPSAmYLPZom0qMez4Hc9Zdzjhx2aaumzYHQHw/gGLBedchFTcgU7R21psV1YwQOhx5tu8rWTC0MzPaun6iQCYDZYiZhsGLmQj8HLWD2OdApce9T3QvABMoe0LvHEFP6aZc5M4KpqVldz4kzky9DYBEzydX3z5zdOX3d46gOpC90Kk6TZ6yZj7o3j34WejQtYLbQB9NDFrnMTanLxhlere+PiHHAqmsfCboihzIkPvNURaf6Xs9HRJRrYs6JmQJmpWbm4pLx6WkBs4UeTWphfDhp46yGaHouI4t/h/09Yhiw2a6qjBzpzhgLqZzEUDAhRAY5yWc2vftUuP1YlseCuFanGpMWBxac49lbLqXlnpcWMFvoQaqL9qZPM5lVz/1ZHZr5LoQA5igl5pLHfIadfP784o+MSRC67f1E1HwmJsnqzOzfcoupWPo0hf8CdE+lBcwWeiTNux9YXdI0+eI5ca8GmDD04BjRNk0JNDd50uba5Si+bY48qqn8M+HAGMzqL3+ePixUaAGzhZ5MFQfCIvIByCBS9GNTHZmGKhFRsjiKbul4OCCGAetVB+9EkR8ZELWUWjX13gznCCFGMBMa36Xvnbm/9uXTIZvmWGtz8ZWaTjFii0vGp6EFzBaa0FzWVHAtWlZxiNXF+YqashetOQ2iMtN8ZUhiJmXOTC8c673S/SNSmp3kZW/VccaSWWvQng9IVGfmnJsfiweuXeh5aQGzhT6K5nRDp6j4sk7Pl8ysDN/4RyvG9Zo2x2Ta9sdGgOenOT+zU+4bC316WsBsoSeTLlgtLlLlMjtBmbc6YUw8Ho+IMWDVdZL+Z6aFimMk4NAfEWLEZr0BwYEz33XeEvpcCi318G+a5kRqbPMcC559clrAbKGPokdzZebfuStCCIhcOLOamxFL5Tj77JCuaZq2cEY/I2icNQDM9MOmClro+WkBs4UeJuPNbnVDqoy31ZnMRflTtl8WpqrmndQBNeXSz04ZNjaTObN2mjUjhgBOYJbvqP8wn+bBnhFLxrGZ2fMf8rxVQkvMRwc8Vd+20DwtYLbQgzReZhbMYpx8O3MFALOYUUlfAgZD6CXQvGmhgCVAYbJOmHswxySaRqy2W7FmKria/z4FKfhoBMDYaVarri8M2M9LC5gt9ME0z1HMgxmNMmCM/RZCFC7LJ8ugnG0RQcOXOHNuKmZaAwDPtP2cNHZLmePMkHqziJM/Ly1psz9HOrXWK6yZUWLbU4nEp5UlMU/WZzESAFnRk8aeGRAPsCjfaDoOimDHcCAQi/WzXEfpGvlhjogxgJng2xaRHCjVzMz+bEy5LQVZNtEFY1dc+9znnv2h72OUjB4SbsXpLnOB50XsnNIidj6VFjBb6AxFAD7FSlpK/lvMCJEB8uAEJBEx2w6L+ooAODBCupThOACR4DgCsQfQg10A+wAKDRw7UHQ4UswGAXFSZXhERAD98YAQV1hvrjD4FuQaRPIgJvjoIP95RAREEKKT6xmJq3qCYDK2VtqiyDbAnYjR90c4Ahrnk3/etJ0P15Et3N4pWsBsoSeQcmuAgJlKdC6BWU3q+MogIOUlK2tRAI04AnEAEACKgGaBZcBFAjvO/BMzw5FwWARGGAZE6tCs1oiuSSmAHMCAY0KTOUYqHJn6hzwT4zNX5V1dNnwSP9WSm/nBRfz8JLTozD5rmgnCPnPmmCor5silSrz4R+fXF+dzmQv3NdaaZ07Gtp5YxRADWIuGpGtLq9keMKfBO/usH0sxxioCdUxnrZeEM6/l8e/rc6QFzBb6IMpFTE5YLuslx/nHrmFHADhiGI5wzqFxHl45ODlbkjUC4CjJGLVyOQM47I9SALjtxKJI42AlRhxnroCq9Z4+9dV6acXLOc5sGAYgpQaaS5c0dW9Z6DloAbOFPojOLUKa+VQHTppzmRHDAEdUssUmgwFjlF6HCOQE0BjAse8xhAjftCAS4LCGBmEc57igD+NuTinwx/q0EAIIJ5xpR+0t9Hy0gNlnT48L7xGluYp9I+fZKshbNURTsNC1m7kjCNiEMMA5VxY/FbDJnBUpMJX7aB9czqhh7p2aUJ8v+xx1T2s6VaH8KZSrsNu2yH5X7rXQ89ECZgs9QNMqJkRJzCy++vrNzPVGxMxgVEIBmAP2+x1Wqw5d18FkmkYEYxgGcaB1Cl4CWs636AMjMtC2HUpcZtG7sf13BoSfyp2NnWNPgdEwDBP/s2pEFo7sk9ACZgs9gsZgRkln9jBPl0O/Z04UN4mIw3GPpm3RNq2cZ3KdhRAMmFn/twYhCpj5dJ0CpRhb1TmEax83/nAwGYcfnUohrtbMh8TMhZ6XltH+rMkqr+rjmu+/Prf2fp/jyGZFN/DoC1OfnBkxhKQzcxPQs/7/xb8NhsNz1Vls+LHc42xaPCFvPoEeA4SzDsc8z8ktoubz0QJmC52gM64DAAKLmJl1aCevUX1R0pKRuFGIBTAgDAfs97dYdS26ti0glaTFYs1kNI1YLGMk9EOE951wZSDEFCcaWbg1Vm9V0mTe1lniww0Ap+plWq5tGIZ87JwbxgJkz0sLmC00Q6eBTJdfiLH+4sRVul5L0FP6jwjggBh6HPc7dK1H27aixFdAcwTnXTYUiM7KITIwDBHON3CuFe9+FmMBMyNaQ8EYu4xx4UOYM3VJAU6DWQghgfE8J7aA2KehBcw+Rxo7Zn7s2iJKCnbTFM9k3x+l3Ra/s4gYh2qRz1ocR54dAigucWolDRFzOZeteMumPZIIz4+lxwBT8cWbunU8pZ2FHqYFzBZ6EinjVMSnqaNqtgxkZEmgkkGP4JIlM8Yj9vs7eKcZWz2YR/5iCfQkS4ZYM4cgtTIjO+x2Bwz9IAVOIFxj4Jg4NSByRCnIa+oLfABrptyYrZcZQihPb1IDncs0u4DX89MCZgs9kSgXIZmSAbH8/byRQT4GhNDjeLiH9yTFTOCKlXRkgZTamgpmAFwLZof9/oB+CNm6KXozETeRnGZjAjOqDAYf8PTGSqke/rESuTH5+xQtLhrPS0ug+WdBD7mKPq0tnuSmpnnwUs/Y4s8Pi1DJLRYxhsS4CdeULyM+KQ4SObRtB7QdyDlxnFXn1LFImgBNQqIEDDkCjurwqsdaGx9Kj3Tu2rnjj21vofO0gNlCTyLhjOJZrqIsyRPWzWR9dCQ5zfrjDj7FZsoZRkmfcp1RissMkQHncXG5xe//4TW4ucTlyy9w9GsMBAQANES4JA/HGDGEAZEDAoYcrRAD4F0BkVM/Vskv/RExchgGbDabk/GXjx/PhTt7LlrA7LOhzO98XCs8SpU9E6ZjSRxji4JK9FUE5pjALKA/7tA4QuMcbHZZRhIPiaTKuSMMMQLkcXnxAhdffQX2W7C7wB17HIYBh74H8yCBC5ERmNGHASH0GOKQowjCIGCm/nQaTuWcg/e+0o3Jc9TWymEY4L0/D2YLo/Wz0gJmC81SLfqQCbIuwMTMWaGfKaXnGUl7qVFMwS/p1zJwsPUJ4/mLQXDew7UduFkhooEPDt4zXAjg7HnPYBfhiCQTbWVNTS5vqDmzuXGwWTHGvmZljKZE+Z/RM2PhyD4FLWC20FnS9NhKzKg5Mw3kJqs3m6FRwDfA4NgDPMA7wCe9l2SAVW0aJ2xMMZmRQeRAzgPkAdeAfAOiFo1zgPdwTQMKUQA1AhwYIQ4IMSByEHhkQNRn0XSPJz9KIVWBijHmHw1ZWtwq/nRoAbOFHk0MdUwVEND8/6Cxe8Y5SpwcR8QwgHmA9+LpT0TgwICnJGJysR+ABYDIw7kGoAZwDeBaON+hYQcPwoqSmSFdSzH5mzGDKQJwwk0y0v05e+2r+Nj3ff7bglff95XT7Kn4Sy3Bt4iZPy8tYPbZ0cfqznjEgJkYTY0QYBEyi6hZrJJUXRuTiKk9GvdL+1qZHE1anRQWRQ4O4sNGjnLEplMDam6LwTn5IyO6OtxIOSwFsLmA8lpUnR47O3InrJYLZ/c8tIDZQk8gDfI24tnsWZbq0G+RNhnOAcNwRAhHrNdtSnIh6MOMUpmcS+AAqec+OcC3wp2lXGaOtG5T7fQ/jSkw/TRg1DRNZQDouq4CNeXOLPhtNptU5q4m5czmkjnaey96s+elBcw+K/p4i+bEmskFKrLCe6L9ZwAxBQTIF40nHPoDQjhis+6EgWIAcOl3LI2TRAyAKNV+cqBmJWImxJ3DEc1kXks8YZFVq86eslbO/R5/BpCtnkp1iqDpuJ3KVLvQ89ACZp8dPYeLxjmOooK2fD+JfKqvE64n5swYclWpYqTX18WAU0iUzdaRuLcirk77ObaPCvBORcbq6sdYLBcO60+GlnCmhc5SFZmUFm4O7AYyShQhzwDHiBMp8MMAR/THPUJ/xMVmDZddOpIeK11Qrs++/OAYMRwHcIhA6stj4WTsLvFcxMkwwszJR+3577HQeVrAbKGzVIDFilBFZ0YplIks6um5EeJKgWIQSP7/QAw47O7QH/e4uryAc2oCcCm+Uk4mRyCS9lVUiyHieDiChwgEFgvoCZqAyoR7ex4S/ZoVJad3WUTKT0uLmLnQLI39yywqZKtc5sUMRzYWuebXNQApZMIxoG2a0TfGupn1b8XJVgGNYwE4srqt6vY8OTZV9D1Mp5T5czq1Of+zJcvsp6cFzBZ6gOYWnNXw00SFVoul+lG5sygiKQH98YC+P6LrNiKapctcShXEiMasKRSi1Ay4efMtXsULNKsewbVAkwLNxVKQgtYBT4BzBEcuiX9Szo7UjcPEYH4oKdDFKFbPuRCnhT49LWC20AzV6vLaOGnNlTRzWanARA7lc3a9EEDzBOz3O4TjHpvt19lpFhDRVKyfrOYDgMQQMAwDbm/2+A//9Rv8ZbzAartDcA0GRDjv4BpJI0QpnrPxDq13aLxH23RwTQvnGpD36LpmNlvsKQvnHOVyd85hGCRucwGzX4YWMFtohhJYUfmbrag3ORe1GGotkGLGzHqz8iMe+DEENE29+AmkfrcYw2iMjH4YcHt7h91uB/YrRBdwjD2c92jaJnFeAlKNc+DGgxsPMMGD4Lwoi2N0qeuSaHHs1HrOT2z+uwJsC/38tIDZZ0dP5RjqUKUSIF63VnRTFnwk1U9m5qLh66IAGXM03BGJe5kxOSoIalB73x8xDAPW6zVWq7U4t7oGFAnkndQMoKaImY4SpgrXFLkHXAC5AX1/FMnUFCC2XNnYD00y4ZbxW61W1UiFII6147RBC/08tIDZZ0VPB7JCxSVDRUc9XrzsDdARgciBo6SUFqfWCAeGQ0QcxGEWMaD1DbxzQBzHeJZ7aLbY+90O+0PA1fULXFxeYrW5wEAOHVpR3xFA1ORrHRiUXCb6vkeIfXKuJYQwyCeSbLEKXsxcpffRqIDValUd67qu6q3Gb45Bb6GfhxYw++zosYvs3HnKhSnXck6nVCRQMj/MUTK/ZrGMki2hBkRYPzdoQHhE13Vo2xZN2wBwUlMgX+2NiCt+HpxcJ4YQESMkz1l/zM9is2AwM5qmyR7+zrkMUDbsaSxSavjTwpn9MrSA2UKPJMJjM8zySV8uCWsCB4RhgHcOlMKRMmolPdkpKBiC5Ppfr1bFfYRK2qDKfZYoZc8ggByIGN55E4nQ5OcZK+0tB6bgpIVLToHVAma/LC1gttCjyaa/sTSn7uak/sr2AU3JgwjmAf1xj6ZxcNwWty9tmlV3Jbn64UpFpcPhiGNP+PLyGuR8Ej8ZTZNiM0fRAAJIIn86RyCWbBoRYum0YIZ0vTUGKOeVxdTEwemx/LxcMtBeXFwsYPYL0AJmnzPV3qVnyCjhx0HU1q/VHBBwMjKmevRLlkXEGOCIRFeWT0iuG1y4u+wAkv4YQkAIDm3XiU4uXUvkEsNF9XXJqqqfHaUixAzAFc6saWouTYFbxUmbQSMP3wjYa87s3HiaR7ZDvNBH0QJmCwmN3MZK7GWBKqu74hFkZDAyyGYjNRmA1/hKjuj7o+iifCPgl1NekBEDa5gERLcVItA0rYiZCag07Y716JDv4gmPEuHWMtYaYLKgNQ42P8dxKegRTfs9PXnm7wXQPooWMPts6ONWigaYa/qfOhpI9F053Y7RvZNzQFL2OwcQR8TYY7+7Q9M2WLfikR9DFGfXmX5z+Yjj8Yi+b7BarxG9T8kWubKaBjUzsInxRBKHUwdd9uitRUbVjY19zVT5r0A3B2ya80yiGeYSEi30KWnx7lvo0VS4FaBeqMUtY3w0676yUl+Are+PUl6uFTcKiVNXR11T1GSEbiEE8bJvxDlWpMhknEjOumQ7gGJXyNq07BxXfMkey5np71MGgHOOtgt9WlrA7LMg6xRx6js8gpHg2XPIfm9OYMP5VFZKjjgeD9nlwbYw9lkrPm3igFvAx9gLkm6uXJsgjcaAWPoyfoyHgsLrZyoGg7nvn5bfzMr2T7hsoQktYLZQTZMFVbgmcZqVYyOvsRomKWctSymAALDkOyMwEANu379D1zbYbrZFXyQeFKUfDASGuFU4l0Q4D+cbDEE4sciSfcORBaHSN9L6l+lvzVQUOSbpuIQgWYdZbWscmqTuGW3bTjg11ZmxTYe00M9GC5gt9Gh6ShLEIiUWwJO/xZq5391Lrv22yxdMOCIunBlpGTqSknQx90UMCllXZzqgRU/GHGnNP6azzb3n/MRyLrUoudyaZl7dnC2+JwdmoU9FC5h9jjS3mmdE0PlFOTW7KR+mkFWsmCkFNluHCfXJGuCSUyqPmzT3pcTlRRbvf/IOXoGE1fvDpM82jzMHKLVOb97N4pSYOAa8h85/PJ1SAYyJceLlLYTFmrnQE6gkZazdLqhaZMVlwzkHTUpLcAAHsWzygP1+l6sgcXKRsFovQERU5z2YB4R+wP1+h6Zt4VZbkCOEpCtzyWIK06fcGwY0J1ruM0FE4VgXAVZxcRynKX2pdWpalWnOdeNRrhkfTIsPxylaOLOFZmleCV4JcfX50xZAcNCMZCVWMiY/M2sASCp761kvCjdxoYAmZTzCNwKAIK15OdVr1T22PTM6NaqV9ac+T9pLoHdKzDw9Hgt9alo4s8+axkuukvUmZ+f1bY2E2U1D/SBGzSUle6nFa/LkT1RkU+iJ5u9hGOBcC5ezUtR21PPc0Azc0hiST1z5BFeLfO6CZj87LZzZQg9Q7W9l9WHVKTy+AuAksgHIolfkCOaA1nvBOgac8/lCTgYC9Z9Q9w4GcHNzg6ZpsN1schA4OY2vtLCnCrNzYD3vjmH9xMY+Y9YAoEYC/bFB6Av9MrSM/ELniWFErof5n3yeWhc1YFsV+Sl+Ufy0imuDXMXgnG1MRE91pGUwdrsdvPM5KaI4zVqzg2UdH2aNLBid477s96eK+dagvdAvQYuY+RnQWElt7HZGVMwn6Ff2V+0AawTCcqR4+bM5CkpgREg1LsUPyzsHyWI2cZKwPS/qfAbCwAA5yeFvDA1ylrRWmxBK+xMA/kgL5NR1I4GwDl8Svx8Gt8Uy+Vy0gNlnQjU3MVJ+mb+znh7Ivl02JtO0mP+NRGB2uRlKHBajBzVJvIwMB8Zw7BEOR1yt1+gcw8UhNSd5+wEHrYTCHOAQAHZABO7vAxyt0XYXkByyyo/5HHAuqYKicZu1z1oAmXiqozs3djIelMdROMsyJsMgWWudl2Isnw6kFs7vFC1g9lnTFKBKLcycfT/5hcVkkTTcmgE0y6kl+BKwaDw4Jl0ZIoa+R+h7XKw6NAQ4DkBkENqs5yLl8jjCUQ+gASKw20U4WqFt1ijgxJBE3A45woAi6uS3c7bWDxyxUZ4zHY0QBumJIywus78MLWC20IN01imUlN9JH3Kw+FiSE7iLMSCmcmxuJNKOmh19SKFUpBxcOYFJYbdAsbqTlasxe/wcndejmbZVj4YngOQHoenClZ2jxQDwmdCckruE+4zPLZ8VkB4KoJb00sKVcMY1FmVZilX0Djjs73F/d4PLy4uUkyyJlSkDRoxa3cjBOrtGdfFw6kirIqMVJj89R3QK4MQAkCysC+j8IrSA2UIzRNlQoDHTc0BmORHnpEJ41mOl6+wB74DjYYfd7g7b7RatghnKtTGGFByuRU7ScSTeK1VNAvCL6c5Ppf8hAI7mcrIt9HPQImZ+BjTLkelnOVDn76pMcjVHVuUy06wRD3XAONaqmOm8uFVQ0nTR9IKsrle9nWTgyJqxDJpz3OUjOvS0KyZgrjq7+vvFNeOXo4UzW6j2f7XOr1znvj8lZRKAGIJwVUknRcmFAjEp8jnCYcDQ73A43qPrOgkYd8nfjEgMmR7ZfUPETELfBxz7HuvNVpxkNRXR2Cj7KPp4l4w5wAqDWGWVa1wg7eenBcwWymTxQTmNUvjX+plNKcYATmAmYqqDIwNmCCAM6Ps9jscd2lUL572k1db7JnexWj/nMAwBfT9gvdnCkTepu0ulzHF408NP+mF0CsyGSQTAAmc/Ny1g9hlSFVSN8dLmyXkPKf+J6+uggKYfU2LGGIM4l1Ja9DljrBV76x6J8l/81LxvskjJFlBMPGTlOTZ9uI+iaYaM/EXOwGFjMxeR8+elBcwWEjJZWisQe4SICbCUcCMkf7LiwEosXmCIA27e/QSHgIvNCm3bSIXxKOdHk9Qwcz9EiBHYH3rs9kdcXl7BN43xcxv3hKpefQrSKueWGFhiM/8EaBn5z5jmldqFI4sRGWTm2JzsGMGcrZmRgyrNstMEIQKxx/t3P4AoYHuxFjBLzrgKZjGHBFFOdR3YgNn1FXzTogQ5FfArsDoGslPA9liWrb5eK5yPaUg6swXMfjlarJmfAc1VGBp/N7EnqjtG5tLO3gCnQMPCzNAfQWA0Jsc+MwBHSRRFcWql7GaWSrhFeN+AXLYwlBNyN9RpVm2g2odR32pDZDl8Qiy0vnandGaLNfOXp2UbWShTnRlCrJixArIzXI5NdsZJFxYjGkfwxEDo8dMP38I7xovrC4EaIkB1ZyhhQjFZMyXThsOxDzgcj2i7NRrfgpIFdJzNokao5wCV0oY+3pyYCUjySPFqcc9074WeSguYLZTILlzjkpGsmfNSmSrwY/IF08Vc2mg9oSEGwhHff/cNGhfx8uUlcv6x5P1vYx7Fmz6KIy15HPoBu/0R3WoN33Ti8qGmz0o0Pv1MHzMe9h7eOu0qMWedGZF7utvbQs9Ci5i5kIhhRvRSYBCF/EhYOyeKJQuetUWKNTOCY0AYesmf3zQ5T5kwaDRtLIubYgQIMcI5nx1nVSfHqAv42qd69PNX3N1cG8WhuOjzyjecB6A6fWHQfmZawOwzpHEF7zFJyp+ImNEtX/iI1iUVEDHDESOGA3a373Dz5ge8fnmN7Wad3DKQy8VJlSZJqRNjBJwmEYpgdogMhEjwTQeQ/J0Vaygg8ynjmxTcawNAuefHV2ha6GNpETMXwpyIGSKPLJmnr5HrADCB4MXniiM8MUK/x83bH/Djd9/gN19/icvLLZrGJzCLiBwTQHixXoZSA1Pg1GGIhBCBpl0VMEv+aRLPGU8q5p+PZFyapjFiZjJCmFCwp7juLvS8tIDZZ0BzqaHnCu4CVvd0zlF25M9Fo++4WDGZA4bhiONhj1XXJUumvam1plpHWLWkUgIuqRWQff+zO8bHQ8dDTsH2vFKCrrZyWhr36rHtL/RxtIDZQplyVlmWn0JjwJguTFs9XNLgMMADwrBHGA6Iscd2vcol2nLOfACskQEjLzEG4+5+DyaP9foC5DyYhUurzlKQ+YQ8USVmVvnUjNvLJ7v7Qo+hBcw+eyp6J/XnUtcI+eIx4UEkVkm4XDXJOYC4RzjeY+jvweGAq8sLdG0DZvGYV+YqDAM4cuboioc/493NLeAabC9fwPkWzCledAY6ZqrXPSNxLsTivasV/tVpo+CwhSP72WgxAHxGNGetI/NdtmAmsU5Ot2DGIyNAaq8KhRKFvhyJiHEQzgsRbdNMfLTU2qn30Yy1TGJJPfYDAIemldxnqicbwxaRcbz9hKQxpWNSsT3/S1MQWxxrPy0tnNlCAJACugtX9miGQr3x1eeLAXAApZ/3b38EeMDL60s4PwUgXdcOBKfaptRMiAHv39/COY/Ly2tEVj8uk2kDxTr7qZkgUfBTSfetj6uKf57B+4V+NlrA7DOjU8poTnqyPoQcI3leaDMyp/Ng5ZqiBJWDBxD3+P6PfwfEI37z9RdovMkgC8lO651wcY4IjhwcXIrxjDgOPb774SeQb/H69ZcIkQDnJawJyYrIxdH2tL/ZxxsKRLyNcI6MzswaMBb6pWkBs8+UysJPOjMkxX8Ky1GPjFmRiIFZ/VmygoIlhxk4Yre7AyFis1mDXOHE1PGUQEnXpU658g+DEThgtzuAyGO1WifOjFL40zhZEOq/qi9mnHKtay/Xn+uix2NL5SnYmh6fKxa80KejBcw+U7JVxNV6+aHKauHhDFAhIoQjDrtbOMdovEPbuBFQZBlNxEtWA4Bk0Dgcj7i9u8f28gpt24HhMojN80EnrROnx+DBp6r/VnCyej+OUdKAZ5F5AbBfihYw+8xo7G8muqlkxUzuEk/CheTOgRzmI/nLwnGHm3c/ovXAauWxXrUZzMRIUMDNk0vVzgUIYoy4vbvHjz+9wesvv8J6e5nATETZXOJXOUHM/X6w448+j0gqlccY4XydAijGiKEf4FMmkNnCL5/coXchYLFmflY0XlBRrZbQ/GW1b9mp1EFVhW8UbwQFM0JEDD2Oxx2IgMY7eO8Qo0JIHSZFBETjbMHM6PsBu/0e68ut5DCbS7uT/qnFQvsEM2Og0aaPin6aASa1VxrlP8c4KQoMMyb6TAugfVpaOLPPnBTEil/Zw+fXVGpWSiGSAHBAfzzg9uY9Li+2WHWdnKmiWPKgL970nN05mBkhMvphwOE4YL3eou1WOVOGTeChOrbz6n2qzs2/HsmYnRK9OaEhpzhWUeUtYPVL0gJmny2V9NiS7scWLXnaooyAePDzAPARHA64v32L7779e/zm6y9wdXUBgEENSQETSt705ODJGZ0TIYSAIUTc74+4ud3j+uVrbC6u0HSrovTPrGB+EuQAhDPPO/fXY8OYZn3YWOoaDMOQgdqKmgu4/by0gNlnSbXIaJ1lP7w9FufXOAhn1h9wd3uDy4sLrFYrZMW4WiszN6af5StJCBkxDAGHY4/VeiOcmfdQzsx2VKD3EQHeNLZEPkrOHDUxI+rOcGY5vdFCPystYPYZkjIMCmLFR6v4lp3zbJhQ1ltFOAfsd3fg0ONiuzZWPhOPmeKYolH657JxBNze3SOCcHn1Qrz+GaUeASD6MxOLWWMHg+ZQeWIs4PGXuW/zHNX4eBauk/+Zq7//xA68C01pMQB8ZlRcMkQ0nCvymxMyOkU9zIpOuZoSAHAEIaBtIr778Q8Yjvf47ddfomma5DHPGPoevlnBOwcERhwkjKlxDULKnxYBfPOHb0HNCn/1138D59oUXB4RI6VQ0aL8Ej0bcgSR6dGIOP1/0kHuwXFrmsaIyZIJN0bGMAxo2zZbNBf6ZWjhzD5Tyn6v2V2iLPKne2whgVmEd4z7u/eI4YgXlxcCXEkIDIYzExcMMT6om4ZyXu/f34BBePnyC6lgnjgz4d1KJts53JiGRJ4Dric8KWHEfaWx4hKAvgDZL0sLmH1GNOGqKiAzHM5T2tQfEjEzDEcM/QHgiNVqVTz7UfRjFZen7mIkzrLHvgfIw7kGzicLZrpRzq9ftPeAtsfZySR/lw9Pejwie9IMvtX6uPpL5W71eXKcaP5+yWX2c9ECZp8hMUsKHnGUNaXkUlUlZM5JF2pJF22LnejidRTQuAjiIw6797i/fQviAa9evsz6MSKpq8kcEYYejlKtTUocGzn0Q8Tb97dwzRptd4GuuwCRhxY98UnMI1ARjZPhgVPxFSGNLZ1zYE0/TsVjc81J0BmZFwgibkLGse8PH/tKFnoGWsDscyQuHEN2lDXr+CnikjBXDEcRxAP6wz2O+zuAIy62W1BhvQQMowAPQZ1skyuDE1C73+3hXCu6tXaNxJIJwKaCJoDheJQjG4nJZ3o8L5+e4Z4K90kTOZY55gLAi5j5y9ICZp8bqde/FTF5dMITGyQEEEfEMGC/u8dq1aFrW6hrKaygaR1XzR2ZgSFEHI691MdsVyCkTBxWXGRzX+uoSgXMxg4YFVCPnjPnIUvRC/lmI8kzn8v6zMW5g1EqmS8i5S9HizXzsyLK4TcqZmZHWYMAMZU/0opJYEz0QiD1+I9wfARij8PuPb79w3/FV1+8xOsX18KBkXrKazxmBFNBJoWfCML9ocf3P77FX/z+n+Py+hXIW0dZwBV1GATMBECck/7oI5h8HBm8CyU9G3iU/rp8z2AQUxK7C0hKIZMEdsanjJnRdV0WwQGUnGcL/Wy0cGafCVmHz+JbZvVMeiKZWEs3FeuAlMongRQHEAaAe/THe7z56Xu8uL7C5eWFuC+ku2tweak5Wd83MnDoB7x9f4fLq5fYbK5A1ILTd2x+TFe1ILoBMiF1yJ3QSJyeBt6Lvk3jVWGee477ErMHi9tG0jNWHVnoZ6MFzD4nMrqyLFHBCGcGyM43AnsVNLA8hgEEhncO3hl44XIm8r/pzunrY98jhIimbeF8A3K+uiZ38UFff9Wb8aSvs2dba651njVOsgW4Y+WLl/nKuRCmRdr82WkRMz8TkjWtRUuCicWcipl1he/CjRWvh5DPdQQ0OOLu/h0Ouxt0rcN61aJrG/js4EoAu8SpSeUm4egcmAiBHX588w73+x4vXn6NdnUB51dgWEBTFw2Cg9grVfHPyRJJyQ+NEOV+0Psb0kc1AGQzWtQ6NAKRlMYLMeB4PECqSCGJ3kHA23v0Qw9HBO8dQgiQLG0Le/Zz0sKZfS7ERbyU+MfT/k+Vv5QyN3rMiGAaXO0w4Li7RX+4R+MJq9ajbawTqQJaAggQwBGgCCLhb97e3GJ/HHBx9RJtuwG5FpqQse5bDbbMxQ1Dw7PUwjnPlVlrJleANrlPEqddypDbD311XowC6t57hEE+O+8qDm+hn49+VZzZqfxbnz1ljuoh14VTY6Z2u1MU0fcHhKHHatWmupl6pyIWjmMo9V8GYxgCGB6r9QbOezE+kIdjylsuOQewA5jgGMlR15X4ztRFB8h5JOfCulTk7hCExxuJh/rEJl0REoA655JfWQ/nHPq+l7hMKim850ZwyaLx89CvCswWOk1sRcwQZriy2kAA2MVX9Gx5gcuJwmHxHm9/+hbDfoff/eZrtI0HIPol0X2hcGMgAMqRiTV14Ii73Q7d5iV++7u/xmp9Cec7EDXC0CUmi1wLdeyNHJMFk7MlM/OBTGCWMCqOlAEzckigJqkgiXzmWK3ei5mLsh+CiYDHxcUF3r9/D+89nHM4HPYAGN1qlfop3KENbVpcNX4+WsDsMyFmTrqy8yLm0xuOQDzi/dsf4Tji6y/+Fq332QpoK40zOwmyBCA4EhEZCOxwtz+g3Xp8+fVfIGIDRy2ca0HO+MOloHNWfR9FgERvV0TehK8seroYE5BzRGBK1koCM8H7JoumRawu/QaACHEvkeK/Hu/evUOMEU3TYLe7x3a7wdXVlejgkqi7+Jz9MvSrBbNF5JynolMyx/I/tWXuIaLU3tD3ACQ8yXs/kkpHwlf6jki5IOB4PML7RiyZzgvoqSJemzJ/F89byr+se4ZaPTk56dagWv+UpqZipv4ef6bqvqMCJ/XTLvQz0q8WzBYqxLC+ZaMKSdVZT1+GIQx4+/032Kw7bFcrNN6LUj7dI2roEkuZX/E1y7ZIHI4H/OEPP+Crr77Gqy9/C6ARtk0dfCf9hNHh6/FY4zOX8xVstCURSNUeWjgojTvVvzNnlh1/5fjl5WX+vusadF0naY4cFYtxau8pG8NCH08LmH0mZFNkM3PmXObo5CKcOT0MA3784Vts1i2uLy/hXbLssXjoxxjFSYHUd0tATaHlcDzgj99+i3/x3/9TvPziawA+KeYJ0Rolzc2p+qe2RqpP2Ph5SH0y8vciauq14t0/1RcqmKmYfnFxkY+vVm0WPzlVgo/MIuoaQFzo56Gm5FMfTRalLIOMRIX8XZk6BLMpVgdNe+P3O8ckjE6fWNgnbYwWXuqu9jr33jwLjx/HjIOGyyQZJZ2T6/qU48mbvUhUph/jiWwndzVunGP+ylAUs1/9esbnISue61vae4vCXdoy1swcZwhoQkNraVTxrGjVy71JM0wwg3nA0PfYdmvxgjdPRsT1Pch+i1R0mBECwzetqcI0fgdIHmQ1zdlYc3iW2hfNO6Lx1fk1npj7ZkyzSKkHnHB4tfvJnLV4rpdPJB3GmSX4pGZGQJ3HGObt03xvn3I/5rrN2SU+BZmZdszpo/U0nfMp3O1TMMLjdk/d4/z9i26Dz5xrvyOz/uTYGFTO3Ht0rbXaqVZEg13UuylnYx31Y9LHWdFOX9ipqcLpjvHE93rt/F31lpGBIQ4IzIhMEGfUYq2TLrDETJLeLwAY0nEgwiEmvy/xdNiDh7cI+zc43OxxudriensJAcIoWTQQ4Un8yRiMQEAPRs+MiAa7PWN/IPj2Gt36JVx3gR4O0r0IxrGEP3GqE5D7l36MSFuPG5vn0J/6DanAKe2ntvT79LfOPgLgXVmeCcrSOOfZBwn/SsHxURdcETn/5Nw0PgUAfCpQmb1R+dzEETuclZtmgjCbdX2uTbPzjh0Hy1JWDkfPPQNlNmbOKvRhso1CdnjlcOxuwOYspw+Sbp3BSHuSJp/kqRJxwTtK81uKbwxgRIhvt/6Gc+BYPOLt05COSZ7EVD8/c7pn0bdUHcoLcsRbmPGuOMb6zvl5mBl97BGiLsO0RClCklUz4GTRyrtOXBeCPB87hOTRLhzKAPAecXiLcPgRh3c7XK0v8OLiEoAAmdwp5SuDBJKTcwgDA5FBrsFuF7E/EJr2BdrNK/juEj0cGkcAAjj28G4j8Y4c4Z0EwUdrxLDWxwogohFFqdqoxkSJ9ZkfRdL/89zQ76Jyt4bDIyJJc6SvklKAPSTqoTgbP12fNr8dfgSZYbQ6yDqs6/FkHa0rKaGa12c6U7f2wN3EYVqTITDHByIAHjHW1SmnWEcjqsiifcwQ1Szqw2faz4b1txLHuIszAsHTyAJ+9QZnWn/4+GPuc/YsuzjsR7bcAzB5UrLn6sTTczUGsRbFSjxmLyXjnPhe2YmbRbRRlxgAMyEERgyMpumkLmaqWP7wc8+7lsy/P93okC2eyumhGhMrB9i2zIrPhwqg2b/nevIQXo2z/Z4/2fw8gp6W5Xa8ih63Gk61PydxzBjSH02PeY5m3GW1PnlQ1pmQKWyhDeeyYWy+UHFw5uXaea5tEer1P15qrBkIwNOUKmZLcS5xGkaOLlA40llYh8/Rx5z1gFDvnMY071J7pY/CKUwAdTQGVXYGHTNS7nPMxZZM91OVZs2lcVK055jB3IJQCCUWUxTqJceY+MA7RASLXUlNlcY0J4GQqkfCY4nId/v+PW7evcdvfvMbdKnQrxgXCgejqOaIEDmVZHMOkYF3729xf4j47V/8Hk3T5DkxxCCSQTIg6PhZEc1+/jn8uk6JiIWjSSOmzL/q6lh83Mr5NGnvwXs/yxPMEMksqDazD2jGZh0GaLynPxvNGVXsGDpbSVq/jFEWgzpXkhPrEyfAzhYxuxCVm692O3sjV3x+0sJQ8U1fvP1xBEh+9ZCLxOoPRjoNydLgqrJmZgs2A1Gzwrp4qkUilTPgnCwkgY1S59G5AgXSjZhBt/JBkptm8NDn1601L3U3M4HY7mL2W7uItNBHNHqa2vmTiFLesoAQRKS1XEUeU1DVX30+IgKH9J4g3JiD6MIaR3j39i3evX2Lv/zL30ltTOacw4xSqmtd2M4ROIb02SMy8Obde9zv9virv/w9mqbN/QohiCjpXM65dkosU4fWcSqfx9AYUKwf2dinTK2ZY06q8l5L70vHNt8jpVvSewAlP9wje4qsInlGZJONJQEyMWyCy0f3zIzHHNj/fK4pVIuZlrUu/z2qnXRV+bf++oR4MzoqYzqRj6bnj1i86SQei1smXQvGgHvyytFxhTWqMidPXtaISztNNlPq01740xYtV8M4945OZXcg82In4hlHhDAghgFd12WQ1yvPiiokTYQoEQDdagXNm1aC2Uv/86dZzogmx/TvGuCeGQlOEZf5noEQj+PE5oCh1hU/VvibpycDfuLkYfryGHBSkf7suY94Fef7a5MhyNosfmZJ52P1HtpYKRJ7hq1PXM3k1pwySyWOhwBNApOOF3GvMHQpLIQIbKxZllHJ7HHiTnSuRh14jICCMauqU45LmSYVn+eWI3NEEdJKd5W7dEQYdBxHu1MWYc9Q5j6qfipHl/pI05xj5Rpr9U2+UVHz/I85RhWna41Yja2uPEcqJUc8APGIu9u3oDBg1bboVl3FOYn/VlqUKgJHSaQISETToQ/YbK9BzRau6bKtUeafB6mJhqUQihYxseXerP/Xh1gH50SWuXaEc0liuZ37mdMWdOZKYptnBE6Jyw93ttzqU1F2azES1Knz5jYRa4gRaWW66aQzP7qvApY1I9CkXhjxTjqjE0cdLS3p8TkHQ5dSfyoHlCe4imJWpuZkzavY+TQNuAT7ZkAFK0pVOgkO5YEsmGWv7rzIYFI2l/61vsmL3AiRsF5kurvqOYzCIZLtT4ypUCyNFvhps3y2cGE6ua0u4tTenBeWEyurAl6IjCFEyPAkPRYD4tKA5FZS2nOEXNhWdj4BM8G+CI8AxwN4OODmzY+gOGDTtVhvVrI9JSAHnMRCBoZrkNQWUig3BJknu0PAxfUrtOsr+HaFPukw2qbBECLAZOaMANjQH9G2bcV1afD8U+tWnhKFip4UeZ4SJW7cEZwkaUMwcy7LMPn5zSI70yUrwj4gvEz69KmobG1js8/oPObqPZQxLBXqZQ8oa1ivmycLTI95yDEHNJPPbMzanReDeHReuc1E8MsL+RH9rBg+mh6vRDke/cz0NgPcieeg/E/VQaLy1fjK8WM89DdG4sMpKsCl42g4qplzScHGiIRlmFQ3mKdWfY7hcu3bU/yn6psyWcEB/fEAYob3zsQmamRB6XEe+dFzRxYrZtuuJpOiBu9z41Seczwm9cn2jw/kCgywyW+DW5M2bX8envMnn9S8A3mu0S3mfmy7ow2yuk96yfPW1MeN0ZO4yrMH5v6e45DH88T0BUBjrRkESo5+ZuJWDWkyvAJwecFnB0MjsoxeqjRp9FepTUoTwrKvc3ot1csUBffkefMx8ThPnuxkB6I204s4FvOiF8utebmESrFb30y7WMalmrzMGQwYDBuQfHKnss9tcEQ46pmdi6T/RQ0tSKXiV0yiMcO+fK6ci9Mtyk5MYueUXGGFY3cIoDgghCPevfkR25XD1XYDbUzFsJjEFed1oBk+9Qfs4JzH9vIabu3hmi12hwGu6wCSWE8FWkYNTE3TgtlIAGkc60rjjyW7Y5o/TzQzp8PKl58QF8cgO9uFauOuWp3vyIdQnstzG9P4/qdBZO45x2Kz3M5EtXDMfnaPw8inPHcJyZO5R7VFi3OBV71ARtx75QJi/gE4AYygvMsgUd4SURJfoD9pUoNzMQq9j2buzIDEnO9DJGCW74diIbKzghyBsls3yrWeErAxyBfLqPfiMhBiSK4Dsvi0+C0BKZ8Vp+WNzBk6pGdjFjf7GPM5hCJCu/RiHRUuRn/nQOYEpjqWU8VYAXE2oOaSxVAOpRFmEe2GZH2TJ9FiuhYIx7t1HkWZHinflyOg8QRPAQ49eNjh++++warx+PLVCwBaB9OltDoEkINrO4Ckj947hKEXXahvcfniNV5+8Vtsr1/jbncAJWt06I+SVYgJkdWjXqjrOoDF3cQuIs0v9hRAk5E2pgYqwzPmpsZi6ClAe4hbnPRP3zMXLqr8d2ZZnxEw5n6yjjQ9NVXzLMJ6BtRr9YH+m+/t7xBCUjcltQ8JqEWOs2NXP8HTyM7XRj5S3Y5yImQr9RBK2pa5DnHh0oDK4mhe8UQQLFzZqB3S88icN8dqsukj8i6r/FB9MvLEsWA7sE5t+ZsLa1B87CbPUm/o+gyT/lV9Pbc58QS/7PVFJcGJG1Mu1q660iuGutgktk533ZS6WhIaTpeMBcVpP2TyMwccD3t4R7k+pp5lRUR1GREOuVieHAhN08K5FRA8wrHP94mRITHf04mdS8PNcAcPUsWUjK+fv+S8Na7mdgq4nmfxrMj3SF+BdGH959OALq0j+zyPUHfMGUQqTuxsC3MdKut55o6PbqqWMor819TOlulrQvUg1qKpsrsu+JKDXW9oHAQVJJV1oGTJzKJcrO7pvDOgJf/oGtTHYCTuK53EiSMsF+p16SEdYM1Maq20IpseEwar9geyFprS16JJ0n6kk6tXV8YRuS2QHre7FOd+PEoPYUCWjSirpHn+FSDTflzAWvAFdnIx6qlWuL30XHEA8YD9/hb3t+/w8voK61UL5004FTNC0IIfVMImmRFJ6lTu9nsEDnh18TUCPOAadKsGu/0eSKXtXNPmz6pYV0OUzD9Xlcg7JwI+JxGN1TDybGMgq3ATmIICs/mturBx35/OpZgbPNjWKS5yfOyUhdecmN4/mzl9ytj1gc9kJma9p1sTHdDopNebqV4qjMzgav7OhVBTyuNicVKMKA/hUkUfTg9K2r4Ta5fGhaoFtcm7NyasfnkUiZl0XnbpYUiWrHTvQMlVwhFCPwiwKXelvxxliU7FVx0BdULVfO8Z0B2JKAnAU4mlZCQLMDNG09yAlnCQUfWKRIgx5OfUqkWFC7XLoXBJhOk0ZWZ4cgiJjXfOIcQgOfVZvmdiRFByRCYDX/KpCNQF+ADKui/miBAHOPS4v32Lt2+/w9dfvcbFdo3Gk2RjZWlJcvmLvCYVoHROBDTe4ebmPe4PwNVvPCI3gF9h03X4/ofvQQA2my2abpPEFA+OfY7FdEGdbp3MTxILrXCh1gv9+YkAeHLowwAgqVf0BaaRm9vgrCeAMgWUNnV9X+qgPX/Xp9J4Fk7X0dwYndsIZv370r0U3AmEyGVO6/vQ1ErnDYkPPA5QMSSZ0ZSGoTHFzSwbOOJCisK9WFRUMVyz1Zx3ncy9JO7EsrXluQqrLuA1ZtXHT1RuNVXoU9mtzfdVHzB+kXZn1Lukl2OK3xbOzDxDGa2KSywtc8UBqrlad5RTbhr2pfPMu5mZhlV/AI3csDUezUBM9Db6nTkvMw6Jq4xIXHTAMBzQH/e42nSjCkwqJitCI78P5a6IHPphwP4QwayZYB1802IYBoAZ61UsnTLccc2ZkfFPLJzhg1yEHWegav882UFK85OVK4Y5bt5nmv/j9VOae8zCtkan8XPNX5/fgaHHcPynAM6Km5VHgk7vgjbmHvKN1Xfq8Ue9Ha7/sGOg95R91nKXcRqbmcUwKp/JETwqrXolguYeRMD78QNIz4YwSCI78ohUuKMQAvaHPRhIITFpYAAMg+TKGoYBq9Uqc4rOOYR9wDAMuL+/x3a7RdM08L5BQERIvke72zu0XYfVegXXeKiZuu97DAdJL7PZbNA0bTIcOMSg/mwxlRijvK7IUVGewgyHgmUCLws7asUh3clHr/PhiWYnCDJQ6LNk5oBkfcQUXlU3qS6o5T9S8YBGbhtgsJms8twAIiMMRxyPexyPB6xfX8E3yqXLyaqDs5Cfx4II+8MBfR8QGCDXiJK/jziGPdarDWQBEHa7PZoOaLp1qsLkoM69eUyoLKSJzvdZqX43fX8U1YajCTeoXJZk252qHKSvyJsvUID6U/W3+qYCJ3N+xVzQmWtOc1fFgCHvKxpwVylE7vBIQDtDZXMWipERYkRj3QWAJEKR6K/g00RhSKoNVeAap9kmZ9kUENEy9WKxLDvFsT+iow4ttbJYHIEicDz0ePvuDWKMePnyJbxXP17G7e0t7u5ucXd3j9evX6PrWngv7d/d3eHu7g4//fQTvvzyS2y3W2wvthg44rDf4/b2Dj9+9z2uX1zj5ctX2Fxuc7/evX2L/f0ebdPgiy+/wOXVNVrfwnuHYShcwEqDp9MMdAAQk6UzWWugA8tI8lrZqZBENADiSBvyq8jj6L1PLgs64WsQVKjRGylHMZ5WeqQfBgHkKIVwFVAk+1fikAwPmvtJYg1+NwABAABJREFUmSfNKy8yo0lAQog49vfY726w393g+ur36Fpf+pY+OHIIgUw7xVDx/vYWu8MBA6/gmhWGHjgMPfbHe7x+cQ1HwOGwx9v377HaRGypReeQN7EQtNivjGdM3JlzzhicPh4YxlyzAhAQsdvtEKOoNvq+z2DmALRdh65tZU3EmBJNWm67NpLpvbL1r+6F+Txd/kQYbVjT555zmVAgm7Sebz8PaPY+zsxTy9F5KsxGH4asKiqqLALBf/zGQ7aXos4Y+lA4M7uQdKezHXWYZsQou5LuyFxM7KFOhifoHDN7TeREl8MRh+NR6hGGpONKuoVjf8Ruv8ft3S0uLi8AAtp0391+h7v7O7y/eY/NdgPnHdpVh4ED9ocD7u5u8e79O/jGC/e1Fs/xMAzY7Xa4v79D27S47q9FLEuDIM8onE2uh1geUV6n2dkqRarucnmoWY+Ojo/Hb/R+K6RSK6talqd6ocwVokxYFYEsN1PAS7nHApX6nJl7NwyhLGZGiAOG0GMYenRdk4Pnyxw6obNKXFvf9xhCFM6cPCQNUMDx2Et8JwHH4wH98QjXDElc1mfWvP2F8+W0z5O+B+acxnLSC7MeaXqoHsvRRfrqBXgGDMOAGCP6XqywzjlxyXEOUStTJc7ZqX42tWf7pfP89P1tj+26K7/njB+nOD3rO1mJxRPVyymajs2kp3ZO56bHG83pvk71cjLBcteNJGPnbohRrJkKSESE/X6HPgzg1qEJTZH5Q0B/7HE8HrHdbrNvTwiDTMC+x+F4wOX2Am3TCCglMbLvj3h/e4PNMMiC6Uq7h/6IPgw5XCkDhyO4xqPpWqw2K3TrlRSPaCW7wnq7QeCIq+MBl9dX2F5cYLXu4IzvWX884sWLF7i4vEjxgw5D47HerMGR0TSav118sgJH3O/u0R97xCEA1xHOe3G+cQ58OCL2A/q+x2qzQdM0mROt+LH0FsW4oe+OsmidHWhVVCIFoZj9xqQtZcpr15XK0lxmBcBADCFzL7ro8yu3+sy0eRFQxayWa1KsLQOECI4Dbt69ASHi+uoyV/nWfnpyWfS1+kZHIpqHGPH+5hZtt8XF9iVAwpU2jUPXRvTHHgRGDAGb7Ra+bRCGgB4DqGtzjCihcMSZ40jP/xSe7NS5YzEsA1/aIA6HA8IwoGnbDGZEyGDWZNHbAnt9t4n+T0VN+wx5wY6uz/shnwSw8eciSRm/TOWkk2hc1EPzm2XN9BSyRXKapsnPBtaY6dN6zCeL11mnIv3U3zEyhhjRhDDAOZ8n1tu3b3Bzd4vViwusVqs82Lv7e9zd3uH9+/f47W9/i+12i9VqhdD3ePfuPe7v73B7d4fXr16KyLfdgljKiN3d3eLHH3/ExcUlXoYezeUmD/Dt/h674x5EhAERjUOyPhKadYc1NqDG4eL6El3XpVJmBNd6rC426DYrfPnll1itVvDeY0AEX13i5auXuL66wnq9xnq7QUyyQkiDv16tQUToVh0CAvp+QD8MePf2Le5ubnG43yH8xe/QrVcCoN7h/u0Njrs99vs9vvzyK2wvtrhIL5CZKz2Bcw7kHTw1snMMIVXkFrGiaaTAbUwB39niqxMV+ttqGYqSvRhYVJSV68MwpLlauGzJjS55yCj3T4GgrFqGGGwbdXiMEY4jiHvEYY8/fvNfcLXx+PovvkLbeMntxiLEOi8FeodjgHdexiJG+EYs133f4w9//AG//8f/Cr/5y38AuAbNqsOmITS+w/5+hxgHMEe8fvUFDgPj/nBE3+/gcIHGN6K1zX0rlmZZQAyVbB8lxSgHCyNO5t81eOj7DSHg9vYWwzBg3XXohyGPoJ7jPYF5a+Jz0ztLmw0lK7nqgXP/0yZkgbmAnO23WI9tjjRtw/6eHo9QvtXq6bquTdWlOpkt6dkn8dfmR4alqGOEuz7i4uKicE4ExBQX7JOhiFVQ+wDiBGRlC1dpEBhixOE4aEETlecJ+/0et7e34LXItmo23u12uLm9wdt3b3H94hq+8fCNF7C6v8PNzQ1ubm7Qdg3gCE3bggAcjgfc73a4vbsDOYfVZo3VusmD1Q+9JOMbi3QQvV3TtmAA7Uq4MjX1gtZwjfRxe3mBttV8WOKU6YnQOIe27dB2LQ5xABPBxYj1Zg2KMklcAqMhhEqsvb+5xauXL5PoxUB02O132N3dY7fb4er6Gqv1ajJplJQ7c6m/InYrgHB2F9FJqZOj0pHV0gWsmJq5MzPXmbUfZ6yeBBCrryBlMVLP0KlLiZOTNFcBiAG3N+9xvX2By4ut5MNXZo9UzKMMyCQPB0eSiDHEiNu7ezTtCpfXL4Qzc00CeMLt/Q1iHOAcsNlsEPZHxPs9Yt+XHV65hhFnZpMQPGTNfJxANeWoFMyOxyOGYYAnEgusiu3MGIYu5zzTsZ67k7Y1OliBh7Xg1h2WDTmauhDngGwOzGybJaqm9HNq3IMk5pwZWn0WGQvk9p0TX8AYI5q2yePB0+F4PHE1O3MzMr8YTZZxiXA4HjGEABCJWLdapRzyEcMwYBsGDDFgvd2gW3XwbYOWGdvLiywWbi8vsdqs0azalHWTsQlbXPcvhJvbrFOxV3GI7NYrbIMgum8asTqS5HNt2rbosxzlWAv923kH13gwOIdKRLAoXjnt4CihSlAxyDn4RgbYeQd2hMbJjrfZbsAhoPUNLi4u0K46ObdxWK3X4CDtucaDSQqFMAND3+PY9xj6HquViMS+azEkEXq/32fRQowmDVQ5lZZDeU598axiagEfnQyUXq6AU8pMkVIw1ToaDb1KXJlOCDbnkdozqXBv6RqwpMfujzs0XvruvXCYbAwewh3WtSIlIWNE3w84Hnpsthdo2g7kPGI+j+GdQ9s2iDL1sN/vEfooQexpkxqGAdkncZJZeOqtXmD/Q6hwI7kt5bbTKyr+llz1T/tz6uZqTb+7uysiWgLrMSjNWjpZMqOMOTPL1Y2fpDizRuHkTUov58QDQVUCet9KN6UMT9ostN/C5NzjmNRPm+0GbaohquPgvKtfBj/wZh4AOtWN6iwVaUKywzSuabID6rv373E4HsAEXFxfY71eZQ6qWa2wvrzA9auXuLq6yuxp3KzQbdcYwoD+2KNtG/imkVQtAFYxYn15gctX12ibFm3XIfjijNt0HbZXlyCIyNckayUAUOPhWo9maEBeFBPsZJcnT/CuQYsOkRh9HCSwmkRxHyHnBw4IgyidtYyZco3EEKDyDg0Y7bpD03Z4cf0CcRjwxYvXCBwREIFWxKrVugO1Hu26AzxwGI4IIeLu7g43N+9x8+4GL15c4+r6GpvtVnatvsft7S0OxwO6tsPrL16j6Vp45+SZQgQTi/HRJZ1WYsscqwbLIQZCpfZIYpWKz3EYkjNm7R7iCGgc4GOKL9V5rQvAW/0e5dhS5wDiAcfDPe5u3mDdemy6Bqu2ET+vkPR3jYgUBKBpfBIBHTrv0fcH7O53uLm5x+svfis5zHwrkzGBctM02G62iAn43715A2o6dN0aq84jxojD4SA6SgIcVF8bRF81ist8FJDRPP86PomogKWU0pNF37YN2tYnblgiLjTG2ZNLycVNnVKiZOkVUfXbb79Nsaayq1RV0ee4fNvx/JSFTmIAMxiWE3OSvVmL8PClqAs2G5CX58kxyrmNWInkGmEyDAN++ukn7PY7xBCwWne4vLjAdrtFPwzC9ZFLzuJWSP0Q0rfqkHOTM0kNscA4DgOa7F+VuIeKM1uvM5iR9+hWHeKwFUW7K0HTq80aACrWOXN8LJlEt9jmYwfzsnzbYG12BPtSvZfFLkCW3AdIxTRROPvEIUWOGGIQzo3koV3SJ0WGXJ/sz847NGjLJGpED+dJMjMgRDgGrrZX2PcHHJNBxG3WcEQ49Ef4VkTcPgiI7o97vL+9wZu3P4E8CVg1Yr4/Ho8iut7fY7PZ4MXLF4gxiBI9TfrMmRFyuBZxSgUuD1V2/MSeKeS5tNvGEHPlKCN8ggB4cPYUzNmR9T2kGxdNRAmWJw6I/RH9fofGEVrvsx9V5iYYacGk9NgchXtxDscoyv39vsd2e4WmW4FcKbgrYCQxntE5DMOA3f07dBvCanOBrmmw3++zG4ToTBman00f4TGOoTXpyI9pvo0iwcgGIop+oazMT2KwGlgYNTBlK/3xKCqZts1gdiof26zIp315FBXFv3KXMQ5Z1BxWq6SvQ9ogjZ5Mx9Q8g3Jk+nN/f4e7+zsAYokOm7UwRwOX6Ibehjh+mJRZ6f6zukZ+Aic/MylzlnQ1RNhs1ogp/YXV48h8p5IAMOlUis5FLJGZfSWdKnKOtYiUKUTJkpbYWdLvDJuu7EeaHNH2J32fj1HRVelOIv5OInrmq/KkLM+ZBw3I+rshhvp+jkDeoe06EYeTSR4EdKsOFxcXGPoB24sLdOuVTNbUVrdaYQgDmrZYchX8d7sdhiDuIBcQ3z2tgXAYAjgwiAldu4Ejn8S3pKw1O7twRQXKCKKvQpLMPAFORdM0xtkOm3VtYn0kTv5EccDQ77G7v8N2vUbXtrleZAZAB3BUPYbqVqKU4MtTgLC5uETTdlAftDqLbVmkaujhGBAGOUcXe7YEjhIA1JM+LRkuc03F6OKeIH0gFLEqDwNOW+Ami5HnPhbjgr0O5hmJJBGl9tOmNKruN/P344FM+1KuEb9GgKjUM8iZWybPVkBN/uTskjIMA45HcTxv2zaLz/qdnl+ml87KVAsEFg/sO5j6Vcasryv90DkkTuJiAGqco1RZOsA1Dl9+/SV82yYRLaXtAESv4gmOPAZwWhQxlXW0rzHt0FA9CjK46Isr0Zxl2eWBNwsFQBK7vDh9pknPKIrzSHpPiAIgxYNqLU2ZtA7sdN1rjGi6h4IhCxh6IhH3IuMwHDBwzDoKcg6+a7G9vqyKaPgQ4dsW28tLvPriNbpuhdWqQ9d24l4w9OJm0jTZcBKiHO+HAd9/9z0O/RExMr7+6iusV13ifgLev7tBf5C0OH/527/GZr2B953EnsaQA7vbpkHb+GQ5DOAojs59HxEowrsAr+ElUcFfOIiomWeZRIQLEZ4jPCLisMfu/Rv8+O03+Of/5He4vrhAQ15qXxJAJNxziLowQtZrhD6kPY8AavD1b/8a3fYaTE3aCEickIdB4m3JgZzD9fU1+sgYhh6cLL+rrpNdOATEGOEB2VwI9WLMi6IWx4Q5fwL3lkBtXFcWM2BCaUxhwKGoNZC5a+2bckjb7TapSK0/3cNgZV06Hqa5LNEtOFmYtb+qN7PWS6Q11DTNiBu7l5/dHbz32G63YGbc3d3BOYf1ep0NcrJuxGWIDWgryDnv8vqrvkB5g9CiPaT6QmRH9hAihvTTpK0J4vtEuLq6Qrte4T0faiVjuljmX+Lk8v1j1kFYviCk6x0R4tlYtGpPqx8k3deaqe3uaAUq1R/p0YikK3albeUeBM3EXBz1OCOJfnLfPg65WLAYDgBHHl1TgmeJCPBAlyaoBqc750R30kb4oUFkRhgG0e+kBIb9MOBwOODd+3fYHw4IMeLi8gKMKLs2B7y/eY/9/R4cIr7+8rdY8zqLp9Eo4H3jcogNooC8cw1CCoxmkkB+sOTgF+xKgIaygxKJTs0xC5iFHsf9PW7fvcX1xT/BZrVKepAgXFyOhCgBU5rzTfRoiScih+uXrxCbDYYEqo4SNx4DyCXfRHJYb1bA8Yh+J9bMpmnQ+AaBR46qE6/5Qk/hXWqq56kVuaRdsvJOvsQuRq0VUeSPGmh1fqxyIRitY+Cg1c8nvRqJq48DM3X3Ke3JmKkTu1yvnG4MpXizuXFV94BZfO3EFesGL168yJzZu3fv0LYtjsdjBjPTE0RWRU8hMfYVlxErlGUuTfkdQl6nihIqYsbIks9MYxkzK584Gm3D/p4M1uhvRYKYP9eAIw9Qv6zqpcy8n8n5GIFddSnn466sUWU80v2m9yhAZ9pl81kll9E8o3xtmrz5HsmymsZB3UwofQbE/6aJLTbbLZz3CMxouxZN26JpPDgSuq4V7u7QZ4kbADgyhmEQy18YsNmscmERnSBDsq7CA21HcGIdgfMpwwFBUvPAQQQeJ/9FhoP89Mc9iAO2m1UB+urp7UfKG4+In4R+PyCEiMiE43EAOQb5lAWRRcy1qkCX510qHmKSWGYRllFxEcBU/KrmSNVlUhZ9Akrq1jI707OapLY6Tmem9gX5OSZdkIsnfZ/Tj+X7PEK0nF43PTZud76hJJKjPKc4v/eiVx8kG3DjG+Gmkd5d0q+rY/2cIaMWZiuFUfr+EdxmZqySMSIdbGK6+eF4xGazyVwDvOqdZJBDFhmRPNkTC56dL6fytU6WnG0y9UVT/Tx6cM3DAtO0Kvb6iJRixXCzDJawSF01UbgxXTZR+UmS41mXo31OYBZzi6bP+b8i/mYxJ3FicA7NqsM2Neu96NsaZnSrFX7n/gJ9CAhgbDcbdG2Dxjtwqhnatvd4/+a9jHVqI4SAu7s7vHnzE25v3uM3v/0NXr96hbZr0TYehxDx/v07HPsB602Hq6srYCA434C6BuHYi9uKJml0HgCBAoGGHi4CTYx4/+Y7EB/xu998idanfMQsIiylbVIMYxLh4L1H2B/Fgtp43N7d4XDoESLhp3e3uPQXWK+atHjlXYmujxOANeJo6QirTizN4OT6kDjSxPqJgzBRyoNXuJVS71TC8HTMcrHmmfl3au7VYBBnl5puMvKjwOSSqkUlVi4GLgVUSLSEc5SB9JwRwPbzMSKmXKeGEiP9jJ+9WrsCxI6E849RgGy/3+P+/h4//vijcPsccXlxgcZLAgfEiNVqhRgjfvrpJ1xeXubiM0DiCJPormOmG9KY+4Vuhun0ottOz+UcOImdx15qwsJ5NAygHyRE58WLFwAUfCjrnbRCj5LLHYkodq964KOG5qgilGoYGLPJ5ybXKbZ7vBtrjrScrDHpybI0ppyNziXzKoul1OzqiQ1Q3UdUk7D2C6JcFZ5BBWxljYWVb5JToicP79fVpHap+tFqvUJgzkul9Q7OISnAL8ARuHt/X0riAdn6/P79e/z4w3e4urrEi+trdOjgvQNRj939PY5DQNMS2saBo7izON9hgLitOI4psUCTRCgGhwFEDE8Ru9t3cDTgi1fXaJLBgzJAcOKSZKwoi9BRODznsN8dcOwZkVvc3O2xfsHJmim7CpFYPTnKyDknudm86gfIZ6Vy0zRV5u+YRHp21opYkhzkl53fM0N9GLOVbpZzmTvGhaMz87NwgGWREhFUeGLU1xBZXo3L+YmreYg+xGprJ+0sGHJ9tgKakir9db41rUfXNlibCAZA9LaH4xG73a5EuZh+yyuveWYLZOr9kMXLumtVW0Qyvrn6GDk0d3d3GMJQ7fpWuqrpFPM+Dmqeu+rcGafpJJs8OTyyjpiBqftAKdNqEQGnLWUGuxJT7e98bgLGevDZLPjZh0K2FOs5OjwKqOlGuYq6hnmpGEaEpvFYrTpsNhu0bWs8udO1zsFRqWWauebkHtCHHoEj2osu+SNLnwcOiIOUlJP8/2IpnSjZ0y7FnDJEaKcpccMpV3/TNGBagchXANP3RyAw0HRg+EqlURZ4cr41SSUFg7h6nnFNzdNU3DmUY1KXCRUP9cux86h9oXp8fLcCcvNC5odIJB967uPb41G7BqKT5KYbiuoqx2Otm7+Cdd/3OX67lHyUtmthkusJr+Bv264YobH3v64jQvMf/vN/xKtXr/DyxUtxu4ga96VyP4M5lJdS5dynxAaaxT4ebDtDz7yHp8j2ZT0IR0T2uN6MRAke9YF1t9FdXXdSFI5MRMkIx4L6mkMr/8wBX7o2mnbV/4u8+MAFjlXdUJA4mUYSlwvhRkRE9s4hIIjYxQzXNvCdRExo5ESIAeQIF5cXcM7hxfUVrq+v8k4o3txO1AZ0hPceMQxo/AaIEq3w/fff4253h4CAf/zP/7GIaulh9sc9jvfv0N//gNXKYd2tsN2u0SRn2ZAsmaotCclhFskA4pxDGAKO+3v4doWriyu4zQvsmzXISUpsAHjz0xsMhwOuL65xdfUK5NO4O8DDwRMhcAB5D5/nZgKLEFJ0CiMMAc4FsC/g41L2ljLzU/GXXDRn3ssMZVaU8wyYWb2W5bB03LOYS7X2h0hEcHWi1YU+1v1ZsLXX2vaf5ppR2pjjylRdZEl1ZHq/H374AYfDAcPQY3uxgXcOzQjMvPdgAK33CE2DN2/eZOOA9z5nGnGJ+88jzOl5maF51tn0UdeL/iWvUz3/geMQMCiYffOHb7DerPHlV1/mHdU+HJmGxyx5kXHH6DkeyXpAWTmXD6IxN2X2wDGXRMiK+FFXcgLC8RcqKpq7idUvP0T9YBbkor2STAqhSi8gIBBS6JEGJMfkAuKpJFhsILGd3kuUhurawsBonMN6vcGqW4FwnWPssvTkSBIBhJjEuAhqHTgCYRjw7t07vHn/BhEB/8T/bYq1FA4wDAcc9ne4f/8GXUtYrxtxF2k8hr5YweS51bESUBFanLB7HA4HON9hc3GJ1fVrHPdOrJaQdD63NzfY39+jgcPl5csMPkSUxEkHHiLIOzgm9LFMdkC1QSJuhhjA4BK7q4M9Ulfo3HYp6H9K5wSc0ZmpvxNuPXP90/Wi+l5N/Klzo1gMa7B5ulg5pvOcRBa3873MM6Sft2/fZiv99QuJGHAW1BVsAXjn0TiPm5sbrFYrXF9f52cT1ZNHMS3mBy6f02+VPux6qyCfhYEYQpDkEQQ0uUyXq9k3VcJZVtwOQKXot2N2dlzLmx9bMc5fVoNBWkNl100gTETZXUQOszJpGYwmE8/eW5A7c2nlYHrOemynj0zTY8UZpAA4q7Z4dG31vFVLXB23NqBsvaTxQkjuIV5j5ernbNpGIjoQ66+Uu+UoSQhbSQ+jRh8z5MgjO54bEAv5/nCEa9ZwXrIANyaMTYCcjHO13pzAYqGB+g9at4gCIPUYnDQKSafMsQdEhJM0fx3lyTg+PtUjAzDxjzNSzFN681RJ5sR3wDwY2/tMFPQoGFB9pzpBR0AoujapZB9EHUCA+B1KKcE5q/Q5KMn7Jtn1IOu7efnFa6wvtnCNR2/DgViCUkkHXYFC3ymh2vkYMClh0qSLKZSGKOeDrzg98wBjmoCleZjp+eacEUuunsLW16ecW34X4B7tANWnEZoliGJTBFd8t6QbEcU3jkl3m+SJb9KLW/E1gMVyHCO6rkE4Sp41EHAcehB5EEv8o3JD3gt4yGQS5bpzlBIFNPANsj8Tk3B7X379Fa5eXyMmiyKrFZgA7yKAHkO/w/rlGqu1h/Mp/lPnglMOiNA0khQzsloPHe52B/z9H77F3/zTv0C3vUS7vsBF06LxHTiKtXK72cDp+3DSr4Y8DgdJABnigHW3KXOhiXAQx+AhOc+qTm53PAAQcefi4qJ61zrnxJ9KDQA6XU4tm3LcclBxXJ3JnFO5Vigwm/kWYxSxK4UPzun55sBxoqt8Mj0A4CdAVfWWANB4j7ZtMvet60wD7JUp8t6jbVqEEHE8HPDu7duS9w1I75uSqMiQ5MFy/9VqldLfe5OiatRViKQVI9DHiCEyAkud1ebqxbWkxPEefQi5UpJKc7oYSfs/al0Vv7r3c0IE0gDTBCRjufwc1S93js0e8UcGynWH4JPnI3NelR/vaI7UgMbmnBEnpwNFAlhjB92ahzA7kKkIpTtN4iUTMElq7ogenDaWYRjQuIDGpZTR+o5Qwjoa49CrPmvkGORCeW5PePXFqxTczpB83iUuw7kIQsAw7LFaXaHrPMgVlwdO3KByqyJ+pmBkYbmw3x/x3Q8/4Z/9d2u06y38aoPtag34Nvd7vV4BHIABCSBTEeFdCo05HrBZbcSKS4ToJMwrskuOktLnpmkw9FLFyTmHq6urAl4o00PFOSIkUKrnWU21RQ+wEsLpuZxBbQbMmFOoWgIz62A9mlRn6bkArYD06fto37x36Fqpf2SfyVZt0/ObpoHve/THHrfDDYIBcQoBqvNiZgwGzBTYpa2CsWPmgiHxmP0g4YaRRXPeNG0jTox6KrnHjGfFqBTBpv6ME5/n2NpTL+gkK54Pz7Vo9DhkXr4BOeGikIB4BuyAxNHVzVfiMc67+KnIVSmbMzeY+p24NgC5P5ZU6S0pk8rLTE+JenR1sVnANTuc/qNjkrJ0qNEi3VGyV3AKhDd1bJTTnRsvyz30wyBGAudBvsmuGDpeiaFMSUGbBNY6tpyfe+h7HA/HZKm1Imo9X0qgt/Sj1J/g/A7tqOQNF6epnPvA/HsirjzkcvQhxz+eakAbMxA2LjYzOzi/bvX8yKbGAfMEzCxnpsaR6m2xWRtklqLR6Wmiq+by6grtqgN7YQZyaoURYmrntaMAwJFTup3EJSi3o1zS+AHPDeeJSXNKXq+PUdoxCnBkMeKB2ZZ1WXO3T6sgv9wRTmS9gYUX5U4gjsaNKy4Hqi8Z4pDSdYt45+CKwy6SzoEdhhhwd3+Pvu9xcXkpudegYSGFrwuJK2MGOAR4LxNOOBfJRxc4ghvOOysBojSPEXCatZURY4+b2zc47G+w2XZwnvIkGjjAkWx+IcTs92ZzjYUY8eNPb7A79njxxW/QXb4Amg79wJKHKIp/4hADum4lMYFRfPiGOCAxdjjs9/jxx5/w/v0tXr54gcurK6xWaxnrKPdtUjGY3W6H1WqVF8j79+/RdZ2k2MlvZuzLVW9w8/NE3E70bJfEHwVDBWUwsth4ToVCJHUQdHErQNfzebxBTWm84MeAMgcwrGy5HRGjvzt326urKxz29zgcDqmaWZOfRYHOPruKm3psv9ujP/YSGxyHXI+VnMMQFZSQRczVqjN3l3MrfpjE0f3QDwj5OKG5uLqQtNDqZ2Y4Xl2s4yKlZXGrEyCZJmui0e/H0BywzYFZ2RnKTlFkgzM7arkkK2InE8B2/Az7pUpxe08ZeJNG2znAuBIMcZAsuSgZIHIMKAA4B+KIIUbc7XfgIeLV5Su5HigWuXRXzcQKZuGoUoUr9XhnSGph8qV3BCnsG2KAT4720p8j7u7eYjje4cW2Fd0eSVshRlAjTq6Sr0o4rn4Y0KY8/UOI+PHNW4RAuH79JdqLawAdhp5T9XMImHGQakbUZTE7hJDUGYTj4Yg3P71JlasYXSf+dMzI9WA1Fna/3+PVxeuckvq7776rPNCFc7Ri1cggkOfNmRedwFoLqxQOAWkjqX/mmyARh5OuTC2v0/n8ED2APo+gufU09z0R4fLyEv3xgOPxLpd1BIDD4ZBTfw/DUOGFPlsIAYfdIRt7oOmHSKJRQgIyZtGZrdcrmKBvWEOYlW7ELWOQoPP0vcuFNZizkvoUo1Kh4xyd/TKP0idklystCOZe9lhszMQw5cqmLVoDwrkJO2n2zKPW46lAqC9MLtTdzfkZh1D7iIRsmS3aOph3WbjL2h6KxJ0IxxRjQBj6lG/NVXojO8WmVHx/hiD6ubZbyeK3bvu2oSR65gIoSUwW7oxypfrpnYpIaeeTBSrVmU0MSPmRTzyDvttayvnkdE4yeQxQPoWUAZgHtPGIs1izzTmP70OZoGeln6we4fm5lTYkg2UVsyCbIaEh75J1ICSxJ7F1SVQCpXAgKi9Ws2aY9ksusiyCzqVleRzefRTpPNQXZd7NOHHHY1/KKV7voZ20+NeIBYbyQqE8ngyTtQNJ7E2cBxFhGAIQIemmo+TL127n6acJNJnB6vCbFqQq5MGN6LH0TlH0VN4n8XIYEEOPsLvB3e1bOD5is76WHqV5ISnKpZiIhrQBkq1Xjou+bLc/Ynuxxeuvf4sID5CHS7t5GS2XfOsK6Er2jgAHwtXFJf7it7/FbnePq4uLVD1dTlQlMZOk8d5ut1JRK9VuVQPAfr9H27bCoXl/IrLyzHsfvVrN4HtKlFTlv3XLqHRkzKl4iFozi0HCKuLP7fUfx4/VNK04rsfLpsjMksPOiOiq9NfUQHqNniNqBwfvS5wqUr+JXbaIOyepvUIMkrZKWTTU8dfIvSFlscEs3GCI5XgD78DJ8QxAsVqmu+fdXnVDbJhsUlTE5EVwrIsFf0pubI4o/4MK0fOfcxvA/OEP7wOVhIUMVMH6+XgS4aI51wHZF60fBjiWzLXoWTwFg5nUgnqV6G91hpoqHHAIoQc5hiMGJwV/TqM8DIj9HsfdLe5u32LdAOt1C3EWkf4774EgtSMb+CSeSVxnhGZWGLDb97h40eHVVwJmRB6uEZcM6bf0KSQ/o5iq+RGnPHnwuLy4xGa1wu2N6L9an5wtyQS0g9GQpGm/ubkRwwNHfPnll7lINCAKbPVQf5AqtKDJV2a9Td71GMwq0EvrQI0ZBcyKuJy5mMwV1pxQ5bv2kZA2Uc/oA5L5PvW569qcXqqAlYCZRgoomIUQUgaeNukFPXKIJjOIXWaYnJN3cgyD6H11W2eTR24ONxIW9UOqrZrSJjVj7m/MmSlLZzkwOyXHGqM5Lma8m3Dq0CzNz5Sa/aSCntWE0eMkvbMtkW7/qEGrWDrLE406VPo11+UTK+QseI+41PHv07ewYqRYcKqW0jsr72qszUwTlOq3o4VnpPjIQY4RVQ6e42encnn+FVNaInJOHGWbBqFaNGbsk+JrjtsFxC/ONW1WCsviUm4hgUd+J/WsG4tP9uccBMwtavvg87qlE+9tbtA+kqr5fApwnyCGPlY/pwCdU+jPXGf97OaO5/dK4iwLIGfcoVifY9f3pEWdB4ysNlGmqxHOilLWzmSZjKLzIM3Oqssm3SQq92ZlWSM26U+EOZ5m8YNDPVHETsVTFSN51OD0wXHy+7q9ss+NwZjTdiwsMqoFaK8hTAFU2ikvyH7ORY9RL4jxQsx+ejGCYNKoZD0Tsv46K7jNs8u4C2dGzicRVrlwToVNxLG5H3r88e//G662G1xtuzwKVl+YfY9SQRRAM/VK0ZFvv/0er774Ci9efYFADaJrABYrptNJrP1GmnfOSeomAA6cY/gIwKpbwTfim9Ufj+hTjYq2WyU9jozCarWCazyGlBqJiHBxcZHLw8UYsV6v06ZVxvmc68Wc/kbnnn1X1bxKoGlD2/QadRthZlhXkxhTNg8D/Np+bdSyff8QsJxu1nOPL/rGZCdMt1+v15IWXrOXEFUipjyH/D1Xz4DMenXVBlQ/BSFl5j2RFh0sVvUSxlQclJwCDsiJXoGlOrCm/WUngkZMlZHYkfxN9nP6GymNdfpsU+rk7zDzU9BA35b5mbZjzyvMaeGc5pLajm+hA0xE6m6VAckC2pxKkkbnUv7P7FDKCAE571veSByllOSc74M0DjqhdeehvAhi0bEV9AKTcUg2HF89/gSGh/NSxk/3JTADUYq3NETgocc3f/dfcX25weuX1yDEUpoOCZCSnoqY4BKg6bPs9wf84Y/f4osvv8bL118hwCO6BgGU02rLxpCem0hEhCQCxlTbUX3rCITVqsuiWX88Yr/b4bDfpUrpZcKLJWyN1WqF29tbqBWOmXP6GhGT6gWoVCvAZ8TE0QywIiXyO+PK8JDFQ2j2k+L5XzgW3Yzms8xW96jErg/l+mrAtM9ePBOAEIdcmJiIsF6vxaqpdUwx1WvpfFWws7rENGr1uI2ek9Pm6GmalcPcBcMQRKWQfNZ0TJpqJzcXZCe1R3BT+XsyzZD5juoFOyZhHh7Lus2fogt4jPKnp+P8d3Kc6oa4nP8UXcWk/blLdZzyblWuyrsyTzm+cfv67JYDro0u6YVWt2C9kYB2DOj7Y6pu70+PH02mi3i0x4BhCGhbKdgsu6b8TDqen1c5pPRJOSJmCb0iy8Ekr3l2pR/mWV1aBLa8Wx7H/Hvc+ZnHM9KBfn5QenvktDjntvEpqW6fZ46NaLQU1d3isf6gRlKc7Ysw1FPuctyjuSZy2h9GFXHjbOcYwkFQssLlhIEEaD3kSABccfKsOaXCzcCV+o0qjp6aD3my8wnOzT5pxaWxuTflUyogHQ2S5bry/dPueLKTD8wzuwvnz6adsbXLHrOipB2/yCyxmI7gmtppWRSnxp5M6hZh+pCPa0dcnlxaDo6gejHG/e0Nbm9u0LUeq1aKo2SLpdUlMQuHBhEX1B528/4Wu90eL1+9lGK/3QogTb5dACfzslSSegZWtyB9PnUmrYd/GAbc3d3i9vZ2Mp56IhFhu90ixojb21s4l6ratx2Ox+NEh/ZhNL3Och3a/9y30bvO7+gR9z+9bh7f96cApbroOO8k/Chd671H27YnnYPHY1qEhfNZPyqd+yPGhCHzQKvJK9caGWhyZZt0U30ZA2qWXFNGEyRNMbNaHFKnITM7O4oSpQrVtXLv1LBmzu3US6IaAMrx0uKEwxw1lcVPBTsz8PY7y32lpacS79kpVG8Mc7tVaddyEOVGJucUGMe+l3hFSk6wYHhy8ORzFWxt1/qORa0u7ggcVOMpqam9T9azIYKcl6IrHHHz/j1u3r/Dqm2wWjXouiYVBVZzg3JODCAm0dwlTRfh7dt32O33+OL1a2wvr9Cu1gjOC2eWJAHRg3HC31RYI09gzhuRIydZFwKjRNqJuPj+/U3Wp2iKpbIbIevKbm8F9K6urtA0HYiA3e4eXdNKAiLjOqT6H5qZSw7F47+817m3ryBNFWgDZUqqWMZc8oXp/bO+czSHMANEebwexWE+laQSWdNIHCaMHkyzX4x1ZaVP+c7Vc+XzMQV0vWfR9/LpNqmsCy1nR6ngsiQ5qJ/DDN55bqommnDvTx5GM2GeQhlsKt7rIVbqxGdzJU2OPJXmdu+TX2EiwHKpZ3hSGTpuecxu5l+nJn65bhik+In3LpV9q/vK47ap/lN0GDGFKDU5OiBzJedey+Qd2JvXkkOMIeeC0zPLhioLyHqfy+ZsN9QRBz0ekccCAJ8WGWdPP8N1zN6Tze9ZMUU58NFXs7o1Kk3NgE7NrZpNeNLHsp0XUKoBrQglj+M658bAbszarr2Gk1tLBVcAmrLjal9LBgxvFFyToVFuhsz1QKV8L0Mov+t96tyjTanq4yNo2o/R4IkUVppM74lH19OJ66t7nVkAk37rrIsQJTokwyuBM0YQyy5+2O3Qeo/OtyAAjhNoM4HYZy6n3IkTZ5N6zaqxiiD0IBrAkESGRC4XJPEcsXv/Fvu7t3j96hK+URWBA1ObxoPgUltg4c2YxFds30fsjxFMHa5f/wbUrMHsAZQIAgZjoAgyJbOEXwSYCRwdVDMoRiQGe06uHQx2hM1mi+tUp0LGVQwUnnRnpmyVX3Ud4nYr7aXwmbZtS4QCM9q2ExEFujAIIJclEsDqKgkT7Z9uwGZixMjo+wGRElfKpkBOlBfPLKqCzP7Nhonwmfl+PudXaWHKXqgjrHY/MhAisNsfpVYraSGTtAaizKkQBoQgIWyiu4xo25IOW1JPsdpCUh0I7WsBwgQxsAuCQNnQVLgzKtk3dV2k93OMET1HxPTepTVC4+wDG+T3dhzGq5jNMJ3gbLQDk/MfA1rniM+fk8EImFg1J3vSqC07p2j83UP90usMsFVTyYJ9+nGGr+Tkne9dArMQsb+9xYvLF9h0HTwSoCQTpSdfxJ9Up1HEHNOHGBNoBzg6gDOYSQC8ZP6J8JFx9/Z77N59j7/5l7+HbwgBEYgeoE7AkCNaJ862jIiABiCPgRn3hwH3h4huvcGrr/8BXLMFowWiFGYJxGCKGFwsmyAYUnKYgOgQYxoNlzgwJ1Zy3WgIDtvLC7zmFN4FGSMQ0LhGguYTF8ZgrNcrNG2DQ99L4RY4qR4UIvpUM7JdrQBQSQeUihCHELJrCGdBWn4cCDGv2DqxJbOA2fHYg52I9zFKpt+8dCODI0u2EAWySq80mt085lrGc/Jxu7u6VjHHzH2Jkp4wBMb9/R5N20BSOxHoOOQ1JAATMQwBTZMSFyiwBdkKXGpbJpycH9M7BiS7sPWPlE5Rng+5aDinraUIDZIL0aXJQR7HGHCIEQNJm5RKJDZzXAVDua6HBmruezr/9ZPbe8J5fPbbma7R5PhTepHPtwD2CDGl0skpe6iUubNUNJgoL4YKJrl2iKX820wEbQtAqoYAZeItK0rMCP0RYeixWrUJELQ93V9VtONKtxEBhCCpXEAe7WoDJK5kNMqprkJ6AlYXDZ3QlECrMCzIvRWQ9s6j67okfqfBYjOa5nrnnFQ9T1W7mTh7qBeRz3BeqhQdvT9xtK2PaZxh7oJ5gdk1Iy3lnCabKHPc8l5G7928FfnL3DUB2sRx/LHEyMH52kd9EtlXGENKhKAAJ3o/BTOZO1pQOEZGJa4yVfn5LFfEaRIWp3VK/ZF3OsclFL7RdNp8FxnZ8z+fRoRm3NBCvwxlNjqz6oQwDAInzo0WFFfXVZLmLOkyUe6NhFsmAIh49+4NAMZq1Rn/HkqggCxuqD6EkUJRmDCEgB9/+gkXl5e4evFKJiqnxUjFjwr6fJVRRBf0lMfIyy21ETlKRfmU3BBIRhSYPFhpweS6mURofJMMIqgU10SUqw2V/pi2RtyQBYLsX6WrMXW27/tiTCMRypmRUyVpG8fjIS1APWg3GNP0o7bV8wInwYBtAkVb/8CRcpOHXIcUbGIp8z0kI4uCsY5FdSeDP9V8PSfWJCA6gWujJ8GM7rHcZwGzX5jyi3EktTJDSu1MhOOxFydV56s6jHkPTAtB5v2J6ZC5NFmgsmgdkPKRARE/fP9HEDjnqsrxnCSRAUDi6Thn5UfTtOiDQz8c8M0f/oC//dt/gS+++g0AymKBcw59LD5aonUrQKNApm4keUxM913SYUlm3RSonQDDNV4qu/dDWkfSxtAPIC8iY9e2OA49YiiZXfVHfOqa7JQLMGIcTC+ShR+Fs7GuCd6LJVgrbx2PRxyPR+z2O4k7RSmcok/nfYNh6OW9OdkyCiei76y2hlZhVqiGambExq8/iX/pAbwm+Uwbi4QXDdjv7hPAkeg7DWC4nKBTx1DfSeIy1cgDZPWMI9iZmt/OuKfWpWXWTGxrMbIU/ql1buVzcx4N/zzpT/2ZHjJpZ3FJKzhZq5GREDOQGaqDaHSZ2Gmkk0oBJOJw2AEEUxuTsminc0wNFHkDTrtpjIzdfo+267Beb9LiGT1P/fQ4+YYs+zJDDAFXy02RUYyqWB05ZmOJSI8FFCyYibgaq7/P+kSNuYLRoyjQBZbc9ECyrBpP+aaJRkzW59VG9J0wrKPBnGvTvBv13OCZttP3GTjMPIzqcpG8ru1zkkuAlo6XMR9zhUm8VLGY7fG6j/nfU++7wvZT6yW1kZjjhTP7E6DsmY4CYqXYhcuLUvU0lvWvf6pWMTtT0mFHAMcBQ7/Hzc1brLoGF5sucVVmkscAJF2JI6nvKSIHsDscsD8csF5vsVpt0LadxH+yKJGNJ8QZXaKKagaE8yEuiSdRxEMr8tWcgZzvvTegUMCPDVhZp1bhNnRwTL9GXc5uMnF8LtB1HYZgEg8m7sF7nzk3ANmLPsYo/nQ6Amw+EEEMDyPOLL/Ap23XtQ+bcsrShkR6SIk+zu40pc/CXQJEnHRnqYarb2AdomqqgZeVZTsrNhdQOkUMdR3RKVG396vjzP5sn4c5segSjDwMkkaFXPHCVl2EODHEbBUEpQVPquQnMFP5DOXOVKkb4RwQj0cc9jf48cc/4h//w9/i9evLlA7bZZYscC+e/g5w5JPZXjiPm/t73NztcHn5EtuLS6zXW3jfIgxy/xhQ4k1HVl5ZzKVwBae+uuTsK7GojCEMKfDY5ZKI+kxaKcl7l/JaCUg0TZOjTxTcvPcIyXOco6Qn14pVIfSwZTSJClcqYqLN2eXBMDUG0vH1eo0Qg+QFBEMqtFMugAuU/HZK+e+RGAnWiIiTk2Xm2GmgsA7azEXn5RxJ6FnTiPU2uT5QKpij0R+ScEKMGi282A5TcRnrASBgV/c7c5IGQOf7PnZ8MZKIfs9IBpyUhEw3sbTJN2fB8s+N/hyeZST2VCTyW5pw0Sj+5+QvLjsey85ZzxXzd94iSWcVCITIklV2v79H0zis1itwOFTdUbcPcpS4xGLa7/sB/TCg61Zomha+EdO+XGu881UHZHRHEz5yVl9S8lqpuG3HroBJEZ3Ur0sBE0Cu7sTKoSVO8GxokUr8I2szJV2QZTTVUZdEFZnakqB+Wz/D+xJSVnGYsG+X5w6Wm5uxmXR2Dix0I8zzqlY5SJ/E0qqSAJyDc+pEG8uGwwBIKsW7kb99RfqMKEBTekkoQ/pASiYrraRjMVrOsga/Rcz8UyFWrGGEIYg3fdvBZunU30TKLFjdhf4eI1ghC4mEiONxh93uFl0ndTGJOFdYtx3TKSVlvVJL5LE/HHA4HPDy1W/QNF0WLdWSqeLNdEqqk3BZfGXRR3BMV6RaCJVIGEXhfjgcsmVOQ2/GVtNxXKCIyiYjiUkeOlf2LevV7GimhaRqgHw/c035XEZRoxDKJqNi23PswGdEuPT8xbkV1bn1VZyB3kYEWK5VS4WUNsuB009SOCg3xkCDvzamedbhl9XtZQzk8v0CZn9CpAuvP/YYjj0uthfFOZYo+2ZJ7Uh12JwDMp0UxSqm0738BNzfvce7dz9gu23RNDLRfbJmSoxtFIBL95EiwJC0Pa7B+9s73N7t8U/+9e/RrbaI7FI2Wcn775wHD+q4S2mXTkAGiAMpWESWBCwxVYwqNQAKkMUYwSHieDzi7du3uQLTZrMByOXnr3VrNWB65xE4YBgGdO06Z+JQ8XQOoCwQMwonZ1P5jO9juSXlHEthIHk/kYt1tVR9qrmZDP9UfnNEBQJC4zTThQo3VvISyiuNSVJI6Zc4FWuZ6NZcVvo7l3RbzKKDBEkWE8ZkHHTkUBkDxn0zm1rmusgMeZmxonYIhkus2zqpM/tzkNjm6LSe4Xnoo8eFx1qFxAGkL5nFsz2GiKZpJ2JO3ZbO+jT5zInjgJdqQ06TtO8POBx2aFuXOIcEOtDfdoHYuDsC4HA89jj2PS6vrrNHe4yUvy+KZ8tXFsDREoVArdeJiPDw4oKRXRsoA4hWZNLrTsZYGlFSjzmXdHmpTascL/m5Sh/NxdUirzm+0X3LiKOAWflR8XuaiCBL5bkX9r3VNpQ5MfMUcSXiT3geqiYGphOuvHUL60XVx2mjlbMK121Yttyk+cNwjRnUKpQq13M6fWxxts7FJwXfTw0Kn4L+XPpcgY6ZyPqiQwqmbnyT9UTj6Wp16uW3mSjmOzlqOZUIIGC/u8P9/Q2ury/RNGJly/+lSVULnEl0I8LN7S1802J7cQkij6pacNXPU0n2lINyGUhE9CuiXjALXseMNCNyjOhT9oSsU0v9HevT6r9drlmZK19lcbP4otk+VTJsHvvyTCUiworObH7MeapUr96dvba+JjcFjNp+GpEFLAXlWETKU1T7uFmZsPxd5iLNTYHZ+avf6L8zM9z8NjM32k21pkXM/AUoL8z0kpxzueIVsziBDv2A9molyQlnWGpRpU3By5xR9Fa6tRGl0LkAcI/3737ATz/8Ef/if//fo23EIIBYCn846ESVDjAz4EQ/9Yc//hHteovLV1dwrgO5FgwnLlVEec3kClUxZmBBUtILiMixYRDveZecXUOMGMKAJqmaFcC89/AJeO/v73PSQAnTZDik4iBEeQzU/0vPdenYEIasvD8ejxgGWSht22Rwk3jDenDJSTbViqOgepMa6+oAccgtIiTBqifrrK00vmUBdR5pk6hcM3dvSzLeKuZyzuZr1Q9ABb8Akg6Ty9Nx+kxmjEElwYECu4qJzkgeMo/S57z5mk3IjEH5nXLfJa78VBzrGZPEQp+ClPNRyjumeS8hpgo3zpcdazQ/T3M7tjk7RbPmIWUoCNjv73F/f4MX15doGy+LF1PuARhPYGc4syuAPMRhJHFnrDoOYFrOrDw/ZUCznFmyAJLJKCodyNeo4t5yZvYZFWAKx1BAR0HUOSdB0lkU5QR6xe1CXT/GizgvYHOvSvSpOKzSj+lxCx8nuLJZ+jjOzL7jk8ose58RkI1aNueOIXHueeaE3dz4mf4Udxw2QGlp3jXjz0VeO0UPqRA+lJ55XMYcmk5w5QqccznPvSrOi1RSwmzGe6lVVeRriSA16iKYA+7ubuAAbDebHMs4HjjlIooiOO3VzDgce1w1LVbrLTTRkNzb5TOVY1FScbe0X/pdsstySetChmcgoKTmQc4zX847rQDXc0j7CE0DXUDRgmoIoXArZASgSv/m8j3ZfCUAXimJ8rMW4Myy/0niDA6zXwLnvp95dv3NZmyn3CMm76y+adLpRtGDaqYMDUzPnJwmdk2bmibYtOOSN0YuYjuP7lb6VnBOwtrS7mDGkLFwZr8YxVyGpex+SPqbGCTdSpuseVqZRD3GNcyp7HzR/Og3ZpfMHFAE84AQD/jDN38H7xhff/kFhqFPC83lRQ8uBSZU8arZNPoY8eb9HbrNFV68/goRDkMEIjs4J2bRyMmz3nAxAKq/tYK6inqqxxrCAPHLEo90dbqVnVk84zebTa4CpIvEcnxEYv0V8S1ZDNPYadtd2wIQcdXWszwcDrkquyaZ5DSOWfemMmLSFZHRGZa8qjVlMDPMiTr6js581Bwac95nzySqQE254hI9UTjhcVesw63WxYwxZOCXeqm9JPhMjsl63NbVtPcqU1PebfWd3ppHPCsDQ5iWctbvF53ZL0gMq5aX/4gkmDbGIABEnJmOPG2tcrsIAGeXQHGajOA44N27n+AJuLi8QIghO5bWdzJtczHrR2bs9gc07Qqb7RWGgLxbamC4+igJE0LVLCXltPIiLuImp9hG51xJamgAgCGcQ9u21QIpO/68slnvqSTRBMDhKFksvL/OLhqZU0tOpExhxCqgAjLLJT2VeZ+Tqoie3s5jqR6zuhMZqMccOgAyOt2YfBxLpIA5k8S4BLBRN3CKtph5Xt08R/fLkwd2Fqa0/IkVHje1gNkvTGMIKi4DutPr97V4Jmy5vNhK8ZzOnUgxWV+TQk5ihPcObdeAMoNuxBGwuCE5UatLalxCSFlGr1+8hG9ahJgY/CwSalPqy5Tum7gndZkYz+pKJ8dzi8k0DVHAr9drdF2X7wfG9LlRRMAJzLEorTW3PWCdd5MauyBy7gunYsfDoMroovOLzJIBBcLPSdVy8YGrldepvWRRJOMnB8BUop8httecJuv6oT8xDsUwxMj9J6JkOEGqfpW43ahtyNyJKlYyiXTBVINZtQECYNVDGqv2SA0Ce7lShehl8CfjZ9pZwOxPgKJW4mVGP/Rw5NA2mq5azuG08Kz+SoFsLuty0nCk66NktOOQLZkxHLDZbvDi+hI+p3AWnYQkg+TEIYlhILADHOG4P+LQB/zTf/4vsd5e43CMWK2Txy1ccqcQ4HBedm4itrHrorsy+q+iHBdyWrkpZgyEFS6cd9hut9nJtS6wQQUoR/q6OkaRAWK0bYury0vs9/tUyanF4XDI54UQpE4oOcQERv3xiJubm/IeQGAOOR7UNz6Nd6mRqaJ6CWma4b3yu2bD9dWU/efGDzhD44Wv3LmIxbXezL4DYbJtTDAnlxgpdiJp3jUlugVUmceSiUTUDDEMINqjbZASANhul/dkN+fSYT1FI0s463d51ASwgNmfBGXdGTFikMlvAaaQTCjlGHJ5Nrs9zbRdgnyTCMABHHu07RU267VwZjqZ2VrZUj4xADEFn/epAOtf/O4fYUCHPjBWaeJrMkJhxJI4E2sZedzN2sqmi2eqDC6Zj6XdruuwWq0yN6TK5ClXRqeV2iwLbO3EOtt1Xc5qUbtdJJ2dDHx22lW9EwDEOAiQg9FyC8QIjpwzcigXVCnaUcbJWkRPuVbkMT3xOJPHO9NeHZEAeE+ZG0UGMy2Zl/z/CJBsHpL52FGd7DJbSBO+if4zgPoezjXZMftsn7NsMQUsfYwxb6aqheaTCecLZXrIKdFa2sTfyolHveqp5qYumQ+n0qvoFpbxIiIMPY6HPXyqEH5/f4/u4hKFWVA9RVnAeRKxlPna74/wTYM+uCyGTDo37s7ZeTbT/wReM4bBdAujzM56lNRKNJxNHt/yDBNFPJArOuUUQhDOonW+6n/bdWDmqmq3iG8uF0bxvhEdU5TwLBgAy6A7BrOMxFYHZZ9XH4lmi/WMh678MdZp6ViQqBA0GN/LWHEeWweNmABi4swA5iiZTciBUjC9Fq4RnzwNgVP9WpnfdjOe6Wn+m5DE7Iys5dQs9s889cKZ/QlQ8Yki3N7dwjceXbcSEQdq0Sy7FhxlnBqLI7JDWgDURR8RwhH3d+/x/s13WK87vH3zE97++AP+u3/5r8tkc6niDQPOtYgReYIf+x5v3r7D92/v8E/+zSV2NwOOAxBiEkPS/clp7zgHKRfuiDPnps8uHXR50s7i3ljsSpwkIaXZiQE68RWYrYomaYDy/STjqiw2jhGbzRZ9f8R+f8DFxQX2+z36vsfFepMtecyMl69eIwwDfIq/LJJtej4DnLoGc7WsDNrlCbM174R+1MyS/B2ZQaIZcXRWvEzXlPAv6UuUYFqI4Vj6KRy2gJCoNkJ+zhgHSd0kvBmA5GNIBMYAtaqL+8897u52iKHEn5Z9zrJZIpVU/U4bGZuzi/V/fqc8CWaPYWMX+ngqpn5Zhfv9DlfrK6kkFCNAKa0OG4aaxhNflMdz/kQqo8lOOWC/v8PNuzfYtA1+uLnB3fsb/Kt/9q9TamS1RsrF4iYy5EUahoCb2zu8efsO7WoNvt1hCBGRWZIRZu4B5uaqj6kOVfoaVNecPTQavHTPnIqhFpHVW94cKccywEjg8mq1Qt/3OB6PeP36Ne7v7yVtufPihpA4usvLK4A5FQfmMvyoxS3lomx181pHVW9AzpWezoliFT5lnVm53j7zmCq1gckUAkjyTWYRM4sLjBQtEVGSUipxgZPIQaJSUhUnsLiuOOcEzDgAiBiGI0KI6I8DDlpgmUSKIFVHjAFNf9KGYLMVMZIacjo0mZpfJWj9iYnOpyZxtkqqmMTJ5yjpLEbLENYax0kMm5RpJyr+oxVWiFurhIQMoIbQDwPu7u7x7bff4eJii9Vqjc3FJmuvdNJplw99DxCh7VZIRrg0KednkbpR6Ep82lwbh8rrsSI2HY9H0Z+tVvMtEI2MA9rgiCtM5Ei4PJsOKGiWCz3Hycbi9PoKzETcymFC6T1arjWdaLQE6TO5ybPWzzI/qRU05YHSxjH63vpwZedU3QiyFdWEvmnfUQC6tEeJix4FQmVpMAGyOkErN545spLAgM2/QHkfBK05UcYo9y9zwOUh9OkWMfMXoLx7G1GLOSJEUa4TieuBJy8RAEnvkZ1mmasJqzDH+YXHLIKJriMC6EEUMPR77O5u8XJzjdv3N/jP/+k/4w9//x3+5b/8V/jr3/8ef/O3/7iaRCFGyWHlHL7/4Q18u8JXv3mJ/WFAHxgxuWUUi2oWgEcPXf855SAUuk6xaElQjJyLq3z//fcgInz59Vd5LKOxzo3vpb5rjJSv33KgsRQFvrm5AZFkj73f7bDqWrHw+gZtK311ybqpXKt9RuLkV6Wcsv03r33LhWUkKIbYyTAYrtucWPNoM2NIeZ+EbonFDcZlULCcj3034rDioVmMpdhvAjRtfIa8F+s3s4qGnLtVOEONG5FG1M8PUEdd3VKREwwwsxaPyuoZbWIBs09ME92QOV7F8ynXNJTgZwcPCqcnjGVdFMigFZDSLi0/DGAAISIMRxx29/D0Avd3d/jmm2/wX/7zN/DNCuvtJf7R3/4TERsTJ8ApzxWB8Obde6yvXuPlF1/h2EeEAJlwFjhOdPaxIqOey9PD+W/9982bNyDncP3yBbquM5sEilhj+0CUcvgXS2W26g0D2qaBbzy+++47XF5eous6iQ7wHj7lXKNGloxzDsEVgNFeqV7OhmfJOM6Ll/MDgYoj1lGZ04/VVypsFg5Qx0t1TQJYyvUqKKlDLPK9obdibdGOZwKyU35uypEq8BoGroxFvR0DqPzwJlxzSpleHzcc368NzP6UROa5yTv3fUVUH9crp+IWzGwvoqD81lkznixSGzGGAOclLnG93uDy8iot2j1++ukdfvjhJ6zXHbq2QbNqpH0IxxNCBDmPputSwC/qFZfLts89sV345hnzgqsfukQNmKwVFvyVuzD6n/yop8bsBFUiKE9Fq5itcnqvsdpALX3lWPHRkgVt/z5FYwC3Ka7L+7XnFvGuaqF6J2MAODkKqOZMNW/1puVmeXwNZzS/ARmglxcmfxvLLlSnaLvDSbGi55ufKQmM/6rA7E+RJh7LZvFZhb2+UDBXb2zWOcPq4JRRN0ph6//EMYJoAPwBf/zm73B/f4uriwtsVlv8s3/6z7BdbdF1V/i7//Yj/ts3/xO++eO3+Lf/9n/AX/z2K/zmq9cg78FgHI8DdocBL7sNrq+/wLEXr27fjKfQ3HSbW8BjwJ0ZOyCJ1+VAETyArm3BQNZxIWtbgOxmgAIuNrEfJVGvUs6n89t2BSJJZ+ScR98PKVlmI8VQCGlD8NU70Xfnva/0Us4s6Kpvo8cv4uiIv+VyhPRzxbkpqCkojzgmI74igauObQbF/Eu5sDLe+iATp1aUucusFVEN70yaQVc6oCKnFmX2zoE1qN85OO9huVz9LX2NKTPxeC6VDi1g9onJ6sbsMSULaHmnmrwyO6VG7evvKJPc+1J4FswptXEAcY/vv/sDPAe8uNxis1rjb/7R3+DrL3+Dd++P+J//l/8H/vN/+Xv8t7//T3j18hU2qxW+eP0CXScK8UM/YH8MaNoNLq9e4of3AaBSXfzTUFH4q4U2YxaApm2yYyqAoj9JI6PDrCJfDnpObWvVJxpxIW3bQrkvIieB00gWPoak9GYBN0DfJ+X+igW05KrPYUdsFvoMt3QK2i3wjcX4SvzLrNJovqEGBzuf6sb0Wlf+VO44t8umLyjVsuzmoZdReXZOICx1JIoqQEHPa/WtE6J3DhWbHR255rzT7J+S3PZnTFNl/wjgdI7k44aXV3BLOz+PrzO7qogm1bTLjTAHDH0P50nCc1IJNdXrrFarnIliv9/j9vYW79/f4MWLyxT4zmiaFs5rVtk0wY1uyizVydSpxY7Cao34VtjYrImwnNCM0ufGN4huulnMkeWIrQg1fhdEtviILrgzomF6b1rrNMaI6GMOu1Exs+qHfR5LRobk6oO9Xv+W5I4iuY1zo9UbTCxm53xG+U1mCs2AAeEsRGRgJHtisViq6kSr0kckVx6U4+A6gdP4fmq0kPkyD3YAzbtmnO/8Qk+hOc4MqPUqgHAXoQ9Ssi2lnYkxgiJSnUyd6PJ2nPfGfE05w8QwDGi9XMFxgCdxehwOdzjs77G+2OJicwHnPN6+u8G3336Hv//mG/zbf/uv8W/+x3+DGHb49rsf8e7dW/zH//T/w7/7P/7vsN5sEAF8/du/wnb7AiEQmmaFELgUiyV5DulN+Xx+R7RwVXZYuyzJLHAZN+RF/+LlC4CBbrUq2XpZ0vsE89kCWfb0H4JwZTrOKmoSwfsmvyPvfYpVhYBnOtc5klqdKQ3OEIZsjTv2fRaZxPHUVWKgimsF2IrKoCx+VvmqGjEV1bJ+lIqqIY+d1c8RSnYSAkhFYxpFV1C5lR3/csT8ECFnxKjeJgHkQFSn6enDAPRHuCCxm4ySdTgejwCQ3WBCjEmv24A5zXsWx+wwSZVU06yYOd4RF/o4OgVo+fsEZkM/CPeTnGRjTJWN2AGu3smd85KvSwOHU2aG4XhA61qZNDHANQ1iCAjHexwO96CLDS42W3jX4Pb2Dt9+9x3+8Ic/4P/0f/6/4C//6h/g7//+G/zf/2//V/zwwx/RNAN+/w//Cq+/+AJNt8LXX/8VNttrDIHQtB2O4WhY/4qHmn3KeWCbB7TyjfI2ZcGrOP7i+gUAqSyUOVdmOO8RBikW65yIiQpCCm5D7JOri1myKeWPFZ21dikR0DhfRNrkzhFS7rndbocQBkSOcH2DrlujSZXVx46zqjPLuiS9v+HecyX3OOXqIxe9U+ZU7YiqMt18p/duWrW0yngrI0yohcn592S+zdIE5bYUyEQ/Wd7YEAJiPMI5CXVCqvgVYxQwY5v6SgCtaZ3G6gNABroxlZC/E06zC5D9/MRc8tTrjptJN0N7gSqcK5ruqQCnHF3HVJncZX+1EAKOyRF2vVnj6uoSFxcX4m8FYLfb5UR7jiUuUbJoIIFn4cGm82isQaHJN/m7seRszsvuCDP6kgw68ePnbBEr6+wa+R4zm9HETQCF+8r9n5w3amPUXu1UfYavpfo+1qhUieOzfdXramVE/Vz1BBQQQjleXk6WDqZdpOwfRqROxGS0E7U4n+e+EVft801dOurhWAwAvwAVsCq78vHYY3+/x2a9kUBlqIjic+JEZc1159blw4zkOiAWPrEGMBoHECL2u1t8+8e/x8vrK1xdXEjoSQTe39zi7bt3+Ovf/zWuX1xjs93iq69/i//Dv/t3+I//4SX+P//z/4Rj36MPES15bC9egv0KwwD4TQOiY9k6JxwWzOfRrv4hYwYBUPHH4wSqZgGjfNZMFc5RlaeMuRgLrOXMErMEkR+PR8QYc66zGCMiJEmjozrLheRWk8gJkLSteis9z/q0VVwaaiCyfzNxqTSOAlRqWrDgN85Wa5+tGEhOA/Jj9I6mdcOZlZRCuc3UXtt22G63OBwCHDUAOWicZ/5pmzQzCN16hc1mnTMa670YyFywjAuqUCelBcw+EZ1zlpUPRXcCSOHf3W6PL199iaaRhea1LBolz3XjWsAxJrZes31GOAes2g6x3wEc0HgCYsD+/hbf/vG/4atXv8XV5WWKvwRu3t/i7dv3+Ot/8HtcvXiBzfYCbXeJy8sNLi7X+P/+r/9v9MOAIUiM6MXlS+x6wuHAaF0jPhNh/ORzu+eHg1jh3sTiFUOPCKBN6cUJxnqbKMaYC6P0/ZAzXGgaZyKSCk9J6ZivTKxQ2zY4HA7CkSYxNQQpTuydA7mSYSNXfHIOrknvyzscjyV1dC7WQjT5KbeepgfSYw3Vlj5GWtCjZ7bXAqiAbgqYMyM9Yf/PvZPSb7nW5b6pxq5rW9DWYegBpOD0IfZZDGYOaJwkFKL0TOvNJsV5lqA6Ts9QRNc5WsKZPjmNPf3lmPyWZV8mbhYzrd5oNOH1vJKZQicUi/5idP8cJnU8omk8vJf2OeldYsqAqDqWpm1wsd1is97IceeKLsl7YIBYqohMP+fE2+qJjRVqJEiewrlTKrbqNnKSLkLLvaTHqXsxeRen+zsGm3Nna9tWrKqus5bUDyQFNhUh7X3td/b3OcqMTRrnGUbH3v1EC+YvKskNsoIh1UD1voGEQQGcdGryTIAfgZlz/qRIf3YMFzHz56FHsfAMEBO6thPOKeUJUyMAA4lbSLUD3RGSrlp0V94RvHcYiOEg3urggMNhh8PuDv1hj3XXoUsZbGNkrNcbrDcb/G///t/jH/yjf4aXr7+WYsCGjX/9xZd49fpLrDbXiCxcSdMAHAmSd804jlaApTP7I0RLFlErDxGXAO6ouYlSDGQGkijWSZesgVqByS50y92qqG7vEUKo8ptZJ+S2aXOpOqUQJKtGHI7QcKYwJFcEk23We58/673Gi1T/HoZBuG8GjkQ1UBMBbgq4NZDrjsm5neQPUQwE+aZpCGLaHDAHX3ObwBjslbPjdB+HpnHoupUUugGhRZv6JrneWkelGjoBPnHRuWRPQrkYbeGXeZXFAmafmGa5Aaq/t1+tuhUQWH6QFm1yAdjv9+iHHkMfECC5+Yl8qjTUoG08GopYecA5cc047O+w393huN9lMCMmDCFivdliu73A//r//H/hf/gf/x1+99f/ENtmVXRxIHz59W/xxVe/AdMGgT3ItWg6MQKoLqd63qkKf3JG+e5hGuuFPBUwc8pBOQcHTmm2FSAiCB5NIx78zFIExeqWsi+YSREtYDbAe4+madD3fQ1mqYqTvjsVQYcYcewP6PsjhmHQ0sWI4AxkACaZbK0IWO4v1Y5iCIghZpkwA5+TZ9bqVAquc9wkACBovSiXrOMF0ComlzU9UgHqqXlA+6n/jMTl9KVwXQ6+cVivPZxLqayc+jZK9pY26Y4RJQFkSqyW2iqbY2C1Zp7WvzYfx/wu9BiqAE1f3pjYnAuZDJptQJwyZZfntEPFpEvQyZwXSIyAh0w0jgihlzzsaXLZidd4j6ZtsT8csD8ccDgc0LZrcN8jROFOmrZF07SI1KTOF25QxLs0sU6IduahMTcBp2Mw4g7GeJgZDuFQshvDAzQWUbKP1wlxdo7rsccrHReQOTJ1nEV6CgaLb9cjxEwLctX71PmQuTgpmBJH7/6UqDg/6iPVhzFGgZDDpqq9trpkxAGeIPXJc0nvx07Xg/TWAQBH4RoTlz3OY5aNDbDxnHbjZIBpnjNbAO7npTJxkRi3tEgiEAfZmR0BXduh8Q3aljEwZ86s6zrhozjieNiDh4jWMzYt8PbNjzge9nj9+rV4/qeGm6bBy1ev8Lvf/Q6/+8u/xH/4D/8e797f4jdf/wX297d489P3+Ku//mv0/3/2/qxZkiQ7DwS/o6pm5u53jxtbRmZUZWZVZS0ACKBAgs0eNkCAMy0jIzLs7j/Rr/N3pkdGZN57+mGaLy0cgj3T5JAgQBAAiwXUgsys3CIzY7+ru9uieubh6Gbm5neJiJuVyz0hN65fc1vUdDn6nb3t0DnGZGMGkJbpxyJihpqSgS4mUF4OmYH66CxM6lBdarFY4NmzZ7j72l0oL1Jq798VUE5YULmIB/gMsCS6HWQ6H/IbjnOr4qnzmwQ8cyGloI0Gsfhuaa1ETA1FWSDiFinvgKslF77ELAoKGir/tVbQiiQWMVPsC0Pz+kpFUEr7aAWVRS3Eld8XBqM1lUY2nISwEnuWfkjIjLNz83HMGVqI60w50iQ4PUW2SEZzToabTHT0ql95z7g/elTuN/TBo3tNukZmXwISSxlHeE4cPPhZUgKx6BKqsvT6IYXGV5UGpFJRW9do6gWWizla1aIqCLNiiqdPHsI2p7h76w5KXcQwkqIssX/zJshofPvtt/GTn/wUxyd/ju+8+T0cHTzF9vYGfvSjd1A3HdoO2J1uwcEArMAQRma0AbOkqx5nZENIRYPPY7NviBj8UWafi4wBX+rNaI3TkxO8+3d/h/2b+yhVKaKoMQhxgKL/kipOwTqZI6uAbGMkJSMGR7tBfQNmhnVW3t+3TCkC+cLHRaHhnNQI0N5AktwsBEmHjLJEfbSYI0HnGCgKhCiApP7K9H1I+dlWLKMY3Dte29chRr8tkS1BxJHxhYf2RyljaByUcIPNjAhEOorXAWdL7jQFx52gMRLrNLIizVLGLkPkWfeLZLJeogEAc8Ht9JouSWf574x9Fycf98/jOLohYFqsi5okzxggupPO51d3TsrJOS3TsGsbwFlU5TTb/V0s3FFVE2xsbESEs7/7HAfPn6EoFDY2NmJGWaU0XKwtECa67MJBKOxPf8Ior1orcgZNXa5QDDIg987LDfTWWszn814/JcvaeDxmun/mtDns/PC0AWriwXcBJcntku9a6pV0RcIg/bRAoc3hb63kDmOUM7Seo+lIu3KmNGZo6HXFoI/73yWVR18uH5m/YS6MiOj53c9iO8NRCEwxyZyrJxGuDQBfKOXOnTnF9M9FBfaZGaJClpJYIFkffD56pX1Ii8Lp6Sm6toFrO1RVCU2E0jCc67CxMYVywHRagkBo2wbz0yU++vhTqLIEtMIbb9zH7/3938OzZwfYmG3itbv72L+xh5s3b2FjYwtlOQFIo+vE90dr1Y9WkLfD+aLjuik8fl3gZVH88YyVQLFmZvixXQdXFsl73zMy8VlCJs5km0n2Odo1KbWTCGjb1mfRSNey/1IYXTgu8YZJP7o60ufhhrxdvesyhpT/TbFTRm82dhChE3Nhf2S7HT3aG+GR4WYvQvqORbJuns/YiIKIGnSSlO7p5d34SvGifhuumdmvgYa7fV3XIFKYTqZe3PSD50S0CovOWkmr3TQtiskUDMm5Vdc1FDO0ArZmE5TaQKODtQvs7GzAoMTWpgExUNdLPHv2DP/6X/9vmG5v48bt2/jd3/+HuPfGGzg+PsHDzz7HxrTC1uYmbt++jZ3tG6gmmwAMWuugjOh+2rZBYRSMVsitTmcv2Yvsx6s6uDDZ2ccrEon+MDgVa63Rdh1KL2I2XRfXkNYajhFra/ZdLYQRWGtFLPI+dUEcAxzqphEkPEx15HVagAT5W+s8Y03oF5x0RcErL2KbMTQV3zcwq/45ORPz/ML3XFjpZ/dvFDd9K4Y6tjQOAxlvlFZRWY8Zc0KD+VwPes1o5OI0vooUWPk07PnjKeTsk7v3BGgfJQFcM7MvjM5yZLTWQiEV/hW92SrTC5Yyay0MsxcXBT1oAhQUtJasGwoW3DGKwqAgsVy6DrCdRV0v8eTJE2x0FsVM3DOmsxk2NjYwPz3F3vYmNmYzTCYTFEUJrQyAVLUp6ZxCLN24aJnv/qkjMnRK/fPWUq/fvBYm0xWRUj46IkNGHmGRF7fWYQ3mlHds7HEx4Buroln/npkIRujntOk9Uc49K62QMJo11xPF5Zzr0sZaJM9Lx0RUyyHOsP39NgzbHe+UD/cIzzvbQThdHFUDUdSPbzamXYjn9Nue/r5mZl8wRbSRMammaTChCcpSAryDIcDbK+OOGvyKSClJTMgK2sNxYgftK6J3roWmDkZJaI5mFy2lT58+xS9/+Qvs3biBpbX4/LPP8W//7b/DzTs3MZvNsLe3i9mkhFIivu7dfB3GSLJC5xxgHZhC7i7li0uMCVQ50loRnJCWxnkIIFEwAgSEFUTQ6WTid24Xz3GDhT7W72ElKqJU0CpDKMwuerGPOaTGbL6DTSc8cNznLjGetHjXsbYxFrzaX6u+jBej8esufx9/N/TH1RtA4JX/a5yngwNt1PMhWI6HWrxc5zd+r6tME3pNnvoTpi9CMDOWyyWIFCaTWTwW0gQrr2C31vqAZsluUVUTVJOJ/3sLmxsbmEwq2K5D29TougZKEyZlgcKYiDAefPIx/uzf/ylef+MenHV499338D/+j/9P/Nmf/Tk+/exT3L13Fzt7O9DG4Pnz5yjLCYpqApCCdYzOWnRdmxIRekTUp5yBEVYZmkxyL+xcqi9DnKrLir9sbGwASDGISuuY3y36oFHq9+hq4aTikFJZmnFO1YGccxJZYXS0hvbaokIlb9sbT86e0/e2HyIiBiIDTuJjnxjsC+uexWjWOsz6V18n1qbDSbTMcNzgu3V6OIooPYmuSf+lgpsKB/Ex9VWolC56Tvk+5i7Iilln9h2szic59lLMjHH2a37tqPey8qH/r68TiQ5+/mIan63iC4WUODDoE4YU9EPGFN4XScEYg6IoYAoTvcudsz73v+SqV0RxLcxPT/H48WPMNmZgMI6Pj/HBBx/gyZPHmM9PMZ0KQlSKUDeN92XSHvmwz6gaTPvjYsawu4Ro8Hv8WP+akZklKzOmXwYQFfRRagn3zC1q6G8q0S3Bfxv0NuG7qO9RFNFgeHxq21lvPnjN/hpfi1cpNNv/xNjd9Xfv34P6P/3vxpjdWau3/9TY5jWnB+NJ6MsQetZ7076GIZy9+tQxxJiJpCvN4FeMzL4RDA3A5d40wx6cdtfgDBkKZ0SrDYCwPWklmR3YwYuYsktLKTkFhgazJHIkctDKoigcgAZtfYqDJ4/BTeu9uRXmyxqOCBtbm7hx86boyiZT/Pi3fxdwwGeffIYPf/UhFvMllCmws7cP6AIOCg4h6JwERcDHgALIzK/Zew8nafjeoww673w/dxlxYjOJ1TG4fymSWNbtzS1UZQXjUyf1qjHSGNvAgGsMvvL3Vl7fJpuDRVrQwtRT+DyvQVUXoxe97lVQjpRWKe8flf3d7zcaG/ueG4//vjdPhhELoScZlKHGgAccRHXg4vjSypXXYuYliOI/YD0uHQy4X4zCDuRHEUfxTCkj6aeDVz1EbGG2MLqAbRmuAypTRGZmnYVjBWYNdgbOCTMzRYfp1IJ4jsXJM3z6q/fhFgtoS3CuwMHxKRwp7N2+hW+99SZ2b+xhe3sX/+0/+2+hOsLP//PP8Jd/8Zc4PDyBKae4c/9NcDFFSwYtFEhrX5UIUFL+1zO0oRgU3j9Mr5yJWYCs74vcN00hd8IMwe7kK9MyAFYEy0DHDAfJ9TabTHHn5i1sbG5KQDNUXCoMAindE/UY8HUUCKEyd2h5arEwJ6UIcA6u6yQkDJIpVZiZ7S0rBVl4CpdDCGtY7SulMX3aqr4szVkejEV6q/wnjVwa3/DA/niKC5EDwSKyIwaU7E7ihqGUTyog98qf4gBYIlhS6EiBSYkTMsuGKj/uFTGzX+fW8gUTDf+IP5zNzP7uFcSHsMQAJEsOKORSlDNFHvJ6FHETAIu4GFIOO6+XER2ED3qGE3RmGMQdbLvE6dEhuLP+OQp104Hhs8pub4verSrx3be/Czjg2ZNnePzwEZqmgdIGs61tQJmIzIIOJBeT4mSm7EVXfvI+koweRDmayeWv7JrQzdGG79mmFzeICEYbzKZTFKbMMnjkWOGsyTlawmMFf4hhwfXfd4AwkH13GQZ1lq4r/57yfnxBGsaX+qOX+BEWQ/m/OFzhvfNzM2RGAZn1n9o7MGxRQGYMv2USHFGvqE8+HtfWzKumMBqBGJEhAAC7ZKUEu34CRmYfHI7I+Pq39AC8Z0lzODk5xnx+gsl0IokDSWLiFBE2Nzdw+/Ydb3QgTCdTGGMwnU6wvb2DN+7fl2IpVqoxESlfBNf14vqkzVfffWoweXMKFl8Qwdku+SGxt3RmK6SvL8t1axh1m8n1ZmF88orbZ9FZbjjXdA69hK7qmpldNeWCfzyUYvOcsyiMBB+zs+i6Lm5kXdeJYp8EbIvFCB7GC1oAkziuWhF9oCweP/4M88ND3L97zxe01SBI+NKtW7cxmU1xdHAApRR29/YwnU6wu7uLznX4B7//++icQ9tZTKqZ+HBZhu0kxtFrZ1GUZfSFu8LOkwBx4lyIgYiB3reMRDzv6kZS42gTC5yEIG7Rb/nc/v76fEDWMbOQJTa4zHRdt+KeMbzmmpG9KOWKgHOIk2dgjr6vdWYvSReetoMJHtGUcz4ffR8NMIuuIRRHDU8bijQpTQtHVHd6eoLF4lTqYPo8UkQAKXFjuLl/U6IGiDCZTLzLR4WtrS3cu3fPF7FlaFPIExneOiqiDoNX0gldCVHop6F+RihaUwMyG6aOzpp3Vlxi75EjFk3JdtEvWXfNsK6AzjRGDE7LyV/yapDZN8eMOUpRCsylyRU/nlVyTsqU6UHFJM3eZyeIUZnuIVinBQEIwmAXym0R6uUCgKTH0VohedtLgQlSgHYGzckci8UCh4eHODw6xNLnvAcRJpMpqskEihRaZljL3s8tMEwHMqV3/L/awecMRcVdmLJvmWE7xul8jqKqMKsqwHoVG/qMi8ShCdmBlfYHZJXrl4bhOufRF8Hovo5LLgSSDN8tH/2+giAjWpPP7Jq+GLJdh8WiFj8xX3i2aVpMjBS1DW4JTCImOceAAiTqyUk9Tcfo2g6lFnH2+cFTECyqiUFVFXAWIMcgI/oyx1M4tjg6nuPp02f48MMP8dGHH+Dg4MBbkwi7ezdQTjegtIFdWrStRdN0KMsK1rawnQVVM4lPZGBt7M7LEvs8Vt54EJzEQ2od50TH6KzF44ePsLW3g82d7fxiAH7qD5XGwcKZMa4cdeUZKYbZYK/pxegiPRjymL3IdvBKmdk18L4cWefQda3EUnpRsussoFPiQNmqyOdvD1dSRGUgn6fe50lczk8BOBgjSQNdhyiuVVUFsYZKcsH5fI7nz5/h2fNnWCwXMEUBBjCdzVBMZt4HTioMib4oFGnNPN4l5+kV9VAI60KcXMk1BgCctK9tcXxyjHJaiZECQfxMd8pT/VxEr5UztGH6nPD9tch5RbTSnRfbSF6Kma0fwos8/Gs2AXIFf+9PLxqOoGNmSTJYlZMoOioSPynHDJUkREEj0azJUWEUSz+whPfM5ycwRqEKaWuI0DQt5icnOD09hjYS11kUBba2trC9vY3jk2Nsbm1iY2MTbduinCoo0j6nfghFSa4UmcA7eNcrJN9/UegWWIUQq9qLnwyW4hFm08tvNqJHy8OdAgXFf6/c24Ahvmh85AvRVS6dob7kC2/AWbRGxPR0hWLmWR3yNWNkZ1B0oeBM0nEOgPYZLGpsb+1CQXJyGW0kw2zI4Cq1UxHCQ5hDvGHSIRSKwbZDvTjF559/gls3Ztjd2hJRVGkcHR/gF+//LT768ANMpxPc2N/HO9//Ed58600s6wYfffQhvv3mW7h77x6Ojk+wtXsbSpdoW4ZWBRR1sK1APKWkEpRjn29VjftqvepOZECqqPvaidpoX6hDwcDEQiPOStETyyntDzBgNiMMaciswjVKSWpuAJKe/BqFvXK62PzxJv5BwHoECri2Zn4xNBgtZoB8+ay2bb0/F8lC9GmAUoB0jiyoh/gAB2LnKzFJbcyDg+coC43ZbAqAQVBYLms8ePAAP//Fz/Hue+/h008/xWQyxa2bt3D79m08ffYU+zdv4o3797FcSm41pYzo23ye/xDrSQRIzV32eqern0Lc+5yhLf+jvLUx5DwbIrGz2M+Y+Jj/lkLCLZqmicV+VzJkZNd+oQjtmgCk+fGSyOyMQVs3g76m4zx83eGE7712jpa9VOQcA9bCaAPnLJyTRHaU3y+kE/Boj+Atmo7hbAvbtVJU1eeGZ2YcHx/h6OgIy+USs9kGjDFYLJb45OOP0TQ1trY2cefOnViGrZpNAQpRlxQtpVprdG0LgGNiw1yku0oiorghB41ZQKfBC72aTHoZYZOj8RnCCSX920quMk4l4vIyccN2fe3oTM6/8uEFbvKCdI4ejfFKxMyvKXd6BZSU5JlPlCflXS/gvfy7rka3rLG9t42T5gS27VBOg1iTVbNGyBjqM6YSg22D5eIEy/kRqrJAYYroF/WLv/s7fPzxJ3j85Anuf+tbOD05waNHj/A///N/jt/8rd/C229/B99+6220jrFsGrx2/9tQpgCzgtIl6lacdafTKU5PjzCdTDGdTqTWgArl53B1TM37x2kitM7FzLtt20IzYEgqZt+6cyem8yYd8KI424a0PPmY0EDEDL+DlTSImJPJJBoBjC9QO0bXaOwqKbnnpL9X6VrMvHJKTp/5sZhG2SOfUPi1LEsRMz1K62fDSswsIDNFDHYd2nqBZrlAaQyMF4ccMx48+BSfPHiAo6Mj3Lx5C5PJFAcHh/izP/szHB0d487du/h7f+/vYTqdom1bbG7vgJSRLBmkYTupnlOWJZaLhQTAm6yQ7RVvZkxihCCRbSMzkYrfXuRUCju7u5jOZlGsDFJovM8ai2T+3fCHSN47/JzFzK7pKmnM82x13r16Zja2dr9G9MJLd8SSCQTFtIufU51H72uRobvR1ni01rY1mmaJSVVBK+3FL8JiuQCzw+7eHjY2NrC1vY0bN25I5SXncHpyEhXlSkvuMnive2b4KtKSEz9EGvjGXszw9bIUDSgjjIhyycdbV0eZTd9SKaePM7Z1350VED5kgF9bhkcX+AGQmM3wx3/3SlFs6utXIGbmA/f1htqXfbuYAJCSE0PwdrLORgta07RQIFRlifl8DqUUqskEAPlAa5/AUSXfMwL5vE8dNHU4fP4YTx5/jjdev4tJNQWgQaTx2WefgrTCP/pH/yW+df8N3L59G7du3UJnJV33z3/+C+zdvAVlDKrSQBclGJKS2zKjaToUpUFVVdGx17GDNgXYAZYdYrOuiJyPwQyfiQBdGJCVEXHWSq41IuhCdI6B8hz4Q+V8cIYds2QCiPGZ4drh9cPogK8tE3uF5BMzrRxNNBQnefXw4Ixw9bWY+QVSnlXTWRcXQNu2ICIUxsQU2mUhwc3Bz8v6TBBxYQKywzkLRRYnxwc4PHiKmzduoCh9cDkpPHn2GA6M3/it38Ld117DW2+9hd/6rd/C22+/ja5r8eFHH2KxXEJpjbKaQJkC5D1wrXVoW8lGURZFzODBLPGkovK7+g0sZO1AeB57ZbyS4ih5MLnWFy8Fm4ueeT7//Lt1jrFnIblrWkcv0k8ppRKtY2h+LF4SmY1w1K/zuFL+gc/04evv4Og5aaYQGUTlMiD57TvX+XN8ya2V3O8DRwV2Uug35LInbwEVZZOEAwURCKLUNkaQFpFCZy2sc9DaeGtgEG0zcclLBqQGOoQrVimIhJnVphw9qz8HY7/z6reXoRyJXSRa4JqheTqjq3pSaDhwyW6jMxbdK0ZmFxGqvw5Q/GLvsRLknFG9rOGsQ1lUsJ2DUhpFWaFrW0EYRgOEmOte6jim3PsKErvJrsPB80dQ6LC1MYEiAzgNdhrOifzXdS2ODo/RWqknqZTCjRt7qKoS1krc5ebmNnZ3b0Cq4mhAaZAyIJIMGk0jxXClHb5yOgUGd7WUx0kGxtH52phEiAjNdhZNXSedDKfr85TknlX3vht69n+tdV9fEro8+x9X/Ae6FjNfmF6EMafBaOoGzjoUpoCzDooUiqJA1woyC0Vnra/rKMVlgwgU7KFiyTw+egoii9m0giINYg12UlsACuhsh5OTE3TWSZJGpbCzs42iKKIoOZ1tYGt7B8wECTlQUVRlH8xutPGGCUGEIJ9a+orXfM7MpBeDLouT2ZIB6yy6to2ILocAOcoMvn3riu2GY5dhZteM7+roLA1bTq+QmV0UlX3V0dmLtz3fU2JZtExXw26giL7IAmFG09QgkoK/Iv2mfp5OpiClcHh4hNPTUywXCzRNg/l8DgCoyhLw4qeIvIFh9EUs53LEoobg58pJUFjeH/15JKXnfHJLf27IrhHvkYuC/vJ1jGzs85hj7fCca7o4nY2zzvty9VQzvjiv5f9XQcHhNUr5Qc1GwLKuoZXBdFLCdiIiLe0Sm5ub0Y8riHDMqSIRhfuyFEZhODx8+An2dqbY296Fsw7gQpCV0njn++/gs88+x//6//n/4vDwd7C3t43ppMRf/dVfYmNrF/e//W0UZQltSpAuxb8MCs4x6qaBNgbsOiyXNSZTg8IUMLpAa+FdSlZtU6+s/6QThdH7XGuhX7UxUeXCzFgsFlgsl1jUS9yZTrx1E8m1A8Lw1JrWBgNDLsqe5b4B9JnZNUN7ceKzwH0A3+if4+WS3qlrkNn1wLws9fU06VdYH01dg61DVVQwRsN2HepljdnGhnjvZ2l1ZAfLRCZ4ZgZAkcPjx59Ba2BvdwfOMqTIiQHI4Lvf+w4m0wn+zb/5t/jJT/4z3v27d/Hxxx/hP/2nn8Bahzfu34cpjFgxlRFE5vP+120jujsQ6rqB1gbGFDBG7Eay4N0V7n2JsUiR2NQDIZ416BGXyyWOj48lL1uoGRoz9HI8D0hMKczyMavl0Jo5RtdK/5enNYXOI9Hgt3wev+gamV2GcivMuSeGhZj+zi9O3vMh7Q9LPCbR2sEKoZDhR3KNdR6piS/a6dECTC2ULlFtSEHfkBq76zrUTY3lsvBWTe2V+kZ0bT4mM+x5UcwMsHJFTTBuWVpr+MhQkv/y7G5cZ+1aETeF2Tt2saByOHZVDOeakb1aOqs3yc8bAsS3cmza0FrXjKtEZl/3SdBf4HHHh3cXJL+zMOA6h7bpMJ3O0LQ1bN3Cn+zvZCMiEz1VctMgMBbzE5wcPsGd2zdhuw4fffgR/t2/+Uu01mBzewc/+M0fYmN7A++883381/+HDs4tMZ8v0HU1fuM3f4S7r72GajLF1tYuinKS/Mscw1pJxKiVhlPC6ESn5qMCaMz58WoootyoqBMDgArz2oudYKBZ1pG5c+YUG4wI4mbiY11fQbuu6cUorZJ8Y+xTGNt0gFc3xIx+DWmz1223XwV6kck7CHNhAEySAsg6tG2L3Z0JrLLoXJuU7EASNX14k3Md4g5FwsyeP3+M27dv4vTwAA8+eoD/+Z//L6hrxq07d6GKAv+7P/wHeOf7+7i9/wb+t3/9Jzg8fIqj4xq///u/j/1bdzGZTLC1vYeinABKgx35bLLCzJRWvmZnCLESh18CwMQJtF28Oy7flSSB406qHUsbvCjJHjlqY8BgNHXtNwv22Uecz3YhudjYXlVW3Gt6YVqZC55HhI0/Eme/qXeEAJj1Fpmr2nW+qoxsDfHYHxfou2xDioxucFlfwZnp33zKbGs7tG2DzYm4dCzmC3Rdh85KVonT01OAJF321paES0lqbIvZbIaiKDzi0hE5DhuRir1mkyeKyC8xR0ZQzZh4ylHw7fXCyO1GlPBnTLW4yV/Aornuedf0gkRAiqUNGk2PpgkYw8z95SFWAeop3LKCJtexZa+eQoFaIvgS9Rz9oRSJJ35Zlui6DgSgMJKPi1mU3ZqUd+RPjIwAKEjV8uXiBIcHz3Hj/g188uAz/OqDj/BHf/RHAEq01uLdd9/FfzX/L7G1qVBVFb73zvewWLwG61rs3dhHUU5BSkMZA8sEtoBSBtAErcVxN/iTaSMl6wKHkIgCzixRl5g7F5hnIWIh8Mwxd4mQ2ofBMEWBqqownU6jCKmIpE97ustr+vXTBTfCuHEj21DXj2FPzDzPFH1N45TvGClBD2chQMEtQI5bK6FHpiiEmbUtCITSJxd0TpaoNmow5oJRFDHAHRaLYxw8f4ry7bv4+KNP8N57v8J//9//X1BVG/jwo0/wf/2//w+YzxcgKEwmJX7wgx8C6ADF6KxD3QBQGkoXaFmeGyyVWgOmEGZGAIz2oU7IrHzEfq6tnydjufKlf86n1Jv9vg4ozFkrERIEFIXBZDLBbDaLzJVIoTAanY+iyNMrX8/sXzetMrTVOcGAD+eLuuaLMrMvhL6IzfGKZupZos7Z3dy36MXkfySxlJLTDB75rD4v/hFQCsSSyc5GvVDTNGjbDru7u5hMNvHk2XMsl0sslw3quoHzdQS0LqALAtcNlGYwJAbU13PrNTl33lVjYUvMKyhr1Mo3PEQX1Jzy6pQP+sRh3Kjy4rIxJrYpnueD0+Ve/o4vKSVf06ukM2YDIylAKNOgjZx+XTfziok51wFI6p/lcomiKL1YyWAHaNIwJimqAcC5Ds6JuOR8VghxnnA4OnoKIoednS18+OHH0LrE3ddex2QyQVkVKH3anv/01z/BJx99AnLAsllid28Td+7ewN17r6OotlBOtgHSIm6SZMJo2xbWSjV1BkBKQZNklSUQQAoqE6EvvUFdlJFQVA+eez+lJSvszs4OlNawPvU4uVSuLqoprxnZV4SCxjSlghcax2jm1yFKXuUTv2ityAW0P1FcInhfsNNTVFWF0hTRhUBRgcKUACT3PyCWTmYCWMHBwadrBMFKcDlZ3Njbxk/+6j/B6BL3738b0+kUuihQVgUmkwn+7N//GcCMtm5wcHSKN9++h7/32+/gD3Zv4NbWLWzt7ALQUKqA88ysaRqf9qcSPRopaNKeCygQMTQYTC9hCLiwrSTpx8a+C+K8UhrT6QyF1tDawPoCwew46iBDttprWPblp2gj8CKmJpIUVMBYkSYAL4PMzvRyO//yq5hKV87IMoNi+PPi7xEu9j5SRqWME6KtjgpO+e33HqbewAWNU9vWACQeczFfACCURZlZ6CQ77OnJKbq2RbNc4vnRKW4cbmI+n0twu08HFC4goix32EDkjGJm/vZnVz4aefvV+MjsDqPWSAqTeuT7bHsm+MleFH3Rl1fz/1/TV4tExEwWzWx19OhazPwCSbz8HWznwKUsQEUKlq0U2PBniQHAQWkCaQ1icfYUfmJhuxqHB08wmxSYVgXa1uLR4ydg9xTvvf8e9m/ewOn8BADjhz/8EWbTKRQclk2D/Vu7eONbd1GUEyhdQClR7DN7RqPyyAX46uUAlAbIGzXIhzEBVwtwBjM2aEz6DNHXEpUXkN9tCzCglYHN9SxjN72mLzf5DU0pFZFZfjynV17R/HqaBPI+NJwWj6RhDtlbRWRTlJIzeqEJ1kl6G2M0tDIAE1wjFlByDrZd4Mnjz3D39j72d+6gaVo8ePAZDg6O8NZ33sI773wXR8fHADH+wd//fbx+7x42ZiWKUoGJAQXoagpjSihdwEJKyjnPrIAEbqy1UDof6TzfPQa+PldHzCnsK/ydkBbDOgdyDuyArmmhtJayfaHiO5D58l0jtC83eQOOn4sMQCudiZmrhicAMOvZz9kDvipicfb/N5T6gGFwiOMfIcGi9KG3rAUnsvjZK9gVAY4izAYcmC3aZgl2VpIlMqGpW8xP5zg6PsJ8MfdpgYDd3V3cvn0b21sTVBODpmswXy5RW4BIo1fEtzd4Pn1Oxrh4eN7I7jgqyr3EpCCQ99FL9wp6uiiNe1k0oEvnnDdoBMdKHtzxGz1Lf810nrI0H680wYbWzB7/8aefgcyulaSvnLJQnFBBSdw0FEKBEqYU3M0MdJ0FsWc5rkPX1lgsTlAUGsajj7fffhttI6JmXS/x85+/i/ligbIwKE3hleIS23lyeoqnz5/j7uvfhjYFLMOXKB+6M2RtJsGMFE2LPOqWcXXdtiYtdYjB9P+CbtBai+lsBqUniDUC4NHcF9Lia3p15KUWn29P/gjH05wFXgKZnfXgbzKt4AAvajI7KGgRGa3UniQVSsupqA8SZqIAFfL7S+WmiS7AtkVbn+L0+BmmlUFZSt7+3/3d38X9b72Jhw8f4t/96b/BX/31z7FY1Lh7ZxuTskRVFigLhdZ2ODg4wEeffIzv/ei3ocsJrPUpuiMYFNcQ5xOoKeUjGMBShcmjtej3FubJBadLL9nhyPcrjtuhX3Koy/AyiEKIS3KOUdc1jg4P0bUdSBGKSbXKzCKSu1h7r+lV0/kgKeiORUiRFaWV8gCgf48coZ2jMxsZ8YtMgm8oqMvtfWd2Uwg894sqiUu+Wnmm13HsACaQFubmXIe2rf3gCuO5cWMPpqjEGuksnj59jsWixuv39lLgukc3IctsUZSA0rAAdGDBPQOmR0O9FEDh/TJlRjA1DftiHZp6SQqMKQocRBAvcUG5bduia8RPLor2GXoT02zONL+BE/VLRKMON9z/jrx7BiVdy8qVhGtr5hdCuRMDEUmAt/9CKYK1oTo54AiZO4FYO5VnJoocmnqBg2dPsLkxQ1VWXuKTgiez2RTf/d530HaSJrssgL/927/BwfOneO31G7h15zaqqsLOzp4vWKKhIIkYJR8YACuVwsNUUcpXEwd5MdMzOkoM+apBTr/maE4c+RURwRgtVac4FC2mGFsaLaFAcsS95mO/Vjpv3uRSDgUHbawftnN0Zusfct531yiek1pJfBtijv/JZCLKfRC00rDc+qyxcmXnHBwApY2UjwMDsNDKYrk4xIMHH+A3v/8dbG5seHcEi6LQ2N3bwT/6x/8QP/zRD/DZp5/j3/+7f49/9Sf/b+zv7+F3fvdH+MM//mPMZhu499obUCSZZUEFWmvBXtHedS3YOcCHVhljRmIrJe5R+SjHq2dmGRIDor4uDx5XSqEoS2xsbEBBMtGKpbjzxZM9M8uML9f05SYKKBqy6Wulsu9WxzBlzViBbReRa8eOD+902Tt8PSnWYARiMPdQ2S6uDl4k8sekDqYD2IHA6LoG85NjTKoKhTEIHu1KK1S6xN3ZHeztbsMYwl/8ucGDBw9wenqM19+4Bdt1MOUEs5mBVF+SH86eaa0Fcxp9FWtlDkY1xj+OZKZdoT4MiiIeBb40ZJbpshDQEm8zaEaSdGVjMMZAay3K4nwrp/ye15vtl4/OhkGEkNh09YqAvNcaAHqT6FXSyLr4OlNu9CPvatErmxbzyUnXOLaQWDQpLEI+MwWzQ92cwnYNytJAa/FRIx+sHkRF+IDy2XSG737nO1geWxSlwdbmDM45lNrATCYAp/xlUU/HqWIUef+3ntGSODJP0fX5ylLZe6zvhxdIMUXwcnd2KNMnDp4goqYWUdNonZ2VdIbhakUEe7nWXNOvk1Z0s7TyyeSFMwZXvuBTL4LhvwmozFsBfepmYwzgfLHfQnLwM3zWVq8PUAqwnQVpA1Ia4lTLIHZwrsXp0VO0zSlm0wkKY8S6QxqkNVrXSboeRdBa48aNPfzBH/whvvfmD3BycoRFcwTbdSjLCtv7t33MpxQvkZBFWejWWhRVCSKNrnNSl0BB9GVBcR5yjeH8HFND6pd+wwXnSromz+ThsscGJlyWlSC0skx+ScG9JEOEihTs6Ny/pi8TeRUyQpYZOTacNKLGWaMzC7PsJSDUukn6DUFlqffyhejFIa2jeOkytBDChOSz8vtCSO5o0dQLWNuiKLQ3DMgiTcpRb+cjwmQywf7OHWxPtvHkySN89OC9mEJ6NtvAoiUfnRDgu28ts5Rp64mFiMp/b3HI32r0/ceQ2uWtm4TstVInhntRv42KfNhLWYK0jkxs7L7X9OWnqIEJLjXB7E+r3ImI1pWaO+sJr6SdX3saLvY8PbnWGta6aBAQSyJnKE2YifP+UxLKA5yenqDrWmxuzKLYZDuLk9NjtF0TzXTRFcM5aK1QlgWm08lAN6WieBh0SDFvq0eTOTP1Ml90cVhfQWqo1OKX2MCytuVMf6SXk0jsIa5/NvW+D0n+EN/vmr781GNawwMZqVDJOuhxUkGNNMUv93NNOSkfuB2KzGqtUZYl2qaFtRZaicOq7Tq0XSsJG73OquucVEmyDoqAR48/w3Jxitu39qEgImlTN/j888+wWJxGsVYpSdljuxZVabC5OcXu7m6sTgQGSGmJMLDWi2tpDK21sNYCIEFpSgHKhxX59N8KAF1k2FfsBilX/1nKjGHNyiQirm4OSikxXPg+VsYASvSIpFQMcZLzVTYe1/P1y055ANN5OKqHzC6soL1GZxcjBvrKZ+ohM+ekajlzQmbwHvjCmDgiMyLg5OQYXddgc3ND0IVz6KzF8ckR2rZB4CzBMMDOwQRkNpuuIjOG9ylLNTwBr+dzqb15QDcPudcIP4iM5wyx8kJzLUq2A5w7ci1748UKMhucGyQVd0bbrunLRhcbq1GdGTODiVYhnRdUxWly9WG8cmSECCAe+ibl9bqzB70ojVy6bvHkSuF1t0hfpTxfPUNy73nZN7ED+xCGlIK1HZyWGsyd68BKKpADIYuGA6GDJkChg21qKBA0KRBpMCks2xZHxwscHZ1g/5YFsQb5lD3krY5MjNZ2OJ032Nvfhy4qOCZw9FyQ9grTJChlYB2DyaE0vmYTs8AwB8SB935eiREO+s8nRWzqWnzSlLhOiBQQk1d7w2hQxFPsPpkB8g4uQEDKmRqnLhZbBpxiWGJoONiulVCwqpDaCyznBGNsnGHjAz1O66Yknf31GZesf9QwrGvgsvJSdBkwwmv+OGszOrN9Xk8L8mMPyeTiLxPXpMBoKKoYiBwUMQwxGk7Xxtx/DBjJMJDyBIn1DWCV60oy5RqFh2XtDpP6zE5KbyiT2b8Aj8ynEUY5yqDGuorT8d6ECGWE4mIJDNVFAEsg7wnA2UxPixfsjfl5rn5WiU3ljY+N457uJohFdbOUjBeasWgXKPUWSE8ASG5/UAtDNSpFQLfE4vgABRMKVcDoEqwVDk+O8dGDh/jggwe4dfMeXrtVQnEDTQDBSXynY8yXCzx4fIw3vvs7mGzuwrIk34ZSUCB0zqHrHJgJVbWJo6MjGMXYnG1AkYVkpLAeIHnPMqKoQQuGBSkyIoyJnUXXdTh4/gxGG5RVidIXcFGkEWYcA5La2it400xjODCccnD+SSCGJoJiwCiIlZcB6xhOM6xidNpBuw7N6SmW8wV27tyW/meGVSqlH1eXVxdfhC7CZ77Sgk22JM6jfC0mSsalCLzj55CTWcn2FhimslAEGOpQKqDuGBYER0o2dwDKAUbWbILjIvJkDYoPTEs+vE9sDF1UY5a4LRBi//rSSCxdRv3LBNGt3G2lsxIP4V4b06f8jVInBm/j/Fje5j66SnL8AHPJ/ysjONhllUJrW1gnlZJa20qfk68JwB3AFoo6GCI4btEt51BMMKSlHJwizOsaT58/x9OnB6iXHchpEDQUW+ksxXDoUHctDk6WqGZbMOVM8pdBeDJBCuM6L1ZqXXr3EMBoBbATtuJcHH8p5SboPFpjBy8teiqL+ekpylLSgWswWCuQDn52wujDjjzsOznDwVFCZ6HkmAJF9NmBwQpwCrDEAFt0TY1msYAGwTFBM8HBg0sWP7OLO3hfjC56r0vwgy8XXbKz8ncMVbxkfQdmlq/O/kplX8sswHeCg4KDoXhIJgupOA9MfgPbdWiaBtY5QBd+jxwgM1BUakt2B4qMIHKh4UjlKCeY1KNexU/aDDElbjbovZEZ0JsYA4h3EbWIPCow6PHJvTL5VtLfjL5w7/MYg3POoes6qbhNUnGJVIzi9OiFYbsOi8UcRVHEuM4omPV0WqnXwpGmbcVZtqpkvPJ+iQxEwVlfq1NrjHV07nQ63Mz6J3pRgcWQ4FiKFXddh8bfNrxzaHuI/0yGJz+5eVBsLu1DvadLxQQvmLKIy503jjhrPUMep7XvcQYN99nL0peJkY21f2371nTWimSVHR+7VzqfVo6MPT+5HcH7miURKxmKMmbmnMNyucTR0RGapoU2ZeSg8LtgYDTGmPijiyKGkFAUTZFd60XQTHJj6jsrUu/s/vvxmhdeRz2Hceq3I3wMbZF+ybKX5k/p6Sh4RVsm+QIDo0p5lgSReBQxlDhDG70o3/iq45OJuE00bY2qEmZCUFDagLnBYrnAZ599iq3NTWxtTSF6NUF4ymioiHQEooNsRLgHh8eoW4ub+7egTSF7nB/LoEcypkDdHMM5xv5+mYwSLvi8ZZMnfxHP3IQBZt1M8o51XaNrW9FfdR2WwYpJFAsgF4UUXqkmFXRWZyCMETtBmMFHLyi+rHXC7AleDyeNc05cYefzOQ4PDnBnuQSMBrTyRo3YeFw1fZmY1lm0jhmN0poTzmJc+QoOestc1slvG9Zr0HMCwsCC2tZoDaUY5Be6cy7kMc0MACzpYU5PT7Fc1ijMwC/JJXGi8LqPsipRABIAGjIrZA1a6QVeLfu1FsjFVzx70p3X+Ty4/3A6B73gWQ6do2gtWid9OygTTDkNU19s6u8m1lrUdY2N2RbIAl3XoiyVZEelVFOzbWo8f/4ce9++44PUU+NVCGvKpkPatYD5YoGuU9jc2hV3DIiLhfaMDExQRqPrxB0jOfQmK6q8R2r7sNOHyFAud75knQWzg7Ud4Bhd1wlSLEtMp1NMJhMYY1BwCcX59PafOZ/wlBZBEE+Jov4N7KsxgdA0NU7nc9imgVIV2EdchDZeNX0VGVn4+8raHtbImvJK47KOVwd5ZqYoz7qMuOFqUjA90cFDfq1UrK4dlyCnQpxaG1G8McQ9oO3ExyeKCshWsZ+QHJLkcc8fhBT1Pdl9YHPyReoztHOZVzwp4ah+8pi+KBk6Kl6bPyeIw5SCxAdnjLYgBpVH/uKZQz5VssuVUkAneeyH9xcdpjCD4A8ISN6yxWKJw4NDHB4e4/j4GKfzU2xNS7EO+d2qaTs4LiL6i+qB8AxCj5Fba+OE6ROldws378mr/QuCCB0U7UFHlvszhvPatoVa1uhMX/xkEKB1fwYwx+cO81vlrQhJJruug+FyrVZgbDGPvflFaLj1XvS6vP/jvB91P8nuPvL9hdbGRdqT369305E2jfwdR4SQ9NzUP8ZDBXgu98SKZGkex2r0SiFG1ebrC0jMDBBxoSgkdcqNrb1eU8lDHIJAf+d9o7pFg8YtvSJ4qMbLmpp1fsrW5ZmnFlHJGANTFP6zjuJLsqL1rx+loSJ65I/8mB0cox6zoZDocnB78jm+/LUDuClrTILEw62G/ZJbdIqiQFvX6JoGG5hl2EoKAYdU2brQMGUBIoO6qfHgk0/xV3/1E/zq7x7izs272NrcxI++/10QGKRENH5+cIhiuof7t+9CaclhViiFDoERhGy38sTFYiFqg1ilSQTs3I0jojT/7oLoTOgMgISJSH1QYSRh3hRFEf3BQrLIpmlkM/NB+JPJRIoklwUmm5tJJLYWPj0ZtNbQPorBekSGbGM2hUExKXFycoKtaYVSlch1omclj3wRhpSff/UC7OozLsw4L3jOZd57/Za2So7gFfb98KMw54MXjvJ7JftjBImnNaaAmHI4XkQEkKbMAMAc6yhqpbG9uZm8rLnPjNqmRdu2aNoWbdOibpooPiQEFjyu5bp8R+6ci5/DM4MOhRkoCvHgpjHr+XmjcUZvDkXMsYsDQu0f628vERHwYLf0IljuZJrSPY9wUk/aaDRwaNomsrp4S2dhbRtdObSR9D1t2+HJk6d4/7338cGvnuOjjx7gW/fv4QfvvA2FlELoZD7HVrmN3d0bKdGiMmi79EoSRiXtrusaWkt9gfRaqZanqK1yaCPIUetgHZaJaq1FvVxisrMV81BxcNvw+jhrxX2jrms0XQtA5snW1hYmkwmmPMV0YzM+yjn2zCyJ186rLoIKI7BZZTRMUWCxXGLDWdHnumwbPYOZfdnpy9Tqy4ipnP3QGWcGUBav8hcRQlzz4GwvSZjeDZDB3OxBCSnI/5oUrPfx0ErJxGeAVcbMKF+WyQIqqCbt9rEeXtjtrYMli44wUNiml1s/BxlOq8hQUmgWZf22rqv77533Zfo+Z1yI519kJ18RJQiRmQffLK3FD4pJhzdF1zWwtkNRmChiMgBSGrONDdzY38fhc4kkOD09xcOHDzHdKFBVBSYbMxhTyG6mFDj40MRX8DUnfQiUUhzFTBWRWWh/r5tXxRzvaB3eNagUxvqDBuOTxOeEmAKzq5sGsCJnOGaYkIONFFh50Tfr+7AQjBHftqgDDM/lkTEK+826scP6cc0vJFp/j68inceY1l4XJBROZ3L2XdrqPWXjkvOayEEy6aAPNPqtMEYbBMdHIEwyQPWcx9i7uklLlNJQBjCkUCoNW7noDR5ppcWJbJbkW27v/ciZ0TYNmpqxYHGaJAxF1HUd6b8xBuQZZFEWMNpAGwNtki6m37CR4QrvEtqXz/a4/fuhZnED5AB74y14ZednSKiRdKPsMlVVYVkvoRRhujFBU7dQJUEbWagHz5/hdH6EGzd3UFYllNJgZpRVhe//4IcwxQzv/uIT2KbG3737Hj744F288/23cP/+6/jBb/wGdnZvYmPnBrQpYRne/SyImMnqWJYltHY4PT3F7s42ikIyzLpsQvb0oBnG175NgeM5Z+FclwLWw1WcI3KASKpG6UKjciWcS0w/GA9Ol41sjMTQRYFZVaEyJVThxE1FS2X4WIyFCM4Cs81NFKYEHMOYIuo8lZIxs9ZiRCl0KaSxji57/hdJ61lBny7y3hdl/vnfYZ0EtVX/3JyVZeYeF74haB2qy/r4EAU4YlgwjFKqX5cQflIACHZUBqA47ahaib6iUFpCchQB3hNXPveRHXz8X2ASNkpeydeqsx2atoFtWrRdh7Zt0HZd3LnzjlnLzIgBU4iYZAwmdoKqAsTqF3boVeS5cif/ziuQK1cOROZFkeG63gljkEZIsqD6oPOixGK+xLQoMClLnB61KHUB1vLOx8eHWC5OsbOzhdLnQeushSkqvPnmW3jt3n3c2n8P//HP/wI//9uf4Ve/+gXq9r+A0go/+I3fxNb2LqZb21DGoGs6kIN4b0AYFTOjbVtMpxswhnFwcAB1YxfGFAhB5b0+zkVg//5Kec9/L45aZ+Gcj2QYjFFKVxT6gVCowFjF5aLxagtrLRb1EZyfzZPZFNjYBCqHgr2+lQSlRmdapQDrMJ3NsLGxiXZRi2uGf49g5rfOCiNcOwuu6UUY+dg9Ro9T/5yV5zCiMTD6RVFaOxE4EcAkSi2z7onJ2NDnlMT9o2KJlEmZO7wON3H2ZozgOR6b43dTRSrG7mml4JQGa/bfX4CZRc1h5qrAog9ynYNVHThPpbxGNAjK/OAblxT+5F0HkMTYTNy6rC95WHzBpys0JopojgEFtF0LazvMKuP7USI0FosFOstoW1HeTyZTbG1tSQ58v0E5BkwhYmZAUfm7y/sis7yevW8HFI2e2L7m/DO6Y+jKkY7n4qd8GZwkxRCTxM+2a6EaBe0MFDtYeEspIArm4Njtx5yDQmBllxr8ecnVm+9xL3C5XDNimTzvvLXde1a/j512Uah27k19T6zcY9BDlFgXD08LBzm7LFufYc30mptZRU1nO+QUFlLULZA4cAbJiryiVYXFQT7OLwCRzJk0b39gfsPZy4qgtKC9QmtUpoB1Ds5ZWOcvPMtC2eskhkMKgIZjdHWDbtlgNXa0737AfpL3dFtZeiSlNUqtYbTyCnJBpCFnf2CABESxiOKTEvMTZunjA73OsbMdmA0IyVVBg1FVwNHBM7T1Me7fuw/HDm3XobPAT//mZzg6PkG9bLC9uYe33noL919/Hd/5zrdgCoBJY9labO/eQLWxC0AC1EFKAs0DkwCj6yTuMmwoYEFJ5MVC+PYH0ZnBIM43L+f7cjWrhhh+5L3FuTd31cgZpPxSilAUBs6FfhZXE/aMzrYt5m2H+nQex0UXBrqU6IiqrDDVBRQISgO6FGMSe4WZzbKQfLkFwrPpZVt+3l70UsRhfLO11Fv7iT2NXx58yziJpVriiBXEMMgkhqcomRLBBLN8WHAsGuHkoAZhZmHBgjnqJ0K6lVzhCx6VrKJ5PjsSv1CaYKDBKBB0UvmSGELS8T6Qsztr5afrUC/FA10sr424k/izVdagaA0LaMz3hdYa2hgoo6V4SFmCiwIoCFplm0xgUvCMLIqg6V1VaGLYLLySPRgAgjOqcw62tbAAVAUcHx2C3Sl297ZRzztYB3Qd4Ze//Ds8fPQYi/kSf//Hv48fff+HuH3zFt568w384r2/BZRC3Tns7u2inG4LMlEKzGnzCTUAuk7EwVQBRzJesJM8asPd0LHEWYKSuSQi3MHgq+CaD8ktFgPMMx+1vvuUlIxjDtlDDOALrndti7auUbcduqb11eAJpiww29xANZnAOYdqqsHkwETQZRnnEgOwbL04PDaHrunFKN+2c6NPztAIo4fXUtKjRzBASjz/40bo5U+/llMEAI2ymvR3cLjizFVh4MVL/rs8hFeWiw8KJjlnOJECEw9IsGfxoNX3Hs/OIWcpYmhin9te+fTSyouqidOmGC+PrCjWGEJAbdHbGOFSEXOcdd6z3ftLOZ/XwS8SVpxnC0pDHFLoeEV3ki7JMzmXdALMcK4LV/oqSRLXOJ+3aFuJd+w6i6ZpQKRQlRXKqkJVTcBKlNykNJQK8Zb5RPBvHt0u5FiwmEYGfcaqp+z/OAq5JXPk2ihknDOhc6u6zIfMPWRwvzQuFraTjSy6BTsnaAwMMv2wK2RqgnTgy0FnpQAK83EdXYRPx3F42VdOUuPKwTjE2Tk9aSXwCeZ4BY/dcBUJIW6QcRZ6A0DuCwZ/U4LKXnQAF5F0Z2w5O44Q656/SnxcjmSGtOIQvG5Iej20er6GFoShFXSlYE0JG5hPYsOJWZ7xyOR24ZmddWitVMxezPPrs/+VdHJYgByZpwZcEM8U2qaBLSrYtsPGbAa2HeaLeQxtgmtxfHyIstDQqhJGpxWePX+Kn/3sPTjHmM02UJgKn3/2OebfnYMBNE2Du6/dAyvC4dEx9u9qQBewDnDBikkh+6r8SLJICwIwnU18jGTktCv9PCai5ZlhJSazixlgAyOO5/XG8gLbtAuRI4TSFHBKiZgfSEm8aV036NoO3WKJwhQoTYGNjQ3MF0s4APu3bsrM9gj4KyxlfkmI469VsVK+oMG5BFnrIvmlhAn9u/pzRYkKqY0RfFdlVYY6swSGlP4BTO6uED9Ttv/lOiQv40VGwB6BqMQ5CTSc5v0X5FV+liM5eQ71uc1w8/SLYEzpbqBksRqg1EXqnJH1wgiKdum0EFYVRB/nZKe3Xuk8bxZeIW/R+mwUkg8u9R2rXO/mosuLUkaYGQiatLgedB1sZzGbTrE4PsJiscDezduwdYN2WePk+BBlqVGY0qM2jYODA/ynn/wEm9vbmE03wBXjs08+x2I+B8Bo2ha3X3sNrAgfffo5mDRIG3TO9zSJ46zz78XsYIwR8ZYI06kwszBGedcL3AcGCYr7fcqMuq7R+lAmEQVVsj34DBbRqHMGL6MwM8RnAwoQp2EYcJGQn2WHZdugaWvYtsMpA6UpvBO2w/ODQzgQbuzfEAvZlweAfYWJB5+H8KD/O59Pw5/hnRJ696F3ZKPhC2Cf9AKxBLXyS9iMWlJG4Eo8K83KDCbmzR2eNr799fnToEDGcOdfw4hoNFg1ay8N77l6D/bWiSiTh7nOLBFgyr8fOS92ntFfeRckd/T+Mf/cFBzOqWBtJtUFhbrRBkYnBtl1FvPFAnv7N0FEaD0CCvrOxWIh+j5TAJSyaYyWIPGiZNSVMguCHKH1ImcS3aXd5P+WY8LMkpicpvgF6rKuSBurGy/Duw0N2mr9RiMpiPI6BzS6iEYfmG54djvjeVgd8y8Y/V30cWMrBwioaCDicv+KvlMsxrnSyLMCKgu846y2ruY1DJJCeBzHWS3ZkNEPZ4qiAufi2IAhDBndqDy79oLRoyqKc8Ozeq/X/7aXejt9yvNHMK9elx+JYiQD4OBhnLNvBSIDpR00FHhCKJ2F9YjNxbzzfpEQshTAnImZ4ucm5ZbkeY1uMKkmEm+mNKqyAlmHul5Cs4PRwMaswv7+DSjUXkensKyXODg4wB/+kz/C48dP8Mknn+D773wfO9s7mM/n+I//8S+xdWMXt157DTdv3oEyZQL73vIc2hTcHApjJLQIjKowUb+YxMn+RBr2ZWCIRHJPYcDi19c0TYwmMMYg+IJdRgGvvJHJm6mTFJDp1QpTiEuPNnCdjaFbWmsfqO8zCkfpYmzOXdNFaVW6EhpV/mRMLzK2YITpW396+jMZLgbYAY6hoFBoktTwnYVWHpEpQkHUrwGQMzQBFkHsWm1pRCgUrE7rpoZ/7d6br3LlfmdQ7zgP3nl4TX6l5oEYnO8onnOlnGeUvPf9LYSZSUcqiOsIswITQ+sCzsvvzrmESil7fwJSXGo4JAtYihsxuHOoTSN+daRhSKEqSxAz6sUCU6NRaqCaTaBu7sN2p+i6DiCN5VKY2fe+9w6apsMvf/l3+MEPfoCd3R2czuf48//wF/it3/sx7rz+Ldy8tQutS3FXgU8pBHiUEpiZw6Sq0HmxmTBJKMrF+eWtSlFjKvfxneqciKryzmKNlALFwswCB6qqSrz2KY3nRZhaDPvqrDgms9fvenGYHIm12U/nrm2ljB9JLKu8Z4eguhMxl65LAJ9F+VofOzxYj2OwJWdk4bNXKUe9GeWCHeAXoEDt6I/qrKhoCCgUQVkLZTsY9q48TCiU6uczk189qdW3O5ng+60dYyfhxXL21D9vRTzMJtnwnBTfl1qwaixIz+h3IA2a7IWblZ2C+p1O+TO8MEjkU7axZ3r5OyRPeRmYgGzSOUGUZHKSxtlbGdMYisXVso1joAKagYGznTAODjn3ZeistZhOpxIZ0HVYLpfe1YJgitKPUQ70wxinI/nYXtSBM7sk3SsTAfPyhflGlDbLM+QSJOaZNVvQX5AaRkTQQIoUHMlmE9tCA+vapejstq5DJSsH10qxAzEd4+NwbgogfoFXS3ePv8b6SdZAeA7HdcjZEMVVyOlAtmrTtWGtXaCxOU8BvIHRWriuk7BIRbC+YI5ZuWiEQSU0mNv3huiKVq7pH79YN0tnUH/+nCXpDo+6VeaZzpL2xx05IrGshQMYGJkbBAGQz02iBnbbMIpRyKTQQ749LjxfXC+M1t5R2IjfGQhGF6DCwXWSRUKbRlTtpEDKwLFY8aqqwvvvv4/PP/8c9aLG5uYmFoslnj9/jt29fQAarWVsVhOQMojqUkoRBtaKG0hRClISpuldS7K8aoKi/AbH+XuGt/PsMIr9BK0LTKczSO1PCUty3tgQwtdyNK+1pHsaip8950nOmK0/yWX3gD8PLPfruk7qjSqFvb09ILighEEObjSjM+WrSSPL5YUpZzSUH6Mer+o/Lw7HQCfmL6BwD07rqsc8qX+PvEarVqJAsp3Fs0eP8fj5IU4aqV5WKoVKa2FmvYky7A3u/eqxsHGmsvpdvthzLHAm5S8dDo00b/hsEY8HMKt3jbgA5zdNzIyjA208O/NtUkw+woFAEBkshlhQtvAo+VlFR2KX+bYRodAMrQ0KY3yxEAWjCLqwqOsj2GaOair+UhJ7aABWMIVBNZngl7/8JT779DMsFktsb2/j808/w9MnT7G/fwsMjbZ1KKsZWGkwxPOfSYk1kX0SRi25zax1KIwJRl0w95kZxbGTrTgH1r3e9U6B2hSYmQKbm1twzqJtpbbEfH4iYVi+1kTQtRVFgaqqYl/HofF9KbzHJztQyUgjRYnzxSTWaV0WcEtJqUREuLm/j8KY3gISGXrc2PFlp/MY8Msys7gFj4GJjB/EaZFfx4jiY6+xXuUTxcvBrccArPAlBwWgILFd2q7D008/w8efPsSz42NoABOtMNVmvG6m3DFM0LD7DqBm3oCzRJPeG+db4QhMzj6P5ZpaD0tHuK//mJqWum2tHYWHTiL5lQEmhw4IR/Nvk4W35/QJ7rUlMMDwTyyz8G4T4oRrbZu8nzP0o5VURJ/P516klDxyddOgrhtUk4mP96SYJjtvb3zVzLMaYFHSDxjJav8gbc85KoXP0e65RRDtjFJg1v577qXjkWfITfu6Wu4/n7PPAUZ7tLgOiQTRNmeWhTFxx++NcGaljREgwbqb9U+O94fYfz1zWX/WWbnUckfmdeePmugonRsdoYfPGa7V7D2DAX7oI0o9zobRvggiLmWMYeWcwXvGEL+R79Lm6a8NKM4xbNuhaxp0tYQpdlqjM67PzChjYPmEvQhdHVzvsc0LnH1ee8fuN+h26n+XeiG/OyVUELYjf4+wQ8UzOetXlrsopQWpcYqDJZYMsfP5EZYnz1CpCpUR9T07oO06bG9v47d+8zfx6WeP8PTpMxweHOLP/8N/wKPPP8fh0RG+893vYmtrV1wzIDnM0ubYR+DBB46t81les7ej5FwaUvko1e+5IeYNiyjqyvzxkIBzMpmCSGEymcJaG6MoAMnc0TQSViVip4qZhiPLzLoxZCgJBpt+qiGOIm0o9hIYVDDGaADDnB5RvKF+P1zYNeMl6Tx9ZQqZO+c8+Owg2TXherXu2vCeFBAW+wQQ1Kv+TvA1PwJzAfuap4BRStAxceq3cB6F+aURIHIIGVQk78QC/KUkoLWAL/wbUvTDMcgxbmxvAyB8+1sFuG1RKsIkiJnDzuT4cuMddbFdaXjNy4DfS1x9Id53xoCu+b4HSpAzqFwhnbYkiuKRjLQi9PIyEXnlv9eXkUeFWjFOT57j8Onn2Cz3YGYTn7QRaJoW+zf28Y/+0T/E//B/+3/g4cOHODo8xr/6kz/B4eEhqqrCP/nf/9fY2N2HNhUgEZRnMjPnHNhaGF36yZaYhNZKrJxxMudsPXvlwCgoobLYGyRuKQVJVMZ0OvXnKnSdhGXV9QLPnj1D0zRwzqIoSlRVCWMMmNH376MgYoZ2qhhpEN/NG0ksO0n9pEO2FE6IWBEal0ab/VjKA/MpkTJ2XHRjf1kaQ1YBtSak2Gfw6WI/JFrL3AwbVtiQQgZhf9+YXYdEm0wIjFASfmqlAdv1rM/a55BzzCAXSkGzj8pgHxUkGzB79Ysmr2ZRJm7o8OMAJV4DkvBAGGDbWqnCpL0+11pRx1iLOzf2cGv/Fm69dg/tfA4DoFS0BpnlAH7IHNYxijPHOdu9R84bu7THvi67Mb7EpeddT5mcnQU79U6Mmzlnt+K0+Hv4bigFQKo0Nc0SLiAXbwGynYU2Bru7uxKd4NHN8+fPJdf91jY2NzdhihIU4zGzdxk2FIhK8/DsnJ2vHVJO84P8C6fFlrJk5B0iu7CBUnI8KfwJ1raxLdY6aB2SOqa+zrrR98d47Gc4J5wXmNfQHSi836Xmx3B5rPs+nMapY181GxxuTOex2nxTi+Qnar5V9b4GZcwybR6iRyUgMLK4kck1jiRMLqkN8raG9noR0qcP61t+QplDTu43jLgWSlNAlRPs7eyg1hqauc/Memjri0HVXzlawYc8PB520eCdHvRzNM4wOLvaDxSRRdcu0LVLlIWGcw6Nc6jbFu//6gNMZzPcfe0N/O7v/A7u3X0dR4fH2NnaAhFhY2sL88USuxs3UBYV0nJNS1fiMW1EMERSai4Cn0ysGi6YYA0M4guFgoWjUR75sxmhoEPuqiooTqMoSuzu7mK5XGKxWMB2Xe8OsjCsRDf4+qyRQSoFTSGTrOz0IZuG9k66qb2EerkEAPHrA0WXDRvez6OwOKI+XdOZeuFL0IqxLTuWH8+Rbk5JfI8D0ZeiwthlWX4J3jWIk5EqHA/XMDO0Ehs9HEc/Qeec9xWUZ1dVBWagbRo8efIEIKAsS+zs7ISuAzPj6ZMnUoS5s6j899PpFATg+fMD1HUNMHDj9i2YskDI9jWfz3F8dIJFvURhCJOqwMadWwAkycLhwSGapoZi4PjoCN1igUorqd+b9dILDc5FdrcRJLz2uy8Ljb1TCutIJpGYJSTJmkiRBbw6Of0/uPxvF2QnQFm09Sma+gSTSYmu6dC2HRbLFv/5J/8Zd157Dd9+8zv4p//0n+L44BhHh8c4OTnC3v4+ZhtbOD6ZY/9uiWoyA7xmyNtiI5rrujbpoxg+RbbsoEQhHkNQUorXTXqnMPmD+wl5K2nWU4PPvs9iXCTH3V1rjclkitlshroW95KDZ8+DjApA8la1bYvnzw9gykIqL5UliEjSonvHbVJS6KSuawAinoQURKH/F6cSw1oZydrLeSuVOBc7ZyOSY+uiaHaW0v6ilCPK3NAgOkm1cm6/VF9CRC5UoxqqO/y7RLEbSHqy/P5hPoaxtFYqozEA7mAKcRkKtV1DW4KaoF4s8eGvPoAuDHZ2drC7sxuZq7UWn3zyAPOTE7RNi73d3WixVkrh4ecPcXhwCMeMje1tkJbCNFobnJyc4NMHD7BYzlGVBlubG7h39zZAjK5t8fjRYywXS1Br8ezZM6BtsFFVKGZTKTUXlaNjDG2tiDnAI73vchFjVZSKvTw4e93+vpZG7svrgMIrIRoRC/NeSJA/iJPJ3TjbfcNC5WwPyXbWkENfBctmZ9E0LQ4ODrG5vQOlFO7cvo3N2SY2N7bw6JHC7dt3MNvYxMF7H/kwHtE3ZTzW355XdmYV6nohQwzD96SRAUudkN1/zRdBxMjElly/VlUFAClFl++QQbnvnK9e5XUsJizCrIhOaOcKqslksK7rIjrJN+IAbjLV3Mr7jzGzC7O3TPQ+S0TuGStGUFl68ODJAyV9ei/q/Q7PD+flLxL0cYA4HlvYGPI2fHdrLebzOUxZCOIa3H+5WGB+OkdT15hOJhLB4qleLjGfz73O1sbNEQBs12GxWGC5XIBdgao0UbBxzqGpa18a0aJpalDXwWoF58px14zL7kBnobOVSXHGua+CXsW9X+QeuVPHStYP9Bmb/B2+9kWRCYBjNM0cRA5FIXU3Dw4O8ejRM7z/wcc4OTkVq1/dQE+l1kFw02iaGrPNLezfvIVJNQODJPUNOTC6bCFlSt6gz1gZb0Jgv8EqJpZPYUiByYqks97VJUhAw89gr8AP6IdTLYi2aSX/nE+BbdlFp9uNzU1MZ1NBED7iAUDMYBKOta3o4AofYuXYifGFlM9WYnF0eIRqdxcImT20T4u0htG8ECoLEnb484LWyvxvjtl+M2bK7BPVZCqKwYN7NSl9GyJj82bpIGaHTY99dfDATJfLJQ4PD7GYS1bfoiiiCF+WJW7dugVTFNjc2uxtKMFReTaZwlkbSwcGhL+9uwvlI1iKovTSgDjITqdT3Ly5j7bdgjEKs9kE8EYMUxjs7u/h6POnaNlCdS24bWG7FovlPNOZZeJQrhQeG5/LHD+PXlbkPEuEfeUUb+6RzODh+RQK/jOBwWmlfek8+UIFB9ZQQxQAw2FxegRFDpPSQIHx+aef42/+9pf4k//1/4cbt7bwxv0Gp/NTlOUURVFgOmUcHh7ixq2b2FPAt779JsrpNixrHB6fgDTDsYK1SxhjUBQGZWl6onCahAmWcHhHpbxYI8xMeV1KsHjlcKZvhUPv9/BzZy0Ko6Ml0loRJZfLZXTNANj73Akz27uxh63tHZjCoF4ucXp6irZpsayXaNu2h/Qmk4lkngVL++FASmNZ11jOF1jOl3h9axtEhLZtUekqomLjCxVfBEmdSwGQXuD63GIZPotBRCMkM3B5OiStJNdbLuJ7KK5CMZDAoBX5PHU59BS1gijsHbhzgBLRn5lxfHyMTz/9FF3ToipLzDZmMQ53Mpng29/+NnRZxPMDaa1x7949gMWtIlQhU1oDSuHOnTvY39+HIoXJdOIr/so7b21toior3zZxBxJmxigmJe6+cQ8fPztCvajR1kvYpkG3XESrZur3FRgbdED52KwOyviRMJtHj47SmLjJeHFG+apJpsLgLXIGl30M7U6QPiz+fp9mOQLAzOi6FgSOi3mxWOD5swN8+OHH2Nj+biycyyz5zbTWaBqprQkibGxuglWBrmW0bQdyDMeErku1OQMiIiDLkDvSy5mljDNdQhSFQtWtC9KQ2cXoidATzsH6ily5lS4Uly6rCpPpRPKvWRvDn4IoBKRi0/KufV0XM8NZh7btYNtgKQ4ipwxaSGm+2t4Baur1E1a/o/F5O9ST9QwCAa1SfqfwQ9nnpAvjNeHySb0R+WlUa6yMQUDnuQ4OIavxHNxJ4s6iLGN7tdbY3NyELoXxdx4Nh3eZzWYwSkOroM9MxYQm06ls6FoBOqTkl/sWRYGyKBFcRcAWzKIaUFpjOqtAmnwmlA7WdljWNeanJ+sjAEYHYt3JXyK6ajH2spTrbSgoELnP5NIEdVjMT6AUUFUlAGDvxg3cvnMHN2/dxNbWFhaLBX76059iZ3sPG9NNGF3gkwef4N633hAF93IpFcudglIaxhCgjPhtFYLMiqKA8z49SgXn1LTA5HdYbEBweAwhm+MWud5b47xRiIH3A+TmnENZFvE5IYkjA762p45tns1mKIxBoY3PWebrtzoXM3T4hgIkgsxkNoXtLE6OjtF1FkWo3u4XumQ3SeFoQax6WRrdMHikpzhtbsjmTlRhILhAINbi4HB/gYAe+SfdW13XaK2T/nGMalIJw1CE5XyBuqnRtC12d3ZQ6GTFrKoKN27cAFuLspSNJDDgsMHYziK0zgU9pEeCDEGF7JxXpRCs6Bj85pH8A+E3JfK7ADsGk7hnWLYpBEoBZjIBNR0WjU8rXxWYbG+tipmpQ+Mzksz/oiN5QXoRFDa2ZL5opjtEkvmHsBhdFCelEopzDAWO+ifZHTscPH8CowjVxgzMjPv372NZO7z99pu4dWsfBweH+Bf/4l+gNBVu37qLG3s38JOf/gTv/OiHIKVweHQsIYe6lF2uKlCUE0ymWwBxzC12cnjoC6po75zqohNteAHn0k4udQT6DC8pq/OeCGJMQhq9ayC6KwFN/eAx9pYwYyZxQRldCNMDYzqbRQtlWZaik3EWTS0xmJ21aLoW7bLGZDLBZDIFc6qZajuLnd09EBMeP3yEpqlhSkECYayMIl87Qfm6jSOM6Bxenc/jIfoK7i1BvA8iO5AcgSUeVyyrgliT6kcbDc2i0GAXEnuKQt4oQaLOOgnM9szstG6wmC+wWCzQti329/dhdrZRlhWODw9xeHCI0+UCW7MNqBgji6jrstZCaymknc9l65yk5yEpDB6YJTsRjdkxOtvBdVYcX5VC07UgSFUyxRL5QYqgCyO1G7y00XUdpJiYpAAK4X4AMNnZgu4sjk+fwijCZGOK7Rs7Z4mZaWMIEDVMv+xobwDX/fVCzCVJH2ueiAs74L5K6lklL4ABY5+6kQ2DkvhJxGA41MsFphVQlEZ0CNtb2Nvbw+7uDqazGQ6ODvDBBx9AQWM5r9HU4u9T1zVAJAvbNFCsUZUTaCNuDJPJBF6ojIplZpWhLuohkVWkFTf9uFpHQ2Nyq98ZiCYmXBz0bZ5mO0dFjORqEVw6qlL0XEbL8bbroJoasFLt3IQCJh6ZMYCqqlCWpc+qIZa0mN4b8k6d49W5toKsfCfQmu8zsXyMeAAYBhciuk0g6SajLx0Fq3r628EhGgQCgwy6WOvQNg2WiwXqusb21pZHR0BTN5jPT3HqrYv5O5R+3khqeEHS9WKR0DvYM37ZMHLUZoyBQ0pZFVx6rLNQ5JM2eB0lQcLLcsbv2MVKXgHxhf7RZQkqDBp2AClQaVBtzFbFTOYRLciXSW77tdJlsGPSS8iftPo1ZcyRHZg7NM0Ss4lGYQpBQyyOiq+99hr2bu5iOptK2bWmw+bGFmazKb773e9itjFD27WoprtQegrSE0kpBAVnxeGUYWO6nUABjYWsubF5PUX+Ggsfgo/d+AQJYmxY6M65GFeYIxcgLQIRO6Sfw7U95uhlrLw9QbxSvtBJWVZSIlBpL15yKthMBFMU2N3dRVmW0WrqghKdMm0Trzqtrozh6MHzN/NoWcx27bxP8msonK8U2Dl01gGWxT8QIlYv5nOJEFEKmxsbceJx5v5ABJRFkQL+WayH29s7KKoKJjCkOC4JLZMXHSPzRhLF4eeATJVkwIiMWWWJw3wqnyCWhk2mCyUvyT8719eGMSFfcqQwKCYTTDY2UBgFU5WA0Wt0Zmsm51XTl14nJwqBlcPrRd0UpKuU9nFyMshaERCCoYkAtnB2idPTI9zYuYFJNZGUz1Zhc3sbv/07v4P92zfQ2Ra/+3s/xsGz53j+7ABHR0f4wW/8APu3bmK+XODe7TdBtAVQCSYDxxZt0+H45DkYkshxNpvFCWetlSLECBsZx9xRggYc2KdJIvKBxGHhMeLuC+QMcFUcjTuuf18yGs7Z6OLhvPK/bZu4s0t22RToHmIsiSSoOfj8Bf2bMgaV0jC6SDVAiXwxaYYxUoBzMpvi/v37mM2mXnRiONuJf55SiCGqxDBKo3OprGA+5ivobWwesJ8NHoUnMSMxs5BeXfkV66xsOtLHyR9Pa4PFfI52WcM2Lfb29kAsIubh8+d4/uw5yrLEO++804vJtF0Hx1IlazKZoipLUcw7h73dXWxubcFai7IowY7hiGFZkB47KZJDKiQQUOLL6ZlXiMZgiMFAedRs2UU1Axkjc8SxN97InOk84nPsULcNSm2SdKCUT0HvhIkDYFJoAajJFJNtYNcBSgPGA4P1YuYl6Rw1wqXu8+u9wVmUTeFckZi/eO84+cWffxEWOCIDke8EmbVNDQJgTIEQt1aWFe6+dhf7t/ehPRN49NlDfPDBB+i6Fm+//RbYFGi7TlIA0QSMAp0lcMewtu0hMxE5E7OxUbTMXsTvhs5XqB/OjaQbXI/K1vZibs1DUhoHJ8rc6TXkX5MmBWSQe+358wiSMFN795He7s5ery6z3hQFdnZ2oIsCTGIZc+wQ8v5SQMws4VGXmdtJTc+9i4ZeABGZRQCT9XHw7s/6XFCnbIht26JrmjSjHGO5EJ+wMLbI+jgiMwgyM1pHxjqZTjHxz7GtpJ1ynMbIAbDOSs0N5pgePXuRyMwC0jKeIaWvCWxlrJUikPXoD6JqYc+QqSgQqq7F9RFuIj0kxbGNgakqTDY3ZJNwHWC7M/KZnUuZ4vac4V6n8xrSeah93RPWZOF+5SQdm1hTbA/1n8l+ogT9xWAaA35xJdYoOxDBxlCaYDg4OjrG8ekCT58fYnd/F44d5vNTPHnyBF3X+cByA6tSqpvQsuBzpZRCVVWwTsznbdtCaS2l7myHtvGL1k9Keb43XmRwH0h6jaQvWz/2Y06gY64OUQT1Yil5hX/yu8pK02XXhAVLoc/7J/R+E8liY/gMJpSQp3M2e65vW+b2EZ43bH/urc9pMDNjRwp3C61zPpd9fAesusZEvVhEdJJkoGs6HB8do61rER+ZY9m1yXSKra0tlGW50k+F95sLTtaCcEW0DtmTZT76f1naKEJWGDqbrWnuezEz62vpw/72HXpEEBb6U4YQnXej2SPMY9+uKOv4Uonki/OEVcSkXoaZvTy9KqYzBoyugoZL9uxneV2NH+BQci3s0ZYtFDimUpHCdi26tpZCHLqAc8DHH3+Eh4+f4snzQ9y7/zqYHR48eICf/vRvcePGHu69fg/T2RRL67wFTsF6NBV0Y8YU2JlM0bRLWGuxWMyxs7mJeduirhsslzWKwohTI5EUBjYGhVFx1xUViBcdmBHz5GSM/DKe886L3OQncte13i2j9CUUGI5FDNWk5Fi+4IU79fp79EmEGIPZWYsi1Eg1GkGB3TQNykklW0oPUQBt20Udk+Nxny7pbfRTRHmm2WdUPiUP+UWpPRPPHXW9mK88Mwui/cJ74z/45BMQkRShCTGkSmF/fx+z2SyVLYwbGyRywjvbkpIiL9Ybg8j5VD2cWIME9vs+JUmDHtCtc5CQssC4cmu9t6Z2vg8VklEpTBQXIhpCbjyP3LQfj3xVMUKsrJMSiP5djS6hDcNBebcPST7QL2iSdcBwQlxahjznmlfGdK5UrHxRync2P4iemcVpzSyiEYUF7wBY0d0AXvnPODh4jkePHuHx8wMpQNxZHB4c4vPPPsfW5gZ2drZRlAWauhNFabY7Bquk1tqLn4z5Yo6mSYHmXdfFnPzGMKBVZIpxt427I0dx5bI0htJC/xAhxv9pLwIFZBYU14IShzf1v0MAO+UHs9HwCmjXJQQV+ibolJSaRtcCID3KueCBn249xqCH0kfAMfnyDM8DkeQA4CAGZgwvtC+gM498bNfh9OQEBwcHvsKV3wRZrL+z2QxVVfXaAMh7lj4oP6BIxxzs2hH9RmMNhpZs+PAnbwH3bWS/MSMgU6TNLFofo3Eg66cMseUf5NlBBZNQeN4U9r0qCTdDrr6w1lRWA2DIxLL5ETkoj00VeUwucmHwOc8bnt9hVfxaQ9lXa0XN8+/y8hT7pP8mqV9GkEl+4uBeeb+xs3C29QsnwfrFQqqo7+7uoutEzHj48BGKokBd13j86DGm2+J/RUWJoU9+XiAYXjmrtUbj9SPBCbUoCjGv+1ewsfBI3maxCgpwumCIz3BF97qJ4uQITq/BbyqcZp2Tgsk+nU/oNVnsnjkxw8uOUgsna7QL/e9FS3HkFNTgWNLbnJ6eYrIxi0wuztfeKkz3WdEvnvn6/T4KLhNAAFAUU5Y7dnDWom4a71oiDs7w4zSpKmxtbsKUhRhxlJIMrYSUYIEZjqTORWQ8sdf870wcjvMv/gQtZmBM+XD10S9nov4YcfZDof8pOGKnc3qdy6GtlFL0D0Tw0IhgSQ+A4UJi5nAunnXekMauWxUILseCLgsSr4L6/mbp/3gs1x8A3iLjBt9LehsooGtqNPUJqqqE1kbEEGg8evwIp/M5fu/3/wucnp7ivffex5//+X/AD7//fTx//hxPnj7Gvbdex3RzB8V0CxYsqXlYdsTSlJKK2DloraJX/NHxMbRSmEwmwsiMJHO0vgCJFCFpo99XUEArJfo8oiw9ENDf3f3EFc6SRjuk4wmiHzhYMi3qeoGua1EUJvYme0RiqhLldOqtuy6Kl+RL+kmVGYpwKHfpcM6BtdxLGQ3biZ5JOXnXk+NjfPbZZ9jc2kJRld6iKQ6hjr1Ts7fohnFbx8hy9LNu1QgiDjoxn4JapYDxtmnx6OEjbG9vCdryDr2TqsSNG7uiDvC+g7owwrz8TLOeFSk4KQOS6RzZ3z93ubFhhpKgLxcZmYxAQG4UUXHf5QJIkj5l6YWCCoD9jI+ojWTzcn4zUokvJabkG8debicClDK+5qzMK2KCYgXN2vtvMhTTemZ2UQbWo5ELXug+X1JaiwojGhhBZn5nDOtOJk/uU+QRiG3RtUupkpQpXA+PjtB0Fvfu3cOTp8/w6NEjvPvu+/jxb/8ODp4/w4PPHkRd02Q6jW4SQQyQit6MjiXPf7BGHRw8w2w6xbScYDqdAl5317YtmtZG8dP6GEgTqhtBA4pjlgpg/QKP/kUenQVFs/yRBDF28lxrLbRJRU+IxZu99EVclFJw1hdfzjBP7Hr/zjmDDbGnUMm51DqG8aE0y6XkUOvaFibqDSGLMbgIJHPquqmxOu5IyC4aC7K2hVsJKlPxoq7rcHR4KGFaJoVjFaaA2VCYVBXIGMD7hAXDCSO6REtHeP1e7usnhhvv5xXQnH81TYExMUI5RPZisArztYem/OitU0/RwGIZ35l8xa20XqLPWjaeUa1BPh2R3/jkRxha+FEMkOKsbuYaXUi+RPPMNsNzzqJeabIAW1cuGhwYUyZf8LlXh9yGgnLaTThJTPGsfiKW9N1YH1rboe0a2Xl9ihaO31kcnxzj8ePHaNsWd+7cwfb2Np48fQxmr1BWKWNE2L0cM3RsbIYkyXvTkyTF66wFB9+fzkb3CICiv5fWZmXC5g6tvQUfS4dnSACB/QxGh4UZWiv+ZNChzwheSPRoscV8PhfPdQaMCv3kPbU4zPNsWVAMo/YLPh0HhJFoo2OZO+q1kCKaCAx4KDL23nvli/QxzndKopG1Do4lqF4RiY+Xv5f28aLa66riJjjW7/4nsPjsUT0xr//DkcnEe8YXp9F1PvaWq+uxv8msnM/wvmNIEmVOYdOj0KBcigt/p+zA8greB5IvKGaGhp+1L53FQPrNucjVFz/zst+/PIVJlO0k6Ld4aJUB0qSn3jmJZ88Xpzg6OsDm5iZKIymdO2sBRVjUC7z77t/hr/7qJ5hUU/zxP/2n+N477+D54TO890HIhmFE7EAQ4RRca5OilJCcT0lhY2MDgDDK0/kpWl+yjllELECY42w2i3o126XMCM6lpRFS9BBJjJ3K8vunWE9I4Qqv1JdUNi66FrRtg67rUBSTmOJZPPcZ9bLG0rY4bpeoyhKVKYFqChQikiutRcRiUT6HnGQhptR6NObYQnsdlXIKpIHNjQ3cvn1LkKcfDEn+5x2ds7G71CxxIkxF9Ap4xqViqqPF8tRXrS9wY6+MTGoymYiIWVYiVvdYEdA5sUUqSoiLfcHcIXoCUYbYgA7S/xzniRfHAbBKYCMi6p5SKHKa+IwgXqaiN87rxCiBZQ/7mIPoLpt18G+UjUNFxiSXePQIBqRQU7SOalLy2TG0hwzqMswsNn7N8Ze5/qJnXuQ5F3/GixCv/LWeoa2/eqx9TV1jPj/BdDqRmELPVIgITdPiwaef4mc//xl+8M4P8du//dt4/bW72PzZZpykypdms/DpVjwyUwyE4uuJgRImkwnatvUl3hrUdS1psn2+Mq0NjClQVZO40Jc+/1rUaUCYY6jdCSKwIhRZCNPK+3OGLLz+hYAo0vb0Th6VtG2DpnGoT4+xubmJjckUFRRK0lCkoYyKbQkKfh2ZmchL7JyvFiQ+SuKvxJhMKuzubPdqejJLHyqSTBtiaFgd0fCO674bjnXw5Gcvzp+enkIrJYHue3uR8ZdliaqsYoHooDuKekAGOraIhZaQ2tfr8xx5AdFzP7iYqJhjL83NXMLI75FvvgFdMvKSdiGlCnqIPLSp5zfotShsw6bTbyyF2nWZeBLD0UBRVIYPtFcQNc8IM8sGIZrpaPj1Kl2Ag7wskxkKKSNCy4s/Y6gXGRnQVfCevkx7CvWtviSCjviceZDPYadOE8P59NiTmfa6cxEfNza3MDs5hbUW21tb2N7axKQqUC8XYHYoywrMJApq0hBtd4bhKflzhefmuiVFEvZjtAGRILkU1pOCgQHqFclI75xQUOi7oMeR36lby5CSx/d33Llj98uR8A0TgbSCchoaBM0y0dkJA62bBpYZmhmdYrGu+Z2b2TuUMonC3w9ZlIDDPPcZG6TkmTQhWDTJH1rxLuvtWhz02mkOZag9Ovd6pBKYf13XcFb0jgHdKKWgvJEmxEE6hAgJIKKk0MbISNM4rLQP1GOsHNuUxjAf0eGLXhx89Df2/JsoNUZ9U7IYR3ExjkuScXtru7cxylqiwSIdMDMe/ORNXM8oLs9AXpytnXfli955DDX14DLlTpPBRydco1PZ+eAMyDy4ofXMTL4jVlAMaGI418IuGtQnC9y9dQfKABYdVFnhu9//ISazbXzyySf4+z/+Mb7z5pvY257ig199gKaucevmbdQtYLkAMAFQgZ0sDmMYxLWIO96xKeqFiAAtTKIwBlVZpd02GCCY0bU12tYjAo+cgggpPxqForjDixGhg7WSPI89ulJE2NnZ9gxcmITyBgFnhVmCxH8IrOEgqEhVjAkBJQGltSBSsK3FiT3FyfGptEdrFJMKZVWirCqYsopIgMAosl27IJLUM7aF0gQyGpONKVSlY5RBAamKBetSGz1z5WDE8FleA0MmQNLhQBJrKgI0MwxlLgYMdLbFyckxHj16iKI0KMoCZVmAFUGXBSZKHENVYdAlLhYnkvNRGTGTLMjPK91f75EiC4t/BVcGRMn0/FWzFjj4TamXpjvTk4Y5IUzYGzucfK8hayByHEr8Lr6dPxC+cyRZN7Ry0Eqstg4yPqOl5vJm0xULbi9LL9OysWtzpBA6NExy5ePG5CTvDsCBmTGInZfo/ML2zCMCecpcM+BlfSf3sHWLZlFjOqmgNMNRB22muP+tN+GcxvvvfYAf/vgdfOv+69ieTfDo4Wfo2ha7OzfQWsA5DaIS4ALsyOt8AHZtfFpIcxhU3aS0F7vS5MutX23bYtk2fZ1YcCBVGlBeGZulPW7bFl0nCvu6ruU6z8y2NjckiF3lyBSwEV14Z0hWUe+tSo4iYNG5aPWc1026PxE2t7awMZsJKjOF3M+LZ/mObfyb1q7z+jaFsqxARpyUyfnxdiJSK1+sOQCL6HYSHdgQaziE7CPKiJ+XAsXg8eDSYG2HxfwUB8+fYffGHogkVhTkc5UZDVMW0TUkzMMoopPXL2VWUc6QzXkzvXfaiJQ1Wnzo3LuurqUhOgP8Bhpc/9nrwPyLhUrmEXkyB6CMwIXkx7sKkVhZRVcqI2TyUIthc1Js2Bjuy1/kMj1wdajs1VF/H1rV/wwZ/Pj7Z84D2ekJ0fWe5vU6uVNlWONB9CjL0uuv5KqyLMHaIFO1Yn0vjehUkIkr+R0oxSEGJJaf2/Mv8w1l189bBXixySuZFci7eSRXBILs2nk18p7IQ2mrHj47b1forJBCqGkaqaepCMraHpKE6uu/wnsn3MIx1CrcV7o7rQHOrs3HMP8cxj64tviXAIFijKQxJhpXViIkspvlKovw/BdZC2NOzmOobOzeDOot3dV7JUg1uhoo9XAScUee6Jdez7oKiN6SMmDgVSd5R/1aYzO/SpSysHLc8WX/DRT2jmyIvOIzzECGX+heHJWBtZD0Px3arpWJr2Rf77oOTS0FWG/fvo2NjQ2URQFmYDqdoJptoJzNfBbYJBZLrJ0Dw2ZeEqkGYwrgTnqXXIHMGTMqi6KX4qevqxGH165pYDuLUMXa+QUbvNgVid5quVxCq5mgIIRYP4flcpkpggNiE9TnrJwX3i24ihhjfIbc5PPWti2Ojo4EQXrUGGo9BuahSMWU0mElOMdQZHybxHoa0mlbayXo3M8BeN85dg4qiE8MH/zshXgWEdp1DseHh9ja2hL/PpIKQzu7uwABZVVhOp2iqMpeOTcGJG2R9EZsp+xzWTB8mHkvYG399dOrbLNMnGtmdgEKCyYGR6t8ZwqTTdBXyKAQdvPIzPx9cmYmCEYkfmvFSZW83siB0HVWckkRYX9/X9JGF7LoqmqCjZ0d7N28jaPaeiMA/M7I3gPbQaU8jBEBBAQ1xsxC1lVpvheBgBUmFuI5Q8XrpmljMRBVlKKH84tVkwQEf/bZEaaTCkSVMHHkzCz0pfwOm0WynCKKuUHsLMsyorFQqq5pGp9XCzF19O7ubnzHwhRZMdz+vYM1tK5rmMkUpFO4jBhqXBSLQmbaHKkRUcyOKoWRLU5OTqS4h3dW1lpja0tK5jGzOAl7RhzHQaleyvIxMfKrycACvVjbcxVQ/4jQNTO7IOW7ZuQaAXoHiSSI5mM0VEYEXQEQkzbmHuKOZVHNT08xP51juaxjzccwmMqX8dIqpLDOhKWgTEHGbpkvtQiSdWyANjl3SQhWUQVWnpnlYij78KrINBHbFJBQzjxT5/QZ21izhyJv/x6J8UopO/lp2wYucHhS3oLpDRgs7W2aBpXP+7VKY8Jl1s/eYGSdje4mDPjIriQyK5+UMBdy453XLNb0kDWuGFdAXx6WGUWMJNHmYiZdi5mRzvMXCnqdIL9rHZSwSY+BcIbMaojvjfgJpQGQqH8XLF/kUDdzMLuYDYEZqOsa7733EX7601/i2ZPnWMzn2JqVUHwf25sbsLb1ogmwubWNoqxAIFj2PlIMOBvfDuJlb1cYQF6iDUh592Nf5Ex30D8BKU0mE1Rlxiy9s2nXdTg6OsJsOsWkLCOCCtEmzPL8uq69fk17ZMjekx89/68wHjmKzAPpgw6qqqqIep2vx3lycoKiKHDw/LnP7zbBZFrCGA2ljaTZ9n30+cPP0O3tY3d7R3LgyyjDaI2O06alSX4UJOxKaQXjmePBwQHmJ6eYLxfCtHyft10XOlXEbJY0PPB1DxAsyl53yuCeaBn8us6ax/m8/XVRX+t8gZNXaGQtrlyX3KAY18jsQpTQg58oMXFVfxSkU3NUkUTMQIEBuLYDwQHk0DQLMBxM4dMGA2jqFh9++BH+5qd/i8ePnqBtGty/dxe721twr9+D7SysE2a2sbEpjpck5eCM9imlLRAYGZCYWWAQ0Urp/coAeFE3iZRBST82MQMKK6oKWslUstZKZrZWfKmCY2hV9JlZEMmDmBrapZRC13oZSxG0VlFnFsYixhmqUJBFRUV7+AlJF9u6QdOkVNzHx8cgELZ3trHlRAdZlCXKqoyB7I8ePUShDKqixHQ6jYhLK43WdgjRH8p7oisQOteBjIHRGg6M45NjHD4/9BbO1HvWpc0jqAOCT0+QtNklo4ENMiYPIxjHxyP//OtmaFdH7I0pffpGM7MhVB8TV/LFA1CE+UAu1MW9Nh6JoRj++Mp+mtncrZXdOrfOOecwn8/jIl+GQh9eFKqbGrNOFob2SRVXt7jxiT9uneWV84N4N9xl+/otHyztUyCQX5TD/uvfoa+87uUMGznnotRHnSOW1zCWXuflrIVVCsoXVgYSUg1iae5gGt56rGXsLbqBURMG1tY1lOZN/vLJMnhWN5w3b1+pCHqJW/WF73XE4/ccYoGhWJ8tw9770TecmV2GZHIIMwn+P8n8BgxkzXCV/Mv7PI/iZQeHDifzQwAOs+kUfhmgbTu8//6v8KMf/Qj1osZf/uVf4tatW9jc2kLnLN57/z18Gxqv3X8TRVFJmhQOimd5dm5dY7hscQWvfu+4iizDqqLeZBK+kELmk8I8M3Qg6P2kLxSJtXEymcQiF23bZgwrbCKeMdc1NjY2QKRiWumAQJzri0yBOeVRBqMMy49RTGToDThbW1v+vRXqupG6jcsl5suFVMQiwv6NG7Bdh4ODA9y5cwfBbYaDxTKI3uzdBbyl1lgDYw3KqsD2zjaqqvKM2sA6l/zpiBCyqKa5FYxFiOJlqA41ph8bY2RfB7qIeDomDwHXzOxcivFwznmva/jg31UktDqtOENoA3ETjFBe7vT0EIDFdCZl66EU2sbi/fd+hf/T//GfwZgS7733Hm7duoWt7S101uLdd9/FxvYeAKAoK6+nEofKIJJIwV/E2oVaG/8+LrozKKVgOcXrhQy0gVlHixrCokNkFPk6CtcTlM/gIW4ZrbfGtm0TxcLQN6F/l8slNjc3o3gozrPwht++WJm7l+S/x8fNF/AwJoqzs9kMALBcLtE0tTinOgfrdZZVUWL/xj4eP3yMg8NDSQHkOkmPw6n2gXUxV2vUcba2Q2ELFIXB9vYOsO1Duxyhs87rW71lFIiGBwZS3UgkizKRfM5F/4vSV1HMJOHf678PHzhHZskR/ZqZjVFcrH3Fc/6ZcyA2sFSu/2scV3ddGxXMQRcQrGplWaEqq5QNVml01qLtOtGZQZCQy3f68KTB48LrOMcrx1fnfTgwPrsusliiY2uGoKKY7m87amEdPHLM8HDWws6tpnk7wu9kje1vVs5aOGVjXGpYJoH9jIqXzvmsvFZCl4zzxggFYcoWXcjF1btQ7syUVAcXZT1fFQvmeShrzTYUQ5jGv05zp49Ur5nZudSfOEH06WOtdaL/2EGG7Oqh7iN3FvPTI2xoxsZsw4uJXuntGHW9hLUOi8UC06mgiiePn2C2MUNRlL54qvimERQ662K9SHAKEQmiVnwnDyzzTBrAKuMIvnGcfRffe2RRMeD9zeTvoijQ1jVanwqayGe99Ur7YRXt5O9FnlGvMq4xJjrmRQ+koPfQliBuihd+AceCVjvrmZjWqOsaW9vb4pPGDOVzrDkvcgfDh2Lg9PAYhwfPsZifYmt7G2Upfnk2pu5JucaC+i0aQDIFkBsw+Lz9l2FefbeZLxddRIQ8i3LjGiElDbgWM8+gYYcn36rgvsC9nZQGv/2m66EwUkI6+ElrGaVRICZ06HBycojNnZkXtTScI8Bnh1gullBKEhPOpjMwAw8fPsLG5iaKqoyOtoo0GBq2c1BFMudLcYmkZwqMjLJcWOEdAYz+nYt0QTzq6alcwjCCMlwsrmKMQb1coK5rzDamGVNVUcmeK8qlrzNM5NFUYMRDZ99AuUMwUmt6oVJlWWK5XKYiw1SKGO1FucC467rGzf1b2NneAQAYpeGIfEUj+P4moHM4Pj7Gxx9/AgKjLEtsbW0CEGYW8pklZ/6+y0tUu5IP9fIZXoMKIDeOjI1NfuzLSkM2nONPHvn+YiSMXynqHftGM7P1O97Z3RwWtWym2bk0uDZTdsdPUcdL0f2s80kPVc9JUxhB07YgdLHgR9daLBYLlKW4EiRRl7BSkHCkAk3OlM+ic0XINcciYl1higlhhAkdGOX4OPTH4KILuMfkfINyJtBjCDFQXkWGGZCT8eFYoSVB4S8MNuXxciyRB0YHxJBE/dySK3afkffM3wvjTtdDxn2epfKlHGpfoQS7ysjC/5m64ZIPjpIEEFUygb7RzGwtcR8BBEpe7ElTOWBVg899ZXeAbMorqYgYSjHadgHHGz7fPMBMqKoJfvjDH+H9997H0dExDg+O8POf/RzWtvjlL3+O+9+6j5s3b4JIHGV9FkFobfxjXa81YfBfhBIyHVlo4f7hO86YWibyOBdcTyi6MOTILDcOBH1W0F2ex1iHCDOJZoRQtiOcN6ozy0S5gNokBtMBZKRClu3QscN0cyuFLCnCxmyGW7duojAG29vbvggvxb5mwGeLCN3jkbLqMyhBzPKjMuaVi89fVvHxKmkMVgTlv6I+U7xmZpcg4UGDVNDwE3RE3zHAKh7JkRQ0hdTH1Aqo6zmsbX1WVABMmE428OMf/xj/8l/+K3z04cd4/uwAf/3Xf43lco73f/Uu/vCP/gBbezcBkqK/igD2BUscW4+E8jbipXbdyGjyY2MLK84vzpiFMButNeCdSJ1L6XyM6XvyC2q9OCMDkm4pZ1YiansE7O+dV3l3VvRZyJictRbTyTRagaEIp/NTzBdLdGwxmW6AjPSCIoXNzS2o1wiTqozB7KG/ONzD90uYCUG0pVwkpuSJGJyAw+dxRv11oeHGf4HzSfpCxO/E7q6Z2QUod8QM4kYCu4M8pEG08X+O7ixBE+wzzzonRcIQEAkArTS2t3ewXNY4OT0FO8bp6SkWi1MxBsymKKvK+znluNC3MT49tCMvMyYXjIlu6/yaXi2tipnDR4kFMeSTP1/MXC96EYK1+bz3CjqziJJ8O6216LoWHadibEENaowWi7OPIBBXl5E5EX5HRVnWE7kIOdqyrw/15JneMFyQqdHgjDhM33Cd2eXJ6z88eopHKejOzqKQdcyLEY5hXYeuqWG0ihkeBEGJG8bNm7fwe7/3Y9y5fRvPnjzD3o093KA93LpzM+p5yulUUA1ogGTCwr36BdIXf7yBIYhiJCIVBSU3UXzXtm3Qtk1M5bNyD/Ki3hkTfOg8GtBX359NPsf4Wubox5X3WfQn9JWRok9buIvvTPYcNhg+QgRGriez0YK5OgDMvBIiln/Ow5++CWLlmW9I4ycEvSWFc3CNzMaJRlW16DEzOTEe70fNCdsKJvh8ayZS0KTBbNG1DerlHIUhGCML0HoEVVYV7t17HX/8x3+EJ4+f4P1334PjDrs7W7j3+msST2k0NjY2oZWBIwWGF4HJgWKtw+BkepnXv5xuRmXWQKVCjGE/iaLSck5ZGCglAeF1vURdL1EURWIkmVilNMHa8WfmKCu3bgbrX2AqOWIL+rnIWFXy6Qv3tJ6ZhQpTPHhWzoICcxTRUkWDQIhPBRF0rDea9S1WmVSoKIXQhsw/L3cU/nqJmEOd8wo8l2+GU5HIgwI5KfC7bzwzW1HCYu1m4M9PYlo8Fq85iwGEeydFOTvJY6bUqi8VEaGqKuzv70ORwuHz5zg+OcTm1iZu3b6N+fIU5C2etIb5jom4F6XLLpphn/TuFYTG6Ocmx60Vn6/CJ5yMNRIu2fKxvottylqxgsAGsZOR+YXxoBEl/fCdB8d58PsiNDw34tORTaVnhBpp01eCMqU90H//nhiKPvICkngfdP9RG0DXzGyFLoJKRBSk3pG4/M64VvlqJ9ZK/cbOdpjPTzHx5dx8C3B0dIzjkyU+f/gEpKSajykMbt26jb29HUyqCZ4fPodjhikK72pBGKaYZra+mVc74UOoF69YeIPbCaMoipiyKOSw7/uZZSg30+fljOliTAsrBho5WZTuDFHyLxZLFIUUMUnMVbK9lmUpFd4dgzRQTipf+Wngz6ZIMjz5+wc3DMC7bgzalyv5V5o3YmDJj19ToqC9HvbNNTMbo6BMGVBAZTGNNIYwOWwSjBhfmE1P5eMmRdxS6JoWR4eH2NiYST5/f97TJ0/x0Uef4T/+1V9je2cTOzvbeP311/HGG69ja2sTs9kUpx8usGMdymoimVOdioA7mKyddSCd0Md5/lkvQoISLJQykiraO76HGIm6XoIhtSDn81Npnwpin/jPiViYni/B5il2tK9PGzdSDC1+8rn/XlqLlbBpWxwfH0ltysJIJECWsXYynYKURuccjGYpyDuZ+MgFHc81WoO016M5H9/KmVV1DbNd2/ecGOFZ7/r1oQHqXDmCle/lt0/BNEDW31hmdubCBgbI67ybIduZx54V0BKS/5UXu5qmiXntQ5zeclnj6OgIDx8+RGdr77pAmM1mmEymkoWh68AsqaE5+DUFRBMtPuMWole9KAQ1BaEgee8zI6aXjplVObXHOR64GpyNinN0dp7T6Oh5lDKEtF0HrXSPWYZnh3xvzh/TRkOxjkWZ47k5EyL4qt25NbQ/JzhrxxjRms9fV+qNNKV3TnagJPEk/4HgajO4F19bM0dpTGchu4BknFj1JYsXADzw4+bsu2jRlC+s7VDXS0yrEkVhQCRpaT7//HN8/vnnuHPnNiZTyXP/4MEDHB8fY29vD3fu3oY2hS+SoQJkHDhi8Be2Ioae/flx9gp5rXRCbMw+dvFq0MZZrheBeU6nU2zONoRRKYL1mSnEMomoZGZOcaIAIoNLTA2ggNb9NaT6z4/+c1iPPC7UC35ln4dgvq401EdGq7XvvGtmNqCkyO5Pr+CgF1LdRF+zpM/3ysj+dcEEb2K5bHg9TYeurTE/OcH+7jaqagJSCvPTU/ziF7/Au+9+gD/8o3+C+eIUx8dH+Ju/+SkePnyM1994HX//H/we9u/eRlFNoJRG64Kpnz1vY4Ac1PlRSy9NAkLyIG9ZcUExK6KukdAg37eOGV0rVadWEximtEMv4vHe161l+zqn7Bhaa+zu7mJ3ZxcMRuMz4irta2SGupREkurH6ySjtRh9cTZsJMrr5UipFW5zlnHpPEbW+/4rzsUuwrR7QCAIHbnbTkDQKug7PeB4pS39mtCqJTh5lq9X8FP2k35FJ6Xs+7DWnJNiuUabKNq0rSQFPDg4wM7ODqaTCQDG8+fP8cEHH+Djjz/B84MDKKWzDLPjbzAMxUrOv1dD3EOHMgtjxaYsMWRwOQjtWrXYraKrYdvH/l6lbDyyNgZL8WQ6QVVV0MYIqiLvW5ZdFnOW+fsN28rMWfHa8f7N+35oec5nzcoYZXOHeqj+6sfyKqi3Qmh4YPWcpCqRn7600e9LxrWYuZbGrGdR+X+JOdQz2zuWyudEcLYDWAKag3uFY4emlQSC+/v72N3dhTEKptBo2xazjS3cvnMLt27d8kiR4iKTX4xe4zj8d/XbeVjjQ+QRRK7kzCpMrW0luH49E7oaCi4ZxhhBYkqhLEvMZjM4ayMjDeacnuV60I3DXhV96FqV2DW9QgrMPx+Da2Z2QYo6EncR8S1DDEpS/cABzjIUGEYr2KYF2KEsS0xKERetlbz/N27cQFnOcP+NN9B2NZq2xfe+9z0s6hplWWJjaxMni4UgH6bB6nF9vUpgMle0wDh/SECe/hATYqGUEJsZEFqolan1WDk3xGteNXVdB+NrehqfX00bqTAV0KJSGtaljUsyiY+nZ8wTlVxm27jmdxenlX7lxMzyM76xzOwiEH3MHSBZq9bdGL2epyj0+zxd/s9QpUcrDa1F+W+dRdu1mEynMGaC7a1tOFiAfIC0kgwZXddh8dlnCHqcyL1Gl9IXg8zyx+U75jDMKLll2N73iOdnt7qkx/t55+Z6LkFmqZoTFYWXgAXdckqpiPNYT6+sQxRF119zYWX/Rc/9KtFZXbNmmo5sIQiuT/F7ukZmlyIOSvaxRRNVZeR1lP3zok7EW0QBhlaEwmh8+MGHYB8Gc3A4x/HREawjSaet+4u06zrM53OYooTWRXxeQgfDSlDnL8ZXQ8PniKUvWpw8MuuLmesrGOXe+q9SNxQ2pCime3tP8ixP+fkRf188pXXf5va1Y0UvR2d1zZkdPNCphp/BBn7NzC5IYVcPOpcBnuidFwBd3KEZACloxSDuwLYBwaIsNKbTCf7kf/mXODk9hmWLe6+9hU8ePIBSBvPFHNPZBEZp70bGWNZLPHn2DNu7N1FWU0BpSBUfeBcBh+D3pAIMvPreyRCYf3f49NimAEEsmFVVwRgN52wUM5VaL2a+0hb69gVkFvKOiYVTGqwUiZtGcHwlgoP4m9GIhTu853BtpoTZ1/RS5C0FHIvl5Igf0OR9zvx8v2ZmZ9DQ+TLs6mkB8kCsHGEcucjprS9sLQAHrRUKY/D+u+/h6fOnsOwwnezh8PAAxpRo2wYTVwLQ8dZd2+J0PseNWyW0KRCLx/Lggb3VdNUMzTMzzjCM14YrpYGARAMyY7HilqW5UG3JV0m5Y6yDZ76MbJFQ9IGNDNrJC+V2yOQ1NjR5+Hteg7Iro57FM+v6a2Z2CYouAxkKiWZmhIUszrWDKxF2GNlFGG1bixhJwL17r6OaTbBsmujj1DQt3n33PezsbGE6nWC6McV0Y+arfysURSlZZZGQ4HBdMX9x5vthPrTorpf5n+XZH3rxk3n7ezcdOXbBNqyj5GiZdI0B1RKFcQISKmDJzjDal0NGRojZU64Z2pk0tkLC7557T18B3Ttybc18GSIRQ1YtcL0u9r/zheUXibNgWJB2OD55jmZxAk2E/+of/wGeHjzFs8MDPHt2AqUUDg4O8T/9T/8v3Ly5i70bO3jj/uv49ltvwZQVClNiY3MbZTkBQcXFR2Bxzc0WUm+BXkmXpGIpgBg02rb1lsDgTJvQEJGkuGnbFpNJeQYyezFOsE7HliMy7dNigwkKBNIAnIv6PM5ESgYApURkX5OOKJ73wq3+ZtJl+mzU79CvuzC3r5nZBSnEVoouRUXLlxdC/VnrOYbojRwYkmtssZzDtksoIrzzvXfw5OApPnv8CAcHPwORwnK5xC9/+Ve4c2cPt+/cRNs12NrZxtbOHqYbEjFgTDF4No005YtEZlm1cQhSDcxM9GMKzNanPvLWzJX2XW17UyHhpOBXvYWymtkibUir4zt29Fpfdjm6OIhdZWg5fWOZ2TqRZF04kxxJyQbTBZQE996oZMyFKTpTBmtm1zZwXQdFDK0NyrLCdDrDbDbD7Tu3obSB1hNsb0+xvbMJrTW6rksGiBBiw5mOJmvKrwcjJNcV57NIRN7q+9t5/y3KxTz0GQD33uHlWUO4n3VOMvRqrwoIoWeUEN2Yb1tUJ/S+8nlBaDCHzipgexnyr/61ZoxjGICzDY7WiaPjffyNZWYvQkppaO9ukFDHmJg0dI2QxaKV2GOcq3Fy8hzKtSinU0zKCtvbe2BT4PU3jvDWW2+DoHB4cILF4gTLeoH54hjz5QKTtsFeUUKpAoCGtegtwBxFMGcW1Suk+HxO2Vyt69C2HaqihLMdrJVMtCGffgrH8WKwv54oMbD882VojCk5ZrRdC1MUkm6JOWOwkOgMb9BR5NP3eJeSELIU8NzXmsF8CegifUzAAFFfM7MeXSTvVBRTeIggzrkH+wymANh1WC5PUICB6QRFUWBWFOCiwP6Nfdy79zq2t3fQLBt8+ukDPHr8EO/96u/QNA26zkIbST0NkC8wyxl8yNsUEh1+MdpoBnyEhDD4ruswKcqewl9ygblM1Fsvwr3StrFULZ9MCtGZwWMr33XsEIs1SwhWEjcztV/vXeOHa0XZF0rRWDAQ/68DzS9AK4HCNKJXWbnGG8ziYgUQvZLY5yNzEu7DQNd2WCyWOD45Qdd1MX6wLEtU1QTT6RQbGxsoyxLOhUWY2YBW5aD43KtS/q8neeexNR589S5kZc277gWol8mDU6ps5euTIn3rH5fyyffcZAfcrNeskfbRq+pvGvx8Q6nXnUNDQPZ5HJldR8qOUkAcRBQT8Z1NoagIAO/9T3CAslgsjlFMp5hNp2DHODw8wicPP8ff/uznuHFjH/s3bqIoCmxvb4PhsGxOcfPOXZAu0dQtLDM0CAQNJo1xi2o4dvXjuRK2RPITvguFbdu27SWkHKOX8fofs3o5h1ins/BipjzI16OnLBWRL/+Xi6Ec/8vuu3roQt9d0+WJQUnCyAfDhxWGIR+dTdesbJwElYWScOPMLJv++ZUxlAlwIMWo6zmc61BVJZiB05NTPH78BB9+9BGOj0/A3sl0NtvA9vY2bty4gddeew3b2zto2070PCCA8gR1I/LQFziawdobfno6Dc/Muq5D13Ux5dFaekFukDs35zcLVZO0z1Iydp2MUfKFi/cZkTOvAdOvkfxwDAWfa53ZGFESktaihNHFRgC7HkMjCguBEkbyxWTjrsJA11k0TYeyLHt+bEoRnHU4Pj6JYpI2GqkKJ3yuec7ai/TdF6CLkvcMltWRYiLoI7erqsq97p48OCe42QB9YThsUiv3HFgoiWlw6PJ9/CKj8nUQmIhXurP3Xf5VGovcKITRziOia53ZRShZ65LWn8Pf4Q+m6HSZI6RgURQFuANgwdyB4KDIZ8sE4XS+wOHhEe7f/xY2NzdBROi6DkQKJ6en+Iv/8Bc4PhGH2s2tLRBpEBSIdGxbZCQ995IvBj+clTwxJD2Ud2rRNHVEZl/U+gzzX2sdNwtJxDjUwYRNwjM9pVLpObxCfRhyDer5P18XutR4R2lyXPcb/DzDPa+Z2SWorxgeE+eGin75nEQW581mHUKhXqmkpLBY1Dg+OcXdO3cxm82i86lShMV8jp/+9G8wP51DKeW/V5A0KKkq06qQS/ii2MVY5tOkY0TGzCQus191POu5V2ytCNlvw12T02y/zStCZPiOVFQt/Drp68TQ1tFYD5/73lHW/JqJmWMLYd0kPHtyrn4XdSccPqdzU3Uiz1I46Y+Go+HYwXadlJb3mJkAXwhYoa7r6Bwbnmut9SlzfLZWlQ0bI7oUXPxtrpZ6FYkGzsmS4DIX3UPldwpuXdmN4imXeu5ZYzvGdEU94LOXnTkvkjFl9KyAJC7W3EtTT1y+omf8umlMilxvv+zTNTK7BAV0tRY9ZAuh58gKielkODRtjYPDZ5hMSlRlAecsiAiz6QY2NjbxN3/zN3j48CGWyyW01lguaywWS1GaG4PJZOLF0OTrlpxjo4HnC6fA7InIGygcjDExbCmIdtZadNYmpkL+2myHfeXtgjCp3IKaHx/bdIK4mYwA6DErb6BeS1cxBl83kfNV0zUzuwSJ7iubTpcQPchbG9u2wdHRIaqyQFEYH/KjMJ1OMZvN8Mtf/hJPnjxBXddQSqFpGiyXy2iJq6oKGxub0deNMWCcV8QUzqOQuBJARJZa6ywVtRJbrrOwtsush6uU0NGrWbrBiBPSdgeLZ255XeUUiZmtYyNj2sivK2L6KtAZYqa3vnHSE0WAHRZPLyYNaZdFMpGv+0wjKGbs2GjLBvcbOz6kIPqFdwuWPjnuwa3fgMN5Qz1K0L4kJjJ4+XADf37sKvK5sFgWje1sLx8+E6B9XnoiwmIhxoBCFzg8PMRiuURVVQgFVUgpuPw5a+nFmcFqiNT64/2+BZidGCgIYOeiohbsRqIm1pm2stavsSiva+O69+mHv/T7JgmQwwvPvO34Rdcc7WI00rdB67s+xLU/UlFfzGtqAOQC0sogrzGNjt7nJZwfz6Lcl+gsndhqWbChNENpJXrrX2JwvqNycz0xoBigVJ3bMkDk/HWS+VJBQaoxMyx1cKygYVAqDThCfdJgo5phUk0ARWjgsLmzjftv3Mdb334Lv3rvAzx88BCbmxuYL+Zouxa/8Zu/hbppcbJYYrqjwSzOslIiRYFIEiDmKXf8W+OMpfrSREQ+eaEUI2Z2aLsGhSmgTYmmXUJpBkNLTCacr3eY52FTIKR41xSTeTlm3PcxS3PD2Q5sLcqigFEKigDH8NZf3y8KcBRmPKLbXpZfA74uDUIM55hKj3HxTLPfRJ53lt7PUerR+Ml/4GwKM4lrjPMblCLAsjsbmfVbEWB5wCbjQ7EOjY0+YeDg2LMunYPM1p2zlnly+rUixXAQGALbCvnrgxgUipEwQpwjs4JzBOfZCcPBOcA47yxKBEsWlh0sHBgGE2UAp9CcNtjbF2bGROjYYXN7G2/oEm9++0382Z/+GT7+6CMUhYJ1Dq/ffwP/5//un2HZtDhdLHBTCTNznpGtCjwJKaaiaVdDaWdMz2/bFloTjCG0bY2iUABKdF0DQALuQ3tlD6FsQ0nMLDGby4jz5IPd/ciRiLbOdphUM2hFMX1m0tUhKlyGi224kV+ExV7rtdbTur7hHhKXX3nf02D3COMnKezFS2A9M7sAoko84Su2x/B4p1I0p1F+qvz2Cy3uDtmOwXDC1DgvkCF1MB0zHCsoOLBj/yMZOBSpODCklAScz2bRQz3kBZNIgJmwTM5qOXLQm2XFUKNINzIjroJ6UDdtMtzrOI7vkyOmqLi4IreH4aa1Gj6VjXXPTaS/jPJfo89Z+XCBtl381K8XrelOzj8N1Vf5eWEDyiTE8Of5rhlB3FoJEVlzetaQs/K75/eK1cKz48MJPmbuH7v/GMobtu8s8VST4KzgZ9QLa+k9x4Et0DYWQA1iQAPoWp+ahIDWdGgBOCiJpaTWp70GyrKCMQWS37LsMm+//TYIwG/8xg/RtQ10YXBjfx+3bt/E0lphcJzX2fbiJbIJwnk7V2TrV0r9bgk5wZxX9ItuUPuaCXVdwzle8TF71ST3T38HI0TQSV7TV5/ilCaAiNczs16IBygym55IOHYh95nQRZSyuUUpLFQAayf8ZcJhEjNKf4fnjJ0b3oupnxUjT2GTjkn2B9c6WLuEAqBZgRonC4mAVnewSoFJQTkLhQZNU0MpQlVWKArJFEsQRKe1wne/+1289ea30bYNTo9PMJlNYcoCqlL45POHvo+cb2hesj7f23pYDb3CjldE0deOKPaXsz5dkZaxrOvaiwarFZmGm9WL8JxwD621d6EJvnoyr6qq6m2c1/TVJPLqk9wN6WLIbEiRMQwOryAq7iGbi+jCLmrBHLvf+c6OQC4GjX+f/XWB9vYuFSE+qH2Q9G/yd74RhKwSSUEtSvOulR2mLEuUhQEcY2NzE6pQaNgnNFzRjV3NwryMs/FYuAlzUtDG94xi5vC6fhWs7M4rz1qHvM+eV/I7R/KZlHJNXxCdpfy/8D1yPWd2L6I1zCyqwUcuvGhD1oly41bGccvkGAJbh6zGrgm7sHMBqXBEDdbaDG163VdAilpBjWZXoCh+FkUBhgOUg2EHTQRDGuQZEhOjMA5OERwTuAMKZ2FmE9Dt2zCF6LysdXj8+DHe/9XH+PjjT6HJYnNDUgNtbWxi/9YtzDZnmGxNMZlMUFYVlNLimuH1ZqI1U4jay6hMT22+Olo1BpE3mIijr5KcbYBHZhgpCDNOUYV52RYNpIjgfiNIOJ+b1yLnV4uSYQvwMk3gZFjjmhEv5cur9im6N/TFhtzzeoxpATLhhuXIeo6N2f3C+TnzypFgWDByHwutTBJ/nENd15GhiZMnR32ONgamLDCZTAb+YIlJFoXo1khLVZ9CKRTagFqCr0wKZxgdCUKxdYei7WDUDDvlXbjmGaxnqp9//jn+9E//FH/6p3+GQgO3b+3j1s2b+ME730drO+zfuonJ1hTT6dS3ScUEjRSZlaSvEVO2WtFKXxkK4ZE/SMZU8pZpKC2bymKxQGkKX4hlcJtz3Gwuc374vu/m4TcgPwfG0gBd09XT6tZ3mSv7CDzM+nC/tSO6PmQn3WZ43ovoIs67JkzIF/VZy3Vm+Y4dfgJzC8yMWdJbO6fXKP8T4wy7gohSPhlhSMRABKhQc9HB+fOVUijLAnWbRLPFconj42McHBygKgiTqsR0MsFiscByuUTbNJ5BG49yaNAciv+ugm0NnVN7cZahDdljAwNxzsFkectWrZmrz+kj94vrRcevD/dNG2UIr7pGZb8GytS4l+VqAaWvmxkEOl9nFhnB4ML15+eKk9XjY0xpiKzGzjvPsDC0cAbE1bat/G7a3nNCttHglxQYmjAzBcoWYWJo6W9BdQ4OLdg10EqhVRrcep0QMaxhOBKxnVsL15yic6ew9hTISq396lcfYGdnG3/wB/8YG7MKRmsUWsOxxePHj0Ca8Prb38JsYwNlNUmGEvazgngwyP2Z8kXphqRJDlobONdJQH0lKCxsGgCdaeV+8Wf3GW6+geXofp2V+5q+AjSyV+fKgnPFTPHK8GE0ELcD0YmsybSa7ao5J113PtBnZtH1IBNNh+cFS+eY+4ZYsjimSW6aBk3TwFmO6V/KssRkIoVEwvnhmq7rRCwcMK+87dZa2A5Sgair0bYLaIhbh2tcFDM77QAtbgKGHdr6CKo7Rd0dYlZaKFMARPjbn/0M77zzDv7oj/4JbtzYw9NHj/Ds6VN8+OGv8Mmnn6DlDr+N38PW1jZMNYO1DkziqMtwaXPJLQ5gAOpKGdmYIcVai6IwaBuHtqmhtzdTn1kLIrHanmtXiZbxs41CZ39HEYmF4s1nzcNr+iIph2npyBmjPfptEjXP0ZkFGu56yHY90JpgYawymvR5VSd9md1yFKV53jPUrQXmGPRj4XhgbMaYHjMDgM5ZH1OYDAPhrbI3ArvkgiBfM2xnQSSxZR1bEAszU8RA14K7FtS1QKHiHU9OTlAUJe7cuY39/X2wtWjqGiBEZszMPuuDThbT8OqZbjPHZOG8V+mZcXY0R0BC8s4BiYU2Im4QF1cbXBZFrfdPHM6Za4b266PV/u+vrPVXrR7z+U34HGa26gqQHtbb3TxD6x9LD0POcPz5/dOyOL3wRAqZWzkCjR5DjM/LOoYTAgjiZcj53qg2Xt91HebzeS/raLwvC97xQmvMM0YEEMu5xARjvGMmFdA0FT8zUnBa0AcU0KIDNEEpoIDF8WENNHNMqYPSEygSRb4EmQtaJCLMZjPs39zHd77zHdy8dQvTzQ0cHx9j7/Y9sWSG7LIryofBJGF4++YXs3CDaG+MhlXi60WUjockh1cl5Q3VAmGD0lpHS2b4/pq+rHSByRGnfN8fcS0zS06kaYKMTRainPmERHtASCEt7FBLqpu1PkrcQ0CiTE/JCxnIHGpFpxXSRsQ2+TNt16FpmuigubGxgdlshoVeom3bKHouFovY/mCxDD+iM1Pe4mWgtZxjWaxyxBoaCsYpGKPAtoRSBKMI3DkoI4aA2jYgLaisQIvHixPYxTGKCcPoLUBpONuiMAUm0ylmm5JhdmdnB5ubM9y6tY9Fs8SirvH06XO88TagtAFIw7pMZ3beBMirrl8hMTOapsFkuoWuU7BWxjzoLDWFIidXx2BFVeH1md5abPxmMWqsulaffYnoAkgdSeIAxMCmfJ2NMyMAzjR99y5YVeAPnYTOTt8cGNqY82Sa+JHZ9RhftjgYmXXSxfsZY2KiwNDGPJtrQGjhR8XmJ692IoICBU8ukdJjeTJZpEYJ0yBNgCZYYpBmKBJfNGc7dF0L5lDhKZTQ6hcXNoVBWRpMpxNMuwaHx8d48vzQMyVJl31WTw669QujJGbmWXSlRX0XmitvyYohaej5f43NviS0ogUYTo5xPVmUSqJOZW0KoL5SbuX7nGGtaZ+InRDHUi/+hWtzRjSsnzjUpQzPB8QAkIc+5ZO0aRo451CWZSxrdnp6CmflHK11rICUW0DDhNdag5SC0uJvtoJGEbU+UUfXQ5Jk/W9pj/JSNjuLul6AuwaTyQ6Ygc52WNY1TuenePDgE/zyF7/EvdfuYTadoDBGdG9xwEiCzB2v8LJcj7lKrxaVna3ryn0DJXc+SMa+7VLe/7Ms2+c/4/z2AWljDWKm+LZF3QdWRfRr+sLpotPS69jHTld+7QEXCmdaRWlR4Tw2EQlR5OzYCkdzHJXYARUBKRtE2MnzSZ4zsYsyM2ZxzCyKApubm1gul6jrGvP5HNPJLOpOiqIYtYb2zPe+ck9g7NbalOWGGSAFBV+9hxgKvtCtcpCM1h7NkfAeZ1ssTo9gXI2tzdcABuq6xenJKQ6eH+BnP/sZbNfhj//oj0E3b0LNNBS5xEBJitmGrDi5s2zsGwbE0S1FSPRiNF8x5S4Qgoac37QkTXjYpLquQ12nikzrVFaXZWBDJJ+s4OlYcJAVV5yUVXZ9DMk1fVnJq6J93jMWpb9Sor44y5p51q4pd+4zoHX3CCbBwHyC+0PuSDmmhB/7LI8djwZIjFJ0JEEPZq1FXdeoysmKbkxSOSfjQe8ZypfszQ0PvabIrq5CXwS7ikdRoX8iu3EWXdtAUYfCGOHxNrmPPH9+gM8ffo7FcuHdQxx6VRz9IhQ12fiiz56WGvsKRM31FsIRoYCDn10/JlNyjOWl+NbfP93nfOZ2njI/WK4vGkJ1TVdNSUjsje65c9SXlRuAa4pr70LI7GwoHiyHgZlYdoBXqjvnABbUEvVOnokEfVXQb42JIGNiZGCKbdv2KhiFc6bTKZRSWC6WAIDCixfaaF//EFEP1qOw6P3hgIhix6X/gOgK4VGTpChFSsvDCNZXcay1ECwg0Ip9n2itUU2m+Pab3wYgPnLvv/c+Hn7+GNPJBJubFe7dfx2kFKpqCq0LkNIxk2lK4B3UkyEZY2g5X71yaMAsiUhEYaQYzLCBXSb1z8s4tuYorfMGoeVyibIUQw2poHu8FjG/GuTXU75Pe9WJVioi8fXILF3V06EFCpOtbVvUdR0ZmkWayMFSaLSGUX0le9M00bqY684CUxoGk+fILjDQ4DuWx3be2L+Belnj8PAQW1tbqKoJJhOCNsm6qnxhV3lFRhTGoieIQCBmRJShSMFFFxIbe0igm+TkD/5lxJ6tMcNZC+IOCh2IWwAd2FlAlzBFhc1Njd//B7+Px08e4/DwOf7tv/tTnJ7WIABvvHEL/81/99/g9t272NzaRlFOQKqQDLdxsTuAFZKJJ2NwcIHLXaHSPd2Y8k0M8LGQiAxlVk16YuGr9sQfSgohBvf09DR+X00nKMoCpTFwV83or2mEEj9ZN/ojOD3xLwrGPnGU1VoSGSicEc7Uy4kVb4JofQuUe9oPmVlQshMRCm0i3C+KIvqD5dkrVsOH+hRQXFDspzCkxMyqskLbCIPd2tryyl+PEELFb0qLOyCaHn7tPT8Jb+Rz+8fudtKp4o2SlPU580+idqho7uMTAWilUZYKd1+7i6ZtcHx8iAeffoonj56j6yya9gSLxQJECmVZQWkDIiVXh9EduGfEw5RvZZenFUfpc44HCqI7IYSWpfjXpBsdZ65D3egYjbUl17kOr7XWxrC25v/P3p9+2ZIc94Hgz91juUsuL99aG6oKC7FUgQBBSjpCU6NhtwQdzQf9p/owZ2Za5/RpsVua7qNhi6K4ghRIAEWhCoVa3pbL3SLC3eaDufkSEffmzffybcVnVfkyb9wIdw9fzM1+Zm7WNCiqCoVgi6/pxdAOJMRvdUGMSomAZOLw3Nc6an2X+pn1688KJ3GSLGCKAs5a2MQsLmVYa9GiDVJVysSAmJqsb/Ecs2oKBlJVVVgkKUNcr9dwzgUH1DDRQXwQHMMdfNv7D+9J1Ta/IhWgQhge4R9RqlOekdmugVaA8e2R8Ndaaxwf38Dde2tAEZrG4vEb52jbDjdvzUPIn3pSgkixBJiC/7HSbJzC5ecgfcheJ5sVJe8G+LEbhHN6VqJiDCygtQ6RT4gITdugaDbQRqOu62fYhtf0NJSAJJeOUICwcJnTbG8hpAWLerdarXDjxg1MJhO0toP1DEbUQGstu0uoLmMuci4SQGBAKaZCREFVTa2YcgSpLMsA8IuU1nUdTk9PYYzB0dFR7gSLyGDHsLitfZC+b6ayJZJbultA8DZixgXAUYf1cgGjgbIwMEaj7fh8ZVFWePdrX8Ot2zfx/tffx/c//B1sVg3WmzXOzh/g8PAYuihxPD8BJ1EBVAjsyD8koy5Mre+K8QzXrFKcoarw6ntZliG3qBwVc9bBdTYZ32fDYaVsCdddliUODw8B8JicXywC3jibzZCHSnpNz4f2G/uoDKpMhuibD7TWMB4L38LMtoDjyHf8VDKbzqYwnqmkUpe1lq12cFmpYgwAEJiRNE5IVJOUycnnqqpQFEUAlruuAxFhsVhgOp2iruvgJBucgLXKyr46iZ9ZomoF6QiAksNDrPoppTLJTGk+ZK2U1zwhktkxZodzXoQoYS1vEr/6+BdRMptOuVYHoEiD/XijBkURXdoaJLfnIZ6piJlJffFgtwsS9fMgsZAbY3iTbVu0XYumbVA2ZYiY8ppeBO0jb+1Lyvtx7pTMLgPoIohnjEHXdViv1ugogvRAnNxlVUIn60lUSFENU7N5Kpml9wN5EMfNZhMYmGBnfYkvleooYe+X4T59FTPFz9I+kpIVhRpGjSXkHNbrFUqjUZaxy88vLvDw8WdYNC06j+cdzo5QFBUAQllW6DqLtu2glWG8TClsPTmewn5qKKDtS/vgZfGaSOmMYYhKL1FAnbNeI396/G5sbsjnVOLr36e8CVvmWuGdoV/j/+M0Nv5jY3/dBpy9iOLc0h7aKIxBWRaX+JnJXu9FCRH9JAQQwBlvlsslVqsVYHTw5RILpTGGE0kkfZGC+ErF2GLpMSRpg1wH4ikCMbULsxJ1VGsdUrWl19N3EnqygUhdMkiUPOSSDyU//L21LU4f3cd0UmM+rf3iM/jk40/wH//T/4W//+RTQAFVXeEb730Ld+7cw82bJ3j77XtYrjZQZoU3ixqkS5AysNBsqczqu/6JtavvciOND7VDxB4P5J2FlcJ6swGBepFdr6et/XaIy02K1Wl/zlY5HU6GSGIT+9pzdivt8vOT7/bBnvenYV1inNNJPc45QJvglVBqg0lVo53uyJtJHsG+bNEXRYHVaoW261BUZZCMBNPi5B18rlFIVNFUmhL8S65Lw1Pm1v9b6i/LMjDOqqoylZS7I2eOT7qj5Fh7Kr1mYierm0G9I5CzWC0XOJoY1FUZLMKPHrPn/1/9zd9CGY3pbAbbAm3L+NLXv/4eThcLbJoOWhUgpT0jQxS9SOp5PrvkmMc9gOBTqLRIQvxbJLOdOSufsj19g1HKzOQe+U7mywuRKr5CdH1MbGct4a8+41T+WqFY0q7Kcn9rJpcdpTMku6BIQjrxI8uwLv+AQuTq4o+U1pNKWvI5TXOXBteTF8sOiOtordzZRTt2ncsoZV6EVJ0TUDHaYvh9ABDHw9ezmt8BhKZpYS0ftXn/6+/jYrFAZy1m0xnW6xUePXqEpmkAvwPB42wQydj72iTNSVDSlInvhgyemjyHFxcUkdoFSwynGXobzGhRve+2LZjtEoFHNBMYo1/vayZ2PXT9/bgNN6HkdyQCAc6BtPCCyxKaACLr9aqLO55EpAB8arEiMrJ4Fo+gkpA96WHvfjalzJ0imYzpLpuC99KGcDzpKXeM/vPpIrABgU/wNOmXRBKDnB0DhychZ3F29hjv3HkHdV3BOovHp0tsmgYHBwf4yb/+1/iLv/pr/O3f/RxvvfUWfvnLj/D551/gg+9/gKKqUJY1QBqWANLw2ZlyRjWOj4k6/OwWcIiKYSWfpz/doTWMNlit1sG6eK31DhZTHkZK5k5qRJI5+fpo0+U0cM3qSeRAjmE/kzaIANSX0LyPmXMWDpZ/W/sEeTN7hQugKhZFmKhORNO8RTDhAUGaS62QQn2G1mdsSqnsnJ9IbPI5JqzY0Uk7sIBd9w/3B/+c4PGJVCb8QxKarFcrFD5GmnUOyxWfwawnNf7xP/nHOF8s8etf/wY3bpzg/Pwv8Pj0MRbLJW7UExSmAEF5BuZjgmVnOwYtjm0gBHzvWZIjB3IOmpiBSCSDtm2C283zpiDBJ/MoHpt77s155WmMoT2HWv3vodGHyIEc+ajQOzCzHjS0vapEcgpMwv+OElTOBlIpKz2nmWIbfWaW1tVXTQf19+4JXgojgHb/mXGL3T5qaV/XC6ZTVs+T0DiAhu2sZ8RFpq4fHh5iOp1itV6jrideuhX1mc8TpjWk0nIugclYXB2bGrNgbbvmeUX2ziL2y8Yz7pahErX4Ss3b0t5cIuvTqAP0ayezIRHyeXRNYzSopEejLEtQFJJD5gKfpI2JsNOTSWZeQhAVL/XMd8k91lq2OoRGMKVHW1KLY595Ze+VXEtjkQ0tWk/X67sYGrBtTEcWildJiSzIdXA+bLQxBYg0Fus1OucwmU59Xk+N2XSGb33rW/jZz36Gsixx584dEDSMKQGlUZgSFhqddYkhQsVfg3Y/h8Xq6+Ux4Esc6ZWZ13q9hlYKZVUPWnXZ3r4PhhYgWWik/mzBRWgkX6vMTaB4zc+20r6j9GxpMKOVNyYqBSIVoDDaqWbusXGJRJHuvumxdGstjOK0bWmjRO3oR1Hom9UHTeoxMPm7j6E9LV1djKbeT3KNHMhZkLNs1dUGjjQ2TQNLhKqqQI6TgEzqCd566y3cvn0bm80Gx0fHWK4baF14U3QBIm8hVMGkktT3/CkKZfHdmanwhtU0DarU96/3774Mbdt4EAV+FZipzAlmYMNno/r5mpe9zLSNBSmVhNyCaD6XJTTp/YaKFsmefjH+vMpnyzY18El08D5D2/38fmWPqqwDAwhl57fHbS1yvwcpA2YUe7QoS9R1jel05pMOuxBFRJKxSHZ1UxguLZF+0loyo0/WsHR3fXqJNRQ91tdKQaT10FNj7X3GPFfaGcIOqSiJbUtR+Jr6NAJXEIGuYfCi1rptYqjB1aGpJ2mbN/o4twMzS+8PXgfIGUdftbPW+sirAJRCYQwQJhLHkRJnt6yKZHKlUlbfOS+dqH287TppwBxDP+cdTkqFCBV951lZ0u2mQds0/uA7R7xQ2uDk5CYsadSTOcqiwHq1xsOHD/Hw4UM8eHAfjx4/glIK89kc1WQOUhqd7WChfTm7JtaAq125D67qYKy0AihK24QkgzkiA7lKa/r+Y/22iOQF5HMCADabDVarFYq6ykISpU7dr2k7DU5d5P9k3z1FLb2/d5QnPBUuqpdg45Z1HBLs0hBAGY/uNz7Bqvgjh7KVyWy0gXMW1lno5ND4mAtFH/uS8sbqTQHlZ+ONnFbW+1vllxPoGWrEP6JrW3Rty6cchJkpjcPDI5AqUNV8YqFpNjg7O8PZ2SkeP36M8/NzKKUwmUxRTqYAFDrr4BSgvMV4f8bwHMBuJYEvk9DU4uSsnkz6BrYbapI7MqYnG1zbtlgul6goBv+cTqcZM3uxaNArRsLI1PZ1+QwrRlxp8iPSf5TC98DMtihRtGOBEBBibSXaaDaZVVbJVupP3ETZu5r/VK+qbRavgRV0vFXh99gxyUR2YN8rEAojyVH4R5sCRVmGEwul//vx40cAgEldR2lD6aTsGBMsVtbDhHqtuCrtwiuBYd/1u7IvLY2P08jOAOxs9r7Ozuli4ygeLhir0jF4TSM0styfuZBwGXlrdQD7xe0I+SheSc0MUlC4RJl0FqQlOChSsNQB4JDVA4sjheZF1pCLgXERC5ALAOQ4Pr9/KY6EcX07ReZ06duRsK6eMpnzSMquEogsbNcBjnAwP4DRHJOMCKgnU0AXKKsJiqLA7du38dZbb+H//D//DxSFxte/8R5W6xUOjm5yFnPygQ/FfJcFK+vjDYlq8JTyx2V9Ssl95PELYwzI8akHCco5fGq/sepbuHPJXVx6cqxMohdPJhPcvXs3qJnT6RRFUTJzHYdoXpOnvsaTf84dx6+DtuHOwMgaE97hBQmt/LHJnRWMTeSeREYJQ5PIojLhrOXzemks+OjUmmq9FDZLJdia4nA5WqtkI/UMTPFE5h03be+ut9mP+qqu4ISyo6v8m/AmI7IM4HNlggiz6RxaG/DRH4WqqjGbH+Do+AjGMIZ2995d/Jc/+WOYQuGdd97GZrMGoGA091+a8Whcukjh1Re3SrVm63XTNOxxv5fD7PB9xlx10uNs6aLqu10opVDVNW7duoVbt27h5s2bODg4QGGKQT2vaTfl60Fdyzp7GkrxYq2U9xLQVzybiVT7jOfxxueGZOnZv5FXxVXGmyhRXscYcdoevxeM4PxJDYNPBIIiVi/32dydY8/4woP8bWfhVAFdzJjhKADEDrPz2Ryz2RSz2QzT6SQy/i1j0UMSR66o8O+T0DYn40xKyrpQdnAEzEwlzweJnOL9A+zqCeG9vh+Z8pNc/Bj7FuUXyexfdtq1BmUM0/ueVCPa5ylKsLptpajLmNmWUrOFlTu7+hj7KsovIpHJTpmqG2NqQ99S2rdUjlk2B1aXy3hhxoHGhNsxLE1e26/cDHcZU/eYtFJYr1ZYrVaYzw/wl3/1Vzg9P0frNA6Pb2M6m2E+m+LWrRuYz2f44IPvYTozePvtt3B84wTn52fe8ViqVXwydOtLCidIhHIxSjwjtJtAIbIsOULrWlQV41Tr9Sr4EwI8L6Kivm125mPSnx/5wolzoO+mUxQFyirmR+XoLezi8hr830G0m0lxf2qwQ/iTB2zIytyvWUFLYs2DL2ilURYF6qq65KA5bQfZ+35eUArOddnLidVSfHzGLJBp3P+0XGFmfSuWPJNiJE907u+S2Twu9FHKJkYK7DEzKKzXa6zXa9y9eRt//Tf/DX//q4+x6Qj33noXN2/exJ3btwA43Lx5B2+88Ra+9VvvoSg1mqbFf/vZR9m7xmaMNX4MRX+2SzqC4XsAAQAASURBVFYk81T1s7bDZFKByGG93uRRgvduVYLK9hZWn5llGGey2ZVliUk9yRigUs//fOirRgTsZFIi8Tpcj/fAk7DC1JdRaTbs1FW9T4oayvb67aLP/i/2TKwj6DdtrA7GklIVQzRljwaE/4BcJUpVo3G8Cqx69i6nTrNt02K9WmOxXGKzabDZbLBer7FcLrBerbDZbOCcTXag0VoQlCSVsIdMfb6sH56OtrnQpH+LyfxSgIWSn0um9lboY2Q+9TWBQdnPaA6+pqvTtlGn0U9D6EPoUjWzrxCkn/u+YX08RaSuPpaxbTHsViniIuqrmNlOkj2yfcKyKr7fhA7tGqiocpkGVQsy0zbs0V/oAloXsI6wWKygtEbbdXj06BFOH94HVAGlCxQF4YPvfxd37tzBdDqB9qq6AN6EfZPXPh9MiIhzp0ou0pjLlB0Zy0m1lQntKDX8tZ9Ums+Xtm1R13U4NzxWzmsaEuNhQ4NKuma7rnu+9pMRJIihWgoQhySd3h8zS1607+PFZ/EiRiYTSDCvdIfMrVF5oMVdjrRp56ZOtzlj26+XhZHtQm3CfVm7UmuB8lLH8ASCgoeqiNC2DdqmRWEKPpfpgMXFElobdK3Fo8UFfv3fP8KDR2c4P1+iqAClLarf+SFmsxMYE1VzlnQAqH48rstxv2dFBM4uL6n9OG0gwVrnw6LXezCSvtQUL+3DzPpWTwnHXhTFyFGyZ6cZfJVo25jJaZ4Xaz+hwNBAjsNP0WXBGQUzSxhZX9rbZYGMOIY8qAbfbaNtTq1jf8dnxu8VFTL5dq82jLarX0qK6Q0azKB4OE5TVSGrFF/3SYyJYDuWZAjUO7g/0r7LmjwwUlyNthlndl0T51j+nn8uYxrRMjY+1n1r6r5jFTY6vWNs/oHQLmfnlMY1m6Fkxv6d2Iql79mqK92nvHl8bD5FGOgKIYC0twCNMhHvYtD/btxZMlcJhthG2tDtTPJqFBlpkFp7ZWTSH/IxDQOdAWL7DCYHpnSeOX3vex9gMjvEye2PcXZ+hrqqcHQww4//6Y+x3rQ++UeLb/3WN3F84wiAEeiOo5Ps/b5q+BLPirzqwYxXJEjOMZqC8sDV0bt9N7z+Juecg/KH9KMjN4X2vabLaZtWxGcgC58y8SkmWMhfsZvGpjEbITQoOX5D2IuZeT4cJuRQquFdGSFJbriWAtQJZ2WPdvk7dkoaJXZXR42po1eiLZ24TYUJf48+tx2+FOue7VoQEX7wgx/gzbe/hpM7v8T/8//9/8F0MsGdW7fwB3/wf0dVT0AANs0Cs4MapihwcWGlYdxPbl+GoHq/nx0REJgZwgLwEUCJQxvJ/IgbyNXatc19J1UY0ntZquXIJHFR5pL7a/eMbRRdWURDSD0HmqYJFk1dPKl1eE+selsLvdYhDI3Ac25npFlKP/QqSb8fm5o5R9/d6DFVtc8sx+574p2BtqhAiQUxfzdh5PLNeL0knlQUn0jrms3mOGwtDn22dShm5pPpFPP5AbQxaLsK0ARLDkq7tBFZTVkr04FKpEe5g7BjYmTdMgKW+6pSSFK6LgisIyph8NLOivKFKP5iRGnY0sptpDxD62OuzLny+UG9gQ1belrcU7YnfXTH3HxJdN6+1DXu/hLvzX/SL/FE79TnI/k3kbYVrZB086iamT0Zq/N49vYqklZtx9FkglHYVfuWzWdDScgQInQeq5JwROInx/w+ATcJIQ+7goJVxktnChp8VItPArASQ0pDEaDBkokmB7ItyLYwRqMlxs1u37mLf/JPf4zVcgGQw3/6o/+MN994E2/cvYfb906wWC+w6VqYeg4UBZzy5+GCwUHYk2BiRRx/ApTiVksAniddk0GqCb2Y10zhKic0UZ45t20LZzsYLT0/UNyz38NNsc9++y2QeaMyhsq/GfA3WsMIJpfgcvstk68Wper+WBKSzMMgwaDkp2maEGNPjCpt2/o4e1frxbia/Hil7ezdq7Nr6Wbp71aO1xt1UNQN/cziuEvcbZYuXJjUCv3mZ0d7+jt0mGT+JZQ0kUPmSG7Mfic/DYNLdX2VTGIHgiOHrrNo2hZN26KzDtYRnB9HUsyU4LOHO/I/ULAo0akSgIaGA2ex7EAgOKXgfIJeRwDIwcCC7MYzMwOAUNU13nzrbfyLn/wEv/3D34EuSvwv//5/xx//8X/FJ7/6FMbUWKxanJ1vUEzmQFnAGcXZ4hUB2gHoANUCyjM4KqGohHJFYKbM0MhvXbEPLpPU+v0n+JuMfR65TYUfSo5tte0GtmthdMr+UoaUPKdU2sRB6+L5S4Eq+htgehjacQhyo2G0gtEKKlFJuXQCKQmwOZzLI73xhD8vD8lYiurYvy5/izFKPss1Sbq92WxQliW6rkPTNOwSccVXjT3uxz/5Gbsv2KET/iFjDXJQ8IyMdsQzY2YzHOjtql162Hw3M7pMKt1lIb26atljvEAw5fLfFPCcbKdHvivwpiVd7MKSpiEYkxTgPBePQQS1NqjLGjfrCR4+fAhtDB4/PsXZ6TmWiyWsc7CWYJ1jHzMdGUiwCqdZoOQdg1bnJd+evHMdy6u/i8aNL+bKVEqFtHN9A9lQApNPSckqssn9N7R8A4x47XDs07+3au/XRj019yWhPizQV8eFYQilAkeKn13VG0D1/9ry6N4lynj7+f5ECU12l5+wgJ6UJr/JEaBjDO++1eu6KIC8I6KztCd1g0gTrchiEOUzni8MpUPC8Mi9hAieKlLoNl3IukTh3GroERwcHOC9d9/Fd777XVhn8dO//ilmJzPMj48wPzrGdDrz5wl9XwbrTSK5yJ6mPCPzTDQym6ft00QGy8D3yEDY0GE5V6YxaBpW42OymiTc+hNki0JogbxOjx2qGOPNORciygqUwTBCvDfMiZeHvzxTkrkrPnd9DDp1v0gl3a7rsNlsoJRCVXHE3tVqBQCZQ/LLQEqpfY4zXY1SRhEWdmqeJ4IlwFFc/HL9uhjarnJy1ZdDEonYnP+0sJ2FtS5GTE3rEDE5LBb+4TOoBlppNE3DqeOrCs7GY0oMGxJOjo/xve9+D//4H/0j2M7ij/7oj/Af/sN/wOnjUxweHOLg4CCEDVLiKJs0Q6w4wlClbPLqdJCWtojw+3Vmfn9/LOWQOTvLWlZD2g7ORmYWmM0WtWRbW+Kzomx4xqiGoZCEmVnrgvd/WnfK0Ljt3E97dcCV6eXB4tK+SpmZUiok4e6fb06Z2Xq9BgDUdY3ZbIbFYgEAIejli2Bo/bUt73jtkpnQNhF08PKyfe665wloYMnqlR8tMvnOJAOtNeCchtbpd3J/r2SVBqz00oMCbBKXno8iiRmZPLZjMJ/PcePGDRARHj96jPv376NtO05k4pP/EhAW60AXIiDz2fGMMr2vp8jtvdTCOIjUF0qVv6N4k+7wjhxLjHtsTPu2ZWwCj2kBRLm7D3/nFe+t0ypRhDNduK8gX5X6c/0Ji3nGtMufM414ExJ9Y8yH9PnS2Pg/M2YG5Kpl0gwvxKgBI3uWXJ4Qdf+xevrXnHWAdrla6th5GIrQwUJ0FXIO5OP7i7MoOUKz2aCuK2iaYLlc4OH5ChfrFmfLBo/POLyPsxaPHz6EMRrvvfcu3n/vPUwmE3RtB18lororrIT4uvArL2XwR1EVelAeBmzwiShljOJLVhgDZy2sUqiqArazcI6SoIxRfXmyGnM8LKU+tmOtRVXN8qN1/sXFCPVkbXh5VKqr0jZoIJXSqLcOm6YBEaH24dvFv2w2m6Esywi7vEAGLdbZK0pm+7V4bKKJRSTFnIw24ahJvxO3lfUklJqa5XNqOUVoUZ/xMvOQkEbhR7PaVBkNS5zGTBufo1Ezk3PWwYJzZa5WS8zmU9gSePz4MX7595/gs/uP8N9/8zl+9atP0LUtlAJuHB1hXk/w27/9fXzw/Q9xMJ9j02xgHQXgPyICVnSkgD95lgoHtv4gar2ZKvVUPerXs4p/+sCThLIo0dmOx3ZSo+takLOo6xpwbDnk6MHqiRoh0yJdlH2XHqViYou6nsKYEs5JHgKfCT6xcF+dNY1JaS+pqJXQ0CiSb+rC0FIrp7UWmw2Hb5rNZlitVmiaBgBwdHTUy3D14pm8qMzXxMyGnF9+96WyQXGJdHaZ495ltJUZ9gwAexTk1RLXs876WE4BhCco0rFcQvYu1nZ8wLwosFmvcH5+jocPH+Lzzz7DJ598grZt2H3AvYXDN9/CyckJTk5OUJQlrPVSYR/w7iXtVIL5g3ryg4pfYo9lR1F9jN3Q7yvqlcfyoNEatiM4r5I7RwARe2gjar6i7g3K3NGmbW0JgR574qYYHrYdpeOH5URCv8KkB7Nyd6mbW3r2JeZzfVy7963HHm1ivIrnhUt/qkKe3Q93fPr29nlLv93Xh5lt0V9y3EIDxNKDShqVYWvPVM3MLZljpnvf0sAEBi4izsFpBWsJSrlYZgEQKZADlHNwykJZi02zQaUITdvgZz/7GX750a9xer5AVRb45jffR1mUmE5q3Ll5C7dunODWyU0cHR5i0XY+sKEBKQNARxjM96US7qCQBJOlXOboQ0BXpJw5UsZIWZV2gKNMpZPrCiyNwVF8/onsTcnCIT97wnzrtdDXH62oSdNfcVXxaamPCwsGFnFYv0Ek2kvK9IqiCJvEAD56QYw7ZarXhplxfwzF2bRCrTU75HkVL1X1tDFQiIC5UOoqcS3tzJhZHhYmMlTt+VkexTS4FfiFUSgHDh3soFHDgWBJodAOWlmorsNyuUA1M1ivlvj//h//ER//5hHKyQzvf+sb+N0PfoTbt2/j1sktTMsaVWFQmhLToznOPvk1losFtC4AXYLIwAanYk6yzHxFB4YGMSygl3shTLhrUNv9VhQmvbf0FkXpBWy/AKyD0n7MnQ39qAO0cJVaVSIXaUT3FA2QC99IuSI9ZIvuWlfbSyxyXUIpvqSgYEzBpzXIhUxoIoXJj/RhXdeo6zqzgPKB/qFE/zxJmPMV1MxLixxc6TO04CCg+vjUUD3tM5Lr9D/brWZ6SSeTBnJXDhC7zDrNqpRjYAYOSE4RsHTClh+Dznb49NNP8fkX5zg6uYnCGNx74y7efutt3LtzDyW096AnoDQgEJqmBZRO8J6UH3lzgHAt5Rl0MAKEt8X2wOcYDNsuBXAM22TVOnWUTjeM62Ce0i7Va9+wbN+UDAcafZFemWPfhIcGGsery8iE+sA/AJAjqCKuuTEjmTEmUzFfJrpWyWzM2tPXczvLmc3Zw70LnWWM6akFI9LSUzcv4nKX0ojKHJhrOs8T44JznGkcpP3fbABYr5egwwLT6QTvv/8eTP0IRTUBOYvffPoplhcL/OaTT1GbAqU2qKoK9772DrTSbEUiIJ5+Iwz62eueoWkpvk69z09JAaNKgbpeH4GiKV+GbmAUumrFWyCM/j3hsJ2KCzX6l6X44RV7ZJ/6XxVKsGMxiABxjMSAwhZhjhC82Wwy9TKV1l4mujZmJvumYEhC6Q7etBt03kF1uVwCYDVERNfCFIw5FRJOqA++X6E9mU+CiphSzxiRYWI7wOZQpvKRc5UBWe+aoTS6zgKaF3lnLYzu4LoWjx8/wpu357hx4wi///v/A37x95/i7GKBddPiL//8T7FebbBarHEwmeLo8BC3b93C//iv/zUKU6CcTWGdJDnmn/BWjsAQpHeOhYKRxQveacljXPopk3jI2I4hTlFqjScoJAGv8hK40iowf46U+2TtGeCX4Rq3z7kWAGB80uHUMVTO/mm5Pxdzv9Ikzt3C7h05aMfSfOeiz5i4Y3Rdh7ZtcXh4iPV6jYuLC9y4cSPcs9lskszwL55SGOsamdn4risTXhhZ27ZYr9dhorEOTiAdQci0oVdhZPven0oOT0opFOXIQTkFpdm/zMHBOovNZg0ih8lkhnfeeQerjYX58gE+/ewLfPH553hw/yEefPkQR/MD3Do5wWpxgdVqBVVPUVV18K7PK0YU0ERCBHlDAYBUgkLurb+zT0avqWAlHTYi/yyM1FobMEcpA0Ewju3an/a7P+Jy4v+UYq2ceDku6X9AFHYh/wdt7wPByeRI2GazCYmc+5nWBkaWF0jSjut1mhXVJmEqcTLzhC+KAvP5PEw22bG5v/Pn+nkz96FtHdzH6VIrTvJ0ds92i2cfExxG3QySCHGgwNlsips3T6C0gSkrTGcT3Ll1G6d3zzCrJ5hNJzi5cYKqqoCy8BZCdnNgLYmjjXCLtAfjQwO4jxVClAh5v6dVCcawpcDkEobBZnokkpmXglRkuENr5g5G5VVnNyJEjb0Tzy+ERZbhr75AYcv7scdEFn3VVM2xPbBnoBOH01Qqk++NMRzCndhpNp3bYgW9qqDxrOmZnADIJrcX54UxKaVQ1zWOj4+htIazFl988UV04CvYasfp1g3argnWlycnXhXU8/7f7meTPDngdbIs2JeJpU4Lo0WV8ZIBcbhsazs4sjCFxq2bNzCdHmDdWiw3DZp2g3bTYrNuoBwnC7bO4ujoAK0qoaoa5BQ6S9CaUOgC5Lxjqtawzo6A7GzNFDCcmZm3QF7DLhpheJZsU4uh0RodEZbLZYgnBgcB/QalPC2H6C8kweomk2rsZs9Y45z8h0I8DeKmNraWnHM4OzvLzrReXFxAa40jH0g0VdtjDMDn+y5jlM7ra2NmbE0bqciLuGJFKYrCH6DmVGtBMqP0XB/CzvH0zMy3DynGI1eeZDQEBJeY93IQWvrAY0TOwZGPyKE05rMp5gc1HDQ6ArQBRwiyhG7j8ODBfZydn2FS1wAMqCiYKXlVUxlWlcTaGiVLlbWMf6e45fWtXYUYd6rPHJUfoyiZPRnemdGo9Dxym59DxvD8GitGFnW48BIsxOdCPSx4m+fAZrMJoH9RFDg7O8NkMsFkMgn3AVHyjbjo832dlPpza3d2Juw35tteSKwmgEw2ExwspWT53FcpxRfsSRZi+pLbHHJzNVMl/8pfl7x9ajegJHClcshmkAJLdL1w1grMZEix/1VVlphMahRlgRIlqCiDikTE8c2ctXByqFwlbVbSEmE0eYzO9PW3vVH6ttuk1oGgmloN/R186iFXuwcqX7DIjJkV+rR9DKITqDBtlWE5YfFS3meh2JdHS9qLRuf14Kb0Q/6Sab8QkY90whZMYWSCi4mTbN81KjX6cJnX9HJPSUTXFs8sn/xBQhC/FQBN06AsS1RVDfGdUkqjrqcAEIBH5Z+TDn3aGRfUShd0r8QK5sOiKManZN0IVpbPi0SsdmnyFo7eqbRm6YQIWWieoIByiZq/hY6VQRcGh4cz1NMSs9kMlZmACk4A3DnGzeymAbUbgBy0ItSzCSDWXhGABccynrk4lhx7PPvaKHiSK8UOsURoNmvUB/PAVFi65sqZmaWNGfs7rYAP9o85YcfPInU7aF0GSSL1mYqRhy7h6F9ByvzJBMf1f282m6CeHx0doeu64Joxm82Cg2wUQOLaVAowhXkiXPs6aMz/dKv+dl2blrhrSGLWsiwQJSGFsixBlEhmQZAiGB8X7HoaMgTDc2NAnxLwP+u0+Ixs+EFNzu4RdZTi4lH8WVilUoBWQGE0ppMaBwczVHWFyXSCejLxDJQjcXSdReutwZvNBgGaV/2W+RA4mh1u1dgN10RDAwDBdh2U0gk0ICcu/DNXr2VQXz6JVahDax0cO6PzbjJQ/0Ap7bcUM5bgi13XYTqdZu41Ib/ryLpxPvHu86BLrfDPAjMLlWeNiGAveRB2OBkHzfPz0z9zjW1LF56SiBNEW1dYojwOrg8XlNdkkkUU1a/sYf4nqKksrcmn1WoJgxJQNcf8J2ZbArjLg9ZakGOp13m+q7Viwwolkp9vn7R5HGXLeilcH1PCt0+ueMxJHFUjppi8fsZXeucTLlH9xnbjuLnw7zQ0TTYHlVzLn90LSnkiSe56xeGdi3rw1bBOmZMSHUMsmSJBi/VScO18rQyl4ZeJhElfysyuipWmnR4SByPmxNSmyGYVJ1ngj1prPloBxstYWtvObPahvooipmXAsX8bSeKWVEUeZ6LsiErh3ZgZ+hAzpPx5JgLZDs62KAvNDEYpaCPvLKq0C4wKMNCacbHPfvNrHN41mBxO2H9Nx7N0WtVQcABZbNZrtM6icw5WUcA4JlXFDshKQWfJTPjvXcFvIsIZJWfPuncOAfdB3PnZmmmYhSbfsQ+aqOtDaTcZtexaKmXl1uio0jvXAZBD5jnTUhKiXXHQTRrU/axW57Mse38SzcFaGxxjnYsRecWaKXOoruvMYT3DILWChKOSNf2y+Jtdf3BGkhhc0aKl4IIvmeqpjYJf8WauWBrxu7w4YOordlbfzwgUcbAMtA7F5uVvW+7ZXivvQclg+gXmHAddlKzPsn5TRk9kPTPz/mOamcKjRw9RHN5BMbMg7VBo7jOlFQot9kSNxXqJTduitR2s4sPVVVmiNAWnwdOiYkbQXeTM7QxtrJ9zHHS0X4jC+AGJWoN0vIfHZ3aTMDRxNRm2gBAjOwhMEZlZDlKL/SXHQ5+l7vly6bVyMFxgCiIK/p5t2+Ls7Azz+RxlGXFHII5lHDtA5kSa4ORloKdkZpepKbklZaAg+EkYRdlhxzxNV8VB8NKRViCXM7OUqQWAeo95GOUVYZb8p3LkfdpsdODsPakU4PObhGvCCFuf/VwrDZcuPPIRMeCgPF6htYKB4ezdpmAV0zlY2HCkSWsAol4q3/Kw246oI/3Poi4rlYHH6eQW95ExNVCu5YtBalIjTUg3hrFWRfkRyFVYCSpIZEM7ikIBpENdPB16EtPIJMuYZ7phPQPqM/mBNBT6xD+wtSlDKEAkYvkR1VIkNZHA8oCLWet2VfjM6Sr9fv2SmfJ7P3lVyk8iPjOXhDIGd5MclzAmNoVxFcFerqNRHgtQBXSYODo5LqS3MrBMTQWiN8EIz1Oe2XRtg7ZZYzqdwBQseTHzihPDp3OBUYojZsDCug5n52d4wzmUVQlUNZzj1G1d28KSx9e8/1pRVKhLA1NXnh8SbNeibVooAowyMKaENhq6MB7QZW24MP6dPRPtm+3lb+mD/vcybvAStISsFj8vvi/Ph2qM2Znoe9vYyfEs5bPAC/NPQwoREVarFe7f/xLGn/mtJzUmkylMWbJfH8koekzvmUoVVyt720ZgreWNKpEmFXQ2HmOTV8rTWmO5XAYr5WQyCarlcrkMmawODw8zdwx5BQEaxHCVveFLJJUBz4CZpdEVhJcxVjHi/wOELMm5YyxtsTBeoR1JRwseBygoig6WkoQYFP259nk/38Iwh1T24xlK26Cq6gjas3jl28WLMToecoJfIovlcgFHnEwXRYG25WQoXddBk4MiZphEQFkUqCcT1LMprLVo2xbNZoO2aUCWTw0UBaEoS5TGYyDwbiU+WGZUxfJdfVSt61nCYoC/6LMU/bxy9S/6gCU8dI/elr4iEHQm1aXQAdex2azRtQ0UgPnBAQiMJSpjvBuLZ4rQV+U1z436ltg4DlEaFYFBiEbGMJWo27ZF27aw1uLg4ADGGFhrcXp6CgAhPPaAOYW9N5noL5hSKb9PzyyhSepTlFq4MkqwkNT3KyvnGtsj6iDXlRzJSa3MA3VoN/XbzNiYSxhmZH7b0ad8dw04BaIqrLXmwBzEzJdVAq+qWxeko6CW6J4bAyFbIM5HiWUJR8ZBZW3oq4j976RgKc85myxGld0r9+SSmccLExymT5H5p4sVXmWkrH9YelOB+QmDV6ZAoTS0iRtmmJNPu2tupSefudw2sUePwAHJUKVeAqFmFc88SzYl2UxSqGC7apm8wo7XeFGS2Vi9Sj3j7EyCF4mFS4B8tv7xPEqd7vaRjJ62PUCU0pL1COsItrMe/4m7YNYmWVj8wQNGgt2w5KBA6NoNms0Kk7qG0SZIZUGaU94ZFCmjZ1FeMA2tDSy4r4oCMHoK5TqwP4aDdhYOfHxo0zbxhIBzMEUBrQxKzaq9hBGyHfsHOccRTMTlozRFkFRj/+QqZ5pzMZccuE9XqxUaHx6Gn3UgxxKmOGNuNhvAW2dFpeHs2UkXj+KmOdwQ28CiP0sW0xDVVlz7NpsNVqsV5odHmM7mODg86pW7FV0YnTe7pIKnoVyLSKQsv0BF+s0NSJStnb7RKwX7q6oK/nfL5TJscoeHh4l1P9ksXjLjxb70jJlZxDPiDpDMyoSZPQ8un0sAOpHSCLCO08tJw8a2pF27lHytCF3Xom02ODqqPE6YAG3+bpEU5WGlAGjP9HXKzBS00TClAazyzIygbIem67DpWqw262AtrsoSpig4JpqOkUEdOH2eIxuYmUxk4y2OIu1pPXxR2cm3qUFNs0bTbGD8wnNelxSVxlrLCWV1PHLE9eWbR9ahot1skdxSyayu64jROXZzaZoGFxcXgNbQxgyYGbCdQfWvP2uGlr4TAL/RKJBWo3UOjWd9LYdxzbOzM9y9ezfEDXz8+DEAjul/dHT0whL5Pgu6nnhmPUaUq4x9ENnH30/wl8FgBCvV9XSyrAUSGDVRV8Ik3bMcYc7yyvHVFVsagRChw+hivPwEYBW1kIhjoekQjBHD11cKwQKhVEjfphQ7yyrEfs4xlViWLJIxaUDAZOeG341R+pz47O0KCsD1RukuuOuEHopBBVTyDKUvkHYFRWyVp5Z/L5XCCTn+mmoLImlfxWVkzDhyXbSNqV61jJRBCaDfZ3zRoj+msu1u05O063nQs8PM5B8CrCUURS/9l+8LkcyeR4ZkblNYJrmUAQSGArVlsBInVLHuEIGtS5AD5hZdt0HTrDGZ3PZqZnxOCeAjDFUxA2ktq4tVVTO24+cQOQIpB+XgTwqweiXWWWi2VJJX27VS0GAfs3hEjOtjpme8O4cwDS+5hUQzMaR5GoFCTPx9KSFYLX0odHmGJbwolRER5gfzoD4557BpNoEJGmNgdIGiKJIyhDEPfc2iVMiH2wGwLx4M5zQ1JkQfEmk3G0oSSVn6NL7nGPXVvCehyzaG4Nir8ogxaajqbZKh4GNd1wVLc1mWODk5gbUWq9UKALJYgqlWpJI6X0I+tRc9UzUTkFDaLoQzTr8Dci/iZ46Z+d8Ej9thKBmmmWrGS5CdDYHhhBOQxBmb2DVjg8lkkmT1ztGgaPVljKKzFk3ToqxKDstNsU1EgNLWW/O8BOTxJg2gVBVA3h3GOdjWhmzjIoEor1IG1RIJDuNzdDLO0mRMK41lFQwT2Tjx+PLxKo5QyqAzq5NN04RFM5vNAcULb7VaYdM0aMUbvSgDriNYWmQsuQQlHR+tdn4cvMrstIVJJFDGIRNciDymJ8DtNlhBanuG0lhWPsB4X5LVSpgZgIGan7aFKBo8Li4ucHBwgMlkgtlshvv374cM5Xfu3MmeSddkqhm9irQXM0ugne33JKpTP1HtvupcxED2adVuyhecEs1sj3uzb+LzCcSVU1qoz5BEnIIupLOjuIhGq1BeuqHUtQGhH1W4cax62UlV8lkFFbaHnY/WnzL00VsSI8COm3Y+T0QwBUtHWnsc0JgQfYR9yKKUqDQf/NJg1xSRnobq/RbKMDev3l7yyNNSf85l9al8A0PvzquC7oNNOMlzuc2gIN+NGRT61tDh+7z89IwlM4RdWyx0cdEBkiItuRvqmewLyc4b/nQgitiNtRaO7PDRBNcKF4RRUPwMkE9+a0HUwbkOZVF4gNuFV+Zn5Xyblw5AaNsG680G84MjFGUZmIPRwhAtyLdPGT8Zez0VMDNjQJpApCGolOIEhyA4WOu47316O3nOGA3n0uB7KkgFAPsEpoyN1RLva4bItLTH78TDXKQGicxAcCiqEtPZDJ23wDrL1k9nOTRN+v4cXimV2GL45nRREnH+BTE0CW5WVSXquvL38LDpsLkkkvYllOJNV6e4MQ1YhAJnf3dD5pIyo369EuVCkgRJvEAB9iWGf1mWmeouvzMH2Sd+r5eHngMzY4dKsaZkyp5KB4uvPRMRV/CnZGuPmInEUrN8sHtQPQmXiJdUrphw0wlwFkpbkOtAzjsDU5c9F6XWBH8jQuPN6PPDk+CpD487AQD5Ra8VSzWdjQszL1EBJtmxk2+ILKyj6A/mGQhvNMK8dBa/KsVrlstlkAAmk0lUgRmND/ex75742vGC6UKMLPYHm8ymcI4NB9ZarFcrbNYNlotliLPlnENVGJii4B8jjq8qkTDSUOguMviEa5Rlhaqqs7kQ8M5Uqt1BT7fQ+wADMkmMgwhoTlE4ospuU/HFUtx1HRaLBWazGSaTCebzOc7OzrBer7Fer3Hnzp3gU5aW2cfjBk19xeipmNnu95YFlYrEu1SZ+JRY9wAe9OvZMWTZCwfIy4w7/HZsiO9TAS8bIi0poCyALhIG1p+onskg4nXGFFDQyfeJRAd4g0GfhhKavGJY0yQLKMV/ckBdfqdSQQq0j0kJEV5Q+fP9ISMKgRaVUpKZD6xdKvaNM9FdZHiIOTreprkHpD0iKaehjtLv+/Mvtj9nHLHcqCOkV+JnCnNgG2Vd07tx3017jLmlY9VXLcfUTGFc/X4bIwUM+vZVoWcgmYkaxp+cVzO5M/NFDaSdNezka3PeG5PtEzUtB1S3qxyUMqVk0ntuBJYsOUQP4KW8YMkcn/m88AS8tSiLCkoZgDi4ovNRPbVWIUYZwZ9TFPXRv09afnzleNF2HIXEaI2u7figesGTvG1bdF3LvmLGhMXWND6pjNGofcA+UxiURYm2a9G1Daxt/TNJX8r4Ox9FxWNizLQ9lue7U2uNqqqglUZpCkyn03iiwXLiaEcOTdMGybAoTJAow0kL8u4tXg0XNTjgtkAIB8Rq+v7zK8XrwrXhaIZ7rgo3pQwkZeTbNhcJ5yOS1eHhYTAAnJ+fg4hQVRX3a8/LP0AFFGEOQPrm1aVnctCciVUcwaNyMXcMGwgXBvdca7so+aXY5y1lZqJujVKII9OTapCExyYLEEe2UEpBUTwTyJKcsJiIXRA5dJYjyRZFHbBF7RMMK8WLl5AwAy0JfnXCPBKGFpgFecat0dkOhTYwhUHjVcCiYIxsuWxY1duss+B87FxrUFUlptMpptMZJhNW2R4/PvVn/piZ6dTS5vEo8mfFlN/I2LfM8XlJiLqjeOGVFdR0Cs7Qx8xotVhivVljvdlgs1livWYH4aLQmEwmqKoyvINgb0WhQa6DtQ7ip0Y+obK4hsApHwNtD+kj6dPscyb+xak75r5yWR19ZiaqPhFlf8uPcy5kUCrLEjdu3MDjx4/jqYf5HHVdYzKZZB4D2Ymb9G9Ey+arBvwLXZGZ9UZPru54eVGhZBLtvjP+fWWpLKzjoVjev6cvqG1rf/8Ab6SgyAWJIJ3hY2/JoH/izyT/iNBGHCzSSBwyYZxESSyuS3Z8Ih/dRsXyw/0e8JcjSc5BUQT7nePExSJFyzuLlCATX0B1XlQu+JEp+bLXT4GZpd/1VS5RP8FuLuQlKecc2qKA7uIZQuV1tqhqyatT78ePhRIr6VDVHPZfr229jTWVzAfjIP2+h2jzpMyi/45hbIiyMUuxS8HVRkobVWH77UsNBi87k9uDmT2d4Bl1+kTUlQHx+EefkT0XSiTIXM1MJzAhf3/BglxWBBFBs7AE61oADpLgg+8LHCs8ReG6AimgtRZN22I6m6HwmZlA8LH8RS2ITD72Kx/fEVwrePhrYcZck1bKh5MxMEajbRsUhUEFlka7rkWzaULZzDj9iQRi/7OLc4v1euVDyBCWywWD9a6Fgc52dq3Yt229XkNpFQP+JXr8QCrPBoc3wLIsMQU7404mk6BaOWfDGDVNg7Ztub98/dYz58lkgsJH65C2iU/eWJ3bafc6CP5rl955OfUTGUeHZhecXwFgOp0Gtfvi4gJK8bEuOYvZxx7Jd5D2Y+BstwUvfDXpEmZ2yU42RiP9IRmQUmfUFMzNHiQ8Qcyrq1OKKTF+kpKwgZQZIUo8UoD/jk8N8EHzzraAIhgtC8b3IfMEiIIpXwmm03YdNk2D+fwApqwAKDjyE0+LNCIYhwC5nAhYpZmnYCAnokQqBljisW0H+PhVTbNB7dOLGa3RNg02m7VPMEPg9eOCN3rbdmg2m8AeRSJzjuOwHR8eo9DJdFIK2hg0bYuyYBXVX0aUkpBcQxj49LuqqlCUBQh8IkGsd5vNBovFBTabNVarFZbLBbRWKE3h3Wx44R4d3Qibg1Lcp9yXw7qGemR+PQL6OyQw2s0Sd5GMVVmW2ZGkFCdbLBYwxqCqKsznc6zXazRNg9PT0+Aom+a2zKQy8nuJP4PbdeMx1F5VegYGABL5AEG6oXFRVtTPFGvwRVxJrL1K98ddyrc16im9QofS4nYem+MdLFVwGazZJOZ4SsCV0Cjy0SzEs18hxuyX8vuqt5cB+irbWEODYCjSJwYAuGwufVK+L8hjnwzGUwCeiVgC4nL7TComjImblsraJ5iWtAuUPysRTgCEQIIicWQhlsiBnAYMQrsAlahfqQQy+paDz/l920Y/vd73m+zXuX2mpvN921rpW3PTiBdyaqPvgpE2JazM/vRLsc4t9CowuWeWnSm/JpmKYi+KYSDV9WXBPwfBjNtFNLoDbqftLROm02xWUCBUVZlwli2YHCGsGHIEa50PYqkDMxP1lJwN/cMBtBlbU1rxERgn98Yy/ReAN0I4x5IUib9agj/ZjvMWaCWyZFxYgr1UVcUWsITxOSK0XcNYn8oXYhfSzpnMd21bD0Z4L/aX1hrwWe7TDbAoCkynMxRFgaqqMJ1OePPw97VdB0cUAn/meJJgnRI4MyqHKXO9nPpMR34/uTtRMGQk8zI/EjYLdS8WSyiFoIKPJSEJ7yTvqXOm+Sq5XlxGz8hpVhChuCMGK5InUVOCSIzIECKetH9tQmoH8xgj8WqXJ2QiJDJLKJmLTiQJ+SasBcJqvYSCw6Quk3eI7IEFNeXVHC9BKMZ4OuugdQFKXDPkoIu1FsrENoYmKeVD+BAfYvfMjIhAWqREnsjO2eDykB6bcs7Bdh1cZ2G0gk5i5PdjxMsLiwMvEWHVmCR5S2JQSGLOB4vcJWPjwEYMeUdTGJADGy+SzYa92jWIZqEuDhneoGn4NEXbWRRFDMPERgXyEoyETXeJscBLwxnj29beISNLmVn/+314RnpaImQz87ijSGTHx8do2w6bTYPz8wvM5zPUdZV5+aex57I2IkZo4TZt86l8NenaQwCJWrFFcpcHwr1RBUgki94Ov41yLSAysW2MkOdsZASZJJYMZniH7bWFK0SUvC4xqIokwCG8gKSiSpiCxVl5QR1PdtUgsSQLK1XTwmaB0Hfw7Y8GgFzy7Kv3/evydqn6n4UmQnSAJQDGdmFMh4DycMGkVuK4iCLEkHnHJxJ9Xw3TuogqMxHalkNLMRPl9H1R+ui3K/Z5br3jtvStpcjajAGl9/eZYHxmXGIbU83TNskGJGqk9XH3RNXPLb3by+63d59nxpjcyyrNPfPjTELBG95TPNvnF5UC4OJ6fPJ6xqm/W6ZqC0ADbXD08G9mmYgTNrXSNs0GSgNVVSZ1CldA+CzlkyPAeDO6zyDNXeVdFNKXyl4hyrGirvb3YW6bfz2RwrxjJVu7gqgHYV79iZweF5Jy+xNc+7OT/R1esC3OwM7XdcH3SsbsKEFERq2TGP3kRZ4o0faZbiSjDcqyYulLG1jnfA7ImEtTGEvXdWjbTabScVv4J2XwaX+MUeq+IH2U5rxIExOnCkr/HVJJWX7kbKV8v1qtgnQ5m81CpJE+TrYPw+njdK+6dPZsDAD+yI9MQKUUkmwUABBA5LCrJM9fhZ1dqfs9cxG1MmI/w4W8rbLIXBJpxl8jYtN5oRSmk+QsoMolDFkwkDT3hrNXVd6KpY1CCCet0uoJIQBhIq04x64hQL/nEnXC1y7p2Oq6Rlmyc6zrGI9TOvaBMHl2gegzuMhMFBIVVCROElXOeK/0BqvVEsvlEkVVoKxKzOdzTKfThKEhLErGybg+CeA4PidSLg8fE40DGkykz5WBLiJex/3KTGK5XMLaLlO9tS6CupduuClOmEtyKmt3ijGmKrpIt8JYx+Zb2vfizb9cLnHjxo3QptPTUxRFiaqqcXR0BJm7aXx/uXdX+fK5/8yrTHuGAKLetMkFmfFpFiWbuHNJCf0dNu5saX+G3aIPUiVqgCygMRUstH9sd6X+dyNWnksXEMl275VBDhRYlsgB77E5ohRi3rq4kGNTfV+onnqjeu0SxozhIX2V/A6tpjQ7Vc64ws1Je3mMRtqfkA6Oqf1XVGFhSnwuSxYEQl3XPQNQNBKJFB+wzIHUmb0+ZOxk8zTG+EgbsiHE95SRYlyqCynYmHERjImMYYyZpcYiecfUitiPpy8MgzFj44Nzpn07tGKmlksJb566pcgRtrIsfWDKPKN8WlZ/PMb78NVmYkKpYxCiVJRjDACCVLKPzNRnfMBwrjvrs37r7XGmdgOw4aasVZ635O1RikVzRJwnAr+i9mVIzdbqFKXaJsdod5Z87C3ANg1MWaAuDTQclPJnFp0DR6NVILQcl1YRoAy6luBQAcUBnC78SFgQOi/VAYSoRgRHD8/EdbpYRRWDTyRM/J4O8bhK/+xfZzsOFSSqXYa1qfy3LJa0TyA8l0LrhFid5RME2i94csBm3YAoSi3GeKtkSHnmGRwUyG9YccuIanjQ3En5cVEgFdVF6xyPGYCm7dBZYUgKVT1BWXnmBGbK6UH3VM0kwIfoEQYbX16Yb3BYVghhzAMzVdLXDhLvTmuFouDjWM4RbNOCKKrlWmtMp1M0TeOZmAp5L03BoZRYfZYxomRgYgNTR+urMLlXjXqSWWqB3MLFt34TywiLQjzTRzrLdhZd23GMK6VEAOlJCx5EI3+GsicLZjubnzTkmdQA3CREXEdpsGtUPGpDyCU8ojhBs3cDxX8VQEqhI38XEdr1EuXBAQ7qEhqWLY2k4LoORnN+TOuYVZE2gCqxWRIczaCqKZyecLno4OBgVOW5GVvkgjGB35QXhTE+gzkAbUJilsKUsI0wMxckDtntAWZsm3YD61higgJ8NpJkxP1vlzMrMXpqP9YsGYmvGt83rSeRKWgVpLTlxRLLxQrk21DXFQ4OD1DVNaIvlIKCYVxQCVORzUcHFTS6JPB4QAFKc67Mrmm4fURYbtbYrBoopTGbzzCdH6AoSq9u61inl6aIJHUdsvmWEvldnh11XZjz8nz0x2M4wNmOD+h3DZTWmM9m0MZwpOG2RedDQU2mNSrvbPzo0SMoxachDg8PvZTHsAafL+ZD42HpBQa8WxjYBw98lWjAzC6XyvqL29+QXcqvRzUCycRwwd9pXJ2LA6KGjYjVKZUEtdtjQFIEFlFNGVWaqfcVJZPFM7K0ZgJguw5aAWWh/WFzqYfv8DEy4OAAsE+ZswCh4KCLirN+y5lGnqx+TMKhdWkpDSYs+f+CuibaMHykjUTa4I3AA+D+5XKpLNndU5xIyh0TCNJeJPjYbLnrC6tLfQdch6quglRJNJhFEMRB+XGMUpMOIjkPp+YfaPjDGb5eh6Ztg6tGUZSo6hp1XQ+ZlO+nMQfUPlhORD11NTmzSuxwLBul9d+1XtKyniE7X0brf2qqoLTyqmS0WrIxIB/3gWQ1pholbe1bT8f+3nXtZaWMmV0fd45iLTAiJcHvolvE3rHSwviMC3pcT09Z3N6yOFlDO/d69f5N8n6iavnkGsQqi+BcCvAhcPhmDW8A8Exq07SAUqiqOjIuKZhk4vpD24G5ukTq7SnJ/lrAe3xTAzCMfJJy/H4K1jMNxc6zKsURU66+R0/1Fw0AUgj4j3MOmjgCiDFe+sqYrGCqoRsG80il8evDv7lkHyRQz7TF0baua46hNhYDP8G79iHpT6PzKL0hhphoKMROvGVVoGyLwKRYrUxVbv4tYX7EYllVFcTa/ZqGtMUAIFz/6XpNJsfo8Ypk58vnzPii4Rbl18cm3egEpOQXUZBGRBVwtO+7ioyQt5C98Pl5SRxhTIHAZEgMAixZsUXLAMqASGOxWkPpGebTA2jlnyNerI5YmgvWJiKQZsktgL5pCwlcNihks9ZKwRJyB+UAGLObgvMnEBaLBeqy8gfSDYwJSuWlvZP3/fjxqBQopwRYX64uBgEZOblM3DBCHX64VBKkIN+QFI+pZx6p1HTr5k1MJlOYooDS8bhT6oqR5WG4jHydRhtAxzkvJyVIJDP40NiQucfnLFerFS4uLoJlV05aXJyfoWta2LbzEXpNkHLT/nhNkQIzG0plqR6xred26+NS5HBibDvDJm4OPXahhoxslNS4dEZJG4Lymkxeaa9SQ6abq1f97wBJOae8XpV6bicVckhV52+U84Zegmq7Dih45+WFxd8pGvZwZMjjGwURR8EginGxBCDuh00WCmC34wzppTZwXkII7wlEEWkPGtwm0mti7SPfBpZQojSXMxdBBlRWVkAHEF1twiXEcZOsTM5DEfVkgok/9D6YJ9Sfl/F66lqTv1xy3jGBWFTik0gewzRGeyMFMzhxvWiaxvvDsRo5mUywPD9H6zdc8SfTWgdDwFX9yP4h0EAyu86Xl0iWg3N5fpHuVjP3VWtSIA4i/OwkWTh9N429KRgHhKGFQiGWMqX43CS5iPMItJc6xDpH6CwBpYI2BfrLRPoqb6MKdeTX4m+VLCx4ZtAPLcP3qRCBoSgMoIiNFkp5iSaqrdrHWlMefwtVUM5s4gaRXCd4T5T8lEEUimnwfFy0Ij3H53eB1yqo5/wdR9HtIjZGxH6PNKyvTzvXAyV/7GIuYZP1nQJhtJzbUiKVtG3LkqFmY1eaGvBVwq5eFBXAyI5E/T/27Mge/3HWQkDgOBh8kyS84AmbS2G7K9ijGelkHwiAlDEz3tUTnGonpVKafyaA/BYAu5sA/qiN1nBi6VTsmAFidmAdu0s4IjStRTE1qKqa26IUWGcBJFQNGxL5rKZEyB3ga8n7R2YnPxxGOYSjVoDyONrh4SGqqkLbtXCuw3KxQNvwOce29WGztQkhmPmQOqACRtTrpTCXZHeRfk/bKJtd3q86GTutDZRmldE5MRj1JdERRqSiSanrOizXK3TW4s7tu+x2Qf6YfobNKaQSTzo/BjDJgL8NGV5Qh4EQZZf7IKrefEB+6kMstWgajifXNQ1ALqidY5vQaxpSYGbPglyYlOPqW5TMUqZ5WVuuZ4eKjOzpKLVnsqrmF5dWgcGEO7wvlAYvKAfJTkQolea8kgoYBHQTFSzUljIJbsXw99Ahedwyx4vKGAPrLLquwWazCdJM07ReqouhnKF15vyZqp/jcEX6bzrGed/1SUsID//+juTQfFL6NqlKpDMv8fDRpgnExSeFI1Jmlpa7a11kMzVIllvmpgovkbVXsreXZYnGH5An52AUUPuNQ9TL7F23tupy+ipLeEXwLWJgCcBl7GT827GrwixMGIx8IMYnS87Q8gkWr12uIvYOBKtk6WRSqJ+EW6WLsaap3pJkJ0h4R8iQRCOZ4DINlRSkNBQMlCmgiwpFWaEsq6SPxOM/cbHQUq9Is+KukHv/DxCkpN9yo0nuAqEgEljN6hzAQDni4pMuYwmPQiihbThOLlFko+/VbfIx/YsogSRjEAJ1JO1mZ2DKyohW23zcCN7woU04Qxr7KDKYrvPJUpy3Hic8U/IbAFEKlT6J0GfcahCksnj/2DSVDUOix9R1BThKjC/D2GRcZy5B7ktfZUYGAEW2uyjEZEJb6Crd4awFtAkHZVOKO9++gxEns4CxgQ8lE138lFIYLc1DksR5Dd/v9V4e70kvhGXhOOkvXIfC76QEcbzkiW2dA4I7hgbBQJkKha5QTQ4wmx/h8OCQo9EqBZAOCxHEZnoJ9cMQjUgVEsk3TnAXpEPtQ+eAmWfCdBTYsgaQV2F9ZAxV4PDgEHY2g/PHfThLkgvhqZumQ9vGGFuVly76ZxLDmPiG8uWhStm2LabTaQitHZSywBASVwcpn7OeeGbuIqOnJG+BnwZVXUMpDVNGiNg5x7IZEYhsyNfZtI1nVPGcZVFIDgK5xgxVjk1pbxUN6q2fn2O+azJHJQT2arXCZrPBdDrBfDqBUgrO2hCIUvKOivXdGHNdyslXjuLoXjPXFrVAY8QAgH2Y2QDs6tF2CS5TQ7aUeCUa7Rqpn51giSzg/PEsvzPHd1RhYUJpEDQfudEGpqhQlDWqeoJ6MvGSUiIreQZI1iLd6ZMlz/WolAmIKqND/elLRJeOJDKHL1MrhaKe+NtdiHVmW477Zq0DUYu2ZUYHIuhJlNzG3BoS+Kh3ne+TbOfDTS+qZAPfLbYusATphpJKkFgU/GF2k6lrsumRt9A0zQarFWd/SusRlwj5W74T3zhNGkDMNCUDNByn3psRBdWy6zoUhcGkqmF8/DLpS0kDOA7LvKaUJGe7/zXui5/KL3uzPLUDz6DLo8lGlTIWmBYjR0dC2/3NJFEWvP6U5koSDCm4IqBfx46XGZ1Dvm4ikLMgZ9kRUyVqtagZFOtnQUgcZzU6S2haxqdmsykUNEDRisVRSFKLlrQnWewiJ1KvbZ5phavCyHr4DSUWWnk6HB1SfGibj/64YJWVwJbGeAYDH+E1HKwW3ypm+VpLvYn62WuHMKqAEfawqzGXmvR3SoSY93NsQ202m+wMpjj09hlnn1Gm/nNKqXBgvt/H8neAb5JD63LQXSuFsigG52vlb6lrDNMb+zulfV04vipU+OkaROTxw0U7wM0Rkq5lLKDwWEuM5S60FxPJfjPJ+UJrnd9d04Ubj46IitNPXiGTiSfKsF2jTQCzIf7I5y2DjxksnG3QNitOKFEUEKFT+cXAdXEJjgClC2hTQZc1FusWdHYBPTnDjeM7cMTMrDIVrAXIEcqyApTH5pL3IOLwQeICwu8ZI5ZKcl7n+EckKOd8+CEAZcmOpeTDD0n/saTmY5UVGtO5Rj2Z8jEkj/VYa7FZL9F1nU80sgqYjtacOFhUMaU4uiszwALWOi7LL/IsNZqfj3LsR945PfPY996X/pDRss7h7OwMx8fHqOoqjqMv69Hjx3z8zJcjIbjT8lLmmiYHGWMm266NJeEVx9m6qlBXUxTGcJ4F5BtO27bh+eg0S1dZjv9gqAByyem6ODkzER5Qk6T6ykllO9E4DXEHAHDWqz+QCSy7UL5rBvWuR+KouRep7FePCICFc3x4uCpL9gZPGGhgop6ZsWRmoE0BrQs0bQesNqiWK5ii5LD9TqMoKsbjFAPtVupLpS+/WJwiH7RP+iKGiJZ2Sl9rrYLqIlKLtdbjpWqIDWpWP6tEhVQkIWpaPCbOhuTaFht/AkLKNcbAIHVI9sC9kjbl46W1Dnk4lWKGpLVm220iUUa3npSxRw2CwNL7arXC8fExiiJXYZVS7ILStiGGvmQAB2IU1/Tv9EfOX4ZTJImE1/9JJbz0+aoqMJtMMKnrgcQpG2DXdRke2bZtJkG/pkhFdmgYCBJFSmrbh0uYQQDjE8wmVQGflG+K2kLI112czFKn4FU5ttb/nP5OvhjWy8IYFMRnLL4ZeWyJLV9JJiLEHVp5z38iKZ87QRvOQ7ler/H555/j4PAGClPh4cPPcXBwhNKnSlstVlAGqGuWpBQQgWnNQYKEmUmMq/yVvHSzg4srpTgcUC+q7lj/iKos7gXOEeq6C++cShgSi0ukG47gEX3+BB8iAfEGPDVe2Nb6fGz5t/ZxzXQSHDRV36LRIlUNY1laKzgXw4YTjc+nWHfuxwhEn8DIeJ3frIqsXWmZ+QV5o/783q5i/kMk9jMDfGQBsHfmU/aPLGGZmBwI0H/pJ7YsxH0pE+HTH4pX+4wqfS6dcCIh7f0yac3h5eDjkRGMAmzXYLW8wHQyQeEPBhu/Ip3s0NCAMiBoH6LGgGAwmRzgomlx+tnn+Nu//Qg//h/+GW6e3ML/8r/+r/if/sd/iTfuvQGCw8effIL5fIp33/saFosFqqpGPanhHKH0WZ0AtiILPsNLQEH5M5bWOTjLwRn5mA0F1U/wsbhVIEhI6aYQ1FmtUJQlZrM5JpMprLU4PDwEECOlNt7xtm0brNdrfs5LHVobSFZ0jnxbom07j4Vy3amVNox9b4xTpgnwFBZHW0mKy5hZlLTW6zW0VjCGw+xEK6z0A/z3EnJbAmemzMqFv+W6tDJCG7G9SikfjoivFQXjkH0MLiVtxB3HwdkRSeM1BfKOQ3GCjklmV6d810hzHxIECJUzhJdHztgG7o65vEbcCGHyiatCsIA9oZAuUmaQtwhQiqAVwdkWzXqFGzUf0ha1l5CoPxKahqJUA2iU9RTtcoOHjx7hL/7ip/jOdz/EbHaAP/mT/4J/8k9+zKGBHOH+/S9h7Q0UhUHTtChL9k/rug7GlHy4nQgdWjhYKAUfiRQZztZZy+qs4vBJlG1gMQAiQk+p8D7Z4XEfzLCuY5oz/j4NS22xXnOo7qjmsqRSlnWiclWMo3VJjDmVq+nA9qkp94XQ1l7tk6xFKaOSvATchoL9u3o1iHTGEls0HuwDvEvPyfOipoYNDhFL66uWfWODGFKilvOatlGRgr1iQbqq/hc6mRBAd9D2wXbpQKXl0I4QzUGyHsfQtjFEik2Dkj/gmdoTYQ/+2UziJy9hdDCaz/9FBTN/VBgiRzMltN0G1joorWFMgfV6ExxS1+smkZgULi4WmExqEAEPHtzHZrOBc4TlconZ7ABVVaNrW8487hyMUSgrdktQYs1LmAmljGK0wcg6KGwGYVOQItNy2IctdWsoqyoy1XC/lwBl/ATzpCgJKl9e8mCoe2y8x+ZbP4y13Nd1XQjWOXjlHkPhD/DzJemoS7HeuBVkbaYt83Xs0haV8zUNqVAcCRBiJtdK8jBejfKdPL8+mEhtCyCGpAGGWNZ4HWnpAa0a7JbDiZLgdVvauRclKqoK7SEoWHTtGqvlBepbRyhM6W/3zpwKUKTgnIVTAHSBsp7g7KLBZ198gcVyjaqc4MYNg4cPHmGzaWCtw+npKZvvNdfy85//HJvmHRCAP/zD/x1HR4d444038cknv8Z7772Pmyc38eWX97FaLqCUwvGNQ3zzm9/E4eEhau+Qmh1eBof99sgOCIhhg4QJJP0aJFPdcwXxEqdIy1prmLJEDYIuDKazKbr2CMboaPVs2VettZINXUMrE3DFKCGpbMPS/oC7SkJbp0yCfFb4cEJh5JC2tRbL5RKTuuLD9TInVPRn65fb3xX3mT8KUeJVAGKA+PF3k+9409CQwJzpGhkLq/SamAoFr8OLPwswCkruom0sKJiR8+0dXS9MzpNYUGX3zuuKf28v88m3Nhplp8zMbNdgs16hqsrgte9j/gSVxXpsiiOI1ti0C3zx5ZdYrRwOTmY4qKc4PT1D0/DRmouLBZyzPK+h8fHHH6OesGr2x3/8xzg+Psa7776Lv/7pf8PF+QJvv/02fvnLj3B+fo6i0HjzzXu4c/cu6ok45FLmVa5MAmh7qSdNEBwMBv4UAW9MCBJU1hNKhwWvtIZRHC+srms460DOoqpKrNdrrDcb2LNzbJo2GAREWhOwXJhnX2CMmdgFt6Lsb6L0+Nw4MxPv+4P5ScbMpB3pb/gxDgoMEMKF7zWTCElI+HBpUF+8Xd47Z3J9RvuahlTY1oYonIA3Q1sXBuoSNGuvStLxEsxstDRRcxGUjCCSh8jYarvjbtqa4XhfjYmluFhUDqWeofwpAR9VungSFX6MuXZth+VyBSLBjqKpX9T+FMvk77jv2pYPgE8mU29JdOg6i9lsBms7iAOrHBoXVwKlFExR4OL8HABb6+rap8VTCnKebVTVCm+bSmwAsk0lXlMixRGBM7T3PetjbtGxWHIgsGRLSf/L37sWdWBsSaDFRDWW7wJj9nSZ0rjr83gzYvsu3bC3fL1LDd6r3H9AVDx+9Dic+9JK4eLsAroftWELXcbKWDAblmVtByKM7prZuZx02aRhghJAmjG6ZDGhD//k5V9l8NNymNHGC7EcBzgL27Vo2w2qvrk9qBE+KS5xSBuyFmePH+PvP/p7vPv+d7HebLDYbNC0bYx864VPIsBaCpE4nI+d/8Ybb+B3f/dHaDYt6rpG13X4pz/+Mc5OH+Px40f41cf/HV988QWMMZhOZlitlzg4OEBZVfiTP/kTGKNxcHCADz/8EDFRrmM/OQDkVTVhBDrZYKJ7RzwTGa186XcaShGc4pMDyhiUVYWDgwNMJtMw98oy+nfFA+0JhiuWysTBNtyj8mNZwQfRdpjN5j4+GDxTjK4iClHKE6uHWIEl21QYd9WfV3tOHORW+1StlI0pNoHC/X31M3Unec3Axqk4Pz2DdTxpjdZYXFygVE+XG3i416Wd7+PkYzxZxFhJURZLFkkPSxjBaoelPYk6i1TKiyWHspwDxzFr0bUNisLAqDgZg3Sm4wF5EIGcw8XZOX798Sf42vvfxaZpcHZ2zsxMjmmFiRwdYHld8yK7fecOPvzgQ3zx+X08ePAQ1lr87u/+CI8ePcLHv/oVfvnRL3D//n3U9QT37r7JIbG9FPaXf/mXqKoKd+7cwXe/+z1/FpBxKOMXU2ctnPXMQzGulapz3A/xNcVyG4Ugkbj41IIjgtIGRakx1QZGF0Ei05r9zoJK63/6MyRKVf3IKZGbsc+fDS4fnFRYGpU43SIyaFL+nRzFhNWE0PYw17L5sGXC9C9tkXIJPVwuuX/Mxcg5t8ea+YdLhVYKpDSgWDIrdIFC+yOb/iZCVP8usx4iPOktk6q/n/n47D0Rf2A5GityfKZs2S5V9uez3MvIR3AQK6bszL7HMFq7v78oCrRNi04rtG0TYsHzLRTUy6ZpggorC9o5h852Pu5VhXpSoyor71tVZqoUq3cmlCEHmYkI5+fnMOYYWpdo2xYbHwoH5EJilvxsaG+8xiyL4Z/eNU/BmVUJ4L+H3HMFrEgY68C1I222/EPobZdDrC6l/fbEXkUUJa/xQndU+Jr2ouL46DjuduA8h0bloCjRMNHsGPW/SyMVpNS0LcqigCmL0R0ISBhdxqvyNogR4ErYxBOSnFwNmpYYN8iibTdQIEwmVZjpubTIYobyDF5DAc7hxvERvvWtb+KTT36Nhhw21uKHP/whbt26BYAPSTNYvWbwv65QVXXw2fr8s8/wV3/1V1iuVnjzrTdx794bIAIm9QSTyRREhIODQxwfH+Hg8BBVXWIyncKYAr/zox+h8XjaH/7hH+Kf//N/jnv37uLTT3+DTz/9NQDg1slNvP/191HWVXBwZamSgrWQ3zWeeFBawhwxkO2c3wq9f530ZfSo5/6JHvkGChKnLaqVAwuj1DvC4FgSg3cOTowZSsF17FBcmMJDFznTyWaP8sjfk86pwCETNpZBKOO0DQt8rV7upuLo8DAB253fpZKkE8LoYiitAaVWL77A96axrdKJ2LR83swkEojQmOSX1xm3sDEHw13A9dNQfxoJBgNyaJsNFBwmdRkU4/xOCIAIBfJxvByOj47wzW98A/+vf/cfsbIdTF3hBz/4IU5u3gQAHyGVjzl98snHqCr2Zt/4aA+ff/EF/vpv/gZ1PcWHb76Bb//WtwEQ6kkdXDEODuY4Oj7CweEBgDkzCgC//du/jdPHj/Hpp5/i3/7bf4sPPvgAt27dwm9+8xn+/M//HEopfOub38L73/g6Su9BLyF/4ESdTLPC82+xSBJ5jCxYydPkDCqolaL9Wa/OsnXRq6aUb1x9SUveJfQ0JYfDHcFZFwwOSOYo+QCIlw20qMpPS9fl7Pqame2mQsBeBrdF/tCA3fXYbgktfj8+FShYp1SuhCVAbwrkU7II5PlY1pO3s8/wtt3XxzW4bZ45KR+EEsO4bcnGjEyXYaQZxmhMJjXKqkLXKRQeGC8LPudYVRXapsVqtcJ6s/ZuFVHSlYPI0ymHV67qGsxQhEFYFIVBYWJ+SDlmlL77crkM5yYXiwWsP+7UWQ7x03UdHyB3frMLfSpwQnTviH04pmRvmy9q+99jA9zT3LnqET2NRsZ0DCZR6a9rYhgjc7/flL5dfpeV8jUju5yKAhyHKh141bNAhsPoe5IkPVVKJU6QyfeUM6dc9M4lMmF8vEjj9/zdSN0jUt71UVzARCJlAcvlOcg5HM7nfsJ6Vq3SmP0BdQSRRbNZQyvgxvEN/LPf/32snQVKg/ff+zoODg+wWTf44Q9/iL//7x/hy/tf4OHDBzg4OMDBwWGQNqbTKU5OTnB0dAPT6dRLINzSrutwenqKyXSK2XwGgJnf/fv38etf/xqfffYblGWB1XIZjvc8ePAA//W//ld85zvfxnw+BxGhaVp8/vkX+PkvfoHjoyOACIUp8MEHH3jcywBKJ/k1CzhnASIYVbAUh6hCErkwl+LwsKQmY2Y53C5MUcBRG40Nfh46URF6wytWwK6zsDa6GwUAL1gQr5gb8zW9ElQUKnpSG20S5pEyAz0KpqaUOy8mJvRwBjGSE2uYF+PZGyNhZCq9L+6kIuGEOvobce/+ayelgBA1wQGKmdni4hyGLA4P5vweXkrhiAsI76qVfyfXoWvWMGqKkxvH+Of/7LvYKEILwsH8AFU5AWiB3/md38FHH32EtmlwcHiAQ/8j6rsws+PjE8xm00xq62yHx48fYzqbYTaLzOzLL7/ET3/6U/zyl7/EvXt3MZ3UsM5hvV7jwYMH+JM/+RP8y3/5L3H79i38/Oe/QNM0+Oijv8f/9of/G959910AwKSu8Vvf+TYqU/vIugY6RGElNJsGCuxz11EX8K/CGI7Phhi2SfpVa47c6rxqaYyP5pqE32HXFpdvlglGKb/Z6difhwwQCv8juQPGgjW+plebRn0wcqggIhNjYP24aByjMGzRM0PZqTrJ90dZZieF3T0H/5+ld3RQe4MKTUGd02CJZYj0+af6feccSLOUMpvNUChgA+vjabEEyNJRtFjWdcWhpRUwmUxQ13UIv5Me5uezov5AuY+bD9/urutC4llrbQiOKNbRpmm8U6sE1VRomganp6dZDLTNpkFRlNDaoGtbHyxRwRTJqY5sDiFcD3Mj90eIElR6rU87pXGRmvPuDjXJZhjat9+G90w3yNd0bVQ4yyK9hgLZnvqXqJepMSB16hsjgk+y4RM/ADnji75Kub/Q+FxJweXLJ9OVnGKvzPxEUXQ+Pi2vmvVygWKiMZ1OOMoCeDGR9dFBlPbxz8QIwKVcnJ/h4fkj1If30GmDDRyadQsFg82mxb179wAAzlkcHx9jNpvg5s2b0Frhn/3ffh8H80NUVe0T+ObBB50jbDYbFGWJ0ifyMMZgs9ng7OwM3/72t3FwMMdms8HFxQLGFDg6OsJbb7+Njz76CE3T4I033sB0OkXXdXj06BG+/e1vo+s6rFYr/MVf/AU++OADHB0d47/9zc+wWq1QFAVu3jzBe+99jZkysTVRExsErAfky8L40xKqx+dzKat/DnHM0JNe5+/iSQM1Yknv2ha261AYPbrPvqZXlwrbuRBQsOs6aKPTfRSp5TAT95Nwx0J9b+U0tVdK8cgO/P3yfP9OFa73mVQWWucp6DLmly0UD0lRSCnH6uZyscC8mmE+m/ECIgCOjyeZkj3rnYtn7vh4jcPZ2Sn+/u+/wL13vwtXlGiIYFs5z2nw9ttv46233kJRFDg4mPl+IEAR/tW/+glOH59hsfBe/b1kIESsOlZVicp712ufLOPx48f4gz/4A1hr8dlnn+Hs7BymKHDj5ATvvfce/u7v/g5d1+H73/8+ZrMZ2rbF/fv38f3vfx+r1Qqffvop/uiP/ghvvvkmptMp/vRP/xT3799HVVX4xje+gXfeeZvxLuegJYolCJsNJ+ooTMHHscCBIJ2X6qJRgUlCjUdoIZ61lPkYI7wiPC/fa9WLvEGEtmlh2xZl8Roz+6pRiGcWTW/yt0hlfQP4OA2YDQnoPdxBUx40bpmU+1S4HufjbiZ21Qm61Tv7UkYZkEU+LC0LbbyScD951RSOYLsOm4ZD/pA2cCRx5hlvK8sy/MznUxBxEoym3eD4+Bht22G93mSxxITxp7glej5aRBRcPOS6JPOYzWZ4/Igjd6SZtJ1zAXsryxKLxQJN06Lr2AIqFtHlcgmbhJC2gVEFwTRFGUa0yrQHry41x7IkpBBl30qcM2aKzx6aeE3Pjwrx9idH4UyeMDGZCCKJAfsPPi+S3Gu8rxpImXnZqWqRh0ghYiuWcxQWzHMlX50WiyVZ/nEcOdeIP1OC/Yizi1LK585kC+9yceHPDk7DQtNKoyiUZ946uF4AhOWSJT3rWnRdy64YZYW6ngDgWGebTQutFA6PDsA+YCyx2K7DZrPGdDrFjRs38PWvfx0/+9nPgsr5wx/+EIeHR6iqGh9++CE+/tXHKMsSf/XTn+Lr738dWhu89eZbKMsKWq0BMHzw8OFDDumtFb73wfeglcbp6SkePngYwnr/4uc/x507t/Hmm+zQ+/jxKZyzODw8ChZMDr1dZkxYsEmfSDQOQTbkyXGphNLD7OEhP/c6H7e/9m4sr+mrQ0VpCtiOB7goC3Y2pGjGVgC0OExi/BDsGIlFakzNTO+JWZKYxnCS3FJKAOlwfq6Pw13WrqvTUFLg0xAdAOtTzDnPzIwoRcmzLJ1qrdF2DaA0yhI4Pz+F7RwODw4g/lkc3sYES5+kcrO2Q9NsYG0H6zpY2+LWrVuo6xqz2RREwNnpObrOwhiNsirDOUcQoe1anJ9foCgK3Lp1C9/73vfw7/7dvws41+///u/j5OQEk8kU/+gf/RNMJlN89tln+M//+b9gOpnBmALvv/8N1NUEC70ASEHrAl98/iU2Gz5m9Xu/93voOot/9z//z/jss8+xXm9QFAb/v//rj/Dbv/3buHP3LoiABw8eYrlc4JvfnKEsJVAkH8dSyifxcA7kD9O7DqE/4lhz7+owB3JsTBjZwGKpVDBWcEq5a5oir+mloCKarn2ewgBQ+50xYRYZkxhxiwBy5sIGrbHQ2BEDSX/kub7ENZDgAMBtZ5R9C+e2e/ZXMVIdPFd5QS6o4f13VEFKS+15fKHrWhDxGUnRtiRkDvOglEkDAEeytbZDZ7ugGsqC7Szn3eREITFZBzxeJ5tGWZY4ODjAcskJb+u6xsnJCUqft2A+53j+gMLZ2RnWmw2gFGazWWYxVVqjaRqsVmtorXF0fBwspJvNxp9SKLmM9Tr0szyTj/twjMZs2sPxyjc0fiK6bIS5mDwh7j48d64Hd31NLwcVzvroARKwDx5jQZ8x6WCl00ol0sc4jamZ6XcSXytN4yU7s1DqOyTlBRUYQwZ7VclsyGRTUr3fCOqjUgrkLJztQG3jQW2TLzaxyJEDrAK8lEpAWPCECeNQSs4TyBlYAbv7lt78vR2xg2hZalb3/DE0ozUODub48MMPUVU1nM+MdH5+jrblcEG/93u/h6ZpUJYl3n77bQDAl19+iY8//hi//OUvcXFxgZs3b+Ls7Axd1+Hk5ARKa6w3a1wsFjg5OcFqvYYjwltvvYWyLDmhydERlqsl+GhSgfn8ANPpDEVZAYbw8NFjfP75Z/j+938b600DACiKEmfn5/zOSqGq66BmTutycL6SyBsNjGYtwlkvqSuPjnC0WVMUEa/kCQ1HnKuTWehrRvZVokLSo3EyCbZmamh0IpUR4CxxZmriQ8aqMCCyo8wgZYBp+q6UHDHm1flFBiCXBj2l8c6UiqGqc6PBELjvO1TuorGdmZ8FBgFoPJ/VBUtCzjagZo2yLEImbPKhZfj0gwqYV2EqKO8B33UtVqsFikmNw8PDIGEKVkbe0VQp5QMqIgDWAUtCPM6kPAMoS/IWaYPj42P8+Mc/ZtcKf4RpvV4HkP8nP/lJsAQeHBzg0aNH+OSTT/Dv//2/x+npKY6Pj/HBBx/g/v37AIB7b7wBbTQWyyVOz05x7949fPLrT7BYLPCj3/0RJpMJuq7DzVs3cXZ+juVyibIocXx0A4cHh6irGlppfP7FF/jbv/sF/vX/w2B5sYC1HSaTKX71q1+h6zrUVYVbt2+HMZhPb4cIH4o7AkSEZr32CVwc0HW80YX9h8N1lwpAyKLuoJWBdQ6WBJPb5g70ml5FKmRhSJJZ5Xc39QShxodMRvVmSy5FDVRKlQP+/TJTtSJ6kQ8luH3buP2m2FTVa3dSEMfN8pm1+9FBhlieikICsUNrAQpMMFYcG9HHiAYSKaVxzkSlZItmWZa4deuWD/PDbjQxOu0E9+7di0E5tcajR4+wWq3w5ZdfYr1mY8FkMsHFxQXKssRkOgnMtW1bHB4eBsl6Pp8nGZdKbDYbxmGtCwEFlGLn3fV6g4uLi1BW5/Ha5XLJB+utxaF33B3dKDPpF0HiimhJdIoNETxCBw7n3D6QxGsXjleDingA2XmpAGHwiTyErUasikhxoEiMI0U1SfcmgkgfKYNgDerpJkxURRNJ7mnKHINyUiulIjjXYbVaYFLVqMoy+E2JFZaBf5M4cXCZLLFxRFmJHOLfIgG784q5PHgm6lV4nUaTQMDR+DhP50NoW4BUyJQkMcwWi0VQ96Wfjo6O8IMf/ADWspPuvXv3grp4fHwMpRTW6zUuLi7w3nvv4eTkBIvFAo8ePcIbb7yBpmnw6aef4r333oPtOjx+fArbdVhcLHB+fo7Dw8OApwl2JwEUz8/PYa3FwcEBHjx4AGMMyrLEJ8R+fOvNmrE8xWG+37h3D6vTUxhjMD84gFIaZ6enuP/gAd56683gaiLiVxDannZevKaXlgqtC79zs4UnJIQVncYvEFFncjeNPF2YEBHCjj8Wz6y/6475QnE50SgQrw9BXSnjMslsbBfeKamlRkl5MQ8cagV0XYOz08eYzWaY1BNoKHSAHN0HkYLRRWDUBAIUg8/rZoPaWZRV6b9XUIGZ5YuOCJyw19ftrIXRBkZLFnAHpVgNM8ZgtVyB4HB0dANtx3BAat2z1uLx48fh/WU879y5g5/85CcxRVxZYjKZoCxLHB0dwRiDi4sLPHr0CG+99RYeP36ML7/8Er/5zW/wrW99C6vVCn/7t3+LH/3oR1gsFvjlLz+C0gqPHj/C/fv3MZ1OsVwusVgsMJlMGBsj9vl68OABlFJ455138Mtf/hJVVWE+n+PTX/8aH330ET7/4gvcvHkCIuDWrVv4V//qJ/j4408wm83wne+cQCng/oOH+Is//wvcvHmCw8NDTHwYJEYMdNavqQ/aa/pqUMGgO3ygPZHbMeAWfafLwFwofh/uTbhAvhPSQPIQRib3R8lniI2NSYJ9GnPe3ddipfrSoohn6fNeclUAyDm0bYP5pBg9uMxPM+N2SA0bHDjQUT90+PakyH0rswoOyXnIcKUUOmuhFDvGShjqtB5ROaVvxMo5mUxw48YN1J7JNE2D8/Nz77Q757K7Dm3bYj6fYzaboaoqLH3kja7rcHZ2hrqu0TQN1t7jf7PhbObWY6Rty1bXImnTZrMJm99isUDXdSiKAqenp/js88/xySefhDhurOp2WCwW2fzarDd4+PARus4GiZItl1o6bmR8Xg0abN4vpBUvNxVAVE+2LfpdVj/qMR/RUsNxpkzSSqWt+CPPD4cspVxiU8BoxutnSWKCYEnIwbkO6/UK9eEhyiI/s08KUKQCYO/CqQbvFe+jQijFyXiHiV+SYIT8IKAiThgxR+ejs/bXarTsRdhg3NornyUUkEhqrc9vKsxv4a2Yv/Vbv4WqqnD79m1Ya/Hll1/gF7/4Bc7Pz/H222/j6OgIi8UCi8UCb7zxBrquwxdfMBb36NGjAcxARFiuVphOJzg4PMBqvUJVV5gfzPH555/j6OgIX//61/Huu+/iZz/7WWB2Z+fnANgRViuFtuuw3mzQtM0g+QcRofVY3Gv6alKRZrvJQhQjSioprrIPwC67fV/NzP3J5HMPo/WLt4/TcegdIGa08WfvEiactn9HC6UaeESw/9XgfYS0x5mt62C0Q9c1OD8/w+zdu6irGpIrIfIlz+Ad0CkHVbDq3rQtiqJEWRTsXiCWWofAnADlM2axKu9CHLD4rtY6Dg2ti6Q/CUbi9mviAIuOoKAzY0XYfJL36zqWdlJ1VNxlVqsVNpsN3nnnHbzzzjuYTqd4//33cXR0hE8//QR/9Ef/CVobfP/738fdu3fxxRdf4OHDh/jOd76DTdPg737xCzz48j5+/etPg+d/6GPncHp2iqIscPvOHZyePsbR8SFu3b6FP/vTP8Pdu3dx7949fPjhh/joo49w/z5nc//yyy/QtA2aZsMSYLPBxeICy+UabWe9YUAF1Xy5XAZ12zkOFvAqiTh91OM15RQkswHzQMwEJNQH2fu+ZsIEtyWTgH8q/DWw0ona2W9m3zLo25xaN7dYqK5Cl02SqIZ6J14f/78wnNmor7dIHmAHfjft2yYHq4PkKvgkPxXeSSKPiPo9eKvE0MIe/6m+iSiZhdspGz+hNLS5WBSB/DSGnEbg+GnH6LoOk8kkWEQ/++wzTCYTfPvb38F0Og3Ggrqusdk0ePz4MX71q1/h4mKB4+PjAD9KvY2XCKfTKTbNBgAwnUzQNA1msxnu3buHr33ta+GwvHMOy9UKVc3x2LSXeNu2DW3t46+C+/a1gJfdIPAa2duPCkCYygDtxtjylkUmzKSvZkp5Y8xMNB5xpt01iaQ8NkhYKOikfApSA3Q+Yfu+aeMUJcKr7nPhbnIYS/wbFpFSHLFXqZDyk8A+dk3LzqohC1NAxAhKxdhjfmeAjEWIuJH4jXA+gSGWzRJh7l8zZiTZZjQZY3ziTrFerwOm5ZzDnbt30HYtqrLCwcE8SPlt2+L27dsgAlsu2w5N27LlV8V6lFbhhIJSKhyAr+oKy9USZ2dnePDgAX750UeYz+d48803WaL1fnLBx89rBPIj7ZcD/JuGnXS14ei4l8aGfwmIer9f03YqxCLJZ6Blh/bfjqzzVDpTSg5FR6DfOufLS1Q+QoggypY1HdSd4UKKlfKC6NA2LTtIIjLTcHJA5fUXRRHKTlUqpj7mlDC8fWaLz+ajFSAWYOvPQ2p/4JkcQZnU8KGhFXn8jAH05eICs+k05LCMEXUFu0yxxZ60BRWiUGi1rQ8BcoTOtuFeUG5FzseQBowujpUJf5clp6I7PT2Fcy58993vfg/f+ua3AMBH+SgC0/v2tzkE93rd4O6du7DkOJu6ju+mtUbTtrC2gzEap6dncM7h8PAQDx8+8udaW3zy6a9x687tkGSl67ogzYlBQ6SzjJklmN/BwUGYI8rP1ZedXv4WvhyUSGbjdJm7wxjFXT2XjtLdPjORY1w1jJMzZkAHoue7dRaEuEhN70hRXy32pW75+3JKETaCZCfKcbqYsSD5h6IKzpJZi6Ks8vyYUoe0P2saBSky9imr4ymjjv0GQAluaYIam/Z1X3Iek2ZF0k1xVbFIBnePwuDW7VuoqwrOOlxcXGSS2c2bN3FycoKu4yNcN27cCM67jqKLj0hmWis0DaucVVVhtV7h7PwcRVmi+/JLfOc738G9e/dCHSKZyUmSVDJL38P69gCIoZouszm9pleKQpznARCP7QpY6k4RpRuVqEsq/I7k0bTeItrm8kFA2P2nsxnKsmDpRyFIZhLwUNokRgH0yrfOAgQQfFicBFtSiP5bg/f08WSV9IZzUMqCDIP/1lqUhYlZsX37CZx0QxNBSeQRECyAzjqsmhbV5AiqqOHI+GHoqYCqz9AEN+N+tWKt835m3Ad+U+jng9yxYFNJbAx7zD+zJJNuEiIdSgvFeFDXFW7eZP+vrmuxWTfYrFcojMZ0UqNpNt75V6GsysCkYxuU36A0JnWN+XwGYwxObtzA4eEhjDE4Pz+HsxY///nP0XUdPv/8c1xcXASpXahpGjRNg6oqfc6CpFdfNF52GTPd0rzRxwSHHO5vuyva2QVX0FxeMBVO2IFg0BGOGVCqFkDxgvVxUcELzONsSoPh7twEL9EbxtSdvA5WX5u2w3Q6w/HREcqq8slRBHtj/ylHicpJhE58kYiPDEmM+85Zxrl8PsWUeUU7BDMBaY2GYYZGHv9ygFIOZtJhtTxHs1ljNqlRKAXlQyfpogCBz/8V1EGT9whTBOsIm9biwfkKX7t1AjM9RocKoBpaEaBcop5L2/wMVcon8gAIGm3bwRFgjIajLloofTgiAvlkw14V741oXyLuG1f6Y64Uh+8GlM/EpFAUGmVpUHjXEGhmPEoBx0dH+PZv/RYUgNWSca/HDx+grkucnBzjwh8sN8bg0BxCKxWSo4ghQ2uDuipxfHyEN+7dw82bN/GNb3wzBKb89JNf42Jxgdo79n788cf4zW9+45MnE8SsvLi4wGK5wOHBAUof+bcfA+1lpv5a3MZXLmfLY0+OXVO9309Lu9xhrm8ciidhuKnVEgj2N6/eiESWSG9BTRq3pkmZKbGK6cJxlaqqRn2ERJ0R1WLjrVawfJCdyME6y3/7OFlkXUhkK+0nFSUaaYqGhnYGirR3bQCUdqhL9seytkNVGpYGCeGYkSOOBUdwUMT5FQS46qzDYt1CV1OoYgIHA0UFoJ1n1N1of6T9DChY6zGhIJmJCsrvETbn/m79RJRKb/Aqp4q4pKioYMxMAZhMaty5cxtKAW3bYLVaYrVcoDAGZjrBZrMOOJxzNpPMYnJghg4mkxqHhwe4e/cObt++jflsjocPH3qH2s/w05/+FPP5HPfv3w9RPtgdhdvVNA2azQY3jo+4DumYV4CevSa8i5mNGwGvRpc9f31vWIzWF6xvfVVnSFGcz9WaqC55HyoS/zPbA+W3lzlmEe1LFILlhBcqC0BrKOsArWBsgcJZFKJ6OG/lc4lEogAorySr+B6aPCMjBUUazjOzsm5hp1Po7gD68GjwLkqk3LDpyBEx/psTe/ijSN5KOTpvep9TnHEbjrlNwhr7nF6/zMLZf7SvjqY+iUSEuq5x20e/0Fqh8mcxNy1bFMV4AADr9TpYd9u2jQC94uNNh4eHIOIELZTgd5xq7ybef/99TKfTYKAA8Rg7Z9G1LQiAMUX2/texTK+PtrWERr8dXN1Tndxay87OGINftm20256/nKHtE47psjtGU831H6PgGpB2YLr7OwC5I2Ye/hp+x7XhKMu+DA0YnuXslyvlERGM/00EWGfZUgiCZd3UC189Jq3kHXN5UzlhZJ6ZOQKUhS7WOJw3aI8qdAc1TGFYClOKBVJSMF60llKt66BMARDQNC2KooIpSpBgjRQjWIwxpL4TsqjWffyxj3M9CSYkzKIPB/R/xw0qWjbFz+vk5AS/8zu/w4xJKRwezPHOO2/j9u1bIIUQMqjrOty/fx+Hh4eYzqZYXJxjOp349HkG/+Jf/As8ePAAi8UCjx8/5rR7hsf89u3beOvtt/Bv/s2/QVEU+Lu/+zv82Z/9GZzlMEtt1+LhwwcAEabTSdZupRSMV9+/CrTfW4xJQZc9edX79ynj2dAWZhZpZxDGTIJKOXAPgA63cwjofXzB0kl32RGU1MpZmPhKgjcxIB+UXwSNkhsQJCb5T+qHU1BO+fs9k0EHaANbH8FNFFylgeUZvG8LUjWVknY4cqEtXWehTeHjm3mVVOX91TeM9K3AY35g6bNPS9LvY1Lars+i7s/nc8zncy4LhEldo7h5Asm4JJbctm1xcXGB6XSKqiyx2axRllWwTH/44Yf467/+a5z7GGnWWSjPaI+OjnDr1i386Ec/CgaUL774gjFTx8lfzi/YDab0Gape04ug5yMHX8rMguUKsT1RhWQpJDKmXP3r05hLQPrdWN3bvpPrYyqo7D9BeFU5I0uNHIkM47GmxJ3DA/GDA+gK4Mi7/l5KvoPn8bnW7a9LZiDvLqG8cUGl9wz7b0xd3NXP/Xv2ocvu39autPY+ow3P9jOQJ3VprVFVFW54KyUAHB35iBfe8szOuAceC+PD/ZK9XazT1gcLTTc2Pg4W51oa8eWFUzo/xgwvAesZGsj4yNyY+rfjAm2LDt1bh9u+TRYL5asm+509H565HBcL2tDO7wfNzajYshQy5hU6k/gf4QcKCoVRmT1CQgiVkjDCTzZlYq7N1L8q/S119Qd3TO3ahQ09CY0NdLQqRmYNBUADxvGZyq5roclBg6DFEZTEOVfDeUVS+6izHKGiBlQJBQMO3cOSLSG6oyilguU39m10BB3rj+Cecg2HqXN1cnzj0In0JnVK+Gy2fDKjd85x2KI0DFHbAJpjlt24cQM/+MEPUFWc1OTbv/Ut3Lt7B851aJsNbtw4RlEW2Gw2aNsWZ6enODg4BEft7dD4GGnNpkHhz11ar8Ky4UhBa6Aoiui24XYvrpeDtrVxvwgy43S5WhmUliu16WnqH8Hdn8AwMCqZyZrlD/luERlPT+VBzph4QSbPJPhKHxcaozE8aD+m9QQi7cgjKohzyReKQuco754ScmaqKJmKZJYKaErBZ8EimKKEUgZQ3vUj2WVTZjbutpJnyBqLcDv2zJW6Y7BJjJeR1iV/x4Qq/PaKAOcdYkPoa8CfT9Uhbtr7778f3FLeeustHB8fsUtN22E+m2M2n2O5XGK1WmG5XOLGjRuMi3on3vV6ja5tQ3h3a13IwiR9JIzUWQd66Y8yvShmG5nI9SmHfSZ12T1jny+nccksE0/zz5F5IRGBeeXyYuaJLBMn5a/krUzprpIu2P7CYKMBu0Gkx5RSyWQohajRP7e9Xp9YKlZZX+aL2sW/aeRIlKiqvqbUqddaNkgwfqN5uSsw3rhl7Lapd9tA/qeRUsdU/11qbGRmYvBJ7vXzRg3uTcogwHdglrRE4qQhbGjw9+jMeHTz5gnm84PQnnpS4/j4iDO8V2VmyEhPDDCuefWd/9poXBe7Eql9+EO/mr1upO2fEngmqpz71Jveu0U97pW3VW0dbSXTbsyMtj0GXsjgM50IS1dl5+XEuZbPKsJbMxtofcCx60eKTRkaB/bb4MGDB5hMJmEia62DKT9lasaY0eb29fqxG7Yah7O5ZiH5MmH9jyNoo6Hk0Lm3cyulvYLpF6MBFosF2qbD8fEtQJVwpEEKMN48QYRsUQszl/6Qv9N0ctuwyT7eeBUmN8C8BBMc2XQkYkcaiTjkW/WdNxZ2iDc7zwSJUFVlqOfdd9/lwJJEKArjwx851N5xWnt19Z/++J96q6dCVZe4d+8uDuYz1JMJJpM64HFFwXVvVqvgoqHU5RnGnheNYcOqF0Chf++zbXqqje37zX40iLSz9b59ysppq5rZQ/wGtaYApdytFDj9GhHqepZMer7VOYuua+F94mPxI5iZqCxt22K5XOLg4CBgLoK59ReoMSY2e6A25r/HN8S+SNonYWaO05s5Xohaa8ApsJNsPEdJXjQhL12sNit0VmF+cAtQBRxJRqF4orOvuqUMLFXhJWrIswg22Pch27abSgJfwHnHV2mPZ+j8EgO4QFROSVJMSqMoDCQHxb1790JE2sJoUMdMryoKGFNAe4b//e9/yHNFA2VZ4ObNE9y7dxdKa4+hbfzGx323XixR18rPk+tRoK6L+oYTjlDM36VGC83A7EvAhl+gZLuFtktmfXB+z8FPwzT3lJaAmwUm1GeQiRTR/+n7NaXREYCII6mkYImoIWXKNypRI1nb8AEVKSqRCtFKGctlZkVwIH+iQLoqhLP0D2WBYxU/y8C49tIBLyjyqmm/Q8YA9xRHHFPP0/67DveMMWLeS8l86AcUGJ7KjSSOyYPL/IvyXYh8PSobx/hdyuBD+5QK9cd7uY4XHmV2m870BJSpYTtUzr1mAaWPqWHQ416xDMXQ6HdPQjRawdULH2VmgocNLqZwlJ8pEk+LH+HQxFAadV1lDNB2HSdfpYRZJehZiqulVrl+rCogHmGSdqSLWSex0lQR8RJJ/sFnAE0w2XNeYRUwBfKrQEHBQMaM22l0B6VagFq06yW6ZgOtFYeu8eoUH1xPlrPisjvbYblcoXE1Tm4dwhQTkCphOwcDC6jooR5itQHZb5tYBCVLeB9D7Ft5r8PSu5U1BautV4+BDBONDMcn3iXOAJZGB+auJx8Qktvbtht/XMvBOT/Pkjj+5Cw2m3V4xzR+mRiYrO1CO53toABMp9MYncO8XOGzh/hk7NuBQYeuxkAuY2hPVlYqNlyl5oGIc8mz+7duXDLrSWUsyTA3y3xMlGLd3sV726aFKQyqqsx2cevPRQr4mjK0bUKz4EfGmBB2RiYtn42MvkVE7H1u/GJRRqMoi7D4y7L0GY00SiPGBAVtFAg6bOWsEmqPeYmUwfEztOoAdJ6ZrWCbBloBrrPQmjzOoQIGBwLH7QJH7litVrDaoK5nMEWNzhkOY6QtoKIFM1XF0oksrhqpmjkcunHDwNOQqM3jdXF9ktata9oRiZIhBnbL8aGEOo/5iczrs09prdG2MXCAgw4bT2oVZ+w1hheXPuu6LlF1EcpWAGazGVarVTgw/zLSmAX5usZxG42gMi+caC9mmVNgZgNxfUsV41fjAlSBGQx0SC63J3HE2npqrXwzolLtpUIlamlom186TjFTJR8wUWJ/QAvO5SBBK1NmptDC0gZdcwFnbeyPMbVJeU6WXHIe6+BcmlLy/up7P6Dlvqrkky6GUWaJnkZAwriHbckDEfQKSetJgc6d8zDis9m793E9EtGFkude8HLdoWKOSdKpu1P/OkM2udo9qGLk82j9T4pG0I4+zS5fLp3lxW43OVxGO6yZCYPZUTEReQdFDr5XVRXquuZlmuAbIkmUJTsxEiUx8EHy/6j1TaSzoNp6K5XULwyuqiofqpqbr0y0ojnH4X8Ywm8TTTDKXxzlR5gMYDyrA7EjRaFP0awf4zcff4T3793BtDSAZzIAH6I3yTtDeQzRq55dR6yCT+ZwjhmnKQoQ1pCQ2H3wXVSoruOkvhIgUfpljPnv+nwdNMDz4CUrgMdW3p9YIk0NOkqpcLRLBD6lPFwBcF971ZxkEROHV0rfR3BMiaIXZyoF5iqbrBx16rrWj8W1d8m1UwYb9dTMEef/vcrZRsPuuKyDaK+79ivraSmWv9M1Yx8piIjQdRZN02C1WmE6nWIymYSJyhhHysyiaTwwM4pss8/MUgaW1jkG5irlVV4AUBSAzMAU0sgZiDH8SQ6FK8DGh6CJwKA/e/gbPMTF6Wf4m7/8c7x5+GNMjw4A8viLE8fQZFdVIo2x5NdZgik0qnqKlc8PYEwB2ChZ9CeubATr9Ro3b94EAKxWq8EYXMbUro1G5oOCz4wFsNru4QQ5QC/tGThLKxU2FdnTpDwJ4Q5FIax4JvETecux6jGyBAzhWO0hR0Nnh4lOXlVKuuupy/mq0FZmlqp3A/G1p+Y4ctnuqxMpSp4VXCNEJe314kBT28FE+5Mxs/IpGWgaH3CKzCYuLGZ8RIkoT74MUVXh4MiyIaNrwz1bxW2KdTNmFMHvqH7uxrzSv9MMSrsWZF+ifRoas5huL/vqgG2fLn8y9nUfpIhoudw60GVfHCMLTUlVxSennW+wl0ZNWZv6t6sxc+ZgJW0DSGjwvgO6yhBs7SoVfklxlxw0TyaObIiIMfjFF0h7nOzg4ADT2QxVsGRGdnJxcRHOZQbAX+0+0gTkjHPXRIzlDA0KSon6o30QRmmbzvdzpeDgrbNE0HBQZFkCgIPbWBhlcTCfwmhATqWqHujunA/VrRUkFv/Z+QKT2Rzl9AiOOKJqYLfKtyM5ewnEMD+SUVxSrKVWzbE+ed4LlpB46idt6FtT+64jA8YsCIEC5FC+0n2LrJTRY+yJOjnm4pO2q9+WZ0p78q2xdqX9lN6nrlDuaF1P+f3T0NXK3gNRTpj3uNNsBJSSHS4yNmcd2qbFZrPBYrEIquXh4SGq6cSn8ooNInJYLBYoy9JnJCLso/j3Gd3+DG3snRDOU8qRI6UA6JShaTjP4JiZWWiyPo6/w3pjoZXDwWwCo4SZkQ/X7xc0NMhZjpJbsOOjcw6n5+eYTA9Qz4/gSAFKe7OCZWZGCCqZqN9N00ApPglx69YtfPLJJ+i6LjCybap2GjniaYn7fFhHDkrn2eu3SYfp+O1UjT2jss7CeCtvwAqVn+IqT/pMjhmfVgqdhzREU5DcD0CUcLdZg18UyftJO00RXYwkWQvgrcZefd6H+trJVd44X6L0bLmc1PkkD/l2Bma2bWBFk0qVzUzySfAvY0zw8xLTampNHK8nPaU/nodztF1776wJHpW2Wbh+eJ4lt3QvkLu03w0lG1NhDJJ1B2CbSutVWBDazsKYwqfMGwj2W99P3jEYMXZIHVt74BrVq4G6OVLXddJo21U+V7a15eWiZ+fIvL3GcQGuB9Lk31H+VHbvrvYn62i8ZOEhl6mhvWtbqxx+scXPjKuVyAMcmaCN2JTh83Gz+QyTGQe+K8sSpvQqZBD9EcBrOUuZg8AUrH67EM1djC21ZuadsbUwX50ar1IpiCYaf3OInvXyAs16iePjAxjDy4k3er9TsuUBSnMqFMEbbWdxerrAjdv3MJkdQikDEIEUxSWpONNRP4FtXddQSuHBgwdBSgvnULfQNtztSShYm0evb69323fbNqExdVSHTEpb4Iigb3GIpYCLadmo4rP9PnmZpDJg2CaBOtg4Eq/z+d+rlS0juN8bb48p9txp2xLecnux7SvJpNS2HTabDdbrZejw6XzGquV0islkGnANXow2JMKVeFOr1SqEepHD4eEH4jEuMtHwfOI2ZpYC/+lnGTrCMMmrqJfah96RQaZMNYIPOhnzS2lFWC7O0KwWePP2HRjNzMz4g9Yi+0WXE5bJLAFtZ/H49Bx33pljOjuEVoVnfj76LOUJfdPs3hJe+ssvv8R8Pg84WapKblPdnpSR9fGbnTsN9mNs/c+pQWPsWXlH5yyiRTT3X5Q/Cd5hmQAC5970XwRDT78dLxszy5JmAxzQEmBIZMDo9/VOjLTv/QqAJql7//L3mmlDUe3yB0a021yjilSkFQhWBDAzk0CL6Q98QcpLB0U5pjZR+FcA68ti/u/3cjse7Utn4WBlr/xRuVsNbo0kIcGFyVh/KHpXY5P6/WLqOgetDLTO+2sgUCIypRTgF9wkVS+fp9oyqhCMqBY7yxhp86AfB9/vDQ+NAkTPW7VLKZuPPcl0jNINXDSXrSJVmLO98oYa+Uh70m9oMPFzVjmOuEVewP+MvtUlfb8PQLT9/mG7CkfkGRcngZAUZkRRzJ9MJ6gmHENdKYV6MvGhVcpBZytvmQP4PKb4n0kIn9TlI/dojwWlGNvOzhhIENu6Ydgd7FrhVT3FoYOcB7JZayTOZUkORBZKW7SbFWyzwXRSQycqDuSYFjTI+4YoAI7Yr4kc2IJpaihTeb8pnwRGAyCdSRHiFDubzUJ01RBSydPzDf+8XcV/tlW+OEZ0nUQulw5TKEEgA8FE880KSPsgWm6vs3Ej11Qi+Ax53c5HL6vmKvIKwzQpQ1fJhkV91oOic5xkpOs6rJYrtF3LZ9m0xmQyQV3XmM5mqOs6RMLQPlxL2FVDS9lFw5vm0HWsoqYhfPqNDUHznChqUaLbpYpsl4xyjq227M6i4hII2mNYnAJOcD/HaihZgDqAOmxWC1CzxnwygSHF9wAA+aNSWsMRYtRZazlRsgMsGehiAmUqWMfqkBIgW8XEJgBCbLDDw0N8+umnaNsW8/k8U6vHmNmzUJ3GrJnZ91fEWMbcDZLC+J7e58ENLw+qsxelhhsAWcSXsiyj1TWRyMfUdGF+fGH/+veV4mWsUzcbQlRtB+8Fioa0sfJ6ZQMIEMC+G2Eq/CCZ+2OPFyKFsW+Ug7U+EUTyEnJQO6iK6ezeAczLDtTHA6SR6e/LXu2yhRoB5ti8iJ5tF1B3XYvfeDXbOcA5GK0BG486hUqV6sWWT9VzDfgD7GNivUyaFNMRRi+MfZs09swB7W2qjqexqncB/KNtDYwsigS06/4t1/e99jxpDLeT9ZGO+fimO9718c6eSrhjrNJ5orbUx8/31a24zMfsQamP7b460lbVNFYprQyO8GNNTW5G0bYdQJwxaDabx8KUQuWtlEVRon+UZBtJTPamabDZbOCcw2w2C6F8ZEEOsbhLVsxVSOCyXWafHkYlu6NIlQDBaK8iuA7rZoGqMNCK/eSCxkcu7GaAgmN9FUo5KK2wXqyw3jQ4OLwBU9Tg6Bg6ZtUkgEhUCwSVvCgKnJ6eBgum9NOLXphAZLTyzk+t93w1tMlLiPyeF/3f0n6UsFbC4PKkP76fZa0QcJW1km2Syb+j9ypwjll+0Lc8fQu5j9sUDGdqjDnF8PHeGZN1oawtW9oRvuUyQmApAuAj2vQxwGKzaVCYAkVZYD47QFlVQR3UfoEpb2kLpu5EQlCp42aiWp6engZP9cPDwyRrz1BKy7vqKTEBUt7loU+jKCoLU2DJyRgDWM/cABjFETZa12K1OEVVFqgrToHGlk4CnPUWUh+nq3OwykFpDnezWC6xWK5xfHIbppgCqoQyBtrFI1WOAKM1FAjr9RrHx8eo6xqffvopyrJEWZYDqe1Z02VqgCzCZ9uUrwqXE0mMshwGqZFHXJhkjczn84gnUxSNQvSXPTu+r9KPKYWZtRSEjvI1Lms/k4SUApQJ0AhPhNyJm8IzUQhyrtvajkG70GOUgmVrzdfIhfIVgIIcAYY/FkWBSpiZbLgDc9sOhYwigC25ACTMdWqB26o2pGVd+qo7iLxUNpCWE+G1X5mOgKMovhG7YeOI0RzYEYhHaEIdHqAM7fY7Kp/ltCjLGkqb2AaW8333eucUFdPLFUWBpmmCer+Ndk3qa2F61ygwby3f04uXOZ8fjbkepbDMwIOA7w565zh6uKeU7G/rD60YHYRFENISVe6+xA9AfFIRDBPxCdZvwuJIKlO937vamkNaosMBeR8QgEJ8l0xReKbTvzPpIIoOnvJZzmda/1vObabx+mWRClcNGtq23f9pNZdL+yiqR3n/B+AGmuCjprKQe3b6CHVhMKvLXlEUDuamGA/vvhardYP1psWNkxvQuvRnP7lMeUhr43FLGyTYtm1RFEXmnrHdevvsqQ8iv/AQ1K8QKcXGIbHz9xmVSGqTySTAMOv1Olg6U4l8aMMb1IYcUdsCOHlKAZ6Ah1MSuRgA+aTVlM0B1kZS6SswGUFq4FdYwOkUG9uU1Hl523J2xGWt2yaz7CovKRZHN45zPd43IK8oifKJxCIBoPHnM1frNVbLJQrPFDn5qg4Lsm3bwNzIdlGqGR2M2Pyr02UDzb8D6C7vCgJZdpfQEKtJB+MPmz/48jO8f3eKw8MZvOgXS1MIKiMplWXRvlgssVhavH9yF9rUsKTgiGDA7hnkAF1OYC1vCFVVhai6IiWH/AYJM3ue2Fm/phwze541v5rEa0uBtHfT8Rt+qmYaY/y5ZcZNz8/PAQCHh4dhDnCEYUo0AU894S37U+UXM/wrwbmUUmzY8uoiZ83i75wWBhQt7oyDaZAW/CriYeyKlPZAtJIWpsh4y051M8G8yXFMQKM1FhcLOBuDVojaXVRVNVpOuCnpgFz49C/qgUvJKp36kKWHocUit9N6KS9IV1eRgv+NCI3hRfq6Ziq2Yvxv/0QwVRNhs1nB6Dn71m0tLuqcqbNrZwllPYFVOtFvY69K27OsRcjTzgFDiexZMpOgRl9GfXXlsiaNFHk56PDqUYZThXHiUyl945fcm453eri8r2qmiPA+vdRXdII2gjjGQeNSPow8UiiG5zQpcJAEuRd5IiACx+9j39WkfoWEl6h80eycw7HlwQCgNDp/zFKCREhg0+xs5k5/FIoBDtuuiX/7xCJVVUKpWZC+UpWVdyB/xCc1HshKGG3+ddKYaJ5ub5RdlWvKS0/OdXC2hTEaZemtTH4XSkugpFgC0LYWgAHnztDgEEQe/HWdF+01Oy37HU/AfvE1e6HWyx5Dy0z7L7ptrxDFPgNA8VytwC5izRRhoG3bzBWqbdsIfPcouEyEC/GDuHU4qXtsDSRr3hLPeqcViKLFUAKMEhB8QplxxWxs4T4i7yScdQDPF7BWl/Myv/mP9hy/gGSpBzgPR0fM3Mi6ILEpAMUuf6C0TCKC6yw2zQaPTx+hbRp01qLw4vFkMsHBwdw7nmpMJhW6znpmYIN7gXWdP4QdB2Gg5Xtp6PporCzW+bUSRsLe+IpUCPnD1soOZBvYZo2yKFBVtWdGHEEDomIKc9Ma0Dz0q/UGShkUZQmoEgQDwEAbDecatogqjbZzIez0ZDLBYrFA0zRB7QhvkWAsz5MCENzDzPrazv7S1PPH/F4kpYyfFzTDLynQL14AIpFNp9MQVGCxWKCqquBgK2odkPCuLVoGMx3H0Ww0ACWO6EC6CK2XpkgrdDAgH+HXkUPrM6uJL6rzFtfOObRtB+dDEpFg6kFaH6qTjgSHhmdCaguj5YKUUihNEdpKjkNrERRs2zJD851RbJOEZBcmeXNhaNZis95gs1mj67pwSsCYAlVVZpmttXbgkzkUMl87lwCCCSw3ZKJX3fVz6StKTL2R3VFF9jHcy9yfXAeto3+QDFxq7I0t4A/WcrhsTmCig4jNQKvH3ZTKdjIBfPsHyOX3i5KGRk9heOSRE8NQZivaTdsAn68e5RKsChumfJdaL9u2DdiyaDhytlmOuI3RQDrLvvNrF3zcDsJKergA+XvJSz0ssTk4AjoiWEfBob7rLKzH/Zqmy044UFL4UALzAUdFUVbRir8VbFCALaJU2lmLqeFNvnOUM7OxF3fk0LWdTw9GIQKqhALiOP6TcByjKDgPJYj4NziAI7kIzgUTBwFKp+psfzKPqYT70lhZo100+l3qlsHRPDgPaNOsMZvWXj3ot03MxZTJ+s45rFZrmKJCrWfgmPYq7GDwu5YwgVSCzfx+XkLVTlSGSC+e2b4aREH1688jSdKT+qClwRplgzPGhGCggfzeOEaBUSjPrJQwLt8ikSgIaG2HrnPYNIyAOV9n492sBA5xwtSs83M/SWLTrx8IAlGAYqJsxn9Tzvh6XcZpKpNLRVnCeOkW8h2RRM2QI00shVhrsVgssF6vY2hsraGNhjEcY0sOPivFpwe0ZtVL+7OZncfStPaSiSP2jB9rbf/TE6uY/SCJY6JYzig4U1BPUmCTE7QhrFcXWF6c4uT4IIj56eJ1ikFP1h/gmZVDZznsT1lNMZ2eQOkCIMVWHm8MIX+v9ju0tTZM6HQSp9jKiyYlqkFQHHa3aXSCvwTv8TwpO65EzEBEIpEfsfoL0+o66yGbeJZVnND7e/FlvWmMgXWEziedYSumgnXEyXiUgtMOy02LVdPhoo24tgP5BM4R3xZsjA1VvKYoZ6/cLhJ4AqHBpIJjVi62pO+TYH4AwflcqFopf2acQ/NrRfCRn5iZhckmrhdEwc9pvV6jaZroVlFyct+6roPbAB/EDm8ZfD5IPP19ElcrkWa39fhgzot4vJ0Gi0L08+S5oeqz40xY2umeMXZdg7bdYDIRZ+IeKC5PKAmbTQEYXW82KGeHqOpJbJxIZskoKj/iY4l/+5LZS0Hq8gUEjDOyscIuPax+CTzwMtKYG01ca/lYpkxNfDIZi2Isd8yBNpsLUdDf0hYNKI4zCKLgkuG8SsizVqGzDpu2xWrtLanKWymFkaVVhk2WjRlSVlYvEn+1BI5hFTY2fRvJcrTeOEZKodAaxrt+FUaFY4VEQLFcLkPjXKJOEsXzYdpoGK1hCoOyLHyYHDnyMK6ucSemAzoUuPLJPuTUo0li9qU9tFURjVkSQraoZL9pmwbNZoNZXYX7ZMdh/EtUB5b1KUnLuF43qA4KVJVnZmLOJocodHtG5cMhNU0DIIL8KSN7Ec6yfdrNUMdwz/040dOACy8rjbnS9PHPPlOT3xxe3cLaDsYUwbGaxjpqh5oJeM2BfEQb+YEClIP14b/arsWm7Vh1zDhPIhlQvJSqjwACvCTvJKHmAUQmCoAkiGaWzIgGvEFqT6dQ5A1sMXUJAycCivv374fOTTu1KIpgpZSeYpVRw3jO5GwXrFpBzYLvcSXOtXyfiMdupNV91fBFrVnnHIw2/lXYqrlanGNx/hhvfuMeTFHAAdDOZwtQAJSGU3JWEwBi9NhHp+e4+eYUs8NjOPg0cwRvBHHBUEKOfF6BEhcXFyDijExAvmu/aGaWWuSGEmOqwqft3MWiXjxzfp4UxpAYj0r9MAV8BwCtC9Q1J7Q5P19hNpt6ZpYwgKRbVe9z7FYek846QGloU3K4KS+ZKaOxaVtsmhYXywWW6xU6S0ilQW63lEUxLy14jXCjCVppGKNhtPGCTxFng3ehcAQ4FdVmNjD4HKvkjYNZf3G95NdWSNJIBHIWjrSHdvj+YrlcDhaJMQbz+Zz1+MIg9QRQSgHWxXDGSiSO2KMCagvQT052IZHQemfOEk6fbgLPa7uWM2kiTgdzMRHahi2300kNbbSMHVIInKTTpTxwH6zWDZQpUFYTtFyRZwQODg5GGfgp4Q/PmuBrtCvG/4uiIEmo/hnbHIuUHhiTxreUjK8yY+sz/lQ6SwF/52JkjaIo0HWdP6trknhnyXLbk5wjaAMo7dMb+s2HlzKh6Tqs1hts2o7HS/c3TjUYoigR+bxmmoMlGK1Rej/TeLMLBgSLFHND0GwcefxrpA5ZN3KNxNdNEygx8hYiAaSdzt77OrhO+HXtS+9za39NvldJuDa/8AfMq0c86XN5Uj2pmtkXiUMPbCksTK6eyI+YDUmBOIFJUBPJj694QPOLBrumY4uPNgU48q7vRelESQasPGOzLKZrU2TOsn2V7mWwFqb4TYyAMrwHwOh3vTuTv4dSnYKcYM22jv0FvyvUev20gzknBoC+oUfmoZwCyU7NUK6aReGh/x69T8m8Jb9xOyI0ncWmadG0nce0mdFpJRlhuSTBisNyUrLhx/aL25JRmgMypNKcF2y0v6YFn9eM1YU5lY19MuLEkWm04jps26AhF9RZaVNxcHAwBCgBlAWrk8qDV8zHuBF8O1syAQqqoyYFJZ7+Qd8eHtsYjq3Uw5w6nMS/EkVmOKxG9X6HioP1Vc7HiZSoiMF/si0UHOrSsKQJXmBaMcclBUArOEUAWRgAbdeiaRpU9RTQJSgJjaIAaGOgDQGOOAfppsV0PkU1qfDgwYNwgqKfSzFlEi+SxMlTwp6HBCLbyO+KioDBjs8ljlzj689KOH8eQr9SkjksMqKAJ3mLdRpwk3wSnZRJpFFTwhoigCMVq7BJZ1OeEN6OiOcbwft5anaQba3D2cUCF8sl1m2L1joAJsO7RLCRNmjNjEprXjdaRR1PUTTwqYwVATA6fG5j7/hfIsCouPkpwIim49VR5ii8Ri8uzkLeU+XXsNYahaQyC46gwrBCWOe0k0THil67BAohr8XkPCaWDkDFMOBRMuojfVdXPtLFQcOvRi5B8cFv5kk6UzOZkXBHFoWGSyaPtF36QzoeAJy16KyFKcoo2sv3iicDT2Ybci9oNUNVVcFynEpml0m2z4y2rPj+IhSL1qX01dYme7RLE4ljm6YVBOJGLOMtuFrumCoh3XNH2ERxysqCn9eO+KIjdstYbxpWL7sO0CpoHykj01qj8E68xhiURsWD74mbBZwNkBI5F5ag8kxEJKj++wtsASUO6fzRZNiaiBBAYQwePVhjs9lEZibJlfq7vjCzKOWk0gBflwYG3uPBkXSPGN/1vLw2UPkkhkXvSp+ZjlCUUnKpLGWdwmB3tozAQR1JjosQ2pYzipeJ/p+5ERDFTTBpRtd1aJsWk8nEL3RxKuQ6WL30gK8MGmI/9yWvJ5XEtpryr0AhokhaFnJ109o8nPd2J9/huG9b9FG679+SS24vK+2DbY3BBn3rZmrVzjHKPLlJeCp0aVyjKtls286isQ5Na703vnzvj/cZjVIn4+ezxHNaUh9hhgiQwIj+HxWEIFmAMcRVDFchzFK0MGRDSI4z1pNCeLeUmYnEWJVloiF6ZqY1irZtRyY6c9pUMhB1whid3dc/WxV37JiijccjMYMgHzCpPpwWEO5wpfWnPPaWTvBUtEg5DiDybGYeDmfMGPM6Pz+D0RoHB3MP2vMgsGuKYw9pRUApQbC5rOVyhfPzBW7dvM15RZUO59wADWUUMwASNcSGYy0Awo4oonTaV8ALVjc9E5aYdeLKk1KG+YWItF6GGGHWwLNX+V4E5dpIfHcCwqmaXCsaMrKqqkJ/hei+GghWOWFYWQ/GOS+BDYRvLJZLLNcbrJsOa2f5ELo2gFbQZYmqMJj7YArBiwGCFBCrk45DV/mTilBE4Z7wGNmgEocmqRjPLKjBoakK1vptX6Vhsr1juVGANtDQuHF4kEiqUTUvRrP8AJGzIqoVRWESZpbKOSpIG/1dPHQq0eiEFSsnQQHUf2r/vXd0Xe8ERtTgyyCdghnParWC1gplUXspLLYmSFoUGTp5SW3TbLBer3H7zTdRlFWoR2JEKXCkDAVkHt4pk9JaB1wqbdsLJ78TC/g/1q5U/Af48L1XXgJD++rT7vHqS81j/dgPKJCfAkmfTz9GRsa+jyp7ZtM0WC5XWDUNXFGwR77PBq+1QVGUqKsi3E/wwcmCJASWymS++nmcWrpFclMpPOK1EE6skbTfr1FmHfmxJQV4B3gLBRMW+Xw6HYVeivSC7BQE5rbSsKHFBQANWU1URXvfbZm7cdJzPUbFSR/VwtEHB3VLz0i4dAUFl8ne/nv/O4RmJADgOGPMljhiBtChbRYwirxYa6LlxNdOSp6n6EhLBGsJnSXoYgIo79sjkqaS+sOf3rBAO9PrjRlpnjkN103W6xHqpOw7WYLOsX+TCofmFTgZRbqB8lhovxCyKpNJTzRkgqI6vZzMMc7RAEUEEvOYBAYFIkwTgxiEY3LxsR5sku/WYWy0Avn5LNFhO0vYdBadd48ItSnPy4xGaTQKna48XiMBdiJRNUl2coh25hedF+ao36LIYvvzNz4a5lH6DE+vWKeW60PZB0WqIgxN6i7orSACHGCcvsQHKhlEon635MKwUjELjUh0MjEpcnlm6jqUp7LzXZF5OucA2/r4S0DwdJZaFZj7KwcC7xyKFJSqINYe6BZKrwE6w+PH/x1v3r6Bk+NjaDuFhrixWDjlIPiZti402RFhvbE4XxPK+RtAeQyrpiCwNRQgwDoUKsa0KiclnLNYrVYxzMvLtEiVQpqsQvrcEkE5+B04Ti6novgPmyS2BY+dUoDSefFGm4DPZO/dn/sqhwae+JWe+Ml9y8835Jzdc/0aCdZE5GPsEywcWu/HGfsNMIZDzhsoaOKoEfCCTkd+I+cb0TiAoAFdYLlpsF63WK0arFuLFgrOFNAKKLRCaTTqusSkLmCUgiZ/nMm3LRgFw4YSsTE5DAUAKsl9K6w2l2sImWMY0MPPs60yYYAO2ikY7VAosGtHIpgIFblpOH6hizTtGiBObvtl0k7fIJ9w/ekXDs6OTEwVPJFZBHYgn2TXiGLOlkjZfboOWrPoa4G4YihRjRWBlAudqkhDq9JbeizYg78B1BKL889R3D3E4XwOuIolR+3g7wqvqpxEpAUaAprWYdUQiukJqJjDqZInppZNwcHoEgSCJUJR+lAvTZMF7ntaZrZNfXnC0uIvipsTHEdps2k9ye6cWa0AKH/yQelkrmn2xdNQwYyv8lXwDN/rWVFfG4ifou7hJZUggMVDbpb4LKU27KRgFPcPx4FVKEiF5Uke4rDwMoDWaIi8Cmlw0TksNg0Wq7VXGZXHMgmFUqi0xrwsMC05WU/TeoYjOxQRz3H/Xqy9AFAKJrwXAq9I3w++TdIJinrGohG4J5ld4W9FHF8w8Q2I9XoKZrr+5EgxrlFcJLxrPml5R05lsCB7Zs+KOJ26N4zVIatHKeV3hqi7U1bvyNuFjxRiSA0pbXcyAclLb8pLqhQrDSJu7KAgdjrLPaIloqy0YaAaJ38HeVqk4u1M7KoM7mkZ4hjLiButqEv71xGWdg/ekE0rS0XopQEZ523vclXG/3zl3RFdHYiW+oHk6fsokXSDhiOKhudHoaz0YSWKoONoF65D54MppsKJgvfYNzrH4nyfj74GpbIm34vkuX26Yazvd1ndB9pc1px85mXxzNInBMyHqH++5P13xMiKckal8pFIWzhahlh8RKRF0jFRDQ1e6d7KGARh2RZIPJzjsyy+Ky/Os3lXKV5Qtm2CmC/HNMgDnxwpViaEAlmREoHVZgOlNKrJJDCzAArI7qRUVMv8e/kXfHlUyz1JZsMYpjf2LryenN/wmGLW9miZkrIKrcPGsKtvXhaH4t20XdoEPOCvFeDPLEpXdl0HZQyUTwbiyPtzeWjEeT1UawPShlFfS2jaBqtNh8Vyha7zQSF8pFetFKZ1jbo0KPy877pulCkFqRoAZyOL343xg/6VPkN6EtpnXMeZWWgEjb7cFZoQmUef41LvvkEX5OoJIAxtS1vD7u5/PMNId6K03MAVvUqkIOoOQM7C+oHV4B1MQ6HrmGmlDoBaK86YA4AcYbNpAeVN6kF5CK2Uzsg6QPl+koTKL/eC3I+2SlHpBtmTzlwSWi4Ym4oSRktkk1eBYV1OY4s7zD+tACvWQv7OWutP4/jnyVuTtebD20RAob2LhTcgOY5cu1gssF41rMYHj32ew3VVoS4LNjDall2BiDI8M7Yv0bASLaJvo0jf8eloN+MfoyITUa9A26rJd+bdZWRm5m03j1aU7/59x9++MDr2dLhDRYYmsj0HqOw46quPdDGq2o9Q13WMJRTFyP1+QvS1TY0grfYxpvy9XsxCvkwaFzWwr+6lElYoY9swk3RyMpYpAP2KUhjuMQt8Nl3V6HdKdFFR6UZVwDg5nSN0PjioZEdPrZ5KKRivbSSPhfEjEPSW7h5szQFmANQ+i6NHY8OaQU8jr8l1jUuPOyUzkaxCM/3bDzGKHbswjTZrd7VbKFg8d7Y4QopysFUBjHmpXpvC+oqOskY7bNYrXJyd4uaNY9RViWDMDpPO6+r+GdmhHAinZxfQeoKjo+NYt1dBOVwSwZGF8rFLCAQNHSb0ZerUy0ZXaWk+ciq7Ghkfwm8ijnI6BvirdCXiKvDHy0S51iGKRGQaUeJnNysVmZrWbITyDq8EdjptnMX5aoXz5RpNxxqGDtqHw6SsUFclSmP4MLizAb8joOdaIZxO5vtuwWAXXc/oSCupd41pK2aW/zH+cLiydbeNtz+ddY5fYsxRblBm4OrM1oJ9YaRt2TVi3KZQhGazwuL8DMfHR6gqtkSSGikE3jdMsRRGBJydX2B2dID5wRFSvZjDILGljohiHgQWa55oZ3s5aL92X2UyCyMTdYoS59GU2SuvNgX/yFeSoWEAefC/MtejcSQ1limlYIlVTTm03jlg03Y4XyxxvljCOoJSJmycioC6LDCbTFCXBWzTRGamE4t/6EY/50O/jvfv02Fi+z095izc/65ImU34ct+mbRN7R6u87IvdFLSU3qQdqjcjzHaPK7FxBLJezSyLGBGiz0Qx/irWuqhm7niP0Ra9IhLZmAV5FAjOrlEmDXM5wDh6lNx0BQb1skm0+6A+MTiD/+z/SedD9PscLv3AZgiwjvMGWB/vS24WXzWtJOKF7LN0afsSZWT3e+z41Cvtyowvm0cJlJQOt1JbJLOcscXaCYDrN1RKFN3+OindISDueXmgO611zNAitwb4JS4gFp+jpKRSRkzsN1NogFyHZrPEcnGBd2/dRF2WHq+PmE9wHwCf0eSFyt43q/UGR7rAZDJHOgMloqwkgBHHXm5HrjJ91Wj7rEhWiepvoQqpo24oa8DcXjVpLFGN0ecTFKRSow3EAFeVJcfxshYRwlcgjrgIRwqNdThfLLHcNJx8WuuA15dGoypKVGWBqjQwcEDXIYuMI64byPfUyH5odLPdJQ33vxmf4bvmfapS+rPePQ04reUSzEyWqf9bmEMi6g9epmepezpK9yHK1LHgVZ5iTBRfP/C04GKio96rkKmgBI5yqZWCsy2azRqr5QLz2duoqiKk0ZP+AHEeUEUSxI7LJVJYrhsoZTCZziCB5wDyWZl9zCelQwbzl02aeFa0F0NLryaWtz6OeBUj00tNyavzphvdjDiqMX9ZlmXI4KVCQEMA3g3DEtA6Yma23sBCQWnjsWBCaQymdYXZdAKQhXIOZDkRkVbRHUmaNCYrY4san2lKyVLNZfL43a5cBb0nsr93eTLI+ruUmQGyjvfhwClelZDKeazcOdKesUJz3rhz8vbZdpwpKrDl4c6e7T7wDrPOQZv+wd6Ia4jEmoYMChlqtGaGNdbCsQ3u6UCHZ07bGG6wgO3UnbdT7Ivte3YAD14xw8g45e3Pt+r4qe+CEo0dyT2+PEI81ytZxyHQiEpjk/FRMRItxVuKo4P7kIFsa/fgrfpuV37zD6Vk65pCmPlxSD6uw9G6QjFDDD4ws30BVF60aeifpEH7gAQ7cLbL6vUFME/xiygNXBcA9SiAZT9ptRyMh0kOujvbAs4CxD9V4aUyYXJIJFXyR5iUQucsms5htbaopnMUZQ3oIkqxQDh2BYiaKu919b74KlHwOOgx9HRBvyw5Q5+Udi2L7DqNY1gxG5o3dPjcESEkgiMsVxtYy9us8lFgtdYoC4NpVaLQCrAWsJ1ncGwp5hhAEVOTud1v5eg83TUk/3/2/qxZkiVJD8Q+NfMllrPkcm/d6tp6A1AgBkADI8CQQvKVi8i8Dflfhy8zIvOGphAkB4JhA92DBrq6tq67ZJ4lNnc3Uz6oqZm6h0ecc3K5uVRr1bkZ4eFubqua6qdqqpNG07l1P+bT9q2jmx6aAyPJbF6UN3sHFwmEqPij5Il3sqanav9Y4pH1UUVxrbNavYSpjd+psTCmDE35HpJ6KaB/D4eQGFpEU3kJ36sHycf7JwiibnaB0fUDtvsB7eICVb0AyIukpsdDI+cMOyEE1Clm1CdrgXuAnjS60z4w35WR2cQfnxrNCSBzlFXNSRtdOn0SEzODc2CqcoKQPjI2271kViKXVExC7cVyuajSGcoYBCvzIqlFDlAIJjtsq3+frddMxcfC1BHINq9tPMT8ZmgkpT6FmY3KHunCj5WmTovR+v34Lr3CZy6dZ35ja8fx7SddR0a/JbkrygA7i8/pO1Tsn2lBjCnjdFWJJzZmBvgMnXOM/VilksccZVE6ibHKr+XJmZ8/1vafp9OzXX8lFJXMXue0cx8Z4o7KKGp+MM6xlOau5mKVYC1s/sq8VtgE0Mi1T+/rWbcr2y4rJOHo0rh1s9LpsaQI0JjRMc+Yi04SjQpIzc+6+yli83dc3iPfTMefx/5GEyZ65BczFlfzgGcNUqJoECJuXn0HxIBn15eQEEiMKWNUkVktT448ur7Hze0dLi+foWmXYKdZmRI2gaIaq7/QsfT7+dNTsC8iWZCzxp6HN+pPklRyVxoGzWwuMfIZAvMMLFHh+hBw6Af0IWRfNEcOy8UCi6aRHLdy5gnEopgSItSCT5RBNJxaqXN0TkB4yvXHzn0xAJwQatI6mmVms5Nn5qXKyE5O0MToi2o3FaEfaAgV5pH/MFe3Uu95rq6sV8tyuawijQUQAl5/9w0QB7x49qzsZFqqfS9DsivFCO89ukOPV69vcXX9Es1inQIyKmNNOQETtvc5nTN8zNyfHnGaH78xwqm/u5l7H6FxfAR0njGMfjUNYo7o+5LDqDAzJGYm4ZaGyIggdEPEoRvQDUPSNCQR73K5xKJtBSuT2F3CwKhIaGohFAktlmsn1pdUdbwOz7Z2MlCPBwhmRB8VPmbu0U8VcF7FMcWNX6daV9YlTz13ytr1NNxsuvjnmMF5xjAW2RUvy5ba9HPfdWgrRqNx0LNkNq7rGAeR6AXDMKCqapCfqJkP0mNRFa3SY8breyR6Wv2PH7ei99PL+Oj6Y0SnpO/Too1tj83KZEu0AoJixZYReU0BmFwwABvtQuZ0QY/YrOPTNIuNzdR//BuZHuCj345fgtE0epAdmXuPMDPbcccMo6ia81LQpCyM4IA3ohAChiGg74csUanpmZxDVVVZ2vHegytKiUaSLp9CACUZbIalKV7A8MTY7TZYXBLWq1XheET5/tFumhoYmREiI0RC1SzgXI3IdDSu+fgNphHAnsbYP2Wy+Mp5MD+J9ScghI+OZ71D6vseSywBEIJJCp13X3LgZGA69AMOvUSGVUNJ2zQlYYrJZwmCRFYGkhRmogczwBNnoiMmarGxRzC/KYkp7qnzPK3fCcQwvQN44ATArCo0AQijcvy52fUO1ucwDNjvDylPnisMzZfw3ZLHj1DXHhzF85nSWUtigCJQgEWe1JUBSBRLEOP+/hYvLq9wfXkJ5j5ZUWVRlUPqnAJdCEMTHx85G1cvViDfgNmNxlvOYwozixxS3CqIuV03id8jhvYQIyu9Mv9cDq80wiE/Rnp41U/X2eFwgIbc6buUPY0MPp0iyA7dgEPXY3/oIKq55LhcLlpwGBA5wpMGNhWEW/JRirHAO4+IFELIwCnHqSCP66ote7DpMM2ffeBxXHEWVprc8yinWXnlWJ4YMbyJRWbu6VIByuWNfifMlqFitKRd0+NAJe6XBdEFMBbmpX5wEuNfB1NvlR3ChmeSyACMEGSXq3wFcI8RpTqqtYmANBk0wSpArgKRG5ketMWjXW2G3mRBfnAVa6I2zNVg7izt4wqk/MxD9HEztCkd40hzEiuB5plHYm6RJex65JifVeksDOWg+uitRqM4qs4T9lJxFD9mMmNEpsx3XQd0JEjMREQx/45+UZBvUo6ur0czM8AylhLaWI/olPcdY1jqZZz7ETie9KcYNJUBcs7DOcmsTK5YugQg1TA+JIwlMT1HBCdBduDIwcMjJL8d4gAKol4iMMLQo/Yp8iYABw1o55JvHSVJXxm4A8Fhu90hhIhmsRK3DHISfz0nQk2Ny0yQ7EaogjSeNJs+YXqKv5i1ZuZnTwLEnwozmxBRVguVNGdqXdcydQCU/8oc3+33GPo++5/VVYU65e7wBhrJdnWDk6klvpSIvEE/ZRo+2Oc8+fLgEJ1+eWZyJ9550ml29jXMCBwx9EGYCYAQhxMMbGy1EifmxNBmVd9TjUiApvfwvkZVVajrukiwRIgxJCY7IAbJr0dOstnUjlA5YYYRDpEcBjgwJ+fYPqJmYAiMvjugrWtUXpwOxdfMAezAESCfmFmU9BvSAIebu3v0gbFcXcC5GqAqeWnzqGWlzh7AkNsnbfx9UTLH9NCcsyGzpyqmPj+1EH8qNKfpKGmS5bZtM8TBLPMughBAuNtscOh7MItFvW0aNFUNiiGdXKGS11ItmM4kQmHOOLKs0QR9zHTjOZxzfnMiM/GlUImn8GYbTtmsTo9xZSv6GMpxllKCco4ssb4mL9UJlp9jG8ak7BTlwXLhlEnYOZXQNIO47jLpPOUEUymMND2TpCynWZ8gEqYeZYsxFCuQlgELE870ExH6fkBkRlXV8g5SBmVykGaR+1j0PtnX70mFPBLr30HZp1xNzjGY2ffq/XlTHG+QpxbTud8/CrJzYAQGzgee1LnsvR/jhjp9mHOiEk4QinclB61V/GZWU64Sp68TG5/deTFiIBNI6WgMFX6aYJrp4lH7Hpp7lERGO8an6ElqppJG/9TKTg0AUklk5z9yDj7JuMKc3QizyonbiHMeTSWXLJbakKlTIXnxcNbw1gQvdXNSj34IGHpJ4gBXScIHVwv+lurpQIhhwHazwXq9RFs3oj5TiVBARCnShUDTKUUgAjO2uz1AS1xcXoOZxGXnpKRlpLU3XHdzi/b7ULFmcZ339F6CHmGyG+L5DvtYGdlDipMI+IQQIwJHNE2T53jeIFM5jhyGGHEYunyP+OKlbEtkmFniVgWvclkKEziEMgZ87PM3Vgkt9mvbY7Fzy7gij/MYqM+gxdmmRxKnrx/1IT+subwhMzOJPHmc4INU6daDrKmy3guTkZ9LeBfE5MiXdoeqqkb4R+UBaigfKI8xoO8LZuch5yPhxFkwckIICOj7A4Zuj6E7IIYBrmpBVQOqW1SVgyfAA/CeEIYONzff4fmza6yWlZzHrDSLEoG8Q4w9GBGNqxDjgAhGCMDr2w3Wzy7w4osfiCrL6fwqCJNUNinRK/JuOt4l3wzEfhvDwUPP2tRv088qITvnysaVMczjsh9dT5bD/2qltvWVgk6352Ohsbc6z2ArphGJufR9hxAi1us1NpsNQoxYLFcFYwVAvkK3H3C/7TGkBCTeOXhI3LLaE2I/iESraiSLG4acx2TAeUmkS1RwXaCAagWcypeVnbGpszMSlo65SoqSf6BsgFVVgbzPzEyf8X5szMuqpIJ4KMxSsJ7Th5bOMrM5PXk0aYz0KMAil2umgRY7E11aD7hy0umT57Eb7/6ASFyOk/dz7jguOj6KR396YKR+hhDRDwNC38GzZFlyroJzksiGkuk6xiAOs5cNqsolgJ5K+6CuGVzekZhW1/dYwaFdLBB14hEj+9VQKaf0of4+6UyMd6rs0zftl5lr75pOMYhp3R5DI4vXKcYzuTyeN7acsY7+UQL/WR2c+W2iycj9aYFzFEw4rR93dM5XHLT7dDLAix6eJR+X8LUcy/8Iyzn+KPXUs5kwjGRabc7/Tl1j7JzQoA8xFovnWXev3LSxSDaGYWYks8mFJ0tmo0rou2nmlQSUAHtk+lQdWY9rNFJdc5kqtVFWOTUlmZ3o2qFDlN0ocpIqHFBXKcJmksyiq1IwRmGiHAbUlcfV1SWaJqKqUsYuiuCY6uFSPunRbuXgKsIQk/TmqjSxFJ9LuTpHlNpjosvqf1UFmNIc03gbSeQhRqi/TcX/Odziffl5fdLWSUwXYhnn06PGWarxk5wHgmvJfBlCQD8MkkuT1LLLWC4W6UB5RFZKj6T/GYZADjRxliWQRJRO91vNq0SnGTMl/VcMdV6ssJjOk5hOVsUz8/yogijixHl6FDM7qy7oqLGKgoqNOThXdGbmoloRUf4OJKaSMJLS8LEBYQT8TyRF7dwYI7o+SJA6ZhBJYtl60WC5XML5BnAeh8Dg0MMhwjsg9j3axuMPfvglKNyi8QHeB6jGLJK5AzkCIIlaJbyPg68r9IER2MH5BgFeQrCQT4mCgxkS9dbjdIqBxA9OBY0HFu+7VKVs3871KSATMwPMRkqyakJRF8SB2d6v9CiprNx9tFF9mqRWwrTxJalnnqEVX0qOEXVVZxzee48+psXsPA7dAftOnMidcxKDD8D11SW478FhQOWAOOgxJoLzst5CjHDkM6MC0jwgAscAdTkiR+ncMYtRrG1V1RGBYRhyGruqqhIc4PIpHO89qqrKv8UYcX9/j/1+j2EI+X7AqrCpJxJDmzI2ShLofE9LX72dZAYY/RpZ+keezJQrZl88snCcKbtwfyQGeSyJTRdViANCEGbmfElB37YtnK/BcAgUEGKPnHApBlTOoVot0e928ElqS+cbUPY3o8On7855hAjENNnAyQZKDkQRmlFdVU8pqOw0ut9oGz8GmhubUzvx9PqbGibyRodS/vyz746hf1+UtaeRBlM+lQ1fPhdJyLojyGIOiemFEFCZtdU0DbqhN0yAUWYp5Y1UeYfKYmo8GK/QXDMTVLTUUxmvbmJ2s1PtqWka1HWdNKmI3W6Xn30Iry1zaHrfDO/hcueTmdmcRWtKc5LcyR3Z1POpO7Heb6WMmhnOpUGQlIIgIolEMEREEPZ9AIceFQKiZ1TE0EwRFnC2NY7mOwNgchhCxPZ+g3axQt200BDGc3xpbjdmLjtARtFm+upNJZSphDSnMlqM49TvSqraWClZ7zsF+j+2nvZzdo35OHj790Z2HLxPyUpimndJwtt3HYZBMWdKiUo8QhjAKTKGbPx22xWiZBizl09tXDp31PAGLtKjcw5N02SfT3FOd3DpiKGVynSetG2LMAw4HA5npfOHeMu4ouOvTz4BMPevrcQbLTwSb37vqicDyvZfEXMrMCFFbUqhT2LAbrfDEART2/cDKgJqz/A1o/YxqcSMqvJASJa7VDdALbjC9CJHwDns9gd8/e0rXFy9wHJ9BU7+a2OcQqXRONH6uYSRgkbwLdZCbdOcJPQUjEqZTH7rZDOKUULO6E4bowDQugGodZmZsd1usyqxWCxG0V+HQZyAdQIXANuN3jtn3Ch1Q94IyAHTjXhEnxSjo7OAmRihxCI89ALsV3UDgNCHIYVgF0vkzf0G+y7NTY5YLpdYtg36w0FCYqfYZ6qmAir1UgKCodstdN4RkMeMMYYKNCuUzo2+67BYLLBYLPDs2bMyfpHhkseCSyqhcwmaYeDq4hKVr/Ddq1e53TI3pnDEaa3tnWBmczR94UMLLIPORwNLonZp499gliojy3Ugh0iSJDWGARojqhsChiGiGwLYi5U0OgZVkiY1QiQzjkUy02pGjkDyTWMGmAhDSu/VLi5Q121WR62UmaCG/HnMzmwcgfEGcQpzespmccoKbZmJMh2Nm6UMSMdLpTBmRt/3ZdJPmJMyTWV+b0UJHvn9kMzKuAhMktQ354WBRdEwGKIdHA4dhkiAhEZAXVVo61pCvseYPP21RF1rimPbuTaFTMoatXPFOYe+742FUlTLpmmwXq9TExgxRLiEm+YJT2U9NG07ztWhP+inWVz+aZDCGzOzeaKzEzBXmO219Fwp4iw9pG+XFxizvoYKQsKxnEftCY1nVD5gu7mDxwBPIR0WSeWnXUujY+Q2pn8jAyEwqmUDclVhWpERaax2FaDTDOBIhjuWwE59nuuPaZ9YTNH+WauTPlOnvIxalkpmzDz6bH3J9DvR2K9sTmqf0jzsYL8/EAD5E2ByyibKzJ7iDpwvZ0OYc/CTwJ2yeRACM7ohJGdt+d27NMchZzvlM5dZpkKTebuCJYppqySk9eXR2hxrA4Coi4qHmTtPdAIXhjaBbUovHc/x/D0VTYYpZjZoGXa6/42ZmQXlxpz2/CQWB8C5JGzHFrZTZDt3KrUQkJxWI1wlqemZPFarFfohIESRh2rPqCigjQf8zS9+DeIeVxdLrFceVUrUy8MAcgQHyU1YMAfZFYcI7HrGy+UlfL1ICSVIspqHHlXlEQnI5kqpfeopZ5imjLnk1hxLUOcwhFMMIxtDjHoQQhhJU4pr6J8yNOu0PN0wrq+v0XUduq4Tp05zEkOdom29rLSs2MvDm5BKZZ+2NfNY9hhTYiP5e4wRdVXBAVlld96jrhocIqPre9xtdznCLBFQVR6Vd3AOGGIU30mSBDw6t8g5cV4179EgDY4c4tCDY0QgZMR3erjfqp3Pnz3HarUaMzMqGaSOO0Imt6zZuXWvrPaYcZ7q11N9+paSmdXM7bUz4uHJ0bWT97wP1KOKNionHKP2EgPKR8EnGh/hMaAaetzf3YC4R1sDq8UScEl60FLNzmBqiMiEPjCquoVzlThT+xQBAQBQ5Z05n18dVV8tn8kcjWOp5Sn4mH1G/9TyZRmPBfAVzF0ul6jrGk3TlNpN1A4iwn6/x3a7xd3dXZ7kiqNN6/4Y2EF6wSxsw8g+YV6GOTnk7P2c/MuSKwOgkpkHx4AhRBy6DiFrcJzPEQt+lrz8oWkNJ/3PycTERWtxJKxEhT0xQB1vJDoHnHNYrVZYLBZZss+UNJkTjdNOOdV6jIWix9J4gjyc0XzyguMJ+vCMm07w8rWwhlNF2Qlfnj9e7Kpjy5nPY2lGxVZdJMKGGeCIvjvAu3K0ghGP3qvVZChK7VA3La6fv8BiKdZM5ypEJP8cjhiGBIA6U2/S9iqmZs6onpTWj1VLy2Qsw5saRKx5HCip21QaU8nMuePoFErTMquqwmKxGEl+03o8hiwuYtUic8ejy/pYyY50meYE4zMNIBlqEiOJMcJ5GRO1ojNLNOP8EAleRkZNzaqcTnAcwxtF6xO3o7QoEqRy7PqkGKp3DlWyXE5J2sMjZmUlKGZG14tE/9D8YD6eR2V906gfx8+9hZpppbKps6tU4PhlgIqs6ffJPZKY9wTm8oDAN6oVAURJrUlSnuI7lQLbxHCRAR5wd/saq2WFxaICIItzQEClKDRpCCPj11Y1uHj2Av/w+Y9QtdeIqDAEh/1+wNCLoWEYAqqmFnWgqfLhW3ABYJnVuDD2+j7dd8Vx0dZHn1NVUcPHqBOjSk8qlekEmTo7zr3fXquqCsvlEt57DMOAvu9xf3+fHSnnJvvDO+74dzdSc566W39clLGzE6delIZBIsp659B1PdaLFVxVo+sHRCIMgdH1IfkyRngwVssFPCTai7VGeu/F04jF6RUgcMJwvTLIEBFSH3vvUoJh5PmuY9v3PS4vLrBarbFaLtE0zWk4SMPPCPfN67vvB9zd3WOz2aCqynnbcz2WvzFjhKGeYGTAW6mZY85pCz31MmbLr+f33Tmd2AKAgi+dFknJ/Km4jQSQunRwOUQJe01gcAzY7zZoqgXq2gMIwlxUHM91QGZETAyQw2K1xsWLH+HQeRy6iP1hQIwdQhjEFyiyYBNJ4psKoqlTCoM7s2tZaUytj/rZul+o348ytbZtR06MNjv4VIV8jFSlTK9pGgzJb2i/36Pv+/NYxyNVCIvXffpy2XmyrDqEgNqLY6RaM8lVCP2A6DwiM/qQ3C7SHtvWtWBeQeKXSTgu5IS+HNSrX98o8xEhgmNEJIKv0nzQaLVJqlOXncPhgOfXz7BcLLBerx8neZP5QOLWtNvvsNtv83nqp/fUXK+N6S2cZseWCPvvdNVmt4zRTqti7+Qcpv56hmGd1M0nDc2ug2zrlJgYR3AMCEOPyrukYhaVR9UeddDgyQBQinwL5xLDIvia0LQtAA/vAyISlgSZoIGDgKCZmdJRxpxpX84ZOlR9nLtHz8VZUF8lsnMS15uQVWV3u93TMY98//FzpKrSJyuYna/8+NfxnFW8VlFbMWiljRQivVV+RuUaQWTmB1WDEm5m7jJagj4XhSkmF4xFu8jzaG6uqGFJMVmrRej9h8MBmvszS90zvWMhKPUmsMSs1uHjZEFvrGY+zj1AzbxzXuiU8Sv53XiUn3/xyTsyrqMMgpNFMjEuGQx5vwPAYUDf7bG/u8Fq0WDZNgAHOYPJBIqUxj+m+GT5ReLgWzfwTQP4Gq6u0XiHqiW07QphiAhDRN9H9CFgiAH7ww59kKigjgHvanjyKQYVxJ0DGPl72ZA7KmmpWrharfJnG+9NJ4tVHaeq5ekxG+MVpz7b73Vd4/Ly8sggYO+xAPJkQI/G0BoTPn16jBRi8M/EdIrTsayNYRADQIQ4gy/qBqvGI6aznGXRy7skWgVnLYZUtUxMSowH1rhTGFAIQfzKWA6vry8ucLFejwxDQJk/u90uS+fK2LQsrVJMGoSvPBxcdik5Fn4KQxtj62O+NsfIYoxvZ8182DgwI2lZzpvEH1lk6g38AIg8fScsI0PG1+X4o0sHaFX0ZmgmZ44Boe9w2G2xaCo0jQcQIYEjiyWNOWVTShFAVBT3VQXna8B5kK9QVTWcq4AFJApvZOx3Pe53O4T9Hl3fo+sPkKgGhDoFUyMQvE/JKZL6aA/yKiMDkJlZVVVYrVYZvG+a5ohRjQ0j74YscwKKVVQZ5dTfbI4ZjufMvERWjDSfrFj2MOX5Nd1YkIF/CR/lEILk3dDQoN57LJq6HF/icaGZEcLgj8x5Y9e1x1qBzASFmXVdl63cz66vjxiZpa7rsnV7DscFEVw6G13XNTxhtNZLu49hKzVMHPUbjxmavvMBZvbwZDrF0CwMNJIGCBkMpdEz+dvJd2QRnKdKn6ntFJcbcfhUTnqeOeJwOMB7SdE1X2I5qCv/qnpcwmMD02MZ8p+MXdWJ4TjZHR0ATzW88/Cq4qbO0kVvD/CqKmd9wabS1pRp2WtnVfZJP9vJOPULOzLHm3epFGiPMJ17zzke+3nhZSc0CehsNJglyhwv61lYeg6XrfiHTOBcHptCM1iiFsYMQ4zuzspakaZk7C1U4SaRfnUtRLPx2nkaU3wuOwOsaplfT/Ob3ZiOIRbbeVOGdoKZWSyjLIjRHZO1cYybje+zZv9xWbroJyD5EygD85zjAghOZd4dYoBXYRAiZscw4NtvfofFosFq2cITACoWR3HD0CCQaSCJMDCDfJW8/h1Acii4TBwCHKFqaiwdoW4btKsGMQ5AUltDLzsqgdBU4uE9TIJZWoZl1S9rmXyKSjbH0OxksmqGWrP0HlVtlZFOScFhNb9PMTorrZ0ieU43QHzCeNl5EjwIsCqmdY85GlNSnIigqJGz+FfuK3H5ICCFq0oxxJKV2XuPgQejIamEJht+1/dwRLhYr3FxcYnlcpGNVxyTVOc84hDQ9R1evX6d8bC2bbOaGZPQImsIR/M0vz/9aw29rO0wavJ8J6b9HwRmqf8Zyew8Q7OT0jKyMbctu0GxUGlZyOU6KrHeR2xuIlHM7tdJFJV3x8zKoBNGmWiIYEc5vIoys5ub1/jJD6/QLprkHSGThJkRwfC6uFi8q6PW30ncMvHVSdFA0wRV9dlXHm3l0QBY0hKAxJiKMWK36RCTVampJbSLjzxyrZhaHy2pG8TbAvhKViLrui7jIHqfqrPW4daS+p3tdrsRA55711w9VFqzUsnnT2UTdsmQpKqhAU0ytMGUNAOzKQN2zUxUNV0Tyeu/8j7l00wbNlUZlmEWF4qmrrFcLPHs+jpF7jDQRWQJtBAjuq7Hzc1Njmm2Wq1EMud0+sac4c3zIDFgVrGKkYWP6b51Svua6cFc9IOYmWU69kW5gROmZvGU6f3QoqY1V4zknOqRq36sWz9tA+csLnIUfy11CpyK3TR9Lv2uae0QAlzkxARp1LaiDaSL2kCW/FDey8TlJI0wCJ7KwW77N9sfRoV8sMWT8ZrbiBSjCyFkI4SdjKpWKOMZn80r+Nkp49CxGjyW7mfbUcT6B9v4UVLaBE/9ZgO8FutdUTNzhCge95Xcb9fVNB6LmbtTAcQ+Q5yOOkk4Khu6h+yC5DK1dX5Y9dLOxSI7nlYPx+0oyGgRXsY3PjTHH4mZHT8EaNwljUQZswShIud4IRpH09EiQq4wmQrnppxUR86zLk8pr+DkeZEWZFcgFlB/GDpsN/do2z9A29RjGCIdF+G00zADnM5O9kNAd3ePOrZY1QF1Y7MIzZw/o1JrbWvTNLLTsUh/EZwTDVv1ctr3es1aDO316WfLyDTUj6qS+tkCt9M/y9RevXqV8buvvvpq9J6madB13VHIobM0B/B+bkSUUg3qV2OoMWomERJorykLyyKPUYKNZkkN4p8aeByFJks8EEdsnWuickaEIPMt14GAMPRysoA8rq+vsWgXWK0WUojZTJS53d/fY7vZ5Ei3CneUcVfBpMwNiSJY6m77Ij0xYmjCM5AULKvJHVOW9Z7KzKR9PGJmIQQ0TZPBX0sKvkvsbwWTleuOMQFthL5jVM7o/cd1yh2XVEHmKcuz5afmx4Ch77HbbdHUFZq6Srikdo+EAwqB01lL2WaZxX1it9mgoSWay4jKqASlfcpkbCNSuUSo68popEY9xnginKIR/pD+PfXcFA/rug673Q5d12Uvb8sUrZqr4xZjxHa7BSCOuT/4wQ9G46S7+nS3PleveSH9E5XCHqK5xsLMdZJ1Aia42o22xBiT75cWlYSm0dQCYEHxbGyDrsMo5YNzvDFmYAgBwxDgPHBxcYXVaommcjnD+siyCGC72eDu7g5d36Npm4z15XGfNDNLW5SXwLhblGmzndPIZZ0jVVCFxzyCmakENbd41PJhwWjra2JfqR8Lf9ZQJbbSxyNeBmxqkTtuKluRdVR/vSg7E0NS1jEHo94m87XiErYmuVriQjEMAYGDmMwHYYrReXgAzsWJmM+mG4rFCmTvKfvWY6yOR+2eqI72ug0pri4fOkbTvzlGMlVnrcQ2VjGKVHmEnZ6r/AgXnTLzqaP1p0NFyjdtOyVdGHyIc5sLE2HFmY4KMNKaVSuOdghkRqdrTuZakt6cWPO9d4nRHdfRRmHhtOHPWdGRy59fzXmFnu6O1CflntE7mIuEkAR7BhD5LGZmujfhJjrp5OByB+aIly+/yDGv6rrCzc1NanQYAfiZZaXK6DB470vIkSzNmHu1N9RNLFXNTZlrUuUGVicKEpWTAyIHMHqxlLkIjj12u9foDve4vGjgnZwJldcRAAd2QBdjdrpIaYvRDQGvXt2BFw0G3sJVr0G+g3MVqsrj8mJpDuZ66Lky4aPJV210Nm2eCZ1TMe11qz5aZqWTzzIu+5zCAVPrpLVETq2SCvIDwP39PdbrdRp7GSrvxeKpmJtzmqXKzqcytNM+IJIxc6fEmE+I7CZtN8XIYonMcyoI/kquSl7+41KYgAGMkCa/S3+F3UVz7tPGALPMRC2hAJEHk7jYHLoeVVVjUde4uLhEW9f53CTl8PFAGAZst1tst1vsDweASgy8k2Ta4eDSnp4qxsc3qUynXWCVaqd/iYkiuUUJEyMMAPrTzGw68cbqozaCOeL582dZnVwsFths7jEMfWZmRS+2g1qYnPdekiqMNOfjDlH/lsyZM78rzBEsA09McHCo4BAQRBLDADiCc4zQ99jt7tD3G1ysa3iXhpodJMSFSGh9HFAnpuiYMIDQh4jXNxvU4QID7xHdLfqwga8q1E2Dyr9EXScgtc5TSAYzTncyNo08zpY0tebOETPnM5J936cMOEN2rVDGAiDDAdYN4KHIsNak7pxD10km7e12OwnSJxvecrnMpwHKuFmyM2HMtAiUEmyoRMdlKn5ivE1ZmR1hZWaAJJ92kPOUYRjg6yphZkUXSVMGA2JKrQPxkWSUZDxc3kBUIrBY6IWRtBZGeqsIJl3XY71usVqt8OLZM4kUm19fOn4IAzbbzch66X11npkZcpktFYmq7GZG2JlIlszG1UQfS/2gT0cAgUmY2Tnfo1NkJQUbYlkX5KkFOLffkmFMRzriCTqSUMoPI5F9puZZfx9CjxgGVJUfDbyWUzTy8W+CmQXkZGBZ7SqOphqhI4QBxBIgEqyTiUadkJVtVQUeUPcAjFRHK4HZkDz2nnPWzFOqwhzpeNtgjyNmZNRMyosn/5pb/NA7ZuWyx1Xxo6O8bicCSdEf8qVHlkfm8+l3jr/Q7AuYNbqtQEXTWyzWqnMLmJ8zIwPUUV1mamouEatmJR3F+YbCZ+j4sVLP1JZZyWy6oJRZWbXGOYfFYjG6Z6RWEh1Z3Ozbj7Ey/YlHv2hZc9l/crmsx36cOKam/TDGABCnLM8OMQwABXhPuLu9wW63xfPnzyXeOhdJQPV0YvWNUz8ZMU1vNhu8+IMllhcX8O0CFWoo+Lbb7TIOd3e/QVW38L5G7eu0mzkQUhiUk3b70zQMA7quw+3t7ZGJ3I7d1Kl2+mfHbI5OqbSqmm63W1xdXY3G1jnKhqDzeNkxu5qeHf2caNpau2eTK+uEnMw53XCByTgQjsZwRLpZwv57DFHYDa1t29E6FkxZ7u/7HrvdDjc3N6PkNhb0P6rjW9J0/9MTEecfeqQ1c2qZUmbWNA0Wi8Xo9yn4q4MUQjBMSoaWgJFKMa5bOQOpjCU7iUruuFFHyuFZoPIO3YAsrjKXgHcEYYiMgLYh3N7doNtu8KOffinRL1gf4/ReqWvpTBnkECSh6XK1xPriAuwXIL/AECOGMGC73SHGATEGDIGxWKzRNAssF6t0Pq1KB23Pn3g41S/DMGC32+Hrr7/OqmVd11gsxtENrPqorh72EPvcu2yf2s3JSnlq8LFn8fQdRJpx3h6DKuhHKnyseBq16HNkZMBYOhMqB8slRVuJIzcaC5qWo5vr/DuKMpbfWn5PZduxJCJhZstFgmmKqQFAjlX37bffYrFYSO5ZE9hAz3C+M2JAc8pqe3GGeWdFlR84aH6O69rd/9SzdjGMpbzxwNri+cQ+PqbzE16lasUSeLozpXbZJKbZPGzKsF2a68ZjCcV7j5AYrOOkHnE6QpLcV0IMOeNOCAHeuaSGpvOJTmK9T2b7g2TVTKtWzjGkKag/lc6eQtNF8aRnj76NbXRE73aX/5BU5r3OJtGljpRosv1S5tD8VGBVG+yVIwF/KoXNajPm3rG1MK0a5pF6OXW5efdU5NXxRnhiTkyVvcdIZvZmLXgYhpw78dR9089KRRUtjnsPRUcYDYgaACzwmawgYegL9pQd9ZLkQJSzLMWhx9AfEMOApmmhO5owNSkrS2b6WgDdIEEXq7pOOT5NinkiOF+hRgSzA3PEEBjOiz9Zl9J19V2H3U6kRl8RqrrC+uICVSUHz6cTZjqQ2u8vX77Efr9H13X5FINNFafOrfr8OK78wyGyp7ia/mvDb6s0Jp7k4u4SQphsctOJOD8/PkfJTOdtjrMPFKk/bUaiCJCJ2z8fqZfZykw6JmWjPYlNTepi19KsczZkrtzd3eWgm4vFIktjOs90Q3/fpJrZaXJgljpXp248CeIblW+OmU2fnZuw4t/l0+ClGs8xtMSzjhqUEL9s3ZQXYYgSrZMp4WUmO7lXcy4BcRjQdwcgBrTNAjT0Cb9wCCl4NwxDQ2Jyfd+jH4IwHs3WzMnnnxy8J3jXgNJWGSIjBInn1PUd+h6SCWfo0XUH1I3HYrlA3TYgcpmZnSN1aK2qCl3XYb/fixNjcoDVsdH7lLHYNHFz0IH9bRrT3zK+qY+Z/KkfUjxiZlkuGUkIxwiSc4K5ZQb72fC1xIgM3KGKYoZfnEOMAZX3OUoFGQksRj13XCzEYmzTJDVWtpN3wvxrGdkY4yzMLBvOkkT26tWr7EytcJI+oyc9bIDQd9FPM3p1matzPCKtUcYbxDOzHWIxsVz2pLPOl2WkM9seHLdJAUk2jEtBrmKpS4OdD+mi3DvJGBJTdvIjJllW3lj/TSSJSjRzs8NobaqKRDQKhR6jVjX50Jjzj+SSuhvGwRgxrReO8SydSMo87A47x6imz78JTcdfGZmp5Xj853jXiXKzUm9E4c9NUpuSMu2sWgJm6o6xMc7/sZTVkPLoZMOYk8jy09P+JWTGYOPpvc06Hz1nJcuj62bRzAz73EywfgtPUjMtzYViFr+VDsCJBCdH1aHk+/a0CavuAF3XIYYAcoTddisOo3HAy2fPUdcNqqqWw+C680ROUS8Y93c3qCsP7xsZsFQfZ0TBfGA2YQggwna/x6HrcXX9HHAu+QyVWGfaShFskrrqXApIJz8wORBqkUS87Iy7vUTrpBRmW2OXtW17sn8Us2yaBhcXF6NsSfbfw+GQx2EaB21anv1sF4Fes/ibGhjUaKIMyaa0U1IH55gMNXNNctYoIiP94Fz4ZGimwQSxTLvKw3mH0AVUvhhtRnv8jJopP+DR3WQlK2vJHEMNAiHd3t6CaGxE0rFXSGMOong74hFzSpeyIDPXWCuMRHDxM3usuqmLIqtZiWKM2O/3I04+55eS3+fsAnlCk5kBRHT7A/q+Q117vPruO+z3O4TQY922qLxH3bbo+g6OakmuGxhVJejczevvUNcerUtuBEzwWscU5kQYmh6UB+AIm+0O+8OAFy+/SKrB2JufiCD+ZEnKyoftJVFrDAMAQl1VABrImUzGdrNB1w0Y+iGnvddEq+cCIuo4NE0zksB2ux32+z1ub2+x3+9HEt+peGTj/sXJMdTrNtN5YWYlga2oVKmuTlQrWQjG+GAEZgmd/vnhZoBKTPI5L1kS14fGO3gviUtQN9liCcP0rVuUGgC0f6fsxCqcWdgzfeqSAQpAVh/VEAYItvv69etRKCqLw+73+zwvNYrKU8bshOB15tfzR9oE5xYo56Rkdo7znoqjNbV6PMS5sypsLT5HN5nPRtaWDEgDnAP6vkPXHTAMY4/3UqYZWGYM/QGeqASEHJFxZiSV1GQSqUpY142Ume8500bThrw7av8AydoZs8e+7n7aDtuXc9LUnBpgAytao4BdFOfA/4fIGhGmZN0+WEHtB8ouG5rB5nBu0n/8lDdvoEyCyTwRV6FTaqYlgw3PUjnnbIs4YnRmzE8B+BoWy/onjn5/T1bNk63j8s/RG00dnqRmKvA/DEM+FmMXmEpmwGlmpy8VF1Y9ujKp5Jk+kjIdwAGvb17j7vYWi7bB61ev0PcdQIzf/ObX6LpORGQDKHOUbEzD0OHm1Su0TYX1oj2SGrM0ofWFzCNHwG5/wKFjLBZL+KpOwRlLu2I6y5kqm0uxO6Tp/nzdkUNdS4hi3Tn3+z1ubm5Gcf6nMcSm/aqkOTOvrq7Qtu3IbUNxNhtFdi5a7VRit64gzGzOZWo7pZ+VIVv1RN4bkuRlB3Q8tgUu+4xUTBQmI+hDkrCYMYSAhktUEjv/xGigjGdczuPfWyJK2HU6xWaLAaD4FU6lOb1ejjJ+T2OUJNFTck4OJ85PTDWnkRcuLy9H4V60oRoixsY4yjsBOIXelRj4kujbxArnM9xZK58mPAfgm2++xt/99rdYLxfYbDZgZjRtjdvXr9B1B1xeXWJ5cSW8L9WPQ8DQHfDt17/Fn/zsD3B1eQGxqooEZ+OXUwKgA4vmSQA2uz12HWG5ukBVNYjOg1nPhXKK6CndLGOQUxoDQDnEm/GPJHk5QuNaoC5SVdd1uL+/R9u2mTE9dI7STrjlconFYjE6jrLZbLDf73NGHfWVm1qlpxYvLVetpQBwdXWVE6koM4tRsMzlcjmSAmQeyEH08SIokrOMrTPXgU9bNhOSBacrLubD5C4yhr5PyXePI4dwNkSZkk50x7wUW/rZSlMW2FfpTJmpXcvAGGfTOWSZ2fcFCTAZSCLj2lndydbyk64Zp9REXSxzFo65UM7WOjX5UHbpyUDOqM3muvzYHTrstlt4QjY8+EqMAfvdDsPQCz6hqqlKJjGg61ISk6oyFiAuO+PIuFLUHpkICn5LFqdpuCBOz04BXO2LgnSM+9Y5Kc8yH8UkFLewKsJImszST8G7rHSkZR0Oh9kJa8f5lKVq6pZhfdjKAuR8LnWu3FOrURniZwiXZZwrK4AJY1SroUqhVs3UGWV6T356ANKYebl9PL9nqira9XrkZG4+T+fd90MnRHmpWP54Vs20lZ2KqHPAtGVm9rnjRhM08e/DnF0XaRQ/scSUdEH5lKFcw9BU3qOpa3TdHr/97a+x3u5wcfkMF6vLdCYyIoYBYeiTdGgxhrSgSoNGE+vQ9fC+Qk11lrh0g1BDgfbvSE2aNH9uSSvAyTxW+xSb0igV9jiRHi2Zm5DTvtVy2rYFIEaA5XI5YrLTZK6WEeofEWVJsUzqsqNnCXgGNz011HrfdBP5vCjZu2nMkFQiCiGUSCbjx1Ifpi96cYp1Yr7biEiCjRp/S/VP1HWcz4VOGINd81Ns9n0wMlkB5zAmzDByzlIZ45Fqpi4onext245UHquGFJP9fIOJ1EFyfoIfKRhZdUrp2FgG35EkaPDOY7kQny/vCFg02G03+E//6X/F8vIZfvqTP0L74wUWixo8MGLfIfR7OMfwmhVaMyuhMC/JR1g8/Df7LXzdYEFLkKsQmBFFFwWlaGegEvJHsQq2pfJkuAyGpmpFPl6VJh6zALI3Nze4v7/PLhvPnj3LeJoUddpQoJNwtVpl1VPHq+97bDab7HSr5+3s5FWDxHK5xNXVFa5TsguV7qrKYy5qyJSZnZ4TCT+d/fXTJk5qpTUC2bh9il+OktewSnSFgfGkPBrN1/PkyGVJsKqqUUYlHWPrsjFlZvaeXIfJfe+FjGY9td1m3SatMbauGaMy5tRElEbMqZn291PMrFyf0fBH+ECBC6alZFUHulsI1kIkARa987JAd1sM7LA/7NOASF4ADR9MkA2r+IjNLLRcB0Y/DCBycjwpp5UDFO9hIIXcpnEBs2iGYXGU2WcmO7F0E1HGo5NL8YvHTigdLytR211ZNyp9n524Nk+ASoV2PDLjPqGi2nekHoN2wFSK/P7Ul++bFBsEbG61bDjKUrbZ4PI98u8cu7e6xfhaeiPRaCFZl5tzaQpPjYllZE+nsQHMvmtWYzmBE6YajFjbSTVzboFYRjb9TSf71In2ZIPc8SQ2Px81SFLRUfae3242GEJfxGuz+xNxAbW5ROfgGNAd9uj2B6yXS1Teyxgz5wBwOtkK+Fq6bbvboaprVM0SQIncCcjJAO1QT5NyjtrGD+IeUxXfRirQ3Xy73eJwOIyynKvDrS3nHKPT85tqAGjbdmSN1D+VtqyKaf8AYLvdYrfbGaPAuA5zG1x2JfhMpbJMnLzLKGkBkPRvVV0DLJKvH2GQQoSyCXDC2hRze9r7yyNz8FGpJh/9Piftf7+4manjaA4ZESRdmpXM5LlxQy3wWzIvCXVdh67rssRmdxsl5bxEyC4IR51i3hnB8Kke5KTcPp1p/O67b9EfDolRaQwziIQGoGlqNIsWd9sOBKDyEihxc3+H7eYeL66vJRsTEUKIIJ/URSJIZAMFZuV6jIzvXr9Gu/wJVhfXADmJ3Jl2lBhD6tBo3A/kALZFNErYOT6SyKy1CZNryqi0r/q+x3fffTf6fblcZjXQqgjnooEqI7y6usJ6vT5y4WDmI+aowL9iezp2r169wn6/x3K5PDoBMjr/ZxcFyvnA3P+fEVkpRqUkR2IhDzFi0bY4DLJ2rtfrJCjIMiUzbzT3JZjKvMx0QqsYVyTVYSw9T9VGa+mE1teVzEu6semYzZ32eJgeUd9Tj2lzcgkOkgBYfnyUASCXR/MRF3TnPi+ZFYD75JxVidg8and/UXkiDvs9gjlfWR5I0qNzcHUNcFd2t5SNaeh7LNo25cm0jBQllJKV70km0OFwwPLCo25acM4MoGbh8m5ZsJrQuNwzbef088kuSW23+FWMEYfDId9jpbLRAnpg5yxGlLHLRM5MHWNO/KvXbZ30M7P0T9d1WCwWs6rImFGNNy+RzD5PRkZEcuwtQxBpLscooZ+GaUJnoxaSlgULEuV3EClzsy+eh2bsZ1u3U/V+qE0nNavHEhu45YFyxhCUWXOT5066ZowKQlEX5nyd1DdqjtFN1Qtd7I/tiLy7p3OMKoV459NOU877MXO2UIYQs/pCzHCOcdjvsN9tsVyo9DDB6dK9OuUiybXIjP2hE2tm06R2CUOTI03OzCDjYX+EBPDod73E+beH+0IZkGVcmhXrcDjg7u5udP7SWkDPkR0n3Y1PudnYa5rFfCqpTct8UAP4vHhZJrUoMqmEJhFdhhCwqJsiscL2kUHCEl6h54OJ5zvqoe6jBH8cqfpWG5px15nbuN6vNfNpE8HKqdUpIN9WWK1UVVXNhv05HA7Y7XazmX5Gi5bNOT9tgTXNTBoiG1ESjVN6eVoscH19LYs5MkIcUDlJQhLjgMo7BAb6IYyYpifg/uYVbl99ix/96Q9ROwmIKGohj15KAMilOFQkKsHd/RZ1s8BqdYEIB3IVwC7FN9M09xEchlIWYcTQVIKbDpckskgq+ERKslKpMjPrGqPXdUO5v7/PzrCqempo5IfAXqsKaj3OMTNVeb/++msQSWLj4/BA817lgGJpSKrV50nOOUlHwtJfkSOGQSyY1xeX2B324kibGQgDpLi0rBObtYlSVJhZzelMPfTs66lM5MA4YKmdb3rPVEt6G8lsfsWfu3NGMEKR7gA3r2bOSVNTyWyqlgzDMDl8bMqz1eJy0PZh7Xms45NzqCDgvnPF3EzpjGVMCwTMiCFm6UldW7vugMN+j4UxSY8GxICrcl2+RxY/M+crVFWDHgS1aKoHNyVRbqTwTgWzmdayTlRz3znxXxnNnLVRLZ5Tg4AaD87RFNOaHceZ3/TkhzXzzz2TPxu1Xj+odvW5EqU5qIsvRx1WY5pK8jrXKT+YSCQzdV85zUNUWT9mALJpzI+pfbdinFNmZu99PzTPD3QTwPHUylKZ/j36OJM1ABwV+kTRM0tmuUq2rPlnFEQF88ii6kz8MkLJ/gwoliTqZIwDmAVnc8lQUJhsYbBiNp8w6hBQ1RJAkUXcSvVxSfrCVGN95zQ3Ee33qcVT/cD0DCanflNGqH14KoLGY7CTrutG2J2t64OTns/f9zkYA7IUY6+lK1ZalYQ6BUdUhvZQD5xfcmP1ngu4O1OOXLcGgKfiaW9PMyGAYBj3kWCQLhq1u5qK/5ZJ2CM06gi5XC6lGMPFdaexZVjJYVQHkjheIvjwaJsRnX1cY61PjAwJhS2gtISVQVrAcmzJO4cwDBgiwExYXixR1xVAjGHYgeMAQkzgv+JDlII1iguI8dMAEXDoO+wPByzXl3C+AUMYWkwClTPnDWeG4ui7nd76lHNPW7g2Eqy0weUYaHaHVanJWiabpkHbtliv148KB3SKqTAzNpsN7u/vj+ryGEYG0nliGaqeWf30qczbWITRtFkyl5MVzhGaph49E4YA8h568BtmDWWj0gx2ltd9VgsKqQZwyrIMICeRnmot043Uqprvn+bfxUh9Sy5Lb5XeeE4XtrtIkwBwK43NSWbjDiOAiijtzk72YxYsshLnncVKZlZ10bONstZlgbskmYUsmaVnTBYY3ROOWY9Muj4MqJs2RcnQyZT80zK2hCPm/K7p3CSyfWI98a362bZtjje2WCwelcT1HEPTsN3292mMu+MC83+0VbMSzOdCY1BfN8p5ySyHYTfMS40GUsLcDE0nCohGHXgM4Bdvgvy0+axwhdbjFPD/LiVmW5Ld3qcrMa+18VUzlZImNj3AbC1hUwY3BwDP5W209+hry/GLI0BgwvlnOivjV1LaEEJiHKWxSGwmJn8cSmcRm4TjHQ57OAKaupI6MBJD07/ihczagY7SEZ8ei8US5H2+76iex9DXcXuodLwaBqSb3n6CzPW7fldA17p37Pf7fJRG1c6p/6AuNmVKljlptvTp5D+Fu00ldMVw9N/PlURlNNIvj2EAgHKquXzD5GPuH5pjaIDiz2PQaQ6Bml/Leu2pcNGpOfcoms770f5WeAFBYSl9l/6c6u8Iznk471FpWBdlanreTyNN6mSeHmHSDlE1xp7Vs79ro4uYS9L5hJEUQ0RwrCkbcFQOx5D+BXa7HYJRjyVaLMP5dGAaEor4+fU11usV6srh61ffoXKEy/Uq8xSOSInvlblERACUjjzBO9xvtri93+D5y69Q1wthmc6JpVNEsyeMIE/Ypg7K/MQ7RdO+tX1sGYg9wmQlavUJUzigaZqR1dOWN5XydD7YKLbWwj11lp7rA5j8D58rIxupZUAKA6ROpz6HObc4tDL8DNEkCc6hLJVZoYH17kK6SVqp9yEoQPnAQ1DB+1cvzUaf5mjyLkubn5PDFEwg71E1NdrFUiQzmxkbGC8W/XfuPCYRjeL+W9H5yEpodhnr3Tyl6bLOzMxc67suJf5NB7qjZA1hTt7KJCnQVssV2qaFc4TddgNHQN025U1sWadVm7VDgUN3wH6/x5cXV3C+FmY2B44CcjbTqL3HpFLgtMUP00O4xakJphNTfdGs2qnMT+OP2cgalpHpM6qixiipyHQT08S/9gTBKbxlpmWPav+nSBbUF/wLGWapqgohRvjqjA8gK4MrTsUK24yZZVEl0+sSpjbf76c2kWngxlNtenhM3xUVyczihlldZz2JUqGqalRt2+aJbkORqA4NFA/luRhmuiimCU7GdUqVyZ1IRTSe3gdMROUxcfJ+10GG4gXm/rqucXFxmY5eATEO2O23qAhoqrowTJoZ8HRJZacQJP9lVWm4lDSZRpMLAMvO6FK5PK9zPlUIGz86mUQPTai5SadMa+rgGkJA13XY7Xajsq1UZg0POpbnpbDzdaO0Lxwfrf48qDhkFFKrvHMOcRgAHJ911s171hgykhEydmMQjMLQjqEQc6zKGuiMinkKMz/3/V3QuRmgRhCRzMY8goEcdr56+fJl3oV1x1ZMpeu63ECNLDr1b7q5ucn+THaHOVpEToBOjUFWGFCR2rRFZP5U1JYyI/phwKtXrzAMAU6xIHJp2hAAh6urZ/ijP/kTXF1doPKE/rDF17/7NX7yxTWuri7TOxIzSqKrlA94cpJ3k0Xl3HcD9oce64srOKohQn9yWJ1CmCwJThTD+z6ljlOSm1XFgeLCMY0Yqqrn/f396F470e1mZfNyPoSd2AnIiKONjej77KXvmQjZYz8mAH4YBniS/tsdOlS1WMSn8EpBiGOCZRScSOXZTQ1prWRD2GmJWMdxLuKKblj1zKH3758M+BMjEAMIgIdL4cQJcIQYGN2hw3a7RXV5eZkbfjgccvQDZs5B3ADMOl8yM7bbLS4uLo6OOY1cNYy4OAKLzzZmoqYmrTCGgPv7e4R4bEJWM8BqtcJXX30FV1cA79EPB9zcvMJPf3CN1XKRize4an6eKB0gTyb0fgjoh4BFu8QweAQ2ktkHGu9TE/UxOIeqnFZNVUOA/qtjbo9BEVGOiKHjqBvYNMzy49vxGTMyANPWaV+7FIePddMgl5BbHN1v7FxSot15cWrLFDHAzhMqj+Q5MKU5NfP7USfPkzCzmPFEBmcMUoyQcpSvsju4cuyqqrLPkuIgp2KYKdnFctQBSZWY19ULK7EaWAbJOXk/ZwgwpTNjfVfRFpkZlReJQVLAqegcQSRYhXNWJpvUwbhrEAh9SDkBfAWGMDkYSwownUzzU2uEAc7+aN9/nuZUEmACCE9fMfObtWLp2Fvw3m480z9gPjfq9B25/DyyRXHKcEOWNQq+ZOt8qk0fO2Vg3uC9pR1v6k9nntHxm/7CUnrheRP8cgbTnuKuH1d/j+vGhruPUSIanwDQQ9zqWKk7SQghZ+OZklVDpkkRRguAyjGcOGF2o0U2aYiqmZqDkgA5TE2AS4fNAQnaMww9VhcXWK5W4kAbB8TQIQwdHElkWe8dkI4gjTol9RsD6fwbsNlu4VyD1dIhsBMVM1svT6hUR8NQPp+eIk8D0s6pkyffMLORWJVRd2ubqGZqvba5CGxGdWsBOw8Ol8UyZY6fJRn8FRivFRUQiIrKaCVVQpmX6mNpIRelInkp02TQdBWZTUvPWM/FJVTJbK78o6a9k3E7P+9VMg0hgKL4mgXmZGgDiLwINU7cWzIz08mqurSetYsxouu6UbzwUy+2HTG1jBY100hTj2jeCJRMo73b77FcNKh9BeYgamGERCJYLNG2cnYzDAEcB3Ac4BzDq7d5cvPIL8sSV6kFkcNu38G5Cu2iRuScGThhIRbXQMHedLckegJ7er90juFZScsafay0Zu/VcfXeZ9XULpbpfceUkB+DmX2+NN84i0GqqpQmzey9Km2dWvh89ME8a2tDJQvTYwJMfAwq5sgwAdsPSeJPXF/ObU/ITshTKoZtpOreNqaZ3jO6P8/aY24s99o6mM88ZW7pP0a8TL9kiUHqJI0WS1wnETdI7ivlM0ZzxLyIAfT9ADiHiqxEmo6S5MlXMIlZYuBJAdu/J5pKd6dU0VlLm5n059Rac+VooekGJ1/eqAmfAJ2Sx80a0/tMf4yZ2xg0y+opKQSDcT+y9v+JTjW42ejyA4zrXUnQBUZ6pDaic43FwTjGCO8K3jcybJ0qwzK1nDlmRs9er9fo+z57lOu9U5D5dCA21YXtu+1nB021m10EWCJZMPSEf0CIjBAZz56/wGq9RuQI5oDt9hY3r7/F1eUF6tpD4/+riTwzR5hwKyRnL797dQvfXmK5fg4NyMiQZK6ico4RC8Ek+LgR5p5JL+P7Wslz6smUIU0Z2dzzOh+mEty0TPOgtDytr+nm6D5TTpb7gbUvZe5UVSXO4Und0+NwAIShMSEa/0f1MROpiiX3LES1yrexMsOHGUTkOApKYOv7fUhl5+GWMcnZS4AGTtqUhPJy6l6VjJTMLJ4WpwqaGgamUpn+qwfPNXS2TRQ7aoTBBc629KgeVhqIiDEokpYnCrMwoRAZl5dXWC5X6b6I/X6L+7sbrNfLpELnGVBE+JHKKJMlMOP2dgPnG1xcXINZDpjn2P/0MCN63KC9/8VsRfXp96mz60Pl6EZlU8pZNw97PE4upj9rblFG9hljZqP+TJBGdm9J7jtVVck55TPdrvCMLTerVromxzefrhPKEbWpn+HHSAJ7lBMoYUgJd+RXcScb+qyRVTYt2DQg32OsG9b6qZ00t1MTaYwkJEtjrvLM53mgOgQJbGd3OgvkAwRyYslUlTIG8V5vq8pEp9D9YSS/Q4X4BH0hxAhAMzIRNNzIVO0dK9DHAOy7plPjMYeR6L/va+JaKevo/Uffxpa1TPPD/nnRkeZtJfjTeBhIffHKfSdB+dOljN45Bx+ck8re+YZztqJj2U0lMP1Fr6kwwTEJI8yo7u7usg/ZXBRZZW5aoE1oAEguxqqqcvgQewSm67oMEC+aNh97oZGPi4rZx505Zarb7Ra3t7dpR1NAniDpnmTH81UN7ysQAc4x9vsN7m5f4Qc/+wHatgYRI4YA52s4EIg81N2WzftDYHRdhPMNmnYFQgXWEEHapcr1JjiG4h9GFjk3eiiM9f3tlKcCJ86BwVPp296v17OUMVFNx8/YPrJ1+fwPmGfXDABIsEjeiJMmoRvxeDsfzxoC4LyHc+I4GrNUPcEd0xMEJKfS8XiIJbSs38cE7DxH78d1ZsLIZJKINsVG6EzXCYQQQz6OWW02m3zA2GaqnlYYwEi1AJBDM69WKwDi/2U9yfU0QYwRlZMjU+LnYjuSABjVxLSHLWNgxn6/w/393cRDmYrITU6YlPMgCnCOcThscXf3GleXf4xajRUc4FEDLh1YTSiYFhcT/tb1Ec7VaJolmCoQW5+hjPZNzRnp77wLx/dJp8Z0DkJ4DG4ytVRP36H35MVG5VjP74cVM5HZnzhyjsZs1T0kg1SSuY6keiI5OeNcACFmRmalrNEondkTGXykZj7EiD7khpPfbUFXAAQ5ew2S7GqKpVdzURGmYug5dcXer64diqvYDtMyInOOFnBc5sxImK+qZpZ7TUdPF2aC6jVNl/yGPAm0f0ZM0RgjYowpX6fDOGavlbr4fQtU75SmjOzURD1n3XxoAYwYp1mcU0mVRsv2uAM/dalNsVygMKojIwygOhMYUY4+GWlOOygzf9n3keGQU330AAwxHfvpJvbe+35uvZD9ce79p+eL1r8KIeRzmNvtNquQbdtm9VOdZS2uNqcKqviq92mCC5XIwCmg324L54T5NXUN7426k2GtsXhMRKaOPluuI0u8fwBJshSn3NB3AB8kuqyzKXvTWbioZ948RG6IaQ4Qur7HdnfAan2Fqm6h+fksOsamzzOSxlYWzujbzMC8H3qMm8Q5q+bcs3MSlz0pMHWynCZkMbUDIHkZjtWjz5MUdQCLFTI7pY4YFsERYMxS4t8HZIZV1zX8EEBdyNJVCAHkXY7yHlESIJ4jHdMptDCXRvBxbXyTkXz6uhBoolh1KUawc1AhNYYokpliWxqoT6JOXGC9XgPAiJkVyyLnQ6lTs31VVWiaBhcXFwl/Ctjc3WO/32O322GzuUdVedR1hfVyhaapUVWKo1nZfLybaFQHkZbUfY5zbLO2beCcR2RGP/Rw8YAYB5TsS7LbkSeEwABHAfezlCeLrR8GbHc7rNcXqCvJk8nmrqMpk6rMaUIBNN07njRw74pOYV9z9wCPm5jTcT+Fn50EqYlyYo7PmayGIAuuWHqzrz7LMT0YgUDdMPIqBVDVFaq+AugAMLJqJfktCMdQB3J5c9emzEzX6PdLT2NoUufEzDiCQkBEcTqOkYufmT3KkE2h5m9qtTo3WYHjbMnjSKZjFXG8248BUEt6X3GKRbJkAC6puQVQZYQwQLKMj72ZFKsY1RtFsOIYMYQAn/yAVBLTp/JSVDU16xMG45vtne+XTlkxz1lD36fls1RgiuOla3hfwPIHpMdOBnPPyHgAJLhjcsbVYpuASH8z3XUKFnjImnnu91Mw1PS+0/R0RpZXXt4k8hvz5wooCTHU4dU5Sb2+2Wyw3++x2Wyyujm9T192rhGqtlJ6j1hNBdNC5BSaOkVqqMxhd1/S2kkbjIhNgHNAVXmEGFDXFa6vn8GRE8ZWefzu774Fx4irq8tsQRsBpyr5jVRDiR6yud9gffVTif2v96puS0k9Gw0452GaGQ58HOztaXRqEcz5KE1hh7zpyY/jMj57uSxRVjDkQz6/ismJGpXfOKGJrgRVAEz0ElUpJwmE8uu46ARzs+1cJq43VTPfP5mWpHnkyAHOIcCEQqKU0VyZhzIoZs6JfVVaWywWWCwWWK1WWCwWaJpmFEbkIVC4XSxQNw14uQSIMAwdhr7L6qdaPuumKmGca4kKKxYYbY8wPyLAe0lsqmFVnj17BnIO5IAKHt9+9w0iB1xfXwkzsztO+idGCY+dka/U9ru7DV7+6ApNs4BgZgawzTunxcVOMasPOzneRNKyqsg0vE/BLcZnNvW56bsRrfPoeFf/+BbOuyNWcdOoi5aZQdVyi6owgymd2QzFwm8PhnPCiIdhHB4oQwqpyDEP4IRVlmtTaWrKHB9j6XzfVDZIZGEi4/ZGQ+R0UzWdpLYBqnqq35iqnNZr3NIp0VQHTQKrUVLdIjjHJCuLQaWlLDXp9bSbOe/hkmRWXDgSXlfXRRQnoO87eGbUlYcZdkwZTJ5PzJDM6BEhxOSvluqXHyP7xFlWdcRCPpBw9i5Vx6MJTmYQcG4RTN7/GTEy2+Zx+zUp9RuVCpVh1WBi5fvpv/mbmacnAZsThqKM1z21pk+ZW6odMTKXYisUkOY/GD8yUjOPFSIwUgggOxA2MJ9aI5lLwpLD4YC+70duGKp6aqSN+YGFqUSEc4SqrrBcLeFrjyEEhGHIAxEi426zA0dheu2ixfLiAj/88Y8BjskCe0B3OCByB1CF5fIC0tYIwoDN7Xd4ftHiavkcCJQ7KiAikhxNImZ4DgAGRAyI5NFzxJ4ZbnEBVAsAFRzLaQBVLWVy6UIujgZju6m0VZs9Vq/Gqu3HpIaem9AnJ+4ZTZpUmoXElPMJw2QrWozfMinwE2R8E+2IE7gbQ0j4boVI5WZFi6XVAqs4SMTjmjxqIngA5IEAYB8JF64CBUls7YlA+ageAQ4pSIMyKGEcyhgl8m2ES4B633XwzsHNAW/viAji5GQlrhz+CGLRlaniAI4GIywiRJY605wq57RRJDMAWWwDMBJrlWKM2O12OUu23ndxcYHlcpndMaZqR1Ht9F0hYVgV/OUai7jKleq6Hn3XY7fdYnu/QRgGcAy4BGN9eYXV5SWq2uO7777D7c0Nvv3dN4jsQFRhvboSZsYBjgLub77GF6sf4tlqDRocyHswEQZ0OVKlB+A5ghAQ0eMAQo+IPQNucQmqlmBUcLFD9MXnLJsU2HY3JuGP5/ZGGn2TiBoRHxMzU3rKjqvhWOYSYhARyIkzsnMEb4+zHQvK5gec+vGjo2PpN2FgxoDELGkS66oCVYWZySJXx2JhYHAiW1EMaKoKDYnkERwwMKGPhOhqUGAQB1ROXBaQVUo5SwyKkDDvJuwQCcMceEBNFThGdIcOFflZI8KUppLouT6ZXEDSyY76TF2qPEn4LWbLxGKWUEemPJKAEJFlBVXnKjUCKdPvCj7a5Bb2KNOcF7ltfJFSkIMgkgccq2TICINkGBdPfAmZG5klk03l0SRcTZKM+BS40YtaGIf04og49CAAlffAAFW6EdMCUulKsDSRqZilDREA+UqkuSx5UYHKzL9Z4pqZCMcK7Ry9f0Z2Stp6yNL10HNnaz43p2bKHGM55wr8hGiCWdnPatASxU42MsrMzN5vtQDZRqMIWIhImsXsi83Ldd1xceK1Bi99p+bwPKUVvwuoYlzX8S52rDaLVFYkMZqdO7YNjz6gpYYC4FiCizHmEECqfqrqOc0NACRhZHStDIr3FZoGwFqSi8QYgBjgaofImhavR4wS9uPly5e4vLjE1cUVgJT1Jgb0/R7el9BFpMk5oPiAy2BiEacI95sNQmQsFquCl4Emh+PfJR2jA58qHU12RW7z1883SsaUdNMjAEMY8nzdbLcgItSRUVUEmJRwWR2E4sRQHRXOEZq6wrDv8j0xhhQK3kGUT/N+2++GMehJGGUMZN43FjeOqXgWvNkYTueHNS6J/+E4gY6y9zmGrXKbIotE9HhmZiNqWKOBcw7DMGC32+Hm5gaAMLjVaoWrq6t83nMcpnesaulwEhHqqkblKyyaFherNeSQacBmt8Fuv0Pf9TgcDgghomkXuL56htp5tHUDdcgcuoDdbocqHzovDndMJWolkZNAb0lVZCLc3N4iBMZqvRbJUSUzezrhndNJXeuTpNGEN82aTUX4+TR7RDGB3A4S5FPdk25ub2ekHHNW1eLXnADxpH61TY3d/pCeEK/9ykHgE7VGWqlrqjOyjIE6LbsMtuuaeHgw5iCExzpl63ctQ4O5EpVk1RzLGXDhCQbEmZPoVTs6x8zOOVta/zJtjM3soycATsXKIsZYN+fxOyTOFQDvgZRdfN/tRdc3ZmSfJsiiblC51BRCluCcPTozgapEz6Sj7/0wgOFQ+coM7vTevyelaa+MVNT837HkcXzPZ0hqZWMWI1ba+HniBTCagaRhrTBaE8D8EaTIauE7Rhjn+EtR0yj9n/J50OxK8gb0WEntHE/JvITOhzhSn8+5cs5KZhbAf8gpVq2ZGWQEsv+YSEkpz6JzWLYNHHyWdrKWn7CrUaemzq/rBsvlKllZW9jhG4YBgQO6yKiriP32Dq9fv8ZqtUZTt2BWK0oEQyyznL5HhjlSQthudwBd4uLyKu2KKTqn6gx/T0+k0m9E9HuzJ5ArHGYYBngkyXQqnSbGVXzxikSrcAyjpPZTtwZmFuOYq3Kwx9Hma+tCqrYyKu8lIGS6T6Uy/Z2oPH/qRMhT1MwxyD9+bnyOl8c+iccllfLMVXv/o9TMc0cZ1G1DHW/t9c1mkw0DTdOgrmsB7q+vUTUSAlcsF0Ws9hKTZyIVebSLJeqmRmRRPWMKqXJ3c4uu6xH6Af2+w6INuLv5Ft/87ne4unqGdrGESusxSmy1qqnQx5gMDAHelR3r5vYey2fP8OL5SzjyCBESqti9T5j+c17hZdOxKsXnTo4KLNH3PUAlleNY3U6SleJH+WrRUgYgewoo5svM6IYeq9qDyCEk94xjRmauMVBXkpgoY04cU4h5PYUwgemNVnUKL3uIuU1dtVQK9F4gKrkHCDEcvT/3Bk15zzgTO/AEA8DIIjnh1np9Gj5Zg6YNwzCyagpT8WD2WQnRQZqua05tcSSZ0BnFiqpqpFpY+36A9wO6vsPhcMDzVZ2lMH2Gk68TmV1J+wtM6PsBKxDqpoWKjYxy7u243W/L4j4fRjYrwdP4dyKMJuTnSirh6FrIqRdh1b05lRL5Ahl4I6uZrKFEE7Y0fity8pyppR1Ic99laZAgbg1jGIhzvfNzJz5rvR4ruY2t5OP2lrXPZsMrG6HKY7mM3MxHSmZTEXFqsn/IVGvzMeqOxMzYbndwXSfe/N7DVR7O+dPRL6M0lEftkMFdLJaoXIXQDGjrFnV1QOiX2K5WWC4r1HWTpL8IEI9Yh51HzIwhBkik7ApVlXZB0s58iOl8vgvzXdFISvisqbTTwi5d18FXlQQwmOCG9oyhPs25JMXMkiEryCKOMUlV8BjPZtFGrQ0mxihhcprKbMLjsQgxiJY0dpYckcXL7fejHpgwtKmqqdrYnC8aYcpbZqKCGGlPJb1HZWeaWjHtPdN4VkoqFtuGACJO39zcZq9dX1dYrlZoF62EHNJYZaUXgBgBp1KSeFI4iBf1xeUVOCRftCHA4RYOW/TbZ7i68mi9uFWEoQNcMVg4Vn09gEkcOrt+wBAJ5GpUzRI5gQkBSFbPefp7RnZEdjUlygEyfw9I55lGg5FNfCvx+yrLUCC4GE/UJtID6QBYQgV5J2eRKcpxv3y0MOEonNwzchcnfkXgFAlmwLpen2RAfYoKPWAcPFX/VelQP8+5ajze2inJSkruULmqAVEfE5KIiBBy+x/pmnFOJz7XIMsAs7jNkh5qCBLPvBpq+LpCVVfz4mzW10VKssKwI4e69iJfRgZVAcAeTdugbVo0tRMMbhQWu+jstlUMRmBODrWSxCQc2+oe011/T0oTE9usZPY5dqkRejKTgiSpbprGhMfCqP0K4uf5SVoYklYhgRxJEH3EqOtkfAbUZrQQrTMB/DFBM6DZ7ZdZnNQDh6M1bP/ONt0w5SmmNWVs5Z7UxPSfI6nOfD6W+Ixx42zNTlR0eu3Ub9PftTK+qgAnwL+rHDiKL852s0XnD+IISGIhrZIFVNpJgDnFludCGtBktkFdeSxXS4B6MAT0h7H2qAc2Uu5BCeYYsNsd0LZLUTGZ5HfF1t4FPPZ7QOfgByoQ0GdPunmHGFHVFUKQ84/2uJ/cB8zhQZk3MXIibAJQ+Qo+xuQjq0YsRqVMYfIsU8HAmOUUjWBvSXmj4hcaGpH0Bj4dDugcM9Nxn2prNihFke5m5orxHjgu/ORb86fqFHg3d8ZOKzzH0KwqakXQqY9ZtsqkAWKSxLn73QHbzRbMEZ7EefZitcIy/ek25jTWk613YlayUiLaRY1nz6/R338HThltgAhPLuMHPvmRkXOIPGDfdbi52+Di4hnado0YSfzcSGZIBKawxN/TGTpGZJ7CyD79jhZGFtANPdp2ga7rcHd3h8urq8n6EbjFuilwjCCfpC+OAPnE0CKWbYM996CUPzLEiCFE1JVDjLLmvBQrZTNyuJwYI9q2zcFNQ4yonENTN3j+4nlO2BPNCWN9zhoyrP+oJiyauy8z9JShTXmEnA7yaBqNVlzmRuQIjsjGktJLY3OA1q2o5cYA8FjGpdfnvp+63xKBUqq5EoAuhIAhBAnfPfTwjpKaWKMxurNaiHSqF1jQcvcIXzksFi2GezfuBXk8i/Mq/jPkAPDh0KNplvC+QjajohTBmC7IT3vBvX8q/ZPB6AcZ2nQKf5qkal0IAXXd5pMygKqJiWFk8SvN6+na0v8QgzjlpaUAkDCzyAVjK+8uz6rmkiUzV07i6GEh5wmL5RIO5RB6boNhSDbxkWVqQBF+LIOxz9jMbuKiUjwRhIpUepaP0Oif0Qx50Jqp/56zXM5JaqdEVDEs29QLMhDZB4c4nzeLIeBwOOjDIO/hvEtnLilF9DHvEbMQOFlu9Dl5RWKBrId8x4p6CBG7/R7N9QtUtcT9L1tBcQn5PEGe90tZWv/QFfk+KW2UushHvmVJGnGTqSubpfEgSPemE00AktOreTAHYyBCttXruuUJU+JocC8bG0zePnJTys2go/orE5oysDnJbU4yswzQkmBf5b04w3NEO0N2X6FzBgAL9o11/OMXaEOtbpz9aozKOX6BDlzRo+u6hqMaRBJFYxgGHG5uMISAqm7g6xpVXaVoty3quiodn5xtgQEx9hj6HgQHl0DTEvpEUsgxq5NiBDlC1w/47vUt/sFP/yu0ywuASmhoaZuO+6crLXy/NO4nBZ5n9c+T9Amzv7Rhdl2Hy0tXosUCQFLmbLQVqzrJJco4rbKpyIy2aVAfeujeLElwCaAWOqN9Kk/6u0hJYQggp0wsrw6osSFGlmXkx+te3aoAcbey0tcU0J9i5NNrRIRvv/0WXXdAGAY4c2ZbwuG7kn1t6m4CwLoWcwp/I75z/mEDwGOks7NMy9yTG4UyeLZ87z0qLxNepKuQw3fX7RJV06BualRVjaapSwvtwkl5MmMUW6QOKiXpioGU2kvDDksHhxiw3YsBoK4bxBRTaazIPu4w7u8zzY3/20lmn2p/H0tmRy4Rj2DsWWITxB6V13KK0BA4HqMpVg/jpK1kx135MW8wemsaO2fjic0INPb+h2ClObq9vUXXHUoSIyqMnIBHR6jJ2rVKZg9hYtbEOqU5ie0hlTTfr0PEU1OuTgOppIYTEiuMVHoYBuz3ewxhQEVAlZwJvfcSbVMZGscsautQEwQQFR+MxO1jcsmABHkkUkwvzTb6dJfU+6bppB9R1nqOj8DJ9XMlf6I9rlOGSp9oeyVyzPj2OQlkWqCCM3lz1v60EhKgLy3Qij6fhY2ZXjWvthvOQ5bMN2VkAFJipAa77b343AGmjseY6ehKAvvBeijfibuKc487aP4QTeMS6bPWwqm/y2/pP0byKb43KVidsXx47wENlAik/JsbAJLR8nK1xKJtsFy08BjAsUcMPeIwwJHoh5oURUF/ebccbB9CgNgZKlTVAs6JZBZjBDmfJsc4Dd7f03kis0qIaKROfLZkjEZKNimMhsNSQ5YVzexaoxmuo6EYNVKvdz5v2IMea8przRVGhnJywOXfRcpzNK0rPbTDPInmNroYIy4vL0EAbl5/h6ZtMzMTZi/Kr2pW81SwR+ccvCM4Xz3Nz+yhis+ppI+xiNJI/C7xxgCkA+w1IqWYnCw4RNftEcIAB0bt5ND6ovEAQlYzYwxgF6HhiMe7U2KmxClkNwA4OFeDXAXJyCTPuQSYngMk/56E5iTz4x3394Psxk5E6Xhf+g1z1vHR0+ZGhp7l0w1ZN+WowLsxVuUSkhBjJbNzzGqOib4Lmmp3bdui6w5i3S26ohhEdK1NXRAmzhmq1YmrlqjeT4qacUrymiOrOs6UaG+c1HnGP1n1YtaAbRrbyUPccRjD0GO3A7h7DQyHjIXZrsiv1gmSrvb9AGZIWjmymZzMI+8p0cPRjnyCHjLCfCyUHZIT2TEAjTeEJ9kCPjHKrhAmYfVoeI2aOLJg6k2ckOWkVtm+kpMANALDdYEjb90o5RypcEUqZI0eY+P/TTCrd70ZMXOWYotqm1Rp21DLu8yHSe0yP5hlZlNd/yE61djTjE6Z3ZT/MtSyQ8YVgs2DIjY71E0DIkbjHTj22O4OuL/p8Op3f4GrVYuvvvhKxE8AyJE2UjnMAOsRJ8Jms0UIjKvrFwDVYPbiQGIddBWD+FxX3zukLPnq97RAyqYy3XU/Pwoh5tBXSMYm7yfRmkc77ITUsCU7qSxYkmveiSEg6DrNa0RUzKx1cMyTfuReYZhaP/To+x777Q7eidXSJSODPqPWzGmk4KfiZrLmKWlNMZ/DBKVkLEAKzmicdvOzhpWlvuOkZhKlEGQPv/w8Q3uoQad/I4x/KsNxLBeVZ4AS+tc5oK09DrsDusMeu/s7/O63vwa/eIYfvvxSBiNNCjpaYmX/Ohw6RAYWqwuAqmQIJ+T59vEKQp8EjdbP7wlpYpySKJuPrZn55hMXbZgYowHqofOyPouLkzIvZlEzj7E4K50BMURhZvs9Kpf8OFNCcI12MyesvKl2IFVUB9oSwjt3ggL8s0aR4zroRvloNfPNKv3Q7J1TMqaVT7GbcgMn70j3qB9/CENicgpyKlY23QSL2E8EdH2PECmpmcahl0QuFMGs5Hp87G40VR3OWv5wPEHOqZbn1NOnTLT3g2UVvLRk8R69FZ+7v54OgRUITjGzc+q2UQjTWkAC9J15PkXnmLyv1CVX5uidkcXBPISQjkyV41Xq8Kqx+vXPlm/rccq7wTLDGCU5dz8M2fdT7x8H7pxhZIYVKBYohj3/fpnZwzSjaiRGw0ZwFhE9giOBzFEMkbgZHAY4YgABh8MWi7ZBU0kuQPAAJrW0urwjgCC4QOqVVze38PUlvvrBlyCqEZO3IukJX7N3vM3Snw6wxR31sx570V1dJ0v2yZmUN979j9/3fQHvcwtI26PhooHHSfufGhHJ+WJtlni+q2rpMQyDMQCUjc2dYDzTMdNNVNPkSsIfYLO5B9K79n2HRVWlMqFZFVN/ixFshIUlLK3vJUFQ13UYlPG4sZ+Z9VZwk99soqKp54JlgLqpDUPEfrdFlw/du7zSRegY62ZZGjXhuxR/dY7Q9x1qJwnLPyAzU6hyqlRaRiZXYhK5iUsM9XyqkmPacCKG4YC6qlB7D3AQXIwSUyLKB3GztE3yvvvtFquLNdYX1wBVUJwu74bvSM+0eMkpZqZHQOwJCn12OtGnHtjTd9l3vm8a+Rma6xl7ycA2PkuYzA5DGcvCDGadZssTmFerhOxsBCgdDq+B/J6IfhjQVn5Wn8/uTnYMEg3DgL7v87lRAInpDLktfd/PahWqiuo1+1nzguiGrL/1fcDm/g6c8MSR1gQ67gVVkqyqK8s5b/xVww9jZtPKP+b6wzQH/vLxb+ancQN1USc1kpNTYYwY+g6t93KI1ZbKRaW0Gmv+XY9FuConV31yqx5hlTxlWCkieBwFv1PGpr/ZXe/ce069+zH450NtmCvXPisS8/Se/AuQe9eAQJ8tPbQJUp6TOc5Puq7/jBR0VbGoxDUTqU37Xyb5KJ5Z4hZk+3u0OJIAMRlvK4FNpTF7z1Qas//azdnO6dzKOVB6ys1S34ynbvnSdT2qRuKvfSDJzG7P81t1vpoGlJPHLyerh1hDIuSMW0QYDri9eYUf/GiJ5WIhdh3HIERwSu8OmMFIq04P6jIcfN0iwud3ZTyO9GTC1GhxonVWSjESld2ZbRQBIkJIUUOqqpIsPEDyp+tG2JO1KOnnOSnsSFWZm0jvkE5Zs6lo85812f4ti1k30uN8oTR6FvPiyPQdEPnMO4e6SseSUrkhaD6AYoEv6puD8wSfcF/L2NTiqXPOziUl/e1c24FxDpDiBF9CAwGCmXnvQcm4IBGnx1K9nJ9O/Zl+l3qaZ5Jk9s033+IFHH6AD8bMHk8JvUoDbmKBcwTnLM4RYeix3dxhufgRFk0DYoYjexh2/qiEZnoCHLxv0EcNG6Q7Jed733b96w6nwKplTpp3lJlzuPHD4ZCvVVU1YmRanvd+pAaM+k4xhhnG9q7JWtLsteNXfV54mZKVRub62147Zu4PQxnlDsnCVDmffM0oGQBUMnNHz8n7HZyL+WK2IUaZ5xZ3neKzpwxRFhoBkHN42GgaNnqGkEsuICkyDgfwqO263lL9YI9sJUhGvOdBRLi5uREvBKgb1gejwihGV8eS9TxR2alEVo6IoTj+mdvyJ90pVdXJIrBLOTyhkWXLxMFMSW9C51Q8XQCark//tX9215via++C3g0ob3p7NAYE0/mfn6jGpzeIAnFk5bo8dGp2zxZlsGSjYlproMWe7Ecr+dgNJ0twMyrkUZXoeGynwP+cVjBb5ujSw6r4XJuAMmeHIWC/239oa+b5Gc0zn8SzX/iw7EsDwAEce3TdFnXlUXkH8FCkAsUToJZSFc0DNpstFss1mnaNwD7tbAyJS8z5702lmakaaK9rmYfDAVVVYblc4vr6Ou9wdV3nwHZ6uF4lOGst0vvnMIspHqdkLVTT+r5RO9O/xf9cJ7h7aJg/aTrlBmEX+Cnwf8xEiuHktJxWcEkHwBMhkLiXh8n5TN2MGYwYBoAk5LbCc6AUYCEZm6ZSv63jKQhhDtbQNk9xMm0jQOnc9XHrpsK9MmwroKgLB0PWr/cVNvf3+C//5b98aDXzcQxtxNSSRKaeFYqZcegxdHtU3qNyDhyGNKgFzs/CQboQY8R2t0fTrtC0S8ixdQdQLA9QfLCOc/QQU7C/932P9XqNi4sLXF1d5et6MDmEgO12i74Xb+2u60YLxbpw2LKtpVRChRfp7vsgl7IJ/T7QnCo2xTaBtJzTHDxiFKPPOCO4scToIzksLmeLlZlN554kupaoMpo0SCogkXDj0Ub3Jm2fSmMWJx4ztvnoHYXZSZ0Z4tlJ+YC8kdGS4UCYmcd2u8X+V7/6kAYA4CyTKO3KuNnsLcwpG7QcOn3M0slAI0vEDJ/yd/KIt6osO6n1CRD9sRLNnFhvB37OWqS+ZKp+hlEo8bHVczqxHlOfd0sz2B3UrUC/f/r0kEuM/X48JjPPGrHk3IiorVIYmlVaLbZbYpYVgxeNmeWkjk+xdI+r/XjVNDOsUVkzZ7HLTyhcXeqvfqIMOWTfNA2GFMLr4zcAGPFUmUkZOAZzwNDtwLHH1cVSDubGWEB8oPCl1AkyccTn5eb2HsvqRIefAAEAAElEQVT1D7FYXSAwJNYZHIhU1UR+15ti19aqac3d0hzOxoC6rmdFd00Cc3V1lTPExxizf9AwDDk08XK5HAUEtO+0wOw7o1PzMDNnq2Y+YhP7BGnan8MwiLqHFNmBBBR5Uqvn+F15IQiMuq7QpQQgDCBEiQBTew/yDo4BopgcTqUAxYYBcUQVY1SE5t+e21TnaCqJTrUAu1GPcm0m7LqUYwWV+cmUExClMkOMGCJj6CN+8pOf4H6zw2Z3+BhcMx5BesRoughZmFnf7YE44GK9FJUzJhuPvkY7thQIhgCHd3cb/MHLCyyWK7EMMdJEtEfUbb3fnOaYmbVsej8O1Z1rS4SmaTKzA8RtY7fbYbfb4XA4YL/fg5mxWCzyBPLeZyan7z9Hb2/lHJefM3B/ZszL0lzfhhDgqgpQ7Ah0FDvs7TYUwUuaqsKu76FyWYwMjoCrHeAlo5NTK376o4LPSCCFiRFpKkVOrZdzpBiZkkIadq7nMnniB5ex7CPZI3/SWIS6ZiQjFWMYAn70ox/h9n6Db7+7+RgkM5p8fsogy70hSAyzqrJ6v5Y1Fd0p/8SMlFXZSxBGe9/R+ns7RnZOIppKbqfUV7vbqdppPayt79p0kdlnT9XhzShJrLOGBFVx3rDoj5jOjaeMI0Bu4tuX1G0+MZcUCzo1CbPEnqCXHM/fYHDZATZJQYTJWBzV9VhGsO2w/87W98zvD5H04dFb5beT9S11iiw+d96Lb+ZHwMzOk6iWEcheJDpIwt89AZu7Gxz2W1xdrKAJRpMSV3CuJKGV+UIIkXE4DHBVjapqQL6CbjCUJTQ6YodPbsNEdbQSmvqVDcOAu7s7vHz58lFleu/Rtm22lGkKsM1mk6U83cnKubiS6mx6YPh90FsLeh85TZ2j9XOMKVz7LKcYY65vuok4AG3Twu33mTkOYcAQKrhqAccVXCR4jnIEMIWVn9OKCqz2eOY03SRtH0xPDFgDA8fxkb7IyoTNv7mG5UjYSF4jB+YB3eEAZpnLL15efwzMbCqZTYg1vjkDKa+fgwRxc8SoCNjc3SL0W3z58jKHRnEk0BkYyW9NzcFF5QwROHQDnG/g6wbkPWIoOTXlTYWVPTTxppNALTkWBJ7b7dq2fRIzs8yqaRosFgsAYhV9/fp1nkx6n/6rzrX6fVqPd4mniXDwboP6fcx0rGZywm8fxlqf2u/qDbloGnhystmTk/DvMcBXFTwzXCS4GMS1YcTM7LulxCnNJQGfMrtzFswhRcVQa7zeEyOjqswxKC5yqoL7uTzhdNmaqaTqsTiVR6yvLvHsxbMPy8wK7HcMAM5JnzPajHRQCOAYUHmftciZx0efmUVuE87vYD2ndXdwWjdGMgi8G5piEjoRNNyK3mPB0zl/H8ss7D120n1fbhhz9co7/pPhg0+H7KJ8SJ+2atXUyAOc6CFlHHJzKQsJzDeafIYpMJ4b6q5hvyvMAlDeeMory4Y7N+ceg6M9RCc3uaNuPF1+gWXwoUMAnaLJxE9gvKqLmQnFAEaAc0DX7UGxx3LZGqBVz67JtxGQz4whRIQAuKqBSzH/A/M4MytUJdR59PYLciqdKcNSVfHbb7/NSVwU9FcpbBpJQ8tQ8t7j5cuXOBwkvvrhcMBiscj3j2JgzUzCdyeVFTXic5bLpgtyhHnO4J9zdOxrNgeEz7wbQJWClCrJZnjsohM5onIVmrYeMURV4ZzzI8Detm86X+1GObcp62drrZ+T4LLkRxifsR/3TmZuchxLJTqxkjvv0TYtAIf9vvvQx5mUrE48AStT5QGFINIxniBB5RwBh8MOIfRYL5eSEDQr3qksSsAricoZWSwhIQK+WoBcDZAwM+3gfFKAYZjZE1r0iEmsKqgNevf111/jm2++watXr7KjrFok7YFdLcOS9x5ffvklLi4uUFUVDodD9vC2AfZOxT97G5qqq/lg/Gdty7RMYxyTDknFfIwzaum78XG6k1tLwuJq70zGJSAayd5aEGMMcJ7QtG0pAoXpqCFpatl8LE0NV/ZEgdUuwEU6zfBLWp+2H1ScYcPk9CynS64l5Bx85QViIYft9oO5ZsxQEnmlxY+5vQw3RwYTwzsCaSxx7TiVqDJ2JqTB85yT9FZs3TKyEj8W63UCWDplecTMvafIqhwK5KtbxTTd/bTM6XcbQ0p/nzIa++x0p30b3ExxxSMVKgvIT2BrtgofGTecw4zsb+fmhLlxhMM+tcfz1p/72FjE525Oar8wmiIwWCna1vmxRoCnYqJStubk4CNFTNtybDgxjsCl9tli3A/hQzKziQR2ijK2VZriiDQtObrDAd4Rau+K4ZsVr1Fj+NgDHQD2uwP6bsB6dVl8gjgibxTsIE6zJHjZW8A+pwbc7mQqzbRtm0F7G/5Hz2DWdZ3Vz7my1Tq6Xq9HgfemgfTmduA3mZxzdD4Q4edLinlKdNkIooi6rsd9OsGE3oghIK11BrxzqLwXiIQBZjnH27gU7scBbbsAwNhsNhiGe1xcXGK5XOXynHPZ2dpitmfrMMOw57SGqQpNoOQxoL9PltYMXlYYvpz2YaeaTUAMEXf3W3zz6vWHYmY0+XfuunYQAMPMHKWzWkmUPxx2qByhrrwI6FNgHw5AzMxMo3ZutjscDj0uL6/hqxpMakIGEBWyntbvadxsbkDnpCRlLMqsVAo7HA7Y7XZ5x12tVtlyqYvEGhD0b7FYiN9NVeE3v/kN+r5HVVVorZrxjhjXlIqK+bAX+adMU6kWQJaq27ZF3+9z7C47bzL0OmFofMpyNftyZG7mnUddVeiGARoKaBgGcF1nlGW1WmJ/OODu7g43t/f4kfNYLle5/t47rNdrdN0BQEQI50H3OZoyN6tqWqzXkUMIBTPzyZWqSGJJO9BTPFDpUdodOWYvrRAiQgx4ffMa//k/f7CD5jTW+fTaCd2CZ66pnp3jgs3NklHxVmUkhEFUuKoRvOzoXquwT2rxLsmK9MoIAIyiZShz02NL1qt/VMN0TcvQuGiPtWq+mXqZfPcmjJvo4d39U6LzqmW5RyVpxXflczh6ZvT8G9dJF3rCp4DE0I49+mOMOBw67Pf7nGMCoARhGFxLt/EZaUu/v8tx1VV/Uns58VwCk8DMCEOQyDPvrFbvi1QMzapjvowYGdvtFlXlUTciqTnnJGFvxg/4KD4aEWF/OKDrGV+8vIC64DonICgpfsfIXtanvLYfrP6ZgbcTDZgH0auqGh0i7/sem80GXdflg+fr9foIpyISv6Lr62vsdjt0XYe+78fn5CZ1exu8DBjjOJ8TI7M0p6YrkG0NLRr0UwHvo3IM9PE0BCO5IkBAEO8cqsoDQw+1hBaLpqj7u90Gv/71r/GLv/0FGA5N3YLgsFgs8dd//dcYhh5/8AdfHRmYnkKPwQo5SVZ209Y1itwThcbW8GIdj5zUzWQIXC6X+OEPf/gJMLMEYumuIYxNJg/HiPvbOzRNjUXrwRzhfA1iyo3Nhk2XJg8B5Bzut1uE4HF1/QyAA5jgfIUhSbeOZHclOMAxIgcA/lEL/pwqOWqZGdS53XQa2geQM5mCfQxomgbL5VIy08xEoq3rGi9fvsT9/T2++eabzMy896NQyFNL1Jswo2xmJxoxzM+ZZCNi8Wp3Y+ONHuAWlxplV+9GqhE4uERTqasawB6ASGZDHwAGnCdUVOH+/h5//dd/jf/X//vf4osvfgCCxzAwvnj5Ev/+3/97dF2Hf/2v/1UKB3T+SJ2VUKcuRudwtKyKR7WqJ9yLU9zAuXc4PZie5qQT6/gQo8RvY8YQBlxcXOCPlusPx8zKbqTcd8ogyq8aNls1SeXkDKQFSnDJ3UC5dzZIjsopamgYAgJLpIoeKrG50T1aUXXROGrDCVH80X1wQkKyv00nDzPnmGbMnCW3U1ZWNRZYCdAyvXN1P2cFPbqebCTlPrOrqiX5jKr28dITZCYuWJBV7RW1mBXR9Iajd6ZZPCu2ccaZKOHHspmIqhljyQcAIB9ze/XdKyyXa2y3W2y3WxwuLnB7e5vn0mPhiDencjyJSqfM3QYF/GzPZE4hOrw8yQxfeawX7UcYz4y0gVP8i8rvMQI0gGOH/e4Wzy88Vm0Nj1iwLg3hkwZZ5kVy2KOQ8go6kKtBqEGoQDn0j+wYREkCTM9Gs8s8dkE+xCyeItqr1CMpuihHmN1sNqjrGnVdY7Va5XuVqqrCxfoC+8M+WzinVjbLNJ/GbEzdFeR15Qys+c9nSdpTRcKWgIfOS9q3wAFsbhzPavlWFM6yBSfxK7sJEZDhDzFwDYCrJFGJ94gMqCNlCKJexBDRhw6V81ivVnj+7BkWiwX2hwO++fZb3G82qOoaF5cXxlBxBnd+a6KE3nBmZOXs80TFTGs487WUmAggsPMI5DGwgwsRTcVoqw92AsB2GE2upwOVdmAnQDyjB7hDCDvc3X2Ln7z8Ia5WLSqKoKyuBcANADxAHsROOoMZAUNSiTzItXBoAa7B7OAogDmAEeG88kWS56Oxij6AhT2GpvHF5lTYqeiu6qQF91+9eoW2bbFYLLBYLI4O+rZNgxfPn+Nuc4/b21tsNpt8SH0qoZ2LRntaxS7v8l6dG5Paimla10+NbHsnGZi44JMK+qvRxtceDg596MViB2MogMUXtXwT0VjPIad3KiMjrQMiIg2AI/jaoYoSIIHgwdGh7wMQxYm23+3ROI9nl1eCK9UL3G93uL3/Fe7v73B1cYEf/+hHkqA4rT+iwhZOzeVz8/QcSSLilJQYCcYhgPXwoClWYaLKS/8wB7DziOQRnEcPBwoDFtRg3boPcAJgVrK0gyg3SUOnElyR2hgRHAf03R6Vd6gr2xguEh4Vvq+XMj5FDnAeMnEEN6NUD9Y/fW1SNd+1Sjmnsp2znCmWpkwNKCnpipVqTC5lfK5TRu1TDrjT95z7ftSGhAFkM7ppxxv1GJm/j5BOY0oo1kGnno9T4ryYx4XKfBVloiyUqcLFaf7n/s5H8NL8iTHXQ7OpN3WN5XKJKuWV2Gy3+Pa7V/DeY7VSN42p4HC+3fbaOfC/zP2sJE2Us/LbeI2b7yM1XaCnaLSlyn2gVHMPz08FCspeZIdViJPFKAhPUqDcjMfIiplM0QxJHOqrGs43o9+ZGdGc4rRoHgEZgHwKE3gbegyepcwNQLZ0LpdL2Wm1LqRSXY3VcpWToqiqaSej9Vubvu+htj3VvP6pk6h7nOECtT53XQf2DJdi5M22nwEmBj2yd+Z0GR2TsWVQghcSNIrKKxCH7K/4sz/8KfqBse96fPnll/jqiy/w7Pnzkq7wox4snc/mNAARwjCIV8OHqtL8MuXJr3Nbc5LZkiWkHw4ZNyj7YJI6jMwaIydHW8Jmu0dVt6jbJYCUJjhGBAREipAgGpSBf91FvfcZYAXmF7gN+wO8PXOzoa/tSQGtgx5I1+xNr169OnkGs20a+OtrLFdL/Of//J9HjNBaMx/rvX/ctjOqNz5F5Oz8psWxjEuMMTsm73Y7LNYLsUajhKnO5U1UKQW7T2HJGTeyx+tIpBLnHXxVrsfI6GMPgLDf7/CrX/0adQXc3N6CY8Sf/dm/APkKIUQcDj08AZV32G632Uvgw9Mcbsd5U1bLOSBeB13f4fXrD5pqzhJP/p1LccBlMBMAIYtcFziN5gqriEbm+XTLMAQ47+F9nW9gaIYbKUSVVraP09gvTOmp/lmnLIPnvKun71RGqgxJHWr3+/3Jw8I5Om1Vzn3O1ekUPaT+Er0bLPFjJErq0JTGVksZi/1+DwZGh8CPnjuan1N2b+ZI+ommP6lkZuGJtPmCZJ5vNhu0NUkgQwBffPEFqroBA+j7iKE7oO86HPbbUZuO2/9hxk61y+OeMZJZiBj6D+40azvoFDMwOrN5KoQBIfSoKg2DogMqH+U0vib2ZaiXf+SI7XYH72s0TVt2RRZJTMzcKt3J2zJ4m5R9y0jkne9P5phjINP3AxhJYrvdDkRU1M0sniOXpQYA9VJ/qB0PqZkPMbLPlXQcDodDDqWjcf/JnixJXVtY1pys+lj5tahbwkwLFsXmet3UeP78Of72F3+N3/zu7/Dq5jX+3f/8P6NZLOF8hapqsGhq1JVHU1dIgYg/KlIsj8z6ZrM+ZSPvsP+wJwCmjGxuYJUiwE63RzgQDt0Bfb/Hoq3hfWJa0ZgMiECuQkzapnMSQWMIAa9e3+DZyx9jdXElpZFEzgALWA4SMzCz5O4DEUKM8Gmxxxiz0+lTpZtH9YwpZ+obZtVNS+pgOwwDbm5usNvt8MUXX2C1WuVn87F7IqzX6yydWV+1Nz0grtLx78sBc2Hu0lYiwm63w8XFJZqmEVWdKEc9Lu5CKk1AoqjKN9Uhy/fTb82/Z3/K7LCqv8tcCRyxXK3wsz/6Q/xP/9P/gL/6T/8rfvt3f4eBHVaX11gu13j58iX+8Kc/wVdffomf/ewn6LsdIs4fvXrXdEIXkf+qMcmYgWNM5o+UwLhpWxx2G9zefvCEJqcGbmwAGAkMCTuQE/ODHDBXCcmop1ZaA9IEIumM/f4A76skbqf4SGlSUXqO9cVJyhNx9/yuOVU3H8Pc9JlTqqqVwubK02esO4ZmPtdznU5dA1RihTjTHg6HUQ7OU+2Y1mW+HY9v8+dEOi6aX0Hjgtnxsr5i5VM2K82V+sBLp5J6kWC0TsyMuq5xfX2N1zev8bvf/Q6//vWvsfiLv8Dl9XNcXF5ju93icr3GlfqZGYb44aj0TWbY5teicgoT18TGh6770MyskLU8Wp14dA8Xl42+O6DvOyyXbd7YsjrFcn7LpRj+2iHaEUOIcL6C9/UIrZvAtKkWlOdciHLAexiGbC20E3e62B/rXDvnrjEtzx4LmZrB7TW1qBER9vu9SJCM0fEl+9ypUEBPpVPMdtqmT53O+d/ZjUUlYTubbB+MN4x031Hwhcm7c3GkHCzjw8USaSJWpLRyf/wnf4p+GLBarfEP/8k/wWKxRtMucH39DOvVClVVFfBf9dXvkR6z9jP4b5Q4NYR557FYLD8WZsbm7xSOVkRNIsZmc4fd9h4vXlyh8in5ATyAkMVQ56edIrGUDocAXy9QN0tEpJDahKxqZjsDqQog+Meh22VfrrqujzAnYAwIvw1Zy6WWa6+p/5C9ByhMK4SA169fg5lxsb4Y5dy0zFctcXpNo5A8nvGoX5SNBPo50fFGA4gEFlOawmnimiYlGrEa0mzJJkHyjNfZ+L2Tz6zaBIvKmhkYA2EY4L2D9w4DCP+n/8v/GT//xz/Hr375a/yzf/lfYwgRXR/QdR0uL9ZYLpZJskwher4nZvbQa6yrCKGEEJLzowTvKwz9gKqu8eLFi4+FmQEPNo2Ey6i1sTsc0PcHrF5ojHujlmLCUIrAJpJViPCuhq9qBBjHRoOT84ivimPiMISsTkytWHrtXZCVwuxB9Gk4Yqt+Wp8jZVK73Q6LxSLFSTfdYZiVxcoK/jInPZynpzHAT5FKf5UNJv1CY2uzBsGcg/OPJFSyHx7R16NHiy7BzMmdiLPTrlpTf/7zf4zLyys8e/YC/+LP/gzb3R5391t8990rEMFsdFP87iMilcxQeIAYWyQY5nK5QvV9OYA+jqRDje0iVYSTGsn5zFYIPcLQo67XGR/LuBcIBF2cUk5ENGYGAnJGpvE5A+ueoZJa5JRw1EtkDhuSxzKed6VKzeFoU8Y1PYo0HUeb0dziYvq8jToLYNQmLfNBBqV1c+P6lXeN7/v06Ljtcyp+CGFkEJK+TfdM2q7SVOlnFFBtDlrJ7zLdmIFhKYBHPxB8MuiEpIaGEOCIUHmPX/7yl9gfehw68UVbLFrUTQkIyvw9rfuT2uwUIC+XVVJT/z757uEd4P0HOgFwGvicNkR2CYJmvAEkIXDEfr/B4bDBev1DePISwwwu7U6CloUhSONJrJiRPEJkwFUg10giE7iU2lDUJXmG4ZxE4BwGiZnEDDRti7qWRCEWo7KYyWPcHB7snYkaqO9RbENDMytZZqV10MV1OBywb/bZiqmk4bmt+molu6fQuZA/n5usZiVf53w+TXFxcQEiiTengQA4xjEXyt2qElDM19VAM6Up8KJKpkpSkTnHTdM6LVdL9EMPioBjxmG3hycJjf0//I//IyIDi8US/+Sf/FOs18+xXCzQdfuMCeMDnHIcU2m1ijVR14IvEX1DjHCukVBYtf9QtT4xxY8u0+RTkq2Y0fdiAGgbwa4KtiW+YiNPfJYMNfk7eTmTSX5kAQVsFIsSpkSvaVhru3gfSt/2pjSVuvRd5yQzy5g0ZtkwDFk1tmTPdtqEKU/ala0m/9mrmYWs5KwHy9u2zVbNbByae3h08c36S+c0Qcd+HLCgbmoMMUUkBjB0A4hkg/uLv/gL/OVf/iV+8Yu/RYwRbdNisWgfdV73+6bRfDJ1G81X51BXNRbt4mPCzBKpYefET7IrBRBKisss53F5mJF2UX2WxFdMMj7XYEhq+FxqMlq6ZAEC0kRJz+fDwxgzEKXpJHiXC9tKfnNuHFPVZ64+qv7M3fdkRmTfjTEjy3X7eNbEO6On4If5M5LVUcHssUaYP2cB7tww5PvN1p4kMzsmBUJIEmRdYXuzxddff40Xz58DTg6Xf/311/jqqy/Rts3Esvp+6FFvGPEvc8Ih/dk1CUhfd12P226P6qPfTXVdULkQ+wM8RVSeAJbUWY6dxBGuUqjsZO3QY0p1VeF+s8du32G1vgKzRx8Y8CUdHSPCV5oMlXP4YYDQ9x3qag2XIopax1WrCo4B4jdb0ZZR2pA8NieiZW5WNdQYZ9ZgACBbP1Wim2Jmel2tmQ9Xsnw8pWZ+5DPrrWi6wRR8NjGz7EMwZvLjBU1HGwNwEjUaU1oUIYjkrUYv5yTgqPMenKSzer3EL3/1S/ybf/Pn+Jf/4l+CyWG33+P/+ed/ji+/eInVcmne9nHtQswSfFEECYch4dec+Lf3FW5efYtvfvurD64cP47yJBGlMIYeDoB30vlqtcnQRFK3vK+S+Vsi0Q7DgK7v0bYrMBxCsAYB+Ue82KVcZol/RoSEU1UZt5qqdu9SMptaSqeWxzlJTf8sDmZ/m+YZUGY2567xVHqsZPcxqTBvT5QZyBiAf2Ds7U984vMj3y/wSTSYqczVDCEQ8gmPb7/9Fv/xP/4H/Mmf/DH+5I//CF++/AJ/+R//EjevX2MY+lLqR7QDCfNXy6xLkpkwMV23zntst1v86le/mpfMPuyke0jWjhj6TnagykvLRrefVv2c82jqBuuLBaq6ATmHGIFIERwIiBFVioyhVNw+kCZvuT5V75RpvKlV0z4zNwaPYRqWgU3rMff9VF0frn/BFfWgczHZIH8H3mCdfkA61e/6m3XLoBPPUcJvJVJqsc1PN9w5SXb6djNa+RtBXcGPNz4Zk1KYSPSiRVR1jaZuAOewWCywXq/BYPS9+KWFkNr1ETE0JWl96gO7kaNg5B8fZgagDFwyRTKBEOEQEXnA3d13aFuPanGRsplTxssYERLgzudzXEi/LJcr+PYKLxd/AN88Q+AK2y5g4ICQXC4W7QLea6RUSgH2hEIIUhcqDqLWqqnOrO+CpiqsZWR2AuviUualCTVUQrM0TVaibhtWLX6cOwZngxw5wDsPp64xjFG00M+WGIAxAsUUELGc1wRUeiO7QQtqjzErHNODvETHiEpGKBk3ZK0CkHwWIUbs9zvUdY0vXr7E1dUVfN3AOY9/9PN/CDBwd3eHly+fo+vtOc+PhQghaRou9XWIQ0636L1D07ZYrS8+RmY2HWizSMAAB+y2t6hrj2WzsDKn7IQpKzmQVKsUvRMs7giL6hKXP/gJ7reE7W7AEAb0ccCQzL2Vr0Co4F2J86UGyxg0GsLY210/T7Esff6pNMe0rLR1CvwHhEHZwIxWBZ0zWpTUaI+1ZCkWhCyV5cTMWieUIfncqEhX4/GVjcJkx1KJnoESVVYYjj6ejQJvVBE5YSAHrkNmZGXc5T2RY05LeH19jdV6jbZdwDmPn/70J2BIusYvv3wp8AT4o8OeLCapLi/W2buua7TL5Xmn2Y+L0iJiyU60qIHKeyh2UMT5MnWKrA0wMbquB4c9ln1ADE6iriecKe+yRCDiFO9fSohMxmGWjiQZ/fym6uUpmlMVj3plUofp83q9OHPOlzXHfI+vzTBRmjBUfWZyr5b1rvvoQ5LtnyluZu8p53sL4D/1+1M6L9UqxlHyA8CA4bkMNx53SvO1Hwbc3t5iseix3e6w3+9H/otJMz65qb3LcXsM1yHdIK1QO302bS4x8oc5ATCDSpg/Nn9yJlIwmQFAQIwH3Nx8g4uvllivlmKxTAcsSc9iJlXIOXG/YGaEyPi73/0Omz2hd1+A/RUialRNg1VbZ9F66HvJajMMGPpedkDncXl5iWHoEWMYGQEsw5g6s74LOs9cMGISAGbVS04bgDpzahl6SmAq6U0NAaWd46kkk+33z79MsUKLj8rRGovlqKqZz5NMhLA3FyJkFJKameZdmRvJAEBA0I1/scAwDPj6d7/Dv/k3/wbr9RrDEPBXf/mX+OM//mO8ePEiWbslR+zHKFaTcyBnT/VQloRjCDjsP3hwxlM0XVwOiD2AAOYe9/c38H+wTJmIKmBICy7jBbpgHZCOJ0VmfPvdd/j29QGrZ3+C5qJB1XpU7QKrtQQx9ORxe/Mah3hAGAYcDgcwCFXd4Isv1nj9+lsMfYe2bcuuN5HMlDm8K4n3IWZmrwPA1C1EF6DNZm7vnWZysu8dt+H979afEqkbi6o60o8hMbSYtYTMzBSLMgaltyGNH6NqZmGgKXk0Ipgj+r5H27QIIeDVq1f4d//u3+Hq6goA8Iu/+QWqqsL19TVubl5lSeh9K2tHxxUfQeQEvzYKWmJmDiEyDodHhgA6h9E8mWZMXFkxSSC+7mijmOdSEWgSEyCFJX7MfsfIAO1cGziKWhlpzAQk5r8E2UN+/+MG4F0v8rn3PlSXOZxMnzuypJ1hkPkejPtXQeiTbf3M+NxY3Z5RERMIb+xu5sfyZCGW/jOWSeD4TO50/VmFdm58lV+qlB2SNrFer0c5Hy4uLlLGrqfhd+/SDelBmsIYKLKu1td7j7b9YEmApUp5UmQAf/wbKSYQEyjJARw7cDjAkVjRwPY4UUn17rxNPEfY7nbwVY3VusFydQGqW5CTs5qb7VbsThwRemGUbdtivV4lNdXhcDjkM3DW4jeNNPt9YZDnJtR0IViXgqeUfao9ygxFTf3Y4OLvgbgsqKllWUF4TrkhkzgmYDz4UZjYOWaWLgJwCMwIyTE2q/wJwCeWZB9N0+DV61d48fIl/vf/x/8DNHQQkcOPfvQTUTE1MxMj/faOBZi3Ij1WqPijE+EDyNmvrq+v8ad/+qcfWs0sXOzYWp12iiiSkyOAo2QxjyNmppNF3DJE3UxhsmNhlrvdHt5XWK2XWK4uEKhBgDCzbrdDGHqE0KOpGjRNi6ZpcHV1gRCAfgi4vdtBz8ABx1KPVTc/xODbd05PJJzzJZu7PmdBTU9gCgHohPp9ozkmXxyRTS8pgm0Y4FSbmNLD88fiZSkeXZa4ihbjU7Lo1zc3ePbiOf6bL/4b/Po3v8Fud4Ajh3/2z/4MVeUQ1J0oKUOjBCkfmIhUGk1YmWX0aSO9urrCs4v1uznO9HQufuoee33akZyktACnIWfUD033pImorNViIO1eDt6Jd3TkMqWY9QjUVB1D7sRZtWtOBXhPE2BO8ppen/5m73loXJThzT9/uk5kPqeSTt77KdBj6pnVvNmxpsl9uvmVBzlt1LLVHs9zawo7Xwf7X2Vkx/CB4qVVXWOxWICj4E1t2ya8LWFuyd3jY6NTY0KkEUwgDu/fb7WEjnCDPAR5W4EOp1ozBczcoe+2WC9bif0PAtiJdMAAx5DnUsbI0vebmzv49hlW6yt4V2EIMo0kzlMlIX8cpWxGQN91uLu7Q4yMEJGlsjnGMMdQ3ufiPSdN2fOYNjLtKCkwinr0WJcS+6vth0+FSb0LyswrYbl6jIiI8tnXqjI+e5krlYl4hKgYmqBh6dHjjSsyi5O3aJti0WNGW9eoa3EhYnPE7tWr12iaGhcXF/jqhz9Ef+gh2c7FOl8MGbIOY4izY/sQ/PBuKW+TR4Yr6WcPVy/RdQPutvfY3r3+0GpmIhXFjyQzMQY454AhoO/26A4brFYNai9e52ACOQ+AETGkHTDlwIwiijIIt7f3ePnDH+Di4lpi/wd51jkHVB6eSf51HjxEDF2P3X6frCYEX7U5+9CcX9eHXtRzjMmqm5q9HMDIEmd90Cyd3g0pl5njzP8+kVnDilV579H3vdkw5vKWjnGUORMCQaVghsZTnWMakRkDR7CX84qUIJW68miqCmCxZKpq8vr1q5yB6+c//zliEJ/LzWYrOLHOE3JZQ7HMbN7I8P3gwwTkhDz23ZWv4BZLdIcdvnv1Cr/7zS/fDzOb81sq16nUUq6mwIpysTx5LH5zDOLn5X32ypfYPbrrmR2Qy1EmkARnJKLi2Z/rl+TCxFBVvGdYcN84KX5CZCfllDlND6I/orTRt/LMCWjg0+qqWTpS7SdT8tESOI2EsyNoeKZgzCuaRbqTv+MxEbBc5z3ljSsESQjcDwPAGvgzHNfnCfS+NnA6+jD9XFT3vu/Rdz26p2Zner/Sh10cKs4LTkbMADG6bof99h6XlyvUKdSNYmZFkkuHcLP1Q37fH3qQq1A3CwwhAlSlnSgrtACSeO0dPAM16YR1qDU0EGnV3u7I0vsia5jQ/J42+Yr+vtvtskRmpU37vH7OgrN5R/77IK38kHRaKre+h/wGB1SFryXLKIldMiTGplMs43BE6Pohh6nyJC5EXiVnSEQJaiTZ8y9+8Qt88803qJsGq+UaTdNiuVjg6uoKVV2jDwMixxH//FDGrPR2qHAjRr3kIJvqF5kRuh6//vWvcfPqW2w223lmdkqyeqMqPapDCiNLeUuQzD9pcCMIEd1hi/3uDj/6SvxjZIdR4CCFCyFKncCInAI4ksNur8ysFSnNydGlQAz7OsGYCFQ7UFSHUsHSQvx+E6Q+hax7gC6qEAKaRsIK27hozHIeT8PDaBZuYKw+5H8NfmPVzDI3PrzV6/smu5FpX2gMOe99cpJ4Sr+ovIWEX/lc5pHslBjdoe9lTibLpXcejlx2y/CeULcyVn/7t3+LP//zP0fTtvjyyx/gxfOX+MOf/QzX19domwa7/W60QX9YRnZMMtfELQMkzsJ91+GXv/wldvd3iMMjTgA8JH08Rm+299i7j0pMYhJNb2QZaAUrq8obrIbGqCoRxrsLjFlXPIZH5p9ZfEN/Nkw2/fdpE/T90DmsTheAla6OXSyQMbPHjCvR/DiPny0q/edCx21+H42z4Ih9rxWF5T+5PhkTLSGp9DKRCAQKn5CevQTQ9T12OzmTeegOIwOGupTMqdIna/5eNRPTB6wr8Pj9QwiZoT9azXy/nHoODlUhU5wPHQLCcEDf77FovoSHMCXnVKoIuur0YfjKYYgBu32Ppl3CuQqjmABZbaSsqYqonVhXVh8SxmQRvRlQ9EPS1NoDCMNqW/GZs8TM2O/3R4fPH2qPZY7iHIp5aOdzpMxHxvH/VRKeBrt8E7IrILJIZFndh0IhBCZxLepDj6iSVIzwzqHyApZX3sNxRBgifvbTP8S/+lf/GqvVCj/72c/Qtgu0bYMhSIRaO8+1jfL9zdIOvgtSJZOIkzdDgZFAIm0u6hZf/eAH2Ny1OGzv55nZnAnfDuLbk10Buh0c23YktRwDHAAe0PcHdIc9lu1CIk9GpAw5HYAIV40XtPMeu12P7X6PdrGG801SSw3GxhBdlFNarhhBcDl2UgzJHTfGLPl9bIxMaTrxNNFG27aj66pmqgqq9Ng2KTMDxiabz5YmTZxiZMycw5W/2bww60rxzox7coqoLDqESykSIwQzi+I0hhjEMFZXkqWoqjwQgBAZf/Kn/wDPX77AP/7HP8fN3S12m60A58OQNBYjAaWxtZGJ7bx68za+GRGSE2+MYutLfeG9Q71o8eMf/xg33y1w88rPR82YU0vmGNkpdefcfbCMcnxTrr1gp1TuYoaYm8XBTzI30/hR4lExhfFEDCnzNKU8mUU11UigtutmyEq8jxC7PwTNqZuCvRxnGbeL8E0mqL6qvPI9qJhn8Yj3RycdYWcuT91hjsbgMV164ibOsol+R2Y8ek2kN1OUqpZSY0QW3PRisQBfPwPAkrVpCKNjeN872TV65ueja3maFc1JNusGdV2jsjkgVVSeOqmNCjVS2ptQsRyeep7MXaJmSrSMARwDOEWc1EFTZz+J8TQG6EOMOPQ99ocOi+UFqkrOYwpMxuYPBWujJKUxUj7N8c8fO6nqYxOXWGamqdHs+E4TAOvnvEhNyxWIzXPEqvafK51gZEDpT001l6WYo8fOcGQuRhbhSCk5NetvlPb0ksiaSaZxtMwUBAexam7uN7j57jv85le/xL/63/1vUdVy0Pzly5eoqwrb7RYanTkEOc4k9X+rnnoUPfYV4l5lNAqkyDSVRzgM+Prrb3CxavHs+TWayqHa7XZ5Ylqr10MMbVS5J/WAAe6zC4Yt3KVb0qFxRAADYuzAoQdiEOfVSCCmZBAQa2bmUWlSDTFgdzhgs9thdXGNulnCUZ3fzZaZQZ9Tqx/EcqIgp0QTOtnuj8WBViPNaj3mmFnf9/l3Zp4Nna2fXbbICNmour8/NIZBrGSrFsy2bc+GVNJS5ktPwRRSKkPJTZGO0QHQENiRRZBL4fsQGTnNnPdegH+IUHJzc4Nf/M3f4P/7//m3+Of/9b/Eer1CVXm0ywWWyyXu7++xuduAIUEbAWTo4KPatrPwhMTQGXVVo99s8Otff40/++f/CFcXS8Tra1TWS3yKBT1V+rKDeE59yVLOWM8cfRy7r0qIniKtYbKDJGmOjoqRXJkhol7UcuxJVejUUTgqZ/L5RBdMcYQPRdOFM+dWY6UsXYCnaB4uSJLyjCqr9pPPgY7m6pnpb10Y5tVMGmmQI+TkxDvEj3Hq7pJA/5kqFdcZe6dgTEPfY7fd4ubmFpyizXoAC++xb/foug47vwNg1/w8MzuFlT957icpU9OxnNI2tbV89EuZ6xwjDvs9vCM0TQ34CtWLFy/ygOhuMwxDPqrx0C789MXMyaI4GpbcpKLxp+YQAwjYbO/gncRgOtIOOW1ZdveUwtD1Pbb7A3744hLO13IoNb8LIzcQ6xSb7xBdFua2h1v4Xi2/54mIclIVlRYshRBwOBxyOrKnQgaWQc7abX4PSKXbpmnQdV2WdC09VVcxIoRcm2DLnKyY5ByYCCGKkUDVTCR8VH3c7m7vEIaAL16+THOAM0IcYsT+cMBvf/MbrJYrNE07qseHw37HmpLA3uqcTfmwz/6wx6HrwAC6LsChB0KE++EPf4gvv/wSz58/z1avvu+x2WxwOBzQp1hHc2qnMjvgaR1Q5CstyDQib2HK1iLAATevv4WvHJ4/fwYSIU12IUeIHMVETR6AA7McvJWGd7i/3+Hq+gV81SKyYhLyTvG01vDaMuRqPLAGAzUN27Z/aKlsjogkSkIIAavV6mh8+r7HdrvNzrKW2Y0Y1YisxI18lEw2go9IJfmeKEZJEtK2LXzKx/oQ0czfHGU7mHMgL38RJBnIyIN8hQjCwBEh/ck55IDKO9Tew4Pw3bffou87/PjHPy65VFPhQwjY7rb467/+a2y324w/684+9T+zVvBTxo63J578pffn7GP6HdhsNthttwCA/X7AbnfAbrdDpfHBp4xJ49lb1fPULj53/RRzG/PdaD4r+8KU1QGI6PoONaG4EoxE+ILUq3qqP8cY0YcBddMkVRqnZ5Iplkb/4dH7PpTvzWNI/Z8A5IPPto4KWJ/DRHNZVtVWiXX0DL976ezj6k7MNU61GDWYTdX2PD/sHKVJYMZJN5Z+5fwzT/BKGIMLM/IGm+esYTLdoUOMERcX62MpjxnDIGc1h2FICgjltz6qV97ACn6eZsohMs2nLKmFINnUAE2CDCAE8TMjkuM6i8UiGwIWi0WuaAhjU+7U0fKhBo0WFEPExZOdZvcuhsKdh/0W7ZKwbBdFYuLyhHpqMDOQHDpDjElCcyCqRCLTeqN4Xmdx1rw7AqjgIGJgnlof31rDsaqvFk1rYdNx0kPHNooGoOOYglqeGE+VzDJWZoGcj09IfXs6MeDajyoAzGW9enx3mHOXaaedbriKFhOJitgNAw5dl7QRB+dSJOHEZAMzFosWu+0Gr777brR2GYzNdoO7u9uUQyMdEQKmWt57oqf0jFCIIckVBd4gUMpv60EkVt0KKCFiLi8vsV6v8+6tRx+Ug6t1zGIxc+LnnDWnXJ/2WMkpmJvAqicLM2MesLm7wfP1M1xdXMJRBQ2XrXkyCWLdAQvE6LzD0HdiAXIe3teAqxBzmG2tRxLfATjyItLrTynkj9wa84T6mEl2LpGqrZqpUWdDCDljzzicEQCIk2YuazLxslsGGflXu/D7ad5HQbo+vPdH6rpuJHY7fog/6LqR5CQSvoo0jSLIMC2HPgTsDwfc73YYosAkvqpQew9mIAwD+si4vLjA6+++w69++auR2hg44vXr1/j6669xcXUJ533yVyt5Lt4/PU0sGIYelfNwvhK1U+QVVHUlRxshFuUsmalEZqWxYRjQdd1oJzoyN5+QzOYsm4Bw0HmJkot4BWsJEhmq7zsQIBJFWj05AQpUfEbG0or4z1n31vRcEwl/pNwWnxbAMti5xXrKRWWqmn/fpO+fk77UlWDkE0UE3byn1Z0VuhT8/xjF1Lego7HKjZ9KsFyY1gn8SNm9TmtiMvl5LPY6/267pZRqCGMbQsAQAiJzirFHBeSPjKiSNwRfGklmzGLJ3O/RptSDeRo/Bfd+E6anm57VqI5vOaIYI9iEZ9d7nEuYWkrxd/ZsZl3XWC6X2XpjF6h2kF0YDy1ctbowFQZyakUoixLGBIQ4PkcGBka9khem7DAhRnR9DxChaVrBGEh2utEbFX+YmccqST50ZOdD4GanLKacfI7U18xS3/dHE1tpitnIxTHuY8f53WMmHyFZ/GJCzrm8JubOZTJLGJ7HBiYoa6tsyhmn1M0bjP3+gC4ZeHI1iVDXdYqaIdFgLi8vsVgs0R0O+P/9L/8Lnr18jnbZYtd3+Ju/+Rt88/XX+Bf//M+y0S+HLsJ4U/7+NmOarLMyH50GX+UIxIimbeA2B9zf34oaPXTYb+5OhwAiIiyXS7Rti9VqldWTruuw2+0wDEN24ajreuSoqWXoAFlHwgJaFmmH1K3CYjBANsU6EsmMOeLITUT0Q7k/ivczI2Doe2x3O5BzWK3XydRAwEzyeWZxuNVjm0xFiiESl0WrNtjnPjRZ/0B1q6mqCk0yeCgxMw6HQwb/9VoZo8ToeSbMERVG9hjDwedMdk5Lxq6YjVLaLzFGOFI1sWyfp2ZLGQeJ6pKjzKankZhMZMbd3T12oUdvwlE557BaSYw/5xxcZHz51Vf4zW9+g/v7e/w//vv/Hj/4g6/w5Q9/gNd3t/iL//AfsNtu8X//7/5vaGvZ6HMCazqeU1NB5d1qHafLUBy3qipJBRkD4jBgvV6jut3hm2++QUUO/WGHze2ZsNmKj6n6GUJA13UAgP1+PwKTT2XRtg3OTE7/M9uGyQ+KxxAQ4wB1KlSgVAoWPAH5fQ4MAf77oc+7FvN4QGQX0tDE8/3KRk040r8+UlI3GhsGW8diGIbR0aXjaLMaH84o2fk/xweO5fM7bsCMgPi+6OgV0zmretEMMqL+fJbBj9aAlWgZKVijcQU3SoW8mrOx0sooPGEih65DzwFxUiP1G3QQp9nlaoWmbdF1nbhgHHYYOODb16/w29/8BjFGPH/+HH03oDv0hXHZSj3Uf0+V3I47UfomvzKLouZeLmuVIQ7wKdjobrfD7e0tDrsN7m9eobJY2DmXAx20OmV48d6jrutRpmxlbkpTySCXXaoJjRFGHKGewQQGeICnAbHfo9tv0DZ1Cm9iwmGrlJUWqAfArKF6CIdDD6BBu1gamCftnumIyAgXM5ibSGMxK/nTI+kfK+nRmrquAYylx67rcvTZealyBghjZF1TVZiPvxcepgdB+XzHWPmJaSN13iNECWDgfdE8yh5r4vjTUYBr4WYkYUcBIJIoGJOtROpKhD5E7PseQ7rBM8Axoq1rLJtGIsxyBJMDE+PQHdAuW/yjf/xzfPPqFdZXF6irBtdXz/DHf/QnqKtK0tSlVHVwZII2zwsi74ZUMxvzLJFTFEI6Vs/l1GkCfRho2hZfffUD1K5GXXm0dYVKmZH3frSbT9W5rJcnJqbuGofDQYK9HQ44HA7ZUGDBZyuuOlA6damj7oA4ABzgYkBDDEn2O6CuAu53t3j93e9wtVph2dZwLuUCSOqqcw4chK3V3mEfQgoVUuHubofFxRpX18+LqA4CwyMplgDltKjSoREgRDCiqL9pIg4AiP1Ht5CnPoDDMGCxWGC1WuXfdRzu7+/BzBknmZQ0+lbmdJTeIULlJSxzli90W/1EyUo9ClQJakHpXG4EOS8LK2EeQwjittO0OHQdmsahqSpJ8IsC3xICwEgzyeX55zU4KMtZy0iM6CAJqRMDdGpxZ3GWZeewOxzwzc0N9qnKbWSEYcDV5QUuV2s0jkBpI49EuL+7wfXzZ/i//rf/Lf7LL36B29s7bLZbfPHyK/yz/80/x7PnzzH0UUJvxwhXuYwT04xqCbw9rFJ0s7KuABZtgOWYvEKUAw+o1GedAZAHyIHZIzDh8uoK//Sf/lf43W+/gSeHRVOLZAaMca1Z64zBTKqqygxKPaC7rsu4mqqoc50w0r0JQDraRBzhMMCnKBmRe3gAsT9gv71HWyfJjBgMjR6QBPK0W2bJjBwAh/2hx/LSYbFYJvW0MLT8XhNpltKOKROy7CAFjz2pH88P3ntUTU+VraGwp9IXEeVjTJqp5+E6GuRGXTJUMrPb6sfG4d+KNIy64ljKsEXNiZpNO0lmzAxyXiyLRGneAGSiEhgjPRQbVot5VOmMdC4nZqjJrYnAjtCHgPv9HtF71AAqFmbbVh7Lps6MgpnBzmHfHbBcLvDTn/4UcB6//OWv0HUDri+v8Sd//Kf46qsfYLPbpCTCnGL6ca7bVCqbO8/7ZvN7TvrnJI1pm83UIt1UZU3rGm7aFl9dPcPd7RZN3eD64lKiZqhUprqofp9TN21DFJ9pmibjL2rhUYanRz0KtuBGqqZOHsoitgxSjAH391tJvJGO5tR1nVpJADlYhUcnoC17GMpRrKw/WijfjMXUO/vYRVafG/fBqb55V3RqDHTCafum7iBTwFYlZv3+cH2NwjPdpQnzn98lfQ8M8hwvLhvYuB8k4rDRXEj7x+I+UbXIxKQSQ+MCkThysiUnGCNLdVljSRtvjNjve3R9n+e4PrZoWwH9yaEorIlRpnBZAGG5XOD6+hpDCLi6uoIjypADpzoVl6R5MOWU/+j7pBzuXt/J4jR8OPQ4cId46CWWWSV8q3r16lWerIvFIodZXq/XR5YrXTDWEbOua6zXaywWC1xcXKDrOgzDgD7FG9fPKhHUdZ3TqjNLADlPBEdOtOIQwLFHCAf89je/wmF3hzB0+NGPv8JyWYNZwv24fA5Tk5hI8lLnJITQwBG77S5jRDpxCCSbkA6ZlV5yJ+o3lcSOGdnHQHYHLdbXEvZHx1WNN3pvtlyhMLY56Vkwa4OnfiJGkEeTsfzYlinDUhLpQO4YwgAihyr5ZKonenbeJgGpYyrV+cr0MRBjyDhb4FBmF0c42AP8DhHAIQz49vUN9l0PYgcKDCQr+/Pnz7FcLlF5jxg4D0+MA/qhRxPEyvrixUus1xf4gx/9EGCHEAJub+9QNxJyPvJx3tTvlaZygxKLpgWo07cYsW5ubnC377AdIn76k5/AuxoIQLXdbvOisEkuTkkDFv8CMMLa1CGv6zpsNhtst9uR4y2RHJuyPvjamILECMrAMeDm9WuEYYfaAxcXl2hqRa8kegDBIaTsy0iMUSQ/gCOj6+W9vvIIaWHqiKuFpFSiqJDFwZHwMTMzS1Mz+tT4YgMynlT7Z6Vw41s2uf9Tp8LKxhuaYkeA8rssdsmG6ZMLUBK/JMz0uG9Uc3PkBMrQtRMhm7GjhM+mKZkA8IJHJgfZGLDZbtGHCKIKlLA8ELBardDUjbjVxCQdMssxviA5ZomA9XqNi4s1GMBue8B3332H7XYDXy2lDan5H87R+xifk/UZ8yai0m+MEbvdDnf3W9zuO/zDf/AP4MnjsOtRqVuFTlh1kLXq5zS6wskqmYVU13U+G2jLkXcEc95Mn2YwR8QwYOj22G3v0TQVUC3QVJTxLJk96QmdaPI4EBOKlsIFe1fllF1ExQO7WEqs/l4M4gxlaDrQH46ZnQNd5xhRyapdyEaXnQN1ZzHS/I7xv/LQcf0+ByaX2xBNQEBY/GbshuGcy1rBiLJAb+ZmYlYlvHsc3U8G55CpzBjSOcy8sQpujspVaGqXz2PmKaJGDNV5J2OXtjJpRxZYeKQqH8NZpyGOt6EpgDNHZJgcq8EkRtRNg6YZ4PuA29tbNHULig6VMhxAGtT3Pfq+x/39fXa+XC6XuLi4OEoYO21wlrwS7qZYmi4mdbrd73cScoccFssFAEbkgBA69PsNNrev8M3vfoMX11dYNDXaxosIHgGkc2/Ksb3zoCAGBE3+0PXCvZeLhUTPdckSAplEIWoYG+PdnwdSkQ9KKi0hpVSFHvn90DRlSjYQwHq9PvL+H4YBm81mJEFnjGQiiY/Htkhjjk6P++dDE6Ah40ipJ0g2C6TrGpmZYyzye94FfIo7FvN5V0cEODFgDSHCecHNSKWjxLQiCIcYsO06vL7fICbmFIeACg6rtsXlxQKV98LMQpD9PVkzbVj5tFgACHMWTcWhrisU4x/y7FYt6WMg4SMuqf0BQ2D0w4Bnz65BdYvdwPirv/prXF9e4YsXX6BSFwp1Auz7HsMwYL/fZ58yIjkNMBcdYK4CyswWi0W+rgfW+77H0HcIjJSlWJgZc0TkgKE/YLe7x+vX3+AnP/wSlxdrLNsasUsxy61QBS0j7XKRJUs5S7yppm5EUkkJf4lVHdMFzYaJFTVTL44Z2scxwJameBlwPiDjqbE7y5R01x6V+bkxMUtlYwcKrKazw3ufgfnKS5IcBc0VxcjqOLnRhqG4I6eN11VubHgyDK2PAYdhwPZwSL5jshE7AE1dY7VcwjuHGIZ0TlQ1Fy6MTJszmt8pYbD34lTuAD0C+LHNcEpnTkU9jwhRVOjVxRoDPOqbO/yX//K3GPqA68vr4xMAKkpb1VIBZI3hZBNmPNaip2XWdYW2bZO/TlIJYwBxAELAodsjxgHLRSshPohmyyuStcaJMqFu0sFT511iSILEnXQUJai5CbovqeSHrBmMZPUPTnOGGZWM537TsbN0jokVhfvzPb6U5bBseRxj0QKJcPlBLkKt5rIG5HmXJKDJXotpF5dtcYLTpdcwJPuFPUwu2K5IXE1VJyaa6pHVRIwqr1nq7+5usWxXAAghRLx69Qrq6S/GMs54Xq6Pkdr1u73+zuiRRVkPhRgjeJDTQHp23DsvbkfWmqWLYXpQeb/fZ09/51y2eqrlcw67UfxNGZ7GS/PeYbWosTt0OHQ9Dn2H0O9A8YCa9/jmm7+D5x4//ckPsVo2qBxAMcK5KnV6SJNGRi6EAMlz6eBdhX4ICMOAOAQ0TQvnCGEICC6AU4haHUS2auZRDxt1M/m4jKf6x0Ma2kfP6E2ZlkZGXa/XRxP1JP6RdvkSleHjD3/0VNLTJ6MxT1yBslodcl9FjBe2QCopv4JLFs0oVkUNahCJk+Qj2oeV/cE8Yqhy7sShCwPudzvcHw7oQgBRRAWHuqrw/Ooay2WFyhE4DnJSRaVBMdMjxojlcoHNZoP/8Bd/gZ//w5+DyGG33+Pf/tt/i5/+9Kf46quvsGgqDEOPEAOGrhNJkehRU/ztcLPHryPrmqGGrMPdHQbn8fz5c/AfAofdAd9++21StQ0DUkbWtm3e5fu+x+3tLV6/fo3Xr1/nkNpz4YKnC0U/qz/acrnCs+srXKzXWLStxF/qO3TdAcPQ4e72NYbhgC9fvkDbVPBOWuQp4VbJmIPUHTHGDK5KdnM5UsUxok71D1EsO7rLzY/BdE+1Hf9xqplKKnmpd//Ukmmjy1oA++FdtsyLDHR/vN3wZDo9quWsKlDMRIwxXjk9kynwRcwSVkZYkw6a1xmA4uxtkTrKIbF3XYf9ocOQDAHMQO08LlercnwpBtlqEzNzCuKD0baSn+Bv//ZvcTjscTjscX+/wV/91V/h9evXcCkRiMbr03Rzc4vj/WCj0/cYgQg2DIX+LN/VmhmGgIuLC/zgB1+ibVvc3t7OhJDAePexFspsFWTO3v6HwyH7lp1z57DlgSjr7XVdo6nr5LBLaNsGTVOLLl9sxuNGpQEb9QFrg8kwtuShPZm2tptOD9PHzcCUTjnKKtn4ZdNnhMZhfaZMjiwTS+Yu/d/nSoqrji8m7/9J30zBj6Ke57ugkojtM1KOx8iMM+q6GoZ80gAQJuWdQ1V5Yz09UmjHcyFlJf//k/dnTZYl2X0f+nP3PZwp5sipMmvqGUBTDZAEQQgcpCujySST8U2fgPe+6UEfTCYz8YWkZCYBFyJBGUGw0QQa6KG6a87MyiHGM+293f0+LHffvk+cyMrKiqwq4HpZVEacswcf1/Bfk+T4F+3q+fPnFEVB06y5uLgYYGtJInudRp0kF2w5V+G7wdt7fT99kAtKzloUiqIQfL7YVmIubzF8KSdwkTquViuUkjjMqqrY2dlJ1sxBnzYPh0LKQynJCIubYLs5zUXD/ft3qbRFK4dyHuUVGo3yOmb6wSuFC3yvMAY6J6qgLlC+oyxKJuMJy/mn2LYTnyCtwt4ZbrcXk6ucoH1zDu/mekU8clvO/+VySdM0VwqbRCwoqo8DtTNgRD2R01sO7t+eNhiX30bsxVUiOh7H+a/rKqmLiTJ5J1JYIEZKC+gaLxHNQGO0Zm0dqigkq6yCZdOxalrO5guarsN5MEoxKiqmVc3OaIrRCo0FZzGql/CcF182TUiZozTr9YqPP/4QXRZ8/Ktf8+///f/D7dt3ePbsKfP5nP/Xf/NfQ1hjcdFy4F83RvpyKmYQSwKWqHpiF1R65xzLxQKFYTqd8eBBhX4RiA+96llVFVVVpZi/9XrN5eUlz5494/T0lIuLi0ECx7zlalDkQkVRMB6N2N3Z5eBgn4P9PUZ1xe1bRxwe7KFwIkaHbBr4kFtM96K0R8zbRJE9HLqiKBjVI1arFbYTYqZVdE7L+vXSC/DNa5sOzDnOma/paiU1EoexspEBD6Wy+FyCq0D/3d8EGfVV2pa9Sk/UY4tzE5Nbxv0smU7z/ZhJXzkUt/F8pRRGZ/Gx2oA2rDvLfL3mYrGgtTaptVVRMKpqppMRJmoswbIpxgMn+b6C03thDEVhaJqGx48fY4zhsyef8eMf/5jDwwNOT0/55S9/gcrW3xizhZBf374S/DTq6Cr7M7zbO89qucI5y3g85s6dO70180WWihd1POf40bVjW1rm9Kz8X6VS6ts0qVqhvECzPRgZTT2evizd9r6KZSo47obD3bUdvrqKiW2OKgUEX3n0i9/5TWibOcxiGzIRadECF/7a/sCoXWbQwN/GNlCzQhvslBw780P/vHj/FY00odYMVCfR0nscTqx0ckEX3A5sDKXyBOZtMNoEhhzelr/7RRbpQHTPzs9TkoFY++FFhaBf1G6KiG1DzJLOJHLJ9q0p1pX+6jBZ3vvemrkpoW0StxxTgb5CU5529/LykvPz8yQd7e/vp+D1waQHKUoKl/QiZVkYsDHzQLCkRfqFlR8ffkJqGmLOsaDvRwC2KAqOjm8BipOT5+ze3ifG5fvwvpg5g/T/K+Qt+/3VFv91tHwtIrg/Ho8HaX/iddESXRTlgIBtSmPxJ7nCkO+Jl1MN/ka2rcRAakzqSLzSzmEw79L6tRCsqvfZUgSfxri7tCZogxL+ZEocms46LpZrLtdrFk2LDeqV0ZrJaMRsVDOpSkqjwHYoJXGcMaxJQciw3MNAsV8A//f//cecnZ7xzrtvc//+fT788ENiTLZ0MMRnah16/U1p2R4FQCKLVOPTdvReIpacdejPA5Bjyw0A0SBQliWTySRlyJjP55ycnPDs2TOeP38+yJhxTV8HnFF82PqNYFSIb8OjsHgvP9ChsKKK5uiX9yFTgBDbw4NDFHB2dibBufSm8MxH+hpCFluUyL4Z3v+x5YSo67rk4LzZonHGmOKKNLZJzOSbfl5yNRO+SaN/fS16/EdtO0mlG1pGnkKp10B6TaXHuTPVMzwnJhjUWgr6Np3nYr1mvm5YdZ3sNC+5z8Z1zbSuGVWFEDNv09lQPuQeQ6zN8Yz2hXzktX/6H/6U58+f8+abD7hz5w7j8Tgbi09qarR25+P8KtrVNwVxI1MIInZmimGRHuc8XdeyWi1fXNDkczuxBW+JPzFoffP61Ncwiig5p90TkNKh0K/CZxHC79U+ecdVyaEHNTu6ttt8VDaD+ZuSbjV43t8EDSsymLxtc3yMm2TzOvklk8g31nabxeRvwrxc165FFD6n5fMp8xSloaHLT9pBUTPM3pW2O8GCGdRLl6yoktlFax0yykhS00B6tshOgw2dYXo6ZLLpqOs6+RlGg91X3fJeK599kuCka9qGahmttTo6dIc1KTZN9ts8gWHIifJDk2faiDp5LHaSP3NA6Z1H9MfwmXP4ztKuG7S16GDF9Lg0CKUcCodXFq86kcLQON+hvBFCpOjxNw9lYbBdx2LegHNo06uUiQYGVdMHPGN4PgfbjwSCfANazkDixs0dnaMjbe5Ws3lvbBF36AN7fTpMSvG3JlX2y7YY3hOJuvgpDtONV1UZsGFNEWGUUHasV99imFNcKyV1XL34kzmlWDYt5+s1y6ajdQ4bJLJJXTGqSipjqIzGaA++Q+uIR1/FzOIaxfC12WyHf/gP/yFnZxcc37rF/fv3WSwW7O/v884770hspgcVz0Bm0f6mNB/6J3vRY52lrEoKVUBR03VOnOK7rpfMcqkqtsiZNwtf5KB/JHJ5TKbWOqX9uZaYqSTHg3d4K8Ss9DaIzoRKyzHWzIGyKG2xIfG2JCWOjrtSDUeHODaFFAm1XctyfhmsokK6JLw2sMvNg80mucpVzOtQya+3bSNmUf3cZD65UaZf7+GaC1PIfAu/spF8M1o+Yk9vRCnLMri5qJQ6XiuFMnEuc0YRXWBj7vq4kwKI4iWyZNV2XC5XrNqOzorOUaAY1zXjqqTSmtIoCgVgUSomcgzrlKS5gMmFM7lYLJhOp/yDf/APePjwMYdHR9y+fZtHnz5mf38/Ffvu+3zDoUpfuF09ebnlRNyDRIIt6xJdjijqCcvlmoYGZ+31amZOgLYZA64LZ9hmSMib8xLlH/1jlDFhQaLamL0jKX5C/MS7v6FhLQRJGcqils0SI3YzrUgnjthn8tycssHyKZWuyaUydfXKb1TbVPdjy0HqeN0Xfy4DbPNvf9vECF8mUuLlWrS0ExRFCZyWH+f77BwmCAYxxVDaf4nxhPVkuCvj3zF8rSikBOR4PGYUMsh476/4I/b9CiCOv3qOtzpSv1K7CgkRZZrNad7ymugs61SH1y3O9XDWQDJ71Y7mElyeJmgzZZC1lrZpuHj6FF0WFGXJaFRRqQ7luwBqBvBSqwFRUcpzevKUZyef8fzyKdVoynS2y5tvfqd/vrdEdzLnrcSOFgajoDAK5y34FtmwOitocRWhG076UHr5JrQ84mI0Gg2ksrgWsYDJ5y1pdIHpr7vqf/a3tYmqRtoCaS9nEqukWPJXcCax6PeSm7hZhH1zBZeML0x1vzhfLJivG9bWEpQQjNYSslSW1IWhLkJyR+cQS36M5ctqdsRHK4XrLBcXl3z44UcYY1gslhwd32ISQP+iLJnOpngvwey5ZvVyIW430TL8i83TJ/8q1UNa4igr33Zdx5Onj1h3DkvBZDqjKiuqsuxdM9JrMmlm2+fbWlRjolUt/r1Z8clay2q1kuKdVUU9qmFnihmB8hajg2oZ8BqHDSCqpOs5OX3G+7/+BR8+fJ+9g1vcvvMGb97/FiGOF2s7dKGw3uOsYzQaURYFRilKLWlVrEUkMFMROeS2aR1OcP7zzWgxF5VSfXqmze97YtZbqLap/UkCJ+JE/edJzfwG4Sg31eKoY1YKkczDAXIuEZiusxvMftPw1QcLDwqgDyS8+JkwUefgbL7ksm3kYCpxBSmUZmcyZWQUVaGoywLsCpxULOulxqsvypnYBx98gNaGprW8+61vJwtmWZXUI8lh2DQN1omvSFEUgUHCNono5tpQgFCbX22BucIfeCU05tOHDzm7WLBqLfcfvMXB/gHV/v4Xt2Zep14O+qSGnD03Iljn6KxFhRqbznZYCzqr0Hz16RKu0bYN69WK5XLJaLxKFaGKKzcErC31IfifJUtpFiUXFs+TE/L4Rc5Dthd6uKn2eZLx5veb4Uzb7utror7wzfLc7D2RK2575lDdeNFzv/q2bQ6vU49S2BYZ/JAf5PBhMvS+QGrZ+nEkOn74UB+uj5lkrYu1xqIkEtVMkgUzPIkhWfRE6zPZN54ep3a+j8uN10Vcuz+XXy2TGtDKJK1ufsDgC+/9IO+bD/HGthMaYkNyiS/lmpEenm2imPU0r5sZW8yLVtUjTCEi+nq9YjW/xLgVte5C7FmMyZL8lw64PD/l/OyUy8tzlPc06xWXFxecPD/h6GBEVRYorcXyFAB7Z6Uep/KO+cUJRb1PUYyJUGywz4o94srBHEpq35SWhy/FaIujo6OkZuZe6m3bhtTlV2ughqf1/6TD5zA6y1m3DZT5W9hyJt11HT4wgZxQxcM/nL8+frXfRBEXC5KwUkjdioLWwrptma8bGhf2oBKAf1IFn7JCU4Yy1bho7JKmGe7MaAjwQRvRSjOdTvmN3/hNPDCZTCWGWmuqUrQhxYbjr4rFjQN2ddOTe027ql4Ov4u+c0KYBcsripI37t/nYN3RdB5lCrq2lSD6V+nEJofKVZeYpWFbLvqu61iv15T1GK09GsdqueDy9DHarXjjeBKImeSGiiK9857T0+ecnj3n4uIMvGO9XHJ5fsazp0/ZmR5RFmOU0VjX9CZ124F3KCwXZ8/ZOxxRVaOgUshCWrSottqkfFBXD+034wTnBy6GpDRN05fho7dsxloOMXwl3r/loQCJ4ElRmKJ3oMxz1f8tbkJ0ZOm7rkMXIYus33RZ6CVXH+KFQbK0kCR+lXDIVJNSGyFmTcflquHk8pK1d3TBLcgoxWw0Znc8YlwYsHI+emKWlaNLtTlJ1mey7Cg7Ozsc37qNtY7VasVitQStMUXJaDzGO0fXdr27FbLuQhdfLwPfFH5lXje/IUmdkaYoJ2WWi7LizTffwquCzsGnDx9xfn7O8/PnQz+zvL3IInmlg5lklgOK+Xfx93jYlBIfspji2vgGGPWjFL0vDcxa8SWRZIy9H1UCwjeEjThLSklwete1ONvhnaWP74yCf78Nh2KwSn34qmW0lzHIxIN2XTpzn3HbF74r/rINK5MHfROF1NfWNvfstt+vtCDG9ftnKHfEv6KTbOfsQMsySirGF9pkebk21MDBGkS/QAbnBOTsjceTPkXXWiybKeHAFW0uimMq/Xl1eK+fyL3U90pRVTXKlFivMEFocs7djJqZW0Iid4i1A6DfBNZaurajKsrA3TymUKzXc1S3QDHDuQ6lYkwc6X5TlGhToEJxEamwbTCmSIfZugiKx47BznRMe7iPbZecPH/M5XzB7sE9qKYBlwgBvMqD8jgrdQRQKqhYGqUktdDrRc36dt2hyeczErFcnY/3xcIxPZb2Yhwu+6B/15VrySSSb4ak+mXbwHdSxUI5Hh1z+3tShmUpxruUtD+bBzsjZL2fd1BBdYFXBuukKPVivWLdtTgPnbeghYjtjIMF02g0LhgVfNiXQGYpFQfdHuz10RStNN46mkYKEj169Jg//8mfS/bhokg5/r7z7e9w586db5ylOpLuiDPq4OtoQ8EYj6cLeRS1Vzg0uzs7lIVhZza9GWIWN4QNoH5RFEwmkyvSmbWWpm2oyzqk8hFL22J5iW8uUNzBWckZpYtyMMCyrALR0mhvANMTs1C0pO26UKBBDrBSnr29GVVV8snD5zx/fobXNePJTqiCLGEjRim8kogD5xxohVFSCl4rE9IHebz/ehc/4QfBFUBrfSWzrFIqJcwcZpZ9sWSxzaAwdI7Zdk//+zfhXHxRQptLv1JlSXAZbUwICnes1+uQTMFzfj5nNMrnW0UKH3CdXoiNUIcpC5zTdNayXLdcLpYsuw6Lo7UtpS6pCsP+bMZOUVBrTeE7Om/xMbmBRjLJeMGQvesLqiTpTmmkcLD0ed10/OxnP+d/+5f/knff/RZt26aCQv/8n/9zDo8O076IQxlaxb7+plUsvGLFAuw9ne1o2gbjAV1ysL/P4cE+6BuSzKAnaHGDbKuY7b0PrhciCSlCAVXb4axIZInDyUMHorNWRq53soGU0uSWPJ/LTuGXwhjqqkKi69c45bC2o4yZN1QoeqLCE4Q1bFEXXu9pvc4lJrZNK3L8ezMeM8ctP09FTfds6Ue46JX6+nW2zTG/lPQxhGoyYwjZPEq91/7CFzCGwAYCupksmNGS73xM8xPOgNKURtL8GIUkJY1sPEpl2f+HdQsyJhvG6pzHuo7FYsGzZ8+5ffsO6/Wa85AKaLVaDQxFPb4AN0LIrnvEhnHhc5mPisPvXagiDZFYWI/WhqLUmIKbI2b55MTQj82NFM3FWhukoAgJ1xIpDUwhRNA6iyoKcGIVquoRu3v7HB3eZj6/wFRjdnb22N3dC9YZSdQoMZxB9A4AbVEodmYjlCloreb500ccmpJqAqoeocM0OA+FNrIpnEerAOq6b96hjRLwtkwZUc3cZoTp2/WEauhD9eKxv4yrzjexKRBg3pN8G+Pn6dB4F3Lje6kUFpJ8bhb+9ZEBR4fHYBBQyuA8tNax6joW64bWdpLTH09ZGCZ1zWw8olAe7W2Ac8WS6VROsvqkVwpCBluyb/uwQ2MKTs9OqKqKH/3oR/zWb/0W1lqWyyVd1/HgwQOKomDtV/18fBXwwQCQznC+iGFvmI8j0dJaSwBjJih5YL1a8fDhI0xhGI2rm3PNyC0P3g+9peNECWjv0MaAd6nfKjjFKu0pTYlzllXTSGrtULFmPJ5wfHQb26x59PBT6skOe4fHHB4eg5Jiq6YoRaqKmILv05rs70/Z3StYrCx/9fP3qSdTTKmpahM2tfRP3i/cTZsSnDgSBvjsa1enojQW3S5iDrP8+9VqJVbjYOGMn0NOnHxi+rkFK4XR6L95BOoLNRWqejtP5yzG9dhitFo6Z0Oq7Cw1eSBozjmJUonqewDipeiOx5gKlKFxlrWVgr4XyyWrrhU3A6UYVSV7kzF7sxmltxgfcqh5J2njFSm3mcRyhnQ/OoaGk/ampw+JKsqKk5MTRuMR//Sf/lN+9KMfYYxJSSFmsxlVVXERXUv4aohZbqPb1HeG0qY00TAsxojl0gWx2RhDZz2L+Zz//JP/jCkLdvd2b04yi21TzdxyBUl+vGKokfzepA2i0rXGSMWo8XhCWVZUVU1djairms5mG4oMs4C0UFVZgK6wvmW9WtC16+CHFvOcZYVcZSCo9M1X3z5vc0X1Z7N6OTDw9bv63A2sa0N97qWy64nZV6Vmvsrzv4iUKPBChEGGjCrBIplrSh54nx/M/mlBHcrmMKqX1jnaTtbFhZuNVpTGUBUG1VlUAN1UwMp6xLI/+j0EE/u5QQK8zIEYLgwHhwfcunUrZfyIAkfbtlvnZHMevnC7cqa3fpXmcDiegehGdABW6W6fxgeSSOH8/BxTFmhjbpaYXedtDaT6AMYUofhC75GvtcYpCa8oKqmPqY3GWicZNJTBO0VdT9jfO8RZTzGaMJ3tBtyMAMKGGLb4/iCdeTxFIWJVVRhu3TpkvZpzfvaMclSja4VSBo1BY/HKBK7t+snccDx9HS351LzEbooGgE1iFgnZUP3zRJ8pec82yKfH4P7/JeVPDKoeNEUqIh0ZQhfqSEgRHrlTCeAbNAF6xitfi3TvHeumZbFes2paHGIpNUqY/e5kQmU02A6dMdW+Kx58Fq+S8LOr5yxiX5EZjcdjTk/PeO+9X/HgwQN2dnaoqoq6rgfpoQLWk4j3jWBmX6RtqPf5x+IQrANm5hPm6L2EmC0WS45v3aIoC6az2c1ZM6EPuM0/i5+vViucc1RViXW9Zz466MBas1wuKVUtMZ2FobU2+N8YfKeZTveYjsYc3bqD0gWqqNC6wCtJBiTEzyaTrtBLIZp1KX4po1HB22+9wa8++IT58pLdvR3qQqFNhSRf6WRjaiOxnipIK1qnmIHX3TaNKbFt/h1rkcZ7otd/VCeiaiGb/GVe7DNitrm9/va1vo5qz/tji0xhNBrRNg1OSQrreP5VqGrlIiCvsoIxKDrraTvHYrXm/HLBquvolKcoDJXWjIqC471dtHfQNRjtN7z7Q28yYimHW6ooRUtnLwEGY1ZY59lsl4cPH/On/+FPeeedt7l79y77+/uMRqNBHVXnXSDeLhGzrxIDVQEruwbBTZpDhKiaIBS1bcf52TlvvfWW5Dcry9enZm62GBidouDDxHkfNgbiee1cGYB88cz3kiUQkBxSRVVK/ig0XmlsUEMV4J1l0w4p4KxU0vEeCq/YmY3puoau6bBdi/cW7W1wwcjSa0erZuKIr++Af94G2iRuuTUz/zwSsheraL7/J2kwEbiWuY7dyS3FUQX5JloxX6UNGG82JfG7yBCatkNpn0nBIXg/TlLAclJTQTILqmXbdSJRhGpOxuhkZXftGmdd8GlUCQzvoZLwmZd7e1wvvEr3uz1PeR7zrT19+ozLy0tWq1VKmLrd2n0DGTNyAfJl26ZBIG5Kn9C8gSXTBbVfol9abk+nlFWFNvpmYzOjFTPHauJ3QqgEkE8Bf14kntFowrpbcnGxYGc6pkB8SmLWWBlrKqwlRC7sP+ed/O6zTZn1J7aYiA6k/ubezozFuuXZ08ccF5pqNKWoFN634LXU64w7xcdJfn2H+GWtglH9qarqiorpvZQAhCwXfaZqej9MByTD8gPC9WK0zL/w279JrcdUhRMOcETV+0xWVUXDOqn1+f0+7KmknSlx8fEO2q5j3VqarsP6kMlYia2pMIZRVaJjXQqlSMciI6oRM1PJ8tTLbNH5I1piky8hoJROvp63bt3i/Oycj/mY58+f8/TpUw4PD5lMxkHA8Al2+FIS2UsejSz79cbN+d4KY8vUXpGUbcAtBVfvuk7KX1YVqBtyzciJRl3Xg4pNUWVarVaSmdOI9BMnUeuCnd0DtG347OmH3Ll1CIiToSlKQo5ZtDJi8cTT2RZCVIZ1NkQdCfFx2W4YSiwtXhV4wGjD3TvHPDs5471f/YKqMuztH1EXBdYXSdzXug4Brr7f7a/5LOduEXBVCoqV5CeTyUDFhL5Clvc+FZnpMZWYLffqAHww+itUX1/0mpY/83WrI1+JuqOknFsfPSLz33UdTdOws7PD4vISF+Y0ahgQpGAka6xQIiE6CStbNSxWa2w0TulQ1Lcs2RmPMTHu0kiJRR0KkfjM0t/Pg+BHzvvgudZLjyhFUVS4zoGXqJaqqjg4OOBb777Lo8eP+ODDD1iv1+zs7PCP/tEf8P3vf4+u6yh0n0FDiPXrY9rXPfnqZ0MNxDkhXJ21lGWJMRqPMO7JZEJZVVh3Q1kz4kujWC6FRK4ewuGEQVzhqqxZlRXL5Zros9MfmsQ2SJJZb9gIhAZheSo7qun92cILWUTjmY5HXF7OuTg/Zb1aYrsG5S3Kd+ALUE4SwsX7Eh14fQfs86SzOMcxkH9bAZNopdrm47f9Hb4fmwr5/rf1IV+yrH0VBOdl3/FqalKvmkXXB+hVsdz5e5PJ+IC5eURSUNn+6GxUMS1eiWSmgzuI0ZqqKFJ6eKLBJUgtw50bpccMV0q8dZiZOb/LGMNoNGJvb49PH37CyekJ5+fnTKdT5vPLZBDq2VvO+F6dmH2h3ZDtqfTGjQf4oGk5JxWkBBeU+Y7noCwKfOdvFjOL1p9tgc89KK0D0QmZ/T1oU1EUNSjDurGUlcSsRYbmI56QMCzxPUurnyQF0j1R7L4Kpsv2M1oxrituHR3iuzWLi1PwnunOXZQp0crjUs5133Per6Bdt5lyCSzO8+Z9Me//dQRg6+dJso33/e1RJ1+2xWO9iTfarpM9i+4Zp4r7Ku4JwW9jyp/Vek3TtSmYXMKlNFVhGFcVdWECJhvVvD7ypCdJGe6bQwNJ9fIQAH9Pn+AB5KyN6lqSk4YShLeOb3Hr+JjZbMbObAdruwyRyqX3r77lyvOV71QINfSEcDEpaqK0YjKZcHJywngyoapvyGk2t6Tl6WhyZ9lYUVmKpHYSm4mR7LTVlKreAV0xX64xhWEyGxE5j3dIYKmXydemTCVNYhGHKLcpHx14Y+kSLQaGiG8gDyxNxf7ujB98510ePf2MZ/Mznj15xLe/P2M0LjG6onWhOpEmSHUFUjjl5ls8QHm16fh7LhVES1Sc583vmqZhNBq9wM9ve+udZT9f1dhmsf6b1jat7S7uG3rGi/esV6uUPdlZCQBXqIDnCiFTSuO1xiFY28XFnMXK0nQSuqSCJDYdj9ifTBgbg8HhbResogGS8b2/Y4L1VS6ViUtTrwVp8VkLaphYOqVW6tHxEav1islkwt7uLkdHR9x74x67uzvs7OxIJbRejSH61Cn1Fa/rFvgmf3v83XpxzXDO0zYtRmuOjo744IMP2D844O69uzcrakSAf5v6E03dSaiPi+QVWpcURYVSBU3b0XaWmLUgcqzeqqGIvidJwlNRv8wE8wjqikPQUGUNktmoqjg62Md3DYvLc85OnuHsGrBo5VFRMlMelPtKhZVN6Wzz8G1KZnGD5+m0r7s//t1/kiUYJAm6W1oPQv9taikcKbRcyum6Nnn/e+cGND5JwLrPCeu8Z920YsF0rpfMtKYuS0ZVRVkY2c0Jx4x92PSDV0SXDNneEV9JumXoQ75fZA/UdcWoFsmsrkccHR3xztvv8O477zCbTjeyEGday5e1aL50y8ax2XJMNuzTJJkRsXgdfOlOuby8vLkUQNAfps3Yvtip/rPg25PESo1SBlPUzGZ7rFYtVbliZ3eCCZskWdk2xG2PF6zMDT+3tsO6mPs+3hQJXsg+EOIttYKd2RSUZ7lquTw7xbmS8dSgyx3hhMDA1PQ1tHyTRTV+k8AlR8gt921VPTMtXXzpcjXzRS36NYXnvc5pUVcJ+020/pGyD3O8KBquop9elMyujcrwHjQ4K76O1lqpQwGgJPqkKktKrSVcKR7k+M5ssCr8P083FU9MmI4hdrvRHa0kk8rDh494/vw5zXqNUnB6esqvf/0rvve97w3Uyej+kZ/d19qSlLHtOzJ5JB9//H+QT51IkKPRiNlshtaay8vLmyFmubPsNsksnyTnPEpbEiHTJQrNaLTL/fvf4r2f/0fWqwUHB7uoSmLhCm2CZ38MGen/k8InsjlEJXW0XUfTWnZ29lGI8yzapI2ikLxPHk+h4M17t7lczHh+esYnH77HbPeCg+M1R/feRQq3elSpUa76WshZrkYqpVLan3zjNU3Der2+8vmLjAoqcIjoZGz0V4MJvmwTjPuLzfjLH0YJYgaF0sNkom3bUhQFhTEsF3PG4zGFMclXMXsbSXFAMhu3Tcu67Wg9WKUwhWE2GTOuKyZVQYFHWQeuQwWrXFRF4/7UHqLHZLBvJjxNB2ltINEFw5pHDHD7+/v8m3/zbzg/P0cbQ1kV/PrXv+LHP/4zjo4OmU6nGzCEvEnr8nqC/Rra0GQRf1OD76JxwPk+4UPbthRlzcHBAffuvcF8Mefhw4c3p2a+SAIYftYTIvlSkh8WRc3e3iHL5Zr5fIm1rk/rmyQz1TOkIHLnYnLEOWxIzz3sRy8dpgVzUrl7f3eHg90dZpMRZ6fPODt9xmJ+Dli87/C+A4a52F9H+7yNFOdjWzaMmHU3xQ++5KGOlyX/nZdpoYt/051nY9hSVAWhl8wkCqV3xRCMDKKEMBx6lBh6yazzDoeUTKzLklFZUmkjbhVeoqaVyquDgUolTFSCUTb9soJLc7ZXMvzSS6m68XjMRx99xCeffMJ6tUIpeP78OT/72c+Yz+dbJfj4jNfubvM53+WvVyqLRPE9zZBs04rJeMzu7i5aa87Pz19PBMA2D/SB2knoHyCxZ+C9SEw7O7soGi4v5yJV1FDWfRI6VMirnh4U3+uwnePs5ITlasVq3VKWY0bjMVXdF3EQw2TE7cIkBbG1Kkv2dmYUVUnXNpyfn1HUNTpk73id7WUjAJS6Prj88yyZsV0rrV1zW879AXE1cJnrzGtrr0Ys8713nc9eYmrbpiHDbHpssVdHU+jzhkrkQuwgUWU34u9l8nhXL3b4dGo3tK4km/jsmkjy/FCa2Txj0UNeKZVw1ePjY6azCbdv32Y+v+Ti4kKyZtRV/rb01FfiT6+Dp11RMyH2Ndbj9d5TGClyvL+/d/PJGaN/ztBhcyi1JY8ZL4kWpVSBQmN4+61vcXHxhE8++ZTDw30O9/cZlZUQnUC6rbP4GFwe3t91luV8zl//9V9zOZ/Tdo7T0zlvPHiTu/fuBXUz+LopSQoZ3bW9dRQa9nYmfPvdtzi97DhfnHPx619yfO8ee4cHGAYF6l572yalRY/nzbQ/AOv1msViMXCL2YaD5NhmVOPS4SVfqxf0jaBuxQog35D2RaUKZa4aqiLRjhJuysvn/aCCUbghANQa5zxN27JarcXB2yh0XTGbzajLklJpjHPoQMy00UmV9EogXOVBB6C7J3a+f1d2jnIgPI7bZoS06zp2d3f5nd/5Hcqq4NatI+7ff4MPPvg148mInZ0pPQ61PRb462o5i4xhdLFnEo9cUxSFxM6Ox9wd3eb2nYObTZt9ndPddYaBiDdkCXg4Or6Fc0t+9asTytIwGY17wFIpULKpkhWTaOGwrFdrPv30U84vLrAOoGTv4DA9WzA1j9c99uA9eCsFiCejmju3pjT2hCcnl5ycLJjs7bBzsIv/ioLMt7XBZoUUYZEzjOixXlXVQJW+7oDLd5sSzBcgBn7j39fWXsYg8YpP3rJfIzGLcxirlm8AJ3Jt+l0YXRfiMJXWKKPRhaGuawpjMHi0k3xlWociO328So8Pxji9/jX5BdlshPWVgQCkKkZKyXkYj8e8/fbbaA2z2YTpdMK//t//FYvFXMjoxnJnNomvt12H8YZ/i0LqfjjvqcqSejxmPCk+n5htiubXifCxRcnsav960XxoZQyd9xqPwasSU4yZzPZBlzRtx/nlJZOqQquAFUXXDJ8MSZKvfbXEuRa8VHBq2zVdt8baVsKolAqRAlEqCWNMqoQ8uioNk3HJ2ll8t2J5eYo2OxgzlWwdmfd06n+aq7DzfQZkxv9t4Xw+4X6RmAwJUOqXigHgqgf5c5zHZ0H7CSDedioGL0/NOY/TDhVCcxKz8C9HSnz+PxUFCT84cEanQJzQqw0VZ+OZOcl4Qddf8QCqwf9Tf2P/w+aSjLFSD6K/M+C1oR9eQeeh8x7ro6wjYUfiIx7WItsCGfkkzkR8Vj44kZb7K7exVLlFIlXySI+maTg7O2M0qri8vOT07IzRaExRlGnMkYlFvPTLErQX7xU1+D0JGfHGeHTioc6v9TJ2pTTOw7ppWa0ucEpTrQ2r1UsQs5dpORfLsZu8DXP1iwWTYEmSYgUG78egNNXsLm++6zk/f8Tz8znPTp7zrbcfMB2NqVWFLuqAdXlwlsIoXLfm6dNPse0lmhVKGRbzp8znJyyX51Dso02BVgbnczUpK+3lPYVW7O+M0Rp2Lleczz/j8fkjju/eYe9wRD0uMUVJ5y2OoB4oQ0wkh9JhbLJASgmsG7l3wiXUdUrrFXaMQgXrk6Rjrqq6VzWQ0JnOOSxizUqHsa+VjcqcfXPG4gHlRE33zmOzQjNFEe8R1SUdtBw/A0jEXcamlSQA6NqOtmtRoTDFeCw1S+PhvEZmHM6F7yUIxYtU/di5Hu+SMfbX5w7JCrJMFYrGSgJFi0OVCuc6cDCqR6BKHILbat+hhO0Cik4prNYsO1h6+ZEiOJZSOSoDRol6iXJ4JYmkol0+D+6L66YChBL7GHmjR9FpUUWVj6FnJOZjrQ0Fh2X+T06f8xc//QveuHePjz7+kPd+9R537t5jNtuVlPA+VCFLhOx1idn9SuvwDkcUIkJqeu8xHsQpWa6IYWBoObPOK9CazjvOzy94771fo7VBazD6BmsAgGyg6By77buewBmiJKICDobSeFdiURQjzfHdmsvFORcnzzk/fcS9e8eSAqgQYuK7UCDVW4yRoijn5ye4bonyLUoXrFbnrFcXNO2C0s2oTIkyBmf7IyFbphA10nu0UkwnFWVlKAycPn/IyckJ0xp2Z29h6j2K7HqBN+Jhjts0HKpAzBLhJgYQR979Epsncqzk0CrFXJNq4WMm0yiZxZwwPvu5xngROb73wbvdEwJtRBXyJryTRDxjFtTex8yH0DM/eKPzntaK6quNCRJPf93nE7JsDL5/X5RChq0nZNs0ic2IBR8IpEpSiMZbi8Vj8RRFUOm9p6zGeAriEfOBwGrVp4dyWtHgWXtoPZQoCqBQnkJL4vconXkVI4S3jD6k+uknx2cJZhReS10AfDxBQ9nW+XgmxJv/cn7Jhx9+wGhU8+nDR7z/wYd8+zvfZTyeMKyNHvHujVKNr6GpKDnK6BIeSax/AIgvlSPaL5XSOMB6QGmsd1zM53z48UfituW94N431skMp9kkZlE1SmpHSI3dy7Q+E3lBlklLeuy6pqzqUNWmPxDy3MhNZMPr4GQr9CJsWK2FemcbpP83HIukFuZcXFEUhlFdMx6N8F7UWFPOmQT/oNjTXO0YvCL9nh1flbq7bRYDlrXxse+LJw/9yORhXdeB9yHfFf0LtmzKzQMdtCl5r89UGi+e5FECc67f5MPHXrWeDoxAmf9WnnEiCcYb03Q9oRu+8/MUmit3bE5qIPg+1qKMncimtrdqygf9mhMYWe9nZoNxKbGP4LuXu7+q7Idcnds6lLQQ2YQM13fAUFToX7ht/+CA+XyeMqlYKxjaeDzG6M1EEDLwVzYCvBTxy9X6KNGrrd9v7oE4x4l7QNIEZ7MpOHDd52TNeNmB5absmAdq8/uYftg5R1UW2JAP3QQVDeiL2wCg2ds/RCtLVWrm8xXT8QylNda2FMqgtMJ6sKF8XV2PULrEuw7rHUVVUBUV43oUKkV7lHPx9KYfHaQZa1V4lqSFGY9G3L17l+nODpfzOY8ffUx9tuD+gzcpaqn2ZHSB81Y8hJQaYhoq8JewEjok1/O+D42KLiP9vozGkp6wOOdoQgFaKUKbHo/ynvnFJd55qlBrVFxXRMq8bgmTNTNb6z5aJxafsQMwXIBXKXbi3VBCy4nFatWE+EZHXdcJepjP55J/quxroqb3pxFtk7o2Nr2KEnXse/+UnCnmjtxxHvM97cQiJEL0phFAaZQm+JzFtQ0Foj04b8Mhk8Inq9VaAqCVuPpURcG4qNBeYVQvnaWKm1F4z4ab6v0OB3VlNuJYc8nTZcQU4Hf//u/y+LPHPHv2jF/84hcUZcG7777LG2+8gQkFcfL7h5bvVyBoX6ZtXfYeCunXLY5ZjAD7+/v84HvfQaNo1t3Nq5nxEGx+HvE0ayWjq8XKgTA9MevJtmzg2WwHrSxaW86ePZS02Npg24aikM2GRXyeCGXbMTinsNZR1pqiKMXXJy6Stz2p95HDRSoaJk2JV3xV1xwdloynUy7ee4+Tk88oqhXHx/voQmG04COiOJg00ZtEIhIIhXmBCH/NF0qIU9Osmc12KIpy42h7lssF3jkKU/RSFj5JF9cVL97cuD6irLhEhHNXD4lR1CmETF0186GUomnakEhPmFiU1FarVarCnt553XT0DxxetHUCwwy/gHBDfyjS32EPxDkL8FkgZn31JhWe4QaEkqROi1tGg3M23V+aQtL8QHCFjZJHnPOw97I5GJDt/MN8LP7qTvERhwwH3nvPD37jB4zGI548ecLHH3/M/QcP+Na9exwfH3N5ccliPk/nNc7bMD3XV9uuPxc+I7j9Z0VhmM1mvPvuWxhVsFw0X5yYvciXZxulj21gAEgLlS9lzqIIREYqlhdFFZ2mGVib4iMQdaauaqp6RGsturOMR1LJSacDEe7ZJDhR19oyHqVD/qmypCodaM96taCsapQO+JVXPfHItprbHCJh471QLN8UsoMaNFAzewkKwNkoJW3MY7h383VDyaX/PakZGzfkFrIYF+e9T0jglRH43rlX61B13nRXmNwQy1K9uJLPhMtHun0M29SjTUlrmwSJIlQHj1JNThS2LNLm3GR64qbUp5WEh6UsLhkD7bVGUVVVfyBeSEu2CTB+4wrvh9Eg0+k0nb28utSmJNZ3/XVKZv04Bxb7wXz7a+4g4etxv8T9q0Jhn5cmZi/jkKi1ThO52aqqSsU2XIyzjOEzYQ0711EaBV5hnaLQFWU9ZeIsrf2ItoPOekqj8UjaFmMU3kFdjbh75w2eP33CfH5J21lu37nL0eGRWDBDimBUlk01ECuXH7I4UQ5UqE9YGsOdW7eoRi3zZcvDj3/B8Z377OweUJUG7Uo5iCFXm0PFOPb0DqXA+h5gdTGVTGZNShw7I2iy8cSPTLL4lv2lgajE9ErR+phtk7AbrpfMcpwlEReiqq0HhKxpGqyVGEUTq8nrISOIBK+qSnZ2dpNaWZYFT58+/RzoQl0h/kOynatnV33oXuRTt6lyivSq6FzHetXgtAk1SSTVTKxDIdCAAOpyX8jXr7SA8kphgXXTpNhZraQm5ris0C6omKFwSK5GimDrieBh/O6K5LXxmSLCEGGvhHdGa+3FxQWffvop1lp++MMf8umnn1KVUlM2J7o9M9Evdb5vpg1Hk+3ya65lAHVoYwKTlHJ6y1XDZGQoy+JmYnRyDpurmfnGjZ7UscoKEIhKXEWP81Y2asSedElZjhmPd7BWKt5YJ97THitYVQC9q6ri+Og2x7fucnQsPw8evM3e3gFGG7AOby3e2gTKaiW1C5NvXBAQIhOVPxWF0RwdHnD7eJedqeHJow+5OHnMenGGcg3KtlK4NeBUfUIYemJmJJ2yCxiN871HeS8dXeOY6z22s1RVX18hAaJI4O1mgQp17dF48TrmuEsu/Xjvk2Nu07R0LriDuD69UzwogjMVTKcz6nrEeDxmMplckV42Wy+hDaWzK1L0NfduOmVvjgv6RAhRAo259mzAc70XYhYJj06Si+ufJW8kOnt7D23bEzOlFHVRUpdl8Or3ImE6+Vc53xfx3hjOFSn62r9Vmp8IJ0hRYsd8PufJZ5/hnOO73/0us9lM9o2P/b+Kk311xOwLtFz9DXtDa01hxNez6zrWq1ZKT76sZPayA83F/U3OmVs7wycbK9lz4J5ag+RVF0e5iKX1G7q/X4WBVlVNXVu06UTF1L17Qbo24GJbRrDls3AIlBC1stBUpQFvsV1Ds1qijJFMIN6hUqqgHhvxXg2e7LPNIx7nW7XcYc8Cjtd32ydw9OoIwrvzaco6cEWq+YKaRQ4lbBLR3OqaF1XZhCC2jS9//nA8mx0gSWfX9vFlxuDCXGiNDlkxlGLgmXpl78e5jLgbmcNyuHRQLDhJu1elEMWVpem/G7y3PzM+wQbRX3HYPec8tmsCludCRXYJb1oul58zK/m7XmN72f2m8ksz6Z9+761WK+qqwqgbrs60LSkjkPCTKJlFN9K+aw6UuBY4QrZLU4ha5jSdNawbcBSYoqK1C8pwQKQQhQq6tOHw6A6znQbrLLPpLmVRgVchliscJB/VSoWzwZNb9WZ24XK6L4+HYB51AQc7I77/nbdYrC2XZ0+5OL/gwVvfpxrtiDRU6DA+UVOkfxajCzL/kCQdOOfDbAw3cZw75yweUduMMYOCI13XBhXTYLJnDzGFXEp7AQFQ4X8R2d7oxyZByp2jq6pKxp3VSrKbjsdjSNeD9ypkQompd67hJ9s71jcfN3PezZ7Iy/rpeGGcEJlLa8UtATn06+UK72E8HlGPp2AUHsv6YoVCB+//GDak0BmPEO1B0VrHqu2kT4GQT0YjjFJ4K0WpldbB2i2uGn7QteFabaFP/e7IvvTeB4NEpgd4z3q94vGjJxhjmM/n/PjHP8Z7z7Nnz3j67Bn/+J/8k69YrXy1pgIcpLWmCxlmvRPg3HaWtm1Yr9b86r332N/dY29v9+arM237G/qEgs65ILr3KkP0zlFa7Gji8V5gWwfeYF3BuvU4DNqUtK2jKIO5vOuStUhh2D84DoVNnVSeCSW8iqoQVcL2KZJ9SMXd51LviZkO5uuY8QCgKhTVTs3uzgN+/osPeHr6nKcnc+7cuU9RlCIF6gJUIQRZBSdiQGGSqBznQ5L4WaIVNC7i0H1AMlqVleTXUlqlnR3VvsJESUB2e+/RbXOm/vkt45g+/XtVFYnELKaSiTUa1+s1l5eXHB0dMRqNhg8i+p/5jWdf05W4IFu4uA/qUnQgjS4vMiu+vzcyiCD62vzdzrNcrSjLivFkynQ2A+XpbAfnJ4E56sGzVMDH4pMl+sKyblrZU2EDjepKGJSTNNfKh5gQJVhvHDthr5HWfBspy14Yianvz42m3zPew3rd8PjxY27fvcN8PueDDz5Aa83z58958uRJpjp/85uKkEAoUuxCQe/OdrRtR7Ne88H7H3C2t8et4+MXE7NNKWHbd9e1oaXqyt28jJzZx27FzZr/vvmEqFMbFAqXVXeGoWqznfN9zgJ7H0JCFcoYCqMxRqHxdG0j1Z1MhS6ClEkEeKXXeJ/tx+vflROz/PfoCzfskt9If8zwPGyYTTeB3/iO8MsV9fuFalz2rCjy533dpjYmIpRU000mmLqSMEvicDIC6PP1jJLTNqwsG98A0PC9Y3dkXFrL3ooMNxGaa5tc7wLGlrghhDhgeWvsu5RD7Dvy4t2m+mVU+Wefvx4R5G/bltVqxXK55ODgAGPMFcPcpiqbz//rav7a3f8CeuA3GCChQExV0TiJzbjRtNmxRQ4eHS7jRuvTDm/0X5E+t85RltKlrnMoFdJD6wpdjEBXeFWgjKFzLV45KlOIr1kmZSVsJkgr3kPXtCglXMkrQtqhq6qxqBIeZy3FRlEQFcIsXNdwsDeTXEqjKc+fPGQ+nzOdHbJ3q0QX4IPKUhiwIQIvl75scN41WuN9HrrRMxCZR1HlZrNZAqPlGdA2DYv5nMKIM6tUrcp0mKiAbNk9WwnABoERW4UO0kCQoDcybSglqnrbdjjrGY1GqQzepnuErGs3KIcXJdj4d/5s6GP50rwkVc8H6elqVfdNHFGkII8pCxxS3WfdNBRVSTWqqUZ1kMJAecVquWJcS/YR79LKgO/D70Re1rTWsUyJQEW6GtU1RocrtAoShewtH9cj7MOkXKaxB0KWLeMGyU/Xaa2urKHScsjf//X7nJye8PTpU373d3+Xpml4+vTpVilbpM6vMsuwHxD/wTcbjNw5R3I1DtePRjXHR0f84AffZ71YAWJ4u9EaANAThzwUJnYu9ihy3nQwERN35yyVrvAeWmfFaz+oikLMJOBXmYKubfA4xqNKrE/xwKnIMfusnHhP2zWURYEOKV0ibmPCxhxOrMc7n+p/xnS9KAe+w1vLwd4Os+mMvZ2W//jnf0VZn2OPOnb2DyXFsjJ4FEUIsZJ39OFTzrog8gsxkwUeYlMgAeBlKdWpVSayKMSCNp8vmAVfIpQEnfs47qGYNlinz11PGMxBkmR0f+5i+JhUzOkAz2g8oijLpNpt7g9rbQKle4kyJ2JhR6geQFf5vGRnYMgkr/qbbWoWsYhvZy3rtmE8GQsxq4WYoTzaKdarFc7OBupbPPAq7i/AK03XOVarNcoUSeoY1TXarcF3KCVMWhhV8v8X2pjLWnEeogTyecqLCskHfD7NQjyrquLX7/+aZ8+esVwu+e53v8v5+Tk///nPrzCM3qqZr/zrbj1Bzv/Ot2bc6+JlMHTmHY1HTGdTDvb3Wc5XXJyfc3Z6crOS2SYnvu7g5IRsU+zMMzZFpcx70KZAaSO5opwO6kX+1M0ouPi8QCxf8hCTJJsNjrdxlQmJ/aoSpO6hxdmOrm3QZYc2NiT/Cxw/l3jS+FX6YMsrQ2/ku00JUm7zIUtuxqFz/eylgLLN9/Ub6fq2IcHFtVZZsZV4RcZhh4end3pkY26G2k+SXVKGiZyYbbOQbhK0TTU39Wcj1lVFUGCb+rAxfOmHH7jY5ERXbayBhxBITsQe0l4X9bZ/Vb89/OCd1/yRnk/AS2N+/4hn1nVNVVVbMxR/pS071leV/89rqh92UjVN8GEsv5jT7Atfk+2+uDnatu2zdJIvsgphH4HT4lNmTWNiznX53XtF01napmVn75Dp7iH1dJ/mYo7WLcorWheCoD0UAWBV4VB5b5MqokyBV1Lb0Ll4YoIKkIgK4fAE9cz7wV5WoS4hwUgh4TqeN+/fpelErfz041+zf3SH2f4RZryDCEwGj0k2XOWj03CUHPoDvIk1xoMfky7GFv26nL/quzXc9+qKavgyhL1fmz7cJT+o3ss8KkAbUd2KogghaDoxFoVitW64OL+gKKtBIY3rMKkeDyOpzcqDU6kj4bqYInpopPBxUrN3iMruAp7U4ZynrkcURRncSfp0RzH+cnDWEp/s/cuatqMNCRA8UBYFo7ISy3LkiVr11ttItKKq6l2ANeVwDum6H7w2/aVE4k1E3PXzZUIyyJ2dHb73ve/RNE0iZJPJhFu3bm3NBP2VWza38If+C2nRMJKkdCXrUhQF5+cXWOtYr9ZMRmOKwnB8fHizWTOglyAiLpJ/H6+xTvAoKbPeH0ZjCjorNTOroqRrHG3nWK5b9vaOme0fU892aBdPUL4FC62VPFw6qHRgk/rRtp1gZFqjKGVjKYkiiIcq+kX1LgRBnchE/h4kjwlyfKr+XZaGd956g9PzBU+fn/P+B7/AeUtVFYyrKmF0yisk36iorQNJKxLQjU0V+6SUxIlGCU4hbgYShrPhaNuLLRtS2vb12nxf/E4wx/yzsIbEOEPf40na01lLWVXs7O4O8RelWa3WnJ2fB7+/F797o5cDFaqvOzAkVASGmGJHPcGiPcRrk1Os7bDWMarrFDualsPLoVGokL86vlMlghKhjFXX0NgO6wXbK6uS0ajuiZkHbzS2k7ttFC4CTbIuDTMIHr0EqYZfpTUQPd8lYh3HiRb3o1Fds7u7y2/8xm8wGo2SZXk2m3H37l02LdH5PEYm9bpVzUC/Q8u5Rv97ghlyaTeM8enzUy4vF1xcXPLgjXsc7O+yv7d/s1U68sOwLadZ/K7foZuTpjY+Ea5mnaOsKnF/MAUoExZVByA2cMsXcRjV+5Hl3GmgUGw9ULkKEzd14BiB01ZVRVVKiIW1LbZt6LoGZ1vwjmjNTIpwnCeu0ppt6pIs5nCpPs+bPr0g++Xq5r1+vgaqq3yw8ehecsz7GX2z4j1Rpes6m4jh4Hlq2yxchSm2WWJ7ldEPfo9lyXIVNGKf0T1EDsem1bWXhK9OyNVeDkKDIIUURWggHc2oliqi3/fg7/R7dk80RG/7bHNO4jxGacZ7z2Q8YWdnh729PZQSIlDX9WBeh2PtmdbrbJsIQlR+XnSxyj6IxsXoYxkz8cANJ2eE/oC0bXtFlI2VoSWfmsM6FRZBS1ZJXAKVrRMVp+1aVus1t+/fYzSagNdU9Q6tt0R6qYyI6S6X073HS0FE0DolZLTOcn65EGtlYdjd3aEHGH0GqgqYal1feswJ6gsYSRUUCJ3CU1cF+7sz3rx/F686nj95SNNZ9o7uUI1mYDt0WSPJlEEH84QcAt1ruFmLBWjLshrMLcByucQF66/H4VxmpRrsyC/Oabe5hgCh9oJHrHpCDHwIBxqNJGwpvx9gtVptWC8z0D/+S9Czr3RzS99fcNqEUfnkZtFbhHs3jPW6QSvN3t6+qJYq27NNw2q5ZFSPKEyRvb6XnGN2YYti1TSiGQQpoiwL6rKkWa+BBq0cTnu86RlfLzl7rO/V40j08pGjJKss2XdRMr8CJSAEa72+4C//8i/5u3/37zKbzsJnayaTCQ8ePKBpmrC3rzJH+eyrUjk3BZpo+OqlMe8JUmd/ndaasigDlNVwenrCcnHJ40ePbp6YxUlqmmbrdyaEjTjn8NajizLNn6gKQky6wPWatmW5WnHrzl3qEpRvGI33RPppRerRknkXS0zCG6uQi4rpdU98ms7z/PyC5WLBuK6Z7e4SO+C9TxYvZ4WAdSHuMBIzCU0qxLUiLIZSjrquOCpLRuMR73/4KY8ffshyvRLv8rLAdxpTGLwy4rkdp95LGiGp1OMG+JlUY6qp6xFJNwlS3mKxwFpLVYXKVTjpW5J46Nn5F9yf3g8xqNiiiwFIrK1WGueFmB0cHFypGqWUYrFYDIgZA2K7QXQVA4rut1x1pa/ZFblkJRxf5sx1naxtWbBarqnrmsODIynCG9QXgGa9Zj6/ZFyPA1g+fLPWms5K2msLzFdrmq5LkR0CtleslktU0aKMp3Ce0hi0UrLGjoQDeoUkM8hwNRR93Gb+dzbiAclRPVMoipLVasmf/dmf8Xu/93vs7OxQliXn5+dMp1PeeecdiUPN3KZk3qKBRqM2g0Vfa7uqmamgg8bi3i7FxMoVRVFQVlJhfr1e8fTpU5r1WlyUtr5iwxr0eaDxNnPvphqUHw4VNm32bVC/hIN51U+yD5haWVUYZcEKmC+e9joccILoHqWyMPiIdQSmH1NMt52laVoKI0TOD93JEi4ThxV9cfqoOBU2mE9EQyuFLjTjUY3W0HVr2mYlcXK2wzuDGA76igCEMSeuG56Zz+G2CvFASH7YV7IOvQoE49qlemmw91pH1C37IPYzunFs9jOP39z6zGEH+/f77PtcHRwqK1eOxGYXk5OtHxZSjvss9sk5h+3sIIfbdokx7ifJ+xalu4ijWmtR2gZ4y4bECIKrOR8YbVD3tAe8Toc2wRcRP5OPBn1IMo3v5bTeuOa5vLxM44wYmTGGqqqYz+dpzFfXMj7vdbbt70jSeqLi2eXhl8274lyv1w2LxfLVJLMhznA1oDz3S9q8z4Q0JUqpkDCRdKDFZ6m/9vLyAqUUR0dH4ZBq0CUwoqymQrRajW3XIaVOKPYQHhkLl3gHTSdFEBbLJdZrTDWmc/DxJw+5fXTEqK4oiyJkTHBponxG1LQ2gfs7lCpQCR3Jxu8d+7szrLtF5wvOnn/GarlkdnAbZSuU8RgMylu810Ga2qCmoVkrhVyrqhp87rxP6oIZOPZKX17eDeXq+lyH2cV/c+YWGZYOjpp50kXpv4Q4Rcl2m4HjRe3qtt9+0OJBiJJZPp5ESJWk6YmpozebC7GmXdcyHo/IDUChszJm74Oq6aTARnC9KZL/ouXi8gJfdWCEcJVGkjSS4oj78esAs6hsfgttMFryoZXh99z4ItFbAQPOOqm1piwLZrMZf/mXf8nJyQl37t7Fe6kvmXsXbGKQ2xjm19USrhrmqlmvkyHMe8/Z6RnWWh48eADO0TYtzXr9xfKZvaxJPxKCzaZDdgJrOwojsYydC97HIbNEZzuUFj+us7NTdnd2uXf3nsTfqRDfqBXV2FKYknalae0p1jZowCQKrkJeMYWzsGwdD5+ecH5+zv7uHmVVsl6v+OS99ylMyeH+PnU9puuasLGi9ON6zUgVwt1tJ/muAI/F23DovUPhuHW0x+7ujIdPnvPw8Uc4DN+bjGE8QisoVIVzwaTvda9XhBaB0a6z1HXNaDTqmYYHH7IFFEWRrHFkEoLLiFAvtb38OsfW4yj9+uXrGw0pxhhGo1Gq5xmJSNd1rFYrkazDQdq2h14kLUY1Mq6pzE/+jBhFoJMUnzPYrutCxSrParngYG+f6XSa3w1K0dk2pDdqmM1mxCI1otn7NB/eg/WezksUMYEpF9EA5DrOTk9oRxarJSC60EYCpG0XIjVybScQMKXRRmO0oa4q6rIKrh41dVFKjLDRIYpAS1KGaMTyYExfIHd/f58/+ZM/4e7du/z27/wOh0eHmEKIXMw5uNkivHKtAeQGW898cpBg85oe4liGPaSCavz06VPq0Yjf/M3fpGsaFCIkfSHJ7GUGmYvs13UwP2wDZCSe6SBdxTzlMWhZnAuFZGlTgqmCdTNkWN9gpsJBpZahtU5q7a1beY4RTGSxXNG0kp/LEw5K4II5RhT721syBV9IpuwgRii8ZLgoS8pC0TYrWgvetXjX0acJiv5t1zMIkXrMgKDEKdr0FRreGJTiWDjmS7acCOWbLCccgzxhWf/72NFXPSDb8LVNjeAFxDA3YDiHKcxW59Hc0qk3MpDknvpp/hNMIvtBB47nvadtW9rC0ukQNhUIo+3agBnrK3NaaIOxOkmwOkQbWGOx3mT45+Y8ZDMV1qGuaz7++GPqumYxnzPbmV1J1ZTG9opS/Ku0zS2Q+uP780MGEkbykJcHFBy9oawqptMpTVFQaENVljdvAMg9rPPPYueLoqCNamGcyIAVCR0RDts0LUVZUlZVitfsN60GSpSx6GpCNWkxtgbXotcr2mbFcrlivuporafznrZzlNWE/cMR090D6rKgrMbcudewWHU8OznHWsf+zkz8hJRIQEqHXPDe4YNqqFTEYUSFjcC898Lh4irMJiNuH++zXHdcnj+n6xyj8S6zvVsopdE+Dt0FgTNicj6pkLLxe2IWnT5zM3yc2zSVr5GxRlwPetB6Op1uqLukdEBRDb0pbr/t8F0HdcQ5jERV1LCKoix6phpqTl5eXuK9ZzweBz+z3sfP57iZUjjraJqud1pGUZclhdHEaqLKaEyhqOK6eo+xpnddyeEhFeCRYHnvcKxdh23Ff2+5XqXMvt45dqsxu9W4D5D3IoHazlIWJffu3WO1WjEej5nP53z6ySeJqeTO1181MXtRyxBCYiRGVL+jkBFpnqTzcpyenjKbTIK0+xpcM4CkYmxy6R6EvMA6h1KuP6hBtTJa04WDUFcV41HNaFRnTw9cSlegxElyXBU4u8a2C5RfslisODm75LNn56zajrZz6GrE0dEtjnb3mEwm1IXBO8t0Z4/3fvZXnJ3POT+fs/ODXUyIJIiB72LFCpJVKEoidT+kolFhTCB2kndMCLXjYG9KWSgu5ks+fvQp6Ofs7B0xnc1EogxL512HMr0EZjsJayjLMhG0yNYk4V4rPlJclVByY0Ca2JsQz4jl5non0ujysLe3d0Xaadt2ADZvSm0v217WCJF/prVkIbVW1HRJ9y0geJ3FYjos2sucnZ6eUpcVO9NZsFx3YW6LIJmF46YUnfcsAhYomYMV47qWAiZWcpvpokDXmqIue3ggQwEVDKyUzsZiKNB4J3CHB99ZsCEdN4q2abi3d8h4v0jYXyx4U5Xi7f/tb3+bsixZLpecn59z8sEJl5eyFu+8884A+4xz11uBXz9x6xli+Dt86Omlt8isc3/GaDyR/HmOx48fs/Ptb1EU+voiwF/E4nXd39f9Lps6TCBeMIANURkPtrPJQtZz/Wjj0UilI48yFcpb8eD2LU6L68O67Viu1izXLU1nKb1BFxWj8ZSqHlEagwp+bZ11NKsmEIf4np5AKK3AxvhDIRSpz0kUUml8hLxZdVXg/YjOWtpmRec6qnosRNG43qI5eBvBTcNnUln/fJF6r2IeROnhBjfjJlgc26bTZVVVg6yy8btttSDya17m3V+29cYKn2XANWme4siatqEOtQque7MgCipJeilDiRKMV0cpLrxXmVAxHEhWqfDOzbJyvSW+L8jsrcd1La7tErjRrNY04zbTfHom5wIsMZvN2N3dxXvPyckJFxcXzOeXKdPsl1P7b67lOPCwqfRzpZtKDHHWCm4M/V55bZGnuai/zSwvPi09duDTPdC1HYvFkoP9veS71OvX6QFIXWcr/6oCTMnZxYL5qkObEZPZPtVEHCKKesJ4vIMpRihd4WO2Cu3YP7xDs5qjvOXhZ0+ZTUdMJzWlCXiJj5wx+HM54dhC6HRfsow+t3/MhGG0oq5Kjg73WKwcCstnjz9ldx+qekZRm2DidwkT8SGpX1WVG6myA/a3DpKZEsYgTqKbC7Bdgvlya5r3QwhqlBw3uXtM9XOda8nrbnJgdchsKwd/Ux1WBNN+0yT/xwCZpuY3PnB4OudpbfQJjHnpTZCshrUkMho2aIOoIQWBGweGFI0EQcrWOhE/1XYoo9O+62sU9AwxFjWx1nL79m2Jy7x9i8ODg4QNfr3qZS+hAkkizectXRkws6Io0Erggf39PebzBcvlkoefPmQ6HjGq69dDzIbWGrYQs1j5JjrQhoOhC5y1rNctZydn/OD732U2mwZXMpWCagVsNUBIM6MsaI8qxjx6ckbXNFTVjINb+xTliKKsMUVNUUlgsSnLEO5i8Vpz/63vspyfc372lJ+99x63jva4/8ZtjvZmCf8zRjaPsx1dZ9EFaF1gijJVFMdLQWKXHG2hLDSzac3bD+7x9OSC0/MFv/rlX/HOtzX7B3cYTyZ01oZF82hjRHJznulkIhWXssVuOyH0Rktsq4TlqYy79yDxpjXyVdYRcsyzTwcUjTPRohqvi5bOtpVwk7qub5yY9T5V7ooKK/tOESsr9aFUmoODI4qiTJq3ChV+Ls7OKcsiEDpHLvRY50TaUgrQdBbaYEzyCCxSFiWjyiQ/MhQpVOmFAlBUqVDowojPmvcpT5nyoAp5rnBKoGnQhZH96Jyk+k5ifW+AePLkCTs7O7z77rtMp1MmkwmTyYTVeiXZljOCdp0E/jrb4F1K9Tg0fXaUqCl1nRSTxlRgDHfv3uPp06f84he/YH52zs7ODof7+1+OmF03CS8nxuahLT6Bod4LMWiahsl4TF1VDGh1GKVXGlldHX4MShsWqwasox6V1KMx9WhKXU9QpgrKnAZV4FXcpJ7JbA+lYLG45Oz8kvGoomk7sZDSWw2FOwapy/d5tnoT89WUNEorSm2YTQsuF2sUl5yfnbBeLbG2RSlJI65S4F5M1kjIiyZqSrQAOxfUtzyx2JV1GQKqr6NFl4xNyxyQCN6Xt2R+8Zbjh0rFvniMIRHW3g6pAga5FlcbPexnXE9SJfpAU5xIZ6gomYlrAE6K2kRidkVf3aJRJQEtrrMCYfYBtlAhNaE4TiYjQZLMNp4Fsjar1YrpdMru7i5HR0dSCNuYZJTZ1Jq+yrZJM5MaHr9P//b0xWiDKgosMJmMqeuatmm5XEgB7LqsXl9sJkhIU1EUyekzcmytDJA5NBLOZQiN8d5LFHzMZZ+PVW37w9DZhsv5AlOM0aWiHM3QRYk2FUqXiEoaEzeKX5uEu4BXFlXUjCY7HN2+SzUqmC/XnJydsTOpGdfiyxXj65LqF/CraJ1SvucuV/rtJTf8zmzG7VtH2G7N5cUpShtms0PQIUGgdyEbBlTB6pY3751kqCjN4OAmS9DG3uzjFl699cRq+FOFLBGbfYzxmDdpxbyuX9tA65yZAIxGo95hNHysEJXddhbrHHWRq/SBeNGrmHHUbdtJZpfwfqMNVVEIcwu3uiz9QX5KX8RaPAz2jQs9cLkxR4UMySqes+GzrbUsFgs+/vjjFBvddR2PHj1iNpsxnU4DAbuKSX5daucQM4uL0xMx7wXwny+XuFXDeOeALhhzjm8d0yyW1FWNMeZmidlmmux5KAEfiVnbtqIiFZVwoZSHXbicsx0X5+dorXlw/4FUNPJBx0ql8zYWQRlQJet2weMnJ1SjfeqqYrKzi7WOoqgxpqbz4qDqUdiulwrFn7HF1LBzqPnW936L89PPeHrylPn5CQ/euENV7eG7jjJUQfJFdM9wWNuGgGUdxtQlm4DzEJMGOdeyM5tQ1SPG0xkff/qcJ4s5z5494Qe/8UNMtYfRJoTUrEEZxuM6hcJEB0trRcWr62qQRnuwFxMI0ZPWL0pScs/wHvCPuc3k2ZPJhJ2d3fDK/g0XFxfJqfcm2qZXP/SSIZAslfK5HziFaq3Z3d1lNKrFfyzDqdq2o2lb2rZlOh5RFEYcU72ic7K+qBi0Lp8t1mvWbQtKAP+qLCTFtvdikNLgvMVkGNZ2MjH8tk+cLoVaFFF6cihtRDh0oaBKyOvVdTYdeJDz9fz5c/7Tf/pPwSIrwsF7773H8fExDx48EEggU83j3H5ZSOKLtZzIR3/Nq9qddQ7nYTKZ8PHjD1i1jreme6zXHVUtVttutaZZr1mv1jebAih2Iv7btu3AohVTd2ilE0At0llUMUXk996zs7Mrk7txSHOCJrxP1MzOwny+Qhc1ZTWhqMZoUwfJrACMgP5oCXNCC+6mCrwyaFNRjaYcHB5TVmOWq4azi0uathU8y0usoFaEEBTpQTQOKKUGpeQgEhiV/qjKkulkwuHBPs42LBYXnJ0+xdkGCZP34B3eWbyXrB4641xx89mQ862XTAZv7dchqvBfQt28qib2z8pDrXLIoWkauq5Lh+PLcP0X3XudCrspmVVVlVWL6ofgrMOF3F7RZyvGV0YJLbKCmIq966y4pITrjFaUJsbbMpTMPFeK/Ga9j3ckZhXV2IS5sfETcKWo3m6O3Qb18vHjx+ncWWt59uwZZ2dnvfVvy/x9fZJZ6NEWbhtdYsqiYLVeM1/MRdq0HdoYDg4OODg8ZBqyg7w2A0AsFd80DZeXl0CfSWMgWRIm0vfe4kVhqKqSbNrT8HqVqt8ItnM0bce66RhXNbqo8EjtACFeEKpfZkK7ThtUftcor0EX1KMJu/sH2KVitWp4fnrGdFxQao3EUfrUh2TBylcjgMW9l78A0hHH0gpmswkoxaqxXJw/Y0JFPZEDVxiNLoqMGEmLzCFxUKU29kCvdt3E1tzk1pvOqKJGDj+PWFnuLPuqqubnEbIh6B8lSYW1UZUSa+ujR49C3QE42DtgNpuyt79H00gV8ty1xHmH8Rv1X1FpxXtrdWRuWow0PlKuoTT8Yqmsv8pv/I1SMansYPv3hC9LH+RdMso451LYktaa0Wh0Jdg/vsX5qxLRN6HlxFajsEoJHND12T5s17Fer4MPHjdHzPqCtr2UEutCXl5ecnFxkf7uQccch5E8Y+v1Gq0VdV0xnU2IxVy3HYWofToHi1XD5XzF+eWS43tHmKrGh5AnD7SWQIRCbJtWSJX0kO7ZlEGVcBS6ZvfgFvWo4uzJR5ycP+f58+c8uH9HcJVg7kfH9NwF1rViQfMq1OlU4HXwrNWBg1chc6nDaMUbd485v5hzcn7OJx+/x+17muNqhtIF47qkqEdhVWOKbs1isaAJbgTR9UCwnzaTJkJywEBMXtVRNa7npo9gPBgCKOtB6E9Ua2IQfG7J/LIOmZsSROxLbs3srZw2YZtlWfCTP/8xv/zFL1iv1/zdv/v3+Na3vs3e/h7zyznOdUynU8pCnLGt7dC6GEAFKuRHc1g6JxlinQ/ZZbVmUtVobwNu5jLMbKhQXavwewXegQ6+71qDVuICFFK8x6c5L87cAqEUibCJK8yKznbcvXuX9XpNVVXs7u4mIhcLcUtfnBTViYaGrynQfLglhkRe4BuJr16v16zWbaIjXWtp1g3jqkZpzXg8vtm02Tn1j5stmuij86sxMU9U7z8VD5+I+5lkFnfUNYw9gbKdpWk61usWU9RoU+OVuHD0wdDR6ilZB1yIlxMfLyGazoulsx7PGNWG1fyEp589Yn5+ytHxAdbG+E35X+T+ffqW4OSaW9RiiWKVyr+i0ezsTPA4VusFjx59ws7+PYkEUBK0XJVFNkLZ5JvqWwShs1UIE3Mz3HYTq8oJSm7JzK+XzBPdwL/syxoBtt2/KZnljDRKi8JUNQ8//ZSf/vSnzOdzbt++y9HRMXho1g1akyQzH10WVEaCkqFIpPiUyTaISVorKUnoOghEbFMuVp6U6emFK+NJ6qtQYyGkSZVRhBxfAm/EMyaKjadpesmsbduUACDPbqICnpoI7Ndk0Ry2DMhM5F/mQQeG3XWWLoTxpQgj56iKQsrM3aSauRkOEdVMrXWqoyjErD+IOZgfufpoNGY0GkPGz9RAFJfB+gQwSNbVpmkYjyaQ1LksKDwUIlHKBwks31Qq+9F4ZfBYPJq6njDd2QPvaDrHxeUCZx31aIxGso7qAeGQjTxAmOLXA8/JMC9GU1cF08kI2645PX3ObLbLuKooiqwWUajq03XtAPh+3W1zk+fpxsuyvMLN4xpuc5SNe+NVDs62+/LP8oiEnAA75/jss88YjcfcvXuXzz77jPF4hDGa1WpFVZYpHV7im/l7VO+MLFJ8X43JowKmqQX89z7bd/RLBwMHWZX9P36ScpdFTCzcm8ajhldfnUK5rgqp5ZfLJc+fP2c6nfLBBx+wWq1QSlHXdZ9hJQ1RDf79atpVDDYjYf34vMyHcz0uvJWxaY3RN1Q3M1olIwGLnNu5Ph9Xn8BPJA6lo4e2cJau6zg7P+UH3/9N9vcPrmFhPQWP6Vi00Tx58oTFYsHR8R28LrBeC7HxDq0kNUvXRqujqAiR7MQcZSB4mVeEAr0luwd30NowPz/h9Nlj1pdPmI1HvPOtd+R6LzF1EFQcxJop3EQkwZh4wzkV1BVx5zCFZlQX7O1O6LoDnp6e8/QXf8Xb73yb6e4O43ENvgMVJVkXsst6RqNx4MYDfjBQ4b/s1ozMJ8fD2mD5894zm82uOMt2Xcfp6SlFUdw4wd108MzrsubFOfJsIm3b8p/+7M84Pj5mf2+Pn/zkJxwfH1PXFc+ePZVUP5rAvJwYd4wEcxNUnIiTtdazblupxiRBqkzGY3HLsA4dJG+R1IUabeKZidCRrVCUkrSWMDYfoit8TF4QvftVUqlRKhWbybHKvb09loslT5484a//+q95+PAhy+WS09PTZNV99uxZcFFUVxjO5hy/rpaMK74nUolm9wJxynjT2RzuyPsmc1EUhrIob86auU0yi9hZrNknP6GmH1mwqxfL0mq1ZDqdDvJNXel/9r7oM3NxccFyuWI23SEC+9FqSYg08Am4jSBqfHS8PoL0BofGe8N4ssPewS32Dm+xahwnp5ecnF2k673PVUyRoGJOrdjvJAn6sIEDx9UKylIzHlfs7kzpmhVPPnvIcnGJUp6yMqEkXQCVvadZS8B0dHlIy7uh6t3UVtxUE2NVn4iHbRIs54TgDuNpr/bxJloumeVZVfNsLdZaPvzgQ3ZmM9555x0ODgT8L4qC+XxOXdfUdR2MOD7hbNJhEqeQdfZ0VrCq6MBclqWomCEDTIJNhqL/C3XLpBcoCaruCdSWEoIqOzMw+N57YXJVVXF5ecmjR4/49a9/zU9/+lMWiwVKKcbj8dDzf8ucfjUGgTjq/r1Xv0fOirveUBEFiKj93Xipues2be7gqFRwSAwd7LqOzjpGoxHaaKIVL4qevSCaP0828XIpBSrKouhLhGUtErG+XzkkO2yDcO9QY5PgtjGe7tLYFm00Z+dzxuOaotAURY6E9DhaUidSt1UiaEo6H6xhirIwTMYjdmZh9QhB6DFpY9jcV3dfPh4/GNrn4jMv2TYthsaYAZAcW8xSEa/dVCtf1RDxonu3SRJRIqvrmipkHYmHGQQf897z+PFn3H3jPqUWZ2oV95zPiJHq94T3nraLPoTC+IzuIzQUgJPMKQnnujqi9K/y+X4krWV2Rfg4G7vvs+nl86tVX8y4HtXcv3+f73znOxhjuHv3LodHR8xms4EEuwmIfF24WQ8REAqXqHyaeuYfklo2TZO0hihHiAfEF0zO+HktB2FzKh8PQeScRmussyHMRHN5KVa6W7fvUFZlxuH6sVnr0anmokNrRdt2PH78iKos0fUocMk4ATJS58X8pI2JMk7fv7B5CVwRjxS4UAXogJGomqLa4d6DbzN/PmU1P+cXv/qYO3eO2Nudsr8/w9PhEe6stUD+Ojw3ngsd7exKUZgC10koU2U0ajTi3p2SeuLp3BrvGqBD6iOG7KY2nA85Nan/UpVJ44M1DSegsVeE8Bf1halabsjJ4x+ttYzH4xSwHddYa81yuWS5XF4xCsS5ztXCL9o2JU8gwRjQW9MjVnd+fi6xiOMxk8mETz/9ND1jb28Pay3//t//CT/4wW9QVTuyXkbhrURXGKL7DYDCK411HZeLpXjgazFk1VVFWSiMEhNS6yy260K2jLQVBz5j2xiph+TFoyARp/hdInte6sNKSTsTLJQlZWmSEePo6Ij/9r/9b/k7f+fvpII3t27f5vDgIEnNzlu8kwI4yeDA10/QpBPpf0mAE7iqwrSOk5MTRqMJRVHRrBo8YIyirm84AiC3mGyCstGkKgtAyAVmMaZM9e9u374dkhvGBw6fLQHE8oVSgomdnZ5SGENZ1aFkW29pivdZPJUpsEF0z45GPoPheoVYJQ3WezwlulTsH43QrqNtOx7++n3GkzFVXbGf1coRC1OB9jEPk9rYjHGzGtpujdKeotDosuJgr6QYGT55+Bl4i2QD8UTC5YLvFCrjZtmc42MuMxmPMLUMdf6CBC1y/Yh1xjUtCsmjleOjQEo5nfuW5c+IXvo3pcbkeyzurfh5DKUajUXtevr0aUqHPZlMOD8/5+c//7kEy9NbP8VSaNGhHGAvVEsix3XT4FSBCmmEyqLEaI+ORQ6dw7oupf55+ckOrwn/kz0ii+1yyS0I61pptNJ0vhMJseirno3HM37027/Nd77zHXFnWK24E1w15peXwWprsUFS+HrI1/bW96gXzXzadyZFFU1nu5RKY1src6IFsrkRYnadD9E2jppUTHJiF4sxVC/FHaIrh2SwaCnMqC+OQubimB3iocF8Q2XNPhMVUSEVc0IBCiSHvClqymrEeLqDR9G0lvliSV1LcjgdpTsiABy9g6Jzba8yR31f3i/c1mhNFSRT7/r4Pu98yi577fxsTr+P+JmKWvvmgL9Qy6WgoSMtSfISwndVzZfrXs+x2fZcwcGEiO7v73NyckLbtqxWUppstVqxExxLs47Sr0tmkUxaRnpj/96oTfrAtnKsLDKe8JgccVBehSr3JHXzKiOC4aJlz45rq0IKo27N8+fPWa3WFIVkhOmCsaZtW0ajUSDA35yiJS/TouZkraUqK8qyY7lasVotKUyZ1EtxwfI3HwGQqyU5CBw/L8sCa1uiw2zTtCg0RVmxtyvxidAvVtwE0dtcTNWetm1YrhYs5hccHk6ksIe1aN3HuAHp4HbeyjbR4hiptEFHyUn1hgGlol+You08SpVoDU4pquk+e0rzNobl4oTnZ5ecn5/yzlt3mYykOpG33UAtIJWWi1iMx1olcac4fAhNMlpTV4ajg12qQuG7BlV1gGRNPT07oywkMwjQxxkORYi0DdInX1IQioyq64IPXEgcENfTe3EZWS4Xku10Iy3zoLTbDUhlufqbvPYztdh7z927d1Eo1qs1v/07v8OTJ0/45JNPePbsGX/4h3/Izs4Ov/Vbv0VV1YlGWCfSlTEag1TNwsdEgB2ds/QuPpK/LJZx1ngx1oTU6ijfVy/PITGGvw/xMZ/AVh8YGN5L6vZA9JTrmUeUyOfzOc+ePeff/bt/x3K5YrVcc3F+nmpmlmXJ97//fd56+20e3L9P064FivAI9JIMaduD9l9P69l9ZOq5JpeuCnG26/Wa/f19MCUffPyQrrXMdnbZ391nOh1jjGaxaF9PDQCQTZfjZNED2RhD262IS9l1Iv0UpmQymaFzI1jGdFVkgeGn61raZs1qtcQYCSmR6seeQeBqeIaL6hghEJg+C2gfrBJ1dQVK0zmppoPSeKUpRxIDZsqa9391weX8jNX8lHt3jhhVFVoZnGtyUtID/jI70i/n0UUoW+ecVKPSmlJrdmZTSq3wtg3WTHEQvLy8oK5n4p3uo4RLJg1cc3K+ZMvVxEjMYkWoeABciN7ounYjxXlPdPKqQDchpW3isHkc6MHBARfnF6xXK77zne/wf//xHycXhYuLC958803+2X/z31AWZfa8UKowYJ7YPi+aBK/7hIGCEAKhPT7UsnC9BTINr5f5r1uSTcC/1yiyVFIZ0xKp0Se3p+VqxbPnz/jpT3/K48efcXJyymePHvPGG28wm81CpSkluc3eeSfTftVgTb7yNlCtAygS6HnyKA1rGyGC1sPzkxM5j15C00ajGmcd69WXJGYvouLbzLxXP5OgZBO4fVTFNtUgkZjil9Latu1De67oTT4TSa47OPkWy0X72FfhwFFfiOV7ldJoU1BWNWVVY5uS9bphXRVUJnqXhUVJpeUhhiUlnc/HJ2fqpoqcV9IAKStJJ4VD+6QK5ejCEBDLoyr6ls+AZ3D5S7dIPLb5Jlkb8b187r4YbHTNW7d8dhW6iC0SzdPTU85OT1nMFxTBorm/vx+gjJK93d2UwThiqC4RoaudjsYWeX3vHhHXL3XVX2Wiua90tM+rwWbLnGbjJ95vrF/+kGDRDJNrjNQsPTg44PT0jNFoxK1btzg+PmY8Hqfyf2T3bGtflY+ZvGvbp1uYcViPOP86hC1F489qteTiosBZT7N+DZJZ7pO0zarVdl0Csp11PH/+nHt373N4eNgH1pKZ9NP/AyEI9TVPT084OXnO7s4ORcxaoBVax1qCkrhR5aEp4WlSzcUDNuEicVPFikOgMEUtXNB7bKjCpFWBKUcc37rLdDJicVbz+PETFpc1zf4ut/Z3UEYSaFjvMGGsTdNRFCGvm7Mh9bZKarVWCq1ko9qupV2v8WaJqQzOdtiuS+m5RbWJwea9b5UcsuA4yqtvzPy+yL27ruPg4CBlyYhAv3M2FS7pYQWXpJpc/Xu1/mwny5t9BHG7qKqK//P//D85eX7CcrFgNB6zu7PDH/zBH2CtTcTszTffBE/ILhHDocDrvgYDae0dzgbJQetUrk6pnnk5L9Kr1H2NCihXfrIRsEms0yeBGygE7DdKVMyUKDSM31rLZDLh/v37/LN/9s/4v/6vP+Ty4pLvf+/7HB/fEkf0s9MU2iREQN6k1NAn76tv8Uz3LDlqLrmvqtGyRk53FIWozOfnl7Rty4cffsRHHwRYx99QBEDeclN8HxDdb2hnHbEwkfeOs7MzvvPt77F/sC8EzsXFygednh6IEFycn3N+fs6to1tS8ZmQmkfyG7K5faIVVCYphkNFTtDLSNGxFqCqK3EUdZYuuJQoZdCFYv/gmMm4pjaKv/jol6wWJYXyHO/PUCoQM3oswjmLNuEdgZhpHYOkXTAASNptazt826CaNcqMJA23DeZ07RnShN5qOPg8ikevuIZ5i5jZZDJJXv89duVToYxc1cutzvGzm2ybjBIElxuNRvzH//gfefb0KcvFEmst/+P/+D/y27/929R1ndTk2WTCctHiOgcFsj46eKXjhKohsZDWCUGLDEJpk9Izxf8Ie952NviZZfNHL5X10tc140oKQ/QhU+jAlJ1SIVmB7Juu6xiPx+zs7PLG3Xu8996vWC5W/Hf/3X/H/v4B5+dn/OpXv+JnP/tZImY+Y9ZfHzHbDPrb3sRFRQQj17UU1Zh33nmH9977Nc+ePuOzx0+4ODtBa01VvIa6mZ/fZDJjoQnB0bbE8kFvls4+E+tGN7CubVqW+utzqp+7LnyRvvr0LB+wM8H1C5QuU/40bTSdg9W6QymDKqKbiEo/eNXnkw+psaO1jCh1eYQaO4t3Ha5rsF1Ds14wns5QGFSAnnMFRUVxd9DnTZk0UwVVPz85nRnSscgle8I7JHRC/DcrBV1VbF+NqEYpPUopn/+cEJXhHFVVU5giZb1dLBaUVRlCX6LTbx9hESGFGLHRqzz9zDk8Xgkmq9VQ9oo2dOfjvOaaRZwG338TcbHUdZ89LRuRgEjZdVcxGIUKUSHCOOu6DlJqTT0aSUbdELmxddYyRr85ny/XNu/dcl8+hhc89wpgpJIGn+KgCyMMqa5q2nqUmPlrJWbbrSQK78XJcrVac/v2LUbjGp1hSymBevSFiXhZkNyePTvFWkVVjimrUahUBF75UPREgTeBaOQ9Gh7tvJ/ybQTswyVOHFE1hFjSGkeJ9R1eFfjCUE40D7712zTLC+brS3750XPu3rnF0cEMZTweI6Z4A60XMoQ2dL7DKFDKYZV4lmunMN4L+I/HN4pVM+fi7JLPPvklu7MCU+xg1AjnJOGkqHJ95EHEVEAsbDpVe49zkTkBaMny0bUuHMcgKQa3EK09TbvCe0tdG6oqJAoIxofOQtN6lssVWpugvmu0DgTADwXEV8FlIimMltNtzxHna5MkyNnODt/+9rcluPzxYx4+esSz58/5+3/v7/LOO++gR4qmWWN8E2IANcaMiOQtTpBWHrzDAq1SNBq0sijdUReWwjeScMl7rDJ0TtFZT0FBDJOLg+jJfPSOjUmxI3oiF/VsSP71SjKuEvagDwVMfPhM4JyWqixZrZas1lLPwHlPWVUcHh5yfnHB5XxB29kQlxyY/9bzMACsvkC77j618bs4FCufGbCQeZbACR1imHtC1jmHsg7fWhYXc3YmM0ZFzeHOPl3XcnFxzunpyVcjmeXETAiTYrVsWK3W3L17l9GoIiWVzaxBgivRW+4Qf5KTk3OshbKsKctRdo/H20w6GFiWrm/JkVYxIJw+q7putAZVSrZR38i1psKMa+69tcvTzz7lk49/zafPPqGcHjA7qCkD/oIHZQydFzO+VhqnPCgnAfGqRXmNxmDwONuC6/DKsm46Lk6e8/TRe3zrWw8wGAoFjS9AlUABSidiJmpEkBO8DcmNYmiWHzCVGOzvcSGSQFEgpe+CnEHXrVOanKoKZeWQtbJOiNlqtWYymUggfySI/mYwmUhkX7SQ0VgjbiKW6XTKb/zmb/LbP/oRv/zlL/lf/pf/hU8//YQ333yDN996gNKKZr2moglzU6CLEd6FHF++C/il4K4WsApaDaUWt57KWArfVxJygZhZC4UqIBGzTYUqynBBU1C91BdWJWPCMu4uMFStNd7oFGQOkuig8+BHXnLJrdcoLVpBUZbs7R9wcXnJfLGQtDmpH9vm8yaggOsk8VxqV72aFUYPLqjT/fAjQeu8RzuPay2uXTKb7lHuiEZXloZHjx/ivb2Z6kxpGBnBerHlhAT0pUIT4YvPs7jkPk+xGno/fdlBTb9l/Y3XRGlhIDH21/SqwYYEl12Vtp42aFViihJjSlExdSE/yiUpJzpJbnQGny9+oL3KBz8l78BbFGJI6No1XbvGmIp4jBQ5hpbxdZWGKm/IJRvyefZsjHo4Zu8AgynMYDaFmLm+oMtrb8NDkgwKYS9FQ8V6vaZpG5QWdWs8Hier3vYCK73q5zd2UbYs6bNIY66oZoHh+qD2DdTL4eP6LwZ7IG/9esTX+C1LFD+KjKMoShrdcn5+HnKbCYGLLlEpQ+7W5boJQrbZtjGhL7FXMqty78tahJ/XEM4UN0u+cfK4vDjx0b9ld3d34FCZE8JNHK3rOlarFefn54zH45TXPQ+ZepXW403539EZMytU7C2SNigU1EAyzXprGY2m3Lp9l1Jb9g5vMd7ZR7VLumaFs52I0Ua2n2QzDQVQrBSswKuUjSF6PisrhoFJXXPv7m2ePHrIcrnm1u37lKN9lAqYj0JUlhhrF2MLFSFsZUNCDfvWuVgyT4fyBX1qpSjYWuup65KdnV1i9IYPEstqtWS5XKQyZtEnbROcf2WHzEwVEqOSG74HCfex1lLXNU+ePOGXv/wl77//Pr/1W7+F9Y7Dw0N+//d/n5OT73Pnzh3Za64nhImgZDqxbIcAUuvoZxeqczlRkXQybPTdtc7R2i6pR3H8X9b4EbqD9w4TCqnEZzsn2ZKXyyUPHjzg4cOH/Kt/9a8wpkw+Wg8ePOD4+DjLLhKkn3Rer2dmX1vL5kxqhAIKyqJkvVrRtS1lKY7nCm4u0+ymxSonRn2mV5O+y/PE7+zspHsjtd18bmyR815cXDCbzRiPx4P3fpm+Z4BF+lwssj0xi+l+tA7FYbV48nfdmtFoQlXeptSOvYNjxjt7uIWojM52gEcZSYVsfUeldYhPhVIbyZORS6begdMYYDyquXvnNn/5V79guVyzM9ujHu2IGqRCXR8fi5KZ4BogPMzZFlE0r6r7sjaEgsJhjK6XQ7wXYlsUhVRhyoimV5rVUohZnh47N63nhOxLrY/vmWDOJFXoZAyoPjs74yc/+QkffPABp6enOCfE7B/+w3+QYhMj41QqYE9Reki4aZj+OAtxnqJzqRfCojMpLm4b5yRQ3UdHwy/ZBtqFF19DceHJGawP6bNW3L//BhcXF/yv/+v/CvQuNf/z//w/c3R0NHCQzT3/vyktGpt6iRMEtoguJWCKkuV8iUJR1xKdgxJidqP5zF625d7kXyReLC4O9AflRRaaL7pO2561qWj6LWpd1Du0LqjqkZTS0xKQrLQBrcU4sSkhbRO58377QJ6UlDRTgHeWrmlwseCs38RkcgVlEwZ4weBVdnWuMqnoL9anZM1Vm01JbPDIGzkoL35GZIA94RQm2jQN87lU86nrEZPJJEtdtGUitkAA8fk+WB2VV5kv9ka/VNwd/sp3r0LQc+hl6+fxd9/7ZtV1LXGYG9eMRiOKovia/cqkDVXqnBVcewOQ70OV1jClA1easryhfGZ5rFhO8fOsn7n/2cnJCdPplJ2dnRcehrwppbi4uODp06fs7OwMijl8We6/rbmYl4p8AcQsD7GQh6ezFpTBOkXXWPaP7zKaTsGUqNGUwnswitV8jfNWLIxaHGc1YHQhJc8SoVSBgMl7jVZUhWE2qnjz3m1WjeWzRx8zGk+px7sUFaAVWhV4TMhTL6K30kqy5/qYRFJyosW86om2eolviEU0tBZ/pKbtGI+n1PWIgRruoW3FZcTZFpXhntssll9KzQr73XuVVEyy3hhjmM1qvPccHx/z9//+32exnHPy/Dn/x//+f/BP/vE/Zn9/j7IUc773PsRhChClVMSiRY9JLCByw2BNdLHwL1ILtVAa5W0vySmwOLG8VeUrKW1q4/e4RhqVmIfRfe6yXAouioLDw0O++93v8j/8D/+DSM8hvOrevXtUVcV6vb4infe/v0KHX6n5F2q1yQBCFF6EAAuUIUlep9MptrN0XYNSivFkxHh6Q8QsUvzNVCxRAovcM6qXJycnHB8fc/fu3SvELhd9Nw/G+fk5T5484datW2ljbladeeWWcYCY512Ic44tRL8kcc7FQWc7SmPoLKzWjje/9QZFCSiLGk2pNCjjWcyfY53DKI8xiq7t0NpQmEJKnoGELikG+JVRBmMUelTx1v07fProCb947wOOj29Jhk1TgDLB8CBl1mxwrCy0Bl2CdxJcr3zKlSVXRItATC8ku8xoQ+ccTdNxcLBLXUd1vsewuqaha9e4rkXrOq3XdevwqgQtvytCFT5IrN57SlMwDUzx1q1jjo8Puby84D/86X/gJ3/+E777ne9Q1xVluZMC5L0LkRlAjDfyWaxpJCXiwqBDNSRhPjoQl0LpYOcMl2vBJzvvKIPF8cu0Xvj3Ad8C73xKCNl/3RvSptMZh4dHvPnmm5mKBnU95vLykrOzs4HBbShwfLn+vnyLBw0SOLvR5CtJxxTpSVVVlOUIRUFZl7RNw9mZ1DaYTmoms9fkNLsZg5kTpxxDi97k2+7f9lms/JNz6Ffuozx00L8vcreCZGHynmhXxJRl8LPyoDQ+5GzvOosuBPMYADOoK2s62MhBbRFVs6QwGpwUU3Zdi3OdpGyOKk7E/lTsU08QBu8ZWNlyxdSnr4fxmFfxy21667a53LYXXqr5jX+veY/3nqZZhywRwrm1kqIlq9XqBQHuQ1Uuj5MddCEYBzJ//3RltCPItWHfZ/v9hRKqiv/rfRuvvN/79K6o/Qyemb3HhtJxdV0Tc//pkHvtm4SNpbZtz2ctChIgUTtKSf3Muqx72ANQN5k2e1PNi3/n2Ui7ULRztVqxt7eXck5t3rspjUWJ7eTkhK7rAoUur+TV6u99hUVLmy88I6hiAjiLY+o2iVE4smLdiu/RdGcXpUpCIB0S+6lZrzs++vRT7t06YDIWUVlUWBU2aCGYmhZupFRfLCVtXueoDBzsTnn7zTeYnz/HWUfXOQ5uT3C+w1upz+lcj0ZESFXpEOcVJQ8frHPpNAZrKCF8JOb6H40oqxqy7KvOOS4vL/DOUhb6CrG6jhm96oG6Mu8ByyuKgtV6xeMnT/j1r38VMkkU7O3t8cMf/pDbt2/z8ccfcf/+GxwdHaYlS8/MD1OiQTJj4mgsf7loGFEKg6QI0omsiUXAK6mYaZH6l18691I+/jBo7/0VnDnHLf/0T/8DT58+A0DrIhGz3/3dfwDkaZiitJeftZvr76u0wdsD9ilzT7A+a9q249NPHvPu2+8O+u+9ZGK+UWK2uYlT9eEA3K/Xa5bLJfv7+5Lvf0uK5WHQdL+Jnz17lnK7R2K2eU3OxV6mZfB9b5EKNsGoJkeu5pxDBd3Edb36rJRm3a4YVTWz2Qx0BSomdbR4b1ivW97/8CN2ZjVVbfBKNqTySqyJyuC0w2sXak6Gu7sWExxbcZaqLDja22E8GvEffvyfWS2XWOs4vnMf7zu8B1PWdA68E5dPFw6+VjpAZiGVt8uCxYOUlebA2hSLKEUy6qRmx/W8OD+j0IaqMIN0QDeGlWUtPjcHsKWSeJGyxv7xH/9/WSzmlGXJv/gX/4Lf+Z3foeta/uW//N/4O3/nh4kARG1aBTwsEnwFqShJJGfxO1FNJQV5JGbGS/1Vj0joTkligc5bfJCeX25wL/guQRzC3LxzUutiQMws1oqV99/+23/LX/7lTwV+KKo0b++88y77+/tUVcVqtUoJNHsG49kUIr6Olp9H0RFcqhOqlKJtG95//30e3LufEh7AayBm133eU89exSxDWpYvMnGxxNlm8PoVIhpE9y8eh8lgY12xGr2gOe9Ba0yIj/MplbYQDus8TdOFoh8xhCWqOAROpLb32AvnD7AMRWEYo8BZbNfStQ3eW7zXRMtm0l42h3fdOsFgvnLsUutoyYy6q08ErYguHQwlr23456u2F92tAji/WCyYzy+5uLhI6WHEqjeWjAsZEdz6vFy921gE8T8L9yaDgdoieA1Sgm7XkCMssfHRgCHHC+K8+b5zm/hylKrjXF9eXqZSf1VVQ8aU4UX7+KsjYNe+yaf/bXzeE1nvJT27zQyLUbtxzt2cNTN1NpuwOIkxwj+mVo5ZMDefsW3zey/1Gi8vLxMekC9QURTDxXoFGtb3f4jtiZrcu5LEGpnJauucRNppLVXIR9Hqp0AZ8AXLdUfTeY5v3+PkbC5ZFY4OmdU1EenSSqyNPjgACuHqrXcKMFpUzegkeO/OMYu1o2sWPHn0MdPdW9STPfAhOkLuyg5HPr5s3PnaBXyusy1AqCvZSwFxLZr1Wki2ln51DNc9rw3wZdq1Up6HdbNmNpvhnOPxo0f8zm//Do8/e8xHH33En/3Zn/HWW29xfHzEf/Ff/Bfs7uzQBWYYkzDmzxJFXKfPvfdBVYwERmZHAYXWmEHl4OSQkWFmRLr/ymRClmwQHyJqpimIxo8oXVprefbsGcfHx/zwhz/k/v37SaPQWrO/v5/OSczYvO2gfCNwNRUlcdlHNqRmUlpTViUHoTAL3jMei7vNet0wX1zeLDHbdJzsC/+apGpaa5Oamd+fE5DNg9G2EqKxt7fHZDJJKke04sT3p3xNX/Ac5Z7+8e8oQdpQK7EoCmwrDy9HlXD8IKFooynrmtF0QpSNFBpUwXzVsmo99+6/wy9/9hPOTs4YVzWTciQpZ4Bo2XHOpuo7CjVIzWwKTdeK861B8c6bb/Dws2c8/Ow5n374K958t2I6m9G5BkUh7hUhUFoyQYTjGuZaC+iA817iTsOhVUrRtA1lWbG3txfi/AQCchbapmW1Wga3EpXU5XwtB+rgl8w7v+mCINZmcRKtKknR9PFHH/Iv/j//b371q1/x9OlT/vAP/5Af/OD7/PCHv8U/+Sf/hLqqaBqRYJ2T9OkSgREkSU/maBy85IMppC/8oVBeUeiCIkqqHrzySRUShpRJaNtoQ6JM13yXRLo+FVUumUlJRTU4K9Zanj59yr17b/DOO+/y+7//+0n1N8YwmcxS9hBh0ENmE7bC19I8Pkm5aaaDwck5l/LNaaOp64Jbt25xeXmJ93Dn9m3KUnF6dsmTp09ef9aMTZ8zIGFeL/uMflBXCebW9pLg61BFHd6zFfAfICxZHwIHlIwTIORHDoC14uVfj8a0ncN5qfAU86b1ezsCs72qpiVuqlcdRadAKYkKKEspQLteLbC2oa+5GRJTxjElg0V+usQP6eouDoktlU9pZfIrYmiPPKFXu7KJ2zrPN9rCnohSY9u27O/vs7u7S1mWnJ6ecn5+zmq1Yn9/n7ZtsV2bdS9XCPOOXv04l9pVkN8UUQOIUu/G3rm24xkly6fsc7lvT22iNTwR99DHpmmo64rd3V3u3LmTtAljBLNdr9dbNZ+vEvxX2f9zrXIzu1kuiQ7gi5ApeL1qArYs62+tkxjUm+jki6xXkWDM53O01hweHl7NXZYd4M22WCx4/vx5SgyY4wXbVNJXaz25iC36xcnvKvwb/ZzkxzlPZzt29vapQ+77FArrPevVmrYDVEVVzbh9+wHt6oKT0zmz0SWz8YhJXYt6qXxKy+2cwxHT99CTpmiJ0lInczqqOT7Y49l5w/z8hCe6YO/4Pl7X4genYj5axbAUXQ6yDgm1c1JwtSiKgAH2N3gPbduxXjcYUwyIo9r4/00dj1wiSxJ8ts57e3v86Ec/4smTJ1hr+e53v0vbtty9e5e9vb1MrSI9p+9l39O8Pkz8zdP7UColNEuYlurv30anfa4c3sgsBFzSScEVLaXmco1kNpvxwQcfhjVqB8a1ruvSmdk2n18VMXupJiAiyTiTtDaPcx2LxYKzkzMW8wVlUTDbmbBcrkR7uqk+bEpKm/UWT09POTo64u7du0Pnx4yQ5YVdozR3cXHBw4cP2d3dTarpZgGL+A7hRuZaTGA4YxnHzfCk3DIXuVvMTFuEwx2JmXWOpm3Z299jVI+EkIU9bJ3n7HLOugVPzXgy5e23v8fJ00e8/8ufMi5LONxjMqoCVuaD2qZouhbvPHU1Svm14mZWWmG0wlvL7nRMVVY03WecPX/EyekJs919KINsqCXlshgHVFIjldoMy5HIBu8cnW0pCkVZFZR1hUhwMj3eQbNuWS6W1DljYSidRZeFL3tE4p7KD6YLaXriQtw6Pua/+q//K/7qr/6aelTz9/7e38MYExxoj69gRFr33mS5PKASPpbQL1EfraRWj0qp+N2ZJFwFCBqfq9owIO4v2oub36gtf8h+k9hMUxQYXaDpi5GUZcn+/j7n5+dcXFyyWq0SHBOJW8TLhNCpROBzYn0TBpsv2jbJfnIXUn0aKR8gmKbxXFxc8OmnDymKgma95u4bd2jbRvw4v1RHNghYbrmEXtKKwLFS6krs2OdJUzFTRm4B3eQuX6xdlcJe7h5PjFGMxCyOvyxLTBHA9pAx1HnJrSV7xaB1xXiyQ1WPaZqOddOm/FIRNE7TEjZubHLNRnfwFMaIumk0XbNmtbiUoHYnYVMqEMnkCBs6vilP9TKJT8Q8+fFlhMDjk5rZGxnS1xsGmGtCzL4EOJOkiYwE1HXN7Vu3WSwXxDqZu6FgSTQW9e/Ox7zx7OFFqa8DbImeCFxtcRKGKuDmT3oO+fyFDfVCUF7GrbdoJEopyrKkbdtUUDvivkIMPi8m8+oZfn0te/41czk4oYmmCDPPXbwWi/lgvDeKmcVJztXIrutomibllYrSzXWEKF+o5XJJ2wrWkVcG2kYMhwv8MgvyYmVoyKWEf/hMfYhS22QyCeElPhEd6xyd7VitG5QqMIXGeY33hqqecvvufaxbczFfUp2ccrg/w4QN7bFBoopv7vEupQ1Ky2EQAiiW0J3ZhOW6Zb62PH/ykL2je1QTBb7AhOSDbmO4AvUFHzY8zouflHWW0WhEVQ2tzc56VkGc19q80Kt8gMP4jZd+wRYlSa2lClGsml6GHFZKKcqqQmvN+fk57733Ho8fP+LgYJ+9/T2atuklubSW+b/b/uo/61XaOOeBoW3CEkoFA+jNSTY5gU2MKGJmrt+LMUxQnJnn/Pmf/3nIYSZVz771rW8P4qbjPu7PoEqS2VfdVPZLqj2UpHBRL3Mt6datW3JynWc8mgS8bMV8Pr85YraJe0Xv/7ZtOT09ZW9vj9lsdqX0Va5W5v/KwojIHDnPNo//fAFyNfUle33tOKJPW+RuMfg6qnxt21JWBXv7u8Eq2Wf6stbStC3z+ZLpeEpZFHS2xbuK8eSAb3/nN/nVz3/Ms9NzlssLZnvfovIaE1RlU5TyPlL9Cjygi3Kjx4Kr3TrcBaV4fjbn4/d/QVXXVFWBMhqtS7TSWKVx1idByzuHNgatFc63+GAGb7uWg1HNaDwiFid3TvKaXVxe0nWWoqgwptgwDQznLxJc74I+FgfxBc56TsiMMezs7DCfz6Uq0UhKjmljJP2L1jx69Iif//znPHnymO9//3vcvXOH1Wop+rHvs8J6xPJoMtxsIO/FtM1Jpc2kMyV1VAf99GBUKKijIBpprhvqVpJxDR0xati/mAdP9r0O2K0LEoq4aPybf/NvWK1WFEXJ7u4e/9P/9D9l3v+S9imeqV6Vj3HVX4VktiFZZoJFHmietIDg2lUUNW+99TZv3n+DZt1wcbHg5Ox58K97hbTZL0O9N33NmqZhZ2cnJfF72RZ1/d55M8c4hpLdF9f1t+MZ16uuXnAn79NGVzCo4B3vcl4OQdtJaJLWRci6YCiKmnq0j0McAL11YtnEJ9U1jlccbENQNdA7r8ZoBzlXo6pkXFdU5Yr55Tm2XYMTdVOIosfFw7Wxl5LjJT1zMIWh2Fgn74QxOedTPq3+UIVrtkrJcWL8xt9blmJLSxhfOHxx/6QIEnqpfbVa8fTpUy4uLgDJcXV6doJCZcHZfvBPfIcffNivZ6Y1x4szPIA0n2rjsoipXZmGcE2E2DZrZCYMN2JygTjirz97ES8GsWrGOSjLkoODI6CPxsnvycf/xaGXL962jDRtSuXVFQTIe5L3vwvZGWezGVUBq+WarvM8P/VJ+7vxCIBNd4z4M5lMBiEIVwa6YW0BuLi4oOu6gU9a/r7N67+MmLyNGF45nGGTeecwRUFRVpRFmVSL+ISmaVgsF5RVlakkCqVLlJL4y729I5aFpmsvePr8hIPplJ16lMBl54TIqYBbufgUYcVoFR1qRSosC81kVHG4v8NqccH5ScnuoQmZMzp8SleTjQXZLDZaCBUUZZnF/wkBj4fJdjZw8Tw4fqi/boLINwEqR4n8Zz/7GYUxjMZj9nZEGo3Pvnf3Huv1iq7ruH//HoeHh312WKUyYpNRnoyuDaTM/PsgjStP5kfmGchrXpxuNXJdjPPcHLUiFEyhn7U4jT67J//p+xnWP6x5ZEJRE5nNZrz99tvU9YjVasV6vcaYgtlslizzQoe3n52vrvl+sFtb3NP0/c3SP11eXqKQ8LLxuObwcI+q0sxmo5shZlFqitaVuIFjlouu6zg8PGQ6nfZDChMZJ3rbpv/ss88oyzK5c2wzLOR/b6qsL9Ny95FNbpVbNkUSku+tbanKitFozGg07rFC5OwvFgtOT88YjybiwgB4DEUxQqFxneXu/bc5Ox3x9EnHrz/8BH/3LrM7E0xZ4L2I1857tBHrrA2SoHcOby1VWRKVW4VjXJcoNcXev82nj59weX7KeFQzqgweg3NrClMi2I/gPg4PTlIGubDBRuORlGkrDN5Z8CYc6FB93mgKXZC0x431yOfsJlo0sLRtyx/90R/x1ptv8uD+Ax68cT/gR0Jsf/M3foOdnRnTqRTFfeONNyQ9ucqIWZajbrPgfTIsKFG5UmCrc6H8X6if6T0W+SnkRpEOff+jbCjNN6Tz8roYPOB7Ypb4QjjjMRhOI6qro88cEAma1hpne+t7zOUmlbL0QD03RrNeN8Awk3PM9pxLPl9ZG8xLJN2B1CeCq4WZOyhLsaw/+ewp7bphOp3wxr07zHYrvO9wrnt5YvZ5vmSbBCaXymKs3HUpf7a9RynFYrG4grNtttdpSt4ksBG9cM5RVCVFKKYQA7ADUkQXrEqzya6UzfIKlBbw3hc4FNPZLs36EqULzi8uWe03gWFF4h5iOFOCyF4VTBELePAWDxRGU1cFu7MJ73/4Ma0F265R3oK3cihNFPT7tXRRbY6SWSh+IYclqrRyrZj3Q9C3J2Fq181d/nvvShPmUvXvhKtSQr6f4r0fffQRu7Mdjg6PBtcAHB4eslwtOTs/5e2332Y0GiXwOF0X3008tknXE+KSO7/67F/fz1r/s6ky0Wei9cFlelM1VCR1KpfIotSF6l1mBlPbL34adzSyxOePx2Pu3LmDcz5llolMeD5fboUANvHlocHrNTYPA0djP3TsyUevwv7QRoj3YrFgvZQiLXVdUtUlppBU9l9aMtuUanKryWq1wnufnBdT3z8HZ2nblvl8zmg0upaQfRUi8hX1GfGO995RldUGcZbNtVyuhNgZ05/c+Ix0qcGjMdWIyWyPyXSPtvOcnJ5zcHRA3OpKZwdehfVXqjdGKBD+3cemFoVmb3fGat1xcXbCaDTGjDSmmKBSpe4MDVIZNgF9hgwfCY7C2pblcp2ynMoXfc3HOD/5XG3im9e2+J4XrEOUPt555x2sczx+/Jif//znvPnWWwL+K8Xp6Smnp6csl8us6InN1Kmh/THvey4V+NgnRCoqUnidfNjajtYanCpwvnew8EF6Vd4LDmpjbYYN6hSkSZ9zAhG3ElLXq5myOBqVpS7IQQ2RWpum4Ve/+hWXlwuapmG9XlNVFdPplMPDw1CMJo1usE5fNtzs1Vqv2A9DmeR/cTWisyxIBuTOWparFcqL1nd2ds7xrR2axtI0rxABsE3Fy0OVotXEWsvp6Smj0YgHDx5sBf43Vbn43MViwfvvv8/Ozg7j8fjKYfgqCFkOxMe/JfOl+LpMphMpqBIITOSypydn2FbUwJijP2I71kudTKVLvLLU412Obr1Ba1sWZ6f8+oNPGE1mlJXGFEpcOlxw2gwgtbhFFMFFImbwFWJmNIzqkjffuMPp+SUffvxrjPbMDmB6fIT3HZKXLObMjZY5Rds5ikIzm+0mvEykP0Wzbjg7PaEwhQQ6K431Fh124ICvZuuYz1/4Ns5uptpICiTruivPiIQohq78wR/8Af/Pn/x7fvrTn/L+++/zz//5P+eNN96gqire/+DXPP7sMaenp2KU0arPAtx1eO8odJ8uXLohJ0epXkJFhYpZymC0ZlSXGL2UPmvFsllRlQqnxjgvVkyFAutEvbQe13S0wd8vGYwIUkamAipjQkC7kmiLJK2EuffiyFxoLXXsnaTsVl4lPjkeS2aQP/qjP+L58xNOTk756KOPGI1GvPnmm/zu7/4u/+V/+V/KGDdws835/mpbz06ikQvd0wEHKV251kWw2DY8Pz3hYGef9WrNxx8/5PB4zHy+5PHj5zcjmcFVlTNKZqPRiN3d3Wtxrm1cPLpz3L59e2A0eBnQ8lUWZhMru84qJxJnlMzKXjKLlpgw5lSNKj4H8IEYOS8Fhb0ymLJmPN1lMt3l6bMTlqfndJ3FlOK5n6sSSpsALCu0MnRdKAkX+XRga4VR7O7OaLuOy/NTlvMLRtMlRsWgaQmO6v+V+5wTVasqxTrrCRWIFFgbHJeLamBVzmSxK/N4talrfu8f4dluLIjz+eabb/Lv/u2/47PPPqPruuSm4b3n9OSE87OzJJlJYWOLKgqZQ+dEFxl2+cqfSZtTwkDKIqs7oKC1ls7ZrJxcxONEKsMDncN2Hd4KgU4FfoNUprSGmETA6xBL1cMUcYZUNKYFySzic0lPhbQH33//fZ48ecpnnz3hr//6rxmNRlxeXoYU2vnorhKyr8oYILs5e7/f1iPCZu5D1+RoeWxwoPczkdLOz8/xXtJrXVwsXo6Y5RLUdaLpJgjcdR1lWV5xx/i8iVuv1wNH2U0w+UXE6osSsk2i9SIJUGtN2zV47xiPR2iTpe0llBnrRHLDEwDgkGspSWhycazmJvmxCspqwniyg1+tOT27ZFdNUKbGFL3hQSV7Zj7WaFWMlsc+ZUxZFBzs7+GdZbWcM784oR7P6DPhamKF81hHoSjLLOWPHNI4plRrkgiUkwtaX2j+A2Y/JIpBwtlU7aGPLRyNRty+fZuL83POzs745JNPUEpx5+4dic10ltu3byeYI6XK2XhuWrQt27B30+jVOqMVxmg6K2O3ztM6Rx3rlCqN9kiCzskUV43wXZESNOb1AHyuS6mQzVaJZNdPpceG6A3nPMp6bCcZVYShBdVrQzu6d+8ek8mUZ8+ecefOHe7du3fFsHVduwmr88u0OPy05v7Kt4Gw67QOrrd8hH0wRiu4XC3p2j7K4XOJ2TYz+4tM79F6uVqtmM1m7OzsXA0rye4bcHrvOT8/Zz6fB/yneOXCvi/btkmGkeDmedKqqmIxl5xqt27foiyLAQDedZbVakXXdBKobYqAH9o+9a9RaHxIHeTRymDMmOnubUynGJua997/iLfeuYsuNMYIEUP5ACYHCqJE1XTeYZ3HVCXOWZE+vOBE08mI733nW3zyyUNOnz1m3ha8/e53KcpwYF2of4kA+/VoLI6yWiQZGZqmaZZSiclZMUYo8F5UXOK6DTLv9mvZH6J+ovpMB116Rh/Qr1Puu3ivZH2QjA8HBwf89m//iPtvvMEvfvEL/uRP/oS9vV3+4e//Hj/5zz/hu9/9Lr/9ox/hncV7F4imrG90gDZqO0bkCf5dKv4V+gvUZUHVWVa+xXlHay3LpmVsoFSaQimUchzs7FGOJtiyQoXCz2k/hb5IdIilsx1N29A5R+fEF9OneXPJgqyUorVB3SJYSzMCEM9P13X8o3/0jwHRbH7v936Poii4vLwcwEDbNKivu2WnL+3JSPG8lzhnlE6JHg4PD+jalsePHrJcdjSN+2LhTDkX2FQZ4+eRy1trU4rruq5TCNPLvGO9XtM0TdqAXw9AeVWCFCdWKQo8nU4wetOp1NG1XZ8AL0gD0ZorLXr1BwthSPRXj2aYWYtar3n6/C84vr1Pa2dYqzHGJRVDxBlJoYxWYEU9FCwofB+6XFUlt46P+Pijj1isLlDuKd6+gyorRMUMhpsgnRVFKdlJVagVAODFt8x2NuEtvRhGn2ric+dvA25XqpfMlErFlSNz29xXkUFqrbl//z67O7ucnZ3xr//1v2Y0qvn2d77Fp59+yrvvvhsK4Z4nicw5l8KMbNaTHOfrrar9O1Ui51IkuQiSuPjlOSEwRvBGpRQGJVEJ9Yi2KNHOoukZtqy7aCxN17JuGnAeRQfOs7YuMQDvHbaTVObaaGzbgfdSzTwQs805stby1ltvMx6P+fGPf8wPf/hDlsslf/EXf7F9gWDrOb5WZH0NLUppAx2f/vecuOd0ZzKZsA752do2pqTy24nZNszoimUvo/Sb90U187qMsi9qMXA096z/qloupW2TOEUVywvJ9td2XUezXotfjzYhRYvcm56T7O4K0IH5SNym0gVFNWJ3bx/nYbFYMSpDOIuJaEOWjyJyMCXczCU6NpScJ+MxHZY1jvn8HJSmGhehzqYDFxP9aYrCZJYyac16jbNWvsvUTBUwwq2YB9sOyNXvNu+9zj2jzBx5Vcj9v7u7y5tvvol1lrOzM27dusXe3p6oxJt7crCPgooWQef8G0Wa4byDRitMzL6hZK47a/GYJHHFLMFaCb6VHGiTKuVTmTqjdKifICF6JqWb6olZjCfVSuPKTqCL2LvADHOJdjweY4w8Z7VasVwuWa/XKWbzujn+etvnne8ApYTftZaKbovFkvVqiXOO5WrJcrmU8K3Pe92maplbLzcL+EYiZ61luVzy9ttvM51OU8qeeM9maFK81znH6ekpTdNIltOviJhFKWLzpyzLJFnN53NG4zGTyTg5sqYCH51jsVhyenpGXdWiYobsukoptIlivYDVaIWWPD04lBRjKGdMdhXf/t5vcnLyKZ88/AyjDigPZhTGSCylMnGyUi0Bh6JzEj8phXJFTcSDt4579+4wOl/y6fMlDz95n+Pbb3B7NKIwUnw41oSsqorxaNTnP5PXcHZ6FmIhRxijsIlTapy3eAflNW43/Wbt1zE5NgdpRfBFnYD8uLekKIdYxqOvYVFIyujxeMw777zDf//f//d8+NGH/Oxnf8Xv/u7v8p3vfCdklO33bNM0qEIsk8YYXGeToUHHDCehODKqV50HamZVUDuLXsoXnXcs1mv8dCSZZr3U4tRaU2qNdWC8kgIpDmKq8zgXWheUpaY2hUh6eHan7dU59CQC6b0H59EOHBbsMHX8rVu3qOua9brhyZMnPH78OIvZ7LjONerra/08q4x/5FBs/MN7jzGSNns2m/Hw4UPWK0lC8eTJExaLBc+ePX0xMculk02ilevhuUoRv2ua5oqf2HVgZE5A5vM5wFaXjNfRtlss+zxaQBrPzs4sS2EUxyvErm0alosF48PjpFZ3rkMVASDWPbgbQWOIjuYGpWvqseLW3Td4+uwhp6cX3Dqc4N0EFXL5R7g8cmaPAq1xAWKR8cT0z4K37e/tYr3m0cklZydPmUxnKDqMBgKwLwYAI+4kKljUgqS3XCwk9fJ4DCoQs/Cfy9Y/zt2WGb4yv0DyuBWN+SpDjOpZ13XUdZ3CcgDKquLWrVviGoPnj//4j3j33Xe5ffs2XcgoG4mZuLbkFlgJfu+x2E33VwYETeEpjaE0QWpV4mLTdG1fJyBECsT6orFYcK6Vx2YIcaJGUxZFX86OIa6cfnchj573uKDuexeTFbpw0CUIvygKFoslFxcXnJ2dpfxlkaleHebXhZmp/p8r2guZJB2YS9gPhSkYjUacPT9lvVyFKmEXLJZzLi8vXy6f2XWuCvln8d+YW2g0Gl3J578NJI7NOcdyuUwhGF+1irnZcmkttti3zQPadS3OWVFF2JyvoJrlz8pYT4wOQGk8om6OxhNG4wnrdctq3dI0XVBZ4425ukpSNyOCLRJP329TmJRmu+saLi7OcLbFe0GRqqqUOgAElcgrvBO8LK1XhMdS3xNMO2g5M4hdGqx7tl+8z56TXZNHIUjBijXn5+dX1sc5R1VV3Lt3j9FoRFFcXZvNvXbFsrkxgDR3niAZyTj6FD/yuQ1ZRsQ/TQ2XJXi0R2fX3uFV3h9Tb0e1MV67+XtUSWNfpA/hJzsnsWhJVMf39/dTmvmDg4M0/hdZ6zdm4PW2LcL7lb4olTC1CPwrrZhMJJVYVYuXRGelgM9odE1s5jaL1OZExI2XF/rVWjOfz5OZuKqGfklx4oEBV/FeMjJ89tlnVFU1yHn2Otu2ceYqStwQ8bO6HlFVowDeC8fw/z/q/uzZk+O68wQ/7rH99rvf3BNLEqQISlxEsShKolSlqlJ197y1TZf1wzzJ5rH/oJ5+1tiMtc1M90yXtXWbaSmpJJbULFGs4gqRIJCJRC7IzLv99ohw93nwJTzi/m4uQALIcthF3vtbIjx8OX7O95zzPUZbpoq6pFdkTqvRaGM3pTYePLf8/M3kNT8yyTFGUBuDyAYcXr5Bv5/z6N4vKFKoJ0P2treCfLIakduU0jL+4wJclQVTAONYVaHfy7lyeQ+DYTU/4d1fzPni2wNqchAZe7t7LsgXEAZtbOXo1WLZTjqnYepQStkFJwXothBrz504948R7XxYT/boN2i/3w/X6fV63L59m9PTU77zne/Y+p/uQsvVgq3tCf/qX/0r9vf3KQpbJEbrJkDUY7Zaa4tlStkS9Bc1e387l6kQZIkgdeF5SmtKpVmXNUWWkAsntizKjxSC82LVXZdmLxsP5jttxBNySifoBXZ/VVWFwMYnJm4/WXonO15FUfC1r32N8XiM1pqvf/3rIYPma1/7WpRofn69d/eB/fuZw/OJmsd8N0NmVoz7XwXCxZoKsjTl2rXLDIoBpyenfKQtnNXrFVy+fPlizex5BEkcWuF/VqtVSCxP07SlicXX9eaob3Vdc3x87Gr+5eGzn4eG5p+rYep0am6atRwaPrZ7tVqiVW05xGgWS0wP7lkwYvBbG2xKjEwxIkGLBJHkbO/us7t3wHS24Oxszny+dDd02oxpQgeaMEuJTZMS3qsftLUiz9jdHjPsF5SrOfc/vENVLtDK5m6ORwOXfuVuo0HVmnJdhkRl472l+CBGGzJyEYbbOmnjz3Tm1Ap00xJmlhwyD8D22dkZd+/ebWu2AsqqZDgc8pu/+ZtsbW2R51nQBO2YR3OgIw3QZwJs7nj8BxhNIlwlKm/1aOvwsQG0XjNzqqtpgH6vlcXamYQg6PzriXHmJ6L5rnZ1UoXEKN0ISWHHyO8Tr8m+8cYbDAZ9er0eb775ZuABfPPNN1vm5LP30+eNp4lGKwNwzweQJJL9/V1293aZbE3I85z12pJ17uzsvBht9iZpHr8Xe1eeJxzDX8N7Pz1Q+VmClRdNtN9g/rkacsj2Z5RSFrymCSoNQmEjGB793TIT7f9siKxEJhn9wQiEpK41y1XVKuQRfd33ho0L0fjTHvIspShyiiJjuZhTVSVBg/P2kzP9tNHu/eYEbT9NE75gjKcObI/rs3pnDyvfzWYOZrMZy+WSurYmRFVVrFar9sUwTa6oe7GrGbZ6IJqxwGk9ze/Ndbv9FO7giPM0hdOklNI2cyLcoBmbTc3TA/l7iuhbXriJYM8TQjCCmRp91xjDqct48OO0Xq9ZLOahGLLnf3s1AP8NzZh4u5xrwuGLNvSkdqEYlgklzzKGwwHj8YDhsE9R5Bc7ALoDcJEzwHuhjDGB0jjP8wDgx0LholCP1crS3i4WC7a2tkKQbddb+mm1WDPwrmz/93q9RmvN4eGhZeakSaZXygbKrtYr0iQhL3IbHyRBCJcTiM2zk1KgtNtw7hpC22BKbSzvlgfzJQkyG/DGrS9z8vhDzuZrzP3H3Lh2laJIbGoT0iXjauvaN77uqHDv25WvnXYhEexMxiAkedHjg9vvsnfpJvuXB6SJIRGakBkAVFUZ8hy9aea9flL4sBLACBtQ614LOKGIFqkhEvbNmNt14Gi73UGY5zk//OEP6fV67O3tsb+/z9nZGQ8fPoy+ZzBa0R8MMC4UQQjPTFo369T1254TkSllfFhGRwwFSebRLfuiQJNKwWgwYK4WFoA3guWqZJBITGbzVZ2Vfn7Nhr0kaK7utWrhYv2acdXem2MMqqotNmbAKIOFKiTaaP7hH/6BK1eucHh4SL/f58GDB7z33nv88Ic/ZH9/n62treARfiUFmrce3OHksVk/MzKRJKkd29lsjlZzekWPIu2xtT1mMLiJlBV5XtDr9V8sN7MbphFrY97j54VZr9drRXLH3/fN/16WpRUKqxVpmrriu2rjdz6NFguzOOzE90MpxWQyIUmy0G/LOaZCkK8sLAdYVVWOps9iQT4sQ0qbnG3caRSD4cYYjBQYIdHa8o0lWZ8r117n7PiI6XTOarHk8qXLZLkglRHm5MwPdENDZIWPTaHyuW2JMIxHfVvdJ834x1/9J/qjLQRXSKWxgsznaxqDqivm8xlFsYsvtedDMoQAGYSpvYcUTkC01gd4YzweZ78mGq2qHWZw+/btVjWu+XzO8fFxI8icJtgrilDgoihsFoQNbE4arNYH5NJYAbFw8y1gV5ElG97DkErBoFeQLlbUStpA16qmqpWTfzJije0KM1oX9SLNKXgOGoi854FIE7RWLiTF4cxaI1L7+zvvvIOUkuFwiDGGJ0+e8MEHd/nFL37BtWvXGI/HLUy7WbuvjmAzpjvWzV9SeIebZLlYsl5XlEXNwV6f0XDIcDCh1zMYY3HSZwbNPk1D677uA0s9rrTJa7lpIK36WAUOpvi7n0W76F5eQwuZCN016rAT4cAU85RruTux0WbDadz+kBLO6JApaV6QZj1MpVmVJWmgjjZhc4eTPkgNf03TuoEXqlmaUOQZWeoj2w1CeFPRoJTNZBDBfeduECBOvx03hDW0n4pzg0azrrzHs9uKokBrzZnLwayqCmMMx8fH9mrGBqn6MJnGM3pBDzasw2aYTPeFsKHiRwdCpfmgeZomGbr1QX85YzZex73ZEqieB82/FsnV5jPRa8aYkOblU7Xm8znr9YqtrS2qqqIsy/Pj0YGKPlvBdvHeMKb9vnFSzj9zVVuOQExi0+tUCiQIIW3xoFX1dDOzC8DHHr/uZ+u65uzsjOvXr7Ozs7Px+91rgzVTj46OODs7s5VXxPkiJ59mi/vZjZ1brVbkeU5RFA2PF02ieFlVnJ5NyfMeaZahtGWGNdgTVSYiAB2uxC+GphoS3uRx0fjKsX0amQGS2gi29q6R5X1mx4+4++AxO1trrl+9jHQBuAKDMFZPEsJArYmRUCFscrLRBqQ1lwb9Hq/fvMbh4Q6TUQFSgWkoeGbTU1arBf1BD6QVHGDTjhLjo9ABYTEN/ZwV5Ft9CuNth7XJ2VS8+eab3Llzhx/84AdMp1OOj49JkoQ//dM/RSur7adpwne/+122t7cdPtvW9s4LErstGqTPzb/7f+NIafpov2fHOMEGB2dSUDqPqdKaslasa0WvSG1OqPO+BDHfArNpSaiu+Rcw53DgmSC843EDETSxNE0Zj8csFgv+8R//kcePn/DP//k/5yc/+Qn37t1r3as7B/F77b36aQq47p5ucjHiPsWUTLWqOTo+5uRkSp4UJAhUtU2W7pDnGUdPTvng7v0XMzPbJ2qjQfl8zNlsxng8Znt7Gx+qAZu1sfi7p6enzGYzvvCFLwTM6rPIyewC/91+lmXJZDJhOByG/Donf8DY6t7T6Yy93V17OhqDTFKHI9rqR3a8Go1LxNfQjWaljU+JESCsd7PWMNo+JMsLytWaD+78owt7uWRNPmypOWG0C6s1jh1WONwOjLedjAFHGtlPUq5ducTW7hajYW6FWeATkywWMxv0PHBV2kVziMU4mHBH5/PFLzWtPd7tjaS15ubNm9y+fZuf/vSnIdQnSRK+973vUZVrwLKpfuMb32B3dxewVOZAZ9205zcG3pt3XZ/obDM3Vxa0t+OcurSmRAhqbNJ4pTWlUhiZ2SF2iLbfiILOhcN0tBUDIQXGZXXEeb8C7DqJ9pvHB09PT0lTy/N/enrK+++/T1VVfOc73+Gv//qvefTo0VPH/5VpEU7ZKAyNba605vTsjMdPnpCSMez1SdOEra0xSqWcnEx57707n6wIcLwAPY3MiwS8+viyl80b/yLtWSZwEyjbbp4ax/bbSg7T3R0X3Oecpy3+nD95cVz9MkUmGUmW2xQpZ17Y5GwnDDYJjyCoz3dJYCmCpJV2DlfS4d+YdSLe8nG/wy0Nrbl71nhuer2LwVqoIg3gta++Y4xNMSuKIlRnemoz56Zh4wc2GMLRbybobAJoivA2fVbaOkbMhivFhnjrqc99VGzsy7kg307znt6zszOEEGFs4Dwt9tMOGRMJj0+3Pef1TRx8LVyIUOK46mxAt/XeLlm5lK0LNbMXiTNbLBasVisuXboUavF1P7cJa6vrmkePHtl0mcEg2P/2WT5bkDKODVNKBfwvXhz2Wey/R8fHLOZzer2ho82xC1cba+ZJ49OKnCml22ZCKK2Fe9PjS8LVITcWokoEyGzEaOcye/MzVL3g3ffv8IU3blCktiiwdPfAWB41z0KB8JiRS2YGJ/gURZGCrihXc9L+AmQPhLExZrp0lNN+LmO6Jomv2GS0NxFF8MCdn7d2+MV5z1okFFxZwn6/z+HhIV/+8q+RZTnvvPNzHjx4wFe+8hVef+0m29vb5HnO9va201JUS8tuHDkNO4iXvvLcQWJaPYkFUuBtMz5gxlCkGevKsDIl2liG3tW6RJuBN3TteheNRqv9bUyMAHittvlTevKBzsEXe8/juM48z3n48CE/+tGP+NnPfsbBwQGXLl2m1+vZKPk8PyfQXq3W4I/2T7cWsCZ8wNL7ffb298izHnlS0MtzVqsVd+7cwZg10+n0Ygqg5xVk/sdnrd+4cSMIs+41ul5Mf+I+efIkeEBjYea9W59FizeZzwesa+sSz/M8YrttNszJiQWmhy7x3DK1KjQubktG18WAceNlz3c3h7F64zEWx6Jh7PYRQiKzhNGWpFxNefzwDrc/eJ/Xrl8iT3IwNkgjcJAKQaV9bqZ9zQZbJuDySDGGosjRpqZaLaBaQuY2kjYu1UlHz2z7FlK5TPOyESDTZk79ePq+XDTW/v0WTuIW8Gg0Yn9/n7fe+gJnZzOm0yl3797lD//wn/Gbv/mbXL9+PcRQheIvHWHmzfv4npLnEWQ2qivG5y0uaTXVPEnJEg2UGCS1UqxL7wSIN2a4aDw76Oitrg0aoAzVxozjRPw41jHLMh49esRsNuN73/se//Jf/kt+7dd+jaIo6Pf7gSjhVWvNWLft70brdwSvVUVdVwxyW6FtOBjTS/vMp1PmsxnHR084OXlMmiaWi+95bv4s9dS//zzeyMb71DDSejXyRe77MttFJm7Lxd/0qjn1jWk0FXul8Bn7f9P6Xqu1NrwXZKFHYbI9T79IUmtqpikIQVVX1KpuhE4EeIfLbBg+f/YJrwEYa1ZaqMCRBEYmbOeLn6g9L4zgD7Isy+j1eu6nCFiqf92nWW1eJ+dfu/j+ovXbhQLP2ALIUjQCxZiIn27DJf3SMNH/49fP3WkTYrCpx0IwGAwAgrfXamS9c4pD93vhus85bi+/WW09Vog2rS+PUYMIWQ/hJ0nw9VutMpQ9P59Z6EaEk/k4KyFEUG0b3qmnL1xv669WKyaTSdB+Po+TxJsl0DDlaq1dikweaZqGWlXMZguSxAdKCofjxxHx2nkA/eneCDm7YBvBEzm9osmzpqE1ID2lYEpvOGZ3/wCpl9y7d4/drRH721v007RhopUinFDG3bGrDSVColSNrxK1XM5JlKRUgnv3j1BkJGlucTMpo3J3ThUzNvnXs4HrDcVIuq17yHktw5uJPmvEm04nJ8dorbl16w1+//e/y7VrV7l79y537tyhKApee+01FwOoW/cQQoQCJpv6ZNgsl2NNLBxFpjEz/RwVWUZeW6JEbRTKaJSGqq5JpXR8lW72o3Mq/v3CPminw0XmFrj4MggxY16of+tb3+L09JT5fM5v/MZvcPPmTXZ2djHGBrB3qX9e+daoZs6CsPqax1ExCXmaMzjYYXsycHVS+wyHPXZ2J88Ozdj0t/dC1nXNYrEIwGO/3z9Hg+0/322xMNvd3T0nzD5LZ4CfcC/IvErvS+SFYE80laqZTs9skVyTAhYvsjJLIoQvMaZDonfcrBezyWywe6XBpbTCLmZhs/g86aIQimIwJk81ox78/ff+FF3tMO7nMBjYwHCX5xlZOA2QqhzYLQVSCipdu2R5WyMgNQmLVc37t3/FpSuv0U8ztFE2Z1OIRtAaK9C899YKShtsu/nUb7buJvwHQGsbY5hlGf1+n48++ojFYg4Y3nzzTXZ3d7l58yb/t//+v+fOnTuMx2Nu3rzpDp0GjvDCrKoqh+XJ1nv+IQwXry8fomG8miQI2JtNCcvIK5t1oXDssRqqWiFTH7DsDhH/5MKhCK4LwnRknDfPXZ6nTNuBrsZlcAQs0An/b33rW/zgBz9gvV7z67/+69y4cYPd3Z0QwO4DiLvj0z3c2vP1+bUm58IKdv+qDcVJXYGZnP2dHgLB7qJmMMiZTAYcXnrB3MxuixflpqTyi77TNTFb6uZLbu1F8fS0jhj32URF5AdZ1U1tgLBCOX/axgs2zrnzfTmv0rdfa8SdNTuFTJBpRpoXltRRGyrPcYU3XRz1jr1Jp1+hJ839jLEagVZoVaOqElWXaFWBowiyLglnera6fLFX9vx8ms777eeON9disWC9smlkmav/OJlMQr5vl9O+2za95oWK2fiZaNw7MXMmmltrZjY0PB7zNMZWOtcYNs3qxs4Yc86S75qi/tVWSEz0EZ+Qn2UZw+GQPC+C8PJ0QE9tLRRBPEfHX7QZ95zPuPCGveCOd/yk+ZXmrSaMrTzvyR/yvPhk3kywqSb7+/vs7OxstM9jtbjpu02SPTo6ai3SF7nvizRv0myKkROiSaXxuZhpmkYkjM3CV5WiWtv0mSwrLL+gMI5yx5sH9ggOlDDO5g/P5z+xQfIJB1LjAOeGVwEMOcr0EMJAprj02tuYesn9kwVpsWTU71PkGQaFF1o2S8kFiiZW08LhOyk2JQttC4uIck5a12z1DNNHt6nmYw6vXEPKAVJmIDMwEkMKJrNmtbAOCi2rZpzM+ZQ3uyFtmo5ftEIKDI6nTUBZrUlSCQz4+U9/ikwkVy5fxhjIsoLt7V3+8A//OTdv3ODw4JC6qqyGa28SBHgAyd3e9IC7cSPpHLEImoQGr7Q5Wlg3l/Zf64Sx61MCqVHkQtPPJVUFxghqBItKIZPU5hMKgTAy9K1J2rpoU7s5D4tCb/hsB5fThuViwaXDQyaTCbu7u/R6hRtnzW9961tMJhNL7x1rYq5P8bp7ue2i/etnwtNJ+ZtHioZj/rUar+P6w3vQLSXVg3sPefSgoMgLimyAURV60IfqgnSmiwRK12UMVpjdvHmT/f39Cx+vK8y01hwfH/Po0SNef/31gAVcFK/0cZs3h4OZGAmzWAOLnRBVVdHv9wNtdyz86kpRritWy7WtIWktMOoQJ2e9mvbzMpg05/vV/N7IOgNGO9ZVN8nGbUFjiRuVwMad5SlX3vwq9+++y91775H1F1zOc5KkQKuaFFuTUWphV0YiEWmGqhyaow2pHw9sfI5WNWlVsdMz/OJXv2LVH3Jpr0+SVsi0hxB9DCkhHl5jabxtxY9wWlrzOgnCRTtPowGUdkngwpupygoWCeVqaVOrjOZH/+k/MhlPGA2GGGOrrO/t7fNf/Zf/p2BCV2Vlw1aMLf0mU1+azHqTA94UznfR0l6NiYQZIGTzDUcwhg3GcLm12MMm1TWFNAxzyWxhw5xrJPNSk+WQCYEUEmGSFmW2HY8uu4ho/S6iddB9t1GKPbBnWMzmXLl8mcFwSJKmZFnuxlnzO7/7OwiEcxI19/RUSM0LZsPJ+nEUiou+090BCY4Az86IS6OzOLNBC7dvja/UZBUDo2GxWPDOO++QpymjwZDD/QP2tndQpcZcJMzaz9qo/92ASP+39zQ8b/POA2/TPws0ftG2Ce970e9uep6Y36zzLc6jvfbfjU9w7kUROQNiQRYnLrsgWiExIiUvBogkpzZQKkWlrakjvQnT0QabTUBjShmfDuU0KqMtAaGq0HWJrtcY1cPIFJEoLOWg75+/5HPOUfQ8Hhlpra3oo3VdhxijqqqQuYUxtra2qMuSuq4sPVHn1gITguXbJtuzTCjfL8dNFgFczfh7rdOJc0+b5K6rjL23L/YcaLMj4bN5tDpmf1u+xV1s/24MWimyLLfsIQa7Ntwa9bU3qqpqBGg0bRfP2ssUZO1PnD/aTftf0X6lOYacKa/s86A1ZZoFSnCtbAGYZ9YA8P/G4CHgom8X7O3tbeTrjwVKC0Q3LmFYCEajUUsTi7+zKVbtRVrc5/j+vsWOBt+vsixDXFmapi0KIl+kZbVaOe75JhE9Zs+NzVl//edvmz5rwl7ynlEhJIKEyWSby5evs15POTmZYuqaSztbNubJGBIESBfAqWtckia+GlN8O4EIrKWXLl2iUppHDx+wtavoj7bpJzlSZC7tyqB1jec008Kb2X7swYeuuEGwmi8NGK0jgFcKyXg0pt/rk6U5v/O7v8uTx094+NEjfvCDH/DmG29yeHiIUnUAhoPM9nNII8DiTSNob95me9g/As7YOpDOYwBhTo3lUSvyDIlAuaI2tctksbfWXix+ps0YW+l74eo2eFw6lukvmEb7mbbQNYfjenEmk4TZbEZZrnnzzTfp5zlpkpCIhNPTE7JU0LsoNKN1gw1CBmC5tIUTbt68yWAwCJs4/l4M7Pv3tNY8fvwYgPF43LqXz8GL7/NJW1c4xjgeNEVUfZhJXOsz7o/PPV2v1wwGgwBECiFCcKJSlq7Fe0NfhiAT0akVnkdYVtnt7T2G/Zxf/OTveVKuWS+XXN4/QGub+iMFrgqSZ/doVPp4e9u+NpTV169f4+jkhF/+6n1qLdghodcfIbMeSOssULrCsqYJamPHKfBzGe/kcZq367cvMOzHSgjpwPSE8WRMkffIspw/+qN/xfe+9+/5q7/6K/76b/6aPM/Z39+jdLxxnpffL39PUWSlW5P94BCX1oiGwFknyALzR1epbqbAfsKvGWlIZUK/KGyOprGiq6oqtNIO1//0w4u6zizjHqKuK2azWbAsLHHof17NQPCUIyxd+NnZKavVmrfffpvRoEe5WvP4oyf86sF9tKrJZNoIs014WNy6ZqZfkEVRtATQprCMrjfRU5O8iGn6XINwgQB8HqHiBdzmQNm2adyN3Xl5TotGh/BaRvxX+5OCJM1JRB9jBFWlqNLaphV5qyLSWHxdx65q32gmBNywlyRkaUpVldRViXIFW2Sk/Nst7MgcW48vnGZmOmvKmX8mHi8RtDbP7V8rxfb2Dv1+H6UUZ6enrFZLlKod/uZx1S72c34kw+9uo1uW77b57a3ugKe1rmM2ajLCbbBm2o3LADGN8GuZjJ+dODHGBAwYGv62EJoiNsrrj2ddfpz+tZG/dhPRfJhorQkRwnAGgwGjYZ+lq5+qlKJ2cMSFQbObghz9jydd9HFBz6tN+dw7W4Sgqd7UGviO0Py47VnX6TokvKY2GAwCH1tsPvoSeF5936R1+s9+vP4L2jQ0bkO4U96437WxHPMIi18JkbO/f4Xl/ASt1ty995D97Qn9woLBocZdBLYn3hQO69s7AyCVNjlq0O9x7fJlkLCYnfGREVy6WrgAWkmSWCPL4BwBpu1UMaZZuBbvMEjTICdSSBKZkCQpeZbx/nu3mU6nTM9m7B/s0x8M+fZv/zansxNOT0/41a/e5bWbN+yhEw5KwvX9mFmPZWM0nts0HQ1sg1gMb7a+G7A4v8kMeZZRayhrhRGWqqasKtJMbLjayxNo/uAVIQZHEJ+nz8KiP9+2aRzsLIjwHE0ZPX/4WWXCl9nDVaEac/nSIXmakSTy6XFmXcypq1llmS3K6fMx459NzdNMz2azwOQKBN7/ePA/Cfjvr9kNwI37Fzst4qrPo1FTGzPm2Do9PQ3fi0M5mvzAxoz+uMKsKXsBXpDZvEONMQpttP3RBkEGZAjZ48rVNxhP9lE64x/ffZ/5sgKR2tyBRFiHKDXa1AhhucDstZq4KO0wrixJSKVkMhxy643XSaVhdvqED26/iyoXoEsEJVmikUIhhCKRGUZbji8Qbj5tZXdvMiilqJWy1OEaEpGQpRl5llPkPX7605/yF3/+F/w//8f/kR/96MeMJ2P+1X/xX3D16hWOjh7z45/8yOJ8GLSqsYJcOG3Pp5dZwWxzUUVIKhcQ+PM97oVpXrtoNoIwbDkqLLOIMIZ+npOnSdDsyrpmXa7DwdDM48tt/vCVssk2DUqBITDRvCyo5uW2zqDHuKdojh/t9mQIi1LaBbQblIIsyzk42OHmzZvs7e1Zi+qiWz5NmPjN7AXC0z7b1Vp8hD00eFU3aPaTBtA+67vd+8UCuCmt1n4Gr41uiqWLf/+4C6gxvESMhNIA2nHQqpt0Yd3Wvf6QLC1ASObzFbXSTneI8Tb3fYGL8WoWVdjfxgRzME0ThoMBiQBVV6yWc0uMqBUYRwQpPJuEiNaog9j9hSJsy0QmsH9WKexBNj2b8vjJE+7fv8/p2RlSJuzv20K/VV0xm03D+AblquWxdvd5zjCDrtYVkiX90DZP0vwezFvn0UxkMI+NIXgSN62Bp+yQp7x+8VoK99hw4XZc2Ub99HNs8TNd3LegeATMxC5Sj6UJIcjzzLGD2KpcwcyMN+Im3Ctuy+WS3EVmX4S1bRIoy+WSk5MTxuNxSF/apEFd9P3nbZscEd1+xlqaz/3yjoz4uz5MwIP7Twv5+ER99mdsWIReNsReMefJNMJhYKnbvIbecIvJdslyPuP4bIbBsL8zdmEXESWQ0Sit/O50Y+GriltQy4c1ajST8dCGO8iURx/dZzgu6Q936I0KK9DcONicRCsFtPaJ6jQOC+kkphcPxnJSYcqgUe3u7vK1r32N4+Njfvbzn7OuSra3txj0ezatqjPW/lAUQtJm+XjKPFwE1rQ2Wfcaws6DwAIBWmNETe4Snl0nqLWmrOswJ59Wi62LBhVtG7NhLX66XfkErSvUvJLRrD3/mbquGY3HQMKD+/fR+/v0ezllLlmvVqxXK1arZRsz62pGsTCLN+rZ2RlXr17l8uXLjbrrwOPYSwhtgTidTnnw4AGXLl0KpquvWB2bnf7znyRPc1NMXKyReY8jEBwZu7u753JLfQ6pUoo8z1vPGAvFTfjZi3UYrJnZbMrYY+dVcH+W2Uo9lnIbIRltHZDnPVRV8eCjuxyfnDLe+hJGaRJhbICp08gqVVlB5vjJtNEubkqi6hqRBGWf/d1tiqIgy6fcef9d9g6XHFwS9EdjJNoGIRhN4jQxix1VTgO0VamMcKeqcky6Lgy/Uha4Lde2P1evXOP6zRv8T//z/8zdex/yk5/9lP/rH/9fmEwm9IteAIX9eHigO8vSkNLlJq41ZmGARaNp0VibF0xGRLHt5YIEoQ2YGqMF/aLPfF3Z+0hJWStScT7+7eO1DrgXv2OagjtCCIw2gXKqMb8/nfTAT9aevjeE9FxwwiXd289XVcXe7h5SZPzyl+9itGY8HNLLU6rlguViznI+e/6g2bhVVRXc+P4zzzNwdV2zXC5DwYpYa/o0QjE2PcMm0xKs8PUl7uLmvZhdwX4RPvjxBVrL0GyZgY15I1qf8wGehoQs6yGMpugNWK0rqsriUza/3Aozq3j5PjdFbcNzdXoChl6eUytNb7lmMZ8yXC6o67XT9lwwhjHBpDTEB1g0JtE9QsyuB3md4OgN+ly6dInVasXx6QnT+Yxer8f21jaDfp/lcmkBYd87093wTXSXIMg034nmdyOI3ZRdnezctLQUNSsFjTEkqSW9xD2fNo51tt2l7qBGfxvOcQGdV1jONT+HMnhU2xjUqyfE4tYekGYK/bx5DdOvf6vU5HlBlmXMZjNbmyNNEUaj6xrlCCIu9GbG2oZ/zWspw+GwtfEvMg/jkIzZbEZVVS32S68hxU6G7jU+TtvUL/93N2TEm4+xCRkLI18GL34/No3jZ/3knthN5o7rjxBBgBCcBZ4r3eVwipSiP2Jrd5+6WvDw0ZFlE8hTJ2hE2CCJZ3cwTX5jeNuA84+DMKRSMujn7O/vkCa24Elx/Jj+YEyaDRFY8N1fX/pAXWMwrc0qSKSlVk+TxIK8SlPXikuXLlFWJffv3+Ptr3yFew/uc3p2SrkuUVWNKSLNzrXY22xxwFgMnx9Z/7qXTS2YvmMaGv++Ea2/jTAgITERJukOFu3nQ1woh15aC2ZmZ7+dO2BfSRPTtqab0X51C9DDBkII67DSJsRApknCer122pgmSyW7uxewZnisKOa/N8Zyz5+enlrWR1fkI/ZEPs0sfPz4MWVZMhgMWpHz8X28l+bjcpp1VetYOHVDMfxn67oOgbL+ObyQk1KG4GCP8cWLaJMW502AF/cmeQEVb0gdfrRWaK1QWluPoEjRJCidoHWC0ilGFowm+1y5/jqTnQN+8f4HzEuFEgkkGVq4XDchSRLHQKE0UliUAmduSocLCa0RRpNnCVvjIa/dvEaeCo4e3+fBh++zXpyQsEbiqjuZCkxNkggXyGo9prZgkc1dTR2x4tb2NjvbO5bLrsj4wlu3GE/G/PznP+Of/4t/zm9961vs7OywnC+tQKut4PP4mtbG5YBK6lrZwsdSOmi+4fnQWHkU/xteJ+i+BE03Gv0gCdw8K60xQiOkIU2cVuQwQYVAGVCYUHqQluh9eS2uudHFeH0x6CDYtI6lxivavFnsHYJeObCFgC09VM5kMuE3vvI2eZ4zm8748MMPOT4+Jk0Trt+4boXZprCKTVqSjxPzEfKbNvQm7QYs+O+1oPjasWB7nvCOT9q6z+UDZTedckAophFjaV2NddPzvmgTG35rHDl+YwV9Abv5JMYItEtEh4S06DEYjsl7fU6nMyplMKIpk2ccthXMys4pHush7uYkUpBnKZPRkETCerlgMZ+i6tKye0QFUYTHbPxVYlzKzXNMR57nGVJKR4SZcXx8zLXr1zk8PKQoClRVo2oVeUIb2zg2+SOfoxubSJtyX/NxdUbYhGb/8UZ5FK3vtH4XrvKSwzI9YaVwz+W9x6YZxFaPnqe96Ofj0IzQXlAr+6zFnJf/m3Xn7mFCkA2eTXZ3dwcpJVVd2zqh5RohbCHkZ1IAecHiY7GEsKyyMVh/0ffj765WqwBaxs6B+D6fJmjpBae/T/y7z8Xstvl83vJibool22RafiyHBRcv4rBhI0A7bGDpkosdXC1FgkgysnzA9s4B/eEWWdFD6LWLUrfajf3dXl8KESo8xS59H17hcTApBcNhn53tCcoYFtNTEpHSn4xsWT0hUEY30qFlcgnSNKOqapaLBb/4xS/QdU2e5Rwc7lP0bH7vYrngyZNHzOczpBSMxhPLBhFYKiEILN1w7zcaVmeTuJfM5nfDFuqamednpHNo41PN3JrApkqZoK2ZT01SeO0/aIAbhDuuG6+cUhawyvOr3R8MLXjFORin01PKdU2vKOgVBbu720gUO+M+4/EQeAprhjcvvUrrwxOEEGxtbbUqFvm2Kc3Hs16enJwwGAwCf5kfcE//E9/z42pmsYDxRSD8312hGQce9vv9jRjgo0ePQqX1+PWYVDK+b/zcHws/a2keFgvz4Q/2XhLhtTGtSUSClIk1RC1FLVmSI9MB/dEO11//IjsH1+lnBj0/QikDRiHQVLUN/BTCU9ZYQadq5QqyCBJ3bS/MskRysLvDeDjig7sPOProQ85OTnj9i3v0BgOETIIp6CJ1ESJxgjGhV/Q5PnrCvQ/v8j//f/7fVGXFlatX+Nf/+r9hsr2FlILjkyN++e4vePzkMUmScHh4mSLLUbXxapUb35SqLi3k7wuBCHBuvXhA2zz8QciYILAFEZ4oBMZlSwStO9K6hPDMGdpxztnLaUB7rVcKhN4kOl9OC7mtMkEk5y2GsO6EN/dfodYaltgKcWPnP+KUIIzVyh4+fMjR0SlF1uetW69xsL9Dfe0yk0FCmqTAU1gznqaZeTPzmf0WTVL3er2m1+u1tJyuN7Nr/8f9+CRtkwczvqdn5ewKM08J7oVs/DybCrBcuKiep22Y4MaEiM2o5sT1WoARFiMSRmAcPpbmfSbbu/QGI1JRUy5Sa246sN6mRZnoqoDxwGsStCkrV10KkoRB3+KL96ThbDFDrCqUb+tN+wABAABJREFUWiMoXKyaDvcIV3ZEjkmaUtc1p6dn/PjHP6YsSxbLOXVdkbqyeavViuPjI5bLBUIKhsMRaEO5Xkc9dZqZn0NXSzGaCCfQOmvHCbLz+YE+vuliARQEYXuywu+xwGyA7Ge0jynrwt6R3RCMRktzfz1f+4zkXaRzdW662biOZcR8Pufk+JgiLynynK3tMYmAUQ+qsma9uiA3c5Pp5wuXjMfjpxZJ6JpfZVlyenr6TNN0k8B5mSZn95pea9tUTNbjZP7z8YLpmsIX9fUTYWh2R1hNIEx//HuzYYxLecJrJQJqZdBG0h+MkUmBQJLkfVKt0JRoUzpB5nkuXH8jsz8WHEI4flB/4GMYDvrU64pKSU5PHpEkhqzoI0QGOAeLEQ2G5rTho6Njjo+P+fVf/3WWqxW7uzvcvXuXqzeuMRwOef2119BKMej36F27GvXr/LoEgYh9Jm6PbB77xuzzsq41Y51wDT8Cwh0aIrziB0I7d020FlrffEaLhf3HaJvCofxYxbd4lfSytiA7P0fxNHoHANjUpvF4RFkq0AmnZ1O0VvSLnF7W89vFCrNNoQzdGKzpdMpoNOLKlSstraSLe/nmTbj5fM6dO3c2mqZd7SX2ZH5SQdaNC4tNTrB8bL6QbDcsY722hUW9VtbV2uJ+dzXK7jh8vBbjBjS/R1UXReLodFzOpg84RArWpUbIhIPDyyTZEElFOlBImbFezlH1zMXn1rYepHFmqrb0NsgmborEgswJ4NySCAyX93YZpBlnswW3f/UTtL7F1vYuw/Eu+MwEV/RDShFyWt9991f86r33+df/7X/LfD7l6PiIv/0//pa3v/oVDg8P+IM/+H1u37nDwaVDXn/jlvXGabsBYnolu76sJiJFCN91SqGP9eriXIQd42Gtth4TiSOBLdRMZJkm9jNeaKRS2sK9Tm0NzKi2AvBLWAObW2wdyM6e1dG63Kidfu7NY7WiOQiCgtDsQY09oIWEsqq4cuUK29v7TE8XfPDBPfI04WB/h1H/KlkqSdIo0fwizcO/tl6vAZhMJuei+891N3rd42W++EJXgHV/fxmezE3X2KSZGWNCRam4dTUz/74fmziEY1NfP/lziOandQmDL5vhNTNtmkhpH5pQKYNGMhhukaQFJDky75PmfWSSY0iImL3sotdRbGGrK41mKoXE+lBhNBwwGQ3p5RnHRw9ZzE4o1wsECiEarcVrfj427/GTxzx5csTXv/51vvq1r3Ht2jVu37lNWZWMxiNu3XoTpWoGgwE3b9xwpu/5mMdmPiKCgsiE3DSi7b+7Zk4zxq2N5l+K/zAGm5/qy/o18/VZ4O1eaHkHTfx6rF2/atg/0O5UOF1E9Lf7WIBArCIymUzY39tjNBpxcnLG48dHTKcz6tpyyAkhkJtCC+KN6PEu70p/Vh2++Drr9dpG5m6opXmR5vVpeDS7gqyua1fRJT93L89Z5p0dm1T5p5mWLyOk5GlXiHG0UKzXrQdtLNNommXkWYEQCcbYkA1EihEp61JxNp3ZWLXoRsGMi+SnV/f9IW83C2CsQEsTSS/P2N4ao3XFajljuZhialvZSRKZiMBysaAsK5SqKavSrg9VU0SmvhCCvb09xqORzffUMXNIkwjvTWsh4nE3kViBEHXm+u09kK2tbmIozGpUsaG9KVJMtN7zA9a1arqH6UXr46K1Lp7ynpsDIQNEEF+/Jdxf0pp8+S1gFp1XO2a7W5dVVbsC1YbBYEDRK6jrmqOjI2azmbWQoK1JxIGfYFOXjo6OGI/HTCaTc7jXRYJHSsnx8TGLxeJcceBYGMQBpjE+1aWf/jit61zwfy+XS0ajUdAy43tUVcV6vWa9Xrdiz/yYeE+Sv/7LFrz2wvEzO2HkPJnC1ac0KPejkc78UUqzXK3p9YeMJttIWQC5/RE9SPqcTle8d/tD1muF0nbL+1M+iYr9enJqpWyKji9YghMMCdDLM3a2RnzprZuocsbRow958tFd6vUcoUoSFKiaBEgkfPTwI6bTM1brNSdnZxyfnljcbG+XLM0Cg8ZXvvIVrl+7ZnnXVI3RNcbYoGEhDEJa81o6Hn6tFUZZM1m6kUqc1mR/jAsEdgSNsQBD2MIjunlNYPPipRFIr8EaQXx2SFw6GFivcHOmuEDVZ07yC77etMbx4eIH3b38Pnp1ucx8a5MneCdWyLbw60wQLIP5fM7Z2QylNZcuXWJ3Z4fVasnPfvpTPrx7F1VX7QyATVqacpzi/X7/hYgYwXoDPa/+JvbWi4D0T1szq6oqFC3uNqVUYMq4SDOLMxQ+/UUTn9AiWuv29DcObLcYl6aqa7K8oOgNsCInwWJYGYicxari8eNj6lq7AsNR3qSMgl2dwWYjyk2oXk6kAeVpyqDf49LhLqZeM5+eMDs7RtdrRNDMLF2QFJagYLVaUdUVy9WSxXJBVVcMh8OwAaWUXLt6lZ3tbaeZqaCBxtoY+Dgrgubmd3VbO3ND5tdrZ90Kj9+0FAXRMTRF9E6jlbU+YyLjVJ/XzDbP68drxtjZsUGzhHud08xe6Xa+RkIED58bvfW6ZLlaYYxhMpkwGA4py4r79+5zcnSM0Zr0ooePtSbgXGBpV8PqCjcfXxZKq0NLy/H/vnAIwydosZZ2ET227/PzVmbf1D7WYhIer/Vgv33RXuoiINcJlmBqWcGWJml0OjtQGslqXWGQFL0+s/kCqVNEkZCmogktEGzeh4IQl9ZFmwSWmVY77+ViPgORUwwLpMixRVQU/V7BwcE+Sis+vHfPhmAs5uzt7wMiJGkHoeBPZxwWZgy+7qKhMS03NY+5dMMwGsHWAmgQLj7NGFvovZmUZk6CKBO4fCjTun3L9CSaw2cJtrCBBR2p2hJOFwsq+5rWusHSwoU3r8XP0/Dsrp+NfXFz7Z9ltVqxWKzJ0oIU4fJ0oVcUpJmVL0GYdRO9Pehf1zVJkrC1tUW/328N6CatxQunqqoCO2tcINgHs3ohmWVZID6Mr/OyBFw35MMY06oE3dUOT09PAyvIptoGcZjByz0Bvf0TKw9+qoV7rdnsrixnhG3WIc+11+vRK3pWfTdgtbOcJ0czDBn7h9e4c/cu+1sD9reHFDvjgJeFzWoMyqgQy+SblNJGoSkH7AtI0Fy9fMBsvuL4bMn9D28z2V5y+VpBVqQYVVIbw6XL+3z7t/8J9+/f50//9E95/OQx+3u7/J//6/8aKSXlunSGNMEhIRPANOwazbowGGN52WQCaIFw1LG+gpNn47AC2CWGx3KJZm1IaWP10CATx1IrwGiDceqdLcCSNNkSwbvrtUBpAQHhTVI7d3ZonyZYRPi/71yMBZ4TZsKthOABtO9brLfh/7/4jq9u89OjjY2j80Hhj5885vhoyni0hZlsoesKKST7B/tMXGGkEJrR1bR8OIMHwgeDAUVRPFON9depXe5UlmWt73lh5u/VxdHCQ72gNvQ8LRagWZadC3w1xrBYLACCafw0k/Klq/QbgzI7Z1drhZrw47XoJEnD89k+em0hZTpbYkiZbO3w/j/+iBRFv0jY3xnbdJxI6zL++bx55d6QUpAIiVYq0nY0u9s27ej0bM7x0SMQKQeH18h6Gm0s3fH21pjBaMhwNOBP/h//dx49esSXvvRF3njzTVStqOsqCB5bFc/xdGlrrloB5jvjTGwvLOIxiQ9D0X6ubmtkmxcYbRMyOD38p1y2BA6Ds5pxY5xefK+nqLzuXxMJtLYAa3+zYygTC7OXf8h+Wu18H1vP6K0Ap2RNz6YcHR2BkfTzAukKZk8mY/p9G/KVbooR879XVcVF4QutTnS+63nLNhUHfprG1RUOn2RSutpUbDJ7jv+4+ZStp2mdL6NfF7Zzl9wkKOMN4U/9eLyIPM7N69potFKA5eaXWU5/OEQkCWVVs1it6Bc5qfDOhU2twZx8lXJh1RW7nYQgTRKbO5dbvrPFfEpajDGJwYgMISETlgfv2tWrqFqRphkPHjxkazwhcSlUGBPhJ5tMSa/B+gPPr81IUxFE722YL8O5UDBBLBT945pQICUahVAnOJiim+/SWKqb3rugBWiSaK11hqC1j4wJHX/hA/ZzlHtCuPMgdMUKdK29hQfG54P3+4EJ2q5lK/j7vR6Zi0qQcQ5mjGWVZcl0OkUpxfXr14NJtmmgYnVYa81yueSDDz5gMBgwHA7Pfc4+yHmmDN88pvWizgB/Tf8df0r5/M+yLKnrmu3t7aC5+Of2mQpS2hJWmzxCz2v6fnwT2QavNlxOzeaK2UWEEBhlufcTmbZO5L3dPdI0izYD1LViOl0gZEreGzAcb/PaG18g6w04mc754N4DZssVtTFUSjWcXImNsDcYlFYkbn79Ied1GGkECYJ+nnO4v8flg11SFLff+wUnxw9ZzI6pyjmJ0PR7OVcuH/Kv/5v/hu/8zu+ws73D//L/+zc8efIEYwS93sAqYQoXrKrwRUQaV6Ttmza2irsVdzYQQxsgSZAyJZEpiASDRCMxJBjhfnApUAJEYmm3BS4f1XutjUahwkRY8kVQxm4lI2SQPMJohMAy9kIrcDawaVzQYi++Xz92HRiXx9wVXu215t/z1b09rhlM7FdNU2vOGnzIjc8H1tpQ1TVCWKuoVopEpty4fp033niDXq/HulyzLlfIRHDp0gE7O9s+WuJ8AKzXrhaLBVprDg4Onlm4JP7uarXi0aNH9Hq9lscw9gTGpm1X6+lO7guN04br+uvUjpFyNBoFjTHWQufzeRAYcdzTZ9G84Gq8cpvMbovM2L8Bt/n8uAohGY/H57Rh65FeI2RKlvXo90dcunKNNO8xXSx5dHTMcl2iNNRGB+6vZnO5pHxh6YzbGKdwvRLkacbOZMLu1gSJ5uH9u8zPjlkvZ9TVCikMRZ6xu7PDP/2Df8pX3v4Ko9GY733vbzk9nQJQZIXFqbx55+mFhE/Zsj9CCjRNhSmE57AQIKTjN7N8ZwZPkRT/RPPqtAABJMIesL5wRlOb3H5GGRO8wD6SDUAYewchQGyQW8863pr17vN/GxjGmKeIwmideyHcmL2f3fp94eYVTo87eizaGEt24PawdryCBwcHXL58mTzPXT1Xa0Xt7G4zHllvuOxueC8EyrIkTdNzgbLPg5fFmpp/rXvy+LZJi9mEnz1L29kkFOP3fPrHpvzQOH7s8zrJnuaZg/h52niaMTa+zGqUSetz3sOplbbc/k5iGiywmma5pQeSCeuqZLle0RRQEo3gCIK2s1ZCL+L1gVs3Gb0ip65LlKrAaCzDtMWA0iRhPB6xtbXF1mRi14n2+aLNZmw9bWteGqzIRDf3fTfuObWJuc2sNmXfk8RZRw2HWWcO3G2CqRmNoTYdjavliT7fnj7D5z/RjHfnY6IzFqL5fMgOeYaZ+vH697KbiafxXD+Ewyi9MBdCtPBuYwzluqR2+zaNmV59MKiPrN3d3WVnZ+eZXYoHNsamYnDf33yTkyG+Rmzqxv8+9/B0ru/7U5Ylw+GQwWBwzqRdrVbhJ67QtMkJ8bK8rBt6jjG4QND2wQLWaREziHqcSCnDarlkOBwyHI4CxgA2mLSqalarJYvFgjxPEVKjjMIkKZPdfdJMMjv5iAePjzk+m3LrzdcaxmwBNlEckkSgtK08lCSJC8PwgakJaEeTYwzDQY9LB3skacbR9AiZJAyGQ/JcIhMD1IDkrVu3GA2G7O/ukWc5VVmFBSyMjYBzBzdgNeagtxoQMsGR8VhTUTsvmKMdQoCi4VdrmEyt+mSoA5gfhJLB5Vm6e6QJRgq0FBhSjHRYDoK1UtRGWypt0Zh1ymgSvM76fIiZCf3w2phyB5WldrKHiR8HWzzZ5qE2147NTF5037zQpz9ea42C8U/bHF7aZ3u4eU/SlCTN3f6t0Vqzs7ND1e+xWsyYnRzx4Yf3OTjY5WB/D+m5uWLPnqVpOWVra+u5hFncNgkzOC+sYmHTesZIs/s4gqOrnXmTuSxLer0ek8mkdR8hRCvqP6Yi7vY1vu7Lbl6L8lHtXhPy4+NNx4ZU0W4qrTXrVUmW5gwHw7ApfAHhui4pyzWr1YpEWvNLGwEyZTjZZvfwMsVwzOOTU+49/IjaEGlntkmHBWltPZiJo9zx2o7EVTTXgNb0i4LdnS2uX7vMYn7GejVDmIosE0jpADE0N29c49e/8hX+ybe+RZ7l1LXduCFrNKhmDgEKZpgLORHWjLSJDBIjpKPLthiZIkEhqN2PRqJFYn9katljRUDkHMW3sQ8sBUY6ISldhLqUIBKQCVomVA5XCxiQWxbK6KbbNP3fqIa01oB93tiBE2AZJ+S9ULfKQXR5zpuZ/zk0by34vRoS5YEkSUld5a2qqjBaM5lM2N7eZtAfUJYlH330iNl0Zi2TTeaYD3Tt0knHIRQXhU54zCnmzH/uh3rBQbjo2l0z1gKMsoWFxW2TS9sLuq65vOnv7jNswuue/TybD9NgJbRWrp8DNjxbrAkYlKpdGpC3l4zTJJoTPs1y0jRHq4rVqkT2MisopIi8dtH4un7E5gA0waHCbe4kkeRZSpYmJC7lKoQ1CLtJEyko8hxTK1tk5eIRaj17MDHDPDTVkQwqfN5jT0KIiHOEYIoJRNCs/DZq3UV4od14NbWxqJvSujE1vTQT0ZdoNFw/biLcgTBym9bxs5Qr0VwitNjMNBuu+2qIuAga6D5gJMgi7MBCQHVNVRuEqNFKoZyDpK7rEGydetZXD+ouFguqquLy5cuWV/spJIzxho1xqeFwyPXr14NGJIQ4lwXQ/X4sODbd43lbfI3YzBwOh620qhg0nc/n1HVNv9/feLJ5gfHpmZi4/raLrdhDy27wuq6xp3IDEFtg3jAaTej3+xEeaPBev+lsynpd0e8V7uSzLANSJCBzZAaj7T0uXa9Yzs/41e27XDncZTwaMB73LQOt65tMpAXntbaEiNqaA00gqc3vNNpCB2kC164cMpzssDXuI6jB2OfACJazJeuyZtgrGPZ6ZGmGVjU+pszOgo/4xwH5HmfxWhhobA5pVSnKsqKqVmEdZFlBkqZO47UeSymFpYyRAmkMNrlcgk9otwauu6/V6pQQKEAZK+CFhtlyyaosXcFaqzlJIZBJglCKID1jHCye7+h32994f4igGBg3AVJIqlo5OEK6TJVG2YjZkzUqXPdVbvaZTcDF7ESLYOYbA1VVc3J2xmK+IhEpQivWS+ucXK1WVGVp05k8R5QPZPUFb69evRoSxJ/W4sHyAzkYDLh8+TJ3794NxUDi6kfd78bC7GW0WKB5ITsajVr1B/x7XoArpej1ei3t6zNtzrRUVTuVygsvyz6SYc0su+mUshjaeDxy5Jd2LhFeZ4L5fIqqYNDfQevSxvBgEEkCiUQKyWCyS5JmnDx5xA///u8o8owkTRiN+g2aZDxvmBWIaZKitUFrC+YTNiPUDltLpeTypT2KwZj+sGcFmRdmCFaLGVWlGY226PcGYAzVuiQIMmGNWI9n2bJ1TvuRCdppYxpQtWFdK1ZlxXy+DIfCaCTJhSRx6UoCmyea+4R9YQWTSCRG2XzVoC05LVYJjfJmqlcsDcxXa9Z15YSZpTgX0gp9lDdevXbWXdubTE7R+t0fZkY3gk5pG2PlD9egZeIwJ72ZX/DVatGzX2B5BxhDG2pdM51OOTmdgjKkQoCyytd6vaYqK4w2babZGO/aRNvzPIPjT5OumdoVEptV6/NPdZFQed6J8p/bZC57gPUij+qLamPPu4guMis2fyYef8KijluSpDTBoQ0MoJQPoYj9g/5fr+4LhExI0owky0mSDKUNVW2dBzIVwQTbOBOxTdZ+AsAKOht7ZazGJhSQgFEuidwFTgSzyqe+u0vE6y/8OOzMOU20tiafUjpABl6Y2dJ8GryjyeGBdSIRqAYSEDKEY7SeolMsWFt7FqMsNuYxno3xGM/RzMYB3DD3/t82GNf+VmRmvlgfPsvW7Zu54PHbGKM9XOzhnkpLsZ6Skwb80JBWVRWElidgTNOUwWBwjgIndOcCQDz+fJqm7OzshEDVxWLREnK+bdKUPml4hBdWXlAJYdOxuppZXdecnZ21HCBegMXxcP7vcxjEy9QmndOtm+DuvVm2X1YDiNOsrCbcb4rEOLOprmtOjk8QuGcThiTxdEJghEZphRYCKXOSVDMc7fDGW7+GWs84PplTrUuuX9mnyFKEtMGi9qY2q0AkEmEcLiXspvQBvxgbI5QkKUYrqvUCNTshK8bIVKGUBLVGasBUqGrpntO0BLnxycYCKqWQSQpIakdAq7Q1L2eLJWVZUlYVtVZ4XrLVekVZ2zXuy+yFcndySiIgIaEnC2smSoFSNj9TCGmfORFW2GlYlzVVVVOtK9ZVhTLWL2CcXxUXk+fT+91gbJ5zCIdMAys0loUxlp9OSgv2hxQyd6DJZIOyYVz6lhSftZR67hbkvxDuMLCWhpQSU1sMOyTsC5tZkqaprbc6njAZ9ChSyJIaaTRbowl1raww81jSylFspGnaovuxHWgWWVzgI25dRlYvzBaLBcfHx62o/vjHXz++z6aCIc/T4j75U1pKGYoWx+/HwswvHi8oulrkp62ye0HUDWHxwbBJklC7yklxRStv1vsqPF4TU7Xi5Pi4JaiDF9IA2LACjCBPc2QmGIxS3rj1Jd75yX9kenLC2UnFpf09slQgDe2wD7T1jmK9mB7ztt5AwIBWNWmeYYyiWi8RyvKDSWPQFYh6hTASTImqDEImyCR14+/1M1vcFwS1ql3xXYlyJqFShrKqmc0XVpA5YgTrE4WlO6Cbw14Eba+fzUmFIBUZOlNkaU6WpTbBOU0Rias25cJljDasqprVcs1yvmRdKZASkSYOj7OmpdKaZvU+61AWrjv+X9NSg5XWVoAbY4W0sHq2cA6crkpvTU8LCTwt6+BVaEIIy0NnWRXDGlbKHtq4IyFN0iDMDg72OdyZMOwnjAYGFNSlplqrxsz0WoDXnp7FKPs8HfVmpqfb8feJta/u68/but7CTZpcnM7U1fZiM/N5g4Kft0+f9DPNZy++hh9DL6C7nubGK91d8M5s9PiTgUD8KBNkVtgYJiHRylDXygblxgTRQrT61hL8rcinDv6kFUbXluGj0tR1hTEOeHdJ45FBFf2/u2GtNqiMDmakJ5BsxsY4gaiD+WoiQQagpUJJp4EpRSIVWku0Aq1tcRilNcIkQXBanNDer8GscAwPTheL17ITTL4P0ahw3vz3I2jCWIQ5Dc/urrBhnW6yHJ67PV2JfHkt5phywtvE42LidR/FonptE1zwe0qauiwNZ+KnWZZhjKXsWSwWXLp0iZ2dnZaQuUhg+Pc2McX6z/vq1bu7u1Tu5KyqKtSq7PV6Ic1ouVxu5Bh76thsAOv9gvYeyvF4fO4zVVW1uMu86eHNt66G9CLt45ifFz1zkrTTrmzsWEVd2zEcjYZhfwpnpq7Xa1artXvNgvwePxLCqlFOrwMhHJzk6lti2Nu/Rq8YsDh9woOPjpiM+uxsj+nnaaOlGG9S+tAEv3mtJilwmroHtQwgKtR6Sb0u+eijI07PViRZj9F4gEx7IK2Dw28sXyDEKpACmWQY7OJerdeUVUlV16zLyoWfEPA57xGVIbCCgLH5prVCaKiNodQSXdfU6wSkIckkJIK10qRFH03Ccq0oK0NVaeraWE+ilCRS0Ovl9JOEXpqiq4pa29QnOweOIbdlkbj9hX9Wt4t9ndTovRgnraoKgDTNWusshkOs5/vFDs7PsrUcIiKIbXsIRJ+zKZSSjz56FBwb9+/fZ3s0IEtAVTXz0yl5mtEr+laYlaXlY5/P54zHYw4ODsLG7mJjXdPLS85QLaaT05gkCUVRsL+/z3Q65ezsjMViwWAwoNfrMR6P3eZbsVgsQg7ox6nU1J28qqrY2tpi4tNloon3QbLxPawpZxdCNwn+s/BubhKCUlqDpVmgmrpWVFXJeDxiNBrFV7DCbLVmtVyBCxcQTlhXdY2QHmwXCJEghE1EFzJFCnsoHRxeZzQY8VBp7t1/n+X2kKJX0Mszq8GFE9VrPRrvS7LMt5Zs2khhBVmoRl5TrxeUZc39D97jbLaiPxxz7fpli+d5W1B4Hjlb0M0PSZJm1Nomwy9XKxbLJWVVBUzMClACn5nXmvA988V93etGK6vdqZpEQe3CLjQakYCRhrUx5L0SQ8J8pZBJn7q2wizvSRIpSYRg1OvRTxNyITB1TaXs5rR9UO6g8VaCREoT+ubNc4Ol85UCy6FmGtjAC8OqqkjT1Hm227CMtzR8IDxEoT7PNHc/q9bWvkXQlnVbKTTuIJcJDx48ZLy1i0Bw796HvH7tGnkimVdrnjx4zPbWhOHlsQ2ajfMSu6XVnrWR/XfjvMZNWJoH/r3m5bWhuq6fyhn2cVqsUXmNq/t+LCzj+16Elb2otvWizyFENMmxmu28dvYzXtFpwH8L6rdb82wiXMNftt0rEf61mos1N9M0J8sK0jRDa2tq1rWKchFdX0M/Tdzp5tIm2FeAC5jVygY9qhqlKpSqqKuSNKuRSRKuFTCuqH8CG5YS59Jq7XHRyE6KTLOgATihi4l8ZEa7uDlX2kyDMJanA6Mx0lAbSFSNwQHTotHupHMYSGmFmhSyKcKiwWut0pvMQTj5A9JrJG6t4cxjvFbajG+wWp2DRYqLYaDPJbTouVq3T9391F5HfkfUdR0cHz5IVil7qK/XJap2uZnG2AIfi8WCq1ev0uv1gunV1WaAc++tViuePHnCer1ma2srxHN1cSohbCX0sWOF7Pf7KKX4m7/5Gw4PDxkOh+HeH3cy4j56E3NTRSlf12C1WrW8qy/Dk/qxm/Gar0QbZU8mmUThAoIkkdR1RVWVjEZDer2CJBFhwxpjqMqK1XJNWdZkaYGU1vtnT2gI/jOnldnfcbLJIIVA6QohC8aTfQ4vL9D1koePjkglTEZ9+v0CrW3EvhBWg7EiQIAU9ow1jaAUOK4KYYVRJg2He9vkWYrS8OGdd9m7dI3heJtRnjizVXj/YAtFmy+XLFcryqqMeNWMDbbVGqNVyOu03fDCzYC/mjOzq6SyRU6UQEmJUgajNEiDkdqmOqUJdVWDtEyyHmBPZEav1yfPJFkm6GcZqTEIrVCVpSf3vTZCO+ww3j/SmvwIbMX3JlBXOM+zVy6UssLRaEsq0OslFK4Grc9BBVrsyK+mMPNNBFzRe6pbyoKwx43Sds6sJpogRMJkMma1WpKgEUaxmM8pRyMrzLTWLBYLZrMZX/ziF0MUfDdkIrbJ4/cWiwUPHjxgOp0G3rMuv74XEJ6u2nvgptMpf/Znf8Y3v/lN3njjDV5//XXm83nrfv77zz1MouHcmkwm9Hq9oILHIRuz2Yz1es1oNAp9jTW1rlb2mTTjkriV1RjSLKWsa3ca2yyKuq5Yr1fs7e0yGPRCmpA/7ct1xXK5Zl1WDAfjoM0prR0FNoBBCltE2O7txN5DG6TMULVGyB5bO5fIc8nD+3e4e+cX9HJJliX0+wW1qkmkdRRpo9EubETI1GkWxpmyjlNDCBLhQjokXD7cJc8kx6dn3P7VOzb8QRpGW6NGkAlXLC5SAmfzGfPFwoaH+ABSAUpV6LpCV5VNrXQCzRjlhJllNPNFWxCCSthDQyqBSiS6UqhKkSQGJTVaGkTRQ8nSBsPSc1CcIE0yBv0BvSKhl0n6mcCUFUZpyqoCaZ0ohByFhnTQA9veYydcuI0Pdrban7VmsiyjqmoLO2pBXVs24b4XZtHatJvemvt+j4Y1/QrBZ8FSMKahZQ84rH/fY/GaLMtIs5Q0ydje3mK5XKCrNXmaMJ3N2NnZboSZx7x6Uf3CcONnbOSqqgKYHgcsbjLJ/EkTU1afnZ2xXC4D7373vhfd/1x8Ted1n1+6ySsb9/FFHQ5P68cn+vy54XLGkFMsumwa7Wezmps/bPxJ7rESD397xd0YnxbVfLfRpKQTQpI0ySlyexhUtaKqa1Tt6jc4bUd48N9fy6sgGwxaK0ftd/Iso8hSUiko1yuqau3ogmpMarVJ/8UgzDwmpOqgJQXTxDQ/IUfU/W2JF22VKOEErAjf8Tfxlwr2XHhGD84Lp9EJYUMfEpmQyoQkkUhnHqqoH3QCbr056YUVPnMAj037++mQ+SGiTd4oLsKFq0TL57M+eF9mE93VYpvx1oILAUL4NC5FrSCVFq/3GGl6enoaAlxjXOuiFgPjdV3z0UcfIaVka2sLIUQrz9HHdnUdCZ61NkkSrl+/TlVVnJ2dBbzOb9Y4ePV5W4yV9Xq9JpjUvedjy+Jk+FhIxGb0Z7kw/FqOKV886O/7sV6X4dDJ88zhZc2zKa2YzqYIIcjSzINGQSBItxmtpLOeRps07UWNJTEUInUbRiOSjPF4m+vXbqCqJScnJ6h6ze722H5fu/SpCLOyUxaPnxtfrfD5j0JDkSdMxgOuXDlA1SXHx49Z1Yor199EZoVlq0DY4i1aM5vPbawVXuNohFmaCJK0IBv0SGjoGDH2nlaDi1hYBczBalkmISfH1AaURiQGJRRKKFbGse9qRZZZZl+ZFmRFjyLP7X2FQVcVpqowSpFKiRKeuPEilcgfIh4ja57F4oIi5EsbYyhLxXply/LlRe4uYdwlTLBoLqqp8ao2f1BIB7HYPaosvZMrJrO7s8titWK9Llkvl6TjMZkLIvcOFaMhffLkCdvb2+zu7j6VGhsac9FH1ldVxYcffsjh4WHwGE6n08BQ2+/3w+d9CAhAURSAFWq3bt3iyZMnHB0dtdTkfr8fQjZeRKB5jcsnvHth5oWqL2rsVfiutzYOzegWNPl0mxVgykV8C2GdIzJNAti7Wi0Rwo5Nr9cjSaO8RWz60snpKUXWJ80t3XJrLoV0sV6GTEjqILwFITOABCEzW/xWaJIkZ3tnn9Gw4Jc//wGPH085O4WD3bcxRqGVQWQ4D6Q157S7byJt1LwAlylQB7PPGEW/l5HlY2SecvvhE04+mrL88D7bB5fpJxJn24EQaA2nZ2fBU6dcKIY9vjVZIhn0CsaDAYlRrmwyCJdVCZY8O2A0GKau2nsmMpJaIrXTByUoUVPqiifzKevZCm0qikyQpTlFf8BoMiFJBanUpEKjyhJdlpi6JpMpCHvnWMPeJNi8A8Ae+CbMo18Lq9WKouixXq85PZ1x69aBrbzlYRC3v6bTaVj3cRpe0NheGW+mbX4efFC4dQp62mxbeUm7RNiDg0v89Oc/58nRE1Cacb+HyRJriic2PEbrKJ1pE1Du20WxXEop1us1QgjyPG8Jn/hUiR+gi4f55G6/SON7dVN7nqUpdXGuOC/Uv+8FWje1adM14j5/2h6ioNdE9+6erl7wWKC3OYFjcLmua4oMbBxT9P2o66bzQmMUigaz8N8XkjTLydMhBkFV1dZbFwHsnn8sBuo3piqGsbVvJlIgZEq/X4DRVOWaxbKmrior1IXyMhZDw+ziZUPwZ7iTPU0S8iwjNdIx/hN65t0JDp4BIDMSQUIuMgvq4/IGhEEJCRpLS2Sa9SeFdcRkWYoQuqnG1ArY7Qy4+1N0xpzIUeKfK9a0/Zx7D65S9bl0QN83X5fBKxybYiSfqqt9yopc87z+gA2v4PNJQ8SZwxa1W9tFnod9K3TEsEFbE02zLAtc/V1wf2On3IDN53OOj48Zj8fBXPMhGEK43MCTE/I8DwKrKwzKsuSdd97h8uXLXL16laqquH37tjuNCl5//fXAsPq8MWc+Dmc4HJ7D3TwJ46Zn8p/rcp59VnFm8VryC1uIWMjZMciywhWJaYppICTlesVquQ55mDbOoO0hw21mKZpAZ4RljvA30oH6xlgoTOYWvtaGye5VVoshqlpx594pW5MR/X5OkWkSJNJIZ7a565kmPMR45cTjTomw3kJjSKRgbzIiTzIGec2df3yHvD+kN9ri0q1L1NqwKiuUxhEvWiHa6+eYumSxnjMYjugngkxX5P7eRttczwgzNCbCBD0to6msZ9Z30gik0KRCMMgyZsKiW1v9nLTIyDJITIlwTgWbj+kOFASKOKodzgm2+HUhwuT78AxwhVkcVrYuKwyGXr9wOaMEiayNxbw9zf0nzdz5zJqgI3wJw2SEhS+EK2adSMHh/h5ZIlkuFtR1xXJpQGfs7u8yHg4wqiItCrs5xuNxE2AXCYGupuBNttPTU+7du8fu7i5FUQRNKM89zW3JbDZjNBpxeHh4DqDU2lZx+ru/+zv++I//mC9+8YuUZcmPfvQjnjx5QpIk3Lp1izzPKcvynEC5CBNYr9cURcHu7u45k3m9XrNcLluvx8LKP8Pn0cLiF4TNJxIvzXwsnybLUra2tvEeSK2tprBcrpnN5kGYGZTFEhwo73xbVrRIa8IE7NvCZVZzRbtQAk9d3EPoFGMkB1ffYjY9YXp6xE/ffZc3Xx9wmPVJzZoEKwykajRFG+bgErxx+pEzHUVmTUWNIU/gyt4OeyPFdFrxZ//u3yOyHjuHVzh47bdYlzWL5Ypa4SorWf7+4XCIKgWz4xVbvR36qSDVJf00Q2sbw5bIJBQhQabUSgIpMsnI5MKavbq046YFRgtQtjaoFIKtvMdUnGKEYH/cJ8lzy0JrFkE79Sy7ylhG2hoTOM6a5ga5M+vNnNsDy65FazZZ4SZYrVbIRDKaDEkz6WOKrfZSWY1l6ajTu9bIK9mc5qpNBO77w0bY8FllFFkCWZaQJYKb165ysLPDw4cPeXL0mHK9RKmC33jrCwyLAlOXpB50t27/+vx9LxgYP4Db29vn6HU89rRer4Nwi4WR/7uqKo6Pj8nznOFwGBwBR0dHreDaZ5l6cR+9QPbaYtzi4F7fusL6c/cGCet99MnEwnvzPGGhkFH0d4PJ+CDCkIaGB4d9zqM3HwleIuNfo8mojIFoDSQiwQiDEQl5f0xe1SSLFdN5yaoyKC1dP2QwLZuAhCZP02tlDYzkGF4xSCHp5ympSNGVZHp8jElykryHVnWIajfOKjPODE7TFGoJWpFJSSoEUitSjMUD3bP7kFs3wFaoGhk9u10zVugKNyr2/SyxFdyNgCJLkaml6VaOo99eq8lVdTqxs6g6cMX5yY4+00618t5LY0BphQymLcRCsvFgb6ayim71cd765C2+uGlebGmu5zrg1qYg5LsOen0SITnt9TDO5FYqpdfvk6cJpqxId3Z26G2IWXlaOz09pSzLVnBsrHnFWhoQyA+LoiBNU959911WqxWPHz/mtddeQynFkydPmE6n3Lhxg16vx8OHD3n8+DGTyYSiKEJ6VezhjAWc9fhYnn/vYIifx6vi/zmo413N2GNhw+GwVbrPf8aHxwTGiHPzGG/m5pXWdaLXbG6lcZpC8wkrSHN6/QGXLl2hrjVPjk6QaLYHQ8uLRliK+PihsK39n87EiEE2L1jTNOHmzRscT+fMpqf84Pt/x3Brh2IwQoocrS31Ta9XIIzCBGZaxy4ipdM6HR+dRwg9zhaCaK1dKGjTUAmBraJtwSiHIZpo+DxxpBsxl0HQHuPmcAjfugB37s6lMec/a2mc0qh4dXMvb23EGPArrZUBmwA6i5E1/HCxZ9ZGOlgy0F6vx+GlfQSaQS8jy5KAG6ZXr14Nm/9pJlYsNB4+fBhwrVgwdD2BXtj48I+trS16vR7f+973ODk5oSxLvvrVr1LXNXfu3OHhw4d84xvf4OjoiL/+67/mgw8+4MaNG1y7di0IK//jm68u5c3Wg4MDBoNBazF4s3e5XLJarUKg7DOHvGMafxYtFmTSbcy6rlmv1xweHobqUv59rwGv12uqqmplUcTPYTGzeH7jdCd/b7t5ZWJpsD3QL5wkkjIhL3qMxRa3vvAWH9y5w90P74MuKC73SHq5ExY+5UYE89W4IrlIq51pF2Lhw0I8fpcVGV/96m/w03d+wX/8yc/46f/3/8VXvvYN3vrSl9nau2KDidOMna0tUEt0vUZohTHWC5yKlHq1Rkq7GWrjGBfA1QJ1z25sfJKUkEpLFincfzJ1FEM+/MPjlxFALyVo7TagMi2h70Y9+j2eh82WTgN12DXtPe2WMUKSZ7nNwxXNeEopWSwWTKfTcOB7vHoTUcTn30QEEbYJLJIkoXZxqmD77eXI/Y/uk2U5eV4wnkzYPxyTZ4JeJsh0jnYhS2kMlPsL+3bRZl4ul0EL2BRkG2tnvg6A35RKKWv3PnmCMYZvfOMbaK2ZzWacnJyws7ODEDbafTabBU0KCCZijHfF/fMhIN3c0li76VL+bHrurqYZX+ezWBgXeY6LothY99Obz4H/vRPX98xmwv/s/eNFF29S4Qg4s5x8a5vb5n3miwXLleXg95SE3tEQxs4+hBMKolEDG1XQajdCImXC3u4u/X7Ber3kzu2PuHL9OuvV6wi0K7ZrKLKUso4i/I0XMoLKZTvIzpxajcptJe3rDEQAtPNEeu3HtHAvEV4nbMJmfpr7bNI7oqG+QJA1rdng8XxYMzNrxtM1z0ITB7y/sppZJOetlhxRSXkoqWOaI6y8UUo7yyBlMulTFJIihfWpwgdPpXCx0OoOijfV4nCMVl8vwLO8uug33ZUrVzg5OeHs7IzhcMjJyQlVVVEUBe+++y7Hx8eBNLGuLf/33bt3Q93LJEmCKzomU4wLhHafY7FYAGwUBheFf3zep1oc4tLv989lK3gh7QMm0zR9hke60SBE9P+Nn3R4kAdrDZ78QoBMQGvGk22UrlC6tPQ9IrU4VURvIxyobROuvSeOELXdbVLan53tLd584zXOOKJezXn/3Z9Ta83+4WVGwxx0iTA10iikMI76xx14shGiQnh6bQ3C9c2VggtD6Q8qh+U0gs711THIxgJeCAKHmlaNJhwn9T9v8xizP6g9U4oPR8jznDzLo6vb63slwV+jO3+vamu8y+EFO6aJQziNF2Q+8l+wWq1tWBAwX+b0eynDfk6uc1KDN7NlOPm7LS7B5rGZ6XTKfD5HCMFoNAoai1cL42BTr515ldmfIm+//TZpmnJ8fMze3h4ffvghv/rVrxiPx3zve9/jb/7mb7h//z5CCFcb7yP+9E//lF/84hesVqsgkHzKko9tGwwGnSpFjVZzdHQEEPDBuHU1vYve/7Rb14ni4/iMMWxvbweNM+5vVVU8efIkZAZ4jdkLNr9Jm3AMV8EnKogbz2GgDTcGox2eJFxNSu1EkkwRMuXSlatcv/EGZZ1gZA+SPjUpRqRoKR2hoUKrGqMVUnpzzRBiGVzTxoAwJKkkTeHG9cv87m9/i2//1m+wnD3mb//6z/jxP/x76tUJo56Aak6i16SmJhWa3FVaqksbcImwCe8WN8PS/6BcFoANxwgugOA5tCayqqtgFltKNoUxNTKBuFiM1hrl0rwsVbY1rT9JipwQgizLAWvqLhYLRqMR/cEAX3LZHxbz+Txw8sX3iyGeT5qu92k0o40LiHVsss4bLN0CscJMhqwAISRnZzMe3H/Iz3/+Dj/84Y/5j//p5/zjP97m5PgUVSsGg0FTNzO2VcNNN2hmHmy2g56dC9bz3+vGbsXm3t7eXiAR7Pf7gecsyzI+/PBDjo6OgnD1ifC3b9/mypUrAQ/obj5oEm27monHlTwV+LM0rs/jVNvUHy+IfWpWl1XWj+dyuSTPc9I0DVpzawwi8NqY5oVYze8GXLbNS7dGjMPBsOrTcDRCSsH9uxKE5Z6yYRONDxHjtZY2EO9uijdfPcLksanxaMhwNOLetOQf/mHJ/Q9vs394iKlXZAmgKquVuVivxFVE0dpWjvKFSBqT0SCMBhHH3EmXVhoGAUMkYx2+Z/E8Xyk8DKUT+h5bk9FY2Xs+rxDprjePlXrNPMsym54W7HP7b1VVF2aofN5WxdNaOwavaU0Cup+3ZjzLsmQ+X7BYLUFqhoM+0gj2h1tol+mTAq3F3/VKxnjUer1mOp0G7acrxDaROfoWXz/LMl577TW01ozHYyaTSdDaRqMRy6XNAcyyjDzPKYqCW7duoZTizp077O/vh+BWv6GllCHezd/Ha4O+due5QX2FVPFNh4gnvIzTvPz7XitbrVat7I3Y7G6+wDmBFkIFBM4b12lesOEgKefNtEUjDWhLmihkyniyS94bWUZWkUA9B1MjjEFrgbAM1JbaSEfap1+sxuN0Xgg44WcM42HB6zeusl4tGBQJ87Njjh8/YDIZk0kQTqBZLnkRyxKLeul4PWOdE8ZTBMkIx2nMRCGduemFoKtBah0HjendGbDmOi9cqUlEPw18AIKi6IX8wwCdOwEaFyDaFFHwqrbYAtEu3y2QuuJIEHTzOe+06/f7lNWa+XKOlIK1I3Q9koJ6tbTCLKbA8QMScyOBtc9PT0+5f/8++/v7FEURTEuwE+BNHMBFq1tzTynVYpDt9/t85zvf4Wtf+xqXL1/m2rVrCCGYzWYcHh6itebhw4f0ej1GoxHj8Zh/9s/+Gd///vf59//+3/ONb3wjbG4fY+O9pbFGorUtEjqbzTZqa88yLz/LFi/E2OzL8zxQjPv3vAk6n885PT1t5aBmWdaqStWAqsJLJWItqQVdGHC1ukEIW1zEGDA+4dtqPHEOocx6XL1+i+HOAXmRYeoV5dSAWtmi5XodUoDWVWkTE3DlwoTNGFDaF7MFjUIK0E4YXtmf8Hu//XW+eOsmP/rpOzy69x6mmvHWW2+RDYekpiJFYeoSUuGwM5e8ZEBVFTKTgYUCXSGMK1ZsfL1Pa/ZaVl6sN9N5SH1OPm7tajcWPik6NpW9o8NX0WrLu0ZYdZs3Z72m7NMChRBMJlvkeYGv0CREg6V5a8ZHI8SknbH14tfVq9LOOw2tc6N0h6yv6CWk9XWfnZ3xxhtvsr29BVJx+/ZdTk9OOD054nG/x9Gjj1DrdROS3DURu2ZHrJnZgrNZ+F7XVI2v2YCabc3sxo0bvP3224xGIyYTW5Hba2aeuDFNU4qioN/v8+abb6K15oMPPgDOh394U6wroGLNbBNIepEX83xow6e7GOKFB+2E+a5m5j/vA5e9ZhY7RC5OkO+Ar0/RIqxmFgh1XPS+xc8QMuBn48kOeW9EUgxIewNIMhCJlwKWs0oKtPHMsNYrLT1qFQBfgmbjXA5BM/vyF99kUKQspsccP35ItZo7waRsmWDHyOE9mF6j9OEVQTOzJYNpUQDFZjCebslexUT5nLG3LewTYkXtIgPq2a2pe9rEFgohHB9f7J1vNLeuZhYrI6+ydtaFpOyYe8onrxkT5L/VzIYcHOxz+colxpMJWZaHGLvjkxPu3b9vmWa7N9rU5vP5RhfwpjAG//sm08kLRr8YlFJMJhP29/dt2oaUTCYT3nrrLR49eoQxJvD4+wRxH2fmPapa63A6xff3oRgeZ7vIBO62z8MRsEmQegdHl90DCHhJ9/VNKWltBaHxt3Ufs7mUVdlsdW8TvRlzoEn3viDLegjpCmzIlCQrKOsV1WpNJhtTVVg0vfHJRdhcGPOgLWqksGlBAkOawMHeNlokFL0B6+WcWWJNXa3qgLe1riHs88+mM9bVmtVqSS8vKPIeo+HYjblG1zUPHt5jPJqwvbWNkK4Aia9h4E1H4fJVA7bW9F94zdcdFq0iRC+0bDwWakgSzjl9hDCOLnq9scD2q2RtnGu+S9F4tBUhJ8hVQyhpNFjqdk2tNNJISy82HgbFp5CSTDhyxngQ4gDY2IT0gbKe98yf/vGJ0K3nGP8epxGt1+twn/l8zs2bN9nd3eVnP/sZdV1z/fp1vv71r/MXf/EXCGHrb966dSvkn81mM+uuznPG4zHj8fgcbgC0AmX7/X5wDsSxZl1VPP7+RYL602jdhejN58FgsDEIeLlcBqEe99kLfC/M7XM2uKI3hSxW4ee8wWxCEV+s+ee1HSkSR4ftY7NSalMjhaA/3EGmBa6iL9loi8VqwaOjMy7vD116jy175wWA0RZ/su4E4WpC2ngqm4Jl8XetKwQ2QPI3vvwFtLBEkU8ef8Ts+AlpmtEvhpZd1j+Hw+NsURXJh/fucf/+hzz66CFXr1zl0uElvvDmFywNuVKsliv+j7/7P/jCF77A+CtfwaBJ0oQ0EaiqEVC+GRqCT20c5uPMWrMBM2um52LFoe0kw+XhClcTNeYos/VtvYnpX/f7NRZur1qzYS+GELoTWTx1XSMyl9ddlQgytPEmtQ0aX69KkrTH3v4uaSoRumZvOCQTAqm11cy6G3XTxj07OwNge3u7BTLHgxeXaovxHS/w/O+eVdYHy7722muMx2PeffddtNbs7Ozw1a9+lT/5kz9htVqxvb3NaDSiLEuKomidSp4We5Mgir2vMT12/LMpJOXzbl3MrKt1QjvGKJ5DpVTLIeA9cK1D0Y+V1+Wl+zfSusKGMMbVm7QZl77QhhSO2UEIsnwASQJCIUSFzHsoJLPFEsPIhUYYl1mgXQqQNzG8APcns2X6EO4eEoVGkiWCq5cPMDLhbDrnwzu3KUtFUfQpdnNrCiJCUrvVziwj7OnJCR/e+5C7t2+TCEG/KACDt2yqquL9999nd3fH1hVQhjSTbr3YMYmJALwn0wrkTzbP56EP+6/fR3GaUrzxV6vVhamEr6Iga7Vgm3sow5vVuLxLBUnuFF3j9rGiqhVaC4bDARjNcrbFqNejl6b0vDfzwnuaxvXvBUEc2vCimkv8ma7W5h0DWZaFwFghBMPhkMuXL2OMCTZyURTBvLx37x47OzutdA7fLx+jFWuYm/6N+3eRZvZZtViQFUVxDiz1prkPpu2y4j7LzNj0TMGh19wlvCO8eelfDkLTVtrO0gwf3OgTwJ28Qmk4nc7pFZIik2RSOr4w0ZibQjRC1YNT+F+N094cv5XrW5oIRsMB61SRprnlHIvHyP8Yw3y1sOtA21g9ISTL5ZKPHj5k/2AQNNGm6pHAh2P4gil+7wmBpQnC4XHGOAxLdEynGIF7vhbPu89kaTSvxlT10Ilf15tw4FdRmLX3FYBwAdZOsXC8cUJK6wBwkIQBxuMxZVlahUoY8n7KcrViuVqx5fZImqakm1Ig/CYBm0pw//79gN3keR6Ema0c00QgdwcxNlkvGvQ0TVkulxhjODw8DLU0fST/zZs3+b3f+z3eeecdjo6OODk5YX9/nyRJODo64s/+7M/4J//kn3B4eMjW1lbon9aak5OTEEwba5De5GqBkBcI489DoPlCr4eHh+R53uqDd2jMZjOEEGHB+7GO6522GDSeo3mYx7hNasfImanOQ5dI+6n54ozxeMxoOITEn4kGLVLqGqoaSiX45Xt32N0asr83YSz75GlGIgXaVLa0nJCW9993QgLKH5C2MIl1JmDLwBlNkaW8dvM68/kaVRuanFOrbWpXg1Fpw/0HDzg6OkbVire//BWOj454+OAjnnz0mN//g13LhgzoukYCWZpSa4XSttiJ9ma333QIcFXNtVJoxxhi/P2FLQOnA7747BYLMu+ptJXOhtFBbMdjsVgESqxuBbQu1voqCjYpbUm+cFwKQSITsjSldM/UK3qsSRw5o+H111/nyZMjnhwdsbO7w/bumNVyzqNHjzh0EFOv10N2B6KLH5VlycnJCVLKIGBirepppIldYdHVzPyElGVJXddMJhMODg4CLielZG9vjy996Uv2lJ3POTuzm8h7PH/yk5/w+PHjwMwRL4r5fI7WOgiE7nO+ahPtm9dUR6PRufgyH0jpCxjHpcViYskXerbOR/1X7TV9jJNrQiJkwrqsSLOcojeE2BOHRGmo3c/Dj55wfDplua5s6TCHv1kPpoyu7TUz2yGf5emxMxsNDsJRZO/v7bK7vcV4NLRlyDbolVprjk9Omc3maKW5dvUaiUw4Oz3ll7/4JcvFAq0subVPfLcMvtbc0cpWfyJWvERzbR2tobBv3OdftMXrVilFr9cL3vl4Kj2hALSZmDe1/xy8mVYra3gEpTgvZw4ODlgsrDb96NFjTk7POJvOODs7s+SeLsso7QqYuPlcyrquWybP0zSZuG0SGJtMue49fZzN7u4uUko++uijkNbh80HjilBpmqKU4sGDBxweHrZ4/5+VVP6qNe+cuMiE8Awgmxhx498vMjcvFHImAjI2vu2Sz53WlqQpUibIKA/Si5+qUoCkNxgymmwh04x1WbFcrUllSpLJEAfmXBAEhisTw+3WzDTGCQn/eSdcpJTWje9wPf8d48xhY6CuarI0JZH9ULd1tVyxXq45PTsjTVPyPMHrpWF8ROyh9Bor/g6EF/2HNzTRlYDPaLGS0GjF/j37vocXnhdW+LzbRZAGsWyI4NvGu2lpz6WUpFnKeDxEaUu24Od+0B9Q5BlCWIslHPubNvhyuWQ2m7FarYLp121d13DcfOBf/OMf0P8eg5hem/Kg/Te/+U2Oj4/58z//cz788ENu3brFG2+8gRCW4+j4+Ji6rhmPx6zXa/7dv/t3/P7v/34wNz1FUbe/3YDCiwb+88DLyrIMVOPdcQMbc3N0dHTu2eJ0tPNYpvdUbj5E7Hf86xIReeO88PLf8dQ4g8GYvOiRpH5NNJrZ6WyBlhmXb7zO9qTP2fFHPHpyxHq9wuwLxGhMQoLSFhcTIkVKgUbb+p5WelnhaJxZ55wPItIU8zynqjW1WgS8zWNZAmsizmZzxuMthoM+e3sHSBL29w65N7rLz3/2U65cucKXvnTrnFCQwrLZxvmbqlZokaCVzyxwPtMNQqeFcj+jxXvIGBPqy9pD2UOMVpDN54tgRkID5cSB0p+lF/5Fm9WCdet5jTHoUMjHHkpVWVIUA4o8R2aCL3zhdRbLJetSU6mSVPaY3LzBzu42Umlbca11o87G8TxZ6/V6Y+Cm/w5s3vhx+Eb32pu+H4P8q9WKt956CyklP/zhD3n06BFXr17lW9/6FkDgcfKYWFVV/MM//AOPHj1iOp2yXq83Fi1pYUmv2IQbY0INgzgAOH6/LEum0+k5dhB/GPjfz7enP6PfgB7ojl83TmsTQqCVTa4uen3SLEcmkRnsvJGL5RojEnb3L3Ht5usUgxGn0zlHx2csFiV1bTBGorRBaazp6hLfLYdao515FgWfDC6E50AjFPdQusG1vAblv7NcrhgMhuzt7TOZbHH12nVu3rjJlStX+eCDD7h//x6GiAXZs9MK4ZLxfTK0HV/fjyDMfMI+jXZxzm5/juY9/saYQGPVeDG940ezWq1bwiw+nONrvcowinWutGGB2JmFcYoQFhPu9XKuXr3EzZvX2d7ZRgpbgOnw4JDxaIiUgsVicT5o1jdvztR1/dTKTb49D2Z20ffiE6VRMy1IPxgM2NvbC5M2nU7J85xHjx5xenoaSuR5j4Y3Pf3f/h5PS8iNfz+vsXw2J12s3fpUsk2abtd5sak9z7hHd/bfal/DXqAt2XwYBZ44r/2e0YqqrhBC2rAHKZEyJc979AdDEmnd66tVSVr0AqBuglZnNTH7ekucRd4JbBK5ifrt+xgtZeFMFhsTaagrS7stHe14UfQCa+/JyQkhvi4oVOKcSPKezU1bJn7tPHr37PlotLk4ULZ532Olm77/LCjn1WvNszZ/x44QTVVXLJcLhEjIZEKW2sPPOg0TsiwJ4xS8ma1bRINdliWPHj1itVoF7+EmDWvThvetqzn4dpFwiKOdvUB688032dvbwxjDyckJ3//+99nf3+fv//7vmc/nfPe732V7e5uqqjg8POTs7Izd3d3gwfR00p4qZdOCepqp/Fk1D/wmSRKqZXW11tPTU9brdSuIdtNBsElbtjBSfCDFwHWzceKgWegGOPrEfuOKZ0Swg4Cqqjk6OibLeuS5BJkhsj67B1eQUnL65CFnsxWL2Zo3btykyFPrqXRu+sDtn9iASK1q2zePrHl8TLtCKU6QCSHRxlL+GJrq70mSsLO9zenxMcfHp6jaUh8VRZ+D/UvcunWL6fSM//Afvk+taoyrdJRkWaPdicYdoRQg7fPH7LJec2oBehEG2YxpbNLH68xubrvmBZPJ2Do1RGO2luWas7NTVweg2T8x1Va8drva2atifTSCzI2DdlioENY7rBRK1ZyenHJ8dAokJKSMRyOL26c5w+GAfi9nNOojEBR5wc7W1nlh5v/1peKMMVy5cmUj3hIP1KYN5D0SXTwnvl+smfkJ8RtbCMHVq1d5++23Mcbwv//v/zs/+9nP2N/f5/vf/z5ZlvHf/Xf/HaPRiNPTU3Z2dpjP56FCU5ZlrFarECfnzd7PqwLT01oszOJA2RhXmM1mwdP1NEdK1+xoWnsDtT8jwuuNGtT5trBFWo3WLli5TTOk6pqzsynj8YA0s2EXMimYbO8z6Peo1mvuHd+hXCy5fvUmGSlCJC4k1ZdBsa56YzTK6GBSek3F86xFWcWOsz8yTd16lIlkMh7z+OFHlOvSxsalOXmWsL2dcv36dd75x5/z05/+jCS1glBrQyo8pqojs9WbuzEVm1/z8Rh1x9mPafRXR+H1WpnNWU0YDgfn1mhVVczns3NQj9fUL5rzz/OAPt+CiwYPaRh3agjAKI3W1uk4n045nc5ZrkoSk7O/u8d4MmZ3b4+t0ZjhsEd/0AMDWZrRGyebg2Y924RX4Xxga7e9DHX2IizNv+ebp/gZDAYhAd3HvfnYHA+eey3Oezm9lrfJZOyamS/rueLWPR03/e1fu6jYyjlan4/VYoEVvRpwHtFa/NoYC8a7hec3TpqmQVsKz6iVjckyxmlGMmg0Qia2tFtWkOc9VFlzNptT1TZspj/oWQ3LmZmNESLC/w1RTmfQfDY8oWiEhRAWc0mz1OX7uSu4deAPDctI4vN3u+MVa1iOFGiT0CAuYXJ+TZ37fEfI+LE9r2ERnC4Xkwd8fm2T5tdVcs6ZwdEvtoaCj5poMPYsz8nzCqVAlW7stVWylqslQmjyBLKih3QHzzlh5kH4Dz744Fylo1hL2GRubrrW0zbg8+A+6/U6FBO+du0aaZoyn8/5yle+gi9gvFwuefLkCbdv3+bb3/42VVXxF3/xF3giyMPDQ9544w2AYG7GAiMe8G64w8s82S4yZ+NxnUwmLa+xN7l9YLH/fNekjNvmfnc/12hf4fmNVfmlFDZRWhmUrpFCkiSS1WpJXhT0++MQA2aFg2G9WlGW3lGUBa1NkyBIQRZs7V5CkHH85Anf/+FPSJKE3Z1tvv6Nr1F4AelMPWFAypRA8O766vW3SCe1WlNLQGvAVn3f293lZHeXsqxcKIdLTsem5t24fp3VasaDhx8yGA5I0tRe011RiASMQGtf50C7LkUjYPycGLdBmxi5iyyROLDVM2D0ej0Gg8G5+VytVhsZZbuH4ybB8nloZXE/WqmPHroIOKdhtVxSVSWVUixKRYm16K5du8LeumaxLHnwwUOyPMNgmE3PuPfgAxIJW6MBv/n2l+klKVUcmhF3pCxL7t27x7Vr12xFmA2f6ZqWzwNMXtSeJhR9NaZ+v8/ly5e5dOkS77//PsvlMnj9fJjGhx9+yKVLl7hz5w5/+7d/y2q14otf/CIAX/7ylwMBpDfnvKDoPle3Dy9TS4vN6rj5U7cbKOs/v1qtWov2aX262MTsmo/tv40DiaSw2pEC6zJPLWFeWa4ZjoZMJhN7NUPYwGW1pqpK0kSSpo6eCYOtdZ4ipGGytU8vH2JI+U8//V8wRnPt6hXe/urXyLPU9ccV7xUgZWKzAcJQeQpw2zf3EnFsmtfiEIZECHa2t9je3ma5tJaGkC7dCphMJhgUiJrVem6ZiNMkeGXt9RLAfUcZlK8G6rA6vLcVQvUnY2ItbbPQMca0UvnKsmRra8tVq283vwcuClD/PMH+i7SwTRCU16atkLclqdflGmOgrBWzVYXMC5L+gEuHhygjWSzWnD4+JUtTMDCfz7j9/nsoVTEZDvjyG6+T5AWmqtrCTAgRAlbhfITxJlys257m1XzegeneK8bdkiShKIogZKfTKaenpyyXywCae/zJExqWZRmEgV9AT1P/X3Z7ltkah6/EYx6f4h5DvAgnu+i+F3/2PC7mX2nfg9bnLIOG6LzuaJ20JpE+Mis2ulw8lkyRaUaaFRS9IavVnHVVc3x6RsKIIoWsBSbFfbMSw3Q2hgnvd3XPxmy25puMvtZsNA9ZDAa+dkQccd95juhmwtuzz2gXOZz8e10tZpOnuluL43mF2Weplb2oBWOMNTGtJSRIpCRNEoyMohtoxqQJw3GUWFHdU6caN9WZ/ICcnp5ycnIS2Eu9cNjU+Y+z8S8yR+G8uecXIhBMLSEEh4eHFEXB6ekpf/7nf869e/eoqorf+73fYz6fs1wumUwm/NZv/Rbr9ZqjoyPeeecdLl++zGg0agXtQbve50W4xMdZGLEGGz93HLQrhAgOC09TFN/Lpy5Np9OAqTwrTGZjX+Jn6TxT2CjSmkxecCZSIrELr65KiiIny1JkIh0Joj9oaparBXVZ0e/1nblqbEHeGkvCKDKLnaWS0dYBv/NP/wU/+cmPOT095n/53/6U3/nm17h2uMvlgy0kCkyNctXJ/RMYjNMaHT2R8MC5rwglIq3IoI1iPp8hJBRFjjEapW0eqEhs1kGR5+zsbPPWF7/I3t6+ex6Dj2YzDuj3Atr/2+heVnP0JlTY1Ob8QRyv51grA0OeZ4HWyn/W//hA8k1B6593i/OvfYuFdXc/+b+VUizLNVtbW2RZTprljJXmdLHiZLnGJCs0CZWDB7a3txgOhtS6otfPWMxnrBZTekVOIhNqSusTim/qNR0PtD/NxfuytJj4+rEw8x5OD+Qvl8tQ6PeNN95gb2+Pv/qrv+Lf/tt/ywcffMBv//Zvs1gsQsbCd7/7XS5dusTx8TG/+MUvWqysMaDqhVt7gbXbiwqzTdhiV1D7n7IsSZLEhTskrdPZ071Mp9MwHk9zmmxum7SyBiTXWgd8xwLOdgwSaemuBcbFG2bOhIxioIxBm5rVakFVlfSLHGGMw7xsbJA2EkQGokBmA4Zb+3z7d/8pB9deZ1YZ/rc/+yt+8e5tnpxMESJFihRjbLaBwCCFcanctniJ1dIaAaG1jrRFgrgxWjFfzBACS+ltNErZWD0SEV7f2ppw69Ytdnd3HSeZv4p0p4AA0XDUN6yw0YgKd9cge9sR7l2zq1lrNv/TC7NQGzMShL4K0yaSzs+7XZQPHB+UcfP7rq5rFosF4/GY3b1di20fHNDv96jKktV6TblaU5UVSSLZ2tri8PCAa9eu8qUvfpE333id7a0JRe5ZU0w7A8DfJCZ6e5qJtEnAvWh7XoEYx4iFxNI0paqqkHTdjb/yybpdQP3FhcGn1/wzea2r2zZ5sT5e37151jUuw8uta5+bW2NIpBO0nf4rpcIFmr51DUD/YxPV07xHVvRIswKDYLkuWSxXLJYrFx1+3nBs99zjL+dNLqc0YoymriuqytZ6XSwWlA4zDaMSrafz49/pw0VL1ePZ3a8+ZzNmUxByM7YXKRJdAbnJKfdxLahP0p5mBof+CMKaTxKb55skiaUCCt/xlpOn1hYulzYPgfL+c8aYdgbAbDZjvV6jlApawmfxwPEGirnHYu1mtVoxHA5DrU6wxHWXLl1iPp+ztbVFv99nd3eXu3fv8vjxY4QQXLt2LZxwvV6vVSYvHmD/70WC7pMuiKABRYvOY2HD4TBwuXWZf6fTKcvlssU4+iwM7qIWFr/7v18I0nFHaeOT8+3n45g8rTXD4YDcJfbivqtUzfHJscU0pMRo7dR9ULXLt8OCvVoDMkVpzdH0jMneJW792ldACo7P5vzkZ//I2dFHfOebv86wn7mg3BpbtNdqZsbUIGx+pnAKU5vPzDtxNHVVcXx0zAd3P2A+X3DnzgfceO01dnb32NvfD+ahkNJR/ViWEK1oSyfTPC9R5aiWUG8m2qF1zRy2WWQbiENKm5Tvve5pmuDrIwAoVTOdnrWgh88T7N/ULhKW3tLxTjaPMSqlkElCluUcHAxssZaoaHQiE/K8QEFgtJ5Oz5jNZgyGA8b5kF4vJS8SwLBYzMncfKfxBvY5jZ4osStYYmD647b4Gv5BY1wsLvAbC5nlcsn29jZbW1vh9TRNuXTpEqenp0GY+RoFjx49AuDatWvs7+9zdHQU6IZic82ffvH9PonAeNpzx14sb2ZUVcXu7u658n2+xYn+sRb34jFHXbPInnjG6GDGexvJMlEQvL6+38PBkDRPnTDTbnHWHJ+csD2eUGQ5uIrixtjk4cR5obS2ZI1SptRG8/hswWT/EreGYw4vXeLf/pv/iXt3bvPBu/DrX3qTotgiy3NQJcYJM2OUx/VtIriMiu4igsARUqBrq5WdHB/x7i9/wYOHH9EfDFFYho2dvR0MVnDLJEFVtt9SJEBzH4DgKg0pT9bM9dZmV6vVnb/jtd6sMx0wWqUUW1tb9rtaRULgvDB71VoXItqk2YdQKK/FS0meZ+zv75PnPTyduzaQJCl5kbOsTEeYTZlMxmxtD8kLy3RijGY+n9HPMlKiOOrYxOx61T7vFmNNsbYopS1uMBgMghDzQafGNKXvfKm22KnQxbRehqDu9reLN8bvxX93cTLfvIn5NI3xufrzsb7V9A8ib1u0WP2PP3llwJXOic7wY4xAGai1RiYZea/PcDwmySzn+2pdUlYKFaULtZ/Ca0Wmc58NT2kaVt6qtkws63LNulyxWq2o66pJUo+7+lQb0Zk1Hrs710T7n43z1saH4Xz5Na/F+bF9nrn/PPbr8x74zT6wYT4eCw+mddB8HXcdgPCe84YCv65qlGPb1Y6UwH5UWD4zX7Ls6OgoJHdfZGq9rAHbJNE9c22snvsI/tFoFDQXP/G9Xo+33nqL7e1txuMxUtpsel/t6c6dO9y4cYOdnR0GgwGLxYK6rhkMBjx8+BCwbK5e8HmuKN+nT9o2mQabHCiezid+TynF2dmZnaSoRugnG38RNmAjIGXrul4bs15NE+otjEYjEH4TN84J72VLZEIiJYnTVIzXbvEYukRmGauyYr4u0SJFCwEJ9AZjfvNb3+bs4YdMH93l0eNjpACzN2Gr5wF3W1vSixL3EEFL8oWMpfCufT/Whr39PfqDAYeXLqO14s6d2zx4cJ/Xrt5kb2+Hg4PdcDml7FjYugeicYzgLU+rzeLMUsu3Zu1d4aVrZ+nEB6f91wLW3vHjA9P9ISuEDSdar9euKE2CEK9eCl7cugLXP6uHKnw1sbwoGIyGTvmwebnBivdrx3i+PEmSSW7cuEFV1zx48ICT0yOKvmQxn3J2dsZw0GfS79nqTF6Yzedznjx5wv7+PsPhcCOmBZtVyRdpTxMWnvXC/+4lslKK8Xgc3Nb+/v1+n7fffrsVF9fr9Zzn45D33nuP4XDI7u4uw+EwRNEPh0NOT08xxnDjxo2Wu7jbz0/S4ujnuN/++v71Xq/XYvjwqvnJyQlAy/T2330hTc1YASC81mGMi/Gx2lYo3iwEtfOaQRMO42ubtmAkYzdjVVWWeyuxEfep9GETAmRC5VapQZLkBavFmulijSJDCZs/2Ssyfvt3f5+TB3f5xQ+/z/2HRxhjPXzjXo9EuOeVIpjDFoJxXk2XLyoMDv9SYfwNlo49y3Pe+uIX+fsf/IA7d97nw/v3+c43f5tbt95ka2sU0uBsUribCzshSKwJIx02YwWZApPgczatd9TNSfCGNmPVnX+wITnD4TAEysZz6qm36romTXOEeJVyLM+3bt+8YPaZDsvlElUrxjsjRuOJtZQ8fZSxWRO40CBjLH25kJJUJrzxxhv86pe/4uGDh6xWC4pBitEV9WrJaDRgezwiQ9hZ8yZmiC/qAP/Pwo8+ica2yfOxaaNuiq/ywksI4Yjr5sFsy/Oc1Wq1kWLYmKbYSVzDIH7/Wc/0ST25sencNXP9IvBC+uUs4gb8f4pT7txfvp+bnEG+n1K2q3d37xHuLITjMNONkSgkMhGMxgPUfEJvMGR5MqNWtk6iUq6Um2h4zNzNo3s+/eDJsox+rxcqdNVKsVzaEJ61SxXy3kTvWDCcH/MgQDtPds6nap7HJIwtknbGBzTEA5v23UXrofvZz1r4deXEJudA48H07L6Aj1c0jdYdm4+9Xi8cZGVZQqIQroJXmiSkSUoqsHUzp9Mpx8fHbG1thaj5uDMXaWYvu8WU0UVRBPMnTdMAkMcxLXVdM5vN6PV6PHnyhL//+7/n29/+NsaYwKDhNT1P/a215r333uOdd94Jns2rV68GZs+qqs5hXt32vFrb07SyqrLBgOPx+Jyg8BkLXe6yjz/uMZrtn8sLzcZs18YgpEQpbU0urUMidjCDjef0silWq9UyJJ7b9UL4VxuFR8k1UK5L1nVNqTTK4yeJpNcvqGtNkhVcvnqdamtAkUlWpeG9D+4xGQ8YjfoMhwU+4sxAZEq69eqPdecLsNWV7DNLmdDv9Xj99dcZDAfsH+yRZRkPHz5kOjvltddeY3dvn62tXUvK6DeiwGlrBl8fSgoT7idE5Lk0gdHG9cXHvvn9FFMB2T7leUGv17PdjqZ3uVyxXpcuzzVpmaCvUuv2aZNAW61WIfVwMBxYVhSaFamN9aTPZkvWZQVCMJvPGQ4Ter2CtEi4cuUS49GAdbmirNckAgZFSpZn4UKp1prT01MeP37M9evXg7njT92uxvBJ2ybMKAbsfRWoXq8X/gbCqRpHHJdlyenpKUmS8ODBA/7X//V/5fr16wDs7e1x+/ZtVqsVYIWZL4Lys5/9jB/+8IcsFgtOTk74wz/8Qw4ODhiPx0Eb6vb1RZsfP/98sdrtE4tHo1GoQxqPh4+Jij29HoD/+Avabq4GmLabS2tb0i4mfqw9S4NS9Ht9il6PNMsIGZGun6vVksV8zs7ebqRR2ve01tTGIF0cmTKwWK9ZljVrpa1nMxHINGMwGFEtTsnyPjdevwXlJWZnx5wcPeLD929z9eoBVy4f0Bv0A25ntCHFm3ZRQWcnYAwmbBJvbQz6A770xS/y2ms3mc7n/Ke//0/cvXuXe/fv8tu/8x2+KCSTia07YZRymLT1ohpjgjYAkEhQXr90JqCOBWAgvxXR3Lc3eZKkLvOjm1wumM8XLJerAEF09+Or1J4GoxhjIxFstakRw9HIzpcRQYE1QK0NJ6dTVkojpOT0bEqWDxgOE4o847Wb1+08YHj05AlZIjnc3aJX5OEQSL05E1fC/qw0sacNig+jiEMZNjFaeGCxqipOTk5YrVYhoHaTk0EIG4KyWCyYz+et2LqP85wvYm76+8ca76ZK7N7EuOgaH6d53cX/ZnG5zdc3rl6kjztLgnbYZk7xHqX2vLh/abxXPlC3VrYCuDaBkyJsdmVs+lPR6yNTw2q1QLtg2nVZU9UapQ3yBR5/k4kz6A/Ii5w0z0gc28LZ2RnL5ZK6qrtXaBBp48fP0J6CNiNsY8w3719k3Ns1nUTYavNePLbPmvPP27x8WvNrJc6v9OvOuPH12nxVK1tYGkFdq3AwAGR5RiJzhITpbEaWpU7BEWF400ePHoXAzU/i/v84LcYHYqHp+/HDH/4QIQTj8ZhvfOMbrfe9q9Y7CCaTCd/61rd49OgRVVVxenrK66+/zu6u9VQlSUJd10ynU9577z3eeustBoMBh4eH3LlzB611qNvpr9sVMC8yPv6z/sdrWV6j9NkJXuj65nEBj+PEAvCTascXHVJecPqkX4/naK3p9Xs23otIUBkTckV7vb41yyJxae9lsTBvnNVas3RUL/4ZsiwlT1ML3jtCxtoYMpmR90aMt/e5cuMLZLngbF5S33vI9mREv1eQJQlaN9qOEBJcPUbPzy9buEzTpJDkacbVq1dtqsz2yBbBKXKkm6tmnG06lRY2B1WI1AZlGM9gAeDj/hzm5oqc+DFp5/4al5VQMZlMWk4tIexnF4tlOOi68/cqCaq4XXQga61DacjmWZt1orRhuVpz5mJcRZaTprYAsjaGxWLJ3YcfkGcpeZbSHxQcn5ww7Peod7eANMxwevfuXZIkcd6qtjB5Woc/7qbapMn4xRObUUmS8Jd/+ZdIaV2zv/Ebv9HSAOJSc0op9vb2+KM/+iP+8i//kuPjY6qq4g/+4A+4fPkyYEHg6XTK0dERP/7xj/njP/5j3nrrLbIs43/4H/4H1us13/72t5FSBk+SD7D1WsgmXv6ntRjr8PicUorVasXh4WHIf40Fi8/FXK1WIY80FmafZOyjWQC88GrMe0uLDTbS3j7zYDhsWG/d9jSmIb8cDoakIsEekN6sA4TFPmtXR7PSivlqybpWKHf/Xp5T5DZgN5EJGE2latIkJx9usZMVjEYDHn/0IU+OHnL3w4/4wps32d/NyPoJtRNmQgiQ0iXKGypla2taYN1R9Hg4TUAiJL0859abb3L9+jVW5Zd59OgR/V7fYoahqpgdCykNQmuUKklT6bAx5cI3bOxdraxAtnhbQvfgtcIpw5iaurZr4ObNmy2+QLChIaenpy2t3b//cQgGPovm+xY7rHx8nzGGy5cvh7RC7+j1umqtFPPFgo8ePWZdK3rjlMIl3GutOTub8cP/+CMGvR7DQZ/d/W3miym721tU1SH0mwMrXa1WYVP5jsT/QvsUf1nYWXzti653dHSEEILJZBJtuOa0i1ND8jzn0qVLrFYrZrMZxhjG43FrsSilAgPF9vZ2oAOfzWbMZrMgOLom7SdpXQEUu6vjLATf4hOt64F9GaeyXUTN/eL7O3w/NENbIPvXvHC2+Yyp08waTcYYEJ5t1oDGeqpqpUKFcCt/3AY1lvXCeFNWCMtMmwvyFI6OH1MpzXyxYl3WtphwEFLx2nFPZzyxooyeTzhhZoWUQDIcjeibPkoPOTs7c/PRPXCj59K69bcD1dyf3oR3GF4E6Hc99H4NbMoHNcYEp9WrFLj+PK174DYaeFNtquH7dQlqxlArxbosUTjHiBfcxqd0TVFVjdGa/rAXCiE3WTB27FNoJGt34F624LpoALqCw5taX//610MVpr/8y7/k9ddf5+rVq2xtbYWgQp/y4LW7W7ducXBwEF7zBXOzLAtezNdeey0wesY8ZwC//OUvGY/H7OzstDybH2dhxSlHPiDYGAu453neqkbux2I2m51L9H95bbNn1gorx6+PDXNBCEajUUj89f2oqopyXSKkdD+CREi0rgHHPOK9uFojZIrSNeuqdKlEgMTyz0oblyaN9wwKhEzRFlXHCMiLEeOdQ2qtSBNDpeDoeEq5rBiOtl3FHg9rWQlix066ZxgDMByMrPkX8C+7aaxpKtma2Ngno31OoR8f7bINrJmpde0EtQ0XIRJYEktRpCP5Zse3IQK1XuwkOLTi5umevKfbz383vvBVavEzxFYMENb5pnQsbYwlZJzNWC1XbhhtkPy6LCl6PYqiR9GDW7deQ4qU1IdcrSWL5ZK7d++yP3zTOaewQbMxwH5RKMLLGsRNHg8fpOnVUk8P8kd/9Ed8//vf58/+7M/4kz/5E/7Fv/gXfPe732UymQQ6oCzLWgVQv/nNb4Zo/rquAwdalmX88Ic/5Ac/+AG//uu/HnLhFotFq1//4T/8B770pS9x7do1l/JSO8/Ti0dgexPYmwyLxQJjDIPBIISaxPeu6zpoo/GpHYPuH2vMmwFvXgtAvw7BpT7WtXSBsDs7e+cWa1XVLBbLoLFJIcmThFVVYwQkWUptKpv3qQ1JIamUYr5eU2ubFymkRTryRJJJiQgYlUSkmfOZahAJ2WDE3uWc8fYu41Gfx/dvc3r6mEIKXnuthxA2DSqEYQhJkiZWU5Sand1dpEjoF30kCcJYyh1jQKbORBGag4MDSz2kNWmS4XNBbe0AGySrVYlSCQmJzTl1wswIH2zrKHqMc3o4DSzPc2tS1RYLtZXVRyEC3reyLEPN2MFg0NLcX8TR9Fm22BMfC2xPaRXTwEc6LUobVquSo6PjUG9ECElZV9TLJYPhkIHbI9/85ldZzGvWq5LZ/JTZXDCdnvHzkyd8+fUb9FIbnpHGIPWLtpcp4OJrea3q6tWrjMdjVqsVv/rVr0LpOy/9faUiv2iSJAmAv1IqVDz3wu7o6IhHjx6xvb0dBtgH1fpF8/jxY27evHnuNNmEV3XV6q4pbjrCw5+w3sTclI/niRo3nXjdvrxQi8yebrN98x5GKxgQohVz6JvWmlrV0bN6s8Hfo0lP8ZqSNyU0dp97tlopRQiEDViKTBovlhCIJKfoj8gyQTmf8NAIlss1tbDerzRN2w7HeC0JYauui8SBz176WEHrFSshBL2ih3bU2KJlbztT0tjqSTY8QDptzTNkNB9vyBs9rOCcE7RzLfO8oOsJ9Wu6m4/ZXXOxd/Rpe/cTr5nnaDHsE//ucy9bcau+Xw4KqJ3lVDlLALBFS1RNkaakWUaRZwx3d8jSNbNkwWo9RwhBXdUsp6chJhIBqQfmumEPn2aLN/amje/7cP/+fdbrNYeHh0Fdfffdd91iyM8xe/gQDaC1IJRS3LlzB4DxeMyTJ0948uQJs9mMH//4xwGM/9WvfhVA99VqxcnJSUhi9xkD3fY0rXWTw8QnvncFWVVV0QnV9mA+6z4v3Lyw4Lym7PE8qxnKIJzALjQb0Lt2wthpFtqZV9hAWyGkjZU1krKqqeraLrpoA/aKAgHWbAtMEW5zGgHCgIaj0xnDviRPMpKsYGtrh1QYTLViPpsjkwpE6sxhEYqJeOnW7w+QSPIsC8K2qhVnZ6csqwqZSPJexvZkAnjrpMHGPIZWliXHR0ekeY9ev894awsjE5D2s3H8oyW77FogGkwTAb+JNdY7tbokjHYthL8+ycy/9Ob3bgz1ZFnGcDgkz/P2mjVWM1+t15Sl9eimaYrShqquHYamMcpea7FYsl6uSAyoWgTv+d7eHuPRgGp7TJYl4UBIJ5NJlF7QbLpNwqY7wJ8UU/PmW3wv33xw63w+58033+TatWv88pe/5G//9m/54IMP+O53v8uNGzdC1XU/oF7oxAB6WZb84Ac/QAjBwcEBH3zwAXfu3KEsS/7Nv/k3/NEf/RF5nvN3f/d3QUDOZjPu3bvHm2++yXg8Zr1ev9CzeY+sd1L4Z8yyDD/m8fN6Ntm4mnnMJ+bH6+MJNA9Ut7VfLzzi69tcyx79Xr8VGmC1Fs1yaR0s+/t7VqAJga6Vi+rWlFVNmmUIBNpIZus163VJVdU2ft5oUiGtmVWXaFUjVE1W5IGOWxqJdEVE3vvgfa5c2mF/p09WjDi8co1qZ8Li9JgH9x4iRMru/iUrzIQtJiyMh0sEk8k2EovrGW0zHMp1xf1797j30SPyXsH+wS6jwYAsLUIGhLscUgq0ViyXc05OHpKkOdu7OxT9giQrgASkIk1dcLCLpUtkM78WQ3KmrcNvrcZCa+wXi0WLuy42La1Q9V/4dJWNF2mxIPMxnv1+n52dnZZQ9k4ZgOl0znK1QilNXvQwQlJWNiBWKUttXlU1s+mCsqwQtWEy2aLIcyaTLfYPtmwAc13ZcXR6Qeql5yYt4qLOv8yB6ArLWEvzIRZbW1s22fRXv+LBgwcBV/OR6/G14r9901rz6NEjhBD0+30ePHjAdDplPp/z3nvvsbW1hVKKBw8esL+/j5SSsiyZz+cAYVIuevaLhEzXdAYCs0d3zL2zItbMnsVZtilco9uP8Hr8WiTcup+3prtj/0w89tOcwD7A2gZ7Cme1WSEhsOYqDv8QWlBrRa19oKyzJoQdU61KCLhdE3ogRIIUCUbAdL5iv1IgUpI0IxuO0JnAVGtWqzVC1I1p6awv4zwCBkGWFzZJ3NuiDmSez+ccHR3RG/QZDHrnDu/2HNrnns9myDSl6BeWdywknRukkKhonDbNgTH+kGsKrEQfCuEM/X6/9T38DG6UZc+7H81T/uo2Ec6+cMvW+orN3rZAs6UGrXlpn7G7Hi0mW5bWgsoy6wgz0X20V0zKkuViham0deAUkjxPGY1zskSQYEgS5xsVxmJm5x5lw8bt4kEvo226d1zVezabBU1mMBhw48YNzs7OePToUfD6xINsf/d9s9f22NRqtWJnZ4eDg4OAswkh+bVf+zJ5XnB2dsZsNuftt98OmpPWmgcPHtgAx62Jq4qtwqB3x2XTRvCvWQ79plJ53DaVwPP36Lr1fXtRwWrXZwCWCEGdQcIQBEGeZeR5RhP1bj+yXC4wRpNnGVpptNIY4zMWNU0qkV20yogQva+Njd7PkoR+miLqGqlszTdh/YxU6zVn0xmD3oRe0SdNM0qlWWtBpRNqChKhLCljUbK1e9n2w2FUAQPDpQ8pxcnxCcJosjRhb2ub+WLGyfEJjx8fIVzS+ZOjI54cnbC1JRgOR/FeDs9eZCl7uxO0MaRCcfLkAb3+iGIwoRgIrHrgPJD4NHXH2iuMK3RbU/Ryp/G2cbDVamWrWwlpzewozKRR4Uz0s8ng3KS1mwtef/onL/pWC050fTdOkOV5HmrtNvBEg5RpbVisVhilkMKRFwjnXpGC2gi0kCCscMuzDJNrTqYnVuOWdpxDv0zrH2QclHlRIY8uvrMJmHzR1tU+/H1Wq5UN1hwM8NkJly9fZm9vj29961v8y3/5L5nNZqEKU9dErVWNMjrQTnrO8Ol0yuuvv87v/u7v8nu/93sYY1kt/8v/8r9iNBqzWCz56KNH/Nqv/RrXrl0LFNY/+vGP+evv/Q2j0YgkPc8m0s2d3KQp+cU6Go021iFdr9eWwWG9Phd75AVaN3/zRZsRJqQRWfPShS8YCVoE4ForS489GPQA7eLCbBz/8fETtFYMBn3q2hLl1UpRCxsUq40idSyzysD/n7r/epYlOc+70V9mlmm/evnt3ThgAAwMQQMakdL5SEoKiooTwRPBCN0oQhG8OXffH6MvQleSQhe60Y2kUFCiAyVSAiCCBIYYb7aZ7dZefrUvk3ku0lRVr1579gADCqeAnt2ru7oqMyvzzed1z5sbwWiWM3OxYUpr+nHMWprAfIbKSyJtSJDECKZnYz58/yP29k8YTXMKIkZZyaQQTHXCnD4LsU4RbZP0rnLtzpfZuXqH0rhYNWOIkERGIY1C54Z7d+9y9+4HPHp0HxkbDg6fcf/BA95//2NkHLHIMz78+C4f3bvP4ckphREYKanSyiGSkl6nxcu3r3Jtd0giFjz46C32Hn7I9OQxUXlGpE+IzRmJGJOqOYIFkGNNYwWlzsnyOb1+j1bbjq0Q1lNqdMHZyTGm0MQyhlIgtEKaCFu306MhW+MTUbrWLb/MihcXfG5fxmc3CP/eUZy7K4YdAmv38yovTmCb0qZDZosseC89t6C/t9a22mhZ5hwdHlAWGbEStFsJKCgkLKRgriLyKMbEKcbY1LN+r8fZ6IRClwilkI7UQBjbQO9oMkJXyOwiJPbTOFbB8Lp9wRuhp9MpWmt6vR7tdpter0eapiHdx7uAz6nIxla0hirJe7GwZa2uXbtGHMfcv/8AIQQvvfRSsLtNJhM2NzfpdrtMJpOgnhZlQZwkgUn1onF6nh2xKAriOD5vFHXf+Vd9c1kem4vG71OP4MTzKqAP7FxCsg5SJXFMHMVoG8bo+gaLxdyi5jjGuNALow2lAk/DaPnEfDCDYJGXLifToDAkStJSChY5QtuKOiqyJe3yLOP46Jje4DK9folGkpWaXAtyozCkFsPJGJVI+nGKUhFno2M7Thg8+5gwBl3C6ckJxizQOkNIw3Q25fTslKOjE67LWxRlyfHJCccnZ+zsLipEIqrBEwKSOGJ9rU8kCibjY86O94mUYG2thzAZ1rlgw0kQEYWxAtEXMtbaIrPYVbiqrm6FxGI+B2PVVRuVUqEzq0aBF1p+4zkPnZp4yqOo5y1l85z34tx3VbEY/6kx2qH0MpTK82lL7oyAmrXRtkKa27AjJUHbCvGlEBTYXFXh1M44jlHYeadd3JBFZ7ZjwoXA+CNaRhA/yfE8gfg8N7G/t4eqVt9W7O7uorXmo48+YjgcEkURZ2dnIU4rSZJzCdlBOOsSgQrfX79+nTRNgzo3HA4BS/B49+5d5vMZd+7c4eHDh+G8tbU1Wq2UycTGq3l7lzeU1/vlkW0d3frPvIdnleD14RjLxv667ezzOKxNqanaOAXZqsGuBJsvpFzPEtBaU3oW3qW2a2P5yZSEULsSm5aTFZUH2NqKlooc166vjSGOE9Y3Npgv5kwmU1rtrkPIzjGhFMoYpDEIbZkXEH6xeluVCd2sD51w95nNZhht2N3dYX19nXan7WLnpizmCyeUGq4Sa39zCFUpSafdYnNzg7SVkGcLjg4PaHUHJK0uUdwC4VVeu7EabdWq1AVK1zUdbazRuygLjJHB9leNm39grhfe6PiC06L5+/oX1T+rVr2P0tcGx/PmemRqQcqmopDqdDoXVLiyx2K+YO42wyiKUFGVYK+1K+gr/do1oCywKXK7yZ+cnCBkRL/fp0ygFUf0XHiL70i0nED9dxGbUr9PvUNFUdDr9cLAvPHGG7z11lv81//6X4Mwm0wmbG1tsb6+Tr/fD1TfYCerVLZCUJEXxLEKdrVf+ZVfYTAYhIKqt27dJElSNjfX+e53/xfdbpff+q3f5C//8n+idUm73eZXf/VXefDgQWDhXRvYoila63Cdug2tHg7inRHe0+pd1cuhJGVZcnp6WgVX1uxkdeaPz8NO6Xm3bNusB9InVi/mc4SUXL68WyW/CzsH8iJjOrEo2UifVC2DINNZRqudBpJGrWGRZZxNqh1VCkWSuImsJEY6VcGPQ2HzQF965WV++OZHaC2BiE67R1na8e5vrKHKzEZD5JkDk049doLVLgqLIKQSQUUXUpLnOUdHh5S64Ktf/SrX79zECMO1azf49re/zdnVMwTgiRh822whFftqpTFbWxt0ui1Oz8acjs7Y29vj0rVbbG7t0htEoAXS2RB1UVDmOVIo+q7oi2f11bgslSJjOl+QxImr6o3zyro1eG5NBt3vhZ/8hUcNuQmckNIapaKAujxrikFSFNZZY4AiL8jzkjhO2NhYt4XD46hxbew04uz0lNF4HPjbPE+bFVY+N9tmT5Tarqksy1nMZsxmCz7++GM6e8+4evUaLSVZ73dpX94FVOiAXCW8fpyFs+o3F3lHLzp3GZldvnwZrTXvvfceh4eHHB0dhQLFnU5npTHd96FOha215vbt2yFeTGvNxsYG29tbdDodHjx4wGw249VXX+H+/Xt88MEHPHjwgPX1dVqtFiCYTqdIKUKKxip1sI7M6mjTGBMEWb2Yiv+NtxP6Skj+9z/OZvK835zftCoVNi8KtLbsKT4vLqj+jukjCFXnGAgC2aNR4RJ/DCEP1iNAKURVuEVWCCSMnTEkScrW1haz2YzxaMJkMiOJrYDPsgwVRaHGokeAXuAGr0MwmnttpHKglI5hVmvNlStXbOHZnV2uX7vOZDyxqh6VqPACDVPZo6JI0e222d7ecgVr5+zvP2MyHpHnC3tuLQXKIzMhoJWmREo5c4Wbp26O5EVuhXHoikE37F7hKfLZBNnzj+Ur+Up60o1pHcHXkRnOc23DWCTdbo8kSS1hgDuqdW5LRU6nUxtjF8UhKN0yn2jnh/LIrFq7Ph7t8PCIZ8+ecXp6xsnJGePJjGUx0uAYeZ4ta9WxvPA+qxCsLyyPRHzO5dOnT5lOp3S7XW7duhUosMuy5PLly4EV1v++CkGw9qC6wdwH0y6TJWZZxtHREYPBICC/PM9ptVqsr6/z8OFDDg8PmU4nJHHC8fEx49GYfr/PchxZfRyW7Wj1cAzfVy/oFovFOefBqrG/yKu5PJarns/zzveEgj5QNlynpurokFPobBpSBPJBf1isZpGSNtrRY/s+VPcQgkqtsK20v9cG4QJL19YGQMRsOkOnseWPzxccd1uklES2ggCxV3+C52yZi88KtFDZp/AoQLuA4Cqp2TTaFK5Q+9uzylphbtAkSUS322G4ZusjzKYTlIxod9cgThHC1ghA25yBKIqWDFgWvS+yzMbYSZvq1QBf9XW19Ntq9C54xo0TRFC/fUzy8vvq9OV1XbumE0C2/B+krdTFejkvY82oZoyhLArywibOJy7hfJURz9rUCA/NU0ilacrW1iazRR6ogcosYzadcXx8zLC/gZ154rwD4KepWjYaX1uYXsh0Oh2Oj495+PAhb775Jl/96le5cuUK//gf/2MePXoUzvnWt75Fu91mNBo1fi/dgCqpkHGV3FtnogBCReTDw0O+/e1vc/v2bV555RVarRbj8Zg7d+7w+uuv8+d//ue8/fbbji+tz19//69ZLBa88cYbDAYDWq0WSqmA9lYxbXhBVqfH9uiszpTrUYtHdxcl/v9Yh7NtCCoBH5LLtU2f6bQ7QVUMG4HWlMYGIo/HY1e4JLJ1JnUZbCYiUpYG2xpYyMqSrLCBjzJO0WXhvKAdhCkp8pwoTFwwQlDqAgqBlJrbd26z9/SQZ8/2GOzucnpyxHw6ZnZ2xFonoddK2By0GHYtUrMpUFh11nGGGYcehRQ2kVlYVDZbzJAo0lYa0qoiTwKgHcmRR60YlKjkipI4+1mJ0SVr/Q6R2mVtMOBkNOfZ3hP2nj7lxq2X6A4SokRhjARdooSg2267oihVAY/pbM7J2RlxGts5q9yWILyHmQppItyKFysFwqcfznXgwPWyUMP1U0p3nhufOliQUlVkpgiG60M67Y5Fy0tNKoqc+WzG8ckxQkC/37N8/gHhOcwnbHCORWgyAIU0iei2WrzxxleYLXKKQlOWhoMnT9ifjlmMT7h2+eddalitbmajy38HAm2VnS5JEqbTKY8fP+b73/8+JycnDIdD3njjDcbjMWdnZywWC15++eVQsMT/vg5phePSqsd4+QcAVW7kbDbjrbfeYnt7m0uXLhHHcaiYc/nyZd59910ePnzI6ekp7VabJ0+ecPfuXSaTSWDO9KlgdZaDet98+oovvFLvv03ZmIaHd1FK2Y9rLwvju+Ia3sivHatskiZOpfbPphpXz7GmlHIlwGoJ8M7vpY0l1bYpTcYVJClDnU2MJk0SuwOX3ktatanU2glI2N7eIk0TRmdnlKVmdDbm2bN9njx5wsHBIWdnZ+S5DZa1jBTSdyoYkS0atGs+L3IWizlZtiDPM0qjiWLn4kegpLRtMqa2IIyz9/i4MR/S4oI2dEm7lbA+XGN3ZxspDKPTY549e8p8NkEXuUWaGNAaKbCxe1T8aiBYZDnT2RwZKaSSof1CCqj1JejUn9Phhdqqwz8zL9Aqgz8IYTMkisKupW63e2FpSl2WZNmC8WiEANo+ddKrsJ5YE2oI1G4oUtqULxtfeo3r166zu3spOOfORiOePnkS7GvA54vMPosKVL+nP0dKyXg8DrFlx8fH7O3tIYTlNJNSsra2Foz6wSt2gYrV7FNlT/EPKYoUnXabwaBPq9UKYSBa2zJvvsbmcDhkNpuRZRla61AYpYqGl417+pev0H5RHt6LMHL8pIZ/b0D2V7ko1COokEsC1wcKNxkcdHNdCYHXjwyQF2Wwo9n+SVSUNFTyunvf78z+GlJI0lZKr99zjgmbuWHtMsm59DvvZKjGS4Rm+bHPspzj42NHCRVV9jWtKfKc2PFtuYvUR8ctNpwaWmUyGFc7U0lsQnSnjVSKIl8wnYwoS0EUWzbh2KnYUA1dURQ1fjc3h6gWdPNsHKLxqOyzrdMqEJeGB1OYpQ/8GJpV9joTGJOjKLLo1uV9iQDx7L95nlE4007snD7Btlm/orPBhdYJy8RSapseVWYZRRGjXahVWZZIpWilKZ24XW1kOGG2ctf+CRfR845qUdThq1XHPv74Y7Is4zd/8zf5wz/8Qz788EOuXr3KN7/5zZD0fXZ2RuHYQOve2GDjqRniK7XJe6YKUBIlBe12i6tXr/DSS3fY3t4iz3Nu3rxJnuf87d/+LZPJhBs3bnDjxg0eP37MyckJUkq2t7eZuxJli8WCjY2NoMZ6xOXtYb1eL9RF9IcxhslkEiow1auw19FZvQye/92P6xRQSAIrK34huvEyppYvWC0iIQSnJ6eB9daPtzHYXEg3RbQQiCgCKcmLgslsziLLXZ5jQbvTpt1pUWQZoiyRXiDihIJDpkLFSBUhZcz25hblbfibdz8gTWKuXL7K7Ws76GxKqgStVgchbEEW75n17QObaqUiRb/f4/AQzs5O+cGbP+Do+IjtzQitLTrM84zRaEy32yVNE0IkZu1ZCadqGq0RwmYySCko8gVCRsQqYnO9T6fTYr4oOD094vRkTpR02dq6zO6Vm3T7HZxFPfTbe8Q9MjdYhOqlpXBWSP8MvTCo4ZnPNg/O/e1Rs/vHCWzLNOz67oWdsHZNPxe63Y6j94mCbA2mPQxnJyfk+YKyLFgb9EmSGOXyXI13cRpcLqvBh/UoFRFHCdki4/jsjMzRIW1t7oAQ4f69fo+bV3bsZuXa+HfOw7ts1K57/3yVpaKwrvP79+/zox/9iLfeeotr165x+/Ztrl+/HoJp6wb1+oJf9izavD87evXP0sS6lC9fusTaYEBZluzs7FCWJffv32exWLC9vc3Nmzc5Pj5mMplQlmXI5fQeGs+kWReqPs/Op3jU+26MCbTcdSLG5XOe5yH+cca9eU0TJp/BOCaH87RH08mEPMsb+alVCIq3vQhQCiMlhTbMs5y8KN0CKEPxibLIg6fK2oGqLVlKhXRMHEop+oM+ly7tcOaS79c3NtjZ2Q3oLIktpY/1qJVBPWvMJ7dhgeWtu3fvLuPJ2MV0WWFeFjnz2ZRW2iKOHGLzoMTUNBYITLNSYBdmWYApiRT0uy22N9fZ2dpgPhtzfLDH4bOnzCZntFsx7XbqH2BAIYv53KprQli7n7DOE+3COvz/ak8Rm/j1+ZuBGmqnMcEh4pGpD4r2Fe5bLavRBK2iBrqMMUynE+auSEyn3SGJYpQQVrU01XnWvlmtYSUlkYopioLTszOePdvn4OCILM8xxnK+xVHEYDDg+vVrDa2mWTGh3rkXQACfpj5epP6tWrj+327XBkpOp1O2traCfcov/Is8p6vQpf/cG4PBIzUR1DvvmdRGo3UZ+NPKsmR3d5fhcEiaphwdHQWVE2wS/Hw+J03Thg3Nq471cIxVal29tNtFY7o8ji8qyM6Pf6V2Na9vkU0V7Ni8d1kWK213YRNx9klCnJ9FSXVuNOWofYznu3KGf1E9EusdFYKiLMnzKZEqwUiUVPR7faRU5JlFMHEcW2baCgY01BdjDDa5wbYgTVP6vR6z4RAVQZmbirXE3TuKrFcySWKrKjtGkWrsmgjm3DfGxkgZL0BbKXmhESq2idDeQxl8vvYoisL9tjYHGqpYpTKfu/OqqfApS1Zc8N6LquqetWZ49K1tQeY4jogiVSXKBzRnN0WtNbrIw5hYW7JpmAH88wpz0RDmi6WPElWuqhNWcyf4/e9LXTIajel3eqCsXS9aRQT3We1nFy2yZZuYP7zeXRdM2sUy3blzh9lsxscff8zf//t/n8ePH7O3t8fe3l6DbrrOLlu/jxd4/hz/mTGuwLATOsZY+upXXnnFCsvFgmyx4AtfeJWrV65wNhrxpS99iZ2dHYQQ/Omf/hnf+MbXeeWVVzDG8N3vfpc4jvnlX/5lPv74YzY3N7l69Sqj0Sigws3NLVqtVlAh6w4JLzDrNDtewC7TJNdR1U9m02wWFLZ2Oyu00zRxdDdWwJZlESi8/fllabnKlJKu7bFlXI1jNIJFUXA6nlJom5tptKbX7aKEoMjmdgHoAhxLhtElIJFCUQrFeDLh0dN9EpUyXFtnOFjn9ddf59neEw4PDzHmFoPBgIiSslxgJIBESEVpQPpdXkrLEGsMm5ubqOhVrt+4QlEs0IWh2+nT7XaQCmKhGAy63Lp1g/WNdbexGWcHEo6dthIewq1wY0piF96Be6+NwSi4duUy40mJNhGddoSMAFkCrpSdsXRE47MzkNbx5e24Tu+m2oAqp4ZXeV1Llp7uj4PYzwtLgfM7SGELITsnkSdRXBsO6XZ7pK00XAFc3q9LyxqPRxhjaxwkaYxxwey42gh2sxNBtbRMwQbcxhLHMY+fPKEVxc6GbXj6dC9sNGkUMZ1Meeutt9ne+BpxlFIal860Cjl83h7N+mKu28n8YvEG9StXrvDs2TMePXrEL/7iL9Lr9Tg9PeXo6Ijt7e3wO49slgNN/X38tYNtTpe2lHuo3WcH+9q1azZRNsvI84wb12/YIryzeSCEfPZsn7fffod//I//Ea+99hrGGN555x3W1taCwPXqpM/p1FozGKyFANs6+vTeVS9Q/ee+D/Vx+TyP5Wfq4656vR5JEiOlFViACzCdNdCj1oYosu3L89wqPUqCUmgEeakZzyw9tnaqSpokSAFFnpEmkU2HNraSUYjYd9BlNl/w+MlTWnFKrGK2Nra5eesmx0cHHDx7GpB7JEomR1NM5G1JzUBkSxRp3w8GawwGbaBESsckaySRSChljpAK1W1z6fIuA4fSw3ghkF6t82EE9mGBsXU+rWzTREpRlIZICba3Nuh2SvICjFROmNlsVXA5sVozn05IOm3SRjGhJQMUSyYCUXFy/FQO4WxpVrra/FtjyIucPC/o9rq0262GU8u5UsBosnzBeHRGJK2DLU1Ti9RwCepOmAVE7YazXqw5UorDw0Mube3Q7neYTqccHR9RlpqN9XVkFDGfTNl//JDiW1/GkFpk9tMblU8/wuRzaMkySVrvjw8m9R32MV3LQaovcnjI7De+pl2o+teqoJWx1ed+lkXh0pGs4PGxYfWofh8zFoy5plkYwx91Ntx6/5bH5fM+glZWQ8LNkJDztkzvZKnQYf2Kwmk7FfuJN+bab+1gSymqMfDqpfCp0u7aUgYCxyiy1Z7yImc6nSBbQ5I0DQQDWrdsErYIl2wcDaQuBNZPYVUd5dGGtikz0/nUqrZZGcoW1r2h55+COIdlBG4hUtnC7FyyXk4tBegCowuEUCAkWttUICFqqVONzqxWax2ecZqdR27LCuLqll/8qTj/jbMB1O3PUkpbiFdV6N4LMePOLXx6nxCNMJNmCzy6dHOq8U0NlGgb2JwkSeAoxBjSNCFNEnQWOU2iKje4ks/sp3ksq5ZVQneLJEm4dOlS4Cyrs2PcunWLXq/X4P2CJj22cbu85+kS4X5Y+hBXPdrazMqAQsA4b2pMUbjiwkVJO23x6PFjjo4O+cVf/EW2t22qzfe+9z0uXbrE1atX6Xa7DIdDjo6O+M53vsMv//Iv0+8PnJdSATY41bfPZx14+0+SJMGjVXkLP5uwfpFj2T7n6YbStEUUVXY9jwqzLAvMt36jEaISdFIpG33l1IPZbMF0sSDXGumit6WSxHEERmPKHF2CEsJ6HnHBmdLGrn1y7wHTLGNjaxsKzWg05r3Td3nlq7/Apd0dWrHkydPH9FoRca+NiiK0zt1EtsLYFlipaKWUlICNH/PxcAZr11tMF3xw/wNHoX7ExsY2cZKysbntigf7qu7eBO4EvnFccFIR1CvtDOYIrOwqrOBMBEgoZ2cURhPHXYg7LGYLRmcTOqmyCfpO0GmjLQJ0u2+wRAlvfvcCzW4Enya8Gp83wd75c8KGbx0zZenypZ1nvtNt027bFEKppC3iUhNkxhQcnxxZdpgkIk0iVGQpyK3zTbuqVY5uXUiQtZxanF0Vu+kA9HpdtrY2yYsBB4eHGKO5efMyCZKzNGJycsR8UdBqlbTSCLkKHfy0BVzdK5bnlvq217PRwZubm7Tb7RATlOc2N8sLDl+gxAejnleJK5guHLT1qEspy/LpbUOlI8zzA54ksUNiZaA0GY9GnJ6c8pWvfIX19XXm8zlvvvlmsJF5aqLT01PefPNNZ0zu0uv1nZCoWuaFWb3IaxzHDdV7+d/6+x/3uSx7Rr03NYosV7tP7fH3sMIsD7l0IadS1BL6feAsgLQkjPNFXqvA5IKKI4m3FZuytJQ/0pfYc1XBooinz55xNpowXF+n0+0ynU64d++us3ttcPnKZQ4O9pnPZ9a47CP9gzAjIPwmx51DHr7/xtZinM6m3H9wjx+9/SO++73v8nTvqfVW6xLh+cyM4/RyKLOaYqKyPxqrXlmWFkdOqQuUNMSRrfupFxPK2RnkU9ALsvmE0ekRrVgSSxDut5Qa44J37cs3uXKoBPTCxfiRFZ9fjPUNS0w6WC+0ZfIoypy8yEhbKcP1oTVHKI/Kg8UMrW1dhfl8RhQrm9Hgsxmk64OpwqWUcnGJNeO/F2q+hF+73WJ9fY2t7S03BwWXLm2xvbXB+nCNbrdDtigpcpv7+rkgs09TlZbd/fXF6VVK/5kvHddut0Mcli8Askyxs7otz2ujqL2H84/YTnyvitZZMVppi9lsxmh0xnw+p9Vqhah+n/dZN/DbdnbDPcFX3/l0Kuxmm89//pMc9etIKc4F7FpDf4nWTQaQcypm7dDGUJoaosQKKr/D2pH3AmVJuDi9rNQaqWx2ho4il2kgybOMOFbEtdzRVYIe/ILxGMbNNTxljSvGMl0wn9l6C76ug2dHVVHToxua6q8vfCK9CUimOlU0vH91d61Pf9I6hzKnyOfM51OU64+t56mDElvx5i49u3DZWh/dhwZsTdDln4Vg1mD2Wz4BL9DsmJmltjeriYnaoBhhNxPtKIz8mAfnXmhMbSCDCnt+qMMN3eFZWfyi9tc2xob9WLOTLSwthCsC3JzgPxmj6fOOZaHnQyPeeecd9vf3mUwmXLp0Ca01X/3qV3n//fcBeP311wNHvicwvMi7J1wZMC9c/EPxqlLzqC0uKttOnMQIIXny5Emozbm2NuCHP/whjx8/4vj4mCtXrnD58mWEEDx69ChUkSqKwsWkTVlfX28I19PTMyaTSbC1GWMCwWRo0dK4f56o2V/bO06SJD3ngAA4OzsLhTW8t9WOu3KopPJ6eiGxyDLyskC49KI4jum0Emuj8jYlY72A2piK3sahHoNARTG9/hpllKIXGcrYCl27O7Zm5u1bN2mlKUWRo8uyVm+zUn9Lf7+QEG8CEt17+piHnzzi9OSM0emYk9kJw+E6r7z6BW5cv83W1jZCNtmPQ2S+AW8z08aiKItQfMK6rwEAkYywdGsGbQpMaQsgLzDoLOPo2R6f3L3H5Ws36fWHtLv9YBYxriydCXappY3DjhiyrmQ2BMOLIbX6FetCrrJhuQ1MCMv75njuqpNsZ/MsY7GwHsy0lRJHPnRDOcdbldPgLmf7ZzTayDCuOOFnjDMdYWMDj49PiBynnZSKojDMJzOyRU673baZOYsE6DSFWX0nXiY9/DwPfz+lFOvr69y9e5cf/vCH7O/v88UvfpHbt2/z+uuv8+///b/n2rVrvPHGG0El9eEMFyG0emJsfeGfrxB+gTlUVAV4799/EGxL/X6fd95+m/c/eJ8sy7l06RK7u7sIIXj69ClRFAXP6MHBAcfHx7zxxhvhfkLAeDxm5rykdWHmKbrrffppobK6QTdJ4pows2MihGA8HrNYLILTxQYAl0SRCIndZZmH6y6ynKzIycvSLn5h1b1Wu40gR+BRh9tkjEHhgq+cQNNGIFVMt9tHRwlSayIBHz99xnCtw+7OkM61a5TZjCLPEKXGaE/r7fqmNSUGy8Vvw998UGaWZTx6+Ii//dsfcbB/wPhswnB3nd3LV/j5X/hF+r01lEpACGeHc80LLbcSw/O8Gm0QyrN2OBXcxhjYuSZt8GupNVpbG21R5mhmnBw85tEnH9PrdmklMarTxhiL0AyVfczej9rfy2iw9mzPfcu5b1d+syJBs34vIQRrw/VGHdmADgXk2YLZdMrp6Qkbw3USx6QbNKkawguKsSvYHAQmBGeQwTjtxTCdzTg5PaPdbgd7eFHAdDInywvarRbz+YwstwVgIqhUv3qs2ed5LAuW+t91xgmvYnrvhafg9bmQq2w/n4ZU6nazVad6Spf6l17oeeThyQPn8xmLxZwoSsLnfqH4dKDJZBICfKsd3j5Mf/5FbV5WoXwff9yjHqe2PP6VHaypQtb79alj677XWoekYbAbihCWccFZ0BsKB9BUpIRoLDcpJCqKiOPEMdxqe00l3eKuL++L21jF9M2YTqfBixwYSYRF7LZ2bIJAXaSLuTa7aWKan4Vu4ObbuTY5e5ERGKx9LJJgdE6ZZ+TZHBULEBG+YHAYI9Fk/Q0ql9v3vDASNTWyrng3GneuN/4a9dO8DHB/iYpEoXEhY7M7dG1DOa9e4lTg1da9xtwOE8MBHZeN4fOfLVmlYLHImC8W5FlGWRRoHTn0XQvN+EkE2YvGpdVjzaIooixL/uqv/op+v8/Xv/51kiTh6OiIPM+5e/cu3/zmN9nY2AiGfx/u4EMGgEac2arDCiXv6fK7im4sMHD2BjxFMI4c8hLT6ZSDg0MePXrIyYllhL1y5TJHR0chjen09JSNjQ1u3LjBd7/7XVqtFsPhkMlkGryAnnKnLij90VRrzj+Hi1DaRWO+jLT9uJna5BgOhy7fEnB2Qq1t7UZbuKLZtiiKHP+6u7crLmGEZDabUNa8sHEcESll+d3LAnRpo7WED8lw6m6QSRYN5YUl40uwFcZFv09RPHAOGY3Oc7QuMMYafD0HGIBwObhKirBx5HnJ/rMDPvroPY6OLGf/rVu3uHLlKmfHZ4zyKWmrTRyneI+oA3Zh+RVl4fQ6ywxrwztkQ3I4HwAeEdrr2J760igG44KES9YHtjiKKWcc7z9kdHLAzuUbpK0eKm5hjLRFeZAI5WLQqJDSeTD1vDX76aisfoYGS6qLLfijIms2WA641sZwdnpqSTtLTa/bs8n6QrnxN0EgejXS3kvbTUPU1WOvOPvQHsPmxgZSSiaTMdPZjNl8hi5LPnj/PSbHJ+hsgdQ516/suMyAGjILnblA1fm049OQXV2QeZtNURR8//vf50tf+hKvv/46169f54//+I/Z29vj3r17/P7v/36g+qkzZXi72TLb66p74gSH52iSbhSX9jucRdOlntgd6dKly9y//4DR6IzZbMrJ6QmepfTo6Cg4Kk5PT2m1Wly/fp1/9a/+FV/+8pe5cuVKYKcVoso68Hzqy0wbTWN7ZQf6PI76c/Tqui0OkwTU6O9rhZnzyhlve5REkQsd8LYPqZAqogSXzeCG0NiCKJFyhtqywBIuW2umvbAdbyvMrJqmNRSFZpHlAY0nSlLmGboobBWgPIOysLzc4GoK2L55kkWl7LXyPGexWHCwf8APf/gme3uP+dpXv8wXvvBF0qTF8eEJ79z9kFarQ5w4IkVnkPK2VqMNpS7sohegseXOBJac0hivAgqndVVR7WHs8RulrQ8qKFhfa9PvXuWDD+5xfPiMRVYy6PVIIhumoo2i1AKEQviQEDd2UtpiLdX8/fHmyDkPpju0MaCtJ9cGvbaaNEuARFJozdnZWQAm/V6P2AneOlL3q85KYzdaogr8tfLO2U21xtjag2xubjIZjRlPxmRFyXQ+I18s+OD9D1iMRghdkEjY3hg4oPM5J5q/6OKrIxBfKKTVaoXwDE946GPP/EL7NAS4ylju1UyoQ2g/0FWwo/ui8ftQfMHZjeLYqiTdbgetbXGMs7OzBiWN95AppZzKmQeVsy6wVvXjxzHur1K9n3duvW/L9/PhMn7CnbteTR2s90HrioHDf+c5q/DG/upb/3+n6jlh5HjxsyyvAm8davQvYyo2WB8s+twxM1Usow/zEcIxM8RxWKR1tagxfOH+VB0I/y6P3fmf1PsQ5pkxljIojmyMGRpMSVlklHlOWeSgy7Dh1hXwpTs22+buU3lzXciFqI2g/7sO7cTSy13ar7W6BuHthzaP2RciIZzX1CCqi4e7LY/ZCnFsjIW6VWyjS0B3XHpeaRXCJqV7dG6M+bvJAKirOv7lq5F7m5k/7/bt2+R5zoMHD4LtpsGDRXMhnrcxNYNOg4rpp2wluc61zxiN0AIjrIenKHJ2dnYwxvD48WN+7hs/R5zEvP766xwdHfPgwX3effc9Xn31VQaDAXfv3qXX67G5uUmv1+Mv/uJ/8OUvfznQfLdaKWVZZTHUBVG9P8s2q/r7ZfvmqsNPQO919Od69bzdbp/z7vpFPx6PG5M4oBSvEzjE5r1+pZvUtrKQJBLKLVQBOrOL0gkvXWqL0IQLppURRDEa2N7eYTJfcP/+fdJbN9GRhDxDuUh6IQy6zFFYGh6Wxs+PW2G0U4msatzv99lY32A8PuPp0z02Nh7R7w0oC40uAW1L09k0I/9c7P38fPEEljYntUCgLQpwAtsYgxGeg0yEa9jhEvhotUgBRYEwCikNO5trtNKY6SxjdHbAYrEgbfdY27xMlPasN5YCiXJ3lOiicAjXT95KBW2sg2p21+yT7lleOHPc/EKS5yVpamtXyrrA1zCdTJnPpkRCOb6+COUhPl6EOduZEHacAyh3Fk9jadU9bbtXobXWZHlmtYY1W/zbCMFwuIbRJd04IhtPUMbQSSKuXt2l3+/b8X1Ov174uCh8oL5Q/QL0XpE0TUPx27owu3PnDmdnZ4xGoxDpv0qY1cMMmvds2p+ElO5hUNu9/JUqBGCMnbTSWAI8gyHLMy5dvsRwOGQ0GnH7zi2G60MuXbrE//gf/4O7d+/yH//jf+Rf/st/SRzHfPjhh/R6Pba2tuj3+/zZn/0pm5sbbG9vk6bGCbPIMgKYpmfRH8tcbC+CdpcF4rJX2o99nuc1g3fcEFhe/RyPx/T7XVslKDw7O65CRn7PJ3ITr/B05MIi4FjauprKlOiiRGirmkkBeVlaih+piOMEGScYGbEwsLO7y6Mne3z88cdc3d5CxwqdzV3GgEAITVlkQbBdJMy0cZRKCCJlqWI2tzY5Pjnk8aNP6HYHrK+v0+30KEsDxirA+OfurxnQisGWFrHpNUVRItEusFMSiu9WkDUIM4NACWsbFMLmbeq8RAqNEhG7W2usDTpMpgve/eA+pT4kafVotdskaYKSigJvsrMiqShKG74hlUNvFdL1QqE2sxuCzkew1QWdqJ8tBBhphVlmSzV2Ol1qNcQxGiajMdPJxGoqqQ3HUC4/tinQpDMh2CB3exkdNsTCFQc2zvAoHONvlmW0WintVguJRCV2rkZK0k8jFuMZsYBBK6XXjYkiWdnM6sePo+qEji4tqlXXC5OuZlhejiFbDuRctaCfZytrnFczPr5YJwi7njGaKEpJWy2SxIZnDAaDEHNTFLaeZqfdoShtEWFfWcrbn2y6lReYlaq8rB5+3seq5+jv3VAxRfVdUIdxKuSq9tXHh+az8fA/qPZB5andqNY+rQ2lKclLgnc1FETGlmkLWRSG2rUMYkVIQaOfrg9RFJGmKWnackLb1ibI89wVr7WeaqWWx8u1vdbXgKhtR1ec33xfP6PS5Hx+pSGOI7SBPC7BaEdHnVEUGVoXSF26+7jNwnsbLpjOldImlj5zytkShBPLHyyPoVgOqnYbcKldULXNoxXyvNBcakZtFJr38D/ypxuwYS9SooTd+KI4cqSNilYrRhaGRAo67RZJUoGRn4qaWTdo+799wuhoNOLevXtcuXKFdrvNV77yFR4/fszx8TGLxYKiKHj69CmXL18Gmg6Jz3IIt6P7ohUXnVO11yEhZ/CWjq6kKKzNa2d3h06342r95SRxzI3r1/m//q//F61WyicP9/n444/5xje+QZ7nfPDBB9y6dYuNjY1Azri3t4dnqp3NZuHe9X+BBlJbNbbLY7xsU6wM97Xv3DjGsU1h8s4RPzKTycQF9MbnBKEIsNZPOac+GKcm+PZIQSuJQZfYWpMVp74xxu3gNi9vvsh4evCEyTxjIRQZljH06tVrHB8fM8KgTMmlSzu02yllkTlKfF1hi5og9ijcB+NKZ2SO44SrV6+RJAm7O1soFZHnBfv7BxydTun1nvHwwUN2L1226pJ0aMv4Z2GzArJFxtO9ZwzXuiSxzUsttVWblVLuJ97wbXNEjRAuzcmDEmO9vMZgyhIVKSJpSBPJ5d1NZouSQsPx4RNmi4x2d0B/fRtUipSxpciR2s1np/J7tY1KgZRSUmqvLtfQOgITIuX8g/EbPo440V7D1/Csn2e0IXfZOkoqWwNUCKSX+zXBFOaOnWZWgBvCSaG9NduPn6dalBSlwQhrxshdNkoSKRI6NltCSGdzJICFz0WYXWSA9ouyLMvAenBycsL3v/995vM5t2/f5ud//uf5N//m3wSGWV8449q1a+G3P85hhZMTaHXL5rnzvF1JhlJ3ApyL31DkGdrA1atXwoLx+aR37tzm2jWbn3mwf8D777/Pv/gX/4K3336b996ztrTt7W06nQ5ZlvHw4UNarVYonedtU14V9GPnkVNgC3jOOHsjqb9GnfrIX9/HyYGN3ev1ev4iIdJ8NB4zHp0FXjM/Nm6U7DhZvZMqKt6EWo9oy8DaaiUYlw6FdvFhbujjyGZWGG2YzRd8+NFdnh2dkEvF2vYV1oYb3Lp5m4/e/REmz2jFEV//ua+TJJIiz7DTyeDr3HkVyQtuKSpjcFWqrMWtW/Y5FXnGvbv3ePjwIU+f7nE2XhBHCR9v3GVtMCTq94him/OJsUJTyQiw8U2HB8e027esvQ9JWeZIpYhURJnbPhsNSsYIoTDC5oFWGpYV6Lq0yDCJI1BAorh+dZfxdM7peMpH9x4ij48ZrG/R7rVRDolKJFo4G6gQWBKD+oZin48VZnUQUOFCmyhvhYuPDwMC776fV2mS2LoF/gQNpsBVfTfEKqKVpAhhg6DFKveoQ+bS28/wqNld0s8/Z1S1mSEuyFiXaCGBwmkMhiRStJSkLV0soqp6JtVPmQKorgp6obFYLJhMJkynU7IsY3t7m6KwKtp4PGbuOL87nU7o/Cr1tb6jXHD3ykYqLhZmzzvq9pMkqQJ3fWhJp9NhbW3NTgQ3Qfv9PmVZhsrraZoGgeUph5crOX0ex7Lavcqx4IVbnQDSmnssq6z32NZ/58GYqRmP7WYqKhuN3/2xHibCDt9UvSp0AEVRMl8smM1m5DKi4wJa0zS1cWVFQSmFFa5C27zGGgZZ9SiD5iyqBSulpJW2oJUCmtbTPZSKgkqd59ZUUBSFY22o2uiuBtiFtshyxyZh0LJpuK6Gy0GU2mOtP2EpnDvAVJRBUghaaURelMSRoigyBIosm6PLHKnsxiCUcY6Jum3Mz9GLdM9mCK+gWhm2yIlxIK/2vPExfHLJ1GBcFSuv+chgoyYIKQHCNISWEM02hKutskCY+pq31wikEMKp+s7u0Fjfnxcy88fywgxULC6mbG9vjw8++IArV65wfHzMO++8w40bN/j617/O7u4uvV6PwWDA2toaN27cqPFLPedYoZtLr2L6+LIXkBfLSMcKLoLAWUaIw+HQcvzHCdPZnJ2dHX71V34VKUQQzLdv3w403N///vdDTQCP7PyC8gjsIhWx3sZlAbjK01l/720cRVHQc3ULg6qKtQtaJ0zlbV4dNuIAUS0kwv/ePgKrWjnu0CAO7IJwm0BZ2jgwYzg8OmZtuEGrv4ZMW+TElEXB/t4eV65cIsJYJlfAVwm3wbKemcKjMxlUQVOzq1kha0Ljvaq8trbG1WvXKLXh9HSGUhFFnnP//n2uXbvK5cuXbbS5u7q9kkRKm2p1cHjMZDyh322x1u+hNWR5QeQ0AHufEqOdday+/xooS4PR2ODSimbfLsZI0m4nXLm8xaKUoAxPHt9nMNyl0xnQ7YFChYR3ezhnUVA9q0T4c2Y8Y0ALF5BVmQ3CMBlfUyFj0B+QJEn1W6zgnE2nSEkoGVf663pcUds8G7qnaM7jkDDi9z3h5YcziWhvm5SNDUNg0a4uPVNKJcc/N2HmjYV15ljvqVNKkec5n3zyCT/84Q/57d/+bf7qr/6K999/n9/5nd/h137t1zg6OuLdd99lbW2NnZ0dXnrpJU5OTp6rZjaWXG2zFk69rFBQOGXlUbc12bxPKwCsOz4KKl+9QO7W1lZIwfrRj37EtWtX+dLrX0JJxdnpGScnJ7z++ut0u12ePHnCt7/9bb7xjW8EdbvdbuN5w3xsmheideLEF3Wq+M9Wcb2V2jpYrjjeOD/ZLSIrHT229TRGvqgHXiCeG2n7nVKYorCR/1ieMimks6G4+Ci3qXhuLG1KlLJJw0/2nrF77Qb99SGdwYAP7z3m+PiUR/sH/Povf5NO6mpsFjaVBV1iygIRS7dbu4pMUgRV0IfXSCkDhqxQgX2/sbnFYDDkxo1bnByNeLa/z4NPPuH9994lSWJ2d3Ys2pDe1moL06oooT9Y5+Endy2b7MaQQX/NMjvkOXGnZVOUjLYpWNopWEvmz7Lw5ems8V9rLwsMcazoyTY3b1zhdLLg+HTE/XvvceVqARs5nTQmiluUCEpvjXTZLEophLa5nJ4g0Tpxqolv5Yu3XXlk5tCa8cHAdq70e11arhiM5SS3eHAyOmM4XKOVpiglXPutRBKe8w7HJiu1Q4bOjxrUWy/MvHe1QrjGWDuZNDZvQnjkJ7xAMxRZRiHtjTyvqMHRZq86Pov6s7zQlq/pwwLmc0u90u12A68XWJTjPU/tdptOp0O32+X4+LgRJ2WfyIoGeOHvFpCgQlSf1o+qrdUCFpilPggHp6tQCZ8s7vNJ+70+u7u7AMEj1+v1gofOctg3Of7r8Vyr23TxUR/nVYht6YJBUK+6n4+gXv37FZ+dex7Cg4IgPEQYz+oa3suIgcUiI0kTur0evUGfJI7BGBaLOZ12i26nDdowPjutwRdz7vZ+LJrdNeGcgFqpnlsSJ0gZIUzEZDIFYxFHnmXV2Dv7k3FpScLFxmVZTiEMWWarBWl83U57FwE2TtFHwEth229qbUOA9IwR1UBK4Wq5xhGLQiMlzOdT8mxOkWeYMkdEiUM59uVBWHhUDp1WqnKwE1SmGePHowbfakNsiUW9M6T+oA1F6eh3LnRSmca7ai40QpOxearN5Vy1xgk3U6cmcidQj4ao90FcjMzqu/2LHqs8j55e+q/+6q+Yz+d88YtfDHFYUkreeecdkiRhsViQ53kIfZhMJi+0qGstBmynZRBkn/IL9+A9bXTdPielj68yISLbC7Tq9/Z8W8zVpyo5T5Y2HB8dcXR8zIMHD2i322xtbTEcDjHG8Dd/8zf0+32uXr3aUAnr7vCLPLn1cz2as30XAT36fhRFgcFydklRKyIj7AB4OyYYyyDqURk1xLriva/zaI3PdqZJBMrtnt4gFOLccMwSju/f8lTZv/NC0+126fdnjE5OmM8zi/DcQ2qorO7+3p5jjONScw9f2NJMlvkC7e5pl402hVP9BAhLAz1cX+PWrZuMRmPLLy8FWvuNQWAHKkKqlHanzaXL1ynzDCHh8ZM92mlMO41I04g4snPObsAmCPhgZxdOJfYbgLNZCQeVfPm7KIpIEsWg3+H61V1iZZhNTnjyOGdz6xKqPUAkNojWAhSB0QUmpD5VwtuYmvFdVGEhlWjxqjxufoANBdH2X8d8q7VxISwWBZfGIG0AnZ8tVgQZ/84/Nx1EaxBebv6VuhJ3fv2BCJEE9aPKDTWcHB9TtlvsbgzJM4OMlPUMr1wtP+ZRFEWj8rUQlk6n1WrxZ3/2Z9y8eZNvfetbXL16lQ2XSPqd73yHNE3DeZubm3S7XU5PTz9DWEZ1nnIerU+3l9mB0VoTx4ndZXUN0laWWpe2YfAeLntIjKn4vLS2rnaMCAvt6ZOn/Ojtt3j06BG9Xo9r166xs7PDfD7nT/7kT7h9+zaXLl0KDoK6Wg646tvVAq4b870Twgszb+vyqrXvS5ZlRMqy31ZCvnmdyWRCmqQ2/9J5IOtCC20FhlIxpfuN5Tmzk9yvWiEEiVJ4diAhhWMBdUJGSoSS1iOsrY5ghCTLSobDNcoi5/TwgOlkCmVJrAQCm14lhVVtwQrHSCmMK2tXOvsmrv9lXjibpyCJYytQjKYs3Bi6V6uVsLOzxebmOpPJzI6RrDi2LCBUCCKiqE1/sEW71WUyPuPo4CkfffyA9WGPy7ubJKnECMusq02BUrGtrykEhZs1NkwosgteO/zhA7qxAb9GGJJE0dERUdxjMOjy6OEzTk6e8Wg0I5bQ3RCksa/FaqnZyzIDofD5nJ4NxhhHi+U3BCGc59EH3DoR41Cb9TyW+DQrYwRCxuisoMhzojgGYUM/JFYdF0Ji8PZtx1UG7lpN/GXwAtCiPG0Xm72GLsPa1caHxzgB51KXDJq9vacsul3uXL9CWRiS1NIOfa7CbFXMlF9g+/v7QYi12+2Qc3l4eEiapuEzXxGpXvRjxZ1q//X3qf79NPWyvpjdJ5VdbantIcwBgm2jft+mt9VNHidYZrMZR0dHHB8fkyQJ7XabNE2ZzWbs7e2xvr5+DgEvCxuPQi4KfzkfEyZW9NFURYptd6u91CHLpB59WL+eH2ffzroNzxAWvu+/j4n3P9RGI12Fce/NxCNR97tSm/DslVKUhaWBkkiUNJZ5wj1Xs7S/+T4EPBmeI07V85/Vx8m+V65GQRRFJHGCiqJwH3+e7Z9FVFGckiaxDRiVVkVtpRFFWdqFaTwf2Wp12F5xeXmfb58QNok+lTHtdswTYSiKBZPxGbnzcOIdL4EyyGsN9fqk1VXDZ7V21P/1bK0BpoWgMXsRGwNmHKV4/Y5eIIqAlKspZGr/ehRWdVJ7L4Bonl3Nk+pz3zTjTBFZ7DgNtcbENnbvcxNmqxal/xzgpZdewhjD3/7t32IMjEZj4jjhypUrQRVdW1trqE3140VVXiHrFYE+7TfnPYa+zd624R+wtYWEE9zmYlHKxsYGnU7HpgRlBZcuX+KLX/wix8fHHB8ekWUZX/rSlyiKgkePHvHuu+8yHo8xxi5ij8BMmAyVEFvtWWwiq1V/1x0HPoWp4QWFECZjU5vqFgsH/IWoeNkD2hPBwF4XJFVRD0MkJVoLSkdUaO0jwvLA2WFjbX2ds9EYLSM2trex6EsQKYnWBRibwiIoHZNDiVKmWjDh+Vp1zecPau0XubD8Z8ZAaVOS8KqKQ54+mFprjVhmMQlebRtmqlGAQhuQUUqvv87upavEMUxnGdpkFGWHbrdF7FVwrSt3m1vkpbExcHUWXAygXNC2qGsCBl0WDPpddGlQIqLIZpwdHzJZaAbDIUnaRilbR8KjLPvsnXATlYoXzE7U12u1GVuGV0G326kJNvuLvCiYLRZESYKMYlsqsKal4EW4sOjJavK2n7qsCzUC6vfPwdseqcuMMB2bGzsGLu3u0lKK05MTdFmypvu02q2qBsBns081D/9brx552029uvcv/uIv8uabb/KHf/iHTCYz9vcPaLfbfPGLXwxsBt1uF6ARqlC/fn0pNvFR9a0KyeyrVMxqwdrrW5jumS/rg2ZVKek2KVtpyJe10mVJpGwGv9YF169fx5ebG48nvPbaa1y9cpW//uu/5uHDh0RxzN/7e3+P8XjM+++/z3/6T/+Jo6MjjDGBRdOrlwsXe1UURaANqo9F1XYRUJX3eq7K6bSMsim9fr9y37tjPB5zcnLiYuG8/cahLyGQUlEWOhQnWWS5rdIdRUEtt15Km0RuSo1EoyJFkZcUWhOp2CUTC9JWiywv0QZ2Ll/mk6fPOBqNWdvcJBUQSRvlXeYZOArmMi+dZ7lESu3cf5oSQeQUI2NECM/QpW2PVAoplEuGt+lCKlI1JGLZK+yGVFgKbKAsnY1HWnteaQpKo9BGAAmlyYmSHhvbCd1+l5OjPQ4PnpAfnbHIhmyaIVubQ3ThPK41k0XpKqQoJYhUTGnKwJYrlbBCSbhShEYjtKHUOTubQ4b9PjsbGY8ePuHodMSCPV774hdJIkEUCVezTgfhUDptQrpYsEC/pAnoOoRPOMFZ5DlRougPhqHgiF9Es8WC8dSq4ipOwBWC1gJ8Ur5VNQFhq06FzbgM/koElqLJgmbp5pFBC4NQNYowv+mYSjsyxrILv/LyS+SzKXtPn5LnC4y5zHBj3VZn8otj+fWTHMuCaGdnB4BHjx7x7NmzEOm/vr7OYDCg2+02AmVXXcv+0ViP586rTCI10We8QXJZKNiLLcvxuuroTwsqmvH2BQJKsDU1ExeEmTFcW+PKlSshRagsSy5dukRZlhwfH3P//v0GVZBXxT3d0CrEdb6f1XfLaumyl1Mq2aA99jPec37Vw1ea6Lq2kdTUAmsjqRl0qTkwqAgurUmoqupkUZodwnany3y+YDye1O7hMy8swhNShnH2cX9hdzd+cVTzFwg2PCGEY51wi8UYPFKpdrkKmYQxdL0SrkEVeY9NwNbGxpylrQ6DtXXipEWWF0wmM2au9qdwyFUbEzj7fZiLf9k2yNpnft1JN44WXRmtabVS+t0ua4MeusyZTSeMRyeU+QKjC9cy+xtPBolpPJ3Q2/r4eZXQ4TmXl4vjuRONdVSWJXlRIFUUBL2ujU9ogRvfhhwR1Nri3temdFPtDhjPPcf6WfZYG/TptFtMp1OmkwmLzKZYfa5xZvVB8obroiiYTqf0+31u377N8fExQgiyLAMsm6VPr6kbruvXeFHU6CfDjyuI65P6vLu/Ul+qc51dpvabJEmQSpLnC/b29tjd3WVre5unT55y/949xuMxL7/8Mvv7+42E9YODA6bTKbdv3w78afW+L4di+KM+ZnWvqHHCytsiG33BsHDU3k2+quUBIaQ2+aBaL7j8otPG4PN1hHCCTFdkic38TTgbjTibTOmsD+kP+swWOU+ePKHfbjGfjJlPJ7R2tm3aTy0ty6L+imG4pgtbBKkNylTe3cqO5p9ZoI912osXmkGKh00PIUKUvk8qNwIbCixUULEFEWmrx9pwmySVCKEYTRbsH5zQTlrEKkYFYeh2QOdw1M6ZJKRAGmvrspW+fTBw7X9hozCsDQaYKKeVw3h0gtGaeWdKd7BuY9qEdVjI4EXUNeEpAiprPGQ3Uv45eW45QtstqswLzSLXIHHIKbKElVhPvrVnWhJKHQbaxpR5rcCaB6yH2aualXrp4UUtrKTWXCkt205ZlpyennHv3l3ms6lNxZtMPj8KIL+Q6kGz1lhn1aadnR2+9a1vcefOHf7sz/6c2WyGtRmlDIdrSKmYTEauHFtZ85jVF+9qoebvX+dLW4lqllbrsqAI6OKcIDPOnmDV6CBktYO+biUrpVxFdsW4yHnvvff4zd/8TV566SXefvstvvfd74EQ/Pqv/zrf+973GAwGCCGYz+e89dZb3Lt3j1dffZU4jkO5Oh/4GkVRQ/32gsiX6vP99uPu81y3trbodrr13mC0VTF9/VE/OHV0JuxDRArpAjE10lEA+VxW/7xllGLIQQibz1dotAtaXri8OrC5nU/3nnFwcsK3XrnJzukuT58d8qO33mKz30GUBfl0ymDwJcv/X9oxsBRACoOtECUMNt7JqYMqimxgbgS+yrXAmZCEt/Hh1Bqn8EhBmZcOSboMAq8MCcsqawwYKTBOKOcapIyc79wgpaE72OJKkjKfb3B0+JT9w2OOjs+4fuUyw8GA2I2fnTg4P6NlsLWOBZe/7AgPjXBFcwXumeJyHy32uXp5l/VcM5rn3HvwCccqpt3p8/IXXkfFGiFjW6dSRPiQDbQIDMoaRy5WQ6VeyJbGUvLEsatF4DaBUkNWaKaLgnieg0pJVOTUQpuVYUFv4dhiXWqY8OlIICKHlN1GCDYwHWc/lNj7+5qrpvR4sVq3tppbjyyb8fTpY7733e8wGo1odzqsDdcuDpr9LMeySlf/1+ckdjod+v0+w+GQb3/7zwMNtlKKdrvjkrzntYC4JhqpjucLtGpB1uGq38Y/vf31z5pqW+VRawhKAwTjsgw8YbosOTo6YmNjg8uXL/M3f/M3PHnyhOFwyI0bN3jnnXdI07SBzO7fv/98Ybw0vl6AL3s3fZuLonDkeXHNTmLHZbnWp11ADmEiqmG2A2nvJx0ThHGRQ14w+IkvKqN6fYOr92A8nXI2OqPdSel2O0TRKQcHB4isSyJAlAVpkiBVRJ7PvU7mkqdxyLu+QdnJ76PKA86sbUzGC2caFtMKpPjEeT/fGgiOUFFcI5Cevx6NQRGnbVvXM4Hjo0Oms4yiWLCzmYcYvMq76S/sPX4mxP6VZS2uUdaiwLy+7q7U7/aIS42IF8ymZ2gtKYocU+agbNgEdTXVOG+nqeLtmkflCdZOvZeBIsqjM0OpoSgNWaFpGWw1LaHC2rBj5bn9nYPFzbVKwRRUNBqmMglQzc0w54LCHx6X03xi8tmE8XjC48ePOT09JYptJbDPlTVjGdV4VckvWqsuRFy/fiNUzP7www9dwvYgXOMiAXuRSGrq54L6Wvz0X1f3rC/Ac+eLKmZ6pRrrFzyEiPBbt26RZRl7e3tMJhNu3LhBp9Ph6PCI9fV14jjm2bNnfPjhhxweHq5M3Vquc7C8cdRjzLxw85uB51ZrNrcKlK3/duW4LH+wjGxdG0pt7RV1IRiEh/vb815Z4ZowHs9RccRgrcflK5cZJIpEQCLsj4wunabjEYTrr9GB5qd+beswscb1MA/wwtu2tpmijRNidpFpj5+E75ctrpEVVrgJJW1KT5gHVq3EaBARQia0OwPWhtssFhMWecnp2Zii0PQ6LUenU5nBg6XKmS/qNl3RWP4Cn4IkXDCpFBArweZwjazQyCjm7OSIuJURpx3aXV/lyQYwG5tHFK676lmCQUUKGXmU6sfFkGUli7xgkRWIyYzSCNI0I05TImXtnFHsGIGxKNr3VTqxb2jOW//sqs3uvK1eQLXu3Oe+Lq0uS+7cvs1kOrWU+4Pe85HZi9qelm04QMg79DUnfTBnq5XyS7/0S1y7do1Hjx7xR3/0R+zs7DiOLV/V5bOhRb+Ibb1CUXtQz7+OH7y6F9AKAx8AWHHbSyUxTtYsV4QSwqkopUbGcfDO/vpv/Brj8Yi//dsDTk9P+ZVf+RWMMfzorbe4dfMWrVaLt99+mz/+4z/m8PDQIigqIeXVSz+ey3bJeiK/F0qexkhKydraWqMKuGXytOweo9HIRZon7pldNFbm3DuBR6V2dy3KgshxwFnPWfUbbYwrfmJfnW6X1nTO3rMTWv0uV65dpt/voSdjUgn9dmppYEobKGukXRje+eDDB5RU1l6p7Qa5WCyQyhD5VKVa8d5gC6tRqmMsVY9tI5SuGK5xzo1SawptmM0zayOKFCKKbJCnnxp+DiGRqsf61jW6/Q2m41NODh5xcrJHp5Vw8+Y1uu0Wkavw5IOXcdW4PbqXQliEj3b8aFZAWHJWRSRtmIsC2rHg5dvXGE/mTGYLHt7/iFZ3SG+wwdVW1xnpraCvov+s2urRklXJ3d8G0lZMklp0p52XWBsYTzPGk4yz8YyTcYaMR0RxTK/Xp99vkyQxrSQiTQVKSSIpXa5ndWjjgnVr5gnt5odxwNEzQntQ4MNjfFsB5vMF9+7eJc8yfuPXfwNjDGvra2xub51HZheFAjzvqC/sujfOUsrEgQbHG3Jv3Lgecho//PBDRqNRkNbPQ2bPE05eoK0UZJ/SlbrK5q91ri31HWNJ/fWOAKNNQzjevn2bH/zND9nb26MsS27evMliseC///f/zte+9lWKsuTJkyd8+OGHlGUZPL7L/YKmMKu326vqdYHuj1ar5cakQkx2w9ANO9vzB2fVh3XUU3nBhABPh1BXHcLElJIojonimNF4Tm9jjXanTb/bY3p4QCoFG/0O47NJMM7bRV8pQ9qpUJGMwq5uw4CsrdXv4vWl5HG2bvTFpVghHHaoumbcfUpdkrtScwGZed4uAdqWMrZ3kgmdzhrtdhclFc+efMLZ6ZhsEXElL9Ete88qSMHdS5vGvW1ojFf3PYpz74R0pLPGIrP1AUpFlFpzdnJEXoBSMcKU2HKBzitcy+UUwmvuXt3zz9igImmzWIQMqqI2kOUli6xgnhUs8gwtFraKFAoVRxhn+1OxqyJvB6w2XartTTj1PoyEqdB7CAtyA1T1nbA5FUVug9CB1155mTiO2djeZPfy7ufnAKirmv69Lxnm46Wqxeh4plotXn311Yos0F6hcU2PAKqbrRImovFv9cTCWNQv3bhW/Qg2FtP0yHp1auWPlg5/DY9Id3Z3XHK5CUWCx+MxBweHIGzgqs9T3djYwFMC+crtFwn2ZUjuNwsf8pIkSUBl9RYXZUWAWRd8dTlp55KbaG6y1xfc+SHw6r17OQ+vihQi9x5Iy55RFiXZwpJ0pv0WvaKgFduKXEoSqH1CQ2olyzzrQuiRE+BRFGPIyJ3ToyIDdEGvznMoVc3OB+SB6sdQktuqRdKeX2ocOistg4bbKE1Ib/BC0DN0+AVrEDKmP1hDCo0UJdPZDIGmnUa0W86uZScLCKtCEsJZrPSv76HB6oG1R9lnZRFdpCStJGHQ76PSBIzm6OiQtLNGlLSJU2sAsNd1ZAkOiVnBbVXdoixpJWmon+DEIKBZLHJKbRBCVTU1pKIoNbN5hjaaosgpSkUSS9IkIpYQK0lUs8Xa0XGs/167CCCmFoYhAFOTKcKq/RgVWGlMvuBpv2djU6VAxVEVNGsH6rMnl9sBr35TJzD0SePtdvvc9X2M2e/93u9x5cqVxm+hGXLghyGIbJoCre7J/DTVcvlY7vNy8ZQGMnLG1CqIz4TvPIrwOZPtdpurV6/SbneYz+aAYDAY8OTJEx4/fsxbb/2IdruNdKy6/b5l3fDsIovFwtERnXeGeIRbb4NXUff399nd3aXb7TaKlvhjPptzfHzsvK5R7bpVbBguiNhD/sqCY+xClPXNxKtGNXRbGJSQJGmEWhT2e4ElQpzPOT0943jvgJPZhI3NDa5d2mWznZIKG7gphAEXoExpkC46vjRWpRTg1FCJiiNanTbz2YLZdMZ8PqYsyqD+6YB8DEpZOiQ/v2SZOEFtMNLVx5Ta2s+Ej5mKieI2KrZVpErn/JBCURq/4F0IhHMERXGP69dvU+Y7nJ0es7//mCOhWV/vce3SLiqyQqKyFUkXlF1LnfMhP0KiSx/N5RGbRhirorYThVrrcuvmNSazguk85/333mb3yi0Gw03WkxYeJxttEbINnTAobA5koQtL+7PWJ05TfDCrP07ORiyyEqESIiEsrasQzDPN4niElLZCe7utaKUR3XbCoNOm3UpoJTFSKIsEnc1TO960wuXWaj/PPIp3Etxnc8jIhirpSJGmKffv3+f0YJ/T/X0uX77MxuYmzw4Om8jsIkPzixznvX/WAO0rAS2nKEkp6XQ63LlzJ9Q1hCXI2Tier2JWSOWzCbPGHZbaH66P1+MrYbrSyypsDQHpUE+vZ3cO7cIaYmdPOz095cnjJ/QHA/qDPuvr62xubobAWk8hVL/P8rNZ9nZ6lDWZTIiiiE6nU41hTWDnuXW8dPu9JVKAWl+rHlHfQKg9m6aQ82qQd6CAkCJQDoVYpbIMAu3Z/iEmiTEItteHRP0OCoPOF+FWJtiTKtUxpC1hObuko2GaTq2HtihmzmZpqy7VH5NSIlQoV0pBngcVy8gSpMbI0golZauJx7EgTq2wAWt5qhwQVfAwltza2vNUynBtC2F6aF1y7+77aL3AOpVt6lbTEeHitGpKiF/YIBydtIvtcqMjHKNFHMVEUczGegyMmU4XPNt7Sqe/Ttru4H2C9nl50kzveDDBTFCUhWOfiKvn7Vo6my3IS21tn0KBtJTgtgL9HGMKpNAsMkWnFaPLFolSRJGt1GXtXQ7J1hBZKDVXM1vUUb8/TxgZStJFSnF0dMjTx4/QC0s9n+UF87ywyGwVEqkjluX39Qld/019kXmVZzazk6ssSwYDW+YLbMCiMTZi3i/eizx2oW00j+DBc6+AUmvq4vnDKxZL6uu5c+oj21QxL1T98A/GXtv4HDt3DUvEOGc+n9Htddnc3GBtOOTJkydsb28zGAyCiujj7YAGulq1ydTbMx6Pefz4MfP5nN3dXZffaH/jY9fO28m8Pumb620pNSSMoZp2wQKDFWIVTU8YJq8aeO3T2cw6nQ7rwyEzDb1Oh0hKppMJRwo6cUQ7EmEB2v46H6SzpYSJD0Eg2HSrxC5WiY21cojH6OrZSQkysmOqlAIZ1YSZjfFC2nmJsqqUilsoGYcYu0rLrvprvFrkMwxkhHFoJEq79IdbFPkUZMzpaEq7FZMmMbFDmd6MUT1HGUbd/s+HBflMBixyrBEtKiGII0k7jVlf66IoKBZjxif7JO0+UiX2ReQUTWH3XzdOYBlnlPDeVOEEHRQu5UoL49CqfQ5GSFARtjxdSYkg05J5bpjMcxAKrSFRCiUtei+FTUXLCl8/QoTxFH4wvelM1DZKPxIGLl2+AnlBLC1ZgA1bKy0yq6t2y4vD//08pObPr9vGoiji2bNnPHz4kHfffZeiKPja177GL/zCL9BqpRRFTlnmjEanlKX3zFUI4dz98Z2sQiekEMRKEdUGq77jrRRoYTU+H+nVectAUCsjfP788Du7wIR7+Lkp3Zy3OYOj8YTDwwMODva5efMGL7/yCru7l/iX/8//w8uvvMJLL71Emqasra2RJAnHx8dBfVwOoah7YD0Lrtaahw8f8vbbb7O1tcU/+Sf/xNHa2N+Nx2OyLHOqmuuPMYE3LPTGqRkGH65ikUFpijAShYESSSkkShTOEG69gJ5yRusCoQxIhYgUMoq5fOUKvcGQq5M5syxjni94/OgRew8LttbXePnWDbvYhLE2J+XElnb2Hu0hpAyyVihFqzsg1R209puiD/ytdQsnAIX1nIVrYRqVvrXRQcWTUUQUtWxgbSnDrBBOcNpfC4xDK1KAbCWUCqTo0BnG3HotYTo+YXTylA/uP2Kt12Z3Z4Ot4dBOD+3YaY1VjZWI8DYxYSTSCXQhSyhLtDAgFEa6TAWtiRUM2jGp6tFtX+dkNGZ6POJk/z5Xb7xCp7dO0lnDh5RIpA2ExpZ0k0iSKHEC1gaIlxoWecksz1jogkKAcXRs2oCRsa19qg1alyxESZ5rpkXBeD6mFc9pRzHtJKUVJahIoeMSIw250Sy0RfDKyyzjFGLj+iUqh4IFK4qyMPzGr/8DPrn3ER+88xatdop1+OeVmnku1OA5i335qMdo+VcURZydnXHv3j2++93vBuLFr3zlK0SRZUYoy4L5fObCMXwk9gX3qKYnNd0DKWxx0FBR6HkNXfHlpyG46q+wGlZfuqameSrjio3BfjmbTRmNR5yNztjc2uTGjRtcu3ado+MjlJLs7u4Gr6UQgmfPnp0TYsto2dvpfPDs4eEh77//Ptvb2/z2b/+2y3e1v5kv5hSuEK/bXqujbnF2qT+B/QABQtuCvt5O6ISZEQJJGYj9rLCwNiFtNEIaUFgeM6VY31hnbW2drUyzt/+M/aMDHh0fMR2fUZY5N29exyo61gsnhbdjOgFjfEpMhZ2FlCRp26Jh0/T6iqYLs6E51J+7lWvC9c0jE0BKG+qBQOt6HGAl/I0fN5evqKIYrewmkHQStrs9RqfPGI1Pebp/TJZn9Ne6GOlSlXBzBetJrNcT8wVJLEjRIEp8LiR2mBGAEtBOFO1Esb7WYTY5YjQ+Zv/ohK2NDdppjKINJkXgCTJxBn3bj0hVpfaEQ2V5acjKgtyUlI4GvHSoyToEbIlAk2sKnaHLDF3mTGcFiZSkUtFPNZ1UEMegWxoRGUphKKAWIGzCkBqcOi8q1GjTumwoyRdf/xKdNOHxg/skSYySAiibcWarENiqhb5KNW0GnFqUNh6PAbh06RJPnz4NHrTFIgvnNI/ziPB5h2BJ7aoMDc85Vvdn1fvmOe6nFywGqq+aoM+tOGMsp9hgMODOnTsu9k6yWCycxzdujKNSKoS0AEupR/Uu22fmU8DW19cDc++9e/e4ceMGvV6PTrvTyHUMi5rmODftFhdL76Un5dQg0UR42LzJQhvy+Zx5WaJEhJQRKkrtruycJUoauh1bl9QUBRibwlNvi2jeMahDYdxrpoHQlvqzDc+p9gzr34WfOLtf7Y71QM/VI7FiDolKjVMqptVq0++vkaQReaEZj6ckjp46CqEMXrs4f93m4VTM2nn1aIEkTmi1WnS7HcoyZz6fIaMxSSe1G0uwKVqNyGsA3r6G20Ryx1QcTDqO0kkbv0lXz8DKc5tr6kvbgM3rLAqNEAVFbnnqQoSLV1sbfWn225sUjLFZLZPRGXlRsLm1Rb9jK5pLKSph5hdEPWYpUB4LsXKRW5bWOJzjE6T9BL179y5KKX73d3+X//Af/gP9fp9Op8Pjxw/p9/v0ej0mk0ljAqyyl6269zIS/Fk9qlgaE5DpH/zBH/Dyyy+jVMSTJ0/Y3d2l36/CU7zdbGdnJ6iGtmS9ZRddtmHGccx8Pgfg53/+53n48CGffPIJ//bf/lt+67d+i1dfeZVXX32VIi+CULXjBgjjHBSO7TNMKtHow9IWF1R93wYlVY0X3s5sISRp2mZ8csb+4Qn7T49opz0G/TVeevmlkMp27doN2mnEWq9Dp91henJiHSk1o4HfpX3MlPEbeaNhK4RvQwKunidLW5K7X+3zmoTX3lkiRCNw7dwcFB5ZWnW+1Wqze+kaaayYT06YTE756PgBm+tDNteHxJ3EViQymkLboGvhDCcI4017CCGp++y9vU0I4Zh47d/r6xu0Ol3Wt7Y5Pp0wmS6Q0RG7V6HTWydOJZGKyQobOrM2sBRRtt6mLee2yAtG44lz6CiUjEjSBIOlFs+LKvhVCG0LukiJUTFSC5QzGS/yEl0skAtBPl8QpRFRHBG14tATERC9/UQinMBzWg6QlwXjyYR3/vZHpBJ++Zd/mWIxYTw+4+zsBFkXGMs7d90ouSw06rFY9Ze/RpqmoYL3L/3SL4UwjTRNGY1GADXCwM8qjKqUlR/v93+Hh6nGqtPpcPPmTf7RP/pHgZTy6PiI4XAYwlf8OMdxzHA4DDumz2X1r3rIiGfmLYqCV155heFwyHg85k/+5E94//332T/YB2yMGTjaIQjDVj3zqs0svW0KUPuf+mKXwnsaCQsRbEXxPC84Oj7m7t17PHz4iP39A8uuISVJmrK1ucXNGze5dOkyrTS1fbSh6TXtt/6sf5zn/eK/qQeq+jEIMU8Nq+zzrtHM5U2SlPX1Ta7fuMVgbZP5vODxk31Oz8bkjjMOb2s0JRUPv6m93LUFVeW2WmOEqOiWet0em5tbXL58mSybc3J8xLO9J8ymI8p8gaBECgMuUbzTaYPwZJT2okVZMp0trC1PKJSyHvkkjkliZZPghfWsCqxHVilpKayjOLBvFKVmkeXMZgsm0xmz2YJFVrjxrWkbot6X+mS0o15qzWw+5+69+4zGY15//Ytcv3GDjY1Ny1DdeAAr7DH147xaJYJAg4qz3u/8WtuajKenp/R6PZIkcQV/pzXixk+ZFEvqq3+Y9e+WfmF31U/zjH5uaK5mO3mOyh6EkFOtDNa7OJvO3NikK9sWRVHgOVv2RNaDfMEKttFoFAThpUuXAGv439vbc+c7BlVjgidsuSdVO1b39mLl0wsfEc6yiF+TZTmtdttGjmvDeDxlMV+wyDMKrVhkGUoaIuEFrWgK3GZT7V/ChO8q4VoJoKYJwn8lzomjCrA5lafSe2DJtvgi8yasI98c5+kUKKSMieOUVqtLq90BJPNFxmw+J5LKpTTVb1mFNIXnXRuLGnat+m6qjV4KQZok5IVBFJBncxaLKTJKiNoRxpTWyRDyeyvRWWobTNsUpQSVUvo6GQKbdiVq7Qj7gahe7kNjavMk2CdrtjN/GeqWI6/OCkdrlVIUBacnp44zUBPV8wxVDaZ6tbGOBuqooI4MvPpz//59Ll26RL/fD2rrkydP+Iu/+AteffVVNjc3OT095d69u6yvDwMH/qrDC8lmSEh1rpTSscp6fb0ZL/V/8ljVJ2MMeZ4hak6Os7Mz7t+/z2uvvcbW1lZDWPlrdLvdEK81nU6RUoYCwlCZB4SwHHFvvvkmGxsb/Oqv/iq/+qu/ysnJCR+8/wGfPPiEv/f3fo12pwtComuhMCETwJwXGRf0EB8qAThPsv29F9jGTVolFdPZnOOTM15++TVmk4wiL3jn3Q9YFAWFLih0zmI2YmM44NLmus3tEz6jUAfPqjZOHXGHcALP792YZXVYNN6+sE+rIUxqdxS2+lRdtfOHNpYuPMTuuXOsYJRgFMZEIFJ6g22u34jo9wbMpiOePjvm5PSM3Z1N+r2uLdbinR4GIulSBEvL3OuRihUNPhHb+5ONEwxVuMXVS7uMZ3Mms4yz42fMZlNanRMuXbuD1taBlsSRZZd1hJalgUVeMJ7OKbTESIlwBXykE15pJBw9EuSlDvfWBnRR2n4DUltUhwGhc3QpsVFHyjpVnBqtGsgMrwLgCwR5ooJXXnmFThKx9+yAv/jL/4UxJZ1OG1kXGMsMDavoaJZVT283i6KIg4MDkiQJ9SK11uzv7/ODH/yAmzdvMhwOGY1GPH78mNFoZCmKL5hgy8KsCTvdRA7C7GdAgj3n8GNm05QcJxk2wPXp06fcunmL4XDYCCz2fWq324GFN8uyUOil4YlzHtCiKHjrrbcYDAZ89atf5Xd/93eJ45gHD+7z3//8zylLjfKBrDU1sZ629QK9CWomftkI6Sr++Lb7sA9ra5nPF4xGY65dv8Xa2hCt4eN7n/Ds2T6HB4c8efKEvb09To6PyfPcGsSldEGilTDxAq2Buv2mWsnWBkJb3YNlxa12VLCfZWGIcHTcHh3XtFHvxW06aRxyNBJjFAYrzDqddXYv3+TK1dvIqMX+8RmPnz5jMltYoKMsXY9Go00RmuF55JquEC/SfKGRqv0emW1vbbCztcHGsM94dMThwRMO9h9R5DNMmYEpiaMIJZVNTBci5GRO5hmlEXj6AOscMEhpmTvSWJLGiiRSxJELk1LCxagIRzIQIVWMVDE25MPa3DAumV2LZqEa3wXfIw/0hNVUbly/yebGFkdHJ/zgh2/y0cf3mEznFyear1KTzj/3Zk5mURSWXyiKgoF/NBoxm82YzWbB/tNut88xT6w6Gm1Ygvp+V/5MsP+Ft+ZPO5pQ+MV/VW0EBpuC1Ov1SBxNsc/HrB/eGSOlDONXt236v/15PpMiiiLSNKXX65GmrUBL1FQRTVN/M/6ZurH/9BGoNXT5WYhgg/HIIYpstH7kSAY6cQsZCYwsAzGBv2+lOj5HsXVfmeWP/PP2G6Hvaqg4VDu/rste2MfziHWV579uI/N2t9AeY4NcpQtvEAaiOCFOWqRpG7SgKEvmiwyBduESz2mV8fcyNT3ZjlOleFZAQElJFFkEVhj7u8Viiog6xC4Ep+qndQSULqXM+JjEBotzTchAbT1iGTOkCFXSbSFkt7kJi7eb5ohm7xpzYOlZWHtyRF5kTKczWrXNPvJpM/5E/6Dqr4tsNfW/y7JkMpnw53/+56yvr/Mrv/IrfOMb3+Dtt9/m+9//Pj/4wQ8Cv9ZXvvIVNjY2V/J3+aNercjeq9qNLTtElWLyoseqcIqf7Ph0YezvG8cxeVmgEShFYMn4pV/6JdbW1tC65OzsjPX19aCqBHe4Uy03NzeZzWZMp9OQRA4wm83odDq02+3AUwZWffzyl7+MMYa9p09rDBpuTI1PlfbOHkJaTbOP/lWTesYEoaeLEpXUVKygvtoK4FJIOu0OSRIzXF+nLOH+g0dcubrLcL1HaXIefHyfxWxeGf5LbamYakjJLzh7eUNpQYKz38iAFutiuBmbuCwhzNJfK9CYR3y1TbuunfjnGzYdZZknLLdXSZEXxCoG6QqvqAR0QWly4taA7d3rJK020/EhZ5MxZ+MR/U6Lne1NWmlin4dvvbAEisYJee90CWPkVHutncca49Q4QawEvU7KjavbTOYF81zz8P6HbO3eoNXu2HhAjySByXTObJ5ZW5uMkZEtZCOUQlAijKcycoJZQSlszqoEhKcuKiUIhclt9qoQEUYXaC1skZgQ5wYIHUwVuizCMzcYW1LOCdO01WJydspHH33MN7/5C2xsDNnZ3iLy9pa6rWaVMHseAvLnTKfTQAf9+uuv86UvfYnRaMR//a//lbfffts2JE34nd/5x44WWV8oYOq2IOGtkq4Jlff0Z1u9BL+0rP0xK/LACqG1Zmtri8uXr4AUnJ2eMp1MGQwGDbJF8BWWkoDMjo+PA4cZWOYN//disWikQb322mtMJxP+93e/F2xbfoPQQV2shFl943AdsP+pobpKzbSHdjFw1vZmU9WQFg3kWY7AMqQkcYQcDChLi9h2L21x7foOShkefHSPbLEIAkkbbe16roBGMAKHDbdqpkdECIK64lXNGo6o9as+b563IV2A2FZoL8Hs4XjbPOdBWeZEkQpXkjJGY5PH47TLxnbEYG2Nw4OE99//W06O9xn2O6ytD0jbLbuYS8I97HNyZAh+njg7le9iVa9BQ24ReaQgihLSS5scnU44PBlz/6P7dPtDhnrbSqTAAgKz+YLZIicvrKQS0qqKttJUVZhZuirpWoJQAi1cqUdlQEsoBVoritLYhHlhnQ7GhW34AF6/lA3asQZrpHeI+PngAqLTVkpeFDx48An/n9/7f7O9vUmv1yHyLA8/yeGpruu0M6PRKATJDgaDwDbbatkAUc9BtWqSPE9wVojl/FSr/+yn58X8SZBdU931nt/CkUF6+p86MvPn+7/9mDYRUCXYOp0OeZ4zmUyYTqdBJU2SJLj/66150d6cO3eVnln/zlSCr943o6OgIkWhIlWF/oQQzZzWF3he1T4nGqFkwqkyHm9U9qTlTlRXqM2URsfDmRcg+083ZVRqp6uSAkIiVYSKY6I4JYqTkOid5ZbJQkSRY03DjcX563s8yvKQBWuI658wIXQijiRKCZS0gqTCf/bcstShiHKFWH27/bWr8QtDKsJNg+lBSKcOB1OECHNj1dMVtTd1VHw+nbBZMSzKsiywjXqje93lXzfE1xehvYc9bzabUZYlr776KlJKTk9P+c53vsPu7i5CCH7v934vLNx2u92IR7MNaU6E5dg278n0O7AP8AyFW/1g/owBNY8ovT3RF9bw78F6OBfOsF+6ugE+Js8nnBtjQmhGq9ViZ2fHOVDsd5ubm7RaLYwxfOMb3+DBgwfs7e0xnU7tNQ+PuHz5siNrFBXS9hPLmLBQLMHhi6nvbn4GlBzmjLMN6sLGSWXZgtHZGU8ePyWJOywWBXESESnHpAphnnXaLU7GZ0gMcSTRtWdMY1Nq0j1d6EiqfvGpgjssnGUBWpMhpfciS1f/yFivq5/T3u5ZOo+ElDEhlkooFr6IioptrqswiCil3Rty7cbLrK1vMh+f8GTvkOOjU7bWh6z3+yjpvaTNOFCtfYR+FIqV2JoPdkOwgcwlmNIFRyvaacRw0OXW9StsrvfptmMocwdxFQbJYjG30fpCkRcGGQkwjinOUT6hS4y07B3WJujovzAY4ZL+vVlFgSxBC4UoLZNKXhTESlpqbWORIW4sfbk+b1aInFnJcqeVKBWxvrHBRx99zHw+4/r1q0ReRfEqzHLYhb+4/47ag/MTcDabAbZq+fb2Nu+//z7/7t/9O27cuMHXvvY1/uk//accHh6SpimdTof5fB4q79SvuyqOLUwzUcVIBTXTq58uzO+85P67OVYpL+FwC6EsS2RsE/F9zBVY5sz5zE4crTVHR0dEkQtOdMIMCNxmrVaLVqvFZDIhyzKMMWxsbJC6YNOvfe1rfO973+PJkycBDaVJwqVLl0jTFLub6dpzruKuvHdayKbtqP7XKoFQD9b0wkwbg+N9tcWRRyP2nj6j11sDFHHshJlwuX7G2mVbaUq2WBBHkjRp24hybWx0fK2dlTALuOS5z2b1d2bp76q/5zsJmCqRXiplqwth0KYKYyqKwtZQ9RuyjEBY479BWG+tkiRx7LIJLHJpd9e40m4xn4345P4HfPTe2whTIoWi1+0iZbOWgxQysOFqY4gjSyMunKOoyHIExtFmWwcLrthxK1VEcYco6dBZ65OmEegcJ31AGLL5grIokUh0ifU4GoGNzXfU3tZA5wbHG/Yt+4jN6xX2kpFAKmy+qpbWfigMeVGgEltsRwp7LSFd/JqSlLpwOauOyVbZ+EgrzCwf4t2799C6ZG1tQLSKKePHVcW8bSdJkpDaVC9q4heiF37+vp96v9qcCyrmOVWheSw7M6rfNj//TH19nv34s+hs/udO/aqjVO9M8bmW5+wyNXXTbyrLZem8GurRXsttIgKBXtmOyh4TuuMcBBe0vPHXRWNY2QutUVzrkrIogKocXpZllnffGvCattvGgz9323Ptr9RFr1g2WrnyUqsuaYLWuWRb83On1mdTO6uh0XjlzAkyfznTuKLzejrm1kgmxElKFNnqVKYwlKUmzwuUkMRSOlVtRZv9lU2tZwYqANtU5aUUxLGyZfwAoy2fG0JjjECXrlycHzNTH4/zfT/fFvcK6iXNXREvc6otpBr25lWreensZ24zbrVb6NIyF0+nM6LNzc2QCgOEAE04P0mXvTj+M7vjw+HhIfP5nDRN+a3f+i1OTk44PT3lP//n/8w3vvGNYCT2sVJA8JSuWhBBCFGpl9W5boRWtOdFBNTn69X89MOridpUdRI8EaMfA5/nmmUZZ2dnAYnVn4fvm1dFsyzj7bff5tmzZ0ynUzY2NvjCF77ArVu3rF0qilgfDrl546a9F01kjakCjf1Gsbzw68s/fC0gGJOECKXe3IWspcVAmsbsbm/x8p3btNKYxXzKfJ4zm4y5e/cTzkZjur0us9mMYb+LUoI4jTG6JMtzZKzc8wfPuVMXHqFdDXRfF2wXHd4W9NmOurOs7piqO8zyvEJFMpLV0hagEht6UzqhUiIQWiBwHGyyzdr6LrfvFCxmY4p8zsNHT+l122yuD2mliRtfOyhSKVckuASXtamLAuM2Nq/iSiGcR7UivFRSYYqMcjElm5wRtwVGarQWzKdj8gVgEhvz52LQisKmP1lVU1nEhnDOCAi1MtEYSjSCSGqEMkhlHJAzGCwhpCGqTB7ekGao6Mm9DRUV5tt8PiWKFHfu3OTk6JDTszN++MMfWmF2fHzM6elpY1LUF87yURcExpiQV3jv3j3yPKfT6fAP/+E/5H/+z//JW2+9xZ/92Z/xyiuvhPgyC7UtevA2hvq9/L112Bm8EVHU7DN+Sp7fXT8z4vopHf7ZgBVgRZ5jsCELXpj5+pV1Qb1YLJjPbQ1RH87iVXqw/bPhHNaD/N/+23/jzTff5PDwkF/4hV/g137t1+h0Orz11lt0u112dna4c+cOJ2enGCzVUlEUbsZ4W6RfoEudWN4w6oIs7L42ClwbvwvbkwSQJDGXdraJooSj/VMOz045OTljOhnx8cefcHB4wu6lbeazGVqXSGmrwmeLOVmWkcgYqWRV0cj1n7CxNjNSTEAhTRuZaLxxnbgg8fx5Rx0dexsWePuVxb1ZllmeMIW1+9VsviqOsMnkmsirn0ag3KIWSjAc7rLWH3B2csjHH77DkydPWB8OaHfaxGnsxLCdDwoZBKj0rECFthkE0se72edoVVOXWYAhUjGmzCjmUzCKKE4xSlMWhvlkRLFQCJRF1lIihaLIM8uaLW0NUcsUK4FKmDmoF2YIMkZGBqkNJgdchSibK2wRr6iFoBgcp5ybRdrUHEIYZrMZvVbCrZdv8dEHH3L//n3effcRkUdidYP/KsP8pwk2Y2z18jzPg1czSZKwOOthHp8FFfn9te7FDBPL/2fF5ZadCcuffx7Hc8NVwNvUn4s6l1U774CpB5Gu8vLW2U1msxnz+Zz5fM50OkUIKxB84GyapCSJ57tfrabU21BXwc5pW/48d0ZdUXAXaHwisGi/VavhKbAGXa8iF3lRKRvClvWr1DVq1/s04bOMyJaE8PlPqz6vmhdLWqY/d/m30Hyevt0OZFC57WxsmBe4JghcEVhVhZCIKEZFkKQtpIwsd5zLkyzL0oqO0I7lBVA9vboNWVAX7sbdC1cdSqPLEqNLDAW6MOgyt3udrONXn8bm0JPvSwWdz49hGEdTs87Wx2rF+d7EULtmve2mVoMjTmKUsuUhI8/FDzAajYKwqfiNKmG2SuAZY0Ig50cffUSe50RRxP3799nc3OSVV16h1WqxtrYWjNhe5YKKnXY5gNbHz3i9W0q7QzTSRf6OVcUf5xBOBbEezEq1qdvK7E5ZLWA/TlprTk9PbZFTlyJWP3wIxnw+56WXXuL27dscHh7yv/7X/2J7e5udnR2GwyGdTtvaKQWYUpM7yh8M7t714/nqWYVwKoGhjaA0tjAF0qsFBiUF2WKGLnMiCYN+ByUUw7UBly5tY5RARpI0jej3u7TbbbSBXq+H0bbuqtYllgSwJnRWCPflGhOf0vra3y8qKH23z2/wAahSC/Z2FbsXWYZ0Rm0V2Sh/P342iNRnaFt0Y/AxaZK0NeDylZskcYQuFxyfjhmPx6z1+6z1+yRBQzGuxmTVi8htCLhxsSYvi3CtF9avLgOmgHJBPjlloQUn04z56ISSDjJto1SOKRfkixJNbkNFjM8xr3OjOZQlFMrxs0nAJmLa3E2NsGqm0eRlQakLlI6cGizCYAaZg9UkjNHBjoyAw4MD7n3wHpcv7TDodbh+7YpNNLcpL2nY3T2tjH9oy0bo+sQxxjCZTALDqa8udHx8zB/8wR/whS98gddffz0klfuwBM+akSRJoLdZVVzX/lunGhL+xi80+f5PHE1bqVXTiqIgShMLm3Vl5PfCrL5R1AX86ekpi8UiqOj1BZxlGePxmPl8zle+8hWGwyH/+l//az755BOuXbvGP//n/5zNzU2UUsxmM6uCGEOeF5YcIMgFj5bru/1Fh833027XNIYgyKyzS6K1rbAklc1O0KUhUoK1fo+1/hpSKFQSM57PmC1mTCZnDAZ9Op02Buj3++R5xtn4zKIFAUY421Bt7vlCGavCfC5qe+0JNc6ve2MvOuqhSyGFzG26pS6bG74dVRbZgkhJVCSRkaIo8mA71gYkMrBP2LAL7WyDilZLcvV6wtpan2d7j3hw7wMWswlXLu+StlvI2PL5C7CEi3bfBwGR26y0rwzvRaRSSJcUXiXyl5hiwWJ8wmRRcHQ6Yj46hFiTJgM0GUUBZaEw0iBRGCWRSCKlHJG6stfB5olKJSudEVskxmab1oRZkVHoEqWtk8ijemPs5qSEz79W6LKkMIUrAg3Pnu3zP//8z/m//+//L4N+n6JwNQCWbTL+wS0Llrq3pj5pyrIMSdCLxYLpdMrZ2RllWYbE8yiKGkVL/D2eF2zY2Ddrdgo/Hx3TSThp1fXq7fw8PLYvdDwPbYsqHmeVQ8W3zW8adScBnLdXenubT0gXQoTanMoFpUohyMsstCs8R8RKFb0a0tXPxNvDCOc0rxM0D7DCyNgdXCnLuBqpmKTVojCa0hTM57aKj3IbqEfgy+rfRYKmft6LPOPKrtY87/PcH716aSPabRr4ymfuNwXhBBHSCjMjETIijtq02h2iOLHsFEVJXpS2Bqmv6Smaz6Oy52mHvPxC8ffEEgP4873oLQt0kVMWObosEKoAU2LDMBwVkAabOO+S+5XTOt1tqmEV7tretGHOrYtGrrLxuZ7i3IMInvUaoCrL0gbmS0m73UIIWSWaSymDKrNYLKgH09YFmBAiUP6AFWRPnz5lNBrx9a9/nffee480Tbl+/TpvvfUW0+mUb3zjG0G1rD9M71ULDW701Klfompffef7NHXo/8hx/jnYj90O4xeRF1QV6q0ohv35/l8/RicnJ6yvrzdqYUpp04Ree+015vM5T5484Vvf+hZvvvkm3W53yY6jnQogqnqcRodJZI+Lx1QQqKuCUPa/wKkIBmu4VdicwLIsKHVp7TIu6diUOaUxLOaGbGFzMQf9PrFDbkLYRRKnKf3BGuOzMbLh8a4vAPlc+9+qY2mZ1P6t7LEvbFf1NrEVQt+WcnN2KaPRpaEoqvN0Tf0zThhZU5RBoWztTmModIlULfqDDa5cu83o7AghDXsHh7RbLdbX+nQ6rUplBFc3waF+Kg40g9M6/bgF+WKFmRKQxrDWTVBkFPmIbHqEEClCtZAyxojYoSSDEjFZXiIlKARaGozy87fSoCSWPj2KLNuGcSlQxrVZ44N4KpRcXxMCEFIGNpV2v8vW1gbXr1/l3Xff5dLuLhubG01h5u1ak8kkFNPw5IBemCmlAgIAa7c5OTnh5OSEf/AP/gHHx8dMp1N+7ud+jn/9r/81h4eHrohJFBZwPeeykX+Jl8IOdRhtQausgmWbu7U3ZF6M7v5PHsY4I6ywhUyrXEgaBn5fyKWOJv3Lx+vt7+8HZl4fCuMR2de+9jX+6q/+iv39fX73d3+XLMuseufsblZAlAijnCe4EmZWuD6/H+e+riNkILApCEGhNQq7mGzSe2GZF0yFFoqypMwz5vMpQkk2tzZIdjdIoggpLGd80moxVIrT41MbpOpMDCEvMbTsBaRZTc2qBFBjqVzsBGh0uzqnwb+/Av0bz1IivKfTFkH24TehCA0ev7icViNtXiea0hhKrVBxm7WNXbq9PsfH+zx+eJeHTz6hlaZEsc2q8VNLuOYUZdEAzZa0QlCWVj2XQtpEfSxTrB0JTTuWyLhFxJxskTMvIY3bEPeQURshJUWp0aXCqAhTlAhpiIyByA6uBKSqxhshUJHLwYzcnKeZC64RocydMCYUyPFPSElB5FKxhoM++vIuL718h7/567/m2rWrfOELrzUpgHzk+TIp4/IDrYcI1INjh8NhYJPd2NhgNBoxGo0a13meqlA/KvS1+vufxSPYyhqythK4dbvU88ZhVXiMD4BtwnL7LPr9PmVZMpvNWF9fp9PpNB0qQQ3nvCC6qB/UIL9Y/qYpQkztE//c7IIta8/R78MGQlVrjVIWKbZbCVGNOEBKRRQTrrV8/3DvT7FxwUVqZPUsLhyP2vO6KLukfo+GSgxgKsJQ46RNZappDm3l2cRZs0T1EoooSogjwWw+QUhFlhcIrENBG9OoC1C1oUJAS0YbvJRrqqc2cTyWEiUMmAJdLkAXCFMANsEcbW1tUlohbdk57OeevMQi8XqLaiEtboP343QeLdc8sab61LZPEMWKNE3odNqcORkzn6/gM1NK0Wq1GA6HYQEBIRZMSsnTp08Zj8csFgtee+01rly5EgrYesPo2toaV65cYWdnh26364gJy/C9F3BN76RtsKFarN7uI0T98QYDw8/k4SerB/7C4FKEqtCU5aj/+lFX6b2x2KcweTogH+js1X5vQ3j06FHwSg+HQ4uEQ4k0u4KWzBorjhp88X3wP5E2etwXg/XfaFN5Z8slz5PtE6gowugKB0RxBMJ60dNkiIyjMGnBTtxet0ueFxRFThSlKwXPiyPy5c3Z9mzlZnuRxr10q6bpo/45eDZ97RGTBu0SuK0GImzogzSOLrsmkoSg7uG0Kr4hTnpsbF7C6JLFYs5ksuBxsc+w16XbThGRqpwxTnD4roScSiqap4Ywq202O1tryJMZR6MpsZijidFakmdgRAIixpQlBgXauNQul+JoNGhtswuk7QOOVFJKm46EsRtWWVoVnNgJft8qJ+WMcA4BNMZYx4JXSKW0iG0yHvPwkwfNiuZCiIDM4jjmyZMnzOdz8jx3xWTtwrp79y6ffPIJo9GIV199lZdeegnvhfMl0ba2tnj55Ze5fPky/X6fw8PDYMj2zgDPUtuMRrcJplprVCRDW5wWYyGnqDEhhLb7RXDRLPy7O3w8nC4N3v7q44KMMUsoq5IoDQcHNDYHX4cUYG1tzeW3WiHV6XQoioLj42M++ugjjo+P6ff7bG1tcXR0VMVxmcquAn5TgOUVem6iOwjhd0YpFVpWjKdeOPtXqat0LBl5D7UN9ykKjSnsYk7ihLwsODo6Ym3QI3LeWp9ig5SsrQ04OTlhOp2TOhLLZbqqZeaXc4IltNMHXzZNE8se+rqTqfbWD+DSc14x1wwgbZEP20Y3ds6L78MZlDKgXACscvmmLjoeY98LETkxY9Fa0l5j94pic2Odp08e8/jhfZ6M97h5/QpRtFEVq5FVcRldVn0WSHywcKWke0O9rYsqjOHm1S1gn6OTJyRySikkhdZMswUi6iEUlCZHKLtei7y0uZWlRhYGFRnrbY0jXNoJYJPOKXIMwgWSl5TK5l96z3UYw6BRuNQ+aSydkpuLSgqkkpyeHjOdjJrIzCOl+msZRQhhWTJOT085OTlBa03H1zusqaZRFNl6jZ1OsLkt74AX76h1ASXOoTe/Bp+3Ia+aZH/3qupqFNE0/nthdnHb/Bh4NFbPx4QqtqkoCsbjcUhNS5IEwPFAQUOBFB7Orzrc5D/3CU5NrWC/6xTezrn8qh9SOmQganTbmpAFEdRgN3QCAqVUfbwuBJS18Xo+WjuPhFd5v5dOes71mpcOw1KbpF7bNsY4rcLYfNS6fujtxe69wx8OLRlAIlRCS3URseW1ywvNdDony3JK7ZGg4z051xXvkLCNC4LMzQ2LzKwQ7rQT0kTZAs8UGAoEhRVMxtlbnYDxoCKUAUR7c2xQtSudSoaN1ZY29IwZXiOrzytqn1vUGEg4TVUHJCtKssW8Ys1Y5jQTQoQ0pSzLKIoipCFdunSJyWSC1pq//Mu/5Pbt2+zu7jIcDikKu9P+xV/8Bb1ej+FwaHmZlnaxi+C5cQ31O1nIg4Nz1YR+pg9DY/FZI3iFJOzhl+Xzc1P9+zRNKcuSvb09Pv7440CRvb6+TpqmvPLKK+R5zvXr19na2nJBpy8STLp8LFuIXDu9IGs8x2p3x9gFWhSO/tpvQsJSRRdF6bj6FZ6KVAhFmrYo8oIyyknSNIyKAKI4otVKKfKMPMtI0gSEDaL0h5RN8VafUstz7HkbWt3x8iKqq5+rfrCC+WPFPK1MD6JC69hEcitkipp6XW06eFQmapc0JYiITnfAzs4VWmkbRMzxyYjpbM6g16aVRrYwjEsdwuVMGs+l1uxJeHnxiTD0uymXdoZM52dEnZhuu0Pa6bPQCXkpWBQFuliAqDEjewxbQpFpjLY1DLQR2FxObDUooZBCUxalS78CWcWnuPkjHBmknWeRkqRJxPHxEdl8xqVLuyxee408m9sMgOl0GgIylwd/bW2NNE0Zj8dBxYmiiJdeegmwQu7f//t/z2/+5m/ycz/3c2xubpJlGffv3+eTTz7h93//99nd3WUymQR0UWeCqIdmVDuYG1SJoz3x+9Nzp1Xt4f8MHG4jDTZBp8ZoXalj/tDOaAoEdccL8OZ5FgFPp1Pu3r3Ln/7pnwbyxfX1dV5//XV+4Rd+gffee48vf/nL7O7uBo/mZ9W8KzXLhAlaobLaYhB+qdnt3trnDGVeIKj6YamdFXlRAhEIW0/RGJAqotPpki0yYiXottJGU9MkodvtYLTm4GCfKLLFho2jKrKCzM8jPw8uni0Xeb7rguxFxsZvSsKhHV8IJOQSglMT3UB5IVbTVG2eZIUMpbL9sTZJ9zujHFoRGCzzqik1gpzh2jZJ3GYyHrH3+AGPnj5DKcP1q7usqy7ELl5RGMLqNn6rct5T4U0P1rgvhE3plqJkc61DFF/mf7/5PmkrZdjdoLu5wdGZ5mxako1yiiIHrIMCoUI/Sw1lUWAWBVIpokQglUCXEkmEj6nNsowi1+gSIj+2Dc3MbffOm9npJNx79xGtKOLVl17i6uVdbBiMsTUAlqlm/OHtWd524+0g/X6ffr9Pmqbcu3ePg4ODQOvjk599KEG73Q6G6udNqgpZVtQpofJS47cvCPd/CsenqiL+vBWfNZCZ8V6mixFD/W//O/88zs7OghPGj/cbb7zB9vY277zzDuvr62xsbJwLUn7eUcc2TZyz3NdmfqwXaLad2JgyrS26CCdae5Auq3AFCxmckyeK0KUlDwy+N9eAKjxIOTtjvTCus/04Nalug1ztHV991B0un/Uw2NSgOnLycV3+vTuxGlTXTKMtAtLaIETpYhH99uBRmR1HQ7WRWCVSESdtelIhpWLvySNm8wVQssgLW4xk6ZbnD4FLPbD9COqmvUuaRAykRBdzhMlJIuh1UqbzjNlCI9COZw6nesrGDUunGhoE0vUVbYWpcLxoVls1Qb+0dsZ6E90zRgSBNptOUe22lUO9Dv55R4vFIuygVYXx6gErpUjTlG63GyL9jbEpTMfHx9y8aallHjx4QJIkbG5u8sYbbzCdThv1M5s2otpDv2CSBW+et6G80PGzrYdaCqDKPuAFwzm3/pJa5O1h3W6XPM/Z29vjC1/4QsgO8ESNJycnXL161Rnaiyo848cckuXRFPVn4W1w3q7hJyTWFmJtQrjt1U5chORsNCHLNevbW1aIGU2ZLzg9PSFftOm326StuGE4UUoRO468xvgET0U9Z9gi4HrH657hi2ypLxLi0fiNv645vzF7+87S2e5i3nYULo7R2norhTU5GGcFdzKy6ZBxRnxjnCFcJsRxh7XhFvPFgqKYkZWao5NTOq2EQb9LrJQDTL58DY0dq0JC9r5a2+pQQhiUMGxtrCFEyeTsiO5wRCtuMey3QbaZzEqK0lBq0LrAlLbd2qvGwtnetY0bNdohTWzxk2C507jCmaLRFoy361qVfL7IOD09RXgPfW1wotFoRJZlZFkW2Err6o4vhyaECOqmMYaDgwM++eQTfu7nfo7xeMwPfvAD3nvvPX7+53+eb37zm7RaLfr9PkAwVtftEfWBC7JXWOjrhaglIBSfomL+DB1Lc34ZXZVlia7Ff61CX9AsHee/m8/nXLp0ifl8znvvvcc/+2f/LPD9f+c732EymfD48WO++c1v4kvOheyKJaz14x4VSq5fz9jdWWuLvHwwqMs/FdISD1rVMmLv2UNOziYMdy4RJRFCF8xnUx5+8oi1Xpf1QZ84XkM6jQWshtButULgtQ+09mODtpQ3pfsuzwsqL2IV3uJZXOrey7qja9UmstLe5mxfvjpR/Rk23xsrxIMw80b9Sph5L36hC2zsv607Gdh+jUcqAmEEWmCDn4ltmpQStNopu1dv0+71GI+OOTh4zP7+Pv1eC6l2WV9bw2Bzgisjv7WneY3B7jUCo6EoNLGQSGmIheHOjUs8enbC8bMH9Nd2GGzeZGN9jY2yxdlowWS24HQ0YTye2YBaDUZESBUhYpt0rktDaUpkGYcNTklbeg8jLKV3EgU9XEYKg59PdrMsyoLRaMzTvafoYsMOoDZBF5V5ngdhtsqO4OO8Wq1Wg1hxPp8zGo3Y2dkJEer37t2j3+9z584dvvCFL9ButwMyW0X9c26XrLSSKn0poJfaeab6vViaUP8njlWeu4bqUrOL1D07cLHKuqzSet43H4Jx/fp17ty5w507dxgMBuR5zng8ZmtrK4TIBJvbi4xPUIOWqWKWnhmVWtc8zZ1b67ddpwKMN2JLJrM5Z6MRRtgQDx9rNBpNGI8n5FkliPw9pJSheDFUwn7ZM258aEhZWGoh96on9V/0vD6bimkq8fQp6qxY+l8YQyrB6FVz47jGvGfXmyTq5nntxxSFTeeKUFFKt7fGYG2DTm9AoTWjyYTxZEpWFMH41ESMZukVHmzwRApjnRGDfhclNPPZiCKbkkSCXidhOGjT77botG1Ar0TbugC6tEwZxgTkagyY0gSniaiNjbcl1nX1SguoTAeWSSVnOp0yn8/9gLsfC8tnJoQI6kq73V5ZiNarm5bRIA+L69KlS2it6fV6PHz4kIODA/b29uj3++HBekP/sgq76gjwPQiyn121EZ5viwHrJg8Tc4VAf97hacg9IqmHqPhn5dPQRqPRhTayZfvc8ztEpRHV3wcnQHXa8j08XrO/EyhXyVqoGCFjjIno9wdkueHZ/gFpK0brksnpiU2U73SRQrCYL0jSmCiJwp0EhKru9aT7ur03iiIix6Pn57ifP/5fH7ZijGmorS/6XIypJ09X115mkgkBU8sOkxohpDduV+PmeexcTQvpYs9oKKYYBMZ4T79wxJgSGSUkrS79tU10uSBShtFkRhKd0UlTWnHilczlh+dAoJ0lSsZVPwREEvrdNuuDgtn4lNn4hDjuEHVTksjQjq1wk/TJspIsL1hkBi2s6llkliIKI32lAGcvdHGLgC5KZ7lwm6mhIXjr5KWNdeTrFgBRu93Go7PDw0M2NjbodrsN76YQNph2MBgEDn9fuOFLX/oSL7/8Mvv7+/yX//Jf+Oijj9Bac+fOnVruYZOGu1lQg4C+vMj2qkHFLlo3Gqw6KvvKz8oREJUxDS+m1gYf6b0qXAVobALdbpcoihgMBo2Yq4ODA9rtdsi02N/f5/T0tIHowtgHpPPcFjf+Pbe4nYBq2H/cId2kFHjVjIqxI0qQ0gqzUit2L10hSrq8+96HJGmEQJPPJtzY3WFzYw0lFePRiK7pkCR9oLK1bmxssLe3R5ZltFotsiwLCLTVapGkKWmaOnWyKrKS5zl5noe0F2NMSN2rL46LnsfyEWT80rRrjplc+teNm6il6ggsrZFNEbFCqdCUOgsB45FKUJ6bDN9WgTEKKV1ArdGUJiJu9empiMtCs7k15PR4nyeP7jEdTdjZ2mR3e5vI390AaMdELjDSVjEXKJI4pdQLDCVoQ6Iku5vrtFod3v3oIWnaQwrBTrdHJxEooYhVBzZTFouS8WTO4fGE6SJjlmcUeYaREikjUtXBex8xEAmF1MYWYAmyqxaP6mSCn0/gbM+l2zxkNc6RV13KsgxG++WIav+QPYOs96Ippdje3g7J5+12m6Ojo4DK6kZ/b5dYPrwa5mdF3Vi7bPwX59787B/GUBn9w3h8+u/8QvIFYvzv/TGdTkP8nk8lW1Uh3nrWzAvK+U9vWB0fVPdwL2/jAYSwXkihIqSMEDIGKej1+swzzcHhEUmqbEhotqB18yaddgchbDWntEjd/So7at1sAVWyfsiScNpDp9NxYT12onsa8jp6Xc4YeFFP9WcYqnMnifp/m3sHPqTDAC4D3LZFEfrRvJL1aFaKokSphERBjyGmEzOfT5nM5ujFgn6v57H1+ca7P7WxIRxSRhRlFr5TAnqdFsiI+XTEfHpGNhsjKUiUFY9SxMStHvNFAQjGkwWLPANdUOQGEVljv62cDjh0Jp3eoB1PmW+OBbd+3djQl2BmcI4eAbVq7tgiwF6NBBv3MZ1O6XQ6wWDqD89Z772as9ks1Hn0Bu6NjQ3W19fPVRdaRfVTQcXauAY72Kod0lwwiWro7f/4cd6G4sdm1ff+nPrhIbVSivv374cx393dRSnFjRs3ePr0KQCnp6ccHh4ihMAXp6nbh5rxVz9hz4SoAbP60sTtphqECjbCstQUxYLFYsIiK0HEZLlhOp3bfFKdI6RkbX2dVqtFFMUIVzTDzh9TCyCtzB3eduvVcClt4K31eEYEi0zN2eTpkrwqt0xPDnzmYtj1UBDXwMaY+PJy1M4KCr8BIZoWrMa1jI1BrLPKVGqt9JEtnrHMITtLjqiihFIvSFsd1je2kdmCojAcH5+w3u0TqygwteA3odq0NAinPXj9Eys8jGE46EKZM5ucsZiNEFEXJSJnzC9RQpNEgk47wWCQkSKa5xR+PpY5nkXSRiu48A3nxKki452wcu+9oLf1IRaMxhOOjk/od7uAsyn7SdFqtSiKgtFoxHQ6DQyldfvZYrHg7OyMxWLBeDxmf3+fd999ly984Qvh+zfeeIObN2+yWCyCF9OnOtUfSGMn9Pqx2zGrCt01o80LHX+3kO3T7CzW0VYRLGKsOn1RYKy/pkfASim+/e1vc+/ePWazGb/zO79Dv9/nN37jN/jDP/xDlFLBo/nlL3+ZV199lfl83qj45Jk5z23uzz1Wq+3VojK1BeBsHmWJ9hkbThDlec7peMbjJ3s8eXpAkvaI0w5CRQzX1tk/eoZUipdefoXh+pB2GqOUrRmxWKSWnVe5BS6s99DHLU6nUzptqw30HTKVNQ/48mYYxzHr6+v0+/1Q4m4ymYQUMW87XiXQVnk0684EcPYtauLI1K2Izn7nEs89ljKOIK5uZ/Tjqg2YQmN0TllqR2zpKsALiTSOMQOX5hNH5GUJQpKkXYwuWRvu8OqrMcfPHnN2fMj7H9zjtTu36fe6tFLp/KzCtcGzewhKLQCFr7SEsdWepNHcuX6ZR89GHO19wvr6JsOtqyRpByUjNAsSBZ22ZFv2GZY9ssJwdDZmPJkwn2dkkyk4b60QytGLl+iyoCxzlApVOW3rhAUDRVGiY0O31+H07IzFZMr773/I66+9ijGa2WxqkVmds2w6nWKMCepm/fA0M2VZNgTarVu3SFM7+ba3t9na2mowbviHvozKLor58fFllaflZ0evfL4asvydCLu/dvYIbwNaddRtZV6of/jhh/zwhz9kPB7zzW9+k+FwyMsvv8zDhw+ZzWahRukbb7zBzs7OynE3GMvb/hMeAZnRtJwJbzyu9csiM1sf4uDwiE8++YR2Z0i3P6TV7dHpD6y3S0g2t7asR0zaBV/kpTN9OOYFb25wRn6lFFmW0e32SdIWvV6/ahTn51bdgQUEz69XO/M8Dw6EVX2+iEC0IeSo24ABI2uCa/kw4XP7rqGahFMMuHQnA6gaQalEGkleWPofIwxSKEpthap3urTafbrtFtl0wuH+AQcHh9y8cpV2q41JvTmg9iCDvbT+hTMd6BKJYWM44NGTQybjMfPJKWxsEYkUIRSFsfU9k0ihohhtFIURFLqkLBYUWca8zFy2hFU7pRPGvqAKUlXkITUNwGt5SZIwny9YlFMODg7J7xRobeVStOzu9ijKU2BDlbC8WCw4Pj6m1+uxvr7OjRs3mM1mPHr0iDiOabVaAVFclBO4POH9RPWf1iG1eI7X8/zx0xd4Ly7IbI90zW5oPWurf7mMWj2ievLkCYPBgFu3bgW1fjqdEkURt27dshxObnH7AGV/reWFVvehvFiFtRUbTV2SBYM2CFO5/a2NDvxsjJOYQb/P9vZ2QGZRmtpo7shSAJ2dnaKnkk4a0++ktlq4NiwWc5K4U90LQRTFpGlKu9MhTdOVAuhcu2tex7rn09ckrVco8xtBU617sVzNVUfTkmICdGtcLTwUce53/n1dJbYVMp16JqjUWycF7NLzAsOQpG16vTXW1jeZzRd0sow0jYkjWbWvpmme66nB2cVsEzvtlLwUTEanFIsZOm0howiJtnFwgBQRCIPSkMaKTiux1EdF6TITDKXQaFOCsbFkIoj2SiLU3xljhfuVq1fJJlPG4zH37t3DmJL5fEZk3dgmUPe0Wi201iE9qdPpsL6+jpSS4+Nj3n33Xb7+9a/zpS99id3dXd59910ePnyIMSbA+CRJGI/HYRIs89efjy+ztCM424at0bfaYfCzeiwvfWNsebDS52K6ncamZVyMknyg8mQy4Y/+6I946aWX+OpXv0qn0+F73/seg8GAb3zjG/yTf/JPQmxgFEVsbW01Fl/j/Y/RG2vPEbW/XR5k7brha1nFEkqlKAtnkpaSQb/Hnds3uXL5KrlWzLOSRVEyXSxod1oUecaHH36IzOdsbwx59Y5D+WXB0fEx/V7XeSbtSmq3O0RRTKvdIU1SojiuXPhhYZ5HZXW0FkVRyEf2AmI2mzn1dkFZlgEZL5difN7xvJCjajSd97J2KQG2QC9OcEGQZkJgo+fRFCbH6BItIkphw1ZCMjauihGCotAIEqSIELJkbW2XSKasra1z9/13rToeRwx6bRdqYlDVo3UMz4TvhBAoKe2cEIbL2xu0WzPuffIxm1tbxHFEu28dPKbU5AYipaxGICRrnYROa0ieayb9kul8xnyxYDSbUuQLBIY4so4Az71rtO2bbZQEY5PRF4uCX//1v8/eo4d88vHHvPPWjxAC4lhZb6anYPHcYd6z6V37/iH6KPOvfe1rXL16lStXrvC///f/DiXmfuu3fssZcqOGqrMcY7bqUYdN38HoGsL8/7vD7qR2AttgzhcTyl4IeQP3W2+9xVe/+lVee+01Njc3+ZM/+RNOT09JkoSvfe1rwRYX/f+o+89mS5LzPBR9MrPMsntt22a3ne7xBt4QAAmCDFEEdaSg4jBEMBSH326cv6QI/YQbJ/SBl7pxIygKEEEckCKEGQzG+2m7u3v75asqM++HN9+srFq1du/u6RnMyYk9vdYql5XmNc/roshX1uL7hPd8PANAzZIsBGXBEGWyP6LOTg2wLlTLb3rCYNqtFlZWBlCqhfFU43A4xvFognmRI00S6CLD/fv3kI+PYYsMVy5uI44jzLMZZuOZg8tK4h/HCeI4Qcv52NF4n/x+C8RdCG8lDtVjxs/yPK+4bdTryjZJeicRsod0rqJaNjXCXt0mtxrkzQrCl6TyBXSFpNhIrQ0VFZYWQii0OytIE7Lyvv7rX6Pf72Aly2FsG0JYSGfICBA+T3xDrUEJQv1WV3oABA7372M2HkIPViEc+K8FIKyFkuRCIgC0U4WOSmEh0Y4LHB5bCKkxnhnKYisslCTJzins4QA5VNY6jVHj+RdeQCIlfvOrX+G3r/8GSgn0el1Ey6QlJmKhBXM6neL4+NhLBHEcY2tryydwXFlZgTHGOzY2Af4nTXqJCTzaevjdtwW5rOKaUj+nTmzqm5HzlU2nU7/BtNa+hN/Nmze9qpQkCQaDwcLzwvuGCswjIZAEhi0/5m5IxX9EKa0F2BV75QtBWRmMIci61U7RzbqQEkgkYGLlq3iBg9QFOXMLGZQuaxjD+vs2uVosW3N8HUvEaZoud9DkMWwwCCweq//rPjHFCC5rnpOqmyz/Y/1/BhYkcXKtjPr1xFAFBBSEIL+0/soAgMR0NoPWXUQKJPiEFcNAmpKt9EI4DYo6oqRAr9tBns0wm06wYlkDceooEyYHQ0hn/FAKiGNK5dPpJLDSMUEf8VN9X340IyVaU/qjtJXizJkzuHzlEpSU6HTaiLIs84BzGK/G9SyzLMNwOIQQAnfv3sV7772Hg4MDbGxsYG1tDT/4wQ8wGo2gtfauAZy0MazzGHK2qs9ZaaliK2YoTVQXzsKMf4laSbTJSdaWAfYomQO7CYSgshBc2p7uwYRsd3cXx8fHGI1GaLVauH//Ph48eOCNNRcuXMDVq1fx8ssv1+pwltyUFwgvztM1u/CZjDKSqlij7KuFhbakTpCEYDwRtJasVLkVKKSBLiSKfAZrcpw/t4XV1RXkWQadzZBYg36Hih1PZhMISdbJ0XiMrgBaqgVjjQOP63IjfB9DbCnM0hsGmTcROq5EFsIs7J/G+6PCIIQgb2G3uc0CAa2Pdgn6+34E2KM2bCEuI1+czOsUF6d/GsAog8JqCBCxJa2VUiM5xArkTGtdIZvYqWIWTz/3Iu7dvYG7Ow9IQusSbkgAvDOvCkM5/gVLnSGmZmGhkSYKT125iKP9XRgrcObcRfLyFzGSOEFhcwgYSESkqhoqdJ3EQL8fI20LtHsRJvMMeaGRFRrWShi3f6QihdMY66zTCrACs3mGVADr6+v44R/+EF/7+itUFyCKELEfC6ubIa7AUsF0OoW1FgcHB7h9+zbG4zG01mi323jxxRf9AuJyZ+yhzWbucBEtSg7WT17IER9PNfpytFBKKlUuufDuVdWnSszYDYYrls9mMxwdHfmiwMYYvPTSS2i323jhhRcqfn38xxuwUknoUd8FpdQgRJVZ+ncFXEC5mzdRqtlGa8ekNayNoYsM1hRYWxugV5BvkS0ydOMIiRSIJDDNZuTZLRWmsyla7Vb5rNCDfkmrE7OwTGE4R+H3OI4poL3d9uMXxnY2ZdxgSdQ6sIvZxUN5rruORqssbgJPMIhxuI7Cu8Y7eshEyqDMuiqkgAL71jmCZq3LOku1FVRksX3xMu7v3MHB4RHm2Ry2S3UVtKG4SuqbAdcvABMz33cLYQ3iSODcmU3cfeM91w8NXSGPOosAAQAASURBVBiISCJScGm/WGkkVVbAIIoUZKyQQqFjU7TnBWZZjuksw2SSIde0JoTgzNUAZKkC50UBrSP0+31sn9mCUuw+gjJtdl10Dt0EWBLodrvY2trC8fExjo6OMBqNnLe19FhPmNM/9KdqEveJgVsvcp0EjPNchgvlJHH/i2zlZi/N+Pz+pzNihDhTyUy2t7dRFAX29vYwn8+xtraGdruNM2fOeINLp9OpEDF/x88yHpWNVUoUJ+1S3sq+B7zC4Jxp3QZl2IL66B7lVqqx1sUllpJlPUi88dmWStuVPn3sdKv9Wmb3o5PUzbB5n65aFfnFZzf0KyAAInD6JUC9VNuWoMdu4wYOG6F+6oiZ/9fjzeyM6/V+90ynownCnqRUaLVbaHc6mM3myPMckWKIgP9shbhW+ukFECqJp1y4XDabQUTtwHBAbyicyipAldoDDzIIQSXpIkUFoqM4ggGtA+8LEUAW3JEsy5AoNhbCj0vE0lM9kJk5OweXCyHw/PPP40//9E/x29/+1lcw/8Y3vuG5XxRFWF1d9dga34OJIRASrCqGxqI8EcYTFsqXsi1yfWNLr3+BAM9B6dVtbVVC4M9aa/R6PfzkJz/BrVu38Itf/ALHx8f47ne/i83NTWxsbPgMs5wem404TRIIwo1xiuYFOVqZVCEHbDgPiSYTufJdyhHh96VqRBZAuxtjNpvi6HjoqxRRgVyNTGvk1gC2IClBCgglMXbRKFxnIhynEI+cTKaYTmdOi6jWWIiimCxu7ZbXGOrOsSH0ISV86BSPq98fgYpoT7TS191xqtgZ/2yspSw2UpZnOInEemJQnR/jsEi4hBhkZS73GCE3ZEQzTrJh9VVFKc5tX0QcCezc/hCJAsRqH/1O2+VWpMy0UsDXESg1B3KOJsgBSGKFTrsFLYD79+9hc/sqpBDQuoCS5FMJq6Ec8aOCMm4/OAKbxApCRIAQiOMU01mG8XSGuTb+OVpTCJp2Pod7+/soum1sra3QWLqxisKwjnoWAZa0uOjv5cuXAQA//elPIYTwbgI8kezvJKXE4eGh56hsGg9zR9UnuKpiAmGO9/+nNQa+Q/WktGjyIuf3DCRUlCpip9PBH//xH+M//af/hNdffx0ff/wx/vzP/xwvvPAC1tbWKla2Bw8eeLWqMSTnkXlCuN2sV2XK92u6IoQQwvMNebMbII4UsvkcYxfbS+9Kvka5NoDW0Dpz2ZeJmLFxiZ27lzG42Wzu8+1VBSnhVUjA1nBZd0ZFa6D7cyWo2Wzm05O72wXjUIVN6sRs4QIwIS7Zi2doXDPUXUbZiANGFIi8FFiuIYjmo/QydVIZAOGzvlpPOIggxdjY3EIcGbz523/B2qCLbjvBar/r3keAowGYiIrwi3USlqCc/K00wTQDDvb3sbV9hd7NaMgocqmEnCHAMmM3TnKkEnSRin12kCSlwPl5XmBeZDSPgqtLUak5IQSOjo+p+F51yBbrZoaDzkD1wcEBjDEYj8coisIX+53P5whrCPBkhi4eoeq1ONHlYFUXw5dXImtWK6rHmatWTyi5JqtRTY2JFBthVlZWsLq66vP/TyYTrK6uIpSol6U9D/tbkxnot4drj+UJwdRwTGH5c6g6CX/Eg9YoNRjAetcf4aRwYQHKREvYIlf5KVWp5sbxm6WxxVSwRyC0jFvvyuJrEziiVtVIyuvDgjqlpCcdTtbcL4+HIiAA9fXsxYly9KrqXChJl4yl/kTCEJ3BAKImUvseeQjAuFTVQlIOtLTdhTbAPCtQaOPsGXwf6pGwpTpMTroBYYRAHEfIdIEsm8KaAsJqCCt9XZewNzSsvrcunIpcOJiWlxWe4Kuw83uwlBg7uGA+n6GVpKxAkAGAJ62O93S7XRwdHeGXv/yl92/q9Xr48Y9/7MHo9957D1evXsX6+ronSGmaYmNjw2d2mM0osLgcXvgOSykRqQiRcgE3LKHAcSv7KFa4L7bVDMmkQlqgMNoV7+ApgweGFrl5eQdrrQvT6SJNU7RaLXzve9/D1tYW1tfX8etf/xqj0Qjf+973vHTGKiaPfTNRK/Es658XSCZ1/EY0bB7BERkOA7EGylKWhZwxGqFA/DGCAFnbrHFuA0FNyHk2w3vvvIvB6hq63Q5W+32oOIK0BrFRMDaD1gXMEv88fkcuRD2fZz4eNUz9XnadvnPcKkMiPM6cYbkys6KKFzPTiFTg22ZL7AdOwhZB/1iKCu/rH8MZbJzUBCexkTpYHX3rcTF4MiAclKGCJKZ+XgVgBVmVLQRyAxhniRY2gRVtRK1VXHv2FRzv7+De3jE63S563RakkDCFhPIRkhZCKfIjFBaIFWAlSUkSWFvrwh4NcXvnE+jZ00iUQCTasIb6aSAcruU8JZAAsFxAD0IXUJaKqBRSQkpD7hqSJEoByuIhraNTkcTG5gakLnD7xh1cvXLJRYEIyNAdI+Ty1lqfu+yf//mf8dOf/hS/+tWvcOfOHfzBH/wBLly4gOPjY3zyyScYjUZ+0bBEweA0x9GFlr1yal25daWoLFaAzIBF3d8hsH+6Vi49C1pghTEojA6OuQWGKoEIMVcmdJzWh506v/a1r+EHP/gBvvrVr+Ktt97CG2+8gf39fc8kJpOJT2uzzIm0/tzF3td/FM4Fw20i3qWAA3PpXyZdJdHmPwUBBWHJnC4sRw9YQFjkeYZPPvkEDx48wGg4BqsbcZwiSVJEUkGBimCwpBS69nBjbHZvbw/T6QTWGqRpsvDHhWPn8zmGwyGOjo5wcHDg/fiah6DEca0t3WyqUlApgwKoHAs1DWtZNS+/sxRFuBARIh49wVoYp8ABfNiS9fiXDAhq4INHYi7hnLTBUFiLwgpoRCgQwYgWVNLHpSvPIjMKu0cjDCdzInpWwmoJYRSEVoBmogQU1gCRgnWEEQJYGXTQbgkcHd6Bnh9D6CkiqyEMJZC0kIR/SscIEUNBgWo0WcQmR2ILJNCIJWVJsdJAu/5buPqqsvR4WFsjzfDezv2Kc350ErFg14zQvA3Ax7V1Oh3EcbxgseTPDLSGBYKNsVRmKtTH/bJYbKy/L1twX5bG8mPpGuEOnKKP3jgQGEPqY93v9z1zCDfgMvVyoS09ZdmBUpUMz7TlYf9r5Q4PEaM9BJGRX1NRFMjmGaS1iJVAHBi0vdTD3wPQP5SWmCg0SWTN4Dw1VjtL62oZgcHPOOn6ppFbVD+rCmT1ZPc/EY5hnRExTOCwrPpTG/C+6gM8tyzv5KiliomBKBVhnlF2jsil4KnPOz+rjgRShXv6y/MMuijIEdefIwDn5hG+Y6CQOKmU+29PWEPlHOtCYzQaIZtnEIKMJz5tNm8K/qyUws7ODobDIa5evYrBYIBWi5waZ7MZtra28I1vfAODwQC9Xq86hG6hheI7g6hSSkStxP9Oz+dFIBbu82VrFZ85lD22tvRvaur3SZsCgAfwu90uZU11wf1CCHS7XTz//PMYj8dQSjmQu8QZ4zj2Y76svzWZ8CFvGUrPova9urjLw4HUZFkaCVUlWsKrq2s4v13g6HgKISTGoxE+nnwMmAL9bgfntjbQ7UQV63alGLRbn/P53BMhDqELjUvhODNzYJWRGQbfYzgcot1ue0MBu7twqiEAFaZcvz+3hdTZwfP5t3DesiwL0l2dvN6bnqukIqmlRsgJS2PM0Tmvw7lKuVkUkmpdbl+4iINWhJ2d2+h1WxCdCAmLh4beieI2JSQkrPaT655FiSi2trawt7cLK9rYOrvhCacUEtpoX7eTwrHKcoF+31vAaLJsV7K+AGXpQjeWeT7H7t4DvPHGb3Hp4jY63S4MgIj9wpqSwD148ADj8RiXL1/27gBRFGE+n2NzcxPnz5+HEKKCh5WSifVZDaIo8tlphRDotNMK0Sx3RDMx+zJJYNVW9pmlTu09qWtn1iSo+rvxHKysrFSyQTAxu379uo8CuHv3bkWCU0pVKmCFLSS+p36rOnOssGlWOW353YaoHB+rPc+SXLEyGMAICamOMJvNMR6PcXx4hNlkhM31VXRbCTrtwUJESGhxNMZ4QsRwSNVVo9r4+tDPTEqylHIxnzWXILLdbleIGce7MjEL98mCOu+NBNU5qGdZDjN0hAaIZes9/L1yH0HZdMtAfBr7UI211kJFsUt+qEsAH1Qz4Oy581DS4N03X8P582eRJh2kKdMyR2wc3CO42HIFy7SI4wTr6+s4ONhHlKxg66z10pYQEtrAVwIFp8yuaVwCFN+rjXEVzKpuYqylEzHLcLC/j3feeQdf/cpX0Ov3XYV4VBd66JZR5q2nzRlFEdI09TnNON0PYwrLFhEvBP4eOpOWIHhVrP9/RLMn41Enba76eeEG4eSB4ThJKT1YHartTc94OAGryFcnv6Dg8xcPlc8LqF/NSbTeGFTnQi3smKpU6ZpTvWwJ/BCcVHWtWN6WnReqrKx6srPuSRmS67DKss+hanzSvJ30btUTgnfCCUDBQ7YS7U2qhRBFMYrCUBJEawO8dPn1jNlJpx0URQFd6No19RvY2l/9EK+lGlPmPyFcGcMCWUZZTmbzGWazOVU0DzvHmWfX19eRpin29/dx584daK1x8eJFXLt2DW+88QauXr2Ka9eu+Wo3Ukqfi565DW9SzvI5m80wn88xHk+QJgnihDITKMluHcZ3/EtP0vyA24qKWff65zGox77WvfY5Rfl0OsWDBw8AAE899RSSJPFuMUII9Ho9XLhwwRfzWFZgOXz+o45mqJhyOEr9DH594SQzks0C1cGaxutIQoqxdWYTeZYjzwuc2dyAyefodlpYW18FhAlqjC46FTPBB0qGWb5r/d2XSzZcS5OlYPZn4395PkMVto5vhq3udM7/8lyHBX7CPGoPa80ErQTEVXgPy8KyAfuXUbysDSkC2FAjVYJ2dwXXnnkex6MRdGGRnksRpy0IYSCVi64QhkLJuFCMhfOdpPlc6fdx88Z9zOdTQvdsuL59Yh+UyF3QFTg4w9XwNNZAiIh/pUQDgqINpBQoCsq1OJ1Nce/eDjqjLqwAEbMwxUmWZYiiCL1eD2maIsvI8iSl9MTsv/yX/wKlFLa3t724zymc6xIYE7P19XUMh0NYa3F0eEjRBZLUTamU8/Qt1bPHUY9+J82pWKEUWxHCXf9PImY8RkmSYGdnB59++imyLMO5c+e8OnJ8fOwNASsrKz4tuc8j1hA7WD5/uRGlqYXMhIFZTxA8OMwxtc2Dwv8FMoq7n0QcReivrXsuLIyFAhmGIikwOt73eeDq08/EgS24TWo1r2UmHE2fmcEwQWEXF85pxvfiVEChczm3puDzEDbg30MprygK/1wObi/nacl8NKi0PAthoQ/Y0stP8/lClKqd4ztUBESQxVnF6HQHePrZF/F///x/YDKeYmN9DZ00QiTJ/yu3QXpurkJOpkYIAcRRhJVkBbPZFLPZFKSg8voGWGX0QUqukyUxox+sI5A0V2XJOSkon5qSFPZUFDnm2Ryz2RT37t1Dq90iYlZfKOGEsHrIXDAsZsJqZTjBYXBvXaQPc/uHpm0e7xowQ3PwJSRkZZ9E+Y/PNfV4/Q03JW8mzizLRThCdbMuJXB7PGwxvEdAegKcotG0ZZt/EIIlNDiVM5Q8iMFx5XGqmSiglETM3FeEeGNJhJep5p91jYSYFd+3rlouUxub7lX/Hs7TSVLkafrZ9BtBmGK5TikQzAeC84TDPyknWpKmEFLB2MJjkUtv2NQPvyap+AifRpCbCK6t4m3VdtK4llCGcMSNIArpM2z42EyeRM4pdXBwgLW1NZw5cwa9Xg/37t3Dhx9+iJ///Ofo9XoeqJ7NZn7SDg4OvCMih0DxvQF4p9t8LYOF8dk1jLXeA7jyal9CYgYgEFvoI21OU+HadQJdx1nCxck1FabTKd555x0vGfzyl7/EH/zBH2AwGCBNU68C1T3YWep4Epu7+oL8moGqaUsOz2pjqVqWm4bXHzElQT5PFhiNxtjdP8DHN26h02qjlaboddpY6XWRJhFacRTQSeFrHFR6F8Ah/H0ZiN7EXOv4Vz27Rrvd9nPJkhm3ED7h6/k73ycktL7+gxA+LpR9BFlKO42q2dSUjEDZMcp54rkQROVKQuaagfXOzxISApQ/TsgUFy5dw/h4D3d37mKt34VSMaUB8hK4G0O4dE8GjiDSOLRbKYSwGA0PEa+slDCEiJzExbh6HTNzcrxLv+7ERyeZufVmDApdIJvPsbKygu3t83j+uWfx1a99hSQzOGIWZrngYrOffvopLly4gNlshn6/jw8//BDvvfcejo6OcP36dU/MeIK11tjf30dRFOj1ep6YhZPN+ISEwMHhPubzWbmgUN3gX+ZmLUoxGHYRLIZTwoL3qbtNhJuL1ZvpdIo33ngDZ8+eRRzH+NWvfoWvfOUr2NjYQLvd9hZh3lC8CUKrWJMh5qHv49Cx+q9MjBAcDdBA9w7MbQM8RKD87s8hl+jj4Qi379zFJzduYn1tDSv9Ps5sbsCe3UK/04bqtOBvEqyZkHiwulZ3eag3snzlFXWw6Zq6RpKmqcfNKKaTu3Q6fI5xNiZwWmskSYJOp4N2u43hcIjRaFQhYo+z9pVityp/F9cHt0ZEmACACBLHfFI0p4QQEYQEpGzh8pWncfe2xGv/6y08fe0yWq4uJ82eqxxuyULpHYWFC5cymogZDIbDA6yvXHRTKCBk5LKaaEiX5aLEVwGIqm+mhyf4NzeORUEuOedXV3DpwgW89OKL+Oa3voFOh9I2VVgCDyhnNeVNwguKk9alabrAsfi6EMeptwpOEUgRX1L5a6E1CT0W1YUs3CZsUo/qmyd0O2CpK6zSHZbrq2/m8J6fhQmcZB443V1DafDhd+MUQOQSkSPPcu8ekTscLGzLpJYmK+Oyz02tSUXnv9C3bdl96irkSc8J78sYXRNUEPah6b5NKqtHAZZrmXx19V7+T4CKn0ikaRtRlJTM2Tp/MD8GDitzn+sOvCpSEABVMK/3na8JGV3lYMNv4Vf3nfE0FSmXGTjxVv4odPIcDAb49NNPsbe3h3v37uGTTz4BAFy8eNGnRGm323j66afR7/cxn88rE8XnZFmGvb099Pt9HyEQToKUEnGcIHHqVbvd9vnLw5dhr+cvVbPVL6RG1AhM/bSGFqZnjqII+/v7GA6HOHfunAe3v/Od7/i6C91utyKJ8edQUlvmHtPQ8c/cvKZdx9OcaiMaBsFYqn8ohMQzzzyLVppCOc/xu3fuYLa6gna6DSUEtCXze9pOK6odb/T5fO6rKzURlRBj5O91whhKZyEB4aiX0AWmfk6d4CwzNLB0xxuO98na2hoODg5OzJdWV5nDPkvBcYvSSTucbID7xmmrpUt2KDxB4VYY7UB+BcgYQkm0uis4c+48Do6OIKCxPug5hs0B9NV5tca4yuMWg5U+5gWwv7+LzUs5ILXLDuwiF1xI2+KaZN2A1Vje9y6NkaEgeKkkkiTG0dExdu7exUcff4iPP/wQnW4HxtrSNSOKIqyvr+PnP/853njjDcxmM9y7dw/b29v4d//u3+Eb3/iGH/j19XWfgZYnkmMy2dFwOBx6QsaqLL8E+Uy1vPThnR4rE0njvhC+8TtvoV8cu2QQQatIZqCUv02c1lrrvfzZ1+revXs4ODjApUuXfIGYf/tv/y1u3ryJyWSCa9euebWe5yzcLCwRN6Z3RjP+2KRcPtpQ1K/meM7SkskqjgX5BxWFhpQKr7z8CrI8w2Q8wr07N3Hn/j1MJ+s4e2YdvXYHgEWeF0hX+976G+K7s9nMu7MA1aI5odS0zIocjklI5FgtZP+30AWkjq+FY8zn8jP5+ZyRudVqeefyjiuTt7e354lfXZOpS2yV34WEVCogZgIm8ASQUqIwVPyZMmFwoZAyPbsFqIpTHLnYSQEhLDq9VZy/dAm7d29CCo3BoAPhcDljASVD6SwgZtJifW2A3YNj3Hmwg+smhzQaBhpCUr4yilYIrP02BCmsx9hC3FFAwOgCUlqoSKLVSrF/+z5u3ryJd955G9evXkG724ERlgqa8A2iKKokVjw6OsJgMEAcx/5fAOh2uz6dc7hxWCxnlamubtZFbilVJfzHA361CfzSNAZaA85iWf592KU1XCf8zIufsRbecKurq/joo48qjssncfEmglXFVOoHF9/t1K3WDU/gG24UKqHGdabb7UHNqNQYAGTZ3DsKA/BYT9W7vUqcm6Sxx1034Tpedp9l0t/D5iQMzQohhsc11tQf1/h4y3MRQjlVqShAOWEFJXpQKkKr1Uae58iLvLo3AQjrJ7piFLLWIo4pNDHP5gCrqA4XE66jolwoC/1deM+G70IIn1aeUmKNYYWFhiXXDCYwXNxkMBjgmWeewcWLFwEAr7/+OvI891lOp9NpZeHVuT+rTlyujl60xNiEED699vHw0Fl1qFy8caKslLJxY3xZmoWFNuwQicqke5uPLKUGJlTsosLFSg4PD/HSSy+h1+thY2MDP//5zzGZTDAYDJBlGe7fvw+lqHJRyBya8JYQ46liOp9hHC1j8XX0pcyThdqRktdyFXdnALCW4u8MEMcRrE1hbQ/nz5/HdDxEt0sp2I0ts7dEcbUYSfi+y/DCZapgXSprup6lrPCc8F513LPpOXyc/9I09bG24fnMwE5L1Mr+lgIBPYvnxyV+5O+ixJh4RoQzNVOiQwVAwVhykbHWQsUt9FfWYCGhtUWhjctoIyAE15QQHkZgIgVYREoA1iDLpgA0hLT+vuEwC4iF2qHh+wkhGo9BkM9lq5Wi1S5D/vjUCCjVRK5Es7W1hT/5kz/B3t4e3n33XfzN3/wNrLV4/vnncebMGYxGIy95+RsGmA17Vg+HQ5/+ZzAYVFwKWq0WhBQ+dEdKicQROCkYFP9ySWmW2B1ZDY2BNtqrFnQcXj+mTALSA/haa284SZIEH330Ed599128/fbbuHLlCgaDAbTW+Kd/+idcvnwZW1tbmM/nuHXrFtrtNgaDAfb29hbiL8NNVs9eUiV4px3DZuWzOgfVTc13r05T6TjLz7cG0JqTEMRQSqCVxFhb6WJ8fIA0iZzKZb3TbBLHC57y4aIPDSh19VqIMv4RQOVzXW0NCVto4W/y6g8/h9pISMCYUNHma3k8OWyhF0F9jJcZARCM8zJrbtlvKnziGYS1gFP5AEBIBZ+mBwIGBnHcxtr6FqyQyLVBnheQiaS6lkJB2jKhJqd7tACMsIhjCYEC89kYAhpSWlhBRYmpEE3wDo3Icp2YVXF2nsNOp4Nut4skiZyeSlS1IpkxPhDHMTY3NxFFEW7fvu2Ll3CuraawnXASeKDZfF7UrFT8PMoTHmRLBWMCXw7ixa0JRA8X7ZKrKueG9+KMDcfHx3jw4AHyPPcRF0dHRx6AZvyRcTV+XtNCP0nVCWxeD6FpAQwr6okFl71dyJ35XcuFawPaWMFKWJKUAklEAHmkqkSYloJc2Kgh8WkCxx/WluFR9d9OWt9NzwqlvvDaJl+yOm53mvuXx4N356y8NeeZCqmoTIa/EVzSNLCzhoWFlAqxTEqczJgSXiEQO8hQHDg1ewZnYUwBXgN03DbySM/oOOPukqnj+wLUn0RJRBF5RZRr2xkAWq0W4jjG7du3cevWLcxmVBgiiiKcPXsWP/jBD3D58mX0+/1K1oD64IcPZ1USgA9Mr1tuKJ5z4IJGM2/t8ff+ElozGffxBDhYuOECCn8PuQpnhV1fX8elS5cwHo/xm9/8Btvb2+h0OvjhD38IIQTm8zk+/PBDXLx4Eevr60uTCAKLqWceT5Ll1VbiICFGuHBLEfow1e9TOREA+yZJpEkLcZzgxo1b6HU7aKUJVCeBNgUAsmzGqpT2paz6dnH5t9M6mtalnXDd1glh+PkkglY/p+kaxoK5elnYQiZVL8cY9nUZoeMxMU4ycvpkya8qzJc/l64clfu6XPwlQZOwNkKvP4AUOYajMTqtNhgmkKDswXBwEEJiBQulBJI4gjU5rC0A65KUuvOYuXF3rbtOCPhQppCJVhil4RRbwPr6Br797e9gbX0dkBKFLiC5FH2SJHj33Xfx7rvv4qOPPsJoNEIcx3jqqafwF3/xF3jhhRewsbGxUEOwLv6zysqVnYQQGA6HFYMAEygVKWxtnYXWhnLCAxWglK0bX5bGPNBYg0JraG2g9SKXD1UMoMQQGbiczWY4f/48XnzxRXzzm9/ET3/6U/zLv/wLdnd38Zd/+Ze4cuUKxuMxXnvtNTz77LP42te+VsEow+exBBdKbHVV65He8ATuWL4fn82e/yHzDzdgScikpKranU4XSdrC22+/iwcPdjEej5FlmUuSSJ7xodQSrjVrrQ/3OskHzL+NbXaSDfHFpjELLZYLDKsmOYVqa3gNwwucfCEcxyzLcHx87LJVnL78HVBCQqw68nnEWGjMaf8A7ODKM6FEVWUOfcyMI2TGRtA2xvrGWURRir39A7CTLE+tMZSmx0tejlBJYREpibQVQZsMRueg/GUWQhhAuIpcwTKmfgSfrXXwkvsTpduLMRQ1ZACcO7+N/+1/+7c4d34bKysDdLs9SpvNoOdwOMRwOPQLTAjKpXXp0qVKSM1J0lj4nRcSTywv/PIc6d0NtNahkoNl2M3vulmU1aubVM0mvCpc5OyQyDjYxsYG7t+/j/39fcznc1y+fBndbhdaaxwcHGBlZQXr6+snevY/HEA+hXQbaKKBjOKPLUgO7vCC5FyR6Pi+/gOUk0aOj4+p8lKRu7VhKgzAI20NOFPoZ0ePfHTpvYlQnKTy8b8PI6AhcQNQcR/hFoalNamqTcaE8N4hET6pOdq2oG+yCl/+VPqgWZBxIE1bEEJiPs/Ac1fCBBZAaa0s092ToKck+bZRaTmDsHaof+hC14O+ebGh9j5+bARa7Ta2t7eRtlqI4hhKRYi4Jmae57h06RJefPFFHB8f49VXX8Xzzz+Pzc1NrK2teY4VulLwbyc19j+bTiaQkvL9S1GNtSP/G4vpdIp2mvgy89aWKZG/FM0tDK4I1Lj4gw1e5+Khc6sQFFmxurqKb37zm2i1Wtjb28Obb76JVquFZ555xqspYZYIbnUnTX5OvVlrH4slVOWrRQmPlluwKdDEekp8R7pA8l6vg42NNWQ5RTccHh4hmxPz7LRLoDxkhmELYx39U4Q4FaFZeMcTiEGdgIS/V6XURSmY5ySKooVIGYYawjCrR+kvE0BOVQ3Am1kaxz9QP+sCgvVwG7tPOEkNCu1OD8Mo9gY8qmROgJmUArDO28AKTxAp7ROc31tBJec8fmo8IXIDVmJlxC0dBsiHhZf8hess30kphcl4gvs3buDOnbs4OjrC8fAY0dbWFrIsw3w+x1e+8hW02218+OGH+Ju/+RvM53M8//zznphZaz3mA5ROiCcNvlIK7XYbh0cHEIKCUZWrpsIj2u/1oJTE0dER4vU1mjDA685fFmLGFhhWlyvVg0QwIbV6oXS4qoKw1JumKf79v//3eOONN/Dee+/hww8/xPe+9z185Stf8WmVOLysDnwzMQutco3cHo8q4wZifnAlLTBRLk9rnarDoS3BUxxhpzHh9NcCGxsDdHotxEmKB/d3cHi4hyKfIFHASr+HwWAAq63PNFvFrIXHzOqEoInALLxVDdc6iQCGjCKUluqMiVsY6G+t9Sl+OEoBKCUy3m9N6ebrxLL+Pp6QKVm6XIT4kw0z7leZjY/MCJ/p/keYdgwBBWsTrAw2cPDgDibjKbSxUB7zIhcMYSkVj3B7VQiAc9gpBRRFhtgUzvufcTALgZgkNZcTDYLqcEqp6KOzMAgpQNCchrAuI5oFICl/2r27O/i/f/YPmM1m2Nvfw7379yHZK7koCmxsbODChQvY2NjwYU2cA50HNbRihpO3bAEJQc642TxbmlokTgg7yPMcxpaY2uOoD4/S6v1e9i7178ZVDVrsX6lONfW9vtmiKEKn08FTTz2FbreL0WiEW7duIY5jnDt3jsRoV0ehLhHXpb5l71f75aEap+fWS/qO8LDHaeo38BeVFjDHdVtpgn6vg16vD2M0ppMJjo4OUThpNY5jf/4yULzpnR82Bqcdo5BonbT+HkYUGTduCpLnGOaTiNZJ/WSCFhx1Qs4SlmVLte7he4qksyRtQXIEhC1xUWvd3NSeHwpcQghK0e0JmJPjK7pteQEbJvwhlIKDx2VLfQfSqb93797F4eEh9vcP8ODBA0S3bt3C3t4ejo+PcevWLSil0Gq18PWvfx1SSkyn00bL3cOap9agOLJWi7Cx2WyGJG0hHHgplRfJfaHWKG5c0L+rxkBlSNCbcAv+XufUIadvt9u4e/eutxqzavXUU08hjmNMp1Ps7Ozg0qVLlTClOuEFTie18tJ53BrxFUlE0ELTHtsArWXJJdPCwQBUrJDnBcbjY8zyQ8hYQSiFKIqxuraGOBKYTVvodSltFOWq5zFUC5LESWrm477bo/y+7HhI0IqiQKfTqTjK8vH5fO7n87T9Y+2H35188LSTioSTgh0RDlBn+oEzzTKBYNwNMIH6WSUoCrAKCJRELlpMjzIATDk3jmmRwztBSUVRkJHAAlbCc0ku9oxg7SyIBEJAwwLCOfOaomSIANggYYzFtetPIUlTDEcjRK+++ipu3bqFu3fvYjwe4wc/+AGuXr2Kn/zkJ3j99ddxeHhYyYbBExM+eBFD42BYR6ml8G4dR0dHZPaV5TVxHMPYFrrdLrIshzUGkVSQ6vHyPD3JViEaDi9rUrV5oVBV7aoLAEtWnApmZWUFf//3f4+PP/4YN2/exPXr1/Hcc8/hBz/4gU+z9Oabb+LSpUs+A2qSJJUU2SdljVjY2CwhNUqStvGbgHAVx8tsD8Y6CUAAhbEwwUJU0lmhTaDywCJJUgyHR9jZ2ceNu/cRxQm6/T5efPllXL50EUafQZFNoKRFHCk/ToBApAI4wjVWM5uytjxqO+n6Jomp6fwQ8Oe55gIp3W63IgAIIXxhbK6oddIz6xI4z7lSAoURUMKNOxhfghsuGRCPksjIYE2CiZdxId3OyZYkpRjCuFxp4HtSRIcURFwozZAjiF4ac3HXcYLZbIY0z0GOtU6ushzZE/iUMpzh/EyFgK/oJGUMIZ06y9CKewaEgDbA9773PXzw4Uc4PBpC3rt3D7dv38ann36Kt956C4eHh0iSBM8//7yPCqhLZQ+VCtxC9kCuEJ5LkXWkRhADkdyYMq/9l0kyA+DxiZMykZ4EHLNklqYpHjx4gE8++QRvv/02bt68CSEELly4gLNnz2I+n2N3d9cTQc6MUX/OMumQm8fXHvZS5RUL14f3CclezbffR22EeqoFXJpjqnF4//4DPHiwh4ODY0RRhL6z1G5sbGAwGPikiJY3n5SLGM8SXKmp3wvj0ICxNR1bdh9+flMLf+fImDAXGjd2sVlmjW3C/kLJ3hjK5Grdn7uIzqMvoW3RXe/v7o05AhyEXqqOpYrHa03U1kfZ39IXrJT2SHCnzMG6qOb38+Acn8/ZOt2FfgyYMDp8T/o1FcyRYMEB2N7expkzZ9Dp9hFlWYbNzU30ej1sbW3BGONTznBNzJPixxY3cqk/8+at1j8UmE5nrtI01zEk0TFJEleZuhRBHxG5/vyahTM3N2FUyzvJQDWrCKFlcjAY4Omnn4bWGrdv38Zbb70FKSU2NzcBlOE34fWVp56S0PthXBhPy8asyu8imL9l72ZNlZwxVkJ6CC9UWnBZnmOeZThz5gwgFJJWC3u7uzhzZg0ycaFDWoMdkHijSLmoij0K1PF5tWWYHeNhnC2mfk44h6dx+g2lPv7OcENRUIFuE1lEkvIDLluGIVNgmiLCf/k6N64GAtb5qEmlyElWMfFzEp+nYTa4J8V7KklhiexcC7hrbWmh9ASKHx2ouhxDaq0lx2AnNbJTbTafw1qLlZUVWEuGAgCIhsMhXnnlFVy7dg1HR0d47bXX8Otf/xp7e3t4+eWXsbW19ZCc4OWgF0VBKUJQ5tmi3GVxxXGUUnKv0nddIEIEJRW63S4ODw+9ldAT8y+62QDohJPGbJkam9+r5Cac4qbqiW+t9QVqw0wi0+kURVHg8uXL+O53v4u/+7u/w7/8y7/g7bffxl/+5V/i2WefRZqmlXxxbCI/SZJY/j7WZ6uo/Qx4ZlJb7e4dCDy2FcJmBQXZl/hgWVhDSklO345La20wnkxwPBriq1//NsbTOcaTKd577110Oy8jXetTdIPOIUApZnShffGKxT7/bohZ3ehVZyxKKfKby3N0u12/5rkxE2OIghn5shZaQDniIUkSwpVNjumUCgmlSQtpkqLb7lWECPoAwApEcUySnGEMoNxWjONbBw9ZCGhIxJCQMkIcJ9C6AOIEUimYIoP0PmZcW5MleAWlEsRxC0VOZeesMRDKRQ4IZzxz1aKEIFXZWJBa6Y0lLhOu0bCwiCIFa3JoQxrbcDiEMQYXLlyENQK6MKR+smT28ssv4ytf+QqMMbh16xZu3LiB1dVVbG5uLjhsLtP1ywmvHgvLz5FRYYaiKPE3osrSq6KcB+yLImQnb45ShDaPIJnxplNKVTy9Q+/w1dVVPPfcczDG4ObNm3jjjTe8ZHbu3Dk/7nzdE9/Ip7iXsNYvfuLi5VyHly8jsNZa5M4V4ezZs1hfX0er1cLugwfIs8yNq4bRxku+zBSqFrPqPU/6/nm2Zc8K3W64nmy9haUBHyaZ1bGyUMthyWw2m2GezZHnxYlbRUlZGmcW4FQOVSsPsOAkpISSCmyVlBIlvBBsz3ItkIuFUpHLjmK8HuuhCl+CrgqDGH8On1+qs3U/yvl8DgvSbKwVMI48Rbu7uxgOhz5E5Ny5cxiPxxgMBp57NNUoDJvHMRomJLyGJwPQXiQXDE6HiIxTV5qI4+fZvPUx7If7boz1qWkAllrcvyIYgwasLM9z7O3tVZwoOZB/d3cXFy9exHw+x3A4rIRuhMSsSa2pP2fZMf87n8v/Z7Fz4Yzy/YIfAB8OI2CMZsaPijWTITNnccqyHEJIn5iQx4CZWCgmWITMDUslsy+qNT0rJDJNeKVw+HA9HRP7CoZW7rrxLHxmfT45Ew25rmhAkH9fHCUQUiDLc5BE4yrBC+lnk12Jmp4jHMZQuqSWGBgLIByhEeJazNyIsJFaKoWFEOQUbwLrUD3Hrd/v/h2poJFwN7bWAIItp+EYkJaHokArbWFtbQ1RpLCy0sPFixcRvfXWW/j617+Ow8NDrK2t4Vvf+hauX7+O4+NjtNttHxTLg9+UVK7kHGVAcoiVceN4zck096l/OJwJTpVzPYdUCjrPSQX6Qq2aAZgaAKSFoWrPoZRacrASnK0HDltrMRqN8Oqrr+K73/0uer0eiqLAV77yFdy+fRtvvPEG/uiP/ghra2v44IMPIKWseIlzqzvgPuo7SYGaqslUhz5bG/4bjHeDFGotgsrXAsJYREpBSV7EAkpSVpTxaASlFNbX1wEArVaCXq9TEssSdgOspdqpTgphAD1kEnUV7zRE/Ek0b8xy658dd7kPoYGHiwLxdczQ9vf3vZbCElyTtF1/PzYacRp6bVJo04YuDPKsQFFoDIdDwGkCnU4XaeycioWFLlitc1lpFzQMC8AREB5H66zYMUFB2hQwVvmzmfRZwU7UwklyKZRMoTOKkpFObSwJJUl4RKmMd/BVQpJl1BqYQkMk8IkgjTGIlEKSxLR/jEUnTnB+YwOddorLly+i3W1B3rlzB/v7+5hOp1BK4erVq3jxxRdx/vx5n0CRN9UyvKaUShYnPzyXcTPqoA4kMxqiUBITUvgYyC+yieAD7zULW8mUAQTYja0u5sq93LvP53PcuHEDALxH+MWLF5EkCW7fvo1nn30WV65cwdraWmWzhFZdVtEfZ8Myr60uXu6jDX6z1WPheNSaDrg9EBSj5TlEmepISolOpwsIcpButZKG8SLpgBMRsDRSb79rA8CyOQgZDc9xXTKbTCaemIUJG07SdpiYxXGMVquFNE3RbrfR6XbR6/X8s2bzGamd88xhzoIkadFEvJpaKXX5eA4hHIOiykrkdkSkqbpa6FlCRpAygpKRXx+kwZZaG6cK8lqvkwgEZ0ex1ldKZ5sGqaBEO9I0RRTH6HY6OHfuLOIkwvrGGp599hlE165dgxACd+7c8fUwmeiEak59kBcnsRyWUK1sEsWli72s3NuGITrBfT5HFbMJ+yKJrI7JBO+5KCxXFm3TM3g8d3Z2YIzxADEAF594iMlkAkpamHqMLLznw3DKphb2WYSaPK91ProQCOwRMifu8/uVZ4SRGtwf4aQ2xtbY9y7Pc0ymMwyHx0jSFvLCSdz8529T4pPAYnHeh73vZ22nYRT1CBjuExOnJiys9J1b3Ev871JooInYCSe1CCryEUVE6Kw2kFIFgewCUpbzXLdmN+1NAE7idn3kPhNVIhmr3LKkYoIkOViaf8PVzv1zS+/98q6hfOdYWaDGli+KCoY2mUxw/+5dRMZgdNDzxaqtEIj+43/8j3jw4AF++tOfIssyvPTSS1hbW0Or1fIWtDBHPXOK0GzsKWigZvEGrqdgIUuOcmb3cKJKKccYd69TmK+fWLOVf1yfOajceEdOIZXjWvAxtlzNWVQ2vvAcNU1T9Ho9/MM//APOnj2LP/qjPwIH+I9GI7zxxhu4ffs2sizzxWI4+y6PX57ngVRrGqWWk1+uvpAWJTVPiFyTUkLJwOcIwi/eQpOa6X7yILMxlGNLgqpOCwCj0RB3dx4gSdpY29x0XJycP70jZ9BLozWkFIijRT+t37VkFhKlMDaZC6xwBfoQF5vP5z5LRoiJLpPm60LAolROcyGlQJqkiFRMVseCnNvnswzHsxmUEIhjhU67Tc6uKC3u4b4M9zRl+c2R8taztjRewQKQrjAJoC1goah+gJAwVkIbBa0l4BzJpRDQhipyQYAsoQ7SUBwMACKT1mqPl7I0JoRAkWWQkqKD7ty5g3/82U8xOTpCN05gtYF1XDH6wQ9+gL/5m7/BG2+8gcuXL+PatWtYX19HHMdkNbCLpbPq3IUdJusDs+DC4CaCwlRqHCcUO3mzsVffF2TWrC0r1x8GUBcCRbykIoL3p2tKYsFEPU1TvP322zg4OMDv//7ve8I0n89x8+bNSgHlo6OjyqY5CSf6TC8bSGdNY0zvRQu1lNRoTDRvRnfEr4FgcKRTc2azGQ4O9tHu9KGSBEmrBSHompBfCVuVglXUTLB/l8Qs9BML13Ce574KU73lee7dK2TA+JYR5rqk3wTZsNwbRTGiSCBNqQjJbDbDdEJhclIKtC0VH2bJjIkFt8U+uLWm+Jv1HveWJ5uz/1pHSMAJHiXI74s4vXBYbeHcMcr9QwHpLBSwDcgnfWRpTBLRto6wGaNxsL+Pt956E7t3d5BAwhTaETOJqNUiq8CZM2f8oJ/WFeOktgxbIMmMNnJRaC9x1E+11ta1vc+12eD/EKV/WRUPW3yf+q/1seJrOfV1nue4e/euD3XZ3NyElBK9Xq/ioBwSxofjHWVrxF8aeircKqr3nwmSCL6Xt1xUkconBN/d4BlDRVw63Q4GgwGSJIYxGlk296UKZ1Oqai+FpCgcsHc537Nqlv9dELJlluQ6Vlpa68sW4p9162VI0CqEqsYYmZl5nM2Go13OlmeecYQ0JTcnDha33jhnEaYPogurUjrDBYQTewrmjnC9AAErythNCwFpyappbT2ywoX4gZI0esdbZ9H08opk6KEcX8FjBVoj7XYLZ86cQSIkEnCJPQFIiWgwGODb3/42zpw5g/fffx+j0ciHMPGgFkXhVUZ2Gm3iKuFEsmhaNwBI5xw7m81cEsgZVldXkVRi1dhFQkDgi1i85cYOfzPGQBfGO+WFraqOlt9CYFdr7bOockTFaDTC3/7t3+L73/8+2u02fvjDH+L+/fu4cOECNjc3veMl35MZCzMALHnuic2BqkIqLHCN8I1FiVcJIX0lqTJvFsC+GFxlybFUdyEtPiVofWRZhn6/j6euXsXGxhbG0zlm2RyjwwNMxkPcvn0LRmfYXFtFnMQQMDBaQBcFjC4gxKIUsdjnx8tl9jiNiQV/DovVWEsVyMJ8bLxHRqMR5vO5d55mhn4S7snXclw0pw3y+wrCQzxACXFQWcgVdDptmEKj0MQ0rMs1FicR0iSGECRAMJZFDq1O6lSUqyxM805qooQQkYsQIJyKowWsS9+jDX1WMnbxuvBuF8Q/tSd/zunJEU4JqSiXoZISBUhSMxaIJK39JImxceki/s2f/RmK6RSJcGqzg0GiXq+H5557DmfOnMHrr7+O2WxW8TYH4EM0eBIrlHMJR2lSMclCRelFptMpZrMZZjODXq/nzdQLE/z5r1HunSdnDFwzRyz9dJo3TchtQzWcgVhjDFotCqTf3d3FP//zP2N9fR1f/epX8corr+AXv/gFLly4gOvXr/usCjwWzNFDM/4y4Hb5hi79AAWEz5YQqvQ8Bvz/Ug0M4iNZHbCA0dZJrnDcNZxnCes24cpqH93eCrbOAJ/euoXx3R0Mh0eYTafY3d1FEitsrg2gIvKNMsJCG+2C93936uSyFo5xGKLG0neSJJX1YK31DIpjT5lJcFvGlHyWDDeWzOQYw/RbRJTP833QBnmWYzKd4PjoyDEHwKKFSClUeGO4HixFdMAQwyIf0xIzFUI5rIwuNHCAvwGMIMJmrICUkaMBvJbgryCsmcEyDWvoXaSgxI7S+TMabQADyCgGLBApha2tDVxYXUMEIKlB6hFQZiJg/5i61HWSfl9vdWLH/4aA43B4jIODA4xGI2xurvOUBnhbeb9m5e7zbFVVqv7eTSMQEuE6gMv/jkYj9Ho9bG5uOk5pMR6PcXBwgHa77dMrn0SkThr/kyUTkqaEA0rZ18i/kAjn2r2jO9fjgrV3r6jlLBm4n+qbGQ5vZMfPdruNlZW+X2uTyQRJpBApWW4bsShEfpEqZn39N7VwXkJJq27lDM9/2DvU11J4L5bQlEvMGPSk8o+/1pU7jKMIWpZrwLh7CSEXSsAhGHdmXE5BBGOlhXYZU5xkZiyAgnArrR02JoBCk4/qPDeQQkFAoLCWkANhXXSJAf0QVfeadWuuptILCMyzDNP5HHpO7mSddhvdXo8qmu/t7eH+/fv45je/6Z0bQ8CS84w1YTlEpEqcJ0mSpZY2Fs1//etX8cEHH2A+n+P/+D/+I0UaOJC93W4DcOEhWoOj/L/I5nEKXfUtox2GKjxUI/QcuiSlBBeLGY/HeP311/Gd73wH3/rWt3B8fIz33nsP7733Hm7cuIF/9a/+FQaDAebzuY+2YKk2jNFjqe80QcpNLVKKAymROxXJ2Ar5BiC8zxj5REnH+asSHNdh5F+VIMuVNxK5dyAcVsNYgVa7hXPnz2J9Yw3nzp1Bkc2hixwff/wxLpw7i5V+D71eB0pJRNEi/tSU9uiLbGG2C/7M+6Lf73upjCX0oigwmUz8HgrVz9DpdhkGx5IWS2fD4RDT6ZSK4LZa6HQ6YItfWNHIuthJqSRa7RbWXCEiYzSKLEOW5ZhNp5BKUcKHOCoZGOBsBQRNGA2CJyBRaDJYZblGoS20NRAReSVYDYhCosiNhzOOjo8wNxoGikyfAKCUUzANjDaIlaR4zqSNVtyC0RTPaWEhRUTqrbHQRYEiJ/zvk48+xJ1PP8H7b72FwcoKXnr5ZXzr298myezo6Ah7e3v49re/7UXacONEUbSQtpkHXylFL22r8WN+YGucSGuNd955B6+//jqKosD/+X/+vyrqKEUE8IJwVPwLls2sky4Wcv0v6UZ98fHCZRzFGIMPPvgAP/nJT/D000/DGIP3338fN27cwOHhIf76r/8aUkpMJpNKRaewaG0daD6tlBz2TSoFqWihUYK/urxVXufdAeRCsBkhHcblpEIAK3hiZom4Sa6ZSmhamibo93tQboPevnkDu/fv4/bt2+ikMSIl0Ou2wQWUPVbHzLq2/r7oVneJCQlbp9MJssCUOezCECagnJOQMJ5kUCBohjbxeDyG1hq9Xg/WAp1O16uccAkYAZasCftSEQWLG7evh0dHDuKZOnXXxXtSR7xk7LB5wsIEWSm1AaazDLN5gbzQyHSBKEkcrGBgMkBCEcYlBMbjEY4nY4gohsk1YAGVxI4RGuiiQCtJkSQttNsa8aCgGF3GX53KaYsC2qm8pjC4ffsWXn/9N/gff/ffcO7sWSRJgq9+/WtUNzOsk1lP91NfQMtUzlCtalIzw5xcLJJzBaLBYIA4jvx5foJZdfkCW7lxlqs1VWyNWjg+TTGVjJ0xc2Bv7rB24mlS/DzqRmb1T9jyM0RoaaoTNA7+LYOAm8cgGAe3+iujFUghVf2nJJZKRd4PL4oij5XU3sD3LyTM9Xf8Itsy41e9HyyB1dtp1M36+eEfaQ2Mx3IYoV0a9kcqp8tq4vA6FUVURclJ2Zz4QdYyBnsDAcoYTwomF1AQUIorpAvISEAiQiSdWssygJIUSmotlCJrrLCAgPL+iRZE3HySgQplZjyPDEKz6RRGawwGK0iTBMZSqcro8PDQJ2eMosgD0CGYXU8OWBb04FJSRL1D35uwAre1VO+Qiw1fuXIFd+7cwe3bt/G3f/v/xfe//z1cvLCNNE0o/a2SaLfXIJX8wokZ4CQyHdY7OF0vmItyGbW1tTVPqDg27/DwEBsbG7h27RriOPYB6Jy0j8eb79ekWj4qdiSFcGqb9CoAOUJrQJCDI78nvwPhMrUq3OCNXILFNNcu5IWvFeRfBKf+WLCfkkaeZ359dTptqK0t9DptrA/6aKWJU6kK1KupLzC630Erg65Ldwn+nqbpQn1MwoeHlay4/G/ocNskCAAl0QyzztA15Lu3u8vJCyL0eh3EggLcORyMpCsuOEPPbDsJslPkJK3pHNNZhkJPEMcRkjiCSBIoS6l5qIsKurDIMg0hInS7HcgoRgHtk9pabREjgYSEsBK5FNDSGQVAFk5YQCgB42ALYS0kJIwRKDQwHA2RaQklJBU3tgjehYhZHCncvn0TcRzhJz/5Szy4dw+tVoJ3330L0dHREXZ2dnDr1q2FLBnhAmIcSAjyaA5jFLnCcj2onJMQskWHTdcXL17E1tYWdnZ28Pd///e4fPki1tfXECcJxqMxkiT2XITzLH1RzVriQJy7zLLMXp4RnFvNL8aEYDKZ4OjoCGfPnvUuFXme4+DgAMfHx9jY2MDly5eRpqmL/C+ZCJ9fN5rUPbaB029qISQiKaGkIO4tJJQxsEoBgnLK1w0YSoaSRgn0kx+YW1xuk0TKbXLpcr0J6WtkW0tsWAjyHysKAwjCY1utFnqdNlrnzkLCwJgCeTb3sYD1eWfC/rsiZsxcQibNc1HHiplAjcdjrKysVFxr+B0Ylw6JGVDVaICyMLZP/5M7L//hCHEcodVK0GoliBYy23L/yKgmJdWfaDmr6nw2w9HxIebZFOPxGN1uG7Ap4igqrdYWABQKXSDPNSBSdLp9pK0OjLIobOGwNYtu1IawElYLFMrCRgJGuhQ9lvE4CyNcrV4hoQuD2TzHcJRhPBohVy0o1YaChLbk6xYJAaOJmEWRws7du9haW8Wf//m/wz//8pfYPzjAhx98QMSMYwLrcWcPkwBYveDNHm5qnoxwwrMsw2g0xnw+RxxTBPxkMsFsNqOof4ASwaHqU/Wom/fUrapduQE3qIi2DS0cm7rVy1ryryIPbCJAUkr0+32f5odTLgFAu91uVFse+VUa1P6SQPHY1dW98rxQMhMIpYimfgUqpUAw33w/d8A6S1lFmy0lOzrXSfSwEEswvKZ3DDf/Sb99nq2ObdWPhbDBZ+lXncjxPJYSoqsxwSqtI1zCXw9wMRKIUo1kXNSHzYkSD61qJSzlWUdYXTiispDGZYO1FlIpCCNhLCClhWHnXGsB68pHwgDOY0EKASvZ4CRgCgMrrV8rft+jCncwU2u3Wmi1Wk7AmiH6b//tv2FjYwPf+c53MBqNfAmsJvwrVDfD9CdNWWU5qypbYqIowq1bt3Dz5k3cf3CAXq+H3/u938Ph4SF2dnaws7MDKSVefukF9HrdwIq4mCftSbYKPRPs+RwWOw7GoKG+UbigCbQ3uHt3Bzdu3MD3v/99WGvR7XbxJ3/yJ9jZ2cHe3h4++OAD3Lt3D5ubm3jmmWcwm818xZ5qiqGqr1/4vIe+V3CtFGyZLI8rJQERQWhL8W2BFMAqpreShZq2DeU0BM6Q1hMvIYQPTWKDA6RL8+J+h7OGamswn2tE0iVp5FhfzygXx7qJMHxWZnDaFu6J2Wzm68LWJUb2owwrmofSNd+rqbEkHkqC4XWEu8ZoCeEl3uPjY4wnY1I7kxjdbpecVl0oWhPOqBQ5sMdJgnanQ5CAoUzIWTbEfJ45CV1CG0Bri/6gjyhKICSlshZSQQmOZhcutAgu9Z0zDIIyCNN9jDcwQFAoZBwptNMUu6MxjEggE6dOW0kChgKCReE9BgCLtdUB7j3Ywf7+LqL//t//O/7qr/4K3/zmNzEejyuDHA5AKOJXJs6WLhtCCO9cy5IHW0eVUrh9+zZ+/vN/xHgyx7/5N/8GX//61zEajfB//V//b7zzzjuYzWa4euVyJcLgi3CcZPqPiqNsQ9qUYFOHhpBQxWRi9tFHH3lTfbfbxR//8R/jP//n/4zbt297ifS73/0utre3vaWYrX+hus7Pr8fEnrYR+OuYj+CsIHAB5ApakNmbHKlFpV4DvbNFnagwlmFRbm7rVRrnLW4NYAVUJJmxO2dMl5VBW+faYWELC6voIJVQ43GuPrtOsL5oSYwbq+JZlqHrUvHU+0EO4TOfBQWoYm58n2X9r2Nn4WeGAaJIQRvKNTYcDmFhoCKFbreHNE0gY3LDWWbG4dxnbVhYozEajzGbTjAeD2EnI0p24GAJkv4s2m0iZhCUZJXrNAgpACP9HqH+G8JlQQkapKDUUWXNCZq/KFJopRHy/BAiMlBSwObWg/5wDFNUiJkCYDFYXYGSAvsHe6TPJUmCNE2RZVlFEquqIAh+bx78JvCSj3HJNMJNci+y9rpdRBEXgICXCioL1718XaVb1k5zXkWEXjjYxOkfpnLT+08m40pIE0dUhHnhQ6sm42VNauLDGql1br4X+kqyup8XJsLhYcGSVakahudW+kOUy5OXkgGEfeUoA+vVFZ2TkUEoAeEIWyW20IZrZXGMH0fgOklK+yzEr0lbCbWUsIV+gafB+R65X05N0z6BITEGYSw4V6CWhcOmSKoRHlT3D/WuN5AlNkfOtBR6GEUxiMkzQ5JeQqrqTBzTG6yfQITnnVYBEmz57kKKyhoIYYz6erSAq/g1dvsrR14UiP71v/7XuHLlylIMiH9jLKWkluV5ZQxflfNwLFm73cYvfvELAMC3v/1tvPXWuzjY38cH77+HV155Bd/+9jdx+fJFFEWB7e0LaLUIR/JpmJ+odMYSJU1+mO1BO0dH7Zz22HmwaZnVsUUGaH/xi3+EUhJf+9rXYK3Fb3/7W4xGI/ze7/0efu/3fg9PP/20j3W9evUqAFQckk+/qEXwb8m9yr45lUQJsiApUFpjWAhLIVoU+AvvtEzvA0AYWMc+pX9PyoygrUCuLShBs4CwxHWp/9phMgpZkWM0nGBndxdxK0Gn18Pm2TOQLpgchsoKEoYiUBiqsSgkbwkJVz3Wv2sTtvgk1csmianp/iG0wq4l9ePz+dyv/yb1sglrPc17scQDGAilKLgbEUnAIOm3yIGjw0NESiJSEisra4iiFEqVBgLr7iJBxhlYIIkTiDaphLYlYPMxTD6GlREsFIAIEArGgfyQquJCobXTBiVzLAFhXUIoQxIeEWCHmwrG4lzonADgVF0I5bz/BbQAIAEjCejJM42bN+7gb/8//z9MJiPc3rmD0WiG6M/+7M9cyaZFYsaNsx/AkldwPZ0FSxlMzJigzWYzdDodtNttvPbaa3juuefw3e9+F4cHxzjY38N7eYbvf/+7+L3vfseb64nLEQ6gwJLAk1mwpWosXAFb6zicdANsPM4XPtGWcnH5W8Clw3i7f/iH/4Ef/OAH+MY3vgEAeP3117G7u4s/+IM/wPe//32XDufA11jg8Q3V2iaCVlf9LeuLXgIrz/PETJA7hoyImCkLSGsgXMkvuloQ93XYmIF1xMzdAgICirALF5eXGw1jSaUQjoPDOsuvEBAw0HmO0XCEDz74GJ2VPjbPnsHm2QvOEdZCSAujc8BqQEnk+QxSaCh2krYSsAoWjKFVpf6m748rdYWQgbW2YnkM9wUzrUchZgxQh9eE913Wn6bPZTOA0JBKQloBAwUVk1sErEGRZ5hNDyCgESmBdpo63DSu3wXOcQJCCCRJ6jwOUiCPIJEBZg6ICEYoWKEImrASxhEqKZyPpCaIQErh/Nc0BPUIwpJhQEhKp14U3tUanJVDCAEqD+zqDUARLxNAIdx6kRRIkGUaNz69jZ0bdwBpYd2xiBxWq9WVH2ZdY/UmHPBQJa1zndC7nYsyzGYzl7RNuLCMMs2y1lSmqnxIRTj9jK2GgQWfF967spBO93zOOKIUvQulMubU0R0opTCfz50Xt/VB/cvUzGawuL7AmdDVfmXM1OuWfK6tYRvl7xU1YeEZpNOGYUzC983d05aSrLWA1pR1pCg0qQJSQngy6tLKuP7ZUP9d0h4m0Zy2ndZCvszYwIStyZJZdzyvP/NhbRkxq64J1tF4nkkC4kMEoGsSQGyZgUO4CzhLrPNepXlz94BSgI0QxTFVTBPL5kTAu1yE74lgtfEXr2XVTkSw8vzSs4HiITxDo3enHG5S0P4SkUCUkvN1JISolMAK/8JBtDZUt0pJhYlQGNrBE72ysuI5k9Yad+/exZtvvgkhgCtXrmBzcxNHR0c+FIT80srCoU+68Tvw7b2l0NYqLz3kHuG1QOn9LYTAtWvXsL+/j3/8x3/EhQsX0Gq1cO3aNUgpsbe354lbv9+Htc0e4p+1Cbf4ws3m6AwxokVBM5BaA6aGEMGwgKtpWRSFM14R1hFHCgrCZRE10Ias16urAzzzzDPItIa2Fu+++y763S663S42VjedBCRhkZXuGTxBIZ4SSDahBFYnIo9jEAglr/De4ToO+8HW+TzP0ev1KlIZ93E4HHpMOHxG+DkkxI9DkIlRaFDNSiYEJMFYJZCIFEYLGJ1RTc/pDNPZGEnSRuLiMWVcNw24ebYaEAS0d7tdCDsnaYmt3hUmuAhLlUosiN6xV4KQTqUkq7bRBkrQGtDBfEuXQqpCRC1gjUWeF/jmt76Fp69chdIFRERYrIxVScxCJ1ielAXA009C8GBZ5r0CykWglEK/3w8SMRa4desWZrMZtjbP4tq1a7h69Sr29h/48KY8z6FUyeXLcJlSWvisGIl1+np94YYE/TT3CNWFMJTl2Wefxeuvv45XX30VV65cwQsvvIBr165BKYUHDx5gMpkgjmNfJCbMXfakLHMM6JeAbnXhNaGALJHR6AebLxCK2bSeF7njtLTw4jiGsAWEBqym+Lo4jrG21kV/bQs7uw9wa+cO3njjDZzd2sLZM2exPthAnEQQkMjyDMITM2fhxOKY1CMA6oTuNK2J4NWxMpZiQoLEx7lqVpZlOHfuXCVNNkAE5ujoCAAWNJ6m5z+WRdYxJQ0N57dQSjUCUJBI4haKHJgVOaSMMJmOcf/+Ifr9NfT6PbS7Ep0kQkXrYY5niJglaQzR72E2zCklEBc1kSgZZMWiwO9kwG5MQghfdY0gMQspFKwlED9JKYhdFy5SQbBvGu/7kt5YC2RZju9/7weIrEFLwbttWClK79STFkMpmYmF35uwipAYhladLMswHA5x5sw5pGnqLaj8bMIUVDmoftHSUPjQhmVzXJMmG89BSczK3/iRtjyrom02bP6As4bqNWeQHY1GODw8hBDCp1IOQeE6V35cQhb2uSJu1eelsuDCL6L8x9a0ASsWrrCoVkcXguL5oMvVYd2NlFKI07bf1FS0NvMZjeNIQcgyfdCCmhz2Lfz9IWtgmWpYP6culZ2mhZpLvZQiH+fIF79vnhCTKlupbgoeOJ5+WwoZIoh1pVjOwpVLNNWAbgSCQ7kbIAThXxXcoNaHktMxfXDjg3I+fdQE30KUx0Sw4ErAIxyvAEpw9GTQ76OtFDoJZSc2gu4d1fX70GudB4ybdZiKAMdgykoeJ3a4LYoCDx48wMHBAQCyll28eBF3797F/v4BvvOddezuPcB4MsJ8PsPW1lawKEKN+8m2CtRQ4+oe+A9UnKYWSnN8D168eZ7jypUrmEwm6Pf7+Pjjj7G/v4/9/X3M53N89NFHAIBvfetbnvuHGX0/87t5Yi98YkXpFiNLpMGaP1VjjAWWaBtbfAkOoPQsQriiFVYjlhSsZ7RGgQKxsZhnGWbTOS5evIhOpwMDi48//hj9XhedTguraz1yEbCBk25D4xjHuttDnTidtoVMqB77GsIm4XN4jTP+WZeyOCFnmEBgWXtcQkfuFApaW1+iTbOwIUpCR1BDhNl0Bm0MkoQMALP5DIXJMZkZtNIEiUuz7XsiAVgDowvkRQYff+3cp1gi80KBKKEL+t3ACmdQMgZ7+3tYXVlDu90BHA2REIhcdABBH1V9QYJhETI60vhTUem5EIiSCEjScq0IIApVqxDUBKqVaDhHFVFc6UypyldvZjCbpa1PPvkE//Iv/4KiKNDv9/HSSy/h+PgYH3zwAc6ePYObN29hb3cXZ86ewfXr133cmXXADn9+olzNlhJXlZiVkQrEQZqfWVd5mDtzSmMhBJ599lmsr6/jwoULePPNN/HgwQOsr69jNpvh7bffRq/Xw49//GOMx2OfGz6Mx/zsr+hiZaWsbLaK6lj7t3zB4J9gnKwjZFYS0co4W4M1gCXpJNcawhioOILJDTQ0tMmgUoP5bI7JZIJr168hyzJMxmO88847WFsdYGtrHWvrzxHwDOP9pcL+cD/CBJZ1y+BprIQLrxsQs7rxKkwQEFqd2a2m1+tV4pX52VprH67HER1N0ttnWdcc/1oUVC1eKInCJaaTQpRZzAVltRhPJjDapdcSFtPpBMUoh9YzrA765AMZxVAcSiQAFBpG58izGREzkAQuWHbjsQqkP/KVdsTMalgIaF3g/r0dRCpGEscQEpDKhVtFwucxFBaQIILFn7UFqbeFBmLC2+azOaYwiJAC3dCKbLGYWB5Y4DYVzKw8i6h1MJG8EIwxPosqO8t2Oh2f5DGOY2TZHMfDY6ytr9VUACyoRKeWIh5TwvEcIFTO69DoCVhHCE53Oh2sra35WFPODpplmcfLwmy+y/r7sPfwqndNfXJHvZXRSy5NGkL41aJKxfxdUBHljLVl5XmvN7DUXu+L8Rtca+OqBAGT8QTT6RRpGmM277r3WYz1YLCZD9QJ1mnn+lHWxElQRTjPodEnPH4SfvckJHB3p1Anc/NkGsB8h3MWGtaWUroxGkWRI8vnyIt2iRXz5nPrgMKbjP8tlPzKeecpIknMOkOadfinNhrT2RQFp8Bij2nf7+WaEL1V9aAxFoUpYLRLKBlKZpwEkDkdLz7qb3UD+/Hzm5g6xGI/S3V5nuPBgwd44YUXcHBw4EN4rl69ivF4jHv37iGOY1y4cAFXrlxBHMcujIdXLhsesLDxTtMeDf8AFU6oqNtL8LYGdZwNB0opb7lNkgSrq6v4/d//fZ9tlGNgt7e3vVr6KH2t9WRpH0s1vVx0JT2oYWAWAQ4Z6qDl9UyvLMi/TLMkA0HJ/5SENcZJ6qwmOh82KX3STgAu2iOCFAqXL19GNp85SWaGVlqOhSTPWhhdTWBYVws/q9TO/apLTuGx0LDF88zVxevXcZGeMOUPtydHyEj6MYasg0xAmKDwrGltIIVE0u4gz7WjPZxsVQEihoooq/N8Psfh4SGSKEEUWSRxgVjmENCg2E9H2IIEkCVNM8jyHKPhEHmewZiC+qEsrDGYz+f49JNPkagEwgK9lQ46iqqeuxs4bM456kiBSJF/mgnmwGO1QmD/4AA26+DsxqCyDSJO1cOOnyFoX7fk0HCISuwkIGF0AW20B0SzLMPNmzfxk5/8BJ9++inefvttrK2todvtYn19HR9++CHOnz+Pq1ev4vnnn3fGgTmUIsIKiwB4/HzwMzeOFHNWc1qtCDE11ZLBVXYQ5voJrVYLKysrHvA/e/Ys/uIv/gL/83/+T7z11lv4r//1v+Kv//qv8eKLL/ogfJ6oJ/tOnFO9pi7iJK/2Urri456PGEI5jACyQqMwVPxXColIRYikgtEFlMNQrXMX4PzzxhpoS+86WF1Bt7Do91Yw6Pbx/nvvosgLTKcTtNK2K2hShgfpooBQsaufiMr65M/AoxGKuiYhRHM4Et8vTFvNKicXp6lfNx6PcXh46MPWTno2f38cgmwMEQqppGfG0k0WE57cZXHt91Zw7/4uAAsVkQN1LCMoKyBlAp3nmE6nGB4fo5WkaKcSKz0gagkIW0AJg8I6R1ZrIFwUiQVZHXWhMZ1OsLNzB8fHxzC2gJQWKlYo8gKT8RhvvvEGJCSssdgW55G2OohUyVC9pAtSZaNIQQjt1jIxD6MJ2oAQuHv3LvJBH89evczGXJqr+uSFE10HVll1CSfG9afCLY2hzI9ra2u+uC1zszzP8cYbb1BcZq+HlZUVlw648EGr/DAR3Lu+IJa1ZWZ3vmn98lK8Dr4LftvFVpeoQn8kDrKXUiJNU2xvb6PX60FrjVu3bqHdbqPf7zc6VT4prh220CrkxyWQ6v0TQ4E0HGuUch5lJA2MCA5iEFLQZuKxrXIChAYVisElP6MIJCHM51mZKaS2tizHG6L8/STVPDxnmQXav3JtTTXdt34fjoSpV1fic7mCUuh71kSwPquVk5dsaT0MJCVmSM6zPopil5PMOi8GZ+m0hF1px1jn8zmVFZEKuhCwhqI6+K50Z+vnWKB8njYFZrMpxuMRjNWQyiJOYuRZjvFoTBk9RiNMpxNyRTI1pum1V/ouRdUyzgIGCZcC09kUszQJ3hakZrJ1JqzpF4r2dTwrlMCEKEuhCSGwt7eHtbU1zOcE+L711lvIsgxf//rXYa3FdDrFfD7H9evXcfbsWXS7XXd91cjgdxGH5n0OjTi8LStze4ItvAHgpA0RhiBxwHhTAY719XU8/fTT+NGPfoSzLl851yIMGcZnU0MWcbN6z8PvfjOholEGWMYiPbcA8iJHYTTYtyiSCpGK4BFnp8rwzjJaI2krqIiyn+7t76PT6SKOEsRx5LBDjbbz1TLGUqynEIAlvCVC6atVJwyPZQmsjXM4n03n8jzzXLfb7aXhS9WQvCq29yQNWcREXEB4kJaKiyfzvFprod3UsFHIWl2q/ppSNCVxDFPkiJWC1QVGxyPMxwUiFIhsDo7dhCkXC0MNQhAufHh0iHv3dhDFCisrXWhD/obaUHbhvMihC4Jk+Pl0Nw4jdATYWk/ceB0SLeazgd29PURe6ChblGWZL8Ixm828hSZUJdniZgzl6eac7ZzuOU4iaA3cvn0bcRxjOp3i8PAQP/vZz/Dcc8/hxz/+MYwxGI1GmE6n+Pa3v400Tb3zKBFQckiMVbTI4Z9Es4sqozbGq01lW175qJ7tNUyZzGFadcvWhQsXsLKygueeew7b29uIogjj8biCxTSpJE+qldyvgTA3fLdO7GLzuXbr1wqB6XyOrChIzQQQRxHSKIbVE7dhKT+84fHRGq00QhRHMABu3rqNSxcvYWOtDdWSaLVSKAWs9PvIizGM1hTL5zzAdaG9VBZK/kxkwjFskrpOK8WzVBVa8vkY45usaq6srPiEmuHzuNhImBGW++zn4QkRNCGkC+Z2+c5gHOxB4UtSUuIArS20TyAgIZWEMYWbHwNtLdI4cUkVDRIlkc8n2Du8g2x2jJVuis3VvgtBq+ZVY7ImBJBnc9y7t4OPPv4A/X4PcXwJBhTSV+gc8/kM2TxDlpMx0GgNYzWMIaslJ5f0Trmw5Jjr6DSHz7GGcOPWLdg8A1Qpmwk4PzOWxuqLoCKxOArDHCzEjfj80Wjk8aAsy3D37l1cuXIFFy9exO7urneW3Nzc9FIdJ+PzEw6Wjh5OzZokmcYFE2Db9evr+aV4YLzmtURiCscmzBoSNmPIgscYGsdlMpBcf4dHX+zVdEz+Vk0SXiWGLnDoDH4DgjESwg+Ci5ghbNGWVZk4r1ZgTQBbqax1GUiDGo/j0cT7aSlJBoTIEiaS5VWpkgQBApybxuhJq+X1+zXtASBMDIjK8bCiWQWaCT4/qT4Lh0/yBPFt6f6Mf5bqqGdQQnhC5omtoKSZUaScW4fBbDrBZHSMVPVgbaeEK8L1YktCYozBbDbFcHhMBKwoYKDBtTCZUJGE6+I7/Fg4uhIYipgGeA3BltTAAhhNJpjOppUxsbAUzsSbusn1oGLeF2XyPu4kXVM6yj733HPo9Xo4f/48plPKLX7//n188sknSJIE6+vrQegUW0H5tWrg7OOYMmvNE8YaNVsoI/eQtoyzaq19oZbwHGMMptOp5+zscxTWVwAeT1V6WPOW4NOe7z+VqrZfSl7fFCh8RhGHbcClboFw8co0ztYCQirEMsZwOEYcJzhzZgtZUWBvbx86L9BNU4yGI8ggAoBbuLD5fbiFTPSJWQetPVE65jnsdruNDCvPc18XI5Qew/vX3+OzNgEEUhfAjM1aGr8kThzzzHy+QMA6xuJChKzLAOKImoCFMQXm8wnSNEYSR0ElcloXXothYg+LtJXiwoVtHBzsQSqJ6XSCcxfOoZWm0LlGu93G+vo6zmydQbfXhYpc9uGASEkhIJWgqk9KwtoCVAjHlvqm68uFCxdwdmuj5Hrud1lPacITVJfAAEDIMi02W3fYCjGfZfjoo49gAWxubeHFF1+ElBIHBwd4//338ctf/hJHR0e4cuWKc2cooHWBoshdhL91qUP4vydZiWeRm5OKGRT4fYRnhYYRrTX6/b6P0QtV0KOjI4xGI1/ngNIRZ378mMg9XmuWSqVg/7/m00vejcoCCe9H2RNK3FBICSsF5kWOXJNaLmChJHlxK+cZjkDSVUqh1W7jwe4+0lYbTz/9NPI8x6effoLf/vYNfPDBR3jw4EElu7FwY2u08VKZP+ZeiOEN1gAqqs9jELdQHWyyNrJ13lqLjY2NSuFe1i7YJYNV3yZcj9fESX04faOJM87yT6pamW5c6xztdpscZsdjpGmLYCJrfPJTMlglrhgJRW4IYaGLOUbDQ/Q6KTrtBFLCe+cLIWA170t4XKLX7+Llr7yMZ599BoPBCg4PD3Dp0kVcu3YNT117Cqurq7h8+TKuP30d6xvriJIEcGqyhYUVlHdPxRJRohDFCsZqUKqjknhaZwh4+ZWX8cyzzzp4ln4zsJChJLHMdBy6ZfBkLUhmWuPw8BAAPCUWgjKtHh4e4s6dO5VsEaWoW3JYn4yxNq/1fjxaW7yGX76qZgaSSPCshy0yYwySJGn04p/P51615r/Qh++z4ygnq9klkCr86SX24M7xSAR/L/8Dg/mCjCLaFW9ldUbAWZ5EWTyDDGDE6SOlMJ3OXAaNVWitcXw8xO7uLg4PDzGdTn3AfUUJdvdvyC6zgOfWCUF9vk5LJJqMMCE+x+B/fb7YPYfrojZZ+09qj0OAhZOW/bUMMjvUnIxSMYSQyPOihEDcevPV1ATXiSulY2M08myOJI5I9QxAF2Y24bKzsEjiGJubm1hdW0OaJJhlM/T7PayuDjAYDJCkCfr9PlYHq2i321QXwt3R38oVP5GSpDOuys5PCZ+3ubmJtfU1+PXpmlf+m/T8EAMgya2WVsZSxe7Dw0Pc27mH6XQKXRRI4hjb29u4fv26T8n9zDPP4MyZM2BLFatCAqLEWgLRldSVJ20FoGaM8WEU9WYd/vOwxcjqYrfbrSxg5tYcQN9UHLZumn/S79nY9SbQkM9fONcGMJjwXv8mWB9KKD+XNigLRz9xyj/yvWr1elBKYmNjA3EUo8gydDodSLGOlX7XEyQKgM7LAskN7g9JkqDdbvsiMKxRhCFHjz5e5dpnFZbvxaFJaZouOOoyVjafzyu46ecJIVC/LATc3gQ7aDhAxboYaSkhpXVuEI45hMQ/gHJoD1L2Wms0dJFBSjjfQQsYxw6FgJQKuoRT6R2lhAKwurqK6XQLhc6xs3MP2TyHksrvtRCVtRCAA/l5lMjHNDCaLLy5AISEimJIFZVM2d0gAhbB/JCYAaWzohDCWz75vCRJ8Oabb+LNN9/E4eGhz3f/1a99DWmaYjwew1qLP/mTP8HZs2fpukCsN5Jov7D0HLJoUOee5KIoJVCy8NSzuy4Zvcb7WGt9sYr19fUFnIRDl9gKvMyBMlRjuOTaqTpRaXbJ54df0TyqpW+YtYCVgLYGmaFKSlbAVdSJKbe8tYEV0uEqlM0FVpAZvd3vIYoVrl2/hulkhmw2Rz6doHVuC512CqMLjz3NpmOcPXMGvU5vwQWiKAr0ej0kSYLj42McHh7CGOMzsIQ+f8vWTJ1oVZm1dGuwdMcYj8cYDAY+nVWoyQA016TKpZXU8Sc9//G1DJTPthZCKJeOB6DkD/T+8/kcURzBWkqOWWpAGsYIT1i01ogcNEF1SjW0zjCfjRFLgUhxJGYJ+ZADK8dTEnGh7LIKly9dwmClj/WNNfz2t2/gzNYW1tbWAjjAAkLCWpIgpVQQKKuRZVmGtoMohHUqpocRXGZcIZG02oiSFAVVrfNEMuJO1qULljCqg17mL+MFE0URjo+Pcf/+fc8tkyTBuXPnMJvNsLe7i729PVy/ft2H+5QqCpdmJ7FBOJWGOczD1LAmS2PTNRWLEqyTNBqcJJfcv2kBsrrIWXLDxnjiaYkx3f/EUx6hidrnhxC4plMsq8FuKVsXjM/2K+FwMidVW0fkmgw208kEeU5VftbW19Dt5MimcxztP8Bqv4dWGsEaThdF49ZKW0jSFCqKFtRPDuCeTqc+lCxkrsuk3NOuo7rklWWZl8yaQH2Ove31el4KZ4vtSf35LM1akriiYHw4btLCBgV1FtVxImrlvAmfx99Jb0ajyEky4yCcUKZSUgFGU8wma1ROPaSs1RGEBP7+/n/39KF8Nt2Ds5tJv9/pnbTRnhm5F/XL2fr/AUrVJDPXyyg0AISTBCwSOda1WYUqisJXKj937hwGgwEODg5w//59nDt/HrErZsJhPv45weeSUKAy6PzMh7VHIWjswb6oipzMxevf2bWiSepi1cMbRxo2wMP6+qjNj1fjvflLcEIYdR6uEj7NLzD6zViLPJCYhSCLEz3DVO5lnYQNC2Q5JXE0xiLLclihvPc3GZI4rQ75HnFUiFKRL1Rb6XYwTkmSoNvtej9FZh718Vz2PfwLz+G1wYSy1WpVqpWH6202m3nCFd6/aQ0vW6eP04Tg/wX3ohsClowkhZN2pXL1LR3RKXE2SaFqLDHBQhc5rNWInZuGAJz6qfwcFJpqPYQ4OoL3DaNfOu02tC6TLgohXJESBIQIft2wcMOvV/ExBEvQFMnAr1veQpTEjKWwZdYdlsiiKMJoNMJwOMTx8THeeecdPPPMM/jGN76Bjz7+AO+//z6stT4Lp1LKF+/waoAoPasBQEVUoLbQhX/FEHt4+OQuIRi1y0lgrqqY5cFm37b6wjTGIMsytFottNvtis8RQJuAXVJYimjqb7h5iCB+RtEs0B1Zqq08EwvDsbSRtMycXqDQBtN55qIlyEcsjiNIkIQgpQQ4ksJYtFptaAtMRhMoJZEXGqPRBGm7C+3mvNfpIooAYwrMZhPAFmi3UqyunkGapJXQthDiAGhtdDodSCkxm818lXgpZaXobnht+J3vETJyVi/zPPeqv9Ya6+vr6Ha7CyovABwcHPhCwMvwz5NUTj83j8jMpGTg2wSmG1IpYQVarQ7mszmMJnDeWHJCjSKJXBdQMiILKHUQFhoSBvl8AlPM0U5jr2ISISH12kIgm2ewKnZJBJw7CCyKQkMAiOMEg5VVfPe738Xug13cv/fARStQMWEIKiYEVhttCWuQcKC8YYlKGwFFQURZQaDIC8RWQVgJawCheF+DrJnhhq1v3or66RbAfD7HeDzG3t4ePvzwQyRJgkuXLmFjYwMPHjzAnTt3vErQ6XSwurq6gMNVMSvmXKcrkPpZWtNGh11MP1Oebyuf2ROcscMmyYzTKjeB/033f3LvukTFetSrRKnywxkAyCWjPO7BeVvKTjaUzEASvJBU5X0+z1yANN0kzIOX5xmMG9OVlRVviat3LlyLSZKg1+t5olbWZT39eNYlM2bqALz1udPp+IiXeptMJr7WbNPzwr10Uh8etQkEz7Plr17qjWJvOVcRZZyAYMd4xttYquLkZxZFkcEaygBMBNOtT3d/WEp1DUsYHf/sjXXWueS02rh65QoGKwMfxUFjREybDUQel2XJTLKDtSglNBpIL5lZU802GA7fqeNolFKIHFaWJAlGo5EnWhBAHEc4e/Ys2m3Kj7S7u9vMlWrESghRDkbTxD32JvdD4UXaOn5Qb3XVYBlXB6qe4OH5XNA3lGyfJFE+qf8NiuaSuwi/+Pgqf0/Lv7h5AWNmZWofAvvZMZdG1zt0iNKxUrnxmc1nODo+JguwgFN94DZcASUlktSFg4E2EW22hlcK30KQq1Capj5mkjGrsK5F/Zqm8QwbMyvWLJquCVNjN0VzLOvvZ1kLvq+iuol5gZN3Pa1NFhYYMgDq2K/wc02kxSCbkzdCq9UKiEkdrgnSaIOcbwutMR6PMZ/Pg3GRaLfbWF1bI5Wz03F4dXl5NQNe+S4Ctny+5bPcejXGp+zSRVD8yApInvBlICi3VquFtEXA7GAwwM2bN/Gzn/3Mq43dbgff+/73cebMGcznc/z617/2DqIAFupRloYE4X2Xwsl+HDyhvEZU97GlgHJO9WMClYjswyQqL8Pa6s7EjO3UY/SMMTg4OEBRFF7d+Tyky/B9yzkL+1ztf/WFqicIUfr3MfwlQNiGAaCFQG4M5lnujykhEUkJGUKwQkLJCErFvkxgu90GBCUg+ODDDzGdTiGEQJrEsNZgOhljPpsiTRKsDlbR6/YAUBZVVklC6cln1wjejXPHnT17Fqurqz72laMv6tloQ/W+rpHwPafTKTqdDjY3N33esvA8zlHHa4GJR6jCLh3/z9gY4/KCmbUwLk0TWw273a6XVJVycZwV+EiCyZQUBPRLaBwePsB8PsLmxjoiJaFECdJT4S1ndHDXS0mFSabTGe7c2cH+/gHG4wmMoRRRW1tn8OKLL+JHP/oRzp07B2udKuzm1xoBHyvn/i+spThRKRFZQBqDSALCaKDQgNbQeYFiXmA+zQEDSOv+TjPoQgifITWKInQ6Hezv7+Ptt9/2x5NWiqeffhorKysoigKffPJJJWXwsoXDs/K4YGh1kk84DutCmIIqVKe8X7gBmNtxoHz9Gg44Ds34X1hbQtBOPA8smdWYgefXJJkVReGNAxLC+SABnpihhCEYF+PxGY1GuHfvvlPJWA0lS2GeZYgjReqcK/wiWCxbEOoXpSil6NrBYOBVTnZWrlvjm4D68Ds3TuNTd8fgxn6EdSwvfM4XNfe2xO9hNInSSZJ4qZdSXfO5zKyrzIwlt+l4iCKfo9/rOms1k7wS11JBFXPWqvIsx+HBIcbjSTAuEv1+H9vb23jhhRcwWF11BBXu+Ux6RPln4V+GmCUgrKF/XQ43WEqjrXONIq+WpYzqE9okmSilKP5sRotka3MTg8EAFy5cQBRF2D/Yx53bt7G2vo6iII/jtbU173Xs77XwobpeP28phjdeqU65Y490jxLvCaVZtu4Cp1vMJ0nBj9pE+K//n1g4p0GxhqNQHkNxsC+sc7/3bizBXYUI+g/UCAw/icag3+9hVmjImfPHihRsq4XYWqrOBCBx2GOo0rDbR15Uw5bqAH/YGAJhFyAhRKWOxUlrPVTf2WesaR45vpatqHVraGXMHzK3jzr3Ht+mHgN+VoCQAXktBzSvNH8VVcWpc6D9KSidNdUU0BWjlRAksfuxYOEjeLbWBWWCkcKFKRr0emQ0SWKnoViSHqWo9ML3vPzRkh8qAAHKoMFBjkzcIhXDGo3h8RHW1zddSOWSGgB0T4d7uHTQx8fHuHnjBj744EP81V/9FV555RVoF8L02quv4sMPP8CPfvQjjEYjtFotfO1rX/PxijCWnOA8cFkSlifaGkaHF6jWzsO8Er5ULoc69lEnNrwxpJRYXV1dsFJmWYbRaLSAo1S69wQJWHOruh00HbcWHiimX3hjS7/QjLGUe11QoZJcW2jrVExJKiYsJ1R0Up0I4AsH6gilcO36dQwOj3FwNMSNGzdw1O1i0O/hqYvn0e/1EEcCKysdJFFUShG8YYzF8fExJpOJL4zDBAuoEiSWljkagIstT6dTH88Z5t4L54KZNeM9GxsbFHYTRLtwY4fo4+NjL7XxumhaN3VJ8jRzv8wIV15PWgYNv3BhX07asYKsf9xvQXnlIKyDdBwZshZSANYUsCgQJRazyQiINNqt1PeBMNAyThuiVG0hKLfddDrDjRs3YF1oX6/XxQsvPIfNzS2sr61DCqrPKQQQqwiaGaZgvM6pzlZDWgMFg0gYRNCU5VaTAUAKhQgGvXaC2XCID97/BBcufA9RLKGgmzPNht8ZlxiPx7hx8yb+169+hf/wH/4Drl69ilarhZ/97Gd4883fIi9yvPLKK5jNZuj3+7h+/TqJnJwdztoSn8HnQsqCzqORoIXuIPW2DOgPv7MbRZg9ga8rigLT6dTjEqF6/Xm2oNf+Sx17ZFCdz6sNDwtngAN0fYUkKVA4z3/n1F/m+jfMnIhzW1GbU0Epfs5tn0fa7UHFe/joo08wHQ6RzwZ46sI5tNsttNIInU6rcZNbWEwmExwdHXnnVS6K4s8JsNY4jit55TibBeOedSYTXhsWge73+xVH3LDxPSeTibfSh/n+QiLQ1E46xseb1OmKMclWGXL4r7Vl6KEnZsZAKoB9y0qcE44pFZACyGZTRClJyv4ZgeTpiZnhftKTsyzD/fv3MR6NIASljd/a2kS324NZNX7PCwhE7A5jfY/Dl4ewhqQvGChoSKudnUISQYNBO4kwKTLcuXUDuvg2BCjrbEUyC0HSEMyUUuL4+Bi60FhzAeTSAZ+9Xg+DwQCz+Qyj0QhxHFNArutco+/W50XKGnQpDyl4vC7UfE+vBvDY1DGUUvLTC2XFPg9C1rgRzCIhI42gySffvYsbKyJ2AIGyohwbp1IYa5wUQJtHClcYlu4EizoOQ9exvx3cuFB5ti4SSQ6ZJCVF5aZzz2QrK0dRsDRVz9TSVDSEGxuX2HPf1xQIJLP6eITXNaXx4eu9y8Mp3G6anlFXdx+3WVLaWM+HsfAGtTwv3JgxAYSf63KewhRbFkWeIY4V4sRJdLaq9PM7WI9roSI0WGvJ4VkqxEmC2WyOo6NjJEmKfneANE4RRXFlAwYk2L2HwXg8BO7t4N7uEUbzAllhABlDKAWlYnTSNrpCYToeocjnmM+maLUjRLEo85mFg83xZaGj7G9+8xtEKsIf/ehHPndXp9PBM888jZVBD0dHR3jvvfdw7tw5bG9vE5cz2qfCDaUbcWqHkM/erCUrZsh5S5N0SfvCBR3iIDw2XBO0KXNCnuc+xQ87VzYRtoq0VFNDPrPq6RYW++pwJos6emaZvAvhITNjrQtdEY4BEVphpMAsz5Fp4o4SpCakcQxhS58xpSLnTU4WLqEkRpMJ9g4PoZVC2u6i1e7gpZefx3D/CCbLMZ2MsdpPETf4b5Gpf4Th8bASxD2bzXBwcODBeVYF64YmKaV3aG632z5d+3g89r+HhUpYYu90Ogv1MHkfFEWB0WiEo6MjCrmqVWdaZmgI5/i0rVm1LO9FvmIGSsUwlrzi51nmJdzhcOjGLEzgaGG1hVIRpQizAKChlIUtChwe7GF9dQXddtVxFZarI5Gzq9HWS/I26JsxFi+/8gpZsGGxu3sf9+/fRxzHeP7ZF3Fh+yJJsoXLhyEEhIwgXYEUYQ2szvHR++/i9s4DfHLnHnIrYSERpW0kaQtp2sKgv4r9M9vIpzOMj/Zw79YnkDiHtTMbzcSMO8jETCmFDz74ANevXcc3vvENREpBS4lWq4VLly9iY3MdDx48wN/+7d/iueeew9kzZ2G18dYHj6WUoMrniBtVm8/4UHHHYEmgPO+kBWctOcJ2u90KuMzjxk6ys9nM1zUIM/jyPcJrHiXC4XStBN25SPNDz3eBvOWiJPLuvf+FQF5oFAyiA4ilRBLFQE5VzQVISqdAZZB6KSkp4L1795ELYOvcefRXV3H2zFXcEjdxuHeA+XwGrsRTb9poTCaUep2xMI484YLLDPQDi8yBQ2rSNEW328Xe3h7m83mlOC8TQSZo1lq0Wi2srq42unAYQ0V6Rk6VYqihaQ6X4WX1vja1U6ugvIY0Mew8z5EkAwAWB/t7WF1dcQkijMe9rDGII1LJiJMZKAkUVmM0PEK/30WvQw7LUtoglZiD411C0wqKHxCzp566hpV+H0VR4IP338f9B/cxn83R66xgdbCGlZUVwGoqiCcVPUMA0jq7uSlw5+an+Od/+V/44MYtQMaQUYq000Wn20On08XG+haKo2NEEJiOhjh4sIOV1TbWzqw2pwDi7yFho7TAJKYzKDuZTDDPyHeIvbdbrRaiiAYxnNDPhXgFa0VUte/y2ZYl2zANCdOxMib0xMfU1JD6WIXEC8DCv59nq2vWrGLysdNeaVlYs8JzXQCVgHy2dobBV9URJfeMLMuQ+2BrxhNn6HdaUFIhTaigSRn/B4fFUJohyg1WWiH5LyQeYTD/MoISGmOiKKpURK9bNrkgzcPUy7BP9WedpoVr47MwM1H7wCpkteuVlUF7hGGFAHi3RiObzxApGUR28H0BIcI5tg6SACCC6ADAq/ZSSnS6XXQnlB6rKAoMR0O0jzrodlqQcQwJ9nRgFZP6kyQx+v0uVgcrEDKGjBPErTbSVgutNEEaSQhoUoOFwXw6QT6fAiavYmb1iQ45FKlSc4xGI7z22mvY29/D8dEhsjwjaezsWfzwhz/E+fPn0Wq1vJsCQNyNVdO64+Pn0ULOyN7r5cJxO0eIykIIgWDeADa4VjpJlC1mIZccj8dUjCXwO2tSI8PsvaGz8hN6a3e/EqQvW8CkwHga4FJd+EVV9lUBQsFAYF4UKAzFAApLDrOxlBTj6uoBcDCxlBGiKMGNW7cxnc/Q6XWRWYvhcIjDoxFMdhlpFOPc2TNY7ym0WgmEoPhMGnuDWZZjf+8AeZ4hSVPC6ByRSdPUz89kMnHSSIJOp1NRDYGqgzNlXaVIgdFoVCGEfN76+npjBhTGi6fTqU+qUE/1w59LXHZ5SNUyIvgo68BrBmyWEaAY2YDwG2O95COEoLqVbn1TunMLJQHoAtl8gt0H9/DUlbPotNs+2oOZFkuuwnEeKSnzsLElNiclOTsnCflffu2rX8PB4QGOj48wm87w29++jnarjW98/StY39qCihSMLaA8N9OIlMW1py5gY3MVewfHgIogJK3DLC9gDCCsQioUdFYAyuDenY+xupbi0qWN5ZIZ/8ZqUp7nmGeEO7z66qu4fecW9vb2UBQ5er0ezp07h29961tl9RVTxTHYNO7VkS+g0WItc/1X3q9BxWTVI1RDeMELIXyiSQCVxcuuA3Un2vq964TtiRCygGmyJCSXbCRu/lAgnFWmXkhASBgrkGuNwqnmApQ/IRISuXs4j7GEgpAKKorx4MEurBRY21yHNAYHO/dxf3cf/XYPVy9ewObGGta6gJLMPGlTal1g7oBjFUm02y0oUVqNS2dQMi5MJhOf1aLemEiFTIjxs9BHjOdxZWWl0YdNCIoIGA6HmM1mTvOIPI7Ga4Xv2Tzej6dWLj3f8n6lgs/CqR8e5wKpnuwr6KVBOGZNXyBjAEWBIpvhYG8Xzz99Ae1WShqYl7mFz4nGAoBUElZKIEh1xLQijimbyXPPPY/ReIiDg3380z/9Ez768GOYQuP61QsYrK1CiBas1S6LBq0BJS0uXTiHFwermGeaCnsKYDqf4/DoGOPxFOPhFOODEWYmg1YGu/du4/z5VejZU6XTbMhJ6hiEtdaDrePx2C+sTqeN+bys7M0EywZhS3zvkpA8IUmkQncDYbdOpBpF+YcvupDLAmj0BA85e/3631Vj7IsErnLMhWgaB3dmqTMiNBmw9aqqZJZnCMH3luC4TCEohboUHOajESUxojjy3uGUh54eyEPG2JWP7cNyglyRvE212njoMhOqdKG6GUrWDJEsS+jIxDOUtuowQl0IeBgudtq2VA0VJRdif4FSq+JwKuGhg7CvJQcr/yyMh5CCW2Nxn4TPtMH38vySqMVIYmL+zEy0zOHVyspdnRFAAEpJJHFE2oEXhgzaaUJCUqah0xjQGminyK2FUgLGFGWpuRDUBuC5HVc7/upXv4rpZIJXX30V29vbuHb9GuIkwr2dHcRxjJ2dHVqIWgMBXsaLiLMLSFktXPp5tZDQeGLD27A2mHWjR8jVmXNz3B835sxhvUSO0ePjfG+gmgqmTPvz5BZ+OIeCqY0FvMmS3ztUrf3P0sMXEBRxqY3FzGjKLuuwxkgpSAvYQkNYKkADKZGkbVjtUmlLiSIv0E4SrK6uYW4NVNLCymANezu75PdV6Tk5c47HU0ymM4xGExc2Vzowh/AHv2OY9O/o6MhLTZzlIsTYQobNjrdsXOB8e02uFkVRYHeX+gygYsEM+1WPAT3NvJ50/GFYmhDEVowxME76ardLaCeOEiehucLKggm1gFKAcMVCjMkBm8PaArAF+Xj5ZVBmgKa8c4aSAiiJQmtop2EZY2A0eS0I72ZDfYqTGP1+Hy+88Dw21teRzTOfDl1KAWEYszMwmnzdhC1g9RyRVLAoAGvRUhqiF6ObSkzSGBvdNkyhYbICBXJsbA6Qz46JmIUYQMit2J0hyzK89NJLePutt/Haq6/ixz/+Ma4/fR3nzp3Be++9hzfffBP379/3RgLUJpQzg3LaHI7dezJtUS0IOXYVLxMlq6rfJSAGfF2alp7QHKfH5/JEcnps5vqcD6uutjdZ3J6kNZOxCyHqxLpu8qj6/nkCz0KsU2O0NcgKDW1L1hMrRUXmnaoilISMIqStNnTuLJtSIc81ulJhZTBABoP+YBXrGzk+fu8jZNm87JYoicxsNsNkPMZ4PCEtIFr036ljuQwuszc+Z3vlcDMAC1IVF9TZ3d3163xtba0xYkNrjf39fb+G0zStYMGspvIeqs83n7PsPZoI2mnWhHD31doRMyt936y1iOMEQjK0YirB4UoJwBjAGBiTQTAxc375XgVVEsJaQAO+KLPRUEoi0wZaG8iICg8bl3mWi9vwWouiGN2ewjPPPI3t7QuYz6bIpyMf/C48VsuSoQWshtVzxHEKYzUsDFIl0EoTWCvQa7egVim3mRISWmpYaZDNR80GgPpngCoucX1ITkzYarf9ueFkPlmXg1prUC9PPj3AykpR5FQSUag+NiXgY4LJ53zhaqY3nQtPqsrPD7nUBk6TorQEC/fZWvgsJ85kQtV8HOHzKr1wxV0sL+RK18hnSUhEOpSwOJ6AzrTWOpy1HO+Sw59uLfFc8B/fp954Lnk+68WbeV2EzDCc+yYo5qRWZ2JNv3+WZh1BUEpVChFTX0u3qGXXWucPqlSgZodqJlssK9mJy/hQC8LpCG+sMiDhiJtUMVotirM02RQQzEIX55d+p3cq/wWUIHtVJAmzVaAC1EoKFMhRwJCfGYCKesSTxxJHmqbY2trC888/j36vh8uXL6HX6yKbz/HrV19Fv9fD9vY2M/XKYPH9I5dN9vM2ANTVy7AKE29eG5xLEg33rVrdfTKZeJ2/Tsw49ztbuEJHYz4nbOGGqRsDnkTjjBWlq2xtXII/6p+BdSpleDZzVm0M5lkGrrskAbTSFDEEYCjWTymFXGt8euNDXDh/Cb1OF0IAUZxAG4ODoyP01gZOjTA++cBsNodptSClhbUa8+kEs/kcWpPVW/JYi2rvOBtsOLZsreR5Hw6HPgVTPeicx57XMwAfPxxK9GyhnkwmFZyN10eo8oYZa5fNaROmtnQeTyGp8U8E38xhLLC+toGDg8Mg/RRgHYOhak6MTxpQZScD2ALD4QEm4yG2NjYo4B8CRfBcj7Q5yd9YTZIbnBBvLdqdDq5du4aWU+/Zt40JINfrbLVSRHZAgo/hu5O2RIYNyoirIgWBAlxMxVoD4dRlBUqbLWEAy9KkhgBZaSsTEYZ08MQmSYLNzU08//zz+MM//ENcYmKWZXjt1VeRJAmuXr2KUlcpJ4LvqyIFEeQu+zxbRc20NZW2Dj5aC0rRXGZY4AXKizksVsGNY/Tm87n3UWqyUIYLP/y8kLb7MzQhqAYimcfrvkYBAav0K3h+uWJJpQDVyJxnGYyFszgJtJOUgsydmimVQmEKfPDhR5hOZ16Fj+IYhTE4PDoEeC6MxtraGoSQmE5nPkTKaI3ZZIL5fAZtqDiJCsB4EYxh6OPHf1JSCu0kSWCMwWg0wv7+PobDIabT6QKwLwS5eGxubmJjYwO9Xq9yPzZmDYdDHB4eeikunN9Qa+Fj9T7VW3j8Uee26V7G5RYrNGXw6HQ74LTfVUNF6exqDBVYhrVOpcsxPD7AZHyMzfU1iuyoS5EOe5OOmGlL9SyFgI/k6ThilqYpBFwpPOGyxUpyglaRQquVot9fgZKRIxMSQAkZWFAh44h8RiChoWAgbA7p/hRyKEHHYDLA5o7w6VIyq1tr6oNImWYjtNIEEJT2g1MLk/RWNY+H138+xOuU4Gmgij1OC4PGwxbicV+4eukbSS6Mk9HabeiLYIWgLtQH2Jmo8CHaMNZSRgZnFZNBsd+S01OxY2JSJN1GcQQN2lh5UVDIjTZB36z/x1rrLODhuzSoH6fAOoFSug7DlOrrmdVLfs/6mglVzNPkpVumzj7Kuv9sknrpA1Z9JhNefkbAt9x1hS4cE0kXIQrr/+fWF88L47LOHcRJu3XGQQlRcyKwETE/JRW0CBXIsp9lv0ioY5WzzKpBRFhUpEbrsb5KOBMDopx5gH2qptOpC98Q/gWPjo5w//59PP300zhzZotismqFdT2hxPLS9E+6VYH/Jo283sLaAyVhN8Z4H6am/O/j8Riz2azim9S0eD9PvCS8FzstujW27FXhpWffL/4YEARroa1Fzi420kl+QkI5NwyPG1qDLMthjEWWFzgaT3Du3Fkcj4fY3d2DkQJx0oKAwuHBATYHfbfwqVZj7upOCgDKMQ4iolWQnAkUUFXTea7C4HKgLCyzv7+PXq/XWCquicgJIXz8ZVNigcpw1iCa+lzXMeiT5rDp81Ii6XDLoij8mM1mU0+krVv4PK9SSp/pooRBSN3M5lPk2Qy93pb3USPYhbFMsjZDCL+mOHM2qZOg5JrdNtIkQaRovApdYG9/F3v79zGbTbGxvoHBygrWemuwRsCyLyMspJUAFNklLDMY9kCgfGbCPUtBQIqSwGpH6KRYQsw4lUq73fb5m7rdbmWDHB4e4u7du3jhhRdw7tw5dLsd6Cx3PiNVbmlt6erweUsxFbzsIYyR+iKdBzvAL8gEsdPpeKNH/brhcOiDz5uy6Tapm03g8ZPAzkI1s+FoMG3OegTmeqUExAuf+2SMoSImoBTIUlGGC+VSHmsQbmZBQc7aWGRZgQe7B7h4+TywA7z30Yc4HA/RXxmg0+5hf38f5vJFtNspxQRmGvl8juFwiLTVQSRJZcs5lMkxQcasOA07E28mIry2mOmwEYDTWzORC6Uxvm99HAHg6OjIb/wwtU/TuDfNeROhXNYe1WhG2BIVJimKAioiiGQ6nfj9a63fhU6iVtCWLJCRCjFdg9lsjCKbob/S8+uHiJmBMSS1yYilZUfTHF3TRkNJiTiO0O2SS4xUEYylwif379/He++/g+l0hKeuPgW7fQGDzhqMoOLfVirAWBhISKGIyLnEFDAkhRHhMpBOiFJCUbp2Qe+nYeg8WStoEorsjB0sujdU3R663S6SJHaWLjSodfaRJ+xxWriQTsQm7HLJiH8KMZqQAIf35vdvJiC/g+ZUTMEivLV+4S226vuzVFriU3B/ZYaEigTD1wRzbbRBXhTIshyJS69uDcVZFnkBXZQhMTxmIeMRKDtL/T/hVRsYRXgsBPNPKm6yMCpubsNiJSc9t+n5Dzu36bpwXZ20dpcxSJJylzluCzSL6eTfRXnpbNU1RVROK3+giV+4P6+38OK8KHxyzNlshtmckmVy0RXXWacgCgeFBI8MOuC7Y0szlgjO5uM+AiDMqjmfz/Hxxx9jZ2cHaZrimWeeKaU3AMfHx0iSBNvb2z6EoSjyhgHjPosvbNMvLIrKxNhwaPz5oTUq3GC9Xm8hb5bWGrPZzHPBJjXyURb9k2gMtj48U0b1GupU5VdYW0o2xlpAUvC4Ugo6L2CN8SoGE/OtrTN4sLuL/f0jTEYT5IVBr9vHU089hVE+QRRREd1Lly5hddBHHNHinUzG3mIcxVXv/bCfdWA9lHzqjJJVrVAyYkPAYDBYGkzO543HY6+yNlVdqquQ9Tld9ntTCzNyhNheyEBPwt6MMYhdgeLJZAJYZwSSJYTgpfHAdUYIAMZiPB5CRRKxTMuiNl4wIum4btzgyltEf4gBjkcjvPPOO0hf6aDb7UMqhQ/efx8Pdh8AAFZWVnBwsI8iy7G9dQVJhyzW8D5prq6mVKRUWjg4wzjsTJR7OSBozJS5b1GIufBETyYT/OY3v8E777yDs2fPBsSMnr1/cIBOu4319XU3qC5pXuBnUl8sTz7lTXMLF0fTMeocf68GwRNHLlPCNBW00Frj+Pi4Qvyb2qMCwJ+lCUEER0gJOGvTQ67wgDGYUAgHtxpKL15o4xYuua5EKkKRF34xG6shjIaSCtvbF3Dz09uYT+dopW0UucbKYIDnn38et+7fwXQ2hy4snrr8FNbXO4iddjccDjGdjFy8YwwrlQudlt5gETq/1gO6+d15zvl76FTL65lTOIVqar2Nx2Ps7u569ZLV0JDh1913QoimqS1jctzn0DeO11QYXrVUChU0Jt04RhTHODg4QqvVoZqXKtQkQgJM+c2ITBgcHx8iihVaqg0lBaApEa0FpdpWri+FIQyrJNIBlAQSbl577TVcuXQNSZwiaaX47RtvoChmiBOqB/LBB+/jzu07+Mrz38Gg1YMUCkJEMA6uEFAQQvk1KKWkVPuW/NgM3LxbAUqeR4MgFZVCttZChgs/BFrH4zEODg5wfHwcLCA6t3DgaD2LxLJW4TII1Ijwz8/WCX/hKTXutyiyLz6frj1ZJQjvy4QsPM6qSzheywDcZc9oAp2rQnbwZ4O/SqtJBGhSJkT9tMYWomjh2Jb7ht/TVMbPOuwiTVPkWY7pbIYsyyg2U1LVpCQlA4qSEt1OG3EceZN+oYOsrT7/P1jr8Kpz05g+bJxDYsb4WUgIm4gEx3iG15+WITURrZOubVItl0l0oSHN70OGSxwBJOOIbVgE5ebxr+wknLzICThfiLYI5n5hbQb9cg/TzpWlKApv1R6Nhr4QdpIkKDSlgcqLwt077AxPehXKqH4LH8+RoVWiEPFLCkFBnhRWAGxsbMAYi4ODA7z77rtOSiHKyU6kXgKyYQped++AgzDneujCOM26cWNrw+/ueUYbaMtugW7/C+H7VidkjAVpTcRJSoH5vPBFXPi+rOKwo+x0Ol3wHKf7fRZprImy11dmOHlOWlACkRKQEiDfITjuBcAncQnvK6p3EnS+sYRDWHDef0rOFxkggUBLSShDHNEIQIgIwiooIdHr97G+tQEZRZiMJ7h15w7W5+vor64giVLEfcpd1m4pRE5q0NaSywYEIAmg9hTMW7Kq4/pIIDlKgsTM9vj4GKurq43ZMcI6A8zEmgjfwyybp21hyBuHzoVGCr6f1pqKJrtpzIucJsAKGAPCvayBitz8k8nGDSUxQSEMhMugr6yBMhpWZxgd3cdKW6DfTQEYCJESuG7zgH5YqpEUALDC1bq0zm+HNECLMizKYDaZ4OzZM3jqylWsr63iYHsfh4dHuHewh+7mJiK0qRam1QDcn9EQlup1krMsvbNx67Lc+2TZ5JUsLL1dxF0Wgrz0C5fW49y5bRhjce/effzqV7/CSy+9hE6nDUD4/FDspAdXMj1cbMaYyl6sSC9ohiRP30qyxHFjxljkuoA2NiBoXNbdJYJzhDXElpQS/p05IL7b7WJlZQVsCGFixh7/4/EYg8GgYj2TAYc8Se1Y3oz7QzA6LDiL4JzyfCkllBSIIirhVfJQ5mvK/WJAiyyUQMux5LkzMNCQyIxBYYiYJRZoQ6ArFZTUgLHQAKRMABNBKoXBah9nt2eAlLi/t4f3P/oI56dTXEtTtJIWuu0Y3U6CdqoQS5L+cm1RANBCAkqhyDMIYSAjQECD+H6YBvJkSSdsPPZMxHit7u/v+7TZ9VjMBw8ewFpbIWb8zKa5PEl9rP/ehKuFRNYYg3a77fuWZRlJk1oj1wUSlRBuBLIcQ0sIK10aawNrNaJIQEiaZ2OFq29pYYVzcBYS0gpIbaCkhi7mONi9hbNPn8fqSgLyok8cTkVFYCBc3VQBWAlASkdE3A/awkrWGiwoMLyAtBrj4xHWnnkWLz//CpIkQpEVuHvvHj69v4OzV66ggz6gibCSg0UBqwvHIOHhEgsBo12sqDcUkBQqJFwRYFrrC2omi7Hsl5Pnufe74VJtIVfxOnTADd20Oi1h2aYOxMuTjgTq7cKCqnx2WNkSreykbRDiHky4QncMXowhxvEwYrVMXTjpuvK9bZCnveklSrGfGabHwBbetBxjdkSs3osXCKsWZWymgPCVoiNRlb2F5KrYZABqtVtI0gTGGownE0xnMxQFpQJKkhjtdoooiP+jDLbhG5fKA/+dNMKnZRbhmFMG2xL7Cecoy7Kl7kPhPepzGKqzj9pCYsdhUyzxS5e1oo7zkjbkSr3BjZkNnGZRPZ+g0NKxFAA5nVqNIp9CSSCOydWDLpLufoEEL9yNhP/i/6uofh6GsNBFgTiKsdJfQafdQa/bpXxy2QzamIW55k3bRBGqDJp/qWLDXjLjwePJ1prCQl555WUMh0NIKfDaa6/5IhIb66sBOA54N/HPq1nUnEiqi7m0QAbOdsEie5ilkTkk58Ti6u18Pktc8/kcWZZVVFC+np9T58aPvsjFkn/5s/X/MvCPpc9YgistORKqdX5zlCKwW9hEOZWKkGkNYzXilkArbWF1dQ3Xrl2F1nTR3bt3sba2ijQR6HVbEJyR2doyJVQtDMxafj+n9NrTjV/IjOpjz/PLkvaj+jw+KUNOiOvy2gyle/aJ42NKKaRJWpEi2+02JGIoRLCgSlXMYKOoXPvk7lLqQDQuVMZtns1cFpvY4ZnK9Slg7E6CpmQDssInKwIM7zMX/jcaDl3hlDLMi/skBGANSVVSuIzIVkJyTV3JjrQCwgpYS4knpYpZsnH/sWsPW2lpvUT8IKWUrzFYFAUODw/xh3/4h5jPZ/jNb36Dv/u7v4OSEhsbG/jRj34IpQjglS5b6OdJy5paSKhKixAR4iYxHqgGe4cLlPGwsFAGS6b8DC7yy0VLQhWUHRU5w8JnC3MKiVj9+pAzuYwEdQ4OOKykPK+OmTmkY+EpJd0Snnh5Xs9ZYQXVw4zjBNNsgtzmSCXVEk2TFJub69jZ2cXe3h4+/PBDPPXUVXTaCfTqCmm9KFMnCSkQufGSQsGCijVXVLz6CJwwpiHBColV6PLBBpxlpeIeb85O30IrOzNOLkI8mUwAwLuQsMrLRXmEoBRGiUoRqRTGZMjyCeZzstZGcULe8qLMKFu6aVgYU0BYjel0jOHomCqOuwgXm7PvlnEOxVQWTmvDwlq5YixghYVQJNHxXjs6OkIcJ5hnRQX/81oaBIwuIEDpgmKhSBqzVJiF5kTCWglrWBKWSKII1hDjNCH+7iVSl3gznMAyISHlMDt37iyyLMO7776LnZ0dWGOQZzlm05mz6J1AwU4lLCxXH5debnkjuy1q2T+sqjo05RTjd627bYTvH4r5YQsdMH1G3YDrPApAvazZCiFz/4rqL/SFn9uM13hsIRir8lLrKkmjUSMV/g6CO8Xwa0UyE8woNAcHR4hUhDjpYjicYH9/D8PhEPN55p1Q/f0s/Gbj+0jJiEe1U2FEyeOMbyihP2yewnNCtfLxpexFqa7+nddpURTekhpGPQAkzQhDfYvjGEmUIFYJtAGKYuYZqW16jpdsnZsGKB6zyHMoRWl0BEvdIeREC4jGy9/U38ndt4QehBCuclaGJMoCZmJLVZU6Bo7rFay+uiI67DgdKpvCMW0rTPAudKTc6/R7FG7adruNTz75BIeHR9jc3HRqLPlbvfLKK9Bao9fpYH1j3dXHEzidX9Pn0UI109ZerJrOhdsyEz+fKwQZN+rhS9ZazGYzeqpY9LZuesZnUy8ffi1tPOcgeeLpVfzJwgluJ1xjUbpgWEcwhZSEUhhLcZMCGE3GOB5NcDTNYQxlRmm3W7CWHCUvX74IJSWOjo5x84bGua1VdNstslbZAHlhXw2BCk7ocZlTtmVAfHi8KTTpSamRD2t137R633jdWVvNXgtJgH6knCQnlZt3hSRNYWGwsjKAcGpdlpGnPcfT0kg6AmItsvkc09kMK/0BSWCgEDXyTDCQ7rN1fSb3WVaR4fBS6b/HcYKNjQ2Hrx9iMp5ARQpSSWclB+ZZhizP0O92ECvyIbNWAMY4DI+ytRhDVlrpMAkjKH+GsQpWwMXsuj/pDATWAsYiCsXtfr+P9957Dzs7O/jzP//fQdTcYnNzE3/6p3+KPMuQZTNcvHiRUggLgaKomtEXvyy2xxXkmxYdYyClcaJU+YDFBV7HtepJ+LiwRXie1hrD4dADtaH1ss65P5t6+TCCFqiKgnNpKVpX3uohPb4Ajz9V1bWKpBU+3mM6xmOPAMiK5VQKDQFpiJPvHx7i1t0djCaklrRaKVZXV7F55gy2tjaxvX0GN27cxr2d+7j5yQT25eewfXYT/W7bYcoSUnAKJpeBQUhoo50TsPCYWYg3+S43APF8Tn2u6TWkn+/6uU33/Kwt7EMT7FGHOhiLrYdfUXxw5HO0CShISCgRQ0VdpK0UcRpjNB5iOptjMhlDIEIUKUgRk0MsBJQEpDWYTEYYDY9x7coZJEkbAGWzMDm5KKkoQqYLIqJKQVcVGSKQDAtYIE1buHjxEkajIY6OjjGfzZGkCVSkoC25W0ymU0xnU2yurSGNIghjXDoi4wLJJYyR0BrINZDEiZMAgcywtCYdjFMAwrqsxwbakCW+IpklSYLDw0Ps7u6i3+/5AW+1Wjh//jyybI7h8RF6vV4pofCEeLH85AkOSMvij3XwproyKsdYZK5zuiZVYpmJnBdWiHElLjykfh6XJqsTr8dVfxZbMHB2kZiFPnIsnVetaMv64FKnBBc3SWd1ZM3CuuOBWomAUACYZ3MMRyPs7U99yTelImyeOYN2u43BoItbN+9iMpng6GAfkzFZOEMYoXwHW5lir8QsUN3gzZYwjibpmT83Ebkvoi2zhobHWbCoqOWucWSAUgrCOmlLCCJWUBDSYjqbAnZOUp2g5AOsXXkIQZCzbJZnaLfXoWTkJWDGKIUgL/ylVlq/7gFY+Jx/R0eHzggwQpK0yIjgxrvQFJ/bShMoKSCscRZZ6+17FpQ1wxhQ4lDrAH9fZUo6NdR5kopgvVpbEjO22FHB1ilu377tA0UPDw+w0u8jTmJ0u10nAYmSwPiXfJxpftwWErLg1xMISx0HYW6ZBxENlSfYMliZxf66BNC0Wb6IVhapAE7mAifco3JF+Ykz9AoIAnrDCxxxM9ZgZWUF58+fRaeTQQgF5QDt6WQCazXG4yGGoyGUlFhZWcF4PMZ4PEY7paws08kYWheIo8jfm8Y3cMK2y+f0JELWRLiWB2N//q3Jyhr+Hva3vq547XmXIZ44Ac9YhKCcYsaQymYMqe8CArrIwemvpclIsrEWURQ7wsVrueyvdFZya6uMM3wPFvzjmIrXFEWBlf4KZtMZoijBYDDw79tpd7CysoI0cT5z1Gnnysvom8TewSHu7Oyg1SHHfKlIlVaS6heQ47VLn61EWYoQQBS6ILBF7/DwEL/+9a+xt7eH8XiE8WiE8+fOYXt7GxsbG84aVA2G/dzaklsbQxYequlXLlIKgK5KTv5WDZIUWzJJkhhU3omdgufzOfI8987CTRIeE8bPVuT4JDXTrRynQlK5tvB8W73mlHRNhCe7ywtdoAjz6PMYCuGlpUJrbF84j61zZ5HNDGYzjelsjoOjIxweHGJ+b47ZdIrReIT1tQG2Ntex++A+eu0YiZI4u7WBg/09BxhH5BQpyFKqeAeh2VizDKtsmu/QshkGcy+T1p9kqxOt8F3CzCF1YhZez8A6CxpkSUf1vtZCyQi9bg/tVgeDFYvpNCdj3WyG+XQECQMtLZSZQhdzABqttA0BwjuFMRCSCJ4xBpFS5JdfGMgorjBPlphcL9Fqt3Hx0iWcOXuGajloDSmiSlHl9fV1RHECSMqGbI2BRISIDQXWwsoIH35yC2++9SbavR7a7Q5anQ5W19fQSmOkrRirgzZW+1200wjtJEK31SLiaGxVzWQXh9lsjp2dHdy9exfj0QjT6RiTyRgA1c8cjUYOYwoDy/27PcJsLz9UUaq84ME2F+s5toeK3Lknrc0mCxVQZiflZJS+DzZ0+ygTA4Yg8pPbDLR5iSTViRlz3/I9hNvsQrCsTRKNVysQbOyK6IqFca8rtN5fTwTHQ6IGGrNev4coTmAKYDjMcXQ8wnA8xnA4dFXMDwFYbG6sodfv4vbNCSaTKebzzAX3U/kyS5hB8E7VdFKVvi5RG5e1ZYaAk86vE6HPwqzDtbbMOBQeb+pvY1SJk155/ZMBIQHJJhLADLDAfJZR+iVoCGkB5IFkFkG4Orc0/uXiqKxzXm+emAHuAgACURRjZWUFjHvy+jW6TPjQarVhDJAVhePH1pWmc8QNZGU/PDrGR5/cQKe/gl6/j26vj7kBOp0UnU4KoSzSNIF0bj2Wk4UKgyhMZMeZBba3t7G6OkArTXF0dITbt2/6VDhhqa0TKcfn1QQAS1H05AltasfcxwBwrbf64uEMCfXcZUCZ67+eDuazgf3NzQb/iobfEfxOBK2+2Zb1xUECSw7Xn1fWP6Sj3rJp2XRAVuPxeAKIGdpp3zO3lX4XUhq02jHabTKkDAYrSJMU/X4fyknC9A4uOy6POcDhhO54Q1+D963PRfibf5eGcxvHoEHK++Igg6pLyLK+8FpM4oQcXYWTRhuovpLKVVJLYXUXMBmEyTEfZ0gSSqbIFbWk4PcvDUM2nAQmssEa4rkqm4Twdk8LGIv5fIbpdIbxeIjj42PkeY7B2rp/Z34/A8pYbKxAb7CKi5evIG53IaMYKo6hhcKsMNDTDDga4v9P3Z802ZIk6aHYp2bm7meKiJs3x6qsqqzqrm6QDQGBJvuRC4IQgbwWAQUL/A38FfwXrLDA9i35NgCkKQAe6xHdXfOUwx1iOIO7mSkXqmpm7udE3HuzMrubnnIzIs7xwdxMTfXT+WH/gME7rIeAP/7B9+HJI6eEYInT9/f3+PWvf41PPvkEH374IXbbHb7zne/gyy+/wP/yvxw0QNZhHE8ipAGt215e7RtZ2LOjFUaGXkjK+UqQbJotfqtCmOexjTAHMLOpjOOI9XqNzWYzSzBmltin/X6P169fF9TWBsYuj78T4qfKqM9U6NkYzljU4kbcnDX/zkoxA23ZF6CkvGi5qN/99nc4nCZ89tmfIKaIrvP47nc+BNMzxJhwOk3grM2DifCd73wCxxmn4wnE8pxZwj4bKix/zgTSJWePHW2tsxZVLCvFXjJqz9Snb0hAXXIStXR1yUTThm7YPayqiJmA7u7uJDVotVE6IAk6VWYEDV3oNLJ/1Xe42nZI4x7j8Ravv7rHdrPCzfZDMBMcBTiXkWMCKKsdy2nKkZpOWFOVWKp0yHwSnAvITGUcojFJwccUE25vpbT+f/tv/016m3Yd/u///P8B6Lo67RxlTrjIwHe+/xl2zz/ACI+Xt3e4f9jjNEXc749IeY9ff3XEy9//Fnk6YvCEf/U//88YQofpNAoyO51OeHh4wO9//3t88sknuNqJJ/PHP/5j7HZbbLfbBpklhOAKVJxTxR9MA284KgIxG8ScgViA6DxQUoZ6WdqllEr60qUmF5Zcvl6vL0b2v0mF+KYPgm2QZdmWiqTOr1F5+6RZrWGMGhZh3mKV1TIvyjSdI9w/3OP27oBPP7XmHx7X1xv0KyGNKQLIwHSacDyecH19hf39XUFm5nG7NJ+zkT2iql2yk11yyrSfP+qh+5YPs9nZWJbja/++xFxN8J5OJ6yGAe1i1vkxKaDNQzxAXQBWHtOBgbxHjCes+g6bYShMRe4iXc7NHM+Kwqy2nJkviuUiM9i1wrBQWdmbx+MRr169ws9+9jO8fv0a682mBNvbeyYt8hk1r/r62Xt4/vEneJgy+HefY8QL7F/fYT9ldUje4mc/+wVO+3t0lPHn/+z/gnXfYzycxAEwjpN4mdZrbLc77K6uQZBAUesLaWkPriUOW4yliefJVf2a55S1m0s5sw/ZdUWfB84kcrn9wtYyT72ox/F4LEis3QhLYlwyyuXz3v3gBaNRFUDtFqZiUn3t+ZTplFT1TXIcmSoDu/QEHbiWU14wFYaiALWnMWvTGykZdTwckHLEON5jve0gdeQD+m6AeLwc1utBCjpS+0xjUmqWQzOfb5jCJaN6jEnY7603s2Vu37ZAWqqQ73L/1oNumsbpNML7PZyr5hEJL1R2QqYCVrsLOUIIHtvNGoEiutDMe2uBMFNY2VaMEsNDKF5ucz6V/Q9gnEactDP93es7fPHlF3j58iV2ux1WqzV2VzvJLW1NNgSpZsxSZsiHgG5YIVDGsNliMyYk18OvBozjDpvTBnmckMYjBge89/xj9CFgHI4I2+0V7u//Br/5zW/x6aef4tNPP8WzZ89AYPz2t7/Fl19+id1uh+vrK2zWK9Wfa7MQ7915b8pv8RBVqkb9i8roddlaFaVKtSV8DyGUpHoApXGJXWfE8+WXXyLGWCKz26qnSwl66fc/7ODF70JdTqP+ZSxmy4AwuTpD0ND92T3md2zQzOKnFE2MzaequngPxKSqfcZuu0HX9XDE+Oqrz/Hy1Us87O/x/Pl72Gw3uNpd4cMPP8J61WG7HTB0zxCvtsWDyty2g6uxU+1A5Tv5vZ3zS06c5ectGiKiWbDz2Wx/SyaClp6WKvNjY2jHbYnoVmNvHEekGHH/cAfvemy3V1ivVxjWA8g6WgFCBpac4wi+8xg2A77zyYdIp3twPAFZ1pFh6WS5hHmItiqcjorGA03nGwAXEJOqzMjIOeH29g5ffvE5fvmLX+Bv/+Zv8XD/gBgjfvzjP8FHH32E999/Hx999JEEpYM1+FWyD8iJ+aJbb7B79h7SMeGZ6+Gv3sdzdhjHI1IagTwi/LP/CT0B2y7gs+98CqSM8XhCGIYBx+MJL1++wj/6R/8HPHv2npTD5oS//uu/ls452tV76HtM4ygRwaweNkeg/C0bS4ugnqsT5ZmN8Gi/b93yrVRcMjcrjLc87u/vAVSCsnsYWls+79s5qvrQbgoZy+IU0uDHS3ehs7sByzP1HCml1Aoouco5qRHHinhXQw/nAwCpJ//ll5/j959/jv3+iGfPniEnxs3NM2zWAcPgseo2yOtcaIcN5cGQ2SVHBi++wxlDW8692aXsXZbr//ehZtrxts+2sRoaI5IKG8fjEWNOyDnBuxW879F1PcSie2H+bO84h9B3uLm5wvE+YTxKqL3JQkck0apUKWR2A/srixfSOY+Yor6PhEYcj0e8fPkSv/rVr/C//X/+N0zjhKEf8Bd/8X/FD3/4I3z88cfohh5WWDJzsz9BYOfguw7DZouOIjbUg9YM6laIcQJzRKCMD6422A49rvoeXSakcRRmxszFuPjll1/i+9//vhBzilitVri+vi4RxTMCt83xbRu9m9uzboJLtgf5uxleQ/CXVAm7x6WqoxZftrzH8vf2+EM3CLe/zfbyHDcRve2zjNm1iK3+4MYNb/ctX5ffK2N0hJJnByLkJOql14J9q9UKV1dXmOKEq6sdhqEHc8bD/gFdB4QAbJreldK3sZ3XS2/wCGNeqJWPqf6P2eKW8/d35bVcHm+j1i6ZtSFyuU6LQkwj3EHm2Dkpz0RNw2bB4QyGhcLkhuCaWaY5PTQWG8xMHYyZEJqmEXevX+DLL78sDWo++c4nuL+9b5LmLW1SrWxUb95GrdUniQVPnyq/swc7hwyPzB4pewQmMDoQAcF6C3755Zf4T//pP+HTTz/F8+fPcTru8dFHH+Hm5gan0wHeOSSto148Z5iXNPm2DymFwrPcNdJcRJP0QK3PtrSL2PdW673t2NMeozWmVcm49BwuHQWPGZzbv998LCVi+zn0veTdJHD33FZW7YfLzSozVRXG+X3rURm2cxKdzVmc7o4IMSepQ+UcxuMRDoS+83Ae+PiTD3Hz7Arj9H047xGjVFf51a9+gfu7a5zefw8//MF34Z1I8RSjMMNij6xISg0pAM4Fx2OM59I8L72gbzr/m0Rty6DYS8dTJgm73pwldm7f9+WenD1OpxHjNOHV64T1usew6rHbXmHovHAkB4hxX6rAHg/3yNMJkhNJavCXc4xPMmtuLDdsRh0MIUiObtY+D5kjXr58hb/6L/8Zv/7Nz7FeD/j4ow/xR3/8I/z8Zz/Hb3/zu5JbSuTUO6sClhhSZZbEY+oY2WldZHKIYIzMoOwxadVVD4cxDfBTh4BeTEwMOJ8Rcs4YxxF3d3f47W9/i9vbW8Qo8SzX19daqythOo1aorcxRINnMP7bPpgl6r9WCwUuWYlbY/2lzWBeTKd1uFq3PiCxZdZOzpjH8t4tOlzaYL4pSV8VQa14gHNkZrhr5gh54k4Aas7lgqHZx4aYSA2UaqPVNnPC6E7jCN/1cF66Xz97dgPgBi5IXbzb21scDnt89dWXSHFCHzyA78o9tZv5JRtYeQ9qBnSB8S6FxVPM7KnjEqP7Jo4lKnzX/dGaNOzvlh6ZGSkKrU4x4jQeENMaOW+wHjbgrk1PEpzDnDCNJyBFOO0QTmwMrSbf52z01npJZY68d4hJErudk96oD/f3+Ju/+Vv86tc/xfe/9138yY//CP/4H/9jEIDDXvJ2nZOwJ2lhx8XLYB7zrNKZIZUyMkkh78QAscPEYsfL6DDlgJADphTQUYcACbwNr169QggBH374IQBpG/X57z/Het2Xl6DqJvy7O7j50fxuCzxTMZoLHvMutocxsrZmVHu+VVZ45yH/Qcb/C4xl9vk8tKBVwOozGVLOpY7H2N2ybkZ5SPvYVsdU+m29VURUDMP1kawdeeSClOT0oOWAttsNNus1+qEvD2EWN7sJgqp+lBdC+egtpvNNatoSLbfXPIXYvj7KnqPCt7nukhNpyajn9zKPtqBm7z0IhJwlhMOR1CrzjuBdknpgyJD+4cpLst6bLezGxgwpy4OZIQKFDSyKf/ogqUt91yNlacV4f3+P02lsUgvR6K6taaFd5MakYr9SrZghzM6BmTCNCXeHPZLrsA4D1t2A8Fd/9Vd49uwZ/uW//Jf4r//1v+InP/kJfvPrX+Mv//JfCmppX7ZM5uP2h2/8WNjMUjI1szUMMxa8YBYou8zPszzLS7XLDKlaB6al8bh6UM/DNOx47PN3etn2frAwGEFIvhlPO/1sAu8t7vnGkRh69fKMnLPYx7RsS3BeVf6INJ7AGUhavHNQJrbbrrDbbrFZr3C128KINqWEL7/8UgJnFfXOksBnzPkys3kqHKZlBrb2lzyYl67/+ms3P/IFxvm2R4v2DY0BrUlH1sR5QoDUNgu9xJXFGPHyxSsE59B3Huuhx9UWcGGCdUBqbV+GwDLzDLBklqDZshb6I+cEkAcRkJKYCna7HX784x/jYf8Kp9MB//2//3d0XYcvPv8C43hqxkyQ/phLogU82TrIvk5Jy3UTIcGBnAcxIWWHKXo83D/gq1/9Hhs/4JMPPsT3P/kO3F//9V9jt9vhz//8z/HZZ5/hF7/4Bf7zf/nPGMcTUorIWXK35sRWx/J36R0y71dKSeKgnpDcl5iPHTFG9H1fEsfbw6pkjOMI4PHN85R68zXf7unPyZhZ7cREWG7Ap21ubz8UlqBIrY5CAJCzxhiy2Fu0akpOCTFOSFq9dL9/AHPGejXgww/fx6ff/S4++uhDVUNVjdBGyq1XmLXI59w8cC6knh72ZXW0pdHHvJ9vuu+7MjhRn/4we3KrWp5/59TY76SR7zDAOY8UM+5u7/Dq1Uvcvn6F4/5OwjDSBHBSxwvPEFdB8qgMjbOuR/tMQMt3Cy1mzQhZr9cS0nVzgzhN+PnPf45f/OIXePHiZdOHtDVfzNPlqDDXGqSddX8TeWWqAXAdMjuk7HD/MOIXv/wdfvnLz/HixT1SduLNtJSd9XqN6+trHI/dTM36OurTY4jlsXPm3Pqxez6t7b6LWtAWV2yvsWaxy+vflaDf2UbyiG2Imp9LQdKObf5smyfj9vNijAQ0PWjmQuFsjR4bLVkKC6SnIurGMwESo+T8gqWa6NAFZK6e4qUgZAjyhErpdrxnI3hkfp9CVpfo+G3W9JtCa+96PL7vamme+adQ+6YrDCvnjONhD58SyE+NG4jKhuJLW68lPI1Xm81BoRcRsH3fY7e7wvX1DU7HQ/G6SkNxKTCw2ZwQ+lD2cJ1XKmMXzfN8QDQbUL1+miZJpGdCCCHgJz/5CX7+85/jL/7iL/DP//k/x/F4mJWJnuJ0Rng22e2Nv43DbGJxUb1iOYY3qR9LBmVNS5b3ev36NY7HY+kuA5x7bL894r7E0GpsnNMKA6Z+PbJlL/4tUlV2gLS7tzs0nEx/tSBJIioImJzk6znIZvG+02RnwkSkRmOH9XqLHDMeHg44nkbc394DzAie8PGHH+B42ON43GO1WpVc2MypmgxmzIwvMrJHZ+8CDS4LBFw6r13fd/GWPjkW+/8Tl12yz9nvj9HxXAZlELEKL0FJ3gesBoAoIVBGjkf8/Oe/RNdnrFeErbc5ldJZYgJjXYemOGPDXRjqeGOG91RKV5fa+13Azc0N/uzP/gzf//6nuLt7jf3+AYeHAx7u9/jJT36CGBMOhxO+9/3vASxAwiEAlCVFjiQLoLRY1JA3y07gWY07gncB6/UGL3/7FQ6HI5ghzOynP/0p9vs9/vW//tf44IMPcDwe8Nvf/LIsi8WK1IWispX+MKP32x0ESHPfRt197Hgs9mhJzFaCeHnt/f19KYZnXqPWc/ntvetlZCbjlTF7aoJiRYTNLpmPjWc/WzeA+a8k9lk4GKvtoh2PMDPlcWZ/Ys1C8B6+68DkwZmRKcM5hnMBx+MB4zQhpoTb16+RY4Qj4ObqCq9vb3E67HG1WcMHzdwo4RjNmAlPw/C3PC6h9T8Ecf99HGXs5QNjaI3Kp8LEeYfQOzgXgTwixxG//d0vMXSMm92A3cfPy94oubclc8DmSNE9qRLYmB3KfEKeB0gzm91uhz/60R8jpRHjeMJf/b//C35Hv8fhcMBPf/ozDP0aIQz45DvfhSMGeWindlNzjZEpU8uVkdEZbQLeBwzDCoeHPY7HE8BA2G63WK1WOJ1OePHiRemHKY0OdOYw38gXLTNfw+NzfpP2j7n68Shhz/D246qHjZGZZ4b99vO2hPYlL+clO9ljv3+to9H4lncqhnFjYmff15vUqZrb0ajcvYiiMx5av622ujIiNRrbeKYpInHEMZUPYekpUttfqpvkLNUY3gbJs9pQ8KgN8Px407wvhVrLwC4xtlYQft01pTegsqfu/egzF6YYXnx0+fqMOI3onCtMQ66vqJft3kWvZwBWJj3jdNJincp4mLmhA/0JK/stdeqGYcBmu8Hu6gpxUhPONGEcIzrficX/knHFELq+YMvA2yklB/R9px2mZFzhn/7Tf4rdbodf/OIX+Pf//t/jX/yLf4Ef/eiH+Oijj8SgmHJpB1YXuE7at21PsEDZPJOgdHkVYcGX55uGmUs4wPvvvz/zYprRvw0XaJHo382h49QYn5ZBO0h5YO+oJPoXgl1Sgv4UAuX6MWetW5W1J2Eu3zslcktEz1nKK2VmeMudI22ewlLdgMjhyy++wKu7O+zHpPmta+yurtF3A2iQagtf/O4LUQE6j5yBEDrwsAJZfXoywaHKT04A2fjffRaX6LkNkbikcgKYeTtNC7Fz/vDqwd/swZf+Ion8Z62pLzazDCAhI2L/8BqrboftWspPIyXtZhQgTgFpygsnfSxZOApyZpxixC9/9RvAdejXV0IfVr+/VImtObRS2rvHd7/zKdarLb736Q/w6uUdUmLcP+zx+999iU+/+x0E30sP1mAtCxOkHqgGa6cMadyiQpilqoe+LobB44MPn+Gr59fYXQ3oByD82Z/9WUmy/nf/7t/hs88+w2effYYP3v9APIc5SwPYWYsWmjE04HFbwx96MFf1UhiqvY4NZU7xl8ZjDNc8lDc3NzNmxSwpXcfjsRD93zkzYyiuF6ZSWZn854hKaek3et/OEBkASMS3FMJjMJLc3ZE2kxABwZAQC+l4A3i4ggqd80AyhuHw1YsX0p3pMOGDDz7As5tnWA0bbDZSMkpKkufSgYlZNhD1UEOFSF+n9xd1JpdGr+6szNE7TukFpnVJrWy7bC0938twj38Ix2x1Sw/Vxpiu1U2ABEcJh/0d+HrAejXAk0bb54zQd9JgRtU4aRiSSzOTzIxxnPCb3/wW1+99gA+2z5TJSWFU5wKKEGaGIwI5B+8dPv74E3z00SdIKeM3v/4d/vZvf4bXr+/x5Rcv8OH7H2GzdrqXxeCRkyExsQ1LgDY0S0Hsg8VYSMDQe2zfv8HNzRU2W2VmIQSsViusVqtiG7KqDDHmi14Tm9BLS7t0hT91PO7BbGxyZuwuRNgoYhchtmmecwTTStpL3awNndk1f9eEWy1aBr7tUAK9wLTN7jH/HOcqeSnfWp/yKDt89L3FP9ZeS4pojEmkpmeChV2klFBq/uh7ODVko7HXzI86VrvuDzn+odvEvs7x5BoC8i1LjjUpcnMtk17cxwSo/Q5IPOA4TrD9JmpnRYOXw4HkLtadPATGMKy0e/rY5GgaJVK1ARYVuB1h+aAdLUAMHzxW6x59L8AjpCQqwscff4w//dM/xUcffYTNZiMuT4XX3jtp/MmNEbDR2b9ZYmlUBEADM5fIDE/S9yXj/ziOxYPZ2sOM+VpvzGXIht3v2z9I1bkqJqyNfS35o/Pe2PQs9q6O8wKTN4HEuTATACU8g8t/wqBKPJB0NDQrlqAWZnjIujx//hy+63G/l3JKKUb8/vef49e/+a0YokPA61evsdttsdtsFWFKWzTK2mh4adw1RveouHy74128kkZb5sFur/2HpGLOD1lH5lTsX1a6h3OEQ8Q0HfFw9xLX2xW26wHBO3DKcJCSO6LSi/AUwZhRymiljJevb/Hr336O5x98hNCvtSosg8hLkWxOoCwJ7VYKCGoSqvRKuLq6xve//xk+/PCE1fo99KuVJBpDtABWRiKmB1FvXUmUVwosYISReQK5gL7r8cc//h6e7a6RAcnNNGb2J3/yJ4WZ7R/uC+T23oMcLhbse0sb7dc6ZvabnBfI7M1Hi8qmacLV1RV2u90ZM7MOTXd3dyXx/F1i1r6ZQ60Fpa67MLM2HqsQXWOkbpmZMER/GbEq0zJzXLWu2c/WHmnjqWwlQ9bCQbXhnPH8/ee4fvYeHh4mfPHFF7i9vcNXL7/CVy++EpWy69B5ITpLHHfkACflkpfDFPd8lfxfl6FdMvA/5nww1dLmdMnM/j7b0z1+qODTvpSZMzy5opJJlH/CNB1wf/cKV7s1tqsBQc1FZn+V/Fihh8xmfpB3Tznj1e0tfvnr3+Cf/LP/G6bIYnpIrFkhhJikjplzDt45BYNJQzhcYVJXV1fYbq/ATIjcoXPepKtk8pj2Aa/2NynPDbUB2l4AlO5zAsih6x2+++PvweUATkCwTkvWzKTrutmmAYwQVOovjseinb7uIjU3tv/NxvEYMGM9f2nLq9/zWdK4HctGwO017b1aRvJtHfN7V1X57Z+pc9Wqb0t14JKO0sx3M5hGXlFhMObMcs7BE2mJn9oubkY/VANs2wEIM7bhtZ7ib1Y+tij9Elp7bG6/bcfWH3Jc3IW8EA7E4JwQ44gQxI5Fs+tpeYf6O0mFFAER0l8zcRK7Vrk/lSvntqjzp5CFOcGBU2G58xqEVIXobHQM1Va40J+pmUSErgtA8pgSEP7jf/yPRbX68Y9/LGEa46lEwhtq8V7qfrF6mpwSwTdSZfYCzQjSXaKyN23oNixBDksaDyFgGIZZoKxtopcvX+JwOGC1Wj1pDP42D+EljT1CJZKUIPLN5qpqcTlI3e50CSxXMi32zKJWCEE5cgBT0fiMWdn1RNAmrB6sVWYzElKMSAw48ri+2qHrOmw2W3z04YfitOGMw/6Am5sbbNYbiVViliKAAMqgIejSaLkS8h+mapbpeYMwmKvscwR3KUzn7/8QOGUpYPUwVUwCK8bxgK+++j0+++5zrFc9kBPM3dNulAIQqJbTevnqFWIG3nv+Ibbba+BwAo9TMTkAVmXWegZANAsHOA71rgSlLVFjVSetT+Ym3s2ROBtBisya+EeqwbqsjI2CQ2psbuE//If/gL7v8f777+Pf/tt/K8zsKE1vbSGJpKckWRfzLDEnzjmkKVWa/EMXqJncjBr3VYJWn7xevs1NW3kz6pu7vWVmLep6+VJyyFar1Szq3zrjLEsEfRuHePLUxV6YGmmd9/NE6bxkCARYSMN5qbv5bwRRKyyq2jmPlA3Acam23DJV5wg+OKRJwieYE6YYkTIQ3BrXV9e4vhJPWdd1iEmaAv/2t7/F1W6L7WYjAbhSYhSu1Kw3Rl4jwWU+5mN/12Np85yr5XOGZarlY/Fn37bH/p0PsjU0hKLjUtXdO4JDxjju8dVXv8c/+Uffx2bVA5zEXmbeS6AY9Zm5BLEyM168fI2YCO+9/zG222vE/IApHWHxZwDmdtys9lb1QjOnwvSgaiwzS/UOrWdm8WpstOhU5yUCSEM2WqIlY2XCFJ2n8j0DCBaOYJUknNOa/oyzhTcoe2lJL6lny88vHa2JpEUfZuw/V+3mVUSfUiPazw19XgqGtWKPf68S+MKkmiG+qmWXlXoJnbB3RZGudt+iJl64+rHtaQivIH+y59j3dY0AdRKRqJ3DsEKMCZlRGuFIw2g7v33qBRVP//d1ece7qIjv4nn/B8PMmsPWiJq/jFFwTsgpwntX1Xy7oML18nG5CwNTTGAE6fHgtHIt0ewW9Tg3jQjBqCicLbepibaPoeisCtBKdMrsmgGXYQMAEaYY4bIH4BH+8i//El0nHYkNtaRkRk9XVJLj8ahE6Qujq6Vwnpjsd7AxVeajADCf98S8ZGdpj5Y4DV0xM3a73VnsWIwRh8Ph0QKTLSL7u1E3KzGCoLXWq71pxspaFIO68VuiNM5WwLnZwAqBiASUvogC7x3VAFYRXirQmCXSuvNgZOQ0SRCuA1I8aUA3IWaGIynVlPOEq90afSdljR0gBN5y2vpC5ZnLb955Fi8INRNoRrePXdMiuEt//0M5lgi8UAKLXrN/uEWMJ2y3KziI4yY4B465oPla4slUNUZiYIwZh9OE1XqFq+v3wPCIiTBFBpOHVactcwQAqgkJMgNyEywpQda6N70gtqTPM2HLxNJ2ThldyhlZ1enyhooopaCHEN/f/u0vcbW+wgfPP0L4N//m35SO3tLc5Kj2GPVmEQozs7I5wmhk0uab/N0WfGaXpvZznnkxZwt2gdhaNaBlQLXzj3hUlrmYMUa8fv16htzaRWqbyV5yHHyzR4OFysLPmVmZLKqITQesDMq+N2NvLnfNyswAQmapqW7CKjEXwiHny7NMqMjVCd5LJD8oY386gbyHJ4fxdET2wiDHMYIgWQI5ZVxf7cpGK55Qo+CiIVdmPWcaf5gAWTpurHnzU/m9Zp6w31tE9g/LoymraijHmcbCDELCw/0rxPGA690KjjI8CTMbcwQogEjqkTnfqflIGUpinGLCw2HEatvh+tn7YHSYEjBGBls9MgJyjioqJXQrT1FUXmeeTKcqZpa8Yk8grzbwbBqY0iQRIhIyMdgRYs5g9nIPWNxpVWlzJjA8fvK//xTf/eg7eHbzEcLz589LxVWrlFEswAoRWvf1Y4cqfQt7jd3unBjeJOguSsN3dHW111uFhuX3y0DZSyry36VULkb6hVo3Pwmzz0WyGgprQHmZL/sUBZ21Em+23PLRDNTP2AtBa2ib55iVmWa9l3QOYpWk3lt8ohAvlUfPMGQ5vz7o7eesTMuFdXosXrANb7Hv/v/Fq3mmqS+/ZUacJuQsji8Te/X1lrpm/ZKhIRgs8WQhdCixhlxX7SxYW9maqYVNjYvZ/avI5dnf9Z8I1RbnzPb9Yo3u7x9wvJYCkOF0OhVDt6lk5THMcAwAEkMiEcGjVAi1wlMX5vIx+8zbHFbjvwbJVrTxNsfSxmcNjJeBsNbUxBqbWGzZY6jv227cUnkLl0BZsUNVllK1MwYVGG/MyTVQtyUc9f5o92mraQnnUT1TYlJgchhjNDQPAFoIksGcEByEHhgYegd2ivh6wLmIzATvMpgnAE6dGVGZHReyrcy3DvfbQGR2tP1Ox3FE13XYbrfle2bGarVC6yVu4/vsnH84yIxh/SzlT1a6kZnLOeL29iVyOuH9924QvKQMca49SBmqdisCl98zxini1et7bLbXWK13INeB4bSl3QqH44i+D/Ce4J0H2EItCFba2gAQSipc1RDqfhaaAyDlgU4TQpDWhcyaY13MSnZ/rdRBkl3ATPjFL36FzSBrGQ6HQ1EzlwhM3OgOKlwRYwbRqBs/wBu0nS3y2zCyhRRujpS5tGyfo0HFfgt19LHDmJIUjdudGfdjjCX1xmprWVJxq2a26uq36iAgCERn4UveE3zwyoRqMCOzeLE8V5UU5m4vhFptKBlCwOy0VyEkztu5rswRM+BdAGDMrEpuR+q/4gTvueQErAaPyBrtPQApR3AGvKoR5Dy874SxaZ9VLZ6hbQuNDfOCXJRwvyZva21jdpggCyHgdDpdNBlst1uM41iaPrf9Vv/hHTJvYgYh0bs0YZ8yI8cJL198gc2a8fEPP0XwspbMUo8OWhLbuVDKZYfgETnjeBrxxVevsL16hs32Bs4NmJJHCCv0PWP/cAKDMQwBQz8gJUYpfqYMCESa14vi4Sx9Ww0oaH2+DCCmCff7Pbp+gPcdMsTDTgmAMTYWtE9EkkGizOx////+DZ5dPQMAONuobfu25cQV20nD7Lj9HJj9LpD2MhHUuPLFUwoimnsx37isTxhrjbCXJX+A80DZtyXab4u4W2Sm9FAN/60HSE+rko4KNC//TC1QxiCqpQPI6e/13OII0H8p5wKuyRisqi4qe0EkzNa5ZpzEIJKkcmltpuUfWdknq0u9vG+DzIr+Qo/Sxzd1POYAMDPEu3ji3+6BqMj0LWn67Y86V3ONJGOaRnBOGAa1iUEB3Mw80YxRj5QzTuOEEDr40KG2/JOqKVIkNavN/PwGlR9wQWK2xKXyDTcn6nhjlEwCs9+1Eoww/xtUqWS/3+N0OoEABDHo8wyV1XAAeXDStmCm8xQGSEn6IPJy4b+emmmG/5y//qKbAdcI1nt/ZvgHgMPhUDy0LRNsKyvMnA/fsoRurFog4iLk7NsyjlLqZc6E2pit+dwJltI2FvpPvFZGV955ZJZqvvv9QVUtbvijXpUjpBKDMKrOE7wHkmMwQaQ0GIFIGFieRCWw2kIX3rpaYQxRGkP+ejQw97JTsYumJCW8245crRC0mn7TNBWvd+tQ+jrH1ze2vM2xMIfoZzknnMYDQnAIodRDMbE226tl5kmKBCSWuMzD8YT1ZouuHxAzAPJwvoMLCYknHE8nRC3CmFMGMcFRQIom3BxiOsF5KRYZ7QsAmcbyfGIRsGNMABy60MM7ZaC8CIBnq3OHWtlKczitukrY7XY4nU44nSTq34hASrYIU5hiROeDJihT+SwzY9VdWHjdhO9qPK3MrHohW5XHdPE3x65xeZeu60qJo/a4u7vD4XAo9jQAJVPAkOrSfvLtHgwokyDn1YtpTSPk3Z16iVhiHAqZEnwhFqgxvsybVqyIugzi1WbkVBloCAHTlHEcJ7y+vROnCEHd9hJq4ZDBcQQowzstmewE6WVmYGTEyCAnHqoYE8ZpgqMOzE6qhyqTApu5eE4bElfnJQo8ZwBfz05p6+icK6aEcRyRUsLV1VVB6q3Xcrvd4v7+vtjU2mogX4epEuz1GjX6GyYhtsIBRS1npBxx2N+j6xz63kOKFWigbGF+KvS54BNMKSJxwmmacH//gO3VM/TDFjEyQt/Dd0DIwHQY8TAekPMkdJakl6p3HTgZgiPEPApyV8+kvT818ZA5Ze29GkC+R9+vEILk8UpDkyoEyZB9Bgqzy9IlTDJYtASQdVCZex3nxs+ZsdnUwEU56aKywc49J4KnyKKqrwvVEbYOc3WyHXMd91yVEMZ8Ll1jjIgxnjG6vz87iWzumbZ49j2ZIG0+WiDiBtbLJ23plga9ldUxdVPCbSzzA4txkKqMVQ3monMSrNu6OAhE+rPaZjRNyTpnN3YJxV82Cn2QUg8RmN+8DksP5SWzgwmmZTxha2Io/Qgax9OSkb1NiEaNvTLh8sZX+NpHVRsrM2POiClqv8yqoJkcafE8UPeX9D7NsEY0IXRwXtCWLLgERTPUeRYn5BQbZpaBbEU8HWIe9TJCalIeSeNzbF0CA6EjdF7tZBouVOet+b3QtL2/hVTJJ8EQ2dx21CKqygwY6kVTuGrleexmb80Enljgs8oc73i0RHh1dXXWtCTnjP1+P0OSlzbE8p5/VwzOAmVlGUyasqqHWiufAIJDyow4jYjJMJYxJo3KIZISLYRiPIWznFqGxQHFlHA8nnA8neZjIYf1ekDfdWBORd2UcUoeHpPENgVfuV/OhMwOIYnHjbOhCF/RykK9hP1lTPdrkkGrQpqTZxiGUq9vu90Wmliu6TAMuL6+Lqj+G48va81M39gN62HC6Pb2NVarAet1gDdgMnt0FWXtp4fjATFGbHfXlbGoCUJqk3Xo+wHOZ/Q5SPUKXWOiAOIag5ZyV2g4F5hqKJKUf2RBZSHAhwHehVqQk6r9lE3FJEO8si8cEf7p/+mf4LMf/ADeAWG/38+8dbZwKdV27aWMsEqCzBmOpRqkcPFlmlDhnW+/LGan4gtBjdxI8EZy23XlqSpZTRK///776Pt+RpQpJbx8+bLkay49Xy0z+0PUjHc/GEwMr9UnJHbVVExlaGyubyeeqOmE4/GIu/uDzo5D6HopZ+zMXCABjRKwKPW6nHeaIC7kcpom3D884LA/IefKZogI19dXWAcW+5d1A4J2PXIAOwY4oSfAZ4cQCNNEojIzAJYinymzkjIrss/FPmaWHUOQM1f/O9BQNZG40vv0cDjgo48+KqEYwzAUm9iSSe12O3jv8atf/Wr2/d9HvOHbHgWYMYNzwul0xJef/x4/+N4WN9c9gvdwWUBIwWllPzXvz8Dd7S3GKeK9Dz6AD52YOzhI2R/n0fcO5LaQUsEJ4CSNR6RnlyaYy70zkthNNefSgJDLYfbcTEAWZViLWXgJ6NbQHs8OE4sN1wGQKBPp/ekJ+H/+q3+F9663UrllmuJyasrbmbGQyBayGuWYJaJcYPmltJ+nRNDlUjuXPB2z2W7uOZfojQrVILNlIUb7/qQIpCXWNxFqVbXnx6NvyW8848KNFB07zIy69ZZqbyIbswid0zgqoHHITHDBF5e499DEYi+eRmeAryocKTOmGDHFCHNDkOomfdfBuwSOJ5hn0zZQq4o6vYhBcB5wmeDVxldQ5ux9ZM0uzU5VkSs5zM5r92BrBNf1bOv5m/1svV4DgJS4WjApO6wvxCV11e73ziiN6Jye+eyX8l5vZpeKVhZ7wdBWThHH4wFd2KHvull12eZkXIKJ4zQiZ2AYViCN5YL2anBamSWEIIKRpMeAt1Lv8PAIAEs4kPxfij2ShoaACT519blESMhIWdKbLNq/UYKLejwfOwSZgfC9Tz/FqiNBZsupKrYpMl37cWzMrIkupT9AzdOUQZDtUSECHZQZHuf3asM+FvNPzbiYVa+un7MtDmekOMETsFmvYCZyu19Wj5a0kqMSNFgmyoznZlxADRf5hvWD+f3Y1DZSY63OFREqbiHNd5MwizElHKcJhykioraNy5nhUpY2XUQS5GoGdZfgY0LQtB4rpZzGCVOqgRPBacuyrkPHYvh1hpSIxQFBNHsF+9M7RnYAgqifYsjNIE5F5dSlgqnPgLzThXKNT8zf5W3fxgUCwPX1dWFST3kmWzR+dXVV4g2t6srb2lKLZ/wizTCK7fAPOdjI1cEmlJDAaQ9Oe1A+YhU8eh9KGZ3MVvrJNXtPnSwqaA77iMgDtu9JClNmh0ySasRaPyzb3rOQjdJyxAHwUiKMJQCXVdtoZ4G03JQJvgzf2PmNLZttVsO0oN29oJVCWM8lRtdBBDaAkG3ftgwDDOcy1G0mkzXb3HouMyLEe5Uy0LF4o5zTl1SVQfrfVZzBHGfE0ca6sdWiOaMbrgn3LleJ4zRPlOXF43jEarXGs2c3ILUxWcT5GEecTkeM4wnrzRouSIWQmsgtYSjGKWsF16+rXswZVit1XPMds3ZgCgzvPMwA6tgVPuqdxylmrfkUsD+dcHc84dXxiCikjAwGxQSfJeZLoHpGJmAibaGn8UJkawMAmZFG6QrtAQzBY+gDdqsVNpo4TtkBLgCewX7+apZz6ZQAiYDsGZ1npJgxUYZ3UsEhZ0kUdkQAeyF8dpBi3A4ygnbeTDou57b12s5zZ01gMTM+/vjj4rG+1Pthtlok5YA+/PBD3N/fY7/f4+HhoVy7DPFpzSHt85nVuqkMwKQEs/ENKsKzvts5jRUh3dCN7CfSvRBAJKvv6ISUXoPjC7h8h6s+YBN6cIqKnITZJJb+q1Jt5wQmK9Xj8Or1Ca7f4tP3fgjGGpFF5WNPynAyCB2AXJvzNmOLtsedrk87t8pb2GVZd4gWYTXUACA1Jgjz7AOkyecSqzRlQYM2K+uVIDLHiswKD2vmt4yAafGZ/q/5POmi5uxQgIxOvDE0GBq7wBeWcW6XkBDp4Mq6N8CgmLxZWlY5AlbDcEb/wjCjlgsWQ7sQpJ1p95HNVonpwkMf04QvHQtGNvvdujhTLZld9A0VAlQkYAarhJ1yxiklnGIEXCfojAEobLemIZQJiRgnStrxxsFTgml+pdGqlsQGCbF3zmMdAsJMrjgJ4NXSLiXwldpQC4b3wtgyTMhkgLNmDOg0OtKWd1CVV89tAV8zn1ymv4mpegta2mw25bu5CYQvAm4iwmazkUBMtbG2ZpB3UTPL7Z9UNR85WmZ34TJZNwt5kS2PfATyAcQjeu8RnEOMKAUGJMAGcGZrAEPC7AHA4XiK6L3Dan0DQEtpqw0hQ81OjkDZN1OnEf4oJLtQB9FMNSMjgsgJ6oODg5V5Z7BGQwqWKdyyzoeOqWBbAoIHHBMoAYGaE6tb+V0mvF4rRKQbRbmzneJmdFQZ1pL4DKBfJJxi22rDNeROmjEDHwJ86OB8jb2y9zqdxGAuBRfP7TUES9SeAWOcUf27ArUzJl6fQip1tMgmvBMjeWUPmuCb5bwMIGmPT3PSZMhcOYL2HqySSVRmSUuSJBa7qzIG0o2hTMQRoesDus6XyH7UkZR7F0Zm82F2KJtDIg3XEHsG+4p0EwGcVW0GYCOTq2W7yTOobAT5hWbL0PKIat+qtLNUDWc0xSiCqz3H1ETrWtZmxrTxj8tc37MQjgtMj4g0GmDxOS6HMV06ZM30vXLN8wAyDvs9xtOI6+trkYcqOSqC0r+aNQVEoB8OR/TdgKEXEPBYVIzd7esftk5UUVSTZ2yAwXgAG3fU05xzJV9cbMYVGoRFz1wUQy1f0u0vv6HB6pgzKEawz2CoW5gszMAGXq8BpLRySnGW5G7DsU7YllKBxn7XliPPWTc8M/rVCv1qBd/1ANVEWiLC3d0dXr16VSrKkjVLbVaOigK4ZGh1IZ4+HqWCszkDUBCid0BwhC6EUsctiSgU9TklUOgQU8ZhPOH27gFTSnDkJVfTEaw2WTVnSXIxA1JOiBjUxPy4gvpkUzgCQiBs1wNWqw6hI8mDUzsiWRPWmb2MUWUll/uCAHaEEDIceTiX4T0jJikzk6IkPUlcsvi/iheTpAQVmKQBdZZemtZf02jBNjZgUf+VGbUlnZZxZXa0trCl4Fyv1+i6DrvdDsfjUbzGd3dSA8y5mVMBqF2czuMem7HCshLQmDDe5qDZb+IkUmZGKrxyxIsXX2Lc3+HTTz+FI21eTACRqO7M0Aq/poPIfkox4+XL19hut1jvrgBjmEDlB9/EocJV7l3nAjYSibJVJGQB9IALXVFBvZfOUEQOOQMxGghokBnrJijMZjaFbzNONbwqvTmXAVI7wuxG1SBoAbIW9V+N/413cTYQXYYFajcGmBnoQqfhDYLMrO48ERVktt1uSzxLCdDTd6cF4RSUS2/HyubHUzNYX0zmS5CVVJqgZi4EdabMCOSQIdkXp9Mo299Ll/FCHEXqQjW3bG+pEndWKwM1fkerdTTIzHtlYNQiuvadWh1AUUCZKPndOypPl6/MA6DMJFeUIAytStc5g7GtR833+g3PkVmZ/QWjWjatWQbXttdZ8QU7LNxHnEe1HWEx+C9VwjOlopkHnHtKHyeVlh4XsNTWhGR2Dvs90njC9dUnAKEIgBIEryS3BI05Mw7HE/puQD8M9QTC+cn2+R/C4xbYoGLE5nlckRmhCiLnHFzWWWSp4M/KZsRm1tgEyrGA9I+/0PytGFJJQRgbwcHNvJfcXq/PtG1r5Mr6UnU8YriuClJRPOp9MyOmjM22hw+hwlO9z+F4BGOZUNwQiqKzsmV4Pu/ycUWWrcBaThNjwVQuITuunzpXejkUiV1Yjr43HBAzY4pSpiWrKkOQUix938H7oJ5lhedMyNkjEyMFfRDrHGaGY2UdmeGdQ3CE1dBLDXkL2CWxdwFat9/Nad2ET/Fc6wYQAixvKNexlo5iBjuWmCGftfJDO9FWG83URS77SrzNQiVWQgYtHbBUKH4sJzfGiJwypjgVNd17j81mc9EeZt9Ls5ZNyZYhIkzTdJExFhvSknGqcmGfGxNsEUoruOdqrNImc6EtUm2Hc1JbsJRbCsGXGML5u0DNFfKYrGuUEmN/OGKzvW7UzJkob9Zmdsez+XrsWOCZc2YPW3WThY1Gp/YEm9PMFQj9+te/wc12gw/fu5G+meeRznT+tEdHWV+QWQq7WWgDEcAuw2XdrbABLhYKxUk8m65ZLI2iPHH9MloxwzkjIWOMCdvdFYbVAKuVK8wg48uvvgKDsN5sUXK/AJRCXzqBrsEtjdW5mZcW1VxiZOe/G+st8U2qYss8OARP8E6b68YkrnBINVgmB3YO7B2OpwkPxxG3Dwck1vpVRFh1HXbbLYahV2mVtAeiOj04YeQIgpRNAQNxmoSwk6xXHxyGrsPN9QZD7+CJQYjgPIEogShJ/JijUoWhUqUxleXn8sM5CZh1ROKJ9gznWe6ZHEAJlLmoX5zFs8pQVZgsxVTCgExV8aVTusV/ibPBov632+0MPTnn8PDwgP1+j7vbO/Vki6fyBz/4wVlZdTv6vi/McRxHjOOI/X6P/X4vFOTcrGyQ9x4pNw09CsrgYrCf0YzBj8XUzfchA1mCyh0R2N6fM3KeEE9HxGmE44T1aoBTAGFefyd/YIoRhabZITPjNCV89dVrfPTJn+Dq5lmzlA2985y2Z3+8LU8jM2oYMj0HTGZvJDMpUBUQknGUwImQnFTu+H/9r/8rPvv0e/if/tn/GWFpuKwBhW85wAXmtDgQYpl4YvGAzWPLzm9+0QA64x3Lt9bP9B8DiCmjH1YInSSLm1rCDDw87EXCqrQ2STgz/uq4DNa+i+R57JgzN2PPwoyFrwvi8SQsIXECa3iCMDQHJg84jymPGGPC8TQWrw4B6HzAqu+x0TzTGKNkUuh7TCkCEXBO+zdkgDgjR7FZMoDOO/Sdx2rVw3uJyRaDlpTzsXEaOpsfl5hZcyhSE9MNwTlh5jlAfupaZVZVEC1NzuvIMVuTWQ9bP7O3m7qZUoT3XjqKFXqWn8aIXt++Lp9bOe3HDut03vc9pmkqZWfGcQTrWNqsgjkaa9GVonWmGZMtCs5T5Mb1/cypI9dLI96cJFfSUUYXPJCsdR+Ve7tG2zHVU6qlMB4eDhiGNVarDca5rt4wsj98PwBtrvDs45n0L2NfPDJnqdJh8/DTn/4Ug+8xTXkeNFujzoFH3Rntwwsqs8WrjKD1UgKQNlbNuWjGXpFaI4maRZBzF+zuArx3at00YysAdTAo+iyqY41TWXqSWvtJffwCrteBz9TQ5mOgua815LXnAhYxjwqlyxNd+ULUVTG7TzFhnCJiSgXRWVLv0HcIXjyiDFHlKCtSISCA0EHO170EBI9MDuwZSA5dcHoP5XbKwGAb0Bh/M9ZK4A1349kPLP+qUfri+GCtqGsqlDAlQSHFOMxNBRWqmgcgzC5zlo7azTMKPdgIlB7N0dSiMO89jsdjSXG7VNusvbcxtvV6PcsKsPubmmk/Z++PBbPTGeTCQC4IdVQ6KaZkFkEoC5pwOh3QdR69d/V8W7pWB59Tu9oCGSFIKlHVhmytm/PLhqDZ55dHfPmYQ58lOqu0VvYxXbi/KFxwDliZsyoQQmmrjuaeILQq3vmxxJhcf9W/kuZPkSM4MAJZOzKaTSasBZz3cFmRHQDWcAVb8JTrM9rGFJZT6pyTBGLdcEbIcYo4HiXnUMJrjBHY7ajaYS69sm3gOSd9ZF6Wn3MjE7hBZtr3T3tRWvvBchcn6mXKDvABMTFeP+xx97DHOE6SxxYIwXv0IeDZ1Q5d8Go6z/AeYCcBhuQcGAGdBeAyRIXrgwZfEjhFEGUthZzA+QRJLE8gku/IMaTlmG4ItrQmgtQUbV+7QTnFA21CR+ZJVEQH7zN8cPBJa2olQYIpsfRYzAlVDpE4lqAMUBlZTgkhDECu2kUIoUT+2zFNEw4HSabe7XazSsaff/45ttstttuthDagMl6g3tfozDmH9XqNaZoK2rOKIyklhC7I3DMX4SdNc8tULDShykSW2QNFoBqqZahtNYOQkNOIVy++xNVug926A5T5g6XGnHRUM+YsG0EUD4fDYcLxlLDZvQdyfdEKzmiZ0YyLsOQyb8/Q7DpjWpVW5GPLGhBzBiXRuGR/StVrBzFThA745JPneP+Da2x2HQIV/fld+OuFAS5lsdrPSp8gR02yK8q2NknlyAGUz+5UXNlmHuQ5kVX3uiQ5l7vqKSllTKPYh9po5fMos+Uz5wz66x0X5gU1NoiUobX8UqS05sQBADlEJBzGEfvTCSkm7REgnc6999isV0CWMIwMCdMQgaIGdyfIjJnVli/z5UgMxRwjMivTAsvvWiUD0GoZKg1lCdigAS4SfpsgzlgwNCrWAWFOulZiOgOQkbw8I1uVWr2PrZk5S5KVrWEtDV5APc1UP6CiJqtrttlsZgLRunQtGaBdW95MBWfXdViv1zidTjgcDjgcDrMaeD6Eota1rMn220ytndmqbb7OD5k3ApKOSZkTc8TDwy0+eLbCbrsuz5nZpowZUdb9JJkm05QwTRnDsAE5SwJv15QbRrYYz8VRvush46sI1vZdpROLsaRCO1lMMwG4frbF7mqFfuUsA+AxRkblEfOHz79vsRY3/7MQiqXreiZ3qNoPxDtlZRvs2S3758p49Z8wBXmQxVTZ1cy11r+FHRQFtCDc8yWxx7fjnGvdND+3fEYzJDa7dREYFmtjrv3Z7YTVsSI6ckhJKpOknGcR7xLr5BGC2I5kPtTWpRH13unaGD0zz8iUwI3XtmGyYFh6gDHdJwmXC3ZoiLLZDLPfKyOz3DsRZgx21shFwlO8lzQ5udRUjwszT5XGzIa19Ewyzztx1WupMD+g9lK1TvZvajFo53RdV54h1VYyUrI5P49je0yNtVdr6fjs/DIPWek+ifGfVtq8pLl+9lwuNGeBMOMYEWPCsFqLTbU8hyrAIfufCqPLQ37LY7Eus6sXdykIFguZqQiTGF2wCjMJIXPC+aGi8skBtcxJNmkTzaQogKQPHhIoEyhnSaiGa2wE0FIjSryqZszWmVTWM4MzI8eojIwRvIMnUUNzHMXwqQImpYTD/oC721t0ISB4L7aVbHYYefYTufQVLeEJxndxgS59YNKU4TzBB+vAZBHwTsztrKlJPuDheMTDacJpjKpqSzWKoe+xWfXYrQdBZWkC5yjoKQmS6r02+M3iJ/bKpSVvNpUAWgfLqTQfagIhSZ1/sCLIBkCUd5bSL5Y4XF/WLX63CZhHaLf3LSjVeZBj+EBIkRDhNAq/BlQL6hevnDQi9gV5pZRKg5oy6/rdfr8vqqIhKADFWcDMxdu52WywXq+x3W6fzOn03mO1WuG9994rZbfHccRxPBWtofMBuMAYqZmzOb0/jXkMmYITwBNyPOH+9Ut0nzzDahjgPSFHLZroQ3U8gBGCeAUzJyQ4vHx1h/t9xMff/RN0/RpWc65eYWutf7zBtvfUQYzan7XlEwp8rEZeW//MstCt8bBkGEVBljRhc9WjH4DEBwSLa3pssd7mWEoRW5hsSIChE1iNxg0rE5RiZaKz5B8uMU95kkoi+9w5cflnSPmTgtpAyCljPJ1w2B9wfXUF70Ta5ix5iiCy+oRnS8OL35/gd/W8GcJSqM+VJGbkQdbgt73GKgNIgg+cw3GccDieMKUs4RgAoBHoUnRwADiDcwSnKPF4nEGOEJwHlzAN1tpTNQ4KDRKr/wTdEWVVRSujmR0G2UyAlbjEx1DZpZmtdOe9xvY5VYGdeE8Rbdq0qodtNE6QMjUyh1YlNaVUQinKE5WZWb6lNXcuQZjOoe97RE0T2+/3hdmt1+tyr0toyq43G93pJEwsH/YYtZ+Ap5r6VBPZmvs1atxb7UNlZpwSSD2Zh4d7eAcMnTkvrNBAbSFJlOE1H1n2I3D/cMT+mHF98xwh9OBGEM3etNGWvs4xp4h2R5trrzqYzHkxY6aN00RyOBNACauVR+iAzKfzEkBl3IvfZiN6p1fgwl9EExKnwJlnlub5dGQuaHmDsgEb7Fe4e6tyTpNsaHKEaRxLqZtCJFzv9zjhcFHLZGx1dtvcutkrFGKdz1NFdfPzZd0az5bdk11Rz9tyz5Ikrk4D7xRlKlko8pJ7mjrGdczllSythmeDqXXKFL6XjcWNfat5zaYW2vJo0calt9fpb994NlctDThjNl5J3jj94h7Frqo0YyqinFfv3/Z0uDTu1gva2tgsRq2976V3blXOru9hJhSjpZQSfFMlokzo+WZA9Xpwo/qheHSZNZQnRaQ4SS7tUrU+G2kz0Sz2ZJAW73S+aEtL8fvoTS5sn7k55pIb8cLmWN6j7Pv5NdR8a8H56/UaXd8hMyNYcFq5L7/5Nc6Hd4kpzF3QOUk3JyKHfkEPpBZgC4LMKam6peoFC0rwAKA1uLLaiJAApgTkBE8Zt69fIfgOzhGOxxPiFLEaVvDk4JqRzhKFGyJoJQWolU/86JRc+ti2egYau1RVxJ1zIC/+ZSllozFlISAzYUqMu8Mex+MJ4ziJLYaAPgTs1mtst2v0wcGBkdMEgjQZcTB7GyHHVKtiAMVmL7/XJhMCuqTYHjhpWhXKPYsKWO5EqMFmVObq7Y6WghuJrF95BqDNj7OT6qUhOaTkMMWEGBNyYs3NFc+cGbuzRsJbXmV5ot7/eDzOGkIbMrIm2GZzs0ob5vk01GUlty+1LjQPqjHDfhgwRWmmcjocS9PpoE4bY4xt2lqbPXBpOs3oz5mRiREc435/h/39Ld57do2+89J4JidU+2y5GNLyTxsBE2F/OMH5FYZVh9CtwJDSPNWyKiN5ihO8mUssz7AQm3nQufAeqjy8ARDOO6XpyuQyM2JM+PT7P8DgA1JkBLSLYtT+9nysGeJsWOVTu2/OGZSksiS65bkmEbnC7syiSoDLIhIJ6TpxfGofvqyISRqc3t/fw5HYxqz7Ut/3tSSOPtEIuhjbZ+OZQ+wzB8kjEuV8ThZC2P4mq7rQJNVCLFXkpExx5IT94SCNaaeInBK6ENAHj9XQY70a0FFWNcOKTeozVCXMWVp4EaRIIwNax6z4CGF9SaDVQaFeTFEvuaBamjEvgoRj5GYellvwbSZp/r15q6ChMwKCAlIipKQhNFruDtlM2IC9gQWQLm1mdljnpWXIhcWdmTrpnMM4jsVTaXFlxtSWFTPsMAbV9z02LNV7b+9uMR5PhZkhdDOHw+z9Z56WBs1y3cSiiAhSdwEYT3scDw+4utqiC15Rd65G8xb1sXiIzVB5PE5wvkffbeC8qJjZEBdjIeS/4aNIVpP0VGA7U7sPWex4xpYUlebMiCnhux99jDxGjPvDZTVTbv7uw58j5gXkZcJ5t5353wISqf5svq+MgesbLe5EhMWekqtaImklof1dftf/F4XoItqQWV3ax843pv4sTKRRo6DMX21ODJRGvcwo8VZtfTcC4MnBOyfqZZFSpmqhEm+TV1uxVA3inc/l8qjqu4H7wmTsEc1bCs3rpM+CqJt5LV6xp2lK6NmerWtMwpyJzcbo4DjDeZR6aCbBZZznaqChL3nGOaK6lCi+PM88lZabaYzrkpfSfjon6xVCqHarpqR3MV9QCwaKabw8ly5Nvq51ihE5RqyUydZr3JPihJkxjpN0nu96FaxGFef7VPa2IbWno1DR0maLW/Q926B0NLRWKP1JMqHZP9K+mQSHYLYIIaTWq/KGAT/6kDrAM2xSPBP2kktiFMLNcHDMIIikiWoPgxKdBdASINUxgNqPgDp9QemZKRJQ464UxYFqBS0r69sSj0w6z8eHluCaV9J7tB/Q4nfSPpEWrOu92CjUVwgmD6YOTB3GKeJ+f8TxNGIcJ3BKcAz0zmE79Nj0HQbvJJgUSdCrQ+nqZJV6jfllNvRV1URC66s2dUTTlmBpS5IN4IrxevmvaDIXmBQvfl462lHMz7cAGiaGtARV00LWGK8MxASMY0RK1WnkvMMwzJPLiaiU8GmrXSxjx0qmijIEY1YWakEkJaROp1PpxWqezkuZBuSkIcdqtQIRIU7CCE+HY2m24pwrDWxsPirFXWCugMwHk+Sypgn7h3vsH+7x3R9+gL7rQBAzjTlHCjMknV8SW9M0Jfz+ixfYXH2K7dX7AAWIljCnDH14Q9fG8N7EHx5f+5Yfm/DhhraEHxlxCQIvRT1BIAoAOoAHcHIAdwiOEAqP5HppHfK7HIw5cS6ZW4vOlqVk5LA6WM45JM9iDM/OwK8y23knKYPrmQg+Jomk03uHMFcJMlvp6DY/rJUPNnxjaMA5Wc3fmDFftiJsGzBib+ogm9JrwKsFxjII7AIydRjjiIfjEfvDCTkxOGUpJu0dNn2HdRfQewJl9ehwKiqZc5pOqRLUORKHi64MN1C+vAExoLaUkplAVCp5UGkyUd6wWU/AGqy8WRGZzVLz85zxFdow8OoAyg4hOyktyk5qoiWr9S/E68jBdefKhjUCbg38S2eAbXpjAMtcy5RSCdsYhgEppZL7ealpDik6GnopeJizJMC/zC+LY8F7L0JIBe4M5fFcazAxZNVHCNq8ZP+A02GPm+tr9EHQbE4ZXS9X5FxbKrJyJFYV+MuvXuGPnv8xdlfvCTOzHLu8XC2r4ELnS/m1DgskdvZWcks2xcLWnwHSwGmWfeIJCnICwB1y8vBM8NRVNZNnhNWoMYvBU/tbg+Ja/fqcTRn0roRqjKK+Gso5wplp9q+W36lXntktyKhfn2FSeIa9ZLJm6NfWaMHcyqRzMy/tdBhv0N+LSml3NtWnqFl6jwbpCDITJ11iKWOUcw0AtdfyrqqYjsqVALi88jmNVfBeicber5492zRUUcBserldMfNGU3nx2bw0T3/8qDRmAo6bihJtCMN8XOqTJSj64dIej0jQ2TJFqE17s/e9FFTbXmO/X7KN2f2svyaAizaw9n6GCs34b86C9tmXxnX5UNhRDP1Wodi+W567/ISL3Ymch/NtGWygDd1p36PNb37rgx+jA1Nd7Tyq+2N5C1Md5yMC2OF0jOjg4bNHWKKn88m8NPoLwzNG0LxwsQnoEJ0mRrsmXIJhhnwlX41tgqsxQM45TW3RGvQa/MQgRGvPmAXdkPfFTe9C28cPgNkRiLRyZc0gmBNUM6VcgNrjm/ORL8y4Xhm4pBB536lqqYyWCMeYsZ+OuH14wDRJPmKKEcE5dN5ju1lht+rQBY8A8TuJ6kolh9VCCJYGY5uDs3XVQFmAJYCWarVWYxbzl2uCZNmEDKF07JgpEM3kPGorWyI+xvlkVgQlAca+ML9hkAoffsqYxgN8kBSjpS3LyvYY2roUeb9EZnMGL7S40qokRFLL7MWLFwghoO977Ha7YtZwzunenDOnEIKUaup7bLYbDbKNmKYROTO8D7OsA1LnkNEPIytSl25Xx8MeRIyhD+icB5E0IZLSQHo+LPdY/jkI84+JAfII3QqhWyExNByqrksV2i3XWa7dW3I33UNZa7SbfTMby2Co6aWuh13EOQFOmT/rXs8BOXX427/5ElerDd6/eWbIbMnQmhG85UDlwjnnti3MtukUXZA2ESbS/kmly47adQg1xkj/JWsjZRyczA6m+YYQTyBpNDjnDB9CkaKMtuxyTWh3MNBhC7bYUMyz8IZLCOjSFm7nwGqkOTVWOheQtNlphiRwn9KEu8OI24e9ZM2x2D6cc+iDw9VqwKbvShNUV1zsOi0stpCg79+OX8bYri1DqmKg2EprpQwNW3BUNlM9qv1R3s2Mxgkzzllm6xJeuzRDjzBBQO8tTFWYmXRzAmcMvUPwwOQSbm8f0HlhOEu1z6LyrZP5m5DZEjEBKF5KUzmnacLd3V3JHrCG0qERoEu0473HZrst9Pnq9jXu7u4wHSfEmBFCbUxtAqXOhOx4ThmSxJpwOgoz6/sOwQdt1AwtLlDt3wIUTF0T1TNlBpNH6FcI/QpTUho4Myucr8i7Hi0QKCtd1Aku5grAK5CoHdqEPqU8vJGKdPTyyCngZz97gQ9vMrbdsxaZLQZAxjF14UvVCkMsslhtMUPiS2ZBrg0zzuDNDDQ+Mo5WLUPjRSQNLuXKjGgukbn5KfNFzfjL6BYv3RBgA3AWxR8W/P+R92jgcTG+LyZC2vSx/hMVsw0jkf4ArXrZDGwx22ejWPCR+as3QcemqqJBZbN7tcwRzSJUzFBPa7YwcXOOnF8ZBJ2f34x9aYebVZiwcTpR4YV5qW3QWUWUOdpur397dQ71mRfOt/ta5oH9s/HgwjXkCI5Jiyv6RmDXMVWVuDI0QVpzIRXjBIKouC1wOJe4PPs9JSmL5X2HahN9G+CyeB/FLsvXrFaVdm0voe5HnvrE0syiDxg4Hk44rSakBA2axXzBi3fTpBVI4lOAxm5h2LAyN6jKU16o6TtpDWc9iQ8PTUK08SIjQLMGwWmMFDk4J3WXkMUYWO6sNZiESThkC34kwqRoRdCPA6nBlVNG0nE6nVFlNWKYb1bELUAOX5jssqHL39Uobvq+cx4udHDOg+EBCshgxJyxPx7wcIw4jhFQCUQA+i7garPGZtWj9w6exdtYUJSdaI/nKnPasdXxENqavqUeP/LMI0qWw7S4S7lb+Yof+Wm/X6LK5Wf0hnNbtGyqhzzHO1/shwBA5NB33eyebRZF67VcHpcyBsooFkzQUJaVArIKthbHtlqt0A8DQvBSAaW5RzsFwzDg+voaq9VKq1dMxdPpNY84BMsYkHW3wOicJrz46ksJot4+0+0n+yWDq+YhuV4qoBxijri93+P17Yj3P/wYoVupp9A8C03gqgz84ny9+Tifx9b2JXvD1sI16IlMWpVrXPN7eScQUs74zW9+B5c8PvuuMrNZqsRy8SDoIM08K8p0MoPCvMxJa8CtzLAmx1owpvVehOaQGWKRJGuzcXmQl85FnjIyJSBlNfianDK3m6ggktjOYOcwnkb1YGb0vgcHSXAXlaxgElFBAWW2XqpvqEfKsgYYEnVemBmVH8DsXRsEBbMFMqRcTyc2PTiAhOnGnHF7f8DDlHGaGKWDOTH6rsNus8Zm6NF7SUMnbp7X8jIWlCcVaJvFL3yiMa6zMDDW2v7scimJ7bXI4xyFzpnZ/FgWOwfmzMcmDBd+bz9bqrTL+80ZGpEJHuk3yqyqYFdDM9rkc2Nml2LK5BUvG/vbz5Ze9DZr4OHhAYCgpKurK1x76QrfOlrmDI1KQDezpOHd3d3h4eEB9/f3UoXDe3jXgbwKoZzhu07bMkS8+OpLfP/jZ3j27ArMwtyJGDlHSX/T8BC2mDbnEMeMu/s9Xt+d8MFHP0LoBqlM4h3IacBSs+6trGzHfm5De8OxOF3mLQFo7GQN9qTyjCyB5Kj0TGpvTznhN7/5HVZ+h8MBTwTN1pFjRoCPCNE38m/SAc5u19oVaDZJdQ/q55kLw7P5ln1db5iZSmQ7G1NURpuZSxS8MTHY/Znr/WbvvFSJlm9bRdj8/VXCzF++jJ+pOj5yrrCfWa1DSkRemYtXaSyCsy55y8jKkxdoecl+bHbNIMAN0ilFK8sF1FxEZbqWdytnP0UEs3man9ha4S5eVL5q5ntOLuXvJUNqCzA+OrSZ6vJ2m7RVP0tnMb02ZykY2ba/szG2b9s6Kpgl/nCeZlc1pqXayJwRUwQRlKm2Xz+2EPLsmJLY6DpTM6EefhPBsxd9awW0lX2PTWN9RrPjLnLMdgiL/Uf15BgnpCTd64M1CrXYK3slaSZbK7JaKRG108MM+jxbsHlIgQ3Ekm+995Jn1Yyd7e2VSWWi0tCXi7rjAE8gkvIwyGJAzVmQTY5JkFaOYJ5gxs+YYkEfU8pSdodIIumDK04GRJFkSfe1NNHw6s84Z0o8m/jq/SwsUF00TtEinJT2Cd4DXryYU2Ycxwl3+wNOMYlBNhNAjM4HDMFhGzz6LmhHo2pkn4+osZMURt5UZnCVeMzQb8ZgEMM54aDOQeb2bB88hcq+yaPdDsujRWb1NGZo/FZE3w9nhRUNMbVxY4AxlctSeWl2sc/amMZLzM/qmRFJS8PXt7fo9gd02ky46zr0vY3vMjIcVisQuVpJOSVM4wmIWQOYlUvkBE4jOE3wXnqt2ny0jFJURjMpCE2CPMYp43CaMKy28KGDGf1bbYobwVGq39h8aSxMtf/qFTMhuFhPQrtDmnlQ8xXcRSHN6hiwd/PeIecJ2Xv4kND1GT4kwE0IOVn+nZV7UZRjtccKM/PIGqTY2g5yjBrRToXBGFMTAgjouoCu7xQeAshUGmkAVAzzRGRJAvJPdpgwFlJGwwRKGRwTEhLGmDGOUrwwxgxOxzIpbJY1AjBOEKRNWA0Dtt0aLnh45xEtrksXKZBDcM6gnzlWiv3DEIJ8rsyAVCCoZ1aqg3Qg5wHy0sXbS+hIBjDGhP1xxOv7PU45CdTPBHKMznushx67VYeh8wgE8JRntqpCGAzUksgNQbcVL1i8vsLIEsxuRmSMTOqrOUsVBRrE+1RdOyPItz3exAwvMbSWURuWrL+nnNVT2aPr+vrCkDm5u7srzKy1Ccsmn0fuA5VxGTNjrsUeLdh25mRqmBkg++Z0OuFwPAqD6ns8e/YMAJSZVUTSpl5ZGe7VasBut8PhcMB+/4D9wz1ymhC8Q9cFef8chZnlCd4Ruk4KdJae2YTSF9Zq2RU0TgGnMeJwmDCsd6DQaRIsqb21CkRTM3POTf9NFKToyOoSNgCmUXjmzbUt3tNByvfIs6hav5s1bkojMYHgi33Ne4eURjBPwsyGDN9FwI2LhiaYL5Kk4ViQYsuFzw+ChTuc2ySKh8wmg2SQouLM71kYWQNvxeDPGsrQnMMoNraUM2IWuwKXxau0zUDxtuYs2ISNkTarUJCiobCywBX6E56G0czN90W1rj+LByxrgw19RGEfTYCleDYbpNv+MkOOC6Rh71yEQzvg5mHgxRIY9NaH8OypzTlf93j7e53P8RyTsp5U+0Cc02cb6f+2KuTbHMv7tWqn2epAQEhebXapMXjbNfPfzbPoSDtCOY9WDZWfKpSSZn7MbH2mOT2CctkQp3xbKsuCCt+xOb34zmUQzWcXnlTUaeUHRkNl3wiiEXTSorRLtHZxKAwmEcZdJ04ScowgYZDSL1IKHGZYzJJ5BcUDB7T2qblnoYHeyrgKOiJGhtSmJ05lwJVZSTlAQZxiimeSyrHTNCEJf8KUGDGLEV7CGCSCeUoJU0pSXjrnprWGQLl2LsyIeIoRdDxh9BqUagG65OCVEUl0k0OBwYUhKXOhKjnmi08a/JfVaSKhFS4EUaFzxn4ccXc44ng6KeuwRg3AZhiwGXqs+05q+bMy5zMtr1H9WDcCG2urRFIZGTfEwyDH0uGm6YVJF5jB02iqJcZv4rh0r6WKq7FmiqpSyjgcjlivdwiha64RRGHBsmasN8EqwKPScquRlCebGaL5fBnW0Ub4W9CyxIqJV9o5h9NJqmYcj7WKy7KA5PIIwWO1GvDs2Q1SHKXIZpYCk9PDLY53r3B9tUPX13fWENnZVNpelCwTwuu7B5Drsdv1ALkKKlqRaSqhvpvEhlZx6bwrzYzZ6sudkYmh6Dqcy5TEqB72BnkAgGqLKZOooaTVd4gh1ZlH/B//7I/x4Xuf4OqmQ3AgbW2giEJVScuGzOQQAkQl0U1T0QojeA/mNGNmsuFV3YLUXsrKyJhRvI+GgKLVt2dRdzIDkRmH04RxkhZrp5gQk6IZhqhvkFzPyE2nJmonbZ6WkXUB8jhiSlGrUBBudjv0oRMDbJZg1SkmBHJFungt+Cg8TZgcwbpxszQnVuInBzBJ/S0iSYb3fYfsHMaY8HA84vXtHWLOsKwHT4zOEa42G+zWA4beI2idNubz9zr/Jx5QDZc0EVt/kkJ77YYjrThZmFnQtLECOxvmsVAX5kTYqgaXjqcY4fJeTx2mnhTsWugwpoj9fo+b6/dFzWzvyozT6VTax5mKaHGLS6ZkJhRDeuaxNG+oxZBdYmatetqV8BB5N2t2knPE1dVVSVD3vrHxLaZKGLDDatUjTyOOxwMe7u/w8HCH+9evcHj9FZ69d4N+6FW7oNIDQ3yo1cxgAekZwMtXd/BhwM2zKxAFrWrcICwWYCMFVIUZeVc9/NC/CUCaYumQzr59kUbbYTM5XXhJnZ9SSw+iLotHVRgYEWksr3i7U47oHMO5BMYJf/4Xf4ZNv8P1pkfTzwgw/cj05cK0mAtBPwbX7cXreywRiw2dwRbcqn0cM2pEvj0uo5bCiVGYS0xiKM/QPamwvCqW9miVuLY3uT4drNFVKQsDylRjs6jGYzEwV3XJGFmdLy7z0TwM9V5s8yDGOkh4h3guY0qC3Kz0MwlCCt6JB5McHDXG27LwDTrWRRchUx48m235qHovSf8up841N8zUztLuaL6C5WdBeheI9JLKcHaP5ZCfYmqVcc/eUL3BhclQ/dwYE4AZA7rEyOznY97PSyEdtheW97I4KDndynlL2tI0TYvyTuXC2fuLyuzgPCERI8ZRn5eRU0SKEd12XbMdqJFfy2m3OQGQYgK5HqHrUYT9AmAXB5Lu4fnI0BJbue9yrmaq7+y8C/RZBCfPv6EFgTY80pLQr66vsfIr6ftadPwoE8TqheuGAYfDEdZTUgimrZ8uC5cMltvCNk8mV6upthPALiggFgkyZenvN8UJzJO2Yc84TRExysa35Ov6elalr8byOIJ4K53E+DhvNgFWpjgV9dRsDSK9R+SUEYNH0CgtSb4liCeFSoxZTTpXpArxfAKsNryKBcl7uBBAXUAm4HA84DhGjHFqFj7DkcfQBWx68WLKk3PJubQKqhKnZy3UCHMqsY3cBCGzsUKlVmdEIOqlqJaKKuqo8eajRWWPHd8EKiuKDc6RqKyjzTdZsUv9PqVaZudcAHOjXeCMGbVlfZYOr3k4Rb2+dRjI9xL/lrMloXOx6Z1OJ7x+/RrDIEG2VmZ7ztvmY+q6DpvNGoxn6PgWG/eAoQO6ECSWjNUGpgUqvTMCUHp0gnSun72PiC3YXyExMMWMzBOQAReyzl4uWknmdL6S2bCc0k5N152tWhm//p+atTtf54WgKB9zc+38LGbGMAT0JD1jgyPSjR5L7SavPQEPh4NINpaqjiF4bQNWF1egt8LSpJOn35Ejibo3hqZiI/u+2OUyZ4yZME4Z+4OUiM45KaGiGCuLNYBI9fUSUaaICSBP6CDt13zXYbUaRB0h4HQ84EjANAGJUymSx5mx12qinQ/ovMfQD1j1ndxf7VYxJgQwnEp7gjHE2qyYWWx3Nk7X9fBDD9d1iAy83j/geBoxRWEowo+lQu6m7/Fsu0Kn3aaIMzwRIgSdTuMIAtB34rVjZWDc0IExsVYmqqIPhnrhnKofDnCeiuo8J7w3HaYa2HHJ4/kY4bb3eNPnjKV6ecbMFFY75wsiAgjTFHE8HmfVKZbPsfI4LbNr7WQAZqrpU0wuKhAwNbPEb3EuNjui2iXq9vYOq9Uau90O2+0OoavMrI0qAAsT7PsO3l9hs1vjuj9hHCYcj3foeylzxYmlMXImpGmSMCCoTUtL+5AL+ODD7yLRFpG2OCVgnKJ48ylhWHltT5hAFFCdK4qIicSurUQn786KIhwS5xLbec567HgCmc3OImHMhTMuztFLN+sBgQMQNWi2lSoymRJSIZuFz763RZ9LPCpggSBqmS2Kwf8SpklOg1lzKX2TmDHFhHGaSveYQri2sArFa2wVyqTCngVJf/LOIXjpKg1iRO9LocHimdVFSdnCL+S/Th0fNQTAgclsgEtA1LCOwnj10CJj5Bw4ZUwxYoqx9IIsTh2IkdW6kqv/uMB75qwd4hvkN8f9uEg41Ph1m8JqZMmyM3WrpKKf36e+LRSO1t9b+9r5AJ64z/JrPvu6nlTtXDbHAjq4nG+aglUzNhtqG9m/9AzK7+eq4zLW7JJd7DFVtN7n/J5EUq1W6pmd4JxHjFE9naae1YkpYoag0fwAyMOtBrjVgDjthdEQQeIGzyvf8mK++25Acms4DDgeJERKippmMPsCEOpimEZUqaOYLAqKOJuKRkubf3+JlbUxbZfuVZ5z4RA7t0MGEJK5jEnUjtV6hWElDSGur3c4nU4YTyctTzK3ERTb2ozZoHZ5Idf8o2ILm5IEOsYYEacJY1RkmLJ6V2gxEVxltBGG97AAQ+eswwxhBYfgPFwX0AUNHASJd5AIU9fhNJ4Qs6Coii80XIIyTpN05DHblSDMIF2+i22PyxxkMhtbzW+zMUb1qB1OoxCyxeKx2Mb6LmC72WDVd1p4TglFN0xOqaryUA/dNIG1KzmRt+1uZ8wIspoduKgExsvP6ePtcNnTquG73qu932OSfPFP1flpEjS0Xm/QxmwBKG3j2kDXeQhDVYaW+ZrcrO0StbXntt8vEV3OtferBZQDmFXW8F6Y2cPDA2ISRBdCwGroz2x8tSINSxvBTjQQe35GRspCN21GAIGQOGGKjDEl3I8v0G8C/CBay2YzyP5EgnOyz3ISVTgr0mJmzYMVtLcM4Spde1QtNL4gQghPVkvnC2tMzRNKGSWWcAwA0gfCOzjqMY2qDGYgxDQpnBI4u73eYbPdAfAY+vdwf3+PX9++xtXVdXE/y2Sp5HNU1EBygrgKQrOKqt4jk5cJZ+AwZRwOI07HI07HoxhrlZnIIghTqO3tVa3TYIkQHLq+Qxc69EOP4KX0sHMOPbtS6scimjMY67BCXonn9GH/gPv9A0bV/a0fo8UkxRSxxwFDP6DveoSuw2ropWyR5blpCEsCFwbHpGEZXplt1+GUMk7ThNe3dxinqaQuBRfQB7GD3FxdY+2yeC8NwgPghJJ8bPQg3c2PIIg3LARC54LSjrGxsiICQAGAculN+mZG9hjaWto2nhCnTx6XqPsxirdSzqpmageflFh7VAK73dVZ2Z9xHHE4HGbBrEFLQlVkVVFWRU80C4y9xMDan23/zfacpPThDFHp57VP5wDmjHGUpim4vcd2u8Vms0YXAixQXAaBRuWR3pfUewx9AEiNCCxdmbwm26c4QgSYmFLGKeLuGPHL3+3x/OM1rp9fg3zA1dU1un5ARsLxuJdySVkYLEhsx0SELnTognm8dTDMxdxDGuLRrmJBuYmrr8hdWGemus7WUJqEdh0B2uVbe91qMYXsEfwap6Ps3wAg1MYKgsws7SInwPU9TmOYGfzPYDmazDpDZM23rAYa214MjSGLCWNMGMdobzS7YyWm+pVhNu9I4sOCGM6tPLZ3Dh1qIwcJTBX1zHspU+0zY+o6bYJQUbLBfGYJwE05wbkA5zOcWFdRCuo3qgh4kYShdjRTMVOKiCnipP0X60YS4dEFj6HvEDhqKez6rhLHo4toKAIsXdtBIGo6vzfqyfKoSEyIcMnIVJahBEcv7rMMuL2crfcOqO6deJ9pAQ0a0H8SE+lKx6VKmjXBfJniJPda/n25vtky0n9p+D8b6Uw9zY8+p9ToS0DOk9iJedK916v6vGQMzcDLPagGqkNsVa4gmTp94gDLGKeIh4cDduOEnCQMqut6DEMv6G0apZcmRGsSB5Gb0WxdEy5gwYTC+bpSJcsyGctJsZ+tdldV2kuH2YsJHjECjhiegJB14hwRtrtdDeQzjmAGivJkg5A6VG/JyWogVVLPxHChU7QGdTBIiMUxBkxTRE4tvJcHSo18LRGt9zZju3OaV+k9Oo3DCQR4YsldQxuYK4jJFxWV1djO6L3DdjWgCw5xihhTEm9marohkRBKzAkUI/bHAzJYjIxUa0jV0F/hiuS9eHYcYYoRp9OIozIyeT+AvMN61WM99NKB2ur5lwmvxLPcNsZ0Hcn7pJQQUXgsnKYxmU1QiEznhzBDZnNiqUyjtdssnr74u1UPvo3D7lsLBrb+8pREUIWm74Mwsrln8dze2/KFcxvZJeZ2KZTjsWsMgS2Z2SUwIHnLjKybeZom3N/fI3iH4B36PiAEXSwijfzO4FQdDhZT5rxl7OgYS9iOwzhNeHjYY7u7RtetAJI4zcPxiDFGZJa+BIZKN5uNOgNDsX+xZs4kdQp6e0dXZ39ODbxQShcHz69oYxVkKm0v1DAW0k5MzISYgF/86nfYhDWe7a4RorbACiHgvefPEbpOmJs5H5sN1jI1UgzogiAeck6u1WyBBNYuyRIA+3A84ng64ngcccxBpGq2Jq5VtQreIQSPoesx9EH+VsbmtSaaTEE1QnoN8ZXIg6yJ3tpTsby8SEpiYB0C+t0OKYsK+HA8YJoixjHiMI6FGFJOQFTV9HjALjj0QXoo+q4rHjRnm5+EW1iM3OFwj7v9XiLAc4ZzYrDsyONmt8V6GLAeeiCNACUQ8mzzZc4otYrI0qQ0B89pKhQDOUct30Pogy8BhtbAhcCQHHdq0l8UYdathqLKXfROXq4D9s0dj5F8WVlYcy2GOHmmKcL7Dn0/zBiJGdmNqZj5oL1nq0ZauFFbKqhlcpdqnbVezVZ1rde0Senn19m5oQtwPhTkeTqdcNjv4YkwDB3ee3YFv11rdoauW4pAHMXrr1GWzot5RSoUZ0iAD8A5gTqPw/GEFy9f4ZMffIbV5gqABxi4u7sTL2SWjk7eOYTO4dmzZzVoOCccD0dR66N41jlnrIaVesOdmGBUUpIhS2NAT6z5DLS1wpEqIzMHCRHVAN7sMI2Mv/ovP8Gz7Yf44ac/RpDNIYsxrFbFZlOR2RweFo7Z2BisvbvzHuQ1hoyTBDOxhCxMKeE0RhxPEyZw8eLZO4izTV3gzqHThqu991L33lu/SB1NiiWJ1gr0OWSRWqVTrOWuGXOQh3WO0PmgQauEMU7qpk8VC2mcTdIwjGmaMCLAERBU7ZRij9VGZwm75mWLSTryTNb4Qu0AYvjv0HfCrGOMqLlqNtfcJAk3P3R5KiLI0pHJoqV5XqGUVS10VvaNbA0bdL0gMOb6OZeH1rVqia811Z4jt3q0GPOcuMtgL3za4t/6N0Ca8cHqea/HsiRPGQNXGm7V1ktI69JxKUh2ee/23Gpv47IZz8eiNftBYg9NCafj0ZK1kNMGNeS5XFwi8iUIvdmPMEYJ6DaDhI4kHI8jhtUGPvQq4IFxGjHFKDZF3wNdQNeLwLaGxxIaNJW5iVplhjsrs30+X2a6uHSIYrr87BLCb/eBFrk0emBCSsAXX7xCPq7xwXVCsHb1Xd/NobjaHXKOAES/DkELIBZmpkGxVP8xVD1LGXFMSJwxpYjTKN5KM7YTG7KqamVwDp16afrg0Tmr5WWoS5dUOb9tH+vSLa8qBC7tTxR0FyOlTgc5gDMcA8E5DCEUZppY+mumnBFVXeVsaqcE8I4xAqcTvItl/GQhGBp2klLEaZoKMYn8Eia6Xg0IpUZZm6rEco/cSDYGrJ1bYTJlzSuZZ05AFujNDTOrwaSXKGupHNDs85mF4ey6xxnXN3s0Y2rsMilJv4LaWciQmahq5qgCLqt3LUNrvZVmz3rquBSusXzGsirH8rqzV7QMG0gqk7Hvw+EAECN0orEEgV4auMpl2bJpIiw2dlZDugNh0kDxlDNC6OBdAJzEf3ovhpicJZRJ1OOsKmcEkSsxqESEEAI26w0IjL7rS/ZNSgmcpWhCZoY3kEOzIKNHqaZS1FJAyn0c18Kq7by3widsdlushhWG1TDn/zkhTkfEeAIoIwQnjRO6gHHSHDXvtSAiYEWxMkvnl+MY8bAXfXyKU7FL5Qw41RfEFuYwhB59F7BZDeg7CQHxzmqPaQVUZIWvUGbWopZcoC15QWLOkJ713EtZ1SonDpUsE9J7BxpWGELG0Cf0/YDjOOIwnpA15o0h6kFUNWRixv40Cqtkzb30Hj4IkXDOSDniYX8QAvYBjlkYZ9fh2fUVOiJRBHJE0IgOtrI9ShASiIlCpLB3coCxaxg5leT7WDI1+uDQ+Q5uhvhaxbJlYkvJeI7YzhnYJWn6+LHAF48cyzPc7HMih5yhCeQSymBvJX1Zcwn2Xva+bOPOLCZNPI+ihlo+5txRg4sMqG1dtwzJqD/5ImOchX6UyhhVy1mtVlL9JUfc3t7i/v41hqHDbrvGZr2CSwlIUTpqaVZHzFFS5jKBE+DJKx0EHNMo6YAxo+/XoG4AUweEgB4ZPksoh6MOQEZOEx4e7mGIMsZUVM4hdFhd9aUk2BgnTHHC/nSSGFFlWKu+B6ld2zkC8qU0SFu5yrxa3wXIBAxBjElC38IoSWmB9R8Quq7Dar0qbbTk9rJzJBI/gXST+SDSIWUWldKJ3i3l/C09SRPFY8bpNOE0TTjFqVpcuKmaqs8ytXI1DOiDlb0xOxjXuG9lWHWjsMzRAAEAAElEQVQimklhQTm2Qc1xYPCCWD2CBBC78qbekUy6k/ptcB6ZM6Y0gSYIQhIrjcTcZEZGNHBYmFUIASFnYWYsuXhjjAhmy4CovMF7rPpeiZFLae7SFV1eVAmJ62vyXHrJRzXS2no0cAJcJnjHYO1mNI/BMqO43eYJRtZS1UVG9jWOd7qMLvyUsQhjclpwoJ7TIrNZ270L9za024Zm2DXL3MlL6G4ZhzZHZsBF9evCuUaX9pwQAjglxCxZDOAITgOG4JCHTsKDGnsUE6QyDQNgVyInTPOR95HgcO+lxl7SgENL+ZOzZT+nJBkvtT9olg5UPgj9riR8ZFLmVYR8nDQ0i5BDUBqrTgm2iVnQgKHk8vHyeyjz4sVnZGYB+Sx0XVdSe5o7g3PC6XREihGr1QDvhQEIkbTw3MItMtI4iZ0oSSR/1Eh+m3bV8hCoGvRDFzB0neSYUS1ySCBlTkIUhsqKTeAxGwwzQBa17Ao9LZUoVvWTuLC/0nClC0G6VjMwJQl0ZVCTFQBYXqmNIjEDOStaqxkMpgJZGEkfOpiqXHNKtfcBuCzOzExVGvCa5Go3jcTh1Xe3ubZy3AnSqishqwol8TquzCdUCBnvJ5gN4zHVtHl+c4fHj0e+O/u4WaXmOy6P1HnIWg3DB3Shrd4q30e1AZ1H/s8FYGs3K58+YjN7jCk+xvBau+Slo55riz1XW5kAchJ2kpOs+el0wvRixDY9YGNFQGdT05gX7J2RMY6SC9z3A+paWypck3WgAevOOQlHkjshBDEDgWSfn04nRI1/nKJoL957AURqlO00Pi2nhAgppsoZ4K4DzSjYHvO4sGRAY1F1vsseYE0HW6MfPMJqvdZS1qweGI21iiNub18jpYznz56JpxJASlH7UYptCfBIWRjY/eGI0zhhihljzhhj1lQhsT6zTvIQgoQl9BLjIgwM6LxD5zT+Sz2QZWdTLrYxKmhJF79BEJljQ5BqqSJpilInKBdnAGfxjIEAdqKXu7BGv1qhH0YcxxNO44TjOCJl27ykibWkzkaG46zVYoHihCAhEHKE9XqNm/UKqy5on1BVzlWVtoUS24MslFVTM2Fgpc2ZLVjZ6s7VmmvCTLXRq9o5fJjgMamtVirfWllloeRGlVPJ+ubjXZHZY4zxLQ71Ylop3JQm3N7e4qMPv4P1egOndkp7xH6/h/dixAYqgzAPp7wioxiVLzK7ZuSP2bpQmZ+pk8akauWMOXM7Z37CcMz5VWga2v9htUJODimOeP36Nb748nN875rx/Rvo/lAm6FzRdpzZSUk0ifv7ezADV7srgKShjjj8a7VnUh2IiGvRRrbcTF/iMqdxxKiB7ilpjrMXNHm1vYYPkkI4Ho+YxhHTacIYIzgmEBy6bqUyt0Vo3Pyzj2qArvGaUpOWLVwj4bvf/Rg36+e4ue4RQhfK7XSKlaYzjlr6d71eSfWuLC8XnNOwgayTw8qxR+yPJ0xJ6qFFNgRTE4AZEvA69B3Wq6HYBwCJAXNE2v7NeC8XaqYixVDTimjhj2M7n5V5QqC3MT3j6uWFuUByq7rhnEfnPaD9CjIDY5yQzEXULIFhx8QMygxAo/i1oaqOQmvBD+i9A7KkRRnzcYSCPDNyiZaeB05QQc0tCrEYnLJZmnnIWVQGUAL5BM4SxEIaHzRHD19TbSwz8Ydc/9hh6EL/pxpBzrVOWQmKbfbBNE0z5tOGWcxPPh/342rp08eS4Zkd7G3u18Y2tqqWgxX1ZMRpxPF4xBdffIH33Ap8tUGL0YuTh6nkIBswGccTwEA/rFALMlKpRVZQnekoRKUPgam9qsiI+eQ0lgo7vgsIkGDfzXqN0Pdw3uM+Z8RpQsoJaZqAKGac0MjKQs51JvRf1RRJBWxWgSYWE4aZf65vrrAb1hhWHsHu2Poccso4Hk+a9+jRwn/Z3IRYqr9K0OkYk5TyYUJmKmRiLCxYGINzWHUenSMJdkWuqIs06LV5MYuEn01AboiwZeb1bVEzPJu0bdHvZhiB1Blh9cqKJygDgTN6B7AncPAYqdOAQSoVAhwrLy5Mt/XFsHTZ7jyG4OEVwZlU0vBiVL5MICZkrvaKIrN0jaqWZ8qgoavG/c91arJV34uCACxwtuu8GmcZ1AQ9tpPK1dKp9N6sahm00tbiWnufxRJdAGhLAcHzkxXdlqYbGepdduV2NnbOjBgFSVAjeNjspTMhUJ9RkVk77tYedo7czpFaoyLDAG6RShcmYO61I5jZogokY+IOGcgj4ukO6y4heEkMN0zNqod7ViCArKo5IcHhcMrI6DCsdiiLzdpWjqrdtdUDWhorGEIloHMEVkeJzTUzYzyNiFpbbhrH0jvAdR1Io81zSvAKIa1qyXm15uooYtsrlazLdBNlXF0P2PUdVmuSgHZnLcZYEEKeIl589Qpdv0LX98gWtEiKUtjhEBP2p4j7w4QpS0nrKQHREsWZ4SHR+YEyroYefdej7zsMnhE84FxCl09CGKSsv+wRs9rYJFN5CUYrbc0GwJqC1MH6cra2CGMdtk3rArJ2ojKERAAiWAmj90AaAqJf4cCMKYtxVPIsLfUpogltK2qzd8B21WO96nG9DuicGm7VqSJZC+JWF8eIeKDiVItRMqAu6Vz6YUqhR0W8auezSiM5W5NlDXPNjDQxpijqGSCEsdkShgHoOoIPVGhA9qgS9aJm/VwdzVXEtmRY1KrFdwwsk8HPTihHnn/uvAoYkvp2EfAuyObXcTjyOKWEw2FEFwYJz8kZoZMk6voqxnTehJismc+CuZ4dlQ7bTu9Q1jSXuRmS6QEVegElqLsp0Z41fY2YkFPG4BJwusXx5S/x8S5htw5glxA0il9oT51ZLEIokRRAGHOHL15HrK+f4f3nPwBTJ0VJIdEFFlYknc1kbKyeftJ5yNkYGpcSYeS1EZKGXyAzbl+/VrWZtWubhHustivJFsiMr17eYeU6ONIQDjV3VIeJCYD291xUb+ccKDOIMpyL+OxH72Hle6yC9c1s4S1LH4CHhwOePX+OrhsaAgCySsoxM45Txu1hRNTqr+wcsnpTAqSomwejJ8Y2OGyGgNXQgZxJAKnZb5s0Q2xJM+RkpMA8d1Q034IM44hLGkY4VCH8ORlW+dd6hoQ4BAF5OHQOwjx8Bw/CKWWMNIJyRkJCZEJUb5HVcfJOqm14ANvOYzN0WHceUGN8QUjGTBkAQlEPzFaRi6pa2blsE2NXIs8LkzCPZkGhkgcLCGIeR+vlyPBhgPMBzot6TL5NPOHFPxT0h9k5zRpcmN1G6Vr8fIqRtM+0Nzc0QUjJuhBphH0RTA45RUxj0iBaaTNYY5HknKdGaWNkBs6bo8w9l8tr5j+BinIWc1qqX9gVNeOiiG9uQ6QyvM9APGDaf4WrZ1sMXQK7JFUsTCHIQNDrI6RUfYJDhMPtIaG/HrDZPQeTlvmhDEYEkYTupHY9C6BQUz03qJSEgXmHEscnw8w47A8li8I6vret9mJMiF+8AGevdQJlTczbOV97mzoGQcxZZZaVvIkyPvhgg955qZpRiFShXpymUqGzFq5DsVeAIZ5KLWczWxkW/OMICC5g8ISOgN7Jy5VWc7NruNkoLVOZHzaOc3WoSYRV5iUIo6120KocjarQ3KVu1YrZlh4pBwvwlWqvgsAYHmpPTJaRIMb6LtQOS+VJPH92GdMSyDyi0hQWbJecTRapegP1nahXggjed/CeS525lMTTJdHconYGy2N7lOEsNtvZTL7NMXv7+ccXeKSRh4TGiI2weuFtvbiUp7aL6rTR7N72uU1xnetWTWxtYFzI9Dxns32VloKgy831vAvTIx+3idrtiXU/cM6IMWpgqy/3tg5qBQmiZfAAyGGz3hZPZooRmZw01zGP6KVxKeOm5UoX4cCzv9vqIWZzs7mSDBfUQq6mVRUvvc5dkTWVfquOdn7U9RNEGpyqaKxpO3e3r/Hw8CBctevgvBfbEKnRkBivb29xnCLGKPmVTm09KSUJDvUe2/WAq9WAzgGBMgbNuZwRaRmUhiRgvoFtwtp8tryYePNSybr5YuNwrpZyeSzeqHXdm6G+WDKI0KryRITgfAEJXahNkR1rbl9MiClqiAZjvR4kUdhLcUa7Wds+TnJ2WRrwKqNY1tdqx1qXuh5GSKUDkVaPte5ERBld77BZrySKPHhMccTxMCKlCSF4rDcD+r7DeujLBrUKo/WJWcuXS7d1mEpKAaYiFeIvQmvBIHRu3/6oJYCYJT0s54TdbifFN1VNk0osk8RlQVRa5yp+lWc2hmVV3SujohmTM5p8HI21xxKByUYtsYMz4dCiQ6M/aLhME9CbI8AZ3gv0muKIh4d7bNY/QN/1csdYmQNQA3ZlBLoPvMenn34P/eYGRA77/QHwvlQcSCEDmgIHVeWWWQ3LIpdWmbrOowR4W6NvcxrYd/v9voxPeIpFGKg9ntv5ME+lcSqgqu/yga1TzgxO8nVOQCDYwkmZn8Nhj/3+AevNSgoykitxVqbO7Q97jCkjZkJhACQePQcgOMKq77HdbNB5gkeCy1mIawazlTNfYGTt78VAm3m2k01aWryNU6ZhiMrg7lPHJZd7dRboXOszvSEBBigUHIwQeuSYkaLUnc9JCHGz3sA5VQobo1qRpcbETQOh9rPzDcT6wsuv2qBPAKWMNwAthc7oEND3A1arAV0XcHv3GtMUcTgctO+gPH/Vd9WR0MxIlZZZ57UDztiqoew50i6TWVD4m44lRFMDOUuaWM4Z6/W61NqCIuMUpYyNzEHdjGpt0bmr96VmbS/ONWweLsDFr30QQKz1v+o8l3EWjir/IxLraE4Rp9MR/TDAmyBNYnc1lczqAsr9IIKXHN5//32wWyODcBpPkpESPFzwaoSvDkAAj+4/O7KiRKM76So/SWCtMjFrumxNka0owjCs5H6k4SB8vgaMRcD4bO6rgMhN5BYyEFKK0E66iDkiax6ixZrYPwZJaesUa23+hcrWeY/gSBOofck5LPRtJ76tNoK6UXVmgUZaCnFrYChZtgCVnn5PxQbNkE6r5jU6JxemMNdLXDMcgJo8U43xYfOoztEnzT6rKkSrEj2GAmYEZlc31zyF3CSZOVS1UucNEDRnDVJSkvAa783E4HFmpgQt5g4wr11lDlXdEUbETeDrE8eS15maUe7JxcvrfHGH6DtWdCWSnZAzJBMChoQfZ0atSjkb0sX1aD9rVQ2eowgWxtUOkoywZms3f17xpuqzYorIrKYaY+xlzCpc0VIUl7l3zkvxRdeDXY9hQOnLkWGoUAWo7n0QNaaROe40gNDG8LWaQYveWnRra3MevmLvrUK4zGqLJhpwAdNg5LvjISIR4LNHeLi7K33w7m5fi16uEfCkyeM+BEwAjuOE24eHkoidMoMoiN3IOWxXG6yHXpLENSnW6aJQNW+UKb+0/c6YTDOBtnbOSfKr1H7aKyXLyuzWGyCIKdBy8+S+NYOhfU5BQUaHxqTJAlRtKQmcEkDSZ9TeAQRwigBLQUwEBxf6WXI81FZGM/XSRIq0l8uaLmXR60+qNiTZDWL8r+9R3idXxgoA3ges11d4/eoVACkHnllCGNbrHbabNaZ4wuk44f7uAZv1gGEYpBsQY6bKmCu9HR9zLIxd/q5BvLNhP4nKLnE7QlHLWMoYTdMRMSYM/XNhuLBxUUm3O54krUbq43udJ2O6Mu0itNt5orPNV5konb0LzpjjBVVT7oo5Sp3nmsqR4T2VZiAiSHS8OWH/8Bo5jdhtt8JkWGPBGvQz62zuCDGzltfusbt6H/BrMPUYdgx2kk+93+81ij8iR6kD58ghdL7YJJ2aYIzZHY9HXF9fY7VaFWRslT6IqJQrH0dFyM7NGh5LhRChUym9VAUgEQFOwIFMuFdpKV2nLCo4pYxAHoQOv/nNLQZaYRV2CIfDHn3XwZPD7e0tvPPou067QyvE9wE5JZxixMPhgMTQMADR6QkM70jsZNuNBJzmBOQoi0mLhaaKZubEcH4YgVkxRBRCk41/d3cnrmKSMa36oWy4tkyyUSMBi41YUYTwnTrWyswEszMngFypVWUMeWo6+JAT25p3JPYzW6g6m5B2YPKZhHB4gDWlacnIngIUMxVoztCMkOSnx9CvcTj8XrMCIPaxzYChH7Dd7nB7G3EYD7i9vQXyDmDCaljpY+pGqegnNc9KmIddLB0vVP+8/CLNeUvUY+JaWvJFTZqWYO+5DcwYGh+tKTQaxgC1oZn9tVZPtlZtc/lRUd7TTPipdyLMYrcW2FwOZZaOtAE3lzlWjIPj8QEpRazXKy0cL/fw3otBP2egQUVMGsMFwIcO/dUNyK8A6rFhj0zQHhjSwjClhDhmjdEjMImt3BPVfh6NyjgMA25ubpqsoITj4VBKledcA+5DCFiv17M51NbXaAUIAK3ZBpgKarvQIIApUJwz2AEEj6++vMdAhKv1FiHnhBSl+5AtrKVDlBcBtBFHbXBgMDeEgOA8+hBKuZ5WGlEblKfdgqwM+FOq4KWjpTUhVvFq+S4ACnfF2yVpVuW6d3pOw/QufjPPCwXmamfxLHGDymZ3MPvE+RMes5XJvRUNPWF3WhqrTfqZ51JSu1zZxFCENU1JQzgIQRORAWCKEV7PCV7LHJ2hrSpZL9vygGonbZHL7MxLb6NyYAHnl4y+GYcwM6/2mlqQsWXyj5HB+bRfkiJvoXKaWslUVhvNb/OXsTs0SI6oebSMd5pGMCd0mq3TetztGiIqxQbEKSIMwVlDHjWKkmaliFooJedzhva2yAWpto6obOH3zbPmNloqVTUsK6Pve5jz7azgZYOAZ/PHXJsjtd/YnNRBFLXodBoB6rDyEeF0OmHkEwgoBdm6roMPAZHVnJYS9ocDDqeTBI1qZLoPHtfXO6y7XoooEsFzBEUhRTNOEkluFes43Iwj84xmWsbTTpgwKlllZpaxxAnPP3gfoZMel3GacDwcAAK6rkLwtlwLUBerEE8hrhbBnasWJeY8R5DG+DADwflKYAQgJ60eoAwdWPyzsibG1AwZcInTefJg2wDyx9JIa566aZqUqBzu7vbo+jWCZiD4IGLndEw4Hl4iQ+KWnj//ECHI9a9f3yEEEVh9F7BaD7Da81Ti+VqGbXPaot+WuUp+3qMc5Y1GNYmRc0VdNBVQ7tf3AddXGwy9VHQYx6hNTywth8TYTaSdhmKZc0OWrUAwpm+0em4/PBdU9fdKR21z3IYC6vksNi5H9TpwAhDhfcarV1/ApQOevXejnmrZVClqoQQbZxbbpNNCqT508KEHypxrVWjIu2w2ErKRU5bitVGQ2hRHSSZXj6WVU/LOwavjgLztBgYcodM0ptB1GFYrXF1fI2kdtNvb28JbCrN+w+oXOx7rfo0l4lAYpxNHw5dffIWeTkhXHcI0jUhTBJhxc/Me+l66ETkfgJSknE8W5nGaJiQtJeKcFMbbbbfYrVbonUM6HuByggZxwAcqhBt1U7OpKXUqCiMoL7JgaDah7duOo6RO3Dx7hq6TwpLjOOLu7k4fuS5EWBu2VgZZwjnKxmolcUVn7cbzOjYJjlXkYHWzGjtS4oycktRkVyGytJQQVQO21eFqSzC/6VhuuJlXTNHSNE3YbrfIGdg/HLS8tLyrc0DKYnd8eLjDsArYbFa4uXkPMY04HPa4f9ij89LkJg09ur6rY2+YGZH1L6hHZWhVfTR1f7nedf4vHdT8UKRv+93koP4duoCNX2MYBhyPJzh3xOFwVGcHNPWGUcsiESwMQBhVDQGyZ5iBe+YIequDFr9fUJ8BQFsDyjMl1EQyQgQpOZdxd/cSm55wff2eCgMBBDFnzSWu42YI+pIaewHOdxCDtdi/bfMROazW6yJOc3aIY8JpPOJhf4f9fl8EqyF874VJLgtYFg1Nbe1Gm1YC/IsvvmgcTY/MVqtVkBZwmAGO6sX35fmEly9foUeEzzvLAND/NRvDpIgFI1qEew0CpBIQajYJAoRYWFWxioMFTVBRHuqhNHIpnucpb6Sdaj0zwTyb5BjjeVhGGcP5/S5qFLQkwypbAW5aGS5RSMNo7ALmGT1XpmZM6Pw9qxF6+Tke3/tQRZirmikMvdpiLoxCmDOr+p7q5jX1xGyUgK/rTe19zpFYGc/sJZaqd/sNX/hK761rVARANjmtt6Nqg2SlA9tA6k8tY7GYrvOyM48zrK9lNitCsYazzh5lPxbj0K0LEQBSAx/wpQyPoflHHlduzKBqh1q8CKmaZDVqTCX0rqqLxsjbODNTF+URC4JuVFEAs8D7R2eI5gr4m8X4wtLAGayZQ4FI2k05J2V6SNodYUoZ7DxyTtJhaJowqm3FOYf1aoXNZoPgHZCitKbjhALGcpbsGiK5ryZUiwbl5vT/5MCFwLwGxEoUSWWqbemVEAKurq5wPB7w6vUtPv7ow7KZTfUSRngeaHhxIhe0p9mQpf2WPTfHCcUeweYQkQoc7Y2KrRFzJsa5qsNnDWn1pCVBlISMBbcTu9o8kJGIkdJRF4Z08cUj6n2H1WojqmUmvHxxiwyJkxuGNdarHqR5jq9e3WLoe/RDj83aaa9SQ9AmqReMsLyFMVPGLNf2yYMETXCCuWidByhmHA979KsrmX9ONSGIxHYm5eClUMI0isfueDwgxgRwAlFG30PtSXNBuvR0VxTyBvW/rgJKp/czIUmwumGtAGgdKLZKnCdM8QE5neBohaEP8ORBqAVMyzjNREJag4+lSTZMzSyqZpWw1DyNQNJ6ru+wddsSgG2B19a6z9BV3VPnHnU7pBy/0IsUgWzROsrPqqHUtKWKwJvsAvVMp5SQkEEeIJdBlOD8JMgsdFpKxQGkht4xil2FM+M0RYxT0oqSjK5zGIYBu+0WnSdRR3NCgDQhdRAUl5QAmVxBJrLGj0vnx4jDOe3fyRkJFZmZQdFc1dvtFqfTCa/v7vDxRx8WaSJ3qZkG3jkV+I2dg+rzVGTWIRCKB9Y70lQuSSif4qTQPshYUBuIyCKhqBI66BmN58yNjaCF1rbg5xu/VbWAuvGMYTJQmBmQi4EfpLmnEAbkyWE1EECSMP/q1R2cy+iGDle7LdabNVKacDoecHd7j2k1YJ2yNEdGJ9vA4eIYGzKFMbOn3unyoV5knVdjhsfjEf2wA5yitCamyznx1nZdj9VqjfE04Xg84XQ6Ik5RA0Uzul5QW2sXk+vd7G9D+G+0ZS7fnZtFaiuOzMwZy72gYyAG54hp3CPnEY6ktLwjNerDwal6X7QlrRkYU0LSNDuEDmg8oIV5lT1YdSUBNtLQZL1e69Algv/h4aHUibvExOYOCEVmXpt1a58RO7fSQmsy0HsyA60QLAyQyjUpR2QrMe8YRBnkoyAzk04VPtZ/GdXmJEhfKixIi7WF5G0WRtRNmepSewwLEm7+uGQnumg7egOia1XNfIZoFhc/tZ9MNVxg91aeNWxQPuUlYaL8fSnVvd3sM2Z34VgihzfZ1cQ81cZO1ecRaSm6QlBad62paGuana0764W2yimxFgyQEjUWAnFhJItXtjltP6d66gUh0t5LzApSSkbsnk5DhKz5c10zUqEhNOGLxw1YJqDXDTMb6lvM86OHvgebXYMrDZxT0PJVTcWUjAepSXnZ0jh/YD0jxYQpRoxThAtJS2tpaXiys6mUCirqq2pW7b7xaidbJpafC97LR8nxLsNcIjnCckM15DpjnBVoyNEPPQbXoe89gg9q1PNeK86SVsDw2h5uwuE0aoCsQ/CE9WoloRjEkotJglZcgtbaFwnqIGVIbD1lgNWCsJwEG/Slz5MGrIrhXFzIttmsmgarMX61WmG322F/OGjMXC00R+oqns/aIwfNfsC2OudUYpMsyFG+r5LEVGJ9AZiUQftRu4cbZDX3sF4+HiOk4txgxmaz0VQSCyBu0YGqehZMnGVuV6sNQFLV43SaEFMsTOr66r0i+PaHE+h4giPCsAoYeqmM6rxHKXNTa4Mu/qbFv8WEz1+0aEdAxmrdAyCcTgfw61cIoUMXOoSwKsxZrjPEIcKtHzrc3FxjvZJm1DFGnEZp2mH2X5u/pQPKmpN8raOs8yVkhgqxC1ohidFEQoon3N2+wHYzYLNSw7ojcNYiniSolRX5saIa5wJefPkKfHvC6gG4uknw/QauW2NYbyWVqelNUUbzCLl1XYftdlui/pl51jSmzcm0ObPDgmYlzS9LPq2JnbaMVFHLa7ym1N4TSEVa7kgCew0dJvzpn/4Qvetxtd4hWGch52vbrswAnMMYJxwnKR2dNLyhC11lZqr5e7LyI4B15iZVwdC0fWPV6c/KZGG+OZc2C0CTqS3WKdsSLHVuhp8xM7ET+U4aRIhR02nj1IaO3uKYLTrn2kiDJaJexmqLY1kFj6slJqVMArVxPfOnLqR3Y+u7FJJh34EZ6/Va7R2QJP9H34p0LA6r1RqA5N6NpyOmhxEheKxWA26evyefTyfsDwdtRUa45pUSWKdR4U2ycIkzLG+tzzxPuL48PkblZgmrVQ+ww/3dPQ7HiC4M2G13WG/7Zr7ELii/im2v9w59f404MaYpiuq0f4WcU0EObePeNpZKHB+198XbHkVgMc9zpRdMrTIBAa5SIDojxhPu7l5gu1lhve7BbD0mxDThQ1NaHgXfw3mPFy9e4hRv0b2a8NF3V+jXE7ohAb5DR720OrxUX65BQza2rutKriUgjYMPhwOmaSqNkCRj6ByI2PVmd5PiAPKipVx4KWklAxBmpmg0KzNzEjGQE6TQK0mduj/50x+idx69c6JmKq7Uh+jLEJWUpSqY1O2raQ5EJE1H6i4vEzvz0IjOc0bUjxkO3+YwKJxSUjRQJ88gcTGo82Ulr9zo7KNHiFY5kKhhb7b7zJ+qEJ6X56hj4tKjvubR2npKuzoytzifDdtUSPkhm8w8qbmJ9ynYlM1basxTzks5w18yFzT/J7a4q6rWXlDY5x/bmFnLKzllWipAsnn8yLy1rtJhfTWxEfpa4dR6RM7nba7O1+/OXuvdD64/ypgufC+fizCMccKqc9pQ6M03t1vElBAjw5tjKWkKYspwKZV4NQfdMwv9o4zjgrAEqrbU/rNzlu315t5P2wRV8Czf3SbbsHVra16OsR86DM4jEBBqfhsBToumkTR6eziccDieynM8EXrvMfiA3nsEUJN7yM1wlxu9DdWgizv1MftEDUal8jLMEuAbY8Lt7S2ub27QqSsZQOkUc3d3J92YY4SnGonsGwn8LkebN5wL4VPdEEWd4Pm+bB9Tyuq4ov4nPm9tdjaF9vECNbSfAw2Dd4Ky9vsDUhLEStb5GigMwcJSJAarIj5HXmtgQVVqwt3dHtJ+MCOEHsMQ9D4JDw9HuANhGCRezWLs1NBax0jtay2Y/cXl0MqDsM0iHeHXqwGMDgSHnEe8evVCcjO7gPVqB+f6mZyyX52TlonDMOD5e88xRUEM4zgWxm82orc/Lgs1sldq1d+za+q1OUtNZ08AISPFE+7vbvH+d55JtZPgC9h32si6CidjFDLBp/EEuA2evScFVslJ46H7+3vQQdPufNCiEAFDNyCETgKiL7x669kNIcB7X1TNcRyx3+/R9z1WqxW22+3sOpmCigTNHKAYZ86GG23MOAqzBZ5rxEBmsBNB1vdA5wCXgVC8EwDIexWWUjv84XCUHCu9syOH3nusQkCv3FDbvChkbBiarZ95L4pUv7ToTxhaySKeW3USGgA64fXr11iv11KlQxGa2c0AyRubpgluGIQBaU0lKXX9ruKWYTUYUlHzNNeMGq/YJSFnk1KYsivIJ+ZcGNrc4/cEk18wNGOGhsa6rsN6s0H84guklNH1w4xIyTcxRCBldoRpOmkpZekob/XlOTNuXz8AJEGLV9c7bDZrIeqH17i7ewBzwmotqSy9C2Koz7lRpSU2rDIZC9F4SuWULjyWaCwhOA7rTQ9HgzScPh7x+sUdQuex2qwx9Cs4jRBf8hBy0uqQVgNW6+eYJsknfPHihXbuTqWUzflxtqAXzrHz5tDrEjur6rPujSxlckJH0kg6jri/e4XVDz/EejUgeI+syeDOOaScmstNHZfnHE8jVpsdnj//AOxWSCRNrPd3d0g5IUPsXZvVSnJwtwSHAJJK3meHmUGWzMwQmQVo39zcYLPZ1L3Q2IFLh/NCEMs5NXbReOa1AopdIszMijFk9APQEYCIRs1U7dXwRmYu+ZhWzlkMcq50UHpayTpfXgaajPgL5zym3jU0actlG3lWasQmBAuv5iWX+pLIaTmpl9WNMpY38cHlqyzQ9GxbFKb/dsfcSfA4whQDsWn5l2Bie24bUFuJx1QxbpitCTwqZb6N2FnLWmuQrruMxoxBVtw9ezucM42F+gfJB3TewZUCixk5U0GO2XINL1SpMGTqfABbaZ0LSJfPFvrSHD5Os8V5AYAX19IZPZBs4vKJvJOhbG/e4oIUHl/PYmsmib2MIJiBPadUmBmAuaqYMyiT2O1y9fi292xprc1YmbT69FPhK62MZ8zptvI1Ppur5U1ms99MfzCidN4aG2TEnHB3eJAmvgDAGcF7DF2Hdd8hkHYlzxr709jK6lI0A7QgVTutUTtaD8gyzqowV0ZZZNucZhfz3mMcR3hNp7BrnXO4ur7GYb/H8XiSzH1NuE0p1T6L78SRjSgwsy/aEpRJvsTI7B0K9XJhAjwj4kuPfXOIwCXbhpU/l88Y86BPYV6WI9raxaxxswOJ4TWLmtcFSYciRxjHiJwf4IiQYsKw2oKIEQKw3x9xPALOs1Ta7bwkqtNj4RuPvRSqKqXIwzpzC2KLcI6wWvdw/koucQ77/QOIRjjXYb3aqfrUiF9l3EZ/fd/j5uYG4zhhmiTFS6qpCuoQtfNtB143YglHODvmzHn2ub5vnI7I8YTgCEMXipNJB17ONSxiDapjSjiejiDnEYIUDWCtHhJcQMgZxBKKE7Tia0wR9/f3OB2EXnyHYvTv+15KxDfB6eM4YhzH8p19bgJvaQop2oMJxcYbIq+ihi4ibd5j7Ez+X2ybKgSdh5gxnMN4ko8pGTPTOByJQpbuQ6/u95hS0p62Geuhw6rvsF716BxJ3Aon+Pk2Lvovo8awWGyavMj5tl06AmbxJ7b0Kvlt45k7PYQgzMx7bDTQDyTlgp89e4bxdMLt7QHvvfesVAOJ4zhjom9/OJQcplpmazbGWVG71vFBqJVA2eajlXiPI6w3HcswDSM8Y2YVdVlbO3sBKvawNlzFUp/gpAtSpowcgb73auNgnE4jHh4OADOGIeDm5hpdJyrAq9dfIacIcoxn7+0ASKPnENyTTPuyQJb4qKpiTJJuhQxwhHMBm2GF3W5Tamnd3t9LHBw83HMH5zZwrlOqr+tuYTVWIj4lof2vvvoKDw97nE4jnCNpNHxmQ3sEettfalyV7dcqmSZU6svaarB6MYGEaTwgTid03mHoegQfFmYRNd8IFwBIVNMpJdw/TPC+Q+gGuBCAiUDeI4QefWZkCgABwYmZY5oi9qcDkFXABWC325XAWUttsvCV0+kkQctap8w8lqfT6YyGW/NLQcxZY91mPF36a6QC30jXXPZKYkbWSAnnFFk7j/EEZAI8A8EioIu+bXYcLYtrh6lt3rkC3GusuU6uoa9mARnnDKNd2seOVhutiK2tYFBLiuSctbT3/DCJUlBHo0oV6XFhNBeZSosoG1BmKldl45cvxRPbmA1uLq9ZqJPL8T3GiGchGjBa59kjZA5l7CbsbU5YUSsztFheI2WdjIu1TDWzoC8RiAEM8ZxF7Qchamcu9zQiNpWpaE029tb2M5dp5bMyk6rGee2oDTCmSVRNYWZc1M5qr1uqsJW2paJGNU/IBrwkZOeDqjRFi28fR/+sQrHIlvb9ddzMSTctVbOY3Y6b2zYqKzNrzTp3AY0qcNFWjGRqHWu1lqTpYCzZI5ZoPrflVvXyUu7lkwKZ2x9Lpjd7lbPf7d0YtWAEIK0HoaaO4ErMBiFlxqjdmVKq3jXzHq36XnIvjYlxIx2qVUxuvhxS1RSezHAzptXeUya7NsttO8BYQN54OiFZcnkzucMwYLe7UuLoQBZPd8EmZp6T9rPZ2Mr7XNLr34zwhGnM4+ger5Tx5vst7RnmWbIgxsPhMIP5EgcnCAdsLdsYEpBY31u6/zThGNSsqXJy5wK6Tjy5RA7Hg1YXzRHkOgydRGVnBg6HE46HI9abNbpeSqqDLL+1bqr63txMgWSQMBg5NdKdJKCSnFYg1aj+ruuw224RoxRnHMcTUorwPqDrBgyDVkjVhPn5+oh5YrvdQqrwTpgm6TUq9qBUVNY3A3p5N7MZGhdn5LP0L4smsH6r4Ij9/S2m0wnv3dzIVsvqRFPAMGMGrEKVSD38d9hud9hstnJdYc4aRtUKD5J+m33XgbW/iPPCsI7HI1JKMzoiIhwOB+0t4Wb09VjFl1loRZk4wjzNyujTVZbBJrzqxxKKA2QWG99vfv05kAguOwTvA9gZM5Ma8IejuKs5MzwBXfDYbTbY9B0CAdbJ0bLVS36bcSsyIK3Ih2v1hzcmZWSI1AABnjQJW6CwHb3mekn4wQr39/ewpgoSalJWqnhWjscjhsFyOL12JpeZanPxlna82WIY0TwqP/SkR49F2tiCmZE+8221zWVQ8TRNuLu7w0cffYSu63B3d6eqAAHEyBxBkOTwXBhhVR/snR1J49cUI+A1GqkwH/nbh07Kywjl4OHhIKW4kTGsO6zXA3a7NV7fvsTxcMR4OuJZYux2W/h1BwePzHH5RhemTBgwcjVWM2c4T3BaIocogdmVBPMuDJhSxjRF3N7eYxwnAA677bVEpFMPq2DU0qN4SqVYwXa700rG92JPOh1xOo3YbBxCII37ugC7CtQ0x0SqiIT1ffTJhc/p/6W4KYHTiNvXL5FOB3z4wQcAAzllSWuaCVETrGxh4Komv8Qn3/tH2F1dS0yd1vvPOTVMQe7iSHIo/eBhzhKm3JSlvy+My0JWrM6ZVZBtNaSzQglLO7iFJjFA2jV3PnlSAKEgeW4yhhy0WbGULMox42//9leYDgzKHQI5647dejCT6udc4GnwXlVMNcheUI10xOeflQWQTfUY9G411nmpnjmjaSenze6/lC/mvNQzl5iYmvJR1K6GObVIZ2ZQt0U5Y2TLt+TZfrRo7YL0bQpQkWtZ7ErZF5+xfO+ZJ6hhxOb9MqLr+75sLma+sDyGIOZv8jRTFnRXEBVnbSwjeYQrbaDig3R6ilEYi6ClZQCuqVs650X1mY9RUG19T6nv36pLJvglrARkVZFTiR+Tzk7CDME2/vO5NqO29x7H46kImCXyMHWZG7q1jVp0wTKfda7r75WVCVkaq8qI04icE4Z+W+aJZnmeDUhrHpWz1PULQUrfm/jRWZ0ZRIzkCKTPrnmbQA1rMpu0MbSlmefMjPSI2jk/rb1uARpm+4DLtdzSqmoO+/0R4z4DKSGAarzTmKRUyhRrSlLnPTbrlXRa0reXiqHaS1ORWXucJbAo3TXvMT+/feHGa9RGLbcc3nR5m4xhGJBzxt3dXfHCtBNrQbS///3vMY4j/uiPfjSbq6QpIUKc84mdv8mbVb83HkWgNq7uRnJf8oBd8mYuXeRmyH7+/Dk2m005R6SoA3VU1KPK1OjsXmKXEC+e08YnUgXEzaTurBcpU2lLSE5CL06nCcz3mKaErhukyka3wjhlxPs9vHPogocPHuwVYTAqgwQgRv5U7CPiFXelGokYgu0a6/+oAtgBwRM2G+mmrQkCOBz3GKcTgg9YbTZasbRBBwVZyY++77HdbtF1HVar1Uxwzjb02R6QeSNq79dkPzSPE5SiKA4JjhjjeAQl9Rj6AKedyKmhS/NgtqosA9ojwfp4KO4wG93i+UWQACgRuVT3jane9rMtqdXaFt+GsZWbP/G3MaxKno3WV6eymTsC2APsEeACck6IOeF4OuF4mjDGCPG4EfoQcL3dSechq5+Uomi8tEwltjpN9bMlKL70kq1ObZuZc0ZKUjWgjV+xDWoeFiLCer3G8XjEixcvcH19XQJAgVqffLPZ4Kc//Rm++OJz/OhHP9JJgujg1ikpM1zwsKqvZkAV3iO1lp46Gjm7WKDlOSx0oy3+xJaC83VezNMlD6zF2g3DgL7v8cEHH5T5sMh2Zg/nw4z4nHew2COrxCrf1fuG4BGnCHIOYWFnbOPPQB6ddGAVZpYZx8OIu7sTyDGudlvsdlukFPGwF5WNOOPZs2us1it0nSt2MJsxLsGyEZL5KzW5HHmwI4DSnJkxlw0Lks+7QLi+3oHZIcWMu/sH3N+/Rs6MEAI+7Dq4Tp0aRFqGCVLKSedgtVqpp1MQ3osXL3A6nTBNkzS0NefBrIw4QGRBvoAZqqQDU9IzMohCMaN4siyHCE8Jp8M9HCSkqAsejq1klcXOUYFmzKytwRxyJhzHiNCtELoBUjiiZXjzo4JIY6YAq6PEylwv84BtL3rvS5ynzdfSITAXxASccYT272ZUKiAEbXtlZmJvpNIfVBgZM0AcJDQDqg4l9QpaCAQp0XZdQC3+AqB0rKEG/pn01EFTJUuRIjpGXJzTKhEVtwuSrAGYQJUAMztTI0Fk43KD++vhvcfDwwNevnwFazMmj9V0pGKzqpcv1U358DF0VrMcZpJ3iUqbr1uHQ0VJj9z+icPGaZkPbVyQNKFpkEH7gJmecn4/k4i27ktVt7xLkdKi9jEnZaQTus7DOWlAfDpJ6aBpjAAnQdyzghQWUKs35lYtszky2lKCL7/zrAkYQVC+cw6ggOgYRA+IcUKMqQisYr64OLPCgLxzyBrH2M5ri6wbQDe/A7UCnnX4fE5HipDEpiZNf4mS9p/VlMNse83eswa52zMYlnuq9i1ZUFgzIRvrhVc1CAdT+Vs0dvGSBSB5U5hTAYU0+2RxzOM1i+Xh0hUFAQgjDwmsMRzAaYqYshRg9ACGTrxSnqiBt9ysQ92I1v+0tQfVx89h9dsobKL61uj+Vq1cfmYpFn3f43g8imNAY2Q+//xzfPXVV/jss89wfX2Nh4cH/I//8T/wgx98H5vNBtLzsWIqg7UXF+aJgdPZX3M1dbklWbKzRTDoh7Ih6jvaz/YzYyjtZyml4tk1yRhCwM3NjUpkcfXHeBI1zYn3ktTRcpFJAY0qBUVhNU5t2TuznQVRFx1CkPiyaUy4vz9gnEZwJnTdCl1wYHicTmKT6Xpf+l4Gf06+JqNa3i9jFYnd1u+vlVvKZIOIMQyiMkoKDuN42GMapzp3PmjbP3NfVSZBJLFNksLlMAw9UsoaFpTEDONqjT8Zh5SuqXNr+4OLkCe13xInEGfkHHEY79F1Ab03rQClzLUhUEeC8oQ5ikvucDxhHCdstjt4r3lJ3OzHCzy0BRcVoJzbZB8LEboctvLI8aZNb6fZrWzNtbwR2xem1hOw2W3QewdKA/5/7P35kmXHdR6Kf5l7PHNNXdXVc6Mb3WjMBAgRhGiTlxAdsv0zeWXJ8xP4PfwUfgHFvXaEHQqFbInSpSSKpEiCICYC6LF6ruqu8cx7zPz9kbly595nn+oBICiZyIjqrjpnD7lzZ65c61trfctNRI4cEpmUmCYJ4jRDLgQ8x0M7bKAVhvAcDi4ENNOZvlDR+fKCrUZulbUUeyBKu7utzWmNLMuKggpFIWBmvFrVEI1ms4nhcAgAJjfzxo0b+OCDD7C0tITV1VVIKfGjH/0Ii4v/P3Q6XVWCzSxq6M2zKJGlxk5J/sM8sbPfqItx0oZlRcgLqcriGfOKmQVadXRUJxb1yQb9CduhMfJ9H6urqzqQdIrhqI/JZALX8RAEofJUOwDTpIVkLjgO12MOIyQBZe7T/QtTtFiQRd+0l465CHyVLhRFGabTgWKACAOEYQftdgNxNMFoHGE0PsDiYhdB6MP3HfAwIMtMBxdTylSxgBiXSoAwQMoUDAVOKnKVGQBjViuMt9lsIAxDZFmOOJmifzBQJjd30OsuoNFowg1dHfCr2Fzt2ew4Dnq9rpl//X4f02mEKErAea7K9Dlq7khQvrKCLcxWSaTLVt1O5nAgS5S2msUY9HfRDH00Ag4udXA1015mFPmYeZ6Duyp2LGcSg+EYk2mMhYVlOK4PVUGMxmB2kjI9j+hjE/DNOKrCqbrZ0bwr5kT5px47e7Q001wI6rqg6wnzO+GTSokBFpd6EIkLngdwC+JdiSwXRkvjGjNxqWiJ6Yos3azaEaVhlM2Xkmo8R8ctdo8iGt5W5au7AH1vg5PK+xSVAn4HgwEePHiANE3RaDTQbDbN32UMyjYTZzv6KBVaaae2yWg/M125rFnSi9KHlPrzuDuePQ6ujRVyjmazqWIGhRqPLMv14oJexLPPxjmDEKr/5LUiDdnuj4lZsieofmwlzGhDYMiyBGmaaGwvhMM9+H6g31WO6TRCu92E4zqqoldpZpkdTvepNOSoCwZWk98K0dHIruJ0c+A4GXJBfRLG81s4OMhuNMqQNluLNB9BDBTMSuNx7C1cmvlA2myxoAvzuew8UBtcEkdwXMUdaL6rCiMDihsPiM6PVGOstG9m2b6yWJeVV1b6vTLPD5t/dZus/fdMaNPsFSo9qPlaTyjSdyQpPfraQeBDcg+OCOAKKO9HFCfIBJXk4vAcB76rcuogCTch6Wjf7MnbjOQ2i0Bq87KMZxTKMO36XGNpZeyMsvmlVO7pwWCAKIoAKA1tZWUFQRCYuDRqVF1cUnxbaZALL+fTPG7hFq+8NEs46wMMVvE4Krst7IMgmK1EpRvnHL5mCqV0Hoc7VmKwqulA2IiKS1NpPWmaaq1C6msxExFvKIRQzA3zzGaBKhPV4S6kCzBkkIKp9JlxhCTJADC02124rg8pgThKACnURupyuJxwHGawU6DKmcXMHCq8i6j0CYDe4QF1/VaroTIFmMJN43iKXCicynU9ZapZVogxraV6m8qLrgQ+BXVTxgFYDsYVXFMKQbA85wqb0WOroRwhMkzGI/iehzAM6CyU5iMI0GfFemcM01gVHWp1OyonsyKqaNMsf2LNKSPEZwWavdHWaV3zvJn0ff2cLs8be50z688SJm//xoBONwDPXXDhws3BMI5ijMZj5cVkKhyjEXhoBj58zwF0LUzoXY87KiFdyHnAaVneHr409VLQFYBU+kuONNU7pRbJjPi/hOLeErlEqvEuGmzf95GmKYQQGI/HuHbtGgaDARhj+NGPfoTf+73fQ7fbxe7ubkkzM4KN84Lz0lIIFF6iBOijxEzlNZvYoLJ41ACyCTJUOZ/0vutefHWS2NWc2u22Llwye44CrZvwPA+dtspdnE6nmEym+pFVvmoYhvB9H41GA3kukOo4J1XmTGqvIQMVwrDNXEGxh3qakWfPVFD3VF5g6qh3OpnEmE4jqCrdDo4cWYOUGdI0xng6wWico9lQ+ZZwpMahCvpqzqnIiDCbm8YHlEaoC90q7Mz2wmUquJQx+L6LxaUeyRaMx1MMR1OkaYZedxGNRgO+D7gut16qEjaAMn9brZY2WzOMx2pMFU15BsdRdVMdXlA+Azo3WWuZSuNQa8jVieR5lmB39yHOnVpFr9OmDFqomEVSKARyMIBxK5uGYzAYI84YTp1dBec+pNQxpLUmH2BCWVBo29DXrWt1QquK4R7WbOywdL+SRUSLRWO6RJDAdIBtgXGAQWLtaBsec+EIBldIIMsF4iRFLqWKQuYcro4DcjlXGIJ+maSZ0XKrEeS20ahl0eOpcmQikNaldkHbFCTJrCrByNzOPyxKxJNmdnBwgDhWQY937941mf5EKlfc1+oD3UXv8qQx1j2b0X2tb+kYabtvq9q0pI2hcinYZlxZ07F/r5revlX9xm6FR0pBBorCXZW0pwBiGmsaPyX8hDEjSRtSVcwts4uR5SetAGf1oIUWq01epoqQSKn40rIsRy5SFT7hhWg2WojiCZJEAdi5iFUKnQgVUSHXmrOxCohttnj3xpQDdClAwnOsUAYVpAAGFRfXCD2tTUmMRmMkSYxoGqPVbCPPPUjpokgKL0xv2+SksI0kycB5BKLtYSw3JQmr5mXxrvVc0UIYDJAyRzSdwHNdBL5v6ylls442FJo7kiFOMmS5g0ajZQSdUTf0uBVvptBmi2k5O/fmbax187MudKjcHtfcpOvUfG8mm/q/2fIROI5KNI+TBFmem8tw7hgGSqYXnWK1VDzoNnb1eK16LJv5TFrXLaiuH3FVAjIAA0Sq/ttgdEHUuLa6hp2dXUwmU7Q7HTiuawboyVhFn7Lp9yG1Jk+LD9BCB4+h9c3BMygX8xFnA1DkjSpftV2KEQIU5vLgwQMD/IdhiDiOoTSx8sZh8BDYCSm0INXDSqvPBY7mwnEAMKVhSalyNxXTq2Kw9ZgDx/GQZRIiTeC5Kn+w8F6qe5GQssfS3Kx+AEGlZ9QxJKgkfM9FIwy0piqRZQmmkdBEl76u5O2CMXvZSesduMYsTNMEUqpxUwHezAh027gzG4PUMV66krmUuXEOlA6krpuBZ8qikUAqtAeWO1BxWTpGkpFmpoUxihXISq5NEo6znu15zoDq3/Pkgj0H7PsVP/XCr3ivVHmLzRxAGywk4PYHQ2SmiK0qCBwEAZqBBy4VWZvrcoisLHBoYGu6UNux0sMZcFb7RzV/fJYJ48FU2VT65bPCXVzy9OlbEXhL4RkULEqmZ6/Xw5nTZ3H58hXs7Oxg/egxhKHKK6PzSCtUsIYW4tqzJ6QEm0M69yjlmrANe3TUNfUzPvIKc8bQumar1ZopzlrtJU0k3w+MoKJUlcFgAACYTqf46KOPkOc5VlZW8OqrrwIQJi5vMpkYYL+kLXJeeh+FuCnuLaXQyelcA+geJDJIKbC320cuYnCHIQiaaDR9SJEjjhLE0RhhIBAGEr4XGo1LaYo6TFJDECAKHUaamF5kehlwTaigzlHZBYBK7m42A4Shj1wAURRjOh0jywU4d9Dt9BCGDfgBLxgsmASoMpIEGo0Anuei3VYm+nh8gCieYjqJwJnabHxPeTvVfIaxOqTUcWUyA5ABIoPDVXwbtKlOlc0dl5tC2K7j6NjQHJMohYQL7gTgboBMcgAOOHNRRAqS0CneD2046pkIyilH9Jfx5SL/spoVMi/RfGY+Kgmu767KBQL2ZmxbcuXNS4LCgpQMMMQgDOBRkiDT9Lu2qeG5qnowk8K4bOsl8FMsRmb+0V0uPHuCgnYfS/krQhPsAbbVYNLMVtfWsL29javXrqHd6ahUD1ZoZiXtrOaRHlcbfeRokHlYWfKPvO4hmATxSj3itgBYSTMjzIeeLU1TbG1tYXNzE/1+31zXcYqcPLsvdVp66S/9nkkTVYJQaV2KfcLRmpkKb8i1ZtYIm3AcxS8WTRNFmphllTEgbaMsuOonjl48xjlQXSwSvudo/vomGJNIswRRNMF0OlZeT0HaEqzNSZKtrStYqfNbrRY831M8XHmOLEs1XRL1XC3MAjuSuoAu5T1rVpCZ/sJoZhJQKThMJZFkuaY44q4S8mSgalWybvbYUIA9piYE4hCzsS66YJ7VxqzxKn3PUFkH1XWvnpSZ763/6VArN9cVJs5K7Vyu48BzXQX4yuJlm05VzIaZ+9dNplpSfDK5CtymSEJG7fGzXpHZRUUvwdHkjFEUYTQa4+GDh3A9D0eOHMHa2hoePnyIPM/guS6WlhbL3E81z1A2cez721OCTC8GAvRLV5SAPaJGyTa7dDkodp4AJQFezZWjc+xKOYTX2JZKgUkUeauUe3jkyBFsbGxgPB6DMYbRaKw0Ah3LVx2TAq9SD1LgO6Ql6snGKZtAP7ek2D5NDColGFNpR1GUaAeQIkZkjCNNM6Pl2hQ6ykAvJjjt+Mz6d/a9FqNvv0Gmy5+5rosg8PWzqX6naYLJRBghXNTZtDQd6517rocgDNDMmKkgL4SAyASIWLB4D2rAkjhGEkcIw0BrZXpuV1NI9CahiE7V+EdRDNfz4XiB5vbTJrgWTjUzuhCSZtzqN+06bd+eb48D/s/2v/qZBG185XvD2jwsQaZf3HSaIpEZkAm4WZpp0J/B4y6aQQPNMITnULGLXFE50uTjKgiwwEzmezTn9p1bnjAhSjzkNuhvNDjzZzEpSFW3QzOAYoEGQYBz585hOp3izp07uHF9A61mE8ePH8dXvvIVvPvuuxBC4PlLl9DtdhAEgRk8CqBVebcM5XdV1qjmWfxmC7BNTCk1M4nCOciSFvo4/hiTgsaMahZSJRx7DKhGIcVEKYFRBJ5St2iclpeXjVB79dVX8c477xhzcnNzSwe7hrhw4QLSNNUeO2Ue0DuwNwMSsHkutPDhRksx46bPcRwXQRAqLyGTiKMMURQDTFHiLC+vYtA/wGQ8RbvVgecpTVEKpnm69AZrSsZJwHjJAGKC0AY+qJJWASPp4zgHmTzNZgjP91RV8DTT3kqF63U6XQRBiEajYby2Su4Umz7nDI1WE34YoN1SDpc4ijEajpDmiXbGBCpoGYQ55hgM9jEeHGBleRGe65LUh9HjtSZGnc9yAck4hGTY3x+i0ewgaCwginN4AQeYosym84tlpc1XypqATisz3uE5GTCguVO858M4/+3jZ4Whvbna5iSMrFGCmN6vUYtVfyWDlBzbD4cQaYY8zuAqgaWLlHCuvCiuB44YUgOkUuTmzqSN0bBQV57U2DR7o7S1MkvNq1fmSruBGpBZ9ZY0lsWlJYS6EO6dO3fw/AvP48SJEzh58iT+5E/+BP1+H2tra6VUqbpWl3P5OM8GxkpDRdqKoAlqmWH27R+lldmaWRAEM8KcWEINO7BDK7fc6HvP8yCEMFkU4/HYBOD2+31deSfTBYIZkiQ12JWK+ctB0KC9Y2u921QTomK69shy5oA5SgAUlDMxHJcjDH20Wl0MB0NVEVsIME58/jTr7B/7Ddif2RpZwSdW6otOUmdQ1btcPSbRNEaaThDHEUajETzP1yZ3ADCb4LFYBYwDvqOKEvOGp7jehDTPBwCepzZto1cyiSiaIIomWGg1TeYFvXMypwoaqiIBXEpFhdNZWEQYNpHlAq4O57AqKJSaHQavmCcKk89mEXkUBmbP1SdzDj5CYtivpyJgCtkBjEYR0mmCLErgcuiqS2AIPB8O5VswivC2TDjqfM29Z1Th4otCeSTAE8WDV6P866QYyenay1sDafi71AfI8xyh1jxOnz6NpaUlOI6DW7duGdOq2+0qlV9rdHluk+nJmjG3pC2xNKBssNRIYNDSpmevHFC7IVSFWvU8G4y3Y+aIWI+Enuu6muFBmTYlzdoShMRU62gOOClVVXQKdbl79x4ajdB8R+dLbSLS5lLndRUac6IhlCi/a5OjyDi4rnothSIblCjqehZjbLOU1i8MZsbeXhXVg+gdSmsBFbmZDudak1JBrCR0oyiC5wqT0M0dXlonxtEgoemOXDQaoUl3AnRlMai15oAqHKUIgobJuqk2KYUu+lFoKow7CMMGgjCE7wegyuxCqLzrXIek2LKdQUKlO9G4FMHRisZpVkA9ypwsebmrWGoBGFoforyL11+VdsmZ0wGGOM6QTFMk0wSu5zjgULUEF9odBNxTFBtM7exSSGRZqsvNcXAwCFPNQ/9XEmTlBV3gQUUHyLRU5lJuEnbLnS8/EgkBEqg0QFIK48mbTqfwXQ+MAXkuEEcRlpaW8PLLL+OF519EmuXoD/r4kz/5E5w5cwbHjx/HuXPn4AcBHO6Ae6wU5kG4DphiFOG88AvZC+PRhrZ6LMX2qTy3uSXfC8hC1goD+2/bo0tCx/4+z3OMx2NMp1Mj6HxfAf7dbgeANKwK9rWAIjTDNl+PHj2KBw8eYHNzE9///l/itde+gpdeehFxnEBKCteYaM2aktELc0uZoQrvchy3wG+YvcMyuNwDuAPBGQJfaUV5JjAeRoBgCIJAhzaoLYE7fnEBBpg4j/LA6RsRE0R1QVI4A/2uGTHyVIU4cAbPU5kCQeCj2Wwgy3IkSYTJZIQgaCAMQgRhCI/ZZm+h+TAweJ6LVqtpiu8kSYIojjAdT+FyBtcBHC/HeDzEdDzC0sV1eJox2dHkqTSHcpkjF1BZn64HCQfc4TiyehSNzipcvw04TeSSIc1zxGkOyZUwE4buqqBT4noTYlyA67qkzLzXYv7VCTKbGkh5Fqs1FgrLy/oEZYXF/rF1SL3BqZmEgu1YX0ubmf39Kcb9KSbDCK6jo6UdxtAKG+qyQujIa0DoyHyq21doZ/PiosrCjIIUqw9ox5TNc+nOXlrv55UBI9s9SRI9oZVNlyYp2u022q02FhaWcH9zE+PLY7zzzjt46aWXcPbsWRw9elS9EM7gMMsTWlroZaaD2ZfyiG5b/wt6fvOt5Ta3dsPDdkH6nvJRq95FivIH1IQLwwZc19PCDHpCzHo/syzDYDAwlamllOj1ejg4OMBkMsGHH36IM2dOIwhC1W9ZaHOAKiJC/QCKTZcCST3PNelQZlxow+YOODg4E3AcV2kpeYo4SpSw05uUdUL5AkYTou8Ljc0cVjuk9EWxkAwVPBQ+xxwOz1fVnQaDgTY5xyAONs9XmqpdE9a+FQVzB0GANMkwGo8QJ4nSnh0NxLsScTRFHEdqI0liQBRrR1pjKaUKGne5SsLn3EGnu4Cw1QFzmkiFjyzRTLGZwiIFVDiQSrtigFSOF8dAEYBkukhJJdHcdjLZc1ANc9nknOf5nB1v+88Zdc38GG+u9T6LQxkm4wTDQYRRP1LVmRzO4ToumDY5GSz1UtbcS92mLM4Yyn+TylqpWCO1iVHCyQ5thbds3vK2B9ZOPpcMBqdSnjnF576+vo5ut2tA/729Pbiug067deh9AEsLNRH+844uG8akgZm8uuIw6PC2WqysTisDYPJQq5OHzEsAlgkKYxrR8XYoB5mRk8kE+/v7aDab8H0fu7u7GAyGyPMcrVZLa9RCa38TQwBJ+JraVMxVS8KFtCr7uauDo3ut49qUcyDPtYfQBM3apqm+vJ7/pZGQ9K5sLaDGgij1o7zQmH6/jFRJpgoPO9pspzHMshSQSlNS9NKOuRzpZyS+GVO5sZ7nIQgCVceACWRZCsYZqizJYGYIrUewcUmmhC0P4HgeGPcghQdXAoI5EIwDXGllEgJZLgGhtBquHUOcMZVlwUStQKJ7zdKG14dnPH4rv8+676VkJcoxo1CYueBASgdScLgMQOj5aIYNuJqSmBAelZcHuI4DpmlYhMZHJO1kBMSXVERg3lbIUKminJdpdso2eiUyX+MI9s7PjJdMLdAkTeHpyZZpjSDTHqnLVy7j+vXr+O53v4sLFy5gcXERQgj87Gc/Q7PZwIsvPI9Wq6VSb/Jip2GcgYODsdx6xkdrZmY0zK6qNVKjmennmavlWteyNNk8z9HtdpVHzdo1icmB6JLIOQAAk8kYSRLpsIPAsGyoJOkc+/v7uHfvHn7xi1/g1KlTCMMQP/nJTyCERKfTwZkzz0CKv0ESpxiPpti4cRO3b99GmqZ444030G63AFciy3TtREYpSIod1AXXRWDpVVqak4QikJQMjCtTzPc8NMImomgHjit1uFAZHzQ5hLKABgpcSBp1hoFZaQr2PLVHvchTVIGxxgjWmoF632Gogo4D3wfAkWU5hsMh8kyg2Wyj0Wyi0WjOvk/ruYMwwILD0QiaSOMpkmiE/l4fvuchaLcgcqE4BGl2aNWStBTlHXaRZwKOx1TVqdYyHKcNxkIIGSKQjsLLpNB7hRJEuZSA0DxnQu2kquJRpouFqPlZJnpACRqyLQHbhKyWpyzec81AzJiY1cOY+RF5cZjCex3lOGIeOAsBkSHPciXMPNdDww/gMFbygRBm5HBOmRbKNtaVaYpo6urEmN/IHidhRqwD6vGYEYpKYzczE/bOWvXe2QGzWZYZ1ZkJCaGr9AghcO/uPdy/fx//6T/9JywtLcF1XcRxjMuXL6PX6+LM6VNot9vmTkaYoUZ9NsBxvUCrGw2JQjOtGqzmso/wZJJAU4nQful4KaXJOyU8DVCTLIoiDIcxgiBAq9UqcZ9R/YTt7W1cu3YNr732Ghhj+OlPf4owbODZZy/g6NGjkFJVyYqiGFtbD/Dpp5eRpileeeVVne5DWoRNOCm1p5zeE5sRZMX/DIw5yDKBwHcRhk0Mh5oemznF+zDvoiLM6taNUnlrx3N289XCy2yihdBjUBoChbsEfoAsyzEajTGZqILBYGqDaDQamIejcs7hcx9B4KMRApMRg8ymmE4n2tHQMOvOxHFK62p6AwfnyNMcjq6UFXa6gAwB+ACaANNB4RyFMIOuJi6UIBO54n4TIkOaxcjz1DiQKEzK5hOkz22cjCwB2hRt7Y2OKeZzdT0fpgwoQWZ4AI3uUGCfjDtg8AHpQ+YpXJdzE2c2cz/7bwAlz0/NobUd0pOAUWW3mYeru1Fdq7sLM9/QHlxVdxlnJi3J9Vz4vqrURNRAe3t7GiT3TVoTYAlSVrmH2ZUsc8Q2BXWpvLo+KszP2FNmjdW9VltgH+bFtJudalINaqyeQ6whdHyapphOpxiPx+Z+0+kU3e4CAGA4HCqzUuTgDkej0UCn28F0MsXe/h66vQ6CwNP3UoKNGeFGE7M8b9Tv5VQb9ZtQE8YwJvBiAlsnV60BaY1pdbqY+VHtQVV9ZsWHWieZOZtMXOWEAVwXyHOAQVWoSuIUknNF8Og45uzqVGdMOUkc10EQ+BCBD5cJixev6uGH0l6Znkfa6aCqUSmuNvXDUADcxbxVbNBMn6f7I5VFRCwktpJgY9v0GQkzM2oVpYIgh6oDofi98k5Y8f6Ld6Mdbbr6li1zzEvTNRPChoN224dIcridRoiG78FzuZ5Aanpx6RjMTJaoo4jyxRpjM/hls5AZkJkp97DGXLJMIBd6v2MUqUydVMerSxeJwNZjmBdVPGOx6HMpkeU5kizT3igPDueIkwgrK8sYj0f45JOPceLECYzHY/z0pz9Fu93C+vo6er2eic9yuGMuLaTirnedIq5IispqMf0r0i9KFo+EZpZVk5NDY4FSGj7TAjCf9WpWBZqdwkSTLE1TRFFkAGfzHrSwJg+olBL7+/smxuzIkSM4ODjAvXv3cOPGDQ3oA1tbW3j99a8CkHj33V/g7r07mE7HaDQCnD9/Fq12Aw8fPsSPf/RDtNsNrK6ugnOuQhB0DmMcqwDeXAhIyY3wUlkFLhiHzrjLQMHKQsYA88HdHNxJ4Dierv6k8R0GADqPEVAluM3c0S+t1mKopj4J63OK61KxceY6pgq6+l0tBh1k7kk0mhyO4yFOgTxLMZ4MMRwk8No+gjBAt+nCoVxkiSJtlAHgOfyQgbEA6+tHEDVTsHSoqknqR8ryHIpFlwG58usJJsGQw3F8cDcEd1oAa0FpZS4kcyyhTM4M1RytXNAQca4cKW7uQ0hPm5xlE9O2CKrz0s42yfMcDU1Xb889x/EKbZccN1KCWauFoBZGMohlAEshNY4n9YaoGJlySCSQnOHE6Rby1SayaQ63Ffq6yrR+ySYdhBtNgmx2GhFpJLj5wJpA9r7LzddCqpJumcgUCGkmXb25hcM+ndlYC+1HSoFM5HDyDB73FLuo6yCKYyws9DAaLWFj4wY4Z9jd3cVf//UP8K//9b/GkSMraHc6KulaL3rDFAoVte86jjUtCD+rxtZUdlIUipqkakwo5pqUsDAamOscBqQyxgzeZd87yzIkSYJms1kSZhQca2trRC/ueR5WV1cxGAzw8OFD3L9/3wR27u3tYXX1CHZ3d3H58qd4+PAB4niKIPBw4uRxLC0votVq4P/9f/8f/M7X3sDy8pLChILQQAd5ziBEAikS9dSae0zt4prwEVIJelAaVwKJDNwR4DzV/dc02SCaAo17GAlBo8qs32dGrvJ5an3OYRLVYWFwRgBqTE0CTIcpgQMh5/B9F34u0T9IEY1iDA8iNBGiyQRajQ4cVr0vaZE5XJ/D83w0nEXE7hT5lIGLGAw6WySXem1qLVttg1AUQ45KLHcaAGsA8CCp9mVFmBnBDGvJOfTsDmA7hCoxo/NizaoQT1Vro6bmIjnyaDMpTGdbv1biTRV2BssBngNwQdkZnLR1KM19df0IAnhwcg5XeTOoc/ZCJHWvrHaW34ksyRp2yEQqzD+Ujpl5djYbLDgDV1WFhbWgZeleehfR34dhiGazabya0+kU7XYbYRgiz3Ps7OwgjmO0mk34nmeqfltPW+3ZzCeVp9PnycLEpjGbeci5lzKNJk6dF5N2zhmQHIXJWq1zSP8T5U+j0cDS0pKpQ0oUQFEUIUkStNstIwiltCPalSDNsswEHts7OaUtUf/LeKjppelbIQgLfIZgkDKOam8ANfOkZkzrszmKeTtbfEu/rKqpb/3CdL9oL2dMxxPmKnhZMc6q0JOyT0tpJyRgzHuz7mWe1+z/WhhIADrImFVYd2vdSTMflZ+/uE19WFCdaWn/Potn1p9btbSqvbHXjfmiomUXQfhSVc9iHB7jcFWuG1MBc6Rey8LeBSt3tKo1lP6u7EAzampOZex+fU0KCcGEWaA0yTjnOHbsmOHF//TTTyGlxHe+8x2cOHECOzs7+MlPfoJjx47h4sWLuHjhAqbTqXkR5DWk/teZgNWQC4YiydeAo2ZB2xhBcR0b4zKX0oJoOp2arIXqpKHYMqLQpu+FdT9bmFHNR9d1MZlMsLi4iEuXLuGP/uiPcPr0aUynU1y8eBGXL1/G3t4exuMxvva1r0EIgR/96Ec4ODjA8vIy0jRFp9MxeBvFpSVJgjiOsbx8RFFKNRsYjycGMCZ8sghSZhAi16ZKCwzAaDQy2QtU0BaE+TAyUeinPuD48Favvc3NNykJTHrnWiRJzQWo07BEniGaTLCb7CB0QvhegFbYhO8QbZEo/4gMsKuR6Zu5nookELoAjuc5kBBaaxOA44B5vqr0xW29h56Elx+ANtgaTetpmq1I2MwztrwgK4EcQLYlpY8u/i8C6gCZW4K5WGOkdAkp4bocHlPmp+u5tJMX0m6eSlltdeZQFbQmQUa4yeMkpn6WRn0ibynhRJxzrK2tYWFhAXfu3MH169fRbrfxH//jfwTnHLdu3cKf/dmf4Xd+53ewvLSE5y9dKuU3Kmwh16EpsztQVRW3NVpY/aGapAbYrblOnTBzHMcw5bbb7Zn7k/AIgmBG0NZpZq6uA+m6LqbTKXq9HsIwxLlz53DixAns7+/j3LlzeP/999Hv9xFFEb71rW9hMBjgnXfewZ07d3DhwgX0ej20Wi1EUYTxeIyFhQUMBgOMRiNMJhMsLCzC99totZpIktS471UMWZkckkzlbrerWCrGY7SbjhZmVpAvaSf2wnhiQTavFcJx7tckLqjv2nxSsXEq9GKSJYgmKaIsRsNrodlowXcCeKF2CEjLXJKiEGSiEJJMCzORAdDMMg7zkENqbCsHHA7mufp6sqbr1Q9s66hGo63TZskqqxsOS8GpCjO6IL07u4aDNXDWZ9qclwwq6Z3DBGGa4wtCASlU1XqXA24OuGqjKxgbCfc55HXObfMWuDEvy5bBr6XZILrpBwrthuKvms0mGo0GXNc1njoCztMsMxQ4j7NA7HvVHv8IDMx08hH3oP5UuctsgNZ2CjwKd7M3HqL4sc9vNpsIwxBJksB1XXQ6HYzHY82+6hltlTyjNH7T6dQ4EcgpQWaU2hiKUn4Fzlg0U2hXFkGcTGdnwPT58PGqNyOrn8+MSoGTztm8S/PLtobIOIFtyaCAPfSGnmWZcviY1DgNPQhhBJLRn2zUpmz0QEqoojNJCp6kYCwFpKNraTCAq75ySI0zMS24ynOHNltp3YyV7vNZNbg6TMXc3TrM3thZzY/VH6aON7i9joF1VfUbAjZ1UKwBvvW/ErULo7RgakxMu4KSyEWhmRFI8Dk3xlAyX0gjlFKCUxI5gJMnT+L3fu/3AKiQg+9///sYDAZ48803cf78eYxHI/z4xz/GN77xDetZhCmUUYdJVMdHWuNGjAnV+BtbMZPqIjPXJJCVIu0phMRuxBhLmhvFlxXUPMX16IeEFj0b8dkDwMHBAdI0xdmzZxEEgSnfd+HCBcRxjIcPH+LNN99Et9vFaDTC9evX8c//+T/H6uoqWq0Wrl27Bs/zcO7cOWxtPcDGxgayLMObb34dAJBlrioUAgqgLijZyb2fJIr9g3FHJ3M7xkNaGfmSkHmyVl08ZW2vfByz7qMjBXV1JSmhC/FAm5uA73lwHAbBAIdx5CLHcDzAKJbwA1V/oNFgUBRbKdI4gsgy7cDXBW4YkGYpOPfAHQZIYlpVucI7O3voRx78ZoygcQTSaQBcUWZzzUTiOlxTjlPakmexqahwDDJIZ4blc2hl6GR2VGVpvLW3mDFAOmBM05RTXVYzR6BDfxwIAWQSyBPAdRkgdHQw8SqpVl4wj1LjWeVYddMiiZz+l1qv/fxFmeqFAqDLrBFSSjiua4TZsWPHsL6+jtFohLt37+IHP/gBjh49ij/6oz/C8vIyPv30U3zwwQf41re+BQCausbCAbRJUDWpy9qO+mc2/9QCSu33WNHu7I1CSpVuRALHjocDYFHnFIwXJATpdxIUtjCjz5QHUmFtQgjs7OzA8zycPn0ax48fNyby0tIS7t69C9/38cYbbyBJEty4cQMbGxtoNBpYWVmB7/umrN9rr72Gjz76GLdu3cLBwQG+8Y1/AsdxlJBihWAl2Iz+9jwPjCvGDM58JcyI/MuYedSUycXYrFPkcK2gmDOzv1ftkqpmZyNTqolc46naPAxcDwIOci4BwZHnGYbjGGmWoNn0wRZaaAQBwFTkfRpHEDkRUHLNXCGQ5hkCSheT3OBpeS6xu7cPDATcYIrOIiDcBsBcgDlwPUV373kuPMc1WrPnBWYOmY2OfTb5Nc8KmIGhauWHpX1JCk5UnmMGxyS/25u9yk91NBEGkGeAiAEXKNTdRz3QPO1s3rEGUni0TfBrabbXzv6bFjzlIwIo7VZZlhm+e7sZaPhx1ojdD9hOkrkHHTpOJICqxVdsgf2krc6hQ9cEYO5na4ae55mYNdJ+7cUhpTTkjcoUZUjT1IwnCV4pC6pzxXGflzYDgn9mx+sxTcaSPJp3HN2rRiuR1gqvPb0MY5C1XJiITDPM2Jigrv1gMmAySKRAnqrQFPMe1L1lpf9MQUn6WkCaZnBYbs6VQkJq81UKpcEIISBYgVM7To48LzzenFPOj3WPmSzCemE1D5udN1bGIHvke6Gj65u17SPLBESSIZsKuJAZQKalpFSmeryg7iH0B6XjKImcAG+RP2kC6tM3KSgVipuFbms6lJbhOA5GoxHef/99/O7v/i48z8P169fhOA4G/b4JPyg5ACrrSJYfvfQdjbiQxO9O41ajCRhLvYIN6EbMsp1Ox4RN2Foh5WPaWQx1gtxutkudgHcSLpS7ORqNzBhmWQbXdbG8vIxz587ho48+wmg0wnA4xLe//W0sLS0hz3ODPwJAp9PBqVOnce/efdy+fRuMMTx48ABbW1uYTsc4duwYut0u2u02xuMRGMtNipmUEj5V5masII+1hYx5Fo6ZPN7HajVgFIHQJc2Lxor6UHwndXpQrjUzYmxlQiV2Axq74gDjDI1GAM4lppMR8iQBFzEcESMUqcbN1B1zqcEMh6msC6nyg6GuCCGB8WiC5bU19HqLCJotCCdUAbPg4I4ygxnU+Wo9qoB1xqJSjGLJ68kAsAKfPewHQGl92IpC8W6s4s3FAFrjPe93NcyqVq0ON2HKYwzBwOAAwsGDrSEme1MMtkdwIVLrtXJwKebqaHMF2owwk8asVLjZY2gmn0eTSnhIoSa4GsSyOUjsERRv9stf/hL/+T//Z+zt7eGv//qvceTIEfQHAxNUWoDWvNDKrPsp3ItVu2GakAK5HY6iDzWqc6WRdmMLIRI2zWbTCDPb3W0HwFIdR1uY1b03e0KSsKL7U4L6eDw232VZhjAMDcX2H//xH2M4HCIMQ7z99ttYXl5Gnuc4ODgwIS3dbhenT5/GBx98YDSzBw8e4JNPPsHBwR5830er1UK73cZ0OjGhInEcQwiJwA/BuRpkISUcXdlcgRRFlL7yxFcFUN3bqLY6fAylz5j9L5m4lfUoJeU5Kjp0DqGDoyUgBRh3FVG1o4RZlk4xGY8wiPfA8yk8meLoQsuqAEb8/hLMYcjyTEepca2tqcryo9EY6ycDLCwsAEET0gkh4ahbs1xpgiKDyIlnDhAiLuVbmiEygLqEZIX3m7EiQLsquGynD5GiEmZrQy9GA58Z6+qGUX5/psARmOoTAO44kFIJMyldbG0O8PDODjY3HsKFATULvbYqOx+3FQvH9mJWFtOvVZrZQ8NMP6hv1X7aXPpEB5TnORhgiPR83589136Kkpyq02grB83tcc03FYF0mJlZALpWf54AFbfHibCz6g/F7pFAJQ2x0+lASokoijCZTExfqpM/y1RF9TiODMZnUxYBZV55dZ4dylOHbxU2/8zjlv6ujLO0D6hiZfp/WRJlJUWaQpmktH7si5fmPIyzjnHaWFVJOp4lYEgB2Zztcul6gCn6YdYVTECy5A4k44qFVhSDUV3LNn5rYvwqwkxAlNhY7DlYBvSL3tK1qjmZZcys+gLs7x53EyqPUJbmiOMU02lcoPx6iGtggmI45rr79QInAVGOAJ/Tp19TI7wCgIn9lVA5goTt+L5vzKZz587hwYMH4Jzj9ddfB2MMx48fx+LiIn7xi1/gxIkTJio+FwKlgOLSXS2XutVmMCmJAkPTm4j5tabZpp/NYWYLZKILJ0zKnoC2VmprZfakI3Oamk2pJKU097VDMH7nd34HaZoaSqEPPvjAMG+sra1plg3g7t07kFLg6NGj2NjYwMGBygl97rnnsL+/jzRNdd9h3g1pca7rgjsZHMc1eZw0fjRfP/veWH8BNiMGzGjpH8VLI4Uy3VSZjIJpViPWqsqSDn1yXI48T8GYhO+7GO5NwLMJOMvA0dWZOPrdMhi2C86h1phUBbmTJMF4GqHd6cL1fJCGKcxcK2vkxXxACYYoHEkMTAszZc6V50o1q8S+Ns0/KqLT6XQMSzEdS7GFhfCzBBkToGR3laLEis+ZNpUZoDy8alCEYBCMQXIiCJUQMicHgAVs61dpNByD2hWdm/1fDYJN7WOosCmrFYWm8GuTb6ysHRkZInUpLteF6ypSPBJmFy5cwL1793Ds2DF8/etfxzvvvIOTp05heWkJ/+t//S+88cYbCMNQFRfWwozofAvMQULO5sHoPigzm44V9t+VgbB3OhvjY4whDEMjVACUKFrI00kUSCTYyHS0r02TkvIvAZQmq+1MIA2NtKwkSYwp+I1vfMM4S+7fv493330XN2/eRL/fx7e//W0cP34cgMTNmxsQQuDYsWO4evUqdnd34TgcL7zwAv7qr/4Kd+7cQa/Xw9GjawhDVcuTtDtFElAwtYJBeZKFLCxEA8eU8a36Vp15h+Fs88xPK39TKjwqywTyHKpiFNXD1NCC6zjI9aUc7iBLYzhcIAxcJNEYLB2DOzkcqPq0Ero6ua74lEuldUOD+S4Y4iTFeDxFp7sAzwvUCtYamdAC3qTNgVLBNJDE65+ZGTYJWTssVQyXPrM3VPKmA8X8tYUZJ/SfWXm1NKxWRS3oRHrGFBeegkM1IYUEpOCFIJPK65sLzWdmFNKSimBL5+KB6kwX0kls9VfaksSeGL9eK1PdoqRBlt26QMF7xjlHq9XCzs4OAKDb7ZocxW63i+l0WgoANU868wzFqpKS8DD7+evB+EKgPdrUrMvHnIeHPe7fdd/VeaVod7bv1+l0jEfYcRxjYk4mEyP8Mx18DACNRgNxHGvnixp3KamIR2bGiLTBkilDu7I1UhI6wJWmLdlypYcyI2WPWvXJK98VG1R1spbMSHrDEsbphMrRdaNtkrA4Q55ncERuKDKqMIWkf4tFCoBp4ZGbGp6lq0uK56Jr6rM0+F6eA/oZZfF9VZhVIZbq77ZAs4txF8fNjkD937SG9A+z37SxDQtzniAAyyHhksRjjG5cGrlDWqGI2w9UpsK2hRh7vMt+libNFKv0VN0/01WxCcdpNps4deoUOOfodrvwfR9nzpxBt9NBp9vFiy++iOFwiA8//BDf+c53IGVRM5Qe8bBHygSlcNX0qaRyFwK3ahYSTtVut0ufM8YQx7HJX7Txsjr2gqrJScLJ/t7um+2tIkFsOx0oFzPLMrRaLbzyyis4evQotre3cezYMSRJgvfffx9Xr17FiRMn8Mwzz+Dhw2094RUN9wsvvIAoinD06FGDlZHWSPPJ86jakI49IpZjBhSrzs75m7cxfE72gCxMJNII8pzMzIoVop8BTtE3xfwhIEWKybCPhaaLbrsJJiWotKPDHaSUl0jKCoPh5p9OYwyGIxxZPYMgbIBx1zjaYMgiins+Ejs9bNjokMq8tOcE/U4wRBkDZQXHmdQcddYYWgMLw19mBJomiQUrLB9JlbrUPGi3G1hY7GB6ZAEuccsqQzPXIurRbm6jzTHoBHIbK9MCTRZHfhEamdqZ9O2qL5Cpeo95LtBsNo1Wdv78eUNDHQQBLl68aF7QG2+8gT/7sz/Dr371K/z+7/8+AIHCAWQ/4+z9JFS6Sa6T6w355byZIymqnBmAlnOONE2NsAVgzD7GGKIowsHBgTExbVORtBx1aWnOo41nnteUnsU2S6mRp1QIYbQwIQSWl5fx1ltvYTQaGZN9c3MT7777Lj788EMcP34cly5dQr8/0GasQLfbxVe/+lUT8b+z89Ds6sqbKVRZOz/UZobeppijTUpV71W9g6KyUvkNPOr3ec3eaCrXlAX9jNC07GmaQ+Rca0VlASKEALgDMMK8FKGDzBMMB3tYaR/BYq+jPiOiRM9DmieQpjiEElDc4UAuMR5Psb8/xIXnluE322COizRTBYHL78zWxtRPgdVaT2s/Jpsv2eqEoglbQrHxAWWhZwK3hXpv9den7+hmeXGsBIh1FlKZ7lwDqN1uEzLuAWkGFyWvhK2VFekbtSB+BfOpmjxyZoA+t73xyZs1wIUazOA4KgyBamiStkbH9no9ZFmGfr9vzqnuPFVjxJi0xuQ+PMZurh5RMUldK4NBPVI5zanOjH3c9ijzs2QW6+sXwa/SaI5BEGA6nZpam5RwDsCUWgOKNCsS0KQx289VpKLpzZzMSDNFGVRcZGFMqXdhCaLSHJzzgNLS5Vm9oTfnRACV3OMa7VBKy0wiQaIFcJ6l4Ay6erk0z2f3wuDh1l0pXMbzfE0iWmgttjk6OzsJAkEhwcxmXL/O7blR51CqYrF1rcDKLa3LunfpAe3vrSZLBzEjdF3PgR94CENfkYbImp/SRfT1STtk1uSh4gdF7MocM3O217+2VudOtlux6NVCCoJwhm0CKCoYJUmCzc1NJElSfrnW/7Z4E1LXxrS8udJaNKVJUOm7PUnSNDVVfICyyUdBsu1221QkJ4+S7YGqa1XzsqqFVSdw9XeDUWjWDcLGptOpiTlqtVpYXl4u9e3YsXW02y1kWYbr16+b7AvGGFqtttGYpZSaEPIKrly5iv39AxSOJF1DkQBhAGBc41bzpNec32X1DT6GBsekkVnkrVcamQtiTVY4nzpISJRJOaWAECmyNIbnMLgOg6O9lVQZTQgVHsQpuV6qeMUszxEnCSRj8LwQYI7pNXccxWvG6D2VFZP57fE3viqOav9dz5hR3pTr5IKUBYusCd5lDGX8U3Mxm49IOxZothwsLjVwdH0BHFCJqcqtrH8vIYBG0bCeu8j3L3swlWfBdJoBXwhWZjeDMegdXqeQ2I14laQE4jhFq9U0C8m+jKsjmeM4xo0bNxBFUYlGB7CXgPpXQDPq6jGpe5mmgIsl0Oj928KIKH3CMCwJKBJmYRhicXHRkEtOJpNS+IRtStoCnrRT25yternsHZj+t+O/OOcmQDKOY/T7fYxGIziOgzAMsbCwgGPHjpm+RVGEZ555Br3egsHTBoOBuV+vt4BOp2uws83NTbzzzjt4551f4MGDbQ38UqS6AwaiNWc64Zgoye03WP2pTJLSG3wcs5QEmTqeIBVIBs5cMBRMxEzfM9cbvDALSEBkCZJ4At/j8F0OlzNA5mAaU8uzDJwxXauWzFWJNMswjSNIMPhhE+AehNQBxa5nUpOUNkhm5RzLqtRIs3z0wTbgbkMb85xNNPeklIbLr/Q+JFH+EHU5bVYk0MhUprEgczQH4wLdBQ9r6x2cPXcErtG8VA9AQr1qTlndpOdXU0CWVW31IzUG90W3smZBOxRjqBUq9HuVMx+wzAJ9nMKHamiBtXpuK/RS6nJy1gBUNaBZ0232aQjnqnN3kxCyqXiKZPZZ0/GRILB1zGHOA7sZqh7tmqc8TeoXUSzRMa1WE75fMHPYCfwqBUZqBg0YAdlsOjq9SQ2SNMwZRHNNfSTkg4RJ6Y1YL6hsBprv9UVIf64+bnXrKnZ5und5vdjzX0LLPy0EpRQQeaYKCbGCTaJQPITR7qpzSkENTGliM5qS9SzVVkoD++wr81HzqU5+zI46yRJmDbj9f7HZk5nJSs8g4XoMgeeCu25FmNnHHdJXY15KAv2r4RjzhuuLUdFKC7pmYdqpO2pBKk/ndBohDAMVlDga4Re/+AXyPMeZM2dw9OhReJ5f7MZGcJJQhC46TKa2nY+p+/SIcbWFFWlBvu8bM9M+bjgcGvOezFE7CyBNU4NN0c5ZJHaXhakdN1T9roplVU14Os+O9CftsNfr4Y033sCxY8cMLnb8+HEMBgNcu3YNk8mkJCiHwxG2tjYxnU6xtLSES5eew7VrH2uG2gwbGxtwXRfNZgPHjx/TMkpNcKZzOIupbwstWjSyMv6Pu6hlzf/CeKqlHfSpF5mACnzlXIPVGqNyGBAnMYbDA7RaDfi+q8Reaa5aYRpk5DAVLzYajyEBtFodMKaj/iXTNRRmzTs2gwMe1uoE/ZwRqWxwNtZ52NVn349+Z5KhXO1FarOdkLbCPKSq7oAugamHzjVCSE9I+/XP7Dak8gJGkKlaemJGmM2u2i/O1ix57PSt7YVHi41wHymBJEkxHI4QBCoC/f7mJv77f//vOHv2LF599VU888wzGh8irn0HnJOQUG70XKpcYaI8shd+nucz2htQ1oZogtjFVolEsroT7u7uGqGsFnjT5McNh0PEcWyKm5CDwDZh7WR1W8jZ6UTU6HM7u8B2RkgpjQbGGDPm+OrqKr773e8iz3ODN164cAGe5+FP/uRPMBgMzHsCVAGVX/ziXfR6XRw7dgzPP38Jf/VX/xsHBwNEUYq///ufIQwDrK2t4tixdQ2HUFqP0viUI982Z2zihBoBV9W25u44tjkqIGWOPMuQ5wxSuKqGIyvYVIW+jsNdMIcDyCFlDtcB4niMve0HWF/sotkIzNpjZBlBCwoGQGihyFRJub39fcigh4WFZTiOh1RyCKnTlEzxFSVOaQ3Xy6fyh0xbGGBs5rvSWda8rcoGm6yAPpt1ELDykNswgKEAok8cqIB0Ug6I3yNXgptxVeVNw2zcmIqHPkL9Q9mmzaxJqjvIqp99sa1OHa4SJarPhPHOEaB98+ZNSCmxvLyMTqdjIuLlzItQv9uOBQMb2njCoyGJEq5F2FeVjBGAKTQSRZHJzbSJGWmjqQL41fdUaw5UjjsM+KVm424k6MIwxKlTp9Dr9cw86Xa7WFpaMgSQ9n3iONZCOkWz2cTq6hrG47FxbGxv72BnZxf9fp82aTPWzALLIcmRBaW1SFo/hCHR91UhNmsWSRSmp5TFcVJbJvWgdvFRGVdS0QEiyxBHUwS+V8AbjBQIgAywslWoFm+cxAAA3w+McFDPKYpDS88080Czn1N3H7E8HzWX5suB6u/V/+l3Vjwrylqa0c6oZqh5J8WD0XZqnmaeW58xwgCkYYwtIn5/c1rYoc081uxz2YnTJAAcx8Hm5hbu3r2LGzdu4KWXXsbZs2exvLxsNLo8z40GZG5jaVW0O80bR2B2UlSFhe2trALz5Bm0QX7KaJhOp+Z6FG5CsWV1Zuc8bKzu85mhnTNXbEFM45EkCcbjMd599114noe9vb2SxkjnRVGE7e1tHD9+DNvbOxgMBphOIwgh4fsBzp07j9FoiDTNsbFxC8eOr8PThACNRqjmL2yzisGQjRoBY2tktW8H5fk7a7JKqalpDLxim1BKK6JivMy+lVSCLMsSZGkMP/DgONwI5vJtFR0Qh/aI6nFN0hQ+dxCEDVWdHGSeVuPsHt9kfNw2b+Ob1b7sc8rHlr2Udo6y3W+lyZIwI7ljRCBTx4lcIk0kBmmCfBIpzIxxVrqrlLPZ79SZsnmZa3PKDgMo7Sm/mVa3GVSayRfjHGEYmkX+/vvv48MPP8SNGzfwve99F2fPnsGRlRVIKY2w6Ha7hnMLKF4iaXV2Wkcdy0UdSG+bxnQ+pVfZLU1TDIdD4xigH6rOlOe54e4PggDD4dAUO6FjKb/S9nRSn2bTUQqtxJ4H1M+q2WEXgZFSETVOJhNDsUQm88LCgskhpYU6HA6xsbGBF198ARsbG7hz5w4GgxGyTCBsNPHWW9/Ae++/h53th3jnnV/g7YW30Wm3MRyNda1OlZ8oOS/cAEJYGhhU4CmAUm1MkjhGqui/NT5T5kpTwZt5LgoOM1uxY1S7QNeKpLLuEmBSIsumSKIx4niCVrMBz/UsAaH+50wCQumODncg8hy5UMWtx3GEjuuh1VlALhgkY1AV5DlyyUxH1CqsUzI+m4Cr83LT3KhLuaNzCFdWCRFkQgut93IwB5BCljYFakoj02Yml5rXjSHLJKYTidHeGLv3d8pVQauvsvoAQDmuzDa5Sjax0Zk/w6h9xqa01bLGY/9um8hFOTMXe3t72NrawtbWFk6fPoO1taPoWMGdROwI1JtjtlZW2sXoBdp9PETjocj4Os2MMD8C/AnDIqHFmKpgTkKahIwNCVTxjLp+VPs5z4NVJ5TpHNr4oijC9evXsbGxgc3NzVJJPDo+SRIMBgMIIdHvD3D79h3ESapLinlYX19Hs9lEngtsbT1AlmYqZCFJS6a/Fgko4TGmg8z6v+Jxt+y6Ry354jnp79KXhbWkLmcEmsxziDxDnqXwPNfgusaYJZYI3QOmTS9SMNIsBziH5weF2GJsRnBVHQg1T4Dyiv9sbZ5WX9VyjbwoPoGt/UrzrfXeDHOGfmJ6NAnkmcR0kmJ/b4xZMEZfy05xIEyNGB/MbvR/QLMFM9FoLy0todVqlSqDc+6Y4h537tzB4uKiKXhrX6vOnIXR3ArXsg3AA4VAKEqxOUZzoUZCiczMqslIIREkGEgoUvK87dUkBox5AqraL7sP1Wetew66N1VyWlxcxEsvvWQ2DimloYqhfnmeh3a7bSWkOzh9+jS6na6Zb41GA2GjgQcPtjAeT5DnAhsbN7G8tAwe+pCyyGEkLE2dPF9dVwvR/FUdAetzJVXo2oUipzUepoSIZRBZJpIEpEAcTwEp0GqGFTGrMTwJcKbWGuF/DBwiF4iiBEEYwnU9FMHtWig/Uun69WoW1XlabJRlRadQePR32vKkOqjKgiTxTt5h9XDmTUiASQbOPMRRjuFgiv29IdxqEGj1sY3HSypXtFKvhRFoj7MgvuhWfadVXMr+3BZk+/v72N3dxdmzZ/HCCy9gcXFRLzwG1/PR6XQRRRHeeecdfOtb30IQBIZKxw4ethsJM9f1QR4Zzrkuv8ZKXkDOuYmK9zwPrVarZGZSP8fjMcIwNGYjCT+6HuVOEt+Y7/vo9XqmgpNdMJjy5qp4CI1ZNYfTHre6Y2ytlQQzOQL+4A/+wDgsut0ujhw5UrpGs9nE2poC/aMogud5ePPNr2N9XYVhCAks9BbR6y3goD/Azs4e0iTBj/7uJ7h06RI83wexkOZCmfu+5xaTwqoNSxVzpcwhjVk4O3uUiUneXkAKlSgvJJQnjYSNkOCOCuCVQnnlJBT0xemeIseofwAmcqwsLqj8cxQCUFFDAa7DkRLVkeTgzEWaRugPRmh1evCDJqRUwe2SlUVifZv3fVXIP3mzN9N5cqDYdKEhqbL+pf4RUOwoQo+dogmSyMG45l2Tqs+5kHCZC9cJMdxL8HCrj5s3tuZoZnQD670Sb5Btqqid7x+QIKvZnQ4D4ul7WnjT6VQXrl3ApUuXSsdxzuEHSlO6f/++AdNtTYV+7BcrpOaLM5pZITjqvIQUj1XlUicBQjmRjUajtJHYFMdpmiJNU0ynUyMQG40GgELzo1qYVb72mSGtYCTUqpplFT+keZJlGRqNBlqtFk6ePIl+v484jo0gs80T0sySJDFUQSeOn0C73TGaWRCGCMMQcZxgMpliNBzi9u07SJJMH6M1FanDJBiVFbE1rNk5UDWHlBahhJV9nm1GFxkHpJlxo4lIZn1utDqBJI7AINAMAwveJo8kjaG+n7aIOOMQuVQEo0EIx/VgypdXTWX73QGWXmN9+Dm0eQ4galXHQPnmVkixbVIz0m7LmhmznkKqYYTkDJy7SOIE41GMg/2x4jMr8McCODSvQV9HyiLvss79Ku33+ptsFYH2qEEnAUSawfHjx9FsNjGdTk3SuRACURTh3t07uH//vtZmVBENRVCodlGRW1Q0TGEdZecIZhZw9XMp5UygLPWfvKlVbbgKwgMoZQcQZQ+ZnhSXRk6AapxZ9br231XPVVVzswU8aWrkTY2iyIRZVIU+AEPJRBpnEARYWFgEAIzHE7RaTezt7mF/bx/Ly8sY9AeIkxjr6+twHAfj8QTD4QDNRgOe72nBnsHhUgeuVim4i+pQ5jNG2paNgxWTSoIEmTpO6ohN9bdlhppFyvS6kuAciOMpXOQImwEA8r4y6x5aSYA2rCQAxpBpMzNsKXbZqplZu5OjbMZCm7G/boE21xKqFbtVcTuL5RGeWGhxdB9FMaQcTgxuAU6qH1VotRgcKSVyWZiXtqfOdFj+JlKX5jdbm7A1hTqTmnAd13WxsrKCN9980zgCms2meWH7+/v4wQ/+Gg8ePMDJEyfBuQPHcRH4DaTJCFkukKa51sJ0wjGX4Ho3sBe8HSJB/bWT9VutlmGUsPs6mUxKXknbWVDViBzHMf0nLNBOMyKPLJmd5IGsaoNV3jPqrx3xbwunaiOvJwnTKIoM9mezfTDGsLq6im984xu4d++ecXKcPn0KUko8fLiNs2fP4sqVq7h16xaeu3gJt27fge97eO311xH4IbYfbuOTTz7B8vIS1tfXsbKyjDTN0Gz64J4LVWQ2By1qRbHDQJ7HYiMqllJVGAihzJws0wKNNi6jNVgpVuaKApxJeA7D8GAfvbaDhd5KoSsySrDW6y3PQOSweQ6Ac8RJir2DIZ47eRZhsw1pEu1tofZ0q1AylGmAnvT8yuZsrzXAlhOFwJKWrqz6TYqAMOY/UWeTiWlxYmvNW8B1PbieC9dzqXaVLG5UNdMAC/Qv5//9Y2l1ADU1O5yg1WrhzJkzuvTZuHTMZDLBtavXcOP6DRP/xRg3mJcUpOHYGIadIFu0qjCz+yGlKoIbhuFMP8n8sgVJ1byz/6Z+UhI6aWaExxEQXxAFlPE+uq/9vz2Odh/qcDWg0NRszYzCV6qt3W7jmWeeweLiIo4cOaLrLywDYBiNRmCM4eHDbezs7GB1dQ37+wcYT6Y4cfIkHMfFaDTG3bv38PDhNkajMfKc4usKsVL2ctKzcNjvDKjqBtZ4QOp3TWlMBeCvHGWFBmefpcIsgGg6gRQ5mo1QW1hVzIvCQUBwOMA4skxgMo3QaLS0J1NrhHTMb2hJ1mnv1blQKBf0PbRw0r+wYtTslLDip5IixUiYUUEXWzOz8IRZ00fUdtDc2xz+OLrrb2bE6xZZ9fuCP6tM3xxFEYbDIW7fvo1WuwXXddHr9bC1uYXpNMJCr6euyZiiYHmMPtSp5/T3vApMtrA7zHS2TUVbsNksGnmem0K9JPRIGNostVUNlz6zBZh9X1s7tJ9znpCzG42/zUyihLai5N7f38fGhqon0G630W53lEaYCzQaTTiOiyRJMRgMceHCBbiuiyiKsLe/g9GogVariZWVJSNAzDsDtzAaVtEZ6kBYZhaSWlXaJDU4l32aHckvkGUpONc1NKGFlXUL4+ljBUrEGEOaqfxnlX9qpywVgreyRc/Oi9Kn9k2LblffUR2UYa5wCFY+z8yc6Z82oS1rXP9p40QAQ5FmqXJx6UfADxl6C00cXV9WuZlF54ofAW1eWl66slamd4X6msHzH+ALaNWXUTWXqgNNoHocx6b2ZKPRQJ7nePDgAW7duoU///M/x8ULF3D82HGcPXsWf/M3f4Ner4ff/SeqsAd3OFy4yNKiiAiFRZCQoHtTxL69+OnHJoq0n0cIYQQQETVWHQn0nPb9qQ826SQ5OgAYkkQScuPx2JxD9TOpVT2rdq6m/WxkIpJntU6Y2dH/jKnk9PF4jN3dXUMDrtKzfOzt7ePjjz/Gu+++CyFynDx5GidPnsJ0GsH3Q6yuHoUfNDAcjnHjxk380R/9ERyHY2dnBz/7+c/g+y5WVpbw9tvfhutQypWA61ECOGFVEqTEcV20BjKvLHQgzxmyVAJSm66MgTtk4gsVmCugAGzGwJmATFNE0wE8B/AdBy7nZJ0CUi0jzpjO9+UkLeE4DobjGGmWw/UCSOZCaqouNXi6X7A1HfrEOsC0w8zRzwam2Swq9rworBBby9JrkbYSo3yRlVh8zx0HecaMsHMcrvIrZIbF5RYCZxXL3dDOgbCFmb6tLAfIzmTEV8fkcwIWP69mawbzvHL0mc2casdrDQYD3L9/Hx9++CEWF5dw8eJFrK6u4tq1a7h69arJCjCMFZbVULeIq4vfxr3IBLS1M+q/TbNjU/7UPXOdCUpBwQCM4CCh02g0jBC1szuqrc40trUwGzOh4+dpZtVocRLWg8HA5KMSNjgejw0Nd5blWFpawtLSkimG0u304LoeptMYO9s7WFk5As/zMRqNcOP6DVy9chU3b95ShAhQu7tyRBLJIwCjn1EfbZPUnitaM8sBSH2+tXToXK2YASR2ZIY0mepqUwyOwabtdwdNsFg2gdM0Q55LcMcDoJkyYJm4JeH1WZSGz76A53nqqUlpm5Gz95XSFsiqcV3Qhs7gmjoJTKDVdrC61sH5Z49TaEbFrEAZJ6u6oKvAtQJRP+swfDFtnvorLcFNx21vb2N/fx9xHOPkyZOKUWM6wWAwQKPZRLfXtWoPHn59+z7zhCsJMxICtrCrBsra9zrMHKjrU/U6dgERO+UJKJLGbcF0GGZ62MZBQr/ODLYFtS0YqUjz8vIy0jTFkSNHrHoIhZCfTJSDIQybiKYRkjiBEMDq2hrGoyGEkJhOI3DesIS9ntFUkNMUTSlD0zaeRvBy6XNj59EiZKA0dq5B7VxkSOIpPM+F5xKJo1BHalOrEKTWuEmJJE0hAfhBqExNS+GgfpXfr2XGlb+peWOfvdnvsbrBzcIRqAhxLZQlyfAyhqiUKv0LGexCgiHXaVESjsPAfMAF7KhcDcMJgTzLkWfKtMyFtMrcaQrbf2hqmNVsDcE25aqLrCoEKO2GBMqPf/xjbG1tIY5j/OEf/iE6nQ7u3r2HH/3o73Dy5EmcOXsWnU4H0+nUXM9+gVXNxBZMpPlRpDuZbd1ud4YlI8sy7O3tGUFQTaeytbB5XkW6PwkS3/cNLjgcDk3fW62WMQ9V9fHYaHZV5lpbKNkmhi0I7YlMz0qJ+vZ3URRpCvNymtNgMMDa2hqaza8BUOUAu92uGa8kSTAajfHxxx9jf/8A6+vHsLX1EGmaIM8lvvXN/wu/ePcdjIZDbG0+xNH1VTSbijQyz1JIDnBXF/VhyoBTWJqeFyBcTcWqCQGInKnAWK3ZqYWoFzD9KyW4BBwHkHmKOB5hb+8BOu0mWq2GyiPNFB7EGNeaosp9VsSNlH+Yoz8cIRccy8trcPymqsZkNDLrXTPq79NoZ59tPdubWLXob2m9MQX7MXCVf1qSPbTBahkjASkU3CVBsIRAliUAZ/A9Ce4Avgc4vtaRyeNGu5UCOK3UJSt9qVaQfXFw2BO1qhCh3+cdS6YmoDSRTz/9FBsbGxgOh3jrrbfQbrexs7uDH/34x1heWcHJkydN8Q4yE6su6Tozi7ynAErYlxDCpFDZ/c3zHMPhsJSLaf/Yz2WHeNQ9L51DeZ9SKk8tCZMwDNFqtRCGockDJa3JrlRvX8tudWEi9neU5G6PBwn4PM9LlaaobwsLC7h48SK+9rWv4bnnnsP6+rr1vhSp5q1btzEajbG0tIT9/T6GwzFELvHiSy9jcXEJQkjs7x8gipSQ45xrryQATRXP4IAxB1RjoBx1qUMhBK0RLcx0xSDSqGg4qFSAKsqVI0sjDIcHaDZ8NAJffa5RAiVIC80sF2QOK2xvMokgJNDpLsBxfRD3fx009EU3W1und2YXn7Yb4WbFvLFN+er/JAgLmnvyOud5phiJWQ7GJRwPCJuAW9ZOyhjNrFlRtoMPMzdqH9x+sCc68+nboz0r9Y3YNBYWFtDpdDAcDtHv95EkCdbW1hAEAeI4xv379wHAYF0E7M/z/tjaG/1Nwo1ivOzv7ZCJR5l31VbtRx2eQc9qC0NKqLeF3jz860nGtk6Y2WMwG0hb/E6LxBakS0tL8Dwfw+EQo9EIEhKdTlc5Nxjgug52dnYw6A+0iVnExQ2HQ2RJDNfz0GANZVozG2qhDbywWEhoSfJkljZ2WTq0+F0CUkCIHFmWFiZ87bvUwaGM8DAAjCHLc3AXcExOJh3NtDZm3ROl7s6sszpkjVn/Pmmrw8boHVXnXvEugRntsdTZYmzr+sYsWMtsALm005kkhCjijWzv5WHg+T9Ei7Oqldig+bznqb4Uz/Nw8uRJLCwsoNVq4d1338WNGzeQpin+8A//ECsrK7h//z7ee+89fPOb38Ta2hrCMMR4PJ4xbevAeBJQruuaKuDkcbT7Y5t61Oeq6VpH12R/V/2sapqS15IxZih76O+FhQUzhuPxuGRiknZZp/nS37a2miQJut3uTII5fZemaYnDTUolkAClue3u7hrB32638fWvv4XhcIRPPvkE165dw/rRdVx66Xlcu3YFvq5q9f2/+Eu8//4HSNMEQRDCcVyMxxNsbFyHyAV6vR6Orh/VYTcOXEdnNYhcFQohk14X+01TVbhHRTVRcWJAyEwtMK4LN4ODM4k8T8BlijyLMBn10WoeQ+B7EJnQtR8VKE6mpoQSWmBQWiADJlGE0GsjbLYhpANhOQDKWpm0fui/Kj5lbUb4fJeuHVNYzDH1HVXyorExVoupI6j7pzMqOCMtWaIIalZNbTxFJkaaCKSZKLyZSitTO0gu8hlzBag3K/7BSTKr2QvrMFDaPp6OdV0Xa2truHTpEp577jlcuXIFV65cwXA4xDe/+U30ej3s7Ozgr//6r3FwcGBIG23zb562ZIcscM5NnmSn05kRCrTIq8KsDmSt8xrWPXP1WuTpZIxpDGqE6XQKzjk6nQ5arRZ83zcaG2FhVTP+MM2RQH7XdU1AcBXot1O1SDtR5IVqgfT7ffT7fQyHQ6RpihdffAmnTp3CrVu3cO/ePUgAp0+fwdaDh9jd3cPBQR8//9nPce3adezs7CickDuIphE2Nm7i1q072NraxngUIU0y5BkVeVbYmHJ82aEuElmWK08mHBABI8AgdWYBY9rUhjIxpcgAmUFkMabTEcLAh++5kEKAV1QpCrnljo4nY2phR3GMXEoEYRNCKoxOVoRUWUR9cSanPZdoEyKoxu4PBbdS+IqZK7ZaScJXEvSlEva5hWEyhpKlAAlkmUQU5UozMwtEUlWh+ROzuqs/jiz7BwqpzW30/I1GA1mWYTQaQQiBVquFVqtleLfSNDUkg8RUUU3/OUyw2c3WdOr6QgKsfkMp2jxTcp5JOO8zuo6Nk9lVouia1dSVeY3uX+2/LZjLx5ve1F6P7uv7PprNJpaWltDtdOD7vjJjtVbqeR5cx4XjuBqPc5ALgeFwhMWFJUgpcXDQB3cYPM/Rm0pbL5oitY9yMsnrSNqEMvXkjJpjPSHyPIOQAo7LMTPcVQTHMp+E1BoHd+BwRy9uyxSi35l9ocpFnwLbedx5Uv3Oxn6rjQKgs1QRAijKIolSHpV9D1Y7mNpELczVLJPIpgnG/TFc4jFXRUYzZHkGkf/jS1myW50XZd7vVa3C5vo6efIkrl+/jnv37sFxHLzxxhvodrv49NNP8eGHH0IIgX/1r/4V1tfXEUURLl++jOeeew4AZhLC64Bw+p00I5sOyD6H+mQLgjpPoi0w6LyqFkbf21XEq9og0QIJITTfvpqgVDqOKIySJIEQAkEQzMS20fXsmDjCFanR58Taq/rGi5AgqaLlCTuj88kczvMcnU4Hr776Kk6ePIWja2vodts4snLEXPPMmbOYTCbwfRfLyytoNBqIoxhXLl/B//1//yHiKMHf/+RnWFxeACDgOAyvvPISVlZW0Om0AdhOMV0VSDIADqTkWpZY486gtArouHUmMZoMkKVT9HpthctJFSBLmJrCfXKAqSwSKlASJyn2+0M0Wk00mi0w7oIxF1JWcknVaMKWXLbxWTYuD2lk7j2BsWXPIeL3s2s7qDmgoIwsyzCZTuC7ei7afWZFn00GgFR4I7MeUUoJVfRZUTANBxk2b27hyifX4AroQrmiKFxrl1KrfWZrl3/sgfoNtUeZmlVcyRZmR48exU9+8hN88MEHOH78OF588UWEYYi/+qu/wnvvvYdnnnkG/+bf/Bv4vo+NjQ3cvHkTL774Yinav6qF2PclzYcE2bw0JvIqVmto0jHk/azbIavxYbaAsYW53U8KG5FSKmBdf7+ysmIEVxRFxjS0+14VjOQUsY+z+06pVeoc5a2qZppQs81zdW+VlH/ixAk43DX42uLiEvb2dhHHMY4dO46HDx+Ac4aFhUU4DkOSpLh58xaOrKzh3r37eP/9D7G41EOWJWAcWF1dRavVQafTgxZVWsBISzxQaIZaK4UZpNlEtE8UkJhOR8jyBO1OQy9MoiGkdabfDWdqoUoBISXSLMVgNEQYKkJKxh0w6KyDWmFWmj2lsft1rdOqmUlB13bjnMH3PaSpr7kQhYoRU/onZiuWFwEm9ohL0oC1F1nkwGSU487tbbz780/gSimNCq1+pws8hnhm6p/HFuS/Acn3pB43aiTgKOm72WwajYX4xBoN5QUbDoeYTiMAZXOxet86048mQZ0JRtcjbrMqzfTTPuthJqfdhzrha5sQtlC0Af95z1mN+rcFOmFkh7Xq+ChISWlzJOTzXKDZbGA8DpHnSpg3mk04OoUsjjNDjGnn3wbBmsbnclMRSmGEORQer/rHGYdgfHbWk6knpRLKSt0CY9Be2Bye5xYiqLQW7D9kaSzTNIPjNiyNtjJO+lSz6Oni8kkyN5+8VTct+/M6MooZGMV+ZJNSpnsnUR0g4xguX0CFymQZEMc5XCE1JiIFhMwhUQaW6x7gH1s7rN9VM40WKAXQPvPMM2i322i1WmCMmQIh//Sf/lOsrKzg4KCPv/3bv4XrelhdPWI8lZ7nmYpIwOxCBIowiG63iyAIZr5nTFVZsheeWpAFrTRpK9VnrWpqdD4J6XkmsC0wGWMlXrUoiowWRc4BMlnpWRmbTVynyU1mqj23hBAmho5zp9T3R+F5nKv/p9MJRpkiRRBC4Ny5c2i12tjd3UEucjzzzDNoNEJsbW1hc/Mebty4gaWlZTiOiyhKsL/fxx/+4VchZY7h6ABXr1xDr7cA1/Wwvb2FZ86dQqetNrMgUOU0EuFA5Er4qRxMTQEEPYcy5SRxPIbRqA+RRlhd7IE72hSVqniv0eS4CsuVJAiY4jAbDIdYO76OsNFUpi57spDYeUd/XivZth5IM6OYQXuTdl0iG7XiWgErG0xpadLos2R+EtmF0tc441BpZA44fEjhIU89ZLGnMDMV5Z9rgUbFNusF2v9JjZ7NBu1t93Icxzh9+jTOnDljqiKRJ+3NN99EEAS4desO/uZv/hbnz5/HuXPnDHsrBZva6UB1WFiWZcZbWNeCIIDv+2i1WphOpyamSmkTQa3DofrOSHjZWIZtStrNNlmllKV+TadTE+u1sLCAdrttaabTUoS/LczI+0nCrNrX8XhstNxqn6v0L2UBp0zS6TTCdBKZ+5w9ewaep/qwvf0Ap8+cQbfbwYOHD/Grjz/GwwcPdA0HxbTR7w/x8suvgnOBrQf38bOf/QwnT55Cp91RIR/rR9DrduC6HnzfBYQqcQaNe9kbiJQCnsshZQYpBThjGI2G8HiEhYUj4A5lG3BLm2JgnCEXmeL+Z2r8szzHaDTGmVYTYaOhyHFMebna6VJp9RaWfKxzH6/ZEIYNiZDTiOa9si5cEP7J6T0yEmQMOjsfVNzZpGVBFnKJaZZd6YIhAIQHkblIY68wMyv4YdHm7ASPaYjOnvQFtnnCuE4jqftbCGG8Y3bkO/Hv57mKvSJT0HUdozVVHQ51WlexK9sZGGXBZB9L97HJGamfVbzMPv9xx6muj9XPbQFYB/bXBdfSsVWBPmu6Ht7fqrZZfC6MVgatGSlNQJH2UXHkJEkRRzFyTRuU5yoMiTtc48RKu3JdT9GoR5FenEobTuIIWcIhcgecu2C54akgy848BWkakAJS5ACTcDi3npDohqzxVg+j+qH9A7mAAv65o6RQ1RqXBe42a6hbY2R9VIv2MFk8wBM0+z3T79XyiOYWWqgBisSiGA1W6STK8sjCT5n1pYIZFIuG57lws1TtZkIKC2qbI3cqc+3/NJ2tusCSJDF5kwcHB5hMJvA8D1/5yldw79497Ozs4JNPPsXXv/4m1tfXEQQBPvzwQ3S7XaO12IvVDkImPI40uSrlT50gIrprzrkRmlRklyaKnQoFzAruOsFEXqhq/8g5Qs32chJdEADD80/CjFKj6Nq0EdAmYN/fphLi3AazaWcuHAJV81PSwpcSnueAOwxSSIxGA0gItDstBOEJdLsqfm9vbw+TyRRBEOLCxTN4sP0Ak8kYx48dx8e/+hRpnmI47OOlV1/HNE5w/fp1rK0dwf5+Hzs7e7hxYwPd1iLWjhzDM2cuQIgJEqnpBLkDJgS4AJwsA2QKyAhpPICTT+E7QIN7cIX2SDKOjOU6RlSASQ4mJRwpASaQ5EAqgMxpQHg9CKcNSBcOk8ihUtSlzHVwqcoDZRrDhgRUahbJRlUkpOwO4BauxjRHpJ1f+mSNsGTHcbC4uFhy9kidg+lwB0tLS5iMRojTFKHvQXIlhkn2FK4TBxIOIHODRzJd65Rp2iXJYvhhiMWlECdPLYFnWY4szyFy0s4eDcT+n9hsPIn+juPYFAfp9/sYj8dwXRevvPIK7t+/j/fffx/vvfdLvPnm1/Diiy8gDJUwu3//PqIoKlUcBzAjMGzG12ryeJ1GScJsaWkJR44cMZH01M954Ra2hmX/bZvWQLkoiy3YbdOUfvI8x2g0wmAw0BXFG+h0Omi325BSRexPp1MjrKSUJom8bJZV4+ek9VN+N9XG9CSXUsD1HPi+C893MBoPAQh0Oi0cP37cYHv7+/sYTyL4QYhLl17Aw+0HmEwnOHbsOD7++DLef+9XuHz1Jl565TVMoxjXb1zHysoK9vf7+OSTq/jLv/wh3v3Fh7h/b0vn0AKMSwgOZJyr5G8JOFkOjgRMRsjiAXgewZc5GsyFK1xwqfjIMiaQM4FMM60yATgS4BDIRI5UKmEmtTDLpQcuNarEoBUQAeKb1QasEmasoDdSpXaFNl+VRsRlEUNnFBgmDGb+pI2Cv+uFmZKnXAszISTiKIOUHJBa4yTZI0mgucV3gNrYmACQAsjU/yyBH0osaGHmlhdNoYBK1GkHTyfkfpOi8Wk8mdTsxUaL207Otjn5CQgfjUZIksTcu858rH5Hruyq1lL1/FWvZwtLW4hVBZl9jadx6lTNO1vIVe9VvZ/9fzUWbZ7QnjcGhzX7Xjafmue5Vh+5LhYTotFogGIsTfiIEGDgaDSaesHFCnsDM6QLSZIijlOkSaqEKSu0CpAwJjhNCuRZCs5gRbFXTD8Df1naNGhjgTIvOaVN1UUOyNLnxQpWvx32dlmpL5aN/Bitumna68OOlyxZCVDZLwxEkKTTnex3bLyx1ges8M5KqbuozWLOAd930GwGh5Sa+y1qtoZCWgIJFoo5a7fb4FzVtfzBD36ATz/9FLu7u2g2m3jvvfeMRnL16lUcP37c1KS0NR1azGRa0sK7fPky1tbWsLq6CgLNgVlhZDfyNPZ6PQRBYIB2oiOiSWWzUJD2Vo0DIjNvXqV2e5xsLY643FzXxXQ6NZ5O+/lshpBqI+8oXadqCteZy/T5YeNiX4ccFowxnD17Fmtra2i324ZAYNvdwXQ6wblnLqDZaqHZbqHb7SBNE4x1QWjX9RE22nDdELsP9jAaDfHee+/i7PmzcBwG5KTfELMDtADMcXCwj0ajgWZT578apKygv2EMOhCePucYjQaI4hTdbq8g/ax5HzZ4XU1xQ9U0l3OEGytE4JM2msNxHKPb7aLZbM4UryZsC7qrnAgqHY5EZuoRShADOSKN5DKFnYWpj6COCxvA6loLTr4+T5j9dpiZdYA3eWDsaGbGGLrdLhqNBu7cuYM///M/x507d+B5HlZXV/Hzn//cmFiffPIJXnvtNSPMKE+NBAHFjBFDRpIk+PjjjwEAKysrxgyrKylX/T3UNSSp5ud4PMbBwYFJ82GMGQcGCRzy1NI16F423mazdNRpiISDUZgF5xzT6dSct7CwgCAIEAQBDg4OjPZTHWtKoqexqCbF193b/s5uVUFoa71UBOb8+fNoNBrwfR9hGKLb7ZlE//X1ozh5+jTWjq6h0fZNjury8gp63UWsrx/Hs88+h+//r7/E7vYO3vn5z3Dm3Gk4DgfyqkkvwHXC+e7uDnrNJtqths7Z1DgfdGCoXqzMjLcyx4aDEaJYYmHhKBzHnZmr5v1U4tIA7ZHXWTyUeUHHClHGHZmSDNoB8uQrn+v4vel0imPHjs14rAFbUKl8VcdlRpiJRFVjcgzJKeGgBhlU46MJNLNcQEfwQCJHowl0wjZWFxuzwuyzmGX/2FvdwrEnCC3e0WiENE113FFggiwJlKfj63AeujYttCiKTPVxalV3d7Vv1GwvKOEV9rH2M5BQrpqqdaan3Y95GFyd2WkHS1aDh23vK/1PWmvdpmL3oXqf6nF1Y1M1h0mTpXqhCrN04bqeCRtoNEK02i3kSIyp5jgeOHPhSaDRcA3DyHA4KEwzWahH5l9WjLvT9uC4FQ+fpMNsjaRoWZ5DCMB33cIKYwxF9aLyM9dtPDOt8pqfxIx/VKPc3Srle9GU+qmsSFYIuNlHQRUzLTcyymleAJ7H4TDnSzMTKC8YGyejz8hcUl4zD0ePHkWv18PCwgKeffZZHes0xWAwwIULF7CysgLGGG7fvo3FxUUEQWAKiNC10zTFxsYG3nvvPZNnCBSxZ6QtEXsFBc9SqwoZKsKyvLxc+p6KhNy4cQNvvfWWodihHdV2SthEkdRsb6QddmHHo9mCnsB/IVTh5DzPZ+iNqCVJYhhDnrbVYXC2uWy/4yzLjAc2TVP0uj2cPXsGSZTqNJwUeZ7h9p1bCP0QJ46fUIC0sZEYTp48gdFggGtXLmtNJ0ccR2CeC075muqGEHmGyXgMf3UVYRCqzUcWqDSnWDNpa2nq+2kUIxUeFttdMM3OwRjTRBBK2yEzlZoNATCN0VWJPlGn0Upr7qNGthzSaMxt7HYePEBejjD0IEWOJInAOSA5sxwPhRlOJqYQUiXaA4b6B0yZq7lQYSyM40thBpTBS1rYdsCfLcyCIMDJkyeNUHvppZfQbDZx48YNfPjhh3j55Zdx9OhRAMC1a9fwyiuvGGptui7lr3366af4b//tv+Fb3/qW0ejoOwpAHY1Gxmw0NTrlrKeRviezkxbucDjE1atX8ad/+qd4/fXXZ1hkCUcjAVR1QnieZyL87QBdu/YBEUvS97YnMwgCQyNU1QKoCHGr1ZpZAFXTqapp0Wd2X22zysYqabwoEDpJEgyHQ5w+fRqtRgdLC8u4feueEWbXrl5Fo9FA78wzkJIqJjFIcDxz7hk82NrE/a17EFIgF8A0msKTAVwngCkFJwXyLMNoOEQYnESzoUJqIGgTUvFRuRCqcLAWTBSmMJlGyByObncBjGs/JefIUwnJi3G3NzU7S8RzXEUlBJQqgTFrvABL8BFerAb2sdeO7Wyx4wwLgWqB+QwABBqNAFLkGBwM4TeaYJxpLEyNG+GJ5AsQQioHCuOKeECQ9aOKJAuuhdlhZsaXrWj2omg2mxpz6aLX66Hdbpv4r06nY0IXIh10Oc+LN51Osbe3Z8B7MjVJwIRhaISobcLNw5Kqlc4JA5xOp9jZ2SmlMtU5GR5nHsw7hq5LphUJZcLuqkISKOLuqv15lPn7qL7Zz2Q3eyMhjdB1VB1U4J55L6PRCA530DLaZKEBhWEI13WVx5oBFBpCGha5EwmsVtinovAp6zyFF9Jg//pWUmqNg+tNwxYIlodynnltulx3TB32hoId7WkkwWHmqhoXBormp3QvxhW2OHMaWdLEO14as7ImSmMlhISA+FIzA8oYzrxGnkIppdHMer2eyZU8ODjA1tYWXnzxRWxtbeHBgwczfP50jzzP0W63ceLECXz1q19Fo9HAzZs3MZlMsLa2ZoqXfP3rXwegzLGDgwMTyW6zsc7D0igmTUqJTqdjKFiIePHWrVtYXFw0wtguPmJfs+qJrQpkGhs6zzY5yYliFy+mVs2SqD7H02ywVYYQu09V07nRaKgK70LxjS0u9tBqNcGYxN27d3Hq5AkcP3ESzLC6qoUzGAwQxREazQYch8MPPSwsLCATAlxw5LnANEoBMUIcTdBqNuFWEuwNIkQbpBaCavMBRqMJHNeHGzTANN8/mX82KSOZjdIyE2kcGAoc8zBcrDr2T4Og0RhTAr/v+2ZTy7IMoa/GijFobTY3gbQknIsNTO8JFu5GHmITdKIzKejYg4Mhxnv7qPeZ/5a2qrZiL4A0TTEajZDnOZ599lmcPXsWy8vLxpOzvb2NW7duYX19Hbdv38YPfvADdDqdUiI44VLT6RTNZhPnz5/H22+/bbyg/+N//A+88847+Lu/+zv8/Oc/N2ZlHMd4+PAhdnd3TW4ovfyqZkUTy/M8tNttrKysYGlpyRBNHhwc4Pbt2/jbv/1bXLt2DePx2NTMJO3JNl9oTOoi90lokGAq0rpc4zEkk7eaDE9mLY33vHF/kkYCtOqIqDo8XNdFu91GHMc6pzTFkdUV9HptMAhcvXoVzVYb5849C8ZU4CbVy9zb38dkOkW704LrcrRaLRw5soJGGBoNczyZoj84wGQyQqfThuu4miLbprXRuKwQGscqEucPBiM4XoggbIE7rsHY1L+FdmILITvbhEI5bBy0Osb0e6ElFaEiTzrm9N7H47HZ8AEVejMYDMz8kCAYJS/w2SrYLy0BJmH1ixLOFdaoeO/Ue9nZPsAHH1ytBs3+djYyxw5rNDFc1zUYD4H1hMVMp1N4nocoirC/v29CDmxNwcbjms0mVlZWTHbBgwcP0O/3cXBwUKLKptQq13WNYKjToqrPRBgG4Vl0XhzHKhpee2HtBW+fPw+foueomqd0DVsTsjUl+5yqIPssrU4YzgWhUQg9ys2UUiIMfbiuAwmV+K6qwLf0IiyuGccxsjwzcXSu68CHNqOZQA4gFwJZlkLkGbwanjoAFjeXGVCAKWGXppkyTV2dVH1YkyiNdemryjiUfIusLBAllRR/ytfBGJuhVM/zHFlazFcmddaCLNcWqXodCgOcrl15YKJY0gHKcZyi3x99aWZSq/PC2JPBnpB2ObogCPD+++9jb28PnU4Hly9fRqvVwquvvorl5WUIIUyBEABGGPb7fTx8+BCbm5sIwxDnz5/H+vo6ut0ufN9Ht9s17AN23Bixd1B8FvGtVZ/F7itdh47N8xwvv/wyAGBjYwPr6+tGuAKF4Cbsy25Vk82+n50pQYKetL6qBhlF0dzrHYbBHIbvVRev/Xn12kYAS+galRJZliLLM7iugyxNMRyOMB6O0V3oGtPp+o3r6PcPcO7cM4qfjKk0okYQQkgPgmcIhIvRwUNw+HC7XXV93YW6sFVbH8pzgcFwhCDsImy2IKQ0C1tICcYLs3femCnyw9kNSmk3s0K/JORqR/3wRpsDWSnqORQVUJZnGAwGaLWa8HwPichUBkWqvPUKUrM9BMppoIq72AJXGg1WvTsOzhzEkcTB/gT37+0UmtnnsUP+Y291Y0DjY5tZVC2p0Wig1Wrh7//+73WA5TJ++tOf4mtf+xpefvllHDt2DLu7u8aUIzwpDEPcv38ft27dwo0bN/DCCy/g/PnzWFhYwKefforl5WUsLS0pTEebb1SfM0kSU2uAalwSF5ptSlHfKTCVBMvS0hIWFxfR7Xbxwx/+EB988AEuXryIo0ePot1uG4FJZiB5WavaT0GoWDZxyINJWOLi4uJMgrkQwoRIkFlI/T1MG3xUs7XeOqFXNcdlrnQA13EAJpEkMaI4hud7Snvd28d4NMGzwTMINBXSu798F67D8M1v/C78wAdnKnCi3WwDngBCCafFgPwuXBbC73jwHEdhWyC8rJyWRFmSEor2Z2fvAMefPYF2d1FVgnJVfqPIc3guh2AqRMNu1Vqs3Cmod8qYbQ5HY5olpxKsmq9PaKyR6U5zbTgcmuI1juNge3sbeb6EZquJVCSYjCOILEez0UCOXMkoRk4OlZspKV+T6eDaPFcbgeaNU8LMx3Qi8HBrgKuX7xSaGT3vb6NMsxdPnVZQFRA2qOo4qjajlBLLy8u4ffu2CdsgAZSmqSE5JLMviiKMx2PlOXNUAu76+jpu3ryJhYUFLC0tlYBz2vnI5KRr2WXi6vpqA/B2iAdpRAcHB0Y4u9Ykt4Mf7VYCsitjVTUlySyvo4SxhWRVc6req07bmrfxVPtwWNOWnRoLkPcxg6spgZI4xXg0VhWZ9HX39/fR7bSwuLQI7ihmQQ4G7rpGc/A8F57rInMchIELxnINcps7A9pDWe2lEBJxksJ1ldZtm1wSNeNf+1y2y6DyXc34HZ7B+ehma4Q0R6k6PWOsRISQCYWZSVpDJHfAivGxBFvhltXJ8qarSuipykwpRsMpCbPfQgmm2zyTqU47qC40Cr/Y3d2F7/tYXV3Fq6++imPHjhmcKggC8yKBIo5sc3MTcRxjdXUV/X7fmKKLi4uGTodwMxIqdjoUaUhpmmIwGJjv7Al09+5d7OzsYH9/HydOnMCDBw+wu7uLyWRiAPBms4nRaITRaIQsy3Dv3j0AMAG4VTPwMGyR+mrHeFXpjWgc0zStrXtQHXP7nHkC6jBnSPW9zfTX+ptzhrAR4uVXXsH6+jo838f29g4++uhX8AMfSRKj1+vi6NE1dHs9U/eyuB5UZLuQCBshIJrgeQRV4MQaN71WOYMKW4BKcM9yxWAjGQd3PHDHg6TamuZZUSxXo4CUIRGl7Sq+Lz4HPim/R0tT/AxyzQ6cpk2bnEH0zjOpqk0B3GhYzNy2MDONkwNAqTQdJBQPiPKKOibThMGdjeP47WxVHKEaNFslQCTAczAY4M6dO7q6tod/+S//JY4cOWJMK0pA39vbQ6PRMFjU5cuX4fs+zp49i2vXruHEiRMQQuDYsWOloiG2h45iyMhcpWIg29vbRshRfudwOMTPf/5z3L59G5xzvPDCC7h+/To2Nzdx584dPP/885hMJuj1egbvy/Mcf/EXf4Fms4kzZ87g7bffNlH81GZAZUsTovEigU3R/3aALQCTmExamy2M7PfxNO+wSjFkp9bY71AIAQeurmIuIZHDdR00gyZ+//d/H61GB9EkwcbGLbz/wQeYRhMMhn1cuvQsLl68iNW1NXDHscLDFIMDAwOEQLvbRuj3MN1P9T0Aw5rLiv5CSMVs4wBpliFJM0jmgnsBHC+E4B4KDUXqZCaVnC5EDubwIglbFHUroihSJrCrnVD6vnQsBWWTdsc5Ry6Jz+zp5AAJLeoLvV8RKgshmkbIwcCZB+4AImdgrqO1LhJnHOCOomAzkEYGiukDE9q7rEKcXJ/qPzhVYWaN9G9pq3MEUKsDqil2i8gYT58+XaKaJgYJW1vJ8xwHBwdYXFw02QGEj1HwLR1nm362wKCQDwJa7bQj2gW3t7exubmJhYUFnD9/Hnt7e7h//z5u3LhhhJ7v+wbrmE6nuHPnDjqdDhYWFozwtMekasbVaba2uTfPXK0GyVavYf9f9dZ9FufAjMCkRaJNTt9XlexFBmwnexgMhrh3/z4O+vs4ONjD66+9jIWFBTQaDd13fT5UOAHX1/N8D1z4iI0gK/W0dpkJIZELTaTIHUX/w1QlomKsUDrXEAtZ42ii8MsjYE6c5yj5LK2qFZOlYNepIK3TYXbc3exAlAmNSMsuHWCegXNNr8TYl95Mao8yN6sCjgQL59x4Lk+ePDmz0EiY2eERcRwrPi0hsLe3h+PHj8PzPOzt7RkHQTW/cJ7Hz540jDFMp1PTvxMnTuDy5ctGCxJCoNvt4vTp01hbW8P9+/exu7uLS5cuGTzt0qVLiOMYnHPcvXvXaFZ0L7socF3f7H7RefaY2EwkdUJpHm75OM3W8Ore54wg00CWhIRk0mwMaZbAdxsIfB9nzpxBb6GDyXSM8XiItaNrhlzAC304rgPmOBaqBUAKyFyFZhT3UoyrcGysqryU4yRBkmRoNtvg3FUgOOOWCabHmoDyyljZWifnHFJIJGmKPFOaDdOmX50GPA9/e5pmOxfUJkwmPYNgSpNU/G5SeS1Z8XxqXASUW4WwvwLfLNvYAq4LHFldwPPPP/ulMKsC+zbbQ9W8sn8nAeJ5Hv7tv/23aLVaOHr06EzSNFU7p/AJYspYWFjAcDjEjRs38J3vfAdxHOPmzZvodrtYWVHFaoEyRlWHXdH9SJgdHBwYypuvfOUr+NM//VMwxgzn2draGs6fP4+TJ0/iypUr+PTTT/Ef/sN/MBWl/sW/+Bf41a9+hdFohHfffRdf+9rXTJk9u1ALeUirEebkVXNdt1QcmPqfJIlh4a2a7U8jwOxW7NazNTzrhBkTWosUAuA6DUsI9PtjHFk+ila7jTfffBPckWBMIJeZoufmwPbODjq9DhqtFhoNT2NidP0cIosh0ghMFzWBZMiFgOO4Jc2CoZiDo/EUo0mExZUj4E4AVexXCzWdIypEDijlrZTxYAtxMiFTkWIymSDPcnDO4Gj8ytaUbQyNIuufdMxtrLR6TfU3B+c0d7kOIgYgdDYAAObSsygzknFN+w3teQbRI1GYi4BkGYIG8OyFk+g12yo388um2qM8adXFQYv24sWLCILAhDbYzSZJtL2RYRhiMBhgMBhgdXUVm5ub6Pf7cF0XaZqWWDIOA7AJJ6IJSvFnzWYTa2trJg+R8JFWq4Vjx45haWkJaZpib28P7XYbw+EQruvi7NmzuH//PsbjMba2tgxWR6lU1Cdbu6ozQW3NzG7kXa0uqOpzPc57Osw5Y/epVgOkZUsLCAqDyoXAZDxBvqCE+7Fjx9BqBfB8DuYAe3s7GI6GGAwO4DcC+GFYGEWStC0JKTJIkRlIu2I5qVubf5T5mKYp0ixD2GmCcwdEhm178AqTq/zs9sZAAp3gBjPeFYFendufdzqQ2iiUSqWwOmh8Tmtp0Np9pVxUkSta6KRFyRtyFyjNzHEkFpe66ATdLzUzuz1qcVQXCS1MUquJaZW8OPb5FBJB5mMURYZDf39/H/v7++j3+3jmmWdmUqDsvj3KfLLNU845zp07hyAI0O12sba2BiEEdnZ2MJ1ODQPIZDLBw4cPjYdxe3sbo9GopHWlaYrbt28jDEOTGkWC1A6zIMcIjYPdSGugwhfz2mGY3GfBemzs0SwYRuC6MHgUZQeoQsAp4gTIBQdzJPJc6HF2IXJFrQ0JeFxxj7mOAyCHEHnpHTKp5xH0MpSAA8CsTQBJkiFJc3TDBrjjAUw7M1hV8Jc1THuO0IZC74CwPfohmnfb8VJc9+nGdN7nhEkWzBkW24vlBJHMDidRx9lReWAcFFdLprli9ZX6fQHM/5IC6FBtrA5boJdRzeMk88nzPHS7XZPyRAu+2+2aiZbnOfr9Pra2trC7u4uNjQ1T7em73/2uidqvgrrVNCb7hz6nuDNyHvyzf/bP4DgOTpw4gcXFRVy5cgUffvihCc946623sLe3h48++gg7Ozu4fPmyCWi1C5BMp1N8//vfx7lz53D+/HmTMeA4TiklimiLSFOtmnzkaKAQEjLt6Zg6vKvunVUB57p3Wr3WLA6qFgVnHAI6f1BCl6VLMB6NkKY50kzzbrFce/w4PD/UJej6kCJHM3TQa7XQajTgcA6RpxB5qvItRVECTwkyASElXO4oZn+mE8wnU4wnCc52l+AETUjuqVJzOn1HQII59aEshnJHPzOl1lGoD1E+3bt3D61WyziMbCvjUQ6WumbjdHaz4QUOrmmwVTkDKTIIXVCFcaYKqUihntOUvKPiKkWepnHUABoDVD+eC7jel8Ks1OZpZtXvbfczCTUKk8iyzLBV2OdR0Cxdgwr69vt97O3tYXd3F/1+HwsLCzg4ODDl4+xrHGZuUr/sRGvGGC5cuABA7dDdbhcbGxvY3t7G9vY2Xn31VZw5c8aYlBSXFgQBGo3GjFl59epVtFotnDhxwmAvVQ0UgKH+sb261HdKPCcscZ4gqjMPH9cL9yihqLCq6kZF7A2aZyzPEScxZA7kWa5SblgO7qpwDMdxkaYx4jhCEk2B3EPDc9DwXTjchRCZiraHviik4u3Sf5q+MWbM0yRVoRl+0AAcD7mOxVLKGANqnssWJraAz7LMEHZ2u12TahTHsYEw6vC2z6uV8FATiwKDg0HSd1ovlqpylDpICbPCzLSokiiMmGnmNwY4LuCz33JhVjcp7M/rsJzqC68jcSSPXxUXompO4/EY3W4X6+vrZmJRhXCbiudx2rxJaOMlAEzWQLPZxIkTJ8z9e70eptMpfN83tEQPHjwAoGoSUMzS9va2oQtijOHmzZs4f/68ia+r8qiRl9XuZ5Ussa7v87SqJ22PPJeAGBvD0n1zXSWE8zxX9Sy5ZQ1KOpmBcweu40J6HjhjSKIIQ5HB91yINFHCB2XTiFSL8nwDkiQF4xyu54ExB7lkKBgyZjWlR81d28tNx1T57n4dbUarq7psTUQZffEYmxPo0HJoCnl2hVC1RH+rhRm1R2lkdrMFFGETNn/XdDpFFEWGKtqo2pxje3sbW1tbuHHjBs6cOYMTJ06YsIlnn30Wa2trJki1OuHs38kkIIFQ9SLRZ0QXRASNjuNgdXUV3/zmN8EYM5Wdbt26hV6vB8/z8K1vfQt//Md/DCklXn75ZXQ6Hdy+fRsffvghzp07Z5LS//zP/9xkCVDtTwDG2UDeTLvvFNJBTgXbNKG+VzeB6vupjsHjtqqWy5gOlWASzFELTOQ5hATarSYm4xhpkiDwfaMZMQ1iKz2Lw3E8OAFD6DngYor+/g62ozF8j2GxmaHhamlppJlavJwpZ4IUGtiWEsPxFNwN0Gi5gONCCCp5W+aRE1a4gj037HkgpTS8dzY5JhENEGRhc9TNc5R81qaoxYviwkLkGv8iIa3fAVNPRxkB9rOBxkGPFeNSF4uXEALIMkDm8kth9iStCpZW460458aMshOxqY1GIzx48ABXr17FP/kn/8SYoxsbG1hbW8OFCxcMO231vk+KZ0ipksxtmiLXddHpdHDs2DEjaJMkwebmpqladPHiRTO5qWTeZDLBvXv38Morr6DX64Exho8++gjf+ta3QM4Nwurs8BY78t9eNPM0s+qimuehrD7nYWNQHbPid0YQDB2t+y/h+x7G4whZlsL3VAQ+Y8WxUnsnORxVaYgx5FGE6WSEwf42fI+h5TTRcCl6v8KtT6C4/kNIiShOwLkL3wkA5iiuLigBap4fRpIe+rwAzIZi17C0U+G+sCYLXQxaYKmx4MXn1RPM+6ePtIarTW0aSanhtVwAMvtSM3uiVt297AVZBeopop++T5JEsZRGEZrNJiaTCXzfR6vVMrQ/hMHZmkxd9Hxdnw5b6FVHAcW6AQoLazQaaLfbmEwmxpzs9XrmOSaTCYbDoakfYF9TCIHd3d0Z7KYab0dmb7W/tjZJf897zsd9L4cdZ/0FWhSE3BCWZbAnxqwqQlJjOQXDhXVhcAaIPEOep3AbDTjcSg+3zSImQa48kktSAlEUgzsOeBDCgEul8At9MMVrydlNznZOzUvwn2eeftb2qGsZYVz0BMXYqN9l6TrFOwB9SxqdJNzMgRQM/eEQ/YcHXwqzJ2l1moXNXw8oDyBpRIuLi0ZbOzg4wMbGBvr9Po4dO4bNzU3jZQzDEO1221DvUKMKTYwxEwpB/bCFh53KZIPA9t8Ui0aFTvr9vmEAXVtbw8mTJ7G5uYmf/vSneO6557C8vIw0TY3X9ebNmzh+/DiWl5cxmUxM7Fwcx/j7v/979Pt9g/0RFThQTM48zzEej03OHsU+2Z5hALUmZnXM6Xq2mVSnzT1OY4ypCH7pQMgEWaY4+znjKtCUM0iWQ0KNrwLQGCA5tK0DKXN4DpCnEeJohGPri/BcRwHUUplQDCpVSXAUAaDgADhyCTzc2UN7+ShaC8uQcFQAq+SQkkMKOsfima1spKQNkyOq0+kYwgIaF9osCeOsmvlfVFPWtgL5jfVtIYsGYWSKs0z1XwXTqsBhNXYe95CnDFc+vYUf/X8/+ZI2+0kaTYgqfmWbm8QGO5lMSikdk8kEDx48wGg0wtLSEvb39zGdTtFut7G2toZms2lMVFszA2bNW9vj9zhaCQld0qTiODbxbYPBAL1eD8vLy2g0Grh27RqOHTuGU6dOmefY39/Hw4cPDQ+a7/sGTM6yDFeuXMF7772H999/H9euXTPsHdWxi6II5HGtmoDzTMJ53z/Ks/vIRqeXtFa7WpEyLZWVR5HphY1na3OQAg4DRJYgTSI0Gj5chxg5irxCKZRwKzZFZToJCQwGQziuj2arDVrIpBXK8j+mz9VxIcFV500GUJq79th+sa2EiGltt2o7k8bMwVgRN0nBzWrMGTj3kOfA5r1t/PTv3/vt1szmYTPU5uFUVSFSckNb2locxwiCwMT40OKfTCbodDrwfb9E3Pio/h0WavA0z05aH5WRI/JGwtP6/T4AZYpSzBilMhFGRtrkwsKCMZvH4zEmk0ktA27dInqcRfU0i2+e4COTxwoaAFX6NkHAkgppFCEAtN7ICWDOlxJS5FBVuC3hpY1RSeAOPYeFIxFOJ6A0RMX5X5hatmFLV6XvzLNUNjegHOdlj4FtXdifP6lD5eka01oZg4mCrTZrk1HyWyqsTJ1eOoi6K3Qphd9qYfa4rQpY00+V1ZR+J8/e9va2Kco7GAzQaDSQpilu3bqF119/Ha7r4saNGzh69KhhjAWKhUvXKUWSWzuwbU7S/Q8TeHY/KdeSMWbqFRBt98mTJzEYDPDxxx8jjmOMRiNcuHABnudhMBjg4cOHWFlZgRAC/X4fo9EI3/zmN7G0tITBYICNjQ1kWYbFxUVzf+q3nd1A/9sBnHXNNpXo+aphH/Zz1n1eHQt13cJkzfIMjufC0xsMmcMqZ1H70jh0yIQSRtzl4DnApECWTCGzGFym8BwJBqEFosqnZNRnzsCkzgeVQJYLJFmGXHJ4fgNB0EIiGSQstgyY5auFwexzVsNe6jAze94ShFHFLn/9TZnfbAY/o8YAzTSrlGG1kRR7vVBnSyXA1Fhw5Ln7pZn5pG2eNmdjU0Q6OBgMdEqM0sYo6v3Bgwc4deoU2u02tra2MBwODVZma3k02ao/VVPMFmbVZgsA+xwKnQiCAKPRCK7rYnFxEZcuXTIV2W/duoVr165hMpng+PHjcBwHk8kEBwcH6PV6kFIaLey5554zxJSbm5t4+PDhzD0J16F+0gKsahHV/ttm8ucZRlBsBtIs7iAMMI2mljlMpr6mmiEvaKnfAiKNIfMUTOZwVaQsqC6kEEIHhTJdWagIA801NY4Ah+MGcL1Am1G6mLC6e9k6s8bG/t0emzrqJRu+mEdg8OtvSlgdXqiFHlYWWq0J39BbiQSkYNpKZRDC+VIz+6ztUdgPeScdxzFVnOgniiKTdlLVqmpNo8+4iOd5DavmH2lJVCqPCh4PBgPs7e3h4OAArVbLZAHYpeYojSkMQ3M/ov2xNdnDGGsPM+/nHVvVnue1ed8Tpz5nijpHVQ0nfKy+P5DSgPxJEoNBauAflsCCdgDUPCcYcpEhzXIVLKsZU6U8jB6x8MLOGwubh848nw7ReVoz//NqxmQmz+RjBc0qD7BkqrJ5carS2jxP1Yj9Upg9YbO1BGB2gZFnjrx9xC/Wbrexu7uLe/fu4eDgADdv3sRwOMTm5ibefvttg0HZxUHmYXJ1faK+2DmcdjIxfW7jenQe7eKMMURRhDiO4fs+Xn/99VK80jvvvIMrV65gc3MTr7/+OlZXVw1t93g8hpTSUId3Oh3TN0rZ4pyj3W7D9/1S1ahHhV3UCb6q4LfHqE5o1x0DKEtOQhUC5qwBz/eRpgfg3IXjqMUDOxCjUBogZQYgA5cZ9nYewGECi70OXA64cOBIDkjttYVELjI43LMcdwyTKMZgPMbC8hE4XohMMLVwpayKUt3vXCsn5ewSxpjR7rvd7oxWRjUsKd/289gcn7xV78WM1lWkY7DaU4QU6jDuKNYNISFEBsaBxaUeLjx39kthBsyCqI/a3avJ03ajYFlKJ6FiIc1mE/1+Hzs7O0aIDYdD7OzsoNfrAQAmk4nRWmxmWerjoxoJsLqUKMaY4TmzucSAQphJqQJtyX3/3HPPodPpgDHFtvCDH/wA77//PnZ3d/EHf/AHWFxcNPU3qfjr0tISVlZWSvemmqDLy8twHMc4BqSUhmK7+hyP44iZd8487dP+X1oKjoQq8cYYg+d6Oq8xB+CZVCYb8mcURCszMJmDIUf/YBfNhoNOuwmHAy44uFRZBYwr0zTPBbgsKKLBgChJMJpG6PSOgLsBclF4SaUNkjN1d9uZUH2/FK7SarVmhFmSJBiPxzMezqdxrHz2xiq/zwoyLeuLvUMopg0HGj+TElLmYEyi22vh9OljX2Jmde0wc+awY+xGuBR5/8hs63a7pj4lVdam6z0udlHnvXqcdqh3r+Y6tvbGGDMhGTbA7Hkeer2eCay18Rq6JoWCUHK9XZW92p/DTMvDzPB558xv0vq3jJ8VZre5IB1lnU9jJgEpkGeK699zrcrvRVgsFHhPwqgwsJT5p+nROS9YV+k4VgSbsuLjQ5+7DoOsavv28U86jz5LK25jCS97mOyvzZcow4bSGlMOBIGHbvdLM9O0J/XmVM23uuv1ej1DdHjhwgV8/etfx9mzZ7GxsWGEwNmzZ038lU1aWMV/Hqd/9u5cvZ6U0kTl2zmSgKK8scvR2UKIzGYhBF588UXs7+8bJlPXdbGwsIBvf/vbuHLlCiaTCb73ve/N9PPevXv4+c9/jkuXLpl+PPvssyYftKod2AyqNtBeBa3nfW7/X2dmFkC4Kl8mmYTreSqtKIrgOC5cx9PsFzHKxNXKEQAGRfMjEzCRIJ6O4C020Gk2ASkghNT0PtAUQLS5KUZXx3GR5gKTKMZwMsHaqR5cT6UyMcYhJEDeS0vUw86Or9JC0TPaxJ4ATDpbkiSG38xuX6wDANYDkQZa1akEiAKIEsE4d8z4C5mDSQnHYXB9YG29CwdnvhRmT9tsYWZHsNNE4Zyj0+ng4OAAe3t7eO655/DVr37VgOeTyQSrq6u4ePEiptNpibaHzgdmA2fnmVwkEOysAYofo0ahBvaPlNKkUgkhTHQ4oEwTqlDNOcfFixdx8+ZNUw2KqrN/4xvfwH/9r/8V29vb+N73vlfqJwBsbW3h/fffR7PZxO7uLqSUpigICVj7eW1HBDV707A1kOq96rydh2l3xP/veh6EUGa247pwHBecO8gyATBp0p9JceKMIRcphEjBRIIkGsNzVtFuhqrGptDL0FF4D2eOLpQbwQGH6zmQWY5pHGM0naLR7oB7AcA4GLHLyiJOjQGK+0vqjAJrA6gKMztgmTQyCsi2N0lbI3scU/7zagYDBGCxNBbfGgxN/ajgWcq8UPOUQ4XMuJ7Eymobq8vN324zs6pezxMQT3pNu8VxjMlkYhK9KQ8yDEMTGkHnVQXXYdet9vNRxzxts8eIgmIJRyNtjlKXCP+y+2FTIhGTA4V41DE3zHOuPO2zzb2G/auQcLgS4EIIVQ/Txtv08fXwg4DIc3DGTJUgsqVmcxHLhqraTDQSxwnHfLI5V9U8686d52SpM/N/va3OlmSV762vas6wsU76nnMGz3O/1Mwep9mLrc5LZjd7gkRRhHv37uHu3bu4desWjhw5gmazidOnTyOKInS7XUNDPRwOS5H11XtXd1T7frYJaptoVT41u0K6LUSqQsVuttnreR4uXrxocL5+v2+eY3l5GYypgirLy8tG49rd3UWe51hcXMRXvvIVTKdT9Pt9/OpXv8KpU6dw5MgR+L6PwWBg6oyS2Q3AMG/YtEhVza3OhHwcTYNzhjQTiLMYSws9RNMpJpMpAq9liudSAd8CPtMAPpNwOJBFEbJRH51WA4HvKt+jDuZUgL0w0lA9g9LxhBCYRhEYZwibLXDXg4QDSF1mjsh+zLMVpdWq75680L7vl0Ji6PlJ86eiNnUbxhfnBKgFxmCAxGpArTa3pSTRRzmbys+b5zmko8bst1oze5p2GBZjf0/CbHNzEzdu3MCdO3eQJIkRZufPn8f6+jqCIDDePSr6W6chAjABp9VjbKFUJ3jpmKowox/7s2oj7yfnqhTds88+i7feeguMqZCLg4MDdDodkwZ1cHBQohTf3983wuyVV17B1772Nbz00kv45JNPzAKkvFQhhCmzR32vCjP7eWzc73EXo70ZMEal/xI0Wi2Ac0N9zmhcQMGrhU9TQ/dKmGUxJuOBEmaeYywkJskrqXQLCZ0czwq2kWk0BRhH2GiCuz5UWTnFBjGjGUJpgZQzWp0b1G8SZnajzYFS635T5mXRqvqW9bnm9S/yLAoGYNLKGAUe80LrZPzLdKbP3KqTwRY4hF+5rosoigzTLAXJklCyf6/TNujvJzW75k1Qe9euE3z2d9W/KbuBc26YbGmx1N2PtALiPCOWj2oNBSoGU3WAPI2p/1hNuxNJOFmITek3xnQohpRkPcLQ0WhwP89SuLqyOGVT0g1K4yINUgRIXXSEMTiuA1CST+G8M5oZtMNBShU3bz6H7YUtl0m026PMTLrOvLnwubbSpaX1f7V/VRPU/ty8CEgJZHmOWIgvhdmTtHmmpS3IGo2GyTXc2trC888/j8XFRezs7ODHP/4xTp48iRdffNHgTrTQ2+02hBCIosgIjOqkqiN8tIHxw4pSHGaKzXvOahuPx0YQt9tt3LlzBzs7O7h9+za2trawtLSEpaWlktf08uXLmEwmWFtbg+M4xiGyvLxs0ruSJMFHH32EpaUlnDlzpqQNEoHlPI8xPUf1uataXLVJKVVxEga4nos0VQGnvucpHEwA2qhBCcAxsV8CDDmSZILRqI9j3SZ8zwUD4DqO1swKTAdgkDkJaQ4BYP/gAHCb6PQWAK64uYSpXq5uJaTUmQFqwVuQ3IyGZWv59tiQV9reGOo23y+2aQFGgKRprPTDiGlXm5pgpPEy5EICkmP34RA7W9tfmplP0uoWj/0dYyrSv9PpGM/diy++iDfffBM7Ozv44Q9/iJ/+9KeGjYJ2Q9/30el0TLyWHYNl34/AdHsHtYVZnTZF51e5zqrerMd5ztFohMlkgiRJ0O12sb+/j48//hh/8Rd/gc3NTQghDF5Gmuknn3yCyWSCo0ePgnNusgGOHDlinB9JkuDDDz/EjRs3zLmURkUMuPNM4Gpfq5pu3Q89o+InU+kwSZoCkPB85dUUQkAKoTEubWrq9adMHwEgRxJPMBzuo9NpGszMc104FQIC1SconjKmrre/tw8whu7CAsAdCMl0SIZeyqzgMKNnLGF3lZ8wDGfCMkiYUWBydcyqcMMX4gwwtD/aYzlDA8QAPeYMzGRQSGhPt2RK8OcckA62H/bx/i+v/nZrZnWAep1GU/e5/X11sRDlD7G4AjC5mVEUGRZa+57EKGHf89fVDtPMDtuh7XAOO5SC6I3IU0nXllKVPCMBRRWCoigyGiwttiRJjNlK40Pxb0DZ/Py8Fp3tNBGCzF6ic54dh8rMACCh6mPmRnjNIl0oWUaFlieR5crMNO+dcLlHPdqc90bzyH6/djaJfWz13C+qle5ktFyNlc2MOTP/loZQ29xU6T1JMgwG499uYfakbZ5go0lEIQc3b97E/fv3Tbm4paUl/O7v/i4ePnyIMAyxtbWFEydOlCp+E6HhwsICkiRBkiQIgqDkZazDj2zBMk8oPwo7q55b/d72jpLwcl0Xp06dgu/7mEwm4JxjfX3dHE/HTadTZFmG+/fv4+OPP8ZHH32EBw8e4Pnnn0en08F0OsUnn3yC48ePY2FhARsbG/jVr34FxpgpmLK0tIR2u22KpQBKm6vTSOvM6XmaZp7nYI4KMo3jGEKnNDEdHsGg63oyfQ0SGFA6RZYlECIDIOG6DhxKW8qE0eAYI6+r0jaYVPxlaZYaTNUPAuRC86dxe0nqtCnrb7v/9D7yPDeceNXns+MEq5WZ7ODqL9wBQLczZqaFNZI5KQvfJnVPCAEIxcLL4UIKoL8/xo1rm18Ksydp8xaHLcxGoxHee+89fPDBB3jllVcAqJJtb7/9Nm7fvo2dnR1THMSmNSacbGlpCQ8fPjTU1LYJQG2ekKlSAc07x/6MJrctGOy8ULqHTc+dJAk8z8O5c+dw7tw5k+9HnkcK0kzTFOPx2JjH7733Hn75y19iOp3i3//7f49er4ednR188MEHOHPmDMIwxNWrV/HDH/4QnHP0ej2sr6/jq1/9KlZXV00tSAAmSR3AjDY4T/OsPmeW5fBdH2EjxM7+QGnH3NWCTIVQ5FkO1y2CNh3GIVgOyYA0S5DnWdm0lOocpkEv7jDkMgckg6ODYUWeI0lTZCIH91wEjRBRpii5HeYYRwGzaW8qz0Tvh7RZmkv25kbUU/b8tMeHAr7tDeDXL9S0IJNWjmrFAVAqsUdmt9kocjDB4EgXnHmQOcPezhBXPr37pTB72jZv9yeK7H6/jyRJTFwP1ZwcDocmsLQ6iQgrOiyR3b7/o0ytX5dnivoeBAF83zemNH1H/9sJ5EIIY2KmaWqAair0EoYhXNfFwcEBJpOJMVtpvGwcrA6vrBNchz9EoTk53Cm0J+VYnMWlgZI2wSAh8gzEWca5zVtLY2+fRNfT+KfIAcZ0rQGnMGxZtfBH0Q8C/+1Ho3cxr3hJ1Wv8OGPzpPDD47RCbNl1DOYcWLYp1QOXTHhqJLQFptP4S2H2eTTSTLIsQ6vVMoLr7t27+PTTT5FlGS5evIidnR3EcYxz586ZxW6zGDCmAlOp0O50OjU7arU97sR8mvaoiUv4FwBTIGVhYaFU1mw0GuHmzZs4ceIEOp0OVldX0Wg08NprryHLMmxsbMD3fWxubuL27dt4++23EUURPv30U3zlK18xtTg/+OADI9zCMMTBwQGyLEOn0zGZBXUhBvNMy7JpnQHwVdFf6UKl1nAwJgEiZdSeM0nuRZaCIQOXEUYHO4BI0Ot1IDmD4Bq4FgzKNpWQgoNZy0wwiWmWoD+aoNVZhesvQIgQDL6qB6AdC8rBYKNGtMo5qJYmUIRd2PF59MxEcmB7LOtSwh7l3f58G3mllfar72w+Iy1NIgdYDvBc7wFcm5uqqInyGVDKmITrfVk38zM3xpjh58qyDAsLC1heXkav18P169dNYeCzZ89ia2sLnufhtddeM6ZYlZLF8zwsLCzA8zzs7++Dcz4Tl0b3BcqL9XG+qzb7e9tsrX5Hf9Pv9Lx5nmM0GqHZbMLzPHN+v9/H5cuX8cwzz+Ds2bM4c+YM7t+/b+pyvvfee5BSYnNzE1evXsXCwgIePHiA9957D//lv/wXrKysII5j/O///b8xHo/huoqA79atW4iiyJidNisJNdtMrvP+0rMImYExwHN9QLjaqmHgirsHkKRt6eK/XACIwZGAiQiDnfsIeIKlpR6kw5BztUAhHS34FPWz6pvKAZVMYJJE2BsO0V1Yhx8sIc+bAAu0fy+HgMLhlAYjrPAQBiFdUC1N0ryklGg2myVzmzBLKmlIGr89HsBsUv+TaPOPYx2U5hqTkMgAqTzETCqNVGm6RbaEyn7IAJaBMaVZ6t4qwSwZmFRFnAXTwiyQX4Zm1Lnt676v/m43mhBU3ZxyLpMkwWg0MpQ3VIKO0oGqsVO2qUmCgSbmvEnzpFjHYc9abYd5DWkhkfex+izkuWy1WlhYWMDS0hLCMMTi4iKWlpYwmUwwGo0wHo9N9DoADIdDLC4uYnl5GQsLCyasgPpMzhGbUPKwMXi0lglQqETJb8bUD9OBrIUGocMJZI4siQEpTKFgWGB16b6yCO2QAHKRI8lSuF4Ixn2oNHZu7i2NdlKytajHIH3NFkDVWLGqJ/OwcXgc7+ZTa232sNqPMfMlq3yscTTb40lfUv/oP87hefxLzexpm621xHGM+/fv4/bt2zh27BjW1tbw4osvotvtmkX3k5/8xBQ1oXAEwtNsWhbaGV3XxdLS0gzQXQXsH9W3J5mEjyvgqr9TbBP1XUqJTqeDZ555Bs1mE2EYlkxmx3GwtraGNE0BwBRLqY4FCS/SYu/fv4/9/X2zeGkMq9RGdZia/TuNn68F6Hg8BucMjsPh6DANjgopJl1TahNU5ojjCC3fRxgGyvTRclBIjeYwpixXkoYaz07SDKPxFMePtlWQrpCAwwBJ1b51X0tBCSX3X2n8bY2T/qZ+00Zga3Hz8LMnxcUef27ZxnKN8Ko9Q5vU2sRnipZR3VcXgwE4mAMcP76Gr7/1xpfC7EmaPQFoxyMz8vr16/jxj3+M73znOzh79izW19cRxzGuXLmCjY0N/M//+T9x7tw5rK6uQkppvExZlpUCHWmyBUGA9fV1bG5ulhKF7cU4b8e1+2bTE1VbnWeTMTZzTh0GZXvGbGZTwmUWFxfx8ssvG42ViqaQ5krJ9p1OB2maGjpnotumRqEdWZbh6tWr2NraUnzvrovJZAIpFZ0Q59x4UO1Qg3kLNM9zBGEISGDQ72uiSQeey5ElqRIQYODagyulBIcsSsqJHJPJCEvtBbSaTXCK+jcVlZRwE8ZzJwyQHcUJ+v0hXugtggehqT+gBth6H4QrCfqCtJIyXmbjqvQ3WQtpmpo5QzinLfyqua11UMW8uVMVjI9uhEnSONlIP4k5+lwl3UvBAc7BuAtoU1RVu1KU5o4jcf7CaawuLX0pzJ622S+SFitxdbVaLbRaLQCKy4sxhq2tLZw6daq0SwKYoYymRlrKYZxddFwdAP7reua60AeKl7OFHpFPZllmPJI0Xo7joNlsGgG0tLRkFiOZm7aZRL+PRiOTnE7nAoXG+iRpOVJKOJwjz/WCd4siIFISMwYzCoSE1PmZ0mhnIivqPRS6hzqamTxN9Tf9K0GBxirMRHKnLMzsxgrhKAt355xD62MQbcC/Tiv7LJrZEzeNjRWCrAD8qweWeqKBNcZ48W6kyhxgDGi3W2gHrS+F2ZM0+8XTbuh5HjY2NuA4Di5dumTA736/j3v37mEwGKDZbOKtt97CmTNnsLS0ZABr2jlHoxHCMDSsq3Yjs5SwIjteqIqRUKsD7J/k+Q4TiPa1SQOqMl0AMOAzxaZRv23AnrIA8jw32QOe5+Hu3bvY2dnBYDDAiRMn0O12kWUZbt++jeXlZaytrQEANjY24Loujhw5YgqqcM4NjVJVG6FnokBTJTgzfX8lRG2tVIUR6AWnwyoYA/I0RTIdIQwD+L6nw6akKuQoAQYrnovGVF8zimIICYSNJohVVmUdzIz0I9/X4+CFNL7Vik1PC0XY137y88oYmemxbUXr44o0Mg4plXZKNRG4Ls4sZAYwwNF1Gr4UZk/Q7KBU8jIGQYBPP/0UrVYL3/zmN+G6Lu7cuYMrV67gL//yL/Hcc8/hzJkz+Hf/7t+ZcxVGww14vru7i8XFxdqqOr1eD77vGwFp1w2otqrwsrmrHjXxbG2r6sa3NRb6nXAszrkpSWffO4oi7OzsoNvtlvjSKG2JMYZut2uKD5Pp2Gg08Mknn2A8HmNnZwfPP/88VlZWTDL69773PZw7dw6MMfzyl79Es9nEa6+9ht3dXbiua3JcyeSsar4kyJIkUXQ5iJCmCZrtFiQEsjzVFZmqYyNAGYJxGqN/sI92u6Vi7Jgq9Ev+AQaF60hISCHANX82Ywyj8QS5ANqdHjhzIbmjhJ++l0HGWBG3Vjggymt+niZqOwU8zzNaMW2WNkxB96pCCY/T6vJlH+MsSzMrG5ownzA43AFjemwkRy6UosoZh+MAUuQQWQrGJBwP8L3DK3F+2Sqt6r4mbaPf74NzjrW1NTCmiPL29/dx8+ZNjEYjeJ6HM2fO4MiRI2i1Wgb4BqD5tOJac1NKaQQm7bDzgP/PQzN7nGbv7mQC1mmURA1U5VAjIUiLq9FoYGFhwThKKHD2wYMH2NzcxMLCAsIwhBACBwcH8H0f3W4XgCJ+3N/fB6AYfWlcqdiKjeNVx4UyGjjTgD9jhRmp7KHSItNnQgXL5kjiGJ6n7mOMJVl4IOd5gtMsh5SA5yn+smI8NWbE5pl7T65hA7NMKvO0+XnNxlLnnVMN7Sj/WOdIGEE2EwJbddqA7mnsfHOI6g9AoRycSXD+ZZzZE7U6rxiZSNPpFLdv38ZwOMS9e/cQxzFeeeUVSCmxvb0NoIjNIvWfdk9ARcJPJhO0Wq2Z+1DAaKfTMfFDBtuxhGtdX59GoM2bsHZMks22UF0kFLIBlNlgq/2j57CJGam8XRAEaDab6Ha7SJIEe3t78H3f4GW0SVDmwJ07d7C4uIiVlRXcv3/fhMc0Gg2DvVFcHACNuaUqSdxxbBwa3LGwKm1aMkB5G0WOLE0wmYzQazYQ+r56dhNPVkhBBmnIFEnMjScTCMnQaneV+JLK42lrX7PePlajwZTHssogC8AEYJNHnGAKalUGjadpjz6vbENSBoCkGJa651GdU09NY29CNChDQhU5AYA8l0jEl8LsiRpNBNtblqYpWq0WBoMB3n33XTNxwjDEd7/7XXz/+9/H9evXAeD/z96bLUtyHOnBX0RmVmXtdZY+p/e9G/tKQOAukJyhFs6IGhuTyWRaLnSnR9BD6AlkpguZSXdabGYkmkaj+YcLSMyQAAEQ3QAJ9L6fvfbMysyI/yLSozzjZJ3T3ViIBhCwg64lKzMyMsLD/XP3z20lcyFEwSyjHDpKGHaLtBKYHgQBhsOh1VDcvu0l0O4n3sj9DQ+1AGBL5/HCJ2XXnU6n9jgaK9drRjVF4zi252+1Wvjud7+L9fV1S4MUBIGtu1mr1Wxw6L179ywPXLVaxdtvv43Tp0/jySefxIULF3DkyBEcPXoU3W7XVlQnr7C9/jSvEeoHQO5tNBZhHvOlBDKtDL8/ctNGJYijEXa2N3Hy0Bk0GyGkMGGeRvv0oFIgB8/geRI6D7lQWmNzq4dqfQErK6vQ8KzmovLjyYMJTawQbBM1EpWcooXxJLOZj3UYhjhw4ADW1tYwnU5tNgBprlx7fRBhxjW9B2k6t8O1lky8EXMuYYt58KuUec1SQ0/OdF4zLyHgexVACySJRjRJvxRmD9Jc7ImERBAEiOMYW1tb6PV6qNVqOHjwIM6cOYO//Mu/tPxlpLFQTBXXmihfk8wffk0hhBVeZJLyoNqyfvJ/73ei7jU5OZbGsbOy33BzeK/+0XGkLTWbTRw4cMCyzhJDb6/XQ7/fRxAEdhPg+Zue52F9fR0HDhyAEAKbm5vodrvQ2uSPkvlJFb+BPMlaZVBawbPaCi3SmUlT0MyUAnJm2TiKEFYqCILZEuImI5mkFtzPNa8oilGpGQeAFpJ5Ka06B8Ck6xRGzp7X/OsKlLIQHG5uc/OeTH7++3nP6pNp5j525aDmTeSeZApvkQB4HoAdKqtcaCTJl0yzD9X47gcAq6urdiJQbiYxq85b7FwwksdPaxN/VqvVCiEKXDiRNkKCjAeN0vFlO+f9aGXz7pX6wGtrEocZ9ZM3ivVynQLzvGkcg+PaA2kaN2/exJ07dyClxGQywdbWFm7evIlut2sJLYmeXEqJzc1NHDt2DFJKXL582dLgUDwa9TlLUyil7fgb/IWeizD5lZnINSsNKUytTOgMvmdyBM29zGpZ6txeNAA+PQ+jlaWZMkyy0oMfVGFzPh8AD3MbbYpxHFsaIHfMKcSHeOK4VcHrrLoOgU+mWf1qzyOkALRQZmylZLEpRExuTHSVATubO7h19UsKoAdq9IApxok0qaeeegqLi4toNBpWKztw4IDFc9zJwicQAOtxStMUGxsbWFpaQrPZRBAEuwIjKT5rY2PDTkZXS+NmIceIHtYFT43qcJJHttlsotFoFAS7lBLj8RhpmlrHRZmAJQ8nNdIcBoOB9di2222Mx2Nbd7PVamFrawtpmuKXv/wlnnnmGRw8eBCbm5u2MpHnefjwww9x9uxZeJ6HH//4x+j1egjDEN/73vfQbDYt9jYcGNqfSiVEkiWQnoD0RJ6WVjHOgQxGI0MGz9OIkgg6SxD6HnzPxJJlWQpfGnWOTCkC8pUydEFKa0zTFKkCpKygWmthkua8/1wVtJNtnhNAQCMD8vlEgpiyS8h85J53MrXJ3B6Px5hMJpZmijYlLgjdja8M83xwvI3cvYQrzhPkCtLTADITfgGZx+IJSGkyJsxGIJGmwKUPr+Ov/8/ffCnMHraReaSUwsrKCrIsQ7/fx8LCAo4ePYoDBw4AKOcWcyvkkKeSNDMKZ3CbWXgmaXhra8sK07K+lTkA3B13rx2Yf8edHWSicHZZV1ARbuhqZvwYN8yD/iXNLAgCy/8/HA5x584ddDodTCYTZFmGW7du4Rvf+MYuzYzMTAK7r169is3NTZtpQBiklBJplsLXPrxQIk4UZF6UpKg1AtxsVFkCqMwUMJHc5OML21R1EsixsFwzy5QytNjSh+9XoVO2mOcqZ6K49jUK9idtUkQ3VTbWRLdENSbI3Ob07Fy73689mJZPY8ibuQldeF98TeOubS4suQ7YUblmtrXZwwe/u/ylMHvY5gqBarWKTqdjqWuyLMPt27fh+z4WFhassOKNBAMPXSBzYDKZ2J23bAekwFDSErlXcd5kczU3d3flmic/tgyD49qii7twosh5fSgTatw5kCQJtre3cevWLYzHYzSbTZw8eRLVatWGvsRxjMlkgsFggMXFRVSrVezs7NhwDs/zcPToUUupdPnyZVtTwIRUFGDownOZ3Sd9b7SKaDyGylI06nWDiTE6HggwrEvbcA0hjYk+HI1RrzdQqYaGWVb6cKpEFtY1efOMrMxPLHIvH4pzguYNUZLPa7QhkpeXa2Oc+2y/bIqyeTG/se+FLmqdgv5XFGiC+mEs/Vy4CZhEf1aTAaTpfxk0+0CNM3iSdkWLsNPp2NzDWq2GOI7x2muvoV6v4+DBg4iiaBcTLDcTSGMAYIuGKKVsQCpQnLidTqewsCuViv09z9Ojf+c5C9zGhY1rmnJvLmFiFQpNyH9LwarcAcA1MK4JcA8n73MYhhiNRrhx4wZ++tOfYn19HQcPHsR3v/tdbGxs4O7du/jwww8xGAzgeR7ef/99nDt3Ds1mE1euXMHp06extLSEMAzxzW9+E8PhEGtra/jRj36E1dVVO3aSUekY8SAgWF5jps3CMQ4ADagU25trEGqKg6sHcs8n4Hk+jAszDy4mtD83O4WQiKYx7q2tY+nAKpqtLqaphvQqyLRh5RC5mWo1r4KAUBZfEzDAt0CxhFwQBLaQNLGuAEUtnQQZ4WidTsfWqhgOh3bO0Vwkk3Vec2sL7NdEQXBr9llxXmqaE1LA9wQyGK1ZQ+QxgdJQAGmKNzOMTV8Kswdo8zACmhxcW4qiCJcvX8bRo0extLRkMTZ+Hlrk3HwjRtY4jlGr1axWwUMl6Hr0OVEPuf3k7UEEGZ3D1c54P7hmxq+5H3PFPM2Mx7D5vo/pdIqNjQ28//77EEJgdXUV58+ft5RBGxsbiKIIw+EQt2/fthxxhDlSRsHp06etlkuZBUAu8EURAiB9xzwHAATs58Opswzj4RBhRaDdauw+nk5iTmrTbyCANM3QHwxxYvUsqmENWaYhAw9QGloxA2ruY5qZska4FsfT87wCRTl3IPHxpnQvalEUYTKZYDgc2k2ajtsrwv/+cbKiFiace5n/M+NgMdkYCiKnE1da5wNg9GKa6lp/KcweqLkPkHvGuNpNi3l5eRkLCwtoNBoFFX6vc5KWQkKKwhR4lD3X0MjrR+lR9Ft+3P3unq4A26vxXD86lseVuedzx2jedUm4+76PdruNEydOWM33zp07WFtbw2QywcmTJ9Htdm2tyFqthsFggK2tLXQ6HWtq0RhVKhV0u10bbxaGYa45wR4HmMViMTCRVwLQ2hyrFaBN+Tkv146gTYGSmcSjm8qFozD3nSmFNM0gPR+eF0BIijGjMaDXFEcmSrUWew2ybEuwTV5omj6f12i+USV0gkNok+I4HG06+z3P4vntK3YvTAKV/ZwGhf4pOEMYVaUwY1WtVtBdaH8pzB6k0YMl05AWiLt4ycz6yle+gk6ngzAMrVuc5z26Xj5aeKTdxHGM7e1t1Go1LC4uWu2FsA4ScAcOHECv17MFhDmrqBuAy1uZl5Gblm6gKzUhhPVU0nlofKIosvdIjo0yfMw9Lx1HeFmj0cDp06dtRkSSJPibv/kbfPjhh5hMJvjhD3+Ixx57DNPpFCsrK1hdXcXGxgYuXryIf/Wv/hWWl5ftwqOqV4899hhGoxHW1tZQr9fzgFgT6+V5HjQypEli4peEAJALrUxDZxmyZAqtUngiQFjx4QmTe5lqhcCTOU6tIaUHYShm4XkepirDdJpgPIkRVOqohHV4QRVRppGBECKA2ZiGTkgUPy0+t+KzoTmhtbYMxWEYWrOSO4u4QKKqYJQbTHmrVP6PCEXJ5KR4R9dauP9G1y7/TcGZgpyyXOXYoRWmuZNFaiitsbDYxZNPnf9SmD1I43TMhCsQ1Q810iy01jh58qRlvdja2rLfl4HuXJhQSAXhT1prLC4uFiYuLXwpTXVxMhM4DkcexXltnrt9P3yNewT5uXiqFQ+wdXE3PvnLzE/i+O90Ojh48CCEENje3sZ//+//HTdu3ECz2cQPfvADHDp0CL1eD+122zJr3Lp1CwcPHrS8aGQuEXYZxzH6/f6sqIxNjREmiFaZiH+QU0IKmEgIBZ2lgM4ghQ/fk4DOg35VhsCjZHFtMW0hDBamUoU0r8jkBxX4QRXC85El4DnXu8eZtBkXH3fGi97TBjYajdBqtUpzZulYPt+46UkbEqU/uTGDDy68dt9V8d/dzWpweqaVzTRYAv7z6u4AGs06jhxZ/VKYPUjjE8f3fSRJgtu3b2NlZaUwcbi55XLQ0+/d87reIf6acDS3WjX/PSWku7iWW+RiP2fAfuYlx7XKTBwSZvMEFt1n2XVcTY3i2ugeVlZWoJRCrVZDo9Gw1Z4qlUohzarME8dzE0l7NYJeWMGvUPTAWm+kNsV+p3EEz5PwyYObA/XcE6qth23mCJimKTKlUKlUgTwjYHb7ewgGDi0J2yMLkHPN2fUKp2laoIzi35WNOX8m3DQnDI6EHpmi9Dz3wtXMOdnNFK7Pvyu7dyblNbkzed+NdiqERhhW0O22vhRmD9I44N7tdnH79m38/Oc/x5/+6Z+i0+nYB0VJ42EY2l2OHjz93k1ZoknCtRrStNI0xb1797CysoJqtVqIuqdrtttthGGI8XhsgWAyIUg7o52WzGCa3Dyw1d21XXOCkrVXVlZsnUw6j1LKehh5yAndk5vi5JrNHOOZTqc2DYy0hldffdUWNzl8+DBu376N4XCIdruNXq+HJEnQbrdtMjq/FwpIPnPmDJrNJmq1GlqtFqaxGZNpHMHzJYIKS23SRqMKdIYkibGxvoZaLUSjUYcnTJCAwbY8A0hrBWsl5bLOxB8OME1TLCwdgPQqUFpCZRpCeDOvQ65p2EWrjdjS0OSnMOfTeVFi9vxp7Pm4D4dDG39Xr9dRq9VsJsBemjF5PJvNpiU3oI2F8EaO/9JYz9cAgaIQ8lAAFnf9CLPB0wK29h9RB2nC4QzjrO8DKysdtMLTXwqzB2lc86LwgTfeeAM/+MEP0Gq1Cgt+Op0WNAYOrHMsi9o8DyHFkfX7fZtsXra70oSlKHqebkTCgDRG1zPqgvhuzBo/niY2JXzz3Zk0yFarVaotkEBztVCOJVKjAjAk7Or1Op5++umC0H3//fcxHo/R6XSsAG80GruCdWnM+/2+dZjMYq00JlGMKIpQDQMEwczTZ/jITNm3LE3Q7+1goeEjrFZMVXMBCG1MVMK1lObr0TgHRpMJkjQzHGaeD6UFUjpIGCA7f5LWpHSBf7I0d33ujC9p40S/RPdPIP9+JiJtbhRoC8yK04zH40LdV9rM9m+uimm9HeVHW5BQwBSDASzWpgHDoKGgdArpabS6dRxYqH8pzIBys8/9jk8WKWfFNMIwtMImSRIbVkAPeh4uxc/vChRqbjwaYWgzE6nYhBCFGCP6DXlF6Tfc41l2jv0ajUVZ4zFxrgPB9WzyNs8M51orF2TkgNFao1ar2XoArVYL4/G4YHbT5kJVnQjElnnWQKVSQVatGhwMueNDZACkte6MRp3A96rwPW8mVJzhEoX/GSGX5jmglVrFmpmzWDK6VwbzW1wI7Dsx9y0fY3rNQ13IGqA4Mu6gmfe8+bOg89HY8XVAz8cl8izOcdKmChcoJNMXNjj7/zlOgvx/gk6O3DQuPfoL1Fwhwh8ej2InXIq+u3PnDsbjMU6fPo0oinDt2jW89957aDabeOqpp3DixAkMh8NdmBJQHtQKwF6TMAoudCj0gExFSpqmc9NEqNVqWF5ethphv9/HxsYGrly5ghdeeAHNZhP1er1Ah8MnPRfCLthbFuTKx40KklCeJdUFnYcZcocK4Vb8nnl4QBRFuzC6w4cPQ2tTM/LnP/850jTFU089ZYsPr6ysmBzMvD4DpTV1u10AQLUawvOMpjZtNjCdThAnJu5KegE86aPie4BWyLIEw0EfzeMnUK/XckgAOf3PDCtjkFAewS/QHwyhvSpWjiznUf8yTzg3wswUO3GK/toTafZ/Eq/l48lxUp5mppTCaDSyFbKI6420672i/elZV6vVXd520p6TJCngc5TvKXKT2QrQHEcU9J/IQ2Hy+5EC9lspZn8zq9S8VyoB9MzhobUPIb6MMwOw2zPEX3NBxx/S5uYmoijCkSNHEMcxLl++jJ/97GdYWFjAkSNH8NRTT6HX6xUEDU1AVzPiu5xb+IMEWxAEFhcCUKDY5kItDENUq1Wbh3fv3j3cunUL77zzDs6fP2+xEMrP2ytP1NUs+Thxpg9+D41Gw3pWoygqOCD2GveyDYX+yLPLf+P7PpaWlmzmA7HSnjp1CteuXUOz2cTy8jIAk1FBNEKElQECQVBBJagANcMe2+9vY9qPcy1WAz5MoRNoqCzFeDxELQwRhlUoldiUqIIAy9eeFHm0uxAYjyP4YYBWp4tM+lBa5gGfM4GltQLXS4oDhdy0EkVlbs548vhHADbEgpwz9XodjUbDaq5ljgHeaCOn7BbSlMfjsfV2kua/GyqZCVnkrwW7D3Ky5DcAS8goWWqe9Tnnc4VCMwTBFiao9kthlrd5ph4HwzmnPH+g/X4fSpnivpR8Ps9rNO/a7msXV+L/0q4IYJeG5B5Lpd3q9boFy5vNZkEAzosnc8/LQ0Lc48nrxckPXc55jsXthbXMW1xcU3a1kUajgXq9bhfoeDzGxsYGwjDE1tYWRqMRut2ujbuabfjGFynz+yIz3fNMrB5yEy3LUnjefA3G3g8t0hz3ypSJNzOxa3lO4R4CaTYIZR/tti9d7ZmPIf/eFVo0h+jZcA3NxTv5/fH1QEIrCAKb78rx013P2grl4m0KgtDyhyLgQmpkgovC78yICCRJhnGWfbGFWRkQXvYdqeZ3795FmqZYWFiwDKhvvfUWtra20O128d3vfhc/+clPAMxfkPMmH31HMWYU28OxKcJ60jTF5uampeDhRXDpeJqkFGxbqVRw4cIFRFFkI+TJXCCvF50bKHoaef+CILC7Pr9HMmOiKAJgzN12u23rXvLAS9fBAMyEMl8E1Og111oJB6SxevbZZ23F9EajgUuXLuHXv/41PM+zoPV3v/vdQrze7AKA8CTCsAZI5DhoHuc3iTDubWM0HKDZauSeRYZzmoExY5973WjppUphMBzDr9RQqdah4UELU3FIsk1Il0muApbGP9PWhHU3zb0ED+Va0nymRH7anCiLgjSwec1dE+12G/V63T5jwuYoc0UIaYKIhYD0pHFKZhmUFvByT6UQEpKsbmHUW6VTaJ0BMA4Yukul8/kBabzI2sfW5hC9jc0vtjADiiaeu3MBMzC1UqlgZ2fHkif6vo/JZIL3338fg8EA3/rWt/DKK6/gZz/72QNd311YrjDjE5T4zbIssyYslahz8yFJGHe7XbRaLSwsLOBHP/oRgiDAU089ZYN9yRykHZRAcuqbmzdK6UNu3yeTCUajEZIkQRiGCMPQ8veTW98Fjbmg5jFMboI7F2akEVDcGGmD58+ft/2u1Wq4fv063nrrLXvOlZUV/Nt/+28LITTkMKPq45VqFUElQKvZxHgyxng8RjQcYDjoYzIeol6vW7OpUMFJES25tCanCctQGE0m8P0qgkoNyKtyi7yQiU1Ip/u0nbJPsWTGlKD/bJzKsE4aM262J0liNx7P86y2LoQoOHHK4Ba6Fmlj9J5Ckkig0TOuVMJZ5L4ATFqYgCm1Z8Z+Vmc015qp2DLlSAgJk3CvIZCX6IMPrT3s9Ca4cun2l8KsrM3TnmjxUeIy35kIIN0r5gbYjQ/RZ27jqn7ZcaQ18SIdvGVZZrErek+aGE02oFwT2m9cypgU6Nx88vN4JJdvni86/u9+zV1crplEgbNhGKJer1shT2Yo9VVKaWUCVcecjYOAJ00qkzE9jSnlZ4Gp4sSHqtDn4hgqrTFNUkjPg+cH1szUzk/FnDNo94MHbO6GMG9e0hjyrBPawOi38xpXArjpyWMQZ6anBlQGoTWgJUPCnD4BFhezn2i9+9D86yzNMJnEXwozvjhcHIZrC2Syaa3xu9/9DqdOncKpU6fwJ3/yJ2i1WlhcXCywfc6jR9nLzASKcV5cAHJ3OJmjlLtJcV+VSsVedzgc4vXXX0eWZajVatb88jzP1uCkXZhML9J2yprW2uZMEjsI12KpiAnFtJHJmWWZrZIEwHJuaa0LAZdljgYXN6RxEELYODrqF3nqtNZYWlrCiy++iOPHj9v+NRoNLC0t2WMbjUZRcBBBRo7b+L6Hei2E6LYRioOYjqqYDgQq1TzOjwQyn0dCGIGljdaVpBk2N7dR766g2V4wlD/Cg9bCJrQLQSARgD3CEZyHYZwMTniMm3vJ54+LX5G1Qa+VUjbQlr6rVCrW8zlPGLoaIMWykRPKYHMUdDtFMp2gIgP4IoD2qC6mNkSZXk6PLXTO7mtCZKQUUDqD1sLUGs2D+cg8Hw3HuHN7/UthxluZR417+7rdLiaTCT788EOcOnUKJ06cwHPPPQff97G5uYkbN25YBguONT1I47gX59znSdv0PZE4ArATjwJyh8Mh3nzzTct+e/78eeuK7/V6NlI/DENb77MsKZw32rF5xXBaIJzCm/AsCqCl6HPyelEwLAlT7t0t07yoca2QPxfC0qh1u12boUD3BZhMgu3tbSvc7C9o42cfBDktdtUT6IQa6aSKcZgg8GIIZHm+Jusb9Z1pX9M0w9b2DpYOnUaz2YHwKoA2wmz2Ww5u36cwwwweKdsEOG12WSPBxLnoKKeTNm6igCd4Yy9eM457kiBstVo2PKfXG9g4v0k6gqg0IH0JePkzVnkgOWnK2piiJg1fGYaRNDPCS/hQubyTeVbAeBRh7d4XHDO7H9OKmgtgUywPsTqQWk142sMIM3cnLetvmZeJMDbOZkvR+NTIhCDNbTQaWSFDQpvwqgftG9dqyz7jr11skkyc+zF19zJFuSZM8VCkUXA8kV6naQrkwDTlVhqmCqtrQQptUGlPAh5BCDBh/k6/CoKIYVeZUpCelwP+3MSkVB+927Qsu/f7OGZec+EJ+szV1uh7eibc9NR6ludbdl7+GRdufN14ngepDN04YY9QPF84vzsxo/kh5y+/cXY3+f9Nf7/QwgzYDWwCRbOO3sdxbHecc+fOYXl5GY1GY7YwYIDnl156CYuLiwVB8jD9cMFX7mXkFECU7kQUQCRcSTt64YUXbHrRBx98gHa7jW63i//3//4fnn32WauVkbl64MCBwiTmkeRcmFMjE5M7CQDYmCTP8+yuTP0n9lzauaMosuYJdwyUYYskjGjDIG2NC0yiraFQGjofXYvGsxKGCIIKqpXQ1M6kVSK0sTsJgNazvzTLIKHhCSsCAQn4eboNsVykmUKSKWj48IMaPC+EUgJa5zmG+U/zHwH3qZHRONDY8/c8LIJ/7mq77oZCn5Enk551mqYYjUaI49g+e0oFI1yMzjtPsHmeZ+dBvVFDS9WAFNCpQhInSNXU6KUekOWV5aUQ8HzfeEExuwdDCUQUSxI6U1BaQ3oewrDypTADZg/DxWf4QojjGNVqFc1mE2fPnsXy8rJVw2nnqtVqOH36tDWxHrYfZdoX1crk/aPJQq5w0hbJIxpFEZ577jnUajVcuXIFH374Ic6dO4dut4uLFy/iiSeeKAiz6XSKU6dO2YhuEhYkKHgdRmp7CTPCZKIosgG0rVYLjUYDYRhaKp4oigr5oy5NODVuMpIwJK2YO0EoQFRKaVk1pDRVo0hQ7+zsoNlqo15vQDQ9BB4vmacBW0iDCTPkNT6FzskZpaEIEgCEKVZCfU5VhjRT0PDgBTVIv2qEGWZsEcJiZQ/eaBPjQoSTenJHFM+Jpc2C5g/H2bgpSeMURZFNoQuCoPD83OZqeTQnyALQUFCihXF/jMlogskowiSaQngClWrF5Lrm2p/v+3ldTJkH2YqcKlvD9z1ToDkzif2eJ1ENgy+F2f160fbyRnJsq1qtFuiHP4lWZubR9cg8ADAr3MGEAP3WFQRExscnPnmnOGhcdu0yFl1XGPM+lm0c/LgyLZWff6/nxU1b0i6pFB9PvDaLlf6yXEgBnshBecz+DBuGKnjYyFFQ6pATQKYUMpVrEcIIvhlj6u4xNCYV2VRil4wrhG18BA+nPZ/zHMs0NeobhyC4+clJA1wtcPd5DZ4ohNH6JI83xJw5kN+vLi27R00bYVb9UjMrbS6QynMYd3Z28Nprr6HZbOLgwYNoNBrY2dmxeYhRFFmT8EEaB2LLNBMX7KXfkHZGvx8OhxaIf/nll3Hp0iWb1vTKK6/g0KFDWF9fx+rqKlqtls1vu3HjBsbjMb797W9jbW0NALCysmI1p9FoVKAT4g6S4XC4SxPgk5M0RhpPqttI97q0tFRYNFRuzj0Pd35wfG/exkGOiWazac1SCkQ2fwJpmmA0GmEaTxH4QBAItOo+hMy1MwGkyRRpEhsFTJoAT4C0GrPopMw3uZzlYTAcYTSZWNqfTMs8aDaXf7nzc7dgvh9vpjFn9/NmUnOpr2lsyjYO+o7mFWVx0HsqfkJeT5oTRE2129w0gow+1hoIKlU0tITUHurNFFobLrk0nUJlCnE0hTeaIJlm0ErkDoEZLpllCQRyTVJkWFru4JlnH/tSmAHlQCaZVbRr08Ld2trC3/zN3+Cpp55Cs9lEs9nE9vY2giAo1HV8mD4IIWzQKsfGaBFTP1ythvAMrTX6/b4VZl/72tfwP/7H/8CdO3cQxzH+8A//EK1WC/fu3cPhw4fRarWsmXrt2jX0+314noc7d+6gUqng5MmTVpgPh0Nb1JjGBzALaDAY2AIirkcUmNULCILABmsmSWLNj4WFBezs7NiNgGLFyIvGFx6ZQsRz72qdLtjN63tyMBow3GBJmiCKpoAGKoFAGEo0Kh1IP3dMSo00iZBOYxgtwEOeWYlMKWidAUpDBIGB2bQCJNAbDDEYTbC0fBjSq0IpD0p4JpadkO1S/Us43+0+jpv9XJDT2NPn/Bm5qUr8e3fMSOjTvOPmJ9EB0XNqt9vWieQGeZtzzzzFGoBWApVKiGoQoh42oAAkyRSTeILhsI8oiRBHU+jhGEmSQas8SsOW9BNIsxSekMbcFAkOrHSx8mUNgN2tzKThoLRSymJiFGLAo/Xd5GsueOaZRy7Y/yDNXcAkfCiqm1O/UDm8wWBgMwcA2Ah9Im0kgexyn80LCHaFbFkfeTwZBe5yDaBsTOjfeWOyn2dtr2ONEDTFZZVS0JlCJgWy1IOizQsaQihrZpKnk0BpIt3OVQdwrSrL2WX9oAJBOZk8t7BgN5qzQqNYyJwkAcqtWboX1xtZ1uaB9Hs117HAtWcy4Slom8+V4vVIKyOhnFdd0hLa93KqRg0vnRbmlyLvZoFXfOYxMewbxs4PggDViv/FFmauoKLPXG+RlNJqHgsLC/jOd76DmzdvQkpZyI+cxzbxIG2eJ4++4+d2nQVazwJR6fvnn38ep0+fhlIKR48exb1797C2toZDhw7ZKt9vv/02Op0Out0ubt68iUuXLkFrbePJOp0ODhw4UNDM6HocO+GCj98Df09hEzz4tdfrWW8nsaHSwonj2N6fi+fxhcw3DRLopOFRkQ5ujhucSudeYQ/wNKTIkKUper0deFLBkxoVXyCbxtBMA8pJe3IsbNZouWqtEcVTxNMUtXoTnleFEAEgfFNARSDPN3RLABcF3u4zM6UOoqCV8bnjfl4mxPYSbGUbK59j5EXnDMZET0WaL5mdRrN276V4bYpNazaaqAQV1MIEKggRDSdAOoXMNVqdj4OUEhICmTbOGD8AQl98sYUZMIsfA7BrMfKyW81mE1prHDhwAD/84Q/xH//jf8Tm5iaOHz+OxcVFGwqwX9tvd3S5zsq0D+5ldDUmSqui9rWvfc2+bzQaWFtbw82bN/H973/fll57/fXXcfLkSSwtLeHy5ct49913EUURBoOBFYiPPfZY4Tqu0CBTxhVmrmlD5ia5/nn1dorbo+LGlLzOk9vdUmhc0NF7zuARhqF97dYtgBWuFWM2JhOkSYStzW34SOFLhXboQ6gYQhv+MsKrNJAXPpFWT0MOZmdKYRxFiKYZGs02pB9CiwoUfOP9hHEmEO2PcSbQYp07c+z/hTAFgblJDxSLVLt4Y9mcomdYuEqJqU6f8d/xgOTpdIrRaGQ/D8PQ8u2ZDYSfn+F5+eee5yH0QlQrPlSmkWYKk0ygH2dAlEBKz4xNPoc83zOvsxRCKAQBUKt9wckZ53nN6AG6OxNNnoWFBbsAJ5PJnmbSg7Z5ppNrJpT1EdgN/rbb7QKIK4Swzgp6vbOzgyAIUKvVMBwOMZlMbGFYMjt5VLlrgj/M/XENlNdEoAXg5nHy+74fs5OPB9fA3WOICFBAQOVmnTGBpwAUMk/DE6Zwxsy4zC1OIXgYbKGPSisj8DwC3wRm1Ir58TmWVFDOqBoRp9LGfJ3tftpe82heK3M20b98A6GNglsl3HGmrflNhVjsFdi5cyEnfUipIaXGFDRHclO1+IvcKp9F0Ur5BdfMCK/hOxbfgejBaK1x6dIl3Lp1C5PJBM1mE3FseON/8pOf4J/9s39W4O56mH64faDX1NxJWCZQ3M9I2BJVju/7aDQaOHXqFC5duoRerwcppa3NGYYh/vZv/xbLy8toNpt4/PHH8Ytf/AKbm5tWo1teXsaBAwdsvYEkSQpeLDeVi79274vulcxOrXWhvJmUEp1Ox94fmaI0XvyPayl8HKgOg4vrmfEhlguDz8hca/R1gMlwiOl0gkAHaNQCeH4Opufm6SxvgJ6PSe5UChiNJqYSU2CqPxlaIJknDri4mX2HorhypBx/mWuHrlAq0+YLV5hjPvLfu+/LzsfHmdYHhb/QpjQejy19vIlPNDGKQY3FpzEg0Fzb3LcQgOcBlUqAarWCcTQFhActciGmda6hetBKIksFkukXnGmWHgaZh9zjA8BiLkmS4De/+Q1+/vOfY3t7G4cPH8ZkMkGv18N7772HP/qjPyoUW92rzdsZ+a62l3DifafveD4n9ZuOoXw7irJvt9t4+umn8ed//ue2z2trazYX7/XXX8e3v/1tPP7443jmmWfwl3/5l7h9+zZu3ryJv/mbv8Ezzzxj2WxJ8PAcPzIfScOiMBUyL93mhmBMJhNMp1PLfNHpdGzQ7Wg0suflTLeuwOR8XBScS95Ter6z9CeTFK6VzqPaqxAyxGAzxrC3DS+poFbpQgS+MQ5z01AWBKMyTgMpoJTxKFerNYSVBjQ8AB60lsgyAats7GpcmJHOYQSaYJ/b7/VuDJX+dZmMaVzcTaBs8+ZwwV6Na2fc60yt3+/b64RhPaeFqqJbq87uR8Pwm+WarOflzgIhEPgStVoVtSTF+mAAmTtShKD7lPCED6UkskRgKr4UZnN3HWq00IbDIe7du4fNzU0b2Z4kCe7du7cLu3gYz9GD9ptfi//LG5lwhE1RCkq73baxYXQfFN1PWlq328XCwoLFRKIowtbWFobDoeURIxNjP2/kPOFN98IXE3Ft0bjTZlIUQCgsyr0WXhmDxOxfOlc+rvnx0pNQKkOaTJGlMte6jOag6FeueZibjdCzcBAZVGbXQPFHQuwtLEouwK9UPJJtvvO0NX7sXpqZ+5uyZ1e2qfLNhZ4jhW9IaeaWH/jg6pgrotlJ7bPwPGkIGbWCgHQOM6lhSgFp+gXPzeSgNL13FwulcZw5cwbvvPMOpJQ4deoUOp0Oer0eFhcXrQeOMIRPsr8ufgTsxslcU5V2T3ofBAFeeOEFK+jIxJxOp+h2uwiCAMPhEBcvXsTKygqOHDmCpaUlnDp1CnEc4+LFixgMBrZqNvWBdnTuaeSCjvedJ5fzcXdzTinlKcsyy/pB+CVp1KRh02u6lgtul2m45jezBaWUgtA6Z/eIUFvuQuaFR4qbHwkFY/J4UgJCQKcKvV4PwcIyavU6jF2UM6NyQSIEBJSRgbu8fftoRXOOKDMj3TYPJ+a/v5/f8c/K4APubCEN3YQyqbymr5jZ2QJwjHYzPkIDQkNaxnENrWZCzLCPSPT7E2wMRl9sYQYUdzNSsd2UoEajgRdffBFvvfUW6vU6nnvuOZw/fx5RFOHy5ctoNpsWtP6oWtle4Pa8SHdubnABwkNLqFqPEIad9vvf/z6GwyGGwyEee+wx1Ot19Pt9rK6uWqqcd999FydPnsT58+dx5MgRPP/883jnnXfw05/+FOfPn8cLL7xgcztJmJGmVmY2u1gaF0xu2pTONZzRaGQj0SlBnZh2KSfUrWJOgswNpt0VD5cXCTFrh0wwBa00JpMxxqMRmq0GfGl4tqxZBgBCmrqNOdbjyTwoVqVYX1/HidXDaHXa+YI1tqWUHjKlICwvpCZljoVc0IuiA6D4OWOdcOYIn0N7aWl74WdlMId7HRerdeGRYlUuD3EcI00TZDqFJ3wzJpI0NDG7TUF4mAaEghAKni+sMFNaQwofgAelBKA8bK5v4tqHV+HP6/gnaSZ9Fhp/QGUYAR+HIAiwuLiIZrOJ4XCIhYUFHDp0yGJGBH4+6JiVmbjlmsN804B/vxdgy7VGKSUOHTqEXq9nGVkBE/ZAfGxxHGN9fR2PP/64ZdNdWFhAmprFury8bIWJi73M03T52M5zePB0JYozo1QoYnUoM6tcc3Wv8bLXpvcU2Klnv83yIiaB70OI3MzkY0rXYdcgUUPpWEFQMaC1A/wX3mn7v91tnoL1ANNsPzNxP2zsQa/BNWxzfvN5lmV5Ij7luAKEV86a+9poZkaJywNi8rEU9nCBOE7Q2xnM18w+adzns9L2ephhGGJjYwN37tyxJme9Xsf169dx9OhRS5vNKak/C20v7Q6YcZ0ROM8r7HAm1rNnz+Lo0aPodDoAYKmnwzC0nPE8hovoYzieVtYXV/CUNdpgKtWq1eCiOIZMphasr9fr+S4uCyanuScJIQNEcZSDy9IxxwmE1hBaAZCGv0xniKIePC9FrSbgeYkptgGzhIgY1iwukxWgBZDBwzQF4kRDVmoQfgOQdWgYnEghzU1Lw76R3yUKLj0G8IvCki9++1lr3HzfrcUZgWaeh4AUM1ofDY0kSZGmCabJFEHgw/c8SE8iVsBkMsVkMoUZJy/HzAjG0bA1AoT583ne1schpR+lNu9+6cG0Wi387ne/w6VLl5CmKRqNBhYWFvD222/j2LFjOHr0KFZXVy3Y6ToC3PZJbA5cK+MYFP+OGtd6KIcTAIIgsN5MKp23sLCA559/HouLi1ZzW1hYQKfTQavVwvLyss3rJK8vaXXkkeSl59w+c2De3dm5hlr3pI2qH42G0GpmKtdrdUBrRHGMnZ0daJDQ8lCpVhAGAUajoTWDSNjaa+U2nla5KaMVNBIM+vcQBBEqHYkgiCC1BykkhPINE4YAJBSUMAJKCw+p9jCephhGCn6tDREsQssuNDwooQAk1mwyNw5QUvrMRcD6BpQqYJ+VFerOZf6cXU+pUsSFJ+FJQ5VNGffkpe4Pemi1GgjDGiqVKsbTDIPBCIPhGIAPE0VG2CUw2yBSCJFAyGlRM/siCjTe3AcUBAEGgwFu376NNE3x+OOPo1KpYHNz07JTUKCpu3Af1Fzf77gHAWfLoAMuJLTWBa5/MqUJjyLP58GDB60GprVJb6Kiu+T04OlF5BElKqGyfvJI/Xkmtf1XCHhiVuU9SVNkaWZ2b2loX7Qy2FqapbnXkQXf+h6SNEHgB5Cew6qqyVQ0b7i2NU3GkDJD4AFSZpBKzLQydjxhXgKAgkCigGkGCL8CIauAqObZAhqAySBgYjv//+xDjRkmvqt9RNPyQY6d90zmtbK5zp+tECaoVUoJ4pAl6zpLM1vVqVo1c9DzA6Rphuk0xXSa5vF6bn6rhtFwM7tJ+B+3/fwotbKHxPEWz/PQ6XSwurpq+b9ICGxvb6Pf7+/Cqz6rbT8MiQIcn3nmGRw8eBDtdnvXscSYMBqNsLi4aEn6pJS2SEoQBDalipgqygB5TqvEr8HjnGaiIqfC9rw8xssIuGgyY4012qPRbsih4MY+cVNIacMWS7qOVmZRQCuMRyNUpIdatQZlgB7DlCEYNkYbBI2tEIijGOPJBK1W21RjKjR3rumSzz4fzZ1fFGoTBIERZjq/dwEbvuHn5RKn0wRaT5ApOXMs5A4YN1CYLEpigPb3Smz+IjQ3yZybbEEQ4PDhwxBCWOB7NBoBAK5fv45Op4Nnn322gA+VBTJ+Utij64V1X88LhSBhwn8zmUxQrVbxwx/+0NYHcAH9OI6xtbWFzc1NnDhxolCJ6q233kKv10OlUsHjjz+Oer1uS71RpgD3Js7zkHEhg4V9DwABAABJREFUp3MX/WzSVqHytJkkSRBHOceYEFhcXASgkaYJdnZ24PuG9ifLMiAwi4ffs8mIoL4AWZbAkxm0yrC1uYljB9vodFpI0wy+oNgAQ7YInSHLUnhSQuV9Fj7QHw6xvdPDwaOnTXUic2f4vAott7kWAP0bxzGazSZqheh/80yI4jwMTTGe8XgMjQn8asOuQSWkoVvCDEsVyPOYhUCjXsfq6urMzPyiAP68lS0sF2NqtVoW/1lfX7cBnL1eD8Ph0AqG/WJ7Po2xdbEnLlB5P1xcDYAtE3fu3DncunWrcCwdR5kEk8nE0glRGwwG2NjYsEy7ZHZa72AJQeC8xk1B0pykEIBnNCFO4igAi9cJAcTxLDLd9VLrHOiHjREjQWNCMpBT/ZiydV1bLk1LEqz5AgVy7A65B9SE0k6nU0yiGI1GE57vW7ORDMriTe759pFq8zYnajOetVxbZYemaWocNIGPJI6QphmyTEMENUAA0pOQWiCDocjmU8eYreb5N5tNI8y+qFoZX+T8NS2E999/35Zl29nZQZIkaLfbOHv2LBYWFrC8vGx5ufgf8PvHH/czK13HAX1OeZxkelISuBAC9+7dgxACBw4c2CUUqdr70aNHsb6+jjiOsbS0VEitosyJeZ4vtwkhDE6sdSGph5rPAmWjSQQNjTSd2qpMVHaP0mC4L8Lc8gzTEQLQKkWWTCFgKpZ7UsKz4ydmiynH6rX1bBrNQWkTOuD5AYSQ8wXU50iQlTXa4Pm88jzPsF0AtH8YzCzLoLIMXuBBSg/mkZoaCzKvcp7ZOcR+m5/XOJ88tFrhTJhpbZJF99MyPm/NvV+tZ5xg/+W//BcbQ/b+++/j5ZdfxokTJ/DVr37VRs0TkaGrBc0TIJ9Ecz2DZbukm25CBUE455dSqsAtNhqNbD1OKSXeeecdCCHw5JNPFoKEAeDKlStI0xR/8id/gv/9v/83ms0mnn76aSilLCMv5XOmaVrgf+PJ6fSatKtM55gbFDwxcx5IIeHnfGtKKWxvb1nm15WVFSitbDETLy/zZjQwo5HZPFxt4GgpNZI4RjQZwBMavuch8AP40KYEXR6DJvUMiDaEjQLSE4jSFGmaQWmBsFpHIr08iOBjQPQfwcbXA4XuhNVikrnO4wgzlSGoBAgCP8c6jbblZRoizZAkU3i+CYyG1oCELW6SpCna9QCdpXpRmLn27hehlQluWqjvvvsuut0uKpUKfvvb3+L5559Ht9vFY489hkqlgul0akIC2Ph9VsfO9WbyXZN7JakKOR3DWTHu3LmDIAiwsrKyC0/b2tqC53lYXV3F3bt30Ww2cfLkSbs5kGZGMWguu8a8/gqw5GgndIEyHZIkwWg8RpalEMJwukVxZIWmSQrn5zbeNeNJNPiLhHECpMk0dzLkpiq0KdJUmCaOE0AIq5lpAH4QILW0P1820sx8nzaV/HOlrZkJzCh/hIAteAIYRmDPd6ydXENTWYYgCNHp1Iwwcyc6deCzuCg/rubiRlyoEUa2uLiIlZUVNJtNDAYDpGmK7e1tmzdINNN0jt/HeLlOh73uiz4DiswabkgJd4oQgwXhhCsrK+h2u/Y8BNpSyAbPmazX67hy5QqCIMDS0lKBScF6qnQxP5b30X1vP3diGGasp7kDIRculixzl33CTpPHmkEopGmMaTxBo24KOZuAcw2ibi6OZbGPURRBCIlqNUTu+9x9nL2usK8Lt/oILbd5Foj7PVkBM24yGCGUPx/P8/Liy+zHzin5xqu0ghTSasqzU+Zp6BRQuFfU9uexkSnDyQCllOj3+7hz5w6eeOIJfPWrX8X3vvc9/Ot//a8xmUzw29/+Fr7vYzQaYTQaWbCb//0+8DJ3crnX59+Td9aAsn6BpofMTsp37Pf7limDBNPZs2ftPVIxlGazicXFRUynUxuysrKygjfffBM3b96EUgrXrl1Dr9ebmR05lRAJUOo7jSM1Y1aytCkpCt9TcdogqFjWiyRJMB6PLd5FpiVgBJQUEkpTDUsF6ATRuI9hbxMHV5ZRD8Ncc8h2ZSPRvKHzKg1sbW1Dej46C0t51P8e5qU7NT4HDk++mZMM4Wy/lIYmACitbIHhaqViw3v4uUwzwJqfey3pnIW5LciUNdp1IUmYa2dfhMY9X9SiKEKv18OhQ4dw+vRpPPnkk/ja176G6XSKe/fuQUppC++Sp8blQvt9tPt9bgSOAyjkbFLfiS9MCIEoivIk4RQbGxvwPA8rKyv2XEmSYHNzE9VqFY1Gw3o8AcNye/36dWxtbUFrjY2NDeN618S9P6PD5mEjrpZm/mThvft94M/yNqWQNviXFhC/PwA2YHZWGCNDOo0QT0botJqoBgGgNZSisFdBJ7GBn0C+3DQwHI0hpId6vQntUNXs/TDu/9DPYitzNLk1IWhjNAfBCqU4jk0aXJAzbIB7f2E3EemVsw6br0kDxG7M7PNuXrqNCyIaKFKLR6NRgbhxpi7Pfgvsr3J/Wm2eqVY6CVjf5/WbNDfS2BYXFy2nPgVCZlmGra0tG1e2s7ODer1ua4iS1i+EwObmJpaXl62ZPp1O7WSnvpRSKGmT/0j4WZn7z9IZCok0m+Wc0nSneLS5Al9lyLIEWTo1eJrkgpUtr4IJT5qZiXsLqxJ+UMEsWn2+p5IW7udZbeDryZ1vGiYsg6JvDBsGAIiZ7W2f9W5nmha5f1sIZJlGHCcmaHYvkr3Pc6PJyisaAbBesKtXr+L8+fMAZqaMKxi4R49rPJ9kc3dDl8Zo18TRxarjXBMnk4/uy42ap8pT0+kUzz//PA4cOGDz6VqtFuI4xltvvYUXXngBnU4HFy5cwJEjR9DtdrGxsYF6vW4DcH/961/j0KFDCMMQvV4PGxsb8H0f58+ft9ofMCtaQvNY5+qPEpqFReweA8A8p/E4gtZAtRqa+1ezeyONLFMZAN+AzUJDZ1Mk0QjRqI+q7yHwPPie8UhaYS+MiSQBCGFyDDOtkWQZesMRat0AzXYHQgZW3yuLMdMMvvs8NdfBRHgoVTbTWiPTGaQwBUkmkwkqYdWMa6rgBV6uMovZ8wcgPYFMFc+rbfiGYc3YShQkn+xlav7nvZH2UalUbFFasvHX1tYwmUwAzDjBOPWz6zjhf2XX+aRaGeDvXs/tH59svCKUOyEpLCNJEpw6dQrtdtvm0pGGdvXqVSwsLGBhYQE3b97EwsICGo0G+v2+De0QQuDKlSu22lIcx9jY2LDMtpTXWXBE2XHUbJc2Wph7Pzy0w4SWCAQ502vxmRjpyL1iQgBQKbIkwjQew/eEZdngWJ4dR+T+TGGA/lQpTCYRhPQQ1how+aH7mJqfY62MxpY2S5pDhbkH5Jq5ebQzJxTjasvPI2kHQlFgEo6aJBmGw8iwZsxjN/iiNJ5z2Gq1LK9XrVZDv9/HjRs37IKs1Wr7hhSUvf6sNC6A6f39/q7RaNi4OwAFamTS6Hq9Ho4fPw7P89Dr9dBut+H7vuUlA2C50vr9PlqtFoQwtQqUUrYAiZ34KAqS3aGzs0aCZ/d85qqQnjk3beSrQpKYiuXVSpBXa3I40fhp9OyDTCkkaZbHQfkQc0MyOBj0+RJj8zZv7tApbgh5UWWgMCz8fNJ5T4PP5y6hmVopZEkCP45jS+NSq9U+vjt8BBqFBwyHQ1y+fBm//OUv8ZWvfAWHDh3CoUOHcOzYMVy4cAHvvPMO2u02hBA4cuQIkiSZDaiehTK4rz/Ntpc3k08sPqlokvGF7zoDuMZz7NgxG1gNzOhbaO4opfD+++/j61//OiaTCX7zm9/gySefRLPZxL1792x82r179/DjH/8YWmscP34cQghcunQJYRjiqaeesvNRaw0oiuWiG83xL7bTc3O5UqlgOB4VhLbIBQ8VI4Ew/Fo604BWUCpFb3sTnlBYXuoi8AWgFbSxMUF0NYC25LRKA1pKRHGC3mCEequDSliHzE1MFP6+GI1rXtTI8pHS8JkJJZClGdKUsQBLAQmZa2kmbUmK2RxMswwQhoYJ0Mgys6NQqEYyjRENR5BJkoD++AL9ojTy2F2/fh0/+clPcPnyZZuKs7KygmvXruGv//qv8ZOf/AQAsLS0tCuFiQuQT9ureb8Om7I+lecvFu+LJ9CvrKzY5HEhhC10orW2DBnXr1/H8vIygiDA5cuXceLECdTrdWxvb2NhYQGASX16++23cfPmTfR6PQghcOvWLWxtbVlqocL9wfVE7q4oRJgY1TIg/I20OXM8Bd7qPGgWRmipDMNhD1JodNoN+J6A0LpQxbw46KTnCUzTDKNxhLDWQBBUIQQFhn6xBBkwX25Q6BM9B6Xyala5p3k2N2lzKp7HjeUUzOzU2pALTCZj4838ojNnCGHI/hYWFjAcDrGxsWErMrfbbRw4cADdbhetVst687jgd4UBP++nOaZluyJvD2JS0vnc83MNkIRIu922yd+UPkRezGq1ivF4jMFggFqthul0isFgYBPVDe3LrFYmaVn2Ou797fo0/45NePq3OBYlN6rJZlRI0wSe1LPk+dykNNjNLBiDj43Oo9OTNEVQqUN6XJDZK88d30e5uThi2Xdk+bjf0XOeO1fvZ3ictSWEMN5MSjehNJMyYr3PYyPHRxiGOHPmDP7xP/7H+NnPfoY7d+7gnXfewenTp/H1r38d3/jGNxCGIQ4cOIB2u40oinYV56Bx4wGon9akdTEw5Sxst5VplXQ8B2pJ66HPCPQnUHcwGEAphZdffhlRFKHf7+PYsWOoVquo1WpYXl7G4uIibt++jQsXLuD48eO4e/cu4jjGt771LVy+fBlZluHu3bsYDoeo1+uWlQOAdQhQn3n/AeZJFkASpahkCtLz7SIKggAqzQqLg14qpQCdQSCFQIZ+fxvLnSpazS5AUWUCyJSC5YPVJubJzBsFpQVGUYKt3hhHT51ApdpABhPgS5XJv0iN5pMB5RP7DNx5OIkmiKLIbhxak9lovrc1SfN9gah+gFm2iIDxLAtBJek8I8zIpqUgwy9SI9D52LFjOHjwIP7rf/2v6PV6aDQa+Hf/7t/h6aefxpEjRyCEyMuPxRgOhwBmi8p6V3JhVuYF+yRbwQOYN9f83es4fh4eREvCjH5HcWGEg9D7p556CnEcYzQa4eDBg9aD2e120el0LCb58ssv48qVK1hbW8Mf/MEfYHt72wbdTiYTG6Abx3EhPq1Mu7X4pDDJ4mmWOyKkZ4WZ7/uYpsVQGe7FlTqDEEaojYcDoB2gXg9hgTkAKqPFQ2C2qdOotUYGgUmcoD+YoNlegF8JoXSerQB8ft2V+zTaUGkeuC2OY8TTmGltHN5iwdOYaXh0FMEJsDDALIvH5+7wL1pzsSEikSNAm0IQJpMJ2u225TLbq5V9P08Nf9g2zwy831ZmProaWpnAcz+jKH6qi+h5HprNpgXwKS6PaiZSEC3FrlGs23A4tAy1JIhI63I9x/PGjjssrMfTHR6tmb2pIYThMSP8xiSXc09DwcgFV/E0TKCnyqNfpfQgpBMsK0ShC2QiC1E+pp8nRYI2wdIC0UpDK50D+sAs13bXA7uPKxn8s1IJ4DebTbsjfpFMTGqGcdTHvXv38Jvf/AavvvqqfQjXrl3D2toalpeX8cd//MeIoshqr6S9UEgCCYBPWyMD5seZlXk4XcHlCjZuovIFRxAEfZckiS2CwoNun376ady8eRNpmuLo0aOYTCYYDocYDAZ46623cOTIETz77LMADM1Lr9fD22+/jaNHj+L48eOo1Wp246CUFxJuVhNj5jA1EyArMR6PDQmgFkjy/FO6XSMcMwiYKDBfAtl0ismoj1qtimq1YoSS0PY3npQW8Jf5c9cQENJDNE2RQcKr1CGDGoQXAJYVVc4B6j5/rWxzpc2NIiTIq0wafpImaIQNU4qvRGhpYiEhS0LMzFDuFFIqQ61WxUKjAdloNGxQ5Gchv/DTbLRIfd9Hr9fDO++8g69+9av4/ve/j1dffRW3b9/G3/3d3+GnP/2pzcUk7YxHnLuhGZ/2GHKsgr/mzdW29gL53d9zc5PujyqhLy4u2qrunU4Hjz32GO7cuYPBYIBDhw5hMplgPB5jNBrh4sWLOHDgAF5++WVrLkynU7z//vs4dOiQLd9H3GdaG0oizk5CfedJ4wCsVme0P8PymqU8EJxhhSDaZUCpFNFkiLBaRaUSFDZzIQBPyILJqIiEUUrESYZMS3iVGqRfNZH/Iudgm/u0Pv9eTpofUkqE4YzDjKZakiSmMI3vzx0JjtuWQSO0uSitEIYVHDiw8PmqaF6mifA2z3tCmlYcxxa8JscAAAvq0zn3Atbv12R/1M0L9x4Je6UqTxTzRfxlWpvqTvTHtT4qpkJgMWcg4U4ApRQkBLTkE9sINCl961GVnjfzRBYiXWH+1SwUQJksBt/3cq0MzMvJmvOIzBFGQ/N8P+8HGxtR8qM5Yzfv87K59LBzpeya8+bqvI3vQa/FNx1qewWccxRg3goq9kXkaECOkRK+wZOt91qwj2rjGgd5cLU2+WHEwkrAPpVS++Y3v4lf//rXlq+LGB+AWTjLXkwjZRrTJ9Hu57wPi6/NM1G11jY2UQiT31qpVOD7Pk6ePIlKpYJ2u43bt2/npp+Pv//3/z6OHDkCYMbjT97RWq1mOfcpU4DMFArdSKYJlMzAcV6lMqRZhna7YTDOycTW+QRF++eeMs+T0CqDYZaVECpBHA2wtbWOA5026vWaxcK0nnkxPcLClFltWpgiZ8ILUK010cgCTOIMFa3ge4DWedhBibCYLfS9n80nMVf2w0Y/aqPzkbXj4mW03qQ0ZQDTNIXwJIhJw+KS+dghRz+llHk1dLYhmSuCnrGUMBkArjDjnXtUG5mCrpZGOz6B00RDQsKMPHWNRgPf+MY3MBwOcfPmzV3J6PNCBrjwKusTN1E/q22vCc61Twq2plAN0q5OnDhhze+LFy9iPB4jCAJ861vfwtLSEgBYQUZ/JMy01jZWjca81+uh3+8b80SwsAulTJxXkiAMTSGVaRyj0WjkfaVnZPoupUlYBnJWjCxBPBlia3MDZ46dRa0WALnpQjiZhzxTQgOZ1oA0GpkCAN9Hpd5AQ9YxmSoIqfOq6Jg7D7gwc+eQa1ns/s1HW4/zNtSPc6Mlh4+N+mcbuVKGHkpKCd/zc6GXa95aWYEmASbti0Gyrs5mxZqAyc38PGpiezUKoSDtgD4LggBRFCGKIptQHgSB1eLKPFBl7/nnH9Xz+KBtnild9n6/Y/bbxfl48MXLqZJIa2s0GqjX6/A8z5qdVAWehBddjwP8FIDrSQ9EdU0bQhFPYV5E6rN7r/aP+q2gVAalcm1PSnsGAzJr++9MyxK5JgFI6cP3gaACCCGt91IrBS83Ne9HEH2a0QSf1LX4JkfYsWtiar07XW53//JjgdkDK3S3CBvws/ij0cjiHfwij7pwowGlB0deR601wjDEpUuXMBqNEAQBDhw4gIWFBTzzzDP4xS9+gYMHD2J1dRX9fh9xHGNlZQWTyWQXCO22ssXvCrS9zNHPYnP7P6+fXEBxDXR1dRUvvfQSjh49CiGEdaKkaYo7d+5gZ2cHzzzzjGUb5WNEi6FaraLdbqESBPa3cRxDY5b6QnAJzWNTms6DUhmQh2FQDBNhZVkygc5iCChzvBAGf6M4ptzcVMo4DIxgE4beR0i0uguoqgoaKoDWIaBFXqQjggcfwps5TaiVmZdla859/XHMDxdK+jjPz9dbkiRYXFy0cAE1pUyRGaXZuORg/mycZtRJUuTpdhlj+2XLR4vZJpIpwB8Oh9Z7RB6IT3On+DibKzR41SGih9Zao1ar4fLly9jY2MDKygrOnz+PxcVFPP/88/hP/+k/YXV1FadPn8adO3dw/vx5nDp1alcVJp6kTYuc4qbKvIHkEaR+lpkYnzWBxk3ivVLeyHtFjY7JsgyHDh3C6uqqfQ6cufbWrVuYTCZ48sknUa/XSxcwbT7VahXNRtPSlQ+HQzPpcwptLsy0NgLJcF1NISUgQXmAuXc2y6DTCCqLIcFgFiEMj1maQSuTt6mFB+LYypcZtJBod5cg/CaUqGEyASbjMSbjkfGowofnOyyrc8Z4v2fA58t+ms1+1+HjyjVqV8jdrwxwz0Xc/s1m0wqzGb5papIGMrDOHQXkyD/1UViBRc9WqcSAYqQSs0YCMM2+oGYmLb4kSWyyNAV5JkliTU1TpGJWVeij4omfp3Eu0yJofGhOkXChSH6qZEUCn45rNBp7Lh7aKAREgdLbmhrCMGLw8S2MsgYM3QXsd1pr6CwFtJqlz9hfiaISoBltdn4CIQSk50P6FXiyiiQxXlQhJVjXSrXxwhTQxoTdZU09QNt9frHruzLta7/5uNd3+5nP5WZmTgogWPK/1izzi15o531ZB4T9WmmTXmYzAD7roPSDNBpgnrDMd7Q4jnHy5EnU63Vsbm7ir//6r9FsNtHpdPDNb34TUkrLaX/06FEsLCxgNJrRyvDxch0A7mfUyGPK26Og/XJBtYtgj2mpLtstTVwyK+lz8iQ3Gg2srKwgTVOsrq7augHkSKBruoIyqFRQ1xqLS4uGGgbI49VS+97VOiA0lDbFSTzPmJMqSzEc7CBLp+h2WnloxgxRE8LUEjB5lgCgIaTIwzF8BJUaDEOGhIaE73uo1RQ8KeFDY6o9ZEpYAksh8qLCHheauaKh9d7rluO12PPQPVtB2DtWzMNusnwOc/YSnoomhChw3wmfUdWrbJYAsPvks3vXyBl6ZwHNAoBWGpNJBB1n8AnoLvP8PcqNBhCYeVhIcMdxjHPnzqHVauHGjRv42c9+hsOHD+O73/0u/vAP/xCbm5u4d+8eFhcXceLECXQ6HVy7ds3S//KFPA/kdycO5TLS+0etkZZF5iIvGO1G43PmCxJSHLuktKdDhw4BAA4fPmzzNDl+6wpQAIbttxIgrFcRx4k95tatO0jzLAXuGDC4TAatFdIsReCb+Z7qDP2dLSCLsbTQMQVohYap1GR0MykFhM4Lz2oBISWUAITvoVKrA8KDJmGWx9fVwhpajRD94RTjaGrrSAghEPg+PG/GVGzHRevc+YBdkmrXZilKDrqPVibIgBnW+bDB3lxDo/VGYRlcM8uyDEma7CoAZJ+tELsEmtbaUp6bD+h6tEkZpWIcjTGME/j8Bh7FRfYwTSmFRqOBMAyRpqllRE3TFI1Gw4YSNJtN1Gq1uZXe9xP6jyr2CBQn6f3cN9+FXUaRMqDb931bG4C40Nzjd11H5MA+jIajlM6ttN3zlvQYYX2XxbAIDY00ncKDQhBQwQ26LvN85pqZzn9olpKElMTkYP7MOpKAFPBkBb6v4HnZ7Lza7QPhP/YLq564cMYuU7XEiXC/bb/jXS1tLxPW/Zzjq2UmbRk/HI2AmGta7tPfnEljOk3gh2FoB4zMhYKK/gi1eQPvAqjT6dSWRdvc3MS5c+fQ7Xaxvb2N1157zWYBUJpOEARYXFy0Gsd0Oi3Ene318Okzl7+Jfveo4Gh74YXzBBb3IHNBR3jK+fPnIYSwGittLFR4mLIJ+HVzVC5PR/IsHtzptDGdJkjyqk9UkTwIvNxTKW3ohTa0F5hGE4SBQK0WcnkDKQW0MliMLwCdaw0a5jMhBGSlCq0lTJanA/ALgaBSQQ0SUgokeVHpNM0wnSYQOeYW+Ka+pjWb8n81SjQpQZrZR/c68vEkTfbjmIMcRnDXRBzHiPKYTiFn31mUjN8a74swG4fxIMNgks690C35tVrNJvVyr8OjWqmJPyzybAGwzA5KKRs+QFxar7zyCoQQWFtbw3vvvYcnnngCr7zyClZXV23O34EDB7C9vY3RaGQj2uep5mU7K3mK6Xtumj3KGhwwgyj4WJC5SGaMy7HmeR6ee+45CCGsKZokCYbDIUajERqNhiXD5Itaa3LECPi+EWZaA4uLi5hMIgzypHbkYxx4DUhPQgog8yQs/7xWiMYjVJshGo1aDvLnzwMSSmfQSkP45hOqQp4pDSk9eNU6MngQWkIgLwiT/89UNvcRVKpoNmrWqTQYDDAeD2fjQ7FzdH95DBthRXQczY8M++Pa9wPaU+MgfdkzepBGGxVlz7jCLIoiTMammA2xZRSFsy4KNDInIeBJUyULAIQvc85y6q8H2oZ8NxTjUV5UZc3VzrSelV0jgLrT6SBNU6Rpis3NTVsJu1qtWqFOFWbod/t5NueZYvy7R0Eju582b2efNy50/61WC1Ka+qT0HTkLKLVpt4lbPLcQgFImuJlwUdekyQ3BmQGTm3cUg+bvs3GbeWM0A6tpCqO97fKa5leUUkJCQuReVNrM5gHus8/mzAmB2R3ss0QfBPueByM8zNyk3/GYVTq3UgqZmjGvUIWtMi+ucN4IIWcP3l5s9y98DgA+KibPfq3sYZLm6XkeqIgLpV0sLy/bakxra2totVqW7ZQLHqIzoQVD5hHxc1EsGwV2un3g7VHZNPj9c0xkL3OaXpMGTI17Oyk2DIDVmDnLQpZlGI/HSNMsNzl9+13x+c40G8/zLf15lpk4MaUyxFkKAZ3nTRrO+OFwiErgo1oN4EkBk21pMLYsTSFhOMoM6KyMSSkkojjGMO2hl9xCa+EogorRwPzAmIyzewV7LRAEAer1utlM0yzPPFA5pZApm+b5fq6pFTdfAFZrfNjGx971ZLrH3O/53DlAa8wNlqXrZlmGSu6AsW5ZIaxPQ9jwmRK8TRPbCc09ogEyG1lQ9+DToiO87EFv6rPWuLnDObiyLCvUgJxMJpat4ejRo1hZWcGZM2ewvb0NpZQxVTAbSCEEms0mwjBEvV7H2toa4jhGlmVot9u23iYxrvIgUmqup82dsJ+l5k5+SkMiTZ6/5hoUZ6ZNksTiJ3QOwh09z7PFUHgRaqqpaWIAEyTJNhqNOppN2jB2U2lTIrIf+Gh6DZOnmaSYTmNsbqwhiSfQOkOzEUIIIEmm6PV2UAsrqNeqCHyJRGU29imZpgiDAIHnQaeZSTyHhpYCw3GE/mSIQbyF00+00WhWUEMI3/NhrKfda4dwpCAI0GwY8spoMsnxwdh4WYMAFWjA90zALzP/rBdzjvZ7v/OnFJR35iIf1wdtJMxcM1MIE9eZJilq9RDIZhuayIUZxZoRPug2pVQeJK2RaQWhAS9PSq9WK6jWKiZotiyB+lFs88wa/sA5gynXBtrtNrTW6HQ6GI1GuyqTk/rMPTWWciaPZvZ9fy4bbQHMZX3br/+fpeaax3tp8tzpMe+58BAOOi+59Mnsj6IYQeAjSSpzzCGAZr95RgarS2RizclMZdAqBaH8OnfiVD0J38tpfygsVpgK6DYHFPnPhNGN0pwqajhIkUyTPFE+d5pRICdpHSyol/6IwyvNGUdUnh+qtWeqpWtyKs0sqxkW92DPaa+2n+Da6xzzTFOOT88TnMaJQ9pmPlyizNgs6VOOq82uLfIQGpNX7Rcuoh9NL+b9NErXUkqh0+kgDENrct68eRO+76PT6WBnZwdhGGJlZaV0PMgD1Gw2EeS5gr7vY2dnB9euXbP0z5Q1wM0uvmhpvB8F036vTcL9nn/mesf5Me548M/pt57nWQdMmqYYjUbwfQ++7zFu+RLTThuPpB/4JlWv4kOpFJ404RiTSYR+v4cTzTrCsApbTxOA0LAYmsqBZlsHUwDjcYQ002i2OvCkhzTJMBmNoTIT4uH5EpXAg5BznqueaWrNZgPVJLD1C8g0z5SC51FB4fIxd8eLY97z5tMnOc+01hZqcRvlNZd6/3edhz3RHCckbI3XBBCaO5OMw8XnuydhZ59V0+d+WtmOQybi+vo6ptMpTp06ZTWp8XiMd999F2ma4rHHHsPdu3dx7tw5nDlzpqDN8XMFQYClpSWbDlWtVnHlyhW88cYbOHz4MM6cOYPDhw/brAGuzvPdi+hvPk2q7Qdt9wPs8/EhrYq0EJcLnjRjV/Ol72kxkoYWBIYWKI6nSJKtfOJWsLi4WKj843ZTeh6qUmBpaQlaZ0jTKYa9LUTjIYaDPtbX7uG5wytoN0OoLJ0VIQFMYG2ObQlysRlnJnr9IbRfx8rqKjxZQRJNMU5TQA4Q1kPUaiE67RY8keM6bG1RfQKq7+n7Ekob7b7X62E0GtkiMWGtngef+shySiI7PuaOC89iHobpbqDus/s45h09zzAMbcV73q9er2c5zux1C84MLsGwq8/5m0KymZTGywktEAQ+6vVKOdPsoyzMqLk7FIUJEN0zfZ+mKba3ty1fFpHHtdvtuecWYubpJPf2eDzGvXv3UK/XC3xOXPsqi8f6qNrZJ2mqflStke65bAG5+GwZQG00ND8PHVJI08wC5MXUMO4VM7+l2LJqGMLUxfQwGRrMLklTRFFkcSzNkoSENmwNWhVzcXX+N01Mfc0wrEEImccdplAQkJ4xcZXWkHPNwlxY+x48v2oFAXl0Z6a3AtdbdO6c2GusuXa2V9tvg5onIN3P3Y2aUz/xZqt6yd2afNG1wSvQE0zIRLcwZqXF13J9TUqBIMhLze13E49aK3sIBPyPRiNsb29bb+Zzzz2HWq2GXq+H3/72t2i1WtbrNBwOEYah5dsquwYJs1arhYMHD2J7e9sC2+PxGNVqtcDe4f7+4zbrPymz1d1t70djc3/DP3ePd/E111w1cYJGmGmtrRbj+wEqlSr8kvqM+cVAmQOVagWNZhPdbhcHDx7cbRLpPOlZC0JjAKhckGmkWYZMKfhCIvArOa5mip54+ToysXJjBIFnHRoGJ9tbEFEuMIWYiNxET7MYEKKovetcuD3gcyZGC66llUEFD9rIPOZMGfw7m8LEzGYKldHOsQAKYlvnQc660L/ZxsfP4PMo7b1oXh6lRio9CRqaVFEUYWtrC9evX7cU2T/84Q/x9ttv486dO7hw4QLOnTuHhYUFAMDm5iY6nY6tQsQxNBJMtButrKzg8ccfx1/8xV+g3+9Da42dnR0cPHgQtVrNej65lgaUg6WfpcZNJB5nxzdBPnf4Z1prG8ZC5nSZ6U7nJPPSFWSUD6tUCimNdrW5uWnYaKtVtNodNBvtXFPGrvNKaa7XaDRQDTzUwgC+B1SrWxAig5C51mzC7KGVhCdEXjDDhAxorRAnBs8SUiIMa9DCHBcEGp5fQaYNxdEkilGp+KgEPur1+qy0no2Xyv/YfdbrdYRhaGtR9AcDRFGMKIrhVwKLxdLY4j7WqDvWRMFE1yRB64baPMh8pPkRRZFdJwVMTOtZzq3nw5reud2ubT/Z/RQknCn2qzHD2+iaaZZBSd9qc7JMM3iUhVmZVkaLIssyW3l7e3sbWZbh7NmzqFarGI1GuH79up1UAGxpOU7/456fBGa9Xsfi4iIGg4FVq4lCiBYj7xOfaJ9lYcbbXlrWvPeuOT2vlX3nCjU+kaMowng8RjSJbC0CYBaPVDTRAIg8xahWQ7PVwtLiYi44C70AJTML0s4sXpYvHqVhckMD+70npXUapFmGySRCNIlsiIkRPij2x7nPIAgQ1mqo1+uo1Wq5gFE2O2ceJvYgjbJf6G/eecuaa1K6n6dpOtNCnflMG5WUDzfP3S5aBbUg1PX86kyPgpetrM1Tm7e2tjAajaCUQrvdxtbWFjY3N/Gb3/wGWmscOHDAAvthGFrtI83xFXL/cnOTL9R+v49bt27h0KFDaLVaAIzJcePGDTQaDSwtLZXiCZ/1Nm8RzZsbrmm5nxCjNk9Q8svMNt7ZBiGEsPABxaFVKpUZr5gQEDn+NPOK0f+QxwfMQjwK5qAQJnUGQKYURuMRqmFocLh8IQnMKpiTKeUxbSdJEoxHhrgg8H34gZ/jefklqAsM6KZwIeN78Ey9gnwzJieCfMC1ya0v8jqSmc3ZTx7UAUiCuNlssmc2MwOLZQIFAJUrp3n4Sz4CHDcrPvRcYLrXxWyTypRCHKcmNMO96Ue90U4OzLxnV65cwcbGBtI0xcGDB/G73/0OV69exU9/+lO8+OKLeOyxx3Do0CGbWE4gPmlnk8kECwsLNqSDHhhpfDdv3sQvf/lLPPvsszh48CCEEBiNRvjNb34Dz/PwR3/0R5YahXZFF7f4rI09n9T7aWX0mnZo+sw1dcqsAG6m7kVFZQQYYHIfq7nWJExdzqHJ+wvDEEuLixC+Cc+QQgIqM3+CdvL8nvLTC63zBGbj8tcZLNhMLUkSrK2vo91ZRqvdAcE10j5DU6Hb9wJ4gYRACq2V0R7HE8sS0um04AcBPOFZrULIWboOCYdOp4Nms4k0NUI0yivCT6dTBH6AaqWy69mUPT/6lwcrE2MMpZIR868d0wdotMmTw4wHqpNDbRaeQ2alArRhGKFNpHAv3IoBCzbP54fn57+V5vhkmmEwiNx0/89PczW07e1tjMdjZFmGVqtlGTNIM1teXsYTTzyBxcVFWyWIm6YmtSYtLNAyzWx1ddXuUkmS4ObNm7h27ZrNzdsV2f2ItPvZrblntkwg7bVQ7kegc1OTM9gmSYLx2BAAEGuwPY8AjO04C28wkQC5B1NTCEUegWH7WAScsyzDaDw2mlk1LJg+u5wVzKuXJAnGk7Htm6l2Xvhx4V+BPKykWkW9bpLtq/kGmuaMIGQe3o/3ko8rWRsk9AmsJ/PzYeYk18zctcEJGfmYFo5j/y+cl71yBRx9JnKNOMtyzYyf4H7wj3mYyKfd5g26Cz6SUOp2u7h37x4mkwlu3ryJZrOJ48ePYzgc2jiftbU1W4mJOxDoHHEcQwiRxwiZPMzxeIzJZIJ+vw+lTMm17e1tbG5uolar4eDBg0iSBLdv38bJkycLIR10nf3uzb0n97N5x/4+Gs0Rtx/79WvuIrK4COXmAWAJ3BRzZJhizZhOxhGSwDMBrBXPcPwLQCADdAqhEwRqCgGKSIcVdNrYfDnqJgBhsKssA6ZxhsAP4QdVa+JoaGihYAprkKEqoDDDapHTadPGmGWZIXP0PHh58WHuwxPsTgHA90xB5Xq9Dk968LyZFjvDo8qjEvjmwmP8CNcFZk4sglB4Tu28TYacO6T1TSYTbG5uotFoYHV1tXBdS9jA7ft8k5n5L5ELLME+oTHIA8/z500YpMifVZYpREn0+apoDjD3Lht8KSVOnz6NK1eu4MaNG3jttdfw3HPP4cyZM3jyySfxwQcf4MqVK4jjGM8//7y19al2I02YXq+H4XCIVquFTqeDfr+PS5cuYXNz02pfrVYLFy9exPXr1/HVr34VX/nKV7Czs4Nf/OIXOHz4MNrtNpSa1RvgajhQBFrvB5ei++NxW5+0xreXYOKxdQ9zvl3nzoywoERwDQ8W29IKAhqBJxH4HqAldKaxubEF6XvwKx7aC3WEVQ8VD/B0AqgJvHSERtwzfRSGHkjrHB7TGkJ40EIgAyDyTWs61RgOEjTqXdRqbaRaQgQSCgpKp/AlAEhI5UEoABDQeaS/ykx+5zRJsLm1Bd/z4QcB2u0WwrCGatXQb7MRAXcT1PJg1EatbmtWxHFsKlTlc4GzuvDG5wUFGU+nU1sAhhLgq9WqzVemGDyCRTj2ScHewMwTP51O0ev18Oabb9o8Z3qOnueh3W4bvE8rE+6S1wAwirGyWq4QEhqGoYREmfEZZPk7gx2qzORm+kpASIF4OkU8mnz+zEx3IZFWtby8DM/zMBqNcOnSJXQ6HZw7dw4vvPCCNTlv3bpV4N+i3Yo0qSiKMBwOrQCKogj37t3DjRs3bIJ6tVrF+vo6fve736HRaOD48eM4ePAgrly5YvEkigCnJOz9tK37ab9PjWxPYfRRzguR4yvcOylgCRHz6EkvD5r0PAmtgdFwjOFghNFwhDiJkWkFLTUMJXYCqWJUsgjSxmoRmFPUzBQASAmtBdIUiKMMlUodQVCD0gJaAkpqZEJBCZUvUm1SbfKx8DzPmp1plmI0GmOYV5iaTgkcLxszYRd5EASohSGazaYxO/MQDTLjuFeybPxJ4NFcJg2RmGGCILDhI+S0cD2dZZsTJx0YDoe4fv06NjY2ZneQa2aEM8+eKmlftFa18w1pxaQd0tMwA6u0muXPwgS+T6LJbgfAvPb7Nl8eptkCsvnusrCwgJWVFezs7GBjY8PGAC0tLSGOYwtiztOK+C41nU4hhECn08GHH34IpRSazaYpgaY1qtWqrcRNMVEAEMcx1tfX0e/3C7jPXtedN1HLcBNXM/uognIvc/F+TMn9rrv/OQy4TiYdyTRhUa9ZnUUbxOr5EL7ZxdMkQRwDyAA/HSNQU8jUgPN0JhvSoek9eRgNs2ySx5eZkJ2i+QX2G47JufKJhAk3v8hTThoPzyiZN1aEFxLfG2FdnIViv/F1zVISbuQg4EVlygQln6+mmMwUN2/exGAwwHA4RL/fR7vdxnQ6xXg8ttRZ83LJCx5wPnw5xOCKKLoHrYrESD4fXLJ/3UW114T8OLSKvVoZgMyDNt3veX8o+p44/B977DE0m0289tprePPNN7G2tobvfOc7ePbZZ6GUsiYleRpdckByDBBFkJQSZ86cwZ//+Z9DCIHjx4/jxo0bAICFhQX89re/xebmJobDoX2gOzs7ePPNNzEej3Hy5Em88MILFsdw74Wbj/RZmbAqM62pnxyMfySbNDu0EC4kL2bVkkCOAeNdrNdDQ6QotdHOogweUnjJEIsViUo2NYyOvsCMw4E3ZbWzNFEYjMaYJgmWllcAYWoPeJ6HTBl2RmNaO/KLjTs9S0qfAszzoRqgQhjaHPIyzpLodzfP81Cr1eD7JomeHAtRFNkNkws2Ci/iZiLV8qS5NJlMMBgMLEFCvV5HkiRIksSasrTxksAj51i1WsXOzg7+6q/+Ctvb27Ym7VNPPYWdnR3cvXsXp06dKs7N3Ious6Jo7Mx7s5lY2FSY5H8pPWNSKsM6onU+xsXxf/Cd9dNo8xwT+2kJQRDYCaSUwuHDh3H27FnUajVcvXoVly9fhhACx44dw8mTJ3HkyJECXuUONglGmgBCCJvCpJTC0tIStra2ABjCxtu3b+N3v/sdLl++bE3K0WiEq1ev4t1338WdO3ecOpC7hbN7j2XOgHkY1aPkLd2zkVDI/yfY5xS4Sv9KKewz96REHEcYDYcYDHoY9HeQTMZQ0xjKWTi8UdCthkamFKI4Rpp7wQHJ5gdyy0c6QevaVcxsfBdhUeRQGg6H2NnZwXA4tJ7KvRoJxVqthlarZUOJ3N9RH10Mk2fFkLNrOp2i3+/bZHCelkREo5z9hTvGPM+zZA3r6+vY3NzE2toalDJhKdvb2/c9D7XONxaa12T325/TupcQlnp79vlcB8D9mge/rwVzPxqhlNKyEdCONBwOLc4wmUxw+/Ztm6e3l8t7nvouhMDy8jI6nQ46nQ48z8NgMEAcxwUGgW63a8M7FhYWrGd0a2vLFsHl2th+nuWyvnxWPM0fe8vVHu51dL8GuLPMShkb0KqUwng0RFb1oL29gk61XSh0rTRNkWYKFRaHJUTuNbDmJkHWu6GAec01KSn0goQNzYcy847mC22G9HnZvOGbYNkcIUHLPZ1knRAMwuclCTb6t1qt4uDBgwjDEK1WC+PxGDdu3MDa2hqGw2G5dSBKH6W1MV1NHDm2WdZ/P2chLiSa7+VB44P1aS8S93rEWEo7A+8bP973fbz77rt4/fXXZ67tXNgkSYJ79+7hz/7sz/Av/sW/QKvVKsQocXObJh3/jH/+7W9/G81mE0eOHLHsGRsbGzh79qzt73PPPYfr168jCAK89NJLuHnzJqbTKX75y1/i1VdftRhFtVot7IZ0L2UpVRweoM+4IHxUi9JQM85Fbd/M0pRyv7xrogjjDNAqM4IMQDUIIHSCKElw69plHAzPoN5sGGodkUFj98YhcnNGaw3hSQyHY0QJcOzgEqTnm6RnIaF1Xli6BMA3WsZuwcLnKfcWkoYzHo9tXVGqElamoVMj7Gxzc3PXGqB5TIKRcDo+V8iCodjIyWRi8zeJt49TzVONBnIkaK2xsrKCH/zgB6jX6xiPx7hz5w7ee+89pGmKMAzxve99zwrKYtgHZvVCYYrF0I5E2pdda8KEu5A2bJopvlyvNOG3OqZu5qO2o3MTkC9YV9B6nodr167hJz/5CarVKtrttmW3yLIM/X4ft2/fxg9/+EM0Gg3EcWyFARfcLn5F1yBh9tRTT9nczPX1dWhtOJzq9brtx6lTp/CTn/wEjUYDf+/v/T0EQYAPP/wQ77//Pl599VV7Lo7bFYDRkh2eT3I+JvNMjEexWVODCTItiu8FZkqSkDmpYv5r3/MgIRGrDFvrdxGfPAzdMNHvmSgz6Si1KR9HKTCJpkgyiWarjTQve2Y1szyH02iNM81s3ojz5+GSDIzHY5vLSc+W8oTdRr8jE5M/fz5nCAum9zzzhM+TSqWCyWRiOfpo8+dmLH3PlQkA6Ha7eOmll9BsNvHBBx/g0qVL+PnPf456vY5jx45Zq4df09U2zZjlBZgFzW1Y7FHkGjZtahoiLyfoIazV0KrVZ2bmvAn/+14I/MHwB3U/ZrBSyta/JDqfdruNZrNpBVccx4XzUyOAcx6OSBOFV0qnXafRaGBhYQG+71sGDqIciuPYYiTkyaLrEaZG6j0BuWWBta7JcT9j8nlqWnOSwhxRLgRkIsfXNHSWQesMUsKQLWptObF4c4dPY8Y9D2G8o2Tu7N3m09vMrrVb0+JYlNbamp0cdHctKfq9q60X7qPk2vPmtWva8jVQ5jzIsgxJkmBnZ8dqbp1OBysrK3aD56ZpoV92tGb/5+ak3ZK0NtWwdp1hNg+kFDPa7HkD9PswK93GHxbf1Wgw6RjX9R3HMc6ePYs/+IM/wF/8xV/g3LlzOHfuHOr1Ou7evYvNzU3cvHnTCgw6F59UdE2uKQkh7EMkPG46nWJ7exsAbFFhKSW+/vWvAwDu3LmD0WiEXq+Hn/3sZ+j1ephMJrbPhE1cuHABJ06cwOLiIqIosgwHtBvSvbpmBH3OGweFf9/P8ONplMtHZuZMagnS3rSCJ708P1wDUEimE2TTMVq1AJ5QUCpFKgAtTWqR2fgya9oolVkXwHgSA0LCCyrwvAoy+FAinxsEQiude1Tz+DemUZThrvO0bU5uSFH1FMBKoD+n2OFr081Y4QKLCyRXYHGePdqUiYVZKYXRaFRghpFS2jg0wJild+/exY9//GNUKhWsrq7ilVdewdmzZ23CPMEmWaYgBJm8KEI5+Z8WhnxRce++1tCGiynXiPPx9CSyLIVGhqCCvePM5pk27vtPW3vj5iWvLsUfGA36sWPHUKvV8KMf/QjHjh3DU089BSGEnSCkCbkYGXcI0DXde6Z0JvJMRVGEdruN48eP4/Dhw7h8+TJOnDgBIQT+9m//1rrA7969iyRJEIah3blImN24cQOHDx+2oRwUoEt95BPRxWB4/wAUTIpHthVUHPc+RPHfXKAJz4MgzAsaKomhkgj10IcUClplyIQEtMqF44zhVEqBNM2AXBOI4im0kJB+AOEFkPChIZDpGbutgescB8AeQ14wrdiz4/UmSSvjJh8FW5c9Ty7MXOHlkhqUaXhukDht0ISfNZtNmykwGAwsvVUURVhbW8Obb74JKSW+9a1v4emnn7ZkDRRLZ9aSSfsigk2rLEHmpqW0aUzcjKUx1oBhq9VGCzf3ZrJDfN+pK38/HjO3/b7MUBfs540eGAA7ARYWFqC1trTYYRii0Wig3W4XtDBqZayw7jXoO1eb5QKR/kgDA4BKpWKDbhuNhhW84/E4p2E2LB3j8XjXLjuvP7xf88DiR7OJAm5CH2loJjdmwmwWVgFyaCJLE2RpgkolgJRlcD2N2wy0p7MkSQLpefD9AAXhSSCdJk1B8JPNB81KrlvsQ/mzI0iD4r9Io6I6Eub2ixaWu0ZcPG3ePCrrEwk8bqH4vm9xtE6nY48lQQjAanjFvs36uMfAFA82H+Z9oY9nz0PrXJjxDrs3wz/j2s+nJcRoEPnOQrsN0fSQes7ZX0kdr1arWFxcxPe+9z0MBgO88cYbAICVlRWcO3cOX/nKV2wcGle9iR0TcPnmTZ+4h5MmE52H1Gqq4BQEARYXF2260/nz5zEajVCpVKzzYG1tDe+++y601lhbW8MHH3yACxcuIIqiXSXugJl3cy+QX7hC4FFrublm/qSN8BdckOUYC6FUWmf54skAZPCExrC3jVFvEytLXYSVANKTkJ5ntC9hAjNnzzoz1qMwWv/G5hbCWhOtziIyJaBB+YOzpVS+FIoOJL5uKEHc3mbJ8yEtKWSMGYPBAGtra9ja2kK/37cEB71ez2pkRMHDzUc+d3iyOXk23XXNHQU0fyllqdfrWSdAp9PBBx98gO3tbfzDf/gPsbi4aOMp33vvPayvr0NKWWCcsaOj+fy0I0YDYkNnNHYfZwJl6d48aCUxnTJhVqaduKbVfsDiJ9HmgYf04HgaCBdmxM1E3FBf+9rXMBqNrMBYXl7GyZMn8cwzzxSqCNG5uTArE/Lc1CPg3xVmFKlNZey01giCAKdOncJ4PEalUsG5c+cQhiE2NzfxwQcfAAA2NjZw5coVfPDBB4jjeJfXi49JGSBMzd2AHslGni1myM025JlpNxMsCkobkwZawYPGeLCDcX8HS4ttVCp51XDpWVNSQefMFbkwy0+WZQrbOzuohnU0W11kWsBKOrPKzJWtlsCf0d5ONY5Hu3gWvabUIhJOo9EIW1tb1oFEQbcUy+Vmr7iwBJ2XCzP6jPfLjMNsLZEwG4/HtvCP53lotVq4evUq+v0+vv3tb6Pb7aJSqUBKiQ8++ACbm5vWFOVFsXcPSxHcF0DOL2cOJkFm+5lDCCaO0OTOJgkg5+Euj2rjD4vyxPr9vg0EpJAMGlyeXuK2+xmTvY4hAUvsBJRcrrVGvV5HvV63AjCOY0wmk0IC+nA4LE14n5e796D9exQaBWAAcHAo/k2ZsGahHPlO7kuJeXK9cB37mUaqFKT04Hm+1chKuzO3nx+9uRsZ1+44S2xZu9/nX2beztPsqQ8kZEnrosI/NJ9dzJb6bX6/+7rmA+fNfWzEWaYwnSbwoygqFDbgN+R69PYbhE+izbP3SVvheAEt+jRNsbW1hddee61AkxLHMarVKv7qr/4Kf/AHf4CjR4/mbJ5pwfNH48C9m3QN6pM7LnxD4MeTN6jb7eKxxx7DcDjE1tYWvva1r+HMmTMIwxDD4RB3797FnTt38L3vfQ+VSgVbW1v4P//n/+D73/9+wdRwCe9cc4VrmPz7R1o741qOoNcaHPKl0DIpZV5PSQE6g86m0FkCqAwVP6f7gUamKekoz0nOMgBmDimtkWkgVQpxnMELQlSqdWjhGbYMoxKAVh7/v0XchNEXXa3eFRpl3k6gOK8InyJtjYQIBXlTnBjnyeNzkGvxHNN1NcEyfJabp5wpmTJYSGO7fPkyFhcXbQbA9va2Tfmr1Wp5/FoCrZEzx+x2QgiCFHIHAc/ggDabkmGYnfFraADD8Qj9Xg8+xVnRgJWpv4WLOc19IJ9Ec3E67v1zS2f5vo84jrG9vY2/+7u/w+bmJqIowvLyMhYWFlCpVPDjH/8Y58+fR7fbtcLMZR2gCOd5mlDZJOQTl8aFhNmhQ4dw9uxZ3L17F1euXMFLL71kU0Du3buHtbU13Lt3D2fOnLG8Ux988AGSJEG1WrUV2YkDjeKPuAAlYcbbo55szqKN2PTVs+80CQ3j6ZJSms9VLsxUAmQphDbCjMBiCjYXMOZMlqXwPDOOSZZB5QIvTlL4QYigWkcKE/JhYmNzGvC8Z+QPgO2jcx9s/ez1LMo2Sp5PSdoYWRkkmMjCoMaFGV/PZRvuPCHGf8NzS8nLSsJsMBjg6tWrWFhYQLPZxGQywc7OjhV4JMzSNEGa0nw0BY75fZrr5j4VrTDLu0UeejMbx5kw0xiNxujt7JgMgL1A/bLd4tNs9+NwKPPakPZGE4EeBoBChZp55/qon7v9IUyNdlCqwEPhGuTMcOsOkheLgnw5yMsn4oP27ZFsu25Tl31Y+F5lKQQ0yisDCXDBw0dLqdzxJD0juMQM+LfXnCmLNjqdi99dvZnzrB7EFHSFEn3+MOd70Fa2KRJGNhgMEAQBptMphsOh5e0jbZLWoufRmuDKiTM2dr8qFrSx37H71DAOgTRN4S8sLFjPx3Q6LYDpZYLk973D84dZJsRot6rVanj11VctGwHtKL1eD8eOHUOaprZaE8/v5BravMnj9sdtdB6KmAZg43VarRbOnj0L3/dx69Yt3LlzB9euXcN0OsXTTz8NKSXW1tawtraGI0eOYDqd4vLly3jrrbdsStbq6ipWVlZsLFLZTg7AOkg+H43GWZqoftDOjQIAr+n/QkGrFL2dTfieQKVRZ6fKgXzB3PxipqkIITCZTDAaR+h0FyC9AJkGIAwj7Izgmk43c0SYVobAlbeih68IVbiOAroW16q4I8o9Lx3LGS9KR9ZRAlyszNXsSEABwGOPPQYpJd566y0sLCzg3r17uHbtGp544glb2IciC2q1GrJMI46NQ2AymeaKBkuWVxpaZIBnqMShTaygFMa8zwBbiEZpBcjZGPndbhejkSkGEcexDcojzcYd9DJ7+pNurlAlzMDd6bgwC8MQr776qvVMxnGMK1eu4ObNmzh27Jh1EJDQIa9kmQeIzl2GMVB/+ESgvnFhRvgB5YYOh0Pcvn0bP/7xj3Hp0iV85StfwYsvvggpJTY2NrC2toajR48ijmNcvnwZf/7nf45ut4tTp07hhRdewLFjxyx+4cbx8PGaF17yqDQrJsogDmAm0AQJM8KrNJRK0dvegO8J1MM60+MEhEcBmjpX8DyAks6lwCSKMBpP0OkuQPgBMj3zgO5WBh1PZs6KWuqWcLBf3jh5As21siwO+o686G7Kmyt0ygSde0763AoGVu3dzS7g0Mvjjz+Ofr+PP/uzP8OxY8fsMf/+3/97HD58GABQq9VQrVaRZQpZprCxsY7p1Di8CK83LMF5lKDWQM4wLAjZlAYQyCnkAK2tMEOuPBTMTH6j82xtdwA+zTYPswOK/QZmGf9aa4sz1Wo1GyxLmJu7M95P288cdz/nICwJOMK3CAcj05MSeqMoQr1et0AvFZSdTqfWqcHP/6D9emTanEdSylRhv5vB8WmaoCoEfM+32JrSCqlK4AW5eNM6j2uiP50vPFN4RFhByc/M3hWtzvmd5n3dBzbhYH3hvtnzLtOe9jrnft/fz/zn2iCnK6Lzk0JBCercgWD6O4N9disLOt9bHKJFi0eWBzxT+I6/s7NjtRMqPGCLjYrdMSr07/3e/MfR5u0srpaotSGaozgz+pzeU+Cq7/tYWlpCp9MpRFO7Kjy/3l4Tx+2fq5IDxXqCNAmOHj2Kb37zmzh06BBOnjyJSqWCW7du4YMPPsCtW7fw7LPP2uLFL730Eg4fPgwhBO7evYutrS1bJYpoWYCZlkiv9yP7+6w3wqIohzJ/O/su17cU6WlaQENBCg0pFPo72ziyXEe7XYcQPuJphp3+AFdvrOHpp8+jWjUYpZBebtUoKA2MxhMMxxMcOnYafqUKLXI2WSkBGK1gZl7yXvG+PcT9Optz2Vqj+eVq2/Pm3f2uUzd6oQyLI0GVZRl+9atf4c6dOxgOh/j+97+PpaUl6/FstVpWuysKX41Go44g8FGvmwItKsuQTBMImefH5jF/M3+KhrYqmbSbCOVzGvilBX9ra8smsLZaLfR6PcvwQPgZHyhXU/ukvWVlGqEbfsC/Jw8KDST3BC0vL9tSWGTHc9ofOp5rUmWeHs4R5XKczXtNVCxCCEtxfOzYMZw6dQonT560yb03btzAxYsX0ev18C//5b/E//pf/wuTycSGcly5cgU//vGPsbGxgQMHDlhXON0/55niwuxBYtM+q02z/8/8iPniZ5qVVgq+NMKst72J04c66La75nknI6xvbOFXv3oDZ8+eQLWS10gVMg/ZEMgUMBxPMBiN8Vh3ATIIoYWHTAn4FR/QGXSazkxOPethgY2DHAT3uTbcOeZuoGTu0bFlIUN83nHYZS94aJ6mV3Z8mqYgaOrnP/85tra2cODAAfzRH/0RqtUqwjDMix135tB4i0KNzZ2dHYxHI0STISAFPM+HFwj45G02dmdufuYl/fI+eTB5nmG1Ak+04HPJXaaFuRJ6nkYyD7MpG7xPstEguYuXBBx5X4wNb0y6j6JhuqYqfbZfH4Uwye7NZhOdTsdqxFSHczqdotlsWq2xVquh3W6jVqsVcuT4NffaVMqeRZmp+iDP6tOAHris0JrwMPahKHo0i49CI8tSg7fkDAvTaYIoijAaj3Pes9l8V3r2exMCoU34gJQFE3PvXpIbYu8x2e853U8rW2cfp2Kxl2lKtNhUWHthYcFCJc1mc27miRACXl4nVAMFhYldOP9zPhPc4TMzPU1oig+fQgTSNEW/3wcA6wQgrYVn83P19kF2nI/TJN3rurQLlJWap8rk5EJ2vTx7TbC9drZ5D42bB9xjSv9Op1Pr0ibV/dq1a5b2JQgCrKysYHNzE5cvX8bZs2exvLyM559/HktLSzbvjdNue56HyWRSiJ3j192v7YetfJpN2P/POGYFFxx6lhhOehq9TqcxkskIlcCM+3gc4eqVy7h++x52egM0Wi1QapKQHrJMIUlTJGkCWfHgByEqVQ3IAADVtcw1cRbnNusPNzeLAvaTaGUb6DzM9ON8nkEQ4O7du9jZ2cGhQ4dsHKXneej3+9Bao91uI45jmwq1x10gDKsQ0PCkRJo7CNI8gyDRueOKLBxzR7PRz4VeEASo1EL4FDSaJAkGgwE6nQ7q9ToqlYqlqqFBoQXpBpNyZwFvXL18WGHGdx/XhCs7J5mAZVQpFNNF2KALnLv93GuClL2ep/2QVshNUq210RBGI1SrVbRaLWRZhg8++ADj8RjLy8uoVqs2POPixYv4zne+g4MHD1o8otfrYTAY4OTJk4WdkDIFiGZI61n+qHtvnyXhVda4QLMVJk1UJUz+Zf6hpM1CwIPGdDrBZDxAteJBABiMRvjVm2/j4m8/hPQrePKZZwHhQeemSpomiKcp4mSKWqUBP6ghDD0jzFhIRqZm9RtJxIpdgkyBhN9HbXtZPIVxmvPdwz7beXO/Wq3aqmPHjx/HrVu3bBzZ9va2FWxU7Yl7ZoHZZkQCqVYLUa1W0GjUEUcJhuMxhsMRomiCTEik+XE2N1cIZCCs0JynWgnQadVNDQDqOOcGK9MkqLmL9mG8gJ/EAuLCroxOm+eRPawDYy+A9H5/S+NN3kxKVyI8TQhhGT3DvJr1aDRClmU2cZ4S4Tl+V4Z90Ht3LOa1z5Rgcx+PcF/u4RFUGbIsgeeZeLIsUxiNxtjZ6aESGpLBLM2QZhkCz4fSGmmWYZqkqMHQMUvPB+Fwxr7NhaigMdR79uFh2rzxf5hn9jBYXdnn/HsppS0gTFYd4Xfkcae1xsOnSj2zMA4VAvJVpuHJ2Vy225fWMAWWy5oJiA5832BmACyeRISD0+nU1p0kkxOYmUsu2EifuRqUveRHNDPnAZN0PcKRKKaFD6JSqpDH5gqyhwXH+b3PM1XLhAqZ6iR0CagFgOPHj9tqN0IILC4uWurtjY0NhGFowVWqhqOUwo0bN7C5uQnf93Ho0CGrkXFY4FFsRTSKPin+n8fcC2HikaLJBMN+Dwvddl65x8PpM4/ht5duYDge4+rVa/i72i+xurKCg6urWOh2cOPGLdy8dQPffPXbCGsNU6UcEhCeCRbQKKXbLrZPx8P/SbUy/I1TBVUqFSRJYqEQclyFYYi7d+/a+cxp4qkeZxAE8GwamMidNsixMAnP9xCGVWhoBLUMkyTBeJpCx1NobWIIKa1JwHgzuT/IJ5ORbFtil6SFRJVZRqMRdG6f0k2St4xeA+VUzR9FkHHMiWNcrombZRniOMby8rJlaeWCjpgy3IBbroWW8ZaVvZ53jNvmmaB8E6B8WPIeP/HEEzh58iRWV1cBAAcPHsRgMIAQArdu3UIYhuh2u4X6hlmW4eLFi3j33XfRaDTwgx/8wJJRlqVs7dUeBBL4VLQ4bf43EyI5HQzrIn1HJEGeBCajPna2NnDuxIE8rrCCZ59/CT9+7e9w+94GLly8iFvXbuDUyZN48YUX8dTTT+D9332AX/7y7/DVb30bjUYbQegD8CCEBy08Yz2KeY4AjU9CU/t9NFpf3GqjtVGr1aw8IKshCALU63VcuXLFWgtRFNnslGazmdccBWRQsRWZChu9FAgCH9IzBUoyAWz1B0j7wxynFHkCegah83i13ANNgdKWNpsHv3Fzk8cxzTPN3EntqpQfJ/hfdl0utCjOhV+b7olra/w7V8P8qPgefz/PLOXClJu97XYby8vLWF5etuEc5MwgLyedhxwzlA+3ubmJOI53hdW4fbsfITRvDD59M5R7CfPrk2dLzyAzu0Hn3s4sTZEkMarVCjzfyznluvCDKpQyycnJOEa71cZwNMI0STEYjrC5uQWtAM8LEHjELktmprYdEbu75775XDQXn3ZDl7hiQ9XVgVlOcZqmNnJAE2astWG/yK9hn52U8AUgPQE/3+hlHtcHMFdzSdPQJgOALk6aAt0AcYClaYpGo2E1INeMdE2sTwKTcReXKyTojxJc3euRZ5YfS7/fzwwrs/n3Enhl3/F+unmvhDEIIdDpdOD7PgaDAS5cuICzZ89Ca0MmSUR8/JxpmmJtbQ1LS0t46qmnMBgMbEBtu9222Bu/z72wy4fFEj+pxkRJuaiwKhpNeIUsS5ClU+gsRVgJYIqUCAjp4+y586jW6xBSIRlNUK/XsbG5gTfeeAPDwRCHjhxFnKTwKjX4XtVoZbpoylLPuKn7eWnccnDrYgDAaDTC4uIiRqMR3njjDWxsbCDLMrz99ttWAyM4h1KVyNmllEIWZqhUq/B9zyadA2yzz/cMBaASBGjUa2g1mhhNE6SkeOQ4msoURBAgSVL0+6NZ3UxSLamoqFKmOgy15eVlS61DNw3MqiTR673MFBqUh8FweIT+jOBtFkhIf4TzuQ+HVzXn5h0F2c7D+PbCwAoPwfmMjuVaF9843ONJmK2srCAIAmxtbeF//s//iX/+z/85Go0Gjh07hvX1dezs7BTGZDqd4sqVKzh69CjOnTuHN954A7du3cJ4PMZXvvIVi4OSts0pm/muSmM6LyD599rmdcdqSAQWA4BCNo2QJRFUNkW9HkIpCaUBz6/i5Ve+iqeiCaqhh/Wbt3H79i18+OGHeP3113HoyGGce+xxjKMErWqAatgApI9MaeNBY7Q/s45xNW2uyH1kGoePXB40rTW2t7dx+PBhZFmG//yf/zNqtRqGwyH+7//9v1hYWMDi4qJlgCF5EMexhUqSRhOtdhthtQrPy9epNhH+wvNgYASTdhaGVcD3ECkg2dpBOiW6L0ArjSRLUKvWEMcJxqMxZJkaSeoduffJ3CHBxaU2NX4OV0P7pHZ697wEqJeZVy4H+cOYwfPA/Iftt6sdKqUQhqH1DN28eRPD4RBaazQaDcsjxc9DCfP1et3WKiR6Y459zHNylPV/v/H49LU3McOqrCLmYFQa9r1SGZTKAJ3B8z27OCAkFpcO4PCRIzh69ChWDx5Evd7AZDLBrdu3MZ0maLe7yDJjxko5y+d0Q8cEE2QcKeOa5KPa3E2YPgOMhUMsybdv37aBs3fu3LG8e7Rxk3MAgHUGTKdTZGlqePyxN8roeR4qQQXVSnXX/NUgRcIwzUbRtLwIMBdsJKlHoxGSJLFmHC0+AtVdjcx9X6bBPGxzTUtyOvCagrxJKS0Hv9a6NHZuniZWdj/7YWH8N2Wfc4ol7pAgs5E0zMcffxzb29sYjUa4e/cuVldXsby8bM8zHA5x584dbG5u4tKlS1hfX0e/30cURahWq4jjGOvr6wiCAAsLC7b8l0sbtJ/2+dlqJVNf5657rSCgMB4NIIVGvV7LGWQ9ZEphe3sD127cQJxEqNcDNCpVLC0t4vHHH0etVsfRE8exsLiYs8kaL6b5V+x9/c9Rc7VzmidE737hwgWcPHkSy8vL+PrXv25TmJrNJo4cOYJ2u203XJIRRT4zU7lJaYXpNDKVr3KLSSuVOweE3TwEWLRBrsFRfiaEgFIaSTLFeDwuCjM+wYFZGIaU0rr9wzBEGIZWIgMocH9zLwj3bH5S9M00OL7vo91uW+2R85RJKa1XkOiOKGaLipTS/fPiIVzNdu+Hj1OZpkXN1eBIgPKQGBJmpNqTp/LVV1/Fb37zG6yvr2MwGOBP//RPcfLkSXvu9fV1vPfee7h+/Tpu3rwJ3zfJu7TpjEYjvP3221haWsKxY8cAwFZR58npvD3I8/k4N6j7adakpHEvfJsZoaYS9LbX4QuFxU473xyqSJMMV65cw+u//Dv0+ztoNKv4h9/7Lo4dO47jx09gEkUQng/p+0i1hNY+IHxA51WhIKxyJuYKtEdf0NHc4JARWQxKKfzyl7/EoUOHcObMGfybf/NvsLa2ZkH+xx9/HL7vW7lAsWakrVEtjMlkgnSYQukMYbWKer2ObreLTClICEiqo2wUZNMXAFopqCSF8AwO6nlGERjnzLa+eyO88QVIcWYUj0aAHj92HhZWpvU9zCCXaRD8usSU4TYhTH1KCjkhpwbtFq6p/aD94N/Nu75ronLtl37LAfogCHD06FH84he/wL179zCdTtHpdNBut+15oijC9vY2BoOBxTePHj0KADarY2Njw7rPhRClmnRZvx/GDP8kmmYvhID1aJlUIibUtIaAgtAK03gCH0C1Wsk3WMMc2+/3cffOXWxtb6LZMgus1Wqh0+0CQmAcRRiOI+z0ozw1ikwbUcDneL8KM6H0w0ercXyXP3daK/fu3UOWZWi323jiiSdQqVQsLxnhZZubmwBmmhlXcIQQOZVVjDRLoHMBp3XurWS4pPnLmXty0N/EmuVea0HB/plRaKize3knAVivGBEdArDOAjKP+IDw9mkwNpDGMw/LIgFBHGE00JwbzD0f/+3DtjIvLBeIvPo0fU44ped5OHr0qI0l8zzPCmTKGgjDENVq1QbS3r17F2fPnrXMIFT1KYoi3L1711bHpnzcB6GI4WP76Qm4mc9Qc8k2+9TKDuPnUogmQ7RqGrWwCk9KkwM7HOHOnbtYWFiE9AS2d9atuT8cDuEFAcaTCcaTCJVqLQenJTTyRYgyj6YLpeWvtH5kBRr3ZlIjbY2CZXd2drCzs4N2u41KpWKtCarIRI0Tg9I8CwJDuaQBeJ5v5+FwODTmqB/A9wP4QcU8TaXtGpUyj/fLfw8h2DMRJs6MsJu9GFyJrYEqGFM+IVXfTtPU2tU8lIHOzVVWV1O5n8F1A13dRjgTf+8KZco5DcMQ29vbiKII/X7fVhXnhHju/ZeZyfMWtWumuhOD01kTtxnXDKMostHWL774otWmfN/HcDjEZDLBysoKKpUK2u02Go0GHn/8cYRhiP/wH/4DvvrVr+Kxxx5Dp9PBaDRCr9dDv9/Ha6+9htOnT+Oll14CACvkOIY27xnwOfGpampCAuAav4GMtVXVAKF1LnYUoBP0dzbQqS+g02kh8H30emPcu3cPFy5cwIsvvYTxZBl/+X8/hO8HSLMM2+vrCBt1DEYTjCZTHD12EH4QQsNgZgJ5ug0y1oO8e7yr9v+PtguArx0Adt2PRiP0+33cvHkTBw8exLPPPmsDt4UQ1lkFwEI2xIZM8ZFhWDPZq1rnzi6BKI4xGo9RC0MElSoq1RDdxUUAQJZvNsRgIrzAFEUBIKSEzstyCSmNZjZPuPDJS0wTxMZAKQpaa0wmE8PKyah2uSBxgfqPu3GMr2yh0We8+jl5+6bTqc0xcxu///vBh8qEW9l70rq4Gs6FGaf+PnTokA0puXPnTgFcJYEXBAEOHDiAer2O9fV1NBoNm6hOuyl5R5eWlqyWTZPsftrvxSkgSBubaWCaiRKjFeVolkCe6qIQx2MAXYTVCqQw1sRoNML6+jo6nQ6qYQVRFJtxz6ls4EtMoghRlCCoVFleZtm9C6cP7rfzUbXPeivbsMjyIm/kYDCwoRa8AM94PLZCjM5F84zHsVLzcp7/NEktzqbs8zZPnNaohjaFgaXZ3Izyy9ebMMJsngfOddFyU47ShyimhI7nnhCuoXyci4H3i4B8t6pR2fH8PZnI1Ditddnv78fLSe+BcvyxzBvqmm6u8OeJ8fz48XgMKU09zkajYStcP/744+h2u/A8D0mSYDweI0kS/O53v7OfE2hL56N8OxKuZff6aYP95qKzl0UzjyV7awDCiA+tUmRJBN+T8L2ZuRTHRvvsdjuoVAJkWWI3sCRN0Ov3ICo+sswU/BWCKH8koPOiJ8JgdLrQo1k3SSuzYqxMyj1ijYQRxWR6nocTJ05AKYW7d+/ivffesyzOZN3MC9mS0qQfTadTgOSIlIA2GzvxDNKaHo3GyCAQpRmSJIVSpnBwQWPUhjqoGobodDszzIwvZhfMJ22CNIEsy2zMk5QStVoNnudhOBxarYJHnrsC70FbmelHn4/HY3S7XdTr9bmmoPva9337m3q9btl1AdjUIZdcjjO4um2ve+LMoHQfRAfkXoeOJYHKsxZoQpBGt7GxgWq1ihMnTuDmzZu4c+cO0jTFn/7pn+L06dOoVqvY2dnB+vo6tra2MBgM8E/+yT9BtVrFO++8g+3tbRw6dAirq6s4evQoRqORvR4fc3rNx/x+7vvjaqR9mWZCLwyFNsw3wnzvaY00iRCNeqhXPVQDD54083pnp4fhcIhTJ0+g1awDUFhcNBrqaDzC9evXoaSAX6khqDbg+QGE8E1YBmReMUib4hnmzgv/av5KC/P3iBL7csWFBFm73cZoNEIURfjOd76Dy5cv48033zRm+4sv4vjx41hcXLSsGeRc4/BMEASQQqI/GORypArpSWgF+EEFQVCxhJhxHGNtbR0pBJJMYzyeIJMelPTy0AyzZWRZhkqlgk63i+WlRTPkXPsCiguQ3yQw82qQZpYkiQ3ZIMns4mKfVFgGAZPzNLO9hBoVNqnXTQkyTlniejbLhNuDNBdULcPzyo4nzYwKmXC8cDgcQkqJxcVFNJtNDAYDbG5u4tlnn8Xi4iJ838d0OsVoNLJ4EREH3LlzB1evXsXm5iam06mtJbAfkeNe3s9Prs0EyEx08OtT4ASgshRpEiHwBTyrmSlE0QTTOMbi4gKqlYoJYanVjfY6nWJnZxvjySTXzPxZrUxNgRiup/tRNSLvr/G56Xke6vW6TU06e/YslFK4desW3n77baytrWEymeyKDKDzFOSG5yGexjBhFSZt0mhpPiqVKoSYKT+D4QjD4QjDPL6VZ/2Yk+cbrpSo1UJ0F7qz3Myymykzhdw/sonpNSdwpHO43rqHGdgyIkhu+roCmDL3KQrZvQf+sMoEMeGEXLjxcbkf/Izfw/3gb/uZd/x5kHYXxzFarRZWVlZsqcCtrS2kaYqNjQ20220rxKrVKvr9PjY3Ny0lN2lv9Pzc7Il59zyvXx9nK4qs4mstCEPLcTWtkaUJoskIYVhF4Hu5GJKoVg27w+27ph5pkqZYXFyEEMJiQNWqcQxVQ7OoikC+vVLeMZEzdYhdfTNIT9EgfdSau8a3trawubmJfr+PZrOJQ4cOIYoiDAYDi5sDReHF5w5lEAkhEccJpOcqBhpKG4eOEMKA+R4ACCiCE4wKbo6jjBDGxySl2O0A4Krh7MCizkymDtnRo9EIQghwCm6X7+ij7OZkYnGcjPpEpi95VMhEpgTser2OZrOJMAztufg9U9UmKuG2vb1tr0feWS6A6CGVYYPz+g4UPZu8InlZoV7eRzdTgAvgJEmwvb2N48eP49ChQ9BaY3FxEa+//jru3r2LNE1x5swZLC0tYXt7G51OB5cuXcKFCxfwT//pP8VwOMSHH36I4XCIc+fOodvtQogZfxVph2V9o+Zihh93m1Fhz1j4dQ6VKQFIbbAUqAyTUR9ba3dw8EAbjXqY909iobuAzdYA71/4a4xHYyweOIAnn3zKsvVeu34V3/+jf4zOwjIqYRueF0BDQudUM0Ibdlm9CwibOQKKn0kAj2ZVLJpfAKy2fuHCBdy9exdRFOGP//iP8Y1vfANPP/00+v2+hZaAWd1P2hQpJIOCZX3PR69nUu+EMOa7mT9AmqVGRnkePOEh9CUSBYhMwZum0J4HxX4jIEAkAEKYmsGFODPeoTKQml7zXVxKaQNom81mgUaIBoNzkT1o4wAiFwhcwFBSK98hsiwr1DTY68E1Go1CLUsOYnLh7pqaroY4r//uGPLfuSat+7uynY4EeBzHiOMYx48fL5Sdu337Nj788EMEQYAjR46g0WhAKVMUZTKZ4Pbt21hcXESv17MBuceOHbO4Jk9G36tPn0Yr9xYWvzfIsEISRxgOdtA8eRyVig/AjHOjXkdYreLO7VvQQkL6Pp574SuGtmYyxubWJmr1OhrNJoJKI3f5l9Ne7xZfM9eE1dNE+ZGPQuNQBs3327dv49atW0jTFO12G51Ox9YM+fWvf70rBMnFt8l77wcB0iTNfTYk8E1pQA5NSc+YoVAaSmSQngctWdFmi5ea8n/mmiimM92PmcA1FH7TwKw2AP+u7HcPshhc84w+I4FDGhk/ljQzOo60Lop7meexJFOMpxe5+IEr8B5k3Mquuddv99L8eL94dLUQAgsLC1hdXbXhNFprrKys2LxNz/Osl5OENW1AxC7CtVxXoM57hh+7c0CQsLJvzXVsgAaZdHyDU4VNR2uRM5iGWF5ehtYag8EQa/fuIRCxrXthdntASLErAZq0QaGxD9Ns/ry0KJODj1TjUftUCGg6neLevXt2vGiuEORBzVWECsqHZE8x16r472iAzfMruFZmx4HLkTxUWmN+aIarSfCO8QXEsaXxeGyTvSkfiy+WhxVmZGLRe9/3bfoOlbji5yTq7yAIkCQJer0e4jhGo9GwkfPuPZMgO3DggOU4J2CT4tMIW6NoaO4wcPvMX5eN737OgDIBzSOqedwOeY4BAwE8++yzOH36NDzPw3/7b/8NtVoN3/jGN/Dhhx9a0/v27duWfZccDZPJBFeuXMGJEycsWy+/pjsH9hPGH0fbJVTsf0YhUxqQCtBaQWcpVJqiWvXhe9L+sh7WsHpgGa+88jL+9ldv4cqVK5hME9QrGtXQx5NPPmnuUwp4vs/CAIwDQUjkQbNcB5tnbopdnzxqLcsyhGFo8bD19XVb7PenP/0pXnjhBXS7XVy/ft0mmRNIT3PCrddqFJ3M0nNxIB9wOQZh8TPblIYWudmfY5pGOAJKAUmCcm/mXiYTN/u4bU3pDLToOMnjXubUfo2EmUsUR95HSs3hjQL8KJxiNBphMBggiiIbX+X2ifrc6XRsVDORU9L3hM3RvZUJ/Pu9J/56r9/yTYNvBvS+zMFx8uRJPP3003j66acxGAyQZRkef/xx3L59G71eD9VqFZubmxiPx1YwkjNhbW2tUH1rL6H1aQizcjdAUaBprQGloFQGrVIEzDMLGCKETqeD8+fOQWuFe2vGu/u3f2uwxaNHjxo+eRjwmWtmdk3s6lfZfbtC7tFrNLfIeymlRK/Xw/b2NtbX13Hx4kVsbm5iMplYRpZarVag2OLKB23WNkDc4TycmYn5XJozz0hDF7l5OQvXMdXs0wwzB8BHwUH4QqJOE35DTgJ+nOsJ20t4ut/xfvIFR+cnwJFrcnx3IK3KXaT8NYH/XHCRacbvmeN49zs++7V5ppo7FrRpcCJKbgJSLCARA9BmEwQBlpeXbbm6IAhsaAelTfX7fQghcqB2NzNvWV/d5/JxNWv0WcUnFzrQ9nsBjTSZAlAWK6Nfx1OFOBpjMJhAAVhcWsI0VRB+AKQ1LC0todFoQmkD+Jt8zFxcilxDY70hl4TQGlzMCW4Pf8bbPEuBP2vKs1RKWdiiXq8jDEMMh0Osr6/b8CDXzKTzkhCbxZxlkJKY4JgZqQG3mDPANpT8FxozYUfZAYBEEqcYJKPdDoD7HQx3QIQQlk2DMugpV4sngPOBu5/ruDFq3GNC0cf8XKSVTSYTm+pD3tTxeGxBc6KULqPYpgUOwBYLrlQq+OCDDxBFEVZWViy9tYsplT1U955dIcAnkfudi0XQv3EcW5pidyypHufm5qatKRCGITY2NtDtdvHiiy/iwIEDFkNbXFzExYsXMR6Pcf78eVy4cAGdTgdPP/006vW6deBwrZY7RXhOb1kru+/7axpSTCG0yZHMrKfQZE0KbYSKVBl6/Q1oFWNxsQnoDNASSlewsTXBtZt3sL3TQ5ql+Pq3vmkKzSYZKn6CTreLlUNHkWY+ksyHQsVUDRIKGhkgzHWFznlptMkLlCLLg2oFoMlZoKGFghIZ873+/luZsuKuQa5VBUGAtbU1e8wrr7yC5557DnEco9/v49KlS9baeeGFF9BsNguEDbTRkjCkvO4oiuF7Ep6QhpFMS2O6kyDTuaDLN6xMAykALT0oCGhtgpiVltBKIFMCWgXY3hpia32jSAH0oM1diBzLolJnNMnLgk65+cQH1L0G96LRQuImFm+kfU2nUxsaQjhXFEUWH6rVart+y4UZmc79fh/T6dQ+4F6vh1qtZlOD5pmMZZ/vdZ97aaBl5yfOKdKe+PFJkljixkajgU6ng0qlgl6vh9XVVTz//POWmns8HmNxcRE/+tGPcPfuXTz99NO4cuUKOp0Ozp49i2azaZ+dWziZ77xl97IXVng/zUzs1AJQGjmtMiTy6W0IGXWGybAPqClarTq0znK8y0evP8WVG/ewsbWF1YOLeOG5Z9FqNBGPItTrgPB8KFHBve0JssyDQpBrABpABggBrcxC8wTdp8qNGw2t+b3rmRDM+/pZaUXTrhhqRI0+C4IA29vbNiD+ySefRBiGyLIMb7zxBt577z1cvXrVUtTXajWMRqPCeShEK01TNJtN63CqVqvw8mcI5BQCWkAIcggIa1YqCKRaGE+mJu5/o8lpLaCUAFSAQS/C9at3zRn3wkXuV8C4go2DgftpYvPMFf4QykwsVxgBKGX9KLtHF8R3Gx1L3k8hhK3QTLFoJEzLgnbd+ysTVq5j5X4b54gq8xrTv1SIplarWQ6qIAishko5caPRyGqjtVrNpqfRxkQeYX7NsvEtu7eyvj18y6+hYSe1+dSwjSqtTLkyIaGUxjSZYntnB8k0QZYp9HqGXICeWRAYCGGaJIaOxrUgQID/DMop6lszk0l8hgTXfq1srfO5KKXEYDCwwoccfJSqRJs5d77ttYZ3Z5Zwt44j8jUf9dIj8u/oCAWtM6gs3TuD7H4nH4HxwIx1lrtt6Yb20lA43jMvx5KEZBRF1ovCf0+mJD0E/nvChwg/6vf7NmfRrQ9AzfM81Go1NJtN+L6PU6dOYXl5GT/72c8wnU5tQG6z2bTX4xTB7thwoT9vvLkpybMSeJAtMX2QcOWmKMcDJ5MJzp8/jyNHjmAwGOCVV15Bs9nEr3/9a1y5cgUA0O128eabb+LIkSP4+te/jpMnT+L8+fNYWFjAlStXkGUZJpOJ5XgnLxenG+dmP5n07p8bv3c/zQDwOTpmF2D+pwGrIUmFnZ1NpMkU7XYHlWqIaZJgbX0Dr732Mwz6fQhovPGrNzAYDG2/Pd/HJIpw+9ZttJotm+LkyqWyTWPWPttCzB177jgqE0AUkH3x4kXs7Ozg2LFjqFQq2NzctN7wJ554Av/oH/0jfPe737XMxkBR+6braj0Ln3IVIELDjBasDTwABa1daIXqMOj88StAKHiehhYJlI6RqvijpcNyG9kVZhTWQINWhgnx8+ylHbkDRSYk5VXy8xAdkZurSTQ6FMZAPF9EoT3v+tWc1tfzPBw+fBjdbhe//vWvLVUwJavTA3M1Fx6A6mq0+zWe9eA6MUio8NAOADa+jnC1EydOYHV1FaPRCM888wwajQbef/993Lp1C0IItFotvPfee1hZWcHzzz+Pw4cP4+TJk+h0Orh586bdPDY3N20NT3rG9Dypf1yIl2F/857zni3PjzTYrzEzZht8bowIhcGghzRNzMYTVDFNEmztbOOtt36N0WgIaODihfcwGo3zc5g+U1Jzvd5AGBIVVFFASSFyb6fbPtuCjJq7kdAcLXsW5LW/fPkyhsMhVldXbabE9evXsbW1hdOnT+Ob3/wmXnnlFdRqtYIwK1NUdkU25EakaVxbM4JMGzsy/5y0cc30NQUIDSk1gBRKJ1AfVZi5nsAyU5AvSHeC7zWx99JguNBwf7PX7l/WTxIOxLm0129Iy6KHQ5WRhsOhNcP2Mr/m9Wm/78smiFuFir7nqUjVatX2lbCtSqVitTr6jrAREo4Ue+YK5X6/b1mGed/KwOUHvc/7bXQWbb2HCkqlEMIwadB1DJVyjCDw7Z/Mq2AbssFxTi2jALE3kUDRKHq0234mITUO11DdDArAJiyM5y7v1cqcWPzaIv9f+Vlcj/LMi517gEwqk+/t7QC4H5yrzBQkRo2lpSUkSYLJZGJjVsowsDJsrQwnI0FFZeG51kcmGIWD8BQnPpjUByrQQDz5YRii1WrZwFh355JS4ubNm1hbW8P58+dRqVSwvr6Ot956C0mS4OjRozh9+rQlqCPh4VIplY2xi5/xz+geuKkKAI1Gw2qf1NckSbC1tWW9uKdPn7b5pRRHtrKygq997WtYXl7G4uKi/R1pmVprXL16FVtbW3ZXJqH5//1//x/OnTuH06dPF57lvI3AnUfzcNm9mweRU1dr8qDC8GBJCahsimi0hWooUQ2NwMoyge2dHjbWN/Dkk4/h+PGjgPBw5MhR1Gt1RJMJLr53ARpnMM00mo0mPM+H1qZsmaH/ma0urRX2Cf3/TDcad+5hdC0EDg8QhY8QJhH/9ddfx9raGvr9PqrVqtXaXnjhhUJNVtfMFKLoFKQwogIqaUHIXDODyKM0TMCyUgqZMmSMRknPzVN7TxnqjQArK+2H92byHdk1BzmuJYSwN0wChm7YneSk+pMwmGeDEyjp2v0kzOh3FDRLZjDffYmXLY5j7OzsoF6vW8zHjd0CjMCgsm6nTp2ywuxXv/qV1cqefPJJTCaTgulVFovmbgTzdjYuzIgCiMatVqvNJgcTKsTNXqvVcOLECYuxkTBbXl7GyZMnC86MJEmsxgYAN2/exGQysVkEJMx+/vOfo1Kp4OTJk3OF2V7a9MNpZybiWwgBpRUoXFJrQEogUwlGo21UqhKVig9TvRzo9wbY2trEufNnsHroIKaJwqGDh1APa4ijCB9+8DssLXdQazRRbzSMMAOgMgX4Zc4aQD6i8oxbMlxzB2brkPP18WI/SZLgzTfftFRbq6ur1tx8/vnnC8KMNw6NUEWw3WmERpvWuTDThKFhJmiV0si0MmEwevYdBCCkgvQy1Os+lpdbHy00gw/WXu+pY3u1eVgaf80FS5k35n5ouedpCfR7Hv0OzNRt2mGm06mlzyHGCxLYtAO5kfMPa2LNM9/KPIou4E7HuXigEMIm1VOjCG5iPyFzQkpp75kmIlFtU7oaXecTMS1JG7Kn0fwNAECpDGk6NfFLhNfBCDsCmbMshdbmPqXnIcummEQTQJsiGZC0DDjdtbAhIV/ERkzFPJiaivySRbNXo/lDlhrA1hxpvHv8XrD/u58WcTYNz5OoVisfrzDjdDW8ZgAHhXnIBu3sXAujHb4sqpg0rG63W2CuJVNpMBhYpwOvR8mxJdqJ+HUoloqKtdTrdTQaDcv/NR6PUa/XcfXqVfR6PfyDf/APsLGxgel0ildeeQXb29vIsgy/+MUv8PLLL1uNiTQid5x4X/bLIOD9nEwmkFJaimL6nnZQLnSyLLNxdZSRQQKYWEMpmPHll1/G3bt3ce/ePRu60Wg0IITAz3/+c7RaLSwtLeHJJ58EAFy+fBkvvPCCLQxNhW3KTA533B+4WSy4aBZV/Ap0NkEcjdDrraHVClGrh1B5DFOlGqIahrh58zoGowjVahPnzp5FrVrF1lYfa/fuotnsoNNdQqo8o9FRpHlu5sAuPNqQFB5FBM3d4Og115T4Mb7vo9Vq4fbt2/j/ufuvJkuuLM8P/W0XR5/QOjNSKwAJICEKKNGNArq7RPewi+zmjBmfOJy3MbtP/BI0fgI+3Ts02jzwiXPJvlM97O5qVWqqC6iCRgLITKSMzNBx4mjh7vs+bF/77OPpEZmoqpmp4jaLzIgj3LdvsfZa//Vfa/3lX/4l9XqdtbU1VlZWrDYvjqaj7jMamdTkkl9PLCml1IRMkgOHNC25GWtS7/VYq9SWlybOtCQtGKCp1spMV8q/ueS+roAQYSbAetZclM9khZz8LgPt2veiOSVJYk1CdxDdclVCenVNH9cscu8TBAHVatUKC6FrDAYDlFK0Wi22t7dpNBrcvXuX3d1dLl++zO7uLqPRiFdffZXnnnuOOI75p3/6J5tSqF6vH8kFkz4BE/hFXnPHQ8ZShJlrektGWhkXiYRwy9aJmSHFPQ4PD9Fa8/LLL7O5ucmPfvQjfvCDH1jeGcA//dM/cefOHWZmZrhy5QoAt2/ftiRKEWaCY7rP5j7DkzTzo5/fcctj6l+iIQxCSCKGgzaHjR3qtRKVSlHOagqFIsVSkY2N+9y5/QU721tcOHeeYrHEoNdnZ3uLWq3OzPQctWodqdcomf51uqFgLNfSHv1Kz/Ffsrkau6tIZLPDujhXvV5nc3OTv/7rv6ZWq3Hx4kVefvllC1G4JRKz9wGsqVoqlWyMs/28dRib2ZIcKMZjLf8/ngRWyQGOSeZoNO6EWrXM6urSb0Yzy2tZEDsLdD/tSe0C/HLdPOGQh4u5k5e9ptvPrJYoGowA5+K1FAEXBIGtXwnjZJXdbteq1a6W8qQYzqwzJGteZ8fCHU/3+V0NV17Lu4cbXK61tiRZeX7BJEVAuvU1ZTwkAWe2VF22X79+M7aeUZBcMzPdoInxZvq+Aw0kCXgefhAQxWk/e2a+hoNBmrrZBCwbSkmahcEJXs5v6dp97O3s8/7ugWvuvkySxB5OWhuHm3jA5WDMS6OV145bD25G3vFnsvTjzHczf8o8BkHwmxFmruno3kTiNGdnZ+n3+5Z1L53PAuFiMomW5wo8MZVE83IHSTaYpPmBcW419155jgb5LIw5clprq+XJPX/4wx/S7/eZmZlhf3+fu3fvWm2wXC5zeHho73n37l0ePXpEqVTi5MmTtnrSk3ClPMeA23d5dqkP6gr2fr9v+5wdT3eOpEkYlMzHc889x+rqKgBTU1PEcczGxgZnz56lXC7z2Wef8dFHHzE9Pc3i4iI3b97k008/5fDwkO3tbfucopH/pgSaErQf0frNYh8Nh+h4SBIPiKMBhULquNEeu7sHKHzm5hYol4psbjbY3xuwfuIuG/fvcNjc5/TpdaI4Joo1pVIl1cyMiao8n1inudHSWFCtfxdFlGlZq0SaCwHJ+oiiiMPDQ65evcrq6iqtVosrV64wOzvLaDTi3XffpVQqMTc3N4GbZZUN1zk0YWI+hnumOELKzxCsTKNJtHgy0yImE0qJQuHjqRBPGTH2GxNmMLbBRViIMJufn2d3d9eCxy73TFRdeXCXw5UnzIQf5QpDCYLu9/s2KiBbKVxOFLm2ex+ZSIkQkLzwooUFQcDf/u3fUq/XWV5eZnd3ly+++IKDgwNu377Nc889Z3Ez3/dt9ZozZ86wurpKpVKh0+lMmL1HeTTzNC5pecJMPt/r9Wi320xNTT2Gp8nvrve3Wq1aM9HzPF588cWJtC9ffPEFH3zwAS+++CKtVotPPvmEn/zkJ3z1q1/l3LlzfPrpp7z99ttsbW3x8OFD/uAP/oCTJ09Sr9ePjKj4ss1d2FqnaJin8BIYDfsQDdDxgCTqUxRhFntsb+9RrpSYn1+kUi6xtfWAVivi3Kkv2Hh4nzD0OH/hLKMoJooT6uWqxcuUUkaYRRGJTvA9Py00q48RZo87Jn5bWtbqcFsURZbeIyUboyji4OCAa9euWaVCYJ1Wq8Xbb79tzU05tLJmquvFF+jD87yUS2YSajpcWEfTTe359HNxkhAnMUkSp67kjDBTHp5XRKkA9K8pzPK0irzPuBwz98HdAci27OvHmVju/b+sGZsVLK7wFKEngnl2dvaxUnuSoUMEmQhled8tgJp3z7y/854pu1Dc5pqNx5nUbst6OsWUECFfKBQmBKBkG5VDpd1uW21bMpGIYHQPK/f5sgL8qZrrUVRO+IuW/GWGb2Y1eg39/oBCsUihaAS/7/lobayCQb+P5xWoViup11OnWMykiSk+B6VSU+iI7LHaST/72ynOvlwToScVmWDSaTAYDGyi0uMOrKxzzx7aTK778Y2x2pn7YjZK07ycCjYrTwxJ+jfmzcyaRnEc2yBnwIYEFYtFer2e3Xyu7e1iS1rrx4h8kk8pTxBIfT/Xg+mmf872NUukteOUfleybAoY+txzz3Hx4kXW1tbsZK6urnL16lU+/PBDSqUSFy5csCEgL774Ir1ej42NDcvvkmcRQSL9cf8/SvBJyh9XK5P+tlotkiSxoVpHUSXcZ3SdNYAVTDJXwie7d+8evV6PMAxtOqG5uTl++MMfsr6+ztWrV1lcXOThw4cMh0NOnjwJjGNSBU/71bE0nYLvqVTTCUob1vfBzj6DfpfF+QWzjjTEUcznn9/kzNnTnFw/yfPPv4DnzbC/32Z+bppy5QL1qSrnz58nCAro1KxMNGnqH2/i4DA9kH//nyCuJtece+gLR7NYLOZSfzzP49y5cywuLlrNPqsIyN4vl8v2EBTry1OKKEmsSZ/2ZtwvezNThcl1DNjxt2qcBwSgQ5qHAw62Gr8Zb2YWdBezr1arWQyrWq0yMzPD4uKiFVpufiwYezBdbpfLbwqCwA6SHYB0AH3ft4UWxHtylKfQDeDO2vhZYRaGIdPT07zyyiu8+eabvP7664RhSKVS4dSpU7z11lvcvn2b4XDIs88+S6vV4uTJk3z1q1+lVCpx9+5dPvvsM4vHudWq8hwRWazQFTbu4SBNa02z2bTAvSvA84SiixO6z97tdmk0Gmxvb9PpdCgWi1y8eJGbN2/y8OFDi30uLy+zsLDAJ598wrlz5/iTP/kTfu/3fo979+7xySefTNQjlUIycp9f1fRUuM+SAAmBr9nf26bX7bC6vEzgh5DAaBTz0UfX2Xy0jad8vvKV1/jjP36LP/7O77G4OMfzzz/LSy+9yDPPPEMQFknwUH5AnKSUzZR0a6IO3GB6oWWMezXZfnspG9m1Bo8rIID1fEsUTNZE9TyPK1eusLq6Sr1ezxVmYlrKOu12uxO8SBN76Y6lmI+SGy5Nt6mFkyOHmfyt0NoH7aMIUTrk8GDAzRtbX14ze1pTwcXDYEzFyFIyjvpu1svompl5JiiMQzKOu7b0/Unvu/3wfZ+pqSlmZmao1Wo0Gg2L39VqNcvOr1QqDAYDpqenrWDp9Xr2OVzN86jxy1t0MMa88uIxXewi77tParJYBUMTQScZEUQAuxkzhKcmNTmF0+Y+o/Q1K1i/nLk5Rt6VUL1SwRGNhihtkgp4qbmhtabT6TIcRSjlMTU1RRTFKK3Z3z2gVq9Rr5vSg8rrOZwLNf7R2powbjcmN6A70E81zP9F2tOsc/ldPnsUKR3GYXTZdZidX1FC8pyDOT1Jvzj+Fa0fszyNLFMI909+RqOYbmfw5YSZOzDu5snDRrK4idukJJ3gSlYNzTDnXYqEAP9Zk7Df79NsNu2GrlarE9phNpNDdqMdN9kurrS4uMhwOKTb7VKr1VhbWwPg/fff59KlS5w8eRKtNe+88w6Li4vMzs5SKpXsJhdNU04uUdOF9pA102U85btSiMUF9OV/caoIxywPi5Q5cedOfoS/JoHorrn50ksvWQxlfn6eUqnEnTt3bBrlbLxfkiS888471Ot1Ll++PCHIvxRWZnqK0sa0NAHFCpIYHY8YjjpEoyGFQFMulkH7RKOEXn9IWCgQFooEYQGtFYWgQK1W5eT6KpVaFd/32NjYoFBdpVgoESekuf/TpIDpkpCNpERx+H9Qy64PmSOxftwm4YmdTodarWZD4+Q68n33UMziu0aoyc0hzTMuwWmTOm0qtMZIpDU4jfhSJvOvTjPT9nt9draPyDT7tOaAi4Vkpa9s3Dx+laSc7na7lh0sJqWLoclGFxtcTgRReeM4ptvtWkZyGIYsLi5aYqik8hUh6ApaF6zP22jyPOKNOXHihM2Vtry8zNmzZ7l//z4//vGPuXbtGgsLCyRJwj/8wz8wPz/PyZMnee211yZSDBWLRRt4L65tSYKXBc5dga61trGYrkdW8AmpZJ4NShf+21FmhkuDkbH3fd8mbqzVarzxxhv0ej263S4nT57k888/5/r169ZzKcJQ7pEkCX/7t3/LuXPneOGFF+w9jnLcPLnFaJ2gNPiFAkk0JI4HjPpNomGPku9RLVdR2kRBdHt9CqUSxWKZMCyB9igUC0z7U0xPT6FRHBw0+Pzzz3jhtQsUyzWiWKP8IMXLjOzEgXXUxC58mpb1vP12tKzy4a4PWQ+SWit7uHa7XZrNJtPT03bfuYqFCxEJ9ubuZ3cN6gmqy+Nja2M0lUIItK4PRjkmqQI6rQ4bDzZ//fPmKLMui9G4r7vCy91s2c+6r+dlc5WNK/w1d1Pm3T8rKI4SYFmNRnAE0fYkasD3fRqNBtPT01Yj3N/fZ39/3xYFEe3Lvb54Pp9GW3EXXp6jxT0wnlZYZJ0Obt/cOfF9n7m5OWZmZqhWqxbvbLVatugwMBFoHMcxe3t7ltqSvUfesx31fvqp1L4Y+xm1jonjkRFygO8FgEInOtUKPFDKeis95RGGAZVKmVKxiOepdDP6qaeTVP3Knwvlvv1UMuq3T5Ad17K4lxxwcmDKPhPvvmvh5O2vLBZs38/+bT+nrNb22Jow7zrRmFlYYBy692t7M7MbSLQLuYGENGQZw2EY2rQ7Ql8Q7UoeKusdyWbJSJLEJoGUk6XT6djvSkobYEL7keuLlnacTe96R+WzvV6PYrHI0tISV69etSZnq9ViZWWFU6dOceLECX7xi1/geR6rq6uEYchgMGBvb4/PP//cCnUxocVUc5n4on1KiJR7EiqlrNkrXsw8QeYKruz7ediWa46K1ifaq9QglRJj/X6fRqPBhx9+yPT0NKVSiVu3bjE3N8fU1JQtKtPtdmm328zOztrrPW2zJzSQxCYTaZKMaBzsUK2WqFWLRpPCI4oSup0ejcYBN27coFgs8sq156lUChQKPlrHDEcj4jiiWCzj+6HxZFqcLN3Q3vieWmtnK/3utazwyBcmZi2Uy2W63S4/+9nP6Pf7VCoVZmdnbbV7Sb+edei4h6rnedYCcUnwYP3R1rSUF81fFhCd6HcavZZ2WA6VdL50aroqDSS/OWqGKxzAbAQ5naemph4Dfd3UywcHBzYsxs1KKYMcxzH1et1qDa45JXGE8p3Dw0MLVgsg3+/3GQwGE8Dl0zgNBFxXakyeNQBzh2q1ypkzZzh37hwLCwtsb2+zu7vL+fPnuXr1KvPz8/xP/9P/xBtvvMHZs2cplUocHBzw4MED/uN//I8Ui0Vb8m1ubs6GBgmD3g0g9zwDZGdpLCJM3MMiD1zPsryzWqsbNSCfF/NR+iKl6nZ3d7l//z7Ly8t0u112dnb4wQ9+wMWLF6nVarz33nusrq4yPz9Pu92mWq3SaDTY2dlhfX3dmvZP2zylTLp/DXE0wicmjntsbd1nbaHO7FTNQGoqYDSMaTbbbG1tc3jY4uGjTU6sLrN+cplyOSBOIgbDHlEcUa5UCcICygsgMVSAsTBLN6o2LHRPqd95gZaHo7o0oCiKmJ+fZ3t7m7/4i7/g4OCA5eVlLl++zOLi4kQGadHgXc1N9qPneZTLZYsVTyoJjtIgskxpR9tyPulJoV9xaorNP8YytY7xPI1SCRBNFgE+bjCe9Ltcx9VyJD4xC2q7YKPkzhfpntePLO7lToZoDbIhJZYQmKB2ZLGjbH+yv2cnyZ148fCJ6VWr1WwcW61WY2ZmxgbqKqWsw0OwvL29PUs6dZ0U7mLL9lPScrtjLzyuo8JV8tT9PLMg2/JMDbmfkITdqIvNzU1bH+Dg4MDG8cmzyfeyDpxsPx/ri3r8cybMJabf7xKGAYUwREiUSaIZjQw156DRYGtzi163bwKSAa0TG5zsBwFKmWwZbiLGMfA8ieIo+4rO/Ob8pZn8+R1qssdGoxEPHz7k/v37bG5uWjxa9utRa8wVlm4JxglIQ03KDAv7qzzTMn8Yx/c376rUQaOUNppZ3mn+tAOQJ9BcsyyKIlqtls1MkfVG+v64XJoQN0U4iaSXJI9uHwUny2JgApJLIQ7XTBOBKR5Uq8om41qcec0VFO7ziikt3r+FhQVu3rzJ5uYm+/v7nDlzhhMnTjA/Pw+Y1Dl7e3s888wzLC0tWVLt6uqqTQrppi6KY0M7EL6W20Rjygq4vDnJPosIKvc1mY/sM8o8SpiW53lcuHCBkydPWifLiRMnWFxcRGvN5uYmX/3qV1lcXKRUKlnhvbW1BWABZtc0yYvlVEoZrCRJUJ4JY0rihDjqEw37QEQYBgRhCHg0mx16vQFBGPDa66/RarVJEvj00+t0OvssLs6ydmKZwWCExmNqehYleJkGIXLqFGjWzk6aMIsme8nvGj6WbTLunudZVsDq6irnzp2zNIz333+f5eVlS8NxlY6s2SpOhH6/b6+b1c7sz8SQGu6ZEumEc6hMUDFIsVIPs10T5uamuHLlwlgzc+P4slpS1izJO9FdwQBjrWg4HLKzs2PVTtv19PrCLBdulphbIgh936der9t7SB9FQwAmQH8Bpkejka15GQQBs7OzNvZMwnLkWY5L++yC9lktTrJpbG5uAnD69GmCIODGjRu88847vPTSS1y5coWTJ0+ilOKdd97hwYMH/P7v/z5nzpyh1Wrxgx/8AK21FVpSdEXGrlqtWuKxu2gkVCrbz+x8PKm5+IdLJJY5F+25UCjwzjvv4Ps+r7/+Oq+++iqHh4fcuHGDK1eucPr0aSqVCjdv3uT06dOcOXOGWq3GwcEB9+/f5+bNm4BJkCjzLZvFvbebzUMpRRJFeBoCz0OphOGwQ3/QBD2kVCxQKpRQBOzu7NNqdSkUSvy3/+2f8wd/8AdcOH+eH/7wR/z1X/8N//iPP2Rvf59OtwfKZ2F5FS8ISbQJgfLUpFljfuSgFAjNXfNZQZZ977evZbV3d18HQcDW1hb9fp/Lly/zZ3/2Z3z1q1+lUqnwf//f/zfvvfeexUrloJW14+59URwEG3X3LBqTHngiAsDgXRonXVfqwJExzqKWiY7RxHi+RhNz4sQSb7zx2tOZmfKZp2muuikagGhIWW+HfK5QKFibXEw6GRzRtuRB3YHLZrAUFVfuK8kRBZR0nRNZwZztmzvhR/0tWoWk/pEkj81mk52dHRYWFqwnEGBnZ4dOp2MZ1KPRiI2NDQCr/biOBsGq3DTe0rIZZN2+5ZmUTzNv7nXca0nfdnZ2UEqxvLxseXfNZpPZ2Vlbjq/ZbNpK6+L0aLfbtFotu2mkRsETU8k4m89LhUoSR8TxCEjStD8+Wit6vQGjoTH/z5w9w9qJE0xNT/Foc4sHDx7w6NEj+v0BoygCpSiXK9bjae8FE9xY14ea07nM//KXSnWK3x6BdpxjSJrneXafzszMcObMGZaWlgiCgAcPHrC3t8dgMHiM55iFZrJm5uMta7DbXo7NTcHFHvNcTgpAOWAqFSefWd6GzZPiR5lbea8LSChNgEPgsfhC+ayEwoiQEEGUxYtgbGaKMyArIIW1DlisCniMUuBieEc1N5ZSmvu8ol30+32WlpZQyrj+Z2dnefToEa1WC8BGEkgQt2xurU3Kob29PTzPs6l03EST2XsL5y0bduKOQV5/8+Ys77SW193nlLJ109PTACwtLVmvrmSvXV9fn6jac+vWLbTWrK+vc+PGDYtpylgUi0XK5TKDweBxd79O01prk4hPoen1Ogz6XaamaiilaDYPeXhvmy9u36Nan2L15BpKQa1aYWVlhZdffhkYMjtbNxqYVoBPEBRIQZwx4K/GGw3AQxlTJknyA55/x5sLS5RKJXq93gQ/s1qtsrq6ygsvvMCpU6fsAQz5pHPRsF2NbGJfHSXf3WukVBzlKftW9nDQaU0ArRN8XxEEEAZp1oy80ITsBhZb2Q0Oz26CbOiCe/oeHBwwGAxsqhH5jvwvMZBBENDpdCZS6mTNLMCao66ZApNmrkyWaAf1et1mgJX+KGWKgxxllrlaUp7Z7XkelUqFJDGl2K5cucKzzz6L1pqDgwPee+89a4aGYcjKygrVatUGh0v/t7a2uHHjBp7n8dxzz1nNp1Kp2KR47gLa39+343YUqC7fedLJ7FI03GeV+ZTnfO2116jX61QqFfb29rh06RK+77O0tMTHH3/M4eEhL7/8sk0GEEURP/7xjzl//jyvvPIK//AP/8D29rZNy/3qq69y5swZLly4YIFm0ZzBCJXQD0iSiCSJCQuaZmOPTuuA1ZVFfF+xsfGIv/qrH7C9e8jVF1/guReuooD5hXmqlRory0vcu3OLXq9NFIOvPPBCCqUqcUq+9HyPmFRwj51meEoReB5RLBzG390wgLy1K4qA53lMT0/TaDTY3d21e312dtauRZn3drtt5YO7PmBcUEgwaZdLau+Nckix6YHpmPA6tfGF/5fECZ4fkiTaHEaegjS+U2sIQ49S0aMkwizPLHkazMUVRu5gyeuuPS04mCz0LMYjGpiYh25h0axmIgMn+Ziyp4OraUkUQa/Xo16v24rmcg3XRD3ObMs+oztBAtoPh0Pm5uasyRVFEbu7uxYvEhxJ+GWAXVASDaHUOOpAFoSbAlwWongHXa3V1ciyz5KnOR+lmWVfk+uurKxYzXZvb4+5uTmbIlzoL1KeDoyQ3NjY4Ny5cywvL3P//n3u379vmeRnz55ldXXVxrFmM4mQbrQk0SRJjAIGgx7DYZ9adRHlQafT5vbtOzRaPc5eOG+cJQrK5RLVSo2FhXmiYY+d3a00gFyB8vD9ArHEKilv0sRUJueWUjJORhtAp8Lst8eC/LWbC/X0+33LodRaW0tpamoKwYiF+iTCLKvF54UzjfFoNeH4VeIDcA4Ro5vJOpZIgYwDxq7NBN8D34cg0AQuHuMCyq7Udclvx2FIx20gt8Bst9u1uEme7R6GofU+SvI4GXQBv11PXt4Gdb8jMYcSYybYlJi7rgaajV90tT73mbPPLZMnufejKKJUKrG+vm7rWS4vLzM7O0uSJDx48IDhcMj6+jrb29sWUyqXy2xtbRFFETMzM489jwhN1+lxnCDOey17Sue17POJ6eAGokt/RMMtlUpMT09z584dfN+3ldclFKvX67G8vGydBb1ej4cPH3L+/PmxNuaMuyx0QaFGoz4KTSCnvmdy/c/MzrB70GJvb49bt25x4sxJKuUqhYJnEvxpDcqnVKrihRWCsJTqBo4aZodBj4UW45jCfBjid0+q5WnkgOVytlotms0mn3/+uY0xrtVqE2vezXbj7hfZ4y625mLooDF+yLEhzzji0lj5+nFGn2CXSuI5ledEBijiCIZJQiAmltYmlYw0CdsBbF3FrHqZt2Fc7UA+53neRIDqzs7OxCDJ92BcYES+nxf0enh4OJHy193Q7r1dB4JsLqEBVCoVm05ITD6llD2VXDVcTGvXHMvidHIKucHz09PTfP3rX+f8+fO8/fbbPP/885w4cYIoivj5z3+OUoqvfe1rfPLJJ7TbbQDq9ToffvghSZLwve997zHBMxqNaLfbE8WKsy0Pz3DNC3fMsp9zNU6XnCyHQLaugfu8U1NTrK+v85d/+ZccHh6SJAkzMzPMz89TLpfZ39/nD//wD7l27Rqe5/H973+fnZ0dTp8+zezs7ONcuyRBJ+Cnfe12mngqoVQIKReLBCqgVq9x5sxpPrp+kxs3bhIWQ/7oj79loi4KBQaDPlFkCvvWp+fxwgqFUpVEBWjHqzYJSEt4zTg8yksF3tgpID+/G1haHsbtHuL9fp+VlRXa7TafffYZ3//+9zl79izPPfccL7744gSVSXiGopCAWTe1Ws2mkhf4w40MMJ7JhETrFLu0PQI8fE+RZDMtmaun9zZauqf8VGv2QCuGw4ThMMKTVNEC2sIYb7GXyvFcPKnJxnHVWFczE6HibjCY1Mzcqt1uk6Kix/XFvbcA6aKZSQiUUA7c7BXZPh2nmWWFqGx2oY2USiVOnTrFxYsXmZ2dZWVl5THN7NSpUxOaWalUYnNzk1u3buXSRbKaWZ4wc/uWfV2eKfvacdcQUFfu7Z68R2lmH3/8MdevX7eRGJJYYGVlhRdeeIErV65YzazRaDwO/ts5NCewp0yqbIUmCASP8SgWCszMzhDFMbt7u9y8dZNWs8VwOAQSojgyBU6UR7FUoVgymlkiwcqZ5xc9QZpoZuqxcc73Zv42t6xAc60v0cyKxSKtVovPPvvM8iLl865mJjkD3f2S1czcA9TMq5nP8aEA1m+pTBpscw93TNMvZPruBpvHkWY4SAgkltENE8oKiqNwGHs75ztZHMx9X64lYTqSEytLrHMxryy2I55OeDz42u1j9nXXhldKWc1OThix/10c7ShzLM+kyxs38cjGccz8/Dy+79PpdHj06JH1rgphWDDD6elpS0gVJ0Z2nLPYWN6pe9x8yefc67pCOe9Z88bY1WCFWqOU4tSpUzajsGBikj2k0+nQbDYn0nJLuFsu3cTcCa1jOu2WGZNkxP37D1iaX0Z5HvWpKc5fOGcSgk6ZyAvPN3G6rVaHTreHUh5RrCkWArw0MB1cOobBbUTXEszM4GV6kqSuH+tg5sWJN35rWnbduJiWUISmpqY4f/48BwcHzMzMPBZmKAkXBNfN2zd5h6gIKcsnw2hW4iWWgyv9woRQ0/bfdG16nmROJ4mhedBk+8EWwaNHj2xuorNnz1o8ygXd3QBv104ed8K85wqlrJnmAt6e59HtdhkOh9YEcdVY0XJcM0cGTjQ7AaLdCXJDb8Tjmr2maHqDwcCmdJbNJIHUoq26WKELTmcLoLr3F8GktbYbOEkSnn32WYIg4NGjR/zwhz/k0aNHnDt3jqWlJfus1WrVMq8l0NcdaxlHiYyQcXbnwT2Q5HN5fc2bvzzB6UIF2c/L+AgRVhbtH/3RH7Gzs8OjR4+4cOEClUqF7e1thsMhm5ub3Llzh/X1devAOXXqFI1GYyL6Q5rngYdmFA3ZerTB6soU0WjEP/z93/PNN/6AWmWK9TPrfO97/xWNZpODRoN33n6b+mdT1Op1Wq02Z85eZHVtnW4/plQr4odlUKlA0+LqV+6goDyT5jkBdJyQKJwNltUe4AgJ91vT3Dl2CeulUolGo8FPfvITvvKVr3Dq1ClWVlbY3d1lb2+Pg4MDWq0WYRhSLpdtqF4URfR6PRs1IAeT6xyQdWOz2KDRSZpfSfZJoo1nMtEkaSlBKQFoUIDUMvIcJSktYBKPYqIh3Pz8Hj/6wT8SHB4e0u12Abh48eIEjyS7yPO0D3eg8igeeYOplLJFMIRrlPVYuiaOa4IITiMC0HVayPvSjywtwdX2XF6ThEu54U9yb3cBuIRBd8NltSTRbqTIh+/7rK6u0mg0ODw8tDQGwFZTErxucXGRqampx6rBSzuajPi4YDvqc9n5zLtOVtvMWwPyXdkUMsZXrlxhcXGRYrHI2bNnabUMOB9FEc1m0zpDZBzn5ubY39+fwGa1Nme2ZOFPkphms8Hp9TlIfD7//AYvv/Qa9eo0s3OzLCytsbO7y81bt/nrv/krwkKBcqVCs9libmGFVeUzihLwQjy/gMY3ULQ2GI4ZGPlHYv5SP5pOuU++T74g+91oR2nUWhs+4Msvv8zc3ByLi4tsb2/zySef8PDhQ0upUspkogEmYBm3aE/e4Tlp2Zkf4Y4Z7ffx/WPGXq6TAL61NBWeOYTihCSCna19PvzgOsHm5iaVSmWiGEj24Z+ETWU/k91MrgkjAkb+F16KUiqX6e5eW4SV+7/LIneFT97kuYPrahpy/ziObaRA1sXsXjdrkuVNXnbMRJuTVCpLS0tMTU0BMDc3R6PRoNFopFgPE8JS+i4bXp5Zckxlxylv3PLeP6odpcnlQQlZiMLFU8T0bLVabG5ucurUKVt27+bNmzZOE7CYpmjfMDYy4nhEHI0oFQv0ez26nTae5xP4AX4QAj5BGFAslZiamuLUqdNoneD5PmFYZGpqmnKlgsZECyQpMKZTI2f8PBqlNFJFXUwgEWr52peefOm3zB9wHNTgJoGQDCmynoIgoFar2YwZeYqKZKdxtT0XR8v2wzUjn3QeqOzH9Ji2rLVG4eF7PlGUgFaEQYHgxz/+Md/4xje4dOmS9VJkByLLKZns4KQ24r4umoUQcEUwSN4yrQ3zPYoiyuUys7OzE9fIJjAUoN612cvl8kTFJlejcJ8hi4WJiSrcGbnPzMwMw+GQXq9nzVA3QF6ewdUY3QkWc1Y+I9ftdrs2znRlZYWlpSXOnz8PwAsvvMCPfvQjPv30Uw4ODmwokJjEcup9/PHHlMtlzp8/b1Ny93q9iWd3nzOP3JydO5lft2XpKdIH0VrDMLRwhGjKYpb3ej2rkUokw+3bt/npT3/KP/tn/4zhcMijR4/4/ve/z7lz57h8+TKAzVrbbrctrFAIQ3Q8oN9r0+s2WZibZWdrm73dTYqFMqVyxQgp7RGEJea9ecKwyPe+9z12d3c5bB4yjDTnLlxiaXmNQeQTaYWfpLsliU0Qu58SxNWY76QTY1p6noew0H7XowBc8w+w5GWZN2H/g4nSOXnyJNPT07bEIoyLawu8INaRm2VWfnctnCSNovB8hYeH0mL5pAFgyjPplhAFOeX5pUWfExK09vAw2VF8FIVCmV5nhE586rU5vM8++8xW6hbbNysIsmC4vHecKSMP7ppnrhoq2oXUY5Sgcffa0tx7yjXdAXODs/M8fHm4kPtZSQs9Go2s5831cLoLwL2Ge323ZTVQMWslZGtmZoaLFy+ysrICmAB1pRQbGxsTtSknTC6tbYxcoVCwacSPA+yP62d2fI8yDbLmvvtsopUJjUcC/DudjuWYBUHAzs4On332GS+99BIzMzMcHBzw4x//mHK5bEvTSbEUOajGYx4zGvYZDnrUa1Wah032dvYI/JBCoWhy/ReM4K/WaiwvL/Pyy69w+fJlTpw4wZkzZ1heXmFqZhY8n0QrYm2wsCQ97ZXnTWgKxvTRafFf877nPUGV+C1vWYUDsFCLWEhyCAG2ePe5c+fsnsjuo0KhQL1eZ3p6mqmpKbsWsoqPKyvEfLfsf3M1xvils09lDZqLGMRfg040SisCP2QwiCDxKRerBLVazS46VwPLbuCjBsgdqKM0leOwG/fkl8ykR8VJihB0HQa+79Nut3OxnTzMLttcMrBSymocQt1wcbKjsCP3tSwHzR0bAV1nZ2ctl67VatlQEQkpmZmZmei7cMvk9JRklqK9unOVZ97ntWz/sgfYcXOV/YzcX54xT5DKa2Jayv/CIxSzRfKgiZaZJBHDYZ9Bv0e9GjLo9+kPBszPLxAEYWoBJOzvbzEYRIyGsSnwqzW1ao3ECymWKxSKJcoV8PwATaphaIVySJpjz6matIK0Rv9uy7LcJnMlzqfDw0O2trbsenS5YlksDB7f/5IUQQ5ZEW52TaYCzMUmsaZ86lCWe4gAnNCH3RPH/Od7HqVSkenpKYJLly7Z3FPD4dAW2MijTEjH3c2T9xkYe0Czi1y+I4MpAzYajdja2mJ5efmxzKkiJESzOXHihOVlFQoFPvnkE8CEC4lQlmDm7CnhCk/AakAuLiWCrFwuW3NT4kDlGnnCwHUMuAsFsEKyXq9z7do15ubm6PV63Lx50wbyvvDCC3z00UfMzMwwNzdnr99sNnnnnXfY3Nyk2WzaUCdJtSPC3O2bjFnWGyktC7bmCTMXE3Q1MlfbFjjB9SS7geayyAuFAlEUMTc3x6lTp1haWmJ9fd1qp8ItlNhckyG4R5C0OTjYpnGwzcmVi2xvbbO/u8+f/MkfU61OMYoS2u0uf/M3P2Bra49Wc8ArL1/l9OlTnDp1BoIis8urlKozlKY9ev2YwSii1+9TSukGKo7TjLbOQchYe0hIQOcL+d+VlnfIydool8ucPn2aTz75hDt37nDnzh2+9rWvMTs7C2C9ztn07FltXjS4YrFotXPZN6J8GAhBp6JMpxJMrpEqFkCi03RQcWLildLXdaKNYzNNlV0shiwvL/Lcs1cITpw4wczMjDXVRM3PVjV2TSYXazmKtOlqNCJQ8jQG2ezCHJ6fn58QfO73ZECKxaKlVgRBwMOHD9Fac/LkyQnBlKchSJMNKe5kEW7NZtNqSeIUcb2SeUBo1gzLw6Pkfbl2GIbcvXuXhw8f8vzzz7O4uMjZs2f56U9/yrVr1yb63ev1+Oyzzzg4OKDT6djxnJqa4vLly5az5h4e7iLOjnmeWez2O0+7ys6pe/0s4dWl1IhAlzGu1WosLS0xMzPDwsKC3TBi9otXVBxDI/q0W4c0Dw+oViocNho0my0uXbpCUCoxHEZ0e31++e4vuXXrAfu7HerVAmuraywuLaPCMpWZOcLKNFVVZGvngP6ow2A4IlQenpfgac+6/s0jpPGB6S5LdGICZ9TvbqB5XpP5KhaLLC8v8+677zIcDmk0Gjz77LNWgxaStpue3t2jslYkH5/Eebq5CS1+FhtTcby0UjoGTChesq4MLcOYp3bVimNAawqBz+zMNOrUOsHMzIxNXe0GNruL9CizLzswR5l22c1zlIkjGtVR5d/c78jmkEEcDAbs7+9bE9QF7WVjZe+dva70QQSCRClIVIIrtLLPmhUIeSaZjKm8r7W2yStFULmmrXxHcqZNTU1ZTtfW1patT+D+CMZ3HJaZN67HYWiucHOfz53foyAFKUYzPz/P4eEhcRzTaDQsqJyFBURoGm0uxIsUfuARBL7FWJIkYdAfMEw03W4vTRpYYHpqCl+V6PcM0VMnJo5TCZTgeQS+yU7r1qCI4xhTwTwlDCiXFjAxSu4o5rx29Ji6437U6/8pWvae7hxJ9IsIq9nZWUt76na79Pt9e6C7XvRsn7NavsyfKEeizcWOUiOZM9IVNI7QTOEzqwnbF+UPsPQOpfF9KBY9KpUCwUsvvcTy8jKe51lwWrAZOVmzi84lZmYdBlmSqTy4G/7iDoYMrnhHGo0Gg8GAmZkZa+q6mo7cp1ar2f5JDcsf/ehH/It/8S+YmpqiUqlYrtZxWkcWC5N7Sjpsef5qtUqn07EAZ1ZrlcPA9Sa6fZf3hLYgFWwODw/5q7/6KxqNBr1ej/Pnz1sPk1LK1ta8c+cO3/ve91hcXCQMQ/7X//V/pd1uW2a2cPUkXbGrebp9lJY1E7NzlSe48jJbZDVQd0zFwXP27Fneeust3nnnHba2thgMBnzjG9+w3mv3XmLiT09PUyoWiA/3mZmuopIpkjjCVx7RKObWrdvoIGBre5tfvPsuayfXuXTpWcrFGj//jz9ld3ePTqfH4tRCyvg3frJKrUpQLFKt1Rh22gyGfXq9LkEYEoQFgtDHT0mZaJ1qEVnR9rsFoGXXu8yP5KFrNBr4vs83v/lNe/DfunULz/Ns4RrxxktGaLfgtHsPWW9y8Aq5djgcEg0j4jCVAQrj1RSKjB7HX4JxzihSrqjnkaTYpnmMBKUSfB/qNY96scRsTRFcvnx5wnyTDrXb7QlGtrspsmxw1+zImiLuxnYFn6sByd+SqVSoGsJhyTvxJY98FEWsrq6yu7vLe++9x5//+Z9b7UyCt2WCBNdxCbrZTV4qlSxXajgcUqvVqFQq1Ot1ut2uFY4yVu41fN9/LKOF69F1PUcwrmD18ccf25Jx3/jGN2zIiLi9u90um5ubNj11HMccHBzYBSYCV0rWuVVxssRhd4G7Aj7rcZY5zC5WmbNsBEJWcwPseKytrVGv1/lf/pf/hU8//RTf9/nv/rv/zqZDd68DWMijUi7S6vvUaiV0VDMJGpVHHCdsbDwi9hS3797hp//xP/Iv//t/xZVLl1lbXuOv/8Nf0mg06fcHBEEBz/Pt6V4qlymWzMY4iIxzod/vU0Dj+QFKGezGeM0SjDNgrENYz9vvWHPXuMzf3Nwcu7u7Vphdu3YN3/fZ3t7mb//2b5mdnUUpZUOaXFNSWvYwE6vJrbkhKbgGwyF+EBILjqs8xw8g2Fma8SxJjMBTHklqY45N0QRUgu9rylUoVgsE0wUCd2PLQhYzTTqapVfkDdRRAHL2tew13FPD3RCi2maLoMj77ncEgBZMSwRRr9c7FteTvrn9d68r77tgqRt25QrxvO/lXVf+Fr5OtVq11ZukDoB7D6GtCGbhakeuEJUF5wrSLJ6VHXdpR5ne2ZaHe+Zdx22ydgqFArVazUY8SHYS4ZTljaHyPDzfIwgDwoLRQCuVCpWySR+U+KYCea1Wp1KtUiqVCScSEyhbsiy9sPnNM5tD1rmb4DJJEjylrexyh+Sxx/stlWlPa7aKY0u4gUIJCoLA4mXZtSHkWhFaR93P3deyduMkAU/ggsTBJcdeTeQ3rTnSgldSFcBgaZ4yYedBtiOi5s/Pz9v4STFdXAA8D+uAsRmZNVWyOJOrEbgDJjnGms0mg8GAcrk8kT0j21/P89jY2KDRaHDy5EnCMOTRo0d8+OGH+L7PuXPnbE6xo/rhCqc8vK3X61nvqHjcXC3NLVzsxqNm++mabd1ul3q9zosvvsja2potGXfq1ClbS0ApZbMXiHkpjhJXW65Wq3zwwQfs7e3x1ltv2YNI0oW7Jr/0zRWYdo1kDqWsFp4XCC7fy3M6uCZ8oVDgzTff5NKlSyRJwvT0tC21JwIuj6xbLIVMT9co+Gb9PXvlGcqFEg8ePMAvFikUS3znu3/MhQsXmJubx/d8isUSYVDA8wJUUDABnuPemnsA5WoZP/QoVkr0+j1Go5her0+xYEKdPMToGTft/Pu70LLzKQpLHMc8ePDAlpTb29vj1KlTzM3NUSqV+MpXvmIxNNcqE5kgXkuXwpHV0gF7YIdhyDAa0Yn6DDs9hqOIRCUUiqHVtoyDxWjDibPWoigGzzfeZRJjnnoaz48tpOZ5PF4EWASWAKTtdtumynVNELe5J6pLunMHNLsJXPVUBkIWvRAvO52OzZnv4nZZDWNra4tms8na2hphGLK1tcXPfvYzpqammJmZ4fz5849pNNmNkzWPRChJDrR+v8/09LQlq0oQuZit2YXiejaln64g7ff7VKtVnnnmGS5dumT7Jnm95Blv3brF/fv3mZ+fN6dbmnnCPVjK5TJ3797lxo0bfPvb37b9GQwGdLvdiQUtmEleIH52vrLjlA0Xc1vWWeQeYuJA+epXv8rh4SHD4ZB6vc7u7i6APSCyffAUFIsB9akaxcBDDxMuXLiAp3ze/+hjitUqp8+d44033mRtbY2CHzLsDiiEBYIgHAszxwvp6gClcplSqUhNV9nd22U0ahtys1fE9wJQKnVyumv3dzMOQNaejHMcx2xtbfHw4UMePXrE7u4uu7u7lEolZmdneeGFF0iScTJTWcsSceJ5nhVkbjihC0fAmLJRqVSIkpikdcCg3WE0GqJVQlDwx1QLZWZH64Q4iY0mrCFOEvw0h5nGfE4pjfKMKarSnyALgEsHYLyps2ZLNm4w+wByjbxT/GmaqzUJ8c4tlutOjlImQHw0GtnkcFqPcyuNRiNbTOUo/Oi4fuSZm0cRaI8yu/I2fxY7dEnA0pIksbSQIAjsQjo8PLRCFcaqvwD5bjUs97nld7lP3iFzVDv2c9YDNd7qKmV0Y+9hPItFG7Ug4zaOIPA93xSy0Do178Rtb8JdUEka/VCiUilTrJSplMtUyiXCwAedEEWjiUpmUWRKkhl4Jn1Rm84qpUB5+IDvjde6SQCYZnfwxp9/PPby8THRtttPv86e1sz/stc76m9Zu7IvJOJF1kmv15uo35rd23JNNxLnKK3dvZ+Hxk9hrCTwDSUGE7OZ6MREWShxZkosp5oY5vFRokB79LoD/EJIWAgJ2u22TVKYxXUE51BK2RhK4Y3kCS9Xc3M1kSzVIG+gXQxGTnLRpoTxXq1WbbSCeBYrlQp3794liiJee+019vf3KZVK/N7v/R77+/s0m03ee+89XnzxRYvTSAJFV1Nz++UKSje+TOLOJE+6mH1iIrqCPxvOlBV0LvVDwqgk6Bqw95GsJktLS7z33nsMBgM2NjZ4/vnnWV9fJ0kSm9kgDENGoxG/+MUv6HQ6nD59mvn5eavtyvO4NU3d+puuUAYmzIvsPLuvRSoen5CmppHkREBpDXFEpGM6bYhjkzi52+2mxMiI/YNdquU6pWKJaqWC0hGKBHQEQ42ONDq1lMvVEstri/ze732VUqXCzNws9bKPj9FCd3a3IYgh0ETE7O3tU5mao1gOCEsm9YxMg2wWpTzK5SrKCykWB+zvH4IOIAhSjWBscJrvJI4fQHQ9mVttPHHHCKZf56D/Mi2LY4vVIPO/sbHBwsICtVqNzc1NW1nsl7/8Jevr6yil7NqW67ip7iWuudvt2ir2YnJOyhJzeHlKUS0W8GZnjGdzlNAfDIjjyDh3yhCECs/3iaLYhJNpZc8FrYTAHKB0gKdLfPjuTU4szXLl/LpJzihmZXYgpMxZsVi0C38wGNgCFO5AuTZydjCzQlJanrSXa4hHq9/v02w2LW4nE9HpdGyA871796jValy5coX33nuPqakpvva1r/Hhhx9y69Yt7t69y6uvvjqR6sfVZLJeOzlxXAElAdVyAkkeMqn8JGMoAkM4c1mqijsWQgwV4ejWO4jjmG63S7PZtO9/+OGH7OzscO/ePf7H//F/5OTJkyRJwqNHjxgOh1a4vv/+++zu7hKGoY2oECFULBZtym0J6s5iZdJP8cAeu1EUxCQpLOWl+9yzgswjQccxSZTQGQwJC2U8P6DX66N1TBxHHBy0iIYJuqapFssoYvAiYAhDDRGkOf0oV4sUigvU618xNBrfQycJHkP6vQZ7exuoMEGFmpiYvb0D8Kt4fpWg4IHvPoP85lEqVSkUypRLI7a3tlFooyngo5U/xvqV5HVOLHg9aYSaBIT5PLX/fC17OAucI1p+FEW2/kIQBPzTP/0TCwsLHB4e8v777/Pd737XJhRwEx6IxaO1tnvT901K+unpactKyGtKKSrFIqVCSBQl9Lsjev0Bo2FENBpSKCgIfTwfokFkUjM5cWSpEYrRygJUUuLjD75AXzzJlTPrxswUNdH1YMrNXSElm/QoDOxXUZPd67haXFbzE/NOhIloNhJ+JRPmVpcRgdLv9y2eJ5qZPFPeZs0Twtm+uM3VVI+KY8tzOrgOCfd+8hkBXyW0StIDibAHbOV2YKIivAhe16MrPDcZGxmPow4bt+Vha/kfTP/RjifQmpQg0XbZeTehKzFxFOF5MWB+dGICvrXWltDqBz7lcolyuQTodFw00WhIt9elWCri+4G9TxKbsJgoTkwxYc/t3Fhwu/PneSrFaDBSL4OrTmpj41eetj3NmE9c+ynm5mk+61o/sibc99w1kt3nR+GrWXNTmAV5fVNK4Skf31d4Xozn+fZHy/Uy95bQsvQP5xBSdDpdBoMhWkMg8ZhCVBWBlTUhJS2NxCuKQHCltttcrpMby5k1uY7S1mRhSWC5UibzhBTUlYpHf/M3f2NJqBsbG1y/fp1iscj29jYAnU7HUhtu3LjBzs4O9XqdkydPUqlUbJYKVxjJ/bPmgGv6ipAQz5wsBMG1suXssmC6jEsURROarrQoitjY2ODs2bO2tuTu7i5nzpzh6tWr9HqG+d5qtfjpT3/KqVOnOH36NB9++CGAzfz6s5/9jOXlZV555RU2Nzd5+PAhDx8+pFwus7i4yNzcnM2Y4nLUsmNxVFN2nbmseUcr0EaTMddIoQeS9IuGelEoFFAkDAZd9vdHlEsK349RaoQe9B2icooTo5yDNxXM0ZDt7R2uX/+U568+z8LiIqNRTHWqTBTHtNptOsOEUrlIoRhSLJdyn8vzPFunQebP3djZHxEKAqy7UIs7dv8pzconYW6up1g88OVymYsXL3Ljxg0ajQYADx8+tFEoLtSQFWiiWAjRHsxabrfbNhZTPJiTjkB7ETzlUSiYWrlRpUocRfRHLYbDiP4oIk4C+3nP8wyJQxneGUmC1jGKiK2thxyszBDFEIinTrwOQgbNTkitVqNcLjMajXjw4IH1WgrBM+sciOPYBhy72oorINwN4w68C7T7vk+lUrEmmWgrURSxv7/Pv/t3/45Tp05RKBR48OAB169fJ45j7ty5w7PPPmuzTYgwu379OqdPn+bEiRNUq1VbvVnu7YYIycklwleeR4QWGLN3aWnJklslg+yTzDRZAFEUWW+eu2hGo5EVZvPz85w9e5ZHjx7ZMX/33XfZ2trC8zx+/OMf86/+1b/i0qVL/MVf/AVaa0t3+OlPf8qFCxf4+te/zuHhIR999BE//elPmZ2d5eWXX+a5555jdXXVjrmMg8xh1rnz2EmtBD5yDishMOgUzPdIsSpFrBOIY8DDpEc2/DqVJAz6XTrNAXPTJYJA46kRDHokSYTWidDDLGhtDiGz4XqDiO2dbT65/gn/+v/1HYrlWYajiIVKhf4wpttvE9FjemaKCpUnCjPRbl2vtYuxisdaeGqClR53EPymgX63Za2HPDxbrBLZ65cvX+Z/+9/+N27dusX6+jobGxv2cM3ipu515NATaEUgmFarhVLjiCGXUqV1+kPKC/MUYegxM1NIc/lrHm726Q869EcDvGLNCDOlUKln2XzXR2sjzCBmc3ODg1MrRBEE7iLO5h9zW5bKIIOTp44+zWA/qWUdAu793EUlzHnJyiDmlQhpUXnleyIUj8tTdlxfXXA/Ox5Z0/hpmnu6Z1uSJJZnVyqVrAZXq9Us5gbYXGlSWcfNOiLCXLBCN3mi/OSZxU/qs4wFOIJsQjMb/y4+STHttPO+SomtSiegE5I4IorSbLsqYtDt4imT1M/3gsf6qTPmLBiWuh8GaGeukgRi7ZhCiZSQe/y53bnMwxLd34+DE552HP9zN1dRcPFhMS+F65l9dmnZ589aYLK33Gu7pqH8b5a8b+ZJibMsLUmndYZKi/NXip7phDiJUu0fAlfyHh4e2qR6km9LOi2T5Pummo5sCNHqXFXbndCslucOiGxkd9Bc0q3LXhfMTjZxpVJhaWmJZ555hldeeYWVlRUbhC3ZJH75y19Sr9c5d+4czWaT9fV1giDg8PCQ+/fv0+v1mJubm8DQjpo0EfryPC4m0Gg07GdmZmbshnHpJDLJ2etprW2RXHejhGHIiRMnbIYNwQblWkLVkNjHer3OYDDg3r17rK2tUa1Wx5knUhPygw8+II5jvvrVr7KysoJSip2dndzN9zQbbfwZYzaoFNCwwLiWTBMZblaKnSkktUuEpxJUoKEA+7ubFAs+Yaj40d/9gJXlJVZXVzh5Yg3B45JYy63RWuMHAafOnOabb75JFCWEpYBSuYbWaalBFIq01GGnwygaUKtUKRaKdvPC2FwSOhAwwYFzBb+7XuRgcGNis7CCzL3bflNaWhYScZu7bsvlsq3JcPfuXS5dusTS0pKNRa7X67z88svAZFpt91pyP/f55TAFLHZt+KJda/GFYYDWprKSCzeqVOOu16YIiwVKoyHN3gC0KXSilTYkWjkPFWgdMxr1qNfLVKpF/AA8CaMJgsBWYhHcx30QV+2cmZmxgaTSaVG53cGVH5dt7oLfIqRcwecGcrucMtnAks20Wq2yurrK888/z1e/+lWef/55KpUKs7OznD9/ntdff52PP/6YJEm4fPkyh4eHnDt3jldffRXf97lz5w737t2bKG6cxa2yWJpLNRGvqlKK/f19W0hYGNTARNYNwdqydJAkSSy+4I6bVC2S7BKtVsvmRJP793o99vf3uXDhgj1gvvjiCyv4JHuoaKK/+MUviKKIN954gz/6oz9iamqKzc3NxzSMo07ivKZ16j5HpeW/UkKjSoOHPUOHEB+g/UkFnad8Awh7mjCAUlGxu73Bwd4WrcY+3//Lf88v3v2FMbE1KK1AK+LYGrMWozx37hzf+e53GEUxnh9SrU2jtcLzA8LQEK9HUUSr3WJ7a9NGmci4g7FOms2mZbrLtYXtXq1WqdfrzM3N2RRGtVoNGIcHiUWQdXIc1fIO+ye1rOnv7qmsgHSdTJVKhWazye3bt7l16xbPPvssb775pmX7VyoVXn/9dZRSE5mnXavIVWxcuVAsFm0Qerfb5eDggJ2dbZrNljVvPeUDpniveYZxP6emppmbW2B+fgHlmTJ0STI28a0y4IHWEYNhl6npKrVakSAAzxU6rjfCHYDsRIhQyW7+7GAf9fdRoOiTwFJX9RePXr1et5kxBb8Q+oEUI5V8+fK753k2Ji2rKueZDnmnp/s5d6DdE/m4sXG1vjwzTwSaaAXZU9L9Tr1etyRH1+Op9biOgoQ2aW0yjlSrVWtmHGdSSzseTlDOz+NN57xurjP+jlImZFIpzWjYJ4qGxLERPOLEGQ5HxHE2JfN4MxdLpniJ1oYe4vtB6lX10tTXHmjj3RyNRsTRmOzp4rTZ9S9zLQesS9nJznfeQXCcIDtqjPP2xq8DZbjrRpgA/X6fUqlEvV63+yIMQyucn7bf8reMjRz+AuvEcTQhFPPcvgqF7xu5EgahIU9PPAT2ey5Zo1QySSOVpwnk4VxbWRK0ifmTF8cnxUTm5uasBHdDH+BxD+dRg5G3QfMm1h0oOTUli0QURTbhX6/X47333uO5555jaWmJbrfLhx9+yMrKCtVqlXK5zN7ens0yIZkyBoMBlUrFAvNu/91TKAvuStogKaUmXB7JF+VqaK5XyfM86vX6Yye4aFODwcACrNKHJEnodrtMT09TKBRYWVkhSUzSx36/z/r6OpcvX7Zxql/5yleYnp7m888/t+TZjY0NdnZ2CIKAK1euPPY8eWaR68SZXOQpUpYIEjZObKh8C2MhocH2HgjepSDReJ5GJyOiUZvRqItHgVqlxCuvvELge9y4eYNhf8D5c+dYWJhnaqoGOsFl2ne7PZqdHkFQwA9ClPIhJb2aDA0efuBTUCGeX7KhYTIXItDcQ1r2hyQzkDkUjc6NCCmXy4+lrZJq73mafxZ3/lWba/bmXUvWroD7s7OzNs3PxsYGMzMzdh1ICrCsZplnZh+ndMhBLFqV5UsWihRLRYLA0DNsNgxPPOOGNFuv1+kMmySDMYxlzExFGIQUlU+JkJdefpHT6ydBMSnMKpUKcRzbIiOLi4u2g3mYjmxYSSzY6/Vs+p2sJy+r+WSFlpiRooHIIpHmCjRZTL7vc/HiRWvvLy0tsby8zL1797hx4wavvPIKs7OzdDod/u7v/o61tTXW1ta4fPkyzWbTajyVSsUWNJ2fn5/IwSTNDe/IajO1Ws3iUwcHB1bdrlQqHB4eWnxRsmNora1KPzMzY59PBLUUWBE80l2USZLQ6XSYnZ3lxIkTtiL69vY2jUaD8+fP8+KLL7K4uMiDBw948803aTabfPDBB5b8fPv2bXZ2dvj617/OCy+8YO+dXaSyiFwg97GFi8lYMDYvIUnMCvU9j1ikmVJpjJ0CzyOJYvwUY9NJghckxNGQaNBkNGihqDJVK/PGG7/P2z9/mw8/+ogPP/iI7377OwR+wMzMtDVxRaC12x02Hm1Rra0QBEWUF6LxUcpHeSZJY0iAH0ABj3gU0WqZpJ4uc909uMRrKgeSu2ZdLVicNEIqlf0gFoEbw+juh7z19DQtqzW6h41Li5JD1MUAFxYW7Lq5c+cOS0tL/Omf/qmFI0SDz9KU5FnzlJWs5SVQixmniG63gdaaem2KubkZPK9gNWfAhs/K+E9Pz7DX7KN1L6VmaCvMCmGRkh9Q8Qv83u99jWqpANlAc6EiuKE7We0qu9DlxJEBzcMJRAg+DdD8pEnNTp4IIsE2pOxcq9UyCf5SE/Pg4IBqtWprVYo2J5MNPObZy5qDR/VHxkFr45wQwe8msHPxN/fvvFqh0rdsHKh8V2gv5XLZlmjb29uzGlq1WqVSqeD7JnuoaIzSr8FgwMHBAUoZ/qDQTNx7uH8f9dz2d53SMSyw69gDGatiAvuVmMf0HU1MEo/QOsZLYznn5mbxA59ur0e/06PTbjtFaY3toVIAOYpj+v0B9SkjvAwgY/A8zXhOvdQpEelogiQqh3AW+3XNUBhrY+JNFiHlZlxxN7w7pi6+9biWe3x7kkb0tN+Tos0SSTMYDCxu63I53e8edb2j3h87P0DrkdVsR6OIOIlJEpcUm/Fug0kUoLwUMrD6PwCep/DSWNqZWp2Cp9BKjwPNs6Q/wZXEA3LUxlZKWXNNJjfLgs9OWp7GJWqwe/3jhJ+rLYj20G63mZqa4vTp09RqNU6cOGGB8NXVVS5cuMDCwgLvvfce5XKZlZUVSqUSzWaT7e1tbt++TbVatdcrlUrWhM6eQu5ECl7mCiapqCTjIymEXW1PNk7W6yXAvRwuVs12tFMxYcTxIFWfwjDk3r179Ho9ZmdnbVTAgwcPeP7555mfn6darfLxxx9boLrRaFjNwdXU3bk6Ch/VWtvwJfO34X4pZX5HpWFvqT2hSdAaPM+3i9T3PJJ4SL/XotHYYXqqQqVcQBFTrVW5cOECaMX25jY7u/u8994HNFuHnD17inq9QqEktStiBoMRpXKVMCwChmyptST7MxXMJbZSxt/NIZddqy6m6c57locp8yEHpHiyJZ2TrBO3luxRLPkv27KCMSu8XMtHtE7P87h8+TL37t0jSRLef/99zp8/b9dWtk9fxhTO446GYUjg+0BMt9NmNBpQCEPKpRp+EOD7kqFMrkFKlBVoyVhFvvJNxTlP4XkBnq9QKgFiAuFhiRklkyZSWynF/Py87Zg7qTIoogUIqTVLvlRKTWg9eYx7wOYZz2IA7sS4p6PcX8yvw8NDW15egMzNzU1arRZnzpzh5Zdfplgs8r//7/87/81/899w9uxZKpUKDx484IsvvrBxnVJ+z60F6E6kCBnAxmcKgVDeEweDaEpKKUt9kWfPq40JhjfW6/WYmpqyXqBSqTQRLyqmsMSozs3Nsby8TBiGXL9+nb29Pf7kT/6EUqlEp9Ph888/53/4H/4HFhcXGQwG/Nt/+29trdDd3V0WFxdtmuOsOSV9dfs41sRTU1N5RrNKEoLAlM2NdYLnpcRpA5Cl86cJgyJEpupRGPiMBj067X22t+9zenWV6XoJT8fMzExz7dqLnDt7nk8//oyf/PgnfPj+h3zxxUn+9Ht/TFg4QbFSIB4lDIcjur0h9akZCsUyJjLUS8NjzH11irOplNdUKPgT8YayrlyB5QoAd71mY2lFm5Y8+lJXUikTsC24kawVV1D+KpiZ+z03xZW7PqV/IkBlHn3f59VXXyVJEu7fv88//MM/2IzAIhNcgeZaCXkOK3e9AM79jSwRiylJRjSbh2b8wgILCyGl0hgTE4GWJArSjHLKM4VQkiTBV559z/dC48UkgXhkSLOuGeP+iGr4pJPDzcTgPtRRZsqTTM7sKZN38rjCTa41Go1sPcZ6vW5PBME0pqamCILABmGLEB4MBnQ6HbvYXC0l27ejOHPynmuqi6bpxrS6pOTs+LgLQRZD3uddjVAcFy5dpNFo0Ol0rIdKPJnz8/PMz8/blOjST6nBmadxZM3jvE2XtzrG5+w4IkCh0qwH6Rw6nkytY+JoyHDQpVgICAIf0IRhkOadL7P1cJvBYMje/j6VStGG1VkzUGuSRBMEBZTv2+trMXWl71qbsChlTv4sBSj3GTPWgjtWrhdULBSJpBFt3cWC5Tt5APtxLXuwP03LapPunE5NTVm2/87OTu5ef1pBmwcvme+DCDTz/ENG0chmxEiSZByLab8k5mn6h7nomK2oSSGKlNqhtcmNlgdAygMLkH3Uw7gTKzyTXq83QXaV910T9jjgMG9zHzeYeaavmHgizObm5lBK8eDBAwDOnz/PysoK09PTJEnC7du36XQ6SA3Rvb097ty5w4ULF6w3UYSUK6izfXMXjZuwTjAZ18Pjed4EWVNat9sFxg6Xo4L7XQ1auHee59malDMzMwRBwL1799jf32dmZsY+g+uJ6/f7fPLJJ8zMzDAzM2OfVTZotiBM9pktnqGN4LKLP52OJK1CbZwA7iGmUTr1ceqEeDQkiYcoYgqhT+h7eAqGOqHfH9Lr9KlUqjz33FXm5+bRyYibN27Rarc4c+4Ec4tLhIUSs7PzJvxFTEwM58PgZo7X1kiziXmT91yz8rh15n5X5sJd65L5BLA520RTAya0+9+EqZntk9tknTx48IB2ijt6nsfdu3fZ29uzYVt5CkgehnocXvb4386cK20098S8JweSF3gUSkWU75GgaLYGDEcRiDD2FJ5Os7HgE0eaTrvPTLlE6GkgGWfNcFVReW16etoWDsnv5Ph3iaFsNBoTWoW7IbNB7FntLTtYT3NCZidAa5OaRPAqwc48z+OTTz5hNBrx6quvcuHCBRYXF4miiF/+8pdMT0/zne98h7W1NW7evMmPfvQj/vzP/3zi+STNs2xwuZ+LebmLWoSH4Hazs7PWRJSCLdlF02w2reCDSS+yCBrXtJB7y+K8evUqpVLJmjnXr1/n4cOHtgLXcDi0RYPFM/qjH/2IZ599lnPnztn+ZTFQN2A+a24qLTQL8biOjPbleYzSsCEjQBiHD6VmnwnMixgNu8SjPh4R5WJAMfTxPIjjiGarSfuwy8zMLG+++SbNw0Pef++X/Pznv6BcLfDyV17ga7/3BuVyldXVMp5fQOOnZiaYxI4KE5xMKsQkUuHxwzJrYRy1mbPQg2uWuqRlMeuKxeJELVYJ8D7KbMtrRwkt19vsavMyzwL6f/rpp9y7d4/d3V1L/3FjUKX/rknp4rZuH1yYKG8Pj/vpjm2CUgE6UaB92u0WiTbJB6bnZ/GDAony2d09oNcfWszTs4eEjyJkNIR+r8XyTAE/TPBUZLyZeae+wT6C3NxERwm37CLI+7xrsuS148yZvJYHerrkUfFoKmXCjobDIevr69TrdVvuTeptLi4uUqvVGA6HNoj7KEGcvX/2GWQ8XMHg+741O9xyXW6TfrvgsLtoXM3QFZ5yIM3MzFgOWhyb5HlCmQEmhJTWxvu6vb09kYRPmmyQrKYtvyulcPNN4Zh1JgBd5tmcrK5XkVQrM4IwMQBvYpIymvQwRtQYzXbEYDhkuhoyuzDLVK3OzRufsbu3h99UnNk/SRTFFAshlYqPpJodmy1ijri9VKl5+/g6Omp9Ztdxds7lf6EYZSkdItDkQBTtNw8+ybv3r9NkDTcaDba3t3n06JFNl6XUOD1WnlDNPveX64uM89jz7HvKHDSJYjgcEcURcRJRiaokyuCtJmljClNoyTw89ngmccKgPxx7RZU2sZlZTMQdfHdTyXtSr9FN8ZEkiT2FsoLL/a6rtbmahmzK44i2eYPs3idr5slmVUqxtrZmAe65uTnu37/P9va2pVKIcBOhIPyinZ0ddnd38TzP1gwUIXjU/WFMtpT3xO2dl4lCnsXF2VxgOM+8zJrq8lnJ3iHCaXV11RJlb968SRRF7OzscOHCBbTWPHr0iPX1dcsxbLfbbG9v4/s+y8vL9voyZ25/lRUSYko4mxLjwbRamYZxVR3Gwkwl6CSi3WwwGg6Ynp7CUwqtE0bDAR9fv85ho0WvPeT+7YdcvniJSqnE6uoqL7zwPAkxs3PzxIlGa0UQllJhZn40Y4ll+2E6gGy0rMb7ZVoWbnBhG1dbc7FL19T/MlrZk9pRB6v0yc19NzMzw8WLF23R6TiOLanafa4nceCe3HczL5Pf8cDzUNrD9z1QPkob50wUjYiS2MyO5+EjqbXT8QXQHu1Wm1uf3eDCqRkKoSJQELiVhbLpk7P5iMCc1js7O5bj5Kb5abfbj9EyXNNVfkRjETe1/C/Fb5/GRncFb1aLcU9ASeXy7LPP2mc5PDzk5z//OTs7OzawXoiEUgBEsnDcunWL69evo7Xm9ddf58SJE9RqNRqNxsSizS7irOYUhqEtRCKhRFkHg2T9yJY+c8cxqznI9eX+g8FgInTrypUrVKtVut0uP/3pT9nb2+Pg4IDvfOc7tNttPv30U1566SVmZmaIoojt7W3efvttZmZmOHXqlCVHK6UmkgqMvdOeA+in/bUbYXKzq/RkRhuqhBGBCUk8YGfnEYHXZX1ticD30VFErzPkr//6b4gjTRLBvdub/Ml3v8tzz1zhmWeeYXZ+im6/S6RHDKOEQqKoVeqgAjQ+aDGLjNfVDzySGIsue54yXlbyhVIWQsi2vANJ9ojrOZTPiRWQ9QzmOZWe1LL9zaPuyOdca2Vzc9Mect/97ndt4SKlTASDCNlsRg1ZXy6+55q27rgdJeAEP/M8D7SZH+ON9AhQxEnMKIrpDw3U7/sBSvmMGKJ1bISiBhUE7O3s84//8CN+//XL1KpVvEIaAeB2JDtA2Q2ntbbuZTFdYDKnvdv5rHoqA+JqaXkJ8I5S4580ufK7bHwR0PPz8zbH1507d9jd3eXOnTsMh0NOnTplQ7dc3EBrTaPR4NGjR/a5YYxjuc/ljlHeswuOEsexZV/naWZCiM0u1uPGwb2WmJFyz7m5OZtw74svvuDRo0ccHh6yurrK559/zv7+PpcuXbJaabfbZWtryx5KchAd5YE9YjLG2pDVxeRv0cwSS2fVSUyv26FSiqhWK+mYJkSjEffu3cNTAUr73Lh5i92dXQbnhszOzVGqhrQ7LXb2d425gSFbiltibPaKQ0KlfZN+MkHGzJvPox8x/3vuGpfxkz0mh5UcUNm6k0dBM0/bspCL+7rcs9vtUq1WqVarnDlzxqaV8n2fw8NDm54+q0QcBwtl+z55bxAtOP2GFWp2n6LRno9GE8UJoygZc8w8Dxv7ZtR9lFb0egM2HjxMnWtlY2ZmTUvRjNycWPJAwp8SqS1Au5hzIqnzNKosUAhYjpp4+9yI/KNOq+y1soPo/u1eQ/qrlCGxnjlzBs/z2NnZYW1tzWomd+/eJUkSTp48ycbGhk2LUq/XaTQa3L9/f6KGZ1Z4uWZ7HvtbPKzZBefiJ8dhhu57eaezK8hFUwuCwNYLmJ6eptvtMjU1ZdOOLy4uUiqVbKjTzMwM9XrdZtSQe4ln+3HTwwGknNesdSnvimdTk6JnJh5z0O8Q+B6FMCTwUy1wMLRRHNP1WQpBiS9ubFCfqlOulGm124yivsmQ4fkEYSkNYQrQSHkmZfuB4DZ6LMnMWD6+buwTHCNM8jZ5npYm8yEHgou9uspC3oH4ZdtR/S0Wi7TbbRqNBqdPn7Y57qQwEGA92XnrzxWs2ed+ur6KPEhXg2CXSqUB5SaFsPKM00elOYJMwZvxMaiUS8422n0Y+EbDTlJvpjsYgulMT0/bjSkdFuKfAJxSmUUWuDgNRNKLhgCTTHL3ZJqbm7NeFcnSKilXXAJnFmfK/u8OvDTRtASLEu/R9PQ0X/va1zh79izvv/8+L7zwAisrKwwGA372s59RLBZ55ZVXeP/99+n1eiwvL/PMM8/wzjvvcO/ePSvcXKBXXN+u2e5iMS7JV6IM3L6LRpVdUHkYmYvFuX/LxhDTX8KYisUiL7/8MidOnLAHzurqKv1+n+3tbS5fvmzTAf3oRz/iu9/9LlNTU3z00Ud4nmdT3pw+fdp66FwngoK0PrVIBpkXzwHdtbE7zbIkIMEjZhT1aB7uUigElMshxUIJhaLVbrO1tcWJtZNcuniF6alZ3v3lx6ysrjA7O8vm1jZ+YDSuICxSqdYplqp4fpFR4pPgodOAP2WdCSOD1SkTgZCkwix7KLn/Z/dH1nxzmztXMndueJPAF3Lo5ZlpX7ZlLRL3WvJ/vV7nzp07vP/++3zta1/j5z//Obu7uzY783A4tARtsWTc3HuuIHYD0PMUjifhazoxwL+ZA5MKSKNMgsYgxEtMggKUSbw4wvxtBJmHr0w8p45j4lFEsVQgCDyiaISX3TjyuwCDbhO7W04aIZtKUK3LUHcHNk+bkMGQTAPifXO1sycNVJ7J497LxZlEM5Mc5evr65w5c4b5+XmWl5eZnp4mjk2V5yRJWFtbY3Nzk+FwaHOnNZtNmyc9O5kiTESYu/fO9jlPM3M10+xzyN/u/9nvusLeNQ+l+vTq6irr6+ucP3+eZ555hnq9bqujz8/P2yD0e/fu2SiI7e1tdnZ2rBe4UCg8VkrMPFS2Q+ZFpRSuGackUNNqZglaj+j3u/i+RxgGBH4ISlkKydTUNKura5w6dYpKuUS9VqNUNlENg/7A1MX0AoKwiB8UUMq3/DI3HlOlmpm2uqLiV5Qfj419HrRgn9mZF3eNuPnwvqxZ+zR7w+1foVCg0+mwsbHByZMnLR9UNLNWqzVx4OZpZ9L/PKvhuP5Lt8S0lHGXr4zHxrNmpdHWVEqCjh3StWfjaqW/QSBjmDxe0Vw2RjZLhnxZyH8yMVlNK+9h80wqt2ScFLGVjSIA81H8ljxhlycss32R68i1tdbMzs4SBAHtdpuDgwMajQZaa5sFAbCpU9bX15E6o/IccsrKwtza2rIa2Nzc3ITjIyvo3fGQhSRZR+S+WQdMnkaaPYzcz4pQE46c9KNcLttNJezv7e1tix2K1/PKlSuUSiVarRafffaZzQwhDhLJ+OqKCZM9T1nWvZJq1YkRL176OsTE0Yhet0W5WKRULJmXtfl+ol1roMDc3DyFYpEojtnb22NuYYaipyBK8LwA5fkkGrSkJNUaLWOixhjek9rT4FVfBt/KM0WfRoAdh4EdJdDyIAhZ9xItIvVwxWkn1lWe1ukKsN+I+asdCEAOGJWGmnt+esCRxvKOM+HZa2jjuKnVKpw6tU7gwDpHCjMJhZHXxGyRk14EmlAYYGzWuepz1jwUfK1Wq1EoFCwuI14+cQ9Lih7xprmUBheQzvKgXG0pG1Mp5pd4XZMk4fz585TLZW7fvs0Pf/hD7ty5w/PPP8/Kygpzc3Ps7+9bjOkb3/iGLUYsmhRgQdQkMQG7SZJQq9X4wz/8wwnzUWoVuGmYZTykGO/c3Jz1wA6HwwlTRcZTTFd3gclh4465aAFJktBoNKzjZjQaMTU1RalUolQq8fHHH9NoNNjZ2WF+fp5yuUyz2eSTTz7hO9/5DqPRiC+++IJ//Md/5MKFC1y6dImLFy/SarXoRwNMVllRuUzeMK0hidOgc0dPEsIE2tTFjAZtdrYfcvXZdaanKiSxh++Z9MpRktBud7l3/wGtVpcLly4yNT3FYDjksxs3eLZ4hSnPI8AnKJTx/CJxnN5Nk1LgNIlOTA1PD8CQfPMYQEdhXkcJjzzN2T183b0ja1X+dr2E2es/rdBwTdoshUrWoygfWhsyeavVolqtsra2ZiuASf1U97qyl1xh9jShjcc2rfAwexANCQmJxhw8gYfvF0DFxLEmUSYZgLldgiJA4UGiCQPF6vIib/z+1ykWioDG94OxMMsOqJu+Rv53eVAigGSzyABms3TmNdHMJLe9YGSS8VJrPSE0J8YjYxa7r0u/3M+5zc0lJlrP/Pw8cRxbzUNc55K9dm9vz9I3zp49y2g0soJBJlw0M601Dx8+JElMkjsJYJb+yHgdpZkliUnh41ZcP4qqcpTKn20i7Lvdro1ccA+fIAjY2tri0aNHNJtNKpWKPVC2traYm5uj2WxyeHjIhx9+SKFQ4MSJEzaA3ZysY7xsXP07xaMgPYTTDY38noCOieMBnfYh5dIlyqUyWscobfhhiYbBYEijcYhOFIuLixTTgPud3R36/bOUqzHaS/B8Y2JGqYkrQcvyj05PeemPCQ04duhsy5p4R5lax5l67nV+VQ3nqGvnXc9dKy7nUmAWSaLQbDZt1En2+9k+P43G+njLft5Doj80qYKujAmpPJNSO0nXlEq9zTpzJd+D+lSVc+fO4gcBigilPAJXpZRo+TzTRhK35aUtOQqEzE5eVvhkPTyCycVxbDE7pcYpo11Xt3uPX2XA5TOSqkUyHJw6dYq5uTlLkn348KFNliiRBC4BVu7ZaDTY29uzdBW3IAwYgXUc69/N1iuCTzQ+0YpdV/5xHt2j5sVN49Pv95menmZ9fd2a057nsba2ZjHQ+fl5fN/ULV1YWODMmTOAqa/oAsSGHKseW7fm/iYzBgqUrIM0Rm806BGNBpRKBQzj3wjBRCvCgjnc+v0+SXJIHMPczAL9fp/BYMBgMKRQLFIuV/HCosktn5q3uGvCbgVXi0r755g6X7blmfTm2k+PJz3ttb9Mk/Uv1ow4aqQ+xt27dy3me+fOHUwixOkJvPZJa+q4vj2+/4y00qnUUinB2qSyk+t4FjPTyJhpM48wDjLR2LCmQugzNVUy0QTpZSY0s+FwaDOkwqQQ6nQ6NitFVoC42IxL9hQ12lVh5XqiJRSLRUvcE6ERBIFN7SvpcESTE2EiYUKuqzsvENx9vuxkK2UCXSUE6NSpU7z00kuWYHvx4kVu3bplC+eura1RqVSoVCo22kHM6s8//5yf/exnPP/88xSLxYk8VqLRzs3N2bF1W6PRsHiW5GWXClmSRVdMTrmm62xx50CeUYS/K/Bdcu3e3h7nzp1jeXmZwWDA7du3KRQK/P7v/z4PHz5kf3+fa9euUSqVqNVqXLt2jcXFRX7yk5/w93//9/zxH/+xncskiQnC1NESC3bmEXgeUTRAeQlKp3x8rfHQ+J5m73CXTnufhYUZQ8nAM9pVoqhPzXLqtGZv7/u0WhuUyzVeufYKu3t77O3tcdhsMjUzx+LyKlqFeEERVOD8iB4mKX/MZkiStHfKQ6t8weOaf1nPsTyz/J9narpjnmem/jrCKtvkuq4HVeKkRRMDWF5e5sqVK3z/+99nYWGBubk5/q//6//i1KlTnDhx4jFIJvtMeZqa+39eG7+n7X9J4jFOdT4e7yAIUSog0YpRnJgEBco4Azw8dJSgdUIYBAQeFGoFZioLBKGP1iOSOGHCXSmnfzabg1LKJp5ztYM8IqXr6XIHOm/w4zieKKI6Go2sV7RSqVhNyCUaZjdl9v55Zmje4pG+S1HhSqXC/Pw8L7zwAmtra3iex/Lysq00IwJHKTXBmpZ+bG1t8cEHH1Cv15mdnWV6enpiASdJYoHzbOt2u3Z8O52OxdckRZFoZq63KfvsR2Eu7ry42Fu73WZpaYnnnnvOZnLwfZ9Lly7RaDRotVqsr6/bvHCnTp3i2rVrAHz66ad28SsFmsTQH1zvtzLZQHWiU3mSbgqdoHSCr0yg8GDQpVYzTg+T5DEgSRTlcpX5uQU67Q5bW9s8fLhJuVym3W6zt7dHr9enXK5Sn5qhUq3jeSFgtDMJLBdNcUJPSA99mPS0HtXyxtJtRx2aR7WjYIKn0a6P65v8LYeYJASVNj09zdraGu+//z4PHjyg0Wjw3nvvUSgUWF5entDMjrr+r46X6cyvj6nweH6QamYmvbpxAIzXt/TF9zw8T1EqBiws1Ah8D2H9TNg8LgYkf8sDCH6TJziOfIQcrEA2tWzQ7Iklp+JoNLL4nAiP7HfyVP0n2f5HAblBENgsIcPh0HjL5uZsabGDgwOrsgPWGzsYDNja2qLZbFoSsFBN3PHKo2rIeLgagRsdIREVYgbD5An8pDF3zVH5rjvOkg9N+H7SXxnj6enpCRBYnnF6etpeL47F+ZKkHkgTjyl9UQLiKsZZd7QmSSJGoyFJMqJUTBNUYkzN0WhErDRRHLO6ukYUQZzA3v6e9X4vLS0Zrlii8XwfK6McjCUdkcfGhpQ2kvBkUz1vbLMta6XkaWi/ifa08InneTQajdQcNxaEHEpnz561VCRxVB3FQnhS+5W0SzlkUucMeFa0OecMPHbp8f41X1fGW52M358QZlEUUSgUJooRyGaSFMsCarubME/VdtVr8XKKgFpaWrK1CcV0FNNPNIdms2nJqMJOFrwkSxJ92lMtK0jk2cS7euXKFZaXl3nw4AEfffQR3/72tzl9+jSDwcCmFV5YWCBJTKVxSTn9j//4j9y5c4dSqcTa2po1xV1NTrRQGTsRNEITEWdHuVxGa22zyErpvHq9TrPZtOa1m95bPFei7brYmJj4bs4zEZhCfq1Wq7zyyivWkdHpdAiCgGeeeWYim+r169cJw5CrV69aWGI4HFCwAfoG2w0CQ2yMkzStuUqMaQn4gCJhNOjQaR8QRV3m55fxvQDwUSqk1Tog0RFaR3z3O9/lk+ufcf/BBj9/+x0KBbMpf/+b38QPC/SHI6pTdRKtSMa7xMzvmNTmLoLx+kzGh4jbXO1exupptJSnFYpH4Wu/anO1b8nq+stf/tIWzTl37hz1ep2zZ8/yL//lv7QQULFY5PTp01Sr1acKKXwa0/JJAld5k+FtnoctKxeLTFEKrVMsLEnSLMUeHgpPKQLflCXUifGYa8D3gklhJl5GN5WzdN4t3e6aisdNoGvDu1k4q9UqzWaTfr8/YdKK9iKZH7Qe13gU7CybovrXAUoBi7WVSiXW19epVqt8+umnfP7553zrW99iaWmJdrvND3/4Q5toT2ttCaRRFPHRRx/RarWo1WoWNHez9LqZeEWIyf9uSTs3ckJoMEKhqNfrtFoty8kT0zCLU7oxle4cwWQyQN/37ZzWajWWlpZs1IVwkdbX1yc23v379wmCgNOnT1steRSNKJTGwszNoJEkGt/zUOJJVGkSIJ0QRX36/TZKD5iqV9GRn34voNcbEsUDlJ/w8kuvAj6jKOIXv/gFs7OznD59hueef55IK4ZRTN0PiRJhkjuFNMRUycz9+JmsbHtsvT8NGP6fsn0Zweh+TsLl7t69y3A4ZG1tzR6+xWKRP/iDP2Bra4t2u83y8rI9FCXu+Li9fNz7x/Rw4lfTX+dtL9Vc1TjrLIDkV9E6tRiR9WPSQ3nKmJZJrC3E8Rg1w1WLZaBcfknWLMwCnROPkXMCifCAozNsZlVzl+yZzdfu9j3vOtn7533GFQJiagdBwKNHj9jd3eXw8NCq49KkmMje3p5V2aXfw+HQmkPioDgqHlOEcxZrdP8WJr9or675KJpZ1rw86lmPm7M4NvUNa7UaU1NTE9cRgqXneUxNTVkBHfhjak7WRnisG2ZlkiQxw0EfP62yo5QJZxkOR/Q6ffb29hlFPZSXEGNSE9VqNRYXF5mZmWFqeooojsEvpCatsj8KlSZkBK3TuEzc9eeMx0TXfrNaUl7Lmp1PEphPAyVkPyfXF/NS6sC2Wi1arRbNZtMeim76ruO841nz+Wmfdyy4st7NzPpIoYhEG5A/exf3tkpBq9UmKYSEtfJ45pWaTM6Y5UCJluQWMnXNJNeTlm2uiu4mHFRK2VJWwnZ31Vp3ssVsEldyuVye8PBJn48a5Oxp6/7v3svlnZVKJSqVCtPT0/zFX/yFLep79epV6vW6HZetrS1u3LjBT37yE1577TXu3bvHrVu3UMrUsLxz5w7379/n8uXLrK6usri4OEH0Vcp4UiVGzhWUrjkKRnBK5IEIcyE6umMgGuNREQfZtEPufI5GIzqdDh9++CGXL19mYWFhwuQYDofcunWLq1ev8uyzz1oz2/d9Wp1DTC59U41aa4N++X6A0oM0jMnYoFrHRKMBe7ublEsB5VIRpUys5P7eLu+/e50bt24wGHZI9JBiZYGTJ9e5eP4CZ06foVQpE4QFDhpN5hZX8MOiCSxXxhOK8oz5qMBU/FFWiI53jjGBzW6adKa4/8sa/LLty2Bwvyqelv2uC+sEQUCj0WB6epoLFy4QRREff/wx77zzDp1Oh7m5OVZWVnjuueesp3wwGNgD133mrCKSfe1L9po4GRpNXaVas6fwfFOcuTcaMIojothU9bLZ77QBELw0CP3Tj29RK5W5euUy9ZqHVAebEGZZgFp+F2Hm8sHcmMfsYLqAtoDMYtp4nke327U2u3xevivakZBx4zi21AyhRQhlQ7CmPI0wi4+5zyl9k89IQLxoe0JH+Mu//Es6nQ5TU1O89dZbljumlGJ/f587d+7w3nvv8Wd/9mcopbh7964FX7/44gvef/99G6Qt6nx2XA8PD1lYWMgVMiKsRqMRh4eHNsGkFF52g73luQQbk3lxr5vVhF1wX+I0b926xbe+9S2Wl5ftdcUc3tjY4KWXXuLs2bM2g4ZGs9/YSXNPjdPdWEwzNosYbZLv6SQmioc0D/eoVgNqtVJ6sno0my0++ugTPrvxGb1+iyjuob0af/Ins1x76RrLK6v4YUC72+WDj64zt+Tj+yE65SlpG32QpKaIMgHn2vWmm/8TbSICxIzJrvkslPKfo31Z4ZbV9OR33/dptVpMTU1x4sQJms2mjeDo9Xo888wzFItFmylFYA0Xv5br5zV3r3/5Z4ysWSnX8jwPP/CI+iPiOLIYmURyuK4dBdy9c596eYrzpy5Rr8o+VpNmpmhmWUA/m/P+qAfNPqCrBbmaglzvKI0ufxDGm0oEr7SsQ+CovrjaWlbFl89KoshSqcTMzIwF37PxmFK4ZW5uzgpq4cpJkQYxPzudDu12m2q1OhFZ8STTMLtQReOSPsq1sgHCeWOQ/d39jNsPNxmjRGFI0LfLCZTPC8na86TmZppWx9P4cp/0v1QPSgXaCM8vpLUUZW5jhqMR9akpiuWAKC7RH5r7Nw8PWV07gR8EhIUC5XKFIAxRnkccJ2gvPccfG0Zt7zzuxdFN1taTAP8nvX/UtY8zHZ90jeNgHHffyu9S2Gd3d9firBKT69ZvPaplr5l37yf10fVCmvfGc+SsQhMTkmJmxjIdO3PcT3sKut0eBS/EbvcUqw1gXNrM5TVJB+TEllNdJHjWcybfcTUCFxuTPPTlctmaVmKz5y2UrMBSStHtdq0QkcLEbgyjbEQRfMfZ+NkN7Zq0YRiyvr7O9773PUtdkLAn8fTdvn0bgD/90z+1QqdWq3Hr1i02NjYYDAZ861vfYnt7m08//ZRer8e1a9csrUG8snkVzbPxdhK36gbfl8tlq1m5WTzctMeCp8kziknp4oPu4VQsFjl16pTNoHF4eMjy8jK7u7t88sknnDt3jsXFRbtGgiCgXCqlhWESRsOIdrsPeCYAOAwJFGZRagPcRqOI4bBHr9dibXWFarVMEiX0egM6nS7tdodvvvlNCgWPUdzn9u1N9nZ3+ccf/pDT584zValQq09z/sIlipU6CQGd/gDPV/gB+IESwMye6qYLooXijM/YQZNHecnDpo47bH9VDe5X+Z6suaxJ6O6b3d1d/umf/sl6od966y1mZma4efMm29vbExaRWEK/qrA96hAdHyapfPIkeNzMT4KUCEzoD4YGC02jeIXigzJRJApT2en+/bsM5xaolD1R+kGnCQxkIrMYFmDNPDER3dJjrmMgD5OS64rpo5SyVcLzogLcCZFJccHxXq9n6QmFQsGGDomHTzape++jNCARYNl7SgTCysoKb731Fn/0R3/EG2+8YbUsCQJ/8OABSinefPNNe+1KpWJrCwwGA772ta+RJKaU3WeffWbZ2HJqivc426Tv8iwSUjQajeh2u7RaLRtlIAVYxHsq3Dy5Tt4Ck7GXMXBjNVdWVmxspsSpNhoNPv/8c06ePGk1UTDCs1gqMTc3S71ep1AsMhiMzZaJOdbgKS/ll/XpD9oUigHlcokk0QwGQ7rdPp1ul1e/8hV+/5vf5I1vvskzV65w0Gjwzju/YDgaojyfSrXG+qkz1OozeH5Irz9iMBwxiiLDHE9zeGg9dkpIuMzkOI8hB3ec8loenpZtT4uT5Zm1X7Zlha57gMt7jUaDDz74gB/+8If0ej1ef/11vvOd7zA3N8fBwcFEX7JE9C/TsoIs+9pkv7URTqkjQKeVmRKdMBwNiSKDZZr8ZT5KpV7uVGL5nsfW5iP29nYoFZURZmmXJ8zMo7yLeQz+Jz3U4w8xqRJ/mUnMOxHdU8XVJrMaWZ4mdhQukBV8smldz6H8L+XcSqXSBLWi3W4D2Awg8nkRNMLtcgsEZ3HKvOfN9lkWnotluvy/o0z4J2kWrukqTSIzlpaWLG1nPLamDJjnefjW9JVnSAw9wzH14igiikYTSQvRMBqNS/gZbl0BP9ZUKlXCIIAU7tAalPLxwhA/UgRBQhCGeL5LRQHRBsbjOzY19VhZeGL7z6lt/aaa8BAF2xasuVQqTXA5pblC7Chz+td5Hrte7D8gGpvMjdba0jKwxOfxZ9zPBb5vMswqMKFRRj2zDgDApsrOSn05YV2txxUiWW0KJjdDkiQWc5KofZfY6QqmrEovG0xy47umlWzgWq2GYHuSGtsVRnkb2CXcun0RgSBmlnwuW1nppZdeol6v4/u+5cRVq1U++eQTLl68yOXLl7HgZkpjkMy8Dx484Ny5c4RhyMzMzES4VtbjKH0XeofrYZbiE+JlFXxOnj0rsN17uAeBmOtKmVhZCa0qFoskSWKTUn7rW99icXExI3ANyz9ItcelpQUGgxGj0ZDRoE88iigFpg5mHMccNg84bO6zurJIqSjpx332dvdotVqpsEznwvc5efIEJ06coNVuc3jYZHElxg8CvGKJogdeISEo1RkMIoZpFlyzZgyWV6tWTYSA1vR6faI4NuFXKV9JxidP05F1eNQa+jIt7zD+dQVeNiJHYKDDw0O+8pWvWCtmeXnZEmeFjO7m6hOoRhIb/Kae2W2Pm+9m/MMwRPkmkiNJjMNGKROfiTKe58Dz02wriigacnJ9lbXFRYLAEG1FoE14M/Oyy7pS2w3ozgqLrHrq2t9aj4vaijDLWzx5p4LLWBfiaZIkNgXPzMyMTTTXbDYtb8vNOJGnrbh9y9JDtDZUBPGiep43EXmglLLFdkWYgaGO3Lhxg5deeokXXnhhQpj5vk+z2aTX6/Hee++xuLjIwsICtVqNvb29CZwsL7JBhLrMgQicJElYX1+3nLWDg4MJTc29husocU1yGHt0C4WCFa7isWy322xubnLu3DmL+Y3nLcH3jTDzSwHlcoVWy5jCvW6LZDggKJcoFgKSJKLVOqTVbHDh7EK6JhQKn/39Bu1WeyzMFHjKZ21tjZWVFbZ2dmi12sRxgucHeIUSpcCnWPKpTvkcNlocNpsMh23MSV0gDEzMbRCEJDphMHBSfavHtWD5/TehjTxt+3XuIZioS+MRruC1a9doNps8ePCAixcvUqvVKJVKFisTJoEc3O5a/032M9fS05K6HIIwQCuTuy5OwCTW9IhjY456ysMLvTRJAUSjIWurS6wszBEEkIySlFmYFjRxb5xnzhzXsgshr7nEzuxp8rSD4C68PKHnanbZRXnU9Y86LV27P09Qi2AVJ4doXhK2JFqUaLUiGCRtt9baYm/HjceT8JtsP2GScpLdmE87l9n7SJiVK/RdbXbCHEiFqO+bHy2COdHoJCFOYpIkJgx9G8ailCKOYpuDvj/oUxmVCEIf309TKdu5NfQLUqalSvllnuNR1jpGOZ4uEfxyL8MYV5B8OQ3k18W6svP2Za/xtHMo602yr1QqFSu8JEGnaGYuTOFe48v0M3sgPOEpJjRJMf5dfPOIbyE1WKvVCuWy9F/eh8D1OGabcFBcyoa74bOT62oUsqmkAMbi4iL9fn+iinJ2ENy/XZZ/lukvmpfWeiIrrcRxyj2lkpRc19UWjwI6XWHpajbu80mxXLn24uKi9dTW63U8z7N52fb2THD05cuX+eCDD4iiiAsXLvDFF1/QarU4c+bMhNntguZuX9z+ivCUE1lwOjBVduTElfqZssldYZ/nzZTvZRfmqVOn+Pa3v21NbcA+pxkTcQQpdALFQgi1KoEP/XabOHVc6FGX4XBAomOK5SKBbKLEYzSKaDZbPHiwwQcffMD5C2dYO7lKQXn0ul163S7T09OEpRLKDwzTX49XcrFYZGqqThgGDEd9dKLxlAnT+eDDj2g2W1x76SUDdygwKbs1SZxYSyO7FmFM1flPpaX9qqacHCju2pb/R6MRvu9Tr9dZWVmxWFkURdy4cYOpqSmWl5ftZ8SZJqwG13rKPrt7+H45ISZNsC7zY7JkwHCYoHW651F4furRRJEkmsAPKAYhtXKF565epl4uEScJXpqSXSnG1Zk85/STJmC1a05mcTH3ey4dQ14Tk1C8cWKbZzUt9/PSH7lHNnjaVa0FO5KsF/V63RZZEa+naEnSsidcVjC7fcpqfaJtuQJkcXHRxlBKHjPh8ezt7dFut7l48SL/5//5f+J5Ht/4xjf49//+39NqtajX65w4ccIC72I+u33NLiLX4SFmoGiDCwsLVpBLeiPXfM0z748aC1eYLS4uMhgMrEkttQDGRGCsm7xQCAkLPtVKkZbncbh/QLvbI3GEWalcMDiIlkwZEc1mm42NDT768EMKRY/5xVk8v0A/5e5NTU1RKBphRkqoTHVCCsUihUJItVqh22vT7w0YDUd0u31+8Yt32drc4urVF6hUywShwV4iEkY6sgH47pi7436U6fVfurnKg3vgiwIioL8c/MPhkBs3bnD16lWuXLli8WaJqtnf32c4HNo5nnDSOPfJkr+Pb9nPeGlm9THfLIm1EWaJIThrwAt8JF2wTjR+GFAsFKhWyzz77CVTNFgnBJ44fFJvZp6ZcxTW9GVbFg97EhD6tPc7yhzOMzWPwuSO6u9xn8veU4S75GUTuohkGRFBLEV23cMg735HjVP2s3lC6ajx+TItT1MLgoBqtcrBwcEErWM8rtl7g8IDPz14fN+Yh5igYGM6KtIE8AAp+TYgDAsMhwO63R6ddockNBhp4JB585oxH00NRdFEYy9GJzAaDm1BF1J+02g0QiqeZ7WMX6flaSrZ1560B456vqP6lz2M5POyLrPXdmlNWTzapUI9DVyT1/+85xz/Ps4iZ7V5xPJQoNXjSTPledIIk1IpwEs0xJHlrEEqzITFnb25mJlHhTlkN2XWdBO2vlvo5EnCJU8jyoLirrkoub7EpHWrK8FkhW83fCc7GdmJOG5isly8breLUoZD98orr6C15v333+fRo0cUCgXOnz9vuWu9Xo+trS1eeOEFpqenbYpuN7XPeOMdb4bIe66XV7xVYBLyiZNgOBxOkJTd+XTN6ewBIN5BGXeZQ9G4lYJadaw1j4cvzV1XLFGfmsJXitZBl7m5WeLIEFY9DWiTz+rkyZNEsaJUqRHrPre+uMu9+9vM1mrEccyzzz5LsVhCJ5p4NCLwyxgOUha70yY+tGjSwigVsLi4RL8/ZGdnh0I5IIqHfPHFTU6dPEOlXKFWq9nDJ2tuHydAj5qPp23ZtXicoM5rLs9T1hBgrQMXTgCzTl566SVbw8Hdv3JgyYEsFojQiFwB92UEHYwPLMHEdCq3FKA8KVY9IkmUibMVrqA2B4/PONOLAjyl8bwEnSQYQq3hqQXyINkMqLKQ3ZgtGVhRNV0viquCyoOKMBN7PUuUzTvF8gRm1jZ3qz+5uIEEzJbLZZtYsNVqWbqGm3HiKI9htmUxKxGu7ne73a7NA/f666/z3nvv8c477/Duu+/y9a9/nUuXLhEEAWtra+zu7vLw4UP+8A//0GY0iKKIXq/HcDhkcXFxInf7cX2TPrg5xxqNhs0WPD8/T7fbtVilK8DccoEuPy1LJBairzvHLraCjqmVpzCSaSzM5PuFUokwCKmUSsSDXUJ/DnRg2PeY4EitFadOnWFpaY1nnn2Gv/yr/x8ffHiD65/eYXWhwhtvfpOXX3iVUrmCThKi4Qi/oE1pMuU/lowxDAN8zycpaHy/wMryMt1uj83NTaZn67S7TX753rtM12etMBOM0+USCpD+NBbKUdrWcfCGO05PKzBdIeLuN0kU6nmepQwBjwmz1157baK6mlwzCALq9bq9drvdtpXPJQpG5EQe/epJzT63VmkxGY0KDD0jSTT93pCEEK1SKadT3pnWgIfn+QQpt8zzTPp1VIxSRpDFcWy8mbKo3UmQzrohMccNbl7n5XU3li8rrPJV0Sd7UqSf0ndZcK4pd5SpddRp8qua0+5ir1arNlfY4eGhZe8LbysMw4nQLtlEEjzvnpYuSO+Oc55JKa+7gt41Geyzo1NsS8YvvQbKvufCHHmeXDkx4zg9FRPjHlfKk8JMSBeV8vB8IAzwfQ/CAHSI1gOzWJOE4XAAqkihWGQ6DGzmj263T7MVE8WxceFrUzYuSeRUTikWjD1iKr2n8kytAc/z8ByMVYSAcKsmvJzHaB1P0ujzmjtvX9aUfRqNzb2H+528/SqfE/My75p5uLT9XO4el/6Z392DbPIzIsjMj1binUxz0KUhTTrTpXRFpomdTMLGOE7QvqFquIRZtCYYDofWhZt9QNGmxATNw2vyBs39X+xzYcq7JzuMCwfnYXZPO/kuPiBaiiSbA2wREXEYyHe+zCLJmmLuvWURiEm3srLC5cuXefvtt1leXmZmZobr168zPz/PaDTi448/ptfrWS9TEARsbGxw+/ZtLl26ZK/vagxZE/0or5KbYlxMTs/zmJqeSrVAk5nAyDtTFs73hJLoW0IpynDIkkRPLFKTGUMRR5p4pImimIO9BkGhTFgoU6nVbI4DpSQtRYQiolwKiFRIEhcgiTlsdjnYb/LZ9XsUClPMzMyxdnKNCxcu4/ll5heWeXD/Blu72/zyvXcpT82xcuI0Ve3TG+5TLMeEhTKFlGZAGtNn5kXLr+zubrO7u8XLr15jZmaKYjHgyqVn2HiwwaBvzGgpsQfjFPETFai+pAl53LrK/v5lD1GZczd7DYydFdm9rLW2CRAk64obRpd3/0KhYA/m0SjVWuOEQeohV56H70vSBIzZmM638Mis9MKemCgdo1SA5/l4QYFh4jPUEHkJMbEU10JhvNEKDz8pEfULtPtw2D/kzPo05aJGeUM8pdFxjEoSvMFgYLUH9+GVUpb3kzf4TxIE8iPmjtAWpOqSmIRHaXVZ89W9Zt7EijCTiZSy80opWwNT6ApucZAntay56z6fNFkYIvxPnjzJtWvXCMOQtbU1FhYWePfdd1leXmZxcZEvvvjCRg1IYeA7d+7wk5/8ZGITTU1N2cWXNS/cfrn9LJVKNhGA5IH3fJ+Z2VnCQghKM4qGJDoiSSJ0EoPW6dnnpRiWb3+0aEJyP+XjeyHREEZDGPQidrf3aOw36HSMhzdJsRFP+Sn+EaPUiFrF5C8rBkWIQw4Oenx+4z7/37/4D/zV3/49737wEa3OgOeuvsgf/MGb/NmffZeltWUePNrgxz/9CTdu3eSgcUCn02V3Z5d285BBvzveM1qEWco983w0mkdbG2xubXDu3Gnm52ZZXl7m2gvXuH37Np9++ikbGxs2R/709LT1gGfTS7nzftz6z8ImWcEir7vQxXEYVJ6W6HoU5aAVWEf2gPudTqfD9vY2rVbLetonrumo4xpstpj5+XkWF+ap12qEoU+/16ff6zPsDyY+bzQzU0jGZE6RPmtMRZsYpWKUjvAI8L0yQTDNIPYZJBAFmtgbob0YpYxWHSqPggoJdYVRt8DhnubW5wf0OjE6McLMVwN8PUJF0Zg0m+d+dgfxKO3pKFXcNV8FoBZHw5NMxye9dxxQKuaEKxTytKqjTLUv29zvibYk5foEuwrDkE6nY0FMUwtybJqKkJWkla7AyjN/svd3X3Of1eKdjLFF8f5ora32NR5blWplKjXXrIFgvyOfS7Q2OdgT0CMTbxmnm2mc4VW+lwAJnlL4ShErI3SGg4hup8/h4SGoEq1229bD9ANFokeG/5TEdHt9W+4wjmOiUUwcRSRxjE4SkxvDro/x2rQm5WhIqWQoQZ5SVMoVy3zP4om/ill43Pr4TWt1ecqE+1428kPgBzGrXe7m4x0GGDvefN/HUzrFq8awh0AN9h6ZFEsZtMLtadp/D5RPokfY1ADpvb3UfDSrxJSaSyIYDRN63RFJLLq/WVdaG0J2IGXeZCDk4d3iF9mT5Sj8Rl6XwZLTTZpoT9PT0+NFmcaGgeOxcEw397ruIssdJkeAuokkXS1IUp0I8C6ffWxOHaxDru32wT0Zs1pau92m0WjYMm6e57G4uMiNGzfY2NhAAFffN/GKt27dQmvN6dOnATg8PLTZas+cOWNTM2XJw1msxBX2Mtae5zGKIpqHJlVyEIbUg7oR9lFMnEQoxJxKi7FKoK8CUsGkFIxGA8KwRBiU6Pd6aMwi1ypEY3iJJr1TKYUXCuhkZK6vEobDHlE0Ap3gez4P7t9nf3+P177yFXb2mrRaTd5+5+ccHJxifn6W+lSFq88/z9zCIoeHLTYfbdLpdJmbNxW+4iSh2+0xivcJCibXWrFowqEajQbN5qHVVqSg8AcffMBgMGRqapoTJ04wGo1sFfqNjQ0ePXpEqVRifn7e1p44TovPCsCj3jvuM7+KwMsKXMFkS9bkHn9OyjeKI67dbltuZqFQIAwep71MKA+eZ3LIVcq2ipfWOgXeE0udcOWIN7Ys02dLkc00a4YmIU4ionhkEwhI/QgDs2lTPUvH+Eqxf7BPu9FhMOiCGtfQ6A/79NsD2o0+gcQwSifc08yVzi5m42pxediNaEW1Wm3CSyoCZn5+3gqxzc1Na25Kji75cZM4Zhnw2cmX+0p/5XmkEKrnmdz1xWKRbrdr0067n8+efK4Z4LrtpQ/ud1zMamtri93dXV5//XVmZ2fxfRNj+OMf/5iNjQ08z7PYVhRFfPDBBwBcuXIFpRR7e3t8/vnnfPrpp/zzf/7POX369ERq7KxgF+zEPZHlHp7nMRqOaLU7lEoFKpUS1UrJpAMfjhgNR3gqxJyYPgUbZqRNphZEmGn6/QHlUo1qtcKjxhaFQomwEEBSZJRouv0eh+0O0zOzTNXrlMshOh6AFwMxg14HHQ9QOiHwfW7euMH+QZP/6k//nL/7ux9y78EGn352nfv3L/DitRd45ZVrfP3r32B3b59Hj7b4mx/8kJcOm8RJQqlcIopj+sM2g4MW1VqdWr1OEJikfTs7O9y5czvFSE0Mb6fT42//9u9pt9u89tprnDt3jq2tLT777DOSJOHmzZv89Kc/5fz587z66qtpnrbIYmjZqAl33bv7wE1IkDUf80xQV5g9jYWQBzGMRiObHcO9TpKY/P9CsRJSrNamPkC9Xjcxxp6H8n3EB4TTH4m4CYOAaqVuIKLhkIPGQZq+HnwnH5pSyhBjEdU+ZTFojLnpJaAionjIyGqLYw+C0bQ06BiNhxcqtre32N85oOgbc9VTPkkU0e91aDSa7G8dEhwVquFu5CcN6lFtHO4ybkopXG1Q7pVnsh7Xstpa9nvuRLuFRdxg2qxg+DIte+q6zyz51WZnZy23SwrYtlqtCUEo5eoEs5GDpNvtsrOzY/lPx5nnbn/cv2VuE50wGo4oFAI8NVlcRQ4BmMzUK94mcy3zmixWOdyMSeCjfR+SiDg2DpZI8tVpjdaxDQSO4wiVmN+V59HtdBkOBiwtLVIsFohGI/b399jdnaXdbqM1zM7OgvLo94f0+wOTvE+bmgE6NtrlYDCiUCgRRwZL0QpbVMZsXCzXcXd3l3a7TbfbtVlXJeqi2+2yt7fH0tJSbjbk4zSoJ1kMed87SpN7mpa1GkTY5uXHGxdsHmtxsqZEUE8ckLjwAsja8JSCYJKWIebm8ftofEXlOAaSNI9ZtoiJDJVAIUoZEnq/16NQDZD6AbJ/RqMRg+GAQLSnLPYjQdB5E5FVR7PviRATwl2eyQZGuxFtSQZ8OBxanC1PYOT1J6uxuPdyYxMltnA0GlnvqgyIy9nJu6c8m7yfTSXuYjT1ujHjhLgr6aefffZZ1tbWiKKIzz//nI2NDbTW3L17lwsXLrC4uMhHH30EwOnTp0mShJ2dHXzf55lnnqHf79swFRkvV2N1tTTXFHa1tOFoSKs1LsYcBgFJLOmuY6I4wsM32pjngrkJYRigdcJoNMTzjVdTklT5vk+opIBIwqDX4WBvSECfQgiBH+ORoFLv02GrSaFYYEp5lEoFRqMBMzN1vvb1r7K3u0uj0eDho0dMzcwQBCHTM7Nce+kl5ucX8IMwfS4fP1AUCqYohtRKqFRLtkL99evXGY0iymWT/mZ+fp5arUalUuHjjz+m2+0yOzuL1prV1VVeeuklfN9nZ2cHpZStai+wiawXd13nmZHyWh7I7+6howTd0zRXQIkZmZe5WDzi0ge3QLWY0dFwRCHFdwvFQvZO4zUmc10opOnkU8017YNlKWizPjw1ydXxPAn0NwZlHJtDUGtQvpd+LDHeTN/HVz5h6NPpHNLrNbl88RK+b0jX4jH3PFMQJRAzyB0gYXdLx1yya95p5U6Ui9dI/UVX9RZVXTQ0oStI+hoBY4GJ5IbSN+lPngovn3Xfk2cLgoBut2tPpJmZGQvGHx4e2kl2kxNmF5+7AN3ncfuRJKYugGhlUu8zDEO+8Y1vWNP33/27f2fjVD/++GMuXrzI+vo6/8f/8X/wyiuvcPXqVc6fP89f/dVfsbW1xZUrV+h0OlSrVarVqn2W7EYQU1v6JaZ0uRyAShj0B3RaLUrlIpVymTAocNhokyRxKtSHBGFgFke6EOW9YrGA1gn9QZ8g9PHSsCStPfzQxwfCsEgSj+i0GzT3e0xXFdWST7moUER4ShMlMdvb21TKJeq1ArVKmcGwy+LyPN988y3+3/+ff8PW9jY3b97i1JlzlMpllpZX+KM/+hZTM4uEYRGNqf5UUKA88P3AOlHmmWNqaoq1tTU+/PBDzp49Q6m0xO7uLidOnEAp4+H+D//hP1Cv13n55ZfRWnP+/HlWV1d59913uXfvHo8ePeKf/bN/NgEhiHBwIzSyJGwxO7NxjK45Kq+5n3taLTA734L/GsywOPG+YGZKKZviSwSeJN3sdbsoDEeyUq3mCDPbK1AKPwwo+T5BGJh06aMRnW6Xw8MxRlkspjic7ySPILXWfAzJWiWMohFRHKXz6ZMkMTpOA8c9RcH3KZUCGo1tWu1DLl78Q8LQI4lHBn5TXloXIiRwMS33hHE3ygQYmKMa55l5spHySJfSxBZ32couA9v9Tp76mj0Vj/qsu7El+NrNPJHV6I7y9ORpYnmeUnHte55ntUHf91lYWLBpw/f392m321QqFZv1o1KpsL29DZhQpOnpaTqdjuXMiSfqKIeF+/zujxkD356ew+GQYqnwmHdZSxpjPT5J3ef1fUN1cLU/o5iJFqjwPcUgHhJFQwa9DuUwoBSEaN9DKJJozaA/IPB9CqUCQWAWcalUYH39JCDl9Trm0PB8isUy5co0WhXTKkwGLPY8z1RJVxIWMyCOI4pFkwnYcO20LeIhqYyCILDaV7lcthp1vV633meZXzfaRNZTdmyOgkjc+ci+lreGvyzc4V7Dddi5/ZH1J/2QuRNzM45jSHSa4bd45H2ka57y0L6m4BfwfdPnwXBgBbshNfspzJDuK/PFtA+i66VcRqswpGOnDHBn+mrW1GjUJ4qG1OtVPBUxWXHLaOaPGdiCiQgvy1Ud5b28SZD33euAkf6SQTQLzufd09V6xAkh70/Y9TmbNzvBMnEu1iP9EKdAHJtq5vJ5tyhvtp9ZQZz3HGLGyuISweh5ng0NAaymBXBwcECtVrOZbTc3NykUCtbslgLEDx48YHp6mvn5+QkzWYjAVuDoSS6aknwrqTYThkXAFN1NYo1Gp5kVYDCUkzLB80XAGe2sVqsyGsUMhwM8z08Xo1mkQq71fA9D9PdRpYDd7UcwW6U4Vwcdg8KG3KytreH5Ad1uh0IhpFQq4vsehULI7NwsJ9fXGY4iU7Va+aB8EK07fTKtxnNgtP3AYoCFQpErV65YrXd6epqtrW36fRM6ViqVmJ2dZW5ujrffftsUGE4LHLs8SInauH//PidPnrSJA1yTM+sckP7kaVh5lk123T5tcw/QLBbsHt55ETGelxaeQaGVEUL9wYBGo2EFvtkv5qAyXsvHemCUkoKpSWEO3BjhJ0p0iE0jZu4MytB7YsFr/cBElJBqrjpODz8IfLh06TSDbo9S0cPz0nHDJxppkgSU8o0DIDsBYoYpZSoidbtdkmTcIZfLJXiC1noCfJRrirt+fn7eamFZp4BgOjMzM1QqFQaDAZ1Ox4YDifnnYkR5JqCczjKZ0l8XK5ANL9pQqVSyGFev17PVmdzkdXnmrHvSWTU6xQlFoImwlDETYVUoFHjjjTfopqr5wsICMzMzbG9v43keN2/e5P79+2htQGnR6D7++GPm5uZYW1tjbW1t4nR142BdrdocHgpTF1cRBKEt79brGr5b4BsczvN84qZJ7R1FyiwaTxNrk1SxVq/RODik1+tSr0+hk4QEBb5PPBrhoSh4IdpXBEUfFRa5/t7n6NEiM7V1TCSAR+j7LM7Pw5XLDEcRjYN9KpUitVqZQsGnVClx4sQJnn/hBVqdPrVY4/khqMDUwUwZSCLQPN8nSUiFTCndFMZs+uY3v8nFixetB/2dd37BgwcbgElGsLq6ysmTJ/mf/+f/mdnZWc6dO8ezzz5Lp9Oh2WwChojcbDb52c9+xne/+11mZ2dt/dbhcDiBXWUdZ2NnyeOCyl03v2qTa4gzwz3kpQCOmxFD3rP7A0XgjwVPp9Oh1W5ZrqQhnJdxQfzJe2t836NarRiHQhITxxGHjYYh1w4H+H6aLEJ5xInGT7HWURRbakcQFOgP+3g++D4QG9zM96AQwte/fg2VxNRqAb4apgHnPsNBTBKB74fjFEBZgSZkT+E3uUS7rGp9lG3vaip5XB13cl26AjCB2blaTt6plTWr8oQcTOa+F+2pUChQKBQsoCueT/e+R52ueaeqG//namai9YlgW11dpdvtToDKYk42m82JkBrRaA8ODqzp6mYycRepCFBXY9VapVajAWSVZ6okSYSHXzansJ+ppD5W5Q2nqFAIQWG8kkqlWpsRkmkR8dRUMNXEPd+j1WrQ71VI4pFxAGCA4XK5zOzMLN1+n1a7kxapCNIwGZ9qrcrc3ByNw/tppqCxaYklZqa/i/lj58qskyAwERgSUtZqGa5dp9OxWUQEg/ziiy+Ym5ujXC7z3HPP2ToLsm6SJGF7e9uuEzm4XS0+K6yya9JdQ+4aPW7/HNfc67qZU9y1KIdqth/u2pG7R1FENBrRH441UrOWRCMbwxFu8zxx+vkpvhrRSpWkOIqxcWVKGcoFCq0UiY5TE9OhFaXmpU49nkZowcryAoFn8vzrGCTaI4nNGvRUjpnpNtFQsqamGw7kkmrzJkUGUoTTaDSyuMVRQsL3fZvoUDaoW6gk+3n33nkLxv1d7ukW45VU1kqZ09zV8NxnyBPG7iJ1uXHy/iRuNb5Ov9+3C61er1vhKmal53ncu3ePkydPsry8PCFkJJZT+lir1ZyFl+MtM6+QSh6DWWis4DCYRx81MhqbSUmcCv3hAI2mkJpaxquXLhvrZjesehQkcYQiIRoNGfUPqZQKFAuBMUFTF36idaolGgEWBD6NxiFaedy7d5fRaEiSergq1RpBUEhv5oEeE3pFVzDPPPasKjUu1CFB/kbbjDh5cp0wLKRZSRJWV1fR2vDQTpw4walTp7h//z4Ac3NzBEFgQ+NkfnZ3d9ne3ub8+fN2XuUQyYbeHSWosmv4uM8d977cww15k7l3+aJHRfgoOYHS5wjCgALjQ1FoK4LHZVMHTf/+RAsAAQAASURBVApv7L2KhSJUtKmslbL0h6MRaAgTTaKMoNXpQajTAiaaVBFQHr7nmx81eYRpnaB0YgpAJwlJyocMjtJ2YJxNVArQivnnxlS63K3stdyTSezwMAxtybK8CuriFBDtUEy/ZrNptSjXNJY4RJk8995Z0qtsXKFmgAFHW62W9fIsLi5aUq2A7RKW5JoRsojkmbOkVbm/K8BcAdpoNAAjmBYXFy0lpd1uc+bMGcrlMm+//TZvvPEGV65csQRbmZf33nvPUjXeeustK8wkt9qk2ZNiHnahGzEQ+D46XaStdgutIQwLTE9Po0no9bt0Wx0KhSLVqTqNRoMkIR07bYVJkpp6SseMhj1CP2bQb3Gw/ZDZmRrVSgmfFDhOzGL0vYJZ8Cj6wyH3H2zw4OEmlXqdbqdrqiglMD+3RFgqodPAlgQnXbYntIQE5QWWG6eUTukIpqq8ybxrcL5XXnnFHs6eh4VJTpw4wbVr13j11Vf5N//m3zA/P8/Zs2cpFotsbW2xtbWF1tpiZ3/3d3/Hv/7X/5parWahENF0XYK5uydc7+Zx++7LNIExpB9uEyEuWpvAINKHOI5N6nLfs5BRoEIKKVXKxQ0lukD2cNZLa36XAxuq1QrVSgXQ9Ps9DlP4QnkhYSUm1ppuv2/ncziM0ipaI6JoRNkvEPgFQr9A4JFGFGiUF5HEIyAm9HyiSBMnGpQ3TgGU12TzSVFYmYBsEjsXR3ObK8zExJIJz+PDyHdkcYxTwXTtZndzkrkD6Z6CeRrcpNk1FixCcHUzxbq5rdx7Za+XFWZZQZ69p2uOSIB/oVCwcZxi/khQfrfbZWZmxiZwdDWz7e1tm0fNBXjd+RwfEkeYMZ4nBkDKKxSPVgGNpj/oMRpFNgys2+kQ+GGqKVnbI/3VQ+mEJIlQfkISjeh12hSLBQqBb01Qien0PYXv+QS+SQ3UarYZRhGbm4+IopGJt9RQKlcMMx3RwtRjcX9aa+tVFXNI5q9YLNJutxmNDLFWihwbwWLgjN3dXer1OktLS6yurrK5ucn8/DzT09MEgaF8SCrpKIo4ODjg888/t2F4orVkoQXpW1aTca2I4wSa+/5Rn3MPdXd9AdbMFK0td08waTl4npc6dBKb5l5w4KzF4j7beO2ZtRAGoV2XmgSaEI0ilG84jQma0ShC6xCtjQPJD4ybM0kSk+tMeXjK5DATZ4DR8gxh2/RHzEzGmlnWEZBtghMUi0Wq1erEZ12uiwuMZ78rr4tZ52pa2Y0oTTJh1Ot1+14eOzuvv0+j4ssEyuddLprbxAzM3iPrps+evEfhiq7wk8DzMAytNqCU4vLly8zMzFjngXjRisUiS0tLPHjwwHLk3NqHImTHm0pY3SLk0s2hQRaFmTdt+0NqMlSrFXsijw8Mba+plEeMgpTl7ylQOiGOhvT7PWanCgRBaMyHWLO1tWNMysTkny8WiwTFkFPrJ+n0exTCAqfWTzE9PcNoNKRYMVkwNGlFcqWQxFcypCaedDwHYkaDqcVo1spk/VPRzOI4plAoMDU1RafT4c6dO1SrVRYWFpifn0drzfb2No1Gg5WVFVuyTQSiHHybm5s2A0qtVgPGzPu8Q94NyXvateo2F/tycTu53pMwarsu3YGU1/V4bbvYoDgI5PCXnzzZ4eJ0xjwtG3NS+URJzCgaEScxmsIYaEVBKsAUAXEEQx3Rbg2oVUO8EHRicv4rDKYrz6k8RSCCIQ/EdCdB7GXJSCnCq9Vq2cIncgqIluOCjJKKV2vNwcGBFWQzMzN2s2QnHLBEv1qtRrPZtLwr+c4EBcEx7cTmz15PBlqe0/XASriLAMMS6iKhMVlvrEyUS6B0HSZyH+ljnsmZJCZVj5QEe+uttzg4OGA4HPJf/9f/NWfOnCEIAu7fv2/TstRqNa5evcre3h7Xr1/H930ajQbtdpvTp09bwSZueVAkiTHz0IaK4XkBpKEknudRCAsp/pAYAekpSmUjNN0FK8kRvdS0xPOI9RjH8D3wiBgNujQP9jh78iKVcsnk4h8lfPDBR3z40cccNlo8++yznD5zmheuvcDXv/46e/sNBlHESy8/y9T0LN1el9pciFIeWitMAmWjEWrPnPAow/7WWjZ4kppNgh+KV9fMmWQmEcysUqkwNTXFyZMn2dnZ4d69eywtLXHp0iWbW+6TTz5hb2+Pb3/726yurrK7u0u1WrXrotPp8LOf/Yzl5WXrcBBnjlg0su4A610UT2heexrhJnvXTdDgvucmnjTm+LgKlazHrFKiPIXSnhVkYla6+0MoGzMzMzZ1mN1T5o74QWC15UJYZHZ2jvpUzDCJ2N7fo93rMxjGJH4ZlFgWCQof5YX4qshooEz9hoMhp05NUwwCkniIn6YIEi8+xHh+YDSzJw2oCCUxN8TUFNevqKRurvBs3QDBtiRFtJvzXjSRvH4IZiWmqpwM2TTf2ZbV2rKgvPu6K3Q6nQ61Ws1qDYIVSqCuu2jyzEuXtpInbPP61u/3rYl77tw5Pv74Y0ajEc888wxzc3P0ej2LOYpmtrKyQhiGE5pZv9+3nLnJxIJj+FTGwPOM4p7SXvF8o/UILuQHPuVKiWq1huepCYGtU4FoNR6dpKe7TsFao5kN+l3KxaKh1QBxrHm0uc1nn33O9vYu1VqN+vQUQRBw+tQ6xVKZh5tbnD51Bq3U/5+7/+qyLLnOQ9EvIpbZJn2W767uag+gmwQgERJBipekJB7palyZJz3pZ+ldz9I50oPGueLR5R1Dl0c0FwABiQZoeKBddbmsdNstExHnYcaMNVfstTOzqg3RJ2pk5c61l4kVMWPGnN90qOoaSht0KUjlb7bQIobM+JA7vuung7Xo+gnfC2nz3kYj1+7uLu7fv4/33nsPd+7cweHhIa5duwYAMQ/Y7du3Y2C2lMwWiwV++ctfAqAcdFxImRIbdvCMnP8sy2Jq9GeVyuQ8Ms1JSAfAmmQmz+0bJpJUPs4Dqu8ywu4lbAlmOuS124sgQrBdCho3JsM4SOertoJ9YrGqa1irQARDFna6jPPpZWhbj3Zlsaob2GabNmJnY0YO78j/USuS1jKZ4xvodO+U06eDzguZM8myhCKBcN4JUmmGj8lc5PL8TY1VTlZnvfexWMkm/GyopaK2fCb3h1UElqJkBWg50ZsiFYbeYxNWwsTADJ6NE0VR4MmTJzg6OsIvfvEL7O3tETjvPR48eABrLQ4ODlDXNR49eoSHDx/i2rVrPRwlviN1qqcmkpQW/gp4k/fBn1CruBCd86gqwix1KMAbNx9PKazZu18poF6toEELW2sC7r0DHj8+glIK+/sHGE/IAnt+fo4f//gnmC+WUFA42D+k9DRFgaIow0JTXd9VsGrGl4J4p+HxDq9OC0VJt4QsMm+uMamUijVe33//fQCIlnTpKMuuHYvFAvfv38fNmzcj3vree+/1AHmpCrLGMJ/Pe5lQNkWdXISrMWg/lISAaSnVumR/6CDiMR6odJ3La2T5OQ6HYrXTGAOjNbzenGYfmjJsZFkG5TxJ9dyJSKuU2HN+fob5yRI7owkQpD6lAHgHa1vUFWVNhgGU9siePn0aO5vnedx5hlIDyZfjF9vZ2YnRAs65WK+RX5LP5dQkfA8GviUew5YWHiy5oznnomPgdDrFbDaLFcIZQOcJYwlQSlwSU5C7k8QvJCPh/o/HY4pZm0wiQK+U6llDJbGkTr3pjpg2732UpjgL7uHhYVSt/+Iv/gLvvvsuvve97+Ff/+t/jddeew3WWnznO99BVVX4yle+gtPTU3zve9/D97//faxWK+zs7ODw8DBGGbQtBeV2z+xcNvpGDFJHR+MS1tGC29vbDXDCDHkmgGQfMAtLWJhWDlp7GOVxcnYMrYGXX34JmSmgVYa2tfirv/4+oDO8+aWv4M6d23j//ffx3vsf4G++/wO8/c6v4c4LL+JLb30ZT07OsLu7h2s3DmEdq+cajXXQGWGsbZC4PADnOFaXlsLwZtbHqQCEMCqHo6Mj3L17Fzdv3kTbthiPx/jxj3+M73//+8iyDEdHR9EgwM7Vs9kMOzs7+OUvf4k/+7M/w7/6V/8q5rH7oz/6I/zDf/gPcfv27VgsmtW1PM9xcnKCx48f45VXXok0JDM6D9HIUGvbNqb9STfzxWIRjUySvpkW+Tzvg5yrusiK1I9MMj+5js/Pz+P7FUWB3Z0dlEUJnQtaF/3iZ5fjEUrrsPINGheMQproSQNQ2iAzBe5/+BD3f/kAX3v7HfjWQ3sFGA1bt1gu5zh+eoJVNcd4XECbEprdHk5OTmIlI5ZK+EU2DajWOvqDbW9vY3d3NzIcZiiMpaWNJzeVzDapvd77iGXt7OxET3eZ3UOeKwH4IdUyZTT8PfenaZoYn8eMF+gIb9OOOgTqXqZGyMBfVr339/dRliU++ugj/PCHP8Tf/M3f4Pr167h+/Tq89/jFL36Bpmlw586dKEX84Ac/wE9+8hPcv38fp6enXS74gcfL9/eRAYf+FHnEdKx1qGvagY2h3O0q+HTF9/deSGYeq+UCWgHXDg5gKKoYzgEffngfShncun0bb7/zayhHIzx9+hR/8Z3v4snjJ1BK49at21gtyCdxPBqTBgsFrxgjU6ASc0A0bAj1kt1FUoamVApK6xj6NJ/Psb+/j1deeQXvvPMOXn/9dcznc7z77rv44Q9/GFUr3nQ4R95oNML5+Tl++tOf4t69e9je3sZyucS7774bPe+ZFljbYReas7OzeEzS30WaSdpYMmOtQc4tB8NL4YC/Sw1X3Rht9uPkTV+6VK1Wq5jWiizG7bqEKWk/qPtZniMvCiip8nqxdqBgVIbT4zN8fP8hbOPA/ttakVN009Q4n52haWt4b0nNlN7ujPGw9MEY0ZDKuanxhDFwL/2y2KNdgpZyAlhl3JTKRA6sdOiVzFCel06QZF798V5XN7kf3C/GwFh1S/3NLmL6cdcT5w4xu9Qyaq2NAPX+/n6Mc2Xxfn9/H9PpNFrSbt++jZs3b6Ku6wh00zsoeKeiyhiRJ7b69d4bgbDShZUQeYR6ux/GrZwla9Vi4fHx06eYjKcwWYa6abFfjrC1tYMsp/jLm7du4e5LJ4CiWNG2tVTw1+SEl4nnKp2qS/21AhC8piHSgCfjrJTEEdfni+dmb2+PYkeDWri7u4ujoyOcnZ3FsU+l/clkgoODA7zwwgvR74xT8/BY3r9/H0dHRxFr43XCz76obaLTIXqWcIhk7OvYtE/muq9i9mgbfSmOnuuD+g60TYMquHUwk9bGdJTiKdcc9c93ERzozyX3xNoWtm2wtVVSCFTYNJ21URontZdSVmW82zAzq6oqhnGUZRlNzdLzV6p/KTGUAfBlbIulMwbu2QLDZmzEjpPD59nZGcqyjIUlpForP1MuJYofWywW8d7j8binmko1Uk6wJAjJBOVxjr/jwiisfjPmwXiaZFAp2MtNWldT5sY7qCygweE0XOmpqiqcnp7iZz/7GZqmwaNHj/Dqq6/i7t27+A//4T9gZ2cHv//7v4/f+Z3fwX/+z/8Z8/k8quZl4WEtsKqWsNYD1pA/WFAtU6Zqg48XVd/hAiH0Q5uoJ2wk6CiZAgw8lLdwbY2mXqJZznD+tMb/8Yf/H9y5fQcvvnAX57MV3to/xMv3XsF0uoV33vl1vPDCi3j9tdfx3gf3cXJ6jsViiel0G+PJFEbnUMjgvILyIb0QBE6pKBMHr4IYAiNUTh572hwaKKVhzDBILhnD22+/jZs3b8Jai8ePH6Oua3z3u9/Fw4cPcXZ2hi9/+ctxw+W5e+GFF3BwcIBXX30Vu7u7kS4lw/qjP/ojeO9xeHiIBw8e4Pr169jd3cWzNrlm05hoXnfe+7W6n0x30trO787QQyrl0dh2I8xriu5to9Q7n59jNidNYHd3F6PxGKU27AFEzjtKo2k9moaMM4jz5AHlqC6mUtAAVssFVqs57r10gNHIwNoWmbKoKoqeMUphOpmiLIlOM54QflnpZlGWJS2GJLf4RaAk4wKc1YEtnixRsPe9lHKArgwch51Mp9Mes0t3I+5XnucxGys7nA5JZhyCJY+nqohUQ5hAGQMEgOl0itFohLquYxk3CeKmO9lQ34eOS3cS/pvHbn9/H7dv38bJyQkWi0UMrTk7O4v54N599138vb/39/D222/jS1/6Ev79v//3MSNHURSAV2hbj6at4H0/XpS7lqrp3nto3a93SswsyUDM0g4A5TycbWCbGqvlAovzU3z7W9/Ba6+9AXiD5arGdLqNa9dvIsuAuy+9hFu3b+H2rdt478P/HYvFElXdYDQaoyhGpKL6kLAvMFcqmkJRDaRBi02V6yhiWF0iKUkaMPoOoPK9XnzxxajC37x5Ew8ePMD3vvc9fPDBBxiNRnj55Zd7GosxBru7u9GAdnx8HFOzyzH8q7/6K0ynU4zHY5ycnMRi1SkufRk0wW2ImbEGxMwu1ViGcOQeDQxpDkpFmU2pEAuZERMhNdFjVa3QNC3axpJQk+coymjojsYmaz1a68jvLIaheSiO3QUdauoaTb3CjetTKE259gAXi+dopZGPcpiQ/TaTC1D+yIli94RU3RzKqyWbvBczJpmGRw4wDxr3h72PebKGnsVMh6U8iWPxREoCSYkkxREkI5K/ZfgH41rsasLSWHrPTX9vGiPZJBGVJaVWOTg4iI6dnNmDpT3ejVerFR49ehSNEoxpULFejTzESBKc0PaeJftjXWcNtZbqJWqlhausGMPwn/IhiWNdgdP4+PEYN27cxHg0wmpV4fx8gdOzc5yfn2H/YAdQHA+YY29vH5PpFlprkecFKP8agod6h4PFp/aGjBWgzS1VrdLvZKywnBOGPlhb+PnPf97DuTij7YMHD5BlWcw2w3TLUE0VUusw7ru7u4vJZLLmwrSO9W2OCU6LkPB30r9sU7sqbBT70BtHGn/qW4dT8lrRmlL7NE2DVUV565TS8Eqh9o4YWfDmCcZxeOW7jVErGKOwv7+DW7euke+bIjwW3sFZgktoUwrWcqguawY36SDJv2ezWTQl53mOyWQSReeUGaWSCQOnXNWFGY1UW6WEwpIiO8iOx2NMJpOYglo+C6AFx/UlWWJirIJBe+kuIpkdP1taPfl8/l4y8MVigeVyGdVcAFGFlu+aYmMAetie/OExl+dFdc/aWCVod3cXBwcH+NGPfoSPPvoIBwcH0bUBIMvSBx98gIcPH0YJ9eHDh/jTP/1TLBZLTMZT/OY3fxN7e7vB0ZF2OMY3Yp+1QlvXMCbD1tYWFvNlkEDznhk/Av/KwygFOIumWeH06ROUZYFJuY/sYB//z3/6T/Do0REePTrCT37yAW7f+QFG4xy/9dt/nxaAVhhNxvja17+OtvVYrmrcvHUDRTlG3TqoIotbe+tsCDInrMUxKhx29rjw4tgG25wY644xdBoBZdEtB9W1p0+foigK7O/v46tf/Sr+7M/+jFScwNDu3buH3/zN38R//a//Fb/3e7+Hr3/96wA6Z29Wx375y1/iD//wD7G/v4833ngDb7/9NnZ2dqJztoQhJIaqte4VF5JGMk4wIDdjDg5PGaSEQeSaY+A9jpFio8o6PpeuPRXmQa4VrQ3yDKjrBk17DjWbI88oA67OcszhsFi2qGsHIFSah4eHhfIWWmkUmcZklOE3fuNtfOX1l2CMglJUf9X5FlW1Qls3UNAwpoAOeFqPmfEOJZkUDw7nsecis9JHbOhlpVQmHV8BRIlraFfhhcUVZJjBbVJtjTER22rbFicnJ9GSIys7y1Q7qbQ2dF+pPjDTZbWBCxsrpTCbzXoOpdJpVt43xRllH6QRJvVb29nZifGZW1tb+OCDD/DkyRO88sorMUIBQCyAwpLZ7u4ujo+P8d3vfhenp6fY3zvEr/36r2FvbxdFkaOuTWRmEquD4qB8coE5PTmHVuxjRXUM4xzDEdQBwMOhbWucn5/iYLvAZFRiazzCN77xDXzn29/Fj3/yc3z44WP84hfv4catvcDMPKAVirLEa6+9jrPzOT5+8ATjyRaUztDaEKjPqpNz3VZOvZDUwzMXGZlSvFAJA+R+y/OZJqS2wMc5woXrBty8eTPCMEy/N2/exJe//GX823/7b/HWW2/ha1/7Grz3vWzDWmucnZ3hW9/6Fn7zN38TL7zwAu7du9fzrJd0w3QkN1qmFbkZs3+nbAzXyGvl2uHP0T0jJXyWvC5oPuiMKjA+KCX6TOFIq6pGHbC7oiDn66xwmDmPVdWiab3IPOsBRxW8tM5hjEZZGLz1xj0Y56E0oJmZOapX0LYWRpeEqyrAw/ZTAKVi9hCeBHTB2bwQJda0qUm1TZ6bLvhU/WTsSBJQ6rMlcS5WjeREppLQ4AQNqJ/pLpZKWnyONAKkGRPk/S8an6H+8T3k88uyxN7eHvb393v4IG80DCZPJhOcnJxEH6Sd3R3MZuch+0i+Ng/91u3a3S/VUzGjMMQ4lffwzsG2LYCCDEmLOTJTYjqdYH9vDzduHCLPM6yWSzx4+BBbWxOURYG8GHUMJ+z2oeJFB7QgqCWxa2JBCUtYr+Oy9wogC+Y6RjZkTRyiG611tGLyBqo1heox3S2Xy54WoZTC6ekpZrPZWlKAs7OzSNPSyi8ltCEJiY/LjVZ+x/e6jN4GvxdS7jpT60MMa5fKZ0b66viG8x5ta8NccQRKZ8AhZ1mOqqEQtEwzAYSqXuE+PQYNmtssfTH+rbWOEoeUrFgamc/nMQKAwztYdUwHXt43xefkeYxF8SSxhZJVx/F4jNFoNGiM4J3t4OAgSmnHx8eR4CS+lJbjktKabLJEHe+2zFw4C6lzDnt7e7DWxnAr2X9+d8b9WNSX4yJjSNPns8rgHGWAuHbtGn7nd34HL7/8cgxC997HLKm7u7tQilIufetb38LXvvY1bG/vxEy1Dx8+wL179/D6669TALj3vefTIgnj5ShjKzi5o2J0is6xrSXsTVs4X6NpV5jNz3Ftd4KPPv4Qf/OX/xP/r3/2L/DqK/dQjsY4vH4HRycP8fHH9/G//W//K77+9a/i7kt38dJLr+JsPsOiqqGzHA4amSY6aD3AmREiL9q4Rj28cD1JG1tuJfbGNCzp3/sOs+V54LXwu7/7u1BK4d69e8H3zuD27dt46aWXUFUV3n//fbz99tvxmcYY/Omf/inee+89vPbaa70CP9/+9rexu7sbGeTe3l6MKmB1kvrdDyRn+uZYabmO2NIu85ulazJMdBwzfm+tdbQIXyydrX8X+xckZ5NlgNYwOaWVgtZoWouz2ZwwWU0YrHcOToViv9og0znKrERmFAqQldy7Ct7XUKqBMYoq2YcMLwguH/AYTs6YMhqWeGgMfMz1xdgXD/qmYghDYu6Qiik9lJk5yZAJoEtLJCVHngilVAz3sdbi6OgoWm0k1iD7AvQlMNk/6d3Pz2ZpiXGyLMtw48aN6Lx7cnLSs7LK95FjKyWuIamQ+8VuMgAtqr29PXzta1/D3bt30bYtnjx5AgAxp/6XvvQlaK3xox/9CP/u3/07/LN/9s/w8ssvQ2uN//pf/w8cHVGg8BtvvBGkAI2madd8prSiLJ5gXyBWJz2Ru9EKFh6UjqWBdw1sW2O5oErnjx4+wp//2Z/jX/yzf4EXXriNGzdv4fYLd/Df/n//Df/jr36B73z329jaGmMyneCll1/FYrXAqrbQWQEPDegMxhSonSerV299rW88SoUspt510l3yPaudUvJg2k5pUmof0lH661//OpSiJJ4nJyeYTqc4PDzErVu3YlHrd955pyfN/dVf/RWOj4/x5ptvRjp1zuH73/8+bt++jbalvGvGGIzH4xg/ynQ85ErE1ZhSuIYjFKQ7SNoiNiaHgmnPp/7/8dv4W6FPp31BiJItclFhD6qG7j3QNC0WiyV0VoKzmDhP1c0BB60yZCZDbnIY3bn8tK6GRw2FluguGADIdahrF2aa5Q6maueQRMWTL90M0sV6Gag4lColVe3SgPZUqpR95UgEvr9kGuuA8Hp/0n4OqcZM7PwcqUbI9CkA1t7vopYyfzk+vPi477yj89gzoMyNpQ9ekBLwZ5GfG99Dqj5KfE/e/4L50lWwlgpZ5HkW8s81KHICZ40xgALGoxG2tqbY2d7GNNT+XC4WWCwXQfIhyyarIMNqzqa2viGkc5tCJzyeQ9ivzHzC9+IEnzw+5+fn0SWIM2DIezGGCyCWgZNhSxwex5sjJxxgw4HsY/oeQ9JWio/xsU3qpsfm9SivD08NFsz+dxuvZLphwcC5WKA5PplVWu/DvSmGt20spcM2/LwN7DXp9yAzkzsC0Lfuee+jAQBAjP5n1wBWSTmlzdDusInRsRWSJ5J3Td592OeraRpw8eJNlketNa5duxbxNnZy5V0xHRTJNKVrRyqt8bNYUuX0O3zd4eFhvJ5jRr33kVgBDO6omyRXeQ7ngeNsGSzJ/sEf/AG0ppxnnBlUKco+en5+HuptTmIs3507d2LxVwb7iSFRdZ7t7R0oaJyfh7hCbYI7B+UAM0rH7AXeKCjV4vz8KepqiZs3b+Ddv/5LnJ4c4+133kZZFjCGtI/t7TF+7Z0v4/DaHl66dxdVvcRPf/ZT5KMxptsHmG7tY3f/ED7LYb2iXO+q84WDGBdeiP3NDFhjeExfAzS4WCwwGo2ws7OztjBWqxXm83mETth5mhm8tRZ/8Rd/Eefjpz/9aQw343k7PT3FH/7hH+Lw8BB37tzBjRs38PDhw/is999/H3t7e3DO4d1338VqtcKtW7dw8+bNmLFlNpv1NnMZXJ4ytNVq1atVexFjixEcCXO6AFUO1/SL+tINhJ8lPLxXVE9VkcM1jEFTt6jaBjqjkodU/Ssj520AgEGuR6iXDk/PzjFFiWySIS8ArQLT9ORsCzBNdFZrpfxmyYzBeDmQ6ULmRcf57Fk/5+wC0poo2ybJTNYWAPrqmbU2PoexNRnyNKQa7+/vR0fck5OTuKOllka+dsiilPaZiUQ++/z8PPrP7e/vR+svRzFw39mNIg3lShlXyji5sa9flmW9e/32b/823n33XRwfH8dSeawKzWYzLJcL5HkWcRa2ynEjqY6sflVV49q1EtY6zOcLKr2mqbJO07YwmgqSeI4gUAoKLebzU9imxq3r1/BffvpTFJnB219+C0WZwRjK/781HeGtN1/Hyy/fxc3bN/BH/98/wnvvvQ9TlHjry1/Fzt517O7voXEZWk+7NFWX64Deza1vofbe9xjZmoynyEGcU9mkmy6l2qagfWb67N/HIP1f//VfR4z0vffewze/+U0cHh726OKP//iP8Xu/93u4efMmJpMJHj9+HJ//0Ucf4bXXXoP3Hj/96U/je77wwgvR1YiZmTQqMa2l66iqqpjN46IWr/PJ35c2ZoGdZUgpBuCltYgwMRbllDZonUNtLXSm0TQuQhXKEQPVMMhUicVqieXpEtcme5jmBsgVtOKNiw1vqdsJMbvs6i+yPhipRCMHXOIMlw2YFI834UjyuLw/gDUphxszQxbbNzGJZxmDod0u/c2MUWYsYCZ0FZX7omfLMeZrWVLmd+TygKzWLJfLUFoP0aVGJg1kdTMZleE+hhNJxWACJiumsxZGa1RVjdyQZI5IKx4aGjrP4EFuBePxGKNQx0BpymmlhOtFjwn1JDRaVt0CEj0XFw3Nddp4ruQY8+9NSQR4DjidvNY6RqzIzZJpgaNVpGDAUrZMyMCGhuVyGSES6SPZZTfRvc2Qm3QJ2iQwdJJZN67y3Ybaum1TIaWW7h7iuaqDCjx8LPY7qJt6UjPbxgbfRkmT3f/ObernBZJZSgipZCKbTNgopbWnT59GKWEymcTsskBflWOmNx6PN4KWSqmeaM0ZPtgzm/3IJMbBE18URVT/uMgDf59iHJIBpcQriUkaE2Seq5OTk2jZZeyKUyVx0j5OpChzuvH9peog/5ZSo8yGoLUOauQ05pb70z/901iw9vT0FD/4wQ/wox/9MDoYb21tYblc9kK1tO4YI79vlmUd41K0k3rv0Lbk82M0AN+iaedYzs+gvEemqSjLztYEL754FyoYCViCAwyMUdjZ3sLXvvY1LKoKO3sHGG3twuQFLEA5/62Bd5ctH6wd9QDgEP2fIr0K5sJjnedZL7qE5zstSiKhC0njv/3bvx3V9a985St49dVXoRRZ+3luvvKVr+CVV17BaDTC48ePYYzB6ekpfvSjH2EScMOTk5N4n+Vyie9973t4+eWXsbOzE9PFM32dn59HCCdtrGbKjftCzShZx6Rm+kRdT3/Hm4SNLdCGCtZvpYCYIIAkM68oqqS1FlY5+ChpB5XRA1RPtcTRo2P86K9/jLfu3oNrPbwljJYfVzcNEALbab3Tnbx3FxsA0skckkiALg2wVNHYTQHo6g4yzsXExMyMsYC0jFU6ASyB8KR672NW2J7jp2gskh8eHkbLKNelZEbD7yMzHPDf8n1l4LpsHFTPIStc8FjiasxEFosFnjx50iM6yUD64Py6xCp3XwajF4tFzPo5Ho/xl3/5l/jwww/xW7/1W7h//z6ePHmMjz++j93dXezsUNpttpRaa4PTKElHLBF4L8LVPInxRlG9TWtbaBPi/bxFUy+wXJwhUwZG82K+jRdeeBFwFeApHTO8gwKFqmxvTfHVr36VUvtog6OzJUyeU1FhbeCdBvmIMwFcRKk8SeK3kM6YkcnGUQ2sNsp5lnCHHH92V+LN5Ld+67diFSNJO6x6KqXw5S9/Gffu3UPTNPj444+htcbJyQlOTk4wHo9hrcXp6Wk0IKxWK/zgBz8AALz88su4efNm7Aszu9FotBYRAyAmiZD5zVIc+DIN6UrjnIy5CuNctxZK02YV/AOgFIUaWe/ROgdn2PFZTpQCnEKuCzx9fIJ3/+aHaP7xH8BawDlAa3qI9x5V3YLjOWm9kAHbeQctJRDZLlN/0u+HVE45CZLRpW3IY37oeelOwwxn033ltVLdlE6+kmlc1C67P//e1BepdqbW3sv6f9n8sATHC4iJmqM12ADB/oD0/K4f9Az6r3M27s8HWZ9Y7hdWYTjKRoHOssXvk/rzReXR9zOFUF9MTPHTnb2BHjx3eKix8rs55pU/az0suayF/GxonICBs7dICZvvwQ610uHbOUpiOh6P43zIiAHOeCK1HJagWWKUGojs92UMa9N4bDw+ZFS5tHV+iVAKzpN7Dd27u1+EMcQ1trWo6wZKSbAB0ebggvTXqcsq3vdS14z05TaJrtykV7Lc0bgKN0sP0gop0w6lDoK9IRLiPjuwOudieBRLffJcfj5LMmVZxlTT7OohS4Zd5D4h3UEkA0wlpVSqk41VPVY5q6qKzpfSlQRAlEK5SSdKoC9NSvcPTrN0/fp17O3tIcsN/ub7f4V33nkHd+/ehVIKo1EJ73eQ5wVWqyXquoL3Cls7O2RkaR15YysVLUm8c2utkGcaChZNU+P06DG2xiWKrERdV2iDkcY5F2oLMHNElNp/8uMfY3vvEPloDG8KFNM9FMUYgKE0RUCooyjGMeLWEmxGxNDiwovwAOI4MerC89dai6Io12pJeO+jcSWtTSE3XDYIdBZhE6Vcxr/YiZvb9vY2zs7OsFqtcHZ2hr/zd/4Obt68GX0j33jjDXjv8fDhQ2xvb8dr//zP/xzb29v40pe+hKOjI+R5jv39/V6fZfWwTdjz0N+bG3EjJf5CUNcBSO+c2LQ2VKYOgPUOuSlg8gKnXAdVcd0G2qi8I/WSQqA0VosVbGtR5Bl2t3MUOUiaV7RBWetQrWoRJaDDxkZ9upCZpcB+1+mO2chdTIKpkonwbsNZMSU2xsQtKydLAhqSAJlpsI9PVVXRHWSTpZIlBWMMDg4O4jOlBZBzlUlikNKTdNUYYmbMVJjA012SVcrd3d0eYbOLADMzHrMsy3pGFAkIS2lXGkCYsLXWuH79Om7cuIHlaoHVaomvfvWreOmll8K7jpBlRUhFE8rLwWN7exsPHz5EUzcxTTapaQ4KDkpRrFyWabjWwjYNTp48xO7OAUblBHVVURmxlphZbjQAqnNI/XOoViv8+Ec/xvXbL2K8tQNVTnDv9RvEzJSGtcT4jKFngKW+AXWxW27rbhsUueCDyuPBzAwAWttie2tnzfLHzExr3XPLkPPCEjjDKECXYYQNU3w+MySlVKys9eTJE5yenuL3f//3sb29HbNtvPjii3j69Ck+/vjjmPocAP7kT/4Ed+7cwUsvvYTHjx/H2goS02U1dUh7GZRQhXTbw8N7ujqNa/d/vMH6MYT5Ck6zznkoY5CVBeaPj9BYG7IFu1BHgpyyM6PJMKQ0VoslXNuizDPsbBcocgWA63USM1utKmJ+JiTECK4g3iusiUBXVbuGruMBGfrZdE+pKl61pfd9lsZMR1r/0v5c9v6bvpN9kgByeg7ncktj61Ks7KJnDjF5Po+xRSZkExjgZDJGWRYA2CKmYUzWU70jo+TnCayYN9XOjZZKz7VNDaM1sqzDnpwnCZHJ3os+Wmsxm8/R1A2s5ezDwpIZ19ElUEf8PXTeBdgQWM0c1gLkRnTROEvoZOgHQA8DZf8w3vQkDTCezOdLHFr6KMqivPF9xPOG8O3eu/uUWV3WVG8a+iro8LjHc4KuaAM9dSywb9hRYSNS8Mgyg1FZwhgVqzB154saG52YHs9ZSwEkW6peyuObGImUjFIJjidQ3odDljg8Y1OTxCUJhtUsGW7F/b0o4JbT9ezt7cW6B2wiZ5UvJfQhhpJKXsaY6KQ7nU7XAGbZ2BLLEqH0Oidws89sh5yNpeTIkurbb78dkwlubW3h/scf4aWXXkJRdGEkpDFQLvzxeIz9/f2QUieMLeN4nnAx7x0VLVEeWlHW1ral5HnVYoEy05iORlCqwLgcoVpV+MUv38Mbr70E4nEK0ArWWayqCu+//yHuvfZl7O0fokGOLBtB6Qw+MFpKryySCl4BtiHcL85GoBWu+KXAMhuPM+ezl+PJNMWMPfUHZLpLw9EkY5ObFLtasCp6+/btKKH/+Mc/xmQywfb2Nt566y3MZjM8ffoUL730UnSaPT4+jjntptMpjo6OMB6PsbW1hbt378a+calCpp1LcTPVqePP3pQYaN+NtfOUlwwKWcBqq7omKybjZip4UIf8KwoaRhvkKsP23ghvvfkStksDqnMaEjYqHntgVa0wHk3A2YJ9AOe0yob9zNJFm2JFQ+ekx1Lmx4s0ZViMMTRNs1bBiZ/Hn4fu2bbtmgOtvHcKtvO9mckURRFVPU4flIaUpO8s+5Wa6zk77Wq1ivF2vNumY834Xdu2OD09jQH1zBQvYmabxriua3zta1/DL3/5S/yX//JfYK3FaFTgtddeGyy2bIyOmU+ts2jaesBgQ5gXlA9pjUGMrK2Imc1mGGUZtscjeOSYjMdYLpdU6OPlF9EVQSFr6GK5wi9+/kv8w/+lxMHBDcxrjzwfQescrafiws4DzreREdG+fYn07n0ofKG661SIyaQRg/M20g2nhZdj6H2X3DB1mk7dY/haHnspgcl7ydoWN27cwO7uLnZ3d/Gf/tN/wng8xq1bt/DNb34TP/7xj3F0dBRdOeq6xpMnT3rFnx89egTnKOkAMzOWxjnihjHgizQiVtt7xwKDY8n1YoYYNodgEGJmw9J7XuRoAVRVjaZtYRVFBCiVgQrSED1opWG0RplluHYwxt7kVbz5yt1A+00052hFz1tVK0wn08jsqKaFglHmagYA+bLPooIOSW/pAmRCSL971n6lzxq6b3p/ZnSpyjk4+eK7i95fqplS1ZTEIRkh9z1lXJtU1LR/qbTqnMN0OsV0OsVyuSQ80OwEL/cenCsk6GBltRpNWycSZ2LBVLwGQmZZ14ZK5qTOelCWWcBjNpujbhpkRkErB+cUGtuiaWrUAdfL8hzG+o7APUthvntkkMyIofX7no7twIx0fQcjZ2GBJJvDpnFP26aNfGgzZ1pgOmNfQK6Izn6WjI/KmgFs9ZThS2ywYr80aYBgmuLnXwxN9NXHTeO1dm38asMYkaBElZec71RMpZIr+hZJMioZlNMc47zs+qYiEYTxdFFT7d6PDmzMmjHYz0sIJ12MsrH4ywVDudV13fP3Sq/dhLtJSSjdQVnaOz09jQS0tbUV+85SouxbURTR+ZYB3DSFTzoG6WLgvrHUJ6uvy4yiQ+PGMYIyZIuJPbWyDuE5/Df3eXd3F7/1W7+FhyFv2Guvv4K25ToJ/C79zVkpIDMG29tbqKsGzno0TU07nw7Il3dwAdA/Pz/B7PwUt65fR5kZKO+gNPD2V76C+w8e4Ec//glu3byOmzev42B/B8YovP/hh3jv/Q/w0sv3kOUFrAWm020YnQPeUJ+8Z6s+lA+LMzAyydCSUYzvkM5H0EQAUI1NgHwDVeKawfVeeXNLXXhSp2npPC3nIF0jkk5ms1kE67/xjW+gKArs7e0BQM94YK3F8fEx/sf/+B+4c+cObt682aOvsizx5MkTfPjhh9FR+/bt25hMJhiPx73NPN3k43Alw8hSeHIUWIfWu1GP4+rCRqcANlK1Deq6AYLlkRgaFf5VoAzFCgqZMRiNSmhNfoUmAxQsqZiQXv+80Tl4WDi4IPVTN6/MzFJgcwgYvUhy44mv6zqqk+y4yYB4+jxJBMyE5HHG4KQazGL2fD7HkydPYs1LdiTk50pmoLXu5Uo7Pz+PBVhYepNuH+Q9nq8RO39m3y527JU+REPSF4HzlIp8sVjg9PQ0OmNyfKvE0qSDZjpnHGh87do1/JN/8k/wgx/8AGVZ4NXXXo61HEajMXh1S4amlEJmMuzt7qFa1ZjN5pidnZPUVTAmSd7/gMPJyVPMT57inTu3McqzkPbY4xvf+Lv4sz//Nv7z//7/BuDx5S+9iddffxVaOXzve/8D73/wEd54801k+QjWeexs78PoEtZrwDrCXRSVjIPKenMVEJp1ovUQ7hlybFV0K6CNjhZ4mgRBKRVL9A0ZiPh+UgKS7jDyO/ahk/PCc89QAgD83u/9Xi9OlyUzluqfPn2KP/mTP8G/+Tf/Bnfv3o2gP0t3H3/8Mb71rW/h5z//OabTKf7gD/4A9+7dw87OTsy2zJs794WPKQxLb2uDeilYSVzRWnKYhVJQhkrMtbbCalVRnKZiK7AHHOFgmVYASJCZjEtoQ5um1gCaNuJlbeugDeB9gAxUYGYeyLRhcbtLzigndeOrCczoWVVCqX7J50mw9arqq7znJlWBJRuewIvwPl4sjH9JrCxl4Bf1kb+TTIffT2IqfC/ZeCFsSuJ41bHhZ7A/GwW7Z9je3sbx0xNxTyLCbrEi9j3PctisY56Mi8T/wzPIcNNgPNolf7QgUe3u7mI0IsZ8cnyCs/MZlssVFBwVNJnNsLW9TQveKxiTEyjsO9U2+ufKsRKZYvsvzScOqeKJmulD+I0xa0yRJSKpDaRtE2SRfr/pGIdKKaWwv78f8dShdVFVFY6Pj6O0xY3xXN74jo+PY4gcu+pc3t/N67cTSvobXSSS2M8uzKj3vMAsvfddiJMKuiFCyFQ8P7xTZLAcTuV7XYwCZfguSueKNFGHC2Izu5sMhzPJl07PS88BEJ0Kl8tlrEPJf1/k/Z/en8/jyZeZOfg3pyPiIhXOuVgZh33d0j7KHZRVPjZMcGAwS0PSRy5VMeR7yBzwUuWUhJlKV2yVUkrFjBsSe+P7XcRgGaBeLpehApAJuz7FpQI6Ooz2JWKeK6r2PR6P4NptONvC2QZ10yLTDlpTkV9rW8B7jPICJhRihXcoywJ3797F7/zO/wPeOSwWS/zkpz+D8pQy+dat23jxxRextbUNk4X8ZZ7wMqq2A0R0K6r14Zj3PTeP4SalTgXlRXUh56AzE9VM2RiekNbIFHeVYL/0uE83HQlFSIhAbr7snMvvuLu7izt37uD8/Bzvv/8+Hj58CO99lNpZ9Xz55ZcxmUzwne98B7u7u/iN3/gNTCYTPH36FL/4xS9w+/ZtPHr0CFprHB4eDmN88JGZ99auGmb+8buBe/WwTE1SWd02BPyHLBfeh0hMTbfgd86yDG3T4OGjhxjdOoA2OmyKoXwTPJTSwXpuCfdV4XulANho3LmQmclJGMJoNrV0d2RMTOaE4gV5fn6O8Xi8Hvqi1gF9qU6y6CzVBcnMFotFxA6stXj06FFUI69du7bGpPlzllFVovF4HEu1zedzzGazGMwt8TNW/+S9+N7S5YKyVqgYwiIZk3znoiiwvb2N8XiMpmlwdHQUd1xmxuygKZ8nx4rVeWttqMuICByvVjXm8yW2t3ews7PuNKoUxU6WJZV7K/MSi/kM52fHqKsVfA5kxqOuV2jbBt47TMoxnA4Ok85iMh7hrbfewsHhTfz5n///cf/+h/jZz34G71vcfelF3HvlHt54803AbCHLC8BrOK/gENR274Pl0oJqA/RVPcnM4vsHg4EKEgDn+9cBiOZmnYcBJT4wCX7J8bUc3M0brqRjKWFLKW4TvMKSF/efpSalKLU5S2rMeLa2tvDgwQP88Ic/xP379+McTiYTrFaryOB2d3fx3//7f8c//+f/HN/4xjdQliX+43/8j3j8+DF+93d/F++//z6m0yleeOGFnk/akBYjBQWfMDK6ZkDd9B5slOl+q2jUOV/VqOqKVOqQnt3BQ2cK3hKTcs4hLzKsZud48vA+bu9PkBcZtPZQygGOLKRKGzTNUtQBceFZCt7ZwPT0s1kzhwZjaFeS36WYl6yH6b2PKmDKKAdBS/QXL6tlaZ+khYc/c8WaNJB7iEnL0CJW+SRRX0S8su+dmtaFm0gv/03jK+st8Hky3u+iMedjvOhIAgGca4LE5uC9xWjUJOB193zqu0KWkVRTVwZMfM4BTrNaRACt0ZRJ1oMwNWMybG9voSinGI8naK3F6dkZvGvwkrqL6dYWptMt1DYnqxczH8WYFwHE/Xfs5DU+1kkT3Rdy2XWapoq7PN8ry7LupZNx62F0G8ZX/h6ay03XyXnldPBMqywpF0WB2WwWNRhZio7D/rIsi5gwJ3PkYthKURoovm4QHvFBWYv6G6Jm59dU86D+MSYpxpov5bFUIJXRuhAzzUaIKD/176HD2prP57CWfRtd7/lKcXynWDdKGoPo3GdmZs/apLgt8/dz40Bb2XH+vYmhyfvKFNKSAKXkwqFKzMjOz88j4QwVYZGqMaf3YYbGRoGh9xxqzNCkasogM6dSHgLzGReZTCbRfM+7uEzAKMdiqE8E+CIw0hwIwKl1FvPFHNa1GI1KlEUOrmAe2YEClNHIyxLT7R3kuYK3K7TNAsdPHqE0CqPtLThlQu1DInoDD2gPZxzu3r0BYxpcu7YDZ1vcfeklHB4c4Pj4BOPt6yiyglLEKBWYoaI6nNBkPWWoBZ3xJQ0t0krHxeSdDVZKBCbe95RnvyYd1dlunNJNZtOcXoSbXbbBye+l/6HWOm64d+7cwYMHD7C7u4t79+7h6dOnmM1mePDgAabTKZSizCSHh4eRPpRSURoHgIcPH0ZDERuW2JE74nadn43sLYMN5LgsNhbSQD0UCND3gAgVc2T01IBTHqumQesAbwoABTlhw5EbTwhfypGhXbY4PTrDBz//EPi7X6d7ewCKCuXAEy217RJNuwo9NFDeBEU5zL2/YmzmJ228mGWIBk/ikCOnfH7K0FJMgvEn+V3qVsFMgZnc0dFRzDl2cHAQqz2lTCHP86hybm1t4eOPP47YWRqGtKnxgpOSIjtCcp+2trbW3ptxm729vWjlOjo6itlEd3Z21q6RfeHxqKoq+PFo5HkJbRysI1+vql5BnwOH+/swOzsoCn734IEPBZUpjKZTlKMC1aLA/OwJVvOn+Pi9n+POzUPc2D9Aq3M414ILUxTGkfldWbzzzqt4440XUdcUr5kXYziv8P79+3jljRvIyjGsMWg95d1wnkiUApDjCEfbADN177uwLZN3+fKdC+mGNGW3bR1bFsMcRDrM0GFrHsvlsmeFvEgiS6V5Of7p53Ru5H1lVXqlVIxffvPNN/Hee+/Be4+XX34Z9+/fx8OHD/H9738/Vkw/Pj7Giy++iJ2dnbiuZMbnn/3sZz0H8LOzMxwdHeHatWvxXb1iFRGISLpXUE5TTUsAHg7eNYRRwUM5D61H8MrAORO2MAetLJRx8NrDKYtZVaFyBt6U8CjDmm+h7AK5MjAqQ6kK1OcVHr33CH/znR8A//JfwPgcQAvoClANoCyU9qiaM1RVyBOHHMpn8B4d8qdxcTjTVZnZkB4uvxtSu7jJRHKb7n2RhMaGhfT5aR+YaHiBM9Y1FBAur2NCYelJhhxdZUz43RgfkyovY18XPV/G7zFmI4tiXDZWJG1QCXsd1UGNxjao6wqAQ9NOowQjNDra8YIzrM4MYGusjIazFov5DJm6hsmohAMnACLBXyvCsIz22N/bBpcfaxuH1gLzRYXFYkkeTMbAgnyQnFfR1qXi/dbB6jQesjf3iaWrw8uEf2DwPJdNBpPL8ds0rxcd3ySJpRsx0wU3tr7v7OzEhAwHBwcxB95HH30Us56wixNrNrxh8lo4Pz+PZQoZ2kg34m6cpDMyiKFxrn+hyilW/1SgV2XgwBIewg+d3VgL6w28MoDnvHgkdWlF0nemDZa1xXK+wvHRKSXVZLgBHl45KGUB5eF8Qw7aQWonj7T+/HxuaiZ/5naRqJ5ez+fxT4odyXtwOuih8Cap7rKUxFlnZRDwpsYVjuR7DeIRoqVpe9g3jomPM85KX7S0z/zDVs4ugWJ/k0jHTF5PX9AvTqGS5zkQ8v7P53PY1mI0nkTmI2dGgfx/iqLA1vYWbly/humUcnh1mImYZwEK+4DPEJYzx/n5Aju7e9GSySgNL6QeGkM68toGKH3ApBFmKHRMSuzsQ5Y2WcMiHcNP0oZw1k00L33OWJLn5IwnJycYjUa4desW9vf3UZYlZrMZVqsVlstlz6cSQMzCwjUwjo6OcHx83MvCMtgXT+zLeanic2NVHvDBhSLaBhTX3eSxDEJFsEAT81NxapVWyDKNx08ewdoGr7/+KkxGFnEVruFneu9gLYWqkZNsWCNeEan6zwkzA4YB04uY2BCwKlVRCdLKzwx8UjziqMdwuLHrBaucx8fHmM/nmEwmUWQfakqpSChShdVa9ySl1G2CiYfzrwGIqYo4wL6qqpgxlzG6FCxWSmFvby86vh4dHUX1JFWTpcQS/ak8QiA5EUSeK+R5BniHxWKOerXCaDTGjZtFlAJ1pkJwMM+BwnRrgiI7xOuvvYqtcY4yNwBYolHwXsOFHT2qd54Wh9Y5jo9PcHR8hlt3XkExGglfMmJ+5C5B5nxJ/BKayLIM0+k0StgcJ8kMLZ0fluaaponO0encSotxysieB26RjDaFUYY2Ze4rP7+uaxRFgTfffDNmztjZ2cGbb76JF198EZPJBEdHR5jNZjg9PcW3v/1tTKfTaKnnnHnz+Rwffvgh3n//fXz44YdxzCT0wbQjG4cN8at3+FrwHYODLhRsqBMNrWEyhdpZLLi+gXewzsLowPi0JpBNA0YpFGWOn//ip0Br8Q/+wd+njC4hkYFznvdUOAvY1sM5IM85WYIK+gDT3RX8zD6Llkplm0T7IUkuZYjp7sLMI2VK8jp2E2FGIvEsyRDSPrP0xuEoad+HiF5KZnxvmWKcra1lWfZcYbjPkpnJ9DG8QNNzh8etYwp0DJRDytCu1zQNGk+7qbWkNHpFwC/Q7b5aATrPYNQYe7t7yLSFURZouR+KBa2wEPq4otIKqxWpmJPpFozJ0D0lEQLCEaW4onnHoHnRsxQuI0PSzYTnks+T0o9sTDdynj6vxs+S/WfGyqFO29vbMTHB9vY2jDGxClhVVXjw4EFk8rx5GmNiVMPZ2Vl0ixpSgfstKpaylyCxjZIqenhwMhSaa0WW6bCu2FLabcyBFhzTImVsOT09xvZoghdeuB02XrZOssmUJHsucGJ0LKaJ9P+/FWa2qV1mPeKBYaA2Vct4R2O/nU33kcQjzd6LxaLnzyV9glIC2ITZyL6kUqFcZKkFt2ma+Hx+durJLXfwyWQSzfpS5UwLBHvfJTYkcZ/2NIdQlBUemWErM9UTyIxFXuRQuhSprJlhEfuhoHUP74K1i8k/4C/ek4ndOSJPrRTqpiGAX2fI8iKGv3C/BIpDv70Hh8FISYIXKUsYUrpIXSvk2PH1m9L+fNZtEyQh+8ES5PXr1yOoz6miXn/9dezu7ka44dVXX0Vd17h//z6UUrh58yb29/fx0UcfxRJ1v/jFL/Dee++hbVvcvn07pqhiQ4ocP9kfpbt5VEEi854yDzMzkW4RtF9S4ZKmZU8CBBWQWaOCUpQiPTMaea7x8ksvYlKW2N6eQCkn7hlBOHgXGKgTG+TAsvtblcye9XwmOlbL0rqcEgOT1aMlE5MMgSeSrYXHx8cwxkSVj4lGqgzSNYBbKhWlUoS8nqVG+XxmpJxxlp0kZZEWGX2Q5zkODw9junEuCMzSm+wz4xYEeAud0Tm4wEDKMqhdHiEtc4nxeAKTHaAsNTQc4FoS0TxZrzKj4FpHhgOF6E9EkgV5b7vWobEOJsthTIbTsxla66GzHMV4Cm9yOMUOzx7wAbBXTP6UiZQbS7AcUcGMTUpp6RzLTYUKt/QrhPEYyZoEKc19kpYyMEkLKe1yHxeLBd58801473F6eoobN27g7t27+Mf/+B/j8PAwOl3/7u/+Lh48eID/+T//J5Si4inj8Rjf/e538fDhQzx58gR//Md/jA8//BBvv/02/v7f//vI8zzWFGCaYfqKY+EttCY81VqHQpuQ384hMwW09iEM3FIcrQYQnKYb67CsKnhkJLFpAFyFSQG5KpAbStk1GRl885t/B7nWONjdgdYW3ls4sFXZByamYVvAWYVM91OIybC3z52ZpYzsKowtZRwypUrKRGRw+NB9hgKApTMvq5Ps8pFKc6lklqqG6TkpY5F94eMyp5tzDpPJZO2+sh8cGC9Vkk2SRVSb17ayjgqMIRCfwssWIWzERJWTdlXX24l1yPUOBorFDg0Gf52Dsw7G0K7c1A2cB1XwyXJYUSNzuO/9sfK+S3wo55mljSFMVkIRUs2UGw7T1BD88WkZArhtone5CdZ1jWvXrsVgcwDY2aGIDX4Xay3u3buHDz74AB9//DFu374dpbn79+8HJ1SLX/7yl/j444/x1ltv4ebNm71Y0FSql31hqYpqNxiaXaegMt1tat4hGh9DQL/1Ho21gA6bAkMWPtAuSDIzWiPPFO7evU2ZMgD4ehnELwbiGCLpS2Y+SnudiunxKTGzoZ1HtiFs61mksyEdf8gqleIjcpceuockel4UTPTsmCoxKpmJIN39+d7p8+ROPPTeLJ1JKxzHlnrv17JtyHFkKY1DnxgHTKXPofGMx73vMAilkWXkPOu8w3K5gFYtikwhNyDl1LVwbQNWN3v4Ru+W4b18UGudw/lsDm0yTKYlnFeUGiY4SbLiElVV3/VVSrlyDq8iPclNQRoJ+Pp0zNbG5xO2lBbS99lEj6xGD23KrEkAwN7eHl544QVcu3YNAGLs871796AUWcAfPnwYHcA5wzK/N9+fx4A6Anj0DQCMh8oNxgZ1VAXVs2ksbGvBHI61zOgI4onGcpMhNxkUKDU2uXwQE4v+bPx/YGQdc0NPxfRxU/4cDADpbve8LY0vYz8c2WRwsMzGwRZHJpwhdYSvZwI/OzuL5dnyPKfFeH6Otm17UQPMhPiZadVyvjdnG5ULMloNxb0AYLFYRGZ6eHjYs1bKsWRGd/36dSyXSyyXS5yenkZcSFbR5vdjRp9nOuJSdF/K8Bqdi9sWR0ePUS8LbE1H2NseA9rCNRXa5RzwlAZIwZHXvdKAYlXcw5hQE0AZOK9Q1S3uf/wI+9fvYPfwFlqnyHdNGShHwcUAMUylstA31Zv3NNqDP8toD248VhLw3tnZWcMhOZRGFqv5tBhZ2jZtqgB6tOCcw2w2A0AMOJUQ2d0CAF577TXcu3cvRgY8efIEH3zwAf7lv/yXoVjNCb7//e/HnH6Mx7I1mGmNw5+yLEORZxTzqACTdRudUgrOeihD0ROta2DyHDqk/DmfL7CqWnhowkOdAuCgNeAs4adKFxiXY4xHOXmLaUA5B28baNX2mBl5bmsiNU/hBeTq1rnyeM81AX7FDACbxPrOIrJu2UsJUKp/0tl00734uXLHZisnn8/iOJu1OTcaX8PSXLoDy8bAfrpQUumJVU5OfcxlyGS/5bVS3ea0R2mOt3QsiZmbKJ7TcR5XLplWYTGfwfgCReaB7YLUCtvAtXUwi4eFCR+KTyg4340DMXqFxtIYnp2e4/BWgen2LpwHhRSxuZ46ESUBjruTY7opUmRI1ZffsYTDeBs3njeGF4bap8HY5LxtonFJ2wDiZpa6kQB9+rx27Vqsh3p2dobZbIaTkxO8+eab2N3dxXvvvRclf74Xb7hZlkVXH5b0KCtFBq42rhVLzqK+apTS2OWCwLG6aQP4z2AZzx3Akhk8pZgqsgxaBfVSeXjfQinSJcnPLGQ78QhMbRMgwWN5SdaM520X4WIXWXPkZA59d9H92N9oCOO6zOKYPjuVoKRZP8XchtQg/n5I/eZnMrNhKTFl1tyYqNnUvkl1ZJVTMtp0PKIkuiYhsD7RH+MsM1DKw7YNFvMZPGqoegU4GwF/pQCu8Np5kfcNHtZatE0Lk2UwoeivUxoR+kC3w4JN+omfmcS9pMSbzp08V/5mlT0dO8ZL5Zx/Xk3SdppWiDWLNJ162me+jzR2yRje2WyGvb29Xn0NvoaFgtFoFGlF6xDl4i1gWA3k4iJMJ569KwAVsDLnYD1iNAiNOQAIyV9rZCbD6fEp6qVBfm0bOlPgwPL4mgSsgumR40hjnUx6g2CVZ2v9r5hktqkx8TJRys9MrG3b4vz8PE6+VP9S0V4SeMrA+P7MOBgrA9ZFfn4uLyb2H2OJiVOCS+mQnyuBWH6+ZFYsbRwfH+P8/BxbW1sxLm8Ij2Mfo9u3b2O1WkVC5l3Z5BnliVKUr8x7D2cdvAfyvIilwBhczTKNybhErhpUyxkezp7ANXNsjwymhYJta2i4IJH5wIw6kB1g3y2FalVhPl9gNJkiH02gixGcyuE8qQ3OueDLxqqjg1eUclR73dtMpB+hlMBTZiaD0Rkb2tra6mGTvPAZTkixyaGN9FnbUBYOqSKnUjkfZwMHb07y/KZpsFwuo1WT/+b+c4Geuq7x4Ycf4s0338StW7d6fWIaZKv99vY25vM56rpCVa1IhTQGWZ5RjjJH+JUxBq0PKaszBZ1RKNqqblG3HtZpeGRoWxsVRutaGJ0jVwaTfIzv//UPobXD9Bu/Br2VwSgL5VuYTMFbFaIPeMw8qioY5rQGuHYrY7W+M0B9IZgZ0K82LhkDEwOHBsndTKpnaUulwVSCYcYiY/aYmTEDkouGsYg0zxi3dLFJ/IoXZ5ScBDDM2IjWei24XDLzFCdjdTWqfDktfh3UAsa2fADrGUSlvgZjgMmgbINqtcLi/ClsdYZ8bwuTbEyYSpesAp1chkiENBYaTdugqivkRYksL6CzHLCGMrxHy2dY5CL/V+d4288hJsdvE5gux4fpJk3KCSDGLMq8eJsk+Wdpkv6G7iv7NcRA+T2HQtwYTuBoEZbCmPExTFHXNZ4+fYpbt25F51v5HKVUD1dl3LdtWzSWctVpI/0GaT68t8FfEFBGw3lQIkZHQpWHhvM20oP3lnwLjUaR5Xjw8SN4W6P6tS/BjhW0CQWmdYZgdyBSDNpC29oQZMDj4Ps/Qbn4VJmZnBR57NMgDr4vL/xNKgFPbmq1Sv16hvoq/x5S+9KdVN5riGkOXSfPuWjn52NSUquqKjKuIZVJXsMV3gFiXtbaYD1UkXmtq/QdisaYGOEXFrZt4GwL71qhEoJBlB4zTN+tbS1WVY1yPA7xmDqqEZIB0g8QKzQpVkHW5yvP8zgel9GXVCHlOw/5DP4qNJY2hzBWmZhgSNobjUa4efMmzs7OUFUVTk5O8MILL/QY+ZBUCCDSVVmW0K2CNiFBg6MMwSZgovAcasTPB1rnQnnAGDcS/me8SwHeo1rVqFc1lGqpmrlSwv1HMPTQNalCy3P7edXp8+caaD7091UbY2Le+5ghdQgP4t2F63CmUlw6kTJImc9LMTC5iw6pvFLV5c9831SdlfeT+Bn3RZ4DoJct9+nTp1H6Ojg46KnU8v7sglAUBRaLBVZVhcVygSLLgDyD1mQWN5p2Pmv7XmhKITIxrRycrVGvZnD1DLbJ4F0JHXyNPHFFOAaMtYYLxE8AssFsvsTjJ8d46c2vYjzZBlQG6CxkVKDnacUZLRRc2JE9qAAJS75MA1prbG9vo6qqWKZNvr8cd978pBsPn8vAt7Qob5LunrWlm9ZFG1baZzYypUVXAJLUeQykvxy/47Vr1/CP/tE/wg9+8AM8ePAAP/3pT/FP/+k/xfXr13vPldEt3MfRaIQszzCejLGqFrCuhbUtzo5nMMiR6YBlGWIsTlNqptY5LJYVWgtYr0N67LAxKQ/XkEbgrcOjh0/w9OgY00mGrekYRtvIxFSAKyhVUydULJcLeDiYTEEpD2gXN0+lO6b2qSGeV5nwTyKh8STzRA/5mEmmwtaeTc9OVUt5jmRA0v8sxenSa9NYyRQnS/spmWZ6jM/jbBrsGnJ+fo75fL5RhQUQpbK9vT2Mx2MYQ/hdaykBYZz8kKiQVIi+AQAAif4hn1VbL2GbFZytAdcGVSBgZSq8YwBxOZYSAbRdrWqcns+xu3eAopzAC8mMw5UoLY8KkiOiiuF9P2SJJRPJ5HljkPMjxyT14+PGvnnp+Z9l2/Qc2QfnqMhvGuGilOqF60mnaabTnZ0d/Pqv/zo+/PBDvPvuu3jvvfdw7dq1HkQxpHF4T/Gck/EEu7t72N7exmQ8DtEVNdpQ86G1FHcZ8XlFGFfdsJpJqZygDGFtLBCE55wcn2N2PqfKY2VOG6rqLEH8PlHg9x5VtQIQQuj4XCWy0YYh+lQks8sIYYiJDTGETdcMLfSh86UKxoxFSlRX3WWHiPui6zaprOk5af/T5wwtRHm9ZHrsJsLvu6mvpK7kKMqSCMd7WGehnILnJJ2epTEQFhJBC/pt2xZ1VWFSZuBK0gTCAlGdUEoCaPF96oDbGUOVrJVS8MGSmWJsa21gw5ASuPy8CXa4yCoog8vTOeDPn7SlzCiFMYaatJxv6vMmyIRxtv39fdy4cQNAl/NPxrJusoorFWJpNfmOUXqqEgYZjGZJ0MH5zifOBubjlUIXEoCw2YX8ZcZAOaoRsbU1xfZWZ13l2fchRQvnmqOx8iHbS0gPpIQWoTp8zX9WauaQuP5J7qWUiqE+ANYwM/aIlqql1jpm1GRrX6r+AeiJ6qlvWupcm7ZUikoXhfxOqqpyfC7yapcqMftIcT85fxVLYPI5sq9lScHixajEfHaGtm6wWq2Q65xy/CMU3tVEGURQjJc5wDVYLc5x9OQBXnrnTUzHJaj0CO2UCgre25C5NWTdCAzSWY/j01O0Dtje2aPqrjoHlEHbBgA5SGNsQHBBovPOUQGMhLGwoaWqqjinHECeLmrvPVarFba3t6NTqWyLxSJWzJLXyc3mWTbBoZbOp6SPVB0GOrcLxq5SWpjP52jbNqYKkvdkf7npdIp/8A/+AX79138d5+fnsRYsW205DRK/N/dT3ivPyNhllMLNG9dhW4+28ZjNFrBNCwWNyfYWFssKy6oNrjQZlNIwikB/5wDvHUbZCJNyBK8V6mqJr3z5LVw73Ia1HtoEwwKA1pLKmeWyYJBF09QoRwbahMy2EbMN9Adihr/y1kxmEnLC0+y00grDWTqzLIvMrG3byLS4pRgaMwmJvwyFIKWqaPq9bEOSVrozD4W0pNKBUl0AOeOBnKzPOYednZ0evievLYoCeVFgvDVFU1do6xCDmilobaDVOnYCz5KXA5xFtZrj7OQpdnemGOUGGhYKPlY3srbbFNo2xDh6smydns1gPTCeBqxMhagAZ5FUegPn3uDPzvtQD6BrvNFwpR627G2SqOq6HiwvyNItM4bPqkkpcug7SUfcL2ttLGwijwMUriRrU/B9AEQsbTQa4Wtf+xpJxuH9nz59iqOjo1h5ShoYhjZrY4jejAbG5RjVqsVyWePsfBaeQ1Jb1cxR1y1ITDJQoR6D95SVxTmPYpSjLAo4eDTNCq+/9hKuX9+jrC0h1FOBogSMosgR2wKADzhpA4URiNw8PFzYAPuxvWvM7JNKVUPXDx173mcMDb50cUiDrtmylzrBbmqbduGUyWxSRS57r8tU6qHz0/GL7++7Ysf8jjJFi3yeUkCWkd9QnufRs9u54HZIAlE8N/QMTVvDe0cpgZSKpBNB23CpDypFHCNFe2bdtOA6nQgqDONpiGMolFoxPHKk5MIlphksXAl2xMfkNRLg5+MdNnOx1LVJsvosWoqhpt9dlW7lJprm6QPQuV+IGqH96IqOZpQKeKbRAdLoqos55wPDAruuiv7QfahwDBl2tFGYTEqUowJ5zmmvOag9TYbAf/VxMYijHHXCotnnJpl9EiYp8bAhB0n2qfHex1Q6/B1Xr+FFzwAyqytyZ5RxlSnhpxJPKtVtOpePy3sOvRt/v8mFRHp4a60xHo2hFNDUNY6ePMFoNMaoLKGmE8KntEL6tOl0G2VeopnUWM1WqGqqA2CKMmBlHCHgoeHhbYvjo0eAa3Hn1g1QkpdARL6Ll/UqfCZORXWVlIYyCscnZ5juXcPB9ZuAytE6qj5tMpLSFMKCiB7gCrQIEAlYLnJe1PP5PKpLeZ7HXHBAZwFmVY4rYcnGEm46L+kmJf0bn6dtohW5Hvgz0yYbuOTGyY6x/He6qXJjF575fB7pidfGdDqNOdJYTZ9Op1Hl7K0tD3DdCAWFLM8wUhoH1/Zxtpihti2WqwpNa2GdQ+tFuJOnOTXaINM5Mp2hyDTK0uDNN17A3t42JuMCWYYAZ4ASO4pKWojW8uAkG/Y+54l5En3oCJPg83CaHSKU523SsijvxXiZ91RlR6qcjBGcn5/HrBcsjqeuE+wku4kRDe3SQ6qCfN8hKVX+ThldqtpyH2WGA6018lGGJqiMi8US21stfLCCaW2oMIR8LqhgMkZjuNbiqD7CalWjqmqMQ5FWxVZOraC8h/MWpydPYdDg5vUDKNUF9frQV+c9TKaFBdMHYFZBaY3Tsxm2Dm5j7+AaWpXBOqpBrTOqjsRhUQ5B3RDSYdAq1iQudnTloswAFfBg5jTEzKT1mxmHDPca2sTkvH+SjXjIODF0T35PWT6OG6VnWmdmQ8/jrCt8DkcHjMfj6FzOUS18r6i99O7bgfFZRuOYlwVaONjlAouqQds6WOcpAklJvBIwyqDIchiVIc80puMc2/duRrcNox3gHChVdvBnA6/HcC+qckLdCpguHefdrpPwsiFg8qqTlE7OVa4fEtdTFWroMxPFUFbMoZxMQ98zw0ozkw6pildlvJIon4fgUwztqs9k51eliCFII4g2JnhMhzkJPzqodlp3Ui6NhYrSUehM/GnbBsZ4Cmvp9UG8w0AfnaeMo0obKE05rOL2OnCh4v/ZYTYeQ8Bg1qXbVLWUtMHfpSomf3cVl4xPW63cBEmkGyL393n6PPQsKR0OSXLM2OnZNF8KPFW8ddEBpUBZMrSGbWgzWyd7YjTxn9II7trIMi5PRz8eviuKkvTfBwmvO7h+f3jEi7P0BpftRJu+u4iZPAtRpPfnl2rbNqoV6f3quo76P4BgTiZrzHK5xGq1is6VvJOzj1HqNJm+zxCT3qROyvOfp12kosbsBeJ7es8cdb3CbH6O+WKGuqmwu7OL8WSMaQwu7gNRSmuMJmNK+bPVYLWicCPnHYqCjAzKN7Btjfn5OfKtAtPJKBA3+wAFlRTE95SQxgCF5XKFo+NzbO8eYDTZhg/gv1YZoDJAbCQ6+JrB+3ivdIVIiZYzQEh4QVqxuX4k00y6AXLanxRgv0jdfN62CX/lfkhNgyEGlsxk32Q8JkvraX9lXyVcIbPLMMTCf3PetOVyGYwOJaZbO8gzMWaC2XgAWV7C5C2WxyewTsGzigkPThWknIHyGsoCxaiAhobygDFUgBqgrLLet5Q1g+/gARf+1W2NuqlIvQzGBHLv8VDQ8DDwlvA6pcwwM3uWibmobcKf0ntdhCnx9zzxQ/F1TLjMwKTKyITNC4AJ5eTkBG3bRvA89b0ZUv/k+MhA5k+ihqRt0xhwpgslPhujoQ2lJ57PZ6irGk1TE2PREMyMqJGEcwWlFUbjEUbjMZx1ePToCLPFDG3bIM8LWNtAuQaubbCcz7Az3sZkXHZB5fBQEKXeqOPEKEMivdWqwpOjY2zt7GM03grMLCMpTRmK4WMsSmuoUGuTU24r1fU7HRO2xLE10lqL27dvx/JqH330UdyshopMc2rq1IqZwgefRttET9wPSXMsSXLQu+wXq45bW1uD2sAQfsuNsWCJDXNERV3XvcpUk8kWinKKzBghRPdFJ5PnMFmB5aoKFcuFGh02NROkMTiFwuTQnlI9aQ1QbKcF0BJDgwdCZg6yYlPYVNM2qAM9s+pKBgUPKANAwzofsL2sHwHwaS1IHtyL2kXP2iSdMfNI75PmEkvxraF7cZMifafvP79vUSpZyf5s2qUvfc4l0xL7DN9TG5q2CXF16wC2UrrnGGm0iWopSU0WbdtAa05wOdR3+o+VhnA04Fy0ALM8hzYGSGL21uc/hR6G31VuVoNjIFS1oegN/n4ooeNQ+zTXhHyHoWfLd0s3+2ehycvOGaJJXkeSfqy1AaPijvC8BOYbGMymEWIohDJ4tHA2ZJRlFdN3lCMtmV6Jz+j4gXMu9if2K2rAClk6sBdN3hC2lTKalFlswsAGX35AxZX3l2qi3IE4n/mQmsbAJlf0YSJ2zkWnUx4odsyVlZHk4pD9keE1V8UxnqdJzKAb8y66obUtlosFMmNQTKYo8gzLxRy2aVBXtJMXozHKybR3XwoNIavh1vYE2gB1U8G7FepVjWp+htMnD3BwsIe93S0yrStK+aNAgD/lcldogyWTe+qcQ1U3mC1WuP7SHorRBK1X8NIvyPeN+bQoCF9Bwh5lS9Vs/s1l15gOp9Mp8jzHdDrt+fIp1RVf5oI1l87BczC0VBJjupbPk2naJQySSpIMowz1RaqsQ5sm35+bpGOtKQeeTF3lvMPJyTGMBsoix3hcYDwZQ3uEOEygbtrgcmPAoWlGG1jn4T35IMIBRZnDQOH//G//J37t7S/hlXt3MN5XoLqoDkAbHK9JIldsJoeHMoA2VKu1KEu01sEuq8AgDXTIwgGvwTVvMjkgmyYiHcQhT3c+nloD5YBK9S+99yaGIEFerluZfieLM8gqM8wA+d6cHpjjO0ejEba2tqKoXVVVL1OrfI5042DcgcV0iXt8mionPZtiKSMRgqyMSikyibfEzLpqUuTZPrPnOD+jyj7bewrlZAsdk1CBcGhuplsTjEYl6nqFs9PHWDYV5rMzPH70Me69cIjd7VFkQ+wzZH0IIdJUK1EqIs551HWL+aLC1u4+TNkxMxXfKzE8UW9I0nMta61rLE1mEZE559iK7ZzD9vY2tra2etbONPxptVoNZnHtj/3zz+Nl0AnQV/84EoHz9EuhgK3wQ9KZZGbSn1IaRmTyyZQ+eT3xsaZpcXJyAtvWmE7H2Pc7KEcj9oVA6xxllG0siJnR8c6fLaQMcgp5lsE4hT/+b3+MSTHB4d4+ru8GJ204eG+D1E6p1yndEABPDtlaAzows+VyhbaxcNYjNwWM8XC5htEFtGRmn0ZLdfdnaVcVnYfUx8t8gKRKctE1cgfdpKI+T7+v2uQze1LyBeoWICy1UMEj34eqSBYW5J9mg8qgFWJAN1SnymmtANNVPmKV0jmHPDMh4+yGflBnwl+kLFjrYliSNmQdYzWzz76kNqACA1PilYc32XQcmEHxDx9P3W/4Hpuw27+tJpnUUGpwGVd50cZ/0f0vgjl6/YAoqSgrOFnKX8exmDaWMl97Gsg7hwjMWoflgiJxSE0Nhgk5lSq5XnV9U4ppSEMpNyDNk2HAeUeuGelLpYOw6XgKNg4B5EAfnxgaVKkTD1lqAPQAen4eW2GkuJyqy/J8ltKYAdR1jdPT07gA2EDAfUl9cWTjd9oU4PxJ2iYGyhqY94DRGrW1qFcrFHkeAsCp8VhkmaHScc5j0TTY2d7BuBzBlEMSiYfRwGQygva7UHaB+dNtTCdjFHkWz/HewwaQnzJwSHyDHHWfnpyialrsHhxSLKbOoFRBxCdejdlbp1TyOHfqBlO2ZFip6sTB9kw7bPlTqkuoyfdg6Xso8PzzaJsYMhuw0iI9jDlxvKbE0yStp6muJINMN0r53VqmF6VQjnLAGZjMoKpqHB0dQ5kM0AatMjibLTBfVQgFM8G0wN5fWikUeYb5+TnOj8+wt7ON/Z0ptrcKwFdB+uJnEobmwXG5AU9THtpolGWB7e1tjMoJYW5OoaoaOOvhvULb1miaCoulRyYzDmxiXBdNSirFSDGXRc+0wnjqrCoZIN8zZUpDGTedo6K/aUjGkDjOqiKf0zRNdB5kS+f29jYmk0lUR7kqNBOQ3DWHckp90iYJTTYdN4FuPDJt4KxFtVqiKNaZmQJlTzg/P8f5fA6cnULfuQuzqzESRX/pwST2GwNMp2NMyl0Yv8L5kx1Mp2MUmYdyDZGZc/AO0CaDc5YYmGYuSwzt6PgEjTXYP7wOmBwwOZQu4GpWSjqXR4Etx86kZJiC1HIRslMsW7u997FMn/ceBwcHvXtw4eRNxVE+q5Zu/FLK8p6MJWVZxlz98rzFYhELIEtGxpCNXMNyo2d8cJO2MYhNa2A0KggDa1pUqxpn5wvyqTAZVD7C2WyBVd3Q31CUlNGGQiag3HRlkeHxk6f4+MMPsbezg/29KXa2SgDLiAN3ggZJY951DrIeQVMoNTJTwvvgqeY1jp+eRIfvtqXfdV11khnfXP5OxfEhqWcTrjY0aJt2pcsYATPJFExl8B+4moQ0hA2mxV9T94whbC+VTNN7Ps+Of+k1CiBWIcbYdbnxleoUNPrcqV+k9iFaqIYDnzmsREFlGfKc4vCM0dDKJQAWneuCmK/Elx6g/O/KIM8LDLOuVN3kI+n8rJ0cjg/Tkfx+E5xwlXjMoXt+Wm2IprhJtVh+L1OFb+rXZZpS+qy0T+JO0JogC6cA51008CivAW3RWgphMhnPbbxRfJ7WFGxu2xbjUYkiz3obbtpnKAXfaZhd35UK11GNVe01jMmgtajzGeCWTOZ7etbGD0zBcpbG+DOn4eGdZMjDmQagj21J9TN1JOTvVqtVr1AvD86m1Dp8TKoZ/Jmtnbzo2aeH1QBJVKnKK5nc87Sha8knrMMf4vt5oK4rtC1ZX8uiiKlyAA7ADRbbPIPJAGcynJ+dhpQqDaaTLRRFjiyk7lGacQzaHbM8w/bWmJ7rPJMSvFKU3ZP9fRD5LKzzqOsGq6pBPplge3cfSmdwPqQG0l2tTq1YueA3RbBqQWAqhMuki1DSDksfco5ZveSwJrk5MZg+lHb802yboJS0seqc+sPxRsROwanmw+tiSBjhDY7P2/SeKc0S8+B7U93MLMtQKgOdF4DJMatbitBVGkqZWAhHGw1Ll8AojUlZYm97G+2NaxibAocH+2CW5IGQUECDLJvBcKZCrC86LFZrMhz5kDzUOwR/04I2Wu1QFhmmkxEyqS497+RKNwXpp8KE1jRNl9VBxMrJ5zGByuwXrKayJ7e0ZPJELJdLbG9vx4BgZpZsbeR7yXxm3nde0BJHY7WTj+/t7UUmeXp6Gl038jzvpeRJ0ws9b0sZr4ZULxnc9lDeo6qr6L2d51kA7fvXk/sJ5Q/zJsfTp08xn88xmy1w69ZtbOutYP0VoKu3gPbIC4PdnS34eg6vHJRRUNBCBVSBwFjmorFYrmosqgZ7Wzl2D66jNRRc3jiLLM/BTrFaAdb7wNB0ZIgePhBw3/iRjq+c36ESg2VZYjqdbmRmaYHkz6IxTV9EG2yJH9qsmSalJM10LiVP+R0zPZnrjVtKX2n/tNbw8LCuhXMWSlFuMV3myMoJkOU4fvyUstkpQOkMvq3hlUKmM7iQj8woha3xGHp/FyOl8eXX38Lu7jTgafQMDwBKgwwCdNyqNqKo3ocYYUV050Nlc+e6GiDjcQkOVDBGE2aWShfPM2lysOTgDamez/IMPn+I2UoMZeh5Q32SfU79j5hxMnNiLE5aki56v0+jpc+hd/PxH/MdnjderFLklnqZDiXbvA5V3aGQ1VWUlul6HgNE3U5phcwYNPGevV7G80mSot8elGDPeQBaI8tytNCkHPvuOmkyiHyUhTF2HQHLZf2xSX/LMUjH8aI43iHNgM9Jn/csLWUYV4FQNtE3gB4zuqgNvc+md5T9WzvGKiq6aBGjyRjgjYnz3M2l6pEHu+5kWiPPM4xHBXZ3dlDkGgqMq3lhtb4MXllf8ypIbCSZ0ecsM6RmbsIRhpjH0LEUdASw5sMjd4H+QuoTKH9Og8GHssuyFCYBUOmHJO+bEn0qovN3UoJcLBY9UZwtTSyRsYowpP4OqbcXtTVVKh4XRU6gIuOpqipIhUFlR8dUJH0oHkNrkbFFGEDT1Dg/O0O1WmJ7a4zMAEoHZ8a2gm8q8v1R4h6uS8XCzEkJWm4bi5Ozc0y3dzGabKFxgNPkVKmFkUAGFkskTX6OWMyAFJFinbKlSQVSpsKS0FXn5LOS3iSEwmFXaV0LjiGVKrGk65Qpy3e/yGVp0wbgHGGjWusA6FOoELSCdZ78Gq0HlIEyPqaNglIgpYHwrFFZwhiFcZkj92PkOaB7cBmpjPA8r7wpGgBU1Zz6Sf/FXrL6C3KybZoWZ+dnUArI86zPzIYGXA66PC4HRg4+q6y88Dnom+/hnMPp6ekg/gR0zIjxNb4u9YxOM8gycTNTS7E5aVGVOaqkishYC18zm80igx6Px1EVaNs2xnYCWMNfNhHLZW1NYvBhfFXAS6iTACiti3M2xNCxjxbvdYFbKJB47j2cbZFnlIcfHlitlljMz4kQspsYlwY68wAsUK+AagVvm8jMnKN0LVrpAO6m0o1C3TR4cnSMgxsvY7Kzj9p5Ymac0TYYriId+fia/S+iMaA/fpyXjpnRpk1EWjrTeWG6SfGni+ZEPuNZ2ybVjj8zM5tOpz0Hb4As7qenp9ja2opaxJDxhq9hekzrt6ZjxP0aYoZKK5jMwNkGQBg/rdFaj5VrUVsX5pOqmJNqGip8eYUsKzCZbCEzCqNJAT3KOTUZOsE/jLv1VEQ4MCetWfILkltI98N1TLwHrG0BkC9lXa9wfHwEwBP+u0lVet4diQeImQSHaDBj4gGXAzr07HRHHSLMIfXvor+HCDg9Vz6bJUj+m107JGbxae3cQ+PAjIxFf7CUBMZCfHCL6F0FBCHeo1MdiShoF+VFVDcN4Mk50vNjlKM82M4CzoXr0emRakiKpC9cMABkeYksy4O1k5hSlCQG3l1FdpZuAJs1haHFmNLTJlji04YGrtK4r5sgnaEambxeeMOXxadTWuXj6WcpwfHfm6Q2733IKZeI9ux+EfKWaa4XwZKbgBFUCG0CAo5lANe6ILmxBDYMiRCBK3SVwgK4EiFd3yUnCBbMpq5B7hyeYjMvyhYRH6M242nyGunLJZMhSimL1Tmgn4dKEpuU3IZytHPuLok1bHLPSCd8ExFIyQ7oQGZ+d3bQlQYFjpmT93metml8qb+B0XpSO2ORFhPGxjtw6hUCbgOBOa4JCiAsjKIwKAuyBOVZBniLqlrBtxa58SgKB11XsC1VtO6GSYWkep1jK3WXCKlpW9RNA+s88nKMrBxD6RzWBUrUIF8OZly8wCIGwy4echzX1SC5MKWrAjMy7z3KsozSslS72G9QBp9/VmrkpiafyWFGbIyQEhLjt6lWtKml2HHq4iHbEK3JeY2+0Lqbu7axqBoHr1RwbkXkPfDkCpTnY8BpzGdLTJBBlxmy3EApC6UsPARHWxsX3ozkBshrUUWp3qPjE1QrgcKZyrJAtglY3zQIQ42JiBkPM6rVahXVPxkIzvgAp96RkhBb6HhyON1L2qqqwmq1irF3zIgukrhkS105JFPnY6we8+DNZjN476MarbWOUQJXGafLmiRGxqm8pxzBVKqrK3Bs2xZFPkJZFiHUhCafCqiSAZzVUO8BOIe2qUOUA8XaGQ14r7FczLBoFshUi72tHMYt4ZsKsBYckO5VMCagYyTWusAww3xUNRoLFJNtFOMtICtha08Bw1CwEJlqeVNhJhe2X6Uo+WinZnaSVBqqJJmaxDA5JlO6AllrcXx8DAklpHRylbl51vlMHcElvVVVhTzPIy1JZsaRCryxp/dNN2XpHCu/u+z9pISnFMnIXBSahDIPKIWmbWMVJhe89ilckxgZnMG4mMI1DY6PzzGyOfLdESZ5CaVb0gDANVs5DagAXEGSH/i40nETh+u/A4XrOdimxagcIcsMRqOCJLOLRPVNkhp/l+rkkiGwVMaDzedwviaZ05+ZodxlgX4xCvk8xk5YnR0ilqHf6UQOqSV8XKqULIUxfjfk4CjH61lb2hcvf7N6pqT0yoH7JuAI4kqS5em6oJqCpWIAmTFwdDAslgq2quDQwJYeCi2pmYTQBmyLx7fDyLh/ClSLsw2VzE2WQ5s81MdMoISgtnqEvGwAurQwQlpGUJbFpUPSRHqcoY0hS2Zd13HeLrvns7ShfqS0JJ/Hf1trURRFDyuTmyczwnTTTdVGqXJv6tNFUuiaMJMyjyCNWWtpYwskprWUoBWMyWDrBvWqRjMGnM0BtvgoAvYl1bBk3o1NkPSitVzHsyGeJMeIhZ0syztmNvRyz7IwU6bBFkZWx1ICkvp/GuokC4vw3/Ja3vGk9zt/l/ZZEsRlhDr0vvLe8l1Y0hyqSfC8LSVUr0j1YunItTZWa4+xqJAOwq5XQJXu54jRtA1GZYk8yzrrIe+qWqGFRVNXOHpyhoPtEpl2ghF2KkCvv8EMD3gs5gvUVYOd3T0ok4UdXJF/Gi9o5leCoYnR7wwX8UiHpw21dG6ZwNNsrJI5SGzqs8TOLqM3uRjThKMMwxRFEet9yrAl6RcqtaJnkca4D8N9DWpeeFbVtsHlJkDzmoK+GdMCQBmEvcLJ8Sl+9sOf4OY3vgSqndlAKwsf0v6oUABaMR2s2bK7zTLSjPeQZbuYxqlGqw5MTw+rmemgywGQx9LBkaIyO8qm1/MkSudUGUArsTT21B5Klc2OuYyNSJGer5c4StrXTcfk8TRSQdYqZMmQ+5tiHp+0RRUMYkxDttH5Yo7ReBwcYtkiGxarMZEJGKPhnEXbUBWm7e1dFGVJIKoJWJpSyJRG5SyWyxkePP4Qk9fuYjouOrcMhLoTakASD8aGk+MTLCqP6zdfgslLOKVhPcVwKi8XmE92WmZiTLjBLy2a77uFKnEhXuByrlgbGI/HaxuPZAZp5tVPYyPa1DZpNIyJFUURI034fJYqJ5MJDg4OMJvNUNd1rKgkkyrITZXvLX+n63ZIouszM0X+fZy8MzOolzXqtkXrHDxymLhBWdiWpf0S3ivc//AB/vsf/ym++bXX4FwLa120knt4GD2CZaxVe1IAFEMFss+ePDQ8GSVoQ+1jpW3bQodU7AoGOl2wFzGtq0ycXNCsdsriGawWMoAnXUN4UPk8Jryh0BPeaXuSzIBkNsTQ0j5f5Vz5LtIL+9POmtGX8tbfmZh4I3zGfDf5PBa+86Bm3M1ZG2Itzdqz6Hoqtjo7P0fbNkFFVb0e8LB0EiTi86qqQtO2GE+mUNp0clYoChtVZbpT79WU+EkFsR7jS9WhAYbEErSUUJje1sf3s20XQRDcd874kUIkTPtsHJDrZei+QyrmZX3aKMWFyaANVfhUdgQQEykyuqZDmqf5fIGPP3oAb0mtdCLfP0KpQuku69MJR9AWwkY2JJgHcg9+jzr+XKhmXrVJzGpogFJpSKoAKSOSqhb/pFaroQm9rKXP2nTOs94zjYH79FSXsB3xX6FCdHRfEF1lcbyvoAGAUE8U1UCM1s14BjG7xXyO1XKB7e0t8l1D31mR3zd9V5L8qrAwMxTlqIerKLV5PNKQJWoOlGYvqDpYp4/Y94GNd0jtZ+w27f9n1VIGK5/FtMxhcZt83SRD46IsbNVniUyug5RRDjH+tC+baVVHVc5ZymZMjIyrla+nqjfa4OxsBucUrt+4gdF4RJundgAsuEwh0zXdoztC9NuxOsZpyQbUMT/qN/1Y65DnQs1M/bckxjA0GBcNiNxh5IvyziIlr/R5cmKktCgnkZ/HFk/+ewgDkPe/aDceOpePp2K5fB7/zvO8Z9x4XmYmx4s+k0+NlLqc66cGj2Coc3Hpp2NPlk8ylOTGUAYCrTmEO1g9Wzx9eoTV+QneePkmijyDUiFgXUYgpFKsJVVpfnYG7zzyUYHp1g5aZUJRCrLuBzuCYKJijBFSHIHNAD6cR73TyZjK8ZdQAlvzJOzA/eVMwmzQYUZx1fl6XnVUSu68pjhdURpvPMSotdYoigJ7e3vxmqqqsFwuY5pwBsBTn8dn6XOqZgJUG4Kk9RareoXWZYAK0QDeAd4C1sKoLK7RX95/ANcqvPHGW9jb2cV4BGTZEkALpTiUyYk5c7Gal/M6xG0ibNoq/OvzEe894IiRtY2DGhtolUOrjJiZfPm0XWXCLxq4IWktZS4Sh5JMg8HO1Good4XL+nbRZA71K+3TZfdmbC+95mIiusoC6n/2Poj5PNa8T/GJvfN9ZBwuSmYmlHTjQq99BrFaLlFVK0wnk+DaIWvuJDu9B5UH8xQmRe4pVME6L0q00QrJjrIbNpJ4b/pbiXcTI9mduUEykwxcSvE8v7LwcwojfBoS2hCtDG2E3D+Wlody9IGdRIVGkud5j2FXVUUOo8HHUWo63V1SkKJr/dkX78D9RWdpdo5SAHln4g09W8zDNdRXg9lsAeeAg/2DYGyiHP/k6MrbZ99CSyXjuh73lVcV+9pJ6PSf59JzEJJZOti9lxaTcdXFnbarMMK1Hd/7WM8yvQd/x8/7NDGrZ1EVJUN+Nhxmw6ZBHUgIUvXOaJoW1noYnQmmBIRib72+hdsRcA+NPC/gwzWeJUs4eN+gqc6RqRoqc8iNp/xlABmQPCfMc1DQ6KosAV57WOVxPGuQlTsoJzvgVC3wKkhkSrxLn0WlI+J7RwJmoi6fE1a7hqR4oDPWfJ542ZC2wMyB8CeHvMihzRD98vv3GXWU1soSY3ZLAi10Zx0tfs3oI0k3UDyO6JFed9b6k73ycErBekUhaV5TpoyQNICcZDUUDIzSyLXCKAeuH0wwzVv42sBkxMBIIg2FTyIYx9oFie2dTNhZR3uz5IO7beC3nR2VaBPKwcN2ktlFk5JKXunOJmPhePDT2MqrgJLMTGzY7dlpVZ7nnItFSWRBi0+rXXQv+Z20sD07Q11/BhOX8p3DYvTTAuCdxnyxgncORT6ivOiK+yScHAGQ+VvBtkDTeGQmw9Z4G1AGTml4bShSwLeAXWFx9hFGeo5s3GJStNDRRqlAhTAdjPLQQfwHFKxy8JlHVbX4xcMFXnrlDewe3EBrM3jF9asBhJ2X+icsl7BEiJ73bCmNeShPi5OqQHWxumvjFuiK00rv7u6u0Zp0sE4to58m7XB/UiGA5pCe09oWrW1hXYvpdBJSkrMxJayDECMZmTxLQFojLwtsZwaT6RTOtpjNFlgtl6iXFcpRCaMoHVTrXUcTKkg5zL0Cb8s01Z10nsKUlFHwGnDKojUZqsZhXjvUKNAig/Ua3pFztgaQ6RKFzjDODPYnwDuvX4Nrt6FchbJsAFBEiHM5vDJQ0HCKZltriOjzjiZ4HYDTTXkVJLDOqZa0FAuPFko7eNXCwnWl5jZNzNDni86XO8kQEHkVVY5F6PR7vjd7Rg+FYT1rex6CHlIfPmlTPqh1gXB7UpmnIN66bqEVYEYsmXVqZ3I3ABSW4hygjEael8QcQ4JFr4go4Bs0qzNkqsEo88i1C3irCrupg1IeeuBZXnu0yuHprMGr412Mpnuw3iCsnkiUAODhwEpFoFHaVPlecekJecHzf5dLVOzpP1RxiaMmhnKYfRYMje/baz5IE54CtJ1jycxAqtrxZPmXwEmNMTBZmH/v0TQWdVXDtVbAmx1LkHdSyWfGpBivBG812sNphdYDlQVskMxckBaZ0WhFxX5zozDOga1rU2iUMKqBMTW847qbBgA7URMkwQyW3o/75tCnge57D8FXglQWJTNQ/YELmdmmAd2Ef/GOl6bfkZ9TVW7TvaTkld7jsgKul73TRQz2We+RLoTnZXABChAZX8M40V27v2NsZhYzyqruFHHDgCnoUN2Gtv7wnJDkEVS2brlYkvPmqB825gOVyZQ9ksjatkXbcHxcP625issFvXdYA3KGhqunFW3erFIaSg04LOVL2n2e9kk2rZS+aRNWIfUzj1lQC72Hsy6UO+xb8fuMSMU5Z9clNpys4ZNMI+u6fI8mOiWP+sOJEKliuGB9cZPiKJkMmcnojCgBCm0uyuMhkmTAut0b3g20Rn/RtYSZ83x3l16oH11kFEiJg/9mqwuL8ZsIgVVGCebLnGUy1CNVc5fLJYB+Cpj/OzSefln3WVrdjCG1s6qWaJoa1gWmzotCjLXzlI02y3PkRQGdZTAhq6xrG+iAgznb4PGjRxiPxjjYP6T7KQLwrbWhCg4A6E4yCwS5WKywWKywvb2DPC+CtNhZolUw5ffp5SLG0P9eqZChAVhjSDJziUz/JJ3A2TlbwiDcUiv+p91Yi0gduZUix3CKT87JPwsKgIZtHaqqxtnZOarVClZkzOC+pv0ej8fYmm7RspcqtNg3Lto/mOa06TLAKp3BWoIomtoBMGRx1goaLjpTOweMignKguq1mlA7QGsNb6nwDVRXwamvbaQjtj4XPmCGqQN8TLTA0Rzh0udCzy9Ss6Rktukc2TH5dxpsmyZk5CatOP93aT796e3oQqIFGUDYIkYSlupNKsL1rcgvF33MAMLLEAwA1uL87Ax5TqEz4YkAuh2wJ1kJ6aquG9R1E/PXc+YOZmBYm/urMI9Uat5sbZcMgxndUNjckGT2eRgCNmkfWhtkWQ5jMnSZIYLlsGmxWq5iHPCaFpHIaHmeoxyVxIQGNCc+jzqyoaNBrIpzrTSco5oO5JWvaJOCnFI6P8sK5FkeMTkdEh5QfCcxaTXAw55JsefueymZrTusDxYBvgzXGjKRX4WxDLlwyGNDKmd6riTMIePEZ9k+N0sY+pPOVpwsy6jUmw4e4S0xJZ11xOrjjwtxigY6WL0QjAXE9xzapkHTVMG5MTAir8B8kZhTh1MwphIGA3XdoqpajEbjuDB7xOqZNUdqvPCte1pycnSIeGWTqackXTD2+re18UUaFhDJpkwwTdNljWmahgrAqOAILCW0VLRKhIL47KA6XqGXQUcM6qRSsM4Gp9YuUwo9xCFUp4AxGZaLJVTTAKXG/vYYXncYlgqwSQxN4/4OLqNhvCEgpuH9Oo0uFhOOa9JfXNFcMq1NTIOteUNhMpuaZETyvuylzUBnyrTatu25ZUSR+nNiMp9eSwEuMSb0B0lQzJkCA5pMJnBlAe8s5vNzNPAwRkFPxmFOycnUeo82xP6NRmUIZA74kXIwGlCwWMxPMTs5wt72Foo8B9sgWWXJtAFgAfZxAxEq79SnJzOcnC5w55W3UY4mMCaD9wQUex8SvTiHUGIqIeSOCLu/N0MS6VjJjCYAjY1M7QMQbZ6fn8N734uh5Xt+FsB/2s/YH0VvulwuMZ1OMZlMgpd951c2m51jdj4DAJydnUFpDZMZTKdTlGWJoihQlGWfejylYZKwDT/bq00jSs35kD+MsS5NWYGhDFZVhbYFoMg6Ha4AuVs4QGWYjrbw8P4juLrBzijHr7/9CkyhYG1Lkpnh9avZcP3c4yjnq2nqGBfdMfdLmBmwLoUNWRhZMrsqcUg1la1QrBIwU0yxAZ4sdlD94jGwS5rEk8KYOjZPhXEtyxLe5fCuxenpMeXo18C4LIN47+HRj33NshxZlhMbcg4wVLlceYt6tcBicY7JeBxCmLo+KFCICmVK8KFAKxCjfpXGfL7CbLbC9vZuMAIY4n2CcNl1ZF3lvMqYbBbm0vkvimItiaf3PlY2H5LaPuuWGiQYIvDed5ZVIVWtlivM53OMx2OqyuSDASdIlUMYsVzkMX6y4599a6b4Y13dC6pkoMOm5Xz/FFoWHWVB0AMUUBYjnDw9xXI2w3I8gn3rJfjchMzFhLWxpBecFp9tABmiTQQqa6l6lDGdIy/wnJhZOoApMxvS3S+yRg0dS/Oh00vYXi7/L2a7eFE7ppTeJSqCu+xzlec5TEY4GJv62R+ph0H2LGb8vwe8hW0b2KbBiLJ0gjPUhjPE/PTBW+c96qaFUqYHYrNUOfTKtHkOSWHis0p+Yk/6bWhDHWoSgE8XxOfZmJHxnAxt1KmWIqNfaBO3qOsG1apCU1NyTh+gBqnRqCClxJ+IO9BxFaX9YYkXIL8uJ0KKGGjge/P0eO8xm51juVx2LjHeg51iw0lxQ7sonVN/wNCb9v47kZWVhCg+gRTSSyWzwWcJaU2mXFmtVj38bJNqKkViaX42xsQEeltbWz3LlFJUpHc+n8fssl9MFZNbf6fiqbLBSVQpHXOFATyGHsrTLrezu4O2rtA0NVZVhTwzyLMMRWGwqmpY71GMRjCZgTIa3pIrLAJeZtsllvMTLOenePXei5iMSU2E6wjdIWSaDV7/xihY59BYi5PzFUw2wvbOFHk5hoeB9SouAKUUtNIxSWh8k8irN6uVclA8+jQ0xMhYqh9KZti2bc+QxOd85pbw8LK8KVBYEK2VaDBBt2nUdQ3rupTyzH+0UmgbC2sXWC6XMFmGsixQjkpMxmMsFnMs5osQlG5gtKYkmfBiwFMmohC/VjomX9QmgwOwalq0rYP3GkobONdCGQ+tuxxsRnm0TY2f/eSnyLXBb/3G16EUGZeMcjBFKDTkWsBnVzL9XDicggl3RcWLuC6ADQaAoTZETExEvINw/NsQHpZ2jIlPfpfmMEt9zJqmwWq1iurE83nf/yq1biIYx3U+7Hyqi0wjnFMBRgGemNJ0OkGdaagl4TAKgNGcnoh21jwvyClTa8AFJVLRDtm2FerVHPVyjr2dXZS5gVGAg41MhKrv5GDJjPw0Hawjz3NjCkzKKUxW0r7r+Z06hjYsYEkA7dkkpYusmkM4GPskXhaD/Fk0zwyN1f7Whjx0RSz6wX2ifP+S0Xab/KquYGsbIZbp1gQeHmVeYLVaxdoUXEOSY3868N8P7BthPRNRRJzUe4+madFaB6/ICu5cDWMC9OnJldoowLYt7n/4EXamU1w7PAiCWAttPLJMEUN0DirGeDz3SNI4gtVMSinERYL5ePZJrYGSODb5lg3hFCm4fxXrqLRmXnTvz7OlFtirtRT8HrxxVNnEx96zyMIlUo+j27UABL8yiF043MxTPQDlHRVSjUBxVCCGuxR+nPeoqhpa58jyMqi2bNoP0QUbJS8VAsolQxPP2DCEQxuibNJnkTdLLhhy0byk9PTptTDoiTqpTUjbnTyybVvAy0D5TiuX2gnfx1kXXHS6bDS85PsQle+gTvQf65MjHj44ylpxhMenKxitFW2o1raYTMaYTsfIMg2lbFAlXWTkfBd1Rdw0AhEXLulg5VR9Wv1EkhnQz2BR1zXKsox6vrxOMh3GDqSoL3dWTn2SPo+tmWVZ9hwh0/xmXyzVUyj+SgPa9fAqF/KmK0USlw67rNYaeZZDjwPGYakC1vHJKZrWdn5jwZBA+ylhZb6tcHbyBBotdqYl7Zwhw6uCCsVdEayZCrw6HBy8Aqz3ePz4CDdvvYa9g5ugXlHIlVOJc6R8UyWXzhXUzE1M1Xe+ZawVrFarmPtLKYX5fI75fB6tmBKv4r8/y03QBz1Ro3P4dM5hNBqhyIuwHgAeg9PTM0AplOUobF46MDQfa6N2ufOoWFC9qkKxXiDLwppjKX4I7YeKTFJEbhImazJY71G3LRarFbwmNxsC2hWcJ8mwyBRGZQ7tM5wdzfCVL7+J/e1tjEuDzHCqH0uZNjyvexmmdKXRi+dSfO56wW7eKLxQoz+xjiZxClmpPM2HlrpjcOI52UHJoIbKy3F0gSTIv01g99NsFC+pIIs4EDH5nsThAzMjbCVHUZRUQDYv4Dxwdj5DVdfw8LEQs3NOTLqDszXmZycw3mI6KohB0lc9ZUDrLiwpwCxknPcOT5+eIs/H2N09BKApfxm6MPKh2VjzkboSMxs+R26WWlOVLP6x1mKxWODs7Gwt6+zntdFFqYr+ivRdFAWyPCNg3XfnzmYzAAp53lUb4/HSsWgH/cB71FWFs9NTVFUV1xP7FrJ6vybNc9/QzQ9LZyoEnTdti1VdwytieNYTM4N3sG0DBY8iz5BnBtVygVdfeRmvvfYyykJDa4oq8d7C2hre24QirrhGPUuYge6GcFJ0Bgluz83MJHGku9yQOsgtteJsIq70+FB22ctUj1/9pqKxqZOv0zO4+T418vfS8hU8/Y3JoE0mrxSqKj3QNjWUQsjaINomPY8VCOfQWgdtMmhtoLQJIhcvWyXI1nerGnJvZlyN75s4Vvbedx1W2PR3l1a821Q30dfn6Z7hxWed9J/WiuvRQK9rXoyUgGaGfoYYf2Rs3YHur/DZh8+UPSNNwpPMn6IkisYYFHmG8bjEqCzAESU0X5JA+/fotY27Xn9TjfwllaaTuX0mNTPd3TjkiP2/hrAypfppcqSExjF1UlqTP/LcxWLRc8tgV5BPo3jIr0Ij66GD0SaEgnCkQ3eOTic5UIPJMpSjEbi8fZYXVEXe+yBReXhvkSkP5S28q3F+coRb17ZxbX8PRncELyUKH1LFEhErOHjMl0ucnc+xe3ANeTkFfAaA3DqID4bF4TmzAe3qCqlUxk8ZHI0LxyqlM5ltlWubckogmaxAQhmftYQmjR/S3ciYLKakBoC2tagqqr3qAj1LNyfvydesz9DIyqlHDPoHVw/N69JGdEApxqwSpuYVlAkuNUEjqOoGVdPCK0N1WB1Aefzp+kznKEyJIitRZgVeuHUdaD3GRQb4FvANlLLgXAmf1ghH7Q/9+qDxVXh8n+WmQ75j7InNYKu8+dDfTEgsaclKOUPMjNtyuew52G669xe1eU85pTKjQcnmVLeJMoPRATyXuzgQQ4mMoXqVeVlAaXKL4CH0cBRcDgfrGszPjlHc3MH+7g4MuvTWkI/0nlw1dMfMlqsK5/MFdvYOkecTkHePARQjZR6ea72y+hpu+knsWdyGNkyGLDjXHTMydsnoAecDGV0+i6bE+3IdSmNMKETDkhFCKuw69K/vrhQZr+iv1hrwlP4pMzliBpTAzOgdbdg8JA2tZ/zl8DNO4lg1DerWAjDBskn3Zt9HozPkukCRFRiPRtgflVAWoCTsTWRmClwgGB0Bqvjf5WMnz/P9TShlZnLJ68usPWsPEtISD266230SyygT5yY1c8iS+bcJ+PfF/Gdrm9RmL/5nepBwk4+qQP/auEuHH+/l/khiugs1NLXmAsvrz5TiYPdtl4urbS0ydvuIaY9luqKrNtX/kTTMEqU4+yIjT0qX8tjaU59zvp63OeFy0c1xJ3l1ONfV+5XyisuGXa39JS5UIVMLq3GqCzqPwgIUKEU1zTnFZupgDRc77ia98dIjyfFOhOzNKW1GKnS7f5crY2ZDuBin6WGxXu6Em7ycB18gnFdVFUaj0VpRVO89VqtVlOTkNZ83sPtZNQ5bkbsQAfeAxJd4p0JgVEppWB/yUClDWJlXoSgEaHfWgDEO3teYn5/iyaOHONjbw6QsAw5BaZyd94AmXEcrrqtJ31MRWGCxqnE+X2Fv7xBFOYHXBq1DAP/ZX0nRjwq/Keuk6PdF7erSdRyjQBdcyZx/S59HlnhS+OIzaxH/6pKJ7uzshMwlLC571HWFxWIRki525Ri5kSRG92PIxrPoG4azU0kpdjK6LISKXrHSEcLvwMsoQw+laaqbBk1rYR0AlZNQ7jycd4TD6gxGFyizKZQ18A35msG18L6BUi209l2OvVicN4QmPjM832FkES9zDk1TQ2sl/PQ+BQMA+/Wwm4T0tB7a+YakkFSSY9eOoWyhq9UqYnQX3feL2ngDkMysY9SIv3m39AEYZi97D/LWppqV0ZEfCLu90R5wDeYzYmaHe7sYlwVUVCUcmesV5aTqcDRiZta2sB5YrCqcz5fY3TtEMZoAysB6wHnOTIug3qjYZ1Z1uN9XbUOnprs0j5O09kmsjN2EUh/Iz8MKzveWzIziCRXr8aiqmjz7DRluZCp41jpUek8nNgW3nkornIkunhLdZsjfMq6lKQdd1bRorKMCvSqD8yRRdmUKMxhVoMwmUM7ANZ58uH0LuAYKFkYI111onCJpboOB4pIRBFy3qTvvUNdVMHats64rYWapxVISwibP6iFJaYhwUuIcUjHlznqR9fOLIp0NjQPHwEmxvoc5YZNQI0V89ohGPNYNCe3o1rVo2wZ5Nr2CV3wwf4fvrXWUFkZpCn1SnTTGj/SDQH9giuLNhp/W/X9Ru4gBXUXt/yzppKfmir+lthKU9k4qjokGexp+v88YGBnfKeJr30Xhr8PKlAqSXNymuhOlFjCk+quQCqiuW0ABJtdQyMJmR/AFfAuoIKPrkNY99pU7mUAkzNjle/NjhXTLem9P7Q3qcNCUr24ASAmIg77ZL6ZtLUhr8WvXSObHRoMhhiV3WHlMpslOs3N8Hjvs59OILVjbEkisVASOiVg8YqZ2zVlBmeAotz+8gtYZrKfUFbxwFCzgG9T1HG21hLcVtrdukEmdzxEYhfNBlXEOyhhoQyrDk8dPAGWwt38d0HnIC89Xdb8lzqYEsT7zDClc6Akuo0SkK0a66Rlj1qTdz5pevHfRijgqC5SlTE9EC5NcSCjDRJYZ8R4WcSORVhmIeeLDqttMmFnR6d2JcqW5gIkxTsbrabWqwoXBeToUjVbwcNYjNxmUM/jrv/w+9qYTHO5v4ebBC9DwaNoKJ/NjuGYBbTTynDLpKp2FtO0Ax/duEEX6HwemhgUartqmBNbLd35mZpb69OR5Ae8V2tb2zot9C8QlnWnTdCzynnme9xxm+TmSUGV9zS+KNHZpC69hraVivSEbBu9mVIo+qB1aU5oVAATGAj4EeWdZBtsyI6FrAXLHaKoFmnoB11TY3d5CmRto5WGZ6ajgrR0kBqoSlIUivQZPHj+FKqbYPzwETA7nNaklIIdZgNVfxnJCTF5gaEpBhDKJl16jXvF3YvABOhpLmRmfk1oDmd6kG89nzszA4wiMRiVGEgcmERxt24aN2iPLDGXBsK5Lb4NO+2H5iwxB/Z1BjBCUYg2nmw+gGzvrXMTJrKd4XjiL5WoFbwJM4TXFYRrCP11D7j/eKfzld/8Kd25eR3P3Jr76lReIftoKJ0+fYLWcIc9yTCZTYE8jM4AxGqoUvUyXa5J0LZXb4yYEoqemaZK47W4gnjtrRnz4J2QmQxbK1HAwZE6PeMIAsf8qt4sXUZTFB3awwCiUPKLWJp+vTaUtBQ/bNiEHmgpB6WIb7N1X9pHleMraWhQKWV701ctLsZB05Xn5x8D34rlXbEP0MHTOp90ucw1iZjoEkcgwnRQeGH4YhISmumNDbYOE013Cko0PEFw6J4G2om5KRU7m8wUarqvAaqP3aFtKS6QVuV3ZlgPMHbR1kRi1cuhvUJtftxP3WSVfF6rkfS5lZlIC6kR1QGuDPFcxZU+e57DWBRVyWEKTViTZGWZWHNcpW9u2WC6Xa2EpX/S2ph47B6888ozSpRCxhKDhNfiWr1cJ+1MxPk8r1tEIw8iMw+NH9+HaCtevHXbqX9DlyCRPlivlOJUPVUS3CmitxXxZYbQzwvb2IVoX+qBJve3ms7+K4vvFQ/ItLpDI4t8XM6erAPrSOiyZyme5+ZFhhoLduyy4ok/wmM1maNs2qsEsxaa+cRdihFC9oA25/vvHOnCJMbssL7CqaiybBuBoDqhQmYn8ErVSKPIS3jqsFhVOT06w/86buHP7BsWFegfnWlSrFfK8gDEGbWtxfjajKBGTQes5tCGjTFl6ZD1nZolBhAByqN4LSKOGtErze/K4DjKzi1woGL/hsJmqqqCUEsyMMlMCdu3avrNbh13w5/F4PJj2Z7FYIM9zsGn6iyCBXdbW3VYopKXICnjOABFKxfHm2GfzoqI5VxEHZy4BeXCHTUUrh1xbPLj/AQ53Jrj90m1idt53KWBYJdTkTwQXst3aFhaEiZ7PVrjxwgjbu9ewrIE8Q3DkTcsBrmOlkXGuSWVxFAZG6fKN6yL8lOmNrZlpyqjL6OiTaCDSQl8UjJnxlzSfZ+fn8AF2IaCe8NBne5CUb8W497gZu+4ASmmQYgsUeYGTxSlmqxrK5IBSlC8PgY400UCZlWhXDovZAidHT3G4v4OX796CbVsYZeFsg2q1wNYhxek2jcVifhbScGtYp5AXJcoix852idFkEvtJKan4mZ2WoJwHc+mOV3B9VNU5HkdV+oqYGe+AvHsAHX4lsxd0QH06ln6NmQ21TZbMoRCGlBmkx34V22WbRBzn5Nww4mvXYOA4XyBGh368Q9NUAEYoirynzSmlKFogYR5x8/KUFsZ7QGmDzBRg/jQ44rxbsv3/guYv+GtTG5rny9RL+fNp0MlF0pL3njCnMH6dJNGXSq3IECutjoP35LEZeixL2ar7M36FfmYJuZ8opULFcfL6p00tPC1uQGFdBiwVAMoiR1kWACqwVbYTMujh1jraELVDY4mJGq1gbQZnLVyIHOL+KsWRPR3v6I2W97Ff5K6yzicuZGZDDENrhbbtJqiqqnjuphxkcsLSxhkPlFKYTqeDuEJd14NptL/ILR0XpRS0ApxtA4jOUhIRle7NRZh8aCifpr5joneAp2rkTb3CavEE03GBybhEESpiO0+JGJVRcT04Z6MfE/VPo1oucHw6w8HBDYzHO3DeEDAMFcFZZpoXzc4zIGC4KmNLGyf4TNU0aUgCiF5TmkolsSFIZGOPexs+dZ+PGWNi5fJOndS9mEuCB4Yx0I4ZqXUsbGPXEimYuCucV1S0RGvUbRscY0OIuOUwOi6SoqC8QVkUyH0Gv7eD3/i7X8Xh4V7wKXNUtdx3Ei9DTn5EffVKwTjK4wblsFqtKOln8GigVGBZVFHZ1y5TXZp4KV2n78iawKXMTE6UtCbybmOMwWw2o8yZoppSyrOGiIQbS3Raa0yn0zWGaK1FVVU9h9z0pS5jmL8qbaifPBY67Gpt20Khy0zgWlIKjNZUwCtISllGxVW9T4gWAklzlPVzWS1w8vg+tqYltqcjjIrAzJyFcz64BdA1rbOAJffXzNB8L5crPHr0BDdvvoqtrT14nwVmBsA5uFDkRKlhZsZB5gq4Ao/qo4DP0oY2O8nIZOJKpRTG4/FaTj3+Tt7zKs9NNRSCDbpUV527EVWrYqu08t31zMzWn+nEYFyEOa71TPwi+qKMwVSFqW5aWBfC1BDcf5SC1g6td4A30NAYj0roTGGSFfj93/tt3Lp5nbz94WBtA+8tTEYJJ/l986wIztweTrmYymq5XGK5XML5rq5rnhcYjyexCpVSJWB0HB+tdUxEmc4LSXSUtfqZA81pQrpJTy0y8twhI8BFAO2m6jMSJ/uiS2YX7fSMcanEuYoIHLTbdzpCn4etDauPP95a1NUKeWaQZaYv5Qn1wwdVM0pbqlMZKDpjBGPygL/o/vWxC1Id6jo49Mby2f1+X5XxXdyktDTkZ/Zpqp1rzxafN+FgUqpgIWC9K+JOYVDYwTqesXaNiv+n21zQ6QClKEttz1jTsbyIIyBEhGQamVc4PNgPKX/EeegbYkga1VA+5k0B+86xhGWdQxMkaO+BPC9iKn3nXKi/yVLsuuTcjWGnlj4TM5OTn8aQ9QlimArTzkiCYo4uGR475g4ZD76ITG1oUnqLy5GPEWWXdYMgfVSbfJcdlm+nmQn64IWtPLxtUFcLzM5OceNgB5NRiQ5gUegyJwQmohUZD0BE0liLprFoWofRZAsmKyl+D1318o3YGRCZmlcXIUKfTks3PiDgQkG93Nvb6/k7cg3WNATvWSV8pl9A+Luhm2tnbfDZ050qqYDt7W0sF0s0wSPgqiTNzrj0WbbBXa1/niaasc6jqmu0NoSxQcStasBohUwbFFmOPANM8KjItgtkmYWHBSX6tHDWQSkDjr9kj4eoHquQblsDeZ6TFOU9ffZkTLTWYrlcom1aZNkKmTYYjyaRyfEcxhTxvDEZRIZ45XAmbkwsHNArJ71zjl3fYYYYmfzNFlH5PYmWacqP4R31V1m9BPoMOE3zQuNm4WxLrhAtsYdMUwUfYhoG3rdRzYRzHUE7kDQXcDeKObIwmgJzq+UMJ08f4Uuvvoit8RjwLuaw0mGXdzwPJoMOmJmDp6rldYu6dZhu7QPZCJQlJgvWrrCj+04SDG/cE9KU72SAGKqV4nyfwhin2BVjaABw7dq1qE1UVYX79+9H7CzVCoZcIoY2UD5HFiVmiQvonL6tc8g0B1/TCOzv78O2LZaLhUiu0EPvL3rbDaO2ztBi1moNKENFmlvnsVit0FgfUkWpDseiUuTIsxyjfIQyI0uh8Qr5ZATYJcVjahtqWFIePrlGHSQU5IDAzLKQDh+guamaJoxRi9msArwimvQeB/sH2JpuxzGUsdm0IXHtTOIPg8xsSAJKLW6bAH95j6swmNSMzsd495TPu+q9flXbhWPiyT0DCNkrvAqFd/ugcGQVPux4fYWjYxPeB5WR6mM2dYUiz2LYjNQ/etYu6mh4BqkDVJcTyLICVht4y9gO1tZOF4G5ufVGID3xU1It02MAYuHdXhryBM+V5z/rM3vrQ3xPbjZcPLf7piiKKADI5/eMOUKN6rXBARaTkVwTp1txdmMf59UjSONxndFGqcMaJ2HdwwAoMo3WeXjYYAAg59l+zVUJPfD6pk8mWHWZf7RxLizahoxfHFze1A3cuEvLD/RjwT3vh4EZP1NF8yjOiTgy9v9KJa2h+wwdY24rOS4/q6qqNW481L4oKqd8tyGjiAo4RlmUMeOsCthYJ/Gq3oLgnZQPKUWEgfBzfnaMtqlwsL8XCAm9awEF61sgqD5xvj3gvcLxyTkaC+zuHQIqAxUvobg9j5a2fd9hJ0PClup9SuGIzwCvEuNMVd07+uLjaU3WIUnsKo3nTRoAwjcROlmuVtDGYCvLQVIKbQZtsCZCCRX3GcZjY2/TL1REuABFBXBa5yizSvAr9GAJzkMpB60ywAFtbXFyfI6dSYliXITc/hxQDjRNi6ax0IqLSGvBUoM6rCi7C2NwQDdHWs4Fp65yHhXHiobmrIW1LhrKxMuF+bsgyVCajkbFm5A6yFYb3l0G7iDGcrhOAOMWXCezP/5UYadt25gz7bMEbD+rJjHBoc99wwYR+GQ8ws7OdvTb8yCV24OcaE3WV4koEJxgYQ0L5Vso1wCuxtHjj9GsZnjx9i1Sc3pcRkcgmJZRsMQB8ErBOuD+w8eoGo9bt18GdAGPDB5Ua4CZLJwFKaVBtRCP4Jz31D89sFg3iR0p0V7emJlISYfTSk0mkzVIQ4YZDdUPAIZ9H2PPxTk8V9EBNvSlKAqcnZ3j7GwG5zyB7sE5tGkaKuumOFGm7vLAXaCNJHL00Ej0fpTW8JwqSms0nqowUQIUA2Uo3bpzPkhalmjFAfWqwf0Pj7CYLUPh3yW8r6GVhdbAalWhrhpoU0CrDApc85MxWYr/zE2GXBRj5vHTSiE3BqOiwGQ8DkWSGdft3qZtWtim6VWo4rnk3GmXuhsPWSplEOwaIHdJS3EuXtxDDJEKo65bOVN19Kpq6N92GwL++2B1V1ehyPMeA+dspanpntU9qYiq4GMGb1GtFrC2xXQy2QAwCylRoffbA1gsV3AOGE+2iPlJi1h8D99RV09blTdU67xJrf8ZFNjumudocpw5sUEexlP2bRMWe1W8TN5niA5ZAmyahjYjvncYpJhAIRmD9K9UGgcE3JCOoZdjp7rxVIiblPM+JPSEmEsxn4HJUB8dFotVcBny8I6A/1BpOIDzLtQ1EKFigpiYZqX6Ldcur//MZMjYsOgh7sN+Zr5XPyFV5zeqmVJq6CbXrx2/SpNi+NBxNiakjYHbi5jZF6Wl48aSWFQdQ8vzHE3TQqkaRVmCPbi9A7zy8OzLxeonLDQMOt8yC6PpGW29gmtraONQ5DmBtBLX8D6kgQn1MZkfeVpoy6qCNgWyfIQ8H8UEjEopstClUjKruqxOeN9fnZ/TdMlxZgOSLGwiDTHDm8rVN+dU2palF+le5BTqnMP5+TlMkAiNNljMF7CtBReiCVOaIKQJKPl8AxJ/MwZqHVfO5M3D9x6eZzlOn87x+MFT7IwKOMvMpJO2aXwDnmpyED3LTSjgvlqHUCUvIIlNXe1blUn95A3GQeu8t6F7CI+IoRvypEg8gI51KXxS8XsTuL1JapIEled5tOZIIqrrOnpzp/mqvihNjqFUabodHZA76Wg0wnK1wvlsjsl0CzrL4IAOiPedCuW8g21bEDbhob2FbxsUGsi1Q7U4g6tm0L7FeDzqFdNwnhxkrbXITBaZqw650qq2xclsBl2MUIy3MZrswroOL2valooFQ4F8MANgDCnxKHinEAXFKzGI55ewJWPhceb8VwyNSFqUXuWykE56v/TvlA4Zl+PPOixe7zwVAclzWGvx6NEjnJ2eYXY+w2w2w9HTY9R1gywr4hr3HtE5moXe5+Nl66omjEbTWtRti8ZaStvUk/ooxbZyCuNyjKdPjvAX3/o2qtUKtrFwrUVmFDKtYHh86xbWeuT5CIAJzCyMI6uuXsG1HrZlgwFXWF0XTJRSMJxuW6mI83K6JJ5HNk7AsUuTu1jNXGdEF2NWQ2rUZY3VyCGHWblzDvXti9guwkGUIinUWktEnlPwb6TpQOBe7KDM3MCHvCPmojzapoK3LRRcxCuUIFxWebTqY1ls6arqBkpnMHkBk5UUCgPCKGIKGKnj9tRfPMci7F//vIpmyrBYMkvbJrVzCAq5iJ4HtZUwT0pRuiWuHFVVNeq6QV03WC1XpKJFDLVjaDTf8VbJC5J6GVXMZKD4T9riFDiJp1IK1vsQjxmiCtT6KCtQWbzVcoUHDx7AtTaqed0YdePbQUHr94oM2pPHkBf02psHgXRIeCLVDqmegIBbfPfdhdbM6K0bY9r6N5cZYJ9V5eTP/FuqAPzMoWt7A/AFaqkUe9F5SmvAqV61ajKCtOTUqhB9h7o0KqGYBTy8bdFUK8zOTjAZ5ZiOR9AhkLfb7oc9q/nbtm0xmy8wGm9R4ZIesBt7K65QfS4LpotPMmrP3nhhyXdKN0upfvLfmzCyq9D2JppmGIHmyUQ/Sn5enhcxTG+NbW9iZM/dqD+tbUO9h1BFMNIDqcQaHkYDTVXD2RZ5prG7sxW9/smpseO2HU116nCHLsgNgte3fCNJd51bUYc/hu+8kFR753epv5W6xM+MRTu28BiToSjK+F1VVf3yWYnUNrTzAeu5/qXpnImnqqp4jlQd0vsOPfdXqUnxWX52rhsTxiPjeBgDC4/z83Oq/5hnKMocVb0C+WvTxGqloU3AJeCgvIPRHrZZYjE7xoOP3sOLdw5xsLuNTGWUM82T+kMJGgkDi2mDoOA9qR/LusbDJ0d47a2XMd0+hEUOr4Q7A2h3hFfEZIU8AN+3ZvWJdv3Tevtkc5laNLnICc8HSb51T6WU8b4pthZ7NSCx8UYssTlrbageRFEbChpZlgu1lHaiyWQSIBuDLs32pvG4ClsbulqFGEkAodAvFy5xHrAuuPUoDQ2DTCuUGbCYnaOtK4yKHHdfvImd7SmNU2uhTbjGk6TF40ACFjM4CIlYQXOJOtV2YygKu9I9fJS05NrvNDTfzZUi+kfIvmy0uVjNlJJZ0zRwzvYYkpSe0om/SOVMQdcUy/DeR/D/V5VJPWuToPIghig/h/Go6zqEe+heML8XF6komTFDBJxr0dTrklmKv9BC7FI7STmrtTZIZlMU5XhNMuuYF4Bon+P7pwtPJT8YXneDXzz7/KfjO4SFtSL9zlXucdnzUpruYaKKfc6kZAZkWU4VzgckMyEGJL+v3KtwH5m6C9GTvqfK+k6901rDaEO0l0pmXqiELDn6zjoruxgRiLj5ieiHOO4pX+Af6Qq2LplJgyR895wLkzMy3jAej2m3Mdma1TFlQn0i2DwB/Ix+to3OkzoWLuiJ7enLrN8vPfdvq21WTfh9knMDE9Bak+NgWICdxcjFRQGQE2EEZliyA7llLBYzrJYLTMYl8oxB//CjQg8UE6K0MtPvxXKBuq4xmW7BZAWUJmdZCC9vHdLXKA+Rxr2vZsp7irddI/r1M9WmL67UYrCy9zHeF+jmhOnrIjp5FhhjCDPrjURY2UohMjRgfRPfHObVX/i9nq29ghw7xVwKDsHj37NLBsB4Z9x/FDm35pnBdFLi2rV9vPzSCxQ0DlIRtSfp3Xo2nnhAER1FLqd8ImXyO6XvNzSW3bxpIZkB3QahuKYrQq42T582YmYsjRVFgcPDQ3TWzPVQI+rE+uRLkDBVRYdSZfN3bdvGwqgyCDhlsl+EJiXZ7nM3oR0DdwFHMZG68hzRIlc3GZTW4Mi+pmlCQkVABRWTVc3Hjx5gfvYINw73MR3nKDK6KhbGUDyHFt55ZKYgdREeSmk8evwY82WD6zdvoRhvQ2UjWGSAMrHfeZaFKk5hTYTdv7/k+B3lgMgPFzP87j7PNt5NiPfz3sc0P9KCbK3FbDYD0KmUvHHwnEhJ6zLpjdUiKXl7x7nBVJwnKB0Fg7quI7YX+xbSOfmY8icdo2eQFsX2AkVe/5V3aGwLFzYmbYLhh9VCEMQxHY+xvzXG1ijHy3duoixNSPkDaJXBthWca8K7UlIE6xpoo8B4mkdLzJFhjKgE9gWefpqCThMclSPoMD6swtNcabCtQWkVkoaS69JGyYxvqhTp9sxkVqu6hy9sAkiVAvq5trp7MzOjxZv3VACgW8D8AkM43K8yTnZZ8x7RRaIvQjMGQ3KWdgZN0wKKXChMTiEjPt7HSZYRJbTZ+RmW8xmu3d5FmRuYmGJYQ2niPj5k5/DOQ2d9F5HZbIaqBfav34TJSyidw3sDGTCitYK3GpQ9QV3Mmz7nJiWz0Wg0CIHIpKIXgf1XoTOpUXT0CciF6z0F+nD4H2sePUOXAroU6J/eYCpFrjhRxdQsoStIr1sFypZRFjm2Jjl2pxP469ehPaB9G6hDh0gGxr5YEgvZagF4rj2hOiGF4og3pEISb8t1RMu8HJTM6Pd6TU7vN/iZASSZlWUZg3NZvJPhGtJq1C3KTjRmGkgJQk48T27sl+8kvyGp74vKwLhdon0G1a/DMIyhRI0u+Jj5yPACDqQ6pwrnLBbzGRQ8ijzDqCxCYROQ5OXZ/M8SBO1urHfwLsgLrChLdNJW5yICdJhFx0jD7wim9P9cf9k0SfeGAXmGJhkTv2OWhNAAHd57UajSJ25K9kdFNcU7YqTn57M1jUNcCvba72DG3h+0mFUy1kOdCF85R2pmtyj5l4/zz3iZ1sJ/XwHs7e+9Q1WtsFqtsFyusFguCKbQiKolMXAWRT241qt86KDww0q2ZwNVxwil8BR5zMD7bpTM6rrGzZs3MZ1Oo1k7y2gwOfMri+xpBzvT6nBMZp7nqKoK1tre/dkKxRZUZqQpcC5VAhrwX10Gl44FsK62+KCrKaXRtC0F+YZ4szw3gCLA2itPSfJyg6IIXtktFZ6ApXJfH3/0IRSAne0t7O/tIM9oP3QAnHUsIkRjjone2aSKrFYr1HUDU+bY3duHh4Z3ClCG1CaujG7R7eou5kbovVdvz49r6DKJ45PNpVTrvfeYTqe99NjSoMVGlTgHGF5olzVZC6PrRxdtERe0Apq2wfHxMT788CNcu349qOcIz+a3l7LKJiktxZ42fab7svcBVEj5xIwlmDoznaEsShRlgSIzsS9KOQAtKHdZi6dHT7FcnqBpl3CuCVmPC5D/KseZIm52PuDAPYarsLampeWytW2cM+ccGQOdBxxhnVkWigA7uhkP+8YIAGY0nJefpQHOYRZzfScSWZ8Y+rgQf5ahH2l5Ob6X9AMaakOGgS9GG14stPkG9VuA5FmWRadL62ysSM3HWYIDqEDG8fFTaOUxHpWYTkbIQh0B7xExT1ro5I6hjcSKKPi5bQnvmEwnQaJTYFJhEmWnWSFTX/xuG/76LJpcGNIKzI3pa8jKOdSehcH1rZld7rJwENZazOdzPHnyJG5gz96eheGS5M1MQURH0v9BWleK010bGCPOCSojQlHo2XyG2ewc52dnODs7gfcWxigoxfHDAbtVTA+u48cDmOTam4m5oQ22gwwQVWVhzRQtS28UxXOTiYnh72lBqJh7HlDIwzmdmNndT+i68XDfwXAIE7uq1CUtoJuwu0+3+d6v3sJU6VndjpruoYCQ2NgiM/AYxTtYT3Wj8A2jqCYA5ZlyaG2Ntl0BnszpRW6YjhGtltIDIDybtAzyN/MaMMUY5XQXebmF1pmQu8oBKnjpquCYCx+OyZdfe0tAvp8S7h9RDAnSKo+Sl9cS44xg9hVxUnnOZfR10T2GzrvKtQwVyGFhFQqKnKKVNqibBlTYJA+bS1CffJfzn+EA0uJ9WIydM7IStBFZkBLzqjRa79F6UAYyxXBBF5WpQT5mbe2w9BVO2xl2d3aDUSKs6aDWuuhPR8k5jc5iWvBumAUWF6Wx8G4hiehGtTg8jjYa2kiV1tDGhAI67F5Cg6oMpxlKmJn09t/a2qEOh13fe1D5+NZCqxLWKTirkOtRnDyTAa2t4HwD75u4+xtDKgq8ieCn9z4GmEtiYxVzDUfYQMTPawh4fuYnxX8MfE7OFjBHnwA7hUIHZkIEyQuXGIVzLeA9jDJED41DY2sU4xJKeRhtUSiH49UxZqcPAT/Hzs4hdnfHgLckRcGhVRVMpsKORJuVh4KzgIWB1xm8yTDZOsD1dgzrDc6qHK11ULqB8SuYzMTFo0KOdq8ArUyHx1GvxaLzcVM2waSuPGA9J/XrJEsfMZb18WSV4ypgvMRbUtcMBsEvssI/axsyGjiKfOywL25aQ+cFTDnCk5Nz7GzvYDTegmtbwFtybLYNZXv1vss1Bw8LH6U9opUu6oPZE0JushYaXmsgL3G+XGHuFCql4ZSOKBaxMAONHJkbYfG0xcnyKX55/nP89je/iWJUQnkHBQutAK8c6qaCyXLkRQ6tISpPdUV5qG9ZMosuuikq5nWcGNKTukvWS0rpnRUFjM7gPVDkJVwZnPhDmB1jyEWewWQGmTHrkhk5E2qMRpOeCM5SgrUeSmXwTsNZjUxncXAywzmRPDya4OkfDAWOF69B05IlaSgmk4mNnilF9k9f8nr2ez7r85mQIxfjLRY9RElx/JwOpwvplscCOkplrnUw4xJaUeWbXDu09QzL5THgV5hMMkynJYA2LiyrGmQmh7LENIw2FKMXdvBWaaisxHjnOvbcFIvKYlkrWOthjEWuGhiThJkEpqVVhqiAsirBkpUSRofwHsS7uk1Bsd8vpHTfGQiUuhpQz8+W0tgmyezThCfS+7E0reA7AwxvAorSU5uiwNlsgdF0B9NiBI+a0usoCzgbxrhfh9aHP7hQrw+MLLrlRCggFPpVGsrkWNklKg80IX9dFJCgoJHBIIPxOc5nK5weneDRRz/BN//u34EuMsCHyuaatK/WNigKqr1KkFMIb0K3Ecc0RL39XmhtSiwF/F/M/VeTZVtyHgh+S2xxdESkvHlFSRSrCkABLADdpBk4JIY2RvYMp/nCP0rrl2mSMyTHjAZrdvegQQBEo8QtcUXKUEduscQ8+PK11t7nnMy8VQWS+1reiDhiiyVcfO7+eXg2H9Z4sL6U0lGYKa2hCxpR27Vo2z5WJ/lJhcIBolTQpyZWCAGt1dHrKbIg4axF23R4s9lFZoDlxZQeKdQW5tiFs8cb+BT7BVuG4/fGgYCxIPrbdzHfdYw2x6jD0sm78+knW97RYgia1uegMpIYpP6WpP2lpPygstCoqipgREMXLZMM6Y/gC8V+AJJKa3RRovSUJ2UtCMxmPM+LsLBJu4pTPvTg8fJlG55sPBj+xPiMv8YffYcg4nXwtvV1zsI7tQ9+1YMtTi7vIVltUdIbcI56SO52u5hIK72DhIeWkqzq6BKP9mH4Oagb8PGiNL5BiDofEmWj35vPP1t0RGe93WxwOOyp+3qWOsR5ibmLnkNQHNOml7J7HcxfptD50nyO8UezD/rgciol4ZwKPTYTOWyqoEASZvk/KSVmc7bMfHwo66hBBnyF/WGPl89v8K/+1f8Hl5eXePz4Mf7gD3+AxbJCWRTojYaxBsb0oWBaQorAKSV8rJfLkxkB4HA4xJb2+b3xPeR1neMFOx7oU8d/WaF3/lqZ3ZE5nHS4EB0UkmrO4EGMpCA+KQiPrjlASw+tAK0lFosphLvEovaBtZeod4jemiGPUIQUom/MpuAB6KKEKmuossJyOcHEShir4BzQd5Rf2BwOoC47ZF3I0FdT5oscCO4CJweHp2TFFrCdY0vmLaP4FeaMXckcwuBNKKXE4XBA27Yos8YaX+V4W7rQUJBSTiBBNxS8sc5jvrqAEFSq9uWXX+LN9Q3qeoIHV1eoiwKTusSTh5foGxM54wamTPZPSBVMGg84Qc19QYyyUkkYAF3fwdg+gPMCEBKUZE25YgoKSnnUpcZf/+e/hPRb/MHvfYKyKCBYGIbaX2uP4R/gJOp7YmLC/8TA8aCxEyzXcuOE6YOoakIIhaJwkTU49XFwMUgwcDOTaS4wmdRgLcrrzjkKaWtVoWkavLl+g3//7/+/+Oijj/Ctb30T3/3et7BcVSgKDeskpKdIWdM0oMzdAloVUBoD9s98YbdtG8Kv+ui+eMGMhVauNd5Xm76P4Dt7nLEavtpXWDuORRmCJqXGvyyM4NjlIBHUdw1EIVEqDa1pviQWwFSgkBaAjaZ7Ellp4VB0SMQrK1WgKCooXWJaTuCh4byGdwK73QHGrNF3PV1fCugC0EJBiONIthShQXDmWr0t9WHw2jkr7ysKNI6889/8/a7r4vr624yESxF3aMSi295AScq6N8bg+voOxnlIpWGNwWI2hV8soJ8+QsdeUHaLgv3NqP6YBof/lnCQhFUHJdibHsZZ4vuPKB6tRu8sIIkyqioVfvHzn2IxFXjy5PvQhY7uMa0V6h52ct98xWEcTrdIsYKhAR9FJHU5588M10Hbtui6jtLF8jfY6iHgf3hyTqakDGLSzkVRYLlcoq5r4qUfDfywPk4FyywwCYjjSCbfAwulfAP8uqkYv3GL7K23kfzHYzdsbJHlGj5fq8GVBpv6iBMSv+epo3TXejhnotUlIoh+IjHVpzOkn5TTJmQqBCb8jvxJtnKKogCzFKTsbgzaAR5ZWUGKn3PhjsDz3C0WQJ6hHj9zQpnl52cC0VN9XVmL/7qCbAxzHMEeALXXy1xFdo+KQmMymWAy7UKARYV0pRGH3wgS8J4sc380h0PeMh50WjtcM5kiycg+kcncQJIqKb9z7Nr6E3Pl/ZFr+a7A3bl8y4FsfOtaEdk1fYBHKJk/CjO2oBaLBebzeXYSurntdovDvkXT9JCh8cCHHz7F/+Of/Q/oug6TSY2i0PCgfBOlFA6HA5SSePDgAZQqYIxD3xvsdndQajqoLuCDgT12M4G0OMc0QPmiflu06zcnyL7CBogLEsjRo+MzpvcECPKVQtIelgq9NYAnTMObHvAeUnoI6WH7FrtDg7vrDaoCqDSglYRwpK2l1FEQKilDoJAWg4+JrhJKaqiigtQV4BXgKfrsHQnHsqywXACFIsDXe49DsKD7zsC7bsDkyu7BKZhgIKjHwiBI87hJGEjMPnN6qIfCrOs6zOdzTCaTk+/1fX/UQOd9j/GaG+O4/BlyEQOlkrXQhcZ8uUJZFXjw8Arf/e53sN616HtyQymsbEPJYBNICBU1QOG17j31vmQ3EyyiZIidctEi6QDrLDrTguAJCQgVAngirDGLUksUWsJ7g0++9iEuFwUeXD0IcpTTh8jdzPkLw2hkGO87jkzoecbqRjl2vH+TVzZWunSl5C2KaGErpYfCrG1bPHz4MAozPpH3xJJ5OLToOoeqsqgnFep6hj/5k3+IX/7yl9gf9qFIOrhISqFpGsxmU1xeXkLrEk3TYrfdY70mTKMsy6MFmjf+5fvKFwxnW+fC7Bz/VBq4/9IHAxvAe0wzEIB6CRJmcWNICRO6bmulY1IiFfx6GNPisFvj9vY5ri4XKBYTqsP0AsLL0C7MwCPw/DOGJbJFIkjoKV1C6grCSxAfGVkKSkiUpUKhC0zqSXSZ7N09utDp3HRNXIRSqQFW5sPlBLKcwFNiPXZR99mIiPfWH7mQ4brHuq6PhBknBf+q1OunvITxOoz0WAGstM6iVDUuLi5QFAqXFytMFwscOo++c2ibDi+ef4HDdgtjLdq2xbQqIKSCsz2bRUFBhueMQ0zCjO6DujDxCDpvYWwHbjQipYLpDISiZtFOEN5aaFKjHz57gqtVjcuLi4DDZbmQPktkj8N55Ha8/QgCKO3JoefAYzvMcEhQSLomokDjoFVRAPrUhAyFQrKOIttD/KxAVZWo6wrWhQUSJPpY2MR/SsYO0uMFNcZV3jd14hRWdu57v457MabOG3qPfvA6L6j4Q/D108tDQTdeGNkX4rl9xMwAB2t6dF1DGjQ4GuNz+OHZBpgLX9VYqixQGa4yvo882MLKSisFqxQwyuU6byEP3YlTx/GcZxjROdd0NP+54suPvMbvVznOubX5deNnMXTpaOPJYGx6OOtgbbCagwvfFxoynjvYXWzRcNIpXenEFdL6FIIofxh7Pbfc+J5kYGOZTmtMJqFRcnRPeQlmFmi8r680eEc3IYQICja4yj71Y3jLidIj5HizALQQBOw751DXFdU9ZRfmhzgcGjjrUVU1nDeA7eBCVvDF5QLzxQSTSQUlBQUKumZgNgoBFIXGdDLBw4ePMJ1OBiC/91QPytczxgzKUPINckpwvU8A4G8H8D0W/IO/g2kyyNQIym1Q+O8oH0xKBSdErKWUihJVrTMkyALliusbbO7f4PrNczx8sESpifLYWgvpfFj7wd+Ia58WOF1HAyDX/PruFmJyCVk4qLIA5YIFHrQoR3lhE7vtfDZFURQwpofpWxhjYIKbZG0PqTTVjzoHCBlbl+Wy1MVT+0DfHOYoaH/vT2GOSeCdclX5fGndJXewD1Zu/r2vuiZiVDZAH2xJ5FiXUgqOZU0QVvla3m53eP7yButdg8XyAovFElcPLjCd1BDOYTKZQAR6JraEJCSgqE0cdatHYGrlG5MxZ1Aohc606E0fXEMKCjhYSlwOCctKaNRlhVlVoYTGt3/rA0xLCecdjOnJcQ2L1FoTetzq2Kc1rt3hEnnrcax40gmMsRBCoipLpA7p6bOJxwxxLefvaYCEGeNUZDHx512cuLbtIKXCtCxgjYUHRbYAhdVqASkFyrIA0MNYqq73LjWT8J46oUspMZ0dY2XOuSjMaPDsEW97vljGA3Tq9/9WjtPbxQ8wIR82g1QaPInWORSFhoCH6ToUwhM64g2cOWC3vsGbV8/xyYcPUGoqAnfOD4qXEco++DrOk1VQViUACescbm7vML9qMZk7KKGBwCobexTm5wsWz3Q6RT0JtZ6mx936Hu5wgLUdmqZFWXqUFRXDJxdyOCjRc8KJomMM5/R9hQ5jp3kdMZ8jp5X6dY8xjpsne7Py5uflYARP93a7x+dfPMfN3QYffyIwXyxweXWBftrDW4taC3SHXdqsYa8oAVhjoh2WNAO5mi6wZApJ1FF9yJj3Isy7t1CqCCgIlSLVRYVpXaESAt/85hPq8OUNrDXUVk6lDlTG9NBFTvb56+y1TLmFrWCMRVGUKMsKQsgwflFaI0ZvQdYtPLvy9J7Ob2iYKJsWgWVWU+Rugo//KMtfhkukWkKRuaz8PTJrTz9evmhz4XXqc1/1OOcWfFXNnBv2ZxzDwUY8eS9nz3r6lUitEsfcwfQdbOi8pCS1eRufl/B2Eb87vl9aoDZYVPRPhgoQiLxZSrojHi4GkYVwEF7FDctui5Aiuw8f26el+X3HAP0a+2QYJRsqzPFrv+7xPmtxGBxIxKdc/G16gwH3F4Z7MP2ePRefLE4IgiPAgL1PrLLZuXKYg3LhCK3lxGvhPHx/fF0mKEgucPb8Qpycz7d7ScevJWuZBYQYDsPYQsdQ6em8FnKxWMTGD3z0fY/7+/uQaatCuVMRtYP3Bi5EyazzAAylCQiB+XyByWQ6utGzzwcgb7XWxb9zE/1XWYi/qcDA8TfOu5jvlUiYfS9GjawFBSNJoJggsGS0yiycbfHiy1/C9gc8vFqhrhSUJCGnpET4lRIJJbmpDjbkPlFBubUOd/c73G326HqL9WYLJ28g9h5VPUdZ1ZhMZigKHSeNrY2BwgRZOpMJwQZVVVEQh1k+LKWNACYkYg4jmfR31hTnPUZt7FrmwoKZWMb07uRdtDGM/6sc+T3n7LVAwp4YImFQ3hiDsixRhn3VdQaHpsPh0GC+WKBpWjx//hKXF0vc3t6jaw54fLWCty6DSul3IhYQsRuDy8wa7xHbz1l4CsxYDx8gA9KDLqR2CEivMKvmEFbD9oDQtPaEpzpMrVJvCec9+r6jKKugSmLy2lzWg2K4x94F95xKy6CxqmNgkC13fp8MnMGZBufRnD8mhMBisTjKzTHG4Pb2NmThSrpgkYSZ85byaayAtT2IScEFYUbh8fc52BLTWsfw9HihnAOA8/t9V57Lr3XkGNcABD2BlX2lE3K+D7l9XlIjXkgJa/tgfVEJsfAGPgizxbzCk8dXqEsN7y08qIMW1V9SCZksNJjGRQoBknQCnfO4u7/Hizd3EGqB9XqLplewssHi4gFm8wW0LJO1nmEVLM14qKWUmE6m8JNUyL0/7HF3fx9Yg0MD14Bh5Qyrye2j+XfvUDLncrv4nEwqmpOIJqikjVjaVz14febVJ9y1zHs/iMxTagVBK33fYzaboSip0W/bWRyaFofDAVePn2Kz3mG93uI7v/Vt3N7eY79dYzmtUUgf89QAKklyzkEVJWcAJhea/wWs1cOjMxbGOnDvBhJAllxVAAIS02oB4SRcD8ipDy6shQQJMx+YiD0suiDMZtM6jEdovDsSTO8YxThvvKDyb5rgQhcFQSDRlRZDYtGkwIZU53qsbcbgP5vCWpegYEGG2I1u0nPBq8il7zgX51iK58e5fLJTEc53Cbe/jSOrduQXjv4gS34c+zxzRGqUFCTIKXPSVWncvSeSPGt7SFDDktx1iKfNfssjnXz3RIJHVnlRhMYpzsG4AOIbG3P+JAtbKXB67qhYnDGNAZ6UbX4hxNF85ufIrTIRAKZ8n4yj3afmnSOtp4JEbEn9KvDCueNtcAiQEtEZf/QgIgbnHDGXBCzP+5TSYa2FFiEfMID9Q9wScb5TQT+/Nyzs9yJl/Ivs60z/1PcGwgFE5cXCw2d4bjh/4MA7t3ePxzOXI+k89Nk0dkcuK46F49uyGkS2+LVzDlrrWKuWn6jrugjKk4ChaILzHgIWAJVCMK8VL3iehMPhELSWjiSM5xYRt1NbLBao6xrz+fyobye7CGM3YYyR/G0Jt/c+qwgi5F1WBo6XRlxoQgRLSpAxBQvhDdr9Fus3L7CcT7BcTDCrS4iQ/e8BOGOgwsom6qUUnucOTxDAer1B03aAULi4vEIxmUPqCbSoAU8J1Dc319juQvZ/WWA2n0HpAlIyh10alLHFVBYlFvMF6moSc7uEEDC9iXhRbnH76DJl8/kO7Gwc+GEsitllx58d93n9dY5xblkupPm5rCXhVBQFylJDCgS3nS22OdabHazfw3mPoixRlCX2+z2q5SxhRyJXQ2Sp0TOQcIlcI4KY+DtjeHcCyGnuJZw1UEJDQuP2zQbPf/kZqgJ48ie/CyEs7esc24yuJlONC3D/ioHFfnag3j6JCR4InxWpuiQJcH5tWDo3nEdBwqyqKgoHD0xGj66juifWaNzQ05qMi14RKbP3gAhlTqyd9/sDrDUoS650P6fZkzDjzH/nHO7v70NL+zZSdWutj5pUjC20Yej3bRL9qx/HAuhXdTHPfJrnIAgzoQRpTm8Bb3DYb/Dq5Re4WExwsZhiNikBa4hTKsAAUqjQIFglIQGKPIpAeXF3v8ah6QCpcPXgIZycwYkSXtTojcfhsMd6s4aARVWVmM6mKAqJSkoobpeWDQanCfDmLqsSqtCAFzCmR9f32G/3aJs2Qgg8nyn/ayTM/DiMPxRe47nlRjiTyWTQ9Jffa5omNt79VY8cm+O/c+ZkAJni9yFLoEBZFnBAiE6TMJvPF9D6JnQYQhBmBba7HS4W0+Cq+pjWwuJFAKA0nRBu45+SPKe272G9hxMCQCAaENSI11sDpUooKNy8vsef/9lfoio8/q//6HchBa0xWpQKee6Qc5ZySUNUFsirHk5b69GyizLpeG8wNsaJOgLcyzWs2gBpsFfHGRZALtDo+jpJ7dEEi6xfI4bmPsKgjn8KMV58bmBZOTcEa8fH2L3kZhSn3MlzgutdYP+vpZXfomTe1Z6D7mN0iqBx4ysi/ZVcgjCuPrmYfd9B6wm0zjsvIYtwAfkCo0WR8BUXQGrvPYRU0EUBA0X4SrgD5wKQ7Q2kFLDBSnbWwjkLgVSLG9lIGQcRyTIkK3OINw3HJBNKAkN36iseY1yLX+PjN5k0+7Z7EGKYVEoKXka3WUgR3TiymFkQJsF74uKjGR1cNaYTcjlh3JXsLvKeD8JReIHm0OKwPwB17lIOzy2ETxUdHgOxdX4v5XuS/+b9Ohyr8YYYZ1OMz/s2z0sDXGBaDW/OA01DdDxVVUc/nDQv42IAWWUJ7WCqEe89ioIaHTRNi5ubG1QVWV7T6ey9hFRZltFlIBoheo/dT773rwLo5gDi+NrvOsSZ37/KMbbsGMlC0DAMHDvv4C2xfBIo67Bb3+KwX0PCYD6doCqJFFGFygsPKkSWkspVrOkDVpPAp67vsW9arLc76HKG2WwFB064DJa+FAQAFxpSSGit4JzF3e0t1HYHrUtU9QxVXdP4S+4SJU4+rAz88szEMqmruIGdczA9UdQIIaC0ojrUeI5hus44GspHTlCQK0G2mJgn79eFIE5FUvO/h/fjoHXqNQoAUgCz2RSPHj3GLz77JV6/fo39fo/r62u8evUafbvHh48fDp5xAC0NNR0JsfCa9Q7GOfTORbyMvkLEniLs30Jr2NbjL//TX+BiucKHzx6A8mgpIZuTbNn6ir/LdBNn06befyTjg3j46I6nBjNhfGWad3qN0kiSkEzSUJPQKaKbmd8SuXgdJpNZLB6mQaTNIWQy+9iU9UFFeE+lTtZaHA4NttsN6rrCbDZFWVaDFmA5/pCHu+u6RlVVEe9gDO/29hZN08B7j+l0OgiL8/EbjWLyOd8NELzXefyJs/nAAqqkJqoVZwn/khZSWGjhsL67xm57BwGL5XyKuqKE2thM1pMwU4rTAnqUZYg8ewBSou163NytcbfZ4smHD3H18DGsl1mIIVnIUnkoNu+txfWb18RHJjVWV49wcXGJ2XRGVQMiCQ8G75HNqxQCcjpBXVWhlMeEet8Gh/0OxlpIJVGKiuhnENZFNFqHYz9WRrkSHK8tBtV/HUF2Svm99TVL5JmkaEUUOALAcrHAB88+xJ//5V9ju9vBO4+XL1/hxfPnEM7g73zz6xGqCReI547uF/maAUGjc1vn0TuLzpgQ1WR3PVleSkmURYnDocP/9r/+R/yzf/pP8d3vfBfOenhB1FFsjIjg8ntnIUBkBTnl07kjionhCCLfH3wK9hrypH2fzTmNQx5AJOXAuHw6V+hozv0whzeTOqFQ7pcZTRpL1pQkm75PjyGFhIWNWIZSchDOBt5uGeX3xN/JW9uNz3Mq4vmbPnKBz3olvZl+JcVx7BjE+rnwuwASn1Ou6aPrljre9KaFC5nZXE3BVnLEz4VIf2dXZWVjOVXCeSrQ1SXs+JPBpZFCQgnKUvPeBRIADwgC2q2xlEvmyJqi2z529UUYC6UUlJDwysMYESKeSSCQ8Brxo/nTiumUu8qvv6uJyW8ymnnu4F0h5fFYKK1RVTWatkXfU01z1/fo+w4SQQCGvS8EAfz5qokuISsN0NrxgVWWrWwIMiqGHoWACkG63XaHqiwxm01x7GJmvyfpkr10Zgyj/gk+R4ROkrw4+kqEB4bBmeHuGVrAaT4zy2w+X4RIJptx5MMfDjt4z4BuFksJEjsHlnMO9+T3UkKAksSOQVUClJtzd3eHsixDlKccaNJzi4zJHAFgtVphMplEzRV51rwfpHacSgnIB/DXOY7v8tz5MtP8lKMaJI/zHt46yKBTpaBMGwlqcNG0WzS7LaTwuHh4FYQZZW87y53NyV0l+hlAKgFqg0FH1xtsdwfc3q9xefUIqqjRdAa+MIDQgPRILcIYYmF3AyiLAk57QCg4Z7De3OFw2GFST7BcLqEL4mwvyiI+cx46BxApbKSSoaSK5txYE3PMTG9Cwq1FWdBn2PLO3cfkfgytsrFbylHO31Qk810HWTMkmCmKzwqK448SRVngG9/4OjabHfUpVQpXDx6g1rRfYLskMNgTYitFAN7TQOazZZwPibIMp/v0XR+uqzRKrSBnJX7wg+/h2bMrLBeUliECVECWfDJRuAERB/eGe4ddvSCU3sN7SV8PAjjAAHVVHxlVtAZZjp6Ghthi1RcXFyE6KGO/OmcpksjCgYs+GTfjSzlH7cvYGqDIPz8cOfRK6eA2lBTV6lrsdq9jBHW5XGIymRwJs7HkZyGVp5EYY7DZbHB7exuLiFN9abI2+TxDHMIP3nu/Y/xZP/p56vPnkDYW+AC18HLwDsRcISjjXwkAzsH0DfabW2zXt7hYVPjw2RPoQkOFwIANBbpCUD5TH6xopVXIvgeEUGi6Dnf3G7x6fYPv//5/D4sCu6aDdCVUUVCvnpBgy5REjvtrSoG6KskdFSI0hF3DGIvZZE5VAFPS8KScOCSSW/PpFyUUJpMJ6qrGfLGAtQZd12N/2OP29hZt16I3Bsv5ce3bWEHxXOYlVUBaQ33fH7EX/6rHOddy/DezxOZrGwgpCEKiKmv8zu98Hzc397i730B4jw8+eIblrMZkMsFh18F5F6s28qCOd4L4y6QkqxmAFwq97dFbF9IykkJSrNQdUKgKdalQ1AX+L3/83+Fb33yCy8sSAi6sHw/hBZyx0crijAalTqVWZTgh3d3gNf4rKbVkUbE8sSG3sVwcV25Ed5QZMsSxMGMDShNIf1y4TcLhNLWOEFkpBXKBcOoiKZrDrmpeVvK+WEZuZeVsBYfDAUCKAP0mQF4+z9H16RdktnSctxzfibt2MK9i8DNNMhIOEq0NejNWuzoH07ewpocQFeq6inR89P1hxDk/D5v3AlTC1BmDru9R1TWaDrA9WRAiuHiJgmYsqClPibA1Ylbg1B0tiPbZZRBAcnOTgzQcT1CaiGRrkkpumjalOeSg/dvmNcfqzkWz894RbzvORcnHr/HrpxQlPTkJBU5nwki0SymxWCzQdQ5tZ9E2e9R1HTHg9HBHv4TzpPXEeCdVCXhEJcmfyu5bBmbWspB4+PASs1mFspQwkUNwND6ekqlPyQIhUgz/1Nz4CKQcP0P6+DA/bxyEHMuUt+1tPXbxGJciYZYS2DhpjdengEA+dbk7dSSdR25Abj2x1GfhxnV1uUtwzj/n3LTlchlNYV64eaLt+yzi9zoGMvtdAvNEskbGrMnZ1FKEyJEIWfTCx16FgIW3Hfp2j9vr11guZljOZxlSmYEjDBN4djeppAmSBEtvPV68foPeeFw9fIKu93AgOhcpCxhj4U0HozykIAxMK5kK2NkqD1Y4XYe2Ea8h7xwOhz3arqVehlqhrmtoTnQeKYA0mIKEt6Kg0XK5xKSfoDfEme+9j/MJJCs9F3DMspI3KuE57/seXdfFNfWbdDVPbS4hBJx1gaU31Rk6D3StwXa7x83NLZZXK5RlgdmMgjllcM+ttcgZIvJhol/JGfQeNB8Q6I2DdZQoKyS1iKPDkbIKczqpS2IjFhIPHs5RFALOG/iMgSK/qIdH37Xw3lFznaPnzhXWqQSloWWeDxcJWuqJwMn7kV3kCLY6tXiGckcXofiXJaMxJtZGlkXm/kmiUXbOQ6tkXQweLK364eMEK474zwt4nyJO+/0+VhlorXFxcYHJZILZbBa/O8ZG+GAqmqqqYph/u93GRFseIP5HAyoGP7/KkaNfaTBPCTXWcGyh0GZljn0PB2s8tOAILkWJyMekYnLpLITvANOi3d3jxRe/xG9/7+u4Ws1oyQTrh9Zf0P4haiUluSEWFpDEyNwaj5/9/JeYLi7x7ONvoOkcRKGgixqiqHDYNej7DkJ2KJQmQVSWqIqChKP3cI4EjhCCUjEDnlZVBbSm7PK7u1u0XRcqBua4WK1QTyZBmPk0bHJs/RGkMZ3UqOtJzDi/v7sfzCevE+ZKY+HEbmReC8xzzEnXucv360a+82jjKWVrrIWCjwneznlYBxwOHW5v7/Dll1/i69/+GiaTGkIW0MrDdS3gyeVCWBve2rh+4r16CR/om0RBydLNwaA3Hs5LSK0A04dxDYm8kChUieVsgkIpKCHw0cdXkN7Bug7em7hWBWNtQaAcDgd451FoHT0Ivhdag+FvKZPSyw6f9fSk8QpzLhDLvKjInHtx8vcQBPFxpkKO2fM60uOUBiA1fQhfRXrEsevFl6SFKcaiFxyJSZuaLTBeVDbQBHOeSd/3MR3jfY5cUFlrI386W5gc3ToFFn/149idPudgn/wum/Fhwn1+H4KdQQS/0wHewVsD23c47Heoq5J6GmYzwUHl2BiWtbUIeJekv6332Oz2qOaXmMzmuNsaaE9aXEpNibTWQDhyTWTmvsbz5k8T5l4gpV4459B3HfaHPUpbBvJGQ3V9+UnI/x0ph9DCTmpIlSyU7WYLIK1J/pdjn/m8jnHS3GXNrbKTbtF7rLlzXsL4dUpZknFzMj5EtNgd9vs9SIBrlKVEWQi01sD3oa/nyMpJlgqPmYiWFAtWijkEbyrXFWAXnHIGZVgfk2mJvmlgTUjYHTQXBi1V5wPVlAjCaiyo8mOYMpF/JtYGD6ysITQyLG07OvmpF+Jr3nvuAZAu0LYtmraNzTWj9PV8M2+b9GywM6VLDBMpwzl3+4QQMVlOKaIYOhwOsViZOwO9q88hL6ayLKN2JioWOnKWhvza57CRU5Ygb27vfZzstx/B/Qtiikp+cmHqYz9MHhtCpIjjH9ZgfXeDZr/FoweXKAteiCIb6mCRIX8uGnPnHSQkmrbDm+s9FstLlNUUbWvhoaB0iaKaQBY1JlMHXVBXHq4ztpZIOeN5Qzla6Lse70XJ1KugqiqyDAD0XYe2IVrvtm2hBNVs6kJDjoDeqCxFok8WApHHnwUjH7GCQaTEWF5L+THodoTjtXtOqZ0SWm8TduN1REo78XLxHrq5ucHt3S22uy2+/OIldFFDqhKzaYn9dgPbtRDTGmXMzhi7V6QUvZOAApwPUUzj4BwB/4LrHBGi0472nFYat2/WWM5rzCYlnOsBGEjpEBGk3HMDvUbtJTWQMZHENYGhiM2/LI4+wGuf3mDsPc1j8sSiR3N6dgZX5UPH2uNwc7vdHtvNDmVRhZZz5P8HuCRc1ELI0B/RWXj/DkwqmqL0ryh0zABnLix+iLZtQ59N0rLT6RTz+fyotGlwep+E5GQyQVVVsVC9aRo0TYPtdhsHLY96cSPi8bnG18mTeZ0jQsRTTyykTII8J5kTIgCpIUNfSjjv0fUGtOYJ45LwUNJDOg9nW7z68pfouy2+8bVnmFYlNGf3gy05CerERJFM60NkEw7GWGgtsNnv8fNffoFHTz6E0BNs9j1kuYCuZqinS0hdQZeTmBzZHA4wXY++7dCZLoyHRD2pouCUgV5dhUbFbdtBKYn5fI6iLLDb7XBzc42dVthtNvCemGdXyyWm0xkqKlVAtPwD9gPJ7httGKaRYguem/ju9/u4qZj+hzHU/MiF3mCeRgrrFHHjeC2MrcGxUmTByYq40EWAEeh71nl8/tnn+PL5C9xc3+Cv/upHWK4usFgu8ODqAndvrmGaA3C5xNVqDq3CuuOAgBcE91gqPROSXM3OWnS9hbECVghApvEjA9qjUBqVLvH5L3+OTz56iHmtYPsDSJh5wk17SuXhrqd8NE2LSQWI4NqnLP1jyTdkPhkLu/hOmDcBY1w2PwnzBrK9Mzj42Y69haNYdQpjp4TG2Mjk6OS5k/UOMyX7CAUTyFLKAXpjTGRYyLtSs1UVT5UtzrEFxS4na3JO2M01NFca5FGj90nZGGrm42cebITwrhNsneXXSBvJeQcVp5yts7AInMF+twFci+ViHgD58R0kGCD+LgD4kLoAj970WG92ePrRDNYXOLQOZSkhVQFdlBCqoL6nwb21vYEzIdnZUOExAfwVvAwWJli5BfzIWghBxdLTyRR918EaQz9jfe4E08kEzhEzw1n73qfs86IoBs2iGcw/6tWZKapzcza2vPn331TN5vD+Zba+eKNSy8bdbhdYSe4AoaC0xmI+w+FwQN8c0M0nob5SnlplwbmnwedGQ855OC+SO8/WD0DzJ6hUbrPZo+8IT3POUHE5IyDgtYlgIdOatNbA+XIwhjknXXzuk6Nz7K0NhuuEZRa/J04bDOfczYEwIyHi4mJK2+ptGFP6zODVgeQUQwF+Bq/IF2OucZllIXc7T3V3Or4HEdlP5/P5QHNyhCzXsmNM5ZSW5ifOH+ik++EpufG0ZgIQl6QP88YbzcE7A9M3uL+9RlkolKpGoeUgWz6cImxkGbrIBfPcg6oJpMJ6s0XT9pgvVqjqGRxKQAsUkzmULmnDcH6gZ0YGyg+sqgqFKoIrQPPZ9wYwgDCAD5xcdV3TmDpyqMeUTYxz9X2P3W4XsTVVllBKoyhL9G2HQ9Ngu9viydOnJ3PC2PLK5zD//ZQgyymsxhHQXycYxAcL0zFGx7RJ9BkE9laBBw8eoOktrFe4urrCdEplhLvtLgqZuqoCo+txp6LofYU8PhZkECI4AiL9C5JQSQljemzbNb784nN8+HQJIR6wio33Pa4W4AuKgLHl+yMaB/zc7xifdPdD8Tzum5B98+0Dfzwq1J2JcbDDoT3a4AD5tZHjf2QSytyteuuRtvUp/Ir/Zk3MG8Bai/V6jfV6HbtqLxaLSPMybnqSn09K6p1YFAWm02mM1G42GzRNE/E5ZiYdJ1zm5nQMlITJZTajU4KMN7+MCiGdg8aAc8R8SCbjxFRPDSVMi2Z/jy9+8SnmdYnVosasKsgrQ8olcp4EikQSZg6gYICQ0EWFL3/+MzStxINHzzBfPgRkiYlTUNUKQldwXsFZQEkWaIBUCmUpUBUllFAwxqLt+lgb2/UtnDMoSonprMZiscDd3V109fqujd212EImwkdy+1VIsJ1Np6gnUyxXS9zfrfHi1Uv89NNP8U/+yT85wr54bQghUFUVZrNZ9CIOh0NcG2MFxJx6LMx4fY8ZlU8prvHPoxV9xnrvug7LxSIkEQfZowQKKfGNb3wD1XSBavoaT559hK43aJsG12/ewLR7TCqN5XJJOBY8tC5IgQCAIJdVCALje29hnIOxjlJsXLDaBCGvAoSFlVqh3ze4ud7i//g//gzf/PojKPG12IfVe8B5i+Pu8bRWIUS0NI8sWUH2H1tx52RBGksHokkn5WgsWYZVVY1Mtq96ZAEAtlRydyy3ruh3AfZZB08zlsvhpfidjMeIzkfZxqdwDBYmvPDYrSC2W7IWuAD9XQdbc6zljTHoui4m2nI+3alcu1PRTx/M90xGnVno510oHhw+R+qkRFFfKuQ1sH2Lzf0tLucPMZ1QC0BmKHEBq2DXlfVdxgoGgCyzzXYH62s8vligrCaAqqC8hiynsF7Cejbv06xKIQCloKVCoUr0vYHzAm3bwRiLru1hbEs0RCoFZygKh5DsmnPgBU0e8v94rQmAcB8zRdM0WN/f4/nz55n7wmuL7ozzxHg+mQa767ojF5PnK5XiHKdknItMngr+fJXDORd7YfIhBWXiX1xc4NBabA8dLi4usNls0bUtDvs94HpMShpPb1uylCNDbTYa0Q1EJIAQeVvAOHZh3KREa1rsdlu8fPkCh/2eLC3PZ07raLyz478zAn9gy43FwCkzL3saH5QxwHRRQwXxLtE2njvNJ/feD4D3OKEZvjO4hOeBFemP3LwdP1AQjEkonl9M+c1yCRNrU8bWDodDFHB5+dLY0jt1Po54sjbn740jXycDA/GFkcjK3Awg1acOr4/oGjKYQa8FQQYHOIPDfof9bou6KjCpS5RlEXooZrEtPpkQ1AuRLcCwSIy12DUHQChoXaGsJhBSwwsFYh8VoE7X1GEJIlBp921c6H3fwxH5A6RUKEtKmRFSoGkcdBi7HH8UQqA3pID6vkfTNBHj4h4APJfeE++8NQaffvopPv/ic9zf32O9XlPdblXh1as3mM/nA1JFnldWVJxnOO7DOoYS+LtjZXVuDZ4SauP1lZ8rd8FyxUz3Q9HafB0JMM3VFO7qAnAWs0kJqSSoIXoQVLyWBOOi1OSXmsYQ1bl1wXpCqv8UwfgodIGmucb19St89OEHWMxnweNjoCN5HDmGZQM0QFbtiTHKx20kCcWJ1/gdfh4WxlLIwPuf54+J018/cfCY6gi/eIe7u7u4wcmdYY4pqtfkCIQ9wksziXUKQxP87LygEnbBWjOPCPGRly3lbcwOhwN2ux2ESJxnXOsZL3ligebU3LPZLALT2+12ACzz9fKs8TANUWRwOdcY9KfFxy0ngiUaPiLJFKPFEl4XACAdpHBQsIDtcPPmBTbXL3GxmuPyYoH5rIKzBiJPog9AjAAxaHhK9IaEQOctDm2PF9fXgKxQT1eYLa4gVAWIAsIXsJxjFoSZc9TEd7PeYjGfQgBo9y2ADlqXKKsJpvMS9XQKYzrc3wHTSYWqqgZjJqXEYU/zs9vtQqetFn3f0ybKrC3uwtU0Df7Nv/nXeP7iJYqqxGeffw4hJS4vL/Fnf/Zn+Na3voWvfe1rR126iL1YxuLyYZSNhMrhcIj3lkcscwH8NoH1tuOcsGN3O94PKPvfOsQCdAFiEp7PZ1gsZnjyaAXhPbQUxB/XU6KtCefiMjItBawn7rLe2lCeZmDgIXQFKQS8dVCSuO6Es5jWE9zf3uDHf/OX+Pv//Q/x7IMngHeQIJ46ADEfESDLmhsL7Q4HSqVRChAc6BExATx78uz3vNxcpNcEgrsaOPsCjKRKjcl0NvAESciJd0izhPkBWTST8YX5fA6lQrcfzzchottw/gHOHOdF9PBjZ8z9HMdigccZ3c45KpcJ1tk7byV8n4kovfdxQ+X9BoDE0jAISoTz+Oz/+RFdcsYtoqJIbntI+wmfS5MhBeXse29w2G2w265x9fgCk7pCWRbo+ybzMcJVwnTQYueoM91Hby022z0gFIqiRllPAalBU67gvICEhBRslRLE0LYt5rMp4AnspywJjVqFMRYFnNM47ImvXil9lJDa9V20zNj6cs4O3HlmMWYo4Uc/+jFevX6Fp8+e4e7uDo8ePcJiscAXX3yBhw8fDnLM+GDldioYxIqS2TLGMML4s/kaGa+ZU+8fwQ9I64vXTRSWYU6cG7pzAkBVliirAnU5o/w+7wDTho2d0jwgJGJCLKizOVlloaWf8NCCBIYFlS9xd6eyKHA47PH61Qt87ZP/AcvFPCw7OcDJcoycBX7fd1AyjN/A8hqXLp3e38fuekqcZVycjRI+h49WAZ/3XS5/sMyAhB3loWSe04El6dlMZjPRIU1L8oP5AmJwIz7+G5cnjB/6lOmfb5ZcyLEm7DrKquYNM+63OT5Xfk5m2o1YTng9pxYSQkAwDfRoGHMsw/uxeezTKHiup3TU+MUTuaWQtIi9M9ht1/DeoCwU6rqEEPR5Odo0ZN2FxENHIC7jZsY4dL1F3ztUkym5mEIF9Uv/eG44cs0hfgbRpZSYzmboOgOpqBCZmCAopO9BrmfqpZp4xHIyPVYEyg+FTW7BlGWJDz98hnoyweOnT7DfH/DixYto3eW5TW9bI6fmua7rQUVIbvm/Kxqen2e8Psf/8tdTulGyXly4Plskfd/j9u4W1WGPoipQagLqCyUxKdL6DL/Q+AarhupikysrpAK8CSA+6JqeXE2tCigpcLla4pNPPsZsNkGhFYCgVUMburzxSC6w3ei5sxmIOzzJmiQHhtj6OcWfxpWEZWaavUM4JsMqs8ykBA4HAgeTgGBXMGEACJrCWgulRdAySPWsA/fSx4dFvHi6IZ6Ec4vi1CLNBVOuaaWU0VLbbDYRQ5lOp5jNZkeCa3wIITCbzVDXdWQkbZoGh8MhWmx8TSXyTt0RAKNp43MHIHYMkAqQK48QQVKQ8LBwrkOpqMOS7bZ4/vnP4E2DxaLG1dUKQiJYNQq96QFBSaq9dXQ/QqIzLQSIqslCYN902O5abHc9vvHsm1gsH0PIEhAlPBRpbagwhxaF0gTq9waLxTJYrzWWj1e4v12j7fpQcmbCvFK2eaFLFEWJ3W4XMUgpJfGRWRcF1cAByYQcA/fzxQL/8B/+IzRtg4urK/z8F7/Ep59+iv3+QLlXfT+oxQRSYfl4TnP8SmuNBw8exNrOvEsUn48FD383x8DytZjjY6fWLO8T51zk6MspoGldtXBeou96bLZbfPHyVcT9hHC4XM1xsZzho6ePoJDfg4RUGkIqSFnAeQtpDYRW0K5AAUo+NYa6bSlVARbQUmNa16i1wne/8w08XE7w4bNHmJYlYKncSsoCXlBaDSRF1VXAHglDNYNnj4IuH/O4mYLFlgl3tsKGwYPwYc+4NM2HNYAfJOyOZcrbDw0QvTLT8uRHAjSTrUE3mPObsaA6JUmTVZY+Nzw3nX8IvI/f579zYZYfnGbBvj4v9DGX1DlNnkdGOZLGPQdYmw/cicGTIY2LlCeN4njVKMw8pAj5UY4as8JbGNvi/vYas0piMp1gNqvhTAPnPUpZoAciK4b3Hp7dCktdqIUEvJAU7m8N2s5hOl1iMl0CsgAC+A8oSEhYkDUGBRhjYa1DNZvBGorwri4u0LUGxu7QmyZ0mfcMGUMqDSU1um4bAXoGjp3zEc/i2s2xkMgj1N/5znfgvMditcR/+ou/ws9//nO8ePECT58+jfOZz0NurZ1yHQFSdLPZLOJyHM3myo9zx9uUan6MA0T8L+GHyW3iBjEeBayldIwXL55nGJJB++gKzlziyYMLqCKQBwQLRAgJpTWE0JAhn09I6sAlnYewhGdBeGhVUwmTUqh0hUIJPH38CE8fXGJWaXhjA18ZnVcIAQtSVATFBhomTy5sbqkdeSY5KJyt9+ixnNvXPo2LAO1pZ1z89nvCloND84alvCAZJem5g335dGPnMLTxOTKuLqR8lFPYA79+bpGme6Hr5WArW3xcysSuDy/ecwI7vxZbFHVdD2sAQwTJOyalxNgPx3gWkh2Xxz45eslpZha2b9E2e0jhURZMB8NWRm7lifh7Wiw+XsgYqqfsjcV0toBSJSASrzrbzLk2NdaQRlZUiCwCJVHXdcRzJQXKqoSQgrLBrQV8wKqy+kMgzyFEdDcjTjRSYGwVOeex2W7QdT2arsVqtcLTDz5AWVV4+OABqqpC0zRRqJ0iRzi3VthCY4UV3d4gHMeRyHxNnDrX29YjP2vOdssjEyEMZp6Ax+XFRWiSLNF3DaTMAxPDfeicg+06NM0ePSx64dAbyvGUkvL5fEia1UrCG6ZxCqtGgEqhQqRovMu9Z9A+WVWxQH9URkh7Yejqv4/9lAu35Ezymh7LkTyBncf++Ao8HUKEvplc8zaZTMPAeUiZpCMLMHI/U8QxJYGK7GLnBBoPEoG/g4c8s3jeBdTyP3YZ+L6cc9jtdjgcDtE6yBNt82ueclOYby2PeFJNYAdrWhhroLWCVio234j3d/QongEzCO8j6C88WWdaCnjbYXt/g/vrL1Eqh9VigsvVHPA28LUT6wXhXjQ/KrizzluaK0Vu7L7p8PrmHq0BPvnkt1DVKwAlnBfEIBoEshMhGRLAfreFlAJFWaOuK1hNYdObm2vsmxZKa1w+uIS1DrvtFvv9DhISZVWhKCoADBsAbdfEzcjJsiy0qiqVxFAndaJN7/seP/7JT3B9fQMpFX7/hz/ED37wA1jnUBYFLi4u8ObNG3Rdh7IsUVUVlsvlO615xq/y+k7qY0A/t9ttFGi8TvIm02PoYwz25xREACJMsVgsRjlvgAsNXCbzEj6Uc/3u7/5OoBr3uH5zje36Bia41HAmbGKKZHZ9j/3+gJ/+7BcQpUYxq1FPLlDVM5RljXo2gXU9rPOwvYJzJeqyxHxK+VtKCCgNeNOT7gvelAA/Y1JzrJD6vsd+v8d8Mh249DH3zVkIJFzwuC2mH/6aQWIMTzFDMo8T39OpaGluSOUuLB/aORczu1erVUictWEgfTwJj4CQVHieN/tNktVjgOENniTJ4nPRo3PW2eBMJxYw56HlViZH09il4AbDY615dKfeD1rvMVjLmEfXGxjTwXsCynX2PeCELKMnRrLGuIzJJW1mezT7Dbb3N9ACmE0qzGc1gGABBpeeNSKdk/OWXPBGCKNs+x7r7Q5eVHj46Bl0MYODDtFLOo/19D0ZNlzTHjCta5RFyLsTEl3fUcqKcZiWJWaLOQkha9C2TWgfV0IXBdgN8qBWdrTBU+g9zVXCSdnFpBQAi+fPn+Ozz7+ANQ7/z3/+z/H4yRPCMY3BmzdvcHd3h6ZpUNc1ZrNZFGbnsFA+uAqEP8NrY7PZDHq65mlAYzz3bYqPrwEkzIx4/4dssWw01LPQ78E7fP2TT1BUhIEpqdDsN7CmozHpbbJmBd33br/HZ59/hmJaY3a5wtXVBGU5g9Yl6mkJ7ym95rBzcKZAqTWqku+dqjycM0EAydF6DXs0E+DWUGBNzRfk4WQPdG7Ij/26oUAjuTnOl0yGUKIKGqfNvNvv1Fy7NhQkiYYl3uRbz8Vm4SlBNv6ox3HZxGkTfgganrbSzrkWHGQYRzyBFNIf5AK9BSdhrV0UZdDiIrrkbI7zd2MidgLTCF+KZnx40yNiaNTpqAecRV1XgQk0XzCJiDG5mfFMYBfeWBNLe2RBfR245T0GS3E4BbR5g2Ub1oIMHbsc0vhxIEgXGlqKuEkjgO58jFBqXaAsq0ECNgdTWMhxouT19TXqyQTT6RSbNQWiTG+wNVtMA+6ZJ0WzYMjzud6lpPK1wfPJZWx5kisrxDG4fw7DPbde0uvJrfI8iWHN0P4VECBYoywKWOHiOAkRVGCw0Ioi9JytKO/LWoum7eDFHp1rIST1keg6oBQlrDVYr1tczCbwIggqDNchrU6X2yP0js+hiASWRMwsxynGRyZ/TrvmSVDkCbl8N8OPvx94JoSA5pq6sixHaQkuuprklwt4Py6qZZMzPewQvEujk3BCj1OlTHxDp14/JbByzZlrwfz33KVk6hi21Lgkahrq5/Lv5/fA55tOpyiKMrP8WvR9h7ZNWI4uisCAkRPMJSwiKFlID8BZeGfgbI/N/R2a3QawHZ4+/gDTCaVkKEVU1C5sAhcKgWUwr4UElBehPq/Hoenx+fMvsFh+gPnqMYSo4FwBJyiCSS3IBKSS0fIWwqOuC5i+R9s6WDuNJUpegMqdBLDbbwk8FxKL5QJlUZAl2PWoJxP4YD00TYuyrFAUBebzGaxNTCib7ZbG1lP94sNHj9D3Bn/6p3+KTz7+Gqpqgr/6z/8ZZVXi+uYGX375Jf67P/rDgeAB6Dpv3ryJVjk3xsnz2E7NJ69drTVms9kAN+v7PkbFGWtloQccB6lyhTnGW9ky88iCZ0FIwjtYY9F3HfreEKgvBVarBS4uL9Dst9hut5hOwzmsgwvEpVdXD/Bbv/Ud7PoGjTXYHxqsNx2s8+jsAZNpiUKXKNUMHz+dY7/d4dP/85f4w9//DvRUwWsOQFHdpme6bOHBrOZCCMjAK0grWYb1Ro+hpIJ1JHaStTaMYI6PsCNAwjCNF8mdClpzLbaHz3DWsSCjpXNs+/Ght2GB5VHANDnphLkAG97muw4WcCJphUxovQ/uce7I3YCxAGKXgQeNNTm7kayNTwmz8TXZValrdlUsNps1vHfY7WizFmUBqQOuEBVwNM/AwkwiGKfewXsLZ3vsd1t0DdXmXV0uQvQv0Ji7NLGEyWUuPUCpY87BWo+mbfHqzRv89ge/haurhwA0nFPwUgGS+NN47AU8EKKhRanRNQ16awlCKCgFRSgJKyj1ZXfYU1L1bI7JdIJJVeOw26E3JraMs86i63qyLjVhT9vtJrrqh8MhzpXpe0wmUxizxV/91V/h//7P/kcoXeBvfvQj6KLAevMKn376M/zRH/5BLFhn8s4c72K8NC93OreW+DV2b/MoNuezHQ4HNE0TPzMmG+D1kK+zMZZWFEXkIOMp82B2D0q1ofQVC+s8tJRUCTCfQzgT8OsSUkrqaeodSl1hOl3go48U3qxv8WZ9h/Vmi/t1g+3ugM3uFsvVHLPpDKuphXoGtE2Dn/30M/zge1+Dr0p4Gf28sCwpSRsiUPqEl1PEMkU7h3iZzYwakU43WO+5N8cCaCigKK+RoB8SZIhyJ3mL47nMhdlwn+ocLzi9EHKJmwkm7+PvPGnpGIZW4w3h/PEufCw3+3OBk4Ow+cIaY3Fj3IOzz7lYOXc9z7u8Il5fKUn0NZxkGl0gC+dE4vyK3w8DIdLv3pHWJe59gSo0v+DoZR75YQ0YHHo2yMHzQ+VYbdaHNLQI9MMs7+ROsMXArpeA8IjCQioSflY4YlcQ1OuSImKhS3iMBsrBuDKeyuPKoPqALj14AQCiR0BjSikJHI0+p8xyq4iFJYABiSd/5twxVoAsNFlwsusaMSQuLTqzVo9eCz/zTHchEC3f/W4PD+ozWmjCKWOlA8MKSRomT0QpFEWJqqpR11RZYH2LuqpQaO7ZgDiGQ5Ah+z2DMU4dOQ5NVpiAl27w+VN2kveIdETslRyfO60Vzm09dx/njvHS0G3bxpKg/BhGdADO9qeLDs32IVA6zhE5P1D5z1Pv55xYDMIzwMouAidDcjrFuax/1rJ8PT4fVw1w8flkMnmHu0sbv66pYWlVlTCWonZd3+FwaEKkRqAMgk4E7IAxMiEB7y36vsV+u8X9/S0eTAs8fvSEGoWEceutTZhX4LdiM90aByEdhKTC75u7W7y5XeODDz7AdEZcZULqwEpK5S+cJcSWAnxoHiyAuq7gAt2SLiizH4ruRmhFG64soAQl7x52ezhrKfwf+mRykjELLooMF1BKxgAMj+M2W2Nt28I76v5T1zXgqdv2q1evIkCfCwStdbSohSDBd319Ha/LaTVVVR31kzg3r1przOfzWLvL1+P1xWuP60F5XfLaH0b4w94AwTPb7SEw8WooRZH1J0+e4Cc/+QkmsxlmsykmkxKvXr5C3zV4cLlAXpQOCFhncWibgIkWuHrwAJPJFbrOoDcWbddQlNp6mMaj7z22mz3evH4FrQKFt++hRARCKCAgLDwClAEKpFln4/NyZgDtHw1nPSk1cV5JDI4zXqEPWPFqWQY4SFIFA/BWBUTfBXJDin9qDneP3SsVAEa+o6RZTtfAHZuY531btjXe5kLyufnh2JLKhRmAQTTqVCIknyMXcmx9sPvJRepCiEHka3wOPqQUYXMST5r1FHZ3G4emWRPGKCh1Q4S+kEJIqjYO7qH3Hrbv0Rz22G7u8cHFJR49uoyazIMAfSU1fTcTimyNCFCzYCGA9eYet7e3+K3vfQOTyRRKFYDQAAgfi3CuSNFp3nAAUFYFbC9wv74lSnSloMoSHkA1mWA2qQhX7Qy6tsN2s4FWClVZQkkNKZNg4c3O6Rc8L8wYyxYxJYsSXuU8bRJy/QQOhwa3tzeRLDRfYyywgNQQh2nRmWqdFSG7kqcsp/xggoXpdArvfcTPmKWY00wYvuD7AIaWV9qIIfAjRDyP0gpKUSLvgwcP8Kf/6/+G6WyO1WqJxWKK6+trwNsEVWTrzloH4zo0bYtqOcd8tcByXkbryjqPzWaL3e6A2zcb2N7jsGtwe3sNrYjeHM5BitRtXioRI6tczuQ94EOAhnHCw+GAsixRFB7ehi7tkfTgOGXi9JFyS/lzRL9VJB66YCy8O5BzBjPLAdJTrmZyJ9NNyOMmLUcXOcbWsuiIT58dBhSGv+cPzu/l2hAY4mPAkKv/nOs8trxyc5oLk3M35vgZE40JzYGCkioKVMpqDi4ZAhtowCvIhfSUKGt6mK6lmjytwuZOKRvJJ8zHNnfvRegjYOGcpJZlRQ0IDc9AK8Ad6HIQY3Bwdj5jcirgXVJR0CDSp9tRxFMSDz0ENdLIMVsfY1OZix8WTiwhEoj5fLvdFrv9Ab2hdnVd15GVhrGiHMMHx/PLlhLPJ1vUWiliGjkahiHumrvHjJ2N11tujY3X4/hgFl6ZnVtrjaqkHrHsukuloJD42iL2ypibpzIyBhfajuAJum9itSCqJmJtVUpSK7vBIAXcTOQYFttqw7Hk9SzhI4zCzy0E5Sympi35t08JB5HBG5nLHJKG6eV8vb/NjU8eYC5n9Gw2O+opSRPAZUuhHlPpwUmFSAssL9s4+yDhLZ8+GI+Io2Qh8VwoMSZS1zXKsozsoUKIwPKRrLS2beOzsEuQW5m59uQFzIt1v98PwN/5fI6iKLKwP+EFPhboBgxNSFRlBcwEtCRhZp1H1/do2wMB4w4ohIeWHso7tM0W+/s3WL/+At98eonL5QxOUKRIgV1KYrYAAGf7MIUSXkioQsN6j95Y/OyXr9D7ORaXV6hnH8DrGYzQkIpA+ZgJGGbfWw/J7e4BKFXisN+h7wzq6QyriyVpS0UupfMezjisN/cQQkIJidmMxr3QGl4AXdejMwZS6xB9DQmY3kMGwaq0JisGHkVVQUiF6WKBv/sHf4j//f/3Z7i7v8N6vcb//D//v1DXE3z/+9+Hswbeu5Adn9aXczZaBFqr2BSH55eJJDebLZRU0LqIPVap8XHcJifWa7L+ONk6z19kK42TstmrYbiCBTVvXtN3cMZAK+qupcL9fu/73w2sFw7OWVxdPcCk1LhYXMA5sgitpCCMdcRRZ5xHbx182+InP/mMsv9Vifl8CSUlCqnwwaNLwDg8uJrj7/7e7wT8M7DKym5gKDinQfW6ZMUDHkIq6AKYL5YARLTUrDVodgdY18Qa5cmEunOJLMjnvIu4HWOyCf9jK5sUQVEWYX+GGlDkoH+ajxSQZMNqaLB476Hzzki5v+8cLRKAWBLKUmXmNAZSkf6WMbN/KEEx/P2EScdCJRdm+f2wMGMess1mE/GL+XyOqqoiHTbXVLIA4sWVJ2+ydmVBx+/nkSzurJ7nNzGDBVkr3DGHGqyWukKhSsymM1jr0BmD67tbmMah6zsI4eHL8DzeoW922G9usL15gT/63sdQsxJOShjrYjhcMEYZGDUgAC9ImEldwxqB3gl89uU95hePsbp6gnL2GK0TcEJBS8AqiqApBJCVhZmQUTEXqsC6s+h6g+Vyicurh6hqojE+NDQmu90Om/tNYPqdYDabpgRTAJ0x6K0hay7gcfSstIB5E8MBEgq6rAApMZ3N8Ts/+AH+5f/0P+H169dYrVb4d//+3+GP/uiP8Cd/8ichgdtBZmuOIsEZVqJVoK1Ka6cLqQ9UpF6hKmtIqaFUiUKEfZsFUMYH42/sIrNbdHd3F8/fNM3A5Y2WTKiMYV/E9D2cNdC6gpBkIVI96m/hbrPB3XqD7WaN5ewSq+kUq8US9+s7GOvglEAnJYxz6IyF8R7SUqL7T37+M2hRoa6mePLI4WK5QD2f4snDBW7frHG5muG3f/s7AaaxEMLBCRNxLIcC3odOT9Bhb1I3KCUlZjOFST0JgnuP/W6Prd3B9QY+CC/aXzpisQBVt/Cw+igPkmXmvA/CFSg0Yapd10GCONicz2UIHy6TN2NvhQ59yq171zHGx5KUTL+fP4bu3bv84yEedx7AHUc6xy7H26Jip87F32MMiDbuKJEYIiQj0mNxd2YPoryJETylwFzqCMW7fd/BWwutZEySHXNenh6a4Lz5IOSNJetHauq0JAK9C7sN56DLgMlwXo8ILorSlJDJ1QHMZZVHemU+tsEKy8uC4uWyaw/mOriX3qfXWRDUdQ0HH8uWPFt5A209Djqdx1nyZ3TOxjpUAKm+FsN1wGsldz0ZjxsTheZu56noaVpP4Vo+RdK5ekZKCR2qL3IXEwA8Xz9ztz1I7lhrIGURkpUd+s6g7/ossqvIzYzfGgoBOt+4bCiNhZQCsQZX0prQWsNYH5RMLrFODv/RMZ6mPEvgxKcHeNzxMRJmOWAbQ7BiSNGTJxcCQ3cwv6k8spkPSv653NriY1zjlmNg/P3cFQUSoH84HGLTYOcclstl5mq0MRkyD9mfuz8Gj3k8ttttZCrVWmM2rVGUBTVEzYc0TCZPiRSkfRezKbSW6E0HazrYvoHrD9hu13jx4kto2+PZh89CEittWiVFzjYWJ1QKGTafhPcSvXG43+zw5maLejLDfLnEfLEKxHqEQzgb2DplqMt0ZP4TOE+ROmYb4Q5Wi1WoK+Qx0Qp1RZxgOgD2AgJ930V+LlVoCoA4i9l0GqERKUmwxg0dXheC6iW7rsXh0OD58+f44Q9/CGstlsslyqrCJ1/7BKvViggiGasbCK3TFn6u1IpCh5aJGkJSLtkhNFRRWmI2qyOkUBTv7vQlpQzJ0yR02QtwzqFpmhhI8t6TkgsHE1EKQeku6/UGn33+JcrrKXRVoahKPH78ACUESinRNE1oNceCywfogtvCBRYNpTCbTTGbzGH7Hq9evsTNa4+7NxN89MGHmM+mULIEJb9T6ouHDzWUvNfoKsfjC3a5ACB6OGVRoG0P6NoW6/U6zqsI+K0QFDzyPuHszIkWdh0Yoxx3ZLKh1vN0NPOcVk6HNsYQ55RIFfvjTZ4LNiB1Ch9/7m1WVsLajoVermXH1xxofO8HwkxKGXnHhCAG2YuLi4iBcZ5N27Yx43vswgJJsKpg/vNr+/1+kGgrcIWZEEfCzPkQFQy1TDRRCvPZDPVkAusMumaH7cZi326x3a7x8sULPL1a4NmHX6PGwQCE91A8RkM4ltxOGVhGIWCsxXqzxevra1STC8wXK8zniygshBCwjiKEEMy37qKl5ZyJ2e7OOTx48ADzxRyL5XzwbGyJVFWFxWwev7O+u0fTtLDWoajKIPQlFqsVur4J60FCiIxGiSsPQMJsu93h7u4OL168wO///u9Hrv/laoWqpujp5vY+upUE3mfRwjOQBSlgGVhAdLBiHHb7bVy79PolJpMagAilVcO1Oj5YmOVWO48HZwVQ0CI5mRJUy8xKxjuHzWaDzz77DLKs8PjpUzz+4AkeP34A3/XwHZ3TOhfTA7kG13kb5AuNg5S0xhazObZ3W7x6+RJdc8CLQuHZk2eYziaY1QK220PKkKEwIuyNAifDyHkcw9KL7mRd11CrFfa7DXbbLTabTRwvCE6KF6GHgQXCWnaD/ppjgyXH6V3o75lqkeP53+PQ7/NhFnTnPjcWSufeP3fu/Pd3uYPjhfY2CzH/+233kZ8vT1HJhSlbfqxlIdyRyZzSH9J5lZIgwjyiZOEEQdJgAkWhMzcAg99z63u4uQSMNbCG7qfUBZQi99Bknzk6SRyz4bhFV08e0+uIYHKSgE1KJI5rfnqfzo+RMM4PtnJynjEq7q8xnU4xnU1JayM/3/A8+RxHFw7H60mIIX15YlaxcCGfiv/la+eUMMs9BwAnXc6xVRH3TbCGfHYu6nmZcuhOBsgImYhuZkxD9eQBsNeQ1zj2faB0khJKCdgzNgZbT0O2CzFwG0UmfGICtFQDoycC/HiX7TQ8hmMVANEMWs/n9H0MJs3Aex49zKOJ/C/5+EmqsvuZt6jjgdUhcpVbQmNhdeq1cfiXB5HP1/d9zFdiMkb+nhAC+/0eAOIzTadTTKdT7Pf7wcLLBye3PHOhzZng7Gq3TQtrLPa7PYqqhNIaWheoqxqD/DuelLBYlBAotcZsOoUWPbS5QPfJh7iYldCFSjVO4XDWBooggHW8AC1+hIVzfXOHXdNBFTWuHj5BOZnCQQJQsB6xdClGloJ76UEdqrkgnZvqxgjcSOCntZNccabgmUxM1MDeeRjTY7PZQMRCfBs3GIffWdA55/HTn36KFy9eoG07vH79Gs55LBYLWGNDNyoEC0SM3NRcUA8FsoiandwnjpoJ4VGWOtwPzSdHJvf7PXa73YBdJV+f5w5yZVO39bw8SoQoIJfRxbpD57BcLvDNb34T+66HlxLX1zc4HNa4mM0wq2ssqxqu93ABZ7Wh2Yx11KjEWgfXdiiKArPZFKvVEoXUmE0K7Lc7XL+6RlkqSJmsHXjAWQ94BQjOdaQeloT3sofhKRWE97oUgxJHay3dSxbsGwf88pSV4UHvG0PjwTmFLFSTPED8/rsw9fwYCLM8wZAFBd8sJw8KMUx5ADBoCsLpE4zB5ZnRp/C0UzjbqeuzMOs6mkS+HwZN+Rzb7TaG0WezGabTKeq6jk2EAcQav/Fk5JQ1bFrnE9IeOuztAdYb1JMaZVWhDudP2SeBs8wDxN1PQkIWBbSaYlJ4TEWLyn2MApawGmcSPOEB72iyy/DMVENJm8MLWmyvr2/R9AKqmOLho6eAnsBBwgtFbg2I4wzswnPemXMwxuJw2GO1usBsNsN+v0csV3EeQuUak4WChwfzklWoipKiUtah63r0XY/dzmK9vqfs/IIiUxQRJ2Gaau/IrfnRj36EL774Eh9++BFevnwNKTU+/vhjmN5SdQM8pOSuSh5+FNESIlmZ+Vyym0KWjwXjjoyh8Wd5zXJuIVOtr1arM7hNOlgJsmKfTCaDxGwBSmRtmgbGGngnwd3HV6sVFqsLvL5d4/mrV3j15jW223t84+MP8cHjR3gwX6J3hliFhYBxFr21hCkVJVHzOINSF5jPZri4WGFWTVA/e4TdZot236EqFZQCLOOmntJrICUkOEfLxLUlPWIOG++FFOCQ0XqkZs4W1qR9PbaSkwI5tqic84GKW6Ke1fE7fC5WUMdO1LttPs1C522u4Pv6rO/7vVyL8sF/54GB/MjfG0tr/i4Lz3EjkjzlJL+nsQA9dc3hRNHmNY60k7Kp7APBDSPTITFlsHVGmJqEUBJaS5RVCeUoZSN5Tz7l5wSQNKLAgtnQaEH0xsJ7KjFRuoATEg45c1rIGho9FmNnbOHkEbl3L5gwbxCAIlojJ4hhJa+7zP1vFy2s4ZyxYuq6duBqsRsvs4hKmoOxm3nuPhlkHt336DtsibMCs3ZYxpN7JvzdsaGQC7VTVgS7hh4ZBq0klEyRS65i6LoOpu8zwCEIAJ9SkLOpiJ+SUkAXGlWl0bfcB5Y/5KMHB+8hHIiR1udVFcOxzS90yi7KYQQ/OE+65mBPZeOSfzYJr3AlVubvKW74Pnjc9Wq1iqysHM3MXbG+72NDibxMhaNg7HZwEIFvmIHlXNCMsS56zuNFztZfvrBms1kEWhNGII/Ox9qRFwpjMvlmG+N/uTs8XpT555TS4OaqUglYb9G0Dd7c3FJUTGlUhUJZqGgBAKzuPOAtvO1h+wbwBvDB0kIi7JNChTq6YGUwHuEpOth0Bpv9Hr31qGdzrC6fUGNfQW3kHAREiIiyRUJLhTnFqD8oJxtba2MEN7WqS3W2R7x2owUlBFFtM2tFVZdhozhYx2VLoYi7LOE9uRnr9Qaz2RzL5Qp93+PrX/86ZrMZnj9/jocPH2IymaCuKxhLaQY51nR8N+OO5eeCA/xpspy1ToSMLJSMMbi/v4/ri1NEdIAUTh2nBJkHCZm6rrFcLdF1BtaTBd62HXaHDbbbQ/RAqqrG/f0a0ns8vnxATUYEtffoDbX8k1KjNw5lrVFpjebQYL2+x2wywcVqSXlgmz2koCZFVaFQlwqC15hz6PsG3hMVEYSH0i4I1ipY5x6AjUKFhXA+/oIbTgiJtunQyX4wB0IgMDAP13A0CkBubVmWQdD6NGjh+1/FfuLv64uLi4HQyieW3cfdboenT5/GQu77+/sY1p9Op5GOuqoq7PdEFcOuC+Ndp/jbTwH3uYDc7XaRC+vBgwcx1SJnjB1bcjkgynjImBmELdHcxc21xbmAgdYFvKIMfS8putQeetxvDigCdraa15Cihtac8OoThuYMnO3Qd3vA9yAqlTAhzsHBUhswScXAMvieLrhSQmp0fYebuw1aA1xMV3j45BkcgjATOix6Km3JNZcQMjBrUJfxR4+eRKtkuVwmEDosKg8KcBzXHLK1SGYKL9z5fIbpbAohLrHdbNC0BxwONiaWUofyOggzg+12h8VigbalFoFf//rXYYzB3/zN30SscjqdwtqGrpN11E4QhUTs351Fv8UQ0Y4uaQzWOcDBhcLv4aZgeiFeH7PZDIvFElVVQ6kiKYcTLtRoi0EEYXZ5cYHd/oDbuzV1g9/u8frVNVpL+CWlekxwc/MGu/Ua3/r4Y1TTGtCUysHCrFAl+qZHrTTKeorDfo/7u1tM6xJPH1/i5uUe6/stlBDY7xvUpQ54bmhOYi0Oh4YqEpxFWSlIZaB1iaksoBWNp2Mr2LMln6wtEmaBIkoqHJqG8DWR2hSysBNShkY7Iii4ONAQguAKgViyPJqv815dGnNWuEGYMZvEULOlL/ICybPl+b1TAYHcXRxbTmMhNo4OjRdgfv289vJtiyh3nfjzNpDbnQMT38eNzt0NQMIJYvV03qHvqVBXKxOsSQvvVBRmLMu8d4GU0SK6AKz9Mvs6uqX0Fzjo7cF0NwYeVB5UFCUMoSAgMDUsnhN5Obng1lpH3JEDOXHcs8+fKqBOoG2aP6UUFMiF0lpD9Ul5+LiQ+W8E8k8VlQ7zkrGHMIy0hnF4CxachMspvGX8YXqMsUXF1+WAlhAidK0aup5vu5fkWtHMKSUSL5pgLC3k+IEbkoSSO+dgeipv8kiEBMx4khSUiAnaNmB+zELR98zmy/vTZ+NCAQgXS6gEIFzyTEauI8Mc5CojX5SASH0fYuCAnz06I2RZcho3v8Yfy9cU75HhJJ0/xnvWe0/dmcqyxGw2GzAEsGWmlMLl5WV0K+MXM0qdruvgwgTx75PJZED5kncNH+MMPHi5m8v3cApXG+ecjQHg/LVx0fhYgJ6KmIyxtXwC4yYIrpwMCZhSKQhQoq63LZq9QFkoVLqgAmcl4do9bLuHty2UBKQLlg84s15mWEZ2P+H99XaH9WaP3aHD5dVjTGZLeKHgQfTWxAQMIDiZzllwkJU3KVsLqZ6W2QtUyj4X6Tvr9RocDCG2Eh03Eltn+XjCexTeRBr4AAEAAElEQVRlSXctBZQqgnDnJiYllRdVFJT54osvcBNYZbuuw6tXr/BHf/RHmEzqsFbGOFUaG8o/O45CDx4iblAALkVEeTrzOeejDO4wrxfyQmwodVMoQrY+VyjkyjaeK1NISkvUdYnlcgEIoGn2uL27hSwqFPUE8/mCyD+1Qqmp7hUSsN6hM33YI4RNCqFhrUffG3z80UeAd9hut/jxj36KVy9u0O5aSO9QFhpKChz2O8A2EJ4Q1fl8ERKee+girFtBkd2+Y3iA8gTHaR8cFddao65rXFxcoJ90FDEPD0tC38JZG5UiVyQAgBYqNAQqQgkaMEIyghAeB2BOY7r53GvnXOQzW6/XEQRlgVLXNR49ehS741hrBxFLpkrhLHzGq+bzOZWmhOzoFKJ2Mes6j4TwZmMByBxlufDhf3lFAn8/F1g8IPxZ3qSngFp+Vr7GqXSSfDhpPoNAFURbrQsJLTWElDgcdtiZPYTvsKhrrGZzqLqGqDTsYQPbbOH6BlVBuspZ6nkpw3m9Dw1Z2aKTwdqVCnf3W9zcrbHZNfjutz7EZH4FBwUvSjhPxcjOCWhIQHhYY6ELLi8ioaWkQjUlYSZEEmZ1TdxfCCY+a/HbmxtACEwnE6xWK1QVIHVKR4g4R3QlKOReFgUmkymWK48mwA6b3RaLxTR2Abu5ucGnn36K169f42c/+xmMMfj8889xdXWFuq5w2O/TfGVgPgs0dn+GUMHY2k9pAhyMyNcTW5msGDlay3TwZC02MS2IalMrLBbzaE0yJpvfB/UCCsC0lpCqQlFVuN+12O93eP36FSbzFR5OZlgtLyG1hH7yGLVWWCyX2Lc76n/atUBoFtNbh1JWsL1DL3r81re/jc8//wxvXr/CZz/7JfbbAyQErlZL1FUBpQR22w36ZoeiUJhUJR5cPUbft+hNR+tOK1jrcH+3Q9+1cM7AeSJr4FQVosXS8XlyGCC2YgTQ9dQYqW2b2DCGMwt4bOuihukNXOFQ6BJdZwNeTPXCHPEd732ep/HBFqi1lpJmWauwAGNBwAuWJy2/sdz1yN9j4cE/c3bO48gH4kLLX2ehcgpYHboux/RBuXAcLtrh9wfRlsHiH97X8eu0sURwIxAwAR5way1M3wO2RS8FXFXBGQVZULsx5wwQMrl9tjFjnWDuEnhkm4LajXXGwlqPsppA6YIKzyHiv2QSRLQ7/CDhJEZwQIIERCDdG+o/rq7ow1ySsKdo6HB8BPvStC6kpCYuIuCgofSHMVQgsZw0TROrLTj1Rik10Pj5XQ0DFMf469F8Db7Le5Jd8ePvkiVCKSWs+Qlv7KKCNMaeXc+DqwvCzogSSkKghXMWxvSwxkKAAktFqVEXEpNSU1+ALghZl7qfkcEnoyCfLaiqxViL7XaL9tChUDrOpxCI+1IKD1+yNUTF+0Jw6kv4XKy5TIJ9QP4QRyzlfuaEpwzyG9PHcc3hqPQanYMpuOGP5UEav7e7mwPMLN/U8/kcm80mBgIYaGdXI3fZgGFnnnwhAIhWHC8EJr/j95lr6pRwHGg4QZFNjo5yTtkpATVeXLnFlQ/UWOCdwuBOCdK0s2hCWM5opYmqx1MZjSw0hNKQsLi9eYW1EFTz6PaA7YPlQ5QsVMyb8cZlUUgfrmmdR9s22O4aQCg8fPwESleAUHBewIKanYS+dBSoEqzdCNMwxkIGKpyiKNC2bVQ4xvRh0TqyAjzReXddi65rwxxobLcbSrZVGnU9QRmifOLIJQCCtANEcksWbgmlFHa7HX7+85/jk08+gVIKP//5zwP5X4Ef/OB3IUQi3aQgSMLphtMxAHHi3OTgcH4rEesSQG7hjec7JfimXCrGXHn9HQ4H3N0FdozQlVsHIYzMQuR7ohN7KC2xWi3x8ccfwaKAtQ63t7eYLaaoVgtIqQnP8p56nHpPTWUACEGCRwGBdkfi6nIFKSwWkxls10MrhcvFHICDd9TjolQJ01qv74IyCv/gIwGmCmlDHFzLGYM5QEj7hgyNMku0J7hFoUAJD49FTLfxsMbE4VCe1uCknmSKKldMIigSXkbnE2cTfhks4NwCu7y8jLgZ42jGGNzc3ETGUNauLAzyrPocNzgcDtEEBRDdzqqq0HUd1ut1FFCc+MqNRvhgq66u6xhhypuRjIVVrkXG+Fl+z2Nhxp/JF/U5zEzQMkFoFEYbXRWUEGotCi2hdAHpHKQ54PMvf4nucMBHzz7AcqGhtYESDt52xPMlFZwVFNIRFkJw8a0IQkKhNwb3mx1u73eYLi7w7ONvQJcTeFnAeYXe+UCSqAjQ9UQEqLUGpYMQm4JWCmVJWM/t7S1WqxUmkwlevnxFY+c8hPQhsbZH0xxwOOzD3Eo0zQFcw/f48WMsJBEACnkszFhLCyS3pJpMsN8fcHv7Bv/hP/wH/PEf/zF++MMf4s///M9hjMHl5QW++c0/BFFwh+BEkdO3WwBpAae5Gi/2VGPIFqT3bHFlSi/YGrmi5u/nGBxbkizQbLCEdrsdlEy1uvP5PPwuBpgZW6yAQ6EVHj56CF1O8eZmi1fXd7h58RIP7ANcLOaBlcLAegfrPYx1IDtJU2ck61EICRXgh6dPH+GDp5doDhbCeWgBTEqFZneAc8BquYTrS3TtAW1zwOvXr1GWOiaO96YPY1OgKEuUpcakLuJeZsHNwizHvG1VoarK+FmtC6hQVVJPUqOgaMk7h/5A+GOqhWVlRUnG3OIwT15PKyrfiknxMJQwqJhmHIxvdpx1n+NSOa4EHDNw8vf4PT5fLrDYcmPpn583Pz9jc6dq3/jBTrkbuaAeH2M39dQ5x58fB1h8+JwUkphW498CSkj43qE57HDYbtE1K7jJBJBBYATLYDBZwa8U7DKKlJ/T9wZdbzAVEtPpDEIRD5X3HH0kgDZGoMAULghuiRvU1fGipDkO7mOKq4JxJFYQCf8ggZJK2Nzg/lmAjceStfzhQLmCr1+/xnK5xOPHj/H8+XO8fPkSVVXh8ePHYbzHgP55N3IY9Dk11+PPAxwsOTa+j3MXh4LTx3FwzkBJBV944izL04TirfA56EaEFKiqEsulwmZPyr5p2mD10AedZTee6UB5vxMHnUDgNPCgaoyyxqSmgJISQKWBZr+HBwXqvChgTQfAhwY+dE9c/eABVGURAjZqUFWTz3/eoZ6jr4P9xkECKSMzbT43zlrAeEhpQ87eyLIOY3Zy773HEYUZn4ApTABKOGUX8dRxCp8CEmd/Xj5krY0JrLyRmMs/x27YmmOrjweX25Tl13mbABsPxllr6z0P76lWjseZNw7X4NECoybAEh7e9dht7wFvUBYCdaWgpIeAC7hS+K5PYemImTGLrRcw1mPf9Li5XWN1cYX58gIOCsIJeEmWHZxEEmacLhsK5G0KvXOeICsJxqzYcsrH1zmPrm3DM0lIIeEF3bvzLuSKbYleSZWDjkYAw3ZDZeJBEdacKLMoiiDAPBaLOThQ4Z0lypoj/CRhXePjeBO8/fVz8xyRoTPKMAlnUlpSUg7fZr1GE9hn62kNXaiQu8UjIqIg7Loe3jlUVYnZjID0V69foW12ePLggrrOx9ANjx9ZLqzQv/zyOQptoTXloFVFgUorzOqCGskI8pC87eCdQ1GUmM0mUVhJpaCKAvCALkooTbW7XUcpHt4PcXI2RtgbI0+NknrhWRXSOs49trT3QpqKTHx5UdsCEXs+Bf/kc3YMBwVjaSyImLl1vV5HRte8gJYvwp/PGweP3U9+nYUZJ9ryoMxmM8xmswHvGKd2eO8xm80id9Td3V2cRDaRc8sQGGJkOfj4LgvsnJDLn4dKlgwlAmaFz1JI6jUpBLQU0EJAOAdrWtzcvABci0mlMJ8W0MpDgPLMVEFZ/nR/xFUmhYCzHkJR9BJWoul7rLcHfPH8Nb77gx9iurqEhYLwEkIoCFXA26ARBTGEem+AAOpaY2AtjRXXDzLWyWOds+pSPSlFVfe7XeBmo/PC0XiwEOSE5EIWmC8WqKdTzAPVUnTJnRtQ9xhDWCmPe1VV+OY3v4H5fBYUhUfXUXu0QkuyBLN1xEB4vtiHCzsxFtNrEszZRd9J+Nn4YNyS0wJyiyxXuIwnq+wUh8MhZgNUVYUHjx5gOp9CiiqkwZDCMdahbXvsQz7dZDoBlMbd/R1+9vOfY1IVuPjDvwsbGI3JjGQL3UFIDuAAf/PXf4Ou3UMIh6vLCywXM8ynNS5Xc3z49DHgqFYWtkddF5hOqhDlTBRRPBZeClhr4KzFft8Fa8zAmD7CO8zXliu+pmnQdx26rie+taCZmXKLFRx7NpTOktI8fIY98xo5ZYyct8zZKyxImOVhUC5LYm3DGn0sFMbWUf46f44fWikVfW7uhsQYXFVVMRrK5myOV7B7esoCHFtcY8F07vfxccrCPGXq+kCbTX+DzY/sXuMUAd6ibfcALGFVhYAQXDBNhd+ez4PRGNIf8BChl4DFbt+gns5QTaYx2RKQKecrT0nwAp5dfk71QNKWbBmzhVTXdeRK857wN+9BBcEgy0zE+yMAmPMKTW9glEFRVdABUz2Cv7MXBpUG4Z4WiwWa5hAtAMpvPE/SJ0RO7jm82imlJUSyxtI6OK3c8vk4db5cQavsmdjzYAXRm9ztZHOegjHWUVdz5z2VwFUkJDebDdqG3Lfk9Kfrk1ssYo7g3d0d9rst4B3x4BFwi7qkzmAODn3XAc6gKqnETkDH70t2XQE4AVBT6lSjysKMAkBFtMY4QJD2bOpexX7wmFKJD5rTQGrAY83KhSGSd+zVNB5DeaRPYUdJC2IgVIaTfn7j5w+RXyz3xwHEcqOu66LlwC5q7grlpVH5efPo5znLazwA43vP/z73fvxdiMy1F/H/UrAA8wAMTNegafbougMWVY3ZtAa4DFwQ47p3LmqowRiKQJ/tCNe5X2+xbzo8ePQESpeA0BCigJfU09I6z84uBIIFmQlmpujhseX0h7quYyIzYaUkqMIAwDn63BFO6SlAICUtcCUVlFDwjqKf+90ObUeR0iL0WuTNQ/eTrLof/ehH6LoODx9eQSkJxV2KglLgqBljeIPFH2XSadckvIXzy4LJCI9fB05vmNNrg95nbyM/omryiSQAXqDvDLbbPXXVApUsFYXGbD5FVYQyPetDVNNRjJsM7zg3TlDK1Gz6EFVVYDmfoiwo8HE47HFoDlACKMoSEjooGoQWcWN1Q3PPgR5OubCWq35EFGB5BgILsBwSklIQmUJBzYgZOyd7V1CC+YCUhRWkH8zVu/bzMfwA6DxZMH+Ts5vH7+eLhgVO7orluFn+WZbuLNA4mXa320GEibm6uorRVO99bDDCqSJ5SkguAPIE2Vz4nstVYzfrnIuZC/hcE7MgSxxhpGEUCCcTzsD7Fs1hje39NQ7bO3zw4BM8uFpACAMhPPW5lNS9mjL/i5gTxPfNfGQGEl+8eI3OeHzj29+FrmeAKqFUBQsN5wksFlABa/YwriebLwDofdejrEosl0tIScy82+0Wz549w+3tLZqmia4DQFaTkhLWGOx2u9jsOI6dJatCSoXJhBas8EDfd9j3PQHPUkQa7tXyIqwp+n7bdthut7i7u8O//bf/Fo8fP8bv//7v4fd+8Duo6wpd16LQKlo7lAcV1pfNLB3viYVkJHiOQfuxsjo93+86TlruxJoY168QIrrgIlgatA9EdG+dk9jvW7x5fQ3oAlJrQEnUkxJFcYW6KgEpYHpL/R2sgw/5f0oC0jo4Z2AcMJ1O8fWvfYiHD69gug7r9TXaZoe7uxvc319hHuqmSy2hpAcC5uuj9ZOYXmmNS0hRQMsiPi91xmIKIBuhBU6tynHtuq6hiwK61AQndB3lRnYt4KlmWE0LVJItOxe9kzi+YZxyYyri0+JYrvC9SympAmBcinHOMjvltuXWzSkLL389T+HITXPWanmn8ujGBOrrxWIxsPjOWYqn7uHUwswxkFPnGZ9LShm6DuXPKSA8WWvCewjv4L2B7Vt03QF936IsFeq6BJFdIwYKfMhep9xMETclL7ZQBIDtbg8HjeXlAwhVAEJByNDc1wWKnXTH8N7F7eqDFhdIxIGsKXnzcd3qwDJDooXOLeB8nllbSymBkAdnjKHejp6sqqoqI4jNh3O0CZqmwWeffYbtdouPPnoGbifHuXe08VNyLKL7l9/naG59uhoLstEH4hi//RhbLvklsrQfBnvC9Tji37YtrYmg8HiDenh4T4LqcGiga4o+Skk8a2UxQV2RdUcdjKhTUfLCBBByFJ2nSOXl5QWePHmE7XqLplmjbWgu2rbFpKqgqxplpQFniLAsCPf8CdOYSQiZLNZ8j1tr0PfJneRIaFVVcU8TmUAVadR7kWqJAUDJ4wTac1DY27Dss5bZfr+P9C35xpdSxtKivMRnbI2dcuHe1+Vj85zPx1otL+xlzGxsYZ3Cy77q8T6++WnLjQSSCJKHBJmFgIXpWzSHHdrDHpcXS5SFBufme++I48FzJ6cANEccjULxzgPWA8YBl1cPYUHUL7qUoY+mCNBdqjwgQYYYFXWWhVYVag1TwwqtdUxqpvy04ZwYY2BCThG7AECqnS20ThZRUK1aB6vYehjbow+U2NvtlqyDkF9IqQEC3/ve92BMHz2AzXYDKhwQ4V5zXxIRnxwsfgKR0n3E1+l/Uda82/AaHW9fS3FNnIUrskbH2eEcC1nKzbPWotITTGZTyEJCeqAsgkt4IIFGSpSu5QXV8VIUVVMfz96g76mGej6fQUkL6Q0mdZ3a5CEbviNIJX/ct+8HKVUQ2JR6oZSKicJCUF8K37Uwzg66wSeoKQkihxTJP3Wt0YjHpxjff/5Z/fr1azx8+HAA/POCn8/nMWHubW5ZftK3CZdcIPG1uH4TQKQOytkclFKhMFoeCbMxdpYP3NsE1djKzO8t71aVMyVISYC9Awt0RRvaOXjbQwgLKXq0h3vc3b7C5u41vv93vobZtIIQFgLEAOvhAU8F2OkWQlABIgqx3nh0zuHr3/o7sF7h0DlMJwoAXdc6D8iQLe0pouqjlU0W2XazwQdPH6Oua3iQm8bjud1Scw+phsSMQkg0hwbN4UBEgc4Fl1XABLeiKIoRpbdDWRJA3DQEOhtDNM9N0+Lhw0e4LEvc399js9lAKYl//s//R7rH7RaffvpTvHzxHNZ0ePL0MWEygmhleG5IgQAQ7LKFBe6ZlwHHgi7bqKdk2intzl89d+QCC5mVNngdPnobLETgAGsAITSkKqBUgaZrUNc1Hj96hGpWhK7nlIdm7zys9dCqgHEWxLJL66QsNSpdoW0b7HcNmkOP6aTE06ePYPo57uc1Li4vUCgN4fxAmiWaJ1ah4Xkdu6GJkWPIUCOD4TEjzC5oTs/eCoCmbeAOLlScpIT5lEcazutp3qwNnoTHQC4M7jNTamPZMvYYNAuPsZvGlhl3cT4nHM5hTucspbE1ReU0CVBkiZ6TBuZu8G/6GAvoc+5zHDiPOPjSh/ZawSoTIBezOWzRNGSZKZEqJzkRVAhKXvVIfSfJfaBpcy5YZ87jwaNH6J3E+svXCO2BAdB1pUewrBBK3JLL6b1D17ZkmVUljEuLJlpmA0wx4RLG9APsMpwwsqjwJhWZBcRzRFZhYk3o+x7L5RIAQupNCykFvv/978F7j1evXuLTT3+CzWaD6bQOhhYt4JzTKhqg4OAA3xf9Lz1BXPp828kVjK8er4Hsr+jqnzqG1z1jw4nQTGRQlgOq9ABCeg/VVBZaYzabYrqs4K2Pkeew3yEKCe9sFBpCOGglUZSZZWYslKoxn88AXwCOyCAkBGzXD56alI8Y/HXuGO9VISi3zvtQUqhFFvm06DP3M5cj+doAmL/MHwnL0+N9ZvxPHJE2u21bTCaTgYTkqMYpXOldbt2pz5z7m92XPAVj7Pby509FHs/50G8TqOf+ftc9I2x+2meOXExB+WPOdthu7qEVsFxMyaymuwwTGaJSET1L+BM7m84J7JsGTechyxU6Y+GlwmQ6h/MCxjkol9wr7x0kFAnMIAiM6eGCMuCNKYRA17cQoETV3X5HGd9ax/vzQTCY3sQ5cc7BhLwwFmZxTJLkBAeAOCSvBAHKRVHAOqKp+clPfoKbm5uYd8gWsJQC8/kMk0mN1Fz21L/cgqR7TUOZLKOBaMotLr7lgf+Z/8To9+NjsLZcSv5N62/I3uIzoWoDIwRv+Ek9iaVR02WFQ9PAdETWCAEIScScpDhofUip4TzQ9zYm6t7e3KAuRejGxE2FBMSoICGfsmPJ7pMv+o7Dj04kQyoPZSkMMxnywBxDM+I9rpO+/3ZLOT90WZZo2xZ3d3fUiCI76roeaGiWtIxlcfLqu4RBLtiOLB0gVhlMp1O8efMG3vtAw/LVcbBf5xjf56lDCEHWkA/mkzMopIMzLdpmjRdf/AwXqwoPnjyFCBnzgAisGAKAhJQaUgjK8vYkSCiCKWAc8OrNLTa7Dk8+XGKzb1FOSjx8+gyvb+/QdwbKS2K99YC3JkZDCT+3OOy2ADyePHmUorpKYrfdYDKZYrGY4fr2BpN6gtlsOsRMHDU76UJlgOl6GE9WnHEWRSgIJy8jWXXcLZzTOZTWKKsSdT1B13X44osv8C//5b/EarXCxx9/jKZpMJtNiR9MKzz78BkWiymM6eCY1SH0ikxHtjtZKQh+PSmM01PH2NqRszl8P752vPbGEW43JuICCSAuCwQ4QMNkAQad8WgOFMX/6Gsfoe1afPHll3j0wRWur6+x3exwubqAACn3PgRwEFxrXWg447BvD9jvtvjss19gu72DFN/Cfqsxm9V4eHVB8AMcpGTM03GICUAG97CtJgS48oStQ+BY0UcPLvyP88YkJa1l1tbQ08vlBxXyn/f0xGD8318GSE5ozcuF+GDesRyfGt/Yr3Pw9fJyG/79b9O1PHecE2YDczu7b3gH4S2k8IA3sKbB/e0baAVcXiyRcs+SNcElR9Fm8z7Ol/P0b7vb4/Z+jd56NJ2B9QLz5QrOC/SWsIYYcQp5ZSK6ZQ5dR0EUjgDzc7VdC+ddhA9o41VArqK9D5iXgQrNXDnZ2fRUtsKaOA4IEKxKG5Ub5ysVRQlrLe7u7vDnf/7n+OKLLyJeBxDgr5SkDkOzGZwzYEaR4HSDLbOjwEDM7PcRX+Nx5nk7PqK/Otom55VXnCdgIMySYZpdG1R4nr5Hp/bOozduMJ5M5HB/dwcA2G33uLu7x+HQkHKSilwypHOp8FrXkuK4vb3By5cvsV6vsV5vcdg3KIoyJjoPn42hhDAGcZx4PNPYnBuHeLZooZJwSowsZeB8q2NvEJYjKZB3bm4yaAD5fL6fQNN5kuqY3ZUFFgu0cX7W2/zX9z1yAZJzn31Vq+zXteLOgcHnAhkIG4syGgy67oD9do3ZrI5Fu8mkRugDyVn2AG3OJCh52+72B0BIVNUEuqwgJPXBbNoOuigBQUmw1lrWsXRP4d5M34fmsBmjSLDVWfnkpWAxNy/btLlCcUzRBMQI1sDV9EMcyViDskjNbbTWgJCYTCZ4/PgxlkuiAfr8889xc1Nju13j/v4Oztno9npnw77zcCYXXmRHRKuMNySDyBhZD+N1lLFrCAh4YYceKvIk7/Ta2WWenzrDP5UeQSQi0KubBkKVEJI+T9FGigLyXJE77yC4IQ4bDkIGZmNNzMWVx8OHD+G9pRQY72O/jtev3+BiMYNmnj2f3Qg/TH7vPgi0qHsz5SuGLnSW/DI4ybnAX96nIRkCwcc9s2VzyCMqnvfY3zrP+TocDpF1lk9QFAXm83lsrpsnr+bChz/Pv7OQ5N/Hmm28aaSUsVFvHq34TQnN9z1OaeLxIQXgjYWERaE8XH/A+vYlvvz8Uzz74BEuVnMUWqXJ89RlWusKAhLWkCXBeIJzBh4a1gl88fwloEpcXM0xW1ygR4neeLy5vsN0voK1FvvDHk3bolAaZVGA6ymdc9jvd1CaagcZ4wLI3SH30GF/2EXqpbquExYWnpugBYuqKHDgHCGlUFY16qpCVZaAUARq+5Q/55xD2zSoqxrMSUVBHGpQ8/f+3t+Lmvpf/+t/hd506PsW++0axvzfUJZLTH0N07fgnWX2TLlMV0lujkzWKSsIIRMUBrb6eV6BlArDNRO5pecx3qCnjsFaDHPLpUdcA7taLOO4czWDsR02m1usHj6GUIDzZDm/un6DpmmDstCQUqPre4hCUUu48LryEoVXKNUEda2g5sAf/tEPYboO1vRomh3u7w+4venxy1/8An/3B9/H5WqB2aQCnMgdhKAncmuNhUeQIt5BjMrk4mczIZ/no40Zm5MV6EGUSuw9BEr3eOVT+YA8X9lNv8eh88x+TqZMJ6TNxp2SWDgJkeil3+ZqvsvCygWfECLiLbkpn3/u1PGbxtVOBRnS/bKrCMA5COGglId1HQ67NW6vX+GbX/8eZtMJtOJ6RtLs1jqUpQR8ik5JRXxgxjo4AVgvcHN3j+XFU0znS5T1FLYXhLM0e3z04DEpnaahNAkhIFAAAfQWALq2xWQ6iXlfEbsxBlrpMM9tVCJlWaDvu8FzMreZzspzSLHpWI7mPGDckPLHe48+1PLxvJRlibKqUNUVvv3tb6NtW9zf3+M//ac/x2ZzDw+H1XIOY3ooJVGWBYS3iPiYaPkOyLIKFkQ2Y5lpJdIPTwmqvKmS8RnMDa4P/AqbJa0Dn50rRSBtBpekjU3fcc7g0GxxqR5DSOoONZnUEEKi6xKttOAoZ7x/yklUQkE5DS1LVIVCNRH41je/gbZpsN9t8OlPf4LD/oDtdo2b69f41tc/xnxaQ0wrRGDfZz8zeCCNI48bQxY0fkmwZKM+sOyOqyMG4w1E7O5ot46Uz69z6HzhMdg/vOnUg5JvPLeu3nacEjS5gGOhmMzrtzcjPnfOv43jlKAmDAxhP3C6hUVz2MLZHnVVoAiRJHaT2LWJE5xONjizMRZN6wChoIsSRUmt61NbLx9pWcj1p+RF56lhrg9WB0eUmOF3qBSIfTThFoj3xs+cON2zsHq0wPhzcZQG48UKzjkbrfrr6zeYzeYoqwrL5RJt2wDwRO64nEMIj+ViGiN4jKGxm6F1shCI752v66OiSBsiUEzHMQe8zywML9Jnsw0avx6fSUQQ+txyPL9Mh5F4ARo77zlvjp6pritsNls0TQtrHQ6HFk3Tout6TCc1rReRX0tQT1XBqSlUQsZjPZ1OAGegFODtsJcGnE2wiE+F6hDjZ3+PvSWGn3qbB0OyLMiJbO1HmGU0blSrnElavNsgyg+dRyjv7+8xnU5R13X8ADcuAIZJdKce4BT+lb9+ymXk5FghQhkIhq7of0kXc3zk9yCiI+/hrUOhPKS3cP0eL774Bfp2h8cPL7CY1mSVeRs0K5U8aV2GUj4PoSR86BTkPOCFwnq7w+vbPVQxwWxxifnyEs4LSFVCSwktgPv7NbTWlDumNUzfou86qu8Lq3KxWKDtWnRth3u3CSBsQQ11+x4eAk67wdxE6y1ADd55KClRFgWmkynatiFXKMIDFhBqME7U3aeDCyVqk9kMFxcX+Df/5v+NZx9+hG9+81v41re+hb7vcDgcMJnUKEsNXUiUhcJyuYAACWMJB+8tnLeYzSsadkf9I01v4SwpESaydD5zbTzAVhd5lsE9BWg+PBsgnmgjQv5CqmhgbXV+XaSIfHp+gPeHiyU+NNsexnYwvodURCM1m9d48vQR/ubHP8ar1zdoGoPPPr/G8+dv0LYNPnj6mNYIF9obByiFoqA6SwkB0zncXt8QZ5oW+OSTj+AMdURv9g2urh5ASof1+g7CucBLJ1CEbmFKSUidUoV8FPakOE8llvvgJqZ9mfq+cppN7nJSkERQPmM2xrSGUkURNbwmZfvrWGhRmAHAbrcbEOfxTXJdXw6snjvGAmAgDHhQsr+999Hy44YR46L2/1YOUua00ZQGhHNwtsXN9StMK+DBwyUmVQkPGy1c2hoU7fHBqhCM7SA4U0Ji37S4vd9AqArVdIbJdI7OCcoWh4LyHrvdDlVdYTJZodAV9luDxvQoQkmSDEB713XUKac38T7quoI1luOCSMXtQZh5ogvqug7wPvCYadQVCbnGNxH/c85l5HqIVrUxBt4RuZ8UArPZHH/9138NYyyePv0A3/rWt0NH9Rar1RKXl0uUVQEpHJw3gCAhqgpqZmydR6U0MYiEDHUfOLO4+zqCpQK2wiK+LROAHfE2eo8tA3HWxUwW9bnDR5MwjQGQsMmEGwHWGThvIBQJgHpS4vJyiT/7s/8T230HD4U3r9e4uVkDnkq8LKhxDQDiuJOCSDAZgzMem80Gs3mNspzg0cMH0NSUC854CBgc9mvsdjtIT+QBWmqgYiAeEF6CuSMDug2MPKe37flxbt34dQERU5BYsPH4JkHGf4efyBTLVzw03zRLUs7mHadGnHIt32X+vY8wyi0DLnoef/+/lGt56ronfw+xR2d7tM0BUhAvVRHoW9ik9gN8IuAzQQuF1UTugjUwhgrEuXM2uHYzfF+KxLVvrUWVcePnUVMgaclsvwMgq8fBQyoFmTWbid23jA0KBUC2OGOgwtojGIKfLcdQaaHSdanImPA2Ywzu7++x3W6w3W6gC4kFpphOK8p2pyeKsFbcAAyEc+1mbJPH2EzuogQhNeiInTaXB+J3wwBm6+tYiOVu2PtAK8cYss/czKRIyrLCdDqF8xomAPQUBaZgWB+K9kUUFMSQ0jYGRS0hFLmQzYGqAjZViUJRhYgE8+eJ0GyHhZmKLiaxyDpw4MQDoREOoM50Ex8NZxojkX4O4gpH2zZ33f2RLDmJqSEzfk7cVo7LaU63YLJE5priEhS+EJcd5bWKp4RbMsGPo5z5ZxljYT4tIQRubm4G1M7nKHz+No5zwYYBuElOGrQCYBvst7d49fwXqEuF5WKKi+UCwrOWoYXkTACIJSKHGW1KYuGwzuH2bovdvoP1Go+ffoh6ugCEBgSlZXhPKQtVWQHeYbfbYj59CHhibtWa6vq8J8ugrCpIRVGxvD/pcrmkRhmOBOfhcAAAPHr0CF3XYb/f4zZk6EuVMEytNSaTCbb7PYq6xsSH1BAlqXuSTwwnk8kE1iYCxrZtUZQFLi4ucXNzg//4H/8X/OQnP0ZvOnz/e9/F177+CX7wu9+j8wTLi5gbArbDUlEC8MSw6jRxgBHnl4cRjsY5odrhfxKABbudQCqqF3K8N/LdN3wnVWycV6w8TsPgFeXG9V0LYzpI6WEdKY9Hjx7ge9+TuLnbY7vrACHw6PET1JWG1gV2zR696QEhUOgSwgrstw2ev+7x4OkU8yuNm5tr4vYXDr8oClRFibqscLFa4aNnj1HoAqvVCipw6DHW5qxB1/ewDfUF8BCA0PCO0m6q8rhJUbQ8rQvKZgwxWQihwigHvj4APkv/IUuMrbI4uODka1Jeidbpq3lmIjHNcukS07PkwgxIPP55e7lTwiyPeOadXE6VRLF/zWZ5DliP8bn/GsdRmkYAnZUEvOnRNltcv3mBy6nGfFJjMZsisCpCeCoCd7Bxb3DTWkAQLbb3sN5hs9nj0Bp4KFxePYIqp/CCispdgBGUVCiLkggQA1mlB9EwS6lgQ9a896CkSeUi6wK5tYKSNJ1F1/cwgaTRGIOHDx9S4nRD1M9XF5fQSsGGGjuGGt7c3FDibBgTKQQ1/7Uu1tNWVYXd/hDHrOs6FLrAfL7Aq1ev8Rd/8Rf4j//xf6GmLt5CaYnf+8H3wBrb+5DxLhAEZT4XoXWeC2VWxkFYR7WsIgP/hctkUyqsFgh1rGcU19l1EO4nt9DCSQefO8rBo4sQoaE1kJJczrqeYj5foKqWmL7e4Ppmi/v9FpeXV5jPJtBKR5odUZQoVAFnBNp9h/WrHWZLjeVDhc1mjc36Hm17gDMGdTnBfDbDsw+e4vHDS9RljelsEXpPeMBRxkJr+0Cttad9CICcNE0BLFFFuuuj5HVWLqOxoP2dourOOfixuxqE2DEWTp8juCOkzbzv3s900KBTCVtTEe/JTHDW7kduxluOt0UzT2Fo48//l7LKxvf3toMmy8GajrSid9BaRX769Ckff+NvsRnu+b+A/ZArJlGEJNm4sRFcI5HbBvQG3+bYKcpv/5Rly1owp6/u+x696aPlnZ+EF97QBWCrI3hz2eKUkvoF5NBB1xHof3t7CyEEtWQrZOCsa9495sGVSFbPsG2cUgLeSXiXSBDj/ccSKE7ezFImTl1WMEaUfKbkyowhluR55Io7P3zAGGPStKDItXctjAm08lqhKDhLPuSncROZcH5jDDabLbTjqC6Nf1kWUAqhZ6aGFKFxb5hfYyx8EGbC+QQV5DiWEIBQgE85pCwH2DrPMw6kUEf7Nwz20aAO8PKBH8qfFfEnR9Hfdpx8N5xS5zfDtZbcIi53EyeTCZxz2O12gR9ryCw7Bvrz308JwHzimbGSO0Plybb/LRxRoAsPBQvhDe7uXmOzuYWS1ExiNp2GvpMsdgScCZnPzLkuqfsN9ba06A1R5NzcblCtHuHy4TNAamr66gO7gKBmrwBYEoIZOGgjaHA8LtwtvANMb7HfHzCZUM5ZroiUUmiaJlpdr169Qte2aA7EImqsDUXLijjtg9vImpqXn/eecBafcq0IMiBqJyEkttsdvvzyOf76r/8a/+7f/TtcXFzgn/zTf4rlcoYf//hvcP3mTXg04k6j/gM2w2FUVAhSAFAy5ixJ6eEc8d1bTS6nNfTTO8KFnPPwjubDhyYw0e2M0vgkUnPy9XM4btd1mEwmmEzq7MP0ozm06DuDoqigVYn1eoPXrz/HdHIFhxJ1XaGeV6jrClpJGNOiLEpASnSeov031y/wF//7X+KH3/49OGvRd9Rb4sOvf4LVcoa+c9jcb9G1LdqmQdd22MOi7/ZQwlLXMBHmylPn17IooHUBqTS0KgGESh9vYhe1ruvQdV20Op1zqOqKuq7HiGUQSYF5Fxj2FYlKlcyAMH68XP1ICCbr7f2ONA9RmJGGU5GCJ588IQTquo7EiflNjllq86z9t5E45sKM6/RyNlQ21/9ruZoRkMzuQQqP4NxhfX+D/fYOUjhcXCxQF0U0o+FDdNBy5JKeUyoJDxfYWC2MtWi7Hnd3Ozx7+DGuHj2FF0SHbT1b9DmPW4rAEQsrUc14+BBVF/E9Y4jNNMc9Is4lh31Ib25uYPoOpqdmHM5aOK1RKAVrDPWItI4AZMFZ9AB5Lh7Kh4UMYuTQRYmqqgFI7HcHvHz5Cj/5yU/wp3/6p/gX/+Jf4B/8gz/G4ycP8LOf/RQ3tzd0z96BaMVFcJdT2kCybAWUOoG9amrEYYxFLw164yKeBkeYEOOYAtyBXZHVxgGZ8XFm2Z3Le+r7HrPZLJJN5p9p2g69saiqCZTU2Gx2+NnPfoHHjxwWqweYLyaYX8wAESLHuz0FwqRE33VQUuLu9hZ/+Rd/jt//+vdImAVCxo8/+gBf+/gZuhb47LMvcP36Gi++/AKm63CwAuv1HZTooQQlaJdaU7ctLTEpK5T1BEVRoixriNBwen/YDQhS9/v9oE5b5kJMUMRSBuWQLPQUoIr7WQrAHg3daHwRz/NVvTJ9Km1i4FqM3Mx3He8jfHLrLXdtT53/nGv7VSOrv+7hWYuH1Axre3jvUBQJYCeVQnaLiGInOYjgxAhBlgPhVj2UZg3JAjw+VX4D6VkhovAQUg4c2sTsFdrgOeqeI2XAO4UA1HGUNk9hjAJNiFhvKISgKCh1bxncG4O9fL4ANcM5h9lsBq3J4q/rOv7LWxH6TCvHZ4wWUxBkyckeCp/oAoVrSwoc8HQJ4SGkDyU9Hol5Q2QjNXR3Tsz+YDZObbTkip3wJjLFBCGj62mMhekJjG/bBhAp2ZlJM5NBQOSbWqsjg0FpDWU8yqKMEXWm3eb5ZO1DLZyp0oCFFbmtFDn1I1ZpntM8j4zXqOc9K9jyzff+u4lSIyQ68D79YA+8n8yh78VoZl5wzpX9HJ0BEJuRvAszO5fWkB6ABobN2Ol0GtNB+HP5z/+aQYA8mEGTa2Bti67fYL+7hxIWT588hIrdh2T0+znZXMbicgfAUiNdOHS9xd16gy9f3ODDj76G5eohIAvi+fcCiAGEMKbOQQpJEdKiCNUaHkppYigVCkIJMOSllMJyuYx9DZUO3bGqEkVIxaiqClVVkZsvBXoArRA4NMQyW2qNrm0p+FBWqFSNoijBVhKtIQK4k1Ch1/uux367xR//8R/DhY3xj//xP8a3v/1tVFWNly9fhgTgVAccRj0TVh7cb5KOHLfyiMyoIeqptQh9JQWsDS3QNHU6csEFBUyw1AwgilOOJF1HZL+H5xybcGNYhbIC9OBM1ng4J0EuXAGBAkpWKHSNQ9OgNW8g7m7R2Q5FSQB8pRUuLi+gK0rf6JoOAh6r1RxPP7jAYl4B3qLZ79E2Fl3r0TQ95osprFnh9YsC1hgooVCVFfqWkpm9sTCwwVqnVpJl01MTkqICJ8Qa18NaA2aXXa1WsYyNySi8d+hbxljZzUxrQMqk5LXSsLAhYj06RtilCBLuVzFOdC4scgtpLMy4QDjnNuPvjM8BHBeXj6U8J1nO53PsdruYohEfCL/aA/0mj1zQE6hKBIxNs8V+v8ZyVuLJk4dQ8fEDz1k0XkhTCwDWWXgExlBBNYzr9RrPX77GP/jjH0ItLuCFhpAFIKi9mBSSkiADVkZsGAraa+qI7QGtCzjPlrOMjBMszG5vb6j3oaRWfhMQ+wXDCkxJrqQA9wRtDg06IWBCqs6knlCNZV1Bl5wHKGLUiphFeb5ozvq+x363w9//+38fv/zsl3jx8iX+0T/6R3jy5AmKQuOnn74KKR885zjCTuhHEGZRuEiwIKPXyRaVEhBSQEHBWsBaIrpU1sEaB8oFJ0AbPo/g5VbzufUW7c5s7XOgIP0kIaEHX7PWA546NAE6CLMSuqjQtC2a9QaHpsGrm9eYziaYTiZ4eHGJyWyKoq5RT6bYrW8ghMdqNcOTxytUc42t2aFpDoEKyKNpOiIEDSwaxhoUWqAsSvSthHM9vOmJuUOQldh1Pcqig9IFVMgokFIGOMSjKMrYrJuFGWNoXdehC7RQeeZBItzUEeKQNe0BL04E9IJ1JgYCbRQneM9jgJmdEkp/W8dY6J0DVt/3Pn4VH/tt5zg9Hh7eUZa8kIRBKCUBg4gfeCeO9sTwEeg8vekDbXXoMSgV7MACSYcACTTGKVgzeoyfORX4ctQSSBYUgbuJDfaUJay1Rm9TNJtvQAhiMmXhnI1MdGfykiCOhE1Du7OqquKmAAgw11oHnDRdh+Zg/PTsPrMiH28IFmrhXSFSqZEn11N4H6KfzKThB+dPcyPiKaM85XXhs2c8IfhStJXvmSsV2E0WiCVuEJEtJmKdofEugOi5AAhlSBrTyQRFKWP1hpKScNe2R98bOEesKKkBEQl4XjdjlzoaL9bCB0FGtb4hh5SFVJzWJLh9ULDj589/pmE93ktMIR+2FcaEjGJ0TR7xt7mfmsO+uUvF7mR+8+Mo5dv84XdZVgwuAog5Zqfwr/+auWZ5AGDIitvi+Zef42K1wNVyAnCyoKeoowdjTAhYCQtpxM1qXI+XL1/CGOCjDz+C1hWc0IAQVAngAM7+l4rI+FzfwzkKItR1hUOzR8wOFzK4cllfyXCtuqoIR5EhDaOjHLO8rR/jklJKPHjwAO2hgek69G2bIpiCIqcRGwwa1XmPrm0JBGa6Ie/hegPnDnj4+Ck++vgTLFcXmM/nMZL65s0bPHv2DA8eXJ4a/TB4nEqRrkkHb6T0Wo69ScXpGwJCAlYJOEupHNamddW3KQXm+PrpNoCw7kOy86nNnScnhxdDh6weQBBaKGB6oO8dnAU+/OgZemPQdC0uHq2w2awB77FYLHB7e4em6/GkqrFYTvHJJx+gch6zqYbVHspJfPDBB7i/u8ePDz/GdDpBeyhw2O+wXq/hnj4BC8+iKKEl4LVE6dIzChGacVsLH/jxvCBKI64KASj9o23aiLHlyfPsvbFgTgGnrL8lfOwLkMgICAYgwS6hoCClCgqTZUs23yNxd+qIwozDr6mbsT0SZrn1dArPGltHY4HHf+fCk+sy83IY/lyOo/3XOHJhRr979F2LL774DH/wg2/gajUjYYYAZkNFN5M3AUXpQLlQ4W9rerx4+QKzxSN87WsfQekKPvTC7A1tYBGsLC2pL6Wz1BGnUiXqqsb9/R2UVqhUwDocnZuxKwjC6Yg0wMML6vPQ9R36g8F0NhskM/PifPjgIfbbHQ67He5DVy4VmFO11vAQsUwqCrOuIxeYC9adh7U9uq7DYrnEcnUB6xyqiprL9n2P169f4w/+4Pfx7NkHR7bR0PVTmeAK7qXHUAIFRZFbZuB0GC+gQl6WVISbOU+5WrYXkcb/DEQd1wH/LlXKw8qtd8aUY7lQGNO27SCEhhQaQAFjqPOWdR4ffvghIIDedtg2e3z66U+x3+2xWCzw6c9+jvV2h+WDh/jgyRWWdYVnF1eYzTX2toeyJMx+9tNfYH3/OT786Bk2hURz2BHZpXXUN8ADpS6pQaenPDfhAe8FrAW6zqS6Wk9J3L0zgfWX9mRVV2jbDl3bDYIArBAZrmDZQZ9J9bqm62MScEr74oh8aO4jCPOksr3cjc9m5x31spql6a/q3p07xtbcqeN9o6Pjz537nh+vcP92ST58k3fICR8xupgWzprIDZZTIx2fOGE/vEF5Antro4tZlDUQabSHLsx4z7LlFd0Bn1kJfK9ABKo9KNUBASNhV8m5odJI4yliCF5pHS2tAbswAO88nKBk3lPuODMiAAj02WWMQhKBoYuboa6rt2vcoU8bx3TwkXj/wzN5RJkWnkPASQnJkWDBQ5WV1wAQIt9I+bmHLg9FrFNUMccMEVwoa11y+T3i570L5U9KQFighgvNmLPEVecIyJcCRVmgmKbBEEKgyho5E2X5CEIQOcbHCbKSoUZygbO1ElyJJKgdWZf0O0VTfXbOBPbLwc/BOCCdb4y3xzmAGMxhSio/XgscYEt/p0vp5XIZG5dwjlneLiouDM/RmiK6JGIwWMdCa6y9htEOkvAsqU8lyL5L2J20DjMsJM8mzo3UPH2BEr0N/R2wZcqakSiEhHAGQI9KdtjfvECzeYUHqzkmukYhKihQAbAPiYmpECDgEiCiQQ8i79sdWnz56haL1TMsLp9C1kvYooCBgnUqFJOzawUYy0C/RN/2gAibACLSutDlPLz0pNkyAkNWZs47KK1RABBKUfQzIjmM5QCQGrqsUHuBVcyWpznbNS2sc7DOU1cnSQEHXehYRWC3W1gHlGUdehCkFn0QxMHl4fB3vvNbuLhYodAazlkqbhYA2LoFD6RFQocZYMnwrjjFJ6VemG0frWMBrhME/FSEQAElCkdaGpcLeapTZdpXMrwFAAklNZwxsL3BZDaF1kV2XbL+mqaB0IpK4EBgu4fBoTtg3zQUUBGh8Hwyh+sJZnj6+DGc99jd3kB/+BClKuBKibvdFkJJ1FrhcjnDJx89xcVyhqLUgLOQosIHHzzBbF5DFwK27+BhIEC9N0l2JyKAopCQSkDq1NNSWwslVeja1hBl0GSCqgyKR3DOX6rbZMsrjron95WrEayz8MLHQAL1DQhWPwSEp+J666gBNaUR0X6gqgjBsjYo1eB6Zmtdr1arGJG6vb2lRRn+jd3DXJjlAin/TH4kIHKIh+VWAffkfN8k2XcJOB9r9Ego0bICRORKEkmYCQDSwxraMEoKeBs2uJfQQgG2hbAd6sLg9d0X2N+/xuOLBSZ6gkJU0JDo7A5CGEA6FMEKocVC3F/eG2qMaoHNrsEvP3uDD7/xu1hcPYWarmB1CWsUrFVD1hCHwNxKboxvSOgWhYpCiEpeGKfzUDpZSww5eUcF7boga6twPiY1RvcsmE5Cauiqhioq1LMZAO5n2uH6+joSeJaBs0sKQJcabd+j63oYc4CHQlnUWC4ujuar71vAW/z2b38P02lNaRSOirAFAEGc0kFlK1B05cSaiApjvB5yS4rXDFFXSqXgZdL4UnWwIdrZ9T01LjYGNlhkVMupIVHAexWqCgAEym4lqUGvMQ6TegatS7KGwnWdBfaHA6bLBaCA3rWo9BQePQ7tDtvDHhNMoYsCk0mN+XQB35NF9NEHz9A2B/zi5z+HthZVWcKWEm9erbGYTrGcz1Gt5qhLhf3+gDfX19QtvpS4ulpivpjAO8pjc76H9JYYfEUSCEIIFIWCFgLKAVx97wMuRhFLQ41pdBFSqgJPYcBZGf9mI4hxNRtgEeepKob7iJah4Qml5TCpBNEcbTYbtK2hxjvWUTRVlhAq8fV5JugM7mceoNA5p39eJDsWQOeij4NldM79O+Mqsul56vunAgKnjsF3ziAfiO4CiwDW1wMnDpzqmul9UG2fA7yF7Vs406GcLan+MMuBir79wEDgq4Siek+gZ9c76KKCLipAajLdkbLU08MF9zZYNRxRPRqT7PXhYw9r3RhLym3gQdQzeqkycC+GMigPCGkiRsZ5Y977EG4fcsGHvnopwJC5Ebz4ptNpYJE9l7eYkm/H8kqc+C0Ow+C9zErPrGUeOunJIvUKkJaonZ2kGkY+t6AdRLgk5ckM7hCgDaaUjHgZ3Qtdi8aD58vFQBAE0BsDbSxE4LoTSPNaFiWc6WG6jiKxQsBLoOs7OFdBSTIK6qoMpWYKxsjgvpeUXhHpx31YCxgsE8H3JQRZn+CeChjMlxQyw8IQy5j4fd6rA0HmHKwnj0T6YEAIpgZPgYLEqJEoktjy4v+i585/882Pjgj6SCkjo2zeTTw/uJv1uIsTP9QY/GdJbS11WHaZxOewfNM0EVzm7/16x9BfHy74XEyFPyNgHiYKmdvmbei+5LHbbdE0B3jvcLFahe5HdH6aEBcnxTkfGCs8ICSkIPaMu/sN9ocOy4srTKYLKF3COcDJ4wXE4zlmLei6Duv1elCmxN8BzkSAw6LlIuEc+B9Hp8f1tnwPZVkShVBGC0TWn4XptrHhL5WtlJFt9fnzF1guFlitVgAQXYu4tgRDDIzEOxKGg/n6VY53f5etUwEBFPS3UhpWuZh87CzSZgMHvsJ4OwfrDDxsKPjO01ZSjSHhPKkZ0GK+wNOnT/Hy5UuKNOoCk7rCm1evYfseH3/0EeGLhlh7maRRSeD58xf4/5P3J82WJNl5IPgdVTWzO73Bnw8RkREZGZGZABJIoIrNBkgUpUqkFmxp7rq3LfX3ujYtteOqhVKsBUW6KaSAYKMLxJQAcojIyPDw4Q13skH19OLoUVOza/cNHu4RkWx1ef7us2umpuPR78yOCE8vLiIqFFZuuVxK0mdEJEoGPpNdpYCgPDTLUTloUurJzWneVbwEaNSX4frMaYRqxXPxkgI+QfHyE7xHE2mBjqf3IcXSU+Qm4Ko3sNd17VwRZcHq+iaDnoIzWmuxXC6Ts/d4s+SLuq7ryY2Us536WTUaZVmiaRrJLrTd4tGjR6iqCi9fvoyndO/3dQz53a9Q9j+ypZUwFHJixyGAjLpn5O+U6KfWCAt3fX2F7XaDAh6PLy5gM3xjnUPwHXwQ1twH8bt0TnzgQAKjX766wrZhPLp4iuXJGUw5QxeBTJJxZYJSFcbrdWaOi9sPwrPkMskxMcvnQ30zbebtkQuvmSUHQG4uoweNihhysULXdWjqPa6bTSRQQgyMLTGfz2GMwS9/8Ut8+NGHODs/k3dZi4JdNC4VttkakZNpXkwNj3RwFt1Z7l4z+WFpSXxN2YiYo4jIom07eM/ouoA2+IhEI7GluDY8wGwRQgNmj9m8ODh4xM5MAyASrBEB/9nZGb7/0cf4j3/+n0UeaguUrsD65gZVVeB3f+d30vjudjsJdQTAWOCXv/wlzpZLseAPXuSU3kNl3yEErG+uZL77XkcUZsQEIxMRdVHAT9F3khgI1Od/yOmAKqA4hIS8tR61hJiakaCuTQywF4NqH1l6AMmdSkQoJWazGVarVVyPHpeXV0m8oeHKjBURSxDgjBC4981MqvdbiEg+CHfdN3VtfPrnCOE+8rLbSnqWsl+aC1CvJTZuyLoMmUug30WcflQoSRYoixh0MX4nyK5/dqj4IKiZRdN18J5QlJVsZmOTUHOyL8BgzPS7tm0HsrXxM+OifqJj+ebUM1OEUOcqj2OnxXcinE2KHWsT8lLiq/LXznciQxyM83SLha0exgN5G2XY99440xhVOKgzexCvAupNbfTefoz67N1yIPT94nxiR+ID5yTFX9M0EhTAeHjrUTeNOIFnh1QIIa1NArDfSxBMEA3WmXJNqinu+4tsmBWljdhzxNhxQxlJmtN+zLLu8OF9iuR6LbkSszys0NB4O9d06qGqhFHZVv3+wH972Fwcsy2YLIrMjlaOIUpQGLlarbDf75P3/Onp6eCU1/vHMrQ3KUmY3decvjl20KsgXXNACoXpYEgylrftHi+/eo7lfIazpaR203AnAQxrI9GL68FEtxohIIQuBFxdbxHYwJUzzJenADkwLMRwUbSn+eIZjwczp1yYwNBcQv8+Sqwoht0eySn1b404q8E5VYygC2owVlnbAEGly+USs9kMXScbsiwKbLdbvHjxSjTlTYvPP/81/vpv/grL1Qzn56c4/cnvJsycXPJTf+Jxy4fysrdf+o0nxJpEIw0JR00wcFEnwQGJ5WPW4JQejBbMLfLt1DYt2rZBUbiU4appWhQxrlk1m+GTTz5G1zKYCcQE37WYz0rMZxWauF+Wy0UKGMAhoHAOZISdq5taEJJz2Nc1qpn42b54+QJPHp2LrM8Y9PFBZQf0e1TQWmLqs7lWEw8FOPm6THzNkQN0QNCQT6F4ZsiYGLjMOJ8ZMeyUA0PEOt6HmCBZbN2MiWHADUVTFPWSEMDwYGKmcc3UOTwnSvkiVwQxn89xfn6Ozz//HJqD8+TkJMnP8ufy5/MT4SGFOOPZMmSl5g79pPZ/ESxIERYDCBK11doA+AZtvcEXn/8K/+3vPcP7T86h8cT0dJdDXd7DYIl4YCD2ZEyo24AXr67h4TCbrbA6ewwYiR9FVIiYPsoT8igielrpGFVVlcYtyaxG6Gm8wGQcZUEZI8I5JYi6ONfrdYpkoeY5zjmsVquD01mf0zoK51BGedh+X+OrFy9RzSq8/OJL/OVf/hX+6f/xn6Kua/z9z36G/+V/+X/gRz/6FL/3k9/FT37vx0hJeCk7FDn+F+VUQ3XFbeVNUL0qBET4LawYR3Y52okVEl5Ig2jWdR8eS8J7ewRuEdDKGorbt653qCOBsc6hC8BuV2O28jDGYbFY4qc//X3U+4CmCfBtB2cNZmWB1WKO5zc3CN7j/PQUlsT8J3QepSthSHJrbnc7OCvh7q9ubrBYLrDb7/HZ559jMStRlcL6x1BxUTYm/sOCkCV6BhlR8nC8KRc36JpTg2B1z9I1enyPRuhAMYw24n6zBtaKP66KoTgiV1UYdZ3H5fVlDGIJFGWJ5VJMQwpXYLNZZz6iHYyxcM4OHc0HTWE+aOiQfx5upGMoS9S/xSASZxGjPozfPcVePbhwRGekaInTBpGIrT1kVyYwvTNjN8UmRzaU9x3q/Q6Fc5hVJRIbIY1GVkHfdgLgo9V/YNRNC5CBcRLvKwUYTsHop4l3fjioTCJXvozR2G0spA5QjuYADOyDpg6ZvIyVA2QMHBVRxiNCcmMk5M/V9VUK8Lher/HFF1/g/NEp1us1jhEfOVB49P1da+E+hGzIKuUrYNy3g7GFsJshxOi2MQgnUVxfSePdKy+89/DBi1KARGvrO7Flg0VSBBTOo957dG2LqihQlpIGThFLyvTEvbEzSLTK3nvJD0AGPsr2fIhKg86DC6vyFiR5hiowBn2OemM+5JDGSsC010frYGpGDjlCSlzCYTEpOCzQRVtXOTBLEhMOV0hUEX1v7hbJbOCUpchlIseKdnTMDg0mPmNDlPCpwkBlZJvNJlH/sU/bmyKyftByRjpj//hw8aZ+hUzuFTwAD4MAcIfN+hI316/x+OIMs6qEMQQOHinZhr6NtO+5fyShblpsdjXWuwbLs2dYrM5BtkJgYTMhWSJ1gJNbybHxzxHYGL0dfWbQvsgijZ7J3ctyf0xtj85n7oOnqE+f99E3qCgcwJIa7/Xr17i5ucGXz7/EP/tn/wzGSkpDHThZ9NlmA7IN+NB18Dbu79lOxLYZq2MndlnWBIQgB5VzgHWQhCUFotiA0LY12rYRZMTi1nR9fYO9l9XlA6FcVOBgwWxQRoNbPVx3uy26rsX52VmMFIy0rIMPaLtW5JNODa1FvKFz0/kOnbewBHEPisObWV4iQtEo3OpNVnIgMuYAdEwGu+lABtfThMPD9dAtUr5H2js2+h+XpbxBbFu9RNClGm3XIgQPYw0WZe9S5dRMIg+WN27IoKHZhhrLT/LOhhCSkHq73aYTxnuPy8vLtCmSOj++a6rehxG3/N78hD8kEBQvh3jSWGvRhQYED0MdmGu8fvUlXr98jo++9z5OlnM4IwvXuQqMeIJGQmFACN7H9SEQfrvf4PJ6g9fXO7z38ROcXbwPWyzRthaSgcmBY6QEjiFqcvcQHfMUejgTtN6miBkeNFI7wYpR8YiY5adcWZZYrVYAgP1+n7IuaXBF51xiP9K4cm8iAIhqncG4urrCF198gd98+Rt89eI5/qf/6f+G//e//3/h1auv4pMc20XQjNtZByAhru/LPr4JejNHruf7PNrfGcl9qggtMNB1AUVFKDqS8NQxFZ6wmVvUdY3l6gxdTK784sVL3PzqCzRdQBuA04sLzGYLzGcLPHv8BIrUmYGb62uErsNHn3ws7GKETsSCpPcRIBRVEeWhyjkJwqnbVrTpZVTGeI2AoVE0LGDUHCMSMxOjsXBACB2MoYOcubIuc2UB9QMGIUghW5N3KZl6s48QfTU5WVZoWCvxca2xb3eSsSrCPmMJ54/OhH6AYHQRjzfGbdqxfsIPNZA5MczZmLHVv9qgDf253hyZyQTpc0lEKVFdATF4RL+BMqA9YD1UAE1xk0o27y0Wi5lE+cxOMRqBB+EGBqZ96LqApu3QtB6unKGo5kCMQ89JjpdZjd8jUkg+xrex6ongoXdfoTs2vTEGZVmmgyg5C0dha+5fl5+qw5hWgsjbtsVut8PNzQ3W6zW+//HHmEct3lBGllrc9zH7GUzZ5A9Bwl9P/xzWmE9c/7eG58l/ZPMihnwSlyjrDKzVlIHyE6KcVVRCglJVtCJciDj6X1/f4PLqCpeXl7i5WWO33aGpRasZzxwwI5oieMznM4kkkc29agJBffwxaWu/f3JNIJTryEc3Qc/U01j/cF0N0sRlbRhs0QE/effePQ5UdP0QnLMxnHeZ0GHnxUbVx7EmIomzV5ZwhYPT+N6qqdSQHhqJdHyC34fI6b3KZqpWU0sfYaDP+DTW4h1Dhne/mJDkZGkF8IDN7L9SqRnFDQFYQ4itxn6/RvA1LDHmVQmbCNmwXdJ+ToZ8SqB8CFhvd9jVHR4/fQ+unCPAIHgGkxUiNoLiY8f/XL41fu8Uu5+P/2HpeZXx6ah5UwHJp6kuKoDMlxI4Rdea7o4IsBSiC1wHRCXG2dk5fvjDH8I5h/fee4bHTy6wWa/B4BgnP/RNGlC0aVHAt1105IwlUOiVBmXpMOsKNI0kiNnXezCTIBsrYgdjxF3pyZMnMNUCN+sdrjdbSf5ihJV//vw5ZlWJ5WKOjz54jEfn56Do19s0+2hwSnh88Ri+8yJ/vLjAfD5HWVlUswohMJqmxm63hYQ/EoNTMr2QjHk4usH3bn56OJi4pvR3LifPlUy95lmJpYzS1HocjGVkewEx0dABHh+0ghDlt3MWzJEVj+jQWof9fpfEFO7y8jJtoPl8nrRayiYek61MycxyIXUIIarrO9R1LdbJ8X7J3NNv1rGv57iu+xLQNCqT+4ETnRvcC0oCyRAYhTWSwca3uLl+ia7ZwpmAk8UMzrSgmB061RDlStYSjOtlEIGBuvN4+foa632LH//+P0G1OINHgaYJMZyOGNNKdAo1GizS2ORpvnLZRU78x4dN/jkRSpWX2J745SYfmuR3NpuBWdhDfbdqoOfzOQBB1XVdY7/fR5bTJf/ApmnFVcU5vP/++/jTP/1T/PKXv8RH3/8Q773/Hl6+egHmgOVSNOJkFC33ORdlP+gCH0HfW8tD1kh/O2efFaXo58HNFJ3V5b9sfVYwBNxs1vDrG4k95wFiyesQQgtXzXF6eopqforHmxpfvngJfPElFvM5QAZ1U+NXv/glrCE8Oj3Fs4tTfPjh90DoQOyx3W5QugJVMcMnP/gYv/z8l/gvf/3X+OlPf4rVyQrVbIblaoUQJPnI5eVrGPsjGGPQ1DsYZyQRD8doK5FwBBZECYhPLqJ81RoDmwjGML6hrp2xmCOh4IgCj9qjUsZZBPEgkT1IINuv1X6dC9tblgWKwqGq+jhrxljc3Fz1RuZ1XadNoT95eGxtaN74W6ludq9utHFk0ynLdWmcOXhv/v19S48/8ot6gmTojOXupOPkkOKUMwLaZgcOLQwxysLBUAdiQJZGX0TLFKU/KoOAqLF3dYOmDTg5fQQqSvhg0AWIMUicNH1/TqDysRnLMvOx1nJfEcFUPTrnGuNds3CpYFUJmqI1lWGocsFbjYwaRNVPhMVyiQ8++AC//vWvcX7+CB999BH+7md/BYBRuCLNkNDakNGOY4jytsKDXw8qA1DYm+7QAVXL12SPzIQdsui6FnUTM1kFYF6doLAFGGJXVhYlqvkMVDTY7GqU5Wu4ohBH9yhHJmZQNHs6P12CuMNufYmubWHJgErC6ckpQgh49epVmieQoGfftuhamT+NpuK9R4gKjEM1US+GcIQDwjRej7nN4XjvptEiIE/qkqOtFI4sDa4SSCRZ3rBOjdTbcybqyaL0pWnqJKt1ylqM0YAaT+YuCmP0NOzEkOCpIPtYNIypTZnD2NwX6+0VhWw5u6mspt4SwKFD6GpsNjdwzqCqlqCxQ3SG/iRjkTqLC473zHh9eQ3rSiyKAjAWDAsmK+46OSEaaX9yVDVGsPl46ee7YL32ecy+q71gHlQvJ1xALzPJFQEAYj5OB2dtLyM0giBfvHgBQBDr4yePURQFNpsNnHV4/PgxQjjLUNBt7X5bLOfk8YbUiKmv0qvHLDBnn6OBdES2rvAxpBBQ2ArGuCgPFfOertuj8xpJhbFaLhECoypafPDB+9hvtpjPZyicuHcRMcqywK4TlykgoCwczs7P8OzZM2y3W/zmN1/i+vomZnpqcH19hbOzM+GwjOTymJcx9ygpe6drKq6fQQ8FGjFnv9GHURoDjQPbRk4VHwwtsUgU6bYDOUJlbapyFpTNhb5TZWYJmakvplYmLhYCV8/Pz1P8IX1YjWSnAq3lhEi1pHqPnvTjxucaO/XhfGfEjCADnU1fCMI6pDPZtwjdHs1+g5dffYEPnz3Bs8cXMPDC/jAGkwpEpEmIshKWfIddwK8++w3K5TkWZ4/BpgSoAKOAcQ6soXuMmnP0bJ+ykflBoIRnbEKj3+cEbaxM0eU6FhFoqKc8Smie7FXv997j5uZGIspGgnd+fp7eWddbkSdFUcXf/d3PUJQlnjx9ih/96EfY13u8fPkCZVXiRz/6MWazQmQ6maJkKFDWDw8ULzzk+8jTUiJoQ6TBA7WM/lb5Un/dGouqNDg/L8ApeTPFJCqMuiHJG9HVWO+3IFuh8x2YPd579hTMkrD52ePH+PVnnwHBY1aVYG5AhnFyMsd+cw32LcAei+Uc3//+h5itKvzd3/4MX3zxBXyQzF1d16IsCnz44Yc4Pz1DU++w3+9xupwlokXREViXr4bzyRFP8sFkBkIQxEgiS8vRWb53DwhaNsw5hNC0hPkaTY8lMBSRWIaG03cI0KQxIQSsInsd2f5eFqMaq5zVGIfombIyz7/Xl6imcmxqcRvr+MZC/3uXISHLRCW9fkuRmW+w267h3DOslnOkcM36RPwsiNpAomz0t3hmXN2s8d7ZM8wXK3DUYIIsKJ7YSP/3G2dSDoFhbLgxEjuGzAbaPO7HdzxPauuni1PRmNqY6XpomiYpbyQct0SO3ddxZCO7+urVa8xmMzy6uMCjiwt89dVzbLc7nD9a4eLiHCcny76NQEbS3rQcg1d3PZOtNTmhbrl/TNjiY4ZgyWJuLWLUNACEfV2jaTo0rfohMuq6QVEVaS6XiwUEwYpl//rqCk29g7UG7GVNlGUBYcfkwCsLh7PTU7Bl/MX/5/+LV69eYbfbJRHB+dkZfvyjT0Ve3dYDg2jK/mccrjH5YihK6pFZPleHnIGyenk9elviLsczkB3E+q5+7WctHq3vnIgqZxlCGLozjXnlu5DRFOHRxmkegVxYPb5n3NCchR139CFlDG3z0OG39yiAOKBtauy2ayzmlcjKjLoEEVTrmYtSKKIymXEDHxht6yXQYVFGi//enUpOJqF8HL/RpZIT/rzcNoZ3yTH1+WPXNCyTLo7coZy5d2IGkAifys50jp0rkkZ8s1nDWDHx+Pu//3tcXr7G9fUlGC1OThYgWg3mQ2SOw/YxeBBQ9u5y/KZxzVr/8JshCuif1PtGxC99T5El6hEwQ80kOLKH0SCIWYxcSVjwzXaNshB21EQbNeaAm5trzCvAWTG+FT9Gk77nIDHinj55gqJwqPeSeCZwwMlqheVyKcQgEiKVAwdmGJow5wEylrLf+23bYrvd9iZUxoBI3J9UaXYrKOHh3/2h1Y/vMblv/vd47arbVT9FUUk2ho3akbEmMeeR9bdC0/x5ra8sy4T0xrZkWsZUPXdszu1bHkbQBqRs4pr+LYuPjOSmJIhTOaHFbn2JV199iaePz7FazlA4AqKDMHGMcaX1REEwg8EBMLbAdtdgs2tg3AyzxSlmi1OEmDuRszZwPHE16CvztIxsPF65bPIueaQK6XXh5KhM69ztdpIQtixxcnKSNKp6uCgay306t9uthHLxHcgA89k8+d3+5vlzkDE4PT3F//w//9+x3+9QFBbf//hDPH58jmfPnkSjTAAcZUjGQaUszOF+9OuNSs4O5eOrQjxKrNiQkGko8zwUkMWQ0PUETWzTWMJCmSoSs4CyEnOMut7j+fPf4OLRE5yenosNmxOTjs9//Sv84MOnKKzDdl2jrCwK6+AsgX2H4DsYIvzBH/wE280WTSuI2VmHsixwerKKYZ4kR6gxoqH33gtzMN5PjGQioYjIe4/NZpOsGmazGcqqEv/IsgBZhxCOz9JxwnSvSQLQr9FcrGK0X3ll8ZfLiVVOsPJNNUZJU/zuuNHOuUlkNvU+vW6iXUzf6EOB9/3K+GQ9VnLBP8fQ2h5Ns8N2c4OL90+js67IQigZVaq1es/CpXcZi84z6qYDWYeinMGVM3QZKusfihCeYv3jE2gCnen1tyFP1PqEKMlcLZfLg7lWpK0iiRACdrtdiq1WVQXcvEBVzVBVFW5ubnBxcYHZrMJf//VfIQSPs7NTLJYVmqaGMRST42b9HAAlTsfNuy0jiD1giKZgYf45T0KTM3Aqm1LQIImf9fCzhYu2ZS3WNzc4WZ1GFBeNb9nj6uoS3fvn4EBomz2qskRRiKM3dz4iM+D9997Dfr8fOIVLMIGAdr8bIrNMHgWM11p/XXsRQkjyc5WhAmK24ZwFjORpOIaepkdbD9bDsT0mNpmybuiJ3HB/H0TNOBAeHzn5b9tQ+tyxMEHHnjnWjoexUHwoDtFNQ5TFNpPVpjIBCQ7oEboGoesAFvmE2JSpVX+0xKah9CCXfGnGpcXK4NFjj3I2h7hkAJ7FapsQzcY5AJSBbx4S+dtQaT4++RhPKQLGDFVehwr89b26gHNN9FjhkBM3IsnW3jYN2iyhx/X1NX7+81/g4uIC1hqcnq4GSgWdKzFdOGzl/cjYGxL0tAfo4PKg3kTn8i1oDu5OX8Z+MPcrhqExyfo9UbhCovYGj/VmDWMsqsLh5voGTd1gdT6Hi5GMu67FrCp7wsjicqToRJP+GqIoXGchXEEOXGPU7EfnDtl4Z2QlP5cZSdGXh7bOxRESUVgM7CXGv00sdCLr4z2dhnKKZdd2TNOBuwtLqrkxVRyzklPELBfyK2HLjV9VrgLgQIs5RhhjIfdtyO/27iBRrv6sPIwzn0VkEpaGA4hboNujvrlCu9+C2ONkuUThTGItQpQpDKBufI+YZQBEBZbnZ5g/nmH59BOQreDZoWs96q4B4OEKjjHcCY5IFmkghIABS34bEZ9yLp9aCPkJl4+z2pYRUULRzIzr6+u0WDULudqgaX3GGMxmMxRFgaZpcHl9iaa9QQDw+OkTMDN+8Ytf4F//63+NP/iDn+Li4gyL5Qz/+T//J/FdhareGSBOGzdHqrct+Hwm336ZqlN3OgPk+nsUqSvyiWKHwEF+IIEdBfWKMXHbtliulvjk00/w6y9+jc8++xW8/yUKslhfX6EqDH73xx+hqgoALfb1BmenSxjDCL4FuEDXtZLDkoCu7dDUNVbzOdh3Kd6a71qJf2bVzAOwTmOXyTgz9wemtSY+K89rpFctisY19h0AkBFZauEcqlmF2XwB5/RwVBernCObdlXMZeb5GlVaMgZExziYFDZ7iqWZcqHRh5V4jcM667PWWux24mpQluVBHXkjxixo3oaHs1NT7MIEu0kRhYsIGmAPDh2aegvf1iAOmFUl7MiAlYGYpDR/h76ZALKo5isUq3OcmjmurnfYbBuE4MXdB0F8FxkgWJATeZuEZqYE63PZ2G3C+/ugVg0HPq4zF/QTiamGsi16GqtHyPi9KkcDEJ3MG3HPiaj1xYsX+Pzzz/Hf/Xf/HN/78H3MZgX+7M/+AwKr3E3HPibr4N5/dDBJ77LcKoXggz/ldk2dF45wqUooevZI7MokCq/vJJv8k6dP8Mtf/VKiilyvYWER2hqPzlY4WS1ROAffNRJ5g+S4lAPUIngPH4MTeN+J3DK9R47qEIMapvVLMeGKCO9GHRN0RUHngKLLWW+C1TRNsj1VLbcxBlVVRWd0hiuKyC5LusN8LkUBcMd0jERPOYd3H2DjjhGMY9eOaSfH9+WuOFONvu87p8pY7pb/HcDpkFeWkID+OvXrTteyCJzlp97vADAWs1mKRjCUKWgnEnOIlKILBONEOEpkAZLIma4AqgpgcmCOUS8gzrI+KDEdnmTj/ub9/DrysttEA3m8OiWo3vskU9PvcyI4rFPa+N5776FtOzRNjdVqCd95XF/vcXZ2Fg+2ofRw2A6pJ1aMOyjOG9M7OviAI+8Zs0q9SKH/frqNjOhCZwy4g5hmzJRwSATmrutQOAfDFl29w3I5jz6RPWs42ZrIShJpyOueI1HWU0NbJVEKhCjKQX7HuOr7MjSuB5y8fnggqm2pxsPTqLGy/sXjQ9oeI3PEug+akE953sR40g3W74gmH8jMxpqynGCoUDCPQTYW0Km6XqNiHKOo43fkA5R/nw+qfpc7rmuoZ0BNO8TXC0wwMYQMRZmYKqyYOYU/MQTAdyDuYE3Ai+e/xmph8N7776FwGq0gnrDallE/jLXR8ptQzk9hy4VEkqUC1ayALQjVHOi8RNFs2wbb7Q28b7FvJKmHcxWcLQfjpeOZ9388P/qdtiV/dnwtl1eNWXolXrkCgIiS07mi8MVigfl8PpCz9V4Ewqr8j//j/4j1eo22bfHxxx/jl7/6BX7+83/AT37yEzx69AhJSkgZSZhcJseJ3tsp9617jMQjrCekhqdDL7LQnhk+CNGzRQFft3j9+hKnF88kgbL3+PTTH6BtPhCk0xG219ewhBjGxwBsJEcqcfwRUmpIlFVNvYcFUDoLsEd0bUTnPdpmj+DbaLMWEKL8LB9vii54CXxEIprbMimXpb81b+64NE2D/X6fwANF1Dafz3Fx8XhwSIXI3iqHnt4WRv7TgcG6RiKinDqENK7EZNjsMcuov5Xq3hXIUYleftLng3OsHEMfumnGdmhTsJRZRfUx0YaS98jCcF53HHgOHhLDLODm+hVO5xe4OD+DMwYBoU+VyP3yj2KSjCAIjLbVAuSqKFuxKMoSBSxm5CBRDRpstmvsdjcIvkPbxozuVIDcm8GMnOgB0xE2xmWKpc+VAbrA9/t9ClGsUVWqqurnlZBObiKZnz/8w5+mQ81awt/97G/w+eef4U/+5J9itVpiTER0LI+0FO+c3byz0PAzH35HhBRmiuKYqMJWEE2D9WYDYw2MtaAQ8N57z2BIpLpdC1y9fI2u2cfcArLenbUZAaKerDLDty0IEJcyVm8aMfnxMYChTTKnyGWMuiKHe3/AZ/KX9E7EPoyRGYAUPl8zSeUc2WKxkLouLjCAWfLCYSO0qCgn/X2/GQIyYpaf+nljH1Km+N03reOYBnUKoeTfgxBNKCZrTwshqxkghu9adM0GhbNwziRDw0EbdPKRUTdtK8kihZHkJL3NNPWnN3pWriwKqGBWBO59kLr8ALkNgY0Jfv73mDUdrOGBMCONyvSIxUNE0bgeaFq6Vj6r7PTy8jW6Tk09PE5PT2BjerWyLDMWtX//4O/By4826+uXO9nL8c15g3kwZlFKlj4BSImSJam8wCCK4oi2abHZbsDcwVkLZy1M3IrWRKIRxDhWTC3im6mXf4p5i48oiCBG2PJjEOVnSSTUj+/k0RDXYO4+lP8e3Dpak3otZzkP9mUI0eDWZO/PCfNwPR42b+Iiy38qiyNAjGaPac+m2L88dEx/GmBAaBSO5gjuNsJ2TLaWD1Ruf6abSqNxaOm6DqYkMcHw6iwbBxpGBPfEIA9ZLCSsljUBm901Xn7xj3h0doKT1QLWkoiydLOl0MPcL954rHkfYFyJebkEWclSDohjOSDsgsgIAOcsFvMZrDmH7zrZ+CGgbQPaxqdoFECfdHm8cHIbvGPzlc8R4qayCbFRL7cYPTdeiOqbO/bT1DmTOPeScatpGvzZn/0Zfv7zf0zZuP7Fv/hTLBZz/PEf/zHOz85QFg/JofNNIrJjBG3cBv07P9CiAXTMBRBCQOs9mi7AezGGJeNQVjOEALx6fYlf/PIXADwW8wVWiyUuzh7DAqgKh8Vsjqa+RPANZtUcKvKyxqBuPAwRSuuw326wmC9QuQIWGs5HNOUSGKBFYYX9l5DaEr+MInuc9ixUphwTHT9w3Iko7XddO03TJPu03HCegyQoFgeC6BWQi8EyajsGLv0900TX5YRk6sG8qNxsXGn+Yu1QHnxxTKgeIvzPNRq5yYgaeebENYSAwhQAKzHLz1MDQ9khEDMhMwLIBNT1Bi+++gI/eO8Uy/kMljQsECXZCGcnrxIyBuJ7LcpqAQkEH4mYErJIQIgYlgxsWaIqVSvl0foO6/UOXbtLdjwAUsDEqZNy7DN7DLUN5jMe0bKoKLX/tnlQkww1aNbsTSqnJCIYa7BcLlHXNf7mb/4a/+E//Afc3NwAAD766Hv46R/+AX70o09RVQ6SuXzkx/fbVDgjZolTYglHHpU6gTt03scIGQCzhFAvyhIhMG5ubvDZZ59jt9vg7PQMj84v4FDhdDmHm5WoyhLbdQsOHRazMgE+Yw1CUNbSYLvdYjmf96woi8W/NYSubeA7n2wlSfzJYzrFoeyMU3d6b5GHlDx0mNQ5DH6QjFxJzFaGRvlAb1Qsbw4ZsRrXNUUnEjEbzNOokvzG/J4pedW48rHyYArl3aYcONZg/X4s2B4+w4P5UNaQeQyzZZWE6CLCwYudjA52VBr0R0V8irg3d4DKCFt0ZofZqgVxNCg0GUGUTgDZgiFjYJhh2CQj1DykSR5HanwaTZVjLPoU6r5vGc91HjyAcuIY29l1XZYXVaKvNHUtdDSbh1z4f+TNuN+merN+Dd9zrK7R+8c82qCJPVJLUSegCjGdT7Hid85hPpuBKKAqKzgryLeNRqmqiQT3US0A2fgSJx99gFDm4ftJ2VFxlUtRQXKZVd4lZujk9IfeHSOWiy+yvTzeowCSNlxlrCEc3pu/UgmqEtgk1wNSX46tZTfVACJK9kX5BskbpiFjjrkcjQ1lbyu3sZlaFJVpgMA8GW5d19IZ56L9jTjEgkw6g0IA4MXi3hqKg8awCKh3N2j3a4AbnJ4sMIunYWAGWdFoetYgckIoQwwHY53D7qbB9astbvbP8X1zgnJ+iqIEFidLCDqT2eAQ12UGo42xcGQwnxlYU2A+nyefVhW8576rYyG9lpzojFHbeHzHiyFPQJGz02PCpeyEOJW7NCf7Zo/9fp/8Nf/lv/yXKZ3gX/6Xv8CzZ4/x6Q8/RlmsZCCSO5jKae4gIneWNyVoU+/h0XfjuqeSVHNkmITN9FlC4Lrt0Po9Om8wny9Qlg5Pnz4G8++D0YK9oOTgPS5fvcJu7fD4fI6u87CG4FwFilngvfdouxbOOrjKJXZf82BGBgIGSAoAZedSjzOE0wdJDf26eeDQj9eHHmqqGCAiXF5eYlbNY7z+aiCCOtj7cbiTC1Y0AjaJO+pvS5/j+k3ILBewG2MGwlotqrXI416N5VY6YMf43fzlDx20/PRPnvyZPE3zcxoCDLmIoVVjGRebkcgFIcgCNMRo9hu0zRYIHVaLGaqykNDZDBBHx2Pu0ikBIMJlC2Mt6maHF69e44vn1zh7/4eYe4fZssTy1B7oGmSA0kiBDMHBwMwcypg2S4nYzc2NIJumGczRMW3llKLgmDx0MB8Dwa8solz+mdfbB3KMcc84oG7rFEq7bVv86Z/+KR49eoT9fo//9d/+P/HVV89R7/fA6WLAqk8Tsu9iySBZhmQib4ecKDMJm8kowWzQdnuEUANUoZrNUZQOj8pzrFanKApgfb3DzdUGV69e4/r6GtYwtttn8F2ALQnOFnLYsLBoyQ+zLKAmRxwCAqtcKh6+UQGjNmvSdE5Ei5n7iNLglK5uWkNwvEytRSVmuX1iM+swqyqcnJi0jqa4NaAf2kSTTA9KKCrUAufMqRQ3bohWfAxZ3ZcQjZHAFJJ4E6KWnyopX94gzDcnWC4v0kvjwWJQTNzaNjWC9yhKDfeTyRQOOtZv/ihbR9t2EsbGCvHiIEqBtm2hoX8MKCY8gUbuzuQTQyNJPbXyvgH9wsndyPKxntIyjT8/aMz1JBzNm7S3X1y5EigESVenFuT5d1JyQnbbvnkoOnvXJd/lmTCaRvcEXaMY/CBbM8JddJjNZIy6zvfcjlGh/ECy1b9BjLRGrFomHkImhhls+FtEN3x8tMd79r5l7ArJkd1W0y7l9PL1Ptk2acRwTyPtmowfzTwAdIOoQerJycnBZhjLT8aGl2NN2LFByevM759CeNo23cS6sVerVTLeLIoC+/0eNzc3qIoixT9PGgCSTC6sglqO4X64A4caL57/GuS3+OD9p6L1IYDIwAQN+6KZpPtTTola03l89eo1GCXe/+AjWFui8wy/26P+zXNYV6JwBWbVDLOqgIWRyDEHJ6DUrQSgKAosl8tBXDhN0aexxPKkvPdx+cjHesoHNBHHZFypLjRI8hvdjH00Wp/c1dTWqI+Ua/Ds6VMsl8teHIF4GPCxHfRdI2KxTDZLWeaebdbcp03HaDogsEGI3h3cMZqWcXl1hS+//Ao//f3fxctXl3j+xXP84KOPsJxXKAwwqyq0aGAtRxmZhphitF2DwFWPbqLIxBmb3MLatoF6ASgnRQlF9oeiri1mMTWxGQK697BMHJLWWskaVWryEdm7GvBV150qDdR2UblBZX/HrOv4nYmUR4LmctipC5SIMJ/PD3ja/Hf+gttkXm8qeM6fz5GIDv5qtcLJyQm895jP57i5ucGLly8wQynEjAmiLreAARxZMYAFJyNZcIfQ7fHyqy9xtnR470fvw0Z5qzUWPoj5guw7EwljYuoRAuB9wKtXVzg5fx/Pnn0P1hboQkBX11i/3mBWLTCr5qAzMYAcBCFkJCEaxdnRsdRJXiwW8fTucHV1he12m+KPacDEPEHMmA3N0duY5c8PpskTmBle1HEAI4YAEiG0tVZkeyGkCAtqZMtRvmitweOLJ1jM5wfRMn67yoF8AENCFtIVjgdA2wU03kpqQRjRHiOgbgNevb7Gz3/xS/zOj36My9fX+PLL5/jD3/99zIpzFJZQlQQKexiS5CguyjEDOGbzDkl+SQLF4qEW3c+6Jh38fRiuHtwoEhqjZhudw99ky+brzBgJn65rot63UYbWpGCPen9VVZjNZmJgCyTt/VheP5bN59yT3HPEnUkbNPXdfeybjnX2PvKb24o+l09Gfm24RxT6iAP30C4vg75tA0KAJh6V9yCdVkO+nGO1UePC4joSIl9vnZpRyBtCkJNVwiarm5dOepwQMz0W44MjZ6vzQ2cKWd1H83mfcp9ZIlAibIDMw3q9xmIxRwid9PMOj5FxjQcv/7bBWhRVjPIUSmEM1ohoa3M2k/JbhShFMUQIcljkfq/WShQVgjhry1RqA2I9mXybVH6X7uj3g66DXr4sdR3uV8recD+h2W0Kpfx78W8ecnRDDk7Qvfcene8G614zp0+hssGYxuLGcf71s2oc8oebpsH19XVKnQ4cCgDHnbyPKcZtRam0UnnvPc7PzwfJUsYEjSUhIIjic6FD8AHGxhMKDHCHfb3Bi9/8Co/OVrg4m6MqCnDo4LmLphcmETSRVURDWzBAFm3X4fXlBq6co5wtUJQzBFvAkgPYYD63cDH5wm63kxyGhuEcMJtVMWOzZEoHTcu49LOiZQ3No0oQjTGVp9/K527Mqk8tqmOHS5q7KMORaKQCXZVdKAqH09NTvH79GsYYnJ+f49/+2/8Vy+UC89kM6/Ua1hoslwuV6r4D2nRXjQ85PO/TOk4/+i9dDZT8dEOILCaJR4gYrBLKosRivkTdCGKR3AkWhgw4eGz3W1QFxcQdOUETo2sfOuz2e1iXiRk4iDE4M8qyxOnpKeq6TuIJiXIiSF4P66ZpAfT7q0c/FvctY3CTm2SoCFvb6JyFc2JfqaOmRHe/30mEEJUXO5u8IZwrkivdwMsgnzIiIWZ5Q4YQdjixqmFbLpex04dUfor65uWhyEzfkRvJamjn8T0kQicgxPBENqayDxLepySCM+p47tHut3j+m8/wvSdLXDxaoSoc2n0LDh4BDFfMZPNxPEHIg0mQlnUOTefx6uoGrpyhrBZw1QwdOYAkasbcECSYHgtr2OwBeFjHOD09xWK+hDEFnC3SHjpG8InEXCYPzbLb7bDdbrHZbFJYljwIQF5frv3NRQt3obh8bNu2jZbkBl0jp6grCpycnECTSZ+fn+N/+9/+LQDgyePHuLg464nZg8sQkXw3Cmc/ka1kMR2ISw++CwjBgNkisNgTMhM893trPl+gqVs5ZJWtMiJX2+12mFcLifPGbRoCET+InGtf71GVhRBBE+PrBYlAWxQS/HGz2QyyahH1meSZgbZtUBRqtdB71Iz9qW8djWz9HMq3CIQhSwv2ydWLwZFj6bCPqQzz+iRWWoHFYoXVapXEL2nc0SvRiGja0XyoKRmyLzkhGsvKxsqAvL5jBOwhxC3x9iNzgUFkiRGrmTScw4oAFtmZb1s4Fx16SbVBUy8H8i+FjRRDR+tmMFZVzT2SMVGupidhYFE+wEd5RujZT4pmGrcRFWBob6cnXu7iNZYz5OzGsfEcv+OhRRVHIYQkK1HlgNql6YYB7sA+D6Zd90VSX7Ou8cIYKhIxxptK2DgmwBmNNAAMbAjFRELTwMXFRgQwpWv5/gohIGqqMDVteaimcbukDp5e529Ybls7g4OVDEwIMS+QEr+eCObETNnvZLcW5Ee5pQBNSSdD5cYnbx9sLR8AccHoui5RSB3Y+wZOe9OSs0K528T4JEinAUcTCGOku8QxAoEFILY3lj18s4NvtkCoMa8KVKVE5LTOJVcoFnPliPiE/+f4zqbpsN3VuFnv8L2PPsXq5BwMlyZIXYwlAoIBlQ7GVCIPIQ8fgsTQ7xhrsrCFQVG6lMMy+bJNCebjZ80xCvRp43L7nqZpouxB4P0U8boPoevHXyKRcDRD8VGz2rYtfv7zn2O9XuOP/uiPUJYFghfTg8dPLvDRRx9K20M8WKZkT9KiI5+/brkPwrsvChwejirbEuGFhQRltGi7gLb1YBB81wGwMNFmrGkbrNc3+Pu//xnW19fwweP1q1c4Xc5ROhNj+ff9D+B4cLZwZSHBMIOHsTGwp4Z1ydZHWZaTwvTU7gm5uCH74GG//fCl6SFV2R0wQIHKbeWE2xiDtm1wsw7Y7DawJoKOyIqWZZnMWlwOAdu2xSqmqtKiFd/c3KTv8+9yn8nx6THV2YcK/6eI2dhfUTcxgGTkaoxFFyTmvsB4k5JBgD26Zoeu2QJ+j0XlMCsdCNGQEJLnUFJzRWLPlDSaDKBuamy2Na5vtvjDx++jWp4jkE0nMSiikKjutqaAKyTeWgiikdq3e2z9Hm0bUFUOs4UcIhqS+kAemK+HCMNVDQ4IQdtsNri8vExGrHJfCecW8SS+ffzzd45FBs4VUakhsc2atoFvxZ7uH/7hH2Ctxb/6V/8Kv/d7v4uua+A7CRFdVdIXkRkdszJ/V4TsIXW+CcojpCxNDCB4MDu0bUATiVnbeRgDuKISYtbUuFlf41e/eIWqLHCyXOLVy5ewOIdZzrGoShGcgwESFNIFL1mYykJSGXatRGkBYhLg2JTYhaqqUNd1Ys3G4bMOtZkxfdzbJmbID8ye6FL2rCo/8rqU5RQi3mCz34qoyYckU9Ow7kq4D9yZcjuPvGjleUyj/Ln7oLO77pvaRONnj1kcDzQzeXA5qTB/CwicfDGNIYnHHzexiQLvYcPkHIngHASKsDeAWeRG1jh0OnlQrpShDAiR1CFO5yabLIbvPDpHiVXTnxwBT5WxfCNnPQ9FBUCvHRvWcf/So5f+OVHM7Ha7GIxvhtmsQtc1aOo9FstFRC5j53JKWuVh/Yfv+vplqo/5BqPhpWNVTFUTRRucUIjcGCKbKURuNGaRNRTXuwLWGPiug+86cUEil96no6RiCqLeHjGtD60zR4zZ/I/XwtQ9/TAcIriHlmPPcPb/VDvyAzsXmyhRUwWgYSG6+reyow7oERazhHxR9iUnKrmhZv7Cqc32pqYXxwqRhDTJ7VHyotm2rbWwUQOJKGAU2hFRliFYWBgPXL9+hd36Gu89fhQjdQYEHwAjtlRpIQWpR+zOWnEtMQYvX15iv2/x7L0PAFNIXkyITIDU7oiAXlQZx0YqFnOFuIIquKiSZ6zXa9R1naCzBkLMk/PmYzwe+6IosFqtUFVVclpWE5G2lRAxQC93HNc5Zj3z7weySZI48d53ePnyJS4vX2M+n2O32wmbGTWtHDxgxNuiz53wEBnWd0UBcJRfSr+ZTdRikiB0ErRjCwdjRMBvLeH8/BQ/+tEn+PD9xyA2cMaBiHFzcw3f7jAvnoCLYd4MZhGUl1Uh4X28h4SK1dBDGVuazV+IdoCJsCEaPnsxxh10i4HknvI1i6wjbTv3ozQSMeTcwlik0rOTDlVEmLlWHujljnVdCzHLzTPUFSUnXMycIGvuppLH1cqVBGNN2rDxxzWcU4RRG17XNZbL5UFeR9UUqvrZwIJYzQiimolEa+JMjKYagNcvniM01/jJj99HVVgQB3Q+xCCJ/UL0nZhpVGWJtmvgOcCWBZ5/9QJs5/j+Jz8GmQKeDQIIsCbOEMcTNGoN8/EgFfYbWGNhCofAHXxoU+gclYmdn5+jqqrEVub9nlLSKOROEL1tsd3ucHl5Je5VsW0ap2xqfsZES+fH+z5jjtq7tS3h888/w4sXL7BaLbHZrOHsKUL04/XBCxNGIfr/he8OfUoNuYvFHbFJ2b05HhKbKYPgIzEDwVgHZ2I2cEMwzuDJk3M8vliiMAH7TYvtzR6vXzzH5eUrbAzh6aMT8NyJWCOWEIlZVRVYG4qeOibG5NNmyyHuQ4DLjMx1/ciaEX9a5iBeMTFsEJG6rh0ZgmMjODpUjwGbft/HmGkKCGMorvylqS4jyYudMTGPQKwhkw+r+QkzDx3NgWGmciUwhyF2Dhf6uAP59akT/76sad6BKRZYJyxR7MQycBRj8JCIyJfo2gbwHaoyi7vP0bmc8vqziWDVgjLatoMhRlXNEEMTYHhSDwXFaZWkpshiJ5LAkRJfDGncgcO4bbex9/kz42vONYNnkGnHjhHF+xR1bO4ie6RKhzyp8DRbgcnrg77l998Git5qOcZL3tLW4dIAGOgNZbNNGeVRzAHGORSlxXJGsGgQWiSZog/qV4m0XPp6OSMCyrT1a/tAhqCtyPcFtK67u/bQcrCn+dh6ikKYW+hG/vsYodQ9ofvD6UXvffIFzBul/nZ53sT+pPaDl9y1Ed6UoOWyvLG3fa69K4pC5GWRkIFUKyn2MxwCutCh3e1gCLDOonAWqjjKraQRTyrxU5SMMsZYdF3A9fUNnC1QVnMU5SyekDEQY0DcfQqtCSpOGUSMUGIWv1TEo6hK78lTv6nhoMY9y1nAY+Moz1U4OztNoYW879JCUNldjrjG1uNalFAOw7cAFxeP8P3vf4z9fof/+B//I+bzOU5PVnjy5DHOzk/6uZ4CQr/lRWdUXNsYXcfwnQaYgiB564SYgfHrL75AYQ3mVYkffPQ0rbHZrEL19DEqZ7FYLFIYdd30HNGUaqjLaHFAgCQiydqkKEtZfUpy4EOikLODb9T/icOQiBKRHK7L48S2XxS69s3RZaLrXjkL9YhJbKb3HicnJ+kGZSHbVlifXG2aWwxPIaWcmuaayPuc+sc0aSo3yo1lASQL+K7rMJvNQF00yYj0TBKyMgoSfjt0HfabNQxJiOKqLGDhY0owMXLUA1oUAhKlM/jYV27x6tVrFEWFxeIEVbVE0MiyZKIAV/7UAGa61EKmGhDxkUnEl0iyQudaJwCD7EhlWSa54Xgcpg4UVRDM5zNUlUQ5lfGqsV6vU7ISza6k4X10/nKTF2agKNyA6EloIsJ77z3D7/3e7+If/uEf8G/+zb+BIcIPf/gp/vRP/zk+/sGHvWwmZnCPM333WgCGiGK4UL4DRDGio0Aytp7RdgFdK4a0HIXUZWTzQgj4x5//IywIp6sVPvzgMQCJ579YLnC2fIzlvMLJcgb2LZLPZ0bM6noPEDCfz6QJ1I+RcmuGDBDCgJiZtCjjY4nIqG1lSPU9eBQm0X1POJMYafRM3xZEm0xVUPXhvMf3ynj1h6kSssRm9qp3d9AoPb3HpgH5hjtWxkhM6lbW89ZHDzqdNHSZ/Q0HHrBgJlJzBeDyfxYGhfW0ktDD1vSJS0T2ETVF/RsSa6rsJwPRotrCOgdjrcjKjrIose9Hr1FahIOJjz8aQ05RcB7p4D7IVgmaHjoyj8PQPFPeAGMErdf1fWNn4ZOTE5RliVevXoFDwOPHFym0to7lgTjmXhunn9F3Unjy4+Bi4uCy9k4ZZyexzKjOfF53ux0MA4V1og0PmofCoKpKzGYVnHPoQpf2iBICmSsPwCSzjDu7p5UMF3b6Ttdg1rN71XvneydqSu+iw0NXmyjt6q+P1/iAgafeumEgM1MB85hoqRxkbKh6H9ZyiifOG5Srg3XBCCRGMk4VK/kO88UcRUqGIQ8GDtjXe9ESwYrekFly7RkCKEg0MRZRqo1RMq5ef4HFnHC6qKImKNoJJYGuaAALK3ZVnkXu0YaATdPh9WaP5dn7WKwuwCjBsFFLmTkAR10lOIP3iswGs8y93GMC1eY5C/UUqusaV1dXiSVU9jOPQHuMyBkDWGeSn+esmqHtPJglfn3b1gkRSZjnaCjLEh3CWofAAX/5l/87Hj9+grOzc1hb4P33PogKAoOubfDs2dOIHhi95f9Yjnhb0cXxDgnZoPRsjprf9AeUpnDrtcHyvXIA0YAcQMeEfWfQskcggOBgqEDbeLx6cYOzxSMQAgpr8evPvkC7b1HvayAE7PdbnK4W+OHH35OgQizBQ4H+UOraFmRKFFZzwo7GiuOxcQA2hkiIB8/l/X/gqN0pJsqR+EAS2t8xmOJhfXeugIymuPxEFsvjoQBZw7qsVqv0nQrbp1jHY+xO/reJbWDto/L0FI/BONiBgNZ3aOoaHzw6R1lJNmxFWiF4bDZrIcBWZRQix5H8vwGSyESyaFru0DZrvPjiZ/idT5/i8fkSkjS4gqi5CWQCEALYt7CVhW8ZHQjGldjUHV7vW3x5ucF/88kHOD1/H4wZkuV/mjRK9eXETBdmDxRjPwigKOUdCzxzjaPO1W63w3q9Tt4QJycnWCwWqKoqOeCP2f009oZQFhbudIXgGT4Abeux3d5gv9/iZn0l+S6NRVUtYE0JxNyhzAHWEULr8e/+3b/Dn/zJP8dycYLCVfj0hz/Ehx9+iD/86R9ht7uBDy2UkDETiBgw+cIerJrxCsWIeTosbwVA6GaO80SK49XUwYBYtdtynSMOj0IMEAcYDiBrEQho2GDdWjS2hTcejh2snWG73+KLX77Cxx99D6AWTbPG3/3Nz1J03vlsDmcIj85P8INPvgd1xdY1YsjA2gJt06CsCpSlQ4wEKT3RDcVyoFOGFNOeRJ8ToGfhAJWLSB29kuHrj61+miZig7u5/y5XyE0+MaY58bfLWYhc/jUmaA8pYwHjsCETDUtxyvXLPvROiNDajVJZKbRvuzbBTQ2/Qgn9cAzZL3jLcABCi3q/RumeoSpjVIK4mJMgkmXhpj/BQliZ0YSAfetRlHMU5RycoTrW9w4EmrmGVesbDYei0okxVKRM1Dvba5YkZTnn83n67qiCRWksqYeEAazYHFkT0DS7eFD5aMyZyz561GLiuH711XPstrv4DoPV8gRYrXBxAWw2V9hsbnCzvkov7iPL3kHI4p+UL9i3w/kcL5n2kaPyhgdt6MmqoJ784NJ4ZoLEAxO6YBCMl0CgRDBkEQKw2zSoyhkAi67d4vp6jf1+G8ebgOBRFCbDspzzXJLdyPdRh8HZEZpYxju4pYQ63065da8PbszadcDu4oCAHnBxUyXrM4jguq6Dcy5p0XIipgLisSztISYVR1qRsK4smp569/YueiIJu1MULjmVBjAQVJ7kB/IfMiZWyIIIdGkwo2n3aJp9DEXiIvFW1pkSQSEiWDJRIKkjzVjfrLHb7fHk8VO4ohzMwIBA3VcgmJeMlk+h3RwJ52F+NJaYJhPJBflql3Y4X4liQFl8MZRegNGJ0BgG1pYpHZ4PHYwJYJ7BGBv9eAssl4sB7eYQ8Jvf/AYMj+VykWmI/2spI8RIchD6EBBi3DxZQ5rhCzAWICNs6mxWgEPAbkdomwanJydYnaywWCxw+eoVCISmaaGZlYgM2s4DDBRlhd2mz6t6cABCwRlHb4Khreh9rQe+jfI22ub2+z3Ozs5wdnZ2EPPq5uYGu91OtIQZkcs1brnh7INLFJTlAk6tL3jxZ9ONqw6lADJC1qFp2tQ+sUWzgBHNT8xpGtm7DvX+BrvdNWZljI9UFDECaERWMZaLIQuy0eYLJtJdjxcvX2K9a/Hxx59K9FiySRIgqHDMZmsY4ofJfsYsuhKy/PvcGb1pJIKnythWqxVms9ko9IoaKo5kEiQRYRcLyUq1XM3EVKcLqOsOl6/FJ9eHTgg+VnDOYr/fY7FY4NGjM6RXRBT/t3/7t3j06BQfffRHsLb3iIhvfMBYfFPysvsXSu3P+kSEtgvwMdkziEBkEzGzFrA2gNHi5KRE1zJubgz2uz1+8IOP8Tu/+2OUpcVf/+VfYb/bYrfbo7KIbnYGdd3BWsJsNsfNzRVSTAXVlqsYJ+4nlasqUBmXY4QjAYlvadynQMBDCJxT6j12YQLE8VxtnPRlRwfhAWjkgNOcqE8vGiJwsn/qr6sWLrdW79snvnG9eFMWX+dbdF0LyfAssjQvDw8bQcIahijHAokAfLffo2kCTk5OY+C8nAVLzMmoRxNs9qEQICHC/tTtkWouQ8vtvPTvtm2TeYraoA2TvEj/elnPcMSNiRETYFCSjSY5HbzfJ8dysUWMwxHDM7vCoqrK4Rgw4+rqErNZgaoqIwHl9M5B96eWjMoVB2P0zaAJvnMTZ9/nLChxitGlSJ8oW5Mp9WVAUViAJV6/j+ZEFxcXKAqgqkrUuy26rkNpXao/+CCBCmPY8jtbyb0h+ZQVwm0E4ruJ2+5XHDDttZ4PyBR1z+97MFvFvZhivMRzOOy7TgwKo51OXnQDp7C8cZOqyJRB0VRDYohZ8mjqDer9BicnKxhjMxU6Dd6f2hUJIzNjX+9AMHCugHNllLPFtlpC2rO3LrUpVKLCLES6OTRMnmI5D0K3ZGynIltFa8mMxBQoKweTNlYmNhg3J7I3klRlgc6XCMGDWdjYwJq7NEQ0qnIxIXRXV1dYncxjhX2M/JyofXfK4fY9lCtpu8fO8X1/lNh7HyMTq1IBwnqHINFSNps12qbBfr+HtYXYFpIY3YpRuEXbNqAqRroIkgdA1rONa3rMXGJw4Blj0EZznik5+GGZPGF/64qbsqwHeuth9Ug/JseZypt5V1Ej+YM0XcDAq6BuGizmc5ysTiD6SLnPEGG322O72UqSkETQDHxcX4wYw4wlcYk1HTbrV1jfvMTvfPwEzjr4jnvZRtSihig7Y2aYQjRZPnhcX1+ByKKaLVHOFmCYuMgYvQ9d7r5zRE6V9VU/U0Rmx2z5lLgpGnPOJRsuVdzkc6RRLLbbLYgIhSsxmy1wcrpEUciGITIRXPDAdk+SFgsSmM0sHl2IkoSIsV7foCwr7Pf7lFTFhxAzwAMgCbX06y8+x2zuEntOUWYpyWZ1KG7bWLcg27dapuo+wjdkAqrxU8xA13m0HaNpKYZtk1ntCVkD7/d49fKFxOe6vkZZVCicgwHQtUBZlKjKEvvdBuZ0CWusIORogWuNhGRXYmYyQkZEQJDV6JxLniO5SRVhgpUjhXq//QTN5ZskZ3OO+QMes2N6GEHLhPwJ0gyRUU4oS/WfjNoLJoop17qkFKC83kFbAXCAoYC22aFtdlgsNPOUtjsisCxRSVIVx/7WdQ2QgbMSS73zlCD/1FhkegP0i+RwoyiiHLAl2e/JrDSj942JoMpLNMlI5ySszMLPYnSOXih/CKr794j3gBAlYwhtW6eTXsMVCbHtR54MYb0WWav2sf9e5pkHYwL03Rmjnm9+cx0OR9+OydbEbvVJSnQdZ7PLahzbYbfbomtbNE0tdnxkJOR2kIxgzkowQiCuhyC+wBzj9BGGfpYHR2Zczz4CkZyYaXcO2Gka0Op3Vt628mFsBuZms9mBS5IKEHOW5p1qQbITrzcHULTSJ1yQk14weYihpwWV9YlHtDAjmmWIvKypN4LQLMWUbzHuF0xiTbUVFIlYXxdHl65HmC1Wco+xIBYH8Z4gxANBmWd+mBJ8LC8DDsf9NhsyJYJ5KO1eCxriaW0lTLgrYa2EphnOPw+JcdaGPGzQ+++/j5cvX+Jv/uZv8L0PvodqVsJ3LV6/fonZrMJiMU/tpYRYx+j0rtH55gnalCBg+sYoZgAh5gRHYEYXkl5+QAKLssCjR+cw1gCtXA3e4+b6Gl9++QKAFULXdeKVwpyc95UgtU2bvE6IKNJZqT+E3g8F6MMAEeU9yiN8TBm+/5Yjs4uLC8xms0Hnuq7D5eWl3JD5ampR1nMqxvidJbJzvYGeQUYL4i9Of1ojygkE7lnB6GPoO49qPhNftFQywqQbiVvcXL1A8DXKglAWBQrrxIyDCR0HOUWVXWXJdRgCAEvwPuCLL36DH/zOx3j05D2EYOCKEp4tfGeGjJERv7hBh+4shzJDGapDLab+5EoZvVdebwZER+3KfPC4urpMUzCbzbFcLjGfLyKbKu3VpLP6d04vi6JKh8s/+Sf/Lf72b/8GP//5z/F/+pf/Zzx5/AjrzTX+/M//DGdnZ3j8+CLORZ8kl4ydgoJ3jMu3UyKTOLjWS1PVvkkOQs+EQITWd6ibAKBMtej8LRcLfPrpJ+DOo6trEBhd0+Dzz36NzWaDk9UKm80lrBG2nb1HF82jqqoCgbFZb1BWMxRlzL4VOBGrruvgYsw0QAjlUAHAo35Mdfq7Js98WDHz+fxAwB9ifPoxMjuk5F8PsU0NXapO7czGRDOygMELdBd0pdB7yM6pAS0hoN5vAG5hTfTJNFZMMChz7KaIy0ZCVmaJlFGUMyyWJwAMSF19KGc3Uy/uPwh33Doe9zwK7TFWP0dmfchkmdPtdov1epPs0jTe2mE9hw3LieQHH7yPFy++wl/91V/h1avXWMdw3T//+T9myEw2fh8tZLre71rJZn6itTy4sT/ICD7mwUxPpjkSV8FHjx7B6n4CEHyH66sb/OY3X+Hy9WvstsKCKmuqNn6KzJq6gbUuRuGI9cemSEKUvqh4Qn1xJzr3X11x4zDUurEVfU0RsKm/H1TokEkfGM3G95cxxr2+T79rmgZg7hGZohMAAb2MiZTyccBmcwNrDapiPpjbJBobtKJvW9t2aJoOs9kCxjiIu4KE+hllDDwid6A7mKX8oYmtM2Gqkf89/pyX/iDqZWA9CykmHbvdDl0X4FwvN53y0dV3i/zM4PHjx/jggw9QlhWur69gKGC7vUFZFnjy5DFOTk+A5PqT9XX6CBtd51vufXdl3IqcqA0JAg9Cs6t8jEfyQHUx6joPB4I1DsvlHBYMR3IgkxODcDFjaVPqOH1eDq6+HbmyRtvbc1UadWKI4vND/uts23ddvradWa7FHEdwnM/ng4HV3/n9b4TMSATF6haSS6ysMZK8oWlwdnKKWTVL60gnbn19DQ4MZ1zU4MiEGWPQBlEKOGsROhH8h9Diyy8+w4dPz/H00ZlMclSpBhZNnZQQFyUnIrfZbHF9vcH5+VMUxQJAAVABMcpmANFwNgpWqaeMfaMTQRsix/yzalDHJY/kmyPlsdnGlOYzv26MWvnLu4yhmHNzG+0MJfLsbDbHYmFQFJIqL59vG52by7LET37yEzAHfPbZ5/j5P/4j6noDYwln5yv80R/9FO9/8BSBOxlbFrllT/7pyG/Ofn/zxOzWQsBUmySOGcAk4aMkd3Sel4Gx3zWobImZm+Hi/RkQPLqmxc33vhfFLIzXr19ivwecBVyUEXMI8L4FIUTJnIe1MXxUkDDkqoQRuTJiePg+RqEqaPoiygTgHcvB71m+FigaFTdFrAbZjkao7a2VXDCZVSt2NGLdX1Wius5ngwHs93tJd6ZtD6ziNCSraEMgJVQccH31Cp988Bgnq1WS1ynhSguVe8ZIS9202O8bLBYnsLaERNiIrk6DfozHZrxR9fORMRycoPnloQwtN4m56z69rtdUnCD0kdG2dVL0aLh0YxyqyvdGyugJqdbpnMP777+Put4BBPyX//1v8PyrL7BczvHe+3+I7334PZyfn4DRJbdbGXJx/J8ep+9qGc+Lzh+lvwIzGJLoV2P/q8kDM9C1Ho4DbDHH2VmJwojw/vzMAxDN/H6/BnMNa3q/S44hgiQqh6wxY3Kbxn7eBXH3h0XI1sPhvpU+3WVA+9tWBiGAlL1TY7vcHGAKmb2NMsW+qmYmzzSUCFAI6DofZVQ0Ig8xOgMknRyRZGHqmgbO2hi/zMCwphKRBdLD9dFpRQZt26FuWsxmK1hXQMy5TUKVKmdL7GnflOzPEfLgiXsm6NyUxum2AyWfp/H1vB0Ud0PPevYsadeKE3uIFv4qe5vKvViWJU5WK3zwwfuoZg6zuWjsBO3rocDDdhyMybdTBuwkZdcmhzdHihQPQgZiYM3AUYbL2eOsd4vMjFkSQm83NWalQ+UcvO/iIcGYVSXAc1gjh4X3kqG8KBx8kPBMzgkyZj148yxkUYaGbP8czvtUfMGJ3o5EGuPrtz37kPJWwRFi1Iz81FWDSM0KpN+Nsw1Pnfz36gC410xmRQY/xpOPiTOqqho4SzMzgvfYbXcoywrW6Qbrf0SMFuB9A0cBzX6D7c0llrM5ZkWFwjrYEO13iCVUEMUTLkbKILA4DFuDm/UWl1cb/O7v/Q6qagWyBQCr+jnARNMQ7uOR3z4W2tbjEzmFxPLvpojcbeIAqUsBrmZa16QmBsqiA4TNdoftbg9jCM4ZnJwsUVUlqmoG5wokIsQeZ2encM6iKubY1xsYA6xOFsljgzPqIGGjdcPlY/HtFc7ITV+OtCku2eRpEjwIDp6BzgfsGy9mGZFtlIQ6omhCcOBg0TbA5796ifOzBZ49Ocd+v06BAS4enYHDEtYAy3mF7c01CIzT1Rx1vYexhMWiSmy7KsFAeqiLkbh4f/TKO3X016UwJnD/NZUDPyV1E8ozAQFvl4pOMlQRZXnV1kUNkM01rRF2N02Loshj4FOqUZosjuYGAV1Xo95vMSsLFM7BGRtPNSE+fXyn7PTVBUIGu7rBZrvHavUIppwB5ISdAMBEKc8mRdVWT4gearYyvbim5kBtyaZOyrvmqSeOFE/6fgy9ZzS1JCRhsNjkOQNjKIbpLtK9AGMxn2Mxn+HxxVOE0CGEDp2vUZYFgFxwjfie79ZG6tH5uORQbfxN7yECiIjDM0dHc2QyV5W8am4Igu+AVy/XcGTw5EKSARMFFAXhZLlI8jCDgOu2hSHGfH6KzeYahXEoqwU8fFq38hsxT4WmfgzJ2PyQcOXA49ufg2OcxJuWA2I25aCaI6O3UeTAnmZXNaNPbi6id3mNaW6oh9VRw6boaiioDfBdi6bZp8CTnGtBCQPZRt7CwGIHJJu+grWFyEWQJXcFMvTBCf2o1k/ZjhGTOejXwFyXDt3G7svW5/cdErahnOegRKCoG0Kiy4aI4MQPs65rMAuqIyJYE+U4pN4BQswGYc0Hp1b/x7chpjm+dmn0eeq+Q5lob8Qt/ZSE0FKFKJd6cyEig+ADtrst9rs92lYMig3Jw8F7wDlhVYkBCpFVH6332/pGvS9vHsVm+NzdB+Y3Xd7Gu5MsN1/4qsXc7/dYLpeDB9QKf2yB/iYErpcrxJMig/pd28AYg+VyGWUsPUu629dYr7coyhK2iEavBBhn5IT0HcgxRHXuQWiwWV/i8tULfPzBE1RlieA1FLUm14iTz4CB5HUMgeGDx1evrgDjcHp+AVet0JoCPggrbGwJkKSC06CyKj/TPk1Ir46OSHpuNK5jrWX+/Xjsp0Ix6abT9zMjKkxo9D2BjEFVVVHrGRBYU8c1WK/XKFyJsixQlgVWq7nE6Yo1X169AnPAxeOzOK5jq3+GZDU3o2uY+PxNba77vOcWcQDE+KQLwL7p0AUCwyAwxNIfFvBikrHb7PHlr36NzdVznCwLGABlYeF9i/2uRXnioqyyQ2EJq9UCHDyub67hrI0h4/tDUzkKVhuhGLJK3PzaA6XNgewS03v3bcuxvsky4IX0FB4mopCSW5SPr3/dEs8vAEDnO4B5EENNS9u22O33vUtHRAES7x8x2UNvKCsxzNZY31zh/OwUhSt6mVYmSOAQIlJEJLDiHHx1fQ0ii8XyFK4QFjMwofO9g7qehByTDqcF9AbDksvIcmIzRdAeYvfHI5rRKzqyRlIffaOqZqiqGYqiQNeJLdr11TWuLq9wc3OD7XYb++yhRGuzWWO7XffatlxgPvj7XiOR/bzrcl+CNrHx4+EQGNEhHCIzU0KS1qdF27R4/uVzvH79GvvdDgSWOP7Bo232AAe0TY39boemqbGIGbW22w2MNTH1XB8qStCaro9eXqsKPMa3i7i+jeIADE56tRqfGoixXdOYrblfmYbyihBEBjDUnimMTtbveZSHKUVCXHy+a6OXQJbdaXB/dspFfJiZzaJpWxCVcEUJTtE04njlvcj23e1sofJz/RgMWvMGmuL7ouPEFj3g4B0Q12zzaIgh40MMKeRAMSYaKVo4irr072Ms3dsvkwgEwAEhm+TGe0HAdGtl8g/CSWVdJMRIJtsd5lUJ62wU5ehhyknOpfkyRRHWDXxsx28VFnYUlIgPk+MOFUH9ATNWNP02ozJgJDNj5pQIOC/jVHM6OG9iNCsni0kJPKD/c+91UBQF5ovZQVq5tutQNw2qqoqyq5AEoQyGcRaGxDiTuMVmfQkONWaVQ1U42JiKLrBHn1uzF4j3LTRgEF5f3uDx08c4O3uMNgCdFy2SxDOLBMJAhR8D1vC4xi5HHdnhcCi4G4x1Xm7TII8VBkT5eyJaCEJwBJxq23XbykkPkmfFHSoqC1jubZoaL1/WYLTgmLFJ0qRJMMYQOhB4sGamx+JY+XYQxVC6NKRsPUFTOaER/wYyAFl0HggkrDoZWT+IkgxDQL3f4vPPf4H/4V/8H3B+eoL9foflvES938J3LbbrNeazCrYq0DWSfYsQsJgvUJbiE+tDkPSseTsn5KMaMYWIUNf1AJyIzJPTwTTFab0rona72dDXL4PVxpG9y+VlOYXPN9FY0HjvooLRUSekPh83kI3uHSYKNmWfd12HtmujPKKPDKBtoxgOyLDIzPbbG3DoUJUxLr7arCXCE2E7cl9MaRsDuFlvYF2J5ckpOpZMRswkET9VWxXXc77CpuRZEwMxeui2IaPB6Xms7in2NL92YOoxbnscZyXGghQkP0RVFlH7Kez+5dVrvHz1Ei9fvsCrVy9Qlg6LxRxEHAM5TqHMKVnZPcfnmyx88KFH3kkjKPaGTAZMVtYGzMGaBYSYtc0ez5//Bo8fP8JqtUBT1+I2RgTftdhvt3DOYjGfwRjCZi3s/Cyy+xKo8dAdacp0R1nNNibI1v0rP4dKgryub7q8VW3m9fU1ZrNZCuim5TZV/zFYem826Qi/o2zuIazmqC06XFzjarPKYlwoRuHckJ1T7H+khBDQ+SBhfuJPevXouWF3+fCGB5Y3Z9/v+4L73zqe43F7FHm56C1gqGfYgWnS1QPFIw3hiae+wT1Gt71vvP44O7jSfskOxeQ2BLjCYbVaYFaVsNaIZT9pdviYXCcjMsYYWCOa0BzN96PDg6akzySG0JLfordKOCZ3zQNJHCMsdyn8jq2RNzWyva/J0bhO9+///b/Hp59+ivfeew//+I//iMePH2M+nw86O9WJvHMPMh1gyd4cImsDvR5hb1mWEvJHCV6kD7vdDj6Eg0zOwjLGtpGBCeLHBmK8fvUV5gXj/PE5OPpdAsJCaJM59EuE47v2+wbXN2sslmcoZ0sYV8IzJwPZIJUAis6+9uHy9lDIbQuIxxSZs0huR0BTCD6KBuRvWQ8WFTtUsxnKwqIoHeazEjI1DGNN1ptjfXsgcv3GyvidPaFKf2f3dT5gXzcg4+Ah6EnkZxIrDySums+ePcJ//9//M7z//iMUltE0GxCAWTXD6ckpCuvQtjXaZgdDwMnJSoiSdQhdZPltiUDiAnWMRXSuwMnJqcjOojKtaZqk6QSGnjV59OJx7ML7EJCHIKtjhO5tFffnf/7nqKoKJycn+OyzzzCbzVBV1eDlxpjktJpffyhy0AkwCsOBDMwI8SrLMhpoIq0bBrCvayFmxgzwT2CNkiF3EidrMFxdvcLy6TnOz6NzeQJk8UP0pVOwoHZqdd1gvd5hNj9BUc1BrkBoAVjhyxhZA8AYNOg7WxRK5H9P3TMsHNTKXC3JI1ogh9OTJRaLGcqyEGF2nINeVvbQuG5T7Xh3QunJViVoNn7vFMtM8J1H3bQga8GeENNaxuTBMg7WAhcXZ/jjP/5v8PTpGXabG2zXNQiEqpR4fIVzePX6KzT1FifLBZarFZx14AB4HwBj4FzkEHhavKNEablcxeznDZq6TslulOXUVIS5q1quIPsmlAHv4h2OWQLAXV9fY7/fD2JljUM2A7dT1Py0uE1IfeTpZKxLJhPkxHWlxPS2+noBNoO9B6KQ20Z7NGUTmLiPQ5cTogjNQghoOw/nqmhA2rNNTHlE216JIX3Vu2i0F26btPxguHus7hL6H7s2vuWYNAvTEoCsnf28prhpNpc45gM6ZDel3M7i5wl53xYhu+/GmRbxxf5Q3ra+MJASjkx1TKfVOYNiVklmsJGcK4HjdFhQuicyL4OzUxUxo8cjgo5GzdYgBAsT83uoHG1MvIBeLp7ebabTRz4Uld017g/i6I58l9flnj59il/96lf4xS9+gbqu8ZOf/ARVVY1ivA8bNFYG3PZy/TuvY5xbgICU8acsS1RlJVezyJebzQY+hKSZoahBRMgWobowtXvstldwhlA4SeAhbkcBgTmmRtFYaNICjsGPQQa7usXV9QZPP/o+imqBwAZUiAeAPtQ7UQ8kQlNDPjUP2b3v9gT8ukWVKrLRECkdo4huTgLC7hqDcblrTPK/v43xOXaw9GFAASFgzATPiAqAjGuBiYwmwcZ1OCsrOEsoCoP5rJRUh10Xw5kLOiudyNVUIQb0JkohhrsSqcxE+zKOyUU5sYkyNLUfVVkdc6/19N4n1KYyt5ywTQUZyE25xtdu08APmzu9VqbY3PsAKvf06VP8p//0n/Czn/0Mn3zyCUIIqKoqGUaO0dnA/ODIi++i2BIVM2N5ovOsZMmuEpvbn4iMzXYbDTqrJGPTYkwkLz6A4OHbPbbrKzhrhJhFAbVnRsoMTAywCke13QFELsrMtvidR0/hygUCDMg5sDfZ3srkTX3Pb+33YdFN890jaMwxBwOJaxOQHxoMZw2spcTexy8A2HFVGBLuvK96+uehnb8r/Ho/L32rcyInn0MkZGIw2yMuwwTVklsLlKXBsnSwllAUFrNZCUMkUUr2NToHLBdykDtrJDmKD4kzEDvH6Bp/ZIiGyExkYNY5LFcrBJWZRRTWdR222y12u12yG2waSaSizu/W2gFhG2vKkb3vPpYNb6oQyO+fAkda3GzWq37HzuXvqqSG6AnDfSMH76ceAh8iQVliw+aK9X8IHl3bpMQl6cRCvu302rC/IYQYnwqwtgBRz2b2izrblAk9jlnLePUgrnq+Ib5NIsaDX5N3cO/qpCOWekvUi5cS66h3DNnMwUsYOIw1z6P73305ZNRo4ttj14ZEWdamiEYYpGaH8hT16yxf20IAVA4t9ao88nALZqtURbRH5QRaP1KdJgaLtNFeRImBEquc9dS2jZHQMVe5/Pdd5V3L4twnn3wCYww+/fRTPHr0CCcnJ9jv98kiecpyfkpImP99V6N1k5iIvLquRQgBy+XywNCy6zrs9jVgCGQNyEQ7sRi0zhjRaCLWSaFFvbvB65cv8PjRI6wWC3kPx3ZHBYLsvxhMDx4wDOcMXlxeofOM+fIMtpiDbAUmFxPejuUUU4Rq6vNd5ZvYxPk7js3NFCsg/qqJsLGETnKFFa0lTT03hbAeIgv7JtHZMaKF0bXR98wwEEWW9yKe6A9IrVdyvLIHgpc626YVxEWEq6tLcAhiruEo5geIiqp0OFD0spA/QwhQx6YD1k//574VfY4LAJk8zhGhms1grMVsPscy8+kEKAWc8F4UHMwiZyaDgfJAjXPlXccd4r8uSLoPEXSffPIJPvzww9QR731KIJoTM61Qr+nfUyYbU3/n10MIcLYnknXXgTlgtVodELO267Dd7uTEEr8kMPtEzJyxaFshZtYaEISYvXrxHD/6wU+xWpQJ/cmpxwiB0+FKMAjcwhLBOovL60u0kZg5twTbCh4WnW9hTJ7ggicQRup1Pg1Hrn/bJUdDxxeKhM6WTWsI8CQZ4p2rRPBPQEzrPKoXuL2/PPr8bYwNj35PtyHyAPH/iMA5yMEYfXURI80CQng0ALslg+A5GqsCbdOBvbgyXV++xmKxwHyxgHMEInEDExRkUmgf2SeQaEJtQCBEJdlEW/Wkhq53JEPZxC5Cnq8iQQNEtuZDgPcS/HS/32G/r7HbbbGvG/hO2m2dRCVWVlTlbIrugEOWML/Wt/P+CG2KPZ2SobmyLGGtRVEUYGZsNpuj/O9d1HWM3u4qY3nbwCc0rm/1WwON68xZl2y5sUcIHbzvUDgHayzU5cnE041ZgfsYm4vDMMPCFRIVYxjlYXDojdqRiYbzm4hxSDjeFMG9aclZ97sW0TFUMmw3UbbJ7vX+hxKs+yC4B9R2gGJGrO/9ajly81Tfei7Fdx5tS+g6ggm9s7hq6A0h+mmmxXlY95hzP9Y3lr5NKgiyCogwYCuNsaDgI0FVmVuLlH5RNmC2Z4eEcwBsiPTLowqBty3OYma4pmnw/PlzXF9f4/vf/37SYuY3jbUWD3VjGrOgJg4kgSKLKWG6F4vFwCg2hICmbbHf7xOh03pEdS0RPwWdM8Aem80lunaHeSW5MUVeIARFT07vPUprYEjCGjnrwOTRNDWu1mu42WOcnz+G5z4LUy87G8pL+oFKvcXxTfttIZA3f78uWvnR6CIai56zzXffunV8vk154X3KNLvJGTMZOMYwg+Z+lb4xe2jYAgLh889+DUeM9dkK7z9eYVZRTCBjQEYSlQg7GN+SrP4ZzB4gtZGUgJlQdIgha6d2konTRB/Ese8TRp9p8Fm1mWVZQrWi8/lc9nwICNy7NoYgLlM56ku2a5l46o3y696z5KjNNU2Dzz77DJ999hnee++9pKod26CMkwDng/gQFAZoAEA5O7q2g/cBriiwVDaTAbCku2/qBtvdFlXMFMUsBhIiX5DMS4Z6VLa5eYWu3WIxL1CmyLIBEhKbkhGicZIPwHuJrd4Fj31d4/LmGk+W7+HR42fwwSAwSURZa0fC/5xFObZIxqzU+J6p+951mXpXvqCTwKa/PZ7AEg1DvCuGoX5uq3uqfNcJ2rBtOgQ0uE6JdSQyiLwfCIgyMQOxIyb84he/QqgbrB9f4Hz5Q8yqOcrSwRUEYxiAhzEFvFdtZZZqjj0ImouTYZ2RQAGhJ2Rjlkvaqod3rnnUvikRIORzr30RllfYSc3QRhFt1U2D7XaLuhYWtGlb4ZyioE/ZzXKkDZ1U8D10Vu541rUR+ajBbHLanuBxx2zhbZUfv4eyQc0GGnnWdHWoFmdyzQkQa0YP4RVSxwoCo+saMHu4aJzYn5YJ+fbtUDkIiXGiDx4+vssVBbp4th5jIZS1Pbg8iVByonc/edW7KcfYSP3Ig5yQ+XO6UQyQBNK3L6/bZFF39f3bJHQ0nK7JTuZhoKaDbwOy/ve7Pfy+Rr1qkiJA2TdZXrf3Vc1kmKJCgXAnkNDmD2VTh3uxf8fwmwQcMk2nEFeJAi0y9V4Ew7ESPvJzV3kbbKf7u7/7O9R1jbMzcfnRHAAq4BsnytCOTmk0bys9MZRh1vDYxoixoHNuSEQJieVNfHsUaHLowIEBCplCXLRsN9evQaHFxcW51KOBpljj/Rs440QWF088HzzqtsZmu0M1X8AWMwRYGOMAspFkiU/cdJmC7IPej35/m6zmQ0oMDRQPFiZlMRFRx9eV/31X0NkUi3wov4oCDgCSOYmZZR2FAIrrhFl5PEGw1lps1luQDzhZnSIERpB4QbJ+DWBtnyZOCJC8LR30MUmPHiZ6OOf77yjRGLX/oJdH5NyTiC/uT2VBrbWYzWYIwUcg5HtD+2ji5NsWiMFeiUiCPmSI8jYWNEd0eTlmgOv+4i/+Ak+fPsXTp0/BzCls9nw+T8RMVbC55iJ/2W0Gs2NEp0JjZklOYq0FGfHH5Lgo9GBs2zYZDhJiNA0wPHtJdkoMS70vJhHj8vVXOF/N8OzZ96ELggCwZ8ASDBk4V8gJyV4MF0OHfV3jarPGbHEiVv+wkmSYJBOT+oAe36/HjvExW6rXvmmClhOOW9AZ0CMFln5zjCbLHGAMixbTRFONhCrMYT33bte4JFzxBvW9STmKqwZ3MAALApjEZxWADyIOoSImpOaYzzSuO2strq/XmJkCZ6cXCB3gOw8OBkQB1kJcj3gsp1ZD5T72GLMXeRhniCjut9wW84BA5Eq1weUe3Y0J1xj55bJzDa2uocIkiUpA09RoWzG+3W63yevAd13cr4T5bDawbbuL9TxGVMffExHcer3G48ePk9X9MWh4lwnGbWWKkuppr+zlFIVOE0ToJyS9VoXPnBYOM6NrGzAqVFWZbhs2XBINe47slJG++uDRth2sK0Hqj5nY1MGLkXz0Mq3N4B6mAUFQ9u04u/qOy0ETe4TYM/m3tC42PZe9UP4FSMbygOces9XjP2/jU79JQnYAv+LHKSI/Ys14HGOMsiGWze87j+AcCicBFDgcC4Mua26650JOcy3sbdbwsSmpPbqPVKJ2X7STfz8w74jfKfspSanl0DuQuUe5OzLwcx8WdIrQ3Xa/M8ZgtVrh4uIC8/kcp6enKMtSgru1Lbqum/TNGnf43uxmBp8Zktrs5HSF+WIRZQhKQBjb3Q6d97IIIqRHlBuIu0gkaBzgQ4um3qMoXYpfZsmkGFtipCN1UJLbaTuAuu1wdb3B2bP3MF+cgGwRU4eFRHQ5scmTIyE/Suhygpb1/ttjMd8Q6bA+Lc8bI07MEiXj6yKxOxDiOy/3XbOjNpMYX7f7NslYRWqiG12mXg5qwqNH51iWFU5O5nCuReCAuq5RFkW0zTpcF2oTmTY9YrQSzu/p0VMuo74/0DhcE/k2ngIwt5laSCBPqZeIku9nspDIQAeA9J0+nwIXTIQJH/d5XMQqwVqcn5/jgw8+SLHE6rrGy5cvsd1uAUjm6ioldu159LyDR4dr/HKWtFxGpPfY7XZ4+uwJVquVGAKyEkfCzc0NiAyqatYnDaEAZwiSXIljyIIOvq6xub5GVUpUVALBGRtRhCQgCRzA3sNQjBZODHUw3+8bfPXyCj/4/fdQLS9AtkTnAzREkDMETZfSy8ayRcgEYbUMDtnK0QAMfn8TJUeYeTvGfTlsV1RSJSSmIbSNic7+lBHwQd363tvac2ycvmn2cqqdFNeH3pmNkVAp1HUtCXggqeRgonN5YiIIzlq8995TnFQzXFws0e7XCKHGbldjeTKTQI0DzaIUY+PhywHBS3h2Y+wAmR20+Ih2c9xjxeGyd49zTsfeMXWfmHEUsNahLCssFvPEWeXeBNv1Omb8atNvLbkxbp5qcvz+Ked2ZhZkVhRFyoak7KaGAVHTjLdZou8/OEJSay0K5wCQZrwHAxEVuiwkSS8D608/jogroGsbQQ1WIz1QYqQMiVNwhuaToBVA5Pk7FMUMzpUI1Ls93S5Ryf4fb2oeXSK9cNdm/2ZKzmLmV3BwXf/UeHRIHOKk8fFkfVP1jgcIQ/b8WFveaZlijZWUU/8/UUxY3aN74UJ7xKojM5vNMJ/NUBQOvqG0wY0pI5uWvYb7NyGtUX0BEv0fE5Vb5U5xsliVYbqBbh2D2w+UqfcPLQ4EcSr9CCGga1vUWfghJXCK9nJrimNs7zFkCADuhz/8Ic7Pz6UJsQI1YFWoqFpOpYp5Ds3cheEYWjswmjUSNjiEgGpW9RrT+F/wHk3TDjpNOQLgbD5Y2EnvO1y+fo3ZbI7ZbB7rzGyj0MNcIJtLArbbLTrPWK7OwbDJtkzYibSPb9lT+YaeQik8+vvbLA97vxwIyqpTDPuTmRUcILwH1f7g9rztcp8Wj5iteLFHHMpe6t1CiHr0+d57j7AsSxgDlJWFbxFlTPE4oJhrkzQChR/tH/WBJTB6BYN8d5ztSo0/PGN7yH20TBH1+5UeJAxpgGo/FUBJKsNuII/TtueILZfPHXOGBwD3J3/yJ1gsFgDQo6SiwPn5OU5OTlDXNa6vryPLRygin38b9Zwcmuy6tRZNNM5dLJewTq3+5Sjqug6bzQbWuETM5J1BVNocxDQgCkudNeiaBl9+8Wv84e+d4GR1AmtcHBgPDl3yq1T1uYlcIQO4vLpG2zEuHr8PzwUo2JhlR5zhiRGDPdKRBZATsilEM778bcrO9P23fRdJV0QaFDcm5cEYB/qaY4TsPjKxu4j/uxunEcN06/v6YzCaZnBA17XwHRCCBbk+kKIg/0jwQ8CPfvQhKmthLDCbF6hh0DRdvKc3KtVs8WJsr9pMTZISWaqYVQwTe0/LIF4g9+nrUj8Zk+zqoZlG7zUj9d2fsPXNG3oHLJdLzOfzhNj0t/qE13WdLCpyIqcaUHW7zKN8aHGPHz/OGtt3pCzL9Hm9XicNRc7L3tcgLi8q5FdefSpHJwchaMrCJKrNNOBKBuA/BOy2OxTuEQpXyAKA8tNhMPfMLFE4INPTNC1CYJTVAgyNfkAJ+aXDGMO/D1ihyT3IGPpnfgfKMc7ylgeSMpn6RS/jM9VpnqBR9yVk+edviJApwpxs4+hG7rscBtmSMh6wl0oBAE5OFigMgVqRvTak+y1HtNwfHNF9qVco6EpnjNfZbWxXfh+B+ufHzx5lWY8j5zG9OPZdfg8BMEUxWDNKzNTzSBUCinrVHEQJWA6kxu9xGkp3qlGAQLvZbIbT09N0WuTp38eduA32JnaTAbWjqSoNTd0XDRY3mMgcVseTiaPRa13v0TYNyrJAWZSw1sktIRtwA2huWkqLSTbdbreHpxLLkxNYW0L9MFM0WcYACR52bkTIBovg20RgeXmzdugilM9Sze01vU2i/W0j2FEZdS14j8AxPs9g30c0YiTyhYlGr23XoZwJqmUOIDX5ztBP4N5kSa4BuhZVlpz2wF0liggeCjjuNPk4cv9EA7QZch8Q8+XmTexRm6IuBU3H5Ge5y+XAzqxpGhRFkQxkx1CzKAqcnJxgsVigrmtsNhtcXl5CM5+PtQ73MZrNI9gul8uUj1GJiw8eu90OhetzZwbNTA4DsI9xnTwsgKuba+x2WywWIi9zrowEU45RIiFGTJzgFYcgHw3j8voa5eICH148AxULMBWS4BUxlycDzsi16eml7H9dZ2PW6zu2Me9ZVGYGiJmBoTGLOVXuw17ep3yH0Gwq/SHVdh0CO5A1kchHkQQzDFlYY0Uh5Qjcddg3G5yuVhKDL/jIPZjEm4agK0xCAOnrCCZpNWEQN/8wuutYg5lknTQdz//2nh0LJtEj9GOEbkzYenb1EMnlv4kI8/kcVVVhtVoNFQcxGUvueqnITemWtVaQ2TE1KCDITN0XiChVpA2/FeZmHRx/1tNHotuagZJP2czC5SGyWUdCaxJCZRhtzD4jblGFOKH7Hn2RzEP/XBpcIW513cDOgGq2QGccPGUmIugJ4uHeyk/IsQQmI2a37MmHbtf7kIWpOg9EdlMP5eMcL9DgWB1WlCOIg4p5fP2BBO3OBt+/DPddBi15ipGaYHV58IjgJIIciGn9x5oUPRkV6MtBGhDgfdeDOO7rjiMdxSFTB0EfNhuZcfKd9mQH7OPk6BxeOTLcQ23lXbWM28eRm4o9on4xqehC6VCu+AshJOUjANR1ndhR1YSqqMrVdZ0eGPtjjou6MqxWq9TYPIhj3oGBFjL+nQiZZ1iKkUqNEDIN7+e9R+clWCNRyLQ4nA2aGHeI4y2j3l4jNBucLwsY5R4JUP+4weAm+QPBB8a+bmDKBWw1BxsHTm45vdyD0ibPgxBi9JkBCoPF1luMj3++4UKMPj0ZoY+5r4RqvEjze6PfIEdkbOQAkTLKonX44gc0UuVNU9ffpNzxbiao+UBP0mJ2nIH5TDwMox0hJec5oCGGJ0bgIOwTI6YxsTBcIrQGr19cwfkKLvpzei8yocKV6NdDholI36Uy3f7gVUXA/Uc1O0TewrLLR2rqGBiW8QtzVnzo1SuXKD874iOyX8lEF0RmzGZzgCRGnPde2HgSxZS7vr5OKs/VaoXlcpmE/1pUACc5+eT7pmmw3+/x6tWrJJjLed6ctcxNOEJghJpRFCXKWQljLULW731To24bycaMABthdRs6BESWJ9qlGgDOBFy/+gJod/j04w/gQCDPMBbw0V8TJP7mEq2W0HUBbBwa7/HV6zWK5SOUqwsEN0OAg+RvMvEdFgSPwB1k8euMDAk+RwPcodV/vunz+79pgsYAdfLetIn1et4e3T4xHlcymekQ0MEVgHHIiJkF2Ma6cyblIYQ7J2JjgkYT1+5b+vdn+Hz4P8dxIA/Ap/uI8jsJNhAk+Y0FDCGQRwtgR4yaYnrpLsDAwLCBoRIFL+D3AZ999gv4D06wWjgsSkJbNwAMZrOlJMpJx3T/RkM2bWzZ40IATYyf3bOi2ShOwClxYQq9WOAtcO3DKqbmt7/Gg2txLmk424PvMyaAI3st4iwDkIErSlTVPObpUNu1TozhQwzOqBqDsiyTmcYxZYB6A2y32+SOoAOZkvdOPN//HcAeMKWFcwXIGASK2ZpAaL1H5zWmf4yKQQRFRRw7LYenmN7W2xsUaHC2LCMy06UrxEWJfh8SSAawC8B618AUc9hyjkCCzBg9m0lQS2nxPlCilHqXTtI0DQfjdtekv/uii1+JMQ2/OmiNBH021KfgEydzSsiMwTHRrQXiZks1JdnkuDykz1+HkB0vfQzWHJkF5FtMVmKPOol1wVFcHwxPBi2ADoxADOKkAwfYwqBA1zW4fHmN84VBgQqLokoiGheRGR/0MUNSnG37JLs0kfi+wyIassNrg79xfKkn2DVG/Nq3+8xpz0UZawVeGIaLyZcApBR5Soecoi5lGTX1VJ71+LCvlJCYCusAJKGdfj9gLVW+BkLgDtZUyYeyX1yEthEve2sdkv0+I37WxRX9BzigrncwluDIScz0JGPrx5Epi7jJ0n614N7udqhWj1GW1UBLlOQYsW1Kwvo5zV5y6x59wAY+duvb3c/oR/xYxb1zsrLYKtdINmcJ9cQRouHzU++7ozmHhcdfHgjphrdn3TkuThoyS8NG5PVzer9GLtP/5bzk1DxdW31z5U7vPV6/foXvf3gStZoE77uYy1IF/FJjCputreG8run+P0TjCORzddsgpspvqekO1jU/K8fay2MPTlzK5fGHSoV+PSqtcUVRJEHbbrdDXddwzuHs7OwgW1LOPiohc86l53a7XcqaPI6FlmdM7roOrnCYz2dA1BtqfzbrDdp9g6qSRAscAKYQk/7qghVZWQgdLi9fo3AOs9KJVtToRsuE/DEqp5fU0zC2AIPQNB2ef/USv/fBD7E6OYWeBsyCR2ySn8QT8b/aMmYR+yLuOuobKAachnK2eXTqHtT7dRDoeNzHGrZjMrYRV5BIrz5xyOhMF+5/qP8cRJwv6BQyHqptV02RMUDT7PH3f/8z/P7vvQ/rTmCdRV3vUZUl5lUFxANZoiDb4Wvzd0dkJutT45719pe3Ga+r7Pq3sYwVjLkZh36fKy9dTqzquhZC4xwWi8WtVD+XkwEYOJNqI6ayOBERAntYa1CUBXrgLw1u6hq+61DNF0B07eaEzIZogoPHfreFsYSiEOKp6I3H65UQBdlI6ML7gPV6Iy5Q1bx/Fv0pJsQN+Hqb8ret5IdBfy3Z9KR7gHcAGyfaokWd+PMyhbDe9D3HiGP+lxI0RWJi/sA8DM9DBHjf4sXLrwSNRWTWNp2ElHbiNB5G43zY+owNVZSc3vHAIA+/ZSWnGXlfcm5SNZ/GGLix/YcSILXpUNONY2E5cpZTDGB7fjZ/YW/FD1hjUwz5tIRYgtwlTQ71CCu+qWd9oGymx3a7lrT2ZZFkY3Eo0Od8zLVz8qupJbxRWc1iRNlItLRdQw9xvKtNO0kSJl71UGnTm988JFYMiS6b2EygZ0EO2jlive8csnvKTu79yDRKzAX6t79xIPDJLrOcjhEV5YdzQg9JWaLX5SeEDq6w8bAV2WtgLwa3GuIHUSMaj+ohD0BAynHBfSg9DDf7fcu3TuBoeg4e0qpj9nUuZ/80szkzY7fbYb/fJ3by5ORkMvQGkUTaUIKmvlWask6zu2gjCISyKmGdSVoxgkSt2G5rABLqhGJCCIl04aOwOUqymGFMQOhqfPmbX+HTDx7j/HQZOxflGkEgqPdtimyg1DMQcHl9jc1uh/NHj1FUc5Ap4KN8X7WekptT6tRUm7+d5ZB9vP12JVaRxSQJ7axsptaX5Jlfa4MckV0N/s6JzEiGNMkyHm/P3S0dHLFZ3aKAEi6SY2amaNgJD+sciPvw10LIAtquxmJRYbGcwbkYd68F6qYQAzSIYokR4/RFUwQV/RJFQQwDksBnGKdkSqY0JrTfqfKGuCC3jlCglF8PIfTILEdl6k7UNA3KskwELS85MVNlQe47dXV1lfys9H4tztmYiip9C2axdeOcnUnIilIkU4o2QARGCC2url6h+uR9zBdz+R6RmDHDGIsQaPj++NLdfoe6aTFfrGBdAZAB+34pq+VyPwO/7eWh2C4nEj0yu10w/NDyEGSWv/ddzsuxOnvCyZBEO0CUB3OAsQbcReIRhy8EkeuWVYGqKmCoQWAP7yXFoiS1FuTLxODo7WKTzSbimo7uTGFCoD5iwQYtnrj32yyUT+UDCNrYMF81wsotaj9d7tskL+z/Vi1B13UJpSnBmm4sJeG/spzqY5U3oHSlBJ8jQDMRMnMywI2HX4TU2TkUoQAxI/gWvmthrUy+MQSwLIp+FGQhaH+SPoCBpu3gA2M2XwAkdmXpnowoZlW9+5K9hI5cv3eZXLdTF8cIZOIpQozoEO9iGtV01ya5pQM0/mN071heOQhdPf6c1TPBLU63dBrRMfLNN6xMERmgrHcW4io+RwaYzQp8+OEHKEuXxtCktdgvRiZN2sMIBklZFkx+OE/0JaGVwzPm6xGyt7Xax4T2yAI/wvUQReowartyj+N7XS4Ly7UFuXvBZrPBfr/HbDbDcrnE6elpRiB6KKuspj6bh/PY7/fCyroCqycrlGURI3KKwy0Hj20M+2NAkgAhLmQTE6TqQgF77HZr7HY3mM9KlJUTwzqo8/nQd03YVkrsovceVzcbNN7gB9//HqypAFgYU6D1AWRCjOqZDfK3LWt4a+UugkboBTOCgCVUtm6I/Oc+i/7rUuKcqTpGvPL7ptjR+7dtKKHNrpB8DmD40KGuWwQ2IGNhyKHZt7DQwIMM54Cnz87xf/m//is8enQKogDnjETpjajf+xBrDLAMsGGYYMBMcKTgQAhjMkuKxJP6JgEZsbstEu03Wt7GdjEkIbgwVHT0Bvi9O5kxZqjNBIa8qebH2263aJoGi8UC1tpEzLTC9O7M+XyxWKSw2zc3N2iaRjwNyGA2r+AKp5RJ0FkIaPY1qmoZiVd0BIewoyEIHNfJa+odmnqHsrQoCiPpunxAonppAJR9luNLTlXGZrsHmxnOzi/gTQGGFba05ZhUeOyP+YbM/neq3HeFDY9NMhSRdG7k0H//7kpOyO5z7xE4dusj92j/wAhYUstJJm8A0ZXGex/d8+Qua4HVcokPP/yn6OobEIkG31rbC/MBeBYFlSjHDJiiyxwhGi1HG8fE4vfELLVoYFx7/+6/s/KW2pAUTjxUduRhgDRBuTEGDpjWiow/51rKuq6TQe1YAJnzsCm7cUyQQiSbwkTZgMohRLYQI2lk61E+juBk/N21Dbq2wWzW5yYw6EGFVKDyC8qPMTStyCuMtXLs5WiDsoURFwcntHKQr+etlYN6+Y7vbymc/ntIBZkcKtdwm34fZSvifi16o8G67aFplpizDg9Ykqwf0yRLjYInqk1fTK1Crbpn81KGd4Yotkg3nkn+Eco25eLIdJxz/w4ODDZybwjaJ5VdmkOSTdkZPiqUbaZ7Syjf2iLP1pGKcI6+dOLpyD+Pvw6qKo6smsrIXY6sxgZq+p0qAYgIu90OX375JaqqSnHOxkJI/azht6212O/3kgczBNjCRhZTGtG2DZq6Qdu0mFc9OxO4y9yZtO2SK/P68hU216/w0XtPUDgSjScN7ZDEjAMSApsBIoMAj1eX13DlDMXsBCAHJvXH1HZpnsx+2TzwzP8Olvu2fsSmRfmPtaplU4NZSufEuy26Pt+C4PBgNykFGM9u/nmUo5KE8HhJ3YUQGB4erphJnAEOUT7WHwCBxcDWFVYOdSa4lGgpC4nNJpl0sI8cggE4xLG3UQxE0YUqJ7IjKjT8lPX7tmH8Di5wTSYsJXJWvou0QKIegxmt74Z2ZlrGLKSabHRdl8JoLxYLhBBwdnZ24CWQI7OqqjCfz7Hf75OngHEWMvMAwPBdJ2nt2j7/EUMWhkjUqNfskCyvzfoKm801Hl98CGtIsjQZM3hWpfmJzhpC6BjX6zWsK1FVCwAWnH7EXEQWVFTFv82Z+U6XDJml38LaGyIYq8Jro4zP4O53VtI6+Zplso6x8F+J2hCVDf8WKhS8KK5CYHgOqCqH0Hpw56Ex+5Xl5BAATfbrPTTyhrzW9LXHIJ8c3xWIYXQNQxLJSEYshhm0b6qMifM9oNl37MRWVrIHWdKBENP7Odez+N57TAYyu00TMmXCkWcoHteRKxWSJnQ0YD4E+OAHRHG4tjg7REXdLZE6EU08esgZXz7qkAhG1fax6TpYW8IVRcyFmW9lZTUVmfQL7J3O85GF9ibvPOScjvFSo79H8sHhqT/1lokT/2iDH8hjDG45vguHjGTepgnr+INMUPrcYPb74/QI7GQWRRIiqzlgoeKB60OQzOUJbUVPFopmRhmbivj8lKhBkZrYtglx48AImQY0b/uwf7nIgOKfb+NkuL1M0Y+HvDeX29/1/cDka/yiMRHSHzWt0KwqANA0DZ4/f57ybZ6fnw9elLOfzjnMZjNhV9GrpskY7LY77Hd7LJbz6HDLUQ6QuW4gSi6Cx3Z9DcMeVWHhnBFMlaWsB8Qmx5qYezAEMDECA633eH15hfc+fA8nZ4/A5OADCTNDLPZCCDF8cYxvFRfbd+zgemDJWz7uybGFJpFLklaNCIKLNeM7DzflvY7+Y206dr8fPTctGbr7nqnHlCLllHhCyaERVIgQmOAD0LYegS3IOBiIoswww5LIz3bbPbhmzMo5ui7AEuC7AGsLsdrOcqwqkdN2K8cos8TwoV/7ZFoQBRjiJPiW+Ynufnqe338UUt+yDj/gybvLm5qJ5BYTU8+rAS2AXgFwjHLmxEyJkwr0m6ZBXde4ubnBbDbDYrHA2dnZ0YYmVJYf5gwQDPa7Pep9jfkiOnunBig+IBAxCBIkcL+5AXFA6USLaZjEQ0DrjieZMQLr1Q0kgNH6gKvrNX7w4wUWqzNIajkRKjIBZWHjqaubiNPC+v+fkhOnyGoaZIfTMcI4Jipvo4zD3Yzfn3/10C08dsDO6x4TaD1OIzHrJEwSyMIYh6aOMeljcuT9voEH4+ykQtcxHIkphjVFrFFNDrJ3D+RelNoXogwN5CX5dYzTJ3tKU7Addn1qNG4jDt/VMm6z2pmp0nCgzdQHgJ6Kjq1u9Z6pjmvFbdsmQ9tj9+aGfvEK1AZMQvQEcPYs5axARFlt28CYGPZn0JDbB0WMdyM8NzZzTO8XsWrGJFSRLrtvBpO9zTccDMXAqe/YE3R4C/WnfX8pY80puzGXy9x7Yo6MLWcfBl/3rVONImfkoc9glJ9st8k+hw1OFlzZ433rM2LHSGM6NlolIjRNC+892nYp2knECCTJ3IBiYgrtYzY/2agkTS0NPyOTJ6m5kTE0GKuJeK6pfeOS9uV34Nh+U+f5W2VmuVGswlki6rWSWVLPruvw5ZdfYjaboaoqLJfLRNiA3qq5J1JRhBkCyqJC6zz2ux3ICIJz0TFXY0kRMzh06NodXr18jsW8wsliHoUK/Qkn65uSU2/8EyCD7XaH9XqL+fIErpyDbAkR+lsYtmAyCEGRgG7OGIjwO3563V50E96xUFPGdX0GsDHaQ596MUcvOYuWfz/1nmPXbhvXqbrCke/zbNf5Mzy8fXAp11jnYQ0mIA6ydcsmusmJgWsILMbemQzniy++RLvpsJgZnKwYwRns9y363KvxnaTKrXwBy4fogi6fOe0EEPepdXRvSt97wGGiMkxkdMOx+G1by2NglXtfqJxeTbNurWRsmAb0qeY0DZ21Fl3X4auvvsLl5SU2m80BdR0kJgUgKmkLZqAsKhRFiXpfo6lrtF0Dhs/kNIAQFg/f1nj96gUWsxKPH50rvRnI/AlRScHKJlI0K9ljvd1hNj8RVbot5G6yyewgWRUnpMb9QnnwNPw2laHsSDYCYKwRgkY5kXunGDIrSl7yn3Dk87GfiXeorCyZ3/T39BhOiNZhiyK7yQCz+P56H+Csle9Y1uzzL1/gl7/8DK9eXcK3AcED9b5FkpWl6DC58z6yoU0BgqBeAnpNQ0ZrYo9OrQG6Dl3n4b1wIBoc4dvHWm9exlF99FrudaR0aRKZ3ZevHrOSSvh0kKfycfZGg/3mUE2niXkGU12MdALJ6STW0iFotE47UHTx6KDPGQgG0iQXRRFDtvRhuL8Bg6k7y9Sie0irDp4/5DDuX/K9peghr07Xx0DT+BZkZm/8uEx+LyZIl9BrqPNbOd2Qs2MjEINhcpOczcxnZkjgCeLP3LWdhLXKDkZgek57VllfOSbEifHsn4ncaQ86JLR0zn4yRy2+4rojqOxtajnvhfzGy+YBZaxc1DLwADjWEGP63HvMPJCL6TPW2hSZtm1bvH79Omk55/N5SgeVgaUoj7GoqrmgI1ugbmp0vkPTNUAXYEkcyZ0FAncIvgE4wFqCs6INopgaLnDUYEbCl2Y7iiY22x222z0ev/cDFMUMDAON26kjbKh/3pKJltjAobD4t73cJpfQSWIYKyymoWOU8V0dAvepd5os5L/kttEpN8gwP2Z1e1R+UK/SMRazxsgDiHw15rzU2G/BM3wXwEF8gyWCi48adn29fMjXV9+agHzNRQsh2XOjA5wBIIpxhnI04ahsZDlBgOaiOU5v3gZRo4lP45rv954cWE15KuUozeUXp1yS9O88u7ASJqAPx5FrOZumwW63Q1mWMcmvy5KdCP+vgIhgUM3mKKsZlicnuLq6wnq7xuZmg+A7OGtQFQ7kHJg7eN+A4CVahpMQQQQJL+CZUUSC6TlmGErtBzabHbbbGj9+8gxFKcTMc+8Dx8zRL1QSqhhnRItOaiSJIwv9v5LC2eIjZTM1Yka+JnrW+92UNyVksQxQRo6q8mu3sKHjR3uIl/4MAQBHN+gYaRZJHCGx8HwXEAJgrZPQ2p7hop0lR0M19dHknHAN2Gsk4KcEiTOCpig5ZBtdiViyCY37dWx0ksw4Driw6eG4Xxki1PE3PJiP+xPOscnY+DowgczSi4+Ya9xWcqPXPIy2fj5U6/fEUw1frZV8moIGtcUQ9tL7dLqZNDnjkSd9AEnwgxhbKi4c58Q1a7J3o5NP/xT2OOO9Bg9ni51HCz+/Kz8gsv9HFwf2df3UD1mV1LjJPozeO2rirXRg8HVEKXeu7lHbJro/vZZ0/ifakTUkH6uBKQM0WkQ8IA/kXpxQ2Tik9aFBrfx32JaMgOcEhoczk88ZIByCc5n/cvbOvqVZXRkbrC2Wm6cI83hd5KxnlrwHOPzdjwLGs43Bd/cvB0uSBxM3unn8Hh404y4u8dh1Ipq2M7uP5e34un6XO5erYuDy8hJN02A+n2M+XwxOuIFamxllVWBJS5AltF2L0LUIbYv9bov11StsL1/i4uIMhXNAiEauUdJpTN/JfJoCM66u1wBZzOZLWDdDSO5LNvphSj8MEYJG7WCAk8hDU7XFk3eCFObXx0uFh//dSSCOLbN3X6IGjUM8XCgzZNbDSH9ydPNOmoI+6eMheQdkLXadB6BaPBqsg0F1wcfqtO196kDx7R2ht0QnOK2B+NbeX/BAdkPgwHj23jOcLc7x6OI8xjPr0PkGZYJZ6lvpkYyzc+QrvELqKrO48YS4+ZOSC+hBwmgP6z4dxAkkE+OqmSxG3btZaVNkRFHjuygHdmbTjTqklsdgXx4LTc04bm5usNvtcHFxIXk5M/DEASlwBTOjqgoUlcN8OUPTtthtNtjcXGF7s8Hl6xfYXn6FH3x4jrJwUa5Vog1tend2pqUFEQLw+voaTBaz+RyumKFmCwbBGIuuU2IWk6JEChaCJFCN2A4qHzFEmfNrT5ANiUGlshoJ2WhropkHGDEtnn5zZNyzz++SsA3JhFqkC6GyUZsp9/URRqTtb4OY3dYzxiBretZKbUcIPhEzIWLqVjdul7jB2TShOTGWeozpU+sdRE8ZsaYcNIw2Jfie5jowPnj/PeCJwePHj1BWIQYTbQDOQl8ZK47U8LBk49oYIikTUV0IQTSVka4aMtnei2KA+DyDYvuGvo0ESHZwNjE8vH2LxCziydGwE2mGrzg0IxOtCTbnjUtCZlMlv/4QF4T8t7ocdF0nLGcIMSosZUlDsvcYAwOGM1Ggb20UyiNa/HqUmgh0YuDkpf01ZRHbVk4n41xafLf6LL6F+R2wwDz6PbjvHtN57KYpFm2ygqkGHI7/+L7UhwNgNHzxAekYsx639JJvHfZxdizOrnNcX2G4qQfyvMgccvYXT7WF072HmHpI2FTOdVupqhKmcDGRSQv2vamForvjP9kdSle1/ZH/HrLN2aglMUnq8IDFFFu4Hrkx03gqJxHVXSXnsIZ2qsjk8WPH8fuV+947aZrxpiVXmaogMjes3e12+Or5cxSlQ1XOURYlClvmrQaSfpFgjUVVVsBqhZIeIezOUdEe86qCs73gNXWWBIozoiA/Zub2IeDy6gaL0ydYnj6CDxRlLIPWg7lPladtiNGSYLL1n9vMjYn2lMal796IANxzUgd30JucZLpB7oMBBZVp2B8V/h9HRyOqlTbSkB08/H0fRlqQVo8WCcrqCzvn0dQtXr++iuINg8I5LJbzlIAlcTRTY50MWJGyK4kbm4aSUlaUU1MDd2D1F40ojoNEFuEgAUWdK3B2VsLBoSwMisICgdCz7xHrsweIE7s3FN/oMRLQNF64COtQOQcOPhl3q9bywPwpI4jICEgIAV0kMAES2faNltSo5Ma7U3tD/gaYwzBb21ssb5WYKfHKrf6ttZjP5+i6DpvNBq9fv8ZsXuDs7AInyzMUizKJYAg0UFA7Y2Fnc8wKCywJ1F1h7mosFiUcQkwEzL2AlSByERL2MYacQhcYL1+9xtmT7+P80RN0HiIXU+gdF1JgD+7UkjpORlRMaBgiDsOTJV8k+aK6zdd1Uj45QsGTgv50Cz1s8RHicXsX49ovOmMYLhGzkdxqgM4oO5ap3+DZAp5GgIfvnb5HWDFmjuFvenlLCB12+xovX7wUr5GYcjBwQFkWKAqLwllojLGyLBKqSu2K+94Ykb2KXI0iuxYA+GT7CAQEljh7AA/WjXMGPoihaulKrC5KlMbBGoOy1MQ6HcTXVEIABRZCZqyiSVVo6JjL33XdwlgJ1FCWM3RtjbathywkZdFsmIWdjvOgMmGZDwJTQGADk7SxuC0wyb3KeE8M3pcRN7FlP47O3kTxqOWtErOpMkZqTdPAOEle4oMmDB6KMTgSNhCJZT4cyBSoyhJNWYrdzGBz9ghqfN4zC8/edh7GWLiiRO8MMkV0tIYpJJLXezgZxyZofFLdZ8IO6j644fAZPvb9aFD6V/ex4/JzXWlSmjv0OEG1h/qKARmi4yzK4bBkb8yJe14XxuM7HJfAgsTbtktEoI9vZaIbFiViNqooa4eMQI+Oxqxl3zkeIbW8zVq3yIwtCmvBIctsle7O6h7LRuLa73UBFP0uASKTbNZ6dvo2dHMIuZg5mnb0iI6Ulf0aRZEZMHQ3Svs7saB31/WmiO2tE7McZuanhiY7mc1mKCsD7yW3gG85nqIOs0WZIRXdQHFnBUZZOCxmFYjaCJik0yI+EwEvUMRnhJWs2w7bfY3ZfAlXzmBsCSYJl82KKtDLDQiZv1xkIVjjpaV13QswtY85dJ5aaHcTtLvZrikt8rspnLE/yorpTzxVb1VIjQ0GHvjunBWNMCqOWqofzKh3NbouYLE4kQCikWjs9y3apouJWCR0tXOSgcvEqBYWIrNVcwtjHMavEEA7JmzqqxtzUohQSuqI66BrPbgc9Z4nEIuieWSCfORjjeSp4lyBxXyBoiwRCoOiMLi8vDyeoDtNgBj2Ji17Iio8wSXoow9bV3q+hfhB/1YEzFEpQdCYghMr4z5ShzvKWydmSpXHfLy1FlUliUxs0cG3LW6ur3HpN1gtl1gu56jmhZyiSlDyiWWPWVnCLZfw+8v+mxjVU+RdLRyVkVABgQi7usH1eovl6hTVbAnnZmAqQGxjclVObJTA7bioSDRcIcrSxHFdZkj9VJVwj2UAY4Ke/y3vocl78+/HZaqOr1101SUWUTerT+jCkMkWd44i7kIEb07OcsSdxjWygemOaATdth6nJ+eoqgo+eLSNJKDufIsQPIgYs1mFqioBGBRlEQkbRTmXIJSyhBBN0jHJe+xTuxgGoJDSjhP3G9ZYA8sGTdMhzBg8yMh4OM+AhGenoCxijLWt8dNASWtZFCVOViewzgII6LoKL168SEmE8vRrakOpsjCJDqws7DBMfj7aerA/nKpI3SbuD45VaU3qlkjx97syz3irxKyHldObTuRpAJmAlj06z2gbj7asYlTOiQnP+HljCNbZGEgRAw5ABrFHdfrB+4Cu6+CKQk5fdexlKD+bvYqGiHBcuN/EY2LyJrz+15EPPLT0zdU+ZAQp88hIqrPEGk34ZY4+C0sYT3u5gl5rdwvrOfg0qjnxrDR6oies3ou7kBCoAuQJ3nRxzj287wCEGPfLofMBNgSEEKO/YvowGbRFEdo4F0E+hPFQoCz3agjqUjdaRxOvYkW7GKOivq+GDJwrYKwe4H3uznFJB6X8keogdevSX1PzciBbHdY5VbSe8e+Da6N3TrGhcu+bHdpvHZmNzTkOhd1RhoGYELh0IDCatsHl5SXIiCP4fEZwxgHwcgyzR+hadG0T91qcdkbKP0im9/1Us8N902K93WN1egHjCvjAYJtrM4cbO19MPdtoIjLrT03VIqWsUhhujLH93XhsDiaM7o9j3gyVTS/SSUKCiI6NslLmyN188H8PabRDb0KsafLjmMB1nU/hd6xxwk4VwGK+EmUOiymPdSJramqPrg0gamCsQVk4uKg46Fofbf+EEPda3L4NifhFQi2G1b1tmqZHtM7h819/BcvA995/hlmlUWXFtlHC+RCI1B4uQ0Rx3HLFkACALElKbE/v73wIIISLyE77KXo9XkY8HvB3VaY4jyFBe5PyTojZeICHAx39Jo2RkNdmBjBjv9/hZvMaZSUZnZwtYAsCwQPogODRdTXaegcHxFNQjlcfPJgCrDVgH6PGMoOtxWZX4/XVGj/5/u/DljM00T9OtVq9kawYMarwdUCUjIUxQAi9YFaJmPd97oKc7Rzb243LAdGL6+3YaZvf+3BElxOycXvo8L5onjBMXJ+hIsruHfzQ4X3Do3jE2t5dBEVzEgf0m5QSMXOuhLUFrAWsLUFUwFo5gNq2Qde16HyL7WaHruvS3C1XFRbzOU5OTsDcJe+BEAJcYRMn0Y8OJyIJiMkPR8dyCc0jWu+yKPAXf/sr7Nd7nP4PZzg9mUOkdAUQDBgir7WOEDiG90l8oR4Xqs6SNkjboJGDYIxJiYaA3rI+V7bloo8hCs6m+96ig7dT+uUwxfl8vSa8U23m8U3Xb2RrDXw0qN3v92CIU7r3HmwlPDDHCAIcjWaHGycK6U0ms0o/suCbtkM1mwPGZuzFuI05ohwOOqE/EfVyLgsby8fuGospGZmiGxq8vCcKdI/TNV+Whwsjf5gOfvcjqiPXG54yD+8derXmhDI7tNJfUzxqT/CGCh8kIneU9cvGRjYsJRmmssRFwXDORt9IyUzvQ4D3jKbp+mw+hRAeDgzPPQINwYODkRATGf3tSQwPmqJTo6vPGIPrqw0211u0bUjjp1mZevKiB9NwPpLpAij9JiApXfTu/BAdH57j8RM74RGncOSvKTbvrYhDBntvAp1NXr1/eSfazKnPA3sTSFgfkE3fGSsnjabj2m7WCE2NwgKF9bChkYQOgLhqUJ/liSK1IXAy62AQmtbDM4FsCbIFyBZgIzI31RKN266GtoPtyv1PXtTUZNxn5mFkkbvGa7BQBi/JpvfI3n7zMkZk2TfRaFaaT8OfMVc6yasc6feDWU9heQd/Z2yYcw4hiJhBAC3HmHXKHgcQLKwp4CxjVi1gTSmKHWYUhaDtzWYHRkjoB8RYzIW3o8AwVohaAOA9y08QouWhdl09MfHeY7PZYr3eJvZJ1oIGfJTApOCoUMjmQNdCHnKJ4ZEMdQeH7iFYGGvRv66i6G7zj+F9471wPxOSt1PeCjHThmo4IL2WmypoTDRlw4yRpLvs5V7nHKxbAOjg2w6XL1+idBaLmcFqZlHSBggdDAGh8ymyhqAWA42OIAaOBGKD7XqLLhjYYg7j5iBXgU0h/pMx8kaOBJhDOrxUG6OuL8Ez+hBp0re2bbHdbhPcH2sox1nfj5WB5ncEoA5ITg4r711yNvD2QggwJob+sf3VHAlLNSH7DqPP4/YlLIFhRqcptDhqOfeuSmIQbcEkmuayLNF1QsCYhag1dYvA4o/rLGLAA2HXnJtFn0UARKi7GzRNje3ltSB+CjCEGFrKyrvAcCWDjOSx7DzQdQFdF2AKCx8Inj2ccdFNTxy7X7++ws3rDTQKu6ArMQ8Ru0kLH7oe8kMPNZHHqXM/sweHTn7DQzNj5XsKGKI0/Z2bDH0dZDU2Kzr2/THO4wB9v6Py1pDZlAHp+DvV9FAkOoSYGTqiKRMdbzuWZMPcAQU5eFuAbRdjn2fp2dMLEjMY14UskK4TNoSMLB4yEuefmQeELN9YnMJk9CPPABD6VyoxE+ffLi0aXVDW2iTDmFpEY5bzKDuu9KdfC0nWFyuapAfpkSPrNzv0J74beUCgJ+DpFTRks8ZN7v+IBwzpFtV3HK4VAkVUPYXsswbHzjFr0EONsxezi/toGgSWWHQwMGSBTKCvB2zHezDX2O8bsVEkEWsUhRNtaNRImiC5RwL6UFIhQS5kJiO9vKquG+z3dX8o6qGrpj+ZA33qna6JbI5CdBgfhvgejuMx4nEwzgMxwNsnK1Nr+JvS1gNvkZhNyoFGG1avK/eQG/Lp5iOKamhr4Byw3a6xvrzBx++fgKO8zES1zgA9ZYgqgRdjYGwBYz1u1juU8wKmsIApEDiqwokGm3awb0jJQo9IaLQp1fdUUVhuZ9e27SBIXi6gHWs+p8bw7ZZR5xLLeMA3xuiyIwfkAbA7fOYAlR1ji2/bQ4N33MJuZ8R9jFCE9VRlgZhvtF2INmci3hDDWQNrHcpyhsUyIEQzDkFnchButzU4eLgWME604F1wIk+LcfzVHYhTw8Ttyjkr2lInrkwc2eDpuc4O09TT/lpvuJx1HsNDtWmatLaKohgQsilkpr4yU0KCNy0PU0wdv+9NTZbeCjFLfP4IieSGccpKGWMk6S4zKLqGJA7LB9lIzqCsCsxcwOe/+RK//Ie/wrOzP0ZhOoBjtE5GOpFVuEmBEEhFtAyyBVw1h2sIz1++xum5w3zpMF/M0XUezGr7poa3cuL2yATiIMyAsAdDR3rVKJ2dnSVWc7/fY7/fo2maAWorigJlWSYDx3Hk3odM3pvLII4RoCELaZ1o2vrpI+TmGYd1DKmehHyhRGzSdWaYAa/Rf9ebOPT15Nm6lRD0ShcAZIQttA6+Exa0LGfoui4J1ZtWFEDeexAYZVXBEcGQRVHMYG2BWbUAgrBxzB5N26Let9jc3MD7Dq4EjANMaWDnZ/DBAHAILIeqMaJRFw8EC2MIs1mBsJhhNi8l6UnXE19iWeuK7KRE5/bBiRp7T31CmaQqiutGE5k0TZMMaJWY5cRuqqhdfv66r4vX7kuIpmTQ43oeWt4aMbvLFEFLMljNTzIV6kJZUAOyBtYy9vsNnj//DXzXwDmZTDIEDhmLpfpqUCJuQn8syDqQLbDd7lEtWpSzfjHkbKNeS6ya9iMdkIf9UkJVVRXKskx+gU3THGVB9bljypGDv5WdmR74vu3pP2C0Pvt+6CAffDv8W00UhhpUGgIkHs513twMZg++gx48sb5xrF9OfZrurh44zHqARhssMvDBx0gZFsaIzEy1lCK0l4PThd6Z2xonh1kBgIPIpdiDeYfdpsF+LweS6ximAFxwqEqOhFLZRDER6lG2/Ij9mtiwBaYULIPiPIxplopgsgWYxrFHZjpKw7025gLy7+4iLImg5bUfk43dWtPhfemoPCpr0zGZQvoPL2+Vzbyf1iMaZOqJrgt8fDoQwPG0KwsLtcDOsUQaNJ1sBpK7ABnM5nOccgkUHTzmsK5A23VYr9cxNrvYEqkcasjYqGp8uh8a7keRlpbcBzVnMVXLxczJNEDbPsmOAwOC1hNXuv1IA0bs2rGLdOSrDJnicIkpwdENOZ5zIvSBAsbvi8J/2TB8uHzjYXLYPWXBpGEheGy3OwQv9nBd10EjUWjMvHQocsjsxaQeHzyapkZAC6LoWaKbigyMcSjKGQIbFD7AuACYAIaH94wQoplFIs494dA5/OB7T9Cet5BsSR6MDmREW04Q5ZPPpyAjZKmp2SHdz1NPrMqy7JOWRDktkWSGskMjwaPlbWkZM2HM6AVIMtF0b8b29mf11ydo7yyeWQ5tB5DXB1gSrY7gLA1dHI1Nod4BQOhqOMs4Wc6A0IIgxqsIEcFRZFc1oTAHcJSxElmcXzzDKpR46i12jcHl9Qbr7Q6bF69QlRXm8znKsuw3D6WRjad/SL6aBgYBfiD4B4D5fJ7CHjFzNC+RsEd6WjIzmqbBdrtNRpvOufSTs5xEcdqVyMXZTrI9ZrAx0S7q3jODIxRuoqj7j96r1uu62JSQBQzyPWYLUW2+RpclqUfsq42a6B6BHLa3H5PoOwtZS533+PLLL7GYr0Bk0TRbLBcn4MCofRsNaZ0Yzgagqiqo+49kGW+xbWoEBFhjUBQOVVnAOiEKRWmxpBnmc5ZQUqFG52us9zdoakbXAcaUMRwQ9QdoTIVIRPjjP/4DGAaKEvBhjxBqWBvA3AJR86l5LbX0hCXfPzr3Mg8STFEQ6XK5xGw2S2N6fX2N/X6P3W6H1WqVxBkP9oN8IE1RsaseOfn1nkTdd/29eXmn7kw5cdO/AzMcjU/tjMXSH9Iwx0BZWmgcKJOdTCKA5fRUyKm7IcwXK5BbglFhs2esdw3a9gbXNzdYLsIgG7K+fAi4p6dAN4WiMEVeao6h13MHYEVjKkuTDUZJXjYW0uo4JNZL25EEjF8flh8rZJBieB0CQc5+8mvp6ewn/05QFQMxEskx7vmwX2PUH0LAZrNBVS4gqQ27+CSnEOiKGjVoozHUJ9fxHnVTi32YFVOHonAS9pHkfhGHWDhXoO12qBsD7LfwHSN4gKJrUo6WIgkGAHz40TNU1mJfe3BowehidBcPhjnS9wy/ROLQo998TIWYyUHcm2A0TZNkaKnGNxSmP7hQ3/e88Og3kCOzt9uud2o0m18bqPbHhExD9w7kAoymqcEImM3KxFczM4htNg4RrWSEiEiickb8BjYG1hJmM3Fd6TqPsijhXNGrz2OQPEkQPGCE42cDgk8yhdymrm3b1M9jtmWa5EWfzRUBXdelKKUEiEFv9vytminul9CB/OyAjUkjln4fhg5PTJPWlI1EdureItuS70OMNdb2Mirnhixz1m4eyAY5ux5blPrTH4zOiS1YCK20ksQFK2d/BbVoPPwA77s0T0WcK2tFA+oDA16yj4NNIuQU0SkHAkWFESiuLYq+nFGwrwMo65kBCkhGr/8/8v6sybLkOg9EP3ff0xljjpzHypqAQg2YRBAERFEiRZBqUUaqea3tvvJP3P4rbW1tNJP6QS9X3XbZxubQgkiAAEkQBIhCoSor5ykyMsYz79H9Pixfvn3vOJGZBRRAyuRAVEacs0cflq/1rbW+JUibrbNaaivA18rcGjFWIztRcLjZd9yYoJL756eOL/ukChTrAm4cf4rLuj26+byfxAz+VINm2+EG7UUIwCaDW1ZN33ThBG7+W2uMxkcwKLG2PiSzx2hKLDbKe+l6wgtrgyqlEMWJnVwSQhID6ebmFgbDVWxvn0G2SLFYpDg+HjmMIYojDFYGCAJliwnTZBKQEMY3tYA8z53XaDqdundnZ0CbZyoMQwyHQ/fcRVGgKAqqM5plTpiZOHamalur9X8aWtpP1byV5/6thYnwhBl9Lr2/25pYK4DWEPlmmmaYTiauqnccxw1nibReZAiCF5bt1NKmoKG2uAFDY54kHQASk8mMsC+lIFWAqtLWTDaoqpLyMytih9WaQi86nQSdTg8QArrSyPMUxpQoJXkelZRQUtnNJYQQIaoSkGEEyVW6BJEkGJSQynq7uRckIKQBRA5jMhiTQ8iKClcbDa0LCBE47YtNecIqLaWU1eAMFGDUCcHWjh6I4xhlWTpHFD3jSefS0tnwEsec1vx7nKYJnnbNZR//tN76n6swW3qsHf4GWH+i0cxNF3NIVOj2EouVGVd1ZrkBSDu4sC5qB6AKCRWE6Acxej3ikBodHUNrjcVigTzPrdfJoNvvOYZS3mJdgKP3uH6CeZZljcReBmSXOQZYQM3nc5fwXFjvJ0BesLZ2t0wz++lDM8SS3593vNe3LdNxWTEMbrqqUOQ5ZrOZE2aM3zBOKBULSZzQyk7e039m3iAiaF0n50tJpQOB0uFKxmhrfuUutzEIAoRRiE63C2NoY8qyBQVwV0BVAghIMGkNWxFc0e8igBDSJpgz/AFbx9UT9kzoCQL/6Zk0OQEsPTdEbWHUY8obAr93Hc+GJg5yojG0wZi1EOKEI2DZ3Pk0zNDnzcfGd43Dmtp++5k+6Rz/OSWaNw0Z96kDey3SxZgX77gCABd9QIUiXyAOKsRhCAlvcJ35Udc9tDeAFiG0iGBEBCEDGAdSe2YbiBctiiL0+z3keQilAiSdBFEUAqBqTrApMYGsy2j4r8fOAD8glicTFz7m924PjJQSgTU9JeoiKexdbZxvhWPTVlxubngK6ynjUTdj8xdhaETIs0eaLNf/MzAQgsYDxtfA6g2M/mXBxqwjlEBNDK5MJR06J0BRFDY2S9JmY/MiOTWtFgy+xi4dltTUyJX3vM3+llJCBYF9D+ofZeMUi4JSn4oihzbaMcVqtvJtzCJF/NdmIW1slu3Cy4Yw9pmEEMizirIOLGhvDGn4MP58FG6JnFi4jT9deHnjs3ZrFtu2l3kOZvaLjM6nh/HuDXor4X/gy7yXEmTN5/+U4szcIzRs/+a/9lgBaBFAWuVK8UsYg0poQFQACgiZYjLaRbzSw3p/DcoEdsIYW4yksulNApCs4EvkGAByiCpYgQz7gIwAoxqLXxigkyRQUiKOI2RZBiElYVpKYTIeYzSZIFtk6Hd76CQdyCC0BTVqfEcbg6wgc5ODYgmQLpCmKYqicA4BzhJwXs8ggOx0EFv3utPSLICbZRmKonBaZrfbrftTkLYJ2x9Nc1R7YsAfAxbHLc+kJYAX0kAqIAhjKBW73EAwTkguZLDJSSYOGlgXCTSbQK0pFjBUXciIqiYlnRiAQVlUSNOZvS5hVt1uD2EYIAyVNc+soLULXkAARrrrQgSoNGvdMYQK6lQ1ixvBAGEU2zzIiqcZjKGE8fFkjEqXNuDWIApjBGFka6UKQGhAlEQhVBZ0Dyibo2ugTQ4thZVtlgnXkn+OjlIEBljf6MKUCkYrSBXbgFs7fmBB72khbkzZ+tAe7ve8NUgec84EcHNdvJgy6mVj0j6NRm9EJEhs7DB5+U9ja/gC7VPWzF7mcQSMUNAwUMbqVRbAp1YBogREgXQ+Avoh+kkCYSTnC9igWAJRyQNFHikDiVJ0oUQXRnYBlYATc12z7x5FIaIoRL/fQ5qmlIIShsjzErPpFGmaYTadIlQKURDAKMvyUaPChJaUJZKIsKBut+tc/0VRYLFYuIjsOI7p7dnraTUzP5SlqipMp1PnlUrTFEIpRMYgaWCRvCAYa+TP+AWb5thJc40bUSuxSSQkKP1LxlY+lQAK8BRkgsE6XKOyQHZgtTsW9iTYtBZQKrLvHyFJIuR5ahP0F9b8lAiDGIHqQEBQn0g7D3ztTJAQNVqAki4V0TELARWEVjsjGmzC2eidlJSQqsZYjWXZyPIMi8Xc0mtrJHEEIeC8m2TOU6RrpUtUurSCmtFE0taMEW5uCi+YdjbNoTSwsTGEqSSMUUCgbB6nZc2wOKQ4FW5hAWOaWvkpjWvTLnOw1Nf6x2/cf/7fPGd/lri3T1GYnY6ftFtDCrs/eBHaXa+q6h0ZvpYBK1DcbetuMfX3wsOr/EXdjjoHgDRNkeU5irJAUVRYLBZ18ZUwcgGJVaGpPJ2oo/p9tk8WZKzqM5DPpiNnBLAwk7DCzXsW9khVFbFCsIlZxx2RYPHzPLnP2u/L9/K9ZcawKdbssvo8jm9jE0h4O2hznOoebWEf1lwNggBG1/UTyrJ0Cw6C0pCkkK5/tK5QFAKRlDV60DKXuQiIq7tgYItEn5x87cwUP0pfSRoX2PgzX2tmjVO4eQk35u6NhYAwZCgt0ypGozFQaFy5vAVYOm3qpfb88zFQf1l76+EUXInNSsZRfWG2DNr4RbXT73vam7zEdZbCJ832cy81t6yxN46UnNrFLwxpCVVVIk/nUIIj57WN0YHDRAxrJEpCV/UyAwAhFVQU0TYsWpoZm0p2xzPG4NHDh3j4+BHu3rsHA4nr11/BqzduQKysIg4jSCEwHY8xTRfQxrhg2ziO0e/3YWydgel0isViAYAW83A4dE4A4riagbMGkiQhsF8IQpntQut2KXYqThIANqZNa2RZZjMI6PnZoRBFkTsOIGFY6cr1xTIhR5/7n/manO1vAQhlJ5+zJGvBWZtGrI1Utj8rCKkQRiG6QqIIKlfRPsvnKMsCVVVASYGk00WgIkhBoRFZliFNF1hRvTo3lMeJkE4ypYoCURRZj51EFIXw63sylunnA9fhNMJBCpA9KsQLG8RrcTRjyFRkZlsSzIRvFqCJGyhFBVEspoZWYv4//PBHyKYp3v7cq5DC0r+f8Njy31wttkbGmgLNLBUDWZY5OKKqaBNmx5TvgPqnopH9fFq9CfzihZnFBMhLKEBR9vxMduB0hTzLbEYA1Q2E5IXUktge8M2mqpCScJPKDqJcLs55R3u2t4ebNz/G337vb6GCCP3eAO+98x6SOIQwlp/q8BDT6RSVV6U9SRJ0u10sZhTZXxQFJpMJ4piyC3q9nltE0+nUeTA5dEMIAckeYCvgOZg2qioEUeTMzfl87oggjREn0qj4XYIgqE1hv9Of21q4piayQyPtd/4GydLNmZ2iqZ0ZInZUgYJSISRKix/mWMwXqHRBmGGk0Ek6iKIEMBLT6dxSXOfoD2Liu5OtewqgsNqd84hKg0AFVvicDGVpjzc5OQSUDCFUAgOi/REA8qywMYMBgqAObCWBqBAEBmVJGpa0mnVl8aw2/8SdO3cxOZxAa0AIBQF24PgmP/djq1iK95er09n+zhg3Nxif5WDZdiD3fwvtZ9Miae59isKs3WnPe7h633EGoKHdhz17hY3jcmYcaCfKiwph1IebFMa7u7GTzGkMwr9d/Ywtq4g1rPX1dVRGoNIVjo+Pcf7cGeRZjixNIe1uzlHjjHPleW553OG8mf73AFwKE08wP/OAo9KlIHoa3Qpt8UM96mwB0dD4lFIvmLStF26PEXlWrCwylNtI6YhuodOzUB96mP8LG3tIyauoICxHGPUBaVCGKxmBji3LClIJSCgPFqAbahvB7xwQWoMCZ5dXk6+fk7UenhfGyWk2AYXT7vz5Y9AQJq4PTgoYvxH7LWtcJ1sb8jbC4mJuqJaN2UmBxmZm/b6iscn5x7b757S/f77tZG/89Hf1N4VPTTP7JILMlys1PTPFnmlIGJR5hqPDfayvrWEwHEAqykV88nQXB4dH+Pzn33ZmRVkRNTKERKWBKEoQhJG9EfvYGYur7197tSpcunQJvV4PFy5exP7BIWbzBf7rX/4F/t//0/+Eg4MdHB0e4szWFuJu11XwybIMi8UCs9kM/V7fhVk4jUtKl4vJCebdbtdlAnDkP5lWKWJrtkLaIBQhGtjbcDh0O68QEllGnqvJZILhcOj6lvEoX5j68UtNbzOb2ppCDyqgLGhxlAFQhRKBEjZkwcBIa6aJOvCZ+rVsCDeuvkWbi0AUBZCqgygJoHUJo0tooy2J4QJ5XqHIKygl0e11MZ1O0UWCMO6BxQ/jZfPFHItFijjuEsZmDKQwEFlK+KTrf5ofnGVBVZykM0UZk4VgaicgUAEQKeuVJatACoOiKlCVla1y62USCAEhDBE3Gg3pcGPuF3p2rRnba64Zomj3NDNm4RV1yNJpKUK+55txMp57Pv5Hz/Hfhnb2s7ZPmIH6su35ncdAKKv99VLTEDCoihyT42OsDIfo93oQVmPZPzjA/fsPUFbsspfQ/DsoNzO0AoW/P2FCOTCJBZrB2bNn8cabn8HXvvZ1vP3226iqCn/3/e9DKoXRaISnT58iiiJsbKxjc3MTvV4PUkpkWYaDgwMUZQEICsbs9/su+TxNU0ynUxs4WiFJEvT7fYeLVVWFLMsIa0tTZ6oyiynvpkEQoNfrYTAYYDAYYDgcII5jaK0xn88bk5UqZHu/L91thcOEWBPhYrhlWSHPC+RZgTyn0mykZbAWUKcH1T+aVRzbt/Y4WKLCMECSROgP+hgM+ugPeojjCNpUNgF/RkGtAkiSGIvFHHmWe48rLMxJVbzSLEUYhu55KxugSzxmNUeeUpRnSdCFhhTSBrdS0RKeiyyglQoaObVCkCCnVKca1zQwtianxXsFvPuywKvnmtHMjlzfsWFiChZofkiGQSOo3B9GD/B3DhXUziM/UPa/F0EG/Fwxs1M60QLJTW+0N4CmZjdgsyvLMmSpxmKRIi8pD481rqYRIFwFbsHhE+Z0s0hXFWFRRQEIyufUdpLkWQYYUIjGbEa7vnX/L/NYuh1fa6f6+7ukH+/j19psgLVWm/IZR5ZlAtSax8mXMmbZXu7jNKc1YRcJ7BgIK8CYEuh5EdkecO1ZR57PACwwYPNeXTqTJJOTYsc88kVnhhnvv7w4OQeWuP+lw1Np3hBuxwJbeA+zrF/g7XDW5PTfQZApS+asXDqtG3LG/pt0ElTdqqGp1ceeHKP2Pbkjm13eMk0b4TrL0wf/qbWf51P94oUZ6sklAFRlCaFIXQ8EYHSBqkiRLeaIwgDz2Qw7B0d4unuER493kKa5jSmydxESRWUTzVWAIIygVEAmgWLty5qijUejnMr3P3gfP/nJTyCkxMraBobDIUajEeaLBbTWePjoIW5+fBO/9Y1vIIxCpFmGx48fO5B/Y2MD3W4XRmsURYn5eOzMTPZ4AjX/GbNmpGmKKIqwsrKCTqfjzuHARwCOSmhZSTHyZgbWkycbgnJZnh0zrzbnuGdyCt4gAF1ZTSMXQGUgJSCVgVIlgtDu/u58H1eizxr+Gf6GAC4IGMu8GwGgKt1x1CHzFgazxRycci/grXCAajhYEL3f70HKDBTmEqAoKPi1KAoyb5UkxuIogpLKshO3SRTr6+vKWLOSvJ3amnlS0pgVZYFObwBZUDAGezJZ2RJWOyMKIOD112+gmOXUd9b+UUo2Nip+joYka/SrAKCd9eKf5G9s7U3Td36wmf2PFabxi2z/CKEZnIxLA6h1BSMlhDRQAqiKAlWRIc8WCIMA06NjPHj4CDc/foD5IkWn03XCjMZLoqwMIGEjyCPyhGkDKF7gxlUa8od0Pp/j5kcf4U/+5E8gpMLFK1fw3ntfwGQyQZqm0Fpj5+kO7ty5S3TLYYhqPsfu7i7Onj2L4XCIc+fOuRzPLMswmUwQBAGiKMJwOESSJBBCOLc5B9PmeY4oijAYDBz+wYIuz3NUVeWSsttALaU9UbhAGAbPFWYAUIeyUP83/+HR4IQxTUWUK3utivAyITWCQAMihFK8mIS3Bj2gvrVuKLbXgAKiAQGJICRt1oQCUoTIswKLNMVkNq+dfq0mLOgvBNDrdmAMRbVIGaCqFiiKEgu7CQWhQhAGEABU0rH1WX2OPU/QsyYt6dmEUGT6CapszuMyWFEQZQkBWwrOPowAX6sWZtevX4XJNZgARYBYWUxVW5vOCyyWCTJO7D+pVdf3Yy1dnjAt/TS7l9XSfvqc338a7R8lzswh8K7Rzk5YBqv0lkHAmlPkgs4gpMJsNkOSBFAUdYo0SwFRQQQJToxbw9axpqnhndTYuCKatEEQIM8zy7pAHjJdETheh4loFy8GwHGUpWmK1CacA7zwjNsVl5t/aAgqf9KdJqD8Ctb8t5uEbSHSmJje7s/wDX92YgJ7QsrARq3TpsBmu9/YGVAHz56UZg4KcmZXLRClZPyuTSFjvP/aSzk6bzbX6VqkFdnQC6uhSO5XXUFXxI7BwqfG91rymA2HFoDOaWMnpaw9qRXFnySRSxhBrcPBHwM455doXq42O+y7+ef+tytsft7tFy7M7H7iFm8QEPOA0SWELJEtZjBVgWGvCwGBXr+Ps+fO4f/55ndxdDyCkArf+ta3cfnyeWxurmN7ews3b92GNhJXr7+G/pkCMkwglNU4RO2qbivz7M188803sbK2hmuv3MDNm7dQVRW2t7cxmUwgpESv17fxW8B0OsUPf/hDXL9+HWVZ4tatW9jf33dBrVubm+gP+uj1uijK0pmrSpFppQJKaBeSkt2LssBoNEZpAx/Z68meKdbUOLYqDEMApFVWVUXV33XlFpuQbaF2UvgsHRXf4+nqW8paeBkNIwqElcSyPEESJF7iv6mNxXrgW2aeBKUAiTpFDYDj5CrKEmHAxXINjC6RxAmkUJjN5xgfjyiMQwbuHdkrLG0Qa1mVbvOhbIPAZmUEtamoWahw8Y+6A2lMSNuKoghiUYI3XykodUub2oPMxvHW1hCBkVABoHUOY3LKyxS1c0CwBmadJS41zaOb4giQejOsBSz/294I/Q2SnQOnfe///d96+8VrZqJO66B4IwldFjCmAkSFbDGDLgsM+l0yJ3p9nDkrcXh0jJ3dZyiKEn/1ne8iz98BYHDmzFncun0HZQWsbpzFuaJEmBiwJ1MID7QAa2T8Fw3266+/jguXLuGVV1/DX/3Vd1CWJba2tjCdTSGl8oSZwGw2w/vvv49/9+/+HcqyxJ07d3Dnzh2UZYkwDLG6soowitDpdnF0eITj0TGKosBgMEBgPWUqoC1bKoWiLHE8OqZQAUM03N1uF0mSoKoo3i1NU2RZhk6nAwAu7IPNWSomqyyg3u5wVj18PrITg0ILy9NKuPK2MRowFTQ0NApU2qsk1dDSmpqHsc6cmlWVF1DtbRQudMbDn2BDJARQlAXCQDmBo6sKSUIBtfPZDOPRCEVBOZNJkli+tATDQR9CkMdyPB5jPpuhyAuHYYahZe9w7wG30xnYfEtRPy9rvmEYkuA19H6k+1nvruVmkxb/2twYIlbKCTOtM2gdgOPcjAGkLTLMfUkaMQk4w89lbN/UEhC+MuB6f4lg8i2D/x7aL1SYtfMQ6y9A1o4xqCzraujFawVhAGUXLgQVsFjYqPjpbEbFLaAcDE1YTwkBGxluJ0/77k1vpLAAPfH2dztdFHkBIQQiN4lJ+KVpCo7jms/nVLDYkIdtkS5cPFhe5C5gdll0Ov847yfEiYnHx/jntj2mz3MRMWC+rL+bH7SPrzU1ZwaxmnDqDf3vWDJ6kqKpF7fO5Xs9X430zW9Kk6ogpZ+nyKEj3oJfopoaUqnojlpDCUEcZc4d235nvw+XXbN5DGGaNizkuX3WboSj8ZWMOX182/Op7RT4aTya/+Rxs9b08ts/QjpTHekvpIC2rA00hBqT0SF0ucDG2irlv0mFKEzw9jvvIi8qEipVjsPDI4xHI3x08x7uP3iE7TPn0R+sQAqJ2WyOyWwfveE6Ot0BkrgHoI71YXyp2+vitddew48/+ACHx8d4vPMU4/EIN268irfe+iweP36MKApx7vw5AEzil1HHBQHSNMXt27cRxzFWVlawurqKv/7rvwZAWQW3bt1Ct9vFYDDA2toajDHOSVBVFQaDAXq9Hpk9UYQwIMGa5Rlya3ZWWlOeY6/rcLxFukBZVQhC0mAYI2rvyqdPTGtWuuo/Va0J8PeWGaM+v4Rzq3EsVQP7am0U7luPAvwEPGe1N1OByttR6ENZlYCJEFpz09caOYEdRqIoC+RFjkCFmM8pZm8+n2E6nSGKAtdfURQhjmLESUzmO6jC02KWg5G+KAoQqMDGpdl3sHxmwr4NVYPS1hytKMBZeOETxosTE9w/lTuGWJVq6ENr7VUmsyamM/VrbrYmbRNcnz9P6Pjfvaxg+0WFcyzDXT+N9o+TaO4mAk0qJWwUt64wOjpAHBlsbZyzuJFCGAV4970vYDBYQRTHeP9H38cP//5v8eD+A+zuTbCyNsRwdRODwSo5CEZTPHn0BFvnBKSMamFmd+JAUipNr9fF66+/jv/yzW/i2d4+tBA4Ph5hc3MTb7/zDv70j/9vRFGEM9tbEABym9gLUP7baDTCrVu38Pbbb2NzcxPnzp3DH/7hH2Jrawvnzp3Dxx9/jBs3bmB9fR0bGxs4OjpClmXY29sDFwZmt3qSJOh0OqR1LhYueZjZO1ZWVpzzYTafo9JVnfrkkUP6AoyTjn2KmdoLKZzJ5GtFRhvLQmHpfgRHo9e/uwRoi+XU3Geo/+XF1ADN/bgpPl+79CQhJAxMnWMYhPYaNUROMWmAMQql9QCbwNiA2fq2nU7HmezdTgdxHDvPcllWmM8WDktTSkKYCDIWCFRohUjNmsHKr65KcKaK1hU4G5Bkuf/+vvlXUv9LQAkBbc1rKRXSPCcnAOO7TmgBLNiIAFI0ulEAWKbp1+NbO4b8z/+pxp59Wu3nJMyWddryznTeKwsy66oETJ2awedyabg46SCOE1DhV400zbBqi1LUqSoaeUGEemVRWP53jrep7y2ldHFc2miUpXHCo9vpIC9yRLYcnDEGueUp4yBXNjMBuLJxzEfGTBH8w6knPmXLaeBtw/QUdRxRG/S1JzQNoNO0seeo541qMI3DmgKJ+cpO0p37WgA/x5L7nLh30zQjxc+fJyc1PnegqXE5uh+b7ITFlmWIqqr7293R73dtHB5V96mxpmojy52e5BRhwGKnfifKx5VaQyma38KIE+f4/cDKrdcb7lpuFYj6+i/b/kmbjJ+4nTIfbPsFambeQzgvkAHTKkJXyLIUUtAOJuxEJYyqwO6zZzgaTUhLWV3FO++8gyuXr+DgaILh2jrOnr+I2XyOlZJCKYzWmIwnyAuNw6MRkk4P3U4XSRI780VK0oi+9KUv4Xg8hjZAmuV4/fXXbYyScClJZVni7p07ePjwIS5cuIAwDJGmKZ49e+a8pRzsyljc9vY2xuMxfvKTn+DWrVs4f/48er0ezp8/79KbFosFJpOJE3ZJkrgcTz85fbFYIE1T5Hl+skQe/MXcDsr0sS82s5ctTLvT847vwgLoOxiCBYhst155tIEsY0F1CCbq5Wi8Y70UcilRpJRV0el0kOULJ1h8DTDPC28z0FBSIbRYauiV7CONVKAsSsxmU+RZhiAIEMdxjY9qIOnEFFAbSArzgc02yUu7YQnAUBS/lHUcl7DOm8p2DZmQEihrrrU7d+5ClBXe/MwrUDKwpikI0DcGlSFyAeNiVoAmDbz/+TJ8rjnGp2lq/z21X3gGAOMARhMPlKPPNRUVMBGGkpsBS79TYb5I8fjJDspKI0k6+PIX38HVSxcQBApZVkBGXZRGYjKZ27JtNJij0QjZ/iHKymBj8wy2t7axtrqKXpe8gkpKdLpd/Mqv/ApRuQgJbchEYRxqsVjQwihLfPTRTdy9exdXr15FFEVYLBZ48uSJU+nTNAUAZ0JeuHABP/7xj/HgwQPcuXMH//pf/2t89rOfxWuvveYCZ2ezGUajkfv7zJkzNrSgWW+ThR5AJm7brGgLs0YKlGlB743JbuP5yHaxpJZcwEU2VCzGtdisXB531QLKnTCjcxrPbQWlUBJZnsMYjU63g6Njq5kClJYGggjSLKW0J1tfIFAKJoyQcH8BNhODNeMCaUqMtkJQaEUURQjDCN1uF/2VdURhhChUyPOUclLzDJMJMQQH1hspRbMwiBB078L7m7yjhHFKKfHRhx8jn8/xxhuvQMqw6Vk0hphrlbDYms1tNawPK9TCzP85vbXpoP57bD8HYVar/e1W58nZiY06dsYYA12Vzr3NS4KSsSnFJ80KxyfWH/TR7SQoigpGJZhnJWbzY4peNxZ6tQGteUHgMBEDMssAiCZaSqysrAAQgJQEBwuBdLFwE7iqKuRFjulsijRNsbW1BSGEMyV9Oh7mkmIcjIXc/v6+i07nJHH2wPk/J/rKNj5+WU3OdgoL93/DIeDv8g2PnT9OovE7a2X1ZU6ao+0P2sPOgaytT9sfEGuHIQbY2l/QNLNok+Jn40pYdQS8McRB4cB15/H0iuKCwnUoIZ/PrzcEFygtNLQQlAMOawK7+eu/R1ug0zMvFgtk8zmM8cxz+7VpySZ2ljhw7pS+chvBid5rnbEEamh7xOl2y//+uTXj/mP/XFa1ddk5L9d+gZhZ3YQQMFJAaCu0DIVkzGYT9JIEvU4Eyn+T2N19hh++/xGEkFgsFpjOpphMplgZ9KCkQprlKFFBQ2G4skrMm3lBiyIIIIMI2ggkcYTFfI69ssRsOkaSxIjiCL1eD2EUUT1P7xmVCvD666/h3r27mE4m+OEPfoBHjx4hTVNcuXLFhWNcuHABa2trjiXjvffew+XLl9Hv97G5uYnPfOYziOMYDx8+dGYOe+QSyyZ7/vx5FzPG5mtRFHWwr9UMut2uE1pRFLkF3NDC0JyUzU2FcTbGpuwfvJiMsewSzfJkbIIGgarNrxMag29K+jhY/XkdbHtSmJZFAc4CCIIQUlmWV+8ptOUuM1qjyEvv+vVzsIALA0WsGVLawr+wDhdJVEKzGUpNn8VRCEBbxwLQ63URRsQwPF9MLOBOTyI9j6PtYFu9iQSWFJSmFUUJTE4Ml9KamVRqwRcgLRPTcK+wuclb/fIV9bLC55+mpvbpP9PPTTN7XnP2vRQODynLHOPRIYa9Lob9mAIDhMSDh4/wzb/4C7z19pcxtSbZ0fEIa6tDKKUwnS+QlQJxZ4Cts2cxXaTI8owWXpRAhRGkiiAgMZ1OcXCQwlQFVlaHRGt95gyCMPQIHekNgkDh3XffRVWVuPXxTXzr23+JO3duYzhcwWuvveZyN69du4atrS1orXF0dISvf/3ruHHjBlZWVpAkCba2trC1tYXvfe976HQ6zrHBgqvT6aDf77uJWRQFDg4OMB6PnYDjHM5+v+9yO5MkcRpIW1trxxk1HQzuN6C1KA2IolsoC1jz4rKhBIENHSEhy5Q4jFo3hQo/R3Ne1KapiwWz9ybhrVzfOIeH875SaISyQi7Lc4tl+cJBuM+ULWtXhoGliTKQMiSHTFFgOpshPx5DBQpJHKHbSRDaEI7hygqiKIYxGpPpIVRQ1zGtHRy12DGVgRYGCgJKUq5sHPcgSgloCSktv55m7ZlT3KjKOQXe+pREXt94fdfeKOqh++8TI2u3pcLsk6ihTc2A5vdpHVtPTj7Yqt+2uG9ZFAj6iY0FAgCBdJHi8PDILVxOG6oqjbKqUBQlikogNBRPVE1nNfe7UgiCEEEYQldssqYo84yqBcWxC9I12sAIA2NfQgiJwXCIbofiu0ajEZWkEwK9Xg+TyQTGUD2AMAydB3N9fR29Xs8JrW63i5WVFcczxdoW/+szyDJhIyek8/fcx0opG4JgTggsbqfHH7XG5PmOoaUHMe0QWUPGc2q2L8aChefPkvu3Hs2PVD+N3shdzFhyRfjCGRCC826t6SkpvETbfpJCQtsTCIIooSpisw2DuvCMUgqBIvxUaw0F5d2ntib4Q8N/uncWXgYlOAABAABJREFUVDBFKivrBYzjjmsLqlZHtP429n3bX7XH/TQv9i9CyLW98c875pMYssb44cMvPvMTa2Yvild5Yd/ZXYT4xmoAodIlZtMJou0+4iiEMaC8RmPQ6/Zw8eIlPHu2h6OjI2xvbUMbg+PjEZ7u7qG/toXeQFGNRDGH1gZlWSGWTMZHmkAUhuh1u6iiEDAG6WKB4+NjTGYzqDBCFHfQtWZnGEYQADY3N/DK9evodTs4e+48hsMV9Pt9cEWfyWSC0WjkWDI2Nzdd2hELlrIs8ezZMxc8S93Q3CD29vZwcHDggmgHgwHSNEWn03HxUZzaNJ/PHaNGG5h+frCsj5tJt/Da2lQD47HPqq0wkCe0rWXtNMdAq2KWEBBGwAhb5wEE2odBaHn9a5yJtTr6TLucwwZnGWw6kd2QTm7CNdllkiSQoSbyyEBZb2lOHG5mH2EQwhiNLE0hhEEQBqRNMiZL0suC/4Jo3213KCURRiF0VtpyesYtjBqHlNCmtCZsGyurF7AQYpksc33xsqbmiwJsf/Ga3fOF3k/TThVmbcDQD8bjidR+AMYv+O9l1WEMaLeTgqc2qd1VWWA0OkISX0ankwDQmExnqLTGcLhq8at72HnyBJcvX8KzZ0/x7Nkebn58C2++NYCQEkmnA4hjS6lTQtndmbstSWLEUUDXHo+JAVZrjKcTBFGM4XANZ8+fw3CwgjCIAAGcP38OmxtryIs3MJ9nUCpw0fxKKRwfH2Nvbw9nzpzB+vo6zp8/36iRCVDIxsOHD7G+vo7t7e0TfSKEwMOHD/HjH/8Yb7zxBjY3N9HtdvH06VPHXFuWJfb39zGdkhNic3OzoektG78ln3paEjGvUuCyexIyp2StNWubBG20hrRhDTX2tgwzO70Joaw5ZcA1KNmM1LqC1kBucygDG1BMdhxpJxw6Ygyc5spaGO3ioBAL6xX0tT1esEpJ520uDaOFBmWRIcuonufR0dgKRcCYElIBYRS6qlfGamyQVKEJUgCVBtfUDAKJOI5hMk63sjxuohZSUkgU2oYm+cJMAMKL+G9aOs0+bpcb9N/T195fpv08wP+2Zde+T/3en44gfa5m1sZdXvzCyx/qxEsZU4+L/UxbM5OojhV0pVHYqO4gDNHvD1wdSQLCiQWWKiZRmpP04q/cYHqKqlLKRlt73s4sw2Q6RRgVCMOEIu+JnRAQHElORXHLkpKQuYI5Fd8oXdWkKIpc5XK/VZbRlr9f1ubzOQ4PD13eJ5eQ8wUW1wuoy86dxMSW9z+bX2ie4wW/uuXiYYf1l/VmZdd4+w61R67lEV3+OwvDehHzotW6QhiFDY82nyPcZydDUJrvK04sINN4Byu0Ud+zsAKqLEtkKTkXpBQIQqJmr6uKk/DzxYvx+8wKXaWUKz683KPLm8KyNbVcq25qqkvOesH6fBnT9OXW+fPvcZq3/efdXmhmtqV7OzK9niQMIzTNkxMdY4yNZeJIa408S1GVOTqdxKbSAICwxXA1JpMpdnd3UVUV+n1KTRqPxxhPJhgMV5B0eghUiCzN3WQSUlpWAsBoiuOR1tQxuoSSAggCJEmMtdVVRFGC/mCAPM9xfHSM+WyB9bVVSrMSQBTW5cxYcJ09exa/9Eu/hOFw6FVOapp5XANgZWXFpS/5fcttPB7j2bNnWF1dhTEGk8kE+/v7mEwm6HQ6WF1dxcrKCnq9HvI8x/r6OgAqYMzhIX4Vp5MaW20WsdVTL6X2JCdcRwhliRWXmTTt+gq1Kdf8exk4Zxe/7atKV67wcVEU6HTruDE+W1thJySdm+c5wiCq07ha1D3Ln2XZXzR3qbScJbqE1UAFwCZtmqYYjUYYLyqkFeNjNpSHBTJYOAKbG6soul2EkUJV2Vgy1ILNGCKVJC+qAc1OabUywJhmwDJM+6ntPT1z+mcVGJ+WwOH5//zrmda/P3s7VZj56rlSysVE+d+1j62qCkFQs1uy4GtW5AYRF1rtx+gS6WKKPJtjZdj3En0FoihGWZQ4ODh0NDuMOe3tH2Bv7wDnL1zCcLiKIIwxsyylQkhXsVobWzrNmhcwBkWp3aLv9/sYrqwijGMk3R72Dg5xeHCEoigRvv4qwoAixEPVgZQhYGOUkiTBK6+8gt/7vd/Dzs6O4+Di0m8ADerBwQGOj49x9uzZBmtsWzjs7+/j3r172N7exnQ6xf7+Ph48eIBHjx4hSRJ8/vOfx3vvvYdOp+NYaA8ODrC3t4fZbObSqbrdboMqqG6mxpMAVBVJtDoCvTYZtansYgVDW/Z5/TzPdkk2J3awXIicNEnJXKO8yiiKLMllhrX11frZBVyANb2TAlBiPp9jdSWu54sxzgQ8eT9vrqLW1gUA5hcLwwBBSOZ1FFm+fxhkGYXJ5EWOyWyBSQEgSBD0ViEFZQEwUM10QboCLl0+B6k1kl6I+cTYDZWeieoqUAEVbSrCzqSyprckc9V7fOOy0U9mW/A6YwcZj7uvibazQtrn/zzaaablCc+rwbJsup+iiU/uADjNs9lepG0NZZmk5libqiygdUV89p55IaVyBU0m4zEFnEaER3Hx06TToZggqVAWpRdKwGk5xuEp9Ch+wKWN9+p0EcYxQsshtlgssFjQJKbEakUJ2DYWzRgqtjscDhFFEY6Ojpq4oPfeXHWaKza1+4sbp011Oh1MJhNkGRVS2dnZQZIkTkNjmm3G67gQLGcFcPBtOwbNqqwNc8cANUNPY1z4eIa0ai8mHeALMLgJuUTnaV+0eR/wYjQuLINTkXjs6uOal6RAWG9DsC/Tvs2JOLwla1cIAwhJ1eUtbTafU5Y2x7eqUJoSaQGoOEDAfeLerRbQxgD9XgehY75mId9e5JaY0fhcGSzImMfM66x2n7au94/VXuwUNI3xpM/gNqCGfn/CknupJwDwAjPzRYJr2QI2jU5vHle/tCXnk6RYZ+kCeZai1+u64FUhKThzZXUNFy9ewv0HD5FlKQIl8cEHH2B//wCV1lhb33DkiYs0xWKRoiwrKBWceH5DqgDKsnB0L6xJKakgAPS6PZQFaSZhGCEvMiwWM+TpAiKIIG05Mq5WrpTC+vo6jDGuGrnfX6PRCJPJBGfOnGloZn7LLN22H1Db7XZx7do1CEEpVffu3UOe505rSxLC91ZXV10YCGuaLMjSNHVmTRAoSLXMDPNni3BjQ/3FmnWd+O8xbdHP0snmCbrWtRuanM1TLEvOhfQ0eMHIlLDZD6XTMpoOKPtEL7m1N5A4W6eSPaT+RXiclJKIohBKK0gNyKqsZbihHBYNAvKlkJBctEQRnREz1Z7oqMamIix8ybUaahPdYZg8h/1vPfN/2bz6WfGvT70tQxw+xfZcb6b/+1LBgCbVCFeZ5i5n4UXmZ1Cfb2mIpRAIhMRkMkI+m+D6hTWKDTKAVKT2nz9/Ee+88y7+rz/+E8RxhJVBH3/yJ3+Co+MxVtY2cOnyNaxvbKGsDHZ29zGeLKBUhKTTtaYJ4We1FkCa18qAgm6zLLOAfgADYGN9HYEKEEUxOp0E49ERDg8PUOUZRBAhihNsbGy4YNY4jnHp0iXqzFbNQiEEnjx5gt3dXbz++uvodrsnJpfWGuPx2DHVKqUQxzHW19dx6dIlfPazn8WHH36IP/zDP8Tv//7vYzKZ4Pvf/z5WVlZw8eJFXLhwgbIebC2D4XDoihNPJhPClsIA/QHhNzRWrBUYaKNtreR6XNnTWGni4pJSIk4iCFF5yphpyELR/I/Xmrha7WCgH11pKoIcdx3DiKttaTQglGMdUUq5CkyNuCXDpvBps9kXAPVfAiAKHodLWa49l38qGnOjNAKTfOpi1YztPw0DZSm5wyBEWVYwIa3coshgTAmYCtoIa6ZzLicJMmJ0scnqRhKNN5v58ENo/H5sCjPfzGzPL3rv5wu1X4SG11R2Pv32UmbmMvt32cvX5qU/aVo2sgBgjJt80oK5RVGgY7nx6VoUItDr97G1tYXd3WcYDnpQArh37x4gAwxW1tAfDJF0OpgvcmQZ/cRxHQAJuzBo3ZHTobKR5Eop6Dyzk1dBg8I3srxAXhDnflmWmM9nSGczQIVIOl30+32nHUgpMRgMGua13z+z2Qzz+RxXrlxpCHT/OIpvqiP5Oa/z3Llz2NjYwN7eHp4+fYqiKJBlGXZ3d1GWJc6ePYt+v484jpGmKaqqQqfTcWELXGjFmBBax01g1mr9y8I32RqjwFhjHQsSQmhvSS3Ryho2g/AOaWplvnbEm52U6tQF6XAhoSiZu6q1N3uAp03ypltbNfSeon45/135I+91nMknhH3v+rmFrJ/fOJzOmuSSNk56B7paVTEFUW0yNkxjTxNzeZyNp/P/5eO9Izyt7GfxGn6aGtzpMuLF9/hZtMmXxszamJjPE3WaN6XeUaTDEuoJbwCjURQZYCrLliEbHTFfZKjKCnGS4K23PoswUOh2YnQ7HSTdPs5fvIw4SaCCCCowxP8uIoSWVbQ0dA8DYmag63KH1YSGrtnveNaxRtntdhEHAaBCqICi/Y+PjzGfz239yrARruG3yWSC2WyG9fV1V4zEGIPZbIY0TbFYLPDxxx9jPp9jOBxiOp3i7t27OD4+xvHxMQDg8ePHLvKfq6hfvXoVnU4HxhgXf1ZYvrWnT58iTVMn6MJQudqcLvHaBJDCQMqAPLvthQar7QDWymlqBzXOA+/zOgLfdicfbC/SmlNWlBL+VQe0wj+bn7koEUchqrJCVZFZKmxftoM4fpYm7D0BT4hazV5bwQ4b1kGCUDgPvDHEkSakRLooUGKZh5XNZ/uvsP3AG7x9c2HXiLCbPywwaU7sIHD3Pu3zfzqmpq8Uobnj+Ef9lM+8VJgts8F9dZab7+Hkh2g/kLSsrnXYAkjVNhq6KpDNJtBVgUACcRxB2qo+WhscHh0jzXMMhkP8+9/9XUynI6SLBeIkwdnzl3Hm3Hn0BqsIkg4io9AfDLER9yCItwUHB4coNWlncZC4ScEe1oZZaDELrev+zbIMcRxjY2MDSRiigkRelDg6OsLYFvuNogjr6+sud5KZMvj9d3d3sb+/j1deeaURY/bs2TPs7+/j2bNn+OY3vwmtNc6fP4+nT5/iL/7iL/Dxxx/j8uXL6Ha72N3ddfjXeDzG7du38du//dtYXV1FVVW4desWnj17hizLcPXqVXzwwQeIogjf+MY3LBZH8VLz+cwFhsIECMMEYUAmPS8mwhrtFiQtebbkAM2ThZSpkEcAwMbm+ZipW4jcWkVVBCy2l7vnpIBjhinooKIokWYpOknf0vTkdmNoYlzP1Upqeev/477yZq4TLsRBpt3xeVEhUAE0E4cKy7ghAFNaBhShoaTE6HAKVCXW13pEW4SGEkbmqTEQiq5BJr29k6bNljVkbVhxqJ+07RX0cURfGPiKxmm4GvffT9tOs9JOfNfYMEnJAar2qc3n+gQb1SfSzJbRz7RvXj+sLxQpwrvxzsbAmMppZkICgZJAxZ0PzBcpyoo0rmtXrmJvbxdHh4eI4gTXrl3D5plziOIYCEKokI4bDIeAkCiq0oVlNEwL+ww1N5f0Pm7Wt2TNLFBdDHpdlEZgNl9gd3cXo9EIxtSBslEUuZAIv0+WaWYAxZ8dHh5iZ2cHN2/exPnz53Hu3DlMp1Pcu3cP77//PsbjMVZXVx15IwCnmfmC8+DgAE+fPsViscBgMMCjR4+ccAVgMTGNxWKOqtIo8gKUAUC8921MlM0i2RpHKpDbFAN1kEP942CGxqG+ZudNVMPl0GrNjPUWFmasmQn+vbThL4I1M3s1cZqG4tm/gmVuE3PzH9PBEsbbhEEmI2tm8PpGSgGNqrGJpWkOU5Qwq326fGtNa8PuDca9uEAyluB/2ls7TROd/2UNsn6PTxrw/um1595riZn/abVPFJrRrjLkh2D4HcqCb7nZCQhQegeMQZFnCJREZAnspABmswV2947w9OkzzNMSlRYYWO9hv99DGCVQQQgiVg8ACAipECUJZrM55ukC09mMjgttcXNFoLaxHsNKayjrQfSlP7+jUsqWMYNNWG6+B2tZYRhCawKxOaSCNT4Odk3T9ETFadYMgyDA+vo61tfXnWcyjmMMh0O8/vrrAODof3zCRjZptdYYjUZQSmFtbQ1ra2vodrsAKN9zY2MDZZ7j8GgfZVm47IF+f2BJA+vIdypsolyYhF123jh6AskYcDk/+vvkOC83I3xDqalZCME0Pa0zDBxPHaU9URzYabt2PT894Vbbbu5dnBPDw7Oc5WDfleczZwC4sA2HOzbDQXgt7O7uoUxznD+3CSkCGGhoU0Ea/9lg+9fva1vKjgWa22hO137a7bR1d9r3Lzr/ZZuPyfr3dJ8vOwfeFvdT3pfbS7FmcGO3OEeySyld4Q3+YY8cA/AnNTYBiRISRB08n47RSUJ0oxC6KhEohf39A/z5f/lL7I8WOB7PMZtnGPb7OHfuDM6dO4cgjJEkHRipgDCGqais13BtHT/+0Qd48PAhHj1+hH/zb/8dgiAkEBakCRLXVISiLCEk5dBBcHI1pSex+bhYpOgkEVRcY13stV1fX3eaXZ7nODo6wsHBAYwxFIg7HOL8+fO4fv061tfXXVgGCyPW6LrdLl599VVcuHDBmZUrKyu4fPkyfu/3fg937tzBrVu3cO/ePSc4OW4tiiJkWYa7d+/iypUruHr1Kl599VXcunULh4eH+Id/+Ad87Wtfw9HxCN/5zndw4cIFS34osbm5jXSRYZGmyIvSam0FgoA2jCAgoSJMBSY3b5iZIE8jhKLdgsG1BtDe1oi1pxHVk1uCisVwFSpWlzir1mhNLCmaWFIo4yGoN1YGxZcuBsbvuM5lY6aDs1CEF3CntYERlmE2CCyDrN2slU2MB9UJoMR0u+HpWkv6/t+/j/lois+/9w6UimE0UFULemvbV+RQ1p7DwNj/+2qthuHanKh14RrHbL2tp5GdplT8PNtpsoNhjOUn4VNR0V5KM+MOYmHGwqpN7eyn1fAL+NcALKuBsRV+jEaeLdALFJKISPcQBJjOZrh582NMM+DgcIzj8RTHx0e4cP4sVlZWIFUIBFRDEyqAqQyEUkjiBKPJGE+ePMHtW7cRxTHiKEFZViirHFpLGG1c6gzz8AtrWwhB1DKsmaWLBZIkrCeE21WFqzoOwAbZLhz1NcdNGWOwubnZyNf0g1q5Qvn29jbOnDmDzc1NJ+TW1tbw7rvvOkHpx49xxDxnVhweHuKVV17B5uYmtre3MRgMcHh4iCdPnqCqNBbzOe7evUtJ60mXUrf6ffpukaLSGlleoCwyBIGlDZfahkrVIGItDAy4FJ3DPRjjb0/KtnbmK3mMoUBQ6TwEiOO2ZmaTrXU9/7TWCJRw48ZyoI1+vbAZhlF5AYK0JMOCmoQUUXj7ydtwf7PJGLgaAfScDx8+xvhwDBgJqQJolDAlK4jGbqCwQpEL7dSi3jghbGuBvsR7naap/Sxezp+2vdT9Whj7z9peOjSjHaDHwo0Xpv/DXrOapqX2Uhljak4Ao5GmCwxXIkRRAIAYZ7mK0ZmzF6ARYLbIHIHhfD7HPM2xsnEOYc9qDLLWAgaDIfr9AcIowng8weoKJfw+ebgDYXfb0FYWF0IQyJ8UMJCQAZmfTeyGFw0LvJP9wCSKbD6ykJnNZo6AMcuyBstBHMXo9XpYW12FEALD4dBpW4P+ALPZDHfv3sXes2coigKXL192/e0EsO3P2WwGrjQlBJVS05owRAotmdssBdiYLcosUCpAFIU4PD5GFIaWUaROx8qLAjAlgkDa4E+FZeuljaK1G5sYlIPoPnQmmqO5tsA3mBMfNg0I9TGV7QMRCLCesgwTWhrT5Gs9tSUJmFoI1wKtfjG+sta2b7xiJqeaf7RX22eox8pWhLGCzO+PtriqBSzLbP9Z3FEeTtf+vOmZ/vkItLY5+cJ2yjHt52uEryy9Dk50xnO9mT4WxsnLLARYWOV5juFw6DAkDuD0qZ8ZG+LrhdIiFlWJw/1nuLR5FcN+H0pUNlwhRVFp/MqvfA0ffHgTo8kMly5eghICuzs7+MnHd/Clr/4qVrbOA7BMGHYCXr12HePxFA8ePMTdO3dx49VXsb6+gf/6F3+BThJjfW0N/+yLX4BUEmVRYDQaQaoISccgSiTyvECSdJAkMYw5AuNxkHDFNYCazaKqKvR6PSQ2FYr7qygK7OzsoNfrod/v4+DggErl2fqNq6ur6HQSbKytIytyYudIOpBK4tKlS1gsFvg//r//GUfHxxgM+vit3/otl4i9trbmtN+yLPHkyRMoFWBzcxtCSKRphrKssLm5iTTN8PTpU3zwwQf46le/hsUixcHBEZ7tHuK9z7+LS5cv4+at23jllatYXR0gXcwhJJDnKcbjEWBKGFMiSQKiM9e1BODq38affBbnAQPcwtfmeMILB+YbbZAkCdIiRxgFCAMFSMKPNCqUhbGcYwGFnuQFyrJCt8O43vO0sRdpahw7Jq0ws9ssz31tYGRtwhZFgV6SoJQh8pycFrU26jsiBLQhz3ilAQUbDGsAacOPSLiXgDBgSNaJM+ETOaDeTL3m41M+1RG3Nr79SdpPe86Lz/OE+s+hvVAza3u6XKkua+74sVhsjnHEdp7nJzyg2mjrlDUwusJsOkYYSHQ6MZDPURQ5ioJc9a+9/gbGswU6P/ghNtbXMZ2McHx8jNt37uAz7/0zCsGAcCYBtMHW1jY2NjaRdDp49mwPFy5eglQSH374EQb9Hi5dvICk04EAUJUV5vMFut0UMgihIo2yrBxmZqxbzl+obc0MgOMvYzxtNpthsVjg6OgIvV4PURRhOp06Vgs2U7vdLrBqTkzUjY0NdDsdfOc734EQAq+//jreeecdHB4eWvC+ptlmum6lFIbDIQCBoqCSbP3+AEVR4Ph4hMePH8NoKtd2dHSEw4MRXnv9VXQ6dd7n2to6JipAUabIMoqBgykQRgpFWTpU2jDs488TNF/DWGDdothLjrbYlNVsq3ThigGTUkT/qypKLWOyg7IqoavTF+rLLMTmWmpfx9vItbHgPKw30+LFMgAKwrm8EFp7LmtmAlr7dRastick2Gv5XBzJaX11/Nnyd1kuzD6NkIuXbW2H4LLvn+uEEPVxL/a8nr5BvRQFEN/cvxk/DJtsjJWxyeXXKKxpoQlw1SihTWmxpZr1QNhcOa0NAb7MZxbU3GFZlrYoqGt1lIBRAW0FKjsjpFI4d+4c4ihEnCR48uQJNjfWoZREt9dDUZZQeY4oqb2ElX0GbTEaafM4uUJSu3/831lo+dgiA/eu420+qFKKiAi9Iep1u9jY2MCFCxcAAJtbm9Sv/GxVhb29PcuBduTuwXgOa8e9Xs9pyGzCam2gFFErkRezwsHBgav5WVYVxqMx0mxBvHG6cGO5WCxcf/s1AdCuf2LHwUkNa3bZP3igyGw2tqL4sslnjC0TJ9x7M061lJTyhDBd9mXLKD5R0JiPNUuO5zGmdxNSLpUyBgbDlSFQ0rtKIaBtXU7Cx2qjkZUulv0svKxK1nik9pMuN62X0++cpg0t8zp+0va88z6pefty918u0F6Ym7nMI+IHy5K51HECrdvtIo5jF53OrK+z2YzOqypIsUBVzLGYTdDrJJCgSuaBIM2trCpkeY7ReEImRbcLqRSmkwn29w/IrO10oIKQAFhNu2JgQwXyosB4OsPK6ho63S6SpIPf+je/jel4jNHxIf7oj/4I3/jN38TFSxdx+coVfPzxHSzyEiqMsb6xCSEV8rywjBc54jhC0IkdMaJft9KvNM6Nvb1MzyyEIG1tTqXmYAy6vR563S6GwyFWLG5mOx4XL11Cv9/H5cuXYQzlW3aSBHo4RBxFmM1m+Pa3v+1ou7vdnhU4tDgODvYxGo1w6dIlfPjhh5jOprh48SJWV1cwn2fo949RljvI8xLT6Rzf+97f4otffA8XLpzHbDbHTz78CZIkwrvvvgNd5QgjhTiO8OTxY1RWc+0kXQwGQ3S6HcTdCDU1TQ1uL1vp/i5NhY8rRHFETBlgU8u4UIY0zSEEeZ2Pj8culYn6HUsn9cnG5ujJTwFO7rYcbqirx3PQrPbCU5RSqGBL1SmuVaFpkxBEjqB1hc985g3ksxzKETxKQBhUuoAxVA9A2sBY6g9rtlrHgjbGwRpCtNOcqLECsWxDfRmhsEyjel4A7LJWeQ6zF9/vVMjsU2nPDc3wS535n/umJ5tRDPAzdsZJ1UVRYD6fYzyeoChKAlFNhiJdIE9TJDFx7WtdAZLVZnLBzxZzVFojjqgS0SJdYDIeo7eyjiiKPQ+h3cQsvlGWJRaLFL1+H1EUIwwjfOlLX8KTx49w88MP8b3vfQ+//JWvUGWl7W38w49+ApEVGK7k6Ha7KMoKaZYhzwtXadyYyOWQ+s4MNn/8vvM1MhZ8VVVhMpkQddFigdXVVRSrqwjDkOp2ehNmc3MTm5ubeOWVV9ymoZSC6RgEQYgsy/DjH/8YWmtbDyBpED+Ox2PM53Nsbm5iNBohXRDNdq/XB6CQJB2nlaVphps3P8ZkMkVVaaRphocPH2JjYw1bm5uoqozAaa1xeHhkA26BleEagoDorWPEWApRN9aAb67bcapKi8cqO3Sm8WOMQZEXdgxDW+DZ5+yyWsGySdxop2gNPGbwruNBCbDX9z2ZUkqqW+CbiPY4hiS0rnD5ykWY3JDDnTFdKxwdTiY82mtTG9cU46GbYnrJK/gOpdOcIKf2yCcQes/TvFgW8Fpcpon9tNjdJ22fKDTjZY7zf+fBV0ohimixGV0h0iF0QYs9tqYT71DKmi9hFGF/7wCTyZQ0m+kU0+kMi3SBjXNdBAGlsxiP2Y29j6VlBo1tPNnx6BhKCReWEScxirJEZk0rYwyKMsdkMsHe3h6iOGk4O/zA4E+iivvH0fUUAlVzZWmtHa0PRbTT+ys22xmfRK0hd7tdnD17FsPhsGFOkrCcoixJAHP/Z1mGSlMCep7n1pw0WFtbQxAEyLIMURRDCIoZJHbbKfr9LoQAZrMpjDV9oih2NTXZY1vkhTU/KbxAKbhiJMJKh9OmDodb+BikaXmptPOA2qIn1mzzR7y+IE4sehZK/hcNLWfJwzmrxPuvd7K7rXtWxgW9+ZEkIYw1LZnPzBiqfeEwIk9jZMFstHH9ws9vPM9q4728522nFbYdAC8SMO1rtI89bf3zfZ4nH2or79RDWsf9dILvpfnMlrlN2xTayx5C2sDU9fV1moymgsoCjEUJoVNsbG6gk8QIpIISQNLpYDgcYmtrG3/259+EkgE6nRgffvQT3Lz5EXZ2nuDr//I3MRgOiWMdPp87TY3ZbI6dnR1sbW3h6OgIH330EbrdDtbXVzEYDPDKjRuYTCbY3d3F2XPnoHWFo8MjPH6yix/88Ef43Nufw+fe/hzFdgUK2ouj01o7fn7WuNp9wr/7gcOdJEEgFebh3Hl5syzD/v4+Dg4OIBUJu+GQQks6SQcdq90yFhgEAa5fv47f/d3fRRAE2NnZwcOHj5EkXcxmM/zoR+9jb28Px8cjDAYDAMRgm2U5Ll64hN3dZ0hTEoBf+9rX0e8PsL9/gIsXLiKOYhwdHePP//z/wYP7tykcw1T44IOfQOvSCtHzFAphg1iLosDB4QGyZ6njPOt2E6ysUL2GKKBwG2/i8MSy2nfhUoQIB+XcTQ4QBYqyQGwSm5FR2I2vJg0QoHQixtJefhk0cReiPWLhWdWamJJUjtBqH9IjKGg7iDgANwgCbG8NgcrAoABgoE2JosoQhDFRHAmKJTMGFFBb2rATC8Xoiio3SdUkdfCf3J9z8/m8sflye57G5uOOvjD7JBoem5l+fGm71TjeKdf8ZAN3avupyRl9U3PZMdzI1IowHNpgSKOBeYkym6DMI6jhCuKIMRPyIvZ6PayureGb/9e3cGZ7G5/9zOu4f/8eHjx4gOPjY5w/fx7dbg/Ewc47NS0yIQTSNMXBwQFW11bxeGcHH3zwAVZXV/G5t95Ev9fFhYsXMV8snHdQa43xZIIHDx5jZ3cX6+tr+OKXvkC5lqaqgzUtnUs7KHgZ9tCY8ADiKEYcEXnjeDx22RPMOyaVQBSFqKqzkJYbq0MXbfTlhfPnsbm1iaOjIwRBiNlsgV6vh8UixZ07d3Dnzh1XcwAAsdHmBbauXMLh4RHyvIAxwDvvvIOnu7vYe3AfW1vbCMII4/EU3/ve3yFLJzh//gyM1rh3766jK//MZ95GGITQZWVrFOxhNB7hcHSAMCQettXVIeIkooh4J8xOzg32ejOFdF23wIuGF0BVcuVyzs4gSvT2fHRR9J9kUdhHq4URfegvaimU05q4cpXQVhhpTaaizdUkem+Kuxys9SC1wWKe2VtR4DZEDOdEAMAU2VXFweeamEEKCtsIAmkdZ895DVPTSLVNTp912O8vFkB8vi/MnpeD7V8DgAuUb+eGth0Rvln+8zI5l8eZOWdzyyNSh5G6B6vKylWvaUrm5gNz6S4BAFJB2dgzBOQR0sYgK0vMFjmKssJgMMSw30cnjqEE3SeKIwyGQwRRRJQ+glJLBASqskS6WNiI94WdiNKZcWtra1QFGwaz2Rz9bg8QwmIyEbrdLgaDPnaePkVRlshzyrEkrKPCeDym3dkOHONmnP7E5rTrq9ZO2mzGkf9xwruSVH+R8idThPPQpUBJ3vmUgpAU9EvaoXGeyk4nATO1Mv8YTW57R+vFjGPibgvDEFVVIssyJEliczZLMkezmUOu5osUAsS6y5xjkMSuEYQhwjBCHCdQSlrTX6IqK+R5ARgBplqSUkIFyjPdmEa61mYJBxMMgIJNVP4RHAjxMrBHwzkgTvzeRtqE+8o/zg0mYLj+gL2uhcFOjLIVTlIShNt8TPuBqIuaNJymRtSC3WKIKqANWy3ZGBh4ZwIDxk3bwqytMS2zpHzt70UY17Lv2mbuaVqa3/y3sV1cj9SLAMMl7eUyAGCo2rcFQqWgqHspBKbjCSQIFI07cdPx3X4GO2CQPSS9FQhZIpVHMLLCPMtxsH+I23ceo9QSn//8F5EugHSxIG9nkeP69Vewsr6G7toqZJxASwXmSptOprh18yM8fbaP23fvoNPtQiqJg/093LlzC29/7i08e/YMR4eH+Lvv/z1+8zd+E2HcwbODQ5w5ew6r6xu4du06dveeIZ3P8eTRY2xvbTvc6Nvf/hY+97nPYTgc4vj4GMPhAGVR4PDQ1iawwbBsggIk6IIgIKZbq44baFRVgSgKSBMNA1v5iTpoNplgMZ1DBSH6/T7COEIURuh2exiuDBHYcJNer4f5fIEnTx7h61//59je3gIgcOvWx1hZGaDf7yLLFoiiEOlCYD6d4fKVa+j1++j3B0iSCMfHx3i6s4OLF8/jwf170EbjC1/4PL7/d3+DQIUQJsSjh0+xtbWF8+cvQ8oABgpQElGni7X1LXR7Q6xubFgnDtFbj8cZRtXCkS52Oh30ekRqGYSKaplKAwiFSheYLRaI4hhhZOMGTQhAA1oARqEqDUpRQQgF4RX04OxObSpgaYgF6pUheJPWFosnrcq4GU63hsW5hLFUQBrQpQG0QBx1AFDoD48XnS4clmiMQKUNoDh1j3JahQwhZQBtNCQMlBTQlWkIMyEEwiDAcNCrFQYBGK2pJqxhBwEtfq5D0el0GiQPy8xMHztb5v1kc7HtGHgejsXaXJZlOD4+PlF9jM+rMcglyeZCekqTsMVNPN42N258T/64eR8D87LCjGSQZs8OjNUWgPl0jiiIEaoIcSdubIAnNk/eiUQHSXeAMMyBPIAuCizyDE/3j/CjD29je/scvvRLX0egJR7cu4eH9++hKkpcf/VVXH/jDSTDAWQUUaK53b1n0xnu3rqFH9/8GI8eP0acdCClxNHRIR4+eIDhcIDbt2/j5s2P8P77H+DXf/0bCKMEh4cUwtDr9xAECn/6Z3+KNF1g9+kurl+7BqUk8jzDP/zDP+Azb76JbqeDpzs7SOIIC5uyVBQFut2uY4hltZ0DioWgxGR61gqVLhGFAQJbParXpXPKosCT42PM5wuUJYH2nV4PnW4Xa6vriJIYHYsvdTodpOkCT5/u4ty5s7h48SK01kSR3e+h2+1YYUbki4v5AsPhCs6ePYutrS1EUYTJeIy9vT289/n38PHHH6Mocrzzztv4+OaHUCoEoLCzs4fhcB3b2xcghOUQEwZR0kUUd+x4V6jKClmWuoT7+XyO2WyOIFBYWVmB1hJR1IdUCkpa4S0UKp0TjbktxUcTh7QQSitS0KVBCQ0JqszUZFv14Y7WgjP1L/XkN3apkHbmctTt2ULWAkYYQzK1pAK/UZK4wBGwMLMqhYDl7dMSVWUgwvoQCAUhAghboMeAvJzCprTC0mRLK8xWV1ca+FdDU7JkowBpcIyNAiedAstgEB/T9bU23nj9ay1zGvjXZ22OHWfPa0JYjbstExgiMnVojK+wNgSZ/1/hjyi100vNeQcZRtb9L1mC2qz/qiptdSQLLirmUWcTwXswe/G6c+gFONhVa4MwDNHt0o7e63ah4hCdbgeJNafAnWOblKJmyDBUOsx3p3PHM/7BC+fo+BjrGxsQUiIMFcqycMGZ/PxcN5GvkaYpZrMZyrJyAcF+IC/nUNYTqsYNjH3v+s1tP/CkBQfd8oSpXBoT53cCFAJDeCQFKZPZSCXomMtMCIFer4dskRKpoBfmITyTlgNStdbo9XpeqTwQn719P/fAbO5JUStEikxP/6fuE9p0OObQER4aXmC8YJu1OPl7NkVPLOz6IHq0F1ojpvlr+3i71oQ3+dkaIUjAC+4VAFcwZ8IN3zu5WKRQ2lDHLMUM/V9IcEhL5e7Hj53EorzHbWlRjVdpCSMf9G972R0e2OrblzE1/XNf9AxtSdbUEk+/17IriPbn5kUVzSFsXUV4wssQTbBUQGBgSqAockymE8zSBS3EMECnk6DTTdxChfBsaFPCVDl0kbnOoNiswHqLaOJsbKwjVAqb6+swUmDzwjmsrKwSNuNdTwig3x/g9TffxEd376HX68EYgyzL0ev1ce7cORwcHDjusNXVVZw9ewZCCPzpn/4pdnZ2XD3KBw8e2nsQ4+piMcdoRGlUXP7t9u3bODw4xObWNq5eu4Y8zx05YxiGmM/nDWokFlCUZlQLQG7aerFYGPUHQ0hJxVY0CAQfjUbI8oziuuIY165dw8rKimPL4GpNV69ewbVrVxyv2bvvvouD/QMc7R/i6PAA/X4PW1tbAAyOR8fYffrUkSPGcYwrly+7WMGqqpBlNEau8tQJ9R4wFVWUD8IQg8EAKghQ2Jg8AyCylOKUWnWELEttvqVyOZc8B6jQR2UzQCpntnN6HLON1KC/tyGcsgTa39WmCh3Wrq9Li7rW0KqyhBbk4JBKQWg2W+l8bTSUIG1T2gX8/vu3UKU5Pvf22w7/qqoKygZRV1UJgMgMmE9u2Bug2+u6zYaetRkOVDsPluNaL4t7tfvlZY7n67fPY2/0smu3zdWXacu0wmXP4V8feJEws7uwaU0MdlnDKGilkRc5RctbTSVKYggpELFXCx66BwCoYMoCushhbFUa3sGFt0Osr69jfXUV0JdRmAphr4u4P0AQBNCitr9JmPVx49XX0Ov9BXq9HoIgQJ5TEOyZM2dwdHSEbreL1dVVrK6u4syZbeR5gW9+85uYTCaI4xiLxQKPHz/GK6+8YgfHYLFYYDweYTweI89zzGYz3LlzBzACn33rLfzyV7/qclA5QJY9S+wFJSxEutAOP+iW1XVmg4jjGGvrG4jjBIeHh5gtFsjyHLPZAvuHB3StMMS5c+cwGAxw9epVrK2tObzi8uXLOHOGaIA6nQ7efvtt7D3bw82ffITbd+9ixVJtGxiMxyPsPtt14SVxHOHixYsu15SIBJrCDGjtivb5laUzCoKANhP7fpXN3y3LErPZFPv7B5RLGghcvHgRSUL9To4CJj60HuSyQhRGjVzfXq9X11J43mTnuXFiEfhaUW35PG8Zl1UFSEvpbT2ajALxOEKAPJ2CNJ2f/OQ20skcn3v7HdtvplEguixKBCogHMyQMIvjGP1+74S3/KSAqjXA5ru9vMDg6y37/UXNv4+fxvi86zdj917u2drvs6w//GNegJnRIBgGQ1vTR1hHgKm8hcmLs6LCEzCSOM1tYVc7/DCcIuKZElyQg39iKSBlAAUBYYkVmTbZqArGVGBZKaRAGEWIPQ1JCIEkiR2uwJ4iLt6b58Tu4Xc8L2zfW5nnhdst2YM0my5Q2M+zLIMQwmlji8XCaRtsKmrdNDN5sXsj5Xa9JqWSJMBceCwmNm/Vx+i4TFsYElMte0KZHy1JEperyteiviwsO66yx3C8F5yQPmlGWHFmGmLNWqACwi+3Z/9tB8cCtclDJm7VMKloLtX4DsMDyzSSUxfic1eOt5AZmDb6xDnCgb9L2FLbto7XFmmGxTx9OW2HL/dC7ajWdj6h3KqvcMr124LneUD+8z572fu3Q7uW3ZM/b//dNp/57+fkZsJhRuzqYa4prTVs0T8EQQgjDbQCoGgHEwLI8hQHBxnRN0GgF3cctqNQwugSuioI+DMC2SLH3dv3cf/+A2RZgbt3b+OVK1cQKYVS00MfHx9jVpbo50DYW0eYDNDvxxDkT4UAcPnyZWxvn0G320G/38P169ehlHJVx7vdLn7rt34LGxsbNhUoxnvvvYe1tTUsFgvcunULnU4HGxsbEELg8PAQz549w9Wr1yiPcmUFn/3MW/jrv/lbLGx5t29961uYzWaO+qfX62E4HOIzn/kMRqMR5vM5wqA2i5XbkY39W6G0gpCFsBCEi6kgQNmt0OsXSNPM5iYaHB0dQUqJ7e1tPH26Y4VZASkoyLMsCkRhAAiBTifB+fPnECUxVlfX0OkkKPIMZUnX/OijD/H666/h+rVrAOBM7rt372JlZQXD4dAJ5hqIBtt3J4Wdqf+RNqNBCIFut4ft7TMYDAaoqtL9O5lMcXBwhH6f+k4q4tsvCzJfBWtDDmdlYaicAK2ZWJfMZe/zhmcPaGhwvME4Y5plNixKKCgUyAenBat2ds1o0EYzGo2wGM0az+EwMOHlO3umKWnzFYB2AevlmhjwctrYaYLCf67TtKAXCWOGUnxzmHHjE9dvqcD8zidhgJPvxNdrBxD7xy/PzYSB0YAKainKA8w2PgxB/WEYQVekcagwQKWJ5jfLUsznM8AYKKmgBwP0uj0o0YEKShhTEJ+TMTCGSnPdvXMf9+8/RJrmuHv3Nq5cOIdAxjBaQwYRjo9HeHp4hJVSob+m0RsCSbLuQkWEELh86TI6nYQqiCcxrl+/jrNnz+K73/0uxuMxkiTBr/zKr2A4HOLRo0dIkgTvvvsuLl68iMVigf/4H/8jkiRxwuzg4MAKs6tWmK3irbfewl//zd9gkS5QliW+9a1vYXd3F1mWIU1T3LhxA2+++SZ++Zd/GYeHh5hOJ8TQYQueSNmkFGfaG8bMLH8fkiRBhzVGUAAmm1uHh4fo9XrY3t7Gzs4TzGdzGKNx8eJFZ5YZQ2lKnU6CCxfO4+yFcxQrJhQmtjRdlqX46MOf4F/86j/H5z73lrvvZDLBnTt3sLKyQuy+boLWmhLjqO2YojZIHSgFYzVNCiMgh0oUBRhPxhiPJ+h0Dp0wj+OQtM+ihBTEKFw7B+iHNttay9S6OgU74zl9UqBRznqTpJokJptETU1JSgltvQTGv5ew/lFDhItlVdEmNpo2tDkhrIZq4RRoAyryC/cOVPhHNeeGVSbsVVp9/XyMbJlXc1lra2ZLnS1LjmcIgQUTa/J+oWbnUGpdf5l2tuxZ+N+2Y83/zpiXDM1ovIQ1Nx16IjiAlsI1NASMZi9n5YRepes6AcJkqMvW12/JtRirqiLX/nwOU2kIYxDLAKXtOOK1qhoVsI3UCKRwZma324WBgYoJQGatMIoiDAcDG3GuHOMHA8tUZ7Km2knTFGmaErCtmKAypMlon3U6nWKxWLiB5WdsUvOw147of7BkN3KDY/9upogYBIECFTFWVK3Ims26Im8yn0/VjMhUl7ZgCztmYChSvdJlY5ejOLmOm3zGGNIoLQ62tDkJUWs6y2YMg+X8PsZQcj55vKXrGwbClbKmp9FU0xPixLVPU0gcuN9ehMY4Dav1dI3XWfYi/Io1TAK0tQz3oanHr8Gsu1S7orVj7LW10Y6aqX5sP/rfHm+wVBiceBrvGNaYTjoTTh7ve475uLbw8IXZaTmdL2ovwsDawmrZj//9KbOUOo3KtNXuW3B8jXWlU8R6Sd5N3qS43L0GkqQDAY521kjTOfJsjunRfQw6QCfSzp3d7fTx9ufexizNUVYlHj95jD/+4z/DsNfF6rCPNz/7tqWLSWzYgcRikeLRw4eIFeUBJlZY1YGrvDNIXLx4AZubG1aI0cCur6/h61//Om7evIl79+6hKAp8/vOfx4ULF2xR3Qw3b97ErVu38I1vfANJp4OiKPH06VMMBxSseHh4CAC4du0abty44XCmnq0mtb6+TpXahcCz3aeQUmJrexvT8chpLcw5xonnmcXxgiByb2GMQRDWRTxUqCjYFgaD4QBRFFI6lzE4OjjAIQzi/djxy3WTDpJu17KNBBiPx1gsFlBK4stf/hI2NtYdrMCsuXfv3MXG+gZWV1bo2mAtocaPjPE2Np49bHnxxHQmqXSfEcmhQNLp4tKly4jjCBDA4eGRw8qUlEgswSQ7LbhqeB0yUc9ZB8Q3nqdlklgNijIjbZaBfWZhbL4kSDkzhjUpyr4gkN+mL3khG85sFbVp3e12IQoWJPb6NhsCgnJAA8n0QxQqtFik0LpCv991HlsAdhOUjc2tralQvzeDY5fhSz4TDlfx4mPSNHUbcVszawsPvkaapsjz/MSx7Xu1hRTj6nzsMq2sDuGp32WZ4Hyumck4hGMpUBKlFWy+qi4FFcWFatIFSRBdcLdLjK4wGlWRY75IkacLPPjoH3Dl0ha2t1bpAYxArzfAe5//AuZ5iYePHuDBg7v4i9vfwcbqANevnMfm9jnoIEKSUCL6LBeYzefY33+GTthBHEUYJgm2L55z3jheREGgcOXyJZp4klOIBDY3N/Hrv/4v8Ud/9H/h8PAIAPDbv/3bOHv2LKbTCQ4PD/Dhhx/iww8/xB/8wR+g2+kiTVM8evQIw5Uhut2uCxZ89dVX8Tu/8zsoigK3b9/G0dERhKB7cGc/fPAAYRjg3LlzuD2bQoA0RsqfzF0oBDNosDADaupypSRUIBGbyIL5wMpwiKrXowlS5DjY38NsNgMEOQD6vR42Njawqtcg+oDsSIxGx1gsZlBK4qtf/WVsbW06YdbpdFCVVFz4X//rf4XV1VWb4xfAGC8/lSeZtdNqs8vDoJzazcnVNBmDMIKBQafTw9Wr17BIiaZ7d28Hs9nMVqlaxcZKABhYYUYCQUhBpI2NNCie2IRB8f+MLTLbEGlGQxs4/jsDFm7CAf7GUAxdVfnCrMYHSZBrAMxs4uxuCCXR6/ehKl6kdRwda72V1hABVXQSgpxXi/kc87mG1qUtKsPMzeT8YgcOL2xf8LgxQY3NLcOk2OPOAtcXUlyQhzfW2qLQSwUKkyUYY06Ek/C4sIXjCyz/Gm0B6Qu9Nj7ma5n8nv67nR40SwY+/1V/Dg8QRVPiuu9ZJZeS8tO0sROEzIh0MUNRrIBZN3VFV+x2uhgMBkgsseNsNkccSMzmcxRlCRlQfqBSASCIpbTICygoKACFqnPnnHfMCrAoiqzJBVsjkgZ2bW2NniklzxN7OrOMwk0Wi4WrbC6ktJxfqTO/WM2OoshVGH/69Cmm0yl1sLfDVlVpg3spxQlGNwaIJyN7hJ3K7yYI9XCbZ86vR1DlmfXA5jwDkNsYr7IoUFYlAo8xN0kSDIfDRoFipRQMDOazmTPPn99E6/e2eXXyWHp2wljiJEFpn4fjy5iEkQWHW1DwTAsWmm4O+uaujzHV5nv76Rpf8J/G0+taGorgDd2ak4wbtl81ikKYuE5tO9kTzQgBKSVVOddlw3TTlqFEymbVckd+4GlnywRQW5jVVlarC4wfhVCduJYvfPjaSimXm+zPc1/gPK8tMxX5d/9ey85b5rR4QZyZpJxMNiWsPi6FBCzY6Vz97ka205SErioYUZPeKSURRQpZPoPWOaSgANzD4zHm8xxFIbC9tY0oDrGy0sOVi1eAqkQSBQijCDKIIMIYgEQYBOh0QmxthQiEQiAkQikxHo0wnU1c7FqURIjiCEkcI4ojh3sBtGhXV1bx5S9/GZPJBABw9uxZHB8fYWfnKbQmoTcYDNAf9FFVlHD+8OFDvP7mGzhz5gx6vR7G4zFGoxGm0yl6Vgti3M0fgKdPd6GUxPHxMfr9PsbjMZ7uPsPW1ib1oQ2eXVicrigs7maTuNs4mps8vINZzCkMQxePxT9FSdz/09kMQRSh2+ngi1/8Ii5evIi1tTUXygEASZzAaI2dnSdYX9/A6uoqBGoPlT9R6XdnRzbmwHJB5k1AU2NQgQrQ6/Zx9sw5pKupS/5XSqGyJJKL+QLzeA6jDaRSkJDQEm7DYpzK15SMe57mM9dYlNUf2cyxIoafjGEUZrYVFie2BuuSRUNz/403bkCnBYKAkucJE7QaGT+DbyoL1ppqinUhhBXqJFT8EobGmIZW1ha6/rxb9rcvPLg/2p5J/7tlOBvHVrIw4+sucybU12rigcuOWyZs222ZQFsuzOxuI4UlZPHd3gaWFsU4skP3IIJ3TENl24oCQgBK0gQJAgXEIbJsAl3lEEJDCoWDg0McHk5gTIBXXn0FV69ewhtvvgJdpNjbfYadJ7skzKIYMkogQLRCMgww6CVAoaFL0kqODg+R5inyLEOnk6A36KM/GGBzcx1BYLMMlILRBmGgsL6xjl/91V91u95g0MfOzmN88MH7tIiFwOraKoYrKyjyAkfHR7h99w6+9s+/jkuXLqHT6bh8xPF4jMFg4Gpg1mlBtMM8evwIMAaHh4fY3t7GaDTCw8eP8dnPfRZxFAPGIFss8OjxY0wmUywWxw7zGgwHqIx2rL5uEA0DzQZGVy4bIQpD9Pp9BEoRWWW2wOh4hLKqYATw2mtv4Otf/xqkVNjc3HSTUQjhKM/vP7iHM2e2sb6+AY7xkzZKv57YlG/aFGb1BDsZAOprTHDXoewB4nIzpnLiUWpaxIv5ArPZnLzn2qDT7ZCQgYSWbGLV9SX5v9YooGcRfgaDtRYshgZby5LCJIRbKEVRQAYRAhU6E9Zd35BIq9cu/S6lwjvvfhaRBsKQTOCa4sfUlFXGOFNcCFisl5w5LFSqyjQEBWtWp2kn7X5fhlc5C8BLTgfgnFd+a2NuTMrJ9+dNsM24zOf6JrBATba5THAt++x5Gt4n0szgKcLeePmASL3LwT+AfzM8Z+yDUeya1pXDTrTWyNIM6WIBIROqJ9nvoisiKJQo8hxHhyMw/Yy0OAfzWoUqgkGFCgKmLFCWBfIsQ5ouIAQQRhGKpHCqM3FQCWfihkGItbVV977cSYvFwhXeTeIEQRAgtSbnbDZznk8WLFRshfAD1oZ4MLjTOTOAcyy1NtZkJVPOaI3SBbVqN7GUFb5MtdSYAPVTN8wKqRRCLvFnv8uLHLlNMZJSYmVlhdhFZDMjIQgCKCldseFomZnpTYqXMSnqY3wtrp5MUkggAJTkJHONSlcwedV4Nq0JXqB5RUHakoWCwYm+aT8y39aNi+G+Y6zYMxth+cBQR/bzJexZ3rW9ZHYBDPo9xN45DdNFWK+kdw0BkGPD1Pel92WBQEqFv+Cf1+++mdgWGM284Xp82phU+/vTtLNlGqF/v/oi9WcNkxS+Zfd8rex5Any5MDOsRBu3azBuQ96dGgerpbGdEA5UsC9qTVQyAyqUVYE4ChAqiarIcffOfdy+fQfzeYGLl66xjATvXPP5HAeHB7jx+tswKoFRAYSoaya6mDdB+FSn2yWAPI4QRSGCQKEqCxwdHmIynlgetdBWK4qRJJK8Wt5YbG9v4+2333b0KrmN7bp/7z5u3ryJJ0+eYDQauZqhX/rSlxCGIb7zne+i2+1hdXWFiB1bg3D+/AWMRse4ffs2wjDEwcEBptMpptMp7u/v4+nODozWWFlZxdraOsIwbkTtz+ZEG56mKUIbTqKUQhLFbiFXZUnU264+ghXaYYjAVqpSVgDP53Ms0tRiVKRddToJtre38NZbb+HXfu3XyHNsd9VGonUTpjrxrs+bjN5f9WgL2bqWJUYMBPrDIbYrbfnT6grzeVGQaa41VKDce5Pnb/lzWKTEPYuzNE+IPuH6TyriYgPgNm7nLKCjIEzdN8ZoCGUgBVBV3jmWIEEID2/2zEwWbzWVDyCETwbaFE5t4XICv7b3ascBMgb2PIzLv/bLaEptU9Q3e5vPx73Wuh+E69dG6NeJVke8tkfsudWZtCFHtVAkoDgOSCg488apkILiZFQQkLADeYGE0QA0pALKokJZ5OgkIcJQocgzfP/738fNj+5BqQSXL9+Ac40Lwhkm0wme7OygPxigRIS8UoAkgQZQPJI0xlYqjzAY9FFViY3zIhOlyHPsHh1RcB+ApNvB9vZZB/ZzLBP33eXLl7GxsYEgDPHmZz+DwqY9/fiDD/C9730Pt27dwt7eHtI0Ra/Xw2/8xm/gu9/9Lv7oj/5/uHHjVQTB9YYw4wG9fv0V3Lt7Bz/84Q8RRRGOjo5wfHyM4+Nj/N33/g5/89ffRZIk+Df/5n/A5cuXMZlMEUWRw+rGozEqm6je7/YQx0SM2IkTGEOYW57nLp2LNp8KQlC4xSycIQhDdLo9GEPXTLMMk8kEi0UKKQU2NjZw6dJFrK2uYG2d8lg5v5Y8mHbsja+/iMa8e3lhxnPNyzYBr28SSBAKaxubGKys4Oz580gXCyzSBY6PjjGfzZBlGfI8t2lciS2kIwEhnUnYwHDog1oLM7UF0fAZCAkDyplVARFR8obOKp4Es6t5ix0kzCTRvjlhBgAyUF5anxclL9yZBMs47byJ9zXL1OEUYdEkSvTf3z+u7RjwNbM2Juvfp42H1c6tqnEe/+17NLVm7bU9B1h08YDwfYy3Z4paa2bBb5oi7flmpqk9RvzwTj019Wf+y7nfQcAsBGlxQtadqCRNNG00LdLxGFHIGIGGrjSk0DbuqkCaLqw2oSCMNTNZNTXO3oUAxW1JycWKa5WaJ702RM5XFLnLCZSiqZ11Oh0qEScl+oO+ZXs4xnQ6JQHgxYUFQYDt7W0EQYC9vT3Hb7as9Xo9hFGE0WhkBcjC0vuUGI/H2N3dRbfbJRDf5lQGQYCipAIlZVW6ZPUyiokPLfAqQ3kTrJ64sLuzcNgGm8Cclzmfz22yN1EGJR3K0bxw4QJ5jusLgTXwlp3ZmAPLzJtm803O5me8e9MnNCZstncSunZlY7+04fzSEhACQeAD4qhNRzQXXuPp6/80n8U3iSQ5GJYdI4AT/UH4Mf34pq8QNumOTZ3TescJDtLGapjmZL1WX+tqg/XuXVtz4rTW1vja93qZ9uJzPcGFZfqV8KbTSe2tHlAr/J1G94LQDMlZ3CC8xxhTR7XTk5AA0hWMASqjUdkSWQYawlajkdLAlCWydIF0MUMcRQiURKACnD9/Hrc/fojxeIzbt2/jeDpGb5BgMIwQKINHjx9hMp2SpA87iGQEMkG99eWsFYP5fOYCLKUUDivrdGoW2CiJURYlJlYwhUEMFVAxXubzEnb3Zk9WkiQ4f/48Xn31Vbz77ru4cOGC49kfDAa4du0avvCFL+DDDz/E1tYmzp8/39hJjTEuBOLR48fovf8+hsOhY7945cYrWCzmGI/HODoe4e7de7h69Qru33+Aqiqp/Fy26TA5YUggc2WnOI7cjuhPIuEtSmN3RjJBBZQi50K/3ycgF0TXM7P9LQDsPXuGyJq63V7fOiBCZwg0AdWTzY3Rqa2tkTWfu/WlI6ZcXV1FGCiKi8pz0u6s0ObQFGMhDk7Yp2LSPFmEtw82jRqD2upgK8FPuCckxcd6mC6RlQaD2TRDCYUwiL1X8PAx4Sate99aaImGAKyF5bL+Nc/9+7Tjl3GQnYaj8e/Ljjnt3ny8ryVKm8LlQ1G1dtX4YOkm4+OSpj7ated6MwlTMNCGmCCo+k4XEsJqM5ZVoshR2vSToqoIoIWBMJrCMUIFUS4wm04wnYzR7ZDGEUcRXnvtNfzVt/8Oe3uP8Xd/93eYLGbo9RNcuLSFwTDB/rM9HBweoSgrdDshgqCL0khoTZ7WOjOIdsHR6BhlWYACFC33vJKu0hI5ERTmiwWmkzGm8wWiMEEUx+h0O5aWJqkBfCkQChJyr732KgniIMAbb7xhecGA9fV1vPvuuxgMBvhf/pf/FVevXsXbb7/d6FKtNba2thDHCT788CZ2nuzgy1/+Er7whS9gY2MDX/jil3Dt+iv4wd//PXaf7WI8neCttz+Hjz6+CWMMXnvjDUQJVSlKOh0c7O/j2dNdHB4eIk1TnDmzjU4SO6dBPVFplWir9ZIGQ/TUFIVP1bN8/Ob4+JiK/Rrgwb177p5nz5zBcGUNQRhZjYTOoTDpT97qBV1nmDjc1Z/IDEzbZw3DkLIUNjYsVRDFCS7mc0wnU0yn40ZkepLEiKIY3a50GjzNT+M0JelpnUYbaNQxflKSs8kXaHWmqDWLYKsWCMCYCkdHOQItsL0VIUS9sFnssVBs9gfcd4xhhqGsn8sKNV8ItTMAXtScg6glzIzVcpc5Dtr3a3/Xts58Tyvjc4z9Vqa0ZBSiJRidqecgTEJ/hJNvzebpdPbxXhBnZqWgrrmYpJRWmIla4BljE8wpydbFI5kKAIG4mvMWixzdoC7ZxUnMnDz9dH8X3V4CGZRI0x7G44n1AhobiR2gxOkvV+Q5irKw3kLl0peCMHAdCiNgLN4ymUwQRQWSogAEnBlHuzJPduZbX8Hm5qbTyuI4dgGz6+vrSNMUe3t7lGDffjpjbNVxhclkjHQxw2KxwHA4RBzH6Ha76PV6uHfvHh4+eoSFDcwdj8cAbOyXIU9j0ulgYj9nwsLKEiQu2zXZ/PR3ZQAQUiIQvLjshC5LMn/LCkoIp/lxqlWlPff7c7SA5gT3NcS21tXWzJrP3f5cWqdHGIRWThsXMlJVFeRs7rBdFmZM/Km1gZTN52rCfZ625C+0Fl7kG6s+cuiuYAyyrEBVnSbkWftks/Dk/U9+zj1yUpvyf1+Gay07fjl22fyubbb6ntRlbenc8/qRHS5SnHwHdw//c35bO84ngvT9ywjxfG8mYGxUskYSx4iThNIseAgNxQcFISWBGwB5WVrNjISZlECoBCqlUZUd6KKLASjR22gqLHv92jUoGWG4soXD0RFkYDAYdhBGwHC4CiECzBcLxL0CcQgQ00C9ewsBS3RA96WiwxGEgMuFy/MclS1VxjFTgVIY9PuIooTeQwUOy1JKIYgo1zMMQsRJjCSJsba2hsuXL0NKib29Pdy9exfnz59HluXY3z+wAqvuVmMobGN/fx8PHjzA7u4uPve5t3H/3l0knQ5WVlas2k3abmQ9kxRnBBwfUw4nu+2fPNnBgwcPcOXKFXR7PZw5exaxNRWDgBZsnhdgwjyHv0Ba3Ew2F2ULBJZSIooiaFUBbhcnVtj5fAZtgOl0SgGTAY19bJP1214zev+mIHteW4qzNUwOf1G7NwB7azudDqohJbD3+qkLhWE+OJ/hwRiDWFmPcFBzuBnv6sb2DzkUhDNb6c5NQSbtCxpb9/Lx40cQucHly9vgkIpagDDuyEICEMJb8O5Y7g8WUFyKb3mfLRNQbfDfdWtLgwKa5RGXjQU55U5S9rg+aMXA+Z/591yG67XfZ5lj43nnAc+hANJVZXdrqibUH/SpHFt/SPuHNsQSqwjIZ3yh1JT3BljNzFQwVY4ikwiEQSgrrKkSoVIwGuh2evjSl76Ez3z2bWyduYB5usBsPsHh8R4m4yOsrq1h+8xZHI9HiLrriLq88BWMNzkgDAwqQAChrWxUloXrvHS+IIFrDJmbQjq8KIgTAJRW9ezZs7rYbxxhuLKCfr+Pzc1NDPoDdDtdrK+vIwgC3Lx5E//pP/0n/Nqv/RqklBiNJi7yXmsDpWgg05RqWv75n/850jTFN77xDfzv//t/xHBAmBlXLpdSotftw2ggSzPoymDnyVNL0Eg03j/54EP8h//wH/A//8//H2xsbuDcubOQEFBKIk0zlDbdCjAuv0+wJu3MJNWYMKRI0yJxjCFliTLPICWc0+D4+Aj53h6qUiOMQluwuI+V9Q2qJLUk66GWRhxq0JprHk7k/+tP+jrqHqiFWm17CCEQ2Zi/Tq+H9XLdMolQEPFiPsNiPnfccmxO9Xs9xFGECIBQkZ35dSCrNgZCSQgb7qE15YOyA4ytIOcIqDQ0DKqiwI9/9A8oFwW+/vUv29g47bzB2lgTVzRLEzKeRwKDDFlKZVLeWLUKAi9Z9O3W0CrFyVxL/nwZjnbqmCw5jmmi2sf4qVk+AWf7mdve0xfhf+323NAM1syMMYgs93wcEaCpK021GG3dS55spfZisI2GqQqUuYDQGco4QlVE6AQdmKpyGQTbZ7ZhtMSZ85eQlQWOjg8hHhpoXWBjYxMXL17CnXu7KMrK7WiksgoAtjZkSzOj0ATtOpA5vipdIdAhojBGGFJuYhgnqLRBkZcuF7MoCkRJ7OigWTvtqA76/T4mkwlGoxFu3bqFt99+G2EYYWZzGf36mQBcaMX9+/eRJAmuXLmCKIoR2oLHbqFaDYPOoX6fz+d1Eq8BDg8P8f777yPPCyRxgtXVIaCNfb/SmV2sgTQmCURDm6jNJ6sd2GO5bqMuyStL3mFKKp5OZ0jTzPKukQnXtawWbaqgTzoZl01gxsqWHF3rZ0LYGLMAFEDRcWZimqaA0Sit95lZjHk8lVIITF1gheEF1tHcohTe+9ivWWF0cU/2nrqqcHhwgHyWOvPddzScxEhOLmh/Azj53en996LPlwkm/7sXCUb+7jSht+xeL2OmLjtv2bHte/t/P8ebyUczDUr7QcEAwcntlo6wO6rNa7PCELoLk43wZOcpppMJXrl+wy5gBWMqHOzv4/DoEKPRGL1e39JCA04lByEVTmDWr2XDLOpIFiq8Qt/yQguMop1WCocD5WUFqQIEKnDhEFVVOYdBUVBeYxjQMSxwVldX8dnPftZhSlJKvPrqq1hfX/NMqzo85MaNG66+Zr/fd8A7D4jWGk93d8lM6vVweHhozdsEEAL379/HweEBur2u43TLshw/+P7fY319Hd1uB5ubm4jjyIYyJC7GZ5GmdrHW41MvGEu66D+zN/E4EZ/fMYpChJaOqCorzGYzJ8zIsxp7hYpPb042tKbQiybw8na66RPFCbq9Cqtra4jiBGVJwiyyeYVaa+ofrcEeaGEdJ1KcNJ3ooTQglH0JYs+QwtMbvWh9l6j9XOHO/b3kmwYu9oJuOO3qS0zGtgDh5ySGFNW6r1l6np+v62uNzxM6/j1Pe9a2ZucLxNPOO7WiueC0I1OrhrItPSWZmNLA0y7AaW4gbEtBBSECmSAMBTqJwuLJU/zoH36Me/fu4vKlK+h0E0gZoKwK3LlzB8/29zCdjfH5z7+DwXAFlTGgIEYv7UG7hCiQIqRRlDlpC1JCAgiUhDYCRglIGcEYyq8zoCIVZVViMpkgLyt0ez1sbm66cAvGWLSh9KPDw0PAGASKagicOXMGly5dwu/8zu/g7t27jrrnX/7LX8PVq1fcjuyzG/zqr/6qW+BbW1sYDIbQBiiKEmEQoCwr/OQnHyAIQ6ytrePu/XsYDlewuroKCOCv/+avcefuXaxvbNhg4ALT6Rz/6//2v+GrX/kK3n33Hdy4cQMqJPxKCYGiKDGdTHA8GtWag4al8aadnyav9CYP4T58PKdpkcBSCMPAVjgXyIsc6cGByyWUUmJjYwMrKyuOrfe0SUjXP31St+mXW5PU28usb5HNWiGc1hmGBDl0Oh30V1ZQ2VJ3VVVhMZthPp9jMplgPplAW098EFBN00ApG4ZCpmFgTXZhbJgL19gU2sVUSiEgnEVAxYkp17K0YQlWIMA3w5+vsTSF6ctLs7Zm3iYKaPd7mx/Nv04bV+PjXcEeW+qwfQ6br3y8j6GxEvC8Z27/y8G4vhbP93pOaIa9OE5KSneYsNiZZ7wIoFG6SwoLoMoAKjAwqsLcCDzb3cP9ew+IKjrpQKoAeVHh6PgIh4eHyPIUnU7PAeL8UGxN+poZGZusmdXPTqSRGgZNLEBrIp6kxOwCiyynRHbr+pc2LSbPc6RZiizPMRqNUJUVQguqb29TBaTXXnsN9+/fd7vZtWtXnUDkAeROv3LlCsIwxNOnT9HtdhFFkRMm2pBHeG9/H+fOnUOn28Hx8TGiOEK3RyR6j588wdHRkePoZ0zoBz/4IS5fuoTXX38Na2trkAFx/8My5S4WC1v/sl7vJzUZDkQ2aOcA8n3YBCVW3joDIy0yFwDMfcjl6vgapy2gT9pqU82cnGxLmrQe+FAIJPY8twjtRqI1CWzedMIwhLHadxDQ/NNuDVD/GYt7Gbt5A7YwNtvshpPeLVSjTxNCtTBrvmf9mu5Iszyy/2VaW7tctp59K6Jtjp5234an8jmYnS+0XgZ+4I1x2eentYYwa4BxsIGChsjwirxAGZYwMVceth0t2LPpEAzvv/W1AENqfFWhLCq7I9tcOimQ5xkePt7FaHTs6E8ePnyI7bNnsLm1jch5Ca1HzhNoBrQLllXpQG7+pjFcbiANlJQwSiEIDGRRNlJf/MFSUtmCxF0YrV28kU9k1+12XZQ6Y2Y8uOwdXF9fRxRR2bSjoyMHmI/HY9y7d8+Fp6RZhl6vj5WVVRwdHaPb7aLb7eL4+BhlSRz5pNFRUZM0TcmJYZ0ORVni4b37mM/nSKKQam9qjSRJEEUxOt0ewjDCfD4n2mplK3EbQ1Wijam5z/LC7bpRFHqbGu2QUUTebGMBat8cWCwWePbsGTY2Nk4Q93lD8dIT9dRj/F3XfeAjg00b1nhjHEYRkk4Hg+EQUklUFWlt9cYsUNl6BZU2yMsKYaUxn88wm0wgHH26gDA0lwNbV7Pf76ETxmSOejgce5Pd+nF3005LbWJrvjZW/75MkD3Pq8mfv6yzYJkQa9+Hj29zpC27B19zmenZvpf/uf8ZC1uOpXTZH/b7E5qZ25FBDK1CGpSVxHw2g5IKnU7XMo7SOEnOa1zWMe7FBKANTFVCFznSRQZdwUWgKyVweDTGX33n23j0eBcQEmura/jWt76Nd957D+cvXkZ/oBFGMSAkhFSQVs0wYIC/QJqlCGwcEtxb+CBuPfMpqp3qABQl1zMURFckajWWhZRSCkow82eJw8NDp7FsbW05gcdCigdQKYVut4vXXnsN/X4fT58+xd27d3H27Fl0Oh08evQI//k//2cL3gOj4zHOnDmLS5ev4P/8P/8PnD9/Huvrm7h37z6yLEen08VwOERVVbh15zYePHiAc+fOodvpoigrLNIMf/zH/zce3L+P7a0tlGWOS5cu46tf/RX0hwMoS2Xz8OFDRHGMpJMgjq3TwpAWsVgskKUp8jSDVBJJHKM/6CPLcmI3tQwhg8EAvW4XiWOHoH5O0xT7+/t4+PAhvvjFLzpesuYEr4NG/Q3Y93Yt251PW7Bu4xLt+Xj6ou32e4jiGP3hgLQyaw7OFwssZnNkixTT2RxpfgQjJIQK0FtZxfFkit2dJ4iSrvV0KuiyovClKEYRxTh7dguBUNC6hDEl2FvsUvlaJt/pctyhcDSX7Ts+DyT335G/b2/SpzkAOKSnLWB8IcfaGx8L1MSRvlnJx/r0QD50wPxsfP6yMA5ubUcexxGmafoCM9M2KQUNohROC6lvVmtmp7WGiU/2FExVOs1MCmUDcQWyPMW9+/cwmZJ5CSFw9+49XLx0GSqgJGIVBE7vE9a4pEvbF61KhDLyOqU2Q+sHon84d9MY0r58ji7/lZiZQgYKoQqgtcZkMsF0OqXCx1mGs2fPot/vO1C/PUGiKHL02WVZ4uDgAOvr6wjDEKPRCO+//z4leqsAKysr6A8GWFtbw8HBIW7ceBXdXg+Hh0eWeDHCcLgCbTQODg5w//59DIdDBGGISmsURYmPPvoIH/z4x7hy+TLKskAYUpGXtdU1GAikaYbZbI7KEMkha10c6pLnlLOZWw05jELHcQYQBlSWJZlvUYjQbgqcO5imKebzOXZ3dxtz5tQ54qbIT4lu8/lo6mT2DnCTkE1AOy5hFJF2Zjp2kVWoygLBaER0TNZLm+YFKm1ghAQUpXtNxmMkJRMrKJR5AVNVVO1cawwGPSRhQiY7oW4QjKl585B+FacIM+HrYqh5JX46U32ZWbnMmykt/dNp57YxNBZa/jXax7XvsUwbW6ad+X+zEGVBtlgssFgs3OcvYM2oJbAWVNR3sVggUKXDXpQSgKVbEUpCWzBWCoHAqtP1Mxn7MDWnOcCTf4b5fIatzTMYDlexsbFZq6Ygc0ZKZTEz4wZfCANhs+GNxZ2EKGneoiafY856Ol27hWeMsWlPNG1c7pep2UBcHJF9izr0wzgcybB55pXd4p2nmdxNSeWXLl3CYDDAYDDAjRs3kGZUCKXfp8+M1ZCY/O7J48fYsMA/UPO1G2OcB9bYvgyCAMOVFVy9ehV5nmFjYxMwwKPHjxHHCeI4wcAyhiRJ4ryq2uKINDlsPU9LFJhlmeOcB4hIsO4fXox1f0S2Shb35c/SluExL/KOtZaQ96E48TmfJiy+G9jNs+pqDEqNpKhQGQMNgbiTQM1nKIsCeZpatZIEoak0yixDGEWYz2YQHVBFeCL6d1or9bUf40UbRPN9bHk9wzFmgJCWxcYqGKfhkM8zN9tC50WmKX93muDz7+kD/aeNDQstxmL9tXKaeesH4/przs17e/wJYSZEjbKXJZEoKqWgbTDms2fPoFTkYpakpPqaKlAI4xhChmQGCoU4CBAoQCoA0pqEVYF0kSIMQvR6fRgAB4cHeLKzg2d7T/Evf+03cO78JQRBhD/7sz8BMVMK9HsDQIXEHFppaCFgBElUaStCGWOQ5ZmtBymhAnppFwkPejVKzbImY1EgDMl7BW2st52EJVMC0yiAiB1BYR79ft+pvgzIT6dT9PvEspGmKUajEfp9CjZeW1uDUgqLxQJ3797Fr//6r+PixYsYDAb4/d//fZTWKxQEIa5cuYTJZIpnz55hMBhASom//Na38I3f/E2kWYbbt27h2bM9jMcTaG2wubGBpNuBMRqHh4fodru4ceMG/od/+28xmVAgrzHAf/kv38TZs2fx5pufwdWrV8k0E8RhNhqNkKULVFWBoshhDOFs09mkwRLCG8NgMLCCluh2mLOfa2P6k/tFZpA/+X1TY9kCOw18fi4Y7mPswoutq1V2dx2lKP84DAib3NjcQmXngzYC8yzHeDLBfDbDbDZHaWsWRGHoYi8DpZDPK6ytrmMyGaPbpbi9IAiwv7/nLeL64ZiivRZQAYSQkCKoK4pZWiFp07N8ih1ONWy8tl38HGbhex95I+LNyY+NPC3fk8eUr+v/zgwyLKR8Lc8f37YAy/O8jgH1POi+2cowTxDUKYm+l5r74FRvJgzVuoQgc5NMzQJ5toCSke1oEmZBKBFEARIAUhlIGUApgVCQ0IHi+UKesiKneo5xHMPAYDafYTQ6xmQyxqXLl3Dt2g3keUXhITYGKo5jFCZAaT1JDtkTVhlnzawsUVogNTR1ZL2PBbK5RJavRhjVmFENTxiXltRejJwuxd9xXBrTDKVpitlshoODAzeQq6urACitam9vD6urq9jYoMj59fX1E8jOaETUSCwoP/74Y/zBH/wBFvM5bt+6ZWm1aZfv9W3WgTGuSvvKygreefddHB4eoixKmMrgww8/Qp4XuHr1Gs5fvOA0SSr6O3Ye0rKsACvMAdjNITuhdfEmYdDUnMhLW++wLwvs/6yeztMv7v+xREC6g2ieE/NvZP8mzcuAvOD7h0ckrPIMRUHe8Dwv0Ol0kKUZCltqUOoQcRQhTRfoJD2oQMBIaUsYFlaQsJTlSub2eYSAEGS6K8mYrSClwRbEUYF2CxzACUEGnOx331PpbzQs8E47z//M3zh8TcoH7XnO+zgpn8eaIQssDlDn4tZ8PtNoSSkd8QMX12GnmmNPYWG3VNW0+EnDYrcdoBRpXWz7C2EnoSFVWUNCaEBXgNQVqhKoygpGz1ClU+TzOcIoRFWVmM5I+9jZ2cV4PKUq5FYb8oP2hDVjnJ+KVWRbLIU7K4piiKqmHmbCP1+NBayGZbVPrXUDx4ATlDh1MS7jkALq3a0NpOZ5jslk4kgTr1y54kJA3HXg4F0YQxP1woULzgNKjBuxC5E4Pqb6AGfOnGnsghzyobXGzs4OwojyJ7UwSC2+wLjebDbDdDrFysoKuKRalVNVdSUlOp0OZvOoMeGFEFRQxIs3auMkvsbVbv4CeJ6Z8yKAe9lny8xRcOCjaXzSdH62TvGgNb4bWOQFgUKv18WZ7S2UpUZelCiL0o1NaT3jUgdYW1tHpxMjiqwwUrBpdqXtH752rZnxewgRAJAerkxmppKgiuhL+pi1GV/AAE1cizdff6765xC/XtG4rt+vftETPo+9ihxYXRRFo9CJX/HJLzvnC1EppYNuADiBL4Rw9PTMlsK/82bLnIinaGa0AxhwYFxhVd0AgTKQ8DnhK0BSxHiWpdAoAQgILTE1BhIlJDLo/AhFOkaRjrE6HCJdLHD//n385V/+JT76+A7KqsLXvvY19Ad9SCkQhgHhT5oKoWhDdTuVw+VqwLqqiGBxZWUVZVzWno8qdx5HF/grKRwhCCjaW1vm1oAXasX4BuUnwi3YemA5qp7/9uOreJErpTAYDFCWJUajEUajEba3tzEcDvHv//2/x/r6eiNo0KeNLssKSZLgG9/4BtbX15FlGb761a9ic3MDZVFAKYUPP/wQn//85/HP/tk/w9///d+BHQ0XLl3E2vo6dp7u4E/+7E/x6//qX2FtbR2mMni2t4dXbtzA5uYGlBJ48OA+7ty5i2vXrmFlZYgwDDCZFNjc3EQnSdDpJMiLzFVsj2OiGKq0RhCFEIqeub358Ji4cndLmi/Q2p6ydu7eMsH2iTS5U45bpi9aYxfsHHLPar/tdjq4fOmi3ZBrE0tIBVNRjQkpAaMlkijGubMbiOMAQgC6qhBHYa2daL6hsZqZD4Dbqk4V0+iUqHThMM1KM/5cp7D5Efx+/qXfb8zNx43NQC5mwuUV/fndjhFjzYsFC2fS+LF6g8EAvV7PCTN2mLUJENjTzVom/942VdmMdsw9sq5BevPmTXzrW986JQNACMf77hd9VVJS6ILxC2AABpbLrCxR6RLGCJgK0EUBo3OIao5qcYAsG6PKZ9g+f5HMrWfP8MEHH+CDD+9gdW0N/+P/63dd9W8llRdVrlBySpUkCiKAAhmNsO58IdHrdlCquu7gfKHdrlEUhesAArx1Y/HIRugAma2aBVtLg/e9PTzYbNv7nU/m2wTzOZEuxjGxbnzlK1+pTTReMaJ2PlRVhTCM8IUvfAGDATGMvPnmmxgMBjg8OISUEg8fPsRXvvIVfPazn8EPf/j3bhfc2NggdtyHBX7wgx/gV3/1V4mqqDIU+FuVGAwHgAD29vZw69YtSz/URRQlKMsSg8EQg8EAcRziYH/PmQBE4a0d5Y6Q0mnJ7d2fd+gXmZg+tuYvuhed48/Vl2p82CmXN94hfIKnrAMWeI/iEJvRBtbX16FN7ZGsKrYciGOPZVOghGNZNlpjMOg7XNoJM2FAFa7qd6uItARlwc6XHEWZoSpz5HkBU9TznLEnxp0aNFYt/IkhAC6UzWPHzp08z4lhxjvH92z6mR5aa3e9nAPL7XkM0AO0PufzOWazmUt1Y+0qjmP3w5aL71xrjIg46YiYz+d48uQJ/uqv/grB8yZP+yvenTjmv1ZRYXdonlzCYm2ENwhIaAFQ0VuK0l9ZGWJrawtRFGN9fQ1r62vOQ6Z1hbwoSVuybLEQ9gWtvcm4l7CDVdkIbDJp2TEgG7iCv+hI9a0LOwjhYGCHx/kgsd+vxjDL6HLzxxgDeNgE40x8b94FnRcmCCAtHQ1rpASMFu77fr/vQiFWVohtY2VlaLW72qzgugSrq6uY2XSd2XyOQFrwlLMDAGQZ4XtJkqAoCozHuXM6cHWr0vLY8eTngiE0scnrKZX33raxScG76Ms0xlDaGpsLj5HLy6f5ptInbu1TTkx6HmsPCBAc6Q/nrTd2/jNBo2SSZqt58XluHvnziteM927sXec5DASAqCCFjaizNFY8v3me+SadbxrytZkqqZ03y4Iu8fJ5+XMfmGctjbEs/pvnEGtUSUJ1OJgogT3mLKzYMce/OwbrFiZHQ3B6Bsl4PEae52SKnhhb1raMgRDEtEl86/XORVxgxAHFlpgUAgqUxA0jYKwWpUA5grP8ENlCoyoLKAW88/ZbGAy6OJ4e4eq161jfWMfKcIg4ipBnGZ7uPEOv20UYBFjMZ4i7RE6oKw0jSBM0tlDKYrFAkeeAARRkw6ZmDYkrnGsbizWfz1GWlYuXUpK8FFJxwVbSPpqeG8LbyPNIGiIJNoJlYAyqkvIataUHZvCy2+06M21/f9/tgEVRYDAYoNPtotPpYnV1BZPJGEfHxzg+OsL6xjqGwz6uXrmMMAywtraKt99+G0kS4803P4MwDJHnmduhHz58iFdeecUlqj948ABlUWJ9bQNra2vo9/ukFYAYOJ4+fYpLly5hd3cHjx49wne/+108fvQYQSBxfHSIf/Ev/gXF0PX6ODg8RKfTRRRT7cqiyGyfRQ1BwptFmqYuI6JtVvJxPJ84q+LZs2cYj8dO0+QMiE6n4wT687Sx08xSf9G677zfXEgOjBNopy0goNbCDAAQAgIJy45qPPnkhLzdHI0G1Tbg6kzCUwLqqxP3HGHESsXQJoQxMYwuUFXGmZkstHwBtmxj4fdg3LNdpV4pqp86HA4b9TN5vNjr6MMocRzj0aNHkFLi/PnzDVhBKYWdnR08fvwYb731lgvT4XFl4cWAPm9YbSxvWfPf50c/+hFGoxGuXr16WpyZ1yGiBuDtV2R+KQ8IF+QIUEpCQsIYctcrJW2lcYEsoGO0LiAFcOMVEmB//6O/x7VXrpB51O0hCgLMp3Ps7z9DksQIlESeZUi6NinaaEBSPJQR9FJZlmExn6PIS8QBgYRCCERxB1HE0p6D7QoURYksTSnq3jLeMg04CS2KGVJh4DxO3AfMuhtF1izV9UKgvqmof2zf+UVSAfJmjsdjV0RkPp9ja2uLAmE1MFwZYL6YYzweYTQeATCUWdDrAQAG/T5eeeU6tre3sLq6iiBQzqyoqgp7e3t444030O/38e1vfxu7u7sUp6dCEppe1ajxeIzDw0NsbW3h9u1buHv3Lr7//e8jS4mt9cGDe/ilr3wFmxub6HW7ODg4RBzH6A36yHPqSwOg0wKLgRoz88HmZTusv/iyLMPBwQE9s9UU1tbW3MLq2T74pO00J8NLNytUHCLAHwsyBe1QU16wdR74JirFNdp1pI2zbHgjbIpG36lCgeWAcpYPYGEc83LaqA+D8Hr1zVBf+11ZWXEbPgsmFjRpmiLLsgauFUURHj16BCGEIxXgnyzLcP/+fezs7OC9995zldAIQglPjMWLxsifO/6xd+7cwXRKzsPnBs3ydU/zNNX92HQVOZXaeMPk7U4Q5BWKY+LzSuLEmWF8/SiKsLa6iiQm9dXUl29MKr62ASAE4TgGsJz3JYzhoNn6neo0DOGEGZuutRCvp5k/XZapvv6kaBQUEfXO5p/vm788sNrYlKw0tdWpyIvjJr01UfnZ2cMjhMDKygp6vR6iKEKapjg+PnbqN987yzKn0sPGEPKEVi7UoMDKygqGKyuoShtukGUoypKyMOwm4RcnXjZveG603/15zQeu+b0YHmD8bbFYOLOVF6D/t998j9mJZzzlGWpD8rQjDPwZUV+6mQtaTx9xcgLxjZbdXwjXby7A1x1brwAH5eDFAtrfPNq/81gWRYHJZGLfifpsMBi4Danb7cL3gvr9zrTqbRORMTV2CvBny+ABxvl8KGEymTRM0PF4DGMMVldXG2tvsVjAGNrwX1jRfFnn+JG+dVfXiFr9oBQoawzVy4SpECgBqSpEcYCh6OP69esYrg5d9SRdUQDiubNn8cu//EsI4hij0RHWt6+QA8DG/HCTkupFCih0ux0EkgQWFe5duOeNosDhPb1ez9n7WguE3qKxOCzVitT1u2itHYDGHhwfPOVOn8/nDg/Qtbuq4U2N4xiRJWYsisJdbzIZI89SlFWFTqdL9RGEQFHkCFTHLfBOp+PUfKUUfvmXf9kFqv7gBz/AvXv3cHx8jN3dXXzhC1+wTB07WF9ft9kFcBxkyqYz7e3vYzqd4td+7dfwxhuvY7GYod/vY2dnF8PhCi5duozzFy5i/2AfBweHWF/fRLfbp34SNfhPpgibMjUu48+btrkppXQ7f1EUztPLQo3Txg4PD50Q63Q6bhx9DOi0xd0WrMZw+BHN2vbWtew6bKnQzgdnTtabPkNkGkykx3JHMHbmCSKpPPXtpWS+vSlefpPgd/GP94X/ZDLBzs4O/vIv/9JtblJK/N7v/R7G4zHu3r2L69evuw2zLbTef/99RFGEr3zlKw0hGYYhFosF9vb2MJlMMBgM3Nj5TgKANtrj42NXDwMA/vZv/xbb29vY3t7G1tYW/vqv/xppmuK3fuu33D2MMdjZoXn9HDPz+a2elLxYjadbG6tye3QyqAjMNhUCBQipEQUhgijEpeQSIAkjUEqizGln3trcRKebYO/wEHtHx9TJwhZeZc1MsKpPansn6QKiQFVR4d90MQeDqN1u4oQICwMAqEoDFQTWXCDXult4LdxB2BQTIYSLg/FDElgdZ5e0n9GvPcyItSoWAHmeO7Pz+OjI0VFvbm4CAMqiBKw33cca+Dnfeecdl/y+v7+PDz/8EAcHB8iyjHasMMCTx4+xsrJCuyyMxQxpNwzCAMdHR1gsFvjyl7+M119/DePxCOmCCrSMJxMk3S6iOMbB4SGOj8fYWN9GJ+kgCEMs0gzGVBZHKxGGtGD9Wgi8qHzszF9o7NrnmDp+vyzLMJtR8ZfRaASAgnmZL40pe5aZLv59l35XO679o2vptKyZWkPi/5483F8Pre+d/ckamPGty+c0FmSfvC3TWvmz2WyGR48e4c///M/dfA2CAL/927+No6MjfPTRRxgOh27jAHzt2+DWrVvuc/+6SiknpGazmYvz5LXDFgH/PRqN3OYMkJB89dVXEccxNjc3HTb2G7/xGw28jwPQz58/T8Ksrfr56nO9E9R96ZuZTiPmw13HozFR6qIO9fcCdcERfzSFIC6yMKQ0Dq7h6Gvs9XXrnVQIBQgbHCtIQBpvF2MzpjYFvZyv1mC3e2BZO2HDS4GaC2z5WW11309J8Xc23+vKeBKAE8cBHouuBcx7vZ4zD5IkQWTV9aLIkS4WmE6nODo6stgfaTSMo/R6VCmdha0QwiXhS6lQFAXm81ndpxUxzfpANAvrOum+1kZO6xcGsJf1RyO/FrVQZPOEsxP84053FLRGlPAJ98fL6zu+hln/3Tpiye++FugMVrB5WvdT60la6watudc49BRhvMzs5mTtKIrcePlmJHtK2yYhwwF+vi5QZ4vwnOVxBWj9ccwin9/pdLBYLBzvHpuW0+kUk8kEs9nMXdd3MLC1xO9zajqTENacE1Rxydnx9oEUpNO6pKrDNISSNpBQQ6Oy3h0BJSSqqgCHZQAVBQAaCWMU1dGzYyWklY5CQwUSxmgUWeYJU0PubymgAWRZChgDKRQCFQBSu8kVKOF2UqWEFxhY2AFTCIMIkUEjoNZ4/QAYSCMotAT1BOIdhE0rqo/A0fJUwIK9dBCAEtJRUbfz1dhkZJOV881Go5EbeMYqOp2OS1D3J6mUZD5//vOfx5UrV1zg49WrV1FVFRbzBf72b/8WQgoEUYAf/vBHmEwmuHDhAsqywmw+R5bnOHv2LKWOFQX29/exurqKXr9vNQiBp0938eGHN/Huu19AUVaYzyf4/ve/D2kzBjY3N7G5uUnFb2yMHCsgtTnWjBfSWrtK8ByIycew2cHhLSzggiBw6WOj0cgtvCAInBbBmnh7cbPQ8PfepnIkYRkX3QkGnpBgQXJCANn5yQyhhsga2DGw1JxcptUtFWT+959OM8bg448/xqNHj/BLv/RLDY14OBwiz3NcvXqVWFms4JpOp9jd3UWWZTh37lwj/EZrjd3dXXz00UeoqgoPHjxwygOP8X/9r/8Vk8nE1TV96623AABHR0c4ODjAtWvXcObMGcfeXBQF3nrrLTfWfhUwnvf89ym02SAcBO2UBsYNOFrbQCpAMGuGFE6YAdqZm0oKlFUBrSsoaWDAyaYUh0ZYFAkxNk8BS6BoDIo8h80ArHEKSc+QZ8RtT6B6CKGovJ0QAjIO2Z2Essy9wMK5w2S6nT6kpGrmKlRQkrINmFmUBWi7+UGiFFsDhFEAWz4WTEvEmg3tJBXYKeAn/DKOxoVTOBDx+PgYk8nEDSTnXEpJRY15QHl8ut0uPve5z/3/qfvPb8uy5D4Q+21zzrn22fRVWb6qq6s9uklgoAaJIUgMiOHQiCOtpa+UPvCf4hctcaSRuDScRZAEKGoAsIEG0I1GN9tXd3mTWZXm5TPXHLONPkTEPvvcd19WVpvK1q71Kt+75px9tokd8YuIXwwCV6uqwuJsgXq1xq1bt1A3DZRW+NM//S948skn8dJLL8H7gNV6ja4jbjYKuSGz9amnnsJ0MknPfffOPbz+2usUyOw9Tk5P8d3vfhdVVeHg4ACj0Qij0YiKReveiztcR+dz+VarVRJmufczz8Wja/KaYNC6aRoiT/Q+BWoeHBykcRJh2G/g/I98wWPLH6I3yRhvJnKHjdcyJxd/LwZP2eGDG262Lfr/w0yCn7Plh8hbb72FW7du4fd///fx8ssvYzweI4SAyWSCtm0Tu0suzN59912sVitMp9OBNu2cw927d/Htb38bXdfhPtOpi3WxXq/xl3/5lzg6OsJiscDJyQmUUphOp1itVogxYmdnB1euXME777yTQH+Z767rktaYh0wlC2Xbwz6SCZ9/mg7tTHHexApIoCjFZhJNczZXovFIcQ36jsT8REgg6pZbi9BJN8tNOFIJBAfrTTPxWmY85lqTZskOhs2A2F6wbRmBgan7cJbOwfU2fqdASc2Pcn4GcpC969os4LcXinkwpLxvrUlYYU4cWZYlRuNRwkp05pUST1TygDIMJAG92hisF0ssl8uBydt1HRaLRdKQ+jl5+HjklNXDcerHNWfw3Qroxz7iXbx05NHVfJ3zJjrdJEKWne4hrUduHzXXcsU8QuDcHc5tugze+Zj9+Th9y1OfJPdRhISMZZ5XeXp6mjSmPO0JQMI2czqf/LsSeygOgqIoUlCtMSYdTnJN8aaKMNxmPst6aZrmYUyzLExU5lJVzPvF2hG9TlpYDIHSfnjs5HNAoAT04FEUFtNJCaISJjVfacNIBQu0FL2v4LsOlIBLke3leApt+tPcB89pSgZGWYrhUUM7Wgpz5NqPc2LikYa0XC4pTcoSS4EtLBUFznLItNKImXY6jIsRr20cMG+mwrLps3x2x/MMqiLAstA9VFUJrfsgRgnpODs75Qh9Ba0NptNpCizNNZHkWeJ4rd/93d+F0hqT6QSLxRLXr1/HjSdu4O69O0mjkbZer/Hee+/h8PAQe3v7gFJwnWPPYovZbIq//utv4fXXX8fzzz+fTOOjoyP80R/9EV588UX83b/7dzc2Ti+c8j7K/bz3mGRaoFJ9GMjQwusDakVI595l7z1OTk5wdnaWzE9jLMbjCQcvCz60ufqzfRAigHBBmTtqUgksCSrqGlk0UbHFQDGO2SggFWDp77alA5sv5Ljjz942BcLOzg7u3r2L733ve7h58ybKskyWgTgAnnvuuQSt/Pt//+9x+fJlTKdTfO97BFUcHBwgxoi//Mu/xIcffojZbIabN29ivV4nLe7o6CgdLl/+8pexu7uL1WqF73znO7hy5Qp+4zd+A3/wB3+AGzdu4JlnnsHly5eTc0zCRmRv5fv7+vXrCCHgxz/+8cXCjIrqspiR0xCgyfWMk2nexiEgqgDNEwgl0cukFXnvEINHMTKYTkdQEM8ggcrkSWQhKuEeCnCOOY5AYKItPWyh4T19Lkh8ijYw2oLWEDF7ykaX6+WxZVKT0vuAtulQ12vCszQFl47GY4x5U6XoZKUQkgY5TOvoNb2hMCvL/tkIh+y1whxzk6Y1ZR/IqUwblTxFVJCEtCVhuqXNYnDlyhUcHBycM6tk4UoNgn/wD/4BzhYLnC3OYK3F/sEBZvMZ7t27ixFXbJfBX6/rTJjtAdCcbtSyMJvh1R+/iu9973v4P/9f/gWm0ynOzs7w/e9/H3/xF3+B1WqF3/7t305YmVJIWRGbm0ophfV6nfo6jNvroOQQ5b4phYSd5J410TKEDURwmaIoOW3uIF27GlVDcbJx8gtDrMF5AdD3W7OgYnNS68Ec0+GUWwKcjjdwQPTOskdrP79Ao9vSfSWY9Qc/+AF+8zd/E/v7+0m7f/DgAV577TXM5/MUiP5Hf/RH+L3f+z2Mx2P84Ac/wOnpadKkvvGNb8A5h2eeeQaf+tSn8JOf/AQP2Ev+4MGDBJd88YtfxEsvvQTnHP7gD/4AWms899xzuHXrFm7fvo3FYoFLly7h+Ph4IMxEC0uOKa1x7do13Lt3Dz/96U9JmG165fhx++FLJhabUWlM+9fFDDk3aMNLAQDqukEAZeIa28KLNhcUgnMsCDULUNaKQNcPkWLDgiJcKzCoSo+wUb0m/z0zL2IcAvDSUzI7+00RxOsJIBrG99J1M7tATIEQGPftrxElQnzD0trEjlT6QAZD696DR3RrQ8+sgM9iVolp1Zut7NWDSg6CEAPajoTReEKa3GKxSEV9cxxL4tC0pvCTmoujiCnatg3qpsF4PMZ4PEpeLCFzvMikyr3h4IMnN5k3m9oYl358dLpGft18PQfv4RTFvjnX0Q8XbAEfMEqxsaA1M7FwfzcW9KYupdKrcdjDrZZd3Pgt/0bM/t1YB1sePW7p28/aJMnbOUrxW61WKQFccmWFFgigDJY8NIi6Qn1ZLpeQnE2BNMQxkBcfkbqx4gkVeEHMyqZpkoYoaW7brBkAySJYrVa9ZiaLmH4HoAMxr0LBKNtTYysDF3wC6REpkVxBUY5a7CcmxAgNYhtA1OiaDicPFvjBaz+BNSWKYoSinBJWYwzKqkRhyCtZFgWq6Qy2nGA834cdjdFGj2a9gOuouK8P5AYeVWMYGwDbAMl7RIC7AjjvMlAf2bylAsEKVVkx6M+5bhFACGjWK3QNCwPNhW/LCpoZPi1TJMVI5edi8FivV9BaEUlf12GtybmhtcFoTDmaYPM25dEBKaat1zJo/Hpq7zRLsLbAdEoVluT0B5Bc3nfv3klePAnTMMzPb4sC4/EEITKrwXhEdSFDxMufejlpP0LJXVWj1Neu6/Bf/+t3sFytcOXqVYiIKazBtatXUnbAZDLGEzdu4PBgf7DokkDf0pRS8CnvD6AybYrYWWUB86Oex4B684uqfSElS1dVCecmaJuWHUlrPLh/B4uTIxzdL6B1BWsLVFWJCeecFqVN/aBDXDSnLRJFKXb3UCYJlObjTsKNxLoJMu38RTl0Ta8UnBNoW0dKVvHPpJ9tap9KKTzzzDNJm/2bv/kbvP3227h58ya+/OUvp+/EGHF0dIS2bfHSSy/h2WefxbPPPgtjDH70ox+lOTk+PsaVK1fw4osvYj6f49q1a3j66aeTk0a8/nmIjWh9XUcZJ8vlEm+//TYODg44Xc/im9/8Jtq2xd7e3rn+v/DCCzg5OcEPfvCDXjPLTzUSZsQ2qpWGURZG/MtKcbFUcKiBgoKFQuA8xb7ICC1K0AkYFbrao1ks8ed//jeYjEaYjMcYjycoqgJFWWI6m2M+nqEqK1SjEZ54ZhdlNcVkrmDHU9SNR70+g28VtLXwMaCuW4wnI5giQJk10BkoGPagehglUceAeCm0otw2pUEMuZzR74OnzIGuQ71aJ2GhtEI5ov5VZQXN7BMxRjgfUFqD6D3WqxUV3m2JAyx4D6UMn1DExWYMYYQhhOQEkdNrUyGgODj0/VBAUZSwtsDOjkkA69nZWQJmF4vTFHR7eHiIouBiMIo8tmOtUbLnUSkubmsMis98hpwgSmG1WqFtW4zGE0QoeE6u/9a3/gbL5RLXrl9LG68oLG5cvw5bkOd4Npng5pNP4NKlwx68TgJIbRVogo0R8SfVNFW8bozuKwUJ3pj2ve41vOTwgcJ4PMZoxDRPweP4wRHq9Qpdu8LiZA3vHAI8rJ5jNJpgZz7HlSuXoRBg7BjaZHGVMWSCLPb/SN0JpeAQoXTvtTXRICrGb+EhwT50Nkn/+yyBj2wiyAEBaH5uY1P2+3PPPYfpdIpbt24RJ5i1+MxnPpNCJmTu7t+/j9PTU7zyyit44YUX8Nxzz+H69ev4t//236bPPHjwADdu3MCnP/1pjEYjXL9+Hc899xzquk7Ejbm3WmuNnZ2dgTBbLBZ48803cXh4yNkqEX/6p3+amGNypQsAXn75Zfz0pz/F+++/T0yz2zEBEVT8l9BmyPgrelcIUradFdkSTgMTQsS6bqEihyxAwQcHHzyMtSiUISA/0qIGNLSxvHDPVzEW0y6BrCpfe0KXkuEeuamHYYBqcvXm1490FgbvCacLgZlqe8mTTL+MRTOw+qwABM0kjKL5DrvRWxQx+2NrU8nxkge19p6jvgxX/mOMB6xmMJo0xaLoeeEleHGYbqSTZ0uuuVguEGJI2JporWKOyphVoyqlMuULT8D7rR62TPvMX+unTYTAw7dxPx78WaOSxolI+K1zHfHu6RbWFPx8HZwryBMnThhe8pA1oWT+VFI15bBOM5ueo9eyxdMv8ES/CmRQNsYjDskL+l8fTYRtetfz1zab8IhNJpNBnmbOJgsgvSdOJsFmc9NPwo0kkl+ornOH2aanX/afeNfFISfZKnJY7+/vJzw6b1QPlphZbH4DtXECWWOgFV3gzt27hJdYg8NLhxwEGtD5No03fV+zBs4YFVcTd96jtAbjcoabN5+EioDRpKH4GOGbDq07wdnxAlppaG2xd/UJhJJMgRAiyrKCtWPoUFBx1qbBSeo/Lz5eHBKJHxEQkonCz5bhe0n4COCb5TwO2DoVmAaFXMyz2YwGlydBJrtgDQUATYajWKTB4mDtMIBCUbqu+9gnbR6KIIAt8VFVKQJ/vV7jww8/hDEWxpAzgUzQClKRXNzkEsMFEA7xxBNP4Ld+67dwfHyMe/fu4c6dO5w/t4urV69Ca0pwL4oC/+7f/Ts89fTTWLGJcP3Gdezt7aZ+yjgP+0/7OEZKerdFz65BgjGkIOM8jIeEClLfiT1i20btPYwx0ISXZQE1mbJW7KHVDFZbIAaK6VueQRcG2ipYTXDHuCIroShLlGx2IzPvpSWexfQKYbOAYRLGmJwF6ZOq/+x5gXb+iX5W8/JhLUaq7vXiiy/id37nd/DBBx/g9u3buHPnDpbL5Tn6JgmPyX+XJk4ZOdzkMyGExNZy586dhK3GGJMXezab4YUXXsCbb76JV199FZ/97Gdx7do1NE2DBw8e4Nq1a9jZ2enHgu9rrcXzzz+P3//93yfNTMDq1HF6StjCggqcUkJn17UoqgqXr15JmkHXtDz2FBzrQy/YiPOLGGKd9xiXFvN5hWeeew71igrNnp2dofMOnSOiwHqxhuscvI945lOvYHZwGcV0jhAixuMRRuUUpRljtVpBqTMSTCGy5sgpTJHNXASEqBCDMDzE9NkYepMnhN6ZkDNdppgl79C1HdqmheOTA6BToSjLFPkvaSFiDk2nUzR1C+9z1lWOtzOMkwXKTSOP7COaHRAttyfG65lDex73s7Mz3L17FzECxlB4xu7uLvb39xm7UAnMzUvHTSYTPPPMM/i93/s9vPXWW3jttdfwwx/+EKvVCteuXcOTTz4BpRQODvZRlgX+9b/+1/jqV78Kay1ee+01fOazn8U+h3nkDoO+70Nh1nWOgpaNIW1ZUyZJ8B5R00HVK24qmaASk7dN64gRKVxIgqDLokRVjQhT1QDCGN4FuLbB0f17aH2HjqmlqrLCuKpwsEdjNplOUZRVD3tFQGh4lAI8hoYL9ZkgGBJmATCBvpiGYotFE1W6Pl28/12p/PrDQ+KiOKxHaePxGJ/97Gfx/PPP46//+q/xr/7Vv8Lt27dxenp6Lug5Z8jYDJXIhVnucRRhBYACt7PCvZIjvLOzg8985jN488038b3vfQ//8l/+Szz55JNYLBa4d+8eRqPROcYMueenP/1pPPHEE72ZOTA3WaAprYHY50W1bZt497d6nZTadsYAQPI6SnwQApmIxhD2JULVe4/OUaFg70MPkIPMUlFfCV85f9r3Jtumtsmvy3v8R78Rhosj9zbqwBXOM69MyjmLMWFNm5tKJt6HzREZLmIRcvk4bhvb4bP2n88BVWNUMgslTicEwJiYCPak7+JgyHMZxdQejUbY39/H66+/jrqusVgskuATxhHD7LjHx8dYLBYoigLL5RJFWQyqV51/9vw5enJGzRjhRwWuKsYStlqrmfm/eUulVGIv1hpAsEB0cACcp2DgxncQ7Z0YS3qzXXKEYwCCj4hawysFr4EGJNA8C2rHZq61FgiRURLBlEUrIxRsILFihEohTvGcvNtA7x7atgv54Z4QL3JOgCl7PQ8bEvmQWyv5+0BPCSUWSv5Z0dTkoJU8S1lvxhjMZrOUoC65okJjJd7N81EIZCofHh7CSnKpaCHUwQhlDUajCvfuHuGvv/E3mIzGVOUnBCwXCzqpWKgk8w2ZsOCBDDFC+UDMDyCg//DKFezstHBth4NLS6zWKzRdRyXoApE/ds7j4NIljOY7MNMZZrM5YtCo6waFHhOjawiwxsJqSxshBHhQyEJg0BqK6gNITQOlFHwMaBuXbdwxaZFqOEHyDIJRKea9l7SKfOJyF7ZcV5wKMQZYU/ahDwBCoLxXndT1R9fK8r5tYp4SyyU4GC3ACK0pCLiua9y7dw+np6eYz2eYTidJy86bUgSk37x5MxH3dV2HZ555BgcHB3j11R9jvV7j0qVL+O9+77/D9evXce/efdy5ezc5IGTsZF0QFtlDXyGSgD06OkJREO7hvIMyBWvZfTZG7gQRlbrH0cC4FUkSxY6qFNkXWXOXjwIUk8hE/dYaTMYj2MKiCg5RRRS2QJFSeM6wrmscn56iWbc4Pj7GrfdvIxiThJnThNnYCFgX0fkCs9kuvvRrX4Bv10B00MbBGJ4zrWBMwbgjaeVKKc5ltjCa62YayQhJM4/exH4UkfbwNXRycoKu61IdWHH+jMfjFK0vBATWWvzN3/wNPve5z2Fvbw937txBXdeYzWaIMaZczW9+85u4efMm3n33XXzwwQecImdSweuf/OQnKZXpxo0beOqpp6CUwqVLl/DCCy/gi1/8Ivb399Ph+Y/+0T/CZz/7WRweHuLu3bupJN1Q24+wUv9QayJaCyEAKqKoNCbVBCcnb+I//If/gH/6T/9pIus7OT2BNjpxyocADk6V8Abmhgdz9LOXEBijGo1w/YknoFmddp3DyekJmo7STvZmO3QiOo9qvgdVToDRFDs7+zg5XmK5WGNSUNWj4AIKUxCFt9LwLiCATUbv0TmKJdJKw9gChh/eeY91vebK6gplVcEaS0B/jpOhByjLskRUCoZPaVGxRZgJT1PbNKxxGjbfyXFQGEtFQJSi/gUHCiWwnC4UH+24xXlBlpsa3vfFVWazGRcAJgNIKu9IPc/r169BqcvY2dk5p8kSbRIVE37qqafwpS99iQXgHMYY/OEf/iEWiwWuX7+B3/0Hfx8ffPgBvvWtb+H999/H/v5+qhNK3lsJUZBwFuLID57qEHz44YcJx2u7juoUQEEbQ6EPgg8ylCECLaZYO1F0snkDWRZKAv2kMA/YcRUCgndQoEpgxk7hY4CPAdEoMudihGtbHNdrSqqv1zi6f4I3Xn8Df/n1v4K3Bk4reK0QiwIWCjYApvVo2yluPPEsrl97FuvlfYTQQOsW1UizeU9MyMZaEqIF4bRGGxS2QlXImtS9Ipe0ufPW0TC0ansJv02NJoSAe/fuYbVa4erVqwlsb5oG0+k0CTPvfQo4/tGPfoS/9bf+FnZ3d/H9738f6/U63e+ZZ57B7du38Z//83/Gr//6r+O1117D22+/nQThwcEBPve5z+E73/lOSnn7whe+gBdffBEAcOPGDXz+859HjBFXrlxJucX/4l/8C2Z96fDee+8lB0XuPGCtu6f76D0Tvb3ruo5xl36hU3oS83BrCrvY6pWRVyJpDBGEFY1sAaMMNEjLaboOmlNO9g/2oZVB23YItkSwBaKh9CK6d0gnrWhA4hWVDR0Z/woCznBSetzY9DIgPNND0yRrEq4S1bDUlVwrN9FyfvI+pEC8pALhDvP0tBKOtk0T7LzpuU2DOt9fIJk49Api1CnPTRLu8yo8uTCTaxpjEgc/0AdYCv+U9w5VtYMbT9zAYkmMo03bDGoanlsLG69IDJu47Pt+DMdg8N2PwIZijEiV+/iQSMMmUAhLVQnp0DBQRPqegKkYArpItTCbtsVyucTZ2RmOjh7g1q1b8IWF0wpOK6iyhI0kzHTrUa8nMGaOpnGo6xbB11C6RQTVwCStU8MGYljRoMI0wQBaeXjtqT86QAeFqEFkoUryUM6X49smzIbDdr66kRStFggi5zTLmV8lSHa1WiWyzLOzs7T+AaI1V0rh6OgIZ2dnKV5R7lkUBXZ2drBcLnH37t2Uv0sHLjGkzOdzHB4eJtZkpRSefPJJ1HWdwo9Wq9U5ooYkzN566y3cu3cPn/nMZ9hmrfH2++/iqSeeRsuax+npKY8IsLO7k9z23lPQqFYKdbOCLSybURHjqoBBCTgNYw2fiBGqoAIpdV3jRz/6ET788EO0rsPe7h6mX/gigvd4++138fSLL8N7jbbxOIx00koytGzGfgMw75ahAFb4wPFKCkBIlMsKQNc5BESiw7GWaIdAZgtZKCR0+o3Uc7aLs0RMz6IoUtHUoigoshw9XkahHGTKyC4iTyZfWbx2H8Ni2NTG0n3OYYTcf762VOYBkCqZK6VSBXZ5DmFulWIscr+8wpQIIedIk9LGYDQa48qVK1lwMDI/ZN5/wTfpmoeXLqFkjKXtGjRtS2C3Uim/VeZEnjl/rvxAEtMSsScqACibwhiTyhTS5zH4PR01fC4rUGxgURYE5GmF4BWeeuop/NpXvoxYlHBGwxuNaC1MVLBRoQoKb7z+ALt7e1QXUs0RQgGlWxRW1hgoL5kxw7qpE7tKrdYwyiaMOGrujIqIioScQj4uGGzsfINvvjbEVw3alszmo6MjABTF/4UvfAHz+RxN0+Dw8JCo1JkG6DOf+QzqusatW7cwnU7x7LPP4ubNmwCAZ599Nq2TyWSCp59+Gru7u3jyySdRliXatsXVq1fxla98JWGw165dg1IKH3zwQco62N3dxfHxccJ9RRPz3qf1m6cTZp5Ni+9///v49re/jc9//vNQSuFs0eE7//W7GFcTNEw9c3R0hBAD5jszXLp0GUTUR5J8Oh2jsBareolRRRukaTrMZ3NYC0Q/hrW0wAm/oeKmi9USf/pf/gxvvv0W5XQ9+wyef/55rJcr/NU3voHLTz4LrwNO6g5PBzBnmUmc9XVdoygLWq8hwhgq2UY4CzkQBEtb1itoLdgUZydojaIsAcZmfIywfGpqpeHFTIwBUH1clrieJXFdTp+qqrBerWRgB0KmLHtNhRYtmT8heMIVoR4JN8tB+s2YHQAb2o0aaIrS38lkghAcplMKx1gul7h9+zbOzs7gnEsBi4JbCHjbU41L0YsGTStFLiwm0ymeevppFFUJCbkK7NzpNx/103taB6PxCE8+SXVU1+sV2pMaa06iN1pjPKqyeQNfN6awDaVyi4L+RuiZViQlTWuN0tpUUUv6olQWKckHWVRMN6WoVoW2FiUqTNUc49EMOzt7uPHkk1DlCN5aOGvglSZhBo2ZLfH/+cO/QvQWO7u7cGMgxgZKtUDsACYlaJ1jsgSP2rdkNoeI4DyCE+sD8NEjInAgrmdLpA88lQ0tITk5P57k6wrlVU4vPp1O0TRN4iArigIHBwf47d/+baoLGgJu3LiBy5cv4/DwEFVV4atf/Spu376N1157DS+88AK+8IUv4MqVK1BK4XOf+xwODg5SvucTTzyRhGBVVajrGs888wxefvnltH7rusZqtcIbb7yRaLkvXbqEO3fuJIErkRYhBMxmsxRMm0dgACBv5snJCW7dupUkeQgBDx48QM2gttY6mSYxRpRViRhApiB7xYw1LKjkBPAw1sBajahDr/3wqomI6FyHO3fv4oMPPoDzHjsMMjdNg3v378N5D8/mEaJoJJrteBIqpS7F+UQLWWso36cBSdYcsU7EtPgjAzfiiRwc2AzQ0sKXxd9rT+JRIcrpIrmiZeyGJjtrTybbcJnwiWIKf4TptGlmbjM7h2YpP38GnEu/aAH0Zb2cc1iv10k7EzYKORllvPLEbhkHERYAjcd0xulTkLGPyPihzjVjdDpt27YBVM/1JuB93uSvh2HfJPCxEeGQe+v77pBFnpUxybuqhLJKAZqCt0Mg/HU8nUJXI3hbwFkLB8BEjQIa83KE3d1XUa8dsSWrsndWMj17CAGKxy5wxa/gqLKX6zr4jn73PsIFh0C5gojKQcFw1aZhqIRUPhJ4IT+IxOzPg62Bvlbp/fv3k5l35cqV5D3Mg2SrqsLly5fx3nvvYbFYoCxL7O3tYWdnB0pR3OF6vcbe3l4qjnP9+vW0p0nxmeLy5ctUmDoE3L59O609EbCS1iR9JbKAIj1HTtIg+yyEACsBbKJJCB/9arWCY81ruVri6tWrqEaUlHzr1i1YW8A5j7sffoiitHCuwo9+9EO8/OlPY75DkvO9d9+HMQFVQRXKqdgtFfldLBY4Pj6BtQVeePFTiKAIdjDVjg8ktc3IoChLtM4xcCyJqw7euwSmJo+sIy+mcx7WFihsAWsluK+fQDF/Qgxw3g28bp5xDFn5KgNe5UTY9CLKJuq6Litm3GtFkhSdA9QRucl4HtR9WMu9rrmJ2buupdKPTv3OsSgZB3GRV1WVsAtJ+hXcQ051MTuLosBzzz2Ht99+G13X4S/+4i/w5ptv486dD8lzZSU2KYtkHwROiRbU90W0CaqkXvV4I+ObFDMYSEvTKj2XtD68hbVcVg0j5bHJXQeZGKlbaX7lwMrnnu4VBQMNQnwZEwFCiBGBSxVKnuaTTz2B0AHQFCwrJm+af61hTUGHq2ENowiIPsCXFtEFhMCCLtJ6pQwESpGTYPT8R/ZwDgXIGAoks2LLQfAvYwwuX76Ml156CUVRpJJx4hgQOElqmRZFgWvXriVhNZ/Pk7MnD+uR/SQ5mVL0WrSxHKsVZ5UcosaYdI1NxWAbHpg0M2F4LEvifT89PcXJyTGOj4/RtB3qpsHxyQleeOEF1PUa3/3+d/Hqq6+mCHj6nUC8P/mTP8Gly5cxnk4QAXz/hz+ECh0u709grEVZVTDWogsO9+/fx+0PPkBZVvjCr/0atNH4kz/+Yzb5KMh2sVxiWoxQVVPUTYsQAWOLAYhtbB9sGkOECx5d69C2LuV+Er3NBFLcd7Vewa9DCt/oOqLjtWyiUom6gMJIQVI6TQFSafMCqWBHgwisuq7T6Zjb9RR2EPrBV33wJ6nQtEEeteWCUrTnXJgqhaQp0z2BGCW0k7a2CLKiKJj7vzebO3b81HWdvLkHBwfJBP3KV74C7z1++tOf4n/+n/9fuHv3LiaTMT7/hc+hlKpMmVYXgwhSLhPHmnqISClV0+kUo3GFGCJa16FpW5weP0DnHHunXTqZC7uNDpswSJ1pht77RJgAcCnASHFPKUWPxVBytXI9VmEbgTYIADrnyeMZ6MdqEnIuBATDsZBQCDD47OdegdUGynh5SMATAzE9vwEKA5v0V5e8rogBKojmTcnsojXmmFnuZMqDVWWNyiYX1okY44BVxTmXAqSvXbs2CJB95513kpARr+d6vcZsNsOLL74Ia22q2CTYq8zjbDZLNSvyYiayRiUYV/aIxIkJy0aKHojDGDWADj15tk1LweaVUrTWiUmUguZI1W3bllIJFPGKnRyfAKDT/Pj4GHVdw1qL27dvo244uheUeArfYGQciuxhYoioG7KVtTG4evUajOV0XKUQFYUvSKetsfDBA+iZRgNrTwmwj0geTO8D1Z7Ukh9WQU5l5xxM2wzMNB8CTJTQEnnNw2bgItCD2ZteP2kiWLZ5l/L7bXop6b2HC7Jtp9HDTc1e04vsKZV/pds5w6gICQFhCcNaJ6BWcvgkIfzSpUtMmxzxxhtv4MGDB7h69Qrm8zlnN5x7AtYUkyo0aLQ2DApOnzOdheiwMke90NYDyzw98yaGGLH973M2avb9QaBqTAeOmLz0k8MlLGz4NYo4Utg/2ENVlMgVSMHxSKvU0Bqsooo+GZh1JkBzOjmjd/SvyjTPRMXea+VECe8HwkwcNYJziocwRtrLs9kMs9ksMVI0TZOILYUuG0AKnN7d3cVsNkvMLDs7OwPPtcSGiebV5wf3ezfvZ67N5cJUBN22INltWDHAwiyXhMS17XhR08l65QpRvMxiwOXLl7FYLlBWRSogEUEaj8SeVWUFK6SEETDWYme6kyUoyzkZUVUlgB7MAyhhu2lq1mjIUxYCxQhpTTmhSkvqkri02JwTID2CmWJFevf5ZEVZYhQCvCMTJMbAp3/gawqjRW8SSh/FJJdB1bpnsx3gZbzQeoyKtQOVutubLg8DgB6h5cJymxpOCqQamHa5oJXfRYuTLAspISaeW/EsSZ/H4zGevPkkvvSlL+Hk5AR7e7u4du0a1SFN8nlTcMtrkpw9NH3zTktoiOd82LZrIdkguZZBYz40OeUv0QpkbYlwkn8ELpW+kJRk/TUdFoGFJx/ImiGKEAFDDh2nNAselQpRRzFTM5+u9B+pNxsbNZnE24V+GtELDjeBN/IIfHlN9pjMeVmW50r0iSyYz+epJGOMMZmbeWHmzWR0uY5oaLnJm5uMYlXkSsG2w3rzkM5DS7bBMVZCFgQvkbJPs9kMrutgi4L4iXbmmM2mePHFF/FnX/8zPq1HvRDkqtej8RjT6QyBH0pFyom7fv0SSuMBtCgMq/WImM9miBHwjsu2A+g6Ypc01sCWJWxZwjmP0kpwqoM2GrYw5G205MZGjDBRQ6NDjEBZjqC1gfc98G9MxMRQnp13Dq5rUdcU9Ux9MImqh+J/+oUnGRICWAPEm68SjhISN9smIEvByITlxBiZjpkWeU+0+Ogtn9BcDc/j3/LPkPNjKDxz8DT/XTA/Y0wCdwFgtVrhzp07uH37djIzvvSlL+Hzn/8iVba2BleuXELFOYy0qSlZVydzbnOxktcyf/wAikcsyxIH+wfps20n8XEdlotVyvEzxmA0rjigNnPYACkdxgzmgMeQY9G0AhOEspnHOJmsqeg9IqQSPaCZTdT7gGgstCkI6w1cxkdb1sLY5FWikQJK58wPPD+KrctMD+NRSp/Lv5PGKcNuN6skbeZN5iFFOR6ZU8MDSOa+CDIRZpLVIaB8XhM2X2/yXo55yfU34zOl/5trVvor6zy/R/6Zc2amnFzy8JSD5lIelNY6UelqrbC/v4/1eoWmqTPXaL8hrC04wJU3LS+26XQKFWo4XlxyLlPIAk08nZ7En9VxRoAwnSZXvNYIjoMitdQg6Fdn8lrF4SYXrUAphUKX0NrAGQPEgBBixtJqAXCps2QaMQKzoZnJdaXlAkQmYaCZqWzTyubONvU2s3Vby19/2Hc2f99cKPJ6vimkz/KMOVXxYrFIziGpFHV46RLm810sl0vEGFBWRZpHDDbmZhWj/ncJl0HsNRjRpqztTRjbWS69J8LEZ6d8QIzEh9ZrN5z3qXqap83s4c0hToIuU9kENiGh3EMPgV9PThawYap6rXPjolDpmgobM5fGIw5+2y7I8kNpuMaHh5q8LsIsJ1GQ8ckFBIBzHkMAg7/zn82WWyg5c0beT/l9877y/TRXW97bfE55XSkFK8BhXdeJbuPo6AExmQKpyCpJXI/VapV564THiuzy5XKJDz74APOdHWhFCcjTysLagrQVBi0RPcajEaaTMX5y9Bpuv/8+fAQXQHgHR/fv84YSLUkP0qUEXDRGU8k5fl2sBMkOSKdBsq9Yg4p9RRqtDapRBWNYEJveu9h1LhkCRms4RxoUqeZC5S0eN5+wAZl05xzKqoJOm5sHX/4Sq2a7zHqktrmg87+35ZluWyT59x/2muBm4tVSSiWOdmISiRj5CjadwBGda8hMdA4hRNZUCxQFOYPkc0OMLTfv+6b50C2KkOWdZpstUqoaIkESMZB5qjmndnOccjwR2YESyS6nm+Ya9aCHEfIxYZsVMelDhIsRTQhAbGAUuQawIUixOWf8moqyQnJz9OHtYQfcJqSQazgXmWyPAn3kAjP/3sO+m2twmwI5f2/z2baZs5v3smVZpjLqp6eneOONN/DWW2/h2s1rQIxo6hrHx8eIMaBtahw9uI/pZAJrTfKcOe/Rrde4e/cuvvvd7+HB8QkKW+Ktt97Bk9cvYzweoSxKBNXBdxrBOxzs7WB1eIA3XnsNRw/OAEWVff7yL/6CvYsGZVWgrErowsIFz16dgLOzUwARRVlAGwpujQA0DAceUgaAURoFMztoS4G2UiRFTiRjLebzXcRIMVPeU8J717ZYLWtepkBhLNqOErZn8wkJqIh0LUkLEbVdDoHReJIOhqThRWQLtt83P6tQe9gJvamiby4IAAMTJT+pN+lfZrMZyrKE4KxKKSwXC9yrj8iZoxV25jP4rqODBhGL5QLLswWWiwWapmF3/g72Dy9hNp/BaCmNNzSpNMCmGwPASsEYi7Jkyu9RRTFZzqPrHJpmjbZtUoqWBhAj5QRbzlAAQMy1CHCuy8JxRMMiLStqxTRRTB3PGCiynhIlPB2kPgR4paCjRoBC6zyi06iDx0m3wqXDCUpbAPCI6Pq5VqLdbQYWZ8Is9nUn8i2ea9K5NrPtsNrUvPN1IHO87VDMr70NkxWlJo1LdrBvu6a8Jn3JnRcPE6i5prb5HPnzJs1svV6jaRocHR3h6MERbj731EAzQ4xw3mG9WqHgKtG9ZhbRimb24QfMmT/C8fExLu/voGDNDCHXzCpMx2M8ODrCunZQxqLuarz7zjug1JNeM1NaI/rAZohoZpFSXRRpYgEczyN8ZZlmZjIcK0WGy4luLYrC0mIJAW1bI/iIDuQICdHTmWwjnFNUhk4cC1ADlVvKwclEOO8hyeQD+1KlcNL+tZ+xXbSAL1oYwHZhd9GCy78jMUBieorn++zsjGOWNAprUJY2CbPlYoGT42OcHB9jtVoRGy+A6XyOGLis3IZWlusjuYhTiih8oqE6oAoKznms1zWca9N6laLMYM2sP0jk36HJm4ZGqcQyGwk7AURzZuhC+hv580k7Z4EYo6IQHBeBLqBZN9jfmwI217TyXwXKoBfV4OkffV3kQmZTk9kUCvnrecDtx7lPjnXlLd9b8vcm7vUw+GSbVpcLsM175de0Cfs4PMTR0REcx/JUZQmjNbQ2KIsC779/C+v1EicnJzg8PARAAKjQIysA89kM89kcs9kc1kpOH4G5KQMgBDbbFEajCs8//zxcUOhcQFEvsbO7i/Gowmg0IpJG51BNDGLXb386VZGuqVS/CIRhFojwroM3BMBqpo22xjJ2oRItTAgE/AZPxoIxFkVRYjSKCJHjkrRGiH0ISxpoLRWCmOWhbdE5x6lQfa6nfC6Fd1BnsblgH1XF3vbZbQt42/c2P/NRglBaDsrKv7I+wqiC0RoFY1zBB8TguFCJSuk1o9GIsyYcaikYC8rc0Fpql/YeYeqomHW0wYWsXTzYkj85CiOoyHGCHFhdlCUdxM4BhsFo6j0E5xLdTAJt0/oQOzIClCWgCavNBYdcTWkiXOBxaRqHbtXh7OQE16/uIVZ90j/FtIkEk3VNzxPjphbWY2k/a7tI8wE+Gn7Y9rlcc8/Xwub62OzDR63JvA8PW8sXXdvO53M8//zz8N7j1VdfRdM0mEwm2JmTRlUWBeazOf7i61/Hul7j+OQI/+x//89w99493L59G9PpDOBOPPHEk7j55JO4eu0aQux5ukpbAsYStuAdrCKN6HB/D//4f/gf8Pa7t3D/wTHun9zHlUsHuHL5Ep55+hmsVyuM1zV2L5U44wIjKkas1iuMxyWMKhBigDEFVCTHQPAOMTggBtTrFYj6pYItLYeSUJ9aJt1rupZMT+fhO4dqVKGqDMqywmTiic4oEB+bNg7a9PTOUIA2Fi4EQCsUZYWzxRKdaxBjSKEtPQOniDIpqrx9Uh/WNhddbmIA209faZueJLl3/nren9zLGeMwWDg3Q+fzOSaTMbRWGFUjAB6u69A2xCZsjcH+3i4VVBmNUZYF2nWNo7pGjJSnWY0qFFWJ0YhqllLmhsSU9eCiCCIZAa2JwmdmZpiMJxwmQ5BIXa/hGiqmsa5rGK1RVVTAxZwLkZC4J5WEWe9govtrxWwS2iP6AK2I/oeKYxtQ4V/6+/R0jZO7p3j/3bfx/HM3MZ0SVZbmoiYheCiGUlPtzdQX1cs4iFK4aWgO22ZGSN7yjID8IJa0sU3tfhvQnn9Grr8Z1iGfe5jWn2t2OTX9ts9c9Dyb/ZO/bVVVuHTpEk5PT/GjH/2IcLCixKiiEmyWAylff/0NNM0aHg7Xrl/HmlMSiIuLltf+3h729/ewt7uHzvd0ycYYKMOpHzyJxmhMpxN8/nOfQ1QGxhaIOuDw8BBPPPEEPv3yy/jOj16j8BDDbnV+vq5rUfFJJyaEgmIetf6n69rkQEAMbLIaWCbFa5RC0xGttXMOjqloaMH2m9h7j1rV8LF3NfOwk3c1RkBpcv/HPiiQhHz+nZAOYcGd8/ion7eJYMsnPG/bFubm69uumQs3EX65QDOmAEDe7sJYNO2aud3ooKhKchwIr5VSCqvVGnXTwDlKPRvPphh5AvWrqkI0G8Ur4sWbg8J0bGakBaxXJGglwbntOljD7C0KMPo8RZHcR9Yz27YDMzTNZRKuJPy00pC8AUChrjucnKzw4YdH6DoqzCPXiYz9Dis/belHmgP8PEjEQwXWo2o9OdaWY2mDLn/EtbZde9t3HyYgt30/aWZSSXo8HuPy5ctYrVaIiIkCZr4zx/Xr17Gzs4OmrRGiS3l6Ozs7mDPVbYzk9h2PqNKLD5Ez+HXyNImRAMatpNoRBUU6wr4CmXsxElWONpo9oXwyyUCqvOoOzb3mytfGaBSFRQgeznVoW4X1epWoarwJKTJZgXPaoKgcG5vHMcqJxhWilIExhIGlgVXDgRVcKQUpDjA0+UJMm+HjaGQ/S3uYafmor2+7Vo6p0Z7OtQZ5L32YtVQuKOscoKhOppiISlGsGcFcHnUtrL0FmZw85kbZjU2djWf/J/3KGnE1GqHgohmy7nygIGn5ioYCFKlNSvWXUTG/D9jk7LWoDPZCmt6kbRPW67zkJF40spvrgBk8HtGsvAhn+nnbo+BaP68w+0X1SZr94IMP4L3HpUuXcP36dSwWCzx4cITd3V3s7ezj8qXLuHb1Op+yLVzoMJmMcfnyJYpB2zvA3Tt3cXJygvl8B5cvX8b169cBaEwnY1QVVQxSkUvCcYR9CA7BR7RNi3q9Rr2uqWhI3aBpWnQdhTlQEQqqtp1O58i1Hm2BoMH1OgFjLGKhMUIBY4CureG6BuuVwtniDEVVwRZlysFUigD90XgCrQwLKmID6bqOmS4ogLIoKIFYKc5CoOEdqO5KEXMAQP1smwZFWVHyMedlyi7XHLEpRTFEJXjYCSRtm1Z10WTnJ/FmfNlHtc3PbHquSEvjzR9JQEsamFMqmWjedWhiwHq1INxJUXoUVTziEA1DGlvXtlgxe6nWGpNqlAq2KD3JxjopuTSW2SgixkQbbi5dJs+j0eiaFj6QJrjmhHOtCEctCgNtAKMMT0XycUKcBhHoyw3G2Msu0Xr4PwpaLaCNxbom7TNy6h0ZjAIxPETlUgDi5nsPNzUvahdBEJuxaA/77qYWJDFr+TXy9KNtcMjma9vi1La9/qiHvj05OcFkMsF8PseTTz6Jb3zjGzg+OabXduaYjCcYj8bkBvcOzrcoKss8RQV253s4fnAM7z1GozF2dnawv78HrSyqskRhLYrSAqBCEVokuwSrdg5d26JrpYqRS+ETRmumFS6yRROS1mS0QWTOfxKUGtYo1qKA07NlCqz0EajGE5QlcTspzttM6VeWiusS4WBACC2oMjUtPmM0LGct0ACDhdHQZZyXbFtbmyigE69XWhSCg8gV40XLemv7ZZ+C29o2r5QcMoDIgACj5XVSWYL36DiWMXKFd6OpGHFRFEQHE8mh5DqH5XKRkvfDZMoOI4OiZLNsY3Hnx4H8X2sNzTQ2i+UCbdciOJ808q7riN5ca5Q2QOuKyBI38arBHej5mMcndSNhegLiI6ZMkM51FDrEmNvwcj+n/fhLag/TyoCLzUwR8vKZh13rl9ESbbYs1PF4jPlsxvUfkYp0yKIUM7BtWzIbJgQiCvMCQKlJ4HSUoiiglcbi9Ayhrek0BHkQm6bD+++/j+VqhRDIU+i6DouzBT64/QG0KWCYMkhMs+ADc/nLMssUcllTPIh95LGGir0gDRw/BICT6in9icIrem4yAnUDAqcCWVhAca6bOg9AbnqNRGPYBORV1v++/Wyn7jYN7Wf5e9vrH3chyoEj2YiUIaKTBiPYpuG5lLWllYKxUs2JsVZEJiGUNdjCNA17xgl6GNRt5GvG7F6Q/qi+spctbBKIMdBa0pqrwweP6LifMaY+aB1TBbh0imVY2rlhikBRGIzHJfb2dlCUBkoD0edp4/RFwU4HX84GtBfUF6+Pn0XLftTvbQPnL/r+RfvgYfd9lHX4KE0pBSugLEAb+9q1a5hOp5hPZ4ghYL1aY7lYoWBczMUOozDi4rD3UXIhht3dXTz99NOIMWK5XGI0mmBvdxd7u+TF+vH3foz5SOFwd0QmoHM4OnqAP/iDP8Bs9wDlaIzxeIyzs1OcnpzizTfewu//03+OUVmhq2tYayiotXMobUFVuHyEMipp7D70mpPWZOaG0NcDiFCpIpAUM2maBl3n2eNIpqbQk1RlxUGx4sywrAnS4hYKb6k1IJsM4jkS1tuYx9oQy4LRmoVv4JJ+Fwuyi1T9X4UWAcB7QGWJQrHnShuPyuRMaeuGHQbMxLBao16vsTIGB5cuA4jouhajsiSsVBuoSN/rmhaL5YrNfINqPMJsPk/FjCUotg/hIEFAJiaRaFbjEcpRlQ606COip2DprmvRtR1CoGwXo4imqLAWxhY0R8YkXKzHU1lDEbYNhkLmOyOU9gDevYLdvQlsEdF6BwWfjt+ea24wmujLz0nLVToZ5cc7/9uETU5S+rMKz5+nWWFGAKjS0MHBAWazGcbjMVaLNZqmRV03GI+I3cIFB2M1FmdnRPty+VpKVB+NRkAE6nUNYwpMJ1NMJ1NYY3Drvfdw5WCC/flVwCh4R+R/f/VXf4XPfekruP7EE5hUM9y/W+Po3j3cvXMX//T/8H9CWRTwXUtxXt7Dtx4FV1IS4aAYr4mB2DgF1yJGD5W0rrZzaNnMaBqium7aFgDFlpGGWWI8nrBWWUKpDkpJiIVCBBf0VWTWCtgvp1HPosGaWRxuMArapUXZozJ9e1i8zxB4/9UQZrJ5dSZAAJqLruuwM5uywOnnRPIt26bhUnzAvsQuOoexeJStRVt3fb1PzsPVxmAaZqhGFZQqedwzNSZ5Nfkv9jSL4Elz4QjmaJsGTdcQYwwH3RZaU41NrmylLQYpUTqbA3r2XsDEGDGZlJiNK5T2KUxnFbR1iPDAAKoQD+fmXMZMUf/FaPC/yHaRYyln6XgcbeD/lsTxPhm1BzplUwLUccNR2CkpOfaJ3RJlL/FHQq+cb9TOdWi7DiMuPDqf72A2m2N3dxf1eg2AKkIFpsfWSsFxRPdAjR14nLITLDM50yfY3NC8UANrUzIRSqms4KuD4ypUgtPFPHJ8gH+pwWSSc2H4mbyXMfv9520PwyYe5u7+ZTSByejeSLjSIDSAAfWcKRVg0Df2Oa7idRTwHKAwFlmPMcZUPCYBzprqTG4bWIrr6/NuAYBY1hWvB4tQkPautWbNTBLIeW7Z+y3ednnGuClc+LmN0SirAkrFpMVtbQL0q0g/iOm1/rjrX6PPPvq8/DLaNngjB/m3QTC/7GZzwG69XqOqKoxGVTqlpAak1go+IGFmRNxWYjqdUL1KXowuUFEG7z0++9nPYlpptHUN17VAJMAVSuP45BQPjo/x8iufxue/8EU8cfMmqtEITz91E6/99Kf48PYduM6hrtfoYGGLKZquRr1aoSgMJTNDwbvIEIZiSm6h1qFFJy7yEMjcKDV503xVQbjXYwyURM45nlRKry/mKyEiUAWUAsfXSUpXSFif0M3Qj2Z65x40HXJZAVA9mwP4nTyeJ18U+WL5ldHKgH7stYZSEcGL4Aps9veHDuXyUj1IrQ188NCexqlrSDNaLRbwzpEAiRGFpmyUoiyg5ABSCggRDx48oPHRhM+OxmNMZ9M0zor755lGXQvOxV3SWsMUBSpFISI+9qlp0XvE4BGdRwhUr6JxHUxRonUhBeemOgjGJDzMew9lIspKo6pmUMaTQ0l5KDFHQTDJxaYjOzuiyj7zeCXYR2Fiec2ITxL4l2aBvpNN03CFFypoK1XDjTKDDRViwGQywWw6x2g0Bh06JFTOFkQFE7zH8889BxUadKsjeNcR+K+pXuDZYonTxQJPP/MsXnjxRTxx8ykYS2XivHP4i+rrCBx4qWONaTWH9x2aZk11N1mYuRCgDcUKpcBFXhPBB2jTa2naUMySVhYwZB42TZuSk71zcN5DKjJRvFpJOaIggS4R6cLEIV7XDkiVziXiH+ij61ONTqVS/JICmS5Ew9RPyq+StvVRTYBsIdwUqylwonavQEsGAZn0og1pFaCMRscOpXq9TvPQeYfpaAJrdjDSFWxZsGcQQIxYLM7gmUOuqipERIzGoxSYK0dE4vIy5K1M+rvW0IoYUYiNmPSgEAJc18J1LZrlGs5RSb3VagVbeXgv2llIAk1pElIqEv250hFFqTGuJoA/Q4gOiTdWATH2pKFDGRW3/P6r5fXcJswkuDzHzD7pQ9duu2FkYBroO557CZO5qKRAhGIzn6RGjKLWA0CuSeS7GEntF1BYa8PgqqFTKc1z5OuEJBDPt8x4U4ObpE9ItLbi90Wj0FpxoVX6V3G/vXc8acLdTlpd4nJSfSUhChWRWgQBgYXrw4JUt3kYH3UB/CoIMmk9Hgj+t3fzifme0qf4dRE2ESRMzmuj4LXE5f2CB4TXnjVfWSPAMCxA+iBR/GImwub5kYMnSP0CSMjJjzEGJgaYYFOdCKX6UBuIZxNA/0T99bUCQo7fZ78+bKajYotTvhPP9/pxtU2LQdrmHHzSzW6CyhKXFSMxDyhNhIchUFY9Mb3KqaSwdnWmucUUU+O9x2q1hIkdEHwSbIgeUBRjNBqNsK7vIkA0NmRYF3H/W2sAqxF8x3mXHlVpGZ8JsFI7APQdpQxE9aEMAVLVKShTgmDZ7AP4WhHWeoRAtQaMIX721WoBgNY4xaSNYW3JRW45vKRrU2yZtRZt06Dl6PKykJqPGW1JiPCB4tbE0ymhCOK42AzlkLZpcv7i2rZt8ujXzzEx8uySRmatxapuOBQDADSUMSnqX6Ljp9WUwn+AVN6s7VqRE2hbchQE0DWLssTOzi5GVQnPoRxd5zmx//z4OOfhvEOlRkOcU7LLYl6PicbDaAtdKNixQREdquBRTMYwpkSICp2LWCsgcLxj56lYjAJQWIsQFHgZUFk4bWCURowOKqY8GL5br0UO52Lz78evofXB0ucVCpEdj9UBsCnMACAERxOqNMBYGbhArpT+ilBwrYM1FkabhKcJTrFuGxTKoURAn0wboJTl6O8SNRM/UmYA2NHAJ7YxVOhEK4TQIQSHGH0qmBBBQsF7WRjC5spLIxvTzWhn4ckqCsOCSYrnehYyAavVknEAqlVQFg5lOcJ0NiMA2jusmyZRS1tr0dR1KiBhjGHNo69uHkJk81cnzYPStcD93847lfdd2kcJtJ9P1f8o3aH/nFL9qRzZkwnQ/DVNQ6A/e0U0azwA0lqTatc0H1R7QGnF800hQ7Fp0LgOo9EYk0jzXpYFV6bXaNslpPJRCoXh/kvUvwiHTYGXECvuowISoaM2BYIKCIioQoTWFjEqdD6iOTsjrd5oTs+iYtFU+QkIjIkRBbehmg+BX5O7DmTTw3Cxxy/I8oNgm8DKMbPH0QbezH6j5LrOBec2O17EpDyfmhD7xa0kN62/rtZEh900DRaLBU5OTwm0b1ssuLL26dkZUFaArVBNd+Bcl8yPvs9yVbnXuW70JsewC+kPlZ498gUZ/2BzR8zOZPJIBRzG1wQ3kzEUzUMp9XMtv48SRo9iaj66OXpeSG7D8R61SbyeDwqa557Ms36tbFoFQ7c+rRnNh1MyYTc11fT6xX3JIZKt7w9+F2EjsER/H60ZOlAU+JtwuQQZqME1nQs4O6sxHQlOKpbC1hHLOrOpneHRz5ZfcsvnDBiu0cftmBo4APLfqRgFmQxCiwLGHmgCA3xAovEIsa/8IuZBZJyLaKop0VdrqkZecc7du+++g6/92ddw8ONXUZQVTu4f4fb77+PevXv4//7n/wQ7nsCbAi+98llc2r+CvZ09uNAiErgGaCBER300pC/KAlCKg2VjhMkgNQCIoPgm58gk0vxeYM0wKGA8rhBC0QO1kbjUzk5P6E/+7PHREcqqRFGWGI9H0HpCFXvYlU8fJte8UuSy1/z9kC2EmHCYi9vHWzCbJsrD3n/Y9y++ZwSZzYAIfw0fyXEy39lJ2npwFOPXtG3vAWbuPKnVGSNloITguUpYi92dfQA0Tj72VX9Sehj3LgTR1E3Ke0WkQGrydJvzY5sfNlHIFeXw48IqG+OgNEEWRltoaxA9uJhPAQ1DVFQ+IHrg5OwMf/bdb+Cr/80XsL9bQkWNQRjGAFuW++iN8VbZz8Pn4pfd8gNnk4VYcNG+Lsgn30+77cXIQod4CRl/YrU98OCHCCAGFMaicz6FcOQHlAizGD25svm6nYuoqhGq0Qjvvfce7h2fYTSZYjqZ4/133sV6tUJwLf74j/8YHQCnNWrX4de++BVcunQI57uUmAwF+MjVzkEVB4EE6SJIJez+4fg04SRoLyXp5AME7moVKUGeTx7nHNqGPJZSFUhrDVuWOD6mYqrT+Qw7OzsYj8cobIHT49M0wYQz0h005y56eSEDujcXyc/XHrYBPo7OeLFakPqtNaAVNDS8Vyg4nII8gxS2YusaTdtiXddUMMd59haTMNOaEtDX9QrOUbK/kDqGENAwnbo2GpK4LcHTQqI5CAtgXFMx39g5TTcfHtHIWTcjQSbXkQUdExuHKUfkHfVcF7IaQ0UDFRSiiwgBODle4k/+t7/EKy89h/nkEEUqohn7+0c2b5QIss3o/487V7/c9lHC7LE6AD6eV0xt/Nu39AwXXO8ctKkpJy6vwxci8/JrjWpMuImKEngJUHS/IGrJ8MjA54CUrs2f7/tHQljWT1q70vn8a5D1PVSnlcpMlUwQBa4DEILvsaMM8+qvQXfovUHDZ5B+5nPy8+BeH+0s+DiaWb8Jt4aMpE/35pdkBUh9AYIWenpmlUfjZ2P2sFg7mYfk1Rw+8BBTxHl23I96XMrOyNbNQGvKb/XR1/M+YLWq4TgjZLg3+hEbGg2bOyW/ab9eHld7lLChTzpYVtpWYaZSx7a8x9qQDHo6+Uzurs5oPPhvW5gkva0toFWLqirxa1/+Ekw5gS0qVKMxnnv6GagQUViNajpCMAbRFnjh05/G/sEOfOxQFgWggagoV9TFDs571K6GNuRBNEbDgMxQrUhDS5sNEk0OqheACAQO/VAC2CrGBOnkVFAorYHRlihuJBPBaK7l2GBxRpRGoxEVcOnaDuPxOHGkWchmwaBIBnFrbRdmP3t72DV+0Qusx3so+0f3/jlDZToKpTDb2UlaqHcOwXsqdMOCyXlPJeuQF5dlKsMYuF7qmNPUevEaQoCxUneg/1YIAcvlkhwuqidHlDUQB6AEv6OATCfjh+rRVTp06a8QqN+2MBQgHIEYNApmnQ0BcA7oWg/vAlAOx11DUXJT0swuatv34uNoIVBd1bzcorTHHdBtt5/eZIYltk3RhDWglGY/Jgkz75ndQAM+uGSyOeeg00kOokDW5FkqC3KRj6oSX/nyl6GLEbQtYGyJcVGhsAajskA5qaCrEmpUoZhM4DqP4Dpom5Y4XGzRxRYtmyVl6WFtgagLKFVQYdhIJciEv0GBvTFRUfxSjMwZ72EKLooq21HyzaCgiwIlNGJZkucm0nZou5YrAzUI4QRlWaEsiH6mLCuUJeeJ9socGROsHq5dX5lb5uKik+/RBN1DTvefuV1sap7TMHR/fwXAKA1tLGa24LxaYLlYUCaFMVR1i9fMYrHAaFz261HRPAcELuWnYQrKBKBkfQoTouI3Q9MnCbPgKaA6ZKk2UGSaZmtZnkWlqiaAoLCET1CWgOZDL3j6rrUFOmFiCUisyjEArovoOg/nAlAOvXx9+bnNsdw21hug72NqUslrU5gJ3PBYhVn+x6ZLm8Z0m+a2wYOpLhjiiIRnDjylbDYaYzCfz6FMCWUslCkwHY1RFZZ+pmMWZiVQFFiHOqW6RNa1QgQ5GPg/eS9Gjxg1AjQkwSmdb5m1vOkdPdd/+aiYmSC8K/BGyp9NPJ3OuUQ5Q9kEfc5a7lnLN1bu1dsWftF/f/v7D1P7z7fz3394e7ggG3g9Nz+fTEEFYwBjDR0MQs/E8YUUsiFeTfnqpqdM1k5umgqOw8C/3JcP4EcxMzfX8oXvnfsYa1SKPxfR7x1uWthRNq907sJ8ERUf8qFfviA7D40M18qmN/Oi7z/KtX/RbWsGwLmlqxSdkCx96eTJKZN7jEkWGGkdoJMTgfGIyIAwxabNplNcv34NTRfQhQgfCRNzrkNwHca7E/jYoV7VqGYzON+icx2WqzMEaESlEa1B41pEFVGNSzYpO9Rdi86RaauhqGoQlUGHVpZMYn60Hpg3Q3MkUlyRUuSBTStWMUsDZz6MypJDDuKg3FzbNFicnRH4bS2qagSTCqJwBoKhikWyToU4UDah4E0XLa5fmZYdVmljx8g5rXT8xcgMJohUi0FrFkAKs9kMrhpBAfC+S8+9WC1SvF6qas+3c57o1tuuw87uHkbjUdYf/kznQKwZPa9aLlzSaLKJTCaf2Ms95BLAL3EWCO0JCnAmbaUAoKE8kRWgjChHFpev7MMWAuzHXl7xJhPm3b49flzsoiYwEYUfDbXgjzIxP4m1ulWYQcwsHnQBckPgJGvDTBOREoFjiBBPkpygErdFsWZ9fDXx8jsU1qKcVxiNZnhwtsSqblG3DXzTpeIil8xlNK7B2eoMelSg8w0636JtHAJRHkCVFWpH5u10OoXvSBg0bUPxFZEwvd35DgBDP4rCSRSIGSE4KdTR1xoIHNxotE20PogS9Esms44aKgaMRlVySkndRuK8b+FDgGWGkZ3dPRZovXAy2mAytrxZA4ckdCkiviiKlO/5aG146vXz8TFWxcdtLF1ihi9FFu7a8I1ZgwmsYGljYbXUcVCYz3c40T/i5MERCTOjsVgsUJQFC7RM29OA66i2adu2mM/nGI/HSf+W/6igyoigB6Eu57WLodVHazUJmX5fUJfpypqJC5RSFNjrA1zw0LYCwFXVOwelIqqRxdVrhyjKXpjRGiLjli8IrQzCgFUjYrsw++RMzIsgDQmK/bjC7JNoH7FDNoHHj+7stoBLekHOJZpQxQGISlG+pQg57xx8RzTaCRkLngWimBy+P6WlGpMiLSB68hJGroQUeWH2hqmCUG1Lv1IXU6fFjOHfuZ8xihNB8v5k44hWigG/GUDsvI4FPdWSFFqlfix7gsfhGD7KWJ9fcNsw0Iu/f9HfH8sUyMYtpvipbR9T6Rk3vZTGWETNY8xsI1ppuODObZSkA2avWzusZ5qeSSLulUr9HJh8PI35a7Ra+hi282YoXStHTkRYK/TPqLXGeCyHFwZX6skz8jW3qZXld368WNmmh/JhnvJP0oOZtyTMBiEAvZadNTavskKqKlPFofLNz4GqRkNHSociU4ke3mhiY12uFvirb3wLD86WWK4bnC1rlFoRc0bX4sYzT8AbEkNFQYnoZVnBtcTX6aHQAVRYxyjY0sCYCG0BY/s0rBjAkfod2gB0uoNRhvphCigYgMFYWfxaa3hH342KzAFKdcoxHMZ8OC2nV79JyEwmOmE6gqU552GcAzzHEynFzoQAx9epOG9VTj/5/mapt0dpJPDyV345Cy2m/9OmlPCMkO6vhp9TSopIps9L7mxVjVIFMBddv3FANTKhFFe1B0ZVxfUo7NAER0xUVCF4xEBLvd+EfW8EG85kbfY0+esEoQhzMZhS2ygNFwLvByboREA1KvDyK8/j4GAH1cgCqGn+ZJ+w4Nt+7ORi9PEKsrzla1BaHk7zuAQZsCU3U+KxNodRNoXSpn8nA6QVFJliWXl7YwyFRwSqYE4nMwWGehdwenqKP/zD/4iTxQrLdYsHpw325yNoFYHg8Vt//++gnI0AFVCWluozRo2uBVxU6ELAomlImBUKRWWgoFGGAtFXQIgIjgj+6mWHpm7gOwLnq2KMwhRAAZSFVGbSxLGlNYy2cLEFJy6w5ymbuEB010ZTQWGpj0mFawGtI4qiQMdm73q9puIthqo+BTZ/lSa6JaqCTnmn4/EYZUlVqToOOF0ulymX0Wzy36f2UQvp511oW77PgmoA7oqWEsHYpDhPMqxK917DGBz9zZ8bT8ZQIHjDoy9CorROhWebpkkZF5cvX4URbn+6ImuHgc3+gGADtGhoUMgZX3vNjc3LOHg4fl3wNg4tCaRBGhD213gPHRUMqCp7RMRoUuKLX/4MDuYGBi3ceg3N2puKChFZRoDcJAmxXz1hljDzC4SZ/P642qMCMdz6IEXFfw3yHjfOGMUnnvwhirRik9O5Dvfu3cNy3WJZt7j/YA0dZ7AaCJ7YXnOWUdrAhk7VAISgoDrFJitpZ0purAmg8eJBVC0ip1VFRATjETg5fnAa86kpiz4OFvbDTLg+uJdMpD7VyzuJjg4DYUhuVklA9wPQ31qLoigysjt85II5NwsbptkQBdr8/VE2zPAq2+6Zf2JT289vmYf9pG/yZiZHDOW4avTaKc0/baIciC7LCiHhskhmbr/JtplCA6Mve/wcd9g0lzfMVAWZ8HOmK0ChI/P5CGXpAdfBZdfINdWYv5w/xIUvCcTBL1+0Hn4GLelRv/NRn8uVo4d5P3+R7QJhppCjo5H/poo18hqgeAFFxRiUCkmwSfEQFSM0NFRQgFdQXgOxoxSXrkU5GuOZF16GCxp/8+0f4Ctf/iIQPN579120XYDuSNuLJsBrCi4NxgBaQweNqioQFdXwU5rMSaoQJ2BIhCqAclJAGcC7EggRVhHV99qtAaNR2BJWl1AGgMoT59lrCzE5+oRyRMJkjHi3NqCOyE4GrbgSkBHNLd88EUoj4SrkgWuxDp4qyLMzQQEoy4K1PqkclUfL85f5woQbCk21zOl5QZQLoSR8tiy+3OvbmxNsiEWQ6ZQJhHSoIC+hJwcaC+UQk2ZH15XNTV5nSGyYLmAKDe0inI/QMWI8nmE6nWE0noJyh/s0tgiFtm2wXtWwhsoU0uEhVEsKUQFeGVnZAxFDsbD9Sk7rQA4sRCA6KPb6EMOVQS9kPKA6QBkglkBUiNEixgqp8oMCY73ZLKhcW9yWo7l9Hj+pNszC6Gc1xsgEo49Xg0zCbDNoFpEKQET+vwZR1ih2XWtEBBURVOjxTw2oaCBUvxRdDxIAXkF5A+0MEFu07Rp1s0Y1meK/+d/9HZTVBB9++AB//3f+Idqmwde+9jXUTYDqHNQoIloPxwtAFXQPHTTGpkRRGi49BrhAFbOpRF1EVBHKAKOywCiUFMjYOkQHtLXDYrlA1AqVChgZBWtLNiN8WjeRIlw5gVnioGjigo8w2qYxjJypTpYyBepqxtWM1RzcqSgfgU9wpRWM0jCRnBdtu6Yakq6jZ9HkDR1VVc/RBqTKUSFIdSQRuTynCKkauAjkNN89IgQAXNOR4vbOe2/EhNwUaLSxlVw7qt4byGY75efmvBf9dowsvYgZA/xZICpLYTfaEPW5sbBWwTqg7Ty00djf38fu7i6KokSIOgljuXa9bnF2tkRZlCTggmcjgYS7UUCnLEUmxojEihcVhI+NQhGIfy8mK4QXRHDQYIr4AChdpTGH9oBuAWVA4SgaiAVCGAMIUIqKm8jeoZvFpBwkK6BXsTOhn3lGH0OL8XxuZowRXdcN4KrHIdgG6Ux5zNgWowUpLj6CvFaZXS9bQ34DkEI7ZCLSVyBmlYc2BgeHhxiP5xiPxrhy5SrqdY3JZJa4vwxPdlTkkRSdUTG/mlXg6uO8SVWkE0/TK/QrmSxstcKDzDwfPXz0lBcqi4ZNlDzzjzyVLKQlUIhxmRS5H2L/Yf5b6f6E10pxdLyMSb/Je02HY/Fcl5KvYSOUKlPxDWmBOcJjDMTIkJ/yMvSZBpi3gWBL2tjmGthmjm6+JgNGvw51nF7b21za51cXvdprmRpURVz14RDaIEQPFQFrCxRFBWutlEAddCsFL2+Y6LIcIx/R8oV+/XJP1PDv873OQi3SWklSnbQsFZLApjQ2A0TN2hj6z54b28wxMnjn8Wo+0nINTcY19+A/rvYQzGworPrXpG2YIflvm5pwJPwIirGjQNpGYQsicxRNhvPbrLEYj8ZYr9cwE4WJqiho1RgyPaL0hemKjUZUlOMYInmVhppmTP+BwctoAG0pXkkbEjKUA+iByGkmSky0yJ5MIplUQNI2hHE3Hx+pIkSCySeWXsENgQjfEc+980RrY4yGYWGplUbBFa/oFKTFLZszrytAZfMaqu9oLH9W9XMimFHmnu4Np6GpcNHcftzWCy/FGRCZUOXbaK0TieOgT8nbGBMleYgRkUkyyTlSoSzLbFP1F4mIODtboGmaDKzuPcBS41Q0y1756c3rh4UdDPrLwl8rDapuIOuCvODOBaxWDfw6wACwjP8hkqwe4rEDO33b3bJ/H1+7KDvlV1iYiVIdkZ8OvZDaJsj4zMtqRcrHIkB1CxXlb0ZvUdgCVVGh6xxTfVEAIgKduvP5HGenZzAThZkeU96kKcjj6IeTa2xPERN1gI6KTZ8c9+OMUqWhGbeyjkw+YylRHoq45hXz/ffxQVTPkaqiA8qwCe1JqyPPFFI4iogJMQOd7wBF3jnJx+yYCmdVrzGZzDCqSuiSns8aTTgeF/4AYzxN00BnHj3nKGB0tVphVFWoigijynSeAKQ5ZpJCDKXBwsvZQfOUq15zuLhtal0DQRD7OgpKMf167J0cwjUXM2knnjLSTh1sQbxwHQuz+Xwn1WgVras3W8nsv3//fsqiKGyRqosppVLJQ7pZ7A2HrP8XCzMGtelNCB5KxJy9s8EHD68iuhDQrZcIdYdJWeLywQ5ikIh/Mhf7c3+zJ/ka/9URZltj+bKD57GHZmxrW4UZv0NtsOIzJk0wuJIzz5K5BVH3GScheuE4mKsYyRwrrEXnOga/+0WkxHOUg0CMnBO19+bEJ7gZgnkozpcjjFkl3Dwm86EHX4dmWv7M/fjEjcXWA+5Aqt6TrdWU1sXCqCwdQmH56xyyoRRgkGojSBk0+b78K9pZsBbRxl64SMfFZBbAi/u2GX82zJuL6bvZFGfv52NyviXhlLns5dny6/SaTHpxIEik3zES3ABQRgRVELPYJgBijAOtTLSn3HzenEm18RjbN2Q+LvlzIMVbpn4jm+M2oFt3MOxmSNAL5OC4SABkJutHtE9CgAzXx/n3cqbpQZgXsvX3S24faWb2pRYuwg/UxmtqMP6y3Y0mkJaYPymOqyhK7O3uJrbRS5cO8eqPf4y2bfHWW2/i5S++iIoZKrTqF4M4weTOlGgeiW6GtaleMGV9SwVWyTyEIq3OR4fYAQ4ORlloZelfrREj+7oUZRl4Nnl6YDtku2EIdPcCEqlQskw6aQ4+VSbq2hbRcx6hIQJCy3mcisfOSAmvQB7QGCijIHhPTK0hom1b1kRIg5OSeEAvGBPGlBZov+FpESqcm+6PaHJgYLBwc7c8faJtG3jn4VxHmiokpUmLnO37pBW6tkOMQGELFFWVCk/LZ/LWdR3qdU+cOSxKveULYtop9REyY0NY5YIWvQATk1MxqkCsHTXO7p0i7Mygblwi7TgtQ5FsmaD8FW4yrpum5q+4ZhYB+CTIqOUBftLUwJSTKPrsbRAOFanKkorwwUErC12UGI+muH71OsbVCOPRCM8+8wz+5I//N9y7fx+L1Rl+/e/8GiaTSdqgSLhWSAnKUBE+kqfKcAaAxHEJhxmlmET0Ai0gwkPpgHJUwLUtvGsQuoiiqFDaEoWtAARmKNWAUeQoYErnNKlKASbIwyKi9yxqoxFbAopHo9EAW6hrIu2zmpg1VqsGwTsoAJaF+3g8QVmWMNZCa9JWYwTTEpHJ5J2HazvKB8SaTKuiQFmWmE6n9P2sbFoEoEJgU536LSYY0JfOw9bNf/FqkWmX5xM8UWvhBqN1sF6vsF6tYK1NjLyUimSgjAZ5AElYa6WxPFuTJ3c0wuGlQ5RVdSEbb1PXODo6QowR1lqUJXmmQ8wSlBQyrRHpPudrWJxb6pQNEinnNNd2Q6CDznClJhVo/Lquw9HRA7z/1ntorxziC595nggSItV0jUAa+7ihufYju+21x9e2BWuHEJI383EVMwEeqpn1BVyTv33Q6DW1KeDyz3KcV0xmJkfOQ0Mpk5LDrTGwxmB3dwfvvfcubt/+AEEF4tW3FivfpM2WG3ZiugmVtzZUAzMEjz4UlvuTm3lZPA+RSpJQ6DpPFXm0hokWIWo2iQEq/ktsuM53sMrySdyXtgN6Sy4m4Ip6LISCgk95z1Tj1gKRvJeubWnkIyVcFwWXtaN4Bdas+roGkQvtpircMaYKOQCl+kRrKb5KHB+iRfQ9TuZdTNrChjmRmYJbT145K7Y0Mid7PMm5Dm3TwDuHsqBiziHIJhgagUoBzjuUKGGMwXg0JoE3XHDp3t77AaW5YG+5ydOvhwvAk40HkZg0ZO8PYvtkNbJw66vYk5Br6gZnp6dYzca95hk3x6vXZNOzI/06OCyyVz7RJuOyLZUu18weZ3vEDIDh8peXFCRMQV4bmpznHWQMwysaAKM1nrhxA6PxCEVhcenwEJ/+9Mu4cvUKoCN2duZAERBqyYmkVSB87iDrJIHcIQDnaLVlBUWgL3dCglUZhaK0iCHCGg9rA5toVCSldSFVkTLGULVqBLjAtQ8D1X700UEr1i4ARGUoJQsanplJqYAsn9yaU78UlaeLirAg2aZUek6lzak1Md9OJpNkcopJSI6RnlWjsJY4w7SGcx3qGslsLcsyxZ2p5KhJ6N75Of7IlkMNmUAXiCLbkQK+i41FgsYnhpDRqIJFQWSNrO2EEDAeUeGbqqrSusu7GXxA07bZdUZYr9fw3qFpuNqT6nHE9K9oQoPrCcYjZjezyWbrmDazToeWfC6Z0oIT8eeNIRjDBwfShNkBIkIyCQA5YIebJg7Gdpum9sm1bWamNNHIfwXNTOAc3iSLc3BM5MjV+b9l6JUCeQAVeXoUR3ZbY/GlL34Rs905lDZ48cXnUBYF1Vq0CtevX8XR8h78klKRKDxCwVqTeqctFXkV1gkl1dUVmVCyeMFpS2RuEJ22sQrVpERVlQg+wrsA7yJc5+G6Gm3jkjArixLWWPaa1lCWMKu2bYkKyRaoSqLstrqA0RYqkicOEUSlbUsqgqGoylNRFBiPRvDRo7QWkTesJJW3bYP1ekXaV4y4XlxPmJEIh7ZpUBYFirKEZfNLyt+t12vEuKKZ0RqjaoSqKlNlrDRmAGt/P8NGYZM6P7ldcGR9s1NGEiQch6mQGajhvUPXtajrGru7exgB0Nbys5OAunx4BZPJBFVV9U6MtNaArmtxcnKMk5MTjEYj7O7O4VyLum7gHBWa0Ya9qZwjDNGaxUkV2XsfJTF+CJfE2BNs03pQady0IjPdSO6uFHcJEVARZWXhfI3OrRHgQcW16R69MJOdspkBwKf1oETxR5jDv6Qm2uhmQr+855wbhMs8jrZVmG0alSQQ4hZBBqQ68hvmZuZMSy/0wkQlKX/t2jU4Zhw+2N9HVVbwIcAUBtW8wGnzgDdA4COTA1El2lyJoi+UP2ooTlUmiPkkJtCeTAKrKVQjRiC4gKZxrDF4tK5hrcxCa8I3QgzwwTF+FtC6Bs5R3iXVHSAacR3IJBThbaSSt6Y4b+8pqdxaQ1TLmfUkZde8c2ibJpmOOWtqrpmVZUkCraB0p67rIFHZjstqiyBQSqWaBEkji4KBb5hYG+tg+0o531J2QNqofUiKaGaKBZ1zDnVdYzrt4H05AJRF06qqqtfMkC5JDiUfUNc1FgsiceyrOXm0bYPRqAI0a8psLg8ShZKHt1+tw/6j985iiHFJELliga6SMOoFlDEEe/ggecbkeJJg6ozYamO0c9Mzg0qyvnzS7aI8yxwL/pUTZsDQZgfOY2PDha74/5ta2nCCIng9J5yG4s6OT86wXtdo6w6LxRLOOwQEHF7fx6pdomBe/qTpgQWYYBdqeA/5n8p62Ufao5dxSIZv6jKxAmkUwWIUShAzLZExBskWAKcmKQ2lR+iYOVcbMKbmWMbTQta6D8qNIZCw5mTqIU5CO1Qril+yxiDYAgoKbdcmDSrhNizcLFdEz2O+tKLq4EYLqWFkoNun2DTBfWzRa3uCQyYhhOEWozHMNvmWlsY29s8WxYPM3zdC8Bl0tgliCrK11qafHlSWmWetuGnQ1DUVyTEWiBH1eg0pWWeMIceLzH7kKmBAcgpE0DwZvbFBZdVsmLUx9hidoBchROL9TAc8OWi0VphOx7hy5RAH+7tQWtaqHKr53fL3+kMAUYNyNuWeQ8304fPwixMssuY2AX65x8McKJ+UgHtk1gzJwdv2zrnlLmB9UuYU5dpFlbigBCxt2hpvvfUGbn/wIe7fvYezsyXqusa6XuEzX3oZe1d3sXNlh+lgkG1kKXMhxYUB6Ijocy0xDrsU0/LlWLPIRS74OQwVLilNgaKyGE0rSqkKkVhN2wad9/CqQzm2KKsCCuMUFhFDxHrREAdX1FBRo3MOhWVhFgNCiGiajiP2hfGW+8qLxWgNZS1nAlBNyeBdn+QSqQ6n9x4qBFQcRAs2R3WkLIrpeJzmJwSqEOS6Dk3T4uzsjJwCxmA+m6MsKxgWHj7Gc1P6sBYBTu7kdDNNzhLKWFBJAHuOt7PGkGeWv58XI2nbBtoUmEwmmE1nPa9b7mENAV3b4ujoCE3TwLkO49EIwQcc3T/CaDJOwqwoCtRNg851cB1TAgWPznkYrl8ajYapyETSUUQL/ZIKz0CTbMnWDGmbPA+WM2Njn/VgC4vLVw/w+c+9jPmkgjYOSgluqJDimVVkgZVrdpy4noRWj7f1++6Ta7LviqI4J9BEk37c7ZGEWQJLP/YAxnN/Jo8Z81d573D04B5u3XoP77/7Ps7OFlgulzg7O8Xu5Qns9BlcevIAWgEe6DUT8EkfmSVDHAIxM2X584NIg3SwxdQpcWJE1sxgWBuL4IRvDx86yuMMHaIKsKVGWXFYgVWUntSSMyB6BQQFFSlbwZqQzOEQPFzXsRs/L8Ah2hnTlCvdayUxYi3APZgcMPikmUkF6fx01EpRxStjSPgFhya06NqApm2Y5YDuMapIkOlI2iJ5U3+WeSbDSUI7UrV2AIo1M6UwyDEN7JyQcI7gPZSmsIrZfAZri613895jtVql/NWyLBNv3GRGGQKjEdUE8IEyOygnmOazcx2gDaJOKyV7huFTkZmcvRYlOJmtBWGzzUzBiACtgdlsjOrGFYwssypn9sUgHGPguNq0cHKh9rPsw19cu8gBkJuguab4SZqdH5PPDDx9wt8k5obgasjtvOH3GAWmQ5++1zmH92/dwunpGbz3mM/nKAqKj9rZmePSpUsYj0fwzkNQCWI1UJxaREVN0iLgLikJ+pTwr7hR0Qi5q15U/L7/A1OL8Q1tNGxhWdpEzuekRas0KGDXKpRlgRhImEVP1D9K9fFbIsyTSQcwE4kk4os5rFLfh/1n83mLtEmfkWfjv0WLUJznWVibgmk1c7qJdimxaP3YnG+bZs35z2cmPfdHMMDgQ4Z/ktYWfGCPLZVyq7guY35ASQs+oHMktBSQmcdk1lmuiOVch6amr3Zdx/eNnKJWwFiTArkVhLqdfnzsr9ub7gqyclUaV16VfFBFkuB8zR4/KsuCtPPBvh6ai4O/ttn2GHw8OwM/3rHzs7aLzMzN9/M+fdL42ccWZsNRzrQbiKBDb+6njypobYFAhRsC0wQtVmt87Wtfw8liAa0NnnrmKVhDsUdFYfD0SzfRqQ7r9QoaBiYa+EhxSUoZKOb973zbe9Mg1YCo8K+cfgnnUcJ+Kl2jmgD0HiWei6yICIAhPKVSBdHNhIgQHGxlAB3h0UGZAKsUjLVQekZBk0HBtwor1IhBk8ZQTagAhnPQRqWQixB7FtTgmZmVGT+EtDEtIhG2GR6VR19TrQHizacIex4XrZl6nKmnofhZAmNoa+6/RpGi7PsD62H7C+gXMFEviemvwYm3CCGgrtdwXZPIKLURc7SjZHtr4bsWu3t7GI37mLLIQl4phaZtsFqtcPfuXZSFRVUW5EFUgLIWRiu4jvjyIiKc69OaoDTKqoK1FFSs+N5dWyM4T8VROgcfezbfvJAMFRuWmD1i+jFJCEvdSA+ThByN2s7OFKUBWRH5BuH1J5bDr3LLvZkXsczK34+rfUxh9igq7rZTW6WE6RAl2VmhaVv85Kc/gS0r7O8f4PDSIWbjGcbjEWazKS49eYC7x3dweveE9TINBc6rTJsXSDAEWANMTdSzLb2UIscQYab6r6QsARGCCkYZ0syiogVryWVOBWYBZQnnoJAMBeUVOq3Q1h6uowjpUBCmRR5OjrznHsgp33vSSGuQaPN8AZHS2ONaueZGnjxkJwlrl2DmVq7krpVJeZ3Luk7xbPP5DgXqbmkPm/k+17PXZnqhS++7ruNg4YgYPGV05JoZP+NkMkZRltlcxqTIeefQ1DXOzs5w6XAfhTVwRGEHqylBv+7aRLXdduw1LgpYS1kUo9EIk8kEMXq0TY0YHBr2/LZtB8+bljS5zWwDyZjI1qBS8KDMFA527AUogPG4QqEi2nqdjVc+prkZ+VHt43z2F9dEaG2na//VaNuFGaGS9LtKkDky3QtpJ2UL9mHCjoj66CQW9SdEoO067B9exuHhJUynU4yrMUYjcsVrpRED4DvP4QvESeajZsJEsKzSvXnLG0pU/Qi90S+xRVXWt6GqP+y4fAbJnhYfX5T/K0l+Z4qgSNfvQX+K+2q7FtFHLkW2faRSYCL3KMQwWETSVwFcz2MYvZBT+SPnCJCSIVAp4yE31bYNwXlGsuzSDx03xlAE04sRVBuVKsJL6Ijgf8IIwgM9GJe27RIbhjWmvyaG608pJDYLY0hb1AwbEFjt2Kym8A/vPcDaWFkSl4VlB41oZhIaQ2lgRLK5aTae02GjgqxNAgekcM7GIMlnBTKJ+WdyLO3xt21hGY9TG8vbQzSz/lSkLdtP1bmBlQjrc4MukTiALSoyMZwHdIEIBR8VzhZr/NanXsZLL72Eg/190oCMRVVRQd+u8Vid1QhOQxdEbe06DRcdohPT0vZiNkjVI0ArZsvlzURdVNCInLiOTPvKlZ1MUKs+Y0E0OKUVs4RSkjmRk9LGMlDQmhK8taG0pbZtUZiWHATOo6kb7OzsJDNMi2DJFrcIAde1CCFiNBongUYmG4Uk5InXAJji5jy7hvRdJ0EeCWOCQVUU6NoWSmuU7K3q5eCjaOMqCfQUb5SZt4FTt1zbppW0XC5TpL9SCp3rUFQVZrN5n+GBfl6cdzh+cIS2beG6DrPZJAUXG8PmLM+jURqmUIjWwpa91htAwcreOyyXCyBExODgXQdrDUajChNrUZTjbE1ELFdrdJ2DiwFd61AWFtaMkdhNQPNP8AALLxZkCgW811zIpIRCCaBDcpQkTctkQkzGPEJIHrMFmczuT7LlmtmQILSPf9z2nV8RB4DK/u2pseWUH57U23C0Xj8CqC6iV4ZlDYHMPgLrusGNG0/ghRdeJDe5pyRyay0av4Z3Ac26RfSKKvCgpLQi5xFUhDWAMhbCed+Djz2AC9aa5HwEOKcSERSRPfQskYDjZ9CyqCROSiHRQfPrUITPUWUnD0jepqa8T+e4sHHr4DuPrm2xu0PhJuJtzUdzGBTrEKFSMWBZHC3ncQqGIXFc2zCMyLVFlTJJ4Yl8H2M0LC9QpTUTAmwuwEcRaP39aK3TsxEJIwlYqvxNHWgaMgUjAGNLOEea5mg8TkWn+6OThN5isWB8kPJO1+s1ry1+Iu6m4cpPSikYNntDjAievKU+eKzrGsoT4KFVQGEnKEqL0XiC8WSeHDVN02C55FoMMcCleD/J2eWuMpOJFmEDAFFDwSJ4ReFisFAwiBxORNMvKUs6G+bNiP+U74KB5vcJtovMzF9JzWzgTh3q9/2MDZWu9ELa+LygYrawSFlTicInRJkaEijj8QTOeTRNg8loDDCrAOE5HhoaVTWCgkYMioqUB0Val2JwXLICQHzrJHTZ1EuP0ZsuKl9w5zCI4UMmp1t6ZrpGzJLok9hW/eomQSSsFLyxjGG5KiBqr3lsMyVSsCfOk+JtjbiO8tibgue8IJLwFeD85+kxzwcsRLWxTgZCZ2OTXbDIJSzDWgmxyZ+NvKv5GEqOatt157awZy1UISDIJmNAndKOdLqWArIgZWLKgCYKdp1K3kXWpDtxtNJBw302UPCuLzwj2VCZPt3/Pwk0hfv3jlFZg4PdOa1D9rYPhoekHb+YjWUK2VDZv+DDafv8fZJtmxdz8/3HGjRLQ2bQbzDSarafz/km3Kah0UI3toRSBj5EOE8MF2U1ws2bT+Hk5AS3bt3GC8+9AIBc+Ou2xbpbwpoSV688AY0SvlPofEAIFmVVIeqIpj2juDAOnyAnHAuYoLPF4FNvgL7YSmCW22R9bXvChEHpZE4pRERFLBpaRUD3rB0xAD541HUHYzVG4xHKooQpiYzSd57NQ1qgpLGgF3jg4sU8jOSBLAaLxjnX83XFXjAoIAUED0NADHqmB2SCGOeF4rkhuHgx9gYlO2hUTN7MHtMSbI8wsbIoMa6A1nXwnkIhRFMpioLHmLVqpbBcLnFycooYQyon6L3HcrmgmD3DCfusTRG1NoH+2lhI+IS2Bs57aABVWSYT3/IB0HUdWueBZQ0p9zeZTFBYA6gKylosgiezVpEjCBHJUZHGmoNhYwC8B772X76F3ekYv/Pbv0kZDxCrgQun8CHcD6oH4Pp1m2pOMOYWt5t1H5WZ8Yto/3+Kmclpe3GaQp/htA0ezk0dDaMLSM1LH2kCi6LE1avXsFgscffuPbzw3It8Ekes1w1WbQ1jChzsX4JGga5TcC4iQsOOR1AGWLkFeQ+NhmJtLSrJVtDct1zrlD6xSRZAIRlAv2jyp8jnSZKUIwXaChYVAWazIG0rsknatg2HOjAOWFRQUcF3gYHlvEbAsFK5CBpxMAgQLYunL9aRs3qK1qFYUA+1t/4z6iMsxy1vZObp1m9smB5i1osA1bzRC8NBusbAduRxrFuXVF9rLfJE1RiB9Zq8l2VpYVkoBk+hHk1TQwGpxiiFseTeRnZwQEMZSm6HAkpTIIJCOqxWiZq79ZSXK3xok8kYxhooY1BUIzSrJeNfnMaERCs51M453zgE4L9++1Vc2t/Bb3/1NxE892eDYSbxBSpRHoChMiGOLI0USvQJY1LAeYeTUCw9rB+fVD/tNvBOgMlk5OSWZibAeGyzFZ6rwZH3PgkKqfWotcZquUQEcHp6iqZpcHp6hrIY4fbtO1Dswl+tVnCxQTmpMKmmSCEZkYSgNVQHs7AVYnAUcQ8NAlIZH2P7kPqsU59VOj55EYkWgE2zLWbST2VyYIvwjuf/JGFi00ncB1lumHUDrYjtjw1hc6HHNRci27vykS1pcBsLdSC8Yj73+f3pYEppWWr47RhBQcHbvsjaZB7+sP3kz+aT386T7vWGIJVsCPL4drBFwbjawBA8N4dy+W2blbQsKUwz7Gs8N/nDvz2TaBLscB5OGFwU2dvifMrvEXtt+OMKiE0NattYP+z9i675UcLqEzMzm7YBRA0XgaO4liED3jEON5PKBR11N536ijejmAgatEmKosR4PEFoa7z66k9x/+g+7t+/h7fffhOLRYAxFb733TcwqSIDuAr7l3bw9HNP48Xdl2FgKN8RBQ4OrqKoCkBHlGWBe/c+hPceYzVC1EyBI4yn3C9tFLv/meIlkBmkleGCJDFF6+cwWkysoj34GmMkTxg/O0T3i31Cc4wRTduhspZSnpRmpwPYFOtrM9Jm1um+yWRUSphkqAIV9yfIfRjLETkr0kbSvWR3St/yRk4DSvVxzqWgVaWG2R30OCJczy/KlNITJR4OzJnG48CUPwOPMrfOOfgQUFXj9Ja1NjNdgbZrUw1T4ZqL3qNpag6PqDhwlZwirnWIwaOta7R1Ax8Cdvf2MJ5MgEDByRFgSqiQtG2tNZkpSlNKG7emadC1Dj5E+LZl05I8tNYYaEW1M6OWMZB1wNGUCoAKcN5jtWpRlpFSu5JQo8/oTDCmvZQPFg8f6xlbD8VNxSTH1HKIYptw+ajo/XQYb7wuzCy/CvFnts2Kd1qOAKem5PDsh1Wh37AXtKTBsQCQQS9sCVQjuGqEN998C2+++QY++PA27t+/i/fePcNi0cFog70dYDKymE6meO7FpzGbz/DpVww0DFTQ0NFib+eQ+NF0xGQ8wv179xFdhFYlyI3tEEIHxQnPCBHaGM4IYOA7BEiwKnWYPheZIUPU0Rgoi4Ci0WPadAI/9SlWgAg60Wi6rkNlJ3xAaEggrAcFjnKyArGtQqVxlpOYHCYUKaeYNTWwYStcWMTGkR3mkJzInqNebZkxrTV8IK1HCB4vCpZN7SEnt8R7aegU9gJwBL7sxI1uOOcQI1BVFeq6Sf3K7oDOdRSMKoetovHruraP0jcG4BSmGAPFj3mHznk0dY3JZILxeAxEqsEasv5Kn5Si8oeErTETMHsznSdnTt11KCzIQxo8DMfEBU7PSjifmPNZ/m8IHnXdorCBiu6wtinqbBrKmGti5wVaWnMPEUjb5ugigZZDEB+FfW0TZs65tH4euzDLAybzBwsQemZy64vHpzfT+I8k8VQSdttaH0fFwZmGANbZdIr5PELrDkZpzGYR46rAdDLBZDxGyRssPzFEG6F1IFWeKIo8sBputKWFCcUVm3oTzxjDlcAlrYnTn+SasmjEAwpAJaxi4/lU/xl+If0Wsj4PNFulsoXef0cCZnNNZ9sCkhYjMVEM/JyZLTjUpmVBn79OiAFWWWx6TJFPMz9remmbYIv5F7PNkja4SiYgQMVYItTG+lPZNeKFmIxo/qLd5s9IPzHNpRR9AVO2kwzJNetslDY2ea/tSLxaL0eGkYFys42/ETCdjjGZjJgkEhCogszXAKU80j5CNu9pHPNx2b6/LjIRf9FOgYtM0wE8kQnOT7LZ+WzOgKlmnMFRbFe3TvQ6pO1QcrJOp4iYVvS7nCLyEInJgTUM2qT0kJcO9wHlceXyAUZVgdXKIQSNcTVCYSOsMSjLAgeHOzi8fBmIAV3TAnFMWBkUCSPloQ2ws7MH7xyqssLpYglbFJjNJ6ibNRMraixWZzCGWC7G4worrDmAknIElVbJVBETAVBQ0bM5ahEieZiI399gUydKWRKxT9MBRHhpSmMC0e4ornZNgLXsd7pW8B7Oe2LjlcIc+WZjfKvrHBbLJVEFFZY1azPAU9Jiy83GzJMJUBZGWY1g08HBEysbIm3yIbyQTnpEZgAhEzphlSKc2TQ2xqLrHEJYA1BoW5dMW2sLYuEdWLgxxdORKc7aMgDnPUf2E/tI51oopRJRZTARWjmibmpaLM8W8MGnKuhlWfSccoEFq8wTm5BQGvV6DWNLGKNRaQ2tYpaGxpkGEtMYIsU+as2mpIPza3zxy69gPh5j/6BEDA0QHWJ0PBaU4keOCpW88kYpKGV6TS3K2upxt3NzvCFQBvO98ZlNgXPRoZkfqNtMzUfBzD6pZmfTaVIRhbSvCy3qmggSoQkHMUYRGWGGHQH8T17EJNCCM9YQXQ6bZkr3Zc4ODvYwmVSIiHji+uVUTWhntgvnCJjXWsMW5L6vW4eubQE7gjW0+IMP8AhQBpjPdsgj6AHfBlRFhdl0F85FVGWFoixwdraAtSWqosJkPEXwCk1sEHwDoy2RLRoD14WEWWTbFhoFALrn8EzmHM4BzTFV6/aeiR95zEiL0uTqj0CMnrmx1ECY+RjROQfXeRhrKSwDMuyiYWp0XYeGKXDG41HSWtO8AMns3TRLUpiGQqo2lSdVD85VmV42cXJzhSPFeEMDkQvhyPNYY+CZUsgYk/IfSdhHxhEVjCWq8XRz7q6w5lpjkukNEAV3UVChE6M0Gt5QZVGisBTGopVCXRt0bUs1AdoWU+ZIK8sCRlHoDvXFQxkiLwjeQRcW2hgyZ62lg1AZRM7FFS1VtP1k3sdAh2OIABxcWOOzn3sJ83GF3b0Si9NINO/BU1pV5+EcWRXGUtByZSoolRGSptqACn0di3we+d0tOBfwcH7+XMids85CeOj15dq/MsJM0hPkh/420FoK11Jkcz54sojzU1Txih8crMgUNzDlNNM8U2R7wHg8RlURf/50OobrYnI4rGuK+IbiqkZJWVBomgaNa6BbD2s0og9o1g3ahtJyloslFNihAY2u6SBl8YjllAIrFbvElQgJaChNoKyPXEkKjP9FCb8QgSZmtjyt6v9jczY3W3M9bmtLi5dIHEOMzGabmYesmRlj4INkZgwXICAnb6895/fdtIQiX1c2z/a+XfC63EBvvkwmFDLmizyZXLAlqWakLrhHMvNEQvLVQyKi5LXIG16u14eE6KQl0/h49i46AOKo8D3WlR0qSjoOEVpIFt8581LMwg1iUG2AalxiNC5hjIIxElPG+01HRAM+iHrsLM1bBMdEkuncz94v1owTgfQwwZQLvMGBtoHBbQrAi5wKv+hmhTNdTnWqZ+gxmVL6BgmgDiqVYyNgNbLpQSaCFNgI7JXJ1F3WIpTWWK1rHD14gGvX93DnTo16XWM+HSem0RCIMFCBPJJ/9uf/BYeXLuG5F19C07UoLRUQjhH46Wuv473b76JpF/jCFz6H4Dx+/IMfQ5tAgq5t8Lu/+7soTYUYIt56413C/wBEeHz+85/HbD6D7yhIN8W+mQq2IA/kcrWE1pwArQsEFaGjBrxiZwFhItFTHJBSmmqCGgtdAPP5DrQmdgpr+0hz5zyHCvT4kNIkNrvOoWk7tG0LHwIm0ymKokyfo8NFY76zS/Ti3hMeBCKSbJoVC1KNWJLZSClEOtMmadOFyEWN2RzUSnEAr83wNRaUhCFsX0Wx/yUGj6CJ3YLqnVLxGkQQCI9+gXeseVpr0TFnXa5BDrUDxtxAyfdt20IhojAWhbXEUKt1KnwigqsoLdqW+MyMNWibFq5zRK9dVDBaobC07m1RQFtAak4QXBDYnETCumTmSG5x/QfGayF9Dg62UNjbm2KkDKrCQBcR01mFGAxCqOAmkYKGQ0jFTojrTfG8EilBAB3oktGgmSH3o4gSZawHB8hDWqoCn302ZutjW73SPrZve18+yWZT1RuQW1wKR4QIuBDQOYemWaNZrxA8MXR6H2lz5IU6lIIPjCfkzAuKJbpWWNc1Hhwf45VXnsXx0V2sfIfZdJzIAkJw0IpMqhAc/vzPv4ZXPvtZvPjyp9CtW9iq5/V67bXX8O3vfgcPjj/EtatX4DqHr3/9L3Hj+hXcvXsX77zzNn7vH/xDFKZC07Z4+813sV6vKK5tcYIXX3gZlw6naOoOXesQA8XFWVthXI1QlRXqdQttaGEUxoISCjS849inSDgLBWQrRG2gjYVRBZTSmO/soF0RISEsmdoIMQkM0arIDKfK5XXToG3JfIwArC16YSbqiwZmOzsQRg7XtFiv15RHuFrBaPZMg8rWGRDWI2aiNKIwD6w10aInLAqkJSZMDKzBPeyEFQ2JOPYdM1NUZZm0ptFoNMgxresWUSkWZpLkNtQ9xFnQ37LnYIvBI1gLxApt26JkUkfJVQ0hoCwKrFdrtG2HqZ2yyenROQddUF3WUVVgNpvR/GgKrJXaDZAQGt1PgWJzN+UDBzItEUiLCj4gegeUFrv7U4wUZRkYAONiBNHRo9cIUVFJal+j7Wq4rkNdt3BtQNd6NA0xGytNFgU0mdzQw4RvYCisHqYtXdREmOXCLxdmOQwhTby+FxVm/iSb1XLkgA9FTnzVCsSUigjnDKfq9IVVRSvLPVASHxVjzHdAUkAk941MJHKvk0Rn7GXDRq3rGm3b8OkM7mN/L+8dzs4WHIzY40DOOaxWazhH5lpkBlGimwpYLymBHQl7Iq56Yy3gPNrWkempUlQSvAsIhvAxrTQhF5FTSxJ9C+WbxhDhnaS6qF4wRKkgdbEbPDn+wNHWejjGPAopt1MpIGzQ+MjOl7kgYDqk7/STjcE1N38fmqbD/m7fIL0ZRII2JHrv3nM8vIY0rbY8Z8TWuRctJY9Hy/uSF/7ND9Z8kxJG1m/WEDyTZGY9yM3Nzb7n7/Aho3LEAXR4GKNhFMXtq+SlBARb1VBcxNrABIPgPc975CBmwni0ogMnZvb4RcJLxupnxbK2CcKLNLxNM/OjMLZfZssQV2k92Cj1AKuygFETVEWJ8WjMHhiaa1KpydTxnl3grJcbCzpV4KGleANH4t96/3288/Zb+Ht/9+8gVZGAbH7Kc9zZ2YFSGsfHxwhqh4UD4RwvvfQS6q7G62++ivF4goO9fXz1q7/F9CwFju4f49atD+A6j6Is8OQTN2GtxXq9xt2797FarrFa1rC6xDtvvQdjDa5eu4aTkwc4OT1Bva7x1b/zm4ghoK4b3L59G6rwqEYWh4eHqeRc23XslCCv2mQ8w633buPenfswscCVw2soRxWO7j1AYYpkaiaMhM/6HGw1xqBUFSbT6YDiJ8ZsdtIi0zC2QDUib2FRFAN8kxg7OrTI2FNNAas1U/DEAYeYMZZxOQxBPnV+w1A/wJ8NPebkA7q2w3K5JLPLOfiuQ1GY1HejLWFe1kIXBaqqQlmVg2tHkHdZq77vZNLRHPiugwLF6UFpOE9z5TvSvIL3qKoRaacmpOIowmE2mU6YMSRisVhgCsDYAtZaskJCQFEWZGJyHQFJZQLf13Bd1RApFo0cBOK5H242stQzDzc32WdFYWE0YEyBqgDVcHUc3Muarwsdabqxz3IQU08OM50dbh9HoF1UeUl+F403f/1hFECfdLOD1QpgIMyUAoyB1hajkhN5AxAjBVwK28V6taLCuc4jBKJsjgoYTUoYDhC0ISIkDQZ479338KMf/qjfoZFVd4BMWK2xu7sLrRQePHiA6c6E/GYszF5++VNQRuH/8W/+J4xHE9y8+TQuH17HyYP7cJ3He+/ewvvv3ULwEfv7+3jq5tM4ODjAarXCn//Z17E4W2O1qLGzu4O33ngHRVViPJ7jzTffwWs/fQ0ffvgh/v7v/H0qnOEavPP2+yhGwN7+Dp64dhMBAW3XomtjotDRWmM6nuHB0Ql++tPXsTc7xBPXnsZsuoO33ngbo3LMlc0tjNIJK4xg/nn0BUpsUWB/b59zFTnxejA//ZwZNt1iGTGbTVmIOaxXK9T1uic05DAPVBpGFYmDrU/uJqomJIcDm0MXov/UxBxLmCRXT1oulwiewiN8S1XLnetIgNoStiQvti1LzOa7CeJIpmaMaNsGhbWwLMyco+LRh4eHWC+X8B2ZhFAa3gXU6wY1mrS597Slcns2YjKZkAe4adA0DabTGYxW8K7F8YMjmMJiPJ2isJaERAyJahyRCqFU1qQ8U8GRjNHoxCkh/GqZtSMzpjNcOSmZfHCQ461ALAyqygCBWY0D+S9DCHDeoW7X6NoWXUuR9xKB71mjE3Mw577bJPbM2zZNapsAlGtvgvkiTB83XgYAll2HyDdJvm0UWCrLEawBwEAxvU2e8JzMhEFAqKjy/dUBOnHruka6EYbvA33OHkWKDwdxPBpjPBn32ommCPbC0o+1Fm3TomlaruBjYG0JazvWIEkT0kqjrutkkgUXsF6vcXp6Cq0N2rYjhtO2AzTgWofgI5RlE0DMUaWhlIF3gbjkmw5hEtKCJ5LV3BPc//AoDVR2+p6459l0jHlwgowVv8JpOEoNr5NmIcZzPyGZYufB249GWNTGp2R++nvJ5ibPY+hNTx/glYcOJhE0EqitsXnnbZqMUkgbVlLUpLxd/qyydvOffK0aTbFdQSl4rrUgEImYyIbj5EgzlYRvmYM+PGPoZBShgHSwnx+v8+NJNFYaCoSJqajTWU9e/QjjDbw20Nqfe7Z+fM7P+0XvbXv9wh5urpHMSSBa4KNgc7+sZiXGSMj58ibIifzXhwoS0G8MqcaTyRhlYeHGZVq4Pnq40IECBBVa59C5yAGCFkpZAFyKzep0bVLP6QeRPHQ9QE8bPASK1o+RuPmXyxXeeOMtfPtb38HlwwPcu3cfChpt2+He3fs4PTnFul7hzod3sVgu8c477yF4oCrHKIsKy8UaxhTY29nDiy+8hA8/uIN33noXGhY/ffV1vP7G65hMpvCxxnKxxk9/8jqeee5ZKG1BOe4KRVXCGotv/fV3cPzgFHu7B7hx40lmiCVNQiudNorzlK8HIOGRUOTNNKxBiVNFMKJ8nSQ8LMqG5bli818phaqqEDHnJGemQFIE/C9Xq6SxjccTKOYRC7ktGwd7c0vL0nfE/Ip9qpBlvv1QFAjOoyotyrJi/IxwR8l91SxY5NmkBR+gSk6/8j4JG+8DCXsoeOWwu7tH0fTcX9dRFXhjLULksVb5aiZIRMEkc9E7j/V6jYiaKpCzl64qK2hjaW0KBseBs4iEA0cOFqayeYEcPNHg7LTFzriAsYR3JfbjkAmS9P+M4j0bBKXEFDWoygpGG5Qcm+m9T+OyiRvKexJ4/DDBDvTCaVus2UWCczMW7XE227ZtSjK256RzHPwIHEpJ06SRAAXKsmDCVXowHzwa1+H49IiCUJ1G0zp0PsBHIlZUygAwzNvV0yTHKAnVJKy8D2jaFj5EKE2c7DETZlZbLM6WuHP7Lv5v/9f/Cf/tb/8WABr8um5wdrrAar3C2eIMZVlhsTjD66+/ieAjJqMpRuUYZ2dLTCYzHOwf4qknn8ZPX30dwRMd9/e/90N885vfwD//5/8ci5XD4mSJ27d/hBvXb2I8HiN0CkErGF2itBW+9l++jsuXr+LmEzfx9FPPYjKewWqDq1euom0o5KJe15QUzQy0RWlRlBQA2rQt5lXFJpdKxU9MVjSXHApgzQqpbBwQsqwDjdFohGo0Ym2I+O4l0HZxdgbnPJTS2N3dp+h7xZWiYo/R9f4Clf0rBw+viUj04YpZHvKq5OPxmI4/H2AL8fhRMOy6aVKNA83YE9JKY+eGp5ANwbqkY84FMq8tmfgH4zE7GsjcogTxDrYgbM55l61o+s97B6MpJ9NyQO9yuUTnHMRbHWLEeDRGUZQoqxE8R+cjGhI9gZwJwQTWrIi1ResCMRo8OK4xMgaF0sS/aCzAtE8pvjmCoJXUw9xRA8aQFZS2MNakAyQJd54XMTe7rmPnWctByu1A4Aj+KJ5l6sMwfU4EmdwjF34DCfGYtbG8WaEy1oHUbUAWbIRw+8e0vPomJ2CKUVOA5L3poBHSe5rCF9hUogXL2BlrHkUEg87CwNA7FyRGiW4nAo/LyDHw6EPAel3jzp07WC6XKAq2ntkMrusGy+UKbdthsViiqVuQg4OEKKWVRJRFiel0hrIo6fGhsFwscXx8Amsp/QURaOqGtSQ+QaMCIlVsf/DgBPt7hyjLCqMRgc8KVKQ2BAKJ+5Ovr75EzAtDM1MGPKZnz/HNLehyboAqSnnSPA9BaQapOSYtSGX5bUVRzl++XxfZbbZUjqfnIpGRNgB/SUtAq+LyePzVyP3IHnZLB86rh9QfxomKgnMwScPbxHJiZBidDwAJ+pZ9KGveew/nHSQ53nsH5wpIfVExlXs1OSZtEaIhRzE9FVwX4F2ENx5OE6W3PLPggqLW9hxnvU2k8jWg+LqDfTrUuATXygOU+znBR5qDueko/14U9PqrJMgAwB4/eDCQ1NZQrFRRVrClSXUke04HYGCHpIXXbzCl6CQdj6coywLwDqHQiM5hWo0AbRm/KnB0dIzDw31U1Qjirg6RaJLv3L2P60WJ+XyOqqR4OKkwfrpa4MHRA7Rth6ooMZ1MMZ/OMRqN+IRd4fr1G1ivV6juH+HuvXuYTKbY2dnF1atXMZvNYIzBalXj5PgUhweHqKoxVDJ1AdKMIhAVLl26jL3dOdq2xpUrC0xGM1htURVjWGPRrBsc3XuAD25/iE+9+Glcu3qdhRyFB4zGYyjFnkRrsF7VSTMT80dUdmMsV/LuBa6YdLJog1TRzlc7wCd8v8BkrWktuGIJKJ0EK7Sism45W0oE4jaBuaWJnsY7FMTC4VgIOKxWq1S/s4xFOvC89wmrI8yM46aiaHfMpquJD45MyKQmYkAayoHUYAFOhyxp8WRekgA4W5xREeGuJa2WczI96PNiuo9GI9I7Q8B65VJlJ9d1OHMdxc7FCey8FyRRHFjpd4MYDbwD3n/vPuBbwK3x3NPXqCAwPGxBz6eNhab4DaRMg8Gk5qO98UomYESQiUZcFAWKohhgzuJ5zHHN/HfR8PImrwvb8UX43ONu9t6dD5NEr9i8KcsK49kOJnpEeJahOBkAPJ59ncl08oH9bQlcLTCf7yBGDxU8VJhjb2cP7sYT8MsPSFgWFT64cxeT6QxFOQG4FJcPDnXT4N33PsDu/gH29/dTHQDXOejW4/79I9y5cwfNusG4GkPPDPZ39zGZzHBycoyzszM888yzqOs1qmqM73z3u6iqEUajCjdvPoWdnV0YY3FycoL7945w/doNTMbTdKJKoQnvKBL8xvUnUZXE9eaCR2ELdK7DqJrAGIOjowd4++338PZb76H8nRGefupZrBaLZEJMpmNY28I7h4mfoCpXKUevaRrUzRp1s06LsSwr+Mi4kBoSSIp22lcHiuk9pQ1UxvIq+JnWGtpElMairEDYFYPTZVWygFC9wEhzvdl68ZU0g0yQUVFfSqJ2XYvFgoKRjVYAJpDkaeddwmkp2d9wojnluYZAAdqFJWKBECSPk1ZbgDiVFMB5v5S+poBIWBkU0NQ1xZophePj40QLRd7KyMA/BX06dlbsTKdQiPCuQ71asrZFzMFtvSaPsAKmiOmgCTHC8PgR7khEoV0HvPfGBzh7cITV2X1MqhLzWQmtQ9prZRFhygImcnQ/+BBk60jGPQnsfDY2hJn8W5YlQT5cIBpA+lvghvV6nUxREXjyI8HHItyoDF85EGab8WbSn8elrVkBB2UgFGNhpfMIPiAYRWFgKtPMeBOI6tu33hhVivAsRMpp1ExbHAqLk9WHFClvDFbrmmKCmIUwxsAeQYqEljgorblOoqcwhq5p0TZtSqUoiwKjaoSCJyEEcsVTEjal0YiQmE6nsIw9iLfS+0AgcMIh1GA8iqLAZDxmPniFuqnhPMU8aaXhnMdyucJ6XUNrg8lojNVimWlMfa6mXE9SnbwPUG2TFkFyxoT+tL+obVpkuaa2uaY2QVxJABetTD6ftLJznq/ejBp0IMb0Yr8h6MQn7YoOiGT2MYRA5IpDjTP1IdMUNpYWNoWuUipfeelAVZyXyfYZOt6UCf+NIhA5cyVSGATNU+yj/7MxIIeZGrDOKh4DxfPcD4xCCMBq2eD0dInTB6domg6jysAYz/FsgRg+QiQ4RizWKOlyQy37YeETm3MMSMhHH+ya6pRuCKUcyN+MW8vXZY6tbQqzi7ydn5T2ZsuylFEi7vhAguTk+AQutATa6oDCaFhDAZqFKYlhQG8WNR08SkrHhmKOGxDor7TBlatXcfX6dfzghz+Ecw6XDg9RVhOs6w4np2e4ffs2rlw9xJUrlzAaVahbh8XiDI2vcHXnEpzr0LUNmwMeuztz/De//us4vHSI6XyKvf098ghqjcNLl/DKK69gZ2cHZVniK1/5Ch48OEbX/QSnp2eYz+cYj8c4OzvD0dERzs4WKEsC4G8+eRP37t3H1//86/jUCy/g0uVL2Nvfh9EWhY2oSgpMPTk+xTtvv4v9vQOMqzFCBJqmQ1WOUNc1vve97+NTL76EwlocHT3AzmwHtmAuf0PmvLEKbdsRPuOJ4yoIZXTCtYY4CRTTwgwW3NDk70NmBCzghBypHRrzWcuEwhYzcxt2KoU55H50K5XgC9HMnHMgJxE5AIyxxCpsDHKpESOB6s65QQ7i5okvhUREAw1gqnYRaIyljScTGGsgnP0xBDjfAUpxnVFi2vWCKSYML6bDkkJBFDqJeZOYqwzjjAB7KVX2A1TVCMYUaJoG1hD2GiM9Xww1us5B1RrGZCEjpHDCWj4EtYFSTIyAizWgHEfbZhLmaUmTyQRFUZzziOaCTQRgHoib5iiErfd8XM2ORiM+oXqp3K1rLJenWK0rKqaqHDFbVJQBMB1PYcoSRhUwqmcnpWmM6feYXtMwAM9vgDIGTz3zDBaLU/yv/+u/wd17d3H1ylXs7R3gzr0HuHXrDn786uv427/+KTz1zJOYTMc4WzY4WdwHTIdrN19E2zRo6hpGRQTX4cqlQ/yzf/yP8fadd1CNKxwcHKAajzBWCpPpBF/96lcpIh3Ab/zGb+Bb3/oWfvADEqQHBweYz+e4f/8BfvzjV/Hg6AHGozFUVPj0y68g+Ij/5f/9v+C//4e/j89+5jPY2z+ENRWUKqB1gbPTU9z98D5++P0f4drVG5hOd+A9sF432JnvYLFY4j/+x/+I61evYWc+x+3bH+Dy5y5DG0PJ2JqKHo+aisuccfyeLdMi0xvmZg/4KnSORlpSgiS8RUB4cES6HDws5iCpMjFkpzT63xWGYLFoVTEXXCwArDXszSO5ZJh8syhMqg/qnOs1666jiHytoZnTTLSc4CknuG2Jo8zwT5dHmisKyyR+3iQAAQAASURBVAE4UZsTwqPmjAAoKKNRVBXmRiMyduacg3cOnWsRGophdF2L+c4Mng/yHBMmB5lBWZTQ2qCr1xz4zDFuYu5zyEaIAVLFC1xWbjwmsoDVckX1K2yJrqP4xxAaCjXiA0GyHQrDdEAjWhvGFigKChHph+A8Q0XetmlEoqklnrzMtJT9Lx5QMUeJMMAM8i9zE/ZxCzFpVtJaBsGUgTjWTRmhPQkzSfYtrKW0DpHeWYCsaPT537wlEiYD3lzT6Qyz+Q7u3ruHS4cHtDiiwr27d/HBBx/g3ffex9/7nS9hNpuSOh5qdG2LoCjQVvL9BCMZVRUu71zB3cU9zHZmuHHjBpqmo4VRlrh8+TIEbL5x4wa+/vWv4+joCCEIdlGibVsustKS5xLAzs4O9vf38d577+P4wTHqdQ0KlFUwWiEa0grqmgqz7O7uctmznpzROYdbt26luK7VagVtCKAmIsACRVkiRAqVEPwiucij6FMZwJxpXMn98pCTmnLhM6wjM0U28y4vapvzm71D98rumXA69maS15ii/0Povaq9y19WiuT3ShxYrl1mz9XfjW4sKbLSGxag2hgUCgBTwuu2hdMKUBFt65KGIWQJYp8rfuDcuyypS0lDSUK+F/zpBchYA8ZahhQCO3TIYRE4q8C7AJ+KtoD2giUHgjaRDwqT4veGuvHHN+dyrXnzOmJKy++5wNrEyh7Gk/Y4GtVwYCxE4pZEbTfGwhaa47toUTrXETVO01DOmy4SBxqlnBRQ2gLCCgG6AxLmomGMxng6waXLl/DlL38Zs+kE1WhERUkmEzzx5A2Mp3PcvPkkdnd3eaEB4/EIppzDdS12duZ46uaT+NIXv4jJeAzXtlh0ZzCWJmi9XpP6rnoQUxbharnClStXYW0BpYBr167h2rVrqKqqJwO0FiEETCYTXLlyFb/+67+Os7MF3nrzbXz2c1+AStV+FH74wx+haVp8+uVXcHR0hBiIumW+swNjbPLAAsByucYbb7yBv/W3/zblXSqNt99+G7PZBLP5BEqRdzGyR9F7D7WhztMGkyDajM5ZNtQWMPaRxFXayx8vaVnqf8pe1qmafKD0I2th2MEU2YuaF1Hpby73Q8LV8jqiiL25PdQYiaxASgX2Ql1E29DsJk9nAT2iNVtYDWt62vCmaajWgOsSEK/QOzgAw2zBvekvWFdEgE2PQr9Mp2NcvnyA5557FmVpQeQcGogG1ihir40eEaRdGsZMYyS6qPW6hmkdjO1g6jbt1zxNyfDheI76/GdoEtkgQhwAOT2ylpui+TrL18onra1ZxL66pAIBj2BsoSgKjEYFjAWUJq6lpqmxWCwh4V/aGFTlCGVZYjqeoCjHsEWFgnM55QERRDPTKMoCu/u7eApP4x//k3+Cd95+E8cPjrFeNdjd28NTTz+N6zeu4+bNA+zv76EoLKACdnbnmM4voWnWuHLlEnb3Z5iMNfZ3d9DUayzWS5TsPj49Pc3YNJAEVIwRDx6c4PnnXsCLLygUhU0byxYl6rpO+YrOBezs7OL558f4H//H/yP+zf/9/4nj+8f4h//wv4dlJlAFhT/54z/FpUuX8d/+9t/DH/2n/wTvI+q6wZXLlwn76TzapkOMwMnJCb75zW/in/yzf0Z8Z8bj29/+Nj79ysu4cv0KbF2zJ06jrhvOFiD+OGEsoRORiR8Zn9JMNJg2PS92ycgI8XwE92CxiZnHfw61P2qJWif7nlYK1hj24NGioKpF5JH0nmOeyhLjogB5Mj2ahih7yrJEuxEKoLVCBD235cR5wWcMZ0oIzqM0JcdTXqhKWp2MjVYqxTkq5GaWgSks5Y66ipiUGxIOy+UyYbHiDkGM8NGnflhjibY7aWmkaUUEgoZTzYyI/f05dmcVLh9MMRpVUIqyblRUMJo0YwoepvtpXle031rUtWdRrEE+UxojoVQS6i6ZK1knmybgwzSo/DPGmGSthBDYYWYHQmpTa5PvPlbMTA4uOdnzZoyhzIACACjq2nsKJfAc0KqMTikp/z/i/qzLsuQ6DwQ/G85wJ78+u4fHmBE5A0wAJDgURRAkJXGpa3EtqfmkUr9qqf5U9erprbuketEqldhNgSWRJVIiCGQikUBmRkZmZMzhs/udzmBm/bBt27Fz/HpEZAKEDPAM9zucY8eGbXt/e+9vp0kCqVNIjmXx1wkbxJuZUgqkaYbhygi3bt3CyckRptMZptMF0jTF2toa7ty5hdFII8+z1unQ6/VQ1TWGvSGGox7qmzeRSg1TGSyKArJHJzlHPVNQahMYKoRAWRbY3NyiNKyUtDPyRs6J+cC5sHGTJEWW5bh9+zYWiwLz6YxMmkhTefToCVZX17G3dxVJ4l3itUGv18N8NmuYBRz16/nz56EUnoDAwcEBFosFmfDeLBZCemeAhLTemRILIQfydgUPVzN3AYIOCw+thRgvagcXY9WdBSm8tfZi5gVi4TVBoNE4t71kQnCBXwFRce5pZLJxXyLzjFLYms3Dz8QmMo0pL97G7GvGIO4zOz38GnQSiUrgpPSR+B7rAoKjAoG2iHSuWBvkuhnBaYH49nxnMpvTLEWSJxjmiiL4bd0+KAQV3rGWjGwqDkbanjFcdYpSAa0TQZjFgoWFTVgfuDhvrypoWKDFrfvd2KvZ/e5Xab9Mj6emC/qOQDSovZRgvhPic6jgZA3oCjozEJ4fzEkHKGLKLOoS9VxClQaL0sFAQgsFqxRyyVkCDs5RMq0UGkplWF/bApzEymgVg+EK1tdXkWU+4h4SxljMZlMMRnMIFBAQsNUMcBLaL0TAQWoBKBctbhnWOGspzmstdV1gUQDGVIBr6kdubW1CSYGyKnB+foqTk+NA9V3WJe0d73UqK8LY1tdXsbo2Rr/XQ55ncJbYbp1zODk5wcnpKdbW11FUFcqqwsp4DCklyrLE+eQctalhLAUKf3bvHmlhSqHfH/gaBk1QK6esXMROXJg6+H/JsSZiWRXea/ChaO4FL67uwhLRN9lo46RrGn0LQWX6BAWgJkmKfn+I6WSCRlp6k0wIGOfrcksJnSYXbumshalrCh6ONAyfqkr9kI3QvLhRYzHEQsNHgDtffQygHEtHWSlJmqE3GNJqMjVMXQU23rKuURtLzLwQcJDRdR2NgK8CRsNq4VCTaBIO0vP7Q8J7PKO8Wj+eQjBE4ENghKQQJi9IpQOs9fiivzUD9ovFIjBnxBoam6LLDo9l7asIlVigXeaMeJEA/WVrcZoxEudAsVcgk0ZoTS5zBVhZwWABJyoIVSPNvCCzArUBhKhhhMB54WDqArAawk2hZYZUJ+inGdQgQZII4jw3VMxXyRxpNsCNG3dw5co1mLqC1hJZnjYMtBAoS4PjkwOsjNchsA6JAtWiglQJUk0pI1Y46ExCJNZvZAclUlgf/Kq19PQzBhAWi3KKsqIqQc7AY3kar9++DfH6bWitsP/8CZ48eYbJdIqrV69itpiRVyulE3k2m+HBgwe4cfM6rl+/itW1FayMBrDWYDI5h3MODx4+xKPHj3Dj5g1MZ1PMFwvs7u5CK4XZfIanz5+iKAtUdY3ZbIH/9Jd/hel0hjRN8a1vfwt37ryBYb8P7V3opWdKrWvT4JFoizKOAaQyZj4iHiSwQ4RWtGadY8EgOkGWaGkQcdk1eHzHOcD4zR1MXpUgzyXSJMNiOg9aBrsxLMgzaQQArZAlWZvkwIIo2ssSiU69l7QRQtQxeN6wZUU1IhzLOXBlIwHtMRWfTylo3qX3yOcDCZkR51m5mKMoFnCQqIxFaSjX0RoH4wALCSeo5CGR9dXks3cSMICTRHcthIQVDiqVGOYpYCsiJ/AeCxGsIo/LeUZgOMLNdEjAd34ceZzpSdnbOJvNWsIhzuphc55/7yaYc4v/fhG4z6/HPGZxDFq3vUyz/2U1HaAOF50qDhRDJn21bGGozJqsAVFTxWcnASvgagdYC+sMKgOUBZ1oMAaZAlzioK2EyQnshKBJIc58BaVSrKysguocGgDGUwQj4DPGOhSLOYwpIFBBwMDWAnAGSmWofMUaqQWFtPmHkL4ICeFNjBfRYxpToXaANYCtOaAWWFtbxWDQR5an+NGPfoj9g+c4OTnFaDREVVdIszS44au6wtn5GVZWRhiNhsjzDGmawDlKmQGA8/NzTCYTjMdjVHWNytQYDIdg7950OiUufx8W8PDhI5ycnCDLc9y6/RocHLRfhDFvFVAHYeOXjP9v2zfZXURx6MXlLb5m97OxruMBd/+K1wdoEwoJoZOWYIxj3CwcwahSEC4m2vcgtl6uRNQxLcFOB+ode0abTdM2L9u/i/AMTe1V+oxKUl+Bnmj+rHVQSQETKilVkFBBPw3UTHCAsBCeMMEZALD+dl7wKoEkUygXdYAH4vEVbO7zuAoBjs8MJp8D7TtB+ygmZ2ReMxYm2j9H12t8WdArf6bbXqRhdYXXL2oy/qJCT1d1zUcwlCM2Teeszw2kFpdRE54WWvjUIwEJSA3pNISlyHYlFVytkeo0BBtaYzCdljDVHGZxCmsqGFOjKgtIZlxwPgREOvqO9QGWxiDLe4ADFkWBygoI5SBVDaEtytKS+SEVEsmLAHCiSbtyYfH4tRBUcYS4X8LKGsaA0coKxuNxKBh84/p1DIejEINjjMFoNMLW1hZGoxGEEBiPxxBC4PT0FJ988gkePHiA09NT7O3tEZNBUWJlZQVSSsxmM5yenmI0GkFKKh13/fr1wGT76NEjfPObv4aiKPDo0SOsr6+HBcMUQaxNEe5/kfvrMs9k3F60fl60QGnZRALP94e9bVKQoJK+QhNnm9ReIFs/rirkn9IcNYfrRZxmWf+WYYEXN+Hyh7worptrKU1AuLUG1hJDB6wIY98IhnZXu9gzaY8AhbqJC++37w6q38nmv2hiBv2brWdkPDlmvwAavjc+ANhLH5uisYbGsWeXmaHLHAlxzYCW5/xrCKVf5Lvc9HQ2I55ypSC1QGUq1M6h1x8BEHAWUIkGDGWeSaEpelskkCIhL5pM4aAgjUDWG0Igga0Vcp0hkQIJgLIqcXy4j8ODp0hx6t3T8NoVnUzWVF6wkTyyxoL18PHKGpwjb2BpAAsNSAWd9GCsD/lIUgxkDqkoVYhYNehiDOwDru2BAiA1CWv2YlqfX3jt6nViF81yLBYlfvd3fxfj8RhnZ2fk8RICV69exdbWFhXEEAI3b97E4eEhHj58iL/7u7/D3bt3kaYpfu/3fg8PHz5EsShw9epVKKVwdnaGL7/8EleuXIHWGtPpFP/gH/wDCEFOgf/H/+v/ie9973tQSuHP//zP8f3vfx/D4RAAMBwOw0lLpkYRgOLYDFiGYzQLkV9bzqQQm52Mt3CaEms49JW2p1T46kFaKuT9XujH+fl5MIaVUjB1jbqqkaY5GHwHvHYZ9acdhuE1GdEWbjELapctoqu9hs8T0ueFZ2OismMrzUjTZrYMSKAuaiQ6bWGw3UbX9vGVIKFfG2CxAPKE04tevGGbqWprmkKyJtw4VeJQIh4rjvGTUgZG2jhNqWHJVcF72ev1ghBkQdhdD3Hj7IhlIRrd9lWEVJxZ8FUEm67qCtYpQMDz2htYh5DyQMtWevXWLyJr4KQCBEWlC6khQFzqSZJBihRWSqQ6pWIOtoYtLabTKQ4PjtBPzpEkClpTqotOaOJNVULJhvbEWs8RJSXyvAcHgWKxQGGA2kpAKCQp+X+EVEgAGJtASu679X13YYMwriO8kBROkFR1POA+oNFarIzHGI9XMZstMJs9x80bN7C2tkZVkKZT9Hq9oGXxybi6uoqjoyOcnZ3h448/xqNHj7C5uYn19XXcvXsXZVliY30dzLl1cnKC69evE05Tlrhx40ZI+H/w4EGgef7ss8/wG7/xG8gyrsidBhe8c5RSxa27CJZ5tVggxZ9dthDjMmIvA2wbcdCUQmPWhrquURQFdxBSq7C5NGcAhA62/rl4H9H9W4R/lwnk5vkjs05E94i0dqAZL6kUEp16zj0C8StZQgqFNkbU7VBzOT40HWtm6SU4VDBbL4o5EtyNuY1LtFDlE/VjvIsPNRZoVVWF19kU5fGPY8suEyLLNLDlWvvLwf1l8/WLOAV0LIXruvZSMVJDweYLq7ECUqThh0rOaUAoaC2wmBcoywWm5wW0AFb6PWyvjyGU8JuQyByzLEXihZnSNPtWKyiGBEBsoizMpHaQUkMoDWUFjBNwQkHpzHvtyMtjjIGSpO11h4UEWLypge6nLDM/gjAtqRTyXo7RaBSI8eITiQkDeWKUUlhZWcHOzg5ee+01ZFmG8XiMPM8DB/3+/j729/fx/Plz7O/vo9/vYz6f4/T0NJyMjx8/DhiIMQaz2SwERvImOjw8xMnJCa5du9paCJctiGUn7bLFFH/sckF2UdshXIy+z8C88uk3QlBcVJhcKUM8FXv0IjQrHD5xsHNc2AW4qEkua8s3C7OO8HM0pihbcsEUDF8X0b/+++DsAAFRo3HCRMKYnWuTyQSPj57h7TeugJyegh8kPHF4Ji94Y82Or8cJNy/SdC4zE1nYxcKMx5TZNKylMn5EhEDv8e+xFsZzc9mYv+iAWdbXX4ZnU+e9LIzrfD4nm1pT57VMIIXzZdkSwBL4qWQfSmZQMoUSjqiEpUSSZvj8yRM8e3aEB/cfo5xP8Prt69j53u9AS4leP8doZYR+6jAc9JHnOVWz4UrOzju8vfZkal/pCSS4yGMmIKSGgfRGgkRtybtXljXKRQEJiSzreaHUnMfCp80ALsR9gTU37/GqauPxHmDqc+nW1tcxGI6QZRnhU75cHgAC8D0wX9c1sizDzZs3cf36dbz55pt4+vQplFJYXV3F1tYWzs/P8eMP3sdoNMLHH3+Mn/zkJ/iX//Jf4v3338ePf/xjPH78GMYYHBweBHd7WRZ4/vw58jxHnueYecrrn/3sZ3j//ffxr/7Vv2yZXd0EYG6XmQRdl36MW3WTi9vXaoKS6V8LY+GZWB0qW5NG7SPns6zxWhofDCwEBdm2D5km4Xk+n4fA0BgXsta0+tJt8TUukhSGFRHWBzc2k50DBBMxevlrrV9D8DQ/PqmcLIEaceFgljrcj8ePn+DP//2/xZV/+T9gZcixk6SyWefgYAHRcI0JkBlMrcF+2cqAaBft7f4b3zuGCViA8Q9r9kVRBGWmruuAC0pJhYV6vV7IAuADlucmXlfd9lXxr69qWsZNEyura3GFS19IQ0kFCArDEFIDsHDWQckcSmZeM7Nw0kFIgSTJMJ3O8Pz5AT7/4j4mJ/sY9BQB+kIgSTWyPEeeFhgMB+j1ejB1DQrqFuxOCOs64FyC3P1c3k4lKSwEFZu1DpUvOFvXFYqyhjEpGGaNz1yChyQcIrrhzhwQTuc9bQUl2A4GQwyHAraqYWpDwZxR6ktZlsEpsLm5ifF4jMFgACEEdnZ2UFUVer1ecBI8fPgQDx48wIMHD/Do0SOsrKxgOp3ik08+Cdc8OT0JoG1d1zg7O/OJ20nYpE+ePMGHH/4kLICuZvYyzANo15jkFq/Li4Ji+anrSC2DsxZKN0V4E534QXbBNHagkILZgkJjGjZavoNPrYNDVZVhM8afaLyal6fvLDc5WUBcsmHCs3kt0EYFiNnUg2hgCd8HfxaTQEO7RqhzwMnJCd5//33M5v8Mo0ESYA7WZvlzF1OyuFsOVNM20uDwciwq1sRic5THjQ9i1sw4Zo3nikhWexfSmdgqWVYYmN+PacVeVfP6uoIMALROEr8wBLIsB4UCpN48INZSKTQFxwpa+PN5AVtXcE4Sm0YvRZIlcGB7Hch7OXK9jpWVARxqH71MZIRKN+Ai0UMzfsNaEq8pSezaHRDUORcq3vA7UggkWmFesHuavVxgwMG/blvvOTScYYRZ2NZ9rGOuqYbiGt4MCcEIUgZAmEHzsiTzk4UFV9wej1dx7do1rIzHWF9fx97eXjAfsywLwH5RFFhdXQ3Xa8BbUvtnsxkAoN8fBMHRDVFgszeMWfTzqovm4mebI6JZoPGx4V+JcEl+n818FgCUvB1nADTfTZIEvV4PzjXmUCN4bdAmu5pXtw+XCfa4v8QdR86mYOa1Nl8DZAnR9kbGhmKzHsUFk7DtzOARce3Re6F89Xiaa/rysnmMNeouNtrV6lgLW+bVvOwecZzZshavw5f19xcRYtx0rz9CVRMDatrrEVOB1Mizvo/eckgSDaEpbMIYgy+fPMTx0Tmm0wV297Zx/eYusn5GoRamglQCuzubuHrldVy7ugHj5hBOoKzmKKoF8l4OqSWcIFaDsHCE8qo66BQUlBQsJdXpFPBakzFwPkcPcOQ0SCSUyHB6PvO0zRaJFnCGKGKkIo4wB+uLQ9Dgmdp47YHKxhnXnHyVqaGchpV+4kxN91OSCCv9ImVVm4HUxaJAUZQ+9auEcxZHRydYWRnjrbfewnA4wKDfx2g4xMrKCvI8R6/Xw9raGm7evInj42PClyRt5LOzs6D9SUmY3EcffQTnHK5duxYoW9hU4JO3izXFlMnxImoWbnNo8Otdjx3H68WvS0neYvDiBWMywjOHRPdDg99kSYosJWqd2MwUQmA4HPo4KdcUYikKHybhy8BFeG9XoHU3avw6yysKC/EHkWO2DtfUtiSxG2lR/nDwUckuqk/Bh6aADPdwDoAUMM7AeIWBKZAU4mGhg5whEOLPZo8nH/RAiDGDAJcU5Pns4lTdsYjH4eKckqOGE/vZEcCHKK+lbotj2F5FQ/z7bjrNco9DycCfD0honaI0xE9PE67Jhnc1To6nePx4H8fHp9Bpgp0rGxBSwtaG6IGUxHh1Bbdfv4m11RwOFYwVqE2J2pRIsiGkkuQh8huGGsdBA3DUJ+E50o1lb53nrorAUwniz0qUBJyFMxQrJ6UAfJVpKBmSeSUnQiM+tajwivCVhVgrE7AQzk+c8xWtfZ1MZ4l2mRkXWAsik9e0ANKqmmJrawvj8Rg7O9s4OztDmqbo9/tI0xRZRgy4W1tbYeKTLPVezqbQqxACvV6O4+NjOOewsbEecA4WaixcGfDl1v39ZSdv1zxoNkVb2yCTjANcaR4Jd+T8SVy4BmnS2leDj7XuJoma1iN5wZ1zmM1mTRZHp4+XedaWg+Ht8ZDSF91hzbWlZ/kveDuS2C6Ej+uLzHMXaWaCQpp4QByHdniszbluYDPfw1sHLrZEROhvc+A0/1w2p93n7zpyYjO9K+y6n7vMuxljs/G9fxWCa1nTgPcWOmKylNLBGKAoSswWCygtoPWABtoCdU2VkExtPFeY9nQ4hBVkeYr+IIeEpCINwlLqhgUcjF8XbG50zRfQ682B51XiNqaz5FuANxcJs4jUWvgJdeyl86dqZyAcWP33C2qJ6RQ+6wI/A33TtU1T4KJGAHAenQlCiQtPGE81tLm5Gd5Lswx5vxcEVJZlOD4+xrNnz5AkGvv7z1HXNQaDQThZsyxrmQm82S4rF3axr21z/tJnXyYgOr+wdR9ec82mBADl+bniO8YzLISXBaKht0nTFErJoJ3FsVCxycOHShcMX/48zXtk6glf9FeAO9EI6eiZXPS7/56IA1oRFDhAUKjTYDDwxbSb542dLpc3j6PBtczM5c+zfH66Jl/8OtAeq/iAWDZu8fpZ9jnW3H/Vwk1bJ6BUCq0zD+ZRfcJn+4c4PDpAr5/j9TduQ0GgMhbT2QKPHj+FMQ6D4RDrG6tIMwmLEg4Wu1fWsbo6gjUOac/BiQUqW0PUDg4lksTb/n6xBNHjfAArVU/xzBTkBDCmaoBPv7j5/FQCwTQUguosOmsh4eB8kVetNJmMmtR3a2s4H37B2ovz2QZSS0jnYK0IpeWcc5SQbEnAUfhHs1Dr2vi4KoGqMkFoxKC1EAJFUaAoFqiqElJK9PsDKKWxKBa47uPLnj59CqkUNjY28Mabb+Ds7AzHx0fY3t7Gj3/8Y3z88ccoywIffvhTvPPOO3j77e+G2LPhcBhCGaxPdidtpkZdWySJChV74s3fxkgoaDQOsOT+c0YG00+zJuLi8nngxe3DXPggAdFFwWtqWZ6Fws4evGQbFI1+R1palpEQy/PM0wqZFnDNoHWg5/GxUzHQHbd4c1lH0fGS7xvOVGKPrWsH5ck5iM6IYhfJa0lCj8ywRquyXHnKcUk9MptvvXaLqmM5EdZ8gymi0dia/3CP486DYZDus1zWLhM4y8ZjGbb2ousyVhsD/suue9m9fplNOwcolUQ4i4B1NY6Pz/DkyXOMx0PcvvMaHBSMcZgvShweHaPfH2JtPcdoPIBOBBxI4KxtrMAaoCoNgBM4UcLYEjAWQAWlES1Y0Zo3Eg7k+naCBQxpPg2YTAnG1jHXlAjYHuEgJlS2pqBbBSUkyoqqTEslURRNpHzg6PJUQVoqWCvD9YKGwZPsLrr7rTEQSkFCUmFZj+V0cQlKgapRlgUGgwGyPEPey1GWJba3t7C5sYEvvvgCSZpiZbyCt956C3/5l3+J8/MJVldX8dlnn6EoipA5cOvWTezs7HjeuTwIHIC8VJPJBJPJBGVZoapqAEnQ4rpaWRPh32yWZVrmxQUamRii0VZ4TCmGkDAkKYSnynNItEYla0jI9uZdYiaRAG6cAOx5Z08yB4TyporNnxd5O4XXwmpXI0mSRp3ylgOEhHW+MlkEPUjvNoqvI4UMdWed87UIhICtHSCAPM+xs7vryShFJJ/amhqbq7E+GM8D5x23DdXL24u0q1cRhC8D+QO91Qvuv+z3X7YgAwBNpw3AgGNRlJhOZzg/P6f6gpZ1J5oUqSRGoyF6vT56/cwLJwNj2Z3uAWDpS1cLJluhWBqOnQkeRFZv6Gn9ky7pKSGg3bW+tIn4XwdQtW3RaFnOUf5vtKa8nArcbA3gwdcS4Rpt+6LpE5upfN+vsmB4QWR5jiRt2A2KooAxBqurq9BaB0zs4cMHQTDFmEesSTGYa30oSSywungHv0ZueWKO6JLvtacjsic7437hhfgzwmtzrhEH1pMsgt+7cJE2vhdrvjEzBAuzWCPrMqJeeJbWDS+DFhgQ6Xoyu7Zm8073MkmiMR6PyEkkBYgypP2VlzbX+udrt1cxv+P3Xgbsxz/LMLuWML5EuF3Wv6/S9LyoAZlAJQoWwJNn+3jw4BF++tHHGAx7WFkbAtKQCagc+oMUv/7d90j9zxPkfcBggaK2MNbBmATEVwZIWQGoYF1JarjwvwuiHOYTO2g8xgGKT3IbMIywCEUDPjdSCAGHIKsmiigXBPpb66hEnHOwdcPEygMqPH5HeKGvHwjnXeveTBJUVAOSPFLM2uCc8InUAswlD3jgVLWDCeNNyBPLphLXC7h6dQ9aJxgMB7DW4tmzZyiKBX7rt34Ta2trAAQWixk+//weBoNBSKfqLgCOD1pfXwvxeovFouUo6OJoZVni/v37eOutd0KAMMcXscDl3ExmZIjNCwdACu1rGQBKajhHHmDh50d6TdlUBlJQFkBVlEjyNBIUjeYTcM7ItIoxMcYK+/1+6CPTJAUiUe91Y8HHwo6yPdAy9fi6vECEtxSEEJ7imkzJcN6Fw81Fmh1C3QaCbhxWVob49rfexXhlAAmDuqwBE2OvAhzSERb2K7YXbX7eDy/Cvrqtq83FmQKxacl5n7yO4uDr7s9Xxc2+znd0URokKeD5LXFweIIvHzzEZ/c+w53XX4O1NTi+TCog7yV4+93XUdcljCmh8wK1K1DXJawDapMAkEiEgpAV4Co4WwFSwYkaFhVpgRGtMARNIse78aDFDwZ4oSUAx8Uf/PvSa3guzkljzc9zzmdZ6ql2vDs5Hjj/HyEEmWNkYXhwmN5k/IazCqRoeiClChtdSp/wC6K25meJvUrdhWGtRe3Tora2txEXXD08PERRFPjmN78RmGzrusT/9D/9X9Hr5cEB0F0ILDSThHE7iePjY8xmsxDmwZ/lDb5YLPD48eMgzIqiCP2o6zrSpCOyS0SsFRAeZyJNSyqJumqcMNY5opuWkdYHoC5L6CwJwswbugCELx0XKe1+HLt892xiG2MwmUwwn8+D0OYNl6ZpCPIMDo8gtxqtjPsVQFHwBo0+JRjj4oPVCyTRvAf4g845DIY93Lj6Gvpaoi4XMLUCnEHAC8HQy7L2YmH1svYiIP5FQoOFWrf2ZswfFx9o8aHB135VLfCrPtOypqezKYGxoC2rEx+8ORqi18+RZhpOWIpp9tHNkuOs4ADPQcau53DUCdtBFgBEpxA8DhU9AoDGLOB4qWZAXBASVVUSh7uSzbX8NS6zUJ2jMIq6rmEdnyCUxuRkZMZc6BE/JyKTk391aL3RfdT4z1fEC1gQsTkYeyqFIEyTPJbqUoC76UDjpSTySRU8g4yb0f2aE5SKLy+Q5zmklJjP56H/XEA3Do2IB4xRnguP59/gQGPnHEpfAwDSU0NXFaRzgKIwCfhybUpcfL7Y5Iz/jccsfk7esN1SaRw20ojQpvM8v7EgeNkmE9G/bSCiMfsbwdkdoPazLW0X1t/L2yv1uyPsukLnMphhGcQRCzsAS62Gy/rJ132VPi9r+qcffYh33n0HK6sjCKWwc2UbOlXY2NnAcCXDeG0AyAK1NV4gULksKyo4WaJ2MxhXwqKGkAmEB+YhBZyrAFDupbQgYWhrYqmNtCd6CKIams1mqMoSi2KBtdU16ETzAYr5YoH5fIbT0xNsbW1SypBrNKiWKPPfoYIWtGGmkwkWixmccMjzHFonUCqFUhScS8JBgAn1SIb6CbYGVhAOKISArb3XEuS9QmSu8TNxwGiDyzVgezx5TToPF/1tJphMS/iUpwlmMxL4g8EgCJz48w2WRQdHvCiyLINSCrmvhGU8KaQQIpTam81muHfvHnZ3d3H16lW8//77IT/vxo3rAXgHOJWoWcAApStyylLtGVh8FiKNrxAwvvTe3t4eerqHxWKB89kUQkmoLIVKU+gkoUyUJAnVnrptGT4jfbwkh70Mh8MQ/MmmZ2DsdQZKKqoF4AuisInpIs+odT60xefxshbVwBloFqGHMITX1tgsb0Ej8JCI81kl1nrcOlq8zScvPPey1sW3utjUqwDxMe4Vr+OuQJJSIk1TbG5uAmiou9kJQ/VAbQvT/CqHwtcN5dCffPYxdva28Zq4BSiFze1NrK6PcfuNW6jMhHj/ZYnaVr7Kj4O0AkANeDpt6z2ZQiofa0PCwNmazC3PV0a5nYZjMFpHuBACQgHzxRzz2Qzz+RwrKyvQ0OFjZbnA+fkZnj9/jtFoiH5/ELCYMDGOU0qoG9JLpdLUmM2mmEzPISRgTI0szZHnAnASQgNQsjFlBZufjpwCEMGDCpBJCyEghIK1BkJS+THuB4d7dFWVZcIsPL8QhOlFk0ql9hRGoxEePnwYVPlerxfiyuIFQNezjV0WmS9ccYc/V1WUz1pVlS9OO8V8PseXX34JIQRee+01fPHFF1BK4dq1a3jrrbcaUxyck+gZYb3J5Zw3M/zB5xy4Fi59XpJp8vz5M2xvbQGOhNnZdAInBdJejqw/QNbLkQuBXOmW5vyyJoQIFEo8LizI5vM5JpNJoCOyzpCnVCWEcXU3NoBEE+8abU4RsLBGmLkLwiycpM5DIl6Q8ZTE8IWz7B1/pcdb2rqCqjtWryoclgH+rOkuE2br6+vhcFgsFr4imvGZGk0l+BgnvqyP3f6/ivOh23SSKApuBUXHCwEoTYvO1r7kvKD3nI8Kc5AQgspYcK4jJxNDNJ5CUpfi44j/ww/F2hRt/NoYzGZTzGczLBYFptMJnHNUL1M2vExlVTaxTi5+WNG+VWeQwsnD2gSzIqButDggFMqAx+FacuElAxxjOy9bRMR+4PXJJde01gZtKn4OAIFIL8YvXtyv9mdYqFprWqlPdF8TNDYWllVVYTabBs+o82XXYgeAtdZrlh1DSIRZpoPB2o7XGNGGZ+HjsxpU3erfy8yQZdoav8aaQogB9NexzkKhyRF+leuG1+MxBsC0QNEyB+UsO8oKAWuxPO/t6zXrZ+ntXtqfl7VXcQbEc/qi68QHaUz0yM6hLj4MLGf6eFG/vkrT3/qNd7C5M0KNGaqKo8WtJyCZURETGNSOqg1BSBhYCBgIUcOBHAQkuxgvE7FC0Mg70FuSJ9u5wJxZFiWePnuCn374E8xmMyQ6wYOHX2Bvbw+3bt3C6niMsiowm1PYSG1qTyfj8ZUOHAfWFOjXwDuWaI0szwA4mLrGws1h6rk/RSieKcsypHmCsiy80Gx46hmDcpbxBR9zJkR85DYT5H9vFkcUw8XKKWtyriHYY3V9b28vYFec+2mMwZtvvomVlRVi3i1LjEYjH2sWbh4tIofADQ7uqm3hHkppaK1C4QvtyQCuX7+O8/NznJ+f4y//8i9x+/YdXL16FQcHzwOuubO1g8WiQFlVMGURtBohBKTWgdbJ1Aa1qVB6x0IsmDKfiyqTFMZazOeknS/UJGwSLswRY2H8jC/b3KxNDAaDkDpWVAWqskRZlBBJBhkJIL5e7YNeueBLG98ChKAgawq3YAHNNiP3yaEoSxwcLJBKg0wr5AlRcDNmGcMRTft6m/tFgD+//zKBFh8Cl5mly1KhYlOeNWJWQrq5nnGwdrBmfgGBpt/79lvQiYYBebms9xQq4WBRgGrvGNRuAQEBKRSMrSGFhYQBUIUNbhEJs/h0ZsEFCiakQiN+EXpApSwLPHn8CD/5yfuYz+cYj8c4Pz/F22+/g/W1MUajIcqqxGw+xdn5OWqPUwHwRUsiNd6bO+wRY4cCIKB1gn6vF7xddWUwn1OVaK21x6GALNOoioJqCwjKIwymhRCejohxqcgz6wV+G7tqL7ALE+YFIZ9wXWEGoCXMrLV4/fXXA4X3bDYLgbPd1pjDfCvuB/PINTxhLMzSNAkL7dq1a3j8+DE+//xz/PznP0e/P8CdO3eCV5ScRaMwzkVZMM0XBIirjMMP6qJCXTbCjPpHZlueZUQekGjMigJFWaKsSihLBxCzaLAwusBO+4LGc9b1Zk7nE6JAn0zIIYKGiijwrpmGb+/C/QR7uSVVQPfrjusiBPeXcyiLCmeTKRJRYW1lgP7GCqzjYFsJKumESCX7xQTZywRRLDzi71xmai47MGKHC6ebceMMlMVigclkEqpIcVhPTIaw7H5fp+k09xTTzoDq/NHCcx7jAqwvDOLfYXMS1v/eacIF01EItj5j4bJckedak9Y2ZHIkhCrMi7kHq5sI7+aBOyZNfIfoLVLtG+JHBm8bLY5NHOPBX+fNLVrYVKJOAE624seca8eshbuLlpLWftZoYVxm2PAC4pOLNUuA+p/neQiP4BMP4Yrt69B3lveFr+eHoeVFXiwW4X0hRCCiZIFa1zWkkFgs5v5gkq3PQzbjHDaqH+sLFDP8E/uQnQuYEv/EKUwxvVE3deyy54w3TzvkoFkLwfRfMkbRogHA9FFhsJfctTGviMm1QNXPICCWrNxYEP1iJteFfn/N7y4z21+kqcXfi8362EO/TOv7KlrZZXiaNpg2wkYSsCtAQsuh8iakpdqAPNjShrXnQoY/vSeFgHCOGGS9MHMOKIsCpq7oWs2VwMBxWZV49uwZXn/9NvI8x+rqGEdHh7DO4tNPPsFouOLDBJrcv8asFF4hFABiPn8+HT29tYPXoojWSCsq/ioh/RoWqIoCVZmirjLMuRahEKjL0lu0MphiUki/gePJlWE/kinnT/i68g6Ci8Im1priSY1Lh8UpVMrnbrLQ4VgfeEyKhYNzLnC+a+0T/9Hcy3cgSLqqKvHo0UPcuXMHSin88Ic/DMwfW1tbmE6nwZNZ1zXOz88xn8/x4MsH+M6v/zpGQ4pw7/d7FDYjgLqqAWcBayGdg6trKKXR7/dbi9/6rjjvBUvTlNhNahs2RF3XmM/nKMsS0+m0hX+xB5M30MuaAwnAzDOXONeei+7G4veaWDi/Dr2kjplfmv/67wo6lM/OzjA7O4ISDld3t/w9OT7Ra/fLFISv0b6udtPV2JYVNulef5nDgdacDml2zMjTBF+7FlU3H0hxTvOy+74IW9MGUzjvpRQSrY1gUUMIL7gkua4dXCgN1xwtsTADAIqkT6TnaHIOZbHwRTe4EC1JOuqYRVkWePbsCb73vX+And0drI5XsH+wj48++hk+/PBDXL9xowHuA4DMDxykARDOPARTB16zcXABn0gTMlOkoER053mmZudnqIoUpiwwm039aSswc1NYNJH1g8EASZJCCQ4kpQFuAZ7ONpXIywqplF5j8yA6+Pk5s6G9IJj5MwawWbvY2NgIMWENaaHH8JSiqfHR8BRpz0GmMmgeMbYFEHXRgwdfYnV1DCkV/ut//a8Yj8e4cuUK9vb2MJlMQqX2qqLN+ezpM3zw/k9w+/YdrK2tI0kS9Af9kEs5mUxga+NzcwVMVUPrGv1+nxat8Hxo1nmg3AsvpZACED4ExjmidubFzyynTGoJwMfidVlpL24GHl+tFbKMhNl0Om82sS83iLC+mgOGCg+7AAswM4blA7YxVHkmwYfp2dkZnj58hFG/F9YyCzMhEroPBACLX6R9HUG2XHiLTpDxxc9fZrpyfCTPTyzAOKd2Op2GoGam6o7pui8TZnH/4qapgrk3I4P6x/S87L2EFwwRBsYXb16N1ONIavt/jalD7M5lg8kc+v1eD71+D/0+bQprDYpF4Yt5fL2JbgD3RouTrA5L6TndjTdt/OkR4XLO0lKz3sRigkBhJV6kCLQNBoe29zV6Pe5nt9+4uGiUUpcWlODvhVMQvl6iIjxHSBltNdqYvMgWiwUkVXnGZDLBYDAICydmvDWG48psMD/D3ERQgPEsJnBEnS6FvOCqXzYSYZ58X+NFHJucbPLGoHM38Tk+YFrjCDaJOmwPrfcvzkX8Gf5cMBNE+13OEGBBXZaVD68RF67TrJZG+2veEUs+F43V12iXmZCXYWfhmSLr4WX3ZpMyNjGZ2SXGzJa1ZQIrdjh0tTQNlAhhFUAALR3g2VgdjHEIeSXhRqxJcGeIvz9euPAxNhIW52encLVDqjKvVqswJaTtUTIum50c/HjlyhW8/fbbePjoAXq9PrSmmCAIAeGDM13UJ/6DSsZ5IMQ5qs+YkceO1hsVnyAtxT+npdCUuq7IxLQWWZ4hSVLPrgD6vGA6HwI0Nze3IKWv3GS4CAsPPI0NYYAAn7oBL+r0O560ZZMLIDgH2Awl88prwd75YIzBdDolzchYKDlBlqfeDJPe0UGaUVHO8fm9e/jpTz/C8dERabHW4fj4CN/61ntI0xSPHj2CcyTg9vefYzI5x3g8hlYan23ew2QywfHxMXSS4NnzZyG4tqoqJEqjl2W4sr1F5qBS6OU9mm+AWIR9zBoLQm/TQUULOMuysBFiLdU5h/l8jqIoWuEBbR60JcJTMPZXeeuDfoy14aDrHjRW2M4lKOUqCL6gnTVCqbYGDg5ZmhLTrLFh/wg0lhB9lfdhuCtiy6cryP4+WiyoljlaODiWnSpd4sfLGs9XXDcgSZJwELGQZM0/vh5reWy6cj+5L9ZaaIgCgQ3RuSAcnBPQMoVzQF0Z6DQJJhLgaalcHHIgIKV3ZTsHrSSEMd6DaXF6fIxUJciGXrtimmB/QymANPFFUzyG0OvluHbtKvr9Pv6Xf/O/YLy2hvF4jSiIfQk6Y31COoFnRAckKI/SWm8YO4eqrpD1iMtL+ns4OEjHydEkiKQg7Gg2NYC1yJIU/UGfNEdLtNocdFmW5KFZX9/wmwpwtvbAtySB7U06jgmznRONzT3f7dZ73cUVn4gcmGitDbmVMbBqPKZ1dnaGqqxg6xr9wQCJVtCJxvraGnSaQkiB6eQcH3zwAf7u7/4OBwcHqMoSxlgcHh5ib+8qZrMZ7t69C2stJpNzPHv2DOfn57hz5w62t7bx0U9/hrOzMxweHGJ7dwdPHj/B8ckxTk5OIKXEaDDE+uoqrl/dg5YKyDJopUKOqDEWSmsSZj7GjaWDQkOdzs8YJ+rzz2w2C5uCMZo8z1sm6DIngbWMK/rcWylgK2IjFh3bn6AX6wPD6aCSXttEmM8mhY81K2NJg87yPGi1HoXw14mEWfguQM60Rig2Qu3vV5gBjVa0zNxjzyQfFi+LSYtbbH6yScn3m81mWCwWAReNtez4e1xwu67rUAvDWgvdlLNyDfjoIinT8etcHMquBuGaVxv1DXVdQYs2WA6Q2cPYF6WORPiElCEmqDaULlFGXr341u7CL42qTsGaHqsL6mnrw2FA/S8+uA8hFxKOcswZYGczk0y96DBwFrDSO0x8fQMRp1DHwuryhbnM29PtazzR9J3muw5oef5qTx0ERywOxhhIayAgfQT3HPP5zOcren3Z2eAxnc/n4feiWAQNSXtszBhD4TIAFgUtyMViAa01FmqB+XxBYy8lOMbNORci70kRW4KRRK91c1b5+Xks+FkBOjzqum4OkU4QcCMMYxLKZcbc8jUiI3glgmijDzbvMcRBALdqmfnxXL+8fT1z8hdpXUEVj3WzD+ylz3AZTMJzEUMAcchG/PnY3Izv14UTNFwUjQwWX+QMoA9LKKnb0oJPplC8wYdwOEdFfB0AR1UthefkL4sFEjCdCh1LMTqQpAl2drYxnUxwenKKjfUNcHJ0lmX4xje+if2DQxweHmFltBoGlTZuY6cxLxYEn3xereeBvLBc/WccF8mgJO4k0UgSHSLFAU8K6fE2OvEFypK8hbWpsFgUMJ51lfqd+xNe+n6hIe0LGuXXP2V5DNI0CdRD4T0Pkvs/YOoK8/kMZUmV5HWioRMNpTTyLMXVvT2cHJ/g8eMn6A/6gANu3byJLz7/HMcnxzg4OMA3vvEN9Pt97O/vwxiDp0+foixLfPbZZ3j77bcxGPQxGPRxsH+Aqq6ws7OD1fEYDx88xEc/+wjf+73fRVksMJtMcbi/D6U1sizHeG0dla3JA+4kpGeoVUph0OtjNp1isVhgdXV16ULm8Y5NGBZ2ZVni7OysZXry5ypTYDalGqRZFCMVNFx/ePEaYS1beCsgbFSwBucPS18SjqEaKYglN93YwBuvv47d3R3KslkqAPwB96uXW63GjpiumekcUUlxbCMV2WmCYGPT/jKBdBmwz+QHrIXFAbe9Xg9lWeKjjz4KB5YQArdu3QppepoTp3n0hB9IIYDaEDup0gmpys6zrzoHOAkBz03lSn/CGSRKE3ZWGwhnAWfgTIViPkUutTfrAK7BSZucKHquX7+OZ8+eQiuFmzduQCWaglz7Ar/1m7+FH/zFf8Tdzz7H2uqGB5ctLV7RFM1oAF1aFEwBHTsAYhNPCAH4FBtiiZVI0wR5j4SVDJqE9KYjTUqv14MQAvM5qblVVfm8vwrCe0jhKHleKY0kTYg2yN+/rhthLhQXhH3xAuu6w/mUyvPMh5lEi9G5EKRI2EKJqioBfyJaZ0IIxI2bN/HazVsQEDg4PMBoNISUCm+9+RZ+9vOPcHh4hOPjE/zzf/7PcXJyjEePHmE4HOLLL7/EwcEBPvzwQ/z3//3/CSsrIwyHQzx98gSD4QDf/OY3cf3aNdz77B7+9oc/xP/4P/4rFFWJw+Mj/Pj997Gxvont3R1cv30bp6encDVpv7Z2EIoW9MpohMn5OSaTCba2tsJYc8hJd4Ow5hZHok8mk7A5mTY8z3MsyimKRYGiKIIwYyuBtgQfmG1WYp4nDodpeP0FGEN2vjyhVALKSWRJiuG4j3F/gPEwQ6IVCiEItw3flh3k+ldjUi5r1tqAUXHjw3M2oyycLMvCgcle/izLQqrdZRrWZVochzxRiUEXhBkLzOfPn+Nv//Zv8ezZM1hr0ev18E//6T/F9vY2+v0+Qk/5+i4IBdf87k8i/wn/ShQCEd7yEx8sfRdML6bADkAp4uuROdfr5cFUoM96bUZKjMer0IkO5g1PdHMtLxr4OZpf2iZaMMXoPTbJgCZM4qKnxS9gX8OTNYEYp7JeGFIgKfXdWgthLaQ0gNMtR6ZrBnrpxL4MTI3Nz5ASEr8XmaEObbPUStkCcaUXzqPRiJL7NXGODYdDLOZkftZ1jdXVVUynk4BnzOdzTM4nmE6nEIK59xWKokDe6yHPcwwHQ1hrcXZ2BoDqJRQ+KrzXH6CsKl+Fq9FqaJoaSIDjkWLzJG6xdyvOE2VBHqfScNNao6pq1NHrbFaKZhn58YxM+OameJGgid8RgqqHZVmKZCSQ554KKFqD/B3hv+D8zdp771fTYmx2GR7Ge5SZjwGEFLOuWR+3r+L5BBDYjrk/xhhfE+MYxhgMBoPgKBBCQDdCqTkLSBRQsRDnAFg+fZgU0WMcDhQMCUdBtiy0+IpCwJoai+kUeZYjTTIIqBAASs/mGTmVwspoBVf3rpKZE4GepBEB165ew2JR4OrVq+j3e0sGA9H3gvSBExHuZT33Cp++/itc2EIpgdrUqGt1oYpzPOgcAJhoTQLbWpi6RpamYSMWZQFZlxBCYq7mkFpDaY281wt9ZSF02Xp9kVBj7CJJksDYwd+hzUwCFt6TxvFT1lsxzlpUZYmjw0MIKbC+voZvvPtuYA65cmUXv/Zr72E6m6KqamxubqKqSiwWczx9+pQWUKKxvb1F9T89O+3R0RHyPMfKaCUcCsqX+vv8i8/x2ad3sbG5CakkTs/O8OFPfoK9vStQWqFY0EmvtUaiNf72hz/E6ckJjDHY2dlpzUnAuaK5JKdUQ07pHJEyxpgZHz4CVCUqyzIC8cEb+aIWTCuKDglK6xOwQkJ6KIQPcI4dJGZlgmCso3+VFMh6ComSMDY2YZctsssWxAve+yW12IzvOk3iHzYnnWsyMBiUr6qqZX7GJuhlMWTcYg2O5/Hjjz/GgwcPfKnGnZayEbz6UiwPkpLCQIqEJsiYEEtlYUi4+M9ZYyGVhZDEeuGMgBMKGpSvVlYVzs9OMewN0Et6kE7DOYqziV3fidZYX1/HaGXkH5bqEwpBFZuEEnjzjTdx5coelE6DR4MGOQxDWODBRvdCg4NUrbVw0kJL4iKDg09XoqDMLEs9N5NsaGRsiLYLWhkHb7IwM3WNuqowGg4BR+79xXwWaJOstUiyHD1fJ/NF+MGrNsYTLjBreOcEazTSOfTyHEmaEkGlMYCzqE0NU1d48uQpdq/sYndnB5sbmzifTuHg8NrtW7hx8yYtKqUwHo+RJFSo+Uc/+hHW1taQpimuX7+GjY0N9Ad91HWNp0+fYnVtFevr6yEURGsFayw+/PBDvP+jH+F/+Bf/AkeHxzg4PMTde5/h//ynf4p+NoAxUwBAmiRIkwT/3z/7MyRJgtXVVezu7mJzczPMCzPANlTlvohKpDUDCFhMXLSW6qAKYr5NyPNs0Wgk1llCeIVPBBeO1q2LtEAICKngImEGpvTRGk6QY0Q4ByQWSgsMMwUYAVPGJiw9jYAIGQX/rSCzGGgH0DIzgXbgNodlxHhYWZYh75n3Sr/fD55lztRYJtC68Wt8nyRJ8P777+OLL77AjRs38Fu/9Vvo9XqYzWaBaME5h8gg5guycGh4mhw4NQjMW9gMdmQ6BmU5dIgWRe2jtcmRsCQexavaiSZsKXKCgvVtKahcV57nKGt7YZBfPEPR6RouzkwXfBs2w5p8QPZ4RcMTBpmv05RKI+1McYiGo7i1AGIaA0iFJOJMD5PpohtEE7v0UaLn4J8QqhB9l/EcDmTVik5HYSMyRf9vsZhDgMq/raQ5JrMpnAP6/T6ytAedJEhSAmR7vV4AYzksZDAYhIVd+srjpjZIkyT0Wfq0r9OzUxweHRHmKE9RViWOjo58BorXmCKz+dmzZxgOh8iyLNwzHocG720ORtHBRmNTKfaAAhRaoXxaG6EJzbg389RMUwTOgmPERPsDPFO0vKJ5khJU5d0J1I5Thlpd77RlL/5qbM4XBcXGY98dWz5gi6IIwoxxyjioubWPLrl/rAWenJzg5OQEb7zxBra3tzEYDHB2doazs7Mwvvrhl1+2PBCk1gmkGWlmpIWR95Ey+02jNQEQgmiz4QMN4USUXG5RFQUmZ+dYHawjQQ7hhA/GBeKJWSwWePToEWpjyMO1uorxeOzNQzYL6QRNtAybI8aCeHCaBUkmAzsB6LRwgDBAoqEkpfk4S4wFOknQ7w9gnUFV1SEmjIUeCzA20eDo1I8HnzyWBARnKdHZWGsh69oLj4hy+ivaDMsWFlNexy2OtzI+i0EIQEh4BwxpWk0QrueJKwrPYkGBoHVdw9k54PMxjY8BG4/HePfdd9Hr9ZAkCbY3t/Ds2TNMZ7OAcbL2xA6SXq+BBaRSGI5WsHsFGAyHGA6HJAh9dHwvSzGZTHB+fg4hBLa3t3Hnzh2MRiMfAKsjxw6i3NTGRIo3yTKTkR1FtGZ4LijkwkZTc9mG43XGOCsLL7Y4HGLMmVZkbYCKyJf9fERQB9iMhZer/nkurgL8fQs0fuaW0wMdhQDtgz02CePWNQWZIGBZcHO3D3wvJn+01uL69eshCDrPc6yvrwfoQX/0k58gz3P0ej2Mx2Nyc2Yag4FEv0/FV6VQPhWJhBlYGjsJJQzgagCmyVN0jmilrcF8Osfh4SFuf/MNuEKhmlO5OtYjeDDOz6f44Q//DvPFAuvr63j7nXcwGo0ghCSKYQUob35SpBQAuI6k96wXjk/fBlcyxqAsShgjYGwJm6VIdII0ETA1LTwSoms4n5zh7OwE1vpASi/MrHWAsNBCUqQ/RMAM6GGoT0JKaKnRF7QxCI+rMZ3NYGtfjZuPZPFiXGzZQgMakjulGLNBKOhS1xW4fmdVVXBSQvZzX/hKQEkBpRISahCYmwJlscB0qiFVETYlaVgLVKxtORJkW1tb+P73v4/FYgEBYGd7B3/2Z3+G5/vP0ev3fbJ5H4DF2dkpAGLMhSAcSWqFjc0tbO/sktd1sYDUGvPF3JvNOfYfPMDPfvYzCCFw+/ZtfPe73/WmTebTrURwYrBTiDdXXbM5CcQbP9bWSKNtePCs82zBUpF327P1SqVgrU/4D7icT3ljL7q3HoTHd5WSMI7mnctUWOdQVRYLJ6EFFSELppaADx/yMXCSD2QX5uJX3XhNxqzI3LqHRawBszbWFU6c08ueSfakM6VTr9db6v3kPNyzszPUdR3CgzjE5urVq8G7rU9PTlD1+zB1TWaBcwASpKn2aTBk1ztfzIRjykKGrefFB8jksh0voqlrlIsCWZrDGKBC3ZxG0RhVVYWDg0PMZjMIiCCJqbiNa8xNr9VRjc5m0JvBbT7LmltLgzMUcmK08jmZNspmUEE75fJswdXuTW6ATlRnCeRtAaSRh1XABwHDwToZTulubumyRbGsLVf32xuUr8e880FLiT4nvGxuPLb0mjEGpq5gbJhBj7lRzuZsPod1loD+PMfu7i6FUziHq1ev4vz8HE8eP8HQY56UR+uCt6sF3HvNrecXpTUGh8dHwQxRkuqFHh0dQQiB0WiEjY0NzOfzIMjihc9mRvx3d0y648QqkBDgrDvWr7x52NV/Lv7VQBb8YEAoItyaZ/qcdUBdU5UzJXm9xNeONHX+tXvO/YrlWqx5Acv2W/O5WFNjjY73HSsVsfnJzhn2gC7znMYCzbmmJgZAeN5gMAjcevq2LxmfpgkFeUoJJYByUeK0PoYUUwiRwoBMNKkArVNomUCrBEkiIZX1waDcA+HTgirAUfEQfktAtOZfMjGd1xpWVlagE4395/sQQmA4GGE4HGF9fZ1qDKBZSA7Nho6GlTsBXvRKUZiB0hQnVpR+MEF89nVpw2A6wRqdQ1XXlBLlqX788gfQ9vYE5gMgijlyrR7FE8XeznjCXtURwJ/lBaNUGsxwbsxCwKp/7KlD9MMeT670xLhbZKBBCHrGPMtgvJCM2SsAIta8efMm8l6ONEsxHq9gdXWMx48e4cMPP8Tz58+D8Lxy5QoODw/xt3/3Q7z99tvkRPBFfFnbrKsK0+kUp6enURaDwWJRIMsoJWh/fx9ra2uhDkIcCrBMm7jYvIkXTMxmAV/Ei5Ybe8KfDIGggWNvuvhn9PtPf/ozbK6Ncfvmnr9X96qX3vJX1uLDoXsIdDHL+DvL/o6BfOdcYAjm9RDXDIjT1dj8BIiYlOPPuo3qSTzH3bt3of+73/4tWOtCYvJisUBRLDA9O8VsdoLaOFgrYVwFnRBlSp7lyLMeenmO0coAaaohhCJeMEvqtlIS5/M5rLEYD1eISNiffo4SC0gwSNli09je3oYxBnfv3sXPPvoIu7tXcPvO61hZWUGSsls9OhFF4xbmFCReCOyJSpIEm5ubUFoAsJhMiXHC1DXRPRc1pHfRA8SgUVuLRVFCedMjTYlqG5IEExUBoU1Ym4qEmWChFaXpkHeDJhF0CcWJuf7vr9p4sRGwetERUhRlO3dO8LiTcwNe+FpD8Vd5mkJr5RdXpBJ4rTZJCU9lbx8HofJ4T2ZTfPc3fwNVXcHUFAs0m8/w4Ycf4t/9r/8rHBD41979xrtwAP7f//P/B/+Xf/Ev8M477yJdWyNng09dOzo4xNHBIZ48fhJokKqqxPn5BEpRbNPdu3fx27/92xiNRoEKqQHaZRRXRnO+rAWnVjgQYy6vRnMilEHA+vQv0VwgbMyWlsixLwwhRIrX//a//Rl+7Z03cfvmXoTvNlk4zkvYFwfs/P212GEBIJhzfIDGHuFuOlGstV3mJOBgc36fmVpi72lcWUsphdPT0xCQ27Vk6rrG3bt38W//7b+FvrKzg6quiQHCx0qVBVCXNWaTCYrSwFigdiXSNEHd6xFe5CgOzZoUzgrAeXsfAByZYsaD3inHXsVeUYjWVLFl2Ov3MJ/NcXpygqOjI0ipsL29E7xvrfPAsSd1iWYWAbhKCSRJDq0lHAzKak5qL0QUABiBjmiAR+cAFTywoglJ8TFCUkq4ur0B4vQq7lHj9GgKp8QLoNtepKnFJ+cyr27sABDCUx1BBOHEY8cmKeGiXDauCbTlzkspoVXiQew6RH3zmFRVie2dbWilfNrRGA8fPsTn9+7h/v37WBmPsbm5CSEE1tc3sLG5gU8//RQnp6eoah9X5gMukyRBbWpKmZlOIXXDpsvaoDEGJycnABDCXPg9PuHjDencRcHAwotnCxfEh4i0owvh4STIonkSgmENPy4ivloz7vfvf4ndrfV4NlvWpYj++99InrW0qmU41rLfu6/xoQK06bXj68Xez27wLQfMSg85LMPh+BonJye4d+8eNBwgnICWCr0shzMWWlJ+XJYOUdUGtXWwrob08UJKUn6fcwbT6TkWCwUpNYScwVQCwhLIPJ9OATgMhwNoJVELg4Z91RefsyzaSONKkxTZaoZbt25hNCITczqd4tNPP8V4vILhcITReBxMP+EBDodmQdH/nY8TapQ4G7F6pmnqwyoEqHamQpqlxCSbZRgOR1TExBenKKsKAm1WVxYW5AxoiuQCwWr22ItPdJcN5sftVc3LbjPGBK5+dK7BCfDd0AJEi5SxMwH4eplT6IRSsYR3tAQzA83i6y5OPqGLokAlJSpPTZRlGXZ2drCxsYGtrS3cuHEDQgjkeYa1tTW88eabODs/x+PHT7C9tY0Y1/z83ucwxuDOnTv4/P4XXmiTmVEUBc7Pz0ONTwDY39/H9vZ2GEtjTFj8TAhAAcSxJ7mR7RxiAVyUHS4+AALIH33WsdeyEUOUlhT51B2Ls5hEM7oJa4GOTVa3nPbuV9RetCZjzeyy73Y1tBfBKCwwWVCxqVnXdKDVdY08z4OzpytAj46OMJlMYIyBRg0oSEiVYjwcY5gPUBuDcm0LbC5V1kAIwpCKssBiMUdRLFCWCxzsH6KuDYwB6krD1IKsMWcxyATWV4bY2d5CliYoRA1rKnKtO1B5udp6j6GEsw6DwQAbGxt44403cHBwgP39fTx9+hQ///nPcPXaNVy/fgPf+ta3kGQ5lFQQkDDWB+FK4UtGeqGlpDerXJgIB4skTZGkxFHW61lwtISQksIGhiMkSRqYIOraYDKbQQIh4js+aRicjKuEc9UpP6uoTQ0lJRX4EA1UI2hGX7i4lrWqqtDvU8qQFM1mhHOoquako8tTeA3jSkxyKb12MZ1SvUylE/QHI2hNGQVaJxA68UKZnDlSyRDWwcK7rmtKV4rA3uFwiHfffRevv/46br32Gr71rW8BUmBlPMbNW7fwj/7xP8bnn3+O+WKB9977taAjGWPwH//Tf8K1vT384R/8Ae793/9vYDqo9fV1PHr0CE+fPsX5+TkODg5QliV+9KMf4U//9E/Doq/rGoPBAP1+31MM1TBe2+NNRoeog3BsOAoyo9l08pNkXeNRlD7in4U7m5DO26qsSPFvDo48k8b5zBgXQnVIefOmLcgLCiFb13Dhr19dizGurgDiPEmgnRkQf5f/Xaa1dZ0IQNsDGjNoFEURUqZWV1cxm80wm80uYHZffPFFIDzQcB6EF4BKMyDNvIlFPPlOONSOPJCLosBkOsWZ8GlKC4PpdOIxGotyIWGMpPQnZyDXBsBogOFgAA3mL7MQQnnchhaCdCI4BpI0xcrKCnZ2dtDzVZRmsxk+++wuHIB+f0BaSfRAQRNjiiEvKeK5cI6rfhIxpFK0cKz2C9nXcWTNTCcJDR4AGIuyqkiYofFgNpoZuegZL2up5fwThF9Qk4IzAZdM/osan5BEPX1RM4tP0JZmFuEVjC/yqae1RpJSgr0G4JT2pABNoK1UDQ1PM7YE4sbY52g0wurqKjY2NrC7u4tr165BCGIbWVtdxZ07d/DBBx+gYAEDjgm0uP/FF7iys4Pbr70WnoFwFDI5JpNJ0MzOzs7w+eeft4Kc2dRkjEUIXg+xluCpp7Bcy2gMy5idg4N5RZAxjZbFarifz/hijI059jS3NbMY5wXvhSVz/qtsXfCfzXZeV8vyY192va6J2nUydEkCmBp9a2sLVVVhPp9f2CfHx8cBw9WsGLdsdbgAGsevSimR6AR5lsO6muoCuAplaVBXDlWhYS0JM2ErrK3kGA4HNM+WCqM01ELLHzBeXFprjEYj7Oxs4/z8FlZWVmAt4SVKJ+jpJCwqIZoFFmCz6NpVVaG2FRwoNStJEigpAajolAxD77UrSfUBEiDv9aBcMxbWNjY8F82VHMHeFRgOLe8iCdxY0rYn/qI3bXnrgqsIOF8bJI2v08g1X7BCSiruorUPe6DnqSqgNhYDnYBZpaVsSAiXYiferi7LMpDsbW9vY2VlBc453L9/H1JK1LXB/v4+ACANqUnAbDbD0ydPsL6+jpWVMZTSrbEQQmAyocT2tbW1QOK3uroK5fG6g4ODACJba/H06dNA6cRsDMFJUNt2/ZB4LfkXGmEYY2EIOFejSfnvCYJtGo27WTQODqurqxgM+o0Ac+GMCYdwJ+yb+vTfWLrFOFf8dyzsXqaZLbvmZRpcrLE557C5uQnnHH7+85+HLJTRaBTogXZ3d6ElVBBk4TTyoDEc1cxUgsrSJ1JD9AdIE42R6aG2K9jd2YS1AtYq2DoHnNe66gK9xCIRxGlGbJsGSnrTUikIoSj+VogAnMaSutfLsbd3BcPhADdv3sL+/j7Ozs/x+eefI8976PUoIV1yClHA3+h5mI9NCIHZbIaimqM2BPYPh0OkSRqocwSI0dQ6L8gVUfdonSADkOY9SEtVhliTSdOUioZUFchFq1o5aX4oIeBQlkWLVQBecPCJHT4ctcuwBsapug4A5xyqqghBjbE2GOJ4BMDaBuMTfTgSZELCOng2CaIF7/WH4NhS5bnZWPtp+tPgaNZT7rCZ8N5772E0GsE5hx/84AfQaQIpFY6OTgCQBsfFU5/vP8df/dVf4fXXX8eNGzcoDMPw5pHQWuDp0yd4/vw5vv3tb+Px48eoqgq3b99GlmV4+vQpPvroI+zu7nomD4G//uu/9trhDn7jN369RVmzmBewNc0pQRA+K0CyV7M97mHjMdbGwotxtNZ56A1nXk/+vduv3cbOzg5IoW6yD+KYtUacxQ6vWH371bRlay8wrcg2ySVw+XqNr9f1gna1fN47HJfIwuydd95BlmX41//6X2Nvbw97e3t4++23MZ/PsbGxge9+97vEmgGwCBDRvxJUS7M5NaSUSKVCkigACSC4gjYxmDrbh4QGnIWt5tCiRL2YYn56CkoupwBc2lg+EVg09/RPEx4sSTTG4xWsrIywvb2Nuq5xfHyCw8MDFEWDCfHXGhYCBv4dxbw6ArkXRYGqLpEkZO4oqaEV6AOerwzWUGXtwPZAlYJ0JqCshfXCis0yxxMMiii/EB3tn8uYOopej1pHm+y2yxYI3yNoZpEZcBGTiMbJf5bGrFk4SiUABOZFSZqZr57jopOYN6yL7t/cp7kJx6FprXH79m1IpTCZTPDpp58izTIkWYrpZB6orblNJhPcu3cP733z17C2vg6ltS9K7Q8FIXB6eobz83Nsbm7i008/hbUWV65cgVIK8/k85HKyl/qTTz7BtWvXQhhNHNZSlTVgo4j2jhZ7QZrF4x/bLaSWIXhGRVsQiOZL2NjYwMpo6A+5Zt2TVeKa6zr330wde5FWtSzObJmG9Sra2WXaHa/LWDPb3d3F0dER/uN//I+YTqew1obo/8FggM3NTZ9oHu4Zr/p4l/nAVgACHPEPIMTciGA2hSkWAuGjTkCSmwHS0eZy0S7mBSBVVKrdv8d1LqWk7Pu1tVUkae4poBEWUtvr1PSEH4OocIhXSgjA1AaVLIkN0GtlWmkP2rLpCT/IaIZJ+LxGISAUBdIyoO4gUBsL+LxONlUJ9PVFO6Rs9TLGeC+b/GUCLTCLdD5njPG89IJizbTygbyN4dK9ZhBSzoVcTyGZc99/x7O/xsde05nm2iwsCb52WHi6bVPXuLq3x1IJqSJsdG28isV8jkQr5GmKvStXsLa+hl6PDkqtFebzGY6ODikk4/QYi8UcvV6OoiAq7uFwACUpRGQ6nXjG2wGstbh27SpGoyHgLA4ODjDoD2As0RSNhiuQSsAYCg1xgnptnS+GHYatMSbjKXIgq0M4A8nMyoiEvRCAk2GtOxisbaxguNKPQnV4fzWjSl/l12y4F41rM1dh7i5pXY3nZW0ZMN8F7buxZcuu0RVSy9plFke3L7ymsyzD+vo67ty5g93dXayvr6PX62F1dQ2TCVWm16FoLF+EugyGy2nkFARFZUGC8tgAQDgFmggFQMFxwWA4SEiYysFWAsIoJEihXQXlDKQizxGso9PXUoGTLEuhEgl4XM06LjNGbAO7uzsYDodI0hzD4RDWOl/Y1nlo3wcfeo9TiP1yDovFHDpVSFQK52oUiwXKRQGBOeAQEu2zPAFEAiG1v7Z/IgvKSVWATFPv2QScEMj7QwoY9R4zUVY+NktBJVTXwPhnVVoDHSF0mVYWn26sDfJcMbVO82Va7OWigJISSggU8ynGKyvQUvgHYPDZx5gBEDKqvQBAJxoWQOIcsjz1XeUcRO9xEwKJ9JW0hIOVjpL1/WYWlgSqcsDR82dUrEQp/OEf/gHOTk7Jezqb49q1GxiNRjh8+hSr4zHWx2N8/3u/h/HaKlZGK4B06PdzHB7u48Of/gTTyQSffvIzQAhsba7h5PgAeZ7j2rUrSFKJ2fQMTx4/xNW9K1gZE5daniV4/PgJptMJ3v/Rj/Hd3/xNlGWJv/7Pf41/9Mf/CEmWYFEWWBmuACDqptmsoiO2pRn5Q9CS2SglhSspV0FYBe0M5WMKgYp3jwMgPN+dE3Ciwju/9hrWRkOoFN4FpGkP2QpcF8VYQMgEnEbYlHysIZD8vTgHugdp7F2MG3szlzkAugKvK7BI3ViOkXXN1fhaRVFgfX0d/X4fu7u7sNZiNBpha2sHQkh8+OGH+PDDD8mbSVds7kiHkc+/bNnqDsIRHbavmwPHAk1wNHUEDBsHZ0joSWgopyGthJAIRXwVn2dChOIYzclDm5XUTWA8HmNlZQSd9GAbpuxweMYD1VAQU6vqCkmqkWhFsXNlBWssrBEUZ6c1nDHQCaCsgHPEx2aB4H2izU8Cltk8nDVIsozMTetQVk0tS+Il55MalI61xKX9qi0WbIxfxaqdgw+fEAJKUBV2KQDFIStoLxZaa8JHzNcBF5NGQnra6miEERdwFoJjqRys8OlovhqWsBZCOUg4TM7OoBKNvN/Du++8jaePn+Do4BCLxQJ3XrsFrRPc//xz9LMMw0Efm2+9BaEUhATmiznSLMH55AyPHj3A8fExnj57guFggNFogNlsAimB9bUxtJIoigVOTo6xtjbG6toaceStraIsC0wmZ7h//z6+/Z3vUN2Cu3fxj/74H0IlChYWaZ4BjqpazbxmGcHviM1BCzqPrLPktXc1FDhNHEENoKb8KAk4GOxd20IvSSA1X5e50GpWWv0dOXWvBpOiLhcFv/wWxxB2X+dwiVfR9F61LfOadu85GAywvr6ON954w+fsSoxGxIr88cef4Nmz5+iE1NLwCQCtoOlQwCQWbs3fHsOMTjKO9HcBy4nv4VhdbozUEE+SZhmZcdHnBejEpAeXrde7gxLe8/1nTaQZNB8npmhjSiEB25w0pq5RSlAeIiSkzryAleGCy0w+6SlN0jQN1m8jcJrYM8YJW9CuaMahaxpc9nf75Gzs4NpnZ+BFi00IwPq6oeH6F03ROKwjbGo25zt4DgPZPD589yYVBoFiiOlfqooOlJCALMnRJBMV4ve4KEovz1EPR1j3qU/x4meKGIopI8/y0eEh5osFEq0xnUxRlpTyVHuGhcViAeODaZ2juptwDqamqHMTAPmLWFAQOCJeg0x8ILzKHg1rGCMX6nGS1iYugRlEuF4ztp2LvaR91VCf7ve62lK3fW1hFl1umbBc1h92OHG4Bn3OhsDwwWCAvb09aKlUo9qwTedv5KLsccFIOnxxD8hGc3OAhYWzAk7acBmiDLbkkZIU1ewEqD6lIi2F6YuHgwHee+89bKyvR6CwCPNXlkVIiHbec8iD7UQzATEwbq0gckifFkGMpxoKAporTjlJHi0vcGbzGeyMzAQhNVbG6+j1UyitYUwFC9cCu52jMA9mxEzTJLxnjPUBm+Qs0EpfdAB0GidNdxt7Lzn9gxk7g4blNeP5bOZ52kTYeMHRwlikNynhaM5aDKxRziVpZn6OPV5mHahoKrgivF8WoJzEuqogWdBaAtrhvan7z5+jruhkz7IMJydHcL5u5eHhgQ/IlUhyX20nSfAP/+gfgkN2nHM4PT31gccimN4cAX58fIzFYoHFYoEPPvgAH/zkJ7hx/TrKssJsNsfz589xfn6OxWKBw8NDlEWJJElRVRUeP3kMU5EjZ3d3B662qKPKTDzXDEhbS2uKNPVIq7DW5+9G1ozgDQkovwaIXkp5OIXqhFo21UMBazo0GronFWpt4gWCJm6vKnS6Zt5l9TCXccV9VcG2zHnQPbR5H/B7fFjN53M/HhLOTSCEwK1bN/Enf/In0DHY3lwtXBWNMIs8nUJAOA4hFR5v8adYq3SdCwItvrbzWJfwCcFSCORZjps3b0Ipr7149Ya7QqRuPtOesWh+lz8baTgMalvDlcpFEGgQgixjJyCEQl3WIdC0KAqUVYXS1NA6Ra8/Ql+wKRafknySiJDhb60NuYLOOV/1nFK2uGbisgUST+KyE7EL9nJYCEfgB6zZUYxXnmWta7Gw47Fpn/h+IUXMGpx3qrVu9N+WGQCQyRmZIo6i5RsHhAzXsKANeXpygixthPB0MiESTOMwm099uplD1qc4ov6QDrjTkxNMJhNkWYY3Xn+9NTaslc1mM0ynk8Bt9cknn+B//4u/wLe+9S2srW1AComTkxMK0SkKKo7sQ2y4bkFdVpCCOLKIPODiRuW/ra8s1oRkCHBAbDRcrQXjLJp6Aa4pXdgIS1+uUUk0VFFxcGnHefT31KgPF9fqZZraV9UCu06F+PdlHk42Nfn3hqaLIgS2t7dx69atxsxsTRzDVfHGbfXed4r/KygtpN05G1KJmo5dlOT8m7UWi8UCeU6bVApQxfBFgflsjvniHHmeIs97GI7GIM1s2UjFg9Oo6wH3cnRqsvgVAC1KJyEEhYxIZaBcN8o9jjtikRD/S683k8GcYQpK2eDd9J8KZqZrjc/L43Tiz10WssGbYik/lB+Ruq7BIA2FsFAmQVOEefn12/1hpcyFIWhor+k+wU8nQKSHEV2SEKTdOeGZRLxA5OuYukbl49WsB0lZa3fWYnW8CgcSiotFAecQTFDO91tbW4Pygbr9ft8zcFTI8jyE3iQ6wXw2A5xAL8/gnIXxZk2TtRGPRWfzugZ4CUIfDMA02p1zwGJewkgF1Um+jIc6mKFeqwvaNURrtXXXDn/367ZYS7psfb3s+y9uTfRc95O8XpeFeMR94882DoImhU53IcUmxCH+IsADCSE8S6qkpepPYefIYyfhKAixKmFr4jPTPkeS7F4HpTRdz1ooSUG2i2KBL774Ateu72HQHyBNFI6Pj3Dv7j188vEnUNqh18sxXh3j93//jzwI6QImxY3DEIyv+cnaIkXpE56iE42qrgmw9lH+VpBp1dd96DpBWVWYL0rSR53z+EqDTcHjco5cW970gjcjOZYpgxASxqZIvGnNJgKP2TLAc5lLPV64rAF28+McEHAFZpp1XkAIr745R0WRJ7Op1xQVjDNIktRjldIzt5K2yRycoV+OHTIEMziQyaWkgBXkaFFK+ewKMpMEGGJzPgme+quVgoSAkQZp0qPCL87CCoe6rjCZGDx6+MifykSAsLO1Da01iqLAb373uzg+PsbdTz8N1Dl37txBkiTo9/vY3t7GH/zBH+BHP3ofz549w+tvvI7zyQSLxRxXr11FnueeEVfg/v0vsbG+jrXVVdKoFwuUVekhBPJeSvbgsuAI4+IrPykJFfH707NzaAUVzXn88ACpUuglKVaHff8eVW4ia99BqYZxhoK5GwoeOMAJt1SgxX9/HfOPv8+wyIX15S7GMX61i9N/nC8AfumB6+8TWykc9xljaEII1HWJ2cwQDMUnRnMhGxZg8xr3hVY2U0m3zE7hYGwN4SfX1hVsXQOeOdQZv1AdaT8OZG4qSQUeyrLEkydPsLG5jjzLgQSYnJ/h88/v4T//5/+M0UoP/X4PW1ub+L3f+34Qso3xRH2nU9Rz7QvyJTqwILVh4bGWKJ0L8W2AI14vrSCVxNyXPQOYZz7GsiJ1OJjjMWe6g9ZccNdBe7aOoJt1Tpp4IruvcYsTcZctNvhFUAvSXJqA2kaD4oWw8InlSmkUdYXcgRLLpUJdWySJa6Uv8X052p2zLqzlzaz9ONVIlArzwN/m9DhraSErqaCl8v5RzjEFjHNYlAtUdY2qrlHOFqEoRp7lWPeEjHVZ4e233sKDBw/wn//6r5FkKZwDrl69Cq018jzH2toavv3tb+Pjn3+Cqqqwd/UqZvMZ5vM5tra2kGapJ3dUePbsGXp5D2maoiyJD66sSj+GNLdKNRaGn3z624c3SSECCzFcg+Xyl6wFDvZPkCmNlUEfYy/Moks1a8pRsBHA5h4Xyml/9rK18nUbr4/LQjO6h+1XvwHrZy9e6yyMmZsuZmiJMV7WtJ1zJMxiIIVNh4CBxSYUOMPfq7ydgW0ePU7PWNJROl7ar/mMfPZGOecwm1Fi6XA4xGjUDwSCi0UBKVNIqdFGgS5P0BWSNTaL2vPwkxJp4VT4enhSMMAdsEI2vaIPovv7hbuCPV7NddpDcpl6feFKHeHXmAECHAfm+HOgMV7mLQqHgPAeWK2hfR9Ex5wKiznYk6L1uK47v84D4KrDLLFsiJwL/Q0ePtAMctCvlBLCIrzPC5mL+gINC27e75PGK+mZsixDlmU4Pz+nFDZFFMsnJycBTD45PgGHtywWtNaYxpmyO1wkzGIt2oVnCJItPGPLEKS1Lpo9VBY1oBzKpI6GbsncC9AeEcvgjBe3F+Far6Kt8Zq8DMYIXYzW5Nc1by9d993XL7FW4qbjuDCy2GiyjCOAlzcka1PwG4FKxomwWIWgaG1YB2cMnKlpYRtPdxJVEbIewRfRpFd1jePjY8xmUwwHA+RZD1988TmyLMP3fv/3sLo6wvHxERaLBR48eIDr129hdZUYHuKHtJ5qRUofee3xhjzPYZzFbDHHfDGHksTL5qSDkrollL3Ygk6SkDEAcPZAe5MymMsx79bF+ggNqhAgDC6MH1rURLH6HC+O7t9AQ2jX1B6kyxhryUvM17JtLjMhPIGhI4A/zTL0BwNkeY6yqsEhL8Y6VDUV99BJAubcFyBci+et4QZz/nnIa13XNVLZpKIYQ9ic8GYC7UuL2vi6lGjyS62jkdNak1fTWsAIMkcVVUq33vwIualK4Y033sD65mZIkRsOh9je2cHOzi7+ww/+AscnpxivreL27dv4i7/4Czx8+BBHR0f4wQ9+gM2tTYzHa3j46BHefONNbG9vI001ev0ealN5p1AVHA2NV1zBWAvpeLYFmK9MChXOamtrKPj15QSOj86hANTzCq9d30VQHYJVwfRSHjdzzuOIbAWxdv9q+OpXbWzidTWzZZDIV21dIcROMyFoDcSMHEwAS9XCuHh3bBU0fWHBS6F7otn0QvhiIVFOHJmW0tu53gvjLkpppQSsqUiIWQtnjI9n8pqRoJPdWgMRTjxqpq5xenqK+XwR1MaHDx9hb28P3/2N38Da2hj37n2Ghw8f4MmTJ9ja2m193/ciBOPSSU8LRQiBNEtRLOYoqpK4wHo9pDqFUAKG3ewiViZFwyThzehY1aVZoS5wQQwIX7jEa2+keTRZDJTMzGN6UVDxRC9biLFwa3ub2NRpWFZNvdwTZ4zxcwskSYpev4/BYIiyrH1xYAtXVmDiS6WTIOQcaJNy44pIDEmQeWJgagOXEP5IsWQFIGTQtBrMg/BOKYi5g0J0aDy04rg+AdQNzdF0PsPCu+arqgqFZW/duoW9a9dIKDoBnSbY3NjA5uYm/uav/wbD0Qg3btzAtWvXMJlM8OTJE6KOmZ1je3sH16/dwLNnz+Ccw8bGBgAiRqhN7QvannuOuMqb9kRXbi0V+A36rGvAc0JkKKhaBJomidPTKYQxcBWnuDlQmK2hA9/PJzlGmrECJOgsiS2RX36LzcxlmNkv6x6xCckHH5M0cDSDC+PjD384yESHPRiThSqlwMFWfJtgz75KC0Ajmks4r350H5ytlAsGf/Q+U2Nzq00dtKo0TQOzalE2xTSW9iv8t7kXJ4wrq2CMJZI9IcJ9aYAJy3ee26zRJIC24Gybtt3naOXPCX7sFwchLh2TzmHRfeauEGz4xLy3NggNF8gZvXgPgKrwSfUWjmpq+gDglpnRMoe6zxCF0vgDrmViBj3C4eLM+y/Fiiz/V7Re6P7ZGoOAMVkag6qm/NleL0fe6wWiRq11cPGvrKwg72VIkiRKZmcmYHJuScdkAxpaGxhjlwiTtqm9TNS46DOsNS/nz79oPgXrontN51rr6Rf1anYPv6+r2b3KGr/MfL0YBgN0R/NFjg1d2zqYgAImuOYZ6+FrMTOng2vBXU2cjQt0Ks5YuNpAeg1JCeEDAgXl6XXZOoFGlQRXmZYwtYGSMhSb7fcHGA5HOPjyASqvfThr/SlIfQinoscahCTzsJf3fQUg8vZxJXJTW0xnUwgIH8cmYJyFsQZp1oPw2lbb7GsEpRMiYieVvlYiJYGbuoZgcFh67dTFC0b6OgqkyXRd48smHACW4Rm192LGJ9uioBqY2udxLgpfs1BrpFlOmKOjOYGlylVSaQiVgKt8N1WPKLyBrx9+JEWcEQZmUddVSG43dUUajHM+or6BF7QSgOVN7uudMjwQFE4XacoOWipAkhmmpaJsESlRFgWeP38Oax3qqkbay6GVwq1br2EwXEGWZVhdXYWUEufn58jzHH/4R38Eqcj0npxPMegPovQttjQoo2NlRaKuByjLCufn58EU42QUGwmQxrnuxXLYRN60kpT7arkQsAAgbPQZMi+ts8GBoLwD4DLoYRmOdRmu9CqN6aK6ZubLksxftfF1WQMEGr6/5vXY+eDCWDtradmgEeahGIpxNZSjtBuq8UhmIWMljcbVCDPih4hiqvwNXW3gjKVFamwAvqX0UfaCqlkHxoCWqdqkOfEJyV6Mfr8XCssOhwNMJudkisLjTqLpo4i1P282SymJXlrRSmMPSF1VMPUC89mcBkNrovHx2XX9wQoo/5SjsnlsYq1PwASBJSjKGyKwYxCGQp8LYSQslLxAqOsakG2qnu4CjV9rCzPaAKauUdVemPk4uqIsAUeMwUmiUZQlPaPWSLMshMjQnNAm0RDQSbOp+PpSNInuvBiDaR5pghwSIqRAXVboDXpUp7Q2/lBQIXMgjia3zl9b+AMithH8AaK8OQEvaBJP6cN1PYuixGJRYLBCLLc3blzHG2++FQSTECIE3/7xH/8xalPh8ePH+PDDn4YDk1UrIYnpL00pttE5oKoM5vM5qoocVcSa0swnOzMMvyQYs2wOKCkpDIhMTEBIBxGEemOYWC/8heTN33iy+bMv0oK6uNJXaSzMupp/TDz6dTU37jeAEALCsEFM0SR11H/HIVgUBA9hAyzGgozizFyjyl5iOfHjRD+RJtQ1s1jdDxPsza5IG4+3YRBAvpVlEVhKjWWMKZLSLxzESGMKWrvwD+5j0ISEUuTVFNIGWh6wNsomE0hoRX9Gz9jcbtlJyHFdjSkQdQ9s//9iqnz7b15sLvRJCDYjG1ytWYhMH9QOwmRch51CAiIWKUvuHZuRCBpso9Ev20hu2apZ+ld8VMb9BxDqF/Bn2dPJ3vBYs+LvxsBzr9dDbRTSlOo4duP2+NrNeCEQKjIeG3rWnV/X7BEZj5dzSNIEyrlwXykErGwvskb+LDdav0r7RXGueF2/yMT7Zd3vsudj654OD56H6CsCJMwot8dvaEmLxAKXcMM5ENGiiH5AQKggDcxWNWCoOpL0NxOCaH9qa6LOsCeQJJ1SCp98+imePXuKtbV1nJ2doqpKf08yYaqyJGJFDkAND8tamF/kDSrvNyXBrHzq6oTAbQkJJRpOf+uBX2ObQNLY1Lw4wg0YziBmTJHNGyTMcWvRxosjclwsWRDxYoqrg/MYVL62pE4SCK3Jswxv8gZTjoq55HkPSaKDx8wR50x4HhHNa9xt1m6EEDC2hnMNw4mpK2IQSRIwtxvA8XnwQpWfg7U0upc1zMZB82aNX4de8+MhUv7Q4d8ZFFaemEDrOoRqSEEm5HRyDusaTaXfJ7ihrEq6F7mfsbu7S6y3rell4em1UymQpSmo0hNhb7COqK8kcf7FDg4IX1/D8fxa3Lq5B+kceolElieQ0iB1ORbzGeU2h7vToSIFjxmlCS4z9ZYJmcvW0MWDcDmxYlf74sMiFm5f9zCOzWTWzuOcZCGa9d76XvRf31N/WHjowgZ1WMHBUGQ6yOMoHaUptS/HYoFCMyR4swASErYylLBr+RYimI7OOWJ14AHzlZWcc2GzfPrJJ5BSYjwekzCrWZhRQnJZVV6YXQzoawgLvbbE6lnAGugZCDdSUCpBmmTo5f0wcItihrKkFBqq36fJLDZxBL4DvNBkM5FNr7quUfso6UG/f0E762KFL8LH4gUV1O8OlsGNag9WFE4iBIAUWZoA1nqcsCRBmOXIe551QnghbyykjuiEwgZsFg3QCDOA6gM4H/JKwoxCcZIk8SZnZAYIrhXqPObhAAtoRZ4p58kGeI3Zug6By7z8WPCF+LJEN1iJD+2g+LAq5KaWZUn03YaL2CgMBgMkKSWXS8lBvO6iMAtCrGlKSaRJGqo9wQsZZ110iMaOF0AkCsInkDtncfPmVWRaIk8E8kxDauIrK8sFjBNUgxaAYGEmBWpTB0p4ViQ4Gf3Cho9ee1Ut6TKBFjcmOOian1/VqRX3KzYT+bChecYlz0Dyh+0B3n+8p3RV1VBKg8gz4tiv7oPRhYgBILzhJzTSkVrWaPtqMQ7SvYv0GgdhKVyYV1O6E1wkDOBLvMumC5cNGn+hZUvxi15NFQil0xphoSClB74j06HRErzG1xE0y5+MWgOkv7gt81DF94gxq+Y9eNOeIvEp1xQQnhE3CHDvpQyZBGFJxOqinzPBFE7xaLK5Gn087h8u0xB4HAWp+50J60INsWkbC7nu2DpW7xCZt0BIcmecx1kL5zd/nuehJCDBMeTiz7KMAmW9EFpyu+jZGd9dnvt6SXcBAGmaIEskUg1AEMZobcUr0o+fAATjU81FXyQ0lgm1F7VlToQXrc8X4W9fRUO7TPi11337MO/2tbld20Ouv/ziCTY3N7G6tkpuaj96QjiffE2nNDPINm5mOjkEBGlAXnJI/2OcAJyFEwTqcnxT0/v4QYDBoI9vfONd7F3ZDifAzs4url+/Fj6ntELey3H16lX0er3W90mbtDDOQrF5KRrix2A68aYKe8q74x3FBDHxHJuhcPEpATTf8sMZTTLV3MzCguagUWsMyrKE9GEQiU/dgSB3CkMmreFZskCMITMu8xWNYvSJI+PT1Nfu9Pev/YYntlcZno9e9uX2gnAXLQHRggNAG58FRRycC/+eiwBiGZmt7eeSiBGCuDwdHx7S53U6YwAn/QEqor5EnjXnKGXOs6FwlSx2rvA8cFHg9957DxDEraYTRbUh5gtc2buCXq+H2WxGzoVMe/aKONGbaJ2s17yVlHBS0Z7hdeA3IR/CxpTQQdBaSEXXs85hUczx6NFnODp6jHfeesfjaAmU1DDOwDkDYysIUYd+NM6AFwuQFwmeFwm6ZYcl0JiZsXb+y2iNgIoql8F1XqPmnGvhmrG1JYSA/vzeQziXIM9WoEdMyesgE7/Y+YTx9L0+ztmfIpRzF+hYQaeLdMQlBgv44KWIJih+EPpXCuJx/9Z7v+YLDBeYzWYwBlhbXeOuQ2tF+Znbuz5B2IULCVCiu7X8gAJxghUXWWVNJN6IWlGyO6yB1gmFKvB3wPmHsfbQqKJ8+rPWMxyNyDT1mM18PkVVVX6TSCRaQ+U5lG5ORCVk4BLtTjALS/IUNsKsMeXoO5RgXgezzQnKtazr2vP5C2ghIEW0GAWPUXQKxhPjPMNIMJ3IZFSe4JKTjrl8YKh74BehFIIw0miJcmybsOSBta6pPE9TRPFdIeAUTGTo0NSZEC1N11lLAb5+HKQUTbiRYAYNEmbf+c53UNc1ikUBiBRFUWI2n+Eb734TvV4f0+kUWZZC6l4QZnEzxsB4nIcySGTkffUmkBA+GoAqkWnNQbMWvggWnHMoFlPcvfsx7n76Ed59+10q9qIzpEmO2pB3elFMIUQJ5kRTPjDYucvxs/jfWPN61bYs9IcPy8vSnL5K65qpPEc2ghvYSmLhGaevxfshuip0WRqY2p984Ah2Ahv5Qy1Vl5dlJxmdrK/YPGAiwJc9GcIGocBG5c0AEiZ5TloIc105oEXb2zIzg4bYvUG7tRlW44/SZxlUbLq//CEumoNRMCqbCK9wgjqxPKR02Web0+qiyfWqC5ZNPw7uDaaNg18H4XHC88XXbh1KkQnUun+re+FEfNlwtL8eFhDPhbtgFV/+/eZAoH/p9X6/H5hmG6+yDDis8cy31tgQZS6lx2pc+znjPd19LFr/3VddWO/8PGVZYjaf06Hj+0JeWRsB4s0zSG9ttIZ6iXBZZqb9ou0yBwK/94s2IS7uy2XOiMvup0ejLQyHG+j1VqFUTtHJqOHsBA1dNgA0A0rqtIUTtmWKwDrY2lBeFRDiieJOxRrNMhYKpRVSl2Aw6AOgIidCCEwmUxwdHeHg4ACLRYnrN3rIe32+WBCydJ9OjIy/Pj+/deSsEN7UMz7/i0wnG32vvVpj4RWbH1mWUVyZs5jNZuAdx2ECTAlO5g9dmemIrDEwAITS9NOZvIv3FEizzGse0VhGO1wKcspUVeXNgxrWGVI+fXrZaGUM3qCCTUYeJ8saRse0fsGJXNc16qoK3GOWBocEhk+ksPDYIWTwfktOV4Gj9QPTyCvBq09E4y/Abvb4IGNWExUxoMQbg5hCFiGFxnmzaTQa4c0338DKykrwgBpToSgXROmjlI/HI0G3WCzIK5wkNJaCHk4K4XNNHT8NHASk0EQNLmoYoSBAVeETIZCmOba3t3BysoNPP/0Ub77xLno94CcffATjLAbDPm7cIBYQ7dN4tJYwtYMxrq2dXqKJhed9xcPuRWbmq+K+X7WR1h8zn9K/DA8451r1Yeu6qbMRC2u9urqL0Wgbg/4mhA9UhStR2YlX/zm0gRanCCYnwC52KTzlS2VJmNWWqhcx9gH4eK72Bmw63mh/WisfHEl5kdqXOzs7O8Pz/X08efIEZ+cTbG1fwdqaoLxINhudgxSSfnzQqifE9veEx9a8OSNoY5jaQAryrhnjaX86c0ZFWOgigdJXUCxTnueeZdViMjlv5Y1x/uBwMPCBwBXmsxmKooapKtRVSZOV5tCiqeIcm5gtNVwI5FnmLa5m4dKzNQvYOYvKs5DUdY2yKmBqi7IkgTNaGYMBcKE0rHEhOZ3CCmKB2iycMHfhRfq7qmqUVQVbG6oUDgEnibZccHlBRzQ4AJmPqeKiOISPWVjY2kFq1WhmrX54Y5wxKI+BOAjUTAMTYzrOBqjAGEsEjLx5PHvKeDzG+voGsiTHbDrDdDFBXZcoqwLOWfT6fVBldUHFkUvKasjyHoWnCLoHp8exDmk9BiClhqkWABwSWQHCQimHNBHIsz729q5gNjvFhx9+iN2da3BO4Qc/+N8BAVy7fhVXr+4iz1NoLaE0PUslDJyrW3PSbXEUf9sce3l7EWa2TEt61fYiYWqMBWcPAo1QZTgjxuriPRHvE52mObTOIGUSLgJXh83RwlCabkW/xSZHBILCd0x4sJmu3rrWhYdjk0fG1bMBY03DMeV/WnhB0B5i9V+0TJKO0G/d1PvhLrwePx1pAfH1mwtKKT2Q7S4EbvLAU9I6QDUUGm0qxsS6YxK/1sUZ4kafaz5LxWgaBk7Gu9iEqusaLAYutjgglO/T/lxLmDWvNs/SMclCaK6D/x5r6LEZ5C5e8tIWZqWFsbBm7l8IQs/5v3lTx+OqPDUQbNMXYwxlh1jjswzoclVF4SckYxveMvi/G/OcF50fT78+HcMzHr5VSpJ3M808Rkzr5vz8HBDAbDZDVdXo9bKQNdPl4A+3fNG+WjaCS0zG7nW613qZx7P7nVcVeuEeDaIQvh//cF2FWKDG99DrazvoZSMA3i0NCQELWwOz+RxKCgz7fe9FMKTV+NxKCUFxaM56/Lxm9eVCx7i37GmjjrTNGH4w3nyHhwc4OzvD6ckJDo8OURQLDEdDXLlyBb0872yoxq3dvSYvbBamvFGbLvqFEgV7wiFwhFJEvKdPjrUUwRPM3kMZqHnCySgEjKkxnU5AAaEU3CoFBWDmHAArNZyQRHPTEYSXga7Cj1dZlh7jcZhMJn4+qPo6aQnW58ZGWpyzgFD+sIk2pDeXugcYA7LxuPLfFg5p6ku1VRWsdahsGUx2oSh53Um/avylraNyhiQAReuWjeIXmUetLjVCUQrK/WWTn9U6mnYXjL9YYLJHt66JGUO4hgSQcjQdrGMqHPKgJVrAKe9Rc/66rXESrX8d4GPQFJQAdCKRpBI6EVCa5qAoS8wXC4xGIySJRr+f47u/+esoK3Jk/PBvf4jv/f7voqoM9g+e4+TkFKPRGKvjNQwGAxRFEdF7yyCMY8Ecz21r/URzH6wN55Z6LGMrYVl7VUG3rDXfa6+tWIjFl2ZaLppfOq6sddC7OzdoIVodqiZJAKZyOD0+h1ISWZIh0QrWKRjjIBOKnJcRluGsRV0VvhCv185Ec/YHLQQuyJX2ARJ90qu0Dx48wOf3Psdn9z6DMTVu3LiO6zeu47Xbr6E/GISNGQPVjSYWmSPhM3TjoK6CDlHqJ1F6A831KOiaBJxCm+m1SbMkY1YIz2Mv0k4goEVdlSgWlNMnQIull2XI0iRkMxSVwaKsMJlMWsKFWVa7qn+skfCCdtbg+Pgcpq4Aa725TR5JpSWkYNyBTGLt8SXmy2pOwcuLroTZchGVsbXIe8RKYcoS9aII+a9KCQjP3quTDEpxKhKZs84TS7IWrzyDB90D3jlCh6NUbd63ONawrisopZFlOS1urwU2GpNoFYlmppCqqihsBoq8okqR5zehKmAOnoIIEkryNUlIxZpfdx832qBDqhS0FkhShTyXyFIBLRzgiPF3MplifX0daZZgtDLEP/7jP8L5+RyffnoX/+bf/M/4nf/uN7FYzPDRRx/hs7v38Prrb+Ib3/gmdnZ2Ak06r5FYmAFNdko3xIHXJwu7mFEkxqf486zlX2A3RiPo4nzQWHN6VayusazaGlk3QJ4LGzUb25uZedaPvGMcCEh85WVVQxvp6abjtJxO3FakTSEyeZqeIihrjv+OTAU24Pgk42IS8/kcp2enODg4gFIStamRpikG/QG0Ut27NNeL34jNSzZt4n53+sefaE9A24Rh7TI+7RlbpDXTxGJZQyELtU83EmGy4EMGKPWotoAQdcuM6IKxl518DcALn0BPCeZaqkaQOdFIwNbAhItHI9g2sTujG5nejQZH9EoaUAYVYoxFQlgB2IuL2vlDj6WBXPJ8fAgub81Jxp8Jmy3Me3SoLfm69UGzVCWVNQASXM6JqBANB1nz2LjWWMSD2xw0zTgJQeEiHJoh/AfY7O8Pe36+gfX1NWhNwb37+/thLKfTKY6PTzCdTv1B0WCrXc0rxpLi9jLtqdHAL77+i3osLzOFu17MCxpkGOkwoC2Lis1+LSRhU7zBnBNEizNdYDErYUyNsiwxXkmR9xR6fQ2VKJpKf30WbUzjQpPegKCELwCMiTnrwoyzRDamxmQ2wdHhPqbTKaaTGWazGaSUGI1GWFtbxZUrV7C5uXGBZZVwIp/HFkH+nM/Gm45Py4inpTVkLLBagx5ZXDbCXMK3I80wCCHwJrRhPLRWEEgB+GBLSzThtakhIFA7oDYUoc7mKZnM9AxFUQRAtItJcMk0NhG0ysnsFdIH6gpIRTFmIT7MOjjpwnnUWmSi8/eSRUebxcLXSqP50BoKAIxFonWT0SFoHJkdwQchgMM/pYifK7q5iOewGW7nFzTPZ3ejBSEba+lhvOgZiN67K8BftfntJfg4w4XNKEDYpYhM81b5OJDmTALqGLdvvYaHDx/g8eMn6PVGqGvg0aNHmM2ncM5htLKC1167DSmInunevXu4efNmAMfTNEVRFHCOiuI617DD8Bh0TcgQJxgJvsu8maysxBpTd8wvHFbOhX8vM3GXCVeGaJrZ7uzVS2SqVjIN60cq0iTKyuL0eILzM6pFeHZ+is3NAbZ31nDt+jbSvClIEneFKiJ5fjG/EGlwFJxhU4Y4v2g5EAWxg0VVVzg6OsKHP/0p9p8/x8H+IW7evAWlFDY2NvDmm2/gtdu3cPXqHoVC+ABYKwRhdQIQiXc5es2JipooyjcVRAkd29ndFk8kefVsS4u03v1PmyWqYegoTg/h5PYCzVqQRw1IkwROE9YCH5ZRlgWKkkxEpTPoNMdgMECeZdCKOOjnszmKssB8Pg/c9PFCAYDFomHnTZIEWZpAS/II8rrkhUg5djYQBEqwycX70c8TP8SSxiah9U4PeDBbSAmVpJThQG5mVKYOxUmKqvT1F2jjJFJBC+mLI0sEGnZvKDgIuFDMglOw+ICJCCiNa70npWwsgSDohK/hSc9JfGR6ydNd1iINXDSaOA9ZJNb4aPcmkgY51GwYXwcLCwMtFE5OTvH06VNcu3YN/+E//ACff/4FVte2MeiP8PTpU5ydncI5h82NDfS+9R3cuH4b/+W//Bf8+Mc/xne+852Q2dDr9QgvBbC9vQ3js07IidDUB42FGeWnygvCrGtm8nrjNcR7JPZuthPFG8H2IgG4dJQjARgcW0sMvWZWmtYiv2fsyFpytde1QbEocXpyhjR1GK30ybXOoK11Ib0l7khzAEZmQNQR5ziavlkC1hL2c3JygoODAzx/vo+9vauQkmLNVlZWMBqN0O83ZnFjQcZ0LG1pTidoJJNcsDBbfSYN5eLpQV9gU8an7MQ+5G5jTCUIBo5hEwBImHEAcO2LDtd1jTSTkJqKaSRJisQXyi0Vlbtj7qdlwCzRYTfsA1prL1A8c27rBG2XLbso1Ol1J5aNxYWHDdfhIiRKSCDRnk5aADXNE0fNN1WyiNlWSEBJ5w+EMBVRr9jEj/9uj3dr4YPXMcIkuzCFotHYl5k1Lrqz67zXbS8y2VufaywYtFYs/V4UJeazOfr9Pk5PT/Hw0SMsCovVcRkKFTtHDpYkSaE1ae7Hx8coPYMMV+pi4UK5yw0fYAyPxM/U9VR2zdVlf3fby5wCl33vRa31+WhNXPgc+D16t1VqTghgPp9jPp8hSXIMB2NIoSGkQq8vUVfA06cHODtP0c9z9PIehv0e4L2AREhIplV8tFOhCgbPm9OtAatIJT49PcX5+Tmsc9je3sbOzi5ms2kIkhPogNN+AyipAMGTQWKOCs0qX2OQegUR42Wsg8TD8pLWASZZFNvI5oyt+WaiqT/Ws/AaQ8GsVVkSXtLrI8l6SLIMzhIoXHjNh0koGSvMPCNEPOFxOIhSjcYgQIwY4d6e+SCugEWPJdrRBJ1lErQPsukBMNjrnzFaavy38IdD4GfXGr28B50Y3ycH6XzJHEEstvBgv6hBeXJSgCMVrbUNqeeSxgcng9DN8o/XWjOPzt+CTPlmQ9D6fAXTxqFVSi7OGgkf8CeoBZXQq2uD2tREZWRr3P/8Czx48BCHR8c+3MggzzO8/fZbEFCw1qDXy3F8fAzA4fj4FFqnmE6nSNMUx8fH2NzcRJZlODg4wMHBQQjoPTg4QJ7n2NnZAYBQRZ7JEHltdQURH4ZduCUu8bZ87OPhvWhCvsjkXNa+TtqUDqYCACEUzs9PcX5+in5viDwdYXXVYGtrF/P5KSbTY9z95D5UAuxsb+PK7i5WBitwtvZu7ARGlIBohBkteAsIzikDpPJCyZGHyTmHoizw9OlT7O8fIEkSvP7mHbz++ht49uwpzs8nFMgJ0TAieCFsrYNKSJhVdQklQMSIpobU5Dp3QgDGQEAHvrYAPjfD7ft7cWK87kgL1nuGmG2WIte9AGfcDf5Xb2qwyVuXVJy3rioyvcoCZVFib/cKdNaDUAnqssJ0Pg1l97KMeOoH/T5W11ZbZIOxuUCadI00zenm1oeamDpkG9R1jaqsCLeqPVuKu0SYBaFEc2ZBOBPjPlRNhwUcSEA4ignUzMRrPT6oNYSUyPt9b+r7A6ysYI2BrQ2K+QLG1hSuIQjyUIlClmoYB1hYULJAV2hQsx7ra3vbRDN/wqcBxWq5P9y68XYXcUNGEMSSz3jh3gnqJPCQx8yhthaFKVFUBYTQcFWJ//RX/wfe/+AnePDlI09GWmM0GuD73/8enj7dh4PFysoKHj16iM8++ww/+9nHuHb1Jo6Oj9Hv9/Ho0SOsrKxgOBzi/v37ePDgAeq6xsnJCT744APcunULf/InfxI8nVwNibG0xWJxQesKrMwdYRILs/izXe0rXpdd8zMOOWo32l/x/bSWgYDzRS1+XwdTwV+0LEuURYnhMEWqfeVx14ezFc7OjnF6eg4hDAb9IcqqRgNwiJb5xRq7D0MDez/ZE8jmX3gUY71WOEeSJFhZGXtOszPC3MLzN2qV84MoWSMM13Z809aCa7xvXSHWPH/rLR7c5pAPG7wxTZouxRpNd7Ct5xUzhk7nuq5Q1/R3mqYUnCk1qoKCgheLRcA4tNZIdIIsTaGTKLi5de2mwHF4Kte41LtMrI1Z1h4LFl7L23KPVrx+OH5NeM1F+KpCEAIqSaGBwMQrHFALEnrGGsLT4FPhIAEJUGnXeMO0Y46intH3GCT0piVbAvHskEyMwir83w1Esby1Nn5MZRTWRRiQ8HkHF1iHjaXaEtYI2NriyZOnODw8wmQyDWERSaKxt3cFi0WJwaCPNE0wmZCT4Isv7iNN+jCGKq1Pp9MgKM7Pz3F+fo6yJN66L7/8EsPhMBAgMN4aOwTiUKP4GS+LM+N7xYLrguOlM178E3/3VTQuVgLQ+nxH0eh8JyB9zlnMF5RaIxWXR2u4WpI0x2A4xubmLmqzgBAaZ6dTPHjwBL1MI1UCCeBz1aL0GgcIKWFZQxXdc5AeNs0y7O3t4ezsFFJK1HWNe/fu4dmzZzg5OcXOzhaZIvR8zTpi8LIxrFDXJRbzKfqJalg/IhJJLkARr+aXD2/Ua+dCJDhjVjTZ7Qk3hos0uJCHSeZeZIp5bEN5gj+d6GBKWmvDKTmdTrG6tuoLwjSbigWT81hUXdWwPj1LAFRZ3ppgYrIm7iIh14DTzRLpnrTCu3XjWCI+4S0MUk2kkMwuzBiabWmnlAIGR7MllYJ2gNAOvdzXCvBpOpBcU6HJYpDe8x6zKfAccNK49AwtjTcYgY7IWOa298G+LCTB3CHNomA44lK8J7ZkAcT5wKFPcJDwpQr9+NW1hZGAgML16zfw/M4bGA2G6A8GuHbtGg4PD/HJJx/jyZN9FEWBd955xx9oCTY2NnDlyhU8fvIQB4fP8e1vfxu9HoV0HB0dodfrYTweY2NjI5iVzjk8fvwYRVGgLGl/c4pdr9cL+btAw0gxnU5x//59pGmK0WiE7e3tC2Zn89wXX+sKyssEWPf1+Pcu1vcqAlALiXAynp4cwzrjI6ANpEwBDz73emMkaYbx6hiz2RkmkzM8eXyA+/fuY29nE5vrY2xvjOEkAc/s/qcKRBRc43weh7MWvnQTGBUZDoZ47733sL6+huPjYxwcHOIv/+r/wPnZGfFNXdlFWVZg2IYXHi945wNXhTOoyhLnZ1RMo8EyiP3ACQdbuWBukjYSrcto7TJew1oM87aFTeCoWHJdEbssb25mXTBeiDiwl4g2YJzzKgQxoqokh0oEenkPUshAva188duDgwNsb297iqLGlIq1Lqa2MaaGgEOiNWxdBgHKMVUCRFVtagMhar+IBai+JeE78SJqgGAZajlSUdyCKJvKOXpZjjRJkCUpnBVIlILUjRYphUAZeb8EgERrQClYpZCnGWlntmppMUU582ax8UJMh1AEypmEr6ZFIRxKKVTGQijyoltThYpgRblAkqTgBHfrv8PxN82GEZ4tSkBw2tzlClu0+ZqqY9YaHy7ky/ZBQhiFsjBIYJGpBL/+67+JQT7A/rOn2NzcxLe/8x08fPgAf/7n/z8sFhXW1tbxT/7JP8H+/nPkeY7XXnsN737jm9jff4aHDx/i2rVrWF1dhTEGX3zxBd577z3s7e3hypUr+Hf/7t+FtfHBBx/g0aNHPl5T4dq1a7hx4wZ++7d/G2dnZ55rT4bA2YODA/zZn/0ZRqMRbt++jc3NzWAydp+568HkH8bmuvmcy8I3wqhH5qnWujGqXrFR3Ux/Ai2KBaiyMnNc+WrWwkHrDGmmMZA5lJKYTGaYnM9wdLiPfpZikGdw62MvtBwcmOsfCHWivJnH52EQIEIgSVJsbW0BHlx++vQZHjx8iMVsDikkyqIMfPKIHlL4ZOYm8svC1hVKW4MohomDTfjkpCDA+DcRmaZ8Wdc9cdqmWON2do355lkjSu+dZHMuxH9pCedSKKkgIi59gAU/cTnxRo1B2NjsXOaBCj/WC9aagmaFa+isOZqdp8HZdt5mrJvwtePF1bLb0GikZVmhWBRUkQpAonwptU4WgRAiVCxnLEQqCeFIuCsfslMZ0vyqugbqhq6ZnEASXA2OYpEiLcg193Fe8+MKWVzApTFT/TrkdKsLenmDoy03u1203qjFDDFsbpM56xpBKSiG02gHoSSu7O5hdj5BL8vQ6/exu7uL+XyGL+5/ATiFwWCI27dv4+joIDCvbG1uQUqJs7MzjEYjZBnldZ6eniLPc6yvr2Nzc7PF+7W/v4/79+/j4cOHAT9bWaESfHEoEhVtrjCfz/H5559jPB5jNBpFh9mLtaNYoMXpUfze5aEZF01VKWVUijD6zAu6oFmLahYMfCEJmniK/aG/Q5qOStHvDTFe3YAAoHWOsrI4P58hS1MoQUVUIYm2mWJ7hF95MYjKEBYtDmMclE7QHwyxtbWNO7fvYDohMLysKjx9+gxKKWxubiPP+9BJChk9naBdiqoqUNU1TF0QMKsU3Zf504EGU+sMJhxnM9Dr1hn6sQaIEot5A1nniMYnmEK0KKSfOKsUmRtSQCtiL1WyEWZsTsZCKUy+zwUVAiElpQtCt9zxcEh1AmM0AGKQKAt4xlbnvYGREPXkiKTZkuallAYEMZw0gayNpzhurVw+HwhcVSXNuRfwFo4YShThnqESlveG8tjHoDIHTZJgp5hCimGU0aagIi4AMS4wNsTCC2ii94kFxAbhxulbl++MBrRA+Gzc2G3gGphNdN4nM8EfjjynnrTUETU7nMBwMEK9WmA6naOqaqRphjt3XgecxN7eHpRSWF9fhzEWz58f4csv76Oqa2xtbQWt/ezsDEdHRxBCBIiCD1QO4+j3+8Fk3draQp7nrUOXx2+xWOCLL77A3t4eNjY2sL29HZ4qjkmL1yCv15dhaZe93+A9aNbZV9DIuGmOKVssFlgsFsjznIIYvRCjlA6PdzoLa4AkGWB9Q2M0XMNicxfz6Skm0znq8gBXruyil6dexRaew4qEmScGaj0cn3HOWlRFhSzrYWtzG718gL29mzg+OsbB/j4ePLiP99//AB///Of43ve+j53dPQxHmhhb41PZVljMz3F8coKr169ASoVEEl7mLIU5SKHDvYUP3RAe4+M4KFtb1LYioN5UqOsSzriO0BH+RGs2mVIK2sfBaaVg41nx5hZvWBZEdV2Hwi6tXDrhQoI4xxLFqj7n5UkpMRgMIDBAqjVCaIFzOD89halrSAEfkS9CXzjGzSP0ZEoojbzX82ZcDgfjTXtHnJ1Ro41gCNfzQnk+m0J5QWJ9bUmdJEjSFEne89ACNcemoZS+QpSnYQJVyBVSeo2WhT3Iy1uTs6CsS38gkjBXmsxO9mhSOIdGbQ2cE8EsdS7SltBsnDj0pFWqIH4f/gAOG5DMdyWCi8ubZOw5tQEakTJBXQtYK6FUAikctnd2MF4Z4WD/EEI6jEYr+ON//McAlMe2UrzxxhuoKoMPPvgpDg9OUVVzvP3228iyDGdnZ3j4kLydSiniZZPS1/eklKf79+/j7bffxh/+4R/COUfhTz4DhbG0JEmQJAmOjo7wF3/xF/hn/+yfBYHGe6tLTdVl8IhNzjg/uWuOXvzX+eUanQyumy728qZdpJlVVRUAZ9JCPJ7gNTTrf9I0QapTiP4Qpj/A47LAbDpFuVhga4vyOB0MeaOc8/RnfK2GGz6YbB6HqUMoAml+21tXcHBwgDRJcO+zu3j67Anqusa3vvXrWNsoL6j/NDAWVVlgOj0nAWQrwGUQsN7s9Jzy7JwIjLkuaGWc6F7VFaqqRFWXqKoFjI+c54XNOAJVcaJUISU9n5rfYJARSB1pH/xv0MyiWqMA2jFVl2hmLBBZi0mUQqI0tC92bEyNxXTmueWaUxsAipLM4qIswTJKCAmpyOulfZ2CtqeyvQjZ6aG1DlWg6qqCAWBqX/dAU+VxB0CnWRhjGkM/7hEux3UkpSPtEEKF5cIbonAlXGW8Q8P5BPOEvN7+ORrgmXOLGcfxt4ys4Lam0MANLWWru6uE1/GDJSTit+iagtcUvSqFgjWkmSkhIRQwHI7Qy3N88cU+8p5Gv9fDtas3IQSHUZQYjTbR7/dwfn6Os9Pn2N5ex5U9Im08OzvD6ekpDg8PfYD5Rc3s6OgI/X4f3/jGN2CMwf3793F8fBy82xxywULw3r17AVfr9/uNxbYE+4px1dgcjbWwMIQRdNF9r3n/os4cBN5Lmq5r4o6vSp+4ypdxPkbLCzICzBmwp9eplJuCUinStIc86yPrDaHTDMRxWAEghglnvOnJCyPqrWsBsCL6iIDWCfr9AXZ3d6G0QlXRKcKmWvTEdC84pKnGaDTAdHKOJKU0IQgyveAsaVohZsohJCY5h9oQcZ81bFaThqmUIs+UazRK4R0QWmmKi/LxZxKiVaRW+IUf2CmihSE82N+l/aEuseezGz9FLRZmUkoPDwi/0ZoT0jkCopuoKu+QUApWa/IwCjZBpQ8b0Q1MxrMSa1Uu/KfJo3MURkJhhl7oyaZ2aO3NWiEljJSBscRK8jpL1wRFN2PgNwVEIN3USsMmDibgM55ZRHF9UzTrKBI0fCX/MEvMGRcEbIyjLd1KnTXcuifYUG3uCnB+ssJiUeHw6AyroyGkIFooKrtHOc9VVcO52ge2FgBIq75+/Rpm6yXW1lawubmJ09PTkHS+trYG5xzm8zmsJXZjjknM8xxlWeLw8BCrq6vIsgyDwcBnmxAImSQJnj17hsPDQyRJEvKfY6EUM7jwuuoKp1fxOr60CUSCMRrDl1xaF0WB6WSKyWSCNM19TJfwxUi8MONKTFKHEiEEqRMukGUjaJni2rVt9Id9SOFQzs9RLCYALJQCjBGAkGS6wqMOYcEClKdJA+tTGiEF0Ov1sb29i9/5nd/F2dkpFsUcw9GQCvSG4rwSzCkrhcHqSg/jcR+PH38JB4s870FllORtXI35jDC42lDBX8lqLgBY6TetpORs6esxKgEltBcGNkgpNinIlS8QKlYJHiW/sRuqBAiIQMesVIX5fIHBqO4sBjLTnCEa6TzPoxNKBJOUTQQlBVQ4cJpZr+oKcA599g75pvwpnvhK3jbStM4nE1jnsDIeh/4L2fDEOec3uHWAdUi4vqWUEFpRYVy/CYyzXpoLHxhqQ5yZlgpKkkbZy3JorWCdhPIU0VIIWGcAx+MskSYZlNRI0wxZ5BCSWkMpqh1hLcLhWxMdCeFVQMANWXgvk1SxQyHsL4ELrwGNFnFBa/aHnvJizToHYwEpchwdneLzg31869feglYWsCWyrAepAGsEzs9nXrOqUdeFj7tcwR/90R/BOSpXJ6XAZ599FvIv33zzTVhrsb+/j7OzMwwGAwyHQzjnsLa2hslkgg8//BC/93u/h7U14kLL8xyj0QjGGPT7ffz7f//v8cknn2BlZQW9Xq8V3sGOqcFgELS5oijCeDHuxr8v0+JeJuhi7Zyxxq8iG3VdU6cWiwKj0SiApwCCVhb0ckFxM6yVkEtbI9E5Ep1ic2sPUIA1FXFqFQsAJnoI1oFE9OPPMBFH9/OhLJAmGZKVFFtbG5jPppjNpjibnPsKSCxaeXECEha9PEE+GOBnn/wcK+NVGFNBeWwMzqGqChSLAqU3I0WQZAICClISZXea0umkpIAQGoliAdq2/9vNtoRGUATCqHrNLJiNEkWxCIwczcyiZXryCRpvPPb0aa05+wcsafiexsQU5k2TQkBoDXhz2AItqiIuasvaGQtoa6MOeDCIsiHIFSOFAGxjblSmpjALRwHZlTd/nLXeJFYwOoFW2i8J50Mp/EkfDmX6n5INWaJmLdk5QDYxkeTub7jamNLahjlrz1v8V9d8aj7RnesIEgBrJc24OI/S8CdpqAQENGbTEo+fHOCdN+/AaQu4GlqngMcni0WFslx4rLaA1hrj8Spu3LgZBMx8Psff/M3fhLSk7e3tgIcdHh4iTVPkeQ6AirgURYFHjx6Fv3u9XjBLraW6offv38fjx4+R5znSNG1hXRy6kaZpK4sg5kSLP/8LNT45vqKWpymRFQFcbrSlWGtqLu7YfPLeSWdBGpsAfA4HICwlTScZYGsoALWogWCmAkEVElRfMKj28T2j45D56btkhYy50bVc+JqSAr08g3MGi/kM2WANrFXUNZm/IdUGLjyTgPKxQaQ1cPCnEM0p0VKtG8OrPR/enLtoUvsgWytQ11VDpOc1o7qqgooPIOBpy3LVmrCKpgct725j6F7EKsI+7WxsFiKi+1wRrhThXgEjiTc3j1P0vvCnO5u4ztogmMgcNqhrr9EAoVQcadsSQkakgawVe0kr4FPWYjPPm/SsFbJNyXsk5JQH01+E56EanbjQuppGFJF9ASJp5sRFNTzp2lVlMJvOUZQVeb9DNfSGcJBL7lFBah+u4mMYAUphGwwGQYCw884Yg+Pj45BRIITAzs4OxSAWBfb39zEej4OgY2F0cnIS8N8uO60xBmdnZzg5OcHW1hbOz89RFMWFa7TISyMcLR67ePy6a5I0Oqa/6g7+xZe6TbNnI8tyaN2c/kKoUMtRKEUsnR7jEPA5lxYwNaB1j1gekHqVWyPNvfvZlEBdoZpPIYTnTvP4gXOAThWcZXOh0V2EpBgkT+bj3fAUj7ayQswSvMHC/5yDEg5aSWSJxM72Bipb4dnzR1jd2AUE2fmL+RQ6yZAmGnmeIsQUOQFA+VPd52ByyUNh0Qgu2gm8BZrF28QtNWKEZ5A0NuMXXmlqf7rVIYqbF1W/30eWpUi0CgGjzISAgImJoOr38h4AioJvBQOj6URbEArCMf0njTGh9iPQOBtCQDIDs9E1GBQO7no+d5yLFiPVBIWPB8vzDNamhB06F1J4pRM+ILqAcyZQ/EgpkKcZpE/FYWqf8BRShhVj46d2XhPiz8jAKUS5n/BxbcawCUCYlV93AM95EzDdzDt9Pg72BBAOvnjXUS4oYXoSErCSzMizOR4/2sfJyTnUeh/Dvoa1vuAwdRpaO0/DTulg1tY4Ozv1wdT02Zs3b2I4HCJJErz22msYjUY4ODjAT3/6U8xms2Ae/v7v/z7u3r2L+/fv42/+5m/w3nvv4datW8EpMpsRi22e51hZWcHBwYEfAxEE1aeffoq7d+/inXfewb1793B2dobf+Z3fCQKMHQ7sTIxfA5rykK3DNwi1aE6FANed/apNz+dzyg1MvDfIRcAe6eVeRY+NJL9YrIMxAlqlSJIUznlcRnKZKAfUBWyxAMQCAiTMINiEosUWXEzNI4WTjDUmY0iYaJ0g1URjzF8hlZ69KQ5KAlpJrI5H2D88wenJMQSzeTjydhKdCuEAXAOU6hl4c4UraHPNRJYKseYY/dbSTLqj7JrNwC7xuWfMsNb6sAriS5tNp1BSQiuJNNE+bMMiS7MLE8zqPoVFdHEecbEf/A4LRJ/4z0HHLnqfzSYmR+xqnvHpHZ6aF6cXqJxWZCGCcASaIFRnLKlixvowEQqDqUxN2rWSQB/QCa3JLMvADigW0E1ARBvTap4l8p47ZnCBx7GYsluCeaLok9LPe6SFLWmMIQII2lejmwXVD+zogY8zm89KHB2dYjqdYbySQcgUwrFzhs1pnxetBCCI4mk2m6EoFuB4wK2tLayvrwcz8vz8HE+fPsWXX34Z8CshBN59912cnp7ipz/9KT755BPcuHEjPANTB3355ZdI0xS9Xq8lcPiQffLkCT7++GM45/D06VMcHx8Hs5O9p0VRtLTXbpD3pWZodOpTeNDLaduXNd0sXFYLw2OEO8RAPcfo8GesdVCphvZpIvQqqwNNCpPSCUTcST7FoocN2ntnF8ZaAf1zcZuK8CYvIErnIeCaTgyh4voEkfXBTxsOXnGhE43A+oonRvcrHudJvcfIOecFqkDtk87ZrOCTjL1TYbOwXI3U+Pa4uZYpeLFPl+MRsXudrtmOgG9CMjpxQ/wfL1Wcv0/Mi3YBr2Jz12sAUikoWI81MRZHApVj6nhupNak9TXK0sX+OgfIiEQzvMdODLFMTjfjFzSw5WO17KuuGY1Yj0OMM5PWr6L5YQujURREAxZGw9XMDY87H2ixBjQej9Hv9zEcDrFYLKjmRK+HtbU1HB4etqh/mMTx7OwM/X6fKlXFz+McFosFAMJtmXElNnfrusZkMgmBuLPZLKzjJElCat6F8RONZSWi15bDHC9vOg7GDCaFF2R0gkc4WthE/jQDUJU1VserGI5WICRVtWmkkgakhdQGvdEKppP/P21/1qxJcpwHg49HRGa+y1mqunoDGhBIUQQpiCIo2sfRxVyImvkB+of6JzKjLmmSfSYzisYFhAhi6QW9VJ3lXTIzInwu3D0iMs97qqsxMwmcPqfeJTMy0sPDl8cfPwMsbJjWmTktarvKFK7MeKmzI1VS5kKUeIcuCCIHTlHdLcb+aofuzRukNGMcT+iGDiaC3jkE55Rqm9XFvGDPWCzO4l+LN4AquFUxs2U0F9aKK/WRKSW8ev8DySQGmfuUpbXYe++9t6hFFEEi7NQVXYyAeRF8FeUmfPZQITd3bX0sAIrlvmtWKiicYhHYbg5bELVTkVlK3DAJN/NEloQw66zCIMDAMAzouUPGoADiSjeUonT4nqYZOUn8cHd9pT0tFSDLNX5m1QXFpmyURjKCACR03vpz1viczUuLfyyGnd0nbCe0HX4lESTJLGEUF/wdscRiRZY7DP0W8yw1vERQy1ppsXKGU1mX8+oG7aQpCrgm6Y7HI87ncwFb397e4t//+3+P3/u938Pt7S0+++wzfP/738cnn3yCP//zP8d//a//Fff39+U5nk4nfPXVV/j7v/97/Jf/8l9we3uLv/3bvy0bZc65JA4++OADvHnzBsfjEdM0AQBev36Nr7/+Gj//+c/xH//jf8TpdMKvfvUr/PCHPywZVWG+ccVtXbuai/kl0sZAz5U+PX+EGh9xjetgj74FuNrV28Uvqe+uH7Dd7lHNhqSTHQDKgAsYdgNCNyweuLldNXCIxW+Uz0JjbQxAGR4WFiSX3b3ljN9uNwjeISdpguu7CIK4wt5pC7dyhud34MXNv4tlZoYpzFBp0Mxaz3lzfY3dfo9+MwjD7v0jzqczPvn+93H35k2hcrEi4M0wPAmMrhMAEljnsoAtRb4ec/GOTJE3bzCz4uUavBdWLhxziYt4LVMqaooglRLgUroEiAIo7haojo0AJqVqJrE+EhtdUkScUrFOz+NcaZGGHpvNVsl7GwvKSVG38eSZSLKOLWfWMieHITg4aJSjuTcUOXu6mFrjvUpOMQUBNIpdjYA6Pilh8s6j6zZIMRXsYS4U9Po3ccGX15il9JLImcDae+F8PpdNbb/fY7fb4Q/+4A/w05/+FOM44l/+5V/w8ccf4/3330cIAV9++SWO2gwZAMZxxN3dHf7lX/4FH330UQnq25iZGV999RWICLe3t3h8fCyVI8zS2vDzzz/H3/3d3+HP//zPcTqd8MUXX+Cjjz7C7e0t9vs9DofDQka/TVHJujS5+w6W2TpLVoS/WCQywQuTWrvWsKK/pfSmPulqaotlBwpCHpizlH2bTmj8axO6VktbLKumyVUq2WJpKJ/RL+mJtTwHJI01ug7T+YjNcCUmfhE6rq6H/rb2eeIi2d3wglF5YaK1BkjzmdU/nx5UH6w9A7nsJdgH1YWvZ2Ru58UGsrxqdQXr1JCNbnH68mrjZrYwGnN76rmtML4YKO1FmnM+OVbeEzf3avqhKj6LW5L2KiCpbSRLDJFplWKdlxCCurukz441mRSTYOnAjBREkVIVOjmFxYpR57uOXyaR2MlGXZddtdrK3S03EqYMpoRu8Li53WPQTuXFpVQlKn00uFl/NqVU3eP2vOYR6LOz9oWAuJFWt/n4+IjdbldhPkBRSi9fvtQSNl8MG/PU7u7uYHRUp9OpXMM56fM6awbexuicw+PjY8GqWVyuxaLZZ+t9N9UDq/t6cqwfif4OkhWE7gZVscWcCq1wbRKi0AqW5iUpMa5fXCEMXXlubEFVcgA6AA5wAd+8/gJ3xxkndhIQboS9lBZB0+16PWd9Ds3Y003TO1f2w5SjBAw5I+cZ3vVwCODYwXnC7f4W6b2E3/7y/2D7ewH7q1fokeFNgRIhsZYXkRaAZyM6lMxaWTgXbTde/qbVOzqHxoSK1X0Lgl0au7hAGKdREiidF9IA5+CCA3ldobpTT8pDRc5Dm6TB3D1xkzQ54MxitQVffxdYS6E0196IIcAHeXZ1O6sSRGDM4xmhC+h8BVKXLc9pQL3YGgLaoQRgWa0q8mYQMaqvWZCbe0Knmws5YJylSQ1DALZJlZn3DplFjjvPYJY+os4TMjlkIkyJcH/MiHNG7zwyZfS9Qx8CPItr52D8IXLeXDYQ0jv3INbwRJ7hSBsZ5wRiVqyfZGjBDpmD3RQSJkR3wKvv7/DT3R/i+//qFa72PciJJeZUyH2ImkVn1ASMrL3aJEisXlvwbQ+ADz74oCSapmnCf/tv/63AOn7yk59o4bqEMe7v78HM+Mu//Eu8ePEC9/f36Ptekw3SEex//a//hR/+8If40Y9+hF/+8pcFbGv03A8PD6UoPgTpEP8P//AP+OKLL/DBBx/gj/7ojwpx5MuXL3E4SMcpUYBSf5xTLDXOzFLdcXE7fM46YCCE0D3p3MLMDameCmRxF6zRqCyW/av3EDpv66GY6TXr5MGO8eb+jIdTxAiHhHY3hD4UfWRcdye7ptWIZm2m4kl21Cxt1CFNdqQW0bsAQgdkuZfr7R50m/DLf/oZPvngY3T7G/TEosz0oplIrT0F7lIGEGHuMpMD0CLoW5vrW8xgKrYMxG9obls/UpSZA+Z5AgjwQZQZOYULGNsiMpgYc5wlW+jazK4JfQYzIcak318SYrbqtFie+l9RZj18CFgqM4OdyCfjPKHrXMFIPbnpxr0t7+enls4FL7jMCTPBOw0JAAAxsnPI7AF4aG8pAIJZkwx5VhbbDJejvE9AhsOYCY/njHjO2BDDbRPYA+Lhsioz2bS5JC/a50wAC3THwSFzAhHgHAPFUiU1qmrMlCAinDEjeuD2/Q2+/4N/hZf7DXyOQJz18SZ5dhQXyY8Sf22UWok9cZ0va3pjpU1Cpz7jf/yP/4HHx0eEEPCXf/mXuL29LcrMXMC/+Iu/wPX1dUH6n8/nUl3yj//4j9rm8X389V//Nd5///1CAPn69Wscj0d88sknBVi73W7xi1/8AldXVzgej/jTP/1T3N3dYZ5nDMNQSq7EChR415QSvNf4rnp9eCZe++TQOShMs0tXUz+ji93Mfvscr3YEe23tGonWFU4tC7yWDJ1zpWyhfMuMBG5T3K0DpcW7JO+VJcoM1kBrO355yMZqgUJLY/01mVu0vig0JtbOQot5wnJhXlBgVN999jDLjAiVCaK5Ahnnl7p5XK3lS7CMAkAts9MMgZ+WldR7WtUeEkpMLOeMsDL39XQoJZjNuGk1USX309x0O/LnVf8Th04Vgy5lWsloU9FQEkLrY6GM5HPCQcfIxA2j01O5bccgngPh4spaCG+Ne1XBbs6n4G7yhK4LEptkzfgvRtFEMk0TNu/V+6nrs32tjZeGELDb7QCg/L2Mj9MCYhFCwNXVFaZpwuFwgMEuLDNp1pq5quZmbjYbnM/nUuK03W5LTI1IStkeHh6ehLRSqnXJ7R0uxUrn7cn8Lz8Vasar8kjJblOLTAslTXsa/c5ms1lgWkq6W4Of4ziWtlhOfe3TacRmwwih0x1XTXrOwibgMjiL5eX0WgRjOQVACcQSVxBLVQgJj4cHaV3mSV3kDOdEcK5vbnAez7i7e41h2CCmiDxPCH0H7zqJqSQt/2FDbRvYUgV5KefrfzyZn7WiAksW1wePaZ7RR9mpjJfd+4B5itI+zAeBvbigsAxNbhDATIUCOYRQqiOq6yg7+jhP6ELtS2lsITkzVo9T5j/Lbr7Z7uGdL4jsqmioWG+5jXE8G6RdbFWy8FTxLAXzqVJvEw+irFSss9xDWwUiY8/qSpPu6LXGT8rygJisD0JGJMkk5mxuutRwVhsVy/uy+C01mDwrkbNbaaxM1v+YpVGWJUtFQ9/1UmUirgHAUi4IHSsnnV8XNNRhlDvidlr52bpjVc6CR7NY1Ycffoj//J//c7HaPvroI3Rdt4iDtaVPt7e3+LM/+zN8/fXX+OKLL3B3dycezvU1bm9v8c033+Df/Jt/gxcvXoCZ8dlnwmTz8ccf45/+6Z+QkgC8/+zP/gx/93d/h5/97GdgZvz93/89Pv30U/z0pz8tYw0h4KuvXsM7wtXVlXDhNUYSs9bxfpuNoB8IdpPOVapm+2kzZTX1Xy0wCwTaQ2pPbMc4jvjmm28wTxPIOfShx3kcBZLgQ1PqgVIIXP6dqjVHJLDXGskWBtngZeeI84jT6QBPIkCO1FV2QOgCrvZ7TNMZDw93uH11JWn+SPAsNNUMUZ45JVgmqUrnyl2q4vrWyb3whiwyX5H9FV4hyOd5jlIY74OQVWpBerEJ9bLWT7EUA1NrbUlrvWmeMPS72qCCUFx6WfjLe2DOpd6uYt2qk0wkmb/CY0V0ufTk4r03c3Dh7bVCrNlAKt8lMlZh96SrfU51PEVZNhgzZtmokik0l6S7lNFTUc28MmgV2ePGKsuoMVSzjGyGuCg9M+acI9QOy5pkUsvGk8R/pbN6/SnJHUfw5EGOlRlYmJOZCJRF8ToYFEXGa6VNxlZsfQNMuR2PRzw+PpaenFJtMhSGjevra/y7f/fv8Pd///f4zW9+g1/96lcAgP1+j+vra7x586YUvgPAF198ga7r8OGHH+K///f/DuccfvjDH+KnP/0p/umf/gn//M//DAD4+c9/jp/97GcLBlzvPR4fHzH0HV6+fIl5HhfKLCbWB7TcENdLryizC3J1wfReHq378radOcZUUO6WlfKewBxFqGIClI8dkMyLd6KkwElYI2BCyrBO2BYYJTWxxVSNEvB1ywUmcTBS8J5AChbCtxj78+6G7a3tq++6jhcHVattnYUS66uWduWcILVqbnkC3aXXprcpHD1pdUMaN3PtOi7dJBTX9dtubu1+P3m/8ZLKVC+uRW8TseevyxDFvRpfcZ1X5+TyY/jEanUZTMOsqOV9rW9PFJVNIlOxFZubfGbM1WlcnDSztsJYbZpPB1BU8tOXLzynFlZhitMs2ZYttgVI16Yx4m0ZDZApLsteGgj2dDoV+iEL/I/jWJSVgWntvFaY3mbvhfVl1Pjgyop/y1GrcZZyEJyz+A2ak8qHq6lfF17OuaR4r6+vFxfJORe66BRnfPXVVxJgZJQ0bQgO83HC4XDC8XCSzKQlDTjD+wwgATlqqkD2SU/abq7scEbhLeNLOQJ5xGboEIIDY9asJwB4vP/+K/zm0y/xeP8G73/0iSpCiZmxEVHqRAvdcRYqInWZ7dpPIzuXBEl3E/0uLd5DsYIXyG0v1Qqn40OJ65zPI5yT6goAxeUDA/M0S4mXM9CwziFJpjlqv8y6FlnHYpuQuKsl89I8eee8lBI1R7sAFrG+1f09mQ/UnXXhtdG3z+OlI6UERl0QQI0bsspG1iSAaj6wJo8ko6fWGWUcTxNCR7ja7cDkyjlE7JXqqTiegKO0cLcZERYXq/g0uWvSkn/OSQk9GSi9CAgpAueJMXjJ1hJcmStHQc/kwLmBoaifTvo8DH6x9pbstVI1AZQemRaesJiXKZXT6YTtdgvvPV68eIEf//jH+Pjjj/GHf/iHuL+/x+///u8jhICf/OQn+Pzzz/HNN9/g+9//Pl6/fo2PP/4YXdfhyy+/LMXuf/3Xf43PP/+8dICy8TJLWVqMEZ9++ik+/fQzvHhxi+9/73vwvnKoGZfgpXixCdNaRALprpLVqrEFtw64tkJ8OBxwdXX1RJlZBohZ8Ctff/2NamvCZrPFMIjp+/r4DY7HI+ZpgvdSfwjOkKZDM8ARyBHBZxCSZCzJFWCmWWiApOtDUM56RxiGDbxzyBwRfC9xC3J49eoVfvnrz/D4eA9wUoutKjNV3xqHkWxg0sJt2/1kh33OkoMKcwO2JF8ED6j0ORL4TIvgp/MdHDxivFNXDjifR+2Z2ZfrieqQRiIAJO5oz00/ZYDTnFON9TBrZo8WG7zpsvauJLPqigVTLfBcrlOsuubLT630VvXXRSafXb7efteuWa9dF2tulNmlZ1CUWjmXuqEMzLN4BJYAOJ1H9INHzAy2+wVQmrsQAIgCY93gDCyr0Uf9hvZtbax941PjHGGxTgDa10GU2XjK8IND6AAhdrCgfMWqFC+pTQLo2mzxYG2vS4Np2Hwalqx9Nmus2ePjI168eIHtdosXL17g9va2KJVpmjAMA5gZf/zHf4y/+qu/wqeffoof/OAHuLu7w8cff4y+7/HVV18VfrT/+T//J7755htsNpuiUA2LNgwDDocDPv/8c3z++WcwGJGV7FVlhotKGljKq8lJaIXoOZexfc1MUaNqfvrhuivIhGYAHs77QmcijKi1tEWfjloVGh9IM8AZRFrasbgBrlaSCqtT/qraBZkX36i8+sJAIAXl7Xm5joPpySJ8l+MZY6LOYbPoW/50EUazvGwBCvyl66iyPpRxoqSuLw3P3Koy+pW2etaDLJ+RhWgNQS59kMqJV0fjlr3d8TL36vKnLgOCi7FVPvPcbbSBhqoYlp83sgO9o6Kk663RQooax7IAqnn1qSp7zx2C8I8xYTxP2PgOCE+zMaQ+SXszq33onY61Nd2Gh1oF0TLHrntNmBVsWctW6bTxNjtXSqmwdrS9Oc39tLFY9cI64WM65F0iEa2chPWLrWZs/WtAFt08z3j16lXpliyT3Fpwoslfv36tEyOm47ZMAnB9fYuhk6JU77zW8kkw//HhGxwOd7i/f43gI/bbAburLTZ9L8qNG4oZlu5JYkkIK6wjAyCqQlRBJhBe3N6AmfHNN1/AbW7RuYDgHKbUaHvTrRDlIgqmuc9nNVbrntt5lruJ7ajWVceSL4+Pj9j5Af22hxEP5pQxnkfs93t0oVutUHENhMq77ly2kBbCQeXOymJdunv62dwKO4r+aHnVvLb1SynDNS7Oty4wWvy6+PlLSpNZYSqNkhWLUT4rJV9A1xlljLFOQN1fZQ12DpQF/S+dp+RcWZv2ONcLFi9nxY5p6RwRMqIFI0pOyDKYxUoFtCKixu0YNSRh5LaAKNDD8YTj3QGf//Nv8G9+7xPsPvlI0QS2DpdzRNZYO6+29JUR0iqn1l27NLe2vlsryLqer63kL7/8suiCq6sr/If/8B/wh3/4h7i+vsZ7772Hjz76CESEV69egZnx9ddf43A44MMPP8Tv//7v44svvsD9/T0eHx/x85//HC9fvsTxeMSvf/1rvHz5Ch988CG2260mFwKGoUfpWsuXZcNmgpq5De2ktBlLW2h240BtfPLxxx8X/9om0yYgpYTxLBlMA9EREba7nbqIGTc3t0h7bVNGhr4nhCCAz9PpiMfDAd7NGHqPzXaL66sNoAylfait3GKcSlYLyJIYUhdAitgdjHDxvZe38J7wi1//GrevPLrNDp13mKMVKrc+lykmbe6qrz2bqbSJ1T8YdU6qaUyAe6rMTqcTNrsb9P2gSkIoj06nEd4H9F2/UGbmxhfO//IMAE6y9ErSoHnYxZq10Wig3zkt0G93blvACtkRMK0X+ueUpBExWdu2dg7o4t9lft5CRLreFGXGQnML1iVd5tXqV0PwpZVd3ZEU/EyuFHgXZeYh3GIMAA7OdfrMZA4cGUxCeIOz2klsrie19rziurgmZNbWWeWYk/s6PI64/+oOf/u//xbX2x4//N5HC6u87NXlnjWeRlbDyeW69rwMBGtWf9t3wVzQdp2awjN31LKL9lmL5eac8cUXXyCEgGEYcHV1hb/4i78ouuFHP/pRscxevXqF+/t7fPXVV3h8fMSf/Mmf4E//9E/x6aef4u7uDo+Pj/jZz36Gf/tv/y0OhwN++ctf4i//8i/x0UcfYbfb4bPPPkPOPfq+040MjcyvtsDGaLf5upjNXO+da62/xvi0R9bu6O3kOgXIiguXtWxISmyckjU6B+HZ147VEtRduUxOHqz3rigz2VktMF73/kbe5Az6sELwiHGSeFL1MVaWT93x6jJ6u8m7dm1o9RDKGuP6uu06T5qlNvNeoStPn4kFrurzqbEzLuNHOW/rplvMy9UT4p0ymYz6uW9xApauornxyzl42+bQfq0eGotahT70rXoZts+inMASBPV7usGYG9r8LZeW5IFYWlS+T+21nht0q5Xal6EeTow4nY6IGk+6eN9AqQqrre/a8S/X5WIu1qd7y1wvZG/1GTNQABQ4zGazKYF+89ByzthutyXR0HUdttst9vs9PvvsMwAom7i1uDudTui6Dn3XL+7jSTjgwn3KeJcTFiT9b+lZi3E9JVJrU7fVp5Yn2i7GhwcxJ52CLqUJwk5KcwCAHHJpOQdYUXjOjAjGZneFl68+RMwTzsfXACK+/OprnE8Dbq+vcLXbNtAQoPNe+fMtjiPmvluZ6jlldJ1H1wWcTgfcxBGcZnCaQXClDlUygG0Rulkz9HRdrYUC0D0cKs+tGVJ9N5tHAIhaT2e8UiEEsc40buCDk3Kxcs4qXPYiMxbuRDZMkq26J0Jcx5Eh8ICYBAojmDYUttdW0M1CW9B4U1UZz87LW4KJlxeZulq8FPCs182gQhMtcxeFK08VrN6dKmjDbQFzVMYVfRYpAzFJR64QxIIX1xKAdiRn8rpHVqCw3U225IApQt0IbAMWual0SAwuOMau8zifj4hpRu2PWgGiXPBsTjfeXO5fMrRPlVfL19+6jm+b/0uxb3smlg01bjLz3Ix2yGTWOYe7uzv8+Mc/LnCN29tb/PjHP8Z+v8fnn3+ODz/8UDutB/zzP/8zPv/8c/ziF78QDrUr4VB78fIl5mnE8XDE8OKFyu+FTeuZI6QUNSNmXaPrTbZBQTNHW2VmglEWD4C7N9L+yruAmCZ473F9faOLDSDnkKO4b+IK6XlYmhHv9rcYNhtcXe/x1W//BV9/+Rk+/+JTPO46DF2HFzc3mM8nbaYr6P5xnsAsbhA05tCwz5TFHrqAvvc4HR+Q4oicJuQ4A+gbha6OBUkpkbCDZJD1Knjrum0r/rGqd13uqM6JmxZjBIgwx1iyl9770p8zBLEmAYAzagdytqDucld2EJKAmGtXpLZXqSnb1iiFBqRTSui0yUkrA/VvyZCWeKozpL17ImjtmNq/14Hn9vdap4lCk7IjNMqMWZTZy5cvQQS8efMaLnil0a4+GjNr71bJTM9zgrAhS+YyZUJMwBQZvXfa+IRFRbFkTZk6fa4ZjAQjohI1JTMKs+BKaCGLi8uilGohv0CIiCByeHrEHCXul1SplZglV/ZlSVQkLaIPkkPNTzcBKzQPIRTwc9d1hXusnesqh0tl1oacDBtmwHhTZo+PjwsMGRHh9evX+JM/+RPM84zHx0f89Kc/1QZJhN/85jf40Y9+hA8++ADMhH/8x5/h5z//J/zsZz/Dfr/HzbXEsl+9eoWvv/oSX9/f4b0XL1Zhh+fDGXaUDhFPBalWALQC2QqjPDj5vn3GsFPiU1OZrHkB8jTbWRcaV2dSMp49gC2GYQNyHikmzLNaD7aAqTH57YxUF2nd3es9mQJk5csyAsC1uboEOTYa8YIia4ze1fv8zOeaB2PeEVnSpVrJ9vniZpqfwctYic39YvSNNWmvXR5Vfc0U44LO6cKHTXk+jYe9razpuxxVzsrp1soQFhdyy68xKuFBiSvV97MhJIrbiMK0YU6IK3ZddTWfuqHV5ZNPtvJ86SgxB1jczTlaPRe176i+srgT+ydRKwpNOKO52sqivjii1WeeS8C0iQL7jMXOW/B8jBG73a4YPdvtFsMwCEX86YRhGHBzc4PHxyPmecL5fC4suD545BSlz0VTN/quh91HuOSL2g222Q5zGXe73QVBFuT6N19/g5RT+d5+t8dm2MJ2rDJpZJgYyxSq8JBhsRyIOuz2t3j//Y/hCDgf7/DwcMKn6Qu8/+IG1ro3p6wB2yaWonqF2SS8KlHvA95/9R5ymrWvZ7La9oazjEudqJn0VArcv9uRtGYw5TqPBR2tc+69uAIxzeg6L1iknMUiW8S9UNbMdrspVkDS/pFEwjAxzxFxTsgMnM8Tsmd0riu7fgXaNguQ5d9d1zUt/xTwqnNCREg5Ica5dvPCtyuxb42LlWMtgzVfYO61uDsBQZHogJavOTXHTQsXi9RZ0EDnSMgbZS4cYsx4eDwhjhMCeQSynqbQvqkGYLU0gFlljNoV0zKsSiDEUkbnCMjW6YnrPYXOI+w3+OCD97C/2jRNcxRwTe0GZNUzQLYaTgAVdFzntq2hNmVlc2RzuLZ2Lhkq7ZpvLXOLjZn1lxfWobifRuPdFpW/efMGm80G3/ve9zCOE4zG6G/+5m8WyYl2HCklBPJKe//2MIUdzyizp5kPU2avXr16ckJjeP2tZj3MRL2+vsYwbFS2XFk3VHocOoC8trF3IPJIeVZh63F98wrbjYD4fvmLf8Trr77El198hRf//icIusZyEvoXgpYLc27WRHXFLOPZBY+PP/oAX37ziNPhAcQzvGNk0qo7MsvGCorNwslr2Wlm9Nm5FrR5zgrYTIpAj5hmazOn7b1Yuldvrm/hHCGTdrQxZWKKzEld3n6/11Z1WQt0ZXDW0WmaZ2QGTqcR0SdsOun2471HcL7WwKoFbnauxUdEJjJIFyxzgnde4yQzdvttpTfOb0lRAhcX0Pr159KcssGIq59SQugG+K5HNwzaMlCVjtfYa5krTQoVYh9GUjlwBmbOAdOc8fruEQcCeh8whE6wU0OHrnfSdYwJoAQHV2Qig5EhfFxi5cl1JByR6obBrYIVpdX7gG7o8f3vf4Sb2z1cgNRfqtxVF1M2aKedzmWuXTlPG5NltgB96zVxyWaWjHTjUtrm8JwyM6woFQXvmw2l7VMqMv3w8FDOa9ZY3/f48ssvsdvt8KMf/QjMjA8++BDDsMFf/dVfla5jxs9GqMrMB1dCGG+z/C9aZusvrDWm9aysmbg6kTlLqrwF3IXQFVrlosj0P0sH0QwDUs4rUu3fwdMWjjK60COljPNplAfDcl7pfF6zhytK2OZeUCZqGAaA75HSjFrjuRiOxjuqq1aIES9NZnFFn76XudaUGutB20hX9ImRS0oVhtxLbehx6YreO6RMQKoK28aSm3+nnOGojbHxwmNez9aaeXh9Y3Yf5u49d7yr27kOBazeRbt7mIyaBZIzA6U6gJ56+s156rNUTUAilJkZcRbrhYKAr13I8DnDZ0lWmUtprq/sG+aKWsKhuqPltcXk1tfJEYIP2G43ipF7+hz0jldz1c5Hcz/N+8sQ0NPM4JMrfIf3L7mmtomaArLvmBsKoISdLGHDDNzcXEu3LfOommuV63zHqMVCmbVwCzPrzT++urrCdrst75FpJQCPjw94fHhE3w9lQFdXV08FWm+EymqiUjBdlYZo/9N5wtWVByGAXI+b2/cxjxEP/QZf/PYbvLjeY78dcLXtizJh1sa+yOJ+ehPGpaLe73fiAqSIHCeEkMCUiotqYyVjM1C5MbpliRuJgrCAvMRDUH8DNb4HUVjDsCnuTcoZu90eMcqDjtOkCZiMOSbMMZbi3qpShRTxeDyINZalNlNomEKxkFOKxQVlBbsyScwxKSzAOVScGklnKLGgW3WgC6OaAhVca3NE9K0yd8m9+TbXswq2VIxkZcFlQIkDQnkG8nmlxmEL7+vrsA0Fhb9M3nFw2kU9g5CYMScGEBHTGeM0I3QO4USAS3CO4T0hEBAcCYxI3T95nqSgVhLXlqU9XGbAwZeFyZANYxg6fPKD7+P65hotvtHm1TV3UPtaaC/ZVk71MNzXJct3XRpknyl07USLtd+GmNbxq2UCp7y6eJ5E1cL33uNP//RP8eLFi9KO7uuvv8HhcMT3vvc9sfYUJmXVAUvvgBe/Lx127eC9L1q0Fq5WZWYZjZcvXy6UWTub33zzGm9ev8Z2u8XpdIL3wotkhaUl+wXTC3Vg0vcxlEUOAuZpwv3DCdvdrbCMesYHH3yCzbDDm2++xN//7/+FTz76APzyFrvNIMY/M5ATgu+kFWOSWi9WD1F2cnFLbm+u4QmY0ow4n9BtIogV4lHYdqgoEu1/jJRYObAyUhY+rJSF8DGb1aN8W9ZizTsBdG42G2y3W3R9j77fFJcgRmkvN84j5ihNcKdpQpwTtrtN7SHIEsOapjPu7t5gnCdpEusDNsNWC/k7nE5nEKT3gSPS9myibKd5Rk6pJBqc1mCG0JVuUKacTI3ZL0cOSLkoFbL/FWbetx9vF0p+8jl73XmpfiCugWHnHYahF8ZSzsrEIvW0orzq+FX/wvqKZpZIIIjgQ1ct2Sw1rfOcEeNZLWaG60T+vCf0vUcf5GfTB2z6UF2h6JAaVzPzjJQjcqZFlpVZrOrdboMf//jf4Hq3KXNMZF4JlNYn60InEEk5IKdqw9kGTRrrtDAGc00klQx9o7BMmVVUAi9qO1uFtY65mcuKVkoIZa3bYTyH3nv8p//0n/Dhhx9iHCe8fn2H3/zmU9zf3+Nf/+t/LefTssfT6QRASCmoqQ1+F0UGPAuaXQYHc86FEmT1KQAoILj9bl8uYIWsy1QwivldjGVm5eKyM0rcY45JYhUqHP1mh+084bw94nQaMU4RUXFDdj5zVa25rZiwzS6t1xc/HcW1kzdsQTaDMwHTk7fzYUotp1x4yYorSXUsABULyAfpxG6xBNssipDpDirwh9SACW0OWRMIU3FJofEMo3mZplk4/FOnQVohuqSs3GkaCyEiIaF0AkFhzsW9XzzeYoG3rnS787/dwvq2g5vzPXcs4ros2cOWF8tYeU24aoaxXsPcoSINjcIwazqzPAORPa1AyJCm0oHKxkYMBOeQtfmYNgqQa2hfTHvBsqY2i3I/Qou+u75C76sNhsWo6zfa7Ppld7Rd1Ots99J9q3OytI6fA8FfUiSXQgjra7WB/Q8++ACbzUY3ixmn06nE1EldfTRWoLcWgM9c/7kj2EAMU2SLh7niVm5vb5+YocxipTw+PgLM6Lq+VNdLhb2GJlbuhKWgM9eAulEgj9OEcTrhfDpiHCfEJHEjpxlPHwZsNnt88oMfoQ+E0zjhzd0DXlxv0QVZWK3pK7uULTjLackud319A3eccX/3Gpvd90DWJX0VoykLBk4tpkpg6dTq6odVt/EShKvNbYdhwGazFVI+bxUQosy22502EZEymhhnTHPEfnelCqveU84Z0yyxSfGAGeN0BkiyoufTqJxtwiDS94NaZgk+BMzzhHmaSmdvqEUskBgPctZLshHSBV1PC3coWuKdj6cL6vnPMkS5OCstskQFkWLvxAUjknRgiVa0Y1+oAY15GeEk6bOCq/3mHMF3FthnMGVJUJKAbMdZ8F45CS7Skg9hsxEQbuayKciG4RZzRDptKTGotzE12m4BiAVgzWpMOS6dooUr+RwcY63YWjeytdLW37PMZOuOLuKujVwu5EIP4SubsNvtwOpGeu/Va3PYbodCP9R3QfFwYrmSJuyei71eClWEtm+lZSrsRqZpwmazwYcffrikxtYLzDHii8+/AABsNxs8PDzgo48+wna7RUpi/lsmpAV6kgeEhJBB3ksHncQ4no54c/ca4/mEaTxjThned9rQwyF0O1xdE/7tT36KT3/1z3i8+wbz+RG7zScIoQeQZd2q+xPnCDgPIhFOe7Cd7/DBq1dw7gGfffEZ3nv/99D5Dg4dDPIhcyCuJLOQgZ5OJ0zjXOrUur5DvxmwGQYBu4ZQMnxohAdEBZgsikPgBdM0Y5oEtNx3Habo4QgYxzOmccbwYQ+n/QvAgHh6CafzCVdXe3VLMo6nRzXRXUHxhxCw21+h7zvtGJRwOBxwPp1xPp0Q44SkGS5TZsEH+K6rigGaqYZkM22BWWpd/YAngrY+LsXH2kUhn7nwRZb7FV1jEBQGOcKw6VH6OBCa+ZYvUiHpJCDVfqq2pQFclJlkCXWjY4cuWCyQMcZJ4AEk3sKUEs6IOGilCZFAQzb7LVzo4HyAH3rpquU8CF5YcHXcZsHFyPAbjYFprM2Ub4xSU0qkmUwN9LGy7Jr1ZXNLROoOit25trLW9OJtOzk7T0sJZIdVAFjstiozoNWoMvUO0NpWG9c0TUgpFVbacRwLK+37779CSlF7BjBurq9EqfUdhqFvEmFPN8D274tu5jL7UdOzRFRiZcvPykI4nU7FP7ashfnv64HAhAi278muaoIza4BwHCdpkJrRTJxYOF03YHj5Cr/99NeYY0KazurD02pFKIUNazWAKTMABGPTPON8PoGT8KmtPSYL8DMLF1jS+KEJh3PaDGIYipu3pk8pQWtX+wq2v20zWVIUWbesBs6izKaGK2u8Co15JpNlGL2SNKoY4B0BkKRCThkpRlEEGg+hYkm0mUyzYkktgmYrXhpqT/QZLf56N8ttudO3r2cwN8Fgrp5EeY2K7bK0w2g5loXraUF3c6NN8ZGEBQpQNHttfsXgTEiJgZxA2soOkE0GwSMwIWi/qKpgCUCFvpQpzHW0rZPZet0lbEJcn0GR5PU8yXvPWbrrTORamV2yzBaZ67eZ0M+EGsyA2W63mKZJw1XSvcn2+6+++qpQBAmnmbqnaOXw+aNVaMqaAZ0IWQSWWt1ut08UmZ1/Gkc8Ph4QQigEcdb5BTAAnzzMJbhONLiEpuThZk6Iacb5fBL3YdMjzjV4a3E0afrg4Sjj6uYW43jEm68ecTid4ANhM3RQeQeIKhlhmZRqvnehQ98FOGLENCLkGS702lxOhCqmqCy0QOSIzAI3uVYa4a7vMWw26Lpe/Xy9X3MTtOherJlU5pY5w7lQmDOepKRl+IVxpIyeBfvmnGbRHAOUJQidtaSGbSeWZyiFv2JZzXEGExD6DqELwqefuWDHLFhsPQkIVuqiWdkk8cWaOn9GA73D8VxGUx0WkQ1X+Fqr69X83ZwMTfqv/QNGjZ1z5YczzGEIXvj02RSlLiJ1303hMQHEBJBsqHAEyk6sfh10SgyXq6JhO2dRljKqnKHNegj/8otP8d7tDW6vdiDy4JwUtkPFYny6IfBSa5f7fXcLuQ2qt27npWM91+vkX3uO547qldUaYiMUbUG5NsZ37iuxOkKJI7D1YBTywnEc8eGHH+Lq6moBrLPj8eERX331dWGNzDnjgw8+KEkCyWQ41bhJkO1m/YEriwYBOc2YpjPuH17j9vYWG5L4W2ZpBpoVni9UPgKS/OCj7yF0Dp/95v/g6zdvwJSx2b4Cp1p24n1XrEBBUgPWf3Oz2WK3PSN4xjwd0A079P2u1NsRQRqvkCipOGlt3DDgo4+/VzI1lem1PuicBeQZlU02pYxpkpo8A7lav9IYo7ghxc2Q+SFHNRbHDJDFGRk+EJyn0jy27zsYVpjYayZIGltY3WzOM3zwCN5j2G6x3QgjLyDu8+F4QpxjqU4gEELQAmMCTDkyy7PjxCjhoMY6k/VnC0Nn/0Isp3V3ALNUiv1SF5hzyKm6Ly0qvVyvPDOuCsSUR9Ierykr3GWr12X0g2W7Gdm6KDG0BlY7A3lVAAQITMgLpx5njWZxcUcRpGg/s1IjsVQBUNFHEmvLmZCTx1//9d/iT3/yB3jxx78P7zpMcSxA6sI2W0y19sfuvXWtLx9tGOlSUsB+G9h9/V2Lm9tn5XxPazkvZUJNaRrkwmRI9ABB6k1rQbx93zW1yWu99lwMDQBCXYRAS5udkkAGWhZJoO4T8zzjdDxi+957xUTcbDYLy6y0KVtpbkZ1DeR9RcVPY0Gpi9Ir8qV4HdJYArDd7zGOV4g54zxOGKdpEesxhdTslYsHELxX+IIU+eYcV/uNgAAFya0mOSTIvtvty2IzOEtSDBfbQ2dDUYsyN+rglBLGcUTf82LHqg/K/kZBRS+VgrgSVIxOCZhmswDUlslZ4ClSeTAj5RkDhlIL1zKGZmZMcyrPXQTOwXsuz4HAxWWGKdgyn2sJeTLlsi5XcrB0X/QqFpfVuKeDxKvWWfFnjycdpwwXyMpZp9lll5VpQ/gwvNeAuJafidxxLadhlESV07CDV4sLzEjzWL9nz7TZ4Mrz025QnAlffP41Hv/V9+Tc2uMiZ4aIFJX5aNfK0+Pyord7t9+X4k6XsplrZXE5+G79Qp5e69JRa7yBSiu/ZNt5qnCfP99zVmBYv2lAWRP2RbmDWnEHrZoPwRfaGuM4s8G0Req2SNtdVM0I1HbzZm1ArZAkOB32anXLwmYWgCOxZBP3VzeYU8R5nDGnjEEzktWiAaBui5n8JCsL3nvc3FzjeHgE0wDXXWPM0qCYnVhYGdJj0vuAzUayklKBkIsrBIhlkbPs5K3bHkJXKMPFUkga++vKmOwcOTPG86iuol+uWgKmaURM1u3aYo7qXpJ5W2blyXklG+pBmeFVeaWccTqf1TIjrZdjeOc1eSBj877lZBe5EGtDlLu1D8xc4yqO2mYjzaHKwMR0nV27dOSckUmQ/rKR+BJXbNsirkQd1Ch/Iqdt2lrGVZU7nVdjniUG4JxYvIr+N3yaPDwNJBSxks162etdR7EM2NXROanjTCnjzd09TscJMQLTNOsaUbDqnMo8OSd4kKYW4R2cyuaaK0vpEkTjuZjZJQjG8y7lU4W5/i2ey4r9tniGNcnwuziaYX2ScZTedS9evMAwDMVKarFQX375JaZpQt/3OBwOuL6+xn6/X+DQmCtupAZrbX3a4mPNekrXpr4LilbPyDxjiiO6zgNuENBmBnIC5sTwIPhuwAff+wSf/frnoIcDxnmW5qpEAAS4CKPzAWRRq7JjxXF98v2P8b///hfoHs+gsMcpbcEuAD5IWj4wAgjDZoPdVY++HzCniGkcxRIrD0ZWhVmW5SeIa+IV+pJyRopZ33PwIcBBFV1OuL+/B2dG1/fVRVCFfDg+YJxO8J0DkAA43ehraQ1QkeLkhaOL4QDqELzU+M1TxPmoPQrV7e9Ch67vsBm2hfEkZ3FV50m6VsdpBjIjOK3/VCWYkDX5IfcT2BelVq0KKGOqLPvS77OYolhsxrJhMHKTCe+7QRQtkcYCUZkzdOOyLKvdmwS6s4KCJf6XOclGoOytpBspYEangJ8zSzkY2IGVQsgzQOzkGppzEaYzmVvzJNqMtjw9sfq87wA4zFPGr375Kb75tw84n6Vxb9+LhTjPCedRLL0QHEIQrJvzBA9SK/w5q2mpsNZI+vbv1gqzGslL52q/a4kse0Z2PJexbs9jD7rgHBuGk5xzpezOv6MyawdjgX8ASzekLSRm4HA4KHK8Wmbb7XYB61hOgHGflavBdk4rliVH8EH52VmsjpylJET0hLoBSFIwTIDzAVfXN5hTxnmaEFMGumZizULSPVMUmgk7ENQyOx0fMUWH8XzCmAjsOiBk+E56erJZZtstuk7ArnPTKs4ygUJIKbEOscocfKj9By3Yn7OMsesCur7D6Xgu8zaeRzjn4d0SUc1gzPOEZCBb7RYkk5NhbApFI6jFYa65bVhW+G7keqwWavAB3nn0/VD4q+Z5LlxYZrHLqYUwMM6SRU0lRhWK5cFVUotFLDZFETgY3OOSmWHxGVY3mBmlZItglpmdd3UKIq3a0PgeC7iZyGA3akMZjZSrFoe57swsPS2zFHezJhCIIckAhhVWgGHMHMUm1FE9XZLWnCYlxt3dA45qmc3zvIgrxzmqpRak9IyosAK/i2V2yeJ9zhU0GXibQqpTSxdff+JOv+Uc5mauOf4qw3QRmu90FGVWU6OhIMrX5miKCdM4Luq2BsVY2We+LY3L5Xw1YFg1twlZBfFazCtZYZ0GjEx4yHlsd3sQIu4fHnHd9yWLKodNsFloMomk1/bOYeg7+KHHZtOj89dICEiiCYTGO4jr5V2AdZjq+wFeM7lVskjdrtqzMAOq9AQTZXERmQOprRzVyvNO8GvB99gM22YexTVOKWmXdn3gZDPqUGNFYiuomYKFXpcJl/sOvuCenHLQZNZgLcS8mJXZA6RF/zuHNPfIMSKmCbOzZEFebGSRAWdZUR2DuU+mMArmSh8RsYXS9W51nGxuLmeQbqBOYUBLV5VRS0uaxaD3VeJljVgQocmCtk5is3kTlzCAD07aCjAAVpgGt6Afu6RBLKo1QnbBRtY7bfBjVonBnYgIm2EA9Dl5l0AkXkBicWxziSvW+bW1A+bFeNpjvT7tem0Pzva3fac9nnM/L1l8zx0WVzS5MchTgcS4RXr6nY5gSsMwY/v9HrvdrlS4A3rBzDifTnjz5o2QLWrW6/a2djteZ06eCyRmhoLiSNgfUl6B/gh935UsCDnCNEV4kiJj7wNySkhw8N2A9z/8GMfDHX7568/w/vUVvN+U9K49vBgnkPeQFDjEWlGBurneo99e4eWLG+xe/ABTIpymjNM0ikA5j77foR82unsA291eFkrO0pBXAbZmrc3zDEwToAJX+yZQ2Qg2mwE5M+7u7gBK6Loe280Vhn6LXucUpTEzMM0jUo4IvQeT1sxRUdcAHDInOJa/Sa0OZlVv+gi8ViTI16vin2PEPD8WlygnWWTeOWy3W+y2W3094XQ84nw6YZomTHkumc4YExLSIusoiRKHTvs7WC+GIvzOFn9VQAQP54TC2hIpoeswDNJtWwCYNflSOdhaW03+Vd1MVy3WoEHsxhMwF9h6ZULlTW9CQLBJNkPOJHg9s9BUgUkFnsm+uJ8SS3RwcJrNlI1tuxNvRpJnA2J8xDxHhNDjan8lMUsHxHjEPI+YFWStsyogba/VGyQyLcZqBSRnruSKZv3YejRPjGhJ/QRcrihYu40XoTVU5fV5pSbPRlAOAtY9HA6aQBRlXDaE76DQFpbZPM/FZey6rtyQ0yDvPM9Cia1xtJQSttun7ug6Y9VORJtOrskCBX3q4KVpiS/dl6FB6xLQhtcO1ATyAfvrG8zzGd+8uStstEZeJxaYxKPYtxMjrqAnh+2mx7AdsNtu8N7LFzjPgD/OyMWacAihFytNs17DZlsqG87uXDuU54wcI2Zd3CmJldR1cVHYa9nNvh8E+Tx49H0v2L7NHl03LGIugODeMmc4H2o5GAiVmjmrJUMSD4LhoOryNmyfD6E0k2FGUcJ2HzmJJXB1dSWZ367H/moPghJiil8pbuVc0/gmM3au4sYGDzTUR5dwTc0T0/87taRl8UtoI8D7gDRO6Ps2RovGKqtnJGgiRxs6m+o2rJ7ehp7AXPeWu07GQBrqkJZvQNYAf+NP2Bf0dfMk9AWS5EiKej9g9FojLJZZh3lmpBTR94OuQalqOY0Tcp4w6Rpl1cgFk0WLq5e/zGZsY19rb+sSz9n6861SunSu5e+lInvOS7NzGCZymibs91rVsuid8e5HaQLMzKVv3iVBm2PdfVuucR1aO8xiXdt9LH4TQKz1ZupmxDkixtQAT1ECgUbzYkXVXCLFJNB+ktIgchJojxpnc4uatgokVRRXlTGIFUgEnE4HcLYCd0bf9RKvgchlSqkokWkctb0ZiwK1ukHnFsrde7le8L68TkRFmbUZYIBwOp3RhQ1qLqUKSJ1fLoIK8EKIsHgv1zmwiAuhzHF7GNTE4CYy/9UlySzJIQIJhk57F3gfMPgNnBI3Wqf2GFOZAzuvxT0tpGH6J7MrltViNzdlwTWEYeepcdxGXmCbpJ35qbsHk4K3ukHcaIaq5AhOgbRUOt3LY2OVzeV37NLF1W+G4R3hkx98jBcvbtB11vfVgTVDOs+TEo0mREXIEwkXH6tytBpfgBtjYKl8inyslNjajVwrnXXcu/3spb/f9WjnwnSOZMqVV9CUxO9wBBO4nDP2+z02m03BlrU3c3g8COWK7sAt2ZocGc61GQ7TulT+DVi8pIMtyhwTDo9HTNMZu81OdhoW8z6mWCwFH4IitdVlcgHOdcjw8N0GodvB+Q3GecIUxYoqtXkg9F2n2KskO36zY97cXOM4Zvz289/gw+//EXLuwJlxfXMj3XtixjxGzKczjMZ41J6NUkhuWTuJLfX9UBZy2dEyl43Ce1+SKH3f6w4rdXy//e1X6MIGw7AtbhfrbsUQpZLyjBq8sZmtTBHqrCsvqjwDpwSQdfFrRk4fsXPigksSQ3wnaxIjdYkR33zzBqY30yzx1c12i24jroK53MfTsQJw01ziRE4t7HmekcexCLdzDr0SeZq1a/Na7lmBxaHrtWB+BrO6JdDkCzNKUkHvVBr7mlJZ0sow8wKWZuJiVpXNrhhYXGs5nWyVzktlCrFT5SaOZeYs6FndSJlJO5JJzFYAux7/r//3/xOffPQK++sOHhEpB8QoG+PD450q/hnkEhxJeODm6kbcWJJN1MI90yT8dhIWCYtN0qxxSx/ahvK2+HbbwKhCKWjxHbfYVBazrvP59thZSgm73RZxBk7HQ/lO3YC/Y8zMbo5ZWq1bfeHiYEHDWwxLMi9dWYjtfJTsZHPTsqsCJXtEXj7HGZwEWyXtqa6rZQYrrRFF2wWPwtgKh+C8BD4gHald6EG+lyxjsvibA2k/auft+7nqfZE/7LYbnKcj7u9eK/usA5iw3WwxJQZNEdN5xjRPEpNyDjyOJXA6bIR3TBZjKHRJ5UGzJE8sudI2T67IZ1E69/cPePW+trBH9Zwym1WpyHRSTqnq2aC4muUORZ0Vnd4kPtYWX31eTkGbNdMMtcaPBxE456Qpcug6dP2A/X5X7nccJc44TRN8CIjRI6kLCwjOzhahXb/tzF4CwM9YEq3CszuvixaqONsttMaPzBtQc625fZtpc9dYqdzt/bx0gZ0CfBS4bJYPqyIUz4DrKZW5JSPDQ77jO4d/9yd/hG1PGAIjzQ4heTB7pCiNsFOKSHlC3xO6rsem22C3vwJ5QoaAr3NOiJELhToRwL4i+hcuYLMeWxfyUoC/FPU37uLvYIgtjkvXCSEgq9EiG5tWB/wO5w9tnGs9AXbBGKMQEOpn287HreK7JIDF/FfLgQFNl9dzF/ehMTHN0ij/YpT3ZNeUz/rQI88RRB6b7Q7jNAkAcQfdZakIePFejCcdImsW1I9pAjiVSZVekihuaugCmLVrNOcS23MWhHUVArHckZaK3XY6E5ryvbIwbYdCcSnb/5WRU/sv+bfd5Fru6rnUQjAPvLhBa/fEXmutN3MFnZbpkMZSY8GFWSiCnGLoHCH7oAszl8/5XAn+aggBi7ibAHEq5mx5N43bZn9r4IxaN5Ht+WfVPig/tlGU76znrLl3mz8Uu0E3VuZi+dXvUTm/ySnbWOwp5iyuJREMB1mfveHnJIxiwwYkJIPEyJRLgTYA3ShlzYiVLdfKnIEEwR1eADNfUmZt/PsSTq3c48Xj29RQ3aiyzUEzLtt41pUc73KEUc39ruuw2+0WkAznnAT9Hx5xPp9L5ft2u0Xf94UKpw3mrReEoeXN0nDgkmGLKeFwOMGRR9+bS1oVmHQ+94Aisa05RBFsF7Df3+L1Nyc4P+Dj7/0rfPXb/w3mhJvrFwidV/S3lPZkdgBaVgspaNxtt+geDjifHpDzCN9Jxux4OAHkAXLohgG972CJhZiS0jd3AHnNztbuOAtAIVAXqxLUWRLleDwWeIu5XEFpkUBWKJ2RoOy2nAGnsZui3FAtL10MNpNkGULdPMqCd9yI3dN0vQ5ZXAlkIAO9ZkABwJNYKDFGvLm/bzYMwQX6IDxvwyAue4oRp+MBJ+/hpwmp61CtIw3UMyMqtq2k6YPDNBlDbgW5tmaCyJyyk5SAPYGE7qJkM8WKJzgvINRiNRFQYop6luoqqbvGtqGa20qInJCyMhAXdg+CZS9BUExaYxGSECvMcYRzG+VDA+BFqUuCCUJxxB5i0EomH8y4u7sX6xwV4+ick0SNWvk5ZYxKv5NSxBQr02w39M2c1b6Z6xiabUptyIkZEDLPpYW3PJ53D1uL2yjGrKdI2zbQkn7f9QjWvcXS9Wv6XFbIxjRNBVDbuqN93xc80iUz0nYvfaH0u2QWcsdxHBHCskUWoAtRmwQDToGmKCa7ZOwchs0OORPId3j53gf41c8PGLqgrpjT1L65TJLBqoXhpPfTwTtgmk7gPMMRI3iHh8cRruvhvQJfBwfnqbjaFvMypoP2QS0wN3JD4oLkjKjfZeYCOg6aJTW2Eat9Y7UqMpQDn9QCK4qs/ibK4mO0HmSxUFTwdDBmZdSf5XOTsTfJCSKEhvPK673GlHA4nRbVHpttj+AChs2Aq6srQJUZc7WwyhxxzagZGHlUoK5zDq4Lyl7SBKRtMTU3uL6fFqtmxfZApwoamtl8eh45xF0vmypEMZV1y1zow1MWDKRt1jCrunHr2nOLtZcR06yyqBRV+sztR6Ar0isizamM9Hg4IfOMjKpshs1QDAxSFz+mqCQH5tIrTXrwC6OjrS9ulU3L+lrlcKm83p5E+fZDdE9ACFnXej3n2zKhzx3BBtzSzdhhArbmJmt97UuZkcVNNguraPRGexez0j5cAkXUKPia7SNohp9ITHCrxURlfmWdqNz3RSly2YGBNkZS4gFOEPvTfIbrI8gLRsejBfBSGUtp1YbGVdPd89JxyZS3ObYOVmCpj1xndMz9ks1+fR/tz+ICapWpVVFnsvy20FG7jtcC2rrniw9SVYi263O5L1sQWXsQSKIn61z7EOD14rKpVRhHDV3Ioibv4HK1eMybpNLT1DaMKpt2s8uFB8XsmcwZY4NWBRRz1ua3+W2yeMHVIrq86Co0gxZNe9vDICM526XrXJbWjOSRY/W6zOJslTUYZQ4JWM2lA7pqjbVW1dua7dpm065zNHN82Sp7eqz1wToOZ9dpyV/Xn33XIxARdrsdrq+vF1YZM+N8PuNwPOJ4PAKoBG4thKPSe2AljDagpfIDgJQmsJGpGzssAYQgn4fsnDmL++F9KEpLFlFSRUZyDgog3yP0W2z3VwA53D08YNdvpLGrIyRoNgqSJRX3lZET4B1j6Dxur3d4/c0XeOm2uHpxizhP2O6uMAwDXr95DdfthCI5eKnZI22QwULb4uEQcypupc4A2n8SiZsdglds34Su2wFQIO0wCLuoJh6l6UnG4fio/FtN4J/0/KpxuC5pGKKqzBuzxme0CS6aOJOZFI0AAijVDKKkpH+mxMsMlS/vdb25n2ohOoeYMvJZyS9tfMzwXYdu2KDvOhlWZsRpxul80tIpwfSRxlIQCHGawSnDh04ofVxuqk5s7NXFNiUhlrhZ4UBwHsyyOU88gnLQDJ/GmbxabM6DiFUmtTwNgGD3GFCPQTKuAGUGxTbuk7Wfgyl7hU8UhSA1s+OYJemZgM5ByTg7CCO6VXkQ4nwqbBt9H8BwBU9oHs3xcCxWfErCCCKekzAhy8YiybGoBop5F2sjBcDCE7sUNzNF9F2UjSmxNvY+TSPArD0CtBrBWeb9ux2BSLAr1hquPaZpwng+qytYMVIG/jS2ynag7Y0zt4HNRpnlWddjdUMdK7SgsQJMUMUls4VpH7GdiyEd0gN86DFst0CacDgckW4ZoZMSJOZYQhc5Jylob6zC0Hnsdxvc33+D3fWHuPVmBktp13kcsc0DrP7Q+YqqzixCySDknBYCUrfj1qqBxkaMY52EATZl9NpR3Kw9o6A5n0+ye1EGaFa9zsUCKFYWuCw9Wzh24wQNOKtVRovvLcdYXbTq2jFL8sZwXqz3HLpOkdsSDzKBnVPE+XwqgmkdqjabDXbbrZwzZ8zjVNzPlJbMu9lLYXvWQvGcGZSUU6t2jikWp046ZL1wReNnKJYt6dhmUJ5hMVEfAMcSRnBqlYl8WaiDl3NLhsuz/qbVIpXraU1xsZ64kV15LtPMCGB4BrrBMIdeZUOeEnnCkahsVCEEmTeSNWBzPWlMWwrjGburPbquw2Yz4Pb2FvMUcTqdcTgcwDkqIee0oPhq17+FjlrOudwo6O9yPKfwnJN4aAjGRiP0R+QcOP0OyuwiFAONi5krlU8LqGwHuA4Itv++fDNqfttu1AgBqaDY/8rEPZlDWv6t7k0IHZgVgb+4nBAW2onWBrJzDl0XMM3Wv7I24S2WZ+MaXxxGO6KlYbYwzQ1H1ZrgrJ2ivPcl21qHX3cz+aycf+UQ6n/tu417dGl8/OxbT44KVF59p9nRYVYy6sJdvIeVi2NylbNauWIdhRCEMkldeYZYvaI0XNn8LMZS79V+c/O7vYdqwZp7237EvAP7AbGw0OqmUc5vE7e8zcWcyLPRMVBl0qiyIs/lfB6BSOAI7IaKyawKU/7OKSPHjIwZDtoSytXmQ+1cG+mpGANyn1bdUV1HFA/rufVvz+lS2OFdjbGli7o8L2AwnFzA2d/ByLt4hPfee6/U6dlhpU3HwxHj+VxwPV3X4erqqmQ8n7qP6aIyQ/NvSdtnOBKNf329wzTOSEmC4b2ymxJ5eCfupVQCVEH1pXlrVg2uVhs53L54gYfXCXdv7gEm5ERIlJW9UshaBC9qE+oBRAx9hxcvb/DzX32NF6d7MEu9HFiC/bZ2TDha0OFlOIYqsEZrWJzifD7jen9VXHmAMc0TzucTrq5upMu1M4Ul6O55nsBeEgC15KZxNy8qp6a+zcZgFgbX7WIRC2RR+qxyALUqMjOsl6F0SafCTyYLuy54cqKM4Agbty2r3sg/J81Y2gIjKHB2M2DYbhCCZDpzzng8PcJ1AHxACL1UFmQuXGt1AqpCq7WIpHAQjU3FCMcRziXp+MSAJYESa9F1ImXwRVlgWZWE81SSnsUiLjrS3HqN0YKaFoiiAXwI4ByFNpsIv/iX3yDwjP3g8P7/9QdFOZJZ1GCAHY7HE8bzCI6E4LZwgUAeGLRW2BIGltgCIJRTSaiFzuez9gXlEqMNXYfr62tJICij8aWYlSVnngv8t2udyK7/7dskUa2/BiAeSROH/l2OcHt7uxiM/W0toKZR2pqZy2U8/60VVnbMBrNWSB3JHo4pswzntV+jd9jtt/Ld84xpmtH7HsTC4+mUspq1SpoVelBKkzK09hGqMB2ur29xerjHw8MBrAHilBW3w4CBSO15OEXCd12Hm5srHA7/B+fzAYyEYZBu6XOcYR3f7OFeUuZrYRBlZpQmVZlN44juxcvawp4MkjBqrau3zXWhzLxnmLvTxseKUmvdRS4nWFogXN0l0nljtEJERTkxM1wXhNsLjOAIUOXgQlBXG2BOaFSZWidyha7rdAwsjL7MSPOMcRwxKXdeFzrsr/bo+75UoJQNdTwCXty/EIR+iVMu2MB6mMvZWHBZIRvMEpuLER7SNR6etSuSzAZb52BigNqNCmDn4BzQGR9bU8hdY3Yoiqxk4bUXqyU+gvPgJIy+ORF+8+svwPMRN9uA/8f/9YflHkRuRMaJHc6nEYfHA+YpYggjfBcQesOE9nBOaoaNh87iWTEn4a47n+FIKN5DCOjDUDLNa8tsrQfKhlM2juXx1At7xmJtDrMOuy5oE3CCG4aqzIrr8a6+gxyhVUx2IVNmaF6zGMZzg/v2wbcToSuMqyv3xC1gLgvC4iLPnr/ZmauVhCJwZAKnXkLdQerDEOtANEJmYYaobk0upTW/S8p4fSwAoOZFN+6nvGafkbnKWdDjVZ7ac9gcAYV5oj05npr7LSxh8Q0yRdhg2JqjdTkXlzHLj2r0qgaW6xjKeZ5x1VtrQDZHUl42CXGkXPsQtOe2e+EL4QgrjTKyyHr9xuV85pkyo/RXkMY8Fmc1V/VdZaEdmGwgSd3HuekaXiak8WytPwJRPYPNU+XTE8XbdthaxhHX91Xn+dK6bul4lu5m/exz62A9nc+tGWMM4XKulUy+6zrToT0hZzSO+tevX5fXp2nCzc0NNpvNhZtrtXJVKBXO0CimEluRYDeU+jppOYOD1RBKhstRLUBuXQnLjgFKaUJUiPL6ftAemkIbFHoHr765U44yc9/K+XIGnLB6dr1HTjMOhwf02xc4nAV0uN1tYW3eahkXFc4uG+GaRqWdF9lssgJ4BWrRaVbYrK++70qjEbNsM2eM04iw7WoAHgZCFkuoUEAoLo+gPRnNaaEKNrb1bxuFCTaZ68hUeMSeus4QSnEZYPFg2zW92La4Lv7CuQUtYdps5G+VlVFL5syyyFm0iPUV3Q47zHcPSHGWRr0LYTeN2sqnbIa77Q63eYNj9ogpg1nkDXlWle2UqEAtq6L0CDmLa5mzNKjxwWRZsI/WEYu5JlOKcmTDp4msZ1hgTi03DkgRmCeJG2nLLdvnAQiGTQLjHkM/oPcbCTJwxjxNxU1jlkbcUjO9LWuwgODVUrd1Oel3N5sNhmEovS1NVne7XaH6MutMlHlNzlyKtdm4nzNw2ixo30vjIrAB7uvaJmsw8x2O0gPABMCU2d3dHXY6KUbPcakA3f7dKjRzM4GnpSgS3M5KOQ0M3iu4LyJQV4LfcZ7hnVdl1ioyQJ52XigPu0LXD8XcjnNEDp0g5jXm492Cek/GyFIAHLwos5RmnI6PeO82IB2kj+fNy1elrbwV2BdrKgQ1pi7jZJpXAAjNS85SNhU6X5RZnGd0nbhvzeyCsyizHUJROMmohc16tfZnXOEXTTRb91MqKrzgzeRxyPMzo1CFv9iGCyuKynnsP2uRa22QVjZcc822JI5Qu18bdZAdw2YjPGabDXbbHe7uH0vy4JLlIUqltUAddrsdkiPwxDiNI+J8llK1OOv4pSSNnIfz0BJ9DWlA2xyCEfOEkNT6dx45G4OyWr1lIasF21jdZl27ApVxAHukCEyUkLP2wChf0s1HW+V5H7Db79C7AdM8Y5xnzPOMuQnuD8OAYZCY4zAMCgx2WjcrnaGIpAQtTrFsHiklXF9fL2S3bRspoHmr/aTimq6V2ds8tNY6k7idwzAMeHh4kE3ZQkes9wt6IlffdhQKIDsMJLsQwqbmcD2wS8HAtx1thrLGHOr3i4PDTYF0+S6eXNNiPvYD3WV9EOS4pZMLDOGZUdkuHrx0P5/jpNMp3zfoge33OhJgsXBatdW+dxl0aH9Xt+KSO27nstjg6i5YLLMCkDUltpix9k7NlG+sKlUAzIp2b8IAZgFb7Em+LApgKW7VNV1cdfGRsrrrpreSv8XGWBa2/FixPeGCrD3xftViBcM7QvCEzgPRE5Ac4J3G1EzBVymqJhaV87IMALXWE/Vzi3um5XDKc1/KCoOVXNGjGPMXdgXr20qksJjFT5m0xmNSFz0lgB2Yau2x/BCoeaZWJsY5a4LHYoH5ydquyS4s1n8NkbQ11GxDK5tbMVhXntzbDlu1lyR5fRTWDDv54XDAw8MDNn1fym7ee/lS6gVNszafv5TBA1Cb36o70ypAyh28LoZxlKCwcw6+84CX2rI5zwhdhxAIjhiZhT9LrpnLwwGEXiUzgSlgzlcIw3t48d5H+ObuK3Q+Yb99ASjYtCxc/S6zh6MOYA9OEa9u3sOUM9589Tk+/v4BwUV0AfDkkCMUv0SQhiJqzTBQ8FyqeEy1GlV2qdtzHqHrhUIIhOA7LZdxELPAowRHGGBOYI5gjnAuKzFqEtXLTh4h9wD3IA4g9AB74QgrciUBcHPZMws/nezo0i+1kj3qucFwnGTaUgLPM2KcYQF+58OqcNnQ+awqQTcQhrpubcWBBNSlJ6nIirS2E6vSO1dCDkzKInEeMZ5nJGWMpUYOCxusTX/pOUkgRAxBmhp3gRAHh5Q2SPMtxmlASkBMxs4iMhuTctoxAc5V2mwAPptVBSBr70xmeAI8HBx7IHVwPqqM1CgTEeBCAtOMnD1effAC5w2ho7nCcXQ5OTDACeM8gYo8SRMW54DOi0L2ziF1XkTRSV3qeDpgPB3lVI5we3sL56SBjoRGJPgwdB1SnDGdj5jGM/q+Q0wJx+MJh8OhgGu9d+j7nTA8N1AtYexYElBIFY5V5hStgAqNQdkgvZPxy+PTTUGVdK67xTsfJWZmQf7Hx0c83D/gZr/H/f09+r7Hey9fFgEiUtbXolieam8GF5PUtHluXANCp0UkCcfzAcwQCp0+AB5C/pdnDF0vDW+dBTqtQsEapWpcgwmZHRgBc94jDO/h5asjfvvLv8H1LoD8vnStZmawqxlQsUY6CH8X4b2bV/jt63u8/vozIB8RPKHvHLwjpAhl0XAAxaIgAbOMPKAVAFLszEictSmsxqPIo+s7jNOEzgf03QDhV5PmvTVeIw+YkSDcERGORIlnVTgWd0EeQBjgIApNewUjW3syljrYrpMOQgTJ0Jpb128GpJh06+zQeVEyHhmUMhAj8jTBKgDIeVCfAQqQfkGu2B3MjEyw8tEiF448ovUmYLGWnHNF0ZLzgjsMAJJHIIInj1PKwic3R5zPY6k+IVBpdiPK36xIAhsxJxHAM4YA9B64JiEaYN4g5w7Hs8c0J4zjhPN5RJylNpTjjJwAZtl84DXc4Tq4JOfNGaCcxb0nNMosAKnTRZoqowYB0k8ggzEjweO9D19g3Aa4JNx4yNC5ABxlMCekeQRxlmw6CyTHEwrCP2WvsBlCilJYfj4dMKmRAEe42u8QBodOldmspJ2+7/B4eMR4SpjHk9QnjxPevHldqn6c99hut9jv99hut6UyYJ5nnE4njOO5JCGEfEK+UxoQFSuQVJkJTx7BV/A9Lc3qqlfe3SoDtNWcHcssUj3xc6A64LuZjO1gzBgv9WElQSBLuO3F2FztyY2U0ZfvejgXELoOMc4Sm7JP6tefZK8IsPhS8LLLxTirBST86iUm0rgXxaUyaeV1HGe5s9h1nfPCaOvqvIlersDJ5WyZC17dPLsWqQVSOaBbF9hOZytKx93498Vl0c+aUWj3pWuw6ItyShuH4bVMmdjctvLZ3FJ9glRcj3r/+rxJCo8ruabVMFY2D7p4zqczTwCclia5hoE2O48QpCdn8uKGCsUeibIgPUejlanMY/scDOdYF14rA0vyR5kvsV4zur4HDx1camdFP2cZ5ZZ/r5yHqsvoCE6tMnYZKaG6mkUuFYrTuPbZzqGzlVKSvhr6YxjDErG2611Y5wuIkhmYi9DBk68svltGweswyzse+pWFZfbmzZvCr/Xw8FDKT9pjHS9r/10tMCpA22Um076Pwjh6Op00JhfK920yWwzMc/RCkzK+SlYTSsvTg7d7nM9TrQRgAdlmZrBbBubtITiWKgAiRoozUpzV7SFM57MsDCclS62Qy5hkAYpLbQ+wlrpwgvYFEAqlx/t7BC9ZKmuDJpis5dIUSIJkqJi1s5MpQAimiVWRFi8XRVUUhccsDWmg2brgQ2lEwwTkThIS2+0G8/mMlIzWmtCFgE4tInMZolaHpJiRcwQbLY+XBWAIfltItjBb/S7hTMWFXXBZcyNT3ksXdu8rRMg5lGjVgvG0JAGq2mzWWXmnC/K8nGN0waurydjNETFmJGUZziCkDMwpIcak2EHtX8kSIuA8g5DgXIZ31SJu5cvGScLShv1+wPVA6JDgnLpWJMXvosATpnkqcl2rHiqrSjufzrnSj5TgEVNC1KqSEHwlAnUOga2HxxY550LxNUeJl1uyz+b/dDpiGkeliOfiyQlvfzV4ZP0Kd50tVVu7wt9WE4NGhSW4ymVLy5o8e3dXc5HN/PrrryWQ5x3u7+7w4sUL7Pf7xReeDdY27iQByuyay2daYK3V9s3zjOPxiN3uCp1m9dpUsHGmoQkU201a5vV8Pi+SE44cXN/D8xVOpzMm7T8ItqJwodMJZt42uxxgLfYkmxrjBBd6eEc4n04gBFU+EUTZjDEh2iOHwqBgbdOY4chLvC1nxDirAOxw9/pNWaRplg2k74XbiRp9RuQQfIftdivxs8xSTshOrRcn7ccaT8uhBodLbDkzzscTyDvtcrTF1dUVhs0G5/O54I2u9zu8jjM4Re1Pqsqs77HbbpF1F398fMRpnBDnKJTW3oG8R3Cd9DQlgVwg58LAyrm69wAV5WbKzOQoq4XJ1CxaQDv5WGwFylwmr7TcXiWcoDNQKhVaOQbQBQ/vga5z4K1ZtYSYpOpjniOOpxFzZEwxIZ5qHwx2BHYSm2MQOCUQSVwzeAEZFyPVHg40PggAlHB9PWDXbbD14lpSNoonBdvmiHkey31ZZv+5EE9bMx28VFrk8Vxc866TrGbQ9TKOI3a7XQXITxMYgAuVRdrW7PFwEE44Epl0TjaX/X5fmJXHccTpfMY0HTCOc1Uy+j7BaTF9NURaxh5zLYvSZpOVS7b306MkAEy5mGJohWMtBL+TKbg67JqX3NRWaYlyUAX2zDnK9/XmSRkNGJXdwenglznNp2az7Abm2kjbNpn8BCIhUDSXs/WmuM7OapRUrsOZwU4Xb/kOFBSJJ3NNZDgxdU2RSs/GZx9u40ILXkwC8cVc5HpuwwpZ7KrU3rYuj31WP2/kAAXMXL1XmJ1EZq1z++bT8TLX85dPmiKyeW4WrtXytfNjz/Q5F6W1yJqBFsvcMoSGzwNIiCt1HN4Lc4jnrAj1NmObwYsidImTLiblya1zcV+dJ3TBoe+acYGL4pPqj7oByDxUF/sSFKLGqetGsM6A2iZuit9+G2bS4aksmsUl30NROCYXpjcsdPD28FO1pp94bViDu59+78mhHw8ARKOeTjI4HdR2uy3YHzNdSxxi4TJWYVvUcJmf7ur79l7OUpN4Op2x2WybnpLLB2LX0Bef3gNLxyBbhKyvWazg9uV7YHjc3T/g5c1NxW95W4w2nlyE0HnCZjvg6mqPr7/8Ai/eH7DZ7fA4jeiHLZwPmKYRQwiw0pWscarMLHEZAqrdUGdbgMHyt1fLMOeM8ygdzUt7uXKrZl4R+n7AHOeiQAziIjFet2CUbWMh0zjCZcZAhJubmxr2Swmnw0FcB8UqhRBws98izTNyTDJGBnKMmHJGnmNZYDnO6LxD5wdpfafWVwbAOWKeuZwDzgkvWXGNniq5OM/iFkVJGXuj2FFQcSlKbiADIjMGqVnGG2sc8PLOLkq0xuAqZY8sUHEIHJg7pAzE3GGz6TBOETEnpJwwJQlbZCVoDIHhKILzGXCVK8xBG50oBzvZNXVYItoqg84cbAlnnM8ShjGeu+qJ8ROFUZWAcsEpALet3inLSNeuuYebjbSMZFCZc1vTxgYLaHAf5vIyjqcT3HmUBEST/dztKnAXREqumTFNM6xsaZqmBSGs90LLxflSvPzbjwAA5/MZDw8P5YREwnE2aw3dbrcrAcHW5asChaLZWbdbzoYTE81dqIIgyux4PONwOOL29gYhdGXyFsFE1J26beprGp1ZlOJ+v6+Uweq6EDm8fPURmEd88+YOL1/cakUBgTyQYi5WbMGiUYYLDrvtFrfXV/ji80+xv34ftzfvIU4n7Pev4IPH3eOIYeuLEo1scbKsTAvysIktpibjnuMMr5aFD9ImTOIRJzjvMGyH1QNUDBQ5bIYN5nhUPBBgodnMWjPIBNUoKPqUgfE8IgDY9gNevrhFzBnnccLpeMTh4Syd1L1HnGeJk7x6Ka3NYhTgJYA8R4wp4VBI/4DQ9+j7QXp97vaYOWFOEafxjPEcMY8TxtMoG1UX4LuAbmMU61WfmYs/zbNucCcEJ655cA7dZsDQD3DeKdyHF4vMWS9MJfezjWwhQ0WO7JpioQgjh3wu6XNhAIEEl+W9R/AEkNNaScIYk2RWpxGH00l423LGnDP6LsO7CM5JWS20BMrJk0wxwnlRWERUueKcjUU5/pSvL+WI0/mI7bYvcSXxxLhUJZCvseSq3CA0VaSwkTV79GrttpaVAECw6HtqyoyImn66MlvHx0eZA87FZbQaW2vgE2MU93McMY1nDIOQSZhuMYUaQpBeI0mIIdp18E7KzJSQoa7NpbAAfovgf+dsg5mZK+0qZmRVfJJs8AuhW51m8fc6TgBUel8qO7B8miGlTXmcMM1N9+8SH6NixRQMjL7vvTQvGR/OEgsBaQMKKGlkVcyrEdbzXPrEKsZoUyMPT+IQT6wymEvoUc9qFo5t61RfkwsV/1e48eXdEAIQk7bz45K9Ip3HnJJgw7LCJYgKpCUnqVCw8YSQS1wsBA9OLPATAFByQvvRup/FXDVDlFdypc62mF8GLEvQKKQqi+1B9p/GdV0e3H5y9RpgNZcmiQaSJpBYluQA8mBnOKiIcRLrJKkSkByIWVb1WvTketWKlswjJBxA5mFW76bQ0VP9Dujp/V+cj3JvT62cBe5Tf1v4I+Va3mbv1xKmptQO1l8hIuVKs92GMEyPVIOwob/KfHFsy+PCe0+9awCEULIY2s1c4iKCiQIEQHh3d7fQoM/FutaHkAxmBSFaHAAYFcNi1CNlcogKzqr9fOskXI6L2Dn0B5Id3V3d4GE84PHwABZfApkTvDESNMJWvDQG+r7D1X6LX/zqK0zjCZwndF6EVRZqQmEzNdyCCmFWTFBRbCUZUMcprnuHoA9+mkb43qs7b/e0nMe+G2A6dxHfsciWfs97V5hZCRm7zQ4difV2eHjQvptZXQrApyQZ2hSXLki5AoQtw3u4vldFrWygKSOOEx7TnTRcYQZygifCduix7XqErlc8MWFWgCWzWu5YZqlDF3B9c43Od3JtBkInQM3z6bQI0RFRYXJpA/8lqFQ1U/lS2TLNStPnRKR1D4WZxeAW9mXJqjEYjiTA3/ceex4kocSMKc6Kr1LGCm1wYnMqcU/taqUWdUwJn3/+Bjw+4ic//gGMBpwzF8Bzq3SS1kbaXgysxK+ZGxmXNdCuGcRaKkYCDdE5a5UKEUQ2URM51AX57RrCTgBdL+V3ljh0jsA5YRrPyzpbbQC0HTbY7XZgZkznUQaeNQ6poYE2offkuKjI5AiHw6FkMq6urorfapzc0zzj7v4e3//+99VfXvKWtT0gZR3Uq3nvEKMUELeMlQ8PDwDETy/f0RsxZZZNKJubsglf0/Uu4nbMGqfrcPPiFe6+/i3e3D/KnOUEzhGCzG0nrFkmzMJj5gLu719Lx6Y4YugcHGVkJC0BkVo3c1VMojInEHt1XWCJKaSchA8LEufruw7By+ZxHs/YXklDinaDJVMcPmA7bIWTiglG5Qw4EHtAuxARi/V1no6YpwmOgA8+eIWeHHAe8fr1G5ATV6EbhGrIyBHTPCsLLUAszL/W41FiVwB1oXQdSimBY8I8zThPo/RR8R5h6BEcoR8G7DY7hL4vTUq+frhDSrlYfgCk/taJrPX9gP3VHp0P0k4tZjAkc3o8HhVGQsXdAWoPhSLnrBOh2oqLMqKiHMRNVXfPEcCGJZTnk8vsmk0IORcneAJcENrzvt/AuKHG84jEGYkz5pkR54SMjK4TynZZD0EUJTtwAuKc8Itf/AbffP5r/OQPfwhmwbrllIqbZVApQFg2ggtPjRWu684Uu7Shq01mTPkLfx4VqEtMMrpWgXiSxId3hKyWGAUZzxTnBeZvGHo1IqzkTdbZ6TQhJa08UchICB6bzYCb6xvEGHH/+k3xBOw5ykbpm3l/9yO0LJRlcTdKhFlIE5cB/Kd4kEuHZbws7W/fjzEWK1CfhdyULSZ6O7rkbdZg+R45dKEDgwQ7g5qhKtLafEGsMwZYYyUdFGsmMRDvzIVSxWfnsvZui+lvbUkUF8kUbkoJoetLvKcVusuzWBuGyMmcTUSJjdk9lKxpymBl5QgkIMk4z6VZccG/Na7EyhGp7prGLBexlSwLN+eMOE/gTHBqXZGWqfRdVzo6WWDfFJnBNPIihiNKqg8dOGYkGIK+Nt8wZVayno1c2jOh1jqr0/hUUsSMF2S93r/IoD1LjfvCMrhyHlLmTHJUyp1yiqAE6URlD+WJEFP5kc1Vui29eXO/GGQdtiko+5fJ1fNeEa3mZ/25ShmEask280TNfxxQkPwWyCe14NcuqpzbgPcaRopSJuaDr4rK+5JQfPosbI3YXa4mcPHPp/cejsdjoREx3Id9zDTqdrvFqFmv9vVLHZ3aw7Kh5/NZlYQrbKXCMeWr0gTAzS576VjHTJ5TpKV42HXS6Tx0OJ7PGAIKvU6VN9YxVeZWi/N89OH7yHHC66+/ws2Lj5DShJk9uq5gjZs4Hi0esoxNMU8wZV94AAEAAElEQVSwDjSucK9v+gEWBLY5bQO1y4NA5JGTdqYy91gBmzaBOTPOp7Owh/YdPAHzOElwe5ow9NIoxCsUowbMm501q5usMUinCs+WkSU1xA2SxbzpO2TJ56t7yMjzjNPhEW7sMMeIKc4IXlD3Vn/JWUEOzgkllCacOEstrPMenDI2mw2MpbYt90oFoJkQY4Nr0oRS3RyqYqmy3cxzowxN2RSADomtZipEtx+ZATGjwEzwClfwDHCyigLD0pGiaUjbIZh17XF/94jPP/8SOelzgQchKWi3xoOLgkLFIRbXsOq3cohxIiGTVqIeHh5U1gKmaS6WXNf3QkelTa2Bp+B4C810qoxqIkA/Y0YQOdUNGc5Vjj5pGD3j8Pi4SOAUKW9k/3eyzN68eVMm5awU2c45BOVjN0160t6IRoFjMbTCW9Zqdx2UIfwPD4+YZgXIeUUhe2kL18Y4WqK4teZvMWUtMLLdhcSik3hIZgfvN/D9Fr7f4O7hAe/d7NFvOiBbhaK6KSFof00V2pyAnPEHP/oh7h6P+Ow3v8T3Pv4E35xOmJLDdtPL55hFyajgkJMCaajpbJkcS6QIFUuWLO71jbjTulN6H4rrVIzGsgaltjElW3em8J1YaVaLmTJOD0d88P4r7DYbODBev/4KeZ4QMmO33cg19eQLeibOUhuYcqG8BtvzaBS0ftcTaQ2hR99tETkVMm9iRhxHnA8HAE7cLwD9boduGBD6HrthIx2DYsJBKw5ijkKts2Fs+g26YQAg9DTAlSDGg7ikp/GM4/GIGKMS/HFZmIO6260SaK0Zo8aRuleGsS9yYzlZRhoqFwxdp2zymZEKHxrQqRJgOFD2AmVJjJwiGEtlZvxpYI8vv/wG/+ef/gUxSS2qowCmhHmcMU+x3FPB2DEXMo/ngudEFSe63W1AbEBqwjfffFMC8waN6PsBu90Wu91OGjf7jdaILit5wNIv1SuQfZ5nhVygzCMpJEm6mKkLqSVZ4n7OBU4lm1QlU72U4PsuR7DAv/d+2UfP1cYlRITj8bhIFKwVmAl7e1h2ap7nQr/NHS96CNg3+ML318e73qiJriCVA8gFTHMscbj147fNzcw1eXAZV1d7vLn7GufxIE16c0TOoiQv7Rxlk6y+ro4baqrTQtBMIcp3G4DyQkAb18QWHJuF0GQxGUINPUcEL+lxB8tCSj/FSmRZKzMW1q08hOY+GjenPChWq0DwWAyxODkvbhzCzzYJtTkgTW5JFkffBQxDjxQzQBE0jgJTyML1FpuYrGROjSJalFTmjEktscza6V3DJIvF18pEM8/F8LR5WwtPY5VUv6H+XV37mqV15OG1pMtbM98kJXTFPSyCWZ/reJ7w8HgoFhu0RK2SIZpyRdmA22dTpWQV6ND3156OdVrz3uN4PJbPSQxQK26Kil4aE/ZvU0DZOUn6gIskElQuSFx2Ji58ecwSXrAwk/ECtuL+rEJbralLR3ipjBhPmS1qbKwtPjeryGoizfW85J9bmcTpdCoT9Tb3lFTbG5urHaVManWj6zQ9WTxDGTAyHPrNFvvrazweD3h5vQG4L5NjE5+1jETOL/YFEdAHB3BCmiOm8wkpMoAefR9wPEdkJgR1F8W4FER467XY4pmmCZvtsIwVmpLTGNb6wdqzEzvCYdNvELMoiLorE5Clgw8zcK287syMx4MkWkLw6Egoii2bySTYKnF/RZC7EIqbHeOMkbM0D3FW9L0WqHqjBFZoApWSGYSAnAkejKyU5FHjr9teyqimWbqVb4YB5D22u61YJ2CM04g0j4LP00C0y1JGZoshhFALo1WGHDlReNNY5NnkyH7LczH1xE/uivWe2s2vKAy9bddsxqRWqyPCpu8xJCByglYAyWec9lstrK9i5VgJnTVXAaA9LlMFrKtpSGwyugyxlCifKg0DQQtiQGTTqOCtfeJ2uy2GheEd53nGeTzDOmVJ3BlaE+vrxq/xxDYWLhg0vX6hvlpSYVEXyqYTmj4Otg5hrrR7qh++7QiffPJJM4FzQYNP57FQxLTCYllOU1Ktpm7NXvv84+Mj3rx5gx/84Afo+764rW2wuwXxGfXIdrst52vdSjv3OhlhMSofAnJOyJGR4LC7usV76UN8/ou/wQcv9mDeiSGs8RHvPaY0AQ5wwWGOgtL2jhCGDpQjpvMjzoc7zHMH6j322w3u7r8B+YzN9go+iAuQs3btRi2cJQVbnk4HXN3sJThesm9yT6FlXX0S/zC3JuB6f43zeMIcJ+nQo/TYnCUzBnb48P0PsNtsMM8jvvryS2yGTsCtzuF0FobVqGUpWV2WTjv1bDcbkANSjhinEeecwZsN+tCh60Kzy3MZlwbriiKD94gskInee6Qk0cjkRBGcT0fgTLje7fH48IhxnuGCx/X1NbpBspnn04R5mtSNlCaxzgljLHkHT64gx9cyYbI5jhPmedIqBMmYhq5Dxwyy2CS1VRr1zqC4L6HsqfEzctLxSGKgUnWgCDgwZ0mAEGG732MCIWHCOEaQxmW9C0hIsPCAc0Kbsxm2CvsxhUbKAjuVDLfAIRzgNMGTI7zv6sAV3sBUkfhd18mcORQL3TkhNBiGoRSZm/I7Ho8FqbDZbDEMPYZhg+12Iwy2g9c5R3kmZKwpQNlEDQVhHkB2JJRKAPoQEEIn2VKNz5vczKXvCKML/WLNv8sRrJDcrC1zJdMcy022ysMUiyk9e61WxjcF5UTlnC2I7hIDBvSmpCmudZqpr1/6uwjgKl5n7iuDELoew2aH83gWxgNmGFsomSXBuTC1WnzFOW1tj4wUI+I8qZWRC6Qho1oDFpYRpcowt9DGa/clO3IN2ltQ+9n4h/p0zMIGMscJ84yyu6NsHgwHxnazgQ8e0ySNgzdDV+beYp4pJWHK0KVo893Somf9bAyCLwrcuCtrv4xR5tIsGecIXpVFBkCOMDMUVW6sCRPmaUbvpcP5ZhgELjArR32MSHEusdQNaw8KSCLHYoxmudvPOI6wBst5jmAvzWVN+dlPsaya+6HFPbJane17ZsWJchGrhxeWvjGMBJ9AiOU5VmvQ4sECTQmhe+JqCYg5F+XBbEkLKnKzToC1Lqht8rXzu8akiRbWmXlC7fovxfRaFSEECK2s52Jx2Voza0tkMcPFCNbn4jW0YaGO5cZY77ktKSv6objl336E9h+tEuFBBm9sk8MwiPmnC94Cr4s4G5aTbPGO3W63sMbelgGlZrLbh9A+uHW8Z5kkMCS3AEvJBZD3OI2jKC1H4GiV+VQsOpsw0oCKCJ4Eza/2M775+iu4m4/hPSnXWYtq1tWgLqGs76b6X+8rG6ZH3UNZ0FEZNxpLVf+znCZpcOzII8YkNEessI4sisi7IPGjs7St6xToKM8xwncBzsq+kKVEhzSMwFnYZwGBXEDOLU2RpS9E3/eFisYHcU8kq1kttfUCKzEqWEyRYMF62OsgjOez9DT1UuaSogS/+34oVpE0v9GO5JqBb2XWZEGaf/RyrU6qTJyi+KWhzBLhDtaaQ/MEWsWCqutkAcsr8oxsy1QrWyseCIDXzdCRJlzQNnJmBbQCH338If7oj//QJqfIVEozUo7FWi+bdKk7X8aygOpOt3Nva84yvqSkmL5xD+1cll2M0UJBIgNGwGjxtsLMUWKZq7gaUJH/JBttCIKNbMsf6zg13OKsaL9uEPZ83uVYkDPa4LpOKED2eS+YkZzqQ2SjxxFlZtAOM21NyMzXtz6Ifd8Xq6213mwybUJMkbUUJGsLUACBuQAK28WTYpTHSiLgLvTwYcD9wyNiFjBinmYE34HgEJNQEinuVOAFpAqHM957cQOHgF/8n3/Cj/7kBfrgcD4dxK2AZImstlNO45CiBLOD78CoY7eWYob8n6NQGEkD19btxkqZyR/DsNVephH7XRBOuCnCk8fVbi/1m/OE8XTAbD04uwDOCedxxLDdSQq+7xFTFMVGhDdvXiPlhPN4Ro4RUa3OmCMOJ2EvTbNksTsvgr7ZbrUTVijgWgYWyQ27b6h15oASexOsKevCd7h/eACOR5zHCTkpNRAI+92VyiUhxoRxOmOepxJENovS5MU5cUH70IG3VWHlbJbHKPGoGMHZqfvnMQw9fAgIChY1V0rGofcWq7xZwsJiRyQXQY6Cnwk+oO8YwYtFn5iLggZDspzM+Mm/+2P8+F9/AkP2E7HGWM+Y5xG7XQ23SGJATJXlwm/mmrBQUmYUxBgxjiepd/Ue3nnEvGTG2e12MJfZ4l0xRjw83CMptbjF2oZhKE2OvCITWJUXiNB3Ip85ZWRKIBcWnGx1zbhiqYdQDRjO+Z2VmB2LVnNAzX5YDMeUTmtCTuexKLNqkj6l9LHgssU32ms95wu3ltnbMimXzWwGlJJXzF9rIeYxTlPJDtUdlgqjLRu1CzUuE2dstxtMY8bd628KeHae5+Km2viMy6wo/cygQAtBE+hHpWbJ2pjWOPJbS2E9PQyDG3ilJDfaFmmqHLoO/TBgPp3VspnLTpuyWGZ7fRbDdoM5RviuA4jw8HAvgpuiFJlz7WieUsY0TmI5MaPXtm9SPN7BA2oJt3PROFP2t7kljazZnRGAcZwEsKquuHceXnm1jFUl51Nxf8dxLPJm7mPrDZAyo9jGKRZdwjhqI+ZpFqCv8+AgGXbPANA8w5Vs2jV4/ZBUAbFWFUg8iYQL326aa8s4NC7cB++/wq5/pXNSXdqUpYNXu8mJBVM3ubWDY4pkkQxxpjySypq4q845cKr12CjyJffWel7zPAvR6TwvGDSGYSiuvj1L5koLpJMGYLmeLUnQWmHVMmvin/hux4JptpiyqxjU+nDewSvWydhKu64rWUiGWB9tBtTMzhK3UZMcRIWV1GtZi5EutgHeFjcEoEz0Qkna9BAEwKfKy3kJ/mYWhtTai9OCl+20icQwMkjLXEJw2Gx6xDjhdD4gdA5BGU9jjGCXC3Y1xqSWGZDPZzASYhKeuKT1aYWxVZVR0E22KGdbHK3gQoCzsjPuFOND6EKHvpNO39M4LnpuEhFS1gQOiwsXU0Q6HhFzwgBxr2JKAmGB9HeIKWnj4wC4LPWbOoc+hHKecZq0+UwSxeiEfTWETuJlVBwwmKB77+EATONYrDJLgsA7dL1YzE6BtTFFTaoA0zxpd3CnC6mHdaqXOs0g5xHBRfXbqvtpHoLIoysKD1iW6bUxYrN4ZJ03mltlzliu27VSGFp0DkzEWLFYIJUx4x0jmyMGkOpib6613OAqtxmZaXjJ9WzWdI3byjjck7VdA1RElcMueC8gbOfggzQ2ykncT9aaTK/Wnve+ZGihccmF1uW6oTXRGZX3ahG2c6aRm/LZ5ezX40mruUvH2s8NXQfvA3JXgaDFOrN4liou+47RCaWcMc6T1DeqNnYkHaf70BWF9/r16yYtzbi+vi5/AyjBylqsvk7nEmIWeEXoBmx2e6TMGMcJ12ErcIbmvm2fKGDKnOE1Y7Udery8vcH59Ah+/RV2O8bu+kOQDzifTwi9NOPIDjg+niDdexzm6aACC/R9j3mSGtXt5gqW7YwxwoUav2itzZQUnEoyruACdts93nv5Cr/97W8xDBvs99cYuh3OpzPG0xkfvnof5io4FzDPE9I8I2ZpbTaOE+4fH0DO4fo2ox8GTPOE0IkrN6eI8ziCdWMKGnSOKWG730LYOxjnccQ4RxAD6XTCsN3C92KtbTQD6nwPsCCtssZO+i4A5PBwfw8HCZanGNEPHXzf42q/l01N6/XGcRIFHJNYMyRwht12h17paM7jiPNpRNdluO22xmab5WnuZytTnF2xjq2H5Do+ayEXk1M0OqaJDJaQg1M30ntRAs4BNKvbTBVWIdZ5FILG3usemsHQ5sScYKELMwJLRrMuf3HbnEjtpbCMWWcGk+o6qQjIOcF7Wm3m1dp0AKDWVOelAbFYSzJ3cZ5wfzcWL8d5AcEOvVDt07aC6gVMbJ7Tks7L1p5zWjvNat01Fum7JgHCt3/kqXXmNMbk2Gl1fbtV6S6w6IScK05Mg7em6EqWkx1yY5kZI4It8pYfyR5OjHGBRwPKI1Y3SR6+89IRKbNYTq73UEgLWtxQCVTlujt4kiYn282AOU7Ip0d0YS8ZTXKI4yzd4UAgBsZphINQBJ9OI0AZITgMmx3GSeJ5IYhpbo0nmJeAR4s/LfYYAhw8uq7HbrfHNM3o+01ZbIdHIVqsiROZ76wg1MyCZ5tTxOFwgAse/XYDF3wpNja3OyZJkVsMKcQI56XkxZTwnCJ4Fu6p+XBABKPLPQYo3sh5sCsOGczq6Lx07jkejhiGDZyT61t2beglJGFQgnEai6KxoHOnTYGHrkeMM85niYM554vgP3Vla11gdeclmTJNU3Fbp2layLm5rc611NvVRVqvE1LL3pHg3cpyZV0bWhpFBDBlOMewYct/M8AC/0DBPur8lZJoqr8tntaEX1oG1xLj03XXK/MJc4ZXPF97K3Ip9WiAct7WBZRMszYhnufq6udc4oVDnxb4RKMRt9Gvnw+Aagixaa+lRfdtCi20pvXlQufvcJBFG/DkfBaoZQAuVK60FshoZmq7M1Y/O5eJM2W25FxCc7cWY3Nmh2O7FQjKNM3gnXyWSAL2GVrOQsv5qpk3UaanOAHjGe5WCSoLwoLLfXddB68t2FIEQBne08JasLiEmdSXMjfL21E3hOSevA/YbncavxBUNyCuvfzNxa2NKQKQmFCB3eSM4PuycZQQg0EcLL5F4nYuGEz0x4dOd9AMGgZxP50gwgUvBOTIGr9yWn+ptMvlGcsNxzjDD50Abds5UEXShitMsUTFJKVk1loNdHd9KM83a+maPSDbwMpiIj1vF8qYylIijalpPBHNdwWrZlvAUu6Ku8g1BlaUzoryPKaMeUoIvXRZAqNkRC2TyXZqEx5V1hLb5BKiAOrvlqXGXm9DSc8hCkqopn1t9Vlz2ZcYz7pOp1kwgiF4eB+EiNSUIpESXdq8Xd4UlvNZFya3r6HSeDFYCs1b3EkLgL14s6vXzXwk1IdqZn2btfRe+u8lhQGYOd9abnGOkp6faKHsLINp7B1EUl7V7j7lRtlMZbFEGNIu7sOPvofMZ9w9POLD21dlF5XUubkdxaHXGJVSYTuh0vnsF7/CeBrxgx/8AbrgkGAcZ7poiHG1v4J3AqHYbmSnZSQknksYxzknTLfNHFjVQWuNLYqhdWYl8zbgo4++VyzfN3dvMHQ9hs2A13ffwIHhg0AczuezgGL3e9zd3+Og2ef9zbVYbCcJ7Et3bSfF21n7WnYBp8NRlJN2KckgsHPY7PdlzvxmI24kM2LOOJxO4MTglPDy9gU22x06Lw0v9jc36DcbdYXEkjidTri92isDqVqVLPG03VaokVrXyb5jmdNOqwEM+HnT3RT4i7T0o7r4lXpIvDMJTYQ+YIcd8kboncqmzAL+nKcJaUramUgzevudYPvMIjKLCwrR4AQYfMfEyjnlcbOsY8b5PAPzjO66Q3DiLsTZuPZdkRUZM0FYWjTm1igx29ht3UjNZcUNWiC/xXnae+tEWrvW17rANpSW/aINU03zjGme8ebNa1F6zmG72xVUg4DhVUtQVUQ552pdrsbhHETuFmO151h57ILdoJmKb1NkdoOXjoUVqJ9pcWXFvNedxQbWZkVPOCHEUMou7AGZlWEVCkRUGD7a66SUFoq+ED2CcHNzi/FuxPksdYC+PKy6Q3BzE/aexeKurvaY5xHnOIql5QXIKjsna/tI4ULzrpeSnJ5EkaUZpzGVk7fZWMCyN3rdZjKXU11jJCF0uLm5lSL+R+GjG/oeIXR4c3+Hq+0ARw5jjBIP07KWN3d3wn6SklRKaDiAWebKea8drLSNrnOlpVyxyiDzWSwZBroemFIUkOuUFGQ8I44TdtsdumGDjpxAE5x0hypWEAPzPCmjRqjCBM2K9R18rpsfkQCrD4dDwT11SjVk7Qvl+7VcqbosVDq3O2v2ogj/YTOIIltZGZkzxjEXt0qafgCbhUtkg9atnZWzbGFuV3iF9WtgSCu785yRdg7aNLBkvetarNZIiQubpbKyyGxMBluxow31tEmBt8XLn1vrrb5ozy/zUxsEFy8qxRIrlA2rQjTaBy46bm0FYvHeerwlYsBaaG5Bd7v4ujxp/dMqqfXJW5/72yYFqBZcGw+RwVNRXOZWtIq2ZJmw5Fdb3CioCLb3AZmF5nftj198nKZQUK/pvYPPgmVLcV6wT0Dd0XmOSAQ4SgB7AMJuW+e2YmnsQhYTeTL6MkQuYRcQQFyfgw8tIUA54zI2CSEGbBWCV8W1Fuj6py5ohWkU6h22zykRJgNsvTudtJtzLDWUzmng13ZUp2SQMVWZ4EaQLzyIdjy2o9v4K2RDa4cZZeN7LmzSWiSNP1tkdgHoVXhF6UVJVBp25JzUkkBzPixktKrSNqqssqessqfTGTyO2HcJ11eEzhPmuYFMlIeuT5bVzGuut74v84TW66Ndh89ZY8uH8A6BqmZebU36ZmOy+agQj7PE2ZvPVoW9dIufjm+la9YK/HA4LB6EHTagUoSsve+KsmkU25qssSiztd+0unm7nsVBzIIQPnhhUBCSN2EbtXEaBMTGYvS8slNQcecaUxHDZoe7DMRxRs4oKO+MKtRtoxaJXaAooDQnbIcemRKOh3sMm3tQ2AHwmEahggGx9JBkAmdh7PCetGFFFJCpKhUpDLdC/lT+1uHWXzbObNlanTMfJMOUUYGLmubPLHP3cHhAnEfs91cYdlvEKCUyltlrsVo2DbJWasBgngWb1PcDYJUSmTEbtAYaV1KUfe8DWAP6DpotVEB133dI84wRJ3ShK/0F3CJI0cgHdPNR19/cUiKPzWaHvs8FPwVI4L7fDDieThg2g1QBrFwlc1NFGWelxlHohQMINZBOLBabUWGbrM0x4jyetQEuwHi6mTrS6ghWpccOYuBK85mcCSkCX3zxFb7+4nOc7l/iD//ge7i56vBwfwSz0j4VYW0sKU7i1q7cP1Pq8zwLnnCQDGQbpH+3w5SE/L2oTnmLJdd2Wer7WltpntQ0TTg8POgmIWVNu90efd8pzKZkQhbxvZRSofEXtVLXaYttDdYAtrXOABTF1ff94guXXNH25E8UY6PQirZtFL5ZgTbRfSOAKQkt83g+43w+L7KjXdcVZWY7sVDc6LIoW6bsgqEbkDMwz8Je2q6cuvnrWG1tM7Q+0yEio+89Jgam80nQ1OwBv1U2Csk+pSg/OQnequsCfHBwnsuGIPNpc8rN35ePEgYsAU9RWiF06Ht5Vr5kncS6SCniPJ7A2pm86wfFm+XCnTZN0wJWUx8o1KSHMjdI/aAGtFRp5+IOZUl7aYyEAK+ssMk2pYzEqTBcMFc8nJyvUWT2bHQ4koxYyxtKPEggPxJL7Tq5r4fzA3xQyw1LZbaOFUnSR5MRa2+CgeCClMCp6zZNEw6HAw6HRxDtF4quPcrpWNhECkOSIeB1s3xzd4/f/OYzbF3Gv/rkA/B+wOk0SWxMi8pNWOURVblpPSRbL7aOTdbaJM+7J/ieWkCXvLD1YZaZoPkrgaPFu+M8Y560qbF36Ausaluoh9aXrxuLygktX2/HFNbuo73ZIu3XpUptELG9yeBD6XmHRljLZ97ibraDb/82tLJAK+rYWjezVaTO/BXmBSW0ZKW0GYO5RdB4V/N3tUyoKDQLSfZdhxCBcTyDVJhIQYVZQr9w5IsAS2G9KxaTzJmlyg1E6hDT2tVs4ySL2XnyMpFQTTOachmYMlZ6IVXS5tAJz1utTS3GqFpKdv/1qk9jLJX6mFAZdfX7auVltppHSKJAGXotsbN2x+R+bNED4GfkhWqAHrqJ2YbAXK2vlBKcrz1f7Vmb12DZSAuNLJTqk0uq252WTULkaypXXD9L9qYeF4II5S+AEOekH1feugwQqSJyHvWpGoD3qcvYrsd2fhcZ65Wrub6/b1NYzx1vCysVF1SJJgAobKViLYUcwOqkJS5r9ER1zuo8LkMjbAp0zcddB2A/bSU9gIUiMyYMi2F45xG6gK1aIHTh5tqj9Y3XAxQN7tENPW7dbS1sZxQab/uxMQ+93HBOqfQrJDj0/Q4pA+MUQd6r8LG6F2bFmaCKiZ9jApC0w7PHi9sbsD/ii99+gU9++GNsNh2y60D9UDrhEHklKjRrUzNmnSgPa20/zWJN9P2AaTzXe2/iIab8ZW+oClfYD2RD6TqPFy9u8fjwIP03nfC5mbWwGQSLluYocwKSusEghdgpKixFefk5saLXK0zCCstzVpptAm5ubspzSpMAoVOMgn/zHlEthL4fAOcwp4gXtzc4Hk/ClNH1T9wkZwmb5v5dY2W3skIQ2mznHPb7PR4fH0qZTN8PAqY9nRGursRVs3C87u6emqbRqWm/h0YZ6futRXM+j4izFvpndU2dA7h27HLOrAwFx0bR7OygJpnTemAP7zt43+NwPCNFBiGAkxfa7CgyFfqhwHtkKK4o89YTsnVolTFmJVk4oU0IvNvxbvEyu377dxuns7H0XYcYrABdEkzjOBZokYWaQugQ+gFXV1el6ZEdbayzbDAqa6H1o9cpWwDFIrMvWHzKfizOZb8NlAeglCs9p8ze7lpVQC0gZVPmEjkQHh4eFkXugGCMhl4so5wzHJwCpgkh9MiZMMcMOI+suCGDYBRfTndH5xxmjiJ8Cl68vtphjBF3b17DEdB3AdkFeN8jswVaXcESiWBFEDG6PiBGmw/FSUEbrOa1m7nyg9F4zWo9sb7mvcf19RUe7u9wOp1wfbUrbiyAQrrIFkIgpej2neyMWtRd4zGscaNGmcGwYQpVIUm3E4kbdMwnIEYkZkwxwqulknJG6HswC6xhs9mIMptnbDfb1f2pVbG6//ra0gIpMkLSCUpiqjI/XdfjfD5hmifssS/35kpsTJRBCw+CW7lgjfXXKrNpmqUEzXfFkiLrWa4WlWwE8nypmBM1fEG6qRkTsqOA83mGJEolpiaKTMIX5DsQCUTIsq+SQKjKzNxgs0pNgayBrd9+rNfqu3lTrYdW4lyNx2dz6NUtt7GPaigZWNm41ja7qxL3e3os14dZ4eE587D4qo3ieu6nBFTVZCyTVh3cBVUzCAuhXF/70mQtfqNmmQyMaziVrK6GaP8WbuFqwwVQBciqW2VCZs7Ys9aqcuNbqtnGU85A5qKJFFOJP8l9mzLKGk8SY8St3JI6F7aRANJDsn3PskCk92Tzaqva3HSguhoLKwfLfpPWMYkApbB+ShxgC1IUdVarR56HDwFd3wk/FzNisQRWG9pK+C9uaq28Pud1N8ca03hpgZVNtrHw6gVW8scrL5dIXed84fvN1y6EAZY3Jb9tLQhj7oAeFUUgVl+PzFR0rBkTJqWEp3HWNuDeXv8Shda7rLf1vLztO8+d45LLeckiX4PlW09wfY/tuVvdE9qSoUuHc64oi5xzATCutS6z9IM06t2rqyt5OKgTeNZAfui7YhJb1sPO1R4t8nvh6wPKxBEwbAZM01xqP+d4lEYS2UjjGFLaHEDUA66HiURRRmp9eHIKa5AspxU8EznkJLVsnSOAI1IckeIIdD0c+rL5+hCKyxZThPeu7FSsZDIxSpkOQYjvpC5S6bbZFp48qDdv3pQ5ff/DD7AZhNZnuc6EOysEj+Ad5rOUGfVdL+4cCKfzuShPm1tHJDWUThhUhZVV400x4nhQ5lFww8sFgIVn7M3dHc6nMzwF9MMGw3aLG0fwDMzjiCH0Oj5pkLOuGWwFsrXMVO/rs66yWVxtrnFYi4v2fV9CDiZbRENhemhZX2wMrC500NrYxeacW2uugrINx2bNOMpclhik1NRS0EJtApwnUIJsgN4XptiUZ9zcXoF++AloPErJng949eoVpqlDShNSmjFq5cb5PMp4vUMXrANSVQ7mpVi9sq2pcRwLjfa7HbT6/e3HGtHw3Fper3Pr49rqAYCKzK/jf5fig2ZEhTZVvVZq7YS0g22J8VrNb01GTfEVDIlaSuM44uHxARvlHreMyyWNbwpgrcjs6Poe/VATFOM44u7uDufzg1ohMinBOcALHRBcAFyQHc+MRpki3YMciKTANxeefakvSywLXYpzE3KakdMMF5IYO2qoCZ4tIoGRc0QIAhKcpqRAWyDFjHmaIX0ig/KbVWWGxmp8uL/H3f09zucz9tdXC0bYZrJgzLheu0vnlNAphzuIhKsss8R4qDZS7jRrzUkyoBYri8koYHJ1x5sZ63tRFIfTCde7a/RDj37osdlswHPEdD4jkEM8japsm7IkK2d5bqe3VoEyCeVBiVt74eMw/nmRMcGfiUKLhQqpJgXao5XhKuvSwDdnhgvWcFmeR4wyR+sFZspR1lEzZ6TcbSTKTJYDaxVMxP5qh13fIz3eC6ea97i9vcU8O8T5jPN4wqiu4vk8AiAMfQCrQdAqM4spt4FzczWZudD3fLuF9e5KzO6/LS2UuOUSBWHWv/W6AFSxBb84T0oZMSacz4/FOqsVPjo6WspOUWbvMtDFbTYDWWvI9vX1UcuWuJjMRLQI3q8RypeOdicvE7IG66nQiwCxxLMYkEyQBP/V+5PU97ooU82smuXUawNK4eOFCTRFxRLVLNkikF8nscylsTS0c9nklBb/Ypa4k82LUSmvBlrcw8XL3OxiqM+RmrluEzo559p92nsJWNviU2HNmiUWC6RugO0zTSmVkAKhyTx72xCpJFzemjkrz98CTc2/dUov7dZ2L5Y5bu/z6SWeW7Syta3fZlAZjn2ONayxdKvsOdYIYPlOCbMADKnb9X1A3vSaABEL1DsHVgszKCYradMap53TssRTyv23VqeNpVU036bE3vo8vuNx0UX81m8t46HfZTzMXAvN33a0PEhtcfgl97ClTCmDyozT+YxRG6QYgI6I8Pj4KLfRuAtmfWw2mycP41KcABCowNXVFUIQBRnnqPV70pU8YgK5DqHf4HA642obCiULMxVl5DRuxozSpLi6NVLM/eq9F3i4fwPX7/DhzQeIOQMkVqbs3AK5YNZGJxDLZJrFgny4PxTiRMumCU8XYMBUCfJXwOPNzQ2OhwOCD9hf7TUILLv9NI5IUUpxckxFj07jpPgzh8msaVX4lg22XfRwOEhP1GEDXxRnwul0RIoJh8NRAufeo/fQZjcCnJ3mCfEYQWeHh4cHBCJQYlBK2A4DQhfKNYkg1qLKEhsmCUofRVRDNQvd3jx3ve/gJSMZY4QPARYqliLngL7vcH//pmmhVmNrcsgzbb0OqxCxAnOpuUX5fKVbR3l+zDVeWi22CnnJ2ijYOY/EAp8JnUfmGbthi33XY3MbsNn1NTQSHIgCQANeuBeIMQtGMstzSUnQ9HVkdW1WWqy6fteF5+ujXVffVamJ5b2sbGkrdqqhs7oOljHGJ7FxapWbfMYUeXutks1cd02+dDM2SaZYWtfUvmsTZcj89iYyZ5zHs/DJ5wSe6k5uSs2us9Oi1N1uVxDMrd98SaEBKMmAzaYv8bNpOmOcE+ZxQsAsyqwbcDyP2G0CyJNw4WdhegVBXUqoSbzmSWd03gkU4vEOYXOF4AnzrC6K7zCeD+g6iV2JMlM8meuQ4oTzacT9/T1e3N7AOUJW8kQLzpeYjUaLTOFcXV3hzZs36DqNQwGwsqVpnLSuUCEpKinzNAmEgwgxzYJS0vR3C7cxFy2liP32Chv9d0wRX33lkWLG6XSG8x7DZgBI4DqWxJjjhDSL6xRjxCYE9M5j4zsMOymA953H/W/vJe3e4M0ysyozFKUgN7DSZotHLlZjCII9HM9nZb8VJfn69Wvs9zv0fYdxHEsXorUMmeWWUl4868LEystAtFN/kcrikjFa7K1VZtzYY9bVnDSLHoJH6Dx4nNEPe1xfbfFys4UHQVwKa+0W4DwwbLZgvc48R5xOR5xOB9zd3zcZfpFRC9+0yuxt4Zr1a7+rddayaAAoRe3LDKrxuUEtbQnn2FEatqBM8EIBM6MwEa/HnFK67Ga+zQL6tmO5O9WjBe7Z+damZJuZaFvcrWMTl67ZXrt1O50TfnLKSbW6R0xZlQWt14icB8u1I/V6Dla313UB8TgVd3H14cVhNYPgVFzGnBtHhYRs8PKuyU8U+FocuVyj0s2QsrT61S5WgbtUCsqXAVYq7iGRBLCDD4Va3D5jbmsbnBcLvGFCASHThWyozW/z7NcxkediNsVCLn8DtNrZqyw8leN3ixfZZy+//jysli9/7sl5Vi8QtLwHQKYS4gCa2JAm0phRFERb12iUQcCyZvm5Nfb8HPz/zs1cHxI7bwM2z4zAZGSd9LN9bvHa8r7CIrPQfLBYCCsLxf5eW3JWtnB1dYXtdrs4j2VUrAypdU/XvQEsuzqOI7766qvymu04hkO5tEj0BSES7AJubm6w226R5hnT8RG7/TVSOuP+cMCLmwGdD3VqWYIhIkCu7BK28wUF4AbvcHNzhV9++kt0wz04JxCZ28SFkM8CwUIsGJHTEdMUMc+xlDR5JY283n+I/dW+POT2OWw2A5gzDodH7HY7bHfbJhQvz2CeJoBZ4ysBNAwIREDK6HxnuQn0mw165R6LKRaOrt7q+LJiClOCVTi89957MgcAImfJvHqvHPqKBVRIDKkLm6YJc8qgmHE8HuCDQ+g84jwLi6zW4Bkn3Wa7bSicq4bilRy2c1MC7ZAmx7UV2jJAvF64C49BzQKTwXVQ2eRdrpcRpccfBKwcSjLB+1rcLhuQKVancUMCsbibpBTZKUdl8dU4aiK1LCQuWbjSzO3WubGeGtZzotbWyppxzmGn7SPNILh078vDLMhvVzbPHetsZsv5Xzw5QCzU8pCsQu6pwt1stkpiapYvFu+vlTIzL3Fm7U1bwPlSkHUtWBbcjzEK4G2F2iUi7UIkwFrzp1uUMhGV2j3rAWCI9rZp6WazKWb05R2GlGbG46a7BrLEke7JYbu7xnl8xMPjG0zxGomddjIgXT8anLUIbYmpMMiLMvPe4eb6CsfDA8LwAHAqcTXkXARYhFS6ap9OZ5yOMyDEQ3qfGV0nXYE+ePU+fNcvHpj9vdlsEOOMx8cDXrx4ie1mu4RlgJTnDQhOg8XOgUNA7yWbOWl95rAZ0A09XPCYz8JAS0RFmcV5xng6Iimr6zD0RZlN04TTPGk3I+2Q1W5KLHPXdQGPJ2k2zBxx8g6b7QYblhrWrktlm41RGD32200pJLa7epuN0Co4kSN3UZk9Z4E8/b5/spjWik6ArKLMDAYT41zu32RayJttrYgseOdAWbCFrhN4TuKEjixWmBGTUGx7VqXSKjNQybdLJy+g6zz2+/0C+Ht/fw8wL5SZIQ++3SI1t/i7K7LW6LF/tz1KF66iabDyLOo52t/DsNF+ou2zXXp1a4Pqu9Y3XLyR9mjjEpc+t36vjbetv2MC1RbCt93VW5O6HlSUkVPtTxqAD12PLvSYnKuz2I5leZqLh+20IkBJmCiQwSRUx4J8ZzCa8RZ32RVl4Lz+aAxrGQuoboZ1fhboRRPE5Sp4rG5mO0ZhpG3iFbQy3ZtLmftcnl3zDO169T0qFsGluXka/OYngmrvW5xw7WYase56R37b0e7Uzyux+tly8607WL7Gi99lc+K8Ovelxc/Nf+t81BiAfqtZNpkZ53GSHgpFnAmlmfRq/OI5sP6uJKamQMp8viWTuz7aOVlyjX2X7377sV778v2n7qPzl2N8l65nnspFZXYxzrGIR9Dic+vBrgdmpm7796UbW9dz7bRkxhaVWWxtcHGz2RYAI1nIQeWHYa6Yw7Db4733P8SwcXjcJQybTpAaGm+gRt5KrIF4cW1QFhKOnLAZOjAnfPXlF6A+gbFBRoeUI0ARoISchaU0RlaAsODr+mHA0Ad0nS/NLIBVxEIf8G63K3Ox2+0KU4gYQpYAGEEs7LCWCCCWsq8chUyw3wwYzzMSGFOc0Q+DYsmSWMDKBBycVTEIPqrtgp5SwqDZ6pMWBnvvxSLV2TbAsCNg0OYZ+lAXO7e58OQc+n5Actb0op0LZUvQ6KZzSnjI2s1JFfHimTU79jqWCtR+jWXTY1S4i1qXYBSmWpT7yhjHc8HypazxUlK30pkyl9ekIUuVexQlQ+U+hV+PcT7N+Id/+Af88b/+ET58dYvgOlSIshXw63wUi60Wuts4rfTH2tmZAfD2TGY763au3+0wfbAum1psfBc9QcA46FOSxthX2/0SXKvPM68MSFNBzvnnldnarVwH4S8FF9uL2t8WSyuB4fzUZCwDbd4rPQOa61gNl7Wh6/se19e5gCSrsaK+hr3gPIbdFV71hNvbHe63ET4/gpIAOkktAKmwkxliZsDVe03zBOclbc85YbPpEDnht7/9HMM+ALRB4g4xR2QekXmCpywJCBfQ9XtsNhtsNzvsr/fYbnu1tvMiqMxlgTK8kyLq3W6nVqivu6bNO0vHqeAI5L1ANKDdgsghxhnwDv12gznK/I9RYpvTPCEq1fR2GNB3WwxdQD8MgN7z69evF8rMK3XL64eHwnfH6spAlWvOSfjWhh6Ytd6CloFpgsSQHEn5jli3jS3EAFgsXpRF4sQ1ZWmawVRl1WSnjcfas6t/56JghCTToDFK2YxqDkqbODsfqjILYlFLPwPj7TMZhhYLsBByavhEui5prW6jfDMDKQOnacL//X//Dd6/ucX7L1/A9x04S22nKMbl2qS1olU5N0hGaS4CFGX2romP/2+O1m1vDRizHA1H99QIMp0hz2KeY+HoW4a0rCxSrTGu9+4vKbPvYjJeUmT2+7msw6XjUpAWWNbb2VFr1LRHZUpIKcN7dQG8jgFVgVv8woUOhB7dMADjEcgtrl0nrRlq+X77gn7OB4+USRDmOUEYZeUncQJzKqGBllXTgL1S+aBXeMv0lAJdb0j0Zl5tvpofC7TKhq18WF7dRFcFoM04lzIjcoAJHTPyhediQlk2HiyHL1aIueMOWTu6M54+Z+bl64zlxnn54HrTxYy7PIFP5W7pii++alYZGgurjhzGVtI2ym2Pp0PWfDk11ygfYv1/xbk9PjwKw2yxtNpn/TTg3Y5dFKa5nzV80q6dtVGynpPnkwN2rXfPBL/rwWU9VR/cwg/LCovy9pMxtsrunWNmz7meb7PMzK20NmHP7RDPTWJrIbZaX3Ygp+UqEW/evKktyHY7hEAInvC09oVA5DFstpjjPZDaa6nINq5luU+YMhB5DOTx8uULnCZl9OgHkNsgo9cY/wbkIoZOOik51yF0O3Rhq4XY/p1iQYuFrjtQ+Z6tEgZub2+BnAQNHmfEJA1BEhHiPEtvxi5Iq7godZteKyWyuu6DNm2dtX6WORemjaDW2tZdYbPbyncBJLVyPElQm3Uic04ABwTnEV0Cp4Q4jQUu4qx0yyYexekrzwnEINZuPvpqXZirSdLv2wlsw6sA75r5XMgf2b+fyl+LExOLUzCRnfYXrY8ga+mbnVJaxTkinZdmnGy/SEfswZkwTRG/+fXnGMcTvAfi3GZE127gpYqDeh9tXNB6ZT6HMXvuWDudbczzXc7TGh9ro8YgJvLeYg8pn+HMi+ZKZUSN8m6Tj0SCr/tOyuxtN3LJKmuVWWkI6pZ1nva5S0eLMWutAu992dXmGHH/8FDiSy98hy116LwsiOWuLcDFzX6PfPJIWN1PZrDjEqSfYgUbijJTFyQEvP/qFR5OjLujZAl92IJpQDd08F1GCIzdxurnAshvwUnjf8FMtrr7WlzEnp2huEitpOLuPNlIGO+99x7m8Yx5HHG8H5HmGZwkFphiQt+LIhtSAk1CBOg7qYlNOeN0OmE7DECWrkfn00maIHtXYnyb7Rab3a722WRt8wagdwHGBceaPUaQuBY7h5wj4nhGcEZW6YRevMSDdHde6BkqC9pkZCk3FVdnxsxa7tqO9zmnpwqg/MfO0pbnae9K/UDmjGk64+pqGcsBRHmH4BtZE74577hYE1V3VyuEIISh0xjxi1/8GuPpCO+A6ZTRdQTyKh9cr1X+4qVLbbJgVpyFdw6HwzOJsqeHWXj1cheU/MLte3o8F3qy4Wv0QF53+jctSQRSzoVIoqwPteJaq80UNoDvpszsQm8zR5+zut42Ae2+SKqq127LpexnVmYLg4QAWmibE3L2YHaX3Q8Shda2tTKvofEin7q+tpvqy13XoYvSxLUgnUkJKruMLggjhrweAArI+t2lXJnSbS5ebt703WrOzTvVufXeIzuP1JjlXO6szv2lH6Ai8W0RxBg15uILDMY5V3pjGmzbyr7Wg27dH9t+F/WBKzGwrOZqwps/mkWMJ1/XeVpaAPb7CYK8uLTVnWwthXqetTVUN5RyC+W7q2fDFXjcLuSnNyiKilninjnncs72tK1zzGbKPFEY9aX2/g39/+2HzvPv4Ek+F1J6st7Xc9BOW7vOucYg33a9Vrc4576bMntOG7cZx9akJQCcWRgiGs4uEYRaFlJcgNVMvm2SiGqx+GD0smAcH+8Rzx5jR9huBnSdQ+hqBgkgOOrgwxbwEzJPcmXHAmykpDALRnaW5XLwTGDWbEpidK7DfhvgNltcXW9AoQdTj9B18B7wHkKhLaF4FAeDAKM+tiOzmddZyfcAwSi122SVVmZgGkeM5zMmdQlzSsgxgb3HsFdqGABxnkF9h/N5wjwncAa8Br93O6nxnKdR+g86wma3w3kU1lOU5r2S8RxnadwSU4JjoVYSfvuauXNk9wptXydZSsEsOlhXIgZEqzvtW9pIQEvRWO69SkL5t9l2jKf0QJaFrZk8enIuLrGrqkvNVeb2mmwbmbAIswE/i1AR0FhcDKebqSl0e7tSFxAyQDPI9XDBoesHZHikDITOA3RGpgggg8lqhyvmqr2dparXl/WGjBLoeYW23Cza+fkd9No7HQtPXy0JibXKWLRFqyoHyYwvRkm2EUkli1HXv7Mye5sis99PY2JUoANOHwhnNY01npA4G6UFqFjqJqDLrGmrNJmTNoolbDcbMEuN3cObb0BgdI7w6v0PsN93CJ1MhFguDo56dN0e1M04pwflyWewAxInZFLsmCcgibT47JGddvdOjI4GDPtrvLz9AH67B3tRZkQb7cxDoIxmG88gyrb9AwuxFsuFUwZl7VZVdm5Vgi1TIDNOxwMe7h/w+PigxdrKD9d1GPY79F0AkcM4njHFhOPhrNlDJ4XeDFxd3+Dq6hpvXn+tNM6E3fU17h/ukTiDfAAcYY5xQRSQc4YHoyMhcI5gpCxOe9f7AnMhJWxkAHNUZWZBXjBMahNz0e9W6G+SXp0nlWIsXzOFtpZPC29YppuKkq2WV1WGiq0yBZCzyqtTd1PUkCNxCzlDdiutrZB1p2MjVWRZlJkjX563GFUEAoMogZFAfgvXEbrNDhkeMRG2Q4eYExImABmZejiSUjxOXO+jKLIm0bByPS1evU7KrVbx4vf/v5RYObdpJlKGP7XcZenLhu50zXAWkHLWXccMGAtDpCyUR8NmeKrMLrqC7xg8bBWbpd9toM+e9xmXtf3M824tAFS3U9rSzZK+dYQUkyKk2wUBAA7kAojWGUIq8AC2jtHEajqJ2Npu7pxT+MEG6D0ySXxIlqPDk7gtgEWqtDkYZnma/4iVRNV9yRR7iqnp8p7BEN4yJuGIclrv6VIAMiMlJbrzFhOqjWkqLoiKK0mW/dTdL6Yk7ByqzIahqzZn44Jden427taDK890sU2jCCzbjg0TkeXJ1yKxlpMWEtBmxerl3nXJtt91q7G0ngPKvIrciDlmkAK97VbS9A9WeIqi3e1exDdYyUxz3cXwefF7DaV6N0V24V/vuO6XX/m276heWJvEqDKxnN2n7vTCTteH6r6LZfbW4fGSrnj9nrFcrgOwLZ3v4j3duS/535cCjK3f3HdDMU2nacTDwwPO44wwDPAdIQSxCOyapewC+YICUdXk3P+Hu399siQ57gPRn0dk5jmnXv3unhkMMAMQgAhSS1ESJdle0S6lXUomM9ndNZnpk/5JfdAn2cpkWml1r5mMhECCIEUSJCDi0fPqZ1WdR2ZE+P3g7hGRefJUVfd0D2cYYzVddU5mZESkh4c/f24BaCipTqoea5BqOXLqgU0+qlKdoiW7s+QXE40j7+eapRVtt1tsNWhVUj44x3wBwG4nZb0srm+IcpgsOqnV0CpUkR04RIKf1TQNXNPg5PQUfb9DDEHhZmIOSwghaB0IAAnwTUJqyns31Y5IoJgWbZshmbpFW62dEOHoAFSbUMY7y/+7vtUSvBXpMeiqmziu8piqsdXrPmWM17cEEc0PjLdSObtFg//1//V38fCdu3BeQDIBkerkUNXtP4dMiZpJl0PP7KBfxjY9dACMUsKm6Yo53IjHfCBGqS3RKg95I8zMEDHmUGPNqzI7QC6xO3WOJghZ9QSQ78tSyQQt1K715LBcLrMystmscX65BsPh5OwWTk6P4FYt0Ii6Y6lEabcDI2X02aIWpJFKbMxJxspiCA+DShOiJI3Ih8fcrE4TCUGZDQDXNDmvEkAm85EooWu12Wzw5MmTbIQXrK4x6ul6vUGKEf2wQ9s0IN+Amg7Hx0doFSb74uICKUrx4U7rTbZth6brcPveXew2G5y/eIHtZpPj+dq2FduZSmix0UNq1aH1ol4OwyDPdJK/eXZ8IqESIYCWGhyN2mygYyfKRYGzADe1XV3RanoySKO+73FycjKinakzqb5/9Fn16iwhvi6xeG2jWJjZ6HqVwBmASmKrVYP/81/9M7x3/xZ8wxh2W7hGbHSSOifmmZii1CUlk1nHjMEYmu2RVOVWf9laPW7TDixRvoYDJ6KsXYGqTA6W8JswDEiLhcRvvqmBTV2m9XdzcSdTL6fdJwGb4wnPSXsjQpQPdWG8GgxZ8dIiIgOL1ZFu3nrKZsjlEYHUjeigdoh8XGhfmfpvcCAyW5AtQFziivb7La3GgHMocDA1MJ5JJJYtQRAm7yF1TevkfvNamn3N3l/bdXkjSJ/jWpF1riw5gksJ8JJgbSlKRoTOGXzNPspBtn+oejxvcjigmlcS/ZSmDjGvm7Q5k0ZN39fdO6X/8ePnVEaxCT16/xGOGoA04Frunebr7tkfxs82Bc5sUF9CyezQiOp1m7PxZbW06qj2wgMHcjNfeYDa2V4pKyrf1wxr7v7rFn/u3iJUlxZCAIEVd92hbQme5TVvdzuk1GPYBaTzZ6DdBdowoK34kHkBpX8qD7CdB7WJ2CKy3WxKg95v5i8Wm1vkmJO0zUALoqLGHiBSY0zbzSbXOrDuRZIFQigEXAeM6oRgN2y320wgBvUDLjUUwjDIGsWAMIixv23ajAzrncTyZfOAvb8kUEdICSEM6BRHTWx0YgC3hHMzI0iBXp+BGbNNu3rP0xW5yn4KFGbftm2OM7uJJLXPgMaGGXsHN43X0lXJkhnNUqp8I3s0CZ4ZMcBSVQzIZ+zkjuIguWotJEwpvcJ4v8BGRfuwOeTDUffH9N3V5p2kameNzJFSejPMzAbVdV0mjJHhc8LM5hwCJhrnisegDDEzFTnL5CbnFjO22x6CO6aIE43Ef4EIl5cXOI89Gtqgf/ER2rTFvaUU0hWB0OonWb6mSIn1OBgWLFrCCcY/Ff9zBI4SNtGHAa5xGf3Cew8PUbMSUTaky7oUIu13O6zXazx9+nQk7RjUtqxnSQYvUDSKo5VPOMbFxUXemK0mgTsiQebd7hQCe5A8VBIV9mi5yvVQh36XbRp932fo7RSKc4BjxPLWbTgnyKOuEanP6gQ4pYFhCOhWS7SdgV3LMeAciYe7OlRuSn8mbR4dHeWxTeGcp8ZxYF/yr2kXQIZ5n1ZDOjQOaUl+RqTB1R9yEJrkK4JtRELUHGDI98mcaRZ3ZRnEFfPVrvWcADNnJOFXjf7/IpqYFuT3GsIohJDX2ALtc0WpagrGA5qmyeaXg0izN20jgymwx0mZ5k+QKRFN+9mf/NzLYAgLGNsPJN5JPETeC8osnIYHDAFDv4XjDXaXl1igR2gXQGfu82KW1ScXFZZsVqMh6PdjJia/KKdlQ1CQsAuuKhNZIVjYM2aa2RwtLSUnTednpezJ3ZcgnI5ZqNwKwvZ9DwNVZJgXWIz0u90Ood8JtLM6Fdq2FYw6LqUGhSENuoOKagsNvcmq5YHkYmFsgkAx27hA0Vy3F2s6qh1RdmjO0dv40N3vqzAIGjlADmkYc0yy7m9/flS82KwlACMDlSMqS6zX9TXtWgUDnhEa/lobjf4Ztal2dkhTs/UCSISF6t43qmaO3OC60xOXlCYjsNozVCeOG3ee4pvVRGkbZU6yE87eqppZUAM4MiIRYgxSkVu9iDFJXmJatPDOIoCKvSKloqdnlZNKKIihjzYs12kE0Uj/NS+lMFan0pJu0KyGj19wjGIw7/seFxcX2Gw2VZ6hzNV7nyUrgcP2aNu4Z9sxUTwMQ5bemDVAN9vbhHEY42qc1eFsEFPMKMFDX6DCF90CBo0Uwfk0TcHgycVxIlhrE9rgEpmeJafEgmNGGtaiqt5Be+VMm0LejPJrZ2y517VakxhlMFzTahV81B/2lU2G+K+2m4CFYzQsZpHpxEU9tzSrCcFM7I1E9KVWM3N2yuQAsMMihIDLy8ssnQGA860UmTakakcj2+znlsys1aicoxfOUnmo73tsNptMxGYzqg219f25iGtlcAaEWTgSuI+aSGt02pOTWyAwUuwBRIQ4YAgJg8ZagaNArauq83LY4t7pCg1aKXSbEtBoJR2NzareAgBC07QYBmE6u90OPiaQB4AJgiZDGBkR4Bam7cI5e51i1GU2SU3uDYNU3nn69Gl+qRbeYuOxwrbeiSotjA2ZIJLasWKM6IcBm822MDJlZhaOMQyDMEUlFoEPIjhPIq1tpR8LLCEiHB+faPFiQh8FYbjf7aR4jNZe8N4jDgYtLX8nFGnTNz4TJzMD5CRRfyoBV+0qu1nuV9WT6Ua+TqIaS11lBHYI3BRKp9hSHQqagf0N1CyNmRAi8PLlFmfLBq4heHbZfpaY88nnnBPoboLVJS50w2MGbTbQaXGTL0Nj1ryNNEbHMKm/73s8ffoUgMyvaRosj46xXK5wcnICOIKHIPjagbXb7d6sZDZ3ctX6sHHQadrT1PBnDG3K7OSwnrcBFJtbIybSFMAc9ZlBiphwyuZTZjFc96HX/lVVheQk7hE+AYZ2MEqKDSGLvaZujpRONXZ67yXKnRigKsXdCH9iEzDVcr1eZ9WpnusUUsg7eblmtzTViFVqtPWv+8iOCF1cU80bZ6geCaEvqmnjyvPatsVqtYRvPBr9XmLmqaiac5KZGm+LmukRbCNailpZ8nlxZjKHOYlvSotzKmDdz1XNaHic53nYU1o8i6XNG0o0MDsB/S4gthJ4zeRAFaQLwVTtEi40Ec32+g5BtJDmSymZIUuS9RoaDpqEXPSZftu2BfkGVkiaalMNynt/Yw4AY0B5wHr620s3FMxaxazFeNugNQMzgnDkkHi8Ee1nqr54b6EZrXjQiESditDTLqLf7KTicmzRrwf1jki1IqexPykVz9vey0hazFYmjtoNwSjJ63kOsxsyuwlUS0iIilqxvlxju9nkdZuijNga1TVPE0m6ljkrLJzCNx5t12G1GtsgGiWc3W43qtspHkglMkpZRW6aBp4k15I0wHGj3tEhCaN0Xmo2OhC8qpnGRC0QNq8Ul0AYIsoAJ9mepStk2tZUgpoz6FurD8SrmM6hxswV89jfdHPMz8ZcDinKB9l1Tw8x4ZcfP0W6cwo+XeHOqQchaKqiyvAs1OVojjntq6QpSU1S17yxLf6G21iVrg/opmlA7DJ9C9gkZxQQEOCbFsMiZJvZG2NmxpjqepmcGCGWYMPT09PZoFrTkU0aqVFpsxcTUONoOSUzoGBlX2NmdG2Hxjuk1iFGj4XKWkxe8c96PL58gtPjEwQMePx4jZgiYmrAKcAtHCJEhWyogUOBVyFIonkYApAaUAM4LwYwVvtgMd5a4nhVb0C/mf7rnEMMIl5//PHHWF9IQd7VaoXT09MsRtc1TmuvpdixrL+C6umbBsvFAm23xGK5gq/ghPq+x+XlJfq+x6JbIAw9AIVebgWCmxlomwaOXFZxnXNwJNW2zs/PpQ6qQ84sWB4tsGg7PTciLi8ulAaaLJnJKMc0YLpSbfObDwydx9CrDcd93wNARiqeSmhXSWKZ9ir75FT6O/Rse6tJaYXYAajfzZQOJLq/3yV8//f+BN/5xvv44GsPcOf0EYgCxGMUAXJ5P3XeI0nmcDWmce9mv+SJRP+laqplARUzUv7gvQdTqS4lNmpBRD4/P0fkhMY3WC5X6FZLmDPqjUpmtZSUuNSHJCJ0XZehcG0C1swTZ0b8IpnpKWNSXEXccyezcfGm0bAAp4gDjgBq0XQthl5O667rgF2LXpmnSGbCwKJKNVQF8KI6dw2S2Gx4xqwyCkM2GfL4tEbdV6WGcnmhl5eXuLi4AKeUCyHbGtWSmG06oNgUmRmJQz7hVt5LTU5yaFuJ0rfr7UDYbrdofYMQhrx+rfMwTHaiFk3jkBKNpOp+u8Nms8EQBrjWZ2jv5XKJZWew2wEvnj8HUMcg0mRNJ6uS3ycLQsXe2h1maNbsIKzjkF7ZbjR5cVdJZqO+yb6fqoKHWwiMx7/4FHePbuHu2RkYYlwVob8cesysYJVTr/r+KtXazpexmSMPKPt5ZB4YhRUBITFCEIYWYoD3DUKIuLtc5r3wRjMA5k7AOTG9vi9LXweMs6MFwLh/+3fsxqX8I9WQAIOIFXx6Fm+bqoOhYhDi6uXcy4gYWVTWMjdhXjEVjHrr0+6sgS6EMhWBQZmnSElAPwzY7Xps1Wu5WHR5rsZAuq7bW7P9tZVIOe9KZoB4GxNSZKSKWOyASSlpQRipri7AlzIvTglDllBMUi7PbBStlhrzKmm4hoipWkylBAnzaC1E1s37HuPQUlvf67yZU4nJcvyuk6jqdhWzq+25h/qRg29yv7hmy335/4p8S2VuBELTdJBydmNGWKu8ROYoqZ+DiqbKeGC9XCOJ/nW1Mo+x6WAqhZuBX+IzxfHlvOxnq0kBlUTfmDdzSjyWMlNXMp/aOmomaEyp7mMaJzSdZLUyQCXJGdd3anSXHDiXJcC2XYCcxGdtdzspIeYksdekHFcbGVkZpgNIVa4QJbgz9IMYvGHMzNzyansqg9Q/EhIiCGIjGwbG8+cXuLy8xPpyjRgjzs7O0LUdtttt3kzHx8dYrVYj5N69RiIBWW4ks6iuYQjo+wAHIQaTkE9PT3FycoLlYpHDLkIYMPQDYhgknGMYVGJKOFodASAJY/Eei9UKHTNcU971ei1zsGodUpjYq5Ske9wZkVZCRYWDxqMvqs15hXRltNI0jUibbVsCLid97KmGc8xMJSwLKbqpupbp2jop3xy4Xq5bHZ0hRYfdNiKl+r4KKlxtx1x1bV7BqQMJ1Xy/jMwMKAc1COP976QKlxup+k7g8JsGCYy+H7BZb7DoOkT13L9lySzdiBBrApsz8k6vnfbHE2Zmb9YpRhdUNB+CxqP4FqBB7F8hirxEEjEf1Lg/rrANQCUpuc6JOYMF4YDNRlJLjjJIHV8eqUp+Kau1Jjqfn19gfXmJruuwXK5wtFpJDFwqCeVmCwFmUsd07sasiIB+EFVQovUHQNVLiydbaIJu13Vom1Y9qGJHC1HQMeygYmYsFsssYUmqmAaRemRHQh8jdtstOCY4Bk5PTzOkUP06i8RiThLhdERFPTepo37Ph+goH0Ka4F6jiLxqq6WwOpToqjYdp0lm+9dU6mf+mtC1SzATQkgKKz2dp2B8Madxv7pQzMhrZ8zslVXrL7CNzEQY7/e67oMJRU7RoS39jRPjPASp0sUiiX8uZlYzlrmFqwvAXjexqXduGvBYE9ihl+RGNi5CNrqQjMXE/hAikrMTrhJvrRYhTCHIxx9GNjPVjYhq1dd0Bn1JpH7NSpyOnJDSgBC24BQRI6PfJQxBIHVMYso5hlV62BCCROxrf6zUOz37k14LSByd2f4sfaltW5ArdRhs7ilqMLP3aBS8kUA5S8AOplip9OScxKOpGm9jFajwKvi1fs+2kq5G2xWGZhhmeTa13nlNq2MdzYkkr/d6urFW5z3awy1IePZwpUod3mM+MtP5R+5rGienRzg+XmG57DJTKuMovxrCen0YSB/I80wpjVTcr0LLtUGU13Paf/H2Dk0kqO30n5uZWauhUWqiCRrsOY37qRmWiZcWLAcdZB3FPaeikm1kPYWcc2jadmRETpwEoVXVRE8ScLvd7rAkqTxO3iOkKKEfBkcjncA5r+ElktDtdHPFOIAhyJ/e12kViuEOBo39dQA8htBjt1vj4uIp+t1W7FiRcHGxw6JbYHV2KilXQw9yhFu3b2GzXiOEiPOLcwl7UDE8xJh/L2KMSG6b7SanKInq1WK1bLFQu5sF1EIZmcH2NI0UPmk0nicGKZcnjgXG5cUFQowgVuhsJ+lILbdofAPnPUISCY4YigZCmckmZkHVZcFhAzktGWKHQzE3mOqRRY6KoPOqVvRk3t3lcqnVpa4GN5jrz96UUzpIzDk5f16tl/GVY67+bgJvnS+qnyeHZ9M4fPjhezhddrh7uoTzypwpgUjDS2yNLD3swHxSSthut5oZ8uU0/k8b6YGYVCtCxUey3UzXMaU0gpCyLBXgDaFmTMVwe5AUF9lPA5ka/u2zOtxiKpndZAyNpubUzzFRICXWsm+ihoTOKX64zxutbsx2UhtzKoKCEJrTIsFFnSineklEp2o8MUbs+h0uLy+wWV8IH04e223CarnE0dEK6/VWGMYw5ITpNAwjrCeT3uAc3Mj2I5LodrvNUevL5RKtb7BcLnF0dCTQQDsFXqzsXKvVCksiLP0KvpWMAiGu4jF9+fIlOKpjwMoHNh5oKIdwEJFgpulGTyllZsYoMYVz0fRiISgR+Ide+5yjyCL0DcvstTyYNg5718ro5zD0c98z0qOMj4uUPv52/BSSTIv7D+7guPU4XUk9VTYpxY/V8euE1Zqxf5ntZeO2z3j3TE4Yq6Zms6gzhd4YM5trUyPr3Pf1gC2WqX4RNWHOORqIS9yZBAoC7FXvNptLpXo6IiwWS7QtIzQWVTxWn/L4KsIjyoEh+VvKTFAIN5v/yUJLpN+YgBAHQW+NQdRTUpxzT+i6NjPvpmnyAWCSqoVa1JLqKOl8Yuytg0Xl+kLkIQTx4KJIwF1nhVjkvhjEDsiJxRGss27bVoq82DtwpehsjIIbF2NEoCA5qNhXg03KE2gglDWttSnR30dq31SqnzIrswVehRIx55Ecq5a8xylyKt0rM0ZTqMtf5VhE9X9RRRdLj67xaFoHKw7N9TO5pscyB+2h2BorO9+XWc2s3wUTj+ZWfz/XzFyRtTb9740GzU6lsBhLUnntJLC/6+ubpsHp6enI6Gzex6l9J6uYQI75MoYW1F1LXgmVxwvlfYuHDx5h4XdwvMXx8bGERvQ9lp2hTIgtKGntSUfViZi1HgYjgVkq6EiaEkNrFeV/N9sdtrsB5+cbJAxgBPiG0HUNmOUVnJycgiAhBScnJxgGkaqePXumCLDCaExCqKXa6QmcIYLqTcgSdGuBtxY+0bYtmrbF0fFxDliMIWC33WZY77ZpJGXJNzg5O8sqOCeBrokpoR82WG/EDogkz/JOvKqr5RJMlAkwxISQojgp1Gs14mTMI3vadQ4hm7MZ/c3uOOdQqvsgRjYPGN8x+qq9aINKyCPJobLhH9wTGaZn/MNIFSOTd0M+4c69I6y8w9IDRBFSn4IREcrSgPMBXRwnVvyjMLK+7/Wg+XKpmVNNi4gyukfMirS0Kc+wLWz3gAvkmHevWJ3pqlYTSk0IKZWwjDmDbDa8Q8TF1WqV44SmP/U9zjmJq6nuz4bspBC7aoNJzBq8K8913uP27TugdI6wO8JiucSgGzylDkQ+n3YjKTCfhPUpzgpfLUysYL4XhtYPikf2/Dl8A7Stw9HKo2kcwA5EDU5PT7Dd7NDvBqxWSzjXY7vd4fnz57hz5w7aVsAR7eVND42pkdtCEuzFhyFgCDtRr1X97LoOTqWy1WoFQCsa9T22igXGzODlEi0EwXe1OsrPciCtB9CjD1vstGaAJ8Faa3yDxKVvW7WosX6LZUmArg3aAEoNALWX7ZnWJ5JobaKwBPO5kz3ToW0MlWjShIbq5xjt1ZvrOm4m18xg9un/pYeS5UDEOD3rsHRACwZSr2l1Upov311rGsrAaGQAKQzYbGZfVjWzpt/EDFT2ZvseqCTxyq7KarqoIZm8u6Zu5iGb1dznU7FWHirXTfMn5+xndo+pVKZyHXquvMsxJDczq92mWjSYnVY/ZBurE9gcDRyNdT+HV0R6JKMmO3GVoSmBibobEEKPEAbEFBX6R6U3KnaA+fWVf/dQSKo2ZWSHPhd1kHJsl1f1LksvQN6wlmVAJDF6BGH+U/QSBuBBGdHB+0YLqxA8HNgVldiCik29lBS3KqeWqs1qB8hEUkM1l9rkMJ3zlBnNtln7lr666tCt+5pTT00ymnve+J1kzpl/z/OrzGdmeihZqeVarvuoztLS73g+9g73pl7ttVexR38R7TqTVD31pDYzV6HnuOuY2U0HUGwz44Wx6HqpXTjOdbP78mAr+01KBQTQUm/qZ9bMbLoIbdeCHCFxyWN0ZIidgJ1mRB5tt8Cdu/exu3iMXS+ItDW5OvJqw+XKAMmF4KyeXAoASyAsI6IfNtjt1jh/+QIhiPC2POqQ0gDnGVIvEUAiVXfkCTFLiEKMp6enee3q9ZuuXd2mn5vTgIBsk2QlBCIprLLTeDbxYAa0XYdlhcjBEHV+rdDdKSUJhG0EAmh5dCRQPinlcJYUE6JCD9kzh2HAtu9BRLj74IFAFznxaHIScwCDR0WNCGPirqWx2rxRS2i1bXFkW4pVACpjxLhsfaf1FGZVNZ5aePbXvzZaG5MySROkEuGQAG8J/vkrIKLYYuWB9cMBHJZWOSXstlscrVZ5Llep6H9d7So6rrW5wi8KE45BbL6dVgsDxJ77WpLZtE0hfazFipnVquhUOrNWq0j18+fGQxUhlu+lGnQ2MsvF+dSrhFhIRHGHk7NbOH/2M/SGmpr7JLgJRPE4rruSyjjKj6qWIW6x2V3g2bPP4JsFfLPA6ugE/RABRFFBzSxkMZA8dmQAwNHRUZ7vlJndpNka5/qYE2O2JfZL+EfIm3e5KlDZRJSLo2x3uxG22nK5RLfopCLWYgFi0oQLh2HXY315ifX6RWY2W7XbNU0jWGhaH8DUJ2YJ3XDTOVb2kjltIKsraQyimFXy/MbKxmCMD8Ipfc7ZzybD2VN3r3I+lDuNHpVhAlm6Gguq4+/yr7WIMvcEZgx9D3d8vK8pfYkZ2qG9nlt1AEkhHQUPrcwLn9tmdiXDq21OM+2QinSoz+nLsf7tnvHl+/da1enymcvezGQpIUZBPO5ipP5Uqo9+AFMvh9hjCANiDNm0QqZiZO2Cy0nNWhVbGa7Z/KaG63pdDrWrNtKcja3e9DkHLqufRYW3EBtU12XPITSViJFNuIKvqB7XSp1tYkTcQ3Kodqf+Opaoam/jfpvSypwn79Cq7PGFiYo5PXSvYwj7h/SM1DF6pvzFDITI2IQeARFLP/ED7z1yQpzT/r9kKqS1q+yY19Iu13LqftYA0ef0ZhJZsqeftW/Zg+agfz5vm77OcjqrKqj8qD7VjUnZlmt8i9XqGP0Q0A/qyawoXBgYkG05vmxek9jIMUAJMfXYxYhPnn6GIW4QU49uqRveAQlBrgUjcYTXfmKQ2pVOY6R2ux3atoP3sp628efgxHVmmKH2vTZ3qGSmcnQEKTArcNnOeYQQ1fspQcNmw+xU7bV3ysy4XK/NFCjdLVeqfq5GmFwpJfRBkFKlcnyRccXoT6BKsjJj/RwTqQ3yJimmlLBer7P3l4CSNXFgiQz1JOkJb5eZ/XA2Hk7/neuyMEKCII9QvsksYiZ1CT0QUgTOXwQ8efwLuLjD3/1fvgM4yeJIqRSZ5sza55mCYZhNJc6/Ga2KO9SQIcv2yCClr911JdpbIOfUwGhi/TR6+jpOfNM2dz6JXcJeO0HUwCLCm5cSRHC+wWKxEmYWxpDXEn86rhIkhA9J7GXIc8iY2YB+6PHk2aeAC2ga4Gi1glWjTgiAE8MlcwSrAX0IEGamxvm+75WZyZrZupr6NLUF3aRNpa/aaFq/H/vdqhGt1wLxY+M4Pj7GousEM07tFbt+h+1mY4sPkATQLroOi8VSmLIuoHcOQ5RsC87Cr6wPaaL53jgnvLo+iU19NRo0SKPj42NNYCat8pVmpTuT04kox95B18rCgqa0u2eHq74bOw+oesIhc4n8HSNwcRHx07/8GDys8Xf/9q+CyNLIIgAnmSzXQIjUEqWN9ave8hwmQga4MDMiut5mNtfmdNu5U19e+nhA123AV9bpD6i2k4uwf4aqFADSDAC5LTNH0yJnxfv9v2MMWjBFYq/qiBmTEM0Fz6NuCvETxq70m6wZ8+Eo+em9eyo6yrurPx/9uLFqWtubEpdCHzz6HqqiSq3QHLmuyeYOLAdFVrmvaRNGNlWVp+rg9PfKCCWMc8JIrlq7q+1gVP1/wiqzPjRWFymrC0YP5dqUGLvdgLTri1lCnQBjhTlVv8+PeTTKG+69v852E6ZLcuHoIHhlNfO6B5n3aKpmAsi5gTXi59tWN/MfhExIxY7AsKK9Quce3WKJlDTAV3VQCZstLIlMFdEUE+cEcRYQqerZsycYXIseHr4RJ4RvCFLpiUZ1ggksTCIb0xKGoYd3S3Rdh/VapBxzqsyl/wjRTid9tS0nh55QzbDHjAEoQbdt2+L4+DiffPYTYlAV7DLHrBERVquVxHiRBN5uthus15zrBbRtixK+TBmeHIoCYQZ5k7SYOcOT1/PIM640A6sDyqx5pppUn6JAO5XygwVTrTYfGNPiqu9B64LW6MlzZDbtL79q1jixkXSW9ST5IQkajgnAQHj65AJx8wLOqZ2SY960mS3yYXuZZXd82YJl30wr79u0mLZtR46rK5nZTRhPjbc+vddsGcbM3lYbvd6RKK4qDGpXN4PgRA0gh7ZbIiZJOhd7vBZM0FNUNrF0lTT3sfFVBgIzXrx4isG1iL5D00pgrG8E6hemmsqiyJ8Jwi41tGMIA5rFEk3OKxyrfGavsufxLEEfZmjGKGxT5DsqZjb14BkgZI0aYRkEIQRsNEwDABaLFiv1gHrn8PTpU2x3W/TbHY5WRyACmrZRBky6Di6rm/XzgYKPx8wl+6JS4eoxGzOzvFNTOZMm2rvMiExlNaY+ziU2Z4a1QfNhb926Nbumc6tu8r40D3WFzLwPMTxIKT4gRYAHwrOnF+gvX8J7YOiFmTkPOAcFTNiTAUcthCBzvtar+hVsutA1inDTNHl/vHKc2SGGZHaOQ9e/io2HZ36rN+7BV1Sptfl2lc64+tvGg8nGAkq44tyzitpcMxK5o+97xAaAl+rdxgA596i2NXsj1UEt/dYhE/szvJowpzLC9W3M/CffVRL09L0eGsc0KHr0rnWpzRuaUln6vQWvxjAdXs3wpuO4SuoXVVgks1T17RjZLjXXaqZxHWPYj/qqvrsJU9HDy6q+j++XJ9Rc0z6zjQ2UdU8z6/NVb9l2ivpd75eq/NyhGXUxV3tQrSpYu8kCvwnZjRWJk6AGe7NLoZycojY6MAghMrrlCr5h9EPA0hevpkg0KVstBC/N1B+r1J3w6aefYHl2C7dPT5SpSe0BqHMARGBySBxAABoIogiB0LYdQohgRkb1sDU0A7T9XjyIb2Cd7P/qoKglszm7KIAcwGthGRlDrHEYVMVJISJFRtsusFyscqDuZrsT+nASDuObfacQUNEJcybY6TX1teYIqKuYszlomLG+vECIQfJGWfNstZL6QsfXND4zr9q4P0XCftUVLn3RHsMzR5TARiUslh5tRwg7QNDGnaIdWwiPKR3zBx4A9Forcwqx/jehCU/hkVnL4iCtfW5mVot908/njLOvNAH99+avo0D5MAA3QvvMopoyJVE1Q2SpXNQEDEPA0nej59UntNyXEIekCLbyvE8/+Qh3vcPD7n30LoIcgytGJvTncgAnk2DzO2rRth1225CZWZ0kHWPEarXKGFWiah5SJ191bUWtzlacyjM4Co2ovq/BI/OGgdjjBJ57wG67Q9e2WC1XODk5RkqM9foS6/Um27a6rsNitSx28smhV6vE06DVmp7suxozrz5EGcD68iLnpKYkhY+90yLB5OAdwbsWQywJ3fKezEDPo0pNN17fvUv3rWzCb5WZLRyajuC8eDelWreTTBblza7qZ87h0e92GPr+S1n493O3yqQg2IXNiGkD1zCz6xakZlZzon+dNFoTwrWuY5oQQ0UHh9TAg2M8eLWGbjBpGbSEGAsy7b46Sfv9MABihJyChKxWkamTlappE+AMF2rxUhG4ghntr9P+zIsKPHcPjXj61O5y1Radeozqn+n9qbLnmSoAiNQ5lfiyFCg3jsZc+jg8rmlfo3FV39XFkO0wIaTsia1/Zvu+Ym2m147X3MwLdqBOeiLK5jtAcPG6RYNh0dYXYd8OsP+RNVv/L215uddsRLXDbQzaWLc3WmpuakgenZJv0QEwHoe8bTPoMqaEL55LxxZF7HB26w6G7TM8ffYMp8uHWl8So3uIoInzkteY6VAdA4mjxJKZasopV3tizdlMKEVcJRLeCeIqQt7w9pIsTKPOPXvdJZxaHCuTXbVu84zKvrNKT3PNVM+u69BoknlizsVNYoxo21agdLwHueJMYGZELrA4Mn/KFaamaMN17mTNiMxZYF5T6UcM+d55NJ2ou77qq9ciLpvNRlCJieCcR7eQ/GCY4wBmPrl+rYukVDyxUxXTbF75wHeMbgH82q9/C2H7SPJ3GZBYNZHQjK1xmma6II/PEGamEov9/pVWO6v37ZzLtVzfqJo5PRVHXqlYwBRfdyFH9xzSsOrrIaEP3kvhVAkiK6c8MyOkiIbUU0Yet2/fxfPP1njyyWO8//Ae4BtIQKxDsaWISkAEKaJgBXnBYA5I+iOqTgAjoXWt1uAkJARUKepSUswT2qYDeAtOYxXPbFKGGtq2rUiO2Jd0X2kNMX+416rbtG9jJnWYRt1yxXPv4RdaBWsYcHGxyYys6zqcnZ2BIfUPX7x8kRldHwa4bMsE2qbNIR3WtzHM2p6Yk+NV+nLOY9F2Yl9S50rf9zg5PsaiW4zskQYdbuElAKT6e9PizN8qBzGbffT6sKKRSQWpYmLCiuR75L4SR5HSXUK3BH7j73wXLUU4z4hB0++cy3ZeB8E0MI9WkWS1GI/Opc5Z/JvS7LDPB5ejzLStvRHUjEPfTaWiV2k14YzUjxmVU03Y5Y/pWObGV/XdNAIU2A+D9DvuOF9P9Y2o5qZf1OrbWJXb/85Mw84VTPc9dWnyWd1ucjAcuqaWFMocJqrjxBRw3YFkNq4M6Y19u6n3HpETQLEgonDKnk7i+WRvY/JT++v0WqDY0UyUSVwCkmtmVvddw0xHl0YaxWi2NzhMS9OUpela016vOm7G0fESCw8Q1Sovmal3ds3rcc45b/7mtKlzal+T+NySWU3s9i9zAYgzo+wXJd7WSdzM+7RXTkYHkAfBYXV0BOc8zi8uJJZMVUMHL17JasPbogLi2RyGAYuuRdMqdjuRlgcwGCK1mTDDeZcLrMjm8iASg3QMAbvdLqPJ1kixZe3e3hpeZ8c08d7aVDrMEh0Z7FCL5QpIGocYY8T5+TkSc05cr4MffYWB5l3JaTRashJ7JqXZGKyP3W4HQgVMycXiNEJd1c+9xtGZ5Fer9/1ul58lTNpOuJuvv0mZgDG0Q3ZOke5jCoBCKrlcIAdqPy4oMG4mnIRfcWxflTYSaMzambWXseMHeEPMbM8gzJwLcDjn8kPfVpuas9lOezPyl9HCOLriaoOowdHxKcg3eP7iXNRCY1hUoIkTlwBOWVAPTgK3slx26Dov1zvOLvSYokJAi+jlXANiB0RBbrUf773YbtIGZ2dnORyjlsrEbvf5CPYQw5rzJtaSjv1tUpeI+QUpdSQ9GlPoHNquBcekdTulhmeqTtjVapWL9dYqJZKUyxv6Hn0Ysm1rGAaBHeq67LEzZrbdbtE2pQIVgBw/7fWaECQ0xpGob4vOlXetLaWEzWYD513B4RMvBUqg7RXSKU3pTTfirHqgDI8YKQ3CdBup+GX8k9ikSwDMaLR/iycTVXgqA86N5avZaoncoQTpAzTCrgOuYWZzasXY4zT+rG6mOsz1Ofusa8ax12bVSYbJZmY3mbuWaKwvmC0mhmKIvy6pV61l4DTN3ytge2Y8znpCrS7oxjfmajazuUwKsbccGsfN1Iq3p35QHsKclJ7np3YuU7GnRv2MfNA04JhGaKkWplKDdU49rFGhuqeHJuV1tvdqDAYqAY0PYVM9DbqoMHfAEIYt3/RGjelGr2hWRTSGJhfkce9JZtX3eZ5f4TY1GUwlT5N6pyaYG0tmhxZoTuIyoywBs4zurTWqzidVBSn/OZHflFAiGC2JWrRYLlFb4g7bOAqXJOe0spPEJkm8pjIxY2BkNg09UVmdC7pJ27bFwGOHCYARg3yTBFrbm/KMZmyUdm3eaKzra4SURzfut77Xkah+i8VCnkml/5pYrRLVdrMFuBSzGWLJ710ul1nNrFOqTGIkGseehSpPM8aIfrcThFxTab0vB4+phPos33gBj5yu3VWxEVUTOaIUlbZPq46yyUMYXoPNOoD7iMWJBIM6L9jFlP+rgrjrITCj74e9d/c3qlW0avBOu90ue7yBGzCz67yQdWd2vW1SUwO+qAU2+4iMIQGw5GzKKS01c4ssBui2kwLCR0fH2c5GpOqk8yPCsc2cVJUkVxURRqkTaUwMWleTGOpdTZBCJg7MQB8C2naBGAaEMGZapm4C+zarcXt1RjfHHOv3ZO/NEnmLuC8bNSnaJ1FJEs/3K4dg5lxNvdEiwxaaAQgx1p7FGCSfsm4JnBnZarXKEt7FxQXW6zWcc1gsFlLUmAryyDAIOu6iW2Spe7vZoFN4JavsXsfms67BcrlUlI+xFjJes8OqpjQP2V6pSFhknmIJqpYyfgTAg7nFxcUldgg46Ty8s8K4soaOSUobxqg8sjo0IGYdoNDM3wQ1c3zolgO+bVuACJvNJnvRgTfgzZxbMCPQ+rSbttmFnlMdJ5vujb6g7LkkNVr76kMT6M0eUQR8okp1qG1MWTU9oBLw+FxnVjXVm5dtnJdnz7qJVEazEuTN2lWe0tGz2XDHqmvtf3yYHvLJWTGzqXSYUkKIAWEoEoZzTiQT/V3CU0oQbF00uh670Z9F/AMiEccQEZ0csiWOTKc2ZeTmZT649koXByTaLJajQspV84ZorIwRF2WHMESkFJAio/FVvyaJZdPFJEODcTAU46uucuaWhYyy5qbV2Fq8MQfA6LlKaI5uXrtvzhbwOm0vJIKnKpvZTAigIiF532B1dIShHxDbDtS0ak/R0zn3KPcajThXFScGwTDLTLozlFYpllICdUVaFEP3anEMRwGscWp59JkQr46Gf6Ot3uDQYsoo6vvUicBKZSMaGF1T2/vGk6irT7VtK4GQzhfzhKqlJm3UQbgAMrTQarXC+ctzxCbk51txmDpez+Lk7O/dblecCE0D8nX4RnplguTJvMlqSBgvg9noxHLoScJRGIKe8bOffYSwvsR790/hXIRzpf5EblRo0p7FQEaP+KpLY9NmczJTTg3XHmPM5gvgNRwA0zb1Ztq/wzDAefeFplbIwWWR1xXKBROcN/WzzMs5B08SWd80LW7duoXtbodV1wGL5X7/XJgRa9iFdx4xhhHWmam5RB4pRSRoEK/h/TvLC02I3KO93cL5Ur18HDtV7Eujwr6v2G50TzZ067Up5YwFm3+9Yc2OJjGl+3ZFk+KMmWV0En0HNaxR4zy4U+N7zdBdQX29vLwcMTJTPU9PT/Hzn/0cTaa1hDD0gjq7OsJ2u8Vuu8V2u83vPsWIQfP82rbFYrHAYrXEYrmUeUYutsHKiYBqeeaYXZGWvPwgVGtm4SES+kO+ASKBk0Bn//Ef/RjPP/0Mv/V3voumSfBtKtJ+xRDJEeBcZtaAMPray1w7T76qDK6mtRQDUkzZZAEgz9/2zGvZzGoR9yo1MyNUzPWLGaWoUP3M1cAh+c28l+P79ATkOb9TZVQlApIwi7Yqb7cvDR22kUw3eT1EZs7SS8WayndqC5seBlepB+VZBy+Z3mCDHf+bvyvqD4Bc+aqaJWxS0/e2N8raqVB9X9NRkWpLPU5TB5m1qpbd6wqtWcJ4NtKr97NtWzk0jNmjckLp+4lVtoDZ0Cx8yMJOGk2vYh4HfGfvd0VjI/W6nvvIxlNZ5Gak09KTMPjnz8/x5LNnCEFVZGaMtPqsmu6/eEsNm7NRf1lUzbHDCbjOLDKmGZ7Mj2AlGV9JzayZV839Dy2efde0zUgyM8M4k1qgeOQYt6dV/45VxjyeyebK9gl2ABV0z4m1rTJRkI5DsiYBArkOXXeMfvccQU9luWFk5dL/JxBZECOAGEEpwXFxDKBCGbWReChaRwK86wDSAiyMzFjnXPSUxzFdo5s1AuA4ISnsUQ28bD0lqFqHwkyo2pQMh4QEQgKTXSM5lQluKkBk9jgf4TJ3IFW/V6/e8iy9d6P4Mosb2+12UjehkTi1mqHUmQNgRtN6tJ2gZUTvMiy40KgABmw26yyJiUfRodFCyM5LTmCmBq3oJWaHoozLmxKpipxI68IPU0W5sqbioYyIHOE8wTUOQ2SABPzAUDWUSCpto1A+mLMKPTXrfJUlM6CMP7EgQZsjCUSIvVVBl3Zj2GyzNaSURobYOiK7Jp4YI1ZLRU+tDOdEDtEBlFRliwIhLNDSBPECGTMwJwLLC1Upq0ohB4MQIRDFjBYeKX8uD7VVkT/sMYbyKrq4h2tWWB3fxZMXT7AbEpicEBMsMspsRAmJBwjeFMGDgTCAQoBPCTFJVgGoMAgbvkcD5gZxAJbtEShE7OIOHCWyuw6Wna5/QXXIFrkbkoMwskUK2FGDQB5RWZFDyowrkdhzBNFD341WGErkBI+NAoQdMoAID8k7Za4M8PaLMhDbcraf8mashj/abJRfVWZCzpEmqo8TzV++fJntJgsNpk3M8GoHTVkyS2AkLJeLjIbLzEi8zCaBYYjY7bbYbNYIKQrj8l4LuLRomwbdYgFHlJ2JUZGEJTyHS2paZCSKcF5WuvEEHxghDbBgbYbXN8AAAoY4wHeEZumx6xlAB+cM3bgHiCWCgwE7kjIdswT6Hh0dXWnW+XIwtRoK/frxmJQcYkRixmK5QLdciO00hSy9g1/Bmzmng1/F9ZmlBqPzEwcAIWPiCxKObg7dn+U0LxexHu9O7V8lXbvOeTQ258CZfebBS/f7OpEuFoFcg6ZZIgSB0M5d6uYjUlnPNijZE1nKozHnAue2c+uRiTlY2AcngqPGnFt5984leRcmMB38zRkageFYaluyrT9GGqFsD7KrRSrLaThMSGSzTaP1d1RKbJTZ1krrdKy8N+p9L6DOl7KglZ0Etb3E7GchBDSjECGVzEyb0P+axqNp9kOJxDkQEKM4CfoYchCvI8ATwRMB9p5JB8aWFVDmlGepdEskkpkjSIm0Sr3KwAPMgtrhRRIMkSFhRXqg5ELUlGkZbDQprfbszpkqrvJYf/Htatqdjp+BXGHLN/Jekr3fvPCvWDczu8urKOy5gg8m4k+Te+U77cv6rFSxYvEYM4P9vzH7d70AZcx7V+z9RkVcy4RvG3o82tdp5V6znYmXl3LuqsH8XAU9/vka5Y1T9VwxJfWzsUpmqH/UoMxcfVf3+zabbWSlkclrqKXWOq3FvnNVYLK58afNDuSmKeX2KPlM66KRREjEiAT3Sv6kXO+8B/kGnFSdVHNBTbEmXdjZVb7T1XMM54Hbt0/hOWK5bAHwCO6n7NuJGolCI1+d2LKbj3HsJZd/ZP1LJIK1G4Ez1jUbLdfSDI7L5TIzuFoFqOG0a1sQM2sxXVP5FBpYhoksGeik2Y4flV6ES5c1GRXe0hNORCRXvdxKohoxqGLzcES5+EUObDSbUV5P2VCH+Euxh2C0bqZqWoFi31hOJueiJeB9SJM31VSGyhIZjZiV/BCbtJ4y6zMLkIPluaZRnym/xZu3m8bN7d9ntDLevIBIZnZiW/9m7wJEihv6HsfL5Z5B2fpp2w5tK97cCIOaSZpJEDBwj8vLkKGGmkZCQpq2hW+TSNrJAU4PpfpQUHW5wICrKURtaI6AtgXe/8a7GO7fxtmtFUCiRnUtpIQhxJllUNqAVpRSpwaAkeBga/DlZG43G5NzJam+fl/eN2CIHbVur+TNtMWxqPCpe316X51/VxtibYQicYsak8Vv3fi8N2kqtKGSxP6WyBfMr9dEehwzKZXMbHxXdHOwGaebivTKEM3hMV0XYfz7eYWjseZHvA42HFVBoTUD4+ozY/omx9nneRSammii/6F3cKPh4LqVnWN6IzrCRDKjfcnMrk0xIs4U/6ivda7QQAOx0VjITUzy+24n0N/eeXSdpFbBOZD3ACWxn+Y+ba0qU8jknWUHGDGcA87OTsDLBbpFA2CQSmHQt8C2ZsWhpJ3sSWa1s+7LxNBke7xazCQB4JGQoWUYU0kJzNL19QM4TAD2M/VoWuzO4VQmHu8Tu6ZiLnKVXCfeT8ogA7L3Sr+k1161uUr8z1yoSfk9peKaF9Vqb0Vmer/B2xnRX3kBhuBKrqnipPbtBuPxvhpxVuxL7i+7o1L3GbCq2bWnzK7LKmjdr3s1Zp/bq6sZdkbUEr7lZMYY4ZtWrxOvpH1fBjve4GKfTJlR5DW1ZaBSu5Qar8VNFpoXKO+NwQJOAIAgSfQtAO+lhidNaG1fKTf6YqQUcXy0gFu28F4gpMgBBgiaw4/sqFFkXCvGfN36fVkaTfb4TZrNj/PvqlFN5natmmk3mPeyZl72sqf2Cu89jo+PM0ObBnuKCF8UmaJOipQ2kgdYggoBiwzTdZjYb6hQpQ1e76+IuOrY1E/em2fIeZz7C1KfkuPPUfaCSn2yPjFFMCc4EuwycPEKk2Jq9dsdmmaRKxm9aQJkIkQNy7BR1n+h+t2ksiK1iTLpQIhWvFa3b93L29gyJq3Xar/ZY2uvehgGLDUH0yB8UkpoG0EMtsFNkXzt0BqfWEXKyRkKnNRMsSyR9jquXb9D2GyQYsLq+Bir1RGOjqRmquMm53cWdYTznxmNlhgh7vDgwSmO2hZtCxAL9l1MIdt0mSW0pyZAy2yopf2pmvlliTN7nWYOGst5FvNWeT91u3FBk2nQ2lQqm0pmFtS4tzEJRd1jqj7E5Pc5KeCQ4mfCeMpi6ejeyisyv+nKp7JRuFIzb0YII7QO2t8cgK0n5cITjiRfcRPXADjHTr2NlmYkhP1V55k58+i+sexrXPztbZapZjCVzDgxhjhWIQeVzJzGj+WZTFSybNKopWb9n/XnvYdT9BWj8wzXHUQy2/U9QojwTYO27WApbGWtartKWfv6+xgDjm+f4NbREi4RnJCzVmUn9WpabFrJw0xqv/6ySWBvqplwUAslZuSo412JCPNGmplWMyxzky8WC1xeXuL8/ByXl5f5gTFGbDabPd09jy7zsFo6oPoL7G01qv+tSaLqIRPl/OaqCXKu2amfCb76f2Xqqx5hGyN3sP9M/W/kZlZVFrzvwTx0itbjnqr8r9PMCUBchNxaIssS2nh01VEj0vR+oMWbbPt915oCEY2S1u1grQ3iIztL9q7rGtp7IKON+oljyb9+ftFKCK6qUUBu3+lkB5h0OVIN9uaatRQWjWRvDWh/RWJKs8zsy2Qr+zxNZB85uAySyfaPo7EgdW1uJoAREzOCMZTQn/70pwCA5XKJ73znO2AW9/XTp09x//79TFD1RnQgKzuZR6wHUd5AWcIiZLtCGZjShal9eUulbGeTqGk3mkPxoFJRMaq5ppQwDKZm2uldrUV2GswBAO6Tviy4fheVITIjxiRVgzqfHShXrfvnbRJDRnkd65AMnYFdCKL9II6yscdSmbG7Vx7lK9xQzEGFBgGBDzo5OdHc2AI3JZJZn2PShn4riCialG6MJqYA1jxeMf5XtQN4LAEU20aBvBKV1YG89M28RttKQeFa1fPOZRrI/ZJ5zo24dS0zozZ6NfONqfYMcpzp3/aa4XrNOUe+fCrmzV9+PYemabR+qRTW8d6jbZpRHu+N4sxq/dsesFhINPXz588RY8TR0VG+zvCmasPkaKGrnzkmYBfJ+zc1RrlfJSFNFdH8D2H2CiGQQ3MEmBNSjBpCASWufflk2jsVOty7wFSEqB/Udp85yextNTZpAderzrMzpjoVR/u8Ym2u7Py12vhGKwbLWoCkZmYxBrRtUzEdGuHu5XedPZwFs87OzczMaPzsWtojMqwxYXICz10/o9BRDvU2MwTlU3rvnEgCxbc373ybkToXEEs/cR59+ZjYazadS2FmJpVLmhlelZnVzVKYYozYbrf45JNPMjP7+OOP4b3H8+fP8dlnn+VYtDqUI6UE10h+oAPBa9EQSaOpUozNs4as6E1nuT9v05UwZYQHGvOomxEBzvZg4Qj7Ir3cP+KkkyGWjS/rUNSft32Ksm5IBucDIX83YkgWfnHlqun3V1/0ZlWcibLLdVm+8fplFVx/Ssm4+ggs5gGaSP2Z4ZSH5Q1VfZgZhh2QGZQT47nPHZ9lte0vkcK2mwEUGGnH8McNXEOjw1mscGNYoOxMqtbgy6tiXjGmOVrSzWcxrF4LAMk7TkXbuomaCZQXa6dcjBHL5RLb7RYvX77Ef/kv/wXMjOPjY7x48QKnp6d4+fIlvv/97+Mf/aN/hK7rsN1uMywyEdB0LbwjeHLofAfxRUvAYbHC1HhSYxXz0DKZTUyeQ9jjDZVxfkyc5bOYShpMZkAjbWz/hXjSDIYUgVEgnxyjDGgxlMI4YhQG3/g2Bwe+DU+mjaOU2QVsh0i6uB8dFmPmpt/si2lv2VZWPal6X1YTEiiSGTUVbFIF2mibfNBq8/Z5PiCpUi2BkRaRn63/FttvhMEYFUlQVi4EjQsjSyonaH7Y4ZVivY48gBYff3yOtO3hYsS3f+UdNEceKTG82WRSlNqsKHRi3syu676kDOxV2vTQInBKCCFitTrSoHLSSl2E5WI50ohuLJnVzMw5h81mg+fPn+NP/uRPAADHx8dIKeHevXu4vLzEn/3Zn6Hv+wyJvF6vpR/vsOCIxns0zsOjAPSVcdlJWqt72DfbzCwF5evH0fpTK9G0mVRmhvncI0G5Pw7eXSLT6w1h8fNqZK+ZBENDNiSa+a1LZphau6xNMy7Gv8wxLP5rYmT2r/0YHXKlXpoEZh7p2q2fVUcW8IKRoV5ntufkqZpJA85hxNAAWbIQQq6YlOkup1xQljJKh3YnAexAaPDi+Qbr5+doOOCDrz8ErxobLnKSHYf8fAA5G+eLMld8oU3ZQIwJ3ounWLzIEd7pnD+PmmmuaSIpVHH37l00TYPj42OcnJxgsVggpYQHDx7kBc6Y62Tw1C08ldQMTiI+MwIca7Ah6+sjAnsJzizBGSYtjQX2WsIy5mOeKyO7fYZRSyJXzrz63RQEZXZGqzPqSdF7SRONNT4m1TA1Lqsj03CY+vfPdfLOSFcyk4rpAhjF+VG1vvXGHy3hzRjw67DpuTnvrc/eNbVeVsdbWQd1PzUjmz5HLr5qxcWJVBvdZ9Tr6mAsB+3oSbmvGBKGEJHiUGHqFYZZH862D8dz/KpLZtZqsWYcTuO91NzgSjq1dZ1lZiMPYO2FdE48RBqkd/v2bfzO7/wObt++jePj43wSxhjx9a9/HUdHRyCijAiag2sdJMEyMThGhDAgJkbkqAU/jJkB5D1IjbmNc/BEaL3Ap0hWAOUXmlIqsDs2S+N7bP+rvsv2iitsPAxFP5iLdhemKcZXQS+FeSh0r5TtQJKMDIfV0TF25xExitQqNSMVlqeWMqav+LWJlSc/gAHJ5MPBIJdGhDTdzIR6zb6IVge61jDbABCGQaC2LTSCCEkTvkGSpzsMAxrfKCYZgCpmDJxUGqvzcMvMam1ByKzODTUpEfmQclr1KcYIargccMzVytV2uWJ6iCFhu+uxvlwjbi7R7wKQCN63AAIsfzjW9j3mErM4ybZ50x7xL6aNdScLn7HYSwPjHC4vkWKFXqKb/LVQM0IIWCwWODk5wW/+5m/ivffew/HxMR4/foznz5/DOYeHDx9KlRuSBOqamYUUkYaAGCKGtEEMAUMI6MOAlIJgnSVJ9XBtC586sZV4ieVhcmJmqJdB1YCUhCANW6pwMxwWD278wqvTvBK6spesxhzj8tyMoaCYV8vFEv3FWtEYhlzow9bY5vNm276yaVvM8iynjMzuojzvektaL2+v8UTqmG7YGCLgsRecXdZQsP4XbYuubcoZV5stKunMZmQn/ZSRT72ExdFge6OovDTqc9IHCjMTNVNi44bdgM1mh935JcJgZgivUiPvMTNg3wEwpZ+vFjMD5hhajaLbth04VZESDJjX6pWY2XSDWfDsdrvNBSQMxriGW8nGV/09pIgULQwiImPjEwl8sibegkgx0Xz2XMhBGIEok5CEEBW3Y0Sq9GjxdOVB1P+M1SbYSTu/tCJhyS8H+SEwYRXjPkapVJX6YPUe95SPPQ/a52+HFOpaciUaaUba5uc9hdeux2ub9k232iHFE6lEpHONOds7FObkakz3zt57HLf9b7MtNjt4Jt8deIdFhZYeCAZtM33G9BAqrU4T/EowrTkLz/T3K4iGGSM72ShelK+Bza5fxNTbY2pd13X4oz/6Izx9+hQPHjzAr/zKr+Ds7KwS+8eVcRjAEBmUIhAjOA3qPSS0bYPWt/AaQ+K8BzsPNsKNEZwidtstIqumqqK6Yc2yF5wj5xy8qqfOFVhn07Jl08rOlWriItIWtlW/gVpKmVA/xoVnGxSSJ3KIMQGamwkI7LIVxgWLZ+Zo0Y1SM27yPl6tTdXMovraaJ1tKuYCa763qcbgQEV+e3ttGnZhkshiscghP5bTGoYBu+0mw2s7R+JlVBuq4Z5liW/CfGs1c17N3x9bDo61qkG1ndHWlEqYtRwcKjXZNZTgCFgsWxwdLbC7ZJBLAEnpuVHMG1vpvJTTtr4yzAzAjbiWXWkSObkMyWS295EEqiR9Y8mstl3UL7HrOvz5n/85fvzjH+O3fuu38Bu/8Ru4e/cuzs/PR8wsF3xlxpAILkU4JHjELH01TYtl16LTHDeB3CYEaDGLvkeIAX2/wxCTpHIkTS0hEsDtRlRR5zzabM+CYrdXp7RtWC66ufDrfflltKln3oGdpikJmmsR+aWKk6iX0jepra/xDVIQe4BfLeVaYEScb1IyG8MzzhN+zeL25Y/pb8Dbkb2q/mdsQKZyLBYLhCi2FMOBCzFgu93k6H+iEuMIjKFxUhLI8LHqOT7I9o8twFTFco+omr4qbpzvNimyNsWNJHSIVgECOcZi0WCxbNVjygBSBXpgmkM59HIO6gFP5pebwV0tA+erSFLWkgocUpJwZl7M87mZ13H6esNZVemu6/LippRyrmbNAEc/rkhQBoyYNzGEgaQkcV9RXe0pJTF4loFmO4Vzgtleo9vaWDkJUcSYEKOc7CkXk60EeR4zrax+Tc0q0/UykmeeoX61S/FYUc3VwFMaHflTVa3+/fMxN31uvZlMWmVGkbnK9YUBlkWoGZ78O4Ze2lsqGv+MAluvGm2+ZkY95LGaWWxgJZgWNBNniInEtcfIrt/89bYwqaCeU2aY9v8RTU0kXaqIjBht67Fcdjg6WsJ7yt/VjLAO8XlboTxvv1U2y9kplC9YmXiuPwuM1My6XYuaMTUk2gszD9If/MEf4OHDh7h37x4+++wzhBDw4sULfP/738c//af/FKvVSvCmqmIdA/xIMssGV9cgJUbPEf0QwdQjJEZIjMhJktaSejaaBg05eNfAt52kkhCBPIv6mSTYw2LjOCZRI5kBSGUe33islq1IZTFp7JdcY2PK3C5zt6mugXwiJ554A1mMtuysXiQjRUYIEW27wBB79HGAxbExxhKw9TGVhl/9xJ2jmpqBMYgFYXYvD3ZG1aTq/ulaHBBnPleTVyKdxpiyZLbdbAEeq/l932OxWAAodtqi7tkmMIjr+Xa1ImRMUr41zUOePWC32+nzC1yS8EqLFCsQPkQskjsSgIC7909w/84R3rl/hJPTJZxTz74yWwbBoQFzzPGbVqpwb5RfaqnM2iHpTIjIYsqYGX0/5MD7utWH2o3AGesNNGVmP/rRj/BP/sk/wTvvvIN/9+/+nUAUDwN++MMf4rd/+7dxdnZWwNVYuGxLDRxHOI7wHGAidEzAECNiCAghYoiMISX0IYEdoQHDg9F5aHGKFl27QLtYitvWeYAkiLAfArb9ToIKg2BepRjVLiZGxG7RYrVsi9SnG8UErELUxtBoLNpUayRqZhwb/tlCOghgQmIgskQ0Hy1aRBe1DqS92GLXmSPGN+uhMhtZGjG1/dnNzLf6jvL/r1PPXreNWYsFw3ZdhxhD2ewsiLKC0e8AThUz055Gku711pvr5mBaiAWuDn2Pvu8lGp8raTarmXJQ5oI+BDAMLijgzt3bOFuu4NN9dD6CMKlSzh5EHpZXathqU3vr1LP5VW1ZEFGVWiL/pc15b29cN7NutXhrJe4tncJy4WpcrtH9ZBFiatxjq/StL9xUBAjKQ0YT0NOJwJK8XeOqAVncB1KOvck/qNUaU2Vn1B0a/TNpXP0zf6Ls3TfRtexRfy1G22rINTMCSNXM0Ud7t+0JXVzWYxRvOtVDDw3nNeZepFO9f28+5e8EYF+KJbVF7fVcfmWbK42+NXWneCBHAwNMIa9VY+bx8/SryW7K/3rn0DQeLbwCQhazxGhh9VfLB71qf3552wGpbPoxjXHLDmkmRNeEZtScfi++Rv/datn7YRhwcnKC7XaLlBJOT09HAxifGpogDAZRArFDUkJx5MC+RdMAlACXGJ4ZzjdwnOA4oXUpey9jGPSlEmJkEBlue0JIVjiC4b2Db1s4kmIiu6GH905PNtLSYmNcKq42i6lfKtfBiFf61xQZQ1TQG8a2GFKpIqLnAf6k0ef5zCQsMHS69vb36zK/zIhIlUSWOTCLp9VUagYQk0bDkxY41gPEHCVE9Wa1/715plxrBHU4hpzUWq/VqwRLyDZXC88QG2ksNtRRyAOP/pkb/lgJHW+6PCaWQNmuhYQisYA15mBOPaSl1maRAwkaggQzKYwPVIJmu+RqyFTt8bLe2+0WAEYIxdN9+tWVzkRg8U2Do6MjzRaSPWRlAIF6n9wAz+w6240xsxACTk9PR8ysXtyUdfuyuS2q2QxGkdUTCXUOsIOHDLLxrdYtjGgQgGEHDgNSHBCGAUNI2PYBDgOE6VCuQu31Z9Et0DadVHdZIxsVyUkVqSa71x1ku6uaMksQxXZkp6dTiQ/5BCfUlc3FNhcxUIBUZxJmVhuG30qOXZY4yzwkCSNJcrTTwsvkkBCRksU7FZaNrGoLQ2PUUsMrDueGG2zqzZT84JBRFJyzNDBCnaZn6oldR67O0602++En32hsDDkkreYFUOBpZI+M48AIMgZylsqXy2OjDr+wg00KLI+HUwtdm81GCm1XmHhvIz7xr6tZ1s+x9xh6yYLgBDS+yZW3THi4lpnZxYfsN8yccdiNoW23WxARFovFrPib93hW1+omG4rgxGjO3j7VDQdViVypGQBkqjSVMusKVBHS9Kd+Kk1/sf4q4Z4KIYm6MbdaNKum2T0y1BrX7XpVc+rRfK12nfCkE1WWnKW06fru3TMa6FSamW/XeWhH8UOzn2N2/caX19rA/qjq+/Pg5bZqOocls/oqGdvhd0P5+9GTZnot8062T+oLZ4Yw1Zy+WlLYzRlusSFfPc8rmdnU/W2dGCBc13X4zd/8TTx//hyffvopfvKTn2C9XuPRo0f43ve+h7Zt96KUWX0ygATBmZ0hQSJu2DVI5BFAYI29Sgz0bDFaqh83IqIzJfjGoWHAtUs49IBV3dFFcHYqKiSMhGeo7Y2cqgM6vmREYj/F01jbaVg5mnkiof1LM+rV6/WEbXyDxB5pYHAUFdh7p095e6eprXGE2StFKnVaLFPSZAmJHNA1SJGzukPqlTPYGTkIijT6FjTM8dgnG9ZCbaICEhqhD8Mue83NdhtCEORXd9UgZw7UK66pNxOpGm5jartOawAYbah1mBwst5ec2dbEtuvYTBoOMRL6PuHly0vcPl2gbRycayCVPBlAAkhMA39TpK+rWrYCUAHX3O12EhDfFDXTzCQ3LgJsOqqJ8MMwoG1b/NZv/Rb+w3/4D/ijP/ojfPrpp3j69Cl+4zd+A//yX/7LzMzGHhlAamgZE9PIbkjRDXYtEnkMVW4jMxASQHDw5OAdoyVG6wiMAPItEjxaOHjeIam3B6b2AeCYEIaAFCKIpESZQBp7yDYnWIVkw4ZXWq1XBFlXQFGzsjfNkuRVSuFK+uQENE2LxB7bXSkP5p29lOmz3mwTqVXG0+iACARyQB+BwADDw7dLRESY8ZoMPyvbeWywrOv79gYtUljx7hozS8wIQ8i2E+ccNgo3tc/MmitUr5uP3cplJJYgViJXaRhAYrHlWABvZmKgjFUPQPMrNXQo2SHfAMkhRUK/S3jy2QWOuhaNl9Aj5hL4K6aPqxnZV0fVvGqMaqeFJZjLQbrb7dAummIzs6Bj3AA1o/572ogIJycnAJDdxOZKtfiyvTQocE0Dk+8EBSOBEJkzU0kMifQn8XB2TtRRkNp2VPoSa5sHJbNpKMNh1upExTZhatGeyMrjX42h1eriaOzX7YdKRZDxV2vK2H/+9PbJu3hTrfBZWydlTKSgjVTsOVdO8nMMa46urtqEc06ocuBWnq6JXffqQVL1Qg9dO/fZ+PSxZzkrsDJna8h/jL3r0LVnBmJI2Gx6PRib8b35cL866PjLysy4+t/+a6ltmfvrbVpBSml23944NGOu2Sm0Wq3wwQcfAACOjo5w69YtvP/++wcXVNLCK+hfR6qGOTA8+kS4HAKevLzE8xfP0e96hCGgXRzh+OgYx0dHePfeEVoGHAMtxJAtapJHKeguROPIiSCYWAtOAASPECNyFesRA6vHXPc10zJfLAyKsrRCox4A8XzByxiGXoJlm7a5ka3p8zaROsvGseQuBiG5BpFaJN8gMDCY2gOG40bgzclJoLMWPHHVJvyimiWRi1o5FEgpliImWTKDSWYDFl23l/7yeTZ73VdmWrrJgJI+Z6ceJwhEkB2tPCK2vDEJHpeXA15stvgff/JnePfhKY6PTjHGWRNVM3EpL/fVspPdvJWdR0gxwTftuHhNVvXL4XCtN/NQeIb3PsMAffe738X777+P733veznJt1YLZjou/Sr0MNghcYOeCS83PX7+yXP85Cc/wcX5OTaXa9y+9wgPHjzEgwf3cefOkVSOTkAHCFoGAcE18HvMTIvxUkTTNfDkAXgMQYJ1p8xsf0mp+t0kvqnx21RJtZVMCN7CNLxr4BoJO+n7Aa1v0DYtrhzCG2hEJA6UhJLCpFJZAiG6FsG3iM4jMCGRMDliwKNBo5KaSwI77UkOibR/vL7FxgqVLYzWKvRIZknKqMYSzE3ZFHKyOpps+EN6wTVPV3o1Ly9DgQnU+G+bzDcNsoqUlCayCVZDhUY9Ewxp9vK8x7NPn+IHP/gj/IO/+z08uH+252cBJBVvLo5zbM/7ckpnV7ey30RzkN9DSOgWHo1vNMiccnETk9aY0+tLZnWYhgXMPnz4MDsNrixme8B+wUSIidGHhM2ux8V6g/OLNTaXa7SrDY63PbZ9kFgoDQ/IBaKrf7P3iMs4jZsLMUrNw5EMNjOkvAVY1ePaJWXPq2STsQpdOwDKmplqnBKDHfJL+SJ4wjiHlLLKzOQkoZ8JfaqyIJJihDiCr6Qwqnp862OuhpxDHVTyktAMAFzVUsyhLcJsrvUW49VYm10/ZRTZSWYXTe7ZI7BKorf/x8jodwEX5xcIMUItJCPPJltaVP08zJshvlpSm9qhs22wYmwqARvjAvYp76BkNrWVzUllu90On332GX7/938fH330Edq2xd//+38fP/nJT8DM+PDDD3OQ4/6gi5E8mU2MASbC05eX+OTJCzz+9CnW2x6RAd+02OwGPH15ATQdPnl2hsVpi1Un0oYjKSoSHGlomHmQzJ5SOTAsfadC0TDmVwz2lcSROaatifZvJ2xNpKSdZeMAjbsAwZFH17aIu4TkrJCpXPu2zlHmMkwhE1EUxT7pEMjh6UWPF9sBT19eIgwDCEDbNLh9tsKtow53jjt0rlFI81g21R6DeyszADNGBn5zQAltJkltAuCdBc4K0qwEQL/ZceivcF48liVQN40YKkECsk07MEdR8YDbv6I+WuJ5YqnpydmLXJOZwEr1fb+nZn61mFfdppQ/tkda8ZpSTm+cCZASZ/it2VYzMEsSt9Y0DTabDT777DP8x//4H/Hxxx/jzp07+Df/5t/gRz/6EYgI3/72t3MRlP2o5GKYTSkhMiGCEMnjkycv8VcffYaf/uIjpH4DD0Lbdrjc9NjElzjfJdy7ewv3FndxZ9GAIIyMtbo0opxWVrm6jhhPUUAhiZJ6MRnMAdkIm6U6lea4MCMZe14dO273TtxMT7rYlttuzMy7Bu1iiZeXl0g+aUbCtIDYm2/MxoKNbTokcojk0bsGH7+8wM8/eYm//KvH2K7X8A44OVnig2+8i689uI3j4yOsfAKlBFKMLYZDomlJ5Lcy+uxcatsWKSacrzc4Pj5WeBitHTmqWykebQnLma7s66ma0m85xCQ8gCDQfAY0ylpoRWjBgmodFfse9CAnJ144kfy1WIpjxDiALXSpKpIj9OkQhphDFMi5PSb21VMvxy0bikhQ9HPR37adNV1ZFa4bZwDY3/IQsRFsNhs8e/YMT58+zVzTcMxq3X3v/vxJpepAJIZtH7DZ7rDZ7dAwo/EOrmmQ+ohhCODdgPVOagbYkTUNgi1P2LclGCGKZ13UvfHNVHjVaHWvkULIzOEz5vw8QQI0+rt42w72uLd+b66pOZqK93jbR1xuejw/32BzeYnGCUTzejtgF5Jgm1hVIFOxqVay38YwVfWolXciZWBF5cyMy40zVOx6Ha38v1b5X2PP19K49KFjY56eawd7IC4nQKFKs7/ZgViJgKMm2ozZ6PKnU8fEjHb1192E1CujzGjBuL5q1KbZR0XzKWuU0hU2s7kFAYqof3l5iWfPnuXgWMP4t8x2Eb3HUtnIOGneHUDDFeQ0O7+4wOV6AybCO48e4XS1wFHX4tPnA55c7rAZEp48P8e2v4PEHbIzQXVtU9vq52ddm0icp1yQc5lZgyopR14bfyG2Ee4v8jxp1AwTEGeAfB4jS8ksYri2ggH/Qg5RY8JFtU7MiAnYccJnl+f4+MlzfPrsBXZDhKQ1AevtgE+enWPRdTg9WuLs1gJdpa5SZt1fjCQQY5TMEpQKYaaCTWkUqPD43+A+tg2ZY9407lIAIf2EeSZwiuj7Hba7LXbbHaJrAC/oF0KnRmMBi0WHW7eO8f7X38Vy2YKoBGGXQ89l58YhdJWvXpujHzP1cLaPZjXTVHQAUMY+9P3hOLMsLuvFpmqmJNC1L168wOPHj/GP//E/RtM02G63+d/6JTPzXul4087EKgCApEhJBOGzZ8/x7OU5QA7f/OY38fDOCW4dLfA/P9qi/8kv8Oyjz/CLT57gYvMOUjoCUlSGqEng3gMcBYVWwy/Mu+WdA3mPGAQXy6xH8nyR0koMS1lMwWDwSnSV2TYv6sTwy4UBEgmTDkNE8AGNY3inpea/QEIkVHNS9XsgxiYyfvbJM/z0Fx/hl5+9RD8AC+8ROWFzuUP/+ClCBNq2wwenj6T6lTEIUmmNp3bRN9dq64nZTuBq/HuNicveRpdxr7zzs9qFmRJe2fJvAwLyARljxBACusUCTdOommtSYEJKA9abS1xebrC+3AGLJXzbofFq70EEmMDkcXR0jGVzC7/6vW/j+KQT6GwYM9Y0P4iaud1uc8GgvTWbzPnL3faLL1uzKdTMrHYGABBmNgzCf1710cbkBu3g3r17ODs7y50bAzust9OMyYJg3rVd34t0R4Tjk2PcunWGO8cLPF23aLsOkYH1tkeIqXRRifj1SV08IzMqLqv5unrnXF2QmVNl8a1xu2pVefzvdLYyWWZoEDCyVDZ58sE+3kQjM+LonIxFx8RYb3e42Gyx3mxBbgFqHBgs0OTbHhebHpebAUVOqOf2xW2aWW1hZhlL2M+EA42aEWH9Nnnyfem4Pqwy+bLlgJbEd9HCKxWRWfH55Mc1Ca4x5st6CYOR4BtCQy3Ozk5UyqtVKXuyOs0mIJ4A9lTsL1276nWMrtnLmh3PdWIDYmbEcIUDwDrIt2QbjyzY8fExbt26hT/90z/FRx99hL7v8bOf/SwjbY503FEzlbDiPlWF5qTq2aJrcbRssWwdGgJOjjxWqw7tYoGYtiMjYfZGqvoBlbBqHCTLCEiZ0FXlqvJD5dqy3qPqQ+oQKJ9M7X9mv7HNURFZhZKa1LubAz7tmW+ZJzBQYGiIcg3JyAFPn73AMAzouhYP7j/A3ZMWMTGene/w6csLbIeIpy8vUOFamhKFhAPY62949HV2iSNVOcikn5RtaQDUgy74YPw2F1efL+CMAbvdVtCLj1aV0wcAK1rKMCClNdDv4LYSH+cANOTQ0w4deTQMLcJScpoNiSUzXq5APN/OzP56WhaWldDM1lNdMJU4RUKOGIYDamZ94ZTb2wa8ffs2Hj16hH//7/89Pv30U3Rdhx/+8Ie4vLwc1cjkfHpVBlxOYDBYXdbsRIQGC7NxzmF1tMLt0wWOFw06B9y70+LsbIXF6hib8514/4hErNf5JgAhRClv67RoiGJbSTUkVmZWvF4xpEpNUjteJpypAEm6tuPAx8y6VOrJakz1PSBEOnipk+CbJuc6ihvevT2GZnuBCpMlLyrLwBE/f/wRtruA49UxvvftD/G1hwsMkfHzzwY8+6M/w/l2wC8/eSY1G0lVZ0Sxu+FzpJG8QrNcy5QEWKBtWxCKOSNLRhDvFzHQ+samP5azikiP/UU/8BnV31srmQbD0OPy8gIhBixXCwDiuXR6wMUQsNlssI1rBDAihAE2zqF1Hiu/RNzu0JLHrt8IBLuGdSSV6MGMRlUtw2rLcYrTEX+lVM2psDbHwOSnwIiV70OM2GzXV4dmHPJkAsipTI8fP8bl5SWOj4/x5MmTHKFb9zNN4RixgmqDZQmJpBRb13o0XqouLTspReebRqNvbCpVF1lkZ8VEG6skWTUAFE9KY3jA4NFqcmEAe7RNZTfkh49vrVxSYxuL1iEQ6cKCeb8YyawMGAqfBAACinmxXiNGj6bxuHP7DPfvdRgi4WIY4HyD3XaHy82u2CtKTxO2/ubHK+eDPKM4lOoiz2OVy+y1QE17c3Yle8KEFkeMbr4ZjZbDL+XwgOJ0kO/MNpdSQogRfR8wpIg+DYhxQOM8Ot8APmHtF1g4OYDHwdjjPWNmlGnEwFTF/NIxtJuQCjEMurhoXUJx9numPX0NbKACV/U7V2SUlNHY79/73vfw2Wef5YX7xje+gUePHo2CZacMjbK6YqpfQqpKaIEZEs7JkOQjhuNSwckyRGTinBkHQ9VHg0iZSJN5hQRT2T7QugDm8KgX/yarr5Inak1ftk+q/vLeI3JBHikpGTXJfjGExylJLVJTF1NE27RYLRqcLBwWjuAYOF5KBemt3yHwUG0q26gKZPmWHAAEVJEPxSttkrb9nfM0qRQ2YeCgt+/1NviEFpTuDJhxwWJGsKI4svHk+cvVEsdHRzjZDPAdY+CIgSNi6OGdR+s8FtSh65bwLLA/RAqYiTGzMhW0pukvHdN6jUYj9i3NmLOlrFm6Wi1A1JrfjZmZEQYRjWxi//yf/3P8+Z//OZ4+fQoA+Ht/7+/h0aNHOVfO7i/MTBkHeSQiRLag2VTUNI4gDvDMaJDQguHYCzoUOU1nUoYRE5Cj+4HGS1ZAjFJchBzB+0az7asRsKgORJQJ0LxfdWBkLTnWS18Td+IEv0dQGnahhYXbdgGwA4MwDII065xXZsDgCvLojbfK4WD1BxMS2HmApFDu6uQYt08WeHDa4NgRAgH3zzyOjpZYb7bot0Net1yBXiGUsJfl8SaHToKIq+aHEAIcOU2hcwhhyJ5038j76/sejffwyvCm/e23PUV0/woGBNdNmgTkiu1uuVzCty0uL9cCM5USnGvy92dnZ4jUoGeHHg0CEgInhDhIEj8cmthgQR0QEtpmBUctADlcvfcS5Z4gKmgquG2H1uyr0+q9NH4P4+I1UgjIUiezVMalMPSV6Uw5Q71K6iSiUajFhx9+iIuLi3w6vPPOO3j48CE2m831J4YOylTDrAyqg0AkM/mxEoMmmdk6FCYpi2KuekBsUY4mL13VAzGq6oln8DHOvtsb5pUScmZ+9pjqcXbeeC9pQwCQIo/QM69qhzxTr0qw9fVS8KXMKaWExjssOo9V59CqeL9aiGpPzku6WTUn65Po85v/5+IZ7fP8zJFkllQyk3dc45bZfFA5WOr7a5f+/GAODLK2lFRmi+zI8Q60LozXxk9EWHQLrJYJy9UKDbWIYGFmaRCNgx0oODTRg1OQ0J0M3W79AEBCiOHaffXlZmaFYRGNPx1/z5k3lDKV+t7r3ox38DWOqOmi1GLf5eUlPv30UzRNgzt37uDhw4e4e/duPj2v6LRISJOXrh+CyPIt1aZhJdzY7jFAFUUQgqmmlCdW1Lh9W0KWmmApR1Z4wsAH81DGjcv9mcNxNQ+MpSvmcg+RQ+PF6B9TRImVeT318lXc77VECqDUXdAvnLMIpoSGkAvH+Myc1VFjRMjI63wzQ8jrNZ78JhKKqHJmP2GgICnUzCwPfayS7Pf9qo0q5jLpSZfUuWJZZFbTx8TU4ZxTpiXSedssEELCbhdExWTSw9aprVU0lzk1c25+X7U2Ky/rwVCrmVPTgdRR1UPl2odQBVesP23b4pNPPsEf//EfY7Va4cMPP8Sv//qv49vf/jaaphmpmGVgPO5TT1hAKpF752CaJoHhCWgd4JGANKgGKrUtRaITZuK8g+WwOecydHUdZGcgkYzCOJlTRlUwl3/TlETW8b/lBLDxF7VNILihkl0dQSbPFBbQNA2WGlgptR0NBcDgu9/yacpmG6SsooikC3WyRDQcsKSEJg1oOKB1Jg07ON/BzJAiJHD1Dt/aoDPNmXlDiu3u4Hzxllu5w7oYcGIefWZtJAW+xt63NZP1K+OzXGCiOuxGMj8aLZZjzRLP226BpungXIuj1Sm2m4CXL9ZwtACzBys00BACYgogSthuL7PN8BDzeitFcb7wxrke6XK5RIwJwyBQ/XU+6jD0YJXUbxxnBhSGZJLZJ598gqZpcPv2bZyenuLly5eZORzU5/V/JkIC8nITWUyQbH5HBE+Ag1RkKnbnicGfSLJRUU5qU0fnTmq5DkAC2NAqlBl5ctcSeMWSs0F86umd6JnZ2eGbBoFdAdbTC+ZSod9sMymhqFr2HmTzEYiSVphnOM1z1CyvzBTyGLPk+sUGaNpBYCQgnkIukpmuY4Evpzz7NzHKOpTTKlTNXFRAP00y8/shFBJW0SCRnOBtu0AYEna7ASfdAswFTFMcRlIvIoQB6QrJ7MutYr5K04MiyXs3x494sYtGYAKDc26fmY1UJqUas1UU47j8OwwDfvzjH+PWrVto2xb9rpcYs8ZllW+qRY2VPRQmBYjEBRJ8LXbomdCTiOM9AQGQ2DQSAMFAhC216L0gP/RE8PCa+CHoqBLWWaUgceGH8rQITgOYoySfKww363iE8wmTK4TCWaUA1IEALQBDrM+0FCgCJ5EkyXmBzuZg/KXq7+0RIYHhkZDYwhl0e6t0K/FihECEwct4ItnX8l/iyo9J2iPJDzOXYGQAZiinbBvIA8lXcP7fXOPyj0qvBUW22rS1Gq83zJkuDj6G9mXwQ8eKWASUmHUexXYmThVh+lXqnsny7ECssZT64hMzyGytEMbVDwG73QCcije/FJMp2oCoVZyL9NT7q6LyivHerNWB5dm+UtHk1E41Xpv5Zx1YSdS9mufXzE8m5FCmK8A3HqnXOgiTR4UQwHr4Ho4zy3MqQ7JCIVYxfL1e49/+23+L73znO3jnnXdwdnqK9977GhZdl7G69UaJPlfJKhGBWMIuOKVcrl4CYR0iGgy8wHkiEDXwC4eXCdg5B9Z6k5Ec1uTxGZ0ieUZwDlsigBZowHDEaImErXBC62V32my8U4JJA2J/CcQdGq+wxyRk5MgLAWplKFkN2bjeUeYJfQhYQdRvpiS1J9nBuQ4xECI7xOCwWi2BxEhpI6eL09Pl4It/M03WOiIwYB5VTkVCHRKwI8LaEy5aYOUliDc4ILqIgICQhAEngsA1uQWi6xBci4AWKQaVbgHiAY60iLAWABECtTXMrEf+zbzcZCthgMQM8k1GVj09PcXlxQVSSCCISYGrhHNTTYiLNJnU1mStZnZTBbmyrs2uoxkaxN7pwClmhtj3AQSPrjV6qXmBA9CA0OaDMrGo6WCpW5GSx8XLLV48P8c7d09l3TiA0yBrqiUYt9sASozWG3C5CSpjTJfCyCfmnRtI0qlai897xE6fVjMyQzxhiBYgkQUJMTG61ikYQsJisUQ/XCCONCxxCOz6tXiFr2JmgHLI+hVr5yadDcOAH/zgB9kG48ll4rKBzy1dtj1BCNZOfUk6F+DACI8tEzpyaLzDFhDwRXLwTnC0ehAusQA8EBywA7CiBgzAU4IHIMqTet24JmY9hVMAx168SFRVxgZQ0qw0yddQDPLJJf9kycx7rTZlwHrKQJP8ONfAOfV2kcYi8QF15Q02AiR0RFc+07P+m5gRCBgcoXeMhoSckwOS/cdc4tJAYGoQqUEkrwzOvgFqdA47FSk7C2gysilDs7FxHmjtwSwSEWUDMVDuZS5mir34xs8l/daLVu8JkWBjMM+/3xe02clPfSACYE4gVn89O+x2A7abnQoCJplpv0qHYYhoiEX7mRHobefZ+u8xkxsytOmbep12/VMMNCsfEfJZSnpYKLRPK+897Y2bEYZBa0McqpupMzlkSCQinJ6e4t1338Xl5SWWyyU4MS4uLrDb7bBcLksk9Fz3Gn2vHCOf1Flz4IQYIs7PN0gxwnnGy+Sw2ewQo8TxXKx3eP5ijW6IQCMoszsCaAg47lqcHK1yWbC6CEV+mWafI8vnTEJv83tt5qOi0uzZzEiYmJh05LqUeNLLaKkPtjdjA5mbhJ7rJnWqKiRVtD0Ap6ZIVdrJabCyA5NHLDKUvUYhRwdQHXY2UVkK67767J+qNSN7X2ULNeO7qUfFbjTud28dX3tdx7ZHmVOhgZxvCyoEvZcwDuXeTtfNMgYSiCDhMFSeR/kWpTk3VqNH3QI5p5ir++bs369CW0anr+pFnxVmXtGqUpt3pv2ZcOVoxmZmt5i7s76h7vib3/oW/sn/lvDk08/QNA1iivj5z3+Ohw8fomkanJ2djQZT3x+dU8+aiM+JSFRPNTdYrtVf/OVHaBuxe12ixSefbbDbbTAMPX7+888Qzy/RDlsk7xDJoXce94YX+Pqj+zj7lW8iDAMaUi9lhdhZxiOMbhgGUBrQtKa/12uBvG0l04LhFIImESscjczFe4+oG9+peppSRAoRgWImIOe8pFvd/H2+gcZwqiYCpCo06XnfwqMDcYsUHRIWYBCGBBC3cLSAc4TAQKAG0S0wMGGA1IC0Q8GRwFZLgQ4rM8jwkCTwkAQrbW4TlTCVyai55F8CEq/HSQhFErcFkgqqNUiepsuFR65u5Zk3exdjLcWYJnGBySqozLKyxvwYCXBJ1VKR3sUrJxIzuQRyCb5JOD5ZwjfmHXW5H7GXJRD5nIUzWitRPRDZ1G66cmI3ZkwT5mjNBJar2oG3mvdVTQr1oVWiJ6CaH6OUEyyHQ9/3SDGKx/iqCcqJx+DANobcHj16hMVigce/+CWePn2KF89f4MmTJzg/P8ft27cPc30SAz9XuWuJyOJXRVlJgnH+8SfPQJDqLFu3wPkuYOgHxBjw5Mk50uUaTX+B6DwieQyuxXb4GKcLqTeYokhtzjkgzoWKMEAaHJwiJFr0qvdfJE0pSGKSmahXRZIlVVGLap5i0sdpNkW2eLzN0IYybta5ks6CTJICSa1RbgD2IpmhkboMESBu4NCCHCMwIcIjOXknkYu9z7yLZByTKUu/UKeNSep8JeeoVXjK0lY+CCpmGEOs1M/C+F4NtPCQ/DBzJeV9nSVC5U55HPvMDAASmFIlVxTaM1sfkTA054Dlsq2Ysdnn1HzBCUTNCMRhsnIASt7i3NQOMSCeE5kOXPu5NYYb6LHmcqqL1NjndmsIAcSidjdXiZt1bBUgNiFHPmOZ7XY7HB0dYRgGxBixWq3Qtu2selrH99RCdx6WqbYQw3xKMRfWEKOg2uM0ZzPGgGGIoBgQYkKkhOChyApRZdkr1mtGFeFUEsBtI+VrKigSMzjXr3lihpLvlU+ZeG5EPl7vm2+mz9eS2sxs9Qv8EDEkWbcPOH+xRiBGYsJlooxUwSnh/HyDoy4hcsAuRmzaBZJ3QAg4PlrCGVOB2siqRcomB5tu3siVCWBu2EYetn6VLWxaQMQ+G69vMQWUwOz5Vb96f1K+Zo4ZFG+mSOaloI559XWhJ4Rj74MIODk5gosDlstuDF+FosqyOg4Sp3yK5GFP1HEZ79hGdpUklUObigHyqgW5tl1N2SPXxMy4xiCMV/EoE4oa+6C+mFCirc3o5r1H2wlA4rNnz/Dpp5/i5cuX+NXv/i3cu3cPFxcXGHY9zs7OsFgsMmHZQLz36gVV/DAlZK2RmqfmieE4YBgC1ucGfQzsaAuGR0ME8hH99gKXfULiAX1iRHIYmhbbcIl+t0VMAbWmQcpdinoJhWcpLzzEgKaVHD8J7C22ibrMmRWBIoztYswMjgx4g8lBVjk5JqQgBTa6plSqPqRevckmak1UYZHBKQCuk7qOUbSfuA04f3aBP/2Tn6LjiASHHS1w+XKDftsj9AF/+ueP8YnbYMVrRDC27Qogh9P+Ar/2q38Lt26dCYJvEtgAZ5tZnTzOezGY79nN5saMfE1WNYcARwXoYNfvEEPIVZokoLaHbxplBjO2qqqNKZ4n31y96ZEla2kCyePRdQtRN10L7xo9vKPab6PaH4tEJqhwEc4xfuXbH8DFAQ8f3cVi0YAREENA0widShWigCEAfe+zWptBKON4jCMBYiLhAhgxzJEZaYaJzdrnbsjsbirDjTzNWuPDoJ1q/D+qrk8hwHsJkJ93AOgJE0JQIpSOuq7D6ugIn376KZ4+fYqXL1/i7t27OYj248cf4fj4GF3X7YnAEp0fs947lmosHseYWUQKAbuNBRc6DOyAdgHvW5BLCP0WWxYY6t0QEIgQ2g593CEMg8SeKLMB16lOhcGiYlgMZHuLVzXFhItyulFWFQmkqjKK9AHxDJKuoSy8ntAaMc/OwztfmXW/gKYbimzzZOM/tMIZIQwB64sNfv4/P4bnAQkNgj/GZu0QB3HI/PwXT/CcX2LB52APDP4ITISz7TN868MPcOvsVCSGpHYNknWwbAvnm/yeb9Qm9hTD8LImSd2SfGzXWJUme39XLfPrHyP7Un1KDOc8mqaFc143oUcE9ACPYjcjyvQj6iBnX8B7X3uI467ByYLgUw+Og9SN8I2iyzISR4QIDGEQEAXysyLlSDgZ2aBkxlNVfNZJcKA/u37P8fU52tTrLOo0soS75/DQy1MsZoVrcfWy5q7icYwRT548wdOnT3F5cZGBGbebLZ49e4b3339/VsTNL01HUhMSqVGvIeD0eIXbZydY9BGt7/JAezikpgO7BhwbtINHlwKOHbCMAQGE0LY4U3A83Uf7ExmtoH2RBfmSt7h3YcHy2utvamaAqm6sUfTOg9gJwROPNqRJgAfH+CZaPmynirEwe8mySEAMiMGBU5C6BTwAqQWxqPchJAwc4FicGT33AFwOXDRViir1/jDD2Oc0V/EeAo0kfaBsKDmYzGuc0FyBKFGeZL3OSWXTtaruHB1wRf3Ld0+fS+WfQmXjmZqkV0sf+kU2aVhrGp+ZtQFWWmjUVPK6SZuXrvbf2lRNH395uP+5oWSTTO6T94TBuh7HnCfbDgIb7Swzq93eWTWEJHvGlHBxcYH/9J/+E548eSLY5kMQiJMY8f3f+318+OGHePjw4ag/IpJsf/3bsxYh4ZJsTZBiv7/xnQ/xzfffwcAAJ6dqHSG1hIE9Ajt4imhiRJMSVgSBESJC8A6nwxr375xB6l5oDMtkpYQvlyBDY7CJA7xXBmS5ntCwCuLi8k7qgSqcvtg0TOJRqadpOsC1cLFFDAFgqQOaFRV626lMNkaTzjSjAxHkPLxjNBTUQeGxW+/gmMHkMbgEF5doQHCUsN31AG8w8A4JAcENIBC64VLfrwTNOicePuaopkl67eKaZgNz3mG73UraStOAnOCwZUIHZ2yzlcLEXN2uW/WpJCL3jJhZ4tHGRGXjyYcHaS6ml7CVzAD1PgeBUXLkNHBU+yPJ2V0sFhCbkNx1dnYiki8Du90ub+i2bUdou9OwIaDs7UPqZ7Y38vi6sgY8WrbPp13MH3N2SMQYQfquh2EQZqVIKWCNjQxhlNfczA0aqCqikLjULYl7vV7j937v93B+fg7vHF6+eIkHDx7AOYcf/OAH+Ff/6l/lyOt68YYYiu6LpC/VYpxEIvIN8J0P3hVG5h2GXhiDI8Avgc0A9AFoO6CJgGdgwZDwCJLA2UW/E+QHJTgyJMeRKFheDqkRVf5Wt76pppWdLZtJKglzJKVVPIxQXrz3LZzr4KiVxYdDsygpL/Jgmu6dN9xs00lohHFaR06YGQJCAlIiDCyHQCKP4FgPHwdPwG5YA2mHyD1i6hFogANjGbbidLFDydLI6pqktar+CnMtXkxC30u6nNg0JSPFwAKAIqkUFaq8+DehCpU2Dsg1fiGPKIgsxswkN1PmLVhyVPekjMzUqTxzEBHapkUIQ+7/+PgIoQ+IQ0CvxX+YGcvlEotcIaoU7Z4WPpmqlrW6mBnyzIyNnkeaWh7pm2t2wJsN0vumVOXSNWAuZod6bteqmXn/V0bDk5MTmFH/+PhYSl4BOD09zcbYq0ZbR72XkFkGkkDQkCOwd6AGGUnDExAVk6b1kvXYMNCpLSw52aeN9+IR1fidLI5W3CfT+egkZd0Yc6Ixo2ZVub+56RnX46KSOCJ455Hiq6sBb6apo4KAsVzAcI5wcrxCG9U87UVFTtQg+g4OC/EfM3BEAQsGmkRILCllDsBxKBh39TbdG4XZsfaknqIuZAVMqVZsJwRyAoWjs9mfIld9TbShspErSSVzIN7rY2/8um5zGhnjQKAulfumH5JRvdkulQHGkBAcAEM8prHdmUjT7RoGEgtyBgBWLco0BGNgxqimeIRTe/bU4/mq7RA171k29FPRRqbaknEB2zt6EFTvbMqILWVSJHPMezOtGeczQm3aFmftGX73d383Fz69dXomJ+IQ8OEHH+LRo0ewUnSmQjEKGKHIYqwSD+AV4z+lhLQJaMjpye7QohFiSQzqZdALVWEoMRomLL3HEAakxPCtQDg7ZSBCS6lMGoZowCUVhEVtDDGAww7eC6wQEYFjjU4b4diKriQltMIEJeJfiruyEmeKqmZ4j2W3xG57iYgkiLaY6BtvsxEBCsMsqrAEaBJLbYXf+s3vYUgsxmoS9Z/JgX2HTWpFkiBggQEtBB4opR3Ie3gAq36Hs9NT9V4W2CNyLjtc8lCumHKt+htbE1RecT5dnl8oPQo0eqmZmfJ7ZkWANRvvdKfVjLN+8s2WsRx+MSRlHJyN9CNGQUl+ILQhtEKABlV754Q+4IAktVxfPN9g1wAn75xq2ElAogCvtV+9dzg+PkKKCXFIUnqxKu3Y9z1CCBkSyebYdV1WQevDu57TdQxtyh2utBPeZC1hq142QTnsoICbojrvdrsRpBcghv/ddisB6JqqOG8z0w5TSiBHaJ1c1jQei+USv/3bvw3vvXg3F0s8efIEm/UaZ6dnuHfvXkllyty2WjRA1cwozAx6oqeE2A9ou07w6eHgnTquU0KKhKb1oMYhKvF6JizhwGlAIgaxx8BZeZV4NGbJ3YJD44Uo8ultECssJeDCsIPzBcIlacathDSUdPBsOyALZNRzRtWFaMxMmZwnh+ViiWfpAgRBv40ctC/MnlRvtAkXrwTMCIH8YXQd4X/5tW8hJMkXjKTxxeSBpsUmZCEWDQMNCfIvp61EXROh3Q1Ydu0oFEb43zjz46YtKzskdpG2beGdxDcCAqIpTEvQU4SZybtIXMeZza0pf64DREwowsDgSg1LQ7otzIwFSIATBM5HmBlBVAhyXu2UQusxMi5fbtG7BLxzqlhxEYF7LLtOJHzvsOqWkusbgdXRUX7edrvFixcvsOt7bDabrJobE5h6A6fMrHz++mvz6q0K7tUmlh1RIUGlqPNyucwV1QCxl/bK5Axe6cZVwogkgDJoLmbTNJLGpPUAg4KoXZfiYKJnrXFXwnb+SSyw2ci/2/cpw6eULDj5m3hsjQCXvmuZt6iZcp1l75vrfxSfZqOcOhGqLnIgKo2/yIStDGt2O1fjeHuNqh97bpFQuraBS0li/giIkcDOAd4rkomqOCzqvjCzFq138CA0CVqh3U7BfTX8kPR/pXrD1aabpCcVjDpTRys1sHrOIR46I7Tl9aivGf9S/hZVrtSMKEzhCpkvo7bUzFZ+H4aI3a6XoL/Z0cpkzK6WqMSJmX3bGJdXaGlCpb6x7COqoLxy79W7OUyFxZ73uvFlByXyA2rknDeztlNme6A+6Wo8s2pIbdvi57/4Bf7kf/wJfuf//Tvoug790OO//bf/hqdPn6JpGnzj619HTHGks6MahPRtjmnF1mJV0QC03uv3CY4ZLgVQErU0mhEqAg1U+mICx6CMLoFjhKMWRBoYqjYh1zQjVFQyqYzLCw8h4OL8HPfOlmjbVoDgyINcymMWhwFp+AayHSrEUMGTGG6VnOBhiIgU0XgpcGHrSlnLZLjDFPRGGjMhRi8ipr6PGGKuy+gxyCEBgMkJOonJR6QGeC82PwmGlbk3HOEyo7aDQyRd4pSdMKPwHOwHQxwcN0QyWywWaKtcxJhSVqXstLY80FwY90YPubkYktPPWDzzm80G3XKJoIe5974Y8VEhtIi+reK9oGOYaSMlgZIidvj0kyd48suPsGqA3/zbXweRk9qmiXKFqtEBTCU30ipEnZ6eYrVa4datW0iKrmyV1GOSUndW2Kc2H11VHGV2LT6vzXcUnzlWVy0ONTsgvUeMQedL+RBOKYr6qRIocI1kZtIEs0Jlf/wx/vN//s/45//sn2OxXGDX7/D9738fz58/x61bt/Av/sW/yEbaaT/TeDNnHFW4BBwgtiRV3RIAlyIMysKBwVpP0AEgg1WJAR4Kh5gGOGdG0Qgm8ayR9wia25aSYYrrOrJt7oD1xTnef/gITdtIxSVljPXpr1aPEcJGiBGRDZdNrhBmlhBSRPQJjWsEyXZECG9VuSxPYSi+mlf1A+jjAMcu2yxJbV2gRvIoYZ7JJMGgzqG3wwAQj3FK4syhpoId1JAJSGiBqfX5NH8VdVM9Vo6koLPRkRFyrSLVdKV366a56nnXfT9tZqiPEibSNAiKtSaFrwX/rhR5yaIihCY0AyKJlpGlDyZ89ukz/OLnj3HUSdyhmDpK3QUhV8qmEZumrYlpSsYAwjCgHwZsNhu8fPlSa3b2kiHhxGa3WCz2Y9tusgoz6uqrtyu0N9trThhu3/eZeRszi5q/3TYlHOXGaqYUMQ3asbhOd7tdRi6w5PBFWwJdZyeambJ5deysRq0P6q+mvo1P81pmZKVHFZb084rzU8WUcXjxs3dkomaOVQId+Zz8bD97300jpeduplfbU6/YuKxIbhagP7qC7Xf9l1kkZFXvK+Bs/Wza8/zaztHCvuA0VjWmcVIj2w4X1Ygm0t9hZlk9bcaMMDvu/TvzmLKdNF9LY8LM9+oK8fjdjx0RLAAKIYIbf43dqh58kVRsfWpDuVcv5zQlaHwIjL2fZnbJqgPegCT2Gm2suu99W1R9s7nTNRkANWGdn58jJcadO3dARHj8+DF+/OMf4+7du3jw4AFWqxV++MMf4te/92s4OzvLCJ/Za1c6BaMtdqasnIj0lWxBnXgDs5WBnNKpoQ8IBxOTlIK8kcRDZbqG2QpSxUjIhgEy2Gg1tqYUJNhW4+vEYGv65ITwtasxaKG5CcqzzBFQIrXL6TLq6603gSIHADCjaVo9ABiIEd7mkYBGbTsiPURQSKAkDhcbrEeC19oMAwFWkDlqTKIIqeUAmGvTHM29ZVDkjRSr8nKOkDhmD5c5a0IIWUKZfRa/klB4sIUQsgfR3qNzTvNBLbXIGJv8HgJjiElMiYoYw5YpQUKjL188x2LR4dbZsWoPk3Www181mdyMiammU4e/eN9gsVji7ExgroZhyOtkVcBDjOizY4W01mcj66qSdR4Gyp76fO3Q/eMsBu+9wDvNtKQ2bqLusGRWDIHjeKrz83NwSrh37x7IEX75y1/ihz/8Id55+Ch7MP/gD/4A3/zgQ9y9ezd7noD9yTO1SBzBLPmTMJUzqZHSCdgacwTDqY3KoSg/ttWMYaj0phj7QDEGS5R2Elc4l+TjgmqgmyUWZuadxYXZSugziWsa1eewmVIkYZ4tHAWZ+FIUVN4mM7NUSSYlIOHtNYKY7ZFF2abxOuAoieEk443R7Dw6a0MgiQGNM2ulejVZkDhCfisS4rJom5xFcZU6MZK1Z5ZAzAWlyKvEMKonK3u4/IiZtRp7NVLm34CLztbObFAmmZk01PhWnSDI68dqVB0CIwTBs5eIdelPvI1iY3zx7Bnund0Se1cypdJstUBOoWALOC/hL/IvFVMUIzMDIofFYpkx4cSONqDvB7x8+RK79SX6XtBavZZD7DqGb7Sahu0TVYOYx+t5WHq6ciVn34n1bd9538zjtlXMuA43GV15VayJVUEB5HTabrfYbDZYLBZYrVZglpoAe6XHZlSvkeRClDcI21vOwrepI6qIUvW53FAxAiobECoVpNIXcl/Itq/cGUyCnBFtdRBzKlH1SvcnOfl8LDZ//s31aq1mFtWKUmH6JlzpPpTPuJaqSzqXEbax7aJq1qpTaXuH2UiymDAeuWD2ejMXJOx7sorX05WOpnQ3Emj2XuqN2pzaK+EBZSz14wW519TSQtHSh45F/9e2Hl3XjvqortDnV/RTDGflssxsbGw0Ui0NNqlpLPazLkZdrSXrQeKq9y5fVmPj0Zz3xz3T6PrDpazxvoprkud+F4dyMyd2HiLJERuGgI8//hh//ud/jl/+8pdYr9f45je/ieVyifPzc8E1S3HEXUf9Qg95qBufSLMBrICIA7tUMZZiZbdr9s96Y4jKoFiM0iYpFMlK/jamIuJ6QjSUBRCGMKD1IgmKV8UIUUegRSVCCuAEJBKJwWsKCSljZi3gSiQSHhFh6C2dy+ex1Az67TYe/Z7zVVmDh+GzxEbkQOZBAxQP12RNKT4BBhwxSHNsM1NkoFHonaKGleRwC6KebbYMWbooNGReOVEzBWgzMzNVM812673O5S0tq9lVV0dHWCwWma4tMDV77gUJCYnVQaTpXjYuhqpSzsF1Hu+9+xDv3L+PRw/voO0IjChSM8aMZg7Mc7TX6vOHxqwmS5EaE3d6eorlcplV5xSjxHilKN7PIYH7OAr7kPqfb2Jx5ySzMd/xzo+AN/PeNeQdHmde5NzMEQckysV0CbIAy+USwzDgF7/4Bf74j/8YP/vZz7C+vMR3v/tdbDYbhBAySKOJs/V46/4DDDpaKzWrNMYkBUGACGZhMjl6GoSIUlEnszkijVBXhlglgSdOmveWKSgvjCQmS0EEUf8EgrdR70hKEiGfVM5nmDfFIcQEOCCSqT+CgZbtJUxgLWDhfCOAlv2gWFd2frAKk18EM5NWC4WsTB8AXGZmgJVDMynNj7hMypJwPlqU0UMPEO+dqkKGzX4T8WcsqdXvCUCmLfPWpVgloGuuqWScAE2z2O9z1PnnaxaLuFitclylcw7OlzQ+cSYxKIqXPcSIoB5eqwfAKUnxa0/ofIuvf/09vPfoPu7fOUHbEcIQM/2WLP159S47SyZjNTvaVDAhkqTtThPyWdXn3W6H3W6Hy8tLbDcb9EOPvt/BE6FtWwFeXS5zaNIra++2DfXkG5N+mYsxKafOC6AUtfEGgW8aYCUkXe/NtBPaObVXJGw2GwzDAOccVqtVTl2qRfeRt2ayYe2cr9VGmLIy0sIof74njdn/x3zq4Km8t/Asp6NVvhaVoIoe573L9+fAZuOr3fHl2rwmZPA11Rrtqd7lSH2TDC57qMj+RZbKykBRTvRqbFmJz0OuPXjlreznL1RX8by6MGrXTNcIPMeQ5XlhskGqDX6w27Gaf0jlGTEKXYQcwAmMPISWF1nfV9NwHWM5ZQJmvF8uF1guF+gWrdrU9B7L3KjH/TkPwToUo87bNLuaFNqtmAvKO2AW54Wps0z7dKQdjlTK68c7DojVbTN738j6UbWmXMD5ZeXuqcBxtG2L+/fv49d//dclQPYb38hxKi9evMCzZ89w7949NG07msBYtVPlipQRsZXTMqXQ0oJMT1cOPvpWrCZkp5waoe2KWrCuVVtbYJE8RJXlmBTJgkpAK5cX4JwX2Bb5HyLLuHzjERARY8J2u8XR8TG6xWLExEAizreuQ8OSirNaIROqvKk847fSyrtkWBm4QgZVehagr8DeTdWHzKiiV7vHvLiUP7ff6jZHw1fZZqdqpgEvmpppG6ueo3m27BSXaYzpYHyPfj4aw/xmY7tBvw4xoHFOKyjVGk3ZiN57ye/VQNqYAmIaVB0Xh4oFiBJLmuCtWydYLRu0DaBZsuODOjPDWvW8upW3f5jG6nWx4FsDWBUPaI8MuKcSXM3Y2qYVVdk5OG85Oa8GpmCqooVHibbTZQab07H0+mHoESskDWvNNAAub+R8wlgircc777yLf/gP/yE++eQTfPDBB/jWt74F5xyePn2Kzz77DO+++25GmS2DHPdbxEtjRBGQcsAag56KNMA82jzQz6UV9VSSelXVsc3IxcifiVelS2YGongxB42bE+z/aqzMcAo1w5SA6BCTxFz5pkGICUMIWG82ODk9w3J1hNqx4ZyDazp0TQeXPNaXaxmbI0SW/ExhZZow/fZ4mqw5AmSL7z/IksXG+0OuS3vHrr2PlCs9FZY23hz1Rp+bnpHB6EVxuS+lhMVikeMZj4+P5fNaSmDOpo0xcxkzmenBlu2g+yOarE0VLO2k6rhTFY3ZDmzohlc7qRfoGmo84DxCGhCTIMOmFMBmjA8y+bZpcHznDMdHHm2rDI/sYK5FORZafwVwuPq4nGMv5rAzyXexWIxg71OKiFFU0O12i5fPn+e6EACQFikH7LZeVP7EDD/zrDyH/GNqr2g21m8IkhpJ5DIzM2mRmdHvegwa6lS3kWR28NH63WKxwO3bt/H0yVMcHx/j7p27AJDjV8yGMNtP5ig1kXGWsLjaKHv/mt2lPpAyMVZMUlUN2yBiLKxHQXkBTZZLKaEBRpx/dL3ZwbQvNtFXGV+IUWw5Xoq/wgElSls9SVwVMDWeMJnHTU7a121ZioUxizI98QiziYz1oAosuF2L8r2SYgUrNL5k7LWdWdmrpDOUQ6XOP6y+HP06PizVBFHO4hnpcPzBVZt9f1yGb2e6eJWuZ31kkjE6UWQPMhSRogXYWrRto8Cgeu1kfPYOZ40uV0hB8yEQPPu3HQbTAjExupHka9KTXVP/HHqmLlVRtw+M296nmRRGa61/x1Qq2dftYBHgWlRk5pw+cvv2bXzw4Qe4c+dOdvnev39fVIK2y1x9ZDvY27wJljROqBnZmKHRXgfTa0pf+QwarSPNbNLqAmakFECuBAwa0gBBCI81JIXIg5wWx2UAJI6Ay8tLLM5O0al6TeRksUOAI9aczKpqEaxISzkzS6DjF9V4/DpsbbPEPFFxdIeOpTrKb/ENDWn8p0pcy25RbFVE6nlL2XgN7OPZZ9saCyMx7lbbYMY0WjNto7rxBs8KdiX9mT20ZsxCGkI7MQUw+Xwe5n5ZVrNpWhA059VbzqvQZDUUGG0TTAO5+bJO1eC5ta6vmzoDyREcu6zup9u3s+fYmM1UOjaP6SFGOmZCZlNMe4nzhkgikq5lFUmmkUlmrgotyXhmoweCwZrDaI9dr9dYLBd4+PAh3nn0Dpq2yTrye++9h/v378sEYpoZ8LhvUsx5l9VMGm+qkWRmNrWJRMclZdnUSqZ9taHegia42aMYCTEOcF7VQlKDrhMPUgxJpBMCqBXCk0TjCHiHIUQ8f/4C77/zDrrFQtA9SIhz6Af4htE0HRo0eeQgyUENcVCJSIdDeHsMbSQ92b/mmdSNmhcu5mtBVAUCUPEgay9JPW2UpcuDD5//xpjAzK0WjtGdnI4SqsNWKneZFiB05jNTyZKFHsgplEh78vsbVQSFlKU5cub6l2vEe6a248kBL7h3JXXP6Ms5L0HhMYmartH+ooHoWjHQtktlZtDME2FmIQzwnrP0lvLBH/W9vUYuZbXWFvo0+h7qDCBlxop8QuzgqcmQX0erVU5YR5LDfLvdYr1eo+/7jD1XF5mpn5GlrvoAUKZl95gUaDRQIMEJMTA2uy36yrttwsCNczNDCFhAoHlXy5WImioOZ8he3+Dy4gIhhPFi6r+VclD+MnWRTBWSz7KGM2PHyXstMwMaXVrt3f1W38viIjeVINvb8ulUgh2t/rexVztRZFGlEo8JkPJyyinkyO3t6bnhvekwjdGpPNIYp+qjKjI0ZnhWDpBt5lOpV79zk08P/QXYmuyP8ZCddUr4AsDII3vJrImg+mDukCjxSVxOkqw6Tg54G9OkoMrs/Ox+aLR8IThUiigA8yRqWbXKxluMvBCmclAreY1GmF2QLJmBquvG+8E5BzQNfIy5gI2llZl0BiAH5s7o97PNVEtMaAETGrChxShhK4KzWN7jLDOzBHCbpHMux47V4qhTMr68vETf9zg7PRsRwdglTSMmo+GlhdGN3nNFaPY9Id9Bk++mo9c7yidEuQTc9DGMhGHokZJ4bDkPBoiJ8fzFM2z7DR597XZeG+j6SFGFCO/l5IggIJEggUYGe5Fw2aPYG5hh6Uw2Sjkx52x2b6rVkq21svaGWVaNaHSV/OUwDth0EJjG6efXtzk7yGi0VMIE7KAxgrYcw64T0i2wTmIsNmeB0L5QsqCFVHuYyqadMtN6DPI5EBTJONtLs2pU7kmVzUzyGSk7SFJiRA3CzqE5TEgRWO82uNyd4+LTHt94/z5u31ook7Mar5TnUsb5eUV4OiQtjOjf/jZ10tbFJD0A6BYLQJ0eL1++HNk2CZCsntxv9Ry2CAfZlSklpEqr814cZBZJUTQYyjGsdo31m4NmxydRGTSRwK+EEJCquoW1bv38+XOcn5+ja1rU/ZWFr0ImyE5+VjBOVXj2FrcswvjHwiv2Xyrps/PxOGlcbU35WkTl3W6DlAYsOi2MqydSTBG/fPwRnr14itsPfgPUAp4IauVHSglDH9A2HbwXeGmp2CbR09EL5BAcsg1Bqq1DDCQo0t9YtnzTzcYsq1CvHU0+NbtMVicVwpyZ4Efr3oAVWQ7YvfERW6UlQCozmXteAju3WB3fBoeYjdFEDjEEXF5eysh1QywXHVrnwOQQ9dU7lGBbs6MdZGYJ2Gy34tHX4tCS7I5SrYtZtRRjnlLQxaSaEBNiSIhM2e7KDHAEXj4/x4tPn+H8yWOcLH8Tt04EgsoyaQisgcjIke827tdulTZTfQCdTI69rFu29dm+Vz6wXK2wXK3gbt0CsyDe9n0vY3eWTVPQmGv7Z32QCCqPFh0ngm+aXIFJKlQpRXpXpWQ1RR0mktCMPRvXROSmakAjm4P+2/c9tpoFkIHeJswxbx5V3wqrmlvUMWHx9OvMBGh0OxXxQh8/89JFCKpE+oQYQ7aB5HtV1dhsNjg/P0eMCdywpE4VKTgbK3PqlWUsJFYVQeWaykNkksFbtZNhInVwvRB64qN8XNSj6tBGLb/ZBfbOCKgChetItDc15lSZAGz9zNDsyCFoCW9W+6kdFvZOmBmpa/PIipGeZoc5lUpMAotR4K8M7XYqQ9tGzcdt1b3ZczIaTE0/Ceh3A9aXl3j65Bm2u51uvSq/1Pqo+n/VdohR709+9m7VHjBaG+ujaQT/rtVwlRpgQi9EttdloWb+YUntjgTIWk+k3/F8VLIzYYAOQgBVMVcJAMeMkbTZbDD4AW3bovFeSs55j9PTU4ENAbJoM8uabLS5qrYxzukC1xKaKqS6j6iWvKy/0fWTBSDkF2GbtZKLEEMP5oRFN8ZiI3LYbLf47LMn+MM//CN84/0PcPvWbRwdLWVMjPxDkOrSwRRhdSaEENFQhHclYjy9olr2+dt0bV1hPgwJCkaV31oxJlk6Ve25UneUcdcH1dtoIUi91VojsPmIBCRtdbRCGwQheFS1HoQQ4shM4pwD+6Z4sV2dA6z/I8r0YeEYAEZ5uJWRdY/BGeMCFEQUJadRpDuRWiyGq/G+qsReVCdj6vIYr9LgqzkAbtq4+n+RVkmTEEqY01SSZR2npTPuCUb1hdVJabblGCP6foBLKhx4L6g1KnWLo0XuEVs95z1Xh8nPMzOSpG/RYwVFtW1bJE54+fIlAODs9AxHqxUeP36Ms9NT3L51SyQb1WfJ+gD2Jp5VqgzJM2VmhYHJj8ufk05i3oM2JxVMQz/GTwAidtsNOEUcHR0JlIueyM4TXrx8gb/4yU/xoz/7Ef63f/q7+M63v4P3V+9KMnbShPTEcHDwvkWIcrI67+CokepCPKBtxUFCroo5+8LadH257FpiUSPzWTFJTraYudG6I2/iPWPIK0pmV8WaAVLoFgB8W1z9Tr3N3kPLsjHObt2SMBoNpUkpar7hFn2/ywzN0o+6toX3Dr7xaJsWVk8024Z0VlE3lG3sru0kR9FZIQ05GR2XIj7MrHEWQgPgRsQw8/46hwYNGvIY+h6XF5dYtK06kpSmbFWVmUnoUAupOzAX+nx4ffc0qhnJLMFO5WJesvvt0KhDn+2apI4AA2ut49FQreWcVCd20YShH7DZbAHXK4ZZh6ZpsdvtkFKE0+K/5mRI5oDIh7LQqLsqgM7+NiJglnJWu90upzVcXl7COa+wwUUWI1QHF8ZEW5gzTX64TFqRJ2qEzuLwnNzHBNKf6VvOQZ1Fryzj0EWOMQDMaNsmZwJAx7/re7x8eY6//MlP8fTpc2y2O4kzg51IyCe5U/WAoEm+pMZfzaCgCcrnaKx8/caeBide10aBjCbdYrymRSKp17QaHE/XXa8avcM316bzMw/ZtOIXgBxKQ0Qaub7EYrnEarlE13UK7EeiJmqyuuGRCZJFyoxDnl1+6uPOJA9Ayga6LJkBRiz7DKJeT5POjD7E7iaSWcx5znWYwd6a2H14PdSKm9CMzXM6l2nsWf5sct/USZivrZ4g/NKYGatzRKL+wyCOlhrKu9jvCgMcz6XspZFkdoixWeeX6zVevHyBd999F+fn53j+7Bk++ugxwjDg/OUdvPe1d/N9RRQdR3IbLLud9MYI9MbJ5Kd/6ZbLdhtbygPtgJWUstopPzEGOE5ofINiaBWol4cPH+FXvv1ttKsWl+sN/udf/QwA4933HoDgcOvWbfGWWYEUVugS70t/9XrUTIvGAZf12k3bTRnYq7Wy/vtw+ZTV8SyzMY+2eAl4fgsjU/Wvrjxkn5sjwAqrEFBJA9BCLQ7eySkPBpqm1cIYVPUt3mjmHs4VJiJ9iUE/St09eC82IUNyMKnJ/qHM2GyFWG2qUM1CYjZjkpqlrLVXG++xWHQ4Pl7Ae61sZmoyqj4ZZsDAHBDWm1z3Ov7L9u8cg52GxNT8Yo75yTpVKZOOEKMc/F3bolutVFpu0XWd2BA1zMuydWpmafZno9JmjpPahfXglsslHn/0GH/4gz/A1772NXz00Uf46U9+gp/+9Cfo2hYPHz7Av/7X/xpxCPt9pKQ4XkL6zl4LA3Jq6eYgrRxj9QVriW0kO9RSBY2+YxhRTiWN6UtjgBIYAX2/RecjFq3klUqFKUK7cPje976Hew8f4S//50/wxz/6H/irv/oF/uIv/gK/+89+B8enR/jae19H61uRDhNA7ND6Bg1adO0CHKRgqVu4TOCZGGCq+JuVbqbtcGakSVpmG6u/s4OFYWEjddYGNIjzeuvNvOoPHGbQRpNt22ZvluFaNU2D3W6Hly9fSmEO79A2HkdHRwAEcqeB06K8Dkcg8PJIVyFlB4IBjFrYBVAYaEGwhTBAJ9H6J6en2d7FgDp4dJbks8ojjE5WKwwMcJsP0Ji2AABPEUwJ3aLF6ekxHtw7w6JrwSkicYRVxaJcEEbhqOBVsI7XrnwZ2/gdHFr3abhMfm6yuqSWIC/Mtg6qrz83vLSpuipmxoIg45wHc4Dz8v7uP3qUJeijoyNcrtdSKIgVTEA93E6Deu2gM/I+WNF8pBaS4B/ttjt89NFHICJcXJzjF7/4BT7++COAGX2/G3vs6n64bBtGHb1fb6h9iayO3s9Xc/mbJ79NXs3ei9qXTkUCizEAlErFZD1RyTk8ePgAx2e3EQn4vd/7AX7281/i4uIclxeXODk7wdnZrQy4CJU2PXnAS+HawLGSzPJFozU/NIO32XIgbD5UxoJs+Vav5rHiVaAy346amQ31IzvZWDITsEAHQjvZoCZ9Edq2/A7iHKdm6koIMQd5mz2teENFFSJQjoCX1VDZaJbs1DFE8n2MDLBJehLsSQlgLwzCe4mYPz46quiPq2UtB7fYyjSu74bLPhd2cl0bS2YoY8K+GWDuvrGz5tA4Cv07Iri2wcnJCXa7HRhS2rIwcv1JqTgYqNZwsK9mzrZsP5JfYoy4vLjAxcUFdrstPvzwQ3z66acw7992s8kVnOoJirfTVTJ5/YBipLeY8qxK5ksL68ohGKYlyYNGTKFmgkAtnehVLCc1kERX96ywLlrazkkeGLPYR7puiXv3H+Dyco3Qb/GTn/wcl9sdbt87w/HdO/CNMIAc+Aeg8Q0GRNkQ5AR9Y491Xa0uvw4x5hWrXjZT2rNz1WEXewxV95OFPRAskR/VqZKKijp99ngW1Xz2r50+uz75zTZrL7rJiBWcU8+8Qy4yEmME+yRjHtmzClMwqJuuW8B5jzbGzJjs0AlB0rpCiIpm61Bo1WZYc//xxtWzUoNluai/zmnYAUCOsFqucOf2Gc5uHaFtHQQVw5j2zArumQOub1OJ67pr7LqsAdn46z4mTG1kn9V3MzY32SyKFAxAmZPT+g6U7W/mcBm9w2zMlmv6oUeTGtMrxhBA1chg9hxAJBQb3DAMePz4MR7/8pd48eI5/o//4/+D//s//Se8ePEC3ns8efoUL1+8GC2Sie424HKiq7ieaU1UGAnTlOJmOqD8l+Kg7qlmBMAxI9J0I1XsjYpkx0him+CIzeYSy7bDanUk9i8QnJdCuYkE6vrs7DZ+7df+No5Wx/jBD34f/9f/9V/x4NFd/J2/9108ev/rOOqO4bwgyhK1aBrCYrHE5mKHoA6UpHNk1BuMZsb6ZhsjCTMTroZ6Y++v1WTjA6AqIBTVj+XVHm6HvrMDZf4yA/vsug7b7TbXn2AQlsslmkZOcbOpDbstdrtePZYB3rtsszSaIxJp25ED+Q6N10DnnIgOldIG9H2PYKjJIWJ1dJQRgiMjmwtMbaol7PrvxEDfB8SkBweZaqY2WRDu372D5s5tvHOvxWohVE/OpBsWuCgtFEzpbUNFlfHnpHEixDjk7wBkb2KqYMLrRPOayZkEbHa0lCzwnnJgdNct1IEowk7KEti4QDFpfyBCTBEXl2t0baOH7YE4s4nAPnpBIQS8fPESL168wGazwXe+8x389+9/H8+fv4BzDuv1Gi8mzKxpmuyydd5VtEs5JKDQ9VS2Agy+pnjVipJ0+K0cmFElCMkJEDEMO6TUoOvaXIUbcAhB6xE4h+VyhXfeeReb9RYpMf7Hn/4ET549wzvv3xY1RVXMGBKcZxBL5gQDapOx86OcNLMHyaHp3NBRMN9k/VgZKLHFldUHfZF88zO5RPLQBJamqDqfT82cu9uQEpqmGXmvGIymbbJNxordphAQwiZ7K70ncCMhNqVUma4+SXk656RieB4HkXrqKTPGYRjGKq+t5ITw8nuYvlOGBFubvZ4gY6uyTI6Pj3Cy6HD3LhCHHTj1AKE4JJSu7L/Py8teRdI3Zj2lNa7CVeowizkHYi2x0ci8QpkBgrkSdCpTA+r1JFXh1W7HjGHoxWSl634gN3PcWLnlYiGoGSEEnJwc47333hOu6z3appEy9SrCVzePFoZASKryMEE3ll1jurlOiiA1BgGMdJnqUE8EuOm7oT2lCSUgVDvQHwkn4arTIv5+9uQ5LtYDNn3Etk948eIlLtdrnJ2e4f2vvYvTsxViiPjo8UdIrsPtB0dFBIdB0VBmnMg0T9ULs2debYeo76u/O8TQ9gl2vK4j1ZCrJatUskMaTZamqzHPb7S5uytVY3bkhZnVNjMAGRYGKAyESFJfWg14FiQFZGiYqEGWBGj9VGVmNQYImQYhoIptK8CLZj9r2xa+aUCqL9gUxsbt/XxNyd9V2B4yutCDhW3V1KOd7EXonXu2KVXrr6CV122z9vLRdijzDMOA7W6HqEVQzItc2x1rSUofUKZQzYdI1W1yBSUYhd8IUx8fON57QUwhwtA0aF3BWGvqC/PvqDPf5QnDMODevXv4B//gt/Dzn/8M77//Ph48eIC+79F1HVZHK1yen6NbLHB2dpYHPgw9truNGldVhLVBQ+JmmJLC95hRuWY3QKI6DMAoiZGIkIjK6+V6BhoEuSfpVQSozEw8dkXdSEni6f7gD/8Af/YXf4WPP30GuAWOjk6xWHT44INv4Tvf+S76foMXF5/h//tf/3/49b+zw9+78wgc9ZkJCv1bEAWKNKZGXAYSRzjX5lPn7bbCnvZyENhOTmhGQB1bneUaydWkZFuy+vbV2nRLVgJzLl5S10zMWPsqGmXjsfdYLBalKhM0z28IGjTbV3mOQNu1aBVMk1T1k/fi0DRlw0StACWHeIembQHnxGNtA9aDNjGD0nhFSW2KKUUIrJJ4zsGarxsJ1EqQrCdoiILcJ547rl6X0JQEZ9vfr9+ukujZ8iiZYXgoFj/KzLi4uJB6m1vxynZ6iCAVO3HrTaKWhWq801dTQrSM1BOXaAkz8ps5yzza4pARlXexXOJu04BjRIoJiKKq7nb94SLAmdR0QWOMODk5wbe+9U385V/+Be7evYtf/dVfRYxRYmW6DrvtFm3TAMtlvp3A2O42lX1Bu1XpgKk+0e0EQ1E/q5dZBjT568rDqs4AoNHn8qKALPfDNpkkuP7Vz/4Kf/jDP8RP/+cv0S7P8N57X8e777yDv/297+Lr7z/E02ef4vf/+2P8+Z/9GPcefU1Ok4jsyZLwAEt7EtWzOq6yFDdJxXuLzdbBfi9S2P4S0sxvMrc0knwPyW83bwQabU8z+mfvHopa7mgsARIRmlYZlEoFFnaRmDGoq1+kPUlad86hzRMTRmaSGWlFb2tRkYQtHKMuXGO1JIA5KdkkMNMxU/6RTSuHmswJgmnWcNZOMvRP3jAMRgTBfU5WdnVjRgk5ofG8OCXstlusLy+xXq8RY8wHiRmPrB5ARjOBhh+xgZzS3gPNATCklCWzEEI+WLIzwDk0bSuQ2socYz9gu90Ch2xmWS2qJiQDjDki2wim6zqcnJxg6If8XT7iUcRG2L9kzEdfVF3Il8ywWk4lYVZFieEKKkckBemrhniu+MXea8/3qihnC1xUBugYCEdHKzy4/wAhOrTLMzx8+C4ePLiPs7MzeJUI7t+/j8dPnojkVTEre47XIMsYIyLEqEl+yijGqtOchDb2zJVYrHqzv1qrFmfv1uqDStodKT17LsybMbVDqnX1hvfmVBA0bKNxzrawnqbzN0kue8m45GUCxjBL0LKpOVPPH1XMBJP1Nm3AnAHj1ZD/RDIDMjR8vl/cWf0u4DIMWHWLTPsSUOtHfRGU0Y0OpOvbVbR0VRuvg25VjD3NRITG8Pm5qPaHQzeQ+Un1pNFv2VTgPUglaqkNUGjB6fiIi3mgbdt9ZjayUfiiIi0WC2y3G6zXa8kGuLzExx9/jHv37uGDDz7A+1/7Gtbr9YjxQdU3A7VjZqTIYMVUs2RlFrFtBDBDsDhnjXfSRcgSHUjVTAFbcROGNpnVzGemRkQ4T/DeVeMWhNH3338fd+69iyF6LI5u4+joFKvlCrfPVnj54lPcvn0X/+gf/a/47z/6EXa7HoBWeSKXGfpqsQSS5BgOUSr0tG2DpmsFUtt5UTuKkHTj9mpOgGnbf6CxFwtyyVfk5Ss5enLIaABtZee80bjt6TOEb560HBAJYLvdZlyrtmkkGr91e0zP1CMLvciqKYyuGX0vToL1eiMz0kKzXQUyULcRHj6PGa0lPMvfPmsfKSUtEC1VmRgWcmEBsR7ONyDyePr0OeLmErdP3kPjJUk+xiDFdsnpM+QQFC0iKOd8O8nmpnabRJTxyVQSGoah2K2c0yyXkvIo4ApjcNbsCFBaqd+Xc3agAOQcurZFWq3QLToERbNZr9d6eMvYFoo823qRxi2oet6bOTl9WL0Nu9021wLYbrd49uwZTk5O8PDhQ3Rdh5/8+C+EiMghqWWMUQW9GUFUxleo3Qs0zvUyZsfEuWK5SGGsjgFLQreNNceyJirzdIHVpkGEXBnb5u6dx/379/HB6T2sTu5geXQXjiympcf64hm6oyXe/8bXkGJEsMyHLOXJgLquRQwR6/UlNrsNQIyUOpB3cOThnXlorqaxt92maibvfSJXGbPLhuy3oPKYhG9EX+dUYrXKqt5IBUXRAux0N49ojS3PfJFtaUBJg5pGre958NSpMzb2l3UZmVCUtpgjBM+/gR3NzBEEryFADhcXW1w8fYYQHmWGK9WZNLaNKwuzgxa/PVz76E00k2DrwiWkey9oibemkbAXhwIPZlJwrjZfraWZVJDXqKxlrXU0TYMOnFX7lJIeZrK/2rYFsZa4IyfAEI3Y1prRw2CEoaeOWZD05N1ud3jy5GlWMS8uLvDxxx9L9HJ1gpnqZIQ+dS7UMkApSALIyZ+y4dEAG02cLD1YL2PpocA8A+W3sVieQ0ATg6PEmnk1wpKOQUTqhL4fgMsNQmoReYHWS/5c00iIgLw8h+PjUyy6pcQCwU5pJ/FKISgBM5rGZdGc1GYWFQaaHOSHLLkI8zaGiuBuHqphFKSrNeVTo9tkIetjIP8+0715a+cfeYWkbHoLVZkZ2n+Jvk8j9c9UG7NpZi9lSpn+pO/yaDtY7FQXaa1B07QCNlptpjI6kyL0fi5d5zXRz6fLSFRTp9mKhCERmVFdEs8JkslwcX4hDCEBcOIUk4yLvAP1gH/7J55uoSJJ2VxRnB2o+IVtwGlVtjlaFLW8yulUaYyopPqZJzXXGeDxuy+4/+KoCwgwm+deEWDSt5GipMYyE0IQl/Djjz7C//P//Fecnp7ixfOX+OUvHuPpsyf4Z//77+Jvffe78L5ifgTEIGKz9xLR75gB55Cg1Yl4AOQvnakH4FUiIxBJAC0zw7HP6qVZWBwz2iShGaSpHqmycQgziyDSoFW18ze+xWaI6Hc7pGGHZUtYtA6OGESCGBs54ONPnuH88iPE6HHv/ns4Oz3DyfER7t47w9mtWwrdTPhb3/4e3nv0DTheglKCdys4t8BnT5+AQwBxQuuB4yMJrCXvsYuMISZs+y3iEEEkBurVyvICJYAwIykkCaDMXjwDH9zDpS8SixXDFcIxb58QH3mI/alWEdkIDIWhEmuwr5Gz5pQyMMJFm1Uz55iZSjT0/yfvT78tOZL7QPBn7h4Rd3lbrtiRQFWBRbDIKlJLHU6rh6L6tET1kebzzN80Z+YP6Z5z5tNMz5yZbkndEik2RxRJlbhVlWpBIYECkMjMt9wlFnefD2bm7hH33peZALKQAB0n8d67S4SHL+ZmPzP7WeYiS5tGNJxKcmS325ZpmQoOMdUWLrdXSdIaosSvZ63jXqXMebUu+KGb2RzWVajqGquLCzlcHGCAoFTVZXFmDxjKRWhz+LB4dmVMQmTOOkcEGyM81YjRwPseIfaJctuiQfQNgm9ANfDRRx/hJ3/7Q/yT3/stzBuLytRoTOSYI4qwFDgljgiBXOKee15iTQX+oNqxyUI7BK6MZAozVGuApkK9lCnOSyVJhRSCOgQEvqprVEKgOXhhM/EeVxeX6PsOMQRU1qKu55K1UWPoB8Tg4YcB275PpvFOdaZkz/IfLA7Ey/Dppw/xgx/8AN/97ncx9D0uLi7wgx/8Bb79rXfw+quvFhKcrxcEwDPGJMYFQwQfDXzyILKHhgCEaBFH08RgH8vGnHguw8P6G6897b1UH5cTLcaEVZAhiYYgGHLwGhQ5dKgrQuVkiZIFwSIAePjoAvc/+BirVYfXXm1x59Zt3Lx5hvmiwtmNJSrhoX/jtbdw68ZdUGQV2JoGxlQ4vzhHRRGVZbv+aD6DrSoEY9BdtRh8h23bYWh7GApwFsyzVXDWp3gp+BEmVHqM9rViSACQhjklM5hEIuWCGfmLZVizmvB5VcR0WeU6O6yB7elXiZEV2mXSzcWbGCPQdX0qSltJKb/tlqGOzWYjl6AMhwAga5M3uRiA9NmqbuCqGnXdoN9suDiKMYoKQMH2qEWmRfBmtZQyr33S2mRewLTqJkaonuCjF8iFY9QJNUKoEX0FAvDo4UP8/L330HcDgndAZIHoAxOGki17RQhkCjaT59CIvYZBQiNILS6J1+uHYUwiKd/ZR6e/00SgafhvDIGrlznl+x/gxcm4ldAPgKGA+WyOpmkwa5pUCarve2zbrVBtT2oATMHYkWQVtsuqqjiI0FgsFwPms3lyFChIjwMYUOkxLMYOeZlQfrH8XqHPj03IqXkw/kRpIeyOa0yRzEx8R8mmZ6K5Dtvtlk1AIlytrjCfzeCcwaefNlgsK1hnYZ3BYrlEXTfSq1wJOoQAOCMgJxAjvz5Ixr+a5Fz/j6AsNvreiBlVzfcCPC3nTl9L+APGz16GP4zc7fJ/2jNYpc5Vju3u1O7e8+BmE7OyvFX5ewn8aziFjkX5r8RkSuBeU2GS4Ec2U0ebrHhetkamQb9UnpLySn5CKtZL+RAZO6M0V6S2mHwu/U1ItSFz32Rdx/z98Tg92+HxWRxEO04ZvlA28+T30iow+1bFVK7ImCneGEJApdgg5aJD1tpUtq70QMcQpG6q1n6Q7AwiZjaZmidaHEILcOjCb7sWs1mDN998Ey+//DIW8zmfFQa4dfMWAC0Dxg+oHeETfLyYgh9SvuehZT/SFvOr0yEefwca7CcYiSyKECEMpDlaeOh79C0TTdZ1LakzEYYirlYr/PKjT/CLX/wCR8dnOLtxih//6L/g4acP0DQVwg88/sW//AO8+tqrODk5xb23voHZ4gYApowJ7QZdGBBCj6Y5wryuYWLEZtMioEUXAtqBT/aqcmiWDSzxvQGuqZC47sUj1zScFG1k8suFtBf3VG0lUUjnDa/znMeY0vemJe/VLPzsXtNx080eJRpfN4VqmhrXpcDvYjFLmpiOiUbl13WdQH4ee2Y71XxORKBydQrALbXZFJhpCJWpM62PjInR5zXlATHOcyhEm2j18jupIGL8y0paW+/lM8Te8whCjB4RA6qGabxj1FgrEWgmZySrhUJqrz2HptEL5VpR899aixs3bnD0/zCg67qEa87nc9bYMHae5EOThbQx0nthAl4sHZxjKqG+71G5Ck1T4/LyEvP5PBUV995j4z2upJSlKgy6d129JzRDHgnG2BFzZN/xpteCv7dv3cRyuUA/9Dg7OwOR5qHtZ5osX/M+wFHBJvkMJ006uSY3iKLuj05IXXoxa4yACjMOpuy6DsvaifDmqOX1ao1PHjzAhx9+iG+f3sTJyTF+8Yv38OjREjEGfPzgl/j73/8d3Lh1EyenN/Da628gxBpDJPgwwHcAPJc7qyqHpqkRux7bbYtu8NgOAwI5VHWDWV3j6GgJawCKIanQKtAAJMyoESzNEKEXQVcuOv1ZHiQ+5DGaanHTpkJwX57dtdPxDC33NyRTWl+PkTMv2HPeous6zOdNMik01kwjxudzxlGcpNJtt9s0p5zzB8yawEGWolWUnvXBe1gwi0XCIKErTDWsjL0J9pI1JtHuCFFMDCoEmrwPA2scfORK5UbrDmjxHHBcmasUWmA6aAgGTOIQi+n+FsDTc5k9aystgmmz1uL09BTbzQbbzQar1YoFUFUVieL715aOCckzezm4rOCcRFxGsJGk8xACnHOYzWZp7vu+x2a9Tlc0hokHmtkMzazJ3szyYUAZYMzzRunidc1sA7p4WPgZDMMeO2X6XDrve40VMYXilDpk8rmdrz55R5WXUhc4YiZ4y94YJmcc+p7ZL4V+uaqcDDKfCmQETyCCIYsYLRBkU5A6MAotqDCRsrMFaQEzhJhd4UD2EJVmF8AaXWAqBin2cFhrerpYtD0HxLVjWZhaxRWepe2f25gWcf7M2HWvZkfpAAl7xnY6duVnU9+jhlfQtBsJIhuZ36OP8bZM+6PE6JLJmoz44juqz/G/uqmxPFrAWHZ4cV+L60QSD6dYtQdjKb/4dkig6b/duDwRVbrm5FHVIZiWmUJGMceZ6d8jk7SAEsp/2rfyu0CBmenFADbJAjJgb0UCnp2d4ZVXXsHZ6Sk++OA+3nvvPdx//33ce/0NzGYztO2WF5psYi/qIIDE7gkiVLYBCuI1LeHFfYDACToShwdWB06fXZXwhD5EIFPeqF+PoDQGIXp0XYvmbIG6qYUZgbDZbHF5eYVvvfMOXn3tVcznR3j77bfx7ru/hsH3uNxc4OzGDSyOjgHjECLXZeRaCAt4MojGgIhTufrtFjYCfee53qIxqOoKrnIwBKzXl0AIiMJVrzE7Ke9N5kaDkvWZXVWhrtkzNxqVA9jnyNQvhKYK3b3mQaSda44E5LNBODtNBTqRRvp3ODpapsLMzlkQ1aPgVxVWWo9Cn0efSZlirbWoXY2+HxKorOUQF4tFDtY2TKEdI+dFltota/biw6TSBJ9sYirwMsFWIjiukkulGs7BjaKNwSNSxFtvv4HlLKBpDJxj5l4/+CJkgWEF9QaWHuXn1abkipp1oetSS8sNw4DLy8sRPBFiTLJDm5qYqokrHORDgKtruMoJC0aPru/RDX1a+zHGdLgpf10+1IQ9Y+jh1/5w0CwvJJfoUhpJIH/55ZdxfLTEX/zFn+M//If/gMvH5/gn//gfYzZrcH6eC3lwJDNXUiHK/EhkDKrGitotJ6mmlSAmaabCqQzKHAvdqcOC38tAZD4VNRYqibkYQMQ87G3Xoq7PUNd1WrzbtsXV1Qrf+MY3cOvOS3Cuxr17b+If/MO/j37o8Kd/8R9xenaG+WIJkEWIbE6QsZjPKnjDISJEwOriHEPboTYOcSCQsbCNVAdyFsYAq9UVfM+Js+xxq5l9dLlMzA3r9Tppwt57WGcxa2YMmBYBn1NHTmlWjqPhx2Oq2Nj0c3zNYjyf1vx8qpY1QtVQh6FHXVfYbg04rMemIM3STAwh4PLyMpmUKuDUemiahvEUY3F+fpHwHTWLjo6OoNoPEYe+hBikmK8Id7FQQoyM+07gRIUxUrwjlVpZQERAiBzmBGNgyMCHZGghUMTr917F66+eopkZODALbY8AZ6xoZkqtzp5njf58XtJsByIiEgHPCkBVVWjqGl5qZKrXMR26yNH+ammlWS5wBT04lJFEYwf7oUc/DHB1la6pwsxKDrgRskxjCJdXlwlDc/sXdv5bJaAuFF4kVVpcdVOnBVc29b7pBvPe89oJnOS7by6+0PkRTV6MgZE5kMMBGK8gkysrFQ/Pz2hzvcumqWGkOA4ZLhmmHGEasEujkyN3Rs33fHRHMSuZ7C4Ez6wI1uSNgfH3Sy1U+xvBmnQKF4hxZy4+D3j/TLLrM91m7PmeapBl369zdpS/p+9MHB37hP0zPdPu2Vm8SKOfUe6vr8U4/Y6YmVUF62YZn6Mn9C8CUy/r5257nus6eGI65odw2KcaZzWWioNToZ/y9nofPbR25hoHaLNVbVTOc/376GiJl1+6i7qp8e677wIA+u0Wr776CpLnsuiAStS+7/H48SO9OF47OhOsySBEL55GSjQfTzMwEeOb5bUi2p1ob/zAue4mNynQEDz6roOzDLArn6kmz3N8HcccXV5doB96DH7Aar1CHwJCUq8t2GuqIQ6yIK1B3TRwxsAGwMABYAHYtVuElk3dYeiECJHZVau6gjWEdsuxVCEEdG2bnAnW2UT8GAMXZlZ3N2cocKKuOg7KMSz/lYvhoBmZRzuthc/T9t1HnQ6l4NHDswzDKAWRetCUIka/o7mBalZGoYiJEajrJnmIvfep3BvAB4KaitPnJD2wirGIJWNG+qBhHh8AMWoeZsbfYgRScCQ8iAbUc4u5nXMIig+S/sRZA3k9h7S3vljNeE+TjTSFHKioK8paVUwOGZ0//b0Mms3fFwvJEIKXws42a58xBjSzGUBIBBZkbApd8cpuCwDICgbn4FqEONHMRjcmSrlWORfLYTZrYIzBr//6r+PO7duIfsCtW7dYGyhMFgDJLBiGAY/PH6Xq1K+8+c0c0Q2uXgQAxlTZSAyRgc9Dkn8qORVeiyFVmyDFMYwVNVkXmubJBQxdx8VXC7qZuq6xPDrCarvNwuzyAsPQwUePq9UVhuARiIUHYBC94TqvYrJo6EHT1Fw9e/BwpkKMhK4fUuJ5N3SwloQHSjCwygFE2KzXzKsVuRjzbLnAbDbDYsH03m3bYrPeYrPaJM9nXdeIdYSrYsKNgHHs2j4Af/r3eMwLoPsLFGblfaf90zW3T+jq4aocWFMGEXXfe+/Rt50kkrPZqRtQuec1KDQU62Vf/1SYqcY1qoeQfiEonxMHjPs0bgn0MFFYewNAA2Yzh6O5hXWSwhMHFpRRnCCIwqbK1kD0qRfPte078NLr4PHqOs5vVRhpGhemrcRXiQjRy3MVpmkI7HVuhdJnuVyO+qGhGDGEEfBfuQrW8i51+0BfbcYYRIn3iTEyHobMYsCnf94wY0V7LKW9z8GMowct9HhdIJ9lqtRGn7bDey+KBhXS397zYjPWMm4zDGL2Efqhx2a7hY9sLmdDIf+b3FnubyZUuKWJq5rGuJNRNMs0gaqtECVMMltSYxO0vDYLBhbi15supeY16ceeZ9rpK55NyB0yYaaH1q52NG7TohnlT71OFt6l+S2HzZ6+lUIRAg2QwAg7WCSjBXuGhUaaG5DXx8iCADu/rOGcZOnZ5JPTOXg+JuZYDZm0vd0oGDWe0EZjirzcEsYo1+Liyv3O4QSMtbNENTa5x0FyRnWRf/rgAf7oj/4I/+Jf/gs4a/Ho0UP8L//r/4p2swUBeO3Vl/HOt76F07Oz/OSUAT89QX1wiHGFrutBMYppCQm02904U+B5XysXcPpe1C4o8E+AgLtEyKkgAmoGCYfYblusV2sslgbNbIaXX34FZ/2AxdER1us1Li8v8Id/+O9hrMHN27dgnMUQA6IfEAdhwHAOPgAEzvOMRUWw3vfo2l6ehtk3ja0kvzOC48cMNptNeialUtGgWWst/MB5axFRUrIGOMeFZJW/S4Vbu92g3SJtSFXJcxwaTRYzD94URz1kcn4RJo/OYWmmKKifk4p3hZqyN0wbESVKGO896qqGH5RxgWMJNcOD48t2GTK0XxGcnqTr6dBSLJWzCdLJboAYJFQnU2MZYicZn6mEoQ+i2VvYKuuBshsT7sv9fP6a2Sh4OuqhmePPvCg5qv3v0+C0USmwjEkkFtY6WMuBzKv1Gmc3bqS5AcSpUGjb2+0m/c34fQ6ItocogIAszM7Pz/Gv/ud/hd///d9DVVX44IMP8D/89/89ECLOzk7x/X/4D3D37l2cnp6OHsaAEqZUVRUi2O2uHVV6XNc0zEs2NX+IUjYBTU1K5BNsr9kCEugin9DeB1jD/eL1EBADJ8JrtPnDR49h3BLz2QJHxzcRJFr5o48/xvnFY/ybf/NvUTcNvvWb3xRhxtWAojeoXc11ELZRsJhMJKeCabvZgiLnBzb1DI1jXqZ+6Nk6jsBmsxkxreq/+XwOMgZ912G1XsF71iyMMajnHECqEfHb7RZd18m1egAE5yzm8yXqquaq0aLVxGSf6wGkYRu0I0iyBvjZN9MhAajXNsZgu93ySVsIs6lWNBV2JbY2m81yqEaIuLi44LUmgdF930EPEMVTSYUWjbVd1oZzmbnROksHZ3qF1y1EOwZjSz4GRLKc89i1AFnAsreWH4vQ9R42csxi5Qz8MLDwMDHVPcgdxOeag+ubYq/i0R6Z/yGZ/kEwyeVyuXedlKl4IycgJIwmMhOzNRb9MOBqtcJLL7+cYABAISIDBMasL84vQFBadYvlcoHFgqGX2Wx2fd1MIsIweFxeXsL7AGM8uq7jatJkMJ/NmD53QsY2vQYZAuH64M596n16r1gu104hjX7sfkEX3x7GzhCiuJpbkGngakJVV/CBzU5rGaOKRJjN51ygNF1BhXBxf1108ppqgIgEV1Q6Ug1JudoyEB5GmgcV7/vBjzAKXTRl5L+a0FllN1kYxVIwFQJmbGPuaCzZfLtuEp69HXL27Dvtn2TOluOhwjmbn/k6QQB/Bbv5u7t9SOakvp+6ypNb9iaZarGAH0af312/IQT0g4czbDkYwp4FnBfSnnP9s7WiIzu3K8bs0FRH4KnNzNH34h4zExgdRruwFwvCwQ8wILFYYuK40zS3g8LMGC4b1/cdjk+O4JyFDwFt2+J73/sebpzdwJ3bt/HhB++jH7jEeulOjSgWY8ynvTV2dMZNvVjadub0KRvtSC9+VfPLiBjCUq2MCAlMf/z4HH/xg5/g+OQMt+/exTvvfhtVw+kV//Xv/dd49Ok5jLV47VtvoJnPJB43cpwMEQbPJy1BKXyCnM4B/cB0RwDQdVs2HESQsfOEPWF1VaFyNpnguoPWqzVnJhRVcTQv0RkLPwxoBU8YemYfqJxDLaalddwn7wdsNoOcFzTSgJjdRMxPloh7NCmDHKn+7FraIaxMBVVVVSmwdVTlC1mY7fPClsHFI+E8ApBDEvZ916GyVcLdpv0zRT9jzLx5OfKxCJDV7xVr33vGYPk9za3kNEGSdCUii48/+hTvr67w0o0Z7tw8wtGiRvAa7ya4XlQONIYwkJKunk8rscYSb6Tk3GCHlA8B/TCkcKR9TL3jseXve+8RAQ5clvecc5J/GySKIkpqZB5/S0YycnJcpfceGyk8fjA0Q6mxu67D2elputl2u8Xv/u7v4htvfwN3bt/G//X/8n9OVLq8oGKS6CXxnfeslVibKxCrkCtd6/tsbR6VsoOjH/rh/JrcP48rFf9FyVBQbxNx8d7B49NPH+L/+T/+T7hx8ya++Wtv484rL+P05g0sjpb4g3/+B9iuNhyuMXeYLRaQmhRc7iqwFhujFS3UAnGQUyei71u5b0DbDqC2lQXvMZ8vYSsHV1kcHR0z/xtpzI2H9wFXq0t0bQuAYCzTPGuSrbUWvh/QDgO2DJLBFvmL1jkYZ7FebxJb8NCHkQmrgsMSm8hqKk3Tq9RNz/PyDDmcxZxO57c0MTUvs/SKlZ8pNS9gzEmvf0+FXinM1OvebreYnTYcRR6CJHQXGoEIQr1/XkW6HFVjK1/NmkbvI/qBC9YaEop3gQ4oGHAtC4sP7n+E+z/7Gb799utY1A2WswWGuIVmiSpvHAL3j7NUnj9mVgozQxxGYSWkJYQAHwIG75Mws2Y/tgnkQ8gYFs9aFHu+XOiH4ZzDarWCMRazWSPaLSsHibxC8HfF2fq+k8pMLWtm0xOuVPG89wgxyKmeO3d2doZbt2/h5q1bsoHHHiTFYjg5dgzSP7XXq9BHd8yQ6Wf3CTex/RUwLZec2FnSNyTB4X3A+fkljLW4vLjEtm2x6HvUTYMbN25gmC/R+wFbEwAtICt6fyyB83RIk/ZENhJJvzhY1vuAYZDIf+MRrGiOBc4QpfRU0IKpZNi9X2xWQsaR/JArUSvjhrVWTk85db3ShWd65NKs0jEbj/v+eXsWL+bTfL880J4ES0z/3qvdTzbV9PeEt02+F8vvJkVP8cXsOaf0v3x4ZuErbxbmedLgJM2ubXtcXa6x3XSiyY0DbNM1PrOtsqcdMjHLj5RjhXKfjNdJedCUYzqVCeXd9G9rbeqKxv7lPGkZhPK6yIVqiIBhoOTlHIZhf0ET7QTzbBn0w4AQIhbLJV577bWU29YPfQps7LoOV1dXI/whhRKAUlgGF/DgE0tt87FEz31Zr1esCUUdUP6Otew51AfLy6+YqRHWUZwaLOrR9y28HyTb32K5XOL1N97A7/3eP8IQAupZjT/90z/DjVs3cHbjDG/eexPH8yWIgMvLSxwtmcctyElMBCGAZPI8hsWyCB2GAVVTwTiLGRmEQAz6B643ADB9EJ9OWZipxlEWkTCGPaDD0CP4AW2LVOfRGjuq+t11HdD3CJHnKIpjZ9bMGBoQCm9lmyCinERsCMa4Yk5yKEmMxVh/jqbrRTWsslbmdFPseK6nB+ieQ68UaH3fS65xDunQtevqik3sgjIcpL+XcIVu5kIQFMJHWwiEEFhDL43xGClXlA8kJqTF0AOI7NHWeEVKbLkSyxhN2ZXn0whpzZZWUQwRAVm7beSAB+RAiBG95MkScvWm0vSkbJABss7U9J/NZjwPzsGKpqcWFjPLFtxlYNnirEUwRg5uGrNmTBeOnuhd2yMEj7OzU7zzzjup0MDF+TmqqkYIzAB6fn6ersHmD9/IUgafrbPwwSd1Xx9411zhQNW+Z89eiJmpgtlHZ6jqSrIG8iRTUURYTzOV6BQDx7JFj3a7gfc9jo6OYK3DyekZ3nnn2zi79QZ+/ov7+PFPfob/+V/9G5zeOMHLL9/Ff1P/N1i++RaMc3j06BGWL92FsQ4BJlEp88RxNoAyuKrW13Yd5jO2913jhJqHWW27dkDv+yLXjZKVs1wuEyEmB8syP37fd+i7PuUbAuwJU++OCgWlz1HTzTmHpq5xfHwM4ziLYHWV8z5D4Mr1rnKoqxqmtoI3QnL0kBbm59XKyjnXU7mu6xEOlk0UMxJaU9xsnzbH4H02NXUMtF6AWh/b7RaNyQy+uhF1BSlsQmKCa33eBJZPnwuADwQfDMg4xCCrkkSYgfGyMACIFkCFrgUAJivoPFCJhs4l1nhNIZqR1vY8mo71qKhMgWurF3k2m+Gll15KUFTbtkyEEJjstEz2T9oWUd6nhvFRjVddLpdYr9cpV1NjXPWw0aBmZ7N8qjRX1xpUwY5rAOjPcjERSYn7EHIdQmNSCEGJXWhIQZbGkatAF4OvUvx6pZnvz1Wp+4R5wFDyLFaVRwx2tLjH3rp8v3RvuXYCOENMGoxzDsvlEVx9jIurNer6Azx89AhD6FE3DuvNGoP3qCRdphSW+isVJgViyRyQsSejpegJYEeBQ99JIG7MsWXaUhHapDGxcOy6mBbXMAwMDNuxZ7NUwRXXVLDfCY6mWqV+Njlkgo5lLMyk4qTGZxNm+4ROeaCOPbi7puSIwgdZs3+SBkcyliWOq5/zIfP2JVwNY6gAI/0qv7qf8TgWKMmEzjGZnkimJsEgJCEna0rhERIaIFlrpVf287SnucQ+0708SJqmYfxV1mzCv4txnGrM5e/G5FoDOwWf+Re+rveyn8q5KOeeP3owaNZ7n6Sr9x73738Aax1u3ryJEHp8cP8D/OxnP8VLL7+M+WIBayxOT8+gTJkESEgGUnK3bpb1moE+3aDlQraGieucVJW2EuTJgCulfDr23kUu8WbyY9pAstkIUu5IhFWEM4CjCEcRfmBts5EcR0CqXUeDs7Mz3Lv3Fn73d38Xg+9hLeFv/uZvsD2/xOnZGRY3TzMzKYQ+Tzf4jv2Rl05erFmVR4yw1qAiB2OQ478Uc4kRQ98jeK5ZUMZV6Zg1TcPXNhyU2W636ATYZm0rJpIAFWbb7RYgTkvpux7WUAq8dS4zFmjKSowxkRgm8z6ODtvP1HTutYJ1GW5Sfuag5oXdTZcEHpCsAFdV8MMAJ7F4RCQ0zD3a7TZXxirMbGsMKuegDA0KZyioMd5cWWjFiFRTM+r7lOMb+Zs2aSfz+Rw3zs64YlSI7ItA1oJVAFI6Kz+/eX+wyZojMQ2IzZr0dqm1prUnY+acS/T6kPH1ISC0XfJ4RpB4anms+z4rBqOYQl1YMaJrOzFdpyUGtVc8NzsFTbT1fZ+ICbuuw9/+8IfgsmpcvfxHP/oR/vzP/wzf/MY3cHx8Ausq3L5zFzEy7U8/DJmQUOmORfM4f3wuqQtjx0BdO6bNrWvYOccJVcLMoWhFREw5d+xV8aLCy0KUSlJceFVUWwMsZhXmjQMq5o0a+h5h8KjntSw64qo9ZHD3pZdwdHoTL732Kn7x/s/x3i9+jn/77/4X/PV8gXtvvYX/w//p/yiEjCwwg9ZmiciLlQiQZGE1VXizmKzVCCGjswbWVohUATEmTThGjinr2xb9MGAIHlq9WYt8qJDieQRvzlWbvh9jhHMVZvNFCnCMMTJL6DBwuTUx76q6xny5RAx8mHVdlzjAQgjMn1ZVnAhv7We2dkpNWudehVm5WfS90ts5hUV0U5UaumpZIMLQM65L4DQ89dxaaxPRwHq14rQxBodYkDmHyjnMZnPUVQVyHOiahREwFirSJ+I1ysGyWicWAEUYG+FDFI2Mn2fWzHB8fIyXX77LifAhwFheF/z8bGISQbIG/HP3ZcagqV8SalRwDyoMoJrXfD5PQcpl7YX1eo3Neo1uu0XfDckCMM4xLRi46lXbtomgwVquL4AQEDUyIkRsN2v2qDqxxLyQAlhTwB12N9EcwGhh6EK5uLjE1WqVqhpdXFzg008/xfe+972UkN7MZlwCyjMJY/LAQertEQukru9hC7WeJ40BTwOCn6icqqVpfpyqsyloDnlR+14SyiV2K4KFWWWB2hGCBQOLEmdmk4YFqHpfNzNUzRLNfI7VZoWPPvkIDx48wNo6LJdL1FWVngVJyKbRE8E7OlbTs+SXxhtWixADAHnPjoVo4AfWZoe+Rzv0aT40jUMFgM5b17G2UebBagxgWa5NaYi994nLzUlOqi8Yg8vARCJCsFZK1EEVlVGoAO0TcZTN/v0exexRzYJsPyZWjuP48/ubCsFobdpEpXkSpGTZIBH3GqysJnZVVQjOgsH39BB6dckCUF2tvK9ibaqpU/Fd0ekJwk5TYSa007xNcnjTKOwDqrDsH4+nagXotm/vP6GPcgABAABJREFU6/Wymbd78JSHSBk+oz8V5yIZx8HniAcn+00fy4cAm6yMQiMvxtoPed6SbCogHt1t1wbNdl2Hpmnw3e9+F8YYfPTRR/iPf/Zn6LoOl5dXuHPnDm7duo26rsXrmBcnS1kGNI3x8tNyma+mGZtLMbt+1f7W91i1LHYOOMXEOZu8GGruEQGWArSibjRa208Gzg/ouh6x3aAfmKN/Npuh73pcXa7w+NEFrrYeXc8xQtuuwy8//hAf/fIjLBYLnDQNjo+PkhCJICltpzgHR3BHCuk01snVwEkVmKMSb6RmSibeI/ml9O5Z57gKjWN2kUG0Xw7H4M+oVlJ6k6x1KbhQ8bth0BoFleRscsHa7WaLYeANzjibgbU1iEw6tBRMT4tfYpBIYILr2piOKWNXun5DUCCeJt/bve6h15KZGsdpTxnq4PzIEBmLMdagqWsWEsHLWWhkPfaIMaA34xxEYxyqWQ1lySgDxnUulbAGYhoqiwZJoWlDwMnJAg43cbR0cBVA5MGMGnqtiFS8hCSf8xl1sxLnmh4m6/WaPe2i7Y+F0x4PcYJAxmb/FLMs6wI0jTrxohgvAU3dpAOUQOjaFs5m/sA8jlLopLKJw08P/ryCuLlpp7RZa7Fer3F0dIR//s//Of74j/8YP/7xj/HHf/zHGPoBr7/+Gr7x9jdw795bCJ5NoADWrNgUygG0JaAcAcC4kQSOkYkJQ/Do2i55R3wY4GBRgq9qO1tbyelX54MSBBOU2oXdtl7KugXfoe9aDKHD5eYR2nYDZ4Dj42Ostyv84r338Rd/8Z/xycMrXF1tcLXaYtO1LGhMwNnZDdw5XuLO7VtomhreGHgSlzlYsJEhkI0S5BfFK6SmnEOEBVeI0kUpcIRqNxHJF0uGwwTU1G+aJuXoEVi77dsWW89BtRpX1jQNqoZNRhVS7FjocNFuRjFmjdYinM0AMBXT1cUFOvFqIgKzWYO6maGZzdMB17YtVqtV0qqZXoc9oLbaJbkstgI0TCazlaj2r/l7AcY4GCNmPPYX15iu2XIzcYIyoA4VLRCsQjzI/HjPdDuVs1gs5qxBJnMpJKEdkpbL1bSsBC27yoEsnzyj6HcywlrrEVP/GT4gYxllpQBjgLt3z1DdPcbNswbWdCAzABjkYOPvMbdZwLMWMym1pSlYDvDB9/DhQ2w2GxwfH+Ps7CytGe3zVCsuTcnSctP50H/K9stWFFLK0VqYaVWYNVXNOPpqleqLWGvZlJS22W5QuSP2QoeY4swUVlNsLR37+zxHipvdu3cPf/Inf4Lz83P87Gc/wzAMuH3rFo6PT3B8dIzV6hL9VhJECQJ0q0YFEAUgJeGLRlPcJ3pCIEn6FifB4AfBHWM2Y6J+pzzhAUSZJCCxxpJ1TF0dAnwgBC9RzUOPtt2yoHSsmVxeeVxcXuKDDz7Ahx8/xvnFChcXK2zaFoujORZHc9y+cwOLxRzzOcd6ceV0gqaZJCWLkDQyKhaD1gbMY1CcKnpyo7iG/KJhETFmUzJGziMNnrG/ruOCrWp6VsgBs0642kMI6Lsu/V5VlRwMNsX7qHnQdV2BUc0SLqeas96fIQTWUpzTA6tcRDo/+YW8qcqNlTUzve/4zL3elJpqD6qVRYxz/vhgzea3UmSztptNcCLAeyTa9/ysQAgVqkpNUT2+tX+qeUvQeAyp/CXPm5bXQ/q3mDVY1gZNoxZoEE09Y2u8NnIaUz7SntwOmaP6+3a7xXq9ZutKtNgswHbzcw+Z/OXvCoNkRw5nx/R9j8GP4wnV6z70A+zCJsdgOaN+yGEiY+UrO2NiKcx2B4HJ4oxgJa+99hpCCFgujxCCx7237uHo6Ahd33Oqkn5vdwXrbKbX42giYppZPUm9aA6UctMEPZCFrwJLucBzSEQuRhqDR7RZq+MUIQvAgWYNx874jI9obiYA3LlzB2+88RYCCM28wmxe4+R0idOmwq1bt9jDF2IS0CSagHppsmnAcUz5eYoFPx2DQ62ATNg05ZbCZIiStqPFhv0woEOU+gu86QaZR12sdV0DJA6DVk9O1lx4rEzy6jFDAlf/Zi59z7ihhOlUVU4LYvNTKI2MgXU2CeU0NKw2pcVf8ldp8dcyRONZGxEhUg5dAXJq3TB4WQ82MUIoDRViFGCaOKQIQBSTPjj23hrxnGu4gP6jJKHkJSBRqYcgRT4IUJKDGIP0KS1dBr4ToWN54Ov31Es7yUDegx3uw7jK9aMHl37XDx7r1TqF8MxmDceJ7pmHqRNmn0MnCzx+OIU+6rrm8TJG2C9cOhzLQ6fsMxX3nT5faQq76SDInMoG78CJxQbf+9738M47v4b1egMOzuUHWK9XQpomUjhNZgQoY0BJuUoYloKIMpOBMaC220r8GiEMA9rNFutCyhvDXg8lhXSOTQgyHD1tLBdH8CEkimIioK4rUIgwMcI1R+yW971s1oDLyxXev38ft+68ine+9Q5+67u/jaOTUxhHMBaoKgJ1axhDWK1WmB+dMeJIHIRJwuUfyYLz6ngTDUObJo3ULA2YAOUjPW3y+nRu+LVcuJgrO6tZFEJE17YI2/yaMRaurka5nHoSt9sttps1p1XJ5j45OWG6b1dBcaPNdoO2bWWMDRaLGdMJOQuQQ9e16Loe2+0mhYJUVY1m1gheSrBkBVaAnGH5AFPtcLPZJO427vvTaSClYNSsEL12hiYMuo4DZ5umwXbFVbEq55IgAwBnLCIZRBNROQfvXdKHhr6HDxwuw3xkgde+9oEMtFgJe9kZaogUYS240HPwiMHzWJIe0kDEgAiO3QxDTPCDaiEheij7zHTTTxksdoRbiAjwo3FSunUC0LUtHvV8kNjK4caNMzTNDE1TJ448HdtSMytDhJIXGUjatebxZjorx3mdA2e7nJycpEMshcwozhxZKdGQptKsDSE7UnRfHNbMwPiFnu53796VBcI4z+PHj/H48WP0w8Bain6vtAhlj7JAy6p/aVLxyPMplj2ULGR812OgAVacAnpiO+cRQ4XoGFcwxFwCsDlynheanGAyCIYMbLRoTAPEjB2xAGCnxq07wI2bN/DNb34Tt+7cBYxgFuTRXT7EdrvBw67HLGZPltyd70kGEliX7hGC0vVk9gSV8KWeWqrpxSju1dt0LMrF7AuTSL2QHFLhxI2d+eWUvND7IQXVqolnrNKkVyk2sGtbbCRCu2kaVIkcr0IEoe87cBJ9mxajMVYqCgWUpY2mZkpZQbvv+5TpsLMm95g8eo0dzaDAhQAkZ1HX8b1SpoFoZmrzUnG9PNb5NNbiM77UzBAK9aoUIiqEeNNl04i/Z5Iyp/MsdNpqXZSXQcybK0EaY4F2aKyS2V0cILrX5AMI3qNrB4AAVzsslwsxBeuJpjW+9777lpkb5fxA8HRSKEkOsTIvMzkFdX4LH4peJ+cSj/fJQWGmEjUiS1ltIUQMg8cweOGrx+6OE2kWRZrJYyXBljsz1lAYv+AYH5/wBTN6mDLrwAuGo+9527MgjhHRSWgGEaI1cOgBDAi2h9bOJALmsxnu3r2Ld999F8vjG9is1/jhD3+IV1ZrnN44xnI5R92YJCCMsclsEZIfJDNYzQjwYg0+57OpByaN8aHB/wxNx4W11RKcZaFC4EBjRDY/y5ALYJxLFzzXE82m54AQeK5Vs8u4WYAXLjjF4ozhoGdldg2esaphyFpF0p5Y/RjhdqWg3jE79phU0zbdZHpdvYdeX+u6qunIX5ZzF9PQiLG2Y5J5byTLRawSEV4hStqTEC6CsheSjz+Dy8sNQmsQGoN53Yj5KCc7bNozoqIhCUvZNvvNunFfDwkdAGjbLYiAytlcopE4cFvzdEMIRU7wrtlZOgJKzezQnJROgjIcR81NFH3VONLykN+H0el7exPNQTkJFDHCVba4AND3A9qWAyqrSusPirYVp67bCGiiN8npZwg0BYvlO9YYGOdwNF/wg5TmqV43xhRdPHQdCxR5z0TBsIzBYCJ7j4xB4xxm1qMxHta1ouazwDk9PcN3fuM3sDw6wc/eu4/79z/CX/3N/wPf/vV38Zu/9R289fabuDk7wWbDFDr1yQ0Ok7AGwQBxYDYL4wxjdVD3uuWYr37ArJknmhTlUeN1Oj3Nr2sxfWfqhdYFpYJibIJwbmu7bfPrxKEeqVhuYYJyLmcHH0T7EEE9XyzhhB1XzRTvA7pOqvQYg4XQDhmJfWvbFn0/YPADBh/EScF5pqypszmspozm5wHYSe26rpULPk60ED/08JYDgy8vL3lNW4u2Y3xvXs/S8I5biYFmLykBMJZjpoysNQ4h4lS9QUz/EIAQjGBwAUDPGhkMLDl89MEDzCuHk2WN22e32ZwCB2EjWhFdETEMIJL6mUExqP3Pf+jv6XdCCLi4uEBTV6hmDSxpahHv0aurK6xWq0QqcXR0lEItyuDlUphNBWj5nnqIqaBtV2sCQKoEx/ub+zj4IZmfUd7TgyljxUhwyjWaGY01M9VwCak4Sd+rmoqsZBXCpxxEPeV0E5OcLGN5xp10srm0k9Bq05pREHKBYWWg5MrRAdF7TkuqHDrExAwB72BdhHUeHkJJTDzYc0maPT69gfWmw49+9BP8zV//Neq6wWuvvYJXX32JB3foMQwD5pbjltQsCVE52mOKAJeImhQKYY1JGf/pkH1C2zGpJuO775RS4VSexixwuhQcqlkTWihXvZ4aGa8MGkphrLmcVWLjUD4pTY7vkkDU+CJdrO12C+8H9F2HbhjgvWRcaP9FQVfNUM2NQ9rE04zX2ARRzcyncQlgweC9CAmTPdJq0ekpGncknAg2ovRP+f2jPk7SyiCwjM3XFljBwODyYo2+cjAhMo4q+DH3X60hn3RECKljqZVdNw7XNcbEt5jVFSqlHy8i/bUOg7a6rtE0zc59S6H1VBpzjHuFYVqzMoilsJvCL/pT8VTt0k6iOf+BooPA1BTMFytUzj0nww4IKf+j4n6lhbpvUEqztFRRR/c2nAcWbAS8OAOcVLxR9ZgIIQ4Y+h7bYQ0gV+tJA2oMTk5O8Nprr+Lx+SVOTk6wWl3h/fffRx+2CNuWE92dlXEIbD6QpH5A7H3ShZknO/d3jJNl7WyMI13f2BuUkZXrMQ3dsJopYAJXyE7FZCRsIwiDrZqM2XQ1KUeXZSqTD3g/JG2acTi+PnPsj09eay0aAYCdpKV4PyQzdjafjwTa02zIPBplErJuBNH0ba69mMykmA/SabWrNCd75iLGmLxrZcEPxYP4M0VeZgQ0DlE92QyXGBAMLi+vYBZLQEgKKYqZmT6f+5Pnmp0oKmyvG6fpGkhJWDHumITlvlOFoqxhq4wuwzAkLb7UyEoHBO+nXebfzDTLmqu1Nmnfqo0HGbh80GWv9DDQaNxDiFDWY9Ce6kx6qmmuXBnPpc+ui01Ng+sGZWQe6j1CnDwkT5RedzRBNC4MrLZ5OVC6MCMiTFA7gOCiT3Qt1kT4vse6W+Fy8wAUI1PcgOAlpKJuKrz99ls4O7uJ73znt/De+x/gww/u40c/+hvcvnsD333323jplVf4hEJEiANCAIjEfY+IEHpYw4GVIXCic/ABzlik2gMmxyfJQ+rITKdjp+kcW818EI20HP/yp/7OcVQzMDFkjt2LMbLWJMC9qBIwYpbVdSOeY4d2u+WNGsYFK2aNMtryQltdXsFHNbVYiNR1jcVymeYr+B6bbSv5ny1eO1qicrygldfKaETxwcEoDsJiFPm5QkrV4jzTyNRI1gl+N6RN55ybFAkfBw8pcB8CWwHWWFkDcl8iTvIndpCx5RLhA0H5zBIFtrAQEzm8/7MPQK+8grtnZygZNIgIITK5QjBZkLEHjwNnpzDDeI2MV9ZU0Hs/YOi7ETX4FK6Yz2ZpbL14HjmDBDg5OcF8PsdioU4CjMIseNwbEVo+0bwTEbqeGWKHoWeP8naLqqqwLNYGYmQsHkiHErPJDgm/4/cCAoJ42O1+M5OvN6ZaKVvpjt3XpgJpJMiQzUbE8UIda2ZZc9N7lVrOTr9kYTsRXoECYjQYfBDKIdYkhq7F5uoKQISzqpkICGkdbt+6hdu37+KtIWC9afHDv/0r/Jef/hgPHp7im/feEM3McYx2DIgU2N0uSbk+DMIDR0DIk5EEsgoRfa6nxMt2Tlnm4N5RvfWz01aCtzp/6gAIklSunkvXMCW3MSZFvGvVJ/1OjDGZplrqzkjsUNtupaAtkiBzzmG5WCRP62azkWpdLTabDQwZDrEhStRSo3Jn+0clj2QUPHaCnTnnMPQdBk0gNybXXiwwHUwx3HR9HXvWYGMIgBnXJyjjHBkDZNJNxe24P6JeKdYDg4efPsbtkxtMiR2Lq42qQQlzhdqvyDU2947IPk1trPgnYN1MPlsKNH0+IsJKsk2GYt6Vbr1MEytDOFjpiKN50OR1XkOMn67Xa2gpxbZtk0zI48ZQk4bC6LoEpEhQjCDLWp8rBUi5WXQi0uAkO31cFXvUYjZ5Dqm/pB4svRF/MQ2IGQnCfN7GdA4iS7hdeZaxDyLORBKhAghrq7OJQM6IS/78/Bz9MMBHYPARIXLpr08+/ghXqyv0XYd2y0UThsGnSsy5Zx4RmkCriFkuEZa6mcyDdKZneOYpZFo5R1NtVxesDl3GepT/Km9yHV9jCCESrIRikAS+Kr4XgrCL+IBBhIxSvJRAcEosls+Uh50yhxLY/GRh5tNcOzfmddeDbCqk93rl8n5Ph5lCGGMoJIpJMoZLylZivIcnIJ+/aeOjXK/cIS3YoZPBZrA8T+DNZ4jQdVsYA8xmrvj+uMXR7xFm8vpUQ9P5HR1uE61TNdMduKZ81GKs1FS3MSaTve97bDabJLhKK4m1vzDqizplyj6rVld+r2y6fubzOcfYFZahjoGuczJmrJllocbwI9PXZiWVH8TD+17SQiau2JgvPooVKa4N4kx5RQVUQ9O0kXnTyEYKUvuyMIlKgVYKA92scXI/Y2ABGAuEvkfT1Ig0x+OhR63hH97jh3/7N3jw8CEuV1c4v1yhbQdsNh3ef/9DPHj4AOv1JULc4PH5OVabDV4SsBSGr+37DprcDhsRifPygteTVcyUKHltlJ+DFDWWR3jaVmIUGtqGBN2Mt0CpYZTNWIuK2DVf1dVoQUYAQ9cJ1VI+bdXBoOo+kUHft2i7rZiP2dVe1xVms1nCPy4vLliQhbGjx53VzNYRPKzVvE1J3dljTpULX6PhE4+CYG564NZ1jXazFrA/x1iFics/xoy7ZSVJsC/9kwg+ejhUOZSAeBxTCFAkbLuO/aDE3F1JpEWw59tEOGdx/vghnAu4c+uomDZ9Lt2qkt5UTulEAy1/lmOUPl4sLGXW3Ww2o6pc5ZhOQfemaWAE34pgjf7i4gKXl5eJ2fjo6GhEEqER/QoL8RiH0fUXiyXOz88zh7/woanAdM5hsVyyJSSpeG23xWa7SVlHJHiu8wdKzeWTO5eXkiHKnkRhHpi2J3lZiAic0Vcs0CChFsMAI8JMF8rk6jtmmv6elkARn1kK0NADVV2BUCEGD2cNnET/37//Pn5x/z4+efgADx48xNVqi9VVi9XVBjB8kvqwwWq9RivUJnI3EDF2xlXMrTicWHCFWHY0TyZ3NgBR6JA/Q9vZ5HvGqjQv9mFpHDLArvKquKbGoHUdV2HXvLrFYgGqazhrkwcsxoitgMPec1Vu5QyrhKI7RsZgN+t1Mj81+LZpGhwdH8vGGtNjqzCbYrCjJs9YmnSaFQHw6R8Ri9NcMDutcD+9ZpxcV9RdXa8aeZ7xPE6tU+A+gtANA2J07JjScnPSySCarTWE9eoKzgQcn8xQnMpFP1RMx9EymViNO2tidyUUgjqG5K2ehlmUWlSpsZXMLSCScJs+sczGGHF0dDQqSNL3w05Fer5HztKoa+bh08OnqipEIkA0W2strIT6tNstk472Lbq+T4LTOAcrAvBAaMbU7hnjMdeBj09qUY+6ZA/F0XvJsxT3217lwANZFuhVSmfB1CtFMYd4kCvisoxBXTks5nOcnp2iaRZYLgZ0ZwNrPRZwLuLoaMkTqxpQYV1EPUVhspkZdMOUZl8241ngxPQQT8K9ytfHn8XOWD2l1TTaQOXY6qlqrIWVvvJ4IQkn/XwKXAar+xoxr9q2gvF6bWs075MHQqnRh8HDTWLkDkEWafOVD1hADAm2KDYTpzYRyPCmTpMzGd80tjoe2N0Rem8+LE26PaIQGiBruMUIMwkCsWb/8iu3cXyyBEOD+eSLmuObArDLCRudkNe3kTaXf1XC1ClB6p6PTjQ85HVRYJqq7SmWNhJ+Oy2vXx8YstGYxDTvRFmAR4zWooaIWCHc1IBlItqfm6kjkTZiWuAGxsQUf1Q5xwE1qhw8YQNm0ygmrIGihDKAJzG7z3Pg4/Q6qm3lnmbhYI1DiFzCjSo9idmUirGDH/hftZihqSwsERbzBW7duoXTmzeEa83BUIXZbAljubRbQIebd1/G0ekxXzMxI3CAbAQDksYykZ+PUWoKRjhn8hosZHiSQfvl9vNpxAJfAWCNLUpjGXP9So3k102pB0wIAZeXl1ngQDALWWy1MHK02w02m3XSp4Nnj2LdNHDqig8e5xfn8IOHEfLLzXY7IpectoMCDhkb8xJwqbFxXdvi6uoKxhJstOi6njn3RBPUKmIkwBgzAufnJpRZexLDL6Em1jkMelDGiK4f4GMm/eTzm9dIXc1R2QqVNfiX/+If4xtvvgomCu5AFEACR/CGZqFYAHVAFHqiPQJt//4bOzaICL0wCJ+enIzGU8eba1SUaUMTgSLxiJoStt1u8fHHHydNm03PxWg9peUD1XAD1pst6obxUr1f0VM5bCCwBecJW2fRLOapjkgr8ZBdf6AI8MhrNtJucn07ggQDAiPVfKo5TAc481jt7t/SUxlHlYB2BZoCvog5LAMQr6fncAWqdUExqA0f4H0P73tYs+BYGgCzpsHJ8QmaxQy3797BYr7EfH6EW7fuCoNEROc3eLjaIBhbLCOO8i71Mj6xeeEOngkQS4fBIUPgqU/bYhyuM+kPfg+iSISYsJd9JoaevMFlMJ8Db/mgUPAXQPJGGamgXjmOSWv7DtvNRhcOKskemDUNXF2lRbhaXWG7abFYLHF2eorVep1Mj52RuuaZ1YxRALrve1iXvbibzUYoyiXhvPDw5tHRNaYWglwb5QzpwW6FxVc1Cwg1vEcwXoIx8n6IIFRVLbgj4Xd/93uYVwaViwh+AAk+FtURUqTGacD5M5Mzav9jdgQNAwcxl7m3qmURIGbzdFwpeYPhmGWQiFI18c1mg8VigcViIZ7O5ei70xZiQNu1cFUlwgyCL1LhZWX2ExVi1lk0sxlmcZ7mabVaYbVeYQgTzGx6Qk9C99LgqGdCtTa9sP7cUVupnFDt5vinfEBeU2CfRgI1xtK82NMIBSnnDpwr2h4vFjV1iJhIDoZQL5hQrm5qNDWzcRgRZhZcLGQQq5C1MjZZVC3WAYqFpsYaLgmGW2QAoMBSPqNadp2Zv2OOlqrgaEjGZgR/dyx4FcBXbVoDadVcziEfOVaQCxLnvFkjAiLGiMEPiH0ODYkh5NErsCw91KbPNVoDEzgiP48Igpiv5b0HXA5PIVlcatqU19gxYXUIaRxHmVVt1Qwz6STpUBMwjiNjx5pzFjx0ij9PVzW/RjJnEeyYG0MW+9fA1Aucwf1BNE+6/vvXaH7lHp+anJpA3nUtC3sJzdE+qeasWSQJBtDBYltW5nU6A/yeQa6jwfeWEKEDTwLEmCK/qXg9hJBZICcDdWhQR5oV8qbYEZUTdXh83YyhZLOyeFz9qOIy1kpMvniRlMHCew7Yq2vMxSP3+uuvwUePet7AVg511aCqZwCCbLSA4AdcXJ1jIIubxNxu0QBEFcgENjuIvb0kgq4ftiBjYUnHMJ94bFKkc3v6+J+r7eJqxSEhGq8hEkYLjYET0ryUuiaLlUg0jow/sZd7kTQ5zXwYhh5XV0JJHQK8D6hrjkOrqhqRCG23RT90kkBsE/5mBY/rlIZGNKhh2NXOynURp6+VeBuQGFicc9isN5g1NWCimKA21dDUg5IFYBYsjG8pucIguaWSnmQlBUg+3Q8ebd8LjsOaGxEka4BA0QKRqaFnMwtXA4QBMfYgYoIEikx7pPUI2IS3PAchSkzjk+c9CR6UB0NMhbWTJjbZZzzXWmFtnEBeCjN10pV1KNR8vLq6wmbTJifPzZs30+c3bQdbOZCE85T5nsH7FHfpQ45zjWl1ApZ0JQMgQtU0WBqDuqn3pzNFOQaYb8mkVaNazWcxb0aDjhwsuqOpJQVCBy5/Sie3XKwltYxqHTq4ETlROUYRTMHDDz3qiqtAGSK8dPcuyBLqeYVN18KaCtZW6DtxKcMjhIHVWYmDCCEiJjDXgKmQBdQU7KQfOtSYQ0tkJaogjLXedII/r1YIJ93syqgRQoBxLn2mzLBIAjiGXLGHCDDMD6fCbPAxBdQqBZHOUV2fMpZWVeiDl+jvAW3boqoakByWtq4AiokckokBqZj/z6a9qhPAGoNBKppHYlOraaoEAcTyhNQXVPMiyJyHxMkFKpKrRWsaNF9Z1wUZcDyuByl7BhyssahrA+sACh7wPVQ7i5C80aiYLECw/HvwIDfu5nVNzeQybU/hgcwXNw6kVm1WL5BgJdot1q3CjMNwaonDHKSgtE/42dnZWdLEWhFgZAz69VryeDXrQWmRNDSLisOi1EZN+ruqOCC7ic11TLMHkkeptL8h8Tsm01XLCMZSKJWmjl4k36i89O5JW/RHB3vSU6i+d13TPaEbUFVdQJKctYAu5fxP7U+EBuplc2QkgEZ7LSIlKauZqT1I2uOuxrnvmZ+lPUlDPtTyd6478aefHf9NxAG4GogcilMVyOZnEK9m4pEXTQSU185UC5g+4/iF/Ho5X9I7EMrqX0ZfHl2rhDt2RqBYcqN1Y9KAFF8WD6rGV+67jqxT1fLIOaT1Mo0lG7XpuGeT90lt+pkU0rAnWHY6Jvva1CSf3qucO40c6LqOCS9jHM1v/mwZ31iE4+yZnNIYz1YpAWQOC7MQPOqmhnUSTyPXNobgwyCLz+Py6jIRrKntzCehHdERpweeDNzOYAVlRy15rMZLVGGfZFmMBlteCRqcCimyYtLpNvQ9e7Usax2VcwjEC8wQQGANzlojGzBgJZ6wqq4QEWBshUiG88/AXihQFMASIBPRDy0aNyuwlcL8I82EkPizlMLy2dtBjZnUxMw4ClCmiGVQeRd0V2xEtaTSJFFTFKilaEgVqhQsrBPUtttUH9EHrp+qZglrYVwbVZ0Mi+USinEdEmypb6yeJw1Jm67H7XYLg8zxD+SwDaLSzJqCHuPcVw3srJ1LaVeKfxE4wLwXrSTGiEjE3s/A3GYmEkAOlips1j0+Xl/h9N5NLmASOwADiGwxT2y/cH95DzLt+3gOy7kYh+tkTDHXNfBYrVYgcFWyUrhkbLUcAYz2bhkuU/6ureTEcy6Xkvzkk0/gNMCaDE5PT1NkP3+mqCkROa6T4a3xs2p/VeXUak98zz2J5tpC9EndT08oEx9C4GDSCKzXq0yJayyc5OpRXcPuLI/8f0wGajQphzpVfF3Vz3zUFj+imJWiHhIJFxT4dT/0zDor0ea2qhHDIMyXer0Aa6zYDxGb9Yo3SM1BmMYYBBDTDlFkRtrIAo1E+A++A2wonrjQgiIhMdIKuvdFtSdpaSX2wUKjT3/veqGzh/CQsCVCSgzmsycfOOrt4ngzYQgzxFgJKQ06m6EhZvrkEqs5+JwYa/IxCbexMFvM5rAS+5QtCp87r0Y/ja+tJrlqlMMwYN40sNalCt26wMiYZD5HsCALIEBMdI5JszCo0G43OF89wjtvnTJmRgMAL5COBuaqeCVAanaS4nkFBqbzvSPIijWgwiwEzxXXFosxf9jeOaXR+yPzsnDYoFhLKgfYSxoT7PDgwQNUVog954vkFNAiOTGGFHyLyBQMVVXx2E3WcggBZE0SbEHnGgc1s/GgjaaYAMQAxHxB1qJYi4mB6wEE75V/VR5apkcfXsdCKIcPamrjEU7fjcW14+QbZaji5PwqVn/+NA9SRN8PMKbOWm3xZe8jYCgN5M6YjK16uVfMf5Yqs/6IhCeI7s/VDpoNT5SbY2/xgZHM7xfrhNTkKr5bPnqpDWlcWDI9oLQu5b2eVsiPN52avulQk36qyajXTlffd5uYtYHMimoAQ3u/pMI6jfp0aiMBkdB3A1aXay4woozdQLFqx5ZIAiqIgPGuSt8JCfohFnzyrCNLKJly44MrP8vTr0We5t1B4y7QaJ4BSQoPAa7oy6EWBXNGsX1GcNX0ftJzN5XwyYUbhdhwGs0bJeJbA1v9IHgZF3fwISD0HbpNGS+SH4yIYISml4jrECJG+J6pVXRRcwcnkmfUj/yrKf72hgMOoyEw9TDjMhQ8oh8QwyDgcmQqHooYosPlaoNffvQQr73xGpzjcAxgkN1p0LaAOWngZg2GMi3JRDCnmfz0srwCAd6IAORSehqGkf+TCZPwjufZSuEcx68CEzzpsOCaLKZrZI6m71SVhTE1qorj87T2sTUEP/QY+h7rsMbJjTOQmH98jkoQQtw1qcqe6KYJMYxIPDXwd71eI9TiOTbiqROz2oJPdAApX5ZDkooH8gFt23Gd0t7DVBWMdSw8DONnIQLdEDBEgieHDoQYHQhM+0QxwILgokXsDH753qf46//8n/B733+XNf3gQDCIMZMVgHU5WLKJQ42Fcw+KDgAHrBspJOCDRvRDWGD08KCk0Smonk3PsYm9f40UYz7R2kf4mGprxPte+fIg9D5+GAAQ6rpC125ZVgx9iv7XWD0idtBst1rli7U0MhZaj1TNcGM5CyDGiDAcyM2MkRedsUz/Ml1E3g9AkEEKHhQsyPBi8oGJ/QbvhWdLBkDUckOEasb5l9ZYUGTbfRj6RCu9s2D3dbJo2VsdRZhZkFGOqgiKHhQGwA9AYCZaFiAcE+ZjwOV6iw8+fIg7L7/B2IUZADPAmgpEBu0WcLca2IaFmYWkWxgAmgwMPppJhBlXrDLgokRe+mJ4kaenKutp/mrb1FTA9O/JSbirrY3fG8lCwTqrygppI3/bh8y8sO1YQLSSJ4gIWTNjk3YHcy5+J9ECcjKz4mEGzlUcwOoDEyYQwwwp2JdYnIUYmCAgchgOIuNhKn3bbYu275m7zlYg5/iwF+9uiEDnA/pI8HDoSYRZtACJJxMECwP0Bh/ff4g//5O/RL8FKmMRYwVjfC58ImuKwB5dkQOwROjDwKsnWvEwi9QKnH1CYG5aYahnIUgc6qBsMSrYFOPKU60hD3E04fsOk4S7qvIDFmhcJU1KPhr29Dvnkhe1rir0bYtQJKVTCmXJXtdty8WCjTEwrmLMzRDgewlR4QR/C8LgB/hDwkwvmDwK04cRgBOFurijpCZgWR5etT956EjMy5QW4Y55MRq53Zf2/J1OlqThl8GsGVvQHMPsdeQN0LYdVqsNYqxQ14CRiIUY2fxRbKR4SIx0+RK4iygGRCKZS7V51OtnU/H3tesWXPHKU39X3ki/TmGAaW/3mUlq9iTzB0AEJ6NPQV01W8a3OSTkDwt/tTSM4bnKXjJ9b99VOGsjmapQyp7xfZRaOo1XocUoGB1p10QnEsUdjLH6fsDQD2NVaK8ZlffMdcfd08zy1JPItxyfEFMTF/stu2txzHE/aKcz1pTwlDn4YKWVqGbnaGT1OYp99hShGSVRnFynkKBK4FdXDCgqvsAUKaJ6xkIlJUoJpCEEbKVce/DKXEo7+YLP0tSLU4LHKpO1XkBd16MJDSFis+H8sk/+9b/G62+8jLfeehUvv3o7Dfx2u8Xc3OBakYYrCyVZpqp7jHDGIQ6c0qJ03QenPj3j5xNkL1y79nFYuFlrUw1OzQONUZlaxgC3al/71sQoQFR+tm2L+WzOOaJE6IcBIXCtTAXytUjGqM96ckkZcr1e5SqmS6qb1Nec8sOf6bouhWXwyxFEAcYAFFiDsUQ4v3gIkMfdl24lD7GGJ2SHEP8ZS9xrpPYWYQ0iRMtQCy04k7zNhkkzLy4uUsSBBs2W+OFnaSMqKsXH9N6UHYaKNy6Xy+Txnc1mgDUSqtKL08amIGd9RiXzBID5vMmQFZAcB8YccABE5EWiaSj6DqutMoh6EVeNvCP5NPSysE1x7Yi27xHF3d11XXqPE1mNmA07aswTG0860wCV+Wa6u5jahqmUNRiYiBBDwGa9xkcffYQf/OV/xve+9xtYLiu89PItRGLq6+12y16YqpZk9qT+gaDOjwjrLIaOvTPGFhVr9o7y371GhBRTpsGsJOyhIWb3/nUCTNvU06Xf67oO89ksVXwfhh6BuFZm225TJH/W4DGyMsq+AkxXVFuD5dFRSrIuw8JiBLbC1BtJMSsPQ0zXToYj160hnF98CsDj5ZfucGyeEWklOb4ZM+HOZQyNxFEwjtHSRPQpZY/WQY2Rw2C6rsPFxUVitRgJvKh43LOvyTKmsBRmEK1MD6UYI4xlYZZMzrpGQEQXuDCOMRZVRSNhBvBBcXl5CSCiaW4xtRAZGBC6osbEDjnjTpu8piCfYiLTB9HOc9KomQgzyWcU7Wz39C3A/xgLr9Gztv2KuaaIJPV2ZA/w/du2FfK6LbquQ11n72Vip03XJiZXHJkDvMAYSJZTFECi+SlvqX8/yY74Fbfd8Iz9a2OvpqSfP3j1qYkjZqiaYpP77OvDKEwgxp1+jDeYfAZRGE3iHiG4qySX65BMrkmaAPPJA8ZQMFkkjK/YI+k+Ac4ZzBcz+ZDeMBaLIY9VjjkrRzbfnAVSJkIthdo0PEOzIUb9juPFx13Y3dfTNg3ZGGHdUXfCZC4x1iDHGvX1gnSkJAmEFeM4BGU/OaP8VHVaH1MJFNl7xJ6mkvo2fa4YeH3GvGmlVLthVlY1RwFJcSolOY0H/kktgk9FgFIKEYqHV1LJpmmSmRBFG7h16xZ+67u/BbIGxgb8zd/+DTbbS7z99jdwenoTZ2dnmM/mcOoQKRY/A7xGhDchDBFhiHC24mdQ214H9++mUjZqJQRgrUuxWLvr6emuw3/IYRIl3Uw299Az8+usqXOdg5GXfixYk6UXuXajkRgp/Q4ZrhfB9VkJCIReCibnOEnG4EIcYGKUdQ/cunWCmQu4e3shQdsDENXTrbjdWGApTKLvsYOO1/Pl5Tm27TalFKkZXJp/mnURQuC1b6bhRZ+9leNfEmuqlzUW7ymGqSy9QRwGyrqizkaFqvT6xhCOjrjgSfAem65PFqJq38AeYTbtXJKkMZd0V1g9yqJgs1AxqsxPpmomfz8LNGstLJnkWYmQ0yXkNCldiPtO3oMt8slHxkppNFWjNYeQWRo0N0wXvXUOd+/exWJ5E7du38af/fn/D3/+F3+Cn/70hwAI777LfGeL+QKVrdCHYrGJ99KAEGG4iImY0JWrONk45WQW44yxfPu71PKJz5uzqiqJ7DajQiFPvM6Bv8sT3FgD33qgKG2m5dJU81FtK19HhAaYk66pKmbOrSooIWNVVzCWA6c515PpwHmpEkAeICAEBfoDnAPu3j0F3T6Go1dTBkqMHtZkmvCMGU6sohjTWlJN69Gjxzi/eIz5fJ4K9eoG13+9MLMqm+vuvnqGPTYd84nmXI67hPkmSEGFbCnMlMxCQ2m0wHiuDkesyc6PAURsrlZYr1epItnt27fTfd3eh6BCRS3GM6voSAJiuhDKa4wfWodN1U2hG1YvkEi6kekpX3yWgY7YE0ufVGJNlTIjM0FjWY6OZjg7O0NVVWjbDjH0WK1WaNsOxswZ61HTUqW1mk36u1gWMSB9vnzwqGORwRqMPvCCtn0m3t524O30Mu2+ljnoy82RE54Pe8+uGS81LUUrnppF+3IT8xVlgmI+pDNGJQZUghsk+DcJ0HI/KA6XtdCqdnBEqG1W2DWtbXq8yTYrDvjpI/IB3fc9qqpKlEolfbV+bmpe785jmWB+eFj3jtne+RmbnaVTZx+UoAJvt2/8u7VK2JrTy6bPcpAC6JAtrBfJvx98hv0PLt2LMSJA63HFhDWVLTyDENOLs1mXPSokz+DkVO66FtXRUlhGeUV5L/FF4FL09+7dw2r9O3j//Z/ipz+9j4sLj3tv3sO9W3Mcz2oQOeFUIg1XEw0wgMggCDlkZSxIBNrhJyGADpcO+7q2CJ0jAayHAc4ilSs7tJCudwjwlY0x8CGg73pUlStgkVxZrPSaHu5jSFXPk4dd8T0yTMQYPQYPFIiZXDeHelgyiWpovnCoDMERX5/NJYNcuVzbNFd3jJkpHqh1E9RjuVqt0Pd9qlY/m83Qdd0oB3NXsOy7z9O1HawsApoBothx3/ec5iTMGtOxV5mgZA6aRpnwvmHAZrVOSetaJIc91b0oD+H60AwNLZBeswArMLNh6FOYQwnoHhqQceeD4FtZAE0dCVP2hScOLGSRpYGRZBAiVLVD3zNdcNPcgHWOI4gJTPUj5vHJyQm+/e1v4+atE/x//r/n+Ku/+i+4uPhr/NP/9h/hxlsvY356gqrhPDtEQhDdK8SA6IldzT7C9x525mCTMNOTj7U6tSA0sPdF1sqeRwsxpgo7VVWh7zpQTZjPZwDGwPQhAUaj/zPYpUnsIbCnvK6Y5mk4IMzysE+PHMaI+6FLWkNOuyIYYzEMHkOI6KQ2axBFjL3YHgQ2NS3xwWkIODpmYWYigNCBKAp+K18eafxZo2NFMUJoExIvQRlqoYyvfd/j+PgYR0dH6XXV1kolZSzY8IVguVPkXAXQ8fExZlL0dz6f59CLQkbnuWGabPWwrsQpNwxc9vDWrVupfub5xWMMPWukbp8GNm7j14NK86gVlotPFhbVwUZieO2hRNZ+xOIeu6rfE9peE06FY7bTjZxsOuAheij/WdPMcHJ6iqqqsFpt8ODBBdbrNVdVHjyqOp2PSIkgJb4hOB0VCzJ3bmc4Dr31pbWn9Vw+7SGzt8VsfnBYRgbsg2jrU1PluvvH4nPJox5CwZah5pZiT+kqQAlNjG6TsSSafEM/mkzMna/L9yLlQFsCrCU4SyApEK0rZLKT0r9dk6uENbIwKq0lTewvzc595t14DOOe1w6369dIZhwBsqnOOHbmRjv0fQX9k/AVJWroM3NxSUagpKsH48zG5x5Sp8a2akF7m55SzrgCozgY8jF5TxfgZ21JyYEKxdQhjrsJXLugaRoAEsxHhMePz/Hw0RU+eXCBzWaDwbfo+jX6fsArr97ByekNhBjxox/+GJfbLb73974PeBmfSIieDU5rHP8dgOgh4D99ISfe16dNTRpmUNh2fXFQcpWrfRvt4OUKzctaZjvxfoCp3WSNxuLWNJYk+pZoSAnTsxz/COQ4OMV6Bx/Q9YMINEqnU5SSdBQtCBaWmJQxKp4KdhRx/PWe/RFpLBiLwLYIFlpXV1fw3o8AdDU51ey8vLzkNS2BwiUmPbqdKA7PejwdUobKe2hcX13XuLxa7ciEfPBU4CwJpgJSOrCq4jhWLaTz+PFjrrdqLaeqWYu6qq+hzU5aR25KjczcYID3JTiKZCpOH2ba+anHFGCbdx/Y+qxNucFYakdlhELftqmK9mKxAIj7H4nw0ccf44c//Cn+45/9JT755BOAPOrG4PU3XsLb33gddb3A1cUWf/of/hR37n+A7373+1Ak3xiDQVIzjDXAEAEPBA8YU/HdVajuHeivs6Sb6hwZslCtwxiuwbDatskUGuTQ2Y1dmlxd1xqyBuC9R2U5aLTvPWiRMaXRNWLMJIuj1/NLUfpqnYN1LCCTRhAZZR1C4LxNIGW2KH7KF7EwqGGpQuUqfpkAIg4zYPqoqQav9EHSoZQZwMKfw4wGPHr0CMMwoJJAXg0Sn81mgg93WK1W2Gw2ifVVx2GqNKRczT3Y9XVtnzCbAv2dFE+ZzeZ4+OjxzueD1IuYz2bwnjAEpubXXjRNkyIprq6u0Hcth8pUFU6OjzGfz7FYLHaFWalWU/Ga/h6U9gC7Qqps0xPgkBfjYPsCzC5SOxLM5aSepTRpcrq27RbnFxf46KOP8OGHH8LYiPmywmuvv4Tj4yUWy2NcXbZ4/OgxTN0k6papXZ0FOb+WzcwDD0PFl1/gNhUkJa55CM9Slw7/vu/9NB2iSemG3b3P03pQdZNmr1hIBy0bAgeuk9Y8djfyyIyTPsnvzFvG7LLpW4SkJfKHBJAgk2RS0vwK85SF93gYeHh2DVg2f0PKnhlnTfCYaVxZ27ZJmBzy4I7GZXL+PNG83ycDZN/p0yl8YO04/q1cPzEKdljUOND3VFATcWoThP+s8h5BiDx3MgDKNo5056bFQ6lQR7UQRQ6JeAopNBmgUrpnJ8Hn5PqKRU8SjpIzAHSBgwiuqnDjxg288847ePPNe7AuoplZvP3NN3F8fApXNbC0xPuffgxnK6yu1lgcSyEGECwCQzwhsoUUi9SToksHxD5yuYYXCDh7ni1mzjlDJlW+RrG4Pwsep5hRU9WimYVU49UQJULGVCha+gLsjnxaK7ZIhiYww4NkkBCYMWMIQTzv2XNtiQF/eF4hV5drfHT/Pt567SbOjhZwi5kcqoHZOEba2RiQT8qEWsWCz/Y9O+BUWyzDLzQlaCZFe8p85HJ8P8946/f2w0jFfHBhUIQYUdUVIO4BIkpOQOfcqLxg6ZyJiOi6VsrjcTlD1ba7rmOap33eTH24qsiNkisi+siU0yZjA8zGussIebBFrfuN0eJNGtPTnsYHG4kg48TWKKeYtcyMwAy6TFlEBEQiNHWDV199FTdvvoxbt+6gqgi2AhbHNdq2Rz9EvHVvjh+//x7WbYfHD88xW9yEqy1SQZUoVatCRAwEppEhIB6mwy7Ot4Of+eq3fUAxpDoTUjFZ5bXSmqyfpXnvMfQDTo6O2VnjPdq2BcBxSirYtIBGPCDIAKlbEAJXzhYNmojrN3JfCTAWAVyVyUcgCtAffRR6GoM4WFB0ePTpp/iz//AnMN//DcRX72LR3IGrHKLv4X2AK4RZCT6w8GKKKbY0clYNp9vlqP+ykIwKOOccFovFWFGgcQI4cDju7klt7/cEbtIAZTVvg/ecXE4MKxln4Yc4wvjG/dEY1ID1eo3NdoPZbIaZMNSGELDZbFI1dZc30lh4TANLo5plgRNn9S0mYkO2Gcpn2mNq5uuV2K16/p7BtNCLTC64szAn6m5yRxfPbC3Hlx0fz/Hmm2+hqjmliZzH+cUVttsey8UNzOcLbHuPrusLHKwI/tXXIkdvF+cgj6Wq1E9+sq9E2ztHaVJR+ghHQD2SlzAHS6q2Hw8I9uvWRWmqhBhGQLcKR0qaGYFEMERAqKnGuB4hr5XSeUCUPZNBzU1g5M3UvcTxhQZMJWvQth0+/vgTrFYrdF2XzCoPdhihXJEEJvecmJgEoEgFvtYzqAKrHIsyLEU/Mw1/elYlYu/3itc060D/Zm67XXPeGJOKrSSliMQ+i4AfBvhhgJNEeaKc2RCjlAHc7R5P7tTM1DEcsVGU2MAzth21XlGWz6KRpTknYGJzJ9M3FZeVgS8wL2st+n6DR49WAFk0DZcCqxcG/RABcNXq5fIIQzRomhkH3Io5icSKyvl5BA7SVcG274FZqD77o34dmq4jKtzvTIcjxASfTUkAkKmk9MDi9LusKbBRoUQDMYkJEjpqAyBQTDTPKccXusn4X4zggNkQuCxcYWEQUcGfzQGzfvC4eHyBuWgWSumtGh+PS2HP5rsiLXACE6BK+MUujc8unlmGqqTxL6yoKW71Wc3NdA1k8F9zLLV4igbPjpPNIcZUzjhSSCiBTRNBnCEui0pSo0gLmlCK6dFJiTJQY20JUWNGcjKwgphxNKFP0fZ4qmLx+9MP6uHPhRBgoQVvWZgZQwjBI7pMMVzVDbbbR/jJT36G996/j8WiwdGywfGNJU5Ob+Do6BRkHW7dvIPZvMPR8hTW1ABYTXY1D2j0Eb4bYMiidjWoMDEZH5g+N77+Am3f8+nCNhZWsBLGj8xIS9+51DWaPoAREYI1uaDJfNbAWsNVtslwpXoDDCHK5gHn2JJSPnNs1hA8qqqG7gvWcjTnEOj6Af2gAi2fj9YYwHsJwXCwpkLf9fjwgw9xdnqK05NjOEsIfkBWHAxQVMnioSMYU5a74efX4FjVUPaRLpYCamecCiFXfr7URp+1McGmUX9H0oqHYcDJyQn6vsdmu8Xp2WnSJvVA4z4FtviI2XV7qXEKEBAiBomX40Inwg/nHCg2IggBlzfTWKUtzUyS/yVqG5GgmfIkD9y0TT0fT4sO7Td+Jx/Id5m8WKi+pAtBU5sEgwAL6xgjrERzPz4/RwBwtJyhaxeI1qOZLbBc8jPPZnMEqlDXzDwAUUoplQTTQEgaEzgms3ZqjRcP8QLBZtMD5dDBcu3Bc82zRD0Ui+RjrUy07/qH7j3tX7pu0sxyFSY1M53hzQLIkBfjrhREDOznYj1yR9EKNCCUqah9DBz5r9cDMfAf1TLQat0Bq6sVmrpGXVdJgKjWqDmdB0a6WClZSJQmcIJPDgi0Q23f5/Y55PaNP5DzanU8dR2rNqW8ZV3Xwe/pc3m97HnOkQbp/amJDBFolinZyUxyM7MU32OHy2yVhG7FiKRJeVJju3/8OQY2487nPkv4bEzn5nhrjClFMrhIxuDn772Hjz7+mN3HEtjYti0ePXyEulmgrhe4dTvi5PQMsyHAugoQPISoNFVMStEhY/HU0imtgq9mezbzhA/CEAIq60BSe5QPyJyzN8JrC5P8unAQ/YxiL1q1W5v3HpXk4466M+m7HtqM8QjVj2gJ6T0YBv5DSNx83Fd2b0nSkWw6YD6b4eWXX0bT1CIgw0QTG2NOoi9kk1X6yhrPMDLZ9oVKTE3PpxFon9WDnB0prOaqhaVzOcUdn+aaGddmr21mq9XpY8deucUOhmYkdzl/D0DmUGJZlrGypx2EQ2ZCwiKeGS/ba8MkU5lPUo+IAB96AExjbIxJsWJkHP7o3/8RrlYt7tx5DbNmjmFocXF5hauPLtD2ET4avH7vW3j99TcQyGE2W4BgEaXgBAt3AyKHvvVAKDSz1DiZOPU85kn5u2FvSiNCFCxrNl/AOZuSj43NIRo6dqxpRRmiw2NEeZUnDyYnreulpKhwww4bzv4QIgBDwDDeGEHCLZqm4UIhvHBYeBmDQMCmbdENXMHLOMsaWshZMUzlTHAGuHnjBL/9ve/i5HiJqjKIsUeMveB3Y6++DBMLQmPgA6X3YuTYsdVqhaqqEmusakLAWOMpwf6p0AphTwbPM7ZxKAX/M4JPAkjMtuWYlP3bl3/N1hIfBUpZz0B/kGLCWfPLmvMeqLVUH3eeMQ1YVitLCfpUTbS4HcH1zONJk5/ax/Q/pC0RWYpzUq8IVe0CEX7x/i/wySefCB89y/eu5SDZ84tzXEkKxsnpKc7ObsLaKm24BFrz0uOiwKrZHpLNo2f/6mpkT9P2bxRKC1E1M90EZMbB2vzz6e6j31MPl5og2pTOmagAJPZoZnzPkK6hoUgsDDJc0g8DfIiIhTk21lSEnZiA+XyGl1++mzSzmDSzMU42Ws8lepIQnVxct9TMnlUg7fv85xFqKsimJuSIE3FynxKn05bwvGIcNMc0n/lsx5cFk4A9mtnUAVA+Xiw/E4t3afxJvcYhCfXFwkOTqxFGa4Pf5dQRIBfMgOIcgRlhm6bBnTt3sJgt0LVLHB8vUC9q3Lp1G0dHRxxbJKeoCvAIAiKJw5Jf8yHAEZfOyp0pVOxnwA2/Su0Qfla+zgSMeSEbo6XUBlRNnQvlyHfHeM7+++nvugE03soW2BjEktAqUBnol/uARQrHbwZ0fZ+TwMs5180q/xhX44XE0ImiZvkgJQJcBSwWFW7fvpG8mHq4sgY24fSDWj75wNUFo0J2ahbu80h+LuGE8dyVToJ9jSbfK5PLByn9N/W+Tvu3H0sL4rghOJs93/t20EiYZZoTjOho85VzR5Mr9Ytqz6ygjNXysqnZyt5MxtD6voMxBJuei6sBeR8wm81x89ZdfO+730NTNQihx+A7rLoVQjSo6hnqukEfLSIZkOHkYRJOs1Qf01j0fQ9Xl/VGRcyHcgILTO9rqpiVG2686fIacq6CtQ5t26JZzFOCODtukMyS0hrYh/+EEPhwJS1a0kpBEzfSaHw/ABQTI0Pi7NE+gQNlV6sVhjDAOAvSKlISgBpgAcNmZz8ErgMKFTYaKA1AamBYCyzmwLI5wrz+JipnEEOPEHoYE9JaTGOGCAuA66wCQdYWoIC6l39jE7EMgAWyeVlWKZvOzz7h8XmbzrtmJ8xmM7TblrMQJMeyFLZl30qWDLkaQvC4uryANYTK1ePQsMlzXKuZHfRkqPsmmWyffTDKe4xOYuwoWU93vVFHAWUbCN7zyW01+lsXQYRzFU5OTvHqa6+itjWIAkABbehwcbVGPwRY6zAEw1WZoAtw7GqgqZm5p29x8lt+0q+urnYIYN5/AmfTQsMn2rZLxWJiADTmcHyt8f2m99E8TGutYGZRslN0czALA4AU+ErqLJLPqPbWth1gAUNuZD4xwQKxFkZKKRURjdqtOo8xwR2GgKoGZlWNo8UdWLSIwSNGn7QyIMdYxmRTqqNBNEH5O0w0s0Pm4tRL+YUqHvvaREtUYVtVFXrxYpYOmYNmbhzv+Rgj2u0Ws9kMztlrNc8DfGbTQL68IPi14pTcETdPGQxK0+VaPFC6Ex2+1kjSFWopxmJBrxa8x15GW+IAVwJHGcNmDnrVChTM5P7wgi2FGNR5IcNEo/ekXzGO42dlgSoE8CIpaM/i0Hmmz0SMaN+MtSn5WE9kTsh++o2nG9sLfpLBcA8ffGJ4wTWbX/tZcqqRpVS8JqU/pXuyZ7SAsvL8ybokaOgApQLA7MhQwFs/n2e+xJ8zNsTfU0og5fLfp1Xtw+32Pee+38vXrjuYrmuxuLf20TmXBJsxu+M/Xh+FpowISJHwaRzdvufjWIKis/rFGDFS5fj9TAxc4k8YTWn5WL+qFif/eCDKmJQYPLquBSHK5vF8ukrScCPJuOvVKoG7OgZ932G9WSOwHQOQAadgEkI04Hg1PrEZP+GQjbKyVNmzF0tsffGtPBynnjSAE4vVg9XUNaqqZoC3MJNUcyo9dLrmk1ZXWg4R6FpOEZrPZvDDgL7rE0iOyASKVVUJMULG72LMMW+AauoOTTPHbDYHwJHmhrhATgBhiCHxr6mWrkSlqmGxlmhQ1zne0Fogeg+oVw7qAGAz2lrO+1TniHXKoyZWQADWVyvJj2aTTMkXy3FOUNATBPgX0RRDTNGcerh4D+ssZvM52rbl8SgK+wJIwdIllhakwAsQMAwefZeLm0zrfRrDTCS6pQ6G+u5gHciLLXkqCvwHxSd/5S11U54s5pcZl2KKbyBnAOgniHK5qnbbjcwZzhfzvFEA2VHqCc1ameIkKgg1iHa3ff2F2fUtjxNAUr5NFmeIyVIztKt1AOPXSkEGwWhijKjqGlG06bJyeQqZMBmf0hka40d8iKVqTEkgGFkbzJTRD0MKltVuFN1kTYGYVVabIUBTmPLeyWuCyKQ8XzLAuOI5C95OEuhLLUUF/jQg9YvEwva1ZO7tsUKUm66qqxymYcZYVxJIopGqdp61O58i//Vw1INo9Gzyu2BmPGhca5BfmcaYZQ/lngVVfvBX2dJqLH5XMHbSHc7ZQyosAfBzDJ6F1ePHF3jvvffRth2cMzAWqBcMJnPxWBTCrDTB86YKMU/sjhFNZYemm/SrL+BKb9chTEOQIMSIUTzZ6OAsTNGnAqhpfJ+pdpJ+j09O01HnhDGWtTGTecIUO4vIjBoZaigEq74i+E/f9Tg/7zDMKtw8XebPKyShXw8o1rDiZWFkl7N2Y0ebuvSyflHC6zpNbq8zIT21/B1z6leGZvL393miiwulz5WFi6/VLmXLOxoV2o3pXSUw1Oa92q4aYZ0rROcbvQCbUrAGgnIlMYDR9S1mzqCpcwa/9wFXl2s8+PRTPHz4Hn720we4ffsI80WN+bzB2e2beP3ePbz0ymsIwmALEurjCXYWYmYx4MWPyXBMhVmBt31N2pPwlgiIOSnFaGWsXF2xxhSJE7wh2NmIqicfpHqiaziG4jJADtLUQhoMQHcY+n5Ur5EvpuVoeA5CCBi8Rz1rUDcNqrpmXjLD5h4ZiwFA7wO27cBQgxxuJgGfQv8TLYIHHj96hE8/+hA3z05w9tvfAZEF4OGDPotqbCiWBWslEQSErJFYa7GYzzH0Hn0/JAqgKR32FynYntTSfSbmY13XnD2BIgNger5T5pgDsiKlz9N3HbbrdbKc9j5TwhYBN74DpQuW2elAWQY+Jg3us3IgPdemR52aM/IQwzDA1JSCYgEe9M1mi4uLS/zsZ/fx+NFPcPNmjePjOY5Pl3jltVdxfOMGXr/3NscdWcZH5EaFeJLT38e9k3ZYyH89tLKnaQovsTAp04TYEaAYY+nRK4taKHC+s6AJOaJfhJyxFkPvMQwe82aGtssnvJoxI20BEI0rCGUNc4Qxpx+bpsR2H0JgMsZuGATpIkTkqHRENiENDGIIuLq6wns//wW6zW3E732HrxOnG1N6UJqtUQoKB5MC2IkMmqZBVW0TZU4ZQvVlCLOyldq5Unnr66Vzo+zbKAMgaroSf37oe7RtuxNZcUhLO5jOpJ/PAX05lid1QD6bO7fP/PwSWjosVLDpZigGV34653D79m1cXQ2YzwacnljMFzUWyxma2YyrkitAmS5fqtSyFCOPUTlpO91SUzOqKVpc9OujoB1oLM2SZiVafXbUHB4A1WASD1lhmlC6NpKgSphbYWam+5QmbNIq5LuYhDyU5m9pTcaCPr7A2oqPgOtqeqyuVgCQMkJ4zgmJXmKfhl7+qv0XKCglyU8E8hfV9kFI+zym5euxeF0135LD7JCZuKNNFrZ26ZCcxpWVv+fohzgWZqX9PcX2/eCTLdyLZ9BMPJ4vQlOThCDqapCalmGAsnSyu97AWYPj42P8s3/2z3BxsUHXAoQBIQzwccCm3+LmzVuYNVx0NAiewwudSfeCnCYhsOqf8tCwX+faL7u+PpJMF+h40SOZUOx9GzBfLFIRm5LSuTxoFEjOwmi8afQWynDBTLN9qn7tBw9jIGXK+sRQCkjYjRSd1bkNIQjtD2sVpkh8V8ETiU3ltusAKiiBxGTl+NYAZyusuw4/+tsf4+xojqPFUkDDTNhobVXss6zpc0k2LihdVxW6rgeIYCxjZrze8rjtE0C/KoWitH7UszoMA5ZHR4jgPNmmaTK5Q7EprBTmJiDVNtUzJghLcNd1mal2wpwxClEB9guzPT3mSjIhFpQtBLsXb/tyG+Mo3BeOOVIviRoFGj/GrvPFosb3v/99cKK4xfpqg9V6hcvVBX7x4fs4Pj4RTiu5PoDxicqvhMC1/dhkor3DEQ+IsvH1vh5tJNBiNjO9Z6aJqqqSEGJTKX/XUGZeALCziLMXjS8ehUjRC58ZEyoKy6whqf7jYRc5VzObNRkW0P5wzqNNmN0I3AbBR/ZmUuVGWjgRBDuLMMbBDwHvv/c+bv/Wu5jPZvopPlRhwFbveIOr9QPweVlVDm3bcQycsYksMlVTOiDMvoymB4r3Xrj+mfFC6xBo07WRX1NrJo+Fl/xTzSQYaeMHzGh3SIXkWxSmldYBVGwA1wS0HmpTmOB5tKLTY5VUmGZ3cD6SzeATZxIRu5GbphnZ/fkrhYmgoK14zJLni+9a3OfFEPbPs+kiLUN4CBrjXoxhHJuLU+9nJF7ee/He0swcaWksRFTw7fOY8dzsAwv0lfK6KjBloxEDLiEqrqffkX7t+VtZH5qmRl3X0IEYZ28WDxmjPHu+QqmB6r4bPfNk7Pe99/RtPOCHhMaTMLkYOfuCir6UB9uhNn2eQ89xyMm0FzPbdwGNPDZGgvps6RKeZv4Dh6XVIQPsi2m68BAifN+DWdaBvh9gnUPT1GKLy+cIePDgAa4u11itNpjPFqxZGeDu3Zcwm81Y5Tc2yS4ASR0uccSh79E4mzCbPAzZG/d1bYdPTTlxGSaHOgDUlAJ5VFKUWb8vys3IJJxqH8qAkb2WvJQ3m3UqZqL9KrEXjm1lLVp7x0JEwi4AAfz1UMo/QwTavkfvPaAFfUWzcs7xYZgYjZkbz1qLV199BXfv3maFwEO0kgoIHVsOghUlIRkzGwsD4C7FzrmCmVUZKb4YjawUz09/Pca6Mo6u4z2fz6V2Z7+3zF2MMQXDImokQGbqSVW1Jtp4eVBNr2mmH9hnajJ2MSRVXxN/aarkvACtsBrghz6Vsho8mx9VXSEzD/CmefToET748AP85Cc/wYNPHuDq6gph8Lh181aqpIwEUu8TSpTNTElCzi1iHGP29WyHT+qMaag3UzcimyRhZ1GWa7DEcafv6X2HgQ+qCGC7ZZwlu/yzlzJv/Ci5unzIaNcj2NRUMsYcMyjcWgC6waMPATCZRoqZV1gTCXIxSyblnt596TZu3rzBgcEhgjNEHBAorUGgoMOJECwOBdUPjYJlAc5mOSTIDkJG17bPsE5lrKbCTOtkMKGAOyBTcliGZj3oHGmg7bheQBZo+57xoDdz+lzZo7Rf/d9tRefjnteecxuZNeAFp1HZJRbT9Ux0t15v0HUdttsta12ImK9WqOdzVK7Oj5HMhOkNVS0eIyyY/M6Jw1m+PUMa4lei7ZgTBhiVFOJPyaGYE8SffN39r3NITBCBg3RQKQySF/7oavk3cepkjXsCtRQAc4wsjEpzL3ckX5k1L6CqLI6OlqicYy+kBG6X36R07XH/drOeedWVaV+j/j3dpjzQ9n/30DWf9Po+jjWVG2lugAmGPL6mOn72zccUQtC2Q5ut2e3TC/DF1dU9rpOpJteLsi+jIM7OGOGtigieK/NY4UQiImw3W/z0vfv4T//pB2jbHvPZEvfv34f3A0L0cH87w+/8g3+It7/1ThFoOR1cLkQxjlYGQDELrPT/XTH3oozZ82mCOFF5ALAgm81muLpaIfRsaiR9I0Zkzr0c5Z7M1XIhg7Wy9WaNo+Uxoufgbs75Y82ojGNiqqDIyWZaRV2u7L2k3BRaRIxRip8YBDEzB+8xeKb+gcy1Ia39wKETlXOYzQjz20v8V/+7v4+jowW4YoqHZbSCNRE5XAmG64gKWSWJyUtRhb5EEjiH1dUFQyYpYP2wQHs2AfcZhaEIJy0eAwDz+TzJEgXvy5acLlFDVqKw0WTN7vLyMhUwmeKqh57TTT+gtv60eZ89SrveE4V5r2u/wm0rJ4CxlhkYIgszIhKOfw7I3G63+OlPf4q//Mu/RFU1eOve2zh/dIHLywtcXV1iNbR4/d5b+LV3vyN4RhzdI7nU5cQO3sOmE+n68VBl5WsvzGQscgI2r7GmaXB+fgnl7SpHIoRc3OJaaueogc8bnBydIMihG0KAk8BXNs2yMCMAZNiTzfxmfCmt3WAt1wjQDVSm5cQYMfggwgzMiCFqtsIZlgiVs5g1BkcnM3z/+7+NyhowGudhrAM02Z4gwitgCAFEtkiyZ7YMMszEywexxWq9xjBoorl855oN/rxbUsANF/E1xoyEWVVVaQ61adUlH31xUGXWWBVmVVWx4wTYEWjp/sVzpjuU8UEk+RWlLhEnp+Juo+LfdZ/5VTfRiyanGMCDxmYln6ZN3UiCcV1EME+MAjUz5acCmBNRJ+ZGvn+hmIw/9HegTc3y0i0fi/d3whRG38kLd+q5i2Hyt+ByuWbFk717qU7jHvwufyYmmqBp5xTrQsL4AGuIabL1cEsUDyXYXpiM2Lckxq8E7xHC9ZjY5xFk0z3Cr9He++3DwYBxIZn9feQnLfG/fZ7Mw9/f38eRmakeH+cmUBoVlCL4clIlnrYlL5SexIKw6rNpZDLA5e0/+eQBvvOd7+DmjVt4/dU3sF4xdtb2Ha62a9y9cxdt22LWzOALyvHSTEzmC4mGuoOpqEC7HiT/KrcdU4cIU+VUAV9rc9hLLEDgkRleWAplPYpp2AUA+OBRVQ5D36PrWrTbLYZO6X/82PwHT0/JXgtE9MMAGEJtK5R1HYyxQqnNyeVKV5SwYz3UkIUR7x8C3yKCyAPwIOkLY7ciQCPHRVpLojD4ZFkgIhctljW83XRpLSscVLJmZGH+KyBk1NGLwh/nPVxVoW5q9H0/PrQOyIxQbCqeFw661TAn1crLZzpkVo/MTLVRq6kwQ0xxWLDmVz5Yz9T0YYkQhgFcCi4iRMZRqqpC3zM+wsLsE/zTf/rf4bXXXsedW3fheylMagiXmzW8MWjbFgtjQKHcn4q3cFAmAlKwLJXFGIvT98U9Ar64dp25kzxU1kqCtMnsE6WHChlwz56wuFeQKcZSOYctAW27xXbbJsESwwDnLNeqFGuP1zpTqoOvjH4Y2DRtaujcEQyscZyDGQO8D+gl6BcFJVDSPEX5clKKkIVdgKEAgkekAYMPcGRhjGPTMgYYijCWwf0g3gjGDRlbYgZexum22w5kIurapfAWxRX3CY5fxR7VcBsNpq+bhunjnRspD2VTZTUEny0cxJTFEQ8Is2l1p7K5fPHdrPvRQMTiHHvhduVuh1LP5YRTo3kMmDI+08wazGZzLiNfQRgSDIIhrLuOK1+Prj1ZIFH/lxd1MjoV6xzhaPmzWkP0BTwWnqmNAjb1aZInMJuHpXmh5hibkIXwF02kbOWf+xDJ0Wkdi6DWyT33NRWcDObnIrNj06c0YQWDiyWcUPaFHQo9gMqBtfWRibnfzNTXSm9p+dwquBWX3YcdfVHCax9ovxfI33N/YwyG3u98Zv+NINhhFliKbT5Nv8o2UsFKErTR3Yob6WvjwXxxpJsmlKt2FkNkTxE00l+lOxdtuX37NpuV260MIr8XA9cn7IcBcU8OarmhfMjmE8NpGl1Oo08ny+vFGa7n2HZNATb3OLmfwWLLm11w2myh0mhxTzEUIgLFKBqw3i5zmDWzWaIXItHIrbPpczo3FFVIiblH/DnWAGw224jNzLbrEg0WkQG8CiNOn1LBHELA+++/j4YIv/bOPZCUlYuQqlEAYizooqCMNNyvGCPnhYKxa3VqeO8RInvpnXM7eGBpbv5q25iMcTab4Xx7AQA7kFWpSJRmo8533/dYbzY7BY6vE9z6c8fMBACj3swY034Mcb+a/2K0wvgLOTczP1fJnhA4b84zTcndu3fRth02242ceiZtiu12iz5KFQR9dnUkFHcOUtMvhbRENm2JpHo2xYn8Ks3Op/EEv/htjGtk7x8AjuOKHEbhHMMYXdfBWpMwsRhY4KvmUWpWJbNoChQNEUBR6af4/Hw+k0RxghGNSPdC1swNTAjwxfVTBaYYUJlcXFfx123XSlCsaO5DYA9a2mf8i/ceP//5z+Gix7vv3gNCQAweoAHO1aAAQIkVudcIUfjLBGuzwgWm+zJIziObclUSZiXnW2lulkGsOj/Po+neUFbfum4wn8/x8NNHIGIWZ4UXpnhXCIHTngph1nUd1ut1osjWz04PuH1CzpUCKoO3ubNpm430Xexc6Ona9Zv2qbZ03P2TBxSjfmdhE0d9Hwtjdr1zsCxHjjvLA+XVE0ZTeJcwFmWZPLB8B5hi4JMOai+n9tNXrWn3R32fOj8KE1RNilAU5C3WX5QDlOLueji83BQ8z7iKFtAwO6bdtP8FYA5Z04qF0fiY0ZJ2ex541D8/eGy3LarokXCG0VAkw3s8TAdaaX7pjZ51741X/XUtY5bTucv9kWeVscpmOqUqW+lqRT/39XnHnA8SBD2BuJ5mbzjNgdqR7ACUvjxG8USplN/bpacfri+mFSuk4ONPASUUYSjAR48YB1gyuThcHJg11Pf45JMH+OGPPsDpyXt4/737uHF6wjQ+lcXs6Ajz4xuomzlCtABViMiAMD+zx9Bz+TBrRBNTASpagWp0MNnE0a5n4TiuzvxVa+Pi0gUmJALMEiH4AUBdaGTAMHisr1ayQQycs0CQqkjgYMpsimgKWpEkTuzUabsOXdcxoGzAJmghPLQF0dzJEIYQ0PY91tsWfmAv4ohZ1hoEAnw0GAKh64EQLSJJQWhxegYEuEiw5EA+4v5P7qNbbdDMa2AAEA0QuPiNHnws0Lhwh57ErNGagrWWRYs1Fl3bYbVascZizLgQepKXu4Lnc8woX5FKqh0qICfAyn4LIWIYmF0WRBj6Aa5i9mAfQ1riwsqWnn+EsxIBkeAHj67r0NSTfM5CoB0S5K5t2yT5S8wsRKYzIQKiZzrhTBI9FVdPI7zyAH9+UVf0ICpCRclgU9WdKAAYEEKfsgEIETEMMLbG0Hf45Ycf4X/7k/+CujJ447UbuPfGK5jNZ5gt5/jO934b8+ObaJojhFAhUo2ICj5GwUEiEAP6boMYfLpHVE3ARDYxxAlBgGA22a3Po6KkgV9VgUap65TU5IQowgihsRfuKg0rICIJer1AiBF1VWGxXCKGMisg02fz5zVHWM0MA1fV2G5bbLs24XJs3SvZXxp8pj8H03QO3mPbtri8ukKMLCAcWT74rAE5w4G40WAIBm0HeHIIxgJwgGWzL4YAFy0qVAjDgJ/99c9RxTVuzAphFi0IDlp5iMBViJKWA6agIpikHZI8n47dxcUFKuf40AxIJfnS/1Xrm5iW5ao6vPem2nQOXOaDOyffsxbM3vsQIrxnb/B8sQCRQdf3qOoaJN7qfHZLgWNd9UJYmTTjyB7vdtNiuZin93Ofxr2fem3dVIVNcVrTRxudhnuG5Dq1d2T+HdDgPrOEm16j0BLVg1T2HQBPFONaw+BxdbWGpYjjBeHsdIFuaDGEXmx9EgyRwEKHMiamJ2zQeKEp8DrFyvLC015+FS3LssX0Pz1i8vjn/EI5kWOxsAtnkgLZQVOMSpMG46VVvq0/jeFNkwgQkiC8rteS5hYEvCYzMnlUEUl6VJQkcnkjpg/lWdaan5vVGlXDIH5COYQJg7Ux7UNWrXh8SEzIcW9JhAazZlikbIo9KsVn08l2BdnTtPKTat6TON1yjcyYtyVKAzvTQJF8PwKpFGGuTRLF+KJsGdIBPrPlcjnSzJqmEe7zAs+IUdKAOKBN7WLt+M54fIktK7GxkPoh4QwkAL8PEcvlEn/v7/0OXHULYRhwvLQ4PmoAA9jKJo561q7ZdE1OkRgRiSciBF9gBaJ56W74jMvrq9z2BTWGEFgYRDb1Li4uEgVM0zRSds4lDFM9d7aaJU3OJs8YOxk2mw2GYcB8NsPQ96z5FYexwjqlWIW8xloe18ucL5aoqzma2Uy+n4V0JKAfevRDh8jiDzESQhyg2j9RhEGEcwTvCBeX53jjpVdx9+4d6W5hVkVKQjNv2EJAjo64EqfigN3ZvH6Ct/Lzr7ls4+h4TTE6GaPI8adqhioJY9u2cHUlcZdRrJHcRiFgCOlQ6vs+sWdQEn4FUnBAxiRv5vHxcfpjGAbM5/Nk+5Y3t87C9z7lX+VgNj1tn0WaPU+dhCeT900sOKZyEi/A+W4nJ6f4/d//ffz6u+fYbjbotmtcXj7EerNC27dJmBGxF22IjJAAYEEmuJj3HpRcyWb36Z64tp7+NHxhW6EV64msb6hHWfGiEDw+/fRTzOdzuKrGYtFgsVgAYGz24uICnRR/nS+Bqq6KWgw5v3O9XiPGgKPlAo8+/VQomHiOdbsby6d90h5FkBljGDoxFkfHcxwtT1DXmVYbun4AdH2Htm8R4RHBQtZ7LfrDWr6hgKomkCc8evQJbt36Tbzxxuuy6UXgGSOExyTPUHLbM4NtjovT17njytvmjk/YxD6Ai31hx2dxIOUaDZQJSJFpsoMQUOgcrtdr3F7cTmmRCfOUS5chJEHo+AGuCRqCl8LH07ZfZoy8mcpZr2+kSih5NNl+n4B1T1Lkv/Q28WDm3qqLF6hchVu3jmHsHOvVGleXF4ixQ0BAIAkxINqVTJQuNVr0O6eXmBeHl5dO0FdckF3T1ERS3BBAcsE3wsmvIRFA5h5TLnktEFyGBiWvoXD4W2sRikj4ND0ZF0G293Jjz6mRSPU6JZmXc87ZI5znmTWnMRanxibzcXHAbNPUmM/nmEINrNjnwFt9bTpmU9wrxpgPZYw1l+fRaEebLeMAMZpLFVhabbys55me4wn3K0Nw9MDhNw70bw+s5fRCO6qk4gNJlWQJbKIWcM3fe9G2IsUiAbwk5iukEImTY9u2+Oijj7BerdF1W5zduIH5coG2b7E4O+UATGsQFLCFnFEcJ8nmpl51pM1ON9PXs7FCls2izPc1TXljD6IWCWG2Yua0DyEkLYs1f8Js1mA2a1BLepEfBmzWQkMlZkjfdbDOSj2BTEuV7hijOAtDOjeS8R8ZLzNWCt8UVY+sdYmgMQIcpiMWiBZVUmBcr2eIE8vr+Qy/8zu/idt3bqZUHpWNwXucn5+D4OEsYTarU3AosFswV/vTti36vkv77rmef3o4K8SEIgiXqLByKDHSALkKfE5ZywVM9glnfbbyte12K/RNRZD6Mzyrmwag7RtMH3LQHkyRAyZBb/nUetr2nDZ30Qm1+0MMXMzCOsH4wBQwroLvgdV6hZ/89KdYrdZwlvBrv/ZfwTqLIQzoYDE7XsI6Bx89QvQIYGCXPS2MGUbV1tKGKE/bfc9aHHEv2knwrI04BUjd9QD2CDOehxT/BfZKKhbm/YCLiytO4vYeR0fHmM0aNM0MMRpsti3arsVmu+VCOs7CUETbbjCjGZqmEc6vAGsMqACTiZQgQVKVtD8hYAgRlSPYynHpO7CAqmo2aaNABkMQYWYzBmQsx5OBOLbKGqCyhOPlEn/wB7+Pm0dHmNUVCDERgg5Dj48//giEgPmsxvHxErPZTGhuIshqHmoujmuMwdXVFdptC2cNaEpWMFleX8RyUlMXUAomDZWRW0ofjWprxJH+StejsEwZ4KpaVymomAYpHz5XV1cYhkyz/axB+jvVmdIDAYwJgSdYUz5U0k4gQtWfn6I9fy1FDy/VHvOmSu+IRsnpE1dXV1itVmjqCrPZHM2shg8BK4lYJyPuaDUvSLwtUdGu3VMHYBwkY0i7naTRmH21pRqJFs8CYQ8GOMFOSnNC8SA1K0k2R9PUGAb+nNZY0JJlaorqBknmTnE/1Qx0noCoqN5ooyijRjKjjAq9PL/Zk1koC8mdSiIsCXXl8MorL8MFDwrCgsEPjKiUU+Dk8tmsFr4vxt3y1ceNmTp8CWNfu1qm+/iztesFSalxA5ndJDnBaOxxLMd7FMlfXJPZMjgRP90n2/Hj3u3zZpZv7PtAEC+ntU64lBinKL2F2YDGi2VRyQLywY+qIkcwGd/5+SX+0w/+Cqv1Cqv1Co8etfB+wKPHazx89BCz0xtYuhnqasbmReF8Yi9Mro2g5ociBHlhlnpyFqZfp5bWj/zNwG9+XXGUGCOGvkNnOAyiazsgctk2TdVR7KTvOmyI0Hf8ewwBsxl72q3w7Td1jaooJIIS8wUSXjld1To3IfB7xgh/BuX+R3AiuQ8B/cDssuOHphzOEQi2dsk7aVR4iRJAsnE1xi0ic+nFGKWc2gxVBKzj/pTCom1bBO+T5nNwHp5msp667YaIAFkoaS6p0ni7ymEYBtZsKzdKQQP2Y1zTayqRZlkRTeXM02ybpJntCLIYuWKNuITrukLwA4ahQ0oRekY18ItrT3o6FrCECB8GeN+jqlyKFwuRg/x++ctf4n/8f/2/8eab38DV1QoffvgBur7H/fv38Zd//dd493u/AzNbwi6WCOKCZ9A3Inqu09j5DiGygIcksGccaWrw7xNmX22NLEahcSFZ/IKLcWAlL/ggPGAhBGzbLfOBGYPVaoWNJPiXJ/UwDNiEgM1mi65jNlhjLE5OjqUgM7DerLCYs4kW/ZCYFlzlEgur6Az5AC5AdwK44C8Ay9QW/DoRyFrhL4toB49t16MbBsBWQJAPBsCQhYkszGrbpPJqjDYExDjI2HjE6BGCUFJJbNvl5WWK6j89vYFZBOoIVBWJmcZju15fIYaA5WIhVvLz1Rqy4KFk3ZRNWXmNYbZeEubgtm1BhtDMZikAf18608iZiJxg3vc9qtqNMTPpxtO0UXWmvQItauUUBklDGJsQz2rXfu6WrMUn3TPjNiPqZQIQKYHOP//5z7FtGZN5/PgxfAi4Wq3w8SefYLPdYhDNC4qLSbAtb1bWVBUzy6JL1TT+yeXE9jlK4uTfV7GN5z+nHo1P41CcvgoSD8OArm3R930yGQGksmpd16JrWww9n/h1VaUalASgcg5OTEw1W02qrISiT/t7rpWUuMI9xw0i9VurnDNmzLxrxSYXVFbzdo0Es6qpm/aUZIrE0Tjx713XoW1bJjSQMWDBrnmrvKI0/sq5cpPn9T1qX6CMU7E/vUcpL1IcqrVpDp2zO3LhOs0MyNo76wSfjfXDtW2bbmSMQdd1yc0K8IJbr9dQ4IEz3U0R4ftitaScJ8yEBY5SunDqcUDb9RJrdoJXX30Fnz58iPd+/vOMlxAHS/IijggIgOIfoEKgZUFJRAg+pCK2IwG1c5hGXPPmV6uVWE6xcTVGyRgDZy2auoZ1rCFnbUyengjWGNjCI8YLnE2P4AmbzZqJMAmJyRSIaLdbqYMZYVUrm2Cl06U68uBTEVFPrLlHAJEIgw+IMAAZqbmpjCAZVzAgOKqwutqgW20we+kMqsHr1HrvsV6v2TS1EMFUpzHq+x6b9QZ9P6Cua8znC9Z8pHaFelvzA+C5V/bad7xqWEgprKyQbQ5+ELxTHQGT8IxSS9OrETs7uD6oGcWYPauS5C4uLvKCk8j/EAKOjo4QQ0C3bfHw4UOcLBcJMK8Xs+wd/FLMzEONhCuKT3cYxrSGocOscrCWN1LsI66uVuiHAa+++ip+87vfxXvvvYe/+su/grEOZC0iEbZtiyEMiBQRwiC1MyX+LGaqYGuNuPcNf04WH6u9U3NznxZWYmpftUYMgBdxQSUldRlDZlzF6ytGrNZbaHiEas51XaNpGnRdhygVr5gKjA+kx48epsBkkFYBAi4uL9C2LeqqgrOODxT5jpMyb7HA8JK2bg2M1KQchpCEhvcRwVhERLRDRCCDSBaDB8hY1rKDFB2BYV42O8NHH97H+vICL908gzPZ3DQE9H2Hhw8/hbU8HnXlGLoRjWS73WK92ULj3m7dujUqBmKn1OHIyOxTzNBTNw00T1YMskkIKHklu8ISh1lVc+Dy48cAIhZLDp5NwclFMHMZg6bOoGEYcHV5CVc5OGdHQm8qX6amatlc13H8inqElO5WLzR4j+12ixPpoFLjqmb2Igkz9UhR4ZjgTeFhXEn2Rui6HiFEHB8f4+7du7i4uEzgsU7kIFiMXgejSkIZ4J2OR6RSL9PfpviZtih63ldRkIHNMkHPNRi09PTpgrbW8iERc03ETDoYRkIvmVshx3Exztmna9ZNjtbvWnbcwLlUTX5ceGSsmakwSxqPAs3y2aSZgeBjRIRBpMhhPSTwgfzj/wwsOazXWzx+dI6gMbUUkyTxso/mTQ1nrWhmVsxuj7bdousH+MBU4ZqZM8qZTv3Pz/Ek62gfavs0LWuqQGk5pIDdQvNVOvrBD3BBMcsxB9m+nmlfQghouw5lEeDPAl+5ktFR7XjtzHq9Rrvdoq4qaBBqCT7qd75cczMvQj2vpmZPEJuevSP8ppacW63XaNstn+KVQ4wR27bF1dUKTTPjDUaYiBslvgujU2dkumSDF8WO3+n7V1SE5RbzDCSPYLEI9y1KIpLCuBwwa23me9cQDMWOLDEWZaQOpl6JhUCftsS08CwrFYdH14eQAlaTGSRC1xgDLwKuH1jA8LIvipgQMXOFYXH2+PFjXF1cYrvZItWdipJOZ5A0zSk8Q3IQMikkwcgaUmquYdAc0Dye101G6eRI97jmG4eamt8sDLPWXV5Mc2t1zIwxKShasTT9eR2Sog6igyUFn7K5pmm4n3JSrlYrdF2HWzdv4sEnn6BttzheHmVpmWiDs/r5pQkzTfwGioGS4WcbT0zBAVU9Y/MkAICBcxViBD558AnOzx+j7zvMF3P4EHB+fo6PfvkxTk5P0cxnfHqHICctm5yGHHzw2GzWmNVzEJmkdvOEyiZJJ9uh9uJotp+nTZJ2El5UhmVwY6G1XMzhQxQcKqc7DV2H7WaTvtNUElBKFWYS/+eDx9B32KzXCdu11o7wlvGBwvdVrCeEIOEQjawD0TCcTQGzHgZD9FhtW3QB8CAY5zjuDQTHFUhgYGFg8POf/Ay/vP8hfN8mdlsWYEPSRplpV6sqyTolgjEOTWNgq5iKGG82G1Ym2hYGSmig5vv02dKof+5G4OyYHMbE91MstNSmttst5vN5KstYWce4lzq7IpgRWP5QyiK+ZBa83g/Ybtc4Xi53PZnP0JwtvEHDMHBMSwgIPuBqdQU/9FjeuAklkUssGaAvWaDtw50K406ESBR+dZc0M0bWjJg8q9WK0yiCR1VzWsxms8Xl5SVm89moOpCGZgSxZWMM6Icei9kybRTmntfE3H39/Do2XuaT8wRATioemTpEqCoLG/OpH0KAHwZ0fV9oZhGVsQiSGuOkxkIQLaeXKj6aXzxag3Q4fziCPZS2maVIdYDxIGstg11RQ3g8PAxighHE9BVLhXEfg0efPsTFxQVsZIyMAITC25jT6nYZKJJ5FQFjQtqLfd9ju91iMW/Ses6q8PPbb6WGq+fxzm6TPiYIQTTrXBBmjLWVmll5vpeHy+fWzLTz+tNIQGNEWWyAb663mXb0S7UyJ/cea7OFV81qgQh+p6o4Efj09BT3P/gQjx+f4/ziCj/60Y9xcXGB5dERbx7wQlS2Fo2x078ZQyzNTDPd2mPsYaJufx1EHZ+wgGoaMdub6TMJOSy0+hKuYF2DUo6fzhunLnFOYNd3GLzHIKl1irGVGEsy9QGmYaJCeafUCzl4xJmAvIGTGStYXpYbNJIhJBvCEtfAXF1doq4cjhczHZU0Ht4P4lHPydrjn3FnD0aBRpyQMWZNM0uX56VA6BiqtrzjNS3GU/uwL65s+pnpBWLEiEIItGuCP6mfZUvCjIgSnxR75dhLhyjRuAKUljfR2J4XqhUDrWp+CMxiQAZCV2KxXC5x+/ZtfPOb38Qf/uG/x6cPH+PTBw/xP/zf/u9YLGZ47bXXMBPWg8H3qGYVhgChkwlQke/9IBvOcC6g4fzPICd4AXYUUv/rIMLGrTzY1IFCe3ZBYiIBBN6UzeulclFdwzlXnOjswPFhwOXlBYbBc4K4ywWdOYTBwycMzoIkOp81aQ6vMSIQYmTrx7kK1rJALDMHfAhoe49t3zM7NZkUQG4MYGIEEGAJqKxBBYMP7v8Cb7/5Br71rbfBYRsc+V9VFtvNKjnWePOqwCo3ZGbDUE1TsajascMg50RPBXQazi9sZeWCKJQFuO77EICQC8AAwEYqKk3NxDLMK8Yo0QZqhgPb7QZ936Wsjs/TRnUzszcPyT2reWvJSi9PvhdRmI18iEpNHJLLV7WGpp7h6PgYd+/ewf/0r/8QDx48QgjA+aOH+I3v/Druvf1m2iwheFS2zqUPBZAleS/Hr8mJcwCI/WKX24vVxlCDaFpUCrlslkG1WFAh4Hndsau/Stca+hZdx57NbbvF0HMVo5qa0bV3sLni4EgBq1HFG//PGCtmUfZgAxwoO/iAYcgVk9QJZGTtI0RJMCcYEB4/+hSzX/sGXrp7W24bAHCw+TD0KYRn6hAZaReUNTN9LmMMh3mkQNKxQvE8W+paIXAzvhlHfS15DtPjFMpPCjznC6Zx6Pv+CwH/gUmiud6YxJNjSBlTUxck3S3uLN4Xq2nkdSYETN4uJCUXlXM4OzvDm2++gaOjY3gfUFuDV155GTfObmDoe9hZnbQ86AZUc1U3p2Bo18b9EJ/W49eez9N/Ge3QQpy66McmuJrdYxNr2lRLsdYCkk1RWgdqkqkTprTkOSRQZ3zSL71O8iElFSTRN8sbMt2qXbNmRuAYtdoavPTyXZyeHqNpKmjUvw7JMAwIonlmgtA8bllW5Jzekh1jbKrlp0uvJVN6fz7lZ2mljI3FvaJUhA8xpoPHOZfS1dKYAem98kJlfWcNFh5l6KT77+Lw04yCadiHmy4eLdHlvYezLuVW5xMljqRs9nq8II0UVBxA3iPEAREerqok0JfZLkKMWCwW+M5v/AZmy2NcXa3QbraY1TVu3LyJm7duYnV1Bbdo0LgZ/NADwYm3xwpvF1fz8T7A2AgrM7UbhTF94WukoVGmANKmXlzNuxttxpjx2OBFEClmJsJM6W9Irq2bggvtMDDfDX1izgghYD5fsIdN2Df44AGaRrMODGTq4QPgQ4QxDgSbDiZ+HAKRxeA9ur6XINl8AGZiRt4rTQ2cHTX4J7//v8crL93CzVtHCKEFYQAhwETC1WqFrm0xm82YhSVprAUmDYxN8MJ5YE3eZ1xdahdXis9lPZVwkmS4CPDvJfH9+PgYxhg8evQIV1dXCa6az+dYLpdYLpccUxe1PoNNAs85h9VqhbZt0dT13hiz8tDa28PifTf9MnskBCA1GTPLAiymvxUfOXCfL6WJIgwOaPXQwFanOIqexDGiaRq8/vrruPvKyxyBfbXCvJmjqhuQtfjxez+TEnIGQ+hBYvNDQzyibOQQpNZJccqXJ2laey/QQH2BLQuqYo0UWMu4Zc1CAeZyzDRiHFDBwmlOSXszFj4EDGufrhFCQNPUaNuc6wiZKyJCDQJVpNOOEDkkhCh739LUyJr2YmaqUyALC+1sgAHzoS3nFX7zO+9iPjOoHLDZrIBUxdyg3W4x9D0W80aC00OxWU0eCyKUDgltWomKzWh57UvAd9SB4oU9p6oaycLg+NSrq6ukZamDhgW4MpmWJifLmlZyc5fz+WfiMCvbXjMThMRC8Hk1r6lq+CtrhTmsmkDfd2g3LR6dXyLaCrAO5BwCsc3fbrYwYGDWSIENXkhxdGFCpoIenazTLlAuTpv2+3WWqPzcN5nXmXGHPvMrH/tk7hxujFfxhzSxmArWjJ0AW2TxtwtrUBKAxlgB2DUNitevWh4hRMSBS7spbY26J/lQ1pxLFXZjDrPkjS5aCrOgotK6ejGhuboFEcFeDHUyOJOXkod1Mi6lGVYK26dNcbq+FdegPKkj01M1xFKLKg4fDYTt+x5NU+08E4Axxon96/5pBRuRlJorXygBPc4vzKyyUVR3MtkxoOryl4n/lFqQmgNEYHZYPyB4dgA8fPApPvrwY/zhv/8TNMtjVM0MzXKB2WLO1YGMxfHyBIvFArPFEsdHS9TOgUQYGRggcojH0Pd8XcuucyMLeYyH5AWQA2inW0K+93yH6Lm23QU3Nk9GnxEzs+97BvMjYILnIFTkVCd1FMiXeZ8bwSuRcTLrKriqghYDbmYzHIUg3HtFPYG+h2+Zyz/4kLzNlgwqa+Eqw6wwMaLvB/T9gGHwgM3FaGP0UlaQk8sr64TZFqgrDtHgOLQokQAB223LWiJhlG0AFIzNMbIDKca0z6JWcUKUAssFTh0F9pH3n9vmUwEcdf6y1jUMA2Zgtl1VFqw1qMihaRr4wWO9ukIMHssUroI0b0rIqcXFS48nAJTxr8AYIytDcMq2XzNDTlVQADVfeByMqOrxi9MyayeXN5O0GGtweXmB9977Of7dv/u3ODq9ifnyCIvTY5zdvIHlYonj5RE2x2scHR/j+LTHvTs3UTkHBXMT+A+ZRM/mqyXDgZLJXCp+poVw2PMbJ2P6dWylwEuntmhKBhHGiSYTwv7vAzKgeaSyY0CwUPGCGqJUOWizXmPwHr0E5CZtQDIUDJFcwyAKM8Ygm3XwHrC1mKMR3ufTiUB8kIlZ6CwByAU5uBKTwSCBvRhtRr6Cpm9BrqhjkxslQb53PKBe82efj6drNNIoOTYve44JEM2Tm5Uk+VnT4PLyEtsNKxMxvMRsNHoN+Z0JBcbmZ4oLlbE5JMz0tbKNmGbLi6oJsOMhecH23KGAvPIEV41JbfjTkzPMlkeohdxPqZgHP6DtWpi1AxmLB588wCkFzM0RaMYZA2ru7DOJxmdkTH3Y0+v0vpoQByGmr0TLTz5yumECUxSYomr5+tAhRkC0sjS2MUoaGR+qKK6V+OOLf/l+xeviBeXcxzgSZolWJ7JwUs65EJTYseCgS/iAClR1VgS02w71jGlvOENGBVsQpSCL4FJDncJw+y2q8Rp6/hj19eQRpTNAtadcVSkninOAcA6/KHn99dBK2OjnkMalYBtpZmWGvvee0ysKL0YU0DTEKGD4OGp679AUgN+vAsPJjgkITbHiFcDNmzfxzW8C/+yf/rfY+oghRPTBc2m5ENC1LT5dtYjxAXyM+N/+45/iu//wt/HNX38Hd954CVEYS62z8OLRySYVL/0UzQxwXh50D6q0KoVt2fEC93ihNN3P0g4J8fwqxxYJwwKYOy4GNrPKpHFnIFWcLIzNSf/sbbdFupkKMwXQLYzleEJnXap47oMXVoyAuqqFcDTAmBowXLuy7Tp49hAw1iYyOA7svbYwMNGiqWbYrDa4ePAQ77z1BgBO9zNkEcOAYeixWl1x38t9ECIQKTG2xhHYOFHvR6ghQDBQglD+2HNYK+lg0D9lfGOOJ5vNZjg6OkLXdej6Dl3bjkIx6qZO8XUPHz7E2dlZchaoILu6uiqKZ+dnUfkzbYfMS20j2uzMNcTYhRVXMVGuXE4wUnLOvKCqRD7yYnIH88ScnJxg3iywmJ/gwfklLtcrPL64wMXqAuvVGu16i8uLK6zXG1yurvDXP/4xmpM5bty9ibuv32G6ZwowkIhzHxLIz1rg+FQLIUixiwwUZzBXbVDgBR3Iz9muEWhR6kq4Gkbxk2HgA6IfRmlKdWXh1EwzEH5+4dISIafaShZq/HlDFlVtUCFz53OVLRZszjkYCMeWyQB+N/QJ/I8xaloyYmD2Dv7PonY1VptzPPjoU3zjjddBUfnwOUTHDwM2m3XiI8saJ3cxerERkzargmz/WBKRaJA4OLZfWGMTpPiT76sBrlVVYT6fY71eY7vZYuh6zGYzqT0K1HWVNNPz83MsFgupI5rnf7VapbFJ95lirNJ2HEN7BNpIM1NblfTLo88XtqtqI9ijPu+50ZNiRZ5bG2F9mSiwaRrM5j2GyJtoCAMQgTAEBGFF8CGgrmsE79G1rTyHPK+e2IhJE5Ab4lkEU0ymy5PH5ZCH82lP5kM4wxffrn8m1VJjjIUjiWmnJfN8FDibzbJY/sjOqKQ+5HvEwiGVXtZTP0aYqczQPkEt2+wbLO+ZTyOIE4iJGTbrDRJ4VVqRoiCUAjf1JWaT7cAgYXwg0GhPjh1Nv7rDsCRXLEH70iLh4cymvjphtPZD+Z08r7vCa99zla+XVh8wSTQPIbBtS4S25ZqYjCEwNUmMmWqlNC+ny/bQxpne/Hk0jiXjgq3ee2EdzZ5Yaw1mswa3qgrHp6c4u3kT226LruvQty367YDNdovLqxXmJ0eoK4ePPvolKH4vpS0BzBwaQsRiNld0joFfKyXoIkb5rFG0sORvLTAlZa5NZ+4TzPHrVO0XvRljYCzQDx7HVSW1MSMXJhEzUxd5CAHtdj1KVSLBQb1gZiDm6iejwdAT7I6yQChGFSwcOE/XFoVuBh8ScSeRgTUOQwQQCdY4weoMjHX49MGneP8X7+P+e+/hH/+j76OqDEAO0fdJK2nbFkfLpcRs6vokkFVnh6gExXyOdsgElZgC5l94K7TEMLo+swJ3XYe65hJ5s9kMV1dXybupWBkQYU0mDNhut9hsNnDO4eT0lOfY+1R1SwXeviyA6bNO1375917NzBjD0dnV+IQBUFRg1kc83L6MTZeAX0BwEvY6lppAM6sxq2eAsQgg9KEXl3sEBUK77XC1WgOVxfuffIAHn3wCABK8qcJsAIHQNLXajojgqtZBOZwKrWG/T0rBaoNky0zavsn7KjcSz+/gA5zjDcHPqNQxEX3bpdO83a55/RVOAdWe0snPFwag2CUwpSTSwyTvVkoHSI5FAwYf0fUDQjQAWRhjEQd2CDjjEPoesARrLD59+AgffPBL/OK9XzD0QozfDX2fSjS2bYvjoyNYkvhFaP2M0pOpY6PH4s6opQf7VUUP6L7Xfmm85FSYqSDSmgwMpzBLjQMTBqxWq5SIfnZ2Bg9w0Rr5zjQNKvVhohQdWvu6R3aEWekC5QsBfIodvsiztOcr3OL4t6LP5V2T10WoVSJFwEbhXiSEALiu4+jlymEgX6QoUZpoQcpy3YrJ6Zq1V40J2tPjJ2ADn6f9Ss37iQZx/QfH/SnpzFEIl5GGyi9Mbob0OSPVx1MYBDDWiqffGply6snMQdb7cClltRAUFO2W6boVmimfbxTlr/crzdVrGun/pvM2+XO6l54rlFCa9we0pxwbOLYsNMzCF97q0kwtIyg+a2Um4IBmpuW7DHFkNUTDCSHsRLAfGrgvS4NQvI9NCNEEjGqTEQBjGDFE+OihJY0prSA2ITebNU5OjnDX38FgmEJGz83BZ5yt7zs4U6WCsF5DWorrTbbkjomQwhCuGbNx6MGL2Z6mZ7qoy/AWKnjFYgRIvX96XTXFKWdeOOcQxcSMiEKoeMDbFbMIJeIcTQOAouWCJtZygQ5hy4ggBESpzMUeawUYjHGoHP/78MP7IAS8de91llVxAAeWRmy37OFTUlAiYudF0Ud1CmFqMqaTc3QE/0rdRLvxXWPLjYiwlZqnRJRCL3jeKAkuY7imJrPnrpOG5pzDnTt3sN1uU65nSSOkXupp2M0+DW6vmalgpcaPMEWKlepEIRV62HehfQPxZTQVZhzUp55EoSYJeUKGGBgLRHGqyKGgwuzo+Ah3HOBtRowjtI6iRwwcQ0OVFa8lEJHDW7J6nnuXJ2iSwiP/niSsvjRnyhPa0200SrTQ+dDZNSWMtYjGJMaWjMUgaTxKPR3S97mE4D73fSwsTPVaEgEmsHZuLPPvqzALxNp5iFFK27kEXTjD9NCVs/jlLz/AjeMl7t27J1XMmdTAmIiub9F1XRZm3EmOCihA/B28efRK1ufL/+f3fjWtNDNLmp/tdpsOJqVtUg07UciLMFutrrDZ9NhsNpKvyRWozs/PsV6vE+Ozlq2bCrOnwQjd3pNszxejnICHFu30Ons35ej0+WLPmdTfdNnCTN5r3+1/TfMuQwhwTYO6rpMwy/+XgEsZE95gupkKMJcwEmTX9Z30gxOtjsq+ThWOF8wR8LQ9iYIn5nHa/WY+DPLVSYRBMumfcMPxGqbJT7kv5bUaIorKTMlgnEAUrAQa4kyDqnKYzRqkavfyL0XJl8+5t1/p1b3PkL4as2ZWCrwv+lA7FAKRc4yzBzoXLY4Hn1M/rz0fhiHdQ8lgy6po08N6KlOuW+8pA2AUZwZKqp9h/Zkrewc+NRPEWpgK6QH0xs80hF9kk0GIUkY+MrNFCAEONglqZUywNGZFSIDmMODG8R1Uy5kIM4KPns0Oijg5PYbvuSBtN3RA7EGRJBaJPWTOCf5TnCwj1zJK44H2nL67j6bu+RdNM3tyU4GRq2Uxbqnge8gYl24CIoTBA1XFhTKMQRh6BO/RNA3nxCb2VR6PRI9+oPG40fh34lSm3ntsug4+Rq7UBIPgRYAhIvoeIAdrCLPG4dd//Vs4O17glVfvwLoIggfCgIiArtuiF7Ac0DMq75WcifBizuVUs/UDe2frukYzm6FqamzbFpvNBsMwpBqfPJ5jYWst10Qdhh7n5+dJiAGAFlSy1qJt2+QZXa/XKV3NCenDPi9mme860sxK7UaFmTVca8V7jpyuJCiOMM6lSjfhkTi8nA4h4V9QU5ONAA7LiASrniM5AYIPIIk+h5icaoKSNck7c3JygoWNGAx3OgSPQAOsMTg9O0HX9tistui3HfwQ4D0nBVeuhnMV6gA4iYou7f00EQIo5w1GxSCOxynK/zLx34ujkR1uYzAYYC8kU1Y7GKFlQowsQFSAhVwGzg8DCEh07hqv1DSzFCKkGhsIgvHuW5O5D7xm07EnJqpB70MWZjbjxUQAxYgwDKCKYA0wmzn8xm/8Go7mFW6eLmFdQPQDIg2I0aNrOdxnsVhAvZR6bx6HXK4wEs8/jfqZ9bAvQzVI60uGkYtpDxKjOUPdNHj06BHWG46xOz4+BofMRNBEmDln2euPiMePH2O5XKKRuqdN06QA3L7vsV6vcXV1xcVhRJA1TTMyb0cKQSG7dhLNgawjqGdH8Q3VxsoHLgG5vcrz1CP1XNvUNJ6anvlX5YbyMcIrqXqIiFJPE+BT3jkCTGQO+HSPmKuYJzVcVfFC0/3/M/fnX5Ysx3kg+Jm7R9wlt9pevQ0AsRAgQVKkuEpDSupFrRn1mTOaoz91ll+65xytMz3qGfWQoriIICCA2N5We2beJcLdbX4wM3ePuDez6j1U1YMD9TLzLhEevpibfWb22UzjnYwFHfIdHBwqfHxM5TOqyDQfaI3hl5r8r6sdgj521+aPqa1fzJIKHhV7/KbLTcaGLbi7wVNQBQI312vbwfhaEa1iZtYQJDbJQjwZZ/u4I8JqvcRyGdD1AVJEU1cB17i4SexU6dMRS4aa1dBgC0XgTrDX6m99080O0cw1YNZpFECbcF5MSdU252vO5skciW3qZEvKOCnEjbqX5krTsXZUmIFEoygTQZh0WjZSTUCfhyR8ma26+El8ULppnNKMWv8ePfoMm92AESjeM+8c1ssVhnHAYrHQlBY5ERJgLjDJ+XQEFwjLtYCZnAlghxwzwMaNJZXTgVFOd5IYI0vhcOQmNQpf6flgXtkv58T+RZtt8r7vi4klm6OuHOe08nmJEK8Cq5Sga+oEAGUPqWB8NXpy82QygDFFiUuUnSheUhZGCFZN3xEh+A5d8PAeWC8X6HsCESPnAeAEUEJOIzinQ2EGwHmabZIZ9NC8Pd1VX9ZcK8SiVbGsUHIbVkFFeB2esEQoeZbeeyyXqwL0r1arJjuiej7Pz88LFbeZnfv9HkTTgsNzAXdcMyNC6PqZMGN4Z5nyEO8dTW3X/BLJCTOrfoGhfVkjNYGlfpKe/kTwJFif4WUff/wxHj15hl1K6FdrdMGjDwEX5+cgIixXUhDYUQB5D4CFYJYYnDKIHHznEUIHLAmOOnjqkMaIYUgYh4jdbsB+2Jc6kH3f11JqGgJDQCmcctvpMxV4VpOAjqzxt3+c0MFffOO75lxZrdaw+XDOS6AxJL/VeVeYXk0DrcJMXuv7vmwCe890vfkIyBo47LcPMrdMhGGMJSwDymuWWDEgzgCcUnhbaAbQrVfwLoFcQhoHeGIACTHti+ZR9hBzeVZmyXSY9LE1g9WsnY5fg/XdMhe/aLspOiGlhDGOIsyCr9z+yjFXHTJclB07dC2H2QTYZiNZHXfv3q3YqToUlstlKQF5fX2NzWaDJ0+eYBgGAIKx9X1fLJ7W+RBu0gqkc+171a8zV/1bU0uffvbd9sKvMKJfuLVw+k1NernfD9hsNtjGiMRA7Dqk4NGFDl3foSfCMAzoeg8XtDBsVfrkHqSEjeTgySO4AGJCSlCcDcXcNNW6PVFeVX2+6VkPn/TA5nzZYExHZmYGf55e1L+4ef3Y5lMT/khwZF021exrgaSCdfGR738B5aU1Z4wVpva5Nevq56XWJgqw7UhTkhT7IkDS517incwG2cy0tOPP8OoP97ohBcEWm0DixoSsHke9t/X0JpmCShtkfHPzPhvoD9SCKC1EM98zrdfzQDMTicez30WQWSfE5HRqThm21ly4fQB6eXzIa21cBUipLK50K8GZ+cd48eI5PvnkU3z27BnuPXhHyPlyxvY64uRkidPzJfJ/+S/42ne+gXe/8iHuPLgPhqS1OO+Qk5zarsFJrDKQ8x5dR8BKgO6UJCbNNoGdKlHHc9jvJwwQLQXO52/z7xzTVb68ZppZBXSpzBdQe5+z5NQG72uMma5FV8bGxn46ti9bb9Uk0pVNwBAjxpyRAA2kNuHlgUz6cYcuBOTEeP7sGvfOVwCRClcPZCF03G33QK68XXPB2/bPOTqQZxUza5UFZcx4m3sJaiZm8e6aV9EqMbXl5SQ+UPp4NE1Lu23XYBZnQBtX1gbkGqvJcrnEnTt3MI5jkT3Gg2bXM+0utFK2BfWAhvVSXT9GKSxrwQNBs+b1MxVwF62uKMjmOnobZj8DyA15HwQrSynCO8FZcsp48uQJfvKTn+AHP/4xvvorXwcRYbPZ4G/++ue4d2+Ndx6e4aefPcJ/87//7/B7ncfdh+8gQymCgysMm94xKJvmFeEgOEznAvquhzFjEIBh2GtA7hY5RsScwZmx3+/R9x169ey0EzQ/gV7ejgkzG5gvv7EGK8/Ni8xG1VQ112TEBzoOWTn2QE3sUmawq4vrJqZacI1Pa81WAGAQ9sOIMUlGiKXWwhG8D+CBIXFeDn3okeOIxy+e4+7ZCoAUffY+iMdviNhcbSEFgyXEqQSA4oj26xQWycletO6CJgKttTveFvyPAto754rQGZU9dxikeK9x/nfU6eFA5YCxaxju2PU9+r7Hfr/Ho0ePsF6vC5tNC/6bMPPeY7FYYBxHDMOAFy9elOR2AAV3897X6kzTxpP/ltCBcvLVU7B8v8Ev7LsHhtBt5udrbMXz2vRgLlCHYcR2t8Vms8V+vweIsNlu8PjxUwAD+kXGp599iufPn2O728E0HC4nen0F5YlZYSxZ+C6Yx81iqRJSEnaBDNMgs/B4eaeFYv1RwdWq0+3Ptr08vurLbzY3ICqCpbxm2Fa7vpy5HGtr11UxB29RQA/fqs4rgw0SW4ZLiTiE6UMGsNhcpszYbfcTM1S0JgkRaUvllee4YW4aK9pG6ND0bLAN84KX79+yn74IbHDsO/UQqPGSpiW1Hn3QdA22Aq29pn3eagC02Nf8s2Z2tk4Cs2zm/Z2QMwLKm6+l1wtDJjL6RQ9OSTvHiFpuCsyTQsFtoNsvkjT6izQyjQy2AOWENSnkvcd2t0W/WOBP/uRPcO/BOyACdvsdxl3A6dkC9x+c4e7774PI4Sc//gl+5/f/QEaLeJJcnDlX54I+PycVckRaNLUCoH3XIy8Ssg+w1JwuCIe90xi3YRgmLASmfs/H81UW6Hzxf9nNoIs2uZwJikXJ35mTerFGNSkBNAt4HnZycxr/8TbRGCAYV0q5mLqGDXE56AnQ7MxhP+DxZ4/xvb/6L/jVb34ghVgygUkogkJYYNGvS92BqPU9vfNios6eYSo8bh05lEO5OUzfZGP9zzgOAAh932O5XCLGiEHrk7YaVQuhzC0+u57EnQV0XVfiykz7Auq4HHiBlRByvV4DQDE7TUOMMR7WAJAOWY5m0KrmCavVCmkcinYRxxEpSaVmSwFpVVFHBJ6wCby9pnqRsGCQeDL7biG015kR+oDLqyusViv8y3/5LwFjz0BG5wJccDg7P8XFOw/wH//8z/DXf/03+B//RQJ1HuQgoRvdGsgOcYzwri+HJzmnvFwMkJMixGpWhdBJZoCq5WJliCkyxFHK3e335cSyiQ8hFNqVXwxP+7JbTRWzCuRQzaec8CwBtKNumOANK2qIAVua5QaPOSYgDnpg+BNBiwIzYk4lNMN0RNOvc84gFkHmyWNzvcdPf/wz/C//y/8b/+yf/iOs+rWWJyQ412HRO6xXp4hpROaNaP2QkA6jiLYDyqyeuQYz1SSnlhEm7735lgHsdnusVissl0ucnJzg6dOnZZ2enJyIV9iw6lxZfO1vA/Shc2ie0HEccXl5CSLC6enphOxxfnC3qU/r9RrjOGK32+HZs2fY7XYYxxFhbn235mNRK6Gln7JXXn0oX5OQrCX9jve+JJgajoZGM3jj269V+8nki+J35AAkqUdNIkB88PjKV76CoVSiIjx45x4AYHV6gg/efw/4c8KLFy/KidgCzgYgK4yj91XjR/syMcktfccHeC+J8I5IWRtq3pqBnO0pbgG4rbk5Nz3bIXitY32riToVILUrU92hGON63Nd4QL2KYSV2umtJODNF2z7YN2/SOls8rL07zT7T4lNmYk6fq2I9cj+nJdS2ePz4SSEsBSDwgjJyBN9NAkuZCY6m9Dfzvr28/eI42dyELEsaN2h6jHKIACgWF1BLAgIoKY83eRrnfWgtjXEcy1pvawFQMzf1NS7xr1byDkBxRijZuvxzXvj9U67mJCZmmnk1OoSuR0oj2DQz1ejs7tR0vjxIWcCv92yZ3AMOyISchMjFUYYnFg2JAHaEIWcB3zXcwjWD1wWP3TBgt9thuTpBcB0oO7jcIWcCfIYjiYMiSDS0EPM5kHeCvQAayiFaBIMQs8RI1RHQBZAz4hgRMwPeo1ssQSGgV2+ejT8DGGICEIupTE0A7lxbmyxOs5umo/a6Rh/TOb0ZubNDgMwDhrpY241gzxtzQt+JCcdOcEahcxLIgNnyauW+9VCZ406zHpLSdJNDYvFkWpXzbLidPoQVu/Xk0YcOn3z0KYbdHh+8+x46cnDlzupBR4bvA5brFShI8PkwSLGWMUaAoHm7kuN5W1Ho0vdfcMt8Hi3eMEJA52SeGqbCyIcAr55NQOuIkgQgTzRnHaG2C1b5rVNPf0oJm42UeHRECt8cO5Z155ATJ1vf4+T0FKHrsVyuECTcgAFihM4j54QYuRQ3lXQODaINAYGz1gpkMDJYJ4izJNdurq4A5kmRAkAWCdmCw+HWel2N2YMzIcUEh4RAGdFnxDyClOplGEfsU4Q9hdQ8lInqFz2utxtsr/Y4P7tAH1ZADPBxiZQjyAn1dowJngh912PcZ8AxOu8QhwTAg7wIMeghMOx3WrmHELoAglAJjWPEfr9TrDFgsVhipZWyCYT9bodRK0OP44AUE1KM6EKHEDxCF7CYm59ETa6vbXVXFpT4QmqMDxM1QZo3DWwVFPXSdtgJLgjUEmPtvewCSU1v7wAiOQTMYdJW4zGQd4wRebFEdsJ3lkFwLiD4DgSPzK7I6aw3JEjB3VagVe2DQWxsFx3YBcSYsBsiImvKjnRArsTQAGkpU7hervCzH/0EuxfX+PVvfge97+AYIK2WlDSlqVsvcNqdY53WyDnjxYsX2Gy3uLq8VOigwwKMvusU07Vxmm762mhiFUym5QhwfltrNSDOqIWV5Q/Z76hwU86puadozs4HdF2Pvl9gPwzYj0p15JcTbFd46mQeCKK1ctYMGgYWi2WpUfrs2TOslF6cieQgJ1eEPZUeOMAxPHVYktA3mYU4iTOT05JV06DJgrBcOIZHcF7ZoxkIUR8+gbmS7h0zfd4OaKknNgt3KBHDkQheQLRD81xBTYtCUMISCJk5a62/XuOMHCh7gIWojyDCm52ZNGoOOpJK2dSYQOQAysgMzSggaD4BEjNizhhiQtfJJvOKkXnNDpAUG2AYR0SNik9jhC1wcoSshYrdXII0G+SYaVMEn/wx+e5tm8QWe71W+ztu2JAompPx4MtKnZokrYZp4TVMVHIlK2ammh0aU7Mx+yf94No3vQrI+ULumDRPl3n6KfsukZACBOexubpGGiMevHMX3qRQ+aj0yAUvYQpZTM3tbge335dyd+Sc3tOiAWp/mStUUeYIzfVnm/voOH8uLyYd+dloZgfCEzBnlvceYxzKc2TWvUSToJJZP1hjLqlYFDln7Pd7WLyq9cCyOixagoC6DkBSStAtSz8nwqzc8MZDmtqlc/CQx7xN0+F5w00PMCY1eTHnU7LJcFit19hcb/Hn/+nPcXF6Bu88Uk74/t/+EGHR4e6D+9hut+Jt7AIMYjH4pgb3sbLMKvd/BdMU95H0m6DspHVscvHidEpx433tZ1L13cbUAgi5z8gxNUAyJsVU28BDT5qfCtKtPx2sVpOf7vu5jVaoB3A4m4ebxQDr+T4yIj/v3cEmsf63IL6FAJjnKsYorL5O8wK140eQmYNX2mepzytjEKPFeOl3CVAdTQJ2OQPI6AJw//4d5PEE7z28KwoclKFlJnxarKfve6zX65JraG0/DJKjq3FW0/Gbj2e93rHPvJHGokmJU0+0/2EYyjOdnJyg67uSPC7B4arJzjzwLY7WvmaCre/7AveYgJsvoJuUIRuTCZ+Z1xqGzAwPf+AMMLOiXESuBFs8Nwkz4Hgn3kRzDsjISBxFsnvAB8vKl64653Hn4i6ePr3E/+X/+n/Ht7/xTSz6HilF/Pt//x/wu7//O/h7v/M7eP7iOZgzFsuFPSwAiSUKLgDwiFF+N2EmwkNOlRQjhkEKn5yenEjpupwLQ6flqp2c1OKo2+0Ww35fFr4tftsQjoTSSMzOETGO2O+2xXlguZ/eSyiA8yhZqi1ZoNDeGM6DsnCMUEBeqqeqc6RVrmwcUtWgUMkqC08XUCL3rUkFH8Fb5puxDUMxj1hmFo00yhjGMSKsF3BBMDPnnIiceWL5bY3qs1pmyH4/TNaxc1bVXABnDBGEEYsF8Ctf/xC9d/jgvXvwXsx1I2Y0Z4VVlyLIobder8v8DYMETV9fX2NzfV3nqTmEgKoZO+cmEe8tSH5jgPAtrT3Yj4ZONZqmOflOTk6wXC7gvcf19TVWq5Xwmi0WyDlhGAdcXl5ie31VHAPLxULMaMPAcp1v81oKnVMqB7VrYtZyYzHZeOiDT1G0Zo2G9q0aDyIPNAmKxXEh1Rj89W/9bGtrm0ajf77WNok7AoCimaHZvBUsdkRYLJfIKeMH3/8BTvolViuJn/nZzz7Cd3/ruzg7O8Vu2IMBBG9+kmoakVNHQ2a4UAMmYeaTbuxkG1jTNlJK2O125YSy2BnzYO73cs+2AISp9X3fSxVvVyfdBF7hn2sWhPcexFyeez6PxTjkZn8fmaLq+btZxzYtyaiVqtVa/xBhWtNfjtmj7bphlqh/i/fKSUoIlk04W9jWDk9wbl6k5nlQglwnn29gCbmVaGbeAecXZ1j1He7du4OUdu0ozu5ax9qyOuynAd6jHkBW7fwm0/6YCT7fm5+nlXvodB7AQva3amZyOIpVMarnv+s6wR2R4fce2+0WqfHC9yEgi7Q/+hz2t2lmLU32S9uB4SDfC3pVZZElRPs93B7wyqrmVOC4MgHMB3ku794keMZoPKtkBzE1SiUB5PDuw/dwdbkFwYknRGPAfv3XvoP33nsPPgR0Drh//x7I9eKVZBFUTugziqYnclO1neawTCmVhQAA+/2+8lxp2k6MI66vr8GZFQxNINCEjbM1H+U7sebIEqFfLBBCEM2QUAKWmbVGASD4jl1LudgYtql5Nl9TIVGwk8kktgLRhHjz/YNFaSkqTRVy2DFnQq9+OoSA9XqFzlPRWhNX0kZbVAUOu2E9TV4ueJRoqilLylQpY9d8oRzrOcM7QggOPgCrVY9F8CASzZMawdeOlwH7lQ2kjouREZrW7VAPJZtrm/u59nVTuMPLhMAxhaQ1j49+B1xomEIQjX/QVKZ6DSrUPScnJxp/Ks+RcsZ+2Asj8IEJCZBzJdRrnlBu8/R5mpiZGjbgnFTwzimDuuXRgbKFJV5Ohi+vQ3LnbpGub9zUZCAhIeWInBM8sYYvmEZBunk8fuu3fhvvvfshfvjej/Di2TPklOC9w//pX/wf8fD9h1gslwhM+NVvfxv7IQvvFUcwS/BkToDl6+Uk9TKdC4hj1n0msWwXZxfoe6lOc3V1pUGEVBPbtxtcXb4oAHTw4qHs+25CF8zMQlE8jhj3wyQ25+z0vGQkpFwFnQUWcs4glhPWeXVrd53weWngatWoHEiLs5jwMi3R7mHmk1VKKqYbHXLBmxlr4yH5pz2mILfXhMgqcFerlUTMswZojwmRIvpuIbRLQAGMX3FpwGh8TBgOQ8IwJvGGmbKH+pOZEfOIZVhhsQjoe+DevVN4AESsqckMZk1N18My54ygKWwxxpJQbxr6er3GcrnE+fk59vs99rsdLl+8KOZk3/dYrVYgolJctzXBbYwmz9fs01YotNH4KPOW60NqoDCVnVxbyhljHMEQ6p31+gSXV1cNjCB1L7quw+npKVbLJVKKGIcBL54/x36/xzgMpcZm30kVs6R5qF61VABYLE3eaE3UQjBwXPs8pslWzEzjaTgfZ0Y9crVivrQmhWlCt7U3KdTEm5WrZkYzzYxEoL377ntYr04x7iP+63Zf6H5+/de+g/5kCQQHB4f79+8hs8R0mae0cLcxCe+/PpUQQFpyfq0Qv1gssNls1GOTsVwudFJlo242G/GMk5NNrILMuJuIqBSUtYpQ7YndLxbofIBzhDEOJR3KNDNJ0FYMhr2UTFMaasiQIOe6IaojqDH3yqaYbPc68IRqgrdmBKqQMjOzaJzyaT1gpqvCzJgY9/IJHoFcyflQ7n5coB0714vM1edIKTeamb1Zn4ygqVcdIXgH5wmrVQfKAHHW6nZctIuyBpnLgWDaMjUmrmVyGB20HRY2ZybMbcwmjMa3aGE3CbT5d+p7mot6g2bLrJoZJJHeeMSmY0ol84cWC+SUMIRdSQZvechauAFECA3uFxRfswPSNWvtNlnUPlton6ESyQGTKS3qeWun29/lspNTo7pU5YHfEFw2bQQ94WWSWrysfqQmebM6A1YK0PZ9J8KONBjWeXS9R+bqPasVFFXTIwcHLXuWqqudmbHoF8o0Mmo9BTHt2gVXyBrVVPWKMwg5YZwsSFsEViTDrhEUELdUIQPpvRNvKSuoH7zxstFBlkF7vbIBG8FlGlwZ53bMj+E8aPC3ZkyK2d+834K782YmF3sGAqlpp+uRczlMJ5hge+/md5lbV4SW8MwpcUKzRssDsoQPhBBAzmEcIgL75vGPYSezzT57JmrGUXBTmf/1yQlC1xXrxjSylgPvlTGlWZtbVvavOhyMQql+Z04uaevvULDKeFUcE0VQl1oOOkFxlDCuxBILKDm6WrvUuQmmflPoNR1gVlWgTcgZjYq4LrL5skD9m1AWJlQwpJh1sd0cBf6mm2llzBnOzLlJRDIVYcFqer3zzkM4IiyXvVQ5dx5d14N9D995MHXIDDip7wSwQzG4yKHzC+QkLv7gAsYhISfg4vyOVJoZNmJidZ2avVDsyqNztV8EV7S+cRgRx6gqeRVo3nmsTk/Fla0LbRhUGxsiUszqVSUNbFzCOYL3skGiFqYw7a4shAajk8XtijeSnEMgTR9xlnZkFEs2pirgG8FiG5GIlJZJtUMvcVaFTYTtcyjzZIIphE6FfkDuMnwIgOKHMVrA96EQma4JlE1GqpEygDEmqZOJRvgWHFSeadEtsexXCK7H5eUeF8sVvCOJs2TDy0yISl9KyEarhZIIYWNqNiHadZLLvOiXGIY9hmGP66srbLdbAChanLXPQ94wcX41QuwAHyUqFo0JJov7Epng1OSUgiYGfRSHk62JLJkwIQTcuXMHZ2dniGPEdrPFdrPBZrNDzqkwLmOM8KFD1y8QgkQTsK63cp4cwfqKgtQ8x0Gc2VTqToal+VlpiutJauqjErS1N24O3dus1tfWzLQBT0BH66ese0vTEM3s7PRM6h+uFjoxDs4HIHSaRN7pg1RmB1IblkgS8jklOVW9A3NEzozVaoXnih0AQNcvdDHqqUcElHJprkyQCB1lBBjFNC0eJDU/5/zpwzAUxhMhMZRFuVwulebYYbfbAeqEaD2g880immm1PUTIUknhgs6lncrTnBzbGKodl7HShVk2lwkz+d3pAuaZyea9A1EAkTC5mtCrmFu7Dlt9r75i/QLZ5hVhlnJGYhVH5XGpXoYdvOskeNp57LcDuGctFs06j/LhVluzMBUbz4lXX/ttGrQEn0o6zjDssdttsdtuy2Fj4VKtNi/L/ObNdAikN+NxRJhNzVHp54Fm1iSQz2PHzNlhw2zWBqAaXgY215uShymeUQdKWUlJ5SCNmk100zPSRN5MBRkRIbTzX5lZm4cvC7r5Dxs/0+SDOgD+ZhVRP/cm1LbW/C0nX71r6aS999FHH+HZs+d48ewFiG0CAqgn3HtwH/fDQyy7FZg0LcmiXrgKM4YDWMxLM8XFkyNVnWKMpZ5jPSVvEurW9+nnnXOaaVJZWQ2LsIVm5ig51bA0AFNkpXje5hVxzDQ1gWg/RWOI+iwa+EhCYWO9nNqQtff1KdrDQzT93Cx8R7VauX0npqSaTYPvUIUDAGjqzU0Hbfs3l7meiNnmYGNuqbLnppgIcPFOE1LM2I4jHv38Y9z59jfQB8WODmXnpB1znrWvt1qT9cE5j36xwGq9LpoPgAm2Z9bPbTjSy9qhuTrlXLO4MEsuZ7TOjOk1uNnUdnC1zYcgoVDqlPJaRGYYR3QN86xe9eizHDOvbQzsZ5C8JjklgjPv1uGANGdLuWc9D7mCxEBNqzny7Tfe9MHGmABj5jFNgBngjBgz/u2/+zf4yY9/hkW3kJgYHeiRR/zm7/w2fnfxB/jg/AGS5gASdYqSA3AOxGZiCZZCIAQfsN3ssVqusVgssdlsNOATBaAHMDtpdYQYMH4zEy5iksgi7kKQBZ0Yu90Om82mXMOuF0JAv+oRQtXYYhResGHYTTygy+VqttGyjkHEOA5l/ruuEw+rxkllMJBRcBBA5p/aEARXhRaRaBamaRoGFtnCKuR7u/2+YHvL1aII15g0uwEEOOGHg661V0nS1g6q+Sd4GZMVembEpkK6HTYpAR69eK1HYNgmPPvsMf7t/+Nf4+vvvYOT5V2knOBdPS5JPeamsbKyZQBzQVk3pxFxVgeLQ98vcHFxB6vVGoN6o/e7nUAOKcEHj0Xfoe+6g4PPrn+TAGg3P6AZGdWeq1oZgFEF6XK5xHK5RNbYuPPzC4AkWNl3XVmzyNUS4kk/CMuVWAfj+RlGq72x2+Hy6hIffPBBCVORrVUL+5YwpplpXdSU2fMFSfxkQMHIGhg6Xw+N5G4wCjupGRY9fhykJEwl+JtqBM23SwnKyyL91Gc02ua//qu/wve+9328c/8drBZLjOOIq6srbMcdTu/cwXd+4zfhnEdiiS8j8gYG6YTV+gJxjAg+wHuHcRhxshbg/fpaQj6Almyuns4TNa3REuzzwrce4FiSk3kcS96oYRoAiqDpug6L5aIUWC3ZBjlOUmlIqwy11NyWUcA8YhiEq84WVO46MITy2FgUXGNusmpQdWbrJjbnj3n8hDHDg3JN62FUsj0HwmLZl++nlBtWEx2/20ys9qKomqKtXSoHisaYZV3ZjUDImRG8h0cHjhnjkPH82SX+4s//sgQ8S+hPc1+bSlUHy+/l/boO50B+u2kFuzzBcrVWXruM7XaHqNq4T0JT3YUJQjRpc2E2/3tyCE7GTubUIv+9r1x6m+1W+OVCh8S1FkaMucx98Y5jynrR9T36xQKcGYNyj222W2x3OyyWy5IZ047VHOO7yfExwVdNXW7Xhx265evNdQ40tBkId1ubGaavtU1wADG8i1o+P7n2+x26vsP5+Rnef/89LLoeY4w435xjF/e4uHMHjpyCww5ZdqNenAB2VeiT0wBYcSoIOGrCdL5wDxN328Eh0ERrM5PStCm5ZgY1J9P82czFb8KsTXOqQqbBR4nAeiraNUXQiZBrMRLR7DQgWQMhxZY9DixYaEbrPStzpQvMDsFS9V3Ly9W9YEKsmq624eYrypxRNx2XVSCqJ5O5BI0ezIpqc94FbDdb7LY7nCirgz4E2t3QSk8yfWDyDIdj0wqXOY5lP7uum3ivrWtyMFHR9o9pYceefw6az/vGpnY0GTQTamy7zsHVb0aQWtiAnEPQcKWTk5ND2m06VIbmQpkN5mqHnVmFmbaaH2beBDo2D+1t6uA0EvQmKVof+Q02LazrnMcYt3qCWII3I6YRjx4/wv37d3F+fo5/8o/+MRyqKZTAOL1zB/1igevNHhQITALaZ0+Q4zjIogWB4OGduJ33ccTp6TkAwm6zK0LENkALqh6L12lfMfxtu91OvI+yHVlBU3lO76vZcH19fXDqE4BFv0TX98JU4KRIRYyx0AtZ3/q+x2K5KIvF4g4l6PcaFp9UOLm8R9d3zZqRZs+XbFxTQmcxc1l52iDm/zAMOD8/RxxHPH/2vDD1stM1KUZrwQWZBWODp8NxO7omIAJXOcwyA2McsY+j8NqR4qxqOzjyAIujYL1a43vf/xEeffIpvvVNyeGV01/Bf6W4KQHEaJgjXD1sWq2Vmg1oc90KehM63nucnZ0ViulhEBNtHEdcb7YaVO2Ffqc52No6EjdpNiRvanm8RqhC0JQYE7ouFwzP7/Zg3tdnIMyuq4eWXddkgVEM6X998Dg7P8NqvcL5nYsSazexUpo90P5sn8cO/7ZNaLNb3ODGldHekOdvcZGuN7Y3a2VCBtrBkbBgEBoTj6RK04sXz3F2foaz03P84R/+gTD7ALIAfcDlZoPLzRb7/QjPPcgbLlU9j+VecPAuYMgRw37E6sEK+90e+2EAuMZJmaeR6LgwmzxBYwbs9/sqyKgEQkj6lTdTEZOo/zbkwjmHvuuwXCxwsj4pmtYw7rDb7ycMtgwBa5fLyks1NPc3EwsQza5nRgcgcKcWvZ2g8hySyG4ZBJU+mXOuVOVq4loS9ovnL2rsF8tJXsM/qiaUOcPDy5xNfZa3rgs5CkTAjikhZQY7mixrIgKpo2fZr/Dk0RM8e/oc77//vnjpmAHkmfBGEWbFSTTTnNv+tal/9nO+JiwfV4KHJW/X+Pd3+wELtTqcCrD59dqk/8mzWX9MuZwNWrUIuGiHlsUg17DpqHKDuSEtsNeb/hQnoxPGGlubUkwIRTgdjNdNssT63WhnE8O72q23CSNbVFROpfb604/OEmjftCCb9KX2bT44JS1HzS2ub4KVq7/rRZNwoQN8B0Q51QEqmgNBeLbMzV5P1+mpVSfd/tO2Qw/nHNg3LKUwJjBrrqhEn3Oq3srpwVRTd5ghMWsJcFlM1pwMq/EQCIZV0zN+/umwljg03UAFSNb75izP4lTwMLTqkUV52zNQDaJlNBu5EcDtje3+BTJoxk5HUDHd9tXpGJdDlkSpssh2s0C4/ai+5QjwHui7gOVygfOz05IaJ4/O5XeerLVX2IxUx6jVbo4ZLq3GZfioOAME0sjMxdM4JUc8DNG4SbhVfKoSOM61xTmVVtHGWMxSCfie4VX1G7PxmAquYzjZfAwnr5PKs+Z2wWxWizuSjqN8ef7gdiHpm3aGyxeKdG3bbQDem2jFE9JIe+u/cw7r5RLIwgtWBlQFzZgZy9UKi9Mz9Cf3kLhHzB7DQJr3mTEOCbEk3JpJEHBycoIccwnHkM1vE62J6mCkNpZKtQ9GrXhuExtjLJjJ2dlZ4bxi1cBiShh2e+QGTCe9rwgoX07ulMUEFbhKAGxbvKvVqggaWwvm2cwFv3I4PT1torWF0cK0x9wwfCwU42FmxBSLEDpZn6JfLOC8R4yiHWWWlK9hEBZd26z2/dYrBqCkuZDm3drnbtPIYBqSZmAkzpowLe/BAcyxfM5MRe+A1RJ4+O493Dld4jvf+BD9woEoCYEwku4mW/cy33Nx2m7CNlL+oKdHsCETUjb3Z2dnWC6XtfjNfo9BiwuFENApR96xQNs5oN5CIHW+EoZhxGq1wmIh82hhQMvl0ghhADBSYvV852KBSEGfPBFqUjC7GY/MIJJgcGriBlsihVeDrGQt250mRYBL+sxLBY9oZaQCbf7Wl93aUx+YnpaSatHDKIEBVLueAE6MfrnA8vQc/eld7EePYQRAEsCa84g4Dtjvx4kmdHIi5pmlFAFQ8zJBAkR9OUVL7JlqBKSYnIHkbb6eBSCeatQ/IED85eUlBsVRBq0sbV4u5/xEKADSp/2wm9QptGsvFidFoAEQTrVhEGGWa97iarUuOJmZnWYGD8NQTCcbczMhzVRZrVaSg6eBw8YZZgGTFiQaNFRGyP5UywbD0LMinAoIzPV81ZGtf1E90FQrzCyU3KxpaGYy2ecYwk7sCVj0wL1756DzE3z9619B5weAErwzD60Ir1bjsDGv65EnAmoaFVBb8SbmPPmeKRzGU2eH9bNnz9QLHbHfbyV38ojDoNX0Jxg5Vap1WxdZHUjr9VrS7Jo57Pt+oiWLzBiLA8fGgWemhsWsmVY98Vy6qYZmFsYxE71dV2Vsm/+GOSFcGdRXaKqXlN9bc+1ttokGybUnbTzK1MqVcIrNZotnT59J0RJd7PvEOAkBC7aUHqdpUQzPAQwum61dHGWTR7t/jR8SfjWu3cPU/DhmCrQewLb6d6vye++FZrsRgu0pXDYFGDzhcsdkodhn7XnaANsWi2krrU/ycO1Ubf62vlqfqtdqZjIQyngaS+nNzWiDbKxa4xLVbJt8wya+jYGyakxHBKAJNZQ0Viz6DuS9MgHrt4ibDVvvaibvbW3+fg3vPv7sc8+n/WzNzpxjMeFbNttWiJYnLRYWTa5fx6dxXJFlA0zn1XA1u56ZmjlXyOCo46HRfm9rt62Dm94LXd/BD148Tlly71yoG6e5QvM1Pa2Zkakup/kk3WSnv8mWWU575x3SGBG8/F42Eou35tHjJ7h8cYX/6X/6n3H34p54+rqA7Dw+/JVv4OuLNZZnDB88eiebeJkXSDnj5CROSm2llNH3ciI+e/q0MdmzYjOapDuhza4Tm1KSLATF8jjnYraJur8oUdLFlFssCu12WYyoZbfGGLHb72VBMiPnWrDVcnCtD6ZdAVPszTlXwhEsjcieLecRgORMLpcrLBdLfShd3KpZLZdL9bp1ddGr5y/piX52doHnz5WGydUSYs45JCu8gmqGmNlq8ZFA1d6awS3vkYH/VLMRYkzI7JF1X1nth5wjHDp4T+gCITjg4YMLUM5wLoE4AogQTTqJlohpMOr0bH05ZmWvZ0M7XCMYFUYrzgWdZ+dcSWk7OTnBMOyx3++EhWW7LZp6Cx+YAJzgTkeEXIwRJycnIM3HjTEplloPSqO0Wq0kptHopuwa3jkEhTjatV6FmcxJzupRLfLVqQJdBedNY9mMIkCMEJTXihxJSglJSoVJadwoiFT70N+rPvLltsRJcvg8Ie8T4GVgZXELhQ8z8OzZc/z4xz/FZrPHVz/8KlbrtYQOLBbwixXe+/Br4t3zHi706NGDqWpX7SDHgr0BTx4/luLIWizZ8LGUMxY05ei3n+M4IjgJhmSg5MExc6EnLrlr2szLBUwnfhgGjC9eYIwR+91OKaozOMUS12PCzO5hOXMmqKr5uSiUz33fYxxHbLdbNaVFG5FFXnnXgIyo12PmYq5IP6DKj4ydnfinp6d49OgRckroVstDvEQVHxGSVaDXTTk9aFstSX5xVQuBhGDEnJEYmlot1cRyylIoWsNtgid4B9y7ewbHGYQEcAIhgfUfsQPIV/PRhGiBkWda2JENOdGeiEpfj5plpmUCJTrf5v3586cS+H15CYeapN7es6XGB9AEzFetXg4hoXLf7naK3bpiEtpnNpsN1usVvHelKHC7Pp0PaAOSi2Oi4Iak+FqdX/l36O2/SSEyWACsmNlcCk7WBpX/HBVUBwrjdP1NO4QjL76kHVWPb/1s8wwVNpmiKETo+8oVxlzDBxCTVrY+vO8Ue6t9c66eyl5NqqJFsXDtz80/ozyhZnwnvzVa2DFVfT4e7WvF5GyoVZincIL9s4VtGs/8uvVz7WflBLXnbM1I05pumivDMpm5ECW2ZIGtKX04KMfX4IFZN53s6RpmnjLLlj7VL4mJqZuPNcWGnWplrMbtTbtBLzMzpQ4sndfQ2n1r6W9G6IlG4Lde8dv60Aq9dj3N4SfT3udpR4frkst4O+BgXo+tERm1JjwMrygDSCmAbABK8KRJuwZzakHMyTojSbQunrhm5ZXkYmfXe/NYGmslHecIkYT1tXpsRJNYLtb47q//Bu7dewd9t8Dp+lQ2FYCRpEjr3Msjz3rsfjXxFwDOzs+xTrHElZkqb6ZcpbsWLA4liXw6aYxadck2/LHTfP63FUkxwN2pd8mcHZkZ293+oE4lOaktEBRkFgyMsNnusN3tiyZnC3fRxKL54IBs2QcDRvGYwDkntS8Z8EkCMLlkSyQsNe7t6dOnKhDddK0RiqbDRwSQKtsNklY3nXm5iCC0Tl7md4gRwxgxptyMe0ZRELTSVh86LLoeKTI6Jwx2cj/R7VoBLGujNTFvxoSObuDZIXPT55rZPph3IipmZ9/32GvRnBQjNpvNBF+z5r0v/Y9JvIsiGANiqoVGtts9uq4eyDtNSbq4uMA4DmVNtFACYDRbI9IYy+HQcv3fdOiZXm3ZI4XleKZ0zYVcsIcKIUjul5GpGcjZnGizuzUDWiV1o1pMNCFRw9+8QBMcg+GMpmVio0v6x3K5xK9959fx7rsfioCJYhrt9gNyGicqd32am3veViE6Oz8rX0g5FUH04sULPHv2rKQbhW4h46uUQ2jHUB5kQpl8m3ky7YsrLKVl0rNgd9vtFvvdDrv9gGG/LxXR+35Rim141egAyc/bbHdIKQpuYgefFmGRMnkBofOI+6HQEJlZR86pAJc8v64zTFNO99VyCXIOn376qVAVeTdbrNCwCRSB1q5HMowRZtZR3ec1hkDnU+IJxxil4lPOoEAglhADZD34iOAYVZiNADorbAKYM2dOVUQlV/eGRfKa2xSjk5sulyssl0ucnZ3h8sULbDab8tOYi1t4o1wLslZNmHrvS/2KxWKBq6sNAOi6QDmYHzx4gI8//gjjOOj81bAd0dg0xCeO8CRkoW360jFcTFqx0SeWzNwBMW9HzUx5wOMK/eRmBTGT/5bBvWFG34ZuJvdoVF60drXiPOSxXK2wHiWmJo4jRotBitTgP8fvUM3DaWtxAbu5TYKZAVVQ1oky8ww3TNLnaXNVn5klXQemgemiKIujqYSOFmyempjMLQ1hOxrTn3UcfBkj5/xkMYrpZvxlDUPx0dWhALv25/AzZkHc/O0Wh8pGrHBLIxWROWVs9nssT5fomjoSzYMefJeb78/ffxlMcnCtG/p57GUZc5T+eXX2tJ5w4PaUula7rxBKe6gf1xxfBiu0v09hlsMHkZc+f1zqgWZm7JaTCzFjsoypaP71IyVV582bkS9rnBNAQOiEPgeagiQlxSJidOj6Hnfv3MNqdYIYs4Ksos5u04h3331YAk5BxwVXGzvTNqK5WSrmkBWwGEfJh9ztqtnZdR2QE8gi5TUWq42yLxjcjadZ24fDDjvnCvBv5c4m48Y1Sf1AfTccBjVB3RwGRAY1pOK4sGIc3hvTqvQntUWSQRiV1iaEoDFP0/4bdpWPbJaDv2GCy8bfgqGpYHNMDvs4YhijVjSvMIhMtZOofwoYh4jHV0/w13/6Z/iTf/B7eP/hPXkKdrCa9HZXfosaWXneZh0cChNxHBEUdlivxcmj8YCGcbbX8d6LR5tcKX0IoAZqswj37XZbvOJXV1fo+0608xKupJTrVINhQwgWISjEowqfmNk71zCtX/obvA+Fmmye5dJ+J7RaQ/ngRAU1ldom/HCj5AaT+bJbzlk8OSEoP1YoJ804RsTk0Hdr3L13DznJgjSvDxFhxwn9aoUQmmo11OiibPexeC8cEeQ1RsywneVyqWkoGWNM+Pjjj0uwKQAgJbDS7qx1PmimWpsWV+mtX97afpkHtC2WkbMkelve336/n4RGWDCtjaFdzzygFoJioRN9J6EC5oVdLJfgLNH+m+2+8eZ6PH76BPv9XsfforuaQ4JMoLnCyg1utE5MD1XztsVxFNNd08/MGZKck0DjGEHei8mo5ql+UmifKWDYj3jx+Cn+3b/99/jur34D7z24p/cW7yXILFmqhLNo47Vuxs3m7WUQwvx1al6bO0zso1YMZ7laIeeMq8tLvHj+HJvNZoJdmeZWU6QkHMeEWStscs7qwVzDe48XL17g9PSk7BVhVLZ8zmpOdl2niRKCHe92O+RcqzqVnN3mmS0X1ASymfdWxu7YoR70cHkFrUpPogO8rP67yVMxVzXn79/WXuVzE5wFKM/TmrspSXpOjA7OZ9UsMgg1TMJpxH5WNDjnLEFpSDCq6/q8c5P75X20CcqMiepvGgTmz3FDu9UULQeabiZTqGc4Rfv7xATEFI+56d6tFyslxTSauZ1csyy+w2sdu1ermU3M15ufWq831aLLpm+WbS2Pd7hW69A5pJgw7Afsd/uajlOsTMK0N2/ZIjlyuzqGdQ7sn2VWtGFBQB1/ZlknxbT0HrkJA5p/tr2ukSnaPedr89jIHMIYh0V1jj90I+CPXDkAyuwQgoCAdsNcWRoMb5l1qWgdppkRmdp9+BCfZ1F+0VYGkxSz0TvllPH48WN8/PETbLYjHr7/dfzFX/4XPH/+QlJkmk23yxnf/a3fwm//7u8iPXuGhA0yOoCWSrljtDumqnfFAWDjUZ55JrhtQzvncH5+hr7vsNvtJVYoJeQompoVj5i3V9bI2j5M/p6OvC1sS38xJ8B8QRov2jzNxL5fPVQAyJXPbrdb+GuhDeKcMcZchEjOUme1FCzOGoBtpqb+N6dUNCwdVAmNkIoi+nnlgQNKqpiNv3dKfw3CGIUlI7EEVxxiZwTHhOACPn3yCJ998hk+/OADKZPG9TNTYVYlJdmAk+F4b7Zxc1iV18rhNT30FosFLu7ckQpQGtAsHk8hv8yJEceE0ImDzErFxRjLmhjHscS12euFzABACB7MUu/Se19gB2QlbQVKIR7rm0VQmKZWGZZn+LEuZGHE0cOfUSqiA0BgiCT2QBNfJekv5CXfagLuqxRXxBq2kOx0vg0++Hy6zBdrhpc4Z1iNsJV+9skjfO97P8Cz59f4tRzwr/71v8JPf/ozOLgSzc/M2GXg/xwjvvPd72LYPcYQPWIOILdG10udgL5fYLHotcqMg3MBVbhXoV+9k7baSTyIDFxcXGC1WmG326Pvl+AUkeKAzfU1Lq+upPhI01rNaX6SHYwB5vLLRAOXD7TXMwyFmbFcLg/Mit1uJ4y16iI3s8T+tYuTWfIek5qsE4HuQjmJxzHh5Oy0LOA0RjXNm7GCmhUOJZA7IxVzj5rnE21aPJJWro+pcvQxEUblL8uZkZ1QAVn+CqvdSHDofI8nnz3Gxx99hK997WtYLVdgo0nXuMHG5pVOkGjzx+PPXnOj6hAxR+7UEgLmu3C5XGK1XmN9coL9fo/tdovrq6sCtfiQMI4RS4gwu76+LhhqpwJwHEesz04xDEMRZq0GPg27cMIVp7VJjaZosVgUgTiOo+QYa53X06bqWBuKVIQa1XxSe13K1ckchHaxtV9qfkwb8+QNEXXHzYX5BBx1w7ymVvo/MauqZE0pYRxE84kpSiXxqyt40iRnFraLPYvtn3NGzAlxZIyZQS6CnGgCPnikJO5rAbAtMLUGKh66j5UySPvmvUPOASFIMnlGBmdXqH3mqvhNwP8x8FTudvg5W+PzaTItaw4mt/hE25djGmfbh5bQsV7DwQVXQGJhzZ1/twnc1f8e1fJvWEbcvjlBREhhA+1/+ax9brpWHGlZvjFivVqXYi6tocPNdXHDu6/abgfAb359epHpbc2SLnOkOJnhToJD1S9V8oMpy4bhwa13c74mj8EWci2adgaHa80Ot2nw9nSNFdky10Jnf4S2E+3IODUbuAHF7NdWzSNYikkTC3J8uN9Ky1mi7oMPsNQlIocHDx7gW9/O2GwHvPveu/jjP/nf4dd+/ddAbKe6PFskh+9859ui9voAUAfPAT6sQV5qcQIop9N+v9NKz1NV2TQCyausZgk182tA7Ha7xTjsEId90X6MkK+dl2Nke5N2ZOAPDplm0Vsgc8WKpsLJ+i+xaFOedluAKaXJQSWB02JOrlar4rmSWojVTO66SpUNhhI/5mLKBy8MqqVz5ZByICcxTM5PKwWJtmbasQpQJ3UqzXRnpTqfS3QTaESE9arD6XqJi/MzfO0r72O9WsCVxPKsGl1jZzQW59vyak495o3Yns2hjIvsXaPa9j5guVji3r374lGOqeQOL1RrsntYUKw5pNqcZFkb9d7OlWqych/nAJ1jC8+pJRFzcTT1fV8CvYmoaIQlk8U5+FA59lqli3zNuS3CbJLDBZTQgCyGKTi33Oem3Sumpqett3CC1zBZX7TlxKDOI4SFCjMZyHffvYe79x8iZoLv1rh7774u7kplRCAg9KCuR0oJi2UPjwWYeoT+BDHvRYNiYD/skWJESlUNTykVL5J589riuseERdd1ePLkGbabK4z7XTHb5jQuQDUv59eRP24fl8lJP9lxU9ylXQvOuZL/15qeOWfJAVSqoMQZmLCSAn3fYb1clQR2IkLimmpVuMQgiefb7VbDVDw674G+l7XkUTcISwUgBjSHVN31zEodbiKpyX3VzI6YMvbDKG4cSzrnem1q/nd20uP8bI3x7gW+9a2v4/R0CedYKY7EnK1003Nrhmd2/utvE8fJkYNqri2Jx12qkskB2hWCgN1uJ8y1uz1STsUENKEyDAOYBVcNXWgyWEiDcAGDWCbCjAnUHOpeCOBwfX2l+b3VM79cLnF6Ws1X86obftZ1nRBg+KrBEmnIjRJCZsxqAHze1oqtOV7UagRlbo+YSa+9MQAmOLiJyblYLNAvAzIcEgd0i8o9VpzA5OG6HpthxPWQFGx0YOfhnUeCeuwIygoRJ2wTpkkZBtWqzzbpcvpbZ6ksGuP5t5i/Yyr87Z5gOthAx0zSuWe5bEeazud0M1RcxIS2mRLZvFG5Zb+VC1okuV0n5xqND8hByRlgzrpJEjgTspkyhk5xFcAEG5OqGVmR5BIsXczXaj5W76t+p5hA0/EkSIJ51wX0iw7r1bJQ/xBVM7WYxPZdQmE9fYsKWmnH5OdNMIDNnXOu1OP0MYLylH67NTNNeKQcy/tCjKBjyoc9aA/tNo/T4Adb62ah2F5qw5CqWXu4npsbgXMWYVa4q1SyyhWzSNci6SvgOMcGjFlStLKjts6BWv/GGleaF1JPlm1COC1eAcbzZ89wtdng8vISTk1RIgcKPVan51if30XwHgkeDKc02XWCfBBPpuESNiEWZNjGbFm+3HIp5IbkfAGvnSOcnKwRhx2GnVC3mAAwLn5rc7yiPPLLhmSGwU1+4rgS0S6ceV4ogEI91PUdopWDK5+XANrr6+uytgSncuoxBYyVlVkOATNnV6sFoEJWYvJGeBckHcqHCT5rwrh6EEvn5T0NG0gk62EYoySZz0xX0eWUMseJ0+vB/TtYd0HpxEcRmIgASbFiOwAam/2tt5twNRHgTX4rDqEk2xO2NmtsoQTP9n1fvNJS0b0GrQbnq4lfT5tpX2YaYta6qgLJVJljBJDX19cTE9T2UiUwkJqx5oE+lt4UWhzGq8cIzOCUAIh30pFB1xVkLX9zVvA86/enA96arm+nkcjhXFkZbOJIXebMCZ89+hQff/Ipfvazn2qKpHolfYdvfvvX8O177whmw1IEOKcs1YD0AbsgxXG7Lkw0KqBqaTHGUgTk7OwM9+4RlssVur7BFolwfnaG7fVVUdUtkPb8/HwSw3MT2P8qbS7Epr9XbfGYk6FqNZUYcrmUak9JT1phashSzGW/xzDssbm+VAGspmCoSc7O1Q213++xWq2EZ//8DHstfLvdbrHdb6UmQ9ejW4Vm07Vl63hyYEpYkcSce+eQIGEY+2FAAiOrqdroeiANlu1CBwLw4QcPgYf30PcA8gCp8p5ApMXpykKf62EWXH5TUt/Nc/MqoP9NnxWNWIklXVO3MnPZ12YttA6eGgpR52Mcx5LHud1uJ+EUOWUJvg5BTWoumi81a4xzpRUyYQTIAW34q91f6IueT9aXQTTlAE8ZiRljiqXPbbAts5qZbINgmlUZR5bK3TM1vOAsRUFrOTFeCt7c/v5rajxz27WaCLNUBb++vsLz58+LMPM+gF3ATlkiJuPRLi6R8KoMTJlf241vG5VZQh4Mb5hrqlancu6xtFPpmKnZdKY+X2NWzz9/mwBkHOY8TmCC5iRtTQdyDh6MGEWoM2ekKOAtuMYiGf8ZuZpl0nqoTEOwegc5RozN5skuTyi5D5wauEX513swdF5KTGD75RpOYGkzy+UCAT0oGitEBjkF/k2tBjAt6nNo6r+pdpNXs53LyZyrktJ+3w5PoK41Rp2P1hwta0ktMOfcbBCbPtwCb5iAa2MWgSlDjO2n9rM2B8c8nkWYgVmrbrdJ0o07doalAEfmSx/StA36XOfS622GiTiN4s5cU1oAGbTPHj/Dj370I3z26JGostZrcsiapwdT0bWiB5WLy66R81i+1ybzWiiC93LV5WJRSnDttjsQpvE41syjYxMHTLMEbsfLXmFccBxTqYLhJpPl0ESZf6YudFTAlpcgEq2AWcMi9DrjGEFaAimlhP1+Xwu26Abruk7AaF8hAAmXEFylXyxmfSwdqwdRY+LUBHODIdQrr8KUIdBB1/WTg9o5y01OmJ3gR0b0ttffTJvPQ3sgtntYPlD/se7xkktpa22G3RplUKX5CRPhVtalm6+PKmQckVa9n2rSBbJRJ4A9g2ljreeUHIHYwen6sL3WCrTAmZFiKlLawLagEtG8EjYW3Bw+jWJWvFkT1Oy4EvFGm2mZUgR4REr15MlwGMcd/u7v/g5/+md/is1mi9/4jd+QEAwWjEY2jixgEWDCPiosPSxerDZtk6i4lNtF5J1DJiqxPeYBjGOUCkWuTfaVCkkXFxd4+vRpcSS0p+MxTqdXOS7qZ2WTUfP65HPNa3Pw1T4/jT+yIOnmuRUTISLxZp6u4fRwYQZ2WsRW4vjkulH5tvq+R9/1AuQ2Se0rWmMYtGjHdifURZDcWzT3J7P2WBxRpjm2oLPQD1mFJkZHKmiTgNjBB6yWS9HkMgPE8I6RKcKqN9WWMV3RbxFIaQ64dn7mWry1iXjVg4sB0ZTtENK1NUDiLEuFeZ0nO2T7vi/vmaZEpGzOQFFiWu3JStBJMZ/DRPEQAk5PTyeC2TybpHtICnsDYabNWbEV51w1M6cgb2Oa0BRbFTt5blAe21bHJ/dNTPlx04tQKgthekpfX1/j6dOnGAY9gUr6BKSyjFnaJS2lnsblZGlN7xmeZWwXrWYlrAUDRlc9fCb4iIRBoAVHb8t3e5U2MTFr7wEiuFeYhWPa2bHPGDzBGn1fTAQvDBS2XhiEqBqnUIrXxOE2s8CsAgvqDGrNpFRjk0jvPdWBKq47eaVoCE2/bUxUAhaFWzE2ztA6z60Xurlb2QLNAWHavILvn2ehH8NCXwU/u+k69vsEKjCEkKo2QtSwvzgLV5kSGtRyidVMrAdqe3PrbH1pAifQ7M1Zv1t2jmP/bG21h3nrWSfSDIA2dkRiRWRCpDYkQP5ITl7tMQoA2D7Ul9RYy385R/CuFlQwoZYzY7Pd4eE778IFjw8++BC9F+0pxoTIjNVyhd12g9VpBOA1tslA1lxqGdZTsE64axZF24gIzoumsN1shAW2CWWxdI+5JjQ/xez3z9NMaSkY4LFxMxwU0811kyCdHnzNGDeXZ2ASrmDpLGIiyBtGgdR6bSuOK0KjeNwWC9EA9H0zORmMvq/1rCuGWeswjlE0K9aOkQoy2bSy5nNibLcDPvrhj/GV9x7gnbuttjCz1WRAy0v1wM+zz77ZdhOeOl83tncLVgVxirRzPdfu7PsxVqfLMcF77J7CgmIynsu+LH1qn2HWTwCTHGFzUFgIj/ehCMCWcijM6yiWh0kZ++0OMSW44OFI3KShC5KzOVPtTUzLSd082OdXKr5wKzY5xAIJwZfKTHaSp5Tx7PklvvWr38a9+/fxm7/5WxKkqcJsnxLGBLx4/gJndwY438F5UvxNQgVaTicxBQvkKif7TAjYKReCJOQ/e/oMdy7uAE5pddTkNE6oFgA1XKCNWyuL7VWFGjVVcgyktnnTltVMBFdPYXuvyUZoTd1WYeH6HROO7SYxc8I0ZhujXExL1s2jSfZ6Gi/6Hn3oYdQBVhkoasAuIyP4MzV16r1C12GIGXulOLJsAMvZZGZ4cnBdBxod4phxub/Gv/k3/y/89//4j3D//FeRKasaRgAchM3eWkvEySCIc0f0uCYn9w22uQbXakO2htr4R8Fj5XkM6Adq6howJW50TgvuNGUG9W4HfWmFmR0kRVlK9Xr64WrlNEC/fb+l97Y1kXJSRcLDuaDUQ1VDLHFmE++CCiML5nRgWB+892BXBZc9E5f/aAeaR75JG3idrQUCbVMY6Z68jmIBDMOIe/ffwTvvPMT9+/cRnAmziF2MePbiCi+uhHPJeamfmHShmuu6gJsaeiBepGkeW9tsMaUUsd8PUxW8eb/9fPtc899fdTwOO3Lbd+op2V7ndk3Qxn16X9PuW2Wt4oQ0+c5NfTfN1TmpHtarBmfCLml5xIxaQbvKeRvPjJTlczI3pL1TiU6VlCBnRtyP+NlPP8LV1UbmqDhRqQg1ngzi3Lx9e66v+bzMhZl95qb1eOy77XutNjdfB7ctxdYCKH1q4Cn7zG2ECccYYiznl7mBM1xl2AjzhzL1O6sUTElqaTIqzjMMQzU5IWbXrU/3FpvTMgRZcyXNpDD8zzmP8/OLUjatdrua2BIA62HRSAVXZDnJzs/PJzEuEhcmwqyd9FY4AbY4AKB6aiYLpzkR7do3CZK5qn5Ts+dGs7iI6Ph8mcZ2QzuO49DkPWrfu8WsxUyDn99nttXKPNoiXqg3U2irGNHCXgB0HUlNTtMSuXo0TdoxAZRtkzG6boHt1RYvHj/F6ckpFppOJd1zmptJ5ZmIqDjD7CAzMWY8km+73Yhrzg9GXcut1txew8a2BrBO6bfte+3emd+zfUlwzsPQo3btW78w+4w1OwiDQkitslU8ra2HqqiRWVTzYRiK+smcS7pBm28XnDJMtmrj58R0XmfzjkBUhbEkwOsAMxBChw8/+AB/95Of4tmz53LyetlYQs8b0YWAxcImRNzyzOL1Cn2Hhw/fASDP/fz5c1xeXiJniQyXIh+H1DhA3YwgLtQqbfrIXNW+KRez/ny1TWN4wwQfmX2xCOAji23+mfb0JxLBIQsdQJ4twnlyMGx51GtXh0db5QsAK4lrFjFRgN4QcHZ2hsViAWE4Zjx//rw4VlYrQuh6+NDBhR7MQIpJvNVa4NoQHNaQjdXJCj//yUf4wfe+j3cevIcTq9gVAe8CAJ0b54tZxCQB2MwA5wxhTZvyAL5KOzbeL3MG3HbItfNUzH7mYmJmJYYwy6Jde957nJ6eArCCzwld109MzLr+dEzmh1JmwNf7C87lCtTRPkcbaD6DXCfP4b2X0olZMjRMibCcXmZGmF/cTpzizs5CjZMac9S4tkyYGWPGTaesdfJNn1at58QG0sxc28DeOZydnSOOEbvtXnrGaKpI11PAcDB5rjr5Z2dn5V6Xl5dKMCfCrCWXOzYWNkFtPBkBJQar/V6LabyqiXl8Q1QTnFQCzhcO8HI44CaTpT4biqNB7qUCl2+e+2Obsr7WGHTNqU1UCSUNWDamBQBYLOq6Ne2qMMzKDcp4mGMnhA677Q6PHz/BN99/D33fwREhqWZWNU7RzFgZOhi5ebgjOMuX3A5himl8GDAVGtOxFaEnien+wNIwfPJlhnXOGd6ZZ7j59kzwzt87+jmqQbSmmZmcCsF7jAByioDy5kOTT8lJzprzTgKdHSFnB+47mJngqQozqY85xcvqf00hR2GpmI3Lze0mbGX2ZeYsGVi6iRyoRFfIa6I5jvs9njx6hsd4jj//87/AahEKiD+khPXZBc7u3BOAXs/bmBih69D1C5ho9s5h0UsxEuQE5wg5jhgJ4JwQx6EsBCrgtDI5sEWTzzw7jSlVE/eLPWOgVvMFy8GbLwoq40IgjRJV0sKC8sjgiFJk5IauYl1HhZdJKKEcR3OdyV62/uAQRWqVd8M420+1S4GhWiQ7OK4mIogFu2XAwWHRL+G9gsbkMMYR2G8RnJAEJiJkF8BGDwSGYw/HDs4ROgd0AVj0hPv3z7DoA6wGK8yEtHQ4MGDzd2S8YSQHb1Cg2WEhv09fz6yB8FQzU+oBRpN+WUVzcoRxP2rAcm8zqhvHnloVnrIe7e9D+MIEIeeE6+srdKHX8KNOs11qmpNZdBN4YbamTUmx5e+IJJ1QyyNmzgiLrsf2+hrDfo9F1wEkcUCZsyZTA6ELE3Nh0QURdGWxi6rptBzXsQIftljLgH7uduQ7jKItMTJSzAL6OwcHoUCmDCAzHOkWzhHbF5f427/+ET797BH+6/d/hLOzDpY32y9W+IN/+Mf4h//4VwDfgxGQMmEYR5ycnmF9clomtAsB56cn+FkcQTnBdwHjbothu9GpJ1zcuYvlagUHSTB3ziOEDomzeOJsbTFAXL1QEmntC/4ghTRq0rZoc5j8fUz9FeEEUCaAOmRyyHCQ2twSib/ogDzuAc6KR6gHr0llK4tbNRNyrrzokIB8/Hw+rpWZq96ubBqWbZy2ZSB7UCY4BGSfkZGRXUIOGY6lmtL5+d0ieK+319jttrjebtAzsE0JIwUkzQ0lZjhmhNzBsYMHYdkBJwvg4tTh17/zAc7PF0g8gJzcT3LeoHOQwVk3F5v2SJCqTSb+3qRq1lhRrXWnGssQE4ZBvLeLRS9CXoVP1u+RkwMppiiR9c7harNB13U4u7gj1D82zwQwCc5m9zUHj605ZlYzkiBMGrEwy3z6yccIPqDrO5yfn2vBG6EhSlGrgTHBW6xZezgS5KC14jT6HnlCcF05liWzxqJzo9ycicrCtBQH7z1Cg63BeIoU1zlWUfFNm5RtIyIlWVRTxNXXSIvBiqcRopnt9nj0yWP88Ic/wU9/9hPcudNDYgMZp2d38I1v/zq6bgGQB7NDZkLKjK7rsehrGo13Dsu+k/J2OcHBI4/CZBtTQszAyfoEvFiAHYuxQuI9y1wZAFT5L89iXpoDzag9+fSl8u7RvaPCSAWT0NdJeIHpHEQJcKVcy+TEPWhFoz52s+PfuXkd1BN8+lqrdaIITGJdyqo1ZjDYSXQrwWG1XAEQiGSz32CMI/bjgLxcY8yMSAR2oWigPgMue/020HmgD8Cqd3j4zgWWywDmBMkGsU60T1SldKP/vsV2XPUzFt9hGBG8kIWymYN2gKhyDdJYs5zhQsAwDqKkeN9oZq7cpj2uJnfWeSJUk7PVzK4uX5RYwb4LWC56oAsqp5LKRFccJxN4ZLKAbI/IvZxz6FGzb0Ib0Vu8DZgtMjr8tX0Ysjsca699hucan/7WYH4Gv5q2IiamfM85wtnZKb7xjV9Bt1jA98DpqSte0NX6DBcXF4XWqJ0c1xDETZSg5t5B+G0A5xD3Y9Of6mEV787Ui2TizNhqJ6Xu5k/MajIfefZJonHzHSbhwU8kJImpqHKErCSWFqmvcf06p60pZVdrr/8qx1Y1EY6+e8MbU7OzxVfQPGfF6kygODXrGRJXyCaEJx4TMx3FDHNEOD1Z48GD++Xv8pTHFv306cq1v5DNcStuePj6FAerr1skgjmXDNS3Wpl2UM6vZWC6WQOWSjRPBm8bM2arrJUZZqHlwhhrWHJKqTDJWAB1wVuZ2+iN+R3Lde0O7XOLMFMvgd2sBagrdvOSKaJ6kzfXXg5CcK60y/JxKhn+ttG7LuCrX/0a/sW/+Oe42mwBD5AbQVA2gNDh4QdfFR6tnNRjxcVF3XVBN18dJ+bKdbZerzW4NmKMVyW1B0SIWgB4HEc10+eAquSbnZ6eYrFYTuJwKmirJntZN82YHDHpmBmZPKIPyN4hMmFkIKvp6kDYJwAcQAxk9kUbEhO43nO+fFm1uDemkdjzUBMzqNpRzlksBzhY8KoJlb7v4fcBPBKGYUTKHkAoB7UNXs4JXReEN84DH3z4Hu5enGCxWMB7MZ9z4qIJvL0Isttbu0dbTdmpAL++vsbDhw8BANvtFpvNrjCSSM1UWUtGzT6OI66urpQ/T+phWiBz65Wfx4W1816YMCDR/zlLfmXJu9WcTqub6b3Her3GnTt3SmEgWeOYBDXb87bxahX6mKb9BXKVc+hG1/DBaB5+5sanPNKY8PozA0SdLBH/tS/UgI1yat+/fx/ndx6IqUXAMG4BzprdT8hOyOooM8hx0VS9dwheI7v1ASxx1rS/xWKBzFkIGOm6mOoMiYmaFvmYDRTVqGyh1HlJwCpPVf+iRTYmj5hkhOQ8siPEDIyQRzCMI2UA2cOrvtPm3loMVTPIs/sdeqleZ9M7oERto9VGVBdrFAIiEr54L6p2TBEZWkT44OJygFkR4rt3LvDg7gV8ThAWNAZ+OWpbT5odpkc9gCxCRMJWKr25ratWMFiGALPQlp+cnAAgXF9vyvVMe5rf6yAzlgzmAYDKajEMQ8lusXoX2+0WFnp0dnYm33eEHLkcXnbNQxhiPha1D21C26SjrFJWvAjFaBbhcNSOpekrL1vgr7gBbhOqU/PWtJXaX/M2lQ1PZgE6cEzCCx9HxLgDVDODc6DOwwV1cKAOrD2bpf0wlAlA8S+bvMwSxFk1KTVTqS4e8/62z9W6zA+E2LGDg6YTXkIiJlcV+y6BsNkP2A4R2yEhcUbwDsE5rEOPpYd6hQiOmn60z1w7U7QyNEvjC7XZc06uozen2on6+vSX8jvDql5L3GDk2bpsBCFINpE3bjqSGMW6ZhrjteUtm0/N8ZffWGu9wfNGhEJBbXMomo/AFhLwLp8zElHTwtr1V0Mx6sCXtcbyGrnpfM0P6DYRvFWYWgvQAvBF61MOM/IHmnAJKTIvbln31fwM2SaOKgicspDsOefgqWVZOLZkD4n9Do3OQ1v3i7f5lUkWnwKfYSGudhugxOKNks0nWloIDvurDV5cXePx08cAZZiDIPRLnN55gLPVuRRGZhK2TtXIbCExcs2SyBk5SYDuZrORgUYtp8bMGMYRi8UKIML19XVRuw37EVrgdNy8LxutGQVuMaPZP0GOZHwUJ9s54O8+eoInz1/g6fMXuLzeYdmtcLJc4yvv3MdX3j1Fv+4RmYVmRV0EBIZ48BjErnQHYMDp2snV1HndzbyxEtElXkUbB9L0ItkIvmjQm+0GIIfV+gS7nXgemaXoMOm4ORJcrQu+JKk7AN6JBk2IIKgGrWE76QZL5OUAyOtvE4xYY6+YJc/37OwM11p8GQDu3hVP7ziOePr0KZbLvjC0mNZ2fn6u8Vpy0K5Wq1L7oMXOaonAshFKfyr2JZKkNTPbQj1tHObTp08LxHVycorlcoXlcgUEaNW36uFnlpATanC/zLnAEaE9gyyAkFk1M03vaUVZAxdJO7aO3/rMNlqNHTuE4jE0DxjULCHnEOOIzeYajx49QuiEwwxgLNdn6NfneoI4ZOGtLDgcl4OgRjeznXBa4MR55dJSRzJYKYqDLwVAjOSuPAJXhlpAN/GszYMb9ZEOTkRStcM0VXaE0RE+e3GFjz97jI8/+wyPn1ziZHmOOycXWHYLPHxwAviAHBMyjLjQgo65/JvoZ8SiseQ3OeF1gZVYLxNmaE5r/bTRYwct0oxhD2R1rnCZkbJBvCN0wVV2D92MwvmfEQpZ5xt8xC/QpsKsrgtHUuLv2bNnAIRjv618dH19DaLKXbjf7wFIUerLy0st5u2Vo8/GogoUy7KoGu48Y6RqtFYHQwSjrylJSqgwjmMRuu174OXB85bnVAoo08xabTIUrvCZmdim0kxt1xtc0Ad6b6t88+y3l6+N4/ewLzfqf3vHBruygbW/7Xs5J+y3EY8eP8LjJ0+x3W7hRzEvJELG43wcywIWtRqF2md+v0Kk6FzJGRMiLw0N0b1YT666+MiepZmY1ruDFhfRfrR45XE8jQ5+jTHjKo+43u2w3e+lxB4k3GSICdfbAdfbAaerHov2OaWDzQMf07oxIex8vY1KF6YBqlMzvBVmgOVhZpAeDvZuieBXM9qeJaaEZ1dXOD9boDtVxlO9u5xbeXLv29rbknnHcCxbOy2dlCXmW5S8aEhTpoxq5pmQP7QCyj0OfqmfaU3BNjl9ftCWfjaYnWl94zgKeWezb9ukc2ruN4dXQkoJDJR6hKaqtyXC5g+kl8Pnm7oZdvFKn7yhHYAUaoTkCO+XGnFf1V0zO1PK2G53+PHffYx/++/+n3jy9Dku7t2DVdxxYCzWp1id3cEHjpA5IWcgs1MPV421IyKknLDZbBTc9Og7rcyUklRDT1pMArV4hMgumgyfmKTHeNLa1BMWqcFVgz7msGEGcmOeZjBebAZ8/9ElfvTzT/Hi8jk22y0oLDFkwovNgB999AjLlccwJnzj/ft6mzzFRrVOZLus57LuzbTqgWQk1bCbBcCQmEposCpL0Ys4SOZA4mp55JzRBfHWxjiidz04JVxfXuOv//z/h1/95tfwa9/5plAJZQejzEhR8j9b8+aXpdnaaIUEM+Hk5KQIqOfPnyFqod/79+8BEE+uwR3ee2w2m+IkWPZ9Y4FNNSDvfXF6tRRRZT2SHCZWmWxiIjafN01stVqVa0sdVvWsrtdYrda67/xEeLHCSjGOQnMOWa8hmynRSPqC92B6Ah4M5BtayZ8fg5AVzTk3FZmkf6KZyd+ZM4Zhj48/+Rj/6T/9GZ4+v8R3f+u3kPMImDBbbfDh169UxbYThtD1oSF6ZKmAkyRP1WlQ8WLRift5GLAfB4AqtXT1HtViqaX3qjG29SiPPSMb60OjnbUXKjJvosEB17uInz26wsePnmC73yDniNP1GeJAGGLEfnyOi7MlFl2Hr73/QAKnUfGQYwUhS4HvN05YJzc9nuyEYsYXU5QZMSdwlM9nDiLkSDAYwRSVhrwjcM7Ybbf43vf+Fuena3znV78pITMFe5SiKoxcAsd/GVsVGoL7LReLUjnr6dPnZf2dnz8sCdpmAoYQyqHsnRNK8iOaFzMjkEMiDYjl2YHbrI+WpKLlx7O+AlWg2T67urpCSsJksx4jgCkDbe2MOhdiwqKXa2UmKTWnd2g6Y16xxhwqozYTNVx/uXlZf34j5NW3CJf/1s0tBuPkU2ZWsFRmWi6XOGfg/PwMOUtyjwMj9DK5KSVYcgW4Msi2+AkrOAqWya3J+WnynbYPwPED4jZPpghWXThHHr/d6O3smEaScsZ+iEgsPPdh0eH0ZI0xEIY9I+53GMaIYRzb6dRTpR5w9Z5vzK68uZFFsM/GxpA8PXxSTnDOa63Mm2ANdQI4MW32uw1gpmqRjhUaqfviuEBtOvP27MymmVY02fAzc85Ciyw0iPmwOEkxCW+a27K/bnjI5v5ttaW2HWK7tVk/7Z+YnQOGIUw8oCb8zCS110OMEQyWMufNAOSUGyWg0eUnWwWTA/x1tpu0s6PrhVkFSi2dVYBKyEYcxwjn5MT5+c9/ju9+97s4OTvHN7/9bVUzMogzYgJO797D5eUl+rOHBX+xwD7DssByYo/jgJQjUhK1N6WkgAuhX64ndr+4waeLyFqMSdlQqxs7pVjwMyLXLDjRMo+Nj2jZ9XcA2A0Rnz19gQzC3Xt38cG79/HO3XdwecV49myPH/zXH+Dp1SXOL4NQt+hmJlP1wAAx8hw/e8Mbl02AUGvgauK34V+Q4GMiQhxHbHc7rNZrbMYRQ8pIqHWVrPoTVKgvug5PXzzGD3/wfSyXC/R9B4CRUoRDFujToWg8X8RmeBOtmpaNV68EtFYFxDSfk5MT3RuEFy9eKDUW4+LiotSwBKCZJ0FmvGUZBkBmrvNUuyr3olrpCYBqWalwo82/M30W6etyuaxOMAJ2m2sM+x1ehEucnp5iuVyWko3b7RaPHj3SxPhO6mwWCap4ECm+xBpdXDmIWNeVqf1vv914KBTzikt/c8rVQcBASlGL0DI+/fRT/O4f/AN89Ve+jq994+uSIG95ZJs9LrcDrjcb3CNlIGCNKjfzkOzzNU4np1jMztAFdH2PtZWUA4onKOcZPbm2rDFqbTxOzkk/OzvdMAVob2sMYBgjnry4QmbCxfkFvv61r+LDd9/B4ycZHy2v8Lf/9Qe43Fzh+XUn8QkZVZAxowiQ+UnyFhZBER+GM6JqsXLYUjELU07Y7fdYnCyxY0aKAiRb4rdzTtPUpOB133XYbTb48Y9+iAf376DvOjVhEpwTaU0Edex8+ULssFVNpdXsnZYPM2G2XC7LWnv06NOC3z548ADMXIpOhxDgQ1B5z2U/WfgTmMWDfbQnBGZx/RNJ+FHwHstZSUBgKtRabXKxWEy0rt1uizFGZAviJioCb7/f49mzZxjHEavVSkoVtoNQG6vafVxJb3pVO8Tzt76kyW8xpaPv2yRXV7DzKpwSIYSo2l2NEQNzYQ9om6nCJtorPlAH374y5VU/TBGzebgpfeyoRkpH3jhAADTmLcvJHILHsu/QeY++Iyw6qWEgAcBJhYd+k+2knQUw6k3fzgw32lBrBUwsqqn54RXzY4YU/Z0MXGNC6sGcc8JSK2j/IhK61Yq/zCZI0dScq979+rpzTrn4ZjmYuqZazaxKgikUYvCNmKpVON0MmRyamce8neV3fT0rd1kcx+KdbeVWzrnRzBpWjKLG2oPcgvW8qXarCdWc0ESk3jcDIdVM40IWAhDgg/LJk8O9B/cwjhJnJjl+4uGSmDTRUruOCqVKZldqXQKat8qMFKNQb6cE7xxCJ+XixijYU9/32mE5UWIUQHS1Ws28QJJ2M44j1ut1AT0LuKoxf4ZJlAU1GS9qxAtVTYYkkXyMGXf6HhfrFe6frbEgwsXaId4JOFkvkIcdchqBnECc4TjDqqXKsWZCmqb3tnPsjS4NRvtoRUgXuFfGKaaE/bBHhzUyCHECcdU1bahJpxkQRIRvfP1ruHf3ApbWZnGHNZxjLtAPldS3LceMlde0/nnsoTmehFhUnuHk5ATX19dFgG02m5L+1OJnxoGGxqw0jHjqObUDWrTXljQxNDhX21p5cih35HVj2fDeI2XGOA64fPEcu+0GYMJ+2MM7h173SwnNkOduVFb5zfZhucEvcxN7XnAEIkmJMMEttCZak9E53L17t1RZkudVFTqLQeKdZAlkzkhJXgt9X9KPmAVPMgaAzgu3mUU6X15fFeYCG8PFYoH95TWcczg5OZl4gSzGJsaI8/Pzg4rnbawZtxtbmy1hqpOF+iGHzEBMGYu+x/lqiXtnK1AE/JLA5x4nqx5Xo5jKYBVmEIeIHWn1aGtxFPnljacvUhXgrdbBjMrpxoKTihODJB+VNbO0lbz6gzMjeFfKEX71qx/izsU5UOjFW2FmT/xlgCs3t0IxPtdwWDBWc4rYgQlIsen9fl/w2d1uh/1+jwcPHkyuZSEY2SZXDZ6U8iFMQg1OyzzRnF5FmM2tQxNmxutnZuVuG1VICjmsJ6eJ83LNUEBltFM1nbS5Gfq5p/TYF14iG8vbNPXSlMV8YBrXz090/fl9CPDBY7cbcHV1jcvLS3R9ByCDY8RuiIjwoq2Byq2mY2QYhfK4UTUtzeRmtFkDPJm0w/CLmt/ZnlQTD9VNz4upVtCC/60haJ9xBHgSQ9KT5iUWy7zCBRLcr6e7PnlrRtEt/XmdrfQLqBXfYKZubRbYSkDJ+gDRdE1rfqVpLpJkLlXM+65v2Fba61aztO3TlynWzKQr4zKZC5oIr/nebbWqacbJIewhV7PFcRwnn28vM/UP+/sS0oQjz9h+167dKgCt8BXNLCZQ8IAXTnODFMpDQ/fRa1LM3qR+x0B1AHAb0az0JE5Wctd1+Iu//B5i/gE+e/oE65O1kDLkhMXyBPff+wDvfPBVBO/hHIPZTQaBCBiGPZIWe+i0IMo4jhiGAeMogKr3HjFlcJRCt2YKmJlZJ9cqzYyFf91O3WzpGzjEY2Q9m/DkicbSNtu44AxkBkVGACEB8MzwpCwRnCtDLxxI8x1RqRybix6mN73udnzty4uOzAxiMGVlRgUWyxU2uz1iZpAPE9pQk4XOeSy7DsuFw7sP7+Pv//bfw3q1hHcCYjtiTLVi2xRv8GE/V5P11gaTkgL1ZT7UwrJAWPtcjLGYcJeXlyVwdV7DI8Wk3lwdh1yDZiexZdAzorEwttst+qZYT+3SoZJ0iNfXa9kc1GgCrxk31UnmyNa3Q8gpqSCbTfoxEPqX3NQEQYF6LtWajXO/pqQI5cv3/vaH+OSzR/jJR3+HO3cutKo1452H7+M3Q4/3vvoN+BDgPSNnV20aPaiGYY+YorizHYGzpGKM44iUE3ywANodMgt+Zl6kFjMzkyblhDHK9ex0M3PTpNMELwTKguU8sywLVFDnixxJ4FViUGJ0ukiFdlrCUkSYoTD0Epwmc2cwpaK0UImYfXv7exo2K3MMLVgjoTdygPTLJZ7stojOwYUOOdXsYxsi7xyWiyUWC4/33r2Hi9NTrFYLUB7BOTZPZQM+DXv4ZWhEkj5nYRbmeDId2mAXE0A1bmssJtzl5SUWiwX6vi/r0KyQHCPgXSEJNU/2HOOiZlZMmO12wp9mBbEP4JKmHXvNWg1RSiVspK10bsHxpPt+4s0sAYg8FVzHplDQiJmtfqw1fbWlQbPXb7zJTc1MP9yk/OqtuS7g+l0qJ0bOXARQziLMYoyTsvWgikVVLJE0paPSENv9WrXdBBHPxnNuZs7V52OmgXyuGQDty+FaoOO/8/Rvav+1phS1s1T8mjigAC1UOW+52YGitjGpuZW1fqZo4YfdBaYiyuvpHjR0wU0esdHGPm/3jtzvTbeJCWcdaPdds6ZanO04mC9z/0pP3mg/7RpOKakT5XAEWq1rjpPZ+/PX5n2c543bv8CZ211ydEMeYmZvdwnPwfK2FzUCvGIidkpM1FiNRQre486du/j93/8dPH1+ibM7aykrppEXZ+d3cXF+MfEQueCbTS7XG2PEoLVFESrdTt9LZRuJaSM1zhjmZZ0zZQDT1I/cjHXOeVZrsAlY1O4UxY1QhK4IYC1k4owYkuGcFFUxLIkhG1gq9Dgo7S4SESIzhGtVqHfEAE166mf9+abXQXPql4NWZ51EOyHFG7e7HRA6dMs1GFvkTBos28TkqUnuiLDoe4mnc4SuA1jNeanSZQdVq5G9/FlfIxrz8nvND82mlbWPw8Nxv9+X2q4GtNeyiuXqJUD8ZQJn3ieJD9shaIzbzel5L28mtFoBODeHZ8JM6guaQKvMqccl6y9Na9U74qJ4mIBzVl/PdroGA/vgce/effzRH/0edsMICgHjKEWMnSN43+Pizh045zWUohPBRCibiYgEH9sPkk6BDp6c5LV1HUAOPshi4aK6uwlgCdSDw5Jy5YlqMGjOGT5I4QcJE7H39PFVkhksQEXASXk8GQz5dE4McgHOS2WtUgQXWlMSjTDT6zOxomUMRoLHHoyor+RynLyxxgCg5e/IFWFkjy44oAj57W6HbuWwXCyQ4ZCyBDtD/DjSy5xBWUqgLLoOYBH/IRD2UUxscQIkGA2QYTKlO6/SZbxZoTYXJmVd6XwTkeSnYqoIMEsqX9/35TvOOcGGSQS/OU+8q1xmwBHF5gj+ZcGu2+0Wd87PizC7CRs71ub9bV834dsycrR7KuCI5LUNO+ksDifoJk/IQQdv+L299quanfOPVe3g8AJzT5SZTCEEnJ6eoI8J7Dx2Ow9A44tch6BalXnEJlkQ9luu1ZXawSE14t2RMbnpgGgn51W8Pgd6wg2fn1xHhZzoicc2ZzXIGYRMsulF6GW06MixUX87x97MlGpeMsKEOhZ02DfT6vTPFBMyEUIodYHqdVur+1j7MuzJL9iOeQOBZj02/S8gAx3Iq3KNYv7NVpBdex6E+6py4ra+z9uxvRTsAYzHgVOluv08N3zTWtzhptGhpKZyuRW/xHQQQcA4jCDKyJkQuoDlcoWQGKwgpyNL5+ixWC6l5l9M6Ba+5Je1wRnDsAcz4/T0FJ5qMOYwjioMDZ/wgHMlVWnCzaRjZhTHFVytz2mmppxCx8fYwN8iYIopRmVBkgtgBCR2GFX4jpB/2XVgv0D2C+yyWJwewGiKkDoDHDxqpiNwBJF8g40nAhlN8ViruZAZGIYI1pASA7XNS88pIbgFkIHL51d4+uJj3L1ziq9+5X3xZjODtTL9dDm/XVjlVdox60nmSvrqCi4smpUlZZ+fnwNAIVuQFC+e1Fi46X6TdkTaGQHkMQvki7ZjcmVuatrvwb5QcxoT8kyYVXPpZqH1eaRv+4lXVd1NZS7fKb8rmywkWb69v5hPBCaSIEHqAHiErsNqFcQMCQ4x9srjtEC3WCCyx5gzcoxYn0j1HtlJ2ns1DZlZ6IbHATklpBix220L71XWalEgVyrSmDemHd/9fig5mzqY5XlzFldliz8QUREnAEqUtAmxQr2tLAkEgncBzAGRHQaFyEYGBiYVZktkv8A2Awi6tnXgHQM+O3Tkq/mqM1ndQG+gFaVBTHVmNalgZIIMcBZh5kWY7YcRmQGoFxuIReTmlBB6B2TGs6cv8PMffA9f/fBdfPVDEWaZM1JOCO7VUrVeDUl7c+1AYOgYMTNC10/A8mEYcH19jffeew/Pnz/HdrvFu+++q3UrM7ip+HLUeprt77oGa9vtdojjKFT7N0T2/6LPaX8fE5ahVmSub0zdqV/o/jd3DJitALt/VXcPbtlK4fnVdPJaYXespZTApSp7LWuF8lOvaKYYo3g1/ZEg16TUPz4EcCINj9BNxtX2l6BDOlC922Yb82j/j3kMbZzybZNzeJIKJgLELIwokYHIJvCl0vmYGMELgmbAmmP5nb2JBQ2jfevm1QHQUQ4z21y5qax+TMw6PYyE00tSeWS+6jULINEsVoMcDnvS4EhforlZ1hqsK9MoQEvN843GZvGX5liqUQ0vuU8RaNUKaO/xUpikEYi3vX8sLu227wUAMCcAUft7E9U+v9FE2H0+aXcMe7vxs60qfct9TBgJTU79qIHiOWd8+umnAEuF8t0O+PnPP8NmuxfeqxzhiBB8wMWdu3j4wVfx8MOvYVQPYwhS9R3q8icIU+l+v0eKI+K41z2gJ0TXoV8uRQPzAqpbsGIwx0AzhmaCGutmq30YkeNN45xzBlIqJh+RhLsyCfuDmWcOogE+fnKFH/34EYCI7AibIWKzH7EbM662I3748yfoXIbEkkkArc8ZC2T8xlfvIUyC5K1u5RtqDKDgdQ5EXpwgqg8SEWJM2G436BcLDJmwGwZwKWYs4g4MEAPBeQQfsN1s8aMf/ggLLwVNUpRiNASoKZ/r9+jzr/G31VosTBqV/hq1F1Br4FrdSgKUIaQSCbTtmLCY7HexZw8+s9/vCzV328e35UgMoqlLnI4jh5xySb6eLAhMJeoXFWamSR20GUbBzeeIjpsydipYPCzB6e/N90iodH7yk58gJ0JKhKuriD/90/+Mzx49xT5FOcNYhPj7H3wFf/xP/lu895VvIMZUmCbANRiBiDAOA3bbLQhASgOCl43CzOgXPVbrFRhACB5MTpN5V8WT1IKx+/0Oi8US6/VJEWaOXMEuiQg1h3b6/IIXRhCJl5KUe0vyMVMZO8+M7XaPjz55hmE3YIzXQB8QQXix3WMcEiJG/OUPPgazkFUChMAOfY5YI+I7H9zFosgugmQIKMPIm2osSdKZjBNOBHTvrWJ5wuXVFc7vvoO0S9g83yAjwPIzTft2gDCFhIBn2x3++q/+Cn/wWx9i0XcYxwHOswozB84RNtvuFdb3l2FuHo25cihCfhwHQAVYK8y22y0IEppSmHebvXxTqIc1WbNyqld/oXxvt9kUDrNipaBmKrzpFqqrVf5jkrfFp6rct58vkdzt65Nvlht9/najdDdXbsX25vYPMzT8AUiRsN2OePbsOZ48eYLdOIrXPyekmLFcrbHdbhUaMz4r8XY1B6Cq1El45pPQdSvNBEiB/phyI1Cz1iI41GQsLGM+6XPTpr4x+5MBUAMXlN3FMB4uEboZ+33E1dUO+7gF9QHZOcSUkZgxxozL6x0yj/qshI49+jwi06gc+9Oxf4OIWX2+8h97JjOHqNQrFbw0i/lPR1YZqx5JkiJ2dXUFr1RQFVrhRjC1K18b1Wu1L31ZgszaXPshknGh2fsWO+lJDsuJp+mWex00W2+zfiT1yrdOrlax+KIC7WU4vbUwuaHiCcXUmV2Ey8+ZfX7jAx/t2Q1mU/uFwyVyTF2d/+29V6I+XY5ZBJD3Hu+99z7ADjk7bDYZ4wg8e3GJIWY4LX6SU8LFnXt4+PBd9cr0mh5lJpx8bthL6kzXdehDQEzhYIEDpt5LfcZxHOGcL+khbcuZMQwSn+PIYdjvQVBtbL0ui8O8czlzqdBN5OBDQGaU/FPDjSS3MwM5wSPC5YQ8DtjvGIkjmBOSI4CTysyE3W6LDCsgS0jskfOI4CIYyjbc4DOFtPANyTSJGRQty/6W+4rtyCyc/ykrUTpVqnIGS6S/BRuzaGfeOaQ44u7dOzg/Py98dvKNlklV1+ErbPovq000q1wDZYP3ZRysnFzXddhtdwi917S5LLVQqV4LuN3auslCYhZKrLlm97ZMTKCtaA6duiwMqj74UjJNgCI7r457J9pgN8A+fnyhHx00nn6cj3zuJoHWqtHkHIi0qk42rvMO3/rWN9WbGTAMDt/61q9jjIzIWuBXgyRjYoTlGuMwwi2V48m7oq3myNhtNiAQ+kWP85MTjHHEOAxFyFmLMUt1Juex3+8RQpjgCfZMSRlqU4wl2BeoTKGLxQKdl+hPZsHCJPrdwTlZpMMQEXMCpYScRKPr+oAhjiAeEXgAUkLiiF0aAB8Rx4yoYsJpsd2r6xdgigUz6jhgzBHkk250roLbaCze4Hp1Rag0EIeOG0HCMsYUETMjgaQivQk0hmzqJJRNxEAfAjrvMA4D3n/vPTx4cA8hOKQxoo36lyBnObzMVL2tvQbb4wu1FtA355P3Hp0yxiYtTL1arbBcLnH14hLr5RJdr8QHrmrXc3PzWGsdC2XP58q6bBkFh3je52+3CcJj1w2Hn4ICgw29hj3uy8BQnv88NJOOaXQve+BXHY6SeNqc3iIUpcqzow5EATF2AHowfBFmRBJjtN0N2I4J21FTiag1pUSYtISWoZOq5FKObNbvZhzNzJyEVzTCv5ia6ixg5sK0wTkDumiLF1bRaWK9pmpMUPyPoPUKWDayUVVCNRiijIyETGoiKyNrihHsqjBzAGKOSCW+rJ3kKmTeXDOBSRN5wqotCT5oxZ5RtGjrYzGy1ezyzuL1GKvVsuA7UE0PZaMC7bMdGhp05Le3J8jmioQ8Q2U2ceSkZgOjcIsV2nBIsn1K8ei158rK1INJzRpsoCjF724rYPKLPudNcqKGZlAtxmm2tkW2Z+YSS2cmzvzhyizrfSQUYYq7TW48M1Ff6YFwuEjaAW81Gblnk5IFoK1ZZJjgx598gheX13h+dQXnCH0XsF6v8M7D9+SzxJXz3xaJgp+SjJ6Rxojr642+JqaZd8LZz1y9SDbBzrQG6CbM4nVy5OCDCEYTTrb4YozYKZmenXohBD0h5ZlSSnoAabygmsasIRhnpyt8+xvvAoNgfA4E6jJGJCkbFhwyOzATKLMyZOgCYY+OE05chncAKOv8UklQf5MhGjUDl9SEsnzMVCif++UKMWeJtYP6IhuZSwx4OPS+Q3AOdy5O8du//RtYLRcgZmQrQnPk7jJXbxsV+3zN+tdStjPX6kZd14EggeO1DmXV6qahWDcLjGlIRYWmOOcSRzlPX/rCjsIv0IIJMiuLljkj5oQOQROQTfILYMjqueIGYGyPzIJszCKKp6ZiI73LCfj5H7bVakxo2MGcWSmFzRPqqHAyAYS//du/xX/94Y/xwx//GMwZFxfn+PDD9/HP/tn/AXCisHY+aPBojclgLTySU1L2yy1C0ERdNWmtkhKzamNqIoowcmW4UkoYh0HMgk44pixeDRAN0CK3h/1eiqSs1xrFbbRNrJoiq9bh4MmAccEwHt4/wz/8/VO4yKAkm9t1wMiMREBYASkTslpZJT6JAZ8JgRgLYnQ+g5BALgNJmXv5zaabc84inCHVf4L3Yl6OsoFiylifnmEfM4YoJmE2g5gYnAguA4EcVt0Si87hvXfv4X/85/8Nzs9OALDQ3TSFOmR5cjmQbM28qpbxNuG1VnB4L+vWysnFccRuu5UMFgb22+2Elr3v+0n2iV2nZdaonvSq8bWxZURyv6urK8mgmXOsNcrGm8bPgt1w4r1kc0yrHqWmFhdWCpTPkv5iwCMm0ls/N7OfzUQoBiGZhXQcE6uC88hg8PRkIuvQ7EOk+pmpyM+fPccnn3yCH//4x8g54d69u+i7gJSyurgt2hzFfDPnSEpJhUVGHAYAQbQr1byKkaNmj4HJZnKa9c0swbeOCF6dAzlViiDjUx/HEbv9Hpm5kDfWAWq1VBtWUvNQnnu57PDe2RIuQYRZBqiTDIBEQH8CpAQRZqkZPZaA2QCgJ8ClF6IPqklGzdi/qVb1MhHdLYxg8xC6BXZ7rjTZzfyz6q8OkgXhCFgulzj56gfo0h6cRpjXui49O1znz/byzfg2BRkwHf/5niuFclcdUhQBVzjyMGU1Pna9m1prappmNgxDkSPHMHW79ucVaJ9nfRXMzDASy5pvY1gAIBdN62Yt6vbOkmGy7TcAmuVZNf+91UvKDf6m2qMjV65fBlW1S1aMKcWEn//8p4Vl8+tf/7qYKirI/u7v/g4X9x5gfXEHfd8V9gB7dGahOXFE6DupcuR9vZdzTp0Qejg07ur54xjLgPdeNFmeQowWoS3lwlZ6ynGhcWkLUFgHDZsDarqd4wzKIwKCjhNEICnXf0gEShU2quE6BA8HB4ZHhms4NByASTjIm2hFcJn2YWtFNXJlhvDeI/OoaW2AxQMCgIMTdigYOwSVa7er0aAewyPtQAfevEbxulrmPFU2uEYmZJoXxa44bVEYqGFlPiaIQAfS2uREm3ts2tgxefBFBNrLmvU/QMuMWYxIZok5SjkDKUtenn6hFWNqzSkw+zLpSfp/i2ZP7Tsww8ZO0XknS5vgIJVIkrNoesF3uiMB7x1yTkqfbWqvw37Y4M/+7M/wyaefous6/NFv/zYAxtOnT/Czn/4U/9//9f+D7/zmb+I3fucu1icrhM7rDeVZUxbvkPceYb1C5wNyGgvJo+FahkeklEE+l2DZIohVPTdWTnKyGL2rhVgs4NE5j5OTBXa7rQSJqiAWNk+PzKlofClGIACkmiKY4JDg04iO1gikOZ45w/GAhIQQA3ISEy2AgJTU6vJwTmqNMkV4iiBOCjVIn9+kjUnQ2CgGslIB5ZxBqHhicg6L0CPmUcMzWlGmOh0TiDz6sCjau8ismkYm1YVqWk9W3LXQAr11nevm1lo4rXZlebhtCbmcM4LzYJcRUZ0FzJLS1QofYzmeW2vlvkcmOyuGvNlsSjEeE4iv6znbdlN4luLFrfnVamX2uy4P5oKhTa92c0cmQCBUj2/M2cnnbwBbS2fLv8aVDCrWgCRTu6pEUTUp9bAFQQTIp59+is31Bs45fPDBB/jggw9w584d5Jzw0Ucf4cWLF0ra102YKkwnGMcRFgqyWCwQQjfxUrYsm6axee+PnGrVnT3RGEyjUs3Le6eamC+LcM4z1T4zuE35AQgZxCM8GB6ijgdmhJwROMKnBJ8TQk7o9V+XE3pO6JgROMNzghECsZmZt8z/a2tlvdT10WI7zDzJemASrAzNcKpYhCMvzg8crrGpmVmhlvZ97cgrtGMm6utpx0IeJnFmM5PxNuHUrqHbPndbX0yIGlvGMRblN9GOxbOFEhSqb3iNhSIFBFMGcozIpNoUQ8qQkYD8bYFjee1I6avZWTl5PMOTMFNBWT4NNrxrtgBnP8u1Se4mJ3jFkUwgG1h57/49vPPwvVK6/t7de/jqV76Cv/iLvwLnjM4HDdloJoclpiYps4gEpDJyGktlczEZq/dScK+Gz79phol552G89qRqgx0wc4pjQDQwU+/bE9CwH5Pxonk4OAI6YngkKVbCDHCCIxFOTsvLgQEPUqEFiMcyI5NoQ+YJBmkKWRFseHONoThkG9UuNRNYHzYzGq2sNltTDlL8ZHO9BaeMxdJjfb6empRc1x8rbCEoiFkHBxjJzR1+Q20uwFrB1gojACW8Z7FYFC1tXpbuGMZ2rLUKxeR1QLG4lyeXv40WXPAg78RZR4TFcgmQJF/nLFHxaUgAV0ZaD4JzRjEsWJVJZXHPigdv4vIlBngmtXXjTQRcC6xxK7KapFhbXPYum0miukPOYm4VZZCAzKWKz6cff4L/7n/4XXz9G7+Kh++8C+aMi/MzvHPvLv63/+3PkFLGarkUzcxbhLR4NDklDPs9UorgnHGdMrogaSIpS21KU91DCBjHCIbTCjhietrhZVjDyWqtzhPFNwDpL7N+R5htZXgEN7PTEJDEdgsQFjhA8DChqWJ4yli5DM+DFC5JDoyMQAlMCZTEG0oMdOzg1XEgGOqI7AB2jEFThUBOU5uazPs31RglWX8YRnTeAcgY4yhClRzGlLFPCTGzCDiqmzXvNVwmEx598hjAFqcXK3z99Gvl+mCpD1nOreKwkWe1eqqEw+yNGzv9Bgel9TK2Ak6sCDn4drsdnHM4PT3F8+fPS/B1CRUiwROBKiTnoUQTIH92ZpkBsdvuMeyHg8P6yxBuB5pZ6AJS7jCOEtWbcsYYIzjFiTCrwYdA8EEqsZj3D17KutUn0/m92Y1veFyVVzNBdjCULXpnkJYIBNOgjGSvKHuNZvbg/n188P77WJ6cgpFwerLCnbNTXSCiSflJSle9rggS4S9L4whedBXoV8wAaDWzhH65mD2DLJ5YUkDKo+jvVPAyA2tb03WimTXPN+2vjLkD0JMIOHAEs9PxUnOIhZDQQRLSAyAV4VWDMyjC8Eig+fsNmRHWGGK2O+c0/lH+pWzk3oSUWWmyGezKCWmDUnCzzfUGw3gFdk0cml4vs3hu7cAsYHfRcueEjV9+O4jhIum3rauu64pmJnDFtHjvXGjdZhKSKR083XdW8Hdew3IKf9zs4XydLdSQDO2Ac/DBg1k9X5aekKp25gsWIx105IowYZYgxLZupX5ITCmowEF9YC5eKFm84MOBrVrHdNMeOAjaDXYELAwh4OLiArvdDlfXV1ienAEAxjFic3WFxaJH1wUAjGEc4diDHBDCAjmL9gUwui4geIfkHPpO2ByslBwgAbEhdEj6LCF0qBKrmjX2Ux+sea2+b303szN0HYZhlPJa7UJRLbmMBZrxYG4K91JzsDQSVD/H3JpUNh9QzURBcpgJ3h4sb6AxFw978d7mCl6z8xijloezk1A9d3bMeeeRh4xPP/kU5xcLhKJtt2Zbc8tjmNdkLU2PpTcrzvUeRwRNKzQMAigQS2NulqIlnxMPs2aa2aTptKeUJjxp89bicXLh2TU+RzvmGdU3AFZvZjt9Xd/BB4+kaTqijdTcNoAlSjwnZDVtUoyFOshs9aS0xmXAtSqQCEhXTIGey3Eon1Pq6wyhX5k6EXAgoHDwGdbnmZ4gzgHkPFbLFb75zW/iyZMnWPzsZ3jw8H0AhOvNNX7205/izt07ODlZI3PG9dUVXIjw3QJnZwsMWuQXIKzXawkFSQnOAfvtDrvdXgMUJZB1vT7D5fUGKWeslqsJOCqBjVKkJGdNNyKU/Dqbp9ZlzmAE16Hre1xevgAcYblcgpNmQJA4QcTkrESEyBJWQZzFBeCEfZcLTueKoBNZTYVhAorR5cRwoQOTIFMED5AWhH0DFEC2cHNmPUghVbQ4YRgjrq8vsTq/C4LH480OrM4fLilJLM9BAcH32A7X+NP/+Gf443/yezJHlIsGLGNrQprL72WlGTb8NqTWKyCEJoUAAJbYSURBVLZjXj0GI6ca7gOgFDCxakzzCH3bJ8eIJV7WzJwdx4hFvwLYAsKPUwlpT5vfbx/QV+mPac2MWW4mQ/AJ551mxFA5wHw5jVhA7zgiJcHVBgCRYzF9UkrCZJCaEAwXyoC5rqlI3EQal/QK+3dM7W2t1+Zh0JggNw0MOULXd3jw4AGurzd49ux5+fwwDHj27BnWa+EcY5Z4LpeATiugWmQ1INHTwQdY2HwaE4hGhBAQ9bTq+x642qjZ2lWPJUM55BqP8Ux41ado8Bcdr67rsHu0x3K1hMCBXDyo5RRtgHliOYCgZndNPzKfpxNtxk52lvcq664mFRXabDuAGtv4DTWRxQwQi0alMMB+v8dZkJoG+3EDoFcl0jy5gG0qTx45Zvzk736CFH9H08EsLAPNc8zXUMsie0Q7+ZLajZtctXkD+5klJtIi8yda3C0P86oeSLu+cZhZH25eEq9/rbQ9DXXjHMZ41d0AFAjG/jkHp4B+F7oJmWBKCT7FErsGiDArNrSfemKy5j4KBiS3TCkBbqa6Kmkh51ypeVgRDmpDNtBocKqpqZllgapPn15iiMDf/M33QY7x5NEj/PSnH+P5s+f4+OOP8YMffB/cn+LBw/dx7/47MLzMhE1SbQFZWFnNrLZnYp7mvs2LkdjzT4ulHgsorH9XbSWXWgLDMEoNyFYXPdh3lttoRWDKVpZZJ6oYJYkQE13RxAKh0OxKD1BBhs/XjoUU3N5qfGMV/NMQBFXCyjquJmRbikx+Xyx6LBZduV6FR+Q7v1By1q0b+fW1KTbaYmfynpmW9ruB8wUjU5ijjRN8JS2oxb10Lx3MxSu1RqDYn5+j3XS3YPYmQ9Jz6uQ7BYihuIUKMQLISWS4J6GzcYslgApo5yyFIVLzsJkrxjUiCniehL4l6XcYQHABJtiCCi/LsczqaACq1khQ80r/sdWn9IoLcZM4nxlxjHjx4gX+4i/+BtfbEf/pP/8NyDG2mx2eP7lE5Of46LPP8Od/9deI3RL/9H/45/j9P/gjPHwnIsYRSRfKbrcrwqwLrngWszpNauqRgNXe02TSktG1OD0xXasl6BwbmA1ZgO1pu1qtkFLCs+fP8P6774kwzQnZCZ7pIBHyzkkMv+MOWndIivzCEre54HUEQhc8OHuAHRKHqqeQF2Gu5qnsWwnzsHXxupsdmlkvntIIjlHZHrgIqaz7IoORwHBOYRGSLA2v66jvezy4f4E7d07BML56TE0v1WjJzfISaY6UfbltHqVfzMycsd1uce/evRLMulwuEUIoQdis69NjCtq317JWX6+QkY2T7fX5dy2c5eVC7vPjrbfplELOSGal8Uzq15vZKWYeE9JIagcLLq2eO/OyZZZBy8poYGYV0r4ImRQTBlVVmRmRaiJ7IldYIqzgK2lRXDbNDKYtUl105RTSk7bBB1JO2G63+MlPfo6ff/wIif8azgMpAnEP3HsH+NknHyGRQ/QL/Oq3fx2/8Zt/D9BnS6rCj1qRiVMGFp0wL6Cq+ZmFwoeBWl+hGXgrYlLNbBRh1o61XFO+61XrTSmh73tstxvsdvt6UnKG49brxmVsHJwKMBVosmNBJAKNtSCuaMMezB6c9CRv+gF1HtjiZuCVAxa+UKMasS/rKqons3ygWNXSq2mslPeWwkUIocPZ2RqnJ0vseJDxagWUHuq2hibg9S+JiQkcamalUQ33Mc3dPJkWNmX5rKwxiEcdae0lJ3OPiUCzfT7/buu9fJut1M0sHWmMNVJVkCEnvQNJ4rE37cjikQSkHfdDwVPI6WYx3AIMpwSIniRPzqRszwJccs5wJHFVRj/knaTf2KITgFyumYVeVa8jphKzK1vYabAlMzRRUZKN79y5iw8//ABdv1JuLxZK7QG4uO/AnhDhMLge52d30HkpCmwMrl2v+EzK4KREloY7Ud1cpSJT4VECzAxKKSqzBxUTuH6m/jrRxIuaj7JBHZGGd9gCLzrTdKaJqgOHs76fyxybISqfYCh9h37ZTDczTqvQoDKLtdfHFvdBa2XIwcukpiPBaUETe7ScxUrwXYcEFO9yHSxXx0lfdB7olx7vvncffd/puq242k2Sar4f+chvB584fJjP3eZhDMc9mfUGZt2aYJHSg6JM+FCDuMX6mV573n35cYTwAdNHY5aiPib4ZQ6m1sehtsdHrvQLNJqu8uDAZWBIucEJJEGb5ekYPZzEl4GwCAv1iGkkdoyI+wHPP/kMi75HWC7Qn5+CQwCr1hH2klKDFEGhxxgCIoTpVUqZMTBEOPJgAiKxBEZChCgPUTGAhJgiaBCzjnNGVIqXCEJOncqtAaET2usMKMtsh+XqDH//7/8u3n3/69huB8WLkgiqzOjXAcl1iAjYRoff+u5v4/zkHog9hlFwwLOLCxFkKlhNW8o5I5NDZkJiYIgRzjsEkpy3OviM7fYaKQ7oew9wBGenQk9pdRiAbTpRmQCWWLDgJP2p8x7sAzbX11guF8JiywCpSe/FkAAA1cQAIaAe0ekhJJ8X0ImY1DEhoQ7OVacAI5e1KuslVwfRq4JFZjUzS/UocEkCt8YaSa2PDyh5JIOABOz2CWMEVhf3sM0Z2zEhaQK8eF87IJMehARCRL9kLN87wT/953+Me/dO4TiiywOcS9odFeqtma8UdqSHq/Vp/jiH7RffqK3mNddyqDks53cdxhExZ6xPT7Db7cAAVusThC4gQ0KNSggWTNuUNVd8Os19rC+cq4OpBtgmXF0LFyB1Xseq9v+m0KrXMT43rbRg68tOZ68PyqycUCwhEsERAggBDgsfAO+QHTCMA2IekIY9rp88A52cwDHgzs9AQap5O0foU4aPDOKE5AO8J0QHRCL0zsNngPYRIEImee96vylhISkxxlEC9MYYkRMX7cf7AIZDAiHnAHYMICB4odEWvE963y8W+Nav/ip+9dvCO0bkBIuxvEPfI7keET2udsD52QVOlqcAO4kly1LFnKxmJTO2u10xkzOJuMjMGFOUuD1SzKtMA2PY75BSROgc2Fhq2YoAt2eumdCy+QGJ9HYQB0PwHvvdDn3XwfWumqhQEkaVM1XDkzQvDyh32cyFzgzmVE5ZJgPdcxE61reJifYygTZV/1UfusFM5fZHTeMCE8YxYcyM9dk5Xuy22CVlxSULjvVAZqVxkmyB0DNOl0v83h/+JpYdQJwQOMKChssot8KszMOMe2/St/kT/2Ib9SYQvjiLmtCeqQIoAs5IQxfLZSFDWC6XcN4Lnp0kf1JIR49MyMRpNukAQLUgCiAJ5rvdtmCOKF/nA0H7Ottt4jDkJiXCgvadUDhozA7qjKl0HvZ7uL4TYVXwBVeitJNiZWg2Ss5J8Byoh8lpSpRhcIRC4UPQazo1U5nB3sFnDUgFIzsGZwlL8C6oqdd2Vn43N4GAlQxmD+97OCVgjFFOGM4Jzjuc3FnChR7eLxEdoet6OB9Ug2svTZNJnsTU6T8xM11DL8OT00vVL71ceaPe4+A0q4KqHacWpzQgmDAVUpOu8+wazbhx06dDz97x4McbMZzJc+EoI+3ka43pNHmRi3RXM1PTvrJ51Or3CKihJSCtwSDZKt47EKSWwST4xXCgItCa8akKbMFkb9xOtZuvy5Aq7VhcWesEsHGx4GJufi/fQd1vk26/ovSZe5BNsFUewcPPtdrc3Hz+ou1Gzez6+rpc3OsGcOTgyQPEcN6hD0HMEPUK/fznP8f6/Axnd87heg+EAN93WJ2dCHPlOMAPe/QnS9GMNLiuj4wFkWBOzlKNCBTFXAtByrPZpgkhKM0zAHbgBavGI0VvzWlB5DWPUsgN21PTqWb4+MkzbDYjiDp89SvfANhht9/j0WeP8Od//meIccTp6Sn+8E/+CU7WPcL6DEtaovO9RO8rRUwBPJuFa3TBANRrlAAIE23XTQv/yr5UB0lOkKIkNdauXQitkLAitQxT/WUhd12H6+trKY8H4OTkBFk1PQOBW2Fg41I3Lh0sOHNITL9xuIQON8FUOzsWsW0vlfPx2NIsD2oClQFkeO8QkxRuCX2PcUwY9hE5A+QtpIQAOHB2gAtYLk7Rhw7Bm4Y/wHEUbXliDlFxNBTgH69fKN3W2s3ehuG0MZkppXICtMIqxlhS48q8Q7neFA5xzklsZHPw3uR1PCaQWs+mOdLWWj2sTY2aH+pvyxkQdrtduakJMyKHPvQgTwhOo/ITyoA+evQId8FYnayxWASQd/BdwGK9wu75gBhHdOOIhWlrWYIcHXssQocudGBX051SHAAWsD+m6o0KXiJHhFPClwkeWRKKq92vhIiOpvVoFXwnIlxdXeLp02s41+MbX/82UmLEOOLpsyf4i7/8zxiGAffv38fv/oM/RugC1us1aHEu+BMT4ISVodDOyA0ATKOnvffwwSOzUAUtFgssFsIOW4MVqyfIAeKhfcnEM1eMilnCaGwRGbW29x6np6eHJH03Tn/dNO29nZmYk6G8/TS9Kfap9uGwF7dekaClJESQATKXKUVEZSGJMWEcEzg7pZA0LZDA8AAHLPo1gicJ13AS7J05ws9IQef9/rI8cm0f2gDYuXd1PtZtjqQJM3MGxBgFWlDHm0Eipt3dJsysqE8rzKz4z263w8nJSQnIvc0j+jbGMrSRwY4tREAWc7vYMmekBIwpl0GOMaLnmk9IzglbxizpFKwxXjliYAINA7gXto4CRsKwISoalXnd6ikONXXtL+2v2LrNh4CqOslAbrdbjYY2jvKMYRzw9OnT8r0xjrjeXON0GLBCW+ZMr3cEdEW7iSemKE+YPOeNWTy4sTAVmEkzFQo3mXDtay3NdoyxVIoqGRgHplEdq0ns0K2NUOIOTYs5AHnn97ntak0/mq9MYBuqJjFY1iCpUKvmpXzJNLh2LQEO4z5i7AkdMXpXD5ObZPPheH8+/extiL85WG/70faxCbWCZaFqwDcLnHK1+Ts6BFVrnFNP/bK0cOfOHZSllbkxo0QbIUdS8XoYsRtGpO0eXQiIw4gXz59jcbrEOEbxMPYdlmdnIO/QL5cyAFk8VuM4YtjucTUmpG3AnYcPcHJxXqL5LffTq4bFXUCOYiIZlTPbicQM+x+BEJwVY7FZbhKTnUzuD3/4Q4SwwsXFfQzjHilmfPrpp/jX//Zf4+HDd8A5Y7Pd4i//6q8Q3QLruw+xcsLUisxI44gJZmQ2SdMYEjfH6hk1NdxqZZZTH+LW3mw3SOOIftGjCx0636PrezWZ6uI7wD4I6LpQhPJ6vQIgpsbjx4/FQ0gNeWQXlDG39tSEPDANwCyFLUx2E44KUxNo1sfWFL0pAPOLICUSukJInLHdDQidMN9ebzbImUHOw1NXMzBI8ka96+F4gY9+/hj7c+DOmccH766RyOpjTrWJ8vPYk/6CGM/nba321ZpvFROtJqYJF7MCAOD58+dYLhZiAalm51RRsOBu0e6jPp89qHXA/jz+3MN+j71WY2r7+2U3d3Z2hrPTM5ydnmO9PsFqtcZisYQPXnmkCCllDHHE9fU1njx5guADYhxxeXmJlBKGGDGkBOo6LE/WWJ6coOulIgybMIsjrjYbPH72BJ9+8hmG3SAhBhD111OlzbEipl4j/wGUMIg63k1KsJqSLX7MnEGqdaaU8NOf/gQvLp9jjAPGccAwDnj8+BH+w//6H3B6doqLuxcY44jvff9v8fEnH2OMo5gtjgAH5BTndtdkdyp8V5LHmRlmwreMArZAYhyx2+3w4sULXF1dYrPZYr/f63PaLY6fgiaoLEZtuVwUc+LZs2e4urrC9fU1Li8vsd/vywKeNjko5oGPU416KpSKV3Hyrz7Z5OpFY391XWW+eco9SdbRbr+HDwGh77HdboWskTy87/QZhA1XvPIdHHf49OOnePTpUzx/9gKOEoAIUJpeX8fDulr6/so9f/3t2HzcjKdKcGzf9wgh4PLyEot+IWluWaq6m+CzqH3Aaii0eOrtT1xgnmEorCVtX9vPzJ/jbbQgWpGYR3MvSCbJx7PAV1L7OQSPWHLkrNMoZl2xsbMGXmZlZnBO0ms0id3GMetn45iRdY84myzSCuXO1XxMAHPXGJdOoEyOmaDMWriXpxMyjgOIgKVWLl8uF9jvd0IpwxXOZu2jaSntpmOIOXqw9JtTv8U60C7K5ndxLmgiO0HyXtvvtc/KUzPpAKtq3jNhNUn6J4LET92OZwg2WLXJ3Gz2Y/jYbeu2jpmO1OSz1Xw98sUyFylloJNskEGZQSafK84CFDz1+voaF6dL7V82xf3NtDdw7WPOmfk4l4OneWMeF/byG93w+mwNA5Uhec5h1vb5oH9voUl8gm56asqqh+ClqIP0RjZtlvCN9WKJzX6L/TjAXNqZbDwzEFWDiiNAol0t1yv0zgMnJ0AfsFquxMRkYNjtsb/eYvPsBfyiR79eYu0upCiuB1xm+NCXsI9hTFJ/kkjA3kZzsb1M0LqXWrBlHEd0fYf1eoUQPH7+0c/w5OkTfPOb38Sv/MrXsFgucXZxjn/3H/4jrjbXYOeQNOUDqlk6clI0pTHRBJoxZ4RsJudcEcZtcRNAsccYxUvrhA6pC+Jh2u/3ch9j7Q1BcgtDQM5tCEjlkeJyH4euCzg7PS0LULxfEZtNxHa3AaAOCt9htVoVB4IzrRZHFl6FHifvzz9XsFZMIJbDdvT19thozXcWAgNIpP9uP2C9XADBYX+1A0NYPGJKWpCdkdMAoh6OgJxG/MV/+kvc+0ffxXJ5B+O4K9TukhHVJpZPvZk3dvUtt7mwqJ5m0/BjOagF6Ccs+0Whr69CSCAY1UdAVB1XDlSiDm7TR60vu90Ou90Oy+Xyl8K8tKYUQFXrslCGrguFkwwQaDWQQ+c9zlZr8AvCeCVsn0ykkTusRRWEblvMPzEbF6sVwnKFwIR+tQCCuYxFmF1dXuLTjz/G6vQE63iOcLLC2WohCe0MLEKHIY7YjyMQBzjvQM4jJ5ZQBIZocaUuASF4qWcJlqRYq1ruvcfHH32EZ8+e4hvf+Dq+8tWv4uzsFPfu38f/7X/+V7jebAFySDkrvxpjiFHwGd+QH+qiIuea3csF65gUWLZ32aroQD9H6EKHcYxi/l4P5ft93+Ps/FwBbwPd0cRXVc1OqIEI/aqbFHbdbrfCw6YHT9f1WCyW6JXe2xL34+x6ZRMYDmm45ZGT2jbXHB/7xU9k0ejBUotitx9x4gT+2O8HMFYAEWJMCD0BOSHlEQGSbD7GhL/6i7/GH/3+N7Bc9BjGLdZ9B8cOcYTga7O9+Mu0OeetDSOxVujTmZHGqMwgiwklFM/Wpp32sjcAkPDgSX6x4c7T1grV3X6P/X6vxahvn+e3amZOYn9MZPPUnBI5UcMcCueZ9xPOdcMZWuzKmkStO6nD6CQ4NufWLEC5V/taMQuKGl0Apcbsa2SLfZO0RkEDbCcFSsdxxEa9mycna/R9h9AFdF0oCfLNnaRHDQYkJjXPju6pjWF9mW4O+U7riaOy6Op9JvdrzEQzMSoP2kw7sus5MkLYct/Wa2lgcovHGb0RiD73hj6y9CdjcWCWzj9+xORs156Zpe1mzqbENQoyq6nZhrDEUfBCIx6ouuOxZ5y9VuxhOv7xX4Jma6SFiHw5PLkcgM3ZC/lh4zs1T+29upMPTUajYZrAJze06aH3ZgcxWAfbkAhwlhQbnXMC4NSDuU8j2AH9aoVTpbUJnQSV7nYC0JrAE+kvJynp6mNy2O8HwKtGx4xF6OHOzuHeB9gR+vUKi66XBZxkI7+4vBbHohONC5ZDSqQJyXLSWG3AEAJWqxW6INrZ3Tt38PjRI+x3A4Lr8f2//VvshwF/+Ed/hIWyXuyHXckkiClipey4GcAwRsl9i7pggi+nX06tCDaBUguithOastCyjHEEGNI/1YSt33bAOOex3++lWrRpeSV2b1G0vnIGsXmozDaUQGRyC4RSE1E29WazwXa7Lf3zIcCHgIXW9zx2ntLkv21gLU83/gQXtJe+WG5eisJxxyCQC0hZnSwMzTTRvmqNAyJGH5x6oBPOz9Y4WS2xXHQSllMmqoMEJf4yGJPT1m761tPcKgw2+HEcEceI8/NzbDYbpJSwXq/1wDJhZjGKouVOhIopICZwCp5gnbGPyQvjOEgtEG1zhtq3qYnNm2pmaqroJuQM5HEEgnK8O4ILAeyAfYzInrBYL9GtFsgqzFzw2A8DPAlGJFxe0E3dYdjtVTAQhs01NJcJzIxV12HdL3B+corr3Rauk01FDKknMIx4/uwZQt+hWyzQnSw1NlZxJPWEduSRIBpZgBdh1nXwBNy7dwd/+/0f4ic//ikW/Qrf+97f4Pz8HL/2ne9gueix2++x2+9KfcsxRk1cdmCO4rEdR0Qt9NKjAyujB5EGdZqGCllrJswAlI2cU8Jms0HUUI8udPDeKZYlAs1MyKzhHUZFbsKu63swWE3FvuCEDEZMYxFwzIzQeQQy1o9ckuKvr68n5fFWqxWWyyX6EEoQb9HaygaQMxtEJQZv4vVTSXEMd3t1zaZ+mBkYU0JiD2aCc16opJKYnZFYcU3RIogyiDL6ziHvGHFMOD87wcl6ieWiRxc8kADOBEIHYI+XCbObxO+b0DFayKC1BFqoIqU0OTTHYUQcR1xcXOD6+rrQQ5nW7YVKQgsho6q6NL3vnB9NQqEa4aavjeMwISItdRm4CesCDgTw22ihSvojN2xxWWfjoM4ABbmz4g7loc30K/9cY6c3Up8ZhR7UNocXLa5I+6ZLOSVw9s0JovdqDQeqb1iuqGkQfd8DzNgPe3HrJxFWq+VCB1xwPinIW2qOTXTzYsLVHkxOQNvcaCbymGcnK6fU5DMs+JmFohhx4NS85UquN/vXMrC2qn/1QreVr2vgczVfp+YnZiaEeDabOZyvk1uh4/rsralz5APNuE/N1Mxciv1ylgjDesPqTSbUDAZyhPVqiS7UIss1uOdYJw7Aivp4s99uFGZv3Rw9HHU5UFtIgw/2N2GaEH5U4LDMahu+ktOsUNErtLeFQ4ackqrofsKCELxDMvOBgKiMFewII2f4OV7EDCQuLJMxRuHSh1TSEbtJNlW/XJaCrd45xGGUfMushVC8xMME7yUFI3Tou1CyAuIwwvcdnPOSArWXfjoI7Utwkltqg+idx6987Wt4/NlTpMh49Omn+NY3v4EP3v8Qi0UPAmMcBilBd+8uzs/PxMOoO8/qD3bdCWLMpXJ0VvC1JcADVWxRqpDPaoXmjHEYEMdBCAP7rnoTs0y8sRrkHEu1KFls9ZAYx0Fj1bZSrELf6/t+pg2aENGsRVLv6YLLdU3wxxhxdXVVcDO7nrGUtnjaTV7NsiLqyaKi5iWi7gA3k0PIhQ7XV1tstgPOzs6xzxG7waox6WEFIR0gJhA8uuAR1gFL5/Anf/LbePjOHQAZOTEoOxBblbApdiYy+QiXFx0TGUefev4gr71V3DQjauESAuHZs2eitTcB2uMwYPtiU2pmLpUR2loxP1v+7PIc8yYH3WZzDQLKfb5Ms3LeQkoJmYQ40aKEHZGQJ8ZR46u8ciUJLfOQEwKx0lVrqRPFtyDPiBgjFotFKQvWLXpATcLlaomYIjIzlv0CzzZb7Ldb5JjQLRdAlo3lnYN3Hp3z6LuuYC/jMMB3nQg7L9WqkYWELzjJPwukmBbE3PvWN7+JTz76DJcvrvDJxx/h9373D/CNb34Tq2UPYsaw3+PqxXO88+AB7pxfoFeWWALBuYCz83OccUBKwH4v2t1+t0fc7QTTIg3D6AIoy++Wt9a2nDOG/Q7jMIjjQbWGoqlBBI7zjJhQC0U0348xapycMPSGIBW1xGT1JfC49UiWEA4nwtLMaQNGx3EsNMsmnPu+x+npKbBYiICdBUke82wCZnrUavBSLNg0hJuW4jFblOB9wG6/x+X1Bl/5+vv46PEjbHd7SGUpDS1gBisHm4dH5wNO1wHLi4CH//0fYrUSHDhHhmMCWHI5TZgZQF568gsB1m9GoE2FhkQN7Lc7ESoeePLkCS4uLrBcLmDA/37Y4/Gjx5JnDMKil7VUMdZcoI1UcqIPzcNqRiZcX12VtdH266axeqvezJwzHDEyJEi2zediZVYlauxhquesvDezs5t/gKipBxHszskJiVw9m/a92bXAou3BPG1ozBXtJ9Sjk1MCh1ojAM1nVkvBhBb9AsyM09MTnJ2eSt0A1A2/XErYgpVZMyw9hACgg3Mo9THNW3qTR6fFzGqfK622PNLh98zENm3v2GfmZiKgFEo8zdPjslOnCcpO50EOiPpZc/U7R0jJTzMETCjiF9uu86eZmnHt1WXXGcOI0zhIiYdyswsppkdG90Poe4/l8gyc92DeTz53IDpfiyX0egRZKwDm+6vCL3kyz8aYYdXKwWoF6CHV0kRJ5sjBTesjFIF22C9b+3MI5ZhQu+k53lQLV5cvipnR+16ZUR2Sk1qSDKBbLDHkiMQZvgtC6agxZE7xnqwa2Bgjur7DydlZ4fhPqoVBKY4HFiPTeQffL7A6WYsmmDMSMcgLaLndbMAhAD7g2dOnODk7w/rsFFnxEAObr6+vMWx2cIlB5yc4P+mwPvVCPqjVLpwjvPfwIXLMeOfBO/jKBx/i/OwMAMM7wsn/v71//5EkSdIEsU/0YWbuHhGZVdXTj52dIWd3jlwCR9wdbn8gAYL/P3g4gsAtdkFyueDd7d3ubFd1VWZEuLuZqarcDyKiqmbhEZnVXY8cYLU7KyLc7akPUZFPRD45HvCH3/8eh4eM3/zmN1IarkPkrICxeB4l6DR4rzFiax2wNadNObqtmbnFKagTooDCWgRlvWBN5zIFQmnCgepgMUqYXuhdLpdNSIr3oQbKRq22XvP9LEMDrBz5vpq1pmkap/y6rs2j6qTcXQ261YBLoNuE0CWC33IK7NtNOcBImj8IIixpkaLKtZi0vQeL1xwenkgof7TvHEFwXRbgtwHaGYaivHiUFwtvjzf9/G0vHDbOAAIKUZ1nfZFfayUXZI0EmOcZj4+PSGmVAPZprPBBP/+6u+9+19hRnQvjONaxNwaOPZxyq/3czoDw4fvvQc7DOY/Bi3s+OofkHL7//nswgNPDA7In0OARxgh4mSWORK1HLkiZsVxnLGnFdDzg69/8RsyhtGJdFwxlEo2OGeAM7wOcDwjTJIJvOoAI+Hh+kqpOYDw9PSHHCMQB3/7xj4jjiPfDoPibq1rf0+MjHr//gOvTGYe/+gb+r97hN3cP4MxVoIXg8bd//df43W9+i1KAaTrBhwhSofHu/g4xDpjdAQ/f/AFjHFEqy6iFNLgNjsSHA/iuaS45Z3x8ehQHQyk1yt7ardgwABuaFzBXCp8QXAXdHRHW0rIKQggbr5VpLOfzc/1MChGfpLzaMIFoQiCv2u3WjHCOMFConlV7rmVJWJZFWUy54jJ3pxPcOFaHTf9+zCa0LR7J+vATYmAn0JgLcklg3eCuyxWZGay8ZURO8aMsoSXKwzfFiBg8vMo7pxTwREEFIcCcNjfbaPI7XBBvOT9efZEf33pHzP4ze56qeRauG5lhmtWTDnGYZc0OEAquKx4fRdDf39/hdDrh/v6+Zc/0zh60+DTbiMwKuM5znQOGs9bQrl3//NJ4WhD1tMC5IpXKmUHeIymAyCSxLEwenrU4Qt35LQVEZmFRU6/k0tnZLcwAKDUlyXk1Gw3f4eaCziyTL5cildJ9wbqsNTiwznn1tuRckNaEZZ4R1xXFqvdw+0eAmpATvAsAvMYq5YqrTYcJMZwwjpoOsltdNqEFV9TqT0rPa4NtO5btVhu1u+v4vZm8+ULfy+2OldurmeiaOU3dLt3XIxBMLSFnr1XOS5cWdcMMcLI53cL5bFEIptfCR16frs2QawLN3nf7YlTf+WUzjY+o88xVM7GNj9ZgrzUsbFnKly1Ytp5BZuZv7/eWwP08EfXz6G0bTe2G+fbC0dRtLLK5yUIg5mp29uN/CyrpBZod8xr/2ZfQgqTnyFNnTYtAyRi9R84JDKkkNIYRXvMELUWIkeFdBJMU2RiHEWGIGA6ihWWW+pnrsuDjDz9AkRrE0ePgCK4EXK8XXM9nyVdU9dkpHffd3R1G5xCIcLq7QxgkP/OyzHAssW2OPO7u7xDJ493pDvRwwuFwqIucSIWLlbnrDUeSSj+2OzkQfBzgfUCb+NS82jbWN8bSTD3LVzNtq2855d1O1uN7OxP0xo5swG5DfRpFjvcSWzYMEczipTQHAyC5qfZMImQllckpQ4lTrxiR9Ic9ivcOQzSm3Hb+ssyCY12vSkutJqdqjb03c9tp1qvbr/ZomXzMOF8uIC9Oo+t80Tgrw2yN/QIAOzgX4WnAH//he7y7G/FwGhAnApcMcKPPgRZnudWsr3+NBXvrnvaZUMrLHF7WFcu81Nqp1+u1pqeRnjPPM9Z11fHTItHKVryuq8Q6asRBjPEGJLJ9HlNUCG1zizovbmll+/aLYGYhBpQkhWtTyiiZJMl6iMjrAgYhLSvuhwFhHOCGQRaQamA+OmFh9ZI8TkNAGCMyC7VuSgnzPOP56QcABOcDpq/uQCHAhYzn5yc8PT5iXRcRYA/3IjAd4TRO8KUAS8LD+3cYphGFC54vzwiYEDgi+Iivvv4a7h3DZ8bZM46j1Rdw6hENKHlRDa2BmybQOAt25JzHNIxwIULc/t0CY34LuZbCyM7jeDximiYw8wscY00r1mRCxVct0wBZi+nZ4yT1Ht3EKRuByJBal1rLtDP7BNAX2vJ+N44xYhwEO6HDAdG1fNK0qnnoJBc3eI84CI+Y5YVer1eUkqvWPY4T4jDgcDyqMBOGlD4GruutKoz3jXd/PD4+Yby7w/E44R+++wFr9igsWRngprWBHTxGDO6Af//v/i3Sb+8xuAccBg+UFeBcNwRQAbkMo2jZ65e/puZhGn2vVQVvYTHyyvN1xvl8xtdff42npyes64r7+3vN9iCUlNUrLfUzT6eDKCuKny3LUn++e/cOx+MR7969e5Mx1sxWw8nWda246Vug/y/qzaxUPxXkk4lSzCyBPJAjo+9pHsXmodN0IiehCT6EuosYtc2yzAAcvC8IJdeiJ4arLesqqj+hUmDHGEFJCu3GLs0m5QSnqnOhgimOiINHLEDGCh8YkqqipvBeCrFgKVUbMBVenRI1aLY3fapgeW1wRGXq+dc335Kwe5iGSB2w32skt9T93sTYmKdQoUxUvzczt8dfrOZAWtfqNQYUOC4eQlaoDCGACh/UquBigRLAQKZSx7T3kvWOgLcncPe2ZgWqPSNm33ZhrClhIoIPHilnSCk6q2IlGwypE0rCQTyeny+Yr6OEGzBEAjAD7GC1P2US3CqCc+OJfwGt4u22vX8PabCuISMiBdomZp7L0LHh9Odfr1ccDoeKvb7W9uE9vaDdQxIvnvwTONprgvBT17nVgncOFIJ4MNU76UmE2RAHsGo38kJFct5yAq8JlDOSX1DWgvm64uPHj7iL7+CGoJqO8JEfphHlVGQjJYe2klHr+S3rijBoYWBqqrIvUupuOkwIMQCOME4TXJTaA0UnPCODCyGRxMAVl5FLRinUaQZkvSZezht4SaNpFuGU1BvrygIXJT/wLc/NWwNSSqmEeN65ujHomS8W861BfCHsuJlsfON4oRLyGHmo41i1RgiEcLlcsCyLZCA4pyZb81j2HUWQQOdxHOC9E0yTpXo7KSAsRXI01sw5iW3zrgZaGib4IqznxYAADCkVWGTq1flBIBXCgKWnEADign/3//t3uD/+M/zd336j5mW9mNyTGIwE6usGfCGt35gAVGzT/u4rIvUFTCxYnfTcdV0kBtEKmujnMcYqhOzzdRWi1ev1ihACfGd2GmRCTlhc3r9/XwXlPM+bjey1MCJ5j59fQwvRO5APAAMlSSwPSkZ6+iD4j1KuoEj1bnBBmmeUZQGljBUR65LxfL7ij99+i/hwQKQJcEDwBAwR/njCwY9IiZFSwaPjKtBKzrguQilyjAfhRSNhhjhfzhjIY/QBd/f3gNbhPN6fUJwW211WXNcZrgCxEFaNHEmUsaaMXFwNaagTpAgrqRE8Wr6hWCGs/6SDlllU8sALwgT4wDVgcDdc2Cz6nWeKIFQ1OYnGG4JDMGcGb/Gyvm3ixexO/cG8jfvaC1rnHIboMMZRYvFsV80ZSZ0El8tlo/1N01HekVAFnJi2Ihi8J8ThgJySVhQXLLQwqvki7ySVuKZpwEHj96DOnY22ae9HqjFXJYGQtaiyOI6UWVifK5UESwMjZjVdC/6f//1/jz/89oj43/w9UJJONeEwoyDCrPACh7gZs1+73fKoGka1d/SEELCukoc7KPTTa7fzLLDC3em0Ob8PdjWBdrlccD6fQSRZK3cPD8pk3DR8y9/93e9+h8fHR5zPZ/zwww+IMVZvai8A9+1ztK7eafE5oR77JpqZxVDBErelAlIMHuSCJIXL7QBdCCVnUMooWkAjrSuu87WGVdhDVs2PPVbKIGSAklmAajZmpJJ75yMA1iwAAE5A5eKEBDL4gERUg3pLyeAMOCaZ+EW+K6y1BG/5ETdo++ZHMy8Z1VNKSKBcQO5lMq2dsx+cfTOzW8z2LfXPrbbHz158f+Pv/VF2DU8e6IJOE5R1QgVaT/QYNPm9GK3y9i3kGNXsXCkAOeQMsHpSl2XR/E/ZL0JwWzOGX5vcNvp9sK9x3vdzo5mmxvlf+4ML/vTdd7heLmoab3HI1kcyT78cUdZadRCZQ2ZnIgLYCLYNx562nLN4/7uNsMdc7bN5nisGZpeY1Ell59h8dc7hcDhgnmdcr9dm3lIjDt2/h13j1t9/Tr9Yu2WxhIYZtQh1YgkL4FLgPDCMY/VOEWmd6JSR5gWXckZRDefh3buKbQEsQYvOATHIDi6AGA6TVBvXpxBW22I7gQinskp5rJQSziljGgYxOUAoGklKRCDv4EKAc4AvDhwJzhcwZZxOJ8hG1KSVTeYbfiNlAzANSyTtPM94fn6GL1fQdYGPg3Duh1DjvcRk9DVC/faAiXluOJOBtX9u+7ETgrkFyNZYJe8QIYGTPZZmpoWYERlGFiBpUvKu7f42LyRTwwJ6i240kjkBLJr7SvUevAn2NE+jwQGFizCX+IhcgHmR+pgtihgWMwsQI3hCTgnPy4Kvv36H03GCqyzrFvFOYJTtRvYFtoZ1bgWPQS+mYS2LAPxCjtAsASP/tDUiv76ELyztrd5PP1uWBR8/fqyezuA9qAuSjTHieDzi/fv39fksoNZvvNmfN0/fElKvfXYLWw6OhJK4FEb04sY3TKeUhEADTvd3WB1LACIJ/LqsK5bnZ3wsM8I4wcUBf/jDHzCejnBBQOWgwG3wAStnZM+IDOA+wrMEMxYGxijJ1pIwLcyx18sFE0Rdfjxf8c3XXwHCIYqctU6mdxIu4gBfCLE4uBHwvKCUFV9/8w0cXwGoJ1Pprbnyj4mmBKemjxHWkgjdUoDnp2epeJTOWJlA3uNwPOB4PGAcRxyPR4zjiBhHDDdU49rhnJGWGcs8Y50XHIc7ePc2eLof6M9p+11YPxRsw/sKVzIcBhck6n+IFSPvtbXr9aLrXiaOVJoaKu5ipghDzD6QQ4TibKQ7Bwg5ScHYx8dHwWRVkEq/xbqoAJmL5BySBWjGCWsG8rqgdMV+YfcEwxFjiB7L8xUfv/2I/93f/AFff3WPmn6qXSjaw76Ix5fTemDd0pIsRc0+f3x8xMPDA47HIz5+/Ij7+3vEKOl3hUrdhCSn+LbGBKA6i/r+d04w6PP5jKenJwzDgGma8JtvvqnZI8xcnQZ3d3e4Xq+4XC748OFDrd1qQrCPhbx1/x6K6U3LitP1c/iV/uqbqUew8lv2NwEVJI8xYi0r6i4MCGnimlBSAvkAH2VhkxI1mivcEyHAodSahYRxGMApg4sGrDoP9izYHEQjzCkDIVR3ci4ZVBzYNeDXdhIHWSCuOJnA7IAiQbJlzeC01jJ1tmN1CFT9aaaNoVyACO3r9QqsF1yTFFYp3Ej9KmbgOy+eKYI7gLvkgpI1+NTtTchPx+pY63e9es9PCL2aTavnSjiIq4G5YMG8HDeNbFmWjXfShJfXQrLmHDBt1zS+6lkjQinQlDYRaBIq4xDjNhVKNDhxzBhOlHOG84MU+03iySSYZtYzJMv7FPXQ3d+fME5DA/67fmvp1F+gNOtar3n0i94o0YOuDWCLk5pmVr286OdJw9SozoMmQJxzWJUFxrI+7Jp2jDkcbC4AqLGT9rMvQvxjLYi/xHMcDJAgiPs9pYS8rkjLAvJRtRSFVosV4xD3UskZWHWRaqiFiUMLrDNalmVZMS8JSy6Ip0EWETmkIlogUUBQLrHM4mwI0WEMA1irJy3rgmUp4CEikNN7Cd7HjOpZIxmxhpfpaqsEdH01a+qQJkLDUaplqphTjBi9fFuprFMSrFDB/WVZwSRMFz0Vj10/5RZ5Tahy5Sdvty7bC869Q8FMPCOWDsHDKINKyTUpHkDFxFp4iXh49/eyeQMUNWmFhsZX84bq9awcHkM0wziIh21NK8J4xGLj6qSAiTkR7G2ZGWFwOB4HfPP1Hf7pP/093j3cVdYUw95ALRC6QglfULslvCyEiFlgEAPwl2V5EedlGo0xCPfxhn0zLe+Ww8EsJAP9wYzz8zPSulaTthdkpolJnFuoGpbhaRbR8LlC6s8RgNZCjX4n4QK7rgvmyxnr0xMOD+9ElXeEnBicE/KSMaqvvKwJ62VGmA7wpYBKhtcJk1PCcr4gF0Ymj+fnBR+fzni+XvFPvr7HECOcd8i5YAwR7IAwTvAk3kdeE8ZTwHhwmIJgK+enR/zw/Ix4OuHAwMAThjiqm56x5iQeK8cgT1hLhgOLFlKkaAcYGLxH0hgk5x0KtUhy5gJGqdOcFPc7jAeMkDoC83xFXlcsJBRFNRTBCS3NN998U6Oj+9i0ZVlE4KmwtUUvZIjAT7G4+iXag+X9BOnB+H4SCxEFwbkIDgHTqBhMKciF647NLBRIoh05DNE3nk2nqV5qZhIpe8g4Cr+bPRuLE2lVb3H1ZnqPw1Fqjp4vFzy8/x3OKWHNDBcisuVjcqlkA1QY4xjw7jDid18d8c29w2++vkPwDiiu1kMwUF2ws60A/jVbb2YZoJ5zVpPbSzwmF6wp43h3QmHJWxZMOFat1M77/vs/IWiObRNaNhuUhpy76kyusa04L4HfIYS6aX/77bfVLH337h3u7u7qZi1BuSdM01SrNj0/P1fvqAnbW6EbLzbUDhv8XG9mf72gZ1dNoRTxTKZlqZ4gVVCbxwsAikTO55Qqc2rmUkF2AfFXNRskpelyueDp+RmcMygO8ORaFXPvKrcXAUAuUiTYewRHyBCT73w+YwwBYZ3gYwQHwHbnXCSWjYkBp6EEasKJpmagWNeRHY5NZIghmuZkqnX0AHmklDFfVQvM0lfzujSzlTweHh62u2Gn1ZhpQJub/8xNpLQ8ymtgq2lZgJj7HZyXc8GaSzU7zWQ0PjUO1seo2pp5qgHU7Agr+gwwUhInkhSRFpoacg4+BsRhqtkSPkrMYlbNrH8HNuiLhUz0cBhwNwScosM0kDgIyj7C38S9+6V6/7Nb722sJh4M2xXNLA6D4K7LioeHBxEWjoDcNLPr9YL7u7uNZkYdeGihQLeCXomkHgQzV8vjfD5XATNNEw6Hw0YA9/ADc6N6t/l1K7Vvf8/PwYZvWRR9C822bkAcmMGlqPkndQm9D+CSkPOKrMVqc05qZrgu4FJTXjRsgwrATnaBcRxwBMTUUFM1p4SMDMceAw5STxKEIQStOivPAlsQIYipC2hSsZqPpXmpcknCsLAsiJTh3EsPowlp6JSpAsxqYNo3G5PGcAfW99W6l4jVG5jyywh42fV6IYaqudwaMDvn1oDtr/vi/NsHvn58Z9K82lRIDTFWT5nttBb8a7pe66/b79c2Cp033iEg1DqPLsr+6pyA07lkqZZl/QHDPpsH3pMTTUSFsQ/iXbVcRHuuwsqqrFfiLww5e7FQd9q05EMOdcwalRPXY/ahP/VaO4FuFkffNlAEmnA1s9PMRyucYjmdQNPyQggSq3Z3Vy2ACjl1mtqnwP3X+uStc4IVyUUBOCdwEWC+pCyFSrzDdb5ifHcPXoDL5RmhZGVLneFJ+bIUFOTC4JKQrjPydRZQOUTEYcLDMODkCIP3Ep+UCtLlgqUkhHHAw/v34hQgBz8dQFk57nMChoAhREzjhA/nMxwTBi8CL6cEZBbhR8Kw+fT4PfD0iONAcJODDw5O0f2CIl4xUN31WDZrkA/VfDENTgZFY8SKBA4HTdCORsWjmuGHjx9hdMQ2GIXFO2iaLhGpBkrt2I1w/fFtP8gM1DAIPWAjIPeg8S3habgJqYPldDwIQLysuISAwYBg3xL5xWQ2B8drAZRienJgzVCQzcoCtHNhhBhwigFrXrDkhMQFAWrGqkDjDDg4DD7gOAapygRgGhxQVpSUEOGQWQKVc0pwwfr6y9HMNnADVDA4X3FqAKoNX/Hw8A7rvHROE3GYVdM05couY1rX3tHkNCRoq7l1grMjejSczJp5L51zNTxjmqa6uU3TBO/FOrFjP378WO9h9Fk9u8y+H25hep/TAnUgS9HFKoSGBsyLND6FiDWtGvUtSac5JyExdK7xWjHXikp5XWXBkkMYHcI4goZBdlCGBFmuK1JeRfMiQmbR3GIIWp3JMg9Y4qJCQFpX9YJaqovkupA661KWqHa6XhFdRClR7qnPJ/iMOQ40yNeszhacpK3LyWT5G4rDCfeXQ9Bq62tOKuxepuoUY6J4dVe6vev8JYDo/jo/9vsm4FRbHhQHzAyv9Re8a6XurA9Fu6cX/aBf6jWpnusgsYLkJbcyq4vfeY8n1czEmYPaf6YuOnh4J5WXvCdQAUIglNU0MVfvWziB2ADzHx9h/nO23iST+bEF70W7WTfJ4LLeWrBzLUbDjX6qd/g0n9fL4Fn7vJqPuuGiS1USvrwz5nmu55xOp6q5mWbWh3v0lFRA0+h7L+p+I/3zHQDdhLXd1R7M666bitXQpLrDE2nFcA3msc5lNVGNMiQVxjUXnI53PTwlk5qtypOvHFlmNs7XGaMLgr2Vojzv8mxDF8Mi5NvoTKmiHpkALXuh7yY1FYlEQDqnMXW24EjOFdPFMIpmFglP/9ZktNazQgiGsadSwcaLudeKXueQeKVVoYqN4N2bCRvDYjdx98LrhQneLQJrryWRs46ldGM17LA5lM2Y703t7niFO0TL90o24JDyWsF+Bqr2LV7rACKhgbqcF3D0GLwDOxvH9j5W6b493S+GWN5ot0a7W8g3NkIACCGKAwmsea7SxzZWSRWMPQ7WivYCzFsYw+75Gha1F3oWm2Z/W/0LCQQ3VmNf5YEF2JpAs+9uhZX82LZ/5pBzrrxW83pBTkJu6LyX3MwYMT+fq4Qmahz442GC9wOYUCm1l3VGWqXgRl4W5HlBWhKm91/LGDnZPZG1/mSMYDUxlnnGIQ5Y14Tvv/sO70/3ItxQEMYg9Nsp4/7+AcELLbb3DqnuJk4HU6opffggyIgD1MQQsDTnBKfhBKVkDINUospqQkpWc0ZWaUaKj7EKkXVtnGSGI5h8GcexZTd0nT7Ps4SyKAYBbHdBPf2zGkFl92euxuqx7MyKvUdzL2D7JGM7RggaGaBmLhOg4L2v2pYo0ttASNYYMsFytJp9dw1AMNFxHEFBtQ8Cnv70nTDseqrYGbMQAExhRAgDgjvgP/2HD7g/enz1fsTkpX5mL5Qlyd6posZKevD5ffjTt35jwQZuqMJMD5ECMw6n0x2enp4QnMPxdNw65ABcLufKhNG/uzDS2jg3+vV+fOw4YBt71p5RxvNwkGBx+/vjx4/1WKMTsiLEIQTc399jHMeas3u5XGoKFRFVs3TPNvPnWCmhlCIJz1VNbTZ3HCI4eKw5yc6m4HgpynUVI8iFWpmczMWbBXPLyv56eb5UM8uQKlVzJM9St/WcEmgYwTnj+fEJpzDCewKTJUeLADxME7zTWCjZbrQHVDg5h3Ea8aF2jHjOEHwN42g7VYFzAcxQb2cTaMXoemBc8r1m1rQM+VtWRlSccT9xjXYa0BQf2k7oz22bofyEQLulwgNbjMy+20+SXlD3Gt8tkLrohmjhKVnHutfy7Xx5bNEbN3FQCkiHEMDeEtsZ8zojswdcAGeWfaYI9x55MTMdRXz4cAGVgIeTh1zOxreB4VZP8xMW96/aTLhXlxMbxY/HNI347rvvcDoeamEemPkNKCHj0thJtJWSO9NOrl7H4oaAuDVvbFOzkCPjtDOSx1JKjfy3402LOxwOuFwuuF6vldjAgn/7TIG/tAV5IVnUYq8LZYyLEZbcRpqTJTurhVbqhPetupLkbkn0vvGhMbNGg0OvRQBTvV/tTDXPjEtLSAJX2U19D6b3dNQ7ly53Dnc20dkGSPWDpg0wdNFogRUiyS9zK8hlXK4XSDkuAyqpevBKFgxjniVquhYdNgypPkMzM1vxh50m9udqB/2sp9u418b07Hbrfdt//po3VQRUA6VtN9dJdOMZm/lkmBc6SKNqeIbx6LVsTnWiU7yPpmHU6wLeAd9++x2Ij+DfHevzMNp86PSgrvO+zLaHB3owvOFdqK9gs1woporgwzfhB9T+ex1DvT03XhxFLbfT7m1pcOYg6GsT9A6FUXO9bT30Fcb6jXW/CX6qBS+AEnJCtXuDc/DDAIQAeC+2+mUBSsEUBsyFwURwISAMAxaCeJtCEE3sfEbSsvHMjDBIzUtyJPmBhbAauwIXweaGgDgOUptTI52fHj8iDAHj4YCJCKlk4T0Lki1ARFiWVHGAzAXeax3FnOFYB5olDkl6piAGB2ORD85hTQvICQb4/Z/+hPFuwnC6wz/8w7dIacU0DkjpCucGRO9xmA5SyDetYDxKoQ8fEYcBD199BUu0RwX1xcyclxklF0zjYT9jP2uw9pNpA0m9gYHB5Ixrx+x3w1t4mpkhNlGJCCUz1jVX09mHIEWdmYEeS7TNi9qGYkni8uztWMNWXPAt46AUpFKQC4TIgHXEnOZ26nU9MQ4D8N/9P/47/Bf//K/xf/jnv1OKp57nTQUwcbcpCWb6JTQZKmMK2SKLRKRaDDBNyjHnJI2slkmEjNWyiCl3OhzqtWUMvd5jO/6mOTOzFImhrYd3r4n3mjSzeLqPx2ONPUwp4ePHj3h8fEQIoZqcp9NJQ7NG3N/f43g8Vuru5+fnqqUZ9XefYfC24EU9BgACqd5tDxQ0zMKBQcGDSfC0tK5wDEQXMKtGQ97BxQDOQGauxy3zLNkCSSrg+C7B2UzVrLEnYC05FwN8DMjXKxhib3+4nBHLAD9EMWdKqQCnU2GWc9LQIaraVWX8UEFGgILygrdIEr2MrXMOS0rw8AjR4enpEcWdQXHB99//CcfjiGmISMuzJLRrQeJ1XZFywqx4RhwGTPqujkxlajviuq5Y1gTSY3S6fHKivzmIn3kF1mcwkL6fAK8JsVu7o2mxwsmmGQHzjGGatGydg8Vx1RxKqn+1XZewuaZ5wSTvtQWIysZmoHXTxGSMCSQQJIYA/H//P/8Wp0NboKIpymny6rzprQ088QU1M8/7/jfMzPrJNPv9GK5r2sAC1qolcMPs5532u1fMeg395XVboKyZnZYlMgxDFXiHw6Gaufa7BQU/PT3VPFC7/j6k5C2Lom/hptQjWfyZBfuIMUrFpd6U0LligBI52rjP9SnEDAi+dpoJMuMaA4v3sIA1VqvV4asUMWbmArV2Y69au42bXQeMWwaefb4pTKKIvTy+Dm4pUuFpWTSzoaO53g2ieWG9L/WS2JjAupZUsFmsWu1iAiS4rT3Uj8D0P6vVwd9M2Pq0m+e51faTvzcXbOc06nMAgHNSui/sU4U6wY4q7zbX65+LSPjoxISVUSRYtmh7bulDIfx0mlomC8EKsth/u7BnthO/UDPTbEFthj0RoS54C9vom80v2zReXvZ1s3K/KX6OWbff7Jr525F5qtlpbBr92iBqdFG8WzebwtZdLNonHQAppapJyMMIkO8PI65pRXABDw8PePzhEblkBGZJZWIWkJwIfpBCJ/OyVoEDp4G0SnOdckbU0IvzfJViuWBInIxWI19mrNcrUBLGacTp7g4ueIQh4vl6QWZGGAbhTPMSY7auK4KPEqtEDpxzDfx16skkhgTVqm++FAa4xZMFH1C4YL5e8e0f/4iV7+HHv0JaF6TVowTUCQUwYvRKXsgYy4glyXsbCOqDpODYDBETYKlgtAymA5CbZwmfEi2ox/3oZUjmjS0GJVYhuz2MNlhGb2ZYfFMIAYSWSJxTwocPH2SieY9hOuB4OsH50PCebrkwc80W6DesHltzziGr56sggigCiKrdJzAKUk6I/oicGR9+mHE63uH+7g6HcQRhFbOS2bLnZfOlxmv2Z1j2v2gzLGmeZ2F/KaXmY4Ygc9FAedOSCbQxz/RKnQK61eTE8SLrwKiGZON7XRvbXrsdY95L51wVUGZ2Xq/XSr5wd3dXx/h4PIJIvOR9xSgjHjCzs9fgb/WTtZBz1rCL7mACaIxYcgKh4P50wvd//BOQsqis3KmoBPgYQDFi0RAFciSYmm+An3lJCcC8LpUL3/CMUjJKWrGsC0JhTMOA6XAAvDDVPi8zMiQyXCpuO8FV1NNDJEnerGEVKKVaOaY16dhqB9g+L6ypaypY1wU/fPgANz7i9O7SFezwiFEFvh7PvcfyCqxZBFNUssZth6PiArDJ5ghcfpkVJZYeqbnGTYa9IdBew+DEjG4EfLkUnLXykw8BBYTpcJC6qNB5gpY4RN399yCy4arkHXKRhcwYQBRA8GDShHwuKLzCOQZnxtPzisN0wPFwwDgMCiFYcHT/yhaTuEk9/ULay5Qy4yY7Ho+Y5wWXyxPev38P7wiAWA1bbQbdZrk1JRt+i/q5HlhNWFsXr8EMt1qvOVlGggmoeRY6/PP5jMPhsAnb8Br6NY5jZbo1oWYkj/vE9P55Nj2nzxuKLnoU2tjPznspxmsqoAKUrOlDtRIyzPSTHd1MTRKa2ZodUBTDkAWQldVVsg68cxr/1TxjLQ7KMJS2W9i22kxa0v+rDqDnExpssx+KjZDrcaNSKoDsyG0xJm73rEuzO5fUPG/bvu6KtybCi49YhA1ZCK1iOj9S3t30SG4u0v1ecYLbE/XlBNYepoZrQMN43qruY7c189K0y940acZ2C50RrVWEMJNhJ3IFgtYnAMEHh3fvHnA8HuzBb8E/dnWwXvNLVc5sROo83mklZnj34L/gz7e0qa1W/EIY/AhV/9b5Paa216D63+1dlmUB0MznnrnDsgd6M7OPczTB+ZqpGeZ1gc+SpGuCjQEMxwmPTzN8llzJ4APSvGJernj88BFxCBgPI6DgtxsGPD0/Y1kX8e6FAIri7RynCU+LgP3BeVzmGY7FuZVywmEcQNHj+6dHjJq0/Hy9wLOwYJS1YOEV8B5+iLV6k6m2PnjBzRgaOFuQLlfpAK04VSAmNAjg3GsgGlcGFu+QZS+UgnEYlGNtu+T7ruzNQyLJPGiamSzIXBd6A8Llvp1XqV61x4Vum0MbIWMT5/bqrVfaC1SuC357Xh8GYBuZ/W7HElE1JQozjt4LgSXdft6KpWj/Aq2mKJEUfc7dpF1zlhzQlEAUweyRYd67AkJBCIRhjBhpgBs8/i//13+Jv/79V03rpp6lFSC4zUZRhdkXJNE2Ql2fK2nYzzaw1BwpVM3Rp6enqvHsr2nibzttmkKw3bS26XYbkxS9piet38R64N5izHohN88zvv3225qgfjweq0PA8jmnaaoBtkYpZNfrPZ23MLuwrKuwf1LbqQIY8TAhP16QNPYsuIDEjPU64/nxEcf7E8bjAQwNFI0Rlx8+ygRk4UVyISDEiGEckC+zqPfkcF0XDM4jkMNaMsIQQTHgMl8xTgcpP3e9YnIOXIC1MBIkgl/AZapeLx+8mJkgoOiEMKyBLKFbNEsZV40/6tXwIs4NR06qUKlJHOPYPLF1INtkUyVhszvFqN4m/cwCkbtZBPMKOpvAJsxsBnN38c9tbyxKZr59qd2u3Lvc7e/6fJ3wM2FW1JHjlUa7sGkR3X211cR6vW/lt9J/6IRZzhkpJ6ScgRCFPKUIG4ZcU0JwhsFjigETRfzX/9X/GYfJwhsKnFP22dTrfKoe2g70BQkyAJ1GD5jWn2oMo98IqgYdiDDraXqANnay2Lcg+ibEAq/Mja7tNfS9NmatD/fpk9QtHnFdpRxljBHjOAIQ56KRTN7d3dXjrPTdPM8tmPqGsLbnICKEntlA3OsQdRVqIirVpQHpXKwqtkp7oGYHCF5VQIU1j1t3D8Wzaid35kY12whyLnMVHDc71DSq0pmSHSYDNYVLtnxSNPtGb1oFEV7+lO9Y8wHNin1t1m93LSIzdO1fx7SBjpl1Z/htBuaVz18cZN1xU1/ca2OdidJhI6/d7RV45NVH6buHbqg79rjVtCfUtCbanCgjmbU2ROltU2JYfUwTTJ4IwRGCA3gMCIFF7e56odERqUaDT67dn6W9xCD3R1D97wbuMRy4E0L1uO7snHPdHF+dQ4xNER0iarK9QhJvP/dr7dZdq0eSCKWHFHRztNg0Oy6EVm/X+/Ai6FYsnWZ2783NMB5PQsdTEubHR+GFygMcRxzHOwQXUdaMwREWzijzVZwF3qP4gFwAchGDj/DLDMwXuFIQBikHl5zH4gL8cEBhwnydESC8/SAgE5TWBXBpRUgZlNVryhK75JxDWgo89CXHAecPT1jmRTnNHByKMopmrMuMy+UZxzuH4hmJRLvkyimmZp7YImCIZzIVho8eoIw1X0B+1JxDiLZUJIwEnWtcwM4M5wPiOMHYOPQuWJcFyzyDAATnEMgyBER722JwvR3wiUm0//7m4W2CboJLaPv95rKddkhwivnJ73J8Ucyp1J3dk9RVNRjBK/15ge3WDAvsE+ZfIAZXsdJSCpg8CjmshfC8MM7JY6EBxS16vryDA+A5IJSIoxcixtEBiRmeVoAXkGMwMTITCglMIoJQnl9G5xMY38/edgJ/h3XmtErq3mHCfL2AyOEwDgp56LhpDQ3iguV6weEgaX6yYfN2ivT7+R6m+JHSfWPibfDm9nuzhEjL1PkK2Zgpe71IXFoIEeMw4u7hXj3bDsfjCQBqkrqUtltxuZw3dTpFr1JhOE4nIC/CVbbMoBDgcoFDxGE4yc6wZkRH8FyQFyl1BefBzmNhgLxH9AF+mUHzDAdGCA6JCNk5LC7ADRMKHJbrgsAigBiS70gO8AS4dYWPUp/S6wJozgWlEPEBfhiwpoTr9YrjOIGQq3AAEtI643J9Bt7fo3ggETeuo8JV+1J7B6VITF3ODB8dmDKWfIUfGOSFGlpMPzOF7HzpxDVlDEEyAKSGYxN2aVmwzlcQoMU8mvMA27nwUqD9qPYT6hv1UrT93TQdZjCLs0eMGF8dQvKOUqwZpXQ7sYTgeJKSYINXbZ4k4Jqdl/lRCM9LwTU7rBjAfoEktjNQCI4dPAf4MuIQAo7BYQwyxqUkgK8gMi95M9/Fi2pivbQx+NVszV5D2n8ixAjggsM44enpCXEYcDzcoW2V0qemsSzXK06HgxAwAKoKb02gW2/am6t9+1RMV/uu0xF7ZxgAi4cjLenGHBC8Q0oSoD9fr5iXBT4EHKYj4jRhGAS2Og4ThiEiZ/GKfv/9n5DSgnm+IqWAcRwwDLE+K4gQBK8wxkoLACV1+0ry8P5Fne6oxnmveqoaCQyyvEuvnGEASEMZek9FfVE2gFn6hZU+iLSwRltUPTDZp6x0xqI+Syn9M/eipze1tiKA9R6s199uZ30P2MJof/YxPu3lWg4qFEB/bYJsPr9xyPa8NklvibD9EuXd+fTil909ePc3ZKd/2V6aqg1wxmZYGtiIrh9sLNtYMKApTKZNdjs/m4Gp+FtpJymisdkcePOOu8Bhet3M/iXaFmB/aZaXIqEXPrT4rz52zNo+HvBF++Qe93YfvCXQ2tnUIKM3rlhhlt7BAK6QUUqpeTij1d/1Ffy37yyjQXK7CeSkf4J3DkyETIQ1ZfijgPZSYHRQM2qtZaS8d5gOE8ZhFBt3GJFTwvVyQXAe2TnkNeP56Qnh4QHM4pG5P9yhrAmX61U8eKIf4zBOknUPyc3KJSNp4d3j8ahhIaghHuRcpRABUJlQ2+ZgqVkalQ7dndtaqj9708s6UzAKKY/mX5kge+3dQNVhGLYrilCrNq3rqmSO21SmT02W19ut834q7ezzFvrm2W13DAEViNGJ2pu7xqxhISxcNw8RNpkZq9FQEQHcKkVxYaBoJS8Xcb1kUF5RRo+gtSBApHUgmmA1x43BuLI5/npm5mvhDX2A8rJIrVcztyw0Qc+on83zjOvlKimI6lRp8WLd+/5cSOFL+frqe/XPbaD+0XuFLYROyCuD8/i73ytmLXNKiqhETNNUa09cLleUwupkHBE8ORRyyJCF50KA19zDGEc4IuS0KIWNeCmnOCCOQvfhx1G+W8Qrys4jsQijh/sHQIXZ4XDAOT3herkgjgMyMhiEaZLzUbJ4yK6S/mCqdRyiVEYnYTZ1jjbCLIQAJdDS7uqEGXWdWnX57udmLTJSWlUThWQs7LyAbIKqvx43YVZd0XJBEOTdpSrTgtPpqOW7mp7w5wuzW+2nnLSfEmi0OUbYSNzW28T1P+0sIqXH1vwMRsVaZOwkwFgqE5GWKtRWsgo3j+AGXM4JZWVQBu7uvOb9Oo1JVPPShJuFNKineZ/g9Ws2W+wGbpswI1CdUwCqZ7A/Z1kWXK6XRmhJLYsD6Kf7pxO2/6LWCbVb92lOMmiAvlZt8gE5S3CwcaN57/Hb3/yVFDzS/ri7uwOzJK0/PT3h6ekZj4/PyDljnCbJNto8CJrL3PAQe5D6MFbkVXe9nl3WLsWMlldHbbED27gUu595/CRkgWucV8sQ6MkAG37We1CqKWWW5ovF+PZAbsMPmsm5H4ybnk19tlu8TA0vej1vrr3Am4/Y33Dzo7tZvdRf1F7IxJdX3Jt0dtTeFJKxkxMMn9k89065M6dCD+z2+QMCNYipMV8XIHscogez/6TPpHbyz6io1Dt1Hu63vt//vTEbe+ThxnWIGlV2HxKzO+rFXz/lq9+8Vg+jvXG0rZlSGu13Hw7UH2fyprHZuu5z6beQ8yrJwd4jjgMOpxOOd3d41gtaXYCUlExtGARi00k5DgPyumJdhRLHHnhNSQuiBKw5C2EhaZ0BQAj8SJhZr9czyrqAIDvNmltMGTNjWVdMxyOGcYTTXcs7jzD4XVgEYJhbSrlTsd8YjA6LKKUgeqE9IqJKWtmbSbwTcMmILKMUW6nYhh6WszAZ9EVRX0yBL0dJ+FHNJl1WHi2nnufqpUXDshw5eNJ0KB9QIEnqBUIllSDaxLwImy1DyAdyJg0LEvzWUUTwEeM44P/1P/wrDN7jv/wXf4+7uwfNFBNhx9WcRBOk0PH+Qjvc5uH1ekUIEQTgcrlgHMcNz35vrlki9zAMSmu0ndOfdV/8AlOwM3f7EA0ofmoBsQAQg8YtFtrgY0ArdyeCMCh7jYR4uKwCyAePOI443t/jdH8vGlMRXjBwEW4yiDBzzivewRr8xljXBWtaqwpvwsxUY6OsLmyEbBplP44oKataLZWV1rSKMIsy6ed1weF0lCKyzmGeF7gu496UKFJ8rXArbUUm4dDivGrfYrtD5lwkt1JpfLx3m+Ba08BIwy8KZCF75zAMEeM0bUePGTmnmndGrwmzn7TRK//+0rZHClvLJSvDCldhBjQl1lHLwbSMjQL1YkKqdzERUim4zjMyFxTVznJilExgdnAI8G5ACAMO04B/86//Df7Nv/7XQtvUp9dpuI6QgGLrcND52W84v2bbWD3aYZfLRQNJg9SJVWFm9Sct5YtIyETneZa1oQrDZoP/HAD/55iOr0w9Wz8mwGxN2twYhgHDqAHZuePRU4oyE2YPDw/47W9/i9/+9rc4nU5IKSEIECqL0ylA7bwDpfYAZirZw9h2W00rbsc0qE8n9qudKcC8c64zJVv6CVxLfq3sss4wkAIKVI/fiidUXKsFsPa+ls0jbHG1btewHePlYHRXKr2Qc1szk/qJ2jS7frL1T/2TzKe3TNjbf3yicfdbsxv2t2kZBvQCM9QHezFvLOmdO6vPtLybT8AmpNpiuFzOSN7XPt4A3mR5sc2y1Tu+nC+/QPsxmlJRLZedcZndhjDs2E8V2d08Q1WZ7dMu4PzPeFZgN59t02hfdlpZgye2nnKdF2gyZQ8VbWqCVmYQwLICiEhi2EoWqTdMkxLkGT2LYBOsKTmFCwoA8g5eHQX2mMRdxXNymKYDvA/wLsA7j3VZqwOhaMCqV4+GgcCmDZKar2I36MvouUETUStoihoxJuGcKj8LF1ih3iaxuj6+MSA1lk13ClfLlKG+Z3++cXnJe3iE4FFL14E3z1knW3fjL0Ax+Mz2lgCUtzAcQyy7V44nqEav/5wHw2HNkhaVShE23g7bCp5qoKjTa8suDVzOF5Sc8O7dPSS2TKjab67F/sMvzMrswxUsMj7EiBDCi1xZq6XBAOZl6ajYG7+cXRN4vaLWtjXuvx87Jz917ZshQXhJHuGcw7JKErqYzK6uL2bG4+Mj/vSnP+HDhw/CUK3vbeSPX331FQJBC5CUgvFwBJxHZk0UDR5l5VYYuGTJDvdSIyBodWWC6HYlZRSNP5umA4KPYK2vuCxSuNQHYeMQTdC34gs6IEWF4ThK9L2QI1LNsh9iRF4TMDAQhJuMoMVGAESSAEkuudIa9drPdrA6zUMnkSiFIpyoU+lfniWxeCklOB9rVLJU0RbtpK8XGPwWf7vxCL9g+4yb7mc1v/ilLj6bVJJ6gs4zcEOtpW7pkBS6XVNBdh5rzrhcr2Dnq+ALzgFZrumItNBMRkqM5/MTDpPH19+8A9EC5gSi2yEX+43oS9tIzJFmIUJDHOrvvbkoWpj0/XWekTphZmNhBVzMNLuVz9iazeafr0e20I5ozObcM48leYdlWTBNk2Bi3mkWhFRO//DhBzw/PyufW1DIqfGijdMk+Sr9hISaCS1lYethYcOeXEcE1/qkPrxdS9Q/17Q2ZyAgaqe/sNsV/+obd9fuc9c2x5jnDKi4SIVK6lXav1vamZlHe+9QNZPqcaqdVU9Sz72kWuMGx7k9Wd4MePy52mYL5t2/7rD2ym+23tv89n1NiEHCXFSwGetwMYdTd4prp3T3a/LSUR/b9gqc8I+s2Zz6lOmYc1cQCJ2W9FmDhhdWwp+jmf35bXvz3oPZ5lKTOxbiZDFmteAxWi3PwDmBCuBBCM4C2ERYScm4BDaiPM6IiBgOQUzIEHRmCY0OwbIDHCZyuitEHA5HXK9XKSXnCCiiSo7jWKuTEwFpXSWFgahWsSbvENxQd62qdjN3A/nSP2UFXxX9al1ouMpuey6FkZLs+I5tp4QKN65YkGE7JuQrKOuaqWDAgHU8WCmRdmP4ZbYfq7cwUi41qBnd2f0G5DTNyfIkjVMss5AAP18uuM4zDCewzacVPiEQtHxZcPAe+Bf/x7/H+4cjGAnOcb0x14DY9iSFLcnMNs8b2MGv3dgEtZlgXItsQzdXeWzJcJHK4lS9/rtLVSHxpbQ2s5rQMur8rMpUz+hRNDNgXVcAFsZRKqOGc1I0JcYoZjlrsQTnA2KIABpmllNCXldwSrhezqLtOMIUIsIwIISIWjRXsQrvxaz0k0dKGX4g3N3d49tv/xPABd4JZjZNE47HoyRhE+CJsKhXJjmP5XpF4AIXAoYQNvFnvXkTFADuwXZjM7W4tFvD2S80mRwZa1qRViAyxGNb9Di9lmkRUsVKFm4toqyD0GMXRv/LUBzgC5pY27ZTi3/MmSy5qTHG2id1ryDDC1WYhShOG9oKssSMj0/PuCwryEkQt4wii+kICbIEMmIcMURh/v1v/+V/jcPowVjhQpUEsmN3G4tp3AyqrBFc+IsSZNXxxUDJ3HDloBaOpQ8WoT4vhXE+nwEQYhw3JIZ7LecznwA/V4f0grbFEJqM0dofWt2tp59iNZPnea7WXkoJf/rTnyAB2gFff/21MNg6h4BSKpVzk4oqNQtX1tWcM0CsmBbVmCKbKDBTA6LVhSD8Z4BE6UtOpjIsmNDzHrmk6uwoWdkncwM5JUrYoZhm9KZJ9kI/u606m4TaaWxcipY1AywR/i3TpQU3Nk9M/50IX6544E+OTPzFWt5rF5C++Rzz1wD5FrLS6UN9F/daK5qWa+blmhJyyegZSVr/q2BkcQKIcAS++uodhgAYEwY6zeV1dPTLbMz7+ajrySICbG51VklKrciPWRx74bX/e2+KboTeT9BJLy7BDeAh9JCK1UktdR1ZMD5351TZ072LaWrel2r9iGLDwDLPwLLiN9/8FTxZRWhZ3DklLLPQb7ig5d0Aza0UUzTnjJIll86QKB8CKEQ4p3Fm3gPc6LJh1piaad45LEU0N6uvueYknP8aAweWwiDhFj+4zWZdJrcTo98ehqJFjp33kh5SF8d2oPqQDWapyuzDS5B10dqauRQMMVTI6JdfWT+jCsIKSm/yTntD01VBVrUyEAoDS8pYcsLzddGYM4E4jJvSpjS1zkaMHuMY4D3wcH9E8DLWzBnqKfisZ/6SWn0cxYoPx2M12fuybNW7qYt/XdcadVA3CxsPZyQPP34d/NSN+58sDr2qtZND5lQLmBhRo2hiDjkRnp+fAXDlNpMmtEIppVoIJYTCeD5fsGbG/ekeS8rIll6QM9ZlweX8hGWdEd0IeIfEXAuWzBeJ/s9pRfBGAQ0McUQZJqklkDPCEJBTQckJJpWJJELeaGNKKSCjx40Bl3kFjQOmGHE4HsV1f50RQ9zY1zAnAnHL06wA1W6n2nzSWfG6Azg3IPiAGAZkQ55tp9CfsmjbeeOoJnc/gMyY50t1I/tpVO/qVtmr4O2PnyPdG/0lbX/nG1rNKxqaYTupSDGTEFtBC7Ammfuux5U7jgFkMK5pxWVe8OHxjMSSDZD1uibQnBCey1nMmIaA0yFicITDb97BIYGwgssKkF3B+qVN/I2/o37/6zfRPvRdScoy3j88wHtfPfhWDMcwIwuDul6vGsYwAFDNmLnWljWuOJTPnF2VIODz216T+lQrylwNWEyZ7O7zPOPrr7/GOI51bXsf4L1U/4pRAmo3PGaQPO3L5YJSCgIxo6SMlKSa+Zo7VZCbdrbPm5JrWZEToUzuqyU67zeBr84RChm1X69INWocsfvl5YhIosqZQRoqkeZco4A3Hhx6AfNve/BGLzcFyQRVu5axOvRKVG++VGdAVY99Tbuot1ThaP0mAcTbx/n5ltOPwUlufMqvf3frGlYl6EXA5CvPZeZlLuI8WFICaqDk60/GAJyXHZsgsYjEhHVRAkcuypZhQmKvufd9/8sKs5eBpfYsXWESaHV3v03T60v/2bVqKNFGkMiM7T2cr7U9FPCXGAw1UPr2l/XX9vwb9EExwG2BE8AS0klJL3zF49v1Wm3OlBKClH+zeo5bXqJqsgEIQUwvOIegKU1SqUlMTFZTs4DhQlRhJv9qYQl9eu+lQnmlt9b8z2VeMGiwKnkH58Xkc8qbJhO0IGhNxt4GbBNCesqKkNQ+Rb9Pv2w2OcS81KyGOsIE9MykhidCBG0cBni/L3yLbrK1qbYd6O3O9o+yMSp0cEtAWCqTU095YSCVgmVNWNa1lidsMw2Km3HdyIgJYBK8lZUFA90GtNke1LS9oZHXB/7CWs10UQdXTdNToWSL3EIUtHdwPJ2qEnC9XjHEqMV0SB0cVDemzxLeP3PXWPylCCwN1yqar93hZqaNGsZmSk4LF6OK61s+p3MOoWg+ZbOxRStthIIyWYZhQIgR5B2GaYILAbkw8rIgr6tWAF/EExpH+DiAfAB8kOBX22mcwzBKhG9WrQ+loKSM8/MzBi9Ff60gitNg1D6oMIzyAi+8JLo7E4TxtKVq6UJ7Q2iUUrAuCYdDhHdeFowmLoP1+grEOuexpAVZsxYOxwPi8NLMXFfh5bKOfynOfgrtYP9OP9U1P30dm4Allyb0uW0sBmA75yXzAw6pZCwp4/k64/kyY16TmJdMFU8j52rJP+eDREQXB+8HoDiUJHTrRcs8lMKoZUwZGnxNVdjJ4kEtXk34hDbxi7UGYxBRLcN2OByEVsvw5M7Dt65r3ajff/Uel/MZ81Uos+5OwvkVfdAiMNzYb+j2iPZozF8K5756fW227YjXmzCvCwiu4u42ViEEPD09VdjKaoJWB6M+LJGrGBszI/TqrO2OlitZX41Zwg+8AxzBey3CqxOZLW8qZ/U66o5KBky61ktELXbGdh8Wjcs8E74EINhCUHd6NSu78mzmXuf2s7vNjW7thmv3fY0Zs4Ko2OIH20HWhaLmsA8Bzvt2jPbpm6kkP4XM2V+DX/zyE9/wZb82Dan7zBZHBf5JPOa8NS9TykilqBCz87qxhu3mopnV5PHCkvFx832p+7d9f7J8zV+gfV4AMQBux/bhFf267OmzrGi3d4RxHLFc52Zq5YRQglQ4Nq2VLf/17Q2KOnP3z3pf4MVcf+lZbXPCCBm3YVXSzOnhKGy+q9frBHNjogECE5SqJyKVIpNE8zFrRLyqcz4EMfE6G65YtSbdNfwwAkRIOcP5jm+oE5CCebT4n5wS0prqPYsY0QghwsdYPTvW6XrB9vMlW/XO00lS9Ull2TatSH63oFmG0BOlNaGEUutuVs2DNNastJ3Eu8ausXEW2L1em0O65v5xWZkv9++eObb/3vj3TfhnLuLBXFcsa0JmO6ajZq8LWQUhiwAj8gh+wLd//B7fo+D93RHDNyfEoDUaNs9343fd6Nq0+Dzt85dsfVS7VfcGsMGRQghVMxMvssc4jri/v8cwDCAna8/o6SWYuQn4lmj/07Zbm/YL7I6biQgYhxnX97LN387LOYtjMYTtGLPGDO7WeSiOEI8HuPGAa85IymKR1qR4llTTGccBfhzFRDSgDlKG3fI2r9crTuMEcg7XZcFpuq8ai/F8gxhDCK0gbGEss1QwyimpoChIa8Z0f49xOiCEAYAIsm2el05JJ/uKhKMYztAAdzMrZHfn7lptWZZScF0WFJZqS+U6g8YkOES11SWYM5WswlfcxSHGDfVNnZSq6cF1eN7PLrheu8GPmcJvHbvTcCFFZsh5rWQlZJtyqPkhCYUJS064zDOerwuerzMSAww5r6QVIMlCSXq+cx5UpECMQ8AQD/hX/+r/jeePP+C/+Lt/ivvD3yDcxY6gwBxJihKZFsANkasb2a+4gfArcrRmjEA4zYS6vsEsgNSZdIRarDrEAB9OePfuHeZ5xrquuFwuyMsK7z2macLgYrfR/DIC/DWLpNF6qwamMWPjOG6cZs45LPMVyyweW3P6yLUNytiW3wvsCF4rjycuKJbSlHPFGECNb8hiQEwS9NJUkmKhUrVFYdvNGQCpmVjVUobYzKl5bCo2FiRtqmlmt+P5X+gKLzQz6O5uf2A3pqJtJZ1IuTA4ZVDkqiW0+xBKyUIuydwEO9F2J9qpx/auL8zb/bPsLabXPn8xVzpN81Xz83a75Wl76/P9w221sv4QmScWP5a5YE1SrTzljEJePTUt6NMcQwC0ZqtoZwQP7wJ++P4D/vTHP+J337xXRoXwBv7Vtjzp+nbULynLbmstewuhmZG2lozQc+8MMIOwtwyOh+PmvHVZKqGjacYVPPuct3/VXNhbNZ/3vvVsfWd7/z7cqV//pplJ/FiLLxNH4st5KZgZAX6IGA4TlpzgYwQ5Qr5eUVKqwbDJ1HSduKUUIHOlu3bqbfQqgKxJ+k+p79+KkLYcOVah6Y30kY3Cx20Sziv+0iwSlc9btzUBlWdNPhRMDtyp2J1gqTsFOSkXP04oMSLp5OAM5DKDIgByyEqHxEDN+u9bKQUpJxVUptX1GQLb5GB55hsT4zVL6M25yKgkYZ/RPuVJXVcJ2LSYoH5M1EfUcAvaiQ0GSBkwzIO5poyUSzVB67LY5GR2k1TrUjsCggfO52dcLmc83N8Js4nsijcw0jf651dtbdxvfquL2IDwfiHXMB9956gWgeu+JxItJ/pQP+850aozpAolFS7VYvkU7MG7322jb5jbi419f4VqJpLy11GtbA6gVmkyLLB3Tja74OW1Q3EO090dTu/f47vLFff3dwg+4jJ/j3S9gNdFdoecYeA9ESGnjLSs4JzgicCqPY2jUHgU08hyqUF/4t2SheZYk1AKSzJ7LhgGKaDCXJBYTTjNOmBuPGPoIpxBwnRacZqSQWDEYChomyB+p7FVfE4Hw7uAr7/5DUp4wLUc8HFmXJYZnFe4fMVwyOrFLcgpwznfJhuRbbdY1xXX6/yCr4lqyMF2YK3t90yqkwSbybafUpsPbipmn29aiHBtQvb8fAYgcYNBg5l9lIUidNlczSAiYYt1Su3DTHAhIjNjWROezxdcrgvmlLVauVYGKwXQQGTBUPTNScxHB4k5GkfCd9/+A77/9jv89T/5J5jGARb9/xIH3TbqO+kXlme99iHvWGpclbWet2xZlpruN01TDZbNioVZ/dXj8VjnnwWOEhEeHh4QfEBaV5yfn3E+n6twnJSzkJQIwrQ1ex4C1CJ75WVe6ebe6qlrvdvArQ9KybqRQXgOlZH6cDjgcDgAEBP7eDwiaW3c+/t7XV666VOz0HolxjER/BgxHEUzg3Og4KuKl0vuQDvdQfXlBS/TijK6MwupXKsoY4nZvdTuzTYAtfy8BMRpeIiCm45eamYvvBtVuxENjCChGZvQDW4D9Oo4qbo+TQflJpNaBvOyYJ4XLOsqOYS5aWZG/dMvn9o39Z275++OvOXJod3P/e9vffbay/25KAmz1F9YlhVpTUipmdcMGVvRqJtHqZnlxr4isEUuwu+/pKzmvB6jJr6xZZTufLmevJMDqWb2hPP5GQ8P9wiWIqYkB1ur7cZb/7kd8Re2Ol8rTEIv5ibQ5rOZlyGEqn0BzQw1p1uMEeM4SolDoOZNj+OI092p0rhbdTBTKrDRinea4qdU3Dfm1wsgorvWRonoLmLMwpbKZO9/SzPb369eT589jIcDfIhqinENYHOqzSBlOMcb4QQVKEbq6LUTDQinSvcimlfOxnzgNnhZKVlNBFcHzzmH4qQueN93EvfWONDqdxtVxrITOi6z7ddVh+YXuZtNs3KqgQ6DA4FRPMElqAnuFNeQARIurR4vErzQGDLlPZUdtWhCNKObNFsTs+40uwnwKYH2qqaGZvptvn5z65Xzi+XK6tgCRpWUQOR0s2OQD91O3k1txU6T/rOJS+Q3xAHNMDVtrFQNQOiXKhcC3r9/gOOCGAkECbju39L00P6dP98E/elab2Zt56tCGs69ON6ONULGRg/dtBwJoKVqbQgNEDTYVtax1QtghWrGaapWjc1LUwoqBi4YwUucd9c2n1csoZ//W9y4dv7OOjVoyM4yEskeMwRa8nm1vOQp6jP3zxi++s1vMB4OWi1Ho9Z9xhAiPswz8jrDjRq0SuL2Na6y+TpjXRZ4D3hHOJ3uEYYBPkb4OEkkb1pwvV5kQnqHoKpsWldkDRL0QYqTEEmlHkcEROvfllQLsNbObGwdfecTkeR+mrbQiYk2ebhSbW8+J1StwPmA0Y14GA5yvZxA+YpV46MKywRy3mE8HtDCL6SDl2XB+XxGzqKVZlbuKXsuMgMS4Bqtflu4fBpMff2YrWC0k/rvTFA0thSb6AUFy7wKljFEDOMkCb05YVllIxLvtMPx/igTtCh1EokJ6ZzDvCbM64rLrAGy5EFePJyZGQXQeqRymiOHXHE/AnFG8BExyIP//d//HdbLGccDgUuCcJkVMLrA3dd77NV+/jnaS4Em+DE5CfY0LKsXLFLc9lIZVe17w7vMmwnm6vEUSqqA+/t7cZiRJGfnUhCGiPeHA6DKx8ePHzfYWhOQvoZJQOl4gIbT9QK1loJkfiGUqc5rtYRecMs5QJkyUpLatqaBjeNYr3u9XgXUr5jh2zACAITj3R1ciEgq5YwU0TuHlBNySuDB160xG59YYeSk9BvOgTxpKbggaUgWtY+CNa2IUZwE3kkFcqE+FnDZtDL9A8URgm+S3ly2Dk7TNdpk6cFfgpo+4ApS1zWsmFadyrz5Ei1DQCL8PUVMYQIJ8AdKHud5AS9rPdEikM1o7s2EZVlgXlmUVnpehKWrC2+jXX0CjH+t7XfRl79TN/6vL+gG+6n3MRcFZgeM04jL9YK8lOoxY+ZaSbt2qU08FWgpZ6wpq3lZQEHCOMBFU8JQNWqDMExL0BeAc9BYKeC3v/0NOM2IEVjmArBQU20n+ktN9NdsvYYt2JRrhX53phiRbIZ9MGgvzITkk7WcYsLlckFKCaeTmJXDMCCvqQoc5z2OpyO4FKzzUvMYgcbQCshMNEJIQguhuAnraLuF97Y9U7Dv7uiNitzwavnMBLLdV9bPVoOlzdx9Ob5hXRMCBY0qdgL+WWJraYVMHIWaWpFT47Yn6LwlV1kThCyhRdHf9Gqw4FtcyqZ4qy0+yfpvk7u6ZKsGtFuQVeOwGKWm2t903LcH33Vudy07lG2iuVrizkJHXA1L2O7EgFZbLxkoVi6LkZG0PoGvx5rn9WUU9stFeev1P6WZbZ/tNUHWglWtWbyP0/oFhiNarqUtFqNItyfUTDqACCVL3GCxXMH6ZqRCyLRUuimDZGERghd22bu7Azh5Heei79NNcNr33+5qf+aG8ee2/diYN35fqMSCXPd8/ftwhb6ZMKrrMmesi6QW2vcG4TBQA2wtDIJcV/ncWRyXavO20XTwAe9wnZthPDtrYaOd1u9VsShWdMhVs9mOt81yQ/X1ibELH3/4iNM9YTgETDGC14Q1FVCyeo8rUhkwOI8wDBinCdfzBXlZ4GHyQAZhGCb1TjGiMsoyRMvjknXBOg36y9LpWWxj6xahk3EYxwlBF4oj8Z6SI43236qdmzCHnEAolfWUNatBReLm5VVbBwOaYqPkgGSeR9mtSIVzjJIrOk0ThmFErKCl25hoNpDH4xFliLo5FKxrwpzlvc3tLlxoAZ6oBue+1fqoi77GgPWD3X87+amCw5+jtNg1UkqI46iJ9B53d3fIhn2p6c9A9bhZLxftVEcec7piTvLe7Ixl1qLxZSMQwWgvyBVrkU2EMQweh8OAwwj87d/8DsgJ6zoDSAASuCT4IIV/JUZtr6ntR/3nb7cWejXhS0FRE9M+Nzof733Fwew8w9D64j81BKPGkokXMOeMvEpoxzhOtciMCc+vvvlG4iTVnL0uS8PWxgneEZzivu2ZdWy5kQr0ToneDO0dWhvNrZpPzQmWc0YMsa6j8/mMUsQa+PjxI1gVhtfwu30Ll/MVw3hCHBkxBHAuyCXDaxK4YD5i5zsfEOOA58sFnLPsmhBPk3OEYRQOMFMf+/itzBZ3JTFD4kAoIAX27QVLKfAAhiFWjQBE4Mw3QHvrKZs1IrwASAYAoNphH5zQ7SB1MrWcQagGZjtIhzpV76p0sFRcfxHQ15mywzAAwaPkLBkOeVbP0owYBwzMNRWo5Xb+OFxnjxm+6BpqnmjmVrvgrdbwnVzjBp0TUkTTYImES6oU8aoZJYGY+tUQl2rTuSB1mlkVwdSeuw6hvQ+3IYreYRw8YgR+8807oGTk+QxPGYK/FBD5DkYwYfblmJoAqqVVlG3GBJFhRtM0dYC8nqJamwWtmyYFYEMzvSwLLpcLlnlBShl3d3cIMWIaR+Sc6nl393fV236dpeC2QSAhRjgyrOylIGJu2nqPn+038Vfnl2LLlskjOGGo7zHPc9UyhQUkVMfT57RQS7oX4dNP5VZogeZ0qQZmqRQ1dkTxD6IuYRjNdW8vSFDBlnON8u65mlr4hE3wl1Qu3Jve1ISg5Zxtdgo7CLLDd5w+qB4Vaverws3ewbVFSQQQ92ZSH4nM3X2aKSO7lwhTm4zVjRx8nYilFGFalcKQME8sud4jq9dn3I6JpTdSiV+RjzfNBKAbB/MeN+zGLI3qbSObyHv7UDch7qyDej+NAHeue+CmSVVTGjbxRVOWPfK20N6+31tC7C9Nqf7xrWosJs06EkQTVhZf1wsIO3djZr2CX9naFOyZ6jyUa0E1YFdNt76CeH+PwkLLE8km2a2+pM3v++HYa1LUjbspOSbEfaRqLvdcha/hdG/1cZimI5iBZV1xf3eHx6cnXJYZ8/OTxJg5BxcjUmGQ9zgcTkjrd+KJTCuIhL8dxDipuWADl1JCzglAqfTYQ4xavDWDWErRB9eqohcWAePDANrtUjaeTZSQWIWKzTEz0iqBvOa+7svZiStfVrYU65UFZ8UiXK0epEwNmlcpgrDH79QRUkSymIDti5lIMGkEsQf7Uj1RrILfAFrxCi8VA/LkasBkCL5icpY4UYWJCkp9m7cHGsboKSdvtbhtyhYgwH/Owmbh6+5PcC6g5KTPKoWgJaDV1c0JaP1J3teiJYUJcEHNehlnrxpwzrliZrkUBHUSiebv4Uj+lQxYyq33VFW8loS8XWRvt19eczOHicTdidm3LAuu1+smHEM03lZGzSyLYizKkEfvwXGnMZJlLBsTcZ5n+KDxmmolOK3R8fDwgHEca06oJbfnJYGOB1kPbr9PNAgm51Izfxrko4fdEEKi2WnKYM5SJ/N4wjiOuLu7w7fffqvm7qgY4rD1lnaKQj98Np9DHEYhzFsTjtOE89MTyrpivl4keTdIqEJRk2gcR+SUkdcEslzGnEDEdffUzCEJslTNS+h1pBOfPn4EsgzQMs+gOAiHFVAXllPwEh3O02uvZrLaCxr+lVIClYLgmyvZ6WbYT97eHISZeq6l1JSNhkiQ3M4mzEopG2/MVstRTTd4EWZFK1epK9wmrE3kdU1IeQWXhKhqd0suVm+tb6q+zeaqMb+xLvd4RpsXTb1lzhuBxoUrAFyJAYsK0Gxmqwi6Ziqi085Um3JOC5agbQ5opjhpUcyiAswqcJEXISmmpgkzeQaDS8npc3CvuaAd8AU2NlihwzMtyj3nUsdJePC62plGblrj9LAZUxvjcZzqfUxAruuKyXul7vJqJYj2czqdaojIsix4fHxUT/yMcRL2Gw9vakP9WS2YIu/jiBRLuzW/2rubpgg06887cagdDodNlXI77mXox1a4bhxuznvhJGOutqwd4L0Xl3gVGg10ts4lbgVcRRDISxn/eOncszY4WXExQKt++1I1D6s/2ToBsCrh1XZ/ZbLII74k33trD2ZAwi/aBXpLFFRXD3Wff8auriaWdV3FhqgJP/E0WUoUozDBW2Bxj0eooO/7xfWSnTr9jPd62s6UVBOnn2vbS/UA/bY/7F49hlJv3/Vn2xC4nr41z9vzNAuqMys6LMGRw7omnJ8vWKng4W7CEGws7Dk6M3fzMrjRPmdW/DTttqnUPusXbIyu4mW3wPRPtVtmp623HtMtLHVhew3KzM4a8N6RQUr2Dl4vk7i1IN/sh1vP279r73iqUEtvcna33F9RNLPDAUljVQzcC6qWnu5OgBNt3oWAzIzr5QoHAnJBmhe4nLCmVUwPjU1zjuHDgHn+HklN0ZIlmnyMI5Z5xuClgPD1egVBsweiR3BS6ShrFHgpGWnNW2BUF1ntJBb4udIKoQsE1e9LsfBUUtnUOOdZNQejdrYBkN2k9SCp+ckw3n/Z8frdscckSilKUmm4U2OQAByCVq8KYUApCcy5biylFKzq+WS0WDyLN2JIoHIjk2zvCdMme+G/Wxjt94aP2eQpmhImISgtHsiKUbgQUUyba+qtjJd0vgZYMzITMrTMCJcasCybnaQ1eS9sow4OQ/A1N5BAiP6I7799xH+4/AeUdMF/+S/+Ob75+l5qshKB4GUuFNu8XuKsL9teQv98rdeMiZqX0HuvgdUFMY64f3jA4XBEzmnjwctrqtTjgCkT2zS4JqxKHUsD1WOMGyGRlCPNQ6qwOe8RnUAGl+sFIGAaJxApp9qywnmHqFyGNWBdJku1psxCkE1wq/T0QpWMYp1EU7SqZsuyYBgGpJTw8eNHmefUUuTopgjD5v1DmCZgnmupd+8kSt8R4XA4gImxooC8FAee50U4yHNBWlcECIGabfdWhMSHoFWbEmL0lQUjxig8TaPEtcyaVEue4Egq/Djvq0ZXigTdymC6Fy9i6ivBFojU/6msGWKLbLQNMmVTr2EaBJkzhMXMNLNGulEGzwasMRCYMNt2rteIarFcG4hej1M8KjqHcQLA4pXr8+jmZcG8LNXkmMaxelABgOAhAfeqNatJR3r9W2lSDXhG7ZcXfaoC0RwWpTCcV2HmPLxzWJOB1gBRURNSBYryvuXCgpcBKERCKiAW+0YzCSEirwVwhOClxKD1UfATPn74j/iH//i/YL58wN/9ze/xzft7lFwQgqY/sdQ7tY3q7fbLCTJrvRbSU2ELTbaEXLx//x7OOVyv1+YhZ0kFdCqQem3tltZnITEANlqeBTnnnJU0tW2AAueYZiNFmqMPmOcZOS+4zFcRYMMIGnZwRbXum7Yt64M3z1m1QwLQnLFVoAHQoiUiG56fn7s4U2ufHjMJQnFOBIEuqOYNpOrtsyDPnM3k01vorm2ajiVel2KFfHvzAXU1mxDqAT0Rpl26kmoxXLjzLEon7pSm7pU7lbTqpa9Ldet4kcUm4to+wAztA30evbrKyO4cVRgZNdDUqI2qtmf3bBKtnU8AShN8bTd3VSBWTYslUyOXTsv/ESaJvfntRnVytgj09h3Qm5dq3u7MResH08Kq+HhD0Ly0xEQqO0dYlhXn8wVD8BW7ac/DANSBRDZyn9F+Xgvz9i1VoFuTqPdYsygMHqncXuXH8J28vNdrpqfNO2bTpuQ4EyzeB9C6SP3aftPWZ4ZpWtibkCTSbLfc6r3QvLWAsea+5AJsRaXl/KqZbV5HtfduTYQMgh8GDADmZca8zEjrguAdcklgEMIQcDrdgVzA9XIRtZckGbxkiZeJ04g1ZcQ4gIIEwBFaWsSgyezLdQGBkHOSmgFsZdgI13nGX33zFfwwYM2pvuSaVoQhdC+2bSr3RB7khOLMvIOy0HaLiWQxFJYcTZCr3hzj5CInzKZZRqt6WEsVTPL8XsMr+o4XIHbE8XDE5XwGiBG85IluJ5ar/6Q5xQu1CDFHjCPgQ6zvXE2PnLGu4gEkNHoeZx5Q6jXGW7iNTcJmHlehyhJjZECsdqIEtpoZq/3WquvlNvGKTLzMBdd11eK+1u8EJtaamFwZgktJNWdVYsZEMhFLncw/ffcd/uf/6d/j//5/+5eVkVRAbFbt1Neo9yYVeffzl297gJ6gQLku5mVZMI4T7k6neo7THOeSMxLE5ANeBkjLsbvUvu6+9pl9vocpmgNCGG0cOZxOJxAEuqh0+BChw0UyOS7zjBhjC+tAE5JN4NjYUt3w++e3wi33Dw8YNCOBqAUFm8lpYWO7Xr3Zx6UUhAISnn1HWNYZ6yL01d47rGtRVX/E4XjCuhY8nc8iyHQy51wQxkHs3VIQ4gT4gOv1iqZ5SEAumMUGJykwnFIrbkpEmOcrpmkCDRGX5+eNrY8Rb8xL1axYhExAk+xkuzV1u4YOdNELrqtQHdUwCCdenHV3S9NYCK7GBvWR79aGYcB0mMT29+JNfTkwTfOquxIxyHk4KrI7jg6RhzqpsvZZWtbq8TKhMw4D4jAILY5OpH4h9ZPc3n+vye3N7t5Uscr09TwLv4DgmrZz279cCpa0IpcumZygxUt0genYlJwRnNJGKV5nYzpGjx++/x7/6//yH/CH3/0O4zCAWfIbiUvFkzKUyeS1KfJFNMlpLmjCzHuP4/FYj3DkcDwe8fz4Eakw/NFv4s56IH4/nvbZBvDvMORbwq9PG7q7v0PwgkFer1eNHRVoaJ5nXK9XnK8XDCVj4EGqqAEA772OMtbOBHhpODB5UR689zjdSTUpWxsWRLyuK06nE5z7vMj/KswqFtRL806K2qUsQDJrLmUvkSsozVyZaFPqjGMGyG9VSFYbbpN7pdKnaSFWVAUvnucNPLB+vX9hs3TriUSbv3tv6f7SvQezmda37+o0z7WZgNgIlf1zldL4uFjsO4GxO3zCruE2JmiHoaAJqFKKagGva2abp94sCnQLx23mhj0vY+fdejHh+n6yv1kE2sb+qDes47nVMHSOQQTfMAgLcpNaPVYpWt5N7AF4c678nK323Y3n6sHxzSFvjNWb92o33c7hzvzeeOK1f1vX6HbNzdytvIK6Tvv1avUsNda7zffta3bre7vGeoim31zbWtn3wwssYnNuKKrREEtOVlkT8rKALfOeHFAK4jBiTVcs8wIUmeDjMAJlxjSNGKYRuTAOwwAmh8fnjyAusG4dBzEPLpcLxnHCfD2j5IL7+3sBtNU5kDVILYSAy/Uq1D820buHr/b5xm42vM+EJ9fFaTBM7Q/V3NTYgiTKDxJPVxjFqUlJzfQi51Ey43q9YJomxDhgWVYcDlsHgDF6mhpeCiNzrlVmnCOsKWG1Ai4pV2Em6vZQA2dNOEldzwUpLvDeIcZUmUdbIGLC+Zwr1uLUSxVuBB/3k6z1H4RdYV3FZO2INi2S3MJ0a6lBG2MBMCRx2DsgCwttsQ2kW8wdIln/sS4MIcEQ1t/oI5wH3r27x+9//1f46us7xMhgXgGS9xYPtlmXn9jhfsH20tO4BcNN2+2rDm02o24T6a/RcMrtBlkVhL6JViC/O9OSclUWhH9Qc6gL43K9Cs6rNEXT4YDD8VgLGzHQMT/LWnYkzq4Yo84zE5gaBUHtOWjnwLM+snQuweTzzhR+bTytH1o6WGCY9aVTLJkwK8hUwA7gnBGGAXQRD5tjh0iEOAzgHDBOI+I44lwYcYjITJiXGWNQLYulutO6JFyvM8ZxwHI9gwvj/v5eFiQY0Q+qVYgw64MJ5eU7eWT/qXiERUjr2Lk2AcTO4Q5PaYIDttE7EnxKMxgEJ+u0RNV2mCWc5O7uDiFELMv6optDiMAkarOFvABcifVkAokwW9dV8C+SZ57GESFGoR8fR2WckADD4D3W1VeTT7xUK9ZlVnM8byr8hBAqFbHvNWC8plnKIkkpIYAQw4CgmJ0RUspRYh7nLEzDwmgkQsmi/5ms6ruKK+3rrcCx3Zgh3lwRTA4eniQcwDng3bs7/PZ3v8H7r04o6xmlLPBgFM4AO3gjL6hX/vUF2gthpn1b840BmKOnO6nFFuKlMINZF9zGbivQgF7rqhu+finFlXPVkIKLQEQ17R4fH7EuKzjnmh0wjqNQcuv6CacTck6Y5xk//PBDxeKY1JTdaIA67oBq1Lf7qpRS6ZD6Enlkmvsn+rmuj41abyvbBgIkC3oTs6U8RWYCkHnfGvZjdjLQcKKebpsodJ/rNVgWc8VTnJNYJliMSfcCOxUTtF0gu4NffMY7cKWmRn1Kve8tJF2cJZdN8q19Z8yepRSU3JzXe1C+HzhymszulC1EAfgKcgYP5rChjwEgDCR5CxD3rvF+t6/P70yg3TB9u3fsdajXNB+x+HhjRtRneKszdWxu9bptNmZeHg8HiUdLdk6n1d28S//ZDZPlNXP0F2y9ydU3vtGX2/NsmW4TvLsL1I37U6/5Ek/lzfj3x1lICbDVMOttS0EhE7S3YRW71q1vegqgW8+4+ax7t2pmciogR4jOgxLBqzKYocywccB4OmFWRstxHLB8fIQPHjG6+oLCuZ9qt1V3Kkv+4TgMSEuWmpTF7O8uulcrNBddlMfjEc/n7wCWCups5mQv4NumA+JOE+s7wN66m8/cDXbtxF4gqTCqAkgeECknlAIpsKCm4vU64/n5GYfDQYpFWGc7h4eHB2EyWBYs80W0OEqa8yapYYfDsebASc5cxKDeomD0x0qFMsSIkkUbYzRO+LTMquGtuFzOGiPU0sjWdUXWYEmblHFontjaNuu/CxFoHwFwuph046obnTobugyOrKp07UVyaq60nFLTfHslQoZNnzMS/uZvfo/7+0np1zOIGEDRPE0RaKV/+NfYVeqE2L/sT9960/BWqxrp9iSAtrTZTUFQ0f0JQWet7O57y3ytRUz0XtM0YYhRisg4V+eUFSMeBnX0qUn49ddf1+vmnHFdZhk3IsShmaN2f3Pmee8R9Vq2aQ3DgO/+9B3WlBrVEYCbwnr/rnr/UFKRyHutMu4Z8CxBjt47xGHA6XTCPKswG0Y8z99hQISrxHASV2U8/WDVzNSOTylhHEZcaJbiwsU60FciSCOOM/D6eDoh/cf/BEcefggVMHREQqusUUwy2BbzAolJs3w928JgZrRGKRnmps0ChnvKIXIOnE1airBdZ+G+f/fuHXIRz+LlcpEgv+AxHaYOknN4ePeuTpx5vmJZtEqVEzf4OE44HI44HA5qnsnNNnUOepc8yebAOUk1I5sgy4L5esV8vSIESY+yfDspe5dRdqy+zrU80TrZ0N9qL8xkN3CO6kZQ+4pFnIiga2aG8Nltwe3mEa7KXNXmbchQjKHFIUbgb//2D/gnf/grlLKCqIBcAShLqh0TkGtewae16zZCnzjuL2smiPYa8c3Wa+qQANJBSQakDsPLYPHe+WN/by/5Upj1Wo89m+FT3nsJktfz0rzUAO5SSi2cIuSOgsXu8zov8yzcf87Bh2kzt+znukqFcrses9KHDQOenp9BAIY4VIXjc5whJiRD/2FTXnRidS9qiaTGP14ND9qGJlRvCGTXrF1a8Sk1Yyv+0jrdeV8DhHtgtKrC9vAdhcpbre+GF33C9ZFg4CZ1E739xt1vDVhPpYUp5JwFJO0eigCQbwwYPT7SVHZXhY/kwPYPaR20FRy1mHE3UUidCDnkmqRemOE1r44suVePtVxamdCN40zmXMMJey144wVDpwHDxtVe2hZLB3eYNmFv1S20qnHbval7BjQzU8g2L7DJte2pjUpXf9Tb7DQ17g/8Gdt2IdKL57j9DK9rIr1GvG/VEnrF6P7ks8IYj+Xs3Glvcm/q/jk4xyCdZ06rSQEvTb8al4imWfZe0RYZoNkRN+rQUqeU2CTa3kd+Dz5IcngqwGEcQX4AfIR3DvEwYpgmRC+1D5kTPC+IPoMgdD8uHpEQwcVhiCN4mcGl4BAAoIjgCR6rFc11DjwvwLoCWih3LQUeHuPhiPMyIxegpALHDsF5eBJhYAgJ6s9+ITa8zlRdhjgTxCwxVg6AyGpqSpwSCkvVbD8gk6RygRiOhUrIkcQ5Elp2w7qsKCVjGCLm+YLrHLEsB4zDABOBBCAOAw4qBoU+p5nUQ4waF/bGJHOdl6qOcaPqBgjkhQUYjgBPGA9H5JSQsuTWLcuCWc1dqPBIuSClBaBFNV7TSqV+gw9Bda2irBealaqd2Jv9gNdvPQCPdc1IyUg3Wf/JeW1bIk3kFPOziUaH4AIGN2JyAyjLazkybURXBdlVTewZhtD6qW2mbXP6HHHykzRud+sdWNA+tJAH+W67SZTMwOBqXu+fI55eey+CCT7W8KEuFKtuUOK1ZB7qsxtBxLzMtu+AvIcrBXEccU+omiQKI+WElJeq4ZumOqeM8TjAxwHMwvBMhq+xpP95RyAUQPkDK0YIBjF15J7ihCLnMIwjQgwELhmpFPjjCQgqzIaIw+kOwzRiCBFpncFYEXDF4AocxPXupzskjijZYYwePF+AknEXCTMEQ+MQsBYJFfTOg69P4GUBpwz2HkvJiBQx3d3h/IPgUnkp8HAIFBBcQFFcRNNs6wDLZlJ08yc4tBgtQf5M6LWFIEVqV4AZ3kxTODg/Qfg8RJgRktLPkKQOqaOjlIJFqY2nccTHxx8wDAHLfMQ4xE7xEPZd8U4e6mwyrjVTtt7UpPW4ulvvVW8CyAfE0SEMA6bjQaK3NW3mer3icrni6eMjnp6epH5DLljXay1uIaZnlEBU7+FChI9RcKiqyQGOZAOQjxteBopq+HuAAuZFCpiI4JRcWZNBImsE0mibrVPNnwDyCG7E6Ecc/AjS+sBiABBSsXfveOfq30DTu3jzd7McWsf9vLpZUx82uI+a5Mzc8g8JEOp11gppAtFQrRPRaSXgbn693jrxWK0OUYC59o1XaMgyAFrfkSaV+8YCuyxY0oolrYj6mQsBjgsG73E8HhCj4GnruuL777+vAbnioQ9gJlzXjPdxQIhTfdeq0LMUkA7eKjjJPPNeKdH1vYtKOCF6lbzgYTxAiKOKgrI1ILNxs7tKlCcmCpmpiV7LoWr7ctGCHR00QUQtmZtIcDJhcUT7H9WAW9u5Ko6iF+qFWLNqSLPCt0PZm4lE3J+xGXDm3aTbfN+0CrYtAluswpEWKsmNu62fTrIzUTWbpX/7hzUeqDZpq+C91bpBrR8RSX6tjqEr7V65FKQkOYAhRDFTkbCupCSRDOGAF0cQlQLv4wbYt8ab3jGTYRv5zdQF65omZpqSas+vrkVuWpZp2TlZlP8ryELVxFpYqH22MYw7xe2XMDH7OVV/dlWkXjMX7TtgFzrTybS+vebpa9fqxTjdvgwztlWF5LoOACo1kGmXOiO69yLS4iqa5dMzZtQcbW4moXDdtbW4N6ur8Cd77u3LtXcyJV3mS9AnB4gwL4tqESOe5kuV2gBqBW/vAqbDAcucMc9XHL6KSFq45HA4Yn3+WNOUACDEQdhprTSZc1Ieq2RkAEXjrrx3NfHWkatFHWyP3eMidGtVwwTcfkhvtTasfQ3A3tNjHZ1ZSl8dD6f6/H1gX4wSLvH8/FyDaW/llb3Uwnj3+6cXWR3EG8Av16FsAsM5h2EYcHcvNU1LEnzv/PxY6y6W0jLWC3PF3frrN0wFALEEt+40RCiAbUG+/RtSpytZ13fGoR5rToOCnISB99/++/8Jv//9N/j6m3cokMIwbdxUo35Bh/rltX7B9gG0e/JBsJmBwM8hdDehWG+YBHsvojmOTFMj0spOtnFwq3FJRLWegdUvENaO5k2lbq0JHLJUTdA51bhUoEvcZDveUaMeyjkLlHM4IDBYGSkIs1aI4eMB3338Qeh8upMAyag/ne6wzB9xuVzw26gmKDNOpxO+e/xBQhAcwEQYYsS7d+9webpUV/Dz87OsuuBRCPDDgOClWMMwRJQs0cXSqztBtunx1z68FRD68ijj85Ok2i4tC7a7NI/UPM/46v3X8M7jhx++x/F4rCwD4zAi5YQPHz5oTpnXcJJtQGP/TOaat89e80r13/Vt72bvDm5dQ0p77Tym6Yh7UXnBOePjhxHn87kKtGVdBedYFq2Vqe7xTpjZLgy4rZe1ficvKcKsaSDVVK59r5Oy16BVG805ozgJgjyvBf/qf/jXcO7/hHfv75HZGI3FVBMZTCD/hib7KzXu/7t7OBmGfvPcGoVVK/kJZNl2s3spyHor48VxClaJEuJBQyNutJAfy69l5pqA7r3H6XTa1Oic51kC7oNmt7hWA8MCds0ZZsJPAsylcE4IUhW8Wo7cgmUPhyPu7x80AwDS7TlnBItQ7/MzuXm/CJqAjFapxa5gAXXGEQ9Y7FRoybKkZeO8kwIhzIIhOeN68mAqmyo0rXN7Y8KipIEfvy33pqBhEJ3ab5YKtcHu3dgWpVwFlXNARuWM6ivbfPJJOrN0HwS5/2nHmXlsx7YJ23yOpp0REcg7OBfshuCcMQxDzRaQmgWNFdi5G0Ky3r4zmzZ92WhiKtB947zdW+w6o/WJhJQwHh+fNKTF3rm+hr5r02hNM/0yWjN3b36HnrRRP+3ev+mtv76UZrXeepLIKgQ7oWimaE9O2gtLLtzCjgx6IEm+b+yy3brqNnrmltVjvdI7/kIIEpohtfYSlsdHHMMAYsbxdJIcQX348/mM5XJBvl5xFw9SKfl4FIYIMDJUAHULz0ISiqUk6UvUSamTX4LxRqwp4XgcAWRl7vCVbXLT9mZmP+ZVA6KX391o5i3iXckjEWRyMpEQVaZ1RaYkJeTQhIwVMvXe43K5wJwE0zR1O2C77r6ZJpNzS10SofiSctxMObufUbG89rKGPcEwS510cZxwBBCGiCklLMuKVePmvG4+y7rC5QxTE5oZ4RRj7TCPjdZZsN/tZW3b5O8FYhcr5QieCd45nJ+f8fzDYxWwNv/rZOfGytA2pH8EjRom/CJoWdungkR/THsraHdrOVA3n3e8+zrnmHoqIoGMnJM4w5ILrkkiGcyEHscR0zTV1DvnPBBiXdd1QwYrHZJYAxsyiir0u829mzO92RsYwJoS5ssF33/3Hb65f8BhnHD/8IBpGuGCR+GMjx8f8fzxA65PT/jrb34HHyLupxOmwwEcvASRrmud5AwVZo6QlDnUkXYIFxB8jbKfDgeMhwnLsuDd+68ArFjWFafjUUgOX9tyX/1ob2a+jUCwORC6dKr+aCLC3d2d4ktcI/1r0QmtqMTM+PjxI9Y1YV0TpmnqtKvuOahNHtNC1lUEingfL5Vt1u7f10g04WpBjD1WsRdmjXEXYhqqMJqORwyj0OkwgKx5os/nZzyfzxL5rflyopGKZidxc9v7lFIA37TBorTXIAuoBQBlweXekytfVvZV22HJ47uPH/A/////x5oRQtRV2tLFhSrMNIYOX5Bmxq2HbplxWYVZLzhMsNQq4zfG8896FO4565og64VXw0ZbsDTpJiVphtJMgwJQE8tLkRq71+u1XtPmprHHMjPiMCDDVSpvG3cuku98OMjmb+9v1+prEjBz9WyaaeuDCTPS0mg5Y1lmpCz1MgWIs7AERlqTVBOar8glYwiDZt0LzTZoa3sLtGIu+E6D6iebdorlIZa0rZvnqEdVXrbb3738bG8R7TWJ7qvN3KFO+YsxYp1X5FwwDGGjNaFbZFIRJ1WsoF627oLNdOyFmXlDLaLaqjfJ5YW4rt/JTbjt89nqhN13AHe4nHOaA6qwPBGyBvemknG5XgF0O6T8tTV7N5qYpSe1TqybgmEquNV2i5WoFpRe0yoOlfpOe5Os0cSI55RuDf0X2hjozLJPHAlAX+0nfr9PaoA3urTHdm1TBrpau91ctBoEJnSMpbqu8Tq/WKGbdo9ea9/jijaXqxNFrbdgAHuB8PaTrmDDyczuPxwOQEmYglcTdELQ4iSZzAwidf9nCQCLEU6lZikFSBmcpGCDD0HLVDUTqnHOW1UiAj5jwF8MwI8eecUo1JYxwVQKKj5mUfWya7Qq5oDZ8m33IBLive+//x5RBb5zoWPyKEquKDQ2IsiK/suwWgk9Jlar53STxzyRpRQF7QOmaWxvZRMPAMiYbDe7SftBglsOwyCkeeOISTXDxjCLav4SCfXLvhUuGy767gGwEXJsuGd3CDMyJwzTHQjAssz427/+LQ7HA4zcAGzjpc+8Lz78ifbT6Dp/WbM5Hocb3kx0ptxP9LA3wzd0jt9yABSFCfaOt62ZL6lJ1+u1koWumq4HQmW9sY0aBMQhYghDDaA1EB8AYgyiALCZrw498w1pPUUJ3m3CTCwT0SSDVF8S8DcOEVb5p5QiFZK0sx8eHnA6TEBe8TDdIfgRzkU8ns8Ik7BOhuAxjgOCJ7jgkWMExSg7/5pQlgU8r8IuGQMQAjK4pk0NyiJaQyUMc/sRgPqmwz/ZWNVVEYCumi+C33BuXlzLG01pBTBuVPaeuE7Uahnk8/ms5uCIcZwk+I/VU3c+I6UVOVtVLI3p0+sY/coeN6vubDULbWEcj0ecTqcmzFTwSjaD00T2TvhU7UqDJUkYOw7Ho1A76XULC55xuV5wfr4gKS5qLvQqcKU3K+5XjFkFfaQ+Nw3RamCiORy4FKRUBDclxvlyxj/7Z3+Hdw8PYC7woBq64WAEkYRyE4VQ2/qVOfJrCjTDR70PN+epxFgaFPGXKWT9PO3zRPdezvodCxW+1VPYO5m8mcLq4f/2j38UoZULopeKTwVc6a8ul0utwjROE453D7p5JxS1RgBgGEYsy4LshNhUIJo2rvYMMUZkFZo5ZxyPR8Q4iPOybmy8jbNq3gLR4OMQET3BsUjX4CNAAen5DFdi7XzvPOAlVQPeg2sgbAHnglKyuHmV86rHQYR5Y6vK7pvlfqI+5WuDePtz29j7Tup3egBoSEwztayA6l6w9h6YNujikp7nuVO5A5hFmJkZua5LjcnzPmhga+jyORvlcH8/oHlOrTK0Je/ue0Z2ym3waus2quEpJnickUJqP2cVSmta6ziWXCqOse/cYuYot2u2odgOimmxFWDWRRWCeMtzyrh/uNdNrjtfcZPuz+76b4upX1KQSZ83YaK/QDbR0s2b107Gvsv+4mabb//3vhn+eKtAjGllgBYwvlxbGFWU7JesTDm9APJBBNowDEKp35mKgOY7q2aG+vnLe+9xP8lrNjMTQvUTxwh3PNRy65Y3xswSg5QSUDI8FxRftLx8USxHU0uYMS8L1uWCAmB8/x5OpUcPDvvgJWuSGbThmdfKzYCUse933Btg6F6mUffft1sTYL3ArNgOd7me2gc5Zy2Q+pItcx/GYgMoQkoWvZA0bndB0W4sPEVi03rX916Y93/3wsSEn+XG9ZP1fLkADDivtEK+xffUVVSF3U7Y6H+k6vSIaUqYQVh56R+qmuZAC0BmsDDA+iZ1ZARpM5ZVqzMiAy8UQ19//Q5///f/e5yOE3ywVJtSDVXSxyedI0ak2T35F9fsrW3D7tlR+lY3g5/jGXYa2f7+Detsm/TeOmCWOrjzdRa6nyjFisyrnpk3mHEpReIdc8b5fK6mqM3TIQ44Ho/IOWpuZ9H1ovU4OgdA/yxmAXhoUC+jIAwBjg4IfkC5zIAyxjrvkbJUky48w6EgkKiYzFIdaDxMUGIplFJwPj/j+ekR12XGHzS8A2gZ+aVkxHHAvK7i0QljM9O8Fv8FEMehrjXpxb7Dtx9V655cB0rSjSN3AwvqQFilt2HFfUqBc81VvK6r1BQNjWvJdpWef8owr2EYumKu0AIvIkRN05MKQ1EnyZbg0u5rE+jmjtSZeeYgWNcMsezleT58+IB1TQhhxOl0xDRN4jVyEt8jPG5bc8SEWtHMjhACTkGE7SN9VIaQ1rMSzS0T0wqtyETrPFF6nCRZCusC56T9IQnDDoToA7wn/O3f/gG//eoeX319D0lwz7UUoqnWzJKMTDruX1TbqMLb1oPXrwmzn0qW9ZpXP19MMPRFa/p0vF7B6LUsr2s0p4Snx0d453EYRZk5aChS4YJZFSCL0A+D4Ofnyw9iGipuLs9l3IYZyzxjVoiGSPrICr6wCkkzfw0Ki0CLM3POwcWAAQGzskFYPhYnKfUGaEkqZ4NRwCQS10qHFfN6zjMuV4n4N7W6BrsqFgbFe3obnohk76Wt5vFipnYa6EtltJ1i8PcL62o/4O2s+oG8a/tbHAEvAds+5mXjYekCBw0EZc4bML8HOUWQ3Vb7rX/sHkDb1ew+dj3RjHztMvGKrgiBNZ6vj9w3DAtNqNu77O7lnEMZ0ArUdh1tjhNm3S1hnlrtU5IrbjTnal7Z/XS0nHjJHh7u8M3DHSYAa1qQc3/N/lFZqJqb9dPe7Vdt25DX5hWW9lIr0pn8Mz72Xiu79bl8cPvzZiq3DX7QhHSzRkzIXOa5Fh9mao6jeV5qaJPN4RACMA4AZHNdlQgWYHi/7ZDSmZ/VTFWh+wb5zH9u/7n95/af2z+e9r8B1I62WRhnFlIAAAAASUVORK5CYII=\" y=\"-21.535625\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 316.338535 3283.535625 \nL 316.338535 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0.0025 -->\n      <g style=\"fill:#262626;\" transform=\"translate(299.517989 3300.909219)scale(0.11 -0.11)\">\n       <defs>\n        <path d=\"M 266 2259 \nQ 266 3072 433 3567 \nQ 600 4063 929 4331 \nQ 1259 4600 1759 4600 \nQ 2128 4600 2406 4451 \nQ 2684 4303 2865 4023 \nQ 3047 3744 3150 3342 \nQ 3253 2941 3253 2259 \nQ 3253 1453 3087 958 \nQ 2922 463 2592 192 \nQ 2263 -78 1759 -78 \nQ 1097 -78 719 397 \nQ 266 969 266 2259 \nz\nM 844 2259 \nQ 844 1131 1108 757 \nQ 1372 384 1759 384 \nQ 2147 384 2411 759 \nQ 2675 1134 2675 2259 \nQ 2675 3391 2411 3762 \nQ 2147 4134 1753 4134 \nQ 1366 4134 1134 3806 \nQ 844 3388 844 2259 \nz\n\" id=\"ArialMT-30\" transform=\"scale(0.015625)\"/>\n        <path d=\"M 581 0 \nL 581 641 \nL 1222 641 \nL 1222 0 \nL 581 0 \nz\n\" id=\"ArialMT-2e\" transform=\"scale(0.015625)\"/>\n        <path d=\"M 3222 541 \nL 3222 0 \nL 194 0 \nQ 188 203 259 391 \nQ 375 700 629 1000 \nQ 884 1300 1366 1694 \nQ 2113 2306 2375 2664 \nQ 2638 3022 2638 3341 \nQ 2638 3675 2398 3904 \nQ 2159 4134 1775 4134 \nQ 1369 4134 1125 3890 \nQ 881 3647 878 3216 \nL 300 3275 \nQ 359 3922 746 4261 \nQ 1134 4600 1788 4600 \nQ 2447 4600 2831 4234 \nQ 3216 3869 3216 3328 \nQ 3216 3053 3103 2787 \nQ 2991 2522 2730 2228 \nQ 2469 1934 1863 1422 \nQ 1356 997 1212 845 \nQ 1069 694 975 541 \nL 3222 541 \nz\n\" id=\"ArialMT-32\" transform=\"scale(0.015625)\"/>\n        <path d=\"M 266 1200 \nL 856 1250 \nQ 922 819 1161 601 \nQ 1400 384 1738 384 \nQ 2144 384 2425 690 \nQ 2706 997 2706 1503 \nQ 2706 1984 2436 2262 \nQ 2166 2541 1728 2541 \nQ 1456 2541 1237 2417 \nQ 1019 2294 894 2097 \nL 366 2166 \nL 809 4519 \nL 3088 4519 \nL 3088 3981 \nL 1259 3981 \nL 1013 2750 \nQ 1425 3038 1878 3038 \nQ 2478 3038 2890 2622 \nQ 3303 2206 3303 1553 \nQ 3303 931 2941 478 \nQ 2500 -78 1738 -78 \nQ 1113 -78 717 272 \nQ 322 622 266 1200 \nz\n\" id=\"ArialMT-35\" transform=\"scale(0.015625)\"/>\n       </defs>\n       <use xlink:href=\"#ArialMT-30\"/>\n       <use x=\"55.615234\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"83.398438\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"139.013672\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"194.628906\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"250.244141\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 269.873026 3283.535625 \nL 269.873026 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_2\">\n      <!-- 0.0030 -->\n      <g style=\"fill:#262626;\" transform=\"translate(253.052479 3300.909219)scale(0.11 -0.11)\">\n       <defs>\n        <path d=\"M 269 1209 \nL 831 1284 \nQ 928 806 1161 595 \nQ 1394 384 1728 384 \nQ 2125 384 2398 659 \nQ 2672 934 2672 1341 \nQ 2672 1728 2419 1979 \nQ 2166 2231 1775 2231 \nQ 1616 2231 1378 2169 \nL 1441 2663 \nQ 1497 2656 1531 2656 \nQ 1891 2656 2178 2843 \nQ 2466 3031 2466 3422 \nQ 2466 3731 2256 3934 \nQ 2047 4138 1716 4138 \nQ 1388 4138 1169 3931 \nQ 950 3725 888 3313 \nL 325 3413 \nQ 428 3978 793 4289 \nQ 1159 4600 1703 4600 \nQ 2078 4600 2393 4439 \nQ 2709 4278 2876 4000 \nQ 3044 3722 3044 3409 \nQ 3044 3113 2884 2869 \nQ 2725 2625 2413 2481 \nQ 2819 2388 3044 2092 \nQ 3269 1797 3269 1353 \nQ 3269 753 2831 336 \nQ 2394 -81 1725 -81 \nQ 1122 -81 723 278 \nQ 325 638 269 1209 \nz\n\" id=\"ArialMT-33\" transform=\"scale(0.015625)\"/>\n       </defs>\n       <use xlink:href=\"#ArialMT-30\"/>\n       <use x=\"55.615234\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"83.398438\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"139.013672\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"194.628906\" xlink:href=\"#ArialMT-33\"/>\n       <use x=\"250.244141\" xlink:href=\"#ArialMT-30\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 223.407516 3283.535625 \nL 223.407516 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_3\">\n      <!-- 0.0035 -->\n      <g style=\"fill:#262626;\" transform=\"translate(206.586969 3300.909219)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-30\"/>\n       <use x=\"55.615234\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"83.398438\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"139.013672\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"194.628906\" xlink:href=\"#ArialMT-33\"/>\n       <use x=\"250.244141\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 176.942006 3283.535625 \nL 176.942006 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_4\">\n      <!-- 0.0040 -->\n      <g style=\"fill:#262626;\" transform=\"translate(160.121459 3300.909219)scale(0.11 -0.11)\">\n       <defs>\n        <path d=\"M 2069 0 \nL 2069 1097 \nL 81 1097 \nL 81 1613 \nL 2172 4581 \nL 2631 4581 \nL 2631 1613 \nL 3250 1613 \nL 3250 1097 \nL 2631 1097 \nL 2631 0 \nL 2069 0 \nz\nM 2069 1613 \nL 2069 3678 \nL 634 1613 \nL 2069 1613 \nz\n\" id=\"ArialMT-34\" transform=\"scale(0.015625)\"/>\n       </defs>\n       <use xlink:href=\"#ArialMT-30\"/>\n       <use x=\"55.615234\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"83.398438\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"139.013672\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"194.628906\" xlink:href=\"#ArialMT-34\"/>\n       <use x=\"250.244141\" xlink:href=\"#ArialMT-30\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_5\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 130.476496 3283.535625 \nL 130.476496 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_5\">\n      <!-- 0.0045 -->\n      <g style=\"fill:#262626;\" transform=\"translate(113.655949 3300.909219)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-30\"/>\n       <use x=\"55.615234\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"83.398438\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"139.013672\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"194.628906\" xlink:href=\"#ArialMT-34\"/>\n       <use x=\"250.244141\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_6\">\n     <g id=\"line2d_6\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 84.010986 3283.535625 \nL 84.010986 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_6\">\n      <!-- 0.0050 -->\n      <g style=\"fill:#262626;\" transform=\"translate(67.190439 3300.909219)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-30\"/>\n       <use x=\"55.615234\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"83.398438\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"139.013672\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"194.628906\" xlink:href=\"#ArialMT-35\"/>\n       <use x=\"250.244141\" xlink:href=\"#ArialMT-30\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"text_7\">\n     <!-- +5.3490000000e1 -->\n     <g style=\"fill:#262626;\" transform=\"translate(268.597877 3313.969062)scale(0.11 -0.11)\">\n      <defs>\n       <path d=\"M 1603 741 \nL 1603 1997 \nL 356 1997 \nL 356 2522 \nL 1603 2522 \nL 1603 3769 \nL 2134 3769 \nL 2134 2522 \nL 3381 2522 \nL 3381 1997 \nL 2134 1997 \nL 2134 741 \nL 1603 741 \nz\n\" id=\"ArialMT-2b\" transform=\"scale(0.015625)\"/>\n       <path d=\"M 350 1059 \nL 891 1109 \nQ 959 728 1153 556 \nQ 1347 384 1650 384 \nQ 1909 384 2104 503 \nQ 2300 622 2425 820 \nQ 2550 1019 2634 1356 \nQ 2719 1694 2719 2044 \nQ 2719 2081 2716 2156 \nQ 2547 1888 2255 1720 \nQ 1963 1553 1622 1553 \nQ 1053 1553 659 1965 \nQ 266 2378 266 3053 \nQ 266 3750 677 4175 \nQ 1088 4600 1706 4600 \nQ 2153 4600 2523 4359 \nQ 2894 4119 3086 3673 \nQ 3278 3228 3278 2384 \nQ 3278 1506 3087 986 \nQ 2897 466 2520 194 \nQ 2144 -78 1638 -78 \nQ 1100 -78 759 220 \nQ 419 519 350 1059 \nz\nM 2653 3081 \nQ 2653 3566 2395 3850 \nQ 2138 4134 1775 4134 \nQ 1400 4134 1122 3828 \nQ 844 3522 844 3034 \nQ 844 2597 1108 2323 \nQ 1372 2050 1759 2050 \nQ 2150 2050 2401 2323 \nQ 2653 2597 2653 3081 \nz\n\" id=\"ArialMT-39\" transform=\"scale(0.015625)\"/>\n       <path d=\"M 2694 1069 \nL 3275 997 \nQ 3138 488 2766 206 \nQ 2394 -75 1816 -75 \nQ 1088 -75 661 373 \nQ 234 822 234 1631 \nQ 234 2469 665 2931 \nQ 1097 3394 1784 3394 \nQ 2450 3394 2872 2941 \nQ 3294 2488 3294 1666 \nQ 3294 1616 3291 1516 \nL 816 1516 \nQ 847 969 1125 678 \nQ 1403 388 1819 388 \nQ 2128 388 2347 550 \nQ 2566 713 2694 1069 \nz\nM 847 1978 \nL 2700 1978 \nQ 2663 2397 2488 2606 \nQ 2219 2931 1791 2931 \nQ 1403 2931 1139 2672 \nQ 875 2413 847 1978 \nz\n\" id=\"ArialMT-65\" transform=\"scale(0.015625)\"/>\n       <path d=\"M 2384 0 \nL 1822 0 \nL 1822 3584 \nQ 1619 3391 1289 3197 \nQ 959 3003 697 2906 \nL 697 3450 \nQ 1169 3672 1522 3987 \nQ 1875 4303 2022 4600 \nL 2384 4600 \nL 2384 0 \nz\n\" id=\"ArialMT-31\" transform=\"scale(0.015625)\"/>\n      </defs>\n      <use xlink:href=\"#ArialMT-2b\"/>\n      <use x=\"58.398438\" xlink:href=\"#ArialMT-35\"/>\n      <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n      <use x=\"141.796875\" xlink:href=\"#ArialMT-33\"/>\n      <use x=\"197.412109\" xlink:href=\"#ArialMT-34\"/>\n      <use x=\"253.027344\" xlink:href=\"#ArialMT-39\"/>\n      <use x=\"308.642578\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"364.257812\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"419.873047\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"475.488281\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"531.103516\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"586.71875\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"642.333984\" xlink:href=\"#ArialMT-30\"/>\n      <use x=\"697.949219\" xlink:href=\"#ArialMT-65\"/>\n      <use x=\"753.564453\" xlink:href=\"#ArialMT-31\"/>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_7\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 347.380056 \nL 357.599908 347.380056 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_8\">\n      <!-- −2.515 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 351.316853)scale(0.11 -0.11)\">\n       <defs>\n        <path d=\"M 3381 1997 \nL 356 1997 \nL 356 2522 \nL 3381 2522 \nL 3381 1997 \nz\n\" id=\"ArialMT-2212\" transform=\"scale(0.015625)\"/>\n       </defs>\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-35\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-31\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_8\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 812.035155 \nL 357.599908 812.035155 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_9\">\n      <!-- −2.510 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 815.971952)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-35\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-31\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-30\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_9\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 1276.690254 \nL 357.599908 1276.690254 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_10\">\n      <!-- −2.505 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 1280.62705)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-35\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_10\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 1741.345352 \nL 357.599908 1741.345352 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_11\">\n      <!-- −2.500 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 1745.282149)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-35\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-30\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-30\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_11\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 2206.000451 \nL 357.599908 2206.000451 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_12\">\n      <!-- −2.495 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 2209.937248)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-34\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-39\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_12\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 2670.65555 \nL 357.599908 2670.65555 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_13\">\n      <!-- −2.490 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 2674.592347)scale(0.11 -0.11)\">\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-34\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-39\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-30\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_13\">\n      <path clip-path=\"url(#pc191a97ce8)\" d=\"M 50.64875 3135.310649 \nL 357.599908 3135.310649 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n     </g>\n     <g id=\"text_14\">\n      <!-- −2.485 -->\n      <g style=\"fill:#262626;\" transform=\"translate(7.2 3139.247445)scale(0.11 -0.11)\">\n       <defs>\n        <path d=\"M 1131 2484 \nQ 781 2613 612 2850 \nQ 444 3088 444 3419 \nQ 444 3919 803 4259 \nQ 1163 4600 1759 4600 \nQ 2359 4600 2725 4251 \nQ 3091 3903 3091 3403 \nQ 3091 3084 2923 2848 \nQ 2756 2613 2416 2484 \nQ 2838 2347 3058 2040 \nQ 3278 1734 3278 1309 \nQ 3278 722 2862 322 \nQ 2447 -78 1769 -78 \nQ 1091 -78 675 323 \nQ 259 725 259 1325 \nQ 259 1772 486 2073 \nQ 713 2375 1131 2484 \nz\nM 1019 3438 \nQ 1019 3113 1228 2906 \nQ 1438 2700 1772 2700 \nQ 2097 2700 2305 2904 \nQ 2513 3109 2513 3406 \nQ 2513 3716 2298 3927 \nQ 2084 4138 1766 4138 \nQ 1444 4138 1231 3931 \nQ 1019 3725 1019 3438 \nz\nM 838 1322 \nQ 838 1081 952 856 \nQ 1066 631 1291 507 \nQ 1516 384 1775 384 \nQ 2178 384 2440 643 \nQ 2703 903 2703 1303 \nQ 2703 1709 2433 1975 \nQ 2163 2241 1756 2241 \nQ 1359 2241 1098 1978 \nQ 838 1716 838 1322 \nz\n\" id=\"ArialMT-38\" transform=\"scale(0.015625)\"/>\n       </defs>\n       <use xlink:href=\"#ArialMT-2212\"/>\n       <use x=\"58.398438\" xlink:href=\"#ArialMT-32\"/>\n       <use x=\"114.013672\" xlink:href=\"#ArialMT-2e\"/>\n       <use x=\"141.796875\" xlink:href=\"#ArialMT-34\"/>\n       <use x=\"197.412109\" xlink:href=\"#ArialMT-38\"/>\n       <use x=\"253.027344\" xlink:href=\"#ArialMT-35\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"PathCollection_1\">\n    <defs>\n     <path d=\"M 0 15.811388 \nC 4.193229 15.811388 8.215279 14.145401 11.18034 11.18034 \nC 14.145401 8.215279 15.811388 4.193229 15.811388 0 \nC 15.811388 -4.193229 14.145401 -8.215279 11.18034 -11.18034 \nC 8.215279 -14.145401 4.193229 -15.811388 0 -15.811388 \nC -4.193229 -15.811388 -8.215279 -14.145401 -11.18034 -11.18034 \nC -14.145401 -8.215279 -15.811388 -4.193229 -15.811388 0 \nC -15.811388 4.193229 -14.145401 8.215279 -11.18034 11.18034 \nC -8.215279 14.145401 -4.193229 15.811388 0 15.811388 \nz\n\" id=\"me336101b50\" style=\"stroke:#4c72b0;\"/>\n    </defs>\n    <g clip-path=\"url(#pc191a97ce8)\">\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"88.192882\" xlink:href=\"#me336101b50\" y=\"2347.348532\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"52.972025\" xlink:href=\"#me336101b50\" y=\"778.022402\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"69.142023\" xlink:href=\"#me336101b50\" y=\"904.222726\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"93.768743\" xlink:href=\"#me336101b50\" y=\"1016.576329\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"89.679778\" xlink:href=\"#me336101b50\" y=\"21.935625\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"122.298566\" xlink:href=\"#me336101b50\" y=\"2165.575457\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"89.122192\" xlink:href=\"#me336101b50\" y=\"148.043019\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"164.303387\" xlink:href=\"#me336101b50\" y=\"2124.128223\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"96.18495\" xlink:href=\"#me336101b50\" y=\"2431.451105\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"209.467863\" xlink:href=\"#me336101b50\" y=\"1298.157319\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"81.037193\" xlink:href=\"#me336101b50\" y=\"91.912683\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"80.386676\" xlink:href=\"#me336101b50\" y=\"2207.115623\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"217.831655\" xlink:href=\"#me336101b50\" y=\"1298.25025\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"168.299421\" xlink:href=\"#me336101b50\" y=\"1157.552686\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"77.319953\" xlink:href=\"#me336101b50\" y=\"946.413409\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"60.964093\" xlink:href=\"#me336101b50\" y=\"876.157558\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"110.403396\" xlink:href=\"#me336101b50\" y=\"1030.794775\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"53.436681\" xlink:href=\"#me336101b50\" y=\"665.947592\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"53.250819\" xlink:href=\"#me336101b50\" y=\"707.952413\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"69.142023\" xlink:href=\"#me336101b50\" y=\"904.222726\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"89.029261\" xlink:href=\"#me336101b50\" y=\"176.015256\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"69.049092\" xlink:href=\"#me336101b50\" y=\"918.25531\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"88.192882\" xlink:href=\"#me336101b50\" y=\"2347.348532\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"193.019072\" xlink:href=\"#me336101b50\" y=\"1241.934052\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"63.566162\" xlink:href=\"#me336101b50\" y=\"2234.994929\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"193.019072\" xlink:href=\"#me336101b50\" y=\"1241.934052\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"71.65116\" xlink:href=\"#me336101b50\" y=\"2291.125265\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"217.831655\" xlink:href=\"#me336101b50\" y=\"1298.25025\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"89.679778\" xlink:href=\"#me336101b50\" y=\"21.935625\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"110.403396\" xlink:href=\"#me336101b50\" y=\"1030.794775\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"126.852186\" xlink:href=\"#me336101b50\" y=\"1087.018042\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"69.049092\" xlink:href=\"#me336101b50\" y=\"918.25531\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"217.831655\" xlink:href=\"#me336101b50\" y=\"1298.25025\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"61.986334\" xlink:href=\"#me336101b50\" y=\"624.035702\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"89.308054\" xlink:href=\"#me336101b50\" y=\"92.005614\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"105.478052\" xlink:href=\"#me336101b50\" y=\"2193.454763\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"88.00702\" xlink:href=\"#me336101b50\" y=\"2375.320769\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"80.386676\" xlink:href=\"#me336101b50\" y=\"2207.115623\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"217.738724\" xlink:href=\"#me336101b50\" y=\"1326.222487\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"90.237364\" xlink:href=\"#me336101b50\" y=\"267.087655\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"179.451143\" xlink:href=\"#me336101b50\" y=\"2087.885125\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"207.051656\" xlink:href=\"#me336101b50\" y=\"1282.73077\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"70.164264\" xlink:href=\"#me336101b50\" y=\"2244.845617\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"51.670991\" xlink:href=\"#me336101b50\" y=\"689.737933\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"79.82909\" xlink:href=\"#me336101b50\" y=\"940.837548\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"216.158896\" xlink:href=\"#me336101b50\" y=\"1296.856285\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"198.037347\" xlink:href=\"#me336101b50\" y=\"1239.146122\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"92.56064\" xlink:href=\"#me336101b50\" y=\"512.332616\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"131.312875\" xlink:href=\"#me336101b50\" y=\"2602.722974\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"110.496327\" xlink:href=\"#me336101b50\" y=\"2187.878902\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"105.199259\" xlink:href=\"#me336101b50\" y=\"466.145899\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"65.145989\" xlink:href=\"#me336101b50\" y=\"2246.146652\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"103.619431\" xlink:href=\"#me336101b50\" y=\"485.847276\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"71.186505\" xlink:href=\"#me336101b50\" y=\"2236.481826\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"144.323218\" xlink:href=\"#me336101b50\" y=\"2741.654849\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"102.783052\" xlink:href=\"#me336101b50\" y=\"2428.663174\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"55.759956\" xlink:href=\"#me336101b50\" y=\"703.770517\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"97.021329\" xlink:href=\"#me336101b50\" y=\"319.221957\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"50.64875\" xlink:href=\"#me336101b50\" y=\"814.544292\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"149.434424\" xlink:href=\"#me336101b50\" y=\"2750.204503\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"53.808405\" xlink:href=\"#me336101b50\" y=\"659.070696\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"226.102515\" xlink:href=\"#me336101b50\" y=\"1326.408349\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"349.236116\" xlink:href=\"#me336101b50\" y=\"1832.046028\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"349.236116\" xlink:href=\"#me336101b50\" y=\"1832.046028\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"291.804746\" xlink:href=\"#me336101b50\" y=\"1579.273654\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"290.131988\" xlink:href=\"#me336101b50\" y=\"1985.475141\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"219.132689\" xlink:href=\"#me336101b50\" y=\"3007.251703\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"211.04769\" xlink:href=\"#me336101b50\" y=\"2937.088783\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"235.395617\" xlink:href=\"#me336101b50\" y=\"3105.479791\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"341.058187\" xlink:href=\"#me336101b50\" y=\"1789.948276\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"259.000096\" xlink:href=\"#me336101b50\" y=\"1452.794536\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"226.102515\" xlink:href=\"#me336101b50\" y=\"1326.408349\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"259.000096\" xlink:href=\"#me336101b50\" y=\"1452.794536\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"219.318551\" xlink:href=\"#me336101b50\" y=\"2965.153951\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"357.321115\" xlink:href=\"#me336101b50\" y=\"1902.208948\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"290.131988\" xlink:href=\"#me336101b50\" y=\"1985.475141\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"349.329047\" xlink:href=\"#me336101b50\" y=\"1818.106375\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"324.702327\" xlink:href=\"#me336101b50\" y=\"1719.785356\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"316.338535\" xlink:href=\"#me336101b50\" y=\"1705.659841\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"235.395617\" xlink:href=\"#me336101b50\" y=\"3119.419444\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"234.280445\" xlink:href=\"#me336101b50\" y=\"1368.506101\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"291.804746\" xlink:href=\"#me336101b50\" y=\"1593.306238\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"332.880257\" xlink:href=\"#me336101b50\" y=\"1761.883108\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"323.865948\" xlink:href=\"#me336101b50\" y=\"1705.752772\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"241.807858\" xlink:href=\"#me336101b50\" y=\"1367.205067\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"245.618029\" xlink:href=\"#me336101b50\" y=\"3270.897006\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"332.787326\" xlink:href=\"#me336101b50\" y=\"1764.671038\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"322.19319\" xlink:href=\"#me336101b50\" y=\"1716.904494\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"248.034236\" xlink:href=\"#me336101b50\" y=\"3283.535625\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"258.907165\" xlink:href=\"#me336101b50\" y=\"1457.069363\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"319.776983\" xlink:href=\"#me336101b50\" y=\"1693.114153\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"327.025603\" xlink:href=\"#me336101b50\" y=\"1949.510837\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"230.563204\" xlink:href=\"#me336101b50\" y=\"3061.988074\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"242.551306\" xlink:href=\"#me336101b50\" y=\"1392.389373\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"349.236116\" xlink:href=\"#me336101b50\" y=\"1826.470166\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"281.768196\" xlink:href=\"#me336101b50\" y=\"1985.289279\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"357.599908\" xlink:href=\"#me336101b50\" y=\"1832.138959\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"205.378898\" xlink:href=\"#me336101b50\" y=\"2058.704785\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"299.332159\" xlink:href=\"#me336101b50\" y=\"1622.858302\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"348.492668\" xlink:href=\"#me336101b50\" y=\"1833.532924\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"323.958879\" xlink:href=\"#me336101b50\" y=\"1721.179321\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"314.01526\" xlink:href=\"#me336101b50\" y=\"1666.350019\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"187.35028\" xlink:href=\"#me336101b50\" y=\"2873.89569\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"202.405105\" xlink:href=\"#me336101b50\" y=\"2064.466508\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"318.290087\" xlink:href=\"#me336101b50\" y=\"1716.997425\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"329.813533\" xlink:href=\"#me336101b50\" y=\"1768.945865\"/>\n     <use style=\"fill:#4c72b0;stroke:#4c72b0;\" x=\"318.290087\" xlink:href=\"#me336101b50\" y=\"1716.997425\"/>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 50.64875 3283.535625 \nL 50.64875 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 357.599908 3283.535625 \nL 357.599908 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 50.64875 3283.535625 \nL 357.599908 3283.535625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 50.64875 21.935625 \nL 357.599908 21.935625 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n   </g>\n   <g id=\"text_15\">\n    <!-- Plotting Spatial Data on Riyadh Map -->\n    <g style=\"fill:#262626;\" transform=\"translate(107.739954 15.935625)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 494 0 \nL 494 4581 \nL 2222 4581 \nQ 2678 4581 2919 4538 \nQ 3256 4481 3484 4323 \nQ 3713 4166 3852 3881 \nQ 3991 3597 3991 3256 \nQ 3991 2672 3619 2267 \nQ 3247 1863 2275 1863 \nL 1100 1863 \nL 1100 0 \nL 494 0 \nz\nM 1100 2403 \nL 2284 2403 \nQ 2872 2403 3119 2622 \nQ 3366 2841 3366 3238 \nQ 3366 3525 3220 3729 \nQ 3075 3934 2838 4000 \nQ 2684 4041 2272 4041 \nL 1100 4041 \nL 1100 2403 \nz\n\" id=\"ArialMT-50\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 409 0 \nL 409 4581 \nL 972 4581 \nL 972 0 \nL 409 0 \nz\n\" id=\"ArialMT-6c\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 213 1659 \nQ 213 2581 725 3025 \nQ 1153 3394 1769 3394 \nQ 2453 3394 2887 2945 \nQ 3322 2497 3322 1706 \nQ 3322 1066 3130 698 \nQ 2938 331 2570 128 \nQ 2203 -75 1769 -75 \nQ 1072 -75 642 372 \nQ 213 819 213 1659 \nz\nM 791 1659 \nQ 791 1022 1069 705 \nQ 1347 388 1769 388 \nQ 2188 388 2466 706 \nQ 2744 1025 2744 1678 \nQ 2744 2294 2464 2611 \nQ 2184 2928 1769 2928 \nQ 1347 2928 1069 2612 \nQ 791 2297 791 1659 \nz\n\" id=\"ArialMT-6f\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 1650 503 \nL 1731 6 \nQ 1494 -44 1306 -44 \nQ 1000 -44 831 53 \nQ 663 150 594 308 \nQ 525 466 525 972 \nL 525 2881 \nL 113 2881 \nL 113 3319 \nL 525 3319 \nL 525 4141 \nL 1084 4478 \nL 1084 3319 \nL 1650 3319 \nL 1650 2881 \nL 1084 2881 \nL 1084 941 \nQ 1084 700 1114 631 \nQ 1144 563 1211 522 \nQ 1278 481 1403 481 \nQ 1497 481 1650 503 \nz\n\" id=\"ArialMT-74\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 425 3934 \nL 425 4581 \nL 988 4581 \nL 988 3934 \nL 425 3934 \nz\nM 425 0 \nL 425 3319 \nL 988 3319 \nL 988 0 \nL 425 0 \nz\n\" id=\"ArialMT-69\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 422 0 \nL 422 3319 \nL 928 3319 \nL 928 2847 \nQ 1294 3394 1984 3394 \nQ 2284 3394 2536 3286 \nQ 2788 3178 2913 3003 \nQ 3038 2828 3088 2588 \nQ 3119 2431 3119 2041 \nL 3119 0 \nL 2556 0 \nL 2556 2019 \nQ 2556 2363 2490 2533 \nQ 2425 2703 2258 2804 \nQ 2091 2906 1866 2906 \nQ 1506 2906 1245 2678 \nQ 984 2450 984 1813 \nL 984 0 \nL 422 0 \nz\n\" id=\"ArialMT-6e\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 319 -275 \nL 866 -356 \nQ 900 -609 1056 -725 \nQ 1266 -881 1628 -881 \nQ 2019 -881 2231 -725 \nQ 2444 -569 2519 -288 \nQ 2563 -116 2559 434 \nQ 2191 0 1641 0 \nQ 956 0 581 494 \nQ 206 988 206 1678 \nQ 206 2153 378 2554 \nQ 550 2956 876 3175 \nQ 1203 3394 1644 3394 \nQ 2231 3394 2613 2919 \nL 2613 3319 \nL 3131 3319 \nL 3131 450 \nQ 3131 -325 2973 -648 \nQ 2816 -972 2473 -1159 \nQ 2131 -1347 1631 -1347 \nQ 1038 -1347 672 -1080 \nQ 306 -813 319 -275 \nz\nM 784 1719 \nQ 784 1066 1043 766 \nQ 1303 466 1694 466 \nQ 2081 466 2343 764 \nQ 2606 1063 2606 1700 \nQ 2606 2309 2336 2618 \nQ 2066 2928 1684 2928 \nQ 1309 2928 1046 2623 \nQ 784 2319 784 1719 \nz\n\" id=\"ArialMT-67\" transform=\"scale(0.015625)\"/>\n      <path id=\"ArialMT-20\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 288 1472 \nL 859 1522 \nQ 900 1178 1048 958 \nQ 1197 738 1509 602 \nQ 1822 466 2213 466 \nQ 2559 466 2825 569 \nQ 3091 672 3220 851 \nQ 3350 1031 3350 1244 \nQ 3350 1459 3225 1620 \nQ 3100 1781 2813 1891 \nQ 2628 1963 1997 2114 \nQ 1366 2266 1113 2400 \nQ 784 2572 623 2826 \nQ 463 3081 463 3397 \nQ 463 3744 659 4045 \nQ 856 4347 1234 4503 \nQ 1613 4659 2075 4659 \nQ 2584 4659 2973 4495 \nQ 3363 4331 3572 4012 \nQ 3781 3694 3797 3291 \nL 3216 3247 \nQ 3169 3681 2898 3903 \nQ 2628 4125 2100 4125 \nQ 1550 4125 1298 3923 \nQ 1047 3722 1047 3438 \nQ 1047 3191 1225 3031 \nQ 1400 2872 2139 2705 \nQ 2878 2538 3153 2413 \nQ 3553 2228 3743 1945 \nQ 3934 1663 3934 1294 \nQ 3934 928 3725 604 \nQ 3516 281 3123 101 \nQ 2731 -78 2241 -78 \nQ 1619 -78 1198 103 \nQ 778 284 539 648 \nQ 300 1013 288 1472 \nz\n\" id=\"ArialMT-53\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 422 -1272 \nL 422 3319 \nL 934 3319 \nL 934 2888 \nQ 1116 3141 1344 3267 \nQ 1572 3394 1897 3394 \nQ 2322 3394 2647 3175 \nQ 2972 2956 3137 2557 \nQ 3303 2159 3303 1684 \nQ 3303 1175 3120 767 \nQ 2938 359 2589 142 \nQ 2241 -75 1856 -75 \nQ 1575 -75 1351 44 \nQ 1128 163 984 344 \nL 984 -1272 \nL 422 -1272 \nz\nM 931 1641 \nQ 931 1000 1190 694 \nQ 1450 388 1819 388 \nQ 2194 388 2461 705 \nQ 2728 1022 2728 1688 \nQ 2728 2322 2467 2637 \nQ 2206 2953 1844 2953 \nQ 1484 2953 1207 2617 \nQ 931 2281 931 1641 \nz\n\" id=\"ArialMT-70\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 2588 409 \nQ 2275 144 1986 34 \nQ 1697 -75 1366 -75 \nQ 819 -75 525 192 \nQ 231 459 231 875 \nQ 231 1119 342 1320 \nQ 453 1522 633 1644 \nQ 813 1766 1038 1828 \nQ 1203 1872 1538 1913 \nQ 2219 1994 2541 2106 \nQ 2544 2222 2544 2253 \nQ 2544 2597 2384 2738 \nQ 2169 2928 1744 2928 \nQ 1347 2928 1158 2789 \nQ 969 2650 878 2297 \nL 328 2372 \nQ 403 2725 575 2942 \nQ 747 3159 1072 3276 \nQ 1397 3394 1825 3394 \nQ 2250 3394 2515 3294 \nQ 2781 3194 2906 3042 \nQ 3031 2891 3081 2659 \nQ 3109 2516 3109 2141 \nL 3109 1391 \nQ 3109 606 3145 398 \nQ 3181 191 3288 0 \nL 2700 0 \nQ 2613 175 2588 409 \nz\nM 2541 1666 \nQ 2234 1541 1622 1453 \nQ 1275 1403 1131 1340 \nQ 988 1278 909 1158 \nQ 831 1038 831 891 \nQ 831 666 1001 516 \nQ 1172 366 1500 366 \nQ 1825 366 2078 508 \nQ 2331 650 2450 897 \nQ 2541 1088 2541 1459 \nL 2541 1666 \nz\n\" id=\"ArialMT-61\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 494 0 \nL 494 4581 \nL 2072 4581 \nQ 2606 4581 2888 4516 \nQ 3281 4425 3559 4188 \nQ 3922 3881 4101 3404 \nQ 4281 2928 4281 2316 \nQ 4281 1794 4159 1391 \nQ 4038 988 3847 723 \nQ 3656 459 3429 307 \nQ 3203 156 2883 78 \nQ 2563 0 2147 0 \nL 494 0 \nz\nM 1100 541 \nL 2078 541 \nQ 2531 541 2789 625 \nQ 3047 709 3200 863 \nQ 3416 1078 3536 1442 \nQ 3656 1806 3656 2325 \nQ 3656 3044 3420 3430 \nQ 3184 3816 2847 3947 \nQ 2603 4041 2063 4041 \nL 1100 4041 \nL 1100 541 \nz\n\" id=\"ArialMT-44\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 503 0 \nL 503 4581 \nL 2534 4581 \nQ 3147 4581 3465 4457 \nQ 3784 4334 3975 4021 \nQ 4166 3709 4166 3331 \nQ 4166 2844 3850 2509 \nQ 3534 2175 2875 2084 \nQ 3116 1969 3241 1856 \nQ 3506 1613 3744 1247 \nL 4541 0 \nL 3778 0 \nL 3172 953 \nQ 2906 1366 2734 1584 \nQ 2563 1803 2427 1890 \nQ 2291 1978 2150 2013 \nQ 2047 2034 1813 2034 \nL 1109 2034 \nL 1109 0 \nL 503 0 \nz\nM 1109 2559 \nL 2413 2559 \nQ 2828 2559 3062 2645 \nQ 3297 2731 3419 2920 \nQ 3541 3109 3541 3331 \nQ 3541 3656 3305 3865 \nQ 3069 4075 2559 4075 \nL 1109 4075 \nL 1109 2559 \nz\n\" id=\"ArialMT-52\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 397 -1278 \nL 334 -750 \nQ 519 -800 656 -800 \nQ 844 -800 956 -737 \nQ 1069 -675 1141 -563 \nQ 1194 -478 1313 -144 \nQ 1328 -97 1363 -6 \nL 103 3319 \nL 709 3319 \nL 1400 1397 \nQ 1534 1031 1641 628 \nQ 1738 1016 1872 1384 \nL 2581 3319 \nL 3144 3319 \nL 1881 -56 \nQ 1678 -603 1566 -809 \nQ 1416 -1088 1222 -1217 \nQ 1028 -1347 759 -1347 \nQ 597 -1347 397 -1278 \nz\n\" id=\"ArialMT-79\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 2575 0 \nL 2575 419 \nQ 2259 -75 1647 -75 \nQ 1250 -75 917 144 \nQ 584 363 401 755 \nQ 219 1147 219 1656 \nQ 219 2153 384 2558 \nQ 550 2963 881 3178 \nQ 1213 3394 1622 3394 \nQ 1922 3394 2156 3267 \nQ 2391 3141 2538 2938 \nL 2538 4581 \nL 3097 4581 \nL 3097 0 \nL 2575 0 \nz\nM 797 1656 \nQ 797 1019 1065 703 \nQ 1334 388 1700 388 \nQ 2069 388 2326 689 \nQ 2584 991 2584 1609 \nQ 2584 2291 2321 2609 \nQ 2059 2928 1675 2928 \nQ 1300 2928 1048 2622 \nQ 797 2316 797 1656 \nz\n\" id=\"ArialMT-64\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 422 0 \nL 422 4581 \nL 984 4581 \nL 984 2938 \nQ 1378 3394 1978 3394 \nQ 2347 3394 2619 3248 \nQ 2891 3103 3008 2847 \nQ 3125 2591 3125 2103 \nL 3125 0 \nL 2563 0 \nL 2563 2103 \nQ 2563 2525 2380 2717 \nQ 2197 2909 1863 2909 \nQ 1613 2909 1392 2779 \nQ 1172 2650 1078 2428 \nQ 984 2206 984 1816 \nL 984 0 \nL 422 0 \nz\n\" id=\"ArialMT-68\" transform=\"scale(0.015625)\"/>\n      <path d=\"M 475 0 \nL 475 4581 \nL 1388 4581 \nL 2472 1338 \nQ 2622 884 2691 659 \nQ 2769 909 2934 1394 \nL 4031 4581 \nL 4847 4581 \nL 4847 0 \nL 4263 0 \nL 4263 3834 \nL 2931 0 \nL 2384 0 \nL 1059 3900 \nL 1059 0 \nL 475 0 \nz\n\" id=\"ArialMT-4d\" transform=\"scale(0.015625)\"/>\n     </defs>\n     <use xlink:href=\"#ArialMT-50\"/>\n     <use x=\"66.699219\" xlink:href=\"#ArialMT-6c\"/>\n     <use x=\"88.916016\" xlink:href=\"#ArialMT-6f\"/>\n     <use x=\"144.53125\" xlink:href=\"#ArialMT-74\"/>\n     <use x=\"172.314453\" xlink:href=\"#ArialMT-74\"/>\n     <use x=\"200.097656\" xlink:href=\"#ArialMT-69\"/>\n     <use x=\"222.314453\" xlink:href=\"#ArialMT-6e\"/>\n     <use x=\"277.929688\" xlink:href=\"#ArialMT-67\"/>\n     <use x=\"333.544922\" xlink:href=\"#ArialMT-20\"/>\n     <use x=\"361.328125\" xlink:href=\"#ArialMT-53\"/>\n     <use x=\"428.027344\" xlink:href=\"#ArialMT-70\"/>\n     <use x=\"483.642578\" xlink:href=\"#ArialMT-61\"/>\n     <use x=\"539.257812\" xlink:href=\"#ArialMT-74\"/>\n     <use x=\"567.041016\" xlink:href=\"#ArialMT-69\"/>\n     <use x=\"589.257812\" xlink:href=\"#ArialMT-61\"/>\n     <use x=\"644.873047\" xlink:href=\"#ArialMT-6c\"/>\n     <use x=\"667.089844\" xlink:href=\"#ArialMT-20\"/>\n     <use x=\"694.873047\" xlink:href=\"#ArialMT-44\"/>\n     <use x=\"767.089844\" xlink:href=\"#ArialMT-61\"/>\n     <use x=\"822.705078\" xlink:href=\"#ArialMT-74\"/>\n     <use x=\"850.488281\" xlink:href=\"#ArialMT-61\"/>\n     <use x=\"906.103516\" xlink:href=\"#ArialMT-20\"/>\n     <use x=\"933.886719\" xlink:href=\"#ArialMT-6f\"/>\n     <use x=\"989.501953\" xlink:href=\"#ArialMT-6e\"/>\n     <use x=\"1045.117188\" xlink:href=\"#ArialMT-20\"/>\n     <use x=\"1072.900391\" xlink:href=\"#ArialMT-52\"/>\n     <use x=\"1145.117188\" xlink:href=\"#ArialMT-69\"/>\n     <use x=\"1167.333984\" xlink:href=\"#ArialMT-79\"/>\n     <use x=\"1217.333984\" xlink:href=\"#ArialMT-61\"/>\n     <use x=\"1272.949219\" xlink:href=\"#ArialMT-64\"/>\n     <use x=\"1328.564453\" xlink:href=\"#ArialMT-68\"/>\n     <use x=\"1384.179688\" xlink:href=\"#ArialMT-20\"/>\n     <use x=\"1411.962891\" xlink:href=\"#ArialMT-4d\"/>\n     <use x=\"1495.263672\" xlink:href=\"#ArialMT-61\"/>\n     <use x=\"1550.878906\" xlink:href=\"#ArialMT-70\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pc191a97ce8\">\n   <rect height=\"3261.6\" width=\"306.951158\" x=\"50.64875\" y=\"21.935625\"/>\n  </clipPath>\n </defs>\n</svg>\n",
-                        "text/plain": [
-                            "<Figure size 5760x4320 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "ruh_m = plt.imread('/Users/Asfandyar/Downloads/map-6.jpg')\n",
-                "\n",
-                "fig, ax = plt.subplots(figsize = (80,60))\n",
-                "ax.scatter(above_35.b2, above_35.b1, zorder=1, alpha= 1, c='b', s=1000)\n",
-                "ax.set_title('Plotting Spatial Data on Riyadh Map')\n",
-                "ax.set_xlim(BBBox[1],BBBox[0])\n",
-                "ax.set_ylim(BBBox[3],BBBox[2])\n",
-                "ax.imshow(ruh_m, zorder=0, extent = BBBox, aspect= 'equal')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "|Accident_Index|1st_Road_Class|1st_Road_Number|2nd_Road_Class|2nd_Road_Number|Accident_Severity|Carriageway_Hazards|      Date|Day_of_Week|Did_Police_Officer_Attend_Scene_of_Accident|    Junction_Control|     Junction_Detail| Latitude|    Light_Conditions|Local_Authority_(District)|Local_Authority_(Highway)|Location_Easting_OSGR|Location_Northing_OSGR|Longitude|LSOA_of_Accident_Location|Number_of_Casualties|Number_of_Vehicles|Pedestrian_Crossing-Human_Control|Pedestrian_Crossing-Physical_Facilities|       Police_Force|Road_Surface_Conditions|         Road_Type|Special_Conditions_at_Site|Speed_limit| Time|Urban_or_Rural_Area|  Weather_Conditions|Year|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "| 200501BS00001|             A|           3218|            NA|              0|          Serious|               None|2005-01-04|    Tuesday|                                          1|Data missing or o...|Not at junction o...|51.489096|            Daylight|      Kensington and Ch...|     Kensington and Ch...|               525680|                178240| -0.19117|                E01002849|                   1|                 1|                                0|                                      1|Metropolitan Police|            Wet or damp|Single carriageway|                      None|         30|17:42|              Urban|Raining no high w...|2005|\n",
-                        "| 200501BS00002|             B|            450|             C|              0|           Slight|               None|2005-01-05|  Wednesday|                                          1| Auto traffic signal|          Crossroads|51.520075|Darkness - lights...|      Kensington and Ch...|     Kensington and Ch...|               524170|                181650|-0.211708|                E01002909|                   1|                 1|                                0|                                      5|Metropolitan Police|                    Dry|  Dual carriageway|                      None|         30|17:36|              Urban|  Fine no high winds|2005|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+-------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+-------------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "only showing top 2 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Accident_Information20052019_df.show(2)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+--------------+-----------+-----------+--------------------+--------------------+---------+---------+\n",
-                        "|road_name|count_point_id|  longitude|   latitude|         coordinates|      Accident_coord|       b1|       b2|\n",
-                        "+---------+--------------+-----------+-----------+--------------------+--------------------+---------+---------+\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.493479, 53.49...|-2.493479|53.494955|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.510366, 53.49...|-2.510366|53.495334|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.509008, 53.49...|-2.509008| 53.49516|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.507799, 53.49...|-2.507799|53.494895|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.518502, 53.49...|-2.518502|53.494939|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.495435, 53.49...|-2.495435|53.494588|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.517145, 53.49...|-2.517145|53.494945|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.495881, 53.49...|-2.495881|53.494136|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.492574, 53.49...|-2.492574|53.494869|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.504769, 53.49...|-2.504769| 53.49365|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.517749, 53.49...|-2.517749|53.495032|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.494988, 53.49...|-2.494988|53.495039|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.504768, 53.49...|-2.504768| 53.49356|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.506282, 53.49...|-2.506282|53.494093|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.508554, 53.49...|-2.508554|53.495072|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.50931, 53.495...| -2.50931|53.495248|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.507646, 53.49...|-2.507646|53.494716|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.511572, 53.49...|-2.511572|53.495329|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.51112, 53.495...| -2.51112|53.495331|\n",
-                        "|     A572|         38662|-2.50482745|53.49352394|(-2.50482745, 53....|{-2.509008, 53.49...|-2.509008| 53.49516|\n",
-                        "+---------+--------------+-----------+-----------+--------------------+--------------------+---------+---------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "findaccidentspoint=spark.createDataFrame(above_35) \n",
-                "findaccidentspoint.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+---------+---------+---------------+\n",
-                        "|       b1|       b2|Total accidents|\n",
-                        "+---------+---------+---------------+\n",
-                        "|-2.504768| 53.49356|              3|\n",
-                        "|-2.518502|53.494939|              2|\n",
-                        "|-2.500262|53.492479|              2|\n",
-                        "|-2.505374|53.493827|              2|\n",
-                        "|-2.497373|53.492782|              2|\n",
-                        "|-2.499024|53.492146|              2|\n",
-                        "|-2.494988|53.495039|              2|\n",
-                        "|-2.509008| 53.49516|              2|\n",
-                        "|-2.504465|53.493471|              2|\n",
-                        "|-2.503105|53.493117|              2|\n",
-                        "|-2.507646|53.494716|              2|\n",
-                        "|-2.493479|53.494955|              2|\n",
-                        "|-2.508857|53.495161|              2|\n",
-                        "|-2.510366|53.495334|              1|\n",
-                        "|-2.511165|53.495304|              1|\n",
-                        "|-2.497375|53.492872|              1|\n",
-                        "|-2.487813|53.493888|              1|\n",
-                        "|-2.496585|53.493694|              1|\n",
-                        "|-2.513225|53.494908|              1|\n",
-                        "|-2.501744|53.492764|              1|\n",
-                        "+---------+---------+---------------+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "findaccidentspointee = findaccidentspoint.groupby('b1','b2').agg(F.count(findaccidentspoint.road_name).alias('Total accidents'))\n",
-                "findaccidentspointee.sort(col('Total accidents').desc()).show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>road_name</th>\n",
-                            "      <th>count_point_id</th>\n",
-                            "      <th>longitude</th>\n",
-                            "      <th>latitude</th>\n",
-                            "      <th>coordinates</th>\n",
-                            "      <th>Accident_coord</th>\n",
-                            "      <th>b1</th>\n",
-                            "      <th>b2</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>526</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.493479, 53.494955)</td>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>527</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.510366, 53.495334)</td>\n",
-                            "      <td>-2.510366</td>\n",
-                            "      <td>53.495334</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>528</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.509008, 53.49516)</td>\n",
-                            "      <td>-2.509008</td>\n",
-                            "      <td>53.495160</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>529</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.507799, 53.494895)</td>\n",
-                            "      <td>-2.507799</td>\n",
-                            "      <td>53.494895</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>530</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493524</td>\n",
-                            "      <td>(-2.50482745, 53.49352394)</td>\n",
-                            "      <td>(-2.518502, 53.494939)</td>\n",
-                            "      <td>-2.518502</td>\n",
-                            "      <td>53.494939</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>764</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.487813, 53.493888)</td>\n",
-                            "      <td>-2.487813</td>\n",
-                            "      <td>53.493888</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>765</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.496523, 53.493726)</td>\n",
-                            "      <td>-2.496523</td>\n",
-                            "      <td>53.493726</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>766</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>767</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.499703, 53.492355)</td>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>768</th>\n",
-                            "      <td>A572</td>\n",
-                            "      <td>38662</td>\n",
-                            "      <td>-2.504827</td>\n",
-                            "      <td>53.493522</td>\n",
-                            "      <td>(-2.5048274, 53.493522)</td>\n",
-                            "      <td>(-2.500262, 53.492479)</td>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>107 rows × 8 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    road_name count_point_id  longitude   latitude  \\\n",
-                            "526      A572          38662  -2.504827  53.493524   \n",
-                            "527      A572          38662  -2.504827  53.493524   \n",
-                            "528      A572          38662  -2.504827  53.493524   \n",
-                            "529      A572          38662  -2.504827  53.493524   \n",
-                            "530      A572          38662  -2.504827  53.493524   \n",
-                            "..        ...            ...        ...        ...   \n",
-                            "764      A572          38662  -2.504827  53.493522   \n",
-                            "765      A572          38662  -2.504827  53.493522   \n",
-                            "766      A572          38662  -2.504827  53.493522   \n",
-                            "767      A572          38662  -2.504827  53.493522   \n",
-                            "768      A572          38662  -2.504827  53.493522   \n",
-                            "\n",
-                            "                    coordinates          Accident_coord        b1         b2  \n",
-                            "526  (-2.50482745, 53.49352394)  (-2.493479, 53.494955) -2.493479  53.494955  \n",
-                            "527  (-2.50482745, 53.49352394)  (-2.510366, 53.495334) -2.510366  53.495334  \n",
-                            "528  (-2.50482745, 53.49352394)   (-2.509008, 53.49516) -2.509008  53.495160  \n",
-                            "529  (-2.50482745, 53.49352394)  (-2.507799, 53.494895) -2.507799  53.494895  \n",
-                            "530  (-2.50482745, 53.49352394)  (-2.518502, 53.494939) -2.518502  53.494939  \n",
-                            "..                          ...                     ...       ...        ...  \n",
-                            "764     (-2.5048274, 53.493522)  (-2.487813, 53.493888) -2.487813  53.493888  \n",
-                            "765     (-2.5048274, 53.493522)  (-2.496523, 53.493726) -2.496523  53.493726  \n",
-                            "766     (-2.5048274, 53.493522)  (-2.500262, 53.492479) -2.500262  53.492479  \n",
-                            "767     (-2.5048274, 53.493522)  (-2.499703, 53.492355) -2.499703  53.492355  \n",
-                            "768     (-2.5048274, 53.493522)  (-2.500262, 53.492479) -2.500262  53.492479  \n",
-                            "\n",
-                            "[107 rows x 8 columns]"
-                        ]
-                    },
-                    "execution_count": 68,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "above_35"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>526</th>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>527</th>\n",
-                            "      <td>-2.510366</td>\n",
-                            "      <td>53.495334</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>528</th>\n",
-                            "      <td>-2.509008</td>\n",
-                            "      <td>53.495160</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>529</th>\n",
-                            "      <td>-2.507799</td>\n",
-                            "      <td>53.494895</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>530</th>\n",
-                            "      <td>-2.518502</td>\n",
-                            "      <td>53.494939</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>764</th>\n",
-                            "      <td>-2.487813</td>\n",
-                            "      <td>53.493888</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>765</th>\n",
-                            "      <td>-2.496523</td>\n",
-                            "      <td>53.493726</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>766</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>767</th>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>768</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>107 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Longitude   Latitude\n",
-                            "526  -2.493479  53.494955\n",
-                            "527  -2.510366  53.495334\n",
-                            "528  -2.509008  53.495160\n",
-                            "529  -2.507799  53.494895\n",
-                            "530  -2.518502  53.494939\n",
-                            "..         ...        ...\n",
-                            "764  -2.487813  53.493888\n",
-                            "765  -2.496523  53.493726\n",
-                            "766  -2.500262  53.492479\n",
-                            "767  -2.499703  53.492355\n",
-                            "768  -2.500262  53.492479\n",
-                            "\n",
-                            "[107 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 69,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#findings=above_35.withColumnRenamed('Accidentprob', 'Accidentprob2')\n",
-                "findings = above_35.rename({'b1': 'Longitude', 'b2': 'Latitude'}, axis=1)  # new method\n",
-                "ok=findings[['Longitude','Latitude']]\n",
-                "ok"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+--------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "|Accident_Index|1st_Road_Class|1st_Road_Number|2nd_Road_Class|2nd_Road_Number|Accident_Severity| Carriageway_Hazards|      Date|Day_of_Week|Did_Police_Officer_Attend_Scene_of_Accident|    Junction_Control|     Junction_Detail| Latitude|    Light_Conditions|Local_Authority_(District)|Local_Authority_(Highway)|Location_Easting_OSGR|Location_Northing_OSGR|Longitude|LSOA_of_Accident_Location|Number_of_Casualties|Number_of_Vehicles|Pedestrian_Crossing-Human_Control|Pedestrian_Crossing-Physical_Facilities|Police_Force|Road_Surface_Conditions|         Road_Type|Special_Conditions_at_Site|Speed_limit| Time|Urban_or_Rural_Area|  Weather_Conditions|Year|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+--------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "| 200505CH00035|             A|            572|  Unclassified|              0|           Slight|                None|2005-01-13|   Thursday|                                          1|Give way or uncon...|T or staggered ju...|53.454675|Darkness - lights...|                St. Helens|               St. Helens|               359430|                395500|-2.612435|                E01006859|                   1|                 2|                                0|                                      0|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|18:05|              Rural|  Fine no high winds|2005|\n",
-                        "| 200505DD02395|             A|            572|  Unclassified|              0|           Slight|                None|2005-10-24|     Monday|                                          1|Give way or uncon...|T or staggered ju...|53.452547|            Daylight|                St. Helens|               St. Helens|               354310|                395310|-2.689506|                E01006820|                   1|                 1|                                0|                                      8|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|15:00|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DD03012|             A|            572|  Unclassified|              0|          Serious|                None|2005-11-08|    Tuesday|                                          1|Give way or uncon...|T or staggered ju...|53.453291|            Daylight|                St. Helens|               St. Helens|               351580|                395420|-2.730629|                E01006872|                   1|                 1|                                0|                                      4|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|12:05|              Urban|Raining no high w...|2005|\n",
-                        "| 200505DD03099|             A|            572|  Unclassified|              0|           Slight|                None|2005-11-21|     Monday|                                          1|Give way or uncon...|T or staggered ju...|53.456377|Darkness - lights...|                St. Helens|               St. Helens|               358220|                395700|-2.630682|                E01006864|                   2|                 2|                                0|                                      0|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|20:55|              Urban|         Fog or mist|2005|\n",
-                        "| 200505DD04097|             A|            572|  Unclassified|              0|           Slight|                None|2005-12-23|     Friday|                                          2|Give way or uncon...|T or staggered ju...|53.450798|Darkness - lights...|                St. Helens|               St. Helens|               354870|                395110|-2.681045|                E01006816|                   1|                 2|                                0|                                      0|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|19:00|              Urban|Raining no high w...|2005|\n",
-                        "| 200505DH00225|             A|            572|             C|              0|           Slight|                None|2005-03-21|     Monday|                                          1| Auto traffic signal|T or staggered ju...|53.453355|Darkness - lights...|                St. Helens|               St. Helens|               353280|                395410| -2.70503|                E01006871|                   4|                 2|                                0|                                      5|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|20:05|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00248|             A|            572|             C|              0|           Slight|                None|2005-03-30|  Wednesday|                                          2| Auto traffic signal|          Crossroads|53.453291|            Daylight|                St. Helens|               St. Helens|               351580|                395420|-2.730629|                E01006872|                   1|                 2|                                0|                                      0|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|17:25|              Urban|Raining no high w...|2005|\n",
-                        "| 200505DH00260|             A|            572|            NA|              0|           Slight|                None|2005-04-02|   Saturday|                                          1|Data missing or o...|Not at junction o...|53.451133|Darkness - lights...|                St. Helens|               St. Helens|               352550|                395170|-2.715986|                E01006874|                   3|                 5|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|20:59|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00261|             A|            572|            NA|              0|           Slight|                None|2005-04-05|    Tuesday|                                          1|Data missing or o...|Not at junction o...|53.451842|            Daylight|                St. Helens|               St. Helens|               352440|                395250|-2.717654|                E01006874|                   1|                 1|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|09:10|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00352|             A|            572|             C|              0|           Slight|                None|2005-05-06|     Friday|                                          1|Give way or uncon...|T or staggered ju...|53.450798|            Daylight|                St. Helens|               St. Helens|               354870|                395110|-2.681045|                E01006816|                   1|                 2|                                0|                                      0|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|06:50|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00360|             A|            572|             C|              0|           Slight|                None|2005-05-05|   Thursday|                                          1| Auto traffic signal|          Crossroads|53.456362|            Daylight|                St. Helens|               St. Helens|               358020|                395700|-2.633694|                E01006864|                   2|                 2|                                0|                                      5|  Merseyside|            Wet or damp|Single carriageway|      Auto traffic sign...|         30|09:30|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00369|             A|            572|             C|              0|           Slight|                None|2005-05-05|   Thursday|                                          1| Auto traffic signal|          Crossroads|53.456362|            Daylight|                St. Helens|               St. Helens|               358020|                395700|-2.633694|                E01006864|                   2|                 1|                                0|                                      4|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|16:00|              Urban|Raining no high w...|2005|\n",
-                        "| 200505DH00378|             A|            572|  Unclassified|              0|           Slight|                None|2005-05-14|   Saturday|                                          2|Give way or uncon...|T or staggered ju...|53.451319|            Daylight|                St. Helens|               St. Helens|               354660|                395170|-2.684215|                E01006816|                   1|                 2|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|12:30|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00428|             A|            572|             C|              0|           Slight|                None|2005-05-28|   Saturday|                                          1|Give way or uncon...|T or staggered ju...|53.450798|            Daylight|                St. Helens|               St. Helens|               354870|                395110|-2.681045|                E01006816|                   1|                 1|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|05:29|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00447|             A|            572|             C|              0|           Slight|Other object on road|2005-05-31|    Tuesday|                                          1|Give way or uncon...|T or staggered ju...|53.450798|            Daylight|                St. Helens|               St. Helens|               354870|                395110|-2.681045|                E01006816|                   1|                 2|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|17:08|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00485|             A|            572|            NA|              0|           Slight|                None|2005-06-11|   Saturday|                                          1|Data missing or o...|Not at junction o...|53.450956|            Daylight|                St. Helens|               St. Helens|               352580|                395150|-2.715531|                E01006874|                   1|                 1|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|18:30|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00509|             A|            572|            NA|              0|           Slight|                None|2005-06-06|     Monday|                                          2|Data missing or o...|Not at junction o...| 53.45202|            Daylight|                St. Helens|               St. Helens|               352420|                395270|-2.717958|                E01006874|                   1|                 2|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|10:30|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00514|             A|            572|  Unclassified|              0|           Slight|                None|2005-05-16|     Monday|                                          1| Auto traffic signal|          Crossroads|53.456566|            Daylight|                St. Helens|               St. Helens|               358330|                395720|-2.629028|                E01006864|                   3|                 3|                                0|                                      4|  Merseyside|                    Dry|Single carriageway|                      None|         30|16:45|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00531|             A|            572|  Unclassified|              0|           Slight|                None|2005-07-01|     Friday|                                          2|Give way or uncon...|More than 4 arms ...|53.452426|            Daylight|                St. Helens|               St. Helens|               353950|                395300|-2.694925|                E01006820|                   1|                 1|                                0|                                      0|  Merseyside|                    Dry|Single carriageway|                      None|         30|19:40|              Urban|  Fine no high winds|2005|\n",
-                        "| 200505DH00534|             A|            572|             C|              0|           Slight|                None|2005-06-30|   Thursday|                                          1|Give way or uncon...|T or staggered ju...|53.450286|            Daylight|                St. Helens|               St. Helens|               356260|                395040|-2.660106|                E01006865|                   4|                 3|                                0|                                      0|  Merseyside|            Wet or damp|Single carriageway|                      None|         30|14:20|              Urban|  Fine no high winds|2005|\n",
-                        "+--------------+--------------+---------------+--------------+---------------+-----------------+--------------------+----------+-----------+-------------------------------------------+--------------------+--------------------+---------+--------------------+--------------------------+-------------------------+---------------------+----------------------+---------+-------------------------+--------------------+------------------+---------------------------------+---------------------------------------+------------+-----------------------+------------------+--------------------------+-----------+-----+-------------------+--------------------+----+\n",
-                        "only showing top 20 rows\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "Car_AS=Accident_Information20052019_df.filter(Accident_Information20052019_df['1st_Road_Class'].contains(\"A\"))\n",
-                "Car_AS=Car_AS.filter(Car_AS['1st_Road_Number'].contains(\"572\"))\n",
-                "\n",
-                "Car_AS.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": []
-                }
-            ],
-            "source": [
-                "ok3=Car_AS.toPandas()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "0      -2.612435\n",
-                            "1      -2.689506\n",
-                            "2      -2.730629\n",
-                            "3      -2.630682\n",
-                            "4      -2.681045\n",
-                            "         ...    \n",
-                            "825    -2.553954\n",
-                            "826    -2.499703\n",
-                            "827    -2.519602\n",
-                            "828     -2.46447\n",
-                            "829    -2.500262\n",
-                            "Name: Longitude, Length: 830, dtype: object"
-                        ]
-                    },
-                    "execution_count": 102,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok3['Longitude']"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "/usr/local/lib/python3.9/site-packages/pandas/core/frame.py:3607: SettingWithCopyWarning: \n",
-                        "A value is trying to be set on a copy of a slice from a DataFrame.\n",
-                        "Try using .loc[row_indexer,col_indexer] = value instead\n",
-                        "\n",
-                        "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
-                        "  self._set_item(key, value)\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>526</th>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>527</th>\n",
-                            "      <td>-2.510366</td>\n",
-                            "      <td>53.495334</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>528</th>\n",
-                            "      <td>-2.509008</td>\n",
-                            "      <td>53.49516</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>529</th>\n",
-                            "      <td>-2.507799</td>\n",
-                            "      <td>53.494895</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>530</th>\n",
-                            "      <td>-2.518502</td>\n",
-                            "      <td>53.494939</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>764</th>\n",
-                            "      <td>-2.487813</td>\n",
-                            "      <td>53.493888</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>765</th>\n",
-                            "      <td>-2.496523</td>\n",
-                            "      <td>53.493726</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>766</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>767</th>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>768</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>107 rows × 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Longitude   Latitude\n",
-                            "526  -2.493479  53.494955\n",
-                            "527  -2.510366  53.495334\n",
-                            "528  -2.509008   53.49516\n",
-                            "529  -2.507799  53.494895\n",
-                            "530  -2.518502  53.494939\n",
-                            "..         ...        ...\n",
-                            "764  -2.487813  53.493888\n",
-                            "765  -2.496523  53.493726\n",
-                            "766  -2.500262  53.492479\n",
-                            "767  -2.499703  53.492355\n",
-                            "768  -2.500262  53.492479\n",
-                            "\n",
-                            "[107 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 105,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok['Longitude'] = ok['Longitude'].astype(str)\n",
-                "ok['Latitude'] = ok['Latitude'].astype(str)\n",
-                "ok"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "pandas.core.frame.DataFrame"
-                        ]
-                    },
-                    "execution_count": 99,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "type(ok)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "107"
-                        ]
-                    },
-                    "execution_count": 87,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "len(ok)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "'53.454675'"
-                        ]
-                    },
-                    "execution_count": 97,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "ok3['Latitude'][0]"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Longitude</th>\n",
-                            "      <th>Latitude</th>\n",
-                            "      <th>Accident_Index</th>\n",
-                            "      <th>1st_Road_Class</th>\n",
-                            "      <th>1st_Road_Number</th>\n",
-                            "      <th>2nd_Road_Class</th>\n",
-                            "      <th>2nd_Road_Number</th>\n",
-                            "      <th>Accident_Severity</th>\n",
-                            "      <th>Carriageway_Hazards</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>...</th>\n",
-                            "      <th>Pedestrian_Crossing-Physical_Facilities</th>\n",
-                            "      <th>Police_Force</th>\n",
-                            "      <th>Road_Surface_Conditions</th>\n",
-                            "      <th>Road_Type</th>\n",
-                            "      <th>Special_Conditions_at_Site</th>\n",
-                            "      <th>Speed_limit</th>\n",
-                            "      <th>Time</th>\n",
-                            "      <th>Urban_or_Rural_Area</th>\n",
-                            "      <th>Weather_Conditions</th>\n",
-                            "      <th>Year</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "      <td>200506L023811</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-04-06</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>11:00</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "      <td>200706L084213</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2007-11-24</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Unknown</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>12:00</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Unknown</td>\n",
-                            "      <td>2007</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "      <td>200506L023811</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-04-06</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>11:00</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>-2.493479</td>\n",
-                            "      <td>53.494955</td>\n",
-                            "      <td>200706L084213</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2007-11-24</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Unknown</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>12:00</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Unknown</td>\n",
-                            "      <td>2007</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>-2.510366</td>\n",
-                            "      <td>53.495334</td>\n",
-                            "      <td>200506L024649</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2005-04-14</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Wet or damp</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>09:45</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2005</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>132</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>201706L038156</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-12-06</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>12:45</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>133</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>201906L268157</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>24/12/2019</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>15:49</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>134</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>201706L038156</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>Unclassified</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Slight</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>2017-12-06</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>Greater Manchester</td>\n",
-                            "      <td>Dry</td>\n",
-                            "      <td>Single carriageway</td>\n",
-                            "      <td>None</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>12:45</td>\n",
-                            "      <td>Urban</td>\n",
-                            "      <td>Fine no high winds</td>\n",
-                            "      <td>2017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>135</th>\n",
-                            "      <td>-2.500262</td>\n",
-                            "      <td>53.492479</td>\n",
-                            "      <td>201906L268157</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>24/12/2019</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>15:49</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>136</th>\n",
-                            "      <td>-2.499703</td>\n",
-                            "      <td>53.492355</td>\n",
-                            "      <td>201906L261441</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>572</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>11/09/2019</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>30</td>\n",
-                            "      <td>22:40</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2019</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>137 rows × 33 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Longitude   Latitude Accident_Index 1st_Road_Class 1st_Road_Number  \\\n",
-                            "0    -2.493479  53.494955  200506L023811              A             572   \n",
-                            "1    -2.493479  53.494955  200706L084213              A             572   \n",
-                            "2    -2.493479  53.494955  200506L023811              A             572   \n",
-                            "3    -2.493479  53.494955  200706L084213              A             572   \n",
-                            "4    -2.510366  53.495334  200506L024649              A             572   \n",
-                            "..         ...        ...            ...            ...             ...   \n",
-                            "132  -2.500262  53.492479  201706L038156              A             572   \n",
-                            "133  -2.500262  53.492479  201906L268157              A             572   \n",
-                            "134  -2.500262  53.492479  201706L038156              A             572   \n",
-                            "135  -2.500262  53.492479  201906L268157              A             572   \n",
-                            "136  -2.499703  53.492355  201906L261441              A             572   \n",
-                            "\n",
-                            "    2nd_Road_Class 2nd_Road_Number Accident_Severity Carriageway_Hazards  \\\n",
-                            "0     Unclassified               0            Slight                None   \n",
-                            "1     Unclassified               0            Slight                None   \n",
-                            "2     Unclassified               0            Slight                None   \n",
-                            "3     Unclassified               0            Slight                None   \n",
-                            "4     Unclassified               0            Slight                None   \n",
-                            "..             ...             ...               ...                 ...   \n",
-                            "132   Unclassified               0            Slight                None   \n",
-                            "133              6               0                 3                   0   \n",
-                            "134   Unclassified               0            Slight                None   \n",
-                            "135              6               0                 3                   0   \n",
-                            "136              6               0                 3                   0   \n",
-                            "\n",
-                            "           Date  ... Pedestrian_Crossing-Physical_Facilities  \\\n",
-                            "0    2005-04-06  ...                                       0   \n",
-                            "1    2007-11-24  ...                                       0   \n",
-                            "2    2005-04-06  ...                                       0   \n",
-                            "3    2007-11-24  ...                                       0   \n",
-                            "4    2005-04-14  ...                                       0   \n",
-                            "..          ...  ...                                     ...   \n",
-                            "132  2017-12-06  ...                                       0   \n",
-                            "133  24/12/2019  ...                                       0   \n",
-                            "134  2017-12-06  ...                                       0   \n",
-                            "135  24/12/2019  ...                                       0   \n",
-                            "136  11/09/2019  ...                                       0   \n",
-                            "\n",
-                            "           Police_Force Road_Surface_Conditions           Road_Type  \\\n",
-                            "0    Greater Manchester             Wet or damp  Single carriageway   \n",
-                            "1    Greater Manchester                     Dry             Unknown   \n",
-                            "2    Greater Manchester             Wet or damp  Single carriageway   \n",
-                            "3    Greater Manchester                     Dry             Unknown   \n",
-                            "4    Greater Manchester             Wet or damp  Single carriageway   \n",
-                            "..                  ...                     ...                 ...   \n",
-                            "132  Greater Manchester                     Dry  Single carriageway   \n",
-                            "133                   6                       2                   6   \n",
-                            "134  Greater Manchester                     Dry  Single carriageway   \n",
-                            "135                   6                       2                   6   \n",
-                            "136                   6                       1                   6   \n",
-                            "\n",
-                            "    Special_Conditions_at_Site Speed_limit   Time Urban_or_Rural_Area  \\\n",
-                            "0                         None          30  11:00               Urban   \n",
-                            "1                         None          30  12:00               Urban   \n",
-                            "2                         None          30  11:00               Urban   \n",
-                            "3                         None          30  12:00               Urban   \n",
-                            "4                         None          30  09:45               Urban   \n",
-                            "..                         ...         ...    ...                 ...   \n",
-                            "132                       None          30  12:45               Urban   \n",
-                            "133                          0          30  15:49                   1   \n",
-                            "134                       None          30  12:45               Urban   \n",
-                            "135                          0          30  15:49                   1   \n",
-                            "136                          0          30  22:40                   1   \n",
-                            "\n",
-                            "     Weather_Conditions  Year  \n",
-                            "0    Fine no high winds  2005  \n",
-                            "1               Unknown  2007  \n",
-                            "2    Fine no high winds  2005  \n",
-                            "3               Unknown  2007  \n",
-                            "4    Fine no high winds  2005  \n",
-                            "..                  ...   ...  \n",
-                            "132  Fine no high winds  2017  \n",
-                            "133                   2  2019  \n",
-                            "134  Fine no high winds  2017  \n",
-                            "135                   2  2019  \n",
-                            "136                   1  2019  \n",
-                            "\n",
-                            "[137 rows x 33 columns]"
-                        ]
-                    },
-                    "execution_count": 107,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "#result22=ok.join(ok3, on=['Longitude','Latitude'], how='left_outer')\n",
-                "result22=pd.merge(ok, ok3, on=['Longitude','Latitude'])\n",
-                "result22"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result22spark=spark.createDataFrame(result22) \n",
-                "\n",
-                "result222=result22spark.withColumn(\n",
-                "    \"Road_Type\",\n",
-                "    when(\n",
-                "        col(\"Road_Type\") == 1,\n",
-                "        \"Roundabout\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 2,\n",
-                "        \"One way street\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 3,\n",
-                "        \"Dual carriageway\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 6,\n",
-                "        \"Single carriageway\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 7,\n",
-                "        \"Slip road\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 9,\n",
-                "        \"Unknown\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == 12,\n",
-                "        \"One way street/Slip road\"\n",
-                "    ).when(\n",
-                "        col(\"Road_Type\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Road_Type\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+------------------+---------------+\n",
-                        "|Accident_Severity|         Road_Type|Total accidents|\n",
-                        "+-----------------+------------------+---------------+\n",
-                        "|           Slight|Single carriageway|            101|\n",
-                        "|           Slight|  Dual carriageway|              5|\n",
-                        "|                3|Single carriageway|              4|\n",
-                        "|           Slight|           Unknown|              3|\n",
-                        "|           Slight|        Roundabout|              6|\n",
-                        "|          Serious|        Roundabout|              1|\n",
-                        "|          Serious|  Dual carriageway|              1|\n",
-                        "|          Serious|Single carriageway|             16|\n",
-                        "+-----------------+------------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "dangeorusroadtype = result222.groupby('Accident_Severity','Road_Type').agg(F.count(result222.Accident_Index).alias('Total accidents'))\n",
-                "dangeorusroadtype.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "result22spark22=result22spark.withColumn(\n",
-                "    \"Junction_Detail\",\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 0,\n",
-                "        \"Not at junction or within 20 metres\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 1,\n",
-                "        \"Roundabout\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 2,\n",
-                "        \"Mini-roundabout\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 3,\n",
-                "        \"T or staggered junction\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 5,\n",
-                "        \"Slip road\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 6,\n",
-                "        \"Crossroads\"\n",
-                "    ).\n",
-                "    when(\n",
-                "        col(\"Junction_Detail\") == 7,\n",
-                "        \"More than 4 arms (not roundabout)\"\n",
-                "    ).when(\n",
-                "        col(\"Junction_Detail\") == 8,\n",
-                "        \"Private drive or entrance\"\n",
-                "    )\n",
-                "    .when(\n",
-                "        col(\"Junction_Detail\") == 9,\n",
-                "        \"Other junction\"\n",
-                "    ).when(\n",
-                "        col(\"Junction_Detail\") == -1,\n",
-                "        \"Data missing or out of range\"\n",
-                "    ).otherwise(col(\"Junction_Detail\"))\n",
-                ")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "+-----------------+--------------------+---------------+\n",
-                        "|Accident_Severity|     Junction_Detail|Total accidents|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "|          Serious|More than 4 arms ...|              1|\n",
-                        "|           Slight|     Mini-roundabout|              5|\n",
-                        "|           Slight|          Crossroads|              5|\n",
-                        "|           Slight|T or staggered ju...|             67|\n",
-                        "|           Slight|Private drive or ...|              3|\n",
-                        "|          Serious|Not at junction o...|              2|\n",
-                        "|          Serious|T or staggered ju...|             12|\n",
-                        "|           Slight|          Roundabout|              2|\n",
-                        "|                3|T or staggered ju...|              3|\n",
-                        "|          Serious|          Crossroads|              2|\n",
-                        "|           Slight|      Other junction|             13|\n",
-                        "|          Serious|          Roundabout|              1|\n",
-                        "|                3|More than 4 arms ...|              1|\n",
-                        "|           Slight|Not at junction o...|             19|\n",
-                        "|           Slight|More than 4 arms ...|              1|\n",
-                        "+-----------------+--------------------+---------------+\n",
-                        "\n"
-                    ]
-                }
-            ],
-            "source": [
-                "dangeorusroadtype = result22spark22.groupby('Accident_Severity','Junction_Detail').agg(F.count(result22spark22.Accident_Index).alias('Total accidents'))\n",
-                "dangeorusroadtype.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>period</th>\n",
-                            "      <th>Serious</th>\n",
-                            "      <th>Fatal</th>\n",
-                            "      <th>Slight</th>\n",
-                            "      <th>Total_casualties</th>\n",
-                            "      <th>KSI</th>\n",
-                            "      <th>\"%\"KSI</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>Not at junction or within 20 metres</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>9.0</td>\n",
-                            "      <td>4.0</td>\n",
-                            "      <td>44.444444</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>Roundabout</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>8.0</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>37.500000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>Mini-roundabout</td>\n",
-                            "      <td>12.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>67</td>\n",
-                            "      <td>79.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>T or staggered junction</td>\n",
-                            "      <td>2.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>5.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>Crossroads</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2</td>\n",
-                            "      <td>3.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>5</th>\n",
-                            "      <td>More than 4 arms (not roundabout)</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>13</td>\n",
-                            "      <td>13.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "      <td>Private drive or entrance</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>19</td>\n",
-                            "      <td>19.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7</th>\n",
-                            "      <td>Other junction</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1.0</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                                period  Serious  Fatal  Slight  \\\n",
-                            "0  Not at junction or within 20 metres      1.0    3.0       5   \n",
-                            "1                           Roundabout      2.0    1.0       5   \n",
-                            "2                      Mini-roundabout     12.0    NaN      67   \n",
-                            "3              T or staggered junction      2.0    NaN       3   \n",
-                            "4                           Crossroads      1.0    NaN       2   \n",
-                            "5    More than 4 arms (not roundabout)      NaN    NaN      13   \n",
-                            "6            Private drive or entrance      NaN    NaN      19   \n",
-                            "7                       Other junction      NaN    NaN       1   \n",
-                            "\n",
-                            "   Total_casualties  KSI     \"%\"KSI  \n",
-                            "0               9.0  4.0  44.444444  \n",
-                            "1               8.0  3.0  37.500000  \n",
-                            "2              79.0  NaN        NaN  \n",
-                            "3               5.0  NaN        NaN  \n",
-                            "4               3.0  NaN        NaN  \n",
-                            "5              13.0  NaN        NaN  \n",
-                            "6              19.0  NaN        NaN  \n",
-                            "7               1.0  NaN        NaN  "
-                        ]
-                    },
-                    "execution_count": 117,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "import pandas as pd\n",
-                "import matplotlib.pyplot as plt\n",
-                "dangerousroad_df=dangeorusroadtype.toPandas()\n",
-                "\n",
-                "\n",
-                "dangerousroad_dfindex=dangerousroad_df.set_index('Junction_Detail')\n",
-                "dangerousroad_dfindex3=dangerousroad_dfindex\n",
-                "dangerousroad_dfindex3\n",
-                "\n",
-                "grouped = dangerousroad_dfindex3.groupby(dangerousroad_dfindex3.Accident_Severity)\n",
-                "Serious = grouped.get_group(\"Serious\")\n",
-                "Serious=Serious[\"Total accidents\"]\n",
-                "Serious=Serious.reset_index(drop=True)\n",
-                "Fatal = grouped.get_group(\"3\")\n",
-                "Fatal=Fatal[\"Total accidents\"]\n",
-                "Fatal=Fatal.reset_index(drop=True)\n",
-                "Slight = grouped.get_group(\"Slight\")\n",
-                "Slight=Slight[\"Total accidents\"]\n",
-                "Slight=Slight.reset_index(drop=True)\n",
-                "Slight\n",
-                "Casulaty = pd.DataFrame({'period': ['Not at junction or within 20 metres', 'Roundabout', 'Mini-roundabout','T or staggered junction','Crossroads','More than 4 arms (not roundabout)','Private drive or entrance','Other junction'],\n",
-                "                   'Serious': Serious,\n",
-                "                   'Fatal': Fatal,\n",
-                "                   'Slight': Slight})\n",
-                "Casulaty\n",
-                "dflist=['Serious','Fatal','Slight']\n",
-                "Casulaty['Total_casualties']=Casulaty[dflist].sum(axis=1)\n",
-                "\n",
-                "Casulaty_spark=spark.createDataFrame(Casulaty)\n",
-                "Casulaty_spark=Casulaty_spark.withColumn('KSI', Casulaty_spark[2]+Casulaty_spark[1])\n",
-                "Casulaty_spark=Casulaty_spark.withColumn('\"%\"KSI', (Casulaty_spark[5]/Casulaty_spark[4])*100)\n",
-                "Casulaty_spark_df=Casulaty_spark.toPandas()\n",
-                "\n",
-                "Casulaty_spark_df"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "#traffic volume\n",
-                "#each count point its traffic volume\n",
-                "#all accidents happened near that count point"
-            ]
-        }
-    ],
-    "metadata": {
-        "interpreter": {
-            "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
-        },
-        "kernelspec": {
-            "display_name": "Python 3.9.7 64-bit",
-            "name": "python3"
-        },
-        "language_info": {
-            "codemirror_mode": {
-                "name": "ipython",
-                "version": 3
-            },
-            "file_extension": ".py",
-            "mimetype": "text/x-python",
-            "name": "python",
-            "nbconvert_exporter": "python",
-            "pygments_lexer": "ipython3",
-            "version": "3.6.7"
-        },
-        "orig_nbformat": 4
-    },
-    "nbformat": 4,
-    "nbformat_minor": 2
-}